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Miguel MUNOZ ZUNIGA
Ingénieur de recherche, IFP Energies nouvelles, Invité
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Abstract

In the context of energy transition, wind power generation is developing rapidly. Mean-
while, in the framework of digitalization of the industry, the exploitation of collected data
can be optimized by combination with numerical models. Such models can be complex
and costly as they involve dynamic equations coupled with different physics. Further-
more, some of their input parameters related to the model properties as well as the
external conditions can be badly known. These uncertainties affect the predictions ob-
tained from model simulations and thus can impact the components’ lifetime for example.
Consequently, this dissertation focuses on quantifying and reducing the input parameter
uncertainties involved in an aero-servo-elastic wind turbine model. Nevertheless, the
widely used methods in uncertainty quantification are not suitable in the present indus-
trial context because of the stochastic nature of the external solicitation and the time
consuming behavior of the simulator. Our main contributions are twofold.

Firstly, we want to quantify the impact of the uncertainties on the fatigue behavior
of a wind turbine. We propose a global sensitivity analysis (GSA) methodology, based
on the so-called Sobol’ indices, for stochastic computer simulations. Such techniques,
which often refer to the probabilistic framework and Monte Carlo (MC) methods, require
a lot of calls to the numerical model. The uncertain input parameters are modeled by
independent random variables gathered into a random vector and characterized by their
probability distribution function (pdf). Variance-based GSA for time consuming deter-
ministic computer models is usually performed by approximating the model by a surrogate
regression. Among the different surrogates, we focus on Gaussian process (GP) regression
characterized by its mean and covariance functions. One advantage of the GP regression
metamodeling is to provide both a prediction of the numerical model and the associated
uncertainty. In order to take into account the inherent randomness from stochastic simu-
lations, we propose as a surrogate for the mean of the output of interest a GP regression
with heteroscedastic noise. Then, this surrogate model is used to perform a sensitivity
analysis based on classical MC estimation procedure.

Secondly, we propose a Bayesian inference framework to carry out the calibration of
influential input parameters from in situ measurements. It uses some observations to
update some prior pdf on the unknown input parameters through the Bayes’ theorem.
Recent decades have been marked by a simultaneous development of sensor technologies
and internet of things capabilities. Thus, our research efforts have been directed toward
inference techniques where the data are sequentially processed when new observations

v



become available. In this context, model parameter inference can be carried out using
data assimilation methods. We carry out the calibration using an ensemble Kalman filter
(EnKF). Nevertheless, unlike the model properties having a static or slow time-variant
behavior, the parameters related to the external conditions have a dynamic aspect. Thus,
we propose to carry out the inference problem using an EnKF coupled with an analog
forecasting strategy based on K-nearest neighbors to model the underlying dynamics.
However, such problems can be solved assuming that several conditions of well-posedness
and identifiability are achieved. We exploit the relationship between non-identifiability
of input parameters and total Sobol’ indices. Indeed, for each measured output, we
compute total Sobol’ indices associated to input parameters. If all the total Sobol’ indices
associated to a prescribed input parameter are ”small”, it means that this parameter is
non-identifiable. Due to the functional nature of the measurements, we rely on a dimension
reduction preliminary step through principal component analysis and then we compute
an aggregated Sobol’ index for each model parameter.

Keywords: Ensemble Kalman filter, Gaussian process regression model, K-nearest
neighbors, aggregated Sobol’ indices, wind turbine numerical models
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Résumé

Dans un contexte énergétique en pleine transition, l’énergie d’origine éolienne se
développe rapidement. Parallèlement, dans le cadre de la digitalisation de l’industrie, l’ex-
ploitation des données collectées peut être optimisée par combinaison avec des modèles
numériques d’éoliennes. Ces modèles peuvent être complexes et coûteux car ils im-
pliquent des équations dynamiques couplées à différentes physiques. De plus, certains
de leurs paramètres d’entrée peuvent être mal ou peu connus. Ces incertitudes affectent
les prédictions obtenues à partir de ces simulations et peuvent avoir un impact important
sur la surveillance de l’état de la structure. Cette thèse se concentre sur la quantification
et la réduction des incertitudes des paramètres d’entrée d’un modèle aéro-servo-élastique
d’une éolienne. Néanmoins, les méthodes largement utilisées de quantification des incer-
titudes ne conviennent pas à notre contexte industriel du fait de la nature stochastique
et du coût de chaque évaluation du simulateur. Nos principales contributions sont les
suivantes.

Premièrement, nous quantifions l’impact des incertitudes sur le comportement en fa-
tigue d’une éolienne. Nous proposons une méthodologie d’analyse de sensibilité globale
(ASG) basée sur les indices de Sobol’ dans le cadre de simulations numériques stochas-
tiques. De telles techniques, qui font souvent référence au cadre probabiliste et aux
méthodes de Monte Carlo (MC), nécessitent de nombreux appels au modèle. Les pa-
ramètres d’entrée incertains sont modélisés par des variables aléatoires indépendantes
regroupées dans un vecteur aléatoire et caractérisées par leur loi de probabilité. De telles
analyses pour des simulations déterministes coûteuses en temps de calcul sont en général
réalisées en approchant le modèle par un métamodèle. Nous nous concentrons sur un
métamodèle de type processus gaussien (PG) caractérisé par sa moyenne et sa fonction de
covariance. Il présente l’avantage de fournir à la fois une prédiction du modèle numérique
et l’incertitude associée. Cependant, l’ASG basée sur ce type de modèle de substitution
ne tient pas compte du caractère aléatoire inhérent à la simulation stochastique. Ainsi,
nous proposons de modéliser la moyenne de la sortie d’intérêt avec un modèle par un PG
avec bruit hétéroscédastique. Ensuite, ce métamodèle est utilisé pour effectuer une ASG
avec une procédure classique d’estimation MC.

Deuxièmement, nous proposons une procédure d’inférence bayésienne à partir de me-
sures in situ permettant de réduire les incertitudes qui entachent les paramètres d’entrée
influents sur le comportement en fatigue de l’éolienne. Les dernières décennies ont été
marquées par un développement simultané des technologies de capteurs et de l’internet
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des objets. Ainsi, nos efforts de recherche ont été orientés vers des techniques d’inférence
où les données sont traitées séquentiellement lorsque de nouvelles observations deviennent
disponibles. Dans ce contexte, l’inférence des paramètres du modèle peut être effectuée à
l’aide de méthodes d’assimilation de données. Nous nous focalisons tout particulièrement
sur le filtre de Kalman d’ensemble (EnKF). Lorsque le modèle dynamique sous-jacent
des paramètres d’entrée est inconnu, nous proposons d’utiliser une procédure d’inférence
combinant un EnKF à une stratégie de prévision par analogues basée sur une méthode
des plus proches voisins. Cependant, seule l’inférence des paramètres identifiables a du
sens. Un paramètre n’ayant aucune influence sur les sorties mesurées n’est pas identifiable.
Cette influence est quantifiée en estimant les indices de Sobol’ totaux des sorties mesurées
aux paramètres d’entrée. En raison de la nature fonctionnelle de ces observations, nous
nous appuyons sur une réduction de dimension par analyse en composantes principales
préalable à l’estimation d’un indice de Sobol’ agrégé pour chaque sortie mesurée aux
paramètres du modèle.

Mot-clés : Filtre de Kalman d’ensemble, modèle de regression par processus Gaussien,
K-plus proches voisins, indices de Sobol’ agrégés, modèles numériques d’éolienne

viii



Remerciements
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Overview

Ce chapitre présente le contexte dans lequel s’inscrivent les travaux de recherche menés
lors de cette thèse et les solutions proposées pour répondre aux objectifs sous-jacents. Les
incertitudes sont omniprésentes en particulier dans le domaine de la simulation numérique
d’éolienne. La prise en compte de ces incertitudes et l’estimation de leur influence lors
de l’analyse de structures en opération sont devenues des enjeux cruciaux. Le but de cette
thèse est de proposer une procédure de quantification et de réduction des incertitudes af-
fectant un modèle numérique aéro-servo-élastique d’une éolienne terrestre. Ce manuscrit
est divisé en trois parties : la Partie I présente les principaux concepts pour la quantifica-
tion d’incertitudes et la modélisation d’une éolienne ; la Partie II développe les différents
outils méthodologiques pour l’analyse de sensibilité, la métamodélisation et la calibration
utilisés dans la suite de cette thèse ; la Partie III présente les contributions applicatives
de la thèse dans le domaine de la modélisation numérique d’éolienne où les simulations
numériques sont coûteuses et stochastiques. Pour terminer, le dernier chapitre de ce ma-
nuscrit fait le point sur l’ensemble du travail de thèse et esquisse quelques perspectives.
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Motivation

The last years of the 20th century were a turning point for awareness of the popula-
tion on the use of fossil energy and its terrible impact on climate change. In that context,
political decisions have been recently taken with regard to a reduction of greenhouse
gas emissions and a sustainable mix of energy resources, such as for example the Kyoto
agreement in 1997 or more recently the Paris agreement signed in 2015. The countries,
which have ratified the Paris agreement, agreed to prevent irreversible damage from cli-
mate change by limiting global warming to 2◦C compared to pre-industrial times. In this
context, the long-term objective is to drastically reduce greenhouse gas emission by 80-
95% by 2050. According to researchers, at least 32% of total energy consumption must
stem from renewable energy sources to reach this target. Among the different renewable
energy technologies, wind and solar ones have increased their production performances
thanks to innovative breakthroughs. As a result, these technologies have experienced a
rapid growth in the last decades. As an example, France’s well adapted climatic condi-
tions have led to a growing development of the onshore wind energy, as depicted in Figure
1. This continuous growth allows the creation of an industry working on the design, the
operation and the maintenance of wind turbines.
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Figure 1 – French installed capacity development of onshore wind power production between
2001 and 2019 (source : RTE, Bilan électrique 2019).

The design procedures to testify the reliability of the wind turbine structures are
given by standards. They prescribe various operating and environmental conditions
that have to be taken into account when planning the development of such systems.
These design procedures assess the structural integrity of the components by using
aero-servo-elastic codes and by considering the probability of each environmental and
operational condition. Nevertheless, operating wind turbines experience real external
solicitations and operational conditions that can be different from the envelope defined
in the design standard prescriptions. Moreover, the dynamic response of the structure
and its lifetime can be affected by some uncertainties or evolution in the wind turbine
properties. Consequently, it is mandatory to estimate the remaining life of an operating
wind turbine by taking into account all the inherent uncertainties. In that context, the
quantification and reduction of uncertainties involved in the aero-servo-elastic numerical
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models used to determine the effective fatigue loads of the turbine have to be properly
performed. Overall, aero-servo-elastic numerical simulations involve many uncertainties
in the parameters of the wind turbine numerical model as well as in the external sollici-
tations. Thus, a first problematic of this research work is devoted to the quantification of
these uncertainties on the variability of the model responses and can be formulated as :
How to quantify the impact of the uncertainties affecting the input parameters of an
aero-servo-elastic numerical model on the variability of the quantities of interest used in
the estimation of the components’ lifetime ?

When the uncertainties are quantified, a major challenge is to determine a procedure
to reduce them. Recent decades have been marked by a simultaneous development of
sensor technologies and internet of things capabilities allowing real-time monitoring
of wind turbines. Nevertheless, current solutions do not take full advantage of the
large amounts of data provided by sensors placed on modern operating wind turbines.
In a context of digitalization of the industry, the exploitation of these collected ob-
servations can be optimized with numerical modeling technologies in order to refine
the predictions of production, the estimation of remaining lifetime of the structure,
and the planning of maintenance. The underlying industrial concept is the idea of a
digital twin filling the gap between the modeling and the measurements. In our study,
this strategy relies on a recursive procedure for parameter uncertainty reduction. This
procedure is based on an adaptive update of model calibration from real-time observa-
tions, leading to a highly reliable model. We can formulate a second problematic as :
How to recursively reduce the uncertainties affecting the influential parameters in terms
of variability of the quantities of interest obtained from a wind turbine numerical model
based on in situ observations ?

Approach of this thesis

In order to answer the first problematic mentioned previously, a global sensitivity
analysis (GSA) methodology is investigated. Such statistical approaches focus on the in-
vestigation of how the uncertainty of a model can be allocated to the one in the input
parameters. The main disadvantage of these techniques, which often refer to the proba-
bilistic framework and Monte Carlo (MC) methods, is the requirement of a high number
of calls to the numerical model. Among the different sensitivity measures, we focus on
variance-based sensitivity measures called Sobol’ indices. In this kind of analysis, the unk-
nown input parameters are considered as independent random variables gathered into a
random vector and characterized by their probability distribution. In many applications,
the probability distributions of input parameters are often determined using expert know-
ledge. Nevertheless, variance-based GSA in the context of aero-servo-elastic wind turbines
is a challenge because we are facing a time-consuming stochastic simulator. To take into
account the inherent variability due to the stochastic simulator, we propose to model
the mean of the output of interest with a Gaussian process with heteroscedastic noise.
Then, this surrogate model is used to perform a sensitivity analysis based on usual MC
estimation procedure. By performing such sensitivity analysis, we are able to determine
on which important input parameters the calibration effort has to be made and which
non influential ones can be fixed to nominal values without affecting model prediction
accuracy.

Concerning the second question, recursive Bayesian inference can be used to reduce
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the uncertainties in a wind turbine numerical model. This inverse problem approach uses
some measurements to recursively update some prior probability distributions of the model
parameters through the Bayes’ theorem. Bayesian framework enables to tackle ill-posed
problems where some (or all) targeted parameters cannot be identified based on available
data. Nevertheless in this study, an approach involving a GSA based on total Sobol’
indices is firstly performed to analyze the input parameter identifiability from in situ
measurements. For the recursive inference problem, we propose to rely on an ensemble-
based filtering method which is a Monte Carlo variant of the Kalman filter. This data
assimilation procedure has been widely used to estimate the state of a given model based
on partial observations. A major challenge in such kind of inference problems is when the
underlying dynamic behavior of the state is not explicitly known. In our wind turbine
application, we are facing such an issue when we are looking at the inference of the
parameters related to the wind inflow solicitation. In this study, we rely on the substitution
of the unknown dynamical model involved in the state-space formulation of the data
assimilation problem by a data-driven representation of the state dynamics based on an
analog forecasting strategy. The recursive inference procedure is then performed thanks
to a so-called Analog Ensemble Kalman Filtering (AnEnKF) scheme.

Outline of the manuscript

This manuscript is divided into three parts and is organized as follows :

Part I : - In Chapter 1, a non-exhaustive state of the art of concepts and methods used
for uncertainty quantification is given. Section 1.1 describes some of the most
common methods used for propagation of uncertainty. In Section 1.2, we give
an overview of the sensitivity analysis procedures. Then, Section 1.3 addresses
the procedure of metamodeling to emulate a time-consuming numerical model.
Model calibration, also known as uncertainty reduction, is explained in Section
1.4. Lastly in Section 1.5, the approach of uncertainty quantification techniques
in wind turbine applications is detailed.

- Chapter 2 details the different modeling aspects that have to be considered in
aero-servo-elastic simulations. Section 2.1 details the modeling of turbulent full
field winds. In section 2.2, we present the widely used blade-element momentum
theory allowing to estimate the loads on wind turbine blades due to wind
solicitation. The basics of a wind turbine control strategy are described in
Section 2.3. The aero-servo-elastic dynamic analysis is detailed in Section 2.4.
A brief description of fatigue analysis used to estimate the accumulated damage
that the structure faces during its lifetime is given in Section 2.5.

Part II : — Chapter 3 is devoted to variance-based global sensitivity analysis with a speci-
fic regard to Sobol’ indices. The functional analysis of variance decomposition
for deterministic models is presented in Section 3.1 . Sections 3.2 and 3.3 res-
pectively define Sobol’ indices and the associated estimation procedures in the
framework of independent input parameters. Section 3.4 is devoted to the pro-
cedure to define and to estimate aggregated Sobol’ indices when dealing with
a multivariate output. Lastly in Section 3.5, we present a space-filling strategy
called Latin Hypercube Sampling (LHS).

— Chapter 4 presents the concept of metamodeling based on Gaussian process
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regression and its application in the estimation of Sobol’ indices. Section 4.1
explains theoretically the metamodeling procedure using Gaussian process re-
gression. Then, in Section 4.2 we present a kriging-based sensitivity analysis
relying on the estimation of Sobol’ indices. Finally in Section 4.3, Gaussian
process metamodel framework with heteroscedastic noise is proposed in order
to estimate Sobol’ indices in the context of a stochastic numerical model.

— Chapter 5 is related to the model calibration formulation. In Section 5.1, we
give an overview of the Bayesian inference paradigm. In Section 5.2 we present
two data assimilation strategies : the Kalman filter and its Monte Carlo ap-
proximation named ensemble Kalman filter. Section 5.3 is dedicated to the
extension of ensemble Kalman filter for model calibration.

Part III : — Chapter 6 proposes a complete framework for quantifying and reducing the
uncertainties affecting the properties of an aero-servo-elastic wind turbine nu-
merical model. The global sensitivity analysis methodology in the context of
stochastic time-consuming numerical model is introduced in Section 6.1. In
Section 6.2, we explore how the ensemble Kalman filter can be employed in
model calibration problems. Section 6.3 is devoted to present the wind tur-
bine numerical model, its uncertain input parameters and the selected output
quantities used for quantifying and reducing the uncertainties. In Section 6.4, a
wind turbine numerical case study is used to illustrate the proposed framework
and its capabilities in calibrating parameters with noisy pseudo-experimental
output data.

— Chapter 7 extends the previous framework to the uncertainties affecting the
wind field by relying on a data-driven data assimilation method. Section 7.1
describes the different uncertainties considered in this study. In Section 7.2,
the theoretical framework of data-driven data assimilation is detailed with a
specific interest in the ensemble Kalman filtering scheme coupled with the
analog forecasting strategy. Finally, results of the application of this complete
procedure of uncertainty quantification and reduction to a wind turbine model
are presented in Section 7.3.

Finally, the last chapter exposes some conclusions on this thesis work and draws some
perspectives for future research work.
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Il n’est pas certain que tout soit incertain.

Blaise Pascal



1
Uncertainty Quantification

Ce chapitre présente quelques concepts et méthodes associés à la quantification des incer-
titudes. Ce domaine regroupe de nombreux outils statistiques, tels que la propagation des
incertitudes, l’analyse de sensibilité, la construction d’un modèle de substitution et la cali-
bration de modèle. Dans la Section 1.1, nous aborderons le principe de la propagation des
incertitudes à travers un modèle numérique. Puis dans la Section 1.2, nous détaillerons
quelques méthodes d’analyse de sensibilité. Ces méthodes sont des outils utiles lors de
l’exploitation de modèles numériques permettant notamment de caractériser quels sont
les paramètres d’entrée du modèle qui contribuent le plus à la variabilité d’une quan-
tité d’intérêt obtenue en sortie, quels sont ceux qui n’ont pas d’influence et quels sont
ceux qui interagissent entre eux. Néanmoins, ces approches mathématiques présentent une
contrainte computationnelle élevée. Ainsi, la Section 1.3 présente l’approche qui consiste
à ajuster un modèle de substitution pour s’affranchir du coût de calcul prohibitif du modèle
numérique initial. Le modèle de substitution est ajusté à partir d’un nombre d’appels limité
au modèle numérique initial. Dans la Section 1.4, nous nous concentrons sur la descrip-
tion de méthodes de calibration permettant de mettre à jour la valeur des paramètres
d’entrée à partir de mesures in situ. Ces approches pour la calibration de code numérique
couplées au développement des technologies de capteurs permettent d’envisager la mise à
jour en continu des modèles numériques grâce aux mesures effectuées sur le système en
fonctionnement. Dans ce contexte, les méthodes provenant du domaine de l’assimilation
de données peuvent apporter une réponse. En particulier, les techniques de filtrage qui ont
la faculté d’être facilement exécutables en parallèle, ce qui est d’un grand intérêt pour les
codes numériques coûteux en temps de calcul que nous introduirons au Chapitre 5. Pour
terminer dans la Section 1.5, nous proposons une revue bibliographique des méthodes de
quantification des incertitudes dans le domaine de l’énergie éolienne.
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Chapitre 1. Uncertainty Quantification

Introduction

During the last decades, numerical models have been widely used to substitute physi-
cal experiments which are considered costly and difficult to perform [Santner et al., 2003].
In our industrial context, a numerical model, also known as a simulator, includes math-
ematical equations describing the physics of the system, discretization techniques, and
algorithms used to solve the discretized equations. Nevertheless, in practice, such a sim-
ulator never fully reproduces the real phenomena of interest. Indeed, they always rely
upon physical simplifications, numerical approximations, and the estimation of the model
input parameters can be inaccurate, i.e., uncertain. Consequently, one has to assess the
impact of these uncertainties on the model response, in particular the ones due to the
input parameters. In the literature, two categories of uncertainties are considered. On
the one hand, the aleatoric uncertainties, also called statistical uncertainties, representing
the inherent variability of the inputs, e.g., intrinsic random fluctuations of some environ-
mental variables. On the other hand, the epistemic uncertainties which result from a lack
of knowledge on the input parameters [Walker et al., 2003]. In many cases, both types
of uncertainties may be present in the system of interest [Smith, 2013, Soize, 2017] and
it is challenging to describe and quantify the uncertainty [Der Kiureghian and Ditlevsen,
2009]. Hereafter, we will focus on the epistemic uncertainty which refers to a lack of
knowledge and can thus be considered as reducible.

Uncertainty quantification (UQ) aims at taking into account uncertainties affecting
input parameters of numerical models and studying their impact onto the model response
[De Rocquigny et al., 2008, Smith, 2013, Ghanem et al., 2017]. The UQ field entails
many statistical tools, such as, uncertainty propagation, surrogate modeling or parameter
inference [Sullivan, 2015]. Throughout this chapter, we will suppose that the physical
system of interest is represented by a model denoted by f and defined by the deterministic
function:

f :

{
P ⊂ Rp → R
x = (x1, ..., xp)

T 7−→ y = f(x)
, (1.1)

where, the input parameters of the model are gathered into a vector denoted x and the
model response scalar output (also referred to as quantity of interest in the rest of this
chapter) is y.

The input parameters usually represent physical constants which describe the math-
ematical formulation of the system of interest. Nevertheless, in many simulators, one
can also consider in this input parameter vector, some tuning parameters, which have no
physical interpretation. They have to be properly defined by the user in order to make
the numerical model mimics the underlined physical phenomena. As mentioned by Sudret
[2007], in the field of mechanical engineering, such as wind turbine modeling, the input
parameters of the simulator can encompass:

• parameters modeling the loading of the system of interest;

• parameters specifying the geometry of the system, such as thickness, length, cross-
sections, etc.;

• parameters describing the material constitutive laws, such as stiffness parameter,
damping’s ratios, Young’s modulus, etc.

At the opposite, the quantities of interest obtained from the numerical model are usually:

• displacements (or velocities), e.g., vector of nodal displacements (or velocities) in
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the context of finite element simulation;

• damage equivalent load, electricity production, rotor velocity, temperature, etc., in
case of wind turbine analysis;

• stress quantities, such as stress intensity, equivalent Von Mises stresses, etc.

By taking the formalism described by Baudin et al. [2017], four main steps can be
considered to perform UQ analysis and are summarized in Figure 1.1.

Figure 1.1 – Sketch representing the different steps that compose an uncertainty quantifica-
tion procedure adapted from [Baudin et al., 2017].

According to the authors, these main steps can be detailed as follows:

Step A consists in defining the model and identifying the quantity of interest but also
the input parameters that should be used to assess the physical system of interest.

Step B consists in quantifying all the sources of uncertainties by determining the input
parameters considered as poorly or not known. During this step, their variability
are established by modeling them as a random vector with distribution selected
by statistical fitting or expert knowledge.

Step C consists in propagating uncertainties from the input parameters through the
numerical model in order to estimate the distribution of the quantity of interest
defined in Step A.

Step D consists in analyzing the sensitivity of the different random input parameters
on the randomness of the quantity of interest. This step allows to hierarchize the
uncertainty sources and is known as sensitivity analysis (SA).

Step E aims to estimate the values or the posterior probability distribution of the
unknown input parameters by employing methods that use real observations of
the model response.
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In this chapter, we propose a brief state-of-the-art of the different strategies used for
uncertainty quantification analysis. In Section 1.1, some of the methods for propagation
of uncertainty existing in the literature are formulated. Then, in Section 1.2 a review of
sensitivity analysis procedures is presented. Section 1.3 proposes to address the subject of
metamodeling to approximate a time-consuming numerical model. Uncertainty reduction,
also known as model calibration, is explained in Section 1.4. Lastly in Section 1.5, we
propose a review of uncertainty quantification techniques for wind turbine applications.

1.1 Uncertainty Propagation

Uncertainty Propagation (UP) attempts to pass on uncertainties from the input
parameters throughout the numerical model of interest, also known as the simulator
[Ghanem et al., 2017]. These uncertainties can be described by a probability distribution
function (pdf). Then propagating input parameter uncertainties through the numerical
model consists in determining the pdf of the model response. Let us suppose that such
probabilistic description of the input parameters has been defined from Step B, see Fig-
ure 1.1, in terms of a random vector denoted by X ∈ P ⊂ Rp with mutually independent
components. Then, the random model response vector is defined as:

Y = f(X) ·

As mentioned previously, the purpose of UP is to investigate the probabilistic content of
the random model response Y by studying its probability distribution function. Figure 1.2
is a graphical representation of the classical UP procedure. Nevertheless, computing the
model response distribution is most of the time not a straightforward task. Indeed, such
pdf depends on the joint pdf of the unknown input parameters and on the model functional
representation f . Consequently, methods to perform UP have been developed, [see Lee
and Chen, 2009].

In the literrature, a classification of methods for UP is proposed as follow, [see Sudret
and Der Kiureghian, 2000] :

• second moment methods provide an estimate of the response variability by giving
the first two statistical moments of the quantity of interest, i.e., the mean value µY ,
and the standard deviation σY ;

• spectral methods deal with the complete pdf by doing an expansion of the quantity
of interest onto a suitable basis;

• structural reliability methods investigate the tails of the pdf of the response of in-
terest. These methods rely on the computation of the probability of exceeding a
predefined threshold.

We focus our interest in this section on second moment methods, i.e., methods allowing
to investigate the mean and standard deviation values of a quantity of interest Y = f(X),
such as :

µY = EX[f(X)] =

∫
P
f(x)p(x)dx ,

and the variance,

σ2
Y = V arX[f(X)] = EX[f(X)2]− EX[f(X)]2 ·
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1.1. Uncertainty Propagation

Figure 1.2 – Graphical representation of the uncertainty propagation procedure.

In this context, Monte Carlo (MC) simulation can be used to estimate respectively the
mean value and the variance previously defined. MC approach is a sampling method, first
introduced by Von Neumann and Ulam [1951], which relies on the law of large numbers.
Assuming that a s sample of input parameter vector has been constructed, denoted by
{x(1), . . . ,x(s)}, the estimators of those two first statistical moments are defined as:

µ̂Y =
1

s

s∑
i=1

f(x(i)) ,

σ̂2
Y =

1

s− 1

s∑
i=1

(
f(x(i))− µ̂Y

)
·

This sampling strategy is widely employed in the probabilistic UP framework due
mainly to its non-intrusive property. Nevertheless, a major drawback is its convergence
rate in o(s−1/2) which makes it infeasible when we are dealing with computationally expen-
sive numerical model. In order to outperform this convergence rate, different methodolo-
gies based on variance reduction techniques have been proposed [Rubinstein and Kroese,
2016], e.g., importance sampling [Hastings, 1970, Gilks and Berzuini, 2001, Robert and
Casella, 2004], quasi-Monte Carlo sampling [Niederreiter, 1978, Caflisch, 1998] or Latin
Hypercube Sampling (LHS) see Section 3.5. Another well-known approach consists in ap-
proximating the time-consuming numerical code by a reduced model, called a metamodel
(also known as a surrogate model), which can be simulated with acceptable calculation
time, see Section 1.3.
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1.2 Sensitivity Analysis

Sensitivity Analysis (SA) aims to determine the contribution of different sources of
uncertainty in the inputs on the output obtained from a complex system [Saltelli et al.,
2004]. In the SA literature, two major procedures are presented: local and global SA
methods.

Local SA methods quantify the impact of an input parameter on the numerical model
around a nominal value. In other words, local SA methods indicate how fast the output
increases or decreases locally around given values of the input parameters. Such kind of
SA is mainly done with partial derivatives. Let us assume that the response is modeled by
the mathematical function f : P ⊂ Rp → R, described in Equation (1.1). The first-order
local sensitivity index of the i-th parameter is defined as the partial derivative of the
output of interest with respect to the input parameter, at a given nominal value x0 :

Slocali =
∂f(x)

∂xi

∣∣∣∣
x=x0

·

Such so-called local techniques rely mainly on the computation of gradient of the quantity
of interest (QoI) with respect to its parameters around a given nominal value. In order
to estimate efficiently this gradient, numerous techniques have been proposed such as
adjoint differentiation methods or finite-difference approximation methods [Cacuci, 2003].
A major drawback of this definition of sensitivity lies in its local property. Indeed, if
the function of interest f is highly nonlinear with respect to xi, then the computed
partial derivative will vary depending on the considered nominal value. In other words,
derivatives are only informative at the point where they are estimated. Nevertheless, local
approaches are commonly employed when dealing with industrial numerical model with
a large number of parameters.

At the opposite, global methods consist in studying the impact of the input parameter
variation on the variability of some output by considering their whole variation space
[Saltelli et al., 2007]. Three different techniques can be considered in order to perform
global sensitivity analysis (GSA): screening approaches, methods measuring the effect
of a parameter distibution on the output distribution, and other measures. In order to
properly choose the most suitable GSA method, Saltelli et al. [2004] emphasize the need
to specify the objectives of the study and propose the following ones:

— factor prioritization: identification of the input parameters for which uncertainty
reduction would allow to obtain the greatest reduction of the uncertainty impacting
the quantity of interest;

— factor fixing: identification of the non-influential parameters in order to set them
to nominal values without influencing the quantity of interest obtained from the
numerical model;

— factor mapping: mapping the output behavior in function of the input parameters
by focusing on a specific domain of parameters if necessary;

— variance cutting: determination of the input parameters to be fixed in order to
obtain a given tolerance in the uncertainty affecting the quantity of interest.
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1.2.1 Screening methods

Firstly, the screening methods are based on the amplitude of the variations of the
QoI obtained considering different input parameter values. They have been developed in
order to quickly explore the variability of a QoI induced by the variation of each input
parameter. Such characterization of the importance of each parameter on a quantity of
interest can be performed by computing the derivatives of the output with respect to an
input and considering the others as constant.

In the literature, such characterization can be done by using elementary effects mainly
developed in Morris method [Morris, 1991]. Hereafter, let us consider the model f with
p independent input parameters x = (x1, . . . , xp)

T varying in the p-dimensional unit
cube, P = [0, 1]p. Then, the input space P is discretized into a q-level grid, such as
D = [0, 1

q−1 ,
2
q−1 , . . . , 1]p. The elementary effect of input parameter Xi, with i ∈ {1, . . . , p},

is hereafter denoted by EEXi
and defined as follows:

EE
(k)
Xi

=
f(x(k) + eiδ)− f(x(k))

eiδ
, (1.2)

where δ, known as the grid jump, is a value in { 1
q−1 , . . . , 1 − 1

q−1}, q is the number of

levels, ei is a vector of the canonical base, and x = [x
(k)
1 , . . . , x

(k)
p ]T a randomly selected

value on the grid D such as X + eiδ is still in the domain of parameter space.
In a nutshell, Morris screening method consists in moving each parameter one-at-a-

time between each model evaluation (one-at-a-time method). The distribution of the
effect associated to the i-th input parameter in Equation (1.2) is obtained by randomly
sampling N different x from D which induces to a total number of calls to the function
f of N × (p + 1). The sensitivity measures proposed by Morris, are the estimates of the
mean and the standard deviation describing the distribution previously mentioned. The
estimate of the elementary effect for each input parameter describes its overall influence
on the output of interest and is defined as:

µ̂i =
1

N

N∑
k=1

EE
(k)
Xi
·

In the context of non-monotonic model, an estimated mean of the elementary effects near
zero does not mean that the input parameter has no impact on the output variability.
Indeed, in the case of non-monotonic model, a variation of the input parameter value
can change the sign of the output and consequently results in a cancellation of its effect
as described in Equation (1.2). To circumvent this issue, authors in [Campolongo et al.,
2011] propose to estimate the mean of the absolute elementary effect :

µ̂∗i =
1

N

N∑
k=1

| EE(k)
Xi
| · (1.3)

As said previously, the second index is the estimate of the standard deviation of the
elementary effect. This measure gives an indication of the presence of interactions and/or
nonlinearity between the i-th input parameter and the other ones. It is defined as:

σ̂i =

√√√√ 1

N − 1

N∑
k=1

(EE
(k)
Xi
− µ̂i)2 · (1.4)
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By calculating the indices defined in Equations (1.3) and (1.4), the method can lead
to the identification of three types of input parameters: non influential input parameters,
influential input parameters with linear effects, and influential input parameters with non-
linear and/or interaction effects [Iooss and Lemâıtre, 2015]. Figure 1.3 gives a graphical
representation example of a trajectory design in the 2-dimensional input parameter space
with N = 3 random samples. The input parameter space is uniformly divided into 9
levels and the grid jump is δ = 1
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Figure 1.3 – Graphical representation of Morris screening method with N = 3, q = 9 and
δ = 1

8 . The filled circles are the random nominal sample points from which the
random perturbation based on the grid jump is carried out one-at-a-time.

An extension of this method has been proposed by Sobol’ and Kucherenko [2009]. The
described method, called derivative-based global sensitivity measures (DGSM) allows to
quantify any little variation of the quantity of interest due to input parameters by using the
second moment of model derivatives as importance measure [Lamboni et al., 2013]. DGSM
might require some regularity assumptions on the numerical model and in general it is not
recommended for highly nonlinear model [Sobol’ and Kucherenko, 2009]. An inequality
relation between total Sobol’ indices (see Chapter 3) and DGSM has been established
by Sobol’ and Kucherenko [2009] and further extended for any input parameter having a
Boltzmann probability measure in [Lamboni et al., 2013].

1.2.2 Methods measuring the effect of a parameter distibution
on the output distribution

In order to classify by order of importance the different parameter influences, other
sensitivity methods measuring the effect of a parameter distribution on the output distri-
bution must be used. These approaches are based on sensitivity indices allowing to define
a measure of the influence of an input parameter, taken singly or in combination with
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others, on the variability of the quantity of interest [Saltelli et al., 2007]. When dealing
with nonlinear and non-monotonic model, a classical measure of importance is the vari-
ance. Variance-based methods consist in fixing one parameter (or several parameters),
and studying the impact on the output variability. The first works based on this idea were
done by Hora and Iman, [see Hora and Iman, 1986], with the introduction of a measure
of importance for the variable Xi given by:

Ii =
√
V ar[Y ]− E[V arXi

[Y |Xi = xi]] · (1.5)

Nevertheless, as proven by the authors, the measure in Equation (1.5) is not robust and
can be highly influenced by outliers. Thus, Iman and Hora have proposed a new index,
[see Iman and Hora, 1990], defined as:

V arXi
[E[log(Y )|Xi = xi]]

V ar[log(Y )]
,

where, E[log(Y )|Xi = xi] is estimated by a linear regression. Then, McKay [1997] uses
a classical regression model, the decomposition of the total variance, and considers as
measure of sensitivity the correlation ratio, defined as:

η2i =
V arXi

[E[Y |Xi = xi]]

V ar[Y ]
· (1.6)

This index is a straightforward measure of the impact of Xi on the output Y . The
conditional expectation E[Y |Xi = xi] is the best approximation of Y by a function of
only Xi [Saltelli et al., 2007]. By considering the variance of this conditional expectation,
one can obtain the spread of Y due to the variation of Xi. Then, the ratio presented in
Equation (1.6) allows to compare this dispersion with the overall one V ar[Y ]. This index
is also known as the first-order sensitivity index and has been generalized by Sobol’ based
on the functional analysis of the variance (FANOVA), see Chapter 3.

As detailed in Section 3.3, Monte Carlo sampling based on pick-freeze procedures
can be used in order to estimate Sobol’ indices [Homma and Saltelli, 1996, Sobol’, 2001,
Saltelli, 2002]. To reduce the computational cost, as proposed by Tissot and Prieur [2015],
one can rely on a pick-freeze scheme based on replicated sampling. Cukier et al. [1978]
propose another strategy which relies on a multi-dimensional Fourier transform, called
the Fast Amplitude Sensitivity Test (FAST). Later, Tarantola et al. [2006] have coupled
the FAST technique with a random balance design. The previous mentioned estimation
procedures are based on structured sample designs. To overcome sampling constraints,
estimation procedures based on given data sets have been developed [Plischke, 2010,
Plischke et al., 2013].

In some applications, variance-based methods are not useful to properly estimate the
global effect of parameters. Indeed, variance can sometimes poorly represents the vari-
ability of the output distribution. In this context, Borgonovo [2007] proposes a new
sensitivity measure which allows to analyze the impact of parameter uncertainty on the
overall output distribution. This moment independent sensitivity measure has been fur-
ther developed by Da Veiga [2015], based on measures of dissimilarity and dependence.
Other moment independent measures have been proposed in the literature, such as the
entropy-based sensitivity indices [Krzykacz-Hausmann, 2001, Liu et al., 2006, Auder and
Iooss, 2008].
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1.2.3 Other measures

Another approach in GSA consists in fitting a linear model in order to explain the
behavior of Y given the values of the parameters X and then to compute sensitivity
measures such as Pearson correlation or partial correlation coefficients. These methods
based on the analysis of linear models are often referred to as the so-called sampling-
based global sensitivity analysis method [Helton and Davis, 2003]. However, they require
linear and/or monotony assumptions. These hypotheses have to be validated thanks to
statistical techniques, such as the predictivity coefficient and the coefficient of determi-
nation [Iooss and Lemâıtre, 2015]. Nevertheless, they often limit the application of the
sampling-based GSA approaches.

SA for dependent input parameters have been also investigated. In this context, one
can rely on Shapley effects [Owen and Prieur, 2017]. This sensitivity measure, described in
[Owen, 2014], is based on the cooperative game theory concept of Shapley value [Shapley,
1953].

1.3 Surrogate modeling

The large majority of uncertainty quantification procedures require a large number
of calls to the numerical model, which quickly goes beyond the limits of available re-
sources when you are dealing with long-running computational code [Iooss et al., 2010,
Iooss and Saltelli, 2016, Lamboni et al., 2011, Le Mâıtre and Knio, 2010, Saltelli et al.,
2007, Storlie et al., 2009]. Consequently, to perform such analyses, the time-consuming
numerical model has to be replaced by a mathematical approximation (often referred to as
metamodel) which relies on an acceptable number of output simulations. A metamodel,
also known as surrogate model, is a generalization of the response surface methodology
proposed by Box and Draper [1987].

In uncertainty quantification, several surrogate models are commonly used, such as
reduced bases [Janon et al., 2013] and reference therein, polynomial chaos expansion [Su-
dret, 2008], neural networks [Alam et al., 2004, Fang et al., 2005] or Gaussian process
regression, see Section 4.1. Some of them allow to obtain Sobol’ index analytical expres-
sions. In other words, by using some metamodels, we can directly estimate the sensitivity
indices without any additional cost.

Sudret [2008] has proven that Sobol’ indices are obtained as a direct byproduct of the
polynomial chaos (PC) decomposition. PC methodology consists in building a polynomial
response surface to model the dependency of the output as a function of the uncertain
input parameters. Assuming that the output variable has a finite variance and that the
parameters are independent [Soize and Ghanem, 2004]:

Y =
∑

α∈NM

aα Ψα(X) ,

where Ψα(X) are multivariate orthonormal polynomials defined according to the distribu-
tion of the input parameters and aα are coefficients to be estimated. PC metamodeling has
been used in many fields, such as structural mechanics [Dubreuil et al., 2014, Berveiller,
2005], wildfires [Rochoux et al., 2014], hydraulics [Liang et al., 2008] or hydrology Deman
et al. [2015].
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The formulation of the Gaussian process (GP) method provides also analytical formu-
lae for the Sobol’ indices [Chen et al., 2004, Oakley and O’Hagan, 2004]. GP method is
related to the kriging approach in geostatistics [Krige, 1951], developed for spatial interpo-
lation. Then, Sacks et al. [1989] applied this method to numerical models by considering
the correlation between two simulated responses depending on the distance between input
parameters. GP model treats the numerical model response as a realization of a Gaussian
stochastic process characterized by its mean and covariance functions, see Section 4.1.

These two metamodeling approaches have been widely used in the uncertainty quan-
tification field [Soize and Ghanem, 2004, Le Mâıtre et al., 2004, Choi et al., 2004, Le
Gratiet et al., 2017, Lockwood and Anitescu, 2012, Marrel et al., 2015b]. They have been
compared for sensitivity analysis studies [Le Gratiet et al., 2017, Owen et al., 2017, Schöbi
et al., 2015]. In this work, we will focus on Gaussian process regression metamodeling
to approximate the behavior of the numerical model of interest. Indeed we are inter-
ested in the GP metamodeling principle which allows a direct estimation of the predictive
error, useful when estimating Sobol’ indices [Oakley and O’Hagan, 2004, Marrel et al.,
2009, Le Gratiet et al., 2013]. In Chapter 4, we briefly explain the Gaussian process
metamodeling approach and its use for Sobol’ index estimation.

1.4 Model Calibration – Uncertainty reduction

Model calibration aims to answer the question of how measured data can inform about
the model input parameters and reduce their uncertainty. Model calibration is also known
in the literature as inverse problems [Tarantola, 2005]. These problems aim to infer the
most likely combination(s) of parameters which cannot be observed directly by using
measurements. In this scientific field, two paradigms are facing [Smith, 2013]. Firstly,
there are the frequentist methods in which parameters are assumed to be determinis-
tic but unknown. An estimation of these unknown parameters can be done through a
statistical minimization of the error between the measurements and model predictions.
Nevertheless, as highlighted by Hadamard, Jacques [1902], these inverse problems can be
considered as ill-posed, i.e., problems where some (or all) targeted parameters cannot be
identified based on available data. To overcome this ill-conditioned aspect, one can rely
on Bayesian approaches which allow to model the uncertainty associated to the inferred
set of parameters by a probability distribution [Muto and Beck, 2008]. These calibration
techniques use measurements to update some prior probability distribution to a posterior
one [Kennedy and O’Hagan, 2001, Tarantola, 2005]. These methods are based on Bayes’
theorem which can be written as following:

pX|Y(x|yobs)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
pY|X(yobs|x) .

prior︷ ︸︸ ︷
pX(x)

pY(yobs)︸ ︷︷ ︸
evidence

,

where yobs is a vector of n noisy observations.
In the literature, Bayesian model calibration has been mainly applied in a batch

manner, i.e., offline. These procedures rely on a batch of observations for performing
model calibration by typically using Markov chain Monte Carlo methods (MCMC). A
well-known strategy among the different methods is the Metropolis-Hastings algorithm
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[Hastings, 1970]. It relies on the sequential construction of a Markov chain by applying
acceptance-rejection. However, this approach can require thousands of sampling points
before convergence of the posterior is achieved. This requirement can quickly be expensive
due to the fact that each sampling point corresponds to an evaluation of the numerical
model. To overcome this computational burden, a possible solution is to use a surrogate
model to replace the numerical model, [see Marzouk et al., 2007, Yan and Zhou, 2019].

Recent decades have been marked by a simultaneous development of sensor tech-
nologies and internet of things capabilities. Thus, our research efforts have been mostly
directed toward online techniques, i.e., the data are sequentially processed when new
observations become available. In this context, the model parameter inference can be car-
ried out using a parameter estimation algorithm based on sequential Bayesian updating
techniques. In geosciences, these techniques are called data assimilation methods [Blayo
et al., 2014]. These inverse methods have found numerous applications in other fields such
as oceanography, weather forecasting, seismology or finance [Ghil and Malanotte-Rizzoli,
1991, Emerick and Reynolds, 2012]. Historically, they have been used to monitor the
latent state of a system by combining a model with real observations. The rise and the
generalization of these methods have occurred in the middle of the 20-th century with
the works of Kalman [Kalman et al., 1960]. These works have led to the Kalman filter,
providing the best linear unbiased predictor under linearity assumption of the model and
Gaussianity. In the extended Kalman filter the restriction of linearity is relaxed thanks
to a linearization of the model and the observation operator. Then, Evensen [2009] intro-
duced a Monte Carlo variant of the Kalman filter, called Ensemble Kalman Filter (EnKF).
EnKF, seen as an online Bayesian calibration method, is computationally efficient which
is a crucial advantage for real-time monitoring applications. However, it is still based on a
Gaussianity assumption of the prior and posterior probability distributions. In some engi-
neering practical cases, the Gaussianity assumption might be inexact. Thus, other online
Bayesian inference methods have to be used in order to identify parameters. These ap-
proaches are called sequential Monte Carlo or particle filter methods, [see Chopin, 2002].
Nevertheless, such methods suffer from the so-called curse-of-dimensionality, i.e., the re-
quired number of particles, in order to approximate the probability distribution, increases
with the dimension of the system under study. Some examples of model calibration using
a sequential Bayesian inference can be found in the literature, see e.g., Conte et al. [2015]
for input parameter inference of nonlinear finite element (FE) models using the extended
Kalman filter, iterated Extended Kalman filter, and unscented Kalman filter and Tekieli
and S loński [2013] for an experimental validation of a parameter inference of a FE model
of a structure.

1.5 Uncertainty quantification in wind energy

Uncertainty quantification studies of fully aero-servo-elastic numerical models are not
frequent. However, a few authors have done some work to identify the sources of uncer-
tainty in wind turbine numerical models. Negro et al. [2014] study which parameters,
characterizing the design of support structures and foundations of offshore wind turbine,
have to be considered. The authors mainly investigate the uncertainties in the structural
model. Sørensen and Toft [2010] deal with uncertainties in material properties consti-
tuting wind turbine structural model based on expert knowledge. In the literature the
research work was mainly devoted to the identification of sources of uncertainty in the
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external solicitations. Dimitrov et al. [2015] use high-frequency wind velocity observa-
tions from two test stations in order to deduce a probabilistic model for the wind shear.
An overview of uncertainties affecting a wind turbine is given by Veldkamp [2006, 2008],
where the author proposes to categorize them in five groups: wind climate, sea climate,
aerodynamics, structural model, and material fatigue properties.

After assessing the sources, the objective is to propagate these uncertainties through
the wind turbine numerical model. Graf et al. [2016] propose to use a Monte Carlo
simulation to propagate the uncertainties affecting five parameters modeling the inflow
conditions to the lifetime equivalent fatigue loads of a floating offshore wind turbine.
Nevertheless, due to the time-consuming behavior of these models, research efforts have
been mainly devoted to the use of surrogate models. Murcia et al. [2018] use polynomial
chaos expansion surrogate models in order to propagate the uncertainties affecting the
environmental conditions in the context of fatigue estimation and energy production of
a wind turbine. In Toft et al. [2016b,a], the authors analyze the influence of uncertain
wind solicitation parameters on fatigue loads using a quadratic response surface technique
based on a circular central composite design. Morató et al. [2019] fit a Gaussian process
regression model, also known as kriging model, to approximate the stresses and moments
of an offshore wind turbine and thereby obtain its reliability. In [Teixeira et al., 2017], the
authors fit a Gaussian process regression model to highlight the importance of different
wind and wave inflow parameters. Abdallah et al. [2019] develop a multi-fidelity surrogate
modeling approach based on hierarchical kriging for multiple aero-servo-elastic numerical
models of varying complexity in order to simulate the extreme flapwise bending moments
at the blade root. Clifton et al. [2013, 2014] propose to use different regression-tree
surrogates for modeling the power production and equivalent fatigue loads as a function
of wind speed, turbulence intensity and shear exponent.

Sensitivity analyses to determine the most influent input parameters are quite rare in
the field of wind energy. Robertson et al. [2019a] propose to estimate elementary effects to
perform a global sensitivity analysis of an aero-servo-elastic numerical model. The authors
in [Murcia et al., 2018] use polynomial chaos expansion metamodeling to estimate Sobol’
indices. Their study shows that the turbulent inflow realization has a major influence
on the distribution of equivalent fatigue loads in comparison with the shear coefficient
or yaw missalignment. In a similar manner, Rinker [2016] builds a four-dimensional
polynomial surface response to estimate Sobol’ sensitivity indices of turbine load response
to turbulence parameters. Recently, Hübler et al. [2017] propose a hierarchical four-step
global sensitivity analysis of offshore wind turbines based on aero-elastic time domain
simulations. The authors rely on a quantification of the sources of uncertainty based on
expert knowledge in the first step, an one-at-a-time sampling strategy in the second one, a
linear regression in the third step, and finally, a variance-based analysis. However in this
study, the framework used for performing global sensitivity analysis neglects the inherent
stochasticity of the aero-servo-elastic numerical models.

After identification of the most influential parameters on the variability of some out-
put of interest, one can focus on model calibration techniques. Model calibration of fully
coupled aero-servo-elastic numerical codes is extremely rare. In the specific context of
component models, Van Buren et al. [2013] propose to perform the calibration of a sim-
plified finite element model for a wind turbine blade based on Bayesian inference. The
authors first rely on a global sensitivity analysis based on ANOVA to determine the most
influential parameters on blade vibrations. Then, these parameters are inferred using
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Markov chain Monte Carlo methods. Due to the computational cost of the approach,
they propose to approximate the finite element model by a Gaussian regression model.
For online inference problems, Kalman filtering has been mainly employed for the estima-
tion of inflow wind speed [Østergaard et al., 2007, Soltani et al., 2013], yaw misalignment
[Simley and Pao, 2016], and wind shear [Bottasso et al., 2010]. Nevertheless, these ap-
plications rely on the representation of the wind turbine numerical model as a simplified
linearized state-space model. These methods are referred to in the literature as digital
concepts [Branlard et al., 2020].

In this work, we propose a complete framework to quantify and reduce the uncertain-
ties affecting a wind turbine numerical model. It employs a global sensitivity analysis
based on the Sobol’ index estimation and a recursive Bayesian inference procedure to
reduce the uncertainties. In order to alleviate the computational cost of the index es-
timation during the sensitivity analysis of the fatigue loads, we propose to replace the
aero-servo-elastic time-consuming numerical model by a surrogate. Nevertheless, the ma-
jor challenge in building such mathematical approximation is the fact that the turbulent
wind inflow realization causes variations in the wind turbine model quantity of interest.
Hence, we propose to use a noisy heteroscedastic Gaussian process regression model to
take into account the variability on the turbine response induced by different turbulent
wind fields. Then, the recursive Bayesian inference strategy is based on the ensemble
Kalman filter. This sequential data assimilation is computationally efficient with high-
performance computing tools which is crucial for online calibration of time-consuming
codes, such as aero-servo-elastic wind turbine model. Lastly, the presented methodology
is extended to the recursive reduction of the uncertainties affecting the turbulent synthetic
wind field parameters by relying on a combination of K-nearest neighbors method with
ensemble Kalman filtering approach.

Conclusion

This first chapter introduced some of the main techniques in uncertainty quantification
for numerical models. In the context of uncertainty propagation, Monte Carlo approaches
are popular, but computationally inefficient when dealing with time-consuming computer
codes. Then, an invaluable group of techniques in uncertainty quantification is sensitivity
analysis. These techniques allow to determine how the uncertainty in the quantity of in-
terest obtained from a model can be apportioned to different sources of uncertainty in the
input parameters. Nevertheless, these techniques can be computationally too demanding
when dealing with nonlinear models. Consequently, to perform such uncertainty quantifi-
cation analyses the model has to be approximated by a metamodel. This mathematical
approximation simulates the behavior of the time-consuming computer code within a
negligible computational cost. Lastly, model calibration can be used to reduce the un-
certainties based on the combination of model predictions and observed data. A relevant
calibration technique is called the Bayesian model calibration, which uses measurements to
update some prior probability distribution of the parameters to a posterior one. One can
use sequential Bayesian updating techniques, where the data are sequentially processed
when new observations become available.

In wind energy fields, uncertainties are ubiquitous. There is a growing awareness of
taking into account these uncertainties in the wind energy community. However, research
efforts have been mainly devoted to the quantification of uncertainties in low-fidelity
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numerical models. We propose in our work to quantify and reduce the uncertainties of
a high-fidelity wind turbine numerical model. Due to the simultaneous development of
sensor technologies and internet of things capabilities, we propose to recursively reduce
the uncertainties thanks to data assimilation techniques. The suggested framework is
equivalent to the concept of digital twin, which combines measured data from the structure
and a numerical model to build a digital equivalent of the real-world wind turbine.
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2
Wind turbine modeling

Dans de nombreux secteurs industriels, la mise en place d’études expérimentales s’avère
être très chronophage et coûteuse. Ceci est notamment vrai dans le secteur éolien où les
structures sont de grandes dimensions et soumises à des chargements complexes. En outre,
l’évolution de la puissance de calcul des ordinateurs, associée à la plus grande complexité
des systèmes étudiés, a conduit à l’émergence de simulations numériques. Elles reposent
sur la modélisation du système physique sous la forme d’équations mathématiques et de
leurs résolutions numériques. Ainsi, les simulations numériques complètent l’expérience
physique et permettent de réduire les contraintes qui en découlent. Les outils de simulation
utilisés dans la conception des éoliennes visent à prédire les chargements dynamiques et
la réponse de l’ensemble du système. Dans l’étude d’une éolienne terrestre, les principales
contraintes sont issues du caractère rotatif du système et de la sollicitation externe agis-
sant sur ses différents composants ; par exemple la tour, la nacelle et les pales, qui sont
alors soumises à des déformations élastiques. Afin de garantir une utilisation optimale et
dans des conditions sûres, ces structures sont régulées par des stratégies de contrôle. Dans
ce contexte, les outils numériques utilisés pour simuler et concevoir un système éolien sont
appelés codes aéro-servo-élastiques. Ils permettent d’avoir un environnement de simula-
tion global permettant de coupler différents modèles physiques décrivant l’aérodynamisme,
le contrôle et la dynamique structurelle. Dans ce chapitre, une présentation des différentes
modélisations physiques utilisées dans ces outils aéro-servo-élastiques est réalisée. La Sec-
tion 2.1 décrit la modélisation stochastique d’un champ de vent turbulent synthétique
par approche spectrale. Dans la Section 2.2 , la théorie des éléments de pale (Blade-
Element Momentum) permettant d’obtenir les chargements aérodynamiques grâce au profil
aérodynamique des pales est décrite. La Section 2.3 est quant à elle dédiée à la descrip-
tion de la stratégie de contrôle d’une éolienne. La Section 2.4 s’attarde sur la descrip-
tion de l’analyse aéro-servo-élastique dynamique. Pour terminer, dans la Section 2.5, la
modélisation de la fatigue d’une éolienne soumise au chargement dynamique et aléatoire
du vent est évoquée.
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Introduction

The amount of renewable energies in the global energy production is currently increas-
ing continuously in order to reduce greenhouse gas emissions. In this context of energy
transition, wind power generation is developing very rapidly in France and worldwide.
In the last decade, the trend has been towards the development of larger wind turbine
structures. Indeed, the size of wind turbines is a crucial aspect for economic profitability.
A major challenge consists in lowering the cost of wind energy by finding the optimal
structural design without affecting its safety. The design standard IEC 61400-1 [IEC,
2005], published by the International Electrotechnical Commission (IEC), provides rec-
ommendations for modeling the external conditions and designing the structure, control
system and mechanical systems. In particular, it prescribes a set of environmental and
operational specifications, gathered in a number of design load case (DLC), in order to
ensure the structural integrity over the turbine’s entire lifetime.

For design validation, two major categories of limit states have to be properly repre-
sented by the DLC simulations. Firstly, the ultimate limit states which allow to estimate
the maximal mechanical loads in the turbine’s components due to external environmen-
tal solicitations and operating conditions. The second category gathers the fatigue limit
states, which consider the damage accumulation due to fluctuating loading from envi-
ronmental solicitations and gravity. Wind turbines are facing a high number of cycles
(between 1e7 and 1e8 for 20-25 years of operation), and consequently, an accurate investi-
gation has to be performed in order to estimate the damages at several critical locations.

DLC simulations consist first in splitting the domain of variation of the environmental
conditions in several bins, in relying on dynamic simulations to determine some quantity
of interest, and then in incorporating the probability of occurrence of each bin [Ragan and
Manuel, 2007, Freudenreich and Argyriadis, 2008]. The dynamic simulation of the wind
turbine system has to take into account all the phenomena that can affect its behavior
such as aerodynamics, structural dynamics, and control actions [IEC, 2005, DNV GL,
2010]. These physical effects are mutually influenced and the involved numerical model
has to evaluate them in a coupled manner. In the literature, such numerical models are
referred to as aero-servo-elastic simulators. They are composed of different sub-models
representing all the physics that contribute to the turbine dynamics, such as the external
conditions, the aerodynamics, the structural dynamics, and also the wind turbine control
strategy.

Most of fatigue DLC correspond to stochastic wind fields that have to be properly
generated in order to reflect the real-world conditions and avoid over- or under-designed
structures. In this context, the generation of synthetic turbulent wind-inflows is a crucial
aspect for wind turbine designs. There are two main models for such synthetic wind
solicitations: the Mann turbulence model [Mann, 1998] and the Kaimal spectrum coupled
with an exponential spatial coherence method [Kaimal et al., 1972]. These approaches
are stochastic spectral methods using an inverse fast Fourier transform to construct the
field in the time domain. In our work, we will focus on the stochastic method based
on the Kaimal spectrum due to its computationally efficiency and its implementation in
the open-source turbulent wind simulator TurbSim developed by the National Renewable
Energy Laboratory (NREL) [Jonkman, 2009].

In this chapter, we propose a brief overview of the different modeling aspects that
have to be considered in aero-servo-elastic simulations. In Section 2.1, we propose to
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focus on the modeling of turbulent full field winds. Section 2.2 details the Blade-Element
Momentum (BEM) theory which allows to obtain the loads on turbine blades due to
wind solicitation. Section 2.3 describes the basics of a wind turbine control strategy.
In Section 2.4, the aero-servo-elastic dynamic analysis is described. Finally, Section 2.5
gives a brief description of fatigue analysis in order to estimate the accumulated damage
that the structure is supposed to face during its overall lifetime.

2.1 Modeling of synthetic wind

Wind turbines are subjected to fluctuating loads from the wind. This environmental
solicitation is by nature random and in order to characterize it, one can define a statistical
distribution by making some assumptions. A common consideration is to assume, for 10-
minute periods, that the wind-inflow is an ergodic Gaussian process represented by a mean
wind speed u and a standard deviation σu (usually considered at the hub height of the
wind turbine) [Burton et al., 2001]. The 10-minute simulations length is a consequence of
the wind spectrum, where the high frequency range refers to the turbulence, as depicted
in Figure 2.1.

Figure 2.1 – Wind spectrum [Burton et al., 2001]

In wind energy application, the wind speed variations is often referred to as the tur-
bulence intensity defined for the 10-minute period of time as:

I =
σu
u
·

Modeling wind field requires the construction of three-dimensional wind velocity vectors
that are non-uniform in space and unsteady in time as illustrated in Figure 2.2.

The mean wind speed varies according to the height above the ground level. In IEC
standards, two possible distributions respectively named logarithmic and power-law have
been proposed to model this evolution due to ground roughness. The power law of the
mean wind profile is defined as:

u(z) = u

(
z

zhub

)α
, (2.1)

where u is the prescribed hub-height mean wind velocity, z is the vertical distance from
the ground surface, and zhub is the hub height, and α is the vertical wind shear coefficient.
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Figure 2.2 – Spatial distribution of the wind inflow upstream of the wind turbine, source
[Hasegawa et al., 2004].

The generation of the short-term variations of the wind speed is performed thanks to
turbulence spectral models depending on the wind mean speed and the standard deviation.
According to the IEC 61400-1 standard [IEC, 2005], two main methods are recommended
to model synthetic turbulent wind-inflow for the structural design of wind turbines. The
first method relies on the Mann turbulence model [Mann, 1998] while the second one is
based on the Kaimal spectrum with an exponent coherence model [Kaimal et al., 1972].
Nevertheless, other techniques (not detailed hereafter) for producing turbulent wind inflow
are available in the literature, e.g., Hilbert spectral analyses or wavelets [Gurley and
Kareem, 1999, Wang and Kareem, 2005]. The Kaimal spectrum, mainly used in wind
energy application, has a one-sided power spectral density defined as:

Sk(f) =
4σ2

k
Lk

u

(1 + 6f Lk

u
)
5
3

, (2.2)

where f is the frequency, the subscript k represents the turbulent longitudinal, crosswise or
vertical components (respectively denoted by u, v, and w), Lk is the Kaimal length scale,
u is the longitudinal mean wind speed at hub height, and σk is the standard deviation
of the wind velocity. The IEC design standard [IEC, 2005] recommends the following
relationships:

Lk =


8.10Λu, k = u

2.70Λu, k = v

0.66Λu, k = w

,

where, Λu is the longitudinal turbulence length scale parameter. According to the design
standard IEC 61400-1 [IEC, 2005], this scale parameter is given as:

Λu =

{
0.7zhub, zhub < 60 meters

42, zhub ≥ 60 meters
·
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2.1. Modeling of synthetic wind

Nevertheless, the wind inflow at hub height is not sufficient to properly simulate the
wind turbine behavior. Indeed, the wind inflow over the swept area has to be properly
generated based on a grid of points, see Figure 2.3. The different power spectra of each
point of the grid have to be correlated thanks to a coherence function:

|Sij(f)| = cohi,j(f)
√
Sii(f) Sjj(f) ,

where f is the frequency, Sij is the cross-spectral density of points i and j, and Sii and
Sjj are respectively the discrete spectrum described in Equation (2.2) at the points i and
j.

By considering an exponential spatial coherence method, this function for the longi-
tudinal wind component of two distinct points i and j separated by a distance ∆r on a
plan perpendicular to the wind direction is defined as:

cohi,j(f) = exp

−au(∆r

zm

)γ√(
f ∆r

um

)2

+

(
b′u ∆r

Lu

)2
 , (2.3)

where zm is the mean height of the two points, um is the mean of the wind speeds of the
two points, au and b′u are respectively the input coherence decrement and offset parameter,
and γ is the coherence exponent.

Figure 2.3 – Example of grids used by TurbSim to generate wind inflow with vertical angle
set to 8 ◦ and the horizontal one to 15◦ source [Jonkman, 2009]

Finally, the Veers method (also known as Sandia method), relying on an inverse Fourier
transform with random phases sampled from a quasi-random generator, is applied to
the Kaimal spectrum in order to model a turbulent time-series for each of the wind
components independently [Veers, 1988]. TurbSim is a full-field, turbulent-wind simulator
developed by the National Renewable Energy Laboratory (NREL). It allows to generate
realistic three-dimensional wind field vectors, describing the longitudinal, crosswise and
vertical components of the wind [Jonkman, 2009]. As an illustration, Figure 2.4 presents
the temporal evolution of the longitudinal wind speed at hub height over a period of
600 seconds with a wind mean speed u = 12 m/s and a turbulence standard deviation
σu = 2.04 m/s.
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Figure 2.4 – Representation of the random generation of wind inflow using TurbSim [Jonkman,
2009]. The 10-minute mean wind speed is fixed to 12 m/s with a turbulence
standard deviation σu = 2.04 m/s.

Lastly, TurbSim allows to specify the mean flow angle in the vertical or horizontal
direction across the entire grid. These angles respectively denoted φv and in φh define the
direction of the mean velocity vector with respect to the wind turbine reference coordinates
system [Jonkman, 2009]. Figure 2.3 pictures the wind components generated by TurbSim
across the entire grid by considering 15° horizontal and 8° vertical mean flow angles.

2.2 Aerodynamic Load computation

The structural response of a wind turbine is strongly influenced by the aerodynamic
loads caused by the wind action on the blades. A popular engineering tool to approximate
these aerodynamic loads in wind energy application is called the Blade-Element Momen-
tum (BEM) theory [Leishman, 2000]. The methodology relies on the combination of the
momentum and the blade element theories. The approach makes the assumption that
each blade of the wind turbine is divided along the span into a finite number of sections
of length dr.

Figure 2.5 gives a schematic representation of actuator disc and stream tube concepts
used in the momentum theory. The application of this theory allows to obtain the axial
forces dFa and torque dQ:

dFa = 4πρU2
∞a(1− a)rdr , (2.4)

dQ = 4πρU∞Ωa
′
(1− a)r3dr , (2.5)

where a and a
′
are the axial and tangential flow induction factors, r and Ω are respectively

the blade element radius and rotational speed, U∞ is the undisturbed wind speed inflow,
and ρ is the air density.
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2.2. Aerodynamic Load computation

Figure 2.5 – Actuator disc and stream tube concept for the Blade-Element Momentum theory
as proposed by Burton et al. [2001].

This methodology relies on some assumptions, such as that the aerodynamic interac-
tions between different blade elements are neglected and the forces on the blade elements
are only determined by the lift and drag coefficients [Kulunk and Yilmaz, 2009, Manwell
et al., 2010]. By applying the blade element theory based on a geometrical analysis, see
Figure 2.6, the thrust and torque quantities can be derived as:

dFa = B
ρc

2
W 2(CL cosφ+ CD sinφ)dr , (2.6)

dQ = rdFt = B
ρc

2
W 2(CL sinφ− CD cosφ)rdr , (2.7)

where B is the number of blades, CL and CD are respectively lift and drag coefficients
depending on the angle of attack α and the blade profile, c is the profile chord, and W is
the resultant relative velocity at the blade.

By combining Equation (2.4) and Equation. (2.6), Equation (2.5) and Equation (2.7),
we can develop two equations of equilibrium as:

4πρU2
∞a(1− a)rdr = B

ρc

2
W 2(CL cosφ+ CD sinφ)dr , (2.8)

4πρU∞Ωa
′
(1− a)r3dr = B

ρc

2
W 2(CL sinφ− CD cosφ)dr · (2.9)

One of the main challenges when using this theory, is to properly determine the in-
duction factors (a and a′) which represent the momentum loss due to the presence of
the rotor. A common approach is based on iteration methods [Duran, 2005, Dai et al.,
2011]. After the determination of the induction factors for each section, the axial forces
and torque can be computed for the entire rotor-blade system, such as:

Fa =

∫ rt

rr

dFa ,

Qaero =

∫ rt

rr

dQ , (2.10)

where, rr and rt are respectively the root and tip radius of the blade.
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Figure 2.6 – Blade element approach with velocities and forces on a blade element adapted
from [Wang et al., 2014].

In industrial codes, most of the aerodynamic solvers are based on BEM theory be-
cause of its simplicity [Robertson et al., 2013]. Nevertheless, this method faces some
limitations which can have a real impact for the simulation of modern large wind turbines
or depending on the operating conditions (production, idling, etc...) [see Moriarty and
Hansen, 2005]. Consequently, several corrections are usually made in order to apply this
methodology. They can include Glauert correction, hub- and tip-loss models, tower shad-
owing models, dynamic inflow correction, dynamic stall models, as well as skewed wake
corrections [Blondel et al., 2016].

2.3 Control strategy

From the rotor torque defined in Equation (2.10), it is possible to estimate the power
extracted from the wind such as:

P = ΩQaero · (2.11)

The power extracted by a wind turbine is a function of a variable called the blade tip-
speed ratio [Burton et al., 2001]. It is defined as the ratio of the rotational speed of the
blade tip over the undisturbed longitudinal wind speed:

λ =
Ωrt
U∞
· (2.12)

Then, the power coefficient, denoted by Cp, allows to quantify the efficiency of the
conversion of the wind energy by a rotor system. It is defined as the ratio of the extractable
power to the available wind power:

Cp =
ΩQaero(λ)
1
2
ρAU3

∞
, (2.13)
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where A is the total area swept by the blades. According to the Betz’ law [Van Kuik,
2007], the entire inflow power cannot be converted by the rotor system and the power
coefficient is limited to 59.3 %. Moreover, this coefficient is dependent on the tip-speed
ratio and can reach a unique maximum value for a specific ratio.

Figure 2.7 – Wind turbine operating regions [Tofighi et al., 2015]

A wind turbine operates differently depending on the wind speed value. As depicted
in Figure 2.7, one can consider four different regimes. When the wind speed value is under
a cut-in speed, the speed is not high enough to create a consistent rotation of the blades.
Then, the turbine does not operate and the rotor is usually parked or idling to prevent
an effect on the fatigue life of the blades. In this operating region, the control strategy
of the turbine involves the analysis of the wind condition in order to estimate a suitable
start.

When the wind speed is higher than the cut-in value, the turbine starts to rotate and
the generator produces electricity. The torque control strategy is activated in order to
maintain the optimum tip-speed ratio of the rotor defined in Equation (2.12).

At the rated wind speed, the turbine reaches its nominal production power according
to the converter capacities. Once the rated power is reached, it has to be regulated
in order not to overcome the capacity of the generator. Two main methods are used,
called respectively passive and active regulation methods. In the first technology, the
extracted power is controlled by using the aerodynamic stall properties of the blades.
The blade geometry is designed to present stall initialization corresponding to the rated
wind speed. Nevertheless, this economical technology creates aerodynamic perturbations,
such as vortices, which lead to important mechanical loads and structural vibrations. In
this context, active pitch control has been developed and relies on the control of the angle
of attack of the blades in function of the wind speed. It uses an actuator to rotate each
blades along their principal axis. Therefore, in order to regulate the rotational speed, the
blade orientation is changed according to the wind solicitation.
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The last regime is reached when the wind speed is higher than a cut-out speed. The
rotation is mechanically stopped by a brake system and the blades are set to a parking
or idling state in order to prevent structural damaging.

Most of the modern wind turbines contain a controller that regulates the blade pitch,
and a variable speed generator. In our work, we consider a variable-speed generator-
torque controller and proportional-integral (PI) collective blade pitch controller developed
by Jonkman [2007]. In Region 2 previously described, this baseline controller uses a 2-D
lookup table to determine the generator torque in order to maintain an optimal tip-speed
ratio. Then in Region 3, the algorithm uses a PI feedback on low-pass filtered high speed
shaft rotational speed measurements, and the control gain is rescheduled as a function of
the collective pitch angle. The parameters inside the formulation of the controller strategy
have been estimated for our wind turbine of interest using the procedure described in
[Jonkman, 2007].

2.4 Aero-servo-elastic dynamic simulations

Wind turbines are structures subjected to complex dynamic behavior. In this context,
the interaction of aerodynamics with control system and nonlinear structural reactions has
to be properly taken into account. Therefore, wind turbine models tend to be sophisticated
and to rely on coupled aero-servo-elastic simulations. This means that the turbine is not
split up into several component models being solved independently, but dependencies and
interactions are considered by employing a global model, i.e., aero-servo-elastic model.

Over the last decades, various servo-aero-elastic numerical codes have been devel-
oped, such as FAST (Fatigue, aerodynamics, structures, and turbulence) [Jonkman and
Jonkman, 2016], Bladed [DNV GL, 2013], HAWCK2 (Horizontal axis wind turbine code
2nd generation) [Larsen and Hansen, 2007] or Deeplines Wind� [Principia]. Böker [2010]
proposes an overview of the most used aero-servo-elastic numerical codes in the context
of offshore wind turbines. Moreover, several code cross-verification studies have been per-
formed [see Schepers et al., 2002, Jonkman and Musial, 2010, Popko et al., 2012]. During
these verification studies, the specific structure used to compare these numerical codes is
mainly the NREL 5MW reference wind turbine [Jonkman et al., 2009].

In order to model and simulate the nonlinear structural response of wind turbines
under external solicitations, these numerical codes mainly rely on a combination of rigid
body parts (nacelle, hub, generator) and flexible components (blades, tower, shaft). Most
of the time, beam finite elements are used to model blades and tower due to the fact that
they are slender structures with specific bending, tension, and torsion properties. In our
study we mainly rely on the open-source aero-servo-elastic code Fast and the proprietary
software Deeplines Wind� developed by PRINCIPIA in collaboration with IFP Energies
Nouvelles.

Firstly, Deeplines Wind� [Principia] is an aero-servo-elastic simulator based on a full
finite element discretization. The flexible components of the model are discretized through
finite elements interconnected at points called nodes. Each finite element has physical
properties related to the component of interest, such as mass, inertia, and stiffness. Under
material and geometrical linearity assumptions, a finite elements model can be described
by the following system of equations:

Mq̈ +Cq̇ + Kq = F , (2.14)
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where q, q̇ and q̈ ∈ Rn are respectively the nodal displacement, velocity and acceleration
vectors of the degrees of freedom from the finite element discretization, F is the external
force vector, such as the action of wind on the structure, and M ∈ Rn×n is the mass matrix,
C ∈ Rn×n is the stiffness matrix, and K ∈ Rn×n is the damping matrix. These global
matrices are obtained from the assembly of the local matrices of each finite element of
the model. In Deeplines Wind � software, beam finite elements use Mindlin formulation
also known as the thick beam theory as it takes into account the transverse shear of
the elements. The theory is coded in the nonlinear framework of large rotations, large
displacements and large deformations [see Fargues, 1995].

Due to the fact that external solicitation is time varying, the temporal discretization
of Equation (2.14) in Deeplines Wind� is performed thanks to a Newmark scheme that
we briefly describe hereafter. The reader is referred to the work of Newmark [1959] for
further details. Let us suppose that the complete solution of the system is known at
iteration tn, i.e., displacement, velocity, and acceleration vectors corresponding to the
degrees of freedom have been estimated. The Newmark method states that the velocity
and displacement vectors in the equation of motion at iteration tn+1 can be expressed as:

qn+1 = qn + ∆tq̇n +
∆t2

2
[(1− 2β)q̈n + 2βq̈n+1] , (2.15)

q̇n+1 = q̇n + ∆t[(1− γ)q̈n + γq̈n+1] , (2.16)

where γ and β are the Newmark time integrators chosen according to the applications,
and ∆t is the iteration time step.

From Equation (2.15), one can express the acceleration vector at time step tn+1 only
considering known terms and the displacement vector at iteration tn+1:

q̈n+1 =
qn+1 − qn
β∆t2

− q̇n
β∆t

−
(

1

2β
− 1

)
q̈n · (2.17)

By substituting Equation (2.15) in Equation (2.16), one can obtain the expression of
the velocity vector at time tn+1 only as a function of known terms and of the displacement
vector at time tn+1:

q̇n+1 =

(
1− γ

β

)
q̇n + ∆t

(
(1− γ)− (

γ

2β
− γ)

)
q̈n +

γ

∆tβ
(qn+1 − qn) · (2.18)

Then at iteration tn+1, one can apply the Newton-Raphson iterative scheme to solve the
system, defined in Equation (2.14), for determining qn+1. Finally, velocity and accelera-
tion vectors are updated thanks to Equations (2.17) and (2.18).

Nevertheless, high-fidelity wind turbine models based on full finite element discretiza-
tion, as the ones used in Deeplines Wind�, can involve many degrees of freedom (DoFs),
e.g., 564 DoFs for our considered onshore wind turbine. Therefore, a reduction of the DoFs
is performed in some cases to deal with affordable computing times. In that context, the
second aero-servo-elastic software, called FAST [Jonkman and Jonkman, 2016], is based
on a combined modal and multibody dynamics formulation [Jonkman et al., 2005]. The
model uses rigid bodies and flexible components to describe the structure. The flexible
components are described by using a linear modal transformation that assumes small de-
flection, small rotations, and small deformations. In FAST this transformation, proposed
by Craig Jr. and Bampton [1968], relies on the Ritz transformation:

ΦTMΦq̈ + ΦTCΦq̇ + ΦTKΦq = ΦTF , (2.19)
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where Φ is a matrix containing the modes to be included in the model. This reduction
technique allows to decrease drastically the number of DoFs and hence the size of the
system to be solved. For example in FAST, the structural model of an onshore wind
turbine considers only 20 degrees of freedom. It considers four DoFs for the tower, i.e.,
longitudinal and lateral first and second tower bending modes. Two flapwise and one
edgewise bending-mode DOFs are considered per blade. The generator azimuth angle is
modeled by one DoF as well as the torsional flexibility in the drivetrain. Nevertheless,
this reduction is constraint by the requirement of the linearity of the equations of motion.
In FAST, the temporal discretization is performed thanks to a constant-time-step Adams-
Bashforth-Adams-Moulton predictor-corrector integration scheme [Jonkman, 2003].

Both FAST and Deeplines Wind� aero-servo-elastic simulators are based on the Blade-
Element Momentum theory, and use the same control system in the form of an external
Dynamic-Link library (DLL). In Deeplines Wind�, the exchange of information between
the mechanical solver and the external aerodynamic or control libraries is performed
through application programming interfaces, at the start of each iteration time step, see
Figure 2.8. For a fully detailed study of the differences between the two software, the
reader is referred to the work of Le Cunff et al. [2013].

A specific remark has to be made on the use of these models for time-domain simu-
lations. Indeed, the initial part of aero-servo-elastic numerical simulations is often char-
acterized by a start-up transient period. The transient period is due to the application
of the gravity and rotor rotation on the model assumed to be initially at rest or in a
stationary state [Jonkman and Jonkman, 2016]. However, these start-up behaviors dis-
appear over time due to damping. Consequently, one has to testify that the response
statistics are truly representative of the structural responses of the wind turbine before
any post-processing. IEC 61400-1 [IEC, 2005] recommends to remove the first 5 seconds
or longer from the simulation statistics to reduce the impact of start-up transient periods.
Haid et al. [2013] suggest that with proper initial conditions the 60 first seconds from the
simulation has to be removed. After an autocorrelation study of the fatigue loads, we
have decided to remove the 250 first seconds from the dynamic simulations.

Figure 2.8 – Deeplines Wind� architecture
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2.5 Fatigue assessment

As highlighted by Matha [2010], the design of wind turbine components is generally
not governed by ultimate loads but mainly by fatigue loads. In this context, the design
assessment of a wind turbine relies on the estimation of the accumulated fatigue damage
that the structure is expected to face during its overall lifetime due to the fluctuating load-
ings. The fatigue accumulation at a location of the structure is represented by a damage
variable D computed by using a rainflow cycles counting algorithm and by applying the
Palmgren-Miner linear damage law with the Whöler curve of the considered material.

The rainflow counting algorithm [Cosack, 2011] consists in analyzing the fatigue cycles
contained in the load time-series by counting and sorting them depending on their ampli-
tude range. As depicted in Figure 2.9, the algorithm is divided into two main steps. First,
a reduction of the time-series is performed by transforming it into a sequence of peaks
and valleys. Then, from the obtained sequence, a cycle counting procedure is carried out
in order to extract the cycles. Among the different counting algorithms, Algorithm 1
presents the Pagoda roof cycle counting procedure.

Once the rainflow counting algorithm has determined the number ni of cycles for each
bin of stress range Si in the 10-minute time-series of structural loading response, one can
estimate the total damage using the Palmgren-Miner linear damage rule [Miner et al.,
1945]. It relies on the assumption that the damage is only dependent on the different
cycles, and on the linear damage hypothesis , i.e., the fatigue damage is the combined
sum of every different fatigue cycles contribution. By definition, when the obtained total
damage is equal to one, failure occurs. The Palmgren-Miner rule is defined as:

D =
Nc∑
i=1

ni
Ni

, (2.20)

where i = 1, . . . , Nc corresponds to each range bin, ni is the rainflow counting number of
cycles for the i-th bin, and Ni is the number of cycles to failure for bin i. This value is
determined with the Whöler curve of the material , also known as S-N curve, which gives
the relation between the number of cycles to failure Ni and the cycle range value Si. This
relation is mathematically defined as:

Ni =

(
S0

Si

)m
, (2.21)

where the empirical coefficients S0 and m, depending on the mechanical characteristics of
the material, are respectively the critical stress level and the negative inverse slope. By
combining Equations (2.21) and (2.20), the fatigue damage can be written as:

D = S−m0

Nc∑
i=1

niS
m
i ·

The notion of damage equivalent load (DEL) [Veldkamp, 2006] is often used and is
defined as a virtual stress amplitude that would create the damage D in Nref regular
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cycles.

D =
NrefDEL

m

Sm0
=

1

Sm0

Nc∑
i=1

Smi ni ,

→ DEL =

(∑Nc

i=1 S
m
i ni

Nref

) 1
m

, (2.22)

where Nref is the reference number of cycles usually set to an arbitrary value.

Algorithm 1: Pagoda roof cycle counting procedure.

1. Consider that the sequence of peaks and valleys is a template for a rigid sheet,
and turn it clockwise 90◦.

2. Each peak is seen as a point where the water starts to drip down.

3. Count the half-cycles by searching for interruption in the flow happening when
either:

— the flow reaches the end of the sequence;

— the opposite peak has a bigger magnitude; or

— the flow merges with another one having started at an earlier peak.

4. Repeat step 3. for valleys.

5. Estimate a magnitude to each half-cycle by using the magnitude difference
between its start and termination.

6. Combine all the half-cycles of the same magnitude in order to count the
number of whole cycles.

Conclusion

In this chapter we have discussed some of the main components in aero-servo-elastic
simulation of wind turbine structures. It starts with a description of the modeling of
stochastic synthetic wind fields based on a turbulence spectral model depending on the
wind speed and the standard deviation. The mentioned approach relies on the Kaimal
spectrum with an exponent coherence model. Then, from these synthetic wind-inflows,
one can approximate the obtained aerodynamic loads by using the blade element mo-
mentum theory. We can further investigate the structural dynamic behavior of the wind
turbine by taking into account the interaction of aerodynamics with control system, and
nonlinear structural reactions. In this context, aero-servo-elastic numerical codes have
been developed. In particular, they allow to compute the fatigue damage that the turbine
structure is supposed to face during its entire lifetime due to the fluctuating loadings.
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Figure 2.9 – Illustration of the rainflow cycle counting method [Si, 2015]
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Methodological tools
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Measure what is measurable, and make measurable what is not so.

Galileo Galilei



3
Variance-Based Sensitivity Analysis - Sobol’ indices

Comme évoqué dans la partie précédente, l’un des intérêts de l’analyse de sensibilité
est de déterminer les paramètres d’entrée ayant une grande importance sur la variabi-
lité d’une sortie d’un modèle numérique [Saltelli et al., 2000]. Ce chapitre est consacré
aux méthodes d’analyse de sensibilité globales sous l’hypothèse d’indépendance des va-
riables d’entrée. Nous nous focaliserons sur les méthodes basées sur le calcul des indices
de sensibilité de Sobol’ permettant de quantifier l’influence de chaque paramètre et d’iden-
tifier l’existence de potentielles interactions entre ces différents paramètres. La Section 3.1
présente l’analyse fonctionnelle de la variance (FANOVA). Dans les Sections 3.2 et 3.3,
nous présentons les indices de Sobol’ et leurs estimateurs de type Monte Carlo. Nous ne
traiterons pas des autres méthodes d’estimation disponibles dans la littérature comme par
exemple celles reposant sur une décomposition spectrale de la sortie d’intérêt du modèle
numérique [Cukier et al., 1973, Tarantola et al., 2006, Ghanem and Spanos, 2003, Prieur
and Tarantola, 2017]. Dans la Section 3.4, le cas spécifique d’étude de sensibilité sur des
séries temporelles est présenté par la méthode des indices de Sobol’ généralisés, appelés
également indices agrégés [Lamboni et al., 2008], basée sur une réduction de la dimension
par analyse en composantes principales (ACP) [Anderson, 1958, Jolliffe, 1986, Besse,
1992]. Afin de mener de telles analyses de sensibilité, un certain nombre de simulations
issues du modèle numérique est nécessaire. Pour mener ces simulations numériques, nous
nous basons généralement sur des plans d’expériences. Dans la Section 3.5, nous nous
intéressons tout particulièrement à l’Hypercube Latin qui est couramment utilisé en simu-
lation numérique du fait de ses propriétés de remplissage de l’espace.
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Introduction

As previously discussed, numerous numerical models, such as aero-servo-elastic mod-
els, involve input parameters, which are not precisely known. Global sensitivity analysis
(GSA) techniques aim to identify the inputs whose uncertainty has the largest impact on
the variability of an output of the model, also known as quantity of interest (QoI) [Saltelli
et al., 2008]. One widely used statistical tool in order to quantify the influence of each
input parameter on a QoI is based on the Sobol’ sensitivity indices [Sobol’, 1993]. These
sensitivity indices measure the part of the QoI variance due to one or a set of input pa-
rameters. This approach refers to the variance-based method and consists in decomposing
the model of interest, denoted by f , into a finite hierarchical expansion of functions. This
decomposition is called functional analysis of variance (FANOVA) and is also known as
the high-dimensional model representation (HDMR) technique [Hoeffding, 1948]. If the
inputs are independent, each of these partial variance terms quantifies the uncertainty on
the output induced by an individual input or a group of inputs. Among all Sobol’ indices
one can distinguish first-order and total effect indices. The first ones measure the effect
of a single input, while the second ones quantify the effect of a single input plus all its
interactions with the other inputs. Then, as proposed in [Saltelli et al., 2004], the closed
|u|-th order indices can be considered and allow to quantify up to |u|-th order interactions
in addition to the main effect of each of the u-tuple of input parameters. Nevertheless,
variance indicator can sometimes poorly represents the variability of a distribution. In
this context, other methods not detailed in this chapter have been developed in the litera-
ture, e.g., distribution based sensitivity indices [Borgonovo, 2007, Borgonovo et al., 2011]
or entropy-based sensitivity measures [Krzykacz-Hausmann, 2001, Liu et al., 2006, Auder
and Iooss, 2008]. The reader is referred to the article of Borgonovo and Plischke [2016]
for a complete review of sensitivity methods.

When facing complex numerical models, the analytical expressions of Sobol’ indices
are most of the time inaccessible. Indeed, the complexity of the function describing the
numerical model of interest causes the solution of index integrals to be intractable. In
such situations, one can rather estimate these sensitivity indices. The estimation of these
quantities is often performed through Monte Carlo or quasi-Monte Carlo methods [Helton
et al., 2006]. However, the numerical computation of such index estimators requires a
large number of numerical model calls, i.e., the computational cost, to estimate all first-
order and total Sobol’ indices, depends linearly on the dimension of the input space.
The original estimation procedure to estimate first-order Sobol’ indices was developed by
Sobol’ [Saltelli et al., 1993, Sobol’, 2001]. Then, Saltelli [2002] proposed combinatorial
strategies to estimate sets of Sobol’ indices, i.e., first-order and total effect indices at
once. In this work, we mention two Sobol’ index estimators proposed respectively by
Homma and Saltelli [1996] and by Monod et al. [2006] then further studied in [Janon
et al., 2014]. Moreover, Monte Carlo procedures are necessarily tainted by a sampling
error. We estimate this sampling error by using a bootstrap resampling technique [Efron
and Tibshirani, 1993, Archer et al., 1997]. This method allows to produce confidence
intervals of the Sobol’ indices with a moderate numerical cost.

Sobol’ indices, for GSA, have been developed in the context of univariate output.
Nevertheless in many cases such as wind turbine modeling, numerical models produce
functional or multivariate output. When dealing with multivariate output, such as dis-
cretized functional output, a straightforward practice is to consider each component as
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distinct output variable in order to perform a GSA [Marrel et al., 2015a]. However,
this basic implementation of sensitivity indices does not take into account the functional
aspect of the output especially the high level of redundancy between close components
[Campbell et al., 2006]. In this paper, a generalization of the Sobol’ indices for multi-
variate output based on the so-called aggregated indices is considered. The method relies
on principal component analysis (PCA) and on FANOVA decomposition allowing to es-
timate the influence of each parameter, or set of parameters, on the whole multivariate
output. Functional PCA, also known as Karhunen-Loève decomposition, consists in pro-
jecting the output on a new basis so that most information is concentrated in the first few
components [Anderson, 1958, Jolliffe, 1986, Besse, 1992]. After decomposing the output
in an orthogonal basis using PCA, generalized Sobol’ sensitivity indices are computed on
the coefficients of the expansion and then aggregated in an index, [see Lamboni et al.,
2008].

In variance-based sensitivity analysis, Monte Carlo based procedures for Sobol’ indices
estimation consist in an approximating of multidimensional integrals thanks to sampling
designs. A classic sampling scheme consists in considering independent and identically
distributed designs, as in a crude Monte Carlo sample. The major drawback of this
estimation procedure is the large number of model calls to compute reliable sensitivity
indices. When dealing with time-consuming numerical models, using an effective sam-
pling strategy is mandatory to compute the most accurate Sobol’ indices with the fewest
model calls. In this context, we can rely on space-filling sampling strategies, e.g., Latin
Hypercube Sample [McKay et al., 1979].

This chapter is organized as follows. Section 3.1 presents the FANOVA decomposition
for deterministic models. Sections 3.2 and 3.3 respectively define Sobol’ indices and
the associated estimation procedures in the framework of independent input parameters.
Section 3.4 is devoted to the procedure to define and to estimate aggregated Sobol’ indices
when dealing with multivariate output. Lastly in Section 3.5, we present a space-filling
strategy called Latin Hypercube Sampling (LHS).

3.1 Functional analysis of variance decomposition

A review of the functional analysis of variance (FANOVA) decomposition can be found
in [Tissot, 2012]. Hereafter, we will briefly present the FANOVA decomposition by con-
sidering a deterministic numerical model f depending on p mutually independent random
inputs. This decomposition was first introduced by Hoeffding [1948] and then was prop-
erly formalized in the work of Efron and Stein [1981]. The FANOVA decomposition can
be defined with the formalism described by Sobol’ [1993], such as:

Definition 1. Let x = (x1, . . . , xp), p ≥ 1, be the vector of input parameters of f . We
assume that f ∈ L2([0, 1]p) where f(x) is defined for all x ∈ [0, 1]p. Let us decompose
f(x) = f(x1, . . . , xp) as the sum of increasing dimension functions:

f(x) = f∅ +

p∑
i=1

fi(xi) +

p−1∑
i=1

p∑
j>i

fi,j(xi, xj) + ...+ f1,...,p(x1, . . . , xp) · (3.1)

Let us denote u a subset of P = [0, 1]p, −u its complement, and |u| its cardinality. The
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decomposition described by Equation (3.1) can be rewritten as:

f(x) = f∅ +
∑

u⊆P,u 6=∅

fu(xu) ·

This decomposition is unique under the following set of constraints: f∅ is a constant and∫
[0,1]

fu(xu)dxi = 0 , ∀i ∈ u,∀u ⊆ {1, . . . , p}. It is then known as Sobol’-Hoeffding or

FANOVA decomposition.

As a consequence, the summands are orthogonal to each other:∫
[0,1]p

fu(xu)fv(xv)dx = 0 ,∀u,v ⊆ {1, . . . , p} ,u 6= v · (3.2)

Moreover, a second outcome is that the constant f∅ is equal to the mean value of the
function:

f∅ =

∫
[0,1]p

f(x)dx ·

Lastly, the terms in the FANOVA decomposition can be derived analytically:

fu(x) =

∫
[0,1]|u|

f(x)dx−u −
∑
v(u

fv(x) ·

The FANOVA decomposition is the key stone to define Sobol’ indices in the framework
of independent input parameters.

3.2 Definition of Sobol’ indices

Let us consider that the uncertainty on x is modeled by a random vector that we
suppose uniformly distributed on [0, 1]p.

X = (X1, . . . , Xp) ∼ U [0, 1]p ·
Thus, the quantity of interest (QoI) Y = f(X) is a random variable. Due to orthogonality
constraints in Equation (3.2), it is possible to decompose the variance of the QoI as:

V ar[Y ] = V ar[f(X)]

= E[(f(X)− f∅)2] =
∑

u⊆P,u6=∅

V ar[fu(Xu)] · (3.3)

For any j ∈ {1, . . . , p}, V ar[fj(Xj)] represents the variance of the output due to
the main effect of the parameter Xj. For any j, k ∈ {1, . . . , p}, j < k, the term
V ar[fj,k(Xj, Xk)] represents the joint effect of the parameters Xj and Xk on the out-
put Y . And so on for partial variances of higher order. We then define the Sobol’ indices:

(i) The Sobol’ index of order |u| associated to the input vector Xu is defined as:

Su =
V ar[fu(Xu)]

V ar[Y ]
, u ⊆ {1, . . . , p},u 6= ∅ · (3.4)

In the context we are only interested in a single input, i.e., |u| = 1, the index in
Equation (3.4) is called first-order sensitivity index. It measures the contribution of
a single input to the output variance. If |u| > 1, Su evaluates the importance of the
interaction of order |u| between the inputs Xj, j ∈ u with respect to the QoI Y .
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(ii) The closed |u|-order Sobol’ index for the input vector Xu is defined as

S̃u =
τ 2u

V ar[Y ]
, u ⊆ {1, . . . , p}, u 6= ∅ , (3.5)

where:
τ 2u =

∑
v⊆u

V ar[fv(Xv)] ·

The closed |u|-order Sobol’ index in Equation (3.5) quantifies the main effect of Xu

and the effect of all interactions between variables in Xu on Y .

(iii) The total effect Sobol’ index of order |u| associated to the input vector Xu is defined
as:

Su =
τ 2u

V ar[Y ]
, u ⊆ {1, . . . , p}, u 6= ∅ ,

where:
τ 2u =

∑
v∩u6=∅

V ar[fv(Xv)] ,v ⊆ {1, . . . , p} ·

The total effect Sobol’ index of order |u| aims to quantify the main effect of Xu and
the effect of all interactions between variables in Xu and variables in X−u on Y .

By definition, according to Equation (3.3), these Sobol’ indices satisfy:

1 =

p∑
j=1

Si +
∑

1≤j<k≤p

Sj,k + . . .+ S1,...,p ·

Example 1. Let us consider a three-factor model f with X1, X2 and X3, then:

S̃{1,2} = S1 + S2 + S{1,2} ,

and,
S1 = S1 + S{1,2} + S{1,3} + S{1,2,3} ·

3.3 Estimation of Sobol’ indices

Usually the complexity of the numerical model of interest causes the analytical estima-
tion of these Sobol’ indices to be intractable. In such situations, one can rather estimate
these sensitivity indices. The estimation of these quantities is usually based on Monte
Carlo type procedures, [see Helton et al., 2006].

As in the previous sections, f is a deterministic model defined on P ⊂ Rp and valued
in R. Let us describe the so-called pick and freeze method (see, e.g., Janon et al. [2014]).
Let us consider X and X

′
two independent random vectors distributed according to the

input vector. Let u ⊆ {1, . . . , p}, u 6= ∅, from Lemma 1.2 in [Janon et al., 2014], the
closed |u|-order Sobol’ index can be expressed using covariances:

S̃u =
Cov(Y, Y u)

V ar[Y ]
, (3.6)

with Y = f(X) and Y u = f(Xu), where Xu = (Xu
j )1≤j≤p with

{
Xu
j = Xj if j ∈ u

Xu
j = X

′
j otherwise

.
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An insightful estimator consists in considering the empirical estimators of the covari-
ance and variance used in Equation (3.6). By taking the formalism of Sobol’ in [Sobol’,
1993], let us consider P and P′ two designs of size s, such as:

P = {xi}si=1, P
′
= {x′i}si=1 ·

Each row of the design is a point xi in P , the j-th column of the design refers to a sample

of Xj and for u ⊆ {1, . . . , p}, Pu = {xu
i }si=1 with ∀j ∈ [1, p]

{
xuj = xj if j ∈ u

xuj = x
′
j otherwise

.

Then, let denote:
∀i = 1, . . . , s, yi = f(xi) and yui = f(xu

i ) ·
An estimator of S̃u is then:

̂̃Su =
1
s

∑s
i=1 yi y

u
i − (1

s

∑s
i=1 yi) (1

s

∑s
i=1 y

u
i )

1
s

∑s
i=1 y

2
i − (1

s

∑s
i=1 yi)

2
. (3.7)

Moreover, due to the fact that E[Y ] = E[Y u], the empirical estimation of E[Y u] can be
replaced by the one of E[Y ] and then:

̂̃Su =
1
s

∑s
i=1 yi y

u
i −

(
1
s

∑s
i=1 yi

)2
1
s

∑s
i=1 y

2
i − (1

s

∑s
i=1 yi)2

·

This estimator has been developed in [Homma and Saltelli, 1996]. As highlighted by
Monod et al. [2006], a second estimator can be introduced due to the fact that Y and Y u

have the same distribution. This new estimator, hereafter denoted by ̂̃Tu, has theoretical
guarantees given in [Janon et al., 2014] and is defined as:

̂̃Tu =

1
s

∑s
i=1 yi y

u
i −

(
1
s

∑s
i=1

yi+y
u
i

2

)2
1
s

∑s
i=1

y2i +(yui )
2

2
−
(

1
s

∑s
i=1

yi+yui
2

)2 ·
In [Janon et al., 2014], the authors prove indeed that (̂̃Tu)s is asymptotically normal, with
variance σ2

2/N , where:

σ2
2 =

V ar
[(

(Y − E[Y ])(Y u − E[Y ])− S̃u/2 ((Y − E[Y ])2 + (Y u − E[Y ])2)
)]

(V ar[Y ])2
,

and that this asymptotic variance is minimal in comparison to other regular estimators.
Nevertheless, the main drawback of this classical Monte Carlo procedure is its cost

in terms of number of calls to the numerical model. Indeed, in order to compute all
first-order Sobol’ indices by using the estimator in Equation (3.7), the strategy requires

s(p + 1) evaluations for an accuracy of order s−
1
2 (due to the central limit theorem). In

this context, the solution is not feasible in case of large input space dimension unless the
numerical model f is cheap. Note that the sampling error coming from the Monte Carlo
evaluation of the variances can be estimated either by random repetitions [Iooss et al.,
2006], asymptotic formulae [Janon et al., 2014] or bootstrap methods [Archer et al., 1997].
A formulation of the estimation of the confidence intervals based on a bootstrap procedure
is described in Appendix A. In the literature other Monte Carlo based estimation formulae
can be found such as Jansen formula for estimating total Sobol’ indices [Jansen, 1999].
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3.4 Sobol’ indices with functional output

As in the previous sections, let us consider f , the function representing a deterministic
numerical model which takes as input parameters the vector X = (X1, . . . , Xp). In this
section, the QoI of the numerical model f is a discretized functional output which can be
considered as a d multivariate vector Y = (Y1, . . . , Yd)

T , such as:

Y =

Y1...
Yd

 = f(X) = f(X1, . . . , Xp) ·

Assuming that X1, . . . , Xp are independent and that the mapping function f is a square-
integrable function, i.e., E (‖Y‖2) <∞. In order to quantify the influence of each input
parameter Xi on the multivariate vector Y, Gamboa et al. [2013] propose to compute the
aggregated Sobol’ index denoted by GSi. This sensitive index is defined as:

∀i ∈ {1, . . . , p}, GSi =

∑d
j=1 V ar[Yj]S

j
i∑d

j=1 V ar[Yj]
,

where Sji refers to the first-order Sobol’ index of the scalar output Yj with respect to
the input parameter Xi. In a similar manner to the Sobol’ indices in a scalar context,
see Equation (3.4), a high value of this new sensitivity index indicates that the input
parameter is influent and at the opposite a value close to zero designates it is not.

Campbell et al. [2006] propose to reduce the output dimension by decomposing the
discretized functional QoI on a complete orthogonal basis and finally to compute sensi-
tivity indices on each component of the decomposition. The orthogonal basis used can
be estimated by using a principal component analysis from a collection of model outputs
computed using different combinations of parameter values. Lastly, Lamboni et al. [2011]
suggest in addition to the sensitivity indices on each principal component to compute a
synthetic sensitivity index defined by Equation (3.8).

Functional principal component analysis, also known as Karhunen-Loeve decomposi-
tion, aims to project the discretized functional output on a new reduced space so that
the variance can be explained by a small number of principal components, [see Anderson,
1958, Jolliffe, 1986, Besse, 1992]. The principal component analysis is used to decompose
the variance-covariance matrix of the output, denoted by C, based on the eigenvalues and
eigenvectors, as:

C =
d∑
j=1

λjuju
T
j ,

where, λ1, . . . , λd denote the eigenvalues in a decreasing order and u1, . . . ,ud are orthonor-
mal eigenvectors of C. The discretized functional output can be decomposed such as:

Y = E[Y] +
d∑
j=1

((Y − E[Y])Tuj)uj

= E[Y] +
d∑
j=1

hjuj ,
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where hj is the j-th principal component of Y. The multivariate output can be approx-
imated using the q ≤ d first components which capture the major part of the output
variance:

Y ≈ E[Y] +

q∑
j=1

hjuj ·

Then, the generalized Sobol’ indices can be computed based on the Sobol’ indices of the
first q principal components. The first-order aggregated Sobol’ index for input parameter
Xi is defined as:

GSi ≈
∑q

j=1 λjSi(hj)∑q
j=1 λj

, (3.8)

where Si(hj) denotes the Sobol’ index of the j-th principal component hj with respect to
input parameter Xi.

Each one of these Sobol’ indices linked to a principal component is computed using
a so-called Pick and Freeze sampling scheme, [see Sobol’, 1993, Janon et al., 2014]. The
sensitivity indices in Equation (3.8) summarize the information on the importance of each
input parameter on the functional output.

3.5 Latin Hypercube Sampling

As said previously, for computer experiments, especially global sensitivity analysis,
one of the main interests is to figure out the variation of a quantity of interest with
respect to the variation of some inputs [Sacks et al., 1989]. In this context, design of
experiments have been developed in order to better understand the physical mechanisms
governing the problem of interest by efficiently exploring the input space [Saltelli et al.,
2008]. Contrary to the crude Monte Carlo sampling, which consists of s independently
and identically distributed samples, the Latin Hypercube Sampling (LHS) consists in
dividing the domain of each input variable in s equiprobable strata, and in sampling once
from each stratum [McKay et al., 1979]. Let us consider the LHS of a random vector
X = (X1, . . . , Xp) ∈ P ⊂ Rp and denoted by P = {xi}si=1. Then the forward numerical
model, hereafter denoted by f , can be called for each sample in P, such that:

(P, Y) = (xi, yi = f(xi))1≤i≤s ·

This stratified design allows to estimate a sample mean m = 1
s

∑s
i=1 yi for the output

Y with a smaller variance than the sample mean of a crude Monte Carlo sampling strategy
[Stein, 1987].

Definition 2. Let us consider the unit-hypercube P = [0, 1]p. LHS technique consists, for
1 ≤ i ≤ s, in sampling xi = (xi,j)1≤j≤p as:

xi,j =
li,j − ui,j

s
,

where, L = (li,j)1≤i≤s, 1≤j≤p is an array where the j-th column contains a random permu-
tation of the integers [1, . . . , s] and U = (ui,j)1≤i≤s, 1≤j≤p is an array where the j-th column
contains a random vector of size s sampled from a uniform distribution on [0, 1].
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X1

X 2

0 1

1

X10 1 0 1X1

Figure 3.1 – Three examples of Latin Hypercube Sampling design of size s = 4 over [0; 1]2,
each circle represents a sample.

For example, the first LHS of Figure 3.1 (left-panel) is derived from L =

[
4 2 3 1
2 4 1 3

]T
.

Nevertheless, LHS design can only guarantee good repartitions for one-dimensional pro-
jections and not for the other dimensions of projection, and consequently this design is not
sufficient for complete space filling [Park, 1993]. Indeed, LHS technique does not always
cover the input space properly, as it can be noticed with the second design (middle-panel)
of Figure 3.1 which is almost diagonal. Consequently, LHS design does not reach the
smallest possible variance for the estimated sample mean. To circumvent this poorly
performances, Johnson et al. [1990] propose two optimality criteria based on the dis-
tance between two points. These geometrical criteria are respectively called minimax and
maximin. Firstly, minimax criterion, denoted by φmM , minimizes the maximal distance
between a point of the input space domain and the points of the design, such as:

φmM(P) = max
x∈P

min
i=1,...,s

||x− xi||l2 , (3.9)

where ||·||l2 is the Euclidean norm. LHS design of experiments which minimizes the
criterion in Equation (3.9) is called minimax LHS.

The maximin LHS design is the design which maximizes the criterion called maximin
and denoted by φMm. It consists in maximizing the minimal distance between all points,
such that:

φMm(P) = min
1≤i,j≤s

||xi − xj||l2 ·

In many situations, we are interested in conducting additional numerical model runs,
e.g., for the validation of surrogate models such as Gaussian process regression (see Section
4.1). In this context, design augmentation generates a new design that combines with
an existing one in a way that the new points maximize the space-filling properties of the
combined design. A procedure to augment the number of points in a Latin Hypercube
Sampling design, while preserving its Latin structure, has been developed by Carnell
[2012]. The proposed method increases a LHS design by maximizing the mean distance
from each point to all other points. The procedure identifies the positions of the inherited
points in the new design space, find the intervals of each variable that are not represented
by the inherited points, generate new points, and then fill in those underrepresented
intervals for each input variable [Wang, 2003]. As an illustration, in Figure 3.2, a two
dimensional maximin LHS design is augmented.
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X1

X 2

0 1

1

X10 1

Figure 3.2 – Augmented Latin Hypercube Sampling design. The symbols circle and square
represent respectively the original points obtained from a maximin LHS design
and the new points based on the procedure developed by Carnell [2012].

Conclusion

In this chapter, we introduced the definition of Sobol’ indices and their estimation
using Monte Carlo sampling strategies. Sobol’ indices rely on the decomposition of the
variance of the output of a numerical model into partial variances representing the fraction
of the output’s variance induced by an individual input or a group of inputs. These sen-
sitivity indices allow quantifying the influence of each input parameter on the output and
also detecting any interactions between the inputs. The chapter provided the definitions
of first-order, closed-order, and total sensitivity indices. Moreover, a generalization of
Sobol’ indices was presented in order to deal with computer codes producing a discretized
functional output. The sensitivity analysis consists then in decomposing the multivari-
ate output into some non-correlated principal components and in computing sensitivity
indices on each one of the components. Then, an aggregated sensitivity index is defined
in order to summarize the overall effect of each parameter (or set of input parameters)
on the discretized functional output. As highlighted in this chapter, the Monte Carlo
approaches for Sobol’ index estimation need a high number of simulations to get accurate
estimators due to the central limit theorem. In this context, we propose a space-filling
strategy, based on Latin Hypercube Sampling, in order to get a better coverage of the
input parameter space.
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4
Gaussian process regression for global sensitivity

analysis

L’analyse de sensibilité globale, basée sur l’estimation des indices de Sobol’, nécessite de
nombreux appels au modèle. De ce fait, elle est souvent impraticable pour les modèles
coûteux en temps de calcul malgré l’utilisation de plans d’expériences avec de bonnes pro-
priétés de remplissage de l’espace. Pour pallier ce problème computationnel, une approche
couramment utilisée dans le domaine de la quantification d’incertitudes consiste à rempla-
cer la relation entrée/sortie du modèle numérique par une approximation mathématique,
appelée méta-modèle ou surface de réponse [Box and Draper, 1987]. Ce méta-modèle,
dont le temps de calcul pour évaluer une réponse est négligeable, est construit à partir
de quelques simulations du modèle numérique issues de différents jeux de valeurs des
paramètres. Plusieurs techniques existent dans la littérature pour construire de telles ap-
proximations mathématiques, e.g., les polynômes, modèles linéaires ou additifs généralisés,
processus Gaussien, réseaux de neurones, boosting d’arbres de régression, SVM [Soize and
Ghanem, 2004, Smola and Schölkopf, 2004, Dreyfus, 2005, Krige, 1951, Simpson et al.,
2001]. Dans ce chapitre nous nous intéressons tout particulièrement aux méta-modèles
basés sur une régression par processus Gaussien [Rasmussen, 2003]. Cette approximation
suppose a priori que la sortie issue du modèle d’intérêt est une réalisation d’un processus
Gaussien. Comme évoqué par Marrel et al. [2008], cette formulation par processus Gaus-
sien présente l’avantage d’obtenir les indices de sensibilité de manière analytique en y as-
sociant les incertitudes liées à l’approximation du modèle numérique par le méta-modèle.
Néanmoins, ces formules sont souvent difficilement exploitables [Marrel, 2008]. Dans ce
contexte, il est généralement préférable d’utiliser des méthodes d’estimation de Monte
Carlo pour calculer ces indices de sensibilité en appelant directement le méta-modèle par
processus Gaussien [Iooss et al., 2006]. Des méthodes, reposant sur des procédures boots-
trap, permettent d’estimer l’erreur liée à l’utilisation du méta-modèle à la place du modèle
d’intérêt et celle liée à l’échantillonnage de Monte Carlo impactant chaque indice de So-
bol’ estimé [Le Gratiet et al., 2013]. Par ailleurs, afin de modéliser un grand nombre
de comportements physiques d’intérêt, nous devons nous reposer sur des codes stochas-
tiques. A l’opposé des codes déterministes, ces modèles numériques stochastiques peuvent
renvoyer des résultats différents lorsqu’ils sont appelés plusieurs fois avec le même jeu
de variables d’entrée. Dans ce contexte, la modélisation par processus Gaussien bruité
hétéroscédastiquement est une solution pour réaliser une analyse de sensibilité globale.
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La Section 4.1 revient sur la formulation théorique de la méta-modélisation par processus
Gaussien pour approcher un modèle numérique coûteux. La Section 4.2 est consacrée à
l’utilisation du méta-modèle processus Gaussien pour mener l’analyse de sensibilité globale
du modèle numérique d’intérêt par l’intermédiaire de l’estimation des indices de Sobol’.
Pour terminer, la Section 4.3 propose une approche basée sur une régression par proces-
sus Gaussien bruité hétéroscédastiquement pour estimer les indices de Sobol’ dans le cadre
d’un code stochastique.

Introduction

In uncertainty quantification (UQ), Monte Carlo techniques for the estimation of
Sobol’ indices require a large number of numerical model evaluations, see Section 3.3,
which can quickly exceed the limits of numerical resources. A widely used method to
circumvent this computational issue consists in replacing the time-consuming numerical
model by a mathematical approximation, called a metamodel or a surrogate model or also
a surface response [Box and Draper, 1987], that simulates the behavior of the computer
code and requires a lower computational cost. Constructing such a metamodel relies
on a limited number of forward model responses. The limited number of points where
the model of interest is evaluated is called the design of experiments (DoE), e.g., Latin
Hypercube design see Section 3.5.

Several metamodels can be found in the literature, among whom Polynomial Chaos
(PC) expansions [Soize and Ghanem, 2004], support vector machine [Smola and Schölkopf,
2004], artificial neural networks [Dreyfus, 2005] or Gaussian Process (GP) models [Ras-
mussen, 2003]. Hereafter, we will focus on the GP model which is often used in the
UQ scientific field for its flexibility and prediction error quantification, [see Marrel et al.,
2015b, Le Gratiet et al., 2017]. GP model, sometimes called GP regression, is equivalent
to the kriging principle developed in geostatistics [Krige, 1951]. The kriging method has
been firstly developed for spatial interpolation problems of a random field at unobserved
locations. Then, Sacks et al. [1989] extended the concept to numerical models by consid-
ering the correlation between two outputs of a code depending on the distance between
inputs. The principle of a GP model is to treat the deterministic response of the numerical
code as a realization of a random Gaussian process described by its mean function and
its covariance function, also called the kernel. Such kernel is a positive-definite function
of two distinct input parameters allowing to define the prior covariance between any two
values of the function of interest. Many kernels can be used, each one corresponding to a
different set of prior assumptions made about the function of interest [Rasmussen, 2003,
Stein, 2012, Duvenaud, 2014]. A kernel can incorporate a number of parameters which
specify the shape of the covariance function. These parameters, also known as hyper-
parameters, can be either estimated by minimizing a loss function with a leave-one-out
cross-validation procedure or maximizing a likelihood function [Bachoc, 2013].

In this chapter, we will present how to approximate a numerical model based on a
DoE thanks to a GP regression. In many industrial applications, we do not have direct
access to the function to be approximated but only to noisy versions of it. It is the case
when we are dealing with a stochastic simulation. In this chapter, we highlight the fact
that kriging model can be adapted to such noisy observations.

55



Chapter 4. Gaussian process regression for global sensitivity analysis

In some cases, as mentioned by Chen et al. [2005], by using GP regression, analytical
formulae can be available for Sobol’ index computation, avoiding the necessity to use a
Monte Carlo scheme [Homma and Saltelli, 1996, Jansen, 1999, Monod et al., 2006]. In
this latter context, a method giving confidence intervals for the Sobol’ index estimates
and taking into account both the metamodel uncertainty and the numerical errors on
the Sobol’ index estimations is suggested in [Le Gratiet et al., 2013]. They consider a
sampling strategy to estimate the Sobol’ indices and they infer the sampling errors thanks
to a bootstrap procedure as proposed by Archer et al. [1997]. Then by considering the
numerical model as a realization of a GP model, it is possible to take into account the
metamodel error in the estimation of Sobol’ indices.

The first section explains theoretically the metamodeling procedure using Gaussian
process regression. Then, in Section 4.2 we present a kriging-based sensitivity analysis
relying on the estimation of Sobol’ indices. Finally in Section 4.3, Gaussian process
metamodel framework with heteroscedastic noise is proposed in order to estimate Sobol’
index in the context of a stochastic numerical model.

4.1 Theoretical formulation

Let us assume a deterministic real-valued function of the d-dimensional input param-
eter vector x = (x1, . . . , xp) ∈ P → R defined as:

P ⊂ Rp → R
x = (x1, . . . , xp) 7−→ y(x)

· (4.1)

By considering the design of experiments (DoE), denoted by Xn = {x1, . . . ,xn}, where the
numerical model in Equation (4.1) has been evaluated, and by denoting by yn = y(Xn) the
values of y(x) at points in Xn. Gaussian process (GP) regression treats the deterministic
response y(x) as a realization of a Gaussian stochastic process Y (x), including a regression
part and a centered square-integrable process. This random process can be written as:

Y (x) = µ(x) + Z(x) ,

where Z(x) is a centered stationary Gaussian process of known covariance kernel C :
(u,v) ∈ P2 → C(u,v) ∈ R. The deterministic function µ(x) approximates the trend of
the observations with respect to the inputs and the covariance structure defines the prior
dependence between the different values of the computer code responses. Examples of
Gaussian process regression model are given in Figure 4.1. Various samples path of Gaus-
sian processes are represented by considering different means and covariance functions
in a 1-D or 2-D input space. For the multidimensional input space representation (last
panel), only one sample obtained from the Gaussian process with a zero mean function
and a Matérn 5/2 covariance function is displayed.

In the literature, it is a common practice to consider the deterministic regression part
of the Gaussian stochastic process as a linear combination of elementary functions. In
this context, µ(x) can be written as:

µ(x) =
k∑
j=0

βjfj(x) = F(x)β , (4.2)
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4.1. Theoretical formulation

where F(x) = [f0(x), . . . , fk(x)] is a vector of fixed basis functions, and β = [β0, . . . , βk]
T

is the regression coefficient vector. In our study, we have decided to use first order
polynomial to model the trend. As mentioned by Martin and Simpson [2005] and later
by Marrel et al. [2008], such one-degree polynomial function is sufficient, and sometimes
mandatory, in order to capture the global trend of the numerical model. Therefore, the
deterministic function can be written as µ(x) = β0 +

∑p
j=1 βjxj.

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

x

Y
(x
)

(a) µ(x) = 0 and Brownian covari-
ance function

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

x
Y
(x
)

(b) µ(x) = 0 and Gaussian covari-
ance function

0.0 0.2 0.4 0.6 0.8 1.0

-3
-2

-1
0

1
2

3

x

Y
(x
)

(c) µ(x) = −2x + 3x2 and Matérn
3/2 covariance function

x1

0

1

x 2

0

1

Y
(x
)

-1

0

1

(d) µ(x) = 0 and Matérn 5/2 co-
variance function

Figure 4.1 – Different sample paths of Gaussian processes (blue lines) considering various
means and covariance functions. For the first three panels, the black line shows
the deterministic mean function µ and the shaded area corresponds to 95% con-
fidence intervals. For the last panel, only one sample is considered.
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The covariance function of the stochastic part Z(x) is hereafter assumed stationary
such as C(u,v) = σ2R(u − v;θ). It is parameterized by the vector θ and the process
variance σ2. Our study is focused on a family of correlation functions that can be written
as a product of one-dimensional correlation kernel:

C(u,v) = σ2R(u− v;θ) = σ2

p∏
l=1

g(ul − vl; θl) · (4.3)

A non-exhaustive list of one-dimensional stationary covariance kernels g is presented in
Table 4.1. For further details on the available covariance kernels, the reader is referred
to the work of Sacks et al. [1989] or more recently of Rasmussen [2003], where authors
give a complete review of covariance functions with their drawbacks and advantages.
The choice of the covariance kernel is a crucial aspect of a GP regression. Indeed, the
covariance function will allow to control the level of smoothness for the GP.

Name Formula

squared exponential1 g(u− v; θ) = σ2 exp

(
−(u− v)2

2θ2

)
Matérn 5/2 g(u− v; θ) = σ2

(
1 +

√
5|u− v|
θ

+
5|x− y|2

3θ2

)
exp

(
−
√

5|u− v|
θ

)

Matérn 3/2 g(u− v; θ) = σ2

(
1 +

√
3|u− v|
θ

)
exp

(
−
√

3|u− v|
θ

)

exponential g(u− v; θ) = σ2 exp

(
−|u− v|

θ

)
cosine g(u− v; θ) = σ2 cos

(
u− v
θ

)
1 Also known as Gaussian kernel, exponentiated quadratic or radial basis function.

Table 4.1 – Examples of one-dimensional stationary kernels.

Depending on the observations obtained from the DoE, two frameworks of GP re-
gressions can be derived. The first one consists in considering that the observations are
noise-free. At the opposite, in the second one, we consider that the data are tainted by a
white noise.

The noise-free case y is modeled by the conditional Gaussian process {Yn(x) , x ∈
P} := {[Y (x)|Y (Xn) = yn] , x ∈ P}, where yn = (y(x1), . . . , y(xn)). We then get, for
any x ∈ P , the ordinary kriging equations:

Yn(x) ∼ N (m(x), s2(x)) (4.4)

with

m(x) = µ(x) + c(x)TC−1(yn − µ) , (4.5)

s2(x) = C(x,x)− c(x)TC−1c(x) . (4.6)
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4.1. Theoretical formulation

We denote by µ = µ(Xn) the vector of trend values on Xn, by C = (C(xi,xj))1≤i,j≤n
the covariance matrix of Y (Xn), and by c(x) = (C(x,xi))1≤i≤n the vector of covariances
between Y (x) and Y (Xn).

We present in Figure 4.2 an example of GP regression in a noise-free framework. We
notice from this figure that the GP regression mean function m interpolates the data
points from the DoE.
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y(x) = x sin(x)
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95% confidence interval

Figure 4.2 – Gaussian process regression with noise-free observations and a radial basis co-
variance function, see Table 4.1. The variance parameter equals σ2 = 1, the
length scale parameter θ = 10 and the mean µ(x) is null. The dashed pink line
represents the function of interest f(x) = x sin(x), the red circles represent the
noise-free observations, the black line represents the GP regression mean m(x),
and the shaded area corresponds to 95% confidence intervals.

The noisy case In many industrial cases, exact evaluations of y cannot be ob-
tained directly from the DoE. We have, for each i = 1, . . . , n, a noisy evaluation
ỹi = y(xi) + εi. Where, εi is a centered noise with the corresponding noise variance
τ 2i , i.e., εi ∼ N (0, τ 2i ) (1 ≤ i ≤ n). We then consider, as a first approximation, that
the vector (ε1, . . . , εn) is a centered Gaussian random vector with diagonal covariance
matrix diag(τ 21 , . . . , τ

2
n) denoted by ∆. Provided that the process Y and the Gaussian

measurement errors εi are stochastically independent, the process Y is still Gaussian
conditionally on the heteroscedastic noisy observations ỹi and its conditional mean and
variance function are given by the following slightly modified kriging equations:

Yn(x) ∼ N (m(x), s2(x)) ,

with,

m(x) = µ(x) + c(x)T (C + ∆)−1(ỹ − µ) , (4.7)

s2(x) = C(x,x)− c(x)T (C + ∆)−1c(x) · (4.8)

We present in Figure 4.3 an example of GP regression in a noisy case. We can notice
that in the noisy framework, the GP regression mean function does not interpolate the
observations and the variance is no longer equal to zero at the observations.
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Figure 4.3 – Gaussian process regression with heteroscedastic noisy observations and a radial
basis covariance function, see Table 4.1. The variance parameter equals σ2 =
2.432, the length scale parameter θ = 1.65 and the mean is null. The dashed pink
line represents the function of interest f(x) = x sin(x), the red circles represent
the noisy observations, the black line represents the Gaussian process regression
mean, and the shaded area corresponds to 95% confidence intervals.

To compute the mean and variance of a GP regression model, see Equation (4.8), the
estimation of several parameters is needed. Firstly, the kernels rely on some intrinsic
parameters which are usually referred to as hyper-parameters. These hyper-parameters
specify the precise shape of the covariance function. Kriging model, with a regression
part defined as in Equation (4.2), is characterized by the regression parameter vector β.
In the literature two approaches are commonly used [Bachoc, 2013]. Firstly, a solution
for hyper-parameters estimation consists in minimizing a loss function with a leave-one-
out cross-validation scheme. On the other hand, we can estimate these parameters by
maximum likelihood or maximum a posteriori not described hereafter.

Cross-validation estimate Let us assume hereafter the noise-free case previously de-
scribed. In order to choose the hyper-parameters, a natural approach is to compare the
error from the prediction of various kriging models and finally to select the one with the
lowest error. Cross-validation procedure consists in splitting the DoE into two disjoint
sets, one dedicated to training and the other one to estimate the performance of the
surrogate model.

The principle of cross-validation is usually based on the k-fold setting where the DoE
is split into k disjoint and equally sized subsets. The validation of the kriging model is
done on a single subset and the training is performed based on the union of the remaining
k − 1 subsets [Rasmussen, 2003]. This procedure is then repeated k times, each time
with a different subset for validation, in order to compute an averaged error from a loss
function. A particular and popular k-fold cross-validation in GP regression is when k = n
(n is the length of the DoE). This procedure is known as leave-one-out cross-validation.
Any loss function can be used with such approach but a usual one is the mean squared
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4.1. Theoretical formulation

error loss function. This error in leave-one-out cross-validation is defined as:

MSELOO =
1

n

n∑
i=1

(mi(xi)− y(xi))
2 ,

where mi is the mean predictor of the kriging model trained on all points from the DoE
except the ith one and y(xi) is the observation for the ith point.

As it can be seen in Equation (4.5), the variance parameter σ2 has no influence on
the mean predictor of the kriging model. Consequently, minimizing the MSELOO cannot
provide an estimate for this parameter. Nevertheless, as proposed by Bachoc [2013],
a leave-one-out cross-validation criterion can also be derived in order to estimate the
variance hyper-parameter.

Maximum likelihood estimate For estimating the parameters of a GP regression
model, a commonly used numerical procedure is based on maximum likelihood estima-
tion [Fang et al., 2005]. The idea is to quantify the adequacy between model realizations
and a distribution. Let us assume a noise-free GP regression model parameterized by
the vector of regression coefficients β, the kriging variance σ2 and the autocorrelation
parameters θ, such as the mean function and the vector of trend values in Equation (4.5)
are respectively defined as :

µ(x) = f(x)T ,

and
µ = Fβ ,

where f(x) is the vector of trend values at x and F = (f(x1), . . . , f(xn))T is the experi-
mental matrix.

Considering a covariance kernel as in Equation (4.3) we have C = σ2R(u − v;θ) =
σ2Rθ, where Rθ depends only on θ. Due to the Gaussian assumption, the likelihood for
parameters β, θ and σ can be written as:

L(yn|β,θ, σ) =
1

(2πσ2)
n
2

√
detRθ

exp(−1

2

(yn − Fβ)TR−1θ (yn − Fβ)

σ2
) ,

Given the correlation parameters θ, the maximum likelihood estimator of β and of σ2

are respectively:
β̂(θ) = (FTR−1θ F)−1 FT (Rθ)−1yn ,

and,

σ̂2(θ) =
1

n
(yn − Fβ̂(θ))TR−1θ (yn − Fβ̂(θ)) ·

By replacing the vector of regression coefficients and the process variance by their
optimal values respectively β̂(θ) and σ̂2(θ), the likelihood can be written as:

L(θ) = (2πσ̂2(θ))−
n
2 (detRθ)−

1
2 exp(−n

2
) ·

Due to the fact that the likelihood can take extremely small values, it is often helpful
to consider log-likelihood to avoid numerical issues defined as:

logL(θ) = −n
2

log
(
σ̂2(θ)(detRθ)

1
n

)
− n

2

(
log(2π) + 1

)
· (4.9)
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Chapter 4. Gaussian process regression for global sensitivity analysis

Then, an optimization can be performed by minimizing the opposite of the log-
likelihood function defined in Equation (4.9) regarding the hyperparameter θ:

θ∗ = argmin
θ∈Dθ

{
− logL(θ)

}
,

where Dθ is the domain of definition for the admissible values of θ.
Thus, the estimation of θ can be reduced to the following numerical optimization:

θ∗ = argmin
θ∈Dθ

{
log
(
σ̂2(θ)(detRθ)

1
n

)}
·

4.2 Kriging-based Sobol’ indices

In this section, we present a methodology to estimate sensitivity indices using a Gaus-
sian process (GP) regression model. The Sobol’ index produced by Monte Carlo estima-
tion using a kriging surrogate model is tainted with a twofold error. Firstly, a sampling
error from the use of a Monte Carlo sampling procedure and then a metamodel error
due to the fact that the numerical model of interest is substituted by a surrogate model.
Nevertheless, in order to make a rigorous global sensitivity analysis, it is important to
assess the impact of these two combined errors on the estimated Sobol’ indices. We focus
on the kriging-based sensitivity analysis, developed by Le Gratiet et al. [2013], allowing
to take into account both the sampling error and the metamodel one, assumed to have
no interaction.

Hereafter, we are interested in the closed Sobol’ index presented in Section 3.2 but the
methodology can be extended to other indices, e.g., total effect. As suggested by Marrel
et al. [2009] and later by Le Gratiet et al. [2013], the idea is to substitute the numerical
model in Equation (3.5) with the Gaussian process Yn defined in Equation (4.4), such as:

S̃u =
V arXu(EX−u [ Yn(X) | Xu])

V arX(Yn(X))
·

As Yn is a random process, the resulting indices are also random. In a similar fashion, we
can substitute in the estimator of the closed Sobol’ index the numerical model responses
y(x) by the Gaussian process Yn, such as:

̂̃Su =
1
s

∑s
i=1 Yn(xi) Yn(xu

i )− (1
s

∑s
i=1 Yn(xi)) (1

s

∑s
i=1 Yn(xu

i ))
1
s

∑s
i=1 Yn(xi)2 − (1

s

∑s
i=1 Yn(xi))2

, (4.10)

where the designs P = {xi}si=1 and Pu = {xu
i }si=1 are the ones introduced in Section 3.3.

In order to estimate the sampling error due to the Monte Carlo estimation and the one
due to the substitution of y(x) by a kriging model, we have to investigate the distribution
of the estimator described in Equation (4.10). The method to compute the distribution
of the estimator is described in [Le Gratiet et al., 2013] and presented in Algorithm 2.

The sample
(̂̃sk,lu

)
k=1,...,NY
l=1,...,B

of ̂̃Su obtained from Algorithm 2 is of size NY × B. From

this output, we can obtain an estimate, denoted by S̃u, for E[̂̃Su] :

S̃u =
1

NYB

∑
k=1,...,NY
l=1,...,B

̂̃sk,lu ·
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Algorithm 2: Evaluation of the distribution of ̂̃Su in Equation (4.10) adapted
from [Le Gratiet et al., 2013]

Build Yn(x) from the n observations yn of y(x) at points in Xn (see
Equation (4.4)).

Generate two designs P and Pu from independent random vectors distributed
according to the input vector (see Section 3.3).

Set NY the number of samples for Yn(x) and B the number of bootstrap samples
for evaluating the Monte Carlo integrations.

for k = 1, . . . , NY do
Sample a realization yn(x) of the Gaussian process Yn(x) for each

x ∈
{
{xi}si=1, {xu

i }si=1

}
.

Compute ̂̃su the kth realization of ̂̃Su using Equation (4.10) with the
realization yn(x).

for l = 2, . . . , B do
Sample with replacements two set of samples of size s, v and ṽ
respectively from {xi}si=1 and {xu

i }si=1.

Compute ̂̃sk,lu from yn(x) with x ∈ {v, ṽ}.
return The sample

(̂̃sk,lu

)
k=1,...,NY
l=1,...,B

In a similar manner, the variance of ̂̃Su can be estimated by:

σ̂2(̂̃Su) =
1

NYB − 1

∑
k=1,...,NY
l=1,...,B

(̂̃sk,lu − S̃u

)
·

This variance takes both into account the uncertainty of the Monte Carlo integrations and
the one of the kriging model approximation. We can firstly estimate the part of variance
related to the kriging model such as:

σ̂2
Yn(̂̃Su) =

1

B

B∑
l=1

1

NY − 1

NY∑
k=1

(̂̃sk,lu −
∑NY

i=1
̂̃si,lu

NY

)
·

Moreover, the part of the variance due to the Monte Carlo integrations can be estimated
with:

σ̂2
MC(̂̃Su) =

1

NY

NY∑
k=1

1

B − 1

B∑
l=1

(̂̃sk,lu −
∑B

i=1
̂̃sk,iu

B

)
·

We neglect the part of variance due to a potential interaction between Monte Carlo
integrations and metamodeling.

4.3 GP-based Sobol’ indices for stochastic numerical

model.

In this section, we do not deal with a deterministic numerical model, but with a
stochastic one, i.e., when the same set of inputs leads to different output values. Stochas-
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tic numerical models are often needed to properly model some physical phenomena, e.g.,
acoustic wave propagation in turbulent fluids [Iooss et al., 2002] or atmospheric pollu-
tion [Reich et al., 2012]. Such models are governed by some intrinsic alea, which is
described as an uncontrollable random input variable denoted by V . Hereafter, V is con-
sidered as a random field whose each realization is governed by a random seed value. Let
us consider the following stochastic numerical model:

f : P ⊂ Rp → R
x 7→ Y = f(x, V )

,

where x is the controllable input parameter vector of size p that belongs to the input
space P , Y is the quantity of interest obtained from the stochastic numerical model f .

In the context of global sensitivity analysis, each input parameter is now considered
as a random variable Xj with its uncertainty modeled by a probability distribution, such
as X = (X1, . . . , Xp). These one-dimensional probability distributions reflect the practi-
tioner’s belief in the uncertainty on the parameter values and the Xj’s are assumed to be
mutually independent. Moreover, in all this chapter, we assume that X and V are inde-
pendent. As highlighted by Hart et al. [2017], global sensitivity analysis, especially Monte
Carlo estimation of Sobol’ indices [Homma and Saltelli, 1996, Jansen, 1999, Monod et al.,
2006], is not trivial when dealing with a stochastic numerical code. In the literature, the
different treatments of the inherent randomness have led to the formulation of various
Sobol’ index extensions to stochastic models. We focus on the extension which relies on
the elimination of the internal randomness by representing the probability distribution of
the random output Y with quantitative measures, such as variance [Iooss and Ribatet,
2009] or quantiles [Browne et al., 2016]. In the study, we consider the mean value of Y
relative to the intrinsic randomness of the code. As a result, the stochastic simulator is
reduced to a deterministic function and the closed Sobol’ index defined in Equation (3.5)
can be reformulated:

S̃u =
V arXu(EX−u [EV [f(X, V )]|Xu])

V arX(Y )
·

We usually replace the mean quantity by its empirical mean. Estimation of the mean is
based on Monte Carlo sampling and consequently consists in repeating calculations with
the same sets of controllable inputs x. Let us consider that for each exploration in the
input space, the simulator is run K-times to properly discard the intrinsic randomness by
estimating the expectation from the output samples.

By adapting the formalism of Sobol’ in [Sobol’, 1993] presented in Section 3.3 to our
stochastic numerical model context, we get an estimate of the closed Sobol’ index:

̂̃Su =

1
s

∑s
i=1

1
K

∑K
k=1 yi,k y

u
i,k −

(
1
s

∑s
i=1

1
K

∑K
k=1 yi,k

)2
1
s

∑s
i=1

(
1
K

∑K
k=1 yi,k

)2
− (1

s

∑s
i=1

1
K

∑K
k=1 yi,k)2

· (4.11)

The major drawback of this procedure is that it may be time consuming due to the
combination of sampling and replication. The total number of calls to the code to compute
the estimator in Equation (4.11) is equal to Ks(p + 1), with p the number of uncertain
input parameters. As mentioned previously when dealing with deterministic code, a pop-
ular solution to avoid this computational issue consists in replacing the numerical model
by a metamodel. Nevertheless, for stochastic numerical models, classical metamodel pro-
cedures are not pertinent anymore if the inherent randomness of the stochastic code is not
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4.3. GP-based Sobol’ indices for stochastic numerical model.

taken into account. To overcome this limitation, we propose the use of an heteroscedastic
GP regression model to provide an efficient metamodel of EV [f(X, V )|X] [Ginsbourger
et al., 2008].

In our context, exact evaluations of the expectation EV [f(X, V )|X] of the stochastic
numerical model cannot be obtained directly. We rather compute:

∀i = 1, . . . , n, ỹi =
1

K

K∑
k=1

f(xi, V = vk) ,

= EV [f(X, V )|X = xi] + εi ·

We model (εi)1≤i≤n by a Gaussian vector with independent components with mean zero
and variance τ 2i defined as:

τ 2i =
1

K

(
1

K − 1
(
K∑
k=1

(f(xi, V = vk)−
1

K

K∑
k=1

f(xi, V = vk))
2

)
·

We then approximate y by a conditional Gaussian process {[Y (x)|Y (Xn) = yn] , x ∈
P} and we assume that the process Y is independent from the observation noise. We
subsequently use formulae in Equations (4.7) and (4.8) with ∆ the diagonal matrix
diag(τ 21 , . . . , τ

2
n).

Conclusion

In this chapter, we present a metamodeling approach, based on Gaussian process, to
alleviate the computational cost of Sobol’ index estimation. Indeed, high-fidelity numeri-
cal models are often very greedy in terms of computing time to be directly used to conduct
global sensitivity analysis based on Monte Carlo methods. Gaussian process metamod-
eling, also known as kriging, has been widely used to perform sensitivity analysis. The
proposed methodology provides an estimate and a confidence interval for each Sobol’
index. We adapt the estimator defined by Equation (4.10) to deal with our stochastic
simulator, metamodeling the expectation with respect to the inherent randomness by a
heteroscedastic Gaussian process.
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5
Model calibration

La calibration de modèle consiste à estimer des paramètres de code numérique. La perti-
nence des paramètres d’entrée lors de l’utilisation de modèles numériques s’avère être un
aspect déterminant. En effet, le modèle peut prendre en compte de nombreuses physiques et
être le plus complexe possible, si les paramètres qui le constituent sont faux alors la simula-
tion n’aura aucune valeur. Ces méthodes d’estimation de paramètres peuvent être classées
en deux groupes : les méthodes fréquentistes et Bayésiennes [Kantas et al., 2009]. Les
méthodes développées dans ce chapitre sont basées sur des algorithmes de filtrage Bayésien
issues du domaine de l’assimilation de données [Moireau and Chapelle, 2011, Olivier and
Smyth, 2017, Nemeth et al., 2013]. Ces méthodes d’inférence présentent l’intérêt de traiter
des observations obtenues en continu. Par ailleurs, ces algorithmes de filtrage peuvent être
facilement exécutés en parallèle et ne nécessitent généralement pas le gradient de la fonc-
tion à minimiser, ce qui est d’un grand intérêt pour les codes numériques ”boites noires”
coûteux en temps de calcul. En effet, du fait de la complexité de développement, afin que les
codes soient les plus représentatifs de la réalité, leur exécution peut prendre un temps non
négligeable. Ce temps d’exécution est grandement diminué par rapport à l’expérimentation
réelle, néanmoins, il reste un critère décisif dans le choix des méthodes d’inférence utilisées
dans le domaine de la calibration de modèle numérique. Historiquement, les méthodes
d’assimilation de données ont été conçues afin d’améliorer les prévisions en météorologie.
L’objectif initial de ces approches d’inférence était de mettre à jour l’estimation de l’état
d’un modèle afin de produire des prévisions plus précises. Cependant, les travaux présentés
montreront que l’assimilation de données peut être utilisée pour la calibration de modèles.
La Section 5.1 conceptualise le principe de l’inférence Bayésienne et présente la vision
récursive qui en découle. Dans la Section 5.2, deux méthodes d’assimilation de données
reposant sur le filtre de Kalman sont présentées, sa forme classique proposée par Kal-
man [1960] et sa variante dite de Monte Carlo proposée par Evensen [1994]. La Sec-
tion 5.3 généralise ces méthodes d’assimilation de données, initialement développées pour
l’amélioration de l’estimation de l’état d’un modèle, à l’inférence de paramètres d’entrée
considérés comme statiques.
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Introduction

In many fields of engineering, estimating model parameters from measurements is a
crucial problem and several approaches have been developed. We focus on nonlinear
model calibration problems, also known as inverse problems. Over the last few years,
parameter estimation has been a subject of studies [Kanso et al., 2006, Carmassi et al.,
2018, Rubio et al., 2018]. In this domain, two approaches are competing [Kantas et al.,
2009]. On the one hand, there are the frequentist approaches in which parameters are
assumed to be deterministic but unknown. An estimation of these unknown parameters
can be done through a statistical minimization of the error between the measurements
and model outputs. On the other hand, Bayesian approaches assume that the unknown
parameters are modeled using probability distributions. These Bayesian model calibration
techniques use measurements to update some prior probability distribution [Kennedy and
O’Hagan, 2001, Tarantola, 2005].

One can categorize these methods as off-line if the data are processed in batches
of observations or online if the data are sequentially processed when new observations
become available. In the literature, Bayesian model calibration has been mainly applied
in a batch manner by typically using Markov Chain Monte Carlo methods (MCMC).
The best-known MCMC method is the Metropolis–Hastings algorithm [Hastings, 1970].
Such inference methods can require thousands of sampling points before achieving the
convergence of the posterior. This requirement can quickly be expensive due to the
fact that each sampling point corresponds to an evaluation of the numerical model. To
overcome this computational burden, a possible solution is to use a surrogate model
to replace the costly model, [see Marzouk et al., 2007, Yan and Zhou, 2019]. Recent
decades have been marked by a simultaneous development of sensor technologies and high-
fidelity numerical modeling capabilities. At the intersection of these two advances lies an
interesting evolution of real-time monitoring of a system. Consequently, our research
efforts have been mostly directed toward online techniques. In this context, the model
calibration can be carried out using an inference procedure based on sequential Bayesian
techniques.

In geosciences, these sequential Bayesian techniques are called data assimilation (DA)
methods. DA techniques allow to combine all sources of information available from obser-
vations and numerical models [Blayo et al., 2014]. These approaches have been extensively
used to approximate the state of systems from noisy observations in many applications
such as oceanography, weather forecasting, seismology or finance [Ghil and Malanotte-
Rizzoli, 1991, Emerick and Reynolds, 2012]. Two points of view are facing in the DA field:
variational and sequential methods (also known as filtering methods) [Kalnay, 2003]. In
variational approaches, the measured data are incorporated over an entire time-interval.
While filtering methods update the state of a system sequentially as soon as a new set of
noisy observations becomes available. In this thesis, we focus our attention on filtering
DA techniques which allow to combine computational models with noisy observations in
order to improve the system state. In particular, one can focus on the Kalman filter-
ing (KF) method. It consists of a forecast step, which evolves the underlying dynamical
systems, and an analysis step, which adjusts the distribution of states. Under the hy-
potheses of Gaussianity and linearity, the KF is the exact solution to estimate recursively
the probability distribution function of interest. Nevertheless, these hypotheses cannot
hold in many situations, in particular the linear assumption. In this context, the ensem-
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ble Kalman filter formulated by Evensen [2009] has been proposed and can be seen as a
Monte Carlo approximation of the KF. The method relies on an ensemble of finite size of
realizations to represent the error statistics but it is still based on the Gaussian hypothe-
sis. The ensemble Kalman filter has been efficiently used in several applied studies, such
as weather prediction, oceanography, reservoir engineering [Evensen and Van Leeuwen,
1996, Anderson, 2001, Aanonsen et al., 2009].

Recently research efforts have been devoted to the use of ensemble Kalman filter-
ing approaches in order to study inverse problems for parameter estimation of numerical
models. This method can be considered as particle-based derivative-free Bayesian algo-
rithm and is sometimes referred to as ensemble Kalman inversion (EKI) [Iglesias et al.,
2013, Schillings and Stuart, 2017]. This inference technique is a sequential Monte Carlo
method, working on an ensemble of parameter particles, and transforming them from a
prior distribution into a posterior one. As highlighted by Kovachki and Stuart [2019],
the EKI is a procedure which behaves like the well-known gradient descent method, but
without computing gradients. Instead, this filtering approach relies on an ensemble and
is thus inherently parallelizable. Indeed, the forward calls of the numerical model can be
parallelized across multiple processing units [Houtekamer et al., 2014, Ruiz et al., 2015].
This is a crucial asset when you are dealing with time-consuming black-box numerical
models.

In Section 5.1, we give an overview of the Bayesian inference approach. In Section 5.2
we present two data assimilation strategies: the Kalman filter and its Monte Carlo ap-
proximation named ensemble Kalman filter. Section 5.3 is dedicated to the extension of
ensemble Kalman filter for model calibration.

5.1 Bayesian inference

In Bayesian inference approach, we are concerned at characterizing the distribution of
the input parameters conditioned on the measured data [Aster et al., 2018]. By employing
such probabilistic paradigm, we can coherently quantify and reduce uncertainties in the
input parameters with regard to all available information. The conditional probability
distribution of the unknown parameters X ∈ P ⊂ Rp given the random data vector
Y = (Y1, . . . , Ym)T is denoted by pX|Y(x|y). The unknown parameters and the data are
represented as jointly distributed random vectors:

(Y,X) ∼ pY,X(y,x) = pY|X(y|x)pX(x) ,

where, pX(x) is the prior distribution and pY|X(y|x) is the likelihood function.
On the one hand, the prior distribution represents our belief about the epistemic un-

certainty affecting the input parameters before incorporating the data. This distribution
can be based on heuristics such as expert knowledge. On the other hand, the likelihood
function establishes the probabilities of obtaining the observations for a given param-
eter values. By conditioning on the realized observations, we can obtain the posterior
distribution thanks to the Bayes’ law:

pX|Y(x|y) =
pY|X(y|x) pX(x)

pY(y)
, (5.1)

where pY(y) is referred to the normalizing constant of pX|Y(x|y), also known as the
marginal likelihood or model evidence. This quantity, which represents the distribution
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of y whichever the value of the parameter vector, is given by:

pY(y) =

∫
P
pY|X(y|x) pX(x)dx · (5.2)

By combining Equation (5.1) and Equation (5.2), the Bayes’ law can be formulated as:

pX|Y(x|y) =
pY|X(y|x) pX(x)∫
P pY|X(y|x) pX(x)dx

·

Due to the fact that the model evidence does not depend on x, one can rather consider
the following relation of proportionality:

pX|Y(x|y) ∝ pY|X(y|x) pX(x) · (5.3)

In many applications, one is interested in estimating the unknown input parameters
in a recursive manner. For performing such recursive inverse problems, a popular and
flexible framework consists in relying on state-space formulations. The state-space models,
also known as Hidden Markov Models (HMM), are considered as a powerful modeling
framework for a variety of problems [Murphy, 2012, Bishop, 2006]. A state-space model
consists of a pair of discrete-time stochastic processes denoted by {X(k)}k≥0 and {Y(k)}k≥1,
whose realizations are respectively x = {x(k)}k≥0 and y = {y(k)}k≥1.

The law of the process is defined through the laws pX(0:k)
(x(0:k)) for all k ≥ 0. Conse-

quently, we have the following general result:

pX(0:k)
(x(0:k)) =pX(0)

(x(0))× pX(1)|X(0)
(x(1)|x(0))×

pX(2)|X(0:1)
(x(2)|x(0:1)) . . .× pX(k)|X(0:k−1)

(x(k)|x(0:k−1)) ·
(5.4)

The discrete-time stochastic process {X(k)}Kk=0, taking its values in a general state space
P , is considered as a Markov process.

Definition 3. A sequence {X(k)}Kk=0 is a Markov chain, if for any positive integer k and
any possible realizations (x(0), . . . ,x(K)) of the random variables, the conditional distribu-
tion of X(k) given X(k−1) = x(k−1), . . . ,X(0) = x(0) is:

pX(k)|X(0:k−1)
(x(k)|x(0:k−1)) = pX(k)|X(k−1)

(x(k)|x(k−1)) ·

By using the characteristic of a Markov chain, we can reformulate Equation (5.4) as:

pX(0:k)
(x(0:k)) = pX(0)

(x(0))
k∏
l=1

pX(l)|X(l−1)
(x(l)|x(l−1)) · (5.5)

A Markov process is then entirely defined with its initial distribution pX(0)
(x(0)) and the

transition distribution pX(l)|X(l−1)
(x(l)|x(l−1)). Graphical models are often used to describe

stochastic models such as the class of Markov chains. A graphical representation of a
Markov Chain Model is depicted in Figure 5.1.
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nX(0) nX(1) n nX(k−1) nX(k)

Figure 5.1 – Graphical representation of a Markov chain process.

Lastly, the couple (X,Y) is said to be a hidden Markov chain in statistics if knowing
the state, the observations are independent, i.e., property of conditional independence,
such as:

pY(1:k)|X(0:k)
(y(1:k)|x(0:k)) =

k∏
l=1

pY(l)|X(l)
(y(l)|x(l)) · (5.6)

By combining Equation (5.5) and Equation (5.6) with the Bayes’ rule, described in
Equation (5.3), we get the posterior distribution as a product :

pX(0:k)|Y(1:k)
(x(0:k)|y(1:k)) ∝ pX(0)

(x(0))
k∏
l=1

pY(l)|X(l)
(y(l)|x(l))pX(l)|X(l−1)

(x(l)|x(l−1)) · (5.7)

Equation (5.7) states that a new update of the probability distribution can be obtained
as soon as new observations are obtained. A graphical representation of a hidden Markov
Chain Model is depicted in Figure 5.2.

nX(0) nX(1) n nX(k−1) nX(k)

~
Y(1)

~ ~
Y(k−1)

~
Y(k)

Figure 5.2 – Hidden Markov chain representation where X and Y represent respectively the
hidden-states and the observations.

In this context, a recursive Bayesian procedure, called optimal filter, consists in finding
the probability distribution function (pdf) of X(k) given past and current observations,
Y(1:k). The conditional pdf of interest is hereafter denoted by pX(k)|Y(1:k)

(x(k)|y(1:k)). The
recursive Bayesian procedure relies on two distinct steps respectively named prediction
and analysis.

Here we are assuming pX(k−1)|Y(1:k−1)
(x(k−1)|y(1:k−1)) known, the prediction step, also

known as forecast step, consists in making an approximation of the next state vector given
all available information:

pX(k)|Y(1:k−1)
(x(k)|y(1:k−1)) =

∫
P
pX(k)|X(k−1)

(x(k)|x(k−1)) pX(k−1)|Y(1:k−1)
(x(k−1)|y(1:k−1)) dx(k−1)

(5.8)
Then, the observation obtained at the current iteration is introduced thanks to the

analysis step, and allows to correct the previous approximation as:

pX(k)|Y(1:k)
(x(k)|y(1:k)) =

pY(k)|X(k)
(y(k)|x(k)) pX(k)|Y(1:k−1)

(x(k)|y(1:k−1))∫
P pY(k)|X(k)

(y(k)|x(k)) pX(k)|Y(1:k−1)
(x(k)|y(1:k−1)) dx(k)

· (5.9)
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In many physical problems the integrals in Equation (5.8) and Equation (5.9) cannot
be computed due to the curse of dimensionality. The filtering methods consist in numerical
approximations of these two integrals. In this context, different data assimilation methods
have been developed. In the next section, we will describe a sequential data assimilation
procedure called Kalman filter and its Monte Carlo variant named as ensemble Kalman
filter.

5.2 Data assimilation

In the data assimilation framework, state-space models are often based on two key
components:

A dynamics model - Let us assume that a model of the natural processes of interest
is available as a discrete stochastic-dynamical system:

x(k) =M(k−1,k)(x(k−1), ε
m
(k)) ·

Here x(k) ∈ P ⊂ Rp is the model state vector, M(k−1,k) : Rp → Rp is usually a nonlinear
function from iteration k−1 to k, and εm(k) ∈ Rp is the model error. In many applications,
we can represent this model error as a stochastic additive term, such as:

x(k) =M(k−1,k)(x(k−1)) + εm(k) , (5.10)

where εm(k) is the model error, represented here as a stochastic additive term following a

Gaussian distribution such that εm(k)
iid∼ N

(
0,Q(k)

)
.

An observation model - Noisy measurements are available at discrete iterations
and are considered as components of the observation vector denoted by y(k) ∈ Y ⊂ Rm.
These collected data are related to the model state vector x(k) at iteration k such as:

y(k) = H(k)(x(k), ε
o
(k)) with εo(k)

iid∼ N
(
0,R(k)

)
,

where H(k) : Rp → Rm is the observation function (generally nonlinear), and εo(k) is the
observation error which accounts for the deficiencies in the formulation of the observation
function, and instrumental error of the sensing devices. By assuming the observation
error is represented as a stochastic additive term following a Gaussian distribution, the
observation model can be reformulated:

y(k) = H(k)(x(k)) + εo(k) · (5.11)

In order to alleviate the mathematical formulation and the computational burden,
standard assumptions about model and observation errors are: additivity, Gaussiannity,
unbiasedness and mutual independence. Unfortunately, these assumptions cannot always
hold in some industrial applications.

5.2.1 Kalman filter

The Kalman filter (KF), introduced by Kalman [1960], allows to estimate the posterior
distribution, defined in Equation (5.9), recursively as new observed data are obtained.
This filtering technique provides the exact distribution when the state-space model is
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linear-Gaussian. In the literature, discrete-time linear-Gaussian state-space models have
the following form:

∀k ∈ N∗,
{

x(k) = M(k−1,k)x(k−1) + εm(k)
y(k) = H(k)x(k) + εo(k)

, (5.12)

where, M(k−1,k) and H(k) are respectively the matrices representing the linear model and
the observation operator, model errors εm(k), and observation errors εo(k) are white Gaussian
noises, of zero mean and of respective covariance Q(k) et R(k). Moreover, one can assume
that there is no correlation between model and observation errors, such as:

E[εo(k) ε
m
(k)

T ] = 0 ,

and that they are supposed to be independent of the initial condition.
KF approach has been widely used in many applications [Brown, 1986, Harvey, 1990,

Wells, 2013]. Let us consider that the initial state, denoted by X(0), is Gaussian, of
expectation xb, and covariance Pb. Then the state-space system described in Equation
(5.12) can be written as:

X(0) ∼ pX(0)
(x(0)) = N (X(0); xb,Pb)

X(k)|X(k−1) ∼ pX(k)|X(k−1)
(x(k)|x(k−1)) = N (X(k); M(k−1,k) X(k−1),Q(k))

Y(k)|X(k) ∼ pY(k)|X(k)
(y(k)|x(k)) = N (Y(k); H(k) X(k),R(k))

·

Let us assume that the Gaussian pdf pX(k−1)|Y(1:k−1)
(x(k−1)|y(1:k−1) is known through the

mean xa(k−1) and the covariance matrix Pa
(k−1). One can forecast the state vector from

iteration k − 1 to time k. By substituting the pdf in Equation (5.8) by the Gaussian
distributions, we obtain the following formula:

pX(k)|Y(1:k−1)
(x(k)|y(1:k−1)) =

∫
P
N (x(k) ; M(k−1,k) x(k−1),Q(k))N (x(k−1) ; xa(k−1),P

a
(k−1)) dx(k−1)

We can show that:

X(k)|Y(1:k−1) ∼ pX(k)|Y(1:k−1)
(x(k)|y(1:k−1)) = N (X(k) ; xf(k) , Pf

(k)) ,

where,

xf(k) = E[X(k)|Y(1:k−1) = y(1:k−1)]

= E[M(k−1,k) X(k−1) + εm(k)|Y(1:k−1) = y(1:k−1)]

= M(k−1,k) E[X(k−1)|Y(1:k−1) = y(1:k−1)] + E[εm(k−1)|Y(1:k−1) = y(1:k−1)]

= M(k−1,k) xa(k−1) ·

and

Pf
(k) = E[(X(k) − xf(k))(X(k) − xf(k))

T ]

= E[(M(k−1,k)(X(k−1) − xa(k−1))− εm(k)) (M(k−1,k)(X(k−1) − xa(k−1))− εm(k−1))T ]

= M(k−1,k)P
a
(k−1)M

T
(k−1,k) + E[εm(k)ε

m T
(k) ]

+ M(k−1,k)E[(X(k−1) − xa(k−1))ε
m T
(k) ] + E[εm(k)(X(k−1) − xa(k−1))

T ]MT
(k−1,k)

= M(k−1,k)P
a
(k−1)M

T
(k−1,k) + Q(k) ·
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At iteration k, the forecast Gaussian distribution pX(k)|Y(1:k−1)
(x(k)|y(1:k−1)) is known

thanks to the forecast step through the mean xf(k), and the covariance matrix Pf
(k). The

analysis step consists in updating this pdf using the new set of observations stacked into
the vector y(k), and in finding the filtering distribution pX(k)|Y(1:k)

(x(k)|y(1:k)), described
in Equation (5.9). By knowing that:

pX(k)|Y(1:k−1)
(x(k)|y(1:k−1)) =

1

(2π)n/2|Pf
(k)|1/2

exp

[
−1

2
(x(k) − xf(k))

T Pf
(k)

−1
(x(k) − xf(k))

]
,

and

pY(k)|X(k)
(y(k)|x(k)) =

1

(2π)n/2|R(k)|1/2
exp

[
−1

2
(y(k) −H(k)x(k))

T R(k)
−1 (y(k) −H(k)x(k))

]
·

Under linear-Gaussian assumption, KF provides the filtering distribution by using Bayes’
rule. Then, Equation (5.9) can be reduced to:

pX(k)|Y(1:k)
(x(k)|y(1:k)) =

N (y(k); H(k)x(k),R(k)) N (x(k); xb(k),P
b
(k))

N (y(k); H(k)xb(k),H(k)Pb
(k)H

T
(k) + R(k))

,

= N (x(k); x
a
(k),P

a
(k)) ,

where

xa(k) = xf(k) + K(k)(y(k) −H(k)x
f
(k)) ,

Pa
(k) = Pf

(k) −K(k)H(k)P
f
(k) ,

with
K(k) = Pf

(k) HT
(k)(R(k) + H(k)P

f
(k)H

T
(k))
−1 · (5.13)

Within this recursive context, the gain, described in Equation (5.13), is often called
the Kalman gain. It is a ratio based on how much we trust the prediction versus the
measurement. If we are confident in our measurements and unconfident in our predictions
the Kalmain gain will favor the measured data, and vice versa. Moreover, due to the
fact that pX(k)|Y(1:k)

(x(k)|y(1:k)) is a Gaussian distribution, the updated mean xa(k) and
the covariance matrix Pa

(k) are sufficient information for characterizing the full filtering
distribution.

By considering the background state vector xb and its associated error covariance
matrix denoted by Pb, the recursive steps of the Kalman filter can be summarized as
follows:

Initialization -

xb and Pb

Forecast step -

pX(k)|Y(1:k−1)
(x(k)|y(1:k−1)) = N (x(k); x

f
(k),P

f
(k))

xf(k) = M(k−1,k) xa(k−1)

Pf
(k) = M(k−1,k) Pa

(k−1) MT
(k−1,k) + Q(k)
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Analysis step -

pX(k)|Y(1:k)
(x(k)|y(1:k)) = N (x(k); x

a
(k),P

a
(k))

K(k) = Pf
(k) HT

(k)(R(k) + H(k)P
f
(k)H

T
(k))
−1

Pa
(k) = (I−K(k)H(k))P

f
(k)

xa(k) = xf(k) + K(k)(y(k) −H(k)x
f
(k))

Unfortunately, Kalman filter technique has to deal with some limitations. One limitation
of the implementation of the KF is the filter divergence. If the input statistical information
is misspecified, the KF approach cannot infer a solution close to the true target [Fitzgerald,
1971]. Another limitation is due to the computational restriction involved by the necessary
storage of a p × p state covariance matrix which becomes intractable for high p. A final
limitation is due to the inconsistency of the statistical and dynamical hypotheses of the
KF approach, i.e., Gaussianity and linearity assumptions. Indeed, the observation or the
background errors can often be physically non-Gaussian, e.g., variables constrained by
thresholds. Moreover, nonlinearity of the dynamics or the observation function affects
the KF in two ways. Firstly, the transposed of these functions is not defined. Secondly,
nonlinearity of the functions destroys the Gaussianity of statistics. In this context, the
extended Kalman filter (EKF), which is a first-order expansion of the Kalman filter,
has been developed. The EKF has been successful used in different applications, such
as meteorology and oceanography [Ghil et al., 1981, Ghil and Malanotte-Rizzoli, 1991].
Nevertheless in high dimensional applications, the EKF cannot be implemented due to
the high cost associated with the iterative construction of the covariance matrix. Besides,
the implementation of the EKF relies on the local linear tangent which leads to neglect
the nonlinear effects. Consequently, this method is efficient only for weakly nonlinear
models. Otherwise, one may rely to more complex strategy such as the ensemble Kalman
filter.

5.2.2 Ensemble Kalman filter

As seen in the previous section, the Kalman filter solves the optimal filter by given
explicit recursive expressions of the two first moments of the probability distribution
functions. This is optimal only in the linear Gaussian case. In the case of nonlinear models
and/or non Gaussian pdfs, the Kalman filter is no more optimal and can also easily fail
the estimation process. In this context, Evensen introduces in [Evensen, 1994] a Monte
Carlo approximation of the Kalman filter called the Ensemble Kalman filter (EnKF).
This Monte Carlo filtering method has been used in many application studies due to
its robustness, its ease of implementation, and its efficient accuracy, e.g., oceanography,
reservoir modeling, and weather forecasting [Evensen and Van Leeuwen, 1996, Houtekamer
and Mitchell, 2001]. This method relies on the use of an ensemble to represent the error
statistics. Nevertheless, the EnKF is still based on the Gaussian hypothesis, i.e., its
analysis and update steps only rely on the mean and covariance. Let us consider the
following state-space formulation:

∀k ∈ N∗,
{

x(k) =M(k−1,k)(x(k−1)) + εm(k)
y(k) = H(k)(x(k)) + εo(k)

, (5.14)
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where,M(k−1,k) andH(k) are nonlinear functions, model errors εm(k), and observation errors
εo(k) are white Gaussian noises, of zero mean and of respective covariance Q(k) et R(k).

At iteration k, we have an ensemble of size Nens, of forecast parameter estimates
xf(k) = [x

f(1)
(k) , . . . ,x

f(Nens)
(k) ]T ∈ Rp×Nens where the superscript ·f(i) denotes the i -th forecast

member of the ensemble. The mean of the forecast members of the ensemble is given by:

x̄f(k) =
1

Nens

Nens∑
i=1

x
f(i)
(k) ·

Then, the forecast covariance matrix can be defined as:

P f
(k) =

1

Nens − 1

Nens∑
i=1

(x
f(i)
(k) − x̄f )(x

f(i)
(k) − x̄f(k))

T ·

As said previously the structure of the EnKF is the same as the one of the Kalman filter.
Thus, we need to compute the Kalman Gain K(k) defined by:

K(k) = Pf
(k) HT

(k)(R(k) + H(k)P
f
(k)H

T
(k))
−1 · (5.15)

In Equation (5.15), the observation operator, denoted by H(k) ∈ Rm×p, is linear or
has been linearized. Nevertheless, for most applications this condition of linear (or lin-
earized) observation operator cannot be applied. In that context, we can replace the terms
Pf

(k) HT
(k) and H(k)P

f
(k)H

T
(k) of the Kalman Gain equation as [Houtekamer and Mitchell,

2001]:

Pf
(k) HT

(k) =
1

Nens − 1

Nens∑
i=1

(x
f(i)
(k) − x̄f(k))(H(k)(x

f(i)
(k) )−H(k)(x̄

f
(k)))

T , (5.16)

and,

H(k)P
f
(k)H

T
(k) =

1

Nens − 1

Nens∑
i=1

(H(k)(x
f(i)
(k) )−H(k)(x̄

f
(k)))(H(k)(x

f(i)
(k) )−H(k)(x̄

f
(k)))

T · (5.17)

Equation (5.16) and Equation (5.17) linearize the nonlinear measurement function H(k)

to the observation operator H(k) by a linearization process using ensemble members. The
difference between the original EnKF and the stochastic version presented in this section is
that the observations are now treated as random variables. Indeed, it has been proven by
Burgers et al. [1998] that, in order for the EnKF analysis error covariance to be consistent
with the one of the KF, one have to treat the observations as random variables following
a Gaussian distribution with mean equal to the observed value and covariance equal to
R(k). Most of the time, this observation error covariance matrix is diagonal according to
the assumption of independent observations. Consequently, an ensemble of observations
of the same size Nens is generated by adding noise terms to the observation set y(k) such
that:

y
(i)
(k) = y(k) + ε

o(i)
(k) with ε

o(i)
(k) ∼ N (0,R(k)), i = 1 . . . Nens ·

Then the computation of the Kalman gain K(k) can be done. We can independently
update the ensemble members using:

x
a(i)
(k) = x

f(i)
(k) +K(k)

(
y
(i)
(k) −H(k)(x

f(i)
(k) )

)
,
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where the superscript ·a(i) denotes the i -th updated member of the ensemble. The last
step of the EnKF method is the forecast step of the ensemble parameters at k + 1 and
involves an ensemble of Nens updated parameters for iteration k.

x
f(i)
(k+1) =M(k,k+1)(x

a(i)
(k) ) + ε

m(i)
(k+1), i = 1 . . . Nens ,

with ε
m(i)
(k+1) ∼ N (0,Q(k+1)).

As studied by Le Gland et al. [2009], the solution of the stochastic EnKF converges

for Nens →∞ with a rate of ◦(N−
1
2

ens ). In the EnKF method, two main sources of sampling
errors can be considered. Firstly, the one due to the use of a finite ensemble of model
realizations, secondly the one due to the introduction of stochastic observation perturba-
tions. To reduce the sampling error, one can rely on the use of Latin hypercube sampling
strategy, see Section 3.5, instead of a conventional Monte Carlo method. A graphical
representation of the ensemble Kalman filter is illustrated in Figure 5.3 combining two
sources of information: model forecasts (in green) and observations (in blue). The pre-
sented filtering approach uses several members in order to track the hidden-state of the
system at each iteration. The uncertainties affecting both the forecast, the analysis, and
the observations can be obtained as displayed by the ellipsoids. The algorithm of this
method is summarized in Algorithm 3.

Figure 5.3 – Sketch of the ensemble Kalman filter adapted from [Tandeo et al., 2020]. The
ellipses represent the forecast Pf and analysis Pa error covariances, the model
Q and observation R error covariances of the state-space model defined in Equa-
tion (5.14)

.
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Algorithm 3: Ensemble Kalman Filter.

Data:
number of members in the ensemble Nens;
prior guess of the parameter vector xb and prior parameter covariance matrix Pb;
some measurements {y(k)}k=1,...,K ;
error covariance matrix {R(k)}k=1,...,K and artificial error covariance matrix
{Q(k)}k=0,...,K .
Initialisation step:
for i = 1 to Nens do

x
a(i)
(0) = xb + εb with, εb ∼ N (0,Pb)

for k = 1 to K do
Forecast step:
for i = 1 to Nens do

x
f(i)
(k) =M(k−1,k)(x

a(i)
(k−1)) + ε

m(i)
(k) with, e

m(i)
(k) ∼ N (0,Q(k))

x̄f(k) =
1

Nens

Nens∑
i=1

x
f(i)
(k) and Pf

(k) =
1

Nens − 1

Nens∑
i=1

(x
f(i)
(k) − x̄f(k))(x

f(i)
(k) − x̄f(k))

T

Update step:
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(k) HT

(k) =
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(
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f(i)
(k) − x̄f(k)

)(
H(k)(x

f(i)
(k) )−H(k)(x̄

f
(k))
)T

H(k)P
f
(k)H

T
(k) =

1

Nens − 1

Nens∑
i=1

(
H(k)(x

f(i)
(k) )−H(k)(x̄

f
(k))
)(
H(k)(x

f(i)
(k) )−H(k)(x̄

f
(k))
)T

K(k) = Pf
(k) HT

(k)

(
R(k) + H(k)P

f
(k)H

T
(k)

)−1
for i = 1 to Nens do

y
(i)
(k) = y(k) + ε

o(i)
(k) with ε

o(i)
(k) ∼ N (0,R(k))

x
a(i)
(k) = x

f(i)
(k) + K(k)

(
y
(i)
(k) −H(k)(x

f(i)
(k) )

)

The forecast covariance Pf can be badly estimated due to its evaluation based on
an ensemble of limited size. The misestimation of the forecast covariance produces an
accumulation of the sampling error which leads to the filter divergence [Pham et al., 1998,
Anderson and Anderson, 1999, Anderson, 2007]. One way around proposed in [Anderson
and Anderson, 1999] is to inflate the error covariance matrix by a scalar factor, denoted
by λ, greater than 1:

Pf
(k) = λPf

(k) ·
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5.3 Data assimilation technique for parameter esti-

mation

Data assimilation methods, such as the ensemble Kalman filter, have been developed
for estimating the state of a dynamical system from noisy observations. Nevertheless,
ensemble Kalman methods in the context of inverse problems such as parameter estimation
have been developed in oil industry applications where this inference problem is known as
history matching [Li et al., 2007, Oliver et al., 2008]. Recently, there has been a growing
interest in applying EnKF to inverse problems. This recursive inference method can be
seen as a derivative-free procedure [Stuart and Zygalakis, 2015, Reich, 2018], which allows
to have high parallelism capabilities. The algorithm of this model calibration, based on
the ensemble Kalman filter, is summarized in Algorithm 4. The idea is to consider an
artificial dynamic for the vector of parameters such as:

∀i ∈ N∗, x
f(i)
(k) = x

a(i)
(k−1) + ε

m(i)
(k) · (5.18)

Conclusion

This chapter highlights the concept of recursive Bayesian inference. In this context,
data assimilation techniques have been presented with a particular focus on the Kalman
filter and its Monte Carlo variant called ensemble Kalman filter. Such data assimilation
techniques combine forecasts from a numerical model with noisy observations, based on
the model and observation equations of a state-space formulation. These sequential infer-
ence procedures have been developed to sequentially update the probability distribution
on states of partially observed systems. This chapter introduces how the ensemble Kalman
filtering approach can be extended to numerical model calibration problems. Moreover,
the use of ensemble Kalman filtering methods to perform inverse problems for parame-
ter estimation is really convenient in the context of black-box time-consuming numerical
models because it is a derivative-free procedure with high parallelism capabilities.
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Algorithm 4: Ensemble Kalman Filter for model calibration.

Data:
number of members in the ensemble Nens;
prior guess of the parameter vector xb and prior parameter covariance matrix Pb;
some measurements {y(k)}k=1,...,K ;
error covariance matrix {R(k)}k=1,...,K and artificial error covariance matrix
{Q(k)}k=0,...,K .
Initialisation step:
for i = 1 to Nens do

x
a(i)
(0) = xb + εb with, εb ∼ N (0,Pb)

for k = 1 to K do
Forecast step:
for i = 1 to Nens do

x
f(i)
(k) = x

a(i)
(k−1) + ε

m(i)
(k) with, e

m(i)
(k) ∼ N (0,Q(k))

x̄f(k) =
1
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Nens∑
i=1
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f(i)
(k) and Pf

(k) =
1

Nens − 1

Nens∑
i=1
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(k) − x̄f(k))

T

Update step:
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for i = 1 to Nens do
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)
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I have not failed. I have just found 10,000 things that do not work.

Thomas Edison



6
Quantification and reduction of uncertainties in a wind

turbine numerical model based on a global sensitivity
analysis and a recursive Bayesian inference approach

Les résultats présentés dans ce chapitre ont donné lieu à un article soumis pour publication
au journal scientifique ”International Journal for Numerical Methods in Engineering”
[Hirvoas et al.]. L’objectif de ce chapitre est d’apporter une réponse à la quantification et
la réduction des incertitudes dans le contexte de la modélisation numérique d’éolienne.
L’intérêt de cette étude est dans un premier temps de déterminer les paramètres liés aux
propiétés du modèle de l’éolienne ayant une influence sur la fatigue de cette dernière. Puis
dans un second temps, nous nous intéressons à la réduction des incertitudes entâchant ces
paramètres influents. La méthode d’inférence développée au cours de ces travaux est basée
sur un algorithme de filtrage Bayésien d’ensemble, issu du domaine de l’assimilation de
données [Evensen, 2009, Iglesias et al., 2013, Schillings and Stuart, 2017, Kovachki and
Stuart, 2019]. Cette approche de filtrage, appelée filtre de Kalman d’ensemble, peut être
facilement exécutée en parallèle, ce qui est d’un grand intérêt pour les codes numériques
multi-physiques utilisés dans le domaine éolien [Jonkman and Buhl Jr., 2005, Le Cunff
et al., 2013, DNV GL, 2013], où le coût de calcul de la simulation directe est déjà un
défi en soi. Cependant, afin d’analyser la possibilité d’estimation des paramètres d’entrée
du modèle numérique, une étude d’identifiabilité a été réalisée. Pour celà, nous utilisons
le lien entre l’analyse de sensibilité globale et d’identifiabilité abordé par Dobre et al.
[2012]. Cette méthode d’inférence récursive vise à tirer pleinement profit des quantités
importantes de données fournies par les capteurs placés sur les éoliennes modernes en
production, en combinant de manière optimale les données de production et les modèles
numériques afin d’obtenir des modèles hautement fidèles des éoliennes. Ces travaux de
recherche se placent dans le contexte industriel du développement d’un ”jumeau numérique
d’une éolienne terrestre”. La méthodologie basée sur le filtre de Kalman d’ensemble laisse
envisager la mise à jour en continu des modèles numériques aéro-servo-élastiques, utilisés
pour l’estimation de la durée de vie de l’éolienne, afin de tenir compte des éventuelles
modifications des propriétés de la structure au cours de sa durée de vie. Le chapitre est
organisé comme suit. La méthodologie d’analyse de sensibilité globale dans le contexte
de modèle numérique stochastique et coûteux en temps de calcul est présentée dans la
Section 6.1. Dans la Section 6.2, nous explorons comment le filtre de Kalman d’ensemble

84



peut être utilisé dans les problèmes de calibration de modèles numériques. La section 6.3
est consacrée à la présentation du modèle numérique de l’éolienne, ses paramètres d’entrée
considérés comme incertains et les grandeurs de sortie retenues pour quantifier et réduire
les incertitudes. Dans la section 6.4, une étude de cas numérique d’éoliennes est utilisée
pour illustrer la procédure proposée et ses performances dans la calibration de paramètres
avec des données pseudo-expérimentales bruitées.

Introduction

In the current profound worldwide energy transition, wind power generation is devel-
oping rapidly. As a consequence, wind turbines monitoring, performance optimization
and lifetime assessment are becoming major issues. In the context of digitalization of the
industry, the exploitation of collected data can be optimized by combination with wind
turbine numerical models. Such numerical models can be complex and costly as they
involve nonlinear dynamic equations with different physics as well as stochastic loading
from the wind. Moreover, some input parameters of the models can be poorly or badly
known as the structure ages over time and defaults can appear. Consequently, model
predictions are affected by these uncertainties. Characterization and reduction of these
uncertainties is important for decision making [De Rocquigny et al., 2008]. It is the case in
wind energy applications where uncertainties are ubiquitous both in external conditions
and in the models used during design process. In this context, uncertainty quantification
and reduction methods have been developed [Smith, 2013]. As mentioned by Hart et al.
[2017], even the concept of sensitivity is delicate when dealing with stochastic models, as
the one in our industrial application whose stochasticity is due to the stochastic nature of
the wind external solicitation. Note also that the models used in wind energy applications
are often time consuming [Jonkman and Buhl Jr., 2005, Perdrizet et al., 2013]. Therefore
most of the commonly used methodologies for uncertainty quantification are inappropriate
in our setting. An historical strategy for uncertainty quantification in wind energy fields
was to take into account uncertainties by employing Monte Carlo methods [Kwon, 2010,
Jin and Tian, 2010]. Nevertheless, for high-fidelity numerical models, such uncertainty
quantification approaches based on Monte Carlo methods become cumbersome due to the
computational cost. Advanced methods such as polynomial chaos expansion, stochastic
collocation or Gaussian process have been developed to alleviate this computational issue,
[see Petrone et al., 2011, Wang et al., 2016, Murcia et al., 2018].

In the present work, we aim at investigating a complete framework to quantify and
reduce the input parameter uncertainties involved in a finite element wind turbine model.
Such methods to reduce uncertainties involved in models used in wind energy are cur-
rently investigated [Sørensen and Toft, 2010]. In the literature, Van Buren et al. [2013]
has developed a framework to quantify and reduce such uncertainties based on ANOVA
decomposition and Bayesian inference. However, our approach is innovative due to the
fact that we are dealing with a high-fidelity wind turbine numerical model and by the
recursive aspect of our inference procedure. Recently, similar research work on recursive
inference with a low-fidelity wind turbine numerical model has been led by Branlard et al.
[2020]. They develop a digital twin concept in order to estimate turbine states; e.g., wind
speed, torque; based on the Kalman filter. Our main contribution is twofold.
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Chapter 6. Quantification and reduction of uncertainties in a wind turbine numerical
model based on a global sensitivity analysis and a recursive Bayesian inference approach

Firstly, the framework allows quantifying the sources of uncertainties affecting the
fatigue behavior of the structural components of the wind turbine. To perform such
analysis, we usually use an aero-servo-elastic software fed by model parameters and wind
solicitation. Each wind field is computed using a stochastic turbulent wind simulator.
The obtained outputs of the simulations are different time-series describing the behavior
of the wind turbine, which are reduced to some quantities of interest (QoIs), see Figure
6.1. The function D representing the time-consuming numerical model is defined as:

y = D(x, V ) , (6.1)

where, x = (x1, ..., xp) ∈ P ⊂ Rp are the model input parameters, V is a stochastic process
modeling the external wind solicitation, y = (y1, ..., ym) ∈ Rm is the vector of discretized
functional output; e.g., generated power, structural accelerations or loads. Let g be the
function mapping the functional loads of the structure in y to the damage quantity of
interest (QoI), such as the damage-equivalent load (DEL) [Freebury and Musial, 2000]:

g(y) := g ◦ D(x, V ) · (6.2)

Figure 6.1 – General sketch for wind turbine modeling.

Global Sensitivity Analysis (GSA) methods have been developed to quantify the un-
certainty in QoI with regard to the input parameters, their individual contributions, or
the contribution of their interactions. We propose a variance-based GSA methodology,
relied on the so-called Sobol’ indices [Sobol’, 1993], for stochastic computer simulations.
Such techniques, which often refer to the probabilistic framework and Monte Carlo (MC)
methods, require a lot of calls to the numerical model. The uncertain input parame-
ters are modeled by independent random variables gathered into a random vector and
characterized by their probability distribution. Variance-based SA for time consuming
deterministic computer models has been mainly performed by approximating the model
by a mathematical function, also known as a surrogate model. Among the different
surrogate models, we focus on Gaussian process (GP), also known as kriging, which is
characterized by its mean and covariance functions. One advantage of the GP model is
to provide both a prediction of the numerical model and the associated uncertainty. Such
surrogate modeling assumes that prior beliefs about the numerical code can be modeled
by a Gaussian process. Nowadays, in industrial applications, numerical models are often
run at different levels of complexity and then a hierarchy of simulations is available. In
this context, if several resolutions of simulation are obtained, multi-fidelity GP regression
has been proposed to predict the output of a costly numerical model, [see Forrester et al.,
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2007, Forrester and Keane, 2009]. In particular, Parussini and Perdikaris have proposed a
recursive formulation of the approach combined with other approximations to enhance the
computational efficiency, [see Perdikaris et al., 2015, 2016, Parussini et al., 2017]. These
multi-fidelity formulations of the GP regression are computing time efficient in terms of
number of model evaluations in comparison to the simple GP regression. However in
the present industrial application, we did not implement multi-fidelity formulations of
GP regression as we could only run a high-resolution version of the stochastic simulator
D. In order to take into account the inherent randomness from wind turbine simulation,
our approach consists in focusing on the mean behavior of the high-resolution runs of
the stochastic simulator described by the deterministic model x 7→ EV [g ◦ D(x, V )]. GP
regression is then used to reduce the numerical costs. More precisely, noisy evaluations
of the conditional expectation are computed via Monte Carlo and then filtered using
heteroscedastic GP modeling. Lastly, variance-based sensitivity indices are computed by
running the GP based surrogate in a so-called pick-freeze estimation procedure [Le Gratiet
et al., 2017].

Secondly, after identification of the less influential input parameters on the fatigue
behavior of the wind turbine, we propose a Bayesian inference framework to carry out
a model calibration procedure based on in situ measurements. It uses measurements
ymes to update some prior probability distributions about the unknown input parame-
ters X ∼ p(x) and yields some posterior probability distributions, through the Bayes’
theorem p(x|ymes) ∝ p(ymes|x)p(x) 1. Numerous batch techniques have been developed
to solve such Bayesian problems. Nevertheless, recent decades have been marked by
a simultaneous development of sensor technologies and Internet of Things capabilities.
Thus, our research efforts have been directed towards inference techniques where the data
are sequentially processed when new observations become available. In this context, the
model parameter inference can be carried out using sequential Bayesian techniques. In
geosciences, these techniques are called data assimilation methods. We perform the cal-
ibration using a recursive Bayesian inference approach based on an Ensemble Kalman
Filter (EnKF) [Evensen, 2009].

However, such recursive inverse problems can be solved assuming that several con-
ditions of well-posedness and identifiability are achieved. These conditions have been
summarized by Hadamard, Jacques [1902]. As highlighted by Dobre et al. [2012], a
relationship between the non-identifiability of input parameters and the GSA can be es-
tablished. Indeed, input parameters with null total sensitivity indices on the measured
outputs imply their non-identifiability. Therefore, for the purpose of identifiability a sec-
ond GSA is conducted on the calibration parameters. However, due to the functional
behavior of the measurements, we propose to first reduce their dimensionality through
principal component analysis. Then, a GP is fitted to the different principal components
and used to compute an aggregated Sobol’ index for each model parameter [Lamboni
et al., 2011].

Last but not least, the proposed framework has been applied to an industrial wind tur-
bine numerical model. The developed recursive inference procedure has shown promising
results in the industrial inversion problem.

The chapter is organized as follows. The GSA methodology in the context of stochastic
time-consuming numerical model is introduced in Section 6.1. In Section 6.2, we explore

1. Random variables are written in upper case roman letters and particular realizations of a random
variable are written in corresponding lower case letters.
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how the EnKF can be employed in model calibration problems. Section 6.3 is devoted to
present the wind turbine numerical model, its uncertain input parameters, and the selected
output quantities used for quantifying and reducing the uncertainties. In Section 6.4, a
wind turbine numerical case study is used to illustrate the proposed framework and its
performance in calibrating parameters with noisy pseudo-experimental output data.

6.1 Kriging based global sensitivity analysis

6.1.1 Introduction

The aim of sensitivity analysis is to quantify the relative influence of input parameters
on some QoI produced from the model outputs of the numerical model. In the context of
model calibration, conducting such an analysis can help to identify which input parameters
should be properly estimated. One may distinguish two categories of methods: local and
global. While local sensitivity analysis considers small perturbations of the inputs around
some nominal values, global sensitivity analysis (GSA) varies the inputs on their whole
variation range [Saltelli et al., 2000]. Among the large number of available approaches,
variance-based sensitivity analysis introduced by Sobol’ [1990] proposes to measure the
sensitivity by computing the so-called Sobol’ indices. When no analytical formulae of
these indices are available, one way to perform their estimation is to rely on Monte Carlo
(MC) techniques, which require a huge number of model evaluations. In the context of
costly numerical codes as, e.g., the wind turbine numerical model under interest, the use
of a cheap metamodel in place of the true costly model is thus crucial. In addition to
being computationally expensive, the numerical model we are dealing with is stochastic.
This means that from a same set of input parameters, the output can have different
values depending on the wind conditions. This specificity has to be carefully taken into
account when estimating sensitivity measures under interest. More precisely, let us use
the formalism introduced in Equations (6.1) and (6.2) to the model in hand. We are
interested in measuring the sensitivity of a QoI g(y) ∈ R with respect to the input x.
In the context of GSA, each input is now considered as a random variable Xj with its
uncertainty modeled by a probability distribution, such as X = (X1, . . . , Xp). These one-
dimensional probability distributions reflect the practitioner’s belief in the uncertainty on
the parameter values and the Xj are assumed to be independent from each other. Then,
the QoI g(Y) := g ◦ D(X, V ) is a random variable itself.

The randomness of the QoI has two sources: the randomness from the parameters
X, and the one due to the stochasticity propagated from the model itself through V ,
which is assumed to be independent of X. There exists at least two approaches to deal
with this stochasticity in a GSA framework. The first one considers the full probability
distribution of the QoI while the other one is only concerned with quantitative measures of
the probability distribution, e.g., quantile or expectation [Etoré et al., 2018]. The latter
is the one considered in this work by investigating the QoI averaged over the inherent
randomness of the physical system. We are therefore interested in the sensitivity of the
deterministic function f defined as:

f(X) = EV [g ◦ D(X, V )] .

The total variance of f(X) can be split into different parts of variance under the
assumption that the input parameters are independent (this is the so-called Hoeffding
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decomposition, [see Hoeffding, 1948]). Each part of variance corresponds to the contri-
bution of each set of parameters on the variance of the output f(X). By considering the
ratio of each part of variance to the total variance, we obtain a measure of importance
for each set of input parameters that is called the Sobol’ index [Sobol’, 1990]. In the
literature, functional analysis of variance (FANOVA) has been widely used to quantify
the sensitivity of a model output to input variables (see Appendix A in [Owen, 2013]
and [Saltelli, 2002]). Let us denote u a subset of {1, ..., p}, −u its complement and |u|
its cardinality. Assuming V arX[f(X)] < +∞, V arX[f(X)] 6= 0, we define for any u the
closed Sobol’ index of order r = |u| associated to the set of inputs Xu = {Xj}j∈u as:

Su =
V arXu [EX−u [f(X)|Xu]]

V arX[f(X)]
· (6.3)

This index quantifies the main effect of all the variables within Xu, including interactions,
on f(X). The most influential sets of input parameters can then be identified as the sets
of input parameters with the largest Sobol’ indices. Total Sobol’ indices can also been
defined as:

STu = 1− S−u = 1− V arX−u [EXu [f(X)|X−u]]

V arX[f(X)]
· (6.4)

This index quantifies the effect of Xu plus the effect of all interactions between variables
in Xu and variables in X−u on Z.

A general approach to estimate Sobol’ indices is based on Monte Carlo and requires an
important number of evaluations of f . The high computational cost of the wind turbine
model prevents from performing such estimation in reasonable time. It is the reason
why we would like to rely on a metamodel to compute cheap evaluations of the initial
costly computer code. In this study, we chose to approximate the true numerical code
by a Gaussian process, also known as kriging metamodel, in order to apply a kriging
based sensitivity analysis, e.g., in [Le Gratiet et al., 2013]. We firstly present the noiseless
framework and then we detail the case where we are facing to heterogeneously noisy
evaluations of the function f .

6.1.2 Ordinary kriging

First, a Gaussian process regression model is built to surrogate the function f . The
principle of kriging based metamodeling [Krige et al., 1989] is to consider that our deter-
ministic model f can be considered as a realization of a Gaussian process {Z(x) , x ∈ P}
with mean function µ and covariance kernel C. Such covariance kernel (a.k.a. covariance
function, kernel function, or kernel), is a positive-definite function of two distinct inputs
x,x′ allowing to define the prior covariance between any two values of the function of
interest. Many kernels can be used, each one corresponding to a different set of prior
assumptions made about the function of interest [Stein, 2012, Rasmussen, 2003, Duve-
naud, 2014]. Each kernel is defined by a number of parameters which specify the shape
of the covariance function. These parameters, also known as hyper-parameters, can be
either estimated by minimizing a loss function with a Leave-One-Out Cross-Validation
procedure or maximizing a likelihood function [Bachoc, 2013]. In our study, we use the
last mentioned approach to estimate these hyper-parameters of a 5/2 Matérn kernel.

For any x ∈ P , f(x) is approximated by the conditional Gaussian process {Zn(x) , x ∈
P} := {[Z(x)|Z(Xn) = z] , x ∈ P}, where z = {z1, . . . zn} are evaluations of f on n points
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Xn = {x1, . . . ,xn}, xi ∈ P . The design {(x1, z1), . . . , (xn, zn)} is called the learning
sample. In the following, Xn is chosen as a Latin Hypercube sample [McKay et al., 1979]
to guarantee a good exploration of our numerical model. We then get the ordinary kriging
equations:

Zn(x) ∼ N (mOK(x), s2OK(x)) , (6.5)

with

mOK(x) = µ(x) + c(x)TC−1(z− µ) ,

s2OK(x) = C(x,x)− c(x)TC−1c(x) ·

We denote by µ = µ(Xn) the vector of trend values on Xn, by C = (C(xi,xj))1≤i,j≤n
the covariance matrix of Z(Xn), and by c(x) = (C(x,xi))1≤i≤n the vector of covariances
between Z(x) and Z(Xn).

6.1.3 Noisy kriging

In our context, exact evaluations of f can not be obtained directly. We have, for each
i = 1, . . . , n, a noisy evaluation z̃i = f(xi) + εi, where z̃i is defined as an empirical mean
computed from a K-sample of g ◦ D(xi, V ), and εi is a centered noise whose variance is
defined as

τ 2i =
1

K

(
1

K − 1
(
K∑
j=1

(D(xi, V = vj)−
1

K

K∑
j=1

D(xi, V = vj))
2

)
·

We then consider, as a first approximation, that the vector (ε1, . . . , εn) is a centered Gaus-
sian random vector with diagonal covariance matrix diag(τ 21 , . . . , τ

2
n) denoted by ∆. Then,

provided that the process Z and the Gaussian measurement errors {εi}1≤i≤n are stochas-
tically independent, the process conditionally on the noisy observations {Z̃n(x) , x ∈
P} := {[Z(x)|Z̃(Xn) = {z̃i}1≤i≤n] , x ∈ P} is still Gaussian, and its conditional mean
and variance functions are given by the following slightly modified kriging equations:

Z̃n(x) ∼ N (mNK(x), s2NK(x)) , (6.6)

with

mNK(x) = µ(x) + c(x)T (C + ∆)−1(z̃− µ) ,

s2NK(x) = C(x,x)− c(x)T (C + ∆)−1c(x) ·

6.1.4 Kriging based Sobol’ indices

Following Le Gratiet et al. [2013] and Marrel et al. [2009] the idea is to substitute f
with Z̃n in Equation (6.3):

S̃u =
V arXu [EX−u [ Z̃n(X) | Xu]]

V arX[Z̃n(X)]
. (6.7)

As Z̃n is a random process, the resulting indices are also random. These indices are
estimated via Monte Carlo samples from two designs of experiments, using a pick-freeze
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procedure. A design is a point set P = {xi}si=1 in which each point is obtained by sampling
s times each input variable Xj ∈ P , j = 1, . . . , p. Each row of the design is a point xi
in P , the j-th column of the design refers to a sample of Xj and for u ⊆ {1, . . . , p},
xi,u = {xi,j}, j ∈ u. Given two points x and x′, the hybrid point (xu : x′−u) ∈ P
is defined as xj if j ∈ u and x′j if j /∈ u. Consider P = {xi}si=1 and P′ = {x′i}si=1

two designs sampled from the distribution of the input random vector X. One way to
estimate the quantity in Equation (6.7) has been proposed by Homma and Saltelli [1996]
and further studied in Janon et al., see Lemma 1 in [Janon, 2012]. They propose the
following estimator:

̂̃Su =
1
s

∑s
i=1 Z̃n(xi) Z̃n(xi,u : x′i,−u)− 1

s

∑s
i=1 Z̃n(xi)

1
s

∑s
i=1 Z̃n(xi,u : x′i,−u)

1
s

∑s
i=1 Z̃n(xi)2 − (1

s

∑s
i=1 Z̃n(xi))2

. (6.8)

Confidence intervals can be obtained via a bootstrap method, as described in Algo-
rithm 1 of [Le Gratiet et al., 2013]. These intervals integrate two sources of uncertainty,
the first one is related to the metamodel approximation, and the second one is related to
the Monte Carlo integration.

Each step of the procedure was implemented in R using the km and sobolGP functions
from respectively the DiceKriging and Sensitivity packages, [see Roustant et al., 2012,
Iooss et al., 2019].

6.2 Bayesian inference for online parameter identifi-

cation

In our context, we suppose that data are collected sequentially and we seek to refine
our choice of parameters in the numerical model at each iteration. This problem can be
seen as a supervised learning problem that we aim to solve sequentially as each pair of
data points {v(k),y(k)} is obtained at the iteration k [Kovachki and Stuart, 2019].

In the recursive Bayesian parameter estimation framework, developed in this paper,
the unknown time-invariant input parameter vector x is modeled as a discrete Markov
chain, the evolution of which is governed by a random walk process. In our context, the
dynamic evolution of the input parameter and the measurement modelisation with the
simulator responses can be formulated at iteration {k}k=1...T as:{

x(k) = x(k−1) + δ(k)
y(k) = D(x(k), V = v(k)) + ε(k)

, (6.9)

where x(k) is the input parameter vector, v(k) is a known realization of the stochastic
external excitation at k, the Gaussian noises δ(k) ∼ N (0,Q(k)) and ε(k) ∼ N (0,R(k)) are
respectively an artificial dynamic noise and a combination of the model and observation
errors. For the sake of readability, y ∈ Rm will represent the vector gathering the measured
responses obtained on the structure of interest.

Filtering techniques, a type of data assimilation, can be used to sequentially estimate
the parameter vector in Equation (6.9) using the known input solicitation and the available
measurements. Among all available filtering methods, the Kalman Filter (KF) [Kalman
et al., 1960] has been widely applied when dealing with a linear system with Gaussian
error sources. In this paper due to the nonlinearity in our numerical model, the Ensemble

91



Chapter 6. Quantification and reduction of uncertainties in a wind turbine numerical
model based on a global sensitivity analysis and a recursive Bayesian inference approach

Kalman filter (EnKF) [Evensen, 2009] is used to perform parameters estimation. The
EnKF is a sequential Monte Carlo method that provides an alternative to the traditional
KF. The method works on an ensemble of parameter estimates transforming them from the
prior distribution into the posterior one. We propose to use a Latin Hypercube sampling
technique coupled with a geometrical criteria maximizing the minimum distance between
the design points instead of a conventional Monte Carlo method to generate the initial
ensemble of parameter estimates, [see Johnson et al., 1990].

In the field of inverse problems, this inference method is referred to as Ensemble
Kalman Inversion (EKI). The EnKF formulation used in [Snyder and Zhang, 2003] is
adopted in this paper. At iteration k, we have an ensemble of size Nens, of forecast pa-
rameter estimates xf(k) = [x

f(1)
(k) , . . . ,x

f(Nens)
(k) ] ∈ Rp×Nens where the superscript ·f(i) denotes

the i -th forecast member of the ensemble. The mean of the forecast members of the
ensemble is given by:

x̄f(k) =
1

Nens

Nens∑
i=1

x
f(i)
(k) ·

The error covariance matrix for the forecast estimate in the KF can be empirically esti-
mated as:

Pf
(k) =

1

Nens − 1

Nens∑
i=1

(x
f(i)
(k) − x̄f(k))(x

f(i)
(k) − x̄f(k))

T ·

As said previously the structure of the EnKF is the same as the one of the Kalman
filter [Welch and Bishop, 1995]. Thus, we need to compute the Kalman Gain, referred to
as K(k) and defined by:

K(k) = Pf
(k)M

T
(
MPf

(k)M
T + R(k)

)−1
,

where the observation operator, denoted by M ∈ Rm×Nens , is linear or has been linearized
from the function D, [see Kopp and Orford, 1963].

Nevertheless, for most applications this condition of linear (or linearized) observation
operator cannot be applied. In that context, as proposed in [Houtekamer and Mitchell,
2001], we can replace the terms Pf

(k)M
T and MPf

(k)M
T of the Kalman Gain equation by

the following ones:

1

Nens − 1

Nens∑
i=1

(
x
f(i)
(k) − x̄f(k)

)(
D(x

f(i)
(k) , V = v(k))−D(x̄f(k), V = v(k))

)T
(6.10)

and,

1

Nens − 1

Nens∑
i=1

(
D(x

f(i)
(k) , V = v(k))−D(x̄f(k), V = v(k))

)
(
D(x

f(i)
(k) , V = v(k))−D(x̄f(k), V = v(k))

)T
· (6.11)

It has been argued, in [Ambadan and Tang, 2009], that Equation (6.10) and Equa-
tion (6.11) are good approximations if the following hypothesis are verified:

D(x̄f(k), V = v(k)) = D(xf(k), V = v(k)) =
1

Nens

Nens∑
i=1

D(x
f(i)
(k) , V = v(k)) ,

x
f(i)
(k) − x̄f(k) = ξi and ‖ξi‖ is small for i = 1 . . . Nens ·
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This version of EnKF treats the observations as random variables [Evensen, 2009].
Indeed, an ensemble of observations of the same size Nens is generated by adding noise
terms to the observation set y(k) such that:

y
(i)
(k) = y(k) + e

o(i)
(k) , with e

o(i)
(k) ∼ N (0,R(k)), i = 1 . . . Nens ·

The noise terms are sampled from the distribution of the error covariance matrix R(k).
The stochastic EnKF has been showed to have the advantage to “re-Gaussianize” the en-
semble distribution thanks to the observation perturbations [Lawson and Hansen, 2004].
Maintaining Gaussianity has a positive impact on analysis quality of the ensemble filter
by maintaining the correct forecast error covariance. Most of the time, the measurement
observational error covariance matrix is diagonal according to the assumption of indepen-
dent observations. Using the presented approximation, the computation of the Kalman
gain K(k) can be done. We can independently update the ensemble members using:

x
a(i)
(k) = x

f(i)
(k) + K(k)

(
y
(i)
(k) −D(x

f(i)
(k) , V = v(k))

)
·

where the superscript ·a(i) denotes the i -th updated member of the ensemble. The last
step of the EnKF method is the forecast step of the ensemble parameters at k + 1 and
involves an ensemble of Nens updated parameters for iteration k, such as:

xf(k+1) = xa(k) + δ(k) , with δ(k) ∼ N (0,Q(k)) ·

The presented method is fully described in Algorithm 3.
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Algorithm 5: Ensemble Kalman Filter for parameter inference, a.k.a. Ensemble
Kalman Inversion.

Data:
number of members in the ensemble Nens;
prior guess of the parameter vector xb and prior parameter covariance matrix Pb;
some measurements {y(k)}k=1,...,T and known realization of the external
solicitation {v(k)}k=1,...,T ;
error covariance matrix {R(k)}k=1,...,T and artificial error covariance matrix
{Q(k)}k=0,...,T .
Initialisation step:
for i = 1 to Nens do

x
a(i)
(0) = xb + εb with, εb ∼ N (0,Pb)

for k = 1 to T do
Forecast step:

xf(k) = xa(k−1) + δ(k) , with δ(k) ∼ N (0,Q(k))

x̄f(k) =
1

Nens

Nens∑
i=1

x
f(i)
(k) and Pf

(k) =
1

Nens − 1

Nens∑
i=1

(x
f(i)
(k) − x̄f(k))(x

f(i)
(k) − x̄f(k))

T

Update step:

Pf
(k)M

T =
1

Nens − 1

Nens∑
i=1

(
x
f(i)
(k) − x̄f(k)

)(
D(x

f(i)
(k) , V = v(k))−D(x̄f(k), V = v(k))

)T
MPf

(k)M
T =

1

Nens − 1

Nens∑
i=1

(
D(x

f(i)
(k) , V = v(k))−D(x̄f(k), V = v(k))

)
(
D(x

f(i)
(k) , V = v(k))−D(x̄f(k), V = v(k))

)T
K(k) = Pf

(k)M
T (MPf

(k)M
T + R(k))

−1

for i = 1 to Nens do

y
(i)
(k) = y(k) + e

o(i)
(k) with e

o(i)
(k) ∼ N (0,R(k))

x
a(i)
(k) = x

f(i)
(k) + K(k)

(
y
(i)
(k) −D(x

f(i)
(k) , V = v(k))

)

6.3 Description of the wind-turbine numerical model

Dynamic analysis of wind turbines involves strong interactions between the turbines’
aerodynamics, the control system, and the structural mechanics. The main solicitations
are the environmental conditions and the rotating machinery during operating term. In
order to model and simulate the nonlinear response of wind turbine structures under such
solicitations, various servo-aero-elastic software have been developed, such as OpenFAST
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[NREL, 2018], Bladed [DNV GL, 2013], HAWCK2 [Larsen and Hansen, 2007] or Deeplines
Wind� [Principia].

In our study, a simulator of a Senvion MM82 wind turbine has been developed using
Deeplines Wind� software from technical specifications. This software is a fully coupled
simulation tool taking into account the aerodynamics of the aero-generator, the elasticity
of the structural wind turbine components (mast, blades and drive-train systems), and
the control system [Le Cunff et al., 2013]. The software architecture developed by IF-
PEN 2 and Principia 3 is fully modular with different dynamic libraries (DLL) called by
the solver. The integration in time is performed with an implicit Newmark integration
scheme. The developed simulator includes a nonlinear beam finite element formulation
to model the structural components. The aerodynamic loads acting on the turbine rotor
are dynamically computed by employing the Blade-Element Momentum (BEM) theory
for Horizontal Axis Wind Turbine (HAWT). A Deeplines Wind� software validation,
based on code comparisons [Perdrizet et al., 2013], has shown accurate results in various
conditions.

Wind turbine simulation consists of two stages: first the generation of the input tur-
bulent wind field and then the fully coupled servo-aero-elastic simulation. The generation
of the input stochastic process is done by using a simulator called Turbsim [Jonkman,
2009]. This simulator has some deterministic inputs such as the turbulence intensity, the
mean wind speed, the mean flow angles, the spectrum and the spatial correlation model.
In our model, we have used an IEC 4 Kaimal turbulence spectrum with an exponential
spatial coherence. Nevertheless, these deterministic values cannot uniquely determine a
stochastic wind field and a pseudo-random number generator has to be used in order to
create random phases for the velocity time. Then structural responses are time computed
with a multi-physics numerical code such as Deeplines Wind�, following the formalism
introduced in Equation (6.1). A wind turbine structure can encounter a variety of op-
erating conditions. Each of the operating conditions, modeled by the stochastic process
V , is parameterized by measurable deterministic quantities mentioned in Figure 6.1. In
this paper we will perform the study at an under-rated average wind speed of 8 m/s
corresponding to the most common operating regime of the considered turbine. All com-
puted responses are based on 10-minute effective simulations of the MM82 Senvion wind
turbine. By effective, we mean that the transient start-up behavior is removed from the
analysis. The transient start-up behavior can be decomposed in a ramp time wind and an
oversight periods. The oversight period has been set according to auto-correlation studies
of the outputs. This period permits to remove the effect of the ramp time period on the
numerical model responses. A numerical simulation lasts 15 minutes on an Intel Xeon
Scalable Gold 6140 processor operating at 2.3 GHz.

From the structural time responses computed by the Deeplines Wind� model, we
obtain some QoIs describing the fatigue behavior of the wind turbine. They are obtained
by post-treating the resulting time series of internal loads at different locations of the
analysed design, see Figure 6.2 and Table 6.1. In our study, we denote by g the function
mapping the functional loads of the structure to the damage QoIs, see Equation (6.2).
Each fatigue QoI has been estimated by using the damage-equivalent load (DEL). The
DEL is computed for a set of parameter values and different realizations of the stochastic

2. see https://www.ifpenergiesnouvelles.fr/

3. see http://www.principia-group.com/

4. International Electrotechnical Commission
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process V . It is defined as the regular load amplitude that would create in Nref cycles
the same fatigue as the considered irregular load history. The DEL is computed based on
the Palgrem Miner’s rule [Sutherland, 1999]:

DEL =

(∑Nc

i=1 S
m
i · ni

Nref

) 1
m

· (6.12)

where i = 1, . . . , Nc corresponds to each range bin, Si is the cycle range value and ni is
the number of cycles for the i-th bin. The exponent m is the negative inverse slope of
the cyclic stress against the cycles to failure curve (S-N curve) and Nref is the reference
number of cycles usually set to an arbitrary value. The cycles in an irregular load history
are computed using the Rainflow counting method [Cosack, 2011].

Figure 6.2 – Recorded time series of
loads at different loca-
tions of the wind tur-
bine

Load’s position m Type of load
Blade root moments 10 Out-of-plane bending In-plane bending
Tower top moment 3 Fore-aft bending Side-to-side bending

Tower bottom moment 3 Fore-aft bending Side-to-side bending
Tower top force 3 Fore-aft force Side-to-side force

Table 6.1 – Fatigue damage equivalent loads used for
the global sensitivity analyses with their
corresponding Wöhler’s exponent, i.e., the
negative inverse slope of the S-N curve.

In order to ensure that the variation induced by the input parameters is distinguish-
able from the one induced by the realization of the stochastic process V , multiple wind
realizations have to be generated. A convergence study has been led in order to determine
the number of realizations needed to encompass the variation of the selected realization of
the stochastic process. The QoIs analyzed in this study are the DEL at different locations
of the wind turbine, see Equation (6.12). The number of stochastic process realizations
used during the convergence study varies from 1 to 30.

Figure 6.3 shows the convergence of the tower bottom fore-aft bending moment DEL
on the number of realizations used for their averaging estimation. We assume a 10-minute
mean hub-height wind speed of 8 m/s and a wind fluctuation following the Kaimal IEC.
The IEC 61400-1 standard has three turbulence categories: A, B and C, [see IEC, 2005].
We have decided to use the A class corresponding to the highest turbulence intensity, i.e.,
the ratio of standard deviation of fluctuating wind velocity to the mean wind speed is
around 24 %. A time series respecting the 10-minute statistics, which will be different
at each generation, is created thanks to the simulator [Jonkman, 2009]. According to

96



6.3. Description of the wind-turbine numerical model

certification guidelines, see design load case 1.2 in [DNV GL, 2016], the fatigue analysis
has to be led with 6 wind realizations of 10 min time period. Nevertheless, as we can
underline with the last mentioned figure, the empirical mean computed from these 6
realizations does not seem to be a reliable estimator. In other words, 6 simulations
are not sufficient for QoIs’ statistics to converge. With our industrial numerical model,
a compromise has been made to balance the quality of the empirical estimator and the
computing time goal by fixing the number of realizations to 10 for the GSA of the damage
equivalent loads.

The aim of this paper is to identify and reduce the structural sources of uncertainty on
the fatigue QoIs. We will focus our study on some wind turbine properties represented by
13 parameters gathered in the vector x. A literature review has been done to specify the
uncertainty in the parameter values. Based on expert knowledge, all these parameters
were considered independent of one another with Gaussian distributions due to their
physical properties.

Here follows a description of the 13 considered parameters, see Table 6.2. For the sup-
port structural properties, six parameters have been considered, including nacelle mass,
nacelle center of mass, tower Rayleigh damping, inertial nacelle and drive-train torsion
stiffness. The tower thickness has been changed by uniformly scaling the distributed
tower thickness. The boundary values have been set by changing the first fore-aft tower
frequency mode by ±10% of its reference value.

The uncertainties in blade structural properties have been represented using five pa-
rameters. The blade structural responses have led to the definition of the uncertainty
range. Indeed, the frequency of the edge-wise (ES) and flap-wise (FS) mode were changed
about 10% each from their nominal value. These modifications of the mode were done
by uniformly scaling the associated stiffness and the distributed blade mass of all blades.
Blade imbalance effects have been also included by applying a different change value to
each blade. One blade is modified to be a value that is higher than the nominal value,
and another one modified to a lower value. The third blade remains unchanged at the
nominal value.
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Figure 6.3 – Convergence of the tower bottom fore-aft bending moment DEL as a function of
the number of turbulent seeds used for its evaluation. 95% confidence interval
around the estimated empirical mean is also represented (grey area). The wind
turbulence intensity is set around 24 %, [see IEC, 2005].
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For the aerodynamic properties, we have considered the wind turbine yaw misalign-
ment by changing the yaw angle of the turbine. For the individual blade pitch error, a
constant offset angle is applied to two of the blades, respectively above and below nominal
value.

Table 6.2 – Structural properties - uncertainties affecting the input parameters of the wind
turbine model.

Input parameter µ σ REF
Nacelle Mass - Nmass [kg] 6.90e+04 2.30e+03 [Witcher, 2017]

Nacelle center of mass - NCMx [m] 1.00 3.33e-02 [Robertson et al., 2019b]

Tower thickness - e [%] 0 7
IFPEN
±10% 1 FA

Tower Rayleigh Damping - βTR [-] 3.10e-02 9.93e-03 [Koukoura, 2014]

Inertial Nacelle - Izz [kg ·m2] 7.00e+05 2.33e+04
IFPEN
±10% µ

Drive-train Torsional stiffness - KD [N ·m
2

rad
] 4.45e+09 1.48e+08 [Holierhoek et al., 2010]

Blade Flap wise Stiffness - αBF [N ·m2] 1.00 3.33e-02
IFPEN

∼ ±10% 1 FS

Blade Edge wise Stiffness - αBE [N ·m2] 1.00 3.33e-02
IFPEN

∼ ±10% 1 ES
Blade mass coefficient - αmass [%] 1.00 1.67e-02 [Witcher, 2017]
Blade Rayleigh Damping - βBR [-] 5.39e-03 1.45e-03 [Robertson et al., 2019b]

Blade mass imbalance - ηB [%] 2.50 8.33e-01 [Robertson et al., 2019b]
Yaw misalignment - ω [◦] 0 6.67 [Quick et al., 2017]

Individual pitch error - Ω [◦] 0.10 3.33e-02 [Simms et al., 2001]

After an appropriate sensitivity analysis leading to the identification of the less in-
fluential input parameters on the fatigue QoIs, we can fix their value to a nominal one
without affecting the fatigue behavior of the structure. Then, the uncertainties of the
other parameters has to be reduced by employing an appropriate inference method based
on in situ measurements. In this context, let us consider a wind turbine instrumented
with accelerometers. We assume that bi-axial measuring devices are located at mid and
top tower height position. From these sensors, we can record four functional acceleration
time series. Then, the power spectral density (PSD) of each measured acceleration time
series is computed using Welch’s method [Welch, 1967], see Figure 6.4.
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Figure 6.4 – On the left side (a): simulated acceleration in m
s2

of the wind turbine tower in
the fore-aft direction obtained at the accelerometer device located at mid-tower
decomposed in a ramp time wind 1 , an oversight period 2 and a dynamical

period of interest 3 . On the right side (b): estimated PSD of the period of
interest using Welch’s method [Welch, 1967].
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6.4 Illustration of the proposed framework on the

wind-turbine numerical model

6.4.1 GSA of the fatigue QoIs

The Deeplines Wind� numerical model presented in Section 6.3 is used with 13 uncer-
tain input parameters, each one having its associated probability distribution, see Table
6.2. The total Sobol’ indices associated to these parameters for each DEL have been
estimated using the heteroscedastic noisy GP model-based Sobol’ index procedure as de-
scribed in Section 6.1. A Latin Hypercube Sampling (LHS) of size 500 has been used to
emulate the numerical model. Then, an augmented LHS of size 150 has been generated
to determine the accuracy of the surrogate models. To apply this approach 6,500 forward
wind turbine numerical simulations were submitted on the 206 TFlops supercomputer of
IFPEN.

The function sobolGP performs a kriging-based GSA by taking into account the com-
plete conditional predictive distribution of the surrogate model. The function estimates
total Sobol’ indices thanks to the Jansen estimators, [see Jansen, 1999]. Jansen Sobol’
index estimators are accurate for large and small total indices. Moreover, by taking into
account the complete conditional predictive distribution of the trained surrogate model in
the estimation procedure of the total Sobol’ indices, we can evaluate the uncertainty due
to Monte Carlo estimation, but also due to metamodeling [Le Gratiet et al., 2013]. The
results for the total Sobol’ indices with their corresponding 95% confidence intervals are
summarized in Figure 6.5. A threshold of 2.5e-2 was chosen to display a separation be-
tween input parameters with high and low total Sobol’ indices. Figure 6.6 represents the
different sources of uncertainty for the estimation of total Sobol’ indices, obtained thanks
to the function sobolGP for the DEL of the out-of-plane bending blade-root moment.

By considering all the total Sobol’ indices obtained for the different fatigue QoIs
presented in Figure 6.5, we can notice that only 6 parameters have indices values greater
than the threshold. Consequently, we can fix other parameters to any specific value in
the range of variability without affecting the fatigue QoIs. During the recursive Bayesian
estimation, these non-influential parameters will be arbitrarily set at their mean value
described in Table 6.2. By employing this method, we will reduce the parameter dimension
in the inference procedure without affecting the fatigue QoIs which are crucial for assessing
the lifespan of wind turbines.
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Figure 6.5 – Total Sobol’ index estimates (y-axis) with their 95% confidence interval (CI)
corresponding to each of the 13 inputs (x-axis) for the different fatigue outputs.
The dashed line is a threshold arbitrarily chosen to 2.5e-2. CIs are obtained by
taking into account the uncertainties due to both the surrogate and the Monte
Carlo (MC) estimation. The number of samples for the conditional Gaussian
process, to quantify the uncertainty of the kriging, was set to 100. The one due
to MC integration was computed by bootstrapping with 100 samples.

Nm
as
s

N C
M
x e

β T
R I zz KD αB

F
αB

E

αm
as
s

βB
R ηB ω Ω

Unknown Parameters

2.00e-05

4.00e-05

6.00e-05

8.00e-05

1.00e-04

V
ar

ia
nc

e
in

S
ob

ol
’

in
de

x

Variance error contribution for
Blade in-plane bending moment [N/m]

GP Variance

MC Variance

Figure 6.6 – Splitting of the variance of total Sobol’ index estimators (y-axis) corresponding to
each of the parameters (x-axis) for the out-of-plane bending blade-root moment
DEL. The number of samples for the conditional Gaussian process, to quantify
the uncertainty of the kriging approximation, was set to 100. The one due to
Monte Carlo integration was computed by bootstrapping with 100 samples.

100



6.4. Illustration of the proposed framework on the wind-turbine numerical model

6.4.2 Identifiability study

It is possible that the considered experimental measurement settings do not offer
enough information for the identification of some input parameters. In this context,
another interesting property of the GSA underlined in Proposition 4.2 in [Dobre et al.,
2012] is that nullity of the total sensitivity index for a specific input parameter implies its
non-identifiability from the output under consideration. Thus, a GSA led on the measured
outputs will determine which parameters cannot be inferred, although it is not a sufficient
condition for identifiability.

In our industrial application study, the measured outputs, obtained from the ac-
celerometers, are expressed as discretized time series. We are interested in their response
in the frequency-domain by using the power spectral density (PSD). Discretized PSD se-
ries involve a substantial dimensionality and a high degree of redundancy. To bypass this
issue, we have firstly focused our study on an orthogonal decomposition, of the different
discretized PSDs, in order to reduce their dimensionality. This orthogonal decomposi-
tion will be performed by a data-driven method called Principal Component Analysis
(PCA) [Wold et al., 1987]. PCA allows the functional output expansion in a new reduced
space spanned by the most significant directions in term of variance of the discretized
functional output.

In our study, a method based on PCA and GSA with GP model is used to compute an
aggregated Sobol’ index for each input parameter of the model. As described in [Lamboni
et al., 2011], the proposed index synthesizes the influence of the parameter on the whole
time series output.

In our study to ensure that the variation of the input parameters is distinguishable
from the realization of the stochastic process V , 10 wind realizations have been used in this
GSA. A new LHS of size 300 with a geometrical criteria maximizing the minimum distance
between the design points has been used to emulate the numerical model. In Table 6.3,
we summarize the total aggregated Sobol’ indices obtained with the GP model built on
the trained set from the lastly mentioned LHS. In this analysis, parameters with total
Sobol’ index values under a threshold set at 1e-02 will be considered as non-identifiable
from the measured output. We can conclude that none of the significant input parameters
can be considered a-priori as non-identifiable.

Table 6.3 – Total Sobol’ indices for each output used during the recursive inference procedure
described in details in Section 6.2. Estimated total Sobol’ indices higher than the
arbitrary threshold are underlined.

Measured outputs
e

[%]
βTR
[−]

αBF
[%]

αBE
[%]

αmass
[%]

ηB
[%]

Tower middle fore-aft
acceleration’s PSD

2.44e-01 7.64e-01 6.07e-03 1.37e-04 3.59e-04 4.46e-03

Tower middle side-to-side
acceleration’s PSD

3.84e-01 3.95e-01 1.38e-01 6.73e-04 8.60e-02 7.17e-03

Tower top fore-aft
acceleration’s PSD

1.21e-01 6.70e-01 2.09e-03 5.91e-02 6.76e-02 1.05e-01

Tower top side to side
acceleration’s PSD

6.56e-02 6.24e-01 1.36e-03 9.67e-02 1.39e-01 9.52e-02
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6.4.3 Recursive Bayesian inference study

The 6 input parameters having an influential effect on the fatigue behavior of the
structure and potentially identifiable are considered during the inference procedure. These
unknown input parameters define the model parameter vector to be estimated, i.e., x =
[e, βTR, αBF , αBE, αmass, ηB]T .

In this section we focus on pseudo-experimental numerical tests in order to validate the
inference procedure. These tests consist in running direct numerical analyses considering
known values of input parameters, and then adding a Gaussian noise of known variance to
the observed outputs. The dynamic response of the wind turbine structure is simulated
using the mean values of the unknown model parameters described in Table 6.2. The
noisy pseudo-experimental outputs used to recursively update the wind turbine model
are the PSD of the acceleration time series obtained for side to side and fore-aft at the
two different tower positions.

Algorithm 5 is used to recursively estimate the expected values of the unknown input
parameters at each iteration step. The output measurement noise covariance matrix Rk

is assumed to be diagonal, i.e., cross-correlations between the noise components are disre-
garded. Usually, the amplitudes of the measurement noise can be estimated based on the
characteristics of the used sensors. Nevertheless, in our pseudo-experimental numerical
case, these amplitudes have been arbitrarily chosen. Indeed, to mimic real-life applica-
tions, noise is incorporated in the simulated data by considering a noise covariance matrix
such as the obtained standard deviation is equivalent to a 1% signal-to-noise ratio.

For the initialization of the Bayesian estimation procedure, the initial prior of the
value of the input parameters is assumed to be:

xb = [−0.10, 4.00e− 02, 0.98, 1.05, 9.85e− 01, 0.04]T ·

The initial error covariance matrix of the input parameters, denoted by Pb, is also assumed
to be diagonal. In other words, the initial prior of the input parameters are assumed to
be statistically independent. Diagonal elements of Pb represent the practitioner’s belief
on the input parameters uncertainties, such as Pb = diag(7.00e− 02, 9.93e− 03, 3.33e−
02, 3.33e− 02, 1.67e− 02, 8.33e− 03).

The number of inference iterations T and of the number of members N were respec-
tively fixed at T = 20 and N = 100. This choice was mainly guide by the maximal
simulation budget allocated to our study and by the fact that modest ensemble size is a
reasonable practice as observed in industrial setups [Evensen, 2009, Eknes and Evensen,
2002, Houtekamer et al., 2005]. Figure 6.7 shows the results of the identification. It can
be observed that the considered input parameters are well recovered. Table 6.4 reports
the final a posteriori estimate of the input parameters.
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Table 6.4 – Target, initial prior and final a posteriori estimates of the input parameters of the
wind turbine numerical model.

e
[%]

βTR
[−]

αBF
[%]

αBE
[%]

αmass
[%]

ηB
[%]

Target 0 3.10e-02 1 1 1 2.50e-02
Prior

estimates
-1.00e-01 4.00e-02 9.80e-01 1.05 9.85e-01 4.00e-02

A posteriori
estimates (T=20)

3.26e-03 3.08e-02 9.98e-01 1.00e+00 1.00e+00 2.52e-02
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Figure 6.7 – Iteration evolution of the a posteriori estimates of the parameters. Results ob-
tained by running EnKF presented in Section 6.2 with N = 100 members of the
ensemble used for the estimation and considering pseudo-experimental measures.

6.4.4 Robustness analysis

To test the effectiveness of the proposed EnKF procedure, different noise levels affect-
ing the synthetic data have been considered. We have chosen different structures of noise
covariance matrices such as the obtained standard deviations affecting the measurements
are respectively equivalent to 3% and 5% signal-to-noise ratios. The performed analysis
have highlighted that the incorporation of higher noise leads to a harder identification of
input parameters. The estimation of these parameters is less reliable because their iden-
tifiability property becomes weaker. The issue of identifiability is a crucial aspect due to
the presence of noise in real-life applications. However, the proposed recursive Bayesian
inference method has the ability to give confidence intervals on the inferred parameters
due to its probabilistic framework.
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Conclusion

This chapter presents a framework to quantify and reduce the uncertainties from the
input parameters of a wind turbine numerical model.

The contributions of this paper are twofold. First, we have proposed a global sensitivity
analysis based on Sobol’ indices using a Gaussian process model with heteroscedastic
nugget effect to quantify uncertainties of a stochastic and time-consuming wind turbine
numerical model. The procedure we present is efficient to balance the inherent uncertainty
of the stochastic numerical model and the one from the input parameters. More precisely
the GSA has been performed on the fatigue quantities of interest and showed that only
a restricted number of unknown parameters happens to influence these responses. Since
fatigue quantities of interest are a crucial wind turbine design and life criteria, these
influential input parameters have to be properly estimated in order to give confidence in
fatigue analysis results.

Consequently, the second objective of this paper was to develop a recursive inference
procedure to properly determine these parameters based on available measurements. But
first was addressed the question of parameter non-identifiability by employing a global
sensibility study on the measured outputs. As previously stated, performing such sen-
sitivity analysis is not a sufficient condition for identifiability. Finally for the inference
task, this paper demonstrates the applicability and computational efficiency of the en-
semble Kalman filter (EnKF) for this type of challenging problem. The EnKF-based
approach has been integrated into the commercial software Deeplines Wind�. The pro-
posed methodology was verified using numerically simulated response data. For future
work, the recursive Bayesian estimation procedure will be further tested by incorporating
other measured output data.
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7
Wind turbine quantification and reduction of

uncertainties based on a data-driven data assimilation
approach

Ce chapitre propose une procédure de quantification et de réduction des incertitudes impac-
tant les simulations numériques utilisées pour estimer la fatigue d’une structure éolienne.
L’étude présentée repose sur les travaux menés par Hirvoas et al., où une quantifica-
tion et une réduction des incertitudes liées aux propriétés du modèle de l’éolienne sont
réalisées à la fois par une analyse de sensibilité globale et une approche de filtrage Bayésien
d’ensemble. Nous étendons la procédure aux paramètres incertains considérés lors de la
modélisation d’un champ de vent synthétique nécessaire pour mener à bien une simu-
lation aéro-servo-élastique en se basant sur une approche par vecteur d’état augmenté.
Néanmoins, contrairement aux paramètres relevant des propriétés du modèle de l’éolienne
qui évoluent lentement ou pas, ceux rattachés à la sollicitation extérieure ont un ca-
ractère dynamique qui doit être pris en compte lors de l’inférence récursive. Le travail
proposé dans ce chapitre consiste à remplacer le modèle dynamique inconnu et utilisé
dans la méthode d’assimilation de données par des simulations statistiques basées sur
une base de données. Nous nous intéressons tout particulièrement aux méthodes d’as-
similation de données par analogues, qui consistent à combiner les méthodes analogues
et une méthode de filtrage stochastique tel que le filtre de Kalman d’ensemble [Tan-
deo et al., 2015, Lguensat et al., 2017]. Cette approche d’assimilation de données dite
basée données (data-driven) est évaluée sur un cas industriel d’une éolienne en opération.
Les données mesurées sont exploitées par la méthode pour récursivement réduire les in-
certitudes qui entachent les paramètres à la fois liés aux propriétés du modèle et à la
modélisation d’un champ de vent synthétique. Le plan du chapitre est le suivant. Sec-
tion 7.1 décrit les différentes incertitudes considérées dans cette étude. Dans la Section
7.2, le cadre théorique de l’assimilation de données dite basée données (data-driven)
avec un intérêt spécifique pour la méthode de filtrage d’ensemble de Kalman couplée à
la stratégie de prévision par analogue est détaillé. Enfin, les résultats d’une application
de cette procédure de quantification et de réduction des incertitudes à une éolienne de
référence sont présentés dans la section 7.3.
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Introduction

A major challenge in wind energy industry is to propose robust designs withstanding
on known environmental conditions. Design standards [IEC, 2005] are mainly based on
dynamic load simulations describing the structural behavior of the wind turbine under
different wind and operational conditions weighted by their probability of occurrence.
Most of the time the number of wind scenarios considered during the conception phase
is moderate and far from exploring the set of environmental conditions. Moreover, the
dynamic response of the structure and its lifetime can be affected by some uncertainties
or evolution in the wind turbine properties. Consequently, the prediction of the lifetime
consumption of the operating wind turbine by taking into account all the inherent un-
certainty is crucial. In that context, the quantification and reduction of uncertainties
involved in the aero-servo-elastic numerical models play an important role to determine
the effective fatigue loads of the turbine.

The approach intoduced in this paper generalizes the one in [Hirvoas et al.] by taking
into account the uncertainties affecting the parameters related to the wind inflow on top
of the parameters of the structure properties. It relies on a complete framework including
a global sensitivity analysis, an identifiability analysis, and a recursive Bayesian inference
approach. First, a global sensitivity analysis based on the estimation of Sobol’ indices
thanks to surrogate models allows to determine the most relevant input parameters in
the variability of the fatigue loads of a wind turbine. After assessing the identifiability
properties of these influential parameters, a second objective is to reduce their uncertainty
by using an ensemble Kalman filter. Data assimilation allows to gather all the information
obtained from real time measurements of the physical system and from the numerical
model. The procedure is closely related to the industrial concept of digital twin which
consists in combining measurements from the wind turbine with a numerical model to
build a digital equivalent of the real-world structure. However, unlike the model properties
having a static or slow time-variant behavior, the parameters related to the external
conditions have a dynamic that has to be learnt from data.

Modern wind turbines in production are currently monitored thanks to a large amount
of sensors. Then, data monitored by sensors can be used to learn the non-explicit dy-
namic behavior of the inflow related parameters. In the present work, we focus on non-
parametric learning strategies. In the literature, several non-parametric methods have
been developed such as regression machine learning [Brunton et al., 2016], echo state
networks [Pathak et al., 2018] or more recently residual neural networks [Bocquet et al.,
2020]. Our study investigates an analog forecasting method relying on nearest neighbors
principle [Lorenz, 1969]. The aforementioned non-parametric procedure has been firstly
coupled with data assimilation filtering schemes in [Tandeo et al., 2015] and further de-
tailed by Lguensat et al. [2017]. In the present work, we propose an algorithm interfacing
Python library AnDA 1 combining analog forecasting with ensemble data assimilation,
with the algorithms developed in [Hirvoas et al.]. The algorithm we propose takes profit
of the parallelization capabilities of the current high performance computing architectures
which allows for example to evaluate the real-time damage of an operating wind turbine
using a digital twin.

The outline of this paper is as follows. Firstly, Section 7.1 describes the different
uncertainties involved in the framework of this study. In Section 7.2, the theoretical

1. see https://github.com/ptandeo/AnDA
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framework of data-driven data assimilation with a specific focus on the ensemble Kalman
filtering scheme coupled with the analog forecasting strategy is detailed. Finally, results
of an application of this complete procedure of uncertainty quantification and reduction
to a reference wind turbine are presented in Section 7.3.

7.1 Context

Before their exploitation, wind turbine rotors are designed thanks to a site classification
strategy. It relies on design standard classes characterized by the reference turbulence
intensity Iref defined as the mean turbulence intensity expected at 15 m/s mean wind
speed and the reference wind uref defined as the extreme 10-minute average wind speed
with a recurrence period of 50 years. In the IEC-61400-1 standard [IEC, 2005], two safety
classes are considered. The first one, named as normal safety class, allows to cover most
applications by giving specific values for Iref and uref . In Table 7.1, the corresponding
values for the nine categories of the normal safety are given. The proposed parameter
values are supposed to represent many different sites and consequently do not give a precise
representation of a specific site. The second category is mentioned as a special safety class
S which allows to consider site-specific values for the wind speed and turbulence terms.

Table 7.1 – Safety class design classification of the wind turbines: the normal safety class
containing nine categories from I-A to III-C and the special safety class S [IEC,
2005]

Class I II III S
uref [m/s] 50 42.5 37.5

Site-specific
values

A Iref [-] 0.16
B Iref [-] 0.14
C Iref [-] 0.12

For both classes, the design relies on numerical aero-servo-elastic simulations under
different environmental and operational conditions, weighted by the probability of oc-
currence. They allow to estimate the ultimate and fatigue loads in order to testify the
structural integrity. Nevertheless, operating wind turbines experience real wind and op-
erational conditions that are different from the ones mentioned in the design standard
classes. Consequently, there is a need for an estimation of the remaining fatigue life of
the components based on the real wind solicitation seen by the structure. Moreover, the
wind turbine itself can present some uncertainties or evolution in its mechanical properties
(defaults appearance, degradation with time) that will affect the dynamic response of the
structure and its lifetime.

As a consequence, these aero-servo-elastic numerical models involve many uncertain
and potentially variable over time parameters. The ubiquitous uncertainty may be found
in the parameters of the wind turbine numerical model as well as in the external conditions.
To ensure the tracking of fatigue and defaults of an operating wind turbine structure, it
is important to quantify the impact of these uncertainties on predictions and then to
reduce them based on the combination of measurements and model predictions. For that
purpose, the field of uncertainty quantification is well-adapted.

In that context, we propose to determine the sources of uncertainties affecting the
wind field parameters and the wind turbine numerical model properties using an aug-
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mented state vector approach. First, the uncertainty of wind field parameters has to
be determined. In our context, these parameters are used to characterize a synthetic
three-dimensional turbulent wind field based on the Kaimal spectrum with an exponen-
tial coherence model, see Section 2.1 for details. Eight input parameters related to the
wind field have been identified to be tainted by uncertainties, see Table 7.2. We have
considered the mean and the standard deviation of the wind speed at hub height, the
vertical wind shear exponent, the mean wind inflow direction relative to the wind turbine
in terms of vertical or horizontal inflow angles, and the longitudinal turbulence length
scale parameter. Moreover, we have supposed as unknown the input coherence decrement
and offset parameter, see Equation (2.3).

In an operational context, some information on the mean and standard deviation of
the wind speed at hub height can be obtained from 10-minute data measured from a
nacelle mounted cup-anemometer. Nevertheless, these measurements are known to be
very perturbed and never fully describe the parameters of interest due mainly to the
wake effect of the rotor and the non-perfect transfer function used to retrieve them. In
this work, we assume that the 10-minute mean and standard deviation wind speed can be
obtained from the 10-minute data obtained from the cup-anemometer modulo an additive
error term. So that the mean wind speed at hub height based on the anemometer can be
express as:

u = uscada + ∆u ,

where uscada is the 10-minute mean wind speed obtained from the cup-anemometer
mounted on the wind turbine nacelle and ∆u is an additive error assumed to follow
the distribution defined in Table 7.2.

In a similar manner, the wind speed standard deviation can be obtained from the
measurement obtained by the cup-anemometer mounted on the nacelle of the wind turbine
as:

σu = σscada + ∆σu ,

where σscada is the 10-minute standard deviation wind speed obtained from the nacelle
cup-anemometer of the wind turbine nacelle and ∆σu is an additive error assumed to
follow the distribution defined in Table 7.2.

Unless having high frequency Supervisory Control And Data Acquisition (SCADA)
data, no information can be obtained on the other parameters. Consequently, an in-
vestigation of the distribution of the uncertainty affecting these remaining wind inflow
parameters has to be properly made. Table 7.2 summarizes the wind-inflow parameters
that we consider unknown and their respective uncertainty modeling. In particular, we
adapt the Gaussian distribution proposed by Dimitrov et al. [2015] for the 10-minute
vertical wind shear exponent, such as:

µα = 0.088(ln(uscada)− 1)

σα = 1/uscada
· (7.1)

Table 7.2 summarizes the wind-inflow parameters that we consider unknown and their
respective uncertainty modeling.
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Table 7.2 – Wind field parameters - uncertainties affecting the inputs of the wind turbine
model. U : uniform distribution and G: Gaussian distribution.

Input Variable Unit Distribution Parameters REF
Error of hub mean wind speed
SCADA vs undisturbed inflow

∆u [m/s] U Min: − 0.1 · uscada Max: 0.1 · uscada IFPEN

Error of hub standard deviation
SCADA vs undisturbed inflow

∆σu [m/s] U Min: − 0.2 · σscada Max: 0.2 · σscada IFPEN

Vertical wind
inflow angle

φv [◦] U Min: 0 Max: 10 IFPEN

Horizontal wind
inflow angle

φh [◦] U Min: − 15 Max: 15 IFPEN

Longitudinal turbulence
length scale

Λu [m] U Min: 20 Max: 170
[Dimitrov et al., 2017]

[Solari and Piccardo, 2001]
Decrement parameter of

coherence model
a [-] U Min: 1.5 Max: 26 [Robertson et al., 2019a]

Offset parameter of
coherence model

b′ [-] U Min: 0 Max: 0.17
[Robertson et al., 2019a]

[Saranyasoontorn et al., 2004]
Vertical wind

shear exponent
α [-] G µ = µα σ = σα, see Equation (7.1) [Dimitrov et al., 2015]

Moreover, as suggested in [Hirvoas et al.], a total of twelve parameters can be con-
sidered as uncertain in the aero-servo-elastic wind turbine numerical model properties.
All these input parameters are assumed to be independent of one another with Gaus-
sian or truncated Gaussian distributions obtained from expert knowledge or literature.
Considering the support structural properties of the turbine model, we have selected six
parameters such as nacelle mass and center of mass, tower Rayleigh damping, inertial
nacelle and drive-train torsion stiffness. Lastly, the geometry of the tower, resulting from
fabrication tolerances, has been also included in these uncertainties by uniformly scal-
ing the distributed tower thickness. The probability distribution of this last mentioned
parameter is determined by changing the first fore-aft tower frequency mode by ±10%
of its nominal value. The uncertainties in blade structural properties have been repre-
sented using five parameters. The blade structural responses have led to the definition of
the uncertainty range. Indeed, the frequency of the edge-wise (EW) and flap-wise (FW)
modes are changed about 10% each from their reference value. These modifications of
the frequency modes are done by uniformly scaling the associated stiffness and the dis-
tributed blade mass of all blades. Blade mass imbalance effects have been also included
by applying a different mass factor value to each blade. One blade’s mass property is
modified to be a value that is higher than the nominal value, and another one modified
to a lower value. The third blade remains unchanged at the nominal value. Finally, for
the individual blade pitch error, a constant offset angle is applied to two of the blades,
respectively above and below the nominal value. These different parameters are consid-
ered independent from each other. Table 7.3 gathers information about the probability
distribution of each of these paremeters.

In the monitoring context of an operating wind turbine, one of the major challenges
is to predict the remaining lifetime of the structure. Hence, the current study focuses
on a complete framework first quantifying and then reducing in a recursive fashion the
uncertainties affecting the damage loads obtained from an aero-servo-elastic simulation.
Hereafter, we will focus on the estimation of the effective damage equivalent load (DEL)
describing the fatigue behavior of the wind turbine at some specific locations. The DEL
is obtained by considering the internal loads and is defined as a virtual load amplitude
that would create, in reference regular cycles, the same damage as the considered irregular
load history, see Section 2.5.

The aim of the work in this chapter is to generalize the complete methodology proposed

110



7.1. Context

in [Hirvoas et al.] for quantifying and reducing the uncertainties affecting a wind turbine
numerical model by handling wind inflow uncertainties additionally to model property
ones. The procedure relies on a global sensitivity analysis (GSA) based on Sobol’ in-
dex estimation and a recursive Bayesian inference procedure to reduce the uncertainties.
In order to alleviate the computational cost of index estimation during the sensitivity
analysis of the fatigue loads, the aero-servo-elastic time-consuming numerical model is
approximated by a surrogate. A major challenge in building such a surrogate model relies
on the fact that the turbulent wind inflow realization causes variations in the quantities
of interest obtained from the model. Thus, to take into account the inherent variability
on the turbine response induced by different turbulent wind field realizations, the ap-
proach focuses on the use of heteroscedastic Gaussian process regression models. Then, a
recursive reduction of the influent parameter uncertainties based on an ensemble Kalman
filter is proposed. This data assimilation filtering method is computationally efficient with
high-performance computing tools which is a major advantage for online calibration of
time-consuming codes, such as aero-servo-elastic wind turbine models. Nevertheless, a
challenge in this kind of inverse problem is to determine whether the measurements are
sufficient to unambiguously determine the parameters that generated the observations,
i.e., identifiability properties. In that context, GSA is proposed to detect non identifiable
parameters considering the current measurements.

Table 7.3 – Model parameters - uncertainties affecting the inputs of the wind turbine model.
U : uniform distribution, G: Gaussian distribution, and T G: Truncated Gaussian
distribution.

Input Variable Unit Distribution Parameters REF
Nacelle mass Nmass [kg] G µ = 6.90e+ 04 σ = 2.30e+ 03 [Witcher, 2017]
Nacelle center

of mass
NCMx [m] G µ = 1.00 σ = 3.35e− 02 [Robertson et al., 2019b]

Tower thickness e [%] G µ = 0 7.00
IFPEN
±10% 1 FA

Tower rayleigh
damping

βTR [-] T G µ = 2.55 σ = 0.82 [Koukoura, 2014]

Inertial nacelle Izz [kg ·m2] G µ = 7.00e+ 05 σ = 2.33e+ 04
IFPEN
±10% µ

Drive-train torsional
stiffness

KD [N ·m
2

rad
] G µ = 9.08e+ 09 σ = 3.03e+ 07 [Holierhoek et al., 2010]

Blade flap wise
stiffness

αBF [N ·m2] G µ = 1.00 σ = 3.33e− 02
IFPEN

∼ ±10% 1 FW
Blade edge wise

stiffness
αBE [N ·m2] G µ = 1.00 σ = 3.33e− 02

IFPEN
∼ ±10% 1 EW

Blade mass
coefficient

αmass [-] G µ = 1.00 σ = 1.67e− 02 [Witcher, 2017]

Blade rayleigh
damping

βBR [-] T G µ = 1.55 σ = 4.83e− 01 [Robertson et al., 2019b]

Blade mass
imbalance

ηB [%] G µ = 2.50 σ = 8.33e− 01 [Robertson et al., 2019b]

Individual pitch
error

Ω [◦] G µ = 0.10 σ = 3.33e− 02 [Simms et al., 2001]

The main contribution of the presented work is the inference of parameters involved
in the model properties of the wind turbine having a static or slow evolution, and short-
term wind inflow varying at each inference iteration of 10-minute. To take into account
the non-explicit dynamics of the parameters related to the wind inflow in the recursive
inference procedure, the study relies on a data-driven approach combining a K-nearest
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neighbors with an ensemble Kalman filtering scheme. In the next section, we propose to
describe this data-driven procedure used in our model calibration strategy.

7.2 Data-driven data assimilation

State-space model (SSM) is a useful framework to perform recursive inference strategy
such as sequential data assimilation techniques [Bertino et al., 2003, Durbin and Koopman,
2012, Hirvoas et al.]. In order to take into account the information obtained from the
SCADA system of the wind turbine, we consider the SSM formulation involving forcing
variables defined ∀k ∈ N∗ as:

x(k) =M(k−1,k)(x(k−1)) + εm(k) , (7.2)

y(k) = H(k)(x(k),u(k)) + εo(k) · (7.3)

where y(k) corresponds to the observation at step k and x(k) is a p-dimensional vector
representing the hidden-state variables. The model denoted byM (potentially nonlinear)
allows to describe the dynamic behavior of the hidden process. The model error εm(k) is
supposed to be a Gaussian white noise of zero mean and of covariance Q(k), modeling
the uncertainties related to the dynamics model structure. The propagator H relates the
hidden-state vector to the measured observations and contains some forcing variables u(k),
e.g., mean wind speed obtained from the anemometer of the wind turbine. The sources
of errors in the observation model defined in Equation (7.3) are reflected by the Gaussian
white noise of zero mean and of covariance R(k), denoted by εo(k), and assumed to be
independent of the model error εm(k). This SSM formulation can be represented thanks to
the directed graph given below.

(M(k−1,k), Q(k))
Hidden-state . . . → x(k−1) → x(k) → x(k+1) → . . .

↓ ↓ (H(k),u(k), R(k)) ↓
Observations y(k−1) y(k) y(k+1)

In many situations, the dynamical model M is numerically intractable or unknown.
In the literature different studies have been conducted to emulate this propagator, used
in Equation (7.2), from historical data. Several surrogate techniques have been employed
for the reconstruction of nonlinear dynamics model of chaotic system. Authors in [Tandeo
et al., 2015] propose a K-nearest neighbors based method, also known as the analog strat-
egy in meteorology or geoscience community. Nevertheless, it has been argued that meth-
ods relying on K-nearest neighbors technique are plagued by the curse-of-dimensionality,
i.e., fails in very high dimensional applications [Friedman, 1997, Chen, 2009]. Conse-
quently, other non-parametric surrogate modeling approaches have been investigated to
learn the underlying dynamics by using for example regression machine learning [Brunton
et al., 2016], echo state networks [Pathak et al., 2018] or more recently residual neural
networks [Bocquet et al., 2020].

Due to the limited dimension of our inference problem, we have decided to investigate
and to use the analog forecasting strategy coupled with data assimilation proposed in
[Tandeo et al., 2015, Hamilton et al., 2016, Lguensat et al., 2017]. Analog forecasting is
related to the notion of atmospheric predictability introduced by Lorenz [1969]. Later,
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this approach has been widely used in several atmospheric, oceanic, and climate studies
[Toth, 1989, Alexander et al., 2017, Ayet and Tandeo, 2018]. Hereafter, we detail the
principle of analog forecasting technique.

The main idea of the methodology is to substitute the dynamical model in Equation
(7.2) by a data-driven model relying on an analog forecasting operator, denoted by A,
such as :

∀k ∈ N∗,
{

x(k) = A(k−1,k)(x(k−1)) + εm(k)
y(k) = H(k)(x(k),u(k)) + εo(k)

·

Analog forecasting principle consists in searching for one or several similar situations of the
current hidden-state vector that occurred in historical trajectories of the system of interest,
then retrieve the corresponding successors of these situations, and finally assume that the
forecast of the hidden-state can be retrieved from these successors. Consequently, this
strategy requires the existence of a representative catalog of historical data, denoted by
C. The reference catalog is formed by pairs of consecutive hidden-state vectors, separated
by the same lag [Fablet et al., 2017]. The first component of each pair is named as the
analog (denoted by a) while the corresponding state is referred to as the successor (noted
as s). The corresponding representative dataset of hidden-state sequences can be written
as:

C = {(ai, si) , i = [1 . . . P ]}, with P ∈ N∗·
This historical catalog can be constructed using observational data recorded using in-situ
sensors but as well as using numerical simulations. Based on this database, the analog
forecasting operatorA is a non-parametric data-driven sampling of the state from iteration
k − 1 to iteration k. Three analog forecasting operators have been originally proposed
by the authors in [Lguensat et al., 2017]. They are all based on nearest neighbors of
the hidden-state in the reference catalog C weighted thanks to a kernel function. Among
the different kernels, Chau et al. [2021] propose to use a tricube kernel which has a
compact support and is smooth at its boundary. Throughout this chapter, as suggested
by Lguensat et al. [2017], a radial basis function (also known as Gaussian kernel, squared
exponential kernel, or exponentiated quadratic) is considered and defined as:

g(u,v) = exp
(
−λ ||u− v||2

)
, (7.4)

where (u,v) are two distinct variables in the hidden-state space, λ is a scale parame-
ter, and ||·|| is the Euclidean distance or any other relevant distance function for our
application.

Let us denote by {an}n∈I the K-nearest neighbors (also known as analog situations)
of a given hidden-state at iteration k − 1, where I = {i1, . . . , iK} contains the K indices
of these situations. From the reference catalog C, one can retrieve the corresponding
successors {sn}n∈I . Then for every pair of analog and successor (an, sn)n∈I , a normalized
kernel weight (ωn)n∈I can be assigned:

∀n ∈ I, ωn =
g(x(k−1), an)∑K
j=1 g(x(k−1), aij)

·

This term provides more importance to pairs that are best suited according to the ker-
nel function for the estimation of the hidden-state x(k) in the K-nearest neighbor ones
obtained from the catalog. Nevertheless, the parametrization of this weight is highly de-
pendent of the kernel function. Moreover in the context of Gaussian kernel as defined in
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Equation (7.4), the normalized kernel weight involves the choice of the number of nearest
neighbors K and the scale parameter λ. Two common strategies in the statistic field are
used for the K-nearest neighbors estimation: either a distance threshold in order to con-
sider the nearest neighbors which respect it, or an arbitrary number of analogs [Peterson,
2009]. In our work, we consider the last strategy for simplicity. As proposed by Lguensat
et al. [2017], the scale parameter can be fixed following the adaptive rule defined as:

λ =
1

md(x(k−1))
,

where md(x(k−1)) is the median distance between the hidden-state at iteration k − 1 and
its K nearest neighbors. Nevertheless, a more sophisticated procedure, based on a cross-
validation procedure, can be employed to optimize the choice of these hyper-parameters.

Three analog forecasting operators A have been defined in Lguensat et al. [2017].
Firstly, the locally-constant analog operator which consists in forecasting the hidden-state
by only using the successors. Let us denote by xf(k) the forecast of the state at iteration k.
The idea of the locally-constant operator is to sample this forecasted hidden-state from a
Gaussian distribution defined as :

xf(k) ∼ N (µLC,ΣLC) ,

where the mean forecast µLC =
∑K

j=1 ωijsij is the weighted mean of the K successors,
and ΣLC = covω((sn)n∈I) is the weighted empirical covariance of the successors of the
K-nearest neighbors.

The second proposed analog operator is called the locally-incremental which considers
the analogs and the successors of the state x(k−1) to obtain xf(k). In the same way as
for the locally-constant analog operator, the principle is to sample the forecasted state
from a Gaussian distribution. Nevertheless, instead of only considering a weighted mean
based on the K-nearest neighbors, the procedure uses a weighted mean of the differences
between these K analogs and their respective successors plus the value of the current
hidden-state. The derived Gaussian distribution is defined as:

xf(k) ∼ N (µLI,ΣLI) ,

where the mean forecast is µLI = x(k−1) +
∑K

j=1 ωij(sij − aij), and ΣLI =

covω
(
(x(k−1) + (sn − an))n∈I

)
is the weighted empirical covariance of the increments, i.e.,

differences between analogs and successors.
The last operator, developed by Lguensat et al. [2017], is named as the locally-linear

forecasting operator. It consists in performing a weighted least square linear regression
between the K-nearest neighbors and their corresponding successors in the catalog C.
The multivariate linear regression provides slope α, intercept β, and residuals defined as
∀j ∈ [1, . . . , K], ξj = sij −

(
αaij + β

)
. The Gaussian sampling resorts to:

xf(k) ∼ N (µLL,ΣLL) ,

where the mean forecast is µLL = αx(k−1) + β, and ΣLL = covω((ξj)j∈[1,...,K]) is the
weighted empirical covariance of the residuals.

The complexity of the application and the available computational resources are the
two main constraints that will drive the choice of one forecasting operator over the others.
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For example in situations facing some rare events, the locally-constant gives poor results
due to the fact that the forecasting estimate is held in the range of K-nearest neighbors. In
that context, the locally-incremental and the locally-linear forecasting operators are much
more efficient. A graphical representation of the locally-constant, locally-incremental,
and locally-linear analog forecasting operators for a 2-dimensional hidden-state is given
in Figure 7.1. In this example, the underlying dynamics model has a simple polynomial
form and the analogs are obtained by using a normal distribution sampling centered on
the real value of the hidden-state at iteration k − 1.
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Figure 7.1 – Analog forecasting operator strategies. The real values of the hidden-state x(k−1)
and its forecast x(k) are represented by full circles. Analogs are displayed in
colored down-pointing triangles and successors in up-pointing triangles with their
equivalent colors. The size of each triangle is proportional to the normalized
kernel weight. The ellipsoids in black and red represent respectively the 95 %
confidence intervals of the hidden state distribution before and after the analog
forecasting strategy.

Hereafter, we propose to describe the data assimilation framework coupled with the
analog forecasting method firstly proposed by Tandeo et al. [2014] and further detailed in
[Lguensat et al., 2017]. Data assimilation methods allow us to combine all the sources of
information obtained from a physical model and observations. In particular, sequential
data assimilation techniques, also known as filtering approaches, which consist in esti-
mating the filtering posterior distribution of the current hidden-state knowing past and
present observations pX(k)|Y(1:k)

(x(k)|y(1:k)), see Chapter 5.
As highlighted in the mentioned chapter, different methods are available in order to

compute the filtering distribution of interest. In the context of linear Gaussian state-space
models, Kalman filter methods can be considered to provide the exact filtering methods
[Kalman, 1960, Brown, 1986, Harvey, 1990, Haykin, 2004, Wells, 2013]. Nevertheless in
real applications, this nonlinear assumption is often unrealistic and more sophisticated
Kalman-based approaches have to be used [Julier and Uhlmann, 1997, Evensen, 2009].
In particular, the ensemble Kalman filter (EnKF) which is a Monte Carlo variant relying
on an ensemble of members to represent the statistics. This sequential Monte Carlo
filter, introduced by Evensen [1994], is widely used in data assimilation application to
take into account the nonlinearities in the state-space formulation and to handle the
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high dimensional problems [Houtekamer and Mitchell, 2001, Snyder and Zhang, 2003,
Aanonsen et al., 2009]. The EnKF principle is to sequentially update the ensemble of
members by means of a correction term relying on the Kalman gain which allows to
blend the model responses and the observations at a given iteration, see Evensen [2003]
or Section 5.2. Due to the fact that this approach is based on an ensemble, it is hence
inherently well-adapted to parallelization which is a crucial advantage with the current
high-performance computing architectures for the inference of time-consuming numerical
models [Houtekamer et al., 2014].

Thus, we present the formulation of a non-parametric EnKF method, also known as
analog EnKF (AnEnKF), see [Tandeo et al., 2014, Lguensat et al., 2017]. The procedure
is similar to the stochastic ensemble Kalman recursion [Evensen, 2009]. Nevertheless, the
main difference of the AnEnKF occurs for the forecast step where the non-parametric
data-driven sampling, i.e., the analog forecasting operator, is used instead of the dynamic
modelM in Equation (7.2). The Analog ensemble Kalman filter consists at each iteration
to apply one of the three analog forecast sampling strategies to each analysis member of the
ensemble to generate a forecast term. Then, the equations used in the procedure are equiv-
alent to the EnKF strategy. At each iteration during the analysis step, each forecast mem-

ber of the ensemble is corrected by computing x
a(i)
(k) = x

f(i)
(k) +K(k)

(
y
(i)
(k) −H(k)(x

f(i)
(k) ,u(k))

)
where K(k) = Pf

(k) HT
(k)

(
R(k) + H(k)P

f
(k)H

T
(k)

)−1
is named as the Kalman Gain. Due to

the nonlinearity of the model H(k), the terms Pf
(k) HT

(k) and H(k)P
f
(k)H

T
(k) are respectively

empirically estimated based on the ensemble members. The ensemble Kalman filter cou-
pled with the analog forecasting strategy is detailed in Algorithm 6.
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Algorithm 6: Ensemble Kalman Filter with analog forecast methodology, so-
called AnEnKF.
Data:
number of members in the ensemble Nens;
catalog C and number of nearest neighbors K;
prior guess of the parameter vector xb and prior parameter covariance matrix Pb;
some forcing variables {u(k)}k=1,...,T and measurements {y(k)}k=1,...,T ;
error covariance matrix {R(k)}k=1,...,T and artificial error covariance matrix {Q(k)}k=0,...,T .
Initialisation step:
for i = 1 to Nens do

x
a(i)
(0) = xb + εb with, εb ∼ N (0,Pb)

for k = 1 to T do
Forecast step:
for i = 1 to Nens do

Locally-constant forecasting analog operator:

x
f(i)
(k) ∼ N (µLC,ΣLC) with, µLC =

K∑
j=1

ωijsij

and ΣLC = covω((sn)n∈I)

or Locally-incremental forecasting analog operator:

x
f(i)
(k) ∼ N (µLI,ΣLI) with, µLI = x

a(i)
(k−1) +

K∑
j=1

ωij (sij − aij )

and ΣLI = covω

(
(x

a(i)
(k−1) + (sn − an))n∈I

)
or Locally-linear analog operator:

x
f(i)
(k) ∼ N (µLL,ΣLL) with, µLL = αx(k−1) + β

and ΣLL = covω((ξj)j∈[1,...,K])

where (an, sn)n∈I (with I = {i1, . . . , iK}) are the K-pairs of analog and successor for
the i-th analysis member of the ensemble and covω is the weighted covariance.

Update step:

Pf
(k) H

T
(k) =

1

Nens − 1

Nens∑
i=1

(
x
f(i)
(k) − x̄f

(k)

)(
H(k)(x

f(i)
(k) ,u(k))−H(k)(x̄

f
(k),u(k))

)T
H(k)P

f
(k)H

T
(k) =

1

Nens − 1

Nens∑
i=1

(
H(k)(x

f(i)
(k) ,u(k))−H(k)(x̄

f
(k),u(k))

)
(
H(k)(x

f(i)
(k) )−H(k)(x̄

f
(k))
)T

K(k) = Pf
(k) H

T
(k)

(
R(k) + H(k)P

f
(k)H

T
(k)

)−1
for i = 1 to Nens do

y
(i)
(k) = y(k) + ε

o(i)
(k) with, ε

o(i)
(k) ∼ N (0,R(k))

x
a(i)
(k) = x

f(i)
(k) + K(k)

(
y
(i)
(k) −H(k)(x

f(i)
(k) ,u(k))

)
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7.3 Numerical results

In this section, the numerical results of the proposed methodology to quantify and
reduce the uncertainties based on global sensitivity analysis and a data-driven data as-
similation approach are presented in the context of an industrial operating wind turbine.
The two categories of parameters investigated in this application case are the wind turbine
model properties and the wind-inflow conditions. In the sensitivity analysis of the fatigue
loads of the wind turbine, we assume that the 10-minute mean and standard deviation
obtained from the SCADA are respectively equal to 10 m/s and 1.4 m/s.

7.3.1 Case description

For the purpose of this work, the considered model is a numerical representation of
a reference 2MW onshore horizontal-axis wind turbine based on the open-source aero-
servo-elastic software FAST developed by the National Renewable Energy Laboratory
(NREL) [Jonkman et al., 2005]. This numerical code employs a combined modal and
multibody dynamics formulation which allows to consider a limited number of degree of
freedom for the structure. Moreover, the aerodynamic model relies on the blade-element
momentum theory coupled with some corrections, e.g., dynamic stall. The generation of
the synthetic turbulent wind field solicitation uses a Kaimal turbulence model with an
exponential spatial coherence method thanks to the TurbSim software [Jonkman, 2009].
Some specifications of the turbine are presented in Table 7.4.

Table 7.4 – Reference wind turbine specifications

Quantity Value
Number of blades 3
Rated power 2.0 MW
Rotor speed range 8.5 – 17.1 rpm (±16 %)
Rated wind speed 13 m/s
Cut-in wind speed 3.0 m/s
Cut-out wind speed 25 m/s
Rotor radius 41 m
Hub height 80 m

The in situ data used to assess the performances of our procedure are based on a specific
measurement campaign of eight months from the national project SMARTEOLE 2. For
that purpose, the wind turbine has a supervisory control and data acquisition system
(SCADA) gathering 10-minute statistics about the external conditions at the nacelle hub,
e.g., wind speed or direction, and also information on the turbine operation, e.g., generator
speed, generated power. Alongside, a nacelle mounted Light Detection And Ranging
(LIDAR) system is placed on top of the wind turbine nacelle in order to measure the
upstream wind flow conditions. A graphical representation of the monitoring system
configuration is proposed in Figure 7.2. In the study, we suppose that the wind speed
at hub height reconstructed from the LIDAR system is the free wind to be applied on

2. The author acknolewdges SMARTEOLE project partners for the use of experimental data from
national project SMARTEOLE (ANR-14-CE05-0034) measurement campaigns.
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the servo-aero-elastic model through the synthetic turbulence wind field. Lastly, bi-axial
measuring devices are located at mid and top tower height position. From these sensors,
we can record four functional acceleration time series. Then, the power spectral density
(PSD) of each measured acceleration time series is computed using Welch’s method.

Figure 7.2 – Monitoring system configuration for the reference wind turbine.

7.3.2 Global sensitivity analysis on fatigue loads

To quantify the importance of each input parameter on the variability of the fatigue
loads obtained from the aero-servo-elastic numerical model, a global sensitivity analysis
(GSA) based on Sobol’ index estimation [Sobol’, 1993, Saltelli et al., 2000] has been in-
vestigated. We focus our interest on total Sobol’ sensitivity indices. The total Sobol’
index associated to each input parameter represents the amount of the quantity of in-
terest variance due to this parameter alone or in interaction with any other subset of
parameters. It allows to quantify the part of variation in the damage equivalent load
that could be reduced if the parameter was to be fixed in a single value. To alleviate the
computational cost in the sensitivity index estimation, heteroscedastic Gaussian process
(GP) models are built independently for each DEL. Fitting such surrogate model to the
load behavior of a wind turbine requires a design of experiments covering the range of
variation in all parameters. In that context, we rely on a Latin Hypercube Sampling
(LHS) of size 996 with a geometrical criterion maximizing the minimum distance between
the design points. To testify the accuracy of the fitted surrogate model for each output of
interest, an augmented LHS of size 200 has been generated. Then, ten different turbulent
inflow realizations are generated using the Kaimal spectrum with an exponential spatial
coherence model for each point, for which the empirical mean and standard deviation of
the fatigue loads are estimated. The heteroscedastic property of the GP allows to capture
the global fatigue behavior of the turbine but also to estimate the inherent variability due
to different turbulent wind field realizations. This study leads to a total number of 11,960
aero-servo-elastic numerical model evaluations.
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Eight different model quantities of interest are considered for describing the fatigue
behavior of the wind turbine, see Table 7.5. For each output, the total effect Sobol indices
are estimated using the corresponding heteroscedastic Gaussian process metamodel based
on the estimator proposed by Jansen [1999] and implemented in the function sobolGP
of the R package sensitivity [Iooss et al., 2019]. The estimation approach relies on the
complete conditional predictive distribution of the metamodel which allows to evaluate
the uncertainty in the estimation due to the Monte Carlo procedure or the surrogate
approximation, see Algorithm in [Hirvoas et al.].

Table 7.5 – Wind turbine model fatigue load outputs with their corresponding negative inverse
slope coefficient m.

Quantity of interest m
DEL blade root in-plane bending moment 10

DEL blade root out-of-plane bending moment 10
DEL tower bottom fore-aft bending moment 3

DEL tower bottom side-to-side bending moment 3
DEL tower top side-to-side bending moment 3

DEL tower top fore-aft force 3
DEL shaft torsional moment 3

For the estimation procedure, two distinct LHSs with a maximin criterion of size 9,946
have been generated. The uncertainty related to the kriging approximation is quantified
by using 100 samples. Moreover, the uncertainty due to Monte Carlo integration was
estimated with a bootstrap procedure with a sample size of 100, see Annex A for futher
details in bootstrapping strategy. The estimated total Sobol’ indices, denoted by ST , for
the considered quantities of interest with their corresponding 95% confidence intervals
are presented in Figure 7.3. Most of the outputs have a large total Sobol’ index for the
errors relative to the wind speed ∆u and ∆σu. These input parameters have an important
impact on the variability of fatigue loads obtained from our aero-servo-elastic numerical
model. The vertical wind shear coefficient α has also a clear impact in particular for
the torsional moment of the shaft and the out-of-plane bending moment of the blade.
The noticeable effect of the wind shear for rotating components can be explained by
the fact that they will face cyclic changes in wind velocity if wind shear is considered.
Six other parameters describing the wind inflow conditions or the wind turbine model
properties have total Sobol’ indices higher to the arbitrary threshold (set to 5e − 02)
and can be considered as influential. The arbitrary threshold is used to discriminate
efficiently sensitive and insensitive input parameters. For simplicity, these parameters are
underlined in Figure 7.3. In particular, we can notice that model property parameters
related to tower thickness, lineic mass and mass imbalance related to the blades (e, αmass,
and ηB) have a non-negligible influence on fatigue load variance of the considered wind
turbine components. The remaining parameters can be fixed to any specific value in their
range of variability without affecting the considered fatigue loads.

After assessing the sensitivity analysis of the fatigue load of some critical components
of the wind turbine structure, one major challenge is to reduce the uncertainties affecting
the most influential input parameters.
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Figure 7.3 – Estimation of total Sobol’ indices (y-axis) with their 95% confidence interval
corresponding to each of the 20 parameters (x-axis) for the different fatigue loads.
The dashed line corresponds to a threshold arbitrarily chosen to 5e-2. Confidence
intervals (CI) are obtained by taking into account the uncertainties due to both
the metamodel and the Monte Carlo estimation. The number of samples for the
conditional Gaussian process, in order to quantify the uncertainty of the kriging
approximation, was set to 100. The uncertainty due to Monte Carlo integration
was computed with a bootstrap procedure with a sample size of 100.

7.3.3 Identifiability study

A major issue for parameter estimation problem is the identifiability. In this context,
Dobre et al. [2012] highlight that nullity of total sensitivity index for a specific input
parameter implies its non-identifiability from the measured output. Consequently, we
perform a GSA on the measured outputs in order to determine which parameters cannot
be inferred with the current sensors on the wind turbine. In our industrial application,
six measured outputs are considered, see Table 7.6.

For the acceleration outputs, we are mainly interested in their response in the
frequency-domain by using the power spectral density (PSD). When performing GSA,
discretized PSD series involve a substantial dimensionality and a high degree of redun-
dancy. To overcome this issue, the different discretized PSD outputs have been reduced
using a Principal Component Analysis (PCA) [Wold et al., 1987]. This dimensionality re-
duction approach allows the functional output expansion in a new reduced space spanned
by the most significant directions in terms of variance. Then, a method based on PCA
and GSA with a GP model is used to compute an aggregated Sobol’ index for each input
parameter of the model [Lamboni et al., 2011]. The proposed index synthesizes the influ-
ence of the parameter on the whole discretized functional output. Table 7.7 summarizes
the estimated total aggregated Sobol’ indices. In this sensitivity analysis, the input pa-
rameters having total Sobol’ index values under a threshold set at 1e− 02 are considered
as non-identifiable from the measured output.
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Table 7.6 – Observations performed in our reference wind turbine.

Observation Unit
10-minute mean

power production
[kW]

10-minute mean
rotor speed

[rpm]

Tower middle fore-aft
acceleration’s PSD

[dB]

Tower middle side-to-side
acceleration’s PSD

[dB]

Tower top fore-aft
acceleration’s PSD

[dB]

Tower top side to side
acceleration’s PSD

[dB]

Table 7.7 – Total Sobol’ and aggregated total Sobol’ indices for each output used during the
recursive inference procedure. Estimated total Sobol’ indices higher than the ar-
bitrary threshold are underlined.

Measured outputs
∆u

[m/s]
∆σu
[m/s]

φh
[◦]

Λu

[m]
a

[−]
α

[−]
e

[%]
αmass
[%]

ηB
[%]

10-minute mean
power production

9.81e-01 4.29e-04 1.71e-02 1.30e-04 3.70e-04 1.50e-02 3.84e-05 3.83e-04 5.23e-05

10-minute mean
rotor speed

9.75e-01 3.30e-03 1.87e-02 9.43e-04 1.61e-03 1.62e-02 1.03e-04 7.56e-04 7.34e-05

Tower middle fore-aft
acceleration’s PSD

1.44e-01 2.49e-01 1.00e-02 1.77e-01 3.70e-01 1.33e-02 4.58e-02 5.82e-03 3.48e-03

Tower middle side-to-side
acceleration’s PSD

2.04e-01 2.51e-01 1.09e-02 1.92e-01 3.00e-01 1.33e-02 4.49e-02 4.86e-03 3.42e-03

Tower top fore-aft
acceleration’s PSD

3.12e-01 2.16e-01 1.87e-02 1.75e-01 2.69e-01 9.59e-03 3.36e-02 8.49e-03 7.01e-03

Tower top side to side
acceleration’s PSD

2.84e-01 1.87e-01 1.18e-02 1.76e-01 2.50e-01 1.21e-02 8.33e-02 5.52e-03 2.38e-02

According to the GSA, the coefficient related to the distributed blade mass αmass is not
identifiable with the current observations. Consequently, the model parameter properties
remaining for the inference procedure are the tower thickness coefficient e, and the mass
imbalance factor ηB. Moreover, all the influent parameters related to the wind field remain
candidates for the recursive inference strategy.

7.3.4 Recursive inference strategy based on AnEnKF approach

With the current monitoring configuration, data availability or quality does not allow
a proper extraction of the mean flow angle φh, the longitudinal turbulence length scale
Λu, and the decrement parameter of the coherence model a. Consequently, only the six
remaining parameters having an influential effect on the fatigue behavior of the structure
and potentially identifiable are considered during the recursive inference procedure. These
input parameters and their corresponding prior Gaussian distributions are detailed in
Table 7.8. Their corresponding reference variable in the augmented state vector is also
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7.3. Numerical results

specified.

Table 7.8 – A-priori Gaussian distribution G for each of the considered input parameters.

Input parameter Variable Distribution Initial prior State
Tower

thickness
e G µ = −10.00 σ = 7.00

x1

Blade mass
imbalance

ηB G µ = 4.00 σ = 8.33e− 01

Error mean of the wind
speed at hub height

∆u G µ = 0.00 σ = 9.11e− 01
x2

Error standard deviation of
the wind speed at hub height

∆σu G µ = 0.00 σ = 9.70e− 02

Vertical wind
shear exponent

α G µ = 1.30e− 01 σ = 2.90e− 01

For assessing the performance of the AnEnKF for our recursive inference procedure,
we rely on pseudo-experimental numerical tests. They consist in performing forward
aero-servo-elastic simulations considering known values of the input parameters, and then
adding a Gaussian noise of known variance to the simulated measurements. In our study,
the simulated data are perturbed by considering a covariance matrix such as the obtained
standard deviation is equivalent to a 10% signal-to-noise ratio. The pseudo-simulated
responses of the wind turbine structure are generated using the wind inflow conditions
obtained from the nacelle mounted LIDAR for a specific day and the mean values of the
model properties described in Table 7.3. The noisy pseudo-experimental outputs used
to recursively update the wind turbine model are 10-minute mean power production and
rotor speed, and the PSD of the acceleration time series obtained for side to side and
fore-aft at the two different tower positions. Our recursive inference problem using a
filtering-based estimation procedure can be considered as a state estimation problem for
the following augmented system:

∀k ∈ N∗,

 x(k) =

[
x1
(k)

x2
(k)

]
=

(
x1
(k−1)

A(k−1,k)(x
2
(k−1))

)
+

(
εm(k)
0

)
y(k) = H(k)(x(k),u(k)) + εo(k)

·

where x1
(k−1) and x2

(k−1) are respectively the uncertain parameters for the model properties
and the wind inflow conditions at iteration k − 1 as described in Table 7.8, A(k−1,k)
is the analog forecasting operator as detailed in Section 7.2, u(k) is the forcing vector
corresponding to the 10-minute mean and standard deviation wind speed obtained from
the SCADA system, and H(k) is the combination of the aero-servo-elastic model FAST
and the turbulent wind field generation software Turbsim.

For the initialization of the EnKF approach, independent Gaussian distributions are
assumed to be the initial prior for each of the input parameters, see Table 7.8. The
initial error covariance matrix of the input parameters, denoted by Pb, is thus assumed
to be diagonal. To create the catalog, we rely on the measurements obtained from both
the SCADA system and the LIDAR installed on the onshore wind turbine. A data pre-
treatment has been performed in order to find any corrupted observations. The obtained
database consists in both 4,735 analog situations to be compared to the current parame-
ters related to the wind inflow and their corresponding successors at a 10-minute interval.
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Chapter 7. Wind turbine quantification and reduction of uncertainties based on a
data-driven data assimilation approach

Figure 7.4 shows the results of the identification of the considered input parameters
by applying the AnEnKF approach with the locally-linear forecasting operator using
N = 500 members and K = 50 nearest-neighbors. It can be noticed that the augmented
state vector is well reconstructed by using this non-parametric data assimilation procedure
which allows to emulate the dynamical model from a dataset. Indeed, the mean of the
empirical distribution obtained from the members of the ensemble is close to the true
hidden-state for every parameter. A major advantage of the procedure is the confidence
intervals obtained at each inference iteration allowing us to give information about the
difficulty to retrieve the value of the input parameters from the measured outputs.
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Figure 7.4 – Iteration evolution of the posteriori estimates of the input parameters. Results
obtained by running the AnEnKF procedure with N = 500 members of the
ensemble used for the estimation and considering pseudo-experimental numerical
observations.

Conclusion

In the present work, we extend a procedure to quantify and reduce the uncertainties
affecting the fatigue load estimation of a wind turbine numerical model. The fatigue loads
encountered by a wind turbine structure are function of the parameters describing the
turbulent wind field, the structural properties, and the control system. The study aims at
taking into account these parameters used as input to aero-servo-elastic fatigue load simu-
lations of an operating wind turbine. The procedure relies on a global sensitivity analysis
and a recursive Bayesian inference method. A major challenge during the recursive infer-
ence procedure is the dynamic behavior of the inflow-related parameters. Unfortunately,
the underlying dynamic behavior of these parameters is not explicitly known. To over-
come this issue, a combination of the implicit analog forecasting of the dynamics with the
ensemble Kalman filtering scheme is investigated.
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7.3. Numerical results

Finally, we demonstrate the applicability and performance of the procedure using a nu-
merical representation of a reference wind turbine. The study leads to the following main
conclusions. The global sensitivity analysis based on heteroscedastic Gaussian processes
for the estimation of Sobol’ indices shows that parameters related both to the wind and
the structure have an influence on the fatigue loads of a wind turbine structure. The pre-
sented metamodeling approach is an efficient way to capture the inherent stochasticity of
aero-servo-elastic simulations due to the turbulent inflow realization leading to variations
in the quantities of interest. After determining the most influential parameters in terms
of fatigue loads variability, an identifiability study based on a global sensitivity analysis
is performed to assess if these parameters can be inferred from the current sensors. The
sensitivity analysis is based on the estimation of the so-called aggregated Sobol’ indices
involving a principal component analysis in order to take into account the functional be-
havior of the measured outputs. Finally, the ensemble Kalman filtering method coupled
with the analog forecasting strategy used in this study is very suitable for carrying the re-
cursive inference of parameters related to the wind field solicitation and the wind turbine
numerical description.

Further research should focus on the quality of the catalog used for the analog fore-
casting strategy. Additionally, other types of kernels in the forecasting operator have to
be studied. Lastly, the hyperparameters used in the K-nearest neighbors method and
the chosen kernel function could be optimized for each member of the ensemble Kalman
filtering procedure by using a cross-validation approach. From an industrial perspective,
the proposed AnEnKF methodology has to be performed using measured acceleration
time-series obtained from the sensor devices of the onshore wind turbine.
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Conclusion and perspectives

Ainsi s’écoule toute la vie. On cherche le repos en combattant
quelques obstacles ; et si on les a surmontés, le repos devient
insupportable.

Blaise Pascal

The main focus of this thesis was the development of a data assimilation method for
the calibration and continuous update of a wind turbine numerical model based on in
situ observations. We proposed a complete framework for quantifying and recursively
reducing the uncertainties affecting the input parameters of a numerical model. For that
purpose, this dissertation explored various concepts related to the field of uncertainty
quantification. This scientific discipline focuses on the characterization and the reduction
of uncertainties in numerical applications. Chapter 1 provided a literature review of
the methodologies widely used by the uncertainty quantification community, involving
different topics such as sensitivity analysis, surrogate modeling, and parameter inference.
Our research work was mainly guided by the industrial application in which this doctoral
project fits. As mentioned in Chapter 2, the numerical modeling of wind turbines requires
the involvement of different physics in order to properly represent the different phenomena
of interest. The application of uncertainty quantification to such numerical applications
is challenging. Indeed, the aero-servo-elastic simulations currently in use are stochastic
and time-consuming. That led us to propose a complete procedure for quantifying and
reducing the uncertainties while respecting the different constraints we were confronted
with. The relevance and efficiency of the different statistical approaches proposed in this
work were illustrated on two numerical cases. The development of wind turbines models
required for these application cases was part of this thesis. The general frame of our
research work was mainly divided into three parts.

The first part was devoted to the quantification of the ubiquitous uncertainties af-
fecting the parameters of the aero-servo-elastic numerical model as well as the external
sollicitations. In Chapter 3, we presented a global sensitivity analysis based on Sobol’
indices to rank the input parameters according to their impact on the output variability.
This probabilistic approach consists in modeling the uncertain parameters by indepen-
dent random variables characterized by their probability distribution. In this study, the
estimation of these sensitivities was performed with a Monte Carlo based procedure. Such
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technique avoids any regularity assumption on the model but requires a lot of calls to it.
Nevertheless, in our context of stochastic and time-consuming simulations, this statistical
strategy cannot be used directly. We suggested in Chapter 4 to alleviate the compu-
tational burden of the Monte Carlo estimation by surrogating the mean of the output,
obtained from replications of stochastic aero-servo-elastic simulation, by a Gaussian pro-
cess with heteroscedastic noise. This metamodeling strategy also made possible to take
into account the inherent variability of our stochastic simulator. Global sensitivity analy-
sis is important for the determination of the most important input parameters that have
to be properly calibrated and the less influential ones that can be fixed to reference values.

Then, the second part was related to the reduction of the uncertainties affecting the
influential parameters. Chapter 5 highlighted the use of data assimilation procedures for
recursive model calibration. In particular, we investigated the ensemble Kalman filter
for the inference of model parameters. This filtering scheme relies on measurements to
retrieve the unknown input parameter distribution based on the Bayesian paradigm. In
our application study, we proposed to use a latin hypercube sampling for the generation of
the prior ensemble of members. Nevertheless, such inverse problems can only be achieved
assuming that several conditions of well-posedness and identifiability are achieved. In that
context, we made use of the relationship between non-identifiability of input parameters
and total Sobol’ indices. As highlighted by Dobre et al. [2012], if all the total Sobol’
indices associated to a prescribed input parameter are ”small” for the different measured
outputs, it means that this parameter is non-identifiable.

The last part of our research work focused on two industrial applications of the pro-
posed framework in the context of an onshore wind turbine numerical model. For the
first application in Chapter 6, we developed a high-fidelity numerical representation of
the turbine based on a full finite element analysis. This first study was focused on the
parameters describing the model properties having a static or slow time-variant behavior.
A global sensitivity analysis on the fatigue loads at some critical parts of the structure was
performed in order to determine the most important inputs in terms of variability. The
results we obtained showed that a subset of the model property parameters happens to in-
fluence these responses. Then, the question of parameter identifiability was investigated.
Due to the functional nature of the observations, a dimension reduction preliminary step
was performed thanks to a principal component analysis and then an aggregated Sobol’
index for each model parameter was estimated. Finally, the proposed inference strategy
based on the ensemble Kalman filter was able to recursively estimate the parameters
related to the wind turbine properties from the synthetic measured data. Due to the
encouraging results, in the second application presented in Chapter 7, we increased the
complexity of our research work by extending the framework to the parameters related
to the synthetic wind field. A major challenge during the recursive inference procedure is
the dynamic aspect of these inflow-related parameters which is not explicitly known. For
the reconstruction of this dynamics in the ensemble Kalman filter, we proposed to use a
non-parametric data-driven approach relying on an analog forecasting strategy based on
K-nearest neighbors.

The research work ends at this stage for the thesis but opens several extensions in
terms of theoretical, practical, and application perspectives. Some of these promising
ways of extensions are now discussed.

Concerning the theoretical perspectives, a further investigation of the relationship
between global sensitivity analysis based on the functional analysis of the variance and

128



Conclusion and perspectives

identifiability should be conducted [Dobre et al., 2012]. Moreover, the benefits of using
a latin hypercube sampling or other space filling designs in the ensemble Kalman filter
should be quantified more properly as it seems promising as empirical results.

In this thesis a global sensitivity analysis of the fatigue loads obtained from an aero-
servo-elastic wind turbine numerical model has been performed to an under-rated wind
speed configuration. Several practical extensions should be tested, some of them are listed
hereafter. It should be relevant to consider other values of wind speed in order to take
into account the blade pitch controller response in the global sensitivity analysis. Further-
more, the joint-metamodeling of the mean and dispersion of heteroscedastic data could be
investigated for the global sensitivity analysis of stochastic computer codes [Marrel et al.,
2012]. In this context, Murcia et al. [2018] proposed to take into account the inherent
variability due to the different realizations of the turbulent wind field by fitting indepen-
dent polynomial chaos expansions for the mean and standard deviation of each quantity
of interest obtained from an aero-servo-elastic numerical model. These different strategies
could be implemented and compared. Concerning the recursive inference procedure, we
could study the use of dimension reduction techniques for the functional measurement
considered in the ensemble Kalman filter. For the analog forecasting operator used in our
application, we focused on a Gaussian kernel function. It would be pertinent to study the
use of different covariance functions [Hofmann et al., 2008, Duvenaud, 2014]. Addition-
ally, the hyper-parameters used in the K-nearest neighbor methods and the kernel design
could be optimized for each member of the ensemble Kalman filtering procedure by using
a cross-validation approach, although we could face numerical burdens. Moreover, recent
years have been marked by a development of machine and deep learning techniques. A
direction for future research work lies in the use of these innovative approaches to de-
termine the hidden-state dynamics [Talmon et al., 2015, Krishnan et al., 2015, Fraccaro
et al., 2016, Bocquet et al., 2020].

For application perspectives, the quality of the catalog used for the analog forecasting
strategy has to be improved. Indeed in this study, we performed a coarse pretreatment of
the database and only a limited part of the SMARTEOLE measurement campaign was
considered. Last but not least, another application research path would be the use of the
proposed recursive inference strategy with measured time-series obtained from the sensor
devices of the operating onshore wind turbine.
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A
Bootstrap sampling

Bootstrap confidence intervals with percentile bias

correction

The sampling error, due to the Monte Carlo evaluation of the variances in the Sobol’
index estimators defined in Section 3.3, can be quantified by using confidence intervals.

One can approximate confidence intervals by employing a non parametric bootstrap
method with the bias percentile correction. We first present the principle of the method
introduced by Efron [1981], Efron and Tibshirani [1986]. Let us consider an estima-

tor T̂ of an unknown quantity of interest T function of a random variable X ∈ P . In
order to obtain a point estimate of T , we can consider a s independent and identically
distributed random sample {x1, · · · , xs} from P , and then compute T̂ (x1, · · · , xs). In non-
parametric bootstrap strategy, the idea is to consider an integer B > 0 and repeatedly,
for b = 1, · · · , B, create a bootstrap sample {x1[b], · · · , xs[b]} by sampling with replace-

ment from the sample {x1, · · · , xs} in order to obtain a replication of T̂ by estimating

T̂ [b] = T̂ (x1[b], · · · , xn[b]).

Let us denote by R = {T̂ [1], · · · , T̂ [B]} the set of replications of T̂ . This set can
be used to estimate a bootstrap confidence interval for the quantity of interest. By
considering the standard normal cumulative distribution function defined as:

Φ(z) =
1√
2π

∫ z

−∞
exp

(
−t

2

2

)
dt ·

A bias correction constant term z0 can be estimated such as:

ẑ0 = Φ−1

(
#{T̂ [b] ∈ R s.t. T̂ [b] ≤ T̂}

B

)
·

Then, we can express the corrected quantile estimate q̂(β) for β ∈]0; 1[ as q̂(β) = Φ(2ẑ0 +
zβ), where zβ satisfies Φ(zβ) = β. The bias corrected confidence interval of level 1− α is
obtained by estimating the q̂(α/2) and q̂(1− α/2) quantiles of R. In order to justify this
previous confidence interval, Efron [1981] highlights that an increasing transformation g,
z0 ∈ R and σ > 0 has to exist.

The bias corrected bootstrap confidence interval for the closed Sobol’ index described
in Equation (3.7) is detailed in Algorithm 7. The major advantage of bootstrapping
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our sensitivity estimators is that we do not require supplementary model evaluations to
estimate a confidence interval.

Algorithm 7: Bootstrapping procedure for confidence interval of the closed
Sobol’ index S̃u adapted from [Janon et al., 2011].

1. For u ⊆ {1, . . . , p}, generate two designs P and Pu from independent random
vectors distributed according to the input parameter vector (see Section 3.3).

2. Create a third design Pu = {xu
i }si=1 with ∀j ∈ [1, p]

{
xuj = xj if j ∈ u

xuj = x
′
j otherwise

.

3. Compute ∀i = 1, · · · , s, yi =M(xi) and yui =M(xu
i )

4. Estimate ̂̃su: ̂̃Su =
1
s

∑s
i=1 yi y

u
i − (1

s

∑s
i=1 yi) (1

s

∑s
i=1 y

u
i )

1
s

∑s
i=1 y

2
i − (1

s

∑s
i=1 yi)

2
.

5. for b = 1, · · · , B do

1. Draw at random a list L of length s, with replacement from {1, · · · , s}.
2. Estimate replication ̂̃Su[b] :

̂̃Su[b] =
1
s

∑
k∈L yi y

u
i −

(
1
s

∑
k∈L yi

) (
1
s

∑
i∈L y

u
i

)
1
s

∑
i∈L y

2
i −

(
1
s

∑
k∈L yi

)2 ·

6. Estimate ẑ0:

ẑ0 = Φ−1

(
#{b ∈ {1, · · · , B} s.t. ̂̃Su[b] ≤ ̂̃Su}

B

)

where Φ(z) = 1√
2π

∫ z
−∞ exp

(
− t2

2

)
dt.

7. Search for zα/2 so that:
Φ(zα/2) = α/2

and take z1−α/2 = −zα/2, satisfying: Φ(z1−α/2) = 1− α/2.

8. Compute q̂(α/2) and q̂(1− α/2):

q̂(α/2) = Φ(2ẑ0 + zα/2) and q̂(1− α/2) = Φ(2ẑ0 + z1−α/2)

9. Compute ̂̃Su,α/2 and ̂̃Su,1−α/2, the q̂(α/2) and q̂(1− α/2) quantiles of

{S̃u[1], · · · , S̃u[B]}.

return
[̂̃Su,α/2;

̂̃Su,1−α/2

]
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ulateurs bruités à fidélité réglable). In Congrès conjoint de la Société Statistique
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