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Abstract:
This dissertation deals with the genesis and the reception of the “theory of characteris-

tics”, a mathematical theory first formulated between 1864 and 1867 by French geometer
Michel Chasles (1793-1880). This theory served to enumerate and construct, in a system-
atic and uniform manner, the conic sections satisfying five given geometrical conditions,
without resorting to algebraic computations. This theory was for Chasles the culmina-
tion of a broader research programme, which he had undertaken throughout his lectures
on Higher Geometry at the Sorbonne since 1846. Through his teaching, Chasles sought
to reinvent the language and concepts of pure geometry, to provide it with a generality
equivalent to that of algebra.

Chasles’ theory quickly circulated across mathematical Europe, and was reworked by
many, including Hieronymus Zeuthen (1839-1920), Georges-Henri Halphen (1844-1889),
Hermann Schubert (1848-1911), and Eduard Study (1862-1930). Amongst these readers,
however, few shared Chasles’ epistemological stands; and many set out to rewrite the
key concepts of the theory of characteristics with entirely new technical and notational
means, and in the framework of other epistemological choices. From these simultaneous
rewritings, a formula identified but not proven by Chasles emerged as problematic: it
had been successively proven and refuted several times, and soon became the object of
several controversies between 1867 and 1893. These controversies were more than technical
disputes over a mathematical proposition: more profoundly, they revealed important
disagreements over the epistemological value of generality in mathematics, over the way
in which a general object is constructed in geometry, and over the textual practices through
which said generality ought to be materialized on a page.

The first part of this thesis locates the genesis of this theory within the context of
Chasles’ reflection on the history and philosophy of geometry, and in particular on the
question of the generality of methods. Then, in a second part, we show that the reception
of the theory of characteristics allows for a new perspective on the formation of modern
mathematics, at the intersection of the cultural history of science and of the technical
history of mathematical practices.

Keywords : History of mathematics, enumerative geometry, conic sections, generality,
epistemological value, Chasles, Schubert, Halphen, Study



Résumé:
Cette thèse traite de la genèse et de la réception de la “théorie des caractéristiques”, une

théorie mathématique formulée initialement entre 1864 et 1867 par le géomètre français
Michel Chasles (1793-1880). Cette théorie visait à dénombrer et à construire, de manière
systématique et uniforme, les sections coniques satisfaisant cinq conditions géométriques
données, sans recourir au calcul algébrique. En cela, elle s’inscrivait pour Chasles dans un
programme de recherche plus large, qu’il avait entrepris notamment au sein des cours de
Géométrie Supérieure qu’il donnait à la Faculté de Paris depuis 1846. Par son enseigne-
ment, Chasles cherchait à réinventer le langage et les concepts de la géométrie pure pour
lui donner une généralité équivalente à celle du calcul algébrique.

La théorie de Chasles connut une réception rapide à travers l’Europe mathématique,
et elle fut retravaillée par, entre autres, Hieronymus Zeuthen (1839-1920), Georges-Henri
Halphen (1844-1889), Hermann Schubert (1848-1911), et Eduard Study (1862-1930).
Parmi ces lecteurs, toutefois, peu souscrivaient aux thèses philosophiques de Chasles ;
et beaucoup décidèrent de réécrire les concepts clefs de la théorie des caractéristiques au
travers de tout nouveaux outillages techniques et notationnels, et dans des cadres informés
par de toutes autres positions épistémologiques. Au fil de ces réécritures concurrentes, une
formule identifiée mais non démontrée par Chasles se révéla être problématique : elle fut
successivement prouvée et réfutée à plusieurs reprises, et devint ainsi l’objet de plusieurs
controverses entre 1867 et 1893. Ces controverses étaient bien plus que des disputes tech-
niques autour d’un point de mathématiques: plus profondément, elles traduisaient des
désaccords importants autour de la valeur épistémologique de la généralité en mathéma-
tiques, de la façon dont on peut fabriquer en géométrie un objet général, et des pratiques
textuelles par lesquelles ladite généralité doit être couchée sur le papier.

Dans un premier temps, cette thèse situe la genèse de cette théorie dans le contexte de
la réflexion de Chasles sur l’histoire et la philosophie de la géométrie, et notamment sur
le thème de la généralité des méthodes. La seconde partie de cette thèse s’attache alors à
montrer que la réception de la théorie des caractéristiques permet une nouvelle perspective
sur la formation des mathématiques modernes, à la croisée de l’histoire culturelle des
sciences et de l’histoire technique des pratiques mathématiques.

Mots-clés : Histoire des mathématiques, géométrie énumérative, sections coniques,
généralité, valeur épistémologique, Chasles, Schubert, Halphen, Study
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Introduction

Die Zahl. — Die Erfindung der Gesetze der Zahlen
ist auf Grund des ursprünglich schon herrschenden Ir-
rthums gemacht, dass es mehrere gleiche Dinge gebe (aber
thatsächlich giebt es nichts Gleiches), mindestens dass es
Dinge gebe (aber es giebt kein “Ding”). Die Annahme
der Vielheit setzt immer voraus, dass es Etwas gebe, das
vielfach vorkommt: aber gerade hier schon waltet der Ir-
rthum, schon da fingiren wir Wesen, Einheiten, die es
nicht giebt.

F. Nietzsche, Menschliches, Allzumenschliches, 1886

The conflicted emergence of enumerative geometry

In 1914, at the end of a long and productive career, the Danish geometer and histo-
rian of mathematics Hieronymus Zeuthen (1839-1920) wrote a textbook on “enumerative
methods”, a branch of geometry in whose emergence and development he had been a
key actor. In the first chapter of this Lehrbuch, intertwined amidst technical discussions
pertaining to the algebraic invariants of plane curves, multi-dimensional spaces, or even
line-geometry, one finds a few other, more surprising paragraphs. The very first section of
the book discusses “the meaning of numbers” (‘Bedeutung der Anzahlen’), whereas a few
pages further, Zeuthen invites us to consider “the relativity of the concepts of the general
and the particular1” (‘Relativität der Begriffe “allgemein” und “speziell” ’). This meshing
of the mathematical and the epistemological was not merely the reflection of an aging
geometer, looking back upon decades of hard-earned results and knowledge. Rather, all
of it was an integral and necessary part of Zeuthen’s definitive answer to a series of diffi-

1 [Zeuthen, 1914a], pp.1-3; 9-12.
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cult questions which had stirred up disputes throughout the early history of enumerative
geometry.

Zeuthen’s involvement with enumerative methods runs throughout his entire career.
Indeed, when he wrote his dissertation in 1865 for the University of Copenhagen, he had
just come home from a scientific trip to Paris, where he had studied with the French
geometer Michel Chasles (1793-1880). At the time of Zeuthen’s stay, Chasles was on
the verge of a scientific breakthrough: building on the methods and concepts he had
expounded through his lectures at the Faculté de Paris, he had obtained a general and
uniform method for the enumeration and construction of all conic sections in the plane
which simultaneously satisfy five given conditions. In February 1864, during one of the
weekly meetings of the Paris Académie des Sciences, Chasles made public the scope of
his discoveries. Over the following months, he came back frequently to the Académie
to communicate through a series of short papers the technical details of his new theory,
which he named the “theory of characteristics”.

As a historian of mathematics, widely praised for his erudition, Chasles was keenly
aware that enumerative problems had a long history. The so-called Apollonius problem,
which consists in the construction of the circles in the plane which satisfy three conditions
of the form ‘passing through a given point’, ‘touching a given straight line’, or ‘being
tangent to another given circle2’, was already discussed in Book 4 of Pappus’ Collections
(4th century C.E.), and was solved anew by many representatives of the early-modern
tradition of problem-solving3. At the École Polytechnique, where he had trained between
1812 and 1814, Chasles had been taught techniques to visualize and solve even more
difficult contact problems, such as that of constructing the spheres touching four other
given spheres4. More crucially, the enumeration of conics had been taken up by various
other geometers in the 1850s, after Steiner’s (erroneous) enumeration in 1848 of the conics
touching five given conics5.

However, Chasles’ new theory was incomparably more general than these past results
in at least two ways. It enumerated conics satisfying any possible condition, far beyond
conditions defined by lines, points or circles. Furthermore, Chasles’ enumerations dra-
matically extended the scope of what counted as a solution: points or lines at infinity,

2A circle being defined by its center and its radius, that is to say by the general equation (X − a)2 +
(Y − b)2 = r2, can satisfy three independent conditions, such as those indicated above, at the same time.

3 [Pappus, 2010], see pp.20-26 for the Greek text, pp.91-99 for an English translation, and pp.193-
202 for a commentary. For a longue-durée study of the history of this problem, see [Boyé, 1998]. For
early-modern approaches in the context of the tradition of problem-solving, see for instance [Bos, 2001],
pp.110-112 where Van Roomen’s analysis is presented, or [Maronne, 2010], pp.543-548, for a discussion
of how Pascal and Descartes solved it.

4This problem was the subject of a memoir by Charles Dupin in 1807, see [Belhoste, 2009].
5 [Steiner, 1848]. Steiner thought there were 65 = 7776 such conics; however, Chasles’ theory refutes

this number, and shows that the answer is in fact 3264.
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imaginary elements, or degenerate curves were all legitimate figures to be counted.
The publication of this theory in 1864 was an immediate international success, both

on an institutional and scientific level. Chasles would be awarded the Copley Medal
by the Royal Society of London the very next year; and papers were published about
his new discoveries over the next decade not only in French and Danish, but also in
Italian, German, and English. However, despite the interest generated by the theory of
characteristics, neither Chasles’ methods nor his notations and concepts were preserved by
the authors who took up his results. Chasles, a staunch defender of pure geometry in the
face of what he perceived to be the hegemony of analytical methods, had based his theory
on a technique for the writing of the “geometrical equations” of curves6. This technique,
he thought, would provide a substitute to the technology of algebraic equations, which,
for all their efficiency and computational power, always obfuscate reasoning and hide the
real causes behind mathematical truths. However, while the theory of characteristics was
met with praise and interest across mathematical Europe, its fate was not to be passively
diffused in the way of hard-earned geometrical knowledge. Most of those who saw a
worthwhile scientific endeavour in the theory of characteristics were not interested in this
broader research programme, and immediately translated Chasles’ methods back into the
algebraic languages at their disposal. Very little of Chasles’ publications remained stable
throughout the ensuing series of rewritings this theory underwent: its notations, concepts,
methods, but also its goals and its general architecture were all subject to change. More
crucial, however, was an unexpected side-effect of these manifold variations.

A formula, which Chasles had observed across hundreds of examples but not proved,
had been identified by some as crucial for the theory of conics at large: this formula
gave the number of conics satisfying five given conditions as a simple function of four
numbers defined by said conditions. In 1873, two proofs were independently produced
by Alfred Clebsch7 (1833-1872) and Georges Halphen (1844-1889), using respectively the
theory of ternary quadratic forms and the algebraic analysis of curves. Three years later,
yet another algebraic proof was proposed by Ferdinand von Lindemann (1852-1939), and
inserted in his 1876 edition of Clebsch’s Vorlesungen. Halphen, whilst reading this last
proof, was profoundly unsatisfied: he viewed it as at worst begging the question, at best
a wholly unrigorous proof in which there remained logical gaps to fill. The shortcomings

6Chasles is thus often described as member of the so-called ‘synthetic tradition’, a label which desig-
nates those who defended ‘pure geometry’ against the perceived hegemony of analytical methods, that
is to say methods based on algebraic or infinitesimal analysis and axes of coordinates. The boundary
between analytic and synthetic geometries in the nineteenth century is a notoriously fleeting one, often to
be negotiated on a case-by-case basis, see [Lorenat, 2016]. We shall discuss it in greater detail as regards
the geometry of Michel Chasles in 1.1.

7Clebsch’s proof was written up in May 1872, a few months before his death. It was published
posthumously the following year.
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he had observed in Lindemann’s proof, he soon came to find in Clebsch’s, and in his own.
Eventually, he came to a shocking realization: not only were these proofs lacking, but the
formula was in fact outright false! In September 1876, Halphen announced his discovery
to the Association Française, as well as to the Paris Académie des Sciences, by means of
a counter-example. A few months later, he announced an even stronger negative result:
not only was Chasles’ formula false, but his new theory showed in fact that no such simple
formula could be generally true.

However, not all were convinced by the significance of Halphen’s counter-examples.
Among the dissenters was Hamburg-based mathematician Hermann Schubert (1848-1911).
From 1874 onwards, Schubert had been devising a fruitful symbolical calculus, building
on formal regularities he had observed in the results of his colleagues, and, crucially,
on Chasles’ formula – of which he had himself given yet another proof in the wake of
Halphen’s announcement. Schubert’s calculus, and in particular his 1879 book Kalkül der
abzählenden Geometrie, impressed many, if only by the sheer number of new and difficult
results Schubert had been able to obtain with his idiosyncratic methods. To accept
Halphen’s sharp arguments against the perceived lack of rigor and analytical precision
of his predecessors, for geometers at large, meant to agree that the numerous proofs of
Chasles’ formula produced by esteemed mathematicians were flawed, and to renounce
the embarrassment of riches provided by Schubert’s methods. In 1885, Felix Klein (1849-
1925), then a professor in Leipzig, wished to see the matter resolved, and tasked one of his
most promising students, Eduard Study (1862-1930), with writing his Habilitationsschrift
on the subject. Study, against Halphen, found the theorem to be true, and gave a proof
thereof. In subsequent years, he visited Paris, but failed to convince Halphen.

Zeuthen had been an actor of this entire episode. A student of Chasles, his disser-
tation proved crucial to the development of Schubert’s calculus. A friend of Halphen’s,
with whom he had a sustained private correspondence throughout this historical episode,
Zeuthen contributed to circulating and explaining the latter’s refutation of Chasles’ for-
mula. A trusted colleague of Klein, he convinced the latter to stage a public debate with
Study within the pages of the Mathematische Annalen, and was later invited to write the
entry on enumerative methods for the Enzyklopädie der mathematischen Wissenschaften.
Thus, Zeuthen’s 1914 Lehrbuch was the scientific testament of a mathematician who had
spent decades discussing and disputing the generality and validity of theory of character-
istics, of Chasles’ formula, and of Schubert’s calculus. However, even by then, the validity
of Chasles’ formula had not been collectively decided by geometers.

These difficulties had arisen from the fact that there are many possible ways to define
generality in geometry, and to inscribe it into equations or other textual practices. This is
why Zeuthen, in his Lehrbuch, needed to weave together mathematics and epistemology.
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To decide whether an enumerative result was correct or not, one had first to agree on
what kind of generality was to be demanded from such results, and what the (geometri-
cal) numbers it produced – the results of enumerative methods – were and ought to be.
Indeed, while it appeared clearly to both Halphen and Study that the crux of the problem
raised by Chasles’ theory was that of the nature of generality in geometry, they disagreed
on almost everything else. Halphen viewed his own work as the uncovering of the false
generality of the formulae of his predecessors through the expert use of analytical meth-
ods: from a skillful manipulation of analytic equations, he had found irregularities which
undermined the formulae of Chasles’ and others. Study, in his defense of said formulae,
proposed another account of generality in geometry; one that is not so vulnerable to the
construction of counter-examples. For Study, generality was not the feature of a theo-
rem or a method, but a mathematical construction, carried out by arbitrarily selecting a
property of an object as the basis for a new definition. To save Chasles’ formula, Study
explained, one simply has to choose a different property as the basis for a general concept
of solution. Counter-examples, in this view, are simply the sign that the wrong property
has been selected in view of the theorem which is to be preserved – for instance, because
its simplicity makes a theory viable or worthwhile.

After Halphen’s untimely death in 1889, others would maintain the validity of his ar-
guments against Chasles’ formula. This list includes Zeuthen himself, but also members
of the so-called Italian school of algebraic geometry, such as Francesco Severi (1879-1961).
In fact, even in recent decades, there have been geometers to defend this position8. Mean-
while, Chasles’ formula would be vindicated by the topological framework for algebraic
geometry put forth in the 1920s by Bartel Van der Waerden (1903-1996). By then,
however, the theory of characteristics had, by and large, lost its central importance for
algebraic geometers at large. After Hilbert’s 1900 Paris address, a much more pressing
concern had been identified in the justification of Schubert’s calculus. Much of this cal-
culus, and of its notations, is predicated on results similar to Chasles’ formula: thus, the
search for foundations for the former yielded facile proofs of the latter.

That it is possible to choose between two options with regard to the validity of Chasles’
formula is a banal fact of today’s mathematical life: it simply means that one can choose
between two formalizations of the problems. Conversely, these 19th-century disputes of-
ten make little sense to modern-day mathematicians9. Furthermore, that generality in
mathematics can be constructed by selecting statements that are viewed as valuable and

8 [Casas-Alvero & Xambò-Descamps, 1986].
9For instance, the American mathematician Steven Kleiman, a leading expert in contemporary enu-

merative geometry, viewed the Schubert-Halphen dispute as the conflict between “classical geometers
[who] had a platonic view of figures like conics”, in contrast with modern geometers who know conics can
and in fact ought to be constructed partly upon an arbitrary definition; see [Kleiman, 1976a], p.133.
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taking them as axioms, is very much part of today’s ‘normal science’. Describing Noether’s
theorem, which is an important result in algebraic geometry pertaining to the intersec-
tion theory of plane curves, the Indian-American mathematician Shreeram Abhyankar
expressed in 1976 the following dictum10:

In other words, Noether’s theorem must be qualified by giving a “good” mean-
ing to the phrase “H passes through..”. What meaning to give? Answer: That
which will make Noether’s theorem true.
Indeed, the peculiar wisdom of geometrical algebraic geometry is the
Dictum. Study of simple cases gives rise to a nice succinct statement. Take
it as an axiom that the statement is true most generally. Make it true by
the provision that we learn to “count properly” the intervening quantities. Or
better still, have faith that god (or, if you prefer, nature) has good meaning
in mind, and march on!

These epistemic resources, however, were not as readily available to 19th-century authors
such as Zeuthen: rather, they had to construct their own categories to make sense of
the undecidedness of this result whilst still arguing for one of these two options. Thus,
by retracing the conflicted emergence of enumerative geometry, and by focusing on the
emergence of Chasles’ theory of characteristics and the ensuing debates, this dissertation
examines the rise of modern mathematical practices of generality.

Generality: Concepts, Values, Practices

Generality has proven a particularly fruitful object of historical study in recent years,
especially in the case of mathematics11. In particular, generality has been studied as an
epistemic and as an epistemological value, that is to say a norm for scientific practice
whose observance conduces respectively to truth in whatever fashion possible, and to a
specific desirable form of knowledge12. The interest of studying such values is manifold.
One reason of particular importance to us is that such values have been shown, in a wide
variety of cases, to be co-constructed with specific textual practices. Because practition-
ers from a certain milieu value a certain kind of generality, they shape textual practices
conducive to knowledge bearing this very generality. This is the case, for instance, of the
mathematical texts composing the canon passed down in the “School of Mathematics”

10 [Abhyankar, 1976], p.413. I thank Sarah Griffith for drawing my attention to this text.
11See for instance [Netz, 1999], pp.240-270, [Chemla, 1998], [Robadey, 2004], [Grattan-Guinness, 2011],

[Acerbi, 2011], [Chemla et al., 2016], [Vergnerie, 2017].
12 [Chemla et al., 2016], pp.7-8. Of course, as the authors insist, many values such as generality can

lie on both sides of this distinction.
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of the Chinese Imperial University starting from 7th century C.E., as analyzed by Karine
Chemla13. A textual practice commonly found in these texts is the presentation of a
paradigmatic example (with concrete values), followed by a proof of the correctness of
the procedure. Through this latter proof, actors assess whether the procedure relied or
not on singular features of the paradigmatic example: if it did, then modifications will
often be brought to the procedure by subsequent scholars, aiming for ever greater gen-
erality. Similarly, different ideals of generality shaped the scientific work of enumerative
geometers in different ways, and motivated the introduction of different textual practices.
Conversely, textual practices help bring forth or transform epistemic values. For instance,
we shall describe in this dissertation how the shaping of new notations for cross-ratios
and homographic divisions, in a pedagogical context, brought Chasles to think anew his
understanding of generality, and to link it with the notion of abstraction14.

However, as Zeuthen had noticed, generality served a more fundamental purpose in
the context of enumerative geometry: it served as the basis for collective mathematical
inquiry (and conversely, a disagreement as to what constitutes generality led to impossible
dialogues between mathematicians). The many disputes over the formulae and numbers
produced whilst enumerating geometrical figures had shown that one cannot count any-
thing without first deciding what is to be counted, and what the meaning of the resulting
numbers is. In other words, for enumerative geometry to emerge as a mathematical dis-
cipline, collectives of mathematicians had to first agree on the meaning of propositions
such as “through five points goes one and only one conic section”. This proposition is,
according to any modern-day textbook, false: one should add the requisit that no three
of the five points be aligned. For 19th century geometers such as Chasles, it was not
only true, but also one of the most fundamental of all properties pertaining to conics.
Without such a proposition, no systematic enumeration of conics can be hoped for. And
yet, Chasles, who wrote an entire treatise on the geometry of conics, cannot be accused of
ignoring the specificities of the cases wherein three or four of the given points are aligned.
Rather, because of his understanding of generality in geometry, he elected to disregard
such ‘counter-examples’ and to handle propositions ‘generally true’. This convention, and
many others, were necessary for the enumeration of geometrical figures; but it means that
the propositions written in the development of this science are only true and meaningful

13 [Chemla, 2018].
14Another related reason for the interest in epistemic values is that these shared practices they norm

and shape have been shown to constitute powerful historiographical categories of the delineation and
study of scientific cultures. It appears clearly that many of the practices of generality found in Ancient
Chinese texts are totally different from that present in, for instance, Euclid’s Elements, documented in
the works of Reviel Netz and Kenneth Manders (see [Manders, 2008]. Conversely, the focus on the value
of generality and the textual practices associated to it allows for comparisons across geographical locales:
for instance, the use of paradigmatic statement has been described in both Ancient Chinese sources, and
the work on geodesics of Poincaré (see [Robadey, 2004]).
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if read through the lens of a collectively-shared practice of generality.
As an epistemic basis for collective mathematics, generality thus played in the context

of enumerative geometry a role analogous to that of objectivity in the natural sciences.
Indeed, as historians of science have convincingly shown over the past decades, before
scientists can collectively and critically produce knowledge, they must agree as to what
constitutes an object of scientific enquiry, a ‘matter of fact15’. The mechanical recourse to
instruments, supposed to erase the individual and the subject from the fact-producing part
of scientific activity, or the transformation of repeated observations into spreadsheets of
numbers, supposed to nullify the specificities which may arise in an individual experiment,
are both activities which can be collectively agreed upon as adequate modes of objectivity
on which scientific discourse can be based. Their justification as such is provided by a
constellation of some of the aforementioned epistemic values; values such as neutrality,
objectivity, or rigour. These values do not simply describe rules one should abide by in
order to derive knowledge from, say, an experiment or a reasoning. They are historically-
situated norms, which shape communally shared ways of acting qua scientists. They are
embodied at a collective level through textual, physical, cognitive practices, such as note-
taking, patient observation, data-compiling etc. These activities, which collectives agree
to select as the basis for proper scientific practice, in turn serve to constitute a category
of facts16:

All sciences must deal with the problem of selecting and constituting “work-
ing objects”, as opposed to the too plentiful and too various natural objects.
Working objects can be atlas images, type specimens, or laboratory processes
— any manageable, communal representative of the sector of nature under in-
vestigation. No science can do without such standardized working objects, for
unrefined natural objects are too quirkily particular to cooperate in generaliza-
tions and comparisons [..] Even scientists working in solitude must regularize
their objects. Collective empiricism, involving investigators dispersed over
continents and generations, imposes still more urgently the need for common
objects of inquiry.

Of course, these values and their physical embodiments are historical objects. Two
simple examples suffice to hint at the profound transformations undergone by the value
of objectivity. The first is that of the observation, classification, and representation of
snowflakes. In 1755, after months of study, the Dutch physician John Nettis drew and
classified the geometrical shapes of all possible snowflakes, as per his observations17. Strik-

15The seminal study in that direction is [Shapin & Schaffer, 1985].
16 [Daston & Galison, 2007], pp.19-22.
17 [Daston & Galison, 2007], pp.148-151.
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ingly, all of his drawings displayed a perfect hexagonal symmetry. And yet, in a footnote
to one of these figures, Nettis admitted that he had observed many an asymmetrical
snowflake in the field, which he simply thought to be undeserving of representation and
study. Asymmetrical snowflakes, for him, simply did not count as knowledge. Geo-
metric regularity was constitutive of objectivity, and not the observation of a particular
snowflake. By contrast, some two centuries later, the German physician Erwin Christeller
would find pride in his ability to produce purely mechanical depictions of natural objects
(in particular, tissue samples and other anatomic object). The irregularities in these de-
pictions – such as the shape of an assymetrical snowflake or a fracture in the photograph
of an organ – were to be left in, as part of the objective result of the observation18. These
different ways of conceiving objectivity, and thereby forming facts for scientific discourse,
are related to different regulative ideals for scientific life. Nettis and Christeller, accord-
ing to Daston and Galison, respectively exemplify the figures of the sage and of the hard
worker, that is to say two different cultural forms of the natural scientist19.

In the case of mathematics, of course, it is not obvious at first what the import of
these discussions of collective empiricism might be20. However, as Zeuthen and his con-
temporaries had noticed, generality plays for enumerative geometry a similar role to the
value of objectivity. Enumerative geometry, almost from the onset, was an international
endeavour, in which mathematicians from very different scientific cultures, and with dif-
ferent areas of expertise, participated. Only by first collectively agreeing upon norms
of generality could these geometers share an enumerative object. And, conversely, the
disagreements on such norms, as exemplified by Halphen’s and Study’s incompatible un-
derstanding of what it means to enumerate generally, lead to impossible mathematical
dialogue21.

Since generality is here taken to be the value that actually defines mathematical ob-
jectivity, what was at stake in the debates surrounding the theory of characteristics was
in fact the cultural and scientific identity of the mathematician. The variation and suc-
cession of these identities cannot be borrowed from the history of the natural sciences.
However, by adapting this framework to a more local scale, and by confronting it to a tech-
nical study of the mathematical and textual practices present in the historical record, this
dissertation elucidates the multiple, conflictuous ways in which generality was conceived,
written down, and embodied thus through the history of the theory of characteristics.

18 [Daston & Galison, 2007], pp.171-173.
19See the synthetic presentation in [Daston & Galison, 2007], p.371.
20However, in specific contexts, some have argued that experimental life ought to be thought as an

essential part of mathematical practice, see [Goldstein, 2008], [Dick, 2011], [Barany & MacKenzie, 2014].
21Of course, we are not here arguing that these modes of objectivity determined the truth-value of

Chasles’ formula in each individual case. Schubert and Study, for instance, both agreed that the formula
was correct, but their mathematical practices could not be more different.
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A Meandering Theorem

As the disputed status of Chasles’ formula indicates, the historical episode we propose to
study is not that of the emergence of a mathematical theory, if by theory one understands
a collectively-shared set of epistemic norms, objects, and methods. By the late 1870s, one
can already see labels such as “abzählende Geometrie” or “abzählende Methode” appear
in the pages of, for instance, the Jahrbuch über die Fortschritte der Mathematik. These
sections grouped mathematical papers which all, in some way, purported to enumerate
geometrical figures satisfying certain conditions. However, this differentiation of a disci-
pline, centered around guiding research questions (or a “problem constellation22”) does
not mean that there was any agreement whatsoever about how these questions should be
tackled. In fact, beneath the rather superficial commonality of the guiding research ques-
tion, there lay many an idea of what form this question should really adopt – for instance,
should one ask for tables of numbers enumerating figures satisfying lists of problems, or
should one ask for a few synthetic formulae?

While a systematic study of the apparition and transformation of such disciplinary
labels (especially at an international level) would be interesting, this is not what we set
out to provide here. Instead, our goal in this dissertation is epistemological: we set out to
understand generality in geometry, how it was conceived, written down, and embodied.
To that end, we focus on one strand of the composite that are 19th century enumerative
methods: the shaping and circulation of Chasles’ theory of characteristics. This choice
means that several authors will not be discussed here, who otherwise would have to appear
in a general history of enumerative geometry. This is the case, for instance, of the German
mathematician Rudolf Sturm. Similarly, we shall ignore large sections of the body of work
of some of the authors we do discuss: thus, Zeuthen’s work on the enumeration of algebraic
curves of genus p will not be treated here, because it would take us too far from the theory
of characteristics and the enumeration of conics.

Our strategy, in this dissertation, is to focus on Chasles’ theory of characteristics, and
in particular the disputes it gave rise to. Even there, we make no claim to exhaustiveness:
the criticisms of some actors which were not widely discussed will only be mentioned in
passing. Instead, our strategy has been to focus on a few key actors of these disputes,
of whose interventions we can produce “thick descriptions”. This means that, across this
variety of ways of construing and enacting generality in geometry, we aim to “expose their
normalness without reducing their particularity23”. For instance, Schubert’s symbolic

22“Disciplines can be defined by guiding research questions rather than by subject areas. [..] The
emergence of a discipline may be perceived, then, as a sequence of tentative answers. Ultimately, the for-
mulation of new problems at the disciplinary boundaries calls for the establishment of new subdisciplines
or disciplines – hence the cumulative nature of the development of science”, [Stichweh, 1992], pp.7-8.

23 [Geertz, 1973], p.14.
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practice is in many ways foreign to us. The results it leads to has been a constant source
of wonder for mathematicians24. And yet, by locating it, in all its technicality, within a
certain cultural composite, one can restore the kind of rationality it belongs to.

Our periodization begins with Chasles’ teaching at the Faculté de Paris, and ends
with the year 1893. Indeed, we shall argue that the genesis of the theory of characteristics
must be read against the background of a specific research programme which Chasles first
developed through his pedagogical activities (even though he had laid out the foundations
for it at an earlier stage, in his 1837 Aperçu Historique). In 1893, Zeuthen wrote his last
reply to Study regarding the validity of Chasles’ formula (and the theory of characteristics
at large). At this point, Halphen and Chasles had passed away, and Schubert and Study
would move on to other scientific endeavours. More profoundly, the theory of characteris-
tics was no longer the cornerstone of enumerative methods. In 1900, in his Paris address,
Hilbert identified Schubert’s calculus and its justification as the more pressing matter;
and despite the lack of a satisfactory answer, the question of Chasles’ formula simply
faded away.

How to (dis)count conics

To understand what the problematic formula was, and why its validity hinges upon what
is taken to constitute generality in enumerative geometry, a brief technical exposition is
required25.

A first, putative definition of enumerative geometry could be the search for system-
atic methods for the enumeration of geometrical figures satisfying a maximal number of
conditions in a (projective complex) space. One simple example of such a problem is the
enumeration of conic sections, in the plane, passing through five given points. In this
example, conic sections serve as the kind of figure to be enumerated. The plane specifies
the space in which this enumeration is to be carried out, thus determining how many
conditions one can demand from the figure at hand. Indeed, a general equation of the
conic section is, in the plane (and using homogeneous coordinates)26:

aX2 + bY 2 + cZ2 + 2dXY + 2eY Z + 2fXZ = 0

This equation has six coefficients, one of which at least is not zero. Dividing the equation
by one such non-zero coefficient, one obtains another equation defining the very same

24“Schubert does not explicitly offer such a parameter space, although he goes on, nonetheless, to give
formula after formula in what can only be its intersection theory!”, [Roberts & Speiser, 1981], p.273.

25An accessible introduction to these questions, from a modern perspective, is given in [Brugallé, 2008].
26Other equations, for instance using homogeneous coordinates, can be given f
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curve; therefore, a conic is defined in general by five independent coefficients.

Supposing a condition is an algebraic equation in the five coefficients of this general
equation, then five (independent) conditions will determine a finite number of solutions,
which can be theoretically computed via elimination. For instance, given five points
p1 = (x1, y1, z1), .., p5 = (x5, y5, z5), then the condition ‘passing through pi’ translates into
the algebraic equation

ax2
i + by2

i + cz2
i + 2dxiyi + 2eyizi + 2fxizi = 0

For a conic to pass through all five points, its coefficients (a, b, c, d, e, f) must therefore
solve the system



x2
1 y2

1 z2
1 2x1y1 2y1z1 2x1z1

x2
2 y2

2 z2
2 2x2y2 2y2z2 2x2z2

x2
3 y2

3 z2
3 2x3y3 2y3z3 2x3z3

x2
4 y2

4 z2
4 2x4y4 2y4z4 2x4z4

x2
5 y2

5 z2
5 2x5y5 2y5z5 2x5z5


×



a

b

c

d

e

f


=



0
0
0
0
0



The set of solutions of the equation is a one-dimensional vector space, any non-zero vector
of which represents the same conic (since they are all proportional). Thus, there is one
and only one curve which passes through all five given points, provided that these be inde-
pendent27. Of course, for conditions more complex than ‘passing through a given point’,
this rudimentary algebraic framework is not effective: computations are untractable, and
even to form conditions in the coefficients of the Cartesian equation of a figure is not
always possible.

Beyond its computational cost, this first approach runs into another, more substantial
problem. It takes conics to be only a locus of points in the plane; a view from which
tangency between a conic and a given curve can only be translated by the fact that they
have a single (double) intersection point. However, in so doing, one will count every
degenerate conic whose (Cartesian) equation is

(aX + bY + c)2 = 0

27If four of the five points p1, .., p5 are aligned, then the equations in the coefficients formed by the
condition ‘passing through pi’ will not form a system of rank 5, and therefore an infinity of conics will
satisfy all five conditions. These are, of course, all the degenerate conics composed of two straight lines,
one of which is that line defined by the four aligned points. If only three points are aligned, then there
is only one solution, but it is also degenerate; see [Eiden, 2009], pp.52-53. To spell a precise criterion for
the independence of conditions beyond this simple case is beyond the scope of this introduction.
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to be tangent to any given curve. These degenerate conics are double-lines (that is to
say two coinciding lines), and they intersect every given curve at one double intersection
point. And yet, they cannot satisfactorily be said to satisfy the contact condition ‘to be
tangent to the given curve’. Incidentally, Steiner’s enumeration of the conics touching
five given conics did count such solutions, and this is why his result is usually rejected in
favour of Chasles’.

Chasles’ theory of characteristics avoids such pitfalls by introducing a dual description
of conics as both loci of points, and envelopes of tangent lines. Furthermore, it avoids
untractable computations, by means of a characterization of systems of conics via only
two numbers. A system of conics (Z1, Z2, Z3, Z4) is defined as the collection of conics in
the plane which satisfy four conditions Zi. For any given system, Chasles defined two
numbers µ, ν as the numbers of conics in the system respectively passing through a given
point P , touching a given straight line L. That these two numbers do not depend on the
choice for P and L is already a sign of the kind of generality that Chasles demands from
his propositions: in modern mathematical parlance, this would require that one works in a
complex, projective plane (or space). Chasles calls these numbers the “characteristics” of
the system, and he writes (Z1, Z2, Z3, Z4) ≡ (µ, ν). The justification for this terminology
(and notation) is that Chasles had found a method for the systematic enumeration of
conics in a system of characteristics (µ, ν) satisfying any fifth condition Z5. For several
hundreds of examples of such a condition Z5, he had found this number to be of the form

αµ+ βν

where α, β are integers depending only on Z5. Furthermore, provided that one has been
able to compute the integers αi, βi relative to five given conditions Zi, Chasles had given
a procedure for the enumeration of the conics satisfying all five conditions as a function
of these 2× 5 = 10 integers.

The αµ + βν formula captured the attention of many after Chasles’ initial salvo of
publications. Supposing it to be true was not logically necessary to carry out his enumer-
ation procedure; and, for Chasles, it was merely a formal regularity observed across the
variety of conditions he had studied. For others, however, this observation would turn
into a theorem in its own right. This theorem could be restated in a variety of ways, for
instance as saying that the intersection of the collections of conics defined by respectively
one and four conditions is given by a Bézout-like formula, that is to say as a simple alge-
braic combination of the numbers characterizing both collections (just as the number of
intersections of two algebraic curves is given by the product of their degrees).

It turns out, as Halphen and others would find out, that this theorem can be criticized
on the same grounds as Steiner’s enumeration of the 7776 conics touching five other
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given conics. In other words, from the αµ + βν conics enumerated by the theory of
characteristics, some can be discounted on the grounds that they also are degenerate
conics which do not satisfy the conditions at hand in a satisfactory manner. It was
neither possible, nor desirable, for geometers of this period to discard degenerate conics
altogether28. Through a certain rewriting of what it means to satisfy a condition, and to
be a degenerate conic within a system of conics, Halphen had established new standards
for the geometrical significance of enumerative results, which Chasles’ formula did not
meet.

On the historiography of enumerative geometry

Enumerative geometry in the 19th century has been subject of scant attention by historians
of mathematics in recent decades. In most general histories of mathematics, it is either
dealt with in a few lines, or, more often than not, entirely absent29. When it is mentioned,
it is either in association with Chasles30, or because of Hilbert’s 1900 Paris address. In
this well-known speech, Hilbert gave a list of 23 mathematical problems which he believed
to be of great importance for the century to come. Hilbert’s fifteenth problem consisted
in the search for rigorous foundations for Schubert’s Kalkül, which had already become
the most visible representative of enumerative geometry31. Even in books focusing on
the history of mathematics in the nineteenth-century, enumerative geometry is almost
never mentioned32. In books devoted to the history of nineteenth-century geometry, the
situation is only marginally better. There as well, enumerative geometry is often outright
left out33, or only mentioned in passing, as one of the research interests of Chasles’ (an
actor who is systematically mentioned, if rarely studied in his own right), with perhaps a
nod to Schubert’s later works34.

By contrast, enumerative geometry features much more prominently in the writings of
mathematicians (and especially, algebraic geometers) reflecting upon their own discipline.
Julian Coolidge, who studied under Eduard Study (one of the important actors of the
debates on the validity of Chasles’ formula), wrote a History of Geometrical Methods in
which an entire chapter is devoted to enumerative methods35. Jean Dieudonné, in the first

28In recent years, real enumerative geometry, wherein the benefits of working with an algebraically
closed field are lost, has been the subject of important results; see in particular [Welschinger, 2005].
These results are far out of the scope of the present dissertation.

29Such examples include [Kline, 1972], [Dahan-Dalmedico & Peiffer, 1986], [Cooke, 2005], [Katz, 2009].
30See [Struik, 1948], pp.250-251.
31For instance, [Struik, 1948], p.285.
32 [Mehrtens et al., 1981], [Gray, 2008]
33 [Nabonnand, 2006], [Bioesmat-Martagon, 2015].
34This is the case in [Gray, 2007], p.68, for instance.
35 [Coolidge, 1940], pp.180-194.
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volume of his course on algebraic geometry, gave a brief presentaton of Chasles’ theory of
characteristics in the section on projective geometry, and discussed Schubert’s enumerative
geometry briefly in the chapter on algebraic structures36. Interestingly enough, the titles of
both books contain elements coming from the title from Chasles’ 1837 Aperçu Historique.
But the most sustained and thorough investigation of the history of enumerative methods
has been that conducted by the American algebraic geometer Steven Kleiman. Kleiman
contributed largely to enumerative geometry in the 1970s and 1980s, after the rise of
intersection theory and Grothendieck’s work in algebraic geometry. He published several
papers on the history of enumerative geometry37, and edited in 1979 a re-print version
of Schubert’s 1879 Kalkül der abzählenden Geometrie, writing a preface and adding in a
list of Schubert’s publications compiled by the German mathematician Werner Burau38.
Moreover, in his own mathematical works, Kleiman intertwined technical developments
with historical discussions39. In so doing, he shaped a specific format for his research
papers which seems to have been adopted by others in the field (especially in American
institutions with which he had frequent interactions40). Of course, in these very useful
books and papers produced by mathematicians, no effort is made to restore the notations,
goals, or concepts of enumerative geometry as it was historically practiced. Instead, sense
is made of past texts by means of contemporary mathematics. Thus, the history of
enumerative geometry as scientific and textual practice remains by and large unwritten.

This brief survey is not to be read as a lament: after all, there is no reason a priori
to expect enumerative geometry to be more relevant than any of the material included
in these aforementioned books. Rather, this survey is an invitation to reflect on the rea-
sons for this widespread lack of interest. One such reason seems to be that enumerative
geometry sits uncomfortably within most of the narratives which typically dominate the
historiography of nineteenth-century mathematics. For instance, enumerative geometry
was – loosely speaking – part of projective geometry for several of the actors involved in
this historical episode. Indeed, for the methods and concepts of enumerative geometry
to make sense, one must accept points and lines at infinity to form legitimate solutions –
otherwise, one should reject statements such as ‘there is one and only one point which lies
on two given straight lines’, a fundamental proposition without which not much can be
done in the way of geometrical enumerations. However, viewed as a part of the history of

36 [Dieudonné, 1974], pp.39-41 and 129-132 respectively.
37 [Kleiman, 1976a], [Kleiman, 1976b], [Kleiman, 1991].
38 [Schubert, 1979].
39For instance, [Fulton et al., 1983].
40For instance, see [Roberts & Speiser, 1981], [Aluffi, 1988]. Some of these historical discussions seem to

be motivated by the notion that these geometers were proving the results obtained by unrigorous methods
about a century prior, especially in the context of Schubert’s calculus. A broader study of this collective
endeavour, at the junction of algebraic geometry and historical reflections, would be very interesting.
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projective geometry, enumerative geometry is not of particular interest. In fact, by view-
ing enumerative geometry as a remote province of projective geometry, some have read
Schubert’s principle of conservation of numbers as a particular case of Poncelet’s prin-
ciple of continuity, thereby obfuscating the specificity of Schubert’s symbolic approach
and his proto-formalist philosophy of numbers41. Similarly, while the history of enumer-
ative geometry intersects that of algebraic geometry (for instance because it is where the
principle of correspondence42 was first developed), the theory of characteristics was first
constructed by mathematicians who wanted nothing to do with algebraic methods. Only
through a radical recasting of Chasles’ theory could one fit it in a history of algebraic
geometry. In historical discourses focused on an object and not a discipline, such as his-
tories of space or of axioms, enumerative geometry is a marginal item, much less salient
than other domains of mathematical inquiry of the same period. The fact that Chasles’
theory of characteristics was subject to many rewritings, thereby being pulled toward a
variety of other mathematical theories, is a key factor of this uneasy state of enumerative
geometry with regard to the historiographical canon.

However, precisely because it sits at the intersection of so many contemporary devel-
opments, enumerative geometry is particularly interesting in order to study the transfor-
mation of mathematics in the second half of the 19th century as a cultural and scientific
practice. In this dissertation, we will locate the emergence of the theory of characteristics
against the backdrop of the defense and renewal of pure geometry proposed by Chasles
and De Jonquières. In so doing, we will add to recent analyses on the distinction between
synthetic and analytic geometries43. Furthermore, by discussing the algebraic translations
undergone by this theory in the hands of Clebsch, Lindemann, and Halphen, we shall make
tangential contacts with the history of algebraic geometry, and in particular of the the-
ory of invariants44. Lastly, by situating Schubert and Study within the broader context
of the transformation of the cultural status of mathematics at the turn of the century,
we shall highlight the relevance of enumerative geometry for the history of mathematical
modernism45.

41See for instance [Zeuthen, 1905], p.270.
42On the principle of correspondence, see 3.1.3, 4.2.2.
43 [Gray, 2007], [Nabonnand, 2011], [Lorenat, 2016]. Chasles, while often relegated to a second role in

these narratives, has been the subject of growing interest in recent years, see in particular [Chemla, 2016],
[Smadja, 2016]. These studies focus mostly on his historiographical work. Of his later, mathematical
work, not much has been studied in detail.

44 [Gray, 1989], [Lê, 2015]
45 [Mehrtens, 1990], [Epple, 1997], [Gray, 2008], [Corry, Forthcoming].
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Chapter Outline

The first third of this dissertation focuses on Chasles’ geometrical practice prior to his in-
volvement with enumerative questions. More precisely, the first chapter presents Chasles’
historiography and epistemology of geometry relying on his early work (and, in particular,
on his famous 1837 book on the history of geometrical methods). The second chapter then
turns to Chasles’ course of higher geometry given between 1846 and 1852 at the Faculté
de Paris. Special attention is paid to the notations developed therein, and their use for
the writing of abstract geometrical propositions. Lastly, chapter three shows how these
notations (and, more largely, the content of this course) were mobilized between 1853 and
1860 to form the basis of a literary technology Chasles would call “geometrical equations”.
Alongside the naval-officer Ernest de Jonquières, who had attended some of the aforemen-
tioned lectures, Chasles would reactivate the early-modern tradition of equation-solving
within his new notational and conceptual framework, in a way that allows for the writing
of general equations of curves, devoid of auxiliary quantities such as algebraic variables
or axes of coordinates.

The second part of this dissertation deals with Chasles’ and De Jonquières’ enumera-
tive theories, which they developed between 1861 and 1867 after publications by Steiner
and Bischoff had circulated to France and Italy. These enumerative theories, this disser-
tation argues, must be read as the introduction of these early enumerative efforts into
the new framework of geometrical equations. Chapter four thus contains a description of
the circulation of enumerative problems from Steiner to Chasles, as well as a presentation
of Chasles’ theory of characteristics in its technical details. In chapter 5, we turn to the
controversy which ensued thereafter between Chasles and De Jonquières. While their
controversy began as a regular priority quarrel, it soon turned into a full-fledged scientific
disagreement bearing on the epistemic differences between algebra and geometry. The
notion of “solutions étrangères”, which had arisen toward the end of the 18th century as
part of a reflection on the modes of generality of algebraic and geometrical propositions,
would be reactivated to describe certain degenerate solutions to enumerative problems.

Lastly, the third and final part of this dissertation is devoted to the transformative
circulation of Chasles’ theory of characteristics between 1865 and 1893. More precisely, in
chapter 6, we survey early rewritings of this theory, and in particular algebraic rewritings
thereof. We show how one of these rewritings, namely that of the French artillery officer
Georges Halphen, led to a refutation of the αµ+βν formula at the heart of Chasles’ theory.
In chapter 7, we present the genesis of Schubert’s abzählende Geometrie between 1874 and
1880, with a special emphasis on the notational innovations developed therein. Much of
the notations and architecture of Schubert’s theory is predicated on the validity of Chasles’
formula (and other analogous results). The final and eighth chapter of this dissertation
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surveys the debates which arose from the obvious contradiction between Halphen’s and
Schubert’s enumerative theories. These debates are then framed as part of a broader
cultural phenomenon, namely the modernist transformation of mathematics.
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Chapter 1
Chasles’ Aperçu Historique: The Epistemic
Portrait of the Geometer

Introduction

Toward the end of his landmark 1837 Aperçu historique sur l’origine et le développement
des méthodes en Géométrie (to which we shall refer only as Aperçu Historique in what
follows), the French mathematician Michel Chasles (1793-1880) expressed an optimistic
outlook on the state of and perspectives for pure geometry1:

Aujourd’hui, chacun peut se présenter, prendre une vérité quelconque connue,
et la soumettre aux divers principes généraux de transformation; il en retirera
d’autres vérités, différentes ou plus générales ; et celles-ci seront susceptibles
de pareilles opérations ; de sorte qu’on pourra multiplier, presque à l’infini,
le nombre des vérités nouvelles déduites de la première. [..] Peut donc qui
voudra, dans l’état actuel de la science, généraliser et créer en Géométrie ; le
génie n’est plus indispensable pour ajouter une pierre à l’édifice.

The Aperçu Historique presents itself as a historical account of the development of geo-
metrical methods, largely polarized by the rivalry between pure geometry and analytical
geometry2. This rivalry, in Chasles’ narrative, mostly revolves around the relative gen-
erality of both approaches. The conclusion of Chasles’ historical account was that at

1“Today, anyone can come up, pick any known truth, and submit it to the various general principles
of transformation; they will thus gain other truths, different or more general; and the latter will be
susceptible to similar operations; so that one will be able to multiply, almost to infinity, the number of
new truths deduced from the first one. [..] In the present state of science, whoever wants to generalize
and create in Geometry, can; genius is no longer required to add a brick to the edifice”, [Chasles, 1837],
pp.268-269. All translations in this dissertation are mine, unless otherwise noted.

2Analytical methods, here, refer in first approximation to methods relying on axes of coordinates,
algebraic or infinitesimal computations etc. Chasles sometimes refers to pure geometry as synthesis, or
synthetic geometry. However, he overall rejects this label, for reasons which we shall explain later.
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the turn of the century, savants such as Gaspard Monge (1746-1818) and Lazare Carnot
(1753-1823) had laid out the foundations for a renewal of the methods of pure geometry,
thereby allowing the latter to finally regain the means to rival the analytical methods
which had dominated mathematics in the wake of Descartes’ 1637 Géométrie3. Morever,
beyond catching up with the generality of analytical methods, Chasles depicted pure ge-
ometry as retaining a series of epistemic advantages, in that the knowledge it provides is
particularly simple and intuitive.

Geometrical methods, Chasles concluded at the end of his historical analysis, can
be used effortlessly, and by anyone. This contrasts starkly with Chasles’ assessment of
analytical methods which, while also general, require shrewdness, talent, or subtleness4.
It might sometimes be the case that analysis yields geometrical truths at a faster rate
than geometrical methods could (although Chasles never fully admits this possibility), but
the latter would still be valuable for it illuminates the problem at hand so fully that it
provides a knowledge of a different nature. The sign of a complete knowledge of a certain
theory, Chasles thus explained, was that one could explain it entirely to any passer-by on
the street5. Thus, generality, simplicity, and intuitiveness are to be understood as both
epistemic and epistemological values for Chasles6. This means that they serve both as
norms of scientific practice conducive to truth – by following general methods, one can
transform a proposition into a more general one, thereby adding to our knowledge – but
also to truth in a desirable form.

This constellation of values, thus, allows Chasles to construct two opposite portraits
of the analyst and of the geometer: the ingenious and swift calculateur, expert producer
and wielder of a cryptic knowledge, versus the enlightened geometer, effortlessly and
methodically combining truths, able to pause at any given time to explain to the layman
in the street whatever proposition he is contemplating. Of course, these two portraits
are not pure creations of Chasles’: they reflect the preoccupations of a specific scientific
milieu. In particular, both Chasles’ recourse to historical epistemology, and his insistence
on the importance of general, transmittable knowledge, are key components of a scientific
culture shaped and shared at the École Polytechnique.

3In this chapter, we shall not attempt to discuss the validity or merits of Chasles’ historical account
per se, as our interests lie rather in how it played a role in his mathematical practice.

4For instance, see Chasles’ comparison of various approaches to spherical geometry which concludes
with “la Géométrie pure offre souvent une voie plus facile et plus expéditive que le calcul le plus ingénieux
et le plus subtil”, [Chasles, 1837], p.238. Many other passages in the book echo this thesis.

5“Nous ajouterons, avec l’un des géomètres modernes qui ont le plus médité sur la philosophie des
mathématiques, ‘qu’on ne peut se flatter d’avoir le dernier mot d’une théorie, tant qu’on ne peut pas
l’expliquer en peu de paroles à un passant dans la rue’”, [Chasles, 1837], p.115. Chasles is in fact quoting
Gergonne through the intermediary of Quêtelet here. On the circulation of this quote from Gergonne to
Chasles, and later on to Hilbert, see [Barrow-Green & Siegmund-Schultze, 2016].

6We borrow this distinction from [Chemla et al., 2016], pp.8-9.
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1.1. Situating Michel Chasles

In this chapter, we locate Chasles in the institutional and scientific context of this
school, and analyze the portrait of the ideal geometer which he constructed in his Aperçu
Historique. In the two following chapters, we shall turn to the manners in which this
normative ideal structured Chasles’ mathematical practice.

1.1 Situating Michel Chasles

1.1.1 Some biographical elements

Chasles was born in 1793, the son of a wealthy and well-established merchant near
Chartres. At the peak of Republican fervor, he was given the name Floréal after a month
of the Revolutionary calendar. By 1809, this attempt at decimalizing dates had largely
failed, and he had his named changed to Michel. At about the same time, Chasles was
sent to Paris to study at the Lycée Impérial (today’s Lycée Louis-le-Grand), where he
excelled. In 1812, he was admitted to the École Polytechnique; and two years later, an
Imperial decree mobilized the students of this school in the context of the War of the
Sixth Coalition. Chasles and his classmates took part in the Battle of Paris in 1814, after
which they were sent home and the school closed down for several weeks. The military

Michel Chasles (1793-1880)

defeat, and the ensuing economic losses, meant that many of Chasles’ cohort were not
able to obtain the positions they had hoped for upon entering the École Polytechnique.
Chasles, according to a few biographers, gave up on such a position so that one of his less
wealthy friends could have it, and instead went on to work as a stockbroker in Paris, and
then in various European cities7.

7A few biographies of Chasles were published toward the end of his life and in the years following his
death, see in particular [Boudin, 1869], [Bertrand, 1892].
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Chasles had published a few papers on geometry while a student at the École Poly-
technique, but he would not publicly participate in any scientific endeavour between 1814
and 1827. Very little is known of Chasles’ life during this period, except for the fact that
he was rather unfortunate in his financial dealings, and, by the late 1820s, had to return
to Chartres and to mathematics. In 1827, his name begins appearing in mathematical
journals such as the Nouvelles Annales; and his publications mostly deal with the geom-
etry of conics, borrowing from the work of other pure geometers such as Hachette and
Poncelet.

Chasles’ rise to fame came with his winning entry for a concours organized in 1829
by the Académie de Bruxelles. Candidates were asked to present the methods of modern
geometry, and in particular that of reciprocal polars. Chasles’ entry became the basis
for a book, which would only be published in 1837 partly due to the Belgian Revolution
between 1830-1831. We shall turn to the content of this book in the second section of
this chapter (1.2). Throughout the 1830s, Chasles also published a few memoirs on the
attraction of ellipsoids, which were well received and would circulate widely8.

In 1841, after the death of Félix Savary, Chasles was hired to teach the ‘Cours de
Machines’ at the École Polytechnique. Whilst Chasles did not relish the prospect of
teaching this subject, nor that of moving back to Paris at the age of almost fifty, he
was nonetheless convinced to do it. This move proved judicious, as Chasles managed
to navigate Parisian scientific institutions extremely well. By 1846, after some lobbying
by Poinsot, a chair of higher geometry was created specially for Chasles at the Faculté
de Paris (i.e. the Sorbonne), which he then occupied until his death in 1880 (although
after 1868, his teaching duties were increasingly covered by Pierre-Ossian Bonnet, then
by Gaston Darboux9). Furthermore, while Chasles had been a corresponding member of
the Académie des Sciences since 1839, he would become a full member only in 1851.

Chasles’ scientific output accelerated once he moved back to Paris, and even more once
he obtained his tenure at the Faculté de Paris10. In particular, he would become a regular
speaker during the weekly meetings of the Académie des Sciences; and the Comptes-
Rendus de l’Académie des Sciences would quickly become Chasles’ favored outlet for
scientific publications11. In fact, most of Chasles’ communications to the Paris Académie
would borrow from the content of his lectures given the same year at the Faculté de Paris.

8 [Michel, 2020]. At several occasions in this chapter, we shall use this case-study as an example of
Chasles’ historiographical and epistemological theses; the reader can report to this paper for more details
each time.

9 [Croizat, 2016], p.107.
10A partial list of Chasles’ publications can be found in the inventory of his personal library, see

[Boulland & Claudin, 1881], pp.173-179.
11In this regard, Chasles was no different from the majority of his peers from the Académie. We shall

discuss Chasles’ publishing strategies in 5.1.3.
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Chasles’ lectures were designed for advanced students, and the material he lectured on
was very much his own research. These lectures would form the basis of two treatises:
in 1852, Chasles published a Traité de Géométrie Supérieure (which will be the focus of
chapter 2); and in 1865, he published a Traité des Sections Coniques. This latter treatise
was initially intended to be the first of two volumes. The second volume, of which no
trace exists, was to focus on the enumerative methods which we shall discuss in chapter
4, according to contemporary accounts. That Chasles’ teaching must be viewed as an
integral part of his scientific activity (and not merely as a transmission of knowledge) will
be key to our analysis of his notational and textual practices, which were largely created
in a pedagogical context.

Chasles’ research interests were diverse: they encompass for instance, the history
of mathematics (including from non-Western traditions), kinematics, and of course the
geometry of curves and surfaces. However, a constant theme across his scientific output
is the defense of pure geometry, whether to investigate motions or curves, or its historical
development. For this reason, descriptions of Chasles’ work have often placed him as part
of a larger French tradition of synthetic geometry, to which we now turn.

1.1.2 A French tradition of pure geometry?

Much has been written on the renewal of pure (or synthetic) Geometry in early 19th

century France. This historical episode is one which took place during the two or three first
decades of the nineteenth-century, and it saw an effort from various geometers to broaden
the scope of geometrical methods by introducing concepts such as transformations and
projections, often in order to enable geometry to compete with analysis. The main actors
of this historical narrative are typically considered to be Gaspard Monge and Lazare
Carnot, but also Charles Dupin (1784-1873), Jean-Victor Poncelet (1788-1867), Charles
Brianchon (1783-1864), and of course Chasles. In first approximation, we shall refer to
this collective as the “French tradition of pure geometry”, a label whose relevance we shall
discuss shortly.

Already at the end of the nineteenth century, mythical retellings would present this
historical episode as the birth of a new branch of mathematics, namely projective geome-
try. A key text responsible for this historiographical narrative is Klein’s famous Erlanger
Programm12. This French tradition, Klein suggested, “provided a sound foundation for
that distinction between properties of position and metrical properties13”. By subordinat-
ing the study of metrical properties (such as lengths and areas of figures) to the study of

12 [Klein, 1872]. This text was first delivered as a speech, then published in various languages over the
subsequent years. On the difference between these various versions, see [Rowe, 1983]. On the moderate
influence of this text in its first years of circulation, see [Hawkins, 1984].

13 [Klein, 1872], p.12. Translation by M.W.Haskell, in [Haskell, 1893], p.222.
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properties which are not altered by projection (such as the fact that two figures intersect,
or are in certain specific configurations), Poncelet, Chasles, and their colleagues allegedly
discovered a new geometry, which would later be made entirely free from metrical concepts
(such as lengths or angles) by German geometers such as Von Staudt. Klein’s historical
account served to underscore the profound unity underlying the various, divided geome-
tries which had arisen over the past decades14: for him, the divide between analytic and
synthetic geometries had been bridged through a redefinition of the very subject-matter
of geometry. This reading has proven influential: for instance, the American philosopher
Ernest Nagel borrowed largely from it in his account of the development of 19th-century
geometry as the progressive introduction of a non-quantitative subject-matter for geome-
try15. However, recent scholarship has definitively put the lie to this reading, and revealed
it as decidedly anachronistic. None of the authors of this French tradition suggested an
exclusion of metric properties from geometry16. Furthermore, their criticism of analysis
did not prevent them from relying more or less frequently on “mixed methods”, that is to
say on a combination of the analytical and the purely geometrical17.

More recently, this tradition of French synthetic geometry has been the subject of
historical attention from a variety of perspectives. Some have proposed accounts of the
mathematical innovations – be it in terms of concepts, methods, or results – at the heart
of this episode, emphasizing the role of descriptive geometry, the study of projections,
the principle of duality, and Poncelet’s theory of poles and polars18. Others have put
this renewal of geometrical methods in perspective with the emergence of new teaching
institutions19, such as the École Polytechnique or the École de l’an III. These institutions,
where Monge’s teaching was influential for years even after his dismissal, were places for
the circulation not merely of his geometrical knowledge, but also for a certain way of
understanding and practicing science. For instance, the older members of this French
geometrical tradition have been described as enacting practices of generality more largely
shaped and shared at the École Polytechnique20.

Our purpose in the following pages is not to give a comprehensive overview of this

14For a more nuanced presentation of Klein’s thesis and its evolution over time, see [Lorenat, 2015a],
pp.32-37.

15 [Nagel, 1939].
16 [Chemla, 2016], p.66.
17 [Lorenat, 2015a], p.284.
18 [Gray, 2007], pp.1-78; [Nabonnand, 2006], pp.11-78; [Nabonnand, 2011].
19 [Daston, 1986], [Belhoste & Taton, 1992], [Belhoste, 1998]. Daston emphasizes the philosophical

continuities between the empiricism of Locke and D’Alembert, and the epistemology of geometry passed
down by Monge in his teaching for engineers. Belhoste emphasizes the transformation of the mathematical
practice (and understanding thereof) of actors such as Lagrange upon receiving teaching duties, and
having to adapt their mathematical knowledge for the transmission to a non-expert audience.

20 [Chemla, 1998], [Chemla, 2016]. On the Polytechnique ideal for generality in mathematics more
broadly, see [Wang, 2017], pp.118-122.
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tradition, or even of its historiography. Instead, we wish to identify some of its epistemic
characteristics, in order to measure Chasles’ adherence to or departure from them. Before
we do that, however, we must first ponder how this collective can even be delineated.

From a mere glance at their dates of birth and death, the actors we have listed above
can already be divided into at least two distinct generations. Monge and Carnot were
both savants of the Ancien Régime, who witnessed (and in fact, actively participated
in) the French Revolution as adults. Monge had worked as an instructor at the École
de Mézières, teaching experimental physics and technical drawing to military engineers
to-be21. Carnot actually trained at the École de Mézières while Monge worked there,
graduating in 1773 to become a lieutenant in the French army, where he continued his
study of (applied) mathematics22. After the Revolution, Carnot served as a general under
Napoleon Bonaparte, and later served as Minister of the Interior. Monge, on the other
hand, played a key role in the creation of new pedagogical institutions. In particular,
he was an influential member of the Commitee which presided over the creation and
definition of the École Polytechnique, where he also served as a professor of descriptive
geometry for over a decade23.

On the other hand, Dupin, Brianchon, Poncelet, and Chasles were born either a few
years before or after the Révolution. They all trained at the École Polytechnique (being
admitted in, respectively, 1801, 1803, 1807, and 1812); however, only the first two were
able to attend Monge’s lectures. Indeed, during his first year at the École Polytechnique
in 1807, Poncelet was taught by Hachette24, as Monge only taught second-year students.
In 1808, Poncelet became ill, and had to repeat the first year. The following year, Monge
himself would cease his teaching activities due to an illness of his own25. This means
that another division must be introduced between the members of this tradition. Indeed,
while Dupin and Brianchon would strongly identify as disciples of Monge26, this would
not exactly be the case for the other two. The introduction to Poncelet’s 1822 Traité
des Propriétés Projectives, for instance, opens on an evocation of Monge’s lessons, and
identifies “Monge’s disciples” as a collective with which Poncelet maintains a certain

21On engineer schools in Ancien Régime France, and especially artillery schools, see [Alder, 1997],
pp.56-85. On Monge’s scientific career, see [Taton, 1951]. On the global circulation of Monge’s teaching,
see [Barbin et al., 2019].

22On Carnot’s political and scientific life, see [Gillispie, 1971].
23 [Belhoste, 2003], pp.76-91. Descriptive geometry is the art of representing three-dimensional figures

in only two dimensions.
24Jean Hachette (1769-1834) had worked at the École de Mézières in the months before the French

Revolution, and had become Monge’s assistant at the École Polytechnique at its creation in 1794. He
would eventually teach descriptive geometry at the Faculté de Paris and at the École Normale.

25 [Belhoste, 1998], pp.2-3. Monge’s influence at the École Polytechnique weaned off quickly in the
aftermath of his disease and withdrawal from teaching activities, see [Belhoste, 2003], pp.200-211.

26See for instance the dedication of Dupin’s Développements de Géométrie to Monge, [Dupin, 1813],
pp.v-vi.

25



Chapter 1. Chasles’ Aperçu Historique: The Epistemic Portrait of the Geometer

distance27. While the works produced by Monge and his students are an important
starting point for the renewal of pure geometry, they remain insufficient in that regard.
Poncelet does not present his treatise as a continuation, but rather as a departure from
them28 and about the same thing can be said of Chasles’ Aperçu Historique29.

In a well-known paper on the so-called “Chicago school of algebra”, the historian Karen
H. Parshall surveyed a few definitions for the historiographical category of a ‘research
school’ in general, and eventually proposed one with the specific case of mathematics in
mind30. A collective of actors, she suggests, can be said to form a school if it’s centered
around a charismatic leader, who advocates a fundamental idea which he passes along
to students he trains more or less closely31. This original leader, Parshall explains, can
be replaced by a successor who is recognized as such by other members of the school.
What is passed down through teaching is of course not just mathematical knowledge, but
a selection of questions, as well as a certain ideal for what form the answers to these
questions ought to take.

With this definition in mind, can one speak of a Monge school of geometry? Monge was
certainly a charismatic figure, whose aura subsisted for years after he had had to abandon
his teaching duties at the École Polytechnique. He trained many students there, and
was replaced by Hachette, who by all accounts was his faithful successor. Furthermore, a
broad consensus that geometrical methods must be renewed in order to elevate them to
the heights achieved by analytical methods over the course of the past century was shared
amongst these mathematicians, alongside a group of epistemic virtues such as facility,
intuitiveness, and generality. The remaining question is whether Monge’s fundamental
questions were really pursued by these students.

In his course on descriptive geometry given at the École Normale de l’an III, Monge
put this mathematical discipline at the center of a broader republican project: to educate
the nation, and thereby to boost national industry, such was the purpose of this course in
the newly-created school32. The fundamental objective of descriptive geometry, therefore,
was to provide engineers and workers with systematic methods to represent on the page
spatial objects and their relative positions. What was at stake in this new science was at
least two-fold: first, it had to be a representational technique accessible to a large number
of citizens (and not only to trained mathematicians), hence the recourse to non-analytical

27“Les ouvrages mêmes de Monge, ceux de ses Élèves [..] ont prouvé que la Géométrie descriptive [..]
peut se suffire à elle-même. [..] Cependant, il reste encore quelque chose à faire”, [Poncelet, 1865], p.ix.

28 [Poncelet, 1865], p.ix.
29 [Chasles, 1837], p.191.
30 [Parshall, 2004].
31A fourth criterion regarding publications is included in her definition, which is omitted here because

it is not entirely suitable for the description of early 19th-century scientific practices.
32 [Monge, 1799], pp.1-4.
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methods, which Monge was very comfortable using in other contexts33. Second, it had to
allow engineers to exert control at a distance over the design and production of techni-
cal artifacts: as such, descriptive geometry quickly became a “language of command34”,
whose mastery granted greater social mobility and autonomy within the French industry.
Monge’s understanding of the need for a purely geometrical approach to certain theoret-
ical problems, and his insistence on the generality and simplicity of this approach, was
therefore enshrined in a larger, extra-mathematical project.

Some of Monge’s students shared this vision: in his 1813Développements de Géométrie,
Dupin set out to show how descriptive geometry could be used to investigate the curvature
of surfaces, and thereby be applied to practical matters such as the stability of ships or op-
tics35. However, this concern would disappear with Chasles. While he would occasionally
mention such applications, with which he was clearly familiar as a ‘polytechnicien’, a large
portion of Chasles’ scientific output lies in the realm of pure mathematics. This departure
from Monge’s concerns corresponds to a shift in professional careers: unlike Dupin and
Brianchon, Chasles eventually obtained a position as a professor of higher geometry at
the Faculté de Paris, and did not pursue a career at the crossroads of engineering, military
duties, and administration, as most of the other members of this collective did.

Thus, after savants such as Monge and Carnot, a set of epistemic virtues and epistemo-
logical concerns, shaped against the backdrop of late-Enlightenment engineering culture,
would serve as identifiers for a collective of geometers all throughout the first half of the
19th century36. However, their signification evolved with the sociology of their bearers.
Thus, if one wishes to speak of a “Monge school of geometry”, Chasles and Poncelet can
only be described as members of it in a weak sense. Furthermore, the bulk of Chasles’
scientific output was produced decades after the main texts around which Monge’s school
was structured. Thus, an ideal for generality forged in the context of Republican science
was transmitted to and transformed by Chasles, in the context of pure mathematics.

1.1.3 Generality between universality and uniformity

The transmission of this ideal can be located within the École Polytechnique. This school
was where Chasles, like Poncelet, encountered Monge’s teaching through the intermediary
of Hachette. Not only did he learn descriptive geometry there, but he was also in contact
with a normative ideal regarding the form which scientific knowledge ought to take, one

33Monge wrote a book on analytical geometry, which would be republished several times throughout
the 19th century; [Monge, 1807].

34 [Alder, 1997], p.74.
35 [Dupin, 1813], pp.vii-xii.
36On the importance of such identifiers for mathematical collectives in the larger context of synthetic

geometry, see [Lorenat, 2015a], p.7.
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which Monge had largely contributed to.
Indeed, the knowledge dispensed at the École Polytechnique was geared toward a

specific aim, and as such, was structured according to a specific set of epistemic norms37:

The École Polytechnique confronted its creators with a unique historical chal-
lenge. How were they to train engineers to build fortifications, bridges and
roads, and to turn out mining and shipbuilding engineers, geographer engi-
neers and all types of engineers capable of working effectively in all technical
domains in the space of just three years? In order to handle such a daunting
task and to mould the figure of the engineer-polytechnique in such a short
time, there was only one real solution as far as the founders were concerned:
to provide future engineers with universal scientific knowledge, tools and
methods, which due to their being as universal as possible, were the only
principles applicable to an (infinite) range of practical circumstances.

Descriptive geometry was one such method. One can see why generality was a cardinal
epistemic value for the first generations of polytechniciens: the social and political status
of the knowledge they were to master and employ throughout their careers ought to be
universally applicable.

But the kind of generality sought for mathematical knowledge was not limited to
universality: rather, its universality had to be readily available to practitioners all over
the country, in a diverse array of industries and administrations. As such, the knowledge
of this technocratic class had to be applicable systematically, through the use of rational
linguistic rules. This is why analysis became such a crucial part of the Polytechnique
curriculum: mathematical analysis was more than the namesake for a set of tools and
methods, such as differential equations or infinite series, which polytechniciens learnt
how to use and apply to a variety of physical and mathematical problems, ranging from
mechanics to the theory of heat. More broadly, analysis referred, after Condillac, to a
general method which, in the face of a given theory, “was supposed to determine the
creation of a uniform and natural system of signs, [so that] the rules of their combination
correspond to the rules of combination of the elements the signs refer to38”. Similarly, in
the context of early 19th-century engineering, descriptive geometry and technical drawing
thus became more than “neutral conduits of information”, but rather a “vernacular of
industry”, in keeping with “the central tenet of the Enlightenment [..] that progress in the
mechanical arts depended on finding a uniform and precise language for that subject39”.

While Chasles or Poncelet had their own reasons for rejecting, or at least criticizing,
37 [Belhoste & Chatzis, 2007], p.217. Emphasis mine.
38 [Belhoste, 2003], pp.232-235.
39 [Alder, 1997], p.316.
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the mathematical methods attached to the term analysis, they shared to a large extent
a respect for the general scientific practice that had come to be understood under it -
in other words, they were part of that same epistemic culture, to which belong many of
the most vocal early proponents of mathematical analysis, such as Lagrange, Laplace, or
Fourier40. Chasles’ plea for geometrical methods which can be applied “without genius”
responds to this analytical ideal, whilst deplacing it onto the terrain of pure geometry.
Similarly, Poncelet would call for the renewal of the language of pure geometry, which he
assessed must be brought closer to that of analysis for general and uniform geometrical
reasoning to be possible41.

Thus, Chasles’ epistemology and practice of geometry must be viewed against the
backdrop of an epistemic value of generality between universality and uniformity, and
which originated in late-Enlightenment engineer culture. We now turn to his first book
on the history of geometry, which we read as an epistemic portrait of the ideal geometer;
and we flesh out the notion of generality in geometry which he had come to place at the
center of this portrait.

1.2 The virtuous practice of geometry in Chasles’
Aperçu Historique

1.2.1 History as a means for an epistemological end

In 1829, the Académie Royale des Sciences de Belgique proposed a prize for the best
essay on the topic of “the philosophical examination of various geometrical methods used
in recent geometry, and, in particular, of the method of reciprocal polars”. Chasles’
winning entry was to be immediately published, but some political turmoil caused by
the Belgian Revolution put this project to a temporary halt42. As he was finally allowed
to send a manuscript to press in 1837, Chasles had more than doubled the size of his
dissertation. On top of the two memoirs on the principles of homography and duality
which the Belgian Academy had rewarded, he had added a detailed historical study of
the development of geometry, from the classical works of Thales and Pythagoras to the
recent discoveries of Dupin and Poncelet; as well as 34 notes which go in depth into some
technical, historical, or philosophical details evoked during the historical account itself43.
The rewritten manuscript was then entitled Aperçu Historique, thus reflecting what had

40 [Wang, 2017].
41 [Poncelet, 1865], p.35.
42 [Quetelet, 1872], pp.36-37.
43The historical study itself covers about 270 pages, while the notes run slightly under 300 pages. The

two memoirs, together, make up for 275 pages.
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become the focal point of Chasles’ presentation44.
Despite its title, this book should not be regarded as a purely historical account of

the development of a certain science. Chasles used historical analysis as a means to an
epistemological end. More precisely, through the study of past methods and theories,
Chasles aimed to understand what enabled geometers to develop ever more general meth-
ods and results, and to further these investigations on that very same path. In so doing,
Chasles set out to show that pure geometry had finally obtained the means to rival anal-
ysis through a process of generalization, which had culminated in the last decades. As
Chasles put it in the introduction of his book45,

Nous avons eu en vue surtout, en retraçant la marche de la Géométrie, et
en présentant l’état de ses découvertes et de ses doctrines récentes, de mon-
trer, par quelques exemples, que le caractère de ces doctrines est d’apporter,
dans toutes les parties de la science de l’étendue, une facilité nouvelle et les
moyens d’arriver à une généralisation, jusqu’ici inconnue, de toutes les vérités
géométriques.

Such a project very much bears the mark of a certain scientific culture, in which Chasles
took part through his studies. The influential teaching of analysis at the École Poly-
technique by Lagrange had also placed historical considerations at the center of the very
understanding of what constituted the strengths and advantages of the methods and dis-
ciplines being taught46. For instance, in the very first pages of his Traité de Mécanique
Analytique, Lagrange sets out to “reduce this science to general formulae”, and to “unite
the different principles found until now under a single viewpoint47”. To that end, in both
parts of his book (respectively dealing with statics and dynamics), the first section was
devoted to a historical overview of the principles found in past centuries, while the second
section would unite them within a single general formula. This formula could then be
rewritten in (or applied to) a variety of cases, thereby allowing for a systematic resolution
of all mechanical problems. History thus played an instrumental as well as a pedagog-
ical role In Lagrange’s mechanics, and served to put on display the perfection reached
by analytical methods, which reduce to two principles, and two formulas, the sum of all
mechanical knowledge acquired throughout the centuries. While Chasles and Lagrange

44A thorough analysis of Chasles’ historiography is given in [Chemla, 2016], from which this section
borrows largely.

45“While recounting the march of Geometry, and while presenting the state of its discoveries and recent
doctrines, we mainly set our sights on showing, by a few examples, that the hallmark of these doctrines
is to bring, in all parts of the science of extension, a new simplicity and the means for a generalization,
until then unknown, of all geometrical truths”, [Chasles, 1837], p.2.

46See [Wang, 2017] , pp.57-84., for an analysis of the pedagogical uses of the history of analysis in its
teaching at the École Polytechnique.

47 [Lagrange, 1811], p.i.
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had reached very different conclusions as to what tools are best suited for the develop-
ment of mechanics, and in particular the merits of analytical methods, the parallelism
in the organization of their books, and their shared way of producing and reflecting on
mathematical knowledge, must be emphasized here. In fact, this mathematical practice
can be detected in many other works from that period and that milieu, such as Lacroix’s
1797 Traité du calcul différentiel, Delambre’s 1814 Astronomie théorique et pratique or
Fourier’s 1822 Théorie analytique de la chaleur48.

Chasles’ history of geometry takes the form of a succession in five stages (‘époques’),
each marking a decisive turn in the sort of geometrical methods available to mathemati-
cians, and characterized by an ever-greater generality. Chasles’ initial project when ex-
panding on his prize-winning dissertation was to include a exposition dogmatique of some
of these modern geometrical theories49, including a theory of second-degree surfaces which
eventually became the basis of his work on the attraction of ellipsoids50. This abandoned
project betrays the influence of another fellow Polytechnicien, on whom this perceived
interest of returning to the historical development of sciences as a means to track what
allowed for their perfecting also left a mark. Indeed, in his Leçons de Philosophie Posi-
tive, briefly quoted in Chasles’ Aperçu Historique51, French philosopher Auguste Comte
resorted to a similar instrumental use of the history of science. Comte famously claimed
that “one can only completely know a science once one knows its history52”, as only his-
tory can reveal how scientific knowledge was formed, how generality was reached, how
founding principles for a given science were discovered. This historical study, however,
can and must be supplemented in Comte’s view by an exposition of the “dogmatic march”
of said science, so that the historical account becomes intelligible. Chasles’ project, and
his use of the term ‘dogmatic’, indicate that he shared Comte’s positive view on the need
for the joint study of a science and of its historical epistemology53.

48See for instance the preface in [Lacroix, 1797], pp.iii-xxix, where Lacroix explains that “the same
discoveries being made by several geometers with very different viewpoints, therefrom many methods
have resulted, among which one must make a choice, or which one must present in an order which puts
on display the relations they have with one another; furthermore, it is no less necessary to give to all
of those, so to speak, a uniform hue”, p.iii. Similar ideas can be found in the Discours préliminaire
in [Fourier, 1822], pp.i-xxii.

49 [Chasles, 1837], p.254. This project was eventually dropped, but gave Chasles the initial content for
the redaction of several notes. To an extent, his lectures at the Faculté de Paris would allow Chasles to
realize this project, and his 1852 Traité de Géométrie Supérieure would be framed as such an exposition
dogmatique. We shall come back to these lectures in the next chapter.

50 [Chasles, 1846].
51 [Chasles, 1837], p.415. Furthermore, Note V (pp.288-290) is directed against the definition of

geometry as the science of the measurement of extension, which Comte had reproduced in his 10th Leçon.
Whether Chasles was arguing with Comte directly, or other authors who also used this definition, is not
made explicit in this text.

52 [Comte, 1830], Deuxième Leçon, p.82
53In fact, Comte’s tenth to fourteenth Leçons are devoted to the history and philosophy of geometry.

Some of Comte’s theses, for instance regarding the limitation of Ancient geometry, are quite close to
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However, unlike the sort of narratives for the development of sciences suggested by
Comte’s well-known theory of the “three stages”, Chasles allows for parallel developments
to take place54. For instance, he claims that both Descartes’ and Desargues’ geometries
display levels of generality which, in their respective fields of application, were previously
unattainable, while being contemporary. And yet, these geometries appear in different
“époques”. Despite this fact, Chasles’ historical account can be regarded as narrating
the progress of geometry towards generality, and stops at a point where various power-
ful methods have been found, which still remain to be unified under a minimal set of
principles.

1.2.2 A tale of two generalities

The historical epistemologies of Lagrange, Comte, and Chasles, are all polarized by the
value of generality. For Lagrange, this generality was attained through the unification
of historical results within a single formula and principle; for Comte, history served the
identification of the general and fundamental principles of a given science. Similarly, the
Aperçu Historique opens with what Karine Chemla called a “diagnosis about the limits
of ancient geometry55”; and these limits consist mainly in a lack of generality that can
be found in both the mathematical statements and the geometrical methods used by
ancient Greek geometers. While they can certainly be linked, these two limits must first
be separated and explained in their own rights56.

The first of these limits is that certain theorems, or propositions, are redundant for the
modern geometer. For instance, in the seventh book of Pappus’ Collection, 43 lemmas are
given, many of which, according to Chasles, “express a single theorem57”. The multiplicity
of these lemmas follows from the fact that ancient geometers had to give different proofs
for different configurations of the points involved in the theorem. For Chasles, all of

Chasles’ own views.
54Comte viewed the historical development of our methods of cognitive inquiry as passing through three

stages, namely the theological, metaphysical, and positive stage. In the first stage, natural phenomena
are explained through a recourse to the divine or the supernatural. In the second stage, phenomena are
explained through abstract concepts. In the positive or scientific stage, explanation of natural phenomena
derives from observation and experiment. Contrary to common belief, Comte does not view these three
stages as ruling the development of the belief-system of an entire society, but rather of the methods used
in a specific science. In particular, he allows for the possibility that two sciences, at one given time, be
at different developmental stages; see [Schmaus, 1982].

55 [Chemla, 2016], p.50.
56Note that this criticism does not apply equally to the whole of Ancient geometry. For instance,

Apollonius seems somewhat immune to it, as Chasles reads his Conics as bearing the mark of what would
become the foundation of Descartes’ analysis; namely that a single property between two magnitudes on
a conic serves as a unifying notion on which the whole theory is built. See [Chasles, 1837], pp.17-18.

57“Cette analyse des quarante-trois lemmes de Pappus nous paraîtpouvoir en faire saisir l’esprit général
et en faciliter la lecture. On y voit que plusieurs propositions expriment un même théorème”, [Chasles,
1837], p.41.
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these propositions pertain to ratios between magnitudes formed by six points on a line,
but some of them correspond to cases where, for instance, two of these points coincide.
In each of these cases, a different proposition and a different proof are needed, which
modern geometry can unite within a single statement (and, thus, a single proof). In this
manner, for instance, Chasles explains that “through the consideration of negative and
positive quantities, under a single statement, one theorem can present several cases58”. For
instance, in analytical geometry, denoting a segment via a letter x, one can write equations
in which x appears which remain valid even when the endpoints defining the segment trade
places – in which case, the number x becomes negative when it was previously positive,
and conversely59. The formula thus expresses one theorem, to which correspond many
cases – namely, the many possible configurations for the objects whose measurements are
denoted by symbols appearing in the formula.

Another cause for redundancy in the propositions of Ancient Greek geometry is the
absence of general principles of “transformation”. In other words, there are many proposi-
tions in the Ancient corpus which are only transformed versions of one another. This can
be the case of propositions which can be derived from another by duality or homography,
for instance. Analytical geometry, but also modern pure geometry, is in possession of
principles which link together such propositions, and eventually reduce them to a single
theorem. One such example is, of course, the unity behind Pascal’s and Brianchon’s the-
orem which respectively express a property of six points on a conic, and six tangents to a
conic. Pascal’s theorem states that the opposite sides of an hexagram inscribed in a conic
intersect at three aligned points. Conversely, Brianchon’s theorem states that the three
(principal) diagonals of an hexagram circumscribed around a conic intersect at a single
point (see fig. below). In this sense, each is the dual version of the other60; and what
appears to us as one theorem, was for Ancient geometers many distinct and unrelated
propositions. In this sense, their propositions lack generality. The importance for Chasles
of the development of an adequate language for geometry must be stressed here. Not
only is generality linked with the capacity of grouping statements (as opposed to truths,
results, or formulae), but it is through the development of a certain symbolic or linguistic

58“C’est un des grands avantages de la Géométrie moderne sur l’ancienne, de pouvoir, par la con-
sidération des quantités positives ou négatives, comprendre, sous un même énoncé, les cas divers que
peut présenter un même théorème, par la diversité de positions relatives des différentes parties d’une
figure”, [Chasles, 1837], pp.41-42.

59In 2.1.3, we shall present Chasles’ geometrical introduction of negative numbers, which does not rely
on algebraic variables and coordinate systems. Note that the question of the introduction of negative
numbers in geometry was an old one, which had given rise to much debate among 18th-century mathe-
maticians such as Fontenelle, Clairaut, D’Alembert, and even Carnot; see [Schubring, 2005], pp.102-113.
We shall come back to this issue in 5.2.3, when discussing the concept of solutions étrangères.

60Note that even their statements, that is to say their wordings, are dual of one another: it suffices
to systematically swap the words ‘points’ and ‘lines’, ‘aligned’ and ‘concurrent’ etc. to transform one
statement into the other one.
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Pascal’s and Brianchon’s Theorems

grasp on geometrical statements, that the latter have been made more general. In return,
Chasles claims, a large amount of lesser results can be easily deduced from truly general
statements. One such example is Pascal’s mystical hexagram, from which he was able
to deduce 400 corollaries. This is so precisely because these corollaries all “express a
certain property of six points on a conic61”. Similarly, this is why Descartes’ geometry
is so powerful, according to Chasles: because “it establishes, through a single formula,
general properties of entire families of curves; so that one could not in this way discover
some property of a curve without it immediately yielding similar or analogous properties
in an infinity of other lines62”. Obtaining general propositions was not just a matter of
mathematical progress, it involved the search for modes of expressing truths in a general
manner. This was not an original concern of Chasles’: Poncelet also stressed “the neces-
sity to generalize the language of geometry63”, while Gergonne, as an editor (and without
the consent of his authors) reorganized dual propositions on the page to make their unity
as apparent as possible64.

Besides this linguistic transformation, for Chasles, geometrical modernity necessitated
a break from the reliance on concrete diagrams. While no concern for the rigour of dia-
grammatic reasoning would be expressed by Chasles, his concern was rather that diagrams
are an impediment for truly general methods. In Chasles’ historical narrative, Monge is
credited with freeing pure geometry from the slew of diagrams65:

61 [Chasles, 1837], p.73. Emphasis mine.
62“La Géométrie de Descartes, [..], se distingue encore de la Géométrie ancienne sous un rapport

particulier, qui mérite d’être remarqué; c’est qu’elle établit, par une seule formule, des propriétés générales
de familles entières de courbes; de sorte que l’on ne saurait découvrir par cette voie quelque propriété
d’une courbe, qu’elle ne fasse aussitôt connaître des propriétés semblables ou analogues dans une infinité
d’autres lignes”, [Chasles, 1837], p.95.

63“Si, après les travaux géométriques des savants illustres qui composent la moderne École, on peut
encore former l’espoir de faire faire quelques progrès vraiment utiles à la science de l’étendue, ce ne peut
être évidemment qu’en suivant de près leurs traces, qu’en cherchant sans cesse à généraliser le langage et
les conceptions de la Géométrie”, [Poncelet, 1865], p.xvi.

64 [Gray, 2007], pp.55-62; [Lorenat, 2015b].
65“This useful influence of descriptive Geometry extended naturally just as well to our style and lan-

guage in mathematics, which it made easier and clearer, by freeing the complications brought about by
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Cette influence utile de la Géométrie descriptive s’étendit naturellement aussi
sur notre style et notre langage en mathématiques, qu’elle rendit plus aisés et
plus lucides, en les affranchissant de cette complication de figures dont l’usage
distrait de l’attention qu’on doit au fond des idées, et entrave l’imagination
et la parole. La Géométrie descriptive, en un mot, fut propre à fortifier et
à développer notre puissance de conception; à donner plus de netteté et de
süreté à notre jugement; de précision et de clarté à notre langage.

A second criticism expressed by Chasles towards Ancient geometry is the lack of
systematicity in the application of its methods66. For instance, Archimedes’ method of
exhaustion, while quite general with regards to the variety of figures to which it can be
applied, is no match for modern integral methods as far as the systematicity of the method
is concerned. For Chasles67,

La méthode d’exhaustion, qui reposait sur une idée mère tout à fait générale,
n’ôta point à la Géométrie son caractère d’étroitesse et de spécialité, parce
que cette conception y manquant de moyens généraux d’application, deve-
nait, dans chaque cas particulier, une question toute nouvelle, qui ne trouvait
de ressources que dans les propriétés individuelles de la figure à laquelle on
l’appliquait.

This method requires a renewed effort every time it is applied to a new figure, and thus
does not follow systematically from the application of a certain set of rules. Consequently,
new insights were required for each of its application. The generality of a method is here
linked to its systematicity, and even to the effortlessness or simplicity of its application. By
contrast, Newton’s methods of fluxions would provide an “uniform analytical process68”
for the obtention of tangents to a given curve. When applying the same method to a
different figure or a different curve, one only has to change a few words and expressions.

Indeed, to measure the generality of a past method, Chasles often employs what we
call a “stability criterion”: if a proof or a method is such that one can substitute in it
all occurences of a figure by a more general one (or by another one of the same kind),
and still have a valid proof for the new figure, then the method is general. This is

figures, whose use distracts from the attention we owe essentially to ideas, and which hinders imagination
and speech. In a nutshell, descriptive Geometry was adequate for fortifying and developing our powers of
conception; to give our faculty of judgement more sharpness and certainty; our language more precision
and clarity”, [Chasles, 1837], p.190.

66This notion of generality can be compared to Steiner’s “Systematiztät”; see [Lorenat, 2015a], p.206.
67“The method of exhaustion, which rested on a completely general main idea, did not deprive Geometry

of its character of narrow-mindedness and specialization, since this conception, lacking general means of
application, became, in each particular case, a wholly new question, which found resources only in the
individual properties of the figure to which it was applied”, [Chasles, 1837] p.52.

68 [Chasles, 1837], p.59.
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particularly striking in Chasles’ assessment of the generality of MacLaurin’s results on
the attraction of ellipsoids. In his 1742 Treatise on Fluxions, MacLaurin had studied the
relationship between the attractions exerted on one same point by two confocal ellipsoids.
MacLaurin had shown that these attractions, for two confocal ellipsoids of revolution, had
the same direction and the same ratio as their volumes. Then, according to D’Alembert,
Lagrange, and Legendre, he had only stated an analogous theorem for general ellipsoids.
Chasles, however, disagreed with this assessment. MacLaurin had prefaced this second
theorem with the expression “in the same manner”; and, according to Chasles, one simply
had to “repeat the reasonings that MacLaurin had given a few lines before, without
changing, adding, or subtracting a single word”, except of course for the figures at play69.
Because Chasles understands the generality of a method or a proof-strategy in a particular
manner, he draws different historiographical conclusions with respect to the merits of past
mathematical texts than others. More largely, this ideal of a proof apparatus in which
one can simply change a few words and retain a stable structure is one that would largely
guide his later mathematical practice, as we shall see in particular in section 4.3.

Therefore, the generality that Chasles finds lacking in Ancient geometry, and whose
emergence he wishes to describe and prolonge, is at least twofold. It is both at the level of
statements and of methods. In the first case, it refers to abstraction of a proposition, that
is to say, that it measures how it can be unfolded into a variety of concrete cases. In the
second case, generality is to be read as the systematicity of a method, that is to say, that
it measures how it can effortlessly be applied to a variety of figures. These two generalities
are obviously related: in particular, they both yield easy, effortless inferential practices.
A general theorem yields immediately many simpler propositions; while a general method
can yield without much effort many results when applied to various figures. Indeed, as we
shall now see, the equivalence of the values of simplicity and generality is a cornerstone
of Chasles’ epistemology of geometry.

1.2.3 From generality to simplicity

At several occasions in the Aperçu Historique, Chasles claims that the most general prin-
ciples are, by nature, the simplest70. To this claim, Chasles gave a theoretical, a priori

69“D’Alembert, et ensuite Lagrange et Legendre, avaient pensé que Mac-Laurin n’avait fait qu’énoncer
son théorème, sans en donner la démonstration; c’était une erreur de la part de ces trois illustres
géomètres, car cette démonstration est identiquement la même que celle du cas qui avait précédé, et
l’auteur dès lors devait se borner, comme il a fait, à ces seuls mots: l’on prouvera de la même manière,
etc.; et ne pas répéter des raisonnements qu’il venait de faire quelques lignes plus haut, et auxquels il n’y
avait à changer, ni ajouter ou retrancher aucun mot”, [Chasles, 1837], pp.168-169. For the original text
by MacLaurin, see [MacLaurin, 1742], p.131.

70Of course, this is by no means a unique claim to make. For instance, Grothendieck famously equated
generality or abstraction to “childish simplicity”, see [McLarty, 2003]. However, not only is the episte-
mological construction of this equivalence different in Chasles and Grothendieck, but, more crucially, so
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justification71:

Les principes les plus généraux, c’est-à-dire qui s’étendent sur le plus grand
nombre de faits particuliers, doivent être dégagés des diverses circonstances
qui semblaient donner un caractère distinctif et différent à chacun de ces faits
particuliers, considéré isolément, avant qu’on eût découvert leur lien et leur
origine commune : s’ils étaient compliqués de toutes ces circonstances ou pro-
priétés particulières, ils en porteraient l’empreinte dans tous leurs corollaires,
et ne donneraient lieu, généralement, qu’à des vérités excessivement embar-
rassées et compliquées elles-mêmes.

Here, Chasles uses the term ‘principle’ rather ambiguously; he is likely not referring to
principles such as that of duality or continuity, but rather to these central propositions
which, like Pascal’s mystical hexagram, easily yield a large number of truths72. Pascal’s
hexagram, thus, is said by Chasles to express a general property of six points on a conic.
By transforming it (by duality, by homography, by choosing a specific configuration etc.),
one can derive from it many properties of six points on a conic. In that sense, these prin-
ciples are general propositions which, through transformations, can represent a variety of
cases: in this sense, they are propositions of a new kind, absent from Ancient geometry73.

In so doing, these principles serve to regroup what previously were thought to be
separate propositions, for instance putting one unique theorem in lieu of the various cases
of a configuration. Proving a unique theorem is not only simpler in that sense that it
requires a single effort, but, more crucially, it is simpler because it requires that a chain
of deductions be established from the common origins of all these separate propositions.
For instance, Pappus’ 43 lemmas are all one property of a concept which had emerged in
the nineteenth century, namely that of the involution74: modern geometry, built around

is the cultural and institutional context in which it is mobilized.
71“The most general principles, that is to say those that extended their domain to the largest number

of particular facts, are necessarily free from the various circumstances which seemed to to give a distinct
and different character to each of these particular facts when conceived in isolation, prior to the discovery
of their common link and origin: if they were complicated by all these particular circumstances and
properties, they would bear the mark of these particularities in all of their corollaries, and would, in
general, only give rise to truths which excessively embarassed and complicated themselves”, [Chasles,
1837], p.116.

72The ambiguity of the word ‘principle’ in Chasles’ writings was already noted in [Chemla, 2016],
pp.59-60.

73“On observe que ces divers théorèmes principaux exprimaient, chacun, une certaine propriété de six
points situés sur une conique: cela explique comment Pascal avait pu les déduire de son hexagramme
mystique, qui était lui-même une propriété générale de ces six points. Mais chacun de ces théorèmes
avait pris une forme différente, qui le rendait propre à des usages particuliers, comprenant un nombre
immense de propriétés des coniques. C’est cet art infiniment utile de déduire d’un seul principe un grand
nombre de vérités, dont les écrits des Anciens ne nous offrent point d’exemples, qui fait l’avantage de nos
méthodes sur les leurs”, [Chasles, 1837], p.73.

74We shall discuss the notions of cross-ratio and involution in the next chapter, see 2.2.2.
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this notion, is thus able to explain these 43 lemmas as a single property of six points
on a straight line. In return, each of these lemmas is one particular case of a more
general truth. More generally, diagram-based inferences, for Chasles, always run the risk
of relying on specific properties of the diagram. Chasles worries not about the dangers
of intuition, or that such reliance can lead to false deductions; but rather that the use
of diagrams introduce in a proof arguments that are not necessary in the general case,
thereby obfuscating the real reasons for the validity of the proposition.

To obtain general propositions and methods, thus, one must search for the adequate
theoretical settings within which a figure or a question can be studied. The importance
of the concept of involution for the general and simple treatment of Pappus’ lemmas is
similar to the treatment given by Chasles to many past geometrical results: for instance,
MacLaurin’s work on the attraction of ellipsoids is shown to be a particular form of a
general theory of second-order surfaces75. Chasles’ concept of simplicity can then be
conceived in at least two ways. A simple theory is centered around the right principle,
that general proposition from which all others derive: in this sense, the simplicity of
modern geometry contrasts with the multiplicity of ancient methods. In a different but
related sense, the simplicity of a theory means that all the propositions composing it can
be obtained effortlessly, by simple transformations of some initial truth. Here, simplicity
contrasts with the difficulty of geometrical inquiry without departing from first principles.

The strong equivalence between generality and simplicity, for Chasles, means that ge-
ometrical practice evolved alongside the generality of its propositions and methods. In
ancient times, Chasles explains, inferential practices went from particular cases to partic-
ular cases. The ancient geometers “went from some very simple proposition to another
one of the same kind, but slightly more general, and then to that other one similarly
more extended; so that the proof of even a somewhat general proposition first required
the proof of many of its particular cases76”. The portrait of modern geometrical life is
totally different: modern geometers first strive to establish the most general propositions
possible, and only then they apply these general propositions to particular cases in a
downward motion.

In this regard, Chasles depicts a practice of generality that belongs to the milieu
which we described earlier: in both parts of his Mécanique Analytique, Lagrange first
gave a general formula, whose transformations then could be applied to a variety of cases.
More generally, the emphasis on the need to first expound general principles in view

75 [Chasles, 1837], pp.384-399.
76“C’était là la marche habituelle et nécessaire du géomètre qui s’élevait de quelque proposition très-

facile à une proposition du même genre, mais un peu plus générale, et de celle-ci à une autre aussi plus
étendue; de sorte que la démonstration d’une proposition tant soit peu générale exigeait celle de plusieurs
de ses cas particuliers”, [Chasles, 1837], p.185.
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of their ulterior applications mirrors the pedagogical ideal which had presided over the
creation of engineer schools such as the École Polytechnique.

1.2.4 Natural methods & human conceptions

There remains one crucial question to address: why is it always possible, when conducting
geometrical research to find such general principles as Pascal’s mystical hexagram? Why
are we to expect, whilst studying some other figure or problem such as cubics or some
mechanical motion, that there is a fundamental principle whose transformations will eas-
ily yield the properties we seek? Chasles answers these questions with a crucial decree
of faith: nature provides the germs for simple methods, which therefore must be gen-
eral. Conversely, by following natural methods, one will walk upon simple paths, thereby
reaching generality. In fact, the latter view is one that Chasles attributes to Tschirnhaus,
whilst most likely quoting directly from Fontenelle’s éloge of the latter77:

Le but constant de Tschirnhausen, dans ses diverses spéculations géométriques,
était de rendre la Géométrie plus aisée, persuadé que les véritables méthodes
sont faciles; que les plus ingénieuses ne sont point les vraies, dès qu’elles sont
trop composées, et que la nature doit fournir quelque chose de plus simple.

The lines directly following this quotation, but also various other passages of the Aperçu
Historique, show that Chasles indeed made this goal his own78.

The notion of naturalness pervades throughout Chasles’ entire book: the propositions
which result from transformations of Pascal’s hexagram are said to “derive naturally79”
from it, while Huygens’ theory of the evolute of a curve “lead naturally to the knowledge
of central forces in circular motions80”. More profoundly, it underlies Chasles’ diagnosis
of the relative strengths of (modern) pure geometry and analysis.

Analytical methods, here, refer to the use of coordinate systems to form equations,
and of algebraic and infinitesimal computations to carry out transformations on said

77“Tschirnhaus’ constant goal, in his various geometrical speculations, was to make Geometry easier,
as he was persuaded that the true methods are easy; that the most ingenious are not the true ones, as
soon as they are too complex, and that nature must provide something simple”, [Chasles, 1837], p.114.
This sentence is almost given verbatim in [Fontenelle, 1733], p.122. Chasles quotes neither Tschirnhaus
nor Fontenelle in the Aperçu Historique.

78In fact, earlier in the Aperçu Historique, Chasles had quoted a similar thesis by way of Descartes’
fourth rule in the Regulae ad directionem ingenii: “Je me persuade que certains germes primitifs des
vérités que la nature a déposés dans l’intelligence humaine [..] avaient, dans cette simple et naïve antiquité,
tant de vigueur et de force, que les hommes éclairés de cette lumière de raison qui leur faisait préférer
la vertu aux plaisirs, l’honnête à l’utile [..] s’étaient fait des idées vraies et de la philosophie et des
mathématiques, quoiqu’ils ne pussent pas encore pousser ces sciences jusqu’à la perfection”, [Chasles,
1837], p.29. As we shall see in section 2.1.1, the term ‘germe’, especially in the context of a discussion of
Ancient geometry, is one that Chasles very much made his own too.

79 [Chasles, 1837], p.81.
80 [Chasles, 1837], p.104.
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equations81. It must be first stressed that Chasles was absolutely not opposed to the
practice or to the teaching of analytical methods. He never doubted the validity of
analytical proofs, nor did he express worries regarding the so-called ‘metaphysics of the
calculus82’. In fact, Chasles lauded in many instances the sheer efficiency and speed of
analytical methods, as well as the generality provided by the “universal instrument83”
that Descartes’ equations form.

And yet, for Chasles, what makes analysis so powerful is also its main limitation. “The
main advantage of Analysis”, Chasles assesses, is that “it has the marvelous privilege of
neglecting the intermediary propositions which [Geometry] always require84”. Indeed,
the path taken by the analyst from one geometrical proposition to another is one which
proceeds by the introduction of some “auxiliary and artifical system of coordinates85”.
The axes one introduces to write equations and carry out algebraic computations, or the
infinitesimal volumes which one introduces to compute the attraction of a body, are both
expressed in terms of objects totally foreign to the figures under study. This introduction
of artifical quantities is a powerful device, because it allows for the direct obtention (or
computation) of some geometrical proposition; but it also obfuscates the natural paths
which link propositions together.

This lack of clarity, Chasles reckons, has real consequences. For instance, in his work
on the attraction of ellipsoids, Legendre introduced infinitesimal volumes which could have
been interpreted geometrically: they are, Chasles would show, infinitely small cones in a
special position with respect to the ellipsoid. Observing this geometrical configuration,
in return, would put Chasles on the path for a more general theory of level-surfaces,
wherefrom the attraction of much more general bodies can be obtained easily. Thus,

81In the first lecture on higher geometry he ever gave at the Faculté de Paris, Chasles defined analytical
geometry as “the art of representing lines and curved surfaces via algebraic equations”, [Chasles, 1847],
p.18. We shall come back to Chasles’ discussion of the history of the categories of analysis and synthesis
in section 2.1.1.

82Poncelet did not doubt the validity of analytical methods either. In fact, Monge and Poncelet both
wrote a treatise on analytical geometry. In that sense, one cannot adequately characterize the French
tradition of geometry as a “more rigorous alternative to the analytic approaches which had typified 18th

century French mathematics”, as is claimed in [Daston, 1986], p.269. In fact, when Chasles mentions
the value of rigor, it is sometimes in negative terms. For instance, the rigor of Ancient Greek geometers
prevented them from uncovering the general principles underlying some of their propositions: “on ne
peut se dissimuler qu’on doit à ce relâchement de la rigueur des Anciens, les progrès immenses que les
Modernes ont faits dans la Géométrie”, [Chasles, 1837], p.359.

83 [Chasles, 1837], p.118. This description of Descartes’ Géométrie would be repeated by Chasles across
many papers, including those which would form the basis of his enumerative theory of conics. On the
renewed comparison between pure geometry and algebra that Chasles would construct in this context,
see section 4.2.4.

84“C’est en cela, soit dit en passant, que nous paraît consister le principal avantage de l’Analyse
moderne sur la Géométrie. La première de ces deux méthodes a le merveilleux privilège de négliger les
propositions intermédiaires dont la seconde a toujours besoin”, [Chasles, 1837], p.114.

85 [Chasles, 1837], p.119.
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because it obfuscates the chains of truths linking propositions, analysis could not identify
the real significance of these surfaces86:

Déjà, dans les plus savantes recherches physico-mathématiques, l’Analyse a
dévoilé la présence de ces surfaces; mais le plus souvent on a regardé une
si heureuse circonstance comme fortuite et secondaire, sans songer qu’au con-
traire elle pouvait se rattacher directement à la cause première du phénomène,
et même être prise pour l’origine réelle, et non pas accidentelle, de toutes les
circonstances qu’il peut offrir.

Thus, the recourse to efficient but extrinsic methods may lead to a lack of clarity; thereby
impeding the discovery of the natural setting, the fundamental principle around which
to center the geometrical investigation. This, in turn, results in a mathematical practice
which is blind to possible generalizations.

The geometer does not have access to such artificial auxiliaries; instead, they must
always proceed from “direct and natural methods87”, relying only on “the attentive consid-
eration of things and the succession of ideas88”. Indeed, when investigating the properties
of a certain figure, they will have to go over the entire chain of truths, moving from propo-
sition to proposition. Because of this forced slower pace, a more thorough grasp of the
ways in which propositions are linked together is gained: this is how, for instance, Chasles
can describe Pascal’s theorem as a “center89”, a nodal point in the theory of conics. The
knowledge provided by geometrical methods, therefore, is not only that of the truth of a
certain proposition; but it is also the knowledge of its position within the natural theory
to which it belongs90. For this reason, it is a knowledge that is more useful. Knowing
its position makes it more evident when a certain proposition is to be employed, but also
how it derives from first principles, and how it can be generalized further.

What Chasles is constructing here is not just a general epistemology of geometrical
knowledge, but also a new model for the construction and teaching of mathematical
theories; one which he would apply in his own teaching. For instance, in his 1852 Traité
de Géométrie Supérieure, Chasles wrote91:

86“Already, in the most savant physical-mathematical investigations, Analysis has uncovered the pres-
ence of these surfaces; but most often such a happy circumstance was viewed as contingent and secondary,
and no attention was paid on the contrary to the possibiltiy that this circumstance could tie into the
first cause of the phenomena, and even be taken to be the real (and not accidental) origin of all the
circumstances it can offer”, [Chasles, 1837], p.251.

87 [Chasles, 1837], p.252.
88“La Géométrie [..] ne puise ses inspirations que dans la considération attentive des choses et dans

l’enchaînement des idées”, [Chasles, 1847], p.39.
89 [Chasles, 1837], p.81.
90By stressing that mathematical practice is not purely about producing new results, but more largely

about producing understanding, the 20th-century geometer William Thurson frequently (and inadver-
tently) echoed these key points of Chasles’ epistemology; see in particular [Thurston, 1994].

91“This march was all the more necessary because, in general, it is not enough to know that a proposition
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Cette marche était d’autant plus nécessaire, qu’en général il ne suffit pas de
savoir qu’une proposition est vraie pour qu’on puisse en faire un usage utile
en Mathématiques; il faut encore connaître toutes ses dépendances avec les di-
verses propositions qui se rattachent au même sujet. Quand cet enchaînement
est mis à nu, tout devient facile, et il est même rare que l’on ne puisse pas dé-
montrer une proposition de bien des manières, car on y arrive par toutes celles
qui la touchent de quelque côté. C’est là un criterium qui permet d’apprécier
jusqu’à quel point on a pénétré dans le sujet que l’on traite, et combien il peut
encore laisser à désirer.

1.2.5 Geometry without the burden of proof

The opposition between analysis and geometry is conceived of by Chasles as one between
“human conceptions” and “natural methods92”. Mobilizing these human conceptions re-
quire “subtleness and ingenuity93”; they are only worthwhile in the hands of “savants”.
These skills are rewarded with the ability to move directly from an hypothesis to almost
any theorem quickly and efficiently, thereby jumping over the tight web of propositions
which naturally link said hypothesis and theorem. By contrast, natural methods require
no genius whatsoever; they are direct and simple, and the knowledge they yield is ready
to be communicated to the ‘man in the street’. To use these methods is to move effort-
lessly within the web of propositions. Indeed, Chasles describes at various points of the
Aperçu Historique the work of the analyst as being painful94, difficult, demanding; thereby
displaying the unfettered motions of the geometer.

What results from these contrasted portraits is a new picture of mathematical life,
that is to say a regulative ideal for what a mathematician ought to be and do. Chasles’
ideal geometer is almost entirely free of the burden of proof95: instead, his task is to
generalize concepts and methods, thereby bringing clarity and completeness to mathe-

is true for it to be useful in Mathematics; it is also necessary to know all its dependencies with the various
propositions which are related to the same subject. When this succession is laid bare, everything becomes
easy, and it is even rare that one cannot prove a proposition in many ways, for it is proven by all the
propositions that touch it in some way. This is a criterium which makes it possible to appreciate how far
one has penetrated into the subject one is dealing with, and how much it may still leave something to
be desired”, [Chasles, 1852], p.435. Through these lectures, Chasles transmitted this epistemic ideal to
his students. This will be apparent in the case of De Jonquières, whose work on the generation of curves
we discuss in section 3.2; but it is also true of lesser-known authors, see for instance the introduction
of [Serret, 1869].

92 [Chasles, 1837], p.114.
93 [Chasles, 1837], p.238.
94“Les calculs et transformations savantes et pénibles de l’analyse”, [Chasles, 1837], p.251. In fact,

geometrical practice is equally painful when done in the manner of the Ancients, that is to say without
the help of general principles, see [Chasles, 1837], pp.39-40.

95A similar observation is made in [Chemla, 2016], p.60.
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matical theories and centering them around the most fundamental principles. Geometers,
for Chasles, ought to strive not necessarily to prove theorems, or to compute magnitudes,
but rather “to search for the supreme laws96” behind geometrical truths.

In other words, mathematical life for Chasles is not primarily aimed toward the pro-
duction of truths, but rather toward the refining of acquired truths, by means of the
search for the most natural theoretical setting within which it can be inserted. That such
is the normative ideal for mathematical practice conceived by Chasles is made explicit in
the Aperçu Historique, wherein two ‘rules’ are laid out in this sense97. The first rule is
that a geometer ought to always strive for greater generality for each of the propositions
they have obtained. The second rule is that, when proving a proposition, one should
always strive to find a proof that locates said proposition within the “doctrine to which it
belongs naturally”. Proving is not merely about certifying the truth of a statement; it is
a task which ought to produce a broader knowledge of the place of said statement within
its natural theoretical setting. In turn, that these two tasks have been fulfilled is both
demonstrated and rewarded by the fact that a large number of truths will derive easily
from the proposition thus adequately generalized and proven. In fact, this profusion of
simple consequences is, for Chasles, “the mark of a truly perfect science”.

We shall see in the following chapters that, to a large extent, this ideal ruled Chasles’
own scientific practice, in at least two ways. The first is that Chasles, at many points
of his careers, set out to ‘re-prove’ old theorems, relying on methods and theories which
he deemed more natural for the problem at hand. This is the main motivation for his
own work on the attraction of ellipsoids, after the works of MacLaurin, Legendre, and
Poisson. More largely, as we shall see in 3.1, Chasles would often blend historiographical
and mathematical reflections in papers which revive old problems to provide them with
new, more general answers: crucially, this will be the case of the early-modern tradition
of problem-solving and of the generation of curves.

The second way is that mathematical propositions which some would immediately

96“Il est toujours utile de contempler les vérités géométriques dans leur plus grande étendue, dans leur
plus grande généralité, dans leur plus grande approximation, pour ainsi, dire, des lois suprêmes, dont la
recherche doit être l’objet constant des efforts des géomètres”, [Chasles, 1837], p.240.

97“Generalize more and more particular propositions, in order to attain, step by step, what is most
general; which will always be, at the same time, the most natural and the simplest.
Within the proof of a theorem or the solution of a problem, never be satisfied by an initial result which
would be enough in a particular case viewed independently of its place within a general system in science;
but be satisfied by a proof or solution only when its simplicity, or its intuitive deduction from some known
theory, will prove that you have attached the question to the very doctrine it naturally depends on.
To indicate a way to recognize whether the practice of these two rules has led to the desired goal, that is
to say whether we have marched on the true roads of definitive truth, and reached its source, we believe
that, in each theory, there must always be, and we must always be able to recognize, some principal truth
from which all others easily follow, as simple transformations or natural corollaries; and that this fulfilled
condition only will be the mark of the true perfection of a science”, [Chasles, 1837], p.115.
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identify as theorems in need of a proof would have a very different status for Chasles.
In section 4.2.3, we shall encounter an enumerative result which, for Chasles, would be
the source of a quasi-infinite number of other, simpler truths. This profusion of simpler
truths would serve as a sure sign that a natural and perfectly general method had been
reached, and Chasles would be largely disinterested in other mathematicians’ attempts at
proving this original truth. Thus, this epistemic portrait of geometry results in a different
identification of what makes a theorem (and what sort of epistemic work is required for
a theorem to be accepted) than many other 19th-century actors would accept.

Conclusion

Through an intricate blend of historiographical, epistemological, and mathematical anal-
yses of past geometrical texts, Chasles’ Aperçu Historique produces an epistemic portrait
of the ideal geometer. We have shown that this ideal portrait functions as a “moral econ-
omy” for scientific life, that is to say a “web of affect-saturated values that stand and
function in well-defined relationship to one another98”, namely the values of simplicity,
generality, and naturalness, to which correspond affects such as effortlessness or painful-
ness. In the following chapter, we shall focus on Chasles’ teaching of higher geometry at
the Faculté de Paris. In so doing, we shall see that this epistemic portrait would have
important consequences for the choice of mathematical problems, but also the construc-
tion of notations and other textual devices. While we have so far presented generality
for Chasles as an epistemological value and an epistemic virtue, we now approach it as a
practice.

98 [Daston, 1995], p.4.
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Chapter 2
“In a single stroke of the quill”: on Chasles’
rewriting of pure geometry

Introduction

While the Aperçu Historique gathered an impressive collection of Chasles’ historical, epis-
temological and mathematical insights, it remained an unfinished work. The recourse to
historical studies was for Chasles a means for an epistemological end: looking back at
the development of geometrical methods was supposed to provide insights into how pure
geometry could be made more general, and founded anew upon a minimal collection of
principles. The Aperçu Historique was, from the onset, meant to be supplemented by what
Chasles called a “dogmatic exposition”, borrowing a term from the positivist philosophy
of Auguste Comte1, a friend and classmate of Chasles’ at the Ecole Polytechnique. Comte
distinguished between two modes of exposition of a science: the historical one, and the
dogmatic one. While both are necessary in the proper teaching of a science, according to
Comte, the latter brings something that the former lacks in that it allows “new concep-
tions to present past discoveries under a more direct point of view2”. Similarly, Chasles
expressed in the Aperçu Historique the necessity, through such a dogmatic exposition,
to “coordinate these partial and isolated truths [which rational Geometry until then had
produced], to make them all derive from only a few of them, taken amongst the most
general3”, that is to say to subsume the various historical discoveries of the past under a
unified, more direct point of view.

Such was the task that Chasles undertook as soon as a chair of Géométrie Supérieure
(Higher Geometry, in what follows) was specially created for him at the Faculté de Paris

1 [Comte, 1830], pp.77-83.
2 [Comte, 1830], p.78.
3 [Chasles, 1837], p.234.
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in 1846, thanks to the intense lobbying of his institutional and philosophical ally, the
mathematician Louis Poinsot4. Through his teaching, of which several traces have been
preserved5, Chasles set out to unify and systematize the sheer bulk of modern geometri-
cal methods, whose virtues he had extolled in the Aperçu Historique. In this chapter, we
show how this project entailed the constant reshaping of new expressive tools, or “liter-
ary technologies”, which Chasles used to define geometrical figures and transformations
thereof in what he viewed as a perfectly general and abstract manner. We borrow the
term of “literary technology” from the influential studies of Boyle’s description of exper-
iments involving his air-pump, by Steven Shapin and Simon Schaffer6. By this term,
they referred to a specific form of textual production with the aim to communicate a
phenomen produced by the air-pump to those who could not directly witness the exper-
iment. Obviously, the case of mathematics does not involve experiments, and it is not
clear at first what witnessing could possibly mean for mathematical proofs and results,
and what exactly it is that words should replace. For us, literary technologies will refer
to all sorts of expressive resources (diagrams, symbols, but also textual forms) that allow
for a mathematical proposition to capture a certain level of generality.

In his 1999 book The Shaping of Deduction, Reviel Netz analyzed the interrelated
functions of diagrams and highly-structured textual forms within the deductive practice
of Ancient Greek geometers. Not only are diagrams and texts both necessary to fully
understand the proofs and statements of Greek Geometry, Netz showed; but there also is
a complex interplay between them that serves to ensure the generality of the knowledge
thus acquired. How can one ensure that the proof of the Pythagorean theorem, as given in
Euclid’s Elements is not solely valid for the diagram being drawn in front of us, especially
if we cannot do without this diagram? Netz suggests that a certain repeatability of the
cognitive and material moves of the proof, which involves both text and diagram, is key
to answering this question7. By restoring the cognitive and material practice that allows
Greek proofs to express general truths, Netz’s book can be described as a detailed study

4See [Boudin, 1869], p.6. Chasles later acknowledged this debt in [Chasles, 1870], pp.219-220. The
philosophical and epistemological proximity between Chasles and Poinsot is evident in the Aperçu His-
torique, see for instance [Chasles, 1837], pp.415-416, 614-615. Comte also praised Poinsot’s work on
mechanics in terms close to Chasles’, see [Comte, 1830], pp.611-616, 710-714.

5The opening lecture of the year 1846-1847 has been published in two slightly different versions, while
an unpublished, handwritten draft of the opening lecture of the year 1847-1848 can be found in Chasles’
scientific archives at the Paris Académie des Sciences, 35J/11. This document will be transcribed and
analyzed in a forthcoming joint paper with Ivahn Smadja. Chasles also published two treatises, and a
plethora of short papers, which all seem to match the yearly evolution of his lectures, both in choice of
topic and in style.

6 [Shapin, 1984], [Shapin & Schaffer, 1985].
7 [Netz, 1999]. For the co-dependance of diagrams and texts in Greek geometry, see pp.12-67, for the

shaping of generality in these proofs, see pp.240-270. A convincing comparison of Netz’s book and the
historiographical approach of Shapin and Schaffer – against Netz’s explicit rejection of this interpretation
in [Netz, 1999], p.3 – can be found in Bruno Latour’s insightful review, [Latour, 2003].
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of a “literary technology” carefully crafted by a community of mathematicians, and whose
mode of functioning is so intricate that it is partially “invisible” to its users8.

The mathematical issue at stake was different for the geometers of Chasles’ times:
the generality they wanted to capture with their geometrical statements and proofs was
on another level entirely from that of rigid diagrams. Their rival, namely Algebra (or,
more broadly, what they construed as “analytical methods”), had brought to the fore new
geometrical entities, such as imaginary points, infinitely-near points or lines, points at
infinity etc. For these new defenders of pure geometry, generality was not something to
achieve through rigorous use of diagrams, or careful axiomatic practices: it was currently
the preserve of analytical methods, and something to recapture for geometry through new
methods and expressive resources. When an algebraist wrote the equation of a circle and
of a line, in the same system of coordinates, their equations automatically gave rise to two
intersection points, possibly imaginary. Take, for instance, a circle of center (0, 0) and of
radius 1. Its equation will be

x2 + y2 = 1

Any line of equation y = ax+ b will yield two intersection points, obtained by solving the
equation (1 + a2)x2 + 2abx = 1 − b2, which has two (potentially complex) roots. With
analytical methods, it was possible to handle two intersection points of a circle and a line in
complete generality, and to express propositions about them. To echo Chasles’ laudative
assessment of Descartes’ contribution to the history of geometry, thanks to algebraic
equations, the whole variety of possible cases is “subdued in a single stroke of the quill9”.
A diagram representing this configuration, however, will necessarily distinguish between
three apparently different cases: the straight line can cross the circle at two points, it can
be tangent to the circle, or it can be completely exterior to it (see fig. below).

This was for Chasles a serious problem: among other things, it showed that relying on
8 [Netz, 1999], p.2.
9“Descartes a soumis, d’un trait de plume, l’innombrable famille des courbes géométriques [à la

Géométrie des formes et des situations]”, [Chasles, 1837], p.143.
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diagrams was to be proscribed, because it hinders the geometer’s ability to think generally.
When we think with diagrams, we immediately distinguish amongst seemingly separate
cases which, in fact, are one10. Algebra shows one way to conduct proofs generally, but
with heavy epistemological costs. The problem therefore is: how should pure Geometry
be advanced or renewed in a way that allows it to express the same level of generality?
How should one talk and write about the circle and the line, without the help of Algebra,
but also without having to distinguish between these three cases?

In this chapter, we explore how Chasles confronted this problem when having to design
a systematic teaching of geometry to advanced students. This task, we show, involved
a renewal of notations for some fundamental geometrical entities, such as segments and
angles. This renewal was largely informed by novel historiographical theses that Chasles
drew from his work on the history of algebra, and of his constant interest in Ancient Greek
analytical geometry. Indeed, this chapter argues that Chasles started to view his geomet-
rical research as the modernization of the Ancient Greeks’ “geometrical analysis”, which
he did by reinventing a language for the uniform expression of complicated geometrical
configurations. This language was meant to import the epistemic benefits of Algebra’s
unknowns and variables, but without resorting to artificial and extrinsic systems of coor-
dinates. In so doing, we show, Chasles crafted a literary technology aimed at expressing
geometrical truths in a manner that was perfectly general and abstract, whilst still direct
and intuitive.

2.1 Geometry made methodical and abstract

In this section, we focus on Chasles’ teaching and exposition of geometry as it can be found
in his 1852 Traité de Géométrie Supérieure, that is to say the first book to grow out of his
teaching at the Faculté de Paris. We focus on the renewal of Chasles’ historiographical
and epistemological theses on the status of algebra, abstraction, and symbols in the
development of modern geometry, which we then tie to the new definitional and notational
approaches employed in said Treatise.

2.1.1 Geometrical analysis without algebra

On December 22nd 1846, Chasles gave the inaugural lecture of his newly founded chair of
Higher Geometry, the content of which would be published first in Liouville’s Journal11,

10At least, these three cases are one from a certain perspective on generality in geometry. For that
reason, the literary technologies constructed by Descartes or Chasles construct generality as much as they
express it.

11 [Chasles, 1847].
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then at the beginning of his 1852 Traité de Géométrie Supérieure12, the first book to
grow out of his teaching. These two texts differ only slightly: the latter is generally more
detailed than the former, which is probably closer to the actual lecture given that day.
For our purpose here, we will only refer to the second, more detailed version of the text,
as our focus is on the mathematical, epistemological, and historical conceptions that led
to the structure of the Traité than on the actual teaching professed by Chasles, especially
in the early years.

The inaugural lecture starts with a description of the circumstances and motivations
for the creation of this chair. Chasles explains that this teaching was supposed to fill a
gap in the cursus available to French students, and to catch up on recent changes within
higher education in Germany and England. Indeed, continues Chasles, while elementary
geometry was taught to most students in French universities, more recent methods and
results were only introduced via the teaching of analytical methods, that is to say through
the algebraic manipulations of quantities expressed with respect to a certain choice of
coordinates. Whether Chasles’ diagnosis of the state of French higher education – and in
particular of the teaching of mathematics in French universities and schools –is correct is
of little relevance to us here. More important to us is that this justification of the creation
of the chair allows Chasles to explain what exactly is needed to remediate the supposedly
undesirable state of pure geometry in France.

Chasles quickly points out at the beginning of this lecture that a course in higher
geometry cannot be limited to the study of great works of the past, whether it be that
of the Ancient Greeks or of important 17th- and 18th-century authors such as Newton or
MacLaurin. The reason why that cannot be, however, is perhaps not that which one might
expect. It is not that their results have fallen into obsolescence, either because of their
relative triviality compared to the intricate theorems and formulas that newer theories
discovered or because they contained mistakes, imprecisions, or a lack of rigor. On the
contrary, the results these works contain are still worthy of admiration for Chasles13 and
can even convince the attentive reader that Geometry has plenty to offer in a variety of
questions14. However, what they ultimately lack is a unified presentation as a “body of
doctrine”, and as a “set of methods”. Propositions such as those that Chasles read in

12 [Chasles, 1852], pp.xxxv-lxxxiii. In the second edition of this treatise, published in 1880, the Discours
is reproduced at the end of the volume.

13 [Chasles, 1852], p.xxxvii.
14This claim is recurrent throughout all of Chasles’ historical works. An important example for Chasles

is the relevance of MacLaurin’s work on the attraction of ellipsoids, see [Chasles, 1837], pp.164-170.
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the few extant accounts of Euclid’s Porisms15 are the “germs16” of some of the theories
at the bedrock of modern Geometry, but in their original settings they were not fully
developed yet, insofar as they were not part of a general doctrine. This lack of generality,
for Chasles, is measured not so much by the extension of these theorems of the past, but
by the absence of any systematic method of deduction. Recall Chasles’ pious wish at the
end of the Aperçu Historique that modern geometers, finally equipped with the proper
methods and principles, be able to mechanically combine truths and multiply them to
no end, and this without any genius17. To help these germs flourish and bloom into
fully-formed bodies of doctrine, such is the stated goal of Chasles’ teaching of higher
geometry.

To do so, Chasles explains, one must first seek the germs from past and modern
mathematical texts, and second bind them together within a coordinated and logical chain
of deductions, that it say a unified and methodical framework18. Note that the relationship
between ancient and modern mathematical texts goes both ways for Chasles: ancient texts
yield results that form the basis on which to build general theories, while modern theories
shed a new light on past texts and reveal their full meaning19. Consequently, Chasles
devoted the bulk of his inaugural lecture to an analysis of the contributions to geometry
made by mathematicians from “Ancient Greece, the Middle Ages and the Modern Era,
and the 19th century” - with a heavy focus on French authors for the most recent times.
This historical narrative in three stages echoes that already expressed in the Aperçu
Historique, discussed in the previous chapter. However, some major changes in focus, and
a reevaluation of the relative importance of certain authors are to be noticed. In particular,
whereas Gaspard Monge was presented in the Aperçu as the central actor of the renewal
of pure geometry at the onset of the 19th century, he is now joined by Lazare Carnot,
an author who was only placed among the cohort of Monge’s followers in 1837. While
it is not our aim here to discuss in full detail the variations in Chasles’ historiography
of geometry, some of the broad historical and epistemological theses expressed in this
inaugural lecture illuminate the general project conducted through this course, and the
corresponding treatise. Consequently, we now turn to the content of this lecture - whose

15Euclid’s lost Porisms are a text of great importance for Chasles’ interpretation of Greek geometry,
from the 1837 Aperçu to his later studies. In 1860, he published a reconstitution of these lost texts, based
on Pappus’ commentary and his own modern geometrical methods. We will come back to these texts
later in this chapter.

16The metaphor of the germ is omnipresent throughout Chasles’ writings. See [Chasles, 1860], p.13, but
also [Chasles, 1837] in many instances. Geometrical theories, for Chasles, grow naturally and effortlessly
from proper concepts and methods; they are not merely the additive results of series of deductions and
computations.

17 [Chasles, 1837], p.269
18“Ces théories et ces méthodes une fois déterminées, il faudra les coordonner entre elles, et les soumet-

tre à l’enchaînement logique”, [Chasles, 1852], p.xxxviii.
19For more on this view of Chasles’, see [Chasles, 1860], p.13.
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historical accuracy we do not pretend to evaluate.
In the first section of this lecture, Chasles opens with a discussion of Ancient Greek

geometry. Unlike the first section of the Aperçu, his focus is on the modes of reasoning
that one can find in these authors rather than on listing individuals and their respective
contributions to the advancement of science. Greek geometry is then said to be composed
of three parts, namely elementary geometry (also known as the Eléments), practical ge-
ometry (Geodésique), and higher geometry (Lieu Résolu). As it is thought to be the part
of Greek geometry which enables geometers to actually solve problems and prove propo-
sitions, the latter is of particular interest to Chasles, who then proceeds to describe it in
more detail, despite the relative lack of extant sources. Chasles gathers the corpus forming
this part of Ancient Geometry from Pappus’ Collections, and in particular Book VII20.
Among this corpus one can find Euclid’s Data, and perhaps more importantly for what
follows, his lost Porisms, as well as texts by Apollonius, Aristaeus, and Eratosthenes.
Note that the Greek word standing for what Chasles calls “lieu résolu” is Aναλυóµενoζ,
which modern-day commentators translate rather as “Domain of Analysis21”. Chasles
adds that this domain of geometry has been called “geometrical analysis” since the mod-
ern Era22, despite the fact that the word “analysis” had a precise meaning for Ancient
geometers, and in particular Pappus23. This original meaning, says Chasles, is not to be
mistaken for what was understood as “analytical geometry” at the time of his lectures24.
Consequently, Chasles gives his own translation of the beginning of Book VII, where the
terms “analysis” and “synthesis” are defined by Pappus25:

Le Lieu résolu est une matière à l’usage de ceux qui, possédant les Eléments,
veulent acquérir en Géométrie l’art de résoudre les problèmes : c’est là son
utilité. [..] On y procède par voie de résolution et de composition.
La résolution est une méthode par laquelle, en partant de la chose que l’on
cherche et que l’on suppose déjà connue, on arrive, par suite de conséquences, à
une conclusion sur laquelle on s’appuie pour remonter, par voie de composition,
à la chose cherchée. En effet, dans la résolution, nous regardons comme fait ce
que nous cherchons, et nous examinons ce qui découle de ce point de départ,
et même ce qui peut en être l’antécédent, jusqu’à ce que nous arrivions par le
raisonnement à quelque vérité déjà connue ou mise au nombre des principes.

20For a critical edition and translation of this text, see [Pappus, 1986].
21 [Pappus, 1986], p.82 et passim.
22 [Chasles, 1852], p.xxxviii.
23For a more recent appraisal of what analysis meant for Greek geometers, a good starting point

is [Sidoli & Saito, 2012].
24For Chasles, what 19th-century mathematicians called “analyse” is “the use of algebraic calculus”,

while “synthèse” refers to “the sole consideration of the properties of figures, with the help of natural
reasoning”, see [Chasles, 1852], p.xli.

25For a modern translation in English, see [Pappus, 1986], pp.82-84.
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Cette marche constitue le procédé qu’on appelle Analyse, comme qui dirait
solution en sens inverse.
Au contraire, dans la composition, nous partons de cette vérité à laquelle nous
sommes parvenus, comme dernière conséquence, dans la résolution ; et, en
suivant dans le raisonnement une marche inverse de la première, c’est-à-dire en
prenant toujours pour antécédent ce qui, dans le premier cas, était conséquent,
et réciproquement, nous parvenons enfin à la chose cherchée. Cette marche
constitue le procédé qu’on nomme synthèse.

To this distinction in the logical structure between the methods of analysis and synthesis
corresponds a distinction in their respective roles in mathematical practice. Analysis,
Chasles claims, can only be useful when solving problems or proving previously-found
propositions, as it requires a known thing to start with. This known thing can either
be the proposition to be proved, from which the mathematician attempts to go back to
some already proved proposition, or the solution of the problem, which is viewed as a
known thing, and on which the mathematician reasons so as to discover its properties.
Therefore, only when solving a problem does analysis function as a “method of invention”,
and even then, only in a rather weak sense. Synthesis, on the other hand, is deemed by
Chasles to be the “[sole] method of invention” capable of accruing our knowledge of a
given science. This may seem rather surprising: it goes against many past discussions
of Ancient Greek geometry, such as Descartes’ famous conjecture that the parts missing
from the Greek corpus were those that allowed past mathematicians to actually discover
new results, as opposed to the rather sterile teachings of landmark synthetic treatises,
among which of course stand Euclid’s Elements26. However, such opinions had already
been expressed by actors crucial to the renewal of geometrical methods in the first decades
of the nineteenth-century. Joseph Diez Gergonne, editor of the Annales de Mathématiques
Pures et Appliquées from 1810 to 1832, through which he promoted (and altered) the new
geometrical methods of the likes of Poncelet and Plücker27, had penned in 1817 a philo-
sophical essay on Analysis and Synthesis in mathematics28. Arguing against the dogma
of Analysis promoted by the Condillac-inspired sect of Idéologues, Gergonne contended
that “Synthesis, even more so than Analysis, is a method of invention29”. For Chasles,

26See [Descartes, 1998], p.87-89.
27 [Lorenat, 2015b].
28 [Gergonne, 1816-1817]. For a detailed study of this paper, as well as of an unpublished, longer

manuscript by Gergonne on this topic, see [Dahan-Dalmedico, 1986].
29 [Gergonne, 1816-1817], p.354. Note, however, that Gergonne uses this comparison to rethink the

relation between Algebra and Analysis, and, eventually, to promote the generality of Algebra against the
limitations of synthetic geometry, understood as Euclidean geometry. Chasles’ goal is different: he wants
to show that pure Geometry can capture, through the help of appropriate methods and concepts, the
same level of Generality, and that the apparent shortcomings of pure Geometry are not an intrinsic flaw
of synthetic methods.
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therefore, these two modes of reasoning are thus depicted as perfectly complementary:
synthesis is also the adequate mode of exposition of the elements of a given science, and
of its principles, while analysis suits the exposition of problem-solving methods30.

Nonetheless, as Chasles notes, scarce are the extant texts that display the “Ancients’
geometrical analysis” in action. Most of the texts listed by Pappus were lost or only par-
tially recovered. Amongst these, Euclid’s Porisms particularly caught Chasles’ attention.
While only a few paragraphs by Pappus and Proclus have survived through the centuries
to tell us of these porisms, several mathematicians ventured to guess the geometrical
content of these texts. One of them, Robert Simson, was particularly successful in this
endeavor. Chasles claims that Simson was able not only to recover the very definition of
the term “porism”, but also the “peculiar form” of the propositions thus named, by ex-
plaining 6 or 7 statements out of the 30 that Pappus transmitted to us, in rather obscure
and laconic terms31. Simson’s work is yet to be built upon, Chasles adds, as he failed to
explain “the reason for the eminent utility [of these propositions] in the Geometer’s craft”.
Despite its limitations, Chasles found Simson’s work to be sufficient evidence to assert
that Euclid had reached propositions which would not be out of place in a modern text-
book, in large part due to their “peculiar form”. While Chasles did not make explicit this
form in his opening lecture, he had previously defined porisms in the Aperçu Historique
in the following manner32:

Le porisme est une proposition dans laquelle on annonce pouvoir déterminer et
où l’on détermine effectivement certaines choses ayant une relation indiquée
avec des choses fixes et connues, et avec d’autres choses variables à l’infini:
celles-ci étant liées entre elles par une ou plusieurs relations connues, qui étab-
lissent la loi de variation à laquelle elles sont soumises.

In Chasles’ understanding of Greek geometrical practice, porisms are an intermediary
form of propositions between theorems and problems. Theorems are propositions where
one has to prove a known and stated fact, whereas problems are propositions where
one must discover an unknown thing. Porisms, however, are propositions where one
must simultaneously prove a stated truth and discover the nature (“manière d’être”) of
some things mentioned in the statement of this truth33. In 1846, Chasles was not in
possession of a complete interpretation of these texts: in the second half of this chapter,

30 [Chasles, 1852], p.xlii.
31 [Chasles, 1852], p.xliv.
32“The porism is a proposition wherein we announce that we can determine, and we effectively deter-

mine, certain things having a stated relation with fixed and known things, and with some other variable
things at infinity: these being linked to one another by one or several known relations, which establish
the law of variation to which they are submitted”, [Chasles, 1837], p.13.

33 [Chasles, 1860], pp.32-36.
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we will discuss his 1860 extensive “divination” of the meaning of these lost texts. In 1837
already, however, he understood them to be the basis for a geometrical analysis with a
power comparable to that of algebra: porisms, Chasles said then, are “in Euclid’s mind, in
a way, equations of curves34”. From this comparison, Chasles concluded that the Ancients’
analysis must serve as the basis on which to build a new higher geometry: the form of
their propositions was to be restored within unified and systematic exposition35. Notably,
Chasles’ higher geometry is not synthetic: it is self-avowedly analytical, in the historical
sense of the term. However, it is an analytical geometry without Algebra.

2.1.2 Concrete and abstract geometry

Chasles’ historical narrative continues as follows: as Western science went into decline
and medieval obscurity, the Arabs kept mathematics alive by translating and copying a
vast number of texts. In so doing, they acted as a melting pot for Greek and Indian
sources alike. While the former displayed a certain character of abstraction and was
devoid of any form of calculation, Indian mathematics revolved mainly around Algebra
and computations36. As Western scholars regained access to Classical geometrical texts
through the Arabs during the Renaissance, they started using algebra to solve geometrical
problems. Nonetheless, this algebraic practice was still imperfect, claims Chasles: in
the works of the so-called Italian algebraists (Scipion Ferro, Cardano, etc.), the only
purpose for the use of signs is to represent the unknown whose value is sought. Thus, the
algebraic operations performed by these mathematicians only apply to concrete numbers.
Unlike them, according to Chasles, Vieta created a “science of symbols37”, the “logistique
spécieuse”, which soon became “l’instrument propre de la marche analytique”. In so doing,
he had made algebra – and its application to geometrical problems – abstract.

A large part of Chasles’ argument here aims at reiterating criticisms he had made in
1841 against the historical theses of Italian mathematician (and académicien) Guglielmo

34 [Chasles, 1837], p.276. In a review of Chasles’ 1860 book on Euclid’s lost Porisms, Chasles’ pupil De
Jonquières wrote: “Cette forme de théorèmes non complets, c’est-à-dire débarrassées de déterminations
parfois compliquées et sans utilité, tend à devenir le caractère le plus général des propositions dans les
mathématiques actuelles ; [..] il y a, à cet égard, une analogie incontestable, qu’on était loin de soupçonner,
entre les Porismes d’Euclide et la plupart de nos propositions modernes ; [..] cette modification dans la
forme des énoncés est, à elle seule, un progrès réel ; car la science y trouve un degré de simplicité et
d’abstraction qui facilite le raisonnement et la combinaison des vérités mathématiques entre elles ; et
ainsi [..] elle prouve chez Euclide, non point un caprice inutile, mais au contraire une rare sagacité et une
profonde intelligence des besoins de la science”, [de Jonquières, 1861a], p.6. Underlining in the original
text.

35 [Chasles, 1852], p.xlvii.
36For a broader-scope history of the distinction between Greek and Indian mathematics in nineteenth-

century historiography of mathematics, see [Smadja, 2015].
37 [Chasles, 1852], p.liv.
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Libri38. The latter, in his 1838 Histoire des sciences mathématiques en Italie de la Re-
naissance au XVIIè siècle, had placed an emphasis on Fibonacci’s innovations whilst
recounting the history of algebra. In a passage quoted extensively by Chasles amidst
their controversy, he had stated that Fibonacci “denoted [quantities] by a single letter,
on which he then carried out algebraic operations as if they were abstract quantities,
absolutely in the same way as it is done today39”.

To that claim, Chasles replied that it rested on a confusion between two very different
things: “reasoning on letters”, and “computing on or represented by letters40”. What
Fibonacci did is not properly called algebraic operations, Chasles contended, but merely
a reasoning on letters. Reasoning on letters was not even an innovation, as the texts of
Euclid, Diophantus, or Stifel show. A simple example allows Chasles to reject any claim
of an invention of algebra by Fibonacci: when the latter had to express the identity which
we now write a2 + b2 = ab(a

b
+ b

a
), he introduced two auxiliary letters d and g to represent

the product of the two given quantities a, b and the sum of their ratio, effectively writing
a2 + b2 = dg, where d, g are as described above. This, according to Chasles, proves that
Fibonnaci merely reasoned on letters but could not compute with them. Only at the end
of the 12th century did mathematicians such as Jordanus Nemorarius create some of the
first algebraic notations, as he got rid of the need for introducing letters other than those
that represent the given data of the problem41. However, all this was still a far cry from
Vieta’s true innovation, which Chasles describes as follows42:

Ce n’est donc pas là ce qu’on attribue à Viète; ce n’est ni d’avoir raisonné sur
des symboles abstraits, ni même d’avoir exprimé les inconnues d’une question
par des lettres, comme le dit M.Libri. Mais on lui attribue d’avoir substi-
tué, dans le calcul algébrique, des lettres aux quantités connues qui, jusque-là,

38 [Chasles, 1841c], [Chasles, 1841b], [Chasles, 1841a]. While Chasles’ historical take seems partly
motivated by nationalist interests and institutional strategies, and as such (as is the case with a large
part of his historiography) could be deconstructed on such grounds, it remains relevant for discussing the
epistemological themes underlying the construction of his Higher Geometry. Therefore, the chauvinistic
accents of this controversy will not be discussed here, nor will the sociological background of Libri’s
uneasy institutional seating in the Parisian mathematical society. See [Ehrhardt, 2011] for more on this
last point.

39See [Libri, 1838], vol.2. The part on Fibonacci covers pp.20-44, and the passage quoted by Chasles
can be found pp.33-34.

40“Le raisonnement sur des lettres, et le calcul exécuté ou figuré sur des lettres”, [Chasles, 1841c],
p.742.

41Very little is known of the life of Jordanus Nemorarius, and even his dates of birth and death are
subject to much debate. For instance, in the second volume of his Vorlesungen über Geschichte der
Mathematik, and pace Chasles, Moritz Cantor presents his as a 13th-century, Germanic author [Cantor,
1900], pp.53-59.

42 [Chasles, 1841c], p.747. Underlining in the original text. Chasles also wrote extensively on the
history of algebra in India, and put forth several influential conjectures, both on the circulation of
algebraic knowledge and on the connection between algebraic procedures and geometrical constructions.
See [Smadja, 2016], especially pp.258-282.
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avaient été exprimées en nombres; c’est donc d’avoir, le premier, figuré des
calculs virtuels avec des lettres, calculs qu’on ne savait faire qu’avec des nom-
bres; c’est d’avoir créé les expressions et les formules algébriques et cet art des
transformations qui équivalent à de longs et pénibles raisonnements auxquels
l’esprit humain ne pourrait suffire, enfin c’est d’avoir créé ce qu’on appelle
aujourd’hui l’algèbre ou calcul des symboles.

One of Chasles’ main sources and allies in the fight for the rehabilitation of Vieta’s achieve-
ments, and in arguing for the Frenchman’s priority with regards to the creation of algebra,
is English historian Henry Hallam (1777-1859), and in particular his Introduction to the
Literature of Europe, published in four volumes starting in 1837. In the second volume
of said Introduction, published in 1839, Hallam devoted his eighth and final chapter to
what he called the History of Physical and Miscellaneous Literature from 1550 to 1600.
This chapter opens with a discussion of the progress of algebra in this period43. Hallam,
a well-connected Whig liberal, was also a fellow of the Royal Society. It comes therefore
as no surprise to see him quote Peacock’s definition of algebra as “the science of general
reasoning by symbolical language44” in this section, which he borrows from the famous
1830 A Treatise on Algebra by Peacock45. In this much discussed text, as well as in a
later Report on the Recent Progress and Present State of certain Branches of Analysis46,
Peacock responded to long-lasting discussions regarding the epistemic status of negative
numbers, proposed a redefinition of algebra as a science, and of its relation to Arith-
metic47. In particular, Peacock argued against the idea that algebra was a generalisation
of arithmetic, by noting that is impossible to derive the general laws of algebra, such
as the substraction operation, from the principles of arithmetic. In other words, from
the principles that rule the substraction of a smaller number from a larger number, it is
impossible to derive the algebraic laws that rule the sign ‘-’ in general. For Peacock, al-
gebra is rather to be thought of as an abstraction from arithmetic, with the latter serving
merely as a “science of suggestion48”: if two arithmetical expressions (or, to write like

43 [Hallam, 1839-1840], p.274-280.
44 [Hallam, 1839-1840], p.277
45 [Peacock, 1830], p.1.
46 [Peacock, 1834].
47For a detailed analysis of Peacock’s conception of Algebra, and its diffusion in British mathematical

circles, see [Pycior, 1981]. For a suggestive analysis of conflicting attitudes towards these conceptions
of algebra in sociological terms, comparing political stances (Whig reformers such as Peacock versus
protestant conservatives such as Hamilton) and epistemologies of Algebra, see [Bloor, 1981]. Peacock’s
conception of Algebra, through the mediation of Hermann Hankel, would prove extremely influential for
the philosophy of mathematics of Hermann Schubert, to which we shall turn in section 8.2.4.

48 [Peacock, 1834], p.198. The question of the arbitrariness of formulas and algebraic forms arose in this
context, culminating with the discovery of Hamilton’s quaternions. Geometers such as Chasles did not
seem to consider this line of thought as relevant for their own subject, as the necessities of the extension
seem to prevail over the indetermination of symbolic scriptures. However, as we shall see in chapters 4

56



2.1. Geometry made methodical and abstract

Peacock, “forms”) are equivalent, then they will remain equivalent when read as purely
symbolic expressions, that is to say algebraic expressions. This does not mean that there
is an intrinsic necessity for these forms to remain equivalent. On the contrary, the laws
of symbolical algebra are formed in this manner because arithmetical algebra is chosen to
be a “surbodinate science” of the former49.

This new conception of Algebra was not only appealing to Chasles because it could be
levied in a polemic against Libri, or for its purely philosophical merits. In fact, Peacock’s
theses, or at least Chasles’ reading and understanding thereof, echoed strongly ideas
already expressed in the Aperçu Historique. Through Hallam, Chasles got from Peacock
the idea of distinguishing between a concrete science of numbers, and an abstract science
of symbols, in a way that mirrors the distinction between a concrete and an abstract
geometry. Whilst discussing Archimedes’ method of exhaustion, for instance, Chasles
wrote50:

La méthode d’exhaustion, qui reposait sur une idée mère tout à fait générale,
n’ôta point à la Géométrie son caractère d’étroitesse et de spécialité, parce
que cette conception y manquant de moyens généraux d’application, deve-
nait, dans chaque cas particulier, une question toute nouvelle, qui ne trouvait
de ressources que dans les propriétés individuelles de la figure à laquelle on
l’appliquait. [..]
Ces considérations, qui tendent à faire ressortir la différence du spécial au
général, du concret à l’abstrait, qui distingue la Géométrie jusqu’au XVe siè-
cle, de la Géométrie postérieure, nous portent à regarder cette première époque
comme formant les préliminaires de la science.

Concrete geometry, for Chasles, is that which is not founded upon general principles.
Archimede’s method of exhaustion is one such example: while general in that it can be
applied to a wide range of cases, it requires a special construction for each figure. The
geometer must work with the figure before their very eyes, and the reasoning does not
operate at an abstract level. In Chasles’ historical reconstruction, to this concrete geome-
try of diagrams succeeded an abstract geometry. Crucial to these transitions, for Chasles,
were the works of Vieta and Kepler. Interestingly enough, Chasles’ narrative for the rise
of abstract geometry was not one of pure cumulative progress. He notes that, “for Greek
geometry to become perfect, it had to go through a state of alteration, which made this

and 7, similar concerns appear when certain characteristic properties, used to create general objects, are
shown to cause unwanted results to hold. While the introduction of arbitrariness or conventionality in
geometry is usually more associated with non-Euclidian geometries, it actually played a key role in the
debates surrounding Chasles’ enumerative geometry.

49 [Peacock, 1834], p.200.
50 [Chasles, 1837], p.52. Underlining in the original text.

57



Chapter 2. “In a single stroke of the quill”: on Chasles’ rewriting of pure geometry

science lose its abstraction and its generality, and to descend to the rank of concrete and
numerical operations51”, and refers to medieval Arab geometry (in particular, Mohammed
Ben Musa), and that of the Italian algebraists such as Fibonacci. The algebra of concrete
numbers (which Peacock called arithmetical algebra) had been used by these authors
to represent magnitudes and carry out computations without referring to diagrams, ex-
plained Chasles, thereby doing away with the generality of Greek proofs. By inventing
literal algebra, Vieta was able to preserve the import of literal modes of computation and
reasoning, and to elevate them to a higher level of abstraction. Through the use of this
“universal instrument”, the geometer is able to reason on the intersection of a circle and
a line in an abstract fashion, that is to say unfettered by the requirement of separating
between each possible concrete case.

In 1837, Chasles had devoted but a few lines to Vieta’s algebra, which he merely
described as a “complement to Plato’s analytical method52”. In 1846, he would make
this connection between the Ancients’ analysis and Vieta’s algebra more explicit. By in-
troducing indistinctly known and unknown quantities into an abstract symbolism, Vieta
had created an instrument to make this geometrical science of the Ancients uniform and
systematic. This is not to say that Chasles attributes to Vieta the creation of “analytical
geometry”, a term whose polysemy he denounced. For Chasles, this creation has to be
attributed to Descartes, who used Vieta’s instrument to represent lines and curves. In
fact, to mark the difference between the two, Chasles suggests a distinction between “ana-
lytical geometry” and the Ancients’ “geometrical analysis”. This is crucial, as “L’Analyse
géométrique des anciens [doit] être la base de notre Géométrie supérieure53”.

Of course, Chasles was not the first French mathematician and historian of math-
ematics who had commented on Vieta’s works, and the break they represent with past
algebraic practices. Famously, Lagrange had already done so in his Traité de la Résolution
des Équations Numériques54. For Lagrange, the difference between arithmetic and alge-
bra was that “the latter’s operations do not provide individual values for the quantities
that are being sought, like those of arithmetical operations or geometrical constructions,
but merely represent the operations, either arithmetical or geometrical, which have to be
carried out on the first quantities to obtain the values being sought”. Vieta is then being
credited as having shown that geometrical constructions can be put under the perview

51 [Chasles, 1837], p.542.
52 [Chasles, 1837], p.52. Vieta’s work on triangles is described in much greater detail, and disappears

completely in later historical narratives of Chasles’, thus showing once more the evolution in historical
and epistemological concerns.

53 [Chasles, 1852], p.xlviii. Underlining in original text.
54 [Lagrange, 1826], pp. xxi-xxiii. For more on Lagrange as a historian of mathematics, and on the

role of historical studies in his teaching and practice of algebra, see [Wang, 2017], pp.57-84, [Richards,
2006], pp.706-711.
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of algebra in the same way as arithmetical operations can. For Lagrange, algebra is a
system of operations putting in relation known and unknown quantities, reigning over
several fields of application such as geometry and arithmetic.

On the contrary, through this 1846 opening lecture, Chasles presented Vieta’s achieve-
ment as the development of a tool for the abstract and easy expression and proving of
propositions of higher geometry, or geometrical analysis. Chasles’ project for higher ge-
ometry was one that would pursue Vieta’s crucial move, by developing a new geometrical
analysis on the basis of instruments other than that of Vieta’s algebra. To rival the results
and generality of analytical geometry, another step towards abstraction must be taken:
it was necessary to develop a new instrument, that is a new geometrical language. For
Chasles, this very possibility had been opened a few decades prior by Monge and Carnot,
who are identified as the key actors of a renewal of geometry at the onset of the 19th

century. Indeed, as Chasles concludes his historical overview with a third stage, the two
French geometers are now given the front role in the following terms55:

Les ouvrages qui, au commencement du siècle présent, ont eu une heureuse
influence sur la marche et les progrès de la Géométrie sont, à des titres dif-
férents, ceux de Monge et de Carnot. [..]
Ces ouvrages, en agrandissant les idées, en inspirant aux jeunes mathémati-
ciens le goût des recherches de bonne Géométrie, leur offraient des méthodes
et des ressources nouvelles.

Chasles continues by crediting Monge with the invention of “Géométrie descriptive”, a
science which aims to “represent on a plane, which is a two-dimensional surface, bodies
which have three dimensions; in other words, to gather in one plane figure all the necessary
elements to make known the shape and position in space of a three-dimensional figure”.
Here again, Chasles emphasizes a contribution to geometry in the form of a new technique
for representing complex figures in simpler terms. Already in the Aperçu Historique,
Chasles’ appraisal of the works of Monge insisted on the changes they had brought to the
language of geometry56:

Cette influence utile de la Géométrie descriptive s’étendit naturellement aussi
sur notre style et notre langage en mathématiques, qu’elle rendit plus aisés et
plus lucides, en les affranchissant de cette complication de figures dont l’usage
distrait de l’attention qu’on doit au fond des idées, et entrave l’imagination

55“At the onset of the present century, the works which had a most fortunate influence on the march
and progress of Geometry are, in many respects, those of Monge and Carnot. [..] These works offered
young mathematicians new methods and resources, while awakening in them a taste for research in good
Geometry”, [Chasles, 1852], pp.lxxi-lxxii.

56 [Chasles, 1837], p.190.
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et la parole. La Géométrie descriptive, en un mot, fut propre à fortifier et
à développer notre puissance de conception; à donner plus de netteté et de
sûreté à notre jugement; de précision et de clarté à notre langage; et, sous
ce premier rapport, elle fut infiniment utile aux sciences mathématiques en
général.

Mirroring his description of Vieta’s move from numbers to symbols, Chasles presents
Monge’s geometry as the introduction of new literary techniques for geometrical reasoning,
thus pushing for a shift in focus from figures to pure reasoning. In both cases, this
clarification and improvement of mathematical language is correlated with a step from
concreteness towards abstraction. Moreover, Chasles crucially praises Monge for “binding
[a variety of questions] to a small number of abstract and elementary operations57”.

However, Chasles’ addition in 1846 of Carnot to what is identified as a turning point
in the history of geometry is a strong departure from the narrative dominating the 1837
Aperçu Historique, whose fifth “époque” opened with a zealous praise of “Monge’s creative
genius58”. In this first book, Chasles presented Carnot as merely one amongst many who
had followed the path opened solely by Monge, alongside Dupin and Brianchon59. In his
1846 opening lecture, however, Chasles attributes equally to Monge and Carnot the crucial
leap towards the renewal of geometrical methods60, and describes Carnot’s contribution
as having “the special purpose of expanding upon the Ancients’ Geometry61”. Reiterating
his judgement on the lack of generality of the propositions one can find in the Ancients’
geometry, Chasles then discusses Carnot’s “principe de corrélation”, which was hardly
mentioned in the Aperçu Historique. He now finds it to be an important step towards
generality, as Carnot showed that a proof valid for a single configuration of the figure can
yield proofs for all other configurations through sign changes62. This contribution is then
described in striking terms63:

57“On n’avait pas songé à rattacher toutes ces questions à un petit nombre d’opérations abstraites et
élémentaires, et surtout à présenter celles-ci dans un traité spécial et sous un titre particulier, qui leur
donnât un caractère de doctrine indépendant des pratiques d’où il avait suffi de les faire sortir. C’est là
ce que Monge a conçu”, [Chasles, 1852], p.lxxii.

58 [Chasles, 1837], p.189.
59 [Chasles, 1837],p.210-213.
60Chasles would remain faithful to this new narative. In his 1870 Rapport sur les progrès de la géométrie,

one can read: “Geometry, this primordial part, this basis of mathematics, nowadays presents two different
directions with regards to methods, which stem mainly from the works of Monge and Carnot”. See
[Chasles, 1870], p.2.

61“Les ouvrages de Carnot ont pour objet spécial l’extension de la Géométrie des Anciens”, [Chasles,
1852], pp.lxxvi-lxxvii.

62The reevaluation of Carnot’s “principle of correlation” plays a crucial role in the geometrical theory
of homography at the heart of Chasles’ higher geometry. We will come back to the more technical details
below. For a thorough study of Carnot’s principle of correlation and the value of generality in early
19th-century geometry, see [Chemla, 1998]

63“This way of writing Geometry characterizes modern Geometry, and it is Carnot’s works which
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Cette manière d’écrire la Géométrie fait le caractère de la Géométrie moderne,
et ce sont les ouvrages de Carnot qui ont le plus contribué à la répandre.

The shifts in Chasles’ historical narratives are strongly correlated to shifts in epistemologi-
cal concerns. The mode of reasoning, the Ancients’ “geometrical analysis”, the techniques
for the expression of abstract geometrical knowledge and proofs, are all themes which
gained a much larger role in Chasles’ épistémologie historique. Topics such as notations
were hardly discussed in 183764, while by 1846 they had become a rather important his-
toriographical focus. Consequently, the roles of Vieta and Carnot in the development of
geometrical methods are reevaluated positively, thus betraying Chasles’ growing attention
to the language of geometry65.

This shift is of great importance, as it occurs as Chasles is turning to teaching his own
material and methods to advanced students at the Faculté de Paris. As recent scholarship
has convincingly shown, the turn to professorship has, in a lot of cases, caused profound
changes in the way mathematicians understood, practiced, and wrote their science66, and
is as much a knowledge-producing process, as it is a knowledge-circulating one – if not
more. This is particularly true for Chasles, whose Géométrie Supérieure purports not
so much to add to a previous body of knowledge, but to change its structure and its
exposition. To describe the reform of the language of geometry that Chasles deemed
necessary for the modernization of geometrical analysis, such is the task we shall tackle
in the rest of this section.

Chasles’ 1852 Traité de Géométrie Supérieure is divided into four Sections, only the
first of which will be directly discussed in the present chapter. Indeed, the first Section
expounds, as Chasles puts it, “a set of propositions whose natural sequence gives rise to
three theories which follow each other and form the development of a single notion and
a single fundamental theorem67”. This notion is that of the cross-ratio; and these three
theories are respectively the theory of the cross-ratio, the theory of homographic divisions

contributed the most to spread it”, [Chasles, 1852], p.lxxvii
64A rare exception is a discussion of the “Geometry of Indians”, [Chasles, 1837], p.418. See [Smadja,

2016] for a detailed study of this passage.
65This theme is not entirely new: Lacroix, in his pedagogical essays, had also emphasized the impor-

tance of linguistic transformations in the development of a science. See [Lacroix, 1838], pp.177-178, “to
educate students in the ways of [historical] authors, even the most celebrated of them, must cease because
since they wrote, the science has made progress which has completely changed the connections of the
propositions and often their language”.

66The ways in which teaching impacts mathematicians’ scientific practice and theoretical outlooks has
been the object of renewed interest by historians for several decades now, and has been a source of
important results. For a general overview of the benefits to be reaped from this perspective, see the
programmatic but still highly relevant [Belhoste, 1998]. For recent studies in this vein on sources and
actors closer to us, see [Ehrhardt, 2009], [Gispert & Schubring, 2011], [Belhoste, 2014].

67“La première [section] contient un ensemble de propositions dont l’enchaînement naturel donne lieu
à trois théories qui se font suite et sont le dévelopement d’une même notion et d’un même théorème
fondamental”, [Chasles, 1852], p.xviii.
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and sheaves, and the theory of involution. All of these notions were already discussed
in the 1837 Aperçu Historique, albeit in very different terms. Homographic divisions, for
instance, only appeared once68, while cross-ratios and involutions were not written with
the notational conventions that Chasles would introduce in his teaching69. We will not
compare further the ways in which these notions appear in both books, in the interest
of clarity and (relative) brevity. Our focus will rather be on Chasles’ systematization
thereof, within what he considered to be a wholly methodical and unified framework for
the expression and proving of the propositions of higher geometry. Sections 2 to 4, which
respectively apply these theories to rectilinear figures, correlative figures, and circles, will
not be discussed in detail. Furthermore, in expounding the fundamental theories around
which the entire Treatise is built, we will only give the results and proofs related to the
properties of points (or series thereof). However, the entire book is constructed so that
each proposition has its dual, that is to say an analogous statement where points and
lines are reversed. This is to lighten the exposition, as our goal is not to summarize the
whole of Chasles’ Higher Geometry as a mathematical theory, but to present it as the
construction of a literary technology to produce a geometrical knowledge that embodies
the epistemological virtues described previously70.

2.1.3 The abstract geometry of signed segments

A key component of Chasles’ literary technology for the expression of abstract geometrical
knowledge is what he calls the “principle of signs”, which he not only discusses at length in
the Préface of the Traité, but to which he also devotes the entire first chapter thereof71. For
Chasles, this principle enables the gathering of several concrete results into one abstract
proposition, but it also allows propositions to be stated in the most general way possible,
and as such, to endow them with their full meaning72:

L’usage explicite du principe des signes est souvent indispensable pour donner
aux propositions leur signification complète et toute la portée qui est leur est
propre, et à la science toutes ses ressources naturelles.

68 [Chasles, 1837], p.844.
69 [Chasles, 1837], compare p.302-307 for instance with the two subsections below.
70For an exposition of the mathematical content of this book in terms more familiar to mathematically-

trained readers, see [Nabonnand, 2006], pp.159-180.
71The introduction of negative quantities in geometry had been a hotly-debated topic amongst French

mathematicians in the second half of the 18th-century, from Fontenelle to Carnot; see [Schubring, 2005],
pp.99-113; 353-368; 410-419. Chasles was probably aware of these discussions to a certain extent; however,
in his own introduction of negative segments, he does not mention any of the epistemic worries that these
past authors may have had in that regard.

72 [Chasles, 1852], p.viii.
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At its core, this principle is mostly a notational convention. A segment delimited by two
points a, b can be denoted either ab or ba. In the first case, we convene to call a its origin;
in the second case, we convene to call b its origin. Arbitrarily convening of a direction
on the line on which this segment lies, which we regard as being positive, we can regard
ab as being positive or negative depending on whether this (oriented) segment is in the
same direction as the positive direction convened upon. Chasles then writes:

ab = −ba

From this convention follows what Chasles calls a “fundamental theorem”: for any three
points a, b, c on a line, the sum of the segments ab, bc, ca is always zero, which translates
into the following equation73:

ab+ bc+ ca = 0

Chasles’ proof is as follows: a and b being given, the order of the three points a, b, c (with
respect to the convened upon direction) can only be one out of three possibilities, as c
can either be between a and b, left of both, or right of both. These configurations can be
written as a, b, c; c, a, b, or a, c, b. Any two configurations differ only by the permutation
of two letters, which leaves the equation above unchanged. Indeed, if for instance a and
b are switched, then ab becomes ba, bc becomes ac, and ca becomes cb. The equation
is then ba + cb + ac = 0; multiplying this equation by −1, i.e. to change the direction
of every segment, yields the original equation. Therefore, explains Chasles, it suffices to
show that the formula holds in one case only, which is easy enough to do, as for instance
in the order a, b, c, we have ac = −ca = ab+ bc. Of course, it wouldn’t have been hard to
show that the formula holds in each case, but the whole point of the principle of the signs
as a way of writing the equations of geometrical figures is that it removes the need for
particular considerations and allows general proofs and statements of propositions. A few
paragraphs later74, Chasles gives a proof by induction of the same formula for n points.

Chasles then explains how this way of writing signed segments can be used to write
coordinate changes. When a point a is determined by its distance with respect to a fixed

73 [Chasles, 1852], p.2. It must be noted that Chasles writes both the sentence on the “sum of segments”
and the equation. This equation is the reason why Chasles’ name is associated, at least in French
secondary education curricula, to the analogous equation for vectors: −−→AB + −−→BC = −→AC, where A,B,C
are three points in an affine space. However, it is clear that this vectorial equation has little to do
with Chasles’ principle of signs. The latter deals with colinear points, and is a notational convention.
Furthermore, the concept of vector does not appear in Chasles’ Higher Geometry in the least. Recently,
some scholars have argued (against Crowe’s 1975 History of Vector Analysis) that Chasles, through his
reading of the work of his childhood friend Gaetano Giorgini, may have played a role in the emergence
of this concept via articles on kinematics and mechanics, see [Crowe, 1967], [Koetsier, 1986], [Caparrini,
2003].

74 [Chasles, 1852], pp.3-4.
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origin O, to change the origin from O to another point O′ on the line Oa, it suffices to use
the fact that Oa = O′a− O′O. Furthermore, the principle of signs can be used to study
the properties of middle points of segments. For any two points a, a′ whose middle point
is α, and for any point m on their common line, we have the following equations:

mα = ma+ma′

2 , ma ·ma′ = mα2 − αa2

Conversely, these equations defines the middle point α: given two points a, a′, it is the
only point on the line aa′ that satisfie the equations above for any point m.

These formulas are the first occurences of a kind of proposition which will prove to be
extremely important in the Treatise. What we have here is an equation that defines an
object (here, the point α) by a relation involving an unknown quantity (here, point m)
that remains constantly true whatever the value or position of the unknown is. In other
words, two points are being represented by a point and a rectangle. The letters chosen
here, while not commented upon, will retain the same roles in the rest of the Treatise,
namely m will always be a variable point on a line, while a and a′ always denote two
points of a pair. Similar considerations are applied to angles, in accordance with the
principle of duality. Note that Chasles uses overbars to denote the rectangle mα2; this,
however, does not mean that we are dealing with a new kind of segment, or with a positive,
numerical length. Rather, the introduction of a bar to denote rectangles or higher powers
of a single segment serves to mark the difference with algebraic notations. Despite the
similarity between both notations (and the potential translations that can be provided
between these), Chasles is still manipulating segments, and not algebraic quantities. It
may be tempting to think that Chasles is trying to import notions from algebra, and to
compare m with the unknown x of algebraic equations. In fact, for Chasles, it is rather
the opposite: his m and the algebraists’ x are two different instruments for what he had
called “geometrical analysis”.

To demonstrate the expressive power granted by this principle is a major concern of
Chasles’. In Chapter II, §21, Chasles gives a striking example, starting with the following
statement75 :

Étant donnés quatre points a, b, c, d en ligne droite, on a toujours entre les six
segments que ces points déterminent deux à deux, la relation

ab · cd+ ac · db+ ad · bc = 0

Chasles comments further, and explains that by passing from the “abstract form” of the
75“For any four given points a, b, c, d on a straight line, the following relation between the six segments

determined by pairs of points always holds: ab · cd+ ac · db+ ad · bc = 0”, [Chasles, 1852], p.17.
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theorem to its “concrete expression”, that is to say by fixing the relative position of the
four points on the line and by looking at the equation stated above as expressing a rela-
tion between the numerical values of lengths of segments, the theorem states nothing more
than a trivial property of three rectangles. Moreover, each permutation of the four points
yields a different property of these rectangles (see fig. below). The principle of signs, thus,
enables Chasles to state and prove all of these properties at once76: one concise equation
instead of a variety of ratios between numerical lengths, one abstract theorem instead of
a variety of particular propositions. The principle does not merely shorten the wording
of these propositions: it makes their unity appear, it shows the abstract truth behind all
of the particular configurations, and enables the move from concreteness to abstraction.
With the use of the terms “concrete” and “abstract”, Chasles echoes his previous theses

ab · cd+ ad · bc = ac · db ab · dc+ ad · cb = ac · db

on the history of Algebra, and the distinction between Fibonacci’s and Vieta’s uses of
letters. The letters used by Chasles in his equations do not represent numerical lengths or
angles, but segments or angles directly. This shift is akin to that of arithmetical algebra
to symbolical algebra. As such, the principle of signs is the first step toward a geometrical
language that can capture the same level of generality as algebra. Rather than showcash-
ing new results, Chasles is constructing a new language, the principle of signs playing
the role of a fundamental grammatical rule therein. This is a radical departure from the
Aperçu Historique, where signs were systematically stipulated and discussed77. The strat-
egy of importing the generality of (geometrical) analysis by recreating abstract variables
within geometrical language, and the associated move from concreteness to abstraction, is
a novelty which stemmed from Chasles’ renewed historiography of mathematics. Faithful
to Comte’s positivist project, this course shows Chasles turning historical insights into a
general and methodical doctrine.

76The proof of this formula, while rather simple, derives from notions we will discuss below.
77For instance, see [Chasles, 1837], pp.175-176.
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2.1.4 Imaginary numbers made intrinsic

In fact, the generality and abstraction granted by the principle of signs goes further
than unifying diverse configurations of objects. In Chapter V of the Traité de Géométrie
Supérieure, Chasles uses this principle to introduce imaginary numbers in geometry. For
any two points a, a′, of middle point α, Chasles lets M be a fixed point on the straight
line joining a and a′, and ν be the product of the distances between the two points a, a′

and M . This configuration translates into the following equation:

αa2 = Mα
2 − ν

Conversely, explains Chasles, “the determination of the two points depends on the con-
struction of the expression78 ±

√
Mα

2 − ν”. As we already saw, the two points a, a′ can
be determined and represented by the point α and the rectangle ν. However, when ν

is sufficiently large, the expression representing the points becomes imaginary since the
argument in the square root is negative. Two real quantities thus determine two con-
jugate, imaginary points. As such, in Chasles’ geometry appear only pairs of conjugate
imaginary points (or lines). Rather than postulating imaginary points from which ideal
lines can be defined as Poncelet did, Chasles presents an intrinsic way of representing and
manipulating pairs of points, from which the introduction of imaginary points naturally
follows. When discussing Poncelet’s principle of continuity, in the Préface to this very
Treatise, Chasles commented79:

Mais il est une autre considération plus puissante [than that of question of
rigor] qui m’a déterminé à ne pas profiter, dans ce Volume destiné à poser
les bases de méthodes générales, des facilités qu’auraient pu offrir souvent
le principe de continuité. Une étude attentive des différents procédés de dé-
monstration qui peuvent s’appliquer à une même question m’a convaincu qu’à
côté d’une démonstration facile, fondée sur quelques propriétés accidentelles
ou contingentes d’une figure, devaient s’en trouver toujours d’autres, fondées
sur des propriétés absolues et subsistantes dans tous les cas que peut présenter
la figure en raison de la diversité de position de ses parties.

Indeed, by simply postulating imaginary objects and applying the principle of continuity
to them, Chasles claims, Poncelet obtains proofs whose “facilité” obfuscates, or rather
glosses over, the very property of the object that makes the proposition remain true
whether or not some of its parts have become imaginary. The same goes for changes in

78“La détermination des deux points dépend de la construction de l’expresion ±
√
Mα

2 − ν”, [Chasles,
1852], p.56.

79 [Chasles, 1852], p.xv.
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the sign of expression: when unifying the propositions deriving from the various relative
positions of four points on a line, as discussed in a previous paragraph, Chasles did not
resort to a principle of continuity. Rather, he founded his statement and proof upon the
abstract expression of a property that subsisted whatever the relative positions of the
points.

When discussing the properties of pairs of points, Chasles has two representational
tools at his disposal80. The first one is to use two real quantities, namely α and ν, which
define the imaginary points with respect to one arbitrary point m which serves as origin
for the definition of ν. Indeed, given α and ν, the distances between points a, a′ and any
origin m are given by the equations:

ma = mα +
√
mα2 − ν

ma′ = mα−
√
mα2 − ν

Note that, when defining pairs of imaginary points, Chasles used a capital letter M ;
however, when proving properties of these pairs, he uses an equation with a variable
point, denoted by a lower case m. Effectively, this is another way of writing the equation
of an object, here a pair of points.

Another representational tool, perhaps more familiar to us but also to Chasles’ con-
temporaries, is to consider the pair of imaginary points as the roots of an equation of
the form ax2 + bx + c = 0. When pairs of imaginary points arise as double points of an
homographic division (defined and discussed below), they are regarded as the roots of an
equation Am2 + (λ+ µ)Am+ ν = 0, which is both an equation of the second degree and
an equation that does not yet belong to Algebra, as it involves geometrical quantities and
not algebraic variables. As we will see in the rest of this chapter, having several equations,
or indeed, representational devices, for one object is something Chasles seeks fervently. It
is rather common in the Treatise to have alternative proofs, as if to assess the respective
strengths of several equational presentations. However, close to no comments are made
on the role of these alternative descriptions of an object81.

One objection to this way of introducing imaginary points in geometry, rejected by
Chasles later in the Treatise, must be mentioned. It seems that, in the course of a proof
or a construction, we might end up manipulating meaningless expressions. For instance,
assume a pair of points a, a′ has been constructed, which sometimes are imaginary, and an

80See for instance [Chasles, 1852], pp.58-59.
81“Du reste, on verra que cette égalité [de deux rapports anharmoniques] même ne s’exprime pas

uniquement par une équation à deux termes, comme on pourrait le penser d’après la définition du rapport
anharmonique, mais aussi par des équations à trois et à quatre termes, de formes variées, équations dont
chacune a des applications spéciales fort étendues”, [Chasles, 1852], p.xxiv.
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equation of the form 2
ef

= 1
ea

+ 1
ea′ is obtained, for two fixed points e, f on the same line as

a, a′82. How can this equation be said to be generally meaningful? While this equation has
“an explicit meaning” when a and a′ are real, Chasles seems to be forbidden from consid-
ering isolated imaginary points. What, then, is the meaning of an expression such as 1

ea
,

taken in isolation from the rest of this equation? Chasles’ answer is simply that, per their
construction, imaginary numbers will only appear in symmetric equations. Therefore, it
suffices to rewrite the equation as 2

ef
= ea+ea′

ea·ea′ = 2 eα
ea·ea′ , wherein all elements are real and

perfectly meaningful in their own rights. Chasles’ conclusion is that segments like a′e
ought to be considered merely as symbols, through which we only express relations of the
elements that are always real (for instance, the point and the rectangle aforementioned).
This would be considered to be a major weakness of Chasles’ conception of imaginary
points by later commentators, including Gaston Darboux, Chasles’ successor as professor
of Higher Geometry. In his own lessons on geometry, Darboux claimed that there were two
methods to introduce imaginary points in geometry: the use of Descartes’ coordinates,
or Chasles’ Higher Geometry, completed by von Staudt’s geometry of position. Chasles’
method, however, was plagued by one major problem83:

Dans cette méthode, deux points imaginaires conjugués ne sont pas séparés.
Cela n’a pas d’inconvénients dans beaucoup d’applications où ces éléments en-
trent de manière symétrique. Cependant, le rapport anharmonique de quatre
points imaginaires sur une droite ne peut être ainsi défini.

That Chasles considered and yet rejected this objection shows how his epistemological
concerns differ from that of later generations of mathematicians. He is not creating a
geometrical theory of complex spaces: he is crafting a tool for the expression of abstract
truths in the real plane, which may depend on imaginary parts. Chasles’ goal is not to
integrate imaginary points to the collection of basic geometrical entities, but to write
proofs in a general manner, that does not hinge upon contingent properties such as the
reality or imaginary status of a point in a configuration.

To that end, he devotes considerable time comparing the expressive power of his in-
strument to that of Algebra84. For Chasles, his own conception of imaginary points “con-
forms absolutely85” to what is done in analytical geometry, with one major difference:

82This equation is that of an harmonic ratio, see [Chasles, 1852], p.64.
83“In this method, two conjugate imaginary points cannot be separated. This causes no inconvenient

in many applications where these elements appear in symmetric manner. However, the cross-ratio of four
imaginary points on a line cannot be defined in this way”, [Darboux, 1917], pp.2-3.

84For instance, [Chasles, 1852], pp.57-58.
85“Cette manière de considérer les imaginaires est tout à fait conforme à ce qu’on fait en Géométrie

analytique. Mais ici les équations sont formées avec les données mêmes de la question, ce qui est le plus
haut point de simplicité que l’on puisse désirer. En Géométrie analytique, au contraire, elles ont lieu entre
des coordonnées introduites auxiliairement”; [Chasles, 1852], p.xxix. The image of Algebra with which
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when Analysts introduce systems of coordinates to write their equations, they introduce
artificial auxiliaries, with no direct link to the objects being constructed. In so doing, they
obfuscate the reasons for the validity of a construction or a proof. On the other hand,
the introduction of imaginary points that is used by Chasles in his Higher Geometry is
“direct”, follows a “natural method”, and thus reaps the benefit of clarity, simplicity and
intuitiveness. Consequently, the principle of signs must be understood as the first but
primordial stepping stone for Chasles’ broader project to craft literary technologies to im-
port the epistemic uses and benefits of equations, without the loss due to the introduction
of extrinsic algebraic quantities86.

2.2 A new language for (projective) geometry

2.2.1 Cross-ratios and (an)harmonic systems of points

These notational and definitional innovations are not the final end of Chasles’ geometry:
their main purpose is to express in an abstract manner what Chasles, in 1846, took to be
the central notion of the whole of geometry: “cross-ratios87” (rapports anharmoniques).
For any four points a, b, c, d on a line, their cross-ratio is defined in Chapter II as the
quantity88:

ac

ad
: bc
bd

where the principle of signs is used to take into account the relative position of these
four points. In fact, as Chasles explains, there are two ways to determine the sign of
a cross-ratio. It is possible to use the principle of signs and determine the sign of each
segment then compute the sign of the entire expression; or one can determine the sign of
each ratio by looking at whether the segments composing it are in the same direction or
not. These sign determinations coincide as far as the result is concerned, adds Chasles,
but the first one is necessary when segments other than those present in the cross-ratio
enter the geometrical proposition at hand, while the second method is swifter in cases

Chasles writes such sweeping statements is certainly not in touch with the most advanced of contemporary
developments. Similarly, while presenting his theory of characteristics to the Paris Académie des Sciences
in 1864, Chasles would make comparisons with Algebra which show that his familiarity with recent works
was limited. However, one can safely assume that he had a passing knowledge of the textbooks written
by Irish mathematician George Salmon, which he sometimes refers to and quotes; see 4.2.4.

86A similar argument can be found in the Aperçu Historique: “en Géométrie pure, il faut remonter à
une raison plus directe, prise de la nature seule de la chose, et non empruntée d’un système de coordonnées
auxiliaire et artificiel”, [Chasles, 1837], p.119.

87Already in [Chasles, 1837], Chasles stated that “[La fonction anharmonique] sera utile surtout dans la
théorie des coniques, où elle montrera, entre une infinité de propositions isolées, une liaison et des rapports
qui les rattachent toutes à un petit nombre de principes généraux”, p.35. In the Aperçu Historique,
however, cross-ratios are given without the principle of signs.

88 [Chasles, 1852], p.7.

69



Chapter 2. “In a single stroke of the quill”: on Chasles’ rewriting of pure geometry

where no other segments are to be considered.
Furthermore, four points determine six possible cross-ratios, depending on their order;

three of these are the reciprocal of the other ones. Among these three, Chasles shows,
there are always two and exactly two that are positive89. Even though these multiple
cross-ratios will play close to no role in the rest of the Treatise, taking signs into account
when discussing cross-ratios is not an unimportant innovation. For instance, in the case
of the harmonic ratio90 (λ = −1), Chasles laments the fact that it is still customary to
write this configuration through the equation ae

af
= a′e

a′f
, with the added hypothesis that

the points are ordered in a manner such that an odd number of these segments are to be
read as negative quantities. This practice, for Chasles, is a result of the habit of working
“concretely”, with “the figure before our eyes91”. To capture the complete meaning of
the harmonic ratio, continues Chasles, we must write the equation ae

af
= − a′e

a′f
, thereby

allowing for the study of harmonicity of four points, irrespective of their relative positions.
While the first paragraphs of chapter II state elementary propositions pertaining to

cross-ratios and are followed by proofs thereof, §11 of the second chapter reads92:

Connaissant le rapport anharmonique λ de quatre points dont trois sont don-
nés de position, construire le quatrième.

Mimicking the language of Ancient Geometry, Chasles continues outlining another way
to pursue the Greeks’ geometrical analysis in a modern and general manner, without
resorting to Algebra. Indeed, instead of a proposition to be proven, Chasles gives a
“problem” to solve. The construction that Chasles gives to solve this problem is the
following (see fig. below): let a, b, c, d be the four points whose cross-ratio is λ, and
suppose, for instance, that b is the unknown point. Then, from a, draw a line in any
arbitrary direction and on this line form two segments aα, aα′ in ratio λ. Then draw the
lines αc, α′d, and let β denote their intersection. The parallel line to aα drawn from β

will determine the point b, as two pairs of similar triangles have been constructed: αac,
βbc; and α′ad, βbd. This ensures that ac

bc
= aα

bβ
and ad

bd
= aα′

bβ
. Dividing these equations,

and using the ratio between aα and aα′, Chasles can verify the fact that the cross-ratio
between a, b, c, d is as required (see fig. below for this construction93).

89Let λ denote the first one, then the other cross-ratios are 1
1−λ , and

λ−1
λ . A cross-ratio cannot be

equal to 1.
90This term is usually attributed to the Pythagoreans, who formulated a theory of (musical) harmony

in terms of series of numbers in such a ratio.
91 [Chasles, 1852], p.40.
92“Knowing the cross-ratio λ of four points, three of which are given in position, construct the fourth”,

[Chasles, 1852], p.10.
93While there were almost no figures in the 1852 edition; many would be added in the second edition,

published in 1880. This figure, for instance, only appears in the second edition.
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[Chasles, 1880], Planche I

Chasles then proceeds to show that this construction is general, that is to say that the
construction is always possible whatever the relative position of the four given points. To
determine c, it suffices to draw the parallel line to aα from b instead in the second step of
the construction. To determine a, by swapping the letters in the expression of the cross-
ratio, Chasles points out that it suffices to carry out the same construction starting with
point b instead of a. If λ is negative, then it suffices to put α and α′ on different sides of
point a. Therefore, this construction is always possible. This way of presenting problems
and their (general) constructions will reappear constantly throughout the Treatise. In
particular, Chasles does not need to “generalize” the construction, for instance adding a
subclause to the procedure when confronting a case such as a negative cross-ratio. Instead,
he has set up a way to describe a construction which relies on permanent properties of
four points, whether they are real points, at infinity, or imaginary (in pairs). The step
of the construction in which its generality is demonstrated is a novel addition to the
problem-solving of the Greeks, and one of the ways in which Chasles’ Higher Geometry
both borrows from and expands on what is identified as an old and respectable tradition.

Every notion presented in the Treatise has its own dual counterpart. In the case of the
cross-ratio, this means that we can define the cross-ratio of four lines A,B,C,D passing
through a single point o (or, as Chasles puts it, four lines from a single sheaf), as the
following quantity (see fig. below):

sin(A,C)
sin(A,D) : sin(B,C)

sin(B,D)
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where sin(A,C) denotes the sine of the angle at point o between the lines A and C.

The fundamental property of the cross-ratio, which Chasles already mentioned in his
Préface, is that it is projective94. This means that, for any four lines from a single sheaf,
their cross-ratio is equal to that of the four points formed by the intersection of any
transversal line and these four lines. Furthermore, this implies that the cross-ratio of four
points formed by intersection of four given lines and a transversal line does not depend on
the position of the transversal line. Once again, Chasles carefully shows that the equation
also preserves signs, and maintains the generality of the geometrical discourse95. Note that
this property provides Chasles with a short proof of the equation ab.cd+ac.db+ad.bc = 0
discussed above96. He goes on to discuss various properties of cross-ratios, in particular
when one point is at infinity, which we need not discuss here.

In Chapter III, Chasles turns to what he calls “systems of four points”. When two
such systems of points a, b, c, d; a′, b′, c′, d′ (possibly on different lines), have the same
cross-ratio, this can be expressed through several equations. First come what Chasles
calls “two-term equations”, such as

ac

ad
: bc
bd

= a′c′

a′d′
: b
′c′

b′d′

which only express the equality between the cross-ratios. Then Chasles gives “three-term
equations”, which he obtains by taking the right-hand term above, and replacing the
(first) cross-ratio of the second system of points by one minus the second cross-ratio of

94The term originates from Poncelet’s Traité des propriétés projectives, [Poncelet, 1822], p.12. Chasles
attributes the discovery of this property to Pappus, and perhaps even to Euclid, [Chasles, 1852], pp.xxi.

95 [Chasles, 1852], pp.12-13.
96 [Chasles, 1852], p.17.
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the second system. This gives, among other things, the following equation:

ac

ad
: bc
bd

+ a′b′

a′d′
: c
′b′

c′d′
= 1

Now, other kinds of three term equations can be given, by introducing an arbitrary point
m′ on the line of the second system. It must be pointed out that Chasles also discusses
properties which cannot be expressed by a certain kind of equation. For instance, when
expounding the notion of the harmonic ratio of two systems of two points, he points out
that a simple “équation de condition” can characterize this configuration. Indeed, if two
systems of points are represented by the equations

x2 + ax+ b = 0
x2 + a′x+ b′ = 0

the equation b+ b′ = aa′

2 (or, alternatively, ν + ν ′ = 2mα ·mα′) fulfils this task. However,
no similar equation can be found to express the fact that two systems of two points have
a certain cross-ratio, as the points from one system do not play a symmetric role in the
formation of a cross-ratio as they do in the formation of an harmonic ratio.

2.2.2 Homographic divisions of a line

In Chapter VI, Chasles introduces a new key notion, namely homographic divisions of a
line97. The definition of this notion seems rather ambiguous at first98:

Définitions. – Quand deux droites sont divisées en des points qui se corre-
spondent un à un et tellement que le rapport anharmonique de quatre points
quelconques de l’une soit égal au rapport anharmonique des quatre points
correspondants de l’autre, nous dirons que ces deux droites sont divisées ho-
mographiquement ou bien que leurs points de division forment deux divisions
homographiques.

One way to understand this definition is to think of homographic divisions as mappings
97This notion was already introduced toward the end of Chasles’ memoir on the principle of homography

in 1837, see [Chasles, 1837], p.832. However, this notion did not occupy such a central place as it would
in Chasles’s lectures. This is partially due to the fact that, in 1837, Chasles mostly viewed the principle
of homography as a geometrical transformation, used for instance in the study of the property of second-
order surfaces.

98“Definitions. – When two straight lines are divided in points which correspond one by one so that
the cross-ratio of any four points of one of them are equal to that of the four corresponding points of the
other, we say that these two lines are homographically divided, or that their dividing points form two
homographic divisions”, [Chasles, 1852], p.67.
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from one line to another99, such that the cross-ratio of any four given points of the first
line is equal to that of the four images of these points under the mapping. However useful
to modern-day readers this interpretation may be at first, it is not only anachronistic,
but more crucially it introduces foreign means of representation. With symbols for map-
pings, come symbols for inverse mappings or images, notations for composing mappings
etc., which are all operations with which Chasles’ textual device sometimes struggles,
and sometimes performs surprisingly efficiently. Chasles’ use of letters and apostrophes
to denote corresponding points on both lines (for instance, a corresponding to a′) has
certain restrictions. It makes it cumbersome to iterate or inverse the correspondence.
But Chasles’ device also has a certain plasticity, which better fits the specific geometrical
context in which it is supposed to be used. Indeed, for Chasles, homographic divisions are
not abstract mappings, or even fundamental objects to be consider for their own sake, but
rather a general term to discuss in a uniform and systematical manner the configurations
which arise in many a geometrical question. In Chasles’ own words100:

Nous verrons qu’il y a beaucoup de manières de former des divisions homo-
graphiques.

As we shall see, more than a mathematical object or a property of some object, ho-
mographic divisions act as a textual device to structure the geometrical discourse. It
facilitates the expressions of general propositions, and of general constructions; in partic-
ular, it will be used to discuss not only series of points, but also of curves. As we see in
this definition, homographic divisions are intimately connected to the rather loose notion
of correspondence between series of points or sheaves of lines. While no explicit definition
is given here, later uses of this term tend to suggest that a correspondence between two
lines is usually obtained by a geometrical construction which can be reversed. Alterna-
tively, a correspondence is given by an algebraic equation between the coordinates of two
variable points. In the case of the attraction of ellipsoids, for instance, Chasles defined a
correspondence between the points of two confocal ellipsoidal layers by a simple algebraic
equation, which he later interpreted as saying that corresponding points of a series of
confocal ellipsoidal layers formed normal lines to families of level-surfaces101.

When actually using the notion, Chasles does not refer to an homographic division
merely by words, but always uses an unfinished series of letters to denote its points.
Typically, when describing the construction of a division homographic to a first, given

99In modern terms, an homographic function on a projective line is a function f : P1 → P1 of the form
f(x) = ax+b

cx+d . In practice, in Chasles’ geometry, homographic divisions are one-to-one correspondences
between series of points or rays.

100“We shall see that there are many ways to form homographic divisions”, [Chasles, 1852], p.67.
101See [Michel, 2020], pp.24-27.
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division, he writes102:

Une droite L étant divisée en des points a, b, c, d..., si l’on veut diviser homo-
graphiquement une seconde droite L′, on pourra prendre arbitrairement sur
celle-ci trois points a′, b′, c′ pour correspondre, un-à-un, aux trois points a, b, c;
puis on déterminera les points d′, e′, .., qui correspondront aux autres points
d, e, ... de la première droite, par la condition que le rapport anharmonique des
points a′, b′, c′ et un quatrième d′ soit égal à celui des quatre points a, b, c, d.

Notice that the general construction of a fourth point d′ forming a given cross-ratio with
three given points a′, b′, c′, laid out previously, plays a crucial role here: without it, one
would not be able to form homographic divisions in general.

After stating a few elementary properties of homographic divisions, such as a transi-
tivity property103, Chasles puts this notion to use in a way that it is useful to describe
precisely. He first explains that when a sheaf of lines intersect two lines, it forms on
them two homographic divisions. This is once again another way for Chasles to restate
the fundamental theorem underlying the whole Treatise, namely the projectivity of the
cross-ratio. However, this permits the introduction of a new terminology. Chasles uses
the term “homolog” to denote points on each line which correspond to each other in the
equation for the equality of the cross-ratios; then, he adds, it is clear that the intersection
point of both lines “represents two coinciding homologous points”. This sets up a converse
statement104:

Quand deux droites sont divisées homographiquement, si leur point de con-
cours, considéré comme appartenant à la première division, est lui-même son
homologue dans la seconde division, les droites qui joindront un à un re-
spectivement tous les points de division homologues concourront en un même
point.

102“A straight line L being divided into points a, b, c, d..., if one wants to divide homographically a second
straight line L′, it will suffice to choose arbitrarily on the latter three points a′, b′, c′ to correspond, one
by one, to the points a, b, c; then the points d′, e′, .. which correspond to the other points d, e, ... of the
other straight line will be determined by the condition that the cross-ratio of the points a′, b′, c′ and a
fourth one d′ be equal to that of the four points a, b, c, d”, [Chasles, 1852], pp.67-68.

103When two divisions are homographic with a third one, they are homographic with one another as
well, [Chasles, 1852], p.70.

104“When two lines are homographically divided, if their intersection point considered as part of the
first division is its own homolog in the second division, then all of the lines joining all pairs of homologous
points will meet at some point”, [Chasles, 1852], p.70. The reason for this is simple: suppose a = a′ is the
intersection point of these two lines, and take b, c, d on the first line (resp. b′, c′, d′ on the second line).
Let S denote the intersection point of the straight lines bb′ and cc′, and d′′ the intersection point of Sd
and a′b′ (that is to say, the second line). Then the cross-ratio of a, b′, c′, d′′ is equal to that of a, b, c, d
per invariance by projection, and therefore is equal to that of a′, b′, c′, d′ per hypothesis. This equality
between two cross-ratios, whose first three points are the same, means that d′ = d′′, for reasons discussed
previously. Therefore, S is on the line dd′, which suffices to prove the theorem.
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It must be stressed that here Chasles operates within the confines of a particular linguistic
structure, which makes the expression of some properties rather cumbersome to our mod-
ern eyes. This definition, for instance, would seemingly be much easier to express with the
help of functional notations105. However, as we will see, this allows a certain flexibility in
the actual use of these fundamental properties in the context of a proof or a construction.
Note also that he does not consistently use the notion of correspondence, as exemplified
by this property where homologous points are discussed instead. Chasles’ vocabulary is
in flux, both across time and across writing contexts. Similarly, he alternatively mentions
“sheaves” (faisceaux) of lines or “rays” (rayons) from a point (or even turning about a
point), in a way that does not seem to correspond to any theoretical or practical logic.

Next Chasles shows the dual version of this statement, that is to say that if, in two
sheaves of rays turning about two fixed points, corresponding rays always intersect at
points on one same straight line, then these rays form two homographic sheaves. As
in the previous proposition, the line joining the centres of both sheaves has the unique
property of being its own homolog. Conversely, if two homographic sheaves are such that
the line joining their centres is its own homolog, the intersection points of homologous
rays will all lie on a line (which they entirely describe). This provides Chasles with a
“general mode of description of a straight line by points”, which goes as follows106 (see
fig. below):

Quand deux droites sont divisées homographiquement aux points a, b, c.., et
a′, b′, c′.., qui se correspondent un à un respectivement, si l’on prend sur une
droite aa′, qui joint deux points correspondants, deux points fixes P, P ′, les
droites Pb, Pc.. rencontreront respectivement les droites P ′b′, P ′c′.., en des
points β, γ.. qui seront en ligne droite.

This is nothing short of an alternative way of writing the equation of a line. This
mode of description, on top of being completely general, is useful insofar as P and P ′ can

105Suppose f : L1 → L2 is an homographical function between two projectives lines; let a denote the
intersection between L1 and L2, then Chasles’ proposition translates into the equation f(a) = a.

106“When two lines are homographically divided in the points a, b, c.., and a′, b′, c′.. in a 1 − to − 1
correspondence, taking any two fixed points P, P ′ on the line aa′, the lines Pb, Pc.. will intersect the lines
P ′b′, P ′c′.. at points β, γ.. on a straight line.”, [Chasles, 1852], p.71.
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be arbitrarily chosen, but also because homographic divisions on lines can be constructed
in a variety of ways. Therefore, unlike Algebra, this mode of description has no need for
the introduction of auxiliary quantities, and can be used naturally in the context of a
proof or a construction in many cases107.

In the following chapter, Chasles examines the different ways in which an homographic
division can be expressed. Here again, he expounds the several kinds of equations which
can be used to that effect, introducing variable (or, rather, indeterminate) points. Given
two lines, the equation for an homographic division thereof can be obtained by fixing
three points a, b, c on the first one, and three points a′, b′, c′ on the second one. For any
point m on the first line, its homolog m′ is determined by the two-term equation:

am

bm
: ac
bc

= a′m′

b′m′
: a
′c′

b′c′

which can be rewritten as am
bm

= λa
′m′

b′m′ , where λ is a constant quantity108 depending only
on a, b, c, a′, b′, c′. Conversely, two variable points m,m′ on two lines ab, a′b′ which satisfy
an equation like this one (for any fixed λ) form homographic divisions on these lines.
Chasles then notes that λ has a “very simple geometrical expression”, which he obtains
by supposing that m′ is at infinity. If I is the homolog (in the first division) of the point
at infinity, then λ = aI

bI
. This, in turn, allows Chasles to choose a, b, a′, b′ so that λ = −1

and reduce the equation above to am
aI

= a′m′

J ′m′ , where J ′ is the homolog of the point at
infinity (viewed as a point of the second division). Other transformations of the equation
are considered, however none is deemed better than the others109. This work on the many
forms this equation can take only serves as a reservoir, from which the most suitable will
be picked when actively solving a problem.

In the same manner as for the equations expressing equalities between the cross-ratios
of systems of four points, Chasles obtains three-term equations by substituting to one
cross-ratio r the quantity 1− r, or “second cross-ratio” in his terms. Subsuming the fixed
quantities depending only on a, b, c, a′, b′, c′ into two constants, he obtains an equation he
claims will turn out “very useful110”, then the following four-term equation111:

am · b′m′ + λam+ µb′m′ + ν = 0

which we will run into at several occasions in the second half of this chapter, especially
107Chapter XVII gives many more ways to describe the points of a line.
108Not to be confused with former uses of the same character, where λ denoted a given cross-ratio.
109 [Chasles, 1852], pp.81-82.
110 [Chasles, 1852], p.87.
111 [Chasles, 1852], p.93. In fact, Chasles even shows how to create equations of an arbitrary number

of terms (pp.100-101), even though he does not seem to have ever used an equation with five terms or
more. These equations are all equivalent, as they represent the same configuration.
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because it is consistently Chasles’ choice when discussing homographic divisions formed
on the same line, which will be the usual setup in which proofs by correspondence are
carried out.

Note how the textual device used to talk about homographic divisions allow for an
easy manipulation of homologous points, as these are marked with the same lower-case
letter, with or without a prime. However, denoting divisions in this manner does not allow
for an easy manipulation of points which are transformed several times. For instance, in
Chapter X, Chasles is able to define homographic divisions in involution with the following
terms112:

Pour que deux divisions homographiques formées sur une même droite soient
en involution, il suffit qu’un seul point quelconque de cette droite, considéré
comme appartenant successivement aux deux divisions, ait le même point
homologue dans les deux cas.

This may seem like a rather heavy-handed way of expressing this property. Furthermore,
this very expression highlights the difficulty that Chasles’ language faces when trying to
grasp points that are projected from one division to the other several times. In fact, the
two first chapters (IX, X) devoted by Chasles to the theory of involution give a plethora of
alternative descriptions of this object. Some of these will be deemed simple, yet rejected
on the grounds that they do not constitute the natural definition of this object. For
instance, two aligned pairs of points a, b; a′, b′ being given, a unique point O is defined by
the equation Oa ·Oa′ = Ob ·Ob′. This gives rise to an involution in which O corresponds
to the point at infinity (O is then called the “central point” of the involution). This is a
general property which fully characterizes a system of six points in involution; however, it
relies on a point that is “foreign” to the system of points and hence does not adequately
define involutions113.

In the Treatise, to study the properties of involutions, Chasles often elects to view
them as a special case of the general equation for homographic divisions. Indeed, he
explains, homographic divisions in involution possess the same generality as any two
homographic divisions: the only particularity of involutions stems from the way the two
homographic divisions are conceived “on top of each other114”. In other words, given two
homographic divisions on two lines, one line can be placed on top of the other so that

112“For two homographic divisions formed on a single line to be in involution, it suffices that any single
point on this line, considered as belonging successively to each division, have the same homolog in both
cases”, [Chasles, 1852], p.168.

113“La propriété du point central caractérise d’une manière très-simple le système de six points en
involution. Toutefois cette propriété ne me paraît pas être la plus propre à définir l’involution, parce
qu’elle repose sur la considération d’un point étranger au système des six points dont il faut exprimer les
relations mutuelles”, [Chasles, 1852], p.141.

114 [Chasles, 1852], p.169.
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these two divisions are in involution. Therefore, the general equation for homographic
divisions (am·b′m′+λam+µb′m′+ν = 0) can be used to express the relation of involution.
Taking the four-term equation given above, demanding that the divisions are in involution
amounts to the demand that, for instance, the point at infinity has the same homologous
points when viewed as a point of each division. Thus, if it corresponds to J ′ in the second
division, and I in the first division corresponds to the point at infinity, then I = J ′ must
be imposed. When the point m is at infinity the general equation yields aI = −µ; and
when m′ is at infinity then b′J ′ = b′I = λ. Thus, Chasles obtains a condition for an
homographic division to be in involution:

λ− µ = ab′

Chasles then adds that a given equation for two homographic divisions represents an invo-
lution if and only if the equation is symmetrical with regards to the variable points m,m′,
as this means that these two variable points “are interchangeable, which characterizes
involution115”. Therefore, a better way to handle involutions is found in the writing of
equations itself, which overcomes the initial limitation of the literary technology that is
formed around the vocabulary of divisions.

2.2.3 An example: Apollonius’ De Sectione Determinata

We conclude this study of Chasles’ Higher Geometry with one of the first examples he
deals with, at the beginning of Section II. As we already mentioned, Sections II to IV
are mainly applications of the theories outlined above. The beginning of Section II serves
to show how classical geometrical problems can be captured with this new language and
solved in a general way. Consequently, the very first problem presented by Chasles is
Apollonius’ De Sectione Determinata116. This problem, Chasles notes, is part of the
corpus of Ancient Geometrical Analysis. Although in this text he reverts to using Analysis
to refer to algebraic methods, this choice of example shows Chasles’ intention to display
the efficiency of his newly-created instrument when tackling problems very much in the
tradition of geometrical analysis. Apollonius’ statement of the problem, as translated by
Chasles, goes as follows117:

Etant donnés quatre points en ligne droite, on demande de déterminer sur
115 [Chasles, 1852], p.170.
116In fact, this book was lost and is only known through Pappus. Famous attempts to restore the

content of this book, which Chasles was keenly aware of, included those of Snell and Simpson. An Arabic
translation of this text, probably dating from the ninth century A.C., was preserved, translated, and
published recently, see [Apollonius, 2010].

117Chasles’ discussion of this problem can be found in [Chasles, 1852], pp.199-211.
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cette droite un cinquième point tel, que le produit de ses distances à deux des
quatre points donnés soit au produit de ses distances aux deux autres dans
une raison donnée.

Chasles lets a, a′, b, b′ denote these four given points and λ the given ratio (or raison), and
reformulates this problem as that of finding a point m so that

am · a′m
bm · b′m

= λ

Immediately, with this rewriting of the problem, Chasles is able to give two direct solutions
of this problem. Indeed, if one point m satisfies it, then the point m′ which, coupled with
m, forms a pair of points in involution with the pairs a, a′; b, b′, must also satisfy it, as
involutions satisfy the equation am·a′m′

bm·b′m
= am′·a′m′

bm′·b′m′ . From there many of the constructions
given in the first Section enable Chasles to construct the solutions. Similarly, the equation
above can be rewritten as

am

bm
= λ

a′m

b′m
(2.1)

which Chasles reads as expressing the fact that the solutions are the double points of
two homographic divisions. According to results obtained previously, there are two such
points, and they can be constructed in a variety of ways.

This problem may seem overly simple. Indeed, as Chasles acknowledges, it is imme-
diately solved by the analytical method: just set an origin, write the equation for the
distances between these points and the origin, and you immediately have a second-degree
equation whose roots will give you the solution of the problem in a general manner. How-
ever, in pure Geometry, no such general answer could be found. Simpson, for instance,
only solved this problem “with the help of various propositions, which make the general
question depend on its particular cases118”. Chasles’ theories do not result in such short-
comings: on the contrary, they enable constructions which are directly rooted in general
theories and require no auxiliary quantity as the analytical solution does. Chasles’ first
solution, via the theory of involution, is even valid when both given pairs of points are
imaginary. Furthermore, these geometrical methods - in particular, the first one - allow
for a precise discussion of the number of solutions in cases of impossibility. Indeed, if α, β
denote the middle points of aa′, bb′, then the middle point of mm′ satisfies the relation
αµ
βµ

= λ. Therefore, when the segments aa′, bb′ do not overlap, for instance, λ must be
negative (as µ must be between α and β), and |λ| must be comprised between two bounds
that are easy to determine with the help of some elementary results in the theory of in-
volution. When λ crosses these bounds, both solutions are real, but coincide, and when
λ is out of these bounds, the problem has no solution. What’s more, Chasles’ discussion

118 [Chasles, 1852], p.200.
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completely solves the problem for a value of λ that can be either negative or positive.
Suppose you do not care for signs, then the number of solutions is augmented, although
not always in the same way, depending on the given data. This, claims Chasles, was
another blindspot of Ancient Geometry119:

Les anciens regardaient la constante toujours comme positive et ne donnaient
pas de signes aux segments; cependant ils ne trouvaient, généralement, qu’une
solution. D’après ce que nous venons de dire, ils auraient dû en trouver deux
dans le cas de quatre points, et quatre dans le cas de deux points.
Il y a là un fait mathématique qui mérite d’être remarqué et que l’on en
recherche la cause : c’est que les anciens, qui probablement s’étaient aperçus de
la multiplicité des solutions et qui cependant ne pouvaient pas les comprendre
sous un principe unique, parce que la notion des signes pour exprimer la
direction des segments leur manquait, introduisaient dans les données de la
question une condition qui suppléait à l’usage des signes.

Chasles’ Higher Geometry remediates fully this problem: when solving the problems of
Ancient Analytical Geometry, no further condition is to be introduced in the statement
of a problem or a proposition. Furthermore, Chasles’ choice of problem was strategic:
this problem is one of those which, as Darboux would put it in his own lessons of geom-
etry, “was the subject of entire Treatises, and is solved in but a few lines in Descartes’
Géométrie120”. In Chasles’ geometry, the same is true: a single “stroke of the quill121” is
enough to subordinate the varieties of configurations of this problem to one proposition.

Conclusions

Chasles’ Higher Geometry can be viewed first and foremost as the construction of a new
language for geometrical discourse, which captures the level of abstraction and generality
of algebra whilst retaining the advantage of intrinsicality. Through this language, Chasles
sought to unify the geometrical results of his predecessors in a systematic and method-
ical doctrine. To that end, he constructed a way to write non-algebraic equations for
geometrical figures and correspondences between their elements. However, the expres-
sives resources crafted through his lectures would evolve along with the problems which
Chasles successively incorporated into his higher geometry. Indeed, as Chasles turned to
more complex figures, new ways of verbally manipulating correspondences between series
of points would be needed. In the next chapter, we turn to Chasles’ adaptation of the

119 [Chasles, 1852], p.208.
120 [Darboux, 1917], p.4.
121 [Chasles, 1837], p.143.
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expressive resources presented here, in the context of their application to the geometry of
algebraic curves.
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Chapter 3
Geometrical equations: the generation of
curves via correspondences (1853-1860)

Introduction

The 1852 Traité de Géométrie Supérieure shows Chasles carrying out a reform of the
language of geometry: therein were introduced basic notations, such as those for angles
and segments, and textual devices for the manipulation of the fundamental objects of
modern geometry, such as homographic divisions or involutions. However, nothing was
said of figures more complex than circles. And yet, we know from the opening lecture
of the second year of his teaching that applying the methods and language of Higher
Geometry to curves, and in particular to conic sections, was one of the main goals in
sight for Chasles1. If an instrument has been created, whose role and expressive strength
was comparable to that of Algebra, there remained to use it to effectively capture the
generality and abstraction of Cartesian equations.

Between 1853 and 1857, Chasles gave a series of communications at the Académie
des Sciences, directly borrowing from the content of the lectures he gave at the Sorbonne
at that time2, bearing precisely on these objects absent from the Traité : geometrical
curves and surfaces. In these texts, he showed how homographic divisions, involutions,
and the principle of signs could be used to construct curves of the third order passing
through nine given points, as well as to construct roots of equations of degree three and
four. These problems were inherited from the early-modern problem-solving tradition, of
which Chasles was keenly aware. In particular, Chasles set out to walk in the footsteps
of the authors he identified as forming a British geometrical tradition, namely: Newton,

1This lecture is preserved as a handwritten draft in Chasles’ folders, at the Archives de l’Académie
des Sciences.

2 [Chasles, 1853a], [Chasles, 1853b], [Chasles, 1855a], [Chasles, 1855b], [Chasles, 1857a].
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MacLaurin, and Braikenridge. Like them, he set out to construct curves and roots of
equations; but within the new language for geometry which he had constructed in his
lectures. In so doing, he sought to make these constructions perfectly general, that is
to say uniform and valid even if the conditions of the problem (such as the given points
through which a cubic ought to pass) involved imaginary points, or points at infinity.

The goal of this line of research was not only to give a construction of certain curves
or surfaces, but also to do so in a way that can be used to derive general properties
of curves of a certain degree. In so doing, Chasles was led to introduce a new kind
of geometrical objects, namely homographic sheaves of curves, which are written in a
manner analog to the writing of homographic series of points. This analogy led in 1855
to the identification by Chasles of what he deemed to be a new principle of geometry: the
principle of anharmonic correspondence.

This research programme grew out of Chasles’ teaching; and in fact, at least one of his
students took it up. The naval officer Ernest de Jonquières (1820-1901), who had attended
some of Chasles’ lectures, also proposed new notations and methods for the generation of
curves of degree m, relying on this notion of correspondence. Through the intersection of
corresponding sheaves, Chasles and De Jonquières would construct what they viewed as
the “geometrical equations” of curves and surfaces.

3.1 The Higher Geometry of curves

3.1.1 An old problem in need of modern answers

In his series of papers on geometrical curves and surfaces, Chasles identified two sorts
of geometrical problems which were yet to be solved generally by modern geometrical
methods. These problems were that of the construction of curves passing through a
number of given points, and that of the construction of algebraic equations3. In what
follows, we shall focus exclusively on the former, because only it will play a role in Chasles’
enumerative theories, which we study in chapter 4. However, it must be stressed that
Chasles’ construction of the curve of order three (to which we turn in section 3.1.2) and
his construction of the cubic equation mirror one another, and that his answers to both
questions are explicitly related.

In a fashion typical of his usual historiographical strategy, Chasles deemed the prob-
lem of the construction of curves to have been fully solved by the methods which grew

3The construction of equations is the problem of the construction of line segments with lengths equal
to the roots of an algebraic equation, whose coefficients are given in way of line segments. This was a
mathematical problem of great importance for early-modern geometers, especially after Descartes’ 1637
Géométrie, in which interest had drastically weaned in the second half of the 18th century, see [Bos, 1984].
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out of Descartes’ Géométrie4, but that there remained to find a way for geometry to re-
produce the feat of analysis in these questions. To that end, Chasles identified a tradition
whose results and methods would prove crucial: this tradition is that of the British pure
geometers of the 18th century, and in particular of Newton, MacLaurin, and Braikenridge5.

Chasles’ interest for these geometers lay in the successive results which they had
obtained regarding the “organic description of curves”; a term Chasles did not feel the
need to define or discuss. To fix the ideas, let us begin with the definition given by
D’Alembert in 1754 for the Encyclopédie6:

Description, terme de Géométrie, est l’action de tracer une ligne, une sur-
face, &c. Décrire un cercle, une ellipse, une parabole, &c. c’est construire ou
tracer ces figures.
On décrit les courbes en Géométrie de deux manières, ou par un mouvement
continu, ou par plusieurs points. On les décrit par un mouvement continu
lorsqu’un point qu’on fait mouvoir suivant une certaine loi, trace de suite &
immédiatement tous les points de la courbe. C’est ainsi qu’on trace un cercle
par le moyen de la pointe d’un compas ; c’est presque la seule courbe qu’on
trace commodément par un mouvement continu : ce n’est pas que nous n’ayons
des méthodes pour en tracer beaucoup d’autres par un mouvement continu ;
par exemple, les sections coniques : M. Maclaurin nous a même donné un
savant ouvrage intitulé Geometria Organica, dans lequel il donne des moyens
fort ingénieux de tracer ainsi plusieurs courbes. [..] Mais toutes ces méth-
odes sont plus curieuses qu’utiles & commodes. La description par plusieurs
points est plus simple, & revient au même dans la pratique. On trouve par
des opérations géométriques différens points de la courbe assez près les uns
des autres ; on y joint ces points par de petites lignes droites à vûe d’oeil, &
l’assemblage de ces petites lignes forme sensiblement & suffisamment pour la
pratique la courbe que l’on veut tracer.

Of course, descriptions of curves can already be found in Ancient Geometry, and one of
the main impetus for the emergence of this general problem among early-modern mathe-
maticians was the 1588 translation by Commandino of Pappus’ Collections7. In fact, to

4 [Chasles, 1853a], pp.943-946; [Chasles, 1855a], pp.677-679. It is to be noted that, in Chasles’
historiography of this problem, a collective identified as ‘the Arabs’ is credited with playing a crucial role
in combining geometry and algebra. This assessment was based on the works of Sédillot and Woepcke,
which Chasles actively supported and promoted at the time. See [Smadja, 2015], p.276.

5See [Chasles, 1853a], pp.944-945, [Chasles, 1870], p.223. Additionnal evidence can be found in
Chasles’ scientific archives left at the Académie des Sciences, where several leaflets betray a growing
interest in the figure of Braikenridge starting from 1853 (Archives de l’Académie des Sciences, 35J/13).

6 [D’Alembert, 1754], p.878b.
7 [Bos, 2001].
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reobtain these key insights of the Greeks’ geometrical analysis was, as we saw previously,
one of the tasks of the Traité de Géométrie Supérieure: the description of a line was
given by a construction of its points using homographies and cross-ratios. It is crucial
for Chasles that such solutions to problems be general, in the sense that the construc-
tion should work whatever the accidental position of the given data; such a solution was
given to simpler construction problems, such as Apollonius’ section. To describe curves,
however, remained a difficult problem.

All these authors were already mentioned and praised in the 1837 Aperçu Historique.
In this book, Chasles claimed that Newton had made great progress in that direction by
introducing “methods of transformation, wherein points respond to points, lines to lines,
and certain convergent lines become parallel8”. But this tradition did not come from
nowhere: some “germs” thereof can be already found in De Witt’s general theory (and
enumeration) of plane curves, explains Chasles9. However, De Witt’s “fertile idea” only
grew half a century later, with the works of the three aforementioned British mathemati-
cians. The trio is then identified by Chasles as the source of a geometrical theory of great
value and interest, which had been undervalued until the arrival of modern geometry,
claims Chasles. There is a reason, however, why these works have not been sufficiently
cultivated: they were difficult because they still lacked the aforementioned generality10.

In Chasles’ historical reconstruction, Newton was the first to put Descartes’ analytical
geometry, this “universal instrument”, to productive uses with respect to the theory of
curves11, and he was soon to be followed in this endeavor by MacLaurin. Indeed, Chasles
asserts, Newton’s 1706 Enumeratio linearum tertii ordinis, published at the end of his
Opticks, contains a first successful attempt at the enumeration and classification of the
lines of the third order. Newton’s classification proceeds by sorting these curves into 5
classes, branching into 72 different kinds of curves. This classificatory practice completely
disappears in Chasles’ own work on the theory of curves, where such finely grained dis-
tinctions are to be avoided. Indeed, they would only betray a lack of generality in the
theory itself, which in turn would only show that the true origin of these truths has not
been found yet. However, the fifth chapter of the Enumeratio, titled Genesis curvarum
per umbras, does not reproduce such a slew of particular curves, in Chasles’ reading. In-
deed, in this chapter, Newton explained how a luminous point could generate every conic
curve as the shadow projected by a circle. In the sixth chapter, entitled De curvarum de-
scriptione organica Newton elaborates on this idea to generate curves as the intersections
of “legs” in a certain motion.

8 [Chasles, 1837], p.135.
9 [Chasles, 1837], pp.100-101.

10 [Chasles, 1837], p.136.
11 [Chasles, 1837], p.141.
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Newton’s constructions are not perfectly general in Chasles’ sense, although the latter
refrains from making these shortcomings explicit, probably for strategic purposes in the
context of the promotion of pure geometry. Indeed, these constructions are constantly
embarassed with particular cases: exceptions are made when some lines pass through
special points, or when some lines are parallel, which is precisely what modern geometry
should do away with. Moreover, Newton did not provide proofs for these results. Ana-
lytical proofs thereof were subsequently given, but without reaching for their true nature
and origin, asserts Chasles12. This shortcoming is made obvious by the fact that certain
modes of generation for curves of the third order, deeply connected to that which Newton
had described, had remained oblivious to the eyes of the Analysts who had yet sufficiently
proved the validity of Newton’s constructions.

In Chasles’ reading, despite its shortcomings, Newton’s Enumeratio proved to be most
fruitful and influential. In its wake, and as an extension of its main results, MacLaurin
wrote two crucial texts13. In 1720 he published his Geometria Organica14, wherein mobile
angles are used to describe curves. Chasles further comments that the proofs contained
in this book, which mainly rest on the use of coordinates, lack simplicity. This shortcom-
ing, however, would be fixed shortly thereafter in a second text, whose writing started
in 1721, but which was only published posthumously with MacLaurin’s 1748 Treatise of
Algebra. This text, to which we will refer as the De Linearum15, displays a “precision” and
“elegance” which Chasles deemed “admirable16”. In the footsteps of MacLaurin’s, con-
tinues Chasles, walked Scottish mathematician William Braikenridge17, who published
in 1733 his Exercitatio Geometrica de Descriptione Linearum Curvarum on this subject.
Chasles has little comment to offer on his work, however his name will often be mentioned
alongside those of Newton and MacLaurin18 in discussions of the (organic) description of
curves19. After MacLaurin and Braikenridge, although several geometers have attempted
to pursue this line of research, none have made any real progress, claims Chasles. How-

12 [Chasles, 1837], p.146.
13Chasles’ discussion of MacLaurin’s work on the description of curves can be found in [Chasles, 1837],

p.146-151.
14The full title isGeometria organica, sive descriptio linearum curvarum universalis, [MacLaurin, 1720].

Chasles claims it was published in 1719, which seems to be a mistake.
15The full title is De linearum geometricarum proprietatibus generalibus tractatus, and can be found

in [MacLaurin, 1748], p.
16See [Bruneau, 2011] for a discussion of the reception of MacLaurin’s Organic Geometry in French 19th

geometry, in particular in the works of Poncelet and Chasles. In particular, Bruneau notes (pp.28-29)
that Chasles’ interest in MacLaurin seems to have arisen between 1830 and 1837, probably whilst writing
the historical part of the Aperçu Historique. Note that De Jonquières also studied and translated the De
Linearum in 1856, which we discuss in the next section, see [de Jonquières, 1856a], pp.197-261.

17 [Chasles, 1837], p.151.
18 [Chasles, 1870], p.223 for instance.
19Note that Chasles ignores the relationship (and the priority dispute) between MacLaurin and Braiken-

ridge, see [Bruneau, 2005], p.168 et passim.
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ever, the progress of Geometry, and in particular the theories on which rests the Higher
Geometry, allow for such a foray to be reached.

Cambridge University Library, MS Add.3961

Chasles’ praise of Newton and MacLaurin owes mainly to the fact that he attributed to
them a strong faith in pure geometry despite being also among the creators and first
promoters of infinitesimal analysis. In that sense, Chasles viewed them as the last ge-
ometers to have cultivated both theories in their own rights. In the 1870 Rapport sur
les progrès de la Géométrie, Chasles would even reproduce Poinsot’s claim that “since
Newton and Maclaurin, synthesis had been neglected, as if abandoned20”. Furthermore,
as we have shown elsewhere21, MacLaurin’s work was considered by Chasles to embody
particularly well the epistemological advantages that pure geometry possesses over anal-
ysis. In giving alternative proofs of MacLaurin’s generalized theorem for the attraction
of ellipsoids, Chasles had constantly tried to emphasize how the generality of MacLau-
rin’s purely geometrical proofs had been underestimated, and how the swift success of
Analysis with regards to this specific mathematical problem had come to the expense of
many other properties of the attraction of bodies. Similarly, with regards to the theory of
curves, Chasles was keen on pointing out that few truly general results have been achieved
through the 18th century, despite the rise of analytical methods.

20 [Chasles, 1870], p.107.
21 [Michel, 2020].

88



3.1. The Higher Geometry of curves

Modern geometry, therefore, was to build on the British theory of curves, and to
remediate the shortcomings thereof. In particular, in Note XV of the Aperçu Historique,
Chasles discussed the special importance of Desargues’ theorem for the theory of conics22.
In order to show the fundamental character of Desargues’ theorem (or, rather, of the
converse of a conclusion of Desargues’ theorem), Chasles showed how the following general
description of conic sections could be derived from it23:

Si deux angles de grandeur quelconque, mais constante, tournent autour de
leurs sommets, de manière que le point d’intersection de deux de leurs côtés
parcoure une conique passant par leurs sommets, leurs deux côtés se croiseront
sur une seconde conique qui passera aussi par les deux sommets.

This theorem, Chasles continued, is already a generalization of Newton’s description of
conic sections. Indeed, Newton (as read by Chasles) had formed two sheaves of lines
turning about two distinct points, so that the sheaves intersected on a given line. Newton
then moved the position of one of these sheaves: thus, the cross-ratio of four lines of the
first sheaf remained equal to that of the four corresponding lines in the other sheaf, so that
the intersection point of the sheaves described a conic. But even this generalized mode
of description itself can be further generalized, for instance by substituting cross-ratios
to angles, by taking into account the possibility of parallel lines, or of lines at infinity.
Chasles then commented24:

Cette circonstance nous paraît bien propre à montrer deux choses: d’abord
qu’il est toujours utile de remonter à l’origine des vérités géométriques, pour
découvrir, de ce point de vue élevé, les différentes formes dont elles sont sus-

22Note XVI discusses the dual version of this question. It must be noticed that the principle of
duality does not operate as a result or a theorem from which one could derive dual theorems related
to the theorems of Note XV. Rather, what Chasles does is reproduce the proofs and statements of said
theorems, while constantly interchanging words such as points and lines. A further note also briefly
discusses the generation of curves of the third order, see [Chasles, 1837], pp.348-350.

23“If two angles, of arbitrary but constant magnitude, turn about their summits so that the intersection
point of two of their sides describe a conic passing through both summits, then their two sides will cross
on a second conic which also passes through both summits”, [Chasles, 1837], p.337.

24“This circumstance seems to use well suited to show two things: first, that it is always useful to
trace back the origin of geometrical truths, to discover, from this high vantage point, the different forms
they are susceptible to take, as these forms can extend the applications of these truths; for the theorem
of Newton, which some very distinguished geometers did not neglect to prove, being one of the most
beautiful of the theory of conics, has not had many important consequences, for its form was no suited
for corollaries. The general theorem, on the contrary, from which we obtained Newton’s theorem, is
suited to a wealth of various deductions. We see here a proof of this truth, that the most general and
fruitful propositions are at the same time the simplest and easiest to prove; for none of the proofs given
of Newton’s theorem can be compared, with respect to brevity, to the one we gave of the general theorem
aforementioned”, [Chasles, 1837], p.337. For a detailed study of this note, and in particular of Chasles’
thesis that logically equivalent formulations of the same theorem may have different ranges of application,
and different kinds of generality; see [Chemla, 2016], pp.77-85.
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ceptibles et qui peuvent en étendre les applications; car le théorème de New-
ton, que quelques géomètres très-distingués n’ont pas dédaigné de démontrer,
comme l’un des plus beaux de la théorie des coniques, n’a pourtant point eu de
grandes conséquences, parce que sa forme ne se prêtait qu’à peu de corollaires.
Le théorème général, au contraire, d’où nous le déduisons, se prête à une foule
de déductions diverses.
On voit ensuite ici une preuve de cette vérité, que les propositions les plus
générales et les plus fécondes sont en même temps les plus simples et les
plus faciles à démontrer; car aucune des démonstrations qu’on a données du
théorème de Newton n’est comparable, en brièveté, à celle que nous avons
donnée du théorème général en question.

For Chasles, Newton’s organic description of conics, like Pascal’s mystical hexagram or
Desargues’ involution of six points, were all corollaries of one fundamental theorem, which
lies “at the center25” of the theory of these curves. To seek a purely geometrical and
perfectly general description of a curve, in the Aperçu Historique, one ought first to
search for such a fundamental property of said curve, which can then be transformed into
a description.

Chasles’ 1853 approach to the construction of cubics passing through nine given points
builds on the same general idea; and Chasles would also begin by expounding one such
central property for cubics. In fact, Chasles explicitly tied his new research with his past
discussion of the theory of conics, which he considered to have been fully solved, including
by pure geometry. Things were rather different with cubics, that is to say curves of the
third order. While MacLaurin had given several modes of description of such curves, as
intersections of lines turning about fixed points or of angles of fixed magnitude, these
descriptions were all limited to particular cases; for instance requiring that the curve have
double points26. Chasles thus identified his task very clearly: to do for cubics what had
been done for conics.

However, as we saw in chapter 2, through his lectures, new epistemological themes had
emerged in the course of Chasles’ teaching, among which was the importance of linguistic
resources and notational devices for the expression of generality and abstraction. For this
reason, when Chasles turned to the construction of curves after the publication in 1852 of
the Traité de Géométrie Supérieure, this central theorem had become a “true equation27”:

On conçoit, en effet, toute l’importance de cette question, au point de vue
théorique; car un moyen simple de construire un dixième point quelconque

25 [Chasles, 1837], p.338.
26 [Chasles, 1853a], pp.944-945.
27 [Chasles, 1853a], p.945.
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de la courbe du troisième ordre déterminée par neuf points, exprimera une
propriété générale, véritable équation de la courbe, qui devra se prêter, avec
plus on moins de facilité, au développement de toutes les autres propriétés.
C’est ainsi que les propositions relatives à six points d’une conique, telles
que le théorème de Pappus ad quatuor lineas, le théorème de l’involution de
Desargues, celui de l’hexagone de Pascal, et le théorème fondé sur l’égalité des
rapports anharmoniques des deux faisceaux de quatre droites, menées de deux
points de la courbe à quatre autres, constituent, sous des formes différentes,
autant d’équations de la courbe, et sont les éléments les plus utiles et les plus
féconds dans cette vaste théorie.

Notice how Desargues’ and Pascal’s theorems are now described by Chasles as “propo-
sitions relative to six points of a conic”, which all “constitute, under different forms,
equations of the curve”. Of course, these theorems were already in 1837 identified by
Chasles as expressing a property of six points of a conic, but this was not their key
characteristic. Instead, Chasles would describe these theorems as “stating an equality of
cross-ratios28”.

Similarly, the idea of finding a geometrical equivalent to equations of curves was only
present in 1837 in a discussion of Euclid’s Porisms, a lost text central to the tradition of
Ancient Greek geometrical analysis. However, we saw in section 2.1 how both geometrical
analysis and new ways of forming equations for elementary figures (pairs of points, lines)
had gained a tremendous importance within Chasles’ teaching of geometry in the wake of
a renewed understanding of the history of analysis and algebra. In the same way, when
thinking about the description of curves, Chasles renews his comparison with analytical
geometry. The nine given points are now likened to nine given (or data), and the Cartesian
equation of the cubic is just one way of expression of a property of a tenth (variable)
point on a cubic determined by nine given (fixed) points29. While Chasles had previously
lauded Descartes’ ability to “subordinate the whole of the collection of geometrical curves
to one stroke of the quill30”, he would now think of these equations through the lens of
a renewed understanding of algebra as just one possible instrument for the development
of geometrical analysis. As a result, he would search for an alternative instrument: one
made of correspondences, homographies, and involutions.

This first foray into the theory of curves of the third order was undertaken via two
successive communications given at the Académie des Sciences. In his initial communi-
cation, given on May 30th, Chasles explained he had found two such constructions, but

28 [Chasles, 1837], p.335.
29See Chasles’ discussion of the analytical expression for the cubic passing through nine given points

given earlier by Salmon; [Chasles, 1853a], p.946.
30 [Chasles, 1837], p.143.
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only presented the first one. The second construction would be given a few months later,
on Aug. 16th, in another communication to the Académie. The first method rests on the
construction of a 10th point, which is entirely determined by the 9 given points; while
the second one rests on the construction of a straight line, which is also determined by
the 9 given points31. Both constructions, Chasles insists, are not only “very simple”, but
they also “encompass all particular cases32”: some of the given points can coincide (thus
producing a cubic with a double point), or be at infinity, and there can even exist pairs
of conjugate imaginary points. In fact, Chasles only mentions this generality, and does
nothing to showcase it within the construction itself. The notational convention adopted
in the Traité de Géométrie Supérieure are supposed to produce propositions that are true
regardless of particular configurations, and to be inserted in proofs that are general in the
sense that no special adaptation is required for particular configurations. As such, the
principles of signs and the introduction of imaginary points as described previously have
very much become part of the grammar of Chasles’ geometry: they need no introduction
or explicit reference to convey generality to the proofs and constructions which resort to
homographies, involutions, and correspondences.

3.1.2 Constructing curves of the third order

We now turn to Chasles’ first construction of the cubic passing through nine given points.
The general idea behind this construction is to form a homographic correspondence be-
tween the elements of a sheaf of conics passing through four common points, and a sheaf
of rays turning about a fixed point. The two intersection points of the corresponding
elements is then generates a cubic. Indeed, as it was known at least since Lamé, the
equation of a sheaf of conics passing through four points is

C1 + λC2 = 0

where C1 = 0 and C2 = 0 are the equations of any two conics of the sheaf, and λ a (real)
parameter. Similarly, all the straight lines turning about a fixed point have an equation
of the form

∆1 + λ′∆2 = 0

where ∆1 = 0 and ∆2 = 0 are the equations of any two rays of the sheaf, and λ′ another
parameter. Since the elements of both sheaves are in a homographic correspondence,
Chasles will be able to show that, with specific choices for C1, C2,∆1,∆2, one can ensure
that λ = µλ′, for some fixed quantity µ. In this case, the equation of the intersection of

31 [Chasles, 1853b].
32 [Chasles, 1853a], p.947.
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two corresponding elements can be computed by eliminating λ from both equations; and
it is

µC1∆2 − λC2∆1 = 0

which is an equation of degree 3. This shows that the intersection points do generate
a cubic. There remain only to construct both sheaves, as well as the correspondence
between them, in a way that ensures that the cubic thus generated pass through the
stipulated points – which, in what follows, we shall denote A,B, .., I.

To construct a correspondence between a sheaf of conics and a sheaf of rays, Chasles
first defines the cross-ratio of four conics in such a sheaf. To that end, he uses the following
pair of propositions, which at the time he had stated and proven in his lectures, but in
no published texts33 (see fig. below):

When several conics go through four same points (real or imaginary),

1. The polars of a fifth point, with regard to these curves, all go through
one same point.

2. The polars [of a fifth point] with regard to any four curves [of this sheaf]
always have the same cross-ratio, regardless of [the position of] the fifth
point.

We can also say that the polars [with regard to these curves] of two points,
taken arbitrarily, form two homographic sheaves.

A B

C D

O

P

The polar lines (in green) of O with respect to the conics (in black) passing through four
fixed points all intersect at one common point P .

33 [Chasles, 1853a], p.948. The proof we sketch below is borrowed from [Chasles, 1865b], p.203.
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Indeed, sheaves of conics defined by four points intersect on a fixed straight line segments
in involution, per Desargues’ theorem. Thus, on this straight line, there are two points
(possibly imaginary) which divide harmonically each of the segments intercepted by the
conics of the sheaf – these points are the centers of the involution of segments. Conse-
quently, these two points must be conjugate with respect to each conic of the sheaf; that
is to say, the polars of one must go through the other (and the converse is automatically
true). Now, denoting P the fixed point of which the polar lines in the proposition are
constructed, and A,B two conics of the sheaf, Chasles considers the intersection point P ′

of the two polars of P with respect to A and B. P and P ′ are conjugate with respect
to A, per construction. Similarly, P and P ′ are conjugate with respect to B. Therefore,
P and P ′ are the two points that are conjugate with respect to every conic in the sheaf,
that is to say the center of the involution of segments described above. Therefore, P ′ is
on the polar of P with respect to any other conic C in the sheaf.

The import of this proposition is that it enables Chasles to construct a correspondence
between the conics passing through four given points, and the rays turning about one fixed
point – the sheaf of polars described in the propositions above. In other words, this intro-
duces the possibility of discussing homographic sheaves of conics and rays. Furthermore,
this construction does not depend on the choice of the pole of these rays; this will prove
important as Chasles will let the center of this sheaf indeterminate when setting up the
construction of the cubic. Equipped with this tool, Chasles can state what he calls a
“general theorem”, wherefrom the general solution to the problem of constructing a cubic
passing through nine given points is said to derive “sur-le-champ”34:

Théorème Général. Quand une série de coniques passent par les quatre
mêmes points (réels ou imaginaires), si l’on prend les polaires d’un cinquième
point arbitraire, par rapport à ces courbes, puis, que, par un autre point fixe P
quelconque, on mène des droites (dont trois de direction arbitraire) formant un
second faisceau homographique au faisceau formé par les polaires, ces droites,
qui correspondront, une à une respectivement, aux coniques, rencontreront,
respectivement, ces courbes en des points dont le lieu géométrique sera une
courbe du troisième ordre passant par les quatre points communs aux coniques
et par le point P .

In other words, suppose that to a sheaf of conics passing through A,B,C,D, there corre-
34“General Theorem. When a series of conics go through the same four points (real or imaginary),

if one takes the polars of a fifth arbitrary point with regard to these curves, and then, if through another
fixed point P , one draws straight lines (three of which are in arbitrary directions) which form a second
homographic sheaf to the sheaf formed by the polars, then these straight lines, which correspond respec-
tively one-to-one to the conics, will meet, respectively, these curves at points whose geometrical locus
will be a curve of the third order, passing through the four points common to the conics and the point
P”, [Chasles, 1853a], p.949.
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sponds (homographically, that is to say one-to-one) a sheaf of polar lines as described by
the first proposition. Then, from a point P , construct a sheaf of rays which is homographic
to that first sheaf of polar lines. This can always be ensured by choosing arbitrarily three
rays r1, r2, r3 passing through P , and by associating them to any three rays s1, s2, s3 of
the first sheaf. Then, for each ray s4 of the first sheaf, it suffices to construct the ray r4

passing through P such that the cross-ratio [r1, r2, r3, r4] be equal to [s1, s2, s3, s4], and
then by associating r4 and s4. By transitivity, we then have a one-to-one correspondence
between each conic passing through a, b, c, d and each straight line passing through P .
The locus generated by the two intersection points of corresponding curves and straight
lines, the theorem asserts, is a cubic passing through these five points. Note that, while
the four base points of the sheaf of conics are already chosen by Chasles amongst the nine
points through which the cubic will have to pass, P remains at this stage indeterminate.

This theorem, Chasles explains, constitutes a general property of cubic curves “of the
same kind as [property of] cross-ratios in the geometry of conics, which can form the
basis for a theory of curves of the third degree” – that is to say that this theorem plays a
role similar to that fundamental property at the center of the theory of conics about the
equality of two cross-ratios defined by pencils of straight lines. The key difference here,
of course, is that one of the pencils has become a sheaf of conics.

After listing several ways in which this theorem could be proven, Chasles elects to
show that any given line L crosses this locus in exactly 3 points. To that end, he first
writes that the line L intersects each conic of the sheaf at points m,m′, and the (corre-
sponding) ray drawn from point P at point n. Note that these letters m,m′, n denote
three variable points, that is to say points which are determined uniquely for each conic
of the series and each line of the pencil, but which vary when the conic changes. These
letters enable Chasles to talk simultaneously of the corresponding conics and lines, as
well as of their intersection points with L. Chasles also lets µ denote the (variable) centre
of the segment mm′. The points µ, n form two divisions of the line L, which Chasles
claims are homographic. Since the rays drawn from P form, per definition, a pencil that
is homographic to the pencil composed of the polars of any fixed point with regard to the
series of conics, the intersections of these pencils with L form two homographic divisions
of the line35. Therefore, Chasles explains, by choosing this fixed point as the point at
infinity on L, the property still stands, and the divisions thus created are precisely n and
µ.

Furthermore, Chasles notes that the segments mm′ are in involution. As we saw in
the previous section, this means that in the division m of the line L, m and m′ play

35Remember that the cross-ratio of four lines intersecting at a common point is equal to the cross-ratio
of the four intersections of these lines with any other line.
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symmetric roles. Chasles justifies this assertion by the fact that the conics pass through
four common points. Indeed, this implies that for any point m, there is one and only one
conic passing through the four given points and m, and this conic passes through m′ as
well. Therefore, the conics determined by m and by m′ are the same, and the segments
mm′ are indeed in involution. Thus, Chasles can use one of the equations characterizing
segments in involution, which he gave in the Traité de Géométrie Supérieure (see section
2.2.2), namely:

Om ·Om′ = ν

where O is a point on L, uniquely defined and called the “central point” of the involution36,
and where ν is a constant number.

Chasles had also given several equations which characterized homographic divisions of
a line, some of which involved an arbitrary fixed point a on the line. Writing the four-term
equation, which we discussed above, for the homographic division formed by n and µ, and
choosing the central point O of the involution mm′ as the fixed point A, Chasles obtains:

Oµ ·On+ α ·Oµ+ β ·On+ γ = 0

where α, β, γ are three constant numbers.
From this equation, it follows that to each point n corresponds exactly one point µ, or,

equivalently, two points m,m′. For n to be a point on the curve that is being sought, that
is to say the intersection of a conic and its corresponding straight line, n has to coincide
with either m or m′. To form the equation of these intersections, Chasles eliminates Oµ
and Om′ from the equations above.

Since Om′ = 2Oµ−Om (as µ is the center of mm′), the first equation can be rewritten
as Om2−2·Om·Oµ+ν = 0, so that Om′ does not appear anymore. However, Chasles does
not explicitly describe how the elimination of Oµ ought to be carried out. One possible
solution is to rewrite this last equation as Oµ ·Om = 1

2(Om2 + ν), and to multiply both
sides of the four-term equation for homographic divisions by Om, which yields:

(Oµ ·Om) ·On+ α · (Oµ ·Om) + β ·On ·Om+ γ ·Om = 0

After a simple substitution of the products Oµ ·Om, this equation yields:

Om
2 ·On
2 + αOm

2

2 + β ·On ·Om+ ν

2 ·On+ γ ·Om+ αν

2 = 0

In the general equation thusly obtained, only Om and On are present. Thus, it suffices

36O is the only point of the division which corresponds to itself.
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now to equate On = Om to find the points n which are on the locus being sought. The
following equation is then formed:

Om
3 + (α + 2β)Om2 + (2γ + ν)Om+ αν = 0

This is an equation of the third degree. Hence, there are exactly three points n which
possess the aforementioned property. This proves that the locus of the intersections of
corresponding conics and rays is indeed a cubic curve.

There only remains to prove that the curve thusly described passes through the four
common points of the conics as well as P , which Chasles claims “can be acknowledged
without any difficulty”. Indeed, when the ray drawn from P intersects one of the four
common points, that point is necessarily one of the points of the corresponding conic,
hence it is part of the locus formed by the intersections of the rays and the conics.
Similarly, when the conic intersects P , the corresponding ray will of course pass through
P as well, therefore P is on the cubic.

At this point, the sheaf of conics is entirely determined by four of the nine given points,
but P remains indeterminate, as well as the correspondence between rays and conics. It
is this correspondence that Chasles further specifies in order to force the resulting cubic
to pass through more of the given points. To that end, Chasles forms a series of conics
which he denotes C,C ′, C ′′.., and which pass through the four points a, b, c, d, and so
that C,C ′, C ′′ respectively pass through E,F,G. Choosing a point P arbitrarily, Chasles
associates the conics C,C ′, C ′′ to the rays Pe, Pf, Pg. This defines one and only one
homographic correspondence between the conics passing through a, b, c, d and the rays
passing through P . This correspondence ensures that e, f, g will be on the intersection of
the rays Pe, Pf, Pg and their corresponding conics, that is to say that e, f, g are points
of the curve of the third degree constructed via the theorem above. Moreover, a, b, c, d
are also part of this locus, per the end of the theorem, and so is P . Thus, there remains
only to choose P so that h and i are points of the curve.

Chasles knows a priori that this can be done, for the position of P can be always
determined so that two conditions are satisfied37. In other words, a point is uniquely
determined by two conditions (for instance, by two straight lines on which it must lie),
so that P can be determined by the conditions that the curve pass through h and i. For
the cubic to pass through h, it suffices to choose P such that C ′′′, the conic in the sheaf
passing through h, corresponds to Ph. Per construction, C ′′′ corresponds to a ray r such
that the cross-ratio [Pe, Pf, Pg, r] is equal to the cross-ratio [C,C ′, C ′′, C ′′′], which itself
can be defined as the cross-ratio of the tangents to these conics at, for instance, point a.

37 [Chasles, 1853a], p.949.
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In other words, P can be chosen as a point such satisfying an equation of the form

[Pe, Pf, Pg, Ph] = λ = [C,C ′, C ′′, C ′′′]

Such an equation (for given values of e, f, g, h, λ) defines a conic (it is easy to see that
it is a quadratic equation in P ), which can be constructed. Similarly, one can construct
a conic determined by e, f, g, i, [C,C ′, C ′′, C iv], where C iv is the conic passing through
a, b, c, d, i, and such that choosing P on this conic ensures that the cubic generated passes
through i. It suffices to choose P among the four intersection points of these two conics
to obtain a correspondence which generates a cubic passing through all nine given points.
Note that the point P is (not uniquely) determined by all nine given points and belongs
to the cubic as well; in that sense, the construction does indeed rest on a property of ten
points of a cubic.

The second construction given by Chasles38 involves a property of the curves of the
fourth degree, whereby Chasles claims to make a new use of the notion of cross-ratio, and
to give a “natural extension” of the general theorem used in the first construction. More
precisely, Chasles states at the onset of his communication that he will form a curve of
the fourth degree as the intersection of two sheaves of conics, which is more general a
construction than that of curve of the third degree given above, which was formed as the
intersection of a sheaf of conics and a sheaf of lines. To carry out this construction, as
we have seen, Chasles had to first establish a anharmonic correspondence between the
sheaf of conics and the sheaf of lines: this was done using the fact that the polar lines
of a fixed point with regard to the conics had the same cross-ratio wherever the fixed
point was. Transforming once more his geometrical language, Chasles proposes in this
second communication to simply use the expression “cross-ratio of four conics” to denote
the cross-ratio of these four polar lines of some fixed point. With this extension of the
terminology, it becomes possible to speak of two sheaves of conics which correspond to
each other so that the respective anharmonic ratios of four curves of each sheaf are the
same. Chasles can then state another result which he also calls “Théorème Général”,
namely the fact that, for any two sheaves of conics passing through four given points,
respectively a, b, c, d and a′, b′, c′, d′, the intersections of corresponding conics will form a
curve of order four, which passes through these 8 given points.

Chasles then explains that a proof similar to the one given above can be obtained as
well, by fixing a line L and showing that it crosses the locus of the intersections at exactly
four points. However, he elects to use another method, which he claims “has the benefit of
being applicable to the general case of two sheaves of curves of any order39”. Writing S =

38 [Chasles, 1853b].
39 [Chasles, 1853b], p.273.
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0, S1 = 0;U = 0, U1 = 0 the equations for two conics of each sheaf, respectively, Chasles
then states that a third conic of each sheaf will be given by the equations (respectively)

S + λS1 = 0 ; U + λ′U1 = 0

To prove the result stated above, Chasles must show that a relation holds between λ

and λ′, which is so that to one value of α corresponds exactly one value of α′. To that
purpose, Chasles notes that one value of λ determines exactly one conic of the first sheaf,
and therefore exactly one tangent to this conic at one of the four points which determine
this first sheaf. Conversely, one tangent line at this point determines exactly one conic
of the first sheaf, and therefore one value of λ. Similarly, to one value of λ′ corresponds
exactly one tangent line to a conic of the second sheaf, at one of four points. Therefore, the
coefficients λ, λ′ determine two tangents, which form two homographic sheaves of lines, per
construction. Chasles continues by using once more the fact that the homography of two
sheaves is characterized by the fact that to one of the lines of the first sheaf corresponds
exactly one line of the second sheaf. Hence, he continues, between these two variables
λ, λ′ must hold an “analytical relation” which is such that to one value of λ, corresponds
exactly one value of λ′, that is to say a relation of the form:

α · λλ′ + β · λ+ γ · λ′ + δ = 0

In a footnote, Chasles comments on this reasoning40:

Ce mode de démonstration, qui comporte la rigueur désirable, et qui dispense
de tout calcul, pourra être employé dans beaucoup de questions il forme, à
cet égard, une des applications les plus utiles de la théorie du rapport anhar-
monique.

Indeed, no fewer than two years later, this would form the basis of a new principle of
geometry, namely the principle of anharmonic correspondence, which we discuss in section
3.1.3.

Chasles then remarks that, if S corresponds to U , and S1 to U1, then α = δ = 0,
and the equations for the systems of conics can be rewritten so that λ′ does not appear
anymore. Eliminating λ in this system, he obtains the following equation for the locus of
the intersection points of corresponding conics:

a · SU1 = US1

where a is a constant number. This concludes Chasles’ proof of the “Théorème général”
40 [Chasles, 1853b], p.274.
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stated above. A construction of a curve of the third degree passing through nine given
points is then given by Chasles. First, he considers the conics41 A,A′, A′′.. which pass
through four given points. Fixing a line L, each conic A intersects L at two unnamed
points. A conic B can be constructed passing through these two points, plus three given
points a′, b′, c′. The conics A and B intersect at two points which are not the unnamed
points mentioned previously. By virtue of the theorem stated above42, these two points
plus the unnamed points on L form a curve of the fourth degree, which passes through
a, b, c, d, a′, b′, c′. However, the line L is a branch of this curve. Therefore, the two points
which were not on L form a curve of the third degree, which passes through the seven given
points. In a similar fashion to the first construction, Chasles ends his communication by
showing how L can be chosen so that the two remaining given points are on the constructed
curve43.

Unbeknownst to Chasles, his second method of proof resembles one which Otto Hesse
had devised at around the same time44. For instance, with regards to the simpler theorem
which describes conic sections as the locus of the intersection of two homographic pencils
of lines, Hesse wrote the following system of equations:

C1 + λC2 = 0
C ′1 + λC ′2 = 0

in which, it must be noted, the parameter λ is immediately taken to be the same for both
sheaves. Hesse then would find the intersections of corresponding lines by eliminating λ,
and the locus of these intersections is expressed by the following equation:

C1C
′
2 − C ′1C2 = 0

which is an polynomial of degree 2, hence this locus is a conic section. In a similar fashion,
writing the equation of an homographic pencil of lines and a sheaf of conics, a polynomial
of degree 3 is obtained. This literary technology has several benefits, among which the
capacity to ‘select’ one member of a collection and its corresponding member(s) in other
series of figures, simply by choosing a value for the parameter λ. However, it fails on
other accounts, as for instance it does not seem to allow for the sort of fine-tuned results

41Here, he does not refer to these conics as a sheaf, or as a series, but as “plusieurs coniques A,A′, A′′..”,
which not only shows that the thematisation of the notion of systems of conics is still ongoing, but also
that he only talks about sheaves when a certain anharmonic correspondence is considered.

42For the hypotheses of the theorem to hold, Chasles only has to prove that the conics B pass through
four common points, and that the conics A and B form two homographic sheaves, which he does, see
[Chasles, 1853b], p.276.

43 [Chasles, 1853b], p.277.
44See for instance [Hesse, 1853].
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that Chasles aims for, when giving general modes of construction of cubic curves. Hesse
did not particularly care for the problems of construction which Chasles was taking up;
as such, he could assume the correspondence to be generic, and not writing the equations
for both sheaves with different parameters λ and λ′. In Chasles’ approach, however, the
correspondence must be constructed with specific goals in mind: to force to resulting
curve to pass through certain points.

Through the vocabulary of correspondences and homographies, Chasles was crafting a
textual device to perform complex, abstract operations, such as the indexing of elements
of infinite collections in a way that would keep track of certain ‘matches’ between them.
There are many other textual devices at our disposal today to do such a thing, whether one
prefers to use indexes, function symbols, or Hesse’s equations and their λ’s. It is certainly
difficult to acutely measure the relative powers of these devices. Remarkably, Chasles
and his followers would constantly revise theirs, and come up with new ways of writings
theorems, proofs, and constructions. One key step, which we now turn to, would be the
identification of correspondences as the main component of this new geometry they were
creating. In so doing, they would enunciate the first propositions about correspondences
per se, instead of merely constructing them.

3.1.3 The principle of anharmonic correspondence

Two years after giving these constructions of the cubics, and as he was using similar
techniques to construct geometrically solutions of equations of degree three and four,
Chasles returned to the Académie des Sciences to give another communication. This
time, however, he would not attempt to solve a particular problem: he had something
far more important in mind. On December 24th 1855, Chasles announced he had found a
new principle of geometry, namely the principle of correspondence45.

We pointed out in section 1.2.3 that the word “principle” is somewhat ambiguous in
Chasles’ texts. Sometimes, it is used to denote these fundamental truths around which a
certain theory is to be centered, like the involution of six points on a conic for the theory
of this curve. With the principle of correspondence, however, Chasles is using this term in
the same way as he did when discussing the principle of signs, the principle of duality, or
the principle of homography. These principles all serve to structure geometrical discourse
as a whole.

Indeed, these principles operate outside the deductive order. The principle of duality,
for instance, is very rarely stated, used, or even mentioned within Chasles’ proofs –

45In 1864, in the context of the theory of characteristics, Chasles would use the same term to refer to
a more general principle; see sections 4.2.2, 4.3.2. When confusions can be made, we shall use “principle
of anharmonic correspondence” to refer to the 1855 principle, and simply “principle of correspondence”
for the 1864 version. On the relation between both principles, see 5.1.2.
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despite being largely discussed in the context of his historical or epistemological writings.
However, it structures the very organization of Chasles’ treatises or articles: in the 1852
Traité, for instance, each chapter is divided into two parts, the first of which discusses
at lengths properties of certain systems of points, such as homographic divisions of a
line. The second part, on the other hand, would systematically expound the correlative
properties of systems of lines, such as homographic sheaves of lines, with similar wordings
being used to display the correlation of the properties. In most cases, only the proofs of
the first section are spelled out, as precisely the principle of duality ensures that these
first proofs need only be translated word by word to be valid in the realm of lines. Hence,
a principle such as the principle of duality is never used as a deductive step, as a rule
of inference that would allow Chasles to derive properties of lines from properties of
points. Similarly, the principle of signs operated within the mathematical texts for the
two constructions of the cubic determined by nine points studied previously, but in a way
that never requires Chasles to make its use explicit.

For that reason, these principles are the only results which Chasles presents, and whose
scope is not limited to a particular kind of figure: the principle of duality, Chasles had
asserted in the Aperçu Historique, is in fact a property of extension, or perhaps even of
Nature itself46. In section 1.1, we showed how the search for a minimal set of universally
applicable principles was a core tenet of the engineering ethos shaped and transmitted
at the École Polytechnique, and one to which Chasles largely participated. The principle
of correspondence was, therefore, an important discovery for Chasles, and one which
he immediately said would present a quasi-infinite number of possible applications. The
justification for the universality of this principle, Chasles explained, was that the principle
pertained to “two variable objects”, without requiring any further determination47:

C’est à raison du grand nombre et de la variété des applications dont ces
propositions [in which the principle is contained] sont susceptibles, que j’ai
pensé pouvoir les présenter sous ce titre de principe, qu’on a si rarement
lieu d’employer en Géométrie. Car on rencontre dans l’Analyse et dans la
Mécanique de ces propositions générales qui ramènent à une même expres-
sion des questions forts diverses ou d’un genre déterminé, et auxquelles on
donne pour cette raison le nom de principe ou de loi; mais ces propositions
abstraites et d’une grande portée manquent à la Géométrie, dont les spécu-
lations ont presque toujours le caractère concret, si l’on excepte, toutefois,
quelques méthodes de transformation et surtout cette grande loi de dualité
mise en évidence par la belle méthode des polaires réciproques de M. Poncelet,

46 [Chasles, 1837], pp.408-416.
47 [Chasles, 1855b], pp.1097-1098. Underlining in the original text.
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et qui a été si utile aux progrès de la Géométrie moderne.

Many principles, in Chasles’ geometrical practice, are not directly used within proofs.
Rather, what appears in proofs are propositions within which principles are “contained”:
in the case of duality, for instance, Chasles presents in Note XXIX of the Aperçu Historique
a theorem “wherefrom the principle of duality results48”. The theorem in question is
hardly equivalent to the general principle of duality: for one, it expresses a property on
the geometry of space, while the principle of duality also applies to planar figures. In
fact, what Chasles gave was one general theorem which could serve to apply the universal
principle of duality in certain circumstances.

Similar, in the case of the principle of correspondence, Chasles immediately stated that
it was to be “contained in two abstract propositions”. The first one is the following49:

Première Proposition. – Quand on a à considérer dans une question où
n’entrent pas de transcendantes (fonctions, ou courbes), deux séries de points
sur deux droites, ou sur une seule, et que l’on démontre que les relations ou
dépendances qui ont lieu entre les points qui se correspondent dans ces deux
séries, en vertu des données de la question, sont telles, qu’à un point de la
première série ne correspond qu’un point dans la seconde, et réciproquement
qu’à un point de la seconde série ne correspond qu’un point de la première,
alors on peut conclure que les deux séries de points sont homographiques, et
par conséquent, que le rapport anharmonique de quatre points de la première
est égal à celui des quatre points correspondants de la seconde.
Ce que nous exprimerons en disant simplement que les points de deux séries
se correspondent deux à deux anharmoniquement.

Chasles immediately gave a simple example of such a correspondence: a conic section and
two of its tangents being given, if a mobile tangent glides over the conic section, it will
intersect the two given tangents in two points a, a′, in a (1, 1) correspondence. Hence,
this construction gives rise to a homographic division of the two given tangent lines (see
fig. below). The proposition serves to go from the construction of a correspondence to an
important property thereof.

48 [Chasles, 1837], pp.375-376.
49“In a question where no transcendental functions or curves are involved, when one has to consider

two series of points on two lines, or on one line, and when one shows that the relations or dependencies
between the points which correspond to each other in these two series, by virtue of the given data of
the question, are so that to a point of the first series corresponds only one point of the second series,
and conversely to a point of the second series corresponds only one point of the first series, then one can
conclude that these two series are homographic, and, therefore, the cross-ratio of four points of the first
series is equal to that of the four corresponding points of the second series. This will be expressed simply
by saying that the points of both series correspond to each other two-by-two anharmonically”, [Chasles,
1855b], p.1098.
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The second proposition which contains the principle of correspondence pertains to (1, 2)-
correspondences, that is to say correspondences between series of points and series of
segments50:

Deuxième Proposition. – Quand on a à considérer dans une question où
n’entrent pas de transcendantes (fonctions, ou courbes), deux séries de points
sur deux droites, ou sur une seule, et que l’on démontre que, d’après les rela-
tions entre ces points résultantes des conditions de la question, à un point de la
première série ne correspond qu’un point de la seconde, mais qu’à un point de
la seconde série correspondent simultanément et indistinctement deux points
dans la première, on en conclura alors que tous ces couples de points sont en
involution, et qu’ils correspondent anharmoniquement aux points uniques de
la seconde série.

Chasles then gave an example analogous to the previous one. Suppose that a straight
line, a conic section, and a tangent line to the conic are given. From each point n of the
straight line, one can draw two tangent lines to the conic, which will intersect the given
tangent line in two points m,M (see fig. below). To each point n correspond two points
m,M ; but to one point m corresponds only one point n. Therefore, Chasles claimed, the
pairs of points m,M are in involution and correspond anharmonically to the points n.

50“In a question where no transcendent functions of curves are involved, when one has to consider
two series of points on two lines, or on one line, and when one shows that the relations or dependencies
between the points which correspond to each other in these two series, by virtue of the given data of the
question, are so that to a point of the first series corresponds only one point of the second series, but
that to a point of the second series correspond simultaneously two points of the first series, then one can
conclude that all these pairs of points are in involution, and that they correspond anharmonically to the
unique points in the second series”, [Chasles, 1855b], pp.1099-1100.
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While Chasles gave no proofs of these propositions, such proofs can be found in the
Mélanges de Géométrie Pure written in 1856 by his friend and student Ernest de Jon-
quières, whose work will be discussed in greater detail in section 3.2. In fact, in this
book, an entire chapter is devoted to the principle of anharmonic correspondence51, and
to various applications thereof (including the theory of curves of order three and four). A
footnote at the beginning of this chapter tells us that Chasles was teaching the principle
of anharmonic correspondence before publishing this note, as De Jonquières wrote his
own chapter before December 1855. This pattern of research being first delivered through
lectures, and only then written and communicated to the Académie des Sciences seems
rather frequent in Chasles’s scientific activity.

De Jonquières proved Chasles’ first proposition by considering two series of points m
and m′ taken on two different lines, and by fixing one arbitrary origin A and B on each
straight line52. From these points, two variables Am and Bm′ can be formed. The corre-
spondence between the points m and m′, De Jonquières explains, translates into a “purely
algebraic equation” in the two variables, that is to say that there is a polynomial in Am
and Bm′ that is constantly null. This is because the construction of the correspondence is
purely geometrical, and no transcendental curve has been mobilized. This algebraic equa-
tion, however, must be so that to any one value of the first variable corresponds exactly
one value of the second variable; and conversely. Therefore, this equation is necessarily

Am ·Bm′ + λ · Am+ µBm′ + ν = 0

for some λ, µ, ν depending on the specific correspondence being considered. Note that
this equation is precisely the four-term equation for homographic divisions of two lines

51 [de Jonquières, 1856a], pp.152-196.
52 [de Jonquières, 1856a], p.154.
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which Chasles had already given in the Traité de Géométrie Supérieure53.
As for the second proposition containing the principle of (anharmonic) correspondence,

De Jonquières lets M denote the series of points, and m,m′ the corresponding points of
the second series54. The series of points m and m′ are in fact homographic according
to the first proposition, since to one point m there corresponds a single point m′, and
conversely. This homography is in fact an involution, since m and m′ play symmetrical
roles: indeed, because m and m′ simultaneously correspond to a single point M , each
point of the line mm′, when viewed alternatively as an element of both divisions, has the
same homolog. Therefore, the segments mm′ are in involution, and the proposition is
proven.

These proofs are remarkably simple: in fact, they are probably shorter than any direct
proof of the fact that a specific correspondence is anharmonic (or a series of segments in
involution) could possibly be. But what Chasles’ 1855 paper brings to the fore is not a new
set of results and theorems that were previously unattainable. Rather, with the principle
of correspondence comes a new way of ordering and relating the elementary concepts of
higher geometry, as well as a new way of writing these proofs. Proofs relying on the
principle of correspondence minimize the uses of specific properties of a given system of
figures involved in the condition of a problem, by simply requiring that one surveys the
nature of the correspondence (that is to say, the number of corresponding points in both
directions).

This principle, despite or perhaps due to its relative simplicity, profoundly changed
Chasles’ geometry of curves and surfaces. In 1857, he gave another communication, on
“Two general theorems on the geometrical curves and surfaces of any order55”, wherein
anharmonic correspondences between sheaves of curves of orders n and n′ (determined
respectively by n2, n′2 points) are used to form curves of order (n+n′), in a similar manner
to what had been done in 1853 for conics. An anharmonic correspondence between curves
here means that there is a one-to-one correspondence between them, such that the cross-
ratio of any four curves of one sheaf is equal to that of the four corresponding curves.

However, there is one major difference between these two texts, in which the principle
of correspondence plays a subtle yet important role. Indeed, defining homographic sheaves
of curves or surfaces can now be done in a novel manner. In 1853, Chasles had to construct
auxiliary sheaves of lines which corresponded to the sheaves of conics, such that their
cross-ratios would yield homographic equations that allowed for a transfer of properties.
In 1857, for instance in the case of surfaces of order m, this can be done just by writing

53 [Chasles, 1852], p.88. See also section 2.2.2.
54 [de Jonquières, 1856a], p.155.
55 [Chasles, 1857a].
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the following “general equation” of these surfaces

Am + λBm = 0

and the cross-ratio of four surfaces will be defined simply by the cross-ratio of the four
points on a line whose abscisses are the four corresponding parameter λ with respect to
an arbitrary origin – that is to say, as the ratio

λ− λ′′

λ− λ′′′
: λ
′ − λ′′

λ′ − λ′′′

The possibility of treating sheaves of curves or surfaces in this manner, Chasles claims
without further comment, is a natural application of the principle of anharmonic cor-
respondence. More generally, the principle of correspondence allows manipulations on
corresponding elements of sheaves of curves, lines, or points without having to form the
equations for said correspondences. For this reason, correspondences would form the basis
of a new language for the writing of the general and geometrical equations of curves and
surfaces, as we shall see in section 3.2.

3.1.4 Intermezzo: A Dangerous Theorem?

In his 1997 autobiography Un mathématicien aux prises avec le siècle, French mathemati-
cian Laurent Schwartz (1915-2002) tells the story of his first mathematical publication56.
While still a student in Classes Préparatoires at Lycée Louis-Le-Grand, he had stumbled
upon an apparently solid proof of an otherwise obviously false theorem, namely that all
real lines of the plane go through a common point. His proof, whose flaw he had a hard
time detecting, went as follows57:

56 [Schwartz, 1997], pp.64-65. On the relationship between Schwartz and Hadamard, see [Paumier,
2014], pp.31-32.

57“Let D and D′ be two imaginary conjugate lines. Their intersection point is therefore real. If M
and M ′ are distinct, complex conjugate points on D and D′ respectively, then the line MM ′ is real.
Conversely, every real line crosses D and D′ at complex conjugate points. We have there an algebraic
biunivocal relation between points D,D′. It is homographic by virtue of a known theorem. However, if we
have a homographic correspondence (M,M ′) between the points of two lines, and if the intersection point
O of these lines corresponds to iself, which is the case since it is real, the line MM ′ goes through a fixed
point. Therefore all real lines of a plane go through a fixed point. [..] I asked this question to Coissard,
who did not think otherwise: ‘The correspondence is algebraic, it is obvious, therefore..’. Coissard, being
cautious, told me: ‘I do not see the mistake, I wil think about it and answer you tomorrow’. And the day
after, he indeed had found out that the correspondence between M and M ′, imaginary conjugate points,
was absolutely not algebraic. I then showed the trick to Paul Lévy and Jacques Hadamard who, obviously,
immediately noticed the flaw. Jacques Hadamard was thrilled, and indeed thought that the theorem ‘An
algebraic, biunivocal correspondence is homographic’ should not be taught to students in spéciales, who
had to learn how to show that a correspondence is homographic in a direct manner, with theorems on the
stability of these correspondences. On the contrary, these students are not capable of seeing whether a
correspondence is algebraic or not. He then campaigned for this theorem to be withdram from curricula,
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Soient D et D′ deux droites imaginaires conjuguées. Leur point d’intersection
est alors réel. Si M et M ′ sont complexes conjugués distincts sur D et D′

respectivement, la droite MM ′ est réelle, et inversement toute droite réelle
coupe D et D′ en des points complexes conjugués. On a là une relation
algébrique et biunivoque entre les points des deux droites D,D′. Elle est
donc homographique en vertu d’un théorème connu. Mais, si l’on a une cor-
respondance homographique (M,M ′) entre les points de deux droites, et si
le point d’intersection O des deux droites se correspond à lui-même, ce qui
est le cas puisqu’il est réel, la droite MM ′ passe par un point fixe. Donc
toutes les droites réelles d’un plan passent par un point fixe. [..] Je posai la
question à Coissard [his professor] qui ne pensait pas différemment: «La corre-
spondance est algébrique, c’est évident, et elle est biunivoque aussi, donc...».
Coissard, prudent, me dit: ‘Je ne vois pas la faute, j’y réfléchirai et je vous
répondrai demain.’ Et le lendemain effectivement, il avait trouvé que la cor-
respondance entre M et M ′, points imaginaires conjugués, n’est absolument
pas une correspondance algébrique. Je montrai ensuite l’astuce à Paul Lévy
et à Jacques Hadamard qui, évidemment, repérèrent immédiatement la faute.
Jacques Hadamard en était enchanté, et pensait en effet que ce théorème:
‘Une correspondance algébrique et biunivoque est homographique’ ne devrait
pas être enseigné aux élèves des classes de spéciales [second year of classes
préparatoires], qui devraient apprendre à montrer qu’une correspondance est
homographique de façon directe, par des théorèmes de stabilité sur ces corre-
spondances. En revanche, ils ne sont pas capables de voir si une correspon-
dance est algébrique ou non. Il fit donc campagne pour le rejet de ce théorème
de l’enseignement et décida de le publier avec sa démonstration, afin qu’on ne
l’enseignât plus en taupe [slang term for classes préparatoires].

In Schwartz’ remembrance of these events, Hadamard’s warning against this theorem
which shouldn’t be taught to young, untrained mathematicians echoes earlier warnings
made by his professor, Coissard. Coissard mistrusted “algebra” (by which, according
to Schwartz, he meant analysis), where intuition leads only to pitfalls, and where one
must always tread with the utmost care. Schwartz, who enjoyed geometry more than
anything else in his youth but went on to become a renowned analyst, tells us through
this anecdote the shaping of his mathematical taste: he who had no skills whatsover as
far as visualisation and graphical intuition were concerned, enjoyed geometry primarily
as a purely verbal, formal game, hence his later conversion to analysis.

While Schwartz gives no reference for this supposedly well-known theorem, the sim-

and decided to publish it with its proof, so that it would not be taught in classes préparatoires anymore”.
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ilarity with Chasles’ principle of correspondence is striking. For Schwartz, the theorem
states that if there is a binary, bijective and algebraic relation R between the points
M and M ′ of two complex projective lines, then M ′ is the image of M under an homo-
graphic mapping. Here, R is called algebraic if there is a projective frame for each of these
lines and a polynomial P (X,X ′, Y, Y ′) homogenous in (X, Y ) and in (X ′, Y ′) such that
(X, Y )R(X ′, Y ′) iif P (X,X ′, Y, Y ′) = 0. It seems unproblematic to identify both state-
ments. Despite a few complications in Chasles’ terminology, the mathematical content of
both theorems is, in a sense, equivalent. This equivalence, however, says very little about
the drastically different uses that both mathematicians were able or inclined to make of
this theorem, as well as about their respective evaluation of the epistemological merits
and dangers of this result.

Indeed, what Hadamard and Coissard found dangerous or tricky, Chasles had used
countless times without fail, and put at the center of his teaching. In many ways, the new
perceptions elicited by a seemingly unchanging theorem betray a growing anxiety within
mathematical practice58: the generality of analysis, for Schwartz’s professors, is constantly
under threat of being refuted by counter-examples, whose presence is not always obvious.
Schwartz’s discovery also highlights the power of the concept of base-fields in geometrical
studies: in modern terms, the paradox he had discovered was that the complex conjugation
(X, Y ) → (X,Y ) is not algebraic over the field of complex numbers, and as such cannot
give rise to an algebraic relation.

But why is it that Chasles and his readers never made such a mistake, or even felt
the need to warn against the possibility thereof? Schwartz’s retelling pivots around the
fact that what seemed obviously algebraic actually wasn’t. This manipulation of corre-
spondences as abstract relations (or mappings) opens the possibility of such a mistake,
exemplified by the construction of something that is within the realm of relations, but
without that of the relations that satisfy the proper hypotheses.

The faulty construction which Schwartz’ “proof” builds upon was not unthinkable
in Chasles’ times, nor was such a mistake impossible to arrive to: indeed, comparable
criticism was published for instance by C. F. Geiser, a Swiss geometer who edited Steiner’s
collected works59:

Ma si può muovere un dubbio sul procedimento della dimostrazione ; poichèe
esso parte dalla tacita supposizione, che ogni relazione univoca fra λ e λ′ si
possa rappresentare analiticamente ; ipotesi questa che in altre parti della

58On anxiety as a historical category, especially in nineteenth-century mathematics, see [Gray, 2004].
59“But a doubt can be raised about the procedure of the demonstration; since it begins with the tacit

assumption, that every univocal relation between λ and λ′ can be represented analytically; hypothesis
which in other parts of Mathematics is long recognized as inadmissible. In fact, this doubt is not un-
founded even in the present case, which will be detected by some simple examples that we will discuss in
this Note”, [Geiser, 1870], p.26.
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Matematica è da molto tempo riconosciuta come inammissibile. Che in fatto
il dubbio non sia infondato anche nel presente caso, lo si rileverà da alcuni
semplici esempi che tratteremo in questa Nota.

Geiser went on to discuss similar cases where correspondences which cannot be represented
analytically, that is to say non-algebraic biunivocal correspondences, lead to counter-
examples of Chasles’ principle of correspondence. Geiser was very much in the minority
in holding this principle faulty: Zeuthen, himself a student of Chasles’, and someone who
would make use of this principle at several occasions, quickly dismissed this criticism. He
pointed to Chasles’ explicit mention of the necessity of the correspondence not involving
transcendant functions or curves60, a condition which he described as being “inseparable
from the principle itself”. At this time, the principle was indeed used by several geometers
across Europe, either explicitly crediting Chasles for its creation61, or just reproducing the
main equation without giving any reference62. For a majority of these mathematicians,
the question of whether or not a certain correspondence was indeed algebraic was not
something to verify in each case, lest a counter-example may arise. In fact, the algebraic
nature of correspondences is never something that is actually proven or even mentioned
by Chasles or his students: it is a core part of the principle, because, for Chasles and
his students, correspondences were always obtained within a framework structured by a
tacit, finite set of constructions – those of polar lines, of projections, of intersections etc.

Chasles’ principle of correspondence moving from the status of abstract principle for
a simple and intuitive practice of geometry, to that of a dangerous theorem which should
only be placed in the hands of expert mathematicians, clearly shows how a mathematical
theorem is never just a pure piece of knowledge, to be circulated amongst the members of
an ideal community of pure minds. Rather, it is to be thought of as a technology to be used
within a certain mathematical laboratory, from which derive its purpose, its meaning, but
also some of the rules for its operation. When transported from one laboratory to another,
tacit information regarding its use may be lost: therefrom came the increased dangerosity
of Chasles’ principle of correspondence, when in the hands of mid-20th-century students
in Parisian Classes Préparatoires.

3.2 The geometrical equations of curves

Despite his enthusiastic description of this new principle of correspondence in 1855,
Chasles would scarcely make explicit uses of and references to it in publications over

60 [Zeuthen, 1873], pp.188-189.
61 [Cremona, 1862], pp.7-10.
62 [Hesse, 1866], p.370 et passim.
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the following decade. In 1864, in the context of the publication of the theory of character-
istics (to which we turn in section 4.2), Chasles would reforge this principle into something
much more general and powerful – albeit deprived of its fundamental connection to the
theory of homographies and cross-ratios. Nonetheless, this first principle of correspon-
dence played a role in the next two books Chasles published, namely his interpretation
of Euclid’s Porisms in 1860 and the 1865 Traité des Coniques (which had been written
prior to the 1864 reformulation of the principle of correspondence). De Jonquières, on the
other hand, would use this principle extensively, to tackle different kinds of problems.

All these texts, however, converge in that they all collectively put forth the idea that
this new higher geometry was able to produce “geometrical equations63” of various figures,
curves, and surfaces. In the rest of this chapter, we discuss briefly several attempts by
Chasles and De Jonquières at mobilising this constantly evolving notion through the
(sometimes implicit) use of the principle of anharmonic correspondence.

3.2.1 Geometry on the seven seas

As we are about to delve deeper into his geometrical research, and his promotion of
Chasles’ program for the development of pure geometry, it is necessary to say a few words
about Ernest de Fauque de Jonquières64. Born in 1820 into a military family (his father
was a naval officer before him, and his son would become one as well) in the South-East of
France, he entered the École Navale at the age of fifteen. He spent the following forty-four
years within the French Navy. According to his own count, by the time he was promoted
to the rank of Vice-Amiral in 1879 – the highest rank he would ever reach – he had spent
thirty-six years on sea, in all parts of the world. This intensive maritime activity, which
sent him to all corners of the world, was crucial to his own self-styling as a mathematician,
as he would regularly present his work as that of pupil of the great masters, of someone
who merely dabbles in geometry.

De Jonquières wrote an autobiographical account as part of a candidacy to become
member of the Académie des Sciences. De Jonquières did not apply for the mathematical
section of the Académie des Sciences; as he probably would not have had any chance of en-
tering this section at a time where mathematics was increasingly becoming a professional
activity, and the preserve of an elite trained either at the École Polytechnique or the École
Normale Supérieure. Instead, De Jonquières (succesfully) applied to become a membre

63These equations have nothing to do with the geometrical equations discussed by the algebraic ge-
ometers studied in [Lê, 2015].

64Biographical information on De Jonquières can be found in his own Notice sur la carrière maritime,
administrative et scientifique, [de Jonquières, 1883], as well as the articles of Gino Loria, [Loria, 1902],
[Loria, 1947].
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libre of the Académie des Sciences65. To that end, he presented himself as someone who
was not only versed in mathematics, but also in military science and naval engineering;
and as someone who had explored the world extensively, had made natural observations
across the world, and had managed important administrative duties. The series of anony-
mous portraits of the other membres libres of the Académie which De Jonquières gave at
the end of his own application showcase the various facets of the ideal savant which he
viewed as rightful members of this section: these members are pictured as intrepid explor-
ers, administrators, military men etc., who happened to also make important scientific
contributions on the side. De Jonquières’ self-styling as an amateur mathematician was
part of this application strategy66.

Ernest de Fauque de Jonquières (1820-1901)

More prosaically, these large periods of time spent at sea regulated his access to scientific
journals and books, as well as the time he was able to devote to his geometrical research.
The daily activity of a sailor, even this late into the nineteenth century, already involved
a use of a certain astronomical knowledge67. During his first missions, De Jonquières
read with great interest the astronomical theories of Delambre, and conducted several
observations himself while at sea. However, it is only in 1845 that De Jonquières was able
to read advanced mathematical texts for longer periods of time. During a long and mostly
peaceful surveillance mission off the coasts of Sierra-Leone, he read the mechanical works
of Poinsot and Poisson.

In 1848, as the third French Revolution unfolded, De Jonquières was back in France.
On leave at first, he would stay there for two years, as he had been tasked by the ‘Conseil

65On the “Académiciens libres”, see [Crosland, 1992], pp.405-409.
66As such, Loria’s biographies and assessments of De Jonquières’ work and career must be taken with

some distance. This strategy is made explicit in a letter by De Jonquières to Cremona, responding to the
latter’s surprise that geometrical results did not figure more prominently in this notice, see [Israel, 2017],
pp.999-1000.

67For the role of Astronomy in the daily activities of sailors toward the end of the 18th century,
see [Schotte, 2019], pp.173-183.
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d’amirauté’ with the upgrading of a military vessel. It is probably at this point that De
Jonquières first met the geometrical theories of Chasles and Poncelet, some versions of
which he brought with him as he returned to the sea by 1850, eventually taking part in
the Crimean War. Afterwards, his service kept him at sea for most of the following years,
albeit with more peaceful missions. In 1856, aboard the Arcole, he went to Terre-Neuve:
it is during this time that he wrote his first mathematical works, including the afore-
mentioned Mélanges de Géométrie Pure, which expand on Chasles’ kinematics, his (and
Poncelet’s) interest in MacLaurin’s organic description of curves, and, more importantly
for us, on the principle of anharmonic correspondence. Between 1856 and 1861, De Jon-
quières would publish several papers in various European journals, such as Crelle’s and
Liouville’s journals or the Nouvelles Annales de Mathématiques. De Jonquières was, for
obvious reasons, incapable of attending the majority of Chasles’ lectures. In fact, during
his controversy with Chasles in 1866, he would claim to have attended a mere four or five
such lectures. However, he was in possession of handwritten versions of some of these
lectures.

Throughout his career, the rhythm of his scientific publications would be the inverse
of that of his military and administrative duties. Toward the end of the year 1861, De
Jonquières was sent to participate to the Expédition du Mexique. More precisely, he was
to watch over the shores of Vera Cruz, and the Tampico river. This campaign would
be described by De Jonquières as a “monotonous cruise”: far from most of the military
action, he had the time to write and send an entry for the Grand Prix de Mathématiques
of the Académie des Sciences. This entry would be rewarded with two thirds of the prize-
money. A few stays in France, as well as an administrative mission in Saïgon, left him
with enough time to develop a theory of curves which would, for a time, clash with that
of Chasles (see section 5.1). By contrast, after De Jonquières’ promotion to the rank of
captain, in 1866, constant military duties would prevent him from publishing any more
mathematics until 1878.

In what follows, we focus on the research he conducted between 1855 and 1859, that
is to say, as he was expanding on Chasles’ higher geometry.

3.2.2 The generation of curves

In 1856, De Jonquières wrote several texts on the generation of curves. He sent one memoir
to the Académie des Sciences, for which Chasles and Poncelet wrote a positive report and
which was eventually published in 1858 in the Mémoires présentés par divers savants à
l’Académie des sciences68. De Jonquières also wrote four papers for Liouville’s Journal on

68 [de Jonquières, 1858]. For Chasles’ report, see [Chasles, 1857b].
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the basis of this very memoir69. This interest in the generation of curves, and in particular
of those of order four, is clearly in line with what Chasles was doing at the time. The
Mélanges already were a book entirely devoted to the promotion and expansion of Chasles’
newest methods, as well as to a translation70 of text, namely MacLaurin’s Geometria
Organica, which Chasles had described as crucial for the historical development of this
theory.

To construct and describe curves of order four, determined by fourteen points, De
Jonquières relies on sheaves of conics, just as Chasles did for cubics. Chasles had justified
this use of conics on methodological grounds71:

On pense bien, sans qu’il soit besoin de le dire, que les sections coniques jouent
un rôle nécessaire dans nos nouvelles constructions, comme dans celles de la
Géométrie analytique. Employer d’autres courbes d’un ordre supérieur, serait
une faute de méthode, d’autant plus grave, qu’on peut dire que la destination
philosophique et essentielle des sections coniques, en Géométrie, est précisé-
ment la résolution des questions qui admettent trois ou quatre solutions, de
même que la propriété essentielle du cercle est de servir à résoudre celles qui
en admettent deux seules.

However, De Jonquières would introduce new notations for the consideration of sheaves
of conics72. A sheaf of conics being determined by four points a, b, c, d, De Jonquières
would represent its conics as (abcde), (abcdf), (abcdg), (abcdh), etc., and the sheaf itself as
(abcd)[e, f, g, h, etc.]. In the papers for Liouville’s Journal, this notation is slightly differ-
ent, as numbers instead of letters are used for the parts in brackets. In both cases, (abcd)
is called the “basis” (‘base’) of the sheaf, while [e, f, g, h, etc.] is its “variable part” (‘partie
variable’). Similarly, De Jonquières would represent sheaves of curves of order three or
four by expanding the numbers of letters in parentheses and in brackets. Sheaves of curves
of order three having a double point, for instance a, are represented by (ȧbcdef)[g, h, i, ..];
and more dots are added to represent points of higher multiplicity. Furthermore, unknown
points can appear in the basis of a sheaf; they are represented by letters from the other
end of the alphabet, such as x and y. This is useful to represent Chasles’ construction

69 [de Jonquières, 1856b], [de Jonquières, 1857a], [de Jonquières, 1857b], [de Jonquières, 1858].
70This “translation”, however, contains several notes and additions to MacLaurin’s text. Furthermore,

De Jonquières replaces several of MacLaurin’s proofs with some that rely on Chasles’ Traité de Géométrie
Supérieure. The reason invoked for these changes is a gain of brevity. De Jonquières, like Chasles, reads
texts of the past at the light of modern treatises, and what he calls translations are often displacement
of past results into more general frameworks.

71 [Chasles, 1855a], p.678.
72This notation would be praised by Cayley, himself a mathematician who introduced a lot of new

notations involving letters and numerals in productive manners. See [Cayley, 1862], pp.223-224. In what
follows, we focus on De Jonquières’ 1858 presentation of this theory, [de Jonquières, 1858].

114



3.2. The geometrical equations of curves

of the cubic passing through nine given points: remember, indeed, that Chasles had con-
structed a sheaf of conics and a sheaf of rays passing through a point P which had been
left undetermined until the end of the construction. This point acts as an indeterminate
which is to be specified at the end of the construction to satisfy the remaining conditions.
In fact, as we shall see, De Jonquières’ notations serve to describe in more general terms
Chasles’ construction, and to extend it to the generation of curves of any order.

Chasles had shown how to define anharmonic correspondences between sheaves of
conics and sheaves of lines. Similarly, such correspondences can be defined with sheaves
of curves of any order, and sheaves of lines: it suffices to take a regular point of the basis
of the first sheaf, and to form the lines tangent to all curves of the sheaf at this very point.
From there, De Jonquières defines anharmonic correspondences directly between sheaves
of curves: given two sheaves and one regular point of the basis of the first sheaf, the two
sheaves are said to be anharmonic if any (regular) point of the basis of the second sheaf
yields a sheaf of tangent lines that is anharmonic to the sheaf of tangent lines formed
from the first given point, and the first sheaf of curves. Two such sheaves of curves are
also called homographic by De Jonquières. However, he reserves this term for sheaves
composed of the same kind of figures; that is to say, anharmonic sheaves of lines and
sheaves of curves cannot be said to be homographic.

At this point, De Jonquières introduces Chasles’ algebraic equations for sheaves, which
he calls the “analytical relation between two anharmonic sheaves”. In fact, De Jonquières
reproduces most of Chasles’ reasoning on these equations, transposing it to sheaves of
curves of any order. If

S = 0 and S1 = 0

are the equations of two curves of degree n, belonging to one sheaf, then the equation of
any other curve of this sheaf is

S + λS1 = 0

Similarly, De Jonquières forms an equation V +λ′V1 = 0 of degree n′ for the second sheaf.
If the two sheaves are anharmonic, then to one curve of the first sheaf corresponds exactly
one of the second sheaf, and conversely. This means that λ and λ′ verify an equation of
the form

αλλ′ + βλ+ γλ′ + δ = 0

where α, β, γ, δ are constant coefficients, one of which De Jonquières calls “arbitrary” (as
the whole equation can be divided by any factor without altering its validity). Choosing
the curves of equations S and V (respectively, S1 and V1) to correspond to one another,
De Jonquières eliminates most of these coefficients, and rewrites the equations of both
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sheaves as
S + λS1 = 0 and V + αλV1 = 0

De Jonquières then eliminates λ from this system to obtain the equation for the locus of
the intersection points of the corresponding curves of the two sheaves, namely

αSV1 = V S1

This is an equation of degree n + n′. De Jonquières notes that the resulting equation
is satisfied whenever S = 0 and V = 0 (simultaneously). He has shown that the curve
generated by the intersections of two sheaves of curves of order n and n′ is a curve of
order n+ n′, passing through all the points in the bases of these sheaves.

This result justifies a priori Chasles’ many constructions of curves of order three, as
formed by intersections of sheaves of lines and sheaves of conics. However, De Jonquières
claims that this result “is only fully satisfactory so long as one does not seek to make the
curve thus constructed absolutely particular amongst all those of its degree73”. Indeed,
De Jonquières explains, suppose you want to generate a given curve of order m as the
intersection of two anharmonic sheaves of curves of order n and n′, where n + n′ = m.
The curve is a characterized by m(m+3)

2 = (n+n′)(n+n′+3)
2 given points. Amongst these,

n(n+3)
2 + n′(n′+3)

2 − 2 can be taken to form the bases of the two sheaves, and three points
can be chosen to form the anharmonic correspondence between the two sheaves. In total,
this means that n(n+3)

2 + n′(n′+3)
2 + 1 points have been selected, but this number is smaller

than that of the number of points characterizing the curve to construct, whenever n and n′

are above 1. Therefore, the curve being thus generated does not necessarily pass through
all the given points.

De Jonquières’ proposed solution to this problem is to introduce “unknown points”
in the bases of the sheaves, so that the points determining the curve to be constructed
will uniquely determine these points. This is, in fact, precisely what Chasles had done for
cubics. To that end, De Jonquières introduces nn′ − 1 unknown points to be part of the
bases of the sheaves. The K remaining points of these bases will be taken amongst the
given points, where

K = n(n+ 3) + n′(n′ + 3)
2 − 1

The number of given points remaining at this stage, which De Jonquières calls the “com-
mon variable part of both sheaves”, is

m(m+ 3)
2 −K = (n+ n′)(n+ n′ + 3)− n(n+ 3) + n′(n′ + 3)

2 − 1 = 2nn′ + 1

73 [de Jonquières, 1858], p.169.
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To determine (nn′ − 1) unknown points, explains De Jonquières, 2(nn′ − 1) elements are
required: this is for instance the number of coordinates x and y required. Meanwhile, the
problem of constructing the curve through the two sheaves thus far considered depends
on precisely 2(nn′ − 1) conditions. Denoting B and B′ the bases of these two sheaves,
and a, b, c, d, e, f.. the 2nn′+ 1 remaining points, these conditions are the (2nn′+ 1)−3 =
2(nn′ − 1) following equalities between cross-ratios:

B(abcd) = B′(abcd)
B(abce) = B′(abce)

etc.

This concludes De Jonquières’ proof: the number of equations is equal to the number
of conditions, which means that a given curve of order n + n′ can always be generated
via two sheaves of curves of order n and n′. Note that there is no unicity in the mode
of description: as De Jonquières quickly points out, the variable points can be spread
in various ways across the bases of both sheaves, which leads to various equally valid
generations.

This mode of reasoning may seem algebraic to us: it resembles the construction of a
system of linear equations. And yet, no systems of coordinates or Cartesian equations are
introduced. In fact, De Jonquières explicitly describes this theory as a geometrical analog
to algebraic equations74:

L’objet du présent mémoire est d’exposer un mode général et uniforme de
description des courbes géométriques déterminées par un nombre suffisant de
points. Cette méthode, véritable mise en équation géométrique du problème
fait le sujet de la première section du mémoire.

Building on Chasles’ latest principle, and his idea that sufficiently fundamental geomet-
rical properties can play the same role as general algebraic equations, De Jonquières had
devised a new project: the writing of “geometrical equations”. This term would prove
key in both geometers’ subsequent geometrical works. In the following chapter, we shall
see how it played a key role in the shaping of Chasles’ theory of characteristics (see 4.2.4
in particular). Similarly, Chasles’ Traité des Sections Coniques published in 1865 (but
whose content was already part of Chasles’ teaching at the Faculté des Sciences since its
inception75) opens with a single “fundamental theorem”, wherefrom derive two “funda-
mental properties” regarding the points and tangents of a conic, which Chasles would

74 [de Jonquières, 1858], p.159. Emphasis in original.
75 [de Jonquières, 1865d].
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later describe as the punctual and tangential equations of conics76. The first of these
properties, for instance, is stated as follows77:

Propriété fondamentale relative aux points d’une conique. – Si
de quatre points d’une conique on mène des droites à un cinquième point de la
courbe : le rapport anharmonique de ces droites a une valeur constante, quel
que soit le cinquième point.

Here, this recasting of a geometrical property as a general equation is justified by that
fact that the first property says something on four given points of a conic, and a fifth
variable point. In fact, Descartes’ equation of the conic itself is found to be a consequence
of this fundamental property78. The property of five points is more fundamental, because
it resorts to no artifical systems of coordinates: as such, it ought to come first in the
methodical exposition of the theory of conic sections.

3.2.3 Divinating Euclid’s Lost Porisms

Another key text in which this concept of geometrical equations would be put to work
is Chasles’ reconstruction of Euclid’s lost Porisms; a lost text, attributed to Euclid, and
often described as a core component of the Greeks’ geometrical analysis. Most of what
is known of this text comes from Pappus’ description in Book VII of the Collections79.
In Chasles’ interpretation thereof, the Porisms are all specific instances of a property of
anharmonic correspondences80. Already in Note III of the Aperçu Historique, Chasles had
written that “porisms were, in Euclid’s mind, in some sense, equations of curves81”. How-
ever, as we saw in section 2.1.1, Chasles’ interest in Ancient Greek geometrical analysis,
and therefore in the Porisms, grew throughout the teaching and development of higher
geometry. This interest culminated in 1860, when he published a book purporting to
restore the full meaning of all of the Porisms. We shall not get into the intricate details of
these propositions, their classifications and mysterious wordings in Pappus’ Collections.
What matters to our purpose here is to describe the kind of mathematical propositions
porisms had become in Chasles’ 1860 reading. Indeed, what Chasles found faulty in pre-
vious interpretations of the porisms, and in particular in Simson’s, was not just that it
did not cover all of the propositions reproduced by Pappus. More profoundly, Chasles

76 [Chasles, 1870], p.269.
77 [Chasles, 1865b], pp.2-3.
78 [Chasles, 1865b], pp.23-24.
79See [Pappus, 1986], pp.547-572, for a translation and a commentary of this description. Chasles

probably read Pappus from Commandino’s 1588 Latin translation, if the inventory of his personal library,
established after his death, is to be trusted; see [Boulland & Claudin, 1881], pp.158-159.

80Chasles’ interpretation of the Porisms has been convincingly criticized in [Hogendijk, 1987].
81 [Chasles, 1837], p.276.
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claimed, Simson had not searched what “thought had guided the Greek geometer in his
original conception82”, that is to say the general nature of these propositions – in other
words, he had not seen them as the germs of an alternative to the equations of algebra.

To restore the meaning of the lost porisms, Chasles would rely both on Pappus’ com-
mentary and on the new kind of propositions higher geometry had led him to consider.
In particular, the projective property of cross-ratios, as well as the various equations
for homographical divisions of a line are invoked as necessary to fully understand Eu-
clid’s propositions. This mathematical knowledge was obviously absent from Simson’s
reconstitutions; however, for Chasles, most damaging for Simson was the fact that (pure)
geometry in his time had not yet produced propositions of the same kind as Euclid’s
porisms83. Pappus’ text on the porisms, of which Chasles gave a complete translation in
his book, established a distinction between three kinds of propositions84:

Le Théorème est une proposition où l’on demande de démontrer ce qui est
proposé. Le Problème est une proposition où l’on demande de construire ce
qui est proposé. Le Porisme est une proposition où l’on demande de trouver
ce qui est proposé.

To make sense of this tripartition, Chasles proposed to examine it in the case of a specific
subcategory of propositions, namely “loci” (‘lieux ’). Loci are, according to Pappus, part
of the porisms. Chasles suggests a tripartition of local propositions analogous to that of
Pappus, which involves loci and makes clearer what he understands to be the status of
porisms with respect to problems and theorems to be85.

“Local theorems”, Chasles claims, are propositions which express a common property
of all points of a certain, completely determined, line or curve. An example of such a
proposition is the following: on a circle of diameter [AB], consider two points C,D so
that CA

CB
= DA

DB
. Then, for all point m on the circle, we have mC

mD
= AC

AD
(see fig. below).

“Loci” are propositions which express the fact that points subordinated to a common,
known law (soumis à une loi commune) are on a line (straight line, circular line, or any
other sort of line) of which the nature can be given, but which remains to be determined
(in position and magnitude). An example of such a proposition is given by Chasles by
reworking the previous example: two points and a ratio being given, the locus of a point
whose distances to these two points are in this given ratio, is the circumference of a circle,
given in position and magnitude. Finally, “local problems” are propositions in which it is

82 [Chasles, 1860], pp.8-10.
83 [Chasles, 1860], pp.12-14.
84“The theorem is a proposition where one must prove what is proposed. The problem is a proposition

where one must construct what is given. The porisms is a proposition where one must find what is
proposed”, [Chasles, 1860], p.15.

85 [Chasles, 1860], p.33.
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asked to find the nature, magnitude and position of a locus (that is to say a curve) which
is the common locus of an infinity of points subordinated to a common law. Once again,
an example of such a proposition is obtained by reworking the previous examples. Two
points and a ratio being given, the problem of finding the locus of a point whose distances
to these two points are in this given ratio is a local problem.

MC
MD

is constant

The relation between loci and local theorems is, to Chasles, a metonymy for the relation
between porisms and theorems – and similarly, loci and local problems are in the same
relation as porisms and problems. Porisms are incomplete theorems; they are “proposi-
tions in which a stated truth is to be proven and the quality or way of being, such as the
magnitude or position, of some things mentioned in the statement of this truth, is to be
found86”. Chasles then explains that one can turn a theorem into a Porism by simplifying
its wording, and by doing away with its unnecessary overdeterminations. This, he claims,
is precisely what modern geometry does with its statements. Hence, Chasles draws a con-
tinuous line from Euclid’s Data to Modern Geometry, and in particular his presentation
thereof.

In fact, some of Euclid’s Porisms as reconstructed by Chasles are exact copies of
propositions one could already find in the Traité de Géométrie Supérieure. The translation
and classification of the propositions given by Pappus as being Euclid’s porisms matches
exactly the various equations for homographic divisions of a line (see fig. below) – albeit
with repetitions, since for Chasles, as we saw previously, Ancient Geometry was not
sufficiently abstract and therefore multiplied properties which in fact were only one.

86 [Chasles, 1860], p.35.
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This proximity between Chasles’ higher geometry and his interpretation of the Porisms
is striking in his rendition of the ten “Four-line porisms87”. The second of these porisms,
for instance, reads as follows (see fig. below):

Porisme II. – On donne deux droites SA, SB et deux points P,Q ; une
parallèle quelconque à la droite qui joint ces deux points, rencontre les deux
droites données en a et b ; on mène les droites Pa,Qb qui se coupent en m :
ce point m est situé sur une droite donnée de position.

The position of the line, mentioned at the end of the proposition, is only given in the sense
that it is entirely determined by the other elements of the proposition. This proposition
is a porism because there is a truth to be proven, namely that m is always on one line.
However, the position of this line with respect to the other elements of the proposition is
missing for this to be a theorem: part of the solution to a porism is to find, or construct,
this missing position. In fact, this construction is exactly Chasles’ equation of a line given
in the Traité de Géométrie Supérieure (see section 2.2.2), with the added complication
that here, relative positions of points and lines have to be considered carefully due to
Ancient Geometry not being abstract in Chasles’ sense. Indeed, a and b form homographic
divisions of the lines SA and SB (because they are in one to one correspondence), and the

87 [Chasles, 1860], pp.99-108.
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intersection of the lines Pa and Qb (which, in 1852, would have been denoted Pa, Pb, Pc..
and P ′a′, P ′b′, P ′c′.. to emphasize the correspondence) generates a straight line.

In 1870, reflecting on this interpretation in his Rapport sur les progrès de la Géométrie,
Chasles would make even clearer the link between Euclid’s Porisms and the research he
was conducting at the time, and in particular the principle of correspondence88:

Nous avons dit que les propositions rétablies par Simson comme Porismes ne
se rapportaient qu’à six des vingt-neuf énoncés de Pappus. D’où venait donc
la difficulté que présentaient les autres énoncés ? Cette difficulté dont on igno-
rait la cause, et qui a été le principal obstacle au rétablissement de l’ouvrage
d’Euclide, est maintenant connue : c’est que la plupart des énoncés rebelles
résument des propositions qu’Euclide avait introduites dans son Traité des
Porismes, et qui, ne s’étant point trouvées peut-être dans d’autres ouvrages
grecs, ne nous étaient point parvenues et étaient par conséquent ignorées de
Simson, comme de tous les géomètres contemporains.
Effectivement, ces propositions renferment presque toutes des relations de seg-
ments s’exprimant par des équations à trois et à quatre termes, telles que

αxz + βx+ γz + δ = 0

x et z étant les abscisses de deux séries de points comptés sur une ou sur deux
droites.

This last equation is none other than that of the anharmonic correspondences between
the elements represented by x and z.

Porisms, in Chasles’ reading, were the first historical examples of a kind of geometrical
propositions which the principle of correspondence had come to encapsulate. They say
something on the nature of a locus formed by variable objects, but without requiring
that the entire construction be prescribed already – unlike theorems. And yet, they are
not problems because they positively assert something of the nature of the locus being
generated. For Chasles, this is exactly would Descartes’ equations would achieve. These
equations say something of the nature of a locus, whilst doing away with all the specific
stipulations which elementary geometry required.

The proximity between the principle of correspondence and the higher geometry of
(sheaves of) curves, which Chasles only hinted at in his 1860 book, would not be lost on
his close disciples. In a review of this book, which borrowed extensively from Chasles’
epistemological vocabulary, De Jonquières commented on the “undisputable analogy”

88 [Chasles, 1870], p.239.
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between Euclid’s Porisms and modern geometrical propositions89. Expanding on this
theme, he commented on a critical review of a memoir recently written by another, albeit
less famous, student of Chasles, namely Charles Méray90. Méray, in 1860, had published
a Mémoire sur la théorie géométrique des surfaces du second ordre91, in which only a
single (algebraic) equation was written down. Olry Terquem, reviewing this memoir for
the Bulletin de bibliographie, d’histoire et de biographie mathématiques, had taken issue
with this way of writing geometry92:

On n’y trouve qu’une seule équation, qui porte le n°1 ; de quoi on aurait pu se
dispenser, puisque cette équation est unique ; c’est la méthode logique de M.
Chasles, rendue moins équationnelle, s’il est permis de s’exprimer ainsi. Est-
ce un avantage? Nous trouvons même que la classique et célèbre Géométrie
supérieure est trop peu équationnelle. Des équations écrites valent mieux que
des équations parlées, mais dont on se sert volontiers pour ressembler, à ce
qu’on croit, à Euclide. Pure archéolâtrie. C’est faire rouiller une médaille
fondue hier pour lui donner un vernis d’antiquité. La géométrie moderne se
compose de figures, d’équations et de déductions, sans négliger les inductions,
source de découvertes, et de chacune selon les besoins de la cause, comme
l’on dit au barreau. Pourquoi les Grecs n’ont-ils pas fait usage d’équations?
Même réponse que pour les chiffres : parce qu’ils ne les connaissaient pas.
Apollonius ressuscité ne marcherait pas plus sur les traces d’Euclide que Platon
ne serait platonicien, qu’Aristote ne serait aristotélicien; hommes de génie, ils
apprendraient nos procédés et se placeraient bientôt au premier rang.

De Jonquières mobilized Chasles’ restoration of the Porisms to rebuke this criticism. In
his review of Chasles’ book, De Jonquières explicitly mentioned “a few reflections, recently
inserted in the Nouvelles Annales, set up an opposition between the written equations of

89 [de Jonquières, 1861a].
90Hughes Charles Robert Méray (1835-1911) was an alumnus of the École Normale Supérieure, to

which he was admitted in 1854. He spent most of his career teaching pure mathematics at the Université
de Dijon, see [Huguet & Noguès, 2011].

91 [Méray, 1860].
92“One can find in there only one equation, which bears the number 1, with which one could have

done away, since this equation is unique; this is M. Chasles’ logical method, made less equational, if one
may speak in such a manner. Is it an advantage? We find that even the classical and famous higher
Geometry is insufficiently equational. Written equations are worth more than spoken equations, on which
however one is glad to rely, it seems, in order to resembled Euclid. Pure archeolatry. It is like rusting a
medal minted yesterday, to give it an antique shine. Modern geometry is composed of figures, equations,
and deductions, and let us not forget inductions, a source of discoveries, and it is composed of each in
amounts that depend on what is to be proven. Why did the Greeks not use equations? Same answer
as for numbers: because they did not know them. Apollonius resurrected would not work in Euclid’s
footsteps, and neither would Plato be a platonist or Aristotle an aristotelian; men of genius, they would
learn our methods and quickly claim their spots at the top of the ladder”; [Terquem, 1860], p.70. Chasles
never took part to these discussions, at least not publicly.
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analysis and the spoken equations of geometry”. One of the merits of the book, for De
Jonquières, was to provide a strong argument for these spoken equations93:

Je me permettrai de dire que cet ouvrage a encore, à mes yeux, un autre
genre de mérite et d’utilité : c’est qu’il fait une diversion, au moins momen-
tanée, aux publications presque exclusivement algébrico-géométriques de notre
temps. L’analyse appliquée à la géométrie, surtout depuis qu’elle a simplifié
et perfectionné quelques-uns de ses symboles, a pris des allures si vives, et en
apparence si sûres; elle a parfois si bien réussi à présenter à sa manière, qu’elle
dit être la meilleure, les résultats que souvent la géométrie pure avait d’abord
découverts; elle fait, en un mot, des promesses si brillantes et si séduisantes,
que bien des personnes seraient tentées de faire passer dans ses mains, disons
de lui faire usurper, le sceptre de la géométrie. Cette tendance, qu’à bien
des égards je regarde comme une illusion décevante, est peut-être, dans cette
branche des mathématiques, un symptôme de cette fièvre d’activité, de ce be-
soin d’atteindre un but quelconque, qui est un des caractères dominants de
notre époque.
Mais il est bon pourtant, dans l’intérêt même de la science, d’y apporter
quelque tempérament. Car, en admettant même que la palme de la célérité
dans les investigations appartienne aux méthodes analytiques, la science ne
saurait encore s’en accommoder d’une façon exclusive. Pour me servir d’une
comparaison vulgaire, on acquiert assez promptement la connaissance générale
d’une contrée en parcourant les grandes voies de communications ferrées qui
la sillonnent; mais pour bien en approfondir les détails, les productions, les
ressources, il faut quitter la locomotive, et se résoudre à suivre à pied les an-
ciennes routes et les chemins de traverse. Cela même donne des habitudes de

93“I would like to say that this work has, in my opinion, yet another kind of merit and usefulness: it
diverts the gaze, at least momentarily, from the almost exclusively algebrico-geometrical character of the
publications of our time. Analysis applied to geometry, especially since it has simplified and perfected
some of its symbols, has taken on such a pace that is so lively and seemingly so sure; it has sometimes
been so successful in presenting in its own way, that it claims to be the best way, the results that pure
geometry has often first discovered; analysis makes, in a word, such brilliant and seductive promises,
that many would be tempted to pass the sceptre of geometry through its hands, let us say to usurp it.
This tendency, which in many ways I regard as a disappointing illusion, is perhaps, in this branch of
mathematics, a symptom of this fever of activity, of this need to reach some goal, which is one of the
dominant characters of our time. But it is nevertheless good, in the very interest of science, to bring some
temperament to this tendency. For, even admitting that the prize for speed of investigation belongs to
analytical methods, science cannot yet accommodate it in an exclusive way. To use a vulgar comparison,
one acquires fairly quickly the general knowledge of a country by travelling along the great railroads that
criss-cross it; but in order to go into the details of the land, what it produces, what its resources are,
then one must step off the locomotive and resolve to follow the old roads and walkways on foot. This
even gives one habits of patience, observation and criticism, which one would risk losing if one did not
know how to resign oneself to this primitive mode of peregrination”, [de Jonquières, 1861a], pp.8-9.
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patience, d’observation et de critique, qu’on risquerait de perdre, si l’on ne
savait se résigner à ce mode primitif de pérégrination.

What Chasles’ restoration of the porisms had shown was that writing the geometrical
equations of curves was not a reactionary return to the past, driven by mere nostalgia.
Rather, it was a continuation thereof, in the direction of generality and abstraction.
Similarly, the construction of curves that De Jonquières and Chasles had developed on
the basis of the works of Newton and MacLaurin was not a return to past and outdated
methods: by making abstract and general their constructions, they were shaping a new
geometrical language for the expression of general descriptions of curves - that is to say, an
alternative literary technology to the equations of algebra. This new instrument, in turn,
served as the rightful tool for the virtuous practice of the pure geometer which Chasles
had depicted years prior, and transmitted through the course of his lectures94.

94See section 1.2. In his 1856 Mélanges, while discussing the principle of anharmonic correspondence,
De Jonquières had already made a similar point: “Mais on voit, en même temps, que cette connaissance
de la génération des courbes d’un ordre supérieur ne peut être que l’œuvre lente du temps ; qu’on ne
pourra s’y élever que de proche en proche, et en étudiant toutes les propriétés de celles qui les précèdent
dans la hiérarchie, avec cette patience et cette sûreté d’investigation que la géométrie sait, mieux peut-
être que toute autre science, apporter dans ses recherches, parce que ne pouvant guère ni sauter ni
courir, s’il m’est permis de parler ainsi, elle ne laisse inaperçu aucun des détails de la route qu’elle
parcourt”, [de Jonquières, 1856a], p.175.
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Introduction

While enumerative geometry as a discipline did not exist in any meaningful sense before
the late 1870s, a series of questions and problems emerged and circulated in the middle of
the 19th century, which we will call enumerative problems. These problems usually took
the form of asking how many curves of a given degree touched other given curves. In
particular, Steiner famously in 1848 found 7776 conics to be tangent to five other conics
in the plane. This result inspired many, and several formulae to count the algebraic curves
satisfying other contact conditions were quickly produced, by Steiner himself as well as
by others, hailing from Germany, Italy, but also France.

As these problems circulated across Europe, they eventually reached Chasles, in large
part through De Jonquières. These problems were immediately taken as a challenge for
their novel approach to the higher geometry of curves. Indeed, by then, Chasles was in
possession of a technology for the construction of curves determined by points (including
when these points are at infinity, coinciding, or imaginary), namely geometrical equa-
tions using the principle of signs and the language of (homographic) correspondences (see
chapter 3). To construct curves having prescribed contacts would prove a more difficult
problem, but one which Chasles would solve by reinventing the principle of correspon-
dence, and the textual practices attached to it. Between 1864 and 1867, Chasles published
a general method for the enumeration and construction of all conics in the plane satisfying
any given five conditions, which he called the theory of characteristics.

In this chapter, we briefly survey the initial circulation of these enumerative problems
from Steiner to Chasles, presenting some of the methods and results obtained along the
way. We then turn to the theory of characteristics, focusing mostly on its inner, technical
workings. Lastly, we present Chasles’ later papers which, whilst departing from enumer-
ative problems proper, form a striking example of the textual practices of generality and

127



Chapter 4. Chasles’ theory of characteristics

systematicity as he understood them by the end of his career.

4.1 Contact problems from Steiner to De Jonquières

Enumerative problems, broadly conceived as problems consisting in the enumeration of
geometrical figures satisfying certain geometrical conditions, can be traced as far back
as to (at least) the Ancient Greeks. A famous-example is the so-called Apollonian prob-
lem, which consists in the enumeration of the circles in the plane which satisfy three
conditions of the form ‘passing through a given point’, ‘touching a given straight line’,
or ‘being tangent to another given circle1’. This problem was also well-known to many
geometers of the early-modern tradition of problem-solving which developed in the wake
of Commandino’s 1588 translation of Pappus’s Collections: Vieta, Descartes, and Van
Roomen all proposed solutions for it2. However, for these geometers, the crux of this
problem was to construct (with ruler and compass) the circles satisfying these conditions.
To that end, these geometers had to distinguish between several cases: to construct the
circles which go through three aligned points, for instance, was not meaningful for them.
As we saw in the previous chapter, Chasles had designed methods to revive the tradition
of problem-solving whilst retaining the generality and abstraction provided by analytical
geometry; in particular, allowing for the given data determining the problem to be at
infinity, coinciding, or imaginary.

Throughout the eighteenth century, interest in constructive methods in geometry
weaned. When analytical geometers tackled new enumerative problems, they did so with
new tools, but also new concerns. Enumerations relying on algebraic equations of curves
included complex solutions, degenerate curves (by means of polynomials which can be
written as products) etc. Furthermore, enumerative problems lead to important research
on elimination theory. This is the case of a famous paradox, which Cramer shared with
Euler between 1744 and 1750. To both Euler and Cramer, it was a well-known fact
that nine points uniquely determined a curve of the third order, for nine was exactly the
number of coefficients in the general equation of such a curve:

Ax3 +Bx2y + Cxy2 +Dy3 + Ex2 + Fxy +Gy2 +Hx+ Iy + 1 = 0

And yet, it was also known to them that two curves of order p and q had exactly pq

intersection points. In the case of two third-order curves, this result yields exactly nine
intersection points. Since these nine points are supposed to determine uniquely both of

1See Book 4 of Pappus’ Collections, [Pappus, 2010], see pp.20-26 for the Greek text, pp.91-99 for an
English translation, and pp.193-202 for a commentary.

2 [Bos, 2001], pp.110-112; [Maronne, 2010], pp.543-548.
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these two curves, it seems that a major contradiction between two well-known geometrical
results had been reached. The paradox becomes even more apparent for curves of order
four and above, as the number of intersection points of two curves become strictly larger
than that of the number of points sufficient to determine one curve uniquely. Euler solved
this paradox in 1750 by showing that not every set of nine points uniquely determines
a curve, as it may happen that a point be “already in the others”, that is to say that
the equation in the coefficients provided by this point is merely a combination of the
equations provided by the other points3. More largely, the algebraic methods at the
disposal of analytic geometers until the mid-19th century would prove rather inefficient at
solving any kind of enumerative problem in any general way.

This is not the place to give a complete history of enumerative problems, nor is it
clear that such a task would even be meaningful. In fact, none of the actors involved
in the examples given above viewed their work as anything resembling “enumerative ge-
ometry”: Apollonius and early-modern geometers sought to construct curves satisfying
certain problems, while Euler and Cramer were solving systems of algebraic equations.
None of these actors had identified the systematic enumeration of figures satisfying con-
ditions as a goal in itself. Instead, as we shall see, this enumerative problem emerged
from the collision between the questions raised by a seemingly benign paper of Steiner’s
in the 1850s, and the methods for the construction of plane curves constructed in parallel
by Chasles.

4.1.1 Steiner’s problem and its circulation

Our starting point here will be a paper written in 1847 and published in 1848 by Ger-
man geometer Jakob Steiner (1796-1863), entitled Elementare Lösung einer geometrischen
Aufgabe, und über einige damit in Beziehung stehende Eigenschaften der Kegelschnitte4.
It is in this paper that Steiner first touched on the question of enumerating the conic
sections in a plane which touch five given conics. However, this text did not provide
the conceptual grounds for its readers to build on: in fact, the techniques it presents are
very rudimentary, and were taken up by no one. Nor did this text present a research
programme for others to solve: in fact, Steiner’s text only states in passing his (erro-
neous) solution to the aforementioned question. Nevertheless, this text would serve as
a shared reference for many geometers in the years to come, who all tried to produce
general results on the enumeration of plane curves satisfying contact conditions (where,

3On the Euler-Cramer paradox, [Euler, 1750b], [Euler, 1750a]. Some commentary is provided in
[Struik, 1986], pp.180-183; and [Penchèvre, 2006], pp.113-117. In modern mathematical terminology, we
say that d(d+3)

2 generic points in C2 uniquely determine an algebraic curve of degree d; see [Brugallé,
2008], p.33.

4 [Steiner, 1848].
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by contact condition, we mean conditions of the form ‘to have a contact of order µ with
a given curve of order m’). Among these geometers, we find Chasles and De Jonquières,
but also the German mathematician Johann Nikolaus Bischoff (1827-1893) or the Italian
geometer Luigi Cremona (1830-1903).

In this paper, Steiner had set out to tackle two elementary, related problems. Given a
triangle ABC, the first problem was to construct a point D such that CD2 = qAD ·BD,
where q > 0 is a given number. The second problem starts with a straight line AB given
in position and in measure, and asks for the locus of the points C so that the triangle
ABC yields no solution to the first problem in terms of the relative positions of these
conics.

Steiner gives two solutions to these problems. The first one starts with a construction
of a point D, which is only possible when the first problem admits a solution. To that end,
Steiner draws the circle C circumscribed to the triangle ABC. He then traces the straight
lines U and V , which are parallel and at equal distance to AB, such that the ratio between
the distance from C to AB and that from C to U be equal to q. He then considers the
intersection points between C and U (resp. V ), which he denotes E,E1 (resp. F, F1). The
straight lines CF,CF1, CE,CE1 are then drawn, which cut AB respectively θ, θ1, D,D1

(see fig. below). Per the intercept theorem, CD.DE = AD.DB. Furthermore, CD
DE

= q

[Steiner, 1848], p.193.

per construction. Hence, CD2 = qAD.DB: the point D satisfies the first problem, and
so do the points D1, ν, ν1. Four solutions have been constructed, and Steiner goes on to
discuss their relative positions, whether they are real or imaginary, whether they coincide
etc., depending on the value of q, and the positions of the lines U and V .

Moving on to the second problem, Steiner uses this preliminary work to determine the
boundary of the set of the points C for which the first problem is solvable. For instance, the
constructions of the straight lines d, d1 are only possible if the line U effectively intersects
the circle C. Steiner then sets out to describe the points C which satisfy this condition.
Through a series of elementary computations, Steiner shows that the boundary of the set
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of points C which make the constructions of d, d1 possible is given by the equation:

AC.CB.(cos ÂCB2 )2 = AC2 − (AB2 )2

This means that the boundary for this set of points C is an ellipsis of foci A and B.
Similarly, Steiner shows that for C to make the construction of the other two solutions
(ν, ν1) possible, C has to be within a hyperbola of foci A and B. The boundary that
Steiner sought to determine is defined by two confocal conic sections (an ellipsis and a
hyperbola), which divide the plane into four parts: a point can be within both conics,
within the first and without the second, without the first and within the second, or without
both. This division of the plane allows Steiner to characterize the number of solutions
admitted by the first problem.

After giving a second solution to this problem, which ended with the same division of
space, Steiner opens a new section in his paper, and comments5:

Die vorstehende Untersuchung führte auf ein System Kreise, welche einen
Kegelschnitte doppelt berühren. Aber es kamen dabei einerseits nicht alle
Kreise in Betracht, welche den Kegelschnitte doppelt berühren und anderer-
seits stellten sich nicht alle Arten Kegelschnitte ein. Dies giebt Anlass diesen
Gegenstand für sich etwas ausführlicher zu erörtern. Es bieten sich dabei noch
einige nicht ganz uninteressante Eigenschaften und Sätze dar.

After five paragraphs devoted to various cases of systems of circles having such a double
contact with a conic, distinguishing between ellipses, hyperbolas and parabolas, but also
between various specific configurations, Steiner eventually writes6:

In Rücksicht auf bloss einfache Berührung der Kegelschnitte unter einander ist
meines Wissens bis jetzt noch wenig geschehen. In älterer und selbst bis in die
neueste Zeit hat man sich fast ausschliesschlich nur mit dem sehr beschränk-
ten Falle, mit dem Berührungsproblem bei Kreisen beschäftigt, aber nicht mit
den entsprechenden Aufgaben bei den allgemeinen Kegelschnitten. Die let-
ztern sind aber auch in der That ungleich schwieriger. Um dies zu zeigen,
wird es genügen, hier nur die folgende Hauptaufgabe hervorzuheben, nämlich
: Einen Kegelschnitt K zu finden, welcher irgend fünf gegebene Kegelschnitte

5“The investigations above led us to a system of circles which have a double contact with a conic
section. But, on the one hand, not all circles with such contacts with a conic have been taken into
account, and, on the other, not all sorts of conics appeared. This gives us the opportunity to discuss
this topic in greater details for its own sake, which offers many properties and theorems, which are not
uninteresting”, [Steiner, 1848], p.174.

6 [Steiner, 1848], p.188.
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berührt7.

However, what follows this paragraph is rather disappointing. Steiner finds 65 = 7776
conic sections touching five given conic sections on an inductive basis. Steiner shows that
through 5 points passes 1 conic section, through 4 points pass 6 conic sections which
touch another given conic section, and through 3 points pass 62 = 36 conic sections which
touch two given conic sections. Steiner is rather cautious in his wording, but no proof or
tentative argument is provided8.

Steiner would later extend these initial investigations to general contact conditions.
In a brief 1855 paper9, he gave a list of results such as that of the general existence of
3n(n− 1) conic sections passing through three points and having an “osculatory contact”
with a curve of order n. No proof was given: Steiner only produces a list of numbers of
solutions, and comments on special cases for which the numbers are actually only maximal
values. For instance, if the three given points are on the given curve, Steiner explained,
the formula is not valid, and six conics must be subtracted from it. Three years later,
Steiner devoted the fourth and last section of another paper on a variety of problems
related to these questions, in what would be his last work on enumerative problems. The
vocabulary and the general problem had changed, and Steiner began to ‘thematize’ the
notion of condition10:

Durch fünf gegebene Elemente, oder durch fünf Bedingungen11, ist, im Allge-
meinen, ein Kegelschnitt bestimmt, nämlich entweder absolut, oder mehr or

7“As far as I know, little has been done so far with regard to conic sections having simple contacts with
each other. In past times and even up to the most modern times, one has dealt almost exclusively only
with the very limited case of contacts with circles, but not with the corresponding problems with general
conic sections. This second case is also much more difficult. To show this, it will suffice to emphasize
here only the following main problem, namely: To find a conic section K, which touches any five given
conic sections.”.

8“Und wird auf diese Weise fortgefahren so gelangt man zuletzt zu 65 = 7776 KegelschnittenK, welche
der obigen Aufgabe entsprechen”, [Steiner, 1848], p.189.

9 [Steiner, 1855]. The quote for the geometrical condition is: “eine gegebene Curve nten Grads in
irgend einem Puncte osculirt (dreipunctig berührt)”, p.273.

10“In general, five given elements, or five conditions, determine one conic, either absolutely or in a more
or else ambiguous manner. If the five elements consist only in points or tangents of the conics, then it
is known that the solutions are not numerous and can be constructed. However, if one chooses amongst
these given elements normals to the conics, then the solutions become harder, and their number increases
with that of the normals, so as to reach 102”, [Steiner, 1858], pp.376-378.

11The identification by Steiner of the concept of Bedingung, or condition is noteworthy, although Steiner
did little with this concept in the papers mentioned here. While outside the scope of this chapter, it
would be interesting to see how these texts look from the perspective of a broader study of Steiner’s
geometrical works. In particular, in the second volume of his posthumous Vorlesungen über synthetische
Geometrie, edited and published by Geiser in 1867, Steiner introduced sheaves and bundles of conics.
However, no concept of a collection of conics defined by unspecified conditions is introduced; [Geiser,
1867], vol.2, pp.224-430. I thank Jemma Lorenat for drawing my attention to this text. Furthermore,
it may be worthwhile to compare these texts to those produced by German algebraic geometers of the
same generation. For instance, at the same time, Otto Hesse was making important uses of the concept
of Bedingungsgleichung in the study of related geometrical problems; see [Hesse, 1853].
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weniger vieldeutig bestimmt. Bestehen die fünf Elemente nur aus Punkte und
Tangenten des Kegelschnitts, so sind die Lösungen bekanntlich nicht zahlreich
und geometrisch construirbar. Wählt man aber unter die gegebenen Elemente
auch Normalen des Kegelschnittes, so werden die Lösungen schwieriger und
ihre Zahl vermehrt sich mit der Zahl der Normalen, so dass sie bis zu 102
ansteigt.

Steiner gave a table (see fig. below) with numbers of conic sections passing through P

given points, touching T given straight lines, and having N given normal lines, for all
values of P , T and N so that P + T +N = 5. Once again, no general theory or method
for the obtention of these results was given. However, this table would circulate: the
following year, De Jonquières reproduced it, and gave proofs for the numbers contained
therein12. Later on, in the first of Chasles’ paper on enumerative problems, a very similar
table would be given, but with the last condition being replaced by that of touching N
given conic sections13.

[Steiner, 1858], p.377

However, Steiner’s problems and results were buried in papers which did not explicitly
identify enumerating curves satisfying contact conditions as their main purpose, but rather
did so whilst solving other problems. At any rate, Steiner had brought forth no central
method or concept to deal with these contact problems, which he had begun to form.

12 [de Jonquières, 1859b], p.49.
13see [Chasles, 1864c], p.225.
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One geometer who attempted to tackle contact problems in a systematic manner was
Johann Nikolaus Bischoff (1827-1893), by then a Gymnasiallehrer in München about
whom very little is known14. Bischoff was by no means a prolific writer: by 1864, he
had published 5 papers, all in Crelle’s Journal, with only one of them being more than
four page long15. Bischoff’s papers are remarkably consistent in the methods they use
and the questions they tackle: using Jacobi- and Hesse-inspired analytical geometry, they
all purport to find general formulas enumerating the numbers of curves or surfaces of
a certain order satisfying certain contact conditions. Some of these formulas are very
intricate, and require intensive computations. For instance, in his first paper, Bischoff
found that there were

npq...(n+ 2m− 3)(p+ 2m− 3)(q + 2m− 3)...

curves of order m touching µ curves of respective order n, p, q..., and passing through
m(m+3)

2 − µ points (the number of terms in this formula, while always finite, depends
on the order of the curve and the number of given curves). From this complex formula,
Bischoff was able to retrieve Steiner’s 7776 conic sections touching five other conic sections.
To do so, it suffices to take µ = 5, and to replace every letter by 2, and the formula yields
25(2 + 2× 2− 3)5 = 65 tangent conics.

Bischoff had read and identified a specific type of problem within Steiner’s writings,
to which he thought analytical geometry provided with efficient methods to obtain gen-
eral answers. At the same time, he maintained an active correspondence with Cremona
starting at least in 186116, as well as with De Jonquières. The recently published corre-
spondence of Cremona suggests a rapid circulation of ideas between the three men, with
Chasles joining the discussion later on through the intermediary of De Jonquières. As
a result, Bischoff was rather remarkably referenced by De Jonquières in his 1861 paper
on plane curves17, by Cremona at the opening of his 1862 Introduzione ad una Teoria
Geometrica delle Curve Piane18 (among the likes of MacLaurin, Carnot, Poncelet, or
Chasles), and by Chasles, in his initial communication on the theory of characteristics19.
Through Bischoff, these French and Italian geometers knew of Steiner’s claim on the con-
ics touching five given conics, and his broader interest in general formulae for the number
of curves satisfying contact conditions.

14In 1868, as the Technische Hochschule München was founded, Bischoff was hired as professor of
mathematics, in charge of algebraic analysis, trigonometry, and synthetic geometry, see [Hashagen, 2011],
p.136.

15 [Bischoff, 1859], [Bischoff, 1860], [Bischoff, 1861a], [Bischoff, 1861b], [Bischoff, 1863].
16 [Israel, 2017], p.150.
17 [de Jonquières, 1861b], p.123.
18 [Cremona, 1862], p.2.
19 [Chasles, 1864c], p.222.
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Modes of engagement with Steiner’s and Bischoff’s texts would differ between readers.
For Chasles, the reference would serve a strategic purpose: he would show how his own
theory was far superior to that of his German colleagues, which was wrong anyway. For
De Jonquières and Cremona, however, the reference served a different purpose: as early-
career scholars, they sought to present their work as engaging with questions raised by
some of the most influential mathematicians of their field. Strikingly, the kind of results
sought by Steiner in his later papers, and by Bischoff, would circulate much more than
the methods they actually used to find them. Steiner’s and Bischoff’s solutions to contact
problems mostly came in the way of formulae of a specific kind. Given curves of orders
m1, ..,ms, the number of curves of order m satisfying contact conditions with these curves
would always be expressed as a polynomial in these symbols (with integral coefficients),
as exemplified by the formula above. De Jonquières and Cremona looked for results of
a same kind, even though they did not preserve anything from the elementary synthetic
geometry at the heart of Steiner’s papers, or from Bischoff’s analytical computations.

What is now called the Steiner problem, that is to say the question of finding how
many conic sections are tangent to five given conic sections, thus circulated along a thin
line, from Steiner to Chasles, with the crucial mediation of Bischoff, Cremona and De
Jonquières. In the first phase of this circulation, no real mathematical knowledge was
transmitted by way of methods or concepts. However, by the late 1850s, contact prob-
lems (and a type of solutions to them) had emerged as a shared object for a growing,
international group of mathematicians. This object would come to meet Chasles’ higher
geometry through a few papers by De Jonquières, to which we now turn.

4.1.2 De Jonquières’ theory of plane curves

While we do not have De Jonquières’ correspondence, or any archival sources for his daily
mathematical practice, his first contact with Bischoff’s formulas seems to have occured
in 1860, as De Jonquières’ first reference to Bischoff is made in a paper written in the
first months of the year 1861. It should come as no surprise that De Jonquières identified
these results as being particularly relevant for his own research: as we briefly discussed
in the previous chapter, De Jonquières had been working extensively throughout the
late 1850s on the generation of geometrical curves through the consideration of sheaves
of curves passing through a fixed set of given points. This was of course the result of
Chasles’ influence, but also of De Jonquières’ interest in Steiner’s results on the numbers
of conics having fixed normals, which he had proven in 1859. Bischoff’s framing of Steiner’s
problem therefore immediately entered the purview of De Jonquières’ research interests
at this period. However, De Jonquières did not read German, nor was he familiar with
the techniques used by Bischoff. Instead, he used a blend of some techniques learnt and
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adapted from Chasles, but also of some he drew from his reading of the British geometers
Arthur Cayley and George Salmon. In this respect, De Jonquières’ work on enumerative
problems is a first departure from the heavily Chasles-inspired line of research he had
been following earlier - which would not be without consequence for the reception of this
work.

De Jonquières’ theory is centered around the concept of series of curves and that of
indexes, which he introduced and defined in a paper from 1861 for Liouville’s Journal in
the following terms20:

Définitions. – Je dirai que des courbes géométriques planes du degré n forment
une série, quand elles ont toutes en commun 1

2n(n+3)−1 conditions quelcon-
ques, c’est-à-dire quand elles satisfont toutes à autant de conditions, moins
une, qu’il en faut pour déterminer une courbe de ce degré ; et, si N désigne
le nombre des courbes de cette série qui peuvent, en outre de ces conditions
communes auxquelles elles sont assujetties, passer par un point quelconque
donné, je dirai que la série est d’indice N.

While Steiner had already introduced the general notion of a condition, he had never
actually formed conditions that were not contact conditions. Thus, in this paper, De
Jonquières makes a crucial departure from previous notions such as Steiner’s Kegelschnit-
tbüschel or Kegelschnittschaar, or even his own 1858 faisceaux de courbes, in that the
conditions determining the object are unspecified. Any geometrical condition can be ar-
bitrarily chosen to form a série. But what exactly does the term condition mean in this
context? In the context of analytical geometry, it means any polynomial equation in the
coefficients of the general equation of curve of a given order. However, such equations do
not need to be formed, or actually written down, in order to be a useful concept21. In
Hesse’s analytical geometry, for instance, just discussing the properties of certain “Bedin-
gungsgleichungen” without forming them can be a fruitful endeavour22. De Jonquières
does not feel the need to be more explicit about what conditions can be in a purely geo-
metrical context. In fact, he seems to tacitly presuppose the existence of a natural and
simple analogy between the notions of analytical geometry and those of pure geometry,
as he immediately translates the notion of série into a general, algebraic equation23:

20“Definitions. – I shall say that plane geometrical curves of degree n form a series, when they all have
1
2n(n + 3) − 1 conditions in common, that is to say when they all satisfy to as many conditions, minus
one, that are required to determine a curve of this degree; and, if N denotes the number of curves in
this series which can, on top of the common conditions which they are required to satisfy, pass through
a given point, then I shall say that the index of this series is N”, [de Jonquières, 1861c], p.113.

21A similar phenomenon plays a key role in the shaping of a concept of “geometrical equation”, shared
by certain algebraic geometers such as Clebsch and Jordan, see [Lê, 2015]. These ‘geometrical equations’
are totally unrelated to those discussed in this dissertation.

22 [Hesse, 1853], pp.282-283.
23“Lemma. – All the curves Cn in a series of index N can be analytically represented by equations
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Lemme. - Toutes les courbes Cn d’une série d’indice N peuvent être représen-
tées analytiquement par des équations F (x, y) du degré n, dont tous les coef-
ficients sont des fonctions algébriques, entières, et rationnelles d’une indéter-
minée λ, qui s’élève, dans l’un d’entre eux au moins, au degré N , mais jamais à
un degré supérieur, tandis que 1

2n(n+3)−1 d’entre eux sont de certaines fonc-
tions déterminées des paramètres des 1

2n(n + 3) − 1 équations qui expriment
les conditions auxquelles sont assujetties toutes les courbes de la série.

To this lemma, De Jonquières gives a rather surprising proof: “for each λ”, De Jonquières
claims, “the equation represents a curve of degree n satisfying the conditions of the series”.
This is a rather puzzling statement, as the equation has not been formed yet: in fact, De
Jonquières takes its existence for granted. He likely obtained this statement by analogy
with the case of sheaves of curves, which we discussed in the previous chapter, and in
which N = 1 and the equation F is linear in λ. This is actually a problematic assumption,
as many would point out later, including Cremona, Battaglini, or Cayley24. In fact,
the existence of a rational and integral equation F is not generally assured, and De
Jonquières’ lemma is false in general. However, when such an equation F does exist,
whose coefficients are rational functions of a coefficient λ, the rest of the lemma holds;
and so does De Jonquières’ proof. Taking x, y to be the coordinates of an arbitrary point
A, De Jonquières views the equation F (x, y) = 0 as an equation in λ: it must necessarily
be of degree N , as that is the number of curves in the series which pass through A.

Remarkably, despite the pushback against this lemma, it appears that neither De
Jonquières nor Chasles ever really doubted its validity. During their controversy in 1866,
Chasles would write that “this proposition is obvious; it is the very first one, and there are
no more elementary ones in all of the theory of curves25”. Earlier, in a letter to Cremona,
dated January 23rd 1864, De Jonquières had expressed similar confidence in this result26:

F (x, y) of degree n, whose coefficients are all algebraic, integral, and rational functions of an indeterminate
λ which can reach, in at least a few of them, the degree N , but never a higher degree, while 1

2n(n+3)−1
among them are certain functions determined by the parameters of the 1

2n(n + 3) − 1 equations which
express the conditions which the curves of the series are required to satisfy”, [de Jonquières, 1861c], p.114.

24In [Israel, 2017], De Jonquières mentions and responds to criticisms against this lemma raised by
Cremona and Battaglini, pp.974-975. Cayley published his detailed criticism of De Jonquières’ lemma
in [Cayley, 1868a], pp.124-126. After Cayley, most would recognize the lemma as being false.

25“Cette proposition est évidente; elle est la première, et il n’y en a pas de plus élémentaire dans toute
la théorie des courbes”, [Chasles, 1866b], p.818. We will come back to this text and this controversy in
chapter 4.

26“You seem to have doubts regarding the lemma. I do not see what can justify them. A family of
curves of degree n, each of which requires only one more condition in order to be determined by a single
equation of degree n, having (in its coefficients) a single indeterminate, each value of which corresponds
to a particular curve of the series. This cannot be contested. Furthermore, since by every point of the
plane, there must pass N of these curves, it is necessary that the equation provides N distinct values of
this indeterminate, once we have substituted to x and y the coordinates of the point in question. Thus
the coefficients must, in conclusion, be algebraic, integral, and rational functions of the indeterminate λ,
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Vous paraissez émettre des doutes au sujet du lemme. Je ne vois pas ce qui
peut les justifier. Une famille de courbes du degré n, dont chacune n’exige plus
qu’une seule condition pour être déterminée peut être représentée par une seule
équation du degré n, contenant (dans ses coefficients) une seule indéterminée,
dont chaque valeur correspond à une courbe particulière de la série. Cela ne
peut se contester. En outre, puisque par tout point du plan, il doit passer N
de ces courbes, il est nécessaire que l’équation fournisse N valeurs distinctes de
cette indéterminée, après qu’on y aura substitué pour x et y les coordonnées
du point dont il s’agit. Donc il faut que les coefficients soient, en définitive,
des fonctions algébriques entières et rationnelles de l’indéterminée λ, et des
fonctions dont l’une au moins soit du degré N , après qu’on aura effectué
toutes les réductions, chassé les dénominateurs et fait disparaître les radicaux
s’il en existait. Si ces conditions ne sont pas remplies et ne peuvent l’être, on
n’a plus ce que j’ai appelé une série de courbes, et il n’en passe plus un nombre
fixe et déterminé par chaque point du plan.

This last sentence is crucial: the step in the proof which others would find faulty or miss-
ing, namely that where the function is constructed or shown to exist, is for De Jonquières
a fundamental hypothesis on the relation between algebraic equations and geometrical
curves, or series thereof. In his following letter to Cremona, dated February 9th 1864, De
Jonquières admits, after hearing of Battaglini’s criticism, that “in general, series are not
rational, regarding parameters”, but that it is difficult to know which series are rational
since equations are rarely actually formed27. This admission after De Jonquières’ results
had come under assault by Chasles. De Jonquières was, at this point, convinced that his
formulae were indeed incorrect, and thought that this lemma could be the source of his
error. In fact, this would prove to be an unconvincing explanation: while the lemma is in-
deed false, the difficulties with De Jonquières’ 1861 results, as we will see in section 5.1.2,
have to do with a more fundamental question, namely that of the enumeration of solutions
without any real geometrical significance, and in particular of degenerate curves28.

From this analytical translation of the concept of a series, De Jonquières would derive
several crucial theorems, one of which in particular would be the focus of harsh criticism
by Chasles29:

and at least one of these functions must be of degree N , once we have carried out all reductions, chased
the denominators, and have had the remaining radicals vanished. If these conditions are not met and
cannot be so, then we do not have what I call a series of curves, and more than a fixed and determined
number of curves go through each point of the plane”, [Israel, 2017], p.974. Underlining in the original.

27 [Israel, 2017], pp.975-976.
28For now, it suffices to say that De Jonquières’ formula, like before them Bischoff’s and Steiner’s,

enumerate certain degenerate curves which do not satisfy the conditions in any meaningful sense.
29“Theorem II. – Among the curves Cn in a series of index N , there are 2(n−1)N which touch a given
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Théorème II. – Parmi les courbes Cn d’une série d’indice N , il y en a 2(n−1)N
qui touchent une droite donnée L.
En effet, la droite L coupe les courbes de la série en des points dont les ab-
scisses sont, d’après le Lemme, les racines d’une équation du degré n en x,
dont certains coefficients, sinon tous, contiendront une indéterminée λ au de-
gré N , mais non pas à un degré supérieur.
A toute valeur de λ qui rend égales deux racines de cette équation, il corre-
spond une courbe Cn qui touche la droite L. Or la condition d’égalité des
deux racines s’exprime par une équation du degré 2(n − 1) par rapport aux
coefficients de l’équation en x(∗). Donc, cette équation de condition est du
degré 2(n− 1)N en λ. Donc enfin il existe 2(n− 1)N courbes de la série qui
touchent la droite L(∗∗).
[In footnotes]
(*) Voir, par exemple, la Note sur l’élimination qui se trouve dans l’appendice
du Traité du Rév. G. Salmon sur les courbes supérieures, p.296.
(**) Cette formule semble être en défaut quand, n étant égal à 2, il y a plus
d’une droite parmi les conditions communes aux coniques de la série. Cette
anomalie apparente sera expliquée ci après.

De Jonquières’ use of algebraic results is certainly a novelty with respect to his previous
work, as well as a stark departure from the methods of his mentor Chasles. The very same
year as that of his laudative review of Chasles’ restitution of the lost Porisms and his praise
of the virtues of “spoken equations” against “written equations30”, De Jonquières seems
to blur key epistemological divides, as he synthetizes several traditions, by importing
problems and results of Bischoff and algebraic concepts from Salmon.

Furthermore, De Jonquières’ proof deserves special attention here. By fixing a straight
line L, and forming a series of points x on L, De Jonquières uses a method which is rem-
iniscent of Chasles’ principle of anharmonic correspondence, and of De Jonquières’ work
on the generation of curves31. Because Chasles and De Jonquières had only considered
homographic sheaves of curves, they had only formed series of points (on a fixed straight
line) where the number of coinciding points could be 2 or 3. In 1861, however, by introduc-

straight line L. Indeed, the straight line L intersects the curves of the series in points whose abscissas
are, according to the Lemma, the roots of an equation of degree n in x, of which certain coefficients (if
not all) contain an indeterminate λ at degree N , but not to any higher degree. To each value of λ which
makes two roots of this equation equal, there corresponds a curve Cn which touch the straight line L. The
condition of equality of two roots can be expressed by an equation of degree 2(n− 1) in the coefficients
of the equation in x. Thus, this equation of condition is of degree 2(n − 1)N in λ. Therefore, there
are 2(n − 1)N curves in the series which touch the straight line L”, [de Jonquières, 1861c], pp.115-116.
Underlining in the original.

30See section 3.2.3.
31See section 3.2.
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ing the general concept of condition to characterize collections of curves, De Jonquières
put forth the notion of series of curves, thereby extending the notion of sheaf32. To study
series with the help of correspondences, he then had to consider correspondences that are
not necessarily homographic.

The strategy employed by De Jonquières in order to prove this “Théorème II” in
fact runs throughout the entirety of his 1861 paper. A crucial example is that of an
important theorem which generalizes his previous work on the generation of geometrical
curves through the intersection of homographic sheaves33. The theorem is as follows34:

Théorème V. – Si à une courbe Cm d’une série d’ordre m et d’indice N il ne
correspond qu’une seule courbe Cn dans une autre série d’ordre n et d’indice
N , et réciproquement, le lieu des points d’intersection de deux courbes Cm et
Cn correspondantes est du degré N(m+ n).

To prove this theorem, De Jonquières fixes a straight line L, and shows that L intersects
the locus described by the theorem in exactly N(m + n) points. To that end, he takes
m to be a “variable point” on L, thus creating a rather ambiguous notation, as m also
denotes the order of curves of the first series. To make things clearer for modern-day
readers, we will slightly distort De Jonquières’ notation, by denoting the variable point
mvar instead of m. For each position of mvar, there are N curves Cm of the first series
which pass through mvar. Each of these curves intersect L at m points. Therefore, to a
point mvar correspond N groups of m points on L, whose abscissas De Jonquières denotes
with the single letter x.

To each curve Cm considered previouly corresponds exactly one curve Cn, per hypoth-
esis. For the same reasons as above, to this curve correspond N groups of n pointsm′var on
L, whose abscissas De Jonquières denotes with the single letter x′. In fact, De Jonquières
explicitly repeats sentences to emphasize the similarity in reasonings in both directions.

To each point mvar correspond N groups of m points m′var, and to each point m′var
correspond N groups of n points mvar. Therefore, explains De Jonquières, x and x′ are
linked by an algebraic equation P (x, x′) = 0, whose left-hand side must be formed of N
similar factors, namely factors of the form:

Axmx′n +Bxmx′n−1 + Cxm−1x′n + ..

Indeed, fixing x′ must yield an equation whose N factors are each polynomials in x of
32A sheaf of curves is none other than a series of index 1.
33“Theorem V. – If, to a curve Cm in a series of order m and index N , there corresponds only one curve

Cn in another series of order n and index N , and conversely, then the locus of the intersection points of
the two corresponding curves Cm and Cn is a curve of degree N(m+ n)”, [de Jonquières, 1858].

34 [de Jonquières, 1861c], p.117. There is a typo in the original paper, as the first words read “Si à une
courbe Cn..”, whereas it should be a curve Cm. The typo is fixed in the quote given here.
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degree m, for to a fixed point m′var correspond N groups of m points mvar; and conversely.
De Jonquières concludes by noticing that a point on L is on two corresponding curves Cm
and Cn if and only if x = x′: this equation is clearly of degree N(m+ n).

In this proof, the import and generalization of the notion of correspondence from
Chasles and De Jonquières’ earlier works is clear. However, this proof-strategy is not
identified and thematized by De Jonquières in the way it would be in Chasles’ own work on
enumerative problems (see 4.2.2 below). This may be due to the fact that De Jonquières’
method requires for him to form - if only partially - the algebraic equation for each
correspondence, thus not being easily expressible under a unified principle as it would be
for Chasles35.

In the last section of his paper, De Jonquières uses these general theorems to obtain
formulae which largely resemble those proposed by Bischoff to solve contact problems.
However, these formulae are used here to give the orders or classes of certain loci which
can be described through series of plane curves. For instance, De Jonquières shows that
chords common to a fixed curve Cm and the curves in a series of order n and index N are
the tangents to a curve of class 1

2m(m− 1)(2n− 1)N . Thus, it must be stressed that De
Jonquières did not propose an enumerative theory of plane curves. The encounter with
Steiner’s and Bischoff’s results helped De Jonquières forge a concept of series, expand the
notion of correspondences beyond homographic divisions, and introduced a kind of result
which he (and Chasles) would try to replicate. However, De Jonquières had merely used
Steiner’s and Bischoff’s formulae for the general study of the properties of plane curves,
thus leaving aside concerns for the systematic enumeration of curves.

4.1.3 A public retraction

De Jonquières’ theorems are not without problems. One of them, which De Jonquières
had noticed himself, is that they seem to be flat out false in the case of curves of order
two, that is to say conic sections. Indeed, from theorem II it seems to follow that there are
2n conic sections touching n given lines and passing through 5−n points, for all n ∈ [1, 5].
This is obviously false, because there is only one conic section touching five given lines,
per Brianchon’s theorem (and not 25 = 32). More generally, considering series of curves
of order two, De Jonquières’ results seem to absolutely contradict the principle of duality,
in that they don’t give symmetric roles to points and lines.

35It is unclear whether Chasles was already using similar techniques in his own teaching. The priority
question with respect to Chasles’ more general principle of correspondence will be discussed in the next
chapter. It was the object of much discussion amongst late 19th-century Italian geometers, see for
instance [Segre, 1892], [Loria, 1902]. This is probably due to the fact that methods of correspondence
were largely taught to students in Italian universities at that period (see [Brigaglia, 1984], p.36).
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However, De Jonquières claims that his formulas merely “seem36” to be contradicted by
the example given above. Suppose a conic ought to touch three given straight lines. These
three lines form a triangle; now, drawing the lines joining each vertex of the triangle to
the point where the conic touches the opposing side of the vertex, one single intersection
point is obtained (see fig. below). Therefore, De Jonquières claims, the conics having
to touch three given straight lines have a “mutual dependency”, wherefrom it follows
that “the number of conics satisfying the question can be diminished, because several of
them become coinciding37”. Adding tangent lines, explains De Jonquières, increases the
mutual dependency of conics and enlarges the discrepancy between the number provided
by his formulas and the number of apparent solutions. The first number counts that
real number of solutions, while the second ignores coinciding solutions to the problem.
For De Jonquières, this extra difficuly only appears in the case of conics, because other
curves do not have equal classes and orders. However unconvincing these explanations

may be to us, De Jonquières’ results were much appreciated by Cremona, who reproduced
most of them in his 1862 Introduzione38. In the wake of these successful forays into the
enumerative problems raised by Bischoff, De Jonquières participated to the Grand Prix
de Mathématiques proposed by the Académie des Sciences for the year 1862. The topic
on which memoirs were invited was the following39:

Résumer, discuter et perfectionner en quelque point important les résultats
obtenus ici sur la théorie des courbes planes du quatrième ordre.

Chasles was the rapporteur for this concours, and it is very likely that he was the one
who selected this very question. It is very much in the continuation of works he had just
published, and it does not seem to match particularly well the research interests of the
other members of the jury for this prize, namely Bertrand, Liouville, Lamé and Hermite.

36“[Cette formule] paraît être en défaut..”, [de Jonquières, 1861c], p.121.
37 [de Jonquières, 1861c], p.121.
38 [Cremona, 1862], pp.63-70.
39“Summarize, discuss, and perfect in some important point the results obtained here on the theory of

plane curves of order four”, [Bertrand et al., 1862], p.124.
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Two memoirs were submitted this very year. The unknown author of the second
memoir was awarded one third of the prize, that is to say one thousand francs. Their
work was deemed to be an original and valuable contribution, but far from fully answering
the question. The first memoir, which was awarded the remaining two thousand francs
(but not the honor of being fully prized), was that of De Jonquières40. We do not have
this memoir at our disposal: however, Chasles’ review, as well as later mentions of it
make it clear that De Jonquières had elected to showcase the power of his new results and
methods, by applying them to the case of curves of order four. The reason this memoir
only received two thirds of the total prize money was that Chasles had found a major flaw
in De Jonquières’ theory, one that he would also find in the aforementioned 1861 paper41:

Mais, nous sommes obligés de le dire, cet excellent exposé est compromis par
une trop grande extension attribuée à certaines propositions. C’est
par suite d’une première méprise sur le degré d’une équation, qui ne devait
être pris que comme une limite et non comme un nombre absolu, que l’auteur
s’est retrouvé conduit d’une manière très regrettable à divers résultats qui
manquent ainsi de démonstration, et parfois d’exactitude. Cette erreur était
fort séduisante par les conséquences faciles qui s’ensuivaient. Aussi entache-t-
elle plusieurs parties du travail, qui, à tous autres égards, se recommande par
une exposition claire et une connaissance étendue de toutes les parties de la
matière.

This degree to which Chasles refers is that of the equations formed by De Jonquières in
proofs using correspondences of points on a line L, such as the proofs of theorems II and
V given above. Chasles thought that the degree of the equation formed with the abscissas
of the points on the line L which De Jonquières had obtained was only a maximum value,
as nothing guaranteed that the first coefficient of the polynomial was not actually zero42.
It must be stressed that Chasles took no issue with De Jonquières’ algebraic equation for
series of curves F (x, y, λ) = 0, but only with his proofs via correspondences.

Upon seeing his results rejected by Chasles and the Académie, De Jonquières imme-
diately wrote to retract them. De Jonquières’ theory of series of plane curves had been

40While no name is given in the Rapport published in 1862, Chasles would quote parts of this verdict
a few years later during his controversy with De Jonquières, making explicit the identity of the author of
this memoir. See [Chasles, 1866b], p.819.

41“However, we must say that this excellent report is compromised by the attribution of too large an
extension to some propositions. Because of a first mistake on the degree of an equation, which had to
be taken as a limit and not an absolute number, the author was very regrettably misled into various
results which lack a proof, and sometimes exactness. This error was rather attractive, due to the easy
consequences ensuing therefrom. Thus, it tarnishes many parts of a work which, in all other respects, is to
be commended for its clear exposition and a vast knowledge of all parts of the subject-matter”, [Bertrand
et al., 1862], p.934.

42In section 4.2.2, we shall see how Chasles fixed this proof.
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included and discussed in Cremona’s 1862 Introduzione ad una teoria geometrica delle
curve piane43. On February 6th 1863, that is to say shortly after reading Chasles’ verdict,
De Jonquières wrote to Cremona, warning him against the fallacy of these results that
had already been printed in the Introduzione44:

Vous avez eu la bonté, dans votre savante Introduction à la théorie des courbes
planes, de citer quelques théorèmes que j’ai donnés dans un article inséré au
tome VI (2e série) du Journal de Liouville, pour 1861. J’ai l’honneur de vous
faire remarquer que plusieurs de ces théorèmes sont énoncés par moi en termes
trop absolus.

Furthermore, De Jonquières immediately published a retraction of his results in Liouville’s
Journal, in similar terms45:

Dans cet article, qui traite plus particulièrement des propriétés des séries de
courbes d’ordre n et d’indice N , j’ai donné une forme trop absolue aux énoncés
de quelques théorèmes, et il est bon que le lecteur en soit averti.
(..) Si n et N sont à la fois quelconques, les nombres exprimés dans les énoncés
de ces théorèmes ne doivent plus être pris comme des nombres absolus, mais
simplement comme une limite supérieure.

As we shall see in section 5.1.2, not everyone was convinced by Chasles’ criticisms; and,
in particular, Cremona spent several months trying to defend De Jonquières’ formulae
even against the opinion of their author. These discussions, however, would soon take a
different turn as Chasles began to publish his own theory of systems of conics, to which
we now turn.

43 [Cremona, 1862], pp.63-71.
44“You were very kind, in your savant Introduction to the theory of plane curves, to cite a few theorems

which I gave in my paper inserted in the tome VI of Liouville’s Journal, in 1861. I have the honour of
letting you know that some of these theorems are stated by me in terms that are too absolute”, [Israel,
2017], pp.970-971. Underlining in the original. Note how De Jonquières immediately adopts Chasles’
description of these results as too “absolute”. We will come back to the correspondence between Cremona
and De Jonquières on this issue in 5.1.2.

45“In this paper, which deals more particularly with the properties of series of curves of order n and
of index N , I gave too absolute a form to the statements of a few theorems, and it is important that
the reader be aware of it. [..] If n and N are both arbitrary, the numbers expressed in the statements
of these theorems must be taken not as absolute numbers, but merely as upper limit”, [de Jonquières,
1863], p.71.
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4.2 Counting and constructing conics

On February 1st 1864, Chasles stepped on the podium during one of the weekly meetings
of the Paris Académie des Sciences to make an astounding statement46: Steiner’s results,
from the enumeration of the 7776 conics touching five other conics to his other formulae,
were wrong, and so were the related propositions of Bischoff. For these erroneous results,
Chasles substituted a new general formula for the number of conics touching five given
curves of order m1, ..,m5. At the end of his communication, Chasles revealed yet another
twist: this general formula itself was in fact but part of a “rather vast theory47”.

Over the following weeks, Chasles returned a number of times to this very same podium
to present his theory, which he called the theory of characteristics. What this theory
achieved was nothing less than to give a complete and general solution to the problem
of counting and constructing all (plane) conics which satisfy any given five conditions48.
By placing, at least for a time, the construction of the conics satisfying five conditions
on the same level as their enumeration49, Chasles firmly anchored this new theory in his
previous work on the generation of curves via homographic sheaves, described in chapter
3.

In what follows, we present this theory, focusing on the key concepts it revolves around,
the kinds of computation it involves, and the textual apparatuses it relies on, while stress-
ing the continuity between Chasles’ presentation and his broader epistemological theses
as expounded in chapters 1 and 2.

4.2.1 The method of substitution

There are two ways to summarize the content and goal of Chasles’ theory of character-
istics; none of which Chasles consistently favored. The first one would be to describe it
as a method, or “marche à suivre”50 for both the enumeration and the construction of
conics satisfying five conditions. Another would be to describe it as the theory of sys-
tems of conics, where systems of conics are defined as collections of conics satisfying four
given conditions. While mathematically equivalent, these descriptions entail two different
Chaslesean practices, as we discussed earlier (see 1.2.2). To assert the value of a method,
one must exhibit its uniformity; to guarantee that a theory is adequately built, one must

46In this chapter, we focus on the mathematical aspects of the theory of characteristics. In section
5.1.3, we shall come back to the modalities of the publication of this theory.

47“Les considérations qui m’ont conduit aux résultats précédents s’appliquent à un grand nombre
d’autres questions. [..] Ces questions, on le voit, donnent lieu à une théorie fort étendue” [Chasles,
1864c], pp.225-226.

48 [Chasles, 1864b], p.297.
49Due to the complexity of the results reached by this theory, these constructions are almost never

realistically feasible; they remain what Chasles calls ‘theoretical constructions’.
50 [Chasles, 1864b], p.298.
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exhibit a minimal set of fundamental properties from which the rest of the theory can be
naturally derived. In the context of the theory of characteristics, Chasles maintained both
attitudes. His emphasis was alternately on the uniformity of the proofs, enumerations and
constructions enabled by his new method, and on the fundamentality of the notions at
the heart of his theory, namely the characteristics of a system.

For any system S of conics satisfying four conditions, denoted Z,Z ′, Z ′′, Z ′′′, Chasles
defines two numbers µ and ν as the numbers of conics in the system S passing through
a given point, and touching a given line respectively51. An important notational and
definitional innovation is brought forth here by Chasles: using symbols for conditions
will be useful both for the expression of general enumerative formulae, not bound to any
specific condition, but also for outlining a general enumerative procedure. The fact that
µ and ν do not depend on the choice of the given point or given line is not discussed by
Chasles, but is part of the kind of generality with which he had treated the construction
of cubics passing through nine points: the relative positions of these points were irrelevant
once one accepts curves to have singularities, complex branches, or degenerations. The
Fundamental Theorem of Algebra, which states that the number of roots of a polynomial
is always equal to its degree, justifies this fact if we think of conditions as polynomial
equations in the coefficients of the general equation of a conic.

The numbers µ and ν are what Chasles calls the characteristics (‘caractéristiques’) of
a system S. Indeed, as the terminology indicates, Chasles claims that “all properties of
systems of conic sections can be expressed by means of these two numbers52”. Chasles
symbolically represents this assertion by the following equation:

(Z,Z ′, Z ′′, Z ′′′) ≡ (µ, ν)

And indeed, in his second communication to the Paris Académie regarding this theory,
Chasles included a list53 of properties of a system (µ, ν). This list is divided into three
sections; the first of which is entitled “geometrical loci”, the second “envelopes”, and the
third “miscellaneous properties of a system54 (µ, ν)”; with many propositions of the first
two sections being the duals of one another (see fig. below).

These properties all express the order or the class of a locus (or an envelope) which can

51We leave for chapter 5 the question of the similarity of De Jonquières’ indice N and of Chasles’
caractéristique µ, as well as that of séries and systèmes.

52“Ces propriétés [des systèmes de sections coniques], qu’il faut connaître, s’expriment toutes en fonc-
tion de deux quantités, disons de deux éléments de chaque système. [..] Nous appelerons ces éléments les
caractéristiques du système”, [Chasles, 1864b], p.298.

53As we shall see in section 4.3.1, list-making practices would become a key component of Chasles’
mathematical activity in the 1870s.

54“Lieux géométriques”, “courbes enveloppes”, “propriétés diverses d’un système (µ, ν)”, [Chasles,
1864b], pp.299;301;303.
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be constructed from a system of conics. For instance, fixing a straight line in the plane,
one can construct the pole of this straight line with respect to each conic of a system
(µ, ν). The resulting collection of points, Chasles asserts, is a curve of order ν. Similarly,
one can construct collections of straight lines which will be the envelope of a curve whose
class is given by one of these properties. In each case, the number at the heart of the
proposition – that is to say, the order or the class of the constructed curve – is expressed
as a combination of µ and ν (we shall turn below to the method used for the obtention of
these properties, see section 3.2.2). In turn, these properties yield the numbers of conics

[Chasles, 1864b], pp.299-301

in a system (µ, ν) satisfying a certain condition. For instance55, let us fix an arbitrary
conic U in the plane, as well as a system of conics (µ, ν). Consider the points M of the
plane whose polar lines relative to the conics of the system are the same as their polar
lines relative to the fixed conic U . One of Chasles’ properties states that the order of the
locus of the points M is (µ + ν). Now, this locus intersects U at 2(µ + ν) points, which
correspond to all the conics in the system (µ, ν) which touch U . Therefore, to the above
property of systems (µ, ν), Chasles adds a “corollary” which states that the number of
conics in a system (µ, ν) which satisfy the condition ‘to touch a given conic’ is 2(µ + ν).
Note that Chasles, in his list, does not always include these corollaries which transform
properties into conditions, nor does he explain how to move from one to the other. While
he seems to think that this is, in general, simple, it remains unclear whether or not this
passage is methodical in the sense that he attributed to this term.

Thus, these lists of properties serve to organize all of the properties of systems of
conics. These properties, in turn, all depend on the same two numbers. Furthermore,

55 [Chasles, 1864b], p.300. This example is discussed briefly in [Dieudonné, 1974], pp.39-40.
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they can be transformed into numbers of conics in a system satisfying a given condition.
In fact, this list was only the beginning: in order to expand his methods to ever more
complex kinds of conditions, Chasles would produce many other such lists of properties:
in his third communication, for instance, he gave such a list for angular conditions56.

With the help of this list of properties of systems (µ, ν), Chasles can carry out the
construction and enumeration of all conics satisfying any five given conditions (provided
the conditions correspond to properties in the list). To do so, Chasles presents a “gen-
eral solving-process57”. This general method, in keeping with Chasles’ epistemology of
generality, is uniform: in other words, “[its] march is always the same58”). Chasles first
presented it via an example, which we now reproduce with commentaries.

Chasles begins with selecting not five, but four conditions: indeed, to determine the
characteristics of a system defined by four conditions is sufficient, since the number of
conics satisfying five conditions will then be a simple matter of applying the right corollary
to the system thus formed. More precisely, Chasles considers the following conditions59:

• Z: To touch a curve of order m

• Z
′ : To have a focus on a curve of order p

• Z
′′ : To be similar to a given conic U

• Z
′′′ : That one of the directrix be tangent to a curve of class q

To obtain the characteristics of the system (Z,Z ′, Z ′′, Z ′′′), Chasles begins by first intro-
ducing what he calls “elementary systems” (‘systèmes élémentaires’), that is to say the
systems of conics passing through i points and touching 4− i lines, i ranging from 0 to 4.
Chasles denotes these systems respectively (4p., ), (3p., 1d.), (2p., 2d.), (1p., 3d.), ( , 4d.),
where p and d of course stand for “point” and “droite”. Chasles also occasionally uses
the expression “elementary condition” to refer to the conditions ‘passing through a given
point’ and ‘touching a given straight line’. The characteristics of these systems were al-
ready well-known at this point; in fact, Chasles does not even attribute their discovery to
anyone in particular60. For instance, the characteristics of the system (4p., ) are µ = 1
and ν = 2. Indeed, through five points pass one and only one conic; and two conics

56 [Chasles, 1864g].
57“procédé général de solution”, [Chasles, 1864b], p.299.
58“La marche que nous venons de décrire reste absolument la même”, [Chasles, 1864b], p.308. On

Chasles’ conception of generality as systematicity, see 1.2.2.
59This a rather complicated system, for which algebraic equations seem difficult to produce. Note how

the choice in conditions exemplifies the range of the method, and the variety of conditions that Chasles
is able to tackle at this point, beyond mere contact conditions.

60Steiner and De Jonquières had given the same numbers in their respective publications surveyed
above, but these results are much older.
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go through four given points and touch one given straight line (see fig. above). Note
that some of the characteristics of these elementary systems are the same: for instance,
the second characteristic of (4p., ) (that is to say, 2) is equal to the first characteristic
of (3p., 1d.), since both characteristics express how many conics satisfy the same set of
five conditions. Furthermore, due to the principle of duality, the first characteristic of the
first elementary system is equal to the second characteristic of the fifth elementary system
(which is 1 also because there is one and only one conic which touches five given straight
lines). These numbers can all be written down within the following system of equations:

(4p., ) ≡ (1, 2)
(3p., 1d.) ≡ (2, 4)
(2p., 2d.) ≡ (4, 4)
(1p., 3d.) ≡ (4, 2)

( , 4d.) ≡ (2, 1)

To compute the characteristics of a system defined by four conditions, Chasles explains,
one needs to substitute successively each of these conditions to the elementary conditions
which form elementary systems. To do so, one must use the list of properties and select
the four properties (or rather, their corollaries) which correspond to the four conditions.
For instance, in Chasles’ list, the corollary of theorem XI states that61:

Il existe dans un système de coniques (µ, ν),m[µ(m−1)+ν] coniques tangentes
à une courbe donnée d’ordre m.

61“There is, in a system of conics (µ, ν), m[µ(m − 1) + ν] conics tangent to a given curve of order
m”, [Chasles, 1864b], pp.300-301.
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In other words, this corollary gives the number of conics in a system (µ, ν) which satisfy
Z. Applying this corollary to the elementary system (4p., ), one finds that there are
m(1×(m−1)+2) = m(m+1) conics which go through four given points, and which touch
a given curve of order m. But this number can also be viewed as the first characteristic
of the system (3p., Z). Similarly, applying this corollary to the system (3p., 1d.) ≡ (2, 4),
one finds 2m(m+ 1) conics which pass through three given points, touch a given straight
line, and touch a given curve of order m. This number can also be viewed as the second
characteristics of the system (3p., Z). Therefore, one can write:

(3p., Z) ≡ (m(m+ 1), 2m(m+ 1))

This subprocedure is the substitution of an elementary condition by a more complex
condition. It must be repeated in the other elementary systems, in the same way as
before. Chasles obtains the following equations:

(2p., 1d., Z) ≡ [2m(m+ 1), 4m2]
(1p., 2d., Z) ≡ [4m2, 2m(m+ 1)]

(3d., Z) ≡ [2m(m+ 1),m(m+ 1)]

As in the previous set of equations, duality means that there is a symmetry in these
equations: the second characteristic of the last system is the first characteristic of the
first system, and so on. Furthermore, a form of transitivity also makes it unnecessary to
actually carry out every one of these computations: the second characteristic of the first
system is the first characteristic of the second system, and so on.

These four systems which include the condition Z can now play the role of elementary
systems, as Chasles substitutes the condition Z ′ to the remaining elementary conditions.
This is done in the same manner as for Z: Chasles locates the property corresponding to
the condition Z ′, then uses it to compute numbers of conics which he then reinterpretes
as characteristics of more complex systems. This goes on until all elementary conditions
have been replaced, and the characteristics of (Z,Z ′, Z ′′, Z ′′′) have been computed. The
resulting expressions for these characteristics are integral polynomials in m, p, q; that is
to say the orders and classes of the given curves which form the conditions to be satisfied.

Let us deviate from Chasles’ example and suppose we want to compute instead the
number of conic sections touching 5 given conics, that is to say curves of order 2. Let us
represent this condition by the letter Z. The property we used above (namely the corollary
of theorem XI) shows that, in a system (µ, ν), there are 2(µ+ν) conics satisfying Z. Then,
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from what precedes,

(3p., Z) ≡ [6, 12]
(2p., 1d., Z) ≡ [12, 16]
(1p., 2d., Z) ≡ [16, 12]

(3d., Z) ≡ [12, 6]

Now, the number of conics in the system (3p., Z) satisfying the condition Z a second
time, which Chasles denotes N(3p., 2Z), is, according to the same property as previously,
2× (6 + 12) = 36. Similarly,

N(2p., 1d., 2Z) = 2(12 + 16) = 56
N(1p., 2d., 2Z) = 2(16 + 12) = 56

N(3d., 2Z) = 2(12 + 6) = 36

where 2Z stands for Z,Z ′. Consequently, we have the characteristics of the following
family of systems:

(2p., 2Z) ≡ [36, 56]
(1p., 1d., 2Z) ≡ [56, 56]

(2d., 2Z) ≡ [56, 36]

Continuing with the same method, we find that:

N(2p., 3Z) = 2(36 + 56) = 184
N(1p., 1d., 3Z) = 2(56 + 56) = 224

N(2d., 3Z) = 2(56 + 36) = 184

and

(1p., 3Z) ≡ [184, 224]
(1d., 3Z) ≡ [224, 184]

where 3Z stands for Z,Z ′, Z ′′. Substituting Z one last time, we find:

N(1p., 4Z) = 2(184 + 224) = 816 = 2(224 + 184) = N(1d., 4Z)

wherefrom it follows that (4Z) = (Z,Z ′, Z ′′, Z ′′′) ≡ [816, 816]. The number of conics
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touching five other conics, therefore, is 2(816 + 816) = 3264; a result for which Chasles
would be long remembered.

4.2.2 The generalized principle of correspondence

The method of substitution is a general and uniform procedure: its application to any
five conditions is always the same, and it requires no computations other than elementary
additions and multiplications. However, this is only so provided one has access to the
adequate properties to actually know how many conics in a system (µ, ν) satisfy a given
condition Z. During his fourth communication at the Paris Académie, Chasles presented
a “general method for the search and proof of the properties of systems62”, with which
one can form lists of properties such as the one mentioned above. This very method of
proof, like the method of substitution, “rests on the notion of the two characteristics63”.
This is crucial because it means that the theory of systems of conics here envisioned by
Chasles is indeed centered around fundamental notions, which serve as the principles of
both the computation of numbers of conics, and in the derivation of the properties of
systems. Furthermore, this method of proof, like the method of substitution, is uniform;
or, as Chasles puts it, when applied to a specific question, “the reasoning is always the
same64”.

This method of proof is a generalized version of the principle of anharmonic correspon-
dence described in section 3.1.3, and is reminiscent of the proof used by De Jonquières in
his 1861 paper which we presented in section 4.1.2. Although Chasles would only make
the connection between both principles explicit in 1866, he had in 1864 already suggested
a continuity between both kinds of correspondences65. As Chasles points out, it is a
method whose applicability ranges over curves of any order, and not just conics. It rests
on two lemmas, which are the dual versions of one another; the first of them reads as
follows66:

Soit x et u deux séries de points sur une droite L, entre lesquelles existe une
correspondance qui à un point x associe α points u, et qui à un point u associe
β points x.
Alors le nombre de points fixés par la correspondance est (α + β).

62“Procédé général de recherche et de démonstration des propriétés des systèmes”, [Chasles, 1864a],
p.1174.

63“Nos procédés de démonstration [..] [reposent] encore sur la notion des deux caractéristiques”,
[Chasles, 1864a], p.1172.

64“Le raisonnement que l’on fait pour cela est toujours le même”, [Chasles, 1864a], p.1174.
65Chasles mentions the “theory of homographic figures” in [Chasles, 1864a], p.1172.
66“Let x and u be two series of points on a straight line L, between which there exists a correspondence

which, to a point x match α points u, and to a point u match β points x”, [Chasles, 1864a], p.1175.
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To prove this result, Chasles fixes a straight line L, and lets x and u denote the distances
between the points x and u, and an arbitrary origin on L. Chasles uses letters here in
a rather ambiguous manner: they represent both points and distances, and one letter
represents a mobile point, or indeed a multiplicity of points. This is not entirely different
from the literary technology employed for the writing of geometrical equations of curves,
as described in section 3.1.2. Chasles states, without further justification, that an equation
of the following form holds:

xβ(Auα +Buα−1 + ..) + xβ−1(A′uα +B′uα−1 + ..) + ... = 0

Indeed, a correspondence in Chasles’ geometry can only be obtained by constructions and
transformations which are representable by algebraic equations. Therefore, there holds
an algebraic equation between the corresponding points x and u. Once u is fixed67, there
must be exactly β corresponding points x, that is to say β solutions of the resulting
polynomial equation in x, which implies that this polynomial is of degree in β. Similarly,
the degree in u must be α. It remains only to factorize and rearrange this equation, and
it shall be as expressed above.

To represent the situation where a point x coincides with some corresponding points
u, one simply has to rewrite the equation above by equating x and u; in other words, the
coinciding points x (or double points) are solutions of the equation

Axα+β + (B + A′)xα+β−1 + ... = 0

This indicates that there are α + β coinciding points, provided that the coefficient A is
not equal to zero. To show that this can never be the case68, Chasles divides the entire
equation in (x, y) by uα, and takes u to be at infinity (on L), thus rewriting the equation
as:

Axβ + A′xβ−1 + ... = 0

This equation must still have β solutions, for even to the point at infinity correspond β
points x. Therefore, A 6= 0, and the equations whose roots are the coinciding points x = u

is of degree α+ β, which is consequently the number of coinciding points. A dual lemma
states that if, about a fixed point, revolve two series of straight lines x and u so that to

67Of course, if u is a root of the polynomial Auα+Buα−1+.., then this reasoning seems invalid. However,
Chasles seems to practice a generic form of reasoning here, wherein a finite number of exceptions can be
disregarded for the sake of generality.

68This is Chasles’ correction to what he had identified as a mistake in a proof by De Jonquières of
a similar result. De Jonquières, however, would later claim that Chasles’ fix had in fact been found
previously by Cremona. The story of this principle is rather messy, and we leave it aside for now, for the
sake of clarity. In 5.1, we will discuss in greater detail the larger priority dispute between Chasles and
De Jonquières, in which this principle plays a key role. See also [Segre, 1892].
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each straight line x correspond α straight lines u, and conversely to each straight line u
correspond β straight lines x, then the number of coinciding lines is α + β.

How can these two lemmas serve as a uniform and general method for the proof and
search of the properties of systems? The mathematical content of this more general
principle, like that of the principle of anharmonic correspondence, is not what makes
Chasles’ method worthwhile. Rather, Chasles’ creation is that of a textual dispositif for
the systematic writing of proofs of propositions pertaining to systems of conics69. Within
his series of communications between 1864 and 1867, only a few proofs were actually
given by Chasles as examples, but from his students we can gather additional examples.
Despite some minor variations, the structure of these proofs is always the same. We first
turn to one such example, given in Chasles’ fifth communication at the Paris Académie.
We present this particular proof, before discussing its general structure70.

In this example, Chasles sets out to prove that “in a system of conics (µ, ν), the
diameters which end at the points where a straight line L intersects the conics of the
system are the envelope of a curve of class (µ + 2ν)71”. In other words, in the plane, we
have one fixed straight line L, and a system of conics. Each conic of the system intersects
the straight line L in two points P1 and P2. From these two points, one can draw two
diameters, that is to say two straight lines which pass through the center of the conic.
Doing so for all conics in the system, we have a collection of straight lines, which envelope
a curve whose class is given by the theorem72.

Chasles then reformulates the demonstrandum, and writes73: let us prove that, through
an arbitrary point I, there pass (µ+2ν) straight lines, each of which join a point a of L to
the center of a conic passing through a. Indeed, per definition, the class of a curve is the
number of tangents which can be drawn to it from any arbitrary point I. The theorem is
true if and only if, from through an arbitrary point I, there pass (µ + 2ν) straight lines
which belong to the envelope described in the theorem.

69The textual dispositif used by Chasles to this end evolved from his first attempts in 1864 until his
later texts in the 1870s; see section 4.3.2 for that later uses of the principle of correspondence.

70This proof is adapted from [Chasles, 1864d], p.7.
71“Dans un système de coniques (µ, ν), les diamètres qui aboutissent aux points où une droite L coupe

les coniques, enveloppent une courbe de la classe (µ+ 2ν).”
72It is a rather striking feature of a lot of Chasles’ propositions, in this text and many later ones,

that they are very difficult to parse for the untrained reader. One may try to think of a conic undergo-
ing a continuous transformation, and try to imagine a correlative transformation of the other elements
constructed with this conic – here, the intersections with L, the centers, and diameters. This, however,
proves to be rather difficult as the constructions get more complex. Furthermore, Chasles systematically
replaces properties which are easy to visualize by their more abstract counterparts: instead of demanding
that a certain angle between two variable straight lines be constant, for instance, he would fix two other
straight lines, and demand that the cross-ratio of these four lines be constant. To even grasp the content
of Chasles’ propositions, therefore, is something that requires training, and a specific reading practice.

73In fact, Chasles writes a slightly more general proof; but we first present a simpler case for the sake
of clarity. We shall come back to the more general proof shortly.
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Chasles then forms a correspondence between the straight lines which pass through I.
Such a line intersects L at a single point x; and Chasles denotes this line Ix. According to
a property of systems of conics, which had already been stated in an earlier communication
on the theory of characteristics74, the locus of the centers of the conics in a system (µ, ν)
is of order ν. Thus, there are ν centers of conics of the system on the straight line Ix.
By forming the intersections of each of these conics with L, Chasles constructs 2ν points
u on L. This is the first half of a correspondence between straight lines passing through
I. To form the reverse correspondence, Chasles forms the µ conics which pass through
a point u. The straight lines joining I and the centers of these conics intersect L at µ
points x. Thus, to a straight line Ix correspond 2ν straight lines Iu, and to a straight line
Iu correspond µ straight lines Ix. Per the principle of correspondence, there are µ + 2ν
coinciding straight lines. Each of these coinciding straight lines goes through I. Moreover,
it joins a point a of L and the center of a conic which goes through a; as it satisfies the
criterion of construction of both parts of the correspondence. More precisely: as a line
Iu, it corresponds to a straight line Ix. This means that u is the intersection of a conic of
the system and L. As a line Iu, it corresponds to a Ix, which means that it joins I and
the center of a conic which passes through u. Because Ix = Iu, this coinciding straight
line is as required; and the theorem is proven.

In fact, this is not exactly Chasles’ proof. After stating this theorem, he gave another,
slightly more general one; with poles of a fixed straight line with respect to the conics of
the system instead of their centers. This is because the center of a conic is the pole of the
straight line at infinity with respect to said conic. The reason for stating both theorems,
and proving only the more general one, is that Chasles wished to stress the structural
similarity between both proofs; and the fact that, with the principle of correspondence;
proving the general case is just as easy as proving the particular. We shall come back to
this issue at the end of this chapter (see 4.3.2). Furthermore, to this theorem, Chasles

74 [Chasles, 1864b], p.299.
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added some extra information: the straight line L, he showed, is a multiple tangent of
the curve constructed here, of multiplicity 2ν.

This proof is very typical of Chasles’ uses of the principle of correspondence between
1864 and 1873. When the property to be proven involves the order of a locus, Chasles
will consider a fixed line L, and construct a judicious correspondence between two series
of points x and u on L, so that the coinciding points of the correspondence be the inter-
sections of L and the locus. When, as in our example, the property involves the class of
an envelope, Chasles forms two series of straight lines Ix and Iu passing through a fixed
point75 I. The notations in these proofs are extremely stable, and so are the sentences
that Chasles uses in them. The general structure of the textual apparatus associated to
the principle of correspondence can be decomposed in the following manner:

• Statement of the property. These statements almost always describe a locus or
an envelope, constructed from a system (µ, ν); and stipulate its order or its class.
Sometimes, Chasles immediately reformulates the property in more general terms,
as a way to display the generality of his method: the proof, he shows, remains the
same at a structural level when generalizing a property.

• Conversion of the statement. If the property pertains to the order of a locus, it
will be reformulated to state that any arbitrary straight line L intersects said locus
at a certain number of points, which is equal to the order stipulated above. If the
property pertains to the class of an enveloppe, it will be reformulated via a sheaf
of straight lines drawn from an arbitrary point I. The notations for I and L are
always the same. Often, the intersections of L and the locus (or the tangents to
the locus drawn from I) can be reinterpreted geometrically as satisfying a certain
condition.

• Construction of a correspondence. Chasles always starts with one point x on
the straight line L (or with one line IX from the sheaf centered around I). Using
the definitions of the characteristics µ, ν, and geometrical properties of conics, he
associates to a point x (resp. a line IX) a (finite) collection of points u (resp. lines
IU). He then constructs a reciprocal correspondence from u to x (IU to IX). The
strategy in constructing this correspondence is to make it so that corresponding
points (resp. lines) will be the intersections of the locus and L (resp. the tangents
to the locus drawn from I). To that end, Chasles often uses the geometrical reinter-
pretation of these intersections (resp. tangents) as the points (resp. lines) satisfying
certain conditions. Both parts of the correspondence are constructed so that an

75Chasles mostly denoted these lines IU and IX, perhaps using capital letters to emphasize the duality
in both reasonings.
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object satisfying the aforementioned condition must belong to the images of both
correspondences.

• Application of the principle of correspondence. By adding the two numbers
of corresponding points (or lines), Chasles obtains the number of coinciding points
(or lines).

• Interpretation of the coinciding points. The coinciding points (or lines), when
the correspondence has been aptly constructed, can be interpreted as the points
of intersection of (the tangents to) the locus (the enveloppe) at the heart of the
property. This means that the number of coinciding points gives the order or the
class which was being sought. Sometimes, certain elements of the construction can
be interpreted further, as leading to specific types of correspondences.

Some of these steps are sometimes omitted, or left implicit: for instance, in the proof
reproduced above, the ‘interpretation’ is presented as a trivial deduction. Correspon-
dences, in the wake of these publications, would become Chasles’ most commonly-used
expressive resource to write and prove properties of algebraic curves and surfaces, beyond
the theory of characteristics. In this context, a supplementary step would be added from
1871 onwards, in which are counted what Chasles calls “solutions étrangères”, that is
to say coinciding points or lines that arise artificially in the correspondence, but which
should not be counted in the final result. We shall come back to these special solutions
in section 4.3.2.

4.2.3 A general formula for enumerative problems

Chasles’ claim that his method of proof and discovery for the properties of systems of
conics is perfectly general and uniform remains at this stage somewhat unjustified. First,
it is unclear how we are to know that every condition on conics can be obtained as a
corollary of a property of the systems (µ, ν). Moreover, even if this is the case, it is not
totally explicit how one should go about forming a correspondence which leads to a proof
of said property. Lastly, we do not know a priori why this property will yield a number
depending only on µ and ν.

To these first two objections, one could answer that Chasles demonstrated the gener-
ality of his methods by multiplying examples: over the course of his publications, he gave
many examples of properties of systems, of proofs thereof via the principle of correspon-
dence, and of their transformations into corollaries pertaining to conditions on conics.
Furthermore, he did so whilst using a very systematic mode of exposition.

The third objection is more substantial. Of the dozens of properties listed by Chasles,
all expressed a number in terms of the two characteristics of a system of conics. However,
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because this objection has to do with the form of a mathematical result, and not with the
modalities of the application of a method, it was soon read as an empirical observation, or
a conjecture, upon which the entirety of the theory of characteristics rested. This would
be the case, for instance, of the German mathematician Alfred Clebsch, for whom Chasles
had stated, but not proved, the following theorem76:

For each condition Z, there are two numbers α, β so that for each system
S ≡ (µ, ν), the number of conics in S satisfying Z is αµ+ βν.

This conjecture would be known either as Chasles’ theorem, Chasles’ formula or sometimes
the αµ+ βν theorem.

Chasles indeed believed such a result to be true. In his seventh communication to the
Paris Académie des Sciences, for instance, he wrote77:

On n’aurait pas prévu certainement que des questions si variées, et jusqu’ici
presque inaccessibles aux méthodes analytiques, se résoudraient toutes par
une même méthode, et surtout par une même formule. Cependant la raison
en paraîtra bien simple maintenant; car elle dérive d’une remarque à laquelle
conduisent les nombreux théorèmes sur les systèmes de coniques, contenues
dans mes dernières communications. C’est que les propriétés de ces systèmes
s’expriment toujours par une fonction telle que (αµ+βν) des deux caractéris-
tiques du système; fonction dans laquelle α ou β peuvent être nuls.

Chasles thought that every property of the systems (µ, ν) could be expressed as a linear
function of µ and ν; and that, therefore, to every condition Z there corresponded an
expression (αµ + βν) which he called the “module” of Z. This is not an unreasonable
observation: after all, every proof per correspondence ends up with a sum, both terms of
which are always a function of the characteristics of the system (µ, ν), as per the general
method described above. Of course, this is no proof.

In the pages following the quote above, Chasles used modules to express a general for-
mula for the number of conics satisfying any five conditions. Considering four conditions
Z,Z ′, Z ′′, Z ′′′ whose modules are respectively

αµ+ βν, α′µ+ β′ν, α′′µ+ β′′ν, α′′′µ+ β′′′ν

76The circulation of this ‘formula’ is a main focus of the chapters 6 to 8.
77“It could not have been foreseen with certainty that such varied questions, heretofore almost inac-

cessible to analytical methods, can be all resolved by one single method, and especially by one single
formula. However the reason will seem rather simple now; for it derives from a remark to which the many
theorems on systems of conics, contained in my latest communications, lead. This remark is that the
properties of these systems are always expressed by a function like (αµ + βν) of the two characteristics
of the system; function in which α or β can vanish”, [Chasles, 1864f], p.215.
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Chasles observed that one can apply the general procedure described previously and
successively substitute the elementary conditions. Without providing much detail, Chasles
expresses the characteristics of the general system

(Z,Z ′, Z ′′, Z ′′′) ≡
(αα′α′′α′′′ + 2Σαα′α′′β′′′ + 4Σαα′β′′β′′′ + 4Σαβ′β′′β′′′ + 2ββ′β′′β′′′),

(2αα′α′′α′′′ + 4Σαα′α′′β′′′ + 4Σαα′β′′β′′′ + 2Σαβ′β′′β′′′ + ββ′β′′β′′′)


where the signs Σ “represent the sum of similar terms78”. This means that, for instance,
Σαα′α′′β′′′ = αα′α′′β′′′ + αα′β′′α′′′ + αβ′α′′α′′′ + βα′α′′α′′′. From this formula, Chasles
easily derives another general formula for the number of conics satisfying five unspecified
conditions, whose modules are all known and expressed under the form αµ+ βν.

However, the validity of these general formulae does not hinge upon that of the con-
jecture above. All that is required to use them is that the four or five conditions at hand
have modules of the form αµ + βν; which, for Chasles, had always been the case so far.
Furthermore, Chasles viewed the use for these general formulae to be restricted to faster
computations of characteristics or numbers of conics satisfying four or five conditions.
Having obtained the modules of certain conditions, this formula allowed Chasles to by-
pass the method of substitution, and to compute characteristics and solutions only by
operating on the coefficients of said modules.

Chasles never sought to study the algebraic or theoretical properties of these general
formulae themselves. More importantly, he never sought to prove the αµ+βν theorem, nor
did he express interest in the attempts of those who took up the theory of characteristics
throughout the 1870s. In fact, he probably did not view it as a theorem per se, or at least
not as something worth seeking a proof for. Instead, the αµ+βν formula was for Chasles
a remark, a sign that the theory of systems of conics ought to be founded upon the two
fundamental notions that are the characteristics.

Indeed, remember the epistemic portrait of the geometer as sketched by Chasles in
the Aperçu Historique, as we reconstructed it in chapter 1. For Chasles, mathematical life
was not about the difficult obtention of ingenious proofs of difficult theorems; but rather
about the search for natural methods and fundamental principles around which to center
a theory. At the core of this understanding of mathematical practice was the creed that
nature provides simple paths toward general truths; and the surest sign that such a path
had been found was the vast number of propositions which were effortlessly derived at the
end of the journey. By centering the theory of conics around the two characteristics, and
by attaching to it the method of proof based on the principle of correspondence, Chasles
had produced long lists of propositions, and had solved problems which theretofore had
proven difficult for analytical and synthetic geometers alike. These propositions and these

78 [Chasles, 1864f], p.216.
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enumerations were a surer sign of the naturalness and perfection of his theory than any
elaborate proof of the αµ + βν theorem could ever be. Because of his understanding
of generality, and of what mathematical life consists in, Chasles identified theorems and
conjectures in a different manner than we – or many other geometers in the second half
of the 19th century – would.

4.2.4 The analogy with Algebra

Chasles viewed the applicability of the theory of characteristics, based on the method
of substitution and the principle of correspondence, as universal. “Within the theory of
geometrical characteristics”, Chasles wrote in one of his communications, “its generality
means that [this method] participates in what characterizes the Analytical Art, whereof
Vieta said: Quod est, nullum non problema solvere79”. This was the conclusion reached
by Chasles after finding the general formulae discussed in the previous section.

In fact, in the fourth of his communications on the theory of characteristics, Chasles
had already constructed a more intricate account of the “differences between [his general
method] and the analytic method80”. While Chasles did not explicitly refer to specific
texts or authors, which he deemed representative of this analytical method (which he
once again identifies with Cartesian geometry), two reasonable guesses of what he likely
had in mind can be found in the works of British geometers Arthur Cayley and George
Salmon, among others. Not only was Chasles aware of what British mathematicians were
producing at the time, and exchanging with the two mentioned above, he also perceived
them as typical of modern analytical methods in other contexts81. Chasles’ understanding
and description of contemporary algebraic methods did not include any of the innovations
one can find in German authors of that time. When Chasles mentions algebraic ‘equations
of condition’, he does so without knowing that authors like Otto Hesse had used this
exact same term (‘Bedingungsgleichung’) in a way that does not entirely match Chasles’
description82. Chasles is equally not aware, or not interested, in the theory of forms
and invariants, which is yet another example of an algebraic approach emerging at this
moment, and which does not exactly fit Chasles’ description83. Furthermore, Chasles’
diagnosis of the problems that plague analytical methods will seem unfair to any reader

79“Dans son domaine actuel de la théorie des courbes géométriques, on reconnaîtra peut-être que par
sa généralité, [cette méthode] participe du caractère de l’Art analytique dont Viète à pu dire: Quod est,
nullum non problema solvere”, [Chasles, 1864f], p.218. Vieta’s Latin sentence can be translated as ‘there
is no problem that cannot be solved’ (by it).

80 [Chasles, 1864a], p.1167-1173.
81See for instance his description of Salmon’s work on the cubics passing through nine given points,

given in [Chasles, 1853a], p.946, and briefly discussed in section 3.1.1.
82 [Hesse, 1861], p.129.
83 [Parshall, 1989].
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familiar with the contemporary work of Plücker (or even Bischoff, for that matter) - in
fact, Chasles’ view of ‘modern’ analytical methods seemingly did not really evolve after
the publication of the 1837 Aperçu Historique. Nonetheless, our goal in this section is
merely to show how an analogy with a certain image of Algebra and analytical methods
was key in the shaping of Chasles’ own theory of characteristics.

An example of what Chasles has in mind when discussing analytic methods applied to
the problem of enumerating conics can be found in Salmon’s A Treatise on Conic Sections.
A very popular treatise, Salmon’s Conics was first published in 1848, but revised and re-
edited three times during the years leading up to Chasles’ series of communications. In
both the third and fourth editions of this treatise (respectively published in 1855 and
1863), the first section of the tenth chapter, on the general equation of second degree,
focused on the number of Conditions which determine a Conic84.

Salmon opens with “the most general form of the equation of the second degree”,
which he writes:

ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0

A set of coefficients (a, b, c, f, g, h) determines one conic; however, dividing this general
equation by c does not change the curve being represented. Indeed, Salmon explains,
“the nature of the curve depends not on the absolute magnitude, but on the mutual
ratios of these coefficients”. Hence, fixing c = 1, to determine a curve is to determine
five constants, or coefficients. For Salmon, this means that “five relations between the
coefficients” are sufficient to determine the five quantities a

c
etc., or as reformulated in the

title of the section, that five conditions determine a conic. In his 1852 A Treatise on the
Higher Plane Curves, which was intended as a sequel to the Conics, Salmon reproduced
the same reasoning to explain that a curve of the nth degree is determined by n(n+3)

2 − 1
conditions85. In both cases, only one example is given, namely that of a conic (resp. curve
of degree n) determined by 5 (resp. n(n+3)

2 − 1) points. Substituting the coordinates for
these points into the general equation, Salmon asserts without any further explanation
that one obtains enough relations between the coefficients to determine them. How this
was to be done was sufficiently elementary so as to require no supplementary details on
Salmon’s part. Furthermore, Salmon did not feel the need to express the requisit that no
three of the five given points be on a line, lest the relations provide an infinite number of
solutions, as most modern textbooks of analytical geometry explain.

84 [Salmon, 1855], pp.118-120, [Salmon, 1863], pp.126-127. Both sections present minor differences -
the notations are slightly different, and a few paragraphs were rewritten -, which we will not go into. In
what follows, we elect to focus on the latest available version at the time of Chasles’ publications, namely
the 1863 edition. Chasles himself occasionnaly referred to Salmon’s 1850 second edition (under a French
title) in other contexts; see for instance [Chasles, 1870], p.118.

85Salmon goes on to explain why this is only valid in some cases, implicitly referring to the well-known
Euler-Cramer paradox, see [Salmon, 1852], pp.19-21.
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For the sake of clarity, let us fill the gaps in Salmon’s exposition: given five points of
coordinates (x1, y1), .., (x5, y5), the conditions that the conic passes through each of these
five points can be written as the following system of equations (whose unknowns are the
coefficients a, b, f, g, h):

ax2
i + 2hxiyi + by2

i + 2gxi + 2fyi + 1 = 0, for i ranging from 1 to 5

This is a linear system with five equations and five unknowns, and we can eliminate
the unknowns one after the other. From the first equation, we obtain for instance that
a = −1

x2
1
(2hx1y1b + ..1). We can then replace a in each of the other four equations, and

obtain four equations with only four unknowns (b, f, g, h). Repeating this method will
yield one final equation in, say, h, which will be entirely determined as a (linear) algebraic
expression in the given coordinates xi, yi. Once h is determined, it suffices to go back and
determine successively the other coefficients. Provided the points are in generic position
(which, for the sake of simplicity, we shall simply take to mean here that no three of them
are aligned), then these equations are indeed independent; and this operation indeeds
leads to the computation of one and only one set of coefficients (a, b, f, g, h).

More generally, this method is theoretically valid for conditions more complex than
‘passing through a given point’. Each condition is then taken to be an algebraic relation in
the coefficients of the general equation of conics. Thus, to enumerate the conics satisfying
five conditions is to find the number of solutions of a system of five (independent) algebraic
equations in five unknowns. If one can successfully eliminate the unknowns one after the
other, then the degree of the resulting equation in the last remaining unknown will be
the number of conics, per the fundamental theorem of algebra. While only the degree
of this resulting equation is needed (as opposed to the equation itself), this method of
elimination does require that one forms the algebraic relations which translate all five
conditions, and that one computes with all of their coefficients.

This seems to be a fairly accurate description of what Chasles took to be the “analytical
method” for the enumeration and construction of all conics satisfying five conditions. For
Chasles, this “universal instrument of mathematics” that is Analysis fails to adequately
treat curves satisfying non-elementary conditions for two reasons86. First, the expression
of each condition through an “équation de condition” can be very difficult. Unlike the
case of the curve passing through a point, more complex conditions require more work,
whether by means of the introduction of auxiliary equations or of other variables. This
means not only that there is no systematic and uniform method for the formation of these
equations, but also that the difficulty can increase depending on the condition, whereas

86 [Chasles, 1864a], p.1168.
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the principle of correspondence works uniformly for all conditions, and never introduces
specially long proofs. Second, the elimination of the coefficients in these equations is not
always possible, and is rarely simple. This is obvious from a mere glance at some of the
numbers found by Chasles: the elimination in the equations for five contact conditions
could lead to equations of degree 3264, as this is the number of conics touching five given
conics87.

But the theory of characteristics is more than a substitute for the imperfect ana-
lytical method: in fact, Chasles constructs an analogy between both methods, whereby
the simplicity and uniformity of the former is made to contrast with the difficulty and
untractability of the latter. In Chasles’ view, the “formation” of équations de condition
and the procedure of “elimination” correspond respectively to the “selection” of relevant
properties of systems of conics and the method of “substitutions88”. Indeed, instead of
forming equations for a condition, one can apply the principle of correspondence to ob-
tain (in a systematic manner) a property of systems (µ, ν), of which a corollary will
yield the module of said condition. Furthermore, instead of eliminating equations, one
introduces conditions one by one into systems whose characteristics are already known,
starting with elementary systems. If one has already introduced a condition Z, and
wishes to introduce a second condition Z ′, then it suffices to compute the numbers of
conics N(3p., Z, Z ′), N(2p., 1d., Z, Z ′) etc., which is always a simple computation if one
knows the module of Z ′ (in that only additions will be required).

The comparison runs deeper: the consideration of systems (µ, ν), Chasles explains,
replaces “the general equation which represents conics in Analysis89”. By having two
numbers stand in for four conditions, with all the data which define them (such as the
position of the given points or curves), systems introduce in pure geometry the kind of
abstraction that used to characterize analytical methods. Where the degree of an equation
characterizes a family of curves, and allows for a general treatment thereof, so do the
two characteristics µ, ν suffice to treat systems of conics irrespective of the contingent
properties which define them, such as the relative position of the points through which
conics ought to pass90 (and the two characteristics can respectively be viewed as the

87Of course, Bischoff had produced similarly large numbers, by means other than this naive method of
elimination.

88“Ce procédé d’opérations, toujours le même, est excessivement simple. Il remplace, comme on voit,
les éliminations de l’Analyse. On peut dire que c’est une méthode de substitution, au lieu d’une méthode
d’élimination, dans le sens technique du mot”, [Chasles, 1864a], p.1171.

89“Les systèmes font l’office de l’équation générale qui représente les coniques, en Analyse”, [Chasles,
1864a], p.1169.

90“L’étude des propriétés des systèmes de coniques acquiert le caractère d’abstraction et de généralité
des théories analytiques, puisque l’on n’a pas à tenir compte des conditions variées auxquelles satisfont
les systèmes que l’on considère, mais seulement des deux caractéristiques abstraites qui les représentent”,
[Chasles, 1864a], p.1169.
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order and the class of the system91). In fact, because the analytical method envisaged
by Chasles does need to form equations for each condition, it does not possess this level
of abstraction when applied to systems of conics. This means that the “geometrical
formulae” produced by the principle of correspondence and the consideration of systems
(µ, ν) are fundamentally different from the “formulae of the analytical method”: the
former “ignore particular cases”. This means that, from the module of a condition, one
cannot derive any information regarding the nature or position of the actual conics in
a given system which satisfy said condition92. By contrast, having formed equations for
conditions, and carried out the method of elimination, one can form the equations of the
conics which satisfy all five conditions, and discuss their positions or nature. In return,
Chasles explains, this abstraction is responsible for the “immense advantage” that the
theory of characteristics has over analysis, in that it provides a uniform, general, and
simple method for the enumeration of conics.

Thus, the theory of characteristics is a clear outgrowth of the broader research pro-
gramme undertaken by Chasles in his lectures at the Faculté de Paris: systems (µ, ν), like
sheaves of conics and straight lines before them, enable the writing of geometrical equa-
tions as an alternative to the equations of algebra. These geometrical equations, however,
are intrinsic: in lieu of artificial coordinate systems and variables, they require only the
consideration of notions which naturally characterize the figure at hand. That the two
numbers µ and ν do that for a system of conics is made manifest by the simplicity and
generality of the method of characteristics.

4.2.5 Exceptional conics and geometrical beings

Chasles’ search for geometrical generality and abstraction brought several new difficul-
ties and hurdles. The theory of characteristics, and its uniform mode of enumeration,
necessarily yields numbers which include solutions whose status is problematic. Complex
curves, for instance, must necessarily be counted, since no specific consideration is granted
to the relative position of the given elements which define systems and conditions. In fact,
amongst Chasles’ 3264 conics touching five other conics, most are complex curves – ex-
cept in very rare situations93. Similarly, Chasles had realized that his systems, invariably,
contained degenerate conics.

Chasles, in his lectures at the Faculté de Paris, had founded his general theory of

91This analogy is made explicit in [Chasles, 1871b], pp.577-578.
92“Il y a [..] une différence entre nos formules, que j’appellerai géométriques, et les formules de la

méthode analytique. Celles-ci se prêtent à la discussion des cas particuliers, parce qu’elles sont empreintes
de toutes les données de la question”, [Chasles, 1864e], p.357.

93A set of five conics which give rise to 3264 real solutions has been given in [Ronga et al., 1997]. More
recently, it has been shown that at least 32 of these 3264 conics are always real, see [Welschinger, 2005].
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conics upon two “fundamental properties94”, which served as the punctual and tangential
(geometrical) equations of these curves. These two properties are none other than the
descriptions of conics as, respectively, the locus of the intersection of two homographic
sheaves of rays centered around two fixed points, and the envelope of the straight lines
joining the points of two homographic divisions on two fixed straight lines.

From these two equations, Chasles would derive the description of two special kinds
of conics, which he called “exceptional conics” (coniques exceptionnelles95), or sometimes
“special conics”. The first kind is a conic “represented by two straight lines”, which we
shall sometimes call line-pairs, in keeping with the terminology used by Cayley, which is
still in use today. The second kind is a conic “reduced to a straight line limited by two
points”, and which Chasles calls a “conique infiniment aplatie” – we shall call this form a
point-pair. How can one make sense of these degenerate conics through their “geometrical
equation”? In other words, how to describe them in terms of intersections of homographic
sheaves of rays, and of envelopes of homographic series of points96?

In the Traité des Sections Coniques, Chasles provided a simple answer: a system
composed of two straight lines can be viewed as a conic section because it satifies the
punctual geometrical equation of conics – as well as all other punctual properties of conics.
For instance, Chasles explains, fixing two points on the first of these straight lines, one
can form two sheaves of rays drawn from these two points, which intersect on the points
of the other straight line. These sheaves generate the special conic made of two straight
lines. Similarly, Chasles adds, one can easily show that Pascal’s mystical hexagram or
Desargues’ involution are true for systems of two straight lines, therefore these systems
can be viewed as conics. Tangential properties, however, cannot be extended to these
special conics; as tangents to these curves are defined as all straight lines passing through
the intersection of the two straight lines. The same holds for systems composed of two
points, except that in this case tangential properties of conics are preserved.

This question of the geometrical description of special conics was actually discussed
in British circles at about the same time, including by readers of Chasles. We briefly
pause our discussion of Chasles to present a contemporary account by English geometer

94 [Chasles, 1865b], pp.2-4. While the Traité des Sections Coniques was published in 1865, that is to
say after the first communications on the theory of characteristics, it is very likely that the content of
this book had been written prior to Chasles’ work on systems of conics. In fact, this Traité was first
intended to be the first of two volumes, the second volume being precisely a book on systems of conics.
This second volume was never written, perhaps due to the Vrain-Lucas affair which burst out in 1867,
and took up much of Chasles’ time and effort.

95 [Chasles, 1864a], pp.1173-1174; [Chasles, 1865b], pp.30-33.
96Classifications of degenerate conics have been fluid throughout history, and the one given here by

Chasles and Hirst certainly does not agree with some which can be found in modern textbooks. For
instance, if one wishes to classify conics modulo an affine coordinate transformation in C2, one will have
to distinguish between three kinds of degenerate conics, namely those given the equations X2 − Y 2 = 0,
Y 2 − 1 = 0, and Y 2 = 0; see [Brugallé, 2008], p.4.
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Thomas Hirst of the presence of these degenerate conics, in the hope that it might capture
something not entirely foreign to Chasles’ own geometrical practice97. According to Hirst,
degenerate conics arise either from particular positions of the bases of the sheaves of rays
or series of points (that is to say, the two fixed points or the two fixed straight lines), or
from a particular kind of correspondence98 between the elements of the sheaves.

Consider the first description of conics, as the intersection of two sheaves of rays [p]
and [p′] centered around two fixed points p and p′. In general, no two rays a, b in the first
sheaf can have the same corresponding ray α in the other sheaf, since the correspondence
between rays is (1, 1). This is true, except in one “special case”, Hirst explains. Suppose
that, to each ray of the first sheaf, except for one ray a, corresponds the same ray α of the
second sheaf. The ray corresponding to a, Hirst explains, is indeterminate. To each ray of
the second sheaf, that is not α, there corresponds the ray a. The ray corresponding to α
is also indeterminate. This correspondence, Hirst claims, generates a line-pair, formed by
the two rays a and α. Indeed, each ray of [p′] intersects its correspondent on a, while each
ray of [p] intersects its correspondent on α. Furthermore, the point at the intersection of
a and α is a double point of the degenerate conic, as it is both the intersection of a and its
correspondent, and of α and its correspondent99. Furthermore, the points p and p′ in this
conic do not play any special role. At any point of the conic that is not the intersection
of a and α, the tangent to the conic is either a or α.

If now we construct this special correspondence so that a and α coincide (that is to
say, that a and α both be the ray joining p and p′), then yet another kind of degenerate
curve is generated. Now, the intersection of a and α is indeterminate; but now, p and
p′ play special role. Every ray of [p] (except for a) intersects its correspondent at p, and
every ray of [p′] (except for α) intersects its correspondent at p′; thus, the conic is made of
two points and one straight line joining them. This is the point-pair, or Chasles’ conique
infiniment aplatie100. Note that, here as well, we can describe the tangents to this conic:
in fact, every straight line passing through p or p′ is a tangent to the conic. This conic
can be viewed as a double line terminated by p and p′.

Whether or not Chasles had this exact construction in mind, the way he integrated

97We shall come back to Hirst’s broader engagement with Chasles’ geometry in section 6.1.1.
98 [Hirst, 1866], pp.167-168. Remember that two homographic sheaves of rays are simply two sheaves

of rays in a (1, 1)-correspondence, and that two homographic divisions are simply two series of points in
a (1, 1)-correspondence.

99While these correspondents had been said to be indeterminate by Hirst, the intersections in question
cannot be anywhere else, lest the curve we construct be something other than a conic. Hirst does not
really justify this passage.

100Hirst’s paper then considers the third possibility of having both modes of degeneration at the same
time, by having simultaneously a special correspondence and two coinciding centers. Chasles never
discussed such degenerate conics, but they shall prove very important in the reception of the theory of
characteristics. We shall come back to this issue in chapters 6 and 7.
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Line-pairs and point-pairs

both kinds of degenerate conics in his proofs certainly corresponds to these descriptions –
especially with respect to the definition of the tangents of degenerate conics constructed
as loci101. The theory of characteristics, he would show, can integrate these curves; in
fact, it can even enumerate them. Indeed, Chasles was able to show that, in a system
(µ, ν), there was always a finite number of each of these two kinds of degenerate conics102.
More precisely, in a system, there are 2µ− ν point-pairs, and 2ν− ν line-pairs, for a total
of µ+ ν degenerate conics.

In his initial series of communications, Chasles finds and justifies these numbers by
counting the same number of conics in two different ways, one of which discounts excep-
tional conics. Remember from section 4.2.2 that, in a system (µ, ν), there are 2(µ + ν)
conics which touch another fixed, given conic, denoted U . This number can be derived
directly from a certain proposition of Chasles’ list: this number was the order of the locus
of the points whose polar line with respect to the conics of the sytem was also their polar
line with respect to U . However, this number can also be derived from other propositions
in Chasles’ lists, in a manner which attributes a special role to exceptional conics. An-
other proposition in Chasles’ lists states that103 the common chords of U and the conics of
a system (µ, ν) form the envelope of a curve of class 3µ. Since U is of class 2 (as a conic),
U and this curve have 6µ common tangents (per the dual version of Bézout’s theorem).
These tangents can be interpreted as infinitely small chords of a conic of the system,
which means that there are seemingly 6µ conics in the system touching U . The difference
between these two numbers of conics touching U , Chasles explains, is due solely to the
existence of “exceptional conics”. The first value, namely 2(µ+ ν), is taken by Chasles to
be correct. The difference, 6µ− 2(µ+ ν) = 2(2µ− ν) is therefore the number of line-pairs
conics, which always form with U two infinitely small chords. Thus, this difference can be
interpreted as twice the number of line-pairs conics, wherefrom the result ensues. In fact,
Chasles comments, this method for the obtention of the number of exceptional conics in
a system (µ, ν) can be checked with the help of a variety of properties of such a system;

101Conversely, if we had constructed degenerate conics as envelopes, we would have had to discuss what
their ‘points’ are.

102 [Chasles, 1864a], pp.1173-74.
103 [Chasles, 1864b], p.301.
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and not necessarily that relative to the number of conics satisfying a contact condition.
In a summary of the theory of characteristics written in 1866 by Eugène Prouhet for

the Nouvelles Annales, which he then edited, another computation of these two numbers
is given, which relies solely on the principle of correspondence104. To count line-pairs
conics in a system (µ, ν), for instance, Prouhet takes a straight line L, and a point x on
L. There are µ conics in the system passing through x, and these conics, in turn, intersect
L at µ points u. Conversely, µ other points x correspond to a point u on L. Therefore,
there are 2µ points x which coincide with a corresponding point u. This means that
there are 2µ conics in the system which touch the line L, for a coinciding point for this
correspondence is a point on L that the conic intersects twice. Per definition, there are
ν such conics. The difference 2µ− ν is caused by the presence of line-pairs conics, which
always cross L at two coinciding points, without actually being tangent to L. Therefore,
Prouhet concludes, there are 2µ− ν line-pairs conics.

These proofs may not be entirely satisfactory to modern readers, for various reasons.
For instance, in the first proof, how are we to know that the line-pairs are the sole source
of error in the second computation of the number of conics touching a given conic? In the
second proof, the seemingly ad hoc character of the correction of the number provided by
the principle of correspondence, as well as the lack of explanation for the assertion that
line-pairs conics are the sole source of error, are symptomatic of the difficulties that come
as the cost of generality. Just like algebraists had to deal with the irruption of meaningless
or artifical solutions in their computations, Chasles’ principle of correspondence gives rise
to numbers which must always be critically checked. Chasles mastered his principle, and
made few mistakes: in later texts, he attempted to include this checking stage into the
textual apparatus associated with these proofs by correspondence, as we will see below.

Chasles’ discussion of exceptional curves was not limited to the case of conics. In 1867,
whilst trying to generalize the theory of characteristics to curves of order m, Chasles had
to make similar provisions to account for degenerate solutions to enumerative problems105.
A system of curves of order m is defined by m(m+3)

2 −1 conditions, and one can also define
its characteristics µ, ν in the same manner as for conics. Furthermore, the principle of
correspondence also applies to it – that is to say, one can also construct correspondences
to investigate the properties of these systems. Chasles’ remark is the following: it may
appear, in the course of a proof relying on the principle of correspondence, that a solution,
that is to say a curve of order m, be actually formed by a couple of curves of order k and
m − k (for some integer k < m). For instance, a curve-solution of the fourth order may

104 [Prouhet, 1866], p.196. The article is signed ‘P.’; however, several authors, including Chasles’ Danish
student Hieronymus Zeuthen, refer to this text as being Chasles’. Prouhet attended some of Chasles’
lectures in person, see [Israel, 2017], p.1345.

105 [Chasles, 1867c], pp.800-805. We shall come back to this project in section 4.2.7.
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actually be a pair of conics. It may even be that these two conics coincide, so that the
curve of the fourth order is a double conic; which Chasles readily accepts as a valid curve
of the fourth order in general. In the context of the theory of systems of curves of the
fourth order, however, this seems to lead to a paradox, as a conic can only satisfy five of
the thirteen conditions which define the system of curves of order 4. Chasles concludes
from this paradox that106:

Il faut donc qu’il y ait quelque autre élément qui représente, conjointement
avec la conique, l’être géométrique qui satisfait aux dix conditions.

To explain what this “geometrical being” consists in, Chasles had to return to exceptional
conics. For Chasles, a “conique infiniment aplatie”, or point-pair, is “represented” by two
points and one straight line. This is not merely a description of the set of points composing
the figure; otherwise, the two points would be superfluous, as they necessarily lie on the
straight line. Instead, what this means is that, as a curve of order and class 2, this conic
can be defined in terms of this straight line and these two points. Indeed, from any
point P in the plane, one can draw two straight lines by joining P to each point of the
point-pair; and these straight lines are the two tangents to the conic drawn from P . This
means that the point-pair is defined as a curve of the second class. Moreover, any straight
line intersects the point-pair in two infinitely near points, namely the intersection of the
straight line and the axis joining the two points, provided this axis be understood as a
double line. Chasles comments107:

On peut dire encore qu’une conique représentée par deux points est un être
géométrique formé d’une droite double représentant deux droites coïncidentes,et
de deux points situés sur la droite, avec cette condition que toute droite
menée par un des deux points sera considérée comme une tangente à cet être
géométrique.

Similarly, Chasles argues, the double conic in a system of curves of the fourth order
must be regarded as “composed of arcs, which represent, in some sense, infinitely flat
crescents108”, so that any line passing through these crescents’ vertices is a tangent of the

106“Consequently, there must be some other element which, jointly with the conic, represents the ge-
ometrical being which satisfies the ten conditions”, [Chasles, 1867c], p.801. Chasles mentions only ten
conditions, because he previously had given an example wherein three conditions can be reduced to one.
The argument stays the same in the case of thirteen independent conditions.

107“In other words, a conic represented by two points is a geometrical being composed of a double line
representing two coinciding lines, and of two points located on this line, with the condition that any line
drawn from one of these two points be regarded as a tangent to this geometrical being”, [Chasles, 1867c],
p.801.

108“Une conique faisant partie d’un système de courbes du quatrième ordre doit être considérée comme
composée d’arcs, qui représentent, en quelque sorte, des croissants infiniment aplatis dont les pointes
seraient des sommets; de sorte que toute droite passant par un sommet serait une tangente”, [Chasles,
1867c], p.701.
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double conic.
Exceptional curves had been left out of Chasles’ and De Jonquières’ investigations in

the generation of curves via correspondences. In the context of enumerative problems,
they rise out of necessity; as their presence among the solutions to such a problem cannot
be avoided. To integrate them, however, requires new linguistic stipulations. What a
curve consists in, what its elements (points, tangents) are; these questions required new
answers within the language of correspondences and sheaves of homographic rays and
points.

4.2.6 Multiple conditions and the extended notion of elemen-
tary system

We conclude this presentation of Chasles’ 1864 theory of characteristics by introducing his
treatment of what he called “multiple conditions109” (une condition multiple), not least
because it would prove particularly important in later reinterpretations of this theory110.
Indeed, so far, we have only considered conditions as the geometrical equivalent to a
single algebraic equation in the coefficients of the general conic. However, one can rather
simply introduce conditions which do not fit this description, at least verbally: consider,
for instance, the condition ‘to pass through two given points’. Of course, this condition
can easily be decomposed into two ‘simple’ conditions; but this is not always the case.
For instance, Chasles explains, a condition such as ‘to touch a given curve at a given
point’, or ‘to have a double contact with a given curve’, are both examples of conditions of
“multiplicity” two (‘ordre de multiplicité ’). And yet, these are classical conditions, treated
by Bischoff and De Jonquières in their earlier papers; and, at this point, it is unclear how
they can be incorporated within the methods described above. Furthermore, considering
the epistemic norms with which Chasles measures the worth of a mathematical theory, it
would not be enough to show that one can include these conditions: this inclusion has to
be simple and systematic.

To do so, Chasles proposes two methods. In the first one, he extends the notion of
elementary system, and of characteristics. For any three (simple) conditions Z,Z ′, Z ′′

(which, for the sake of brevity, Chasles abbreviates as 3Z), one can form the following
elementary systems111 (in an extended sense):

(3Z, 1p.) ≡ (µ′, ν ′)
(3Z, 1d.) ≡ (µ′′, ν ′′)

109This notion is introduced in [Chasles, 1864e].
110See chapter 7.1 in particular.
111 [Chasles, 1864e], p.345.

170



4.2. Counting and constructing conics

Note that µ′′ = ν ′, as both numbers represent how many conics satisfy 3Z, pass through
a given point, and touch a given straight line. The three remaining numbers, i.e. µ′, ν ′, ν ′′

will suffice to characterize 3Z. In particular, Chasles explains, every (indecomposable)
double condition θ will be a function of these three numbers. For instance, given the
double condition ‘having a double contact with a given conic U ’, denoted W , Chasles
states that:

N(3Z,W ) = µ′ + ν ′′ − 1
2ν
′

In other words, instead of having a system (µ, ν), a (simple) condition Z, and a general
expression of the form αµ+βν; we now have a system (µ′, ν ′, ν ′′) and a (double) condition
W (we shall see in a moment where this particular result comes from). Chasles did not
specify whether he thought the number of conics in such a system satisfying ϑ would
always be a linear combination of these characteristics; however, Cremona claimed that
this was generally the case112. For this reason, several authors would speak of “Cremona’s
theorem” as the result for double conditions analogous to Chasles’ αµ+ βν formula.

Another method, which Chasles generally favours, is to directly complete multiple
conditions with the right number of elementary conditions; and thus to form another kind
of elementary system. For instance, considering the same double condition W , Chasles
writes113 (without further justification):

(2p.,W ) ≡ (4, 4)
(1p., 1d.,W ) ≡ (4, 4)

(2d.,W ) ≡ (4, 4)

Considering two (simple) conditions Z,Z ′ of respective modules αµ + βν and α′µ + β′ν,
it follows from the equations above that

(1p., Z,W ) ≡ [4(α + β), 4(α + β)]
(1d., Z,W ) ≡ [4(α + β), 4(α + β)]

and therefore (Z,Z ′,W ) ≡ [4(αα′ + Σαβ′ + ββ′), 4(αα′ + Σαβ′ + ββ′)].

In a sense, this is nothing more than an application of the method of substitution to
a broader notion of elementary systems. Chasles draws other results from such compu-
tations. For instance, considering a third simple condition Z ′′ of module α′′µ+ β′′ν, and

112 [Cremona, 1865], p.117.
113 [Chasles, 1864e], p.352.
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denoting 3Z the condition composed of Z,Z ′, Z ′′, he obtains:

N(3Z,W ) = 4(αα′α′′ + Σαα′ + β′′ + Σαβ′β′′ + ββ′β′′)

Comparing this expression to the general formulae obtained in section 4.2.3, which gave
the number of conics satisfying 5 conditions in terms of their modules, Chasles shows
that114:

N(3Z,W ) = N(3Z, 2p.) +N(3Z, 2d.)− 1
2N(3Z, 1p., 1d.)

which is precisely the module of the condition W expressed above as N(3Z,W ) = µ′ +
ν ′′ − 1

2ν
′.

It remains unclear how exactly Chasles computed the characteristics of the elementary
systems given above. In the case ofW , these computations are not out of reach; in general,
however, it remains to be discussed how they can be carried out. Besides this (non-trivial)
point, however, Chasles has suggested a way to integrate multiple conditions to his method
in a general and systematic manner.

4.2.7 A research programme for the years to come

Between February 1864 and April 1867, Chasles read some 18 communications on the
theory of characteristics before the Paris Académie des Sciences. In our presentation, we
have left out several aspects of this theory, such as the extension of his theory to conics in
(three-dimensional) space115, and the collaboration with Cayley and Zeuthen to extend
the principle of correspondence to series of points on a unicursal curve instead of a straight
line116. Among all these possible avenues for generalizations of this theory, Chasles had
singled out two, which he thought were particularly deserving of attention.

The first one is the move from the study of systems of (plane) curves, to that of
systems of (spatial) surfaces. In particular, in one of his communications, published in
1866, Chasles adapted the theory of characteristics to the theory of surfaces of the second
degree117 (in what follows, abbreviated as SSD). In fact, in Chasles’ scientific archives
preserved at the Académie des Sciences, one can find the proof version of the introduction
of what was supposed to be an entire memoir on the theory of systems of SSD118. Dozens
of undated draft pages of this memoir can also be found in the same folder, indicating that
the redaction of the manuscript was at an advanced stage. A SSD can be algebraically

114 [Chasles, 1864e], p.353.
115 [Chasles, 1865a].
116A unicursal curve is a curve of genus 0. We shall come back to this question briefly in 6.1.
117 [Chasles, 1866d].
118Archives de l’Académie des Sciences, Dossier Chasles, 35J/8. We provide a transcription of part of

this memoir in Appendix A.
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defined by the general equation

aX2 + bY 2 + cZ2 + dXY + eXZ + fY Z + hX + iY + jZ + 1 = 0

These surfaces are thus determined by nine conditions. A system of SSD is, consequently,
determined by eight conditions. To each system, Chasles associated not two, but three
characteristics: µ, ν, ρ are respectively the numbers of surfaces in a system which pass
through a given point, touch a given line, and touch a given plane. Chasles claimed
that these three numbers characterized every property of the systems of SSD, just as the
two characteristics µ, ν characterized the properties of systems of conics. Consequently,
the very same method of substitution can be carried out, provided the characteristics of
elementary systems are known. But what exactly are elementary systems of SSD?

There are three elementary conditions surfaces can satisfy, as the number of character-
istics indicates; and these are to pass through a point, to touch a line, or to touch a plane.
Combining these conditions to form a system, that is to say to choose eight times amongst
these three possibilities, yield 45 different elementary systems, that is to say 3× 45 = 135
characteristics to compute. We noticed, in the case of systems of conics, that not all
characteristics were necessary to compute, due to the duality of the systems, as well as
the fact that some characteristics of different systems represent the same numbers. For
instance, the first characteristic µ of the system (3p., 1d.), is none other than the second
characteristic ν of the system (4p.). In the case of elementary systems of SSD, Chasles
finds that only 55 characteristics actually need to be determined. However, things are
not so simple, as there are some multiple conditions which cannot be decomposed, yet
are elementary enough that they “constitute special and independent questions, and not
particular cases, unlike in analytical Geometry where they may be considered as such119”.
This would lead Chasles, in his 1866 paper, into intricate and lengthy enumerations of
these multiple conditions, which in turn he organized via large tables of elementary sys-
tems (see fig. below)120.

119“chasles1866b”, p.406.
120In the manuscript found at the Académie des Sciences, all the possible cases are dealt with, and listed

by dimensions, totalling more than a hundred elementary systems. Chasles’ attempt at a classification
of curves, or systems of curves, does not stand out in the geometrical landscape of these decades. See [Lê
& Paumier, 2016] for a discussion of some attempts at classifying cubic surfaces in the second half of the
19th century.
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[Chasles, 1866d], p.408.

The second line of research pursued by Chasles is that of a theory of characteristics of
curves of any order121. To that end, Chasles considered systems of (plane) curves of order
m, determined by m(m+3)

2 − 1 conditions122. To each of these systems, he associated the
same two characteristics µ, ν, and once more asserted that the same procedure allows for
the enumeration and construction of curves satisfying m(m+3)

2 conditions. Once more, the
crux of the problem lies in the search of elementary systems, as there are a large number
of elementary systems, as well as even more complex lists of multiple conditions. Even
for cubics, that is to say curves of order three, Chasles would not be able to completely
replicate the success of the theory of characteristics for conics – and there would seemingly
be no equivalent to the αµ + βν formula for these curves. However, from these two
attempts, he drew a clear-cut research programme for the years to come, destined to
himself as well as to his successors. Several of his students would indeed take up the
study of systems of cubics: Zeuthen, Schubert, or the lesser-known Maillard all wrote
papers and dissertations attempting to compute the characteristics of elementary systems

121 [Chasles, 1866c].
122The general equation for such curves is Σi,j≤mai,jxiyj = 0. The number of coefficients in this equation

is (m + 1) + m + .. + 1 = (m+1)(m+2)
2 . However, we can fix for instance a0,0 = 1, thereby reducing the

number of independent coefficients to (m+1)(m+2)
2 − 1 = (m+1)(m+2)−2

2 = m2+3m+2−2
2 = m(m+3)

2 , which is
also the number of conditions required to determine a finite number of such curves. A system is defined
by this number minus one conditions.
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of surfaces or algebraic curves, using various new methods123.

4.3 Towards a formal geometry

Between 1867 and 1870, Chasles’ attention was mostly focused on the constant effort
required by the now infamous Vrain-Lucas affair124. According to Hirst, this even led to
a deterioration of Chasles’ lectures and teaching abilities125. The redaction of a Rapport
sur les progrès de la géométrie, upon request of the Ministry of Education, which was
published in 1870, also impeded Chasles’ scientific productivity, which Chasles himself
lamented126. For these reasons, he was never able to finish the second volume of his Traité
des sections coniques127. However, from the year 1870 onwards, Chasles was both free of
the Vrain-Lucas affair and of the task of writing the Rapport. Over the next six years,
he wrote a great number of papers, exclusively published in the C.R.A.S., with some
summaries later published in Liouville’s journal. These publications mark a departure
from the theory of characteristics and the enumeration of curves, and instead focus on
the principle of correspondence128.

4.3.1 The otherness of Chasles’ list-making practices

The principle of correspondence was the main, almost sole, focus of Chasles’ research
throughout the 1870s. Between 1871 and 1877, that is to say until his very last scientific
papers, he wrote (mostly for the C.R.A.S.):

123See section 6.2.
124In 1867, Chasles announced that he had obtained letters from Pascal to Boyle, proving the former’s

priority with respect to the discovery of the law of universal gravitation. A public polemic ensued, first at
the Paris Académie des Sciences, then across Western Europe. For a long period of time, Chasles would
go almost weekly to the Académie to produce new explanations and new ‘proofs’ of the validity of his
claims, in the face of mounting evidence that his letters were indeed forgeries. See [Alder, 2004] for more
on this affair.

125Letter from Hirst to Cremona, dated June 17th 1867, cited in [Israel, 2017], pp.933-934. It must be
kept in mind, however, that Hirst was no neutral observer of this affair: he was one of the vocal opponents
of Chasles’ claims in the Vrain-Lucas affair, despite his admiration for the aging geometer. See [Higgit,
2003], and section 6.1.1.

126 [Chasles, 1870], p.269. On the context for the redaction and request of this report, see [Barbin et al.,
2009].

127For instance, English mathematician Thomas Archer Hirst writes in his diary, on September 17th

1865: “The second volume of this work [Chasles’ new work on conic sections] will contain a full exposition
of his recent most important contribution to the theory of conics. He has found that the properties of
a system of conics satisfying any four conditions whatever may be most naturally expressed in terms of
two elements or characteristics..”, Hirst Diaries, preserved at the Royal Institution in London, Journal
XI, entry dated September 17th 1865, p.1741.

128However, some of Chasles’ results in these papers would later be used by Schubert in his 1879 book
on enumerative geometry; see [Schubert, 1879b], for instance p.337, Lit.16.
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• Two papers on systems of conics under orthogonality conditions129, in April 1871

• Two papers on the principle of correspondence applied to the theory of curves of
order130 m and class n, between April and May 1871, followed by one more in
1872131, and one 132 in 1873

• Five papers on harmonic axes133, mostly between November 1871 and January 1872

• One paper on polygons inscribed or circumscribed to curves in April 1874, followed
by a paper on similar triangles satisfying three conditions134 in May 1874

• Two papers on the principle of correspondence itself135, in April 1874 and May 1875

• Four papers on pairs of segments136, between July and September 1876

• Three papers on triplets of segments137, between September and November 1876

• Four papers on triangles138, between January and May 1877

All of these papers mobilize the principle of correspondence in crucial manner: by this
point, it has become Chasles’ unique mode of demonstration.

These series of papers are remarkably similar in their structure. Most series begin
with an introduction composed of historical remarks on the long-standing importance of
the problem at hand, the assertion that the principle of correspondence yields an infinity
of theorems regarding said problem in the easiest of ways, and result in very long lists
of theorems demonstrating said easiness. Only one or two of these theorems are proven,
for each paper; usually the first one, and sometimes the last one, so that Chasles may
display the principle applied to more complex problems. The lists of theorems are almost
always structured and divided into chapters or sections; the theorems themselves display
a strong textual stability. Their wording is extremely consistent and monotonous, as if to
show the systematicity of Chasles’ method even in the writing of results.

It may be interesting to ponder the choices of topics in these papers: Chasles departs
quickly from systems of conics to study curves in the most general fashion possible, with-
out specifying their class or order. Soon enough, however, he even departs from the study

129 [Chasles, 1871d], [Chasles, 1871c].
130 [Chasles, 1871a], [Chasles, 1871b].
131 [Chasles, 1872a].
132 [Chasles, 1873].
133 [Chasles, 1871e], [Chasles, 1871f], [Chasles, 1871g], [Chasles, 1871h], [Chasles, 1872b].
134 [Chasles, 1874c], [Chasles, 1874b].
135 [Chasles, 1874a], [Chasles, 1875].
136 [Chasles, 1876c], [Chasles, 1876d], [Chasles, 1876b], [Chasles, 1876a].
137 [Chasles, 1876e], [Chasles, 1876g], [Chasles, 1876f].
138 [Chasles, 1876e], [Chasles, 1876g], [Chasles, 1876f].
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of geometrical curves: polygons, then pairs or triplets of segments, and ultimately trian-
gles of constant lengths, fall under the scope of the principle of correspondence. Through
these series of papers, Chasles attempts to systematically expound the complete theory
of a wide range of geometrical figures, in the most general and systematic way possible.
Each series of papers is to represent such a theory: from the systematic application of a
single principle, all properties of a certain figure flow effortlessly and systematically.

While we do not know the content of his actual communications, we can easily imagine,
and hope, that they did not consist in long recitations of monotonous lists of theorems.
No accounts of how readers actually engaged or understood these lists could be found;
they were, however, seemingly very little read, and only rarely mentioned. It seems
that Chasles’ idiosyncratic list-making practice was not really en prise with what the
new generation of geometers was interested in: as we will see in the second part of
this dissertation, most readers of Chasles’ theory of characteristics would identify key
theorems to prove and important problems to solve in a totally different manner from
what is on display here. Such lists, for that matter, would most likely be rejected by most
contemporary mathematical journals: the obsolescence of their content notwithstanding,
they almost seem to put the emphasis on the ‘wrong’ side of things, that is to say on
the variety of small results one can obtain in these questions, rather than on the central
results that allow for further research to be conducted. Thus, to delve into these lists is to
experience what Robert Darnton, in his influential study on French cultural history in the
18th century, has called the “otherness” of past ways of thinking139. By focusing on texts
which seem radically alien to us, such as this tale, judged to be extremely hilarious by its
authors, of a slaughter by some apprentices of their master’s cats, Darnton highlighted the
benefits to be reaped for the historian from local studies of such cultural practices, which
shock and puzzle the modern readers. In a similar way, to overcome the initial surprise
experienced at the sight of Chasles’ lists yields insights into how this mid-nineteenth-
century geometer understood mathematical activity and its goals.

139 [Darnton, 1984], p.4.
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[Chasles, 1871h], p.1410

Indeed, these lists form a very clear case of a historical actor’s attempt at crafting a
literary technology suited for conveying knowledge in a manner which they saw as epis-
temologically valuable. At a fundamental level, this textual practice is used by Chasles
to provide his readers with a tool to be used while solving specific problems, not unlike
logarithm tables. They also serve, in the context of the theory of systems of curves, to
run the general procedure described above. But this is not enough to explain Chasles’
persistence in relying on such list-making practices, in contexts as diverse as the geometry
of triangles, conics, or harmonic axes. More fundamentally, these lists serve to display the
systematic and uniform generality of this mode of discovering and proving the whole of
the geometrical theory of a given figure: the principle of correspondence has turned into
a universal, epistemically-virtuous instrument, for geometers to use effortlessly. It may
be useful, here, to recall Chasles’ admiration of Pascal’s mystical hexagram, as expressed
in the Aperçu Historique140:

Nous concevons parfaitement, d’après la fécondité éprouvée des théorèmes
que nous venons de citer, que Pascal en ait fait, comme il l’annonçait, la
base d’Éléments coniques complets; et qu’en les déduisant de son hexagramme
mystique, il ait tiré de ce seul principe quatre cents corollaires, comme le dit
le P. Mersenne.

Chasles’ principle, through these many lists, has yielded a lot more than 400 corollaries;
but it was not enough for the principle to be powerful. For geometry as an activity and a

140“We understand perfectly well, from what we know of the fruitfulness of the theorems we just quoted,
that, as Pascal announced it, he made them the basis of his Complete Elements on Conics, and that, by
deducing them from his mystic hexagram, he derived from this single principle 400 corollaries, as Father
Mersenne said”, [Chasles, 1837], p.73.
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practice to be guided by the epistemic virtues that Chasles had identified already in 1837,
even a new publishing method was required, and such was the purpose of these lists.

In Chasles’ scientific archives, preserved by the Académie des Sciences, one finds many
more documents which bear witness to Chasles’ intense research activity on this very
topic from 1864 until late into the 1870s. One specific activity, namely the generation of
hundreds of similar propositions via the principle of correspondences, was of paramount
importance for the theory of characteristics to be applicable in a wide range of cases. A
plethora of brief, handwritten notes let us peek through Chasles’ mathematical laboratory,
and observe him hard at work, producing these lists of propositions.

4.3.2 A formal principle of correspondence

Alongside the uniformity of his lists, Chasles sought to make apparent the uniformity
of their mode of production. The properties contained in these lists were all derived
from the generalized principle of correspondence, which Chasles had constructed in the
context of the theory of characteristics. While there was little change or improvement of
the mathematical content (provided that such a notion is even meaningful) attached by
Chasles to the principle of correspondence from 1864 onwards141, the textual apparatus
attached to this principle changed considerably from 1874 onward. Like the lists described
above, through the constant reworking of this textual apparatus, Chasles attempts to
devise a way for geometrical practice, including its writing, to be as systematic and
uniform as possible.

We have already discussed in detail the structure of Chasles’ 1864 proofs by corre-
spondence. Chasles’ proofs up to 1873 would follow the same outline, with the addition
of an extra step at the end of the proof to count and discard the “solutions étrangères”,
that is to say coinciding points of the correspondence which do not come from a proper
solution to the problem being solved142. A typical example of this is Chasles’ proof by
correspondence of Bézout’s theorem, that is to say of the fact that two curves of order p
and p′ always have pp′ intersection points143. Chasles first fixes two points I and O (this
is not really a departure from the proof-structure as described previously, as the point O
does not play the same role as I, as will be made clear below), and considers a variable line
IX. This line intersects the first curve at p points α, per definition of the order of a curve.

141The sole exception being the extension of this principle to correspondences on unicursal curves, that
is to say curves whose genus is zero.

142The term “solution étrangère” is not new: in fact, it occurs somewhat frequently in texts of analysis
throughout the 1840s and 1850s to denote solutions provided by algebraic equations which are not appli-
cable to the original problem. A typical example is Bertrand’s Traité élémentaire d’algèbre, [Bertrand,
1850], p.88, where one of two roots of a quadratic equation cannot lead to a meaningful solution of an
elementary geometrical problem.

143 [Chasles, 1872a], p.737-738.
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From the points α, one can draw p lines Oα, each of which intersects the second curve at
p′ points. This forms a total of pp′ points of intersection of the second curve and the lines
Oα. From these points, one can draw pp′ lines passing through I, that is to say that to
one line IX correspond pp′ lines IU . To construct the reciprocal correspondence, Chasles
forms the p′ intersection points α′ of a line IU and the second curve, and from these
points are drawn p′ lines passing through O. Each of these lines intersects the first curve
at p points, totalling p′p of intersections on the first curve, wherefrom can be drawn p′p
lines IX. Per the second lemma144 regarding correspondences, there are pp′ + p′p = 2pp′

coinciding lines for this correspondence. A coinciding line, as the construction shows, is
one that passes through two coinciding points α and α′, that is to say an intersection
point of the two curves. However, there are not 2pp′ such points, for amongst the 2pp′

coinciding lines, pp′ are coinciding with the line IO. Since O is arbitrary, it does not have
to be an intersection point of the two curves, and these solutions are discarded, leaving
Chasles with pp′ intersection points, that is to say Bézout’s theorem. Chasles’ never shows
that the “solutions étrangères” he identifies are the only ones; nor does he really discuss
why the solutions he discards are indeed to be rejected.

The few proofs given in the papers published between 1871 and 1873, however, are
not as highly structured as they would become in 1874. Indeed, until this point, they
remain mostly verbal, with the addition of these ambiguous symbols for series of points
and lines that we have already described. In 1874, a new literary technology would be
introduced without any explanation by Chasles, under the form of what we could call
a ‘correspondence tableau’. Here is a typical example of the new form that proofs by
correspondence adopted at this period:

[Chasles, 1874a], p.579

Let us describe precisely this textual device. First comes the statement of the theorem.
144Instead of considering correspondences between two series of points on a line, one can consider

correspondences between rays turning about a point.
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Symbolic notations are used to represent every datum of the statement, to be used in
the body of the proof: for instance, letters are chosen to represent fixed points or lines
in the plane, to denote the orders of the curves at hand etc. Then Chasles moves on to
the proof itself: first, he rephrases the demonstrandum into either a certain number of
intersections between a locus and an arbitrary line L, or a certain number of tangents or
chords to a certain locus, and passing through an arbitrary point I. To that end, Chasles
always uses a sentence of the form “il s’agit de démontrer que..”. Then, Chasles produces
a tableau, in which each line represents one side of the correspondence between either two
series of points on L, or two series of lines drawn from I, depending on the nature of the
previous reformulation. Below these two lines is written down the addition of the numbers
of corresponding points or lines in each direction, that is to say the number of coinciding
points and lines, per the principle of correspondence. Lastly, Chasles writes “c’est-à-dire”,
and describes the correspondence that had been representend by the tableau. The tenses
and the sentences used in the wording of the description of correspondences are always
the same: present tense, moving from one line to other parts of the figure along the lines
of a theoretical construction. This literary technology changes slightly in the following
years. In 1875, for instance, Chasles reworks slightly the central tableau (see fig. below).
Furthermore, when needed, Chasles adds an extra paragraph below the proof, in which
the “solutions étrangères” are enumerated.

[Chasles, 1876c], p.468
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In Chasles’ scientific archives, there can be found hundreds of handwritten notes using
this apparatus. Most of the times, the textual part of the proof is omitted, or replaced
by a small diagram.

Archives of the Paris Académie des Sciences, Chasles 35J/4

Through this technology, Chasles aims to craft an instrument that will yield an infinity
of results in each and every geometrical theory possible; such seems to be the intent
behind his frenzy of publications in the 1870s. However, he also attempts to embody a
certain ideal of generality as systematicity, which goes back to his very first writings on
the history of Geometry, such as the Aperçu Historique. Recall how, in section 1.2.2, we
described the “stability criterion” often employed by Chasles to measure the generality of
a past method. If a proof or a method is such that one can substitute in it all occurences
of a figure by a more general one (or by another one of the same kind), and still have a
valid proof for the new figure, then the method was deemed particularly general. In the
1874 paper on the principle of correspondence, in which the ‘correspondence tableaux’
are first introduced, Chasles mobilized once more this criterion, but this time to display
the power of his own method. To display this stability of the proof (and of its textual
materiality) under the operation of generalization, was key in the creation of the textual
apparatus associated to the principle of correspondence.

Indeed, Chasles opened his communication by quoting a theorem of Poncelet, stated
and proven in 1822, in the Traité des propriétés projectives. This theorem, in Chasles’
paper, reads as follows145:

Quand un angle de grandeur constante tourne autour de son sommet situé
en un point d’une conique, la corde que ses côtés interceptent dans la courbe
enveloppe une autre conique, laquelle se réduit à un point quand l’angle est
droit.

145“When an angle of constant magnitude turns about its summit, which lies on a point of a conic, the
chords of the conic intercepted by the sides of the angle inside the curve form the envelope of another
conic, which is reduced to a single point is the angle is right”, [Chasles, 1874a], p.579. See fig. below for
a diagram representing Poncelet’s proposition.
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In blue, the chords formed by a constant angle (α = 30◦) rotating about a point of a conic
(in red). The chords envelope another conic.

It is not difficult to produce a proof by correspondence of this proposition. Let us consider
a conic C in the plane, one point O on C, and a constant magnitude α for the angle viewed
from C. Choosing arbitrarily one point I in the plane, any straight line IX intersects the
conic in two points a. The two straight lines Oa give rise to 2 straight lines OA′, which
form an angle of magnitude α with Oa. These two straight lines OA′ intersect the conic
at two points a′ (in total), through which two straight lines IU can be drawn. Conversely,
to a straight line IU , one associates 2 straight lines IX in the same manner. This means
that there are 4 coinciding straight lines IX, two of which are “solutions étrangères”,
which are the two tangents to C drawn from I. Therefore, from an arbitrary point I,
one can draw 4− 2 = 2 straight lines which are tangent to the envelope described by the
proposition; therefore, the curve described here is a conic.

This proposition, Chasles explains, can be generalized in many ways. Conics can be
replaced by curves of order m; angles between two lines by cross-ratios formed by these
two lines and two other fixed lines; and the fixed point on the conic can be a point of
multiplicity ν. The crucial property of the principle of correspondence, for Chasles, was
to produce a proof(-text) in which each of these terms could be ‘translated’ by its more
general counter-part, leaving the proof of the general theorem intact and valid. Indeed,
the very proof given above can be stated for a more general proposition, provided one
carries out the adequate substitutions. What’s more, Chasles comments, the general proof
is no more difficult than the simple one146.

The principle of correspondence, for Chasles, had become a universal and virtuous
instrument in the geometer’s hands. Not only is it applicable in “an infinite variety of
questions147”, and of the utmost simplicity (as it involves nothing more than the addition
of two numbers), but it also serves the effortless generalization of propositions, which
Chasles had identified as one of two central goals of mathematical activity148. Through a

146In fact, the enumeration of the “solutions étrangères” somewhat puts the lie to Chasles’ claim, as it
requires some more work than for conics.

147 [Chasles, 1874a], p.578.
148See section 1.2.5.
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reflection on notations and textual devices, Chasles had systematized the very language of
geometry, both for its propositions and its proofs. This device, however, was geared toward
specific epistemic goals, which not everyone shared: what mattered to Chasles is less
overarching structural theorems, but rather the effortless and methodical multiplication
of particular truths.
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Chapter 5
“A proposition sometimes true, sometimes
false”: the controversy between Chasles and
De Jonquières

The similarities between Chasles’ theory of characteristics, and the theory of plane curves
proposed by De Jonquières in his 1861 paper, are quite apparent. De Jonquières had
introduced series of curves, which are collections of planar geometrical curves of degree
n which all “share” 1

2n(n + 3) − 1 conditions, that is to say one less than the number
of conditions that are required to completely determine one such curve. For a given
série, he defined the “indice” (index) N as the number of curves in the série which pass
through a given point. Chasles, on the other hand, built a theory of systèmes of plane
conics, which satisfy four conditions. He then introduced two characteristics, µ and ν,
respectively defined as the numbers of conics passing through a given point, and touching
a given straight line. He later expanded these concepts to systems of curves of any order
m: characteristics were defined in the same way, although Chasles pointed to greater
difficulties in adapting his theory to these curves, for which the degenerate cases are more
difficult to characterize.

Of course, the results at the heart of both theories are contradictory. In particular, one
of De Jonquières’ theorem stated that in a series of indice N , there were 2(n−1)N curves
that touched a given line L. In the case of conics, an observation at the center of the
theory of characteristics stated that for any condition Z, and any system of characteristics
(µ, ν), the number of conics in the system satisfying Z was αµ+βν. It appears thus as if
series and systèmes are the same thing, and µ = N . Taking both theories to be true, one
seems therefore entitled to write ν = 2(n−1)N , wherefrom it follows that any condition Z
is satisfied in a system (µ, ν) by kµ conics, where k solely depends on Z. Chasles’ theory
would be greatly simplified, but also profoundly transformed. Where the two numbers
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µ and ν were said to characterize systems of conics, playing the role of their equation,
now µ entirely characterizes systems of conics, and the two numbers µ and n characterize
systems of curves of order n.

Of course, Chasles thought the proof of the ν = 2(n − 1)N formula to be seriously
flawed, and that the right-hand term only yielded a maximal value, and not an equality.
This would be Chasles’ justification not to include, in his initial series of papers on the
theory of characteristics, any acknowledgement or discussion of this possible debt toward
his student, save for a brief footnote in the second of these communications1. At any rate,
by presenting his theory through a rapid succession of papers delivered at the Académie
des Sciences, Chasles favoured a mode of publication that allowed for a quick and large-
scale priority claim over his results. Nor did De Jonquières express issues with Chasles
publishing a theory similar to his: in fact, between 1864 and 1866, De Jonquières even
communicated to the Académie des Sciences texts which explicitly built on and acknowl-
edged Chasles’ theory without mentioning his own past research on the same topic. There
were reasons for that: De Jonquières thought his own results inexact, or not as absolute
as those of Chasles; and he viewed himself as a disciple of Chasles, despite having only
set foot in the latter’s lecture hall a handful of times at best.

However, actors removed from the Parisian circles certainly did not feel the same
pressure to leave Chasles’ priority undisputed. Prior to Chasles’ initial communication
on the theory of characteristics, Luigi Cremona had already privately communicated with
De Jonquières in order to cast doubts on the validity of Chasles’ criticisms. As De Jon-
quières was increasingly convinced of the worth of papers he had by then already publicly
disavowed, he also obtained the opportunity to go back to Paris, after several years at
sea. The return to Paris, and to the Académie des Sciences, set off a priority dispute
that had been looming large: as soon as he set foot within the walls of the Académie,
a mere passing remark of De Jonquières’ was enough for Chasles to feel threatened, and
an intense querelle de priorité started. Shortly thereafter, the controversy went beyond
the confines of the Académie des Sciences. As it took new forms, new arguments were
mobilized, and the priority quarrel turned into a full-fledged dispute over the validity and
generality of some of De Jonquières’ and Chasles’ results. This chapter is devoted to this
year-long dispute.

5.1 Situating the controversy

This dispute started, like many others, as a priority claim expressed during the weekly
meetings of the Académie des Sciences. In this section, we set up the stakes of the

1 [Chasles, 1864b], p.308.
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debate, by discussing the similarities between both theories as perceived by both actors,
the locations of the discussion, and the rhetorical postures of both parties toward the
community of geometers which they sought to convince.

5.1.1 Scientific controversies as transformative episodes

For several decades now, controversies have been of major interest to historians of science
at large2. Simon Schaffer and Steve Shapin, in their widely influential Leviathan and the
Air-pump, wrote for instance3:

Historical instances of controversy over natural phenomena or intellectual
practices have two advantages, from our point of view. One is that they
often involve disagreements over the reality of entities or propriety of prac-
tices whose existence or value are subsequently taken to be unproblematic or
settled. [..] Another advantage afforded by studying controversy is that his-
torical actors frequently play a role analogous to that of our pretend-stranger:
in the course of controversy they attempt to deconstruct the taken-for-granted
quality of their antagonists’ preferred beliefs and practices, and they do this
by trying to display the artifactual and conventional status of those beliefs and
practices. Since this is the case, participants in controversy offer the historian
resources for playing stranger.

The controversy between Chasles and De Jonquières certainly embodies many of these
virtues for the historian that Shapin and Schaffer attributed to controversies. De Jon-
quières, in his struggle to publicly battle a much-respected and admired geometer, of
whom everyone knew he had been a faithful student, sought to undermine several of
Chasles’ assumptions regarding the validity of some facets of his geometrical practice.
As we shall see below, he attacked Chasles’ belief in a analogy between the concepts of
algebra and those of geometry, suggesting that these two sciences might have different
forms of exactness and generality. Furthermore, this debate allows us to deconstruct
historical actors’ understanding of mathematical notions which were very much without
explicit and complete definitions. Notable amongst these notions is the multiplicity of
curves or points, which were usually dealt with by way of verbal expressions that are
either meaningless or contradictory when taken at face-value. Chasles’ textual apparatus
for the setting up of correspondences often resorts to sentences whose meaning hinges

2In addition to the specific papers and books mentioned below, see the whole issue of Science in
Context devoted to this topic, especially the introductory paper [Dascal, 1998], where it is argued that
controversies are an essential component of the development of science.

3 [Shapin & Schaffer, 1985], p.7.
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upon semantics whose rules remained largely implicit4: this is in particular the case when
Chasles stipulates tangencies for degenerate curves, thereby introducing sentences such
as ‘a conic made of one line and two points’. More generally, this dispute sheds light for
instance on how De Jonquières made sense of Chasles’ proofs per correspondence, and of
the enumeration of “solutions étrangères”.

There are limits, however, to this picture of controversies as revelatory episodes in the
history of science. Indeed, there are controversies which lead to no productive discussion.
Chasles, for one, did not produce any counter-epistemology to that of De Jonquières, nor
did he really clarify the methodological or ontological underpinnings of his own geometrical
theory. Rather, he repeated his belief that De Jonquières was wrong and misguided
throughout the dispute, and used his advantageous social position to assert his authority
and priority without engaging with his student’s progressive departure from their common
research program. More pointedly yet, a limit to the image of controversies as revealing
tacit knowledge and implicit practices lies in the idea that controversies are places where
differences are constructed rather than spelled out. It seems difficult to assert that De
Jonquières’ anti-Chaslesean understanding of the configuration of the algebraic and the
geometrical was there all along, to be revealed by a clash of results, egos, and postures.
This is a controversy between two geometers who seemed to share mathematical methods,
scientific goals, and epistemological values, up until one formula tore them apart. To
understand the stark divide which grew between them over the course of one year, one
has to look at this controversy not as the clash of pre-existing incompatible epistemic
practices or ideals, but also as an episode in which actors build novel epistemological
distinctions to support key results or practices with which they cannot afford to depart
in the face of criticism. Debating scientific knowledge and its modalities is always a
transformative process for epistemic ideals and practices alike.

One specific epistemic ideal in particular would be put under heavy strain throughout
the course of this controversy, namely the value of generality for geometrical proposi-
tions5. Defending his formulae, De Jonquières would first contest the absolute falsity

4A broader point in this direction, concerning the language of nineteenth-century geometry, has been
made by the American philosopher Mark Wilson: “Insofar as surface syntax goes, the truth of the sentence
‘L meets C in two points’ seems to require a semantical interpretation where the denotation of ‘point’
contains two objects common to L and C, some of which must lie infinitely near to one another. A
mathematician of mid-century - George Salmon, say - would have happily acquiesced in this ‘apparent
semantics’ for the language. But as geometrical experience subsequently enlarged, it became evident that
unconstrained reasoning about infinitely near objects can lead to all sorts of muddles. But Bézout’s rule
cannot be simply junked; it forms an integral part of some of the most important, and seemingly correct,
geometrical results. Somehow the traditional, Bezout-based proofs find their ways to perfectly correct
conclusions, despite the fact that their mediating steps seem false, insofar as they rely upon an untenable
group of objects. The natural suggestion is that perhaps the ‘meaning’ of these intermediate statements
ought to be reconsidered; they should be reparsed so that correct information is carried from premises to
conclusion”, [Wilson, 1994], pp.522-526.

5Another scientific dispute between mathematicians who had two different conceptions of the value of
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which Chasles attributed to them by pointing to the large amount of cases in which they
were correct. This was inacceptable for Chasles, for whom the generality of a result
was not something to be measured by its domain of validity. To strengthen his priority
claim, De Jonquières had to renegotiate the value of generality, which he did by sever-
ing the bond between algebra and geometry. The analogy between these two sciences
had underpinned Chasles’ research for decades: while his methods were supposed to have
certain epistemological advantages over analytical methods, they nonetheless captured
several features of the algebraic science, and were modeled after it in many regards. De
Jonquières, to defend the generality of his formulae in face of the many exceptions that
Chasles had pointed to, would define a new generality for algebraic results which was
incompatible with geometrical verifications. Algebra, as a pure language devoid of any
imperfection, provides absolute certainties, which sometimes geometry seems to contra-
dict in specific cases: this, for De Jonquières, is only so because geometry surreptitiously
introduces impurities into the question at hand. At stake is the interplay of algebraic
forms and geometrical figures, or, in other words, the question of the geometrical signifi-
cance of results obtained by algebraic methods whose relation to figures is not constantly
under check by intuitive grasp. As he sharpened his epistemological theses on the role of
algebraic language within geometry, De Jonquières eventually criticized the very identity
between µ and N , two numbers whose definitions are yet verbally identical. While the
reform of language had thus far been tied to the quest for a means for expressing abstract
and general truths, now generality was becoming dependent upon the very choice of a
language.

This episode is not one where two incompatible epistemic ideals for geometrical prac-
tice collide. Rather, it is one where a central, inner tension of a geometrical practice long
in the making was brought to the fore, and led to a consequential epistemological divide.
As such, this controversy unfolded both on a social, a mathematical, and a philosophical
plane, in a way that can’t be comprehensively described by a watertight separation of
these aspects6.

5.1.2 Cremona’s defense of De Jonquières’ formulae

To understand this dispute, we must first discuss the evolution of De Jonquières’ opinion
on the validity of his 1861 formula, which was mostly impacted by his correspondence

generality is that of Kronecker and Jordan in 1874, studied in [Brechenmacher, 2016b].
6“The conceptual, technical, normative, or epistemological arguments used to talk about mathematics

cannot be accounted for by social factors alone: one has to take into account the relative autonomy of the
mathematical field, which means that people cannot say ‘anything they want’ on mathematical topics at
stake during a debate. Thus, the transversal nature of [controversies] leads to questions about the way
in which mathematical theorems are validated, about what exactly makes a proof.”, [Ehrhardt, 2011],
p.391.
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with Luigi Cremona.
Cremona wrote two letters to De Jonquières on April 19th and September 20th 1863,

as an attempt to save these supposedly faulty results and proofs7. This was important
for Cremona, not least because he had used and reproduced these results in his 1862
Introduzione8. However, Cremona’s letters were only able to arrive in De Jonquières’
hands in January 1864. Indeed, the letters had been sent to Mexico, where De Jonquières
was taking part in the Franco-Mexican war which started in 1861; but by the time the
letters had crossed the Atlantic, De Jonquières had returned to France. Cremona had
written to mention his recent publications on series of conics, in which he had obtained
in new ways some of De Jonquières’ formulas9, and managed to explain why conics were
an exception to the generality of these formulas.

Cremona, in fact, had come up with a different explanation for the apparent falsity of
De Jonquières’ formula. Cremona thought that the lemma through which De Jonquières
converted series into a general equation was false, but that it was not the main reason
for the contradiction between the formulae and what was known about numbers of conics
satisfying certain tangency conditions. Instead, in a brief 1863 paper, Cremona had
attributed this contradiction (in the case of conics) to the presence of degenerate curves.
For instance, De Jonquières’ Théorème II claims that in a series of conics of index N ,
there are 2N conics which touch a given straight line. Using slightly different notations,
Cremona explained why this number was only a maximal value in certain series of conics10:

Il numero M ′ è in generale eguale a 2M ; ma può ricevere una riduzione
quando dalle coniche risolventi il problema si vogliano separare i sistemi di
rette sovrapposte, che in certi casi vi figurano. Questo non può evidentemente
accadere se le coniche della serie denovo passare per quattro o per tre punti
dati.[..]
Per determinare tale riduzione, ricordiamo che le coniche passanti per due
punti dati e tangenti a due rette date formano una serie d’indice 4, nella

7From August 1863 to December 1864, Bischoff would write very regularly to Cremona as well, on
the same problems as discussed here. It is unclear whether Bischoff also discussed this matter with De
Jonquières directly, and if so, to what extent, [Israel, 2017], pp.155-170.

8 [Cremona, 1862], pp.63-70.
9 [Cremona, 1863a], [Cremona, 1863b].

10“The number M ′ is in general equal to 2M ; but it can receive a reduction if we want to separate
the systems of superimposed straight lines. This obviously cannot happen if the conics of the series have
to pass through four or three given points. [..] To determine the diminution [of the number provided
by De Jonquières’ formulae], remember that the conics passing through two given points and tangent to
two given lines form a series of index 4, in which, instead of eight, there are only four conics (effectively)
tangent to a third line. If the line joining the given points meets the two given lines in a, b, the segment
ab, viewed as a conic (whose dimension is null) tangent to the given lines in a, b, also manages to be
tangent to any third line; and, as such, it represents four (coinciding) solutions to the problem: two of
its points being given, describe a conic tangent to the two given lines and to a third line”, [Cremona,
1863b], pp.17-18.
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quale, invece di otto, vi sono solamente quattro coniche (effettive) tangenti ad
una terza retta. Se la retta che unisce i punti dati incontra le due rette date
in a, b, il segmento ab, risguardalo come una conica (di cui una dimensione è
nulla) tangente alle rette date in a, b, riesce tangente anche a qualsivoglia terza
retta; e, come tale, rappresenta quattro soluzioni (coincidenti) del problema:
descrivere pei due punti dati una conica tangente alle due rette date e ad una
terza retta.

In other words, a certain kind of degenerate conics (namely, double lines) appear as conics
which are always tangent to the given straight line. If one wants to discount them as true
tangent conics, then a certain number, which at this point was not easily expressible,
must be subtracted from 2N . Furthermore, these degenerate conics do not appear in
every series of conics: for instance, conics which ought to pass through four given points
cannot be double-lines, as no straight lines goes through four given points in general.
While the formula was thus false in the case of conics, Cremona thought that it had a
broader value. For general systems of curves of order m, these degenerate curves which
falsify De Jonquières’ results are not always present.

On January 23rd 1864, De Jonquières was finally able to reply to these remarks of
Cremona. He first remained convinced of the fallacy of his methods and of his results11:

Le mode de démonstration que j’avais cru pouvoir employer et que vous avez
reproduit dans votre livre, n’est pas correct. Voici en quoi il consiste : «à un
point x, sur une droite, il correspond M · n points y, et à chaque point y, il
correspond Nm points x. Donc les x et les y sont liées entre elles par une
équation de la forme A · yMn · xNm + etc., qui devient du degré M · n+N ·m
en x seul, quand on fait x = y ». Mais qui dit que l’équation ne devient pas
A·yMn ·B ·xNm+etc., ou toute autre combinaison intermédiaire entre ces deux
hypothèses également possibles ? Qui dit, en un mot, que la première équation

11“The mode of proof which I thought I could use, and which you reproduced in your book, is not
correct. Here is what it consists in: «to a point x on a straight line, there correspond M ·n points y, and
to a each point y, there correspond N ·m points x. Therefore the x and the y are linked to one another by
an equation of the form A ·yMn ·xNm+etc., which becomes an equation of degreeM ·n+N ·m in x only,
once one sets x = y. »However, who’s to say that the equation does not become A · yMn ·B · xNm + etc.,
or any intermediary combination between these two hypotheses, which are all equally possibe? Who’s
to say, in a word, that the first equation does not have several of its coefficients equal to zero, among
those which contain the variables in the highest degrees? This mode of reasoning, which is appealing,
and has often been used by many very estimable [peers] (which fooled me), is not rigorous; it is not even
exact, or at least it only proves one thing, namely that the final free is in general and at most a certain
number. It only indicates an upper limit, and not an absolute number”, [Israel, 2017], pp.973-975. In
the edited correspondence, one reads “qui devient du degré M ·n+N ·M en x”, but this is most likely a
mistake made in the transcription, which we have corrected here. Similarly, the second equation in x and
y here seems to have been wrongly transcribed, as it should be one with a total degree strictly inferior
to Mn+Nm.
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n’a pas plusieurs coefficients nuls, parmi ceux qui contiennent les variables aux
degrés les plus élevés ? Ce mode de raisonnement, qui est séduisant, et qui a
été assez souvent employé par des autres forts estimables (ce qui m’a trompé),
n’est pas rigoureux ; n’est même pas exact, ou du moins il ne prouve qu’une
chose, c’est que le degré final est en général et au plus un certain nombre. Il
indique donc une limite supérieure et non un nombre absolu.

In the rest of this letter, De Jonquières reasserted his belief that his analytical translation
of the concept of series of conics as a rational equation F (x, y) = 0 was beyond doubts, a
belief which Cremona obviously did not share.

Cremona replied immediately with another letter, sent to De Jonquières on January
29th 1864, containing more detailed responses to the problems that had been identified
in this proof. While we do not know exactly what Cremona wrote, it is likely that De
Jonquières understood something other than the intended meaning. De Jonquières, in his
reply from February 9th, finally accepted Battaglini’s refutation of the analytical transla-
tion; and claimed that perhaps the fact that not all series have rational analytical repre-
sentations could be the reason for the lack of generality of his formulas. De Jonquières
still did not reconsider the validity of his previous results, which was the intent of Cre-
mona’s letter: in fact, De Jonquières even recounts having shared Cremona’s arguments
with Chasles, who was not impressed with them. This defense of the 2(n− 1)N formula
cannot reside in the question of the analytical representation of series: as Cremona had
already noted by this point, the problem lay in the multiple counting of degenerate conics.

By this point, Chasles had started to publish his theory of characteristics, and Cremona
immediately reacted to it. From April 1864 onward, Cremona would send formulas, proofs,
and even corrections of some of Chasles’ results on a regular basis, to be published in the
Comptes-Rendus de l’Académie des Sciences. All these texts used Chasles’ notations and
methods faithfully. And yet, at the same time, Cremona kept arguing for the rehabilitation
of De Jonquières’ earlier results in private. Indeed, in a letter sent on April 6th 1864, De
Jonquières even asked Cremona to give up on his formulas12:

J’admire votre dévouement à ma formule ν = 2(m − 1)µ, et le courage que
vous déployez pour une mauvaise cause. Il n’y a pas de relation générale,
dépendante du degré des courbes de la série, entre les deux caractéristiques
µ et ν ; cette relation varie dans chaque cas. Or que signifie une règle
qui ne s’applique jamais sans exception ? Abandonnez moi donc, en me lais-
sant, si vous voulez, l’honneur d’avoir le premier songé à caractériser géométriquement
les systèmes de courbes. Mon indice N , qui est la caractéristique µ de M.

12 [Israel, 2017], pp.977-978.
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Chasles, était bon, et il reste. Mais j’ai eu tort de croire que l’autre caractéris-
tique en était une conséquence exprimable par une formule générale, et ç’a été
un trait de lumière que d’introduire la seconde caractéristique ν, sans aucune
subordination à la première. Et, de fait, pourquoi le nombre des courbes qui
passent par un point jouerait-il un rôle exclusif, aux dépens du nombre des
courbes qui touchent une droite ? La loi de dualité attribue une importance
égale aux deux nombres, et il ne fallait qu’un peu de philosophie pour y songer
; comme pour l’œuf de Christophe Colomb.

This was a busy period for De Jonquières, whose scientific output between 1861 and 1865
would be at a low ebb. Having gone back to France for a few months only, De Jonquières
was sent in May to Saïgon, where he would act as “chef d’état-major général” (Chief of
Staff of the Armies) for two years13. Far from Paris, he was still able to receive news from
the mathematical communities of Europe: Battaglini, for instance, sent him every issue
of the Giornale di Matematiche as soon as it was printed14. In the second half of the year
1865, De Jonquières was able to devote time once more to his mathematical studies, and
he would send three notes to three European journals15. The first one, written on July
16th for the Comptes-Rendus de l’Académie des Sciences, and communicated by Chasles
and Liouville, dealt with systems of surfaces of arbitrary order, and was very much in
the lines of what Chasles had done until then. In the other two papers, however, De
Jonquières went back to his 1861 formulas with a new twist: he now found them to be
perfectly exact. Around the same time, on November 30th, De Jonquières sent a letter to
Cremona containing a similar reversal of his past doubts16:

Les sincères reproches que je me faisais “de vous avoir induit en erreur dans
votre introduction à la théorie des courbes au sujet des séries à indices” sont
sans fondement. Mon mémoire d’avril 1861 (Journal de Liouville) n’a pas les
torts que je croyais, et les scrupules que j’avais admis (faute de temps pour
en examiner les causes) au moment où j’allais quitter Paris pour venir en
Cochinchine, tombent devant l’examen plus sérieux de la question, que j’ai eu
tout récemment le loisir de faire. Ainsi tout ce que vous avez, dans l’ouvrage
dont je parle, emprunté à mon mémoire est exact. Il est parfaitement vrai
que les séries ou systèmes de courbes peuvent, si leur degré commun est in-
diqué, être définis par un seul indice ou caractéristique, et que la seconde
caractéristique est toujours une même fonction simple de la première. Ainsi

13 [de Jonquières, 1883], p.14.
14 [Israel, 2017], p.980.
15 [de Jonquières, 1865b], [de Jonquières, 1865a], [de Jonquières, 1865c].
16 [Israel, 2017], pp.982-984.
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µ (ou ce que j’appelais l’indice N) exprimant le nombre des courbes du sys-
tème (que j’appelais la série) qui passent par un point quelconque du plan,
on a toujours (je veux dire généralement) ν = 2(n − 1)µ, n étant le degré
commun des courbes de la série, et ν exprimant le nombre des courbes qui
touchent une droite quelconque. Mon seul tort (que je confesse humblement)
a été d’attribuer à des raisons de polarité réciproque l’exception apparente que
présentent les coniques, exception qui ne se rencontre pas dans les courbes des
autres degrés, et n’existent dans celles du deuxième qu’à cause des systèmes
de deux droites et des coniques inft aplaties qui se rencontrent parmi celles-ci.
Il s’ensuit que mes autres théorèmes sont pareillement exacts [..].
Ceci ne veut pas dire qu’il n’ait été fort ingénieux, fort utile même, d’introduire
dans la géométrie la notion simultanée de la deuxième caractéristique ν ;
car, en donnant plus de symétrie et de simplicité aux formules, elle a per-
mis d’aborder aisément un plus grand nombre de problèmes (surtout dans la
théorie des coniques). Mais il demeura acquis qu’il n’y a pas une erreur [..].
Car soit h une droite quelconque ; par un point x de cette droite il passe µ
courbes du degré n ; donc il correspond à ce point µ(n − 1) points y ; et ré-
ciproquement à chacun de ces points y, il correspond µ(n− 1) points x. Donc
les points x et y sont liés par une équation dont le terme de l’ordre le plus élevé
est de la forme Axµ(n−1)yµ(n−1), dans laquelle le terme A n’est pas nul générale-
ment. Si l’on fait, dans cette équation, x = y l’équation Ax2µ(n−1) + .. fait
connaître le nombre des courbes tangentes, dont le nombre est par conséquent
2(n− 1)µ. Donc ... Ce raisonnement est inattaquable.

De Jonquières’ analysis of his 1861 paper in his letter to Cremona differs from that
presented in his two notes from Saïgon. In his third note, sent to Battaglini’s Giornale,
De Jonquières wrote17:

Ces formules sont exactes, analytiquement parlant ; cependant leur démon-
stration reposait sur un lemme, qui a excité quelques doutes. En outre,
plusieurs théorèmes, quand on les appliquait aux sections coniques, offraient
d’apparentes anomalies dont je ne sus pas rendre compte ; ce qui était de
nature à entretenir l’incertitude.

The lemma mentioned here is none other than the analytical representation of series of
curves, which Battaglini himself had criticized (as well as Cayley). De Jonquières, when
writing to Battaglini’s and Liouville’s journals, located the problem of his past results

17 [de Jonquières, 1865c], p.45. The exact same paragraph can be found in [de Jonquières, 1865a],
p.412.
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with this very lemma, and then claimed to give new, valid proofs of his past results.
These proofs, however, are similar to the one sent to Cremona: it is a mere correction of
the 1861 proof, with changes having little to do with the faulty lemma. Furthermore, De
Jonquières had in fact noticed the anomalies of the case of conics: we discussed in the
previous chapter his own attempt at explaining them.

By the end of the year 1865, De Jonquières had set aside the problem of his lemma
on the analytical representation of series. The geometrical definition came first: if, for
certain geometrical conditions, eliminating the equations of conditions could not result in
a rational equation F (x, y) = 0, then, De Jonquières claimed, it was not a series of curves
in the proper sense18. Doing away with this definitional problem, and fixing what he
thought was wrong in his initial proofs, De Jonquières concluded that his 1861 formulas
were true all along.

In October 1866, De Jonquières even sent a memoir for publication in Crelle’s Jour-
nal19, in which he gave general formulas for the number of curves satisfying contact con-
ditions, as well as a method for the computation of characteristics of elementary systems
of curves and surfaces, all of which were based on the results which Chasles had rejected.
And yet, Chasles’ theory of characteristics was, for De Jonquières, equally true: in fact,
it was a mere simplification of his own theory of curves – it had symmetrical expressions,
and perhaps an easier method for the computation of numbers of curves, but it was no
more general than De Jonquières’ own theory. Thus, through his correspondence with
Cremona, and then Battaglini, De Jonquières had entirely reversed his opinion regarding
the validity of his formulae. Through the controversy with Chasles, he would also put
forth new epistemological theses to accommodate the validity of his formulae with the
apparent counter-examples it received, especially in the case of conics.

5.1.3 Scientific communication at the Académie des Sciences

Chasles did not publicly react to these papers, and kept on with his own research as if
nothing had happened. This status quo would be shattered in 1866, as De Jonquières
returned to France from Saïgon and attended some of the weekly meetings of the Académie
des Sciences during which Chasles frequently presented updates on his research on systems
of curves and surfaces. While De Jonquières had published papers which contradicted
Chasles’ priority claim, albeit implicitly, this was no sufficient cause for public controversy.
The same iconoclast theses, once uttered at the Académie des Sciences, had a completely

18“[M. Battaglini] fait voir comment, étant données les équations de condition, on peut arriver à
l’équation finale, dans laquelle le paramètre arbitraire ne figurera pas, en général, sous forme rationnelle.
Fort bien ; mais alors cette équation ne représentera pas une série telle que je la définis d’abord
‘géométriquement’”, [Israel, 2017], p.985.

19 [de Jonquières, 1866a].
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different ring to them. To understand why, it is crucial to understand the role and
status of the weekly meetings of the Académie, as well as the journal attached to them.
In other words, the controversy between Chasles and De Jonquières was not merely a
clash of technical ideas: it mattered greatly where, when, and how contradictory opinions
were expressed. As Caroline Ehrhardt wrote in a discussion of a similar polemic which
started at the Académie des Sciences and ended up in general newspapers, “historicizing
a scientific controversy also means historicizing the very nature of controversy and the
role science could play within the public space20”.

To do so, it is crucial to understand what kind of outlet for scientific communication
the Comptes-Rendus de l’Académie des Sciences were. In particular, it matters to this
controversy to understand what the modalities of their publishing were, what social and
scientific purposes they served, and why a certain class of scientists would select them as
their main venue to publish results.

Indeed, on his theory of characteristics, Chasles never published outside of the Comptes-
Rendus de l’Académie des Sciences - with the notable exception of his 1870 Rapport sur
les progrès de la géométrie, which features a brief section on this subject21. More gen-
erally, since becoming a member of the Académie in 1851, Chasles had been constantly
favoring the Comptes-Rendus as an outlet to publish new results22; in that regard he was
no exception amongst Académiciens23. Between February 1864 and April 1867, Chasles
gave 16 ‘communications’ in front of the Paris Académie, all of which were subsequently
published. Furthermore, he communicated letters on this topic which he had received
from foreign correspondents, and answered to communications of other geometers on the
same topic (including De Jonquières, Cremona and Cayley). The Comptes-Rendus were
therefore a central outlet for the circulation of the theory of characteristics, and of enu-
merative problems at large – but one over which Chasles exerted near-total control with
respect to papers pertaining to geometry. It is no surprise that out of De Jonquières’
three notes from Saïgon, the only one which does not purport to rehabilitate the 1861 for-
mulas is the one sent to the Académie des Sciences. As Chasles wrote exclusively for the
Comptes-Rendus, most other European mathematical journals had to resort to other au-
thors publishing their own summaries of Chasles’ theory of characteristics24. As a result,

20 [Ehrhardt, 2011], p.392.
21 [Chasles, 1870], pp.256-266.
22Between 1851 and Chasles’ death in 1880, he published only 8 times in Liouville’s Journal. All of

these publications are, in fact, summaries or copies of communications previously given at the Académie.
Similarly, Chasles’ 9 publications in the Nouvelles Annales de Mathématiques are all abridged copies of
communications given but a few months prior at the Académie, except for one lengthier memoir, which
is a reprint of an earlier work of Chasles’, completed in 1829. While no complete survey of all of Chasles’
publications exists as of yet, he does not seem to have ever published in foreign journals either.

23 [Crosland, 1992], p.295.
24For instance, [Cremona, 1864], [Prouhet, 1866], [Schubert, 1870]. We shall come back to the issue of
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the theory of characteristics was published under a highly specific and constrained form,
which is not that of the typical memoirs a scientist would circulate through other out-
lets outside the Académie des Sciences, or the form of the lengthy, detailed and carefully
constructed books, treatises and reports which Chasles otherwise wrote.

Communications at the Académie des Sciences could not be arbitrarily long, and not
just every communication could be printed25. On June 23rd 1862, a new set of rules
was voted, which fix the maximum length of a printed communication by a member (8
pages) as well as the annual maximum total length of all printed communications by the
same member (50 pages). During the year 1864, Chasles gave 8 communications which
were later printed, totalling about 70 pages. The second of these communications26 even
includes a footnote explaining that Chasles had obtained a special authorisation from the
Académie to print a note that was considerably longer than the rule permitted (12 pages
- still three pages shorter than the last communication given during the same year27,
for which no such authorisation is mentioned). While Chasles’ prestigious status among
Académiciens may have let him be granted the freedom to publish more than these rules
state, it is likely that his flurry of communications stopped toward the end of August for
these technical reasons, and not because he had presented the full extent of his research.

Chasles’ published communications built on one another: it would have been difficult
to make sense of the later texts for readers who hadn’t obtained the previous ones28.
Chasles’ rhetorical and argumentative strategy in these papers is worth dwelling on. His
initial communication acted as a general announcement: Chasles opened by stating that
the question of determining the number of conics which touch 5 other given curves “had
preoccupied geometers for a long time29”. He then surveyed the results obtained thus
far which fell under this general question, and Steiner’s results, which he asserted were
wrong. He then announced rather dramatically that he had solved the general problem,
and gave a list of formulas (most of which were redundant) for the numbers of conics
touching 5 given curves of orders mi. While no proof or justification for these results
was given in this initial paper, Chasles teased his audience by announcing that “the
considerations which led [him] to the previous results can be applied to a great number
of other questions”, and that “these questions give rise to a rather large theory30”, which

the European reception of Chasles’ theory of characteristics in section 6.1.
25For a description of the Académie des Sciences as a scientific institution, and of the evolution of its

publishing practices, [Crosland, 1992], pp.279-299.
26 [Chasles, 1864b].
27 [Chasles, 1864e].
28In fact, one journalist writing for the Journal des Débats explicitly lamented the fact that commu-

nications such as Chasles’ were impossible to follow for those who did not belong to the mathematical
section of the Académie, see [de Rémusat, 1866], p.1.

29 [Chasles, 1864c], p.222.
30 [Chasles, 1864c], pp.225-226.
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he would make public in later communications. The second communication introduced
the main concepts and the central algorithm upon which the theory of characteristics is
founded, and treated one example in detail. The rest of the theory of characteristics was
then published across 16 other short papers, each of which dealt with one or more specific
aspects of said theory. For instance, some papers focused on a specific kind of conditions
(angular conditions, multiples conditions), while others sketch avenues for generalizations.
None of these papers went in-depth into a specific subject; instead, these publications were
aimed toward the quick announcement of a wide range of discoveries – as well as toward
the presentation of a research programme for others to take up.

For this reason, Chasles’ theory of characteristics would remain an unfinished sym-
phony. The very format and goal of publications in the Comptes-Rendus was, for Chasles
as for others, to allow for an almost instantaneous announcement of novel results, meth-
ods and breakthroughs. In a milieu which valued creativity and novelty above all else,
to which testify the many priority disputes for which the Académie provided a stage in
these decades, and to which Chasles himself was prone more often than not, the Comptes-
Rendus served for rapid communication first and foremost. That they could not provide
enough space for in-depth discussions of scientific matters was even a point that was reg-
ularly made by critics of these weekly publications31. Indeed, these communications were
printed on an extremely tight schedule, under high pressure from copy-editors who had to
typeset redacted versions of the oral communications, run proof versions by the authors,
and then print the corrected version, all within a week32. The contrast is stark with the
sort of minutious polishing that Chasles was able to do on his book, to which testify the
minute corrections on the proof version of the introduction of his unpublished volume on
second-degree surfaces, preserved at the Académie des Sciences. The rhetorical strategy
elected by Chasles in the ordering and crafting of his papers makes sense in this context.
He first announces new results, stamps his mark on a field of research by carefully delin-
eating the range of his discovery. Second, he demonstrates the efficiency and generality of
his method on a difficult example. At this point only is he free to publish the full extent
of his results, but in a rather contrived form: lists of results without proof, sorted out
in papers, each of which covers one specific subproblem. The last papers of the series
then lay out a research programme for others to build on his work, whilst still having to
acknowledge his priority and crucial role in the development of this theory. This does not
match the rhetorical strategy and mathematical architecture displayed in Chasles’ books.
Compare the level of details given for instance in the 1852 Traité, in which every single
property of the cross-ratio is painfully detailed, to the speed at which Chasles introduces

31 [Crosland, 1992], p.283.
32 [Crosland, 1992], pp.290-291.
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his generalized principle of correspondence and uses it in many intricate ways, which do
not necessarily match the brief, introductory account he had just given. As we saw in
the previous chapter, some of Chasles’ propositions were, by themselves, hard to read, let
alone to prove. To a reader not trained in Chasles’ writing of geometrical equation, as
described, some of Chasles’ papers were simply meaningless, or at best uninteresting.

At the Académie des Sciences, Chasles occupied a position of prestige and authority.
His communications served to announce to the rest of the mathematical world that he
had first solved some important and widely discussed problems, that he was in possession
of a powerful theory for everyone to admire and expand upon, and to communicate a
carefully outlined research programme for others to take on. Furthermore, he did all of
this through the course of public communications, open to all. The weekly meetings of the
Académie were regularly attended by journalists and scientists alike. Under the influence
of Arago, science at the Académie had become something of a spectacle, in which were to
be made public technological innovations, polemics between savants, and knowledge for
all33. Of course, the content of these sometimes harsh disputes was turned into milder,
polite exchanges in the Comptes-Rendus34.

In such a context, Chasles had been notoriously prompt to react to any perceived
slight to his priority claims, or to his historical theses. His controversy with Libri, which
we discussed in section 2.1.2, mostly happened within the walls of the Institut de France.
When De Jonquières came back from Saïgon and sat in these same rooms, a mere passing
remark was enough to trigger a salve of hostile remarks from his former professor and
friend.

5.1.4 A priority dispute at the Académie

On November 5th 1866, De Jonquières presented to the Académie des Sciences recent
research, seemingly in line with the broader research program outlined by Chasles. In his
communication, De Jonquières recalled the definitions of the characteristics for systems of
curves or surfaces of any order, as well as the importance of determining the characteristics
of “elementary systems”, that is to say systems formed by conditions such as passing
through a point or touching a line. De Jonquières went on to present a way to easily
compute the characteristics of elementary systems of curves of order m in the case of
systems determined by a sufficiently large number of points35. A footnote to the first
sentence of the version of this paper printed in the Comptes-Rendus would introduce for
the first time in the Académie traces of De Jonquières’ dissent36:

33 [Belhoste, 2006], [Fox, 2012], pp.189-191.
34 [Appel, 1987], pp.143-201, cited in [Ehrhardt, 2011], p.390.
35We reserve the discussion of the technical details for the second half of this chapter.
36 [de Jonquières, 1866d], p.793.
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La caractéristique µ, dont la seule notion permettait déjà d’aborder, par les
procédés de la Géométrie pure, l’étude des propriétés des familles de courbes
et de surfaces assujetties à des conditions communes, sans que ces conditions
fussent exprimées explicitement, a été introduite pour la première fois dans la
science par un Mémoire que nous avons publié au mois d’avril 1861 dans le
Journal de Liouville ; qu’on nous permette de le rappeler ici.

Not only did De Jonquières refer to a memoir which Chasles had condemned, he also used
the equation ν = 2(m − 1)µ in his new method, assuming its validity. He did not go as
far as to publicly claim before the Académie that Chasles’ theory of characteristics was
a mere simplification of his own, as he had done in private letters. However, toward the
end of his communication, De Jonquières made a series of general remarks regarding the
very research program outlined by Chasles. In particular, he wrote37:

Mais on se tromperait si, par ce seul motif qu’il reste beaucoup à faire, on
supposait que la solution complète de la question n’a pas fait un pas, et si l’on
croyait que la connaissance des caractéristiques de tous les systèmes élémen-
taires peut seule constituer un progrès dans cette partie de la Géométrie.

On the contrary, De Jonquières continued, important and difficult results could be ob-
tained by completely other means. He justified this assertion by citing Bischoff’s 1858
papers on the enumeration of curves satisfying contact conditions, whose formulae De
Jonquières had found by different means in 1861. This was an even more pointed at-
tack against Chasles’ program, all the more because it echoed a communication made by
Chasles in the very same room, on the very same topic, and only a couple of weeks prior.

Indeed, on October 22nd, Chasles had presented a paper written by Cayley for the
Académie, after which he had offered some remarks of his own38. Discussing the difficulty
of reproducing in the theory of curves of order m the results he had achieved in the theory
of conics, Chasles wrote:

Lorsqu’il s’agit, comme ci-dessus, de courbes Cp d’ordre quelconque, au lieu
de coniques, il peut y avoir aussi des solutions étrangères; mais il y a une autre
difficulté, ou plutôt une impossibilité presque générale, dans l’état actuel de
la théorie des Courbes; c’est qu’il faudrait connaître le nombre des courbes
d’un même ordre, déterminées par les conditions élémentaires de passer par
des points et de toucher des droites; en d’autres termes, il faudrait connaître
les caractéristiques des systèmes élémentaires des courbes de l’ordre donné car

37 [de Jonquières, 1866d], p.796.
38 [Cayley, 1866b]. Chasles’ remarks can be found pp.670-673.
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ce sont ces caractéristiques élémentaires qui feraient connaître celles d’un sys-
tème défini par des conditions données. La recherche des caractéristiques des
systèmes élémentaires de courbes d’ordre supérieur est donc une des questions
les plus importantes et qui méritent le plus de fixer l’attention des géomètres.

In fact, the very last sentence of De Jonquières’ communication, namely “qu’on nous
permette de le rappeler ici”, was an almost exact echo of Chasles’ opening line in his
remarks on Cayley’s paper, thus making clear the target of his criticism (which Chasles
did not fail to notice39).

Through the concluding remarks to his November communication, De Jonquières im-
plicitly attacked Chasles’ authoritarianism and his right to set the scope and direction of
further research into the theory of characteristics, and the theory of curves and surfaces
at large. To do so, De Jonquières pointed to previous research which he claimed was
still relevant for the subject at hand, while not pertaining to the theory of characteristics
proper – in fact, research whose results Chasles himself had either disparaged, or not
even bothered to mention. This attack was not left unanswered by Chasles: the following
week, on November 12th, he acknowledged the implicit criticisms of De Jonquières’ and
replied to them, effectively triggering the dispute40.

Chasles reproduced the content of De Jonquières’ 1861 paper, using extensive quota-
tions, as well as that of the memoir submitted in 1862 as an entry for the Grand Prix
de Mathématiques, which he himself had reviewed. Chasles then formulated the same
criticism he had expressed against these previous texts. While Chasles finds the “lemma”
(that is to say the analytical translation of the concept of series of curves) to be “obvi-
ous41” and denies having ever raised doubts about it (despite it being actually false!), he
however finds the theorem stating that there are 2(n− 1)N curves of order n in a series
of index N tangent to a given line L to be “absolutely false42”, as 2(n− 1)N is merely a
maximal value. For Chasles, De Jonquières had defined systems of curves “in the same
way as everyone else43”, but had been misled in his investigation thereof. This is a rather
curious claim: there are indeed instances where the expression “system of conics” was
used by Chasles and Poncelet much earlier44, in a way that encompasses similar objects.
However, it was never identified as an object or a figure around which to build a theory,
nor was it explicitly defined as a collection of conics satisfying four arbitrary conditions.

After recalling these past judgements, to which he still held, Chasles proposed a new
39 [Chasles, 1866d], p.818.
40 [Chasles, 1866b].
41“Cette proposition est évidence ; elle est la première, et il n’y en a pas de plus élémentaire dans toute

la théorie des courbes”, [Chasles, 1866b], p.818.
42 [Chasles, 1866b], p.819.
43 [Chasles, 1866b], p.820.
44For instance [Chasles, 1837], pp.223, 372, 396.
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narrative for the development of his own theory. In his own retelling, as Chasles turned to
the theory of systems of curves, he naturally began with conics. He recognized immedi-
ately that points and lines were to play equal roles in this theory, and that the properties
of elementary systems depended equally on the two numbers µ and ν. He pursued this
insight by defining the characteristics of systems of conics defined by any four conditions.
Chasles went on by recalling that, in 1855, he had presented a principle of correspondence,
which he had predicted would be very useful in the theory of curves. And indeed, he only
had to apply it to characteristics to obtain a variety of properties of systems of conics.

This is a novel narrative for the development of the theory of characteristics: in 1864,
no reference to the 1855 paper was made, other than the name “principle of correspon-
dence” being reused. In fact, these principles are rather different: the first is deeply tied
to higher geometry, and the concepts of homographic division and involution, while the
second says nothing of these projective properties. The link between these principles
is subtler than a mere generalization from (1, 1)− or (1, 2)-correspondences to (α, β)-
correspondences; it lies at the level of the method used to find and prove properties of
curves. In both cases, correspondences are tools for the study of relations between series
of points or lines, which serve to describe certain curves or surfaces. Furthermore, De
Jonquières played a crucial role in the development of this principle, and in its extension
to curves of order n, as we saw in section 3.2.2. The goal of this narrative is clear: Chasles
aims to substantiate the claim that De Jonquières’ theory is in contradiction with his own,
and in no way a predecessor to acknowledge. Chasles does so by describing his own theory
as deriving from past work with which De Jonquières is said to have had nothing to do,
and as being grounded upon the key insight that the two dual numbers µ and ν are equally
necessary in the enumeration of conics, which is precisely the claim that De Jonquières
contested. Concluding this self-serving narrative, Chasles explained why De Jonquières
was not cited in his paper: as the latter’s results were fundamentally flawed, any citation
would have had to be critical, and it was to avoid being “discourteous” (désobligeant)
that he left out the name of his student from his own publications.

The exchange between Chasles and De Jonquières continued throughout the two sub-
sequent meetings of the Académie des Sciences. On November 19th 1866, De Jonquières
presented a rebuttal of Chasles’ last communication, after which Chasles himself made
some remarks. The following week, on November 26th, Chasles added to his previous
remarks, which he justified by what he took to be major changes between what had
been said by De Jonquières on Monday 17th, and what had been printed in the Comptes-
Rendus45. De Jonquières maintains his priority claim over the introduction of series or
systems of curves, and of the first characteristic. Another priority claim is introduced,

45 [de Jonquières, 1866b], [Chasles, 1866a].

202



5.1. Situating the controversy

which concerns the method used to prove the ν = 2(n−1)µ formula. De Jonquières claims
it derives from his 1859 memoir on generalized involution46, and refers to the works of
Poncelet and Cremona as his main influences. De Jonquières, in this article, had con-
sidered two algebraic equations X = 0 and X ′ = 0 of degree n, whose roots represent
the distances of n points on a line L with respect to an arbitrary origin. The equation
X + λX ′ = 0 was then taken to represent an infinity of groups of n points, each of which
corresponds uniquely to one value of λ. These groups were said to be in a nth-order invo-
lution, and notions such as the cross-ratio of four such groups, or the central point of such
an involution, were introduced in an analogous manner to what Chasles had done in the
1852 Traité de Géométrie Supérieure. De Jonquières had used these notions to deal once
more with the problems that Chasles was busy with at this time, such as constructing
curves and equations of order three and four. This text, like Chasles’ and De Jonquières’
previous texts on the theory of curves, uses correspondences of series of points on a line;
however, it is rather unclear why the 1861 proof of the ν = 2(n − 1)µ formula would
be said to derive from the theory of generalized involution. Chasles was not convinced
by this argument at all, and instead, asserted that the origin of this method for proving
properties of curves was his 1855 principle of correspondence. None of them was willing
to recognize that, more than a specific result, what this proof relied upon was a jointly
created way of conducting proofs and writing geometrical properties.

To substantiate his priority claim, De Jonquières also discusses the validity of the
ν = 2(n− 1)µ formula, which Chasles had openly and fully denied47:

La condamnation si absolue que M. Chasles fait peser sur le théorème dont il
s’agit n’est pas fondée. Je me suis trop avancé, il est vrai, en le présentant
d’abord comme toujours exact, méconnaissant ainsi l’influence de certaines
solutions singulières. De son côté, Chasles me parait en faire autant quand
il le regarde comme absolument faux. Car il faudrait pour cela que les solu-
tions singulières existassent toujours, ou tout au moins que leur absence fût
exceptionnelle, ce qui n’a pas lieu.

For De Jonquières, the formula is not false: it simply requires more qualification to take
into account exceptional cases. As a result, against Chasles, De Jonquières maintains
that both theories are not contradictory. Chasles repeats his claims that the theorems are
false, the theories incompatible, the notion of system of curves older than De Jonquières’
work, and the principle of correspondence which he had introduced in 1855 at the heart
of the innovations brought by the theory of characteristics.

46 [de Jonquières, 1859a].
47 [de Jonquières, 1866b], p.873.

203



Chapter 5. “A proposition sometimes true, sometimes false”: the controversy between
Chasles and De Jonquières

To make their cases, De Jonquières and Chasles both mobilize oral discussions, either
with one another, or epistolary exchanges with third parties such as Cremona. Not a single
geometer outside of Chasles and De Jonquières would publicly weigh in on this matter,
including Cremona whose work and role in reframing De Jonquières’ results were at the
center of the debate. Nevertheless, many such as Bischoff, Prouhet, or Thomas Archer
Hirst, who all had been involved in one way or another with the theory of characteristics
and its European diffusion, would write privately about this controversy. Hirst, an English
geometer trained in Marburg in the synthetic geometry of Steiner, would for instance write
in a letter to Cremona dated December 26th 186648:

I have read with great pain the controversy between Chasles and De Jon-
quières. I am afraid there are faults on both sides. Chasles is far too sensitive
about his own reputation. His position in Science is so high and incontestable
that one cannot but regret that he is not more generous toward younger Ge-
ometers. On the other hand de Jonquières ought, I think, to have shown more
gratitude to the Tutor to whom he owes so much.
He deserves credit for his introduction of the index of a system of curves and
had he been silent he would have obtained it. But his conception would have
been almost unfruitful had it not been supplemented by Chasles’ magnificent
researches. Moreover I do not think it is so original as de Jonquières sup-
poses. I remember well that Steiner in his lectures at Berlin made use of the
conception to some small extent.

The controversy, from the outside, was viewed as a regrettable matter of honor between
a student and his former master, none of which was fully in the right.

5.1.5 A public trial without a jury?

The controversy was not pursued within the walls of the Académie, nor would it be
in the Comptes-Rendus. As the dispute was getting stale, claims were being repeated
without further justification and no ground was won. This changed, however, on December
8th 1866, when De Jonquières published the memoir he had sent to the Académie prior
to the start of the dispute, entitled Recherches sur les séries ou systèmes de courbes
et de surfaces algébriques d’ordre quelconque. In this memoir, De Jonquières’ priority
claims were directly inserted within the mathematical exposition, and presented in a non-
polemical fashion. For instance, De Jonquières opens by introducing series of curves, refers
to his 1861 paper, then claims that Chasles called these objects systems in 1864. The rest
of the memoir solely uses the terms series. Furthermore, the formulas attacked by Chasles

48 [Dimitolo, 2016], p.4.
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are stated with the added clause “en général et au plus”, in accordance with what De
Jonquières held to be the absolutely correct formulation at this point of the debate. Very
few new results are contained within this memoir: instead, it is a new exposition of past
results, including Chasles’ theory of characteristics, which is largely praised. Discussing
elementary systems, and Chasles’ suggestion that geometers focus their effort on the
complete and systematic determination of their characteristics, De Jonquières gives a
more comprehensive presentation of his new method, which relies heavily on the 2(n−1)µ
formula. De Jonquières, therefore, writes a text which seemingly follows the agenda set
by Chasles, albeit with methods the latter had proscribed.

At the end of the version published by Gauthier-Villars, he had added an extra section
to respond in detail to Chasles’ criticisms49. This section constitutes a turning point in
the controversy. On the back of a renewed epistemology of mathematical proofs, and
novel reflections on the dependency between the truth of a theorem and its verification,
De Jonquières changes subtly yet crucially his understanding of the logical status of his
formulae and how they relate to Chasles’. Indeed, De Jonquières now asserts his theorems
to have been “exactly true” all along, and point to Chasles’ inability to find a specific
flaw in the proofs of these theorems as bearing witness to an insufficient understanding of
the status of their apparent exceptions. This constitutes a key important epistemological
evolution in De Jonquières’ thought, as he even ends up casting doubt on the identity
between the index N and the first characteristic µ (without discussing the repercussions
this move may have on the priority claim described above50).

Through these communications, therefore, the claims of both protagonists seem to
stabilize, and new sorts of arguments come into play. Both men extensively quote each
other’s communications in order to find logical fallacies or inconsistencies. At some point,
for instance, Chasles refers to a sentence in which De Jonquières asserted that he had not
started this fight, before quoting another sentence where De Jonquières wrote “Toutefois
j’ai profité de cette circonstance [his first communication, given on November 5th] pour
rappeler un titre de priorité”. Chasles concludes that these statements are contradictory,
and that he himself is not to blame for triggering this whole affair51. This display of proofs
and evidence is reminiscent of a trial: in fact, judicial terms are employed by both actors
on several occasions, and several communications are concluded with a call for others to
judge on this controversy with the help of the evidence presented during these weekly
meetings. De Jonquières concluded his memoir on series of curves with the following
sentence: “Le public a maintenant sous les yeux les pièces principales du procès; c’est à
lui qu’il appartient d’apprécier et de juger”.

49 [de Jonquières, 1866c], pp.17-23.
50We shall come back to this point in section 5.2.3.
51 [Chasles, 1866a], p.909.
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In the following months, both men published texts in turn in order to make their re-
spective cases stronger. Chasles had a Réponse à une revendication de priorité published
by Gauthier-Villars in January 1867, to which De Jonquières answered by penning on
February 4th a handwritten text, of which he had copies printed as litographs52. Chasles
had another booklet printed by Gauthier-Villars early in May, to which De Jonquières
replied with an open letter, published on the 31st of the same month, in which he inten-
tionally misspelled Chasles’ name53! This back and forth exchange stopped, not because
one had yielded or decisively won the fight; but because both men had other business to
tend to. De Jonquières would soon have to leave France to head the battleship La Savoie,
aboard which he would take part in several wars, including the 1870 defeat against Prus-
sia. Meanwhile, Chasles would be embroiled in the infamous Vrain-Lucas affair, another
scandal which started within the walls of the Académie, and which provided journalists
in the attendance with material for juicy stories for years. On the contrary, it is unclear
whether anyone other than these two protagonists found interest in this public display,
which was hardly discussed in newspapers or scientific journals. This exchange is ref-
erenced by few, other than the geometers and historians who took up this topic in the
immediate aftermath of the controversy54.

The form of these documents display a real intent by both men to convince their
peers of their priority, but also to paint the other one as failing to abide by the rules
of the mathematical profession. Indeed, Chasles had thus far adopted the posture of
the intellectual authority, and had, at several occasions, criticized De Jonquières for not
acting properly as mathematician, for instance claiming that “his manner of acting is so
contrary to scientific habits, that M. de Jonquières must have some reason to justify it
for himself55”. In fact, for Chasles, the flaws of De Jonquières’ mathematics find their
very origin in the flaws of his scientific and scholarly conduct56. The dispute, for Chasles,
is not merely mathematical, but also moral. Amongst De Jonquières’ less consequential
moral flaws, Chasles finds the hastiness and imprecision of his writings57.

De Jonquières certainly noticed these attacks: in fact, he even agreed to have the
dispute be partially held on moral grounds. Concluding his memoir, De Jonquières would
contrast his “very modest revendication”, and the “moderation, reserve and deference of
his own argumentation” to the “irritated tone” (ton irrité) of Chasles58. Later, he would

52For another case of a mathematical ‘polemic in public’, see [Lorenat, 2015b].
53 [Chasles, 1867a], [de Jonquières, 1867a], [Chasles, 1867b], [de Jonquières, 1867b].
54 [Segre, 1892], [Loria, 1902].
55 [Chasles, 1866b], p.877.
56“Ce sont ces écarts des règles observées par les géomètres qui, à mon sens, ont conduit M. de Jon-

quières aux erreurs qu’il m’a mis, bien volontairement, dans la nécessité de signaler”, [Chasles, 1866b],
p.876.

57“Je dois croire que M. de Jonquières a écrit sa note très à la hâte..”, [Chasles, 1866a], p.908.
58 [de Jonquières, 1866c], p.23
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contrast his “self-defense” with the “attacks” of Chasles, despite having himself much to
fault with his master’s theory59. Throughout his writings, De Jonquières depicts Chasles
as a stubborn, jealous mathematician, one who is too proud of his discoveries to share
them with the rest of the scientific community, thus failing on moral grounds. This moral
failing is then shown to have dire consequences on an aging Chasles’ ability to keep track
of recent developments in a science over which he had for too long reigned60:

Quand je songe à certains incidents qui ont agité, dans ces dernières années,
le domaine de la géométrie, et aux tendances diverses qui s’y manifestent,
je comprends qu’il puisse y avoir là pour vous des causes de trouble et de
malaise. Cette ardeur que vous montrez pour les luttes de la discussion, cette
irritation profonde dont le Compte rendu du 12 novembre 1866 a vu la première
explosion, ont peut-être des racines plus étendues qu’on ne croirait d’abord.
S’il en était ainsi, je ne serais guère pour vous qu’un prétexte, ou du moins
(passez-moi cette expression familière) ce n’est pas moi seul que vous auriez
l’intention de battre en frappant sur mon dos.

Furthermore, replying to the accusations of hastiness and of failing to abide by the pro-
fessionnal code of mathematicians, De Jonquières placed himself under the protection of
Poinsot61:

Des critiques de M. Chasles, il ne resterait donc à ma charge que l’emploi
de quelques locutions hasardées, telles que “pas toujours exact”, ou “le plus
souvent”, qui dénoteraient de ma part, soit un manque d’explications, soit une
révision trop hâtive de divers textes, soit même une certaine inexpérience du
style mathématique (*).
(in a footnote) (*) Quelques réflexions introduites par l’illustre Poinsot dans
sa Théorie nouvelle de la rotation des corps (2è partie) sont bien propres à
rassurer les auteurs (pourvu qu’ils ne se déconcertent pas tout d’abord) sur
les conséquences exagérées qu’on pourrait déduire de cette inexpérience, en
quelque sorte professionnelle; car il y prend hardiment leur défense contre
ceux qui seraient tentés d’en tirer avantage contre leurs découvertes.

Referring to Poinsot is a meaningful move: he was a constant ally of Chasles’, both
institutional and philosophical. In particular, the very text to which De Jonquières refers
is one that Chasles had extensively read and praised in his own Aperçu Historique. While

59 [de Jonquières, 1867a], p.9.
60 [de Jonquières, 1867b].
61 [de Jonquières, 1866c], p.22. In fact, De Jonquières relies on Poinsot’s writings in his mathematical

and philosophical argument as well, as we shall see below.
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no explicit quotation is given, it is likely that De Jonquières is referring to the following
passage62:

Sitôt qu’un auteur ingénieux a su parvenir à quelque vérité nouvelle, n’est-il
pas à craindre que le calculateur le plus stérile ne s’empresse d’aller vite la
rechercher dans ses formules, de la découvrir une seconde fois, et à sa manière,
qu’il dit être la bonne et la véritable; de telle sorte qu’on ne s’en croie plus
redevable qu’à son analyse, et que l’auteur lui même, quelque fois peu exercé,
ou même étranger à ce langage et à ces symboles sous lesquels on lui dérobe
ses idées, ose à peine réclamer ce qui lui appartient, et se retire presque confus,
comme s’il avait mal inventé ce qu’il a si bien découvert ? Singulier artifice,
que je n’ai pas besoin de caractériser davantage, mais qu’il est bon de signaler
comme un des plus nuisibles aux progrès des sciences, parce qu’il est sans
contredit un des plus propres à décourager les inventeurs !

Poinsot, in line with his quasi-empiricist account of mathematical knowledge which Chasles
so admired, opposed the expert and sterile analyst to the sometimes inexperienced ge-
ometer, whose knowledge proceeded from the direct contemplation of things63. De Jon-
quières purposely ignored this specific subtext to draw from another facet of Poinsot’s
text, namely the attack against the primacy of analytical methods and the unwarranted
superiority granted by the high level of technicity and training that their mastery required.
Indeed, after the 1820s, as two historians recently put it, “the decline of descriptive ge-
ometry and the rise of mathematical analysis and mechanics were to transform the very
image of the engineer: (..) the engineer–draughtsman–artist of the Age of Enlightenment
gave way to the modern engineer, author and practitioner of ‘mathematized’ applied sci-
ences, who resembled a scientist much more than an artist64”. Poinsot’s argument is not
merely epistemological: it is also political, a defense of the amateur’s ability to obtain
truth by the direct contemplation of nature, against the growing hegemony of highly-
trained engineers who derive their truths from the blind operation of a flawed instrument.
This political charge is what De Jonquières reactivates, except this time, it is aimed at
an Académicien65.

De Jonquières, at the time of the controversy, occupied a much more marginal position
within the social space of mathematicians - or at the very least, he described and per-

62 [Poinsot, 1851], p.89.
63Earlier in the same article, and in way reminiscent of Chasles’ epistemology of geometry, Poinsot had

opposed the “long and difficult computations” and the “auxiliary quantities” of the analyst to the “idée
claire” obtained by those who “consider things in themselves”, [Poinsot, 1851], pp.10-11. This quote can
be compared with Chasles’ portrait of the geometer, which we discussed in chapter 1.

64 [Belhoste & Chatzis, 2007], p.221
65De Jonquières addresses Chasles as an Académicien, or as a respected savant, at several occasions

through the course of this controversy. See for instance [de Jonquières, 1866c], p.17.
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ceived himself as such, both in his private correspondence and in his 1884 autobiography
as part of his application to the Académie. In fact, his remoteness from Paris is even
invoked as a reason for his rapid renunciation of his 1861 results, as he received Chasles’
criticism at a time and place which left him incapable of studying them closely66. By
and large, De Jonquières was perceived as a disciple of Chasles. Chasles, on the other
hand, had just won the Copley medal67, was member of dozens of scientific societies and
Academies across Europe, and enjoyed a relative fame even amongst non-scientists that
few mathematicians could pretend to. When he died some thirteen years later, general
newspapers in various countries would print detailed obituaries, describing him as one of
the most notable mathematicians of the century68. And yet, this was a time when the
moral and intellectual authority of the Académie was beginning to show signs of wear69,
and De Jonquières felt capable of proudly standing his ground as an amateur in his own
right against the rigid and proud académicien.

This imbalance in social positions and institutional power was clear to all: De Jon-
quières’ responses to Chasles’ criticisms all constitute attempts to find means of counter-
acting it. Several strategies are employed by De Jonquières. In his Documents relatifs
etc., he had extensively quoted from a letter by Cremona, in which the Italian geometer
had attempted to convince him of the validity of his previous results, and of the rightful-
ness of his priority claim. A few months later, De Jonquières concluded his open letter to
Chasles by a selection of excerpts from letters which, he claimed, had been spontaneously
sent to him by mathematicians worldwide, and which all supported his priority claim70.
In the very same text, De Jonquières also adressed a challenge to Chasles, by way of a
mathematical problem which he thought the theory of characteristics was not as equipped
to tackle as his own theory71:

Question à résoudre. – Combien y a t-il de courbes proprement dites du
septième degré qui passent par 26 points données, qui touchent quatre courbes
d’ordres respectifs m,m′,m′′,m′′′, et qui sont normales à cinq autres courbes
données d’ordres respectifs n, n′, n′′, n′′′, niv ?

What had started as a rather banal priority claim soon turned into a dispute over the
validity of some results, and eventually over the respective merits of two distinct geo-
metrical theories. As the dispute escaped the Académie, it turned into a public trial,
with its spectacular apparatus made of presentations of evidence and counter-evidence,

66 [Chasles, 1867a], p.4.
67On the attribution of this medal, see 6.1.1.
68See for instance the obituary published in Nature, [Tucker, 1881].
69 [Fox, 2012], pp.236-237.
70 [de Jonquières, 1867b]
71 [Chasles, 1867b], p.12.
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and of negative portrayals of the other side. However, this trial had no jury: whatever
mathematicians may have written privately to De Jonquières, no authority would weigh
in publicly on this dispute.

While no geometers publicly took a stance on this controversy, several would later
publish their readings of this dispute. Italian geometers after Cremona would share a
reading of this dispute, wherein the wrongs were divided. Chasles would be blamed for
being too proud, and for refusing to acknowledge his debt toward De Jonquières. In this
view, the student had made important contributions, which Chasles had only perfected.
For instance, Corrado Segre, in a paper on the history of the principle of correspondence,
wrote72:

Ora si può ben dire che in ciò l’illustre scrittore dell’Aperçu historique aveva
torto. Poiché, ad onta delle inesattezze od imperfezioni che vi si trovano
[De Jonquières’ early papers], quel lavoro ebbe indubbiamente una notevole
influenza sulla scienza, alla quale dava non solo dei teoremi, ma dei concetti
e dei metodi nuovi ; e varie proposizioni importanti sui sistemi di coniche
esposte dallo Chasles nel 1864 non sono clie un perfezionamento — grazie
all’introduzione fatta da Chasles del secondo indice o caratteristica — di
cose già date dal Jonquières per sistemi d’ordine qualunque nel 1861 (23).
Che se poi si riguarda alle critiche speciali fatte dallo Chasles, di esse (dopo
qualche esitazione) potè giustamente scagionarsi il Jonquières (prima ancora
che nascesse il litigio, e cioè nelle Note di Saigon) osservando che i numeri
incriminati, come il già citato 2(n − 1)N , sono da modificare solo quando si
vogliano sottrarre da essi le soluzioni singolari che possono comparire e che
effettivamente nel determinarli non furono escluse.

Similarly, Italian historian of mathematics Gino Loria would later attempt to rehabilitate
De Jonquières, whom he viewed as Chasles’ most important student. In one of two papers
on De Jonquières, he wrote73:

72“Now it can be said that the illustrious writer of the Aperçu historique was wrong about this. Since
then, and despite the inaccuracies or imperfections found [in De Jonquières’ early papers], this work
undoubtedly had a considerable influence on science, to which it gave not only theorems, but also new
concepts and methods; and various important propositions on systems of conics exposed by Chasles
in 1864 are only an improvement - thanks to the introduction made by Chasles of the second index
or characteristic - of things already given by Jonquières for systems of any order in 1861. If we then
consider the specific criticisms made by Chasles of this work, Jonquières could (after some hesitation)
rightly exonerate himself (even before the quarrel was born, that is in [Saigon’s Notes]) by observing that
the incriminated numbers, like the already mentioned 2(n− 1)N , are to be modified only when we want
to subtract from them the singular solutions which can appear, and which were effectively not excluded
in determining this number”, [Segre, 1892], pp.190-191.

73“In the theory of systems of curves, it is necessary to consider two periods ; the first one, which must
be named after De Jonquières, the other one after Chasles ; the first one prepares the second, but the
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Dans la théorie des systèmes de courbes, il est donc nécessaire de considérer
deux périodes ; l’une, qui doit porter le nom de De Jonquières, l’autre qui
doit porter celui de Chasles ; la première prépare la seconde, mais celle-
ci a un caractère de perfection, dont celle-là était dépourvue. C’est ce
qu’aujourd’hui tout le monde accorde sans peine, mais que ni Chasles ni De
Jonquières ne voulurent jamais reconnaître. Le maître méconnaissait à tort
que l’introduction de l’indice d’une série a marqué dans la science un progrès
important ; mais l’élève, irrité d’attaques trop vives, arriva à nier la fécondité
de définir par deux caractéristiques tout système de coniques, (..) dont on ne
peut plus douter.

Zeuthen, for instance, in his 1905 entry on abzählenden Methoden for Klein’s and Meyer’s
Encyklopädie der mathematischen Wissenschaften, would also mention this controversy in
a historical account of the development of enumerative methods, and for instance present
De Jonquières as the true introducer of the principle of continuity74 in such questions.
In all of these readings, the focus is on a few isolated matters of priority: whether De
Jonquières or Chasles had first introduced the principle of correspondence, who had in-
troduced the notions of systems and characteristics etc. Behind this priority quarrel so
typical of Parisian scientific life of this period, however, a more profound dispute on the
very nature of generality in mathematics was brewing.

5.2 A clash of generalities

The mathematical and epistemological arguments expressed within the course of this
dispute seem to have had little sway on the discussion. Chasles’ responses focused on
dismantling the historical narrative proposed by De Jonquières, and they mostly relied on
a juxtaposition of handwritten notes, letters, and quotations from previous papers, aimed
to show the incoherence of De Jonquières’ claims. On the other hand, De Jonquières
elected to paint Chasles as an old and proud académicien, either jealous of or blind to the
achievements of his own student. However, besides these personal attacks, De Jonquières
also constructed a two-fold line of defense of his results, by means of a redefinition of
generality in geometry. On the one hand, De Jonquières would argue for the generality
of some of his results by measuring their domain of validity, introducing a mathematical
latter is characterized by a perfection of which the former was devoid. This is what today everyone
grants easily, but which neither Chasles nor De Jonquières ever wanted to acknowledge. The master
wrongly misunderstood the important progress that the introduction of the index of a series brought to
science ; but the student, irritated by too lively an attack, ended up denying the fruitfulness of defining
with two characteristics any system of conics, a fruitfulness which can’t be doubted anymore”, [Loria,
1902], p.298.

74 [Zeuthen, 1905], p.279.
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practice foreign to Chasles’ conception of geometry. On the other hand, De Jonquières
would mobilize a distinction between the languages of geometry and algebra, to drive a
wedge between the kinds of generality and exactness both sciences can achieve, thereby
trying to explain away the remaining inconsistencies between his theory and Chasles’.

5.2.1 Theoretical numbers of solutions

In his notes from Saïgon, De Jonquières claimed that Chasles himself had found the origin
of the discrepancy between the numbers produced by the 1861 formulae, and the numbers
of conics one can actually count in elementary cases. The same explanation was copied
in two of these notes75:

Les anomalies dont il s’agit ont été expliquées par M. Chasles, dans l’un de ses
beaux Mémoires sur les systèmes de courbes (Comptes Rendus de l’Académie
des Sciences pour 1864). Elles tiennent à ce que, dans tout système de
coniques, il y a un certain nombre de ces courbes qui se réduisent excep-
tionnellement à deux droites ou à deux points (coniques infiniment petites et
coniques infiniment aplaties). Ces coniques exceptionnelles sont, à plusieurs
égards, étrangères à la question, comme on a coutume de dire en analyse, et
pourtant il faut les compter, si l’on veut retrouver le nombre théorique donné
par les formules générales qui les comprennent toutes indistinctement.

It is unclear what exactly De Jonquières is referring to. Chasles discussed degenerate
conics (which he also calls “exceptionnelles”), as well as “solutions étrangères” (see sections
4.2.4 and 4.3.2). However, he only used these concept to subtract to numbers provided by
the principle of correspondence (within proofs, and before stating the final result), or to
specify how many curves among those given by his methods were proper curves. Instead,
the justification to which De Jonquières alludes seems rather to be that given by Cremona
in 1863, which we discussed earlier (see section 5.1.2). Cremona’s explanation had not
only been published before Chasles’ 1864 communications, but it had been sent directly
to De Jonquières in private letters.

Regardless of the authorship of this justification of the discrepancy between De Jon-
quières’ formulae and the numbers of curves which can actually be computed in simple
cases, it is worth stressing how De Jonquières actually frames it. In the last sentence of
this quote, he introduces the idea of a “theoretical number”, which is that provided by

75 [de Jonquières, 1865a], pp.412-413; [de Jonquières, 1865c], p.45. It must be noted that, in his
polemical publications, De Jonquières almost systematically employs the expression “series or systems of
curves and surfaces”, as a way to make clear the equivalence of the two notions, and thereby his priority
claim. In what follows, we shall only refer to systems of curves for the sake of brevity, except where
further precautions are needed.
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general formulae. For instance, in the case of the condition ‘touching a given straight
line’, and of a system of curves of order m and of index N , this number is 2N(m − 1).
This number, for De Jonquières, is to be differentiated from the actual number of curves
present in the system which satisfy the elementary condition. The difference between
these two numbers is caused by the occasional presence of “solutions étrangères”, in this
particular case double-lines.

This distinction is framed by De Jonquières as one between the theoretical and the
applied76:

C’est le propre des formules algébriques d’exprimer à la fois tous les cas pos-
sibles, singuliers ou non, que présente une même question.
Mais dans les applications géométriques, on écarte naturellement les cas trop
particuliers, disons les solutions étrangères, qui ne conservent plus aucun des
caractères apparent qu’offrent les cas généraux, et c’est ainsi que la formule
ν = 2(m− 1)µ se trouve parfois en désaccord avec les faits.

De Jonquières’ own 1861 formulae, and in particular the ν = 2(m − 1)µ formula, were
now likened to the formulae of analysis, in that it enumerates curves without any regard
for their validity as a geometrical solution to a problem; whereas Chasles’ method has
the extra benefit of directly enumerating proper solutions. In other words, De Jonquières’
methods enumerates curves purely as polynomials in two variables, including polynomials
such as (ax + by + c)n which are only a power of a linear term77. Geometrical formulae,
for De Jonquières, state “facts”; they count figures that happen to be and satisfy certain
conditions. Algebra, on the contrary, operates at a theoretical level, detached from actual
figures. While De Jonquières thought that both Chasles’ and his own theory were valid78,
he attributed to them different kinds of generality. Indeed, De Jonquières was not merely
writing that his formulae were true outside of certain cases: he was both asserting their
generality, and that they sometimes ran into anomalies.

Whilst equating µ and N , and by holding the formula ν = 2(m − 1)N to be true,
De Jonquières also maintained that Chasles’ theory of characteristics was equally valid.
For De Jonquières, this latter theory was a mere simplification of his own, one with
more symmetry and perhaps easier methods of computation. However, he also drew
some theoretical conclusions from the equivalence of both theories. For instance, from De

76“Algebraic formulae, by nature, express at the same time all possible cases, singular or not, of one
same question. But in geometrical applications, we naturally discard cases that are too particular, let
us say foreign solutions, which do not retain the apparent characteristics that general cases present, and
this is why the formula ν = 2(m− 1)µ is sometimes at odds with the facts”, [de Jonquières, 1865c], p.48.
Emphasis in original.

77 [de Jonquières, 1865c], p.48.
78 [de Jonquières, 1865c], pp.48-49.

213



Chapter 5. “A proposition sometimes true, sometimes false”: the controversy between
Chasles and De Jonquières

Jonquières’ formula given above, it follows that m = 1 + 1
2
ν
µ
, which is always an integer.

As a result, not every pair of numbers (µ, ν) can represent a system of curves, as there is
a supplementary condition on the ratio between the two characteristic numbers.

Another, more important conclusion of De Jonquières’ is that two numbers suffice to
characterize a system of curves79, but that these numbers are not unique: the pair (µ, ν)
and the pair (µ,m) = (N,m) fulfil this task equally well. This is a strong claim, as
it implies that for every pair of integers (a, b), there can only be a system of curves of
characteristics (a, b) for a single order m. In particular, given a pair of integers, there is no
guarantee that there is a system of conics of which these integers are the characteristics.
This claim, while hardly discussed by contemporary commentators, would later be levied
by De Jonquières’ against Chasles’ αµ + βν formula. Indeed, when Chasles opposed to
De Jonquières the fact that the principle of correspondence had shown that numbers of
conics in a system (µ, ν) satisfying an arbitrary condition depended both on µ and on
ν, De Jonquières would respond that the order m = 2 played an implicit role in these
formulae, for only specific pairs (µ, ν) can serve as the characteristics of a system of conics
(as opposed to higher-order curves)80.

5.2.2 Delineating the domain of validity of a formula

To the distinction between theoretical numbers and facts, De Jonquières attached a new
mathematical practice which had been absent from his (or Chasles’) geometrical papers
theretofore: the practice of delineating the domain of validity of a formula. For De
Jonquières, one could hold a formula to be generally true whilst acknowledging that its
application to concrete cases occasionnally leads to anomalies. To remedy this situation,
De Jonquières would try to pinpoint the boundaries within which these anomalies can
arise, so as to more precisely qualify the sort of generality and applicability of his formulae.

To that end, De Jonquières divided the totality of elementary systems of curves of
order m into two categories. Such a system being defined by m(m+3)

2 − 1 conditions
(either passing through a point, or touching a straight line), De Jonquières let T denote
the number of these conditions which are of the form ‘passing through a given point’.
Elementary systems of the first category are those for which

T >
m(m− 1)

2 + 1

Ranking these systems by decreasing values of T , De Jonquières claimed, one obtains the

79 [de Jonquières, 1865a], pp.414-415.
80See for instance [de Jonquières, 1867b].
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following sequence of characteristics:

(1, α), (α, α2), (α2, α3), .. where α = 2(m− 1)

The first characteristic is 1, as a curve is uniquely determined by Tmax+1 = m(m+3)
2 points.

The ν = 2(m − 1)µ formula yields the other values. A similar distinction, and sequence
of characteristics, is given for systems of surfaces81. The characteristics of systems of the
second category, for which T is smaller than m(m−1)

2 + 1, are not given by such a simple
progression.

When T is too small, De Jonquières explains, “elementary systems contain singular
solutions, which, by their very presence, oppose the determination [of characteristics] with
a difficulty that is most of the time insurmountable82”; a claim which he had substantied
in the third note from Saïgon83. Indeed, De Jonquières had claimed that only a specific
kind of exceptional curve could lead to discrepancies between his formulae and Chasles’ in
the case of elementary systems, namely curves “infiniment aplaties”, that is to say curves
of which one branch is a straight line of multiplicity r > 184:

Quant aux coniques infiniment petites, et aux courbes d’ordre supérieur ré-
duites à des points, elles sont sans influence sur la formule [ν = 2(m − 1)µ] ;
elles ne pourraient en exercer sur elle, que si cette formule se rapportait à des
séries de courbes envisagées relativement à leur classe, donc si l’on intervertis-
sait en conséquence la signification des deux caractéristiques ; ce seraient au
contraire les coniques infiniment aplaties et les courbes doubles multiples qui
seraient alors sans effet sur elle85.

Furthermore, these infinitely thin curves, which are the sole cause for error in De Jon-
quières’ formulae, only happen in systems of the second category, with T sufficiently
small. Indeed, consider an elementary system of curves, that is to say a system defined by
a collection of T given points and straight lines. Any “infinitely thin curve” necessarily
touches every given straight line; so to be in the system, it only has to pass through the
given points. Furthermore, such a curve can be viewed as composed of one infinitely thin
conic, and a curve of order m− 2. However, a curve of order m− 2 is uniquely defined by

81 [de Jonquières, 1866d], p.795.
82 [de Jonquières, 1866d], p.794.
83 [de Jonquières, 1865c], pp.49-50.
84“Infinitely small conics, and curves of higher order reduced to points, have no influence over the

ν = 2(m− 1)µ formula; they could exert some influence only if this formula was concerned with series of
curves viewed with regard to their class, that is to say if we interverted the meaning of both characteristics;
in this case, it would be the infinitely thin conics, and the multiple double curves which would not have
any effect on the formula”, [de Jonquières, 1865c], p.49.

85Once again, De Jonquières’ theory is explicitly not dual.
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(m−2)(m−2+3)
2 points; therefore for an infinitely thin curve to be in an elementary system

with T given points, it is necessary that

T ≤ (m− 2)(m− 2 + 3)
2 = m(m− 1)

2 + 1

When T is sufficiently large, that is to say strictly above m(m−1)
2 + 1, the points are

too numerous for one curve of order m − 2 to pass through all of them, and no curve
of order m comprised of a line-pair conic and a curve of order m − 2 can be in the
system. Therefore, only systems of the second category have infinitely thin curves, and
De Jonquières’ formulae are valid in systems of the first category.

For De Jonquières, the crucial import of this proof is that it gives an a priori de-
lineation of the domain of validity of the general, algebraic formula; that is to say, the
domain in which the geometrical exactness thereof is preserved86. In particular, De Jon-
quières frames this discovery as the proof that his past works can be put to use within the
research program outlined by Chasles, namely the computation of characteristics of ele-
mentary systems: he has obtained a vast number of such characteristics in a very simple
manner, and has shown that the occasional variations between Chasles’ formulae and his
own did not arise in these cases. In fact, in the case of curves and surfaces of the second
order, De Jonquières’ numbers are enough to determine all characteristics of elementary
systems by duality (or polarity87).

However, the presentation of this work by De Jonquières was not entirely uncritical
of Chasles’ own program. We already mentioned De Jonquières’ attack on Chasles’ re-
peated claim that the main task ahead of geometers was the determination of all of the
characteristics of systems of curves and surfaces. For De Jonquières, several of his former
enumerative formulas, and in particular those pertaining to contact conditions, were in
fact exactly true as long as the number of points amongst the given conditions (beyond
elementary systems) was sufficiently high88.

Chasles was far from convinced by these arguments. At first, he simply reiterated
his claim that 2(m− 1)µ was merely a maximum for ν, that the formula was absolutely
false, and so were all the theorems that followed from it. In his second communication
to the Académie des Sciences, De Jonquières reformulated his argument: he convened
that the formula was not “always exact”, but maintained that it was not “absolutely

86 [de Jonquières, 1865c], p.49; [de Jonquières, 1866d], p.794.
87Indeed, for conics, De Jonquières’ formula, when restricted to cases where T is sufficiently large,

gives the characteristics of the systems (4p., ) and (3p., 1d.), that is to say (1, 2) and (2, 4). Per duality, it
follows that (4d., ) ≡ (2, 1), and that (3d., 1d.) ≡ (4, 2). The characteristics of (2p., 2d.) are respectively
the second characteristic of (3p., 1d.) (that is to say 4), and the first characteristic of (1p., 3d.) (which is
4 as well).

88 [de Jonquières, 1866d], p.796.
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false89”. Chasles first understood this contrast as expressing the fact that the formula
was sometimes true, that is to say that the maximal value was indeed attained in several
cases, to which he agreed whilst rejecting it as a mathematical theorem90. However, as
part of his attack on De Jonquières’ legitimacy as a mathematician, and on his alleged
ignorance of the common rules of scientific life, Chasles made his criticism sharper with
time. In fact, he accused De Jonquières of misunderstanding what generality meant for
mathematicians, and what a theorem was. In his response to De Jonquières’ last 1866
communication, he wrote91:

On remarque dans l’énoncé textuel de la démonstration que je viens de rap-
porter le mot généralement. Que signifie-t-il? Veut-il dire le plus souvent,
comme dans une autre proposition, où on lit : “Pour que la formule (b) ne
contienne aucune solution singulière, il faut et il suffit le plus souvent que la
condition, etc.” ? Ce plus souvent est-il un résultat de statistique ou du calcul
des probabilités? (..)
Ce sont ces écarts des règles observées par les géomètres qui, à mon sens, ont
conduit M. de Jonquières aux erreurs qu’il m’a mis, bien volontairement, dans
la nécessité de signaler.

Shortly thereafter, in his first published booklet on the controversy, Chasles went even
further in his scathing critic of De Jonquières’ scholarly behavior and understanding of
the rules of mathematical practice92:

Les géomètres n’appellent point théorème une proposition tantôt vraie et tan-
tôt fausse, bien qu’elle pût être vraie le plus souvent, ou dans un nombre
notable de cas.

Chasles rejected both De Jonquières’ legitimacy as mathematician, and his conception
of generality. While Chasles had insisted on the uniformity and simplicity of the theory
of characteristics, De Jonquières is trying to argue for a generality of a theorem that
is characterized by both the large number of cases to which it applies, and to the fact
that its domain of validity can be known a priori. As Chasles refused to comply to De
Jonquières’ priority claims, and sharpened his own rhetoric, the student had to make his
own position more explicitly opposed to that of his master. In so doing, De Jonquières

89A theorem that is absolutely false, for De Jonquières, would be something like “the cube of the
hypothenuse is equal to the sum of the squares of the sides of the right angle”. Whether this means
a theorem which is always false, or something subtler, is not made explicit by De Jonquières. See
[de Jonquières, 1866c], pp.18-19.

90 [de Jonquières, 1866b], pp.872-873; 875-876.
91 [de Jonquières, 1866b], p.876.
92 [Chasles, 1867a].
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widened the gap between these two generalities. During the Monday meetings of the
Académie, De Jonquières had straddled a line between generality and exactness: he was
willing to recognize cases where his formulas were not applicable, whilst maintaining the
claim of their generality. This variation in epistemic values, however, betrayed a larger rift
opening between them: De Jonquières was departing from Chasles on the very question
of the relation between the language of algebra and that of geometry.

5.2.3 Algebra versus pensée de vérification

In the memoir he wrote in December 1866, that is to say right after the initial clash with
Chasles at the Paris Académie, De Jonquières feigned surprise at Chasles’ criticism that
mere verifications would have shown the falsity of his 1861 enumerative formulae93:

Les calculs numériques ou algébriques, les opérations seules [sont] soumises
au contrôle de la vérification. [..] Un théorème est bien établi, si le point de
départ est juste et si les règles de la logique sont observées dans le cours de la
démonstration. Dans ce cas, une vérification qui ne le vérifierait pas devrait
elle-même être déclarée fausse, avant tout examen. [..]
Ainsi, au lieu d’être absolument faux, comme l’avance M. Chasles, le théorème
dont il s’agit [the 2(m − 1)µ formula] est absolument exact. Telle est
ma conclusion formelle sur ce point capital du débat. Quelle cause, dans cette
circonstance, a donc pu égarer l’appréciation d’un si éminent géomètre? C’est,
je crois, dans cette pensée de vérification, mise en avant par lui, qu’on peut
la découvrir. En effet, si l’on cherche à vérifier la formule sur certains cas
particuliers des sections coniques pour lesquels le résultat est connu à priori,
on reconnaît immédiatement qu’elle présente des anomalies dont M. Chasles
a le premier donné la clef, mais dont il n’eût pas dû conclure, ce me semble,
que le théorème général est faux. Car, avec un peu d’attention, on ne tarde
pas à voir que ces contradictions apparentes proviennent uniquement de ce
que l’esprit introduit, après coup et au moment où il considère le résultat, des
restrictions dont il n’était nullement question dans l’énoncé.

De Jonquières contrasted the logical perfection of his a priori proofs, and the introduction
of a posteriori restrictions of the outcome of these proofs. The geometer, expecting the
solutions to be pure curves, finds the facts to contradict the theory; but this is only
because the initial wording of the question was insufficiently precise. This is why the
formula can be both general and present anomalies: its generality derives from it being
a valid algebraic proof, and the anomalies derive from that geometers introduce new

93 [de Jonquières, 1866c], pp.19-20.
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requirements on the nature of the curves they wish to count. Thus, for De Jonquières,
the generality of geometrical and algebraic results ought to be evaluated differently.

By pursuing this line of defense, De Jonquières was framing the controversy in episte-
mological terms reminiscent of earlier debates within French mathematics. In particular,
in a footnote to his response to Chasles, De Jonquières referred to the conception of Alge-
bra which Poinsot had expounded in his work on number theory94. In statements which
echo Condillac’s description of algebra as “une langue bien faite, et la seule95”, Poinsot
had delineated the epistemic properties of the language of algebra for the study of number
theory96:

L’algèbre ne donne donc rien au delà de ce qu’on lui demande ; elle n’est
pas plus générale que la logique considérée dans sa perfection, et le degré où
l’équation s’élève est le degré même de la question, si elle est parfaitement
posée.
Mais le plus souvent nos énoncés sont imparfaits ; je veux dire, qu’indépendamment
de cette relation qui lie aux données l’inconnue et qui la détermine, notre es-
prit y mêle encore certaines conditions inutiles et souvent contradictoires ; et
voici alors ce qui nous arrive. Comme ces sortes de restrictions ne donnent
point d’équation, et ne sont pas de nature à s’écrire en algèbre, l’équation
qu’on tire de l’énoncé se trouve exactement la même que si ces suppositions
n’avaient point lieu.

Poinsot had developed mechanical theories whose physicalist and quasi-empiricist traits
had largely influenced Chasles, and he was responsible for Chasles’ position at the Faculté
de Paris. As such, it was a perfect ally to summon in a controversy against Chasles. The
rhetorical strategy here employed is clear: De Jonquières aims to show that even an
ally of Chasles’ understood that the relation between the formulae of algebra and of other
branches of mathematics was such that one could accommodate the generality of a formula
and the occasional presence of anomalies.

In fact, Poinsot’s argument echoed and responded to a much older debate, which had
begun in the second half of the 18th century. This debate was that of the introduction
and signification of negative numbers in geometry. In the entry on “Equations in algebra”
of the Encyclopédie, which he partially edited, the mathematician and philosopher Jean
D’Alembert had cast doubts over the adequation between a geometrical problem and
its algebraic translation97. Due to the “richness of Algebra”, D’Alembert contended,

94 [Boucard, 2011], pp.265-279.
95 [Condillac, 1877], p.4.
96 [Poinsot, 1845], p.9.
97“La traduction algébrique du premier énoncé est par sa nature plus générale que ce premier énoncé
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equations yielded more solutions than a problem really admitted, for instance by means
of negative numbers. These numbers, in turn, allowed for no simple “metaphysics”. While
some had sought to explain negative numbers as “numbers below zero” by means of
analogies for instance with bookkeeping-practices, such cultural artifacts had no place
in the philosophical discussion of mathematical truths, whose own necessity ought to be
the sole justification for D’Alembert (and many other Lockean philosophers in his circles,
such as Condillac98). Other modes of introduction of negative numbers, for instance as
quantities viewed in opposite direction to positive numbers, had also been rejected as
unsatisfactory99.

Carnot, in his 1803 Géométrie de position, had made his own D’Alembert’s problem;
which he attempted to solve by means of his “tableaux de corrélation”. In his method,
one first sets up a primitive system of figures, lists the quantities which can be formed
on the basis of these figures (lengths, angles, ratios..), and writes the possible formulae
pertaining to them (which, at this point, only involve symbols standing for positive num-
bers). Considering a continuous motion of the system, one then introduces negative signs
to denote the transformations which these primitive formulae ought to undergo when
certain quantities become null (or go at infinity)100.

Carnot’s book was well-known to these French geometers in the first half of the
nineteenth-century, for which the generality of algebra was both a source of interroga-
tion, and something to capture through purely geometrical means. As we have seen,
Chasles discussed this book in his lectures at the Faculté de Paris (see 2.1.1), mostly as
a precursor of his own principle of signs. Chasles, however, had done away with these
concerns of the metaphysics of negative quantities. This was, however, not the case of
Poncelet. In a text first published in 1815, then republished (with some modifications) in
1864 in his Applications d’analyse et de géométrie Poncelet had analyzed, criticized, and
refuted some of Carnot’s views on the status of negative numbers, and, more generally,
on the relation between algebraic symbols and geometrical objects.

; c’est donc le second qu’il faut y substituer pour répondre à toute l’étendue de la traduction. Plusieurs
algébristes regardent cette généralité comme une richesse de l’Algèbre, qui, disent-ils, répond non seule-
ment à ce qu’on lui demande, mais encore à ce qu’on ne lui demandoit pas, & qu’on ne songeoit pas
à lui demander. Pour moi, je ne puis m’empêcher d’avouer que cette richesse prétendue me paroît un
inconvénient. Souvent il en résulte qu’une équation monte à un degré beaucoup plus haut qu’elle ne mon-
teroit, si elle ne renfermoit que les seules racines propres à la vraie solution de la question, telle qu’elle
est proposée”, [D’Alembert, 1755], p.850. Similar views are expressed in various other entries written by
D’Alembert.

98On the influence of Locke’s philosophy on the history of algebra in England, see [Durand-Richard,
1990].

99This historical episode is studied in [Schubring, 2005].
100Carnot’s geometry has been described as “an engineering justification of algebra”, in [Gillispie &

Pisano, 2014], p.107. See also [Chemla, 1998] for an analysis of the status of generality in Carnot’s
geometry.
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For Carnot, these symbols, and especially negative quantities, did not represent any-
thing real (and especially not quantities below zero, as Euler thought), but only the
difference between two absolute quantities. As a result, Carnot thought, geometrical re-
search based on the algebraic translation of verbal problems, and in particular the use of
negative quantities therein, could lead to meaningless solutions being obtained. For Pon-
celet, however, the transformation of a “énoncé verbal” into a “problème mis en équation”
was a purely geometrical operation101; while the obtention of solutions from this problem
was purely the result of algebra. Thus, these solutions were inadequate if and only if the
translation of the problem had been ill-conducted102:

Les solutions soi-disant surabondantes ou étrangères qu’on rencontre en trai-
tant les problèmes géométriques par le calcul, ne viennent donc pas de ce
qu’elles ont été amalgamées avec les autres par les transformations algébriques,
puisqu’elles appartiennent, en toute rigueur, aux divers systèmes que représen-
tent les équations primitives, mais bien de la manière inexacte, vague ou trop
générale dont on a mis le problème en équation.

The same views passed down by D’Alembert to Carnot were also quoted and largely
criticized by Poinsot in his memoir on the theory of numbers. Poncelet and Poinsot,
for different reasons, both felt the need to refute the former generation’s doubts about
the adequacy of algebra as an instrument for geometrical or number-theoretic investiga-
tions. Incidentally, this was the context in which the concept of “solution étrangère” had
been created: by this term, Poncelet and others denoted these solutions which algebra
introduces in a geometrical problem that was not sufficiently well formulated. For De
Jonquières, it served to distinguish between two modes of generality, of two equally valid
results. For Chasles, however, these solutions were eliminated in the course of the proof
(and had nothing to do with algebra, as he detected and removed them in proofs relying
solely on the principle of correspondence).

Algebra, for Poncelet as for Poinsot and De Jonquières, gives exactly what it is asked,
neither less nor more. This was not, for Poncelet, an invitation to drop pure geometry.
On the contrary, it meant that algebra was not a science, but merely a “mechanism”,
an instrument for the geometers to use but also to control, to subordinate to geometrical
understanding and precision. In Poncelet’s terms, it was merely a “bâton des aveugles103”.
Similarly, for Poinsot and De Jonquières, this division of labor between algebra on the
one hand, and geometry or number-theory on the other hand, was not meant to place
all faith in the former’s power. Instead, for De Jonquières, it was crucial to have means

101 [Poncelet, 1864], pp.284-285.
102 [Poncelet, 1864], p.291. Note that the term “solution étrangère” appeared already in 1815.
103 [Poncelet, 1864], p.295.
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of determining a priori whether and when an algebraic formula or result adequately
translates the geometrical problem at hand.

Chasles did not react directly to this provocative import of Poncelet and Poinsot’s
separation between the perfect language of algebra and the sometimes vague propositions
of geometry, and elected to focus his remarks on the dispute around the invention of
the principle of correspondence. It is unclear whether, as De Jonquières would suggest,
Chasles felt an unease in the epistemic foundations of his geometry, or whether he simply
did not care for this line of defense. And yet, the distinction between algebraic generality
and geometrical exactness is a far cry from Chasles’ attempt at modeling geometrical dis-
course on the sort of generality that had made the success of analytical methods. Chasles
never doubted the strong analogy between the equations of algebra and the propositions
of geometry; he even commented upon it at length, in order to justify the merits of his
own methods (see 4.2.4). Through this unsuccessful dialogue, Chasles and De Jonquières
were triggering a reconfiguration of the interplay between algebra and geometry. By the
end of their dispute, they shared neither an understanding of their respective works, nor
a common epistemological framework in which to assess each other’s argument, and the
exchange degenerated into a public contest, to which few seem to have paid close attention.

Conclusion

Throughout the course of this controversy, De Jonquières transformed his position with
respect to Chasles’ theory. By the year 1867, not only had he completely changed his
mind regarding the exactness and generality of his enumerative formulas: he had modified
the very meaning of these epistemic categories. By redefining what it meant for algebraic
and geometrical formulae to be exact, De Jonquières had put a new strain on the identity
between his index N and Chasles’ characteristic µ: the latter, he would claim, carries the
intention of counting pure curves, while the index, imbued with the special sort of gener-
ality which characterizes algebraic reasoning, is applicable to all curves indistinctively -
that is to say, curves understood as equations.

Chasles absolutely rejected this solution to the dispute, and never acknowledged the
validity of his students’ formula. Intertwined with the social dimension of this dispute, and
the sterile clash of Chasles’ authority as académicien with De Jonquières’ self-styling as
an innovative amateur is the confrontation of two incompatible conceptions of the relation
between algebraic forms and geometrical content. This tension, which has roots far back
into late 18th-century reflexions on the nature of algebraic symbolism, would explode in
the following years, as enumerative problems circulated in the hands of mathematicians
equipped with newer conceptual tools, but also epistemic norms and values. To this
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circulation shall be devoted the next chapter of this dissertation.
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Chapter 6
Reorganizations, rewritings, and refutations:
the early reception of the theory of
characteristics

Introduction

The succession of short papers which Chasles published between 1864 and 1867 in the
Comptes-Rendus de l’Académie des Sciences ultimately amounted to an unfinished work.
Neither the much-expected second volume of Chasles’ Traité des Coniques, nor his book
in preparation on the theory of characteristics for second-order surfaces ever saw print
– and in the wake of the Vrain-Lucas affair, Chasles did not return to these projects.
While a few synthetic and faithful presentations of Chasles’ theory were published, either
in Italy by Cremona or in France by Prouhet, their circulation remained limited1. Even
these texts, in fact, altered some important tenets of Chasles’ theory; or rather, they
displayed new choices made by their authors with regard to what in Chasles’ theory
ought to be considered most important or interesting. For instance, Chasles’ emphasis on
the constructive character of his enumeration procedure would be completely lost in these
summaries. Thus, while Chasles received praise across Europe for his work, the disparate
collections of communications it was gathered in did not invite to the same sort of reading
practices as his previous books or extended memoirs.

While readers from various mathematical communities immediately took on Chasles’
theory of characteristics, very few displayed an interest in the content of every single one
of these communications. Some of them only garnered a few key definitions from the
second communication, that is to say the paper wherein systems, conditions, character-

1 [Cremona, 1864], [Prouhet, 1866].
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istics, and modules are defined, and where the general procedure for the enumeration of
conics satisfying five conditions is given. Others yet were more interested in the prin-
ciple of correspondence and the systematic method it offered for proving properties of
planar curves. And then there were those who identified Chasles’ αµ + βν formula as a
conjecture of great theoretical importance for algebraic geometry, which remained to be
proven. Because the theory of characteristics was scattered across papers, it was easy
to isolate elements from it for readers not interested in Chasles’ broader argument for
the defense of purely geometrical methods. As such, several textual features of Chasles’
papers, such as his use of long lists of propositions, would be lost on almost all readers;
precisely because such lists seem to make little sense if not viewed against the backdrop
of Chasles’ understanding of the value of generality. Thus, the description of the theory
of characteristics which we gave in chapter 4 must be carefully differentiated from what
this theory became in the hands of its readers.

The variety of readings to which a mathematical text may give rise has been the
subject of much attention by historians of mathematics in recent years2. The unanimous
conclusion of this sustained attention has been that even in mathematics, the meaning of
a text is not an intrinsic property, but rather a function of its reader - or collectives of
readers. The case of Chasles’ theory of characteristics is no exception to this rule. In this
chapter, however, we set out to study not just readings of Chasles’ communications, but
active rewritings thereof – sometimes even produced in proximity of Chasles himself, or of
his sphere of influence. A remarkable, if not exactly unique, feature of these rewritings is
the plasticity with which the notions of the heart of Chasles’ theory were ‘translated’ into
other ‘mathematical languages’. For instance, the notion of a condition, left somewhat
vague in Chasles’ texts – if only because it was tacitly borrowed from a historical tradition
with which Chasles himself was very familiar, namely the tradition of the construction of
curves satisfying certain conditions – would be made algebraic by several authors, and in
several different ways. This was either to make its definition more precise, its use more
rigorous, or simply to be able to apply the methods of analytic geometry to it.

These rewritings were the work of mathematicians belonging to a variety of professional
contexts, ranging from students working toward the local equivalent for a doctoral degree
to mathematicians at a more advanced stage of their careers, looking either to incorporate
this theory into their well-established mathematical practice or simply to produce a syn-
thetic presentation for their local colleagues. Furthermore, these rewritings were created
in epistemic cultures far removed from Chasles’; that is to say, fabricated with very dif-
ferent epistemic values in mind, or even attaching different understandings and practices
to the same values. Lastly, but not unrelatedly, these rewritings were produced by actors

2For instance, see [Goldstein, 1995], [Guicciardini, 1999], [Ehrhardt, 2012].
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with profoundly different ideas about what was most important to mathematical activity.
Whereas proving the generality of the αµ + βν formula had been less of a concern for
Chasles than the production of lists of propositions exemplifying this very formula, the
opposite would be true for others.

It comes therefore as no surprise that such translations, as the adage goes, betrayed,
or at least severely altered many features of Chasles’ texts. Not only would several of
Chasles’ textual practices disappear in the process; but several concepts crucial to Chasles’
methods would prove difficult to unambiguously carry over to a different mathematical
language. While it may seem somewhat innocuous to identify a condition with an alge-
braic equation over the coefficients of the general equation of the conic, there were much
more serious issues besetting those who attempted to find an analytical equivalent to
the theory of characteristics. Especially difficult would be the question of reformulat-
ing what constitutes a proper solution to an enumerative problem, in particular in the
case of degenerate conics. These difficulties culminated in 1876 when Georges Halphen,
who had previously taken an active part in the search for algebraic proofs of Chasles’
αµ+ βν formula, suddenly declared it outright false. Degenerate conics, he would claim,
had been improperly classified in the context of enumerative geometry; and with his new
description of the ways in which a conic could degenerate, he had been able to construct
counter-examples to Chasles’ formula – that is to say to the very basis of the theory of
characteristics. Even the truth-value of a crucial theorem had been altered throughout
the translating process.

In order to understand how actors came about adapting Chasles’ sparse papers to
their own scientific practices, this chapter (and, to an extent, the next one) focuses on the
early circulation of the theory of characteristics across Europe. More precisely, in the first
three sections of this chapter, we survey the reception of Chasles’ theory between 1865
and 1875, discussing its institutional reception and the rewritings produced during this
period. The motivation behind this periodization is that, by 1875, two independent proofs
for Chasles’ αµ+βν formula had been given; and several distinct research programmes for
the generalization of the theory of characteristics had been fleshed out. In the following
year, however, things would take a drastic turn, as Halphen published his analytical
rewriting (and, ultimately, refutation) of Chasles’ theory. Consequently, the fourth and
last section of this chapter focuses on Halphen’s memoirs against the αµ + βν formula,
written between 1876 and 1878.
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6.1 The institutional reception of the theory of char-
acteristics

6.1.1 The attribution of the 1865 Copley Medal

Nowhere was the institutional recognition for Chasles’ achievements more immediate than
at the London Mathematical Society. This recognition, however, was less the unanimous
assent of a collective of mathematicians than the outcome of intense lobbying by Thomas
Archer Hirst (1830-1892). Hirst was an English geometer who had trained in Marburg
between 1850 and 1852, then in Göttingen and Berlin for one more year. During his
stay in Germany, he had come to admire above all the synthetic geometry of Steiner,
who he had personally befriended. Once his studies complete in April 1853, Hirst would
also visit Paris and meet Chasles, the other prominent representative of pure geometry
in continental Europe. Upon returning to England, Hirst first began a somewhat un-
successful and difficult career as a professor of mathematics and physics. His first years
as a mathematician was marred by various professional setbacks, but also by the tragic
passing of his wife at a young age3. In the early 1860s, however, Hirst was able to secure
a more stable form of institutional support: in the same week in November 1864, he was
elected to the Council of the Royal Society and as Vice-President of the London Math-
ematical Society; and in August 1865, he was appointed as Professor of Mathematical
Physics at the University College London. From these positions of power, Hirst quickly
became an influential member of several of the institutional bodies ruling over the organi-
zation of British science4. Hirst’s push for the recognition of Chasles’ recently-published
theory came as he was beginning to solidify his position within London-based scientific
institutions. In September 1865, Hirst made a communication in front of the Section
A (Mathematical and Physical Science) of the Royal Society, of which he would later
write in his personal diaries that it “was listened to attentively5”. In the audience on this
day were Plücker himself, but also James Joseph Sylvester, who was equally enthused by
Chasles’ theory. While Sylvester never contributed to the theory of characteristics, or
to enumerative geometry as a whole, he was very much interested by the subject, even

3Anna Hirst, née Martin, died from tuberculosis. When her disease was first diagnosed, the Hirst
couple moved to the south of France. Anna Hirst was later buried in Paris, a city which Thomas Hirst
then regularly visited over the next few years.

4These biographical elements can be found in [Wilson & Gardner, 1993]. Hirst famously kept diaries
from the age of fifteen until his death, which are now preserved at the Royal Institution in London. Hirst
wrote entries almost every day about his scientific and social life, thus giving us a rare window into the
daily activities of a Victorian mathematician. These diaries, totalling about 2850 typewritten folio pages,
are available as microfiches (alongside an informative biography) in [Brock & MacLeod, 1980]. In what
follows, we will refer to diaries and pages as they can be found in this typewritten edition.

5Hirst Diaries, preserved at the Royal Institution in London, Journal XI, entry dated September 17th

1865, p.248.
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Thomas Archer Hirst (1830-1892)

submitting questions about it to international journals6. Hirst’ communication was quick
to pay off: Spottiswoode, in the same session, praised Chasles’ theory of characteristics in
his President’s address to said section A, asserting that “we may almost say that [Chasles]
has condensed into [one] formula the whole theory of conics7”.

Bolstered by this initial success, and the rising interest in Chasles’ theory amongst
British mathematicians, Hirst continued his promotional enterprise. A Council member
of the Royal Society, Hirst had a say in the attribution of the Society’s annual medals, and
in particular the Copley medal. Created in 1731, the Copley medal is one of the oldest
honorary rewards in European science8. At first meant to celebrate “the best experiment
of the year”, it was awarded mostly to British chemists and natural philosophers, such as
Henry Cavendish (1766), Joseph Priestley (1772), and William Herschel (1781). After a
few decades, the medal became a much coveted prize, if only because its awarding took
place during a solemn meeting of the Royal Society, whose president then delivered a
speech outlining the reasons for the selection of the annual recipient, and led to valuable
publicity in the Society’s Philosophical Transactions. By the 1820s, the medal began to
be attributed to non-British scientists, including François Arago (1825), Siméon-Denis
Poisson (1832), and Carl Friedrich Gauss (1838), and instead of celebrating experimental
results, it rewarded contributions to “natural knowledge9”. By 1864, the medal had rarely
been attributed for research in pure mathematics, with only Edward Waring in 1784 and

6For instance, see the question printed immediately after De Jonquières’ note for Battaglini’s Giornale,
[de Jonquières, 1865c], p.53.

7Hirst’s diaries, Journal XI, p.249.
8On the early history of the Copley medal, see [Bektas & Crosland, 1992]. For studies in the attribution

of this medal in the 1860s, see [Bartholomew, 1976], [Burkhardt, 2001], [Cahan, 2012].
9 [Bektas & Crosland, 1992], p.52.
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James Ivory in 1814 becoming medallists for mathematical contributions10. For instance,
the justification for the attribution of the medal to Poisson mentioned his Théorie de
l’action capillaire, while Gauss was praised for his mathematical research on magnetism11.

And yet, on November 2nd 1865, when Hirst attended a meeting of the Council of the
Royal Society for the adjudication of the Copley medal, mathematicians were very much
represented amongst potential nominees. In a previous meeting of the Council, on October
26th, three names had been brought forth, including two mathematicians: French chemist
and physicist Henri Victor Regnault by Miller the Treasurer, German mathematician
Julius Plücker by Stokes the Secretary, and French mathematician Jean-Victor Poncelet,
by Price of Oxford12. This selection of names had been somewhat disquieting for Hirst,
who favored the nomination of Chasles “on the ground not only of a long established
reputation but also of a splendid discovery recently made13”. This discovery, of course, is
the theory of characteristics. With the help of Scottish geologist Sir Roderick Murchison,
Hirst was able to add Chasles to the list of potential nominees, and Price eventually
withdrew Poncelet’s name from the ballot. To ensure the victory of his candidate, Hirst
wrote between October 26th and November 2nd to Cayley, Sylvester, and Henri Smith,
asking for letters of recommendation for Chasles’ nomination. On the day of the vote,
Hirst used these letters to make a final push for his own nominee14:

So the Council expected to proceed to the vote without further discussion, I
pleaded however for permission to read three letters received since the previous
meeting. The permission was granted, and the perusal took the Council by
storm. There were 15 members present many had already written on a slip
of paper the name of the man for whom they were about to vote, one or
two of these papers I saw torn up when my letters were read. A significant
silence ensued, broken at last by Miller who remarked that the perusal of these
eloquent letters at the last moment put the other candidates at a disadvantage.
It became a serious question whether the whole discussion ought not now to
be re-opened. It was decided that this should be done.

On the day of the election proper, each Council member who had put forth a candidate
proceeded to read supporting statements. Miller began by reading a letter by Sir John

10Ivory’s work was largely about mechanics and the theory of attraction. Several other medallists
worked on mathematical theories with applications to mechanics; however, they were not described as
such in the speech of the Royal Society’s president. This is the case for instance of Charles Hutton, who
studied the velocity of cannon balls; see [Wardaugh, 2019].

11Bektas and Crosland attribute this to “a general British empirical approach, reinforced by a firm New-
tonian tradition, with its emphasis upon experimental and quantitative methods”, [Bektas & Crosland,
1992], p.60.

12Plücker and Regnault would both be awarded the medal, in 1866 and 1869 respectively.
13Hirst’s diaries, Journal XII, p.2.
14Hirst’s diaries, Journal XII, p.3.
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Herschel in favor of Regnault. But Hirst, according to his retelling of the events, no-
ticed publicly that Miller had intentionnally omitted a postscript to the letter. In this
postscript, which Miller was then forced to read out by his peers, Herschel allegedly de-
scribed Regnault’s researches as more suitable for the Rumford medal than the Copley
medal15. For Hirst, this forced admission was a crucial victory. Next came Stokes’ sup-
porting statement in favor of Plücker, which rested on the argument that the German
mathematician had in fact two claims to this award: one for his mathematical research in
analytical geometry, and the other for his physical research. This was a strong argument,
as knowledge of the natural world was still very much valued above pure mathematics
by the Council members of the Royal Society, few of which were mathematicians. Hirst,
privately, acknowledged that Stokes’ argument “weakened [his] cause16”. Lastly, Hirst
read the letters of Cayley, Sylvester, and Smith, which he would later describe as having
been surprisingly effective, even on non-mathematicians.

Surprisingly, the initial vote ended up in a three-way tie, with Chasles, Plücker, and
Regnault each collecting five votes. To win over his colleagues, Hirst once more enlisted the
help of Sir Roderick Murchison. Murchison had agreed to vote for Chasles after hearing
all three recommendation letters, despite not being able to understand the mathematics
at play. Hirst then discretely suggested to Murchison, whom he described as his “knightly
neighbour”, that he express the opinion that seniority be a deciding factor17. Roderick’s
timely intervention, Hirst would later write, helped tip the scales in favor of Chasles,
especially as it “luckily drew forth a still more influential remark from Prof. Adams of
Cambridge to the effect that, independently of seniority, he thought Chasles’ claims were
highest18”. A couple of additional members of the Royal Society were brought in to break
the tie, and when voting started over, Chasles was elected with 7 votes, against 5 for
Regnault and 4 for Plücker.

This victory meant that Chasles’ theory of characteristics was even further publicized
across British scientific circles, as the Presidential address for the the Anniversary Meeting
of the Royal Society, delivered by Sir Edward Sabine on November 30th 1865, and later
published in the Proceedings of the Royal Society, featured a short and laudatory summary
thereof19. In fact, this summary itself had been largely written by Hirst himself on Sabine’s
request, as the latter was no mathematician.

While this publicity attests to the existence of widespread interest for Chasles’ theory
among British mathematicians, few of them actively attempted to investigate this subject-

15In fact, Regnault had already won the Rumford medal in 1848.
16Hirst’s diaries, Journal XII, p.4.
17In 1865, Chasles was 72, while Regnault was 55 and Plücker 64.
18Hirst’s diaries, Journal XII, p.6.
19 [Sabine, 1865].
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matter further. Hirst himself did not publish anything on this topic in the years following
his electoral triumph, save for a paper on the degenerate forms of conics20. A few years
later, Hirst proposed a theory of the correlation between planes which borrows largely
from the notations and methods of the theory of characteristics21, which does not seem
to have circulated a great deal (and as such will not be discussed here). A few syntheses
of Chasles’ theory were written in English. The Irish mathematician George Salmon
would include sections about it in the second and later editions of his Treatise on the
Higher Plane Curves22, as well as a paper on the characteristics of elementary systems of
second-order surfaces23. Cayley also wrote a long presentation (split across two papers)
of Chasles’ theory, proposing new notations for it, a “quasi-geometrical” interpretation
of its key concepts, and criticizing De Jonquières’ earlier enumerative theory24. We shall
come back to the content of these papers below (see 6.3.1). It suffices to say for now that
Cayley’s interpretation, however influential it would prove to be (in particular for Italian
algebraic geometers in the 1880s), was not aimed at pursuing the theory of characteristics
for its own sake, but rather at showing that it could be incorporated into the framework
of the so-called “abstract m-dimensional geometry” Cayley was developing at the time25.
Later on, Cayley would never go back to enumerative methods, only following from a
distance the disputes triggered in the wake of Halphen’s refutation of Chasles’ formula26.
Beyond these few authors, there seems to have been no significant engagement with
Chasles’ theory amongst British mathematicians despite the Copley medal celebrating it
in 1865.

20 [Hirst, 1866]. In this paper, Hirst discusses the third mode of degeneration for conics, whereby a
conic collapses into one straight line and one point. We shall come back to this kind of conic in sections
6.4.3, 7.3.3.

21 [Hirst, 1873].
22 [Salmon, 1873], pp.360-373. Note that Salmon would only include a much shorter account of the

theory of characteristics in editions of his Treatise on Conics posterior to 1864, and this account is only
part of the end notes (and not of the body text), see for instance [Salmon, 1869], pp.368-370. This might
have to do with the fact that the theory of characteristics was considered as too advanced to be included
in this elementary exposition of the geometry of conics. However, Wilhelm Fiedler, in his Analytische
Geometrie der Kegelschnitte nach Salmon did devote the entirety of the 25th and last chapter to it,
see [Fiedler, 1866], pp.571-587.

23 [Salmon, 1867b].
24 [Cayley, 1868a], [Cayley, 1868b].
25 [Cayley, 1870].
26In fact, Cayley had been interested in Chasles’ publications at an earlier stage: in 1866, he had begun

working on the principle of correspondence, which he sought to generalize by considering correspondences
not on a straight line L, but on a curve of “deficiency” (genus) D. A correspondence (α, β) on such a
curve, he had shown, had α + β + 2kD coinciding points, where k is a number to be found on a case
by case basis. On this topic, Cayley sent short notes to Chasles to be read before the Paris Académie,
and wrote short papers for the London Mathematical Society; see [Cayley, 1866a], [Cayley, 1866c]. This
extension of the principle of correspondence would later be taken up by Brill, among others; see [Brill,
1873].
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6.1.2 Doctoral dissertations on the theory of characteristics

Another facet of the international reception of the theory of characteristics, which had a
more profound and lasting impact on the development of this theory, was the fact that
it became the subject of a few doctoral dissertations, and in different countries27. Three
such dissertations will be of particular interest to us.

The first one is that of the Danish mathematician (and historian of mathematics)
Hieronymus Zeuthen. The son of a protestant minister, Zeuthen entered the University
of Copenhagen in 1857, where he studied mathematics28. After graduating in 1862 cum
laude, he became particularly interested in geometry, writing a short essay on “geomet-
rical methods of transformation”, and obtaining a grant the following year to travel to
Paris and study under Chasles’ supervision. A privileged observer of the initial publica-
tion of the theory of characteristics, Zeuthen was forced to an early return to Denmark
in April 1864 due to the outbreak of the Second Schleswig War with Prussia and Austria.
In 1865, back in Copenhagen, Zeuthen wrote a dissertation in Danish on the theory of
characteristics, entitled “Nyt Bidrag til Læren om Systemer af Keglesnit, der ere under-
kastede 4 Betingelser29” (New contribution to the theory of systems of conics satisfying
4 conditions), and submitted it on October 22nd. He then translated into French large
parts of this dissertation, and had them published in the Nouvelles Annales30. With these
publications, Zeuthen became one of the very first mathematicians to produce extensive
research on the theory of characteristics, besides Chasles, De Jonquières, and Cremona.
Throughout his long career, Zeuthen would maintain a constant engagement with this
topic, and with enumerative geometry at large. He would eventually be recognized as a
leading expert in this field, with for instance Klein and Meyer tasking him with writing
an entry on “enumerative methods” for their Encyklopädie31. Another dissertation on
the theory of characteristics written by someone who would devote his entire scientific
career to enumerative geometry is that of the German mathematician Hermann Schubert
(1848-1911). In fact, this dissertation, written in 1870, would be the first contribution
to the theory of characteristics written in German (as far as we can tell). Indeed, due
to Chasles’ personal and scientific proximities with mathematicians based in both Italy
and England, the reception of the theory of characteristics was relatively fast in these

27Of course, there was no unified higher-education system across European countries at this time,
and to speak of ‘doctoral dissertation’ is an abuse of language. However, for the sake of brevity, we
almagate through this term the Habilitationsschrift, the Doctorat, and other similar institutions. On
these questions, see [Rüegg, 2004], especially pp.37-72.

28For biographical information on Zeuthen’s early years, see his autobiography, [Zeuthen, 1866b], as
well as [Kleiman, 1991].

29 [Zeuthen, 1865].
30 [Zeuthen, 1866a].
31 [Zeuthen, 1905].
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Hieronymus Zeuthen (1839-1920)

countries, with faithful translations and summaries being produced as early as 1865. In
Germany, however, the uptake of Chasles’ new discoveries was much slower.

The circumstances which led Schubert to this particular topic for his dissertation are
rather unclear. Schubert had studied physics and mathematics at the University of Berlin
between 1867 and 1870, attending the seminars of Kummer and Kronecker. In parallel, he
was actively studying with the German physicist Gustav Magnus, under whose supervision
he intended to write a doctoral dissertation32. When Magnus died in April 1870, Schubert
had to transfer to the University of Halle, where he obtained his doctoral habilitation
under Eduard Heine. Heine knew nothing of Chasles’ theory until reading Schubert’s
dissertation, whose worth he did not feel capable of fully assessing33. He nonetheless
wrote a positive review, and the dissertation, once defended, was immediately published in
Crelle’s Journal34. After a three-year hiatus between 1871 and 1874, Schubert went back
to the theory of characteristics, and became one of the most active authors on this topic
over the course of his long career35. Lastly, at least one dissertation was defended in France
in the years immediately following Chasles’ communications. Its author was a young
normalien named Sylvère Nicolas Maillard (1845-19??). After taking the Agrégation in
1867, he defended in December 1871 a dissertation at the Faculté des Sciences de Paris on
the theory of characteristics for cubics. Despite the fact that Chasles was still a professor
at the Faculté (and was very much alive and at work, his old age notwithstanding), Serret
is listed as having presided over the commission which examined this dissertation36. The

32 [Burau & Renschuch, 1966].
33 [Burau, 1993], p.64.
34 [Schubert, 1870]. The following year, Schubert would publish a brief note in Crelle’s Journal to

acknowledge Zeuthen’s priority regarding some of the results presented in his dissertation, see [Schubert,
1871].

35Schubert’s enumerative geometry is the subject of the next chapter of this dissertation.
36The external reviewers, or examinateurs, were Briot and Ossian-Bonnet; [Maillard, 1871].
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Hermann Schubert (1848-1911)

next year, Maillard was hired as a chargé de cours at the Université de Poitiers, where he
spent the rest of his career, seemingly not continuing on with his research on the theory
of characteristics37.

We shall come back to the content of these three dissertations shortly, and discuss
how they all propose to reorganize the theory of characteristics whilst still accepting the
main tenets of the research programme laid out by Chasles (see 6.2).

6.1.3 The Société Mathématique de France: a center for the
development of the theory of characteristics

Beyond Maillard, there were several other French mathematicians who, in the early 1870s,
published on the theory of characteristics. One of the first to contribute to this theory
was George-Henri Halphen (1844-1889), who graduated from the Ecole Polytechnique in
1862 and pursued a military career (as an artillery officer) alongside his mathematical
research. Between 1869 and 1872, he published in the Comptes-Rendus de l’Académie des
Sciences, with the help of his professor Joseph Bertrand and of Chasles himself, several
papers which extended the notion of characteristics to straight lines in space38. Halphen’s
theory of straight lines in space is not exactly analogous to the theory of characteristics
for conics, but its central questions and the notations are similar to what Chasles had
been doing. For instance, in the first paper of this series, Halphen sets out to count how
many straight lines in space satisfy simultaneously two pairs of conditions39. To that

37What little is known of Maillard’s life can be found in [Huguet & Noguès, 2011].
38 [Halphen, 1869], [Halphen, 1871], [Halphen, 1872], [Halphen, 1873a].
39The parametric equation of a straight line in space involves four coefficients; therefore, four (simple)

conditions determine a finite number of straight lines.
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end, he defines the characteristics µ, ν of a pair of conditions as, respectively, the number
of straight lines in a given plane satisfying the pair of conditions, and the number of
straight lines passing through a given point and satisfying the pair of conditions. Given
two pairs of conditions, whose characteristics are respectively µ, ν and µ1, ν1, Halphen’s
central result states that the number of straight lines satisfying both pairs of conditions
is

µµ1 + νν1

This is obviously reminiscent of Chasles’ αµ+βν theorem. However, no equivalent to the
notion of systems of curves is provided by Halphen, nor are these characteristics derived
from 1-parameter families of figures.

Georges Henri Halphen (1844-1889)

Other mathematicians who contributed to Chasles’ theory include Louis Saltel and Georges
Fouret40. However, the papers published by Fouret and Saltel quickly diverged from the
research programme initiated by Chasles, with for instance Fouret introducing transcen-
dental curves and differential analysis into the picture, by showing that all systems of
curves (algebraic or transcendent) having the same characteristics satisfy one differential
equation41.

The case of Saltel is particularly interesting in this regard. Saltel, born on May 7th

1847 in Espalion, obtained a doctorate in mathematics from the university of Nancy in
1877. His thesis, and much of his subsequent work, bears on what he called ‘the analytical
principle of correspondence’ – which he thought to be a more general version of Chasles’

40Little is known regarding the life of Fouret, who replaced Poincaré as president of the Société Math-
ématique de France in 1887, having by then moved on to research interests unrelated to the theory of
characteristics.

41 [Fouret, 1873a], [Fouret, 1873b].
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principle. Earlier, he had proposed a method for obtention of the characteristics of ele-
mentary systems of curves of order m, relying on what he called the “principe arguésien
unicursal42”. In 1876, Saltel began to raise doubts over the validity of the theory of char-
acteristics. In particular, he attacked the way solutions étrangères were being counted
and published various ‘proofs’ of the falsity of Chasles’ theory, mostly in the Bulletin de
l’Académie Royale des Sciences de Belgique, with the help of Catalan43. Despite these
attacks seemingly coinciding in timing and direction with those of Halphen, the latter did
not take Saltel’s work seriously. Indeed, at various points of their private correspondence,
Halphen and Zeuthen make clear their complete disregard for these publications, which
they never mention in their respective publications. From 1882 onwards, Saltel suffered
from mental health issues, and would have several stays in a sanatorium in Armentières,
after which his scientific output was all but halted44.

These young French geometers all met and interacted at the Société Mathématique
de France (SMF) in Paris, which had been created in 1872. Chasles himself presided over
this society for the first year of its existence; after which he remained honorary president
until his death in 1880. The Société in fact had been created partly after his own lament,
expressed in his 1870 Rapport, that French mathematics was doomed to lag behind their
German, English, or Italian counterparts lest such a society be created immediately45. A
mathematical journal, namely the Bulletin de la Société Mathématique de France, was
immediately associated to this Society. In the first volumes of the Bulletin, the theory of
characteristics is much more represented than in any other European mathematics jour-
nal46, largely due to the contributions of Halphen, Saltel, and Fouret. In fact, reports on
the scientific life of the Société and on the matters discussed during its bi-weekly meetings,
also published in the Bulletin, attest to the constant presence of discussions pertaining to
Chasles’ theory within the walls of this institution throughout the 1870s. Ferdinand von
Lindemann, a German mathematician who had been editing and publishing the Vorlesun-
gen of Alfred Clebsch after the latter’s death, would also attend and participate to some
of these meetings47. Both he and Clebsch had worked on this topic in previous years, as

42 [Saltel, 1873]. This principle, in a nutshell, states that “if a plane curve has three multiple points
whose orders add up to a number higher than the curve’s order, then the properties of this curve can be
reduced to the properties of a curve of lower order”.

43For instance, [Saltel, 1876].
44 [Huguet & Noguès, 2011].
45 [Chasles, 1870], pp.378-379. On the early history of this society, see [Gispert, 1991].
46Of course, at the same time, the Comptes-Rendus de l’Académie de Paris, while not properly speaking

a mathematics journal, would also publish a large number of papers on the theory of characteristics, in
large part due to Chasles’ impressive output between 1870 and 1876.

47See for instance [SMF, 1877], wherein the importance of the theory of characteristics as a subject
of discussion for the mathematicians of the Société Mathématique de France appears clearly. Note that,
beyond the aforementioned authors, Jordan and Darboux also seemingly took part in such discussions,
despite not having published on the theory of characteristics.
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we shall see below (see 6.3.2). Furthermore, Schubert and Zeuthen, two of the most active
authors on the theory of characteristics outside of France, would engage with the Société
early on, with Schubert becoming a foreign member in 1876 with Halphen’s help48, and
Zeuthen in 1881. When, toward the end of the year 1879, Halphen and Schubert feuded
over the validity of some of the latter’s enumerative results, they ultimately decided to
resolve their dispute via public notes published in the Bulletin49. Thus, throughout the
1870s, the SMF would serve as a nodal point for (sometimes polemical) reception, diffu-
sion, and circulation of the theory of characteristics.

6.2 The reorganization(s) of a theory

Having discussed the institutional reception of the theory of characteristics, we now re-
turn to the three aforementioned dissertations written about it between 1865 and 1871.
These three dissertations, much more than the surveys previously evoked, show a great
deal of familiarity with Chasles’ methods and research programme for the theory of char-
acteristics. However, while all three accept this programme to a certain extent, they also
propose to reorganize the theory of characteristics, that is to say to alter its presentation,
its notations, or some of its computational techniques. We present these dissertations in
chronological order; however, they do not cross-reference, and the reorganizations they
put forth are unrelated for the most part.

6.2.1 Zeuthen’s 1865 dissertation

Zeuthen’s dissertation is divided into three sections, the first of which introduces the
general problem of enumerating conics satisfying five conditions, and surveys efforts in
that direction prior to Chasles’ theory of characteristics50. In particular, Zeuthen briefly
discusses Bischoff’s enumerative formulae, and De Jonquières’ theory of plane curves.
Written in the first half of 1865, this dissertation predates De Jonquières’ three notes
from Saïgon, and his public dispute with Chasles51. As such, it features criticisms of
Bischoff’s and De Jonquières’ formulas and theories similar to those expressed Chasles
in his 1862 report for the Grand Prix de Mathématiques52. In particular, the theory
of characteristics is thus presented as solving the “difficulties” (Vanskeligher) which the
occasional presence of exceptional conics brought into De Jonquières’ formulas, and is
said to restablish the duality which sorely lacked in them. For Zeuthen, “the main point

48We come back to the circumstances of Schubert’s election, see 8.2.1.
49On this dispute, see 8.2.2.
50 [Zeuthen, 1865], pp.1-16.
51See 4.1.
52 [Zeuthen, 1865], pp.9-10.
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of Chasles’ method, to which he also attaches the utmost importance, is the successive
introduction of the individual conditions by which a conic must be determined, and he
solves his task by starting from the elementary systems and then introducing the given
conditions one by one53”. The rest of Zeuthen’s dissertation consists in “a new method for
the determination of the characteristics of a system of conics54”, which does not proceed
by Chasles’ method of substitution55. This method is exposed in the second section of
the dissertation, while applications to curves of order m and class n are discussed in a
shorter, third section56. The second section would be translated into French by Zeuthen
himself, and published in 1866 across five papers for the Nouvelles Annales57. We shall
now summarize it, relying on this later publication in French.

The starting point of Zeuthen’s method is to rewrite Chasles’ characteristics as func-
tions of the two numbers of degenerate conics in a system of conics. Chasles had shown
that, in a system of characteristics (µ, ν), there were always λ = 2µ − ν point-pairs (or
coniques infiniment aplaties) and ω̃ = 2ν − µ line-pairs58 (or coniques représentées par
deux droites). Therefore, as Zeuthen noticed, the characteristics could be defined through
these two other numbers59:

µ = 1
3(2λ+ ω̃)

ν = 1
3(2ω̃ + λ)

53“Hovedpunktet i Chasles’s Methode, som han ogsaa selv tillægger størst Betydning, er den successive
Indførelse af de enkelte Betingelser, hvorved et Keglesnit skal bestemmes, og han løser sin Opgave ved at
gaae ud fra de elementaire Systemer og derpaa indføre de givne Betingelser en for en”, [Zeuthen, 1865],
p.15.

54 [Zeuthen, 1865], p.16.
55On Chasles’ method, see 4.2.1.
56 [Zeuthen, 1865], pp.17-87 and 88-97 respectively.
57 [Zeuthen, 1866a].
58Remember that point-pairs are defined by Chasles (and, subsequently, by Zeuthen), as conics com-

posed of one straight line and two points on it. Conversely, line-pairs are composed of two straight lines
and one point on them. Conics are curves of order and class 2, therefore they intersect every straight
line in two points, and from every point, two tangents to them can be drawn. Since usual definitions of
intersections and tangencies become problematic when applied to such degenerate curves, new definitions
of intersections and tangencies must be stipulated for these properties to remain valid. The straight line
composing a point-pair is in fact two coinciding straight lines, therefore the intersection of a straight line
and a point-pair is a double point (potentially at infinity). From a given point, one draws two tangents
to the point-pair by joining it to the two points. These are tangents because they only intersect the
degenerate conic at a single point. Similarly, any straight line intersects a line-pair at two points because
it intersects each one of the two straight lines composing it at one point (including if it passes through
the point composing the line-pair, which is at the intersection of the two straight lines); and from a fixed
point, one draws two coinciding tangents to the line-pair by joining it to the point composing the pair.
That is to say, because the point of a line-pair is a double point, one can draw the straight line to it
twice, thus drawing two tangent lines. See 4.2.5 for more details.

59The realization that one can study the properties of systems of conics by looking at its degenerate
elements rather than its characteristics would be extremely influential on Schubert, see 7.2.3, 7.2.4.
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To determine the values of λ and ω̃ in a given system is, therefore, enough to determine its
characteristics. This task, Zeuthen explained, could be decomposed into three sub-tasks60:

Il s’agit de trouver: 1° sur quelles droites sont situées les coniques infiniment
aplaties, et quels points sont doubles dans les autres coniques exceptionnelles
; 2° quelles coniques singulières de la première espèce sont situées sur chacune
des droites trouvées, et quelles coniques singulières de la seconde espèce ont
à chacun des points trouvés un point double ; 3° combien de fois chacune des
coniques singulières qu’on a trouvées est comptée dans les nombres λ et ω̃.

This third task, according to Zeuthen, is where the real difficulties lie. To show how these
numbers could be determined, Zeuthen first treated the case of elementary systems, whose
characteristics were of course already well-known. However, in so doing, Zeuthen did more
than prove once again the values for the numbers of conics satisfying five elementary
conditions: he also obtained a description of the degenerate conics which satisfy them,
and of their respective multiplicities.

In the case of the sheaf of conics, that is to say the system of conics defined by four
points p1, .., p4, Zeuthen first notes that there cannot be any point-pair in such a system,
and therefore that λ′ = 0 (where the dash indicates that we are referring to numbers
pertaining to this first elementary system). Indeed, a point-pair is formed of only one
(double) straight line, which cannot go through all four points in general. To enumerate
line-pairs, Zeuthen notes that one can only draw three pairs of lines going through all
four points (see fig. below). From this, Zeuthen concludes that ω̃′ = 3x, where x is a
positive, non-zero integer: x represents how many times each of these exceptional conics
ought to be counted. From the system of equations above, Zeuthen obtains µ′ = x, and
ν ′ = 2x. Since µ′ = 1 (as five points determine uniquely a conic), x = 1 and therefore
ν ′ = 2. Note that two different conclusions are drawn by Zeuthen, in keeping with the
sub-tasks identified above: from the equation x = 1, Zeuthen knows that each line-pair
in this system is to be counted once, and from the equation ν ′ = 2x, he knows that there
are two such line-pairs, irrespectively of their multiplicity.

60 [Zeuthen, 1866a], p.242.
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In the case of a system of conics defined by three points p1, p2, p3 and a straight line l,
the same reasoning as above allows Zeuthen to write λ′′ = 0. A line-pair in this system
must pass through all three points and touch the line l. If one of the lines in the pair
goes through p1 and p2, the other line must go through p3 and the intersection point o of
l and the line p1p2. There are three such line-pairs, Zeuthen notes61; as a result, he writes
ω̃′′ = 3y, and obtains the equations µ′′ = y, ν ′′ = 2y. Furthermore, µ′′ = ν ′ = 2, as µ′′

and ν ′ both stand for the numbers of conics passing through four points and touching one
straight line. Substituting these numbers in the equations given above, Zeuthen concludes
that y = 2 and that ν ′′ = 4. This means that every line-pair passing through three given
points and determined by one given straight line ought to be counted twice, resulting in
a total of four degenerate conics of this kind being present in the system.

In the case of a system of conics defined by two points p1, p2 and two straight lines
l1, l2, Zeuthen observes that there is only one way to form a line-pair, namely by joining
the intersection point o of l1 and l2 to p1 and p2 respectively. Furthermore, there is only
one way to form a point-pair, by forming the straight line joining the two points p1 and
p2, and comprised between the points where the given lines touch62 (see fig. below). As a
result, λ′′′ = 1 · z, and ω̃′′′ = 1 · u. Zeuthen then notes that “by transforming this system
via the principle of duality, one obtains a system of a similar kind63”, and concludes that
λ′′′ = ω̃′′′, therefore z = u, and µ′′′ = ν ′′′ = z = u. Since µ′′′ = ν ′′, this system is of
characteristics (4, 4), and the point-pairs and line-pairs which pass through two points
and are limited by two straight lines must each be counted four times.

61Given three points p1, p2, p3, there are exactly three pairs of straight lines joining two of these points,
such that by every point passes at least one straight line: (p1p2, p1p3), (p1p2, p2p3), (p1p3, p2p3).

62A point-pair can either be thought of as a straight line and two points on this line, or, as Zeuthen
tends to prefer, a straight line limited by two points. One can visualize this as an ellipse collapsing onto
the straight line joining its foci.

63 [Zeuthen, 1866a], p.244.
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In the system defined by one point p1 and three straight lines l1, l2, l3, there are no line-
pairs. Indeed, the point defining such a degenerate conic could not possibly be on all
three given lines64. There are three point-pairs, which are all composed of the straight
line joining p and one of the li’s, and of its intersections with the other two li’s. Therefore,
λiv = 3υ, ω̃iv = 0, and, using the relations between characteristics and degenerate conics,
µiv = 2υ, νiv = υ. Since µiv = 4, Zeuthen finds that υ = 2: point-pairs defined by three
points and one straight line must be counted twice, which means that there are six in this
system (whose characteristics can now be computed, and are (4, 2)).

Lastly, in the system defined by four straight lines l1, l2, l3, l4, there cannot be point-
pairs for the same reason as in the previous case. There are three such point-pairs (see
fig. below), obtained by joining two-by-two the intersections of two of the given straight
lines. In the same manner as before, Zeuthen obtains λv = 3s, ω̃v = 0, and therefore
µv = 2s, νv = s. Since µv = 2, this means that s = 1, and point-pairs defined by four
straight lines must be counted once (and the characteristics of this system are (2, 1)).

At this point, not only has Zeuthen obtained the characteristics of all elementary systems
in a new manner, but he also obtained a list of prescriptions regarding the counting of

64This is the dual statement to the proposition that there cannot be a point-pair in a system defined
by three points, because the straight line defining such a point-pair could not possibly pass through all
three points.
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degenerate conics defined by elementary conditions, which will prove useful beyond the
case of elementary systems. Indeed, these elementary systems being dealt with, Zeuthen
moves on to the locus classicus of enumerative problems at that time, namely contact
problems65. In order to find the characteristics of a system of conics defined by four
contact conditions, Zeuthen suggests “regarding the motion of a variable conic which
continuously touches a given curve at will as composed of a sequence of rotations about
successive points of contact, or as a sequence of slides (glissements) on the tangents at
these points66”. A system of conics defined by four contact conditions is viewed as a mobile
conic which rotates about the points where tangencies are demanded, and whose tangents
slide along the stipulated lines. This is particularly useful, because the degenerate conics
in such a system are then the degenerate conics defined by i points and 4 − i straight
lines, whose multiplicities as elements of the system (or, alternatively, as ‘elements’ of the
variable conic) have been computed at the same time as the characteristics of elementary
systems.

This, Zeuthen claims, showed that the numbers of exceptional conics in the system
determined by four given curves depend only on the instantaneous variation of a conic
which, at any given time, satisfies elementary conditions. In particular, the multiplicity
of the special conics present in the system determined by four curves could be known a
priori thanks to the results outlined above. For instance, explains Zeuthen67,

On doit compter:
Dans le nombre λ relatif à un système de coniques qui touchent quatre courbes
données : une seule fois, toute conique infiniment aplatie joignant deux points
où les quatre courbes se rencontrent deux à deux et limitées à ces points ; deux
fois, toute conique infiniment aplatie touchant une courbe donnée, passant par
un point de rencontre de deux autres courbes données et limitées à ce point
et à la quatrième courbe [..]
Et dans le nombre ω̃ relatif au même système : une fois, toute conique sin-

65By contact problem, we mean the enumeration of conics satisfying four contact conditions. A contact
condition is a condition of the form ‘to have a contact of order r with a given curve of order m and of
class n’.

66“On peut regarder le mouvement d’une conique variable qui touche continuellement une courbe
donnée à volonté, comme composé d’une suite de rotations autour de points successifs de contact, ou
comme une suite de glissements, sur des tangentes en ces points”, [Zeuthen, 1866a], pp.246-247.

67“We must count: in the number λ, relative to a system of conics touching four given curves : only one
time; every point-pair conic joining two points where the four curves intersect two by two and limited by
these points ; two times every point-pair touching a given curve, passing through an intersection point of
two other given curves, and limited at this point and the fourth curve [..] and, in the number ω̃ relative
to the same system : once, every singular conic composed of a pair of straight lines, of which one touches
two given curves, the other one the other two curves ; twice, every conic with a double point at one of
the points where a given curve meets a common tangent to two other given curves, and composed of this
line and a tangent going through the double point of the fourth curve”, [Zeuthen, 1866a], p.247.
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gulière composée d’un couple de droites dont l’une touche les deux courbes
données, l’autre les deux autres ; deux fois, toute conique ayant un point dou-
ble à l’un des points où une courbe donnée rencontre une tangente commune à
deux autres, et composée de cette droite et d’une tangente par le point double
à la quatrième courbe [..].

Considering a general system defined by four conditions of the form ‘to touch a given
curve’, Zeuthen examines the various ways for degenerate conics to appear. Four curves
C1, C2, C3, C4 being given, consider one point p1 at the intersection of C1 and C2, and
one point p2 at the intersection of C3 and C4. Drawing a straight line l joining these
two points, it appears that the point-pair composed of l and (p1, p2) satisfies all four
contact conditions. From the preliminary groundwork described earlier, Zeuthen knows
already that this degenerate conic will count once, because it is a point-pair defined by
four glissements (or four straight-lines), and the study of the fifth elementary system had
yielded for such conics the multiplicity s = 1. Similarly, a point-pair can be formed by
taking one point at a point p1 at the intersection of C1 and C2, drawing a tangent l from
p1 to C3, and taking one point p2 at the intersection of l and C4. There again, one can
check that, with the extended notions of incidences and tangencies for degenerate conics,
the point-pair (p1, p2) satisfies the four contact conditions. This time, however, it must be
counted twice, because it is defined by three glissements and one contact, and the study
of the fourth elementary system had yielded the multiplicity υ = 2.

Of course, given four curves in the plane, there are several degenerate conics which
can be thusly generated, irrespective of their multiplicity. But these numbers can be
computed simply using Bézout’s theorem and its analog for tangencies. To express this
result more generally, Zeuthen then lets Cm,n denote the condition of touching a curve68

of order m and class n. Zeuthen then proceeds to enumerate the exceptional conics of
each kind in the system (Cm1,n1 , Cm2,n2 , Cm3,n3 , Cm4,n4). To that end, Zeuthen first recalls
that two curves of order m1 and m2, and of class n1 and n2, have m1m2 intersection points
and n1n2 common tangents. As a result, Zeuthen claims that, for instance, there are

m1m2 ·m3m4 +m1m3 ·m2m4 +m1m4 ·m2m3 = 3m1m2m3m4

point-pairs of the first kind, that is to say which join two points where the four curves
68In fact, Zeuthen also introduces the numbers d of double points, d′ of cusps, t of bitangents, and t′

of stationary tangents. All these numbers are linked by Plücker’s formulae, with which Zeuthen was very
familiar. Zeuthen refers to Plücker in the original 1835 German edition of the System der analytischen
Geometrie, but he also had studied extensively Salmon’s textbooks, see [Kleiman, 1991], p.4. These
numbers play a role in later parts of Zeuthen’s memoir, which we shall not discuss here. It is easy to
imagine how they might play a role in the fine-tuned determination of the conics satisfying more specific
contact conditions.
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meet two by two, and comprised between these points. Indeed, while Zeuthen gives no
further explanation of this formula, to form such a point-pair, one must select two points,
which will be on all four curves. As a result, one point will be at the intersection of two
of the four curves, and the other point at the intersection of the two other curves. Each
factor in the left-hand term represents a possible choice for the two first curves. There
are, in the first case (one point on C1 and C2, the other on C3 and C4), m1m2 possible
choices for the first point, and m3m4 for the second point; hence the result.

Similarly, Zeuthen produces the number of special conics of each kind, and adds them
to obtain expressions for λ and ω̃ (taking into account multiplicities), from which he
obtains the characteristics of the entire system defined by the four conditions Cmi,ni

.
Zeuthen goes on to obtain the characteristics of systems defined by more complicated
contact conditions, for instance imposing on conics to have contacts of a certain order
with a given curve, or that the contact be at a given point. While the method is the same,
Plücker’s formulae are required in these more delicate cases.

Furthermore, Zeuthen introduces operations on conditions. For instance, denoting
the condition ‘touching the curve Cm,n at a given point’ as the juxtaposition Cm,nθ ,
and Cm,n −Cm′,n′ the condition ‘touching the curves Cm,n and Cm′,n′ at different points’,
Zeuthen showed that for any three conditions Z1, Z2, Z3, there held an equation between
the numbers of conics satisfying the following sets of conditions69:

N(Cm,n, Cm′,n′ , Z1, Z2, Z3) = 2N(Cm,nθ, Z1, Z2, Z3) +N(Cm,n − Cm′,n′ , Z1, Z2, Z3)

This was not turned by Zeuthen into a more general computational system on conditions,
nor where such equations combined into an algebra of conditions. Rather, these formal
equations were useful insofar as Zeuthen was able to find relations between the special
conics of each of these systems. For instance, the special conics of (Cm,nθ, Z1, Z2), Zeuthen
claimed, are the limits to which tend some of the special conics of (Cm,n, Cm′,n′ , Z1, Z2).
As such, Zeuthen was able to provide a method to count the special conics of systems
involving complex conditions (such as Cm,nθ) via the special conics of the general system
involving basic contact conditions, in the same way as the special conics of elementary
systems had served to enumerate the special conics of systems of conics satisfying contact
conditions.

Zeuthen’s dissertation, and the series of papers derived from it for the Nouvelles
Annales, were written as Chasles was publishing his own theory: as a result, it does
not follow precisely the program Chasles would lay out for further research, namely the
determination of characteristics of elementary systems for curves of higher degree (or for

69 [Zeuthen, 1866a], p.291.
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surfaces). Instead, Zeuthen focuses his effort on the creation of an alternative method
for the obtention of characteristics of systems of conics, and set out to fully solve a
problem which had occupied earlier authors, especially Bischoff and De Jonquières: that
of enumerating conics satisfying five contact conditions. Zeuthen, however, fully accepted
Chasles’ criticism of these predecessors’ formulae, and his method explicitly purports to
import the merits of the theory of characteristics into this general problem. In order to
do so, Zeuthen had made degenerate conics the cornerstone of his enumerative method,
instead of the characteristics of a system, thus simply but profoundly reorganizing Chasles’
theory.

6.2.2 Schubert’s 1870 dissertation

Schubert’s dissertation aimed mostly to summarize and expand on Chasles’ theory of
characteristics for systems of surfaces, which, as we saw earlier, are characterized not
by two but by three characteristic numbers70. In a system of surfaces, µ denotes the
number of surfaces passing through any given point, ν that of surfaces touching any given
line, and ρ that of surfaces touching any given plane. Schubert asserts that it has been
“observed” (beobachtet) that for any condition Z, in any system of surfaces (µ, ν, ρ), the
number of surfaces satisfying Z is αµ+ βν + γρ, where α, β, γ depend only on Z. These
three numbers are called the “parameter” (Parameter) of a condition by Schubert, who
thus replaces Chasles’ modules. Schubert makes no attempt to prove this theorem in this
paper, nor does he suggest that it should or could be done. However, he immediately
proves a few results that were merely stated in Chasles’ and De Jonquières’ papers: in
particular, the parameter of the condition ‘touching a given surface of order m’. In order
to prove this latter result on surfaces, Schubert first proves another related result only
stated by Chasles71, namely the fact that in a system (µ, ν) of curves of order n, there are
m[(m − 1)µ + ν] curves which touch another given curve of order m. The way in which
Schubert conducts his proof is interesting, if only because it departs from the methods
employed by Chasles and De Jonquières. In lieu of correspondences, Schubert elects
to prove these results directly from geometrical considerations, showing familiarity with
synthetic geometry (even though no reference is given to indicate where this knowledge
was acquired).

To compute the module (or parameters) of the contact condition stated above, Schu-
bert considers a curve f of order m in the plane of a system (µ, ν) of curves of order n.
He then proposes to determine the order of the locus generated by the point p such that

70See 4.2.6.
71See [Schubert, 1870], p.367. We have already discussed this result, see 4.2.2.
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a straight line which, at p, is tangent to a curve of the system, intersects the polar line72

of p with respect to f on a given straight line e. The order of this locus is the number of
intersections it has with any straight line; therefore, explains Schubert, it suffices to count
how many points p on e satisfy the condition above, namely ‘being at the intersection of
a straight line tangent to a curve of the system and of the polar line of p with respect to
f ’.

There are ν points on e at which a curve of the system touches e, per definition of the
characteristics. These points all fulfil the condition. Indeed, the tangent line to a curve
in the system is e itself, and whatever the polar line is, it will necessarily cut this tangent
line on e. Furthermore, any point r on e which lies on its own polar line with respect to
f fulfils the condition as well, for a similar reason. These points are none other than the
m points where f and e intersect. Each of these points fulfils the condition µ times, as
through each of these points p pass µ curves of the system from which the tangent can be
drawn to satisfy the condition. Schubert then shows that no other point can satisfy the
condition.

Therefore, this locus is of order ν + mµ; and, it intersects the curve f at m(ν + mµ)
points. Each of these intersections is a point p such that the polar line of p with respect to
f (which is the line tangent to f at p, since p is on f) intersects on e the lines which touch
a curve of the system at p. Such a point is both on a tangent of f and on a tangent of
a curve of the system; therefore, Schubert notes, when the two tangents do not coincide,
it must be their intersection point, and thus be on e. There are only mµ points in this
situation, per hypothesis. Consequently, the number of points p that are real points of
contact of coinciding tangents is

m(ν +mµ)−mµ = m[(m− 1)µ+ ν]

This proof is immediately followed by and used in a similar proof of an analogous result
for surfaces, namely that in a system of surfaces (of order N) of characteristics (µ, ν, ρ),
the number of surfaces touching a given surface of order m is73:

m[(m− 1)2µ+ (m− 1)ν + ρ]

Here again, Schubert resorts to methods foreign to Chasles’ theory of characteristics. As
a reader of the papers published in the Comptes-Rendus, which he precisely refers to at
several occasions, he nonetheless displays no interest or familiarity with Chasles’ principle

72The polar line of a point p with respect to a curve f of order m is a curve of order m − 1 which
contains every point of f at which the tangent line to f passes through p.

73See [Schubert, 1870], p.368.
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of correspondence, which he would put to important uses in later stages of his career74.

Once the parameters of certain conditions are determined, Schubert explains, one
can finally determine the numbers of curves or surfaces satisfying a maximal number of
conditions. Going back to the case of second-order surfaces, Schubert notes that for any
nine conditions Z1, .., Z9, of parameters (α1, β1, γ1), .., (α9, β9, γ9),

(Z1, .., Z9) = α1(p1, Z2, .., Z9) + β1(g1, Z2, .., Z9) + γ1(e1, Z2, .., Z9)

where p1, g1, e1 represent the elementary conditions ‘passing through a given point’, ‘touch-
ing a given line’, and ‘touching a given plane’.

At first glance, this is nothing more than the definition of the parameter of the con-
dition Z1, with (p1, Z2, .., Z9), (g1, Z2, .., Z9), (e1, Z2, .., Z9) standing for the characteristics
(µ, ν, ρ) of the system defined by the eight conditions Z2, .., Z9. However, through this
rewriting, Schubert makes several notational innovations. One such innovation is to let
parentheses denote both numbers and systems of surfaces: more precisely, 8 conditions
surrounded by parentheses represent the system of surfaces satisfying them, while 9 con-
ditions in parentheses represent the number of surfaces satisfying them75. This was not
the case in Chasles’ (or in Zeuthen’s) notations. Chasles distinguished between the no-
tation for numbers of surfaces, denoted for instance N(Z1, .., Z9), and systems, which
indeed used parentheses: (Z1, .., Z8). As a result, Chasles did not equate numbers and
(combinations of) systems of surfaces: for instance, he would write (Z1, .., Z8) ≡ (µ, ν, ρ),
denoting that the three numbers in the right-hand side characterized the system on the
left-hand side.

Furthermore, Schubert introduced exponents m,n, r over the symbols for elementary
conditions p, g, e to denote the requirement that these conditions be satisfied m,n, r times
(that is to say, pm denotes the condition ‘passing through m given points’, and so on).
This allows Schubert to further decompose the terms on the right-hand side; for instance
substituting α2(p2, Z3, .., Z9) + β2(p1, g1, Z3, .., Z9) + γ2(p1, e1, Z3, .., Z9) to (p1, Z2, .., Z9).
Through some simple combinatorics, Schubert finds that this process would result in
expressing the number of surfaces satisfying 9 conditions as a function of the 9× 3 = 27
parameters, and of the 10·11

1·2 = 55 quantities pm, gn, er. This expression would therefore be
very lengthy, and Schubert only writes its initial terms to show how it can be obtained.

74See 7.3.2.
75“Ferner möge immer eine Klammer, welche 9 Bedingungen einschliesst, die Anzahl der ihnen genü-

genden Flächen zweiter Ordnung bedeuten, eine Klammer aber, welche 8 Bedingungen einschliesst, das
System der Flächen darstellen welche diesen Genüge leisten”, [Schubert, 1870], pp.369-370.
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However, he also suggests representing it with the more synthetic expression76:

Σ[(pm, gn, er)Σ(α(m), β(n), γ(r))]

where the first Σ represents a sum over all possible triplets (m,n, r) of positive integers
such that m + n + r = 9, and where the second Σ represents the sum of all possible
products of m characteristics αi, n characteristics βi, and r characteristics γi; over the
same range of values for m,n and r. Schubert then uses this formula to give concrete
numbers of surfaces satisfying certain sets of conditions. Schubert also notes that each
term of the first sum is composed of 9!

m!n!r! products, but does not go further into this
combinatorial approach.

Note the crucial role that the exponents on top of elementary conditions play in
the factorization of this expression. Like Zeuthen, Schubert introduced new ways to
manipulate symbols for conditions and systems. However, here as well, these uses were
limited to the expression of a synthetic formula. Schubert’s formula arguably allows for
more direct computations than Chasles’ enumerative procedure, and it makes the recursive
character of this procedure evident; but this exponential notation for conditions, and this
common use of parentheses to denote systems and numbers alike, would not be developed
further in this text77.

In the rest of his dissertation, Schubert identified after Chasles the “fundamental prob-
lems” (Fundamentalaufgaben) of the theory of characteristics for second-order surfaces to
be the determination of the factors (pm, gn, er), which he also wrote (m,n, r) for the sake
of brevity. Once these numbers known, it would be easy to compute the number of sur-
faces satisfying any nine conditions of known parameters, using the formula given above.
In fact, these characteristics had already been given by Chasles78, but Schubert set out
to “publish a justification79” for them. Furthermore, Schubert gave a few new numbers
of degenerate surfaces in these elementary systems. At the end of his dissertation, he
presented these results in a table, wherein he made clear which numbers were already
known and which were new (see fig. below).

Before computing these numbers, Schubert had resorted to “a few considerations bor-
rowed from the geometry of position80” in order to frame the ontology of figures of the
second order which he was to enumerate. Borrowing from the concept of Grundgebilde

76 [Schubert, 1870], p.370.
77A mere three years later, this exponential notation would be reinterpreted by Schubert and given a

crucial role in a full-fledged algebra of conditions; see 7.1.2, 7.3.
78 [Chasles, 1866d].
79“Da, soviel mir bekannt, nie eine Begründung dieser Zahlen publicirt ist..”, [Schubert, 1870], p.371.
80“einige fundamentale Betrachtungen aus der Geometrie der Lage”, [Schubert, 1870], p.371.
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[Schubert, 1870], p.383.

which had been put forth by geometers such as Von Staudt and Reye81, Schubert described
geometrical figures such as conics or second-order surfaces as being all composed of three
elements, namely points, straight lines, and planes. By alternating between points of
view on a same object – that is to say, by viewing it alternatively as composed of points,
straight lines, or planes –, new distinctions may arise, which for Schubert are crucial in
discussing its degenerations. For instance, by viewing second-order surfaces as made of
points, one obtains cones; but another figure arises from placing these surfaces within the
geometry of the line82:

Wie die Punkte und die Geraden, welche in einer Ebene liegen, Elemente
der Ebene, und reciprok die Ebenen und die Geraden, welche durch einen
Punkt gehen, Elemente des Punktes heissen, so sollen auch die Geraden,
welche eine Gerade schneiden, – Punktgeraden – , sowie die Geraden, welche
mit ihr in einer Ebene liegen, – Ebenengeraden – , Elemente dieser Geraden
genannt werden. Obwohl zwar diese beiden Begriffe, Punktgeraden und Ebe-

81See [Nabonnand, 2006], pp.112-117; 197-201.
82“As the points and the straight lines which lie in a plane are called elements of the plane, and

conversely the planes and the straight lines which go through a point are called elements of the point, so
are the straight lines which intersect a line, – point-lines –, as well as the straight lines which lie with it
in a plane, – plane-lines – called elements of these straight lines. Although the two terms point-line and
plane-line coincide, the distinction will nevertheless prove to be useful. Both the conic belongs to the
geometry of the plane and the cone to the geometry of the point as figures of the second order; similarly,
to the geometry of lines belong a (second-order) figure which can be understood either as a section of
two planes on which two special points lie, or as a line connecting two points, through which two special
planes go - which is equivalent. We will call this figure ‘limited plane section’, the two special points
‘main points’, the two special planes ‘main planes’, and the straight line which appears either as joining
the main points or as the intersection of the main planes, the ‘main line’”, [Schubert, 1870], p.371.
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nengeraden, sich decken, so wird die Unterscheidung sich dennoch als zweck-
mässig erweisen. Wie nun als Gebilde zweiter Ordnung der Kegelschnitt
der Geometrie der Ebene, der Kegel der Geometrie des Punktes angehört,
so gehört der Geometrie der Geraden ein Gebilde an, welches entweder als
Schnitt zweier Ebenen aufgefasst werden kann, auf dem zwei ausgezeichnete
Punkte liegen, oder als Verbindungsgerade zweier Punkte, durch welche Ger-
ade zwei ausgezeichnete Ebenen gehen, was reciprok und gleichbedeutend ist.
Dieses Gebilde wollen wir begrenzten Ebenenschnitt, die beiden ausgezeich-
neten Punkte Hauptpunkte, die beiden ausgezeichneten Ebenen Hauptebenen,
und die Gerade, welche als Verbindung der Hauptpunkte oder als Schnitt der
Hauptebenen erscheint, Hauptgerade nennen.

These three analogous objects can be decomposed in “elements”: a conic is made of its
points and its tangents, a cone of its planes and its tangents (that is to say the lines that
generate it), while a ‘limited plane section’ is made of the point-lines that go through both
its main points, and the plane-lines that are on both its main planes. Therefrom Schubert
can describe these figures in terms of “fundamental figures of first level” (Grundgebilden
erster Stufe): a conic is a figure which has two elements in common with each sheaf
of points (that is to say, each point-line) in its plane, and with each bundle of rays
(Strahlbüschel) in its plane. Similarly, a cone is a figure that has two elements in common
with each bundle of planes which contains its center point, and with each bundle of rays
which has same center point. Lastly, a limited plane section is a figure which has two
elements in common with each bundle of rays whose center point is on the main line,
and with each bundle of rays whose plane contains the main line. Conversely, Schubert
asserts, each bundle of planes and each bundle of rays contains two elements which are,
respectively, two tangential planes and two straight lines belonging to some conic. Similar
statements are made for cones and limited plane section.

Schubert would go on to construct second-order surfaces as having three elements:
the points which lie on them, the lines that are tangent to them, and the planes that are
tangent to them. This leads Schubert to describe three degenerate cases of second-order
surfaces, but also to show how these surfaces can be described in terms of conics in space,
cones, and limited plane sections themselves. We shall not present the technical details
of Schubert’s construction here, if only because we will do it in a more general context
in the next chapter83. It suffices to note here that Schubert proposes to buttress the
theory of characteristics with an analysis of the ways in which the geometrical figure to
be enumerated can be generated from the main elements of space. In the context of this
dissertation, this provides Schubert with yet another solution to the difficult problem of

83See 7.2.3.
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special solutions to enumerative problems. Special second-level figures appear when the
first-level elements defining it coincide, explains Schubert. In the case of conics, there are
two possible cases. In the first case, every sheaf of points has two elements in common
with the conic, so that the points of the conic itself form a point-line g, and its tangents
form two bundles of rays whose center points are two points on g. In the second case, the
conic has two elements in common with every bundle of rays (in its plane), so that the
tangents of the conic form a bundle of rays, and the points of the conic form two point-lines
going through p. These descriptions of Schubert’s correspond respectively to point-pairs
and line-pairs. Here again, similar classifications of the two degenerate forms are given
for second-order surfaces, which allows Schubert to redefine incidences and tangencies
for these limit cases, and to enumerate them. In so doing, Schubert proposes another
approach to the same problem which Zeuthen had answered with his own method for the
enumeration of degenerate conics satisfying contact conditions.

6.2.3 Maillard’s 1871 dissertation

Maillard’s dissertation, entitled “Recherche des caractéristiques des systèmes élémentaires
de courbes planes du troisième ordre”, is perhaps the most faithful continuation of Chasles’
initial effort. Maillard had set out to do for systems of curves of the third order what
Chasles had previously done for conics, and focused especially on the determination of
the characteristics of elementary systems, which he obtained by using systematically the
principle of correspondence (even using Chasles’ notations). However, while Maillard did
not, strictly speaking, generalize or alter the mathematical content of Chasles’ principle
of correspondence, he had attached to it a new computational technique to this principle,
which we shall now present.

After discussing the various modes of degeneration for cubics, Maillard created symbols
for several numbers. Some of them are strictly analogous to Chasles’ notations for systems
of conics, with µ and ν denoting numbers of cubics in a system respectively passing
through a given point and touching a given line. Other symbols, however, are specific to
these modes of degeneration (in a manner comparable to what Chasles did for systems of
second-order surfaces), with for instance α denoting the number of curves in the system
which have a double branch and β the number of curves in the system which have a triple
branch. Furthermore, some symbols serve to denote degrees (a term which Maillard favors
over that of order) or classes of certain loci determined by a system, such as δ, the degree
of the locus of the double points of the curves of the system, or ρ the degree of the locus
of the cusps of these curves. The first half of Maillard’s dissertation consists in a list of
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algebraic formulas in these symbols, such as84:

4µ = ν + 2α + 6β + 2δ + 3ρ

To establish this formula, Maillard considers a point X on a straight line L, through which
necessarily pass µ curves in the system. These curves intersect L at 2µ other points U .
Conversely, to a point U correspond 2µ other points X (because the reverse construction
is the same). From the principle of correspondence it follows that there are 4µ coinciding
points. Maillard goes on to list the possible “various causes” from which such coinciding
points arise. Amongst them of course lie the curves in the system tangent to L, of which
there are ν. But there also are α curves in the system composed of one double straight
line and one simple straight line. The intersection of such curves with L also give rise to
coinciding points X. Maillard then considers the “déplacement de la courbe aplatie, dont
la limite est l’ensemble de deux droites”: as the curve degenerates, it cuts L at two points
U ′, U ′′ infinitely close to a point X ′ where the limit (i.e. the degenerate curves) intersects
L. Thus, the coincidence is in fact double, and there are 2α coincidences caused by such
curves.

Maillard goes on to list the other possibles causes for coincidences, namely triple lines,
double points and cusps. In each case, he discusses the multiplicity of these coincidences,
thus obtaining the formula shown above. Maillard never shows that his list of causes is
exhaustive. His use of the principle of correspondence is rather different from Chasles’: he
does not reproduce the same textual apparatus, nor does he use the concept of “solutions
étrangères”. Furthermore, this decomposition of the sum α + β into a list of causes for
coincidences is totally novel85.

After producing some fifteen formulas, Maillard explains that they “are not all distinct,
which makes it possible to check several among them by supposing the others proven86”.
From these simple equations in the symbols he had previously defined, Maillard shows how
the knowledge of certain “unknowns” allows for the determination of others. Furthermore,
combining these formulae allows for the expression of a certain number to be expressed
in terms of others, which may be easier to compute in certain cases. This is particularly
important, as no equivalent to the αµ + βν formula was known for systems of cubics,
and Maillard provides no systematic reduction of this collection of equations to a minimal
subset of symbols.

In the rest of his memoir, Maillard focuses on special cases, such as curves which

84 [Maillard, 1871], p.9.
85In fact, this method would play a crucial role in Schubert’s reappropriation of the principle of corre-

spondence in his own geometrical practice later on, see 7.3.2.
86 [Maillard, 1871], p.20.
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have a given cusp, a given double point, or a double point on a given straight line. In
these cases, the determination of the characteristics of elementary systems is enabled by
the equations produced previously and the study of their interdependence. In each case,
Maillard produces tables of formulas and numbers, culminating with the general series
of numbers for general systems of cubics87 (see fig. below). Maillard, in his dissertation,

[Maillard, 1871], p.51.

rather faithfully fulfilled the research programme laid out earlier by Chasles: taking on
curves of order three, that is to say the natural continuation of the theory of conics, he
had focused his effort on the computation of the characteristics of a variety of elementary
systems, defined by elementary conditions and various modes of degenerations. However,
in so doing, Maillard proposed new uses for the principle of correspondence, and new
textual practices to structure the results derived from it – in particular, relevant to a
context where no simple equivalent to the αµ+ βν formula can be hoped for.

6.3 Algebraic rewritings and analytical proofs

All three dissertations surveyed here attempted to continue Chasles’ theory on its own
grounds. While Zeuthen, Schubert, and Maillard all introduced new computational meth-
ods, notational innovations, and even modified descriptions of degenerate solutions, they
nonetheless agreed on the main goals of this theory. In particular, they all focused on
computing the characteristics of systems of curves and surfaces, producing lists of for-
mulae and tables of numbers which could be used toward actual enumerations. More
crucially, all three texts resort to geometrical descriptions of the objects (figures, con-
ditions, systems) at hand. In this sense, these three dissertations can be described as
‘reorganizations’ of the theory of characteristics, but not as full-fledged ‘rewritings’ of it.

87Note that this table has symmetries similar to those found in Chasles’ theory of conics; for instance,
the 4 corresponding to the first row, second column, is equal to that of the second row, first column,
because both numbers denote how many cubics go through 8 points and touch one straight line. The
other numbers, however, must be computed individually in most cases.
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In other words, these three mathematicians accepted the core of Chasles’ discourse, and
attempted to accommodate its organization and its contour to new domains of applica-
tion. However, they did not purport to systematically translate and adapt every single
term of Chasles’ theory into a different mathematical language.

6.3.1 Cayley’s 1868 ‘quasi-geometrical intepretation’

By contrast, Cayley’s 1868 presentation of the theory of characteristics constituted a
first step toward an algebraic rewriting thereof. In two successive papers, he introduced
what he called a “quasi-geometrical representation of conditions”. More precisely, Cayley
understood “a condition imposed upon a subject” – that is to say, a given kind of figure
– “[to give] rise to a relation between the parameters of the subject88”. For instance, a
condition imposed on conics gives rise to an algebraic equation in the six coefficients that
constitute the general equation of a conic. Beyond conics, a subject being defined by a
general equation having ω coefficients, a condition will be understood to be an algebraic
equation in these coefficients. But a set of ω parameters, Cayley continued, “may be
considered as the coordinates of a point in ω-dimensional space89”. A relation between
the parameters, that is to say an algebraic equation in them, can then be regarded as a
locus in this multi-dimensional space.

To this framework, Cayley introduced composed conditions. A condition can be k-fold
for any positive integer k: passing through a given point is a onefold condition, passing
through two given points, or touching a given line at given point, is a twofold condition,
and so on90. Similarly, relations and loci associated to k-fold conditions are also said to be
k-fold. If the number of parameters of a subject is k, then the number of “solutions of a k-
fold relation”, that is to say the number of subjects which satisfy a k-fold condition giving
rise to the relation, is determinate, that is to say finite. Conditions can be combined, in
which case their orders are added, until a maximum order is reached. Indeed, an ω-fold
locus is a point-system, that is to say a finite collection of points; therefore, conditions
cannot be composed ad libitum.

Cayley then proceeded to exemplify this framework with the case of conic sections.

88 [Cayley, 1868a], p.76. The memoir actually opens on a brief survey of the literature on the enu-
meration of curves which satisfy given conditions, from De Jonquières’ 1861 paper to Zeuthen’s 1865
dissertation.

89 [Cayley, 1868a], p.77.
90Recall that Chasles had already introduced such ‘conditions multiples’, albeit without this algebraic

language; see 4.2.6.
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The general equation for conics, in Cayley’s notations91, is as follows:

(a, b, c, f, g, h)(x, y, z)2 = 0

There are six parameters in this equation, which form the (homogeneous) coordinates of
a point in a 5-dimensional space. In this space, two special loci can be considered. The
first one, which Cayley calls the “discriminant-locus”, is formed of all the points which
correspond to a line-pair. It is a onefold, cubic locus, as its equation is given by the
vanishing of the determinant of the conic, that is to say

abc− af 2 − bg2 − ch2 + 2fgh = 0

A second special locus is the “Bipoint-locus”, that is to say the locus formed of all the
points which correspond to a coincident line-pair92. The equations defining this locus are:

bc− f 2 = 0 , ca− g2 = 0 , ab− h2 = 0
gh− af = 0 , hf − bg = 0 , fg − ch = 0

This locus is the image of the mapping (a : b : c : f : g : h) → (a2 : b2 : c2 : bc : ca : ab),
and as such, it is a threefold quadric locus93.

Loci can also be associated to conditions. For instance, the conics satisfying the
condition of touching a given curve of order m and class n form a one-fold locus (which
Cayley calls a “contact locus”); and its order is 2m + n. Indeed, Chasles’ 1864 formulae
show that this is the number of conics passing through four given points and satisfying
the condition (or, in other words, the number of conics in the system (2, 1) satisfying the
condition). In Cayley’s quasi-geometrical interpretation, this value is also the number of
intersections between the one-fold locus and a straight line, that is to say the order of the
locus.

One important theoretical consequence of this reinterpretation is that composing con-
ditions means forming intersections of surfaces in this abstract 5-dimensional space of
conics; however, one cannot merely multiply orders in hope of enumerating conics sat-
isfying conditions, as this would lead to counting unsatisfactory solutions (for the same

91This is the notation introduced in Cayley’s famous memoirs on quantics; see [Cayley, 1854], pp.246-
247. The expression given here simply translates to the general (homogeneous) equation of a plane conic,
that is to say: ax2 + by2 + cz2 + 2fxy + 2gxz + 2hyz = 0. On this memoir, see [Crilly, 1986].

92If the conic is represented as a symmetrical matrix

a h g
h b f
g f c

, then the equations for this locus

are obtained by imposing that each 2× 2 minor of this matrix be equal to zero.
93In fact, this is what is now called the Veronese surface, see [Harris, 1992], p.23.
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reasons which led to the rejection of De Jonquières’ theory of plane curves, as discussed
in section 5.1.2). Cayley suggests a few ways in which enumerations could be carried
out by forming intersections between the Bipoint-locus and contact-loci, but this quasi-
geometrical interpretation of the theory of characteristics is not fully brought to fruition.
The rest of Cayley’s memoir consists mostly in a detailed presentation of Chasles’ theory
of characteristics and Zeuthen’s reformulation thereof, albeit with some notational innova-
tions and a large number of numerical examples94. The quasi-geometrical interpretation
of the theory of characteristics did not bring to the fore new results or major changes
in proofs, save for a new explanation of the flaws of De Jonquières’ lemma, namely the
analytical representation of series of curves as a rational equation F (x, y, λ) = 0. In
a 1870 paper entitled On Abstract Geometry, Cayley would pursue his research into ω-
dimensional spaces and their loci, dropping the question of the enumeration of curves or
conics95. The idea of interpreting conditions and systems of conics as hyper-surfaces and
curves in a five-dimensional space would however prove crucial for Corrado Segre and
Eduardy Study in the 1880s, as we shall see in the last chapter of this dissertation96.

6.3.2 Analytical proofs of the αµ+ βν formula

Cayley’s motivations in rewriting the theory of characteristics using algebraic notations
was to investigate a broader approach to ‘abstract geometry’. By contrast, others sought
to employ algebra to prove what they perceived to be a central conjecture of Chasles’
theory, namely the αµ + βν formula. More precisely, the claim that remained unproven
was the existence, for every condition Z, of two numbers α, β such that in every system
of conics of characteristics (µ, ν), the number of conics satisfying Z is given by the linear
expression above. While Chasles had observed this regularity but not proved it, it was
nonetheless intimately tied to the systematic method by which ‘modules’ of conditions
were obtained, that is to say the principle of correspondence, which always seemed to
yield expressions of this form. This was, at least, the opinion of Zeuthen, who wrote in
a review of Lindemann’s edition of Clebsch’s Vorlesungen for the Bulletin des sciences
mathématiques et astronomiques97:

94 [Cayley, 1868a], pp.84-124.
95 [Cayley, 1870].
96In particular, see 8.3.2.
97“The theorem of Mr. Chasles, which states that the number of conics in a system of characteristics

µ and ν which satisfy a new condition is expressed by the formula αµ+ βν, where α and β depend only
on the new condition, has been originally found by some sort of induction. However, the large number
of cases where the stated law was confirmed, and the lack of cases contrary to it, were not the only
reasons we had to adopt it. This law had an intimate connection with the circumstance that it is always
possible to determine the numbers in question via the principle of correspondence, always applicable to
the determination of numbers of solutions to questions which can be expressed algebraically. It seems
impossible, indeed, to reach by this principle expressions of a different form, the expressions of numbers
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Le théorème de M. Chasles qui énonce que le nombre des coniques d’un sys-
tème de caractéristiques µ et ν qui satisfont à une nouvelle condition s’exprime
par la formule αµ+ βν, où α et β dépendent seulement de la nouvelle condi-
tion, a été trouvé originairement par une sorte d’induction. Le grand nombre
de cas où la loi énoncée s’était confirmée, et le défaut de cas qui y fussent con-
traires, ne formaient pas toutefois les seules raisons qu’on eût pour l’adopter.
Elle était en connexion intime avec la circonstance qu’il est toujours possible
de déterminer les nombres dont il s’agit par le principe de correspondance,
applicable toujours à la détermination des nombres de solutions de questions
qui sont exprimables algébriquement. Il semble impossible, en effet, de par-
venir par ce principe à des expressions d’une autre forme, les expressions des
nombres des seules coniques singulières ayant la même forme. Toutefois ces
considérations étaient trop vagues pour constituer une démonstration formelle.

And yet, the search of a proof for this formula was not a priority for the majority of the
geometers who took up the theory of characteristics. None of those we surveyed so far
did in fact attempt to prove it, or even mentioned the need for such a proof98. For figures
such as cubics, no such formula was to be hoped; and in the case of surfaces, the actual
computation of modules and characteristics was deemed to be more pressing than the
investigation of the generality of the formula αµ+βν+γρ by both Chasles and Schubert.

Those who first viewed proving such general fomulae as central to the development of
the theory of characteristics were mathematicians who, in fact, undertook to rewrite it
entirely – using the analytical and algebraic tools at their disposal. In 1873, two proofs of
Chasles’ αµ+βν formula were quasi-simultaneously published. One had been obtained in
May 1872 by German mathematician Alfred Clebsch, a few months before his death at a
young age. The paper, entirely devoted to proving the formula in question (which Clebsch
described as a “remarkable observation”), was published posthumously the following year;
it would constitute Clebsch’s only contribution to the theory of characteristics99.

of singular conics alone having the same form. Nonetheless, these considerations were too vague to
constitute a formal proof”, [Zeuthen, 1876], pp.120-121.

98Zeuthen in 1865 did prove that this formula was in general correct for all contact conditions, but this
was a consequence of his actual computation of the modules of such conditions.

99 [Clebsch, 1873].
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Alfred Clebsch (1833-1872)

A few months later, on March 19th 1873, Halphen communicated a three-part memoir
to the Société Mathématique de France, which was later published in the Bulletin, on
the same subject100. In the first part of this memoir, Halphen set out to prove Chasles’
formula, as well as a few other results of the same kind on second-order surfaces and
complexes of lines. For Halphen, this was a continuation of the work he had already done
on systems of straight lines in space between 1869 and 1872, albeit on more elaborate
geometrical figures (see 6.1.3).

Halphen’s 1873 proof proceeded by attaching an algebraic curve to any given system
of conics, so as to be able to transfer methods from the algebraic analysis of curves to
the theory of characteristics. More precisely, given a system of conics of characteristics
(µ, ν), Halphen considered a straight line ∆ in the plane of the system, and a point a on
the line. Denoting m and m′ the two points at which a conic of the system intersects ∆,
Halphen then formed the curve whose coordinates are

x = 1
2(am+ am′) , y = am · am′

K

whereK > 0 is a constant. There is a one-to-one correspondence between the points of this
curve and the conics of the system101; as a result, Halphen called this curve the “courbe
indicatrice” (indicatrix) of the system with respect to ∆. Halphen then correlated the
properties of the indicatrix to those of the system. For instance, the degree of this curve,
Halphen shows, is the first characteristic of the system, that is to say µ. Furthermore,
degenerate conics of the systems are obtained amongst intersections of the indicatrix and

100 [Halphen, 1873b]. Halphen was not aware of the existence of Clebsch’s paper when writing his own
memoir.

101Note that this is yet another way of solving the problem of indexing infinite families of curves. In
Chasles’ and De Jonquières’ texts, this was accomplished either via a parameter λ, or through purely
verbal means (see 4.1.2). Here, a transfer between a curve and a system is devised, which makes use of
the algebraic analysis of curves.
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special loci in the plane. Thus, the intersections of curves constructed via the points
m and m′ can be enumerated using analytical methods, and then equated to formulas
involving Chasles’ characteristics.

Clebsch did more than transfer algebraic properties onto geometrical concepts: in
fact, he began his own proof by translating the notions at the heart of Chasles’ theory
into those he had expounded in his own work on invariant theory (and in particular, two
recently published memoirs102). First, a general algebraic equation is given which captures
what a system of conics is; then, geometrical conditions are shown to translate into the
vanishing of invariants of certain forms. Lastly, Clebsch uses the computational techniques
associated to the theory of invariants to prove Chasles’ theorem, and to illustrate it via
a couple of examples. Through such a translation, Clebsch explains, Chasles’ formula
illustrates a more general property of quadratic forms (and not only ternary forms, but
also with an arbitrary number of variables). This is consistent with strategies Clebsch
had employed in various other papers, where the “geometrical clothing” of an equation
was to serve as a guide for algebraic reasonings and computations103.

Clebsch begins his memoir proper with an algebraic equation for systems of conics,
which he views as a “mobile conic” (bewegliche Kegelschnitt) of equation f(x1, x2, x3) =
0, whose coefficients are algebraic functions of a parameter λ, and where x1, x2, x3 are
homogeneous coordinates of the plane. These functions of λ, Clebsch notes, can be
irrational104; to rationalize them, one must introduce a second parameter µ. Adding a
third parameter χ, Clebsch also ensures that all these functions are homogeneous of order
ρ. As a result, the parameters are linked by the following homogeneous equation of order
σ:

F (χ, λ, µ) = 0

Each triplet (χ, λ, µ) can be viewed as the (homogeneous) coordinates of a point in the
plane in which the system of conics lies; then F = 0 defines an algebraic curve in said
plane. To each conic of the system corresponds one and only one point of the curve.
Clebsch then shows that this correspondence can be made univocal (eindeutig), that is to
say such that to each point of the curve corresponds exactly one conic of the system. To
that end, Clebsch considers the coordinates (χ, λ, µ) of the pole of a fixed straight line G
with regard to the mobile conic of the sheaf. The curve F = 0 is the locus of these poles,

102 [Clebsch, 1872a], [Clebsch, 1872b]. On the history of the theory of invariants, see [Dieudonné,
1971], [Crilly, 1986], [Crilly, 1988], [Parshall, 1989].

103“Es scheint keinem Zweifel unterworfen, dass man diesen Beweis auf quadratische Formen mit beliebig
vielen Veränderliche ausdehnen kann, und dass man daher in dem zu erweisenden Satze eine allgemeine
Eigenschaft quadratischer Formen vor sich hat”, [Clebsch, 1873], pp.1-2. See [Lê, 2017], where this
presentation of Clebsch’s program is made clear in the context of his work on the quintic equation.

104Clebsch refers to Cayley’s 1868 memoir, where De Jonquières’ analytical representation of systems
of curves was shown to be incorrect; see 4.1.2, 6.3.
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and each conic of the system corresponds to only one such pole. Clebsch asserts that G
can be chosen so that, conversely, to one such pole corresponds only one conic.

Supposing this isn’t the case, then for each conic A, there is a second conic B, so
that the poles of G with respect to both conics be identical. This implies that G is one
of the sides of the common self-polar triangle (Polardreieck) of both conics105. However,
Clebsch notes, the number of all straight lines G is doubly infinite, whereas the number
of conics A (and therefore of conics B) is simply infinite. For the number of self-polar
triangles common to A and B to be doubly infinite, Clebsch explains, one of two possible
cases must happen. Either every conic A and a conic B must have G as a side of their
self-polar triangle for an infinite of lines G, or there must be a finite number of conics B
such that all straight lines in the plane are side of the self-polar triangle of A and B. The
latter case is only possible when A and B coincide, therefore, Clebsch concludes, only
the first case remains. As a result, every pair of conics in the system has an infinity of
straight lines as sides of their self-polar triangle, and they have a double contact on these
straight lines. Clebsch shows that this case can only happen for exceptional systems of
conics, and that the property is true for these systems as well. In the end, Clebsch has
shown that each system of conics can be put in a (1, 1)-correspondence to the curve of
the poles of the conics with regard to an adequately chosen straight line. Note that the
construction is different from that given in Halphen’s 1873 memoir, as the indicatrix was
constructed directly from the intersections of the conics of the system and an arbitrary
fixed straight line106.

After obtaining this correspondence, Clebsch moves on to propose “another interpre-
tation of the equation of the system of conics”. Instead of looking at f(x1, x2, x3) = 0
as the equation of a variable conic, and at χ, λ and µ as three parameters (determining
the coefficients of f) linked by the relation F = 0, Clebsch suggests looking at (χ, λ, µ)
as the (homogeneous) coordinates of a mobile point in the plane. From this standpoint,
he continues, f(χ, λ, µ) = 0 is the equation of a doubly infinite system of curves of order
ρ, whose coefficients are determined by the parameters x1, x2, x3. The advantage of this
viewpoint is that both curves f = 0 and F = 0 depend on the point x = (x1, x2, x3).

Two such curves always have ρσ intersection points. However, Clebsch adds, only
certain curves f = 0 are ‘mobile’, that is to say varying with (χ, λ, µ). For any value of x,
the corresponding triplets (χ, λ, µ) correspond to conics in the system passing through x;
their number, as a result, is the first characteristic of the system, which Clebsch denotes

105A ‘self-polar triangle’ (relative to a conic) is a triangle whose sides are the polar lines of its vertices,
and whose sides are the poles of its vertices. If two conics intersect at four distinct points, they have one
and only one common self-polar triangle. If they are tangent in two points, they have an infinity of such
triangles. In all other cases, they have none. See [Woods, 1922], p.100.

106However, Halphen would use this property in his 1876 memoirs on the theory of characteristics, see
6.4.3.
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a. The other intersection points, which do not vary with (χ, λ, µ), are “exceptional points
of first category” of the curve F . They are points at which the equation f = 0 does
not depend on x anymore since all the coefficients of f vanish. Their number is ρσ − a.
Clebsch then explains that a similar reasoning can be carried out with respect to the
tangent equation of the system of conics ϕ = 0, which is an homogeneous equation in
χ, λ, µ of order 2ρ when formed “the usual way”. There are b intersection points of F = 0
and ϕ = 0, where b is the second characteristic of the system. This dual equation gives
2ρσ − b exceptional points of the second category.

Having completed his analysis of the concept of a system of conics, Clebsch continues
by finding an algebraic translation for geometrical conditions on conics. Conditions,
Clebsch explains, can be understood as the vanishing of an invariant, denoted

Π = 0

The invariant Π contains not only the coefficients of the conic, but also the coordinates of
the given elements of the condition; such as the given points through which the conics are
required to pass, or the coefficients of the given curves which conics are required to touch.
If π denotes the degree of Π in the coefficients of f , then Π = 0 can be viewed as a curve
in (χ, λ, µ) of order πρ. The curves satisfying the condition in the system are intersection
points of the curves Π = 0 and F = 0, their number therefore is πρσ. It remains only,
adds Clebsch, to substract from this value the number of triplets (χ, λ, µ) which are
intersections of the two curves, but are independent of the elements of the condition. In
particular, Clebsch sets out to show that only the exceptional points described previously
can represent such pathological solutions to the problem, and to enumerate them with
their multiplicities to obtain Chasles’ formula.

To do so, Clebsch mobilizes his past researches into the theory of invariants. With
Clebsch’s notations, the conic f could be written as a2

x, a quadratic ternary form (since a
conic is a second-order curve in three homogeneous parameters). Every invariant of such
a form, Clebsch had shown, could be written as a function of the reduced system of forms
ux, f, ϕ and A, where ϕ = (abu)2 and A = (abc)2. From there, Clebsch deduced that
every form in the reduced system corresponding to Π could be written as

fα · ϕβ · Aγ · F (f · ϕ,A · u2
x)

for some integers α, β, γ. This is a form in the coefficients of f of degree α+2β+3(γ+δ) =
π. Therefore, Clebsch continues, for all forms in the reduced system associated to Π, the
following equation holds:

α + γ + δ = π − 2(β + γ + δ)
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However, the left-hand term, as well as β+γ+ δ, do depend on the form. Clebsch defines
two numbers µ, ν as extrema of combinations of these terms107, which characterize Π and
correspond to the coefficients of the module of the condition108 Π. Indeed, Clebsch shows
that Π can be represented as a homogeneous function in the coefficients of f of order µ,
and as a homogeneous function in the coefficients of ϕ of order ν. From there, Clebsch is
able to find through intricate computations (into which we shall not go) that the number
of intersection points between the curves attached to Π and F , minus the special points,
is µa+ νb.

Three years later, in Lindemann’s 1876 edition of Clebsch’s Vorlesungen, a different
account of Chasles’ theory of characteristics would be given109. Several of the remarks,
both historical and mathematical, introduced in these notes cannot have been written
by Clebsch himself, as they refer to developments posterior to his death. In particular,
is mentioned the Geometrie der Anzahl, which only came to the fore with papers of
Schubert’s110 published between 1874 and 1876. Therefore, this text must largely be
attributed to Lindemann, rather than to Clebsch. The chapter written for the Vorlesungen
displays much more interest in the enumerative results of Chasles’ proper, as bespeak the
tables of numbers which are reproduced therein.

In it, a much shorter proof of the αµ + βν formula is given, which also relies on
the notion of an invariant. Lindemann begins this proof by considering five “equations of
conditions” (Bedingungsgleichung) Πi = 0 in the coefficients ai,k of the punctual equations
(Punktgleichung, as opposed to tangential equations) of a conic. Denoting qi the degrees
of these equations, Lindemann equated the first characteristic µ of a system determined
by the first four conditions to the product of the four first degrees:

µ = q1 · q2 · q3 · q4

Imposing a fifth condition upon the coefficients ai,k, explained Lindemann, yields a finite
number of solutions, namely

µ · q5 = q1 · q2 · q3 · q4 · q5

107With Chasles’ notations, these are α and β (see section 4.2.3).
108It is here that Halphen would locate what he perceived to be a critical mistake in Clebsch’s memoir,

according to his letters to Zeuthen: “Je trouve excellent tout ce qui précède [..]. C’est là que commencent
mes observations. [..] Les deux nombres que Clebsch appelle µ, ν [..] sont les deux coefficients du module
de la condition Π = 0. Ils doivent donc s’échanger entre eux quand on transforme Π corrélativement. Or
cet échange n’a pas lieu entre les deux nombres de Clebsch”, see [Jordan et al., 1924], pp.630-631.

109 [Lindemann, 1876], pp.390-425. In the second volume of the French translation (by Adolphe Benoist)
of this text, this entire section was heavily rewritten in order to ‘correct’ Lindemann’s assertions using
the 1876 memoirs of Halphen. In particular, Chasles’ formula is said to be false in this text. See [Benoist,
1880], pp.113-130. We come back to Halphen’s refutation toward the end of this chapter, see 6.4.

110These texts are discussed in the next chapter, see 7.1.3.
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However, among the µq5 conics, there are some conics which are solutions in appearance
only, which “fulfill the condition Π5 = 0 identically”. For instance, explains Lindemann111,

Für eine Dopellinie verschwindet bekanntlich die linke Seite der Liniencoordi-
natengleichung F = (abu)2 = u2

α unabhängig von den u; es wird daher jede in
unserm Systeme enthaltene Dopellinie der Bedingung Π5 = 0 genügen, sobald
die Coëfficienten ai,k in Π5 sich theilweise der Art zu Coëfficienten αi,k der
Liniencoordinatengleichung vereinigen lassen, dass die letzteren homogen in
Π5 vorkommen. Es wird dann jede der λ Dopellinien β-mal als eine Lösung
unseres Problems zu zählen sein, wenn wir mit β den Grad bezeichnen, zu
welchem Π5 die αi,k enthält.

Letting α denote the degree of Π5 in the ai,k, Lindemann writes q5 = α+2β. The number
of real solutions, he continues, is

q5µ− βλ = αµ+ β(2µ− λ)

which concludes the proof by posing ν = 2µ− λ.
This proof is remarkably shorter and simpler than Clebsch’s; in particular, it does

not rely on any technical result other than basic manipulations on invariant symbols, and
the geometrical interpretation of invariants. It would be deemed wholly unsatisfactory by
Halphen112, but appreciated by Zeuthen, especially due to its relative simplicity compared
to the proofs of Halphen and Clebsch. In his review of the Vorlesungen for the Bulletin
des sciences mathématiques et astronomiques, Zeuthen wrote113:

Il était donc juste que les géomètres s’intéressassent vivement aux démonstra-
tions ingénieuses de Clebsch et de Halphen, bien que même, en s’éloignant

111“For a double line [point-pair], the left-hand side of the line-coordinate equation F = (abu)2 = u2
α

vanishes independently from u; therefore, any double line contained in our system will satisfy the condition
Π5 = 0 as soon as the coefficients ai,k in Π5 are partially joined to the coefficients αi,k in the line
coordinate equation, and that the latter appear homogeneously in Π5. Then, each double line λ will
be counted β times as a solution to our problem, where β denotes the degree to which Π5 contains the
αi,k”, [Lindemann, 1876], pp.398-399.

112Halphen had a very low opinion of Lindemann’s book in general, as a private letter from Zeuthen to
Halphen indicates, wherein the Danish mathematician wrote: “A un égard je suis très disposé à défendre
M.Lindemann envers vous. Vous dites (‘entre nous’) que tout ce que l’on voit dans son livre sur cette
théorie vous paraît être un pillage éhonté, augmenté des erreurs les plus grossières”, Bibliothèque de
l’Institut, Paris, Ms 5264 222, Letter Zeuthen to Halphen, Dated October 5th 1876.

113“It was thus fair that geometers quickly be interested in the ingenious proofs of Clebsch and Halphen,
even though, by moving far from the considerations we just spoke of, they became long and hard to
follow. Mr. Lindemann managed to establish an algebraic proof whose simplicity corresponds to that of
the theorem and of the considerations on the principle of correspondence which led to it. [..] It is very
difficult to assert that in proofs of this kind there is no weak spot left; but, at any rate, we believe that
the path chosen here is the right one, even if there might remain in the details some caution to have or
some expression to correct”, [Zeuthen, 1876], pp.121-122.
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beaucoup des considérations dont nous venons de parler, elles devinssent
longues et difficiles à suivre. M.Lindemann a réussi à établir une démon-
stration algébrique dont la simplicité correspond à celle du théorème et des
considérations sur le principe de correspondance qui y ont conduit. [..]
Il est très-difficile d’affirmer qu’en des démonstrations de cette espèce il ne reste
plus aucun point faible; mais, en tout cas, nous croyons que la voie choisie est
bonne, quand même il y aurait dans le détail encore quelque précaution à avoir
ou quelque expression à corriger.

However, private letters from Zeuthen to Halphen114 (or, later on, Schubert’s reactions
to Halphen’s publications) seem to indicate that these analytical proofs were to a large
extent incomprehensible for those who had pursued more geometrical approaches.

6.4 Halphen’s analytical refutation of Chasles’ theo-
rem

From this survey of the early readings of Chasles’ theory of characteristics, it appears
clearly that no one agreed as to what the main task ahead was. Halphen and Clebsch
wanted to prove Chasles’ αµ + βν theorem, Maillard, Zeuthen, and Schubert wanted to
compute the characteristics of elementary systems and organize them in tables, others
still, such as Cayley, used the theory of characteristics as an example and a case-study for
broader, novel geometrical theories. To this diversity in goals and directions corresponds
a diversity in methods, both for proving results and for displaying them. Schubert’s work
on notations to achieve a synthetic expression for the number of surfaces satisfying 9
conditions, Maillard’s tables, or Clebsch’s construction of equations which can be read
in various ways, all bespeak different understandings of what constitutes a mathematical
result, its generality, and its proper mode of exposition.

To these layers of epistemic variation, one more would be added in 1876, as Halphen
begun to have doubts over his past proof of Chasles’ αµ + βν formula, especially after
he had found significant weaknesses in the proofs of Clebsch and Lindemann. By the
end of July, he was convinced that the formula was outright false115; two months later,

114“J’avoue du reste que la démonstration de Clebsch m’a semblé toujours extrêmement difficile ; par
conséquent, quand même je n’ai pas trouvé des objections à faire avec détails, je n’aurais pas osé adopter
le théorème à la seule base de cette démonstration”, Ms 5624 224, Letter Zeuthen to Halphen, dated
August 11th 1876.

115“Il est entendu que je maintiens absolument ce que je vous écrivais l’autre jour : je ne doute plus
de l’inexactitude du théorème αµ + βν. Assurément le plus curieux en ce moment à mes yeux était
de reconnaître bien exactement les fautes commises dans les démonstrations qui ont été données de ce
prétendu théorème”, Letter Halphen to Zeuthen, dated July 29th 1879, [Jordan et al., 1924], pp.629-630.
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he presented his first counter-examples before the Congrès de l’Association Française in
Clermont-Ferrand, then before the Paris Académie des Sciences. Over the following years,
he would substantiate these counter-examples with the help of an alternative theory of
conics and their degenerations, thereby raising a difficult question to all those who had
pursued the theory of characteristics by assuming this formula to be true. Beyond refuting
results based on this formula, Halphen had refuted the core argument behind the theory’s
claim to simplicity and systematicity, by showing that neither αµ+βν, nor any other such
short expression could capture in general the number of conics satisfying five conditions.

6.4.1 Halphen’s 1876 counter-example and its significance

Halphen’s first published counter-example to Chasles’ formula was presented during one
of the weekly meetings of the Paris Académie des Sciences116, on September 4th 1876.
A couple of months later, Halphen submitted a memoir explaining this very refutation
in more detail to the Académie: Chasles, alongside Bonnet and Puiseux, were to act as
referee. While the report they wrote was not made public, a brief excerpt of this memoir
was published in the Comptes-Rendus in November, the same year117. These two texts,
while both contending the falsity of the same formula, exhibit different strategies.

In his initial communication, Halphen opened with a concrete counter-example to
Chasles’ formula: he constructed two specific systems of conics S and S ′, both of char-
acteristics µ = ν = 1, and a specific condition K, which was satisfied by respectively 3
and 4 conics in the two systems. This contradicts Chasles’ formula, because the number
of conics satisfying this specific condition in a system should only depend on the latter’s
characteristics118.

The condition K proposed by Halphen is the following: on a given straight line, any
conic intercepts a segment mm′. Furthermore, from a given point, the conic is “seen” at
a certain angle α, which is the angle of the two tangents to the conic drawn from this
point. The condition is that the ratio mm′

sin(α) be equal to a given value119. The two systems
in which Halphen claims this condition is satisfied by different numbers of conics are the
system S of all conics touching a given curve at two given points, and the system S ′ of
all conics having a third-order contact at a given point of a given curve. S ′ is, Halphen
explains, a “particular case” of S; it is the case when the given points in S coincide. It is

116 [Halphen, 1876a]. Interestingly, Chasles was also present on this very day at the Académie, delivering
one of his communications on the principle of correspondence and systems of pairs of segments; [Chasles,
1876a]. There is no record of a reaction from Chasles to Halphen’s counter-example.

117 [Halphen, 1876b].
118 [Halphen, 1876a], pp.537-538.
119This is not a projective condition, as Halphen notes; however, he claims it would be easy to remediate

this situation. In his expanded memoirs, he does give a procedure to turn metrical conditions into
projective ones, see 6.4.4.
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“easy to find”, Halphen continues, that 4 conics in S satisfy K, but only three in S ′. No
further explanation, however, is provided.

This is, at first, extremely puzzling. How could it be that, in the face of three published
proofs and of hundreds of examples manufactured by Chasles and others, this somewhat
simple example would fail to verify the αµ + βν formula – especially considering these
systems are defined rather classically by contacts, and the condition K itself seems rather
elementary? According to Halphen, the flaw with former proofs and justifications for
Chasles’ formula – his own included – was, in each case, that they failed to take into
account the fact that conics can present three “modes of degeneration”. While line-pairs
and point-pairs (that is to say conics made of respectively two lines and one point, one
line and two points) had been thoroughly dealt with, Halphen explains, it had not been
noticed that a third kind of degeneration exists, namely conics made of one line and one
point (on the line). While line-pairs and point-pairs are dual (or, in Halphen’s words,
“correlative”), this third mode is self-dual (Halphen denotes these modes of degeneration
respectively A,A′ and B). The presence of this third mode is what causes Chasles’ formula
to sometimes be falsified, according to Halphen120. Conics of form B constitute a higher
mode of degeneration, because they degenerate both punctually and tangentially121, and
their presence can be the only reason for the discrepancy between the number of conics
satisfying K in the systems S and S ′.

The enumeration of degenerate conics in both systems does indeed point to a real
difficulty. For the same of simplicity, let us consider a particular case of the first system,
namely a system of conics touching two straight lines at specified points (see fig. above).
This system contains one point-pair (depicted on the figure), namely the double-line which
joins the two specified points. It also contains one line-pair, formed by the pair of tangent
lines and their intersection point (on the figure above, this point is at infinity). These
numbers of degenerate conics correspond to the values provided by Chasles’ theory, as the
system has for characteristics (1, 1), therefore ω = 2µ− ν = 1 = λ. In the other system,
the same numbers of degenerate conics should be expected. However, if one views the
system S ′ indeed as a special case of the system S, wherein both stipulated points become
infinitely close, then these two degenerate conics coincide, and are seemingly of this third
kind: they consist of one straight line (the tangent to the given curve at the given point),
and of one point (the contact point). Depending on how one interprets the requirement
that degenerate conics satisfy the condition K (which, at this point, might seem unclear,

120While Halphen does not seem to have been aware of it, this third mode of degeneration had already
been discussed by British mathematicians in the pages of the Quarterly and the Messenger between 1866
and 1868, see in particular [Hirst, 1866], [Taylor, 1867], [Salmon, 1867a], [Cayley, 1868a]. This discussion
was not thought by these mathematicians to have any consequences on the theory of characteristics per
se.

121We present the justification for the existence of this third mode of degeneration below, see 6.4.3.
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System S
System S ′

given that one should stipulate what the values of mm′ and α are in such exceptional
cases), then one might count different numbers of solutions in each system.

Little was done in Halphen’s initial communication, in September 1876 to explain
where this third degeneration of conics comes from, or why it matters so greatly to Chasles’
formula. Neither would Halphen add much to answer these questions in his subsequent
communications in the same year. However, in the short excerpt of his memoir published
in the Comptes-Rendus in November, Halphen put forth a slightly different presentation of
his results, whereby he put the emphasis less on his negative assessment of the validity of
Chasles’ formula, and rather on a more positive presentation of equivalent statements122.

Halphen opened by recalling the existence of counter-examples, which he had made
public a few months prior. In order to “make the true significance of previously acquired
results [on the problem of enumerating conics in a system satisfying one condition] and
of the new solution easier to grasp”, Halphen suggested a comparison with the problem
of enumerating points on an algebraic (plane) curve satisfying a given condition, such as
inflexion points, or points of intersection with another given curve (whose numbers are
given by formulae such as Plücker’s or Bézout’s). In such questions, Halphen continued,
one begins by “characterizing a curve by its order, then its order and ordinary singularities,
lastly by its order and all kinds of singularities”. Similarly, for Halphen, the problem of
enumerating conics can be solved in three steps (stages). In the first one, only tangential
singularities, that is to say degenerations A, are taken into account. In the second, the
correlative degenerations A′ are included. These are the “ordinary singularities” for conics.
Finally, higher singularities are included in the form of degenerations B.

To each of these three stages corresponds a different theorem. For instance, Halphen

122This alternative presentation might have been suggested by his epistolary exchange with Zeuthen,
see 8.2.1.
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explains123:

Théorème I. – Si un système ne contient que la singularité A, le nombre
des coniques de ce système qui satisfont à une condition quelconque est le
produit de deux nombres, dont l’un ne dépend que du système, l’autre que de
la condition. [..]
Théorème II. – Si un système ne contient que les singularités ordinaires, le
nombre des coniques de ce système qui satisfont à une condition quelconque
est αµ+βν, µ and ν étant les caractéristiques du système, et α, β des nombres
ne dépendant que de la condition. [..]
Dans tous les autres cas, le résultat est d’une forme beaucoup plus compliquée.

What Halphen suggested here is a new framing of the significance of his counter-example.
Rather than merely refuting a formula previously thought to be true, Halphen’s counter-
example points to a renewed understanding of past results, including De Jonquières’
2(n − 1)N formula (or, using the notations of the theory of characteristics, the αµ for-
mula). Indeed, the first theorem stated above is none other than De Jonquières’ formula,
which Chasles had criticized. In Halphen’s presentation, however, this theorem is not
outright false, but only limited to systems of conics in which only tangential degenera-
tions are present. Similarly, Chasles’ celebrated formula is limited to systems of conics
in which only normal (i.e. A or A′) singularities occur. Even in some specific systems
of conics with B-degenerations, one of these two formulae can be shown to be correct.
In complete generality, however, no simple, all-encompassing formula can be expected,
Halphen claimed124.

Thus, Halphen moved from presenting his results by way of a counter-example refuting
a theorem long believed to be true, to framing his contribution as an improvement on
past results, an enhanced theory of systems of conics. The theory of algebraic curves had
made progress by refining the concept of intersection (and, relately, that of singularity);
similarly, his forthcoming memoir was to bring forth a more fine-grained description of
the singularities of a system of conics (and, in so doing, of the number of elements in a
system satisfying a given condition).

123“Theorem I. – If a system only contains the singularity A, the number of conics of this system which
satisfy any condition is the product of two numbers, one of which depends only on the system, the other
one of the condition. [..] Theorem II. – If a system contains only ordinary singularities, the number of
conics in this system which satisfy any condition is αµ+ βν, where µ and ν are the characteristics of the
system, and α, β numbers depending only on the condition. [..] In all other cases, the result has a much
more complicated form”, [Halphen, 1876b], p.887.

124However, he was able to give what he called an “image” of the general result: he was in possession of a
method to construct two plane (algebraic) curves, attached respectively to the system and the condition,
such that the numbers of conics in the system (µ, ν) satisfying a condition Z of parameters α, β was
obtained by substracting µ, the number of intersections these two curves have along the axis y, from the
expression αµ+ βν.
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6.4.2 A difficult publication

Halphen’s 1876 communications only gave readers a glimpse into this full-fledged theory
of systems of conics (and second-order surfaces). This theory would be published with
important delay across several papers, in various journals and countries. Halphen’s initial
memoir for the Paris Académie would only be published in 1878, by the Journal de l’Ecole
Polytechnique125. In between these two dates, Halphen had sent a shorter memoir to the
London Mathematical Society, which was read publicly on June 13th 1878, and inserted
in the Proceedings. Felix Klein, then editor of the Mathematische Annalen, immediately
asked Halphen for the right to re-publish this latter memoir in his own journal, without
any modification126. All of these texts, written in French, share the goal of expounding
a complete theory of characteristics for systems of conics, wherein Chasles’ formula is
corrected; however, they present a few variations in technical content, to which we return
below.

The relatively slow publication of Halphen’s ideas was noticeable for those involved in
the theory of characteristics: after a global announcement in 1876 which did not fail to
attract the interest of many a geometer, it became important for a richer explanation of
this refutation to be available. Zeuthen, writing to Halphen on October 19th 1876, made
this need clear127:

En tout cas, il est hardi de publier quelque chose en cette matière avant
l’apparition de votre nouvelle théorie. Et celle-ci, se fera-t-elle attendre jusqu’à
Avril ? Ne serait-il pas possible à M.Résal de la faire imprimer avant.

As printing kept being delayed, Zeuthen quickly grew frustrated by the situation. In De-
cember 1877, he wrote again to Halphen to enquire about the state of his manuscripts128:

La lenteur de ceux qui devraient se faire un plaisir à s’empresser de publier vos
mémoires est tout-à-fait intolérable. Il devient par exemple difficile de publier
quelque chose sur les caractéristiques avant de connaître toute la portée de
vos découvertes à cet égard.

Zeuthen’s letters seem to indicate that he gained access to Halphen’s memoirs only in
September 1878.

125 [Halphen, 1878b].
126 [Halphen, 1878a], [Halphen, 1879].
127“At any rate, one must be brave to publish anything on this matter before the publication of your

new theory. And this one, will we have to wait for it until April? Is it not possible for Mr. Résal to
publish it any earlier”, Ms 5624 223, Letter Zeuthen to Halphen, dated October 19th 1876. Zeuthen is
most likely referring to Aimé-Henry Résal.

128“The slowliness of those who should be glad to hurry and publish your memoirs is absolutely intoler-
able. It becomes for instance difficult to publish anything on the characteristics before knowing the scope
of your discovery in this regard”, Ms 5624 226, Letter Zeuthen to Halphen, dated December 15th 1877.
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Besides the slow printing of his memoirs, Halphen found it difficult to communicate
his results and methods due to its technical aspects. His memoirs, even in the hands
of the British mathematicians of the London Mathematical Society (including Arthur
Cayley), were hardly understood. Hirst, who was also responsible for the circulation of
Halphen’s ideas toward London, related in his diaries the circumstances of the presenta-
tion of Halphen’s memoir before the London Mathematical Society, in June 1878 in the
following terms129:

I communicated to the Math. Society on the 13th Halphen’s results on the
Theory of the Characteristics of Systems of Conics. Smith was in the chair and
Henrici and Cayley was [sic] present (Cayley stopped with me at Greenwich)
Halphens paper was an intricate but an important one. The question was
whether Chasles’ celebrated formula αµ + βν for the number of conics in a
system (µ, ν) satisfying four conditions which satisfy a fifth condition was or
was not generally true. I tried to disentangle the question of subtleties and to
show that it was true if all degenerate conics were properly counted but that it
required no complementary term −λ dependent upon [illegible] points of the
system if proper conics alone were taken into consideration. I spoke for an hour
and Cayley followed me. He was joint referee with me and I have since received
at least five letters from him in 3 of which he stated Halphen’s correction to
be incorrect and in the other 2 correct. So intricate is the analytical treatment
of the question. Geometrically I have no doubt of the correctness of the view
I stated

Cayley and Hirst were not the only ones who struggled to make sense of Halphen’s intricate
analytical methods. Upon receiving the same memoirs, Zeuthen wrote several times to
Halphen, asking for explanations regarding various reasonings or definitions. Schubert,
in his polemical exchange with Halphen over second half of the year 1879, seems to have
understood little of the subtleties of the latter’s analytical classification of degenerate
figures – something made appearant by Halphen’s growing exasperation before what he
perceived to be an impossible dialogue130.

The combination of a delayed publication, and of an expert use of intricate analytical
methods which few of the geometers involved in the theory of characteristics mastered,
meant that Halphen’s views were often accepted, but rarely understood. Many, especially
in France, would systematically agree with Halphen’s conclusions with respect to the
validity of Chasles’ formula; but few would engage with his theoretical approach to these
questions. This would be the case, for instance, of De Jonquières himself: in a letter

129Hirst’s diaries, Journal XIV, pp.145-146.
130See 8.2.2.
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written in 1883, having retired from his military career, he saw Halphen’s refutation as
confirming his earlier doubts over Chasles’ formula – apparently not paying too much
mind to the fact that his own formula had been subject to an even stronger limitation131:

Mon cher capitaine,
Je lis, à la page 2 de votre beau mémoire sur les “caractéristiques”, cette
phrase : “La diversité des exemples (ligne 7) .. fît croire à la généralité de
cette proposition”, et vous citez en note (même page) l’opinion de M. Zeuthen
qui n’y avait pas confiance. Vous auriez pu ajouter (puisque vous avez bien
voulu me citer) que, dès le début de la question et sans attendre l’avis de
M.Zeuthen, je n’y avais pas cru.
Vous en trouverez la preuve dans le §XXVIII du mémoire [..] “sur les contacts
multiples d’ordre quelconque des courbes de degré n avec une courbe fixe de
degré m, etc.132”. Il y est dit “[..] Ce fait expérimental peut découler ..”
Vous trouverez la même pensée exprimée encore plus catégoriquement page
7 (§10) et page 8 (§11) du mémoire intitulé “Recherches sur les séries ou
systèmes de courbes et de surfaces”, et surtout à la page 6 de ma “Lettre à
M.Chasles sur une question en litige”, opuscule que vous n’avez peut-être pas
connu et dont je me fais un plaisir de vous adresser aujourd’hui un exemplaire,
avec deux autres factum (du même temps) que j’exhume de la poussière où ils
étaient plongés.
Il a fallu votre envoi, monsieur, pour me faire tirer de l’oubli ces anciens ves-
tiges d’une lutte où j’étais seul à croiser le fer contre un illustre mathématicien
qui ne ménageait pas les coups et en usait parfois avec moi d’une façon peu
courtoise. Quoi qu’il en soit, vous y verrez que je n’ai jamais vu dans le suc-
cès des caractéristiques qu’un fait expérimental curieux, jusqu’au jour où vous

131“My dear captain, I read, page 2 of your beautiful memoir on the ‘characteristics’, this sentence: the
diversity of examples (line 7).. led to the widespread belief in the generality of this proposition’, and
you cite in a note (same page) the opinion of M. Zeuthen, who did not trust it. You could have added
(since you were kind enough to cite me) that, from the beginning and without waiting for M. Zeuthen’s
opinion, I did believe in it either. Of that, you will find a proof in §XXVIII of the memoir [..] ‘on the
multiple contacts of any order that curves of degree n have with a fixed curve of degree m, etc.’. There, it
is said that ‘[..] This experimental fact can follow..’ You will find the same thought expressed even more
categorically page 7 (§10) and page 8 (§11) of my memoir titled ‘Research on the series or systems of
curves and surfaces’, and especially page 6 of my ‘Letter to M. Chasles on a question in dispute’, opuscule
which you may not have known and which I am happy to send you a copy today, with two other factum
(of the same period) which I now withdraw from the dust they were gathering. It took a letter from you,
sir, to bring back to my memory these old vestiges from a fight during which I was alone, crossing swords
with an illustrious mathematician who did not hold back, and sometimes resorted to rather low blows
against me. In any case, you will see that I never saw in the success of the characteristics more than
a curious experimental fact, up until that day when you made their prestige vanish, leaving nonetheless
untouched what I said in the aforementioned memoir regarding my own theory (not only for conics, but
for all Cn and Sn)”, Ms 5624 69, Letter De Jonquières to Halphen, dated June 17th 1883.

132The text to which De Jonquières alludes here is [de Jonquières, 1866a], pp.316-317.
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avez fait évanouir le prestige, laissant subsister toutefois en ce qui concerne ma
théorie (non seulement pour les coniques, mais pour les Cn et les Sn) ce que
je disais en être exact dans le mémoire précité : “Recherches sur les séries..”

Halphen was seemingly unconvinced by De Jonquières’ references, as the latter wrote back
only four days later to insist that, by the use of the term “expérimental”, he was already
in 1866 doubting “la parole du maître”. However, De Jonquières’ subsequent defense of
his own theory – which he then took to have prevailed – shows a limited understanding of
Halphen’s memoirs. In particular, De Jonquières seems to believe that his formulae are
correct when systems contain no singular curves whatsoever133; however, this is almost
never the case in a system of curves, and at any rate, it is not what Halphen had showed.

6.4.3 A new classification of degenerate conics

In the rest of this chapter, we follow the 1878 memoir published in the Journal de l’Ecole
Polytechnique, focusing on how, after Clebsch, Halphen undertook a systematic algebraic
translation of all of the geometrical notions at the heart of the theory of characteristics134.
This memoir is divided into five sections. The first one deals with the singularities of
systems of conics; the second one with the algebraic representation of conditions; and
the third one uses the results obtained in the first two to refute Chasles’ formula and
prove Halphen’s alternative theorems. Section four consists in a series of examples, while
section five provides analogous results for systems of second-order surfaces; we will not
discuss these two final sections here.

Halphen’s study of the singularities of systems of conics (which he also describes as
“figures in the system which are not conics, but limits of conics135”) begins with the
following remark: singularities correspond to special cases of the general equation of the
second degree. There are two such special cases, namely

(ax+ by + c)2 = 0 and (ax+ by + c)(dx+ ey + f) = 0

In punctual coordinates, continues Halphen, these two cases correspond respectively to one
133“Ce que je voulais seulement établir, c’est que ma théorie, bornée aux cas où le système ne contient

aucune courbe singulière ou décomposée, (ce que l’examen des conditions permet a priori de prévoir
s’il s’agit de système élémentaire), subsistait tout entière et de plus était démontrée, tandis que celle
de M.Chasles ne reposait que sur des allégations, appuyées des seules qualifications de prodigieux, ad-
mirables, qu’on n’aurait pas pu prévoir, etc, et qui, dans ces termes si absolus, si tranchants, disons si
dédaigneux, se sont précisément trouvées fausses ! Tout cela est bien rétrospectif, et si je me permets
de vous en parler, c’est dans un pur intérêt historique”, Ms 5624 67, Letter De Jonquières to Halphen,
dated June 21st 1883.

134For a contemporary exposition of an enumerative theory inspired by Halphen’s memoirs, see [Casas-
Alvero & Xambò-Descamps, 1986].

135 [Halphen, 1878b], p.33.
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(double) line and to two lines; in tangential coordinates, they correspond to one (double)
point and two points. There remains to determine what cases in both coordinate systems
can occur simultaneously to obtain a classification of singularities of systems of conics,
that is to say whether one can have one line and one point, one line and two points, and
so on.

To do so, Halphen fixes a straight line Q in the plane of the system, and a point s on
Q (see fig. below). Given a conic a, he forms the polar line S of s with regard to a, and
the pole q of Q with respect to a. Then the intersection r of the lines Q and S will be
such that it is the pole of the straight line sq. In other words, the triangle qrs is self-polar
with respect to a . Unless s is on a, or Q touches S, it is a proper triangle: q, r and s

are distinct and not aligned. Halphen shows that this remains true when a is converging
toward a degenerate conic, provided s and Q are chosen adequately. The intersection
points m,m′ of the degenerating conic a and the line Q converge toward two, possibly
identical limit points, which are different from s (for s is chosen to be on none of the
conics near the degenerating conic). The three points s,m,m′ are always on the line Q,
therefore so is their harmonic conjugate, that is to say the unique point on Q so that its
anharmonic ratio, taken with the three other points, is −1. This point, then, converges
toward a point that is not s. But this point is also the intersection of Q and the polar line
of s with respect to A. Since this is true of all lines Q, the polar of s converges towards
a line which does not pass through s. Similarly, when a degenerates, r does not converge
toward a point on R, and q on Q; so that the triangle corresponding to the degenerate
conic remains proper.

Constructing this series of triangles allows Halphen to write the punctual equation of each
conic of the system as:

g1Q
2 + g2R

2 + g3S
2 = 0

where Q = 0, R = 0, S = 0 are the equations of the three sides of the self-polar triangle
qrs, and the gi’s are coefficients determining one conic, but also functions of a parameter
which describes the entire system of conics. Note that in the equation above, the factors
Q,R, S change with each conic, but the general form of the equation remains the same
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across the entire system of conics. A tangential equation for each conic can be obtained
in a similar fashion by forming the (dual) equations of the points q, r, s.

When a conic degenerates, at least one of the gi’s vanishes; however, not all of them can
vanish at the same time. Supposing, for instance, that g3 has a finite limit when the conic
degenerates (that is to say, supposing that g1

g3
and g2

g3
are bounded in the neighborhood of

a degenerate conic), there remain three possible cases.
In the first case, only g1 is infinitely small. The equation of the conic becomes that

of two straight lines passing through q, and S intersects the conic at two infinitely close
points. Since S is the polar line of the point s, which was chosen arbitrarily, the tangent
lines of an arbitrary point touch the conic at two infinitely close points, which are the
intersection of the two lines to which the conic is reduced. The conic is composed of two
lines and one point; and it is classified as a degeneration of type A.

In the second case, both g1 and g2 are infinitely small and of the same order. The
equation of the conic becomes that of one line, namely S, on which lie q and r. Since
S was chosen arbitrarily, this conic intersects an arbitrary straight line in two infinitely
close points, but the tangents drawn from arbitrary points do not coincide. The conic is
composed of one line and two points; it is classified as a degeneration of type A′.

In the third case, both g1 and g2 are infinitely small, but of different orders136. Sup-
posing the order of g1 to be superior to that of g2, Halphen denotes their ratio as (1 + h).
The conic presents the specificities of both previous cases: any straight line intersects the
conic at two infinitely close points, as is evidenced by the fact that the equation of the
conic becomes S2 = 0. Furthermore, the tangents drawn from an arbitrary point coincide,
since the correlative equation has also two coefficients vanishing. The conic is composed
of one line and one point; it is classified as a degeneration of type B.

Furthermore, by taking the correlative system of conics a′, the degenerations A and
A′ are swapped, but degenerations B correspond to one another, with the number h
becoming its inverse number h′ = 1

h
. Halphen is not directly interested in the number

h itself, but rather in two other numbers whose ratio is h. When a conic a degenerates,
the quantities g2

g3
and g1

g3
become infinitely small, and of order m and m + n. For conics

of type A, m = 0. For conics of type A′, n = 0. For conics of type B, neither m nor n
is zero, and h = m

n
. Halphen shows that these two numbers do not depend on the mode

of representation of the system, and calls them respectively the order and class of the
degenerate conic137.

136Another way to understand B-degenerations, which Zeuthen would resort to in his presentations of
Halphen’s theory (whether for Meyer’s and Klein’s Encyklopädie or his own textbook), is to view them
as conics whose axes a, b become infinitely small in a manner such that the ratio am

bn has a finite limit,
for some positive, different integers m,n.

137Using Clebsch’s construction of an algebraic curve in a one-to-one correspondence with the system
of conics, these numbers m and n can be given further meaning; see [Halphen, 1878b], pp.38-39.
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The crucial part of Halphen’s analysis here is that B-degenerations are obtained as
normal ‘singularities’ of a system of conics. In other words, these degenerate conics are
not simply conics satisfying both A and A′ modes of degeneration simultaneously, but,
in Halphen’s theory, a third, equally legitimate mode of degeneration, on its own right.
It must be noted that in order to appear as such, these degenerations must be viewed
as limits of proper conics. If just given the description of these conics as made of a
straight line and a point, one could explain them away for instance as the intersection
of two exceptional loci in the abstract space of conics. This analytical framework, and
the considerations of limits with various possible convergence rates, is key to Halphen’s
classification138.

6.4.4 What’s a (projective) condition?

It is not enough to change the classification of degenerate conics to refute Chasles’ theo-
rem: one must also show that B-degenerations yield solutions étrangères, that is to say
curves which do not meaningfully satisfy a condition, and thus must be subtracted from
the total number of solutions. To that end, Halphen gave an algebraic definition of a
condition, and put forth a criterion for the proper satisfaction of a condition by a conic
(degenerate or not).

A condition, for Halphen, can always be represented by an algebraic, homogeneous
equation ψ = 0 in the coefficients ai,j (which Halphen only writes as a) of the general,
usual equation of the conic (that is to say, not the one he had constructed to classify
degenerate conics). However, such an equation is not necessarily projective139, that is to
say invariant under any homographic substitution. To remediate this situation, Halphen
proposes two slightly different solutions in his memoirs for the Proceedings of the London
Mathematical Society and the Journal de l’Ecole Polytechnique. In what follows, we focus
on the latter, but will indicate some deviations from the earlier, England-bound text in
footnotes.

Halphen first studies the effects of changes of homogeneous coordinates on the equation
ψ = 0. To that end, he fixes three arbitrary points u, v, w in the plane, of coordinates
u1, u2, u3 etc., and replaces in a2

x the coordinates x1, x2, x3 by140

x1 = (vwX) , x2 = (wuX) , x3 = (uvX)

138In modern presentations, these degenerate conics are obtained by blowing up the variety of complete
conics (that is to say, the closure in P5 × P̃5 of the graph of the map which transforms a conic locus into
its conic envelope) along the Veronese variety (that is to say, the locus of all conics whose matrices have
a determinant equal to 0); see [Casas-Alvero & Xambò-Descamps, 1986], pp.3-6.

139Halphen identifies enumerative problems as part of “projective geometry”, [Halphen, 1877], p.149.
140In the memoir for London, four fixed points in the plane were used.
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where the following notation is borrowed from invariant theory:

(tuv) =

∣∣∣∣∣∣∣∣∣
t1 t2 t3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣
Similarly, the form a2

x has become a quadratic function of the coefficients X1, X2, X3,
which can be written as A1,1X

2
1 + 2A1,2X1X2 + ...2, where the Ai,j are coefficients which

can all be expressed as algebraic functions of the coefficients ai,j and ui, vi, wi. Denoting
∆ = (u1v2w3), and c the degree of φ (in the coefficients ai,j), Halphen obtains the following
factorization:

∆2cψ = θ(u, v, w)Ψ(u, v, w,A)

ψ and Ψ coincide if and only if the same triangles are used as a basis for the homogeneous
coordinates in which the condition is expressed in both cases.

To ensure that a condition ψ is projective, Halphen applies a homographic substitu-
tion141 of determinant δ to the plane, and writes:

Xi = miX
′
1 + niX

′
2 + piX

′
3 , ui = miu

′
i + niu

′
2 + piu

′
3 etc.

After some computations, Halphen shows that

θ(u, v, w)Ψ(u, v, w, a) = θ(u′, v′, w′)Ψ(u′, v′, w′, A′)

From there follows that Ψ and θ are projective relations; after which Halphen asserts
that Ψ is the projective form of the condition ψ. Furthermore, from a simple algebraic
proposition it follows that θ is a power of the linear form that is the determinant of the
triangle (u, v, w), so that for an adequately chosen reference triangle, the condition can
be written purely as ψ(u, v, w, a), that is to say as a covariant of a2

x whose variables are
the coordinates of three points u′, v′, w′. The coordinates of the triangle uvw are what
Halphen calls the “arbitraries” of the condition: they capture the data necessary to define
the condition.

6.4.5 Eliminating independent solutions

At the end of this analysis, Halphen has analyzed the concept of condition more finely than
Clebsch had, or at least the status of the arbitraries of the conditions is more thoroughly
described. In particular, Halphen can combine this analytical description of conics with

141Despite Halphen’s use of substitutions, no mention of Jordan’s 1860 Traité is made. Furthermore,
Halphen uses the term “groupe” in a way that has nothing to do with groups of substitutions.

277



Chapter 6. Reorganizations, rewritings, and refutations: the early reception of the
theory of characteristics

that of systems of conics previously described, by substituting to the coefficients ai,k the
expressions involving the triangle qrs and the coefficients gi. Doing so, Halphen obtains

ψ(u, v, w, a) = D2θφ(u, v, w, q, r, s, g1, g2, g3)

where D is the determinant of the triangle qrs, θ some integer depending only on the
condition and the triangle uvw, and φ is the algebraic function obtained by substituting
the variables.

This rewriting, among other things, allows Halphen to discuss the concept of solution
of an enumerative problem anew. A solution is a curve in a system, defined by the triangle
qrs and the coefficients g1, g2, g3, satisfying a condition, expressed projectively by φ and
the triangle uvw; therefore, the equation

φ(u, v, w, q, r, s, g1, g2, g3) = 0

expresses the fact that a curve of a system satisfies a condition.

This framework allows to refresh the demarcation between two types of solutions,
which could already be found in the works of Clebsch or Chasles, that is to say the
demarcation between proper and false solutions of an enumerative problem. To that end,
Halphen presupposes that the condition is “independent” from the system, that is to say
that there is no relation between the coefficients of the triangle uwv and those of the
system. Thus, fixing a given condition, Halphen can consider the zeros of φ that are
independent of uvw, that is to say the conics of the system whose coefficients gi and
whose self-polar triangles qrs are such that φ = 0 whatever the numerical values of the
coordinates of uvw may be. These independent solutions must be substracted from the
final number of conics in a system satisfying a given condition, for they do not properly
satisfy the condition, they are “foreign solutions”, typically exemplified by the point-pair
conic which is ‘tangent’ to a given curve because it always crosses it at a single point,
irrespectively of the specific position of the given curve.

In fact, Halphen shows that a foreign solution is necessarily a degenerate conic. Taking
a conic a of the system, which is a solution independent of the arbitraries of the condition,
and to which is associated a non-degenerate triangle qrs, Halphen considers the effect of
a homographic substitution, which transforms a into a conic a′, the triangles uvw and qrs
into triangles u′v′w′ and q′r′s′ (all of which can be assumed to be proper triangles), but
which preserves the ratio of the gi’s. Therefore,

φ(u′, v′, w′, q′, r′, s′, g1, g2, g3) = 0
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If a is a zero of φ independently of uvw, then a′ is a zero of φ independently of u′, v′, w′.
Since every conic of the plane can be viewed as a certain homographic transformation of
the initial conic a, this would mean that every conic satisfies the condition, that is to say
that φ is constantly equal to zero, which is only possible when at least two of the gi’s are
already zero142.

The rest of Halphen’s memoir consists in the enumeration of these foreign solutions
which must be substracted. In so doing, Halphen shows that B-degenerations in the
system give rise to a number of solutions independent of the data of the condition, which
cannot be expressed by an αµ+βν formula143, as certain conditions are, indeed, satisfied
by every B-degeneration, irrespective of the triangle uvw.

Halphen’s memoir can be viewed as an even more radical attempt than Clebsch’s
at a systematic extraction of the algebraic content of the geometrical notions present in
Chasles’ theory: conditions, systems, degenerate conics, but also the significance of a solu-
tion are all attributed equational equivalents. However, through this translation, Halphen
had significantly altered these notions, thereby falsifying the formula which guaranteed
the very generality of Chasles’ theory (that is to say, for Chasles, the very reason for
which this theory was so important and worthwhile).

Indeed, how are we to understand that Chasles’ observation, verified across hundreds
of examples, and over the course of decades of geometrical practice, could be falsified by
an example as simple as the one given by Halphen? Since the validity of the αµ + βν

formula hinges upon the manner in which degenerate solutions are taken into account, this
counter-example could not have been an experimentum crucis, a case which, once studied,
immediately and definitively decides whether the formula is correct or not. To be made
into a counter-example, Halphen’s condition K and his two systems S and S ′ must be
viewed in a specific way, and the criteria for a conic to be a solution to an enumerative
problem must be spelled out in a specific way: in this case, through a certain analytic
equation. By mobilizing a language foreign to Chasles’, Halphen constructed a novel
technology for the computation of numbers of solutions, and in so doing, co-constructed
a novel concept of solution.

Conclusions

Over the course of a decade, almost every part of the theory of characteristics had un-
dergone multiple and incompatible transformations; whether it be notations, concepts,

142In the memoir for the Journal de l’Ecole Polytechnique, these assertions are backed by an analytical
study of the function φ; in the other memoirs, however, they are more loosely stated and established.

143In a manner similar to Clebsch’s, Halphen redefines these characteristic numbers within his algebraic
framework.
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methods of proof, geometrical meaning, goals and motivations, or even the truth-value of
a central theorem. Thus, the history of the early reception of this theory is the history
of strategical adaptations, reorganizations, rewritings, but also reinsertions into other
theoretical frameworks.

Across this motley collection of continuations of Chasles’ theory, some important con-
ceptual questions have emerged. The classification of degenerate conics, their integration
into a mathematical language – whether by stipulating what constitutes their incidences
and tangencies, by describing them as loci in an abstract space, or by writing equations for
them –, the fine-tuned discussion of their status qua solution to an enumerative problem:
these difficult questions were shared much more widely than methods or notations.

By pursuing these questions by means of literary technologies foreign to Chasles’,
geometers had uncovered a new kind of epistemic problem. The question of generality,
which had been central to Chasles’ efforts in the shaping of the theory of characteristics
(and of the principle of correspondence as a method of proof), had now been turned upside
down. Indeed, Chasles had put forth tools for the systematic enumeration of geometrical
objects in absolute generality; but this generality proved to be double-edged. Halphen
had definitely shown that there was a real risk of counting meaningless solutions through
the blind application of these tools.

However, by the end of the 1870s, these transformations had not led to the stabilization
of a collectively-shared theory or discipline. Halphen’s refutation of the αµ+ βν formula
had perhaps convinced a wide group of geometers around him (especially in France), but
this did not mean that his alternative theory of systems of conics would be developed
much further, or that his methods would circulate. In fact, there were many who still
held the formula to be valid – or, at the very least, to deserve some more defending. In
particular, in the enumerative geometry constructed by Hermann Schubert between 1874
and 1880, the αµ+βν formula plays a structural role, both as a paradigmatic example of
the kind of mathematical knowledge to be strived for, and as a central justification for the
soundness of its notations. In the next chapter, we present the shaping of this geometrical
theory, before turning in the last chapter to the ensuing disputes between Schubert and
Halphen over the validity of the αµ+ βν formula.
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Chapter 7
“A Wonderful Machine”: the shaping of
Schubert’s abzählende Geometrie

Introduction

While Halphen successively proved and refuted Chasles’ formula, several others were
engaging with Chasles’ theory of characteristics with different goals in mind, such as
expanding it toward cubics or other geometrical figures. One, in particular, would rapidly
gain fame for such work: Hermann Schubert. While his scientific output stopped in the
direct aftermath of his 1870 dissertation, he came back to enumerative problems but a
few years later. In 1874, he began publishing results on the enumeration of cubics (in the
plane as well as in space), which were crowned the following year by the Danish Academy
of Sciences in Copenhagen, on Zeuthen’s recommendation1. Schubert’s research led to the
discovery of several impressive solutions of complex enumerative problems, such as the 5
819 539 783 680 twisted cubics tangent to twelve quadric surfaces, in three-dimensional
space.

But Schubert’s research is inadequately represented as a mere extension of Chasles’
theory of characteristics for cubics and other figures. The large numbers and complex
enumerative formulae Schubert had obtained were built on the back of a profound rein-
terpretation of the symbols of the theory of characteristics, of their status as geometrical
objects, and of the computations which could be carried out with them. In this chap-
ter, we show in succession how Schubert built upon a seemingly banal observation by
Halphen to carry out this reinterpretation, as well as how this reinterpretation was used
to construct a new proof of Chasles’ formula, and, more substantially, to turn enumera-

1 [Burau, 1993], p.63. A quasi-exhaustive list of Schubert’s publications, compiled by his biogra-
pher Werner Burau, can be found in the 1979 reprint edition of his 1879 book Kalkül der abzählenden
Geometrie, see [Schubert, 1979], pp.18-21.
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tive problems into a full-fledged, autonomous mathematical discipline, namely abzählende
Geometrie. Not only did Schubert coin this term, he delineated its symbolism, its infer-
ential rules, and its goals. These rules and goals would turn out to be orthogonal to those
identified by Halphen and Clebsch. Instead of seeking to prove Chasles’ theorem, Schu-
bert put at the heart of his project the generation and combination of symbolic formulas
and the reduction of conditions to minimal sets of elementary conditions. Furthermore,
Schubert’s algebraic symbols served not as a tool for the thorough and rigorous investi-
gation of geometrical concept; rather, letters representing conditions were endowed with
autonomous meaning modeled on an analogy with the algebra of systems of numbers.
To these changes in mathematical moves correspond a changes in epistemic values, and
to the values of rigor and precision promoted by Halphen, Schubert preferred those of
fruitfulness and simplicity. This would appear most clearly in the polemical exchanges
between Schubert, Zeuthen, and Halphen; which we will discuss in the next chapter.

Beyond Halphen and Zeuthen, the sheer fruitfulness and efficiency of Schubert’s cal-
culus was admired by many; but the nature of the justifications and proofs Schubert
summoned to ground it was widely judged unsatisfactory. The tension between the power
of Schubert’s calculus and the growing dissatisfaction regarding its justifications became
such that in 1900, in his famous Paris address delivered at the International Congress of
Mathematics, David Hilbert included the rigorous foundation of this calculus as the fif-
teenth of his twenty-three problems2. While most mathematicians later agreed that such
rigorous foundation had been provided by Van der Waerden, in his series of papers on
algebraic geometry in the 1920s and 1930s3, it remains to be proven that all of Schubert’s
enumerative results can actually be obtained in this more rigorous framework. Further-
more, there are substantial philosophical issues to this claim, which we shall briefly touch
on below, and in the next chapter.

Schubert’s mathematics have long fascinated geometers of various ilks. As such, there
exist already several reconstructions thereof4, written by leading geometers, trained in
modern intersection theory and post-Grothendieck algebraic geometry. However, we still
lack an understanding of the inner workings of his symbolism. Certain symbolic practices
and certain types of proofs, which Schubert constantly uses and puts at the heart of his
theory, are difficult to make sense of in these modern readings. Chiefly among them ranks
Schubert’s rewriting of Chasles’ principle of correspondence, and the symbolic inferential
practice attached to it. Furthermore, these contemporary reconstructions focus almost
exclusively on the 1879 Kalkül, and largely ignore the slow genesis of this symbolism, with
all the difficulties, conceptual or technical, it had to overcome. Therefore, the purpose

2 [Gray, 2000], p.178.
3 [Schappacher, 2007].
4 [Kleiman, 1976b], [Ronga, 2006].
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of this chapter is to present a detailed account of the shaping of Schubert’s geometrical
practice. To that effect, our strategy in this chapter will be to follow Schubert as he
read Chasles, then Halphen, Maillard, and Zeuthen. We then show how Schubert built
on top of his original reading, a new way of rewriting, and expanding, these results. To
do so, we first present Schubert’s highly-structured geometrical ontology, as well as the
intricate architecture of his theory - its objects, its notations, and its stated goals. Then,
we present the main computational techniques deployed by Schubert, some of which he
created through a highly-inventive reading of the texts of Chasles and his students. Lastly,
we present the details of Schubert’s geometry of the triangle by way of an example of the
actual practice attached to this theory.

7.1 Reinventing a meaning for Chasles’ symbols

7.1.1 Halphen’s observation

On April 28th 1873, Halphen gave a seemingly innocuous communication at the Académie
des Sciences, one to which he would not return in the future, and to which he never gave
a particularly important role5. And yet, as Schubert read it a few months later, it would
prove key in opening up the possibility of a new symbolism for geometrical conditions,
and for enumerative geometry as a whole.

In this paper, Halphen started with Chasles’ αµ+βν theorem for conics and its analog
for second-order surfaces (which takes the form of a sum αµ+ βν + γρ, where µ, ν, ρ are
numbers of surfaces satisfying elementary conditions), which at the time he both held to
be true. Remember that Chasles called these sums ‘modules’ of a condition (see section
4.2.3), and that he had given general expressions for the number of conics satisfying any
five conditions of known modules αiµ + βiν (for i ranging from 1 to 5). In particular,
Halphen recalls Chasles’ general expressions for the number of conics (resp. second-order
surfaces) satisfying 5 (resp. 9) conditions whose modules are known. These expressions
were linear combinations of products of the coefficients α, β, γ of these modules (see fig.
below6).

5 [Halphen, 1873c]. In Halphen’s 1885 autobiographical Notice, only one sentence is devoted to this
paper: “Enfin, je demeurais l’inventeur de certains produits symboliques, grâce auxquels tous les résultats
de cette théorie acquéraient une admirable simplicité”, [Halphen, 1885], p.8. A footnote indicates that
Schubert, in particular, made use of these symbolical products.

6In Chasles’ text, expressions such as Σ5α4β refer to the sum of all possible products of one coefficient
from each of the nine conditions, wherein four coefficients have to chose amongst the αi’s and five amongst

the βi’s. For instance, Σ9α is simply α1 × · · · × α9, and Σ8α1β is
9∑
i=1

(βi
∏
j 6=i

αj).

283



Chapter 7. “A Wonderful Machine”: the shaping of Schubert’s abzählende Geometrie

[Chasles, 1866d], p.413.

Halphen had observed that, in these sums, the numerical coefficients could be read as
numbers of conics (resp. surfaces) satisfying certain numbers of elementary conditions7.
More precisely, the numbers could be interpreted in a way that factored Chasles’ expres-
sion into a product of modules.

For instance, given five conditions on conics, of modules αiµ + βiν, Halphen formed
the following product by replacing the characteristics µ and ν by p and d, two empty
symbols (which Halphen refers to as ‘variables’):

(α1p+ β1d)× ...× (α5p+ β5d)

By replacing, in the expanded form of this product, every symbol pid5−i by the number
of conics passing through i given points and touching 5− i given straight lines, Halphen
explained, one obtains exactly Chasles’ general formula for the number of conics satisfying
five conditions. The same rewriting works for the much larger expression for the number
of surfaces.

In fact, as Halphen had noticed, this phenomenon is more general: in particular, it
applies to conditions of higher multiplicity (or, to use Halphen’s words, higher ‘order’).
Remember that Chasles had extended the notion of ‘module’ to the so-called ‘multiple
conditions8’. Conditions on conics such as ‘to touch a given line at a given point’, or ‘to
have a contact of the second order with a given curve’ could not be attributed a module of
the form αµ+βν, for the simple reason that they counted as two or more inseparable con-
ditions, and thus there are no conics in a system of conics (Z1, Z2, Z3, Z4) ≡ (µ, ν) which

7Note that a similar trick had previously been given by [Prouhet, 1866], p.202. This paper is never
mentioned by Schubert or Halphen. To an extent, the general expression for the number of second-order
surfaces satisfying 9 conditions given by Schubert in his dissertation, and discussed in the previous chapter,
is also very comparable to the result stated by Halphen in the case of simple conditions. See [Schubert,
1870], p.370, and 6.2.2.

8 [Chasles, 1864e]. See section 4.2.6.
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satisfy Z in general. To deal with multiple conditions, Chasles then extended the concept
of characteristics beyond systems defined by four conditions. Given three arbitrary condi-
tions Z1, Z2, Z3, Chasles formed the two systems (1p., 3Z) ≡ (µ′, ν ′), (1d., 3Z) ≡ (µ′′, ν ′′).
These are systems in the usual sense of the term, and thus they also have characteristics
in the usual sense of the term. Note that, per definition, µ′′ = ν ′. Chasles would then
claim that µ′, ν ′ = µ′′, ν ′′ could then be called the three characteristics of the triplet of
conditions 3Z = (Z1, Z2, Z3), because for every double condition C2, the number of conics
satisfying 3Z and C2 was given by a formula of the form:

N(3Z,C2) = αµ′ + βν ′ + γν ′′

where α, β, γ only depend on C2. The right-hand term in this equation would then be
called the module, in an extended sense of the term, of the double condition C. For
instance, the module of the double condition ‘to have a double contact with a given conic
section’ is (µ′ + ν ′′ − 1

2ν
′). This means that for any given three conditions Z1, Z2, Z3,

one can compute the three characteristics defined above, and, using this module, find out
how many conics satisfy 3Z and C2. The general existence of these modules – that is
to say, the analogous version of Chasles’ theorem for systems defined by three conditions
– is often referred to as Cremona’s theorem. It must be emphasized here that Halphen,
in the second part of his 1873 memoir on the theory of characteristics, had also proven
Cremona’s theorem, which he described as “following easily from Chasles’ theorem9”.
Similar generalizations of the notion of module can be easily carried out to conditions of
higher multiplicity: for a triple condition C3, it suffices to form the characteristics of the
four elementary systems (2p., C2), (1p., 1d., C2), (2d., C2) for an arbitrary double condition
C2.

Considering various kinds of double conditions, Chasles had also given expressions
similar to that for the general number of conics satisfying five simple conditions. To these
expressions, Halphen would notice, the same notational trick applied; except now the
formula was quadratic, and not linear, in the coefficients of the module. It is on this basis
that he stated the following general theorem10:

Pour les coniques dans le plan, toute condition multiple d’ordre π peut être
caractérisée par un polynôme homogène et de degré π, à deux variables p, d,

9 [Halphen, 1873b], p.131.
10“For plane conics, every multiple condition of order π can be characterized by a homogeneous polyno-

mial in two variables p and d, of degree π, which is called its module. If one replaces, in this polynomial,
each symbol (pidπ−i) by the number of conics passing through i points, touching π − i straight lines,
and satisfying another multiple condition, of order 5 − π, the result of this substitution is the number
of conics which satisfy these two multiple conditions”, [Halphen, 1873c], p.1075. An analogous result for
surfaces is given on the next page.
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nommé module. Si l’on remplace, dans ce polynôme, chaque symbole (pidπ−i)
par le nombre des coniques qui passent en i points, touchent π − i droites et
satisfont à une autre condition multiple, d’ordre 5 − π, le résultat de cette
substitution est le nombre des coniques qui satisfont à ces deux conditions
multiples.

The module of the condition ‘to have a double contact with a given conic section’, which
Chasles had already computed in 1864 (and given above), would be rewritten by Halphen
as (p2 + pd− 1

2d
2).

Halphen did not prove this general result either in this paper, or in later publications.
In its simpler cases, such as that of a collection of simple conditions, his theorem can
be obtained through simple, albeit tedious, computations. However, it remains unclear
if Halphen was in possession of arguments for the generality of this claim, or if this was
based on a induction (on, admittedly, a large number of cases). Notably, Chasles had not
given a general formula for the number of conics satisfying a double and a triple condition.

If Halphen had a proof for it, however, it did not circulate. Thus, the import of
this theorem in its public form was a reorganization of the knowledge already present in
Chasles’ formula. Halphen’s rewriting makes visible symmetries and relations between
modules that were not appearant under Chasles’ notations; and, in particular, the use
of the variables p and d condenses information that was distributed across the symbols
µ′, ν ′, ν ′′. The synthetic power of Halphen’s observation is obvious in a second theorem
he gave in the same communication, which immediately follows from the first one11:

Le module d’une condition composée est le produit des modules des condi-
tions composantes. Et, en particulier, le nombre des coniques qui satisfont
à des conditions, dont la somme des ordres de multiplicité est égale à 5, est
représenté par le produit symbolique des modules de ces conditions, dans lequel
chaque symbole (pidπ−i) est remplacé par le nombre des coniques qui passent
en i points et touchent 5− i droites.

The composition of a condition is now recast by Halphen as a symbolic product, and the
condition ‘to have two contacts with a given curve Um’ can be meaningfully expressed in
terms of the simple condition ‘to have a contact with a given curve Um’. This is some-
thing of which Chasles’ theory was not really capable, mostly due to a lack of appropriate
expressive resources. However, despite how suggestive this comparison between compo-
sition and multiplication is, Halphen would limit himself to drawing direct consequences

11“The module of a multiple condition is the product of the modules of the conditions composing it.
And, in particular, the number of conics which satisfy conditions whose orders of multiplicity add up
to five is represented by the symbolic product of the modules of these conditions, in which each symbol
(pidπ−i) is replaced by the number of conics passing through i points and touching 5− i straight lines”.
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of Chasles’ general formulae, and to reformulating them. In particular, the symbols p
and d are devoid of (geometrical) meaning: they play here a purely instrumental role.
Furthermore, these symbolic products are justified, and thus restricted to cases where a
formula such as Chasles’ αµ + βν has been proven. These two limits would disappear
in Schubert’s interpretation of Halphen’s observation, thus allowing for an entirely new
approach to the algebra of geometrical conditions.

7.1.2 From multiplications of modules to symbolic products of
conditions

This observation would be of little interest for Halphen in his later research. It is a
symbolic device which relies on the assumption that Chasles’ formula is true for five
given conditions, thus being of no use for proving or refuting said formula. At first
glance, its interest seemingly lies more in its computational efficiency than in theoretical
uses. And yet, Schubert would be very impressed by this device, which he described as
“marvelous machine12” in a letter to Halphen; and he would push this machine far beyond
its intended uses. In his first 1874 paper for the Göttingen Nachrichten, marking his
comeback to mathematical research after a three-year pause, Schubert built on Zeuthen’s
and Maillard’s work on the theory of characteristics for spatial curves of the third order13.
This first successful foray into the enumerative geometry of cubics had been motivated by
exchanges with German mathematician Rudolf Sturm who, without explicitly referring to
Chasles’ theory, had also been making some progress toward a classification of elementary
systems of curves of the third order14, and was closely read by Schubert throughout the
1870s. Along with a second paper, published the following year and in the same journal15,
Schubert’s enumerative theory of cubics would be rewarded with a prize in 1875 from the
Danish Royal Academy, on Zeuthen’s recommendation: as such, this work immediately
gained international recognition16. And yet, the profound changes it brings to Chasles’
theory, and to the works of Halphen, Maillard, or Zeuthen, are striking. At the heart
of these changes lies a new symbolism introduced by Schubert, and for which Halphen’s
observation was crucial.

In the first of these two papers, Schubert focuses on elementary systems of C3
3 curves,

that is to say plane curves of the third order in three-dimensional space17. Schubert
12“Die symbolische Multiplication, welche übrigens doch schliesslich von Ihnen herstammt, ist in der

That eine prachtvolle Machine”, Letter Ms 5624 165, Schubert to Halphen, dated May 18th 1876
13 [Schubert, 1874]. See 6.2.1, 6.2.2.
14For instance, [Sturm, 1875].
15 [Schubert, 1875].
16 [Schubert, 1879b], p.339. The winning paper was not directly published, but its results served as

the basis for later texts, in particular [Schubert, 1878] and [Schubert, 1879b], pp.163-165.
17Every curve is in a plane, but curves in a given system may be in different planes. Schubert also
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asserts that the special case for which the plane of each curve in the system is the same is
precisely what Zeuthen and Maillard have already dealt with. He presents his own work
as a generalization of their work for the case in which the plane in which each curves lies
can vary. For curves of the third order, Schubert lets Σn denote elementary systems of
curves which satisfy 10− n elementary conditions. It is important to note that Schubert,
from the onset, defines systems as collections of curves satisfying certain conditions, whose
total multiplicity may not add up to 10 − 1 = 9. Unlike for Chasles, thus, a system of
cubics could be defined by, say, three simple conditions – it would then be called a system
of level 3. For any three numbers x, y, z whose sum a is smaller than 10, (x, y, z) denotes
the elementary system of curves Σ10−a whose plane contains x given points, which cross
y given lines, and which touch z given planes.

Schubert moves on to discuss the possible degenerate curves of such system. A system
Σ1 contains degenerate curves, such as the figure σ, which is composed of a conic and
a ‘branche simple’ (or Ordnungsgerade, Schubert giving here both the French and the
German term) – that is to say, a cubic whose equation can be factored into the product of
a quadratic and a linear polynomials. Schubert’s crucial notational move is to let the same
‘sign’ (Zeichen) σ also represent the number of such degenerate curves in the system18:

Von den nachstehenden Zeichen bedeutet jedes entweder die daneben stehen-
den Bedingung oder die Zahl der ihr genügenden Curven eines Systems.

Relying on the enumerative geometry of the cubic expounded by Zeuthen and Maillard in
particular, Schubert gives a complete classification of the possible modes of degeneration
of cubics, which he all denotes with similar signs (lowercase Greek letters). There again,
the signs always stand for the numbers of such curves as well. Similarly, Schubert lists
the degenerate curves that appear in Σ2 systems, such as an infinity (∞1) of curves σ.
This shows that signs denote numbers regardless of whether or not there are finitely many
such degenerate curves in the system; in other words, infinites of figures (∞1,∞2 etc.)
are also numbers of curves.

The next step in the setting-up of Schubert’s symbolism is to denote geometrical
conditions. Here again, Schubert introduces signs which stand both for the condition and
the number of curves of a system satisfying it, for instance denoting µ the condition for a
curve of having its plane pass through a (given) point. For each condition, Schubert gives
a second interpretation of the number of curves satisfying it; for instance, µ is a third of
the order of the system of rays generated by the tangent lines of the curves19. Conditions
touches on curves of the fourth order in this paper. For the sake of brevity, we will not discuss this aspect
of his work.

18“Each of the following signs means either the condition next to it or the number of curves in a system
which satisfy this condition”, [Schubert, 1874], p.270.

19Tangents can be defined because the curve is planar.
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are not all denoted by Greek lowercase letters. For instance, the condition ‘to contain
a given point’ is denoted by the letter P . Some conditions also involve subscripts. For
instance, c denotes the condition of having its cusp in a given plane, or, alternatively, the
order of the locus of the cusps of the curves of the system. Later, Schubert defines cg as
the condition of having its cusp on a given straight line20. Schubert’s list of conditions
is divided into four sections, which correspond (implicitly) to conditions of order 1, 2, 3,
and 4; conditions of higher orders are not necessary because of duality.

Once these signs are introduced, Schubert can introduce a crucial operation on them;
namely a Halphen-inspired symbolic product of these signs. Discarding the instrumental
role of Halphen’s multiplication of module - and the fact that it was, ultimately, to be
understood as the multiplication of polynomials -, Schubert suggests that21:

Die Nebeneinanderstellung – das symbolische Produkt – mehrerer der eben
angeführten Zeichen bedeutet die Zahl die Curven eines Systems, welche gle-
ichzeitig den diesen Zeichen angehörigen Bedingungen entsprechen; und das
Produkt dieser Zeichen mit einem der sich auf die singulären Curven beziehen-
den Zeichen bedeutet die Zahl derjenigen durch letzteres dargestellten sin-
gulären Curven eines Systems, welche den durch die anderen Zeichen des Pro-
duktes angegeben Bedingungen genügen.

In Schubert’s enumerative geometry of the cubic, one can multiply signs for conditions
at will, provided the total dimension be below 10. However, condition-signs can only be
multiplied by one sign standing for singular curves. Schubert immediately gives examples
of such symbolic products, such as µµµ which stands for the number of curves in a Σ3

which lie in a given plane. Indeed, µ stood for the condition that the plane of a curve
contains a given point. Thus, µµµ stands for the triple condition that the plane of a
curve contains three given points. Three points define one and only one plane; therefore,
geometrically, this condition is equivalent to demanding that a curve lie in a given plane.
The juxtaposition of condition-symbols thus formed a new composed condition, whose
geometrical meaning is obtained by the conjunction of the simple conditions.

This idea of such a symbolic product is credited by Schubert to Halphen in a footnote to
this very passage, without much in the way of explanation. It is easy to see how Halphen’s
rewriting of the general formula for the number of conics satisfying five given conditions

20Cubic curves can only have one cusp. If the curve does not have a cusp, the condition is not satisfied.
This is, like many other geometrical reasonings, totally implicit in Schubert’s presentation.

21“The juxtaposition - the symbolic product - of several of the aforementioned signs denotes the number
of curves in a system which simultaneously satisfy the conditions which belong to these signs; and the
product of these signs with one of the signs referring to singular [degenerate] curves denotes the number
of such singular curves in a system represented by the latter signs, which satisfy the conditions indicated
by the other signs of the product”, [Schubert, 1874], pp.272-273.
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falls under Schubert’s symbolism. Indeed, given five conditions of modules (αiµ + βiν),
these modules are in fact ‘numbers’ of conics satisfying the conditions themselves, as µ and
ν are signs standing both for numbers and elementary conditions. The ‘symbolic product’
of these modules thus is interpreted as the number of conics satisfying simultaneously
these five conditions. This product expands into an expression where the µiνj (for i+ j =
5) will turn into concrete, finite integers in the exact manner described by Halphen.
However, it must be stressed here that Halphen precisely did not multiply modules of
the form (αµ + βν), but instead substituted variables p and d to the characteristics µ
and µ. These variables were then to be replaced by concrete numbers at the end of
the multiplication of modules. The same goes for the general procedure described in
Halphen’s theorem, whereby modules of conditions of any order were written with added
variables instead of characteristic numbers, only to be replaced by concrete numbers
later on. Schubert, by comparison, re-established the symbols for characteristics in the
modules, and expanded the symbolic products thus obtained. In Schubert’s symbolism,
the symbols µ, ν stand not only for characteristics, that is to say numbers of curves
satisfying elementary conditions, but also for these very conditions themselves. Thus,
when products of modules are expanded, the symbols µiνj whose total degree is equal
to level of the system in which computations take place, they are immediately to be
interpreted as concrete numbers, in a way that coincides with what Halphen had described.

With this rewriting, several of the checks that Halphen had put in place on his sym-
bolic manipulation would disappear in Schubert’s text. For once, Schubert is applying
Halphen’s observation to the geometry of cubics, wherein no equivalent to Chasles’ αµ+βν
theorem was known, let alove proven. Furthermore, the ambiguity of Schubert’s symbols
between conditions and numbers imbues them with a certain autonomy, far removed from
what Halphen had envisioned. For instance, Schubert writes sums with them, which he
explains derive from Chasles’ principle of correspondence22. For instance, in a system Σ2,
Schubert writes23:

4ν = ρ+ 3c+ 6µ

where µ, c are defined as above, ν means to intersect a given line, and ρ to touch a given
plane. Schubert gives no proof or explanation for this formula which, he claims, is already
in the works of Maillard and Zeuthen (for the case µ = 0). In Maillard’s thesis, in a manner
analogous to Chasles’, symbols such as µ stood for numbers (either numbers of curves in a
system, or the order or the class of a locus defined by a certain infinite collection of curves
in a system), but not for conditions. The plasticity of Schubert’s notation allows him
to import Maillard’s proofs, which indeed rely on Chasles’ principle of correspondence,

22We shall come back to Schubert’s interpretation of the principle of correspondence below, see 7.3.2.
23 [Schubert, 1874], p.273.
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while imbuing their end formulae with renewed signification24. And yet, at this stage, the
sum of two signs remains an undefined operation: unlike multiplications, sums are not
given any geometrical meaning. It is hard to see what in Halphen’s theorem could justify
adding modules or conditions.

There are other methods through which Schubert can obtain formulae involving his
symbols, in particular the so-called ‘principle of special position’, which we shall discuss
later in this chapter25. It suffices to say for now that, in this paper, the results sought
by Schubert are of two kinds: characteristics of elementary systems (and, consequently,
numbers of cubics satisfying elementary conditions), and dependencies between these
symbols. The first kind of result is, of course, very much the same as the results produced
by Zeuthen and Maillard, and we shall not delve in detail into Schubert’s computation
of these numbers. The second kind of result, however, is rather new. After producing
the list of equations following from the principle of correspondence, Schubert reorganizes
it in order to make apparent that the numbers of degenerate conics depend solely on
characteristic numbers (see fig. below, where σ, c, w, q, v correspond to singular conics
arising in systems Σ1 and Σ2). Maillard did similar operations on his equations in his
1871 dissertation, but never explicitly discussed the relative dependency of symbols, nor
did he try to find minimal subsets of letters from which all others could be expressed.

[Schubert, 1874], p.273.

After providing lists of equations following from the principle of special position, Schubert
combines the formulas provided by these two principles, and carries out some algebraic op-
erations on them such as multiplying both sides by the same sign. In so doing, he obtains
other dependency results: he shows for instance that the numbers of some singularities

24 [Maillard, 1871], pp.8-10. Maillard’s formulae are not exactly the same as Schubert’s.
25See in particular 7.3.1.
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arising in higher-dimension systems cannot be determined solely by the characteristics.
However, Schubert continues, “every number can be represented as a function of µ, ν, ρ
and only one of [these numbers]26”. This shows that, in the case of cubics in space, the
analog to Chasles’ theorem involves four terms (the numbers of conics in space can all
be represented as a function of the three characteristics). It is striking that this result
contradicts, or rather invalidates Halphen’s theorem in the case of spatial cubics, which
Schubert notices and even mentions27:

Daher muss der oben in einer Anmerkung erwähnte Satz des Herrn Halphen
von dem Produkte der Moduln für die Curve höherer Ordnung eine wesentliche
Modification erleiden.

Schubert built symbols for the study of spatial cubics upon a result pertaining to conics,
whose analog for cubics turned out to be invalid – that is to say, the αµ+βν formula must
be expanded to four terms for these curves, as one cannot hope to find two elementary
conditions which would allow for a simple expression of all other modules of conditions.
Halphen’s observation, therefore, was not understood by Schubert as logically grounding
a certain use of symbols, but rather as suggesting a way to amalgamate numbers and
conditions within a single set of signs and symbols.

7.1.3 The building of a theory

Schubert’s output in the wake of this initial paper on cubics is intense: between 1874 and
1880, besides the aforementioned book, he published nine papers for the Mathematische
Annalen, three in Crelle’s Journal, and six more in the Göttingen Nachrichten. The vast
majority of these papers, to some extent, make use of the symbolism described previously.
Of course, this is not to say that Schubert’s geometry had been set in stone: the strategy
and techniques laid out in the initial 1874 paper would be refined and transformed in
the following years. The domain on which this new symbolism and its rules would prove
useful for Schubert extended way beyond the enumeration of curves, as bespeaks the wide
variety in topics in these papers, ranging from the conservation of the genus by some
transformations to Bézout’s theorem or to the modes of singularity for complexes of lines
(that is to say, the ways in which complexes of lines can degenerate).

In 1874, as he first expounded his new symbolism and operations, Schubert was still
working within a Chaslesean framework, and his work could be described as belonging to

26 [Schubert, 1874], pp.273-274. The numbers to which Schubert alludes here are the numbers of curves
satisfying given conditions, which already hints at the notion that, for Schubert, conditions are none other
than ‘geometrical numbers’, especially when viewed in a system of adequate dimension. We shall come
back to this point is section 7.2.1.

27“Therefore, M. Halphen’s theorem on the products of modules of higher-order curves, mentioned
above in a footnote, must undergo a substantial modification”, [Schubert, 1874], p.278.
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the theory of characteristics. Throughout the following years, Schubert built a distinct
full-fledged mathematical theory, with its clearly delineated set of rules, goals, and nota-
tions. Eventually, Schubert would identify what he had built as “enumerative geometry”
(abzählende Geometrie), that is to say a novel, distinct branch of mathematics28. In so
doing, Schubert rapidly subverted the relation between his enumerative geometry and the
theory of characteristics, as the latter became a part of the former.

This is not the place to conduct an exhaustive survey of the many steps by which
Schubert proceeded in the shaping of this theory. Rather, we shall identify some turning
points in Schubert’s understanding of what the central concepts and questions of this
new theory were, and sketch the architecture of this theory as it was exposed in the
1879 book Kalkül der abzählenden Geometrie. This book, in many regards, served as
Schubert’s attempt at fixing once and for all the basic concepts, methods, and goals of
a newly-created theory; and it sums up many of the results previously obtained, and
whose circulation was much greater than that of Schubert’s other papers29. Only then
will we come back to the issue of understanding the principles which underlay Schubert’s
geometrical practice, and, in particular, how the obtention of new enumerative formulae
within this new symbolism was carried out.

The crucial turn in Schubert’s geometry is undoubtedly the publication in 1876 of the
first “Beiträge zur abzählenden Geometrie” (Contribution to enumerative geometry) in
the Mathematische Annalen. This very long paper (116 pages) was initially announced
as the first of a three-part series. The second part was published in the same journal in
1878 as another lengthy paper (110 pages) entitled “Die fundamentalen Anzahlen und
Ausartungen der cubischen Plancurven nullten Geschlechts” (The fundamental numbers
and degenerations of planar cubics of genus zero). Instead of a complete third part,
Schubert published in 1879 a much shorter paper (4 pages) entitled “Beschreibung der
Ausartungen der Raumcurve dritter Ordnung” (Description of the degenerations of spatial

28While he had initially envisaged naming this theory “geometry of the number”, Schubert eventually
coined his theory “abzählende Geometrie” after the term in use in German journals and books for de-
scriptive geometry (darstellende Geometrie): “Der Ausdruck abzählende Geometrie ist wohl sonst noch
nicht angewandt. Wohl aber war schon üblich zu sagen, ‘Abzählungsmethoden, z.B. die v. Chasles, v.
Voss etc.’ Ich hatte in die ‘Fortschritten der Mathematik’ den Namen ‘Geometrie der Anzahl’ hineinge-
braucht. Doch gefällt mir dieser Ausdruck jetzt nicht mehr, und es soll jetzt auch dort dieses Capitel mit
‘abzählende Geometrie’ überschrieben werden. Dieser Ausdruck ist dem sehr gebräuchlichen Ausdruck
‘darstellende Geometrie’ (z.B. v. Fiedler) nachgebildet. ‘Géométrie numérique’ scheint mir die einzig
mögliche Übersetzung zu sein”, Cod Ms 5624 166, Letter Schubert to Halphen, dated May 21th 1876.

29A systematic study of the global reception of this book is still much needed. However, to support
this claim, one can point to the fact that this book would still be used as an introductory textbook by
mathematicians well into the 20th century: for instance, De Vries recommended that his student Van der
Waerden read it in the 1920s, see [Schappacher, 2007]. In section 8.3.1, we will discuss Eduard Study’s
initiation to enumerative geometry in Leipzig in 1885, which also began with a reading of Schubert’s
book under Felix Klein’s advice.
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curves of third order)30. The abandonment of this project and the incomplete state of
the third paper is most likely due to the imminent publication of Schubert’s book Kalkül
der abzählenden Geometrie toward the end of the year 1879, wherein the content of these
papers was gathered and systematized.

In the first of these Beiträge, Schubert identifies Chasles’ theory of characteristics (as
well as his own contribution for the theory of cubics) as two analogous investigations, part
of one single, broader theory. Indeed, at the beginning of the paper, Schubert presents
Chasles’ theory of characteristics as a “well-known enumerative method31”, whose inven-
tion had been made possible by three crucial “moments” (Momente); namely the discovery
of the principle of correspondence, the discovery of the αµ + βν theorem (which, at this
point, Schubert held to be valid and proven by Clebsch, Lindemann and Halphen), and
the possibility of determining conic-numbers via the knowledge of both numbers of conic-
degenerations (that is to say the number of point-pairs and the number of line-pairs),
first expressed in Zeuthen’s dissertation32. The subsequent results obtained by Maillard,
Zeuthen, and Schubert himself are then presented as further explorations and expan-
sions of this initial enumerative method. Not all results pertaining to the enumeration
of geometrical objects – or even just conics, for that matter – belong to this narrative:
for instance, Schubert explicitly excludes the numbers obtained by Rudolf Sturm in a
contemporary series of papers from this historical development. Sturm had given, like
Schubert and Zeuthen, the characteristics of systems of cubics, even employing the term
‘Charakteristiken33’; however, for Schubert, Sturm’s numbers derived from “direct enu-
meration”, and as such do not belong to this narrative of the development of Chasles’ and
Zeuthen’s “enumerative theory34”. Thus, what Schubert identified as the end-goal of his
research was not merely to solve a set of similar problems, but rather to build a general
theory and a general method of enumeration – of which Chasles’ theory of characteristics
would only be a part, or rather, an application to the specific case of (planar) conics. To
lay out the foundations of this theory, which he called “abzählende Geometrie”, would be
the main purpose of this paper.

The first section of the 1876 Beiträge introduces the general terminology and symbol-
ism of the theory, then lays out concepts such as “fundamental figures” (Grundgebilde)
and “fundamental conditions” (Grundbedingung), wherefrom general concepts of figure
and condition are derived. This modus operandi echoes Schubert’s 1870 dissertation, dis-

30 [Schubert, 1876a], [Schubert, 1878], [Schubert, 1879a].
31 [Schubert, 1876a], p.1.
32See 6.2.1.
33 [Sturm, 1875]. Schubert was an attentive reader of Sturm’s papers, which he occasionally quoted

in his own work. The methods employed by Sturm, however, include none of Chasles’, Zeuthen’s, or
Schubert’s.

34 [Schubert, 1876a], p.4.
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cussed in the previous chapter35, which also opened with a definition of the figures at
play based only on fundamental concepts36 (points, rays, planes, intersections etc.). Once
these basic symbols and concepts are laid down, Schubert proceeds to show how general
equations between fundamental conditions can be obtained, using the principle of special
position37. The third and longest section of the paper introduces the concept of “pairs
of (main) elements” (Paare von Hauptelementen) and their coincidences (that is to say,
conditions whereby two elements in a pair are required to coincide), which are then used
to reformulate Chasles’ principle of correspondence; which Schubert then applies system-
atically to various systems and various kinds of figures. In so doing, he obtains other
long lists of formulae, specific each time to the figure at hand – by contrast with the
equations obtained by working on fundamental conditions (or figures), which ought to
serve in the investigation of any geometrical figure whatsoever38. In particular, the end of
this last section shows how this general theoretical apparatus, and the formulae obtained
throughout the paper, allow for a complete “theory of characteristics of the point, the
plane, and the ray39”. What Chasles has done for systems of conics (or Halphen with
systems of lines) is now interpreted as showing that all condition-signs can be reduced to
functions involving only two fundamental signs (namely µ and ν). To show that his theory
can do the same for fundamental objects (albeit with different collections of fundamental
signs, of possibly different cardinals) thus remains of importance for Schubert, especially
inasmuch as, by using fundamental figures as the building blocks of a general concept of
figure, these results suggest a way toward theories of characteristics for each and every
possible figure.

This theoretical architecture would not be entirely preserved in the 1879 Kalkül der
abzählenden Geometrie. In his book, Schubert also opened with a series of definitions of
fundamental objects and the exposition of an entire symbolism for these objects, then
discussed separate kinds of formulae and the means to obtain them, before concluding
on the ideal form the enumerative theory of a specific figure should take. However, the
kinds of formulae identified in each text do not coincide, nor do the places respectively
occupied by the principle of special position (which, by 1879, Schubert had completely
reformulated, and renamed into the “principle of conservation of number”, a term still
in use today) and the principle of correspondence. In what follows, we go over the main
steps in the construction of Schubert’s enumerative geometry, each time comparing the
presentations from 1876 and 1879.

35See 6.2.2.
36 [Schubert, 1876a], pp.8-23.
37 [Schubert, 1876a], pp.23-48.
38 [Schubert, 1876a], pp.48-116.
39 [Schubert, 1876a], p.114.
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Our presentation of Schubert’s abzählende Geometrie (or at least the versions thereof
he published throughout the 1870s) will be divided into two sections. First, we focus on
the architecture of this theory, that is to say the set of fundamental concepts, notations,
and goals which Schubert puts at the core of enumerative geometry. In a second sec-
tion, we shall discuss how these concepts and symbols can be combined to actually yield
computations and results.

7.2 The architecture of Schubert’s enumerative ge-
ometry

7.2.1 The objects of enumerative geometry

The first pages of Schubert’s 1874 theory of cubics were devoted to a succinct definition of
systems of curves, as well as to a list of elementary conditions (which were not explicitly
identified as such) and modes of degeneration; all of which were attributed a sign. The
1876 Beiträge, on the contrary, begin with a general presentation of a set of four “objects”
(Objecte), described as “the most important objects of enumerative geometry40”, and
whose generality runs over the whole of geometry as opposed to being limited to planar
or spatial curves41.

The first of these four objects is the ‘figure’ (Gebilde), which for Schubert is defined
as the collection of individuals in a space ∞c satisfying an algebraic equation involving
c constants42. This equation is often referred to by Schubert as the ‘definition’ of the
figure, especially later on in the Kalkül43; however, as we shall see shortly, Schubert
concurrently put forth another way of defining figures in terms of ‘fundamental figures’
which he sometimes preferred to use, depending on the theoretical context. This exponent
c is thus called the ‘number of constants’ (Constantenzahlen) of the figure. Conics in
a given plane, for instance, have a number of constants equal to five; while pairs of points
in space are determined by 2 × 3 = 6 constants. In introducing this notion, Schubert
uses more complicated examples, such as that of planar curves of order n having δ double
points and χ cusps, whose number of constants is asserted to be equal to 1

2n(n + 3) −
δ − 2χ + 3. This example shows that Schubert is allowed to take relatively complex

40“Der 4 wichtigsten Objecte der abzählenden Geometrie”, [Schubert, 1876a], p.6. Emphasis in original.
41 [Schubert, 1876a], pp.6-9.
42 [Schubert, 1876a], p.8. The symbol∞c here denotes a c-fold infinite collection of objects. While a set-

theoretical description of such collections would be anachronistic here, one can think of these collections
for s = 1, 2, 3, etc. as biunivocally corresponding to the points of a straight line, a plane, a space, etc; or,
equivalently, to the collection of c-uplets.

43 [Schubert, 1879b], p.1, 7.
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geometrical entities as a figure44. Among the figures typically considered by Schubert
must be mentioned curves, n-gons, and congruences of lines45.

The second object introduced by Schubert is the ‘condition’ (Bedingung), which are
defined as a ‘determination’ (Festsetzung) which may constrain the spatial position of a
given figure46. Forcing conics to pass through a given point, for instance, puts a constraint
on them, and thus constitutes a condition. However, Schubert notes, there are properties
of individual figures that cannot be taken as conditions, for they must be understood
as integral part of the definition of the figure, such as the Plückerian numbers of plane
curves, which are an ‘invariant determination’ and do not restrain the spatial extension of
the individuals. As a result, to constitute a figure, planar curves must be considered with
their Plückerian numbers specified47. Here as well, concurrently to this general definition
of conditions – which is mostly important in that it allows to produce the arithmetic
of dimensions we mentioned earlier –, Schubert would also construct conditions starting
from ‘fundamental conditions’, as we shall see later in this section.

Schubert calls a condition ‘composed’ (zusammengesetzt) when it expresses nothing
more than the requisit that several other conditions, independent of one another, be
simultaneously satisfied48. It is ‘simple’ (einzeln) if it cannot be decomposed thusly.
Schubert understood this independence in the following manner: a condition constrains
the relative position of a figure with respect to some other given figures (for instance, a
given point through which curves are required to pass). Conditions are independent if
they are defined by unrelated data; if no relation is supposed between the given figures
defining them. The relative vagueness of this criterion is something which both Halphen
and Study would frequently point out in their criticisms of enumerative geometry, to
which we shall turn in the next chapter.

For a given figure, whose number of constants is c, the number of individuals satisfying
a given condition will be a number smaller than ∞c, that is to say a number of the
form ∞c−b. Schubert calls the number b the ‘dimension’ (Dimension) of the condition.
Alternatively, Schubert also defines this number as the number of equations in the c
constants required to analytically represent the condition49. The dimension of a composed

44In fact, even figures satisfying a certain condition can be in turn taken as a figure (of number of
constants necessarily smaller than the original figure). For instance, ‘conics passing through one fixed
point’ can be viewed as a figure in its own right, as well as a sub-figure of the figure ‘conics’.

45See the computations of numbers of constants for such objects in [Schubert, 1879b], pp.2-3.
46 [Schubert, 1876a], p.8.
47 [Schubert, 1879b], p.3 and Lit.2, p.333. The Plückerian numbers of a curve are its order, its class,

its numbers of nodes and cusps, of double points and double tangents, and its genus. Plücker’s equations
express simple arithmetical relations between these numbers, see [Salmon, 1873], pp.62-64. As a result of
these relations, one cannot simply consider the collection of curves for which one of these numbers has a
specific, fixed value.

48 [Schubert, 1876a], p.8.
49These equations, which Schubert also calls ‘equations of condition’ (Bedingungsgleichungen) are never
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condition is the sum of the dimensions of the simple conditions forming it.
Note that, at this point, a condition and the number attached to it are essentially tied

to a certain figure. After all, a condition such as ‘passing through a given point’ can be
meaningfully applied to a variety of figures, and Schubert never explicitly asserts or shows
that the dimension of the condition remains the same for all figures. This is because his
enumerative geometry only operates in a way that must begin with the selection of a
figure, each successively introduced condition pertaining to the said figure. In particular,
there is no property or study of the condition ‘passing through a point’ which Schubert
would try to transpose from the geometry of, say, conics to the geometry of octogons.
In 1879, Schubert would make this clearer by the fact that Schubert explicitly presents
this general discussion as a basis for individual studies of Γ-geometries, that is to say the
geometries of specific figures50. Despite the overlap in notations, with the same letter
denoting the condition ‘passing through a given point’ attached to various figures, such
as curves of certain orders and with certain Plückerian numbers, the ambiguity does not
subside in Schubert’s practice. Thus, the attachment of conditions and figures means that
even some fundamental conditions are differentiated (and allocated different signs), such
as ‘for a point to lie on a plane’ and ‘for a straight line to lie on a plane51. There is no
universal concept attached to the condition such as ‘lying on a plane’ for Schubert. The
construction of figures and conditions from ‘fundamental figures and conditions’, however,
will provide a way to ensure the permanence of the validity of equations on conditions
across several geometrical figures which have similar building blocks.

From the application of conditions to figures, Schubert derives his third object, namely
‘systems’ (System) of figures. Systems are defined as the totality (Gesammtheit) of
individuals of a certain figure satisfying a certain condition52. For a figure whose number
of constants is c, and a condition of dimension b, Schubert defines the ‘level’ (Stufe) of
the system formed by them as the number a = c − b. As a general rule, if a system of
level a is defined by a figure of number of constants c and a condition of dimension b, one
always has

a+ b = c

Schubert would expand on this arithmetic of dimensions in the Kalkül, in a way that
further answers the question of the relation between dimenions of a condition and numbers
of constants of a figure53. Indeed, Schubert noted that if a figure Γ can be viewed as a

explicitly formed.
50 [Schubert, 1879b], p.9.
51 [Schubert, 1879b], p.5.
52 [Schubert, 1876a], p.9.
53In 1879, Schubert also considers conditions with negative dimensions. These are obtained by forming

a system whose level is greater than the number of constants of the figure, wherein the equation above
can only be solved for a negative value of b. For instance, Schubert considers the system of points which
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system of level a′ of a figure Γ′, and if a given condition is of dimension b when applied
to the figure Γ′, this condition is only of dimension (b− a′) when applied to Γ54.

When a system is of level zero, that is to say when b = c, the system is formed of
a finite, possibly null, number of individuals. This number (Anzahl) itself is the fourth
object at the foundation of Schubert’s geometry. To the object-number is associated the
cardinal number it represents, that is to say the cardinality of a system as described
above. The reason why this finite number is the same whatever the position of the given
elements of the conditions is said by Schubert to derive from “Algebra [Schubert, 1876a],
p.9.”; we shall come back to this issue in section 7.3.1 of this chapter on as we tackle
Schubert’s principle of conservation of number. (wie oft)

Thus, to each of the four “most important objects of enumerative geometry” corre-
sponds a number: numbers of constants, dimensions, levels, and an unnamed cardinality.
The symmetry seemingly does not entirely hold with this fourth pair of object and num-
ber, as the object itself is already number. In fact, it can be restored once the Anzahlen
in question are understood as ‘geometrical numbers’, that is to say geometrical objects
distinct in kind from the cardinality they are associated with, just as figures are associated
with a cardinality, namely the number of constants defining them55.

Indeed, while the figures, conditions, and systems would remain relatively untouched
between the Beiträge and the Kalkül56, the same cannot be said of the fourth object of
enumerative geometry, namely ‘Anzahlen’. While sections 1 and 3 of the first chapter of
the Kalkül define successively these three objects and their assorted numbers without re-
quiring justifications going further than the description of their analytical representations
and the constants involved therein, the introduction of ‘Anzahlen’ would require novel
explanations. Indeed, in section 4 of this chapter, Schubert considers the finite number
N of individuals satisfying the definition of a figure whose number of constants is c, and
satisfying a condition of dimension d = c. This condition expresses the requisit that the
individual figures Γ are in a certain position with regard to other, given figures Γ′ (for

must contain a given point. The point (in space) has three constants, and the system thus formed is of
level four; since every point is reached∞1 times. Thus, the condition ‘containing a point’ must here be of
dimension −1. See [Schubert, 1879b], p.11. Negative dimensions did not seem to be present in Schubert’s
mind in 1876.

54 [Schubert, 1879b], pp.9-10.
55The term ‘geometrical number’ itself only appears in Schubert’s writing in 1879, see [Schubert,

1879b], p.12. In a note written on November 31st 1879 for the Société Mathématique de France and sent
to Halphen (but never published), Schubert used this term to translate the word ‘Anzahl’, especially
while discussing his principle of conservation of number which he had introduced earlier this year in the
Kalkül. The note is thus entitled “Sur le principe concernant la constance des nombres géométriques”.
It is preserved at the Bibliothèque de l’Institut in Halphen’s papers (Ms 5621), and a transcription is
provided in the annexes.

56Of course, there are some differences, some of which we have already alluded to previously, but this
is not the place for an exhaustive comparison of these two texts.
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instance, a given point through which the figures Γ must pass). For the ‘Anzahl’ N to
be of any relevance, Schubert explains that its crucial property is that it “remains always
constant .. when the locus of these given figures Γ′ is specialized57”. Of course, this very
phrasing is reminiscent of the principle of special position, which we mentioned previ-
ously. In 1879, however, Schubert had renamed and reworked it into the ‘Princip von der
Erhaltung der Anzahl’. For Schubert, this principle was merely an import of the funda-
mental theorem of Algebra, which states that the number of roots of an equation remains
unchanged by modifications of the constants of the equation, except when it becomes
infinite. While this reworked principle would remain a crucial tool for the obtention of
equations between conditions in 1879, as the principle of special position had been since
1874, it also became the foundation for the concept of geometrical number58. Note that
there is a difference in the German terminology between the ‘Zahl’ of roots an equation
may have, and the ‘Anzahl’ N , the number which represents the individuals satisfying
the enumerative problem. Thus, in 1879, the introduction of numbers by Schubert went
much further than their identification as a frequency: they are fully geometrical objects,
deriving from an algebraic-geometrical principle, and are associated with a ‘Zahl’ (another
number of constants, of sorts) just like figures, conditions, and systems59.

7.2.2 The symbols of enumerative geometry

Let us for now go back to the 1876 Beiträge, and the construction of enumerative geometry
by Schubert. To the conceptual framework described above would immediately be added a
‘symbolism for conditions’ (Bedingungssymbolik), derived from Schubert’s earlier work on
the theory of cubics. Once a certain figure has been defined and selected, each condition
can be associated to a ‘symbol’ (Symbol60). More precisely, each simple condition is
associated to a single letter (Buchstabe), while a composed condition is associated to
“the product of the symbols corresponding to the composing conditions, which will be
called the factors of the composed condition61”. Note that Schubert does not discuss the

57 [Schubert, 1879b], p.12.
58We shall discuss these other uses of the principle of conservation of number in section 7.3.1.
59The distinction between ‘ordinal numbers’ (Zahl) and ‘cardinal numbers’ (Anzahl) was crucial to sev-

eral debates in the last third of the nineteenth century in Germany – whether in psychological, philosoph-
ical, or philological studies. Schröder, Helmholtz, and Du Bois-Reymond, for instance, all distinguished
between the number of objects in a group of objects (Anzahl) and the pure number, accessible without
recourse to external experience (Zahl); see [Darrigol, 2003], pp.546-551. Schubert was aware of some of
these debates, especially regarding the philology of numbers, as we shall show in the next chapter.

60Note that Schubert stopped referring to the symbol-letters as ‘signs’ (Zeichen) starting in 1876.
61 [Schubert, 1876a], pp.9-10. Schubert, throughout his books and articles (even beyond the confines

of enumerative geometry), always emphasizes notations and choices of letters, symbols, and signs. This
reflexive practice of the creation of notations might be advantageously viewed against the backdrop of
his long career as a high-school teacher, but also of his lasting and profound interest for the philology
and ethnography of numbers and number-signs. On this latter interest, see 8.2.4.
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possibility for a composed condition to be expressed as different products. Furthermore,
if a condition is composed of the same simple condition n times, then its symbol shall be
the nth power of the symbol for the simple condition.

Schubert immediately adds that these symbols do not merely denote the condition
itself. If the condition is of dimension a, and a system of level a is being considered at
the same time, then the symbol shall denote the finite number of figures in the system
satisfying the condition. The requisit that the dimension of the condition equate the
level of system for this identification to be possible would be scrapped in 1879. Once
the concept of number had been clarified and made independent of the cardinality of the
collection of figures satisfying a given condition in a given system, Schubert would be able
to use the same symbol for a condition and the number of figures satisfying it regardless
of the finiteness of this number62.

Associating letters to conditions, and forming products thereof, is not enough to mean-
ingfully describe and explain even the formulae for cubics obtained in 1874, which involved
sums of letters. In fact, even in the Beiträge, this lacunary explanation remained prob-
lematic for Schubert. Instead of providing a geometrical interpretation of these sums, as
he had done for products, Schubert elected to define algebraic functions of symbols in the
following manner63:

Ganze lineare Function a-facher einzelner oder zusammengesetzter Bedingun-
gen ist also ein kurzer Ausdruck für die Zahlenfunction, welche entsteht, wenn
man für jede a-fache Bedingung die ihr rücksichtlich des gemeinten Systems
ater Stufe zugehörige Anzahl einsetzt. Andere als ganze lineare Functionen
von a-fachen Bedingungssymbolen können in unserm Bedingungscalcül nicht
auftreten. Die Gleichsetzung von zwei solchen Functionen ergiebt eine Formel
ater Dimension.

In particular, the ‘module of a condition’ is redefined by Schubert as a function which
equates said condition to a linear function of other (and only other) conditions.

In the Beiträge, Schubert stated three rules for the manipulation of these formulae.
The first one asserts that if certain formulae between condition-symbols are valid in a
certain system, then every formula obtained through a linear transformation of these first

62In fact, Schubert occasionally did it already in 1876; but it is only in 1879 that he would be able to
openly and explicitly do so.

63“Thus, a linear function of a-fold simple or composed conditions is an abbreviation for the numerical
function which arises if one substitutes to each a-fold condition the number corresponding to it with
regard to the intended a-level system. Only linear functions of a-fold condition symbols can occur in our
calculus of conditions. To equate two such functions gives rise to a formula of dimension a”, [Schubert,
1876b], p.10. Italics in original.
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formulae will be valid in this system64. Secondly, if a formula of dimension a is valid in a
system Σa of level a, whose definition contains the p-fold condition Zp, then a formula of
dimension (a+p) is obtained by adding the symbolic factor Zp to each of its sides65. This
new formula is valid for the system Σa+p of level (a + p), which is obtained by removing
Zp from the definition of Σa. Lastly, the module of the product of two conditions is
equal to the function obtained by multiplying the modules and carrying out the necessary
calculations to achieve the adequate necessary form. For instance, using a formula already
given in the 1874 paper on cubics, Schubert writes P = µν−3µ2, which is a module since
the condition P is expressed as a function of other conditions66. Then the module of the
condition composed by P twice, that is to say by P 2, is obtained by computing

P 2 = (µν − 3µ2)2 = µ2ν2 − 6µ3ν + 9µ4 = µ2ν2 − 6µ3ν

since µ4 = 0 (for no plane passes through four given points in general). This yields the
module of the composed condition P 2. These three rules, and in particular the two last
ones, allow for a symbolic multiplication of conditions and explain the meaning of such
multiplications in terms of systems and composed conditions.

It must be stressed that, in 1876, the expression formed for instance by the symbolic
sum of the letters denoting two 1-fold conditions is merely a function which to a first-
level system associates the sum of the numbers of figures in this system satisfying each
condition. In particular, by 1876, Schubert had provided no geometrical interpretation
for such formulae with several factors. This is a point where Schubert’s 1879 Kalkül
starkly departed from the Beiträge. As is well-known, Schubert then introduced sums
of conditions (or, rather, of condition-symbols) by “attaching meaning to them67”: the
sum of two conditions y, z would denote the condition ‘to satisfy either y or z’. This new
interpretation of the symbolic algebra of conditions was briefly commented by Schubert
via an explicit reference to Schröder’s 1877 Operationkreis des Logikkalküls, a book which
built on Boole’s well-known logical algebra68. Indeed, for Boole as for Schröder, sums and
products could be interpreted as disjunctions and conjunctions of classes69: if two signs
x, y stand respectively for the classes of objects that are blue and solid, then the sign xy

64In other words, if in a certain system the formula f = g is valid, then for all linear functions φ,
φ ◦ f = φ ◦ g is valid in that system.

65Schubert is, in a way, explaining how and why both sides of a formula f = g can be multiplied by
the same term without being invalidated.

66As a reminder, P here denotes the condition ‘passing through a given point’, µ ‘having its plane go
through a given point’, and ν ‘intersecting a given line’.

67 [Schubert, 1879b], pp.3-4.
68On Boole, see the collection of essays in [Gasser, 2000]. On Schröder and his work on Boolean logic,

see [Dipert, 1978], [Dipert, 1991], [Peckhaus, 1996], [Heis, 2013].
69Schröder speaks of Determination and Collektion, [Schröder, 1877], p.2.
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will stand for all solid objects that are blue, while the sign x+ y will stand for all objects
that are either solid or blue (or both).

From the previous discussion, it is easy to see that both definitions of the sum in Schu-
bert’s enumerative geometry coincide numerically, that is to say when symbols represent
finite numbers. However, it remains unclear why they coincide conceptually, that is to say
why the geometrical meaning of these numerical functions does really correspond to that
obtained by viewing additions as disjonctions of conditions. Furthermore, this reinterpre-
tation of the sum is hardly used in the Kalkül: Schubert’s derivations of equations and
computations remain sensibly similar to those carried out in the Beiträge. Last, Schubert
does not introduce an analogous interpretation of the minus sign −, despite it appearing
in some of his equations70. All of this makes the reference to Schröder little more than
an interpretative veil put on top of techniques long in the making, and whose complexity
cannot be wholly tamed by this neat logical recasting.

And yet, what was hardly more than a passing remark for Schubert has been the focus
of many commentators, both contemporary and posterior. Indeed, through this logical
interpretation of the symbolism of conditions, Schubert had tied his own work to the
budding tradition of logical algebra, drawing together his geometry and Schröder’s logic.
For instance, the American philosopher Charles Peirce repeatedly described Schubert’s
geometry as an “application of the Boolian algebra” of logic to geometry71. Similarly,
in his well-known 1883 address to the British Association, Arthur Cayley commented
on Schubert’s calculus right after discussing Boole’s and Peirce’s logic, in the following
terms72:

Connected with logic, but primarily mathematical and of the highest impor-
tance, we have Schubert’s Abzählende Geometrie (1878). [..] The noticeable
point is that the symbols used by Schubert are in the first instance, not num-
bers, but mere logical symbols [..] and these logical symbols are combined
together by algebraic laws.

The thesis that Schubert’s geometry was “modeled on Ernst Schröder’s logical calculus73”,
as Schubert’s biographer Werner Burau puts it, quickly found its way into historical
narratives which leave to Schröder little more than the role of a glorified translator of
Boole into German. Of course, there is no denying that Schubert knew of and read
Schröder. One can even suspect that Schubert titled his 1879 book after Schröder’s use of
the term Kalkül, as this latter occurs seldom in earlier text (and is usually spelt calcül).

70Divisions cannot be meaningfully defined in the algebra of geometrical conditions.
71 [Peirce, 1994], in CP 3.526, §13, Introduction to the Logic of Quantity, as well as in CP. 4.131, 4.134.
72 [Cayley, 1883], p.459. For more on this address and its general content, see [Smadja, 2007].
73 [Burau & Renschuch, 1966], p.16.
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Thus, despite the appreciation that Schubert may have had for Schröder’s book, it remains
important to insist on the rather superficial nature of this connection for the inferential
practices at the heart of the newly-created enumerative geometry.

7.2.3 Fundamental figures, fundamental conditions

Both in 1876 and in 1879, right after introducing the symbolism of his geometry, Schubert
turned to “build” the figures which would inhabit it. While we have already discussed the
various objects which occur in enumerative geometry, the architecture of the collection of
Gebilde which can be taken as objects of said geometry is itself structured and organized
as well. Indeed, all figures can be decomposed into systems of three “main elements”,
namely points, planes, and rays74:

Jede Definition eines Gebildes fasst dasselbe im Allgemeinen auf als eine in
gewisser Weise verkettete Gruppe von Systemen anderer Gebilde, welche wieder
als aus Systemen noch anderer Gebilde bestehend gedacht werden, und so fort;
und zwar wird dieser Process der Zerlegung, nach der modernen Anschau-
ungsweise der projectivischen Geometrie, immer derartig angestellt, dass man
schliesslich auf drei Gebilde stösst, welche als nicht welter zerlegbar betrachtet
werden und dadurch völlig gleichen Anspruch auf Ursprünglichkeit erhalten.
Desshalb hat die abzählende Geometrie diese drei Hauptelemente des Raums,
Punkt, Ebene und Strahl, and die von ihnen erzeugten Systeme, welche Oerter
heissen sollen, vor allen übrigen Gebilden zu behandeln.

The ontology of geometrical figures constructed here by Schubert is pyramidal, with the
basis consisting of the three ‘main elements’: points, rays, and planes75. By forming
systems of these elements – that is to say, loci –, one generates a second kind of figure,
a simple example of which is the point-pair. By linking together these systems with
the help of geometrical conditions, one can generate further figures indefinitely, such as
the triangle. In this sense, the ‘main elements’ are described as the “building blocks”
(Bausteine) of all other figures76. First among these figures, come those which can be
generated as loci of main elements.

74“Every definition of a figure can in general be conceived of as a group of systems, linked together in
a certain way, of other figures, which can also be thought of as systems of yet other figures, and so on;
and this process of decomposition, according to the modern conception of projective geometry, is always
carried out in such a manner that one eventually comes across three figures which are not considered to be
further decomposable, and thus have all equal claim to primitiveness. Therefore, enumerative geometry
has to treat these three main elements of space, namely point, plane, and ray, and the systems they
generate, which are called loci, before all other figures”, [Schubert, 1876a], p.15.

75This is comparable to what Schubert had already proposed, in a less systematic way, in his 1870
dissertation, see 6.1.2.

76 [Schubert, 1879b], p.4.
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Due to the main elements being of number of constants three (for points and planes)
or four (for rays), loci can only be systems of levels between 0 and 4. In fact, Schubert
continues, fourteen such loci can be formed, which constitute the fourteen “fundamental
figures” (Grundgebilde) of enumerative geometry, presented in the chart below. The same
list of fourteen fundamental figures would be reproduced in the Kalkül, although without
the classification by level of systems (and with additional names for each of these systems).

Grundgebilde
des Punktes der Ebene des Strahls

0ter Stufe Punkt Ebene Strahl
1ter Stufe Punktaxe Ebenenaxe Strahlbüschel
2ter Stufe Punktfeld Ebenenbündel { Strahlenfeld, Strahlenbündel }
3ter Stufe Punktraum Ebenenraum Strahlenaxe
4ter Stufe Strahlenraum

[Schubert, 1876a], p.16.

The figures formed here all correspond to various ways of “carrying” (Tragen) the main
element: a Bündel is when the main element is carried by a point (which is why there
is no Punktbündel), while in a Feld the element is carried by a plane. For instance,
a Strahlenfeld is the collection of rays lying in a plane, while a Strahlenbündel is the
collection of rays passing through a point.

This decomposition of all figures into these three main elements is described by Schu-
bert as characteristic of the “modern conception of projective geometry”. While Schu-
bert gave no explicit reference to texts embodying this ‘modern conception’ in the 1876
Beiträge, the 1879 Kalkül contains further clues as to what this geometry he is alluding to
is. The concept of Grundgebilde is borrowed by Schubert from the German tradition of
the “geometry of position” (Geometrie der Lage), as would be explicitly acknowledged in
the Kalkül77. Indeed, the term occurs prominently in both Von Staudt’s famous Geome-
trie der Lage as well as in later adaptations thereof, such as Reye’s 1866 homonymous
book78. The fundamental figures identified by both Von Staudt and Reye certainly feature
amongst those of Schubert, but there seems to be no consensus on the exact classification
and number of these figures, with Reye for instance counting only six. More so than
the exact ontology of spatial figures, what Schubert has retained from his reading of the
geometry of position is the idea of decomposing said figures into elements, and classifying
composed figures by their levels or dimensions.

77 [Schubert, 1879b], p.4.
78 [von Staudt, 1847], pp.10-12 for instance; [Reye, 1866], pp.1-9. For the role of these fundamental

figures in Von Staudt’s synthetic geometry, see [Nabonnand, 2006], pp.112-117.
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To these 14 fundamental figures correspond “fundamental conditions” (Grundbedin-
gungen). The classification of these fundamental conditions differed between 1876 and
1879, with their number going from 14 to 11.

In the 1876 Beiträge, Schubert defined a fundamental condition as “a condition which
expresses that a point or a plane or a ray must belong to a fundamental figure as el-
ement79”. Thus, Schubert associated one fundamental condition to each fundamental
figure. For a locus constituted of points, for instance, Schubert considers conditions
associated to Punktraüme, Punktfelder, Punktaxen, Punkte (note that the order is the in-
verse of that of levels); which he respectively denotes p0, p1, p2, p3 and names respectively
Raumbed[ingung], Feldbed[ingung], Axenbed[ingung], Punktbed[ingung]80. p1, the funda-
mental condition associated to the Punktfeld, can be understood as the condition that a
point be on a given plane, as a Punktfeld is a plane made of points. Similarly, p2 expresses
the condition that a point be on a given ray, and p3 that a point be (on) a given point.

A. Für Punktörter
p0 Raumbed.
p1 Feldbed. c

p2 Axenbed. cg, ν

p3 Punktbed. C,P,Π
B. Für Ebenenörter

e0 Raumbed.
e1 Bündelbed. µ

e2 Axenbed. µg, ν
′

e3 Ebenenbed. M,P ′,Π′

C. Für Strahlenörter
s0 Raumbed.
s1 Axenbed. g

s2 Feldbed. ge, ρ

sII Bündelbed. gµ, ρ
′

s3 Büschelbed. gs, t, β

s4 Strahlbed. G, T,B, S

[Schubert, 1876a], p.18.

As we saw previously, a condition is only fully meaningful when associated to a certain
figure. Therefore, these interpretations of the fundamental conditions can give rise to

79“eine Bedingung, welche aussagt, dass ein Punkt oder eine Ebene oder ein Strahl dem Grundgebilde
als Element angehören soll.”, [Schubert, 1876a], p.17.

80See table below, reproduced from [Schubert, 1876a], p.18. Schubert abbreviates Bedingung as bed.
in each of these terms.
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several other conditions, when applied to higher-order loci generated by fundamental
elements. On the right of the chart above are symbols which Schubert would use to
denote the various conditions to which these fundamental conditions can give rise to,
depending on the level of the system they are applied to. For instance, the two symbols
cg, ν associated to p2 will be used later in the Beiträge to respectively denote the condition
that a (point-)curve have a cusp on a given straight line, intersect a given straight line.

The conditions p0, e0, s0 cannot be applied to systems of level higher than 0, that is
to say to anything other than fundamental figures themselves (in other words, they are
conditions of dimension 0). As such, they do not appear in Schubert’s list of fundamental
conditions in the 1879 Kalkül, which is why it only amounts to 11 conditions. There
are other notable differences in the presentation and description of these fundamental
conditions between the two texts. These variations bespeak of a profound change in
Schubert’s understanding of the relationship between fundamental figures and the objects
of enumerative geometry.

Indeed, in 1879, fundamental conditions were not associated in so straight-forward a
manner to fundamental figures. Schubert defined these conditions as “conditions which
require that a ‘main element’ of the figure Γ lie in a given fundamental figure81”. Schubert
then gave a list of 11 conditions, divided into three groups: three point-conditions, three
plane-conditions, and five ray-conditions. The symbols for these conditions were not
tied to the levels of fundamental figures as systems of main elements, but rather to the
geometrical interpretations that they allowed for. Thus, what was p3 in 1876 would be
introduced as the condition of symbol P , which expresses that a point p be given. Of
course, this condition P and its dimension are relative to the choice of the figure Γ,
and thus Schubert does away with the nuanced distinction between C,P and Π, the three
conditions which can arise out of p3 depending on the number of constants of Γ. Schubert’s
1879 terminology and symbolism are definitely looser and more flexible than that of his
previous paper, which may partially be explained by the years of geometrical practice he
accumulated between the redaction of both texts.

In the Kalkül, then, the 11 fundamental conditions given by Schubert are the following
ones82:

• I. If a point is denoted by p, then:

– 1. The symbol p stands for the condition that this point p lies in a given plane.

81“Unter den einem Gebilde Γ auferlegbaren Bedingungen spielen die fundamentalste Rolle dieGrundbe-
dingungen, das sind Bedingungen, welche verlangen, dass irgend ein dem Gebilde Γ angehöriges Hauptele-
ment in einem gegebenen Grundgebilde liegen soll.”, [Schubert, 1879b], p.4.

82 [Schubert, 1879b], p.5.
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– 2. The symbol pg, that the point p lies on a given straight line (Gerade83).

– 3. The symbol P , that the point p is given.

• II. If a plane is named e, then:

– 1. The symbol e stands for the condition that the plane e contains a given
point.

– 2. The symbol eg, that the plane e contains a given straight line.

– 3. The symbol E, that the plane e is given.

• III. If a ray (Strahl) is named g,

– 1. The symbol g stands for the condition that the ray g intersects a given
straight line.

– 2a. The symbol ge, that the ray g lies in a given plane.

– 2b. The symbol gp, that the ray g goes through a given point.

– 3. The symbol gs, that the ray g belongs to a given pencil of rays.

– 4. The symbol G, that the ray g is given.

Whenever possible, we shall use these descriptions of the conditions to explain Schubert’s
formulae, as they are much easier to understand than the heavily formal discourse through
which he formulated much of his reasoning in earlier texts.

Having formed fundamental figures and conditions from ‘main elements’, Schubert
can generate all possible figures by constructing systems with them. Figures, Schubert
explained in 1876, were to be understood as “support of loci” (Träger von Oerten84):

Die Gebilde als Träger von Oertern. Ein geometrisches Gebilde repräsentirt im
Allgemeinen eine Gesammtheit mehrerer in gewisser Weise verketteter Punk-
törter, Ebenenörter, Strahlenörter verschiedener Stufen, von denen einige das
ganze Gebilde zu erzeugen im Stande sind. In jedem einzelnen Falle folgt an,
der genauen Definition eines Gebildes die Definition jedes dieser Oerter und
die Art und Weise ihrer Verkettung. Gewisse dieser Oerter bezeichnen wir als
die Plücker’schen Oerter des Gebildes.

83We translate Gerade by straight line, and ray by Strahl. The straight line is a figure, whereas the
ray is an element of space, that is to say something which constitutes figures.

84“The figure as a support of loci. In general, a geometrical figure represents a collection of several
point-loci, plane-loci or ray-loci of various levels, linked in a certain way, some of which are able to
generate the entire figure. In each individual case, the exact definition of a figure is followed by the
definition of each of these loci and the way in which they are interlinked. We call some of these loci
‘Plückerian loci’ of the figure”, [Schubert, 1876a], p.19.
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From main elements, systems were generated, which Schubert called loci or fundamental
figures. From fundamental figures, other loci can be generated and linked together to
form other figures. A figure, in turn, is a collection of all the these loci formed by the
main elements attached to the figure. For instance, Schubert lists among the Plückerian
loci for a planar curve (in space) the plane-locus of its plane; it is of course a system of
level 0 because it contains only one plane. The point-locus of the points of the curve is
another such locus, forming a system of level 1, and so is the ray-locus of its tangents.
These three loci, Schubert comments, have usually been considered by Chasles and others
as “elementary loci”, and used as the basis for investigations into the enumerative geom-
etry of planar curves. However, Schubert adds, the choice of these three loci is “merely
conventional85” (nur conventioneller), as other Plückerian loci can be formed, such as the
point-locus formed by the singular points of the curve and its dual plane-locus. Schubert
concludes that Chasles was mistaken in viewing the point-locus and ray-locus of conics
(or planar curves), formed by their points and tangents, as being intrinsically elementary
(and, thus, the conditions ‘passing through a point’ and ‘touching a straight line’ as in-
trinsically elementary). Indeed, as Zeuthen had shown, these other Plückerian loci (which
Schubert calls ‘singular loci’) could serve the same role just as well.

In Schubert’s terminology, this means that the characteristics are none other than
‘elementary numbers86’. We will return to this issue when discussing Schubert’s rein-
terpretation of Chasles’ αµ + βν formula as expressing not so much a property of the
characteristic numbers (µ, ν), but simply showing that two independent numbers were
sufficient in solving all of the enumerative geometry of conics.

On the other hand, fundamentalness is not merely conventional: fundamental con-
ditions can be defined for any figure, as conditions whose symbolic factors only express
fundamental conditions on the Plückerian loci of the figure87. Similarly, fundamental
numbers can be defined as numbers of elements in a system satisfying fundamental condi-
tions. This is why, for Schubert (and at least in 1876), the main purpose of enumerative
geometry was the determination of the fundamental numbers of a given figure.

In short, Schubert is giving an alternative definition of the figure; which we might call
a ‘constructive definition’ to preserve the analogy with the status of loci in Ancient Greek
Geometry. It is unclear how this definition totally recapture the algebraic definition of
figures (and only that).

85 [Schubert, 1876a], p.20.
86Schubert makes this clear in a private letter to Halphen, where he writes: “Was macht eigentlich Herr

Maillard ? Ich habe von ihm seit seiner berühmten Doctor Dissertation über die Charact. (bester wohl
‘Elementaren Anzahlen’) der cub. Plancurven nichts wieder gehört”, Ms Cod 5624 167, Letter Schubert
to Halphen, dated Juli 12th 1876.

87 [Schubert, 1876a], p.20.
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In 1879, Schubert did away with the reference to Plücker88; only introducing systems
of main elements as loci (Oerter89). Certain other loci have specific names, granted by
use and habit; as is the case for instance of the point-systems of first level which will be
called curves in the rest of Schubert’s Kalkül. However, in theory, enumerative geometry
is preoccupied with determining the numbers associated with any system thus created
from fundamental figures and conditions.

While the heavy theoretical architecture of the objects of enumerative geometry, as
exposed in the 1876 Beiträge, would be mostly abandoned in favour of more flexible (and
more ambiguous) notations and wordings with the 1879 Kalkül, the fact that geometrical
objects ought to be decomposable into fundamental figures remained an important tenet of
Schubert’s geometrical practice. In the very first lines of his 1880 paper on the enumerative
geometry of the triangle, for instance, Schubert introduced the figure-subject of his work
in terms of fundamental figures90:

Das im Folgenden behandelte Gebilde besteht aus drei in fester Ebene befind-
lichen Punkten a, b, c (Ecken) und deren Verbindungsstrahlen α, β, γ (Seiten),
so dass α und a, β und b, γ und c einander gegenüberliegen. Wir nennen dieses
Gebilde, dessen Constantenzahl 6 ist, kurz “Dreieck”, fassen es aber zugleich
als Dreiseit auf, d. h., wir rechnen zu seinen wesentlichen Bestandtheilen
ebenso gut seine 3 Seiten, wie seine 3 Ecken, was natürlich nur dann von
Bedeutung wird, wenn zwei Ecken oder alle drei Ecken zusammenfallen.

Note how triangles are introduced as a figure composed of points and rays, satisfying
certain conditions so as to form a sub-figure of the figure formed by the totality of triplets
of points and triplets of rays (whose number of constants would be not 6, but 3×2+3×2 =
12). These conditions, here, are merely that the points belong to the appropriate rays.
The usual terminology in use in the geometry of the triangle is then reintroduced to
simplify wordings. The building of triangles upon fundamental figures is particularly
useful when Schubert wants to introduce degenerate forms of triangle, and conditions
associated to such forms; as it allows to express them through formulae that involve the
symbols for points and rays a, b, c and α, β, γ.

88Other than using Plücker’s formulae, Schubert only mentions Plücker’s name briefly when introducing
the term Γ-geometry, [Schubert, 1879b], p.9. By this term, Schubert means the enumerative geometry
in which a certain figure Γ is taken as the common, stable reference with regard to which all conditions,
systems, and numbers will be expressed. Of course, this use is a reference to Plücker’s Neue Geometrie
des Raumes and its introduction “the straight line as an element of space”, [Plücker, 1865], [Plücker,
1868].

89“Die durch beliebige Bedingungen definirten Systeme von Hauptelementen nennen wir auch Oerter,
im Anschluss an den bei der Analysis euclidischer Constructionsaufgaben üblichen Ausdruch ‘ge-
ometrischer Ort’”, [Schubert, 1879b], p.8.

90 [Schubert, 1880a], p.153. We come back to Schubert’s geometry of the triangle in 7.4.
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As fundamental figures serve as building blocks for all geometrical figures, so do num-
bers of such figures satisfying fundamental conditions serve a crucial role in the com-
putation of other geometrical numbers. There, it is important to note that some of the
numbers associated to these fundamental objects are said by Schubert to be “axiomatic91”
(axiomatisch). For instance, Schubert explains, three propositions must be taken as ax-
ioms pertaining to the (enumerative) geometry of the ray:

• If there is a point which lies on two given rays, then there exists a plane which
contains these two rays, and conversely.

• There is one and only one ray which contains two given points.

• There is one and only one ray which lies on two given planes.

While these axioms may seem self-evident, they in fact carry a greater generality than
might appear at first sight, as they are to be read through the principle of conservation
of number, which states that the numbers involved in these axioms do not depend on the
relative positions of the given elements. We shall come back to this principle in section
7.3.1.

7.2.4 Produktensatz und Charakteristikentheorie: the ultimate
goal(s) of enumerative geometry

Having described the architecture of Schubert’s geometry, and in particular its founda-
tions, we now turn to its objectives. Schubert’s Kalkül opens with a presentation of the
general goal of enumerative geometry as a mathematical discipline, namely to answer
questions of the following form92:

Wieviel geometrische Gebilde von bestimmter Definition erfüllen gewisse
gegebene Bedingungen?

Later in this book, Schubert would bring forth a more specific description of what specific
kind of answer this question entails.

Some of Schubert’s results have become famous on their own, among which stands out
his enumeration of the 5,819,539,783,680 twisted cubics tangent to twelve given quadrics in
space, a result whose obtention has been compared to “landing a jumbo jet blindfolded93”
by modern-day geometers. Indeed, finding such concrete numbers of objects satisfying

91 [Schubert, 1879b], p.89. Schubert also described some of these fundamental numbers as being
axiomatic in the 1876 Beiträge, see [Schubert, 1876a], p.25.

92“How many geometrical figures of a determined definition are there, which satisfy certain given
conditions?”, [Schubert, 1879b], p.1. Emphasis in original.

93 [Harris, 1992], p.2. For Schubert’s computation, see [Schubert, 1879b], p.184.
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conditions was a key goal of Schubert’s methods, as the many tables of numbers he
reproduced in his book show (see fig. below94).

[Schubert, 1879b], p.96.

However, this is not all there is to enumerative geometry. Schubert produced a vast
amount of lists of various sorts – be it of numbers, or of formulae. These lists do not have
the same status: some sum up the enumerative geometry of a given figure by providing
a structured list of results, while others list useful formulae which are to be used in the
building of said enumerative geometry of a given figure. There remains to understand
what it means to study and expound the enumerative geometry of a given figure.

To that end, one must ponder Schubert’s reinterpretation of Chasles’ achievements
through the theory of characteristics, as displayed in both the Beiträge and (with greater
detail and a more systematic approach) in the Kalkül (as in many ulterior texts). Indeed,
remember that at the beginning of the Beiträge, Schubert had identified three “moments”
(Momente) of particular importance in the genesis of Chasles’ theory of characteristics:
the discovery of the principle of correspondence, the discovery of the αµ + βν theorem,
and the reduction of the computation of numbers of conics to that of the two numbers
of degenerate conics. In Schubert’s reinterpretation, while the first moment is that which
provided Chasles with a method for generating geometrical numbers, the second is that
which showed that all generations of such numbers hinge upon the determination of only
two numbers, namely the characteristics µ and ν. The third moment (for which Zeuthen
should be equally credited) showed that this was no crucial property of these two numbers
themselves, but rather that any two well-chosen numbers could suffice – and, in particular,
the numbers of degenerate conics had proven even more useful than the characteristics95.

In this interpretation of Chasles’ results, the αµ + βν theorem is called by Schubert
a “Produktensatz”, and immediately compared to theorems we discussed in the previous

94In this table, which just precedes the enumeration of Chasles’ 3264 conics touching five given conics,
are counted planar conics in space, hence the 8-dimension conditions formed in the left rows.

95 [Schubert, 1876a], pp.1-4.
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chapter, such as Halphen’s formula for the geometry of rays in space, or Chasles’ analogous
formula for second-order surfaces. Schubert would only properly define Produktensätze
much later in the Beiträge, at a point toward the end of the article where he himself set
out to prove one on a different figure96:

Im Allgemeinen wollen wir unter Produktensatz jeden Satz verstehen, welcher
eine Fundamentalzahl des Systems derjenigen Elemente, die zweien von ein
und demselben Elemente erzeugten Systemen gemeinsam sind, durch Funda-
mentalzahlen dieser beiden Systeme ausdrückt.

In the case of Chasles’ theorem, the two systems in question are two systems of level 1 and
4, composed of conics generated by (for instance) points; while the fundamental number
is simply the number of conics common to both systems97. In other words, what is being
sought is the number of elements common to two systems of level 1 and 4: in that sense, it
is a number of intersections of two systems (which are composed of loci), and it is in this
sense that Schubert often compares Chasles’ theorem to Bézout’s theorem98. Chasles’
theorem expresses this number via fundamental numbers of both systems, namely the
characteristics (µ, ν) of one, and the numbers (α, β) of the other system (where α and β
can be shown to be fundamental numbers of this other system via a proof presented in
7.3.3.

Chasles’ and Zeuthen’s re-foundation of the theory of characteristics upon the numbers
of degenerate conics (as opposed to characteristic numbers themselves) only show that
another Produktensatz is possible, wherein the fundamental number of these two systems
of conics is made to depend not on the characteristic numbers of these systems, but
on other fundamental numbers, tied with their degenerate elements. Having obtained
Produktensätze for a certain figure, Schubert continued, one can build its “true theory
of characteristics” (eigentliche Charakteristikentheorie). While Schubert gives no explicit
definition of such a theory, the way he presents his examples thereof seems to indicate
that a “theory of characteristics of a certain figure” is obtained when “one can replace
any condition imposed on a figure, which expresses nothing other than the fact that an
element of a Plückerian locus of this figure satisfies some condition, by some fundamental

96“In general, by ‘product-theorem’ we mean every theorem which expresses a fundamental number of
the system of the elements common to two systems, both of which are generated by one and the same
(type of) element, through fundamental numbers of both systems”, [Schubert, 1876a], p.91. Italics in
original.

97More generally, for a figure of number of constants c, the intersection of two systems of level α and β
so that α+ β = c is of level 0, and thus its fundamental number can only be the number of its elements.

98The analogy between Chasles’ theorem and Bézout’s theorem was a common one at the time; it can
be found in the texts of Halphen or Study for instance. However, the meaning of this analogy changed:
Halphen, for instance, had constructed actual curves whose points corresponded to the conics in both
systems, so that the intersection of these two curves yielded Chasles’ formula. Study, on the other hand,
interpreted both systems as geometrical objects in a multi-dimensional projective space.
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conditions of this figure99”. Little more is said on this ideal for the enumerative-geometrical
theory of a figure, which is only presented at the very end of what was supposed to only
be the first out of three extended memoirs100.

It is remarkable that Chasles’ theorem is here recast as one (historically, but not con-
ceptually) important theorem within a class of similar theorems101. Furthermore, such
theorems are not limited to systems whose added levels equate the number of constants of
the figure at hand; that is to say, there can be Produktensätze which do not give a number
of elements common to two systems, but merely other characteristic numbers of the system
formed by the system of elements common to two other systems102. However, this cate-
gory, which no one seems to have picked up, was quickly dropped by Schubert. By 1879,
it completely disappeared from his writings, only to come back in ulterior papers (such as
that on the enumerative geometry of the triangle) under the name of “Productenformeln”.
Instead, Schubert’s focus was now on what he called the Charakteristikenprobleme.

Schubert’s 1879 Kalkül is structured in a way that makes it clear what the purpose
of enumerative geometry should be. As we already discussed, the first chapter is en-
tirely devoted to the fundamental concepts and notations of this new geometry, while
chapters 2 and 3 discuss the two main methods used to obtain formulae involving the
symbols introduced for a given figure. Chapter 4 and 5 add to these methods, by in-
troducing notations and examples of (respectively) modes of degenerations, and multiple
coincidences. However, the last and sixth chapter, entitled “Die Charakteristikentheorie”,
clearly and explicitly sets up the tasks ahead of the prospective enumerative geometry,
the fulfillment of which these methods are merely tools for. That is to say that Schubert
was not content with giving methods to obtain geometrical numbers; he had a precise
idea of what sorts of results were constitutive of the enumerative geometry of a certain
figure, once well-studied. Indeed, this chapter opens with a general formulation of the
Charakteristikenproblem for an arbitrary figure103:

99“Jede einem Gebilde auferlegte Bedingung, welche nichts anderes aussagt, als dass ein Element eines
Plücker’schen Orts dieses Gebildes irgend welche Bedingung erfüllt, ist immer durch fundamental Bedin-
gungen des Gebildes ersetzbar”, [Schubert, 1876a], p.115.

100The other two parts of the Beiträge were eventually published, but the last one is very short, while
the second one only puts into practice these concepts without making their definition more explicit.

101Lê has recently studied the contemporary genesis of a broader, yet analogous category for geometrical
theorems, namely “closure theorems” or “Schliessungssätze”, see [Lê, 2018].

102Schubert’s formulation means that one could consider Produktensätze for various fundamental num-
bers associated to the common elements of two systems of conics of level 2 and 2, for instance.

103“Let a figure Γ with number of constants c be an element of some totally arbitrary i-level system Σ,
and of some totally arbitrary (c− i)-level system Σ′. A finite number x of figures Γ is common to both
systems. We assume that for all possible values of i, the number x can be represented as the sum of m
products composed of two factors, of which the first always yields the number of figure in Σ which satisfy
a i-fold condition. The problem is considered to be solved, regardless of how large the number m has
become and of which i-fold and (c−i)-fold conditions had to be used to form the products. Since formulas
have to be constructed for all possible values of i and c− i, the solution of the problem of characteristics
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Ein Gebilde Γ mit der Constantenzahl c sei Element eines ganz beliebigen
i-stufigen Systems Σ und auch Element eines ganz beliebigen (c− i)-stufigen
System Σ′. Beiden Systemen ist eine endliche Anzahl x von Gebilden Γ
gemeinsam. Es wird für alle möglichen Werthe von i verlangt, die Anzahl
x als Summe von m Producten darzustellen, deren jedes aus zwei Faktoren
besteht, von denen der erste Faktor immer angiebt, wieviel Gebilde aus Σ eine
i-fache Bedingung erfüllen. Das Problem gilt als gelöst, gleichviel wie gross
die Zahl m wird und gleichviel, welche i-fachen und welche (c− i)-fachen Be-
dingungen zur Bildung der Producte verwandt werden mussten. Da man für
alle möglichen Werthe von i und c− i Formeln aufzustellen hat, so besteht die
Lösung des Charakteristikenproblems in der Aufstellung von 1

2c oder
1
2(c− 1)

Formeln, je nachdem c gerade oder ungerade ist.

These 1
2c formulae are called Charakteristikenformeln, and the conditions involved in their

factors Charakteristiken. The numbers α and β in Chasles’ formula are not considered
by Schubert to be characteristics of the system Σ1 just yet, but, as he and Hurwitz had
proven in 1876, these two numbers could be expressed as functions of the characteristics
of the system Σ1, as we shall explain in section 7.3.3. Note that Chasles’ formula itself
is not yet a full solution to the Charakteristikenproblem for the geometry of conics: to it
must be added Cremona’s αρ + βσ + γτ fomula for the number of conditions belonging
simultaneously to a Σ2 and Σ3 system. For the geometry of the point, Schubert notes,
this problem is what Bézout’s theorem solves.

These problems are exactly what Schubert would tackle in papers written in the wake
of this book. In the aforementioned paper on the geometry of the triangle, for instance,
Schubert produces Productenformeln for all possible values of i in increasing order. Sec-
tions 4, 5, and 6 of this paper respectively aim to give and prove formulae for the number
of triangles common to systems of level one and five, two and four, three and three104.
Once this is done, Schubert moves on to discuss more specific problems, for instance
counting infinitely small triangles. Nonetheless, the primary objective of enumerative ge-
ometry as Schubert thought of it was, for any possible figure Γ, and for all i from 1 to 1

2c,
to find systems of conditions ai and bi in the systems Σi and Σc−i, such that one could
write equations of the form

xi = a1b1 + ..+ ambm

where xi denotes the number of individuals contained simultaneously in both systems.
Once that is accomplished, the ai’s and bi’s can be called characteristic numbers of both

consists in the setting up of 1
2c or

1
2 (c− 1) formulae, depending on whether c is even or odd”, [Schubert,

1879b], p.282.
104 [Schubert, 1880a], pp.172-176, 176-180, 180-183.
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systems, a term which now refers to any collection of geometrical numbers with which
it is possible to write equations of this form105. This is not an intrinsic property of any
figure, nor are they unique, which is why Schubert calls this terminology ‘improper106’:
as Zeuthen had shown, instead of µ and ν, one could have just as well taken λ and ω̃, the
numbers of degenerate conics of each kind in a system (see section 6.2.1).

7.3 Computations in Schubert’s enumerative geome-
try

Having now described the fundamental concepts and the goals of abzählende Geometrie,
we turn to its inner workings, that is to say the methods used by Schubert to compute
geometrical numbers and solve Charakteristikenprobleme.

In the Beiträge, two principles are introduced as the main tools to derive formulas in
the conditions related to a given figure. Indeed, Section 2 of this text, entitled “General
formulae between fundamental conditions” (Allgemeine Formeln zwischen den Grundbe-
dingungen ), opens with an introduction of the “the principle of special position” (Das
Princip der speciellen Lage107) (§7). Schubert then gives an alternative denomination
for this principle, namely that of “principle of conservation of number” (Princip von der
Erhaltung der Anzahl), which is the name that would be used in later texts. In fact,
Schubert describes this principle as following from a proposition borrowed “from algebra”
necessary for the very definition of the finite numbers associated to systems of level 0108.
However, the principle itself is only associated to the computational technique which he
then uses in paragraphs 8 to 13 to study pairs of fundamental conditions, and does not
appear within passages which contain definitions of systems or figures.

Next, section 3 of the Beiträge, entitled “Pairs of main elements and their coincidences”
(Die Paare von Hauptelementen und ihre Coincidenzen), opens with an introduction of

105Note that part of Schubert’s general problem entails the finding of geometrical numbers β1, .., βm
such that any condition z can be written as z =

∑
αiβi, for some coefficients αi. In other words, results

such as Chasles’ αµ + βν are but a part of the answer to Schubert’s problem, even in the lone case of
conics.

106“Später nannte man missbräuchlich Charakteristiken eines Gebildes Γ alle auf Γ bezuglichen An-
zahlen, ohne sich darüber Rechenschaft abzulegen, ob für ein solches Gebilde Γ ein dem Chasles’schen
Satze analoger Satz existirt”, [Schubert, 1879b], p.274.

107This principle had already been introduced in Schubert’s 1874 paper on cubics, see [Schubert, 1874],
p.274.

108That is to say, systems of a figure whose number of constant is a defined by a condition of dimension
a. Schubert needs something that resembles the fundamental theorem of algebra to assert that these finite
numbers do not depend on the specific position of the elements defining the aforementioned condition.
See [Schubert, 1876a], pp.9, 23. Note that sometimes we speak of ‘the figures of a system’ instead of its
‘elements’. The ambiguity is present in Schubert’s writing; however, one should not mistake the elements
of a system and the general figure defined as a collection of systems.
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the concepts of “pair of elements” and of “coincidences” (§14), then Schubert’s reinterpre-
tation of the principle of correspondence (§15). The following paragraphs, until paragraph
26 apply said principle to pairs of points, pairs of rays etc.; as well as to degenerate figures.
Paragraphs 27 and 28 begin to do the same for algebraic curves and surfaces. The last
paragraphs of the first Beiträge show how the principle of correspondence, as well as the
formulae obtained via the principle of conservation of number, are sufficient for Schubert
to obtain Productensätze. In particular, in paragraphs 29 and 30, Schubert solves the
problem of characteristics for fundamental figures such as points in space.

In the 1879 Kalkül, we find a slightly modified order of presentation of the computa-
tional apparatus used to solve the problem of characteristics. The principle of conservation
of number is introduced early in section 1, amidst definitions and notations109. There,
it serves not a computational purpose, but rather to define the very concept of (finite)
numbers of figures satisfying conditions of a sufficiently high dimension. Crucially, for
Schubert, it also acts as the “precondition for the applicability of the results and methods
derived in the following sections110”.

Instead of a division by principles, the Kalkül operates a division in kinds of for-
mulae. Section 2 is devoted to “Incidenzformeln” (incidence formulae), and Section 3
to “Coincidenzformeln” (coincidence formulae). The principle of correspondence is in-
troduce midway through this third section, but by no means structures it - although it
is used rather extensively throughout the rest of the book. Section 4 contains formu-
lae pertaining to modes of degeneration of figures, and Section 5 formulae pertaining to
multiple-coincidences. These kinds of formulae are all defined in terms of modes of cor-
relation between the fundamental figures which constitute the figure Γ under study. For
instance, incidences are defined by Schubert as figures arising from special positions be-
tween main elements, such as when a point lies on a ray. Incidence formulae are obtained
using the fundamental formulae of such figures111. The method put forth by Schubert for
solving Charakteristikenprobleme in the sixth and final section of the Kalkül (as well as in
subsequent texts is thus to first define the figure Γ in terms of fundamental figures (and,
if needed, fundamental conditions), and second to list the formulae of these various kinds
which arise from this reduction to fundamental figures. Through a combination of these
formulae, Schubert then computes a Produktensatz.

In what follows, we shall present these various techniques and how they relate to one
another. In a first subsection, we describe Schubert’s principle of conservation of num-
ber, its evolution, and its uses. We then turn to the techniques introduced in Schubert’s

109 [Schubert, 1879b], pp.12-19.
110“Die Giltigkeit des Princips von der Erhaltung der Anzahl ist die Vorbedingung für die Anwendbarkeit

der in den folgenden Abschnitten abgeleiteten Resultate und Methoden”, [Schubert, 1879b], p.18.
111We shall come back to these formulae in more detail later in this section.
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Beiträge, namely the use of coincidences of pairs of elements, and of a reinterpreted prin-
ciple of correspondence. We analyze how these techniques were used by Schubert and
Hurwitz to prove Chasles’ αµ + βν formula. We then turn to Schubert’s 1879 rewriting
and reorganization of these techniques, which we present through the example of the enu-
merative geometry of the triangle published in the wake of the Kalkül. This is a good
example for two reasons. First, it is a rather simple and visual case-study to become fa-
miliar with these methods. Second, and more importantly, it was one of the main example
mobilized by Halphen in his polemical epistolary exchange with Schubert throughout the
years 1878-1880. The epistemological content of this exchange, however, will only be
studied in the next chapter.

7.3.1 The principle of conservation of number and incidence for-
mulae

As we already mentioned, the principle of special position was first introduced in Schu-
bert’s 1874 paper on cubics (see 7.1.2). It would be reproduced in the 1876 Beiträge with
further comments and details as an important tool for deriving formulae from fundamen-
tal conditions. In fact, in 1876, Schubert also suggests other names for this principle, such
as “principle of indifference”, or the one which he would keep in future articles and books,
namely the “principle of conservation of number”. Schubert encapsulated this principle
in the following statement112

Die räumliche Lage der Gebilde, welche gewisse einem Gebilde A auferlegte
Bedingungen verursachen, ist für die Anzahl der Gebilde A, welche diese Be-
dingungen erfüllen, gleichgültig, sobald diese Anzahl überhaupt endlich bleibt.

A simple example of the sort of formulae which Schubert derives from this principle is
the following113. For rays (that is to say straight lines) in space, the symbols g, gp, ge
introduced earlier can be understood to express the fundamental conditions that a ray
respectively intersects a given ray g, passes through a given point p, or lies in a given plane
e. Consequently, the composed condition g2 expresses the requisit that a ray intersects
two independently given rays. The number of rays satisfying this condition, and thus the
symbol g2 itself, does not vary when the position of the two given rays vary114. Thus
Schubert takes them to be coplanar (in a then-given plane e), that is to say to intersect

112“The spatial position of the figures which generate certain conditions imposed on a figure A is
indifferent to the number of the figures A which satisfy these conditions, as long as this number remains
finite”, [Schubert, 1876a], p.23.

113 [Schubert, 1876a], p.25.
114Indeed, it is crucial to notice that while the principle is asserted with respect to supposedly-finite

numbers, here it is used to compute a formula between conditions whose dimension is strictly smaller than
the number of constants of the figures to which they are applied. This suggests, once more, that Schubert
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a then-given point p. For a ray to intersect them, it must then either go through p, or lie
in e. Hence,

g2 = gp + ge

Figure from [Ronga, 2006], p.4.

However, as attentive readers will have noticed at this point, Schubert did not yet possess
in 1876 an interpretation of the sum of symbols as a disjunction of conditions. In fact,
Schubert here relied once more on this interpretation of enumerative formulae as functions
which we presented earlier (subsection 2.2). To the principle “generally expressed” above,
Schubert added a “particular form115”:

Kann den beiden Gebilden, welche eine aus zwei Factoren X und Y zusam-
mengesetzte BedingungXY veranlassen, eine derartige specielle Lage zu einan-
der ertheilt werden, dass XY sich in die Bedingungen z1, z2, z3, .. spalten muss,
so ist:

XY = z1 + z2 + z3 + ..

Eine nach dem Pr. d. sp. L. abgeleitete Formel ater Dimension hat also links
von Gleiheitszeichen ein Product zweier Symbole mit der Dimensionssumme
a, rechts eine Summe a-facher einzelner oder zusammengesetzter Symbole.

Schubert does not explain in what consists the “splitting” of a composed condition other
than by means of examples such as the one given above, and he attributes no geomet-
rical meaning to the sums involved here. In the following sections of the Beiträge, this
principle is only applied to other fundamental figures (and pairs thereof), albeit in ways
which lead to much more sophisticated results than the example given above. This is

thinks of conditions in general as geometrical numbers, and not just in cases where they represent finite
numbers of solutions.

115“If the two figures which give rise to a composed condition XY out of two factors X and Y can be
given such a special relative position, so that XY must be split (spalten) into the conditions z1, z2, z3, ..,
then:

XY = z1 + z2 + z3 + ..

A formula of ath dimension, derived from the principle of special position, has for its left-hand term a
product of two symbols whose dimensions add up to a, and for its right-hand term a sum of a-fold simple
or composed symbols”, [Schubert, 1876a], pp.23-24.
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no accident: for Schubert, at least in 1876, such was the role of the principle of special
position to give fundamental results “free from the usual principle of correspondence and
Productensätze116”, which in turn would be required as soon as more non-fundamental
figures enter the picture - be they as simple as pairs of points. While the principle is
presented as providing equations between products and sums, at several points Schubert
transforms these equations to make substractions appear, which are not given geometrical
interpretations either.

In the 1879 Kalkül, unlike in the Beiträge, Schubert put forth the principle of con-
servation of number very early on, amidst definitions and notations. More precisely, the
principle is stated right after the definitions of the fundamental objects of enumerative
geometry and the basic symbolic laws operating on them, including the interpretation of
products and sums as conjunctions and disjunctions of conditions; and right before the
first discussions of the actual computations this symbolism allows. Schubert opens his
discussion of the principle with the proposition which served to define the fourth kind of
number at the center of enumerative geometry, namely ‘geometrical numbers117’:

Ist ein algebraisches Gebilde Γ mit der Constantenzahl c einer einzelnen oder
zusammengesetzten c-fachen Bedingung z unterworfen, so giebt es im All-
gemeinen eine endliche Anzahl N raümlicher Individuen, welche sowohl der
Definition des Gebildes Γ, als auch der c-fachen Bedingung z genügen.

The principle is presented as “an important instrument of research” (ein wichtiges Forschungsin-
strument), crucial for the determination of said geometrical numbers. It is also used to
give meaning to enumerative formulae that Schubert is able to state, but yet to prove so
early in his exposition of the Kalkül. While a nod is given to past formulations of this
principle, it is now presented as possessing four distinct “forms118”:

• I. Eine Anzahl wird unendlich oder bleibt erhalten, wenn die gegebenen Gebilde
speciellere Lagen im Raume einnehmen, also etwa unendlich fern werden.

116 [Schubert, 1876a], p.48.
117“If an algebraic figure Γ, of number of constants c, is subjected to a c-fold simple or composed

condition, then there is in general a finite number N of spatial individuals, which satisfy at the same
time the definition of the figure Γ and the c-fold condition”, [Schubert, 1879b], p.12.

118“I. A number either becomes infinite or is conserved if the given figures adopt more special positions
in space, for instance if they become infinitely distant.
II. A number either becomes infinite or is conserved if the given figures adopt more special positions with
respect to one another, for instance if given points lie on given rays.
III. A number either becomes infinite or is conserved if the given figures Γ′ which were considered general
to begin with, are repaced by more special figures, which satisfy the definition of Γ′, for instance if a
general given conic section is replaced by a conic section whose points form two straight lines, and whose
tangents form two bundles of rays whose vertex lies at the intersection of both straight lines.
IV. A number necessarily becomes infinite for a certain position of the given figures if it is observed at
a value greater than N , while at another position it gave rise to a value which is exactly N”, [Schubert,
1879b], pp.12-13.
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• II. Eine Anzahl wird unendlich oder bleibt erhalten, wenn die gegebenen Gebilde
speciellere Lagen zu einander einnehmen, also z.B. gegebene Punkte auf gegebene
Gerade fallen.

• III. Eine Anzahl wird unendlich oder bleibt erhalten, wenn an die Stelle der zunächst
allgemein gedachten gegebenen Gebilde Γ′ speciellere Gebilde treten, welche die Defi-
nition der Γ′ erfüllen, also z.B. an die Stelle eines gegebenen allgemeinen Kegelschnitts
ein Kegelschnitt tritt, dessen Punkte zwei Gerade und dessen Tangenten zwei Strahlbüschel
bilden, deren Scheitel in den Schnitt dieser beiden Geraden fällt.

• IV. Eine Anzahl wird bei einer gewissen Lage der gegebenen Gebilde nothwendig
unendlich, wenn für sie ein Werth grösser als N constatirt ist, während bei einer
anderen Lage sich ein Werth ergiebt, der genau gleich N ist.

In an endnote, Schubert identified some of his previous uses of the principle of conservation
of number to some of these forms. For instance, what was used in his 1874 paper, or the
g2 = gp + ge formula presented previously, he understood to belong to the second form of
the principle, which more aptly corresponds to the name “principle of special position119”.
Similarly, Schubert interprets a paper of De Jonquières’ as relying on the third form, and
Hurwitz’ second publication ever as relying on the fourth form. In this last case, Schubert
is referring to Hurwitz’ work on closure problems, for which the contraposition of the
principle is more useful120.

Schubert then displays the uses and importance of this principle through a list of
examples of various kinds121. The very first example given by Schubert has since become
paradigmatic; it is the enumeration of the straight lines (in space) intersecting four given
lines122. To determine this number, Schubert ‘specializes’ the position of the given figures,
namely the four straight lines, which, for the sake of clarity, I will denote g1, g2, g3, g4. In
particular, using the second form of the principle, Schubert specializes their relative
positions, by supposing that g1 and g2, resp. g3 and g4, intersect123. Then, for a line to
intersect all four straight lines, it must either be joining the two intersection points; or it
must be at the intersection of the two planes defined by the two pairs of given straight
lines. Schubert does not justify this claim, from which he derives the fact that the number

119 [Schubert, 1879b], p.334.
120On the constitution of these ‘closure problems’ as a category, and on the paper of Hurwitz mentioned

by Schubert, see [Lê, 2018], especially pp.264-266.
121 [Schubert, 1879b], pp.13-18.
122It is easy to see from a parametric equation of a straight line in space that the number of constants

of this figure is 4.
123While Schubert is not entirely explicit as to what sorts of specializations are allowed, he does not

make stronger assumptions, for instance taking all four lines to lie in the same plane, or even to intersect
at the four corners of a square.
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N of straight lines satisfying all four conditions is 2 in general. Here is how it can be
understood. If a straight line does not lie in the plane defined by g1 and g2, then the only
way it can intersect both of these lines is by passing through their intersection. Similarly,
this line must either lie in the plane defined by g3 and g4, or go through their intersection.
Here, one must assume that Schubert specialized the relative position of these four lines
in a way that prevents the intersection of g1 and g2 to be in the plane defined by g3 and
g4 (and vice versa), so that the only two lines satisfying the four conditions are those he
gave. Indeed, for other special positions of the given straight lines, the number N can be
shown to be strictly greater than 2; such is the case for instance when three of the given
straight lines have one point in common. Then, per the fourth form of the principle, the
number N is actually infinite.

It must be noted that this example did not belong to the realm of applications of the
principle of special position in 1876; as it is not a symbolic equation between a product
and a sum. Other examples given by Schubert later in the Kalkül, however, are of this
form. As the “most important application of the principle of conservation of number124”,
Schubert identifies incidence formulae, to which we shall return at the end of this section.

Having discussed the evolution of this principle from 1876 (and even 1874) to 1879,
one constant claim of Schubert must now be emphasized. For Schubert, this principle
was always a consequence of a fundamental proposition which he borrowed from alge-
bra, namely the Fundamental Theorem of Algebra (FTA), which states that a polynomial
equation of degree n always has exactly n roots, albeit possibly complex and multiple125.
Schubert never spelled out precisely why it follows from the FTA that his geometrical
numbers are well-defined. It is likely that he thought that the number of figures which
satisfy a given condition can always be understood as the number of roots of a general
algebraic equation, whose coefficients depend solely on the locus of the data in the con-
dition, and whose degree depends on the nature of the figure and of the condition. Of
course, as we saw in chapter 5 and the Chasles-De Jonquières controversy, this means
that his methods count solutions whose geometrical significance may be lacking, but this
is never a concern for Schubert.

This principle soon became a major point of focus for commentators of Schubert’s
geometry, especially in the wake of Zeuthen’s 1914 Lehrbuch der abzählenden Methoden
der Geometrie. As one American reviewer of this book for the Bulletin of the American
Mathematical Society put it, “the fundamental principle of enumerative geometry is the

124 [Schubert, 1879b], p.16.
125“[Diese Princip] sagt in algebraischer Interpretation nichts anderes als dass Veränderungen der Con-

stanten einer Gleichung die Zahl ihrer Wurzeln entweder unberührt lassen oder aber unendlich verur-
sachen, indem sie die Gleichung zu einer identischen machen”, [Schubert, 1879b], p.12.
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law of the ‘preservation of the number’126”. More recently, the German mathematician
Werner Burau strongly emphasized this principle in his brief account of Schubert’s life
and works, and so did the American geometer Steven Kleiman in his paper on Hilbert’s
15th problem127. In parallel, this principle also became the main point of focus of those
who criticized Schubert’s geometry as being insufficiently rigorous; criticisms which we
discuss in the next chapter.

Many of Schubert’s readers and commentators identified the principle of conservation
of number with Poncelet’s principe de continuité. For instance, the second section of
Pieri’s translation of Zeuthen’s entry for the Encyklopädie is simply entitled “Loi de la
conservation du nombre (Principe de continuité)”, and Schubert is merely presented as
one name in a long list of geometers who used and expanded on Poncelet’s principle128.
At first glance, this comparison may seem reasonable. Both Poncelet’s and Schubert’s
principles express something about the permanence of an object under the effect of a
change in position. However, the comparison quickly falls short. Poncelet thinks in terms
of continuous motions, and is concerned with the introduction of general geometrical
figures, whose definition may depend on intermediary objects which become imaginary
in the process. Poncelet’s principle delineates a specific class of geometrical properties,
namely projective properties, whose characteristic is precisely to be preserved by said
continuous change129. Schubert’s numbers, on the other hand, sometimes blow up to
infinity; and some of them quantify figures which satisfy metric conditions. In fact, there
is little concern for projectivity in Schubert’s geometry, and there are simply no references
to Poncelet in all of Schubert’s writings on geometry, save for a couple of unrelated
occurrences. Lastly, Poncelet’s principle goes “from the general to the general130”: that is
to say that from a figure in general circumstance of construction are deduced other general
truths about said figure. On the contrary, Schubert’s principle goes from the particular
to the general: from a specialization of the data of a problem, he deduces a number or
formula which is taken to be valid in the general case. In fact, if an anterior proposition
is to be sought for comparison with Schubert’s principle of conservation, Peacock’s and
Hankel’s principle of permanence is likely to be a much better candidate131.

Both in 1876 and 1879, the principle of conservation of numbers is immediately em-
ployed by Schubert to obtain a large number of formulae between fundamental conditions.
While the list of formulae remained roughly the same across both texts, the order and

126 [Allen, 1915], p.86. See also [Zeuthen, 1914a], pp.1-11; 31-33, and [Zeuthen, 1905], pp.270-271.
127 [Burau & Renschuch, 1966], p.14; [Kleiman, 1976b], pp.447-448.
128 [Pieri, 1915], pp.268-274.
129 [Poncelet, 1865], pp.xiii-xiv.
130 [Chemla, 2016], pp.68-69.
131In the following chapter, we show how Schubert’s conception of numbers was influenced by Hankel

in various ways.
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overall presentation thereof changed.
In 1876, Schubert began by writing the symbols expressing the conditions that a main

element (Hauptelement, that is to say a point, a ray, or a plane) belong to a fundamental
figure (say, a bundle of rays)132. These symbols, which he had listed previously, include
for instance p, pg, and P , which respectively stand for the conditions that a Punktfeld (a
plane viewed as a point-figure) contains a given Punkt (point), that it contains a given
Punktaxe (rays made of points), and that it contains – or indeed is – a given Punktfeld.
From these definitions, it follows that p2 = pg, and that ppg = P , hence

p3 = P

For rays, we already mentioned the fact that it follows from the principle of special position
that, for instance, g2 = gp + ge.

Next, Schubert considers figures composed of two main elements, such that one is a
support (Träger) for the other (this is different from a Grundgebilde, because the support
is here regarded as a part of the figure too). A point can be carried by a point, by a ray
viewed as a point-figure (Axe), or by a plane viewed as a point-figure (Feld). Proceeding
to the same listing for rays and planes, Schubert finds that there are only four such pairs
of main elements, namely133:

• Point and ray: the point is a bundle (Bündel) to the ray; the ray an axis (Axe) to
the point

• Plane and ray: the plane is a field (Feld) to the ray; the ray an axis to the plane

• Point and plane: the point is a bundle to the plane; the plane a field to the point

• Ray and ray: each of the rays is an axis to the other

In 1876, Schubert maintained a strongly formal approach to the ontology of his geometry,
which makes his description of these conditions hard to understand. In 1879, however,
he obtained the exact same list when introducing what he called “incidence formulae”.
Incidences, for Schubert, are precisely these figures obtained by taking together two main
elements, such that their relative position is specialized into an incidence. The four figures
which can thus be formed are then described as134:

• Point and ray, if the point lies on the ray, or, which is the same, if the ray goes
through the point.

132 [Schubert, 1876a], pp.25-26.
133 [Schubert, 1876a], pp.26-30.
134 [Schubert, 1879b], p.25.
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• Plane and ray, if the ray lies in the plane.

• Point and plane, if the point lies in the plane.

• Ray and ray, if both rays intersect.

An incidence formula is then defined as “an equation between the fundamental conditions
of these four incidences”. What, then, is a fundamental condition for these figures? And
how to compute with it?

Consider, for instance, the first of these figures; namely the system of a point p and
a ray g, such that the point p lies on the ray g. Fundamental conditions on this figure
are formed by combining fundamental conditions on p and g. For instance, the condition
symbol pg represents the condition that the point p lies in a given plane, and that the
ray g intersects a given ray. By the principle of conservation of number, Schubert can
specialize the position of these given objects, for instance taking the given ray to lie in
the given plane. Then, every figure whose point p lies on the given ray, and every figure
whose ray lies in the given plane, satisfy the combined condition. In the terms of the 1876
framework, Schubert has “split” the product condition pg, and obtained the following
incidence formula (after the 1879 terminology):

pg = pg + ge

where, as a reminder, pg is the condition that a point lies on a given ray g, and ge that
a ray lies in a given plane e. Notice that pg = p2, as pg means for a point to lie on a
given ray, and p to lie in a given plane, so p2 means to lie at the intersection of two given
planes, i.e. on a ray135.

While Schubert never explicitly mentions a principle of duality, he often transforms
formulae into their duals in ways that are made clear by the use of dual letters; for
instance, to the formula above corresponds the following one (for figures formed by a
plane and a point, so that the point lies on the plane):

eg = eg + gp

where e is the condition that a plane contains a given point, eg that it contains a given
line, and gp that a ray goes through a given point.

The main import of these formulae, Schubert explains, is that “the calculus of con-
ditions dispenses us after a simple application of the principle of conservation of number

135There seems to be a misprint in Schubert’s book ( [Schubert, 1879b], p.22), wherein one finds the
equation pg = p3 followed by the equation ppg = p3. This error is fixed in later editions, such as [Schubert,
1979].
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from further geometrical considerations136”. That is to say, from the incidence formulae
of the lowest degree possible provided by the principle (as well as their dual forms), it
suffices to carry out algebraic computations to obtain all other incidence formulae. Whilst
they do not pertain to Hauptelemente themselves, they are sufficiently fundamental to be
applicable to various, complex figures. For instance, Schubert uses them to enumerate
tangents to spatial curves in the following pages of the Kalkül. Indeed, a tangent to a
curve can be thought of as composed of a straight line and a point in an incidence relation
(i.e. the point must be on the line), both of which also must touch the curve - although
the verb ‘touch’ means something different for a line and for a point. Similarly, tangent
planes to a surface can be investigated by means of incidence formulae.

7.3.2 Coincidences and correspondences

Incidence formulae are as far as Schubert goes with the sole help of the principle of con-
servation of number. The next kind of figure which he considers, both in the Beiträge
and in the Kalkül, is the “pair of main elements” (Hauptelementen-Paar); and in par-
ticular pairs in a special position of coincidence137. Note that the incidences discussed
previously were not pairs of main elements, but only a sub-figure thereof, obtained by
adding the condition that one of the two main elements lie on the other. There are nat-
urally six kinds of pairs of main elements, three of which can present coincidences; those
are called respectively “point-pairs” (Punktepaar), “plane-pairs” (Ebenenpaar), and “ray-
pairs” (Strahlenpaar). Point-pairs and plane-pairs are dual figures, so Schubert hardly
devotes any space discussing the latter. A coincidence is here defined by Schubert as
one of these figures in which the two elements are infinitely close; in other words, it is
a degenerate form (Ausartung) of the figure. It is a figure whose number of constants is
that of the pair, minus one. For instance, the number of constants of the point-pair is
3 + 3 = 6, and that of the related coincidence is 5. This might be surprising: why should
two infinitely-near points not have the same number of constants as a single point? In the
Beiträge, Schubert defines the point-pair as a figure whose Plückerian locus is not only
composed of two points, but also of a ray which joins these two points138 (which he calls
the Verbindungsstrahl). Thus, such a coincidence is determined by a ray in space, and by
one point on this ray; that is to say, its number of constants is 4 + 1 = 5.

Just like for incidences, Schubert identifies as his main task to find the formulae

136“Unser Bedingungskalkül dispensirt uns also schon nach einmaliger Anwendung des Princips von der
Erhaltung der Anzahl von allen weiteren geometrischen Ueberlegungen”, [Schubert, 1879b], p.26.

137 [Schubert, 1876a], p.48; [Schubert, 1879b], p.42.
138 [Schubert, 1876a], p.49. In the Kalkül, the framework of the Plückerian loci is dropped. Instead,

Schubert gives an ad hoc definition of the coincidence of two points wherein it is stipulated that one ray
must be entirely determined as well; see [Schubert, 1879b], p.43.
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which express coincidence conditions in terms of fundamental conditions, which he calls
coincidence formulae139. However, while the “source” of all incidence formulae was the
principle of conservation of number, that of all coincidence formulae is another principle,
namely Chasles’ principle of correspondence140. Schubert here explicitly refers to Chasles’
1864 paper; however, as we shall see, his use of the principle is much closer to Maillard’s
dissertation than to Chasles’ lists of propositions (see 6.2.3 for our discussion of Maillard).
One crucial difference is to be noted however: as Schubert rewrites the equations obtained
by Maillard on the back of a new understanding of the principle of correspondence, he does
so with different semiotics, and symbols standing for numbers become symbols standing
for conditions, or indeed modes of degeneration. One example will make this clearer.

Considering a system of point-pairs, whose elements are denoted p and q, Schubert
denotes g their Verbindungsstrahl, and ε the condition that it be a coincidence, that is to
say that p and q are infinitely near, but nonetheless lie on a fully determined ray g. Thus,
ε also denotes the number of such coincidences, in a system of point-pairs. Schubert then
considers a pencil of planes turning about some arbitrary fixed ray l. Note that l is not
a condition-symbol, but, more classically, a symbol denoting a geometrical object. This
is why Schubert does not use an ambiguous letter which could also stand for a condition
related to a given ray, for instance. Schubert then forms the following correspondence
between planes of this pencil: to each plane which contains p correspond the planes which
contain q, and conversely141. The principle of correspondence, Schubert claims without
further explanation, implies that there are p+ q planes which contain both p and q.

Indeed, to a plane containing p correspond a certain number β of planes, namely the
number of planes containing q. Per virtue of the symbolism of conditions, this number is
also written q. Conversely, to a plane containing q correspond p planes. Therefore, the
number of coinciding planes, that is to say of planes who belong to their image by this
correspondence (in whichever direction) is p+q (per the principle of correspondence, which
states that the number of coinciding elements in an (α, β)-correspondence is α + β)142.
This is none other than the number of planes in the plane-bundle which contain both p
and q. Note that, while the principle is also valid for finite values of p and q (since the

139As Kleiman notes ( [Kleiman, 1979], p.9.), “there are relations of neither sort, [..], for example, there
is Chasles’ relation λ = 2µ− ν”. However, Schubert proposes no specific categorization for them.

140Like the principle of conservation of number, the principle of correspondence is here presented as
a geometrical form of the Fundamental Theorem of Algebra, see [Schubert, 1879b], p.42. On Chasles’
principle of correspondence, see section 4.2.2.

141Since Chasles mostly used the principle of correspondence when studying planar figures, he only ever
considered series of points on a line, and series of lines turning about a point. Considering pencils of
planes turning about a ray is a rather natural extension of this principle.

142Note that this is the number of planes containing two corresponding points, and not two arbitrary
given points, which is why this number is not equal to the product pq (and, indeed, not of the same
dimension).
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proof relies of the properties of complex polynomial equations), the resulting formula is
more general: its symbols stand for conditions, that is to say numbers that can be infinite.
Schubert does not mention or resolve this apparent discrepancy; which is dissolved when
one thinks of these symbols as ‘geometrical numbers’.

Now, Schubert continues, there are only two occurrences in the system which can
give rise to one of the p + q planes which exclusively contain both p and q. Either they
correspond to a case where p and q are infinitely near one another (in which case, a
plane containing p necessarily contains q, and vice versa); or their Verbindungsstrahl g
lies in the plane. This last case is equivalent to the condition that g and l intersect, as
l necessarily lies in such a plane, per construction. There are ε planes corresponding to
point-pairs of the first kind, as the symbol for the condition ‘being a degenerate point-
pair’ also stands for the number in the system of such degenerate figures; and there
are g Verbindungsstrahlen which intersect a given straight line l, as the symbol g also
stands for the condition that a ray intersects a given straight line. Thus, Schubert writes,
p+ q = ε+ g; or, to present this result in guise of a proper coincidence formula,

ε = p+ q − g

This version of the principle of correspondence is one of Schubert’s two main devices for
the obtention of symbolic formulae prior to their insertion in series of algebraic compu-
tations. Here, one sees in full display the computational power allowed by the ambiguity
of Schubert’s symbols, which alternatively stand for conditions, numbers, and geomet-
rical figures. This allows for a recasting of Chasles’ principle of correspondence, which
borrows largely from the use thereof developed already in Maillard’s 1871 dissertation.
As we saw in the previous section, Maillard also used the principle of correspondence to
obtain a sum of two numbers as a number of coincidences, which was then decomposed
into a finite list of kinds of coincidences. In Maillard’s dissertation, however, the resulting
formulae only involved symbols standing for finite numbers, such as orders of curves or
Plücker’s numbers. In Schubert’s enumerative geometry, the same method yields symbolic
relations between geometrical conditions, which can then enter algebraic computations to
solve Charakteristikenprobleme. We will give an example of such computations in the last
part of this section.

7.3.3 Hurwitz’s and Schubert’s proof of Chasles’ theorem

All these techniques were put to use in a paper written in 1876, in the immediate after-
math of the Beiträge, by Schubert and one of his most famous pupils, the young Adolf
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Hurwitz143. The latter was born in 1859 near Hildesheim, the city where Schubert taught
between 1870 and 1876. Like his older brother Julius, Adolf Hurwitz excelled at his
studies, and especially in mathematics: they both spent many a Sunday afternoon at
Schubert’s home for geometry lessons144. In this paper written right before Schubert’s
departure for Hamburg, he and his pupil set out to provide yet another proof of Chasles’
αµ + βν theorem, this time relying on the new methods and notations of abzählende
Geometrie. Through this paper, Schubert and Hurwitz were directly and explicitly re-
plying to the doubts raised earlier this year by Halphen. However, for reasons discussed
previously, Halphen had not yet been able to widely communicate his alternative theory,
or the alleged causes for the falsity of Chasles’ theorem. In fact, it seems that Hurwitz
was the main author of the proof proper, while Schubert was responsible for the general
framework and the creation of the methods used in it. Hurwitz would be named first
author in the published version, and, in private letters, Schubert often referred to this
proof as ‘Hurwitz’s proof145’.

The context of this paper, unlike the Beiträge (and most of the Kalkül), is that of plane
geometry; and the figure under study is, of course, the conic section. The first section
of this paper is devoted to a brief reformulation of Chasles’ theory of characteristics and
of the αµ + βν theorem in the language of Schubert’s enumerative geometry. To that
end, Hurwitz and Schubert consider a system of conics Σ1 and its characteristics (µ, ν),
as well as a simple condition Z1. The latter is satisfied by (and thus defines) a system
Σ4 containing ∞4 conics. Schubert and Hurwitz then define the characteristics of this
system as (µ′4, µ′3ν ′, µ′2ν ′2, µ′ν ′3, ν ′4) (where µ′4 is the number of conics satisfying Z1 and
passing through four given points, and so on). Remember that Schubert had defined, in
the Beiträge, characteristics (or elementary numbers) of a system of curves as numbers
deriving from the (arbitrarily chosen) collection of so-called elementary conditions (here,
touching a given line and passing through a given point), with no restriction on the
dimension of said system (see 7.2.3). Thus, in the case of the system Σ4 of conics, they
form the five numbers of conics in the system passing through a points and touching 4−a
lines, for a ranging from 0 to 4. The fact that these numbers are indeed ‘characteristics’,

143 [Hurwitz & Schubert, 1876].
144See [Oswald & Steuding, 2014] for more on the lives of the Hurwitz brothers and their later work

on complex continued fractions. While both brothers were deemed promising by Schubert, the Hurwitz
family was not well-off, and only Adolf was allowed to pursue a career in mathematics. This may be why
Schubert elected to co-write an article with Adolf and not Julius. Adolf Hurwitz went on to study with
Klein in München, and later with Kronecker and Weierstrass in Berlin. These choices are likely to have
been suggested or influenced by Schubert, who was a good friend of Klein’s and an admirer of the Berlin
school of mathematics.

145“Sie werden meine Note mit dem Beweise von Hurwitz in Händen haben”, Cod Ms 5624 170, Letter
Schubert to Halphen, dated December 4th 1876. Furthermore, Hurwitz is credited with the obtention of
the proof in the paper, [Schubert, 1876a], p.506.
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while suggested already by Halphen’s rewriting of Chasles’ theorem, is in all rigour only a
consequence of the proof itself: the proof shows that these numbers allow for the writing
of a Produktensatz, which in turn is the definition of characteristics that Schubert had put
forth. This is of course not a logical fallacy, as to consider these numbers as characteristics
before they are shown to be such has no bearing on the proof itself.

Chasles’ theorem is thus presented as stating that the number of conics belonging to
both Σ1 and Σ4 is αµ+βν, where α and β depend only on Σ4 (or, alternatively, on Z1, or
even on µ′ and ν ′). In fact, Schubert and Hurwitz show that α and β can be computed as
functions of the characteristics of Σ1, which they contrast with the “a posteriori, that is to
say, experimental determination146” of these two numbers. For Chasles, it was arguably
not crucial to prove the theorem αµ + βν because he had a method to systematically
generate modules (or, equivalently, the coefficients α and β) of each possible condition
– and a proof that the formula was generally valid was of no use to him. Schubert and
Hurwitz prove, in fact, a real Produktensatz, whose form is not actually αµ+βν but rather
P (µ′, ν ′) · µ+Q(µ′, ν ′) · ν where P and Q are two homogeneous polynomials of degree 4.
In effect, what Schubert and Hurwitz are proving is a more precise version of Halphen’s
reformulation of Chasles’ theorem (discussed in 7.1.1), which stated (in particular) that Z1

is characterized by a homogeneous polynomial of degree 4 in the variables µ′, ν ′ (provided
that one follows Schubert in his extension of the meaning of the p and d). Equivalently,
this means that every number formed by the intersection of Σ1 with a system of level 1
can be expressed as a linear combination of the symbols of order four listed above.

True to Schubert’s organization of the enumerative geometry of a given figure, the
authors move on to discuss the modes of degeneration of the specific figure at play. Conics
in a fixed plane have a number of constants of 5. There are two degenerations of conics
of number of constants equal to 5 − 1 = 4, namely line-pairs ε and point-pairs δ. Here
again, Schubert and Hurwitz take symbols to stand also for the number of such conics
in a system. With these notations, they can rewrite results already obtained by Chasles,
thus imbuing them with extra meaning: for instance, the number of degenerate conics of
each kind in a system Σ1 can now be written as

2µ− ν = ε

2ν − µ = δ

But these equations are now more than numbers of degenerate conics, as they express
algebraic relations between condition-symbols. Furthermore, a third degeneration η arises
when the two lines (resp. two points) of the pair coincide; this degenerate figure has 3 for

146 [Schubert, 1876a], p.505.
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its number of constants. For Schubert and Hurwitz, this degeneration is none other than
the two-fold degeneration composed of the two simple degenerations ε and δ. Thus, from
the equations above easily follows that η = (2µ−ν)(2ν−µ). These two-fold degenerations
would not appear in Schubert’s and Hurwitz’s proof, but merely serve toward the end of
the paper as a way of explaining Halphen’s doubts away: Chasles’ formula, the authors
write, is always true, provided all degenerate conics are counted amongst the solutions.
If the formula is understood in a different manner, which excludes certain “solutions
étrangères”, then the occurrence of η degenerations may cause the formula to be sometimes
inexact147. However, it is wholly “unwarranted and unpractical” (ungerechtfertigt und
unzweckmässig) to make such a demand. Zeuthen would identify this part as the main
weakness of Schubert’s and Hurwitz’s proof, because he understood Halphen’s theory as
showing that η-degenerations depended on 4, and not 3, simple conditions (or, in other
words, that they had to be viewed as simple degenerations, on the same level as the other
two). One can see how hard it is to accommodate this idea with Schubert’s understanding
of what a figure and a condition are. We shall come back to the lingering disagreement
between Halphen and Schubert in the next chapter.

Once this translation of the theory of characteristics into Schubert’s symbolism is
complete, Hurwitz presents his proof of Chasles’ theorem itself. His strategy is to use the
principle of correspondence in the way described in the previous section. Hurwitz forms
a correspondence on a line, whose number of coinciding points determines the number
of points through which go two conics of respectively Σ1 and Σ4, whose four intersection
points lie on a given conic. This number is then decomposed into a sum through a
discussion of the various ways in which such coinciding points may arise. This yields an
equation between sums of symbols, one of which will prove to be the one sought after.

To that end, Hurwitz fixes a straight line g and a point A on g, as well as a conic K
in the plane. To the point A correspond µ conics of Σ1 (that is to say, there are µ conics
in Σ1 passing through A), each of which intersects K at four points C,D,E, F . There
are µ′4 conics of Σ4 which pass through all of these four points; and each of these conics
intersects g at two points. We take these points to correspond to A; and, in total, to the
point A correspond 2µ′4µ points B on g.

Conversely, to a point B on g correspond a certain number u of conics of Σ4 which go
through B and whose four intersection points with K are so that there is a conic in Σ1

passing through them. Each of these conics intersect g at two points, thus totalling 2u
points on g corresponding to B. In order to determine u, Hurwitz and Schubert elect to
use the principle of special position148. Supposing that the point B lies on the conic K

147 [Hurwitz & Schubert, 1876], pp.515-517.
148While the principle of special position is described by Hurwitz as the “fastest” way to obtain u = µ′4µ,

they also show how to obtain this number using only the principle of correspondence, [Hurwitz & Schubert,
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(thus specialising the locus of the data), there are µ conics of Σ1 going through B, and
these conics cross K at three other points. Through these three points and through B

go µ′4 conics of Σ4. Consequently, there are µµ′4 conics going through B and whose four
intersections with K (among which is B) satisfy the description above. By the principle
of special position, this number is preserved for all positions of B and K. Thus, to B
correspond 2µ′4µ points A, and the correspondence has a total of 4µ′4µ coinciding points
(AB).

Such coincidences (Coincidenzstellen) (AB) are points on g through which go two
conics (respectively in Σ1 and Σ4) so that the four intersections C,D,E, F of the conics
lie on K. Such coincidences can arise for three distinct reasons, Hurwitz explains. The
first kind of coincidences is simply the intersections of K and g: by such a point go µ
conics of Σ1, each of which intersect K at four points (including (AB)) through which
go µ′4 conics of Σ4. Thus, the intersections of K and g yield 2µµ′4 coincidences, because
there are two intersections of K and g.

A second kind of coincidences is produced by the x conics common to both systems.
Such a conic intersects g at two points; for each of which, the common conic in question
itself (and only it) satisfies the requirement. There are 2x such coincidences, because each
conic x intersects g twice.

Lastly149, coincidences occur due to the degenerate conics ε in Σ1, that is to say conics
formed by double-lines, of which there are ε = 2µ − ν in Σ1. Such conics intersect g at
one double point P , and intersect K at four points C,D,E, F , where C and D (resp. E
and F ) are infinitely close.

Referring to an unspecified result obtained by Chasles in his 1864-1867 communica-
tions150, Hurwitz asserts that, in a system Σ2 of characteristics µ′2, µ′ν ′, ν ′2, the number
of conics touching a given straight line at a given point is 1

2 · µ
′ν ′. Consequently, Hurwitz

continues, there are 1
4 · µ

′2ν ′2 conics in Σ4 which satisfy this condition twice, i.e. touch
two given lines at two given points. In particular, this is the number of conics in Σ4 which
touch the ray (Verbindungsstrahl) joining C and D at the point (CD), and which touch
the ray joining E and F at the point (EF ). This means that there are µ′4 − 1

4 · µ
′2ν ′2

1876], pp.508-509.
149Schubert and Hurwitz assert that it is “obvious” (ersichtlich) that these are the only possible ways

for coincidences to arise, [Hurwitz & Schubert, 1876], p.510.
150Hurwitz also refers to [Schubert, 1876c], p.341, where an analogous result is stated but not proven.

In this article, Schubert claims that the formula is easily obtained with the help of the principle of special
position. An easy way to understand this formula, which perhaps is not what Schubert had in mind, is
to show instead that µ′ν′ = 2z, where z is the condition ‘touching a given straight line at a given point’.
The symbol µ′ν′ expresses the condition that a conic in Σ2 touches a given straight line g, and passes
through a given point p. Per the principle of special position, one can take p to lie on g. The condition is
then only satisfied by conics which are tangent to g at the point p (for a conic cannot have three contacts
with a straight line), and in fact it is satisfied by all of them. However, each conic tangent to g at p is
counted twice, for they pass twice by the point p, hence the factor 2, and Schubert’s formula.
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conics in Σ4 which pass through all four points C,D,E, F but are not tangent to (CD) or
(EF ). However, a conic section which contains both pairs of infinitely close points, with-
out being tangent to K at both points, must be an ε-degeneration151 (and, conversely, all
ε-degenerations pass through these points without being tangent to the conic K). Such
conics intersect g twice at point P , and therefore give rise to 2 · (2µ− ν) · (µ′4 − 1

4µ
′2ν ′2)

coincidences of the third type.
Hurwitz continues by equating the number of coinciding points to the sum of their

causes, using the ambiguity of a notation which stands equally for numbers and conditions
or figures. Thus, he writes:

4 · µ · µ′4 = 2 · µ · µ′4 + 2 · x+ 2 · (2µ− ν) · (µ′4 − 1
4µ
′2ν ′2)

Rewriting this equation, Hurwitz shows that:

x = µ · µ′4 − (2µ− ν) · (µ′4 − 1
4µ
′2ν ′2)

= µ · (µ′4 − 2(µ′4 − 1
4µ
′2ν ′2)) + ν · (µ′4 − 1

4µ
′2ν ′2)

= α · µ+ β · ν

where α and β are homogeneous polynomial functions of degree 4 of µ′ and ν ′ only. This
concludes Hurwitz’s proof of Chasles’ theorem. In the following section of the paper,
a similar proof is sketched for Cremona’s αµ + βν + γρ theorem, wherein, similarly,
polynomials in µ′, ν ′, ρ′ are given to express the coefficients α, β, γ.

Note that a new notation has been introduced throughout this proof: Schubert and
Hurwitz had introduced earlier a difference between two kinds of products. The juxtaposi-
tion (Nebeneinanderstellung) of condition-symbols remains in use to form the conjunctions
of conditions relative to the same system (or the multiplication of the numbers of elements
satisfying said conditions), but products between symbols relative to both systems are
denoted with a dot (·)152:

Eine Verwechselung der symbolischen Potenzen und Produkte mit wirklichen
ist nicht gut möglich. Doch haben wir zur Unterscheidung bei wirklichen Mul-
tiplikationen meist einen Punkt als Multiplikationszeichen gesetzt, bei sym-
bolischen aber nicht.

This distinction would be preserved by Schubert in later texts, especially when writing
151By substracting the second term, Hurwitz removes degenerate conics composed of pairs of tangent

straight lines to (CD) and (EF ).
152“It is not really possible to confuse symbolic products and powers with real ones. However, we have

usually set a dot as a multiplication sign for real multiplications, but not for symbolic ones”, [Hurwitz &
Schubert, 1876], pp.504-505.
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Produktensätze, in order to differenciate between the contributions of each system. Schu-
bert indeed makes a point of insisting on the fact that, in such a formula, we have in each
factor a product of two conditions of maximal dimension with respect to the system to
which they apply. These dots, Schubert explains, “mean that the resulting numbers are
to be multiplied153”. In other words, this is a final formula, one in which one can just
plug (finite) numbers of elements in a system to solve actual enumerative problems. This
distinction between juxtaposition and (·)-signs is extra-theoretical: it concerns the uses
and status of the formula, but not its meaning or the rules it obeys.

In conclusion, Chasles’ formula has been transformed throughout this proof in at least
two ways: α and β are now polynomials in the characteristics of the condition Z (that is
to say: not just two numbers characterizing the condition, but given as expressions valid
for all conditions), but also the theorem is recast as one formula part of more general
type of formulae, namely Produktensätze. Were it not for the fact that he could compute
these functions for α and β, and thereby turn Chasles’ formula into the sort of theorem he
had identified as crucial to enumerative geometry, Schubert would have probably shown
little interest for this theorem. Where Halphen and Clebsch had set out to prove Chasles’
formula in order to ground its certainty, Schubert was more interested in computing the
coefficients appearing in this formula, and in turning it into a synthetic expression which
contains the whole of enumerative geometry for conics.

7.4 An example: the enumerative geometry of the
triangle

7.4.1 Constructing the triangle

Right after the publication of the Kalkül in late 1879, Schubert wrote a 60-page paper
for the Mathematische Annalen on the enumerative geometry of the triangle, entitled
“Anzahlgeometrische Behandlung des Dreiecks154”. This is a good paper to conclude our
presentation of Schubert’s geometry for several reasons. First, its object is a reasonably
simple yet not entirely elementary figure, the study of which will not require advanced
geometrical knowledge as would be the case for Schubert’s geometry of the cubic. There-
fore, in this section, we set out to and are able to give all of the required details to
understand Schubert’s derivation of a Produktensatz. Second, this paper exemplifies quite
neatly the structure and the goals of enumerative geometry as a whole. Its organization
matches, on a smaller scale, that of the Kalkül, thus allowing us to envision more precisely

153 [Schubert, 1880a], p.173.
154 [Schubert, 1880a].
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what Schubert had in mind as the ideal form that the application of his method ought to
take. Last but not least, the geometry of the triangle became one of the focal points of
Schubert’s polemical exchange with Halphen throughout the year 1879 (via private com-
munications of these yet unpublished results), to which we shall turn in sections 8.2.1 and
8.2.2. Let us note in passing that the results discussed here have attracted some attention
in the second-half of the 20th-century, most of which resulted in attempts to prove more
rigorously Schubert’s formulae as part of a solution of Hilbert’s 15th problem155. The
structure of Schubert’s paper, which we follow closely here, is highly reminiscent of that
of the Kalkül, albeit with an exclusive focus on a single figure. First, Schubert defines the
triangle as a figure in the plane, its fundamental elements and conditions, as well as its
degenerations; all of which are associated with symbols. Some fundamental formulae be-
tween these symbols are obtained along the way thanks to the principle of conservation of
number. Then, Schubert uses the principle of correspondence to obtain formulae between
these symbols, in particular relating degeneration conditions and fundamental conditions.
Then, over the course of several sections, Schubert solves the Charakteristikenproblem by
computing the number of triangles common to two systems of complementary dimensions,
relying on a minimal set of conditions. The rest of the paper, which we will not cover for
the sake of brevity, tackles more delicate issues regarding specific kinds of triangles – for
instance, triangles in mobile planes.

As we already mentioned, Schubert opens his paper by redefining triangles as a geo-
metrical figure in terms of ‘main elements’. More precisely, triangles are here defined as
figures composed of three points a, b, c (called in what follows vertices (Ecke)), and three
rays α, β, γ (called in what follows sides (Seiten); wherein the sides join the vertices so
that a is not on α, b not on β,and c not on γ. With triangles as with point-pairs, this
redefinition is crucial especially in as much as it allows for the determination of the num-
ber of constants of this figure (which is 6), as well as for the description of its degenerate
forms (which will be discussed below). Schubert is here working on a given plane; that
is to say the triangles and systems thereof described in this paper are all coplanar156. In
effect, this is a construction of the triangle which follows the ‘constructive’ definition of
figures proposed by Schubert in the 1876 Beiträge, that is to say the definition of figures
as ‘a collection of point-loci and ray-loci linked together in various ways’ (see 7.2.3).

Since the triangle is defined by six main elements, there are six fundamental conditions
which a triangle can satisfy. These conditions, which Schubert here calls ‘conditions of
position’ (Lagebedingung), are denoted by the same symbols as the main elements. For

155See [Semple, 1954], [Tyrrell, 1959], [Roberts & Speiser, 1981], [Roberts & Speiser, 1984], [Roberts &
Speiser, 1986], [Roberts & Speiser, 1987].

156The sole exception being the very last section of the paper, wherein triangles are in a mobile plane,
see [Schubert, 1880a], pp.205-212. We shall not cover this section here.
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a triangle whose vertices (resp. sides) are denoted a, b, c (resp. α, β, γ), these symbols
also represent the condition that its vertices lie on a given line (resp. that its sides go
through a given point). These are obviously conditions of dimension 1. Strictly applying
the methodology put forth in the Kalkül, Schubert first investigates the incidence formulae
relative to these conditions. Since the only main elements involved in the generation of
the triangle-figure, the only incidences which can be formed here are relative to a point
and a ray. The following six incidence formulae can be formed157:

aβ = a2 + β2, aγ = a2 + γ2

bγ = b2 + γ2, bα = b2 + α2

cα = c2 + α2, cβ = c2 + β2

Instead of establishing or explaining them, Schubert merely refers to his 1879 book, and
in particular to the first page of the section on incidence formulae. The first example of
such a formula, which we discussed earlier in this section, was the following relation:

pg = pg + ge

where p means for a point to lie on a given plane, pg for a point to lie on a given ray, and
ge for a line to lie in a given plane.

At first, it remains unclear at this point how this formula and one for triangles such as
aβ = a2 +β2 are related. Not only are they not identical (one has a sum of squares on its
right-hand side, the other a sum of two conditions of dimension 2), but the former bears
on spatial (fundamental) figures, while Schubert’s systems of triangles are all coplanar
(except for the systems considered toward the end of the paper).

In fact, these formulae seem to be less of a corollary to Schubert’s general incidence
formulae, and more of an outcome of a similar method of proof, that is to say directly
applications of the principle of conservation of number. Furthermore, they will later play
a role in the enumerative geometry of the triangle similar to the one played by the general
incidence formulae in the architecture of Schubert’s Kalkül.

One possible proof of these formulae, which Schubert does not give but might have
had in mind, is the following: aβ expresses the condition that a point a lies on a given
line, and that β goes through a given point. By the principle of special position (that
is to say, the second form of the principle of conservation of number), one can suppose

157Analogous formulae for aα, bβ, cγ are not correct because of the condition satisfied by all triangles that
b and c be on α (and so on for the other terms). An expression for aα necessarily involves degeneration
conditions, which we shall introduce shortly.
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that the given point lies on the given line. Then either a is the given point, in which
case any position for the points b and c and for the rays α, β, γ will satisfy the condition
aβ, as the side β will go through a, therefore through the given point; or β is the given
line, in which case any position for the points a, b, c and for the rays α, γ will satisfy the
condition aβ, as the point a will necessarily be on β, that is to say on the given line.
For a to be a given point is represented by the symbol a2 (as we are working in planar
geometry, thus two lines determine one and only one point), and similarly for β to be a
given ray is represented by the symbol β2; hence the formula

aβ = a2 + β2

Multiplying one of these incidence formulae by the appropriate vertex symbol yields a
new formula, e.g.:

a2β = a3 + aβ2 = aβ2

as a3 is an impossible condition, that is to say as there is no point a on three given lines
(in planar geometry). The same can obviously be done for the other formulae.

7.4.2 The degenerations of a triangle

To the six aforementioned Lagebedingungen, Schubert then adds another family of condi-
tions, namely “invariant conditions” (invariante Bedingungen), that is to say conditions
which express the fact that a triangle be “degenerated” (ausgeartet). A triangle is said
to be degenerate, Schubert explains, “if it satifies the general definition of the triangle,
but possesses vertices or sides which are not in general [position] with respect to each
other, but infinitely close158”. This matches once again the structure of the Kalkül, as
degenerate triangles and the symbols attached to them give rise to what was called in
1879 “coincidence formulae”.

There are several modes of degeneration, which constitute conditions of different di-
mensions. To enumerate and classify them, Schubert considers triangles inscribed in or
circumscribed by a curve. For instance, the three vertices of a triangle moving along a
given curve, it may happen that all three points become aligned, thus giving rise to a
degenerate triangle within a system. This is the degeneration ε, consisting in a single
ray g on which lie the three sides α, β, γ, as well as the three vertices a, b, c (at possibly
distinct points, of course). A dual degeneration τ is then introduced, consisting in a single
point s at which lie all three vertices a, b, c, and through which go the three sides α, β, γ.

Continuing on his description of the degeneration of a triangle circumscribed by a
158“Ausgeartet ist ein Dreieck, wenn es die allgemeine Definition des Dreiecks erfüllt, aber Ecken oder

Seiten besitzt, die zu einander nicht allgemein, sondern unendlich nahe liegen”, [Schubert, 1880a], p.154.
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curve, Schubert considers the case where two points become infinitely close to one another
(for instance moving toward a double point of a curve). In this case, the three vertices of
the triangle will necessarily be aligned. Thus, he introduces the degeneration ϑa, which
consists in a ray g, on which lies one point s. The vertices b and c are infinitely near s,
and a lies anywhere on g. The sides β and γ are infinitely near g, while α can be any ray
that goes through s. In an analogous fashion, the degenerations ϑb and ϑc are introduced.
These degenerations are self-dual159.

Here again, the symbols ε, τ , ϑa, ϑb and ϑc stand equally for a degenerate figure and
for the condition ‘to be degenerate in a certain manner’, as well as for the number of such
degenerate triangles in a given system. These conditions are all of dimension 1, as can be
seen for instance from the fact that the figure composed of a ray and three points on it has
for number of constants 2+3 = 5. In what follows, Schubert always uses s and g to denote
the points and rays on which degenerations occur, as well as the degeneration conditions
associated thereto. However, these symbols do not mean the same thing depending on
the kind of degeneration. For instance, τs2 denotes the condition that a triangle be a τ -
degeneration, that is to say a point s at the intersection of three rays, and that said point
s be given (or, what is the same, at the intersection of two given rays). Here, the meaning
of the symbol s is informed by the presence to its left of the symbol τ . The symbol ϑas, on
the other hand, denotes the condition that a triangle be a ϑa-degeneration for which the
point s, that is to say the point to which the vertices b and c must be infinitely close, lies
on a given ray. The symbol s here has a different meaning; in fact, it could be replaced
by either b or c, as to demand that either of those points lie on a given ray would yield
the same composed condition. However, using s will allow for symmetry to be preserved
in Schubert’s formulae later in the article.

In fact, the list of degenerations of triangles does not stop here. While all possible first-
level degenerations have been exhausted (as no other simple coincidence can be formed
than those of two or three sides or vertices), there are higher-level degenerations which can
be formed by specializing the former ones. For instance, in a ε-degeneration, one can also
demand that the points b and c be both infinitely near a given point. This second-level
degeneration is denoted ωa by Schubert, alongside the analogous degeneration symbols
ωb and ωc. This degeneration can also be understood in terms of triangles inscribed
in a curve; for instance, three points moving on a curve, consider the case when two
of these points approach a double point of the curve from different branches in such a
manner that the third point always be aligned with them. Here, we have a ε-triangle
further degenerating, as two of its points become infinitely close to one another. While

159If we tried to form an expression equivalent to aα, it would have to involve these degeneration
symbols, as this composed condition is only satisfied by degenerate triangles.
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Schubert does not give this kinematic interpretation, it may be useful to understand how
ωa degenerations differ from ϑa degenerations. In a ϑa-degeneration, one also has two
points infinitely near a given point s, but any ray going through s could be taken as
the side α. Of course, in an ε-degeneration whose two points b and c are collapsing into
one, the side α is entirely determined, as it coincides with the other two sides β and γ.
This also justifies Schubert’s remark160 that “ωa cannot just be seen as a special ε, but
also as a special ϑa”. Per duality, Schubert also introduces ωα, ωβ, ωγ degenerations. In
a ωα-degeneration, the sides β and γ of a τ -degeneration are infinitely near a given ray
g. For these degenerations, as well as those still to be listed, the symbols s and g will be
used as discussed previously.

One last second-level, self-dual degeneration, denoted ψ, is then described in rather
puzzling terms by Schubert: it is said to “consist in three vertices infinitely near a given
point s, and in three sides infinitely near a given ray g which passes through s, but in
such a way that the three vertices are generally not aligned, but rather are like three
successive points on a curve, and in such a way that the three sides do not generally
intersect at the same point161”. This description may seem like a contradiction in terms,
if degenerate triangles are interpreted as diagrams or sets of points; but this cannot be the
case, as Schubert further asserts that such a degenerate triangle is not fully determined
by the given ray g and by the given point s. In fact, the distinction Schubert makes here
is clearer once again when understood as a distinction between modes of degeneration.
This degeneration, which Schubert also calls “infinitely small triangle” (unendlich kleines
Dreick), arises when, in a ϑa-degeneration, the point a is moved infinitely close to b

and c (that is to say, to the given point s). However, Schubert adds, this degeneration
cannot be understood as a special form of ε or τ : if, for instance, three points of a
ε-degeneration collapse into one, they do so whilst being aligned. When the points of
a ϑ-degeneration collapse, they do so with a certain “curvature” (Krümmung), which,
with the data provided by s and g, fully determine the degenerate triangle. Demanding
that the points of a triangle have a certain curvature, Schubert explains, is equivalent to
demanding that the radius of the circumcircle of the triangle be of a certain length.

While Schubert does not discuss explicitly the possible values of this curvature for a
ψ-degeneration, his introduction of the two level-three degenerations, both of which can
be understood as special forms of the ψ-degeneration, makes this remark clearer. First,
Schubert introduces η-degenerations as ε-degenerations wherein all three vertices a, b, c
lie infinitely close to a given point s. The dual degeneration, ξ, is obtained by considering
a τ -degeneration wherein all three sides α, β, γ lie infinitely close to a given ray g. These

160 [Schubert, 1880a], p.156.
161 [Schubert, 1880a], p.156.
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degenerations are both infinitely small triangles, inasmuch as all three sides and all three
rays lie infinitely close to one another. However, they differ from ψ because the way
their elements collapse into one another is not general. In particular, the curvature of a
triangle tending toward a ψ-degeneration vanishes, while that of a triangle tending toward
an η-degeneration goes to infinity.

Of course, if this discussion of degenerate triangles sounds contrived, it may partially
be due to the fact that there are several possible models for the geometry of the triangle,
some of which present different singularities; that is to say that there are no intrinsic
descriptions of the degenerate forms triangles may take, and that the latter must be con-
structed. At any rate, this is certainly how things would be perceived by ulterior readers
of this article such as John Semple, who described the aim of Schubert’s classification
of the degenerations of the triangle as a “desingularization of the triangle domain162”.
This means that, of the many ways in which the triangles of a plane can be envisaged
as forming a manifold, Schubert is constructing one in which there are no singularities,
so that for instance the function T , which to a triangle associates the radius of its cir-
cumcircle, be defined smoothly over the entire manifold. What is striking is that, for
Semple, this is exactly analogous to what Van der Waerden had done to conic sections in
his paper on Chasles’ theory of characteristics, wherein the αµ+βν formula was given its
first widely-accepted proof. And indeed, Semple’s understanding of Schubert’s geometry
of the triangle exemplifies the transformation mathematics had undergone in the first
decades of the twentieth-century in the same manner as Van der Waerden’s proof does.

This concludes Schubert’s enumeration and classification of degenerate triangles, as
all possible coincidences of the main elements constituting the figure which is here called
a triangle have been surveyed. However, Schubert ends this section by remarking that
there are other degenerations which can arise through the consideration of the analytical
equation of the triangle. By this remark, Schubert is reacting to criticisms expressed by
Halphen through the course of their correspondence, which we discuss in the next chapter.
It suffices to say for now that Halphen had produced counter-examples to Schubert’s
enumerative geometry of the triangle of the same nature as those he had produced to
Chasles’ αµ+ βν formula, by studying the infinitesimal analysis of the degeneration of a
triangle. Schubert, in his paper, brushed away these modes of degeneration by excluding
them a priori from the systems of triangles on which his formulae bore, so as to save

162 [Semple, 1954], p.80. See also pp.83-84, especially the section called “Schubert’s triangle variable”.
Semple, a student of Baker at Cambridge, is also the co-author with Roth of a 1949 textbook in algebraic
geometry wherein a long chapter is devoted to enumerative geometry, [Semple & Roth, 1949], pp.296-342.
From this document, a glimpse into the profound transformation of enumerative geometry in the wake
of Van der Waerden’s papers can be gained. On Baker and Semple, see [Barrow-Green & Gray, 2006],
especially pp.342-349.
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them from Halphen’s counter-examples163. We will come back to this issue later (see
section 8.2.4). For now, we turn to Schubert’s solution of the Charakteristikenproblem for
triangles.

7.4.3 Coincidence formulae for triangles

The second section of the paper gives formulae between the condition symbols defined
previously. These formulae are classified by degree. Consequently, Schubert begins with
first-degree formulae, that is to say coincidence formulae between the symbols for con-
ditions of dimension one, namely a, b, c, α, β, γ, ε, τ, ϑa, ϑb, ϑc. Whilst producing these
formulae, Schubert purposefully eschews mentions to the principle of correspondence, in-
stead preferring to speak only of coincidences. And yet, it is difficult not to see in them
direct applications of the principle of correspondence as he had used it in the Kalkül, and
in particular in the section on coincidence formulae. Indeed, the very first coincidence
formula on triangles produced by Schubert is the following:

b+ c− α = τ + ϑa

which he justifies by considering the point-pairs formed by the vertices b and c of the tri-
angles in a system. Such point-pairs, Schubert explains, coincide only in τ -degenerations
or ϑa-degenerations, as follows from the description of first-order degenerations given
previously164. However, this explanation seems lacking when not supplemented by the
knowledge that coincidences can be viewed as fixed points of correspondences, thus justi-
fying the b+ c term in this formula. The term α itself is not even mentioned in Schubert’s
explanation. In fact, a proof for this formula, very similar to those Schubert routinely
produced in the Kalkül (such as the one given in subsection 3.2 of this chapter), can easily
be obtained.

Indeed, considering the system of point-pairs (b, c) deriving from a system of trian-
gles, their Verbindungsstrahl is by definition α. The condition that b and c coincide whilst
remaining on the ray α is indeed τ + ϑa, for the reasons given by Schubert. Now, consid-
ering a pencil of rays turning about some arbitrary point p, one can form the following
correspondence: to each ray passing through b correspond the ray passing through c, and
conversely. This is not a (1, 1)-correspondence in general, as there might be several tri-
angles in the system with the same vertex b. Since the symbols b and c also stand for the
conditions that these vertices lie on a given ray, and by the principle of correspondence,

163This is not unlike what Lakatos called the “monster-barring strategy”, in Proofs and Refutations,
see [Lakatos, 2015], p.45.

164Remember that the higher-order degenerations are special cases of these ones, and thus need not
appear in this first-degree formula.
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the number of coincidences in this correspondence b + c. Besides the degenerate cases
mentioned previously, such a coincidence can only arise if the ray is α, that is to say if
α goes through the given point p, which is a condition also denoted by the symbol α.
Hence,

b+ c = α + τ + ϑa

which is obviously equivalent to the formula stated by Schubert.
Several simple operations on such formulae are allowed. For instance, by permuting

the vertices and sides, analogous formulae can be obtained, such as

c+ a− β = τ + ϑb

Furthermore, all these formulae can be transformed into their dual form, through a simple
passage from Latin to Greek letters165 (as well as few inversions of Greek letters, such as
ε and τ). For instance:

β + γ − a = ε+ ϑα

Finally, these formulae can be combined through simple algebraic operations. For in-
stance, substracting the first formula from the last one, Schubert obtains:

a+ b+ c− α− β − γ = τ − ε

Notice that throughout this section, Schubert constantly puts the Lagebedingungen on
the left-hand side, and the degeneration conditions on the right-hand side. From these
algebraic manipulations, Schubert gathers that it is not possible to express any of the
degeneration-symbols solely in terms of fundamental conditions. However, τ and ϑa, ϑb, ϑc
can all be expressed as a function of fundamental conditions and ε. Therefore, so can
ϑα, ϑβ, ϑγ owing to one of the dual formulae.

To move to second-order formulae, Schubert employs two methods. He either forms
coincidences of a higher order (for instance, coincidences in first-order degenerations) and
uses the principle of correspondence, or multiplies first-order formulae. Furthermore, other
elementary methods such as duality and linear combinations are obviously still required
and used.

An example of this first method is the following166: remember that ωa-degenerations
were described as ε-degenerations in which the vertices b and c coincides. Thus, from
a system of ε-triangles, one can form a system of point-pairs (b, c). Forming a corre-

165Such uses of notations to emphasize duality in formulae was of course nothing new, see for instance
[Chemla, 1989].

166Once again here, Schubert does not write the proof entirely, nor does he mention the principle of
correspondence as necessary to the obtention of this formula.
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spondence between rays turning about a given point p such that to a ray containing p
correspond the rays containing c, and conversely, coincidences between rays can only arise
when b and c coincide (which, since all the triangles are already ε-degenerations, means
that the triangle is actually a ωa-degeneration), or when the side α goes through the given
point p. Since the triangle is a ε-degeneration, all three sides α, β, γ coincide, so that this
condition can be denoted by the symbol g. Thus, by the principle of correspondence,
εb+ εc = ωa + εg, or, as Schubert writes it:

ωa = εb+ εc− εg

An example of the second method, with which Schubert is once again rather concise,
is the following. Multiplying by c the very first formula b+ c− α = τ + ϑa, one obtains:

bc+ c2 − αc = τc+ ϑac

However, τc = τs, as, in a τ -triangle, all three vertices coincide. Similarly, ϑac = ϑas.
Furthermore, αc = c2 + α2, per the incidence formulae given at the very beginning of the
paper. Hence, we obtain the following formula stated without proof by Schubert:

bc = α2 + τs+ ϑas

In the same manner, over the course of the next pages, Schubert goes on to produce
some 47 formulae of order up to 5 (to which must even be added dual forms). The
real import of this plethora of formulae only appears clearly in a subsequent “survey”
(Ueberblick), wherein Schubert notes that what he has shown is in fact that, for each
dimension, a certain subset of conditions suffices to express all others167. For instance,
the first-order formulae and our remarks regarding the expression of degeneration-symbols
show that all conditions of dimension one can be expressed as (linear) algebraic functions
of the seven following symbols:

a, b, c, α, β, γ, ε

As Schubert notes, this is by no means a specificity of this very set of symbols. The
proposition remains true, for instance, if ε is replaced by τ . What is important, however,
is that 7 is a minimal number of symbols, that is to say that no smaller set of symbols can
suffice to express all others via algebraic combinations. While Schubert does not explicitly
prove this fact, it follows rather clearly from his formulae. The question remains, however,
as to why these symbols are said to be able to capture ‘all conditions’, and not just those for
which symbols were expressly created. The answer is that Schubert thinks of geometrical

167 [Schubert, 1880a], pp.163-164.
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conditions as composed of incidences and coincidences of fundamental objects, which are
precisely what the symbols he defined capture. From the highly-structured ontology and
architecture of his theory derives the meta-mathematical claim that indeed, all conditions
on triangles are captured by these symbols.

For second-order formulae, the number of necessary symbols rises up to 17; then,
22 are required to characterize conditions of dimension 3. Per duality, the numbers for
dimensions 4 and 5 are respectively 17 and 7 as well. Note that the duality applies also
to the symbols composing these lists. For instance, conditions of dimensions 5 can all be
expressed as (linear) algebraic functions of the following symbols:

εb2c2, εa2c2, εa2b2, τβ2γ2, τα2γ2, τα2β2, ψs2g

which correspond to those of the list of symbols characterizing first-order formulae.

[Schubert, 1880a], p.164.

7.4.4 A theory of characteristics for triangles

These lists effectively can serve as sets of characteristics for systems of triangles of each
order, in the same way as the symbols µ, ν (or, alternatively, Zeuthen’s symbols ω, λ
for the two degenerations of conics) served as characteristics for systems of conics of
dimension 1. As an example, Schubert considers the systems of triangles inscribed in a
given curve of order n, that is to say the systems of triangles whose vertices a, b, c all
lie on this given curve. It is of course a system of level 3, in which the 17 characteristic
conditions of dimension 3 are satisfied by finite numbers of triangles, all of which can be
easily computed. For instance, b2c = b2α = a2α = 0, as the condition that b lies at the
intersection of two given rays, whilst being on the given curve, is generally satisfied by no
triangle; while β2γ = n(n−1)2. Indeed, β2γ represents the condition that the side β goes
through two given points and that γ goes through one given point. By the principle of
conservation of number, one can suppose that these three given points are all on the given
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curve, from which it follows, according to Plücker’s formula n∗ = n(n − 1), that there
are n(n − 1)(n − 1) triangles satisfying this condition168. By expressing the third-order
condition αβγ as a function of some of these 17 symbols, and by plugging in the finite
values obtained for the system of triangles inscribed in a curve, Schubert is then able to
compute rather easily that there are n(n − 1)(2n − 3) triangles inscribed in a curve of
order n whose sides go through three given points.

Finally, with these formulae and minimal sets of symbols, Schubert is equipped to
derive (ableiten) a series of Produktensätze for triangles169, that is to say symbolical ex-
pressions for the number of triangles common to two systems of triangles of dimension i
and 6 − i. These expressions are the intended equivalent to Chasles’ αµ + βν formula,
which Schubert reads as expressing the number of conics common to two systems of di-
mension 1 and 4, characterized respectively by the symbols (µ, ν) and (α, β) (where α
and β are actually functions in the characteristics of the second system, see 7.3.3). Of
course, there are different such formulae for the different values of i, just like to Chasles’
formula corresponded Cremona’s aρ+ bσ + cτ formula for the number of conics common
to two third-order systems, which are characterized by the three numbers ρ, σ, τ (where
the same caveat applies).

In fact, Schubert begins by considering not triangles, but rather a system of points b
of level i (i being either 0, 1, or 2), and a system of points of level 2− i. The number of
points common to both systems is either b2, bb′ or b′2 depending on the value of i. Indeed,
if i = 0, then the second system is just a finite set of points b′, and the number of points
common to both systems is the sum of the multiplicities of the b′ as points of the first
system, that is to say the number of points b coinciding with a b′. This can be expressed as
b′2, where b′2 represents the condition for a point b to be given. Conversely, b2 represents
the number of points common to both systems when i = 2. Lastly, when i = 1, both
systems are point-loci of dimension one, that is to say, curves of degree b and b′, since
these symbols also stand for the condition that b be on a given straight line. Per Bézout’s
theorem, bb′ therefore represents the condition that a point lie at the intersection of both
loci. Thus, the following expression gives in general the number of intersections of two
systems of points:

b2 + bb′ + b′2

as in each possible case for the value of i, two of these factors will vanish. Alternatively,
this expression can be understood as the general number of coincidences in a system of
point-pairs (b, b′).

168Note that Schubert does not prove this result, but merely states it. It seems difficult, however, to
obtain this number without relying on the principle of conservation of number.

169 [Schubert, 1880a], pp.167-183.
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At this point, Schubert progressively complexifies the figure he is working with, work-
ing his way toward the triangle as previously defined. First, Schubert considers not sys-
tems of point-pairs (b, b′), but systems of pairs of rays α on which a point b lies. He then
enumerates coincidences of such a pair, that is to say the number of elements belonging
to two systems of ‘rays + points on the ray’ of respective levels i and 3− i. Here again,
Schubert considers all possible values of i, forms the symbolic expression for the number
of common elements in the two systems, and adds these expressions as all of them but
one vanish for each value of i. To do so requires knowledge of the number of coincidences
of the previous figures. For instance, for i = 2, Schubert considers two systems of ‘rays α
+ points b on the ray’ and ‘rays α′ + points b′ on the ray’ of respective levels 1 and 2, and
finds the number of their common elements to be equal to αb · b′ + α′ · b2 − b′ · b2; whilst
an analogous formula is obtained for i = 1, wherein the dashes on the letters are merely
switched. For i = 0 and i = 4, the numbers of common elements are respectively b′2α′ and
b2α, as is easily shown. Adding all these numbers, and factoring in terms which he can
recognize thanks to his discussion of the simpler case of the point-pairs, Schubert thus
finds that the number of coincidences of the system of pairs ([α, b], [α′, b′]) (my notation)
is equal to

(b2 + b · b′ + b′2)(α + α′ − b′)

This is the number of pairs in which α and α′ coincide, as well as b and b′.

We shall not go into further technical detail regarding this computation, but it suffices
to say that, adding further points and rays to the figure under consideration, Schubert
eventually finds that the number of triangles common to two systems Σ and Σ′ of level i
and 6− i, with the usual notations, is none other than:

(b2 + bb′ + b′2)(α + α′ − b′)(γ + γ′ − b′)(c+ c′ − α′)(a+ a′ − γ′)

Notice that the product of the first two factors is none other than the previously-obtained
number of coincidences for a simpler figure, just as the first factor of this previous number
was that of coincidences of point-pairs.

However, this formula does not exactly compute triangles, as is clear from the fact that
β does not appear in this formula. In fact, the way it was acquired was by constructing
triangles in the following manner: first there was a point b, then Schubert added a ray α
passing through b, then another ray γ also passing through b, then a point c on α, and
finally a point a on γ (see fig. below). The number of coincidences of these successive
figures was obtained by successive multiplications of factors taking into accounts the
added elements. However, while the last figure reached by Schubert forms a triangle, its
coincidences are not exactly those of a triangle. The number given above, in Schubert’s
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words, counts “how often it happens, that b and b′, α and α′, γ and γ′, c and c′, a and
a′ coincide, counting therefore also these cases in which furthermore β and β′ do not
coincide170”.

However, for two triangles to have a, b, c, α, γ in common, but not β, is only possible in
some degenerate cases. More precisely, this case can only arise in two situations. Either
a τ -degeneration τ in Σ and τ -degeneration τ ′ in Σ′ are such that α and α′, γ and γ′

coincide; or a ϑb-degeneration ϑb in Σ and a ϑb-degeneration ϑb in Σ′ are such that g and
g′, s and s′, b and b′ coincide. The number of these pairs of degenerate triangles must be
subtracted from the formula above to obtain a proper Produktenform. Now, the number
of pairs of the first kind can be written as ττ ′(s2 +ss′+s′2)(α+α′−s′)(γ+γ′−s′), which
expresses the condition that both triangles be τ -degenerations, that their vertices (which
are all collapsed infinitely close to two given points s, s′) coincide, and that their sides
α, α′ (resp. γ, γ′) coincide. A similar number can be given for the second kind of pairs
of degenerations, so that Schubert can write the following expression for the number of
triangles common to two systems Σ,Σ′ of levels i, 6− i:

X =(b2 + bb+ b′2)(α + α′ − b′)(γ + γ′ − b′)(c+ c′ − α′)(a+ a′ − γ′)
−ττ ′(s2 + ss′ + s′2)(α + α′ − s′)(γ + γ′ − s′)
−ϑaϑ′a(s2 + ss′ + s′2)(g + g′ − s′)(b+ b′ − g′)

Such a formula, for Schubert, is not yet a Produktensatz (or a Produktenformel), but
rather a Stammformel (‘primitive formula’) for all possible Produktenformel. Remember
that a Produktensatz, for instance as defined in the 1876 Beiträge or in the Kalkül must
be a sum of products of conditions pertaining to each system, that is to say a formula of
the form171

b1 · e′1 + b2 · e′2 + ..+ bm · e′m

This is not the case for the Stammformel given above. However, the latter is valid for all
values of i, and more crucially, from it derive the Produktensätze for each of these values.
As we have already explained, most of the terms of the Stammformel actually vanish for
each value of i. More precisely, only the factors that have the appropriate numbers (that
is to say, i and 6 − i) of symbols with and without a dash subsist. Therefore, all that

170 [Schubert, 1880a], p.171.
171 [Schubert, 1876a], pp.91-93 ; [Schubert, 1879b], pp.274-277.
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remains to be done is to find out which terms remain each time, and rearrange them
in the desired form. In fact, per duality, only three cases need to be examined, namely
i = 1, 2, 3. Schubert thus devotes the next three sections of his paper to doing just that.

For the sake of brevity, in what follows, we shall focus on the case of two systems of
triangles of respective levels one and five. To obtain this expression, it suffices to expand
the general formula given previously, and to retain only the factors in which the total
degree of symbols with dashes is 1, and the total degree of symbols without dashes is 5.
Thus, the number of common triangles to these two systems, per the Stammformel, is:

x = a′ · (b2αγc) + b′ · (bαγac− b2γac− b2αac)
+ c′ · (b2aγα) + α′ · (b2γac− b2αγa)
+ γ′ · (b2αac− b2αγc)− τ ′ · τs2αγ − ϑ′b · ϑbs2gb

where the · sign is used in the same manner as in the 1876 proof of Chasles’ theorem.
In fact, Schubert goes on to manipulate this formula (for instance by expanding it,

or substituting some of its terms using some of the formulae on conditions obtained
previously) to make it symmetrical, and to conform it to the shape expected of a Pro-
duktenformel. After a few lines of relatively simple such computations, Schubert finally
obtains the following Produktenformel:

x = a′ · εb2c2 + b′ · εc2a2 + c′ · εa2b2

+ α′ · τβ2γ2 + β′ · τγ2α2 + γ′ · τα2β2

+ d′ · ψs2g

Notice the symmetry (or duality) of this formula, as well as the fact that is has seven
terms, that is to say the minimal numbers of conditions required to characterize first- and
fifth-level systems.

With this last formula (and its equivalents for systems of other levels), the enumerative
geometry of the triangle is complete – although Schubert goes on to give a few examples,
to discuss further systems of infinitely small triangles, or even to generalize some of these
results to triangles in space.

Conclusions

Schubert’s enumerative geometry, we have shown throughout this chapter, cannot be
reduced to an application of Boolean logic to geometry, or to an intuitive yet unrigorous
method for computing large numbers of geometrical figures. Rather, it is an intricate

348



7.4. An example: the enumerative geometry of the triangle

symbolism which stems from various sources. The first one is Halphen’s observation that
modules can be meaningfully multiplied. Another one is that all geometrical figures can
be formally constructed from fundamental elements, on which conditions and geometrical
numbers can be defined and represented through symbols. A third and not lesser one is
the influx of methods and results coming from the works of Chasles, Maillard, or Zeuthen,
which Schubert systematically translated and incorporated into his own symbolism.

At the end of our presentation, one may still legitimately question the justifications for
this symbolism, on at least two levels. The first level is that of the coherence and rigour
of Schubert’s computations. How can we know that these reasonings are sound and not
leading to internal contradictions? In particular, what guarantees that juxtapositions of
symbols and products of actual numbers of curves will work hand-in-hand when investi-
gating any given figure, especially in the absence of theorems such as Chasles’ αµ + βν

formula, which, at the very least, grounded Halphen’s theorems. On another level, one
may question the fact that Schubert’s numbers do indeed capture a meaningful geometri-
cal reality. As the case of triangles has made clear, for a systematic enumerative calculus
to hold in general, and to result in the sort of theorems that Schubert pursues (namely
Produktensätze), crucial choices must be made to include certain kinds of degenerations
and to exclude others. But what, then, is being counted by Schubert’s symbols? Even
if the internal coherence of this theory can be proven, what supports the notion that its
results hold any geometrical significance?

The answer to the first of these questions are, unfortunately, beyond the scope of
the present thesis. In fact, those who attempted (and partially managed) to justify
Schubert’s inferential and definitional practices all had to resort to theoretical frameworks
far removed from what is in the limits of our historical episode. The second question,
however, was subject of many debates in the years following the publication of Schubert’s
book. It is to them that we turn in our next and final chapter.
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Chapter 8
From Truth to Significance: The Modernist
Transformation of Enumerative Geometry

8.1 Chasles’ formula at the heart of the modernist
transformation of mathematics

8.1.1 A formula in flux

In the years following the publication of Chasles’ theory of characteristics, many took up
the central question it was designed to answer, namely the enumeration of conic sections
in a plane satisfying five given conditions1. Halphen or Schubert were but two of the many
mathematicians who built off Chasles’ work, either attempting to extend his methods to
other figures, to translate his concepts into a language deemed more rigorous, or even
to incorporate it into a broader theory. And yet, beyond this common question, a few
notations borrowed from the theory of characteristics (such as the symbols µ and ν),
and a few paradigmatic statements or axioms (such as the proposition that through any
five given points always lies one and only one conic section2), there is little of Chasles’
theory which survived into the works of its readers, be it mathematical style3, inferential
practices, notations, or even identification of its general goal or value. This is true at the
scale of individual readers, as we have shown in the previous two chapters; but not only
so. Despite Chasles’ and Schubert’s attempts at providing a theoretical framework with

1Of course, this was only part of Chasles’ project, but concerns about the (theoretical) construction
of these conics were quickly eschewed by subsequent readers of the theory of characteristics, as we have
shown in chapter 6.

2This proposition was necessary for the sort of generality aimed at by these mathematicians, and yet
its validity hinges upon a loosening of the criteria according to which a conic is judged to go through given
points, as is made evident by the fact that this proposition is deemed false in modern-day textbooks; see
for instance [Eiden, 2009], p.52.

3On the notion of mathematical style as a historiographical category, see [Rabouin, 2017].

351



Chapter 8. From Truth to Significance: The Modernist Transformation of Enumerative
Geometry

[Schubert, 1879b] [Halphen, 1878b]

clearly outlined notations, methods, and open problems for others to take up, no unified
disciplinary matrix would structure a collective of enumerative geometers until the theory
was incorporated into algebraic geometry in universities. In fact, this would only happen
well into the 20th century4. The mismatch in mathematical practices appears most clearly
when comparing any two pages borrowed from Halphen’s memoirs and Schubert’s Kalkül,
so much that the sameness of the mathematical questions, results, and concepts at hand
can be questioned5.

There seems to be, however, a much more glaring and pressing discrepancy between
these theories that we need to address. Indeed, the very validity of Chasles’ αµ+ βν for-
mula remains undecided. Already in the controversy between Chasles and De Jonquières,
presented in chapter 5, doubts were cast over the fact that this formula adequately solved
the problem of the enumeration of conics, and the question was left unanswered as to
why it was to be preferred to De Jonquières’ simpler αµ formula. De Jonquières claimed
that his formula derived from perfect algebraic reasoning, and thus, was imbued with the
corresponding kind of exactness, which he distinguished from Chasles’ geometrical esprit
de vérification. However, De Jonquières’ formula quickly ceased to be discussed by geome-
ters (in part because, on a technical level, it fails to abide by the principle of duality, and
leads to many enumerations which are hard to accomodate with a general enumerative
theory, but perhaps also for more contingent reasons, such as De Jonquières’ military du-
ties which prevented him from conducting research and publishing mathematical papers
between 1866 and 1878). By contrast, Chasles’ formula was, as we showed in chapter 6,

4The history of enumerative geometry as a scholarly discipline remains largely to be written. We shall
give a few elements of this history in this chapter, but no systematic study thereof has been conducted.

5On the difficult historiographical question of the sameness of mathematical theorems across time and
space, see [Goldstein, 1995].
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the object of many proof attempts, and most importantly of Halphen’s refutation.
And yet, despite Halphen’s counter-examples and analytical explanation of the con-

ditions of validity of Chasles’ formula, the latter would remain central to Schubert’s
enumerative calculus. Indeed, Chasles’ αµ + βν formula was, alongside Bézout’s theo-
rem, one of the paradigmatic (and, historically, one of the first) examples of this kind of
result which Schubert identified as a “Produktensatz”, that is to say the kind of result
to which the enumerative theory of a certain figure, properly conducted, ought to lead.
But more profoundly, a symbolic play on the very expression αµ+ βν was the key factor
that elicited the creation of Schubert’s symbolism of conditions. Remember that, as we
explained in section 7.1, Schubert had read a brief paper by Halphen as showing that, for
five conditions of respective modules αiµ+ βiν, the symbolical product

(α1µ+ β1ν)× ..× (α5µ+ β5ν)

yielded the number of conics satisfying all five conditions, provided that all symbols
µiν5−i (that is to say, all symbols not involving any of the αi’s or βi’s) be interpreted as
the numbers of conics satisfying the elementary conditions ‘passing through a given point’
(resp. ‘touching a given straight line’) i (resp. 5 − i) times. Schubert went on to unify
this symbolism by letting µ and ν denote said elementary conditions, and by introducing
products of condition-symbols as their conjunctions. In every use of Schubert’s symbolic
calculus on conditions for conics, therefore, lies a hidden hypothesis. This hypothesis
is weaker than that of the validity of Chasles’ formula itself; it rather consists in the
fact that all conditions involved in a specific symbolic computation have modules of the
form αµ + βν. More largely, the validity of Chasles’ formula is, strictly and logically
speaking, not a hypothesis upon which Schubert’s calculus hinges. Nonetheless, it appears
clearly from its very architecture, and the purposes it is geared towards, that Schubert’s
abzählende Geometrie (at least in its original form) would lose much of its scientific value,
were we to accept Halphen’s claim that Chasles’ formula is incorrect.

One thing must be made clear: it was not out of ignorance of Halphen’s counter-
examples that Schubert maintained the validity of Chasles’ formula. In fact, the 1876
proof of said formula written by Schubert and Hurwitz explicitly mentions Halphen’s
counter-examples, and is presented as a response to them. Schubert even wrote a review
of Halphen’s memoirs for the Jahrbuch of the year 1878 (published in 1880), which he
concluded with the following words6:

6“Therefore, there seem to be now in the theory of characteristics two possible directions for research.
In the first one, the complete consideration of all systems and all conditions is essential. Then, one
has to sacrifice the simplicity of representation of the number being sought, which is provided by the
analogy with Bézout’s theorem. In the second one, one sacrifices some systems for which the formulae
become invalid, and which naturally would have to be precisely characterized; but one preserves the
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Demnach scheinen jetzt in der Charakteristikentheorie zwei Untersuchungsrich-
tungen möglich zu sein. Bei der ersten ist die vollständige Berücksichtigung
aller Systeme und aller Bedingungen wesentlich. Dann hat man die Einfach-
heit der Darstellung der gesuchten Zahl nach der Analogie des Bezout’schen
Satzes zu opfern. Bei der zweiten opfert man einige Systeme, für welche die
Formeln ungültig werden, und welche natürlich genau charakterisirt werden
müssten; man bewahrt sich aber die einfache Darstellung der gesuchten Zahl
als Summe von Producten. Nach des Referenten Ansicht sind beide Unter-
suchungsrichtungen theoretisch gleich berechtigt.

In later publications, such as the 1879 Kalkül and the 1880 paper on triangles, Schubert
would also acknowledge the existence of Halphen’s critique, and put the general limitation
on the formulae derived in these texts that they must only be applied to systems containing
no “Halphenesque degenerations7”. Schubert would not discuss how one is to know a priori
whether a given system does or does not contain such degenerations, or even what their
presence does to these formulae; despite having acknowledged the importance of this task
in the review quoted above. Furthermore, whilst Schubert made such acknowledgements
in passing in several texts, it is safe to say that Halphen’s degenerations had no impact on
his mathematical practice. These degenerations are never attributed symbols, nor do they
affect Schubert’s symbolic calculus in any way. Meanwhile, after the publication of his
memoirs on the systems of conics, Halphen made very few public comments on Schubert’s
calculus or on Chasles’ formula more generally, one notable exception being a brief note
for the Société Mathématique de France on the enumerative geometry of the triangle.
Beneath these timid public exchanges, however, Halphen and Schubert had a much more
incisive dispute through an epistolary exchange, to which Zeuthen largely contributed,
writing to and receiving letters from both at the same time8. We shall return to these
public and private exchanges in section 8.2.

This undecidedness surrounding a formula at the heart of a well-known mathemat-
ical theory did not go unnoticed. By the late 1870s, the German mathematician Felix
Klein was actively corresponding with Schubert, albeit mostly on different topics9. Their
correspondence indicates that while he did not work on this question himself, Klein was

simple representation of the number being sought as a sum of products. According to the reviewer, both
directions are theoretically equally justified”, [Schubert, 1880c], p.430.

7Schubert’s term is “Halphen’sche Ausartung”, see [Schubert, 1880a], p.158. In the Kalkül, Schubert
merely says Halphen’s “doubts” (Zweifel) concerning Chasles’ formula were published too late to be
integrated to the book, see [Schubert, 1879b], p.344.

8Unfortunately, the sole extant documents are the letters received by Halphen from both Schubert
and Zeuthen, except for a few excerpts of letters by Halphen to Zeuthen, which the latter communicated
to Poincaré when the collected works of Halphen were being edited.

9Schubert’s letters to Klein are preserved in the Universitätsbibliothek Göttingen; Cod. Ms. F. Klein
11, in particular Briefe n°782-795. I thank François Lê for drawing my attention to these sources.
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aware of the lingering disagreement between Schubert and Halphen. Klein was not yet
the influential professor and powerful organizer of mathematical research which he would
become at Göttingen10; nonetheless, he already had access to a pool of promising stu-
dents. In 1884, while still a professor at Leipzig11, Klein steered one such student toward
the study of enumerative geometry, and in particular the validity of Chasles’ formula:
this student was Eduard Study12 (1862-1930). Despite his initial reluctance to work on
this problem, Study obtained a new proof for Chasles’ formula, and attempted to fully
respond to Halphen’s criticism thereof13. Crucially, Study put forth a new kind of ar-
gument: Halphen’s counter-example did not refute Chasles’ formula per se, but only
one interpretation thereof – and not necessarily the most appropriate one. Shortly after
the publication of Study’s dissertation, Klein received a rather bitter letter by Zeuthen,
by then an internationally recognized expert of enumerative methods14. In this letter,
Zeuthen lamented Study’s reluctance to discuss the matter with him, and rejected the
claim that the problem had been solved once and for all. Halphen’s untimely death in
1889 meant that his potential responses to Study’s work were never formulated – and the
meeting in Paris the two mathematicians had in 1886 had been rather unproductive15.

In 1890, therefore, with no end in sight to these disputes, Klein took it upon himself
to write to Zeuthen once more to request a public and official response. Zeuthen replied
with a letter which was immediately published in the Mathematische Annalen, which
Klein then edited16. In this letter, Zeuthen reiterated his opinion that Study’s work was
based on a misunderstanding of the very problem Halphen had set out to solve, and that
Halphen’s theory of conics, as well as his refutation of Chasles’ formula, still held. Study
publicly rebuked Zeuthen’s letter in Mathematische Annalen some two years later, only
to trigger another attack by Zeuthen17 in the very same journal. This controversy in

10 [Rowe, 1989].
11Klein was a professor in Leipzig between 1880 and 1886. There, he led an influential seminar, to which

participated Adolf Hurwitz, Walter Dyck, or even Giuseppe Veronese, and where scientific exchange, in
particular between France and Germany, was promoted; see [Rowe, 2018], pp.120-124. The presence at
this seminar of Hurwitz, who had already studied under Klein in Münich, and for whom Klein would
develop a great esteem ( [Rowe, 2018], pp.172-175), may have also played a role in stimulating Klein’s
interest for enumerative problems.

12On Eduard Study’s life, see [Hartwich, 2005], in particular chapters 3 and 5 for Study’s dissertation
under Klein and the later discussion with Zeuthen on related questions.

13This dissertation was defended on October 27th 1885 and printed by Teubner ( [Study, 1885]), only to
be immediately re-published in Mathematische Annalen via two papers ( [Study, 1886b], [Study, 1886a]).
There are only very slight changes between both versions, which we will discuss in the third section of
this chapter.

14While we shall not insist on it in this chapter, the rise of international collaboration in mathematics,
to which Klein and Hilbert were important actors, is an important factor for the history of enumerative
geometry in the wake of these initial controversies.

15Study visited Paris alongside Hilbert, as part of a trip documented in [Reid, 1986], pp.20-27.
16 [Zeuthen, 1890].
17 [Study, 1892b], [Zeuthen, 1893].
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the open was abruptly (and unsatisfactorily) cut short by the editorial board (and in
particular Klein), as Lange explains, in his review of this exchange for the Jahrbuch18:

Nachdem wir so die Streitfrage erläutert haben, meinen wir, die Worte wieder-
holen zu sollen, durch welche die Redaction der Mathematischen Annalen die
Discussion schloss: “Nachdem in der zwischen den Herren Study und Zeuthen
schwebenden Streitfrage beide Autoren ihre Ansicht ausführlich dargelegt haben,
kann die Redaction der Mathematischen Annalen von ihrem Standpunkte aus
die Discussion um so mehr als abgeschlossen ansehen, da die beiderseitigen
Ansichten in sachlicher Hinsicht nicht mehr so sehr differiren, — hat doch
Hr. Study die Correctheit sämtlicher Entwickelungen von Halphen ausdrück-
lich zugestanden und andererseits Hr. Zeuthen wiederholt Study’s eigenen
Standpunkt als einen möglichen anerkannt”.

How exactly are we to understand this coexistence of two ‘standpoints’ on the question
of the validity of a formula? Klein’s editorial authority may have put an end to these
debates for a while, but the epistemic unrest, which had begun with the controversies
between Chasles and De Jonquières, Halphen and Schubert, and now Zeuthen and Study,
was still very much alive. In fact, both Zeuthen’s and Study’s last contributions to this
polemic were very much arguing for considerably more than the merits of their specific
standpoints. Study, in 1892, concluded by asserting that Zeuthen “had succeeded neither
in defending Halphen nor in attacking Study19”; while Zeuthen, in his 1893 response,
maintained that “Study, who has saved the answer [that is to say, Chasles’ formula], must
have altered the question20”.

At the turn of the 20th century, a consensus would form in favor of the presentation
given in texts such as Zeuthen’s entry on “enumerative methods” for Klein’s and Meyer’s
Encyklopädie21, or in Corrado Segre’s teaching at the University of Torino22. For these

18“Having thus explained the question in dispute, we believe that we should repeat the words with
which the editorial team of Mathematische Annalen closed the discussion: ‘Both authors having explained
their views in detail on the question in dispute between MM. Study and Zeuthen, the editorial team of
Mathematische Annalen can, from their point of view, consider the discussion all the more as closed, as
the respective views of both sides no longer differ so much from a factual point of view, - since Mr. Study
has expressly confirmed the correctness of all the developments of Halphen, and, on the other hand, Mr.
Zeuthen repeatedly acknowledged that Study’s own position was possible”, [Lange, 1895], p.627. This
is more or less a quotation of the footnote (in German) added by the editorial board at the end of the
last letter (in French) written by Zeuthen for the journal. The reviewer, Ernst Lange, wrote a doctoral
dissertation on quadrics under the supervision of Felix Klein (and Wilhelm Scheibner) in Leipzig in 1882.

19“Weder die Vertheidigung Halphens noch der Angriff gegen mich ist ihm gelungen”, [Study, 1892b],
p.562.

20“M. Study, qui a sauvé la réponse, doit avoir modifié la question”, [Zeuthen, 1893], p.542.
21 [Zeuthen, 1905], pp.291-293; 303-304. See also Pieri’s translation and alteration of the aforemen-

tioned paper, [Pieri, 1915], pp.305-306; 319-322.
22See [Segre, 1890], pp.238-239.
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geometers, Chasles’ formula was incorrect, as it was limited by the frequent presence of
Halphen’s third degeneration for conics. The only (valid) proofs for this formula, such
as Hurwitz’s or Study’s, were then thought to necessarily rely on the hidden assumption
that they operate on systems free of such degenerations. However, over this period, the
issues perceived by enumerative geometers to be the most crucial to address gradually
shifted from Chasles’ formula (and theory of characteristics) to the more fundamental
principles constructed in its wake, such as that of the conservation of number, or that of
correspondence, which also had been the subject of several disputes and reinterpretations.
The perceived unrest pervading the budding field of enumerative geometry was such that
Hilbert thought useful and necessary to include it into his well-known list of 23 problems
presented in Paris before the 1900 International Congress of Mathematicians23.

In a surprising turn of events, the series of papers which are usually considered to have
first solved (at least partially) Hilbert’s fifteenth problem would turn Chasles’ αµ + βν

formula into a rather simple consequence of a new algebraico-topological framework for
enumerative geometry at large. These are the papers published in the late 1920s by the
Dutch geometer Baartel Van der Waerden, and the well-known series of papers called Zur
Algebraische Geometrie which he published in Mathematische Annalen some ten years
later24. Even with the academic success met by Van der Waerden’s foundational work,
and its lasting influence over the concepts, methods, and axiomatic frameworks in use
in algebraic geometry over the decades following his publications, and consequently the
stabilization of the truth-value of Chasles’ formula throughout the second half of the
20th century (coupled with a sharp decrease of its centrality to enumerative geometry),
dissenting voices would still be heard again at times25.

Modern-day mathematicians, following in the footsteps of Van der Waerden and many
others, are well-equipped to understand the many resurgences of discussions over Chasles’
αµ+βν formula26. In a nutshell, the profound problem underpinning these debates is that
there are several ways to construct a space of conics in which to compute enumerative
numbers. Starting from the variety of smooth conics L (which is defined unambiguously),
the enumerative problem at hand here is to compute the number of intersections of various
sub-varieties of L whose dimensions add up to that of L itself. To compute this number
using the techniques of modern algebraic geometry, however, one must add boundary
points to this base variety, so that we obtain a variety that is both projective and compact.
This operation, called compactification, is neither unique nor trivial: as Eisenbud and

23 [Gray, 2000], p.178.
24 [Schappacher, 2007].
25Most notably, see [Casas-Alvero & Xambò-Descamps, 1986].
26The mathematical exposition in this paragraph is borrowed from [Casas-Alvero & Xambò-Descamps,

1986] and [Kleiman, 1976a]. I am also indebted to Patrick Popescu-Pampu for his help with the mathe-
matical details in this section.
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Harris put it in their course on algebraic geometry27:

If we are lucky, the boundary points of the compactification still parametrize
some sort of geometric object we understand. In such cases we can use this
structure to solve geometric problems. But as we shall see, the boundary can
also get in the way, even when it seems quite natural. In such cases, we might
look for a “better” compactification... but just how to do this is a matter of
art rather than of science.

Even in the case of the triangle, whose enumerative geometry we discussed in the previous
chapter (see 7.4), there are several ways in which one can add infinitely small triangles
to the variety of proper triangles (or, in the words of J. G. Semple, to ‘desinguralize’ the
domain of this figure, and to define a ‘variable triangle’ on which one can carry out enumer-
ative procedures). Depending on this choice, the truth-value of Schubert’s Produktensatz
for triangles discussed previously can vary. And, as Eisenbud and Harris pointedly noted,
it always remains an open, extra-mathematical question to decide whether or not the
chosen compactification yields results which are true to the original, geometrical intuition
underlying the enumerative problem at hand.

Without going into too much detail here, one can still offer a potent ‘retrospective
diagnosis28’ of the debates surrounding Chasles’ αµ+ βν formula by saying that Study’s
proof thereof operates on a certain variety, which Van der Waerden later identified and
named ‘the variety of complete conics’ (a term still in use today). This variety can be
defined as the closure W1 in P5×P∗5 of the graph W0 of the map α : P5−∆ −→ P∗5−∆∗,
where ∆ represents the set of degenerate conics, and where α maps a (non-degenerate)
conic locus to its conic envelope. W0 can be interpreted as the (open) set of all non-
degenerate (complete) conics. Halphen’s three modes of degeneration A,A∗, B for conics
can be defined in the variety of complete conics; so thatW0 = W1−(A∪A∗) (as A and A∗

are algebraic hypersurfaces of P5 × P∗5, which meet transversally along B). However, this
framework is not enough to form a counter-example to Chasles’ formula. Halphen’s next
step in refuting said formula was, in this retrospective diagnosis, to demand that a solution
(that is to say a complete conic C) to an enumerative problem X only be accepted if there
exists some homography σ (that is to say a linear projective transformation of P2) such
that C does not satisfy σ(X). For the sake of simplicity, here, we can think of X as an
algebraic equation R(C,F ) = 0, invariant under projection, where C is the variable conic
and F some given elements of the plane; as to define properly an enumerative problem
would take us too far. For instance, if K is a contact problem, a solution C common to all

27 [Eisenbud & Harris, 2016], p.290.
28We borrow this term from the history of medicine, where it refers to “the employment of modern

biomedical categories as a perfectly valid way to talk about disease in the past”; [Foxhall, 2014], p.356.

358



8.1. Chasles’ formula at the heart of the modernist transformation of mathematics

enumerative problems in the orbit of K is improper, because it has the required contacts
regardless of the actual position of the given objects which it ought to touch. According
to this diagnosis, Halphen’s enumerative geometry is obtained by further restricting the
space of solutions to an enumerative problem29, and his memoirs successfully showed that
such a restriction necessarily negates Chasles’ formula.

Our purpose going forward will not be to assess the relative merits and drawbacks of
this contemporary explanation of past debates, something which historians have rightly
warned against for quite some time now. However, this detour has shown two things. The
first is that the mathematical disagreement over Chasles’ formula was a profound one;
and one in which the technical aspects of the mathematics of the historical actors involved
did limit what could or could not be said about the validity of this formula. Without the
insights of early 20th-century topology and structural algebra, the distinctions required to
carefully delineate the conditions of validity of Chasles’ formula seem nigh impossible to
clarify. Perhaps more important, however, is the fact that the very disciplinary identities
of geometry embodied by the various collectives of mathematicians involved in the late
19th-century debates over Chasles’ formula structured said debates in ways which made
this contemporary (dis)solution of the problem unreachable. This is where lies the second
import of this brief presentation of contemporary solutions: it emphasizes the profound
transformation undergone by mathematical life at the turn of the century.

For Van der Waerden, these disputes of the past between Zeuthen and Study over
Chasles’ formula had little mathematical value, and bore merely on “the honor of Halphen’s
memory30”. Besides its technical content, Van der Waerden’s paper on the theory of char-
acteristics brought new epistemic norms, a new understanding of the rules and purpose of
mathematical activity, which made the many arguments of the aforementioned historical
actors devoid of any interest. In fact, Van der Waerden could as well have agreed with the
editors of Mathematische Annalen and declared Study’s and Zeuthen’s standpoints to be
equally valid. The mathematical truth of Chasles’ formula, for Van der Waerden, hinges
crucially upon a certain arbitrary choice, namely that of a base variety, only after which
the very question to which Chasles’ formula is supposed to answer can be properly defined

29In technical terms, Halphen blew up the variety of complete conics along the subvariety B. To
blow up a variety X along a subvariety Y , here, means to construct a particular regular birational map
π : X∗ −→ X so that π is an isomorphism away from Y , and π−1(Y ) is a hypersurface of X∗; see [Harris,
1992], pp.80-86. In informal terms, π is obtained by replacing the subvariety Y by the tangent directions
jutting outward from it. Typically, this is used in modern algebraic geometry to resolve the singularities
of an algebraic variety defined over an algebraically closed field of characteristic zero, by blowing up
iterably suitable smooth subvarieties singular loci; see [Kollár, 2007], ch.1; and [Fulton, 2008], pp.82-87.

30“Auf die scharfe Polemik zwischen Study und Zeuthen, die sich an die hier geschilderte Study’sche
Auffassung geknüpft hat, brauchen wir hier nicht einzugehen, da sich weniger die Sache selbst betraf als
die Frage nach demWerte anderer Untersuchungen von Halphen und die Ehre seines Andenkens”, [Van der
Waerden, 1938], p.646.
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– so much that even elementary concepts such as that of a “number of solutions” (that
is to say, number of intersections of systems of complementary dimensions) are given a
formal definition through his general framework for algebraic geometry.

This is not to say that Halphen, Schubert, Zeuthen, or Study failed to acknowledge that
the mathematical truth of a proposition depends on the proper definition and delineation
of the concepts involved in its expression. On the contrary, this final chapter shows that
the disputes surrounding Chasles’ formula between 1876 and 1893, that is to say between
the publication of Halphen’s counter-examples and Zeuthen’s final letter to Klein and
Study, were as much a technical mathematical exchange as a debate about the very
identity of mathematics as a discipline and cultural practice. As such, I argue, they
encapsulated epistemic tensions and divides at the very core of what has been described
in recent decades as the ‘modernist transformation of mathematics’ at the turn of the
20th century.

8.1.2 Mehrten’s thesis and the notion of mathematical mod-
ernism

In his 1990 landmark study Moderne–Sprache–Mathematik, German historian Herbert
Mehrtens argued that mathematics as a scientific discipline and as a cultural practice
underwent a profound transformation in the last decades of the 19th century. This trans-
formation was not merely a fast accumulation of theorems, concepts, or proofs, but a
transformation of the very rules of mathematical activity - be them semiotic31, epistemic,
or collectives rules. Arguing against a more traditional narrative focusing on the so-called
Grundlagenkrise, that is to say the rise of competing foundational programmes32 which
arose in the wake of the discovery of logical paradoxes (such as Russell’s paradox which
undermined Frege’s logical analysis of numbers), Mehrtens proposed to view this histor-
ical episode as “the upheaval of the concepts of truth, meaning, object, and existence in
mathematics”. In other words, for Mehrtens, foundational disputes were but one facet on
a more radical change in modes of objectivity, regimes of truth, semiotic practices, and the
very cultural identity of mathematics. This latter identity went under particular strain
as the idea arose that mathematics was a “pure language of strictly regulated denomina-
tions”, that is to say a discourse which is about nothing other than itself33. This change,

31Mehrtens is adopting in this book a Foucaldian approach, especially in his treatment of mathematics
as a discursive formation, which we shall not attempt to summarize here, in the interest of brevity. On
the influence of Foucault on the historiography and philosophy of mathematics, see [Rabouin, 2015].

32Especially those known as the “Big Three”, namely logicism, intuitionnism, and formalism. See
[Shapiro, 2000], pp.107-200.

33“[Ich] gebe eine neue Interpretation der sogenannten ‘Grundlagenkrise’ der Mathematik, die nicht
Krise der ‘Grundlagen’ war, sondern die Erschütterung der Begriffe von Wahrheit, Sinn, Gegenstand,
Existenz in der Mathematik. Diese Begriffe bezeichnen weniger epistemologische Grundfesten der Wis-
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Mehrtens argue, brought about another in the politics of (mathematical) discourse, and
in the relations of the mathematicians to their textual output and its meaning.

The ideal-type of modern mathematician, for Mehrtens, was best described as a “free
mathematician” and as a “creator34”; that is a mathematician who has free reign over
the domain of their discourse, and whose professional identity is defined by its autonomy
within the bounds of a certain language. Examples of such ‘modern mathematicians’
include George Cantor and David Hilbert, to quote but a few. The semiotics of Hilbert’s
famous Grundlagen der Geometrie illustrated Mehrtens’ characterization of the modernist
turn: in it, symbols are used with no a-priori reference to objects existing outside the
discourse (whether it be physical objects, a model of some phenomenal field, or even
abstract objects conceived prior to the utterance of mathematical speech). Furthermore,
to this semiotic practice is tied a specific understanding of the mathematician’s task,
laid out explicitly by Hilbert in this same book: “to bring out as clearly as possible the
meaning of the different groups of axioms and the scope of the conclusions to be derived
from the individual axioms35.

The emergence of this ideal-type was not that of an hegemonic model for mathematical
activity: in fact, a key feature of Mehrtens’ narrative is that the so-called ‘moderns’ are
always defined by contrast with another emerging ideal-type, namely that of the ‘counter-
moderns’ (Gegenmoderne) (such as Felix Klein or Henri Poincaré). Counter-moderns,
according to Mehrtens, pushed back against the perceived dangers of the ‘arbitrary will
of the creator36’. Counter-moderns wanted to secure epistemic stability by inscribing
mathematical concepts and truth in an external system of references, for instance relying
on ‘intuition’ (Anschauung) or conventions born from experience. This is not to say that
mathematics lost its autonomy, and they certainly did not advocate for experimental
methods in mathematics, but rather that the meaning of mathematical discourse (and
therefore its certainty) derived from such extra-textual realm37. Moderns, of course,

senschaft als die großen Orientierungsmarken, an denen sich das Selbstverständnis einer Wissenschaft,
ihre Identität bestimmt. [..] Der Diskurs der Mathematik um die reine Sprache strikt geregelten Bezeich-
nens als Teil kultureller Produktion und die in ihm hergestellten Identitäten bedürfen einer theoretischen
Erörterung”, [Mehrtens, 1990], p.8.

34“Der Meister der Moderne dagegen bestimmt sich als ‘freier Mathematiker’, als ‘Schöpfer’”,
[Mehrtens, 1990], p.10.

35“Die vorliegende Untersuchung ist ein neuer Versuch, für die Geometrie ein vollständiges und
möglichst einfaches System von Axiomen aufzustellen und aus denselben die wichtigsten geometrischen
Sätze in der Weise abzuleiten, daß dabei die Bedeutung der verschiedenen Axiomgruppen und die Trag-
weite der aus den einzelnen Axiomen zu ziehenden Folgerungen möglichst klar zu Tage tritt”, [Hilbert,
1899], p.1. For a more careful interpretation of Hilbert’s understanding of the role of axioms, which does
not fully fit with Mehrtens’ categories, see [Detlefsen, 1986].

36“Die Gegenmoderne wirft [dem Moderne] ‘Schöpferwillkür’”, [Mehrtens, 1990], p.10.
37“Die andere Variante Gegenmoderne [..] bemüht die ‘Gabe’ der ‘Anschauung’. [..] Eine Mathematik,

die ‘in der Anschauung wurzelt’, muss ihrer ‘Natur’ gemäss für sie Sinn haben. [..] Es geht nicht
um nützliche oder anwendbare Mathematik, nicht um konkrete Zusammenarbeit mit Technikern oder
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refused such saving grace external to the mathematical discourse itself. Counter-moderns,
in Mehrtens’ narrative, are not viewed as resisting some ineluctable changes, but rather
actively constructing a counter-model, another possible mathematical discipline in the
wake of a radical upheaval of its norms and objects. Such a counter-model is illustrated
for instance by Poincaré’s well-known review of Hilbert’s aforementioned opus, which
ended with the following words38”:

Le point de vue logique paraît seul l’intéresser. Étant donnée une suite de
propositions, il constate que toutes se déduisent logiquement de la première.
Quel est le fondement de cette première proposition, quelle en est l’origine
psychologique, il ne s’en occupe pas. [..] Son œuvre est donc incomplète; mais
ce n’est pas une critique que je lui adresse. Incomplet, il faut bien se résigner
à l’être.

Mehrtens draws the portraits of two models for the cultural status of the mathematician,
whose clash was at the heart of what he described as the conflicted rise of modern math-
ematics. As such, this transformation was rife with political implications, as the very
nature of the social and political authority of mathematics, or even its relation to the real
it had served to model for decades, were under strain.

8.1.3 At the junction of cultural and technical histories of math-
ematics

In the years following the publication of Moderne–Sprache–Mathematik, the concept of
mathematical modernism has been adopted and adapted by various authors, of which we
shall survey a few in what follows. The uptake of Mehrtens’ categories, however, has more
often than not been paired with a criticism thereof.

Moritz Epple, through a study of the re-emergence of the divide between analytic and
synthetic geometry at the onset of the 20th century – in particular, in Klein’s Vorlesungen

Naturwissenschaftlern, sondern um einen übergreifenden ‘Sinn’, der die Mathematik autonom lässt, aber
den Zusammenhang sichert. Die Moderne verzichtet auf solche Sicherung durch einen eingeschriebenen
Sinn und vertraut auf den funktionierenden Wissenschaftsbetrieb, in dem die Sprache Mathematik über
Ausbildung und Anwendung schon ihren Weg zur Wirklichkeit finden wird”, [Mehrtens, 1990], pp.13-14.
In Mehrtens’ account, these oppositions have overt political connotations, as the counter-moderns are
presented as the forerunners of an epistemology of mathematics developed by proponents of the national-
socialist ideology in the 1930’s. This important aspect of Mehrtens’ book is left out of this presentation,
as it falls out of the scope of the present study.

38“The logical point of view alone appears to interest him. Being given a sequence of propositions,
he finds that all follow logically from the first. With the foundation of this first proposition, with its
psychological origin, he does not concern himself [...] His work is then incomplete; but this is not a
criticism which I make against him. Incomplete one must indeed resign one’s self to be”, [Poincaré,
1902], p.272, cited in [Gray, 2008], p.188.
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über höhere Geometrie (1926) and Hilbert’s Grundlagen der Geometrie –, has attempted
to correlate Mehrtens’ categories (and his description of the semiotics of the textual
outputs of the moderns and the counter-moderns) to differences in mathematical styles39.
In order to do so, he mobilized the Wittgensteinian concept of language-games, seeking
a characterization of modernist mathematics internal to the mathematics of historical
actors, and not only to social-historical factors. A couple of years later, applying this mode
of analysis to his research on the history of knot theory40, Epple put forth a strategy for the
close study of actual research activities, criticizing Mehrtens’ focus on meta-mathematical
and programmatic texts.

More recently, Jeremy Gray has provided in his 2008 volume entitled Plato’s Ghost
an extensive survey of the mathematical and philosophical shifts of this period, covering
a large array of subjects and authors41 (from which enumerative geometry is nonetheless
absent). Drawing explicitly on Mehrtens’ work, Gray nonetheless notes that it suffers
from too exclusive a focus on Germany over the whole of Europe, and on programmatic
or philosophical texts over actual mathematical practices. This makes Mehrtens’ work
useful, yet insufficient for informing a precise understanding of the multi-national, cross-
cultural, decade-spanning modernist transformation of mathematics. Gathering decades
of historical research (conducted by himself and many others) on the history of various
mathematical disciplines over this period, Gray has then characterized modernist math-
ematics as “as an autonomous body of ideas, having little or no outward reference, [...]
maintaining a complicated—indeed, anxious—rather than a naïve relationship with the
day-to-day world42”. The counter-moderns, according to Gray’s analysis, would combat
this anxiety by grounding mathematical truths into appeals to intuition, or some tran-
scendent order. Gray’s account sheds light on many previously unexplored facets of this
transformation, such as changes in the way mathematics was popularized during this
episode, or the interplay between the history of modern mathematics and psychology43.

What this literature most importantly shows is that the changes described by Mehrtens
are tied to the many profound transformations of the body of mathematical knowledge44

itself: the reappraisal of non-Euclidean geometries (for instance by means of a budding

39 [Epple, 1997].
40 [Epple, 1999], especially pp.199-265.
41 [Gray, 2008].
42 [Gray, 2008], p.1. On anxiety and mathematical knowledge, see [Gray, 2004].
43 [Gray, 2008], respectively pp.346-365; 388-405.
44We borrow this term from [Corry, 2004], where the ‘body of knowledge’ is defined as including

“statements that are answers to questions related to the subject matter of the discipline, [..], theories,
facts, methods, open problems”, in opposition to the ‘image of knowledge’, which “includes claims which
express knowledge about the discipline qua discipline [..], serves a guiding principles, or selectors”, p.3.
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group theory)45 or the development of set-theory46 are but two examples of theories which
not only played important and well-documented roles in the renewal of the epistemology
of mathematics at the turn of century, but were integral part of a drastic expansion of
mathematical knowledge, at a rate perceived as far greater than had ever been the case.

Another line of critique of the history of mathematical modernism, forcefully argued
by Leo Corry47, lies in the thesis that the worth of the concept of modernism in the histori-
ography of mathematics also hinges upon its ability to incorporate broader, contemporary
cultural changes, whilst still retaining a clear view of the specificity of mathematics as
a cognitive system. The very name of this transformation suggests comparison to trans-
formations in the arts, many of which have been tentatively put forth, with contrasted
levels of success48. According to Corry, it remains necessary to “[show] (if possible) that
the processes that led to modernism in general and in mathematics are similar and have
common cultural roots”.

Of course, Mehrtens had already attempted to tie his categories to broader cultural
and scientific transformations. In his book, for instance, the fact that Freud’s psycho-
analysis undermined the Self is put in parallel to the semiotic practice present in modern
mathematical texts whereby objects appear from the text itself, without requiring a Self
to perceive or conceive them49; elsewhere, disenchanted mathematics after the First World
War is compared to Schönberg’s atonal music on the grounds that “one of the main fea-
tures of modern music is its detachment from the narrative character of its language”,
and that “like [modern] mathematics, this music is turned towards its syntax50”. How-
ever, Corry argues, these points of comparison are too coarsely sketched, and remain far
removed from actual cultural or scientific practices, be it in the mathematics, the natural
sciences, or the arts. Furthermore, while Gray’s more recent attempt at constructing a
large-scale history of mathematical modernism remedies several of the shortcomings of
Mehrtens’ book, and elaborates more precisely on certain common roots of mathematical

45While Bolyai and Lobatchevskii published their work on non-Euclidean geometry in as early as
the 1830s, it only became a real topic for discussion among French mathematicians in the late 1860s,
see [Voelke, 2005].

46See [Ferreirós, 2007], where it is argued that the notion of set was not merely brought forth in order
to secure rigorous grounding for analysis (let alone mathematics at large), but actually grew out of
pressing, technical needs of algebraists, geometers, or arithmeticians well removed from foundational or
philosophical concerns proper.

47 [Corry, Forthcoming].
48For instance, [Everdell, 1997], [Albright, 1997], [Engehardt, 2018]. None of these works, however, are

the works of specialists in the history of mathematics, for which they rely mostly on somewhat outdated
secondary literature.

49 [Mehrtens, 1990], p.10. The paradigmatic example of this practice, for Mehrtens, is Hilbert’s Grund-
lagen der Geometrie, wherein the reference and meaning of geometrical terms such as points or lines arise
from the discourse itself, and not from anterior intuitions of space on the part of the reader.

50“Ein Zug der modernen Musik ist die Ablösung vom narrative Charakter ihre Sprache. [..] Diese
Musik wendet sich wie die Mathematik, ihrer Syntax zu.”, [Mehrtens, 1990], p.561.
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and cultural modernism (for instance in his study of the history of the psychology of
mathematics), it suggests no systematic answer to the question of the cultural rooting of
the modernist transformation of mathematics at large.

Our purpose in the rest of this chapter is of course not to venture such a systematic
answer. More modestly, we set out to show that the controversies over the validity of
Chasles’ formula between Schubert, Halphen, Zeuthen, and Study can serve as an infor-
mative case-study to illustrate the notion that the shaping of mathematical modernism is
not reducible to one all-encompassing transformation of human knowledge and art, but
rather is a composite phenomenon, separable from neither cultural history at large, nor
the technical history of mathematical knowledge51.

Indeed, these controversies span the decades and the locales most crucial to the con-
flicted emergence of modern mathematics52. Furthermore, they were never understood
by their protagonists as being primarily a foundational or philosophical issue, but rather
a discussion of technical, albeit important results. As such, the choice of this formula
as a focal point for a new perspective on the modernist transformation of mathematics
eschews the shortcomings of Mehrtens’ approach identified in the paragraphs above.

More crucially, the actors involved in these disputes all embody very different cultural
figures of the mathematician: they belong to different socio-professional categories, place
their work under different epistemic ideals, and interacted with different cultural institu-
tions. This was already made appearent in the two previous chapters. Halphen, we have
shown, was a career military-man, for whom mathematics was a non-professional activity
which nonetheless took up a lot of his time and resources, dominated by the military
ideals of rigour, preparedness, and precision. Meanwhile, Schubert was a Gymnasium
teacher, who in his mathematical practice accorded great importance to the crafting of
notations and the simplicity of results.

Thus, this chapter sets out to show another way to tie the modernist transformation
of mathematics to several late 19th-century cultural trends and ruptures, by framing the

51It might be useful to point here to what this chapter is not, namely a global, ‘social history’ of
enumerative geometry, even on a limited time frame. Of our account were left out several authors which
did engage to various degrees with the issues we discuss here, such as the Göttingen-educated geometer
Heinrich Krey, who wrote several papers on closely related issues while a professor at the University of
Freiburg (see [Krey, 1885]); or Mario Pieri, a student of Segre who occupied positions in the universities
in Turin, Catania, and Parma (see [Marchisotto & Smith, 2007], p.376. A forthcoming volume in this
series will shed more light on Pieri’s contribution to enumerative geometry). A systematic (and perhaps
quantitative) survey of the authors involved in the emergence of enumerative geometry as a discipline, for
instance relying on databases such as that provided by the Jahrbuch, entirely remains to be undertaken.
Our purpose in this chapter is much more local, and our interests more epistemological than sociological.

52Modernism in mathematics is usually measured against the backdrop of a consensus-etalon in 1880,
see [Gray, 2008], p.112. Beyond Paris and Göttingen, traditionnally the focus of these historical narratives,
the circulation of Chasles’ formula encompasses Hamburg, Copenhagen, Leipzig, and even later on would
include major mathematical centers in Italy, Holland, and England.
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debates over Chasles’ formula as the confrontation of successive mathematical selves53,
that is to say epistemic ideals which can be found in the highly-normative descriptions
of proper mathematical practice – past or present – produced by the key actors of the
historical episode previously sketched. To each of these accounts are associated different
epistemic virtues, as well as textual practices, which in turn give rise to different ontologies
and regimes of truth. These are then all situated differently on the quadrants drawn by
the two axes along which the modernist transformation of mathematics was structured
by Gray, namely the absence of outward reference for mathematical discourse, and the
growing anxiety amongst practitioners after the emergence of new standards of rigor.
These selves, it will be shown, were all shaped against the decisive backdrop of various
cultural trends and intellectual debates beyond mathematics. Conversely, we show how
the mathematical practice – be it textual practice, identification of the epistemic tasks to
fulfill, or choices in techniques of proof – of each of these authors is shaped and structured
by said epistemic ideals. In so doing, we set out to construct a case-study for the modernist
transformation of a specific subject at the junction of cultural and technical histories of
mathematics.

In the rest of this chapter, we focus on two moments of the decade-long discussions
over the validity of Chasles’ formula. First, we present the epistolary exchange between
Schubert, Halphen, and Zeuthen, and the controversy between Schubert and Halphen
over the validity and generality of formulae such as αµ + βν. In a second section, we
describe Study’s dissertation with broad strokes, before turning to his public polemic
with Zeuthen. In both cases, we identify and contrast epistemic ideals embodied by these
authors and their texts, whereby a fresh outlook on the permanence of disagreement over
the status of Chasles’ formula can be gained.

53Here, we borrow and adapt the notion of ‘scientific selves’ from [Daston & Galison, 2007], especially
pp.35-50; 216-233; 367-371. The history of objectivity as envisioned in this book is not the history of
conceptualizations and philosophical accounts of objectivity, but rather the history of the epistemic virtues
that regulated and enabled said objectivity. Such virtues were not only preached, but also practiced and
embodied by various means such as note-taking, self-erasing, attentive observation etc. Daston and
Galison’s ambition was to put forth a mesoscopic, longue-durée history of scientific objectivity across
disciplinary borders. The scope of this chapter, by contrast, is resolutely micro-historical and local; what
is imported from Objectivity is an analytical framework rather than a collection of ready-made ‘scientific
selves’. Nonetheless, the selves identified in this chapter are not to be equated with moral biographies:
behind each of them lie broader characters, which for the purpose of brevity we locate only in certain
individuals. For a similar ‘local approach’ to scientific selves, see [Paul, 2016].
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8.2 Halphen versus Schubert: The (un)naturalness
of mathematical concepts

8.2.1 The epistolary exchange between Halphen, Schubert, and
Zeuthen

At the Paris Bibliothèque de l’Institut de France is preserved a rather large Halphen
Nachlass, which includes drafts, notes, manuscripts, and letters from several dozens of
mathematicians, from all over Europe, and on a wide variety of mathematical subjects54.
In what follows, we shall focus on the letters written by Schubert and Zeuthen, as they not
only concern to a large extent Halphen’s work on the αµ+ βν formula, but are the only
correspondences to do so in a prolonged and detailed manner55. Among the mathemati-
cians who wrote to Halphen about this formula, we can also mention De Jonquières, Klein,
Lindemann. All of these letters, with the remarkable exception of three letters by Schu-
bert, are in the folder Ms 5624 (which gathers Halphen’s correspondence56). The three
outliers are in the folder Ms 5621, which gathers scientific notes pertaining to Halphen’s
work on the theory of characteristics as well as the notes of the editorial committee in
charge of publishing Halphen’s collected works. Thus, it is possible that these three letters
had been singled out by Poincaré (who was part of said editorial committee, alongside
Camille Jordan and Émile Picard) for inclusion in Halphen’s Oeuvres, but were ultimately
left out. This is a reasonable guess because these three letters are the most substantial of
Schubert’s, and because some notes in Poincaré’s hand, in the very same folder, indicate
that an initial project was to include several of Halphen’s letters to Zeuthen in the fourth
volume of Halphen’s Oeuvres. In the end, only a few excerpts were printed57.

Zeuthen’s correspondence with Halphen spans over a decade; including more than
30 letters from December 1875 to August 1886. At various points, this correspondence
became very dense: 6 very long letters were written by Zeuthen during the month of
November 1879 alone, for instance. By contrast, entire years go by without almost any
letter, for instance the 10 months preceding Zeuthen’s marriage in October 1879. While
this correspondence revolves mostly around mathematical issues (and in particular, ques-
tions of algebraic geometry and the theory of characteristics), it also includes discussions
of an epistemological nature (for instance on the relation between computing and reason-

54I have been kindly granted access to several of Halphen’s personal documents by his descendants.
My special thanks go to Bernard, Maurice, and Hélène Lyon-Caen.

55Several of these letters are reproduced in appendixes B and C.
56The letters are all numbered. In what follows, we shall give the numbers of said letters in footnotes,

as well as dates.
57 [Jordan et al., 1924], pp.628-637. With two brief cards sent to Study in 1886, these are the only

letters by Halphen we have had access to.
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ing), exchanges of practical information (who published what and where, postal addresses
and news of the professional lives of various mathematicians etc.), and more intimate and
personal exchanges (such as Zeuthen’s announcement of the birth of his first child in
October 1880). Zeuthen wrote in French all throughout these discussions, a language in
which he was rather confident, but with which he nonetheless needed help from Halphen
in order to adequately translate certain terms from German or Danish. The tone of these
letters becomes noticeably more cordial with time, and Zeuthen befriending Halphen,
being at the receiving end of the latter’s secret (and often negative) opinions regarding
other mathematicians, or even just exchanging pleasantries.

Zeuthen’s very first extant letter to Halphen58, in fact, was a negative reply to the
latter’s request that the deadline for submitting an entry for the mathematical prize of the
Danish Royal Academy be extended59. As Zeuthen explained to Halphen, the commission
for this prize had to wait first to see if any entry worthy of being awarded the prize had
been submitted in time. Unfortunately for Halphen, such was the case; and Zeuthen,
in his letter, described the work of an unnamed author who had made “very fortunate
applications of what he calls ‘Halphen’s symbolic multiplication’”, and regretted that
Halphen had not been able to challenge for the prize on time60. Of course, this unnamed
author is none other than Schubert, who indeed went on to win a gold medal for his work
on spatial cubics.

A few months later, Halphen asked Zeuthen to provide him with the name and address
of this prize-winner61, and then began the correspondence between Halphen and Schubert.

58In this letter, it is mentioned that Zeuthen had met Halphen in person in Paris in the past. It remains
unclear whether previous letters had been exchanged between the two men; at any rate, none is preserved
in the Bibliothèque de l’Institut.

59The question to be answered had been published in January 1875; it bore on “the extension of the
theory of characteristics to systems of geometrical figures composed by the points and osculating planes
of skew cubics, and the determination of the characteristics of their elementary systems”, [Zeuthen, 1877],
p.169.

60“Il fallait attendre premièrement si au terme déjà fixé il y avait des réponses à la questions [sic], et,
lorsqu’il y en avait une, il fallait l’étudier et y appliquer beaucoup de preuves numériques pour voir si elle
était digne de la prix [sic]. Elle s’en est montré très-digne, selon moi et je suppose que les autres membres
du comité seront du même avis, et alors une prorogation est impossible. L’auteur fait des applications
très-heureuses de ce qu’il appelle ‘la multiplication symbolique de M. Halphen’, et il vous cite aussi
quant à la détermination des droites de l’espace dont il a besoin pour trouver les courbes singulières.
Vous voyez donc que vous n’êtes pas absolument absent du concours; mais, certes, j’aurais préféré de
beaucoup, si vous auriez pu nous faire l’honneur d’y prendre part d’une manière plus directe. La révision
de deux mémoires, dont l’un pourrait servir à éclairer les points difficiles de l’autre, m’aurait été, peut-
être, plus facile que celle d’une seule”, Letter Ms 5624 218, Zeuthen to Halphen, dated December 12th

1875. Zeuthen, in the rest of this letter, evokes the loss by Halphen of his first child as what prevented
him from writing an entry before the deadline.

61“Pour le moment je vous écris seulement à la hâte pour vous fournir l’adresse que vous demandez.
M.Schubert vient d’obtenir une place à Hambourg en ‘Oberlehrer’ à un lycée. Il m’a indiqué l’adresse
suivante: Baumeisterstr. 1, Hambourg, mais comme Hildesheim n’est pas une grande ville, il m’étonne
qu’on n’en a pas envoyé votre lettre à Hambourg”, Letter Ms 5624 219, Zeuthen to Halphen, dated May
13th 1876. Various geometrical diagrams (planes, rays..) are penciled in at the end of this letter, probably
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In fact, Schubert’s first letter to Halphen, dated May 18th 1876, is a reply to a lost
letter by Halphen62. Overall, Schubert would write 15 letters and 3 postal cards to
Halphen, between May 1876 and February 1880. Here again, this correspondence is
concentrated over specific periods; in particular, 9 of these 18 documents were written
between November 1879 and February 1880. Just as for Zeuthen’s letters, this corresponds
to the eruption of a disagreement between Schubert and Halphen, and of a technical
dispute on the enumerative geometry of the triangle.

There ensued two intertwined epistolary exchanges: Halphen mentioned his exchanges
with Schubert to Zeuthen at several points, either to vent frustration at what he perceived
to be a failure to understand his mathematics on Schubert’s part, or even to ask that
Zeuthen intervene in their dispute. In parallel, Schubert lamented to Zeuthen (in letters
we do not possess, but which Zeuthen mentions occasionnally) the deterioration of his
relationship with Halphen. From the evolution of this variable epistolary triangle, we
shall present two focal moments, at which letters were exchanged at maximum frequency.
The first of these two moments is the second half of the year 1876; the second one the
period between November 1879 and February 1880.

Schubert’s initial salvo of 6 letters to Halphen, from May 18th 1876 to December
4th 1876, served various purposes. A Gymnasium Oberlehrer in Hamburg, Schubert had
a hard time accessing recently published mathematical journals and books, especially
foreign ones. Schubert’s perceived isolation had more to do with the lack of any established
mathematical institutions in Hamburg than his position as a high-school teacher. Such
positions were in fact rather desirable, for a variety of reasons63. In July 1876, for instance,
Schubert would explain to Halphen that he had recently turned down an offer to replace
Ernst Schröder as a ‘ordinary professor’ at the Polytechnikum in Darmstadt, citing the
low wages of university staff in Germany as the main factor for his decision64. There would
be no university in Hamburg until 1919, and therefore no scientific library where to freely

by Halphen.
62Schubert writes to Halphen in German (despite being able to read French), albeit with a different

handwriting (an uneven Kursivschrift) than that which he uses to communicate with other German
mathematicians (that is to say, Kurrentschrift).

63“[The profession of Gymnasium Oberlehrer ] had been created in the early nineteenth century with
the reform of Prussia’s secondary school system. It had rapidly replaced the Lutheran pastorate as
the principal threshold of social mobility into the so-called Bildungsbürgertum, that influential and self-
conscious element of Germany’s middle class that owed its social standing not to wealth and commerce,
but to its quasi-monopoly of elite education and the access to the professions and to the civil service that
followed. From the Oberlehrer threshold, upwardly mobile members of this middle class launched their
sons into careers in law, medicine, the higher civil service, and the university professoriate”, in [Turner,
1994], p.35.

64“Vor einigen Wochen hatte ich einen Ruf als ord. Prof an das Polytechn. zu Därmstadt an Stelle
von E.Schröder erhalten, ihn aber wegen der Kargheit des dortigen Budgets ablehnen müssen. Die
Professoren in Deutschland werden noch gar zu schlecht bezahlt, mit wenigen Ausnahmen”, Letter Ms
5624 167, Schubert to Halphen, dated July 12th 1876
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access such documents. The ‘Mathematische Gesellschaft in Hamburg’, despite being one
of the oldest in all of Europe, was at a low ebb. In fact, Schubert would play an active
role in its revival a few years later, leading a commission investigating the collection of
mathematical works in the local municipal library, pushing for the creation of a journal
attached to the society65, and actively publishing in it, until personal differences with other
members led him to quit the Gesellschaft in 1910, a year before his passing66. In 1876,
however, without the support of such an institution, the access to recent mathematical
research was an every-day problem for Schubert.

To directly order scientific journals and books, as Schubert repeatedly makes clear
in his correspondence, was extremely costly. In one of his earliest letters to Halphen,
Schubert mentions having bought directly the second volume of the Bulletin de la Société
Mathématique de France, for 18 Reichsmark67; a hefty price at a time when the aver-
age annual wage was below 1000 Reichsmark68. Throughout his initial exchanges with
Halphen, a Parisian mathematician well-established at the budding Société Mathématique
de France, Schubert makes this difficulty explicit, and seeks ways to have publications rel-
evant for his own work directly sent to him, free of charge. Beyond financial concerns,
Schubert used his connection with Halphen to obtain news from the profession, and to
maintain his knowledge of the research being conducted in Paris on enumerative geometry,
by mathematicians such as Louis Saltel or Georges Fouret69.

It comes as no surprise, therefore, that as early as July 1876, Schubert consulted
Halphen about the conditions for joining the Société Mathématique de France as a foreign
member. To join this society would mean receiving its Bulletin for free, have a venue to
communicate one’s research to French mathematicians (by sending notes to be read and
discussed during the Society’s bi-weekly meetings, which Schubert did several times, even
if said notes were never published in the Bulletin), and to remain updated with regard
to the state of the art of geometry in Paris. Halphen happily obliged: on November 14th

1876, Schubert was presented (in abstentia) by Halphen and Jordan before the Society;

65The first volume of theMitteilungen der Mathematischen Gesellschaft in Hamburg would be published
in 1881.

66 [Burau & Renschuch, 1966], pp.11-12.
67“Ich habe mir jetzt den II. Band des Bull. wegen Ihrer, Saltel’s u. Fouret’s Abhandlungen buchhänd-

lerisch zukommen lassen, zu dem enormen Preise von 18 Reichsmark = 22 1
2 francs”, Letter Ms 5624 168,

Schubert to Halphen, dated August 12th 1876. Taking inflation into account, this value roughly trans-
lates to around 92.5€ in 2015; per [Edvinsson, 2016]. The Bulletin was a particularly expensive journal
according to Schubert, who explains in his letters that he could afford Comptes-Rendus de l’Académie des
Sciences, and that the equally heavy price of the Mathematische Annalen was counter-balanced by the
fact that the profit made there was then forwarded to the young orphan children left behind by Clebsch
after his death at a young age.

68 [Sommariva & Tulli, 1987], p.18.
69We briefly discussed the contributions of Fouret and Saltel in 6.1.3.
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two weeks later, he was unanimously elected as a member thereof70. In the months
following this election, the Société would fail to properly send Schubert his certificate of
membership as well as the new issues of the Bulletin; which he insistently asked Halphen to
remedy. These requests, as well as the many enquiries Schubert made to Halphen between
his initial request in July, and the election itself in November, bespeak the paramount
importance this affiliation had for the isolated German mathematician. Zeuthen, by
comparison, only became a member of the Société Mathématique de France in 1881,
despite having had prolonged interactions with French geometers since his visit in Paris
in 1863; a sign that such affiliations were of no crucial importance to a well-established
professor, whose institutional position enabled easy access to scientific literature from a
variety of European countries. Tellingly, he never asks that Halphen sends him notes
or articles, but merely that the latter tell him when and where such publications may
appear.

On the mathematical front as well, the questions raised in both correspondences during
this period and the manner in which they are raised differ. In his first few letters, Schu-
bert expresses his happiness when seeing that Halphen is also attempting to find other
Produktensätze, enquires about the details of certain proofs or theorems, communicates
Hurwitz’s methods relying on the principle of correspondence. In particular, Schubert
does not react strongly to Halphen’s announcement in November of a counter-example
to the αµ + βν formula, despite it occurring at almost the same time as Hurwitz’s ob-
tention of a new proof for this very formula71. Upon receiving Halphen’s brief 1876 note
for the C.R.A.S. (in which a counter-example is sketched, and the general conditions of
applicability of Chasles’ theorem are described), Schubert writes72:

Auf Ihre Note gegen αµ+βν war ich schon durch Zeuthen, und durch Klein gle-
70 [SMF, 1877], pp.71-72.
71Recall that, in Hurwitz’s and Schubert’s joint paper, a mention of Halphen’s counter-example is

given.
72“I had already been made aware of your note against αµ+βν by Zeuthen and by Klein, immediately

after its appearance. But before I could obtain the volume in question from the local, very cumbersome
municipal library, I received your kind consignment last Tuesday. The same evening I announced to
Stern a note for the Göttingen Nachrichtungen, which I wrote on Wednesday and Thursday, and which
he presented to the Göttingen Society on Saturday. Perhaps out of a certain reverence toward Chasles’
theorem, I have tried in this note, through the publication of the proof of αµ+ βν which Hurwitz and I
found, to take up the cudgel [eine Lanze zu brechen] – perhaps the last one – for this interesting theorem.
You will perhaps find it adventurous to publish the proof of a theorem which is attacked in its general
validity. But my main concern was the love of science. I believe that through my note, even if it contains
the same errors, the matter will be brought to the fore [aufs Tapet bringen] even more, attracting even
more interested parties and collaborators who may shed light on the matter from even different points of
view. So I published the proof and some remarks about the meaning [Sinn] of the theorem, prompted by
your attack, even at the risk that you prove me in your detailed paper that I was totally wrong, which
I will be able to bear well. On this I found my trust that you will not take my defense of the theorem
as the beginning of a personal polemic against you”, Letter Ms 5624 169, Schubert to Halphen, dated
November 5th 1876.
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ich nach ihren Erscheinen aufmerksam gemacht. Ehe ich mir aber das betreff.
Heft aus der hiesigen, sehr schwerfälligen Stadt-Bibliothek verschaffen konnte,
bekam ich am vorrigen Dienstag Ihre gütige Zusendung. Am denselben Abend
noch annoncirte ich Stern eine Note für die Gött. Nachr., die ich Mittwoch und
Donnerstag abfasste, und die er Sonnabend der Göttinger Societät vorgelegt
hat. Vielleicht aus einer gewissen Pietät gegen Chasles’s Satz, habe ich in
dieser Note durch Publikation des von mir und Hurwitz gefundenen Beweises
von αµ + βν eine Lanze – vielleicht die letzte – für diesen interessanten Satz
zu brechen versucht. Sie werden es vielleicht abenteuerlich finden, den Beweis
eines Satzes zu publiciren, der eben in seiner Allgemeingültigkeit angegriffen
ist. Die Hauptsache war mir aber die Liebe zur Wissenschaft. Ich glaube, dass
durch meine Note, auch wenn dieselbe Irrthüme enthält, die Sache noch mehr
aufs Tapet gebracht wird, noch mehr Interessenten und Mitarbeiter wirbt, die
vielleicht von noch andern Standpunkten die Sache beleuchten. So publicirte
ich den Beweis und einige Bemerkungen über den Sinn des Satzes, veranlasst
durch Ihren Angriff, selbst auf die Gefahr hin, dass Sie durch Ihre ausfürhrliche
Abhandlung mir beweisen, dass ich mich total geirrt habe, was ich gut werde,
tragen können. Dazu kam mein gegründetes Vertrauen darauf, dass Sie meine
Vertheidigung des Satzes nicht als Eröffnung einer persönlichen Polemik gegen
Sie auffassen werden.

The note mentioned here by Schubert is none other than that which would become the
paper co-authored by Hurwitz, discussed in the previous chapter. Schubert was, as we
know, not entirely convinced by Halphen’s doubts (which, it is worth recalling, had not
yet been published in the guise of a full-fledged theory, but merely through brief notes
for the Comptes-Rendus de l’Académie des Sciences). Indeed, Hurwitz and Schubert, in
their joint paper, had included at the last minute a paragraph explaining why the authors
felt that the validity of Chasles’ theorem, once properly understood, remained general73.
Similarly, in a letter to Halphen written just after the publication of this paper, Schubert
expressed his continued belief that the theorem was true74. The correspondence between

73“Unter diesen Umständen wollen wir, noch immer von den Allgemeingültigkeit des richtig verstande-
nen Satzes überzeugt, nicht länger zögern, unsern geometrischen Beweis desselben zu veröffentlichen.”,
[Hurwitz & Schubert, 1876], pp.503-504.

74“Sie werden aus der Göttingen Note ersehen haben, warum mich Ihre Beispiele noch nicht von der
Unrichtigkeit des αµ+βν überzeugt haben, und ich fasste meine Note hauptsächlich desshalb ab, um die
Sache ordentlich, auch in Deutschland, zur Sprache zu bringen, damit schliesslich aus dem Widerstreit
der Meinungen die Wahrheit Frieden stiflend sich erlebe. Darum thut es mir leid, dass Sie meiner
Vertheidingung des αµ+ βν in Ihrer ausführlich Abh. keine Widerlegung folgen lassen können. Über die
Sache selbst kann ich desshalb noch nicht sprechen, weil ich Ihre Note noch nicht habe”, Letter Ms 5624
170, Schubert to Halphen, dated December 4th 1876.
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Schubert and Halphen halted after this unfruitful exchange75, only to resume sporadically
over the course of the following two years.

In parallel, however, Halphen was having a very different conversation with Zeuthen.
Quite tellingly, Schubert was only made aware of Halphen’s doubts against the αµ + βν

formula several months after Zeuthen. As one of the letters printed in his collected works
shows, Halphen had indeed written to Zeuthen as early as July 29th 1876 that he was
convinced that this formula was false76. Between August and October 1876, Halphen and
Zeuthen wrote three times to one another, discussing at length the nature of the former’s
refutation of Chasles’ formula. While Zeuthen was eager to accept Halphen’s refutation
(after raising a few doubts, prompty answered), the two mathematicians nonetheless had
a different understanding of the nature of this refutation. As we shall discuss in the rest
of this section, Halphen thought it meant that Chasles’ formula was less general than
his own, while Zeuthen suggested viewing them as different viewpoints upon the same
question, each with their relative strengths and weaknesses. At any rate, Zeuthen and
Halphen quickly agreed on the fact that Schubert was wasting his time trying to preserve
the formula, and that he did so out of a relative misunderstanding of the subject at hand77:

Et l’‘aventure’ de M.Schubert ! Il ne me l’a pas racontée encore, de façons [sic]
que j’en juge seulement par ce que vous m’en écrivez. Trouvant ordinairement
assez de bon sens à ce que fait M.Schubert, j’essaie de me l’expliquer. La
seule conjecture qui me semble probable, c’est qu’il veut compter au nombre
des αµ + βν solutions les solutions singulières. J’ai parlé de ce point de vue
dans ma réponse à votre première communication sur cette matière ; mais
je vous ai convenu que ce point de vue n’est pas à défendre au moment où
l’on introduit plus d’une de ces conditions qui conduisent à des nombres de
solutions propres qui ne sont pas exprimables par αµ+βν. M.Schubert aurait
donc tort aussi dans le cas où ma conjecture serait juste ; mais nous verrons
ce qu’il va dire. En tout cas, il est hardi de publier quelques chose en cette

75In December 1876, Schubert sent a note on this very question to be read before the Société Mathéma-
tique de France, which Halphen enabled; after which he and Lindemann made some remarks. However,
this was not published in the Bulletin afterwards. See [SMF, 1877], p.72.

76“Je ne doute plus de l’inexactitude de αµ+ βν”, [Jordan et al., 1924], p.629.
77“And M. Schubert’s ‘adventure’! He did not tell me about it yet, so that I can only judge it based

on what you tell me. Finding ordinarily what M. Schubert does to be rather sensible, I struggle to
explain it to myself. The only conjecture which seems likely to me, is that he wants to count singular
solutions amongst the αµ + βν solutions. I spoke about this point of view in my response to your first
communication on the matter ; but I conceded in my response that this point of view is not to be defended
as soon as one introduces more than one of these conditions which lead to numbers of proper solutions
which are not expressible by αµ+βν. M. Schubert would thus be wrong in the case where my conjecture
is correct as well ; but we shall see what he has to say. At any rate, it is brave to publish anything on
the matter before the publication of your new theory”, Letter Ms 5624 223, Zeuthen to Halphen, dated
October 19th 1876.
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matière avant l’apparition de votre nouvelle théorie.

Zeuthen did not immediately react via a letter to Hurwitz’s and Schubert’s proof of
correctness of the formula in question. In fact, after the letter quoted above, he did not
write to Halphen until December 1877. At this point, however, Zeuthen was ever more
convinced that the question had been solved, and that all that was left to do was to wait
for the publication of Halphen’s memoirs, which, as we mentioned in the previous chapter,
had been considerably delayed78. Despite the perceived misguidedness of this pursuit of
a proof for Chasles’ formula Zeuthen wrote a long review of Schubert’s Beiträge (as well
as an earlier paper on systems of second-order surfaces) for the Bulletin des sciences
mathématiques et astronomiques79. While Zeuthen’s reviews contain neither praise nor
criticism for Schubert’s work (except for a few mentions of the ‘important formulae’ it
contains), they display a remarkable level of detail and familiarity with it. In a similar
fashion, Zeuthen’s 1880 review of Schubert’s Kalkül, published in the same journal, would
only contain a rather neutral exposition of the methods and results contained in the
book, but merely a veiled reference to the disagreement with Halphen over the αµ + βν

formula80.
By the end of the year 1876, therefore, both conversations paused, with Zeuthen and

Schubert having different appreciations of the situation. None of them, however, had
yet access to Halphen’s theory for conic sections. Although Zeuthen had asked for a
few details regarding the status of Halphen’s third degeneration for conics, it would take
him at least two more years to begin to properly understand the refutation of αµ +
βν, as his ulterior letters to Halphen show. In September 1878, for instance, Zeuthen
would ask Halphen technical details on the status of the ratio m

n
in his classification

of the modes of degeneration for conics in a system81. Schubert’s correspondence with
78“Mais j’oublie de vous demander où devient votre mémoire sur les caractéristiques. Depuis avril je

l’ai cherché en vain dans le Journal de Mathématiques. [..] Il y a longtemps que je n’ai eu des nouvelles
de M.Schubert. [..] J’espère qu’il n’est pas sur le théorème inexact de αµ + βν”, Letter Ms 5624 225,
Zeuthen to Halphen, dated December 1st 1877.

79 [Zeuthen, 1877]. Note that, at this point, and in keeping with Schubert’s own opinion, Zeuthen
translates ‘abzählende Geometrie’ by ‘Géométrie numérique’. In fact, Zeuthen had asked Halphen in a
letter written on November 5th 1879 what the suitable French term was; it is likely that Halphen replied
with the term which Schubert himself had suggested in a letter written on May 21th 1876.

80 [Zeuthen, 1880].
81“C’était bien aimable d’ajouter à la série de vos autres obligeances celle de suppléer, dans une lettre,

à mon défaut de présence d’esprit lorsqu’il s’agirait de saisir des idées mathématiques exposées oralement.
En lisant votre lettre, je vois que vos raisonnements sont assez simples pour devoir être saisis tout de suite
; mais en même temps j’y trouve aussi des remarques sur lesquelles j’étais bien aise de pouvoir réfléchir
chez moi. J’avais besoin par exemple d’une réflexion pour m’assurer du fait, dont vous faites usage, et
qui me paraissait plausible, seulement, à la première lecture, que l’ordre m d’une conique dégénérée est
égal à son degré de multiplicité dans la formule 2µ− ν (Vous ne définissez expressément dans votre lettre
que le rapport m

n ; mais je suppose que, pour définir explicitement m ou n, vous faites, dans le voisinage
d’une conique singulière, le système ou la ‘branche’ du système dont il s’agit, dépendre d’une manière
rationnelle d’un paramètre variable qui peut être zéro pour la conique singulière : m est alors le double de
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Halphen, like Zeuthen’s, was rather limited throughout the years 1877 and 1878; however,
unlike the Dane, his occasionnal letters do not concern Halphen’s theory, but rather
a variety of other common interests82. Nonetheless, Schubert was made aware of the
publications of Halphen’s theory in the Mathematische Annalen, of which he wrote the
aforementioned review for the Jahrbuch83 (which also mentions Halphen’s then-upcoming
memoirs in the Proceedings of the London Mathematical Society and in the Journal de
l’École Polytechnique). In the Kalkül, as we discussed in the previous chapter, he would
only include a brief note mentioning Halphen’s counter-examples, and explain that he
received Halphen’s memoirs too late to be properly included in the book.

8.2.2 A dispute made public

It is only in November 1879 that this three-way epistolary exchange became active once
more. Schubert’s Kalkül was about to be published, and his enumerative geometry for
triangles was already at an advanced stage of development84; Halphen’s full-fledged al-
ternative theory for the enumerative geometry of conics had passed in the hands of both
Schubert and Zeuthen; and the latter had been reading attentively the papers of the other
two, turning them into a course on enumerative methods he had just begun teaching at
the University of Copenhagen85. This confluence made for a situation rife for conflict:
Schubert was persevering on his own line of research, which he deemed equally worthy
of pursuit as Halphen’s. In turn, Halphen was losing patience with what he considered

l’ordre du segment infiniment petit intercepté sur une droite quelconque par la conique correspondante à
une valeur infiniment petite du 1e ordre du paramètre)”, Letter Ms 5624 228, Zeuthen to Halphen, dated
September 5th 1878. For the definition of this ratio, see section 6.2.3 of this dissertation.

82In particular, Schubert communicates his results on the degenerations of cubics to Halphen, and
enquires of Halphen on the philology of perfect numbers communicated at the SMF by Carvallo.

83 [Schubert, 1880c].
84In a letter written to Halphen this very month, Schubert mentions having already found the 7, 17,

and 22 symbols from which the Produktensätze presented in the previous chapter derive.
85The content of this course is described by Zeuthen in a subsequent letter in the following terms:

“Vous exprimez, un peu ironiquement – non pas envers moi mais envers l’objet de mon cours – le désir de
venir suivre ce cours. Je vous réponds que vous n’y gagneriez pas grand chose. La plupart des résultats,
du moins excepté ceux qui servent seulement d’exemples d’applications, vous sont bien connus (formules
de Plücker, formules analogues dans l’espace, théorie des caractéristiques, y compris détermination des
courbes qui satisfont à des conditions données avec l’indication expresse qu’il ne faut pas croire que leurs
nombres aient toujours l’expression αµ + βν etc.). Les méthodes sont celles dont on doit les germes à
Poncelet, Steiner et Chasles (pour le principe de correspondance bien plus que la germe à Chasles) et
qui sont développées et fertilisées et appliquées par De Jonquières et Cremona, puis MM. Halphen et
Zeuthen et – je l’avoue – aussi par M.Schubert – bref les méthodes dont je me sers dans mes recherches
personnelles. Vers la fin du cours je pense donner une esquisse du calc, illustrée par des exemples, du
calcul symbolique introduit par vous, et dont le développement que M.Schubert ne semble peut-être
trop exécuté pour ce que cette forme contient encore, mais qui contient a beaucoup de bon (exemple :
formule VII de la page 32 dont la traduction géométrique est un théorème, facile à déduire, mais non
pas immédiatement évident). J’espère donc qu’en venant suivre mon cours vous trouverez les mots que
je sers aux jeunes gens assez sains et du moins innocents, quant même vous n’y trouveriez pas trop de
gout et de force”, Letter Ms 5624 232, Zeuthen to Halphen, dated November 14th 1879.
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to be a misunderstanding of their position on Schubert’s part. On November 14th 1879,
Zeuthen would express a similar feeling to Halphen in unambiguous terms86:

J’ai encore quelques remarques à ajouter sur αµ+ βν et notre ami commun à
Hambourg, ou plutôt, je n’ai pas besoin de beaucoup à ajouter ; car à cet égard
je ne le comprends pas M.Schubert à cet égard. Après sa première publication
de la démonstration de Hurwitz – qui a je crois des ressemblances notables
avec votre ancienne démonstration – je lui ai écrit sur votre découverte. Sa
réponse me faisait croire de l’avoir persuadé de la nécessité d’exclure dans une
théorie complète les solutions 0

0 provenant de la troisième dégénération, c’est-
à-dire de l’inexactitude, prouvée par vous, de la formule αµ+βν. Et à présent
il vient la démontrer de nouveau ! même sans s’entourer de réserves et de
définitions précises qui serviraient à l’explication de ce qu’il semble regarder
comme un fait, que la formule pourrait être en même temps vraie et fausse ;
car je suis persuadé ne crois pas qu’il ne veut pas nier votre découverte. Sans
doute il ne la comprend pas du tout ; au cas contraire il ne nommerait pas au
même instant les objections insignifiantes de M.Saltel, et il aurait la prudence
de chercher – grâce à l’aide qu’offre [sic] vos premiers exemples87 –
la faute de sa démonstration, qui n’est pas extrêmement difficile à trouver.
Il me semble à cet égard très naïf ; mais tant pis pour lui ; vous n’y perdez
rien. Du reste je comprends très bien que vous souhaitez à cette occasion faire
comprendre mieux votre découverte, quant même vous auriez besoin de faire
usage de répétitions, qui est la mère de la science.

Things would not improve from there, and in particular the relationship between Halphen
and Schubert would quickly deteriorate. But a week later, Zeuthen wrote: “certainly, I
was wrong in calling M. Schubert our common friend; but I am the common friend

86“I still have remarks to add about αµ+βν and our common friend in Hamburg, or rather, I need not
add much ; for, in this regard, I do not understand M. Schubert. After his first publication of Hurwitz’s
proof – which I believe has notable similarities with your old one – I wrote to him about your discovery.
His response led me to believe I had persuaded him of the necessity to exclude from a complete theory
the solutions 0

0 which come from the third degeneration, that is to say of the inexactitude, proven by
you, of the αµ+ βν formula. And now he just proved it again ! even without surrounding himself with
precautions and precise definitions which would serve to explain that which he seems to view as fact,
that the formula is at the same time true and false ; for I do not believe he wants to deny your discovery.
There is no doubt that he does not understand it at all ; otherwise he would not mention at the same
time Saltel’s insignificant objections, and he would have the caution to search - with the help of your
examples - the flaw in his proof, which is not extremely hard to find. He seems to be very naive in this
regard ; so much the worse for him ; you shall lose nothing from it. At any rate, I understand very well
that you wish on this occasion to have your discovery better understood, even if you should have to use
repetitions, which are the mother of science”, Letter Ms 5624 232, Zeuthen to Halphen, dated November
14th 1879.

87This section in bold is circled by Zeuthen in his letter.
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of yours and Schubert’s88”. This coincides with the resuming of Schubert’s epistolary
exchange with Halphen, on November 15th. Whilst working on the enumerative geometry
of triangles, Schubert had noticed degenerations similar to those discussed by Halphen
in his memoirs on conics. Recall, indeed, that amongst the symbols for degenerations
of triangles presented in the previous chapter, there was one for the case where the two
elementary degenerations occurred simultaneously, that is to say when all three vertices
collapsed on one point and all three sides on one straight line (see 7.4.2). However,
Schubert sought to accommodate such degenerations with the kinds of results he thought
central to enumerative geometry, namely Produktensätze89.

This did not go well with Halphen: it showed that while Schubert had on the surface
accepted his refutation via the B-degeneration for conics, he had not understood the
underlying argument that general enumerative formulae, such as Chasles’ αµ+βν, counted
figures which were no real solutions to the enumerative problems at hand. With triangles
as with conics, Halphen was convinced that such general formulae were impossible. Thus,
upon receiving Schubert’s letter (and his note on triangles), Halphen immediately wrote to
Zeuthen, describing the situation in no uncertain terms: “At first sight, I knew I had false
theorems before my very eyes90”. In the rest of his letter, Halphen described Schubert’s
notations for conditions on triangle, his Produktensatz, and constructed a counter-example
to it – which he sent to Schubert as well.

Halphen considers two systems of triangle Σ,Σ′, of respective levels 5 and 1 (in fact,
Halphen calls Σ′ a system and Σ a condition). Σ′ is defined as the collection of triangles
of which two vertices b and c are given and fixed, and whose third vertex a is on a given
curve C of order m, such that C passes through b and that bc is tangent to C at b. Note
that the system Σ′ as defined by Halphen contains a degeneration determined by two
infinitesimal quantities, namely the triangle whose three sides are infinitely close to the
(given) straight line bc, such that a is infinitely close to b. While he does not make this
part of his construction explicit, Halphen needs it in order to ensure that his system will
always contain fewer solutions than the numbers yielded by Schubert’s formulae.

Denoting µ the multiplicity of b as a point of C (µ being possibly equal to 1), the left
factors of every term in Schubert’s Produktensatz for triangles can be easily computed91.

88“Certainement j’avais tort en appelant M.Schubert notre ami commun ; mais moi je suis l’ami commun
de vous et M.Schubert”, Letter Ms 5624 233, Zeuthen to Halphen, dated November 22nd 1879.

89In fact, Schubert also sent a first draft of his paper on triangles directly to Chasles, hoping to have
it published in the Comptes-Rendus de l’Académie des Sciences. Unbeknownst to Schubert, an aging
Chasles had passed this note along to Halphen, who most likely had reviewed it negatively. Chasles never
replied to this sending, and the note was never published, two things which Schubert, ironically, lamented
in subsequent letters to Halphen.

90“Du premier coup, je savais donc avoir sous les yeux des théorèmes faux”, [Jordan et al., 1924], p.632.
91The values of a′, b′, c′, α′, β′, γ′ are directly given by Halphen; they are (respectively)m, 0, 0, 0,m,m−

µ. It is obvious that b = c = 0, as b and c are given and fixed. Similarly, α is given as the straight line
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Thus, for any condition Z (or, in other words, any system Σ defined by a simple condition),
Schubert’s Produktensatz can be rewritten to express the number of triangles common to
Σ and Σ′ (that is to say the number of triangles in Σ′ satisfying Z) as

x(Σ,Σ′) = Am−Bµ

where A and B are two polynomial expressions in the characteristics of the system Σ.
Such a formula, Halphen argued, cannot be generally true for all conditions Σ; and

he would prove so by considering one specific condition which puts the lie to the formula.
Given three points ω, ω′, ω′′, there is exactly one conic Ω passing through these three
points and touching the straight line bc at point b - a point and a line which, remember,
are given and fixed. The condition defining Σ is that a lies on this conic92.

For a triangle common to both systems, b, c, α are given, and the possible vertices a
are given by the intersections of C (which is given) and Ω (which is uniquely determined).
However, Halphen explains, “the number of these intersections does not depend solely on
m and µ, but also on the number of branches of C tangent to bc at point b, and even
on the orders of their contacts with this straight line93”. This is where Schubert would
perhaps conclude that this number is none other than 2m−µ, that is to say the number of
intersections given by Bézout’s theorem, minus the number of these intersections which in
fact are due to b being a multiple point of C. However, for Halphen, among the µ branches
of C jutting outward from point b (per definition of the multiplicity of a point), not all
count equally toward the solution of the enumerative problem of computing x(Σ,Σ′).
Among these branches, Halphen continues, there are µ1 branches which are not tangent
to bc, µ2 branches which have contacts with bc at an order lower than 1 (and ν2 denotes
the sum of these orders), and µ3 branches which have contacts with bc at an order higher
than 1. Naturally, µ = µ1 + µ2 + µ3, and

x(Σ,Σ′) = 2m− µ− ν2 − µ3

From there on, Halphen can easily consider specific values for µ such that his direct
computation of x(Σ,Σ′) fails to match the result yielded by the alleged general formula
above. This is because, Halphen shows, m and µ are not sufficient to characterize the

joining b and c, thus α = 0. Given a straight line in the plane, it intersects C at exactly m points. Thus,
a = m, as for a to be on a given straight line, it has to coincide with one of these intersections. The other
numbers can be obtained in similar fashion. To compute ε′, Halphen considers a specific condition Z,
namely that a triangle be inscribed in a given conic B1 which passes through three given points. Halphen
directly computes how many triangles in Σ′ satisfy Z, and from there, derives that ε′ = m− µ.

92Halphen frames his condition through a converse statement, but this makes it clearer that it is indeed
a simple condition and that it bears on the triangle abc itself.

93 [Jordan et al., 1924], p.631.
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contacts which can arise in his example, and thus the adequation of a triangle as a solution
to this particular enumerative problem. This example, for Halphen, has a double merit:
not only does it refute Schubert’s formula, but it also suggests that one can always form
conditions which require further numbers to be taken into account, and therefore that
no easy fix to such Produktensätze is to be hoped. For triangles as for conics, Halphen
contended that there was no finite, compact formula that would solve all problems –
unless the requisit was added that the systems involved contain no degenerations defined
by more than one infinitely small quantity94.

On November 21st 1879, Halphen presented before the Société Mathématique de France
his critical remarks against Schubert’s Kalkül, and in particular its sixth chapter on the
theory of characteristics and Produktensätze95. In this communication, which was later
printed in the Bulletin, Halphen gave several counter-examples to Schubert’s formulae for
a variety of other figures (such as the figure composed of n points on one straight line), all
relying on similar constructions to those described above. These remarks were also sent
directly to Schubert.

A back and forth exchange ensued between Halphen and Schubert, with the latter
attempting each time to save his formulae and to explain this situation to which both
referred as “(Σ,Σ′) =

{
1, 2”. Schubert sent various notes in response to be read before

the Société Mathématique de France, including substantial draft papers in French. Mean-
while, Schubert would lament the degradation of his relationship with Halphen in letters
to Zeuthen, upon whom it befell to try and accommodate both mathematicians. While
Halphen attempted to convince Schubert that the latter’s position was untenable, he also
asked Zeuthen to take a stand on the matter, and to do so publicly. Zeuthen declined,
and instead manoeuvered in order to convince Schubert to publicly retract some of his
claims. While Zeuthen was firmly on Halphen’s side when it came to criticizing Schu-
bert’s attitude and mathematical skills, he nonetheless had a different understanding of
the nature of the disagrement. For Zeuthen, Halphen’s results were not more ‘general’
than Schubert’s, but rather more ‘absolute’.

On January 16th 1880, Halphen finally agreed to have two of Schubert’s latest short
notes read before the Société and published in the Bulletin96. In these notes, Schubert
conceded that he had misunderstood Halphen’s theory of conics, and that the formulae
published in §38 of the Kalkül were erroneous. This paragraph, the second in the chapter
on the Charakteristikenprobleme, was concerned with the theory of characteristics for

94“Pour toute figure, il existe une formule αµ+βν+ γρ+ .. d’un nombre déterminé de termes donnant
le nombre de figures qui satisfont à une condition et font partie d’un système si ce système ne contient
que des dégénerescences caractérisées par un seul infiniment petit”, [Jordan et al., 1924], p.635.

95 [Halphen, 1880].
96 [Schubert, 1880d], [Schubert, 1880b].
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conic sections; it contained an adaptation of Hurwitz’s proof of the αµ + βν formula97.
Schubert, before the entire Société, agreed that these formulae were true only in systems
free of Halphen’s third degenerations. Of his other formulae, Schubert only agreed to the
proposition that Halphen’s counter-examples point to cases implicitly proscribed in his
book. This is the same line of defense he had maintained in his correspondence, in one of
his longest letters, filed amongst Halphen’s mathematical papers98:

Die Differenz ist also mehr eine sprachliche geworden. [..] Denn über die
Nicht-Anwendbarkeit meiner Formeln in gewissen Fällen sind wir nie uneinig
gewesen. Nun Sie sagten, die Formeln sind ungenau, weil sie in jenen Fällen
nicht passen, ich sagte, die Formeln sind dann sogar sinnlos, und die Nicht
Anwendbarkeit ist im Zusamenhange meines Buches selbstverständlich.

Indeed, that Halphen’s constructions constitute proper counter-examples to Schubert’s
theory can be disputed. For starters, Halphen’s systems are defined in ways that seem
rather remote from Schubert’s geometrical practice. Furthermore, at the core of the
discrepancy revealed by Halphen between the formula and the direct computation lies the
delicate status as solutions of certain degenerate triangles, so that this counter-example
can in no way be construed as an experimentum crucis; a test which conclusively shows in
full the falsity of the formula. In fact, Schubert did not at first accept this refutation: the
fault that these examples revealed, he argued in his response to Halphen’s letter, lay “not
in the formulae, in the misunderstanding of their content99”. More precisely, his argument
would be that his Produktenformeln only apply to systems of a given level, and that the
degenerations through which Halphen disputed the generality of these formulae were of
a higher-order than permitted by these formulae. Discussing one of Halphen’s examples
bearing on figures Γ constituted by three points on a line, Schubert attempted to borrow
from Halphen’s own vocabulary, by admitting that a better job could have been done to
give a priori the conditions of applicability of his formulae; whilst refusing to reject them
as being outright false100:

97 [Schubert, 1879b], pp.284-288.
98“The difference has therefore become more of a linguistic one. [..] Thus, we have never disagreed

about the non-applicability of my formulae in certain cases. You said that the formulae are inexact
because they do not work in certain cases, I said that the formulae are even meaningless then, and that
the inapplicability is self-evident in the context of my book”, Letter Ms 5621, Schubert to Halphen, dated
December ? 1879.

99“Freilich lassen sich Beispiele erfinden, bei denen man meine Dreieck-Formeln ohne Weiteres nicht
anwenden kann. Daran sind aber die Formeln nicht schuld, sondern das Missverständniss ihres Inhalts”,
Letter Ms 5624 174, Schubert to Halphen, dated November 23rd 1879.

100“In my Book, I have always assumed that a system of ∞i straight lines g, on which lie three points
p1, p2, p3, contains ∞i−1 straight lines g characterized by the reunion of two of these points, and that
such a system contains only ∞i−2 straight lines g characterized by the reunion of all three points. This
is why these formulae cannot only be applied either to cases where a system of ∞i figures Γ contains the
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Dans mon Livre, j’ai toujours supposé qu’un système de ∞i droites g, pos-
sédant trois points p1, p2, p3, contienne ∞i−1 droites g caractérisées par la
réunion de deux de ces points, et qu’un tel système ne contienne que ∞i−2

droites g caractérisées par la réunion de tous les trois points. C’est pourquoi
les formules [en question] ne peuvent se rapporter ni aux cas où un système
de ∞i figures Γ contient la dégénérescence constituée par la réunion de plus
de deux points, ni aux cas analogues. Je vois maintenant qu’il aurait été utile
d’ajouter cette restriction à la formule expressément, parce que cette formule,
ayant encore des coefficients indéterminés, ne fait pas connaître les cas exclus
par elle-même.

It remains unclear how much Schubert’s partial concession had to do with the perceived
need to maintain a network in France, if only to obtain news of the profession and journals
sent to him for free. Once Schubert’s notes were published, his correspondence with
Halphen almost immediately stopped. Schubert’s subsequent engagement with foreign
mathematicians would shift quite quickly from France to the United States. Zeuthen’s
correspondence with Halphen lasted for a little bit longer, revolving around other themes.
By the end of 1881, it would also come to a halt, only to be rekindled in 1886 after the
publication of Study’s dissertation. For all intents and purposes, the debates over Chasles’
αµ+βν formula – and the very possibility of Produktensätze at large – between the three
men were over by February 1880.

This was a multi-faceted discussion, one in which technical and mathematical argu-
ments were intertwined with discussions of a more philosophical nature. Through their
disagreement over the generality, applicability, or truth of formulae such as αµ + βν,
Halphen, Schubert, and Zeuthen were discussing what the rules and goals of mathemat-
ical life were and ought to be. Are mathematicians rigorous explorers who, armed with
their expert knowledge and their analytical tools, retrace the borders of the applicability
of a formula? Or are there free creators of symbols and concepts, bound only by the law
of non-contradiction, and motivated by a quest for unitary knowledge? Such were the
broader questions which, in the rest of this section, we shall argue lay behind the dispute
over Chasles’ formula.

8.2.3 Halphen’s analytical campaign

We opened this chapter by remarking the vast differences in mathematical styles present in
Halphen’s and Schubert’s mathematical papers dealing with similar questions and objects.

degeneration constituted by the reunion of more than two points, or analogous cases. I see now that it
would have been useful to add expressly this restriction to the formula, which, still having indeterminate
coefficients, does not show by itself what the excluded cases are”, [Schubert, 1880d], p.60.
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Another dimension to this contrast must be added, in that what both mathematicians
understood to be the norms of their scientific practice differed widely as well.

Halphen viewed his task as a mathematician to be that of an expert analyst, both in the
mathematical and general sense of the term. Amongst those who had taken up Chasles’
theory of characteristics between 1864 and the early 1880’s in a prolonged manner, he
was the only one with a real mastery over the new methods and concepts of the algebraic
analysis of curves: Clebsch did not live long enough to pursue his line of enquiry, and
neither Lindemann nor Cayley attempted to engage with Halphen’s results on this matter.
And yet, for Halphen, this analytical mastery was necessary to successfully reframe the
problems tackled by De Jonquières and Chasles, as Halphen made explicit in his 1885
Notice as part of his application to the Paris Académie101:

Combien d’incertitudes, de tâtonnements, de fautes mêmes, vite corrigées, a-
t-on pu voir dans les essais de ce siècle sur la Géométrie générale, qui se mêle
à la théorie des fonctions algébriques ! Cette dernière est, elle-même, fort
nouvelle. Il fallait l’attendre et adapter à ses découvertes les formes de la
Géométrie.

But analysis was not just a collection of mathematical tools, for Halphen. It was a form
of discipline, a normative and regulative ideal for his mathematical practice. This ideal
was characterized by certain epistemic virtues such as rigour, precision, thoroughness; its
purpose was to dissipate the illusions of intuition, and to lay bare the inconsistency of
mathematical concepts grounded in imagination rather than true reasoning.

Indeed, in a letter to Zeuthen at the peak of his discontent with Schubert, Halphen
wrote102

De toutes les raisons qui militent contre les théorèmes prétendus généraux, la
meilleure est celle-ci : les arguments dont on peut les couvrir disparaissent
quand les deux êtres (C), (Σ) sont définis chacun par plus d’une équation.

101“How much uncertainty, fumbling, how many mistakes even, soon to be corrected, were seen in this
century’s attempts at a general Geometry, which mingles with the theory of algebraic functions! The
latter itself is rather new. One had to wait for it, and to it adapt the forms of Geometry”, [Halphen,
1885], p.14.

102“Of all the reasons one can enlist against the allegedly general theorems, the best is the following:
the arguments with which they can be covered disappear when the two beings (C), (Σ) [N.d.T.: (C), (Σ)
here refer to a figure solution of a problem, and a system of such figures] are each defined by more than
one equation. In these circumstances, we must abandon intuition and come back to Analysis. By this
term I mean true reasoning ; I demand no equation, of course. M.Schubert absolutely wants to change
nature to accomodate it to his formulas. We deal with a problem that admits one solution: One! Are
you joking? The formula yields two: therefore there are two! Do you know how I replied? I took the
question to be a particular case of another, wherein the formula yields 5, and then of another, wherein
the same formula gives one”, Letter Halphen to Zeuthen, dated December 7th 1879, [Jordan et al., 1924],
p.637.
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Dans ces circonstances il faut abandonner l’intuition et revenir à l’analyse.
J’entends par là le raisonnement véritable ; je n’exige pas d’équation, bien
entendu.
M. Schubert veut absolument changer la nature pour l’accommoder à ses for-
mules. Nous traitons un problème qui a une solution : Une ! plaisantez-vous
? La formule en donne deux : Donc il y en a deux ! Savez-vous comment
j’ai répondu ? J’ai pris la question comme cas particulier d’une autre, où la
formule donne 5, et ensuite d’une autre, où la même formule donne 1....

What Halphen’s analysis of the theory of characteristics had shown was that there was no
such thing as a system of characteristics (µ, ν) in general, just like his work on algebraic
curves had shown that there was no such thing as a skew curve of order m in general.
Systems of figures, Halphen had shown, are characterized by an infinite series of numbers
unless certain modes of degeneration, depending on two or more infinitesimal quantities,
were discounted; similarly, families of curves can only be meaningfully characterized by
two numbers, and not just one (for instance, order and genus). For Halphen, to maintain
otherwise and to write formulae bearing on systems (µ, ν) of conics was equivalent “to
reasoning on what does not exist103”. Such reasonings can only produce the appearance
of generality: formulae such as De Jonquières’ αµ or Chasles’ αµ+βν, because they bear
on ill-defined objects, are bound to be procrustean. Either one admits that they suffer
limitations in their applicability, and thus one must agree with Halphen that they are
imperfectly general; or one follows Schubert in twisting geometrical facts to accommodate
ill-gotten formulae.

Thus, Halphen’s practice of generality is one that consists primarily in the construc-
tion of analytical tools for the expression of perfectly precise translations of the notions
that, theretofore, had remained implicitly defined by geometers. Like Clebsch, Halphen
sought the general equations for all of the geometrical notions used by Chasles in his
initial presentation of the theory of characteristics: notions such as that of a system, of
a degenerate conic, of a condition, of a solution etc. Clebsch’s analysis, however, was
incomplete to Halphen’s eyes. Looking back at his work in his Notice, Halphen made this
clear as he discussed the novelties of his own contributions with respect to the works of
Clebsch104:

103“Pas plus qu’il n’y a de courbe gauche générale de degré m, il n’y a de système général de coniques
de caractéristiques µ. On ne peut raisonner sur ce qui n’existe pas”, Letter Halphen to Zeuthen, dated
December 7th 1879, [Jordan et al., 1924], p.637. Halphen would later use similar terms in his memoir on
skew curves: “dans la Géométrie plane, un nombre unique, le degré permet de caractériser une famille de
courbes; tous les membres d’une même famille sont cas particuliers d’un seul et même être, bien défini par
une équation, la courbe générale du degré considéré. Dans la Géométrie de l’espace, cette définition des
courbes d’un même degré fait défaut. On reconnaît même, dès l’abord, que ces courbes forment plusieurs
familles, entièrement distinctes entre elles”, [Halphen, 1882], p.1.

104“I immediately noticed that I still had to make precise a notion which had until then remained vague,
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Pour dissiper les doutes, il fallait, je m’en aperçus aussitôt, préciser une notion
qui, jusque-là, était restée vague, celle de l’indépendance entre le système de
coniques, d’une part, et la condition supplémentaire qu’on impose, d’autre
part, aux coniques de ce système. Souvent M. Chasles avait négligé de la
mentionner ; mais chacun la restituait sans peine. Dans chaque exemple, en
effet, rien n’est plus simple ; mais, dans la théorie générale, on ne voit pas
d’abord comme préciser cette indépendance.

The flaw of Clebsch’s proof, for Halphen, resided in the fact that his concept of “mo-
bile solution” (bewegliche) had been made insufficiently precise and rigorous. Of course,
Halphen found even worse deficiencies in the proofs of Lindemann or Hurwitz. Even the
reasonings and proofs present in Schubert’s papers and books, despite being supported
largely by a machinery of abstract symbols, were cast as relying unduly on intuition – or
even imagination – by Halphen. To speak of a system of characteristics (µ, ν) is already to
let imagination suggest an object upon which no sound reasoning can be carried out. The
tools of mathematical analysis, on the contrary, when expertly used, dispel the illusion
that a general truth can be said about such objects; they serve as instruments of precision
in the face of the rampant vagueness that prevailed throughout geometrical discourse105.

The mathematical practice which befits this figure of the mathematician is one which
attaches great importance to counter-examples. We saw in section 6.4 how Halphen not
only began his second foray into the characteristics by communicating counter-examples
to the Académie des Sciences106, but repeatedly claimed that he was in possession of
a method to generate counter-examples at will to any supposedly general formula that
Schubert could throw at him. Counter-examples were of great importance to Halphen, not
least because they reveal that the generality of a formula such as αµ+βν is illusory, that
the analysis of its domain of validity had been improperly carried out, and that further hy-
potheses had to be added to make its proof valid. Generality, for Halphen, was hard-won,
through an expertly-conducted campaign to root out counter-examples, false intuitions
and other pervasive causes of errors107. In this sense, Halphen embodies the rise of ‘math-
ematical anxiety’ which came to characterize large parts of mathematical life toward the

namely that of the independence of, on the one hand, the system of conics, and on the other hand, the
extra condition that is imposed on the conics of this system. Often M. Chasles had neglected to mention
it, but everyone restored it effortlessly. In each example, indeed, nothing is simpler. In the general theory,
however, it is not clear at first how to make this independance precise.”, [Halphen, 1885], pp.9-10

105In fact, Halphen uses similar vocabulary to frame his research on skew curves: “dès le début de mes
travaux sur la Géométrie algébrique, j’avais compris la nécessité de préciser les notions, alors extrêmement
vagues, qu’on possédait sur les courbes gauches”, [Halphen, 1885], p.23.

106In fact, Halphen had first presented these counter-examples at a the Congrès de l’Association française
in Clermont-Ferrand, on September 4th 1876, [Halphen, 1885], p.10.

107This passage can be compared to that between the first two regimes of objectivity discussed in [Daston
& Galison, 2007], namely ‘truth-to-nature’ and ‘mechanical objectivity’.
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turn of the century108. These worries may seem overly familiar to modern-day readers,
trained by textbooks which carefully delineate the hypotheses without which a theorem
may be refuted through specific counter-examples. Countless mathematical books list
counter-examples to well-known statements whose validity hinges upon the verification
of every one of their hypothesis, bar none109. And yet, this must not obscure the fact
that Halphen’s posture qua mathematician here is at odds with that of most of his inter-
locutors regarding the theory of characteristics. Contrast it, for instance, with Chasles’
creed in Nature’s tendency to provide simple and direct paths toward mathematical truth,
described in the first chapter of this dissertation. No anxiety, no epistemic worry was to
be detected in the epistemology of the so-called ‘Prince of geometers’: the simplicity of a
method was a sure sign that it rested on general principles, and conversely. In this sense,
the very long lists of propositions produced by Chasles between 1864 and 1876 relying
on the principle of correspondence in order to (among other things) compute modules of
certain conditions were a much surer sign of the worth of the theory of characteristics
than any alleged proof of the αµ + βν formula could be - proofs for which Chasles had
little interest. The practice of generality which puts at its core the discussion of possible
counter-examples, and the search for theorems completely safe from them, stands in stark
contrast with the ‘generic’ practice of generality found in Chasles’ geometry110. It is not
surprising, thus, that Halphen would be compared to Abel in Jordan’s obituary for the
Journal de Mathématiques Pures et Appliquées: like Abel, he had first attempted to solve
a problem – that of finding a formula for the number of conics satisfying five conditions
– only to prove it was impossible111.

Halphen was a career military-man, an artillery officer who had taken part in the
1870 defeat against Prussia, but also in the effort to modernize the French army in its
wake. Until his death at a young age, he maintained both his mathematical and military
activities; a dual occupation which was soon erected to a somewhat heroic status by his
biographers. The idea that Halphen died of overwork, extremely busy at the forefront of
the renewal of both French military and scientific power, is present in many accounts of
his life written around the turn of the century. For instance, Brioschi opened his note on

108“This mounting disquiet about so many aspects of mathematics is seldom discussed as a widespread
part of mathematics life after 1850, although the individual cases of it are of course discussed in essays and
books devoted to the relevant particular parts of the field. The disquiet contrasts with the dominant image
of the nineteenth century in mathematics, the standard model of widespread innovation and success”,
[Gray, 2004], p.27.

109To mention only two, written for different audiences, concerning different parts of mathematics, and
in different countries, see [Steen & Seebach Jr., 1970], [Hauchecorne, 1995]. Counter-examples were also
famously presented as playing an essential role in mathematical practice in [Lakatos, 2015].

110We borrow this term from Hawkins’ discussion of the “generic reasoning” present in Hesse’s analytical
geometry, see [Hawkins, 1988], p.44.

111 [Jordan, 1889], p.347. In fact, Abel, like Cauchy, spoke rather of rules and exceptions than of
counter-examples, see [Sørensen, 2005].
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Halphen’s last communication by mentioning “the last months of his laborious life112”;
while Jordan, in his obituary, depicted Halphen as “devoting his days to his professional
duties, and his nights to his scientific works113”. This portrait of Halphen as a man of labor
was not merely the fabrication of biographers: it was at least partly due to Halphen’s own
self-styling. For an epigraph to his entry for the 1882 Steiner prize of the Berlin Akademie
der Wissenschaften, he had borrowed a verse by Lucanus, famously quoted by Montaigne
in his essay De l’oisiveté : “Variam semper dant otia mentem114”. He would reproduce this
very motto in his own Notice as part of his application for the Académie des sciences115,
after framing the bulk of his mathematical research as a largely unified labor, guided by
an ideal of rigor, and motivated by the need to secure sound foundations for algebraic
geometry. Here as well, this could not contrast more with the effortless combination of
truths that Chasles’ ideal geometer was to experience.

This labour, for Halphen’s colleagues, was characteristic of a certain turn of mind,
of the sort of mathematician he was. Jordan, Hermite, Picard, and many others all
present Halphen as someone who “dug profoundly into every subject he touched on and
never left anything unfinished116”, who had a “scrupulous conscience117”, and “exhausted
the consequences of known notions, striving to bring to the fore in the solution to each
question the real elements upon which it depends118”.

This characterization of Halphen as a hard-working, thorough, meticulous, expert-
mathematician reflected epistemic virtues which also characterized the ideal war-strategist
in the minds of his contemporaries. In fact, Halphen himself occasionnally expressed
his epistemic worries regarding the lack of rigor of his predecessors in passages rife with
military overtones. For instance, in his Notice, Halphen depicted the shortcomings of past
attempts at a theory of characteristics as a failure to properly prepare for a quasi-military
campaign119:

112 [Brioschi, 1889], p.520. Halphen was well known amongst Italian mathematicians, as is shown by
two letters from Guccia to Jordan quoted in [Brechenmacher, 2016a], pp.79-82.

113 [Jordan, 1889], p.346.
114 [Anonymous, 1882], p.735. Lucanus’ verse has been translated into “Idleness always produces a

wavering mind”, [Asso, 2010], p.89.
115 [Halphen, 1885], p.42.
116“Fidèle à son habitude constante de creuser tous les sujets qu’il touchait et de ne rien laisser

d’inachevé”, [Jordan, 1889], p.347.
117“On remarque [dans le mémoire de Halphen sur les courbes gauches algébriques], avec le génie

de l’invention, le don si précieux de la clarté et une conscience scrupuleuse qui ne laisse jamais rien
d’incomplet et d’inachevé dans les sujets qu’il traite”, [Hermite, 1889], p.994.

118“Il semble que l’on puisse aujourd’hui distinguer, chez les mathématiciens, deux tendances d’esprit
différentes. Les uns se préoccupent principalement d’élargir le champ des notions connues [..]. Les autres
préfèrent rester, pour l’approfondir d’avantage, dans le domaine de notions mieux élaborées ; ils veulent
en épuiser les conséquences, et s’efforcent de mettre en évidence dans la solution de chaque question les
véritables éléments dont elle dépend”, [Picard, 1890], p.489. In the following pages, it is made explicit
that, for Picard, Halphen belongs to this second category.

119“This theory, which led to so many controversies, seems today to be fixed. But, one must admit,
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Cette théorie, qui a donné lieu à tant de controverses, semble aujourd’hui fixée
; mais, on l’avouera, elle a subi un sort bien étrange ! Où trouver la cause de
ces vicissitudes ? Trop d’imagination, peut-être, avait entraîné prématurément
les géomètres dans une campagne mal préparée..

These military accents were later echoed by Halphen’s colleagues. Hermite, in his Allo-
cution given at the Paris Académie after Halphen’s death, used a similar vocabulary120:

Halphen, Faidherbe, après tant d’autres, ont été fidèles à la double mission de
l’École Polytechnique et ont continué ses glorieuses traditions. N’y a-t-il pas
effectivement, dans les habitudes de l’intelligence, dans cette nature partic-
ulière que crée l’enseignement de notre grande École, une liaison normale, une
concordance avec les qualités du soldat? Une rigoureuse discipline de l’esprit
prépare aux devoirs militaires, et l’on ne peut douter que les études mathéma-
tiques contribuent à former cette faculté d’abstraction indispensable au chef
pour se faire une représentation intérieure, une image de l’action par laquelle
il se dirige, en oubliant le danger, dans le tumulte et l’obscurité du combat.

Tellingly, this very passage would also be quoted by Poincaré in his own Notice on
Halphen121.

In these regards, Halphen is emblematic of a larger trend in public discourses on science
in France after the 1870 defeat to Prussia. As has been well-documented in recent decades,
this defeat was largely attributed to France’s scientific unpreparedness, and of the lack
of faith in (the usefulness of) science by the French population122. However dubious this
explanation may seem today, it nonetheless proved to be a strong impetus for the creation
of new scientific societies, among which the Société Mathématique de France123:

The proliferation of calls for new structures for research and its dissemina-
tion after 1870 bears witness to the unprecedented will for change and the
conviction that something could be done. The resulting innovations had two

what a strange fate it’s had! Where to find the source of these vicissitudes? Too much imagination,
perhaps, prematurely led geometers into an ill-prepared campaign”, [Halphen, 1885], p.14.

120“Halphen, Faidherbe, after so many others, have been faithful to the double mission of the École
Polytechnique, and have continued its glorious traditions. Isn’t there indeed, in the habits of intelligence,
in this particular nature which the teaching of our great School creates, a normal link, a concordance with
the soldier’s qualities? A rigorous discipline of the mind prepares one for military duties, and doubtlessly
mathematical studies contribute to form this faculty of abstraction which proves indispensable to the
chief who needs to form an interior representation, an image of the action by which he leads himself,
forgetting danger, into the tumult and obscurity of combat”, [Hermite, 1889], p.995.

121 [Poincaré, 1890], p.138.
122 [Fox, 2012], p.234.
123 [Fox, 2012], pp.236-237. On the history of the Société, see also [Gispert, 1991].
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recurring characteristics. First, they served, almost without exception, to as-
sert the primacy of specialized disciplinary expertise among the criteria for
professional advancement. And secondly, they broke with the notion of a
single elite of science defined by membership of the Académie and the near-
oracular authority that academicians enjoyed. In both respects, the Société
mathématique de France, founded in 1872, was a typical new departure. Its
priority was service to an open but informed public defined by its mathemati-
cal competence rather than by academic seniority or a position in a particular
institution.

Despite Chasles’ instrumental role in the creation of this Société, and in the selection
of topics under discussion during its first meetings, his authority as académicien quickly
waned there – which is why he mainly published in the Comptes-Rendus and not in
the Bulletin. For Chasles, expertise was not an epistemic virtue: in a well-grounded
geometrical theory, he thought, anyone could add to the edifice, provided he was in
possession of some fundamental principles. For Halphen, on the contrary, the mastery
of the modern theory of algebraic functions was very much needed in order to properly
contribute. It is this very expertise which he found lacking in Schubert’s work, for instance.
Insufficiently equipped, Schubert reasoned on things which did not exist, and he did not
properly understand the meaning of the formulae he had aligned in his book. This is, at
least, what Halphen thought he had uncovered via his counter-examples.

Halphen was thus very much the embodiment of a specific scientific persona, that is
to say “a cultural identity that simultaneously shapes the individual in body and mind
and creates a collective with a shared and recognizable physiognomy, [which lies] interme-
diate between the individual biography and the social institution124”. To such a persona
correspond specific epistemic virtues (expertise, rigour, thoroughness..) and practices125

(the search for counter-examples, domains of validity..). Such cultural identities have
many uses: they unify collectives of practitionners around stable sets of epistemic norms
and rules, help the identification of research problems and criteria for solutions converge
quickly. However, their downside is that they make communication from and to the out-
side world more difficult. The failure for Schubert and Halphen to come to any meaningful
agreement regarding the discrepancy in their results can largely be explained by the fact
that Schubert did not identify as an ‘analyst’. Schubert’s normative ideal for mathe-
matical life was a different one altogether; and Halphen’s accusations of ‘having changed

124 [Daston & Sibum, 2003], p.2. The ‘personae’ studied in the rest of this special issue range from
that of the Naturforscher who, in the 1820s and 1830s, “drew upon tavern camaraderie” and folk music
traditions to forge a unified, scientific identity; to that of the modern theoretical physicist, who like
Oppenheimer, is simultaneously “theorist, teacher, administrator, and advisor”, see p.5.

125This framework is adapted from [Daston & Galison, 2007], p.371.
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nature to accommodate his formulae’ could not have swayed him.

8.2.4 Schubert’s cultural mathematics

Like Chasles’, the moral economy of Schubert’s scientific life revolved around virtues
such as simplicity and unity. However, these terms meant very different things for both
mathematicians. To understand these claims, it is important to first situate Schubert at
the intersection of various contemporary intellectual and philosophical debates, to which
we now turn. We shall argue that Schubert’s enumerative geometry can be advantageously
read against the backdrop of his own philological and philosophical interests, thus casting
his mathematical work, as well as his refusal to really engage with Halphen’s criticism,
under a new light. In the wake of his 1879 book, and after a decade of intense work on
enumerative geometry, Schubert began publishing in a wider range of journals, authoring
articles and books on a wider range of subjects, until illness brought his scientific output
to a halt in 1905. Among these stand out works on the philology and ethnography
of numbers, elementary textbooks on algebra, and philosophical essays for a popular
audience126, which we now discuss in turn.

While numbers had been central to Schubert’s mathematical practice throughout his
foray into enumerative geometry, as we showed in the previous chapter, toward the late
1880s he began approaching them from a philological and an ethnographical perspective.
This venture would become a serious scientific endeavour, as Schubert quickly came to
publish in the second edition of the Anleitung zu wissenschaftlichen Beobachtungen auf
Reisen (Guides to scientific observations on travels) of the famous German explorer Georg
von Neumayer127 in 1888, but also to participate to congresses of German philologists128.
In fact, Schubert’s interest in philology predates his first publications on the topic, as
some of his letters to Halphen show – however, even then, this interest mostly revolved
on the philology of numbers and arithmetic.

Schubert’s first publication on the ethnography of numbers, a booklet published in
1887 under the title Zählen und Zahl, purported to give a “kulturgeschichtliche studie” of
numbers and number-words. This study consists mostly in a sketch of the developmental
stages through which the formations of number-words (“Zahlwortbildung”) and number-
signs (“Zahlzeichenbildung”) ought to pass (see fig. below). For Schubert, “the system of
numbers that we take for self-explanatory in our childhood is not something that can be

126Schubert also wrote several books and papers on recreational mathematics, which we will not discuss
here.

127 [Schubert, 1888]. On the creation and uses of these guides, see [Monteath, 2018].
128In [Schubert, 1905], p.5, Schubert mentions attending such a congress in 1905 for instance. The

history of German philology has received increasing attention in the last decades, see for instance [Benes,
2008].
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taken for self-explanatory, but rather the highest offshoot of a cultural-historical process
that began when man became man, when he began to speak and write129”. By retracing
the manners in which various peoples devised various ways to write and represent num-
bers, relying on the evidence brought by (mostly German) explorers throughout the past
decades from Alexander von Humboldt to Karl von den Steinen, Schubert sets out to
describe the emergence of the positional notation as a cultural process. Indeed, Schubert
systematically ties signs and other textual practices to the cultural (and ecological) land-
scape surrounding the peoples who devised them. Religions and mythologies, but also
neighbouring seas or mountains, are viewed as possible factors in the development of said
number-words and number-signs. In a particularly striking passage, Schubert writes130:

Bereits die älteste Literatur der Brahmanen, die Vedas, enthalten viele Beispiele,
welche die Liebe der Inder zu übertrieben grossen Zahlen verrathen. Da ist
die Rede von einem König, der seinen Reichthum zu hunderttausend Billionen
Edelsteinen angiebt, von einem Affenfürsten, der seinen Feinden 10 000 Sex-
tillionen Affen im Kampfe gegenüberstellen kann. Und in buddhistischer Zeit
liest man von 24 000 Billionen Gottheiten und von 600 000 Millionen Söh-
nen Buddha’s. [..] Auch die Griechen waren zu sehr Freunde der Natürlichen
und Wahren, als das sie derartige Uebertreigungen lieben konnten Homer lässt
im fünften Buche der Iliade den verwundeten Ares wie 9- oder 10 000 Män-
ner schreien. Ein Inder würde einen Kriegsgott, der nur wie 10 000 Männer
schreien kann, für lungenkrank gehalten haben.

Schubert goes on to explain why certain peoples (‘Volk’) have a need and desire for large
numbers, which in turn leads them to devise ways of conveniently writing words for large
numbers. To craft a word for the number ten thousand, the Greeks created the new word
µυριoι (myrias), because they couldn’t reasonably foresee a real need for many more such
words. The Indians, on the contrary, yearned for ever larger numbers, and so devised a

129“Das Ziffersystem, das wir in unserer Kindheit als etwas Selbstverständliches in uns aufnehmen, ist
nichts Selbstverständliches, sondern die höchte Sprosse eines kulturgeschichtlichen Prozesses, der seinen
Anfang nahm, als der Mensch zum Menschen wurde, als er nämlich anfing, zu sprechen und zu schreiben”,
[Schubert, 1887], p.1.

130“Already in the oldest literature of the Brahmins, the Vedas, there are many examples that betray
the love of the Indians for excessively large numbers. There is talk of a king who advanced his wealth to a
hundred thousand trillion jewels, of a Monkey Prince who could confront his enemies with 10,000 sextillion
monkeys in battle. And in Buddhist times one read of 24,000 trillion deities and of the 600,000 million
sons of Buddha. [..] The Greeks were too friendly to the natural and the true, to love such exaggerations.
Homer lets a wounded Ares scream like 9- or 10,000 men in the fifth book of the Iliad. In India, a god of
war who could only scream like 10,000 men, would be considered asthmatic”; [Schubert, 1887], pp.14-15.
Later in the book, Schubert insists: “Kein anderes Volk als das der Inder war dazu prädestinirt, die Null
zu erfinden. Phantastisch denkend und dabei dem Formalismus huldigend, im Besitz des konsequensten
aller Zahlwort-Systeme, und ausserdem übertrieben grosse Zahlen leidenschaftlich liebend, waren gerade
die Inder von der Natur dazu angelegt” (see pp.31-32).
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way to express them using number-words which already existed, not unlike contemporary
English does with the juxtaposition of the words ‘ten’ and ‘thousand’. Such systems of
number-words are ultimately classified by Schubert on a scale which goes from ‘Natürliche
Zahlreichen’ (numbers being represented by collections of points or other tokens) to the
‘Prinzip des Stellenwerthes’, which corresponds to our modern way of writing the so-called
Arabic numerals131.

[Schubert, 1887], p.36.

Schubert’s booklet was by no means an oddity: on the contrary, by invoking the very
category of ‘Kulturgeschichte’, it was intended to tie into a larger German historical and
philological tradition, to which was most famously associated Moritz Cantor, but which
actually goes back to Arthur Arneth. Arneth, a professor of mathematics at the Heidelberg
Lyceum, also “viewed the abstraction process leading to mathematical content as being
conditioned by cultural factors132”. While Schubert’s booklet was not intended to make
a positive contribution to the philology or ethnography of numeral systems, it displays a

131This interest in the practices of denoting and writing down numbers reflects Schubert’s own di-
dactical and pedagogical concerns, exemplified in several of his publications on enumerative geometry.
Indeed, Schubert constantly discussed his choices of notations, and made them so that as to make certain
regularities as apparent as possible; see section 7.2.2

132 [Smadja, 2015], p.266. Moritz Cantor had a controversy with Zeuthen over the historiography of
the Newton-Leibniz discovery of the differential calculus, discussed in [Sigurdsson, 1992]. The author
contrasts Zeuthen’s “elitism and pragmatic platonism” to Cantor’s culturalist historiography.
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real knowledge of state-of-the-art research in this field, and illustrates the wide-reaching
aspects of his reflexion on numbers and symbols.

To this Arnethian inspiration, Schubert combined the cosmopolitan and Humbold-
tian perspective on the development of mathematics which he borrowed from Hermann
Hankel133. Indeed, the variety of locally- and culturally-rooted mathematics – that is
to say, all the ways of writing numerals devised by peoples all over the world – was,
for Schubert, to blend into an ultimately universal science, which surmounts national
and regional characteristics. In a series of philosophical essays on mathematics for the
newly-created journal The Monist, Schubert had expounded a proto-formalist philosophy
of mathematics for a lay audience in which he built on his study of the ethnography of
numbers134. From his study of ‘primitive’ systems of numerations, and his understanding
of the developmental stages of the path to ideal number systems, Schubert attempted to
derive a philosophical account of what numbers are, as well as what strings of symbols of
numbers and operations represent. “Counting a group of things”, Schubert first proposed,
“is to regard the things as the same in kind and to associate ordinally, accurately, and
singly with them other things. In writing, we associate with the things to be counted
simple signs, like points, strokes, or circles135”. Philological and ethnographical studies
paint before our eyes the original mathematician as a crafter of signs, words, and symbols,
who progressively emancipates their science from the local cultural and ecological land-
scape it originated from. Once such emancipation has been achieved, the mathematician’s
numbers are pure cultural creation136:

Observation of the world of actual facts, as revealed to us by our senses, can
naturally lead us only to positive whole numbers, such only, and no others,
being results of actual counting. All other kinds of numbers are nothing but
artificial inventions of mathematicians.

How, then, are we to know how to operate on these unnatural numbers? Schubert’s solu-
tion to this question, while not completely unoriginal, borrows extensively from Hankel’s
work on systems of numbers, and in particular on his principle of permanence. Schubert
renamed it the “principle of no exception”, and summarized it as follows137:

133Hankel was another German mathematician at the crossroads of philology, mathematics, and the
history of mathematics, see [Smadja, 2015], pp.301-307.

134 [Schubert, 1891], [Schubert, 1892], [Schubert, 1893], [Schubert, 1894c], [Schubert, 1894b], [Schubert,
1896a], and [Schubert, 1896b]. On the role of The Monist in the diffusion of popular science and in
particular of non-Euclidean geometry in the U.S., see [Lorenat, forthcoming].

135 [Schubert, 1894c], p.397.
136 [Schubert, 1894c], p.402.
137 [Schubert, 1894b], p.567. This principle derives from George Peacock’s famous ‘principle of equiv-

alent forms’, whose shaping had also hinged upon his author’s lasting interest in natural history. The
mathematical and cultural context of Peacock’s and Hankel’s principles, however, are very different,
see [Richards, 1987], [Lambert, 2013].
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In the construction of arithmetic every combination of two previously defined
numbers by a sign for a previously defined operation (plus, minus, times,
etc.) shall be invested with meaning, even where the original definition of the
operation used excludes such a combination ; and the meaning imparted is
to be such that the combination considered shall obey the same formula of
definition as a combination having from the outset a signification, so that the
old laws of reckoning shall still hold good and may still be applied to.

Crucial for both Schubert’s and Hankel’s understandings of what systems of numbers
are, is the latter’s proof of the theorem that there can’t possibly be any extension of the
system of complex numbers which preserves basic algebraic laws, such as commutativity.
Hamilton’s quaternions, for instance, are an extension of complex numbers in which the
order of multiplication matters. For Schubert, this shows that “the building up of arith-
metic is thus completed”, and that this science has reached absolute perfection -because
it derives from a single, “monistic principle138”.

In fact, this recourse to Hankel’s ‘principle of permanence’ had already been used by
Schubert in a pedagogical context. For most of his life, Schubert worked as a Gymnasium
teacher. From 1876 to 1908, he was ordentlicher Oberlehrer at the Gelehrtenschule des
Johanneums in Hamburg. While in Hamburg, Schubert also lectured two to four hours a
week at the Akademisches Gymnasium, to a mixed audience composed largely of fellow
Gymnasium teachers. Between 1883 and 1908, Schubert published some twelve textbooks
and exercise books for high-school students, making pedagogical and didactical texts a
significant component of his scientific output. The so-called “Sammlung Schubert”, a
series of textbooks published by Göschenverlag (a company which would be bought by
De Gruyter in 1919) proved to be popular with teachers all over Germany139. It is in
one of the first of these textbooks that Schubert first explicitly presented his philosophy
of numbers and algebra relying on Hankel’s ‘principle of permanence140’. On Klein’s
command, Schubert wrote the very first chapter of the first book of Klein’s and Meyer’s
Encyklopädie, on the foundations of arithmetic141. This chapter, which relied heavily on
Schubert’s understanding of Hankel’s principle of permanence, elicited harsch criticism
from Frege and Peano142.

138 [Schubert, 1894b], pp.578-579.
139A clear view of Schubert’s authorial career is still very much lacking. According to Burau’s recension of

Schubert’s publications, reproduced in [Schubert, 1979], pp.18-21, there were 6 volumes in the Sammlung
Schubert, with topics ranging from elementary arithmetic and algebra to combinatorics and logarithms.
On these texts, see also [Remmert & Schneider, 2010]; pp.89-93.

140 [Schubert, 1885], p.27.
141 [Schubert, 1898].
142Hankel’s principle of permanence, as well as Schubert’s adaptation thereof and the opposition to it

by Peano and Frege, are discussed in [Detlefsen, 2005].
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The connection between Schubert’s philosophical views and geometrical practice would
appear most clearly in Schubert’s rebuttal of the spiritualist theses of Johann Zöllner
(1834-1882). A German astrophysicist, Zöllner argued toward the end of his life that the
mathematics of four-dimensional spaces and its physical interpretation form a rational
and scientific basis for spiritualism, that is to say the study of the spirits of the dead143.
Rejecting any attempt to use pure mathematics to naturalize such phenomena, Schubert
insisted on the purely artificial character of the numbers the mathematician freely crafts
in the course of their work. Dimensions are one such example of artificial numbers144:

Is it permissible to extend the notion of space by the introduction of point-
aggregates of more than three dimensions? [..] In mathematics, in fact, the
extension of any notion is admissible, provided such extension does not lead to
contradictions with itself or with results which are well established. Whether
such extensions are necessary, justifiable, or important for the advancement of
science is a different question. It must be admitted, therefore, that the mathe-
matician is justified in the extension of the notion of space as a point-aggregate
of three dimensions, and in the introduction of space or point-aggregates of
more than three dimensions, and in the employment of them as means of
research.

Here, Schubert’s theses echo once more those of Hankel’s, who had famously claimed that
“number is no longer an object, a substance which exists outside the thinking subject
and the objects giving rise to it, an independent principle, as it was for instance for the
Pythagoreans. [..] Only that counts as impossible for the mathematician which is logically
impossible, i.e. that which contradicts itself145”. For Schubert, the mathematician wields
symbols and concepts with no intrinsic relation with natural objects whatsoever. The
sole rules of such an activity are that it should preserve past discoveries, and introduce no
new contradiction. This is not to say that anything goes: mathematics, for Schubert, is

143 [Sawicki, 2016], pp.299-310. Zöllner’s theses were discussed by a range of philosophers, from Nietzsche
to Helmholtz, and even caused a scandal in Leipzig in the early 1870s.

144 [Schubert, 1893], p.410.
145“Ein Ding, eine Substanz, die selbstständig ausserhalb des denkenden Subjectes und der sie veran-

lassenden Objecte existirte, ein selbstständiges Princip, wie etwa bei den Pythagoreern, ist die Zahl heute
nicht mehr. Die Frage von der Existenz kann daher nur auf das denkende Subject oder die gedachten Ob-
jecte, deren Beziehungen die Zahlen darstellen, bezogen werden. Als unmöglich gilt dem Mathematiker
streng genommen nur das, was logisch unmöglich ist, d. h. sich selbst widerspricht”, [Hankel, 1867], p.6,
quoted and translated in [Epple, 2003], pp.293-294. The similarities between Schubert’s and Hankel’s
mathematical practices deserve to be explored further. Like Schubert, Hankel in his Vorlesungen über
die complexen Zahlen insists in many instances on the role of content-free signs (Zeichen), which can be
used to refer to spatial objects such as points, rays, and planes, and manipulated using the formal rules
of arithmetic. For these reasons, Hankel seems a much better candidate than Poncelet to understand the
genesis of the principle of conversation of number.
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always located on a path of progression, of which the end goal is the “[unification] under
a high point of view of theories heretofore regarded as different146”.

To view Schubert as a philosopher of mathematics is bound to lead to disappointments:
his writings do not have the finesse and argumentative solidity to withstand assaults from
the likes of Frege, who harshly dismantled his view of number in an ironic review147. There
is, however, much to gain from reading Schubert’s texts as depicting a regulative ideal of
mathematical activity, one that already ruled his geometrical research. Indeed, Schubert’s
enumerative geometry, as the name suggests, is a science of the numbers of geometry. In
fact, we saw that he used expressions such as ‘geometrical numbers’ to refer to some
of the symbols of his Kalkül. Such geometrical numbers, like dimension-numbers, are
purely human creations; and their very definition rests on the postulation of a principle of
conservation as well. They are bound by no rule other than internal coherence: in fact, the
first of these numbers, that is to say the numbers of ‘main elements’ satisfying fundamental
conditions, had been said by Schubert to be axiomatic. Lastly, the use of these numbers
was aimed toward the obtention of unitary knowledge by way of Produktensätze, which
gather in one formula the solution to all enumerative problems pertaining to a certain
figure.

We can now understand why Halphen’s criticism failed to elicit a strong reaction from
Schubert. Halphen accused Schubert of altering Nature, but this accusation could not
sway the German geometer, for whom mathematicians were free to craft symbols and
numbers as they saw fit, as long as no contradictions were thus introduced, in the hope
of finding a path to a unitary formulation of the solution to a geometrical problem148.
The rhetorical recourse to Nature, whether in the form of Chasles’ account of geometrical
practice as the search for fundamental properties from which theories can be effortlessly
derived, or of Halphen’s description of the Analyst using his expert training and tools to
track the traps and counter-examples which lay in our imprecise intuition of Geometry, was
ultimately meaningless for Schubert. A clash of geometers who shared little understanding
of what mathematical activity consists in and what its goals are, the Halphen-Schubert
controversy was one in which constructive dialogue nigh impossible.

146 [Schubert, 1896a], p.301.
147Frege’s review was first published in Jena in 1899, see [Frege, 1984], pp.249-272.
148Some have even likened Schubert’s mathematics to “the expression inside the realm of pure mathe-

matics of the mindset of the contemporary industrialisation”, see [Schappacher, 2007], §2.
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8.3 Zeuthen versus Study: A matter of perspective?

8.3.1 Study’s 1885 Habilitationsschrift: Chasles’ formula vin-
dicated?

The public discussion of Chasles’ theory of characteristics and of the αµ + βν formula
paused in the wake of the Schubert-Halphen controversy. Schubert went on to publish
several other papers in the vein of his enumerative Kalkül (for instance generalizing the
enumerative geometry of conics and quadrics in n-dimensional space149), showing little
interest in adapting his methods and results to Halphen’s criticisms. Halphen had moved
on to other research interests, from algebraic geometry to differential invariants and equa-
tions. Zeuthen had not taken part publicly in any of these discussions, and he published
on topics in algebraic geometry which did not directly concern enumerative methods.
Nevertheless, he made frequent use of the principle of correspondence in its generalized
forms. And yet, the state of the theory of characteristics did not satisfy Felix Klein,
who had maintained a friendly and professionnal relationship with Schubert, frequently
corresponding and publishing several of his papers in the Mathematische Annalen. Klein
was ideally placed to know that the conflict hadn’t been fully resolved; and so he decided
to direct one of his promising students in Leipzig toward writing an Habilitationsschrift
on the difficult terrain of enumerative geometry. This student, as mentioned earlier in
this chapter, was none other than Eduard Study150.

Upon receiving his assignment in July 1884, Study admitted that he knew very little
about enumerative geometry, and wondered whether he would be able to find anything
new to contribute151. A month into his study of Schubert’s enumerative geometry, Study
felt even more helpless: the principle of conservation of the number as employed by
Schubert seemed to him ill-founded, and the algebraic work required to rigorously ground
its usage far beyond what he was able to do. In a letter to Klein, Study confessed that he
did not have the first idea on how to lift the difficulties he had faced in reading Schubert’s

149 [Schubert, 1886], [Schubert, 1894a].
150Study has been the subject of little interest in recent years, with one notable exception being

[Hartwich, 2005], on which we shall rely heavily in the rest of this chapter. A short analysis of Study’s
philosophy of mathematics and space is provided in [Gray, 2008], pp.293-296.

151“Ihre Themenstellung verstehe ich zwar noch nicht ganz – aber Sie haben wohl die Freundlichkeit,
mir die Punkte, die Sie besonders behandelt wuenschen, naeher zu bezeichnen – auch kenne ich ja die
abzaehlende Geometrie noch viel zu wenig. Ob ich freilich Bemerkungen finden werde, die sich nicht
Jedem, der die Sache studirt, von selbst darbieten, weiss ich nicht. Ich ergreife aber mit Freuden die
Gelegenheit, meinen Gesichtskreis in dieser Hinsicht zu erweitern – es ist fuer den Geometer gewiss
noethig, sich mit diesem Calcul vertraut zu machen und eine Meinung darueber zu bilden.”, Nachlass
Klein, Letter Study to Klein 1221, dated July 24th 1884, quoted in [Hartwich, 2005], p.53. Study was
described, in many contemporary accounts, as eccentric and opiniated. In particular, his correspondence
with Klein often borders on confrontational.
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book152. As a general algebraic treatment of Schubert’s enumerative geometry seemed
out of reach, Study decided to focus on Chasles’ αµ + βν formula. Here as well, at
first, he thought the subject to be too slippery: in Study’s words, “the problem lacked
an exact formulation153”. To find such a formulation, and thereby to rigorously prove
Chasles’ theorem, such was the task to which Study devoted the following months and
his Habilitationsschrift154.

In July 1885, Klein deemed Study’s work to be worth the Habilitation. Study’s disser-
tation was published, first independently by Teubner, then the following year in Klein’s
Mathematische Annalen155, with few and slight modifications. The result of Study’s ef-
forts was a new proof of Chasles’ αµ + βν theorem, and a new response to Halphen’s
criticisms. Partly because of the surprising nature of this conclusion, Klein sent Study
on a scientific trip to Paris at the end of March 1886, alongside Hilbert. Among other
things, Klein expected Study to go there to discuss his results with Halphen.

This trip had a broader purpose: Klein viewed Paris as a “beehive of scientific activity,
particularly among the young mathematicians156”. There, Study and Hilbert introduced
themselves to Poincaré, Jordan, Picard, and Hermite; but also Halphen, with whom Study
had personal discussions regarding his new proof of the αµ + βν formula, and with De
Jonquières, who had his Habilitationsschrift translated into French. While Hilbert wrote
back to Klein to describe the great warmth with which he had been welcomed157, Study felt
that Darboux and Halphen stood out in that regard, and that they “looked down upon”
the young German mathematicians158. With respect to the level of the mathematical
discussions they were able to have in Paris, both Study and Hilbert were disappointed:
the fact that most of the French mathematicians they engaged with felt the need to
speak German made scientific communication difficult. That, and the fact that Study
and Hilbert were yet to prove their mathematical ability, meant that the exchanges that
Klein had hoped for did not come to full fruition. Study returned to Germany at the end
of April, that is to say two months earlier than Hilbert, unchanged in his mathematical

152“Und hier liegen in der That Schwierigkeiten, die aber so gross sind, dass ich bekenne, nicht einmal
einen Begriff davon zu haben, wie man sie heben koennte”, Nachlass Klein, Letter Study to Klein 1222,
dated August 21st 1884, quoted in [Hartwich, 2005], pp.53-54. Study’s opposition to Schubert’s principle
would be long-lasting, as we shall see later in this chapter.

153“Es fehlt eben ueberall die exakte Formulierung der Fragestellung”, Nachlass Klein, Letter Study to
Klein 1222, dated August 21st 1884, quoted in [Hartwich, 2005], p.55.

154 [Study, 1885]. A brief appendix to this text shows that Study’s proof extends to Cremona’s formula,
for systems of level 2 and 3.

155 [Study, 1886b], [Study, 1886a].
156 [Reid, 1986], p.20.
157 [Reid, 1986], p.23.
158“Darboux und Halphen sind die Einzigen, die nicht freundlich mit uns sind, und uns von oben herunter

behandeln”, Nachlass Klein, Letter Study to Klein 1280, dated April 15th 1886, quoted in [Hartwich,
2005], p.62.
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views.

Study’s visit was particularly disappointing as regards his exchanges with Halphen.
Study visited him twice within a few days of arriving in Paris, and the two men had “a
conversation of almost three hours, mostly about the problem of characteristics159”. Study
would have several other exchanges with Halphen, until the very end of his Parisian stay.
In fact, Halphen sent letters to Study’s address in Paris until April 28th, referencing
their earlier in-person conversations. Despite these frequent meetings, however, neither
Study nor Halphen budged. Study spent a part of his stay reading a paper given to him by
Halphen, in which the latter “solved the Charakteristikenprobleme for five 4-fold extended
systems of conics [that is to say, four conditions] by a kind of Charakteristikenformel160”.
Once he had read this paper, however, Study was unmoved, reporting back to Klein that
“[Halphen’s work] is quite pretty, but he didn’t know how to do the same things with his
own methods”, and “that it was better to do something completely new161”. Meanwhile,
Halphen “persisted in finding nothing useful or new in [Study’s] interpretation of Chasles’
theory162”.

Halphen never commented publicly on Study’s papers: perhaps, as Zeuthen feared,
“after killing the theorem he did not deign to fight its specter163”. But more profoundly, as
we shall show in the rest of this chapter, Halphen and Study were pursuing very different
kinds of mathematics, both at the level of the concepts and methods they used, and at the
level of the epistemic task they put at the heart of their mathematical practice. Mean-
while, Schubert wrote a brief and rather uninformative review of Study’s Mathematische

159“Vorgestern war ich ein zweites Mal bei Halphen und hatte da eine fast drei Stunden dauernde
Unterredung mit ihm, meistens ueber das Charakteristikenproblem, mit der ich recht zufrieden bin”,
Nachlass Klein, Letter Study to Klein 1278, dated April 3rd 1886, quoted in [Hartwich, 2005], pp.60-61.

160“Zum Schluss gab er [Halphen] mir, mit freundschaftlicher Widmung, eine Arbeit, in welcher er das in
seinem Sinne gefasste Charakteristikenproblem fuer fuenf 4-fach ausgedehnte Kegelschnittsysteme durch
ein Art Charakteristikenformel allgemein loest”, Nachlass Klein, Letter Study to Klein 1278, dated April
3rd 1886, quoted in [Hartwich, 2005], p.61.

161“Die Arbeit, die Halphen mir gab, habe ich nunmehr gelesen. Sie ist recht huebsch, leider weiss ich
noch nicht, wie ich dieselben Sachen mit meinen Methoden machen soll. Ich werde mich aber nicht sehr
damit plagen, ich denke, es ist besser, man macht etwas ganz neues”, Nachlass Klein, Letter Study to
Klein 1280, dated April 15th 1886, quoted in [Hartwich, 2005], p.62.

162“Quant au sujet même qui vous intéresse, je crains fort de voir encore mon opinion vous déplaire. Sans
parler de vos démonstrations, que je n’ai pas eu le loisir d’étudier, je persister à ne trouver rien d’utile
ni rien de neuf dans votre interprétation de la théorie de Chasles. Je m’étonne même, connaissant bien
maintenant votre idée, de me trouver avec vous en contradiction sur ce point”, Nachlass Engel NE090416,
Letter Halphen to Study, dated April 22nd 1886. Note that Halphen is referring to his previous discussions
with Study, mentioned in Study’s letters to Klein. Only two brief letters from Halphen to Study are extant,
the other written on April 28th, right before Study’s departure. In it, Halphen discusses a technical point
of his criticism of Clebsch’s proof of the αµ+ βν formula, and refers to a discussion they had in person
earlier that same day.

163“J’ai peur qu’après avoir tué le théorème vous dédaignez d’en combattre le spectre”, Letter Ms 5624
246, Zeuthen to Halphen, dated August 19th 1886.
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Annalen entries for the Jahrbuch164, but did not substantially engage with their content,
or with Study’s argument against his own mathematical practice.

8.3.2 The motivated creation of mathematical concepts

In the first section of his 1886 paper published in Klein’s Mathematische Annalen165,
Study gave a short historical account of the previous attempts at solving the problem
of enumerating the conics in a plane satisfying five given conditions (and the equivalent
problem for surfaces), whereby he positioned the novelty of his own approach166. Study,
like many before him – Schubert included –, emphasized the analogy between Chasles’
formula and Bézout’s theorem for the number of intersections of (algebraic) curves. At
the level of a general (and insufficiently precise) statement of the problem, Study explains,
the problem to which Chasles’ formula answers is that of giving the intersection of several
systems of curves (or surfaces) whose dimensions are complementary. Because all curves
in a given plane form a variety167 (Mannigfaltigkeit), the solution to this problem can
indeed be understood as a generalization of Bézout’s theorem: finding how many conic
sections in a common plane satisfy five given conditions is equivalent to computing the
number of intersections of five four-fold systems in the variety of planar conics – that is
to say, in modern parlance, the intersections of five hypersurfaces in a five-dimensional
projective space. For Study, this is exactly what De Jonquières’ initial solution to the
problem consisted in: to characterize systems of curves by a single number (its index,
which plays the same role as the order in the theory of algebraic curves), whose products
yield the number of intersections being sought – as in the usual form of Bézout’s theorem.
However, Study insists, this is a flawed solution168:

Dieser Standpunkt zeigt nun offenbar den Bézout’schen Sätzen gegenüber
nichts eigentlich Neues; die Theorie der Systeme algebraischer Curven selbst
aber lässt er in einem falschen Lichte erscheinen, wie man schon daraus erken-
nen kann, dass man von hier zu Unterscheidungen gelangt, die in der Natur

164 [Schubert, 1889]
165Since the differences between Study’s 1885 Habilitationsschrift and his 1886 couple of papers are

slim, we elect to give references to the latter, except at a few instances where differences are taken into
account.

166 [Study, 1886b], pp.58-64.
167To be more precise, for Study, the key factor is that each curve in the plane can be bi-univocally

mapped to a point of a certain variety.
168“This point of view obviously shows nothing really new with regard to Bézout’s theorems; but it

casts a false light on the theory of systems of algebraic curves, as can be seen from the fact that it leads
to distinctions which are not founded in the nature of these figures. This rests on the distinction of the
point as spatial element. A curve, however, is not merely the locus of points; and one will not be entitled
to view a system of conic sections only as a system of curves of the second order, but also of the second
class, that is to say as a system of loci of straight lines”, [Study, 1886b], p.59.
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jener Gebilde nicht begründet sind.
Es beruht dies auf der Auszeichnung des Punktes als Raumelement. Eine
Curve ist aber nicht allein Ort von Punkten; und man wird etwa ein Kegelschnittsys-
tem nicht nur als ein System von Curven zweiter Ordnung, also von Punktcur-
ven betrachten dürfen, sondern man wird dasselbe ebensowohl als ein System
von Curven zweiter Classe aufzufassen haben, d. h. als ein System von Oert-
ern für gerade Linien.

To view conics only as loci of points, Study continues, means that certain conditions are
viewed as being satisfied in cases which should be rejected: for instance, all line-pairs of
a system ‘touch a given curve’ if not also viewed as loci of straight (tangent) lines. Thus,
Study explains, under Chasles’ superior point of view (Standpunkt), two curves are viewed
as identical if they not only coincide point by point, but also tangent by tangent.

The key feature of Study’s account is that he presents both definitions of the identity
between two curves (that is to say, both ways to form a variety of planar conic sections)
as “acts of arbitrariness169” (Act der Willkür); and the “punctum saliens” of the problem
of characteristics, for Study, is precisely to find such an arbitrary definition which does
not lead to the same sorts of problems as De Jonquières’. However, neither De Jonquières’
nor Chasles’ points of view were precisely defined, especially with respect to which degen-
erate conics ought to pass as real solutions to enumerative problems. For Study: “these
older authors”, he assesses, “were guided, in their separation between different kinds of
solutions, by their correct tact, rather than by sharp concepts170”. This proved to be a
crucial shortcoming of their theories: the first authors such as Clebsch, who attempted to
prove the αµ+ βν formula, all ever so slightly shifted the initial meaning of the problem
while trying to reformulate it. This is what happened, Study contends, when Clebsch put
forth his definitions of ‘mobile conics’ and real solutions; hence leading to a necessarily
flawed proof. This, Study continues, is why some thought Chasles’ formula to be outright
false. Halphen’s memoirs are then read by Study as proving that Clebsch’s formulation
of Chasles’ problem was not an adequate basis for the formula, and that to view ‘mobile
solutions’ as ‘real soutions’ was not the right (arbitrary) definition to adopt.

Thus, after recounting the history of this problem, Study sets out to give a new
formulation of it171. To do so, is to make an arbitrary choice, by way of selecting some
properties of systems of conics which are essential to the validity of the theorem at hand

169 [Study, 1886b], p.59.
170“Wir haben schon angedeutet, dass die älteren Autoren sich bei ihrer Abscheidung gewisser Arten

von Lösungen mehr durch einen richtigen Tact, als durch scharfe Begriffe hatten leiten lassen”, [Study,
1886b], p.61.

171In Study’s Habilitationsschrift, the second section is actually named “Ueber eine Formulirung des
Problems” in the table of contents, [Study, 1885], ‘Inhalt’. In the 1886 paper, this section does not have
a title, see [Study, 1886b], pp.64-68.
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(namely, Chasles’ formula), and to make them into definitions for the formation of a
variety in which the problem can be aptly translated. Such an operation, Study claims,
allows a move from the intuition of particular cases to the logical treatment of the general
claim172:

Will man aber eine in besonderen Fällen anschauungsmässig behandelte Auf-
gabe in voller Allgemeinheit erledigen, so muss man von der Anschaaung zu
Begriffen übergehen und logische Deductionen an Stelle der Berufung auf den
Augenschein setzen, die nicht selten auch im einzelnen Falle, wo sie auszure-
ichen scheint, doch nur das stille Bekenntniss enthält, dass man sich der wahren
Gründe nicht vollkommen klar bewusst ist. Man hat zu diesem Behufe diejeni-
gen Eigenschaften der betreffenden Gebilde, deren Vorhandensein man als die
nothwendige und ausreichende Bedingung ansieht für das Bestehen jener an-
deren Eigenschaften, welche den geometrischen Satz vorstellen, von den übri-
gen zu trennen, welche man als Consequenzen jener oder nur als durch die
zufällige Erscheinungsform des allgemeinen Satzes bedingt betrachtet. Die
ersteren muss man zum Range von Definitionen erheben und zur Grundlage
der Beweisführung machen. Diese Operation vollzieht Jeder, der eine Verall-
gemeinerung vornimmt, mit Absicht oder auch unwillkürlich. [..] Es kann
eintreten, dass der Schnitt, welcher Wesentliches von Zufälligem trennen soll,
an der falschen Stelle geführt wird, und dass die angestrebte Schärfe der Def-
inition doch nicht ganz erreicht wird.

The image of mathematical life contained in this paragraph differs from that present
in Schubert’s philosophical musings, or Halphen’s self-fashioning. Like Schubert, Study
emphasizes the freedom at the heart of mathematical conceptualization; however, this
freedom lies in the location of a cut, a separation between what is taken to be essential,
and what is to be derivative. For Study, the creation of mathematical concepts, while
free, must be motivated – by the existence of a theorem deemed important to preserve,
or by the need to communicate with others by creating concepts that do not directly

172“But if one wants to solve in full generality a problem which in particular cases has been treated
intuitively, one must move from intuition to concepts, and apply logical deductions instead of appeals to
the visual which, even in the isolated cases where they seem sufficient, are but the silent confession that
one is not fully aware of the true reasons. For this purpose, it is necessary to separate those properties of
the figures in question, the presence of which is considered to be a necessary and sufficient condition for the
existence of those other properties which constitute the geometrical theorem, from those other properties
which are considered to be consequences of those first properties, or which are only conditional to the
accidental appearance of the general theorem. The former must be elevated to the rank of definitions,
and be made the basis for the proof. This operation is carried out by anyone who makes a generalization,
intentionally or involuntarily. [..] It may happen that the cut which separates the essential from the
accidental is made in the wrong place, and that the desired sharpness of the definition is not entirely
achieved after all”, [Study, 1886b], pp.61-62.
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contradict statements in use elsewhere. In other words, the ‘general’ is not a property
of a proposition, but something to be constructed through the selection of a property
necessary for the validity of a theorem which one wants to make valid.

Furthermore, to this free creation of concepts must always be attached a precise delin-
eation of their extension. Study, throughout his mathematical and philosophical career,
was no ally to the defenders of axiomatics173, as he made clear for instance in a later text
on the line-geomety of space174:

Die Systeme von mathematischen Begriffen sind unsere Geschöpfe. Innerhalb
der Schranken, die uns durch die Denkgesetze gezogen sind, können wir sie
entstehen und vergehen lassen, nach freiem Belieben. Weil wir aber – übri-
gens durchaus nicht in jeder Beziehung – ein kritisches Geschlecht sind, so
entäufsern wir uns freiwillig eines grofsen Teils unserer Schöpferkraft; und wir
müssen das thun, müssen eine nicht leicht zu nehmende Motivierung neuer
Begriffe fordern, wenn wir den Thatsachen nicht Gewalt anthun, wenn wir
einander verstehen und nicht der Laune jedes Beliebigen Thür und Thor öff-
nen wollen. – Indessen kann auch begründete Vorsicht zu weit gehen. Wir
suchen mit Überliefertem auch wohl da noch auszukommen, wo Bedürfnisse
neuer Art vorliegen und neue Gestalten in Erscheinung treten sollten; und wir
lassen vielleicht gar das Geschöpf zum Herren werden.

Furthermore, with Halphen and against Schubert, Study emphasizes rigor and preci-
sion as the core epistemic values of the mathematician, mainly with the goal of reaching
an abstract form of generality. From his first reading of the Kalkül to the later stages of
his career, Study would constantly criticize Schubert’s blind symbolism, and his reliance
on the principle of the conservation of numbers175. This principle, for Study, was emblem-
atic of the “untenable state of Geometry”, wherein “in countless cases, the objects under
investigation were so unclearly explained that the meaning [Sinn] of individual concepts
is to be guessed from the assertions made about them, where differences of opinion can

173Gray describes Study’s accounts of axiomatics in geometry as “reactionary”, [Gray, 2008], p.294.
174“Systems of mathematical concepts are our own creations. Within the barriers that are defined by

the laws of thought, we can let them come into existence and pass away at will. However, since we are a
critical race – although not in every respect – we willingly divest ourselves of a large part of our creative
power; and we must do that, we must demand a motivation for new concepts that is not easy to take, if
we are not to do violence to the facts, if we are to understand each other, and not to capriciously open
any arbitrary door and gate. Meanwhile, reasonable caution can also go too far. We also seek to get by
with existing things when demands of a new sort arise and new forms might come to light, and we may
even perhaps allow the creation to become the Lord”, [Study, 1902], p.99.

175In particular, Study gave a paper during the 1904 International Congress of Mathematicians in
Heidelberg attacking Schubert’s principle, which was later published in Archiv der Mathematik und Physik
with minor changes, [Study, 1905a], [Study, 1905b]. He came back to this issue a decade later with renewed
criticisms toward the principle, see [Study, 1916].
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naturally arise176”. Of course, through such claims, Study was alluding to, among other
things, the historical disagreements over the theory of characteristics, wherein an absence
of precision had led to such divergences in opinion.

More specifically in the case of Schubert’s principle of conservation, Study lamented
the lack of a precise concept of geometrical figure. Of course, as we showed in the previous
chapter, Schubert did propose a detailed concept of figure; but not in a sense that could
satisfy Study’s demands. On a mathematical level, for Study, a ‘general’ concept of figure
can only be provided by considering figures which form a variety (or a “closed algebraic
continuum177”). On a philosophical level, however, what Study demanded was a language
free of any ambiguity. Toward the end of his first paper against Schubert’s principle, Study
considers the two nominal groups ‘two points’ (zwei Punkte) and ‘two different points’
(zwei verschiedene Punkte). These two expressions ought to carry different meanings, and
yet, without the recourse to a precise topological framework, the difference between them
remained ambiguous to Study’s eyes.

And so Study ended his communication with a call for all geometers to join forces
in renewing and purifying the language of geometry, so that precision and unambiguity
may be collectively achieved178. This collective work, for Study, was of vital importance
for geometry at large, and the anxious accents of this paper reveal how crucial he felt
was the task at hand179. Against Schubert’s concept-free symbolism, or Chasles’ intuitive
geometry, but also against Halphen’s restrictive reliance on a natural, yet possibly irregu-
lar, theory of conics, Study reconciled arbitrary definitions with an intransigent emphasis

176“Die Geometrie ist großenteils heute noch weit entfernt von der Präzision, die bei rein analytis-
chen Untersuchungen, dank besonders dem Einfluß von Weierstraß, nunmehr allgemein als unerläßlich
betrachtet wird, und, was schlimmer ist, es scheint in weiten Kreisen auch gar kein Gefühl für das
Unhaltbare des gegenwärtigen Zustandes vorhanden zu sein. In unzähligen Fällen werden die Objekte
geometrischer Untersuchungen so undeutlich erklärt, daß man den Sinn der einzelnen Begriffe aus den
darüber aufgestellten Behauptungen zu erraten suchen muß, wobei natürlich Meinungsverschiedenheiten
entstehen können”, [Study, 1905a], p.388.

177“‘Gemeint’ sein können nur solche Figuren, deren Mannigfaltigkeit einim Sinne von G. Cantor
abgeschlossenes algebraisches Kontinuum bildet, d. h. eindeutig umkehrbar abgebildet werden kann auf
eine algebraische Punktmannigfaltigkeit, die in dem projektiven Punktkontinuum irgend eines höheren
Raumes verläuft”, [Study, 1905a], p.391.

178“Die Mitwirkung Vieler aber wird zum Reinigungswerk erforderlich sein. Vor allem wird die Kritik
sich gegenwärtig halten müssen, daß Präzision in geometricis nicht in perpetuum wie eine Nebensache
behandelt werden darf”, [Study, 1905a], p.395.

179Study’s plea is not entirely different from Frege’s outrage at the lack of answers to fundamental
questions about arithmetic expressed in his 1884 Grundlagen der Arithmetik: “When we ask someone
what the number one is, or what the symbol 1 means, we get as a rule the answer ‘Why, a thing’. [..]
Questions like these catch even mathematicians for that matter, or most of them, unprepared with any
satisfactory answer. Yet is it not a scandal that our science should be unclear about the first and foremost
among its objects, and one which is apparently so simple?”, [Frege, 1960], pp.xiii-xiv. Earlier already,
Frege had insisted in the Begriffschrift on the need to “break the domination of the word over the human
spirit by laying bare the misconceptions that through the use of language often almost unavoidably arise
concerning the relations between concepts”, [Frege, 1967], p.7.
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on the importance of the mathematician’s duty to precisely measure and delineate the
extension of the concepts they freely produced180.

To present the technical content of the entirety of Study’s dissertation would require
preliminary discussions of contemporary mathematical work on the theory of (ternary-
quadratic) forms, and thus take us beyond the scope of this dissertation. For our purposes,
it suffices to say that Study, after Cayley, but also after Segre and Veronese, elects to
work in the five-dimensional variety whose points correspond to quadratic ternary forms,
so that the topological properties of this variety may be defined in terms of the covariant
formations of said quadratic forms. This was not entirely new: remember that Cayley had,
in 1868, introduced a “quasi-geometrical” interpretation of the theory of characteristics,
by considering points in a five-dimensional space whose coordinates were the coefficients
of a form defining a conic section in the plane. The totality of all degenerate conic
sections could then be viewed as a special locus in this space, which in fact corresponds
to what is now called the ‘Veronese Surface181’. While Cayley himself had not really
pursued this line of inquiry, and in particular had not considered applying the results and
methods of algebraic geometry to these objects, his work would be read with interest by the
Italian geometers Giuseppe Veronese and Corrado Segre. Both Veronese and Segre would
pursue much further the study of the geometrical properties of this (projective) space – all
three authors being referenced by Study in his articles182. In particular, they studied the
intersections that the surface of degenerate conics has with certain sheaves or special loci,
relying on Hesse’s “Uebertragungsprincip183 (principle of transfer). Study does not refer
to Klein’s work in his thesis; in particular, he does not seem to be intentionally engaging
with the latter’s 1872 Erlanger Programm, which had not gained traction on a global
scale yet184. However, through the intermediary of Segre, one of the few mathematicians
familiar with the Programm in the early 1880s185, Study was nudged toward working
in a framework not entirely removed from what Klein had advocated for. Lastly, it is
worth noting that, once again, Chasles’ αµ+βν formula for conic sections would gain yet
another meaning when recast in a different ‘mathematical laboratory’: this time, as an

180This last requisit puts Study outside the camp of the ideal modernist as defined by Mehrtens or Gray:
a staunch realist, even in the face of Einstein’s introduction of non-Euclidean geometries in physics, Study
railed against axiomatizers who never inquired about what objects fell under their definitions, whereas
others such as Hilbert equated the coherence of an axiomatics to the existence of its objects; see [Hartwich,
2005], pp.130-159; [Gray, 2008], pp.295-296.

181See 6.3.1.
182 [Study, 1886b], p.71.
183This principle was used by Hesse to ‘transfer’ the projective geometry of a conic onto the projective

geometry of a straight line, by means of a simple geometrical construction; see [Hawkins, 1988].
184 [Hawkins, 1984], pp.449-450, contends that “Klein [did not exert] any significant influence upon

[Study]” in Leipzig, and that the latter became interested in the Erlanger Programm only much later,
under the influence of Lie.

185 [Hawkins, 1984], p.452.
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intersection formula proper, in an abstract projective space.

8.3.3 Zeuthen’s ‘points de vue’ and Poincaré’s ‘conventions’

Study’s recasting of the history of Chasles’ problem as that of the successive definitions
of various arbitrary varieties of planar conics was in fact not entirely new. Unbeknownst
to him, Zeuthen had already suggested a similar assessment of the relative merits of the
enumerative theories of De Jonquières, Chasles, and Halphen, in a private letter to the
latter written right after Halphen’s first counter-examples to the αµ + βν formula had
been circulated. In a remarkable convergence of terminologies, Zeuthen had also proposed
to view these theories not as increasing in generality, but rather as expressing different
‘points of view186’:

1° Le premier point de vue est celui de Bischoff-Jonquières. Les coniques
(courbes) sont ici définies exclusivement par leurs propriétés ponctuelles. Une
tangente est une droite qui rencontre les coniques en deux points coïncidents,
les cas de coniques ordinaires avec leurs tangentes se présentent donc à côté
de ceux où la conique se réduit à une droite double, et où par conséquent –
du point de vue actuel – il faut regarder la conique comme tangente à toute
droite (courbe) du plan. Le nombre total de coniques d’un système satisfaisant
à une condition donnée sera égal au produit αµ de deux nombres qui dépendent
l’un du système, l’autre de la condition. Ce point de vue a l’avantage d’être
simple et parfaitement clair. La distinction du ‘général’ et du ‘particulier’
qui cause des difficultés au point de vue suivant, se fait donc ici immédiate-
ment. Mais à cet avantage se joignent plusieurs faiblesses. Premièrement, il
s’altère par les application du principe de dualité, qui conduit à la définition
des coniques par leurs propriétés tangentielles (de ce point de vue un point
‘se trouve sur’ une conique si les deux tangentes menées par lui coïncident
etc.) [..] Plus grave est peut-être la circonstance que l’introduction successive
des conditions par la formule αµ conduira, sitôt qu’on a dépassé certaines
limites – au delà desquelles on devrait trouver, du point de vue actuel, une
infinité de solutions – à des résultats sans aucun sens immédiat. On trouve
par exemple 8 coniques passant par un point et tangentes à 4 droites au lieu
de toutes les droites doubles par le point. 2° Ces difficultés conduisent au
point de vue de Chasles, où l’on a égard d’une manière égale aux propriétés
ponctuelles et tangentielles. [..] Pour ce point de vue on aura le théorème de
Chasles qui en est peut-être une conséquence si intime que sa démonstration

186Letter Ms 5624 224, Zeuthen to Halphen, dated August 11th 1876.
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se présenterait d’elle-même, si l’on savait bien définir précisément ce point de
vue. Les difficultés à cet égard résultent du point de vue de départ double qui
empêche par exemple de distinguer clairement les catégories du ‘général’ et
particulier : A peut être un cas particulier de B pour la définition ponctuelle,
pendant que B est un cas particulier de A pour la définition tangentielle. On
rencontre les mêmes difficultés dans les autres cas où l’on fait usage du même
point de vue, notamment dans la théorie des singularités dites ordinaires des
courbes planes (formules de Plücker) des courbes gauches et des surfaces, et
de celles des systèmes de courbes d’ordre supérieur. M’étant occupé beaucoup
de toutes ces questions, j’ai eu lieu de connaître assez bien ces difficultés qui
ont rapport toutefois plus à l’énoncé complet et exact des vérités qu’à leur
découverte et démonstration. [..] Votre point de vue, qui est aussi celui où
se veuillent placer Clebsch et Lindemann, est entièrement clair et bien défini.
Vous ne voulez indiquer que le nombre des solutions propres, celles qui sont
indépendantes des valeurs données étant regardées comme impropres.

When Halphen would present his enumerative theorems as more general than those of his
predecessors, Zeuthen would rather speak of a more ‘absolute’ (absolu) theorem187. For
Zeuthen, as for Study, the crux of Chasles’ problem was to define the terms ‘general’ and
‘particular’. This understanding of the relation between the theories of De Jonquières,
Chasles, and Halphen would play a crucial role in Zeuthen’s later texts on the matter,
and in particular his entry for Klein’s Encyklopädie and his textbook on enumerative
methods, both of which begin with epistemological discussions of the concepts of ‘general’
and ‘particular’188. Halphen did not follow Zeuthen in this interpretation, as is made
clear by his later publications. One reason for this might be that Halphen credited
‘computations with setting him on the right path189’ regarding the inaccuracy of Chasles’
formula. Analytical computations, for Halphen, were a tool for complete objectivity.
Zeuthen, in his own philosophical essays, viewed his craft as guided by intuition and pure
reasoning instead, whereby the comparison of equally valid (if not equally worth pursuing)
viewpoints becomes more amenable190.

187“Vous dites que votre théorème véritable est plus ‘général’ que ces théorèmes énumératifs généraux.
Je préfèrerai de dire que votre théorème est absolu”, Letter Ms 5624 237, Zeuthen to Halphen, dated
December 18th 1879.

188 [Zeuthen, 1905], [Zeuthen, 1914a].
189“Vous attribuez au calcul l’honneur de vous avoir remis dans le droit chemin quant à αµ+ βν. Sans

doute vous devez connaître les moyens qui vous ont fait découvrir la vérité à cet égard, et je sais que
dans les démonstrations vous vous êtes servi du calcul. Il me semble néanmoins notable que c’est vous,
Monsieur, qui êtes le plus géométrique de ceux qui se sont occupé de cette question – qui avez réussi à
l’éclairer complètement”, Letter Ms 5624 226, Zeuthen to Halphen, dated December 15th 1877.

190In 1914, Zeuthen wrote a short philosophical essay in Danish on reasoning in mathematics, wherein
he appeals to Bergson’s concept of intuition to justify the priority of pure thought over rote, mechanical
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Henri Poincaré, in his Notice on Halphen after the latter’s passing, also dwelled on the
question of generality, and of its definition. Enumerative problems, Poincaré explained,
consist in finding how many objects, defined by a certain number of parameters, satisfy
an appropriate number of conditions. Each of these conditions has to be algebraic; as
a result, the ‘brute result’ to every enumerative problem is given by the product of the
degrees of the algebraic equations which translate the conditions. Such a simplistic answer,
Poincaré continues, is unsatisfactory, precisely because exceptional solutions (such as some
degenerate conics) should be kept out of the final number, because they do not adequately
fulfil the conditions. For Poincaré, this means that enumerative problems consist in the
‘equal use of analytical dexterity and sagacity or discernment to distinguish the various
kinds of solutions, enumerate them separately, and recognize those who ought to be kept’.
Poincaré, echoing some of his famous views on the status of hypotheses in geometry, then
immediately reformulated this analysis in terms of conventions191”:

Tout cela, dira-t-on, est une affaire de convention. Encore faut-il énoncer
clairement cette convention, et l’analyse que j’ai donnée plus haut des travaux
d’Halphen nous a montré que ce n’était pas toujours chose aisée. On ne
l’a malheureusement pas toujours fait ; une convention semblait naturelle,
parce que l’on considérait les choses d’un certain biais ; on l’admettait sans
l’énoncer explicitement. D’autres chercheurs se plaçaient ensuite à un point
de vue différent et oubliaient cette convention tacite ; de là des contradictions
tantôt apparentes, tantôt réelles. En général, disait-on volontiers, il arrive ceci
ou cela ; on oubliait que, sans une convention spéciale, le mot en général n’a
aucun sens.

Neither Poincaré nor Zeuthen, as they expressed the views presented here, were in pos-
session of Study’s articles. And yet, they both understood the significance of Halphen’s
counter-examples to reside not (just) in the refutation of a formula, but in the distinction
between several viewpoints on enumerative problems and on what counts as solutions to
them.

8.3.4 Searching for Chasles’ Ghost

This partial convergence in their understanding of the epistemic status of Halphen’s work
did not prevent Zeuthen and Study from clashing publicly over the latter’s theses on the
theory of characteristics. In 1887, one year after the publication of Study’s papers in

computing; see [Zeuthen, 1914b].
191 [Poincaré, 1890], p.152. On conventions in Poincaré’s philosophy of mathematics, see [Heinzmann,

2009].
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Mathematische Annalen, Zeuthen wrote a long letter to Klein to express his displeasure
at Study’s claim that enumerative geometers, at least prior to Clebsch, had been very
naïve. Zeuthen also lamented Study’s refusal to even discuss the matter privately dur-
ing his stay in Copenhagen192. Zeuthen then went on to express his doubts regarding
Study’s proof, while admitting to not fully understanding it. For Zeuthen, the discussion
of Clebsch’s ‘mobile solutions’ was not crucial to the affair; rather, he took Halphen’s
essential discovery to be the third kind of degeneration for conics, and most importantly
the fact that it depends on four conditions (and not on three, which would make it a
second-order degeneration, thus not relevant to the generality of Chasles’ formula). Thus,
Study’s claim to have perfectly defined a conic section as simultaneously a locus of points
and straight lines was for Zeuthen wrong193.

Zeuthen did not immediately publish these remarks, and neither did Halphen; however,
upon seeing that these two established experts had cast doubts over the validity of Study’s
proof, Klein, as editor of theMathematische Annalen, wanted to remain impartial: in 1887
already, he had suggested Halphen write a response, but by then the latter had moved
on to other areas of mathematics. After Halphen’s passing, and after a visit by Zeuthen,
Klein set out to have the matter resolved and the dispute cleared. In June 1890, he asked
Zeuthen to write a letter which would clarify the substance of their disagreement; the
letter was indeed written and published in the same journal as Study’s papers, with a
direct reference to them194. In parallel, Klein warned Study that such a letter would be

192“[Ich werde] es hier noch bedauern, dass ich die Gelegenheit verfehlte zu einer mündlichen Polemik
mit dem Herrn Study, der in Kopenhagen war, mich aber nicht traf. Seine Arbeit über die Charakter-
istiken zeigt, dass er hinlängliche Begabung besitzt, um eine Discussion interessant zu machen; meine
Unzufriedenheit mit dieser Arbeit würde aber einer solchen Diskussion hinlänglichen Inhalt geben. [..]
Wir alten Charakteristiker waren nicht so naiv wie er voraussetzt”, Nachlass Klein, Letter Zeuthen to
Klein 436, dated November 4th 1887, quoted in [Hartwich, 2005], p.73. Note that Zeuthen had already
complained about Study’s assessment of the ‘naïvety’ of past enumerative geometers in a letter to Halphen
dated August 19th 1886, Ms Cod 5624 246, writing “Sa considération de ces courbes [dégénérées] ne diffère
donc pas de celle dont nous autres auteurs antérieurs à Clebsch – qu’il traite d’assez naifs – nous sommes
servi. Il se rend donc aussi coupable de la même faute que tout le monde avant vous, et n’a pas compris
le fait qu’aussi la troisième classe de coniques dégénérées peuvent dépendre de quatre conditions.”

193“Seine Missverständnisse culminierten in der Bemerkung Seite 9, wo er sagt, ‘dass ein Kegelschnitt
vollkommen bestimmt ist sobald er entweder als irreduzible Curven oder als Punktepaar oder als Linien-
paar gegeben vorliegt’. Das ist eben eine Wiederholung der wirklichen Naivität der alten Charakteristiker,
und wenn wir daran Recht gehabt hätten, würde die Formel αµ + βν vollkommen richtig sein. Bei uns
konnte man sie entschuldigen, aber nicht bei dem Herrn Study, der wissen sollte, dass die Erneuerung
Halphens eben in der Bemerkung besteht, dass es eine dritte Art von Spezialfällen von derselben Allge-
meinheit ist, nämlich diejenige welche aus den anderen sich bildet resp. durch Zusammenfallen der zwei
Punkte oder durch Zusammenfallen der zwei Geraden. Wir kannten – und benutzten – natürlich auch
diese Grenzform, übersahen aber, dass auch sie eine vierfache Unendlichkeit haben konnte”, Nachlass
Klein, Letter Zeuthen to Klein 436, dated November 4th 1887, quoted in [Hartwich, 2005], p.74. It must
be noted in passing that a rather general feature of these discussions of Chasles’ formula is that each
actor seems to identify something different as being key to the generality (or lack thereof) of formula,
thus making for conversations which sometimes lead to nowhere.

194 [Zeuthen, 1890].
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published shortly, and asked him to prepare a reply – not without admonishing him for
not having already done so when Halphen had expressed reservations regarding his papers
while in Paris. Klein was not only acting as an impartial editor, but also as a mentor
trying to safeguard Study’s career: Zeuthen’s criticisms were so sharp, Klein wrote to
Study, that they might be prove fatal to his students’ professional aspirations195. Klein’s
concerns were founded: the content of Zeuthen’s letter would be discussed even amongst
mathematicians who had not directly engaged with enumerative geometry proper, as for
instance can be seen in the correspondence between Schur and Engel196.

By the time Study decided to answer, Klein had passed down a part of his editorial
duties to von Dyck, by another student of his but also his assistant197. Von Dyck rejected
Study’s immediate answers, as being too brash and unconvincing198. Early versions of
Study’s response would also be criticized by some of the internal reviewers of the journal:
as Von Dyck himself reported back to Study, Gordan and Nöther found “Study’s formu-
lation of the question [in his Habilitationsschrift] too vague for one to see what is in it”,
and saw in his new papers mostly “polemics and repetitions199”. Lie and Mayer, on the
other hand, abstained from any definitive judgment. It would take over a year for Study
to publish his response, by way of three successive papers200, of which the last words were
written in April 1892. The first of these papers consists in a more detailed discussion of
the way in which Study maps the conics of a plane onto the points of a certain variety;
a mapping which was at the heart of his 1886 proof. The second of these papers is a
direct response to Zeuthen, relying on this new explanation of the construction of the
variety of conics; the tone of which is extremely polemical. Lastly, a third paper gives
more details as to how the theory of quadratic forms can be used to analytically represent
systems of conics within the settings of this variety. Zeuthen was still not convinced: in
October 1892, that is to say immediately after the publication of Study’s response, he
penned yet another letter. In it, he gave another example inspired by Halphen’s memoirs
which supposedly proved that Chasles’ formula was not exact in general, and reiterated

195 [Hartwich, 2005], pp.74-76.
196The Zeuthen-Study dispute is mentioned in two letters by Schur to Engel, respectively dated Dec. 19th

1990, and Jan. 22nd 1991; see in Nachlassverzeichnis Engel (Universitätsarchiv Gießen), ref. NE110313
and NE110314 respectively

197 [Hashagen, 2003], pp.383-391.
198 [Hartwich, 2005], p.78.
199“[Gordan und Nöther] Wir stimmen mit Prof. Kleins Brief überein [...]. Study’s Fragestellung

(Habilitationsschrift) ist zu unbestimmt, als dass man das darin Steckende erkennen könnte. Erst aus
Halphens Definitionen lässt sich ersehen, dass die Ausartungen [...] alle bei Study mitgenommen sind.[...]
Study’s neuer Aufsatz besteht aus drei Teilen [i. W. Polemik und Wiederholungen]. Keiner dieser drei
Teile spricht also für unveränderte Aufnahme in die Annalen”, Nachlass Engel, Letter von Dyck to Study,
dated February 13th 1891, quoted in [Hartwich, 2005], pp.80-81.

200 [Study, 1892a], [Study, 1892b], [Study, 1892c].
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his criticisms toward Study’s work201, after which the editorial board of Mathematische
Annalen put an end to the dispute202.

In fact, this dispute could not possibly end in any other way. As Nöther, acting as
a reviewer for the whole exchange, had noticed, the dispute had shifted from that over
the validity of a formula and its proof, to a debate about who of Halphen and Study
had more aptly captured Chasles’ original intuition203. Indeed, Study and Zeuthen both
acknowledged that the proofs contained in Study’s Habilitationsschrift and Halphen’s
memoirs were equally valid, but fought over which actually proved what was to be proven.
For instance, Zeuthen wrote at the end of his first open letter204:

C’est donc, selon moi, Halphen qui a répondu à la question qui avait occupé
les géomètres depuis 1864, et, en tout cas M. Study n’a répondu qu’à une
modification de cette question; mais la solution d’Halphen a un avantage en-
core plus essentiel : elle est une solution complète qui comprend en elle la
réponse à toutes les questions particulières qu’on obtient par des formulations
particulières de la question. Elle donne donc aussi la réponse à la question que
se propose M. Study. [..] La présente critique paraissant, à cause des circon-
stances dont j’ai déjà rendu compte, après un intervalle assez long pour faire
croire à M. Study que les géomètres accepteraient ses vues, je dois ajouter
qu’elle n’a égard qu’à la question qu’il se propose et aux rapports avec des
recherches antérieures qu’il lui attribue, et non pas à l’analyse dont il se sert
ensuite pour résoudre cette question.

Study gladly accepted to have the fight on this terrain: in the first of his three papers,
he concluded that “Halphen’s criticism of Chasles’ theorem is only justified here to the
extent that it refers to its deficient formulation, and his own theory does not make the
addition we have given seem superfluous205”. In his more vindictive Entgegnung, Study

201 [Zeuthen, 1893].
202 [Lange, 1895], p.627.
203Von Dyck reports in the same letter to Study that Nöther was opposing Study’s papers precisely

because they framed the question in these terms: “Nach Nöthers Gutachten kann es sich dabei [bei
Study’s Entgegnung] nicht mehr um die Frage handeln, was Chasles gewollt hat, was Halphen "fremdes"
hereingebracht hat – sondern nur darum, dass Sie scharf präzisieren, in welcher Form Ihre Definitionen
die Abzählung in jener allgemeinen Form ergeben”, [Hartwich, 2005], p.81.

204“Therefore, according to me, Halphen is the one who answered the question which geometers had
been busy with since 1864, and, at any rate, Mr. Study only answered a modified version of this question;
but Halphen’s solution has an even more essential advantage: it is a complete solution which contains
the answer to all particular questions one obtains through particular formulations of the question. Thus,
it also gives the answer to the question proposed by Mr. Study. [..] As this criticism appears, due to
circumstances which I have already reported, after an interval long enough to lead Mr. Study to believe
that geometers would accept his views, I must add that it pertains only to the question he proposes to
solve, and to the relationship with previous research which he attributes to it, and not to the analysis
which he then uses to solve that question”, [Zeuthen, 1890], p.464.

205“Halphen’s Kritik des Chasles’schen Satzes ist hiernach nur soweit gerechtfertigt, als sie sich auf dessen
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attacks Zeuthen’s understanding of Halphen’s theory, as well as the adequation between
this theory and the usual understanding of degenerate conics. Zeuthen’s 1893 reply,
meanwhile, asserts once more that Study’s theory is at odds with “the real signification
of Chasles’ hypothesis on the expression αµ + βν206”, and provides yet another example
in which to accept Chasles’ formula means to count conics which do not satisfy in a
meaningful way the condition being proposed. It must be noted that neither Zeuthen nor
Study really ever engaged with the technical, inner workings of the other side’s theory:
Zeuthen does not seem to have mastered the theory of forms and the concept of variety,
while Study never really discusses the intricate analytical computations of Halphen’s.

Remarkably, after decades of undecidedness, Chasles’ formula had become in the early
1890s the object of yet another kind of dispute. This time, it was not so much a question
about its truth, but about its (geometrical) significance. At the core of the Zeuthen-Study
dispute lies the question of assessing whether or not a valid proof addresses the initial
question – that is to say, the question asked in a non-formal language – adequately and
meaningfully207. For this new epistemic task, new modes of argumentation were needed:
writing his letters in French was for Zeuthen part of a larger arsenal in his dispute,
a way to show his familiarity with the works of both Chasles and Halphen208. More
profoundly, the examples constructed by both Zeuthen and Study in their replies all aim
to show cases where the other side’s theory does not yield results with the proper sort
of geometrical significance. For those who, like Zeuthen and Study, had accepted the
multiplicity of possible points of view over a common geometrical problem, mathematical
life had something entirely new. For these modern mathematicians, the validity of a proof
was not the end of a scientific endeavour, but rather the beginning of new discussions.

Conclusions

The story of Chasles’ formula, and of the disputes it gave rise to, is also the story of
the modernist transformation of mathematical life. The epistemic virtues to which a
mathematician is beholden, the inferential moves and literary output at the heart of
their scientific practices, as well as their cultural status: all of these changed rapidly
throughout the course of the years surveyed in this chapter, and shaped in different ways

mangelhafte Formulirung bezieht, und seine eigene Theorie lässt die von uns angegebene Ergänzung nicht
als überflüssig erscheinen”, [Study, 1892a], p.558.

206“la véritable signification de l’hypothèse de Chasles sur l’expression αµ+βν”, [Zeuthen, 1893], p.539.
207Lakatos has famously argued that formal mathematics necessarily beget such a problem, which he

called ‘the problem of translation’; [Lakatos, 2015], pp.112-134
208Another explanation for that, suggested in [Hartwich, 2005], p.78, is that writing in French meant

that Klein would not be entitled to correct Zeuthen’s grammar, and thereby, soften the tone of his
criticism.
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the approaches that Chasles, Schubert, Halphen, Zeuthen, and Study had of a common,
somewhat vague geometrical problem. Modern-day mathematics tells us that there always
was a plurality of valid answers to that common problem – various models of a same set of
paradigmatic statements. This is not to say that the uncertain mathematics at the heart
of the disputes presented here were not insightful; rather the opposite. However, more
profoundly, the struggles to clarify the status of Chasles’ problem have helped emerge
not just the realization that several answers to it are possible, but the very epistemic and
cultural conditions for this diversity to become an accepted (and almost banal) part of
mathematical life.
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Conclusion

“Ni fait ni à faire”, disaient autrefois les dames bour-
geoises du travail de leurs bonnes quand elles en étaient
mécontentes. Fait et à faire pourrait être le sous-titre de
tout travail philosophique digne de ce nom.

C. Castoriadis, Fait et à faire. Les carrefours du
labyrinthe, volume V, 1997

In the first decades of the 20th century, enumerative geometry was progressively incor-
porated into algebraic geometry209. After Hilbert’s 1900 Paris address, many geometers
such as Van der Waerden, Zariski, or Severi, all sought to obtain Schubert’s results within
their respective approaches – thereby relegating the theory of characteristics to a less
central position than it historically had occupied during the episode we have presented
here. For these mathematicians, to rigorously define the algebra of conditions (via a cal-
culus of algebraic cohomology classes) and the concept of intersection multiplicity was
a much more pressing concern than to generate dozens of formulae for the enumeration
of specific objects, as Chasles and Schubert had done. Conversely, these formulae were
viewed as rather simple consequences of a much more difficult problem, namely that of
the formulation of a suitable theoretical framework in which to interpret them.

By the 1950s, this incorporation of enumerative geometry within algebraic geometry
was largely considered to have been successfully conducted. This was, for instance, the

209Remarkably, in many accounts written by mathematicians of the development of algebraic geometry,
Schubert’s 1879 Kalkül stands amongst the books of algebraists such as Dedekind, Severi, or Lefschetz, de-
spite, as we saw in chapter 7, operating with a widely different concept of algebra; see for instance [Van der
Waerden, 1971]. In fact, Schubert’s book seems to have been part of the curriculum for geometry students
in several European universities at least until the 1930s, as indicate for instance the writings of Van der
Waerden who studied in Amsterdam and Göttingen: “in 1936, de Vries published a textbook Introduction
to Enumerative Geometry in Dutch which Van der Waerden reviewed very briefly for Zentralblatt (vol.
15, p. 368f), writing in particular that, according to his own experience, there was no better way to learn
geometry than to study Schubert’s Kalkül der abzählenden Geometrie”, [Schappacher, 2007].
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opinion of the French mathematician André Weil, who wrote in his 1946 Foundations of
Algebraic Geometry210:

Our results include all that is required for a rigorous treatment of so-called
“enumerative geometry”, thus providing a complete solution of Hilbert’s fif-
teenth problem. They could be said, indeed, to belong to enumerative ge-
ometry, had it not become traditional to restrict the use of this phrase to a
body of special problems, pertaining to the geometry of the projective spaces
and of certain rational varieties (spaces of straight lines, conics, etc.), whereas
we shall emphasize the geometry on an arbitrary variety, or at least on a va-
riety without multiple points. [..] A history of enumerative geometry could
be a fascinating chapter in the general history of mathematics [..], provided
it brought to light the connections with related subjects, not merely with
projective geometry, but with group-theory, the theory of Abelian functions,
topology etc.

As the last sentence in this quotation shows, what was understood to constitute enumer-
ative geometry in 1946 was a far cry from what we have presented in this dissertation.
Topology only marginally appeared in Study’s defense of Chasles’ αµ+βν formula, while
no connections between group theory or abelian functions and enumerative methods had
been established throughout the 19th century.

Instead, in this dissertation, we have painted a picture of enumerative geometry as a
discipline which emerged from the circulation of a shared question across various math-
ematical cultures. We have argued that Chasles’ theory of characteristics ought to be
read against the backdrop of a research programme centered around the construction of
devices for the writing of the (geometrical) equations of curves not relying on axes of
coordinates and other extrinsic means of representation. The theory of characteristics, in
turn, quickly and widely circulated across Europe, thereby becoming the focus of most of
the research being produced on enumerative problems, widely conceived.

This circulation, however, involved a variety of locales; some quite removed from
the Paris Académie in which Chasles had first communicated his results. Not only was
the history of this theory transnational, but it also involved actors who shared none of
Chasles’ mathematical methods, or indeed his research programme. For instance, this
theory was reformulated within the theory of invariants and algebraic analysis by Clebsch
and Halphen; while, Schubert turned this theory into a universal symbolic device for the
expression and computation of geometrical conditions, borrowing from other synthetic
geometers an approach of the concept of figure as something to be systematically and
uniformly generated from fundamental elements (points, rays, planes).

210 [Weil, 1946], pp.viii-ix.
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However, as we have shown, these translations were not merely the adaptation of an
unchanging mathematical core to various algebraic or geometrical languages. Halphen’s
analytical translation of Chasles’ theory was motivated by the view that only analysis was
able to properly define the concepts underlying this theory – concepts such as condition,
independence, or even solution. By mobilizing analysis, he was responding to certain
epistemic worries about what he perceived to be the undue reliance on intuition of past
geometers, and mobilized the values of rigor and meticulousness to justify his own meth-
ods. By contrast, Schubert’s symbolic recasting of this theory was conducted in keeping
with epistemic norms such as unitariness or simplicity. For Schubert, the end goal of enu-
merative methods was to yield a unique formula for each figure, wherein was contained
the entirety of the enumerative theory of this figure. These results embodied Schubert’s
normative description of mathematical practice as the free creation of (non-contradictory)
symbolic laws, devoid of epistemic worries about the rigor of such practices.

However, as these mathematicians had realized, the very meaning of enumerative
results crucially hinges upon the stipulation of a certain mode of generality from which
they are to be read. To state that a constant number of curves satisfy a fixed set of
conditions, one must also decide what curves are to be accepted as properly satisfying these
conditions. To agree on a common notion of generality, they all recognized, was necessary
for the collective enquiry over enumerative problems. As a result, the disagreements
over the epistemic norms of mathematical activity quickly led to lasting discord over the
proper way of proving and stating enumerative results, which crystallized around Chasles’
αµ+ βν formula.

At the end of this study, we hope to have showcased the importance and fruitfulness of
the history of enumerative geometry. This episode informs and enriches our understand-
ing of the history of various other branches of mathematics, from the theory of invariants
to that of projective geometry. More crucially, however, the history of the theory of char-
acteristics serves as a rich case-study for the description of the profound transformation of
mathematics as a cultural and scientific practice underwent during the second half of the
19th century. Lastly, this dissertation adds to our understanding of the history of the value
of generality in mathematics, and of its crucial role in the shaping of collectively-shared
objects and methods for the stating, proving, and debating of mathematical propositions.

There is much left to study regarding the history of enumerative geometry, even within
the time frame to which we have elected to restrict ourselves in this dissertation. A
global analysis of the circulation of enumerative questions in mathematical journals, in
Europe and elsewhere, would be welcome. In particular, the circulation of Schubert’s
1879 Kalkül deserves more attention, as this book seems to have quickly become a staple
in courses on geometry in many universities. Besides the social history of this discipline,
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we still need a detailed understanding of the mathematics involved in Halphen’s and
Study’s work on Chasles’ αµ+ βν formula. Reconstructing the fine-grained details of the
mathematical practice of Halphen and Study would require further discussions of other
technical developments in late 19th-century mathematics, such as the theory of forms
and the emergence of the concept of variety. Thus, the limited case of the theory of
characteristics provides a window from which to observe the state of geometry in this
period.

Beyond enumerative geometry, there also remains to be seen how the history of math-
ematical generality presented in this dissertation echoes other episodes in the history of
mathematics. This could be done in at least two ways. One would be to select contem-
porary developments, with actors belonging to the same scientific cultures as the ones
discussed in the present dissertation, so as to compare the formation of concepts and
practices of generality in both episodes. For instance, it would be useful to compare
what we have said of Halphen to other Paris-based mathematicians with a professional
identity firmly rooted in their military duties, and to see to what extent they shared a
conception of generality, of the role and value of analysis, and through this lens com-
pare their mathematical practices. Another approach would be to compare the ideals
and practices of generality in a diachronic perspective. For instance, the linked values
of simplicity and generality in Chasles’ epistemology of geometry could be compared to
that expressed by Georges Bouligand in his papers on “direct methods211”, or even to
Grothendieck’s description of the “childish simplicity212” which presided over some of his
major discoveries.

211 [Bouligand, 1932]. I thank Michael Chalmers and David Waszek for drawing my attention to this
text.

212“Simplicité enfantine”; see [Grothendieck, 1986], pp.50-69.
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Appendix A
Chasles’ unpublished theory of systems of
second-order surfaces

Between October 1866 and February 1867, Chasles was in the process of writing a memoir
on the theory of characteristics for systems of second-order surfaces, which he intended
to have published by Gauthier-Villars. This memoir was never finished; however, in the
Archives of the Paris Académie des Sciences1, we have found a handwritten version which
covers a large portion of the intended volume, dated October 26th 1866. Furthermore, the
first few sections of this memoir had been printed and sent back to Chasles for corrections
on February 11th 1867. Chasles inked in some changes, which mostly consist in correc-
tions of grammatical or formatting mistakes. In what follows, we reproduce this printed
document, using brackets to distinguish Chasles’ corrections from the printed text. As
the printed text stops mid-sentence, we transcribe the rest of the section on exceptional
surfaces from the earlier, handwritten-version.

The text goes on for some 90 more pages, which we will not transcribe here. In these
pages, Chasles computes the characteristics of elementary systems of surfaces, as outlined
in the introduction of this memoir. To that end, Chasles employs a variety of techniques,
from the principle of correspondence, to the enumeration of special surfaces and the use
of the relations between characteristics and numbers of special conics in a system.

1Académie des sciences, Archives et patrimoine historique, Dossier Chasles, 35J/8.
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A.1. The printed document (February 11th 1867)

A.1 The printed document (February 11th 1867)

[1re / 11 février 1867]

Théorie générale des systèmes de surfaces du second ordre satisfaisant
à huit conditions

Introduction

1. L’étude1 des systèmes de courbes planes assujetties à autant de conditions moins une
qu’il n’en faut pour déterminer une courbe de l’ordre proposé se ramène à l’étude d’un
système unique défini par deux nombres appelés caractéristiques, savoir : le nombre des
courbes du système qui passent par un point, et le nombre des courbes qui touchent une
droite. Cette théorie s’étend naturellement aux systèmes de surfaces que l’on définit par
trois caractéristiques, dont la première exprime le nombre de surfaces qui passent par un
point, la seconde le nombre des surfaces tangentes à une droite, et la troisième le nombre
des surfaces tangentes à un plan.

De même que pour les courbes, les propriétés d’un tel système de surfaces ne dépendent
que des caractéristiques du système. Par exemple, pour les surfaces du deuxième ordre,
les seules dont il doive être question ici, en appelant µ, ν, ρ les trois caractéristiques, on
trouve que :

Le lieu des axes des surfaces est une surfaces de l’ordre (µ+ ν + 2ρ);
La développable enveloppe des plans diamétraux principaux est [s] de l’ordre (µ+ν+ρ).
Les plans diamétraux conjugués aux diamètres qui passent par un point donné coupent

les surfaces suivant un système de coniques (µ+ ρ, µ+ ν + 2ρ, ρ) [italiques]
De sorte que l’on peut dire que tous les systèmes se ramènent à un seul, défini par les

trois caractéristiques.
Ce sont donc les propriétés de ce système unique qu’il suffit d’étudier. Puis, pour ap-

pliquer ces propriétés à un système particulier défini par huit conditions données, il suffira
de savoir conclure de ces huit conditions les valeurs numériques des trois caractéristiques
du système proposé.

Ainsi, toute la théorie des systèmes de surfaces se réduit, comme celle des systèmes de
courbes, à ces deux questions fondamentales : 1◦ trouver les propriétés du système défini
par les trois caractéristiques µ, ν, ρ; 2◦ calculer les caractéristiques d’un système défini par
huit conditions données.
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2. Chacune des conditions données exige la connaissance d’une propriété du système
général : on le conçoit, car si une condition, est, par exemple, que les surfaces aient un
sommet sur un plan donné, il faut, pour introduire cette condition, connaître l’ordre de
la courbe lieu des sommets des surfaces du système général (µ, ν, ρ), d’où l’on conclura le
nombre des surfaces qui satisfont à la condition proposée.

Connaissant les propriétés relatives aux conditions qui définissent un système, on a
donc à calculer les caractéristiques de ce système. Cela se fait par une méthode de substitu-
tion tout à fait semblable à celle qui nous a servi dans la théorie des courbes. Ce procédé,
comme on l’a vu, se distingue essentiellement des méthodes analytiques, en ce que l’on y
évite les équations de condition et les calculs d’élimination, souvent si difficiles, et plus
souvent encore impossibles. C’est là le caractère propre de la méthode. Et il est permis
de croire que l’on trouvera d’autres questions, même de pure analyse [A], auxquelles elle
s’appliquera : car toutes les parties des Mathématiques se touchent par certains points,
que l’étude et les progrès successifs de la science font découvrir.

3. L’application de ce procédé de substitution à la théorie des surfaces du second ordre
demande que l’on connaisse les caractéristiques des systèmes élémentaires de ces surfaces.
Nous appelons élémentaires les systèmes qui ne renferment que les conditions de passer
par des points et de toucher des droites et des plans. C’est dans ces systèmes que l’on
substitue successivement aux conditions élémentaires les conditions du système proposé,
pour arriver à la connaissance des caractéristiques de ce système.

Cette substitution doit se faire dans tous les systèmes élémentaires, et comme ils sont
nombreux, le calcul serait long ; mais le résultat se peut exprimer par une formule générale
dans laquelle on introduit immédiatement et sans calcul les huit conditions données. De
sorte qu’une seule formule résout tous les problèmes.

4. La connaissance des caractéristiques des systèmes élémentaires est donc la base de
notre méthode. Les trois sortes de conditions simples, passer par des points et toucher
des droites et des plans, combinées huit à huit, donnent lieu à quarante-cinq systèmes
différents. Chaque espèce [système] a trois caractéristiques : toutefois, chacun d’elles
entrant dans plusieurs systèmes, il n’y a, en réalité, que cinquante-cinq caractéristiques
différentes. Ce sont ces cinquante-cinq nombres qu’il faut connaître.

2Mais il y a lieu d’admettre d’autres systèmes élémentaires, car les quarante-cinq dont
il s’agit sont formés de huit conditions distinctes, tandis que ces conditions, points, droites
et plans, se peuvent associer de manière à former des conditions multiples, indivisibles,
qui constituent encore des systèmes élémentaires. Par exemple, que les surfaces doivent
toucher une droite en un point donné, ou bien toucher un plan en un point non déterminé
d’une droite donnée dans le plan, ce sont là des conditions doubles ; que les surfaces
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doivent passer par une droite, ou bien toucher un plan en un point donné, ce seront des
conditions triples ; que les surfaces doivent passer par une conique, condition quintuple ;
etc.

Tous ces cas constituent des questions spéciales et indépendantes, et non des cas
particuliers, comme on pourrait les considérer en Géométrie analytique. Ils donnent lieu
à des classes ou à des types de systèmes différents, dont il faut déterminer directement
les caractéristiques, ainsi que celles des quarante-cinq systèmes de la classe des conditions
simples ; ce qui entraîne dans d’assez nombreuses recherches.

Énumération des conditions multiples. – Notations.

5. Conditions doubles. – 1◦ Les surfaces touchent une droite L en un point donné θ ; ce
que nous exprimerons par θL ; 2◦ les surfaces touchent un plan P en un point situé sur
une droite ∆ donnée dans le plan; P∆.

Conditions triples. – 1◦ Les surfaces passent par une droite G ; 2◦ les surfaces touchent
un plan K en un point donné θ, Kθ.

Condition quadruple. – Les surfaces passent par une droite G et sont tangentes, en un
point θ de cette droite, à un plan K mené par la droite ; KθG.

Conditions quintuples. – 1◦ Les surfaces passent parune []] conique Σ ; 2◦ les surfaces
passent par deux droites G,G′ qui se coupent; Ĝ, G′ ; 3◦ les surfaces sont inscrites dans
un cône du second ordre C.

Conditions sextuples. – 1◦ Les surfaces passent par une conique Σ et sont tangentes,
en un point θ de Σ, à une droite θL; ΣθL; 2◦ les surfaces passent par deux droites G,G′

qui se coupent, et elles sont tangentes, en un point θ de G, à un plan K mené par G;
KθĜ,G′; 3◦ les surfaces sont inscrites dans un cône C et sont tangentes à une arête du
cône en un point donné.

Conditions septuples. – 1◦ Les surfaces passent par trois droites G,G′, G′′, dont l’une
G′ s’appuie sur les deux autres; Ĝ, G′̂, G′′; 2◦ les coniques passent par deux droites G,G′

et sont tangentes, en deux points θ, θ′ de ces droites, à deux plans K,K ′ passant, respec-
tivement, par les deux droites ; (KθG,K ′θ′G′).

Conditions octuples. – 1◦ Les surfaces sont toutes inscrites dans un cône avec lequel
elles ont une même courbe de contact Σ2 ; 2◦ les surfaces passant [e] toutes par deux
coniques Σ et Σ′, qui se coupent en deux points ; Σ̂,Σ′ ; 3◦ les surfaces passent par une
conique Σ et par deux droites G,G′ qui passent par deux points de Σ et se rencontrent
; Σ̂, Ĝ, G′; 4◦ les surfaces passent par une conique Σ et touchent un plan K en un point
θ; 5◦ les surfaces passent par une conique Σ et par une droite G qui rencontre Σ, et elles
sont tangentes, en un point θ de G, à un plan K mené par G ; 6◦ les surfaces passent par
quatre droites G,G′, G′′, G′′′ qui se coupent deux à deux consécutivement (c’est-à-dire qui
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forment un quadrilatère gauche) ; 7◦ les surfaces sont toutes inscrites dans deux cônes qui
ont deux plans tangents communs ; 8◦ les surfaces sont inscrites dans un cône et passent
par deux droites situées dans deux plans tangents, et qui se coupent (sur l’arête commune
aux deux plans) ; 9◦ les surfaces sont inscrites dans un cône, et passent par une droite
située dans un plan tangent au cône ; et en outre, elles touchent, en un point de cette
droite, un plan mené par la droite.

Ces diverses conditions multiples élèvent à dix-huit le nombre des classes de systèmes
dont il faut déterminer les caractéristiques.

Surfaces exceptionnelles.

6. On a vu qu’il existe, dans tout système de coniques, des coniques exceptionnelles
ou quasi-coniques, les unes formées de deux droites et les autres de deux points, celles-ci
appelées coniques infiniment aplaties. Il existe pareillement, dans les systèmes de surfaces,
des surfaces exceptionnelles qui sont des cônes et [;] des coniques représentant des surfaces
infiniment aplaties, [;] et parfois aussi des couples de plans et [sur l’arête desquels sont
des couples] de points tout à la fois [: l’ensemble des 2 plans et des 2 points représentant
une surface du système, comme il va être dit !]

On conçoit, à priori (sic), qu’il se trouve, dans un système de surfaces défini par
huit conditions, des coniques représentant des surfaces infiniment aplaties, puisque huit
conditions déterminent un certain nombre de coniques dans l’espace. C’est pour cela qu’il
nous a été nécessaire d’étudier préalablement la théorie des coniques dans l’espace, ce qui
a été le sujet du Mémoire inséré dans les Comptes rendus de l’Académie des Sciences (t.
LXI, p. ; 1865). Dans ce Mémoire se trouve la détermination des caractéristiques
des systèmes de coniques satisfaisant à sept conditions élémentaires. Ces conditions sont
que les plans des coniques passent par des points, que les coniques rencontrent des droites
données dans l’espace, et qu’elles touchent des plans. Les trois caractéristiques de chaque
système expriment donc le nombre des coniques dont le plan passe

A.2 Excerpt from the manuscript (October 26th 1866)

Théorie générale des systèmes de surfaces du second ordre satisfaisant à 8 conditions.

1ère Partie 101 feuillets

Je donnerai dans quelques jours la 2e partie

26 8bre 1866
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[..]4 Les 3 caractéristiques de chaque système expriment donc le nombre des coniques
dont le plan passe par un point, le nombre des coniques qui contiennent une droite, et le
nombre de celles qui touchent un plan2.

Huit conditions déterminent aussi un certain nombre de cône du second ordre. Il y
a donc lieu de former de même une théorie des cones ; mais cette théorie est corrélative
de celle des coniques dans l’espace ; et l’on conclut immédiatement quant aux couples
de plans qui se présentent dans beaucoup de cas, notamment dans les plus simples, où
entrent des conditions multiples et dont il faut tenir compte, on reconnait sans difficultés
leur présence.

4bis Toutefois 2 simples plans, sans autres éléments, ne suffisent point pour représenter une
surface d’un système satisfaisant à 8 conditions. J’entends là que si cette surface n’est
rencontrée par une droite qu’en deux points, comme cela doit être, il faut aussi que par
une droite on ne puisse lui mener que 2 plans tangents. On satisfait à cette condition,
en regardant la surface comme terminée à 2 points de l’arête d’intersection des 2 plans.
Tous les plans tangents de la surface doivent passer par l’un ou l’autre de ces 2 points,
de même que toutes les tangentes d’une conique infiniment aplaties passent par l’un ou
l’autre des 2 points qui limitent la conique.

Ces 2 points que nous appellerons aussi les sommets de la surface, sont indiqués encore
par la correspondance corrélative qui a lieu entre les plans et les points dans la géométrie
des surfaces du 2d ordre.

Toutes les droites menées dans les 2 plans que l’un des sommets représenteront les
génératrices de la surface, puisque les génératrices d’une surface du 2d ordre sont les 2
droites (réelles ou imaginaires) suivant lesquelles chaque plan H coupe la surface. En
outre, par chaque point sur la surface, autre que les 2 sommets, il ne passe que 2 généra-
trices, comme dans les surfaces générales.

La détermination de 2 plans, dans l’espace, et de deux points sur leur intersection
comporte 8 conditions. C’est ainsi qu’un tel système peut satisfaire, de même qu’une
conique ou un cône, aux 8 conditions qui déterminent un système de surfaces.

5 Dans les systèmes de coniques, les coniques exceptionnelles formées de 2 droites, ou
infiniment aplaties, sont, en général, multiples, c’est-à-dire qu’une telle conique, effective,
compte pour plusieurs. Il en est de même dans les systèmes de surfaces, à l’égard des
cônes, des surfaces infiniment aplaties, et des couples de plan.

Description de l’ouvrage
2The first three pages of the handwritten manuscript correspond to the printed excerpt, with minor

changes. We do not reproduce them here.
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7. Cet ouvrage comprend 2 parties.
Dans la 1ère se trouve [sic] la détermination des caractéristiques des 18 systèmes élé-

mentaires, et la démonstration de la formule générale qui exprime le nombre des surfaces
qui satisfont à 9 conditions quelconques.

La seconde partie est destinée à la démonstration d’un assez grand nombre des pro-
priétés du système général (µ, ν, ρ) défini par 3 caractéristiques quelconques ; propriétés
qui expriment des conditions données et servent au calcul des caractéristiques d’un sys-
tème proposé.

8. Pour la détermination des caractéristiques des systèmes élémentaires, nous nous ap-
puierons sur quelques théorèmes [tout simple qui] dérivent de la théorie des systèmes des
coniques dans le plan, et des quelques relations générales qui ont lieu entre les caractéris-
tiques des divers systèmes, et qui servent à calculer les unes au moyen des autres. Nous
procèderons suivant la méthode la plus propre aux conceptions de la pure géométrie, du
simple au composé. Les questions les plus simples ici sont celles dans laquelle plusieurs
conditions se groupent pour n’en faire qu’une ; par exemple, que les surfaces doivent
passer par 2 coniques qui se coupent en 2 points ce qui équivaut à impliquer est un cas
particulier de la condition générale de passer par 8 points ; la question sera fort simple, et
servira à passer à une autre question un peu moins simple, et ainsi successivement pour
terminer par arriver finalement au cas général de 8 conditions distinctes.

6

Théorèmes préliminaires

9. Dans un système de surfaces (µ, ν, ρ), le nombre des surfaces infiniment aplaties est
(2µ− ν).

En effet un plan Q coupe les surfaces suivant un système de coniques (µ, ν) qui ad-
mettent (2µ−ν) coniques infiniment aplaties, qui appartiennent à des surfaces infiniment
aplaties. Mais de même que le nombre (2µ − ν) des coniques infiniment aplaties est
théorique et distinct, en général, du nombre effectif de ces quasi-coniques, parce qu’elles
peuvent compter chacune pour plusieurs, de même (2µ−ν reste un nombre théorique ; les
surfaces infiniment aplaties pouvant être multiples, c à d compter chacune pour plusieurs.

[Verso: (†) Autrement. Sur un point x d’une droite L passent µ surfaces, qui coupent
L en µ points u. De même par un point u p Ainsi à un point x correspondent µ points u.
De même, à un point u correspondent µ points x. Donc il existe 2µ points qui coïncident
chacun avec un point u correspondant. Ces points appartient aux surfaces tangentes à la
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droite L, et aux surfaces infiniment aplaties. Les 1è sont en nombre ν ; donc les secondes
sont en nombre (2µ− ν).

10. Dans un système (µ, ν, ρ), il est (2ρ− ν) cônes.
Ce théorème résulte corrélativement du précédent ; mais se démontre simplement ainsi.

Que l’on circonscrive aux surfaces des cônes ayant un sommet commun en un point S de
l’espace : ces cônes forment un système (ν, ρ) ; c’est-à-dire que les bases sur un plan Q
mené arbitrairement forment un système de coniques (ν, ρ). Car par un point a passeront
les ν coniques bases des cônes circonscrits aux ν surfaces tangentes à la droite Sa ; et
ρ coniques seront tangentes à une droite, ce seront les bases des cônes circonscrits aux
ρ surfaces tangentes au plan mené par la droite et le point S. Ainsi le théorème est
démontré (‡).

[Verso: (‡) Ainsi que les surfaces infiniment aplaties, les surfaces coniques peuvent être
multiples ; et le nombre (2ρ− ν) est [illegible] théorique, et diffère en général, du nombre
des cônes effectifs.

Autrement. Un plan X mené par une droite L est tangent à ρ surfaces ; auxquelles
on mène par la droite L ρ plans tangents U , qui correspondent aux plans X. De même,
à un plan U correspondent ρ plans X. Donc il existe 2ρ plans X qui coïncident chacun
avec un plan U correspondant. Ces plans appartiennent aux ν surfaces tangentes à L, et
aux cônes du système. Donc le nombre des cônes est (2ρ− ν).]

11. Dans un système (µ, ν, ρ) il existe un nombre théorique (2ν − µ− ρ) de surfaces
représentées par 2 plans.

En effet, un plan Q coupe les surfaces suivant un systèmes de coniques (µ, ν), qui
admettent (2ν−µ) coniques représentées par 2 droites. Ces coniques appartiennent à des
surfaces tangentes au plan, et à des surfaces représentées par 2 plans. Donc le nombre
théorique de ces surfaces dernières est (2ν − µ)− ρ.

De même que pour les cônes, et pour les surfaces infiniment aplaties, ce nombre (2ν−
µ − ρ) est théorique, et généralement, le nombre effectif des surfaces formées de 2 plans
est moindre.

Ces surfaces formées de 2 plans peuvent être considérées soit comme des surfaces qui
ont 2 axes nuls, et un axe terminé à 2 points qui représentent 2 sommets de la surface,
dont un peut être à l’infini ; soit comme un cône, ou comme un cylindre formé de 2 plans.
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Appendix B
Some letters from Schubert to Halphen

In what follows, we transcribe the entirety of the Schubert-Halphen correspondence pre-
served at the Paris Bibliothèse de l’Institut. All letters, except for three, are in folder
Ms 5624. The letters written between November 11th 1879 and January 7th 1880 can be
found in folder Ms 5261. These three letters are the longest and the most substantial
of the collection. They most deal with the disagreement between Schubert and Halphen
over the validity of the αµ+ βν formula.

B.1 May 18th 1876

Hamburg, 18ten Mai 1876

Sehr geehrter Herr,

Erst jetzt habe ich Ihren freundlichen Brief vom 2 auf dem Umwege über Hildesheim
erhalten. Seit Ostern bebleide ich nämlich die Stelle eines Oberlehrens ander hiesigen
Gelehrtenschule.

Zunächst bitte ich um Entschuldingung, dass ich in deutscher Sprache an Sie schreibe.
Obgleich ich beim Lesen die französische Sprache für mathematische Dinge sehr liebe, so
getraue ich mich doch nicht, französische Briefe zu schreiben, weil ich zu grobe German-
ismen dabei fürchte, und nicht gern ein Französisch schreiben möchte, dem welches nach
sofort deutscher Sprache riecht. Ich sehe ja auch, dass Sie der Deutschen hinlänglich Herr
sind, um deutsche Briefe lesen zu können, da Sie den Inhalt meiner Abhandlung schon
erkannt haben.

Doch nun zur Mathematik !
Die symbolische Multiplication, welche übrigens doch schliesslich von Ihnen herstammt,

ist in der That eine prachtvolle Machine, deren Nutzen ich in meinen “Beiträgen zur
abzählende Geometrie” wohl hinlänglich bewiesen habe. Ebenso ist aussen dem Corr.
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Pr. auch das Pr. des speciellen Lage (§7 meiner Beitr.) nicht zu verachten. Leider hat
es mir bei dem Wechsel meiner Stellung in den letzten Monaten an Zeit gefehlt, um die
IIte und IIIte Abh. noch einmal durch zu arbeiten und fertig zu stellen. Sie kennen
etwas davon vermuthlich durch unsern gemeinsamen mathematischen Freund Zeuthen.
Aus dessen Mittheilungen über Sie nach seiner Pariser Reise 1874 kan mir die Furcht, Sie
bei dem Kopenhagener Preise als Concurrenten zu haben. Ich würde mich sehr freuen,
wenn meine Abhandlung den Anstoss dazu gegeben hätte, dass Sie Ihre Beschäftigung
mit der abzählenden Geometrie, und specieller mit der eigentlichen Characteristikenthe-
orie wieder aufnähmen, und Ihren früheren schönen Resultaten neue hinzufügen. Die
wesentlichsten Resultate meiner in diesem Sommer hoffentlich fertig gestellten II und III
Abh. der Beiträge werden Ihnen aus der Iten Abh., aus Zeuthens Bericht über meine
Preisschrift und aus Gött. Nachr. Mai 1875 ersichtlich sein.

Sehr lieb wäre es mir, wenn Sie mir ab und zu den wesentlichen Inhalt Ihrer Resultate
und die von Ihnen gemachten Publikationen mittheilten. Da ich nämlich nicht in einer
Universitäts- oder Bibliotheks- Stadt lebe, so kann ich gewisse Zeitschriften, namentlich
auch die Comptes Rendus und das Bull. de la Soc. Math., nur durch Zuschickung von
ausserhalb erlangen. Unter diesen Umständen ist es nicht mir lieb, wenn ich von den
Autoren durch einige Zeiten auf ihre mich in interessirenden Publikationen aufmerksam
gemacht werde. Die meiner Specialität nahe stehende deutsche mathem. Liter. empfange
ich meist durch Separatabzüge.

In der Hoffnung, dass Sie mir gelegentlich auch Ihre Resultate brieflich kurz mittheilen
wollen, erlaube ich mir, Sie Ihnen etwas von dem Inhalt meiner letzten Publikation, von
der ich gerade eben den letzten Correcturbogen empfange, zu erzählen.

Sie haben im Bull. de la Soc. Math. Bd II (die pag. weiss ich nicht, weil mir
die Zeitschrift in den letzten Monaten nicht zugänglich war ich werde mich doch wohl
entschliessen, darauf zu abonniren) erwähnt, dass bei der Fläche zweiter Ordnung auch
jede mehr a-fache, nicht in einzelne Bedingungen zerlegbare Bedingung durch diejenigen

1
2(a+ 1)(a+ 2)

Bedingungen ausgedrückt (?) werden kann, welche nur aus µ, ν, γ zusammengesetzt sind
[(in a footnote:) (?) Ich benutze hier, der Kürze wegen, die in meinen Beiträgen erläuterte
Terminologie.]. Haben Sie diess dort ganz allgemein bewiesen ? Ich habe nun eine die
Moduln einer gewissen Klasse solcher mehrfacher Bedingungen wirklich durch als Funk-
tionen von µ, ν, ρ berechnet. Es sind diese die Bedingungen, welche aussagen, dass eins
der ∞2 auf der F2 liegenden Geradenpaare alle möglichen Grundbedingungen unter er-
füllt, wo unter Geradenpaar das aus Punkt der F2, zugehöriger Tangentialebene, und den
beiden sich in diesem Punkte schneidenden ganz in der F2 liegenden Geraden bestehende
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Gebilde verstanden werden soll. Dazu gehört beispielweise : “Der Modul der dreifachen
Bedingung, eine Gerade zu enthalten, ist

X ′ = 1
4(2ν3 − 3ν2µ− 3ν2ρ+ 3νµ2 + 2νµρ+ νρ2 − 2µ3 − 2ρ3)”

Dabei sind ist auch bewiesen, dass zwischen den

1) 3 Symbolen, µ, ν, ρ 0 allgemeine Relationen bestehen
2) 6 ” µ2, µρ, ρ2, µν, ρν, ν2, 0 ” ”
3) 10 ” µ3, ... 0 ” ”
4) 15 ” µ4, ... 2 ” ”
5) 21 ” µ5, ... 21 - 13 ” ”
6) 28 ” µ6 ... 28 - 10 ” ”
7) 36 ” µ7, ... 36 - 6 ” ”
8) 45 ” µ8, ... 45 - 3 ” ”

Diese Relationen sind theils berechnet, theils sind Methode zu ihrer Berechungangegeben.
Die Relationen zwischen den fünf- und mehrfachen Symbolen können auch durch ein nahe
liegendes Eliminationsverfahren, welches dem in Clebsch-Lindemann (pag 406) analog ist,
aus den Elementarzahlen der F2 hergestellt werden. Am interessantesten sind daher wohl
die beiden Relationen zwischen den 15 vierfachen Symbolen. Diese lauten in einer sich
selbst dualistisch entsprechenden Form :

1) 2ν3µ− 2ν3ρ− 3ν2µ2 + 3ν2ρ2 + 2νρ3 − 2νρ3 = 0
2) 2ν4 − 5(ν3µ+ ν3ρ) + 6(ν2µ2 + ν2ρ2) + 8ν2µρ

− 4ν(µ3 + ρ3)− 6ν(µ2ρ+ µρ2)
+ 4µ3ρ+ 4µρ3 = 0

Alle diese Relationen sind ganz allgemein, gelten also für jedes durch noch so compli-
cirte Bedingungen definirtes System.

Beim Kegelschnitt im Raume, wo m, die Ebene durch einen Punkt schicken, n, eine
Gerade schneiden, ν eine Ebene berühren, bedeuten möge, sind nur immerhöchstens

3 einf. und 3 siebenfache
6 zweif. und 6 sechsfache
9 dreif. und 9 fünffache
und 10 vierfache

aus µ, ν, ρ zusammengesetzte Bedingungen von einander unabhängig. Die eine Relation
zwischen den 10 dreifachen Symbolen n3, n2ν, nν2, ν3,mn2,mnν,mν2,m2n,m2ν,m3 lautet
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:
2n3 − 3n2ν + 3nν2 − 2ν3 − 6mn2 +mnν + 12m2n− 8m2ν = 0

Sie ist die Erweiterung zu Formel 11) auf pag 406 das Clebsch-Lindemannschen Werkes.
Die Abhandlung, von deren Inhalt ich Ihnen eben etwas abgeschöpft habe, erscheint

im 3ten Hefte des Xten Bundes der Klein-Meyerschen Annalen. Namentlich möchte ich
Ihnen noch diess hinzufügen, dass ein strengen Beweis, dass überhaupt jede Bedingung
durch die Symbole (?) µaνbρc ausgedrückt werden kann, darin nicht geliefert ist. [(in a
footnote:) (?) Ich habe nur immer gesagt : “Wenn es der Fall ist, so reichen schon so und
so viel Symbole µaνbρc aus.”] Ich möchte Sie nun namentlich fragen, ob Sie diess schon
bewiesen haben, oder beweisen können.

In der ersten Tagen halte ich das Vergnügen, Lindemann aus München (er ist von
Michaelis ab Privatdocent in Würzburg) bei mir zu sehen und zu sprechen. Er war auf
der Durchreise nach London, wo er Cayley, Hirst, Sylvester zu sprechen hofft, vielleicht
auch Salmon. Lindemann ist in Folge der Bearbeitung des Capitels über Char. Theorie
in seinem Werke jetzt auch etwas abzählend-characteristisch angehaucht. Wir sprachen
namentlich über Ausartungen (courbes dége singulières).

Geehrter Fachgenosse, ich sage Ihnen nochmals meinen besten Dank dafür, dass Sie
die Correspondenz zwischen uns in so liebenswürdiger Weise eröffnet haben, und füge
die Bitte hinzu, dass Sie dieselbe mit einem, wissenschaftlich hier fast auf dem Tracknen
Sitzenden Fachgenossen, nicht wie der einschlafen lassen möchten.

Ich benutze die Gelegenheit, und Sie zu ersuchen, dem ehrwürdigen Vater unserer
gemeinsamen Specialität, dem Mr. Chasles den Ausdruck meiner besondern Hochachtung
zu übermitteln.

Ich empfehle mich Ihnen als

Ihr ganz ergebenster
H.Schubert

in Hamburg, Baumeisterstrasse 1

B.2 May 21st 1876

Hamburg, 21/5 76

Geehrter Herr,

Ich bin sehr erfreut, dass ich mit Ihnen nun wie mit Zeuthen Gedanken und Fos-
chungsresultate austauschen darf.
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Ich schicke Ihnen hiermit den von Klein gelesenen und dann mir zur Vergleichung
zugeschicksten Correcturbogen meiner Abhandlung über die Moduln gewisser Bedingun-
gen bei der F2. Es ist darin eigentlich ein eng begvenztes Thema behandelt, dieses
aber auch vollständig, und bei dieser Gelegenheit ergeben sich jene Relationen. Es war
sehr schade, dass mir Ihre Abhandlung in Bull. de la Soc. Math. bei der Abfassung
meiner Arbeit nicht zugänglich waren. Dann hätte ich pag 139 in der Anmerkung nicht
geschrieben bemerkt “sondern bewiesen”. So war ich zweifelnhaft, ob Sie den Satz nur
ausgesprochen, oder auch streng bewiesen haben. Ich bitte also, die Ungenauigkeit nicht
bösem Willen zu zuschreiben. Die Formel dritter Dimension beim Kegelschnitt im Raume
in der Ebene habe ich glücklicher Weise Cremona-Halphensche “genannt, und glaube”
damit das Richtige getroffen zu haben (genüss den Anmerk, in Lindemanns Werke), ob-
wohl ich Cremona’s Arbeit nicht kenne.

Es befriedigt mich sehr, dass meine Gedanken über Produktensätze Sie dazu verleitet
haben, Prod. Sätze für diejenigen Gebilde aufzustellen, mit denen man doch von Rechts
wegen anfangen muss. Ich glaube, dass Ihre Untersuchungen, deren Inhalt Sie andeuten,
mehr Klarheit in die Probleme der eigentlichen Characteristiken bringen werden. Behan-
deln Sie auch Tripel ? Ich dachte früher einmal daran die vor einem Dreieck erzeugten
Systeme so zu behandeln, wie in meiner Abh. das Punktepaar Ausartugen sind 2+1 oder
wenn man die Leiten und Ecken unterscheidet 2+3 vorhanden, nämlich:

Der Ausdruck abzählende Geometrie ist wohl sonst noch nicht angewandt. Wohl aber
war schon üblich zu sagen, “Abzählungsmethoden, z.B. die v. Chasles, v. Voss etc.”
Ich hatte in die “Fortschritten der Mathematik” den Namen “Geometrie der Anzahl”
hineingebraucht. Doch gefällt mir dieser Ausdruck jetzt nicht mehr, und es soll jetzt
auch dort dieses Capitel mit “abzählende Geometrie” überschrieben werden. Dieser Aus-
druck ist dem sehr gebräuchlichen Ausdruck “darstellende Geometrie” (z.B. v. Fiedler)
nachgebildet. “Géométrie numérique” scheint mir die einzig mögliche Übersetzung zu
sein. Ich glaube, dass es auch treffend bezeichnet. Dass man den Ausdruck Characteris-
tikentheorie für die wirklichen Characteristiken aufheben muss, darin werden Sie mit mir
übereinstimmen.

Da Sie, wie Sie schreiben, die Beschäftigung mit den Raumcurven dritter Ordnung
auch einmal angefangen haben, so interessiren Sie vielleicht beiliegende Blätter aus einer
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kleinen Note, welche ich aber dann doch nicht veröffentlicht habe. Die Ausartugen der
ent. Raume kommen natürlich erst in die IIIte Abh. der “Beiträge”.

Ich habe mit einem jungen Mathematiker Hurwitz in Hildesheim viel gesprochen über
Methoden, durch welche man [?] mit Hilfe des Chasles’schen Cor. Pr. und des Pr. des
spec. Lage zur Bestimmung der Anzahl der gemeinsame Elemente zweier Systeme direct
gelungen kann. Dies ist ihm in der That für Kegelschnitte und Flächen IIn Or. gelungen.
Die Zahl der gemeinsamen Flächen eines 1- und eines 8-stufigen Systems gewinnt Hurwitz
durch das Cor. Pr. in folgender Form:

2µ(µ8
1) + 2µ1(µ8

1) = 2ε+ 2µ · (µ8
1)

+ 2(2µ− ν) · 1
8µ

3
1ν

4
1(2µ1 − ν1)

+ 2(2ν − µ− ρ) · 1
10µ

6
1ρ1(2ν1 − µ1 − ρ1),

wo ε die gesuchte Zahl ist, und die übrigen Symbole wohl nicht erklärt zu werden brauchen.
Das 2µ− ν resp. 2ν − µ stammt natürlich von den Ausartugen her.

Hurwitz (Hildesheim, Am Hagenthor) spricht auch folgenden Satz aus:
“Sind die 9 einfachen Bedingungen b1, .., b9 Characteristiken der einstufigen Systeme

einer Fläche beliebiger Ordnung, so bilden die aus diesen 9 Bedingungen zusammengestzten
a-facher Bedingungen, oder ein Theil von ihnen, wieder eine Gruppe eigentlicher Charact.
für die Systeme a-ter Stufe.”

Dieser Satz ist sehr nage liegend. War es Ihnen in dieser Allgemeinheit bekannt ?
Ich habe in der letzten Zeit einmal angefangen, die Plancurve dritter Ordnung, vierter

Klasse, in ähnlicher Weise hinsichtlich ihrer Ausartungen zu behandeln, wie ich in den
Gött. Nachr. Mai 1875 die C3

3 behandelt habe, um so meine IIte Abh. noch zu vervoll-
ständingen. Ich sehe jedoch dabei zu viel mühsame Arbeit, und werde es wohl lassen.
Interessant ist, dass man so zu den geometrischen Beziehungen zwischen den singulären
Elementen der Curven gelangen kann. Z.B. Für die C3

3 :
“Auf jeder Geraden der Ebene werden von einer C3

3 3 Schnittpunkte der Curve, 1
Schnittp. mit d. Wendet., 1. Schnittp. mit d. Rückkehrtang, u. 1 Schnittp. mit d.
Verbindungsgeraden von Wendep. und Spitze, im ganzen 6 Punkte bestimmt. Zwischen
diesen bestehen 2 Relationen, so dass z.B. die 4 ersten Punkte die beiden letzten 4 deutig
bestimmen etc.”

Leider habe ich hier noch immer sehr viel zu thun, so dass ich, auch viel Touren
machend (heute Nachmittag z.B. die Elbe abwärts nach Blankenese), in Hamburg noch
nicht ordentlich zum privaten Arbeiten gekommen bin.

Mit den besten Grüssen
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hochachtungsvoll
Ihr Schubert

B.3 July 12th 1876

Hamburg, d. 12/July 76

Sehr geehrter Herr,

Es ist Zeit, dass ich Ihnen antworte. Ich thue dies kurz vor einer Reise mit Frau und
Kind nach Potsdam, wo ich

Hoditzstrasse 2

wohnen, und vier Wochen, bis 12.August, bleibe werde.
Besten Dank für Ihre inhaltreiche Abhandlung, in die ich mich allmählich hineinfinde.
Gegen den Beweis des Ihnen mitgetheilten Satzes von Hurwitz hatte ich einen gewissen

Einwand, welchen ich auch gegen Lindemann’s Beweis für die Zahl der einen zwei- und
einem dreistufigen Systeme gemeinsamen Kegelschnitte (Clebsch’s Vorles.) erlebe. In
folge dessen modificirt sich der allgemeine Satz von Hurwitz zu folgendem :

“Wenn bei einer Plancurve, Raumcurve, Fläche q einfache Bedingungen existiren,
durch welche jede Ausartung (courbe, surface, singulière) ausgedrückt werden kann, so
sind diese q Bedingungen die einstufigen Characteristiken, und die aus ihnen zusam-
mengestzten a-fache Bedingungen die a-stufigen Characteristiken.”

Ich fürchte nur, dass die Voraussetzung dieses Satzes ausser bei Kegelschnitt und
quadrat. Fläche, bei nur wenigen Gebilden erfüllt werden kann.

Die Fouret’sche Priorität erkenne ich an. Ich freue mich sehr, inder für das “Jahrbuch
über die Fortschritte der Math.” zu bearbeitenden Literatur mehreres von Fo diesem
Gelehrten zu finden, namentlich auch die Arbeit über Flächensysteme und implexes de
surf. Seine nachträglich in meinem "Beiträgen zur abz. G." erwähnte Arbeiten über den
Zusammenhang der Curvensysteme mit den Differentialgleich. erst. Ordnung werde ich
aus dem II. Bande des Bulletin nächstens studiren. Aus diesem II. Bande, dem ich mir
per Buchhandel kommen lasse, werde ich auch noch einmal genaue Kenntniss über Ihre
Arbeiten nehmen.

Ich bin erfreut, dass im Kreise der société mathématique meine Sachen Interesse er-
regen. Namentlich freut es mich, dass ich auch bei dem vielseitigen M.Camille Jordan
Anerkennung finde.

Hurwitz und ich haben jetzt die Formeln aufgestellt, welche zwischen den Grundbe-
dingungen von drei in gerader Linie, von vier in einer Ebene befindlichen Punkte und von
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fünf in einer Strahlenaxe befindlichen Strahlen bestehen. Nur der letzte Fall macht einige
Schwierigkeiten.

Haben Sie auch wohl versucht, Produktensätze aufzustellen für das Gebilde welches
aus drei in geraden Linie befindlichen Punkten besteht ?

Sie schreiben, dass es leicht sein müsste, durch Rechnung die geometrischen Beziehun-
gen zu beweisen, welche sich Ihnen im vorigen Briefe über die Plancurven dritter Ordnung
mittheilte. Ich bin nicht im Stande, durch gewöhnlichen Calcul den Grad der bezüglichen
Gleichung zu erkennen.

Vor einigen Wochen hatte ich einen Ruf als ord. Prof an das Polytechn. zu Därmstadt
an Stelle von E.Schröder erhalten, ihn aber wegen der Kargheit des dortigen Budgets
ablehnen müssen. Die Professoren in Deutschland werden noch gar zu schlecht bezahlt,
mit wenigen Ausnahmen.

Ich hoffe, dass ich während der Ferien in Potsdam etwas mehr zum Arbeiten komme,
als dies bisher hier der Fall war. Klein drängt mich, die IIte und IIIte Abhandlung fertig
zu stellen. Meine Abhandlung über die Moduln vielfacher Bedingungen bei den F2 muss
nun nächstens erscheinen. Ich schicke Ihnen dann einen Separatabzug zu. Wie sind die
Bedingungen für den Beitritt ausländischer Mit Mathematiker zur Société mathématique
?

Ich ersuche Sie, Herrn Fouret und Herrn Jordan meine mich bestens zu empfehlen.
Was macht eigentlich Herr Maillard ? Ich habe von ihm seit seiner berühmten Doctor-
Dissertation über die Charact. (bester wohl “Elementaren Anzahlen”) der cub. Plancur-
ven nichts wieder gehört.

Haben Sie schon von dem eben erschienenen ersten Hefte des mathem. Reportoriums
für Autoren Referate von Königsberger-Zeiner Kenntniss genommen ?

Wenn Sie ihm nach Postdam (Hoditzstrasse 2) einen wenn auch nur kurzen Brief
schicken, würden Sie sehr erfreuen.

Ihren ganz ergebenen
H. Schubert

B.4 August 12th 1876

Potsdam, 12 August 76

Verherter Herr,

Ich habe bis zum Schluss meiner Ferien mit meiner Antwort auf Ihren liebenwürdiger
Brief gezögert. Sie werden dieses erklärlich finden, wenn Sie hören, dass ich hier, in
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meiner und meiner Frau Heimath, in einem bunten Gewirr von Land undWasserparthieen,
gesellschaftlichen Zerstrennungen aller Art, Fahrten nach Berlin, Besuchen von Berlin etc.
die 4 Wochen verbraucht habe. Um einmal geistig Ruhe und Erholung zu finden, habe
ich mit einem Collegen aus dem Harz eine Woche lang sehr ermüdende Touren durch
den Oberharz gemacht, die den Körper ermüdeten, mir aber die geistige Abgespanntheit
nahmen.

Sie haben, Ihnen Briefe zufolge, jedenfalls eine stillere, geräuschlosere Sommerfrische
gehabt, als ich. Der Mangel an Verkehr mit mathematischen Verwandten ist etwas, was ich
von Hildesheim her und auch von Hamburg her besser kenne als irgend einer. Vor einigen
Tagen habe ich einen ganz hübschen Nachmittag hier verlebt mit fünf Mathematikern,
Ohrtmann, Müller, Netto, Schemmel, Mainz, alles Mitarbeitern an dem Jahrbuch für die
Fortschr. der Math., die mich von Berlin aus hier besuchten.

Besten Dank für Ihre gütigen Mittheilungen über die Statuten der Société math. de
France. Ich theile vollkommen Ihre Ansicht, dass jedwede Vermengung des Politischen
mit dem Wissenschaftlichen bedauernwerth ist. Ich ziehe ferner aus Ihren Briefe den
Schluss, dass Sie gewissermaassen dafür bürgen können, dass meiner Aufnahme in die
Société kein Widerspruch entgegengesetzt werden wird. Darauf fassend, ersuche ich Sie
hierdurch, mich bei zur Aufnahme in die Société gefälligt vorschlagen zu wollen, mit dem
Bemerken, dass ich es mir zur hohen Ehre anrechne, Mitglied einer Gesellschaft zu sein,
welche so viele mathematische Grössen enthält. Sollten Sie jedoch fühlen, dass gegen
meine Aufnahme irgend welcher Einspruch erhoben werden könnte, so haben Sie wohl die
Güte, die présentation zu unterlassen.

Zugleich bin ich beauftragt, bei Ihnen im Vertrauen anzufragen, ob auch Herr Ober-
lehrer Dr. Ohrtmann in Berlin, der Redacteur des Jahrbuchs der Fortschr. der Math.,
Aussicht hat, Mitglied werden zu können. Derselbe verfolgt dabei den Nebenzweck, so
schneller in den Besitz des Bulletin gelangen zu können, in den er, trotz des angebotenen
Austausches, so viel ich weiss, immer noch nicht gelangt ist.

Ich habe mir jetzt den II. Band des Bull. wegen Ihrer, Saltel’s u. Fouret’s Abhand-
lungen buchhändlerisch zukommen lassen, zu dem enormen Preise von 18 Reichsmark
= 22 1

2 francs. Es wäre mir lieb, wenn ich den I. Band, den ich auch zu Referaten für
das Jahrbuch nächstens das Jahrbuch nächstens brauche, direct oder als Mitglied billiger
bekommen könnte. Natürlich braucht ihn nur einer, der Redacteur Ohrtmann oder ich.

Doch nun zu den Relationen zwischen den Singulären! Sie haben Recht, bei der
C3

3 ist es nicht schwer, die Gleichungen selbst aufzustellen. Doch in weiteren Fällen ist
die Angabe der Gleichung nach meiner Meinung ein noch nicht gelöstes Problem. Ich
wähle als Beispiel die Beziehung zwischen den 12 Tangente, die von einem Punkte an
eine C12

4 möglich sind. Schon Zeuthen findet (Ahm. Egensk. Pag 391), dass durch
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11 solcher Tangenten die zwölfte 451440-deutig bestimmt wird. Ich kann zu Zeuthens
Resultaten hinzufügen, dass wenn sechs dieser Tangenten zusammenfallen, diese vielfache
durch die übrigen 6 eindeutig, aber eine dieser 6 durch die übrigen 120-deutig bestimmt
wird. Ebenso bekommt man auch schon hohe Zahlen bei der C4

3 .
Sie haben verstanden, dass Fouret im Königsbergerschen Journal referirt hätte. Ich

meinte, dass ich über Fouret’s Arbeiten zu referiren hätte in Ohrtmann’s Jahrbuch, und
meine Erwähnung Königsberger’s war unabhängig davon.

In Hamburg haben wir vom 17 bis 24 September Naturforschersammlung, wozu Zeuthen
wahrscheinlich kommt, ebenso einige deutsche Mathematiker. Mit herzlichen Grüssen und
mit der Bitte, die Verzögerung dieser Antwort auf Ihren lieben Brief zu entschuldigen

Ihr ergebenster Schubert.

B.5 November 5th 1876

Hamburg, d. 5. Nov 76

Verehrter Herr Professor !

Zunächst besten Dank für Ihre werthvollen Abhandlungen.
Wenn ich in der Soc. Math. de France auf Ihren Vorschlag gewählt werden sollte,

werde ich hierhin eine grosse mir erwiesene Ehre und zugleich einen Ausdruck unsrer
gemeinsamen Ansicht sehen, dass es in der exactesten aller Wissenschaftfen keine Nationen
geben darf.

In Namen Ohrtmanns ersuche ich Sie, in der Sitzung vom 15 Nov. dafür zu sorgen,
dass ihm umgehend wenigstens der Ite Band des Bulletin de la Soc. Math. geschickt
werde. Er wird ihn mir dann schicken, damit ich noch schnell die Referate über die darin
enthaltenen Abhandl. anfertigen kann. Es sollen nämlich die Referate bis spätestens
Ende November eingereicht sein. Insofern hat es Eile. Unter diesen Umständen, möchte
ich mir augenblicklich den Iten Band nicht anschaffen, vielleicht später einmal. Den II.
Band besitze ich. Wenn ich Mitglied werden sollte, werde ich ja wohl immer die Hefte des
V den Bundes sofort direct erhalten.

Dass Cremona in Frankreich war, hörte ich durch Sturm, beidem er mehrere Tage war.
Während der hiesigen Naturf. Versaml. hatte ich nette und anregende Studen durch die
Anwesenheit von Zeuthen, Schröter, Lüroth. Ein sehr kurzes Referat über einen in der
math-astron. Section der Natf. Vers. von mir gehaltenen Vortrag liegt hier bei. Es ist
ein Ihnen bekanntes Gegenstand.

Ich habe jetzt eine Abh. fertig, (die Redaction halb fertig) über die Singularitäten-
Zahlen der allg. Ordnungsfläche Fn, welche sich auf die in demselben Punkte berührenden
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Haupttang und Döppelt etc. beziehen. Danach ist Clebsch’s Resultat in Crelle’s Journal
Bd.63, pag 14, unrichtig (cf. auch Salmon’s Buch). Die Zahl der Punkte einer Fn, wo
beide Haupttangenten vierpunktig berühren, ist

5n(7n2 − 28n+ 30)

Clebsch’s Fehler ist leicht zu finden, er hat nimmt einmal 1 als Coefficienten, statt 3.
Auf Ihre Note gegen αµ+βν war ich schon durch Zeuthen, und durch Klein gleich nach

ihren Erscheinen aufmerksam gemacht. Ehe ich mir aber das betreff. Heft aus der hiesigen,
sehr schwerfälligen Stadt-Bibliothek verschaffen konnte, bekam ich am vorrigen Dienstag
Ihre gütige Zusendung. Am denselben Abend noch annoncirte ich Stern eine Note für
die Gött. Nachr., die ich Mittwoch und Donnerstag abfasste, und die er Sonnabend der
Göttinger Societät vorgelegt hat. Vielleicht aus einer gewissen Pietät gegen Chasles’s Satz,
habe ich in dieser Note durch Publikation des von mir und Hurwitz gefundenen Beweises
von αµ + βν eine Lanze – vielleicht die letzte – zu brechen für diesen interessanten Satz
zu brechen versucht.

Sie werden es vielleicht abenteuerlich finden, einen Satz den Beweis eines Satzes zu
publiciren, der eben in seiner Allgemeingültigkeit angegriffen ist. Ich Die Hauptsache ist
war mir aber die Liebe zur Wissenschaft. Ich glaube, dass durch meine Note, auch wenn
dieselbe Irrthüme enthält, die Sache geklärt noch mehr aufs Tapet gebracht wird, noch
mehr Interessenten und Mitarbeiter wirbt, die vielleicht von noch andern Standpunkten
die Sache beleuchten. So publicirte ich den Beweis und einige Bemerkungen über den
Sinn des Satzes, veranlasst durch Ihren Angriff, selbst auf die Gefahr hin, dass Sie durch
Ihre ausfürhrliche Abhandlung mir beweisen, dass ich mich total geirrt habe, was ich gut
werde tragen können. Dazu kann mein gegründetes Vertrauen darauf, dass Sie meine Ver-
theidigung des Satzes nicht als Eröffnung einer persönlichen Polemik gegen Sie auffassen
werden.

In der Hoffnung, dass Sie mir Ihr gütiges Wohlwollen auch ferner bewahren werden,
ersuche ich Sie, Herrn Chasles und der Société, deren Mitglied bald zu sein ich mich freue,
meine Hochachtung aussprechen zu wollen, als

Ihr ergebenster Schubert

B.6 December 4th 1876

Hamburg, d. 4/Dec. 1876

Verherter Herr,
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Besten Dank dafür, dass Sie mich in der Soc. Math. vorgeschlagen, und meine Wahl
mir mitgetheilt haben. Freilich hat doch Herr Fouret den Ruhm, Ihnen in dieser Mit-
theilung zuvorgekommen zu sein. Ich werde nächstens diese officielle Benachrichtigung
des Secretäriats dankend beantworten, so dass meine Antwort vor der nächsten Sitzung
in Händen des Herrn Fouret ist.

Ich freue mich sehr, dass Sie in meiner Aufregung gegen eine Anzweifelung des αµ+βν
keine persönliche Entgegnung gegen den Zweifelr selbst sehen wollen. Sie werden meine
Note mit dem Beweise von Hurwitz in Händen haben. Ich habe jedoch Ihren Brief allein,
ohne die erwähnte Note in den C.Rend. erhalten. Ehe ich desswegen bei der Post eine
sogenannte Reclamation einreiche, möchte ich noch einmal anfragen, ob Sie die Note
auch schon gleichzeitig mit dem Briefe abgeschickt haben. Es thut mir leid, dass Sie
die ausführliche Abhandlung schon in das Journ. de Math. abgeschickt haben. Sonst
hätten Sie vielleicht noch Gelegenheit nehmen können, den Fehler in unserem Beweise
dort anzugeben. Sie werden aus der Gött. Note ersehen haben, warum mich Ihre Beispiele
noch nicht von der Unrichtigkeit des αµ+βν überzeugt haben, und ich fasste meine Note
hauptsächlich desshalb ab, um die Sache ordentlich, auch in Deutschland, zur Sprache
zu bringen, damit schliesslich durch aus dem Widerstreit der Meinungen die Wahrheit
Frieden stiflend sich erlebe. Darum thut es mir leid, dass Sie meiner Vertheidingung des
αµ + βν in Ihrer ausführlich Abh. keine Widerlegung folgen lassen können. Über die
Sache selbst kann ich desshalb noch nicht sprechen, weil ich Ihre Note noch nicht habe.

Für das aus Strahl und darauf liegendem Punkte, und das aus Ebene und darauf
liegendem Punkte habe ich inzwischen auch Produktensätze erhalten. Ich bemerkte auch
wie Sie, dass für höhere, aus einer endlichen Zahl von Hauptelementen zusammengesetzte
Gebilde die Produktensätze bald aufhören, wenigstens, insofern man bloss von fundamen-
talen Bedingungen abhängig darstellen will.

Das Den an Ohrtmann durch Ihre gütige Vermittelung geschickten Heft Bd.I des
Bull. habe ich, ebenso wie Bd.II, in der letzten Zeit zu Referaten viel benutzt. Über ihre
Characteristiken-Abhandlungen habe ich das Referat wegen Ihrer neuen Beschäftigun mit
diesem Gegenstande noch verschoben bis zum nächsten Bande. Übrigens ist habe ich über
Ihre Academie-Berichte über denselben Gegenstand schon früher referirt.

Wie kommt Lindemann jetzt nach Paris ? Ich vermithete ihn in Würzburg. Grüssen
Sie ihn, bitte, wenn er noch dort sein sollte. Ich freute mich, endlich die IIte Abh. seiner
Vorl. v. Clebsch gedruckt zu sehen. Bitte, grüssen Sie auch Hirst, dessen Sachen ich
meist kenne, den ich zwar nicht persönlich kenne, von dem ich aber wohl durch Sturm
sehr viel gehört habe.

Meine Abh. über die Tangenten-Singularitäten, bei der es mir weniger auf einige neue
Resultate, als auf die Methode (nur Punktepaar-Formeln) ankam, liegt schon bei Teubner
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für die Math. Ann.
Sie sprechen von Saltel (?). [(in a footnote:) (?) Seine Mittheil an die Acad. de Bel-

gique sind mir hier unzugänglich.] Nun habe ich in den letzten Wochen mich viel mit
Saltel’s Erweiterung des Correspondenzprincips beschäftigt. Ich habe dieselbe mit meiner
in den Beitr. z. abz. Geom. niedergelegten Auffassung desselben zu einer grösseren Er-
weiterung verschmolzen. Dadurch ergiebt sich z. B. die Zahl der fünfpunktigen Tangenten
einer allgemeinen Ordnungsfläche Fn 5n(7n−12)(n−4) direct durch blosse Einsetzung der
Zahl 5 und der Zahl n in eine der Formeln. Ich denke, Ich werde in dem Dankschreiben an
die Soc. Math. ein Blatt beilegen, worauf ich einige kleine Resultate angebe. Vielleicht
könnte ich als membre diese Dinge sogar in dem Bulletin veröffentlichen. Freilich müsste
mein Französisch dann noch einer corrigirenden Hand unterbreitet werden. So sehr ich
auch an Französisch lesen gewöhnt bin, so wage ich es doch nicht, französisch zu schreiben.

Für den Fall, dass Sie mich um Weihnachten mit einigen Zeilen zu verfreuen beab-
sichtigen, bemerke ich, dass ich in den Ferien, d.h. vom 23. Dec. Bis 7. Januar mit
meiner Familie in dem deutschen Versailles, das heisst Potsdam, wohnen werde, und zwar

Hoditzstrasse 2.

Noch eine Bitte! Wenn ich die Ehre habe, mit Männern wie Sie zu correspondiren,
so verbinde ich gern mit dem Adressaten einer räumliche Vorstellung, die sich am besten
durch die Übersendung einer Photographie erreichen lässt. Wenn Sie mir also Ihre Pho-
tographie schicken wollten, so bin ich Ihnen sehr dankbar, und zu einem Gegendienste
gern bereit.

In der Hoffnung, dass Sie mir Ihr Wohlwollen auch ferner bewahren werden, zeichne
ich

hochachtungvoll
Ihr ergebenster

Schubert

B.7 July 9th 1877

Hamburg, 9/7 77

Verehrter Herr Professor,

Es ist geraume Zeit her, dass ich Ihnen gegenüber etwas habe von mir hören lassen.
Inzwischen habe ich durch ein genaueres Studium des Règlement administratif der So-
ciété math. de France entdeckt, dass ich wohl selbst daran schuld war, dass ich bis-
cher noch kein Heft des Bulletin erhalten hatte, und habe meine Versäumnis nachgeholt
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durch Übersendung des Eintrittsgeldes und der cotisation annuelle an den trésorier der
Gesellschaft. Bis jetzt habe ich keine Antwort erhalten. Sie werden fragen, womit ich
mich beschäftigt habe. Mit vielerlei. z.B. auch, untreu meiner Spezialität, mit der Frage
der Nicht-Existenz ungerader vollkommener Zahlen. Können Sie vielleicht angeben, wo
Herr Carvallo, welcher in den Comptes Rendus Bd.81, p.73 bis 75 einen Beweis dafür
anbündigt, denselben publicirt hat ?

Nachstens werden 2 Abhandlungen von mir in den Math. Ann. Bd. 12, Heft 2
erscheinen. Die Correcturbogen habe ich eben gehabt. Die erste giebt die Corresponden-
zformeln für Gruppen von n Punkten, die auf einer beweglichen Geraden liegen, und das
Analogue für n Strahlen, so dass das Princ. d. la Corresp. Analyt. des Herrn Saltel
specieller Fall einer der Formeln wird. Die zweite Abhandlung wendet die Formeln für
Strahlengruppen auf den Strahlencomplex an, und findet viele Singularitäten-Zahlen des
Complexes n-ten Grades. Z.B. Die Zahl derjenigen ebenen Complex-Curven, welche einen
fünffachen Punkt besitzen, ist:

1
6(n− 5)(n− 6)(n− 7)(n− 8)(n− 9)(n− 2)(n3 + 8n2 + 19n− 12).

Endlich bin ich in letzter Zeit zu den Produktensätzen zurückgekehrt, und habe die Char-
acteristikentheorie einiger Gebilde erledigt, welche aus Punkten, Ebenen und Strahlen
in endlichen Anzahl zusammengesetzt sind. Sie schrieben mir über diese Dinge ein-
mal im Anschluss an meine Bemerkungen über Produktensätzen in den “Beiträgen z.
abz. Geom.”. Ich habe die Fragen so gefasst, dass der Titel dieser letzten Arbeit ist
: “Geometrische Verallgemeinerungen des Bezoutschen Fundamentalsatzes”. Die darin
enthaltenen Formeln geben zu manchen kübischen Anwendungen Anlass. So sind gehen
das bekannte φ · µ + γ · ν + σ · ρ für die Berührung einer Fläche durch Flächen eines
Systems, ferner die Resultate des Herrn Fouret (Comptes v.80, 805-809) etc. unmittel-
bar aus meinen Strahlbüschel “Characteristiken” Formeln hervor. Diese Resultate sind
Sonnabend der Göttiger Societät vorgelegt, und werden also nächstens in den Gött. Nachr.
erscheinen. Wenn ich Zeit finde, und die Soc. Math. es gestattet, so publicire ich die
sich daran anschliessende ausführliche Abhandlung vielleicht durch das Bulletin, wie ich
kürzlich auch Herrn Fouret schrieb, da ja das Tragengebiet der Zahlen der gemeinsamen
Elemente gegebene Mannichfaltigkeiten grösstentheils französisches Terrain ist.

Ist Ihre Abhandlung “über die Reductionen des αµ+βν bei Annahme gewisser Singu-
laritäten des gegebenen ein- und vier-stufigen Kegelschnittssystems” noch nicht erschienen
? Wenn dies der Falle sein sollte, so würden Sie mich sehr verbinden, wenn Sie mir einen
Abzug schickten, da mir von der französisch-mathem. Literatur nur die Comptes-Rendus
zugänglich sind.

Mit grosser Freude habe ich die Zeuthensche Preisaufgabe begrüsst. Sie sind durch
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B.8. August 7th 1877

Ihre bisherigen Arbeiten gewiss am meisten für die Lösung befähigt. Er fragt sich nun,
ob Sie für acad. Preisschriften Zeit und Lust haben. Jedenfalls würde durch die Lösung
eine wichtige Brüche von unserer Spezialität nach dem jenseitigen algebraischen Ufer
geschlagen sein.

Ihr ergebenster
H.Schubert

B.8 August 7th 1877

Potsdam, d. 8. August 1877

Sehr geehrter Herr Halphen,

Besten Dank für Ihren liebenswürdigen Brief von 13.Juli, und die Zusage Ihrer Initia-
tive, und das Bulletin des Soc. Math. in meine Hände gelangen zu lassen.

Inzwischen habe ich mich einige Wochen lang durch die Redaction der IIten Abhand-
lung der Beiträge absorbiren lassen. Ich stehe jetzt bei der Erzeugung der 13 fundamen-
talen Ausartungen der C3

3 aus der allgemeinen C3
3 . Eine Woche lang habe ich wieder

Fusstouren auf dem Oberharz gemacht, die mich immer sehr erfrischen.
Ich fühle mich sehr geehrt durch die Bereitwilligkeit, mit welcher Sie meine Arbeit über

die geometrischen Verallgemeinerung des Bezoutschen Satzes in das Bulletin aufnehmen,
und Sich der Last des Stilpolirens unterziehen wollten. Doch war ich noch nicht so weit,
um die ausführlichere Arbeit dem Druck übergehen zu können. Ich wollte auch erst die
vorläufige Mittheilung der Resultate in der Gött. Nach. (Juliheft) erscheinen lassen.
Dann aber möchte ich nun, dem berechtigten Drängen F. Klein’s nachgebend, zunächst
die Fortsetztung der Beiträge zum Drück bringen. Diese Dinge sind im wesentlichen vor
nunmehr drei Jahren gefunden, und da so ist es rathsam, die Publication nicht noch weiter
zu verschleppen. Die Correcturbogen Separatabzüge der “Verallg des Bez Satzes” erwarte
ich nächstens. Sie finden dort das αµ+βν für den Strahlbüschel, das Punktepaar u.s.w. Sie
schrieben mir früher schon einmal von einer derartigen Ausdehnung der Produktensätze.
Veröffentlicht haben Sie darüber nichts ?

Die Corre Separatabzüge des “Corr. Pr. für Gruppen” und der “Singul. des Linien-
complexes” muss ich auch nächstens bekommen.

Zeuthen’s Preisthema verlangt die algebraische Ableitung der bekanntlich einen sechs
Ziffrigen Grad besitzenden Gleichung zwischen den 12 Tangenten von einem Punkte an
die allgemeine Plancurve vierter Ordnung, wovon Sie mir auch einmal schrieben.

Über Carvallo’s Arbeit habe ich noch nichts näheres erfahren. Ich muss es jedoch,
weil ich einem Herrn Philologen, der einem Abriss über die Geschichte der “vollkommenen
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Zahlen” verfasst, die neuste Literatur mittheilen soll. Ich schliesse etwas eilig, um nach
Berlin zu fahren, wo ich mir die neueste math. Literatur ansehen will. In der Hoffnung,
recht bald von Ihnen einige Zeilen zu erhalten,

Ihr ganz ergebenen
Schubert

B.9 December 3rd 1877

Montag, d. 3/12

Geehrter Herr,

Für heute belästige ich Sie nur mit einer dringenden Bitte, nämlich der, in der Société
Mathématique gefälligt zur Sprache bringen zu wollen, dass ich, obwohl ich seit länger
als einem Jahre durch Ihre Güte membre bin, und die cotisation annuelle statutenmäs-
sig geleistet habe, bis heute weder irgend ein Bulletin Heft noch das Diplom noch sonst
ein officielles Lebentzeichen der Gesellschaft empfangen habe. Indem ich nochmal auf
privaten Wege, diese Angelegenheit zu ordnen versuche, ersuche ich Sie, mit dem Se-
cretär der Gesellschaft zu sprechen, und mir gefälligt mitzutheilen, was die Ursache dieser
Verzögerung ist.

Endlich habe ich die IIte Abhandlung meiner “Beitr. Zur Abzähl. Geom.” abgeschickt,
worin die cubischen Plancurven behandelt sind, und, wie ich glaube, nur einige neue
Gedanken ausgesprochen, und aber viele Zahlen berechnet sind, die man für weitere Stu-
dien brauchen wird. Haben Sie vielleicht meine “Geom Erweiterung des Bezoutschen
Satzes” einmal angesehen. Ich habe kürzlich auch einmal die Fouret’schen und Saltel’schen
Sachen über die Zahl der gemeins. endlichen Wurz. der Gleichungen gelesen. Ich glaube,
da ist noch nicht alles erledigt.

Sehr in Eile, bitte ich Sie, meine schnelles Abzbrechen entschuldigen zu wollen.

Hochachtungsvoll,
Ihr Schubert

P.S. Sollte M.Brisse einen von Ohrtmann an ihn geschickten Brief nicht bekommen
haben ? Ohrtm. wartet seit lange auf Antwort.

B.10 November 15th 1879

Hamburg, 15/11 79
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B.10. November 15th 1879

Sehr geehrter Herr Halphen,

Ihr Brief und Ihre neueste Abhandlung, wofür besten Dank, traf gerade hier ein, als ich
durch die Geburt einer Tochter erfreut wurde. Sie werden daher begriefen, dass ich in der
letzten Zeit nicht viel zum Schreiben an meine verehrten Fachgenossen kam. Ausserdem
hatte ich die Redaction einer französischen Note angefangen, und diese wollte ich erst
vollendet haben, ehe ich Ihnen antworten.

Zunächst versichere ich Ihnen, dass ich Ihre frühere wir Ihre jetzige Abhandlung mit
grossen Interesse gelesen habe, dass Sie mich ferner davon überzeugt haben, dass αµ+βν

in den und den Fällen die und die Reduction erleidet. Eigentümlich ist nun, dass ich
von Ihnen studirten, dritten Kegelschnitt Ausartung schon vor Monaten von einer ganz
anderen Seite her näher rückte, ohne dieses zu merken. Ich habe nämlich die Characteris-
tikenformeln des Dreiecks aufgestellet, und hatte dabei fortwährend Rücksicht zu nehmen
auf diejenige zweistufige Dreiecks-Ausartung, bei welcher die drei Ecken a, b, c einem und
demselben Punkte unendlich nahe liegen, und zugleich die drei Seiten einer und dersel-
ben Geraden unendlich nahe liegen (Beispiel : das aus 3 unendlich nahen Punkten einer
Curve bestehende Dreieck). Auch diese Ausartung ist durch den Punkt und die Gerade
noch nicht vollkommen bestimmt, sondern es muss noch eine Bedingung hinzutreten, pour
déterminer ce qu’on pourrait nommer la courbure du triangle infiniment petit. Analog
beim unendlich kleinen Viereck muss eine zweifache Bedingung dazu treten. Inwiefern
diess mit Ihren Resultaten in einigem Zusammenhang steht, ist hieraus vielleicht noch
nicht deutlich, es wird aber aus meiner Arbeit aus der Fortsetzung meiner Untersuchun-
gen klarer hervortreten.

Meine Abhandlung über Dreiecks-Characteristikenformeln werde ich nächstens an die
Math. Ann. schicken. Eine vorläufige, kurze Mittheilung der Resultate habe ich in
französischer Sprache (der Stil mag allerdings plus allemand que français sein) abgefasst,
und gestern Abend an Chasles als den Alterspräsidenten der Characteristiken abgeschickt,
mit der Bitte, die Note der Academie für die Comptes rendus vorzulegen. Sollte Chasles,
was ich befürchte, diese meine Bitte nicht erfüllen können, so habe ich ihn ersucht, meine
Note nach der Dürchsicht, Ihnen und Herrn Fouret zuzustellen. Meine Resultate scheinen
zwar sachlich sehr einfach, und die 3 Probleme, die Zahl der gemeinsamen Dreiecke eines i-
stufigen und eines (6-i)-stufigen Systems zu bestimmen, sehr leicht. Die Formeln enthalten
aber doch immer in den 3 Fällen bezüglich 7, 17, 22 Anzahlen aus jedem der beiden
gegebenen Systeme ; und aus einigen Anwendungen sieht man deutlich, dass die Formeln
wirklich neue Wahreiten enthalten.

Mein Buch ist inzwischen bei Teubner in Leipzig erschienen, ein Exemplar habe ich
der Société Math. de France dedicirt.

Es war mir noch nicht möglich, Ihre Modificationen des αµ + βν zu berücksichtigen,
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da der VIte Abschnitt schon vor 11
2 Jahren von mir ausgearbeitet vorlag, und ich auch sie

Sache noch nicht mit meinem Calcul beherrschen konnte. Im Literaturen habe ich Ihre
Sachen natürlich erwähnt.

Mit bessten Grüssen und der Versicherung besonderer Hochachtung

Ihr ergebenster Schubert

B.11 November 23rd 1879

Hamburg, 23/11 79

Sehr geehrter Herr Halphen,

Ich empfange soeben Ihren freundlichen Brief nebst Ihren Bemerkungen zu meinen
Characteristikenformeln im VIten Abschnitt meines Buchs. Ich bin sehr erfreut zu sehen,
dass Sie und die Gesellschaft in Paris von meinem Buch Notiz genommen haben.

Ich werde sogleich meine Antwort auf Ihre Beispiele, und einige Winke über illusorisch
werdende Anwendungen jener Formeln diesem Briefe beilegen. Ich ersuche Sie, meine
Antwort auf Ihre Note der Gesellsch Société vorzulegen (?) und im Bulletin Ihrer Note
folgen zu lassen im Fall Sie die Veröffentlichung Ihrer Note für nothwendig hatten [(in
a footnote:) (?) Etwaige Incorrectheiten des Stiles haben Sie wohl die Güte selbst zu
corrigiren.]. Vielleicht wird dadurch der Mathematik ein guter Dienst geleistet, da durch
die Entgegnung und die Vertheidingung die Sache klarer gestellt wird. Sollten Sie nicht
davon überzeugt werden dass,

(ΣΣ′) = 2 und nicht = 1, (B.1)

so ersuche ich Sie umgefällige, briefliche Mittheilung Ihrer Gründe.
Was sagen Sie zu pag.14 meines Buches ? Herr Zeuthen hält die Ableitung für ebenso

einfach wie exact, und baut nach derselben Methode mehrere Zahlen über doppelte und
über dreifache Berührung auf, die ich durch meine Dreiecks-Characteristiken auch erhalten
kann. Herr Zeuthen ist bekanntlich sehr geübt in Abzahlen zusammenfallender Lösungen.

Dass Herr Chasles meine Dreiecksformeln für die Comptes Rendus nicht gebrauchen
kann, wie ich aus Ihrem Briefe vermuthen muss (?), thut mir sehr leid, da ich der Meinung
war, dass neue Resultate der Characteristikentheorie in dem Geburtslande dieses Zweiges
nicht verschmäht würden. [(in a footnote:) (?) Eine Antwort habe ich von H.Chasles
überhaupt nicht erhalten.] Freilich lassen sich Beispiele erfinden, bei denen man meine
Dreieck-Formeln ohne Weiteres nicht anwenden kann. Daran sind aber die Formeln nicht
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B.12. November 25th 1879 (postcard)

schuld, sondern das Missverständniss ihres Inhalts. Die detaillirte Ausführung der Modi-
ficationen, (?) die in vereinzelten Fällen vorzunehmen sind, gehört wohl in die ausfürlich
Abhandlung. [(in a footnote:) (?) Zum Beispiel werden schon die Formeln für Φ illusorisch
bei dem zweistufigen Systeme aller Dreiecke, welche aus zwei Tangenten einer Curve und
der Verbindung der Berührungspunkte gebildet werden, weil es unendlich viele Φ sind.
Diese sind aber nur als Dreiecke ϑ aufzufassen, und bei einiger Aufmerksamkeit kommt
man nicht zu Unsinn, sondern zu den Plückerschen Formeln.]

Ich kann kaum glauben, dass Sie meine Dreiecks-Formeln für würdig halten, in dem
Bulletin zu erscheinen, sollte es aber doch der Fall sein, so bitte ich um gefällige Aufnahme.

Meine ausführliche Abhandlung werde ich nächstens an die Annalen schicken können.
Seitdem ich die Ehre hatte, durch Ihre gütige Vermittelung in die Société gewählt zu
werden, betrachte ich mich gewissermassen als Ihren Protégé. Um so mehr thut es mir
leid, dass ich mit meinen Arbeiten (deren mehrfache Mängel ich nicht verkenne) gar
keinen Anklang mehr bei Ihnen finde. Dieses sehr bedauernd, und im Gefühle besonderer
Hochachtung für Sie, Zeiche ich, einer geneigten Antwort entgegensehend,

Ihr treuer
Schubert

[(in a footnote:) (?) Aus pag 344 unten geht wohl hervor, dass ich Ihre Verbesserung
des αµ + βν vollständig anerkenne, aber keine Zeit mehr hatte, dieses für das Buch zu
verwerthen, das ja nicht aus plötzlichen wissenschaftlichen Mittheilungen besteht und in
das wohl eine Formel hineinpassen kann, obwohl sie bei strenger Untersuchung noch die
Ergänzung −Γ bekommt.]

B.12 November 25th 1879 (postcard)

25/11 79

Geehrter Herr H.,
Ich habe in meiner Réponse den in der Ebene der drei Geraden B1, B2, B3 gelegenen

festen Puntk, durch welchen der Strahl g gehen soll, r genannt. Ich sehe eben, dass Sie ihn
so x′′ bezeichnet haben, also, wie mir scheint, mit x. Ich hiebt es für ein unterstrichenes
v. Bitte, corrigiren Sie demgemäss. Vielleicht zersfört, wenn es noch nicht das Princip
von der Erh. der Anzahl gethan hat, die folgende Figur, Ihre letzten Zweifel, dass die in
Ihren Beispiele bestimmte Zahl nicht 1, sondern 2 ist.

Die eine Gerade ist dich gezeichnet, die von Ihnen übersehene gestrichtelt. Das aus
B1, B2, B3 gebildete Dreiseit ist im Begriff, in eins auszuarten, wo sich B1, B2, B3 in einem
Punkte schneiden.
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C ist Schnitt der Ebene der B1, B2, B3 mit Q

Mit besten Gruss
Ihr Scht.

B.13 November 31st 1879

Hamburg, 31/11 79

Sehr geehrter Herr Halphen,

So leid es mir thut, Sie wieder zu belästigen, mein mathematisches Gewissen zwingt
mich dazu ; und ich ersuche Sie von neuen, die beiligende Note über das Princip von der
Erhaltung der Anzahl der verehrten Société vorzulegen, mit meiner Bitte, diese Note mit
drucken zu lassen hinter Ihne “Nouvelles observations”. Bei der Wichtigkeit welche die
Sache durch unseren Streit für mich gewonnen hat, möchte ich Sie zu gleich bitten, für
mich etwa 30 Exemplare alles 4 Noten als Separat-Abzüge (tirages à part) zu bestillen.
Ferner bitte ich Sie, Germanismen des Stils und sprachliche Incorrectheiten oder ungenau
gemachte Buchstaben selbst verbessern zu wollen. Z.B. schreibe ich für den zweiten
Buchstaben des lateinischen Alphabets b, Sie aber b (beim Hyperboloid), oder ist dies
ein anderer Buchstabe ? Dann bitte, gefülligt die ingemüss mein Manuscript zu ändern.
Ich hege keinen Zweifel, dass die Société den Zweck bewilligen wird, der Sie ihn wünschen.

Gleichzeitig lege ich einen an die Société gerichteten Brief bei, in welchem ich dem
Missverständniss stenne, wozu, wie ich gemerkt habe, der Umstand Veranlassung gegeben
hat, dass ich Ihre Untersuchungen im Texte meines Buches nicht benutzt habe, und dass
ich bloss historisch die Geschichte des αµ + βν − Γ entwickelt habe, ohne auf die Sache
selbst einzugehen, und dass ich dann dich mein Bedauern desüber ausgesprochen habe,
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Ihre Untersuchungen nicht im Hande gewesen zu sein, Ihre Untersuchungen verwerthen.
Schon seit Ostern [wo ich ] bin ich durch Sie überzeugt. Es liegt mir daran, dass Jeder
weiss, wie hoch ich Ihre Arbeiten schätze. Vielleicht könnte sogar eine ?? Inhaltsangabe
des Briefs am Bulletin erwählt werden. Ich bitte Sie also, auch diesen Brief vorzulegen,
dessen französische Abfassung mir nicht gelingen wollte.

Die Correcturbogen der beiden Noten werden mir wohl von Leiden der Redaction zum
geschicht werden ?

Sollten sie eine nochmalige Antwort auf meine beilegende Note abfassen, so erwähnen
Sie, bitte, im Bulletin, dass ich die Streitfrage in einer besonderen Abhandlung in den
Math. Ann. weiter behandeln würde. Indem ich nochmal meine Note durchlese, fasse
ich die Hoffnung, dass dieselbe Sie von der Richtigkeit meine Erörterungen vollständig
überzeugt.

Was meinen Sie dazu, wenn wir die 4 Noten auch in die Math. Ann. brächten ?
Ich würde es aus mathematischen Interessen sehr gern sehen. In der Erwartung baldiger
Antwort,

Mit vorzüglicher Hochachtung,
Ihr ergebenster,

Schubert

[The following note was attached to the letter]

Sur le principe concernant la constance des nombres géométriques
Par M. Schubert

(Voir:

1. Note de M.H Les observations sur la théorie des caractéristiques par M. Halphen,

2. Ré La réponse à ces observations par M. Schubert,

3. Les nouvelles observations sur la théorie des caractéristiques par M. Halphen)

Je répète que la droite xs fait partie du système Σ′ et satisfait à la condition Σ,
et qu’elle donne lieu ainsi à la seconde solution du problème inventé par mon savant
contradicteur. En disant le contraire, on dit que l’une des deux droites passant par un
point donné x et rencontrant deux couples de droites quelconques harmoniquement, cesse
d’exister au moment que trois des quatre droites vont se couper concourir en un même
point, et en disant cela on nie le principe bien connu (Princip von der Erhaltung der
Anzahl) auquel j’ai donné dans mon livre (pag. 12) quatre formes. La seconde forme y
est peut être énoncée ainsi :
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“Un nombre géométrique devient infini ou il conserve sa valeur, si l’on change la
situation des figures données en sorte qu’elles deviennent situées plus spécialement.”

La troisième forme du principe s’énonce en ces termes:
“Un nombre géométrique devient infini ou il conserve sa valeur, si l’on place au lieu des

figures données générales, des figures particulières ou dégénérées satisfaisant à la définition
des figures générales.”

Pour prouver la fausseté de ce principe fécond dû à l’algèbre, M. Halphen a inventé
un exemple dans ses “Nouvelles observations”. Cet exemple, loin de mettre le principe en
défaut, en est une vérification très intéressante. Voici les raisons.

M. Halphen envisage trois directrices B1, B2, B3 d’une certaine hyperboloïde H et
définit un système Σ′′′ de figures Γ par les ∞1 génératrices g rencontrant les directrices
B1, B2, B3 dans des points p1, p2, p3. Σ est la condition définie dans les notes précédentes.
M. Halphen trouve la valeur 1 pour le nombre (ΣΣ′′′), soit par ma formule, soit aussi
bien que directement. Après cela, il envisage au lieu de l’hyperboloïde H un hyperboloïde
dégénéré en deux plans en sorte que les directrices B1, B2, B3 deviennent trois droites
situées dans le plan xbs et concourent au point s. Or, il s’agit de déterminer quelles sont
maintenant les génératrices g. M. Halphen dit : le faisceau des droites passant au point x
et situées dans le plan xbs. Moi, je sais que les génératrices g se composent des droites de
deux faisceaux. L’un est celui dont M. Halphen fait mention, l’autre est le faisceau ayant
le sommet s et le plan xas (?). Ainsi chaque droite toutes les droites joignant le point s
avec les∞1 points où le plan xas rencontrent le plan Q, donnent lieu à des figures Γ′ qui,
faisant partie du système Σ′′′, satisfont à la condition Σ. C’est pourquoi le nombre (ΣΣ′′′)
ayant la valeur 1 au cas de l’hyperboloïde général, devient infini au cas de l’hyperboloïde
dégénéré en deux plans, résultat vérifiant la troisième forme ci-dessus citée du principe
concernant la constance des nombres géométriques. D’autre part, on voit par cela que M.
Halphen se trompe en disant que son système Σ le nombre (ΣΣ′′′) défini dans la première
note soit est un cas particulier du nombre (ΣΣ′′′).

En résumant mes exposés, je dis que les exemples de M. Halphen vérifient mes formules
caractéristiques (??) aussi bien que le principe ci-dessus cité.

Hambourg, 31. Novembre 1879.

H. Schubert

[(In footnotes :)
(?) Si un hyperboloïde est dégénéré en deux plans e et e′, la droite d’intersection de ces

deux plans contient deux points p et p′ tels que les directrices de l’hyperboloïde dégénéré
sont les droites de deux faisceaux, l’un composé du plan e et du sommet p, l’autre composé
du plan e′ et du sommet p′, tandis que alors les génératrices de l’hyperboloïde sont les
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B.14. December 1879

droites des deux autres faisceaux, l’un composé du plan p et du sommet e′, l’autre composé
du plan p′ et du sommet e. (Voir mon livre, pag. 70)

(??) Je répète enfin que chacun qui veut employer mes formules caractéristiques sans
en connaître les démonstrations et sans avoir lu les chapitres précédents III et V de mon
livre, est obligé d’avoir égard aux remarques qui se trouvent à la fin de ma note précédente.
J’espère de revenir à ces remarques à l’occasion dans un journal allemand quand je publie
mes recherches actuelles.]

B.14 December 1879

Hamburg, /12 79

Sehr geehrter Herr,

Bessen Dank für ihre neuen Erörterungen im Briefform. Ich sehe jetzt deutlich, dass
Ihre Beispiele daran schuld sind, warum ich nicht verstehen konnte, was Sie eigentlich
meinten. Lesen Sie, bitte, vor allem noch einmal die zweite Hälfte meiner ersten Antwort.
Hätten Sie das unglückliche Beispiel ΣΣ′ = 1 oder 2 nicht gewählt, sondern bloss gesagt,
was Sie jetzt sagen, nämlich : “Votre formule n’est valable que quand le système Σ′

ne contient pas la figure dégénérée où les trois points coïncident.” Dann hätte ich so-
fort geantwortet : “Selbstverständlich, lesen Sie den Zusammenhang, dann werden Sie
erkennen dass immer eine die Coincidenz von i Punkten als eine (i-1)-fache Bedingung
behandelt ist, und dass also der Formel sogar die Voraussetzung zu Grunde liegt, dass
beide Systeme diese Eigenschaft haben. Andere Fälle, als solche stecken im ganzen Buche
nicht.” Darauf hätten Sie höchstens noch den Ausdruck “Characteristikenformel” ges-
tadelt, oder gewünscht, dass ich im Buche noch einmal besonders hervorgehöben hätte,
dass auch Systeme möglich sind, bei denen die Formel illusorisch wird. Darin hätte ich
Ihnen Recht gegeben, und wir wären einig gewesen.

In meiner ersten Antwort habe ich ja überhaupt nur Ihrem Beispiel Opposition gemacht.
Lesen sie doch nach.

Ich habe nun 5 verschiedene Themata im Beiliegenden behandelt. Die Abfassung
ist etwas eilig gewesen, aber ich glaube, Sie werden alles deutlich verstehen. Hiernach
sind Sie wir in den wesentlichsten Punkten vollkommen einig. Trotzdem hatte ich jeden
Buchstaben, den ich in meinen beiden Noten geschrieben habe, vollkomen aufrecht. Ich
bin mir keines Fehlers bewusst. Der Unterschied zwischen uns beiden besteht nur noch
darin, dass ich gewisse Ihrer Definitionen anders verstanden werden. Die Differenz ist also
mehr eine sprachliche geworden.
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Sie fingen Ihren vorigen Brief mit den Worten an “Il me paraît effect. utile que nos
observations sur vos formules soient publiées”, und überzeugten mich dadurch von den
wissenschaftlichen Nothwendigkeit des Drückes unserer 4 Noten, um so mehr, als Sie
mir Ihre erste Note als eine für den Druck bestimmte zuschickten. Warum sollen Sie
also nicht gedruckt werden, ich sehe kein novum. Denn über die Nicht-Anwendbarkeit
meiner Formeln in gewissen Fällen sind wir nie uneinig gewesen. Nun Sie sagten, die
Formeln sind ungenau, weil sie in jenen Fällen nicht passen, ich sagte, die Formeln sind
dann sogar sinnlos, und die Nicht Anwendbarkeit ist im Zusamenhange meines Buches
selbstverständlich. Ich schlage Ihnen also vor, dass die 4 Noten, zur Belehrung anderer
Mathematiker, gedruckt werden im Bulletin, und dass wir zusammen eine fünfte Note
abfassen, welche Sie vielleicht auf Grund der beiligenden Blätter abfassen, und mir dann
vorschlagen. Ich glaube, dass dies möglich ist. Was meinen Sie dazu ? Es ist der würdigste
Abschluss, da sonst noch Note auf Note folgen könnte, da indem durch neue Beispiele
immer neue Fragen hineingezogen würden.

Ich halte die Sache im wesentlichen für erledigt. Das Hyperboloid und Ihr neues
Beispiel können wir ja noch gelegentlich unter uns weiter besprechen.

Ich möchte Sie sehr ersuchen, die beiliegenden Blätter auch Herrn Zeuthen zu schicken,
der sich ja für Ihre Anschauungen auch interessiert hat. Leider habe ich in diesen Tagen,
antlicher Geschäfte wegen, gar keine Zeit, die Blätter zu copiren. Auch müsste ich Sie
ersuchen, im Fall Sie auf einzelne Thesen mir noch antworten wollten, mir den ungefähren
Inhalt und nicht bloss die Nummer anzudeuten, da ich auch keine Copie für mich behalten
habe.

Was meinen Sie, dass ich in den Annalen veröffentliche ? Alle 4 Noten ? Oder bloss
mein Zugeständniss über die Beschränkte Gültigkeit von αµ+βν, und mein Aufmerksam
machen, dass für §42 und §44 Systeme denkbar sind, wo die Formeln sinnlos werden, also
noch nicht alle Fälle erledigt sind ?

Warum habe Sie Bedenken getragen, die 4 Noten selbst gestern Abend vorzulegen ?
Sie schreiben mir, Sie hätten immer meine Antwort vorhergewusst. Warum haben Sie

dann nicht die erwarteten Einwände selbst vorher entkräftet ? Beachten Sie wohl, dass
meine Einwände sich immer nur gegen Ihre Beispiele, aber nicht gegen Ihre allgemeinen
Behauptungen gerichtet haben.

Wenn Sie beabsichtigen, genaue Studien zu machen über die Grundbegriffe der abzähl.
Geom, über Unabhängigkeit, Ausartung etc, so begrüsse ich diese Absicht mit grosser
grosser Freude und hohen Erwartungen. Darf ich nur ein paar Bemerkungen hinzus-
treuen ? Eine Gleichung in Punktecoordinaten oder Liniencoordinaten zieht häufig in die
Definition eines Gebildes oder einer Bedingung Dinge oder Anschauungen hinein, welche
der rein geometrischen Auffassung der ausgesprochenen Auffassung Definition zunächst
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fremd sind. Was verstehen Sie z.B. in der wahren Geometrie unter arbitraires ?
Noch eine Kleinigkeit. Ich halte der Ausdruck solution étrangère für eine contradictio

in adjecto. Können Sie nicht einen andern Ausdruck dafür erfinden ?
Ich erwarte mit Spannung Ihren nächsten Brief, und hoffe sehr, dass Sie schliesslich[illegible]

der noch nicht erledigten Fällen, in dem Abschnitt VI meines Buches die Basis zu einen
intere?? neuen Theile der abzähl. Geom. erkennen werden. Sollte diesen Abschnitt
auch bloss dazu beitragen haben, dass Sie Sich mit der Charac. Th. der aus einzelnen
Hauptelementen bestehenden Gebilde beschäftigen, und Neues bringen, so würde der VIte
Abschnitt schon immer einen grossen Erfolg hinter sich haben.

Sollte ich Ihren nächsten Brief nicht umgehen beantworten, so schreiben Sie dass, bitte,
dem Zeitmangel zu, unter dem ich bis Weihnachten beiden werden. Auch umWeihnachten
werde ich nicht viel arbeiten können, da uns Verwandte von ausserhalb besuchen werden.
Dazu kommen die eben beginnende Correcturbögen meiner Abhandlung im Crelle über
1-2-deutig auf einander bezogene Punktreihen. Im di Math. Ann. habe ich einen sehr
kurzen Beweis des Satzes von der Erhaltung des Geschlechts bei 1-1-deutig bezogenen
Punktreihen, worüber ich sochen den Corrbg. bekam.

Was meine Dreiecke anbetrifft, so sind die gegebenen Formeln auch sinnlos wenn in
einstufigigen Systemen zweistufig genannte? Ausartungen vorkommen. Das versteht sich
von selbst. Dass Wenn Sie deshalb die Formeln für interesslos halten sollen, so bedaure
ich, die Zeit auf die Abfassung des für Frankreich (also hauptsächlich für Chasles, Sie und
Fouret) bestimmten Résumés verwandt zu haben, und möchte Sie ersuchen, sie Herrn
Fouret sehen zu lassen, und dann zu vernichten. Von Herrn Chasles habe ich überhaupt
keine Antwort bekommen.

Einer gefälligen Antwort aber von Ihnen entgegensehend zeiche ich als Ihr

ergebenster, H.Schubert

[The five notes were attached to this letter]

Erstes Thema
Über die Anwendbarkeit der Characteristikenformeln des §42 und §44 meines Buches

1) Wir haben beides stets darin übereingestimmt, dass die Formeln des §42 und §44
nur anwendbar sind, wenn jedes der beiden Systeme die Eigenschaft hat, dass in ihm
die Forderung der Coincidenz von i Punkten eine (i − 1)-fache Bedingung ist. (cf erste
Réponse)
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2) Ich halte es für selbstverständlich, dass die Formeln die in 1) erwähnte Eigenschaft
bei den Systemen voraussetzen, und zwar deshalb für selbstverständlich, weil im ganzen
Abschnitt V und VI die Coincidenz von i Punkten einer Geraden stets als eine (i − 1)-
fache Bedingung behandelt ist, und weil das Symbol der Bedingung der Coincidenz von i
Punkten sogar in die Characteristikenformel (pag 302) selbst als ein (i−1)-faches Symbol
eingeführt ist.

3) Ich habe den wesentlichen Inhalt von 1) und 2) schon in meiner erster “Réponse aux
observations..” ausgesprochen, und zwar in dem zweiten Theile, welches anfängt “Pour
prévenir des emplois mal entendus..”

4) Ein Leser meines Abschnitts V und VI, der sich an die Bedingungssymbole gewöhnt
hat, würde schwerlich die Formeln auf Systeme anwenden wollen, welche die erwähnte
Eigenschaft nicht besitzen.

5) Mit Rücksicht darauf, dass man sich daran gewöhnt hat unter Characteristiken-
formeln Formeln zu verstehen, welche für alle Systeme und alle Bedingungen Sinn haben,
so wäre es zwar nicht nothwendig, aber zweckmässig gewesen, wenn ich namentlich bei
der Formeln 3) (pag 308), welche die unbestimmten Coefficiente β, α1, α2,.. enthält, die
durch den ganzen Zusammenhang vorausgesetzte Eigenschaft noch besonders hervorge-
haben hätte, oder wenigstens angeführt hätte, dass Systeme denkbar sind, bei denen die
Coincidenz von i Punkten eine Bedingung wird, die von niederer Dimension ist, als der
(i − 1)-ten. Unnöthig wäre das Hervorheben der Eigenschaft bei der Formel 4) auf pag
309 gewesen, weil da die Deutung der Symbole überhaupt unmöglich wird, sobald das
System Σ die erwähnte Eigenschaft nicht hat.

6) Die Formeln werden dadurch, dass sie in gewissen Fällen keinen Sinn haben, noch
durchaus nicht werthlos. Man kann nicht sagen, dass sie ungenau sind, man kann höch-
stens sagen, dass es keine Characteristikenformel im strengsten Sinne des Wortes sind.

7) Systeme, welche die erwähnte Eigenschaft nicht haben, kommen in meinem Buche
gar nicht vor.

8) Ohne dass dies es in der Ableitung beabsichtigt ist stimmt die Formel 3) auch, wenn
nun die Σ′ die erwähnte Eigenschaft hat, Σ aber nicht, bloss man muss dann die Coeffi-
cienten nicht nach Formel 4, die ja sinnlos wird, sondern auf anderen Wege bestimmen.
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9) Eine Untersuchung Lösung des Characteristikensproblem in den Fälle in denen meine
Formeln sinnlos werden, wäre an sich eine dankenswerther Beitrag zur Characteristiken-
theorie.

Zweites Thema
Über die Ungenauigkeit der Formel αµ+ βν (§38)

1) Die in §38 gegebene Ableitung der Formel αµ+ βν ist nur richtig, wenn das System
die dritte Halphensche Ausartung (?) nicht enthält. [(in a footnote :) (?) Die Natur dieser
Ausartug habe ich erst während des Drückes des Buchs klar erkannt aus, und zwar aus
der Abh. Halphen’s in d. Math. Ann. Bd. 14.]

2) Dass dieses nicht besonders gesagt ist, is nicht bloss eine Unterlassungssünde, sondern
geradezu ein Fehler, weil eine solche Voraussetzung über das System aus dem Zussamen-
hange nicht hervorgeht. Man muss also die Voraussetzung besonders hinzufügen.

3) Ist der Beweis bei Hinzufügung dieser Voraussetzung brauchbar ?

4) Ist mein Buch darum unbrauchbar, weil dasselbe in §38 ein tadelnswerthes Übersehen
enthält ? (cf Fehler in Salmon, in Clebsch-Lindemann, an welche Fehler sich gewöhnlich
geistreiche Untersuchungen angeschlossen haben)

Drittes Thema
Über das Princip von der Erhaltung der Anzahl,

und seine Anwendung bei (Σ,Σ′) = {1, 2 ?

1) Das von mir auf pag 12 ausgesprochene Princip ist unbestreitbar, indem es aus eines
fundamentalen, algebraischen Quelle stämmt. Es ist auch für geometrische Abzählungen
äussert fruchtbar. Hierin stimmen Sie jetzt mit mir überein.

2) Bei der Benutzung des Princips kann man zu Irrthümern gelangen, wenn man nicht
genau darauf achtet, ob die Definition des speciellen Gebildes auch präcis in der Definition
des allgemeineren Gebildes enthalten ist.

C ist Schnitt der Ebebe Q Beispiel I
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3) Man kann nicht ohne Weiteres aus der im allgemeineren Falle enthaltenen Zahl
ableiten, dass diese Zahl in dem speciellen Falle auch noch existirt. Hängt zum Beispiel
eine Zahl von einer so aussehenden Figur ab, so kann ich diese gesuchte Zahl nicht ohne
Weiteres dadurch bestimmen, dass ich sage, sie ist gleich der Zahl, welche in derselben
Weise von der folgenden Figur abhängt :

Wohl aber kann ich dies, wenn ich bei der ersten Figur definire, sie soll aus 4 Strahlen
bestehen ein Vierseit sein, bei welchen drei Seiten sich in einem und demselben Punkte
schneiden, und bei der zweiten Figur definire, sie soll ein Vierseit sein.

4) Ich kann aus Ihrer Definition des Systems Σ′ auch jetzt noch nichts mehr oder nichts
weniger herauslesen, als das B1, B2, B3 und der Schnitt C mit der Ebene Q ein Vierseit
sein sollen, und kann dabei nur immer sagen, aber warum sollen sich denn B1, B2, B3

durchaus in einem Punkte schneiden ?

5) Sie fragen denken Sich also, wenn meine zweite Lösung nicht Lösung sein soll, dies
gewissermassen schon in die Definition hineingefügt. Das konnte ich aber aus denWortlaut
nicht entnehmen.

6) Ich entnahm dem Wortlaut nur, dass B1, B2, B3 drei Strahlen sein sollen, deren drei
Schnittpunkte zusammenfallen.

7) Sie meinten aber einen einzigen Punkt, von dem drei Strahlen ausgehen, und wollten
damit dem Leser verbieten, sich vorzustellen, dass die drei Strahlen drei zusammenfallende
Schnittpunkte haben.

8) Bei Ihrer Auffassung bilden also allen Strahlen, welche B1, B2, B3 in drei Punkten
schneiden, nicht das ganze Strahlenfeld ihrer Ebene, sondern dieses vermindert um den
Strahlbüschel, dessen Scheitel der gemeinsame Punkt von B1, B2, B3 ist.

9) Habe ich Sie jetzt richtig verstanden ?
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10) Wenn ich Sie verstanden habe, so können wir diesen Streitpunkt wohl nun fallen
lassen, weil Sie meine Auffassung, und ich die Ihre verstanden habe, und der Streit jetzt
nicht mehr mathematik sein würde, sondern sprachlich.

11) Wir sehen daraus beide, dass man bei der Definition geometrischer Gebilde sich
leicht missverstehen kann. Das aus einem einzigen Punkte und aus drei von ihm aus-
gehenden Strahlen bestehende Gebilde ist ja für Sie etwas ganz anderes als das Gebilde
welches aus drei Strahlen mit zusammenfallenden Schnittpunkten besteht.

Viertes Thema
Über die Regelschaar der génératrices welche drei Directrices B1, B2, B3 eines in ein

Ebenenpaar ausgearteten Hyperboloids schneidenden

1) Da Sie das Ebenenpaar als Hyperboloid ansehen, auch nicht von Schneiden der di-
rectrices, sondern von wirklichen génératrices und directrices dabei sprechen, so dürfen
Sie, nach meiner Meinung, das im Thema III, These 3 ausgesprochenen nicht als Motiv
dafür anführen, dass bei der Ausartung die Regelschaar der génératrices aufhört, zweiten
Grades zu sein, und anfängt, erstes Grades zu sein.

2) Der Wortlaut Ihrer Definitionen führt sicher dazu, zwei Büschel von directrices und
zwei Büschel von génératrices anzunehmen.

3) Es handelt sich nicht um ein punktgeometrisches, sondern um ein liniengeometrisches
Problem dabei, und bei dieser Auffassung ergiebt sich unendlich viel. Machen Sie Sich,
bitte, die Sache doch durch homographische Abbildung klar.

Fünftes Thema (?)
Über Ihr neues Beispiel

1) Sie sagen “Π1 contient comme cas particulier la condition que p1 soit sur une droite
donnée A1, car Π1 se réduit à cette condition si a1 et a′1 sont sur A1”. Ich kann wieder
Ihre Bedingung Π1 so auffassen, das Π1 sich nicht auf die Bedingung p1 reducirt.

2) Sie definiren nämlich ein Dreieck Π1k1p1 so dass k1 auf A′1,Π1 auf A1 liegt, k1p1 durch
a′1 geht, k1Π1 durch a1 geht, Π1p1 durch χ geht. Dann liegen auf einer beliebigen Geraden
zwei Punkte p1. Richtig ! Nun legen Sie a1 und a′1 auf A1. Nun können, kann ich sagen,
zwei Fälle von Dreiecken eintreten, erstens Ihr Fall, dass p1 auf A1 liegt, zweitens der Fall,
dass Π1 in den Punkt a1 fällt, wie die folgende Figur zeigt :
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3) In diesem zweiten Falle liegt p1 nicht auf der Geraden A1. (Cf meine erste Incidenz-
formel, pag.25, wonach pg = ge+p2 ist.)

4) Deshalb ist die Bedingung, dass p1 auf der Geraden A1 liegt, kein specieller Fall von
Π1.

5) Ich gebe zu, dass Sie jetzt erwiedern können, dass Sie die Definition mit den Worten
“On joint Π1 et a1” angefangen haben, und damit durch diese Definition selbst den Fall
ausgeschlossen haben, dass a1 mit einer Ecke zusammenfallen darf.

6) Wir kommen damit auf das IIIte Thema zurück.
[(in a footnote :) (?) worüber wohl kein besonderer Streit geführt zu werden braucht,

wegen der Übereinstimmung, die wir wohl über das Thema III im wesentlichen haben.]

B.15 January 7th 1880

Hamburg, 7/1 80

Sehr geehrter Herr Halphen,

Erst jetzt, nachdem des Weinachts “und Neujahrs” Jubel vorüber ist, gewinne ich die
Zeit, Ihren werthen Brief vom 24. December zu beantworten.

Sie schreiben auf der ersten Seite “D’autre part vous affirmez énergiquement que je
me trompe sur tous les points, d’autre part vous seriez d’accord avec moi.”
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Sie schreiben auf der letztzen Seite “Les observations jointes à votre dernière lettre
sont pleines d’intérêt.”

Wenn Sie diese meine Bemerkungen im vorigen Briefe, die ich so ausführlich wie
möglich und mit möglichster Trennung der verschieden Punkte angefertigt habe, um
Missverständnisse zu beseitigen, durchgesehen haben, so müssten Sie doch deutlich einge-
sehen haben, inwiefern Sie nach mit mir übereinstimmen, und inwiefern Sie andererseits,
Sie nach meiner Ansicht, nicht mit mir übereinstimmen. Ich muss daher noch einmal das
Wichtigste hervor heben.

1) Wir stimmen darin über, dass meine Formeln die Fälle ; wo ein System von ∞i

Geraden ∞i˘1 Ausartugen mit 3 unendlich nahen Punkten enthält, nicht erledigen. Ich
sehe dabei absichtlich ganz davon Ihren Beispiel ab. Es bedarf keines Beispiels, weil die
Formel 4) die ausgeschlossen Fälle erkennen lässt.

2) Ich sage, dies die Einschränkung geht aus dem Zusammenhange meines Buches her-
vor. Sie geben dies zu durch den Text, den Sie mir in Ihren letzten Briefe für meine
Antwort vorschlagen. Ich gebe Ihnen zu, dass es nützlich gewesen wäre, dies bei Formel
3) expressément zu sagen (Bei Formel 4) ist es ja unnöthig) Ich will auch gern zugeben,
dass der Ausdruck “Charakteristikenformeln” zuviel versprechend ist ; Ich hätte vielleicht
meinen alten Ausdruck “Produktensätze” (Math. Ann. Bd. 10) beibehalten resp. auch
hier gebrauchen sollen.

3) Ich füge hinzu, dass nach meinem Buche keins der beiden Systeme Σ und Σ′ die in
1) angedeuteten Ausartungen∞i˘1-fach enthalten darf. Dass vielleicht noch eine Charak-
teristikenformel aufstellbar ist, wenn nur ein der beiden Systeme eine solche Ausartung
enthält, geht aus meinem Buche nicht hervor. Das ist ein neuer Satz von Ihnen. Ich darf
ihn also in meiner Antwort nicht aussprechen, um die Leser nicht zu verwissen.

Mit Rücksicht auf die eben geschriebenen Bemerkungen 1), 2), 3), mit Rücksicht auf
meine erster mir zurückgeschickte Antwort, und mit Rücksicht auf Ihren Vorschlag einer
Antwort, habe ich die beigelegte Antwort abgefasst, welche Sie gütigst der Société vor-
legen und nach etwaigen Stil-Correctionen zum Druck übergeben mögen. Diese Antwort
unterscheidet sich von meiner ersten durch zweierlei :
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a) Ich lasse lieber ganz bei Seite, was sich für (ΣΣ′) ergiebt. Das ist ja auch gleichgültig,
weil die Anwendung, den Inhalte des Buches nach, nicht erlaubt ist, also zufällig ja auch
etwas Richtiges hätte ergeben können.

b) Ich lasse ferner bei Seite, dass die Anwendung bei einer gewissen Auffassung (wenn
nämlich meine zweite Lösung mitgezählt werden darf) ein doch noch ein richtiges Resul-
tat giebt. Freilich ist dieser Antwort gegenüber meiner ersten etwas verbessert. Aber
den Kern der Sache habe ich schon damals hervorgehaben, dass nämlich Formel 4) mit
ihrem Symbolen, so wie schon §34 erkennen lassen, dass Systeme mit den erwähnden
Ausartungen auszuschliessen sind.

Ich würde mich sehr freuen, wenn Sie mir zugestehen könnten, dass die beiliegende
Antwort den Nagel auf den Kopf trifft und andererseits Ihnen genügt Sie schreiben ja :

“Si vous dites que vos formules ne s’appliquent pas à tous les cas, cela me suffira
parfaitement.”

Nun, das ist geschehen, ich habe nur, was Sie mir doch nicht übel nehmen können,
hinzugefügt, dass woher dies “ne s’appliquent pas” kommt, und warum das Wort inex-
actitude die Sache nicht trifft. Ich hoffe also, diese Sache ist jetzt zu Ihrer Zufriedenheit
erledigt.

Nun kommt etwas ganz anderer, was, wie ich jetzt mehr als früher hervorhebe, mit
dem “ne s’appliquent pas” nichts zu thun haben soll.

4) Es fragt sich, ist (Σ,Σ′) = 2 eine falsche Gleichung ? Ich meine, sie ist richtig
für Jeden, welcher zugiebt in drei sich in einem Punkte schneidenden Geraden nichts
anderes sieht, als drei Gerade deren 3 Schnittpunkte identisch sind (Volle Coincidenz der
Schnittpunkte), welcher also darin nur einen wirklich speciellen Fall eines Dreiseits sieht.

Beispiel : Man habe ein einstufiges System von Dreiecke, in welchem sich eins befindet,
bei dem die 3 Seiten, getrennt von einanders, sich in einem Punkte S schneiden, ausserdem
einen Punkt P . Man zeichne zu jedem Dreieck des Systems denjenigen Strahl durch P ,
welcher die 3 Seiten a, b, c so schneidet, dass der Schnittpunkt auf a harmonisch conjugirt
wird zu P in Bezug auf die Schnittpunkte mit b und mit c. Für jedes Dreieck giebt es einen
Strahl, der leicht zu construiren ist. Für die Ausartung giebt liefert diese Construction
die Verbindungslinie PS. Also ist PS eine Linie, welche die 3 concurrürenden Strahlen
in der angegebenen Weise schneidet.
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Analog bei (Σ,Σ′). Ich meine also bloss, (Σ,Σ′) = 2 ist, solange man aus Ihren 3 Geraden
B1, B2, B3 bestehende Gebilde als Dreiseit ansieht. Sie meinen nun aber, wie ich Ihnen
schon in den Bemerkungen meines letzer Briefes geschrieben habe, durch Ihre Definitionen
von Γ,Σ,Σ′ meine Auffassung ausgeschlossen zu haben. Ich habe dies darin nicht lesen
können. Sie wollen durch Ihre Definition von B1, B2, B3 eben ausdrücken, dass der Ort für
die vierte harmonischen Punkte zufallen Strahlen, welche B1, B2, B3 schneiden (bestimmt
in Bezug auf die 3 Schnittpunkte) nur die einzige Polar polaire D ist. Ich habe die ganze
ebene als Ort aufgefasst, indem ich für jedem nicht aufD liegenden Punkt, die Verbindung
mit S ziehe, und für der auf D liegenden Punkt unendlich oft dem Orte angehörig). Es
handelt sich also bloss noch darum, ob es ein Fehler ist, wenn ich meine Auffassung aus
Ihnen Definition der B1, B2, B3 entnehme.

5) Unsere Debatte über die Anwendbarkeit des Princips von der Erhaltung der Anzahl
hätten wir uns sparen können. Wir werden beide das Prinzip immer nur mit Verständniss
anwenden, und auf seine algebraische Quelle bei allen zweifelhaften Fälle zurückgreifen.
Meine Worte “on nie le principe..” waren damals vielleicht, wie Sie es nennen, quelque peu
agressifs. Ich nehme sie zurück andererseits haben Sie durch ihre Worte “pour faire ap-
précier la valeur de ce raisonnement” meine raisonnement lückerlich gemacht. Sie hätten
Sich doch aber wohl denken können, dass ich nicht ohne Weiteres aus jeder im allge-
meinen richtigen Zahl dieselbe schliesse, dass dieselbe Zahl im speciellen richtig ist. Dass
dies aber bei richtiger Deutung der Art der Specialisirung zu einem richtigen Resultate
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führen kann, ist selbst verständlich. Es handelt sich eben bloss darum, ob die stattgefun-
denen[habte] Verallgemeinerung Veranlassung zu einer nachherigen Ausscheidung giebt
oder nicht. Dass “concourant en un point” schien mir keine Veranlassung dazu zu geben,
weil ich die Definition der B1, B2, B3 nicht so auffasste, wie Sie es dadurch bezwechen
wollten.

6) Ich bin immer noch der Meinung, das Jetzt kommt wieder etwas, was mit dem
Vorigen nichts zu thun hat, das Ihr Hyperboloid Beispiel nicht nothwendig war, um mich
über das Princip von der Erhaltung die Anzahl und seine missverstandenen Anwendung
aufzuklären.

6) Ich bin noch immer der Meinung, dass (Σ,Σ′) kein wirklich specieller Fall von (Σ,Σ′′′)
ist, und zwar desswegen, weil beim Grenzübergang die sämtlichen Geraden x génératrices,
welche B1, B2, B3 als directrices haben, zwei Strahlbüschel bilden werden, deren einer (von
Ihnen nur erwähnt) die Ebene xbs und den Scheitel x hat, deren zweiter die andere Ebene
und den Scheitel s hat (bf die letzter Bemerkungen im letzten Briefe, Sie werden also
doch zugeben, dass ich nicht mit Ihnen hierüber d’accord gewesen bin, und dass also die
schon anfangs erwähnten Stelle Ihres Briefes ungenau ist.)

Wenn es Ihnen Recht ist, können wir über Vv 6) noch weiter gelegentlich disputiren,
die übrigen Sachen können wir nun wohl als erledigt betrachten.

Ich ersuche Sie ferner die beigelegte zweite Tone über den §30 meines Buches der So-
ciété Math. vorzulegen, und abdrucken zu lassen. Ich ersuche Sie ferner, es meinem Man-
gel an Verständniss zuzuschreiben, dass ich nicht eher die Berechtigung Ihrer Beschränkung
des αµ+ βν klar eingesehen habe. Ich lese mich übrigens allmählich mehr in Ihre Noten
hinein. Ich muss aber eingestehen, dass immer noch Stellen darin sind, die mehr noch
unklar sind. Ich hoffe aber, allmählich alles verstehen zu können.

Haben sie etwas dagegen, wenn ich Klein Ihre Observations, meine jetzt beigelegte
Réponse und meine Note über nombre des coniques für die Annalen schicke ?

Ich würde mich sehr freuen, wenn Sie mir bald, wenn auch nur per Postkarte, schreiben
wollten, ab wann Sie der Société meine Réponse übergeben wollten, und ob Sie dieselbe
für hinreichend halten.

Mit den bessen Wünschen für das beginnende Jahr und der Versicherung besonderer
Hochachtung,

Ihr ergebenster
Schubert
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B.16 January 14th 1880 (postcard)

14/1 80

[(In the left margin, written vertically:) Morgen schicken ich Ihnen ein Exemplar
meiner Abh. im Crelle.]

Besten Dank für Ihren werthen Brief, und im voraus dafür, dass Sie Freitag meine
Noten vorlegen wollen. Sie würde Ihrer Güte die Krone aufsetzen, wenn Sie zugleich für
mich 25 Separatabzüge Ihrer Observations und meiner Réponse bei der Redaction der
Bulletin bestellen wollten.

Ich erkenne Ihre Gesichtspunkte bei αµ + βν − Γ als berechtigt an, wenngleich ich
glaube, dass sich die Sache noch übersichtlicher wird darstellen lassen. Sie werden aber
auch zugeben müssen, dass die Darstellung der Anzahl der gemeinsamen Anzahl Gebilde
von Systemen als algebraische Summe von Produkten von je zwei Anzahlen, die sich auf
die einzelnen Systeme beziehen, an sich interessant genug ist, um um ihrer selbst willen
studirt zu werden, selbst wenn, wie aus Ihren Untersuchungen ersichtlich ist, die gegebe-
nen Systemen gewissen, natürlich anzugebenden Beschränkungen unterliegen. Nennen
wir diese Analoga des Bezout’schen Satzes dann Productensätze, und bewahren wir den
Ausdruck Characteristkensätze für Ihren Sachen auf. Es thut mir leid, dass wir über das
Hyperboloid nicht noch weiler discutiren können. Ihr specielles H, beidem die generatri-
ces einen Strahlbüschel bilden, ist nach meinen Theilgebilde eines ausgeart. Hyp, aber
erfüllt nicht die Definition des (Terminologie) Hyp.

Mit besten grüssen hochachtungsvoll
Ihr Scht.

B.17 January 25th 1880 (postcard)

25/1 80

Sehr geehrter Herr Halphen,
Indem ich Ihnen anbei eine kleine Note schicke, bemerke ich, dass ich sehr wohl weiss,

dass darin die mehr als zweifachen Punkte mit zusammenfallenden Tangenten etc. noch
nicht berücksichtigt sind. Ebenso wenig ist dies in Lindemann’s Vorl. v. Clebsch bei
den geom. Beweisen geschehen, sondern nur bei dem algebraischen Beweise. Ich glaube
nicht, dass diese Versäumniss den Beweis werthlos macht. Ich glaube vielmehr, dass
die Nicht-Berücksichtigung der höheren Singularitäten zunächst nothwendig ist, um das
Versfändniss des Beweis zu erleichtern. Ich würde mich sehr freuen, wenn Jemand durch
Berücksicht der höh. Sing. den Beweis supplementirte. Ungenau ist der Beweis darum
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noch nicht, weil er die übrigens üblicher Beschränkung auf die ursprünglichen Plückerschen
Singular. aus sich selbst hervortreten lässt.

Wann wird meine Réponse im Bulletin etwa erscheinen ? Hatten Sie die Güte, mir
Abzüge zu bestellen ? Augenblicklich habe ich das sehr interessante Problem den 1-1-1-
Deutigkeit bei 3 geraden Punktreihen erledigt (Crelle, Bd.88, p.342 obnu)(Zusammenhang
mit der klassen-allgemeinen Fläche 3ter Klasse) im Anschluss an das Erscheinen meiner
Abh. in Crelle.

Mit der besten Grüssen

hochachtungsvoll
Dr.Schubert

B.18 February 20th 1880

20/2 80

Sehr geehrter Herr,

Umgehend schicke ich Ihnen selbst die Correctur zurück. Ich habe nichts zu Verän-
derndes gefunden, nur in der ersten Note fehlt noch die Angabe der Seite, auf welcher
Ihre observations stehen, und welche Sie gefälligt selbst hinzufügen werden. Der grosse
Anfangsbuchstabe in “Livre” fiel mir auf, er ist aber wohl sprachlich gerechtfertigt.

Ich benutze Ihr freundliches Anerbieten, indem ich Sie bitte, mir zunächst tome IV des
Bulletin bei der Société zu bestellen. Den Betrag dafür wie auch für die Separatabzüge
kann ich dann wohl an M.Claude Lafontaine per Post schicken.

Von den Math. Ann. kostet jeder Band von Band VIII an 20 Reichsmark (die früheren
kosteten erst 16, dann 18 Mark). Dies stimmt also mit dem von Ihnen angegebenen
Betrage 26 fr, 75 cts überein, wenn die Reichsmark zu 1fr, 3375 gerechnet wird. Sie
irren Sich aber, indem Sie meinen, es erschienen 2 Bünde aller Jahr, das Erscheinen
ist unabhängig von der Zeit, es sind bisweilen 11

2 Bünde, bisweilen 2 erschienen, ganz
zwanglos, ebenso wie beim Crelle-Borch Journal. Die Math. Ann. sind in der That sehr
theuer, viel theuerer, als Crelle. Dies wührt zum Theil daher, weil der Verleger der Math.
Ann. den Autoren Honorar zahlt (18 Mark pro Druckbogen, Crelle nicht), welches aber
nicht in die Kasse der Autoren läuft, sondern auf die Erziehung der vielen, von Clebsch
hinterlassenen, unmündingen Kinder verwandt wird.

Da wir nun einmal von den Kosten der mathematischen Nahrungsmittel sprechen,
möchte ich noch anfragen, ob es wahr ist, dass die Comptes Rendus pro Jahr nur 18 bis
20 francs koste. In diesem Falle wollte nämlich die Bibliothek des Johanneums die C.R.
halten, was mir sehr erwünscht wäre, ebenso wie den Naturwissenschaftlern.
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Es freut mich sehr, von Ihnen zu hören, dass Sie meinen kleinen Beweis des Rie-
mann’schen Satzes auf den Fall allgemeinster Singularitäten ausdehnen wollen. Ich er-
wahnte den darauf bezüglichen Aufsatz mit Ungeduld, und fühle mich sehr geschmeichelt,
dazu den Anstoss gegeben zu haben, und die Übersendung an die Math. Ann. vermitteln
zu dürfen.

Ich selbst habe seit mehreren Woche die 1-1-1-Deutigkeit sowie die Characteristiken-
theorie und die Produktensätze (darunter wollen wir verstehen die Formeln, welche bei
gewisser Beschränkung der Systeme die Zahl der gemeinsamen Gebilde als Summe von
endlich vielen Produkten von Anzahlen der Systeme darstellen) liegen lassen müssen,
theils wegen Krankheit in meiner Familie, theils wegen eines Vortrags über den neuen
Seeweg-Integrator, theils wegen eines Besuchs den Prof. Oppermann aus Kopenhagen.
Die 1-1-1-deutig bez. Planc. hoffe ich, bald wieder aufzunehmen, dann muss ich Ihre
Joben über die Singul. auf Planc. sicher benutzen.

Mit den besten Grüssen

Ihr ergebenster
Schubert
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Appendix C
Some letters from Zeuthen to Halphen

In what follows, we transcribe part of the Zeuthen-Halphen correspondence, preserved at
the Paris Bibliothèque de l’Institut, in folder Ms 5624. We only produce the documents
pertaining to enumerative geometry; however, there are about a dozen of letters left to
transcribe in this folder. As Zeuthen wrote these letters in French, a language which he
did not master fully, he made several grammatical mistakes, which are not corrected in
what follows. However, we shall not indicate them systematically with a [sic], for the sake
of clarity.

C.1 December 1st 1875

Copenhague 1 Décembre

Mon cher Monsieur Halphen,
Votre lettre, dont je vous remercie, contient une question à laquelle je n’ai pu vous

répondre qu’à présent, celle sur la prorogation du concours sur la question des cubiques
gauches. Il fallait attendre premièrement si au temps déjà fixé il y avait des réponses à la
questions, et, lorsqu’il y en avait une, il fallait l’étudier et y appliquer beaucoup de preuves
numériques pour voir si elle était digne de la prix. Elle s’en est montrée très-digne, selon
moi et je suppose que les autres membres du comité seront du même avis, et alors une
prorogation est impossible.

L’auteur fait des applications très-heureuses de ce qu’il appelle “la multiplication sym-
bolique de M. Halphen”, et il vous cite aussi quant à la détermination des droites de
l’espace dont il a besoin pour trouver les courbes singulières. Vous voyez donc que vous
n’êtes pas absolument absent du concours ; mais, certes, j’aurais préféré de beaucoup, si
vous auriez pu nous faire l’honneur d’y prendre part d’une manière plus directe. La révi-
sion de deux mémoires, dont l’un pourrait servir à éclaircir les points difficiles de l’autre,
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m’aurait été, peut-être, plus facile que celle d’une seule.
Toutefois ce qui est le plus triste à cet égard c’est la circonstance elle-même qui a

interrompu vos travaux dans cette direction. Je suis heureux de savoir que c’est un petit
garçon que j’ai vu chez vous, premièrement parce que je sais alors que la petit fille n’était
pas votre seul enfant, et ensuite parce qu’il me serait pénible d’entendre la perte de beau
garçon ; mais je comprends bien et prends part à votre douleur de perdre une enfant
chérie.

Je vous remercie de l’envoi de la démonstration de votre détermination du genre d’une
courbe à singularités supérieures. Il m’intéressera d’y(?) voir aussi une fois la démonstra-
tion géométrique dont vous parlez ; après avoir lu votre note je m’en fait une, fondée sur
les mêmes principes dont je me suis servi dans la démonstration géométrique de la conser-
vation du genre d’une courbe à singularités ordinaires (Voir Salmon Higher pl. Curves)
; mais comme je n’ai formé cette démonstration (de votre extension) que dans la tête, il
est possible qu’elle n’est pas complète.

Si vous verrez M. Fouret je vous prie de lui faire mon compliment pour son heureuse
conception d’une théorie des implexes. Je n’en ai pas fait encore une connaissance plus
profonde ; mais l’idée m’intéresse.

Et vous comprendrez, qu’ayant passé quatre semaines très agréables et utiles pour
mon instruction à Paris, j’ai à vous [illegible] de me rappeler dans la mémoire de toutes
ces personnes distinguées qui m’ont prouvé autant de complaisance et d’amitié. J’écrirai
bientôt à M. Chasles ; mais voulez vous bien à l’occasion porter mes remerciements pour
des heures agréables et instructives à MM. Mannheim, Darboux, Painvin, Résal Moutard,
Brisse .... En même temps je vous prie d’en garder une bonne partie pour vous même, et
de croire que votre connaissance est une des très-bonnes parts(?) de mon séjour à Paris.

Votre très-dévoué
H G Zeuthen

Copenhague, Norrebro

C.2 May 13th 1876

Copenhague 13
5 1876

Cher Monsieur,
Je vous remercie de votre aimable lettre que je viens de recevoir et des intéressantes

remarques qu’elle contient. J’attends toutefois, pour en profiter complètement, le cahier
du Bulletin de la Soc. Math. que vous citez, et qui ne m’est pas arrivé encore ; mais je
vais en écrire à M. Brisse.
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Pour le moment je vous écris seulement à la hâte pour vous fournir l’adresse que vous
demandez. M. Schubert vient d’obtenir une place à Hambourg en “Oberlehrer” à un lycée.
H m’a indiqué l’adresse suivante :

Baumeisterstr. 1, Hambourg.

mais Comme Hildesheim n’est pas une grande ville, il m’étonne qu’on n’en a pas envoyé
votre lettre à Hambourg.

Je vous remercie d’avance de l’envoi que vous me permettez.

Votre très dévoué
H G Zeuthen

C.3 August 11th 1876

11 août 1876

Cher Monsieur,
je vous remercie beaucoup pour de la part que vous prenez à mon malheur, et pour

la recréation que vous avez bien voulu me donner par vos intéressantes communications.
C’est à celles-ci que j’essaierai ici de joindre quelques observations, qui ne sont pas le fruit
de réflexions très-sérieuses, et dont par conséquent, la plupart ne vous disent peut-être
rien de nouveau ; mais je vous les adresse pour le cas qu’il y resterait toutefois un peu
qui vous puisse vous être utile à la continuation de vos recherches.

Premièrement, vous êtes, à un égard du moins, injuste envers Clebsch, qui expressé-
ment à la p.II ligne 3 que µ est la valeur maximum (grösste) de α + β + δ. J’avoue du
reste que la démonstration de Clebsch m’a semblé toujours extrêmement difficile ; par
conséquent, quand même je n’ai pas trouvé des objections à faire aux détails, je n’aurais
pas osé adopter le théorème à la seule base de cette démonstration ; et à présent il ne
m’est pas entièrement clair pourquoi vous voulez substituez β+ 2γ+ δ à β+ γ+ δ, quand
même je comprends parfaitement votre transformation corrélative.

Quant à l’exactitude du théorème de Chasles, l’exemple dans votre première lettre est
parfaitement clair : il faut y soit joindre au théorème une restriction – vous l’indiquiez
dans votre seconde lettre, soit donner d’autres définitions aux mots de solution propre
et solution impropre, que celles de Clebsch et, si je ne me trompe pas, Lindemann (mon
exemplaire de son livre est à Copenhagen, mais je suis à la campagne). En effet, selon mes
remarques à la p.7 du mémoire de Clebsch (lignes 8 – 10) les solutions impropres dont le
nombre ne fait pas partir des µa+ νb, sont celles qui sont indépendantes des paramètres
donnés : il faut donc, selon cette définition dans votre exemple regarder les solutions
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comme impropre la solution du n−n′

R−R′ = nω nombre donné, qui résulte de la circonstance
que n−n′ = 0 et R−R′ = 0 et le théorème de Chasles ne sera plus applicable au nombre
des solutions propres.

On pourrait peut être garder le théorème de Chasles en prenant un autre point de
vue(1), d’où cette solution – qu’on trouve si le système contient une conique inf. ap-
platie à sommets coïncidents – n’est plus impropre ; mais alors il faudrait fixer (préciser)
clairement ce point de vue. Cela n’étant pas fait, vos remarques serviront en tout cas à
compléter le théorème de Chasles en précisant le sens qu’il faut y attribuer. Malheureuse-
ment, je ne sais pas encore obtenir cette précision de la représentation du point de vue
d’où le théorème reste vrai, et je me bornerai pour cette raison à indiquer à peu près les
points de vue possibles. [(In a footnote :) (1) Vous verrez qu’à la fin de la lettre j’ai altéré
un peu de cette opinion.]

1◦ Le premier point de vue est celui de Bischoff-Jonquières. Les coniques (courbes) sont
ici définies exclusivement par leurs propriétés ponctuelles. Une tangente est une droite qui
rencontre les coniques en deux points coïncidents, les cas de coniques ordinaires avec leurs
tangentes se présentent donc à côté de ceux où la conique se réduit à une droite double, et
où par conséquent – du point de vue actuel – il faut regarder la conique comme tangente
à toute droite (courbe) du plan. Le nombre total de coniques d’un système satisfaisant
à une condition donnée sera égal au produit αµ de deux nombres qui dépendent l’un du
système, l’autre de la condition.

Ce point de vue a l’avantage d’être simple et parfaitement clair. La distinction du
“général” et du “particulier” qui cause des difficultés au point de vue suivant, se fait
donc ici immédiatement. Mais à cet avantage se joignent plusieurs faiblesses. Première-
ment, il s’altère par les application du principe de dualité, qui conduit à la définition des
coniques par leurs propriétés tangentielles (de ce point de vue un point “se trouve sur”
une conique si les deux tangentes menées par lui coïncident etc.) Cette duplicité cause
des difficultés (paradoxes apparents) analogues à celles qu’on éloigne dans la théorie des
courbes algébriques par les formules de Plücker. Plus grave est peut-être la circonstance
que l’introduction successive des conditions par la formule αµ conduira, sitôt qu’on a dé-
passé certaines limites – au delà desquelles on devrait trouver, du point de vue actuel, une
infinité de solutions – à des résultats sans aucun sens immédiat. On trouve par exemple 8
coniques passant par un point et tangentes à 4 droites au lieu de toutes les droites doubles
par le point.

2◦ Ces difficultés conduisent au point de vue de Chasles, où l’on regarde comme a
égard d’une manière égale aux propriétés ponctuelles et tangentielles. On ne définit
donc plus entièrement Une conique qui se réduit à une droite double ne sera donc plus
entièrement déterminée si l’on connaît la position de la droite qui contient ses points, il
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faut encore connaître les deux sommets des faisceaux de ses tangentes. Pour ce point de
vue on aura le théorème de Chasles qui en est peut-être une conséquence si intime que
sa démonstration se présenterait d’elle-même, si l’on savait bien définir précisément ce
point de vue. Les difficultés à cet égard résultent du point de vue de départ double qui
empêche par exemple de distinguer clairement les catégories du “général” et particulier :
A peut être un cas particulier de B pour la définition ponctuelle, pendant que B est un cas
particulier de A pour la définition tangentielle. On rencontre les mêmes difficultés dans
les autres cas où l’on fait usage du même point de vue, notamment dans la théorie des
singularités dites ordinaires des courbes planes (formules de Plücker) des courbes gauches
et des surfaces, et de celles des systèmes de courbes d’ordre supérieur. M’étant occupé
beaucoup de toutes ces questions, j’ai eu lieu de connaître assez bien ces difficultés qui
ont rapport toutefois plus à l’énoncé complet et exact des vérités qu’à leur découverte et
démonstration.

Votre exemple me montre qu’on peut encore ici trouver des cas où l’introduction suc-
cessive des conditions souffre de la même faiblesse que nous avons indiquée pour le point
de vue de Jonquières. Cherchons par le théorème et les substitutions géométriques de
M.Chasles le nombre de coniques ayant des contacts quadruponctuels (du 3eme ordre) avec
une courbe donnée (en des points inconnus), et satisfaisant à deux conditions de la nature
que vous m’avez indiquée. Alors on trouvera un nombre fini ; mais, selon notre point de
vue qui nous fait regarder comme exacte l’application du théorème de M.Chasles au cas
où les coniques sont déterminées par une de ces conditions par une condition quadruple
qui admet des coniques inf. aplaties à sommets coïncidents, toutes les coniques aplaties
qui se trouvent dans les tangentes de la courbe et dont les deux sommets coïncident avec
les points de contact devraient se présenter en solutions. Je ne doute pas que le nombre
fini de solutions ait une signification, mais non pas celle qui est exprimée par l’énoncé de
la question et par le point de vue où nous nous trouvons.

Ce dernier exemple, que je viens de former d’après vos indications, me persuade, plus
que je n’en étais persuadé au commencement de cette lettre, de l’insuffisance de la théorie
de Chasles, qui regagnera tout son intérêt et importance par le supplément que vous y
ajoutez. Votre point de vue, qui est aussi celui où se veuillent placer Clebsch et Lin-
demann, est entièrement clair et bien défini. Vous ne voulez indiquer que le nombre
des solutions propres, celles qui sont indépendantes des valeurs données étant regardées
comme impropres. Si vous êtes bien sûr d’éviter par vos restrictions tous les cas où il y
en a des solutions impropres qui ne sont pas déjà exclues de la formule αµ + βν, votre
théorème sera absolument exact complet. Permettez moi seulement la question s’il ne
serait pas possible de lui donner une forme positive en remplaçant la restriction par un
nouveau terme ajouté à l’expression αµ+ βν.
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Vous me pardonnerez d’avoir écrit autant d’une question dont vous n’avez pas encore
fini vos recherches personnelles ; mais je ne prétends de dire rien qui ne soit présenté à
nous-même. Peut-être mes remarques vous feront observer les contre-objections que ceux
qui sont moins unanimes avec vous que moi pesant à votre critique ou supplément du
théorème de Chasles et des démonstrations de ce théorème, et d’y avoir égard dès à la
publications de vos remarques. En tout cas je vous les adresse ici.

Votre très dévoué H G Zeuthen

October 5th 1876

5 octbr 1876

Cher Monsieur,
Répondant soit tout de suite, soit avec un retard tout-à-fait indéfini, aux lettres que

je reçois, je choisis pour le moment la première alternatifs.
Je vous remercie donc premièrement de votre défense envers M.Bertrand. Vous avez

raison. Je n’ai pas pris une part active aux démonstrations du théorème αµ+ βν, quant
même j’avais, je l’avoue une entière confiance en ce théorème. J’avais cette confiance avant
les démonstrations qui me semblaient trop difficiles pour l’augmenter essentiellement. J’ai
toutefois un seul reproche à me faire à cet égard : c’est pour mes remarques à la fin de mon
analyse du livre de Lindemann (Darb. Bull.). Heureusement j’ajoute les mots suivants
: “il est très difficile d’affirmer qu’en des démonstrations de cette espèce il ne reste plus
aucun point faible etc.”

Les géomètres ont aussi à se demander s’ils n’auraient pas fait usage du théorème
incomplet, et, dans ce cas, à discuter si leurs démonstrations restent en vigueur avec
vos modifications de ce théorème. A cet égard je ne me trouve guère gêné ; car mes
démonstrations ont été ordinairement indépendantes de ce théorème. Dans un seul travail
(Nouvelles Annales 2e série t.VII) je me suis servi de son analogue pour les surfaces du
second ordre, ou plutôt de l’analogue du théorème de Cremona ; mais c’était avant les
démonstrations de ces théorèmes et avec une complète conscience de l’insuffisance de la
base de ma déduction. Je me suis persuadé de la justesse des résultats que j’y obtiens,
et je crois qu’ils seront faciles à démontrer lorsque vous aurez reconstruit la théorie des
formules

αµ+ βν + Suppl. ; αµ+ βν + γρ+ Suppl. ; , αµ2 + etc.

mais alors seulement une partie essentielle de la démonstration de mes résultats n’appartiendra
à moi pas à moi.
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Je suppose que les reproches de M.Bertrand repose sur un malentendu. Dans le t.III
des “Mathematische Annalen” j’ai démontré que le théorème de M.Chasles n′µ+nν a lieu
pour les systèmes de courbes de tous les ordres la détermination du nombre des courbes
d’un système (µ, ν) d’ordre quelconque qui sont tangentes à une courbe indépendente du
système d’ordre n et de la classe n′ et à singularités ordinaires.

Cette dernière restriction ne sera pas, je suppose, difficile à éloigner. Plus tard M.
Brill a M.Chasles n’avait pas démontré complètement ce théorème ; plus tard M.Brill a
donné une démonstration plus simple de ce théorème et de son analogue pour l’espace.

Mais j’aperçois que j’ai ici l’air de laver mes mains de la manière la plus phariséenne
devant vous qui vous accusez vous même de la faute dont je parle. Soyez donc assuré que je
n’ai pu parler ainsi que parce qu’il me semble que vos études dans cette direction méritent
notre admiration entière. Vous avez fait, premièrement, dans nos camps(?) extrêmement
difficiles, des recherches qui conserveront, sans doute, leur importance si vous y appliquez
les modifications rendues nécessaires par le défaut que vous venez de découvrir – à moins
que vous ne saurez y substituer des démonstrations plus simples. Ensuite en découvrant,
vous-même, ce défaut vous réussirez à jeter une lumière tout à fait nouvelle sur cette
théorie, et à substituer la sureté aux hypothèses résultant d’inductions. En même temps
vous expliquez un fait qui m’a semblé toujours étrange, celui que ce théorème si simple
(qu’il était dans la forme de M.Chasles) demandait des démonstrations si compliquées que,
même en en saisissant les détails, on n’était pas sûr de suivre la marche entière. Espérant
une démonstration plus facile, je croyais (hélas pour moi) en trouver dans le livre de
M.Lindemann, où je trouvais bien quelques conclusions difficiles ou peut-être douteuses
mais aucune qui me semblât fausse(1). Le lemme que je cite dans mon analyse, est il
peu juste injuste aussi ? [(in a footnote :) (1) Je ne parle pas ici de la sa démonstration
du théorème de Cremona, où j’ai signalé une faute. M.Schubert m’a fait remarquer que
celle-ci est plus grande que je ne supposais d’abord.]

A un égard je suis très disposé à défendre M.Lindemann envers vous. Vous dites que
toutes (“entre nous”) que tout ce que l’on voit dans son livre sur cette théorie vous paraît
être un pillage éhonté, augmenté des erreurs les plus grossières. En le défendant à cet
égard, je me défends en quelque sorte moi même ; car, selon moi, un “pillage éhonté” est un
crime (mon dictionnaire me dit que “éhonté” est une expression plus forte que “effronté”),
et en rendant compte de son livre sans apperce apercevoir ce crime je montrerais j’aurais
montré une légèreté qui était près de me rendre son complice.

Mais quel est donc ce crime (musal(?), car je ne parle pas ici des erreurs qu’il y ajoute)
: Il cite loyalement vous et Clebsch, en essayant de substituer à vos démonstrations des
démonstrations plus simples. Il fait donc savoir à tout le monde qu’il ne construit pas
ses démonstrations indépendemment des vôtres, quant même il ne rend pas compte en
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détail des emprunts qu’il fait à l’un et à l’autre(1). Il n’aurait donc violé les droits de
personne, et il aurait rendu un service réel à la science, si, en profitant des travaux des
prédécesseurs qu’il cite, il avait construit des démonstrations plus courtes et plus simples,
ce qu’il a cru faire. S’il n’a pas réussi à cet essai, si la simplicité est obtenu par l’omission
de déductions nécessaires, si, même, il y ajoute des fautes positives, tant pis pour lui (et
pour moi qui ne l’avais pas découvert avec mon compte rendu) ; mais il n’a pas fait une
action immorale. [(In a footnote :) (1) Il avait été à souhaiter qu’il aurait dit expressément
que, dans la démonstrations du théorème de Cremona, vous avez, le premier, fait usage
d’une conique fixe rencontrée aux mêmes points par des coniques satisfaisant aux deux
conditions multiples. J’y ai fait une allusion, peut être trop faible, dans mon analyse.]

Il vous semble peut-être que je prends ici une hyperbole plaisante de votre part trop au
sérieux ; alors je vous prie de croire que, devant me servir ici d’une langue étrangère, j’ai
malgré moi une mine plus sérieuse que je ne montrerais, si je n’avais pas cette difficulté à
surmonter.

Vous me demandez si j’ai écrit quelque chose sur les singularités des surfaces gauches.
Non. Seulement mes discussions des singularités des courbes gauches (Annali di Mathe-
matica 2 ser. III) m’ont conduit à établir quelques résultats qui ont égard aux surfaces
gauches dont une courbe donnée est 1, 2 ou 3 fois directrice ou qui ont d’autres relations
avec les courbes gauches. Plusieurs de ces résultats étaient du reste établis par M. Cayley
dans ses deux mémoires sur les surfaces gauches (otherwise scrolls)

Je saisis l’occasion pour vous rappeler que vous m’avez promis une fois de m’envoyer
votre portrait.

Votre très dévoué
H G Zeuthen

Mon adresse sera dorénavant

Niels Ebbesens Vej
Copenhague

V

C.4 December 1st 1877

Copenhague V., Niels Ebbesens Vej 20
1 décembre 1877

Cher Monsieur,
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Plus je considère les résultats que vous me communiquez dans votre lettre, plus ils
m’intéressent. Une vérité mathématique a pour moi quelque chose d’effrayant lorsque je
n’entrevois pas sa connexion avec d’autres vérités ou une voie qui pourrait y conduire, et
c’est cette entrevue qui commence à s’ouvrir. Pour la connexion avec d’autres vérités je
n’ai pas besoin toutefois de me contenter d’une entrevue, pouvant essayer d’appliquer vos
résultats généraux à des cas particuliers notamment à une courbe cuspidale n = 2, v = 1(?).
Quant à la déduction, je me contente à me dire que si je devais démontrer les résultats
que vous venez de trouver, je voulais essayer de me servir d’un procédé analogue à celui
que j’emploie dans mon mémoire sur les surfaces réciproques et que j’ai exposé aux pages
462-469 ; mais je vois bien que j’aurais à surmonter plusieurs difficultés avant de parvenir
à une démonstration rigoureuse. Je suis assez curieux de savoir si votre procédé est bien
différent de celui-ci. [(In a footnote :) (?) Je vois aussi, en ce moment, que le résultat
le plus simple ayant égard à votre sous-groupe “(V, V ) indicatrice non parabolique” est
renfermé au résultat principal de mon mémoire : “Sur une classe de points singuliers de
surfaces” Math. Annalen IX.]

Vous me priez de vous prévenir de mes objections. Je n’en ai pas pour les beaux
résultats communiqués, mais seulement pour votre hésitation d’assaillir les points sin-
guliers dont la discussion fait la suite naturelle de votre discussion actuelle. Dans mon
mémoire je ne m’occupe que des premières singularités ; comme on ne sait faire de celles-
ci des substitutions analogues à celles des équivalents pluckériens dans le plan, on a un
besoin d’autant plus grand de recherches générales comprenant des singularités de tous
les degrés de multiplicité (Je regarde bien des points µ-tuples, mais je suppose que leur
cône tangent n’a que des singularités pluckeriennes). Quant même vous auriez besoin de
séries contenant deux variables, vous pourriez achever cette étude mieux qu’aucun autre
mathématicien.

Je suis aussi curieux de connaître votre autre mémoire sur les courbes gauches. Je ne
reçois pas très-régulièrement le bulletin de la Société Mathématique ; il faut écrire parfois
à M. Brisse quel n◦ est le dernier que j’ai reçu. Si je résouts un mois de lui écrire, j’espère
que votre mémoire sera alors déjà publié de façon que je puisse avoir ainsi le cahier qui
le contient. Je suis du reste bien content de pouvoir – quant même avec ces retards –
obtenir le Bulletin en échange de mon “Tidsskrift for Mathematik” qui ne peut intéresser
beaucoup des membres de votre Société.

C’est assez bon que j’ai pu vous écrire de vos Travaux ; car si je devais me tenir
aux miens, je devrais me taire, selon les principes énoncés dans votre lettre. Je n’ai pas
négligé de travailler, mais les fruits ont presque manqué. J’espère toutefois que j’ai gagné
plusieurs connaissances qui me seront utiles en ma qualité d’un des représentants peu
nombreux des mathématiques dans un petit pays, où il n’est pas permis de se borner à
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ses études de prédilection. Aux objets dont j’ai fait ainsi la connaissance appartient la
statique graphique dont j’ai que je ne connaissais presque pas il y a un an, et dont j’ai été
assez hardi de faire un cours et d’écrire un petit mémoire – très-innovant du reste – dans
mon Tidsskrift. Sans doute, mes pensées ne se sont pas abstenues pendant ce long temps
de la théorie des courbes et des surfaces, mais je n’ai pas été heureux à cet égard : parfois
je me suis occupé en vain de problèmes trop difficiles, parfois la matière a été si simple
que mes petits résultats ne pouvaient intéresser. Pour le moment toutefois j’ai trouvé une
matière où il y aura, j’espère, quelque chose à faire pour moi J’ai indiqué, il y a 3 ou 4
ans, dans les Ctes rendus, une détermination des nombres pluckeriens de l’enveloppe d’un
système donné de courbes. A présent j’ai commencé de les appliquer à une étude plus
soigneuse de systèmes de coniques et de surfaces de second ordre et de leurs enveloppes.
La richesse de la matière se montre au premier pas où j’ai dû m’arêter dès à l’étude des
systèmes aux caractéristiques µ = 2, quant même cette première étude appartient encore
à celles dont la simplicité rend les résultats moins intéressants. Les systèmes de coniques
et quadriques à la caractéristique µ = 2 sont “unicursales” (p = 0), de façon qu’on les
peut représenter analytiquement sans difficulté et les étudier au moyen de leurs équations
; mais, par gout j’évite les calculs où je peux.

Un de mes amis plus jeunes M. Crom vient de construire quelques modèles de surfaces
développables que j’ai accompagné d’une préface ; mais je n’en ai pas eu des exemplaires
à ma disposition. Le libraire en a envoy des exemplaires à plusieurs professeurs ; je
crois aussi qu’il en a envoyé un à la Société mathématique où peut-être vous les a vues ;
mais leur but est plutôt d’être instructifs qu aux élèves que de montrer quelque chose de
nouveau aux savants.

Mais j’oublie de vous demander où devient votre mémoire sur les caractéristiques.
Depuis avril je l’ai cherché en vain dans le Journal de Mathématiques. Etait-ce peut être
tout le mémoire que vous avez publié dans les Cptes Rendus il y a plus d’un an. J’attendais
que vous nous exposiez encore de systèmes la correction analogue pour les systèmes de
quadriques. – Il y a longtemps que je n’ai eu des nouvelles de M.Schubert.

Vous jurez sur les caractéristiques de me répondre. J’espère qu’il n’est pas sur le
théorème inexact de αµ+ βν.

Votre très dévoué H G Zeuthen

C.5 December 15th 1877

15 décembre 1877

Cher Monsieur,
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Je ne hais pas le calcul du tout, seulement pour moi-même je veux bien être exempt
de faire les calculs. J’avoue toujours franchement que les déterminations des nombres
de solutions dont je m’occupe et les applications de ces nombres ont pour base l’analyse
algébrique. La question de notre Société, que je vous ai adressée trop tard, montre que
je serai bien content de voir d’autres surmonter les difficultés algébriques qui seraient
insurmontables à moi. Voilà aussi pourquoi je vous engage à cultiver les points singuliers
des surfaces ; car ce qui est à faire dans cette matière demande, à côté d’un œil ouvert à
toutes les propriétés géométriques, une habileté analytique qui n’est pas à ma disposition
: et vous, Monsieur, disposer de toutes ces deux conditions.

Néanmoins je crois trouver une faute de calcul dans votre réponse à mon invitation à
cet égard. Vous dites que votre mémoire actuel est trop long bien qu’il contienne seulement
la moitié de la théorie des courbes singulières, et que vous ne [illegible] songer à y mettre
aussi les points singuliers. Mais la moitié qui manque n’est elle pas la théorie des courbes
singulières planes, où les nappes de la surface sont tangentes en même plan: et vous avez
remarqué, dans votre première lettre, que ces plans correspondent aux points singuliers
de la surface corrélative.

Vous attribuez au calcul l’honneur de vous avoir remis dans le droit chemin quant à
αµ+βν. Sans doute vous devez connaître les moyens qui vous ont fait découvrir la vérité
à cet égard, et je sais que dans les démonstrations vous vous êtes servi du calcul. Il me
semble néanmoins notable que c’est vous, Monsieur, qui êtes le plus géométrique de ceux
qui se sont occupé de cette question – qui avez réussir à l’éclairer complètement (Chasles
n’avait fondé son hypothèse que sur une une pure induction).

A propos de αµ+βν, avez vous vu qu’un auteur italien, j’ai oublié son nom, a entrepris
– immédiatement avant votre découverte – de démonstration au moyen du théorème αµ+
βν les nombreux théorèmes exposés par Chasles en 1864. Il dit que Chasles les a énoncés
sans démonstration ; mais, selon moi, l’énoncé du principe de correspondance, l’exécution
de quelques exemples, et l’ordre des théorèmes indique suffisamment sa démonstration,
pendant que vous avez fait celle de l’auteur italien illusoire.

Je continue l’étude dont je vous ai écrit, et je trouve beaucoup de choses mais – hélas
– ordinairement ce que je trouve de bon n’est pas nouveau, et ce que je trouve de nouveau
n’est pas bon. Je ne croyais pas de vous faire une intéressante communication en vous
fisant que le genre des courbes et surfaces à la caractéristique µ = 2 est égal à zéro, ce
que j’établis de la même manière que vous ; j’en [illegible] pour vous faire remarquer la
simplicité de la représentation algébrique de ces systèmes.

La lenteur de ceux qui devraient se faire un plaisir à s’empresser de publier vos mé-
moires est tout-à-fait intolérable. Il devient par exemple difficile de publier quelque chose
sur les caractéristiques avant de connaître toute la portée de vos découvertes à cet égard.
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Je vous remercie de votre prompte réponse à ma précédente lettre, et je reste

Votre très dévoué
H G Zeuthen

J’ai reçu le Bulletin de la Société Mathématique jusqu’au troisième cahier du Tome
IV inclusivement ; je n’écris pas celà par impatience, mais seulement pour le cas qu’il
vous dérangerait d’aller le voir dans les registres de la Société. J’espère que la Société a
reçu régulièrement les cahiers de mon Tidsskrift, que j’ai envoyés toujours à M. Brisse,
à qui j’ai causé ainsi de la peine dans cette année. 5 cahiers de l’année 1877 lui ont été
adressés. J’adresserai le sixième et dernier de la présente année directement à la Société,
7, Rue des Grands Augustins, et je ferai de même pour l’année suivante.

H Z.

C.6 September 5th 1878

Niels Ebbesens Vej 20, Copenhague V
5 Septbre. 1878

Cher ami
C’était bien aimable d’ajouter à la série de vos autres obligeances celle de supléer, dans

une lettre, à mon défaut de présence d’esprit lorsqu’il s’agirait de saisir des idées mathéma-
tiques exposées oralement. En lisant votre lettre, je vois que vos raisonnements sont assez
simples pour devoir être saisis tout de suite ; mais en même temps j’y trouve aussi des
remarques sur lesquelles j’étais bien aise de pouvoir réfléchir chez moi. J’avais besoin par
exemple, d’une réflexion pour m’assurer du fait dont vous faites usage, et qui me parais-
sait plausible, seulement, à la première lecture, que l’ordre m d’une conique dégénérée est
égal à son degré de multiplicité dans la formule 2µ− ν (Vous ne définissez expressément
dans votre lettre que le rapport m

n
; mais je suppose que, pour définir explicitement m

ou n, vous faites, dans le voisinage d’une conique singulière, le système ou la “branche”
du système dont il s’agit, dépendre d’une manière rationnelle d’un paramètre variable qui
peut être zéro pour la conique singulière : m est alors le double de l’ordre du segment
infiniment petit intercepté sur une droite quelconque par la conique correspondante à une
valeur infiniment petite du 1er ordre du paramètre).

Dans cette question je suis de votre avis si je l’ai bien compris ; mais il n’est pas de
même pour une autre remarque que vous faites en passant et qui est – comme vous me
faites remarquer – sans influence à vos résultats. Vous dites que le système P 2(µq)D
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ne contient qu’une seule conique dégénérée (3me esp.), qui doit être, par conséquent, de
l’ordre 8µ et de la classe 8q.

Il est vrai que toutes les coniques dégénérées (3me esp) de ces systèmes doivent coïncider
; mais, je vous ai bien compris, vous voulez dire qu’une conique variable du système ne
peut que par une seule voie tendre à coïncider avec cette conique singulière, et ensuite s’en
éloigner (le sens de la voie étant indifférente), ou bien qu’une seule “branche” du système
“passe par” la conique singulière. Dans ce cas, sans avoir discuté en détail les branches
du système qui y passent, j’ai une objection qui me semble essentielle. Deux point étant
donnés, une conique variable du système peut tendre à coïncider avec la conique singulière
de deux manières visiblement différentes : celle où les points se trouvent du même côté
de l’axe de la conique “pénultième”, et celle où ils se trouvent de différents côtés (alors la
même chose aura lieu après la coïncidence)?. Vous pourriez dire que Si vous avez raison,
seulement une de ces voies conduit à une véritable conique limite du système, mais quelle
donc ? Et pourquoi l’une plus que l’autre ? [(In a footnote :) ? Vous savez que la même
circonstance est la cause que pourquoi le système (P 2D2) contient deux fois sa conique
applatie, qui est toutes les deux fois de l’ordre 2. Dans ce cas, non seulement cette conique
singulière appartient à deux branches, mais le système se décompose en deux ; il est du
genre ÷2.]

Je croirais donc, a priori et sans avoir des raisons complètes, que le nombre de coniques
dégénérées est 2 ou un multiple de 2, et si vous avez raison je verrais ici un des paradoxes
apparents, utiles à étudier pour éviter dorénavant des conclusions incertaines dont j’aurais
alors connaissance.

Mes remarques vous auront montré que j’ai compris la difficulté à la détermination des
équivalentes d’une condition et l’analogue avec la difficulté de la distinction des branches
formant un point singulier d’une courbe. C’est à cause de cette difficulté, sans doute, que
vous appelez votre moyen de cette détermination, théorique. Il sera aussi en beaucoup
de cas difficile à employer ; mais je crois que la difficulté appartient alors à la question
elle-même, et que vous avez indiqué aussi le véritable moyen dont il faut se servir en
pratique pour des conditions données.

Rentré chez moi j’ai essayé de me rendre, le mieux possible, maître des différentes
impressions de mon excellent voyage, et de faire un plan pour profiter le plus possible
des observations mathématiques que j’ai entendues, et qui m’ont indiqué de nouvelles
voies, ou qui m’ont fait sentir le besoin de réparer mes connaissances faibles en beaucoup
d’endroits de parts des mathématiques. J’ai ramené beaucoup de renseignements sur des
livres à étudier, et beaucoup de mémoires offerts par les auteurs. Trouvant en même
temps beaucoup à faire ici j’ai éprouvé un peu du même sentiment de peur de noyer qu’à
l’Exposition.
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J’ai essayé de me tirer d’affaire en commençant – à côté de travaux obligatoires et
personnels assez indépendants de mon voyage – par étudier vos invariants différentiels, et
en profitant de l’occasion pour connaître la manière de M. Hurwitz de traiter des fonctions
doublement périodiques. Ne faisant que commencer, je n’ai du reste aucune question ou
remarque à vous dresser à cet égard.

Encore une fois, je vous remercie de tout ce que vous avez contribué à faire mon séjour
à Paris si agréable et si utile pour moi, soit en me parlant de mathématiques de toute
autre chose, soit en me conduisant à la campagne chez vous et votre famille, soit en me
conduisant au Louvre. Je vous prie de faire mes compliments à Madame Halphen et à sa
famille.

Votre très dévoué
HG Zeuthen

C.7 December 14th 1878

Le 14 Décembre 1878

Cher ami,
Me voilà qui vous fasse attendre déjà long temps à la réponse de deux aimables lettres.

Quant même mes remords ne se sont pas manifestés de la seule manière pratique je vous
assure qu’ils ont existent. En tout cas je vous prie de ne juger pas de la satisfaction que
m’ont causé vos lettres d’après mon silence. Au contraire, si les explications complètes
que vous avez bien voulu me donné sur les multiplicités en question ne m’avaient pas
satisfait, je me serais hâté sans doute de vous montrer la finesse de ma critique. Il n’était
pas, du reste, dans l’espoir de trouver un autre objet de ma critique, qu’ayant reçu la
première partie de votre mémoire dans les “Proceedings”, j’attendais la seconde avant de
vous répondre – et que je me contentais de vous avertir par une carte de poste de mon
indiscrétion dans le “Tidsskrift” –, mais plutôt pour vous pouvoir faire des questions s’il
en serait besoin. En vous remerciant de cette notable contribution – à laquelle je préfère
pourtant les considérations plus simples et directes exposées au congrès et dans les très
intéressants mémoires écrits pour moi dans vos lettres – à une théorie qui renferme les
mots de beaucoup d’énigmes algébriques et géométriques, je n’ai ni des critiques ni des
questions à vous diriger à cet égard, mais seulement un à propos.

Vous indiquez un critère, très-bon pour les coniques, des solutions propres et impro-
pres, les unes étant exprimées par dépendant exclusivement des covariants les autres aussi
d’invariants, mais serait-il bon d’appliquer le même critère aux courbes d’ordre supérieur,
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où toute courbe ordinaire a des caractères projectifs et indépendants de tout autre par-
tie de figure du plan, qui la distinguent d’autres courbes ordinaires. Quel est donc le
critère pour les courbe de tous les ordres ? Je n’essaierai pas de l’énoncer complètement,
mais je sais qu’il faut le chercher à la circonstance qu’on obtient les solutions impropres
en donnant à une quantité qui se présente sous la forme de 0

0 une valeur différente de
la valeur-limite de cette quantité. Sans doute, on élimine de cette façon du moins une
détermination dépendant de parties de figure extérieures, et une réflexion venant pendant
l’écriture est près de me faire croire que la courbe sera alors déterminée par les autres
conditions extérieures et une condition intérieure – de même que pour les coniques.

Je n’ose pas décider sur cette pensée de ce moment sans des réflexions ultérieures ;
mais votre pensée a-t-elle peut être déjà parcouru des réflexions semblables – quant même
les coniques ont été l’objet particulier de vos recherches –. Alors j’aurais pourtant cette
question à vous faire, “si votre critère s’applique aussi avec peu de modifications à des
courbes d’ordre supérieur”, et j’espère que vous m’y répondrez après avoir sans punir trop
long temps mon silence.

Mon intérêt est fort occupé d’un petit travail qui m’occupe sur les surfaces du qua-
trième ordre à conique double. L’occasion de cette étude était premièrement le projet de
profiter de la connaissance des figures des courbes planes du quatrième ordre pour con-
naître celles de ces surfaces, qui ont (le centre de projection étant pris sur la conique dou-
ble) pour contours apparents des courbes générales du quatrième ordre, et d’étendre ainsi
nos connaissances assez faibles des figures d’espace définies algébriquement (les connex-
ions des nappes etc.). Dans le cours du travail je suis conduit à y appliquer aussi d’autres
considérations, et à chercher aussi de nouvelles déductions des propriétés géométriques
des surfaces. J’ai saisi aussi une occasion pour noter un cas particulier de notre prob-
lème sur les 12 tangentes – du quel aucune solution n’est venu au terme fixé –. Le cas
particulier, qui dépend du reste de constructions connues depuis long temps, est celui-ci :
Si l’on mène d’un point les droites aux quatre points d’intersection de deux coniques, et
les deux couples de tangents aux mêmes coniques, on peut construire une infinité triple
de courbes du quatrième ordre tangentes aux quatre premières droites, et ayant l’une des
deux couples pour tangentes doubles, et ayant des points doubles sur l’autre.

Le théorème réciproque est vrai pour toute quartique plane à deux points doubles,
mais seulement pour quatre des points d’intersection de ses tangentes doubles.

J’ai invité un de mes plus jeunes amis ici M.Csane(?) à rechercher des cas particuliers
analogues, ce qui ne serait pas peut-être sans intérêt.

Je regrette beaucoup de ne me pas me rappeler les résultats que vous m’avez fait
connaître sur le même problème ; car j’espère que je ne viens pas de les rappeler ici trop
bien en oubliant d’où cette idée me serait venue alors ?

479



Chapter C. Some letters from Zeuthen to Halphen

Le bon souvenir de la famille de Madame Halphen m’a vivement touché, et je vous
prie de porter mes félicitations sincères aux jeunes mariés si vous les verrez en Normandie
ou à Paris, et à Monsieur et Madame Aron. Je suis heureux de pouvoir ajouter après mon
dernier visite à Paris à ma lettre mon compliment à Madame Halphen. Mes meilleurs
souhaits pour votre famille.

Votre H G Zeuthen

C.8 November 5th 1879

Citadelsvej 9
Copenhague ϕ

5 Novembre 1879

Cher Monsieur,
J’ai peur que ce soit moi qui suis coupable cette fois de la longue interruption de

notre correspondance. Dans ce cas, vous n’êtes pas, du moins, sans nouvelles dans le
long intervalle. Une carte vous aura annoncé un évènement très heureux pour moi, et
une brochure, qui va vous être suivie d’une autre, vous aura dit que l’amour ne m’a pas
empêché de travailler. Au contraire j’espère que le bonheur de famille sera bon pour mes
travaux scientifiques.

Vos deux brochures viennent de me porter aussi de vos nouvelles ; mais cela ne
m’empêche pas de désirer de voir bientôt une de vos lettres amicales, qui me causent
toujours beaucoup de plaisir. J’essaye de m’en procurer en saisissant la plume dans ce
moment où mes pensées s’occupent de deux de vos découvertes mathématiques. J’essaie
dans le semestre actuel de faire un cours sur la “abzählende Geometrie?”. Je profite à
beaucoup d’égards du nouveau livre de Schubert, mais plus que lui qui expose le “calcul”
der abz. Geometrie je cherche à exposer les méthodes de cette science et à les appliquer
à beaucoup d’exemples. Notamment mes études des formes limites me fournissent des
exemples de la méthode bien connue à laquelle M.Schubert a donné le nom très expressif
du principe de la conservation des nombres. Je dois avouer, à cette occasion cet égard,
que ce nom et quelques exemples bien choisis de M.Schubert m’ont été l’occasion d’en
chercher d’autres, je vais vous en exposer à côté de ceux que je possédais avant. Je vais
vous exposer deux exemples de cette méthode que j’ai trouvés aujourd’hui. [(In a footnote
:) ? Comment traduire ce mot ?]

I. Soit donnée une congruence de droites quelconque, et soit n le nombre de droites par
un point, n′ celui des droites d’un plan. Si l’on cherche les droites de cette congruence sat-
isfaisant à de nouvelles conditions indépendantes de celles de congruence, il est commode
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de la regarder comme cas particulier d’une série de congruence résultant de la première
par des transformations homographiques. Le nombre cherché sera le même pour toutes
ces congruences si seulement dans les cas particuliers on détermine exactement les nom-
bres de solutions coïncidentes : il faut seulement regarder les cas particuliers comme des
cas limites. On peut donc trouver le nombre cherché en regardant considérant un autre
cas particulier. Pour définir celui-ci nous repérons la congruence donnée à un tétraèdre
de coordonnées : soit x, y, z, u les coordonnées d’un point. Alors on se sert des formules
x : y : z : u = x′

ε
: y′

ε
: z′ : u′, où ε est une quantité infiniment petite. On obtient alors

une congruence de droites rencontrant le côt l’arête x = 0, y = 0. Les droites d’un plan
par cette arête envelopperont une courbe de la classe n, et celles qui passent par un point
de l’arête formeront un cône de l’ordre n′ [Si l’arête est tangente α-tuple de l’enveloppe
trouvée et génératrice α′-tuple du cône on aura n− α = n′ − α′].

Cherchons à présent les droites communes à cette deux congruences (n, n′) et (n1, n
′
1)

indépendantes. A cause de l’indépendance on peut substituer à l’une et à l’autre la forme
limite que nous venons de décrire rapportée à deux droites singulières (x = 0, y = 0)
différentes. Supposons que ces deux droites se rencontrent. Alors on trouve sans difficulté
les droites communes qui sont 1◦ les génératrices de rencontre de deux cônes, des ordres
n′ et n′1 et à sommet commun, et 2◦ les tangentes communes à deux courbes des classes
n, n1 dans le même plan. On trouve ainsi votre formule

nn1 + n′n′1

7 Novembre. Je suis venu jusque là avant hier, et hier je n’avais pas le temps de contin-
uer. La congruence particulière à laquelle j’ai réduit une congruence quelconque est moins
simple que je n’avais voulu en en commençant la description. Voici une autre réduction
qui conduit à un cas particulier plus commode. Si l’on substitue aux coordonnées au point
x : y : z : u le point x

ε
: y : z : u où ε est infiniment petite (on construit alors une figure

homologique à la figure donnée) on aura une congruence contenant n′ fois toute droite
du plan x = 0 et encore les droites par n points fixes du même plan. Alors on obtient
immédiatement votre formule sans appliquer aucune transformation à l’autre congruence.

II. On peut se servir d’un procédé analogue pour étudier les systèmes de courbes (sur-
faces) ; je me bornerai ici à parler de coniques dans un plan fixe. Soient µ et ν les
caractéristiques d’un système.

Nous substituerons à un système donné quelconque la figure homologique où tous les
points du plan – à l’exception de ceux qui étaient infiniment près du centre d’homologie
– sont transportés à se trouver sur l’axe d’homologie (x : y : z = x′

ε
: y′ : z ; ε étant

inf. pet.). Alors le système se décomposera en deux : l’un contient une série de coniques
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infiniment aplaties, coïncidant avec une droite fixe, et ayant pour sommet deux points
de cette droite dont les abscisses satisfont à une équation symmétrique du degré ν en
chaque abscisse ; l’autre contient des coniques composées de la même droite fixe et d’une
droite passant par un de µ points fixes de la même droite. Les 2 ν points qu’on obtient en
égalant, pour la première série, les deux abscisses seront 1◦ les µ points fixes de la seconde
série, 2◦ les ω centres des coniques à points doubles appartenant à la première série.

On trouve les coniques du premier système partiel qui satisfont à une nouvelle condition
en combinant l’équation entre les deux abscisses à celle qui exprime, pour la conique
dégénérée, la nouvelle condition. Le nombre qu’on trouve sera un multiple de ν, dont il
faut soustraire, parfois, un nombre de solutions particulières étrangères au nombre de µ
ou de ω = 2ν − µ.

La détermination d’une conique du second système partiel dépend de la détermination
d’une droite par un des µ points. La condition donnée, étant indépendente de celles du
système, fournit une courbe à laquelle la droite doit être tangente. Le nombre de coniques
trouvés ainsi devient donc un multiple de µ.

[NB : En relisant la lettre je vois que vous pouvez très bien laisser la lecture de cette
page]

[On voit que le nombre de coniques du système total sera bien de la forme αµ + βν

si – bien entendu – il est possible de le déterminer de la manière indiquée. Celà n’a
pas lieu si la condition est satisfaite par toute conique infiniment aplatie, parce que la
dégénération a effacé la différence entre celles et les autres coniques du système (si l’on ne
distingue pas les infiniment petites de différents ordres, et alors il aurait été plus simple de
garder le système donné où les quantités données inf. petites du 1er ordre étaient finies.)
On peut appliquer dans ce cas la méthode corrélative, à moins que en même temps la
condition soit satisfaite par toutes les coniques à point double. On voit ainsi qu’il y a
des cas? où la formule αµ + βν n’est pas prouvée ici ; mais comme vous ne vous êtes
pas arrêté à ce résultat très négatif, mais y avez seulement substitué, non seulement celui
une démonstration du fait qu’il existe des cas où la formule est incomplète, mais aussi la
détermination positive du supplément nécessaire, cette ma déduction actuelle de cas où
la formule αµ+ βν est juste – il y aurait sans doute encore quelques précautions à avoir
– n’a aucun intérêt.]

[(In a footnote :) ? Il y en a peut être d’autres que celui que j’ai nommés]
Mais pour les déterminations pratiques je crois la méthode assez bonne, et en beaucoup

de cas elle serait à préférer à l’application ordinaire du principe de correspondance.
On trouve par exemple sans aucune difficulté le nombre µ1ν + ν1µ des couples de

coniques de deux systèmes (µ, ν) et (µ1, ν1) qui ont entre elles des contacts doubles, en
appliquant à l’un des deux systèmes la dégénération que je viens de décrire. Le même
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procédé fournit le nombre 3(µµ1 + νν1) de couples de coniques de deux systèmes qui
ont entre elles des contacts du second ordre ; seulement la détermination du coefficient 3
demande une recherche particulière ou un emprunt à des recherches analogues. De manière
analog Je vois, à présent, que dans toutes les deux déterminations on peut substituer des
courbes quelconques aux coniques (non pas, toutefois des droites) le même procédé est
applicable à la résolution des problèmes analogues pour des systèmes de courbes d’ordre
quelconque. Soient m et m1 les ordres, n et n1 les classes des courbes, b et b1, c et c1 les
ordres des lieux des points doubles ou stationnaires des courbes du stationnaires, b′ et b′1,
c′ et c′1 les classes des enveloppes des tangentes stationnaires. Alors il existe

µ1ν(m1˘1)(n− 1) + µν1(m− 1)(n− 1)+
µµ1(n− 2)n1 + 2µµ1(n1˘2) + νν1(m1˘2)n+ 2νν1(m− 2)
+ b1ν + bν1 + b′1ν + b′ν1

de contacts doubles entre les courbes des deux systèmes, et

3ν1ν + 3µµ1 + c1ν + cν1 + c′1µ+ c′µ1

contacts stationnaires. Je présente les termes dans l’ordre où ils se présentent à ma
déduction. [(in a footnote :) 4 cas d’exceptions : m1 = 1;n1 = 1;m = 1;n = 1]

Vous voyez sans difficulté comment on peut multiplier ces exemples (nombre de points
de contact de courbes de trois systèmes ; Fouret), et je dois mettre une fin à mes causeries.
Je vois, en effet, qu’au lieu de vous donner des résultats prêts – dont je possède quelques
uns que j’espère d’énoncer bientôt dans les Comptes Rendus (p.ex. sur le nombre de
courbes d’un système de ∞2 courbes qui ont des contacts doubles avec des courbes fixes)
– j’ai profité de l’occasion pour éclairer et développer mes propres pensées que je voulais
exposer. Est-ce abuser trop de votre patience ?

J’ai aussi parlé exclusivement sur mes propres recherches (qui auraient toutefois des
rapports avec vos découvertes). Permettez moi donc d’ajouter sur vos derniers travaux –
ou sur celui d’eux qui traite des caractéristiques – que je trouve vos exemples de la théorie
que vous avez bien voulu me développer près du pont des arts et, à cause de ma lenteur,
répéter dans une lettre, excellents pour éloigner le malentendu que vos nouvelles conditions
seraient pas élémentaires seraient presque les seules qui demandent votre complément de
la théorie de M. Chasles.

J’espère que votre famille se porte bien et je vous prie de faire mes compliments à
Madame Halphen.

Votre très-dévoué H G Zeuthen
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C.9 November 14th 1879
14
111879

Mon cher ami
Je suis très faché d’apprendre que la poste a dévoré et ma carte et ma brochure,

qui sont expédiées à des époques différentes. Je me console en voyant qu’une liste des
brochures expédiées consent avec ma conscience à confirmer mon innocence ; pour la carte
je n’ai aucune liste ; mais je ne crois pas qu’il ne soit possible de vous avoir oublié.

Je trouverai encore un exemplaire de la brochure, qui traite des surfaces quartiques
à une conique double, et qui contient notamment des recherches sur la réalité de leurs
droites et [illegible] enveloppes de plans tangents doubles. Malheureusement elle est écrite
en danois ! Vous n’aurez donc pour la connaître qu’un résumé très succinct dans le bulletin
de Darboux. Un autre mémoire que je vous enverrai en même temps est, du moins, suivi
d’un résumé en français.

Vous exprimez, un peu ironiquement – non pas envers moi mais envers l’objet de
mon cours – le désir de venir suivre ce cours. Je vous réponds que vous n’y gagneriez
pas grand chose. La plupart des résultats, du moins excepté ceux qui servent seulement
d’exemples d’applications, vous sont bien connus (formules de Plücker, formules analogues
dans l’espace, théorie des caractéristiques, y compris détermination des courbes qui satis-
font à des conditions données avec l’indication expresse qu’il ne faut pas croire que leurs
nombres aient toujours l’expression αµ+ βν etc?). Les méthodes sont celles dont on doit
les germes à Poncelet, Steiner et Chasles (pour le principe de correspondance bien plus
que la germe à Chasles) et qui sont développées et fertilisées et appliquées par MM. Jon-
quières et Cremona, puis MM. Halphen et Zeuthen et – je l’avoue – aussi par M.Schubert
– bref les méthodes dont je me sers dans mes recherches personnelles. Vers la fin du cours
je pense donner une esquisse du calc, illustrée par des exemples, du calcul symbolique
introduit par vous, et dont le développement que M.Schubert ne semble peut-être trop
exécuté pour ce que cette forme contient encore, mais qui a beaucoup de bon (exemple :
formule VII de la page 32 dont la traduction géométrique est un théorème, facile à déduire,
mais non pas immédiatement évident). [(In a footnote :) ? Le temps et les connaissances
de mes élèves mettent certaines bornes à la délicatesse des matières dont je peux traiter.]

J’espère donc qu’en venant suivre mon cours vous trouverez les mots que je sers aux
jeunes gens assez sains et du moins innocents, quant même vous n’y trouveriez pas trop
de gout et de force.

Mais pourquoi, me demandez vous, leur donner ce nom que évidemment vous ne goûtez
pas. C’est parce que je n’ai pas d’autre pour comprendre les méthodes que j’ai besoin de
présenter en connexion, [illegible] et qu’elles m’ont été utiles pour le peu de chose que j’ai
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pu faire moi-même, et que je les crois utiles pour atteindre beaucoup de plus. Je veux
apprendre aux jeunes gens à ne faire pas de calculs inutiles pour pourvoir à un but où
l’on peut parvenir sans calcul?. Prenons un exemple très élémentaire : cherchons le lieu
de sommets d’angles de grandeur donnée circonscrits à une conique. Le lieu rencontre
une tangente de la conique en quatre points, il est donc du quatrième ordre. Pour un
point du plan passe un seul des lieux qui correspondent aux différentes valeurs de l’angle
v, ces lieux forment donc un faisceau. Celui ci est déterminé par deux de ses courbes, par
celles qui correspondent à v = pi

2 , et v = 0. On trouvera donc l’équation suivant (pour
l’ellipse)1

(x2 + y2˘a2b2)2 − λ(b2x2 + a2y2) = 0

[(In a footnote :) ? Quant même il faut pour être exacte développer les principes de
ces procédés sur base analytique.]

Un seul point du lieu suffit ensuite pour donner λ = 4 cot2 v. Le calcul évité ici est
extrêmement simple, mais par des procédés analogues on évite souvent des calculs com-
pliqués. Dans le cas actuel je ne regarde pas le procédé comme moins bon pour une
conique parce qu’il n’est applicable qu’aux tangentes d’une coniques. En d’autres cas, il
faut appliquer soit de nouveaux formes du même principe (principe de la conservation
des nombres) soit un nouveau principe. J’applique par ordinairement le principe de cor-
respondance aux cas où il s’agit de démêler les nombres des solutions coïncidentes et les
ordres des infiniment petites – cas que vous regardez avec raison comme étant des plus
difficiles et des plus intéressantes, mais qui ne sont nullement les seuls cas d’intérêt?.

[(In a footnote :) ? Pour moi ils ont, non seulement l’intérêt résultat de ce qu’il faut
les étudier pour appliquer les lois générales aux cas qui présentent les singularités mais
aussi celui qui résulte de ce qu’il faut connaître l’influence des singularités pour faire des
conclusions exactes du particulier – où les lois se présentent souvent d’elles-mêmes – au
général (loi de la conservation des nombres).]

Si vous me faites l’objection que les méthodes de dénombrement sont dangereuses aux
commençants à appliquer, je vous répondrai qu’alors précisément il faut leur apprendre à
éviter les dangers.

Mais finissons cette apologie, presque superflue j’espère. J’ai encore quelques remar-
ques à ajouter sur αµ + βν et notre ami commun à Hambourg, ou plutôt, je n’ai pas
besoin de beaucoup à ajouter ; car à cet égard je ne le comprends pas M. Schubert à
cet égard. Après sa première publication de la démonstration de Hurwitz – qui a je crois
des ressemblances notables avec votre ancienne démonstration – je lui ai écrit sur votre
découverte. Sa réponse me faisait croire de l’avoir persuadé de la nécessité d’exclure dans
une théorie complète les solutions 0

0 provenant de la troisième dégénération, c’est à dire de
1An exponent 2 is missing from the second term on the left-hand side.
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l’inexactitude, prouvée par vous, de la formule αµ+βν. Et à présent il vient la démontrer
de nouveau ! même sans s’entourer de réserves et de définitions précises qui serviraient à
l’explication de ce qu’il semble regarder comme un fait, que la formule pourrait être en
même temps vraie et fausse ; car je suis persuadé ne sais pas qu’il ne veut pas nier votre
découverte. Sans doute il ne la comprend pas du tout ; au cas contraire il ne nommerait
pas au même instant les objections insignifiantes de M. Saltel, et il aurait la prudence
de chercher – grâce à l’aide qu’offre vos premiers exemples – la faute de sa démonstra-
tion, qui n’est pas extrêmement difficile à trouver?. Il me semble à cet égard très naïf ;
mais tant pis pour lui ; vous n’y perdrez rien. Du reste je comprends très bien que vous
souhaitez à cette occasion faire comprendre mieux votre découverte, quant même vous
auriez le soin de faire usage de répétitions, qui est la mère de la science. Mais selon votre
lettre j’attends vos communications ultérieures sur cette matière qui exciteront peut-être
de nouvelles remarques de ma part publique.

Votre très-dévoué
H G Zeuthen

[(In a footnote :) ? Je crois même qu’on pourrait en déduire une nouvelle démonstra-
tion de votre théorie ; peut-être mais je ne m’occuperai pas de cette question avant de
voir votre propre démonstration géométrique.]

C.10 November 22nd 1879

22 novembre 1879

Cher ami,
me voici dans une position pénible. Certainement j’avais tort en appelant M.Schubert

notre ami commun ; mais moi je suis l’ami commun de vous et M.Schubert. Avant l’arrivée
de votre lettre, M.Sch m’avait écrit une lettre sur les caractéristiques triangulaires, à
laquelle je dois répondre, ce que je n’ai pas fait encore. Le plus facile serait de lui envoyer
votre exemple aussi simple que clair pour démontrer l’inexactitude de sa formule ; mais
je ne voulais pas le faire sans vous citer, et je ne dois pas lui raconter que M.Chasles vous
a fait juge de son travail, et peut-être vous aimez aussi le mieux garder votre exemple et
vos arguments à une autre occasion.

Heureusement vous me montrer la voie de me tirer d’affaire en me rappelant nos con-
versations à Paris l’année précédente. Je pourrais veux lui écrire que vous m’avez fait ob-
server l’impossibilité de représenter par un nombre fini de caractéristiques ces formations
géométriques, qui peuvent contenir des formes dégénérées dépendant de deux quantités
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infiniment petites. En effet, une telle forme-limite jouera un rôle différent d’après la valeur
différente du rapport des ordres des infiniment petites et représente ainsi un. N’est pas
un juste énoncé de votre argument ?

En même temps Pendant que je ne devrais pas montrer à M.Schubert vos expressions
sur lui, M. Schubert parle de vous dans ses lettres avec respect de vous et de vos dé-
couvertes. Quant au calcul symbolique il me semble qu’il ait dit aussi hautement dans
ses écrits publiés qu’il développe une idée due à vous. Dans la lettre dont je viens de
vous parler, il ajoute dans une note (avec quelques réservations insignifiantes sur la façon
manière dont vous faites valoir la fausseté de αµ+ βν):

“Ich bin jetzt von der Berechtigung der Modification des αµ + βν durch Halphen
überzeugt”

Voilà ce que – jusqu’à l’étude de la sixième partie de son livre – je croyais qu’il était
depuis 2 ans trois ans. Au cas contraire j’aurais publié alors les remarques que je lui avais
envoyées dans une lettre, afin de lui donner l’occasion de répondre aussi publiquement.
Heureusement pour moi je suis alors exempt de me mêler publiquement à cette affaire à
une époque où je ne connaissais que le côté négatif de votre découverte. Vous me demandez
si à présent je ne veux pas entrer dans cette discussion au lieu de vous. Pour le moment j’y
refuse ; car quand même je vois le point faible de la démonstration de Hurwitz-Schubert je
ne le vois que grâce à la connaissance de votre théorie. Si toutefois le litige durerait, je ne
manquerai pas de saisir une occasion de me placer de votre côté – pour ce que vous avez
dit jusqu’à présent, et peut-être avec quelque autre considération sur la valeur relative
des théories antérieures de Jonquières et de Chasles – ; j’aurais besoin alors moi-même
de rendre ma position claire, et, comme la plupart des mathématiciens n’étudient pas
directement les questions mais se contentent d’un dénombrement des partisans des deux
opinions, il serait peut-être utile aussi pour répandre la juste opinion. Celà sera superflu
toutefois si M.Schubert reconnaît publiquement non seulement la “Berechtigung” comme
il l’écrit dans sa lettre, mais aussi la “nécessité” de la modification de αµ+ βν.

Mais j’ai peur de vous surcharger de mes lettres.

Votre très-dévoué
H G Zeuthen

C.11 November 23rd 1879

23 novbre 1879

Cher ami,
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Si je veux conserver votre confiance, il faut que je me hâte de révoquer mes éloges
hier de votre démonstration exemple qui ne me satisfait plus après quelques réflexions
que j’aurais dû faire avant de vous répondre d’autant plus que. Certainement ma seule
objection ne vous est sera pas échappée : dans le cas actuel le résultat de M.Schubert
2m− ν sera exact si l’on regarde aussi les ν2 +µ3 triangles à sommets coïncidents comme
des solutions. Il s’agit donc seulement de montrer ici qu’en se servant des progrès de
M.Schubert on doit savoir a priori que ces solutions feront partie du nombre trouvé, car
alors on pourra les éloigner ou garder à son gré. La formule sera bonne (pour l’exemple
actuel, bien entendu) si l’on connaît parfaitement le sens du nombre qu’elle donne. Alors,
du moins elle ne trompe pas. Permettez-moi donc premièrement la remarque qu’il n’est
pas permis de demander à la formule qu’en tous les cas elle donne seulement des triangles
propres. Alors il faudrait dire aussi que la caractéristique µ d’un système de coniques
est le nombre de coniques propres qui passent par un point qui ne se trouve pas sur une
conique singulière etc. Vous réponderez donc me répliquerez peut-être que dans la formule
2m−µ, on a déjà éloigné certains triangles singuliers et qu’il sera inconséquent d’en garder
autres. J’essaierai donc d’en montrer la différence, en indiquant deux différentes manières
dont on peut poser la question aux formules de Schubert, et les deux réponses qu’elles
vont donner.

1◦ On peut demander tous les triangles satisfaisant aux conditions données y compris
tous ceux dont le sommet a coïncide avec b, où le lieu C de a a un point µ-tuple. Alors la
question si elle aura du sens ne peut être qu’un cas limite de la question plus générale où
la courbe C ne passe pas en b. On trouve alors immédiatement (ε′) = m

(a′) = (s′) = (γ′) = (ε′) = m, (b′) = (c′) = (α′) = 0
X(Σ′,Σ) = Am

où, pour votre condition Σ, A sera = 2.

2◦ Le système Σ′ que nous venons de considérer contient une infinité de triangles dont
le sommet a coïncide avec b ; car si l’on impose aux triangles du système cette condition,
la direction du côté ab (γ) reste indéterminé. On peut donc décomposer le système Σ′ en
deux : celui qui conti où tous les points a coïncident avec b, et celui où cela n’a pas lieu en
général, mais qui contient pourtant µ triangles singuliers où a coïncide avec b mais où les
côtés γ sont entièrement déterminés comme tangentes à C en b. Ces triangles sont aussi
bien triangles du dernier système que tous les autres, et si un de ces triangles satisfait
à une nouvelle condition Σ, on y aura une aussi bonne solution du X(Σ′,Σ) que toutes
les autres?. [illegible] pour ce dernier système, qui est un système complet, qu’on a les
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nombres indiqués par vous

(a′) = (s′) = m, (γ′) = (ε′) = m− µ, (b′) = (c′) = (α′) = 0,

et pour votre système Σ on aura

X(Σ′,Σ) = 2m− µ.

Si bc est une des tangentes à la courbe C au point b, ce nombre contient des triangles où
a coïncide avec b. La formule n’indique pas et n’éloigne pas le nombre de ceux-ci, mais
elle ne le prétend ni non plus.

[(In a footnote :) ? Si l’on demanderait : combien de points d’intersections a une
courbe donnée d’ordre m avec une courbe dont on ne connaît que l’ordre n, non-com-
pris les intersections qui se trouvent en des points d’inflexion de la courbe donnée, la
géométrie énumérative répondrait “Les courbes ont mn points d’intersections. Si l’on ne
veut pas ceux qui se trouvent aux points d’inflexions, il faut dans tous les cas particuliers
les chercher et les éloigner s’il y en a”. De même il n’est pas permis de demander à la
géométrie énumérative qu’elle éloigne a priori tout triangle dégénéré.]

Dans mon usage actuel de la formule de Schubert je me suis contenté à donner aux
quantités dépendant de la condition Σ des valeurs convenables. Essayant ensuite de
déterminer directement les quantités (εb2c2) etc. Je vois qu’on trouve trouverait X(Σ′,Σ)
égal, respectivement, à 4m et à 4m˘2µ. Il était aussi à prévoir qu’à cause des deux
intersections coïncidentes de la conique Ω avec la droite bc? la formule donnerait chaque
solution deux fois - ce qui n’est pas une faute de la formule si l’on a des moyens de
découvrir la multiplicité des solutions. Je communique toutefois ces dernières remarques,
qui sont sans importance pour la question dont il s’agit, avec toute réserve afin de n’avoir
pas besoin de venir faire des corrections après avoir y réfléchis plus qu’en ce moment.

[(In a footnote :) ? ou plutôt à cause de deux coniques coïncidentes Ω qui passent,
dans le cas actuel, par le point donné b et sont tangentes à bc.]

C’était après avoir fini ma lettre à M.Schubert, où j’exprimais mes regrets, pour son
livre et pour ses lecteurs et pour ceux de son nouveau mémoire, de la manque d’une
indication de la portée des formules de sa partie 6me (αµ+βν etc.) et de ses nouvelles for-
mules, que j’ai commencé mes nouvelles réflexions sur votre exemple. Ces regrets restent
encore les mêmes ; car rien n’est altéré aux objections, et une formule dont on ne connaît
pas la portée – car ne nous connaissons celle de αµ+βν par vos recherches, et comme M.
Schubert la pourrait faire connaître à ses lecteurs – est fausse ou du moins dangereuse.
Cependant je suis bien aise de n’avoir pas encore expédié la lettre à M.Schubert, de
façon que j’y puis substituer une autre où je donne aux mêmes pensées des expressions
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moins fortes que celles que me dictait la supposition que les formules n’étaient pas même
applicables à un si simple exemple.

Votre très-dévoué HG Zeuthen

C.12 November 24th 1879

24 novembre.

Je viens d’écrire une nouvelle lettre à M. Schubert, au lieu de celle que j’ai retenue.
Pensant que, dans les circonstances actuelles je devais lui communiquer le moins possible
de ce que je dois à vos communications personnelles, je me suis contenté à ajouter aux
remarques sur αµ + βν – où je pouvais renvoyer à vos publications –, sur les parties
suivantes de sa sixième section, que celles-ci ne m’inspiraient pas la confiance nécessaire
pour en faire usage : “Je crois, en effet, ou bien je sais par des communications que
M.Halphen m’a faites l’année précédente, que plusieurs de ces formules à la Bézout ne
sont possibles qu’avec des limitations de la portée semblables à celles dont on a besoin
pour la formule αµ+βν.” Je l’invite donc en particulier à entourer ses nouvelles formules
sur les triangles de précautions semblables (en citant alors vos remarques analogues sur
αµ+ βν).

J’espère avoir évité ainsi toute indiscrétion.

Votre
H Z

C.13 November 30th 1879

30 novembre 1879

Cher ami,
Peccavi. Même sans me rappeler vos définitions précises de solutions étrangères

j’aurais dû voir qu’on peut poser la question ainsi que, dans le cas actuel, les trian-
gles limites sont exclus et que le nombre des autres solutions doit avoir ainsi selon le
théorème de Sch. la forme prétendue être applicable toujours. J’ai vu plus immédiate-
ment la même chose pour vos exemples présentés à la Société Mathématique, que M. Sch.
m’a communiqué avec sa réponse. La généralisation de la question pour laquelle il obtient
les deux solutions de la question, annoncées par son théorème, est arbitraire, et par une
autre généralisation il aurait pu accommoder le nombre de solutions à une autre forme
générale (quelconque ?).
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Selon moi, il dépend de la manière dont on formule la question si une solution est
propre ou étrangère?. Il faut donc demander à une formule caractéristique (devant être
indépendante de la formulation de la question), qu’elle exprime le nombre de solutions
de toute question (du genre demandé) qu’on peut exprimer par une équation algébrique
complète, aussi de celles où l’équation algébrique résulterait d’une décomposition d’une
équation réductible. En effet, cette dernière circonstance, qui se montre par les opérations
énumératives avec le degré des équations algébriques qui correspondent aux équations
algébriques, peut dépendre de la voie choisie pour résoudre le problème.

[(In a footnote :) ? Je ne proteste nullement à vos définitions précises et conséquentes,
mais cherche seulement un caractère applicable partout dans la géométrie. Peut-être
coïncide il avec le vôtre.]

Considérons pour illustrer ces remarques par un exemple, la fameuse expression αµ+
βν. Selon l’usage ordinaire et légitime de la forme des théorèmes généraux dans la
géométrie, on peut dire (voir pourtant la note à la page 5.)

Dans un système de coniques aux nombres (caractéristiques)(1) µ et ν, le nombre de
coniques satisfaisant à une nouvelle condition indépendante est égal à

µ · (1
2µ
′2ν ′2 − µ′4) + ν(µ′4 − 1

4µ
′2ν ′2)

(notations de M.Schubert, ayant prêté le premier 3me cahier du I vol du Bulletin (pour
votre introduction) à un jeune homme je ne puis citer vous-même);

[(In a footnote :) (1) Les caractéristiques ne sont pas regardées ici comme caractéris-
tiques propres, mais indiquant seulement les nombres de coniques passant par un point
ou tangentes à une droite.]

car en définissant le système par µ et ν, on demande la solution, qui est générale
lorsque ces nombres comprennent tout ce qui est donné sur le système. Alors le cas où
il y a des singularités de la 3me espèce est particulier, et on n’a pas besoin d’exclure ce
cas de l’énoncé général, qui est applicable à tout cas particulier, à condition qu’on le
regarde comme cas particulier, ou bien comme cas limite. Pour cette formulation ci les
coniques de la 3me espèce ne sont pas des solutions singulières, quand même elles seraient
indépendantes des arbitraires de la condition. On a même ici une voie de trouver aussi
le nombre des solutions qui seront les seules propres lorsqu’on considère isolément le cas
qui était particulier ici à cause de la formulation générale de la question, mais qui n’est
pas du tout plus particulier en lui-même [illegible] que ceux où on rencontrent les autres
coniques singulières parce qu’il dépend que toutes les paires de coniques singulières de 3me

espèce dépendent aussi de quatre arbitraires ; aussi, bien entendu, l’énoncé de la formule,
regardée comme générale ici, n’est qu’une partie mince de cette voie, la difficulté, que vous
seul avez surmontée, se présentant seulement à l’exclusion des solutions qui deviennent
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étrangères par la nouvelle formulation de la question.
On a aussi un théorème αµ + βν logique (? voir p.5) ; mais alors il faut se rappeler

qu’avec autant de raison on aurait un théorème αµ ; car les systèmes définis par le seul
nombre µ, ne contiennent pas en général des coniques aplaties. Dans une théorie des car-
actéristiques(2), telle que vous l’entendez, et telle que M.Schubert dit qu’il faut l’entendre,
ces deux théorèmes(3) et les théorèmes de M.Schubert sur plus de 2 points d’une droite
etc sont absolument faux. Pour en savoir quelque chose il lui faut donc les transformer
en théorèmes énumératifs généraux ordinaires.

[(In footnotes :) (2) où les théorèmes énoncent que tel nombre a toujours une expres-
sion de telle forme (3) ayant alors un autre énoncé]

Peut-être que je ne fais que vous rendre des pensées que vous avez déjà émises. Vous
remarquez pourtant la différence de votre note du 13 novbre 1876 : je n’excepte pas des
énoncés généraux les cas particuliers où la solution générale se décompose, mais demande
seulement qu’on les regarde – dans les applications du théorème général – comme cas-
limites. Ici comme partout j’accentue que la différence du général et du particulier n’est
pas absolu mais dépend de la formulation (l’énoncé) du théorème ou des problèmes, et
que dire “en général” sans formuler exactement l’énoncé c’est rendre l’énoncé encore plus
inclair.

Recevant l’appel de M.Schubert je pensais de nouveau à me prononcer publiquement
afin de ne me trouver pas entre les deux adversaires ; mais en apprenant par votre lettre
que votre débat avec M. Schubert paraît même “devoir être courtois” je crois qu’il vous
vaut le mieux de vous passer de mon intervention. Votre bon droit et le bon sens, dont
M.Schubert a donné des preuves en d’autres matières, va finir bientôt le combat – malgré
la grande difficulté que M.Schubert aura à abandonner un chapitre d’un livre imprimé –
et m’étant tû jusqu’à présent je ne dois pas me mettre à côté de vous au moment où vous
allez gagner tout seul la victoire.

M. Schubert prononce dans sa lettre ses regrets de voir troublées ses relations amicales
avec vous, et me prie de vous parler en sa faveur. Je le ferai en vous disant – entre nous –
que ses pêchés contre vous, qui se dressent contre lui-même, et en particulier sa négligence
totale de vos objections à αµ + βν n’ont leur racine ni à maliciosité ni à “mépris” mais
à une naïveté et un défaut de tact qui n’est pas rare en Allemagne. J’ajoute que je lui
ai répondu que la seule voie de vous réconcilier serait de reconnaître publiquement la
justesse de vos recherches sur les caractéristiques ou de soutenir publiquement sa théorie
des caractéristiques, en particulier sa le théorème de αµ + βν contre les objections que
vous aviez y opposées depuis long temps.

A propos de ce long temps je dois vous dire que je reconnais la patience dont vous
vous louez dans votre lettre avant dernière ; elle n’a nui qu’à M.Schubert, donnent dont
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les nouvelles méprises donnent du relief à vos découvertes sur ce terrain.

Votre très-dévoué
H G Zeuthen

En relisant cette lettre pour voir si je pourrais vous permettre de faire au besoin – mais
vous n’en aurez pas besoin – l’usage qui bon vous semble de sa partie non-personnelle, je
vois qu’alors il faudrait y ajouter une restriction. Le Un système de coniques est loin d’être
défini par les deux nombres µ et ν d’une manière si claire que par le seul nombre µ ; en
effet, celui-ci s’attache, non seulement par les systèmes unicursales, à une la représentation
algébrique par des coordonnées ponctuelles, pendant qu’il pourrait rester douteux pour
les systèmes (µ, ν) si la réduction de 2µ à ν et de 2ν à µ se fait en général par des coniques
singulières des deux premières espèces. Le théorème αµ avec la petite portée pratique est
donc plus clair et logique que le théorème αµ+ βν, dont la grande portée pratique a fait
croire à son universalité. Celui-ci aura pour devenir juste besoin d’être entouré de plus de
restrictions qui, sans excepter expressément les coniques singulières de 3e espèce, ce qui
serait contraire au caractère que je veux attribuer à un théorème énumératif général (mais
non pas caractéristique), fait des systèmes contenant ces singularités, des cas particuliers.

Néanmoins je ne transcris pas ma lettre parce que la nécessité le défaut dans mon
exemple, étant signalé ici, montre plus clairement les demandes qu’on doit parvenir poser
à une formule un théorème énumératif général pour qu’il soit applicable à tout cas parti-
culier, et auxquelles j’essaie à observer dans mes propres énoncés de théorèmes ; en même
temps il montre de nouveau combien vos corrections de la théorie ont été nécessaires ;
mais le théorème αµ reste le seul bon exemple dans cette lettre de théorèmes énumératifs
généraux.

Vous faites des excuses de vos raies et de votre écriture. Et moi, qui vous présente “en
général” des brouillons !

Votre
HZ

C.14 December 18th 1879
18
1279

Mon cher ami,
En lisant votre lettre j’étais près de croire que j’avais commis une faute analogue à celle

de dire que les courbes gauches du quatrième ordre doivent être “en général” de la même
classe, avoir le même nombre de points doubles apparents etc parce qu’elles sont des cas

493



Chapter C. Some letters from Zeuthen to Halphen

particuliers de “la courbe générale du quatrième ordre”, être qui n’existe pas. Mais vous
devez vous rappeler que je n’ai parlé que de coniques satisfaisant à une condition indépen-
dante du système et vous me conviendrez que le nombre de points d’une courbe d’espace
d’ordre m qui satisfont à une condition indépendante de la courbe est en général égal à
Am. Il est possible que La courbe et la condition peuvent avoir à la fois des spécialités
d’où résultent des décompositions en nombres d’autres formes, mais ces spécialités résult
cesseront, non seulement, comme vous me faites observer, par une généralisation de la
condition, mais aussi par une généralisation de la courbe qu’on peut regarder comme cas
particulier, non pas de la courbe générale d’ordre m, qui n’existe pas en singulier, mais
de la courbe générale de l’espèce à laquelle elle appartient. En effet la division en espèces
se rapporte à la définition ponctuelle de courbes.

Mon théorème “général” αµ ne diffère pas du reste essentiellement du vôtre (qui est
plus clair), ce qui se montre aussi à la circonstance, que aussi pour moi le théorème
analogue sur les systèmes d’une infinité double cesserait d’être vrai parce qu’on y trouve
en général des droites doubles (mot qui comprend la dégénérescence de la seconde espèce
et toutes celles de la troisième espèce, qui sont de même réunies dans la formule ordinaire
et toujours juste λ = 2µ− ν). J’ai seulement défendu moi-même ; mais j’avoue que votre
lettre m’a rapporté une circonstance qu’on est trop disposé à oublier, et à laquelle je ne
pensais pas expressément en écrivant ma dernière lettre.

Vous dites que votre théorème véritable est plus “général” que ces théorèmes énumérat-
ifs généraux. Je préfèrerai de dire que votre théorème est absolu, de façon qu’on n’y ait
pas besoin de dire ou de sous-entendre “en général”, mots qui désignent qu’un théorème
est aussi vrai dans tout cas particulier, à condition qu’on le regarde comme cas particulier.
Pour le faire il faut définir d’une manière sans ambiguïté le cas général, ce que M.Schubert
oublie, et ce qu’on oublie beaucoup de fois dans la géométrie. Vous voyez que j’attribue
aux théorèmes généraux, dont on ne peut se passer partout, une valeur inférieur à celle
des théorèmes absolus.

Mais je crois que sur ce point notre accord est si parfait, qu’il n’y a aucune raison d’y
insister.

Quand même vous ne semblez pas insister à la circonstance que j’avais oublié votre
solution antérieure du problème sur le contact du second ordre, je le regrette moi-même,
et je voudrais que votre lettre aurait pu venir d’assez bonne heure pour me permettre
d’ajouter une note relative au fait que vous me rappelez, à ma seconde communication. A
présent, je serai borné à saisir la première occasion pour mentionner vos deux déductions
du même résultat, ce qui intéressera d’autant plus que les applications chacune de vos
déductions s’appliquent à des problèmes qui ne se résolvent pas immédiatement par la
mienne. Je ne crois pas qu’il serait difficile d’étendre celle-ci à des courbes à singularités
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quelconques ; mais elle sera inapplicable, immédiatement du moins, aux contacts d’une
courbe fixe avec un système d’une infinité triple, parce que ce système contiendra un
certain nombre de courbes dont la droite, limite de la courbe fixe, fait partie (on peut
définir le système de manière que ce nombre devienne “en général” égal à zéro, mais sans
définition expresse il n’est pas permis de négliger la possibilité de ces courbes du système.)
Des circonstances analogues vous empêcheront peut-être (?) d’appliquer les résultats que
vous trouverez par vos procédés à des courbes dont les ordres sont au dessous de certaines
limites, ce qui est sans importance. Je ne prévois pas a priori d’autres difficultés – je
ne parle pas des grandes difficultés pratiques que peut causer la réalisation détaillée - ;
mais cependant je n’ai pas discuté si le nombre de coïncidences inconnues différentes ne
dépassera jamais celui des équations qu’on obtient par le principe. Dans tous les cas, je
vous remercie de m’avoir rappelé ces recherches intéressantes, que j’espère de n’oublier
pas après d’y être revenu de la manière actuelle.

Votre énoncé complet de mon extension du théorème du genre, qui exempte de toute
question difficile sur solutions multiples, et qui marque ainsi un progrès très stable au delà
de ma formule, avait(?) été du reste dans mes mains avant l’arrivée de votre lettre. J’en
ai fait usage dans mes leçons ; mais ayant choisi d’avance mes applications, j’ai négligé
de consulter les vôtres. J’applique la formule à l’étude énumérative d’un lieu de points
ou d’une enveloppe de droites. Dans le premier cas on aura à déterminer directement
l’ordre n de la courbe et les degrés de multiplicité des systèmes? circulaires d’un ordre n
supérieur à l’unité. Ma formule, rendue plus facile à appliquer par vous, sert à déterminer
le genre, et ensuite l’expression du genre et les formules de Plücker feront le reste. En y
représentant les singularités connues d’avance par les équivalents, qui les remplacent ici,
on obtient les autres par des soustractions.

[(In a footnote :) Grâce à vos théorèmes il ne sera jamais douteux quelles branches
appartiennent au même système circulaire cyclique...]

L’exemple que j’ai donné avec le plus de détail c’est l’étude de la développée, où l’on
emploie toutefois seulement le théorème simple du genre. Je n’ai fait ici que retrouver
les résultats que vous avez donnés dans votre mémoire sur les points singuliers, mais que
je suis bien aise d’avoir eu ainsi une occasion de connaître mieux qu’à la rapide lecture,
dont les meilleurs mémoires sont sujets lorsqu’ils me trouvent occupé d’autres travaux ;
je l’avoue, et j’ai déjà parlé ici de la conséquence de cette rapide première lecture d’un
autre de vos travaux.

Mais il est temps de finir ; je crois que c’est mon âge avancé (au delà des 40 ans) qui
me fait bavard, et qui me porte à dire beaucoup de choses que vous saurez mieux que moi
(sur les limites de l’emploi des équivalents Plückeriens), seulement pour vous montrer que
je les sais aussi moi. Dans tous les cas je reste
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votre très dévoué
HG Zeuthen

C.15 August 19th 1886

Copenhague le 19 août 1886

Mon cher ami.
A mon retour de la campagne je viens de trouver votre premier volume sur les fonctions

elliptiques. Curieux de voir la voie que vous choisissez pour introduire ces fonctions et
pour en fonder les principales propriétés, et ayant besoin non seulement de connaissances
que m’ouvriront les parties suivantes mais aussi d’une bonne répétitions des éléments,
j’en ai commencé aujourd’hui la lecture par l’étude du premier chapitre. Les moyens
que vous y employez, ainsi que la manière dont vous les employez, sont d’une simplicité
et facilité qui correspond entièrement au caractère élémentaire que vous promettez pour
cette partie de votre travail. Je ne doute pas qu’aussi vos autres promesses seront tenues,
non seulement celles de la préface, mais aussi celle que contient le nom de l’auteur.

Pour m’inspirer confiance ce nom n’a nullement besoin de l’addition de “Membre de
l’Institut”; mais néanmoins je suis très-content d’avoir appris votre nomination, il y a
quelque temps. Vous savez quelles circonstances m’ont empèché de l’observer immédiate-
ment et de penser à vous en féliciter ; mais je vous prie d’agréer à présent mes félicitations
retardées.

Je pensais du reste à vous écrire, il y a 1-2 mois, en lisant un article de M. Study dans
les Mathematische Annalen sur αµ+ βν. Il reconnaît la justesse de vos arguments contre
cette formule, à la condition que vous adoptez les définitions des coniques singulières d’un
système de Clebsch. Il y substitue une autre qui selon lui rendrait la formule juste. Cette
autre définition consiste essentiellement à demander que les courbes dégénérées soient des
limites de coniques satisfaisant aux conditions données. Sa considération de ces courbes
ne diffère donc pas de celle dont nous auteurs antérieurs à Clebsch – qu’il traite d’assez
naïfs – nous sommes servi. Il se rend donc aussi coupable de la même faute que tout le
monde avant vous, et n’a pas compris que le fait qu’aussi la troisième classe de coniques
dégénérées peuvent dépendre de quatre conditions.

Je voudrais que vous auriez assez de Temps et de patience pour lire le mémoire dont
il s’agit et pour envoyer quelques lignes à M. Klein ; mais j’ai peur qu’après avoir tué le
théorème vous dédaignez d’en combattre le spectre.

J’ai fort peu à dire de moi-même. Après une perte cruelle, suivie d’une pneumonie
– dont je suis du reste parfaitement restitué – je n’ai pu encore concentrer mes forces
sur un nouveau Travail scientifique devant remplacement mes recherches sur les coniques
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de l’antiquité. Je ne suis donc pas mécontent de ce que ma vacance finit le premier
septembre : c’est plus facile d’avoir un travail prescrit que de s’en donner, et les leçons
laisseront assez de Temps pour les petites recherches où se trouvent les germes d’études
plus sérieuses.

Mes renseignements sur moi-même seraient incomplets si je n’ajoutais pas que mon
garçon se trouve très-bien.

J’espère que vous-même et votre famille vous portez bien.

Votre très-dévoué
H G Zeuthen

Je pense que l’éditeur vous a envoyé de ma part le premier cahier de l’édition allemande
de mes “coniques de l’antiquité”, et que dans peu de jours vous en recevez le second cahier.

Je vous remercie de votre réponse amicale à mon avis dans cet hiver. J’ai aussi à vous
remercier de plusieurs envoies scientifiques.
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