
HAL Id: tel-03296009
https://theses.hal.science/tel-03296009v1

Submitted on 22 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmes en temps polynomial pour les semi-bandits
combinatoires : apprentissage par renforcement efficace

dans des environnements complexes
Thibaut Cuvelier

To cite this version:
Thibaut Cuvelier. Algorithmes en temps polynomial pour les semi-bandits combinatoires : appren-
tissage par renforcement efficace dans des environnements complexes. Machine Learning [stat.ML].
Université Paris-Saclay, 2021. Français. �NNT : 2021UPASG020�. �tel-03296009�

https://theses.hal.science/tel-03296009v1
https://hal.archives-ouvertes.fr


Th
ès

e 
de

 d
oc

to
ra

t
N

N
T

:2
02

1U
PA

SG
02

0
Algorithmes en temps polynomial

pour les semi-bandits combinatoires :
apprentissage par renforcement efficace

dans des environnements complexes
Polynomial-Time Algorithms for Combinatorial Semibandits:

Computationally Tractable Reinforcement Learning in Complex
Environments

Thèse de doctorat de l’université Paris-Saclay

École doctorale no 580, Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : réseaux, information et communications
Unité de recherche : université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et

systèmes, 91190 Gif-sur-Yvette, France
Référent : CentraleSupélec

Thèse présentée et soutenue à Paris-Saclay, le 24 juin 2021, par

Thibaut Cuvelier

Composition du jury
Alexandra Carpentier Présidente
W2-Professur, Otto-von-Guericke-Universität Magdeburg
Odalric-Ambrym Maillard Rapporteur et examinateur
Chargé de recherche, Inria Lille
Vianney Perchet Rapporteur et examinateur
Professeur, ENSAE Paris
Vincent François-Lavet Examinateur
Universitair Docent, Vrije Universiteit Amsterdam
Rémi Munos Examinateur
Directeur de recherche, Inria Lille
Directeur de laboratoire, Google DeepMind

Direction de la thèse
Zwi Altman Directeur
Ingénieur de recherche, Orange Labs
Richard Combes Codirecteur
Professeur adjoint, CentraleSupélec
Éric Gourdin Codirecteur
Ingénieur de recherche, Orange Labs



Polynomial-Time Algorithms for Combinatorial
Semibandits:

Computationally Tractable Reinforcement Learning in
Complex Environments



Abstract

Sequential decision making is a core component of many real-world applications, from computer-
network operations to online ads. The major tool for this use is reinforcement learning: an agent
takes a sequence of decisions in order to achieve its goal, with typically noisy measurements of the
evolution of the environment. For instance, a self-driving car can be controlled by such an agent; the
environment is the city in which the car manœuvers. Bandit problems are a class of reinforcement
learning for which very strong theoretical properties can be shown. The focus of bandit algorithms
is on the exploration-exploitation dilemma: in order to have good performance, the agent must
have a deep knowledge of its environment (exploration); however, it should also play actions that
bring it closer to its goal (exploitation).

In this dissertation, we focus on combinatorial bandits, which are bandits whose decisions
are highly structured (a ‘combinatorial’ structure). These include cases where the learning agent
determines a path to follow (on a road, in a computer network, etc.) or ads to display on a
Website. Such situations share their computational complexity: while it is often easy to determine
the optimum decision when the parameters are known (the time to cross a road, the monetary gain
of displaying an ad at a given place), the bandit variant (when the parameters must be determined
through interactions with the environment) is more complex.

We propose two new algorithms to tackle these problems by mathematical-optimisation tech-
niques. Based on weak hypotheses, they have a polynomial time complexity, and yet perform well
compared to state-of-the-art algorithms for the same problems. They also enjoy excellent statistical
properties, meaning that they find a balance between exploration and exploitation that is close to
the theoretical optimum. Previous work on combinatorial bandits had to make a choice between
computational burden and statistical performance; our algorithms show that there is no need for
such a quandary.



Résumé

La prise de décision séquentielle est une composante essentielle de nombreuses applications,
de la gestion des réseaux informatiques aux annonces en ligne. L’outil principal est l’apprentissage
par renforcement : un agent prend une séquence de décisions afin d’atteindre son objectif, avec des
mesures typiquement bruitées de son environnement. Par exemple, un agent peut contrôler une
voiture autonome ; l’environnement est la ville dans laquelle la voiture se déplace. Les problèmes de
bandits forment une classe d’apprentissage de renforcement pour laquelle on peut démontrer de très
forts résultats théoriques. Les algorithmes de bandits se concentrent sur le dilemme exploration-
exploitation : pour avoir une bonne performance, l’agent doit avoir une connaissance approfondie
de son environnement (exploration) ; cependant, il doit aussi jouer des actions qui le rapprochent
de son but (exploitation).

Dans cette thèse, nous nous concentrons sur les bandits combinatoires, qui sont des bandits dont
les décisions sont très structurées (une structure « combinatoire »). Il s’agit notamment des cas
où l’agent détermine un chemin à suivre (sur une route, dans un réseau informatique, etc.) ou des
publicités à afficher sur un site Web. De telles situations partagent leur complexité algorithmique :
alors qu’il est souvent facile de déterminer la décision optimale lorsque les paramètres sont connus
(le temps pour traverser une route, le profit généré par l’affichage d’une publicité à un endroit
donné), la variante bandit (lorsque les paramètres doivent être déterminés par des interactions avec
l’environnement) est bien plus complexe.

Nous proposons deux nouveaux algorithmes pour aborder ces problèmes par des techniques
d’optimisation mathématique. Basés sur des hypothèses faibles, ils présentent une complexité tem-
porelle polynomiale, tout en étant performants par rapport aux algorithmes de pointe pour les
mêmes problèmes. Ils présentent également d’excellentes propriétés statistiques, ce qui signifie qu’ils
trouvent un équilibre entre exploration et exploitation proche de l’optimum théorique. Les travaux
précédents sur les bandits combinatoires ont dû faire un choix entre le temps de calcul et la perfor-
mance statistique ; nos algorithmes montrent que ce dilemme n’a pas lieu d’être.



Acknowledgements

Being a PhD student is not the easiest part of one’s life, but it still leaves memorable moments,
especially those shared with coworkers. I was lucky enough to work partly at Orange Labs, an
exceptional place to perform applied research. I would like to thank my former colleagues there for
the insightful and/or fun discussions we had, be them fellow PhD students — Paul, Yassine, Julien,
Jalal, Ahlam, Marie, Raquel, and Wesley — or permanent researchers — Éric, Zwi, Amal, Nancy,
Yannick, Adam, Stéphane, to name a few. In particular, I really thank Éric for offering me these
research opportunities. I also have to thank Richard, for he was guiding me for most of the work
in this manuscript.

I could not have finished this work without the support of my parents, family, and friends, or
without Sarah’s continuous presence, in moments when everything was fine. . . or slightly less OK,
notwithstanding writing and technical support, even well outside her comfort zone. These years
could not have been the same without you!

I am grateful to the people who helped me polish this manuscript: my advisors (Richard, Éric,
Zwi) and Sarah. I take full responsibility for the remaining mistakes.



Contents

Abstract 2
Résumé 3
Acknowledgements 4

Chapter 1. Industrial Context 7
1.1. Machine learning and combinatorial optimisation 8
1.2. Contributions of the thesis 9

Chapter 2. Introduction to Bandits 10
2.1. Reinforcement learning 10
2.2. k-armed bandits 13
2.3. Contextual bandits 20
2.4. Structured bandits 23
2.5. Combinatorial bandits 27
2.6. Interesting combinatorial sets 32

Chapter 3. Approximation Algorithms for Optimum Combinatorial Bandits 36
3.1. AESCB 36
3.2. Optimising budgeted programs 42
3.3. Exact implementation of ESCB 49
3.4. Numerical results 50
3.5. Regret upper bound for AESCB 54

Chapter 4. Nonsmooth Optimisation for Optimum Combinatorial Bandits 65
4.1. Graves-Lai bound for combinatorial bandits 65
4.2. Elements of nonsmooth convex optimisation 67
4.3. AOSSB and GLPG 70
4.4. Exact computation of Graves-Lai bound for combinatorial bandits 81
4.5. Numerical results 81

Appendix A. Notations 85

Appendix B. Pseudocode for Algorithms 87

Chapitre C. Résumé de la thèse 98
C.1. Algorithmes de bandit combinatoires 98
C.2. Contributions 98

Bibliography 101

5



6

Index 108



CHAPTER 1

Industrial Context

Artificial intelligence has become increasingly popular within Internet service providers (ISPs)
to manage their networks. Indeed, they have to operate in a highly competitive environment where
user churn is a major problem, while the networks themselves have to handle a large number of
devices with sometimes strict quality-of-service (low delay, high bandwidth, etc.) and quality-of-
experience (good video-call quality) constraints. To this end, ISPs have to lower their operational
costs while providing a superior service, but they also have to prepare for the next generations of
network technologies (for instance, fibre access networks for end users and 5G networks). In this
context, artificial intelligence is used to take better decisions in complex situations than human
operators, but also to deal with uncertainty. Two main categories of tools are used: those from
operational research (mostly mixed-integer optimisation, but also linear, convex, continuous, and
nonsmooth optimisation) and those from machine learning (especially supervised learning, although
reinforcement learning is proving popular).

Artificial-intelligence-based systems are used in many network-related contexts:

operational level: the actual operations of the network of a data centre, ideally based on
its current usage. This definition encompasses several domains, among which the most
important ones include:
• network-routing optimisation: this is probably one of the first applications of optim-

isation in computer networks, where the goal is to find the best route for each packet
in the network [1, 2, 3]. Handling the uncertainty is a major challenge [4, 5]. How-
ever, machine-learning approaches have also been explored in the literature, mostly
based on reinforcement learning [6, 7, 8]. Supervised learning plays a role in estim-
ating the quality of experience of the users [9] or in classifying packets [10], including
detecting attacks [11].
• resource-usage optimisation: near-optimum deployments are paramount in data-

centre operations, especially to reduce their ‘total ownership costs’ (TOC or TCO,
i.e. the sum of the hardware costs, maintenance, and other indirect costs like social
or environmental costs). If fewer servers are bought in the first place, and fewer are in
operation (which reduces electricity consumption and heat dissipation, for instance),
the data-centre owner can reduce their costs, independent of whether optimisation is
performed offline [12, 13] or online [14].
• cache optimisation: to improve the quality of experience of users, a very common

technique is to hold a copy of the content in a server near the user (i.e. to cache
it). Building such a distributed system can be very expensive, and making the best
possible use of the resources is of the utmost importance: increasing the capacity of
the cache is extremely costly [15, 16].

7



1.1. MACHINE LEARNING AND COMBINATORIAL OPTIMISATION 8

real-time decision making: the control of the elements in the network. This level does
not allow more than a few milliseconds to take a decision. This time lapse typically
precludes the direct use of mathematical-optimisation tools from operational research.
Reinforcement-learning methods have been used for congestion control in transport-level
protocols like TCP to regulate the bitrate of applications [17, 18] and in beam allocation
in 5G technologies to maximise throughput [19]. The same techniques can be used to
optimise ancillary goals that are not visible for the user, like energy consumption when
cooling data centres [20] or when transmitting video traffic in a core network [21, 22].
Mathematical optimisation can still be used for quick decision making, like network rout-
ing: this paradigm can be used to compute one or several plans that are applied in real
time [1, 23] or to decide which combination of previously determined network routings
should be used [24].

Many of these tasks tend to be deployed at the edge of the network (a paradigm often called edge
computing), where less computing power is available, with very little electrical power accessible
when compared to a traditional data centre [25].

Several problems in this short list hide a very complex combinatorial structure, and a good deal
of them are even NP-hard (unsplittable network flows [2], virtual-machine placement [12], cache
optimisation [26], etc.). Informally, NP-hardness indicates that the computer-science community
as a whole thinks it it unlikely that an efficient algorithm (‘polynomial-time’) exists for this problem.
However, NP-hardness does not indicate that it is not possible to solve exactly such problems, even
for instance sizes that are relevant to the industrial practice.

1.1. Machine learning and combinatorial optimisation

Machine learning, as a field, is based on many continuous-optimisation tools, and could not
have progressed to the point it stands nowadays without these techniques: variations of gradient
descent are the most effective algorithm to train neural networks currently, convex duality is crucial
for SVM efficiency. However, both domains have been cross-pollinating for a long time, as results
from machine learning are also being applied in optimisation, this time mostly combinatorial (i.e.
when discrete decisions must be taken: for example, a user is shown a given number of ads, but
not halves or thirds of ads).

There are mostly two ways to combine machine learning and combinatorial optimisation: either
the machine-learning algorithm is responsible for (parts of) a solution, a scenario which is called
‘principal learning’, or for guiding other combinatorial-optimisation techniques, ‘joint learning’ [27].

Principal learning: the machine-learning model is responsible for at least a part of the
combinatorial solution. The major problem to tackle is that the parameters for the com-
binatorial problem (the input to the model) have a variable size, and similarly the com-
binatorial solution might have a nonconstant number of unknowns too. A typical solution
is to ‘encode’ the solution into a representation that is amenable to learning [28, 27].
More specific solutions must be used for graph problems, due to their very specific struc-
ture [29, 30, 31, 32]. Similar techniques can be used to predict some features of the
solution, like the value of multipliers [33]. In general, the obtained models are very
specific to one kind of combinatorial problem, i.e. a user cannot change the underlying
structure (even just adding a few constraints) without retraining the models.

Joint learning: in this case, machine learning is only responsible for guiding a traditional
optimisation algorithm. It might simply be determining some parameters of the algorithm



1.2. CONTRIBUTIONS OF THE THESIS 9

to tune it for the instance to solve [34]. More evolved schemes use reinforcement learning
within the combinatorial algorithm, to evaluate the quality of choices that are made by
the combinatorial algorithm and to improve the next ones; this approach has been used
with some success in constraint programming [35] and mixed-integer programming [36].
To foster new developments in this area, ECOLE is an environment to ease building new
components for an existing solver [36].

This thesis lies at the intersection of machine learning and combinatorial optimisation by provid-
ing two new algorithms for reinforcement learning. These are based on advanced mathematical-
optimisation tools.

1.2. Contributions of the thesis

The main scientific contributions of this thesis are two new algorithms, efficient both in the-
ory and in practice, to solve the bandit version of several combinatorial problems, with realistic
assumptions. We detail these two new methods in Chapters 3 and 4. They lead to two publications
to top-tier conferences in artificial intelligence:

• Thibaut Cuvelier, Richard Combes, Éric Gourdin. Statistically efficient, polynomial-time
Algorithms for combinatorial semi-bandits. Accepted in Proceedings of the ACM on Meas-
urement and Analysis of Computing Systems, March 2021.

• Thibaut Cuvelier, Richard Combes, Éric Gourdin. Asymptotically optimal strategies for
combinatorial semi-bandits in polynomial time. Accepted in Algorithmic Learning Theory,
January 2021. Proceedings of Machine Learning Research.

The tool that we developed to solve both problems is budgeted optimisation, i.e. solving budgeted
linear maximization problems over the combinatorial structures of interest. We build a generic
methodology to minimise structured convex functions on combinatorial sets (Section 3.1.4), which
is central to our bandit algorithms. This approach can be used in more general situations, as it can
outperform existing optimisation technology (Section 3.4).

Another contribution of this thesis is open-source software. All developments were done in
Julia [37], a technical programming language with a very open community. In particular, all
numerical experiments have been carried out with CombinatorialBandits.jl, a package that has been
developed throughout the research work. Some of its functionality has been split into easily reusable
packages: one for combinatorial optimisation, Kombinator.jl, and one for nonsmooth optimisation,
NonsmoothOptim.jl.

https://github.com/dourouc05/CombinatorialBandits.jl
https://github.com/dourouc05/Kombinator.jl
https://github.com/dourouc05/NonsmoothOptim.jl


CHAPTER 2

Introduction to Bandits

This thesis describes two theoretical breakthroughs in combinatorial bandits, a field of the
vast domain of machine learning, more specifically reinforcement learning. This chapter introduces
the current context of combinatorial bandits, starting with reinforcement learning (Section 2.1),
then specialising this paradigm to bandit problems (Section 2.2). Several kinds of bandit envir-
onments are considered: k-armed bandits, the most classical version of the problem, are detailed
in Section 2.2, while Section 2.3 introduces contextual bandits and Section 2.4 structured bandits.
Combinatorial bandits are a part of these structured bandits, but with specific statistical and com-
putational properties that are explained in Section 2.5. Several combinatorial sets on which these
combinatorial bandits work are described in Section 2.6.

2.1. Reinforcement learning

Reinforcement learning is the part of machine learning that learns through trial and error.
The most common domain of machine learning is supervised learning: the algorithm is given a
data base of input-output pairs, and its goal is to provide a model that approximates this input-
output relationship. In reinforcement learning, the data is gathered sequentially, and depends on
the actions taken by the learner.

The reinforcement-learning algorithm controls an agent that interacts with its environment.
‘Positive’ interactions are rewarded, so that the agent knows what it should strive for (similarly,
‘negative’ interactions can be penalised, i.e. given a negative reward).

2.1.1. Formalisation. Usually, in reinforcement learning, time is discretised: the agents do
not take actions continuously, but every time step.

At time step n, the agent is asked to take a decision, i.e. pick an action x(n) in the action
space A. This space might be either finite in size or infinite.

In order to take a decision, the agent observes the environment: these observations are a part
of the state of the environment, denoted by s(n) ∈ S where S is the state space. Each action of the
agent influences the state of the environment.

The environment evolution is usually formalised as a probability distribution that relates several
variables [38]:

• the decision of the agent: the action x(n)
• the history of the environment: the current state s(n), all the previous states {s(n− 1) , s(n− 2) . . . s(1) , s(0)},

all the previous rewards {r(n− 1) , r(n− 2) . . . r(1)}
• the future of the environment: the reward r(n) that is obtained when playing x(n), and

the next state s(n+ 1)

The probability distribution can therefore be written as:

10



2.1. REINFORCEMENT LEARNING 11

(2.1.1) P

r(n) , s(n+ 1)

∣∣∣∣∣∣
s(n) , s(n− 1) , s(n− 2) . . . s(1) , s(0) ,

r(n− 1) , r(n− 2) . . . r(1) ,
x(n)

 .

An episode corresponds to a series of time steps, starting at an environment-defined initial state
s0 ∈ S and ending at some point T where the agent can take no further actions. Not all environments
have this notion of episode. For instance, the game of go certainly does (s0 corresponds to a blank
board and T to the turn when one player wins or both players come to a draw).

The policy π refers to the way a given reinforcement-learning algorithm takes decisions. A
policy is a function that maps a state s(n) ∈ S to a probability distribution over actions A, usually
based on all previous observations.

An agent interacts with the environment to achieve its goal, defined by the experimenter. This
goal is formalised as maximising its total reward over time:

(2.1.2) max
T∑

t=1

r(t) .

At each time step, the agent takes one action that should, in expectation, bring it closer to that
goal. However, not all actions are directed towards maximising the objective: if the agent only
explores one strategy, it might not be able to reach a very high total reward in all cases. The agent
must also explore other strategies to get a good grasp of sequences of actions that work well or not.
This conundrum is known as the ‘exploration-exploitation dilemma’.

Initially (n = 1), the agent has barely no knowledge about the environment. It only knows the
state space S and the action space A. It can also observe the initial state s(0). However, it has
no information about the impact of its actions on the environment or on the rewards. When the
agent interacts with the environment, it sequentially gets more information about the probability
distribution relating actions, current state, state transitions, and rewards.

In order to provide a better theoretical understanding of the behaviour of the agent, a metric
has proved to be very useful: the regret R(n). It is defined as the difference in total reward between
the agent and an ‘oracle’ [39], i.e. an agent that has a perfect prior knowledge of the environment
(at each time step, it fully understands the impact of an action on the state and on the reward).
At each time step n, the oracle therefore gets the optimum reward r⋆(s(n)) for the current state
s(n). The regret can then be written as:

(2.1.3) R(n) =

n∑
t=1

[r⋆(s(n))− r(n)] .

This definition gave many theoretical results for the analysis of reinforcement learning [40], espe-
cially for bandit algorithms (Section 2.2).

2.1.2. Markov decision process. The most common hypothesis to simplify the setting is
Markov assumption: the environment is entirely described by a probability distribution over the
reward r(n) and the next state s(n+ 1) that only depends on the current state s(n) and the action
that the agent takes x(n) [38]:

(2.1.4) P{r(n) , s(n+ 1) | s(n) , x(n)} .
In particular, this assumption indicates that the probability distribution does not depend on the
current time step: the probability of a given transition from s(n) to s(n+ 1) does not depend on



2.1. REINFORCEMENT LEARNING 12

n. In other words, it must be stationary. This simplifying assumption leads to Markov decision
processes (MDP).

2.1.3. Examples. Reinforcement learning can be applied to car driving. However, to fit the
paradigm, an artificial discretisation must be applied: for instance, the agent might be asked to
take a decision every 50 ms. The state s(n) is composed of the observations of the car, i.e. what is
in front of it (a building, a pedestrian, another car, etc.).

(2.1.5) S = {pedestrian 2 m ahead, car 50 cm ahead, clear road . . . } .
The action x(n) can be ‘turn right’, ‘turn left’, or ‘continue straight ahead’, among others.

(2.1.6) A = {turn right, turn left, continue straight ahead . . . } .
When a car driver steers, their vehicle moves in the environment (its state evolves), and pedestrians
might stop to avoid accidents.

Another example can be fighting in video games, to propose fierce opponents without the
bias usually induced by human-crafted artificial-intelligence scripts: a learning agent might think
of uncommon strategies for a human, e.g. novel ways of playing the game. In this case, the
agent is a fighter, and the environment contains the opponent (and it might also be controlled by
reinforcement learning!), while the state corresponds to the position of the opponent and the design
of the battlefield. Rewards are given if the agent wins the match [41].1

The best-known example, however, is probably the game of go, where a reinforcement-learning-
lead algorithm won against the best human players in 2016. The agent is a player, the environment
the goban board and the other player. The agent must decide, at each round, where to position its
next stone [42].

2.1.4. Problem structure. In general, there is very little structure to reinforcement learning.
The only hypothesis is Markov assumption, thanks to which only the state for the current time step
n is needed to take decisions and evaluate how the environment behaves; it also implies stationarity.

However, this assumption implies no restriction on the action: the agent might take a single
discrete action at a time (e.g., in go) or several continuous actions (like car driving). Not all
algorithms may handle all these situations, though.

The reward function is supposed to follow some stationary probability distribution and to be
only influenced by the current state s(n) and the new action x(n). In particular, this forbids
the situation where an adversary chooses the rewards (a scenario studied in Section 2.2.2). Some
researchers try to generalise current algorithms to nonstationary environments[43] (see also Sec-
tion 2.2.2).

This thesis studies a very specific case of reinforcement learning, bandit algorithms, that impose
a very strong structure on the problem at hand. The major difference is that bandit algorithms
consider that there is only one possible state. Many classes of bandit algorithms exist: for instance,
k-armed bandits consider that only discrete actions can be taken (Section 2.2); linear bandits
suggest that the reward r(n) is a linear function of the action x(n) (Section 2.4); contextual bandits
extend the paradigm by adding some state, but it is not influenced by the actions taken by the
agent (Section 2.3). Apart from k-armed bandits, all bandit environments can be extended to the
case of continuous actions [44, 45], but we will not consider them further.

1Ubisoft tried to include reinforcement-learning-based car drivers in Watch Dogs 2 and fighters in For Honor,
but the technological advancement when these games were released (2016-2017) was not sufficient. Instead, these
agents were used against script-controlled agents and to tune them manually [41].



2.2. K-ARMED BANDITS 13

2.1.5. On-policy and off-policy learning. Certain reinforcement-learning algorithms learn
continuously: each action they take and each state transition they see have an impact on the
way they will behave for the next time step. The policy of these algorithms therefore changes
at each time step; these algorithms include Q-learning and TD-learning, for instance [38]. Other
algorithms must gather data from one episode at a time to improve. For these algorithms (mostly,
the Monte-Carlo family [38]), the policy remains constant throughout an episode.

A distinction often made on reinforcement-learning algorithms is that of on-policy and off-policy
learning [38]. On-policy learning corresponds to situations where the new data points to train
the reinforcement-learning system were decided by the current policy: for continuously learning
algorithms, the policy decides to take an action, and is then updated from the received reward
and the new state; no other data is used to update the policy. To the contrary, off-policy learning
corresponds to situations where the reinforcement-learning algorithm is fed with data that does
not come from the policy that is being updated: this data may come from previous episodes or
interactions with the environment, or from a completely unrelated policy.

Both kinds of learning have very different convergence properties, and off-policy learning tends
to show slower convergence in general: an off-policy algorithm may need more interactions with the
environment than an on-policy one [38]. In the specific case of bandit algorithms, many techniques
can perform off-policy learning, with little harm to asymptotic convergence [46]: many bandit al-
gorithms can learn from any sample taken from the environment (from any action that is performed
on the environment), they do not need to decide which action to perform; the only requirement is
to perform sufficient exploration.

2.2. k-armed bandits

The k-armed-bandit problem is a large simplification of reinforcement learning. There is still
an agent that takes actions on an environment to gather rewards, but the state disappears [47].
With a well-defined mathematical structure, bandit problems are easier to study than the complete
reinforcement-learning paradigm.

This simplification allows to focus on one specific issue: the exploration-exploitation dilemma.
Should the agent play the best action found so far (‘exploit’) or rather experiment with other actions
in case it missed the true optimum action (‘explore’)?

Bandit problems became a research topic in 1933 with William Thompson [48], who compared
the effectiveness of two ‘treatments’: based on the current data, in order to maximise the number
of people that survive, what treatment should the doctor give? The major assumption is that the
individuals being treated are valuable: it is not advisable to sacrifice patients by using an inferior
treatment while a better one is known.

This setting has become a standard use of bandits. Considering that observing exactly the
‘state’ of a patient is very difficult, Thompson considered that all that matters is the effectiveness
of each cure. This bandit has two arms: the first one corresponds to the first treatment, and the
second one to the second medicine. In order to take the best decisions in the long term, the doctor
may, at some point, use a medication that seems inferior, but that has not been used as often as
the other; this situation corresponds to ‘exploration’.

The name ‘bandit’ comes from fruit/slot machines that are commonly found in casinos (they are
given many names depending on the country). These machines typically have one arm, with some
probability of reward. The rational player should seek the machine that gives the best reward out of
the k available machines. One explanation for the name ‘bandit’ is given by Lai and Robbins [49]:



2.2. K-ARMED BANDITS 14

Ordinary slot machines with one arm are one-armed bandits, since in the long
run they are as effective as human bandits in separating the victim from his
money.

2.2.1. Formalisation of the bandit setting. The bandit setting is a large simplification of
the reinforcement-learning one (Section 2.1.1): there is only one state, and the number of actions
is typically finite.

Mathematically, for each patient n (i.e. for each round), the doctor takes a decision x(n) ∈ A,
where A is the set of actions (named arms for bandits). In this particular case, the reward the
doctor gets, denoted as r(n), depends on whether the patient survived or not. The outcome is
stochastic: treating two patients with the same medicine does not always guarantee two identical
results; therefore, r(n) is a random variable. Arbitrarily, the reward might be defined as 1 for a
survivor and 0 otherwise. Each medicine ai ∈ A has its own probability distribution of rewards: in
this case, it is a Bernoulli distribution, with a probability θi of survival. Therefore, the reward can
be written as:

(2.2.1) r(n) ∼ B(θi) if x(n) = ai.

The goal of the doctor (the agent) is to find the best medicine (the best arm to play), i.e. the
one with the highest probability of survival (the highest average reward), denoted by r⋆. Their
reasoning is formalised by the notion of regret. This metric compares the (total) reward the agent
did actually get (i.e. how many patients survived,

∑n
t=1 r(t) at round n) and the outcome had

the doctor known in advance the best medicine, i.e. as if the doctor was an oracle with perfect
knowledge about the environment. The regret after n rounds is formally defined as:

(2.2.2) R(n) = n r⋆︸︷︷︸
the optimum reward,

n rounds

− E

{
n∑

t=1

r(t)

}
︸ ︷︷ ︸

the reward the bandit
received

.

To get the lowest possible regret, the doctor (our agent) cannot continue using the same medicine
(i.e. play the same arm) over and over again, unless they have proven that the other ones are not
as effective.

The expected discrepancy between the optimum policy and the bandit is called the gap, for each
round:

(2.2.3) ∆(n) = E{r⋆ − r(n)} .

The regret can be written as the sum of the gaps:

(2.2.4) R(n) =

n∑
t=1

∆(t) .

The gap can also be defined for the ith arm, and corresponds to the average reward that is lost
when playing ai (whose average reward is ri) instead of the optimum arm (whose average reward
is r⋆), in expectation. This value is thus zero for the optimum arms and greater than zero for the
others.

(2.2.5) ∆i = E{r⋆ − ri} .



2.2. K-ARMED BANDITS 15

Figure 2.2.1. A typical fruit machine. (1899 "Liberty Bell" machine, manufac-
tured by Charles Fey, photo by Nazox, distributed under a Creative Commons
BY-SA 3.0 license. Available online.)

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/File:Liberty_bell.jpg


2.2. K-ARMED BANDITS 16

A classic decomposition of the regret is based on the gap for each arm and the number of times it
has been played up to round n, which is denoted by Ti(n)

2:

(2.2.6) R(n) =

k∑
i=1

∆i E{Ti(n)} .

A direct intuition of this decomposition is that arms with a low gap should be played more often
than those with higher gaps (i.e. worse arms).

Typically, a harder bandit problem has a lower minimum gap, which is defined as:

(2.2.7) ∆min = min
i∈{1,2...k}:

∆i>0

∆i.

If the minimum gap is very small, the bandit has to sample very often the optimum arm and the
one corresponding to ∆min in order to be able to distinguish them. This intuition is formalised as
the Lai-Robbins bound (Section 2.2.4). Similarly, the maximum gap is defined as:

(2.2.8) ∆max = max
i∈{1,2...k}

∆i.

2.2.2. Stochastic and adversarial settings. There are two major settings for k-armed
bandits, depending on how rewards are chosen: stochastic and adversarial. The introductory
example happened in the stochastic setting: before the bandit algorithm, the environment is set
with probability distributions for each arm; the rewards the bandit gets are drawn from these
distributions. In particular, they are not allowed to change over the course of the bandit execution.

On the other hand, in an adversarial setting, the bandit is playing against an opponent (hence
the name). This scenario has been less studied in the literature, and it is only recently that
researchers investigated the setting, starting in 1995 with [50] (while the field of stochastic bandits
started in the 1930s [48]). Before the agent starts interacting with the environment, the antagonist
chooses the reward vectors for the T rounds to come, with one component per arm that can be
played. This oblivious competitor thus cannot adapt to the behaviour of the bandit. At each round,
the bandit agent takes its decision, based on the previous rewards it was able to get; the reward is
taken from the reward vector of the round. This setting is significantly harder than the stochastic
case: for instance, a deterministic policy is guaranteed to suffer from a linear regret. Algorithms
exploit different principles than in the stochastic case: there should no more be optimism in the
face of uncertainty.

2.2.3. Applications. Apart from the historical and very classical application of drug test-
ing, k-armed bandits are very useful in many cases, and not only in theory. For instance, these
algorithms are used to replace A/B testing of websites, mobile applications, and many other com-
puter applications [51].

In small-cell cellular networks like some deployments of 4G or 5G, the base station emits data
on the beam level, i.e. for a small angle and a specific distance with respect to the antenna (whereas
a cell corresponds to a large angle and a sizeable distance). Beams may interfere with those of other
antennae: in this case, the transmission has a poor quality, and the packets must be sent again [19].
The retransmission may happen on the same beam or not: if both antennae stay on the same beam,
they will interfere with each other again; moreover, if both switch beams at the same time, some

2The origins of this decomposition are not exactly clear [47]. One of its earliest use is in [49].



2.2. K-ARMED BANDITS 17

spectrum will be lost, while these antennae may interfere with others. This decision might be taken
by a bandit.

2.2.4. Lai-Robbins bound. A fundamental result of k-armed-bandit theory is the Lai-Robbins
bound [49]. It gives a lower bound on the regret of the best implementable bandit algorithm, a
‘consistently good policy’. Without prior information on the bandits, such a policy cannot have a
zero regret, or even a regret that is constant with the number of rounds.

Formally, a consistently good policy [49] is a bandit algorithm whose asymptotic regret R(n)
when n→ +∞ is such that, for all reward distributions θ in the compact set Θ,

(2.2.9) E{R(n)} ∈ o(nα) , ∀α > 0.

Even though the regret highly depends on the choice of reward distribution θ, a consistently-good
policy must respect this condition for all distributions in Θ.

Stating the Lai-Robbins bound requires the definition of the Kullback-Leibler divergence kl(p, q)
between two probability distributions p and q [52]. kl(p, q) will be close to zero if p and q are
highly similar probability distributions. This divergence is defined as follows, for two continuous
probability distributions:

(2.2.10) kl(p, q) =
∫

p(x) log
p(x)

q(x)
dx.

For two discrete distributions, the integral is replaced by a sum:

(2.2.11) kl(p, q) =
∑
x∈X

p(x) log
p(x)

q(x)
.

The particular case of Bernoulli distributions is very useful for bandit problems: in this case,
arms only have two possible values for the reward, either 0 or 1. For Bernoulli distributions,
denoting by p and q the win probability for each distribution and abusing these symbols to refer to
the probability distributions, the Kullback-Leibler divergence is:

(2.2.12) kl(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
.

The Lai-Robbins bound is the following [49, Theorem 1]: for all distributions θ ∈ Θ such that
there is at least one arm i with ∆i > 0 (i.e. one suboptimum arm), a uniformly-good policy must
have the following lower bound on the number of times each arm j ∈ {1, 2 . . . k} is played:

(2.2.13) lim inf
n→+∞

E
{
Tj(n)

log n

}
≥ 1

kl(rj , r⋆)
.

In particular, if j is the optimum arm, the limit value is infinite. Therefore, in order to be optimum,
a bandit algorithm must explore.

2.2.5. Efficient algorithms for stochastic bandits. The literature provides many algorithms
for stochastic bandits, many of them having similar regret bounds (within a constant factor with
respect to each other). Many algorithms are based on the notion of ‘optimism in face of uncertainty’
introduced in [49], like UCB-1 [53]. In practice, this methodology implies that the algorithm uses
an index to choose the arm to play. This index is a function of the arm and has two components:
the average reward for this arm θ̂i(n), and a ‘confidence bonus’ (or radius) ρ̂i . The algorithm
is designed so that the true reward for the arm is contained with high probability in the interval[
θ̂i + ρ̂i, θ̂i − ρ̂i

]
. Usually, the confidence bonus is a function of the inverse of the number of times



2.2. K-ARMED BANDITS 18

the arm has been played, so that an arm that has not been played often (i.e. its reward estima-
tion is probably poor) has a higher confidence bonus. All the ingenuity in designing such bandit
algorithms is in finding the right expression for the bonus so that exploration is balanced with
respect to exploitation.

UCB-1 [54] has a confidence bonus tuned to minimise the regret while still having a very simple
expression:

(2.2.14) x(n) ∈ argmax
i∈{1,2...k}

index of arm i︷ ︸︸ ︷
θ̂i︸︷︷︸

average
reward
of arm i

+

√
2 log n

Ti(n)︸ ︷︷ ︸
confidence bonus

.

The algorithm is formally stated in Algorithm 1. This algorithm can be proved to have the following
regret bound [54, Theorem 1]:

(2.2.15) E{R(n)} ≤ 8

k∑
i=1

1∆i ̸=0
log n

∆i
+

(
1 +

π2

3

) k∑
i=1

∆i.

A simpler form is R(n) ∈ O(log n).
KL-UCB [55, 56, 57] still belongs to the same family of algorithms, but has deeper roots in

probability. It is based on the Kullback-Leibler divergence, a measure of distance between two
probability distributions (already introduced in Section 2.2.4). The confidence interval for each
reward is written in terms of the Kullback-Leibler divergence, with the same effect as in UCB-1: if
the arm has been played often, the interval should be small. The arm is chosen as:

(2.2.16) x(n) ∈ argmax
i∈{1,2...k}

{
qi

∣∣∣ qi ∈ Θ and Ti(n) kl
[
θ̂i(n) , qi

]
≤ log n

}
.

The algorithm is formally stated in Algorithm 2. KL-UCB can be proved to have the following
regret bound [55]:

(2.2.17) lim sup
n→+∞

E{R(n)}
log n

≤
k∑

i=1

1∆i ̸=0
∆i

kl(θi, θ⋆)
.

As UCB-1, it scales as R(n) ∈ O(log n). The difference is in the constant factor between log n and
the regret the algorithm exhibits: in some cases like Bernoulli rewards, this algorithm is optimum
and reaches the Lai-Robbins lower bound, i.e. it is asymptotically optimum for these problems.

Thompson sampling is an older algorithm based on very different principles [48]. It uses
Bayesian statistics to estimate the arm rewards [58]: each arm is assigned to a probability distribu-
tion to encode the ‘degree of belief’ about the value of the average reward. The prior distribution
is the one the bandit starts with: after each round, the bandit gathers information about the re-
wards, the updated distribution is called the posterior distribution. For Bernoulli rewards, the beta
distribution is used: both distributions are conjugate, meaning that updating the beta-posterior
parameters based on new information (coming from a Bernoulli distribution) is easy. The beta
distribution has two parameters: the number of successes θ̂+i (n) and the number of failures θ̂−i (n).
For prediction, an estimated reward is drawn from the posterior distribution and the arm with the



2.2. K-ARMED BANDITS 19

best reward is chosen:

(2.2.18) x(n) ∈ argmax
i∈{1,2...k}

ti(n) , where ti(n) ∼ β
[
θ̂+i (n) + 1, θ̂−i (n) + 1

]
.

The algorithm is formally stated in Algorithm 3. It can be proved to have to following regret
bound [59, Theorem 1]:

(2.2.19) R(n) ≤ (1 + ε)

k∑
i=1

1∆i ̸=0∆i
log n+ log log n

kl(θi, θ⋆)
+ C(ε, θ1, θ2 . . . θk)

for all values of ε > 0, where C(ε, θ1, θ2 . . . θk) is a constant that only depends on the chosen ε
and on the average rewards of each arm. What is uncommon with Thompson sampling is that the
analysis came after the algorithm: while the algorithm was developed in the 1930s [48], its analysis
had to wait until the 2010s [60, 61, 62, 59].

UCB-1 and Thompson sampling are very easy to implement and are lightweight to execute.
For UCB-1, an implementation only requires to store, for each arm, a counter of times this arm
has been played and an average reward (for Bernoulli rewards, it suffices to count the successes):
per round and per arm, it only requires a few floating-point operations to evaluate the index (an
inverse, a logarithm, a product, and a square root). These operations can be performed in a
few milliseconds on very cheap hardware like microcontrollers. Thompson sampling, as long as a
conjugate pair of distributions is used, can be implemented very efficiently, but sampling a vector of
estimated rewards might be cumbersome to implement. KL-UCB, however, requires a more complex
optimisation algorithm to compute the index of each arm, such as a binary search, and therefore
requires more computational power. Nevertheless, all these three algorithms can be implemented
in polynomial time (the major variable being k, the number of arms).

2.2.6. Efficient algorithms for adversarial bandits. The principle of optimism in face of
uncertainty is no more valid for designing adversarial-bandit algorithms: the reward of the arms
no longer fluctuate around an unknown average, an empirical average over the previous rewards
for a given arm has no reason to be close to the average reward of that arm with high probability.
Instead, the algorithm must estimate the reward of the arms it did not decide to play. It might
have a mechanism to directly perform this estimation (like EXP3) or delegate this task to ‘experts’
that decide the best solution to play in their opinion (EXP4).

EXP3 (exponential-weight algorithm for exp loration and exp loitation) [63, 50] keeps a weight
wi for each arm ai ∈ A. The arm to play is sampled using these weights. The algorithm uses a
learning rate η > 0 to guide the update of the arms and to ensure that all arms have a sufficiently
high probability of being played. This principle provides ample exploration, there is no need for
mechanisms like ε-greedy or confidence bonus [64]. More precisely, the algorithm starts with all
weights equal to 1: wi(0) = 1 for each arm ai ∈ A. The probability distribution p over the arms is
computed as:

(2.2.20) pi(n) = (1− η)
wi(t)∑

aj∈A wj(n)
+

η

k
.

Once the arm x(n) is played, the bandit receives a reward r(n). It only updates the weight of this
arm (the others are left untouched):

(2.2.21) wx(n)(n+ 1) = wx(n)(n)× exp

(
η

r(n)

k pi(n)

)
.



2.3. CONTEXTUAL BANDITS 20

Using this algorithm, the regret has the following bound with an appropriate choice of η (whose
value depends on the number of rounds the bandit will be used, T ) [50, Theorem 4.1], [47, Theorem
11.1]:

(2.2.22) R(T ) ≤ 2
√
T k log k if η =

√
log k

T k
.

The algorithm is formally stated in Algorithm 4.
EXP4 (exponential-weight algorithm for exp loration and exp loitation with experts) is a dif-

ferent beast [53]. Whereas EXP3 relies on the obtained rewards to take its next decision, EXP4
delegates this task to a set of experts. The experts are fed with the previous rewards, and generate
an advice vector indicating which arm is supposed to be optimum for the next round. Then, in-
stead of maintaining a probability distribution over the arms (like EXP3), EXP4 has a probability
distribution p over the experts e ∈ E, to determine whether the experts are usually right about the
best decision to take or not. EXP4 also uses a learning rate η > 0. These experts may give constant
advice for an arm to play or do complex learning on previous rewards for each arm before advising
anything. This probability distribution p modulates the decisions from each expert, each of them
giving a probability distribution over the arms Ee(n). The probability over the arms is therefore:

(2.2.23) qi(n) =
∑
e∈E

pe(n) Ee,i(n) .

Initially, each expert is given the same probability: pe = |E|−1 for each expert e ∈ E. Once the
reward r(n) is received, the rewards for the other actions are estimated, for instance using:

(2.2.24) r̂i(n) =

{
r(n)
qi(n)

if x(n) = ai

0 otherwise
so that r(n) = E{r̂(n)} .

Then, the expected loss for each arm ai ∈ A is:

(2.2.25) gi(n) =
∑
ai∈A

ei(n) r̂i(n) .

Finally, the weights are updated as:

(2.2.26) pe(n+ 1) = pe(n)× exp

(
−η

n∑
t=1

gi(t)

)
.

With an appropriate choice of η that depends on the total number of rounds where the bandit will
be used (T ), this algorithm can be proved to have the following regret:

(2.2.27) R(T ) ≤ E
{√

2T k log |E⋆(T )|
}

if η =

√
2 log |E⋆(T )|

T k

where E⋆(T ) =
∑T

n=1

∑
ai∈A maxe∈E Ee,i(n) is sum of the maximum expert probability for each

bandit round. The algorithm is formally stated in Algorithm 5.

2.3. Contextual bandits

The basic k-armed bandit is only designed to work in stationary environments without side
information. Nevertheless, not all situations fit this description. For instance, recommender systems
provide users with new content they might appreciate. An online streaming platform has access to
the content the user has already watched (‘side information’). Algorithms for the k-armed-bandit



2.3. CONTEXTUAL BANDITS 21

problem can only recommend new content to all users indistinctively, as the policy to select a new
arm does not take the user into account. However, recommending a horror film to people that
only watched romance pictures is probably a poor choice: the user will probably not watch this
content, which yields a very low reward for the platform owner. As all users have very different
tastes regarding recordings, the reward follows a highly nonstationary distribution.

Contextual bandits make use of this supplementary side information, in the hope of bringing
some stationarity: if users are clustered (e.g., horror films, romance films), there is, intuitively,
a higher chance of having a stationary reward distribution. For each group, a standard k-armed
bandit can be used, using the stationarity hypothesis [65].

2.3.1. Applications. Recommender systems are a major application of contextual bandits:
for personal news feeds [66], for music streams [67], for ad-format selection on webpages [68],
personalised learning [69], etc. A similar application is active learning [70].

2.3.2. Definition of the setting. More formally, a contextual bandit operates as follows.
Let C denote the set of contexts: it may be either finite (e.g., the context is the cluster to which the
current user is assigned) or infinite (an element in a vector space). First, the environment chooses
a context c(n) ∈ C; this choice can be performed either stochastically or adversarially. Then, the
bandit algorithm chooses the arm to play xc(n)(n). Finally, the bandit receives its reward r(n),
drawn from a probability distribution only parametrised by the current context c(n) and the played
arm x(n).

The gap ∆(n) of a played arm x(n) in the context c(n) ∈ C is defined as the difference in reward
between what the bandit received and what the best context-dependent policy r⋆c(n) can achieve
(i.e. the reward the best policy for context c(n) would get):

(2.3.1) ∆(n) = r⋆c(n) − r(n) .

The total expected regret allows a decomposition according to the states, supposing that there is a
finite number of contexts:

R(n) = E

{∑
c∈C

1c(n)=c ∆(n)

}

=
∑
c∈C

k∑
i=1

∆i,c E
{
1c(n)=c Ti,c(n)

}
.

This decomposition highlights the dependence of the total regret on the frequency of each context.

2.3.3. Relation with adversarial bandits. As the context can be chosen by an opponent,
contextual bandits are clearly related to adversarial bandits.

Using one instance of EXP3 per context, the regret can be proved to be [47]:

(2.3.2) R(T ) ≤ 2
√
T k |C| log k if η =

√
log k

T k
.

However, the bound for EXP4 (where each expert now takes as input the context) is still [53]:

(2.3.3) R(T ) ≤ E
{√

2T k log |E⋆(T )|
}

if η =

√
2 log |E⋆(T )|

T k
.



2.3. CONTEXTUAL BANDITS 22

where E⋆(T ) =
∑T

n=1

∑
ai∈A maxe∈E Ee,i(n). One can prove that E⋆(T ) ≤ T min {k, |E|} [47].

This bound therefore mostly depends on the agreement between experts: if all experts always agree,
E⋆(T ) = T , which is the lowest possible value [47]. Therefore, more experts can be added without
having a detrimental effect on the regret.

The bound for EXP3 increases faster than that of EXP4 when k increases: when the number
of possible decisions (these can be items to recommend) is large, EXP4 has a significant advantage
over EXP3 if the experts tend to express similar opinions. In the worst case, even if experts always
disagree, EXP4 has a performance slightly better than that of EXP3, but only within a constant
factor.

Remark 1. E⋆(T ) is close to impossible to exactly determine beforehand. A typical solution
is to have a learning rate ηn that depends on the round and uses the currently estimated E⋆(n), as
this can be computed easily for previous rounds. In this case, though, the learning rate should be
chosen as:

(2.3.4) ηn =

√
2 log |E⋆(n− 1)|

T k
.

The regret bound is slightly worse:

(2.3.5) R(T ) ≤ E
{
2
√

T k log |E⋆(T )|
}
.

2.3.4. Linear contextual bandits. The simple methodology of having one bandit per con-
text is limited in its applicability: this approach only works when the number of contexts is finite.
Moreover, if the number of contexts is too large, learning might be slow: information from one con-
text is never shared with other contexts. This methodology cannot be improved if all contexts are
very different from one another. Outside this case, the rewards in different contexts are somewhat
linked. This hypothesis makes sense in practice: to recommend films, a very good action film might
appeal to both horror- and romance-film enthusiasts. A similar reasoning also applies to online
ads [71].

A common assumption is that of linearity when the context is a vector space (each context
c ∈ C is a vector of Rd, for instance) [72]. Mathematically, this hypothesis implies that the expected
reward of playing an arm ai ∈ A in a context c ∈ C, which is denoted by ri,c, is a linear function
of this context c:

(2.3.6) ri,c = cT θi,

where θi is a fixed vector (unknown to the learner) that depends on the played arm ai ∈ A. The
contextual-bandit problem then reduces to estimate accurately these vectors θi.

LinUCB is one such algorithm [73, 66]. Whereas the k-armed UCB builds a confidence interval
for the average reward of each arm ri, LinUCB does so for the whole vector θi. The confidence
intervals are thus replaced by confidence regions Ci(n) ⊂ Θ, where Θ is the set of all possible reward
vectors θ. These confidence regions Ci(n) are built so that the probability that θi ∈ Ci(n) is high.
The chosen arm is then:

(2.3.7) x(n) ∈ argmax
ai∈A

{
max

θ̂i∈Ci(n)
c(n)

T
θ̂i

}
.



2.4. STRUCTURED BANDITS 23

The most complex part of the algorithm is updating these confidence regions Ci(n) based on the
newly acquired knowledge. One way of updating them is explained in Section 2.4.3. With probab-
ility δ ∈ (0, 1), LinUCB is guaranteed to have a regret bounded by [74, Theorem 1]

(2.3.8) E{R(n)} ≤ C

√
T d log3

k T log T

δ

where C > 0 is a universal constant.

2.4. Structured bandits

So far, we only considered bandits with a finite and quite low number of arms. However, this
situation is not very generic. For instance, if the bandit is used to determine which path in a
network a packet should follow, the number of arms would be the number of paths. However, if two
paths are not disjoint, having information about the time the packet needs to travel on one path
might bring some information on the other path. With k-armed bandits, this cross-information
cannot be exploited [75]. These bandits are structured because the rewards are not independent
from each other: the rewards are composed of basic elements (like an edge in a graph), and only
these basic elements are considered to be independent.

For these structured bandits, algorithms based on the same basic ‘optimism in the face of
uncertainty’ principle do not work as well as for k-armed bandits (Section 2.2). Indeed, it has been
proved that these algorithms all have special cases where they cannot be optimum [76, Theorem
1], [?, Proposition 1]. Other techniques must therefore be pursued in the quest for the optimum
regret bound, like those based on information theory.

2.4.1. Common structures. A very generic structure for bandit problems, introduced in [77],
is as follows. The action space A is finite, and contains k ∈ N0 arms. Each arm ai ∈ A is associated
to an unknown value, θ(ai). Each time the bandit policy plays an arm ai, it gets a reward whose
average is θ(ai), with some unknown distribution.

2.4.1.1. Linear bandits. In the linear-bandit setting, actions are considered to be vectors (A ⊂
Rd for some dimension d), even though the action space is still finite (i.e. |A| = k ∈ N0, like in
the standard k-armed-bandit setting). The reward is assumed to be a linear function of the action
vector.

The reward vector θ(n) follows some probability distribution with means θ. Moreover, the
individual rewards θi(n) are assumed to be independently and identically distributed. The optimum
arm to play is denoted by x⋆ ∈ A, and its reward is r⋆ = x⋆T θ. The goal of the bandit is to estimate
these means [78]. Therefore, the reward received is written as:

(2.4.1) r(n) = x(n)
T
θ(n) .

The regret is still defined in the same way as for k-armed bandits:

(2.4.2) R(n) = E

{
n∑

t=1

∆(n)

}
, with ∆(n) = r⋆ − r(n) .

Most algorithms for linear bandits rely on the same principles as UCB, i.e. find high-probability
confidence regions for the weights of θ(n), use the upper bound of the confidence interval of the
reward as the estimated reward, and play the arm that maximises this estimated upper bound
(‘optimism in face of uncertainty’ principle) [79, 72, 73]. Other algorithms use statistical tests as
a part of their derivation [78, 80].



2.4. STRUCTURED BANDITS 24

The regret bounds for these algorithms typically depend on the dimension of A, not its number
of elements. For instance, if all arms in A are described by vectors of {0, 1}d, the maximum number
of arms is 2d: by having a dependency on d instead of k, it is possible to replace an exponential by
a linear factor in the regret bound. However, typically, the computational complexity still depends
linearly on k.

2.4.1.2. Combinatorial linear bandits. A special case of linear bandits is to consider that the
action spaceA itself has a strong structure. In combinatorial bandits, it is considered to be described
by a combinatorial set X [81, 79]. This implies that A = X ⊂ {0, 1}d for some dimension d (unlike
linear bandits, defined with A ⊂ Rd). The size of A can be large: unlike linear bandits, the number
of arms k is not assumed to be small with respect to 2d.

The optimum reward r⋆ is related to the optimum solution with the weights corresponding to
the average rewards θ:

(2.4.3) r⋆ = x⋆T θ, x⋆ ∈ argmax
x∈X

xT θ.

Similarly, the gap and the regret are defined based on the average rewards:

(2.4.4) ∆(n) = θT [x⋆ − x(n)] , R(T ) =

T∑
t=1

∆(t) .

This kind of bandits is studied in detail in Section 2.5.
2.4.1.3. Lipschitz bandits. Lipschitz bandits are defined on a vector space A of dimension d,

for instance Rd. Similarly to linear bandits, each arm k provides a stochastic reward with mean θk.
The Lipschitz hypothesis is made between the average rewards and the distance between the arms
in X : for any two arms xk and xl in A,

(2.4.5) |θk − θl| ≤ L ∥xk − xl∥ ,

where the bandit knows the constant L > 0. This setting was introduced in [82]. L is a Lipschitz
constant of the function f defined as θk = f(xk).

The problem is harder if the horizon T (i.e. the number of rounds where the bandit policy
is used) is not known. In the continuous case, zooming algorithms can be used [83]. In the
discrete case, some algorithms are based on the optimism principle, like UCBC [84], but unrelated
techniques like OSLB can be used [85]; OSLB is a restricted version of OSSB [80]. Having to know
a good Lipschitz constant can be limiting, as these constants cannot be easily estimated for all
practical problems. [86] proposes a two-phase mechanism for continuous Lipschitz bandits: first,
a pure-exploration stage provides a crude approximation of L (the number of rounds of this step
is a parameter of the algorithm) and performs the discretisation of the action space; second, an
exploration-exploitation period uses a classic k-armed-bandit algorithm over the discretised space.

2.4.1.4. Convex bandits. Convex bandits are highly similar to Lipschitz ones, except that the
rewards are supposed to follow a noisy convex function of the played arm x(n) ∈ A [87]. The
reward is supposed to have the following structure, with f being a convex function:

(2.4.6) r(n) = f [x(n)] + η(n) ,

where η(n) is a zero-mean noise term. Convex bandits are neither a special case of Lipschitz bandits
nor a superclass, as a convex function does not necessarily have a Lipschitz constant, and Lipschitz
functions are not necessarily convex. However, better convergence can be ensured if f is both
convex and Lipschitz.



2.4. STRUCTURED BANDITS 25

Algorithms in this class may be based on a ‘pyramidal construction’ [87] to approximate the
noisy evaluations of f and determine if the (noisy) gradient at an arm x should be followed to
minimise the regret, or if the opposite direction must be followed.

2.4.1.5. Unimodal bandits. Unimodal bandits continue in the same vein, but with a very differ-
ent structure for f : a function defined on A = [0, 1] is said to be unimodal if it has one maximum
at x⋆, is increasing on [0, x⋆], and is decreasing on [x⋆, 1] [88].

With this very peculiar structure, simple algorithms can be applied. For instance, LSE [89]
works iteratively, by keeping an interval for x⋆, and sampling within this interval to reduce its size
in the same way as the golden-search method. The classical UCB algorithm can also be extended
to this case [90]. An optimum strategy is OSUB [90], an instance of the more generic OSSB.
Thompson sampling (Section 2.2.5) can also be adapted to this setting, and the obtained algorithm
is optimum [91].

2.4.2. Graves-Lai bound. Similarly to the Lai-Robbins bound for k-armed bandits (Sec-
tion 2.2.4), implementable structured-bandit algorithms have a lower bound in terms of regret.
This result is obtained through controlled Markov chains [92], of which structured bandits are a
particular case.

For a consistently good policy, for any distribution of rewards θ ∈ Θ (where Θ is a compact set
of reward distributions) such that the optimum arm is x⋆(θ), this policy must be such that [80, 76]:

(2.4.7) lim inf
n→+∞

R(n)

log n
≥ C(θ)

where C(θ) is the value of the following optimisation problem:

(2.4.8)
min

∑
x∈A ηx ∆x

s.t.
∑

x∈A ηx kl(θ,λ,x) ≥ 1 ∀λ ∈ Λ(θ)
ηx ≥ 0.

kl(θ,λ,x) is the Kullback-Leibler divergence between the distributions of the reward of x ∈ X if
the rewards follow the distributions θ and λ. In particular, if the rewards are linear in x and in
the parameters,

(2.4.9) kl(θ,λ,x) = kl
[
θT x,λT x

]
.

Λ(θ) is the set of confusing reward distributions, i.e. those that are close to θ, but such that only
sampling the optimum solution x⋆(θ) for the parameters θ could not allow to distinguish θ from λ.
To be able to distinguish one distribution from the other, suboptimum arms must be played; this
condition is required to ensure that the best solution is identified with high probability (otherwise,
the agent would still play other arms to prove that x⋆(θ) is optimum). Formally, Λ(θ) is defined
as:

(2.4.10) Λ(θ) =
{
λ ∈ Θ

∣∣∣ kl[θ,λ,x⋆(θ)] = 0, x⋆(θ) ̸= x⋆(λ)
}
.

This bound generalises the one of Lai-Robbins for k-armed bandits (Section 2.2.4).
The optimisation problem C(θ) can be interpreted in bandit terms. The variable ηx indicates

how often the arm x should be played (even though the ηx are not a probability distribution over
the solutions x): over n rounds, the arm x is played ⌈ηx log n⌉ times. The objective function,∑

x∈A ηx ∆x, is a regret. The constraint
∑

x∈A ηx kl(θ,λ,x) ≥ 1 imposes that the bandit performs
enough exploration to ensure that it can distinguish both distributions.



2.4. STRUCTURED BANDITS 26

This formulation is generic and applies to all kinds of structured bandits. Special cases were
found before this formulation, for instance in the linear case [76][90]. Most importantly, these
specific formulations have a polynomial size, unlike the generic one presented in this section: it
is semi-infinite, with a finite number of variables (one per arm x ∈ X ) and an infinite number of
constraints (one per probability distribution in Λ(θ), which is a compact set).

2.4.3. Efficient algorithms for linear bandits. A major representative of the ‘optimism
in the face of uncertainty’ family of algorithms [49] (to which UCB pertains, Section (2.2.5)) is
LinUCB [72] (we follow the presentation of [47]). Most of the work of this algorithm consists of
estimating the reward vector θ and to define a sensible confidence set C(n). The reward estimation
is performed as a regularised least-square problem based on all the previous played arms (with the
regularisation parameter λ > 0):

(2.4.11) θ̂(n) ∈ argmin
θ̂∈Rd

n∑
t=1

[
r(n)− θ̂

T
x(t)

]2
+ λ

∥∥∥θ̂∥∥∥2
2
.

This can be computed in time O
(
nd3

)
. The confidence set C(n) can be defined as centred on

θ(n− 1):

(2.4.12) C(n) =

θ̂ ∈ Rd

∣∣∣∣∣∣∣
∥∥∥θ̂ − θ̂(n− 1)

∥∥∥2
2
≤ d+ 2

√
d log δ−1 + 2 log δ−1︸ ︷︷ ︸

β

 .

This definition ensures that the true vector θ is in C(n) with probability 1 − δ [93]. Finding the
solution to play amounts to solving the following optimisation program:

(2.4.13) max
a∈A

θ̂∈C(n)

θ̂
T
a

Written for a specific arm ai ∈ A, it corresponds to a convex optimisation program, and it can be
solved in time O

(
d3
)
. The complete algorithm has the following regret bound, which depends on

the regularisation parameter λ:

(2.4.14) P

{
R(n) ≤

√
8 dnβ log

d λ+ nL2

d λ

}
≥ 1− δ

with L = maxx∈A ∥x∥. Usually, δ is chosen as 1/n. This bound does not depend on the number
of actions, but only on the number of dimensions of the feature vectors. This algorithm has a
complexity O

[
d3 (k + n)

]
. The algorithm is formally stated in Algorithm 6.

(2.4.15) x(n) ∈ argmax
x∈A


max θ̂

T
x

s.t.
∥∥∥θ̂ − θ̂(n− 1)

∥∥∥2
2
≤ β

θ̂ ∈ Θ

 .

2.4.4. Efficient and generic algorithms. OSSB [80, 94] is based on the Graves-Lai bound
(Section 2.4.2): actually, this algorithm is a direct application of the bound.

If the average rewards for each arm θ were known, it would be sufficient to solve the optimisation
program behind C(θ) and to play the arms accordingly: the arm x ∈ A should be played ηx log T
times over T rounds. Once this exploration phase is performed, only the best arm x⋆ should still
be played. This mandates a minimum level of exploration.



2.5. COMBINATORIAL BANDITS 27

However, in practice, θ is not available: it can only be estimated. Let Tx(n) be the number of
times the arm x has been played up to round n:

(2.4.16) Tx(n) =

n∑
t=1

1x(n)=x

and θ̂x(n) the estimated reward of the arm x at round n:

(2.4.17) θ̂x(n) =

∑n
t=1 1x(n)=x r(n)

Tx(n)
.

OSSB uses θ̂(n) as an estimator for θ and explores accordingly to C
(
θ̂
)
, this optimisation program

being solved to exact optimality (no approximation factor or term). This technique is intuitively
ensured to work if θ̂(n) converges towards θ sufficiently fast.

In practice, OSSB works in three phases; its exploration is controlled by two parameters: γ > 0
and ε > 0. At round n:

exploitation: if all arms have been sufficiently explored, i.e. if

(2.4.18) ηx(n) (1 + γ) log n ≤ Tx(n) , ∀x ∈ A,

then the arm with the higher empirical reward is played: x⋆
[
θ̂(n)

]
is very likely to be

equal to x⋆
(
θ̂
)
.

estimation: let x(n) ∈ argmin
x∈A

Tx(n) be the least played arm. If Tx(n)(n) ≤ ε s(n) where

s(n) is the number of rounds where the bandit has not entered the exploitation phase,
then play x(n).

exploration: play x(n) ∈ argmin
x∈A

Tx(n)
/
ηx(n), the arm that is furthest away from the goal

of playing each arm approximately ηx log n times.
The algorithm is formally stated in Algorithm 7.

2.5. Combinatorial bandits

Combinatorial bandits are a special case of linear bandits, but with a stronger structure behind
the arm set A. An arm is a combination of several unit decisions. For instance, the bandit can be
used to determine a path for a packet in a computer network: this path is decomposed in a series of
edges to follow, each of them being a unit decision. Each arm is a solution to some combinatorial
problem (the shortest-path problem, to continue this example). Let X denote the set of solutions
to this combinatorial problem. This set is fully known to the bandit, which means that A = X .

Optimising a linear function on X is not always simple. For instance, it might be the travelling
salesperson problem (TSP), a well-known NP-hard problem [95]. Usually, bandit algorithms using
the ‘optimism in the face of uncertainty’ principle require optimising a nonlinear objective function
(typically, the sum of an average reward and a standard deviation: in this case, the objective is a
concave function). Even though efficient algorithms are known for many combinatorial problems
in the linear case, they do not always generalise to the nonlinear case, even if it is concave. This
indicates that computationally efficient algorithms for combinatorial bandits must take into account
the intrinsic structure of the combinatorial set X .



2.5. COMBINATORIAL BANDITS 28

We consider the linear case of combinatorial bandits, where the reward is a (random) linear
function of the arm x(n):

(2.5.1) r(n) = xT (n) θ(n) , where E{θ(n)} = θ.

Our bandit gets semibandit feedback, i.e. a vector giving the reward for each subarm that is played:

(2.5.2) y(n) = [x1(n) θ1(n) , x2(n) θ2(n) . . . xd(n) θd(n)] .

It will be useful to have the maximum number of elements in a solution, m:

(2.5.3) m = max
x∈X

d∑
i=1

xi ≤ d.

2.5.1. Applications. Combinatorial bandits generalise the individual online combinatorial
problems (like the online shortest-path or the online matching problems) with a single algorithmic
framework. This allows for a generic study of regret and convergence properties, for instance.

The online matching problem corresponds to the case where the combinatorial set X is the set of
matchings. This technique has been used for more than a decade by Google AdWords (now Google
Ads) [96], used to monetise services like Google Search or Google Maps. Online advertisement is
ruled by auctions: several companies want to display ads for specific keywords and provide a daily
budget; each time a user performs a query with a relevant ads, all the corresponding businesses
enter in an auction. The enterprise only pays for the ad when a user clicks on it, and this is the
only source of uncertainty in the model. Each query must be assigned to some bidder, i.e. an
advertising customer, while the global objective is to maximise Google’s revenues. Nevertheless,
not all bidders have the same interest in all keywords, and are not ready to pay the same price for a
given query (a pharmaceutical company is probably not interested in advertising on keywords like
‘resin figurines’, and would not be ready to pay anything to appear in the search results of such a
query). This auction is modelled as a bipartite matching: queries are on one side, bidders on the
other, and edges indicate an interest in advertising for a given keyword. In practice, the problem
is slightly more complex, as some keywords are often requested and some bidders only advertise on
a few keywords, so that the mapping must be balanced [96, 97].

Network routing is an application of the online shortest-path problem. The basic goal of network
routing is to ensure that packets can cross a network as fast as possible, from a user point of view
(i.e. minimise latency and maximise throughput). However, depending on the current load of
the network, a path that is usually very good may become poor, because of network congestion.
The online shortest-path problem involves measuring parameters of previously sent packets to take
better decisions for the next ones [75].

Another application of the online shortest-path problem is that of Blotto games. A Blotto
game is a resource allocation problem: the two players must simultaneously distribute a limited
amount of resources (military troops) on battlefields; on each operation theatre, the player who
invested more than the other wins the battle. Finding a strategy is equivalent to optimising a path
in a ‘layered graph’: each path in this graph corresponds to one action; each layer in the graph
corresponds to a battlefield, and there are as many nodes in a given layer as there are possible troop
allocations for this battlefield (based on the already allocated troops in the previous layers) [98].

Combinatorial bandits can also be used to create computer-driven agents, thereby improving
most existing script-based techniques like behaviour trees [99]. The actions that this agent should
played are decided based on the exploration of a Monte-Carlo tree (an algorithm call MCTS, Monte-
Carlo tree search [100]). In this tree, each edge corresponds to an action sequentially played, the



2.5. COMBINATORIAL BANDITS 29

nodes encode the expected reward obtained by playing this action. Good strategies for exploring
this tree are very important for the performance of the agent: exploring a large part of the tree
ensures good actions, but at a prohibitive computational cost. The problem of exploring this tree
can be formalised as a k-armed bandit problem (Section 2.2), where each outgoing branch out of a
given node corresponds to an arm [101]. When complex actions are allowed in the environment, i.e.
actions that can be decomposed (e.g., press two buttons at the same time), combinatorial bandits
can be used to decide the next action to play. In this case, the decisions to take at each node of the
Monte-Carlo tree to continue exploration are a combination of subarms, hence the combinatorial
structure [102, 103, 104].

2.5.2. Semibandit and full-bandit feedbacks. Combinatorial bandits exist in three fla-
vours: with full-bandit, semibandit, and full-information feedback.

• In a full-bandit setting, the agent only gets the reward for the arm that is played.
For instance, with a linear bandit playing the arm x(n), the only feedback is r(n) =

θ(n)
T
x(n), where θ(n) are the random weights drawn for round n such that E{θ(n)} = θ.

Learning in this case is more complex than in the two following situations: when playing
an arm x ∈ A, the bandit does not know which part of the arm was rewarded.

• With semibandit feedback, the agent has the information for each element that is being
played. More specifically, the feedback is given to the bandit as a vector y(n) giving access
to the individual components of θ(n), but only if these subarms are played:

(2.5.4) y(n) = [x1(n) θ1(n) , x2(n) θ2(n) . . . xd(n) θd(n)] .

With this kind of feedback, the bandit knows which parts of the arm were successful, and
this helps to take better decisions in the future.

• Full information corresponds to the case where the bandit gets the randomly drawn
reward for each subarm at each round: the feedback is the full vector θ(n). In this case,
there is no more an exploration-exploitation trade-off, as any decision that is taken reveals
information on all possible actions.

The two first scenarios are the most commonly found in practice. Full-bandit feedback is the
scarcest possible input for bandit problems. For instance, when using bandit algorithms for online
marketing, the decisions taken by the agent might be the different channels through which ads and
other marketing materials are sent: if the client eventually buys something, the specific part that
convinced the user to buy is not always obvious (was it the last email that redirected them to the
Web store or rather the catalogue?). On the contrary, when a user clicks on a specific ad on a Web
page, the ad server knows which one was clicked among all those that were displayed: this is a good
example of semibandit feedback.

In each setting, different algorithms must be used. In the semibandit or full-information set-
tings, the bandit can store an estimation of the average reward for each subarm θi directly, whereas
full-bandit feedback requires an estimation of the vector θ at once (for instance, using linear re-
gression, as in Section 2.4.3).

2.5.3. Generic, computationally efficient algorithms. The paradigm of combinatorial
bandits has attracted many researchers over time, and several polynomial-time algorithms have
been designed. However, none of them has the optimum regret bound for this problem. Some of
them can be optimum for special cases like matroids. (In Chapters 3 and 4, we propose two such
algorithms.)



2.5. COMBINATORIAL BANDITS 30

2.5.3.1. Thompson sampling for combinatorial bandits. Thompson sampling (Section 2.2.5)
can be extended to combinatorial problems, with one estimated probability distribution per sub-
arm [105]. When the rewards follow Bernoulli distributions, the subarm posterior distributions
can be chosen to be Beta, the conjugate distribution to Bernoulli. At each round, the subarm
distributions are chosen to be:

(2.5.5) ti(n) ∼ β

[∑
x∈X

xi Tx(n) ri(n) + 1,
∑
x∈X

xi Tx(n) [1− ri(n)] + 1

]
,

where ri(n) is the average reward for the subarm i at round n (y being the reward vector for
semibandits, as in Section 2.5.2):

(2.5.6) ri(n) =

∑n
t=1 xi yi(n)∑n

t=1 xi
.

In order to choose an arm to play, the algorithm first samples the posterior probabilities to get the
vector t(n) and then computes the optimum solution for these rewards:

(2.5.7) x(n) ∈ argmax
x∈X

tT (n) x.

The algorithm is formally stated in Algorithm 8.
Per round, Thompson sampling therefore only performs a very limited number of operations,

apart from optimising a linear function over the combinatorial set X : O(d) operations to update
the posterior distributions (in the case of the Beta prior for Bernoulli rewards) and O(d) sampling
operations (they can be performed in constant time). If a polynomial-time algorithms is known to
optimise linear functions on X , then Thompson sampling can be implemented in polynomial time.

However, this simple and efficient algorithm does not have a good regret bound [106, Theorem
4]:

(2.5.8) R(n) ≤
d∑

i=1

max
x∈X :
xi=1

4
√
|X | log (dn)

∆x − (k⋆ + 3) ε
+ 9α3

∆max

ε2

(
3

ε
+ 1

)k⋆

+∆max

(
d+ dm+

dm2

ε2
+ 1

)
where k⋆ is the minimum size of an optimum solution

(2.5.9) k⋆ = min
x∈X :
∆x=0

d∑
i=1

xi

and ε > 0 is a parameter chosen such that

(2.5.10) ∆x > 2 (k⋆ + 3) ε, ∀x ∈ X : ∆x > 0.

In practice, though, Thompson sampling is one of the best-performing algorithms (Section 3.4),
indicating that this upper bound is probably not tight.

2.5.3.2. CUCB. CUCB [107, 108] is an application of the ‘optimism in the face of uncertainty’
principle [49]. It is simple to implement, but not as easy as Thompson sampling. It relies on maxim-
ising an index function on the set of arms. This index function is linear, and each subarm is assigned
an estimated reward computed as the upper-confidence bound for this subarm (independently of
the others):

(2.5.11) x(n) ∈ argmax
x∈X

d∑
i=1

xi

[
θ̂i +

√
1.5

log n∑n
t=1 1xi(n)=1

]
.



2.5. COMBINATORIAL BANDITS 31

The algorithm is formally stated in Algorithm 9. Computationally speaking, CUCB is as efficient
as Thompson sampling, with O(d) operations to perform before solving one linear program.

As expected for a UCB-like algorithm in a structured bandit [76], this algorithm does not have
the tightest upper bound on its regret [107, Theorem 5]:

(2.5.12) R(n) ≤ m

d∑
i=1

534

∆i,min
+

(
π2

3
+ 1

)
dm.

∆e,min denotes the minimum gap of suboptimum solutions containing the subarm i:

(2.5.13) ∆i,min = min
x∈X :
xi=1
∆x>0

∆x.

The major source of regret of CUCB is that the upper-confidence term does not consider all arms
at once.

2.5.4. Generic, statistically efficient algorithms.
2.5.4.1. ESCB. ESCB [109] is the first statistically efficient algorithm for combinatorial ban-

dits, meaning that its regret bound is a factor depending only on the size of the combinatorial prob-
lem away from the lower bound for this problem. This algorithm is not considerably more complex
to state than CUCB (Section 2.5.3.2), and is also based on the ‘optimism in the face of uncertainty’
principle: it is a natural extension to UCB-1 (Section (2.2.5)). If f(n) = log n + 4m log log n, at
each round ESCB chooses an arm to play according to:

(2.5.14) x(n) ∈ argmax
x∈X

xT θ̂(n) +

√√√√f(n)

2

d∑
i=1

xi

Ti(n)
.

The algorithm is formally stated in Algorithm 10. While CUCB uses an index linear in x, ESCB
does not. ESCB’s index is still a concave function, though. Having an efficient oracle to optimise a
linear function on X does not imply that such an oracle exists for concave objective functions. The
goal of Chapter 3 is to propose a polynomial-time approximation for this index computation. The
regret of ESCB satisfies [110, Theorem 2]:

(2.5.15) R(T ) ≤ C1
d log2 m log T

∆min
+ C2(θ,X ) ,

where C1 > 0 is a universal constant and C2(θ,X ) is a positive number which does not depend on
T .

2.5.4.2. OSSB. OSSB (Section 2.4.4) is a very generic algorithm that also applies to combinat-
orial bandits. However, as it uses an optimisation program having one variable per arm, it cannot
be efficiently implemented for combinatorial bandits (typically having O

(
2d
)

arms for d subarms),
unless an appropriate reformulation is applied. This reformulation and its impacts are the topic of
Chapter 4.

2.5.4.3. OLS-UCB. OLS-UCB is a generalisation of ESCB that considers that subarm rewards
can be correlated [110]: the subarm-reward distributions are no more independent. More precisely,
at each round n, the vector of rewards θ(n) is drawn from an unknown distribution in an identical
independent and identically-distributed fashion. The components of θ(n) are not considered to be
independent from each other, as the distribution is no more univariate. OLS-UCB can exploit this
fact to improve its regret. OLS-UCB starts with a positive semidefinite estimation of the correlation



2.6. INTERESTING COMBINATORIAL SETS 32

Algorithm Regret bound Complexity

Thompson sampling O
(

dm log T
∆min

)
O[π(d)]

CUCB O
(

dm log T
∆min

)
O[π(d)]

ESCB O
(

d log2 m log T
∆min

)
O(|X |) ⊂ O

(
2d
)

AESCB O
(

d log2 m log T
∆min

)
O
[
δ−1
T (T ) poly(d)

]
Table 1. Regret and complexity of several combinatorial-bandit algorithms. π(d)
denotes the complexity of optimising one linear function on the combinatorial set
X .

matrix, Γ, and a parameter λ > 0 weighing the update of the correlation matrix. The arm to play
is chosen as follows:

(2.5.16) x(n) ∈ argmax
x∈X

xT θ̂(n) +

√√√√2 f(n) xT D̂−1(n)

[
λΓD̂(n) +

n−1∑
t=1

xT (t) Γx(t)

]
D̂−1(n) x

where f(n) = log n+ (m+ 2) log log n+m/2 log (1 + e/λ) and:

(2.5.17) D̂(n) =

n−1∑
t=1

xT (t) x(t) ,

(2.5.18) θ̂i(n) =
1

Ti(n)

n∑
t=1

1xi(n)=1r(n) .

2.5.5. Computationally and statistically efficient algorithms for specific cases. Some
combinatorial problems are very easy to solve, including in the nonlinear case. Matroids are in this
class (they are explained in greater detail in Section 2.6.3): a greedy algorithm can maximise any
submodular function on a matroid (this is the matroid equivalent of maximising a concave function).

OMM (optimistic matroid maximisation) is an application of the optimism principle [49] for
matroid-constrained bandits [111]. It is also a special case of CUCB [107] (Section 2.5.3.2) when
the combinatorial X is a matroid. ESCB (Section 2.5.4) can also be efficiently implemented on
matroids [112]. However, these algorithms use very specific properties of matroids to implement
these algorithms: they are very far from being general.

2.6. Interesting combinatorial sets

As previously mentioned (Section 2.5.1), several kinds of combinatorial sets X might be relevant
to study. We focus on four families of sets. They all correspond to ‘easy’ combinatorial problems:
for most of them, it is possible to optimise exactly a linear function in polynomial time. The
exception is the knapsack, an NP-hard problem [113], but it can be approximated in polynomial
time (for instance, a greedy solution sorting items based on their value-to-weight ratio might provide
a 2-approximation, i.e. an objective function that is within a factor 2 of the true optimum).



2.6. INTERESTING COMBINATORIAL SETS 33

2.6.1. Knapsack-like sets. The easiest combinatorial structure is the m-set: out of d ele-
ments, only m may be chosen. The combinatorial set is written as:

(2.6.1) Xm =

{
x ∈ {0, 1}d

∣∣∣ d∑
i=1

xi ≤ m

}
.

It corresponds to any situation where a subset of items may be chosen, without the items being
different one from the other. A linear function can be optimised on this set in linear time, for
instance using a greedy algorithm.

A direct generalisation of the m-sets is the knapsack problem, where each item i has a specific
weight wi ∈ N. This problem only allows for a maximum capacity Ω ∈ N. The combinatorial set is
written as:

(2.6.2) Xkp =
{
x ∈ {0, 1}d

∣∣∣wT x ≤ Ω
}
.

Such a simple extension of weights is sufficient to make the problem NP-hard [113].
The multiple-knapsack problem combines several knapsack constraints, for instance due to using

an item requiring the use of several resources. In this case, each item i has a vector of resource
utilisation wi, with wi,j ∈ N being the quantity of resource j that is used when item i is taken;
the total usage of each resource j has an upper bound Ωj ∈ N. The quantity of each resource is
indicated in the matrix W ∈ Nc×d and the upper bounds by a vector Ω ∈ Nc. The combinatorial
set is written as:

(2.6.3) Xmkp =
{
x ∈ {0, 1}d

∣∣∣Wx ≤ Ω
}
.

In all three cases, the dimension d of X corresponds to the number of items. In the case of the
m-set, the maximum number of items in the solution is m, by definition. This parameter has no
specific value for knapsacks: it heavily depends on the weights w and on the budget Ω.

A typical application is online-ad display. A given Webpage has several places where ads are
shown. Depending on their position on the Webpage, they are sold at different prices: a very
visible spot is very expensive; at most m ads can be served at once. Several advertisers have a
given budget. The Webmaster tries to place the various ads on their Website, and they can do so
using a multiple knapsack: one knapsack for the m spots, so that there are not too many ads; one
knapsack per advertiser and their budget per page view [114].

2.6.2. Source-destination path. Consider G = (V,E) a directed acyclic graph with vertices
V and edges E. The path-finding problem amounts to finding a path through this directed graph
from a given source s ∈ V to a fixed destination t ∈ V . The combinatorial set is formally written
as:

(2.6.4) Xpath =

x ∈ {0, 1}d
∣∣∣ ∑
e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = 1v=t − 1v=s, ∀v ∈ V

 .

δ+(v) is the set of incoming edges at v and δ−(v) the set of outgoing edges:

(2.6.5) δ+(v) = {e = (e1, e2) ∈ E | e2 = v} ,

(2.6.6) δ−(v) = {e = (e1, e2) ∈ E | e1 = v} .
The dimension of X is the number of edges in the graph, d = |E|. m is the maximum path length
(measured as the number of crossed edges).



2.6. INTERESTING COMBINATORIAL SETS 34

Applications are those of the online shortest-path problem, which have been described in Sec-
tion 2.5.1.

2.6.3. Matroids. A matroid (E , I) [115] is defined over a set with d elements of E , called
ground set, and where I is a family of independent subsets of E , and must respect those three
properties:

the non-emptiness property: formally, ∅ ∈ I.
the inclusion property: every subset of an independent set must be independent: if A′ ⊂
A ⊂ E and A ∈ I, then A′ ⊂ I.

the exchange property: if A ∈ I and B ∈ I are two independent subsets of E with
|A| > |B|, then there is some element e ∈ A\B such that B ∪ {e} ∈ I.

Any independent set A ∈ I can also be represented as a vector x ∈ {0, 1}d: each element ei ∈ C
has an index i ∈ N0 (and vice-versa: the index uniquely determines the element); if ei ∈ A, then
xi = 1, otherwise xi = 0.

Matroids are an important part of combinatorial optimisation, as a greedy algorithm can solve
optimally all problems with a matroid structure and a linear objective function [116]. In particular,
the m-set has a matroid structure (unlike the knapsack): the empty set of elements is a solution, a
subset of a solution is necessarily a solution, and the exchange property is also satisfied as only the
number of elements is important.

The spanning tree is another example of matroid structure. Let G = (V,E) be a undirected
graph. A spanning tree T is a subset of edges E forming a tree that covers each vertex in V at
least once. As such, an empty set of edges is a spanning tree, any subset of a spanning tree also
corresponds to this definition; for the exchange property, any edge in A that is not in B and that
keeps B a tree works. The combinatorial set is formally written as:

(2.6.7) Xst =


x ∈ {0, 1}d

∣∣∣∣∣∣∣∣∣∣∣∣

s ∈ V∑
e∈δ−(v) fe = 0∑

e∈δ+(v) fe = |V | − 1∑
e∈δ+(v) fe −

∑
e∈δ−(v) fe = 1v=t − 1v=s ∀v ∈ V \ {s}

fe ≤ (|V | − 1) xe ∀e ∈ E
f ∈ Rd

+


.

The dimension is the number of edges, d = |E|, and the maximum solution length is one less than
the number of vertices, m = |V | − 1.

Computer networks are a typical application of spanning tree: a spanning tree is a subset
of links that can be used to reach any node in the network; the other links can be reserved for
redundancy. In the online spanning-tree problem, vertices are revealed one at a time, when they
are being reached for the first time [117].

Other applications of matroids include job sequencing, assignments, the Japanese logic puzzle
kakuro (also known as cross sums), heuristics for the travelling-salesperson problem, and recognition
of totally-unimodular matrices[118].

2.6.4. Intersection of two matroids. If I and I ′ are two matroids defined on the same
ground set E , the combinatorial set defined by their intersection is:

(2.6.8) X∩ =
{
x ∈ {0, 1}d

∣∣∣x ∈ I, x ∈ I ′
}
.



2.6. INTERESTING COMBINATORIAL SETS 35

Unlike simple matroids, a greedy algorithm is no more ensured to work on intersections of matroids [119].
Starting with three matroids, finding the intersection is an NP-hard problem, because the problem
can reduce from the Hamiltonian-path or the travelling salesperson problems [120].

Bipartite matchings are an application of the intersection of two matroids. Let G = (V1, V2, E)
be a bipartite graph, i.e. a graph whose vertices are partitioned into two disjoint sets (V = V1∪V2)
and whose edges have one end in one partition and the other in the other partition (E ⊂ V1 × V2).
A matching can be seen as the intersection of two matroids, as a matching must have all its edges
adjacent to both sets of vertices. Let δ(v) be the set of edges adjacent to v, the two matroids are:

(2.6.9) I1 =
{
F ⊂ E

∣∣∣ |F ∩ δ(v)| ≤ 1, ∀v ∈ V1

}
,

(2.6.10) I2 =
{
F ⊂ E

∣∣∣ |F ∩ δ(v)| ≤ 1, ∀v ∈ V2

}
.

Similar results exist for nonbipartite matchings [121]. For a matching, the dimension is the number
of edges, d = |E|, and the maximum solution length is the minimum between the number of vertices
in V1 and in V2, m = min {|V1| , |V2|}.

Applications of the online matching problem have already been discussed in Section 2.5.1.



CHAPTER 3

Approximation Algorithms for Optimum Combinatorial
Bandits

We consider the setting of combinatorial semibandits (Sections 2.5 and 2.5.2). Furthermore, we
only consider the case where rewards pertain to [0, 1] and are independent across items. We focus
on the combinatorial sets defined in Section 2.6.

ESCB is a state-of-the-art algorithm for combinatorial bandits (Section 2.5.4): its regret is, up
to a constant factor, optimum. However, its complexity makes it unappealing: in the worst case, it
might require an exponential time in the dimension d of the polytope X per round. Other algorithms
have a worse regret, but a better computational complexity (Section 2.5.3). This antithesis seems
to indicate that there is a trade-off between regret and computational complexity.

This chapter introduces an approximation of ESCB, called AESCB [?]: by carefully introducing
approximation in the algorithm, it can keep its optimum regret, but can be implemented in poly-
nomial time. The approximation appears in the regret bound, however. There is still a trade-off
between regret and computational complexity, but a polynomial-time algorithm can still achieve
the lower bound for combinatorial bandits up to some constant factor.

3.1. AESCB

What makes ESCB hard to implement in polynomial time is the following optimisation program
(introduced in (2.5.14), Section 2.5.4), one instance of which must be solved for each bandit round:

(3.1.1) x(n) ∈ argmax
x∈X

xT θ̂(n) +

√√√√f(n)

2

d∑
i=1

xi

Ti(n)

 .

As before, f(n) = log n+ 4m log log n. For ease of notations, let σ2(n) be the following vector:

(3.1.2) σ2
i (n) =

f(n)

2Ti(n)
.

Definition 2. The ESCB algorithm is the policy which at any time n ∈ N0 selects its decision
as:

(3.1.3) x(n) ∈ argmax
x∈X

{
xT θ̂(n) +

√
xT σ2(n)

}
where ties are broken arbitrarily.

3.1.1. NP-hardness behind ESCB . Solving this optimisation program exactly and effi-
ciently does not seem to be a viable path. Indeed, in general, (2.5.14) is a NP-hard problem:
formally, no polynomial-time algorithm can exist, unless P = NP. In layman’s terms, it is very

36



3.1. AESCB 37

unlikely that such a theoretically efficient algorithm exists. Even restricting to a subset of com-
binatorial sets does not look promising, apart from very simple combinatorial sets like matroids
(Section (2.5.5)).

For instance, if X is the set of paths in a graph (allowing for loops in the paths), then it is
easy to find a shortest path between two nodes with nonnegative weights (or no negative-weight
loop, depending on the choice of algorithm). However, slight generalisations of this problem quickly
become NP-hard. For instance, finding a longest path is NP-hard: the main complexity is that
such a path must avoid loops (i.e. only simple paths are allowed), as adding any positive-weight
loop increases the length of the path. Similarly, finding a simple path that minimises any nonlinear
function isNP-hard: relaxing the simple-path constraint or using an objective function that exhibits
a global minimum still yields anNP-hard problem (like convex functions) [122]. The same property
holds for maximum-cardinality bipartite matchings: minimising a linear objective function is easy
(the Hopcroft-Karp algorithm has complexity O

(
|E|

√
|V |
)
, for instance [123]), but not a convex

function (the problem becomes NP-hard [124]).
[125] proves a more general result (the following theorem corresponds to [125]’s Propositions

1, 3, and 4):

Theorem 3. If g is a strictly concave function, for any vectors a and b of Rd
+, the problem

maxx∈X aT x + g
(
bT x

)
is NP-hard when X is the set of m-sets [125, Proposition 1], the set of

paths in a directed acyclic graph [125, Proposition 3], or the set of perfect matchings in a bipartite
graph [125, Proposition 4].

This theorem applies to ESCB, as the square root is a strictly concave function. Solving (2.5.14)
exactly in polynomial time seems to be impossible, unless P = NP.

Therefore, we settle on solving (2.5.14) approximately. The AESCB algorithm requires two
sequences, {εn} and {δn}, quantifying the level of approximation at each time step. δn is an
additive approximation error on the total objective, while εn is a multiplicative approximation
error for the nonlinear term.

Definition 4. The AESCB algorithm, with the sequences {εn} and {δn}, is the policy that,
at any time n ∈ N0, selects a decision x(n) satisfying:

(3.1.4) argmax
x∈X

{
xT θ̂(n) +

√
x⋆T σ2(n)

}
≤ δn + xT (n) θ̂(n) +

1

εn

√
xT (n) σ2(n)

where ties are broken arbitrarily.

3.1.2. Regret bound. AESCB’s regret bound is highly similar to that of ESCB. Both ap-
proximation parameters εn and δn play a role in this bound.

Theorem 5. The regret of AESCB with parameters (εn, δn) admits the following upper bound
for all T ∈ N0:

(3.1.5) R(T ) ≤ C4(m) +
2 dm3

∆2
min

+
24 d f(T )

(minn≤T εn)
2
∆min

⌈
logm

1.61

⌉2
+ 4

T∑
n=1

δn 1∆min≤4 δn

with f(n) = log n+ 4m log log n and C4(m) a positive number that solely depends on m.

This bound is highly similar to that of ESCB. In particular, it has the same asymptotic beha-
viour as ESCB with fixed ε (the most common case in this thesis, as our approximation algorithms
have a fixed ratio, as detailed in Section 3.2) and vanishing δn, as highlighted in the next corollary.



3.1. AESCB 38

Corollary 6. For εn = ε > 0 and limn→+∞ δn = 0, we have:

(3.1.6) R(T ) ∈ O
(
d log2 m

1

∆min
log T

)
as T →∞.

Similarly, with εn = ε and δn < 1
4∆min, we have, for all T ∈ N0:

(3.1.7) R(T ) ≤ C4(m) +
2 dm3

∆2
min

+
24 d f (T )

ε2∆min

⌈
logm

1.61

⌉2
.

We discuss the choice of sequences {εn} and {δn} to obtain both low regret and low complexity
in Section 3.1.6.

3.1.3. Sketch of proof. The regret analysis of AESCB involves upper bounding the reward
gap of the decision chosen at round n, ∆x(n), by considering three cases. Define the two following
events:

(3.1.8) A(n) =

{
∃x ∈ X

∣∣∣∣∣
∣∣∣∣[θ − θ̂(n)

]T
x

∣∣∣∣ ≥√xT σ2(n)

}
,

(3.1.9) B(n) =
{
∆x(n) ≤ 4 δn

}
.

If A(n) occurs, since θ ∈ [0, 1]
d and

∑d
i=1 x

⋆
i ≤ m:

(3.1.10) ∆x(n) ≤ θT x⋆ ≤ m.

If B(n) occurs, by definition:

(3.1.11) ∆min ≤ ∆x(n) ≤ 4 δn.

Let C(n) be the union of these two events:

(3.1.12) C(n) = A(n) ∪ B(n).

If C(n) occurs, the index of the optimum decision is greater than the optimum reward θT x⋆:

θT x⋆ ≤ θ̂
T
(n) x⋆ +

√
x⋆T σ2(n), as A(n) occurs

≤ δn + θ̂
T
(n) x(n) +

1

εn

√
xT (n)σ2(n), due to AESCB’s approximation

≤ δn + θT (n) x(n) +
2

εt

√
xT (n)σ2(n), using the true parameters θ instead of θ̂

≤ 1

4
∆x(n) + θT (n) x(n) +

2

εt

√
xT (n)σ2(n), as B(n) occurs.

Therefore, if C(n) occurs, using the fact that ∆x(n) = θT x⋆ − θT (n) x(n):

(3.1.13) ∆x(n) ≤
8

3

1

εn

√
xT (n)σ2(n) ≤ 4

εn

√
xT (n)σ2(n).

As A(n), B(n), and C(n) cover all possible cases, we get:

∆x(n) = ∆x(n)

(
1A(n) + 1B(n) + 1C(n)

)
≤ m1A(n) + 4 δt 1∆x(n)≤4 δn +∆x(n) 1∆x(n)≤ 4

εn

√
xT(n)σ2(n)

.



3.1. AESCB 39

Taking expectations and summing over n:

R(T ) =

T∑
n=1

E
{
∆x(n)

}
≤

T∑
n=1

mP{A(n)}+ 4

T∑
n=1

δn P
{
∆x(n) ≤ 4 δn

}
+

T∑
n=1

E
{
∆x(n) 1∆x(n)≤ 4

εn

√
σ2(n)x(n)

}
.

The first term is bounded by a constant, since, using a concentration inequality, we may show that
A(n) occurs with small probability. The second term creates a regret that only depends on the
discretisation step δn. The last term can be bounded using (rather intricate) counting arguments
as in the analysis of ESCB. The complete proof is presented in Section 3.5.

3.1.4. Reduction to budgeted problems. We now show a technique to implement AESCB
that ensures polynomial time complexity. While our methodology is generic, the precise value of
the computational complexity depends on the combinatorial set X , and will be explained in detail
in Section 3.2. Briefly, our technique involves moving the linear part of the objective function to a
constraint with a minimum level, to optimise the nonlinear term, and to test several values for the
minimum value of the linear term of the objective function.

In greater detail, our approach involves three steps:
• rounding and scaling to ensure that the weights are integer-valued. To this end, we

define two vectors, a(n) and b(n):

(3.1.14) ξ(n) =

⌈
m

δn

⌉
,

(3.1.15) ai(n) =
⌈
ξ(n) θ̂i(n)

⌉
, ∀i ∈ {1, 2 . . . d} ,

(3.1.16) bi(n) = ξ2(n) σ2
i (n) , ∀i ∈ {1, 2 . . . d} .

• solving a budgeted linear maximisation several times. For all budgets s ∈ S(n) =
{0, 1 . . .m ξ(n)}, we define a budgeted optimisation program:

maxxT b(n)(3.1.17)

s.t.xT a(n) ≥ s

x ∈ X .

Let x(n, s) be any optimum solution to this budgeted program. We compute an εn-
approximate solution x(n, s) to this problem: the approximation is a multiplicative error
on the objective function, not on the budget constraint. Formally, x(n, s) respects the
following conditions:

(3.1.18) xT (n, s) b(n) ≥ εn x
T
s (n) b(n) ,

(3.1.19) xT (n, s) b(n) ≥ s,

(3.1.20) xT (n, s) ∈ X .



3.1. AESCB 40

• maximising over the budget to obtain the final result. We return the decision x(n) =
x[n, s⋆(n)] where

(3.1.21) s⋆(n) ∈ argmax
s∈S(n)

{
s+

1

εn

√
xT (n, s) b(n)

}
.

a(n) is defined using a ceiling operation in order to ensure that xT a(n) has an integer value for all
x ∈ X . This property is crucial to have a limited set of budget values S(n) in the second step: we
only need to cover integer values between zero and an upper bound on the value of xT a(n), which
is mξ(n). Conversely, b(n) does not need to have integer entries, as no such property is required.

Theorem 7. The above algorithm returns a decision x(n) verifying the AESCB definition
(Definition 4). It does so by approximately solving the budgeted optimisation problem 3.1.17 at
most mξ(n) + 1 times with input parameters a(n) and b(n), where a(n) ∈ {1, 2 . . . ξ(t)}d and
b(n) ∈ Rd.

3.1.5. Proof of Theorem 7. The first step is to upper bound the value of the original ESCB
problem (2.5.14) with inputs a(n) and b(n) as a function of x(n).

We have defined the set of budget values S(n) as {0, 1 . . .m ξ(n)}. By definition, a(n) ∈
{1, 2 . . . ξ(t)}d and m = maxx∈X

∑d
i=1 xi. This has the direct consequence that:

(3.1.22) aT (n) x ∈ S(n) , ∀x ∈ X .
Therefore:

max
x∈X

{
aT (n) x+

√
bT (n) x

}
= max

s∈S(n)
max
x∈X

aT(n)x=s

{
s+

√
bT (n) x

}

≤ max
s∈S(n)

max
x∈X

aT(n)x≥s

{
s+

√
bT (n) x

}
, with a minimum budget instead of equality

≤ max
s∈S(n)

{
s+

1

εn

√
bT (n) x(n, s)

}
, using the approximate budgeted oracle

= s⋆(t) +
1

εt

√
bT (n) x[n, s⋆ (n)], where s⋆(n) ∈ argmax

s∈S(n)

{
s+

1

εt

√
bT (n) xs(n)

}
≤ aT (n) xs⋆(n)(n) +

1

εt

√
bT (n) x[n, s⋆ (n)]

= aT (n) x(n) +
1

εt

√
bT (n) x(n), by choosing x(n) = x[n, s⋆ (n)] .(3.1.23)

The second step is to link the value of problem (2.5.14) to the rounded or scaled inputs a(n)

and b(n) to the value of the same problem (2.5.14) with inputs θ̂(n) and σ2(n). By definition of
AESCB (3.1.15) and (3.1.16), these two sets of vectors are related by:

(3.1.24) ξ(n) =

⌈
m

δn

⌉
,

(3.1.25) ai(n) =
⌈
ξ(n) θ̂i(n)

⌉
, ∀i ∈ {1, 2 . . . d} ,



3.1. AESCB 41

(3.1.26) bi(n) = ξ2(n) σ2
i (n) , ∀i ∈ {1, 2 . . . d} .

As a(n) ∈ {1, 2 . . . ξ(t)}d, the following inequalities hold:

(3.1.27) θ̂i(n) ≤
1

ξ(n)
ai(n) ≤

1

ξ(n)
+ θ̂i(n) , ∀i ∈ {1, 2 . . . d} .

As a consequence, for any x ∈ X :

(3.1.28) θ̂
T
(n) x ≤ 1

ξ(n)
aT (n) x ≤

∑d
i=1 xi

ξ(n)
+ θ̂

T
(n) x ≤ δn + θ̂

T
(n) x.

Merging the two results (3.1.23) and (3.1.28),

max
x∈X

{
θ̂
T
(n) x+

√
xT σ2(n)

}
=

1

ξ(n)
max
x∈X

{
ξ(n) θ̂

T
(n) x+

√
ξ2(n) xT σ2(n)

}
≤ 1

ξ(n)
max
x∈X

{
aT (n) x+

√
bT (n) x

}
, by (3.1.15) and (3.1.16)

≤ 1

ξ(n)
aT (n) x(n) +

1

ξ(n) εn

√
bT (n) x(n), by (3.1.23)

≤ δn + θ̂(n) x(n) +
1

εn

√
xT (n) σ2(n), by (3.1.28).

This is the announced result.

3.1.6. Choice of approximation parameters. The choice of sequences {εn} and {δn} is
paramount to obtain good performance with AESCB, both in terms of regret and computational
time. If the chosen values of εn and δn are too large, solutions to the budgeted problems can be
computed quickly, but they will probably be of little use for the bandit problem: the regret that
AESCB would then endure would also be very high. On the other hand, if the chosen values are
too low, it may be impossible to solve the budgeted problems on some polytopes.

When εn = 1 and δn = 0 for all n ∈ {1, 2 . . . T}, AESCB reduces to ESCB. With an appropriate
choice of parameters, AESCB can be implemented in polynomial time. The choice of parameters
often depends on the combinatorial set X , and and specifically on the approximation ratio of the
available algorithms for the budgeted subproblem. In particular:

• For m-sets, knapsack-like sets, and paths, we choose εn = 1 for n ∈ {1, 2 . . . T}.
• For matroids (including spanning trees) and matroid intersections (like matchings), we

choose εn = 1
2 for n ∈ {1, 2 . . . T}.

The value of δn is not mandated by the available algorithms for the combinatorial set. This choice
of parameters does not require any knowledge about the time horizon T , nor about the unknown
problem parameters θ, nor about the minimal gap ∆min.

Usually, εn cannot be chosen freely: there must be an approximation algorithm with this ratio
available for the combinatorial set at hand. The situation for δn is opposite: this discretisation
parameter can be chosen freely, to balance the regret of the bandit and the computational time for
each round. The regret has a contribution that is linear in the sum of δn (as long as these terms
are over ∆min/4), but the complexity of AESCB typically depends on the inverse of the minimum
value of δn (the exact dependency might vary based on the algorithm used to approximately solve
the budgeted program 3.1.17).



3.2. OPTIMISING BUDGETED PROGRAMS 42

The parameter δn does not appear in the regret bound of Theorem 5 as long as ∆min ≤ 4 δn.
One way of choosing this parameter is therefore to estimate ∆min based on θ̂(n) and to choose
δn accordingly. Estimating ∆min can be done in polynomial time, based on the fact that ∆min is
realised between the optimum arm and the arm that has the largest reward after the optimum.
Intuitively, if ∆min is realised between two other arms, the convergence of the bandit algorithm is
not hindered, as the root cause of regret is often playing a slightly suboptimum arm. Let x⋆(n) be
the optimum arm for θ̂(n) and x⋆

i (n) be the optimum arm with the subarm i different from that
of x⋆(n):

(3.1.29) x⋆(n) ∈ argmin
x∈X

{
xT θ̂(n)

}
,

(3.1.30) x⋆
i (n) ∈ argmax

x∈X ,
xi ̸=x⋆

i

{
xT θ̂(n)

}
.

∆min is estimated as the minimum difference in reward between the optimum solution x⋆(n) and
the solution basis formed by the x⋆

i (n) for i ∈ {1, 2 . . . d}. Computing x⋆
i (n) is often as easy as

computing x⋆(n): for instance, if x⋆(n) is calculated using a totally unimodular matrix, adding a
constraint like xi = 0 (if x⋆

i = 1) or xi = 1 (if x⋆
i = 0) keeps the total unimodularity [126]. This

procedure is formalised in Algorithm 12. However, in this case, the complexity of AESCB depends
(albeit polynomially) on ∆−1

min.

Remark 8. If the bandit is used with a horizon of T rounds, it cannot distinguish between two
solutions with ∆min < T−1/2, due to the fact that ℶ−2 samples are required to tell two distributions
whose means differ by ℶ. Furthermore, the regret due to playing arms with a gap less than T−1

for T rounds is only constant (by definition, at most 1). Therefore, in the worst case, this choice of
δn leads to an algorithm with a complexity linear in T .

Another way of choosing δn is taking any decreasing sequence. With n sufficiently large,
δn < ∆min/4 and no more regret is incurred due to the choice of δn. The total contribution of δn
is then constant. For instance,

(3.1.31) δn =
1

log n
.

In this scenario, the complexity of AESCB depends logarithmically on T . δn can also be chosen to
decrease slower than this, for instance δn = log−2 n: the dependency of the complexity on n can be
made arbitrarily mild in Table 1.

3.2. Optimising budgeted programs

The difficult part of implementing AESCB in polynomial time is to provide algorithms to solve
the budgeted optimisation programs of Section 3.1.4. The literature provides few algorithms for
this problem, but instead focuses on the reverse constraint budget bT x ≤ s [127] (for matroids
and spanning trees [128], paths [127], matching and matroid intersection [127, 129, 130, 131]).

We now describe the algorithms we developed for the budgeted problems that arise when
implementing AESCB for the combinatorial problems presented in Section 2.6. We also state their
complexities, summarised in Table 1. The pseudocodes are provided in Appendix B.



3.2. OPTIMISING BUDGETED PROGRAMS 43

CUCB, TS AESCB
m-set O(d) O

(
dmδ−2

n

)
Path O(d log d) O

(
d log d+ dmδ−1

n

)
Spanning tree O(d log d) O

(
md log3 d δ−1

n

)
Matching O

(
m3
)

O
(
md10 δ−1

n

)
Table 1. Complexity of bandit policies (at round n) as a function of the chosen
discretisation δn.

Complexity (linear maximisation) Complexity (budgeted linear
maximisation) with budget s

Approximation ratio ε

m-set O(d) O(s d) 1
Path O(|E|+ |V | log |V |) O(s |E|+ |V | log |V |) 1

Spanning tree O(|E| log |V |) O
(
|E| log2 |V |+ |V | log3 |E|

)
1/2

Matching O
(
|V |2 |E|

)
O
(
|V |3 |E|4

)
1/2

Table 2. Complexity of the budgeted combinatorial algorithms and their approx-
imation ratio.

3.2.1. m-set and knapsack-like sets. For k knapsack constraints, we can solve the rounded
problem exactly 3.1.17 (i.e. ε = 1) in time O

(
mdξ

∏k
ℓ=1 cℓ

)
. This complexity is highly similar

to the classic dynamic-programming algorithm for single binary knapsacks [132], except that the
maximum capacity of the knapsack is known to be a polynomial in the dimension d and the inverse
of the discretisation step δ−1 ∈ O(ξ).

As the m-set problem is a special case of the k knapsack problem with k = 1, we can solve the
rounded problem 3.1.17 exactly (i.e. ε = 1) with the same technique. To perform the reduction,
we use a weight matrix A =

(
1 1 · · · 1

)T and a capacity vector c = (m). In this special case,
the same algorithm (formalised in Algorithm 13) has a complexity O(mdξ).

Claim 9. Optimisation problem 3.1.17 with X the set of m-sets can be solved exactly (i.e.
ε = 1) in time O(mdξ) using the algorithm below.

Claim 10. Optimisation problem 3.1.17 with X a k-knapsack set with the weights A ∈ Nd×k

and the capacities c ∈ Nk can be solved exactly (i.e. ε = 1) in time O
(
mdξ

∏k
ℓ=1 cℓ

)
using the

algorithm below.

The generic algorithm for k knapsack constraints is as follows. We denote the optimisation
problem by P (s, c, i), which is a variation of the budgeted knapsack-like problem: the minimum
budget is set to s, objects up to and including i are not used in the solution, the capacities are fixed
to c.

maxbT x (P (s, c, i))

s.t.Ax ≤ c

aT x ≥ s



3.2. OPTIMISING BUDGETED PROGRAMS 44

i∑
j=1

xj = 0

x ∈ {0, 1}d .

Let V (s, c, i) be the optimum value of P (s, c, i).
Solving the original budgeted problem reduces to P (s, c, 0). We can compute the solution

to P (s, c, 0) using dynamic programming. To this end, it is sufficient to solve P (s, c, i) for i in
{0, 1 . . . d}.

Let x⋆ be an optimum solution to P (s, c, i). If x⋆
i+1 = 1, then

(3.2.1) A (x⋆ − ei) = Ax⋆ −Aei ≤ c−Aei,

because x⋆ is a feasible solution such that Ax⋆ ≤ c. Hence, x⋆ − ei is an optimum solution to
P (max {s− ai, 0} , c−Aei, i+ 1). On the contrary, if x⋆

i = 0, then x⋆ is an optimum solution to
P (s, c, i+ 1). Therefore,

(3.2.2) V (max {s− ai, 0} , c−Aei, i+ 1) = max

{
V (s, c, i+ 1) ,

ai + V (max {s− ai, 0} , c−Aei, i+ 1)

}
.

By recursion over i, c, and s, we can compute the value V (s, c′, i) for s ∈ {0, 1 . . .m ξ}, c′ ∈ Nk

with c′ ≤ c, and i ∈ {0, 1 . . . d} in time O
(
mdξ

∏k
ℓ=1 cℓ

)
. The solution to the original budgeted

problem, denoted by x⋆, is then:

(3.2.3) x⋆
i =

{
0 if V (s, c, i) = V (s, c, i+ 1)

1 otherwise.

With the same technique, we can solve the budgeted problem for all s ≤ mξ in timeO
(
mdξ

∏k
ℓ=1 cℓ

)
.

In particular, for m-sets, we can do so with a time complexity of O
(
m2 d ξ

)
.

3.2.2. Simple path. We can solve the rounded budgeted simple-path problem 3.1.17 exactly
(i.e. ε = 1), using a technique that generalises Dijkstra’s algorithm [133]. We can solve this problem
using Algorithm 14 with a complexity O(mξ |E|+ |V | log |V |).

We only consider the case of a directed acyclic graph. Indeed, ignoring the budget constraint,
we are trying to solve a variant of the weighted longest-simple-path problem (i.e. the path that
maximises the average reward). This problem is notoriously NP-hard [134]. However, when
restricted to directed acyclic graphs, the problem becomes polynomially solvable [135, 136].

We also make the assumption that the weights a are never zero to simplify the design of the
algorithm. This hypothesis is restrictive, but can be lifted at the cost of an increased computational
complexity.

Claim 11. Optimisation problem 3.1.17 with X the set of paths from u ∈ V to v ∈ V in the
directed acyclic graph G = (V,E) can be solved exactly (i.e. ε = 1) in time O(mξ |E|+ |V | log |V |)
using the algorithm below.

We consider that the budget value v is fixed throughout and denote by P (u, s) the optimisation
problem

maxxT b

s.t.xT a ≥ s



3.2. OPTIMISING BUDGETED PROGRAMS 45

x is a path starting at u.

and V (u, s) its optimum value.
• If s ≤ 0, P (u, s) is simply the problem of finding the path x from u to v maximising xT b.

Indeed, since a has only positive entries, xT a ≥ 0 ≥ s, for all x ∈ X . Hence, we can com-
pute V (u, s) for all u and for any s ≤ 0 by Dijkstra’s algorithm in timeO(|E|+ |V | log |V |),
when Dijkstra’s algorithm is implemented with Fibonacci heaps [137], because we consider
that the graph is acyclic.

• Otherwise, s > 0. Let x⋆ an optimum solution to P (u, s). Since x⋆ is a path from u to v,
there exists a unique vertex w ∈ V such that x⋆

(u,w) = 1, and that x⋆ − e(u,w) is a path
from w to v. In turn, x⋆ − e(u,w) is an optimum solution to P

(
w,max

{
s− a(u,v), 0

})
.

This is a simple extension of the optimum substructure of the path-finding problem [138,
Section 15.3].

Therefore, we have the following dynamic programming equation:

(3.2.4) V (u, s) = max
w:(u,w)∈E

{
b(u,w) + V

(
w,max

{
s− a(u,w), 0

})}
.

As a ∈ {1, 2 . . . ξ}d, if V (u, s′) is known for all u ∈ V and all s′ ∈ {0, 1 . . . s− 1}, applying
the above relationship enables us to compute V (u, s) for all u ∈ V . By recursion, we can compute
V (u, s) for all s ∈ {0, 1 . . .m ξ} in time O(mξ |E|+ |V | log |V |).

The solution to P (u, s), denoted by x⋆, can also be computed by recursion. Using the same
dynamic programming principle, if x⋆(u, s) denotes the solution of P (u, s), we have:

(3.2.5) x⋆(u, s) = e(u,w⋆(u,s)) + x⋆
(
w⋆ (u, s) , s− a(u,w⋆(u,s))

)
where the optimum next vertex is given by w⋆(u, s) as:

(3.2.6) w⋆(u, s) ∈ argmax
w:(u,w)∈E

{
b(u,w) + V

(
w,max

(
s− a(u,w), 0

))}
.

By recursion, we can compute the solution to P (u, s) for all s ∈ {0, 1 . . .m ξ} in time O(mξ |E|)
once V (u, s) is known.

Remark 12. If ai = 0 is allowed, then, in some iterations, the budget may remain constant in
the lookup phase. This value makes the problem more difficult to solve. In that case, the algorithm
must be modified to loop several times for each budget value until reaching a fixed point.

3.2.3. Spanning tree and matroid. Matroid-structured combinatorial problems are ubi-
quitous (they have been introduced in Section 2.6.3). However, optimising a linear function on a
matroid with a budget constraint is not as easy to perform as in the the previous cases. We use
a particular case of the approximation algorithm proposed in [128]. The main inconvenience is
that the solution is provided only with an approximation ratio of ε = 1/2. Unlike knapsack sets
and simple paths, when computing the solution for a particular budget, this algorithm is unable
to provide optimum (or even approximate) solutions for lower budgets. In this section, we focus
on spanning trees, but the generalisation to any matroid is straightforward. For one value of the
budget, this approximation algorithm runs in time O

(
mξ |E| log2 |V |+ |V | log3 |E|

)
.

Claim 13. Optimisation problem 3.1.17 with X the set of spanning tree paths in the undirected
graph G = (V,E) can be solved approximately with ε = 1/2 in time O

(
mξ |E|+ |V | log3 |E|

)
using

the algorithm below.



3.2. OPTIMISING BUDGETED PROGRAMS 46

The main idea behind this technique is to use Lagrangian relaxation [139] to transform the
budget constraint into a penalisation in the objective function. Therefore, the budgeted spanning-
tree problem P (s) writes:

maxxT b (P (s))

s.t.xT a ≥ s

x is a spanning tree.

If the budget constraint is assigned the Lagrange multiplier λ, its Lagrange dual is M(λ, s), defined
as:

maxxT b+ λ
(
xT a− s

)
(M(λ, s))

s.t.x is a spanning tree.

As the objective is a piecewise-linear function of λ, the optimum value λ⋆(s) can be found using
Meggido’s search technique [140] while solving the linear matroid problem [116], without incurring
a higher computational complexity:

(3.2.7) λ⋆(s) ∈ argmin
λ≥0

M(λ, s) .

If λ⋆(s) corresponds to a spanning tree that satisfies the budget constraint, with a slightly lower
value of λ, the constraint is no more satisfied. Conversely, if λ⋆(s) yields a solution that does not
satisfy the budget constraint, a higher value of λ will. Therefore, we use two solutions: x+(s),
computed from M [λ⋆(s) + ε, s], and x−(s), calculated from M [λ⋆(s)− ε, s]. Iteratively, we then
‘refine’ these solutions to bring them closer together, so that there is only one edge that differs
between them, while still having the same objective value: this yields an additive-approximation
algorithm. We finally apply this procedure on all pairs of distinct edges, so that we can build a
multiplicative-approximation algorithm.

More formally, the algorithm is made of four steps. These are formalised in Algorithm 15.

1. Lagrangian relaxation: Let L(λ, s) be the set of optimum solutions to the Lagrange
dual problem M(λ, s). One evaluation of M(λ, s) can be performed in polynomial time:
it is equivalent to maximizing a linear function over a matroid, for instance using a greedy
algorithm [116]. Furthermore, λ⋆(s) can be found using Meggido’s search technique [140],
as it involves minimizing a piecewise linear function.

2. Candidate solutions: For an arbitrarily small ε > 0, if |λ− λ⋆(s)| < ε, we must have
that L(λ, s) ⊂ L[λ⋆(s) , s]. Therefore, by solving the Lagrangian relaxation of the problem
for λ+(s) = λ⋆(s) + ε and λ−(s) = λ⋆(s) − ε, we obtain two solutions x+ and x− in
L[λ⋆(s) , s] with aT x+ ≥ s and aT x− ≤ s.

3. Solution refining: We now use an iterative procedure in order to find a good solution
using candidates x+ and x−. We consider two distinct edges e and e′ in E such that
x+
e = x−

e′ = 1 and x+
e′ = x−

e = 0. We define a new solution x = x+ − e+ e′. For the next
iteration, if aT x ≥ s, then we replace x+ by x and otherwise we replace x− by x. We
repeat this procedure until x+ and x− differ by exactly one element. Finally, x+ is the
refined solution.
At each step of this procedure, the following equalities always hold:

(3.2.8) (b+ λa)
T
x = (b+ λa)

T
x+ = (b+ λa)

T
x−.



3.2. OPTIMISING BUDGETED PROGRAMS 47

Therefore, at each iteration, x ∈ L(λ, s). Since both x+ and x− are in L(λ, s), we have:

(3.2.9) bTx− + λ
(
aT x− − s

)
≥ bT x⋆ + λ

(
aT x⋆ − s

)
.

As x− is slightly infeasible with respect to the budget constraint, i.e. aT x− < s ≤ aT x⋆,
its objective value bT x− is slightly higher than that of the optimum solution x⋆:

(3.2.10) bT x− ≥ bT x⋆.

Because, at the end of the refinement procedure, x+ and x− differ by at most two elements,
the following inequalities hold:

(3.2.11) bT x+ ≥ bT x− −max
e∈E

be ≥ bT x⋆ −max
e∈E

be.

At the end of the first three steps, x is a solution such that aT x ≥ s (i.e. feasible)
and bT x ≥ bT x⋆ − maxe∈E be (i.e. close to the optimum solution, with an additive
approximation term).

4. A 1/2-optimum solution: Finally, we search over the two edges with the largest weight
to obtain a constant multiplicative approximation factor. For all sets of two edges E′′ ⊂ E,
|E′′| = 2, we define a reduced graph G′(E′′) = [V,E′(E′′)] where

(3.2.12) E′(E′′) =

{
e ∈ E \ E′′

∣∣∣ be ≤ min
e′′∈E′′

be′′

}
.

For each such pair of edges, we apply the first three steps where G and s are replaced by
G′(E′′) and s′(E′′) = s−

∑
e′′∈E′′ be′′ (i.e. consider that those two edges are always part

of the solution); let x′[G′(E′′) , s′(E′′)] denote the solution found at the end of the third
step, if it exists.
The solution that is returned corresponds to the pair E′′⋆ that maximises aT x′[G′(E′′) , s′(E′′)]:

(3.2.13) E′′⋆ ∈ argmax
E′′⊂E,

|E′′|=2

{
aT x′[G′(E′′) , s′(E′′)]

}
.

More precisely, return the following solution:

(3.2.14) x(E′′⋆) +
∑

e∈E′′⋆

xe.

This final loop yields a 1/2 optimum solution in time O
(
|E| log2 |V |+ |V | log3 |E|

)
by the

same arguments as those used in [128, 129].

3.2.4. Matching and matroid intersection. One of the major applications of combinatorial
bandits is for the online matching problem (Section 2.5.1). Matching is an instance of matroid
intersection (Section 2.6.4). The previous algorithmic technique can be generalised to intersections
of two matroids, while still having a 1/2-approximation algorithm. The previous drawback of
inability to solve for several budget values is still present.

The algorithm we propose is made of four steps and is very similar to that of [129], which
itself is inspired by the algorithm for matroids of [128], exactly like our algorithm for matroids.
Intuitively, it works in the same way as previously, with the exception that four edges must be fixed
in order to guarantee a constant approximation ratio. The solution-refinement step is implemented
using augmenting paths instead of edge switching. Our algorithm is formalised in Algorithm 16.



3.2. OPTIMISING BUDGETED PROGRAMS 48

Claim 14. Optimisation problem 3.1.17 with X the set of bipartite matchings in the bipartite
graph G = (V1, V2, E) can be solved approximately with ε = 1/2 in time O

(
|V |3 |E|4

)
using the

algorithm below.

1. Lagrangian relaxation: We define the budgeted optimisation problem P (s)

maxxT b (P (s))

s.t.xT a ≥ s

x is a matching.

If the budget constraint is assigned the Lagrange multiplier λ, its Lagrange dual is M(λ, s):

maxxT b+ λ
(
xT a− s

)
(M(λ, s))

s.t.x is a matching.

Let L(λ, s) be the set of optimum solutions to the Lagrange dual problem M(λ, s). One
evaluation of M(λ, s) can be performed in polynomial time: it is equivalent to maximizing
a linear function over an intersection of matroids [119] (for bipartite matchings, the Hun-
garian algorithm can be used [141]). Furthermore, λ⋆(s) can be found using Meggido’s
search technique [140], as it involves minimizing a piecewise linear function.

2. Candidate solutions: For an arbitrarily small ε > 0, if |λ− λ⋆(s)| < ε, we must have
that L(λ, s) ⊂ L(λ⋆(s) , s). Therefore, by solving the Lagrangian relaxation of the problem
for λ+(s) = λ⋆(s) + ε and λ−(s) = λ⋆(s) − ε, we obtain two solutions x+ and x− in
L[λ⋆(s) , s] with aT x+ ≥ s and aT x− ≤ s.

3. Solution refining: We now use an iterative procedure in order to find a good solution
using candidates x+ and x−. Define their symmetric difference x′ = x+ ⊕ x−. This
symmetric difference x′ is made of a disjoint union of paths and cycles. We take x′′ as
one of such paths or cycles, and define the new solution x = x− ⊕ x′′. If aT x ≥ s, we
then replace x+ by x and otherwise we replace x− by x. We repeat this procedure until
x+ and x− differ by at most two elements (the symmetric difference x+ ⊕ x− decreases
at each step). Finally, x+ is the refined solution.
If aT x ≥ s, we then replace x+ by x and otherwise we replace x− by x. We epeat this
procedure until x+ and x− differ by exactly one element. Finally, we return x+.
At each step of this procedure, the following equalities always hold:

(3.2.15) (b+ λa)
T
x = (b+ λa)

T
x+ = (b+ λa)

T
x−.

Therefore, at each iteration, x ∈ L(λ, s). Since both x+ and x− are in L(λ, s), we have:

(3.2.16) bTx− + λ
(
aT x− − s

)
≥ bT x⋆ + λ

(
aT x⋆ − s

)
.

As x− is slightly infeasible with respect to the budget constraint, i.e. aT x− ≤ s ≤ aT x⋆,
its objective value bT x− is slightly higher than that of the optimum solution x⋆:

(3.2.17) bT x− ≥ bT x⋆.

Because, at the end of the refinement procedure, x+ and x− differ by at most one element,
we have:

(3.2.18) bT x+ ≥ bT x− − 2 max
e∈E

be ≥ bT x⋆ − 2 max
e∈E

be.



3.3. EXACT IMPLEMENTATION OF ESCB 49

At the end of the first three steps, x is a solution such that aT x ≥ s (i.e. feasible)
and bT x ≥ bT x⋆ − 2 maxe∈E be (i.e. close to the optimum solution, with an additive
approximation term).

4. A 1/2-optimum solution: Finally, we search over the four edges with the largest weight
to obtain a constant multiplicative approximation factor. For all sets of four edges E′′ ⊂ E,
|E′′| = 4, we define a reduced graph G′ = (V,E′) where

(3.2.19) E′ =

{
e ∈ E \ E′′

∣∣∣ be ≤ min
e′′∈E′′

be′′

}
.

For each such 4-tuple of edges, we apply the first three steps where G and s are replaced
by G′ and s −

∑
e′′∈E′′ be′′ (i.e. consider that those four edges are always part of the

solution); let x′(G′, s′) denote the solution found at the end of the third step, if it exists.
The solution that is returned corresponds to the pair E′′⋆ that maximises aT x′(G′, s′):

(3.2.20) E′′⋆ ∈ argmax
E′′⊂E,

|E′′|=4

{
aT x′(G′, s′)

}
.

More precisely, we return the following solution:

(3.2.21) x(E′′⋆) ∪ E′′⋆.

This final loop yields a 1/2 optimum solution in time O
(
|V |3 |E|4

)
by the same arguments

as that used in [128, 129].

3.3. Exact implementation of ESCB

To provide a baseline to compare our algorithms, we use an MISOCP (mixed-integer second-
order cone program) formulation of the optimisation program behind ESCB. Existing optimisation
solvers like CPLEX [142], Gurobi [143], Mosek [144], Parajito [145], SCIP [146], or Xpress [147]
can fully exploit this formulation. In practice, they can already solve ESCB’s problem at each
round very efficiently, even in large dimension, although their worst-case complexity is exponential,
O
(
2d
)
.

At each iteration, ESCB solves one such problem:

(3.3.1) max
x∈X

xT θ̂(n) +

√√√√f(n)

2

d∑
i=1

xi

Ti(n)

 .

The square root in the objective function can be thought of as a geometric mean, which is a special
case of hyperbolic constraint [148]. The first step of the reformulation is to replace the square root
by a single variable, t, and to add the right constraint:

(3.3.2)
max
x,t

xT θ̂(n) +
√

f(n)
2 t

s.t. t2 ≤
∑d

i=1
xi

Ti(n)

x ∈ X .



3.4. NUMERICAL RESULTS 50

Applying the transformation proposed in [148, Section 2.3], the hyperbolic constraint can be written
as a SOCP:

(3.3.3)

max
x,t

xT θ̂(n) +
√

f(n)
2 t

s.t.

∥∥∥∥∥
[

2 t∑d
i=1

xi

Ti(n)
− 1

]∥∥∥∥∥ ≤∑d
i=1

xi

Ti(n)
+ 1

x ∈ X .
Even though the linear constraints defining X ensure that optimising a linear objective over X
yields an integer solution, this is no more the case with the new formulation. Hence, integrality
constraints must be added for the relevant variables. ESCB’s program (3.3.1) is therefore:

(3.3.4)

max
x,t

xT θ̂(n) +
√

f(n)
2 t

s.t.

∥∥∥∥∥
[

2 t∑d
i=1

xi

Ti(n)
− 1

]∥∥∥∥∥ ≤∑d
i=1

xi

Ti(n)
+ 1

x ∈ X
x ∈ {0, 1}d .

3.4. Numerical results

We evaluate the performance of TS (Section 2.5.3.1), CUCB (Section 2.5.3.2), ESCB (Sec-
tion 2.5.4), and AESCB (Section 3.1) through numerical experiments in order to compare their
regret and the computation time. ESCB is implemented by casting the optimisation problem as an
MISOCP (Section 3.3) and using CPLEX as MISOCP solver [142].

All experiments are repeated 10 times, only averages are reported. In the plots, the error
bars correspond to the estimated 95% confidence intervals based on the measurements (under the
standard hypothesis of Gaussian distribution). As done in most prior work [56, 109], we simulate
ESCB and AESCB using f(n) = log n, neglecting the 4m log log n term, as this choice gives better
performance in practice. This issue is discussed in [109]; intuitively, a lower value of f(n) decreases
the upper bound on the reward for each solution, which then only holds with a lower probability
than with a higher f(n), but allows more aggressive exploitation in many cases. This phenomenon
is already known for classical bandits [56]. The Julia [37] implementations of the four algorithms
(ESCB is implemented using JuMP [149]) as well as the code to run the experiments are made
available online1.

3.4.1. Experimental setting. We run experiments on four different combinatorial sets, for
various problem sizes (indicated by d). All rewards follow a Bernoulli distribution.

• For m-sets, we choose m = ⌊d/3⌋. Regarding the rewards, θi = 0.55 for i ≤ d/2 and
θi = 0.4 for i > d/2. We use a time horizon of T = 1000. Any optimum solution takes
⌊d/3⌋ elements among the ⌊d/2⌋ first ones.

• For simple paths, we consider the graph G = (V,E) a complete directed acyclic graph:
(i, j) ∈ E if and only if i < j. The source is 1 and the destination is |V |. The re-
wards are defined as θ(i,j) = 0.4 for (i, j) ̸= (1, |V |) and θ(1,|V |) = 0.55. We have
d = |V | (|V | − 1) /2 and m = |V | − 1. We choose T = 5000. The optimum path is
{(i, i+ 1) ,∀i ∈ {1, 2 . . . |V | − 1}}.

1CombinatorialBandits.jl

https://github.com/dourouc05/CombinatorialBandits.jl


3.4. NUMERICAL RESULTS 51

• For spanning trees, we consider G = (V,E) a complete undirected graph. The rewards
are set so that θ(i,j) = 0.4 for all edges (i, j) ∈ E with i ̸= 1 and θ(1,j) = 0.55 for each
vertex j ∈ V \ {1}. We have d = |V |(|V | − 1)/2 and m = |V | − 1. We use T = 1000. The
optimum decision is a star network centred on 1, i.e. {(1, j) | j ∈ V \ {1}}.

• For matchings, we consider a complete bipartite graph G = (V1, V2, E) with |V1| = |V2|.
Regarding the rewards, θ(i,j) = 0.4 for all edges (i, j) ∈ E where i ̸= j and θ(i,i) = 0.55
for each vertex i ∈ V . We have d = |V1| |V2| and m = |V1| = |V2|. We use T = 1000. The
optimum decision is x⋆ = {(i, j) | i ∈ V1, j ∈ V2, i = j}.

The choice of average rewards is such that the Bernoulli random variables have a significant variance:
if the components of θ were too close to either zero or one, their variance would be very low, and
the bandit problem would almost reduce to deterministic combinatorial optimisation. Indeed, the
variance of a Bernoulli random variable with a success probability p has variance p (1− p). For
instance, with a success probability of p = 0.95, the variance of the reward is only 0.95 × 0.05 =
0.0475; on the other hand, if p = 0.55, the variance is 0.55× 0.45 = 0.2475.

A low variance would unfairly advantage TS, as this algorithm is very greedy. We checked its
performance in this case, and it clearly outperforms all other bandit algorithms in terms of regret.

3.4.2. Conservative choice of discretisation parameters. In our first set of experiments,
we choose a discretisation parameter that should not significantly contribute to the regret of AESCB,
from a theoretical point of view. We decide to take δn = 1/T , where T is the time horizon. Due
to the rather large time horizons in our experiments, δn is ensured to be lower than ∆min/4, and is
thus never be a source of regret for AESCB.

Regret. In Figure 3.4.1, we present the expected regret of all four algorithms (with 95% con-
fidence intervals) averaged over 10 sample paths. The regret of AESCB is very close to that of
ESCB, for all the tested combinatorial sets: the approximation comes at virtually no cost in terms
of regret. Both ESCB and AESCB outperform CUCB for matchings and spanning trees, whereas
CUCB performs better than ESCB and AESCB for paths. TS performs well on average, even
though it does not provide the best average regret for matchings; however, its regret has a lot of
variability across sample paths, performing quite poorly on some of them. Therefore, it is a ‘risky’
algorithm to use, unlike the others.

Computation time. AESCB’s computation times (Table 3) do not compare well to an off-the-
shelf state-of-the-art MISOCP solver, especially when the problem size increases. This was expected
from the choice of discretisation parameter: δn = 1/T ensures that the regret due to the approx-
imation algorithm is very small, albeit at a high computational cost.

3.4.3. Practical choice of parameters. In our second set of experiments, we use a more
aggressive choice of discretisation parameters: δn = 1/ log T . With our time horizons (T = 1000 or
T = 5000, depending on the combinatorial set), this choice is no more ensured to have no impact
on the regret, as per our theoretical analysis. However, in practice, the regret does not significantly
change between the two sets of experiments, and the plots in Figure 3.4.1 still accurately depict the
situation with this new choice of parameters.

In Table 4, we present the computation times required to select an arm at round n = 1000
for ESCB and AESCB (again, with 95% confidence intervals) averaged over several sample paths,
as a function of the problem dimension d. For most experiments, we average over 10 samples;
however, for ESCB and AESCB in the case of paths, 100 samples were required to have disjoint
confidence intervals. We observe that the computation time for AESCB indeed seems to grow slowly



3.4. NUMERICAL RESULTS 52

0 100 200 300 400 500 600 700 800 900 1000

Time T

0

10

20

30

40

50

60

70
R

eg
re

t R
(T

)
Regret R(T)

TS
CUCB
ESCB2
AESCB

(a) m-sets, d = 10.

0 100 200 300 400 500 600 700 800 900 1000

Time T

0

50

100

150

200

250

300

R
eg

re
t R

(T
)

Regret R(T)

TS
CUCB
ESCB2
AESCB

(b) Spanning trees, |V | = 5.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time T

0

50

100

150

200

250

300

R
eg

re
t R

(T
)

Regret R(T)

TS
CUCB
ESCB2
AESCB

(c) Paths, |V | = 10.

0 100 200 300 400 500 600 700 800 900 1000

Time T

0

50

100

150

200

250

R
eg

re
t R

(T
)

Regret R(T)

TS
CUCB
ESCB2
AESCB

(d) Matchings, |V | = 10.

Figure 3.4.1. Expected regret of the algorithms.

in d. Moreover, the computation times for all algorithms appear of the same magnitude, except for
matchings.

3.4.4. Parameter tuning. The function f(n) for ESCB and AESCB had been tuned in
previous experiments to increase its performance. There is no way to replicate this modification for
CUCB. However, we can define a new parameter α ∈ [0, 1/2] to allow tuning the confidence radius
for all algorithms. α = 1/2 corresponds to the original algorithms, while α = 0 makes them all
behave as pure-exploration policies (i.e. no confidence radius).

This variant of CUCB selects its decision as:

(3.4.1) x(n) ∈ argmax
x∈X

{
θ̂
T
(n) x+ α

d∑
i=1

xi
log n

ti(n)

}
.



3.4. NUMERICAL RESULTS 53

Problem Algorithm Time [s]

m-sets ESCB 0.01± 0.00 0.02± 0.01 1.24± 0.05
AESCB 0.01± 0.00 0.04± 0.00 0.99± 0.16

(d = 10) (d = 20) (d = 50)
Paths ESCB 0.00± 0.00 0.02± 0.00 0.10± 0.18

AESCB 0.05± 0.00 0.12± 0.01 1.24± 0.04
(d = 10) (d = 45) (d = 190)

Trees ESCB 0.02± 0.00 0.06± 0.08 0.20± 0.05
AESCB 0.01± 0.00 0.06± 0.01 0.40± 0.05

(d = 10) (d = 45) (d = 190)
Matchings ESCB 0.01± 0.00 0.26± 0.11

AESCB 0.01± 0.00 3.57± 1.29
(d = 4) (d = 25)

Table 3. Computing times of ESCB (above) and AESCB (below) using a conser-
vative choice of parameters.

Problem Algorithm Time [s]

m-sets ESCB 0.01± 0.00 0.02± 0.01 1.24± 0.03
AESCB 0.00± 0.00 0.01± 0.00 0.10± 0.10
CUCB 0.00± 0.00 0.00± 0.00 0.00± 0.00
TS 0.00± 0.00 0.00± 0.00 0.00± 0.00

(d = 10) (d = 20) (d = 50)
Paths ESCB 0.00± 0.00 0.02± 0.00 0.11± 0.04

AESCB 0.00± 0.00 0.00± 0.00 0.05± 0.00
CUCB 0.00± 0.00 0.00± 0.00 0.01± 0.00
TS 0.00± 0.00 0.00± 0.00 0.01± 0.00

(d = 10) (d = 45) (d = 190)
Trees ESCB 0.02± 0.00 0.06± 0.05 0.20± 0.03

AESCB 0.00± 0.00 0.02± 0.00 0.04± 0.01
CUCB 0.00± 0.00 0.00± 0.00 0.01± 0.00
TS 0.00± 0.00 0.00± 0.00 0.01± 0.00

(d = 10) (d = 45) (d = 190)
Matchings ESCB 0.01± 0.00 0.26± 0.06

AESCB 0.00± 0.00 0.18± 0.01
CUCB 0.00± 0.00 0.00± 0.00
TS 0.00± 0.00 0.00± 0.00

(d = 4) (d = 25)

Table 4. Computing times of ESCB, AESCB (below), CUCB, and TS. AESCB’s
discretisation parameter has been chosen in an aggressive way (δn = 1/ log T ).



3.5. REGRET UPPER BOUND FOR AESCB 54

ESCB uses the following decision rule:

(3.4.2) x(n) ∈ argmax
x∈X

θ̂
T
(n) x+

√√√√α f(n)

d∑
i=1

xi

ti(n)

 .

Finally, AESCB chooses a solution x(n) such that:

(3.4.3) argmax
x∈X

θ̂
T
(n) x+

√√√√α f(n)

d∑
i=1

xi

ti(n)

 ≤ θ̂
T
(n) x(n) +

1

εn

√√√√α f(n)

d∑
i=1

xi(n)

ti(n)
.

The results are shown in Table 5. As previously, AESCB’s performance is extremely close
to that of ESCB. Even with the best choice of parameter α, CUCB cannot outperform ESCB or
AESCB in situations where it did not with the standard version of the algorithm.

Table 5. Regret of ESCB, AESCB, and CUCB with tuning of the confidence
radius.

Problem Algorithm Regret

(α = 0.1) (α = 0.2) (α = 0.3) (α = 0.4) (α = 0.5)
m-sets (d = 50) ESCB 31.6± 24.8 27.9± 17.9 24.9± 14.3 25.1± 13.5 24.9± 13.0

AESCB 36.1± 25.7 32.5± 15.6 29.6± 15.1 28.7± 15.4 27.4± 14.1
CUCB 164.8± 129.9 73.6± 86.8 27.5± 10.3 16.6± 5.1 24.8± 13.9

Paths (d = 190) ESCB 276.4± 3.6 275.0± 4.5 275.0± 4.5 275.0± 4.4 275.0± 4.4
AESCB 284.0± 3.8 283.2± 6.1 283.2± 7.1 282.3± 4.6 282.3± 4.6
CUCB 95.9± 43.0 74.4± 13.4 71.7± 2.1 84.5± 8.9 102.2± 5.7

Trees (d = 190) ESCB 138.4± 54.3 137.1± 51.6 128.1± 37.9 148.1± 33.3 130.1± 33.8
AESCB 166.0± 57.9 166.0± 52.9 155.2± 38.9 179.2± 35.2 136.6± 34.7
CUCB 544.1± 30.6 225.8± 79.4 205.5± 73.9 290.5± 38.7 327.8± 47.2

Matchings (d = 25) ESCB 108.9± 119.4 108.1± 114.2 108.1± 114.4 325.1± 107.9 325.1± 107.9
AESCB 360.2± 123.3 360.1± 123.7 357.9± 117.4 357.3± 113.9 357.0± 113.3
CUCB 838.2± 423.4 365.4± 104.2 431.1± 60.6 477.9± 106.6 566.9± 76.7

3.5. Regret upper bound for AESCB

Finally, we provide a complete proof of Theorem 5.

Theorem 4. The regret of AESCB with parameters (εt, δt) admits the following upper bound
for all T ∈ N0:

(3.5.1) R(T ) ≤ C4(m) +
2 dm3

∆2
min

+
24 d f(T )

(mint≤T εt)
2
∆min

⌈
logm

1.61

⌉2
+ 4

T∑
t=1

δt 1∆min<4 δt

with f(t) = log t+ 4m log log t and C4(m) a positive number that solely depends on m.



3.5. REGRET UPPER BOUND FOR AESCB 55

3.5.1. Generic regret bound. We decompose the regret based on three events:
• G(n): the estimate θ̂(n) deviates abnormally from θ. Formally:

(3.5.2) G(n) =
{
θT x⋆ ≥ θ̂

T
(n) x⋆ +

√
x⋆T σ2(n)

}
.

• H(n): the reward of the decision chosen at round n is poorly estimated. This event is
decomposed along all subarms i ∈ {1, 2 . . . d} as Hi(n):

(3.5.3) Hi(n) =

{
xi(n) = 1,

∣∣∣θ̂i(n)− θi

∣∣∣ ≥ ∆min

2m

}
,

(3.5.4) Hn =

d⋃
i=1

Hi(n) .

• I(n): the reward gap of the decision chosen at round n is small:

(3.5.5) I(n) =
{
∆x(n) ≤ 4 δn

}
.

Of course, most of the time, G(n)∩H(n) occurs, since both G(n) and H(n) have a small probability
of occurring. Therefore, G(n) and H(n) only cause a constant regret. Also, I(n) causes a regret
that is at most 4 δn, by definition. For all x ∈ X and n ∈ N0, we define the exploration bonus
E(x, n) of arm x at round n:

(3.5.6) E(x, n) =
√
xT σ2(n).

By definition (2.2.4), the regret is decomposed along rounds as:

R(T ) = E

{
T∑

n=1

∆(n)

}

= E

{
T∑

n=1

∆x(n) 1x(n)̸=x⋆

}
.

Decomposing according to the occurrence of G(n), H(n), and I(n), we get:

R(T ) ≤ E

{
T∑

n=1

1{G(n)} ∆x(n)

}
+ E

{
T∑

n=1

1{H(n)} ∆x(n)

}
+ E

{
T∑

n=1

1{I(n)} ∆x(n)

}

+ E

{
T∑

n=1

1
{
G(n) ,H(n) , I(n) ,x(n) ̸= x⋆

}
∆x(n)

}
.

Let εT = minn∈{1,2...T} εn. The last term can then be rewritten based on the following event:

(3.5.7) F(n) =
{
∆x(n) ≤

4

εT
E[x(n) , n]

}
.

The last term of the regret bound depends on
(
G(n) ∩H(n) ∩ I(n) ∩ {x(n) ̸= x⋆}

)
, and this event

is implied by F(n), i.e.
(
G(n) ∩H(n) ∩ I(n) ∩ {x(n) ̸= x⋆}

)
⊂ F(n). Indeed, assuming that G(n)∩

H(n) ∩ I(n) ∩ {x(n) ̸= x⋆} occurs,

θT x⋆ ≤ θ̂
T
(n) x⋆ + E(x⋆, n) , as G(n) occurs



3.5. REGRET UPPER BOUND FOR AESCB 56

≤ max
x∈X

{
θ̂
T
(n) x+ E(x, n)

}
≤ δt + θ̂

T
(n) x(n) +

1

εn
E[x(n) , n] , due to AESCB’s approximation

≤ δt + θT (n) x(n) +
∆x(n)

2
+

1

εn
E[x(n) , n] , as H(n) occurs

≤ θT (n) x(n) +
3

4
∆x(n) +

1

εn
E[x(n) , n] , as I(n) occurs.

Therefore, reorganising the terms yields:

(3.5.8)
∆x(n)

4
≤ 1

εn
E[x(n) , n] ≤ 1

εT
E[x(n) , n] ,

which corresponds to F(n).
As a consequence, the regret is upper bounded by the sum of four terms:

R(T ) ≤ E

{
T∑

n=1

1{G(n)} ∆x(n)

}
+ E

{
T∑

n=1

1{H(n)} ∆x(n)

}

+ E

{
T∑

n=1

1{I(n)} ∆x(n)

}
+ E

{
T∑

n=1

1{F(n)} ∆x(n)

}
.

3.5.2. First term: poor reward estimation. For any x ∈ X , we have ∆x ≤ θ⊤x⋆ ≤ m,
since θ ∈ [0, 1]d and maxx∈X

∑d
i=1 xi = m. Therefore, by applying [109, Theorem 3]:

E

{
T∑

n=1

1{G(n)} ∆x(n)

}
≤ mE

{
T∑

n=1

1{G(n)}

}

= m

∞∑
t=1

P[G(n)]

≤ C4(m) .

where C4(m) is a positive number which only depends on m.

3.5.3. Second term: poor choice of subarm. We turn to the second term, using a union
bound:

(3.5.9) P[H(n)] = P

[
d⋃

i=1

Hi(n)

]
≤

d∑
i=1

P[Hi(n)] .

Using once again the fact that ∆x ≤ m, the regret due to H(n) is bounded as:

E

{
T∑

n=1

1{Hn} ∆x(n)

}
≤ mE

{
T∑

n=1

1{Hn}

}

= m

T∑
n=1

P[H(n)]

≤ m

T∑
n=1

d∑
i=1

P[Hi(n)] .



3.5. REGRET UPPER BOUND FOR AESCB 57

By definition of Hi(n),

(3.5.10) P[Hi(n)] = P
(
xi(n) = 1,

∣∣∣θ̂i(n)− θi

∣∣∣ ≥ ∆min

2m

)
.

Using Hoeffding’s inequality, this probability can be bounded by:

(3.5.11) P[Hi(n)] ≤ exp

[
−n
(
∆min

m

)2
]
.

Injecting this result in the regret component,

E

{
T∑

n=1

1{H(n)} ∆x(n)

}
≤ m

T∑
n=1

d∑
i=1

P[Hi(n)]

≤ m

T∑
n=1

d∑
i=1

exp

[
−n
(
∆min

m

)2
]

≤ md

T∑
n=1

exp

[
−n
(
∆min

m

)2
]

≤ md

1− e
−
(

∆min
m

)2 , recognising a geometric series

≤ m3 d

∆2
min

(
1 +

∆2
min

m2

)
, as ez ≥ 1 + z, ∀z > 0

≤ 2m3 d

∆2
min

, as ∆min ≤ m.

3.5.4. Third term: small reward gap. By definition, the third term is:

E

{
T∑

n=1

1{I(n)} ∆x(n)

}
= E

{
T∑

n=1

1
{
∆x(n) ≤ 4 δn

}
∆x(n)

}

≤ 4

T∑
t=n

δn 1{∆min ≤ 4δt} .

3.5.5. Fourth term: dominant term. We now consider the event F(n). By definition, if
F(n) occurs,

(3.5.12) ∆x(n) ≤
4

εT
E[x(n) , n] .

Squaring this definition,

∆2
x(n) ≤

16

εT
E2[x(n) , n]

=
16

εT
xT (n) σ2(n) , by definition of E(x, n)

=
8

ε2T
f(n)

d∑
i=1

xi(n)

Ti(n)
, by definition of σ2(n) .



3.5. REGRET UPPER BOUND FOR AESCB 58

If this event happens, it means that there exists a subset of subarms such that the number of
samples for each subarm Ti(n) is small. We further decompose this event as follows.

We consider (αj) and (βj), two positive, non-increasing sequences verifying the following prop-
erties:

(3.5.13) lim
j→+∞

αj = lim
j→+∞

βj = 0,

(3.5.14) lim
j→+∞

βj√
αj

= 0,

(3.5.15) β0 = 1.

We define j0 as the first integer j such that βj ≤ 1
m and we let ℓ as the sum

(3.5.16) ℓ =
βj0

αj0

+

j0∑
j=1

βj−1 − βj

αj−1
.

These two sequences {αj} and {βj} are fixed, and their exact value will be specified later.
For all j ∈ N, we define the following sets:

(3.5.17) Sj(n) =



{
i ∈ {1, 2 . . . d}

∣∣∣∣∣xi(n) = 1, Ti(t) ≤ αj
2 f(n) g(m)

∆2
x(n)

}
if j ≥ 1

{i ∈ {1, 2 . . . d} |xi(n) = 1} if j = 0

where g(m) = 4mℓ/εT .

Remark 15. The sets Sj(n) used in this proof are unrelated to the set S(n) used when dealing
with budgeted optimisation problems.

Since the function j 7→ αj is decreasing and limj→∞ αj = 0, the sequence of sets {Sj(n)} is
decreasing for set inclusion when j increases. Moreover, there is an index j∅ such that Sj∅(n) = ∅:

(3.5.18) ∅ = Sj∅(n) ⊂ Sj∅−1(n) ⊂ ... ⊂ S1(n) ⊂ S0(n) .

We define the event Aj(n) as:

(3.5.19) Aj(n) = {|Sj(n)| ≥ mβj and ∀k < j, |Sk(n)| < mβj} .

By assumption on the sequence {βj}, we have:

(3.5.20) |S0(n)| = mβ0 = m.

Finally, we also define the events A(n) as the following unions:

(3.5.21) A(n) =
+∞⋃
j=1

Aj(n) .

A(n) is a finite union of the events Aj(n) for j ∈ N0, as Aj(n) cannot occur if j ≥ j∅:

(3.5.22) A(n) =
j∅⋃
j=1

Aj(n) .



3.5. REGRET UPPER BOUND FOR AESCB 59

We formally prove this fact by reductio ad absurdum. Initially, suppose that the event Aj(n)
happens for some j > j∅. For all j > j∅, due to βj∅ ≤ 1/m and the fact that {βj} is a decreasing
sequence,

(3.5.23) mβj ≤ m
1

m
= 1.

Thus, by definition of the event Aj(n), we have that:

Aj(n) =

mβj︸︷︷︸
≤1

≤ |Sj(n)| and ∀k < j, |Sk(n)| < mβj


=


|Sj(n)| ≥ 1 and ∀k < j∅, |Sk(n)| < mβj and

∀k ∈ [j∅, j − 1] , |Sk(n)| = 0︸ ︷︷ ︸
by definition of j∅

 .

However, the same set Sj(n) cannot be both empty and have at least one element. In other words,
the event Aj(n) cannot happen for j > j∅, and A(n) is a finite union of events.

Under the event A(n), the sum
∑d

i=1
xi(n)
Ti(n)

can be bounded. The event A(n) is, by De Morgan’s
law (recall that j0 is finite):

A(n) =
j∅⋂
j=1

Aj(n) , as A(n) is a finite union of Aj(n)

=

j∅⋂
j=1

{|Sj(n)| < mβj or ∃k < j, |Sk(n)| ≥ mβj}

=

j∅⋂
j=1

[
{|Sj(n)| < mβj} ∪

{
j−1⋃
k=1

|Sk(n)| ≥ mβj

}]

=

j∅⋂
j=1

{|Sj(n)| < mβj} , as the two events are incompatible

=

j∅−1⋂
j=1

{|Sj(n)| < mβj} ∩
{∣∣Sj∅(n)

∣∣ < mβj∅

}
.

Since βj∅ ≤ 1/m, the last event can be written as
∣∣Sj∅(n)

∣∣ < m
m = 1. A set whose cardinality is

strictly less than one must be empty, thus:

(3.5.24) A(n) =
j∅−1⋂
j=1

{|Sj(n)| < mβj} ∩
{∣∣Sj∅(n)

∣∣ = 0
}
.

If the event A(n) happens, then:

Sj(n) = {i {∈ 1, 2 . . . d} |xi(n) = 1, i ̸∈ Sj(n)}

=

{
i {∈ 1, 2 . . . d}

∣∣∣∣∣xi(n) = 1, Ti(t) > αj
2 f(n) g(m)

∆2
x(n)

}
,



3.5. REGRET UPPER BOUND FOR AESCB 60

Sj∅(n) = {i {∈ 1, 2 . . . d} |xi(n) = 1} .

Indeed, due to the fact that {Sj(n)} is a decreasing sequence for set inclusion when j increases, the
complement Sj(n) must be an increasing sequence for set inclusion when j increases. This implies
that:

(3.5.25)
{
i ∈ {1, 2 . . . d}

∣∣∣xi(t) = 1
}
=

j∅⋃
j=1

(
Sj(n)

∖
Sj−1(n)

)
.

Thus,

(3.5.26)
d∑

i=1

xi(n)

Ti(n)
=

j∅∑
j=1

∑
i∈Sj(n)\Sj−1(n)

xi(n)

Ti(n)
.

Using the definition of Sj(n), one might write that, if the event Sj(n) occurs, then:∑
i∈Sj(n)\Sj−1(n)

xi(n)

Ti(n)
<

∆2
x(n)

2 f(n) g (m) αj

∑
i∈Sj(n)\Sj−1(n)

xi(n)

=
∆2

x(n)

2 f (n) g (m)

∣∣Sj(n) \Sj−1(n)
∣∣

αj
.

This implies that the previous sum is bounded as:
d∑

i=1

xi(n)

Ti(n)
=

j∅∑
j=1

∑
i∈Sj(n)\Sj−1(n)

xi(n)

Ti(n)

≤
∆2

x(n)

2 f (n) g (m)

j∅∑
j=1

∣∣Sj (n) \Sj−1 (n)
∣∣

αj
.

The inner sum on j can be decomposed as follows, by definition of Sj(n) and Sj(n):
j∅∑
j=1

∣∣Sj (n) \Sj−1 (n)
∣∣

αj
=

j∅∑
j=1

|Sj(n) \Sj−1(n)|
αj

, dropping the complements

=

j∅∑
j=1

|Sj(n)| − |Sj−1(n)|
αj

=

∣∣Sj∅(n)
∣∣

α0
+

j∅∑
j=1

[
|Sj(n)|

(
1

αj−1
− 1

αj

)]
, factoring the j∅ term

<
mβj∅

α0
+

j0∑
j=1

[
mβj

(
1

αj−1
− 1

αj

)]
, as A(n) holds.

Finally, replacing g and ℓ by their definition,

d∑
i=1

xi(n)

Ti(n)
<

m∆2
x(n)

2 f(t) g(m)

βj∅

αj∅

+

j∅∑
j=1

βj−1 − βj

αj−1





3.5. REGRET UPPER BOUND FOR AESCB 61

=
∆2

x(n)ε
2
T

8 f(n)

Next, we prove that the event ∆x(n) ≤ 4
εT

E[x(n) , n] implies A(n) by reductio ad absurdum.
Indeed, if ∆x(n) ≤ 4

εT
E[x(n) , n] and A(n), then:

∆2
x(n) ≤

16

ε2T
E2[x(n) , n]

=
16

ε2T
xT (n) σ2(n)

=
8 f(n)

ε2T

d∑
i=1

xi(n)

Ti(n)

< ∆2
x(n).

which is a contradiction.
We now bound the regret due to the event F(n). We further decompose Aj(n) into a sequence

of Aj,i(n) to include the fact that a specific item i is included among the (at least) mβj items that
have not yet been selected often enough (i.e., the arm rewards are not yet well estimated):

(3.5.27) Aj,i(n) = Aj(n) ∩

{
xi(t) = 1 , Ti(n) ≤

αj 2 f(T ) g(m)

∆2
x(n)

}
.

Of course, the union over all i yields back Aj(n):

(3.5.28)
d⋃

i=1

Aj,i(n) = Aj(n) .

Since Aj(n) implies that at least mβj items have not yet been selected often enough,

(3.5.29) 1Aj(n) ≤
1

mβj

d∑
i=1

1Aj,i(n).

The contribution to the regret of the event F(n) is bounded by the items that are not selected
frequently enough to ensure a good reward estimate:

T∑
t=1

∆x(n) 1F(n) ≤
T∑

t=1

∆x(n) 1A(n)

≤
T∑

t=1

+∞∑
j=1

∆x(n) 1Aj(n)

≤
T∑

t=1

+∞∑
j=1

d∑
i=1

∆x(n)

mβj
1Aj,i(n).

For any i ∈ {1, 2 . . . k}, define the Ki possible values of the gaps ∆x for x ∈ X where xi = 1,
namely:

(3.5.30)
{
∆x

∣∣∣x ∈ X , xi = 1
}
= {∆i,1, ...,∆i,Ki} , ∀i ∈ {1, 2 . . . k} .



3.5. REGRET UPPER BOUND FOR AESCB 62

where Ki is the number of possible values for the gap and we assume that the gaps are sorted in
decreasing order:

(3.5.31) ∆i,1 > ∆i,2 > ... > ∆i,Ki
, ∀i ∈ {1, 2 . . . k}

with the convention that ∆i,0 = +∞. We can then decompose the previous sum according to the
values of the gap:

T∑
t=1

1F(n) ∆x(n) ≤
T∑

t=1

+∞∑
j=1

d∑
i=1

∆x(n)

mβj
1{Aj,i(n)}

≤
T∑

t=1

+∞∑
j=1

d∑
i=1

Ki∑
k=1

∆i,k

mβj
1
{
Aj,i(n) , ∆x(n) = ∆i,k

}

≤
T∑

t=1

+∞∑
j=1

d∑
i=1

Ki∑
k=1

∆i,k

mβj
1


Aj(n) , xi(t) = 1,

Ti(n) ≤
αjf(T ) g(m)

2∆2
i,k

,

∆x(n) = ∆i,k

 ,

by definition of Aj,i(n). To simplify notation, let

(3.5.32) τj =
1

2
αj f(n) g(m) .

Thus, the previous bound can be written as:

(3.5.33)
T∑

t=1

1F(n) ∆x(n) ≤
T∑

t=1

+∞∑
j=1

d∑
i=1

Ki∑
k=1

∆i,k

mβj
1

{
xi(n) = 1, Ti(n) ≤

τj
∆2

i,k

, ∆x(n) = ∆i,k

}
.

To simplify the developments, focus on the two sums, the one on the rounds t and the one on the
gap values k:

(3.5.34)
T∑

t=1

Ki∑
k=1

∆i,k

mβj
1

{
xi(n) = 1, Ti(n) ≤

τj
∆2

i,k

, ∆x(n) = ∆i,k

}
.

As the values of ∆i,k are ordered, we can decompose this sum as follows:
T∑

t=1

Ki∑
k=1

∆i,k

mβj
1

{
xi(n) = 1, Ti(n) ≤

τj
∆2

i,k

, ∆x(n) = ∆i,k

}

=

T∑
t=1

Ki∑
k=1

Ki∑
p=1

∆i,k

mβj
1

{
xi(n) = 1, Ti(n) ∈

(
τj

∆2
i,p−1

,
τj
∆2

i,p

]
, ∆x(n) = ∆i,k

}
.

The factor ∆i,k can become ∆i,p, as it will be counted only once, when the step function is nonzero
(when j = k):

T∑
t=1

Ki∑
k=1

∆i,k

mβj
1

{
xi(n) = 1, Ti(n) ≤

τj
∆2

i,k

, ∆x(n) = ∆i,k

}

≤
T∑

t=1

Ki∑
k=1

Ki∑
p=1

∆i,p

mβj
1

{
xi(n) = 1, Ti(n) ∈

(
τj

∆2
i,p−1

,
τj
∆2

i,p

]
, ∆x(n) = ∆i,k

}
.



3.5. REGRET UPPER BOUND FOR AESCB 63

Again, if the solution x(n) is not taken to be exactly k, but any suboptimum solution, many new
terms now count in the sum. With this change, the sum over k becomes irrelevant, as all gaps that
may contribute to the regret are still counted in the sum.

T∑
t=1

Ki∑
k=1

∆i,k

mβj
1

{
xi(n) = 1, Ti(n) ≤

τj
∆2

i,k

, ∆x(n) = ∆i,k

}

≤
T∑

t=1

Ki∑
p=1

∆i,p

mβj
1

{
xi(n) = 1, Ti(n) ∈

(
τj

∆2
i,p−1

,
τj
∆2

i,p

]
, ∆x(n) = ∆i,k

}

≤ τj
mβj

(
1

∆i,1
+

Ki∑
p=2

∆i,p

(
1

∆2
i,p

− 1

∆2
i,p−1

))

≤ 2τj
mβj∆min

where we used the following algebra, since the ∆i,p are increasing when p increases:

1

∆i,1
+

Ki∑
p=2

∆i,p

(
1

∆2
i,p

− 1

∆2
i,p−1

)
=

1

∆i,Ki

+

Ki−1∑
p=1

∆i,p −∆i,p+1

∆2
i,p

≤ 1

∆i,Ki

+

Ki−1∑
p=1

∆i,p −∆i,p+1

∆i,p+1∆i,p

=
1

∆i,Ki

+

Ki−1∑
p=1

1

∆i,p+1
− 1

∆i,p

=
2

∆i,Ki

− 1

∆i,1

≤ 2

∆min
.

Injecting this result into the regret term bound,

T∑
t=1

1F(n) ∆x(n) ≤
T∑

t=1

+∞∑
j=1

d∑
i=1

Ki∑
k=1

∆i,k

mβj
1

{
xi(n) = 1, Ti(n) ≤

τj
∆2

i,k

, ∆x(n) = ∆i,k

}

≤
+∞∑
j=1

d∑
i=1

2 τj
mβj ∆min

=
f(T ) d g(m)

m∆min

 j0∑
j=1

αj

βj

 , by definition of τj

=
4 ℓ d f(T )

ε2T∆min

 j0∑
j=1

αj

βj

 , by definition of g.



3.5. REGRET UPPER BOUND FOR AESCB 64

Now, set αi = βi = βi, for some β ∈ (0, 1). This choice satisfies the previous assumptions. Since j∅

is the first integer j such that βj ≤ m−1, we have j∅ =
⌈

logm
log β−1

⌉
. Also,

ℓ

j∅∑
j=1

αj

βj
= ℓ j∅, as αi = βi

= j∅

βj0

αj0

+

j∅∑
j=1

βj−1 − βj

αj−1

 , by definition of ℓ

= j∅

1 +

j∅∑
j=1

βj−1 − βj

βj


= j∅

1 +

j∅∑
j=1

1− β

β


= j∅

(
1 +

j∅
β
− j∅

)
≤ j∅

(
1 +

j∅
β

)
.

Taking β = 1/5,

(3.5.35) j∅ =

⌈
logm

log β−1

⌉
≤
⌈
logm

1.61

⌉
.

Injecting these into the regret term, we get:
T∑

t=1

∆x(n)1F(n) ≤
4 ℓ d f(T )

ε2T ∆min

 j∅∑
j=1

αj

βj


≤ 4 d f(T )

ε2T∆min

(⌈
logm

1.61

⌉
+ 5

⌈
logm

1.61

⌉2)

≤ 24 d f(T )

ε2T∆min

⌈
logm

1.61

⌉2
.

3.5.6. Complete regret bound. Gathering the results about the three terms of the regret
decomposition, the regret can be bounded by:

(3.5.36) R(T ) ≤ C4(m) +
2 dm3

∆2
min

+
24 d f(T )

ε2T ∆min

⌈
logm

1.61

⌉2
+ 4

T∑
n=1

δt1{∆min ≤ 4 δn} .



CHAPTER 4

Nonsmooth Optimisation for Optimum Combinatorial
Bandits

ESCB is a state-of-the-art algorithm for combinatorial bandits (Chapter 3). We now turn our
attention to OSSB (Section 2.4.4), another state-of-the-art algorithm for combinatorial bandits
(Section 2.5.4), but provably asymptotically optimum: when implemented exactly, this algorithm
yields the lowest asymptotical regret. On the contrary, ESCB is part of a family of algorithms that
has been proved to suffer large suboptimality in special cases [76, Theorem 1], [?, Proposition 1].

OSSB uses the current estimates of the bandit-problem parameters θ: at each bandit round, it
computes the current estimate for the subarm rewards, and chooses the next arm to play based on
the optimum solution to (2.4.8).

However, to the best of our knowledge, like ESCB, this algorithm cannot be straightforwardly
implemented in polynomial time for combinatorial bandits. The problem lies in the formulation of
the Graves-Lai bound, which is not amenable to direct optimisation. Indeed, this formulation is
semi-infinite, due to the infinite number of constraints. Moreover, in the worst case, the number
of variables is exponential: O(|X |) ⊂ O

(
2d
)
. Nevertheless, this semi-infinite formulation is still

convex [150]: the objective function is linear, and the set of constraints
∑

x∈A ηx kl(θ,λ,x) ≥ 1
is convex ∀λ ∈ Λ(θ) (the left-hand side is a convex combination of Kullback-Leibler divergences,
which are convex [151, P148], and the right-hand one is constant).

We propose two ways of solving the Graves-Lai problem in the special case of combinatorial
bandits. Both are based on a reformulation of the problem (Section 4.3.3). This reformulation is
reversible in the sense that it is possible to compute a solution to the original formulation based on
the solution from the reformulation (Section 4.3.6).

• The simplest technique is based on standard constraint-generation techniques: it does not
guarantee a polynomial complexity, but uses existing optimisation solvers whose practical
efficiency has already been proved (Section 4.4).

• The second technique is guaranteed to have a polynomial complexity, and is based on
nonsmooth convex optimisation instead of constraint generation (Section 4.3).

In this chapter, we only consider Gaussian combinatorial bandits, i.e. the rewards are drawn from
Gaussian distributions.

4.1. Graves-Lai bound for combinatorial bandits

The Graves-Lai formulation (2.4.8) is the following in the specific case of Gaussian combinatorial
linear bandits, as shown in Section (4.1.2):

(4.1.1)
min

∑
x∈X ηx ∆x

s.t.
∑

i∈I
xi∑

y∈X yi αy
≤ ∆2

x ∀x ∈ X
ηx ≥ 0 ∀x ∈ X

65



4.1. GRAVES-LAI BOUND FOR COMBINATORIAL BANDITS 66

where I is the set of subarms that do not appear in any optimum decision:

(4.1.2) I =

i ∈ {1, 2 . . . d}

∣∣∣∣∣∣
max

x∈X :
xi=1

θT x

 < θT x⋆

 .

4.1.1. Interpretation of the formulation. Lower bounds typically consider consistently
good algorithms (Lai-Robbins in Section 2.2.4 and Graves-Lai in Section 2.4.2). Consider such an
algorithm that selects tx = ηx log T times the solution x ∈ X over a horizon of T rounds. Its regret
has the following decomposition:

R(T ) =

T∑
n=1

∆x(n)

=
∑
x∈X

tx ∆x

= log T
∑
x∈X

ηx ∆x.

This quantity is a multiple of the objective function of (4.1.1). Similarly, the subarm i is observed
log T

∑
x∈X xi ηx times over T rounds.

In order to guarantee with high probability that a solution x ∈ X is not an optimum solution,
the agent must gather enough statistical information about θT x⋆. Indeed, these subarms are not
shared by any optimum solution and still contained in x. Estimating these suboptimum θi incurs
some regret, as no optimum solution plays these subarms. To the contrary, estimating θi where i
is such that x⋆

i = 1 can be done without regret, because x⋆ is optimum.
Formalising this reasoning, one can show that the number of observations of any x ∈ X must

satisfy

(4.1.3)
∑
i∈I

xi∑
y∈X yi αy

≤ ∆2
x.

If this constraint is not satisfied, then it is not possible to distinguish between a suboptimum
decision x ∈ X and an optimum decision x⋆ with high probability.

The Graves-Lai problem (4.1.1) amounts to minimising the regret under the constraint that
the agent must be able to distinguish between suboptimum and optimum decisions.

4.1.2. Formal proof. The formulation (4.1.1) can be derived directly from (2.4.7) and (2.4.8).
From [109, Theorem 1], the result holds when C(θ) is the value of the following optimisation

problem, recalled from (2.4.8):

(4.1.4)
min

∑
x∈A ηx ∆x

s.t. minλ∈Λ(θ)

{∑d
i=1

∑
x∈X ηx xi kl(θi, λi)

}
≥ 1

ηx ≥ 0, ∀x ∈ X .
where Λ(θ) is the set of confusing probability distributions (2.4.10):

(4.1.5) Λ(θ) =

{
λ ∈ Rd

∣∣∣∣λT x⋆ < max
x∈X

{
λT x

}
and θi = λi ∀i ̸∈ I

}
.

All the parameters λ ∈ Λ(θ) are such that x⋆ is not the optimum decision, and such that λ cannot
be distinguished from θ when selecting only optimum decisions under θ.



4.2. ELEMENTS OF NONSMOOTH CONVEX OPTIMISATION 67

kl(θi, λi) is the Kullback-Leibler divergence between the distribution of the rewards for i with
respective means θi and λi (this notion was first defined in Section (2.4.2)). Since the reward
distributions are assumed to be Gaussian with variance 1/2, the divergence is given by kl(θi, λi) =

(θi − λi)
2. Furthermore, if i ̸∈ I, then θi = λi by definition of Λ(θ), so that kl(θi, λi) = 0.

Therefore, the optimisation program (2.4.8) simplifies to:

(4.1.6)
min

∑
x∈A ηx ∆x

s.t. minλ∈Λ(θ)

{∑d
i=1

∑
x∈X ηx xi (θi − λi)

2
}
≥ 1

ηx ≥ 0, ∀x ∈ X .

We then decompose Λ(θ) according to the optimum decisions and their values:

(4.1.7) Λx,v(θ) =
{
λ ∈ Λ(θ)

∣∣∣λT x = θT x⋆ + v
}
,

(4.1.8) Λ(θ) =
⋃

v∈R+

⋃
x∈X :
x̸=x⋆

Λx,v(θ) .

The optimum solution to minΛx,v(θ)

{∑d
i=1

∑
x∈X ηx xi (θi − λi)

2
}

, which corresponds to the con-
straint of (4.1.6) written for a single Λx,v(θ), can then be written as:

(4.1.9) min
Λx,v(θ)

{
d∑

i=1

∑
x∈X

ηx xi (θi − λi)
2

}
=

min
∑d

i=1

∑
x∈X ηx xi (θi − λi)

2

s.t. λT x = θT x⋆ + v.

Using the Karush-Kuhn-Tucker optimality conditions [152, Section 3.3.1] and solving, the optimum
value can be computed analytically as:

(4.1.10) min
Λx,v(θ)

{
d∑

i=1

∑
x∈X

ηx xi (θi − λi)
2

}
=

(∆x + v)
2∑

i∈I xi

(∑
y∈X yi αy

)−1 .

The constraint written for Λ(θ) is satisfied only if it is valid for all x ∈ X and all v ∈ R+, the most
constraining values of v being the smallest ones. If if it satisfied for v = 0, then it will be satisfied
for all v ∈ R+. Therefore, the constraint can be written as:

(4.1.11)
∑
i∈I

xi∑
y∈X yi αy

≤ ∆2
x, ∀x ∈ X .

As a consequence, the optimisation program (2.4.8) is equivalent to the claimed formula-
tion (4.1.1) for combinatorial bandits over the set X :

(4.1.12)
min

∑
x∈X ηx ∆x

s.t.
∑

i∈I
xi∑

y∈X yi αy
≤ ∆2

x ∀x ∈ X
ηx ≥ 0 ∀x ∈ X .

4.2. Elements of nonsmooth convex optimisation

Typical algorithms for convex optimisation include gradient descent [153], and interior-point
method [154], especially with self-concordant barrier functions [155]. They are very efficient, but
limited to smooth problems, i.e. optimisation programs whose objective and constraint functions
are differentiable. However, once the differentiability is not ensured, the convergence proofs of these



4.2. ELEMENTS OF NONSMOOTH CONVEX OPTIMISATION 68

methods fail: while the algorithms themselves may still work, their convergence is usually far from
the guaranteed one in the smooth case.

4.2.1. Smooth convex optimisation. A very common assumption in the domain of smooth
convex optimisation is the µ-strong convexity of the function f : Rd 7→ R to minimise, where
µ ∈ R+is the largest constant such that:

(4.2.1) f(v) ≥ f(u) +∇fT (u) (v − u) +
µ

2
∥v − u∥22 , ∀v,u ∈ Rd.

In particular, linear functions are convex, but their strong-convexity constant µ is zero. A second
common assumption is L-smoothness of the function:

(4.2.2) ∥∇f(u)−∇f(v)∥ ≤ L ∥u− v∥ , ∀u,v ∈ Rd.

A nonsmooth function is not differentiable everywhere: at some points, its gradient does not
exist. For instance, at u = 0, f(u) = |u| does not have a derivative. However, nonsmooth functions
can still be µ-strongly convex and L-smooth. A subgradient of f at u ∈ Rd is a vector g ∈ Rd such
that:

(4.2.3) f(v) ≥ f(u) + gT (v − u) , ∀y ∈ Rd.

Therefore, a subgradient still gives a lower linear approximation of the function, exactly like a
gradient. The major difference with the gradient is that subgradients are typically nonunique where
the function is not differentiable. For instance, with f(u) = |u|, at u = 0, the set of subgradients
(called the subdifferential and denoted by ∂f) is [−1, 1].

The most basic method in smooth convex optimisation is the gradient descent [153]. Consid-
ering a function f : Rd 7→ R, it starts from a point u(0) ∈ R0 and iteratively follows the gradient of
f :

(4.2.4) u(k) = u(k−1) + η∇f
(
u(k−1)

)
,

where η > 0 is a learning rate. This method has a linear convergence rate [156, Section 9.3.1]:
after k iterations,

(4.2.5) f
(
u(k)

)
− f(u⋆) ≤ 2L

∥∥u(0) − u(k)
∥∥

k
.

However, gradient descent can only be applied on unconstrained problems.
Interior-point methods [154] are also based on the gradient, but handle constraints. These

methods are based on a reformulation of the problem. If f(u) is the objective function and f1(u) ≥ 0
the only constraint, the reformulated problem is:

(4.2.6) B(u, ν) = f(u)− ν log f1(u) .

ν ≥ 0 is the barrier parameter: the higher ν, the higher the constraint penalisation. For a high
value of ν, the value of f(u) becomes very low compared to ν log f1(x): minimising B(x, ν) gives
a point that is ensured to be within the feasible set defined by f1(u) ≥ 0. Interior-point methods
start with a high penalty ν; at each iteration, these algorithms approximately minimise B(u, ν),
then lower ν. As B(u, ν) is only approximately minimised, the new iterate is close to the previous
one, and thus stays within the feasible set.

These two techniques (gradient descent and interior-point method) are very popular and very
effective for a very large class of problems. However, when it comes to nonsmooth optimisation,
these methods may fail.



4.2. ELEMENTS OF NONSMOOTH CONVEX OPTIMISATION 69

4.2.2. Subgradient method. Gradient descent is often a method of choice, even for nonsmooth
problems. By replacing the use of the gradient by any subgradient, the algorithm becomes the sub-
gradient method. This technique is more recent than gradient descent [157]. Formally, the iteration
rule is:

(4.2.7) uk = uk−1 − η g, where g ∈ ∂f(uk−1) .

In order to minimise the function f , let u
(k)
best denote the best iterate:

(4.2.8) u
(k)
best ∈ argmin

i∈{0,1...k}
f
(
u(k)

)
.

After k iterations, supposing that the optimum u⋆ is unique [158, Theorem 3],

(4.2.9) f
(
u
(k)
best

)
− f(u⋆) ≤ F 2

2 k η
+

G2 η

2
,

where F is an upper bound on the value of f and G is an upper bound on the norm of its subgradient:

(4.2.10) f(u) ≤ F, ∀u ∈ Rd,

(4.2.11) ∥g∥22 ≤ G, ∀g ∈ ∂f(u) , ∀u ∈ Rd.

4.2.3. Bundle method. The bundle method is a very different kind of algorithm to solve
smooth and nonsmooth problems [159]. The crux of the method is a piecewise, lower linear ap-
proximation f̌ of the function to minimise. Along the way, this algorithm collects a series of test
points where the function f and one of its subgradients is evaluated: all these points form the
bundle B(k) after k iterations.

(4.2.12) B(k) =
{[

u(i),g(i), f
(
u(i)

)]
, i ∈ {1, 2 . . . k}

}
.

Based on this bundle B(k), the approximation f̌ is given by:

(4.2.13) f̌ (k)(u) = max
i∈{1,2...k}

{
f
(
u(i)

)
+ g(i)T

(
u− u(i)

)}
.

Given a scale factor γk, the proximal function is defined as:

(4.2.14) proxγk

(
u(k)

)
= arg min

u∈Rd

{
f̌ (k)(u) +

γk
2

∥∥∥u− u(k)
∥∥∥2
2

}
.

Test points are obtained by solving this proximal problem with a sequence of scale factors γk. The
scale factors are supposed to remain within some bounds: 0 < γmin ≤ γk ≤ γmax < +∞ for all
iterations k. The other parameter of the method is K > 0, whose exact role is explained later.

At each iteration of the bundle method, the test point is obtained through the bundle approx-
imation and a proximal problem with the penalty parameter γk:

(4.2.15) v(k+1) ∈ proxγk

(
u(k)

)
.

Compute the multiplier πk of the newly obtained point v(k+1):

(4.2.16) πk = f̌ (k)
(
v(k+1)

)
− f

(
u(k)

)
.

If πk ≥ 0, the current iterate x(k) is optimum. Otherwise, add the test point to the bundle.
Depending on the decrease in f , perform either a short or a long step:



4.3. AOSSB AND GLPG 70

• If f
(
v(k+1)

)
≤ f

(
u(k)

)
+ K πk, the function f has significantly decreased (as πk < 0),

perform a descent step:

(4.2.17) u(k+1) = v(k+1).

Choose γk+1 freely between γmin and γmax.
• Otherwise, perform a short step:

(4.2.18) u(k+1) = u(k).

The iterate might not change, but the bundle approximation is slightly more precise:
v(k+1) will be different from v(k+2). Choose γk+1 between γk and γmax.

This method converges to a precision of ε with the following number of iterations [159, Theorem
3.1]:

(4.2.19) kmax =


⌈

211 u2
max F 4 G2

K (1−K2)umin ε3

⌉
if ε ≤ 4umax F

2

⌈
27 G2

K (1−K2)umin ε

⌉
if ε > 4umax F

2

.

4.3. AOSSB and GLPG

At first glance, the Graves-Lai optimisation program (4.1.1) seems impossible to solve in poly-
nomial time: it has O(|X |) variables and constraints (in the worst case, exponentially-many), with
one variable and one convex constraint per solution x in the combinatorial set X . To reformulate
this program, we need a few supplementary hypotheses on the combinatorial set.

In this section, we present GLPG (Graves-Lai projected gradient), a polynomial-time algorithm
to compute the Graves-Lai bound (4.1.1). We call AOSSB the variant of OSSB (Section (4.1))
where the Graves-Lai subproblem is solved approximately, with an accuracy δ > 0.

4.3.1. Assumptions. Our results rely on a series of technical assumptions that do not restrict
the generality of our results.

Assumption 16. For each subarm i ∈ {1, 2 . . . d}, there exists a solution x(i) ∈ X such that
x
(i)
i = 1. There is no restriction on the other components of the x(i), i.e. x

(i)
j ∈ {0, 1} for all

j ∈ {1, 2 . . . d} \ {i}.

This assumption simply indicates that all subarms can be played and that their average reward
θi can be estimated by sampling at least one solution, x(i). If Assumption (16) is not satisfied,
the violating subarms can simply be removed, as they do not play any role in the bandit problem.
Therefore, this assumption does not lead to any loss of generality.

Assumption 17. The combinatorial set X can be represented as the set of extreme points of a
polytope in the following canonical form:

(4.3.1) X =
{
x ∈ {0, 1}d

∣∣∣Ax = b
}

where A ∈ Rc×d, with a number of constraints c ∈ O(poly(d)). The vector b is an element of Rc.

This canonical form is the one required by the simplex algorithm [160], and all polytopes can
be cast into this form by adding slack variables [152, Section 5.6.1]. This assumption thus reduces
to a description by the means of a polynomial number of linear constraints.



4.3. AOSSB AND GLPG 71

Assumption (17) is equivalent to a hypothesis on the convex hull of X :

(4.3.2) conv(X ) =
{
x ∈ Rd

+

∣∣Ax = b
}
.

In particular, all the considered combinatorial sets satisfy this hypothesis: matroids, spanning
trees, paths, matchings.

Assumption 18. The average-reward vector θ only has positive integer components: θ ∈ Nd.

Assumption 18 has implications on the minimum and maximum rewards, and therefore gaps:

(4.3.3) θT x ∈ {0, 1 . . .m ∥θ∥∞} ,

(4.3.4) 1 ≤ ∆min ≤ ∆max ≤ m ∥θ∥∞ ,

where the largest entry in θ is denoted by ∥θ∥∞.
Again, this assumption does not lead to any loss of generality. While it makes stating our

results simpler, we can easily generalise them to the case where θ has continuous values. Indeed, if
Assumption 18 is violated and is in some interval like [0, 1]

d, we can discretise its values in a new
vector θ̃:

(4.3.5) θ̃i = ε

⌈
θ1
ε

⌉
,

then use our technique on θ̃/ε. This vector has integer entries and, as a consequence, verifies
Assumption 18.

This transformation can be performed without changing the optimum value of 4.1.1, thanks to
the homogeneity of 18. More precisely, the Graves-Lai bound satisfies C

(
θ̃
)
= C

(
θ̃/ε
)
/ε and its

optimum solution is such that α⋆
(
θ̃
)
= α⋆

(
θ̃/ε
)
/ε2.

One can therefore solve 4.1.1 up to any fixed accuracy in polynomial time using our results.

4.3.2. Polynomial-time solvability of the Graves-Lai program. The main result of this
chapter is GLPG (Graves-Lai projected gradient), a technique to solve (4.1.1) in polynomial time,
using a projected subgradient method. We first formally state the result before delving into the
algorithmic details. The complexity is polynomial in the dimension d, the required accuracy level
δ > 0, and the largest entry in θ.

ε is the approximation ratio of the algorithm used for budgeted linear maximisation (as in
Section 3.2). If ε is not 1, using the approximate solution to the Graves-Lai problem in order to
guide the exploration in OSSB (Section 4.1) does not yield an asymptotically optimum algorithm,
but instead an algorithm whose regret scales like the asymptotic optimum with a ratio ε−1. This
is typically better than what existing algorithms can achieve. In this case, improving the regret
bound amounts to finding an exact budgeted-maximisation algorithm.

Our algorithm is ensured to find solutions that are either exact or approximate, with an approx-
imation ratio ε and a rounding factor δ. This approximation does not compromise the feasibility
of the solution, only its optimality. Specifically, GLPG outputs an (ε, δ)-solution α such that:

• α is feasible:

(4.3.6)
∑
i∈I

xi∑
y∈X yi αy

≤ ∆2
x, ∀x ∈ X ,

(4.3.7) ηx ≥ 0, ∀x ∈ X .



4.3. AOSSB AND GLPG 72

• α is almost optimum, i.e. up to a multiplicative error ε−1 and an additive error δ [i.e. α
is an (ε, δ)-optimum solution]:

(4.3.8)
∑
x∈X

ηx ∆x ≤
C(θ)

ε
+ δ.

In particular, if the underlying budgeted optimisation algorithm is exact, ε = 1 and the
optimality then only depends on δ, a parameter that can be freely tuned:

(4.3.9)
∑
x∈X

ηx ∆x ≤ C(θ) + δ.

However, the choice of value of δ has a direct impact on the computational complexity of
our method: the lower the value of δ, the higher the complexity of the algorithm.

Theorem 19. Consider δ > 0. Let Assumptions 16, 17, and 18 hold. GLPG outputs α, an
(ε, δ)-optimum solution to (4.1.1) in time polynomial in d, δ−1, and ∥θ∥∞.

The proof of this theorem is made in three steps, detailed in the next three sections (4.3.3,
4.3.5, and 4.3.6). The corresponding algorithm is shown in full detail in Algorithm 17.

4.3.3. Reformulation to lower dimensionality. The first step to prove Theorem 19 is to
show that a solution to (4.1.1), with |X | variables, can be derived from a solution to another, smaller
optimisation program, with a number of variables that only depends on a polynomial of d (whereas
|X | is typically an exponential of d). The number of constraints remains exponential so far.

The major idea of the reformulation is to forgo optimising over the variables ηx that indicate
how often each solution x ∈ X should be played. Instead, the new formulation uses the variables
ti =

∑
x∈X xi ηx. These variables are proportional to the number of samples that should be obtained

to correctly estimate the value of θ. Inverting this transformation is not trivial, and the third step
of the proof is devoted to it (Section 4.3.6).

Proposition 20. If α⋆ is the optimum solution to (4.1.1) and w⋆ the optimum solution to the
following optimisation program

(4.3.10)

min qT w
s.t. Mw = 0∑

i∈I
xi

wi
≤ ∆2

x ∀x ∈ X
wi ≥ wmin ∀i ∈ I
wi ≥ 0 ∀i ∈ {1, 2 . . . d}

where

(4.3.11) M =

(
Ic −

bT b

∥b∥22

)
A, where Ic is the identity matrix of size c,

(4.3.12) q =
(
θT x⋆

) bT A

∥b∥2
− θ,

(4.3.13) wmin =
1

m2 ∥θ∥2∞
,



4.3. AOSSB AND GLPG 73

then the optimum solutions are related by:

(4.3.14) w⋆ =
∑
x∈X

x η⋆x.

Proof. Indeed, the original formulation (4.1.1) only depends on two combinations of the α:

(4.3.15) v =
∑
x∈X

ηx, w =
∑
x∈X

x ηx.

While this is obvious for the constraints, it is not for the objective function. It can be rewritten as
follows: ∑

x∈X
ηx ∆x =

∑
x∈X

ηx θ
T (x⋆ − x) , by definition of the gap ∆x

=

(∑
x∈X

ηx

)
︸ ︷︷ ︸

v

θT x⋆ − θT
∑
x∈X

ηx x︸ ︷︷ ︸
w

= v
(
θT x⋆

)
− θT w.

w is a conic combination of solutions of X , because α ≥ 0. Thus, w/v must be a convex
combination of such solutions. Using Assumption (17), the set of values for w and v can be
described as:{

(w, v)

∣∣∣∣ v =
∑

x∈X ηx ∈ R+,
w =

∑
x∈X x ηx ∈ Rd

+

}
=
{
(w, v)

∣∣∣ w
v
∈ conv(X ) , v ≥ 0

}
=

{
(w, v)

∣∣∣∣ Aw

v
= b, w ≥ 0, v ≥ 0

}
= {(w, v) |Aw = v b, w ≥ 0, v ≥ 0} .

If b = 0, the set reduces to {(w, v) |Aw = 0, w ≥ 0, v ≥ 0}, i.e. the value of v only has a lower
bound of zero. Otherwise, the value of v can be determined as follows: 

Aw = v b ⇐⇒ bT Aw = v bT b = v ∥b∥22

⇐⇒ v =
bT Aw

∥b∥22
.

Injecting this back into the linear constraints for w and v,

Aw = v b ⇐⇒ Aw − bT Aw

∥b∥22
b = 0.

⇐⇒ Mw = 0,

by definition of M.
Finally, the objective function can be rewritten as:∑

x∈X
ηx ∆x = v

(
θT x⋆

)
− θT w

= w



4.3. AOSSB AND GLPG 74

=

[(
θT x⋆

) bT A

∥b∥22
− θT

]
︸ ︷︷ ︸

q

w,

by definition of q.
Lemma 21 concludes the proof with the lower bound on w. □

4.3.4. Technical lemmas. We require several technical results in order to complete the proof
of Theorem 19. In this section, α⋆ is an optimum solution to (4.1.1) and w⋆ a corresponding
optimum solution to (4.3.10).

Let w̃ be the following vector:

(4.3.16) w̃ =

d∑
i=1

m

∆2
min

x(i),

where the x(i) are the solutions mentioned in Assumption 16. w̃ is intended to be a solution of
the Graves-Lai problem, not necessarily optimum. Indeed, by construction, each component has a
lower bound of:

(4.3.17) w̃i ≥
m

∆2
min

.

Furthermore, w̃ is a feasible solution, because, for any x ∈ X ,∑
i∈I

xi

w̃i
≤ ∆2

min

m

∑
i∈I

xi

≤ ∆2
min

m

d∑
i=1

xi

≤ ∆2
min

m
×m

= ∆2
min ≤ ∆2

x.

Lemma 21. Each component wi of w, with i ∈ {1, 2 . . . d}, has a lower bound of wmin =

m−2 ∥θ∥−2
∞ .

Proof. The lower bound on w is obtained thanks to Assumption 16. Taking a feasible solution
w ∈ Rd

+, the convex constraint writes:

(4.3.18)
1

wi
≤
∑
j∈I

x
(i)
j

wj
≤ ∆2

x(i) ≤
(
θT x⋆

)2
≤ m2 ∥θ∥2∞ ,

where x(i) is a solution in X such that x
(i)
i = 1, per Assumption 16. As the previous inequality

holds for any i ∈ {1, 2 . . . d}, we can impose the following lower bound on w:

(4.3.19) w ≥ wmin =
1

m2 ∥θ∥2∞
.

□

Lemma 22. The optimum value of both (4.1.1) and (4.3.10), qT w⋆, has an upper bound of
m2 d ∥θ∥∞.



4.3. AOSSB AND GLPG 75

Proof. As w⋆ is the optimum solution, the value of the objective function is less than or equal
to that of any feasible w in (4.3.10).

(4.3.20) qT w⋆ ≤ qT w.

In particular, consider the solution w̃ defined earlier in (4.3.16):

qT w⋆ ≤ m

∆2
min

d∑
i=1

∆x(i) , by construction of w̃

≤ m

d∑
i=1

∆max

∆2
min

, by definition of ∆max

≤ m

d∑
i=1

∆max, by Assumption (18)

≤ m2 d ∥θ∥∞ .

□

Lemma 23. The Euclidean norm of w⋆ has an upper bound of m5/2 d ∥θ∥∞.

Proof. Due to Proposition (20),

(4.3.21) w⋆ =
∑
x∈X

x ηx and qT w⋆ =
∑
x∈X

ηx ∆x.

Because ∆x ≤ ∆min by definition,

(4.3.22) qT w⋆ ≥ ∆min

∑
x∈X

ηx, hence
∑
x∈X

ηx ≤
qT w⋆

∆min
.

By Minkowski’s inequality,

(4.3.23) ∥w⋆∥2 =

∥∥∥∥∥∑
x∈X

x ηx

∥∥∥∥∥
2

≤
∑
x∈X

ηx ∥x∥2︸︷︷︸
≤
√
m

.

Merging with the previous result and Lemma (22),

(4.3.24) ∥w⋆∥2 ≤
√
m

qT w⋆

∆min
≤
√
mm2 d ∥θ∥∞ = m5/2 d ∥θ∥∞ .

□

Lemma 24. Consider M a convex set with the orthogonal projection operator ΠM, a scalar
η > 0, arbitrary vectors ŵ, g(1), g(2). . . g(M) of Rd, and a sequence {wm} defined as:

(4.3.25) w(m+1) = ΠM

{
w(m) − η g(m)

}
.

Then, the following equality holds:

(4.3.26)
M∑

m=1

(
w(m) − ŵ

)T
g(m) ≤

∥ŵ∥22
2 η

+
η

2

M∑
m=1

∥∥∥g(m)
∥∥∥2 .

[161, Lemma 14.1] first states this result without the projection step, and afterwards argue
that their proof still holds when a projection step is added, as in Lemma 24.



4.3. AOSSB AND GLPG 76

4.3.5. Approximate subgradient descent. The next step is to solve the reduced form
(4.3.10) using an iterative scheme. We split the constraints into two groups:

• the convex constraints: they are handled by penalisation. For each solution x ∈ X , define
the function hx(w) as the value of the convex constraint of (4.3.10):

(4.3.27) hx(w) =
∑
i∈I

xi

wi
−∆2

x.

The corresponding constraint of (4.3.10) is violated when hx(w) > 0.
• the linear constraints: they are handled by projection onto the polytope defined by these

constraints, M.

(4.3.28) M =
{
w ∈ Rd

+

∣∣Mw = 0, wi ≥ wmin ∀i ∈ I
}
.

Let •+ denote the positive part of •, i.e. max {•, 0}. The optimisation program (4.3.10) where the
convex constraints are penalised with a weight λ > 0 is:

(4.3.29)

min qT w + λ maxx∈X

{
[hx(w)]

+
}

s.t. Mw = 0
wi ≥ wmin ∀i ∈ I
wi ≥ 0 ∀i ∈ {1, 2 . . . d} .

This new formulation has several peculiarities.
• The objective function is not smooth, due to the maximum operator. Nevertheless, as the

maximum convex functions, the objective function remains convex.
• The value of λ must be appropriately large to ensure that the constraints are satisfied.
• It only has d variables and O(c+ d) constraints, where c is typically upper bounded by a

polynomial in d.
We solve (4.3.29) by the means of an approximate projected subgradient method with a fixed step
length η > 0. If ΠM is the projection operator onto M, our technique uses the following iteration
rules for m ∈ {0, 1, 2 . . .M − 1}:

(4.3.30) w(0) = (wmin, wmin . . . wmin) ,

(4.3.31) x(m) is chosen such that max
x∈X

hx

(
w(m)

)
≤ hx(m)

(
εw(m)

)
,

(4.3.32) g(m) = q+
[
λ ε∇hx(m)

(
εw(m)

)]
1h

x(m)(εw(m))>0,

(4.3.33) w(m+1) = ΠM

{
w(m) + η g(m)

}
.

The result of our numerical procedure is the average iterate w, not the last iterate:

(4.3.34) w =
1

M

M∑
m=1

w(m).

Using the same techniques as in Section 3.1, we can compute x(m) in timeO
[
poly

(
d, δ−1, ∥θ∥∞

)]
.

All the other steps can be implemented in time O
[
poly

(
d, δ−1, ∥θ∥∞

)]
(the case of the projec-

tion step is detailed in Section 4.3.5.2). As the algorithm only makes M iterations, with M
itself bounded by O

[
poly

(
d, δ−1, ∥θ∥∞

)]
, the whole procedure has a computational complexity

O
[
poly

(
d, δ−1, ∥θ∥∞

)]
.



4.3. AOSSB AND GLPG 77

4.3.5.1. Subgradient and approximate subgradient. When the underlying budgeted-linear-maximisation
algorithm is exact (i.e. ε = 1), x(m) is an exact maximiser of maxx∈X hx

(
w(m)

)
, and g(m) is an

exact subgradient of the objective function of (4.3.29): our method reduces to the standard sub-
gradient method in this case. Otherwise, ε < 1 and our algorithm guarantees that, for any x ∈ X ,
hx

(
εw(m)

)
cannot become too large.

4.3.5.2. Projection step. The projection operator ΠM is not an inconsequent part of the global
method. Evaluating ΠM amounts to solving the following optimisation program:

ΠM

(
w(m) + η g(m)

)
∈ argmin

w∈Rd
+

∥∥∥[w(m) + η g(m)
]
−w

∥∥∥2
2

s.t. Mw = 0, wi ≥ wmin ∀i ∈ I.

It can easily be solved by techniques like interior-point methods [156, Section 11.4]. The initial iter-
ate for these methods can be w(m), a solution that is already known to be feasible by construction,
although warm-starting techniques are known not to improve running times in practice [162].

4.3.5.3. Choice of parameters.

Proposition 25. With a target accuracy δ > 0 and the approximation ratio ε, defining

(4.3.35) δ2 =
δ ε

m2 d ∥θ∥∞
, δ1 =

δ

2 + 2 δ2
, q1 = ∥q∥22 +

λ2 dm8 ∥θ∥8∞
ε2

,

if the parameters of the methods (i.e. the penalty parameter λ > 0, the step length η > 0, and the
number of iterations M ∈ N) are as follows

(4.3.36) λ =
δ1 +m2 d ∥θ∥∞

δ2
,

(4.3.37) M =

⌈
q1

m5 d2 ∥θ∥2∞
δ21 ε

2

⌉
,

(4.3.38) η2 =
m5 d2 ∥θ∥2∞

ε2 T q1
,

then the numerical procedure (4.3.30)-(4.3.34) runs in time polynomial in d, δ−1, and ∥θ∥∞. Fur-
thermore, the average iterate w defined in (4.3.34) yields a solution w′ = (1 + δ2) w that is an
(ε, δ)-optimum solution to (4.3.10).

4.3.5.4. Convergence proof. Let E be the error at the end of the projected subgradient al-
gorithm:

(4.3.39) E = qT w − qT w⋆

ε
+ λ max

x∈X

{
[hx(w)]

+
}
.

As w is defined as the average of the M iterates (4.3.34), because w 7→ maxx∈X

{
[hx(w)]

+
}

is a
convex function and λ > 0, we can use Jensen’s inequality:

E = qT

(
1

M

M∑
m=1

w(m)

)
− qT w⋆

ε
+ λ max

x∈X


[
hx

(
1

M

M∑
m=1

w(m)

)]+



4.3. AOSSB AND GLPG 78

≤ 1

M

M∑
m=1

[
qT w(m)

]
− qT w⋆

ε
+

λ

M

M∑
m=1

max
x∈X

{[
hx

(
w(m)

)]+}
.

By choice of x(m), we know that

(4.3.40) max
x∈X

{[
hx

(
w(m)

)]+}
≤
[
hx(m)

(
εw(m)

)]+
.

hx being a smooth convex function, w 7→ [hx(w)]
+ is a nonsmooth convex function and one of its

subgradient is

(4.3.41) ε∇hx(m)(εw) 1h
x(m)(εw)>0,

the following inequality holds, by definition of a subgradient, for all w ∈ Rd
+:

(4.3.42) [hx(m)(εw)]
+ − [hx(m)(w⋆)]

+ ≤
(
w − w⋆

ε

)T (
ε∇hx(m)(εw) 1h

x(m)(εw)>0

)
.

As w⋆ is a feasible solution, hx(w
⋆) ≤ 0, and [hx(m)(w⋆)]

+
= 0. Using the definition of x(m)

in (4.3.40),

(4.3.43) max
x∈X

{[
hx

(
w(m)

)]+}
≤
(
w − w⋆

ε

)T (
ε∇hx(m)(εw) 1h

x(m)(εw)>0

)
.

Relating this to the error E, we get:

(4.3.44) E ≤ 1

M

M∑
m=1

(
w(m) − w⋆

ε

)T (
q+ λ ε∇hx(m)

(
εw(m)

)
1h

x(m)(εw(m))>0

)
.

We now apply Lemma (24) with the definition of the algorithm (4.3.32), (4.3.33), and (4.3.34),
then Minkowski’s inequality:

E ≤ 1

2M

[∥∥w(0) −w⋆/ε
∥∥2
2

η
+ η

M∑
m=1

∥∥∥q+ λ ε∇hx(m)

(
εw(m)

)
1h

x(m)(εw(m))>0

∥∥∥2
2

]

≤ 1

2M

[∥∥w(0) −w⋆/ε
∥∥2
2

η
+ ηM ∥q∥22 + η λ2 ε2

M∑
m=1

∥∥∥∇hx(m)

(
εw(m)

)∥∥∥2
2

]
.

We now determine upper bounds for each term.
Distance to w(0).: Since w(0) = (wmin, wmin . . . wmin) and w⋆/ε ≥ (wmin, wmin . . . wmin),

using Lemma (23),

(4.3.45)
∥∥∥w(0) −w⋆/ε

∥∥∥
2
≤ ∥w

⋆∥
ε
≤

m5/2 d ∥θ∥∞
ε

.

Subgradient norm.: By definition of hx,

(4.3.46) ∇hx(m)

(
εw(m)

)
= −

 x
(m)
1[

εw
(m)
1

]2 , x
(m)
2[

εw
(m)
2

]2 . . .
x
(m)
d[

εw
(m)
d

]2
 .



4.3. AOSSB AND GLPG 79

Therefore, the norm of the gradient is:∥∥∥∇hx(m)

(
εw(m)

)∥∥∥2
2
≤

d∑
i=1

x
(m)
i[

εw
(m)
i

]4
≤ d

ε4 w4
min

=
dm8 ∥θ∥8∞

ε4
.

The error bound now becomes:

(4.3.47) E ≤ 1

2M

[
m5 d2 ∥θ∥2∞

ε2 η
+ ηM

(
∥q∥22 +

λ2 dm8 ∥θ∥8∞
ε2

)]
.

The value of η that minimises the error equalises the two terms:

(4.3.48) η2 =
m5 d2 ∥θ∥2∞

ε2 M
(
∥q∥22 +

λ2 dm8 ∥θ∥8
∞

ε2

) .
With this value of the step size, the error bound becomes:

(4.3.49) E ≤
m5 d2 ∥θ∥2∞

ε2 ηM
.

We now set M so that E ≤ δ1:

(4.3.50) M =

⌈
m5 d2 ∥θ∥2∞

δ21 ε
2

(
∥q∥22 +

λ2 dm8 ∥θ∥8∞
ε2

)⌉
.

As E ≤ δ1 with this value of M , the constraint violation can be bounded as follows:

(4.3.51) E = qT w − qT w⋆

ε
+ λ max

x∈X

{
[hx(w)]

+
}
≤ δ1,

max
x∈X

{
[hx(w)]

+
}
≤

δ1 − qT w + qT w⋆

ε

λ

≤
δ1 +m2 d ∥θ∥∞

λ
, by Lemma (22).

To ensure that the constraint violation is bounded by δ2, i.e. so that

(4.3.52) max
x∈X

{
[hx(w)]

+
}
≤ δ2,

the parameter λ must take the following value:

(4.3.53) λ =
δ1 +m2 d ∥θ∥∞

δ2
.

The final result is defined as w′ = (1 + δ2) w in Proposition (25). Since, for all x ∈ X , the
constraint violation of w is bounded as:

(4.3.54)
∑
i∈I

xi

wi
≤ ∆2

x + δ2,



4.3. AOSSB AND GLPG 80

the constraint violation of w′ must be:

(4.3.55)
∑
i∈I

xi

w′
i

≤ ∆2
x + δ2
1 + δ2

= ∆2
x

∆−2
x + δ2
1 + δ2

≤ ∆2
x,

using the fact that ∆2
x ≥ 1 by Assumption (18). Hence, maxx∈X

{
[hx(w

′)]
+
}
= 0, indicating that

w′ is feasible for all constraints.
The last step is to check the optimality gap of w′. For the average iterate w, we have:

(4.3.56) qT w − qT w⋆

ε
≤ qT w − qT w⋆

ε
+ λ max

x∈X

{
[hx(w)]

+
}

︸ ︷︷ ︸
≥0

≤ δ1.

This implies that, for the returned solution w′,

qT w′ − qT w⋆

ε
≤ (1 + δ2) δ1 + δ2

qT w⋆

ε

≤ (1 + δ2) δ1 +
δ2 m

2 d ∥θ∥∞
ε

=
δ

2
+

δ

2
= δ.

4.3.6. Convex combination of vertices. The subgradient method generates a solution w⋆ ∈
Rd

+ that is close to the true optimum to (4.3.10). The last step of GLPG is to retrieve an optimum
solution α⋆ ∈ R|X |

+ to the original problem (4.1.1). We claim that we can do so with a computational
complexity bounded by a polynomial in d, even though α⋆ has |X | ∈ O

(
2d
)

components. Indeed,
there may be an infinite number of α⋆ corresponding to the same w⋆ solution. All these solutions
have the same objective value, by construction of the reformulation, and we choose an α⋆ with
most of its entries being zero.

The two sets of variables are related by (Proposition 20):

(4.3.57) w⋆ =
∑
x∈X

η⋆x x.

To recover the initial variables α, we must decompose them into a conical combination of points
within X : the weights of this convex combination are the values for α. As an application of
Carathéodory’s theorem [163], there is a decomposition that uses at most d+ 1 points.

A constructive proof of Carathéodory’s theorem provides a polynomial-time algorithm to provide
this decomposition [164]. In our specific case, as we only deal with bounded polytopes, the al-
gorithm can be largely simplified. The technique of [164] is summarised in Algorithm (18). Its
complexity is bounded by a polynomial in d, δ−1, and ∥θ∥∞.

A common variant of this problem is the approximate Carathéodory problem, where fewer than
d + 1 points should be found; the decomposition is therefore no more ensured to be exact in all
cases, and the maximum distance between the approximate decomposition and the original point
is related to the number of points [165]. Such a technique could improve the practical run time of
our algorithm (in practice, this parts often bottlenecks the performance of GLPG), at the cost of
an additional approximation.



4.5. NUMERICAL RESULTS 81

4.4. Exact computation of Graves-Lai bound for combinatorial bandits

A completely different approach to solving (4.1.1) is to use common tools from the operational-
research practitioner on top of existing solver technology like CPLEX [142], Gurobi [143], Mosek [144],
Parajito [145], SCIP [146], or Xpress [147].

We start from the reformulation of Proposition 20. Instead of instantiating the formulation
with the exponential number of constraints (which would require first to enumerate all solutions
of X ), we use traditional constraint generation [166, 167, 168, 169]. This technique has been in
wide use for decades and yielded great performance, albeit without any complexity guarantee.

The algorithm works as follows. It first starts with a relaxed problem, without any of the
complicating constraints:

(4.4.1)

min qT w
s.t. Mw = 0

wi ≥ wmin ∀i ∈ I
wi ≥ 0 ∀i ∈ {1, 2 . . . d} .

An off-the-shelf solver is used to find the optimum w(0) for this optimisation program, called the
master program. The solution is not ensured to be feasible. A separation procedure finds a decision
x ∈ X to add into the master program. It amounts to finding the constraint that is most violated
with the solution w(0):

(4.4.2) x(0) ∈ argmax
x∈X

{∑
i∈I

xi

w
(0)
i

−∆2
x

}
.

This separation is performed in the same way as GLPG checks whether there is a decision x ∈ X
such that hx(w) < 0 (Section (4.3.5)). Once this solution is found, it is added into the master
program:

(4.4.3)

min qT w
s.t. Mw = 0∑

i∈I
x
(0)
i

wi
≤ ∆2

x(0)

wi ≥ wmin ∀i ∈ I
wi ≥ 0 ∀i ∈ {1, 2 . . . d} .

This program can then be solved to optimality, before the separation procedure is called again. On
the contrary, if the objective function of the separation problem is negative, no new constraint must
be added, and the optimum solution has been found. Otherwise, the new constraint is added into
the master program, and the algorithm loops.

Whereas GLPG (Section (4.3)) starts from a feasible solution and works toward optimality, this
exact algorithm does the reverse: it starts with an initially infeasible solution, and progressively
reaches feasibility.

4.5. Numerical results

We evaluate the performance of GLPG through numerical experiments, and compare the ob-
jective value at each iteration with the exact value. In nonsmooth optimisation, bundle methods
converge faster than subgradient methods [170], notably due to the implicitly adaptive choice of
step length; we also include a bundle-based implementation of GLPG where the linear constraints
are implemented in the proximal step. The exact Graves-Lai bound is obtained by the technique
described in Section (4.4) and using CPLEX as MISOCP solver [142].



4.5. NUMERICAL RESULTS 82

The Julia [37] implementations of the algorithms as well as the code to run the experiments
are made available online1.

4.5.1. Experimental setting. We run experiments on four different combinatorial sets, for
various problem sizes (indicated by d). All rewards follow a normal distribution with a 1/2 variance
and an integer average.

• For m-sets, we choose m = ⌊d/3⌋. Regarding the rewards, θi = 1 for i ≤ d/2 and θi = 2
for i > d/2. Any optimum solution takes ⌊d/3⌋ elements among the ⌊d/2⌋ first ones.

• For simple paths, we consider the graph G = (V,E) a complete directed acyclic graph:
(i, j) ∈ E if and only if i < j. The source is 1 and the destination is |V |. The rewards are
defined as θ(i,j) = 1 for (i, j) ̸= (1, |V |) and θ(1,|V |) = 2. We have d = |V | (|V | − 1) /2 and
m = |V | − 1. The optimum path is {(i, i+ 1) ,∀i ∈ {1, 2 . . . |V | − 1}}.
• For spanning trees, we consider G = (V,E) a complete undirected graph. The rewards

are set so that θ(i,j) = 0.4 for all edges (i, j) ∈ E with i ̸= 1 and θ(1,j) = 0.55 for each
vertex j ∈ V \ {1}. We have d = |V |(|V | − 1)/2 and m = |V | − 1. The optimum decision
is a star network centred on 1, i.e. {(1, j) | j ∈ V \ {1}}.
• For matchings, we consider a complete bipartite graph G = (V1, V2, E) with |V1| = |V2|.

Regarding the rewards, θ(i,j) = 1 for all edges (i, j) ∈ E where i ̸= j and θ(i,i) = 2 for
each vertex i ∈ V . We have d = |V1| |V2| and m = |V1| = |V2|. The optimum decision is
x⋆ = {(i, j) | i ∈ V1, j ∈ V2, i = j}.

4.5.2. Convergence of GLPG. First, we study the convergence of GLPG, i.e. the value of
the objective function with the iterations. The results are shown in Figure (4.5.1). The standard
GLPG has a chaotic behaviour, with the objective function not decreasing monotonically at each
iteration, which is due to the subgradient method: it is not a descent method, as following a
subgradient never ensures that the objective function decreases. On the other hand, the bundle
method never sees an increase of the objective function, although it may stagnate for a few iterations,
thanks to its alternation of long and short steps.

Both methods converge to the true value of C(θ), but the bundle-based implementation of
GLPG needs fewer iterations to do so. Although, for the matchings (Figure (4.5.1)b), the underlying
budgeted-linear-maximisation solver has an approximation ratio of 1/2, both methods reach a
value that is very close to the true optimum, closer that the maximum theoretical difference: both
techniques reach a value 0.34 higher than the true value, i.e. 5% of the true value.

4.5.3. Scaling of C(θ) with dimension. Thanks to our new algorithm, it is now possible
to compute the value of C(θ) in polynomial time for a large class of combinatorial semibandit
problems. In particular, this allows to determine the scaling of C(θ) when the dimension of the
problem increases. Theoretical formulae are known in some cases, like matroids (including m-sets
and spanning trees) [171], but not for more complex problems like simple paths and bipartite
matchings.

We can now compute the value of C(θ) for simple paths and bipartite matchings, as shown in
Figure (4.5.2). We use the same parameters for θ as before, which implies that ∆min linearly scales
with the dimension.

1CombinatorialBandits.jl

https://github.com/dourouc05/CombinatorialBandits.jl


4.5. NUMERICAL RESULTS 83

0 2 4 6 8 10 12 14 16

Subgradient-descent iteration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
C

(
)

m-sets

GLPG
GLPG with a bundle method
True value of C( )

(a) m-sets, d = 2.

0 10 20 30 40 50 60 70

Subgradient-descent iteration

0

5

10

15

20

25

C
(

)

bipartite perfect matching

GLPG
GLPG with a bundle method
True value of C( )
-1 C( )

(b) Matchings, d = 4.

Figure 4.5.1. Convergence speed of GLPG and bundle-based GLPG.



4.5. NUMERICAL RESULTS 84

2 4 6 8 10 12 14 16 18 20

Dimension

0

10

20

30

40

50

60

70
C

(
)

m-sets

(a) m-sets.

0 5 10 15 20 25 30 35 40 45

Dimension

0

50

100

150

200

250

C
(

)

spanning tree

(b) Spanning trees.

0 20 40 60 80 100 120 140 160 180 200

Dimension

0

20

40

60

80

100

120

140

C
(

)

shortest path

(c) Paths.

0 10 20 30 40 50 60 70 80 90 100

Dimension

0

50

100

150

200

250

300

350

C
(

)

bipartite perfect matching

(d) Matchings.

Figure 4.5.2. Evolution of C(θ) with the dimension for the four studied combin-
atorial set.



APPENDIX A

Notations

Symbol Meaning
n ∈ N0 Round, time step
T ∈ N0 Time horizon, last round
k ∈ N0 Number of arms
A, |A| = k Set of arms, action space
ai ∈ A ith arm

r⋆ ∈ [0, 1] Optimum reward for one round
ri ∈ [0, 1] Average reward of the ith arm

r̂i(n) ∈ [0, 1] Estimated reward of the ith arm at
round n

x(n) ∈ A Arm played at round n
Ti(n) ∈ N Number of times the ith arm has been

played up to round n
r(n) ∈ [0, 1] Reward obtained at round n
∆(n) ∈ [0, 1] Gap at round n
∆i ∈ [0, 1] Gap of the ith arm

∆min ∈ [0, 1] Minimum gap for the bandit problem
∆max ∈ [0, 1] Maximum gap for the bandit problem
R(n) ∈ [0, n] Regret up to round n

Table 1. Notations for classical bandits.

85



86

Symbol Meaning
C Set of contexts

ci ∈ C ith context (in bold if C is a vector
space)

c(n) Context at round n (in bold if C is a
vector space)

r⋆c ∈ [0, 1] Optimum reward for one round in
context c ∈ C

ri,c ∈ [0, 1] Average reward of the ith arm in
context c ∈ C

r̂i,c(n) ∈ [0, 1] Estimated reward of the ith arm at
round n in context c ∈ C

xc(n)(n) ∈ A Arm played at round n with the
context c(n) ∈ C

Ti,c(n) ∈ N Number of times the ith arm has been
played up to round n in context c ∈ C

∆i,c ∈ [0, 1] Gap of the ith arm in context c ∈ C

Table 2. Notations for contextual bandits.



APPENDIX B

Pseudocode for Algorithms

Algorithm 1 UCB-1 [53].

1: procedure UCB1
2: θ̂i(1) = 0 for i ∈ {1, 2 . . . k}
3: Ti(1) = 0 for i ∈ {1, 2 . . . k}
4: for n = 1 to k do
5: r(n) = reward when playing n

6: θ̂n(n+ 1) = r(n)
7: Tn(n+ 1) = 1
8: end for
9: for n = k + 1 to T do

10: x(n) ∈ argmax
i∈{1,2...k}

θ̂i +
√

2 logn
Ti(n)

11: r(n) = reward when playing x(n)

12: θ̂x(n)(n+ 1) = Ti(n)+1
Ti(n)

θ̂i(n) +
r(n)

Ti(n)+1

13: Tx(n)(n+ 1) = Tx(n)(n) + 1

14: θ̂i(n+ 1) = θ̂i(n) for i ∈ {1, 2 . . . k} \ {x (n)}
15: Ti(n+ 1) = Ti(n) for i ∈ {1, 2 . . . k} \ {x (n)}
16: end for
17: end procedure

87



88

Algorithm 2 KL-UCB [55].

1: procedure KL-UCB
2: θ̂i(1) = 0 for i ∈ {1, 2 . . . k}
3: Ti(1) = 0 for i ∈ {1, 2 . . . k}
4: for n = 1 to k do
5: r(n) = reward when playing n

6: θ̂n(n+ 1) = r(n) + 1
7: Tn(n+ 1) = 1
8: end for
9: for n = k + 1 to T do

10: x(n) ∈ argmax
i∈{1,2...k}

{
qi ∈ Θ

∣∣∣Ti(n) kl
[
θ̂i(n) , qi

]
≤ log n

}
11: r(n) = reward when playing x(n)

12: θ̂x(n)(n+ 1) = Ti(n)+1
Ti(n)

θ̂i(n) +
r(n)

Ti(n)+1

13: Tx(n)(n+ 1) = Tx(n)(n) + 1

14: θ̂i(n+ 1) = θ̂i(n) for i ∈ {1, 2 . . . k} \ {x (n)}
15: Ti(n+ 1) = Ti(n) for i ∈ {1, 2 . . . k} \ {x (n)}
16: end for
17: end procedure

Algorithm 3 Thompson sampling for Bernoulli rewards with beta prior [48].

1: procedure ThompsonSampling
2: θ̂+i (1) = 1 for i ∈ {1, 2 . . . k}
3: θ̂−i (1) = 1 for i ∈ {1, 2 . . . k}
4: for n = 1 to T do
5: Draw ti(n) ∼ β

(
θ̂+i (n) , θ̂

−
i (n)

)
6: x(n) ∈ argmax

i∈{1,2...k}
tk(n)

7: r(n) = reward when playing x(n)

8: θ̂+x(n)(n+ 1) = θ̂+x(n)(n) + r(n)

9: θ̂−x(n)(n+ 1) = θ̂−x(n)(n) + [1− r(n)]

10: θ̂+i (n+ 1) = θ̂+i (n) for i ∈ {1, 2 . . . k} \ {x (n)}
11: θ̂−i (n+ 1) = θ̂−i (n) for i ∈ {1, 2 . . . k} \ {x (n)}
12: end for
13: end procedure



89

Algorithm 4 EXP3 [50].

1: procedure EXP3(η > 0)
2: wi(1) = 1 for i ∈ {1, 2 . . . k}
3: for n = 1 to T do
4: pi(n) = (1− η) wi(n)∑

aj∈A wj(n)
+ η

k for i ∈ {1, 2 . . . k}
5: Draw x(n) ∼ p(n)
6: r(n) = reward when playing x(n)

7: wx(n)(n+ 1) = wx(n)(n)× exp
(
η r(n)

k pi(n)

)
8: wi(n+ 1) = wi(n) for i ∈ {1, 2 . . . k} \ {x (n)}
9: end for

10: end procedure

Algorithm 5 EXP4 [53].

1: procedure EXP4(η > 0, E)
2: pe(1) = |E|−1 for e ∈ E
3: for n = 1 to T do
4: qi(n) =

∑
e∈E pe(n) Ee,i(n) for i ∈ {1, 2 . . . k}

5: Draw x(n) ∼ p(n)
6: r(n) = reward when playing x(n)

7: r̂x(n)(n) =
r(n)

qx(n)(n)

8: r̂i(n) = 0 for i ∈ {1, 2 . . . k} \ {x (n)}
9: gi(n) =

∑
ai∈A ei(n) r̂i(n) for i ∈ {1, 2 . . . k}

10: pe(n+ 1) = pe(n)× exp(−η
∑n

t=1 gi(t)) for e ∈ E
11: end for
12: end procedure

Algorithm 6 LinUCB [72].

1: procedure LinUCB(β > 0, δ ∈ (0, 1), λ > 0)
2: for n = 1 to k do
3: r(n) = reward when playing an
4: θ̂n(n+ 1) = r(n)
5: end for
6: for n = k + 1 to T do

7: x(n) ∈ argmax
x∈A


max θ̂

T
x

s.t.
∥∥∥θ̂ − θ̂(n− 1)

∥∥∥2
2
≤ β

θ̂ ∈ Θ


8: θ̂(n) ∈ argmin

θ̂∈Rd

∑n
t=1

[
r(n)− θ̂

T
x(t)

]2
+ λ

∥∥∥θ̂∥∥∥2
2

9: end for
10: end procedure



90

Algorithm 7 OSSB [80].

1: procedure OSSB(γ > 0, ε > 0)
2: θ̂i(1) = 0 for i ∈ {1, 2 . . . k}
3: Ti(1) = 0 for i ∈ {1, 2 . . . k}
4: S(1) = 0
5: for n = 1 to T do
6: η(n) is the solution to the Graves-Lai optimisation program
7: if ηx(n) (1 + γ) log n ≤ Tx(n) , ∀x ∈ A then
8: x(n) ∈ argmax

x∈A
xT θ̂(n)

9: S(n+ 1) = S(n)
10: else
11: S(n+ 1) = S(n) + 1
12: x(n) ∈ argmin

x∈A
Tx(n)

13: if Tx(n)(n) ≤ ε S(n) then
14: x(n) = x(n)
15: else
16: x(n) ∈ argmin

x∈A
Tx(n)

/
ηx(n)

17: end if
18: end if
19: y(n) = play x(n)

20: θ̂x(n)(n+ 1) = Ti(n)+1
Ti(n)

θ̂i(n) +
r(n)

Ti(n)+1

21: Tx(n)(n+ 1) = Tx(n)(n) + 1

22: θ̂i(n+ 1) = θ̂i(n) for i ∈ {1, 2 . . . k} \ {x (n)}
23: Ti(n+ 1) = Ti(n) for i ∈ {1, 2 . . . k} \ {x (n)}
24: end for
25: end procedure

Algorithm 8 Combinatorial Thompson sampling for Bernoulli rewards with beta prior [105].

1: procedure CombinatorialThompsonSampling(X )
2: θ̂+i (1) = 1 for i ∈ {1, 2 . . . d}
3: θ̂−i (1) = 1 for i ∈ {1, 2 . . . d}
4: for n = 1 to T do
5: Draw ti(n) ∼ β

(
θ̂+i (n) , θ̂

∗
i (n)

)
6: x(n) ∈ argmax

x∈X
xT t(n)

7: r(n) ,y(n) = total reward and subarm rewards when playing x(n)

8: θ̂+i (n+ 1) = θ̂+i (n) + r(n) yi(n) for i ∈ {1, 2 . . . d}
9: θ̂−i (n+ 1) = θ̂+i (n) + [1− r(n)] yi(n) for i ∈ {1, 2 . . . d}

10: end for
11: end procedure



91

Algorithm 9 CUCB [107].

1: procedure CUCB(X )
2: θ̂i(1) = 0 for i ∈ {1, 2 . . . d}
3: while there is a subarm that has not yet been pulled do
4: x(n) is an arm with at least one subarm that has not yet been pulled
5: r(n) ,y(n) = total reward and subarm rewards when playing x(n)

6: θ̂i(n) =
1

Ti(n)

∑n
t=1 1xi(n)=1r(n)

7: end while
8: for n to T do
9: Tx(n) =

∑n
t=1 1xi(n)=1

10: wi(n) = θ̂i +
√
1.5T−1

x (n) log n for i ∈ {1, 2 . . . d}
11: x(n) ∈ argmax

x∈X
xT w(n)

12: r(n) ,y(n) = total reward and subarm rewards when playing x(n)

13: θ̂i(n) =
1

Ti(n)

∑n
t=1 1xi(n)=1r(n)

14: end for
15: end procedure

Algorithm 10 ESCB [109].

1: procedure ESCB(X )
2: θ̂i(1) = 0 for i ∈ {1, 2 . . . d}
3: while there is a subarm that has not yet been pulled do
4: x(n) is an arm with at least one subarm that has not yet been pulled
5: r(n) ,y(n) = total reward and subarm rewards when playing x(n)

6: θ̂i(n) =
1

Ti(n)

∑n
t=1 1xi(n)=1r(n)

7: end while
8: for n = 1 to T do
9: f(n) = log n+ 4m log log n

10: x(n) ∈ argmax
x∈X

xT θ̂(n) +
√

f(n)
2

∑d
i=1

xi

Ti(n)

11: r(n) ,y(n) = total reward and subarm rewards when playing x(n)

12: θ̂i(n) =
1

Ti(n)

∑n
t=1 1xi(n)=1r(n)

13: end for
14: end procedure



92

Algorithm 11 OLS-UCB [110].

1: procedure OLS-UCB(X , Γ ∈ Sd
+, λ > 0)

2: θ̂i(1) = 0 for i ∈ {1, 2 . . . d}
3: while there is a subarm that has not yet been pulled do
4: x(n) is an arm with at least one subarm that has not yet been pulled
5: r(n) ,y(n) = total reward and subarm rewards when playing x(n)

6: θ̂i(n) =
1

Ti(n)

∑n
t=1 1xi(n)=1r(n)

7: end while
8: for n = 1 to T do
9: f(n) = log n+ (m+ 2) log log n+m/2 log

(
1 + e

λ

)
10: E(n) = D̂−1(n)

[
λΓD̂(n) +

∑n−1
t=1 xT (t) Γx(t)

]
D̂−1(n)

11: x(n) ∈ argmax
x∈X

xT θ̂(n) +
√

2 f(n) xT E(n) x

12: r(n) ,y(n) = total reward and subarm rewards when playing x(n)

13: θ̂i(n) =
1

Ti(n)

∑n
t=1 1xi(n)=1r(n)

14: end for
15: end procedure

Algorithm 12 Estimation of ∆min.

1: procedure Estimate-∆min(X , θ̂(n))
2: x⋆(n) ∈ argmax

x∈X
xT θ̂(n)

3: r̂⋆(n) = x⋆T (n) θ̂(n)
4: for i = 1 to d do
5: x⋆

i (n) ∈ argmax
x∈X ,
xi ̸=x⋆

i

xT θ̂(n)

6: r̂⋆i (n) = x⋆T
i (n) θ̂(n)

7: end for
8: return min i∈{1,2...d}

r⋆(n)̸=r̂⋆i(n)

r⋆(n)− r̂⋆i (n)

9: end procedure



93

Algorithm 13 Budgeted m-set problem.

1: procedure Budgeted-m-set(b ∈ Rd, a ∈ Nd)
2: L = empty array of size (mmaxi ai + 1,m, d)
3: S = empty array of size (mmaxi ai + 1,m, d)
4: S⋆ = empty array of size (mmaxi ai + 1)
5: for s = 1 to mmaxi ai do
6: for ℓ = 0 to m do
7: for i = d down to 0 do
8: if i = d then
9: if s = 0 then

10: L[s, ℓ, i] = 0
11: S[s, ℓ, i] = ∅
12: else
13: L[s, ℓ, i] = −∞
14: S[s, ℓ, i] = ∄
15: end if
16: else
17: if ℓ = 0 then
18: L[s, ℓ, i] = L[s, ℓ, i+ 1]
19: S[s, ℓ, i] = S[s, ℓ, i+ 1]
20: else
21: L[s, ℓ, i] = max{bi + L[max(s− ai, 0), ℓ, i+ 1], L[s, ℓ, i+ 1]}
22: if L[s, ℓ, i] =, L[s, ℓ, i+ 1] then
23: S[s, ℓ, i] = S[s, ℓ, i+ 1]
24: else
25: S[s, ℓ, i] = S[s, ℓ, i+ 1] ∪ {i}
26: end if
27: end if
28: end if
29: end for
30: end for
31: S⋆[s] = S[s,m, 0]
32: end for
33: return S⋆

34: end procedure



94

Algorithm 14 Budgeted simple-path problem.

1: procedure Budgeted-u-v-path(G = (V,E), u ∈ V , v ∈ V , b ∈ Rd, a ∈ Nd)
2: L = empty array of size (mmaxi ai + 1, |V |)
3: S = empty array of size (mmaxi ai + 1, |V |)
4: S⋆ = empty array of size (dmaxi ai + 1)
5: for s = 1 to dmaxi ai do
6: for w ∈ V do
7: if s = 0 then
8: L[s, w], S[s, w] = Dijkstra(G, b, u, w)
9: else

10: x⋆ ∈ argmaxx:(w,x)∈E{b(w,x) + L[x,max(s− a(w,x), 0)]}
11: L[s, w] = b(w,x⋆) + L[x⋆,max(s− a(w,x⋆), 0)]
12: S[s, w] = (w, x) ∪ S[x⋆,max(s− a(w,x⋆), 0)]
13: end if
14: end for
15: S⋆[s] = S[s, t]
16: end for
17: return S⋆

18: end procedure

Algorithm 15 Budgeted spanning-tree problem.

1: procedure Budgeted-spanning-tree(G = (V,E), b ∈ Rd, a ∈ Nd, s ∈ N)
2: x = ∅
3: for all unordered pairs (e1, e2) of distinct edges of E do
4: E′ = {e ∈ E | be ≤ min{be1 , be2}}
5: G′ = (V,E′)
6: x⋆, λ⋆ = Meggido(Greedy, G′,a+ λb)
7: ϵ = arbitrary small value
8: x+ = Greedy(G′,a+ (λ⋆ + ϵ)b)
9: x− = Greedy(G′,a+ (λ⋆ − ϵ)b)

10: while |x+ ⊕ x−| > 1 do
11: Find e, e′ such that x+

e = x−
e′ = 1 and x+

e′ = x−
e = 0

12: x = x+\ {e} ∪ {e′}
13: if aT x̃ ≥ s then
14: x+ = x̃
15: else
16: x− = x̃
17: end if
18: end while
19: if x = ∅ or bT x̃ > bTx then
20: x← x+

21: end if
22: end for
23: return x
24: end procedure



95

Algorithm 16 Budgeted bipartite-matching problem.

1: procedure Budgeted-bipartite-matching(G = (V,E), b ∈ Rd, a ∈ Nd, s ∈ N)
2: x = ∅
3: for all unordered 4-tuples (e1, e2, e3, e4) of distinct edges of E do
4: E′ = {e ∈ E | be ≤ min{be1 , be2 , be3 , be4}}
5: G′ = (V,E′)
6: x⋆, λ⋆ = Meggido(Hungarian, G′,a+ λb)
7: ϵ = arbitrary small value
8: x+ = Hungarian(G′,a+ (λ⋆ + ϵ)b)
9: x− = Hungarian(G′,a+ (λ⋆ − ϵ)b)

10: while |x+ ⊕ x−| > 2 do
11: x′ = x+ ⊕ x−

12: x′′ = one path or one cycle from x′

13: x̃ = x− ⊕ x′′

14: if aT x̃ ≥ s then
15: x+ = x̃
16: else
17: x− = x̃
18: end if
19: end while
20: if x = ∅ or bTx+ > bTx then
21: x← x+

22: end if
23: end for
24: return x
25: end procedure



96

Algorithm 17 Subgradient method applied on the reformulation of the Graves-Lai problem.

1: procedure GLPG(θ ∈ Nd, δ > 0, 0 < ε ≤ 1, A and b that represent the convex hull of X )
2: Compute M such that Mw = Aw − bT Aw

∥b∥2
2

b

3: q =
(
θT x⋆

)
bT A
∥b∥2 − θ

4: wmin = 1
m2 ∥θ∥2

∞

5: δ2 = δ ε
m2 d ∥θ∥∞

6: δ1 = δ
2+2 δ2

7: λ =
δ1+m2 d ∥θ∥∞

δ2

8: q1 = ∥q∥22 +
λ2 dm8 ∥θ∥8

∞
ε2

9: M =
⌈
q1

m5 d2 ∥θ∥2
∞

δ21 ε2

⌉
10: η =

√
m5 d2 ∥θ∥2

∞
ε2 T q1

w(0) = (wmin, wmin . . . wmin)

11: for m ∈ {0, 1 . . .M} do
12: Find x(m) such that maxx∈X hx

(
w(m)

)
≤ hx(m)

(
εw(m)

)
13: g(m) = q+

[
λ ε∇hx(m)

(
εw(m)

)]
1h

x(m)(εw(m))>0

14: w(m+1) = ΠM
{
w(m) + η g(m)

}
15: end for
16: w = 1

M

∑M
m=1 w

(m)

17: w′ = (1 + δ2) w
18: return Algorithm ?? applied on w′ and the polytope described by A and b
19: end procedure



97

Algorithm 18 Convex combination of vertices [164].

1: procedure GLPG(A polytope X =
{
x ∈ Rd |Ax ≤ b

}
with A ∈ Rc×d and b ∈ Rc, x ∈ X)

2: K = 1
3: x1 = x
4: δ1 = 1
5: Find the r1 tight inequalities at x1, the corresponding submatrix G1 ∈ Rr1×d of A and the

corresponding vector g1 ∈ Rr1 of b such that G1 x1 = g1

6: Initialise the vector of scalars δ
7: Initialise the vector of vertices p
8: while GK does not have rank d do
9: i = 1

10: GK,0 = GK

11: gK,0 = gK

12: while GK,i does not have rank d do
13: Find any dK,i ∈ Rd such that GK,i dK,i = 0 and dK,i ̸= 0
14: yK,i = xK − dK,i

15: zK,i = xK + dK,i

16: γK,i,1 =
max α
s.t. yK,i + α (yK,i − zK,i) ∈ X

17: yK,i = yK,i + γK,i,1 (yK,i − zK,i)
18: Add the newly tight constraints at yK,i to form GK,i and gK,i from GK,i−1 and

gK,i−1

19: yK,i+1 = yK,i

20: i = i+ 1
21: end while
22: γK,2 =

max α
s.t. xK + α (xK − yK) ∈ X

23: δK =
γK,2

1+γK,2
δK

24: pK = yK

25: δK+1 =
(
1− γK,2

1+γK,2

)
δK

26: xK+1 = zK
27: K = K + 1
28: Find the rK tight inequalities at xK , the corresponding submatrix GK ∈ RrK×d of A

and the corresponding vector gK ∈ RrK of b such that GK xK = gK

29: end while
30: δK = δK
31: pk = xK

32: return δ and p
33: end procedure



Chapitre C

Résumé de la thèse

La prise de décision séquentielle est une composante essentielle de nombreuses applications,
de la gestion des réseaux informatiques aux annonces en ligne. L’outil principal est l’apprentissage
par renforcement : un agent prend une séquence de décisions afin d’atteindre son objectif, avec des
mesures typiquement bruitées de son environnement. Par exemple, un agent peut contrôler une
voiture autonome ; l’environnement est la ville dans laquelle la voiture se déplace. Les problèmes de
bandits forment une classe d’apprentissage de renforcement pour laquelle on peut démontrer de très
forts résultats théoriques. Les algorithmes de bandits se concentrent sur le dilemme exploration-
exploitation : pour avoir une bonne performance, l’agent doit avoir une connaissance approfondie
de son environnement (exploration) ; cependant, il doit aussi jouer des actions qui le rapprochent
de son but (exploitation).

C.1. Algorithmes de bandit combinatoires

Dans cette thèse, nous nous concentrons sur les bandits combinatoires, qui sont des bandits
dont les décisions sont très structurées (une structure « combinatoire »). Il s’agit notamment des
cas où l’agent détermine un chemin à suivre (sur une route, dans un réseau informatique, etc.) ou
des publicités à afficher sur un site Web. De telles situations partagent leur complexité algorith-
mique : alors qu’il est souvent facile de déterminer la décision optimale lorsque les paramètres sont
connus (comme le temps pour traverser une route ou le profit généré par l’affichage d’une publicité
à un endroit donné), la variante bandit (lorsque les paramètres doivent être déterminés par des
interactions avec l’environnement) est bien plus complexe.

Les algorithmes de bandit qui exploitent cette structure combinatoire se regroupent en deux
catégories principales (en ne considérant que ceux connus avant cette thèse) :

• ceux qui résolvent un seul problème d’optimisation combinatoire linéaire, ce qui leur
permet notamment d’atteindre une complexité algorithmique polynomiale pour une sé-
rie de problèmes d’intérêt. Par exemple, l’échantillonnage de Thompson [48, 105] ou
CUCB [107, 108] ;

• ceux qui résolvent un problème d’optimisation combinatoire non linéaire, ce qui leur per-
met d’atteindre un bien meilleur regret, au prix d’une complexité algorithmique qui n’est
plus polynomiale, sauf dans de très rares cas particuliers peu intéressants en pratique. Par
exemple, ESCB [109], OLS-UCB [110] ou OSSB [80, 94].

C.2. Contributions

Nous proposons deux nouveaux algorithmes pour aborder ces problèmes de bandit combina-
toire par des techniques d’optimisation mathématique. Basés sur des hypothèses faibles (l’existence
d’un algorithme efficace d’optimisation linéaire budgétée), ils présentent une complexité temporelle

98



C.2. CONTRIBUTIONS 99

polynomiale, tout en étant performants par rapport aux algorithmes de pointe pour les mêmes pro-
blèmes. Ils présentent également d’excellentes propriétés statistiques, ce qui signifie qu’ils trouvent
un équilibre entre exploration et exploitation proche de l’optimum théorique. Les travaux précé-
dents sur les bandits combinatoires ont dû faire un choix entre le temps de calcul et la performance
statistique ; nos algorithmes montrent que ce dilemme n’a pas lieu d’être.

C.2.1. Décomposition d’un problème d’optimisation combinatoire non linéaire. Plus
précisément, ces deux algorithmes se basent sur une décomposition particulière du problème d’op-
timisation combinatoire non linéaire d’origine. Par exemple, ESCB nécessite la solution optimale
au problème suivant :

(C.2.1) max θ̂
T
x+
√
σT x

t.q. x ∈ X ,

où X ⊂ {0, 1}d est l’ensemble combinatoire choisi et θ̂ et σ sont des paramètres maintenus par
ESCB (2.5.14). De manière générale, ce problème d’optimisation appartient à la classe de complexité
NPH (Section 3.1.1), ce qui implique qu’il est très peu probable qu’il existe un algorithme exact
pour trouver la solution optimale en un temps polynomial en la dimension de X , d. Par conséquent,
nous ne tentons pas de trouver une solution exacte à ce problème, mais bien une solution approchée.
Notre technique de décomposition déplace le terme non linéaire de l’objectif en une contrainte de
budget minimum s :

(C.2.2)
max θ̂

T
x

t.q. x ∈ X
σT x ≥ s.

En résolvant ce nouveau problème pour une série de valeurs de s, on peut s’assurer de retrouver
une solution assez proche de l’optimum de la formulation non linéaire d’origine. Pour que cette
approche fonctionne, deux hypothèses principales doivent être vérifiées :

• résolution d’un sous-problème budgété en temps polynomial : pour ce faire, nous écrivons
un algorithme spécifique à chaque ensemble combinatoire d’intérêt. Ils sont présentés à
la Section 3.2. Certains de ces algorithmes sont exacts (ils donnent une solution dans
l’ensemble combinatoire qui respecte la contrainte de budget minimum avec la valeur
optimale de la fonction objectif), d’autres sont approchés avec un facteur d’approximation
(ils donnent une solution dans l’ensemble combinatoire qui respecte la contrainte de budget
minimum avec une valeur de la fonction objectif qui est éloignée de la valeur optimale d’un
facteur donné) ;

• limitation du nombre de valeurs de budget minimum s à tester : avec une procédure de
mise à l’échelle et d’arrondi, utilisant le même paramètre de discrétisation, nous pouvons
nous assurer que l’ensemble des valeurs possibles de σT x est discret (uniquement des
nombres entiers). La qualité de l’approximation dépend du paramètre de discrétisation de
manière additive.

C.2.2. Nouveaux algorithmes pour les bandits combinatoires. AESCB (Chapitre 3)
est une implémentation approchée d’ESCB qui utilise cette décomposition. En choisissant de ma-
nière adéquate le paramètre de discrétisation (Sections 3.1.6 et 3.4), on peut s’assurer, de manière
théorique, que la discrétisation effectuée n’aura aucun impact sur le regret de l’algorithme ; des
choix moins conservatifs améliorent cependant les temps d’exécution.



C.2. CONTRIBUTIONS 100

GLPG (Chapitre 4) est une technique de calcul pour la borne de Graves-Lai (Section 2.4.2), qui
caractérise le regret asymptotique minimum pour une grande classe de problèmes d’apprentissage
par renforcement, notamment les bandits combinatoires. Cependant, cette borne (2.4.7) s’écrit avec
une variable et une contrainte convexe par solution combinatoire de l’ensemble X , c’est-à-dire que
le programme d’optimisation a O(|X |) ⊂ O

(
2d
)

variables et O(|X |) ⊂ O
(
2d
)

contraintes.

(C.2.3)
min

∑
x∈X ηx ∆x

s.t.
∑

i∈I
xi∑

y∈X yi αy
≤ ∆2

x ∀x ∈ X
ηx ≥ 0 ∀x ∈ X

ηx indique la fraction de temps que la solution x devrait être jouée pour atteindre l’optimum
asymptotique de regret ; ∆x est le regret de cette solution. Nous proposons une reformulation non
dérivable (4.3.29) :

(C.2.4)

min qT w + λ maxx∈X

{[∑
i∈I

xi

wi
−∆2

x

]+}
s.t. Mw = 0

wi ≥ wmin ∀i ∈ I
wi ≥ 0 ∀i ∈ {1, 2 . . . d} .

La variable wi indique à quelle fréquence le bras i doit être joué, ce qui permet de n’avoir que d
variables. λ > 0 est un paramètre de pénalisation des contraintes. Cette nouvelle formulation peut
être résolue à l’aide d’une technique de projection de sous-gradient. L’évaluation de la fonction
objectif et le calcul d’un sous-gradient peuvent se faire de la même manière que pour le calcul d’une
solution pour AESCB. Lorsque l’algorithme d’optimisation budgétée n’est pas exact, les preuves de
convergence habituelles de la méthode ne s’appliquent plus ; cependant, elles peuvent être étendues
dans ce cas (Section 4.3.5). Cette reformulation ne permet pas d’obtenir directement une solution
dans les variables d’origine ; cependant, la solution en w peut être réécrite comme une combinaison
convexe de points extrêmes du polytope décrivant l’enveloppe convexe de X , c’est-à-dire en α, en
temps polynomial (Section 4.3.6).

GLPG peut ainsi être utilisé dans le cadre d’OSSB afin de fournir un algorithme de bandit
combinatoire asymptotiquement optimal, pour autant que la constante de discrétisation soit suffi-
samment faible.

C.2.3. Résultats numériques et reproductibilité. Les résultats numériques montrent
qu’AESCB donne un regret très proche de celui d’ESCB ; de plus, les temps de calcul sont compé-
titifs par rapport à l’utilisation de solveurs d’optimisation mathématique de pointe (Section 3.4).
Pour GLPG, la valeur de la borne de Graves-Lai est extrêmement proche de la valeur réelle, même
avec un algorithme d’optimisation budgétée approximé (Section 4.5).

Les algorithmes ont été implémentés en Julia [37], y compris ceux exploitant la programmation
mathématique [172, 149]. Le code correspondant est disponible en ligne :

• Kombinator.jl contient les implémentations des algorithmes d’optimisation combinatoire,
budgétée ou non ;

• NonsmoothOptim.jl se focalise sur l’optimisation non dérivable ;
• CombinatorialBandits.jl fournit une abstraction pour les bandits combinatoires, ainsi que

diverses politiques d’exploration comme l’échantillonnage de Thompson, CUCB, ESCB ou
AESCB.

https://github.com/dourouc05/Kombinator.jl
https://github.com/dourouc05/NonsmoothOptim.jl
https://github.com/dourouc05/CombinatorialBandits.jl


Bibliography

[1] D. Bertsekas and R. Gallager, Data Network, 1st ed. Englewood Cliffs, NJ: Prentice Hall, Englewood Cliffs,
NJ, 1987.

[2] J. M. Kleinberg, “Single-source unsplittable flow,” in Proceedings of 37th Conference on Foundations of Com-
puter Science. IEEE, 1996, pp. 68–77.

[3] L. Gouveia, “Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning tree problem with
hop constraints,” Computers & Operations Research, vol. 22, no. 9, pp. 959–970, 1995.

[4] W. Ben-Ameur and H. Kerivin, “Routing of uncertain traffic demands,” Optimization and Engineering, vol. 6,
no. 3, pp. 283–313, 2005.

[5] H. Räcke, “Survey on oblivious routing strategies,” in Conference on Computability in Europe. Springer, 2009,
pp. 419–429.

[6] J. Boyan and M. Littman, “Packet routing in dynamically changing networks: A reinforcement learning ap-
proach,” Advances in neural information processing systems, vol. 6, pp. 671–678, 1993.

[7] N. Tao, J. Baxter, and L. Weaver, “A multi-agent, policy-gradient approach to network routing,” in In: Proc.
of the 18th Int. Conf. on Machine Learning. Citeseer, 2001.

[8] G. Stampa, M. Arias, D. Sánchez-Charles, V. Muntés-Mulero, and A. Cabellos, “A deep-reinforcement learning
approach for software-defined networking routing optimization,” arXiv preprint arXiv:1709.07080, 2017.

[9] S. Wassermann, M. Seufert, P. Casas, L. Gang, and K. Li, “ViCrypt to the Rescue: Real-time, Machine-
Learning-driven Video-QoE Monitoring for Encrypted Streaming Traffic,” IEEE Transactions on Network and
Service Management, 2020.

[10] A. Rashelbach, O. Rottenstreich, and M. Silberstein, “A Computational Approach to Packet Classification,”
in SIGCOMM ’20: Proceedings of the Annual conference of the ACM Special Interest Group on Data Com-
munication on the applications, technologies, architectures, and protocols for computer communication, New
York, NY, 2020.

[11] A. D. Lopez, A. P. Mohan, and S. Nair, “Network Traffic Behavioral Analytics for Detection of DDoS Attacks,”
SMU Data Science Review, vol. 2, no. 1, p. 14, 2019.

[12] K. Li, H. Zheng, and J. Wu, “Migration-based virtual machine placement in cloud systems,” in 2013 IEEE 2nd
International Conference on Cloud Networking (CloudNet). IEEE, 2013, pp. 83–90.

[13] D. Castro-Silva and E. Gourdin, “A study on load-balanced variants of the bin packing problem,” Discrete
Applied Mathematics, vol. 264, pp. 4–14, 2019.

[14] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh, “Learning scheduling algorithms
for data processing clusters,” in Proceedings of the ACM Special Interest Group on Data Communication, 2019,
pp. 270–288.

[15] P. Amani, S. Bastani, and B. Landfeldt, “Towards optimal content replication and request routing in content
delivery networks,” in 2015 IEEE International Conference on Communications (ICC). IEEE, 2015, pp.
5733–5739.

[16] S. O. Somuyiwa, A. György, and D. Gündüz, “A reinforcement-learning approach to proactive caching in
wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 6, pp. 1331–1344, 2018.

[17] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep reinforcement learning perspective on
internet congestion control,” in International Conference on Machine Learning, 2019, pp. 3050–3059.

[18] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern: a pragmatic learning-based congestion
control for the internet,” in Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for computer communication,
2020, pp. 632–647.

101



102

[19] M. Masson, Z. Altman, and E. Altman, “Multi-User collaborative scheduling in 5G massive MIMO heterogen-
eous networks,” in IFIP, 2020.

[20] Y. Li, Y. Wen, D. Tao, and K. Guan, “Transforming cooling optimization for green data center via deep
reinforcement learning,” IEEE transactions on cybernetics, vol. 50, no. 5, pp. 2002–2013, 2019.

[21] Y. Carlinet and N. Perrot, “Energy-efficient load balancing in a SDN-based Data-Center network,” in 2016
17th international telecommunications network strategy and planning symposium (Networks). IEEE, 2016,
pp. 138–143.

[22] K. Pilarska, B. Liau, and N. Perrot, “Estimates of the economic impact of energy savings in the E2E chain for
Video On Demand service,” in 2016 17th International Telecommunications Network Strategy and Planning
Symposium (Networks). IEEE, 2016, pp. 75–80.

[23] D. Sanvito, I. Filippini, A. Capone, S. Paris, and J. Leguay, “Clustered robust routing for traffic engineering
in software-defined networks,” Computer Communications, vol. 144, pp. 175–187, 2019.

[24] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov, C. L. Lim, and R. Soulé, “Semi-oblivious
traffic engineering: The road not taken,” in 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), 2018, pp. 157–170.

[25] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A survey,” IEEE Internet of
Things Journal, vol. 5, no. 1, pp. 450–465, 2017.

[26] M. Brehob, S. Wagner, E. Torng, and R. Enbody, “Optimal replacement is NP-hard for nonstandard caches,”
IEEE Transactions on computers, vol. 53, no. 1, pp. 73–76, 2004.

[27] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement learning for combinatorial optimization:
A survey,” arXiv preprint arXiv:2003.03600, 2020.

[28] Y. Bengio, A. Lodi, and A. Prouvost, “Machine Learning for Combinatorial Optimization: a Methodological
Tour d’Horizon,” arXiv preprint arXiv:1811.06128, 2018.

[29] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial optimization with reinforcement
learning,” arXiv preprint arXiv:1611.09940, 2016.

[30] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial optimization algorithms over
graphs,” in Advances in Neural Information Processing Systems, 2017, pp. 6348–6358.

[31] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing problems!” arXiv preprint
arXiv:1803.08475, 2018.

[32] A. Mittal, A. Dhawan, S. Manchanda, S. Medya, S. Ranu, and A. Singh, “Learning heuristics over large graphs
via deep reinforcement learning,” arXiv preprint arXiv:1903.03332, 2019.

[33] Y. Bengio, E. Frejinger, A. Lodi, R. Patel, and S. Sankaranarayanan, “A learning-based algorithm to quickly
compute good primal solutions for Stochastic Integer Programs,” in International Conference on Integration
of Constraint Programming, Artificial Intelligence, and Operations Research. Springer, 2020, pp. 99–111.

[34] N. Dupin and E.-G. Talbi, “Machine Learning-Guided Dual Heuristics and New Lower Bounds for the Refueling
and Maintenance Planning Problem of Nuclear Power Plants,” Algorithms, vol. 13, no. 8, p. 185, 2020.

[35] Q. Cappart, T. Moisan, L.-M. Rousseau, I. Prémont-Schwarz, and A. Cire, “Combining Reinforcement Learning
and Constraint Programming for Combinatorial Optimization,” arXiv preprint arXiv:2006.01610, 2020.

[36] A. Prouvost, J. Dumouchelle, L. Scavuzzo, M. Gasse, D. Chételat, and A. Lodi, “Ecole: A Gym-like Library
for Machine Learning in Combinatorial Optimization Solvers,” in Learning Meets Combinatorial Algorithms
at NeurIPS2020, 2020. [Online]. Available: https://openreview.net/forum?id=IVc9hqgibyB

[37] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A Fresh Approach to Numerical Computing,”
SIAM Review, vol. 59, no. 1, pp. 65–98, nov 2017.

[38] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
[39] H. Robbins, “Some aspects of the sequential design of experiments,” Bulletin of the American Mathematical

Society, vol. 58, no. 5, pp. 527–535, 1952.
[40] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan, “Provably efficient reinforcement learning with linear function

approximation,” in Proceedings of Thirty Third Conference on Learning Theory, ser. Proceedings of Machine
Learning Research, J. Abernethy and S. Agarwal, Eds., vol. 125. PMLR, 2020, pp. 2137–2143. [Online].
Available: http://proceedings.mlr.press/v125/jin20a.html

[41] O. Delalleau, “Deep Reinforcement Learning in Action: For Honor & Watch_Dogs 2 Case Studies,” in 1st
International Summer School on Artificial Intelligence and Games, Chania, Greece, 2018. [Online]. Available:
https://school.gameaibook.org/2018-school/

https://openreview.net/forum?id=IVc9hqgibyB
http://proceedings.mlr.press/v125/jin20a.html
https://school.gameaibook.org/2018-school/


103

[42] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, and Others, “Mastering the game of go without human knowledge,” Nature, vol. 550, no. 7676, pp.
354–359, 2017.

[43] S. Padakandla, S. Bhatnagar, and Others, “Reinforcement learning in non-stationary environments,” arXiv
preprint arXiv:1905.03970, 2019.

[44] A. Krishnamurthy, J. Langford, A. Slivkins, and C. Zhang, “Contextual Bandits with Continuous Actions:
Smoothing, Zooming, and Adapting,” Journal of Machine Learning Research, vol. 21, no. 137, pp. 1–45, 2020.

[45] M. Majzoubi, C. Zhang, R. Chari, A. Krishnamurthy, J. Langford, and A. Slivkins, “Efficient Contextual
Bandits with Continuous Actions,” arXiv preprint arXiv:2006.06040, 2020.

[46] B. Li, T. Chen, and G. B. Giannakis, “Bandit online learning with unknown delays,” in The 22nd International
Conference on Artificial Intelligence and Statistics, 2019, pp. 993–1002.

[47] T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge University Press, jul 2020. [Online].
Available: https://www.cambridge.org/core/product/identifier/9781108571401/type/book

[48] W. R. Thompson, “On the likelihood that one unknown probability exceeds another in view of the evidence of
two samples,” Biometrika, vol. 25, no. 3/4, pp. 285–294, 1933.

[49] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation rules,” Advances in Applied Mathem-
atics, vol. 6, no. 1, pp. 4–22, 1985.

[50] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling in a rigged casino: The adversarial multi-
armed bandit problem,” in Proceedings of IEEE 36th Annual Foundations of Computer Science. IEEE, 1995,
pp. 322–331.

[51] J. White, Bandit algorithms for website optimization. O’Reilly Media, Inc., 2012.
[52] S. Kullback and R. A. Leibler, “10.1214/aoms/1177729694,” Ann. Math. Stat, vol. 22, pp. 79–86, 1951.
[53] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonstochastic multiarmed bandit problem,”

SIAM journal on computing, vol. 32, no. 1, pp. 48–77, 2002.
[54] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,” Machine

learning, vol. 47, no. 2-3, pp. 235–256, 2002.
[55] A. Garivier and O. Cappé, “The KL-UCB algorithm for bounded stochastic bandits and beyond,” in Proceedings

of the 24th annual Conference On Learning Theory, 2011, pp. 359–376.
[56] O. Cappé, A. Garivier, O.-A. Maillard, R. Munos, G. Stoltz, and Others, “Kullback–leibler upper confidence

bounds for optimal sequential allocation,” The Annals of Statistics, vol. 41, no. 3, pp. 1516–1541, 2013.
[57] O.-A. Maillard, R. Munos, and G. Stoltz, “A finite-time analysis of multi-armed bandits problems with kullback-

leibler divergences,” in Proceedings of the 24th annual Conference On Learning Theory, 2011, pp. 497–514.
[58] T. Bayes, “An essay towards solving a problem in the doctrine of chances,” Philosophical transactions of the

Royal Society of London, no. 53, pp. 370–418, 1763.
[59] E. Kaufmann, N. Korda, and R. Munos, “Thompson sampling: An asymptotically optimal finite-time analysis,”

in International conference on algorithmic learning theory. Springer, 2012, pp. 199–213.
[60] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich, “Web-scale bayesian click-through rate prediction for

sponsored search advertising in microsoft’s bing search engine.” Omnipress, 2010.
[61] O.-C. Granmo, “Solving two-armed Bernoulli bandit problems using a Bayesian learning automaton,” Interna-

tional Journal of Intelligent Computing and Cybernetics, 2010.
[62] P. A. Ortega and D. A. Braun, “A minimum relative entropy principle for learning and acting,” Journal of

Artificial Intelligence Research, vol. 38, pp. 475–511, 2010.
[63] V. G. Vovk, “Aggregating strategies,” Proc. of Computational Learning Theory, 1990, 1990.
[64] G. Stoltz, “Incomplete information and internal regret in prediction of individual sequences,” Ph.D. dissertation,

Université Paris Sud-Paris XI, 2005.
[65] A. Tewari and S. A. Murphy, “From ads to interventions: Contextual bandits in mobile health,” in Mobile

Health. Springer, 2017, pp. 495–517.
[66] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit approach to personalized news article

recommendation,” in Proceedings of the 19th international conference on World wide web, 2010, pp. 661–670.
[67] X. Wang, Y. Wang, D. Hsu, and Y. Wang, “Exploration in interactive personalized music recommendation:

a reinforcement learning approach,” ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), vol. 11, no. 1, pp. 1–22, 2014.

[68] L. Tang, R. Rosales, A. Singh, and D. Agarwal, “Automatic ad format selection via contextual bandits,” in
Proceedings of the 22nd ACM international conference on Information & Knowledge Management, 2013, pp.
1587–1594.

https://www.cambridge.org/core/product/identifier/9781108571401/type/book


104

[69] A. S. Lan and R. G. Baraniuk, “A Contextual Bandits Framework for Personalized Learning Action Selection.”
in EDM, 2016, pp. 424–429.

[70] S. Wassermann, T. Cuvelier, and P. Casas, “RAL: Improving Stream-Based Active Learning by Reinforcement
Learning,” in European Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML-PKDD) Workshop on Interactive Adaptive Learning (IAL), Würzburg, Germany, 2019.

[71] T. Lu, D. Pál, and M. Pál, “Showing relevant ads via context multi-armed bandits,” in Proceedings of AISTATS,
2009.

[72] P. Auer, “Using confidence bounds for exploitation-exploration trade-offs,” Journal of Machine Learning Re-
search, vol. 3, no. Nov, pp. 397–422, 2002.

[73] S. Filippi, O. Cappe, A. Garivier, and C. Szepesvári, “Parametric bandits: The generalized linear case,” in
Advances in Neural Information Processing Systems, 2010, pp. 586–594.

[74] W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual bandits with linear payoff functions,” in Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011, pp. 208–214.

[75] M. S. Talebi, Z. Zou, R. Combes, A. Proutiere, and M. Johansson, “Stochastic online shortest path routing:
The value of feedback,” IEEE Transactions on Automatic Control, vol. 63, no. 4, pp. 915–930, 2017.

[76] T. Lattimore and C. Szepesvari, “The end of optimism? an asymptotic analysis of finite-armed linear bandits,”
in Artificial Intelligence and Statistics, 2017, pp. 728–737.

[77] T. Lattimore and R. Munos, “Bounded regret for finite-armed structured bandits,” in Advances in Neural
Information Processing Systems, 2014, pp. 550–558.

[78] N. Abe and P. M. Long, “Associative reinforcement learning using linear probabilistic concepts,” in ICML.
Citeseer, 1999, pp. 3–11.

[79] V. Dani, T. P. Hayes, and S. M. Kakade, “Stochastic linear optimization under bandit feedback,” 2008.
[80] R. Combes, S. Magureanu, and A. Proutiere, “Minimal exploration in structured stochastic bandits,” in Ad-

vances in Neural Information Processing Systems, 2017, pp. 1763–1771.
[81] N. Cesa-Bianchi and G. Lugosi, “Combinatorial bandits,” Journal of Computer and System Sciences, vol. 78,

no. 5, pp. 1404–1422, 2012.
[82] R. Agrawal, “The continuum-armed bandit problem,” SIAM journal on control and optimization, vol. 33, no. 6,

pp. 1926–1951, 1995.
[83] R. Kleinberg, A. Slivkins, and E. Upfal, “Multi-armed bandits in metric spaces,” in Proceedings of the fortieth

annual ACM symposium on Theory of computing, 2008, pp. 681–690.
[84] P. Auer, R. Ortner, and C. Szepesvári, “Improved rates for the stochastic continuum-armed bandit problem,”

in International Conference on Computational Learning Theory. Springer, 2007, pp. 454–468.
[85] S. Magureanu, R. Combes, and A. Proutiere, “Lipschitz bandits: Regret lower bounds and optimal algorithms,”

in Proceedings of COLT, 2014, pp. 521–529.
[86] S. Bubeck, G. Stoltz, and J. Y. Yu, “Lipschitz bandits without the Lipschitz constant,” in International

Conference on Algorithmic Learning Theory. Springer, 2011, pp. 144–158.
[87] A. Agarwal, D. P. Foster, D. J. Hsu, S. M. Kakade, and A. Rakhlin, “Stochastic convex optimization with

bandit feedback,” in Advances in Neural Information Processing Systems, 2011, pp. 1035–1043.
[88] E. W. Cope, “Regret and convergence bounds for a class of continuum-armed bandit problems,” IEEE Trans-

actions on Automatic Control, vol. 54, no. 6, pp. 1243–1253, 2009.
[89] J. Y. Yu and S. Mannor, “Unimodal bandits,” in ICML, 2011.
[90] R. Combes and A. Proutiere, “Unimodal bandits: Regret lower bounds and optimal algorithms,” in Interna-

tional Conference on Machine Learning, 2014, pp. 521–529.
[91] C. Trinh, E. Kaufmann, C. Vernade, and R. Combes, “Solving Bernoulli rank-one bandits with unimodal

Thompson sampling,” in Algorithmic Learning Theory. PMLR, 2020, pp. 862–889.
[92] T. L. Graves and T. L. Lai, “Asymptotically efficient adaptive choice of control laws incontrolled markov

chains,” SIAM journal on control and optimization, vol. 35, no. 3, pp. 715–743, 1997.
[93] B. Laurent and P. Massart, “Adaptive estimation of a quadratic functional by model selection,” Annals of

Statistics, pp. 1302–1338, 2000.
[94] B. P. G. Van Parys and N. Golrezaei, “Optimal Learning for Structured Bandits,” arXiv preprint

arXiv:2007.07302, 2020.
[95] C. H. Papadimitriou and P. CH, “The Euclidean traveling salesman problem is NP-complete.” 1977.
[96] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani, “Adwords and generalized online matching,” Journal of the

ACM (JACM), vol. 54, no. 5, pp. 22—-es, 2007.



105

[97] J. Feldman, A. Mehta, V. Mirrokni, and S. Muthukrishnan, “Online stochastic matching: Beating 1-1/e,” in
2009 50th Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2009, pp. 117–126.

[98] D. Q. Vu, P. Loiseau, and A. Silva, “Combinatorial bandits for sequential learning in colonel blotto games,” in
2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019, pp. 867–872.

[99] K. Winter, “Formalising behaviour trees with CSP,” in International Conference on Integrated Formal Methods.
Springer, 2004, pp. 148–167.

[100] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-Carlo Tree Search: A New Framework for Game AI.”
in AIIDE, 2008.

[101] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in European conference on machine learning.
Springer, 2006, pp. 282–293.

[102] S. Ontanón, “The combinatorial multi-armed bandit problem and its application to real-time strategy games,”
in Proceedings of the Ninth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
2013, pp. 58–64.

[103] A. Shleyfman, A. Komenda, and C. Domshlak, “On combinatorial actions and CMABs with linear side inform-
ation,” in ECAI, 2014, pp. 825–830.

[104] S. Ontanón, “Combinatorial multi-armed bandits for real-time strategy games,” Journal of Artificial Intelli-
gence Research, vol. 58, pp. 665–702, 2017.

[105] D. Russo and B. Van Roy, “An information-theoretic analysis of Thompson sampling,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 2442–2471, 2016.

[106] S. Wang and W. Chen, “Thompson sampling for combinatorial semi-bandits,” arXiv preprint arXiv:1803.04623,
2018.

[107] B. Kveton, Z. Wen, A. Ashkan, and C. Szepesvari, “Tight regret bounds for stochastic combinatorial semi-
bandits,” in Artificial Intelligence and Statistics, 2015, pp. 535–543.

[108] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit: General framework and applications,”
in International Conference on Machine Learning, 2013, pp. 151–159.

[109] R. Combes, M. S. T. M. Shahi, A. Proutiere, and Others, “Combinatorial bandits revisited,” in Advances in
Neural Information Processing Systems, 2015, pp. 2116–2124.

[110] R. Degenne and V. Perchet, “Combinatorial semi-bandit with known covariance,” in Advances in Neural In-
formation Processing Systems, 2016, pp. 2972–2980.

[111] B. Kveton, Z. Wen, A. Ashkan, H. Eydgahi, and B. Eriksson, “Matroid bandits: Fast combinatorial optimization
with learning,” in arXiv preprint arXiv:1403.5045, ser. UAI’14. Arlington, Virginia, United States: AUAI
Press, 2014, pp. 420–429. [Online]. Available: http://dl.acm.org/citation.cfm?id=3020751.3020795

[112] P. Perrault, V. Perchet, and M. Valko, “Exploiting structure of uncertainty for efficient matroid semi-bandits,”
arXiv preprint arXiv:1902.03794, 2019.

[113] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of computer computations. Springer,
1972, pp. 85–103.

[114] Y. Zhou, D. Chakrabarty, and R. Lukose, “Budget constrained bidding in keyword auctions and online knapsack
problems,” in International Workshop on Internet and Network Economics. Springer, 2008, pp. 566–576.

[115] H. Whitney, “On the abstract properties of linear dependence,” American Journal of Mathematics, vol. 57,
no. 3, pp. 509–533, 1935.

[116] J. G. Oxley, Matroid theory. Oxford University Press, USA, 2006, vol. 3.
[117] M. P. Bianchi, H.-J. Böckenhauer, T. Brülisauer, D. Komm, and B. Palano, “Online minimum spanning tree

with advice,” International Journal of Foundations of Computer Science, vol. 29, no. 04, pp. 505–527, 2018.
[118] J. Lee and J. Ryan, “Matroid applications and algorithms,” ORSA Journal on Computing, vol. 4, no. 1, pp.

70–98, 1992.
[119] E. L. Lawler, “Matroid intersection algorithms,” Mathematical programming, vol. 9, no. 1, pp. 31–56, 1975.
[120] P. M. Camerini and F. Maffioli, “Bounds for 3-matroid intersection problems,” Information Processing Letters,

vol. 3, no. 3, pp. 81–83, 1975.
[121] S. P. Fekete, R. T. Firla, and B. Spille, “Characterizing matchings as the intersection of matroids,” Mathematical

Methods of Operations Research, vol. 58, no. 2, pp. 319–329, 2003.
[122] E. Nikolova, M. Brand, and D. R. Karger, “Optimal Route Planning under Uncertainty,” in Proceedings of the

Sixteenth International Conference on International Conference on Automated Planning and Scheduling, ser.
ICAPS’06. AAAI Press, 2006, pp. 131–140.

[123] D. P. Williamson, Network Flow Algorithms. Cambridge University Press, 2019.

http://dl.acm.org/citation.cfm?id=3020751.3020795


106

[124] Y. Berstein and S. Onn, “Nonlinear bipartite matching,” Discrete Optimization, vol. 5, no. 1, pp. 53–65, 2008.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S157252860700062X

[125] A. Atamtürk and A. Gómez, “Maximizing a class of utility functions over the vertices of a polytope,” Operations
Research, vol. 65, no. 2, pp. 433–445, 2017.

[126] L. A. Wolsey, Integer programming, R. L. Graham, J. K. Lenstra, and R. E. Tarjan, Eds. John Wiley and
Sons, 1998. [Online]. Available: http://eprints.lse.ac.uk/31572/

[127] A. Jüttner, “On budgeted optimization problems,” SIAM Journal on Discrete Mathematics, vol. 20, no. 4, pp.
880–892, 2006.

[128] R. Ravi and M. X. Goemans, “The constrained minimum spanning tree problem,” in Scandinavian Workshop
on Algorithm Theory. Springer, 1996, pp. 66–75.

[129] A. Berger, V. Bonifaci, F. Grandoni, and G. Schäfer, “Budgeted matching and budgeted matroid intersection
via the gasoline puzzle,” Mathematical Programming, vol. 128, no. 1-2, pp. 355–372, 2011.

[130] C. Chekuri, J. Vondrák, and R. Zenklusen, “Multi-budgeted matchings and matroid intersection via dependent
rounding,” in Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms. SIAM,
2011, pp. 1080–1097.

[131] G. Amanatidis, G. Birmpas, and E. Markakis, “Coverage, matching, and beyond: new results on budgeted
mechanism design,” in International Conference on Web and Internet Economics. Springer, 2016, pp. 414–
428.

[132] P. Toth, “Dynamic programming algorithms for the zero-one knapsack problem,” Computing, vol. 25, no. 1,
pp. 29–45, 1980.

[133] E. W. Dijkstra and Others, “A note on two problems in connexion with graphs,” Numerische mathematik,
vol. 1, no. 1, pp. 269–271, 1959.

[134] D. Karger, R. Motwani, and G. D. S. Ramkumar, “On approximating the longest path in a graph,” in Workshop
on Algorithms and Data structures. Springer, 1993, pp. 421–432.

[135] E. W. Dijkstra, “Some theorems on spanning subtrees of a graph,” Indag. math, vol. 22, no. 2, pp. 196–199,
1960.

[136] E. T. A. Club, R. W. Bulterman, F. W. van der Sommen, G. Zwaan, T. Verhoeff, A. J. M. van Gasteren, and
W. H. J. Feijen, “On computing a longest path in a tree,” Information Processing Letters, vol. 81, no. 2, pp.
93–96, 2002.

[137] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network optimization algorithms,”
Journal of the ACM (JACM), vol. 34, no. 3, pp. 596–615, 1987.

[138] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT press, 2009.
[139] H. Everett III, “Generalized Lagrange multiplier method for solving problems of optimum allocation of re-

sources,” Operations research, vol. 11, no. 3, pp. 399–417, 1963.
[140] N. Megiddo, “Applying parallel computation algorithms in the design of serial algorithms,” Journal of the ACM

(JACM), vol. 30, no. 4, pp. 852–865, 1983.
[141] J. Munkres, “Algorithms for the assignment and transportation problems,” Journal of the society for industrial

and applied mathematics, vol. 5, no. 1, pp. 32–38, 1957.
[142] IBM, “IBM ILOG CPLEX 12.10 User’s Manual,” 2020. [Online]. Available: https://www.ibm.com/analytics/

cplex-optimizer
[143] Gurobi Optimization LLC, “Gurobi Optimizer Reference Manual,” 2020. [Online]. Available: http:

//www.gurobi.com
[144] M. ApS, “The MOSEK optimization toolbox for MATLAB manual. Version 9.2.” 2020. [Online]. Available:

https://docs.mosek.com/9.2/cxxfusion/index.html
[145] C. Coey, M. Lubin, and J. P. Vielma, “Outer approximation with conic certificates for mixed-integer convex

problems,” arXiv preprint arXiv:1808.05290, 2018.
[146] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Gemander,

A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch, P. Le Bodic, S. J. Maher,
F. Matter, M. Miltenberger, E. Mühmer, B. Müller, M. E. Pfetsch, F. Schlösser, F. Serrano,
Y. Shinano, C. Tawfik, S. Vigerske, F. Wegscheider, D. Weninger, and J. Witzig, “The SCIP
Optimization Suite 7.0,” Optimization Online, Technical Report, mar 2020. [Online]. Available:
http://www.optimization-online.org/DB{_}HTML/2020/03/7705.html

[147] FICO, “FICO®Xpress Optimization Suite,” 2020.
[148] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-order cone programming,”

Linear algebra and its applications, vol. 284, no. 1-3, pp. 193–228, 1998.

http://www.sciencedirect.com/science/article/pii/S157252860700062X
http://eprints.lse.ac.uk/31572/
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com
http://www.gurobi.com
https://docs.mosek.com/9.2/cxxfusion/index.html
http://www.optimization-online.org/DB{_}HTML/2020/03/7705.html


107

[149] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A Modeling Language for Mathematical Optimization,” SIAM
Review, vol. 59, no. 2, pp. 295–320, 2017.

[150] R. Hettich and P. Zencke, Numerische Methoden der Approximation und semi-infiniten Optimierung.
Springer-Verlag, 2014.

[151] J. Soch, T. J. Faulkenberry, K. Petrykowski, and C. Allefeld, “StatProofBook/StatProofBook.github.io:
StatProofBook 2020,” dec 2020. [Online]. Available: https://doi.org/10.5281/zenodo.4305950

[152] P. E. Gill, W. Murray, and M. H. Wright, Practical optimization. SIAM, 2019.
[153] C. Lemaréchal, “Cauchy and the gradient method,” Doc Math Extra, vol. 251, p. 254, 2012.
[154] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” in Proceedings of the sixteenth

annual ACM symposium on Theory of computing, 1984, pp. 302–311.
[155] Y. E. Nesterov and A. S. Nemirovskii, “Interior point methods in convex programming: theory and applica-

tions,” Society for Industrial and Applied Mathematics, Philadelphia, 1994.
[156] S. S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge University Press, 2004, vol. 25, no. 3.
[157] N. Z. Shor, “The Subgradient Method,” in Minimization methods for non-differentiable functions. Springer,

1985, pp. 22–47.
[158] B. T. Polyak, “Minimization of unsmooth functionals,” USSR Computational Mathematics and Mathematical

Physics, vol. 9, no. 3, pp. 14–29, 1969.
[159] K. C. Kiwiel, “Efficiency of proximal bundle methods,” Journal of Optimization Theory and Applications, vol.

104, no. 3, pp. 589–603, 2000.
[160] G. B. Dantzig, Linear programming and extensions. Princeton university press, 1998, vol. 48.
[161] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algorithms. Cambridge

university press, 2014.
[162] M. Glavic, “Interior point methods: A survey, short survey of applications to power systems, and research

opportunities,” University of Liege, Tech. Rep., 2004.
[163] C. Carathéodory, “Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht

annehmen,” Mathematische Annalen, vol. 64, no. 1, pp. 95–115, 1907.
[164] H. D. Sherali, “A constructive proof of the representation theorem for polyhedral sets based on fundamental

definitions,” American Journal of Mathematical and Management Sciences, vol. 7, no. 3-4, pp. 253–270, 1987.
[165] V. Mirrokni, R. P. Leme, A. Vladu, and S. C.-w. Wong, “Tight bounds for approximate Carathéodory and

beyond,” in International Conference on Machine Learning, 2017, pp. 2440–2448.
[166] J. Barcelo, E. Hallefjord Åand Fernandez, and K. Jörnsten, “Lagrangean relaxation and constraint genera-

tion procedures for capacitated plant location problems with single sourcing,” Operations-Research-Spektrum,
vol. 12, no. 2, pp. 79–88, 1990.

[167] M. A. Odijk, “A constraint generation algorithm for the construction of periodic railway timetables,” Trans-
portation Research Part B: Methodological, vol. 30, no. 6, pp. 455–464, 1996.

[168] B. Boots, G. J. Gordon, and S. M. Siddiqi, “A constraint generation approach to learning stable linear dynamical
systems,” in Advances in neural information processing systems, 2008, pp. 1329–1336.

[169] B. Zeng and L. Zhao, “Solving two-stage robust optimization problems using a column-and-constraint genera-
tion method,” Operations Research Letters, vol. 41, no. 5, pp. 457–461, 2013.

[170] M. M. Mäkelä, N. Karmitsa, and A. Bagirov, “Subgradient and Bundle Methods for Nonsmooth
Optimization,” in Numerical Methods for Differential Equations, Optimization, and Technological
Problems: Dedicated to Professor P. Neittaanmäki on His 60th Birthday, S. Repin, T. Tiihonen,
and T. Tuovinen, Eds. Dordrecht: Springer Netherlands, 2013, pp. 275–304. [Online]. Available:
https://doi.org/10.1007/978-94-007-5288-7{_}15

[171] M. S. Talebi and A. Proutiere, “An optimal algorithm for stochastic matroid bandit optimization,” in Proceed-
ings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, 2016, pp. 548–556.

[172] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A Modeling Language for Mathematical Optimization,”
arXiv:1508.01982 [math.OC], vol. 59, no. 2, pp. 295–320, aug 2015. [Online]. Available: http:
//arxiv.org/abs/1508.01982

https://doi.org/10.5281/zenodo.4305950
https://doi.org/10.1007/978-94-007-5288-7{_}15
http://arxiv.org/abs/1508.01982
http://arxiv.org/abs/1508.01982


Index

action, 9
action space, 13
agent, 9, 12
algorithm

bandit with experts, 19
CUCB, 30, 31
ESCB, 30, 31
EXP3, 19, 20
EXP4, 19, 21
KL-UCB, 17
LinUCB, 22, 25
OLS-UCB, 31
OMM, 31
OSSB, 26, 30
Thompson sampling, 29
UCB-1, 17

arm, 13

bandit, 11
adversarial, 15
combinatorial, 26
contextual, 20

linear, 21
convex, 23
k-armed, 12
linear, 22
Lipschitz, 23
stochastic, 15
unimodal, 24

confidence bonus, see index
consistently good algorithm, 16, 24, 65
consistently good policy, 16

environment, 9, 12
episode, 10
exploration-exploitation trade-off, 10, 12, 28

gap, 13
combinatorial, 23
contextual, 20
maximum, 15

minimum, 15

index, 16, 29–31

knapsack, 32, 42
multiple, 32

Kullback-Leibler divergence, 16, 17, 24, 66

longest path, 36, 43

m-set, 32, 33, 42
Markov assumption, 11
matching, 27, 34, 36, 46
matroid, 31, 33, 44

intersection, 34, 46

nonsmooth optimisation, 67
NP-hardness, 7, 26, 31, 32, 34, 36, 43

penalty, 9
policy, 10

regret, 13
combinatorial, 23
contextual, 20
linear, 22

reward, 9, 13
linear, 22

round, 13

shortest path, 27, 32, 36, 43
spanning tree, 33, 44
state, 9
stationarity, 11

total unimodularity, 41

108



Titre : Algorithmes en temps polynomial pour les semi-bandits combinatoires : apprentissage par renforce-
ment efficace dans des environnements complexes

Mots clés : apprentissage par renforcement, bandit combinatoire, optimisation mathématique

Résumé : La prise de décision séquentielle est une
composante essentielle de nombreuses applications, de la
gestion des réseaux informatiques aux annonces en ligne.
L’outil principal est l’apprentissage par renforcement : un
agent prend une séquence de décisions afin d’atteindre
son objectif, avec des mesures typiquement bruitées de
son environnement. Par exemple, un agent peut con-
trôler une voiture autonome; l’environnement est la ville
dans laquelle la voiture se déplace. Les problèmes de ban-
dits forment une classe d’apprentissage de renforcement
pour laquelle on peut démontrer de très forts résultats
théoriques. Les algorithmes de bandits se concentrent sur
le dilemme exploration-exploitation : pour avoir une bonne
performance, l’agent doit avoir une connaissance approfon-
die de son environnement (exploration) ; cependant, il doit
aussi jouer des actions qui le rapprochent de son but (ex-
ploitation).
Dans cette thèse, nous nous concentrons sur les bandits
combinatoires, qui sont des bandits dont les décisions sont
très structurées (une structure "combinatoire"). Il s’agit
notamment des cas où l’agent détermine un chemin à suivre

(sur une route, dans un réseau informatique, etc.) ou des
publicités à afficher sur un site Web. De telles situations
partagent leur complexité algorithmique : alors qu’il est
souvent facile de déterminer la décision optimale lorsque les
paramètres sont connus (le temps pour traverser une route,
le profit généré par l’affichage d’une publicité à un endroit
donné), la variante bandit (lorsque les paramètres doivent
être déterminés par des interactions avec l’environnement)
est bien plus complexe.
Nous proposons deux nouveaux algorithmes pour abor-
der ces problèmes par des techniques d’optimisation math-
ématique. Basés sur des hypothèses faibles, ils présentent
une complexité temporelle polynomiale, tout en étant per-
formants par rapport aux algorithmes de pointe pour les
mêmes problèmes. Ils présentent également d’excellentes
propriétés statistiques, ce qui signifie qu’ils trouvent
un équilibre entre exploration et exploitation proche de
l’optimum théorique. Les travaux précédents sur les ban-
dits combinatoires ont dû faire un choix entre le temps
de calcul et la performance statistique ; nos algorithmes
montrent que ce dilemme n’a pas lieu d’être.

Title: Polynomial-Time Algorithms for Combinatorial Semibandits: Computationally Tractable Reinforce-
ment Learning in Complex Environments

Keywords: reinforcement learning, combinatorial bandit, mathematical optimisation

Abstract: Sequential decision making is a core com-
ponent of many real-world applications, from computer-
network operations to online ads. The major tool for
this use is reinforcement learning: an agent takes a se-
quence of decisions in order to achieve its goal, with typ-
ically noisy measurements of the evolution of the environ-
ment. For instance, a self-driving car can be controlled by
such an agent; the environment is the city in which the
car manœuvers. Bandit problems are a class of reinforce-
ment learning for which very strong theoretical properties
can be shown. The focus of bandit algorithms is on the
exploration-exploitation dilemma: in order to have good
performance, the agent must have a deep knowledge of its
environment (exploration); however, it should also play ac-
tions that bring it closer to its goal (exploitation).
In this dissertation, we focus on combinatorial bandits,
which are bandits whose decisions are highly structured
(a "combinatorial" structure). These include cases where
the learning agent determines a path to follow (on a road,

in a computer network, etc.) or ads to display on a Web-
site. Such situations share their computational complexity:
while it is often easy to determine the optimum decision
when the parameters are known (the time to cross a road,
the monetary gain of displaying an ad at a given place),
the bandit variant (when the parameters must be determ-
ined through interactions with the environment) is more
complex.
We propose two new algorithms to tackle these problems
by mathematical-optimisation techniques. Based on weak
hypotheses, they have a polynomial time complexity, and
yet perform well compared to state-of-the-art algorithms
for the same problems. They also enjoy excellent statist-
ical properties, meaning that they find a balance between
exploration and exploitation that is close to the theoretical
optimum. Previous work on combinatorial bandits had to
make a choice between computational burden and statist-
ical performance; our algorithms show that there is no need
for such a quandary.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	Abstract
	Résumé
	Acknowledgements
	Chapter 1. Industrial Context
	1.1. Machine learning and combinatorial optimisation
	1.2. Contributions of the thesis

	Chapter 2. Introduction to Bandits
	2.1. Reinforcement learning
	2.2. k-armed bandits
	2.3. Contextual bandits
	2.4. Structured bandits
	2.5. Combinatorial bandits
	2.6. Interesting combinatorial sets

	Chapter 3. Approximation Algorithms for Optimum Combinatorial Bandits
	3.1. AESCB
	3.2. Optimising budgeted programs
	3.3. Exact implementation of ESCB
	3.4. Numerical results
	3.5. Regret upper bound for AESCB

	Chapter 4. Nonsmooth Optimisation for Optimum Combinatorial Bandits
	4.1. Graves-Lai bound for combinatorial bandits
	4.2. Elements of nonsmooth convex optimisation
	4.3. AOSSB and GLPG
	4.4. Exact computation of Graves-Lai bound for combinatorial bandits
	4.5. Numerical results

	Appendix A. Notations
	Appendix B. Pseudocode for Algorithms
	Chapitre C. Résumé de la thèse
	C.1. Algorithmes de bandit combinatoires
	C.2. Contributions

	Bibliography
	Index

