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Thèse présentée et soutenue à Palaiseau, le 25.05.2021, par

FELIPE TOLEDO-BITTNER

Composition du Jury :

Riwal Plougonven
Directeur adjoint de recherche, LMD (UMR-8539) Président

Christine Lac
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Julien Delanoë
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Résumé

La réduction de la visibilité causée par le brouillard a un coût significatif pour les activités civiles
et économiques, notamment pour celles liées aux transports de surface, maritimes et aériens. Par con-
séquent, l’amélioration des méthodes de surveillance et de prévision du brouillard est un sujet de recherche
actif et important.

Récemment, il a été mis en évidence que la télédétection des variables de la couche de brouillard en
utilisant des radars nuages peut fournir des informations importantes sur ses processus. Ce fait, associé
au développement d’une nouvelle génération de radars nuages à faible coût, a ouvert la possibilité du
développement de stations de surveillance du brouillard, sur des lieux d’intérêt comme les aéroports ou
les autoroutes. Cependant, certains obstacles doivent être surmontés avant la mise en place d’un réseau
de surveillance du brouillard à grande échelle. Dans cette thèse, nous identifions et abordons les questions
suivantes :

1.- Actuellement, la compréhension des processus du brouillard permet une quantification des varia-
tions temporelles de ses variables macroscopiques, telles que le contenu d’eau liquide intégré (LWP) et
la hauteur du sommet du brouillard. Bien qu’utiles, ces informations sont insuffisantes pour discerner la
tendance de dissipation du brouillard. Il reste nécessaire d’identifier des variables diagnostiques avec des
seuils définis, qui pourraient être utilisées comme indicateurs de la tendance de dissipation du brouillard.
Ainsi, la thèse commence par présenter un nouveau modèle conceptuel décrivant le contenu en eau liquide
et la structure verticale de brouillards adiabatiques. Ce modèle est développé à partir d’observations
de 80 événements de brouillard, enregistrés pendant 7 ans à l’Observatoire Atmosphérique SIRTA. Le
modèle est capable de prédire le LWP du brouillard avec une erreur quadratique moyenne de 10,5 g
m-2, en utilisant des mesures de la hauteur du sommet de la couche de brouillard et de la visibilité,
température et pression à la surface, et fournit également deux variables diagnostiques : le contenu en
eau critique (CLWP) du brouillard et le réservoir de contenu en eau (RLWP) du brouillard. Le CLWP
est la quantité minimale de contenu en eau liquide intégré nécessaire pour remplir une couche de brouil-
lard d’une épaisseur connue, tandis que le RLWP est l’excès d’eau qui doit être retiré de la colonne de
brouillard pour qu’il y ait dissipation à la surface. Les deux variables peuvent être estimées en temps
réel à partir d’observations in-situ et de télédétection, parmi lesquelles nous soulignons l’utilisation des
radars nuage et des radiomètres micro-ondes.

Ces variables contribuent à un nouveau paradigme pour la prévision de la dissipation du brouillard,
basé sur l’observation de l’état et des processus dans l’ensemble de la colonne de brouillard, et pourraient
compléter les schémas actuels basés sur les mesures de visibilité en surface. Plus précisément, il a été
constaté que lorsque la visibilité en surface est inférieure à 600 m, la probabilité de dissipation dans une
période de temps donnée change de manière significative en fonction de la valeur du RLWP du brouillard.
Par exemple, la probabilité de dissipation à l’horizon de 90 minutes, lorsque la visibilité est inférieure à
250 m, est très faible (5%) lorsque le RLWP est supérieur à 20 g m-2, mais augmente fortement (50%)
lorsque le RLWP devient négatif.

2 - L’étalonnage des radars de nuages est un sujet non résolu, qui doit être abordé pour exploiter

1



un réseau de surveillance du brouillard qui s’appuie sur des observations de télédétection. Pour faire
progresser le modèle conceptuel de brouillard décrit ci-dessus, des meilleures restitutions de propriétés
microphysiques sont nécessaires. Elles sont actuellement limitées par les difficultés liées à l’étalonnage des
radars nuage. En plus, des mesures étalonnées sont essentielles pour effectuer des études comparatives en
utilisant des données provenant de différents sites, ce qui est essentiel pour améliorer notre compréhension
du brouillard et pour généraliser les résultats du modèle conceptuel. Par conséquent, cette thèse recherche
une stratégie de calibration qui pourrait s’appliquer sur un réseau de surveillance du brouillard, en
utilisant les résultats de deux campagnes d’étalonnage de radars nuage réalisées en 2018 et 2019 à
l’observatoire atmosphérique SIRTA, dans le cadre du développement de l’infrastructure de recherche
ACTRIS.

La stratégie comprend deux étapes : la première est l’étalonnage d’un radar de référence trans-
portable, avec une procédure qui fournit une estimation fiable de l’incertitude d’étalonnage. La seconde
étape consiste à transporter cet instrument étalonné vers d’autres sites d’observation, afin de transférer
son étalonnage à d’autres radars.

La calibration du radar de référence (un radar de type BASTA mini, développé par le laboratoire
LATMOS) est réalisée à l’aide d’une méthode reproductible développée au cours de la thèse, basée sur
l’utilisation de réflecteurs en coin. Cette méthode permet d’identifier et d’estimer indépendamment
l’impact de chaque source de biais et d’incertitude. Ceci a permis de calculer l’incertitude pour les
expériences réalisées, qui était de 2 dB, et d’identifier la principale source d’incertitude, qui est l’utilisation
d’un modèle théorique pour calculer la surface équivalente radar du réflecteur.

Comme la méthode permet l’estimation individuelle de l’incertitude introduite par chaque source, elle
a été utilisée pour comparer quantitativement les performances de différents montages expérimentaux,
et pour identifier les éléments qui devraient être améliorés. Notre étude a montré que des améliorations
dans la caractérisation du réflecteur de référence pourraient permettre une diminution de l’incertitude
d’étalonnage jusqu’à un minimum théorique de 0,4 dB.

La méthodologie développée pour le transfert d’étalonnage est basée sur la comparaison de mesures
simultanées de nuages par des radars colocalisés. Après environ deux semaines d’échantillonnage continu,
il a été possible de transférer l’étalonnage du radar de référence (radar BASTA mini) à un radar nuage de
marque RPG 94 GHz non étalonné. Les différences de sensibilité des radars utilisés rendent impossible
le transfert de l’étalonnage basé sur les données brutes. Une nouvelle méthodologie de traitement des
données a été développée pour rendre comparable la distribution des mesures des deux radar et quantifier
l’incertitude introduite dans le transfert de calibration, en plus de celle de la calibration du radar de
référence. Dans nos expériences, cette incertitude supplémentaire était de 0,9 dB. Des stratégies pour
réduire davantage cette incertitude, et pour appliquer cette méthode à des radars dans différentes bandes
de fréquences, sont également discutées.
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Abstract

Visibility reduction caused by fog has a significant cost on civil and economic activities, especially
for those related with surface, marine and aerial transportation. Therefore, the improvement of fog
monitoring and forecasting methods are a relevant research topic.

Recently, it has been discovered that remote sensing of the fog layer with cloud radars could provide
valuable information about fog processes. This fact, paired with the development of new generation
low-cost cloud radars, have opened the possibility to the creation of fog surveillance stations on places of
interest such as airports or highways. However, some obstacles must be overcome before the foundation
of a large-scale fog surveillance network.

In this thesis we identify and address the following issues:
1.- At present, the understanding of fog processes enables a quantification of temporal variations

of its macroscopic variables, such as the liquid water path and the fog top height. Albeit useful, this
information is insufficient to discern fog dissipation tendency. It remains necessary to identify diagnostic
variables with defined thresholds, that could act as indicators of fog dissipation tendency. Hence, the
thesis begins by presenting a new conceptual model describing the liquid water content and vertical
structure of adiabatic fog. This model is developed based on observations of 80 fog events, registered
during 7 years at the SIRTA Atmospheric Observatory. The model is able to predict fog LWP with a
RMSE of 10.5 g m-2, based on measurements of cloud top height and surface visibility, temperature
and pressure, and also provides two diagnostic variables: the Critical Liquid Water Path (CLWP), and
the Reservoir Liquid Water Path (RLWP). The CLWP is the minimum amount of liquid water path
necessary to fill a fog layer of a known thickness. Meanwhile, the RLWP is the excess of water that must
be removed from the fog column to have dissipation at the surface. Both variables can be estimated in
real time from in-situ and remote sensing observations, among which we highlight the use of cloud radars
and microwave radiometers.

These variables contribute to a new paradigm for fog dissipation forecasting, based on the observation
of the status and processes in the whole fog column, and could complement current schemes based on
surface measurements of visibility. Specifically, it was found that, when visibility is below 600 m, the
probability of dissipation in a given time period changes significantly depending on fog RLWP value.
For example, the probability of dissipation in 90 minutes, when visibility is less than 250 m, ranges from
5% when the RLWP is more than 20 g m-2, to 50% when the RLWP is negative.

2.- Cloud radar calibration is an unsolved topic, which must be addressed to have a fog surveillance
network based on remote sensing observations. Further improvements of the proposed fog conceptual
model would require better micro-physical retrievals, currently limited by the difficulties involved in cloud
radar calibration. Additionally, calibrated measurements are essential to perform comparative studies
using data from different sites, which is essential to improve our understanding of fog and to generalize the
conceptual model results. Therefore, this thesis researches a calibration strategy that could be applied
for a complete fog surveillance network, based on the results of two cloud radar calibration campaigns
performed in 2018 and 2019 at the SIRTA atmospheric observatory, as part of the development of the
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ACTRIS research infrastructure.
The strategy comprises two steps: the first is the calibration of a portable reference radar with

a procedure that provides a reliable estimation of uncertainty. The second step is to transport this
calibrated instrument to other observation sites, to transfer its calibration to other radars.

The calibration of the reference radar (a BASTA mini, developed by the LATMOS laboratory) is
done using a repeatable method developed during the thesis, based on the use of corner reflectors. The
methodology enables the identification and independent estimation of the impact from each source of
bias and uncertainty. This enabled the calculation of the uncertainty for the performed experiments,
which was of 2 dB, and the identification of the main uncertainty source, which is the use of a theoretical
model to calculate the reflector radar cross section.

Since the method enables the individual estimation of the uncertainty introduced by each source, it
was used to quantitatively compare the performance of different experimental setups, and to identify
the elements that should be further improved. In our case, we concluded that improvements in the
characterization of the reference reflector could enable a decrease of calibration uncertainty down to a
theoretical minimum of 0.4 dB.

The methodology developed for calibration transfer is based on the comparison of simultaneous
measurements of clouds with the radars in the proximity of each other. After approximately two weeks
of continuous samples, it was possible to transfer the calibration from the reference radar (BASTA mini)
to an uncalibrated 94 GHz RPG cloud radar. Differences in the sensitivity of the radars involved makes
the calibration transfer based on raw data impossible. Therefore, it was necessary to develop a new
data processing methodology. This method enables the quantification of the uncertainty introduced in
the calibration transfer, in addition to that in the reference radar calibration. In our experiments, this
additional uncertainty was of 0.9 dB. Strategies to further reduce this uncertainty, and to apply this
method for radars in different frequency bands, are also discussed.
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Chapter 1

Introduction

1.1 Foreword

Fog research is motivated by its significant impact on civil and economic activities. The visibility reduc-
tion caused by fog can cause costly delays and increase the accident rate on surface, marine and aerial
transportation activities, with a cost of millions of dollars every year (e.g. Croft et al. (1995); Gultepe
et al. (2007)). Accidents associated with fog have also resulted in injury or death for the people involved,
especially in land traffic accidents (Croft et al., 1997; Abdel-Aty et al., 2011)). These issues explain, for
example, recent studies carried out to improve fog forecasting in airports such as Paris, Melbourne or
Cape Town (Bergot et al., 2015; Boneh et al., 01 Oct. 2015; Veljović et al., 2015).

The extinction of visible radiation caused by fog also has an impact on solar energy production. Fog
reduces the amount of solar radiation reaching the surface, decreasing total electricity production, and
making this production more variable and uncertain (e.g. Yao et al. (2018); Nilo et al. (2020)). This
increases the challenges for grid operators, in charge of balancing energy production with the demand,
hampering the grid cost optimization (Ela et al., 2013).

These sectors would benefit from better forcastings of fog evolution in time and space (e.g. Tardif
and Rasmussen (2007)). However, its complexity arising from the wide range of physical and chemical
processes involved, and the subtleties in the inner balance of these processes, makes fog forecasting
particularly difficult (Steeneveld et al., 2015; Román-Cascón et al., 2016a). Hence, a better understanding
of fog processes is essential to improve fog forecasting (Haeffelin et al., 2013).

Recent studies show that collocated remote and in-situ real time measurements can be used to improve
the quantification of fog processes driving the evolution of fog layers locally (e.g. Dupont et al. (2012);
Wærsted et al. (2019)). Cloud radars enable retrievals of macro and microphysical fog properties such
as fog top height, and high resolution profiles of fog reflectivity and doppler velocity (Delanoë et al.,
2016; Bell et al., 2021). Lidars are used to track the hydration of aerosols and the inferior limit of low
stratus clouds (Kotthaus et al., 2016; Haeffelin et al., 2016b). Microwave radiometers, when combined
with cloud radars to detect clouds above the fog layer, can be used for fog liquid water path retrievals
(Wærsted et al., 2017).

The aforementioned issues and new findings indicate that it could be interesting to establish more
observation sites at places heavily affected by fog. In previous years, an important factor restricting the
amount of fog remote sensing stations was the high cost of the instruments involved. However, recent
technological developments in the last decade have allowed a sharp decrease in their cost, specially for
microwave radiometers and cloud radars (Rose et al., 2005; Delanoë et al., 2016; Aguirre et al., 2020).
These developments are already driving the creation of cloud remote sensing networks worldwide. In
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Europe, this has led to the foundation of the Cloudnet project (Illingworth et al. (2007)), and later of
the European Aerosol, Clouds and Trace Gases Research Infrastructure ACTRIS (Pappalardo, 2018).
The ACTRIS infrastructure already has 15 cloud remote sensing stations, equipped with most of the
instruments necessary to track fog processes, and this number is expected to grow in the future. Although
ACTRIS is in its implementation phase, some stations have already provided several years of high quality
data for fog and cloud studies (Haeffelin et al., 2016a).

Therefore, the establishment of a network of fog monitoring stations located at critical places of
interest is viable. Such network would already provide useful information on fog status and processes
(e.g. Wærsted et al. (2017)), however, we have identified two challenges that must be addressed to
significantly increase their benefit.

At present, there is significant progress on the research of the physical processes that impact fog
evolution (e.g. Gultepe et al. (2007); Haeffelin et al. (2010); Wærsted et al. (2017)). However, there
is still a lack of diagnostic variables, besides surface visibility, that could be compared against definite
thresholds to quantify fog dissipation tendency. Zhou and Ferrier (2008) has advanced in this topic, by
identifying threshold values for turbulence that indicate when fog formation can occur, and when fog
dissipation is imminent. These results are very valuable, yet they are restricted to thin radiation fog,
and cannot be used for developed adiabatic fog. Thus, the first challenge addressed by this thesis is to
research for diagnostic variables that could be used to quantitatively assess fog status and dissipation
tendency. This study is done using 7 years of fog observations at the SIRTA atmospheric observatory,
located in Palaiseau, France (Haeffelin et al., 2005).

Another identified need is to have reliable calibration methods for the monitoring station instruments.
Since lidars and microwave radiometers already have operation and calibration guidelines (e.g. Kotthaus
et al. (2016); Kazama et al. (1999); Marke et al. (2016)), we decide to focus on cloud radars. Cloud
radar calibration is essential to perform microphysical retrievals with these instruments (Ewald et al.,
2019). For example, calibration deviations of 1 decibel, which has already been observed for different
observation sites in Europe (Protat et al. (2009)), can introduce uncertainties in liquid water and ice
content estimation of about 15-20% (Fox and Illingworth, 1997; Ewald et al., 2019). Besides, radar
calibration has been a long-standing challenge. The lack of universal calibration methods introduces
the need for continuous research for solutions, tailored for each use case (Süsskind, 1985; Atlas, 2002).
Therefore, the second challenge is to develop a calibration solution for cloud radars, that could be applied
in a fog monitoring network comprising several observation sites. The research on calibration methods
was conducted during two cloud radar calibration campaigns, carried out in 2018 and 2019 at the SIRTA
observatory, in the framework of the ACTRIS infrastructure developments.

The introduction chapter is structured as follows: Section 1.2 presents the definition of fog. Section
1.3 presents the life cycle of radiation and stratus lowering fog, which are the most common fog types
observed at the SIRTA observatory (Dupont et al., 2016). Section 1.4 presents how remote sensing
measurements with cloud radars, microwave radiometers and ceilometers could assist in the study of fog
layers. Section 1.5, explains the operating principle and features of cloud radars. Section 1.6) introduces
the equations used for radar calibration and reflectivity retrievals. Section 1.7) presents a state of the art
summary of cloud radar calibration. Finally, the thesis context and objectives are elaborated in section
1.8.
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1.2 Fog definition

According to the glossary of the American Meteorological Society, fog is defined as the presence of
suspended water droplets in the atmosphere close to the surface, reducing visibility below 1 km (American
Meteorological Society, 2012). Fog is a special case of cloud, in which the base reaches the surface. As
with clouds, fog visibility reduction is mostly driven by the mie scattering interaction between visible
light and the suspended water droplets (Wallace and Hobbs, 2006). Mie scattering deviates light in
different directions as a beam passes, resulting in a net light extinction for this particular beam, even if
the total light energy of the system remains constant.

Visibility is a measure of the distance at which an object or light can be discerned from the brack-
ground. This definition is quantified by using the concept of contrast. Equation (1.1) describes how
visual contrast Cv is a function of the extinction coefficient αext and the length of the beam path d

(Duntley, 1948). The maximum value of contrast in this formulation is Cv = 1, which is reached by an
ideally black object against a white background. As Eq. (1.1) shows, contrast can decrease down to 0,
depending on distance and the extinction coefficient.

Cv = exp−αext·d (1.1)

The Comission on Illumation proposed Cv = 0.05 as the inferior limit of constrast that allows the
distinction of an object (Hautiere et al., 2006). By imposing this lower limit on contrast in Eq. (1.1), we
get the Koschmieder formula (Eq. 1.2). In this formula, V IS represents the visibility, and corresponds
to the maximum distance at which an object can be distinguished.

V IS = − ln 0.05

αext
=

3.0

αext
(1.2)

The Koschmieder formula assumes makes several assumptions: first, the atmosphere is illuminated
homogeneously. Second, the extinction coefficient and the scattering function do not vary spatially.
Third, the object is ideally black and is viewed against the horizon. Fourth, the eye of the observer has
a constant contrast threshold. To test the sensitivity of this formulation to variations in the hypotheses,
Horvath (1971) calculated the errors that would arise from non ideal conditions. He concluded that the
Koschmieder Formula can be used to calculate the extinction coefficient from observed visibilities with
an error of less than about 10 per cent under non ideal conditions, by performing a proper selection of
the visibility markers. This result indicates that this visibility formulation is robust enough to be applied
for the fog case. Therefore, when fog is present, the visibility decrease below 1 km can be measured by
using the extinction coefficient, which should be greater than 3.0 km−1 for the visible wavelengths.

We observe that this definition of fog is based exclusively on surface observations. This is useful from
an operational point of view, but it does not consider the vertical complexity of fog layers. In the next
section we explore the phenomenon of fog in more detail, understanding it as an atmospheric layer partly
composed of suspended water droplets, which evolves and has a life cycle.

1.3 Life cycle of radiation and stratus-lowering fog

The droplets that make up fog appear because supersaturated air conditions cause aerosol activation near
the surface. These droplets grow to the size of micrometers and are responsible for reduced visibility in
foggy conditions. Air supersaturation can be caused by a temperature decrease, an increase of the water
vapor content or a combination of both (Yau and Rogers, 1996).

Fog is categorized according to the mechanisms that cause its formation. There is a wide range of fog
types, among which we count radiation fog, stratus lowering fog, upslope fog, precipitation fog, advention
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fog, and others. This thesis focuses on radiation and stratus lowering fog, and therefore the next lines
explain more in detail the characteristics of these two fog types, however a description of other fog types
can be found in Gultepe et al. (2007); Tardif and Rasmussen (2007). We focus on these two fog types
because they are the most frequent at the SIRTA atmospheric observatory (Dupont et al. (2016)), which
is located in a continental, mid-latitude site near Paris, France (Haeffelin et al., 2005).

Radiation fog forms when air near the surface is cooled until reaching supersaturation. This fog
type usually appears during clear-sky conditions, at night, when the temperature decrease is driven by
radiative cooling of the surface (Haeffelin et al., 2010). Figure 1.1 (a) shows how these conditions form
an stable layer with a deepening inversion, as radiative cooling continues (Smith et al., 2018). The
stable profile suppresses turbulence, avoiding an excessive moist dilution in the layer which could inhibit
supersaturation (Zhou and Ferrier, 2008; Haeffelin et al., 2013).

If conditions are propice for droplet growth, a thin fog layer forms and deepens within the surface
inversion (Fig. 1.1 (b)). This stage of the fog life-cycle is referred to as shallow stable radiation fog
(Smith et al., 2018). At this stage fog is not optically thick, and therefore liquid water condensation
due to radiative cooling happens everywhere in the liquid layer, but is mostly driven by surface cooling
(Wærsted et al., 2017). This keeps the temperature profile stable during this stage.

Eventually, if fog liquid water path reaches approximately 30 g m−2, fog becomes optically thick to
infrared radiation (Wærsted et al., 2017). This displaces the main location of radiative cooling to the fog
top (Price, 2011). Cool air from the fog top sinks, eventually reaching the surface. This, when combined
with the stop in surface cooling, erodes the stability of the boundary layer, evolving it to a saturated
adiabatic temperature profile (Smith et al., 2018). When fog reaches the adiabatic profile, it becomes
adiabatic fog (Fig. 1.1 (c)). In adiabatic fog, stability is close to neutral, enabling rapid vertical mixing
that couples the surface with the fog top (Price, 2011; Porson et al., 2011).

Meanwhile, stratus-lowering fog forms when a low stratus base descends until reaching the surface.
Mechanisms that have been found to produce this phenomenon are an increase in cloud liquid water

Figure 1.1: Figure showing the typical life cycle of radiation fog. A detailed description of the conditions
indicated in each panel can be found in text. The vertical axis represents height with respect to the
surface in green. The regions where radiative cooling is stronger are indicated with red arrows. The
curved blue arrows represent turbulent mixing. U is the wind speed profile, T is the temperature profile
and RH is the relative humidity profile. Illustration adapted from Smith et al. (2018).
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due to cloud-top radiative cooling, cloud descent due to subsidence and moistening of the sub-cloud
layer due to drizzle evaporation (Koračin et al., 2001; Dupont et al., 2012). Observations of stratus and
stratocumulus adiabaticity , based on observations of their thickness and liquid water path, indicate
that these cloud types are approximately well mixed (Slingo et al., 1982; Albrecht et al., 1990; Cermak
and Bendix, 2011; Merk et al., 2016; Braun et al., 2018). Therefore, stratus-lowering should behave as
adiabatic fog from its formation (as in Fig. 1.1 (c)). However, it is worth noting that this assertion
cannot be verified with complete certainty, since at present there is a lack of similar studies relating
thickness, liquid water path and adiabaticity for fog.

The dissipation of shallow radiation fog tends to happen shortly after sunrise. Meanwhile, deep
adiabatic fog tends to last longer, and sometimes persists throughout the day (Price, 2011; Smith et al.,
2018). Shallow radiation fog does not shelter the surface from sun radiation as efficiently as opaque
adiabatic fog, leading to stronger layer heating from the surface. This, paired with their lower liquid
water path with respect to adiabatic fog, explains why shallow radiation fog tends to dissipate earlier
and often through evaporation (Tardif and Rasmussen, 2007; Haeffelin et al., 2010). Shallow fog is also
more susceptible to dissipation due to increased turbulence (Zhou and Ferrier, 2008).

Contrastingly, most adiabatic fog events observed at the SIRTA observatory dissipate by lifting of
the cloud base, without a complete evaporation of the cloud and sometimes even without a previous
decrease in their liquid water path (Wærsted, 2018). This phenomena has also been widely observed in
LES simulations of adiabatic fog (e.g. Nakanishi (2000); Bergot (2013); Mazoyer et al. (2017); Smith
et al. (2018); Wærsted et al. (2019)). Wærsted et al. (2019) observed in LES simulations of real fog
cases, that base lifting happened earlier when there was a weak stratification above the boundary layer,
even when the liquid water path was increasing. They hypothesized that this may be caused by a faster
entrainment at fog top that accelerates the boundary layer growth, lifting the cloud from the surface.

Wærsted (2018) goes beyond and, based on previous work by Cermak and Bendix (2011), proposed
a conceptual model to estimate the minimum amount of liquid water path needed to fill a fog layer of
a given thickness. He referred to this minimum value as the critical liquid water path. He then tested
this model with data from real fog cases, and found that when the liquid water path decreased below
the critical value, fog base lifted. Since this concept showed promising results for some case studies, we
believe that it should be studied further. Specifically, these results suggest that the relationship between
fog thickness and liquid water path may be key to explain fog dissipation.

1.4 Fog remote sensing

Fog evolution is driven by physical processes that occur at different locations of the layer. At the surface
level, fog exchanges water with the surface through droplet deposition and impaction on vegetation and
other obstacles (Katata, 2014). In addition, the surface exchanges latent and sensible heat with the
fog. When the surface is moist, the water vapor evaporation at the surface contributes to increasing
the condensation rate of the liquid layer, delaying fog dissipation (Wærsted et al., 2019). Additionally,
when fog is not present, or when it is not opaque to long wave radiation, the long-wave cooling of the
surface contributes to the liquid water condensation of the first stages in radiation fog, by reducing the
temperature of the surrounding air (Haeffelin et al., 2010). When fog is opaque to long wave radiation,
the surface can act as a sensible heat source, specially after sunrise (Price, 2011). This combined with
radiative cooling of the fog top generates turbulence though buoyancy, distabilizing the temperature
profile (e.g. Nakanishi (2000)).

Other important processes happen at fog top. The entrainment of drier air from above the fog layer
produces sensible and latent heat fluxes, and depending on the humidity and inversion strength, it can
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have a variable impact on the depletion of fog liquid water content (Wærsted et al., 2019). Entrainment,
and large scale subsidence, also influence the vertical development of the fog layer (Wærsted et al., 2019).
Besides, as mentioned in section 1.3, it has also been observed that fog top height and liquid water path
may be key variables to understand fog dissipation. All these results indicate that it is necessary to
observe both the surface and the vertical profile of fog, to have a comprehensive view of the processes
that drive its evolution and dissipation.

However, the observation of the fog top has been historically difficult. In some cases, satellite data,
ground remote-sensing instruments or atmospheric soundings could be used to provide approximations
of fog top height, but these instruments were expensive and their data was not always available Román-
Cascón et al. (2016b). Fortunately, new developments in remote sensing instruments in the recent years
are modifying this situation. Newer generations of ground-based cloud radars and microwave radiometers
now allow a continuous monitoring of the entire fog layer, remotely, and with decreasing costs.

Cloud radars are active remote sensing instruments, that emit a signal in a frequency susceptible to
interact with liquid droplets of the size normally found in clouds. This interaction causses backscattering
of the radar signal, that is received and processed at the radar end to retrieve properties such as object
distance, reflectivity and doppler velocity. These three measurements enable, for example, the remote
observation of cloud boundaries, the estimation of cloud liquid water or ice content versus range, and the
retrieval of axial wind speed versus range (e.g. Sekelsky and McIntosh (1996); Kato et al. (2001); Protat
et al. (2007)). Besides, recent technological improvements have significantly reduced the cost of these
radars (Delanoë et al. (2016); Aguirre et al. (2020)), enabling continuous observations of boundary layer
clouds at a growing number of sites (e.g. Illingworth et al. (2007); Haeffelin et al. (2016a); Pappalardo
(2018)).

As is introduced in section 1.1, accurate microphysical retrievals require a reliable calibration. Yet,
the development of calibration methods for radars remain a challenge, in part by its active instrument
nature. Since the research of cloud radar calibration is a main subject of this thesis, we include a more
comprehensive explanation of their working principle and calibration in the following sections.

Microwave radiometers (MWR) are passive remote sensing instruments, that sample the brightness
temperature of incoming radiation at discrete spectral bands. These measurements are combined with
inversion methods to retrieve information about meteorological variables (Solheim et al., 1998). MWR
used in cloud remote sensing usually have one channel close to the 22.235 GHz water vapor absorption
line, combined with another channel in an "atmospheric window" (frequency outside the absorption lines
of atmospheric gasses), tipically at 36.5 or 90.0 GHz (Rose et al., 2005). These atmospheric windows are
also used by cloud radars, and are shown in Fig 1.3 (b). Two channel measurements enable liquid water
path and integrated water vapor retrievals. In addition, the use of multiple channels around the water
vapor absorption line and the oxygen line (at 60 GHz) enable the retrieval of vertical atmospheric profiles
of temperature and humidity (absolute and relative), with a vertical resolution of tens or hundreds of
meters depending on altitude and the radiometer characteristics (Cadeddu et al., 2002; Ware et al.,
2003). MWR and cloud radars can also be used synergestically to provide liquid water content profiles of
clouds, when the radar is correctly calibrated (e.g. Frisch et al. (1998); Löhnert et al. (2001)). Technical
research in MWR have already provided reliable and robust calibration guidelines (Kazama et al., 1999;
Marke et al., 2016), and a reduction on their cost that makes it viable for observation networks (Rose
et al., 2005).

Automatic Lidars and Ceilometers (ALC) are other useful instruments for fog remote sensing. ALC
are active optical instruments, which emit laser pulses and sample their backscatter to retrieve infor-
mation about suspended particles and the extinction profile of the atmospheric column. Because their
wavelength interacts with atmospheric aerosols and cloud liquid water droplets, ALC are used to re-
trieve information of the aerosol profile, boundary layer dynamics and cloud base height (e.g. (Kotthaus
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et al., 2016)). ALC have the advantage of being standard instruments, widely available in airports and
atmospheric research facilities (Costa-Surós et al., 2013). However, this instrument has the disadvantage
of being strongly attenuated by cloud droplets. Thus, they usually cannot provide information about
the upper limit of clouds or fog layers. Despite this, ALC have been used to perform retrievals of cloud
droplet number concentration and effective radius (Martucci and O’Dowd (2011)), and to track the
hygroscopic growth of condensation nuclei before fog formation (Haeffelin et al., 2016b).

Figure 1.2 shows an example of remote sensing measurements taken during a fog event that took place
in December of 2015, at the SIRTA atmospheric observatory. Panel (a) shows visibility measurements 4
meters above the surface, which are used to identify fog formation and dissipation time.

Figure 1.2: Example of remote sensing measurements of a fog layer measured during the 9th and 10th of
December of 2015, at the SIRTA atmospheric observatory. Panel (a) shows the visibility time series of
the fog event. Panel (b) shows cloud top height and reflectivity measurements performed using a cloud
radar, and cloud base height measurements taken with a ceilometer. Panel (c) shows fog liquid water
path, measured using a microwave radiometer.
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Panel (b) shows reflectivity measurements with a vertical resolution of 12.5 m, taken with the cloud
radar. This panel also shows cloud top height (CTH), detected using the reflectivity signal, and cloud
base height tracked using the ceilometer. The combination of radar and ceilometer measurements indicate
that the cloud forms by night, between 100 and 200 meters above the surface. This probably happens
by the hygroscopic growth of aerosols, due to radiative cooling at the surface. The ceilometer also shows
that the liquid layer gradually extends downards, until reaching the surface at the time of fog formation.

Panel (c) shows the evolution of the LWP of the fog layer. Since LWP is the total amount of water in
the vertical column, it may contain contributions from clouds other than fog. Therefore, the cloud radar
is used to verify that there are no clouds above the fog layer at the time of the measurements (not shown).
We observe that the LWP has a value of approximately 20 g m−2 before and at fog formation time. Then,
it rapidly grows reaching values as high as 80 g m−2 two hours later. This large LWP indicates that
fog is probably opaque to infrared radiation and adiabatic at the time (Wærsted et al., 2017). Cloud
top height oscilates close to 250 meters until 05:00 UTC, when we observe a sudden decrease of LWP
accompained by a short-lived lifting of the cloud base, as evidenced by cloud base height and visibility
observations.

Finally, both LWP and CTH incrase sharply before dissipation, at 11:15 UTC, when visibility rises
above 1000 meters. The ceilometer indicates that dissipation happens by lifting of the fog base, probably
associated with the increase in CTH (Wærsted et al., 2019). LWP and radar measurements also indicate
that the cloud layer remains for about one hour after dissipation.

This example helps us see how remote sensing instruments make continuous monitoring of the fog
layer possible, extending observations beyond the surface and providing a more comprehensive view of
fog evolution.

1.5 Cloud radars

Radars are electromagnetic sensors for the detection and location of remote reflecting objects. Based on
The Radar Handbook (Skolnik (2000)), the radar operating principle can be summarized as follows:

• The radar radiates electromagnetic energy from an antenna to propagate in space.

• Some of the radiated energy is intercepted by a remote reflecting object, also referred to as target.

• The incident energy interacts with the target and is reradiated in many directions.

• Some of the reradiated energy (echo) travels back and is received and is received by the radar
antenna.

• The radar receiver amplifies and processes the signal to decide if there is detection of target echoes.
When echoes are detected, the target location and other information is retrieved (for example, the
target Radar Cross Section or its Doppler Velocity).

Cloud radars follow the same principle. What differentiates cloud radars from other radar types, is
that the emission frequencies that they use interact with cloud particles in the Rayleigh scattering regime.
The scattering regime of radiation with a given wavelength λ that incides on spheric particles of diameter
D, can be inferred by using the size parameter x, in Eq. (1.3). If x < ≈ 0.1, the Rayleight scattering
approximation becomes valid. In this regime, the radar cross section of the particles is proportional
to their diameter, and radiation is approximately evenly scattered in all directions. Besides, when
x > ≈ 100, the geometrical optics approximation becomes valid. Lastly, when the x value is between
these two extremes, the radiation-particle interaction is better described by the Mie scattering theory
(American Meteorological Society, 2012; Wallace and Hobbs, 2006).
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x =
πD

λ
(1.3)

Cloud radars usually operate at the Ka or W band, centered around 35 and 95 GHz respectively. This
gives a wavelength of 9 and 3 mm respectively. Since the maximum diameter of liquid cloud droplets
is of approximately 50 µm (Hudson and Yum (1997)), the maximum size parameter of cloud radars
is of approximately x = 0.017 and x = 0.05 for Ka and W band respectively, enabling the use of the
Rayleigh approximation. This is illustrated in Fig. 1.3 (a), including the scattering regime for other
types of atmospheric particles. The explanation of why are these two frequencies are preferred can be
found in Fig. 1.3 (b). Here we observe that the 35 and 95 GHz frequencies fall in two local minimums
of atmospheric absorption. This significantly reduces attenuation with respect to other wavelengths in
the millimeter range.

This section explained why cloud radars operate in the millimeter wavelength range. The next section
explains the radar equation, which relates the backscattered power from an object with its radar cross
section or reflectivity, for discrete or distributed targets respectively.

Figure 1.3: (a) Scattering regime depending on wavelength λ and particle radius r. Cloud radars usually
operate within the wavelengths delimited by the light blue rectangle, where the interaction with cloud
droplets is in the Rayleigh Scattering regime. Illustration adapted from Wallace and Hobbs (2006).
(b) Electromagnetic absorption of different atmospheric constituents versus frequency. The two most
common operating frequencies for cloud radars are indicated by purple dotted lines. Illustration adapted
from Britannica (2017).

1.6 The radar equation

Here we describe how to derive the radar equation of a Frecuency Modulated Continuous Wave (FMCW)
radar. This equation enables the estimation of cloud droplet reflectivity based on power measurements.
The calibration terms involved in this retrieval are also derived and explained in this section.

FMCW cloud radars emit a continuous carrier wave with a constant power, which is modulated to
perform a frequency sweep. This frequency sweep is known as chirp, and enables the estimation of
the range from which a signal is reflected, by comparing in real time the emitted and received signal
frequencies. This contrasts with the ranging method used by pulsed radars, in which range is estimated
from the flying time of discrete pulses (Skolnik, 2000). Both radar types also enable the estimation
of the particles doppler speed by measuring phase shifts in the echoed signal. The main advantage of
FMCW radars is that they can be implemented using only solid state components, which operate using
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less power and have a lower cost when compared with the components of magnetron based pulse radars.
The BASTA-mini radar used in this study is an example of a W band FMCW radar (Delanoë et al.,
2016).

The use of the FMCW principle is independent of the reflectivity calibration terms, and therefore
this is not the focus of this section. However a detailed explanation of the FMCW principle can be
found in Brooker (2005); Delanoë et al. (2016); Suleymanov (2016). We would also like to clarify that
the reasoning presented in the following lines to derive the radar equation can also be applied to pulse
radars. The difference is that in pulse radars it is necessary to consider a pulsed energy emission and
the transmitter bandwidth in the radar power budget (Skolnik, 2000; Bringi and Chandrasekar, 2001).

The radar equation is derived by studying the physical power budget of a signal. The following
derivation is based on Yau and Rogers (1996); Skolnik (2000). First, the radar transmitter emits a signal
that enters the transmitter antenna with a power p′t. Second, assuming that radar antennas are oriented
in the direction of observation, an object at a distance r would receive a power density of Prec(r) (Eq.
(1.4)). When the transmitter antenna is aligned with the target, Gt represents the maximum antenna
gain. The attenuation proportional to r2 appears because power density decreases due to the spread of
the wave front (Balanis, 2016).

Prec = p′t
Gt

4πr2
(1.4)

Third, the traveling wave interacts with a target of a given Radar Cross Section (RCS) Γ. The RCS
of an object can be understood as the equivalent cross-sectional area a sphere should have to reflect the
same amount of incident power back to the radar receiver. The units to represent RCS are of m2 in the
linear scale, and of dBsm in the decibel scale (1 dBsm = 10 log10(Γ(m2))). Because of this interaction,
the target backscatters an amount of power proportional to its RCS, given by Prefl in Eq. (1.5).

Prefl = p′t
Gt

4πr2
Γ (1.5)

Fourth, the backscattered wave travels towards the radar. If the radar has two parallel antennas,
and the reflecting object is much farther than antenna separation, the instrument is operating in full
antenna overlap conditions. This means that both antenna gain lobes are superimposed, and therefore
the effective gain lobe of both antennas will be equivalent to the multiplication of the individual antenna
patterns (Balanis, 2016). Thus, the receiver antenna gain can be calculated directly from its aperture
Ap = Grλ

2/4π (Gr being the receiver antenna maximum gain). Including this term, and the spread of
the electromagnetic wave by traveling the distance r a second time, we get that the power at the receiver
antenna output should be that of P ′r(r), indicated in Eq. (1.6).

P ′r(r) =
Gtp

′
t

4πr2
Ap

1

4πr2
Γ =

GtGrλ
2p′t

(4π)3r4
Γ (1.6)

Equation (1.6) is known as the general radar equation. This equation relates the RCS Γ of a target
with remote measurements of its backscattered power.

However, in most use cases it is necessary to make additional considerations before using Eq. (1.6) to
measure the RCS of an object. This is because in general, radar operators do not know the exact physical
power emitted and received by the antenna. What they commonly know is the nominal emitted power,
and the received power measured at the receiver end, after several amplification and signal processing
stages. Therefore, radar operators work with power variables defined by the pair p′t = pt/Lt and Pr(r) =

P ′r(r)/Lr, where Lt and Lr represent the total loss introduced by the radar internal components. This
loss is the product of all loss terms divided by all the gain terms in the emitter and receiver chains. If
losses are greater than 1, the physical emitted power p′t will be smaller than the nominal emitted power
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pt, and the measured power Pr(r) will be smaller than the physical received power P ′r(r). Conversely, if
the loss terms are between 0 and 1, we have a net system gain and the emitted and received power will
be greater than the physical value. For radars, it is usual to have a total transmitter loss Lt > 1 because
the nominal emitted power is clearreferenced with respect to the power amplifier output, just before the
antenna, and the electromagnetic wave is then affected by losses in the waveguides, at the antenna input
and when crossing the radome (Anagnostou et al., 2001). On the contrary, radar receivers usually have a
total loss Lr < 1, having the net effect of amplifying the signal. This increases the instrument sensitivity,
enabling the detection of weaker reflections from farther objects.

Another term that must be included in the radar equation, specially when using millimeter wave
signals, is the atmospheric attenuation lat(r). As Fig. 1.3 shows, cloud radars operate in local minimums
of atmospheric attenuation. Yet, even if this means that attenuation losses will be lower than for other
intermediate frequencies, it is not neglible. For example, at SIRTA, these losses can reach values of ≈ 0.8

dB km−1 for an horizontal beam. Atmospheric attenuation can be calculated using a radiative transfer
model for millimeter waves, such as the one published by Liebe (1989). When internal radar losses and
atmospheric attenuation from traveling the distance r twice are introduced in the general radar equation,
we get the radar equation used to perform RCS retrievals (Eq. (1.7)).

Pr(r) =
GtGrλ

2pt
LrLt(4π)3

Γ

l2at(r)r
4

(1.7)

Equation (1.7) can be separated in radar internal parameters and environment dependent variables.
This leads to the definition of a RCS calibration term CΓ, in Eq. 1.8, which can be used to calculate the
RCS of a target at a distance r with Eq. (1.9).

CΓ =
LtLr(4π)3

GtGrλ2pt
(1.8)

Γ(r) = CΓ l2atr
4Pr(r) (1.9)

Radar Equivalent Reflectivity Equation

Retrieving the RCS of a target is enough for many radar applications. However, for cloud radars, the
main interest is in the retrieval of radar equivalent reflectivity Ze. This parameter links backscattered
power with the microphysics of a volume filled with small scatterers, such as water droplets or ice crystals.
To derive the formulation of radar equivalent reflectivity, or simply reflectivity, it is necessary to consider
the RCS of a volume filled with liquid or ice particles with a given size distribution.

Assuming that particles are approximately spherical, that their diameter D has a size distribution
per unit volume of N(D), that the particles backscatter radiation in the Rayleigh regime and that the
total RCS per unit volume is equal to the sum of each particle contribution, we get that the total cross
section per unit volume is of γv, shown in Eq. (1.10). K2 = (εr − 1)2/(εr + 2)2 is the dielectric factor,
which depends on the complex relative permittivity εr of the particles (Yau and Rogers, 1996).

γv =
π5K2

λ4

∫ ∞

0

N(D)D6dD (1.10)

Power samples of a FMCW radar will be retrieved for discrete range points, separated by the range
resolution δr. These points are known as gates. If the radar uses antennas with a Gaussian beam shape,
and a beamwidth θ (in radians), each gate will have the effective sampling volume V (r) indicated in Eq.
(1.11).
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V (r) =
πδr

2 ln(2)

(
rθ

2

)2

(1.11)

Therefore, and by assuming a uniform droplet size distribution in the radar sampling volume, we get
that the RCS of a distributed target at a distance r will be of Γv = γv · V (r). By replacing Γ with Γv in
Eq. (1.7), we obtain the relationship of Eq. (1.12)).

Pr(r) =
GtGrπ

3θ2ptδr
512 ln(2)LrLtλ2

K2

l2at(r)r
2

∫ ∞

0

N(D)D6dD (1.12)

Reflectivity Ze is defined from the latter term of Eq. (1.12). As can be seen in Eq. (1.13), reflectivity
is proportional to the sixth power of the particles diameter. Additionally, reflectivity is usually expressed
in mm6 m−3 units due to the values commonly found in clouds (e.g. Fox and Illingworth (1997)).

Ze =

∫ ∞

0

N(D)D6dD [m6m−3] = 1018

∫ ∞

0

N(D)D6dD [mm6m−3] (1.13)

By rearranging Eq. 1.12, using the Ze definition in mm6 m−3 units, we get Eqs. (1.14) and (1.15).
These equations can be used to retrieve the reflectivity of an air parcel filled with liquid or ice droplets.
As in the RCS radar equation, we regroup the radar dependent elements into a specific reflectivity
calibration term CZ . This term depends almost exclusively on radar properties, with the exception of
the dielectric factor K which must be estimated from hypotheses or additional measurements (Sassen,
1987).

Ze(r) = CZ l2at(r)r
2Pr(r) (1.14)

CZ =
8 ln(2)λ41018

θ2π6K2δr
CΓ (1.15)

Additionally, it is common to express Eq. (1.14) in decibel scale by applying 10 log10(·) on both
sides of the equation. When this expression is used, the units of reflectivity are modified to dBZ =

10 log10(mm6m−3). The RCS and reflectivity equations in decibel scale are written as Eqs. (1.16) and
(1.17) respectively. Power is mW (dBm in decibel scale), r is in meters and the atmospheric attenuation
is in dB (10log10(lat) = Lat). Under this formulation, CΓ units are of m−2 mW−1 and CZ units are mm6

m−5 mW−1.

Γ(r)[dBsm] = 10 log10(CΓ) + 2Lat(r)[dB] + 40 log10(r[m]) + Pr(r)[dBm] (1.16)

Ze(r)[dBZ] = 10 log10(CZ) + 2Lat(r)[dB] + 20 log10(r[m]) + Pr(r)[dBm] (1.17)

(1.18)

The retrieval of the calibration terms CΓ and CZ is one of the two axes of this thesis. The next
section introduces approaches currently used for their retrieval and their limitations. Chapter 3 presents
our solution to estimate these terms.

1.7 Cloud radar calibration

Cloud radar calibration is necessary to perform the retrieval of physical quantities from backscattered
power measurements. As Eqs. (1.9) and (1.14) show, it is necessary to know the RCS and reflectivity
calibration terms (CΓ and CZ respectively) to perform RCS and reflectivity measurements. However,
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calibration research efforts, begining with the radar invention during the first half of the 20th century,
have not yet provided a reliable and universally aplicable calibration method (Süsskind, 1985; Atlas,
2002). Different radar configurations require different approaches.

The main reason is that it is hard to calculate the total power budget of radar systems, due to
their active nature and their large number of components. Radar components are distributed in three
main subsystems: the transmitter, the antenna, and the receiver. Each of these subsystems is composed
of serveral discrete components with their respective interconnections and interactions (Chandrasekar
et al., 2015; Ewald et al., 2019). Consequently, internal radar calibration, calculated as the product of
each individual component gain and loss terms (Eqs. (1.8) and (1.15)) have been found to cause RCS
and reflectivity biases in the order of units of decibel. For example, Anagnostou et al. (2001) has found
biases of up to 7 decibels when comparing reflectivity measurements of the Tropical Rainfall Measuring
Mission satellite with ground based precipitation radars. Similarly, comparisons with the satellite-based
cloud radar CloudSat have found systematic differences of two 2 decibels between cloud radars based in
europe (Protat et al., 2009). Biases of this magnitude are not neglibible, since calibration errors of just
1 decibel would introduce uncertainties of 15%–20% in liquid water and ice content retrievals (Fox and
Illingworth, 1997; Ewald et al., 2019).

The afforementioned difficulties motivated the research of alternative calibration methods which could
characterize the complete radar system at once. They are known as ’end-to-end’ calibration methods,
and rely on the use of discrete or distributed targets with known RCS or reflectivity respectively (Chan-
drasekar et al., 2015). The calibration principle relies on Eqs. (1.9) and (1.14). Equation (1.9) shows that
the RCS calibration term CΓ can be retrieved by measuring the power backscattered from a target with
a known RCS, positioned at a known distance. Alternatively, the reflectivity calibration term CZ can
be retrieved by sampling a distributed target with known reflectivity, with Eqs. (1.14). Since the RCS
and the reflectivity calibration terms are linked by Eq. (1.15), in theory it suffices to get one calibration
term to calculate the other.

The discrete targets used for the RCS calibration (also known as point targets), have simple geometri-
cal shapes that enable the calculation of their radar cross section from theoretical principles. Commonly
used shapes are spheres, triangular and square thriedres (corner reflectors) and cylinders, among others
(Brooker, 2006; Doerry and Brock, 2009). When using discrete targets, manufacturing accuracy is criti-
cal. Errors of some degrees in the angles of trihedres can introduce biases in the order of decibels with
respect to theoretical RCS calculations, specially for millimeter wavelengths (Garthwaite et al., 2015).
This method, however, has been widely tested, even using different setups such as balloons or drones
(Atlas and Mossop, 1960; Bergada et al., 2001; Yin et al., 2019), and has enabled a comprehensive study
of uncertainty for X band (8-12 GHz) and lower frequency radars (Garthwaite et al., 2015; Chandrasekar
et al., 2015; Yin et al., 2019).

Alternative approaches using active reflectors have been tested, to reduce the impact of environmental
clutter. These active devices measure the radar power and return signals with a shifted frequency, to make
it distinguishable from the background (Brunfeldt and Ulaby, 1984; Atlas, 2002). However, they require
an internal calibration and an assesment of their antenna alignment before being useful as references.
They are not exempt from system alignment errors neither.

Distributed targets have also been used to calibrate cloud radars. Hogan et al. (2003) calibrated
a W band radar by using rain as a reference, by taking advantage of the approximately constant 19
dBZ reflectivity for rain rates between 3 and 10 mm h˘1. In this study, Hogan et al. (2003) also found
that a thin layer of rainwater on the radome produced a two-way loss of 9 to 14 dB, which was later
avoided by operating the radar at a low elevation angle and employing a shelter to keep it dry. Another
calibration excercise with rain was done by Myagkov et al. (2020), where he used the self-consistency
method of polarimetric radar variables and a comparison with the droplet size distribution mesured
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by an in-situ distrometer to estimate the calibration terms of a W band radar. The self-consistency
method requires polarimetric and doppler spectrum measurements, which impose additional challenges
in radar design and calibration (Ryzhkov et al., 2005), however provides good calibration results, with an
uncertainty within 0.7 dB. The main limitation is that this approach requires the use of a scanning radar
with polarimetric and doppler spectrum capabilities, increasing the instrument cost. Therefore, these
instruments are not available at all sites. Meanwhile, Myagkov et al. (2020) shows that calibration using
a disdrometer can provide a calibration uncertainty within 0.9 dB for rain rates below 4 mm h−1. This
method can be used by vertical, non-polarimetric radars as long as they have a strong enough blower to
keep the radome dry.

Other distributed targets that can be used for calibration are clouds. Ewald et al. (2019) validated
the calibration of their Ka-band cloud radar HAMP MIRA, on board of the German research aircraft
HALO, by comparing cloud measurements with two other W band radars (RASTA and CloudSat). His
conclusions indicated that these comparisons must consider differences in signal attenuation, arising from
different gas and liquid water absorption between the operating frequencies, and in the scattering regime
of each radar when interacting with the hydrometeors. After a careful data selection, Ewald et al. (2019)
was able to validate the calibration of their HAMP MIRA with an uncertainty of 1 decibel, showing
that calibration transfer between radars, using clouds as common targets, may be a practical calibration
approach.

1.8 Thesis context and objectives

This thesis is positioned in the context of a scientific-industrial collaboration between the Laboratoire
de Météorologie Dynamique (LMD) of the Institut Polytechnique de Paris (IPP) and the company
Météomodem SAS.

Fog studies are an active research topic for the LMD and for its atmospheric observatory, the SIRTA.
This interest arises from the previously mentioned scientific challenges involved, regarding the identifica-
tion and quantification of fog processes and the forecasting of fog evolution. The laboratory already has
a large number of publications about the study of fog processes ((Haeffelin et al., 2010, 2013; Dupont
et al., 2016, 2018; Wærsted et al., 2017, 2019)), and has developed the fog formation nowcasting tool
PARAFOG (Haeffelin et al., 2016b). PARAFOG is running continuously at SIRTA, and in Roissy, Orly
and Agen airports1. In addition, the SIRTA observatory is involved in the development of the ACTRIS
cloud remote sensing network (Pappalardo, 2018). It is foreseen that the SIRTA observatory will become
a National Facility of ACTRIS to provide cloud remote sensing measurements.

The teams at IPSL, LATMOS and LMD involved in cloud remote sensing are also developing new
services to improve the cloud remote sensing data quality at European scale. This is done as part of
the ACTRIS Topical Center for Cloud Remote Sensing (CCRES). Among these services, cloud radar
calibration guidelines are of high interest for all ACTRIS cloud remote sensing national facilities. This
implies that improved cloud radar calibration methods must be developed.

On the side of the company Météomodem, the main interest is the development of fog assessment
products that could benefit from the relatively low cost of their last generation BASTA cloud radars, with
the long term goal of creating a network of fog monitoring stations for airports or other relevant sites.
Additionally, the company is interested in developing calibration methodologies for the cloud radars of
these networks, to guarantee their performance.

BASTA cloud radars are developed in a partnership between Météomodem and the LATMOS lab-
oratory of Guyancourt, France (Delanoë et al., 2016). These radars use the Frequency Modulated

1PARAFOG diagnostics can be accessed free of charge at the url https://www.lmd.polytechnique.fr/sirta/parafog/
index.html
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Continuous Wave (FMCW) emission principle, which enables a significant reduction of costs and radar
size by enabling the use of solid state components instead of magnetrons. BASTA radars can measure
reflectivity and doppler velocity of hydrometeors up to 18 km of height with different resolution and
integration modes.

This congruence of interests, and the antecedents presented in the introduction, led to the formulation
of this thesis project and of its objectives. The objectives of the thesis are:

1. To better understand the relationship between liquid water path (LWP) and cloud top height
(CTH) in fog layers, and their roles on fog evolution and dissipation. To demonstrate how remote
sensing measurements can support the investigation of these relationships.

2. To improve the quality of fog remote sensing measurements, in particular the unresolved issue of
cloud radar calibration, considering the needs of fog monitoring networks.

For objective 1, we studied 7 years of fog measurements collected at the SIRTA atmospheric observa-
tory. We focus this study on fog layers that reach a CTH of at least 85 meters, to enable its observation
using the vertical BASTA cloud radar of the SIRTA observatory (lower CTH values are within the radar
blind zone). Because our observations mostly comprise the vertical column, we neglect the effect of hori-
zontal advection or heterogeneities, focusing mostly on the vertical fog structure. Since previous studies
show that fog top height (CTH) and liquid water path (LWP) may be key variables to understand fog
evolution and dissipation (Wærsted (2018)), we orient the research of objective 1 with the following
questions:

1. What is the relationship between LWP and CTH in fog layers?

2. How are these variables related with the fog life cycle?

3. How can remote sensing measurements be used to support fog LWP and CTH studies?

4. Can LWP and CTH provide an indicator of fog dissipation tendency?

These questions are addressed in Chapter 2. Questions 1, 2 and 3 are studied in section 2.2. There
we propose a conceptual model relating fog LWP with its CTH, surface visibility and adiabaticity. The
model provided a coherent framework to study the relationship between these meteorological variables,
and enabled the identification of fog status indicators. These results are presented in a publication
submitted to the Copernicus Atmospheric Chemistry and Physics Journal, which is currently under
peer-review (Toledo et al., 2021). Question 4 is addressed in section 2.3. Here we study how the
indicator variables identified ealier could be used to assess fog dissipation tendency.

For objective 2, we planned and performed two cloud radar calibration campaigns at the SIRTA
observatory. The calibration campaigns took place in May of 2018 and March of 2019 in the framework
of the ACTRIS infrastructure development, and lasted about two months each. In these campaigns we
tested several calibration approaches, in order to determine an appropriate strategy to calibrate the cloud
radars of the fog monitoring network. The experiments involved the use of the BASTA radar, among
other instruments and equipment brought by several national and international contributors. The teams
involved in these campaign were the LATMOS and LMD laboratories of France, the TU-Delft University
of the Netherlands, the spanish University of Granada, the german University of Cologne, the british
University of Reading, the romanian INOE institute, and the companies Météomodem, METEK and
RPG GmbH.

The antecedents presented in section 1.7, and practical considerations discovered when planning
and executing the experiments, led us to develop a two step calibration strategy: First, to calibrate a
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reference radar using a reference corner reflector, since this method has the potential of providing an
absolute reflectivity calibration with a thorough characterization of uncertainty. Second, to use this
radar as a reference, to calibrate other radars in the network. This strategy led to the following research
questions:

1. How can cloud radar calibration and its uncertainty be determined using corner reflectors?

2. How can cloud radar calibration be transferred, and what is the uncertainty of this procedure?

Chapter 3 addresses question 1. Here we study how to use corner reflectors to calibrate cloud radars,
and how to quantify bias and uncertainty sources. This chapter is based on an article published in the
Atmospheric Measurement Techniques journal (Toledo et al., 2020). The method was developed and
tested during 2018 and 2019 calibration campaigns, using a scanning BASTA mini cloud radar.

Chapter 4 addresses question 2. This chapter presents a calibration transfer methodology for radars
in the W band, based on the comparison of simultaneous cloud measurements. The method is illustrated
using data from the 2019 calibration campaign, where a BASTA mini is used as a reference to calibrate a
94 GHz RPG cloud radar. This chapter also presents how to quantify the uncertainty of the calibration
method, and the considerations that must be made when transferring calibration between radars with
different sensitivity.

Finally, the general conclusions of the thesis, and the perspectives for future work, are presented in
chapter 5.
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Chapter 2

Use of remote sensing measurements to
study fog LWP and CTH, and to derive
new diagnostics of fog dissipation
tendency

2.1 Introduction

In section 1.3 we introduced the fog life cycle, understanding fog as a layer with the presence of liquid
water droplets, existing between the surface and the temperature inversion. Previous research (Wærsted
et al. (2019); Wærsted (2018)) has shown that fog top height (CTH) and liquid water path (LWP) may
be important variables to describe fog evolution and dissipation, based on case studies.

To further investigate this hypothesis, we conduct a study using 7 years of remote sensing measure-
ments of fog CTH and LWP, in addition to in-situ observations of surface visibility, temperature and
pressure. This data was collected at the SIRTA atmospheric observatory located in Palaiseau, France
(Haeffelin et al., 2005).

The observations are interpreted using an original conceptual model for fog layers, which relates the
liquid water path of fog to its geometrical thickness and the liquid water content at the surface. This
conceptual model made the study of fog adiabaticity possible, by considering the singular conditions that
fog has with respect to other clouds. For example, the fact that fog has a solid boundary at the surface,
or that it can exist in opaque and non-opaque regimes.

Following the objectives of the thesis, the conceptual model is used to derive key diagnostic parameters
of fog dissipation tendency. The first parameter, defined as the critical liquid water path (CLWP),
indicates the minimum amount of LWP that is necessary to fill a fog layer of a given thickness and reduce
surface visibility to 1000 meters. The second parameter is the reservoir liquid water path (RLWP), which
is defined as the difference between fog LWP and CLWP. The RLWP is a quantitative measure of the
amount of LWP that must be removed before dissipation can occur, for a given fog thickness. When
the RLWP becomes negative, the LWP is less than the CLWP and therefore fog dissipates. We also
demonstrate that RLWP is a function of fog CTH and LWP, and that it can be depleted by variations
in either of these parameters.

Finally, we also include a study on the information that RLWP and visibility can contribute to the
assessment of fog dissipation tendency. We identify conditions in which RLWP behaves independently
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of visibility, acting as an independent variable to characterize fog status. We also perform calculations
of fog dissipation probability within different time ranges, as a function of visibility and RLWP, and
identify the limitations of this approach.

The conceptual model formulation and its study is the object of a publication submitted to the
Atmospheric Chemistry and Physics journal, which is currently under review (Toledo et al., 2021). This
publication is included in section 2.2 of this chapter. In this document, section 2 explains the formulation
of the conceptual model and of the CLWP and RLWP variables. Section 3 presents the measurements
and methodology used to construct and evaluate the conceptual model. Section 4 shows fog adiabaticity
results, and compares the conceptual model LWP predictions with historical observations. Section 5 uses
case studies to exemplify how conceptual model variables enable us to understand fog evolution, and
present statistical results of fog behavior during its formation, middle life and dissipation phases. Section
6 present the conclusions of the article. Then we present our study about the use of RLWP and visibility
in the assessment of fog dissipation tendency, in section 2.3, followed by a synthesis of this chapter in
section 2.4.

2.2 Study of fog LWP and CTH using remote sensing measure-

ments and a new conceptual model
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Abstract.

Visibility reduction caused by fog can be hazardous for human activities, especially for the transport sector. Previous studies

show that this problem could be mitigated by improving nowcasting of fog dissipation. To address this issue, we propose a

new paradigm which could potentially improve our understanding of the life cycle of adiabatic continental fogs, and of the

conditions that must take place for fog dissipation.5

For this purpose, adiabatic fog is defined as a layer filled with suspended liquid water droplets, extending from an upper

boundary all the way down to the surface, with a saturated adiabatic temperature profile. In this layer, the liquid water path

(LWP) must exceed a critical value, the critical liquid water path (CLWP). When the LWP is less than the CLWP, the amount

of fog liquid water is not sufficient to extend all the way down to the surface, leading to a surface horizontal visibility greater

than 1 km. Conversely, when the LWP exceeds the CLWP, the amount of fog water is enough to reach the surface, inducing a10

horizontal visibility less than 1 km. The excess water with respect to the critical value is defined as the reservoir liquid water

path (RLWP).

The new fog paradigm is formulated as a conceptual model that relates the liquid water path of adiabatic fog with its thickness

and surface liquid water content, and allows the critical and reservoir liquid water paths to be computed. Both variables can be

tracked in real time using vertical profiling measurements, enabling a real time diagnostic of fog status.15

The conceptual model is tested using data from seven years of measurements performed at the SIRTA observatory, combining

cloud radar, microwave radiometer, ceilometer, scatterometer and weather station measurements. In this time period we found

80 fog events with reliable measurements, with 56 of these lasting more than three hours.

The paper presents the conceptual model and its capability to derive the LWP from the fog CTH and surface horizontal

visibility with an RMS uncertainty of 10.5 g m−2. The impact of fog liquid water path and fog top height variations on fog20

life cycle (formation to dissipation) is presented based on four case studies, and statistics derived from 56 fog events. Our

results, based on measurements and an empirical parametrization for the adiabaticity, validate the applicability of the model.

The calculated reservoir liquid water path is consistently positive during the mature phase of fog, and starts to decrease quasi

monotonously about one hour before dissipation, reaching a near-zero value at the time of dissipation. Hence, the reservoir
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liquid water path and its time derivative could be used as indicators of the life cycle stage, to support nowcasting of fog25

dissipation.

1 Introduction

Fog occurs due to multiple processes that lead to water vapor saturation in the air close to the surface. Water vapor saturation

can be caused by a reduction of air temperature, due to radiative cooling, turbulent heat exchange, diffusion, adiabatic cooling

through lifting, advection. It can also occur by air moistening, due to water evaporation from the surface, evaporation of30

drizzle, advection of moist air, and vertical mixing (Brown and Roach, 1976; Gultepe et al., 2007; Dupont et al., 2012). On the

contrary, fog dissipates as a result of warming and drying of the air near the surface, and also through the removal of droplets

by precipitation (Brown and Roach, 1976; Haeffelin et al., 2010; Wærsted et al., 2017, 2019).

Stable fog and adiabatic fog should be distinguished because radiative, thermodynamic, dynamic and microphysical pro-

cesses are significantly contrasted in the two types of fog. In a stable fog layer, the equivalent potential temperature increases35

with height, which inhibits vertical mixing. The surface is therefore weakly coupled with the fog top. Stable fog remains shal-

low and contains small amounts of liquid water, limiting the radiative cooling of the fog layer. In contrast, in an adiabatic fog

the stability is close to neutral, enabling rapid vertical mixing, so that the surface and fog top are strongly coupled (Price, 2011;

Porson et al., 2011). An adiabatic fog behaves similarly to stratocumulus clouds on top of convective boundary layers (Cermak

and Bendix, 2011). The processes of adiabatic fogs have been studied extensively in the past with large-eddy simulation (LES)40

and numerical weather prediction (NWP) models (Nakanishi, 2000; Porson et al., 2011; Bergot, 2013, 2016; Wærsted et al.,

2019).

An adiabatic fog or stratiform cloud cools at its top from emission of long wave radiation, which destabilises the cloud

and leads to convective mixing. When the cloud is coupled with the land surface, the destabilising process can be further

strengthened by heat fluxes from below due to soil heat (Price, 2011). A thermal inversion develops right above the cooling45

cloud fog top and limits the coupling between the cloud and free atmosphere above. The thermal inversion defines the upper

boundary of the adiabatic fog. The lower boundary of the stratiform cloud layer varies in time and space depending the amount

of liquid water present in the cloud. For the adiabatic fog, the lower boundary is defined by the surface and is therefore fixed.

Hence a fog layer may not grow geometrically deeper when the amount of liquid water increases.

Cermak and Bendix (2011) define fog and stratiform clouds based on cloud layer top altitude and liquid water content that50

follows a sub-adiabatic profile. A fog layer is thus defined as a stratiform cloud that contains sufficient liquid water to reach

down to the surface.

Wærsted et al. (2019) showed using a large eddy-simulation model and remote sensing measurements that dissipation of fog

can occur due to both reduction of liquid water content of the fog layer and increase of fog top height. Dissipation is defined

here as removal of fog droplets leading to visibility increasing above 1 km at screen-level height. The simulations reveal a55

similar behavior as proposed by Cermak and Bendix (2011). For a given fog top height, if the liquid water path contained in the
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fog layer becomes insufficient, the fog base lifts from the ground, which can be interpreted as fog dissipation through lifting

into a stratiform cloud.

In adiabatic clouds, the thickness can be approximated from liquid water path. Brenguier et al. (2000) state that liquid water

path is proportional to the square of cloud thickness. A precise quantification of the relationship between fog thickness and fog60

liquid water path is lacking in the literature.

In this article we present a conceptual model that relates the liquid water path of adiabatic fog to its geometrical thickness

and surface liquid water content. The conceptual model enables an estimation of the minimum amount of column liquid water

that is necessary to reach a visibility less than 1000 meters at the surface, defined as the critical liquid water path, and a

calculation of the excess water that enhances fog persistence, defined as the reservoir liquid water path. The model also enables65

a quantification of the impact of liquid water path and geometrical thickness variations on the reservoir, a characteristic that

could be later used to improve fog forecasting tools.

The conceptual model theory is explained in Section 2. In Section 3, we present all measurements used to construct and

evaluate the conceptual model. In Section 4 we derive a parametrization for fog adiabaticity using historical data, and we

compare the conceptual model predictions with fog thickness, liquid water path and surface liquid water content observations.70

In Section 5 we present case studies to exemplify how conceptual model variables enable us to understand fog evolution, and

statistical results of fog behavior during its formation, middle life and dissipation phases.

2 Fog Conceptual Model

2.1 Fog LWP Conceptual Model

The hypothesis of this work is that when a fog layer is well-mixed, the persistence or not of fog at surface level will be75

determined by vertically integrated quantities of the whole fog layer, and in particular the integrated liquid water content. To

test this hypothesis we develop a unidimensional model for a fog column, based on previous models for stratus clouds.

For stratus clouds, cloud Liquid Water Content (LWC) increases with height can be modelled using Eq. (1) (Betts, 1982;

Albrecht et al., 1990; Cermak and Bendix, 2011). In this equation, z is the vertical distance above the Cloud Base Height

(CBH), which increases until reaching the Cloud Top Height (CTH). Γad(T,P ) is the negative of the change in saturation80

mixing ratio with height for an ideal adiabatic cloud, and α(z) is the local adiabaticity, defined as the ratio between the real

and the ideal adiabatic liquid water content change with height. Γad(T,P ) is a quantity that depends on the local temperature

T and pressure P . The equation used for its calculation can be found in appendix A.

dLWC(z)

dz
= α(z) Γad(T,P ) (1)

This model can also be applied for well mixed fog layers, where the adiabatic profile assumption is valid. Fog layers that85

are radiatively opaque will cool almost exclusively at the fog top and therefore tend towards static instability, which causes

mixing through convective turbulence. During day time, convection is reinforced by sensible heat release from the surface.
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This mixing induces the formation of a saturated adiabatic temperature profile in fog layers (Roach et al., 1976; Boutle et al.,

2018; Wærsted et al., 2019).

However, there is one key difference in fog layers that must be considered when integrating (1). In stratus clouds, it is90

assumed that the LWC at the cloud base is zero, because condensation is starting gradually from unsaturated air, and therefore

there is a smooth transition between dry and moist air.

This smooth transition does not occur in fog layers. In this case, the cloud base is fixed by the surface height, and has

a possitive LWC. These characteristics are the reason for the visibility reduction at the surface. It is worth noting that for

adiabatic fog, the surface presence could produce a larger accumulation of LWC with respect to other clouds of the same95

thickness. This could happen because in this fog type, water vapor condensation can occur rapidly at the fog top, due to

radiative cooling (e.g. Wærsted et al. (2017)), and this LWC would be redistributed in a layer of a fixed vertical extent. Vertical

redistribution would happen because in adiabatic fog, the stability is close to neutral and therefore vertical circulation caused

by surface heating, or cloud top radiative cooling, are possible (Smith et al., 2018).

Thus, when integrating Eq. (1) it is necessary to account for a non-zero Surface Liquid Water Content (LWC0). Since fog100

(and stratus clouds) are shallow, their LWC increases with height, and Γad(T,P ) can be assumed constant for the whole layer

(Albrecht et al., 1990; Braun et al., 2018). This leads to the LWC formulation of Eq. (2).

LWC(z) =

z′=z∫

z′=0

α(z′) Γad(T,P ) dz′+LWC0 (2)

The blue curve of Fig. 1 (a) illustrates how LWC behaves in well mixed fog. For most of the fog layer thickness, LWC

increases with height due to upward motions of moisture from the surface and within the cloud (Oliver et al., 1978; Manton,105

1983; Walker, 2003; Cermak and Bendix, 2011). Then, when approaching fog top from below, the LWC change with height

decreases until becoming a net reduction of LWC near the top. This decrease is due to entrainment of dry-air at the top, which

leads to a quick decline in droplet size and LWC (Brown and Roach, 1976; Roach et al., 1982; Driedonks and Duynkerke,

1989; Hoffmann and Roth, 1989; Boers and Mitchell, 1994; Cermak and Bendix, 2011).

Fog LWP is defined as the integral of LWC(z) in the fog column (Eq. 3a). Its formulation as a function of adiabaticity is110

presented in Eq. (3b), where z is the height above the surface. Since in fog the CBH is always at the surface, fog thickness is

completely defined by its CTH.

LWP =

z=CTH∫

z=0

LWC(z) dz (3a)

=

z=CTH∫

z=0

( z′=z∫

z′=0

α(z′) Γad(T,P ) dz′+LWC0

)
dz (3b)

LWP =
1

2
αeq Γad(T,P ) CTH2 +LWC0 CTH (3c)115
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To simplify the calculation of the integral in Eq. (3b), which requires the knowledge of the adiabaticity profile α(z), we

introduce the Equivalent Adiabaticity αeq term. The Equivalent Adiabaticity is defined as the constant adiabaticity value that

would give the same LWP value, when replacing α(z′) in Eq. (3b). The equivalent adiabaticity enables the definition of the

Fog Conceptual Model LWP, in Eq. (3c).

The Conceptual Model LWP has the same value as Fog LWP, but its LWC(z) profile is different because it uses a constant120

adiabaticity value. This difference is illustrated in Fig. 1 (a). Fog LWP is the light blue surface, bound by the fog LWC curve

with varying adiabaticity with height. Whereas, the Conceptual Model LWP corresponds to the dashed area. Its LWC increases

linearly with height because of the constant adiabaticity value. This figure shows that both Fog and the Conceptual Model have

the same Surface LWC for a given LWP value. Considering that surface LWC can be linked to visibility, this implies that for a

given fog LWP value, the Conceptual Model should predict realistic visibility values at the surface.125

In our study, αeq is estimated using a parametrization derived from 7 years of fog observations at the SIRTA observatory (see

Sect. 4.2). It is worth mentioning that this parameter is also defined in literature as the in-cloud mixing parameter β (e.g. Betts

(1982); Cermak and Bendix (2011)), which is equivalent to αeq and can be easily transformed using the rule αeq = (1−β).

2.2 Critical and Reservoir LWP

Wærsted (2018) found that fog dissipation by lifting of its base is explained by a deficit in LWP considering a given fog130

thickness. This motivated the definition of a Critical Liquid Water Path (CLWP), which is the minimum amount of LWP

needed for a cloud to reach the surface, and reduce horizontal visibility below 1000 meters.

CLWP is formulated from Eq. (3c), assuming a Critical Liquid Water Content LWCc at the surface. LWCc is the LWC that

would cause a 1000 meters visibility, calculated using the parametrization derived by Gultepe et al. (2006) (appendix B). This

parametrization indicates that the LWCc has a value of ≈ 0.02 gm−3.135

CLWP =
1

2
αeq Γad(T,P ) CTH2 +LWCc CTH (4)

When fog is present, its LWP value must be always larger than the CLWP. This property motivates the definition of an addi-

tional parameter, the Reservoir Liquid Water Path (RLWP). RLWP is a quantitative metric on how far fog is from dissipation,

and is calculated using Eq. (5).

RLWP = LWP −CLWP = LWP − 1

2
αeq Γad(T,P ) CTH2 −LWCc CTH (5)140

The relationship between CLWP and RLWP is illustrated in Fig. 1 (b). In this case, we have a fog with a given cloud top

height CTH and a liquid water content LWP, that are associated with a liquid water content LWC0 at the surface. This LWC

is greater than the critical value LWCc, because visibility is less than 1000 m. The CLWP of this fog, indicated by the red

surface to the left, is calculated using Eq. (4). Its value indicates the minimum LWP that fog can have before reducing surface

LWC below its critical value, which could cause an increase of visibility above 1000 meters. All excess liquid water above the145
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Figure 1. (a) Illustration of the relationship between Fog, Conceptual Model and adiabatic LWC with vs height. In all cases LWC changes

with height from its surface value until reaching fog top (CTH). Fog and Conceptual Model LWP have the same value. (b) Representation of

the Critical LWP (CLWP) and Reservoir LWP (RLWP) with respect to fog LWP. CLWP is predicted LWP value that fog should have when

visibility equals 1000 meters at the surface (with an associated suface LWC defined as LWCc). RLWP is the difference between fog and the

CLWP, and represents the excess water that enables fog persistence.
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CLWP value creates the RLWP, indicated by the green surface to the right, and corresponds to all the excess LWP that must be

removed before fog can dissipate at the surface.

3 Dataset and Data Treatment Methodology

The dataset used to study the Conceptual Model formulation consists on seven years of fog observations made at the SIRTA

atmospheric observatory, from July of 2013 to March of 2020 (Haeffelin et al., 2005). This observatory is located 156 m above150

sea level, approximately 20 km south of Paris (48◦43’N, 2◦12’E) in a location with a relatively high fog incidence (about 30

fog events per year).

The observatory data must be treated to transform raw measurements into Conceptual Model variables. Section 3.1 indicates

which instruments are used in this study, Sec. 3.2 describes how fog events are detected, and how their formation and dissipation

time is identified, and Sec. 3.3 explains the processing of raw observations into Conceptual Model variables.155

After data treatment, an additional data quality control stage is performed to remove from the data pool the fog cases with

measurements taken under non optimal conditions. The criteria used is explained in Sec. 3.4. A summary of the complete data

processing is shown in Fig. 2.

3.1 Observations

The SIRTA observatory is equipped with a large array of instruments, tailored for observing fog and fog processes (Haeffelin160

et al., 2010; Wærsted, 2018). A subset of these instruments is selected for studying the proposed conceptual model, based on

the required inputs. These instruments are listed in Table 1.

Data from three remote sensing instruments is used: a CL31 Ceilometer, a BASTA Cloud Radar and a HATPRO Microwave

Radiometer. The CL31 is a widely used instrument for Cloud Base Height (CBH) detection, with a vertical resolution of 15

meters (Kotthaus et al., 2016). In this study it is used to retrieve the CBH of low stratus clouds preceding fog events, and to165

track CBH lifting during temporary or definitive dissipation of the fog layer.

The Cloud Radar BASTA is a 95 GHz FMCW radar used to retrieve vertical profiles of cloud reflectivity, up to 12 km

of height (Delanoë et al., 2016). It operates continuously alternating between 12.5, 25 and 100 m resolution modes every 12

seconds. The 12.5 m mode has the highest vertical resolution and therefore it is used to retrieve fog CTH. Meanwhile, the 100

m mode is the most sensitive and reaches the highest altitude of 12 km, and therefore is used to detect the presence of clouds170

above the fog layer.

The multi-wavelength microwave radiometer (MWR) HATPRO measures the integrated LWP of the atmospheric column.

The manufacturer specified uncertainty of the LWP product is of ± 20 g m−2, but for relatively small LWP (< 40 g m−2 ),

investigations indicate that the uncertainty is within ± 5-10 g m−2, at least when the fog forms in clear sky so that a possible

time-independent bias can be corrected for (Marke et al., 2016; Wærsted et al., 2017). When no other cloud is present above175

the fog layer, LWP measured by the MWR will correspond to fog LWP. Thus, MWR and Cloud Radar data can be combined

to perform reliable fog LWP retrievals.
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These remote sensing instruments are complemented by a weather station 2 meters above the surface, and two Scatterom-

eters, at 4 and 20 meters above the surface. The weather station provides the thermodynamic data necessary to calculate the

saturated adiabatic lapse rate Γad(T,P ), and the 4-m scatterometer provides the visibility data used to detect fog events and180

to calculate fog LWC at the surface. Visibility data is also used to complement the CL31 CBH estimation for very low cloud

layers.

Table 1. List of instruments and measurements used in this study.

Instrument Measured Quantity Vertical Range (RA) and Resolution (RE) Time Res.

905 nm Ceilometer Attenuated backscatter RA 0-7600 m, RE 15 m 60 s

Vaisala CL31 (m−1 sr−1)

14-Ch. Microwave Radiometer Liquid Water Path Integrated column 60 s

RPG HATPRO (g m−2)

95 GHz FMCW Cloud Radar Radar Equivalent RA 85-6000 m, RE 12.5 m 12 s

BASTA Reflectivity (dBZ) RA 100-12000 m, RE 100 m 12 s

550 nm Scatterometer Visibility (m) 4 m above ground 60 s

Degreane DF320/DF20+ 20 m above ground 60 s

Thermometer Air Temperature (K) 2 m above ground 60 s

Guilcor PT100

Barometer Surface Pressure (Pa) 2 m above ground 60 s

Druck RPT410F

3.2 Fog event detection

Fog periods are identified using a scheme based on previous work done by Tardif and Rasmussen (2007); Wærsted et al. (2019).

This method requires the re-sampling of the surface visibility time series to 5 minute blocks. Each 5 min block is assigned a185

"fog" or "clear" value, depending on the distribution of visibility in its time period. A block is assigned the "fog" value when

more than half of the visibility measurements are less than 1000 m, and is assigned "clear" otherwise.

After asigning values to each block of the complete visibility time series, we analyze groups of five consecutive blocks in a

sliding manner. These five contiguous blocks are defined as a construct, and its value is positive when the central and at least

two other are fog blocks, and negative otherwise.190

A fog event forms when a positive construct is encountered, with a formation time defined as the central time of the first

fog block in the construct. Conversely, a fog event dissipates when the last positive construct is followed by either a negative

construct or three consecutive clear blocks. Fog dissipation time is set as the central time of the block immediately after the

last fog block in the last positive construct. Fog events separated by less than 1 hr are merged, and all fog events lasting less

than 1 hr are discarded. This algorithm provides the formation and dissipation time of 217 fog events between July 2013 and195
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March 2020. It’s worth noting that this method, based on visibility measurements only, does not classify the fog type. Hence,

all fog types are considered in this study.

3.3 Data processing

After identifying the fog events, it is necessary to process raw measurements from the instruments into information that can

be used by the conceptual model. To study the conceptual model variables during fog events, and the time period surrounding200

them, observational data is automatically processed and re-sampled to 5 min time blocks, covering the period from 3 hours

before fog formation to 3 hours after fog dissipation.

CBH is retrieved using a threshold value of 2·10−4 m−1sr−1 on the CL31 attenuated backscatter measurements, following

the method of Haeffelin et al. (2016). When the liquid layer is closer than 15 m to the ground, the CL31 cannot identify the

CBH anymore and therefore the Scatterometer measurements are checked, setting the CBH as 0 m when visibility drops below205

1000 m. Both CBH and visibility measurements are averaged to five minute time blocks, matching the blocks used by the fog

detection algorithm.

The Cloud Radar is used to retrieve fog CTH and to detect the presence of higher clouds above the fog layer, based on its

vertical reflectivity profile (Wærsted et al., 2019). To retrieve CTH, reflectivity signals in each radar gate are analyzed, starting

from the gate closest to the CBH and checking one gate at a time, going upwards. CTH is estimated as the height of the gate210

under the first gate where no cloud signal is detected. A gate is considered to have a valid cloud signal if more than half of the

reflectivity samples in a five minute time block are not removed by the automatic noise filtering algorithm of the radar (Delanoë

et al., 2016). As with CBH, time blocks used in CTH retrievals match those defined for fog detection.

A limitation of this method is that the minimum detectable CTH is of 85 meters. Under this height, radar interference

becomes very significant, making the differentiation between a valid cloud signal and noise very difficult. In this situation the215

CTH retrieval is not possible, and therefore the associated time block would not have a valid CTH value.

Radar data is also used to create a flag indicating the possible presence of liquid clouds above the fog layer when another

valid signal is observed above fog CTH, within the first kilometer for the 12.5 m resolution mode, or within the first 6000 m

for the 100 m resolution mode. This flag is used in LWP retrievals, as explained below.

The HATPRO Microwave Radiometer performs LWP retrievals of fog every 60 s, which are then averaged and re-sampled220

to the 5 min time block grid. Additionally, when a given time block has an associated flag indicating the possible presence

of higher liquid clouds, the LWP sample is declared not valid. This is done to ensure that the LWP samples are reliable, by

avoiding a possible fog LWP overestimation when liquid clouds are present.

Time series of surface temperature and pressure are all averaged to match the 5 minute time blocks. The saturated adiabatic

lapse rate Γad(T,P ) is calculated for each of these time blocks using these measurements and the equations in appendix A.225

In this scheme, it is important to note that to have a valid sample of conceptual model variables in a given 5 min time block,

the block must have valid measurements of fog CTH, LWP, surface visibility, and surface temperature and pressure. Therefore,

it is possible to have fog cases without valid samples of conceptual model variables for some time periods. We decided to use
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these cases (if they comply with the data quality control of Sect. 3.4), and to consider all the samples with valid conceptual

model calculations for the statistical analyses.230

3.4 Data quality control

After data treatment is complete for all automatically detected fog events, a manual check is done to remove cases where data

is unreliable. This happens when instruments operate under non optimal conditions, or when the upper liquid cloud flagging

algorithm did not work correctly.

This control consist on accepting or removing complete fog cases and their associated dataset. A fog case is removed from235

the data pool if measurements taken when the fog takes place comply with at least one of the following criteria:

1. Data is taken during or after strong precipitation: Strong precipitation wet the Microwave Radiometer radome, leading

to unreliable LWP retrievals for an unpredictable period of time that can last up to hours, even when following all

maintenance instructions (Görsdorf et al., 2020). Additionally, strong rain leads to difficulties in identifying the fog CTH

because the strong reflectivity from rain hides the weaker returns from suspended fog droplets.240

2. There are no valid data blocks: No CTH or LWP retrievals could be made for the given fog event. This can happen when

fog is thinner than 85 meters, or when liquid clouds are present above fog for the complete event duration.

3. Fog and Cloud borders are not well identified: In some cases the automatic cloud border detection algorithm fails,

leading to unfiltered LWP retrievals with liquid clouds above, or to a bad estimation of fog CTH when upper clouds

are too close to the fog layer. The latter can be seen in the radar data as multilayer fog formed by the union of two245

previously independent cloud layers. This situation departs from the single well mixed layer assumption, and therefore

the conceptual model is not applicable.

The quicklooks for the accepted and rejected fog cases are available in the article supplementary material. After this stage

we end with 80 valid fog cases and 137 rejected cases, where 50 were removed because of criterion 1, 69 because of criterion 2

and 18 because of criterion 3. These 80 valid fog cases have at least one valid sample of conceptual model variables (see Sect.250

3.3), which are then used in the next stages of data analysis and results.

4 Data Analysis and Results

4.1 Fog Adiabaticity

A key parameter in the calculation of the CLWP is the Equivalent Fog adiabaticity αeq (Eq. (4)). This parameter has been

previously studied in literature for boundary layer stratocumulus and stratus clouds, where typically observed values of αeq255

range between 0.6 and 0.9 (Slingo et al., 1982; Boers et al., 1990; Boers and Mitchell, 1994; Braun et al., 2018). In this

situation, clouds have an adiabatic profile and are buoyant (Betts, 1982). Buoyancy is important because it is necessary to have

dissipation by lifting of the fog base.
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Hence, it is interesting to study whether these adiabaticity values also apply to fog, which is a special cloud case with a solid

lower boundary at the surface. Therefore, we use the complete database to calculate αeq by closure, with Eq. (6). This equation260

is an inversion of the conceptual model formulation of Eq. (3c), and enables an estimation of the adiabaticity while correcting

the impact of the LWC accumulation at the fog base. We only perform αeq retrievals when visibility is below 2000 m, in order

to remain close to fog conditions.

αclosure
eq =

2(LWP −LWC0 CTH)

Γad(T,P ) CTH2
(6)

Figure 3 (a) shows the resulting equivalent adiabaticity αclosure
eq versus CTH and LWP. The results indicate that αclosure

eq265

increases for greater values of LWP and CTH. In addition, negative adiabaticity values are found for lower LWP values,

specially below 30 g m−2.

To study this behavior in more detail, Figure 3 (b) shows a boxplot with the statistics of αclosure
eq for different LWP ranges.

Here we observe that negative adiabaticity values become frequent when the LWP is below the 30-40 g m−2 range, until

occuring for more than half of the samples when the LWP is below 20 g m−2.270

This can be explained by considering that fog with LWP less than 30 g m−2 is not optically thick (Wærsted et al., 2017).

Under this condition, the liquid water condensation happens everywhere in the liquid layer, but it is mostly driven by surface

cooling. This process is associated with stable atmospheric conditions, where vertical mixing is almost neglibile (Zhou and

Ferrier, 2008). Under this regime, the LWC will be distributed according to the cooling and condensation rate at each height,

and therefore it is possible to have situations where surface LWC is greater than LWC values above, especially during radiation275

fog formation. This situation would lead to the observed negative αeq values.

When fog LWP surpasses the 30-40 g m−2 range, its adiabaticity converges to 0.7, which, as stated in the previous lines,

is a value consistent with a value consistent with typical observations of boundary layer stratocumulus (Slingo et al., 1982;

Boers et al., 1990; Boers and Mitchell, 1994; Cermak and Bendix, 2011; Braun et al., 2018). This can be explained because fog

gradually becomes opaque to infrared radiation when its LWP surpasses 30 g m−2(Wærsted et al., 2017). In this scenario, LWC280

generation is mostly driven by radiative cooling at the fog top. This radiative cooling induces a temperature gradient between

the fog top and the surface, leading to convective motions. An increase in the intensity of convection will be correlated with an

increase in fog CTH, because the additional energy would enhance boundary layer development. Then, as fog becomes deeper,

it is expected that the relatively stronger convective motions associated would drive the vertical liquid water mixing closer to

what is observed in boundary layer clouds. This result and theory also indicate that dissipation by base lifting should happen285

when the LWP is at or above the 30-40 g m−2 range, when the layer is adiabatic and buoyant.

Finally, we can also observe that adiabaticity sometimes reaches values slightly greater than 1, which can be associated with

periods when fog is superadiabatic. This is possibly caused by an excess of liquid water with respect to the extent of the fog

column, which may be caused by the surface presence, as introduced in Sect. 2.
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Figure 3. (a) Equivalent adiabaticity versus fog CTH and LWP. The equivalent adiabaticity is calculated by closure, using Eq. (6). (b) Boxplot

of the equivalent adiabaticity, calculated by closure, for different LWP ranges. In both figures only samples with visibility below 2000 m are

considered.

4.2 Adiabaticity parametrization as a function of CTH290

The strong correlation between adiabaticity and CTH observed in Fig. 3 (a) suggests that αeq can be parametrized as a function

of CTH. The parametrization curve is calculated by minimizing the error of the model presented in Eq. (7) with respect to the

median αeq value at each radar range bin (see Fig. 4). To reduce uncertainty due to lack of data, only bins with more than 20

valid samples are used.

αeq(CTH) = α0

(
1− e−

CTH−H0
L

)
(7)295

The retrieved value for each coefficient are α0 = 0.65, H0 = 104.3 m and L= 48.3 m. These parameters come from fog

statistical behavior, and can be interpreted as follows: α0 is the equivalent adiabaticity value that fog reaches when it has

completely transitioned into an adiabatic regime. H0 is the usual height at which LWC starts to increase with height. L

indicates, based on adiabaticity, that the transition from stable to adiabatic fog is possible when CTH reaches 150 meters,

and very likely when CTH is above 250 meters (H0 +L and H0 + 3L respectively).300
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Figure 4. Boxplot with the distribution of equivalent adiabaticity for each radar CTH bin, with the derived parametrization superimposed

(Eq. (7)). Equivalent adiabaticity is calculated by closure using Eq. (6). Only samples with visibility below 2000 m are considered.

In principle, the adiabaticity parametrization is valid for CTH values below 462.5 m, where the parametrization is derived.

Beyond this height there is not enough data to guarantee its reliability; however it is likely that adiabaticity should remain close

to the convergence value of 0.66 based on our observations and on what has been previously published in literature (Slingo

et al., 1982; Boers et al., 1990; Boers and Mitchell, 1994; Cermak and Bendix, 2011; Braun et al., 2018).

4.3 Conceptual model validation305

In this section we study fog statistical data to study how it behaves with respect to the conceptual model. Figure 5 (a) shows

all CTH, LWP and surface LWC measurements taken when fog is present (visibility less than 1000 m). Data is separated in

different temperature ranges. Modeled LWP and CLWP curves are shown. LWP and CLWP theoretical curves are calculated

using Eqs. (3c) and (4) respectively, with the αeq(CTH) parametrization derived in Sec. 4.2. Each hexagon color is given by

the mean LWC0, calculated using all the data in their respective CTH+LWP space. Hexagons with less than 5 samples within310

their surface are removed, since they are likely to be associated with non replicable, noisy data.

This figure shows a good agreement between the theoretical curves and observed results. Most LWP samples are higher than

the critical value, as the model predicts when visibility is less than 1000 meters. Additionally, it can be seen that for a fixed

CTH, LWP increases with LWC0. This behavior seems to be well captured in the current Conceptual Model formulation, as

the difference between the three lines shows (each theoretical LWP line has a different LWC0 value, indicated in the legend).315

Figure 5 (b) shows data samples taken when visibility is between 1000 and 2000 meters, as an scatterplot. As in Sec. 4.1, the

2000 m superior limit to visibility is selected, to remain close to fog conditions where the conceptual model is valid. LWP of

these data samples should be less than the CLWP line for these visibility values, however we observe that sometimes they can

also be larger. This can be explained by two main reasons: CLWP is calculated for a single temperature while data temperature

varies within a range, and because of instrumental uncertainties. HATPRO LWP uncertainty is around 10 g m−2, while radar320

CTH retrieval has a resolution of 12.5 m. This uncertainty is present in this retrieved data, and is also likely to be propagated
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inside the αeq(CTH) parametrization, introducing some variability in the results. However this is not deemed critical, since

variability around the CLWP line is smaller than 10 g m−2, and because the fog life cycle studies of Sec. 5) verify that LWP is

lower than the critical value before fog formation and after fog dissipation.

Finally, we perform an evaluation on how well the Conceptual Model predicts fog LWP, based on CTH, Temperature,325

Pressure and surface LWC inputs. These variables are used to calculate the Conceptual Model LWP with Eq. (3c), with the

αeq(CTH) parametrization of Sec. 4.2, and compared against HATPRO LWP retrievals. Results are shown in Fig. 6. Here we

can see that most samples are close to the 1-1 line for LWP values less than approximately 190 g m−2. Beyond this LWP value

some deviation appears, however there is not enough data available to verify if this is a systematic error of the model or on

how data was taken. Despite this deviation, the good agreement between modeled and observed LWP can be seen in the linear330

fit, with a slope equal to 1, and in the RMSE of just 10.5 g m−2, which is very close to the LWP retrieval uncertainty.

4.4 Drivers of RLWP temporal variations

Equation (5), indicates that changes in both LWP and CTH can contribute to RLWP depletion, and therefore to fog dissipation.

To quantify the relative impact of LWP and CTH changes in RLWP, we calculate the time derivative of Eq. (5). By assuming

constant temperature and pressure, and using the α(CTH) parametrization of Sec. 4.2, we obtain Eq. (8).335

This equation shows that RLWP changes are proportional to LWP variations, and to CTH variations weighted by the function

F (CTH,Γad,αeq). This function, written explicitly in Eqs. (9a) and (9b), converts CTH variations into g m−2 units, and thus

enables a comparison between both effects.

dRLWP

dt
=
dLWP

dt
−F (CTH,Γad,αeq)

dCTH

dt
(8)

F (CTH,Γad,αeq) =
1

2

∂αeq(CTH)

∂ CTH
Γad(T,P ) CTH2 +αeq(CTH) Γad(T,P ) CTH +LWCc (9a)340

∂αeq(CTH)

∂ CTH
=
α0

L
e−

CTH−H0
L (9b)

Equation (8) implies that RLWP depletion, and thus fog dissipation, can occur by LWP reduction and/or by CTH growth.

It also indicates that it is possible to have compensating effects enhancing fog persistence, for example fog that is reducing

its LWP could persist if its CTH is also decreasing (which can happen under strong subsidence). Another implication is that

it is possible to have fog dissipation even if LWP is increasing quickly, through a fast increase in CTH. The case studies345

of Sec. 5.1 show how useful this separation between LWP and CTH effects can be, by analyzing some examples of the

previously mentioned scenarios. Section 5.2.3 shows statistical results of fog RLWP, LWP and CTH time derivatives just

before dissipation.
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Figure 6. 2D histogram comparing HATPRO and Conceptual Model LWP values, for data retrieved when visibility is less than 2000 m.

Conceptual model LWP is calculated using fog CTH, fog LWC at the surface derived from visibility, surface temperature, surface pressure

and the adiabaticity parametrization of Eq. (7). Under these conditions, the conceptual model predicts LWP with an RMSE of 10.5 g m−2

and an almost perfect linear relationship.

5 Fog life cycle

5.1 Case studies350

We present 3 case studies to illustrate the behavior and role of changes in LWP and CTH on presence of fog at the surface

during the fog life cycle (Figs. 7, 8 and 9). For each case we provide a 5-panel figure that illustrates the time series of fog/stratus

layer boundaries, reflectivity profile, 4-m and 20-m horizontal visibilities, the fog/stratus layer measured LWP and computed

RLWP, temperature and closure adiabaticity; and the change rate of RLWP, with the individual contributions from LWP and

CTH variations.355

In all three cases, we observe that fog is present at the ground (4-m height visibility < 1 km) when the RLWP is greater than

0 g m−2. RLWP changes at a rate of +/-10 g m−2 h−1, with values reaching + or – 30 g m−2 h−1 at times. The LWP estimation

of all case studies is done directly using the HATPRO, verifying that the radar does not detect signals from liquid clouds below

6 km of height.

Case study 1 (Fig. 7): Radiative fog occurring during fall season (31 October 2015) that forms six hours before sunrise and360

dissipates about three hours after sunrise at 10:25 UTC. The fog layer is about 200 m thick during the entire fog life cycle with

a water content of 30-60 g m−2. This LWP range and the adiabaticity values close to 0.6 indicates that fog is optically thick

and can be considered as a well-mixed layer for most of its duration. The RLWP is not large, mostly near + 10 g m−2, with

a maximum value of 30 g m−2 observed 2-3 hours before sunrise. CTH changes are relatively slow during the entire fog life
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cycle, with values less than 50 m h−1. From 03 to 05 UTC, the CTH increases which acts as RLWP depletion of nearly -20 g365

m−2 h−1, while at the same time the LWP increases with a rate reaching +50 g m−2 h−1 resulting in a net increase of RLWP.

After 05 UTC, the trends in CTH and LWP reverse. The CTH subsides slowly (about -20 m h−1) contributing positively on

the RLWP at a rate of nearly +5-10 g m−2 h−1, while the LWP initiates a progressive and nearly monotonous decrease of -10

g m−2 h−1 that brings the RLWP to 0 g m−2 at 09 UTC. The progressive drying of the fog layer is also identifiable in the

closure adiabaticity value, which starts to decrease just after sunrise. After 09 UTC, the near-surface visibility initiates a rapid370

increase, exceeding 1 km at 10:25 UTC, time at which the entire fog layer is dissipated. The complete layer dissipation and

the increasing temperature makes it highly unlikely that fog will re-form in the coming hours. Note on Fig. 7 (f) that LWP and

CTH contributions to RLWP are nearly always of opposite signs, but not equal in magnitude.

Case study 2 (Fig. 8): Another radiative fog that occurs in the fall season, just a few days apart from case study 1 (26 October

2015). It forms just three hours before sunrise and dissipates about 3.5 hours after sunrise at 10:55 UTC. The fog layer is about375

200 m thick during the mature phase of the fog life cycle and nearly doubles between sunrise and time of dissipation, while

the water content remains above 50 g m−2. After fog formation, RLWP reaches 30 g m−2 in about one hour and remains at

this level for about 2 hours. Fog adiabaticity indicates that after the first hour from formation fog remains in a well mixed state.

Around sunrise, RLWP initiates a nearly monotonous decreasing trend of -10 g m−2 h−1 that will last until fog dissipation.

The negative RLWP rate is driven by the rise of CTH that contribute negatively on RLWP with a rate that exceeds -20 g m−2380

h−1 only partially compensated by +20 g m−2 h−1 LWP increase rates. Oscillations in LWP and CTH contributions to RLWP

are clearly visible in Fig. 8 (f). When there is strong cooling at the fog layer top, LWP and vertical circulation increase. This

in turn increases the mixing with the layer above fog, resulting in a CTH increase. On the contrary, processes associated with

CTH subsidence tend to decrease LWP rates (Wærsted, 2018). In this case study, the depletion of RLWP is clearly driven by

the CTH increase and the fog LWP still exceeds 75 g m−2 at the time of dissipation.385

Case study 3 (Fig. 9): Here we have a typical case of a very low stratus cloud layer with CTH near 250 m agl and an LWP that

ranges 25-50 g m−2. This combination leads to a negative RLWP that is insufficient for the stratus to deepen all the way to the

surface. As expected for low stratus clouds, the value of closure adiabaticity is close to 0.6 for all valid samples (when visibility

is less than 2000 m, to have valid conceptual model conditions with positive LWC at the surface). The stratus is present from

18:00 UTC onwards during twelve hours with a near-surface visibility of about 2-3 km. From 18 until 23 UTC, RLWP is390

clearly negative changing frequently from negative to positive rates of change (about +/- 5 g m−2 h−1) as the contributions

of LWP and CTH changes oscillate from positive to negative values (as also seen in Case 3). At 01 UTC, the stratus reaches

a new equilibrium with an LWP hovering around 50 g m−2, which brings the RLWP very close to 0 g m−2. The fog CBH is

then below 20 agl, as evidenced by the visibility values measured at 20 m agl (Fig. 9 (c)). Between 04:30 and 06:30 UTC, the

RLWP becomes again negative and the stratus base lifts. A strong increase in LWP (+40 g m−2 h−1) starting after 06:00 UTC395

leads to a positive RLWP after 06:30 UTC and the stratus layers deepens all the way to the surface. The trend in LWP reverses

around 08 UTC (-20 g m−2 h−1) while the CTH remains mostly constant hence reducing the RLWP towards 0 g m−2 before

10 UTC. This case study shows that the RLWP is also a good indicator of the possibility for a very low stratus layer to deepen

into fog and then reversely for the fog to lift into a low stratus.
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5.2 Fog life cycle statistics400

Taking advantage of our large database, we study the behavior of fog RLWP and its time derivative dRLWP/dt statistically, for

three different periods: fog formation, mature stage and dissipation. The objective is to identify patterns that these fog variables

follow at each stage. This could lead to the development of new indicators to enhance the capabilities of fog forecasting models.

Fog formation statistics are taken between 90 minutes before and 90 minutes after the time block were fog formation is

identified from visibility measurements (Sec. 3.2). Likewise, for the dissipation period the analyzed data is taken from 90405

minutes before to 90 minutes after the dissipation time block. All remaining blocks between 90 minutes after fog formation,

and 90 minutes before fog dissipation, are considered to be fog middle life data. Because of how the fog stages are defined, the

cases included in this statistical analysis must have a duration of at least 3 hours. This is valid for 56 cases, which are used for

statistical analysis in the following sections.

The time derivative of the RLWP (and the sliding mean used in Fig. 10 (b.2)) is estimated by calculating the slope of a linear410

fit on RLWP data within ± 30 minutes of a given time block. The retrieved slope value is declared valid only if at least 75% of

the RLWP samples used in its calculation are valid.

5.2.1 Fog formation

Figure 10 (a.1) shows the statistical behavior of RLWP between 90 minutes before and 90 minutes after for formation. It can be

seen that at fog formation there is a transition from negative to positive RLWP values. The relatively lower amount of samples415

before -35 minutes from fog formation happen because there are less fog cases were the cloud has formed that early, or that

have an identifiable CTH above 85 meters. Yet, we can see that RLWP cannot be significantly lower than -10 g m−2 if fog will

form within 30 minutes.

Additionally, in Fig. 10 (a.2) we can see that dRLWP/dt becomes positive about one hour before formation, and remains

consistently positive for another hour after formation. This first hour after fog formation is when fog reservoir grows the most,420

reaching a change rate of 10 to 25 g m−2 h−1, and it may be critical in establishing fog persistence for the coming hours. After

this first hour, fog RLWP stabilizes around 10 to 20 g m−2 and the increase per hour is reduced until entering the mature stage.

All 56 fog cases lasting more than 3 hours are considered for the statistics. However, since radiation fog is formed from a

shallow layer close to the surface, these cases usually do not provide valid data points because their CTH cannot be retrieved

with the radar (it can only observe CTH values above 85 m). Therefore, most of the data points before and around formation425

time are contributed by stratus lowering fog events.

5.2.2 Fog mature stage

A histogram with RLWP values is shown in Fig. 10 (b.1). We can see that approximately 90% of the time fog has a positive

RLWP value, with a median value of 20.1 g m−2 and reaching up to 60 g m−2. Negative RLWP values in fog mature stage

are explained by short-term temporary lifting of fog from the surface, most likely caused by RLWP oscilations.430
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Figure 10 (b.2) shows the statistics of dRLWP/dt versus the sliding mean value of RLWP. This figure shows that RLWP

and its time derivative are not correlated, and that most of the time dRLWP/dt remains within ± 20 g m−2 h−1. The very low

median value of dRLWP/dt = -0.2 g m−2 h−1 shows that fog does not have a clear tendency of RLWP increase or decrease

in the long term. Thus, during this stage of fog life cycle, RLWP remains positive most of the time, with variations driven by

oscillations in the value of dRLWP/dt.435

The statistics for this period defined as fog mature stage are derived using the 56 fog events lasting more than 3 hours. In the

fog mature stage several radiation fog cases will be developed beyond 85 m of CTH, and therefore both stratus lowering and

radiation fog cases contribute to the statistics.

5.2.3 Fog dissipation

In the latter stage of fog life cycle, shown in Fig. 11 (a.1), RLWP decreases consistently from positive values associated with440

the middle of the life cycle until reaching negative values after fog dissipation. Additionally, there are almost no RLWP samples

above 30 g m−2 observed in the last 30 minutes before dissipation. Hence, an RLWP value above 30 g m−2 may be interpreted

as an indicator of fog persistence.

Figure 11 (a.2) shows that the monotonous decrease in RLWP begins about 60 minutes before fog dissipation, and can

commonly reach values of about -10 to -30 g m−2 h−1. These negative values in the time derivative continue after fog445

dissipation, and can be explained by further lifting or drying of the remaining low stratus cloud (Wærsted et al., 2019).

To study what is the main driver of fog dissipation, Fig. 11 (b) shows the calculated dRLWP/dt, dLWP/dt and −F(CTH,

Γad, αeq)·dCTH/dt trends, defined in Sec. 4.4, using the last 60 minutes of data before dissipation. Theoretically, dissipation

can only happen when the RLWP decreases, which only happens when the sum of the LWP and CTH time derivative terms is

negative (Eq. (8). This matches the results of Fig. 11, which has most points in the quadrants leading to the aforementioned450

condition. The few points that show a RLWP increase before dissipation, to the right of the dashed line, are associated with

uncertain retrievals due to low absolute RLWP values, or fast RLWP depletion in the few minutes just before dissipation

(time trends are calculated using a one hour linear fits). Additionally, observations confirm that fog dissipates under the same

scenarios predicted in Sect. 4.4. Here the conceptual model predicts that fog could dissipate, even when the LWP is increasing,

if the RLWP reduction from layer thickening is larger (strong CTH increase). Conversely, fog can also dissipate when the LWP455

decreases, even when the CTH subsides. Finally, some cases dissipate with the contribution of both effects, LWP decrease and

layer thickening.

6 Conclusions

This work presents a Conceptual Model for adiabatic fog that relates fog liquid water path with its thickness, surface liquid

water content and adiabaticity. The model predicts that LWP can be split into two contributions: the first is proportional to the460

adiabaticity and the square of CTH, and the second is the product of surface LWC and CTH. The later dependency is due to

23



Figure 10. The boxplots of panels (a.1) and (a.2) represent RLWP and dRLWP/dt statistics for each time block 90 minutes before and after

fog formation. Boxplot shows the 25th, 50th and 75th percentiles, and the maximum and minimum values. The number of samples per bin is

shown in Fig. S2 of the supplementary material. Panels (b.1) and (b.2) show RLWP and dRLWP/dt statistics during fog middle life, between

90 minutes after fog formation and 90 minutes before dissipation, calculated using 4064 and 3952 samples respectively. The ordinate axis of

panel (b.1) is associated with the cumulative and normalized distributions.
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Figure 11. The boxplots of panels (a.1) and (a.2) show RLWP and dRLWP/dt statistics for each time block, 90 minutes before and after fog

dissipation. These statistics are derived using 56 fog events, however there may be less than this amount of valid samples for each bin. The

number of valid samples per bin is shown in Fig. S3 of the supplementary material. Panel (b) shows the impact of LWP and CTH variations in

RLWP depletion, using data from the last 60 minutes before dissipation. The dashed line indicates the theoretical limit where fog dissipation

is possible (only to the left of this line). In quadrants II and III cloud base lifting contributes to RLWP decrease, while in Quadrants III and

IV the LWP decrease contributes to RLWP depletion. This panel contains 40 valid samples from 56 fog cases, calculated using the method

explained at the beginning of Sect. 5.2

.
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an excessive accumulation of water with respect to an equally thick cloud, which appears in fog because the surface presence

limits vertical development.

This excess accumulation of water motivates the definition of two diagnostic parameters, which later will prove to be key in

understanding fog evolution: the Critical LWP and the Reservoir LWP. The Critical LWP (CLWP) is the minimum amount of465

column water that would fill the fog layer and cause a visibility reduction down to 1000 m at the surface. The Critical LWP

can be calculated using the conceptual model, by imposing a surface LWC equivalent to a 1000 m visibility. Meanwhile, the

Reservoir LWP (RLWP) is the difference between fog LWP and the Critical value, and represents the excess of water that

enables fog persistence. Case studies and statistical results show that the Reservoir LWP is positive when fog is present, and

reaches 0 g m−2 at about the same time as fog dissipation.470

The model is used to statistically study fog adiabaticity. Important conclusions are that thinner fog, with a LWP less than

20 g m−2, have adiabaticity values below 0.6, and can even reach negative values. This happens when the fog layer is not

yet opaque during the fog formation stage, when LWC distribution is not even and may be larger closer to the surface. In this

situation fog is not buoyant and therefore it may not lift when the RLWP reaches 0 g m−2. Conversely, when fog is developed,

its adiabaticity value gets closer to previously observed values for boundary layer fog, converging at approximately 0.66 for475

fog with a LWP greater than 30-40 g m−2. Here the fog layer is adiabatic, and therefore the fog base should lift when the

RLWP depletes down to 0 g m−2. Adiabaticity results are highly variable for LWP values between 20-30 g m−2, and therefore

it may be necessary to include additional observations to discern the adiabaticity of the fog layer in this LWP range.

Another result from the study of adiabaticity is an adiabaticity parametrization as a function of fog thickness, which can be

used to estimate fog LWP and to perform conceptual model calculations. The estimation of fog LWP has an RMSE of 10.5 g480

m−2, which is close to the uncertainty in LWP measurement of 10 g m−2, validating the modeled dependency of the LWP on

surface LWC, temperature, pressure and CTH.

The temporal derivative of the RLWP is studied, obtaining an analytic formulation that enables the quantification of the

contribution of LWP and CTH variations to the depletion of the reservoir, and therefore leading to fog dissipation. This for-

mulation, which is validated by observations, indicates that fog dissipation will depend on the ratio between LWP and CTH485

variations, and that fog can dissipate by lifting as long as the net RLWP trend is negative, even if 1. LWP and CTH are both

increasing, 2. LWP is decreasing and CTH increasing and 3. LWP and CTH are both decreasing.

Statistical observations of the fog life cycle indicate that the RLWP increases, in general, about 60 minutes before and after

fog formation. This is followed by positive RLWP values, during fog middle life, that may oscilate or vary depending on the

LWP and CTH evolution. Then, about 60 minutes before dissipation, the RLWP starts to decrease consistently until reaching 0490

g m−2 at dissipation time.

The aforementioned conclusions and the paper results indicate that the RLWP and its time derivative can be used as indicators

of the fog life cycle stage, at the local scale. This enables its potential use as an additional diagnostic variable, to quantify how

close fog is from dissipation. This may complement visibility measurements at key sites affected by fog, such as airports and

land roads, and help improving their logistics to reduce costs and the probability of accidents (Tardif and Rasmussen, 2007).495
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At present, the RLWP provides an estimation, in real time, of the excess of water of fog that enables the fog layer to remain

at the surface. This can already be used as a diagnostic to estimate how likely fog persistence is for the coming minutes,

based on the instant RLWP value and its trend (fog dissipation nowcasting). For example, results indicate that fog will not

dissipate in the next 30 min if its RLWP is greater than 30 g m−2. Additionally, the RLWP must have a decreasing trend

before dissipation, and therefore a positive trend would indicate fog persistence. This result could be improved by introducing500

forecasting tools to the conceptual model scheme. Forecasting when the RLWP will become 0 g m−2 would provide a proxy

to predict fog dissipation by base lifting. This forecasting could be done, for example, by considering physical processes. They

provide information on fog evolution, and could be used to estimate how the LWP and CTH, and thus the RLWP, will evolve

in the near future (e.g. Wærsted et al. (2019)).

Another interesting perspective would be to test conceptual model calculations using the output of fog large-eddy simulations505

(LES). If the conceptual model variables behave as theoretically expected in these simulations, they could be used to further

study the impact of microphysics or surface properties on fog adiabaticity.

Other area of interest would be to study the conceptual model at other sites with frequent fog events. When fog is adiabatic

(LWP > 30-40 g m−2), the observed equivalent adiabaticity results is consistent with values observed at other sites. This hints

that the conceptual model could be applicable at other sites with similar fog types (continental mid-latitude fogs), with possible510

variations in the adiabaticity parametrization due to local conditions. This remains to be verified using real observations.

It would also be of interest to study how the direct retrieval of adiabaticity profiles from cloud radar reflectivity profiles

could be used to improve the accuracy of the RLWP estimation, compared to the use of a single equivalent value.

Data availability. All data used in this study is hosted by the SIRTA observatory. Data access can be requested for free following the

conditions indicated in the SIRTA data policy (https://sirta.ipsl.fr/data_policy.html).515

SIRTA observatory website: https://sirta.ipsl.fr/

Data request form: https://sirta.ipsl.fr/data_form.html

Appendix A: Calculation of Γad(T,P )

The inverse of the saturation mixing ratio change with height Γad(T,P ) is calculated using the formulation published by

Albrecht et al. (1990) and Braun et al. (2018), shown in Eq. (A1).520

Γad(T,P ) =

[
(ε+ws)wslv

RdT 2
Γw − gwsP

(P − es)RdT

]
ρd (A1)

A description and the equations necessary to calculate each term used in the calculation of Γad(T,P ) are given in Tab. A1.
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Table A1. List of all the terms needed for the calculation of Γad(T,P ).

Term Definition Calculation Units

T Surface temperature K

P Surface pressure Pa

lv Latent heat of vaporization 2.5 · 106 J Kg−1 K−1

cp Specific heat of dry air at constant pressure 1005 J Kg−1 K−1

g Acceleration of gravity 9.81 m s−2

Rd Dry air ideal gas constant 287.0 J Kg−1 K−1

Rv Water vapor ideal gas constant 461.5 J Kg−1 K−1

ε Ratio of Rd to Rv Rd
Rv

es Vapor saturation pressure 611.2 · exp
(

17.67(T−273.15)
T−29.65

)
Pa

ws Saturation mixing ratio ε es
P−es

ρd Dry air density P−es
RdT

Kg m−3

Γw Moist adiabatic lapse rate g
cp

(
1 + lvws

RdT

)
/
(

1 +
εl2vws

RdcpT
2

)
K m−1

Γad(T,P ) Eq. (A1) Kg m−4

Appendix B: Visibility-LWC parametrization

Surface LWC estimation from visibility measurements is done by inverting Gultepe et al. (2006) Eq. (6). This results in Eq.

(B1), where LWC is Liquid Water Content in Kg m−3 and VIS is the visibility in meters.525

LWC = 0.0187 · 10−3 ·
(
V IS

1000

)−1.041
(B1)
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2.3 Use of conceptual model variables as indicators of fog dissi-

pation tendency

This section presents statistics of the of RLWP with respect to surface visibility. Then it presents the
definition of temporary fog dissipation, and how this phenomenon limits the performance of dissipation
forecasting when it is based exclusively on diagnostic variables. Finally, it concludes with a calculation
of fog dissipation probability within different time ranges, as a function of RLWP and visibility.

2.3.1 Surface visibility and RLWP during fog

Surface visibility and RLWP are two variables that describe fog state. Visibility is an in-situ measure-
ment, hence its information only represents the instrument surroundings. Contrastingly, RLWP is a
variable that extracts information from the fog column state. Therefore, it should provide additional
information when compared with visibility alone.

To check this hypothesis, we begin by studying the behavior of fog visibility versus RLWP. For this
we plot the two histograms of Fig. 2.1. Figure 2.1 (a) shows the histogram with the distribution of both
variables, using all valid data collected in the 80 fog cases selected in the article. Meanwhile, Fig. 2.1 (b)
shows a histogram with the number of fog cases in which each pair RLWP-visibility appeared at least
once.

We observe the range of possible RLWP values is more restricted when visibility is greater than ∼600,
compared with lower visibility values. This result is understandable, because RLWP must approach
zero as visibility increases, limiting the possible RLWP-visibility configurations. On the contrary, when
visibility is less than ∼600 m, Fig. 2.1 (a) shows RLWP can present a large range of values, from negative
to 40 or more g m−2. This situation becomes more accused when visibility is under 250 m, where RLWP
values ranging between 5 and 40 g m−2 appear with a similar frequency.

At the same time, Fig. 2.1 (b) shows that RLWP values above 20 g m−2 appear in a lower number of
fog events. This creates an apparent contradiction with Fig. 2.1 (a), where the amount of samples above
and below the RLWP of 20 g m−2 is similar. Since visibility and RLWP are sampled every 5 minutes,
longer duration fog cases would contribute to a larger number of samples. Therefore, the large amount

Figure 2.1: Distribution of RLWP versus visibility during fog. Panel (a) is drawn using all valid samples
of the 80 fog events selected in the article. Panel (b) shows how many fog events reach the RLWP-
visibility values bounded by each pixel (a fog event is counted if at least one of its RLWP-visibility
samples falls within a given pixel).

59



of samples with RLWP above 20 g m−2 must come from less frequent cases, that last longer than cases
with lower RLWP values.

Another observation is that, during fog, we have visibility samples reaching values greater than 1000
meters, which in principle is incompatible with fog definition. This data corresponds to a temporary
dissipation event, which does not last long enough to mark the end of the fog period. Temporary
dissipation is discussed in more detail in Sect. 2.3.2.

Section 4.1 of the article shows that fog adiabaticity has two regimes, depending on fog LWP. When
LWP is less than 30 g m−2, fog is optically thin and most of the radiative cooling and liquid water
condensation happens close to the surface, under a stable atmospheric profile. On the contrary, when
LWP is greater than 30 g m−2, fog is optically thick and therefore radiative cooling and liquid water con-
densation happens mostly at fog top, generating vertical convective flows that destabilize the boundary
layer.

To study if the behavior of the RLWP versus visibility statistics for these two regimes, we plot the
histogram of Fig. 2.1 (a) again, but this time separating between samples with LWP less and greater
than 30 g m−2. Results are shown in Fig. 2.2. Panel (a) shows the statistics of data points with LWP
values below 30 g m−2, associated with shallow fog that is not opaque to infrared radiation. We observe
that in this regime, visibility can range between ∼ 100-1000 meters with a RLWP generally less than
20 g m−2. This can be understood from the properties of shallow fog. In this situation, the atmosphere
is stable and coupling between the surface and upper layers is weak or neglibile. This, paired with the
fact that radiative cooling happens predominantly close to the surface, explain why visibility can drop
significantly without significant vertical development. The lack of vertical development and the low
adiabaticity of shallow fog are associated with a low amount of LWP in the column, which therefore
limits the maximum attainable RLWP.

This contrasts the situation of Fig. 2.2 (b), where we present the data with LWP greater than 30
g m−2. Under these conditions, fog is optically thick and therefore most of the radiative cooling and
liquid water condensation happens at fog top. Stability is close to neutral, coupling the fog base with
its top through vertical mixing. Under these conditions, an increase in the amount of RLWP, which is
a measure of the excess water sustaining fog, would imply that more water is being redistributed in the
column. This larger amount of water would reduce visibility in the whole layer, including the first meters
above the surface, explaining why visibility decreases systematically for larger RLWP values.

Figure 2.2: Distribution of RLWP versus visibility for (a) shallow and (b) adiabatic fog. Samples are
extracted from the 80 fog events selected in the article, and classified based on their LWP value.
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2.3.2 Temporary fog dissipation

In the previous section we observed that some samples, observed during fog, had surface visibility values
above 1000 m (see for ex. Fig. 2.1). However, fog definition states that visibility at the surface must be
less than 1000 m. The reason for which these samples appear is in the algorythm used to identify fog
formation and dissipation time (based on the previous work of Tardif and Rasmussen (2007); Wærsted
et al. (2019) and explained in Sect. 3.2 of the article). This algorythm declares that periods with visibility
above 1000 m that last less than 60 minutes do not mark the definitive dissipation time of a fog event.
Hence, periods lasting less than 60 minutes, with high visibility values (> 1000 m), can remain within a
detected fog event. These are defined as temporary fog dissipation periods.

Some causes of temporary dissipation are well known, yet this phenomenon is not widely discussed in
literature. When radiation fog is forming, visibility may increase for short time periods due to horizontal
advection of clear air patches, where fog is not yet formed due to differences in surface properties that
impact humidity (Gultepe et al., 2007). Other cause for temporary dissipation is the droplet growth and
subsequent decrease of LWP caused by fog drizzle (Dupont et al., 2012). Finally, we have observed that
adiabatic fog can temporarily lift during a transitory LWP depletion, or a fast increase in CTH.

Figure 2.3 shows an example of a radiation fog case with temporary dissipation periods. Panel (c)
shows that fog forms close to 02:30 UTC, and remains below 20 meters until approximately 05:00 UTC.
Fog CTH is too low to be detected by the radar and its LWP remains very close to 0 g m−2 (panels (a)
and (d) respectively). Within this period we observe that the 4-m visibility increased several times above
1000 meters. This likely happens because of the advection of surrounding clear air patches, as explained
in previous lines. Later, around 05:45 UTC, LWP starts to increase until surpassing the ∼ 30 g m−2

associated with opaque fog at 06:00 UTC. During this period fog becomes thick enough to be observed
with the radar, and we begin to have CTH, RLWP and closure adiabaticity retrievals. The latter, shown
on panel (e), shows that fog becomes superadiabatic for a brief period of time (αclosureeq > 1.0). This
happens because radiative cooling is quickly condensing a lot of water, producing a fast LWP increase (up
to ∼55 g m−2 Hr−1, panel (f)). Sustained liquid water generation fills the fog layer above the adiabatic
limit, because the layer growth is bounded by the surface and the temperature inversion. After sunrise,
at 08:00 UTC, adiabaticity drops to ≈ 0.6, indicating that fog is adiabatic for the rest of its duration.

During the adiabatic fog stage, there is another temporary dissipation period between 11:15 and
12:00 UTC approximately. In this case, the visibility increase is caused by a transient lifting of the fog
base. Evidence for this can also be seen in the 20-m visibility timeseries of panel (c), which also increases
during this time period. At the same time, RLWP decreases until reaching negative values, remaining
consistent with what is expected theoretically (when the RLWP is less than 0, the LWP is not enough
for fog to reach the surface). Panel (f) shows that base lifting is caused by the vertical growth of the fog
layer. Effectively, a CTH increase produces a net decrease of RLWP from ∼ 10:45 UTC, shortly before
the time of the base lifting. This vertical development is later compensated by an increase on LWP,
allowing the fog layer to reach down to the surface again. This situation last until 14:00 UTC, when the
fog base lifts for more than 60 minutes, marking the dissipation time of this fog period.

Temporary dissipation within fog events are a frequent phenomena. Figure 2.4 (left) shows that more
than 50% of fog events have at least one of these events (45 out of 80 fog cases). Meanwhile, Figure
2.4 (right) shows that fog duration and the number of temporary dissipation periods is not strongly
correlated, indicating that they are not likely to be a random event (if it were, the number of dissipation
periods should be strongly correlated with fog duration). Temporary dissipation periods were detected
searching for periods in fog with a visibility greater than 1000 m, that lasted between 10 and 55 minutes.
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Figure 2.4: Statistics of temporary dissipation periods (surface visibility > 1000 m lasting between 10
and 55 minutes within a fog event). The panel on the left shows the amount of fog events with a given
number of dissipation periods. The panel on the right shows a scatterplot with the number of dissipation
periods versus fog duration.

2.3.3 Statistics of visibility and RLWP versus fog dissipation tendency

Visibility and RLWP are two variables that provide information on fog status. Visibility is an in-situ
measure used to define and detect fog presence at the surface. By continuity, temporary and definitive
fog dissipation is preceded by increasing visibility values, until reaching and surpassing 1000 meters.
Meanwhile, RLWP is a variable calculated using information from the fog column that provides a measure
of the excess water that enables the persistence of adiabatic fog at the surface. As is explained in Sect.
2.2, when the RLWP is greater than 0 g m−2, fog liquid water path is large enough to sustain a visibility
under 1000 meters at the surface. When RLWP reaches 0 or negative values, fog LWP is not enough
to fill the layer between the surface and the temperature inversion, and therefore we observe a visibility
increase at the surface.

Both variables provide consistent results at dissipation time. As is shown in Fig. 11 of the article,
when visibility reaches 1000 meters, the RLWP becomes 0 g m−2. Contrastingly, when visibility is low
we observed that RLWP provides an additional dimension that can vary independently of visibility (see
Sect. 2.3.1).

This additional dimension could introduce a complementary source of information when assessing
fog dissipation tendency. However, before studying statistics, we must make a consideration. From a
theoretical point of view, the RLWP does not provide enough information to anticipate if dissipation will
be temporary or definitive. It only provides a measure of the amount of water that must be removed before
surface visibility can surpass 1000 m. Since at present we do not have enough information to estimate
the duration of an incoming dissipation period, we decide to not distinguish between temporary and
definitive dissipation when studying the viability of RLWP and visibility as indicators of fog dissipation
tendency.

Figure 2.5 shows RLWP and visibility statistics with respect to fog dissipation tendency. Panel (a)
of Fig. 2.5 shows histograms of the RLWP samples for the 10, 30, 60, 90, 120 and 180 minutes before
dissipation (in red). Samples measured farther than these time periods from dissipation are presented
in blue. Panel (b) shows the same statistics for visibility samples.
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Figure 2.5: Statistics of RLWP (Panel (a)) and visibility (Panel (b)). Red histograms show data taken
in the last 10, 30, 60, 90, 120 and 180 minutes before fog dissipation. Blue histograms show all samples
taken before this period. Data extracted from the 80 fog events selected in the article (Sect. 2.2). No
distinction is made between temporary and definitive dissipation.
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On panel (a) we observe that, in general, RLWP samples distribute closer to 0 g m−2 for data closer
to dissipation, with the mode at the 0-10 g m−2 bin. This is an expectable result, because the RLWP
must decrease below 0 g m−2 when visibility increases above 1000 m.

An interesting result is that high RLWP values seem to provide information about fog persistence.
Data shows that it is very unlikely to have any kind of dissipation in less than 90 minutes when the
RLWP is greater than 20-30 g m−2. Similarly, when RLWP is greater than 40 g m−2 fog is more much
likely to persist for, at least, 180 additional minutes. These results indicate that RLWP could be a good
indicator of fog persistence, specially for values greater than 20 g m−2.

The visibility histograms on panel (b) show that when visibility is within 600-1000 meters, the chances
of dissipation in the next 30 minutes is greater than 50%. When visibility is above 400 meters, the chance
of dissipation in the next 60 minutes is also greater than 50%. For visibility values below 400 meters we
have a high ratio of samples associated with fog persistence for at least 60 minutes, and when visibility
is less than 250 meters, fog is likely to last for at least 120 additional minutes.

To study the information that visibility and RLWP can provide as indicators of fog dissipation
tendency, we calculate the probability of dissipation as a function of time, for different ranges of RLWP
and visibility. Probability is calculated as the ratio of samples close to dissipation versus the total amount
of samples within each specified range of visibility and RLWP. The results are shown in Fig. 2.6.

When visibility is less than 250 meters, a comparison between the black dashed line (calculated for any
RLWP value) and the colored lines (calculated for specific RLWP ranges) indicate that the probability of
dissipation is strongly influenced by RLWP. For all time ranges, probability of dissipation increases when
RLWP decreases, reaching a maximum of 60% for negative RLWP values in the 120-180 minutes time
range. The 0-10 g m−2 is associated with smaller dissipation probabilities for most time ranges, except
for 180 minutes where it converges with the negative RLWP curve. It shows dissipation probabilities of
20%, 50% and 60% for the next 60, 120 and 180 minutes respectively. The probabilities of the 10-20
g m−2 curve raise more slowly than those of the 0-10 g m−2 range, as can be seen in the dissipation
probabilities of 10%, 25% and 40% for the next 60, 120 and 180 minutes respectively. The behavior of

Figure 2.6: Probability of fog dissipation as a function of time, RLWP and visibility. Probability is
calculated as the ratio of the samples closer than X minutes to dissipation versus the total amount of
samples in the specified visibility and RLWP range. No distinction is made between temporary and
definitive dissipation.
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probabilities in the 10-20 g m−2 range also remains close to the black curve calculated using all RLWP
values, indicating that dissipation probability in this RLWP range is similar to what could be obtained
by using visibility alone. On the other extreme, samples with RLWP values greater than 20 g m−2 have
less than a ∼10% chance of being within the last 120 minutes before dissipation, and less than ∼20% of
being within the last 180 minutes. Thus, a visibility under 250 meters paired with RLWP values above
20 g m−2 are strong indicators of fog persistence for the next 2-3 hours.

For the visibility range between 250 and 600 meters, probability of dissipation is greater for all curves,
with respect to the ≤ 250 m visibility range. Negative RLWP values provide a specially distinct signal,
raising quickly from 15% to 65% in the first 60 minutes, until reaching a maximum of 70-80% for periods
longer than 90 minutes. The probabilities for the 0-10 g m−2 range are significantly smaller than for
the negative RLWP values, remaining close to the "average" black curve, with dissipation probabilities
of 35%, 50% and 60% for the next 60, 120 and 180 minutes respectively. The curves for 10-20 and ≥
20 g m−2 remain very close in this visibility range, with slighly higher dissipation probabilities for the
10-20 g m−2 range (differences smaller than 10%). This likely happens because of physical constraints
that strongly reduce the chance of having RLWP greater than 20 g m−2 in this visibility range, as can
be seen in Fig. 2.1.

Finally, when visibility is between 600 and 1000 meters, the impact of RLWP on the dissipation
probability becomes negligible. This is likely due to the stronger correlation between these variables in
this visibility range, caused by the limited number of possible configurations that visibility and RLWP
can have under these conditions (see Sect. 2.3.1). Dissipation probabilities in this range are of 65%, 70%
and 80% for the next 60, 120 and 180 minutes respectively.

Considering these results, we can affirm that RLWP provides additional information of fog dissipation
tendency when visibility is below 600 meters. Observed differences in dissipation probability can reach
up to 50% when comparing negative and high RLWP values (above 20 g m−2) for this visibility range.
Contrastingly, for visibilities between 600 and 1000 meters the RLWP does not provide additional infor-
mation about fog dissipation tendency, due to the RLWP convergence towards 0 g m−2 when visibility
increases to 1000 m.

2.4 Synthesis

This chapter presented our research on fog top height (CTH) and liquid water path (LWP), which led
to the formulation of a new conceptual model. This model relates the liquid water path of fog with its
thickness, liquid water content at the surface (LWC0), and adiabaticity. This model is used to study fog
adiabaticity, and to analyze the fog life cycle in case studies and statistically. Additionally, it provided
a new insight on the causes of adiabatic fog dissipation, and on the parameters that must be tracked to
assess its dissipation tendency. The main results to retain from this chapter are:

• Fog LWP can be split in two different terms: one proportional to fog adiabaticity and the square of
the CTH, and another which is the product of LWC0 with fog CTH. The first term is analog to the
LWP dependency on thickness for clouds (Braun et al., 2018). The second term is fog-exclussive,
and is introduced by an excessive accumulation of water caused by the temperature inversion at
fog top and the presence of the surface, which limit the vertical development of the layer.

• This excess of water with respect to an adiabatic cloud motivates the definition of two diagnostic
parameters:

– Critical LWP (CLWP): this is the minimum amount of LWP required to fill the fog layer
(from fog top to the surface), and reduce visibility to 1000 m at the surface.
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– Reservoir LWP (RLWP): this is the difference between the LWP and the CLWP of a fog layer.
It represents the excess of water that enables fog persistence. The RLWP is positive when fog
is present, and reaches 0 g m−2 at the time of its formation and dissipation, when the LWP
equals the CLWP.

• The model is used to statistically study fog adiabaticity. Important conclusions are that thinner
fog, with a LWP less than 20 g m−2, have adiabaticity values below 0.6, and can even reach negative
values. This happens when the fog layer is not yet opaque during the fog formation stage, when
LWC distribution is not even and may be larger closer to the surface. In this situation fog is not
buoyant and therefore it may not lift when the RLWP reaches 0 g m−2. Conversely, when fog is
developed, its adiabaticity value gets closer to previously observed values for boundary layer fog,
converging at approximately 0.66 for fog with a LWP greater than 30-40 g m−2. Here the fog
layer is adiabatic, and therefore the fog base should lift when the RLWP depletes down to 0 g m−2.
Adiabaticity results are highly variable for LWP values between 20-30 g m−2, and therefore it may
be necessary to include additional observations to discern the adiabaticity of the fog layer in this
LWP range.

• Fog adiabaticity is correlated with fog CTH. Thin fog (CTH < 200 m) has lower and highly variable
adiabaticity values, ranging from -0.5 to 0.5. Negative values are associated with shallow fog that
is not opaque to infrared radiation. For CTH > 200 m, adiabaticity converges to 0.6 which is a
value commonly observed in adiabatic fog and boundary layer clouds.

• The previous result enabled the derivation of a parametrization to calculate adiabaticity as a
function of CTH. When the parametrized adiabaticity is used in the conceptual model, combined
with measurements of fog top height, surface visibility and surface temperature and pressure, we
get an estimation of fog LWP with a RMSE of 10.5 g m−2, which is close to the uncertainty in
the LWP measurements. Additionally, data shows that the predicted LWP captures correctly the
observed effect of variations on LWC0, temperature and CTH.

• The time derivative of the Reservoir LWP is calculated analytically. Its formulation enables the
separation of LWP and CTH contributions to RLWP variations. A rise in LWP increases RLWP by
the same amount. A rise in CTH reduces RLWP by an amount proportional to the CTH increase,
to the adiabaticity and to the inverse of the saturation mixing ratio change with height (Γad(T, P )).

• Statistics indicate that the Reservoir LWP increases systematically from 0 g m−2 for the first
≈60 minutes of a fog event, and decreases systematically during the last ≈60 minutes. Between
these two periods, RLWP can oscilate under compensating LWP and CTH variations, sustaining
a positive RLWP during fog middle life.

• When visibility is less than approximately 600 m, RLWP is not bound by surface visibility and can
range between negative and ≈60 g m−2, acting as an independent variable to describe fog status.
On the contrary, when visibility is greater than approximately 600 m, the range of possible RLWP
values becomes more restricted and more correlated with visibility.

• Fog may have temporary dissipation periods, when visibility increases above 1000 m. These time
periods are included in a fog event because of the algorithm used for their identification. About
60% of the 80 fog events studied have at least one temporary dissipation period.

• RLWP and visibility measurements cannot be used to forecast if dissipation will be temporary or
definitive. This happens because visibility increases to 1000 meters at the same time that RLWP
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decreases to 0 g m−2 in the minutes preceding both dissipation types (strong correlation between
visibility and RLWP). Therefore, calculated dissipation probabilities do not differentiate between
temporary and definitive dissipation.

• RLWP improves the assessment of the dissipation tendency when visibility is less than 600 m:

– For visibility < 600 m: fog layers contain an excess of LWP that is larger than the CLWP. The
RLWP can range between +10 and +60 g m−2, depending on the fog adiabaticity. To reach
fog dissipation, the fog layer much reach a RLWP of 0 g m−2, either by reducing its LWP or
by increasing its CTH. As decreasing RLWP takes time, for a given visibility, a fog with a
larger RLWP will be more likely to persist than a fog with a small RLWP. For example, the
expected dissipation probability for samples with negative RLWP, and RLWP ≥ 20 g m−2,
can differ by up to 50%.

– For visibility > 600 m: high visibilities are associated with periods close to fog formation or
dissipation. In these cases, RLWP is highly correlated with visibility, and therefore it does
not provide additional information about fog persistence or dissipation tendency.

• It is important to study how the variables of the conceptual model contribute to the uncertainty
in the estimation of the CLWP, since uncertainties in the CLWP propagate directly to the RLWP.
Therefore, we use the theory of error propagation to quantify the total uncertainty in the estimation
of the CLWP and the contribution of each variable.

As a reminder, the equation used to calculate the CLWP (previously presented in section 2.2) is:

CLWP =
1

2
αeq(CTH)Γad(T, P )CTH2 + LWCcCTH (2.1)

The estimated uncertainty for each term is presented in the following lines:

– CTH uncertainty is of 6.25 m, which is half the vertical resolution of the radar.

– LWCc relative uncertainty is of ≈50%, based on the publication of Gultepe et al. (2006),
from where we obtained the parametrization to calculate LWC as a function of visibility. The
critical LWC LWCc is the LWC associated with a visibility of 1000 m.

– Γad(T, P ) uncertainty is neglected, since this is a theoretically calculated term (Γad(T, P ) is
the inverse of the saturation mixing ratio change with height).

– The uncertainty of the equivalent adiabaticity αeq(CTH) is estimated as the RMSE of the
parametrization with respect to the samples used in its derivation. The results are shown in
Fig. 2.7 (a).

• In Fig. 2.7 (a) we can observe that the RMSE is higher for CTH values below 200 m. This likely
happens for two reasons. First, when LWP is less than 40 g m−2, its retrieval with the microwave
radiometer has an uncertainty of 5-10 g m−2 (Marke et al. (2016); Wærsted et al. (2017)). This
possibly introduces a significant uncertainty when estimating adiabaticity from closure, for low
LWP values (Eq. (6) of Sect. 2.2). Second, this CTH range is associated with the transition phase
between shallow radiation and deep adiabatic fog, where adiabaticity may be highly variable due to
physical causes. This would increase RMSE, since the parametrization only considers the median
behavior.

For CTH values greater than 200 m, the RMSE decreases sharply. This indicates that adiabaticity
is less variable, probably because fog is mostly adiabatic when it reaches this CTH range.
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Figure 2.7: (a) RMSE of the adiabaticity parametrization. (b) Uncertainty of the CLWP calculated
using error propagation, including the contribution of each term. The uncertainty in the calculation of
the theoretical term Γad(T, P ) (inverse of the saturation mixing ratio change with height) is neglected.

• Figure 2.7 (b) shows the contribution of each term to the absolute CLWP uncertainty (uncertainty
in CLWP units of g m−2). CLWP is calculated for 2.5 ◦C of temperature and 1006.7 hPa of pressure,
as is done in Fig. 4 of section 2.2. We observe that the adiabaticity parametrization contributes
most of the CLWP uncertainty for all CTH ranges. We also observe that the uncertainty of the
latter is almost as high as the total uncertainty, reaching values between 5 and 15 g m−2, depending
on CTH.

Another observation is that the uncertainty calculated with error propagation (5-15 g m−2) is
consistent with the uncertainty of 10.5 g m−2 estimated empirically, from comparisons between
predicted and observed LWP (Fig. 5 of Sect. 2.2). The small differences between both results
could be caused by possible correlated errors, and because we are comparing a CTH dependent
uncertainty with a global result (calculated using all LWP values). However, we can conclude that
at present, the uncertainty of conceptual model calculations should be of approximately ±10 g
m−2, and that uncertainty is mostly introduced by the adiabaticity parametrization.

• Since a RLWP error of 10 g m−2 could have a significant impact on the dissipation probability, it is
important to improve the estimation of fog adiabaticity. This could be done, for example, by using
cloud radar reflectivity profiles. Reflectivity, paired with other measurements, enable the retrieval
of LWC profiles (Boers et al., 2013; Bell et al., 2021). Then, LWC profiles can be used to directly
calculate fog adiabaticity. Unfortunately, such retrievals require a reliable calibration of the cloud
radar, which is a topic that remains unsolved. This challenge motivates our work on cloud radar
calibration, which is addressed in the next two chapters.
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Chapter 3

Cloud radar calibration using corner
reflectors

3.1 Introduction

The previous chapter addressed the study of fog, with the objective of better understanding the im-
portance of fog top height (CTH) and liquid water path (LWP) on its life cycle. These variables were
measured using remote sensing instruments. CTH is retrieved with a cloud radar, and LWP with a
microwave radiometer.

The results provided new diagnostic variables that can be used to assess fog dissipation tendency.
The main derived variable, which is the reservoir liquid water path (RLWP), depends on fog LWP, CTH,
adiabaticity and surface visibility, temperature and pressure. At present, adiabaticity is calculated from
a parametrization based on CTH. As is explained in Sect. 2.4, calibrated reflectivity measurements could
improve RLWP estimation, by enabling a direct retrieval of the fog adiabaticity profile. Another benefit
of calibrated reflectivity measurements is that it would enable comparative studies of data sampled at
different fog monitoring stations. This motivates the use of calibrated cloud radars. However, at present
there is no methodology that can be applied directly to calibrate a fog monitoring network, with various
cloud radars.

This thesis addresses this challenge by developing a two-step calibration strategy. First, to calibrate
a reference radar, with a known uncertainty, using corner reflectors. Second, to transfer the reference
radar calibration to other radars in the network using clouds as common targets, to calibrate radars
located in sites without the needed infrastructure for corner reflector based calibration.

This chapter presents the corner reflector based calibration methodology, developed to calibrate
frequency modulated continuous wave cloud radars. In this approach, the radar samples the signal
reflected from a corner reflector with a known Radar Cross Section (RCS), mounted on top of a mast.
This signal is used as a reference to retrieve the calibration coefficients of the radar.

Calibration experiments were carried out during two calibration campaigns at the SIRTA observatory,
using a scanning Basta mini cloud radar. This radar operates in the W band, with a carrier frequency
that can be tuned between 94 and 96 GHz. It is equipped with two parallel 30 cm Cassegrain antennas,
separated by 35 cm, and a 500 mW transmitter which can emit a chirp with a bandwidth of up to 24
MHz.

In this work we identify and quantify several sources of uncertainty that impacted the calibration
results. Specifically, we study the impact of receiver compression, temperature variations inside the
radar, frequency dependent losses in the IF of the receiver, environmental clutter and misalignment
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of the experimental setup. The methods used to mitigate and quantify uncertainty are presented as
a replicable calibration methodology, published in the Atmospheric Measurement Techniques journal
(Toledo et al., 2020).

The article and its supplementary material are used to structure this chapter. Section 3.2 presents the
article. In this paper, section 2 presents the definition of the calibration terms. Section 3 describes the
experimental setup and equipment used. Section 4 presents the calibration methodology, which involved
several repetitions of system realignment and sampling of the reflector signal. Section 5 presents all the
sources of uncertainty and bias identified in the experiments. Section 6 shows the calibration results,
including a table with the contributors to the final uncertainty value. Section 7 presents the conclusions
of the article. Additionally, the article appendix A presents a table of symbols, which can be useful for
the reader.

Sections 3.3 and 3.4 are based on the article supplementary material. They describe how to calculate
the bias introduced by misalignment in the calibration setup, introduced in section 5.6 of the article.
Specifically, section 3.3 presents a geometrical model to calculate the effective RCS of a corner reflector
for a given incidence angle of the radar beam, considering the antenna lobe shape. Then, section 3.4 uses
this model and a monte-carlo like approach to generate the bias probability distribution of the system.
This distribution is used to estimate the most likely bias and its uncertainty. Finally, section 3.5 presents
a synthesis with the main results.

To facilitate the lecture of this chapter, we recommend reading section 1.6 first. There we provide
useful theoretical background on the radar equation and calibration terms.

3.2 Published paper: Absolute calibration method for frequency-

modulated continuous wave (FMCW) cloud radars based on

corner reflectors
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Abstract. This article presents a new cloud radar calibra-
tion methodology using solid reference reflectors mounted
on masts, developed during two field experiments held in
2018 and 2019 at the Site Instrumental de Recherche par
Télédétection Atmosphérique (SIRTA) atmospheric observa-
tory, located in Palaiseau, France, in the framework of the
Aerosol Clouds Trace gases Research InfraStructure version
2 (ACTRIS-2) research and innovation program.

The experimental setup includes 10 and 20 cm triangular
trihedral targets installed at the top of 10 and 20 m masts, re-
spectively. The 10 cm target is mounted on a pan-tilt motor at
the top of the 10 m mast to precisely align its boresight with
the radar beam. Sources of calibration bias and uncertainty
are identified and quantified. Specifically, this work assesses
the impact of receiver compression, temperature variations
inside the radar, frequency-dependent losses in the receiver’s
intermediate frequency (IF), clutter and experimental setup
misalignment. Setup misalignment is a source of bias, previ-
ously undocumented in the literature, that can have an impact
of the order of tenths of a decibel in calibration retrievals of
W-band radars.

A detailed analysis enabled the quantification of the im-
portance of each uncertainty source to the final cloud radar
calibration uncertainty. The dominant uncertainty source
comes from the uncharacterized reference target which
reached 2 dB. Additionally, the analysis revealed that our
20 m mast setup with an approximate alignment approach is
preferred to the 10 m mast setup with the motor-driven align-
ment system. The calibration uncertainty associated with

signal-to-clutter ratio of the former is 10 times smaller than
for the latter.

Following the proposed methodology, it is possible to re-
duce the added contribution from all uncertainty terms, ex-
cluding the target characterization, down to 0.4 dB. There-
fore, this procedure should enable the achievement of cali-
bration uncertainties under 1 dB when characterized reflec-
tors are available.

Cloud radar calibration results are found to be repeat-
able when comparing results from a total of 18 independent
tests. Once calibrated, the cloud radar provides valid reflec-
tivity values when sampling midtropospheric clouds. Thus,
we conclude that the method is repeatable and robust, and
that the uncertainties are precisely characterized. The method
can be implemented under different configurations as long as
the proposed principles are respected. It could be extended
to reference reflectors held by other lifting devices such as
tethered balloons or unmanned aerial vehicles.

1 Introduction

Clouds remain, to this day, one of the major sources of un-
certainty in future climate predictions (Boucher et al., 2013;
Myhre et al., 2013; Mülmenstädt and Feingold, 2018). This
arises partly from the wide range of scales involved in cloud
systems, where a knowledge of cloud microphysics, partic-
ularly cloud–aerosol interactions, is critical for predicting
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large-scale phenomena such as cloud radiative forcing or pre-
cipitation.

To address this and other related issues, the Aerosol
Clouds Trace gases Research InfraStructure (ACTRIS) is es-
tablishing a state-of-the-art ground-based observation net-
work (Pappalardo, 2018). Within this organization, the Cen-
tre for Cloud Remote Sensing (CCRES) is in charge of creat-
ing and defining calibration and quality assurance protocols
for the observation of cloud properties across the complete
network.

One of the key instruments for cloud remote sensing sta-
tions is cloud radar. Cloud radars enable retrievals of several
relevant parameters for cloud research including, but not lim-
ited to, liquid water and ice content profiles, cloud bound-
aries, cloud fraction, precipitation rate and turbulence (Fox
and Illingworth, 1997; Hogan et al., 2001; Wærsted et al.,
2017; Dupont et al., 2018; Haynes et al., 2009). Additionally,
recent studies revealed the potential of cloud radars to sup-
port a better understanding of fog processes (Dupont et al.,
2012; Boers et al., 2013; Wærsted et al., 2019).

However, calibration remains a crucial factor in the relia-
bility of radar-retrieved data (Ewald et al., 2019). Systematic
differences of 2 dB have already been observed, for example,
between the satellite-based radar CloudSat and the Linden-
berg microwave radar (MIRA) (Protat et al., 2009). This is a
very important issue since calibration errors as small as 1 dB
would already introduce uncertainties in liquid water and ice
content retrievals of the order of 15 %–20 % (Fox and Illing-
worth, 1997; Ewald et al., 2019).

Since the objective of the CCRES is to guarantee a net-
work of high-quality observations, it is essential to develop
standardized and repeatable calibration methods for its in-
strumental network.

This paper presents an absolute calibration method for
W-band radars. It has been developed based on results
from two experimental calibration campaigns performed at
the Site Instrumental de Recherche par Télédétection At-
mosphérique (SIRTA) atmospheric observatory located in
Palaiseau, France (Haeffelin et al., 2005). The SIRTA obser-
vatory hosts part of the ACTRIS CCRES infrastructure. For
the experiments, we used a BASTA mini W-band frequency-
modulated continuous wave (FMCW) radar with scanning
capabilities (Delanoë et al., 2016). Nevertheless, the princi-
ples, procedures and limitations presented here should be ap-
plicable for any radar with similar characteristics, even when
operating in another frequency band.

The method consists of an end-to-end calibration ap-
proach, which consists of retrieving the radar calibration co-
efficient by sampling the power reflected from a reference re-
flector mounted on top of a mast (Chandrasekar et al., 2015).
A detailed analysis of uncertainty and bias sources is per-
formed, with the objective of determining how to improve
the experiment to reach a calibration uncertainty lower than
1 dB. This low uncertainty in the calibration would not only
be useful for high-quality retrievals but would also enable the

use of the radar as a reliable reference for calibration transfer
to other ground- or space-based cloud radars (Bergada et al.,
2001; Protat et al., 2011; Ewald et al., 2019).

The article is structured as follows: Sect. 2 presents the
equations and theoretical considerations involved in the cal-
ibration exercise. Section 3 shows the experimental setup,
complemented by Sect. 4 in which the experimental proce-
dure and data treatment are presented. Section 5 presents an
analysis of the sources of uncertainty and bias involved in
our calibration experiment. Section 6 presents the final cali-
bration results, the uncertainty budget and an analysis of the
variability in the calibration bias correction, followed by the
conclusions.

2 Equations used in radar calibration

The absolute calibration of a radar consists of determining
the radar cross section (RCS) calibration term C0 and the
radar equivalent reflectivity calibration term CZ . They en-
able the calculation of radar cross section 0(r) (RCS) or
radar equivalent reflectivity Ze, respectively, from the power
backscattered by a punctual or distributed target towards the
radar (Bringi and Chandrasekar, 2001).

Equation (2a) presents an expression for the RCS cali-
bration term C0(T ,Fb) of a FMCW radar as a function of
its internal parameters. The deduction of this expression is
shown in the Supplement.Gt andGr are the maximum gains
of the transmitting and receiving antennas, respectively, and
are unitless. λ is the wavelength of the carrier wave in meters,
and pt is the power emitted by the radar in milliwatts.

The gain of solid-state components changes with varia-
tions in their temperature. Thus, we make this dependence
explicit in the receiver loss budget Lr(T ,Fb) and in the trans-
mitter loss budget Lt(T ). Loss budgets are the product of all
losses divided by the gain terms at the end of the receiver or
emitter chain and are unitless.

Additionally, a range dependence is included in Lr(T ,Fb)
to account for variations in the receiver’s intermediate fre-
quency (IF) loss for different beat frequency Fb values. The
beat frequency in FMCW radars is proportional to the dis-
tance between the instrument and the backscattering element
(Delanoë et al., 2016). Thus, changes in the IF loss for dif-
ferent beat frequencies introduce a range-dependent bias. For
the 12.5 m resolution mode used in this calibration exercise,
Fb ranges between 168 and 180 MHz and can be related to r
(in meters) using Eq. (1).

r = 500 · (Fb− 168 [MHz]) . (1)

In theory, C0(T ,Fb) can be calculated by characterizing
the gains and losses of every component inside the radar sys-
tem and adding them. This can be very challenging, depend-
ing on the complexity of the radar hardware and the avail-
able radio frequency analysis equipment. In addition, with
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this procedure it is not possible to quantify losses due to in-
teractions between different components, especially changes
in antenna alignment or radome degradation (Anagnostou
et al., 2001). This motivates the implementation of an end-
to-end calibration, which consists of the characterization of
the complete radar system at once by using a reference re-
flector and Eq. (2b).

C0(T ,Fb)= 10log10

(
Lt(T )Lr(T ,Fb)(4π)3

GtGrλ2pt

)
(2a)

0(r)= C0(T ,Fb)+ 2Lat(r)+ 40log10(r)+Pr(r). (2b)

Equation (2b) links the calibration term C0(T ,Fb) to the
RCS 0(r) of a target at a distance r . 0(r) is expressed in
units of decibels per square meter (dBsm),Lat(r) is the atmo-
spheric attenuation between the object and the radar in deci-
bels (dB), which can be calculated using a millimeter-wave
attenuation model (e.g., Liebe, 1989). Pr(r) is the power
received from the target in decibel milliwatts (dBm), and
C0(T ,Fb) is the RCS calibration term in dB(m−2 mW−1).
The dB(m−2 mW−1) unit is the abbreviation of decibels ref-
erenced as 1 m−2 mW−1. The units in the RCS calibration
term compensate the radar power units, guaranteeing the re-
trieval of physical RCS values. The explicit temperature and
range dependency of the calibration term has the function of
compensating gain changes in Pr(r) introduced by tempera-
ture effects and variations in the IF loss with distance.

This principle can be used in an end-to-end calibration by
installing a target with a known RCS 00 at a known distance
r0 and sampling the power Pr(r0) reflected back to calculate
C0(T ,Fb). However, some additional considerations must be
made to perform this retrieval.

In Eq. (2a), we state that the calibration value has a tem-
perature and a range dependency. Experimental results indi-
cate that the temperature dependency of C0(T ,Fb) can be
approximated by a linear relationship, as shown in Eq. (3).
Here n is the temperature dependency term in dB ◦C−1, T
the internal radar temperature in ◦C and T0 is a reference
temperature value in degrees Celsius. More details about the
temperature correction can be found in Sect. 5.4.

The range dependence of C0(T ,Fb) is treated indepen-
dently by defining a IF loss-correction function, fIF(Fb), in
decibels. This function is introduced to compensate for rel-
ative loss variations at different IF frequencies. The IF loss-
correction function is studied in Sect. 5.5.

From the aforementioned observations, we divide
C0(T ,Fb) into three components, as shown in Eq. (3).
This separation consists of a constant calibration coefficient
C0
0 , in dB(m−2 mW−1), and the two correction functions
n(T − T0) and fIF(Fb).

C0(T ,Fb)= C
0
0 + n(T − T0)+ fIF(Fb). (3)

As fIF(Fb) corrects for relative variations in receiver loss
with distance, we define fIF(F0)= 0 at the IF frequency

value F0, which is associated to the reflector position r0
(linked by Eq. 1). Using this and Eqs. (2b) and (3), we obtain
Eqs. (4a) and (4b).

C0(T ,F0)= C
0
0 + n(T − T0) (4a)

C0(T ,F0)= 00− 40log(r0)− 2Lat(r0)−Pr(r0). (4b)

Equation (4a) shows how the calibration term C0(T ,F0)

at position r0 is related to the calibration coefficient C0
0 and

the temperature correction n(T − T0). Meanwhile, Eq. (4b)
indicates how experimental Pr(r0) measurements can be as-
sociated with a C0(T ,F0) value, using in situ information
to calculate 2Lat(r0). Then, using Eq. (4a), we can com-
pute C0

0 by subtracting the temperature correction function
n(T − T0). This temperature correction is derived indepen-
dently in Sect. 5.4. Knowing C0

0 and the temperature cor-
rection, C0(T ,Fb) is calculated by adding the IF correction
function, which is independently retrieved in Sect. 5.5.

Once C0(T ,Fb) is known, we can calculate the
radar equivalent reflectivity calibration term CZ(T ,Fb), in
dB(mm6 m−5 mW−1), with Eq. (5a) (Yau and Rogers, 1996).
This relationship assumes that the radar has two identical par-
allel antennas with a Gaussian-shaped main lobe. θ is the an-
tenna beamwidth in radians, mδr is the radar distance reso-
lution in meters, and |K| = |(εr−1)/(εr+2)| is the dielectric
factor. This factor is related to the relative complex permit-
tivity εr of the scattering particles and can be calculated, for
example, using the results of Meissner and Wentz (2004).
CZ(T ,Fb) enables the calculation of the radar equivalent

reflectivityZe, in decibels relative to Z (dBZ), of a distributed
target located at a distance r by using Eq. (5b). The dBZ
unit is usually used to express radar equivalent reflectivity in
logarithmic units and is related to the linear units by 1 dBZ=
10log10(1 mm6 m−3).

CZ(T ,Fb)= 10log10

(
8ln(2)λ41018

θ2π6K2δr

)
+C0(T ,r) (5a)

Ze(r)= CZ(T ,Fb)+ 2Lat(r)+ 20log10(r)+Pr(r). (5b)

3 Experimental setup

Two calibration campaigns that lasted one month each were
performed in May–June of 2018 and March–April of 2019 at
the SIRTA observatory located in Palaiseau, France (Haeffe-
lin et al., 2005). The observatory has a 500 m long grass field
in an area free of buildings, trees or other sources of clut-
ter, making it well suited to the installation of our calibration
setup, as shown in Fig. 1.

The instrument used for the calibration experiments is a
BASTA mini radar. The BASTA mini is a 95 GHz FMCW
radar with scanning capabilities and two parallel Cassegrain
antennas (Delanoë et al., 2016). The antennas are separated
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Figure 1. Experimental setup for 2018 and 2019 calibration experiments. (A) Scanning BASTA mini radar located on a reinforced platform
5 m above the ground. (B) A 10 m mast with a 10 cm triangular trihedral target mounted on a pan-tilt motor with an angular resolution
and repeatability better than 0.1 ◦. This mast has microwave-absorbing material wrapped around it to reduce its radar cross section (RCS;
clutter). The 10 m mast was only installed in the 2019 calibration campaign. (C) A 20 m mast with a 20 cm triangular trihedral target. The
target aiming is fixed relative to the mast. This mast was used in both 2018 and 2019 calibration campaigns. Angular separation between the
masts is enough to sample both targets without mutual interference.

by 35 cm and have a Fraunhofer far-field distance of ≈ 50 m,
with a Gaussian-shaped main lobe (verified experimentally
in Sect. 5.2). Transmitted power is fixed to 500 mW and is
under constant monitoring, using a diode with an uncertainty
of≈ 0.4 dB. The diode enables the monitoring of Lt(T ) vari-
ations, yet our experiments have shown that T is a better indi-
cator for capturing the variability in C0(T ,Fb). This is likely
because internal temperature changes affect both Lr(T ,Fb)

and Lt(T ) simultaneously, and therefore, the information
provided by the diode is not sufficient for capturing the be-
havior of the whole system. The results of the temperature
dependency study for our radar are shown in Sect. 5.4.

This radar also includes hardware to enable the tuning
of the carrier wave frequency within a range of ≈ 1 GHz,
centered at 95 GHz. During the experiments, we fixed the
BASTA mini base frequency at 95.64 GHz to avoid any in-
terference with the other two W-band radars operating in par-
allel at the same site.

Our reference targets are two triangular trihedral reflec-
tors (also known as corner reflectors) composed of three or-
thogonal triangular conducting plates. Trihedral targets have
a large RCS for their size and a low angular variability in
RCS around their boresight (Atlas, 2002; Brock and Doerry,
2009; Chandrasekar et al., 2015). One reflector has a size
parameter of 10 cm, with a maximum theoretical RCS at our
radar operation frequency of 16.30 dBsm. The other is 20 cm,
with a maximum theoretical RCS of 28.34 dBsm (Brooker,
2006). These targets were mounted on top of masts B and
C in Fig. 1, respectively. Only mast C was used in the 2018
campaign, while both were used in 2019.

To align the system, first, we aim the radar towards the
approximate position of the target. Second, we aim the target
by slowly changing the pan-tilt angles in the motor on mast B
or axially rotating the tube of mast C to maximize the power
Pr(r0) measured at the radar. Third, radar aiming is tuned
around the target position until the maximum reflected power
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is found. Finally, we repeat the second step, after which we
have the system ready to sample Pr(r0).

It must be mentioned that this procedure does not guar-
antee a perfect alignment. In fact, it is impossible to have
every element perfectly adjusted because of limits in the
radar scanner resolution or uncertainties introduced when in-
stalling each element. Sections 4 and 5.6 explain how we deal
with these limitations.

4 Methodology

This section describes the procedure followed when per-
forming calibration experiments using the setup described
in Sect. 3. The methodology has the objective of quanti-
fying and correcting, when possible, all sources of uncer-
tainty to enable a reliable estimation of the calibration terms
C0(T ,Fb) and CZ(T ,Fb).

A challenge we found when using targets mounted on
masts to estimate C0(T ,Fb) is that the value of the tar-
get RCS 00 may vary, depending on how components are
aligned. Our studies have shown that, for the feasible align-
ment accuracy we can obtain when installing our setup, this
effect is of the order of tenths of a decibel and therefore not
negligible. Additionally, we concluded that, if we leave this
uncertainty source uncorrected, we would introduce a bias in
the calibration result (see Sect. 5.6).

The flow chart of Fig. 2 illustrates the calibration proce-
dure. To quantify the bias introduced by alignment uncer-
tainty, we decided to divide each calibration experiment into
N iterations. Each iteration consists of a system realignment,
followed by sampling of the target signal Pr(r0) for at least
1 h. Then, we select the data from the contiguous hour with
the lowest variability as the iteration result.

The period chosen to perform the sampling is impor-
tant because it will have an incidence on how stable the
calibration value is. To minimize uncertainty, it is recom-
mended that calibration iterations are performed when the
atmosphere is clear, there is no rain and wind speed is under
1 m s−1. However, these requirements may change, depend-
ing on how robust is each setup to atmospheric conditions.

FMCW radars have a discrete distance resolution. Con-
sequently, power measurements vs. distance are resolved in
finite discrete points usually named gates. Because of this
resolution limitation, the power received from a point target
is spread between the gates closer to its position (Doviak and
Zrnić, 2006). This phenomena is known as spectral leakage.
To reduce leakage, BASTA mini uses a Hann time window
(Richardson, 1978; Delanoë et al., 2016).

To correctly assess the total reflected power, we set the
radar resolution to 12.5 m (chirp bandwidth of 12 MHz) and
its integration time to 0.5 s. This resolution is high enough to
accurately identify the reference reflector signal while avoid-
ing the introduction of additional clutter from the trees lo-
cated behind the mast (see Fig. 3).

To calculate Pr(r0), we add five gates, namely the target
gate plus two before and two after the target position. Adding
more contiguous gates increases the power value by less than
0.01 dB; thus, we conclude that these five gates concentrate
almost all the power reflected back from the target.

Then Pr(r0) is corrected considering compression effects
and antenna overlap losses (Sect. 5.1 and 5.2). For each cor-
rected Pr(r0) sample, we proceed to calculate a single C0

0

value with Eq. (4a) and the temperature correction function.
This single sample is defined as C0

0s to differentiate it from
the final calibration coefficient C0

0 of Eq. (3). Atmospheric
attenuationLat(r0) is calculated using in situ atmospheric ob-
servations and the model published by Liebe (1989).

The target-effective RCS 00 is calculated using a theo-
retical RCS model, considering the beam incidence angle
on the target. Echo chamber measurements have shown that
real targets of RCS can be deviated from the theoretical
value, depending on the manufacturing precision. Our cor-
ner reflectors have an angular manufacturing precision bet-
ter than 0.1◦; therefore, real RCS uncertainty with respect to
the model can be roughly estimated to be approximately 2 dB
(Garthwaite et al., 2015). Once an experimental characteriza-
tion of the target becomes available, it can be used to correct
any calibration bias and to reduce uncertainty by rectifying
the value of 00 used in the calculations.

We performed one calibration experiment with six itera-
tions during the 2018 campaign using the 20 m mast. In the
2019 campaign, we did two experiments, namely one with
10 iterations, using the 10 m mast, and another with two iter-
ations on the 20 m mast (Fig. 1).

The retrieval of the temperature dependency coefficient n
and the reference temperature T0 is done simultaneously with
the calibration coefficient experiment by extending the sam-
pling period beyond 1 h when using the 20 m mast. This is
done to capture the temperature effect in the variability in
C0
0s by capturing a larger part of the temperature daily cy-

cle. The results of this experiment can be seen in Sect. 5.4.
Likewise, the retrieval of the IF correction function fIF(Fb)

is an independent experiment based on sampling noise with
the radar to obtain the IF amplification curve of the receiver.
The details of this experiment are in Sect. 5.5.

From each iteration, we obtain a distribution of resulting
C0
0s values with a small spread introduced by second-order

effects. The average value of each iteration i is named C0
0i ,

and its corresponding standard deviation is named σi . With
this information, we proceed to calculate the bias-corrected
calibration coefficient C0

0 by using Eq. (6). 3̃ is the bias-
correction term. The method used to calculate λ relies on
simulating the probability distribution of 00 for a given set
of uncertainties in the setup parameters. More detail can be
found in Sects. 5.6 and S3 in the Supplement.

C0
0 =

1
N

N∑
i=1

C0
0i − 3̃. (6)
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Figure 2. Summary of a complete calibration process. Each calibration requires the repetition of system realignment and sampling steps
called iterations. During each iteration, we continuously sample the power reflected from the reference target position for 1 h (power cor-
rections in Sect. 5.1). The retrieval of N iterations enables the estimation of the system bias due to misalignments in the setup (Sect. 5.6).
Temperature dependency is retrieved in an independent experiment (Sect. 5.4). Uncertainty introduced by clutter signals at the target location
is also included in the total uncertainty budget (Sect. 5.3).

Equations (7a) and (7b) show the uncertainties δC0
and δCZ associated with the estimation of C0(T ,Fb) and
CZ(T ,Fb), respectively.
σT is the uncertainty term associated with the temperature

correction function n(T − T0).
σIF is the uncertainty term associated with the IF loss cor-

rection function fIF(Fb).
The term

∑
σ 2
i comes from the averaging operation in the

estimation of C0
0i (Eq. 6). Since the C0

0i terms are corrected
using the temperature correction function, the uncertainty of
the latter must be propagated as well; hence, the term σ 2

T /N

appears.
σ3 is the uncertainty of the bias correction calculation. It

is calculated from the standard deviation σi . This procedure
is explained in Sect. S3.
σSCR is the uncertainty introduced by clutter. Clutter is the

presence of unwanted echoes, which affect our reading of

Pr(r0), coming from reflections on other objects in the en-
vironment. The method of quantifying the uncertainty σSCR
uses a parameter named signal-to-clutter ratio (SCR), which
is explained in detail in Sect. 5.3.
σ00 is the uncertainty of the reference target RCS. In this

work, we use a theoretical model to calculate the target-
effective RCS, which has an uncertainty of approximately
2 dB based on the manufacturing characteristics. The inclu-
sion of an experimental characterization of the target RCS
can improve the estimation of C0

0 and δC0 by reducing this
uncertainty term.
σK is the uncertainty in the estimation of the backscat-

tering particles dielectric factor. Because our objective is to
calculate the calibration term of the radar, we reference this
value to |K| = 0.86, corresponding to pure water at 5 ◦C, and
neglect the δK uncertainty term. However, the value of K
and its uncertainty σK must be considered when performing
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Figure 3. Mean profiles of received power for experiment 5 in 2018, using the 20 m mast (a), and experiment 1 in 2019, using the 10 m
mast (b). Standard deviation at each gate is indicated with an error bar. The gates are integrated to calculate the reference reflector, and the
backscattered power Pr(r0) is marked in orange. The secondary peak of panel (b), around 400 m, corresponds to reflections on trees behind
the 10 m mast.

radar retrievals (e.g., Sassen, 1987; Liebe et al., 1989; Gaus-
siat et al., 2003).
σA is the uncertainty introduced in the estimation of θ and

from parallax errors and deviations from a Gaussian beam
shape (Sekelsky and Clothiaux, 2002). For this work, we
make the assumption of parallel antennas with a Gaussian
beam shape; thus, we neglect this term. This problem is dis-
cussed more in depth in Sect. 5.2.

Since both σK and σA are neglected, we obtain δC0 ≈
δCZ .

δC0(T ,Fb)=

√√√√ 1
N2

N∑
i=1

σ 2
i +

σ 2
T

N
+ σ 2

IF+ σ
2
T + σ

2
SCR+ σ

2
3+ σ

2
00

(7a)

δCZ(T ,Fb)=

√
δC2

0 + σ
2
K + σ

2
A. (7b)

5 Sources of uncertainty and bias in absolute
calibration with corner reflectors

In this section, we identify and quantify the uncertainty and
bias introduced by several terms in Eq. (2b). Following the
recommendations in the work of Chandrasekar et al. (2015),
we study the impact of receiver saturation, signal-to-clutter
ratio, antenna lobe shape and antenna overlap. Additionally,
we consider the impact of temperature fluctuations inside the

radar box, loss changes with distance due to uneven amplifi-
cation at the receiver’s IF and the effects of imperfect align-
ment of the reference target.

5.1 Receiver compression

It is advisable to design calibration experiments which avoid
the appearance of compression effects. If this is not possi-
ble, compression must be considered in the data treatment so
that the retrieved calibration remains valid in the receiver lin-
ear regime, where it usually operates during cloud sampling
(Scolnik, 2000).

To study how these effects could affect our calibration, we
retrieved the radar receiver power transfer curve. Receiver
characterization was done by removing the radar antennas
and connecting the emitter end to the receiver input with two
attenuators in between. The first was a 40 dB fixed attenuator,
while the second was a tunable attenuator covering the range
between 50 and 1 dB of losses. The adjustable attenuator en-
abled the retrieval of the power transfer curve by varying the
attenuation and sampling the power at the receiver end (dig-
ital processing included). Our retrieved power transfer curve
is shown in Fig. 4a.

Compression effects must be considered in calibration, or
a bias will be introduced. As a consequence, we include com-
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pression correction in every sample of reflected power, which
consists of projecting their value to the ideal linear response
using the power transfer curve.

For example, the power received from the 20 cm target on
the 20 m mast returned was 4.1 dBm, on average, before cor-
rections. The power transfer curve shows that, at this power
value, we have a loss caused by a compression of ≈ 0.3 dB.
After correcting each power sample by compression with
the power transfer curve, we obtain a corrected power av-
erage value of 4.5 dBm. Meanwhile, for the 10 cm target on
the 10 m mast, the average power value before corrections
is 3.2 dBm. As this value is lower than what is obtained
by the 20 m mast, the associated compression effect is also
smaller at ≈ 0.2 dB. After applying this correction to each
power sample, we end with a new, corrected power average
of 3.4 dBm.

5.2 Antenna properties

Manufacturer specifications indicate that antenna beamwidth
should be 0.8◦. However, data from an experimental char-
acterization done by the same manufacturer in an anechoic
chamber indicate that antenna beam shape is better approxi-
mated by a Gaussian function with a half-power beam width
(HPBW) of θ ≈ 0.88◦. The integrated gain difference be-
tween the experimentally retrieved curve and the Gaussian
function is of ≈ 0.0003 dB in the HPBW region. Therefore,
we conclude that the contribution to uncertainty introduced
by assuming a Gaussian beam shape is negligible. The an-
tenna beam shape and Gaussian curve are shown in Fig. 4b.

Another source of bias introduced by the antennas is the
parallax error. Antenna parallax errors introduce a range-
dependent bias determined by the antenna beamwidth and
the relative angles of deviation between the antennas’ bore-
sight. This bias is usually larger in the first few 100 m closest
to the radar. For example, for a deviation of half of the an-
tenna beamwidth, losses would be of the order of 10 dB and
would vary significantly over the first hundreds of meters, de-
creasing with distance to about 1 dB at a approximately 4 km
(Sekelsky and Clothiaux, 2002).

To study this effect, we took advantage of our experimen-
tal setup and the scanning capabilities of the radar to check
if the radar antennas were properly aligned. This was done
by using the target on the 20 m mast. Results are shown in
Fig. 4b. After analyzing the results, we observed that the aim-
ing uncertainty is of the same order of magnitude as the an-
tennas’ beamwidth. Since the correction of the parallax error
requires a very precise measurement of antenna alignment,
we conclude that it is not possible to directly correct for an-
tenna deviations with this information.

However, the relatively small difference of 0.5 dB in the
estimation of C0

0 during the calibration experiments of 2019,
obtained using two masts in the most sensitive distance range
(placed at a distance of 196 and 376.5 m, respectively), indi-

cate that antennas are unlikely to have a deviation compara-
ble to their beamwidth (calibration results in Sect. 6).

Therefore, for the present version of this calibration
methodology, we assume that both antennas are parallel and
that they have a Gaussian beam lobe. Once a reliable method
for antenna pattern retrieval is developed for W-band radars,
it can be directly incorporated into the calibration term by
adding an additional correction function fA(r) to Eq. (3).
The uncertainty in this alignment estimation can also be in-
cluded in the uncertainty budget with the term σA of Eq. (7b).

Even if the antennas are parallel, it is necessary to include
a correction for the loss Lo(r) caused by incomplete antenna
overlap. The correction, shown in Eq. (8), accounts for the
loss in power that would be received from a point target
compared to a monostatic system (Sekelsky and Clothiaux,
2002). This loss occurs because a point target cannot be in
the center of two nonconcentric parallel antenna beams.

Lo(r)= exp

(
2arctan( d2r )

2

0.3606θ2

)
. (8)

Equation (8) assumes that the radar has two identical, par-
allel antennas with Gaussian beam lobes. Their main axis is
separated by a distance d, and the point target is located at a
distance r , facing the geometrical center of the radar, where
the gain is maximum. The antenna separation d of BASTA
mini is of 35 cm, introducing a loss of 0.08 dB for the target
at r0 = 196 m and of 0.02 dB for the target at r0 = 376.5 m.

5.3 Signal-to-clutter ratio

The power sampled from our reference reflector is an addi-
tion of the power from the target (signal) and unwanted re-
flections on other elements in the environment, such as the
ground or the mast (clutter). We observed that this clutter
dominates above the radar noise, and thus becomes the main
source of interference in our calibration signal.

To quantify the impact of clutter, we use the signal-to-
clutter ratio (SCR) parameter. It is calculated as the ratio of
total power received from the target to the power received
from clutter under the same configuration but with the ref-
erence reflector removed. SCR enables the uncertainty σSCR
introduced by clutter in the sampled Pr(r0) values to be com-
puted (Chandrasekar et al., 2015).

Clutter power is sampled and corrected following the same
methodology used for reflector Pr(r0) retrievals but in an
scanning pattern mode to capture clutter around the mast
area. Figure 5 shows our results from scanning around the
10 and 20 m masts with the targets removed.

We observe that the 10 m mast is more reflective than the
20 m one. This may be caused by its smaller height (more
ground clutter) and its larger geometrical cross section. We
can also see that the signal at the 10 m mast is stronger where
absorbing material is not present (below≈ 1.5◦ of elevation).
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Figure 4. (a) Power transfer curve of the BASTA mini receiver. Input power is relative to the minimum attenuation value of the curve
characterization experiment. All our signal retrievals from the target are slightly under the 5 dBm line; thus, the correction required due to
compression effects is small (< 0.3 dB). (b) Normalized antenna pattern of the BASTA mini antennas. We can observe that the Gaussian fit
with a beamwidth of θ = 0.88◦ is very close to the antenna gain curve measured at the manufacturer’s laboratories. This figure also shows the
results from mast scans around the target for comparison with the theoretical curves. To enable the comparison with the laboratory antenna
pattern, we assume that the gain of both antennas is identical. Then, the received power in decibels per milliwatt is normalized with respect
to the maximum measured value and divided by two to represent the gain of a single antenna.

In both cases, we did not detect any signal from the nearby
trees close to the target position.

To calculate SCR, we compare the average power received
from each target during the calibration experiments with
the maximum clutter power observed in a region of 0.125◦

around the target coordinates, both vertically and horizon-
tally. The value is taken from the radar scanner resolution.

The average power received from the 10 cm target on
the 10 m mast is 3.4 dBm. This provides an SCR value
of 19.4 dB, which implies a σSCR uncertainty value of ≈
0.93 dB. From the 20 cm target on the 20 m mast, the average
received power is 4.5 dBm. Its SCR equals 40.1 dB, which is
translated as an uncertainty contribution of σSCR ≈ 0.09 dB.
From the results, we see that even if target alignment is better
with the 10 m mast, calibration results may not be less uncer-
tain because the motor used for target alignment acts as a big
source of clutter.

5.4 Temperature correction

BASTA mini has a regulation system to control temperature
fluctuations inside the radar box. However, since the radar
is based on solid-state components, even small temperature
fluctuations may impact the performance of the transmitter
and receiver and, therefore, affect the calibration stability. To
account for this effect, we introduced a temperature depen-
dency in the calibration term, as shown in Eq. (3).

During the experiments, we verified the need for this
correction by observing that the retrieved calibration term
C0(T ,F0) has a consistent change, depending on the time

of the day, and that this change is strongly correlated to the
temperature inside the radar.

Figure 6a, b and c show the results of a representative ex-
periment done in the 2018 campaign. Here we left the radar
sampling the target signal for several hours to observe the
variability in C0(T ,F0) during the day. Figure 6a shows the
raw result in the RCS calibration term C0(T ,F0). There is
a spread of almost 1 dB between the maximum and mini-
mum values during the whole time series. Figure 6b is a
Fourier transform of this raw time series. Here we can see
that most of the variability happens in the timescale of hours.
Figure 6c presents the time series of Fig. 6a but in a daily
cycle perspective. Here we plot hourly means of the devi-
ation of C0(T ,F0), with respect to the total average, with
its hourly standard deviation as error bars. We also super-
imposed the atmospheric attenuation and the radar amplifier
temperature to show that the former has a much smaller im-
pact in calibration variability compared to the latter.

Figure 6d shows the raw results of plotting variations
in C0(T ,F0) to temperature changes around T0 = 26.5 ◦C.
These variations are calculated independently for each iter-
ation by subtracting the constant term of the linear fit of
C0(T ,F0) with respect to temperature. This operation re-
moves the effect introduced by differences in alignment be-
tween the different iterations. The reference T0 value is cho-
sen because it is approximately the average internal temper-
ature when considering all the experiments.

To maximize the range of temperatures covered, we
choose to not limit the sampling period to 1 h. This decision
has the drawback of increasing the noise of the data set due
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Figure 5. Clutter retrieval from the 10 m (a) and 20 m masts (b), respectively. Masts are scanned without the reflectors to measure the clutter
signal. The nominal target position is marked with a black cross.

to the inclusion of some data taken under suboptimal condi-
tions, for example, with wind speed velocities above 1 m s−1

or with the presence of drizzle. Yet, this step is necessary to
enable the retrieval of the temperature correction function for
the widest range of temperatures possible.

To retrieve the temperature dependency, we perform a lin-
ear regression over the results from all the experiments done
in 2018 and 2019, as shown in Fig. 7. The regression shows
that the variability in the calibration term has an almost-linear
relationship with the internal radar temperature, in the deci-
bel scale, and it is the same for both campaigns. This analy-
sis allows us to estimate the value n= 0.093 dB ◦C−1 for the
temperature correction function of Eq. (3). To estimate the
uncertainty of the temperature correction function, we calcu-
late the root mean square error (RMSE) between the linear
regression model and the whole data set for each degree of
deviation in temperature. The RMSE value for the complete
data set is of 0.13 dB, while its value per degree ranges be-
tween 0.07 and 0.23 dB for a deviation of 0 and +3 ◦C, re-
spectively. These results enable us to conclude that the tem-
perature correction function uncertainty σT is ≤ 0.23 dB.

5.5 IF loss correction function fIF(Fb)

FMCW radars rely on estimating the beat frequency of the
received signal to estimate the distance of an object. This
signal may suffer uneven amplification, depending on its fre-
quency, because of a frequency-dependent gain function in
the amplifiers of the IF chain of the radar. Since there is a di-
rect relationship between the IF frequency Fb and the target
distance r , this dependency on the beat frequency introduces
a gain variability with respect to the target distance r . As in-
troduced in Sect. 2, this distance dependency is compensated
in the calibration term with a IF correction function fIF(Fb).

The power Pr(r) measured by the receiver when no ac-
tive signal is inputted corresponds to the system noise power
Ns(Fb) plus the environmental noise power N0 amplified by
the radar receiver gain Gr(T ,Fb) (this gain term is equiva-
lent to L−1

r (T ,Fb) of Eq. 2a). Equation (9a) expresses this
relationship when Pr(r) is in decibel milliwatts and N0 and
Ns(Fb) are expressed in linear units (Pozar, 2009).

The standard way to retrieve each of these terms is to per-
form a two-point calibration. This requires the use of two
noise sources at significantly different and well-known tem-
peratures. Usually, the temperatures of the noise sources are
the environmental temperature (298 K) and that of liquid ni-
trogen (77 K) (Rodríguez Olivos, 2015). The receiver gain
versus the frequency retrieved from this two-point calibra-
tion could be used to derive the IF correction function di-
rectly. However, this approach requires tailored equipment
which was not available during the experimentation. There-
fore, since the IF correction function is important for remov-
ing calibration bias, we follow a different approach when es-
timating its value.

To estimate the IF correction function, we take advan-
tage of the narrow IF bandwidth of the BASTA mini radar
(12 MHz, from 168 to 180 MHz). A calculation done with
the Friis formula for the radar system indicates that the sys-
tem noise Ns(Fb) should have variations smaller than 0.1 dB
in this bandwidth. This can be explained by the large oper-
ating bandwidth and the high gain of the receiver low noise
amplifier (LNA) of 35 GHz and> 20 dB, respectively, and by
the small variation in the mixer conversion loss for the radar
bandwidth (< 0.3 dB). To verify the plausibility in the esti-
mation of the noise figure variability, we performed an ad-
ditional calculation testing the effect of varying the IF noise
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Figure 6. Calibration variability study. Samples from iteration 5 of the 2018 calibration campaign. (a) Time series of the RCS calibration term
retrieval. (b) Fourier transform of the RCS calibration term after subtracting the mean value. (c) Calibration variability daily cycle, amplifier
temperature and two-way attenuation. Attenuation error bars are too small to be seen at this scale. (d) Relative changes in C0(T ,F0) versus
amplifier temperature plotted using all samples from the 2018 and 2019 campaigns.
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Figure 7. A 2D histogram of the relative changes in C0(T ,F0) with respect to changes in the amplifier temperature and its linear least
squares fit. The histogram is plotted using all C0(T ,F0) samples from the 2018 and 2019 calibration campaigns.

temperature from 0 to 400 K, and in all cases, the system
noise variability remained under 0.1 dB.

This low variability enables the retrieval of the IF correc-
tion function by assuming a constant noise power density in
the IF frequency range (Eq. 9b). The constant noise power
term Nc corresponds to the addition of environmental and
system noise.

Pr(r)≡ Pr(Fb)= 10log10 (Gr(T ,Fb) · (Ns(Fb)+N0)) (9a)
≈ 10log10 (Gr(T ,Fb) ·Nc)

= 10log10

(
Nc

Lr(T ,Fb)

)
. (9b)

Then, to retrieve the fIF(Fb), we turn off the radar emitter
and sample the environmental noise with the radar operat-
ing in its calibration configuration (12.5 m distance resolu-
tion and 0.5 s integration time). After retrieving a significant
amount of noise samples, we calculate the average value of
the difference Pr(F0)−Pr(Fb) for each IF frequency Fb to
remove the effect of the unknown noise power density. This
operation is done to quantify relative gain variations around
the calibrated frequency F0.

By using Eqs. (2a) and (3), we find that the differ-
ence Pr(F0)−Pr(Fb) is equivalent to the difference between
C0(T ,Fb) and C0(T ,F0), and therefore, it is equivalent to
the IF correction function fIF(Fb) (Eq. 10). The temperature
effect in gain is removed because both Pr(F0) and Pr(Fb)

are sampled simultaneously and, therefore, under the same
temperature conditions.

Pr(F0)−Pr(Fb)= 10log10

(
Lr(T ,Fb)

Lr(T ,F0)

)
=−C0(T ,F0)+C0(T ,Fb)= fIF(Fb). (10)

For this experiment only, Pr(F0) corresponds to the power
measured at the gate closer to the reference target position

without integrating other gates. This is done because there
is no significant leakage and, as the results in Fig. 8 show,
Gr(T ,Fb) changes are negligible in the five gates used for
integration.

Figure 8 shows the results of the IF correction function
retrieval referenced to Pr(F0), using F0 associated to the tar-
get distance r0 = 376.5 m (corresponding to the 20 m mast
experimental setup). We can observe that all functions re-
trieved in 2019 are in close agreement, without significant
variations between different dates or times of the day chosen
for the plots. The 2018 function is different because the hard-
ware was modified between both calibration campaigns. Ad-
ditionally, in 2018 the emitter was not turned off to perform
the noise sampling. Rather, we resorted to using a sampling
period with clear-sky conditions to respect the assumptions
of Eq. (9b). To avoid the effect of crosstalk, we only consider
gates farther than 200 m from the radar.

A sixth degree polynomial is used to fit fIF(Fb). For both
2018 and all 2019 curves, the fit has a RMSE< 0.03 dB. Fur-
thermore, the standard deviation between the results from the
four periods of 2019 has a maximum value of 0.04 dB for any
gate. Both results indicate that the uncertainty introduced by
the IF correction function is ≤ 0.04 dB. Finally, the IF cor-
rection function retrieved for the 10 m mast setup in 2019
(with r0 = 196 m) is almost identical to the 20 m mast re-
sults. These functions are presented in Sect. 6. Considering
these low RMSE values, we decided to select the uncertainty
introduced by assuming a constant system noise as the IF
correction function uncertainty; thus, σIF = 0.1 dB.

5.6 Misalignment bias

The retrieval of C0(T ,F0), using Eq. (4b), requires a precise
knowledge of the reference target effective RCS 00. Each
decibel per square meter of difference between the theoreti-
cal value used in the calculations and the effective target RCS
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Figure 8. Data used for the IF correction function calculation, retrieved for different periods of the 2019 calibration campaign. The 2018
IF correction function is different from the 2019 results because the hardware was modified between the campaigns (see 2018 IF correction
function presented in Sect. 6). The time indicated in the label is in universal coordinated time (UTC).

will introduce a bias of the same magnitude in the estimation
of the calibration coefficient C0

0 and, thus, in C0(T ,F0).
The effective reflector RCS is the actual physical value that

would be measured by a perfectly calibrated radar. It is dif-
ferent from the target-intrinsic RCS which only depends on
its physical properties. Effective RCS changes when the ex-
perimental setup is modified. For example, if the point target
is not exactly in the beam center, the antenna gain will not
be maximum, and therefore, the effective RCS will decrease
compared to the intrinsic value. Effective RCS also changes
when the incidence angle of the radar beam is modified. This
latter effect may increase or decrease effective RCS, depend-
ing on the original situation.

A common approach in these type of experiments is to set
00 to be the maximum theoretical RCS of the target, assum-
ing misalignment will cause a negligible deviation from this
value. This procedure can be refined for cases in which the
system default configuration does not have the target bore-
sight aligned with the radar position. In these cases, effective
RCS can be calculated using equations derived from geomet-
rical optics (more complex optical calculations may be nec-
essary for other wavelengths or target sizes). For example,
we use the equations published by Brock and Doerry (2009)
when calculating the effective RCS of our triangular trihedral
target on the 20 m mast.

Unfortunately, this approach does not correct the impact
of alignment uncertainties. We observed that random errors
in the element positioning will statistically impact the effec-
tive 00 in a single direction. Thus, simply taking the average
of many target sampling iterations would result in a biased
estimation of the calibration.

With the objective of quantifying the impact of alignment
uncertainties, we developed a geometrical simulator of ef-

fective RCS. This simulator receives as input the position of
each element in the setup and calculates the effective RCS,
considering the beam incidence angle and antenna gain vari-
ations when the target is not in the center of the beam. The
degrees of freedom included in the simulator are shown in
Fig. 9a. It enables the modification of the radar aiming an-
gles, the mast dimensions and the positioning and orienta-
tion of the target. The equations used in the simulator can be
found in the Supplement.

We now use the simulator to study how uncertainty in
alignment can affect the value of 00. For this, we model an
example experiment based on the 20 m mast setup. In this
model, we separate input variables between known and un-
certain. Known terms can be fixed or measured very pre-
cisely in the field experiment; hence, they are set as fixed
values. Meanwhile, uncertain terms represent the parame-
ters that cannot be fixed or measured very precisely and, for
that reason, are better expressed as probability distributions
(terms defined in Fig. 9a).

– Known terms, as follows:

– xr = 376.5 m

– hr = 5.3 m

– ρ = 20 m

– α = 48◦

– target size= 20 cm.

– Variables with uncertainty, as follows:

– θr =N (θ∗r ,σ 2
θr
)

– φr =N (φ∗r ,σ 2
φr
)
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– θ =N (0,σ 2
θ )

– φ = U([0◦,360◦))

– τ =N (τ ∗,σ 2
τ ).

In the uncertain variables, θ∗r = 87.82◦, φ∗r = 0◦ and τ ∗ =
0◦ represent the nominal alignment angles, which are the val-
ues expected under an ideal field experiment where the radar
aims directly at the target and the mast is perfectly vertical.
To these nominal values we associate a distribution shape and
the uncertainty set of σθr = 0.075◦, σφr = 0.075◦, σθ = 1.5◦

and στ = 5◦. Each term, known and uncertain, is estimated
from observations done during the experimental field work.

With these input parameters, we sample the 00 distribution
that would arise after a large number of experimental itera-
tions. Figure 9b shows the results from this sampling. The
black dashed line shows the effective RCS under our exper-
imental configuration when each element is in its nominal
position. We can see that this effect cannot be neglected in
our case since its value is 0.8 dB lower than the maximum
theoretical RCS.

However, this single correction does not suffice. The re-
sults of the model show that the addition of uncertainty into
the process induces another bias of ≈ 0.3 dB on average.
Since this is within the order of magnitude of our desired
uncertainty in the calibration, the example clearly illustrates
the need for including a bias correction step in our calibration
methodology.

The standard deviation σε between N experimental re-
trievals of C0

0i cannot be used directly as an estimation of
uncertainty because the RCS distribution shape is not Gaus-
sian. The uncertainty introduced by this variability is studied
by sampling a large set of possible RCS distributions, based
on our experimental configuration, and selecting the candi-
dates matching our observed spread σε . This set provides an
estimation of the expected bias correction 3̃ and of the effec-
tive RCS uncertainty σ3. The uncertainty of the C0

0 estima-
tor of Eq. (6) will correspond to the uncertainty of each C0

0i

estimation propagated through the calculation of their aver-
age (terms

∑
σ 2
i /N

2 and σ 2
T /N in Eq. 7a) plus the effective

RCS uncertainty σ3. The details on how this estimator works
and how the RCS distribution sampling is done are fully ex-
plained in Sect. S3.

6 Results

In 2018 we used the 20 m mast only, performing six itera-
tions. For 2019, we did 10 iterations using the 10 m mast
and two iterations with the 20 m mast. The distributions of
C0
0 obtained in each iteration and experiment are shown in

Fig. 10.
The radar hardware changed between the 2018 and 2019

campaigns due to experiments that required retrieving the
power transfer curve and performing maintenance opera-
tions. This implies that we cannot compare the absolute cali-

Figure 9. (a) Diagram of the RCS simulator illustrating its degrees
of freedom. (b) Example of an effective RCS distribution obtained
after 100 000 simulations with the uncertainty set specified in the
text. The simulations are based on our 20 m mast setup. Bias is cal-
culated by subtracting the ideal RCS from the mean RCS value.
The example illustrates how the effective RCS will be, statistically,
lower than the result expected from an ideally aligned setup.

bration values between both campaigns. What remains valid
is the comparison of the properties, such as the variability,
and the results from both experiments in 2019.

In the results, we can notice a difference in the C0
0i spread

when comparing the 10 and 20 m masts. The six iterations
of 2018 (Fig. 10a) have a spread of σε = 0.33 dB, while the
spread of the 10 iterations of 2019 is 0.11 dB (Fig. 10b). This
happens because the 10 m mast has a motor on top which en-
ables a much finer adjustment of the target position, improv-
ing the repeatability of the experiments.

There is also a small difference in the spread of the curves.
The C0

0i values retrieved in experiment (B) have a smaller
spread σi . This is because we took all the samples during one
single night with very clear conditions and an average wind
speed below 1 m s−1. A great advantage was the presence of
the motor that enables target alignment in ≈ 5 min. Mean-
while, for experiment (A), curves were sampled during dif-
ferent days because the 20 m mast setup requires more time
to align (≈ 2 h). The different conditions on each day led to a
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Figure 10. Calibration coefficient distributions obtained for the (a) 2018 campaign using the 20 cm target on the 20 m mast, the (b) 2019
campaign using the 10 cm target on the 10 m mast and the (c) 2019 campaign with the 20 cm target on the 20 m mast.

more varied shape in the retrieved curves. This effect is spe-
cially noticeable in experiment (C), where the iterations were
performed during daytime when atmospheric conditions are
more dynamic, especially the wind speed variability. The in-
troduced variability was not fully compensated by our cor-
rections and, thus, bimodal distributions remained. However,

the individual spread is still small, within ≈ 0.1 dB, so we
decided to accept these samples for calibration purposes.

To study the dependency of the bias correction on the num-
ber of iterations, we calculate the bias correction term 3̃ and
its uncertainty σ3 for experiments (A) and (B) with different
numbers of repetitions. The order of the iterations used in
each row matches the sequential order indicated in Fig. 10.
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Table 1. Bias correction 3̃ and its uncertainty σ3 calculated using a different number of iterations for the experiments of the 2018 and 2019
calibration campaigns (e.g., three iterations means we used iterations 1, 2 and 3 of the experiment). We include the average and spread σε
between the retrieved C0

0i
for each case. This variability σε is introduced in the bias estimation procedure to determine the bias correction 3̃

and its uncertainty σ3.

No. of Experimental results Bias correction
iterations

1
N

∑
C0
0i

σε (dB) 3̃ (dB) σ3 (dB)

Experiment (A) 20 m mast (2018) 2 −80.51 0.38 0.98 1.78
3 −80.59 0.33 0.65 0.86
4 −80.65 0.31 0.51 0.50
5 −80.64 0.28 0.40 0.33
6 −80.54 0.33 0.44 0.28

Experiment (B) 10 m mast (2019) 2 −79.55 0.15 0.78 1.65
3 −79.56 0.12 0.42 0.70
4 −79.57 0.11 0.27 0.34
5 −79.60 0.12 0.24 0.20
6 −79.62 0.12 0.22 0.13
7 −79.63 0.11 0.19 0.10
8 −79.62 0.11 0.18 0.07
9 −79.61 0.11 0.17 0.06

10 −79.60 0.11 0.16 0.05

Experiment (C) 20 m mast (2019) 2 −78.81 – 0.44 0.28

The results are shown in Table 1. For both cases we have the
best estimate when we use all the samples available for each
experiment, and thus, we use this bias correction and uncer-
tainty when computing the calibration coefficient.

For experiment (C), we followed a different approach. Be-
cause we only have two samples, the calculated σε = 0.2 dB
is very likely to be underestimated. Consequently, and be-
cause the experimental procedure was identical to what was
done in 2018, we assume our parameters σε , 3̃ and σ3 to be
equal to the best estimation of experiment (A). This is pos-
sible because in our methodology we assume that the bias
probability distribution of a given system is unique, even if
it is unknown, and what is done by performing many iter-
ations is successively restricting the possible sets of uncer-
tainties that can generate results consistent with the observa-
tions. This latter hypothesis is consistent with the decrease in
uncertainty for the bias correction when increasing the num-
ber of iterations. Table 2 contains a summary of all known
bias corrections and uncertainty contributions, as introduced
in Sect. 4. With the aforementioned results, we use Eqs. (6),
(3), (7a) and (7b) to estimate the RCS and reflectivity cali-
bration terms C0(T ,Fb) and CZ(T ,Fb) alongside their un-
certainty. Since the term σ00 is much larger than all other
uncertainty sources, we calculate a partial calibration uncer-
tainty including all but this term to simplify the comparison
of uncertainty contributions between different experimental
setups. This term is then added for the calculation of the fi-
nal result. CZ(T ,Fb) is calculated for the range resolution
δr = 12.5 m, which is the same mode used for target sam-

pling. T is the radar amplifier temperature in degrees Celsius
and fIF(Fb) is the IF loss correction function.

– Experiment (A), 20 m mast (2018):

– C0(T ,Fb)=−80.98+ 0.093(T − 26.5)+
fIF(Fb)[dB(m−2 mW−1)] ± 2[dB]

– CZ(T ,Fb)= 3.05+ 0.093(T − 26.5)+
fIF(Fb) [dB(mm6 m−5 mW−1)] ± 2[dB]

– fIF(Fb)= 7.34× 10−6F 6
b − 7.70× 10−3F 5

b +

3.36F 4
b − 7.83× 102F 3

b + 1.02× 105F 2
b − 7.15×

106Fb+ 2.08× 108
[dB].

– Experiment (B), 10 m mast (2019):

– C0(T ,Fb)=−79.76+ 0.093(T − 26.5)+
fIF(Fb)[dB(m−2 mW−1)] ± 2[dB]

– CZ(T ,Fb)= 4.28+ 0.093(T − 26.5)+
fIF(Fb)[dB(mm6 m−5 mW−1)] ± 2[dB]

– fIF(Fb)= 7.60× 10−6F 6
b − 7.97× 10−3F 5

b +

3.48F 4
b − 8.10× 102F 3

b + 1.06× 105F 2
b − 7.40×

106Fb+ 2.15× 108
[dB].

– Experiment (C), 20 m mast (2019):

– C0(T ,Fb)=−79.25+ 0.093(T − 26.5)+
fIF(Fb)[dB(m−2 mW−1)] ± 2[dB]

– CZ(T ,r)= 4.79+ 0.093(T − 26.5)+
fIF(Fb)[dB(mm6 m−5 mW−1)] ± 2[dB]

Atmos. Meas. Tech., 13, 6853–6875, 2020 https://doi.org/10.5194/amt-13-6853-2020



F. Toledo et al.: Absolute calibration method for FMCW cloud radars 6869

– fIF(Fb)= 7.60× 10−6F 6
b − 7.97× 10−3F 5

b +

3.48F 4
b − 8.10× 102F 3

b + 1.06× 105F 2
b − 7.40×

106Fb+ 2.15× 108
[dB].

These results enable the analysis of the relative uncertainty
contributions from different sources; however, the total cal-
ibration uncertainty may be underestimated. As indicated in
Sects. 4 and 5, some bias terms remain unknown. Specif-
ically, target physical RCS must be measured in an echo
chamber to improve the misalignment bias estimation. In ad-
dition, the method for characterizing antenna alignment must
be improved to determine if there is a need for an additional
distance correction function (Sect. 5.2). The uncertainty of
these retrievals will impact the total uncertainty value; how-
ever, it is possible to quantify this effect through the terms
σ00 and σA of Eq. (7b).

To finalize, we perform a test of the calibration results by
measuring an altostratus cloud in both campaigns (Fig. 11).
The sampling was done with a 25 m resolution, and thus,
6 dB had to be subtracted from the CZ(T ,Fb) calibration
calculated for the 12.5 m resolution. In this correction, 3 dB
come from the change in the distance resolution term δr

(Eq. 5a), and the other 3 dB are subtracted to compensate for
the additional digital gain coming from doubling the num-
ber of points in the chirp Fourier transform (Delanoë et al.,
2016). A signal-to-noise ratio threshold of 8 dB is used to
remove noise samples. We observe that, for both campaigns,
the reflectivity measured in an altostratus cloud is within−30
to 0 dBZ, which is typical of the values reported in the liter-
ature (Uttal and Kropfli, 2001).

7 Conclusions

This study presents a cloud radar calibration method that is
based on a cloud radar power signal backscattered from a
reference reflector. We study the validity of the method and
variability in the results by performing measurements in two
experimental setups and analyzing the associated results. In
the first experimental setup, we use a scanning BASTA mini
W-band cloud radar that is aimed towards a 20 cm triangu-
lar trihedral target installed at the top of a 20 m mast located
376.5 m from the radar. For the second experimental setup,
we use the same radar, aimed towards a 10 cm triangular tri-
hedral target mounted on a pan-tilt motor at the top of a 10 m
mast. The mast is located 196 m from the radar.

The first consideration in the design of the experimental
setup is the need to avoid excessive compression or satu-
ration in the radar receiver. This must be checked before
any calibration attempt by comparing the measurements of
the radar backscattered power with the radar receiver power
transfer curve. In both our setups, we found losses due to
compression of the order of 0.2∼ 0.3 dB. There is a com-
pensating effect between the target RCS and radar-to-target
distance (Eq. 2b). Since the compression effect is small, we
correct it using our receiver power transfer curve. However,

in cases where the radar is operating close to saturation, or
when compression effects are larger than the calibration un-
certainty goal, it is advisable to compensate by reducing the
target size or by positioning the target farther away from the
radar.

Second, the reflector must be positioned far enough from
the radar to be outside the antennas’ near-field distance and
to ensure that the received power has low antenna overlap
losses. The BASTA mini cloud radar has a Fraunhofer near-
field distance of 50 m. The estimated maximum overlap loss
is less than 0.1 dB for the closest (10 m) mast setup. Thus,
we conclude that the target positioning is far enough for both
setups.

Third, the experimental setup should strive to reduce clut-
ter in the radar measurements. This can be achieved by op-
erating in an open field that is several hundreds of meters in
length and free of trees or other signal-inducing obstacles. It
is also advisable to perform radar measurements under clear
conditions, without fog or rain, with the wind speed below
1 m s−1, and low turbulence.

Next, the proposed calibration method requires perform-
ing several iterations in the same setup configuration. In each
iteration, the setup is first realigned, followed by approxi-
mately 1 h of sampling of the reference reflector’s backscat-
tered power. The sampled power is then corrected for com-
pression effects, incomplete antenna overlap, variations in
radar gain due to temperature and atmospheric attenuation
before being used to estimate a RCS calibration term value.
Once all iterations are completed, the final RCS and equiva-
lent reflectivity calibration terms can be computed with their
respective uncertainties.

Iterations are necessary because they enable the quantifi-
cation of bias introduced by inevitable system misalignment.
Our experiments indicate that, for our setup, at least five it-
erations are necessary to reach convergence in the calcula-
tion of bias and uncertainty associated with misalignment.
We find a bias correction of≈ 0.4±0.3 dB for the 20 m mast
and of ≈ 0.2± 0.1 dB for the 10 m mast. This difference can
be explained by the more precise alignment attainable with
the pan-tilt motor installed on the 10 m mast.

Calibration is also impacted by changes in the gain of radar
components associated with internal temperature variations.
For the radar used in our experiment, these changes reach up
to ±0.6 dB. Our experiments enabled us to retrieve a correc-
tion function for the temperature dependence and to reduce
the temperature uncertainty contribution to σT = 0.23 dB.
This result indicates that lower calibration uncertainties can
be achieved by studying temperature effects, especially for
solid-state radars.

Another necessary consideration is the inclusion of gain
variations with distance which are introduced by frequency-
dependent losses in the IF of the radar receiver. We found
calibration variations with distance up to 0.9 dB for the 2019
campaign. Therefore, characterizing the IF loss is a necessary
step for validating the calibration results for all ranges.
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Table 2. Summary of all known corrections and uncertainty contributions in the calculation of C0(T ,Fb). The absolute correction terms
have a sign associated with the direction in which they impact the final calibration calculation. For the receiver compression correction, we
present the average magnitude, and for the temperature correction, we present the range of possible values. The partial calibration uncertainty
is the addition of all uncertainty terms except σ00 . This term is later added to calculate the total calibration uncertainty. Note: (A), (B) and
(C) refer to the experiments.

Term (dB) (A) 20 m mast (2018) (B) 10 m mast (2019) (C) 20 m mast (2019)

Absolute corrections

Compression Fig. 4a −0.3 on average −0.2 on average −0.3 on average
Partial antenna overlap Lo(r0) −0.02 −0.08 −0.02
Temperature correction (T0 = 26.5 ◦C) n(T − T0) within ±0.6 within ±0.6 within ±0.6
Misalignment bias 3̃ −0.44 −0.16 −0.44
IF loss correction fIF(Fb) ≤ |0.6| ≤ |0.9| ≤ |0.9|

Uncertainty sources

C0
0i

estimation
√

1
N2

∑
σ 2
i

0.03 0.01 0.07

Temperature correction – C0
0i

retrievals σT√
N

0.09 0.07 0.16

Temperature correction – C0(T ,Fb), CZ(T ,Fb) σT 0.23 0.23 0.23
Signal-to-clutter ratio σSCR 0.09 0.93 0.09
Bias correction σ3 0.28 0.05 0.28
IF loss correction σIF 0.1 0.1 0.1

Partial calibration uncertainty 0.40 0.97 0.43
Reflector RCS uncertainty σ00 2 2 2

Total calibration uncertainty δC0 ; δCZ 2.04 2.22 2.04

Figure 11. Altostratus cloud sampled during the 2018 (a) and 2019 campaigns (b). Lower reflectivities are easier to capture at lower altitudes
because of the lower distance and attenuation losses (Eq. 5b). In the altostratus reflectivity histograms (c, d) we observe that, for both
campaigns, measurements are within the ranges reported in the literature.
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Our analyses reveal that the predominant source of uncer-
tainty for all experiments is the reference target RCS, reach-
ing approximately 2 dB due to the use of a theoretical model,
instead of an experimental characterization. The next most
important contributions to uncertainty come from the levels
of clutter and alignment precision. These two effects have
different magnitudes in our two experimental setups (10 and
20 m masts). The 20 m mast setup uncertainty is limited by
the uncertainty contribution of the alignment bias estimation
σ3 = 0.28 dB. The 10 m mast setup uncertainty is limited
by the uncertainty contribution of the signal-to-clutter ra-
tio σSCR = 0.9 dB. This result reveals that there is a tradeoff
between better target alignment and additional clutter intro-
duced by the alignment motor.

The complete uncertainty budget enables us to conclude
that, to reach a calibration uncertainty under 1 dB, it is nec-
essary to have a target RCS characterization with an uncer-
tainty lower than 0.9 dB, based on the accumulated uncer-
tainty of all terms, except target RCS of 0.4 dB. This uncer-
tainty was obtained using the 20 cm target on the 20 m mast
during the 2018 experiment when six target sampling itera-
tions were performed.

Finally, because of cloud radar hardware modifications in
the fall of 2018, the calibration coefficients found in May
2018 and March 2019 differ by 1.2 dB. We compare the cloud
radar measurements of altostratus clouds performed in May
2018 and March 2019. The reflectivity distributions of the
two events are consistent and compatible with values previ-
ously registered in the literature. The two distributions yield
median values that differ by 0.3 dB.

For future work, we envisage the development of a tech-
nological solution to allow target orientation without intro-
ducing additional clutter. Another interesting prospect is to
improve the accuracy of the radar scanner to enable a direct
retrieval of the antenna pattern with the radar, following the
method proposed by Garthwaite et al. (2015). This retrieval
would improve the bias correction arising from parallax er-
rors, which at present is calculated assuming parallel radar
antennas.

We also plan to perform a receiver noise figure charac-
terization, to further reduce uncertainty in the IF correction,
and an echo chamber characterization of our reference tar-
gets. Target characterization will enable the removal of bias
caused by manufacturing imprecision, reduce the RCS un-
certainty contribution to total uncertainty and improve the
estimation of our system misalignment bias correction.

Furthermore, there is ongoing research on calibration and
antenna pattern characterization methods based on reference
targets held by unmanned aerial vehicles (UAVs; Duthoit
et al., 2017; Yin et al., 2019). Since the underlying princi-
ple is the same, most considerations written here should be
directly applicable in these new experiments. Here the UAV
takes the role of the mast, holding the reflector (usually a
sphere), and therefore, it is important to characterize the UAV
RCS and verify that it does not interfere with the experi-
ment. The main difference would be in the procedure nec-
essary for estimating bias because the reference target (usu-
ally a sphere) will always be moving due to the wind. Here
an adaptation of the effective RCS simulator would be nec-
essary to account for the target type and different alignment
protocol.
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Appendix A: Table of symbols

Symbol Description Units
C0(T ,Fb) RCS calibration term dB(m−2 mW−1)
C0(T ,F0) RCS calibration term at the IF frequency F0 dB(m−2 mW−1)
C0
0 RCS calibration coefficient dB(m−2 mW−1)
C0
0s Single sample of the calibration coefficient C0

0 dB(m−2 mW−1)
C0
0i Mean value of all C0

0s samples retrieved in iteration i, dB(m−2 mW−1)
CZ(T ,Fb) Radar equivalent reflectivity calibration term dB(mm6 m−5 mW−1)
δC0 RCS calibration uncertainty dB
δCZ Radar equivalent reflectivity calibration uncertainty dB
Fb Signal frequency at the radar receiver’s IF MHz
fIF(Fb) IF loss correction function dB
0(r) Radar cross section of reflections at distance r dBsm
00 Radar cross section of the reference target dBsm
3̃ Misalignment bias correction dB
λ Radar carrier wavelength m
N Number of iterations performed in a calibration experiment
Pr(r0) Power received from the target position r0 dBm
Pr(r) Power received from distance r dBm
pt Radar transmitted power mW
r Distance from the radar m
r0 Distance between radar and reference target m
F0 IF frequency associated with the target distance m
σA Calibration uncertainty introduced by antenna properties dB
σε Standard deviation between all C0

0i values, used in the estimation of 3̃ dB
σ00 Uncertainty of the reference target RCS dB
σi Uncertainty in the estimation of each C0

0i value dB
σIF Uncertainty of the IF loss correction function dB
σ3 Uncertainty of the misalignment bias correction dB
σSCR Uncertainty introduced by clutter at the target position dB
σT Uncertainty of the temperature correction function dB
θ Antenna beamwidth rad
Ze Radar equivalent reflectivity dBZ
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6e0d-4de3-bf03-7d6ead628845 (Toledo et al., 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-13-6853-2020-supplement.

Author contributions. All authors contributed to the planning of the
campaigns and the design of the calibration experiments. JD was
responsible for the radar installation and operation. JCD and FT
worked on the preparation, development and operation of the nec-
essary infrastructure for the experiments. JD and FT retrieved the
power transfer curve of the radar receiver. Data analysis and the es-
tablishment of the calibration methodology presented in the paper
were done by FT. MH and FT worked on defining the paper struc-
ture and content. FT, SJ and CLG worked on developing the method
for retrieving the IF correction function and its calculation. CLG
contributed with technical information about the radar. All authors
reviewed the paper.

Competing interests. Felipe Toledo has received research funding
from Company Meteomodem. The other authors declare that they
have no conflict of interest.

Acknowledgements. The authors would like to acknowledge Johan
Parra, Patricia Delville, Cristophe Boitel and Marc-Antoine Drouin
from the SIRTA atmospheric observatory for their assistance with
the execution of the field experiments. This acknowledgement is
extended to Razvan Pirloaga and Dragos Ene from the INOE Insti-
tute, Romania. We would also like to thank Fabrice Bertrand and
Jean-Paul Vinson from the LATMOS Laboratory, France, for their
collaboration.

We would like to acknowledge the two reviewers for their expert
comments which enabled us to improve the proposed calibration
method.

Felipe Toledo acknowledges the French Association Nationale
de la Recherche (ANRT) and the company Meteomodem for their
contribution to the funding of this work. Finally, we state that this
work is part of the ACTRIS-2 project and has received funding from
the European Union’s Horizon 2020 research and innovation pro-
gram (grant no. 654109).

Financial support. This research has been supported by the Eu-
ropean Union’s Horizon 2020 research and innovation program
(ACTRIS-2 (grant no. 654109)) and the French Association Na-

tionale de la Recherche (ANRT) and the company Meteomodem.
Together, they helped fund the work of coauthor Felipe Toledo.

Review statement. This paper was edited by Stefan Kneifel and re-
viewed by Alexander Myagkov and one anonymous referee.

References

Anagnostou, E. N., Morales, C. A., and Dinku, T.: The
Use of TRMM Precipitation Radar Observations in De-
termining Ground Radar Calibration Biases, J. Atmos.
Ocean. Tech., 18, 616–628, https://doi.org/10.1175/1520-
0426(2001)018<0616:TUOTPR>2.0.CO;2, 2001.

Atlas, D.: RADAR CALIBRATION, B. Am. Meteorol. Soc., 83,
1313–1316, https://doi.org/10.1175/1520-0477-83.9.1313, 2002.

Bergada, M., Sekelsky, S. M., and Li, L.: External Calibration of
Millimeter-Wave Atmospheric Radar System Using Corner Re-
flectors and Spheres. Eleventh ARM Science Team Meeting Pro-
ceedings, Atlanta, Georgia, 19–23 March 2001.

Boers, R., Baltink, H. K., Hemink, H. J., Bosveld, F. C., and Moer-
man, M.: Ground-Based Observations and Modeling of the Visi-
bility and Radar Reflectivity in a Radiation Fog Layer, J. Atmos.
Ocean. Tech., 30, 288–300, https://doi.org/10.1175/JTECH-D-
12-00081.1, 2013.

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G.,
Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U.,
Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang,
X. Y.: Clouds and Aerosols. In: Climate Change 2013: The Phys-
ical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tig-
nor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex,
V., and Midgley, P. M., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 2013.

Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler weather
radar: principles and applications, Cambridge university press,
United States of America by Cambridge University Press, New
York, 2001.

Brock, B. C. and Doerry, A. W.: Radar cross section of triangu-
lar trihedral reflector with extended bottom plate, Sandia Na-
tional Laboratories Albuquerque, New Mexico 87185 and Liv-
ermore, California 94550, United States, Technical Report, Re-
port Nos. SAND2009-2993, TRN: US201016%%1855, 7—22,
https://doi.org/10.2172/984946, 2009.

Brooker, G: Introduction to Sensors for Ranging and Imaging,
SciTech Publishing Inc, New York, United States, 2008.

Chandrasekar, V., Baldini, L., Bharadwaj, N., and Smith, P. L.: Cali-
bration procedures for global precipitation-measurement ground-
validation radars, URSI Radio Science Bulletin, 2015, 45–73,
2015.

Delanoë, J., Protat, A., Vinson, J.-P., Brett, W., Caudoux, C.,
Bertrand, F., Parent du Chatelet, J., Hallali, R., Barthes, L., Ha-
effelin, M., and Dupont, J.-C.: Basta: a 95-GHz fmcw doppler
radar for cloud and fog studies, J. Atmos. Ocean. Tech., 33,
1023–1038, 2016.
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3.3 Geometrical RCS simulator

This simulator enables the calculation of the perceived RCS of a corner reflector for a given geometrical
configuration of the calibration setup. The model includes the effects of imperfect aiming by including
antenna pattern calculations and RCS vs incidence angle for the reflector. Regarding the antenna pattern,
it is possible to use a Gaussian model, or to input a beam shape manually. In this section we only show
how the model works with the gaussian beam lobe. The changes that must be done to equations in order
to consider other beam shapes is straightforward.

Figure 3.1: Diagram of the geometrical RCS simulator. (Left) shows the coordinate axes and the degrees
of freedom of the simulator. (Right) shows the coordinates used to characterize the beam incidence angle
on the target. Right figure is adapted from Doerry and Brock (2009).

The input arguments for the RCS simulator are shown in Fig. 3.1 (Left). They are explained as
follows:

• Radar position, referenced at the origin O: ~RO = (xr, 0, hr)

• Radar aiming angle, referenced at the origin Or: ~YOr = (1, θr, φr)

– θr: Azimuth angle of the radar positioner. 0◦ is vertical aiming.

– φr: Azimuth angle of the positioner. The line connecting the radar and the mast base corre-
sponds to φr = 0◦.

• Target position (in spherical coordinates), referenced at the origin O: ~TO = (ρ, θ, φ)

– τ : Mast twist angle. τ = 0◦ when target boresight is parallel to the x axis.

– α: Target tilt angle. When α = 0◦ the target z′ axis is parallel to ρ̂. If α > 0◦ then the target
tilts forward.

• a: Target size parameter (Brooker, 2006).

• λ: Wavelength

• Antenna properties (when using a Gaussian beam lobe):

– Θ: antenna beamwidth

Output variables:
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• Maximum RCS of the target Γ0[dBsm]

• RCS of the target for the beam’s incidence vector r̂i: Γ(~ri)[dBsm]

• Effective RCS of the target considering incidence angle and loss L due to positioning ∆D◦ away
from the antenna beam center: Γeff = Γ(~ri)− 2L(∆D)[dB]

In the following sections we list the equations used to calculate each term.

3.3.1 Maximum theoretical RCS of the corner reflector

From Brooker (2006), it can be simply calculated as:

Γ0[dBsm] = 10 log10

(
4πa4

3λ2

)
(3.1)

3.3.2 Calculation of the corner reflector RCS for a given incidence angle

To calculate the reflector RCS for a given beam incidence angle Γ(~ri), we must first obtain the perspective
vector. This is done by changing the coordinate system of the radar aiming vector YOr , from Or to O,
and then multiplying by -1 to invert its direction.

~ri = −1
(
−( ~YOr · x̂r)x̂− ( ~YOr · ŷr)ŷ + ( ~YOr · ẑr)ẑr

)
(3.2)

Target unitary vectors x̂′, ŷ′, ẑ′ (in Fig. 3.1 (Left)):

x̂′ =

√
2

2

[
−sin(θ) cos(φ) sin(α)+cos(θ) cos(φ)(cos(α) cos(τ)+sin(τ))−sin(φ)(cos(α) sin(τ)−cos(τ))

]
x̂

+
[

sin(θ) sin(φ) sin(α) + cos(θ) sin(φ)(cos(α) cos(τ) + sin(τ)) + cos(φ)(cos(α) sin(τ)− cos(τ))
]
ŷ

+
[
− cos(θ)sin(α)− sin(θ)(cos(α) cos(τ) + sin(τ))

]
ẑ (3.3)

ŷ′ =

√
2

2

[
−sin(θ) cos(φ) sin(α)+cos(θ) cos(φ)(cos(α) cos(τ)−sin(τ))−sin(φ)(cos(α) sin(τ)+cos(τ))

]
x̂

+
[

sin(θ) sin(φ) sin(α) + cos(θ) sin(φ)(cos(θ) cos(τ)− sin(τ)) + cos(φ)(cos(α) sin(τ) + cos(τ))
]
ŷ

+
[
− cos(θ) sin(α)− sin(θ)(cos(α) cos(τ)− sin(τ))

]
ẑ (3.4)

ẑ′ =
[

sin(θ) cos(φ) cos(α) + cos(θ) cos(φ) sin(α) cos(τ)− sin(φ) sin(α) sin(τ)
]
x̂

+
[

sin(θ) sin(φ) cos(α) + cos(θ) sin(φ) sin(α) cos(τ) + cos(φ) sin(α) sin(τ)
]
ŷ

+
[

cos(θ) cos(α)− sin(θ) sin(α) cos(τ)
]
ẑ (3.5)

Project perspective vector to the coordinate system of the target:

xp = ~ri · x̂′ (3.6)

yp = ~ri · ŷ′ (3.7)

zp = ~ri · ẑ′ (3.8)
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Then we can calculate the perspective angles θp and φp:

p =
√
x2
p + y2

p + z2
p (3.9)

θp = arccos(zp/p) (3.10)

φp = arctan(yp/xp) (3.11)

(3.12)

Invalid cases: If θp or φp /∈ [0, π2 ], Γ(~ri) is set to Nan (not a number). This avoids invalid results that
may happen in configurations where the radar beam does not hit the interior of the reflector.

Finally, we can use valid θp and φp angles and the equations published by Doerry and Brock (2009)
to calculate Γ(~ri):

Γ(~ri) =





4π
λ2 a

4
(

4c1c2
c1+c2+c3

)2

for c1 + c2 ≤ c3
4π
λ2 a

4
(
c1 + c2 + c3 − 2

c1+c2+c3

)2

for c1 + c2 > c3

(3.13)

For c1, c2 and c3, we assign one of the terms indicated below, imposing c1 ≤ c2 ≤ c3.

c1

c2

c3





=





cos(θp)

sin(θp) sin(φp)

sin(θp) cos(φp)

(3.14)

3.3.3 Calculation of the effective reflector RCS considering antenna pattern

Since we already calculated Γ(~ri) in the previous section, we only have left to estimate the losses L(∆D)

in the effective RCS introduced when the target is a ∆D angle away from the beam center to obtain the
effective RCS Γeff . Calculations assume an axially symmetric beam, but can be adapted to use beams
with other shapes.

First, the vector connecting radar and target position:

~δO = TO −RO (3.15)

We now change the origin of ~δO from O to Or:

~δOr = −( ~δO · x̂)x̂r − ( ~δO · ŷ)ŷr + ( ~δO · ẑ)ẑr (3.16)

With this vector and the radar unitary aiming vector YOr we can proceed to calculate the angular
deviation ∆D of the target from the center of the beam:

∆θ = arccos

(
δOr · ẑr
‖δOr‖

)
− θr (3.17)

∆φ = arctan

(
δOr · ŷr
δOr · x̂r

)
− φr (3.18)

∆D =
√

∆θ2 + ∆φ2 (3.19)

(3.20)

And the loss, for the Gaussian antenna lobe of beamwidth Θ, is:
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L(∆D) = 10 log10

(
exp

(−(2.355∆D)2

2Θ2

))
[dB] (3.21)

Invalid cases: We observed that for our antenna the Gaussian approximation works well if ∆D ≤ 0.5◦

(Fig. 4 (b) of the article). Thus, we decide that any ∆D larger than 0.5◦ our calculations will return an
invalid L(∆D) value.

With all these terms and Eq. (3.22) we finally calculate the effective RCS Γeff :

Γeff = Γ(~ri)− 2L(∆D)[dB] (3.22)

3.4 Misalignment impact in calibration using corner reflectors

Equation (3.23) is the Radar Cross Section (RCS) calibration constant, obtained when aiming the radar
towards a reference reflector of RCS Γ0 located at a distance r0. Lat(r0) represents the atmospheric
attenuation between the radar and the reflector. Pr(r0) is the received power from the target position.
To be correct, this equation requires a perfect alignment between the target boresight and the axis of
the antenna lobe.

The RCS calibration term CΓ can depend on additional variables, for example on temperature, due
to gain changes inside the radar (Eq. (1.8)). For this analysis, however, we neglect these sources of
variability in the calibration and assume that CΓ = C0

Γ, with C
0
Γ a constant defined as the calibration

coefficient in the article.

C0
Γ = Γ0 − 2Lat(r0)− 40 log10(r0)− Pr(r0) (3.23)

We define the effective RCS Γi as the RCS that will be observed by the radar when the target is off
the beam center, or when the target is not in its designed positioning. i.e. the RCS that a perfectly
calibrated radar would perceive under a non-ideal alignment.

If we use Eq. (3.23) to calibrate assuming we have an RCS = Γ0, but in reality we have an effective
RCS Γi = Γ0 − εi, our estimated calibration term will be biased (Eq. (3.24)). C0

Γi would be the biased,
experimentally retrieved calibration coefficient, C0

Γ the real value and εi the calibration bias.

C0
Γi = C0

Γ + εi (3.24)

The value of the bias term εi is difficult to estimate, because it follows an unkown distribution which
depends on the alignment uncertainty of the radar, mast and target. In addition, if the average bias
ε 6= 0 (i.e. its distribution is not zero mean), bias will not be canceled by simply averaging C0

Γi values
from multiple iterations, as indicated in Eq. (3.24).

1

N

N∑

i=1

C0
Γi =

1

N

N∑

i=1

(C0
Γ + εi) = C0

Γ + εi (3.25)

Figure 9 (b) of the article shows one example of a Γi distribution obtained from propagating uncer-
tainty in the experiment alingment. We can clearly observe that this distribution is not zero mean. This
confirms that, if no further corrections are applied, a calibration coefficient estimated by just using the
average of multiple experiments is bound to have a bias εi.

To estimate the value of εi for our setup, we use the standard deviation σ between the C0
Γi values

retrieved in each iteration as an indicator of the underlying bias distribution of the experimental setup
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(Eq. (3.26)). It is possible to prove that this σ value is approximately equal to the standard deviation
σε of the system RCS distribution.

σ2 =
1

N

N∑

i=1

(C0
Γi − C0

Γi)
2 = σ2

ε (3.26)

The problem is that there are many possible uncertainty combinations in the setup that can generate
distributions with the same σε, but different expected bias εi values. Nevertheless, by simulating a large
amount of RCS distributions we can estimate the most likely bias εi, to a given degree of uncertainty.
The procedure for doing this is explained in Sect. 3.4.1.

3.4.1 Estimation of the misalignment bias

In this section we explain how we generate a bias distribution for our setup, to estimate the bias correction
term and its uncertainty. This is explained using the 20 m mast setup and the results of the 2018 campaign
(Fig. 10 of the article).

We begin by simulating the distribution fεi,σε(εi, σε). This probability distribution, evaluated at
the standard deviation σ observed from repeating N experiments (Eq. (3.26)), provides a probability
distribution for the bias.

We define this bias distribution as Λ = fεi|σε (εi | σε = σ).
To simulate fεi,σε(εi, σε) this we need to generate a large amount of (εi, σε) pairs, calculated from

experiments of N iterations.
These (εi, σε) pairs are generated as follows:

1. We generate a random uncertainty set 1.

2. This uncertainty set is used to generate N random RCS values.

3. The RCS results are used to calculate a single (εi, σε) pair.

4. Repeat.

For the 20 m mast setup we sampled the uncertainty sets used to generate the distribution
fεi,σε(εi, σε) with the following functions2:

• σθr = U([0◦, 0.375◦))

• σφr = U([0◦, 0.375◦))

• σθ = U([0◦, 5◦))

• στ = U([0◦, 10◦))

The region where σθr and σφr are sampled is within 0 and 3 times the nominal resolution of the
radar positioner. For the mast angles θ and τ we have chosen to explore an space much larger than any
deviation we observed during the experiments. We found that with these parameters the sampling covers
a wide range of σε values, large enough to enable a reliable estimation of the bias in our experiment.

Figure 3.2 shows the resulting fεi|σε (εi, σε). We can observe that the distribution is very well defined
around our results of the calibration experiment of 2018, where we got a value of σ = 0.33. It only starts
to lose density only for relatively large values of ε and σε.

1The uncertainty set is the set of all uncertainties assigned to the system, for example one uncertainty set is described
in Sect. 5.6 of the article.

2U(·) is the continous uniform probability distribution.
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Figure 3.2: Simulation of fεi,σε(εi, σε). This distribution enables the estimation of the alignment bias
distribution Λ by selecting the points with σε equal to the experimentally observed σ value.

To avoid problems that could be introduced by the discrete nature of the simulated probability
distribution, we estimate the bias distribution Λ as Λ = fεi|σε (εi | σε = σ ± 5%). The bias distribution
obtained is shown in Fig. 3.3.

Figure 3.3: Estimated bias distribution Λ for the 20 m mast experiment of 2018.

Since Λ is asymmetric, we use the median Λ̃ as the most likely bias for the system, and its RMSE
σΛ as its uncertainty. This way we can now correct the bias in the calibration experiment with Eq.
(3.27). The total uncertainty of this estimator is indicated in Eq. (3.28), with σi the uncertainty in the
estimation of each C0

Γi value.

Ĉ0
Γ =

1

N

N∑

i=1

C0
Γi − Λ̃ (3.27)

σ
Ĉ0

Γ

=

√√√√ 1

N2

N∑

i=1

σ2
i + σ2

Λ (3.28)
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Finally, we include the generating functions used for the 10 m mast setup. The use of a motor to
aim the target towards the radar introduced the need of using different generating functions to sample
the uncertainty sets. Apart from this the procedure remains the same as the one used for the 20 m mast.

• σα = U(0, 10◦)

• στ = U(0, 10◦))

• σθr = U(0, 0.375◦)

• σφr = U(0, 0.375◦)

3.5 Synthesis

This chapter presented a method to calibrate scanning FMCW cloud radars using corner reflectors, which
was developed during two calibration campaigns carried out at the SIRTA atmospheric observatory in
2018 and 2019.

The calibration methodology consists in performing several target sampling iterations. Each iteration
begins with a realignment of the experimental setup, followed by approximately one hour of sampling the
reflector signal. When all iterations are completed, the final RCS and Equivalent Reflectivity calibration
terms can be computed. The calibration methodology includes methods to quantify and correct biases,
and to quantify the calibration uncertainty.

The method was applied to calibrate a BASTA-mini radar for two different experimental configura-
tions. The first used a 10 cm corner reflector mounted on a pan-tilt motor, on top of a 10 meter mast,
196 m away from the radar. The second used a 20 cm corner reflector fixed on top of a 20 meter mast,
376.5 m away from the radar. The main results to retain from this chapter are:

• The design of the experimental setup must minimize compression in the radar receiver. Compres-
sion can be checked by measuring the power backscattered from the reflector, and comparing it
with the power transfer curve of the receiver. In the two experimental setups tested we observed
losses due to compression of 0.2-0.3 dB, which were corrected using the receiver power transfer
curve. Receiver compression (and receiver saturation) can be reduced by positioning the target
farther away from the radar, or by switching the target for another with less RCS.

• The reflector used in calibration must be farther than the radar near-field distance. BASTA-Mini
cloud radar has a Fraunhofer near-field distance of 50 m, which is less than the distance used in
both experimental setups (distances of 196 and 375.5 m).

• The reflector distance also has to be large enough to minimize loses due to antenna overlap. The
estimated maximum overlap loss, assuming parallel antennas, is calculated to be less than 0.1 dB for
the closest (10-m) mast setup. This result could not be verified experimentally due to limitations
in the precision of the radar scanner. Alternative approaches for estimating this parameter, or for
characterizing antenna parallax, should be a focal point of future research.

• Environmental clutter must be minimized in the experimental setup design. It is advisable to
perform the calibration experiments in an open field several hundred meters long, free from trees
or other obstacles.

The calibration uncertainty introduced by clutter depends on the signal to clutter ratio. Signal
to clutter ratio can be measured by comparing the power received from the target with the power
received from the target position after removing the reflector (Chandrasekar et al., 2015). The
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impact of signal to clutter ratio in uncertainty can be highly variable, depending on its value. For
the 10 m mast setup, signal to clutter ratio introduces an uncertainty of 0.9 dB, while for the 20
m mast setup it introduces 0.09 dB. The likely reason for this difference are the additional clutter
from stronger reflections on the pan-tilt motor installed on the 10 m mast.

• To reduce the variability of the reflector signal in each sampling iteration, it is advisable to perform
calibration measurements with clear conditions at the surface, without fog or rain. It is also
recommended to prefer measurements taken when wind speed is below 1ms−1, with low turbulence,
to minimize mechanical vibration of the experimental setup.

• Calibration is impacted by gain changes of the radar components, caused by temperature variations
inside the radar. We found calibration variations of up to ± 0.6 dB for our radar. This bias was
corrected using a temperature correction function, derived with an uncertainty of σT = 0.23 dB.
This result indicates that temperature effects must be studied to avoid a temperature dependent
bias in the calibration.

• Frequency dependent losses in the IF of the radar receiver cause range dependent gain variations.
In this study, IF gain variations reached up to 0.9 dB, implying the need of a IF correction function
to avoid the introduction of a range dependent bias in the calibration.

• Iterations are necessary to quantify the bias introduced by unavoidable misalignments in the ex-
perimental setup. The variability in the target signal when comparing different iterations can be
combined with a geometrical model of the experimental setup, to calculate which sets of position-
ing uncertainties reproduce the observed results. These sets enable the estimation of the bias and
uncertainty introduced by setup misalignment.

The bias correction for the 20 m mast setup was of ≈ 0.4± 0.3 dB, with this minimum uncertainty
value reached after 5 iterations. Meanwhile for the 10 m mast the bias correction was of ≈ 0.2±0.1

dB, reached after 3 iterations only. The difference is explained by the more precise alignment
attainable with the pan-tilt motor installed on the 10 m mast.

• The need of iterations may increase the time needed for calibration experiments, depending on the
ease of alignment of each setup. Performing 6 iterations with the 20 m mast takes approximately
a week, while 10 iterations with the 10 m mast take about 12 hours. This large difference appears
because the 20 m mast must be aligned using the ropes that fix its structure to the ground, while
the 10 m mast has a remotely controlable pan-tilt motor on top that could be aligned much faster.

• At present, the predominant source of uncertainty is introduced by the reference reflector RCS (≈2
dB). The uncertainty budget indicated that to reach an uncertainty lower than 1 dB, it is necessary
to have a target RCS characterization with an uncertainty below 0.9 dB.

• The calibration methodology enabled the quantification of the uncertainty sources for each experi-
mental setup. This information showed, for example, that in the 10 m mast setup the main source
of uncertainty, besides the reflector RCS, is clutter (0.9 dB). Meanwhile, in the 20 m mast setup
this place is taken by the uncertainty introduced by setup alignment (0.28 dB). The contribution
of clutter in this setup is significantly lower (0.09 dB). This analysis shows that the proposed cali-
bration approach allows quantitative comparisons between different experimental setups, providing
valuable information to further improve the calibration technique.
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Chapter 4

Cloud radar calibration transfer

4.1 Introduction

The first step in of the fog monitoring network calibration strategy is the calibration of a reference radar,
with a known uncertainty, using corner reflectors. This work is presented in chapter 3. The second step
is the transfer of the reference radar calibration to other radars in the network. The calibration transfer
is performed using clouds as common targets, providing a more general calibration solution that does
not require a dedicated site with a mast and reference reflectors.

This chapter presents the calibration transfer methodology, developed for the second step of the fog
monitoring network calibration strategy. Since its content draws to some extent on the terminology
and analyses developed in chapter 4, it is advisable to review the latter before continuing. The method
presented in this chapter was developed in collaboration with Susana Jorquera, during her internship at
the LMD laboratory (UMR 8539).

The calibration transfer methodology consists of the following steps: first, to transport and install
the reference radar next to an uncalibrated instrument. Second, to leave them sampling clouds for
several days. Third, to process and then compare the measurements of both instruments, to transfer
the calibration. Data processing corrects differences in the sensitivity of the instruments, so it is not
necessary that the radars involved be of the same model or manufacturer. However, at present it can
only be applied when the involved radars have close operating frequencies, such that differences in the
electromagnetic wave absorption of gases and liquid water are negligible.

The proposed solution greatly benefits from the specific capabilities of the BASTA mini radar. First,
the instrument can be calibrated reliably and with a known uncertainty using the method described in
chapter 3. This method was developed using this radar, so no further modifications are needed. Second,
the BASTA mini radar weights just 35 kilograms without the scanner, making it significantly lighter
than other radar models (MODEM, 2018). This makes the radar relatively easy and safe to transport.
Third, the radar already has a Voltage-Controlled Oscillator (VCO) by default. The VCO allows a 1
GHz tuning range for the carrier wave, enabling the co-location of BASTA next to other radars in its
same band without interference problems.

The chapter is structured as follows: Section 4.2 explains the theoretical principle used for calibra-
tion transfer, based on the radar equation. Section 4.3 presents the calibration transfer methodology,
explained using data gathered during the 2019 ACTRIS Cloud Radar Calibration Campaign. Section
4.4 presents the results of the example calibration transfer experiment. Finally, section 4.5 presents a
synthesis with the main results of this chapter.
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4.2 Calibration transfer principle

Cloud radars measure the reflectivity of remote hydro-meteors by measuring the power they reflect back.
The quantitative calculation is done with the Radar Equation, written in logarithmic units in Eq. (4.1).
A more detailed explanation of this equation and of its derivation can be found in Sect. 1.6.

Z(r) = CZ + 2Lat(r) + 20 log10(r) + Pr(r) (4.1)

The reflectivity Z(r) at a distance r is calculated by adding the received power Pr(r) with the two
way atmospheric attenuation 2Lat(r), the square of the distance in dB scale 20 log10(r) and a calibration
term CZ (Bringi and Chandrasekar, 2001; Chandrasekar et al., 2015). Usually, CZ is considered to be
a constant term, however in FMCW radars it may vary depending on other variables. For example,
in chapter 3 we observed that CZ could be separated into a constant calibration coefficient CZ0, a
temperature correction function fT (T ) and an intermediate frequency (IF) correction function fIF (Fb)

(See Eq. (4.2)).

CZ(T, Fb) = CZ0 + fT (T ) + fIF (Fb) (4.2)

The calibration coefficient is the reference calibration value of the radar, also known in literature as
the radar calibration constant (e.g. Chandrasekar et al. (2015)). The temperature correction function
corrects variations in the calibration coefficient due to internal gain changes in the radar caused by
temperature variations, and the IF correction function corrects the calibration coefficient, compensating
gain variations for power measurements at different distances caused by non ideal filters at each IF
frequency Fb. Additional correction functions may be necessary, depending on the radar model. One
that could be important for bistatic radars is the correction of range dependent gain variations, caused
by errors in antenna parallax (Sekelsky and Clothiaux, 2002). These correction functions are necessary
to compensate for variations in gain caused by variations in radar parameters.

In this calibration methodology we have two instruments: a reference radar and an uncalibrated radar.
The reference radar is calibrated using an alternative method, such as the one proposed in chapter 3,
and thus can measure reflectivity with a known calibration uncertainty. In the next lines, all parameters
associated with this radar will have a superscript C (for example, its reflectivity measurements will be
written as ZC). Meanwhile, the uncalibrated radar performs reflectivity retrievals with unknown bias an
uncertainty. Parameters associated with the uncalibrated radar will have a superscript NC (for example,
its reflectivity measurements will be written as ZNC).

Both radars should be installed close to maximize the chance of simultaneously sampling similar
cloud sections. The operating frequency of the radars must be different, to avoid interference, but at the
same time close enough to neglect atmospheric attenuation differences between the instruments. This is
usually feasible because W band radars have relatively narrow bandwidths (in the order of ∼100 MHz)
compared to their operation band frequency (≈ 95 GHz). In addition, any correction functions necessary
to compensate for changes in internal radar parameters must be obtained independently, and applied
during cloud sampling to compensate for gain variations.

The calibration correction is obtained by substracting the reflectivity retrievals of both radars (Eq.
(4.3)). The distance and atmospheric attenuation terms of Eq. (4.1) are canceled because samples are
retrieved from the same distance, and at very close frequencies. The calibration term correction functions
are used to correct power measurements, so that they differ only due to the gain difference between the
radars. This constant difference is expressed as a constant termDC in Eq. (4.4). By addingDc to the dif-
ference between the calibration coefficients (also constant), we get Eq. (4.5). K represents the correction
coefficient, which corresponds to the difference between calibrated and uncalibrated measurements.
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Figure 4.1: (a) Reflectivity of an altostratus cloud, retrieved with the calibrated reference radar. (b)
Reflectivity of the same cloud, retrieved with the uncalibrated radar. (c) Histogram of the reflectivity
samples shown in panel (a). (d) Histogram of the reflectivity samples shown in panel (b). The differences
between the observed data and in the reflectivity distributions come mainly from differences in the
sensitivity of the radars.

ZC(r)− ZNC(r) = (CCZ0 − CNCZ0 ) + [PCr (r) + fCT (T ) + fCIF (Fb)]

− [PNCr (r) + fNCT (T ) + fNCIF (Fb)] (4.3)

= (CCZ0 − CNCZ0 ) +Dc (4.4)

= K (4.5)

In principle, it should be possible to estimate K just by comparing simultaneous measurements.
Yet this is not usually the case, because instruments rarely have the exact same behavior. Figure 4.1
illustrates this problem. There we observe the same cloud sampled by two different radars. In panels (a)
and (b) we observe that the reference radar is more noisy and has a lower sensitivity compared with the
uncalibrated radar. Panels (c) and (d) show the reflectivity distributions of data in panels (a) and (b)
respectively. We can observe that it is not straightforward to estimate K from these distributions. The
difference in sensitivity would introduce a bias, since one radar has more low reflectivity samples than
the other. Random error is also expected, and may be introduced by radar system noise, and differences
in the sampling volume arising from antenna parallax errors or non-perfect vertical pointing (Sekelsky
and Clothiaux, 2002).

Thus, the correction coefficient K should be estimated statistically, considering a data processing
stage designed to remove asimetric data (reflectivity samples measured by only one of the instruments),
and a large number of samples so that random error is minimized. The procedure developed for the
estimation of K is presented in Sect. 4.3. After the correction coefficient K is estimated, it is possible
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to correct uncalibrated radar measurements using Eq. (4.6).

ZC(r) = ZNC(r) +K (4.6)

4.3 Methodology

In Sect. 4.2 we explain what is the calibration correction coefficient K, and how it could be retrieved
by comparing measurements between the reference and the uncalibrated radar. We also indicated that
a direct comparison may introduce bias due to differences in the radars sensitivity, and random error
due to noise, to differences in pointing and to differences on the sampling volume. To mitigate the
impact of these bias and uncertainty sources, we developed a calibration transfer protocol with three
data processing stages: data selection, data cleansing and calibration transfer.

The experimental setup is presented in Sect. 4.3.1, and the data processing stages are explained in
detail in Sects. 4.3.2, 4.3.3 and 4.3.4. The methodology is based on the calbration transfer experiments
that took place during the 2018 and 2019 calibration campaigns. Therefore, we illustrate the explanation
of each step using data from the calibration transfer experiment of 2019, where a BASTA mini, of the
French LATMOS laboratory, transfers its calibration to a 94 GHz RPG cloud radar of the Romanian
INOE Institute.

4.3.1 Experimental setup

The reference radar and the uncalibrated radar are placed close to each other, within a few tens of meters.
Both radars are vertically aligned using a level tool on their frame. It is recommended to compare doppler
velocity profiles to validate the vertical alignment. Then, both radars are setup to the operating modes
indicated in Table 4.1. These modes are selected to perform measurements as similar as possible. The
RPG radar uses three chirps to measure, and therefore its distance resolution and bandwidth change
slightly for different ranges. There is no overlap between both radars operating frequencies. Therefore,
no interference between radars was expected. This was later verified when setting up the radars.

Table 4.1: Radar configuration of the BASTA mini radar and the 94 GHz RPG radar, used during the
calibration transfer experiment in 2019. BASTA mini is tuned to work in a single operating mode. The
RPG radar uses three chirps per sampling period. Each chirp retrieves reflectivity measurements for
specific vertical ranges, with independent distance resolutions.

BASTA mini 94 GHz RPG Cloud Radar
Reference Uncalibrated

Vertical Range (RA) and RA 0-12000 m, RE 15 m Chirp 1: RA 119-1192 m, RE 29.8 m
Distance Resolution (RE) Chirp 2: RA 1222-4472 m, RE 29.8 m

Chirp 3: RA 4531-10971 m, RE 34.1 m
Chirp Bandwidth 12.0 MHz Chirp 1: 34.1 MHz

Chirp 2: 11.0 MHz
Chirp 3: 8.0 MHz

Central emission frequency 95.64 GHz 94.00 GHz
Time resolution 3 s 4 s

The IF and Temperature correction functions of BASTA mini were retrieved in chapter 3. Meanwhile,
RPG IF correction function is derived using a two point calibration with liquid nitrogen and environmen-
tal temperature, following the procedure indicated in its manual (RPG, 2015). The RPG radar has an
internal temperature stability within 500 mK, and therefore the use of a temperature correction function
is not necessary.
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Both radars are left sampling clouds continuously for two weeks. To maximize the time with reliable
measurements, an operator on site dried the BASTA mini radome after precipitation events (during
working hours). Measurements done when the radome could not be dried are removed in the first data
processing stage (Sect. 4.3.2).

4.3.2 Data selection

The objective of this stage is to identify periods with cloud observations that may be used for calibration
transfer. The first step is to manually select a time period where cloud formations are detected, for
further analysis. An example of detected cloud formations is shown in panel 1 of Fig.4.2.

The second step is to split the time period between single clouds when possible. Cloud selection
should be done from earlier to later clouds, because in some cases we may detect precipitation events
that could invalidate posterior measurements. In the example of Fig. 4.2, we can identify two separate
clouds in the selected time period: the first lasting from 0:00 to 2:30 approximately, and the second from
3:05 to 7:30 UTC. We assign the time period between 0:00 to 3:00 UTC to the first cloud, as shown in
panel 2, and then continue with the next step.

In the third step, we study the doppler velocity profile of cloud signals that extend down to the
surface. If the samples have a consistently negative doppler velocity, and a relatively strong reflectivity
(>∼ 10 dBZ), it is likely that they are associated with precipitation events. If there was no operator to
dry the radome after rain, samples taken in the 6 hours after precipitation are discarded. The objective
is to remove invalid measurements taken when the radome wet (BASTA mini does not have an active
drying mechanism). In panel 3 of Fig. 4.2 we observe a likely precipitation event around 2:20. Thus, we
reduce the time span of valid data until just before the first detected rain signal. This makes the final
period chosen for this cloud to last from 0:00 to 2:00 UTC, a period which is added to the calibration
transfer data pool. On the contrary, since data registered 6 hours after rain is removed, the second cloud
period starting at 3:05 UTC is not added to the calibration transfer data pool.

The aforementioned algorithm must be repeated onwards, to cover the complete data time series. Both
reference and uncalibrated radar data must be observed in this stage, to guarantee data consistency. All
data associated with valid cloud periods pass to the next processing stage, explained in Sect. 4.3.3.

4.3.3 Data cleansing

After selecting cloud period candidates to compare, we perform a data cleansing stage to eliminate
possible sources of bias arising from differences between the datasets. These differences could be caused,
for example, by noisy measurements, or by differences between the instruments sensitivities.

The proposed methodology assumes that a noise mask has already been applied to the reference
radar. In this exercise we used a constant mask of 7 dB above the noise floor level (signal to noise ratio
larger than 7 dB).

Data cleansing is done for each selected cloud period and involves five stages:

1. Boundary layer removal: Data below 2500 meters is removed from the comparison. The reason for
this is that in the boundary layer cloud radars are sensitive to large aerosols and insects (Wood et al.,
2009). The spatial distribution of these targets is highly inhomogeneous spatially and temporally,
and therefore is not suitable for intercomparison.

2. 3-sigma filter: The objective is to remove outliers that may bias the intercomparison. For this, we
remove all data farther than 3 standard deviations (sigmas) from the mean of the reference and
the uncalibrated radar reflectivity distribution.
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Figure 4.2: Example of the Data Selection stage. First, a time period with cloud formations is identified
and delimited for further analysis. Second, we separate this period between distinct cloud formations.
Third, we check if there is a likely precipitation event, from earlier to later clouds, to remove data
registered with a possibly wet radome (more details in text).
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3. Interpolation: The uncalibrated radar reflectivity samples are interpolated to match the reference
radar time and range grid.

4. Dynamic range filter: This step removes data that was only measured by one of the two instruments,
due to differences in sensitivity. For this, we force the received power dynamic range of both radars
to be the same, following the next steps:

(i) Remove the lower 5% of the less sensitive radar received power samples ({Pr}less sensitive radar),
to define the lower limit of the dynamic range.

(ii) Determine the dynamic range ∆ of the less sensitive radar. Ouliers were removed in a previous
step, so we can calculate it from the received power distribution {Pr}less sensitive radar as:
∆ = (max{Pr} −min{Pr})|less sensitive radar.

(iii) Assuming that both radars have sampled the maximum received power from approximately
the same physical target, we define the cut-off value x = max{Pr}|most sensitive radar − ∆.
Power samples ≥ x are in the dynamic range of both radars, and therefore are comparable.

(iv) Remove from the most sensitive radar all samples with power values {Pr}most sensitive radar <
x.

5. Correspondence filter: We remove all data points that appear in a single radar only, for each time-
range coordinate. After following these steps, the grids of both radars will have the same amount
of reflectivity samples, located at the same coordinates.

To illustrate the effect of this procedure, Fig. 4.3 shows the reflectivity profile and reflectivity dis-
tribution of the reference and uncalibrated radars before and after data cleansing. On the left, before
data cleansing, we can observe the difference in sensitivity on the borders of the high cloud, between
4 and 8 km of height. The uncalibrated radar is more sensitive and therefore it can measure weaker
reflectivity values on the borders. This additional data, in addition to boundary layer measurements,
make the reflectivity distributions too different to attempt a direct calibration transfer.

After data cleansing we observe that most noisy data-points are removed, and that reflectivity profiles
and distributions are much more alike (right panels of Fig. 4.3). The difference between the medians
of the distributions changes from 4.4 to -2.7 dB (reference - uncalibrated), hinting that the correction
coefficient calculated without data cleansing could be biased by about 6-7 dB.
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Figure 4.3: Example of a cloud dataset before and after data cleansing. Before data cleansing: (a.1)
Reference radar data (a.2) Uncalibrated radar data (a.3) Reflectivity distribution of both radars. After
data cleansing: (b.1) Reference radar data (b.2) Uncalibrated radar data (b.3) Reflectivity distribution
of both radars.
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4.3.4 Calibration transfer

The objective of this stage is to estimate the correction coefficient K, presented in Sect. 4.2, and its
uncertainty. As in previous sections, this stage can also be divided in stages:

1. Estimate a correction coefficient Ki for each selected cloud event i. Ki is estimated as the difference
between the medians of the reference and the uncalibrated radar reflectivity distributions: Ki =

median({Z}refcloud i)−median({Z}uncalcloud i).

2. Correct the uncalibrated radar reflectivity of each cloud by adding its corresponding correction
coefficientKi to the uncalibrated measurements. Figure 4.4 shows with example how this correction
shifts the uncalibrated reflectivity distribution to match the reference radar observations.

3. Compare the reference and corrected distributions of each cloud using a Quantile-Quantile plot
(Q-Q plot). If the points behave linearly, and have a R2 score ≥ 0.8, the Ki value is accepted and
used to estimate the correction coefficient K. Figure 4.5 shows, on top, an example of an accepted
cloud. We can observe that there is a very good overlap between the reference and corrected
reflectivity distributions. This is also reflected in the Q-Q plot, which has an R2 score of 0.99. On
the contrary, the bottom of Fig. 4.5 shows a rejected cloud formation. In this case, even after data
cleansing, the corrected reflectivity distribution does not match the shape of the reference radar
distribution. This is confirmed by the R2 value of 0.36. The differences in the distribution shape
may be caused by spatial cloud hetereogeneity, or by differences in the radars vertical alignment.
Therefore, the Ki value estimated for this time period is rejected (not used in the final calculation
of K).

After these steps, we end up with N valid Ki values. These Ki values are used to estimate the
final correction coefficient K with Eq. (4.7). As explained in Sect. 4.2, K can be used to correct the
previously uncalibrated measurements, to provide calibrated reflectivity retrievals.

Figure 4.4: Example of the effect of applying the correction coefficient to correct the uncalibrated radar
measurements. (a) Reflectivity distributions of the clouds shown in Fig. 4.3 (b.1), (b.2). (b) Reflectivity
distributions after correcting the uncalibrated radar measurements.
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Figure 4.5: On top we observe an example of an accepted cloud period. Panel (a.1) shows the re-
flectivity profile observed by the reference radar, (a.2) shows the reflectivity profile observed by the
uncalibrated radar, (a.3) shows both radars reflectivity distributions after applying the correction co-
efficient Ki estimated with this cloud data, (a.4) Shows the Q-Q plot of the reference and corrected
reflectivity distributions with its R2 score. The bottom of the figure shows the same plots, but for a
rejected cloud event. The difference in the reflectivity distributions is evident in panel (b.3) and in the
Q-Q plot of panel (b.4).
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The uncertainty of the correction coefficient is calculated with Eq. (4.8). δK is the uncertainty of
the correction coefficient K. σref is the reference radar calibration uncertainty. σK is the standard
deviation of the valid Ki values used to calculate K. σKi is the uncertainty within each Ki estimation.
It is calculated as the RMSE between correction coefficients calculated using each single reflectivity
measurement j (Eq. (4.10)), and the cloud global correction coefficient Ki. Mi represents the total
amount of valid reflectivity samples of the cloud event i.

K =
1

N

N∑

i=1

Ki (4.7)
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j

(Kj
i −Ki)2 (4.9)

Kj
i = Zrefcloud i(tj , rj)− Zuncalcloud i(tj , rj) (4.10)

4.4 Results of the 2019 calibration experiment

This section presents the results from following the steps described in the methodology section, on two
weeks of data measured during the calibration experiment of 2019 ACTRIS Cloud Radar Calibration
Campaign. As in previous sections, the reference instrument is the BASTA mini radar from the LATMOS
laboratory of France, and the uncalibrated instrument is an 94 GHZ RPG Cloud Radar from the INOE
institute of Romania.

Figure 4.6 shows the cloud events that were identified in the Data Selection stage (Sect. 4.3.2).
All data in the selected cloud periods were processed following the steps indicated in Sects. 4.3.3 and

4.3.4. The correction coefficients estimated from each cloud, alongside their uncertainty and the R2 score
from each Q-Q plot are shown in Table 4.2. As indicated in Sect. 4.3.4, only cloud events with a R2

score higher than 0.8 are selected for the calculation of the correction coefficient K and its uncertainty
δK.

Table 4.2: Partial calibration transfer results for each cloud identified in the Data Selection stage. Ki

is the correction coefficient for cloud i. σKi is its uncertainty. As indicated in Sect. 4.3.4, only cloud
events with a Q-Q plot R2 score higher than 0.8 are accepted and used in the final calculation of the
correction coefficient K.

Cloud period Ki [dB] σKi [dB] Q-Q plot R2 score Accepted/Rejected
0 -2.7 0.7 0.99 Accepted
1 -2.6 0.9 0.97 Accepted
2 -2.3 1.4 0.97 Accepted
3 -2.6 3.2 0.88 Accepted
4 -2.4 2.9 0.85 Accepted
5 -3.4 4.7 0.36 Rejected
6 -3.1 2.6 0.87 Accepted
7 -2.6 3.1 0.84 Accepted
8 -2.9 3.6 0.82 Accepted
9 -2.7 4.3 0.76 Rejected
10 -3.0 4.9 0.68 Rejected
11 -2.1 4.0 0.85 Accepted

The calculated correction coefficient K and its uncertainty δK, with the uncertainty contribution
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Figure 4.7: (a) Value of the correction coefficient K versus the number of clouds used in its calculation.
(b) Uncertainty of the correction coefficient versus the number of clouds used in its calculation. Clouds
used are taken from the database of accepted cases.

of each term (Eq. (4.8)), are presented in Table 4.3. We can observe that the main contributor to
uncertainty is the reference radar calibration (2 dB). The other two terms related with the calibration
transfer process contribute less than 1 dB to total uncertainty.

Table 4.3: Correction coefficient K and its uncertainty calculated using Eqs. (4.7) and (4.8) with
the partial results of Table 4.2 (accepted clouds only). Individual uncertainty contributions to δK are
detailed.

Correction coefficient K -2.6 dB
Uncertainty Contributions
Reference radar calibration uncertainty σref 2 dB
Standard error in K estimation σK√

N
0.09 dB

Uncertainty propagation from each Ki estimation
√

1
N2

∑N
i=1 σ

2
Ki

0.91 dB
Correction coefficient uncertainty δK 2.2 dB

From this data, and taking significant figures into account, we conclude that the final Correction
Coefficient value is of K = −3 ± 2 dB. When this K value is replaced in Eq. (4.6), we get corrected
reflectivity measurements with a calibration uncertainty of δK = 2 dB.

To study the impact of the number of clouds in the calibration transfer exercise, how K and δK

change when they are calculated using an increasing number of clouds, taken from the database of
accepted cases (in sequential order). The result is shown in Fig. 4.7. We can observe that the correction
coefficient K variations are always smaller than the value of its uncertainty δK, which is a result that
indicates that the framework is consistent. The value of K does not change significantly when increasing
the amount of cloud events. Meanwhile, its uncertainty δK converges after 4 cloud events. Therefore,
results indicate that it may not be necessary to consider more than 4 clouds to obtain the same result.
There is further discussion on this result in the conclusions.
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4.5 Synthesis

This chapter presented a methodology to transfer the calibration from a reference to an uncalibrated
cloud radar. The method was developed and tested using data collected during the 2018 and 2019
ACTRIS Cloud Radar calibration campaigns performed at the SIRTA observatory, France. It consists
of using simultaneous cloud measurements to transfer the calibration, correcting the reflectivity of the
uncalibrated radar using a constant correction correction coefficient K.

The current version of the method enables the calibration transfer between radars with close operating
frequencies (in the same band), and is robust to differences in sensitivity. This enables the use of this
method without restrictions on the radar model or manufacturer.

The results of the 2019 campaign are used to illustrate the methodology. In this example we use the
BASTA mini radar, calibrated in chapter 3, as the reference instrument. Its calibration is transferred
to a 94 GHz RPG Cloud Radar. Both radars are setup separated by a few tens of meters, with similar
time and range resolutions. The main results to be retained are:

• The derivation of correction functions for temperature and range dependent gain variations in each
radar must be done before the calibration transfer experiment.

• After finding these correction functions, the difference between calibrated and uncalibrated mea-
surements is given by a constant term, defined as the correction coefficient K.

• The correction coefficient can be derived by comparing simultaneous reflectivity measurements done
with the reference and the uncalibrated radars. Clouds are a possible source of these reflectivity
measurements.

• The first data selection stage is done manually, to avoid periods when wetting of the radome could
cause unreliable measurements (during and shortly after rain). The use of doppler velocity proved
useful to identify precipitation events.

• The cloud sampling period lasted approximately three weeks, from March 20 to April 9 of 2019.
In this time span it was possible to identify 11 cloud periods with valid measurements.

• Differences in the shape of the reflectivity distributions sampled by each radar, for the same clouds,
showed the need of performing a data processing stage before the calibration transfer. The process-
ing involved, for each radar: the removal of boundary layer measurements, the removal of outliers,
interpolation of the uncalibrated radar data grid to that of the reference radar, and the application
of a dynamic range filter and a correspondence filter. The dynamic range filter removed data that
could only be measured by the most sensitive radar, to avoid a biased comparison of reflectivity
statistics. The correspondence filter removed samples detected by only one of the two radars, by
comparing the data grids.

The data processing stage modified the difference between the medians of the reference and un-
calibrated reflectivity distributions of a cloud case example by ∼ 6 dB. This is relevant since the
difference between the medians is used in the correction coefficient derivation.

• After data processing, a quality control based on Quantil-Quantil plots is applied to each cloud
period. Its objective is to determine if the shape of the measured reflectivity distributions is similar
enough for calibration transfer. When distributions are not similar, it is not possible to assume
that both radars observe the same cloud features, and therefore data is discarded. The quality
control rejected 3 of the 11 originally selected cloud periods.
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• An estimator of the correction coefficient and of its uncertainty is developed. Uncertainty depends
on: 1. The propagation of the uncertainty in the estimation of the correction coefficient value,
calculated in each cloud period. 2. On the variability of the correction coefficient values obtained
for different cloud periods. 3. On the reference radar calibration uncertainty.

The 9 valid clouds are used to calculate the correction coefficient of the example. Its estimated value
is of K = −3±2 dB is determined. The main source of uncertainty comes from the reference radar
calibration (2 dB). Uncertainty source 1 contributed 0.09 dB and uncertainty source 2 contributed
0.91 dB to the final calibration uncertainty of 2.2 dB.

• The correction coefficient value and uncertainty converges when using at least 4 cloud periods.
In principle, using more cloud events should decrease uncertainty further, yet at present its value
is limited by the reference radar calibration. If the reference radar calibration uncertainty is
decreased, it may be possible to further reduce the uncertainty in calibration transfer by increasing
the amount of clouds considered.
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Chapter 5

Conclusions and Perspectives

The development of a network of fog monitoring stations presents several scientific and technical chal-
lenges. There is a need of improving our understanding of the conditions leading to fog dissipation, to
improve our capability of forecasting it. This thesis shows how remote sensing can be useful to monitor
fog status in real time. Yet the cloud radar, which is a key instrument to observe fog top, has the long-
standing need of calibration methodologies, which could also be applied at the scale of an observation
network.

This thesis contributed to advances in both topics, through the research of key variables driving the
fog life cycle, and of a calibration strategy suitable for cloud radar networks.

The results from our fog research could change the way dissipation is forecasted, by simplifying the
problem of forecasting visibility at the surface, which requires the use of complex models with a fine
spatial resolution, for the simpler problem of predicting large scale macroscopic variables (LWP, CTH,
temperature and pressure). This change of paradigm could contribute to new ways of stating the fog
forecasting problem in the future.

Additionally, fog research should benefit from our advances in cloud radar calibration solutions.
Harmonized and reliable cloud radar measurements could provide new insights on fog microphysical
properties, on its spatial structure and on the processes driving its life cycle.

Radar calibration is a complex issue. To plan and execute a good calibration experiment, it is
necessary to consider the specific inner workings of the radar, to have an understanding of remote
sensing theory, and to execute highly rigorous technical work. Significant effort has been made on this
thesis to develop methods as general as possible (not constrained to a single type of instrument), that
could be applied in cloud radar observation networks. This requirement makes it very important to
consider existing equipment and logistical limitations.

All of this work was made possible by the existence of the SIRTA atmospheric observatory (Palaiseau,
France). Fog research was done using several years of continuous in-situ and remote sensing measure-
ments. These measurements provided enough data to have a statistical view of the fog phenomenon,
enabling the identification of general properties and behaviors. Furthermore, the observatory contributed
with its outstanding facilities and staff to make possible two cloud radar calibration campaigns. During
the experiments, the overlap in objectives with the ACTRIS research infrastructure, which is developing
a network of cloud remote sensing stations, also gave place to interesting and enriching international
collaborations.

Detailed conclusions and perspectives are presented in the following sections. Section 5.1 concludes
on the results and implications of our fog research. Section 5.2 presents the conclusions of the cloud
radar calibration research. Finally, section 5.3 presents perspectives for future work.
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5.1 The role of LWP and CTH in fog life cycle

Starting from physical principles, and previous work done by Cermak and Bendix (2011); Wærsted
(2018), we formulated a new conceptual model that relates the liquid water path (LWP) of fog with
its thickness (CTH), surface liquid water content (LWC0), equivalent adiabaticity (αeq) and surface
temperature and pressure. This conceptual model is used to understand the relationship between these
meteorological variables, based on data from 80 fog events measured at the SIRTA observatory (section
2.2).

The conceptual model also enabled the identification of two key indicators: the Critical Liquid Water
Path (CLWP), and the Reservoir Liquid Water Path (RLWP). The CLWP is the minimum amount of
LWP necessary to fill a fog layer of a given thickness. The RLWP is the excess of LWP above the critical
value, and quantifies the amount of water that must be removed before fog dissipation can occur at the
surface. Both variables are calculated as a function of the conceptual model parameters (LWP, CTH,
LWC0, αeq, surface temperature and pressure). RLWP behavior is studied as a function of the fog life
cycle, indicating that it may be used as potential indicator of fog dissipation tendency. This potential is
then explored, combining RLWP and surface visibility measurements.

In the following lines we highlight the conclusions from this study:

• Key instruments: To study and use the conceptual model formulation, it is necessary to have
a specific set of measurements, associated with key instruments: 1.- Fog CTH is retrieved using
cloud radar measurements. A suitable cloud radar must be able to detect the upper limit of fog at
less than 100 m of vertical height, with a resolution of ∼10 m or finer. 2.- Fog LWP is measured
using a microwave radiometer. 3.- Surface visibility is measured using a diffusometer. It enables
fog detection and an estimation of LWC0 using the parametrization of Gultepe et al. (2006). 4.-
Temperature and pressure measurements at the surface are used to calculate the saturation mixing
ratio change with height, used to calculate the adiabatic LWC profile. 5.- Fog CBH is tracked using
a ceilometer, complementing visibility measurements in the formation stage of stratus lowering fog,
or during temporary lifting of the fog base.

• Relationship between LWP and CTH in fog layers: The equivalent adiabaticity is the
parameter that links fog LWP and CTH. In fact, LWP can be split in two different terms: one
proportional to fog adiabaticity and the square of the CTH, and another which is the product of
surface LWC with fog CTH. The first term is analog to the LWP dependency on thickness for
clouds (Braun et al., 2018). The second term is fog-exclussive, and is introduced by an excessive
accumulation of water caused by the surface presence, which limits fog vertical development.

• Fog adiabaticity: The conceptual model enabled the retrieval of the equivalent adiabaticity αeq of
fog profiles. It was found that αeq is highly variable when the LWP is less than 30 g m−2, reaching
values between ≈ -1 and 1. Negative adiabaticity values are explained by a decrease in liquid water
content (LWC) with height, with respect to the surface value LWC0, which occurs when radiation
fog is at its formation stage (fog is non opaque to infrared radiation and has a stable profile).
When LWP increases above 30 g m−2, fog becomes opaque to infrared radiation and adiabaticity
converges towards ≈0.6-0.7, matching previous adiabaticity observations of boundary layer clouds
(e.g. Braun et al. (2018)). This is explained by a destabilization of the layer caused by localized
cooling at the fog top (since fog is opaque), or heating at the fog base (after dawn).

It was also found that αeq is strongly correlated with fog CTH. This enabled the development of a
αeq(CTH) parametrization, which can be used to estimate fog LWP with an uncertainty of ±10.5
g m−2, using the conceptual model plus radar, visibility and weather station measurements.
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• Relationship between CTH, LWP and the fog life cycle: CTH and LWP are drivers of the
fog life cycle, through their impact on the RLWP value.

Statistically, RLWP is negative before fog formation, reaches 0 g m−2 at formation time and
increases to possitive values afterwards. The increase in RLWP begins about 50 minutes before
formation and persists for other 50 minutes after formation. The rate of change of the RLWP
(dRLWP/dt) can reach median values of 10-20 g m−2 Hr−1 in this stage.

During the fog mature stage, RLWP is greater than 0 g m−2 90% of the time, and the median rate
of change of the RLWP is of -0.2 g m−2 Hr−1. The observation of change rates between ±20 g
m−2 Hr−1 during fog mature stage indicate that RLWP can present important oscilations.

At the fog dissipation stage, RLWP goes from possitive to negative values, passing through 0 at
dissipation time. RLWP depletion starts about 60 minutes before dissipation, reaching a median
rate of change value of -5 to -20 g m−2 Hr−1. The significantly larger depletion rate, with respect
to the median value observed in the mature stage, indicates that most of the RLWP is removed in
the last stage of the fog life cycle.

• Impact of LWP and CTH variations on fog RLWP: The adiabaticity parametrization, and
the conceptual model, enable the quantification of the impact that LWP and CTH variations
have on the RLWP. The model indicates that increases in LWP will augment the RLWP, while
increases in CTH will reduce its value. This opens the possibility of having compensating effects.
For example, an increase in LWP could be compensated by CTH development, leading to RLWP
depletion and thus fog dissipation. On the contrary, there can be instances where a decrease in
LWP is compensated by a reduction of CTH, keeping possitive RLWP values that allow fog to
persist. It is also predicted that to have fog dissipation it is necessary that both LWP and CTH
time changes have a magnitude that results in a net RLWP decrease. This last property was verified
observing LWP and CTH trends for the last 60 minutes of 56 fog cases lasting more than 3 hours.

• Temporary fog dissipation: It was found that 45 of the 80 fog events identified in the article
(section 2.2) had periods with visibility increases above 1000 meters, lasting for less than 60 minutes
within fog events. These transient visibility increases could be caused by the advection of spatial
hetereogeneities (Gultepe et al. (2007)), by a temporary LWP depletion caused by drizzle (Dupont
et al. (2012)), or by a short-lived lifting of the fog base caused by a transitory RLWP depletion,
after a sudden LWP decrease or CTH increase. At present it is not possible to discern if dissipation
will be temporary or definitive, based on our diagnostic variables. This would require a forecasting
of surface visibility, or of fog RLWP. The second alternative has the advantage of being simpler
since its variations can be quantified from real time observations of fog processes, without the need
of costly simulations (e.g. Wærsted (2018)).

• RLWP and visibility as indicators of fog dissipation tendency: When visibility is less than
approximately 600 m, RLWP can range between negative and ≈60 g m−2, acting as an independent
variable to describe fog status. On the contrary, when visibility is greater than approximately 600
m, the range of possible RLWP values is more restricted and more correlated with visibility. This
is due to the RLWP convergence towards 0 g m−2 when visibility is increasing towards 1000 m.

This is consistent with the results of the study on the use of visibility and RLWP as indicators
of dissipation probability. Here it was found that RLWP provides additional information of fog
dissipation tendency when visibility is below 600 meters. The dissipation probability within 90-
180 minutes can vary from 5-20% to 30-60% depending on the RLWP value (for samples in the
same visibility range). For visibilities between 600 and 1000 meters the RLWP does not provide
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additional information with respect to visibility, probably due to the aforementioned stronger
correlation.

5.2 Cloud radar calibration

Radar calibration has been a long-standing challenge. The lack of universal calibration methods intro-
duces the need for continuous research for solutions, tailored for each use case (Süsskind, 1985; Atlas,
2002). Therefore, the calibration of a cloud radar network required a dedicated study which consid-
ered its specific characteristics. To address this requirement, we researched and developed a calibration
solution based on two steps:

First, to calibrate a cloud radar (BASTA mini), that becomes our reference radar. This is done using
corner reflectors mounted on masts, with a comprehensive study of uncertainty sources. Two different
experimental setups were tested: one consisting on a 10 m mast with a 10 cm trihedral target on top,
that could be aimed using a positioner, at 196 meters of distance. The other consisted on a 20 m mast
with a 20 cm trihedral target fixed on top, at 376.5 meters of distance.

Second, to transfer the calibration of the reference instrument to another radar (a 94 GHz RPG radar
in our experiment) using clouds as common targets. Experiments to gather data and test the approaches
were carried out during two calibration campaings, done in 2018 and 2019 at the SIRTA observatory, in
the framework of the ACTRIS infrastructure development.

The conclusions from the first step, about the reference radar calibration, are:

• The proposed calibration method requires performing several iterations in the same setup configu-
ration. In each iteration the setup is first realigned, followed by approximately one hour of sampling
the reference reflector signal. Iterations are necessary to quantify the bias introduced by unavoid-
able misalignments in the experimental setup. The variability in the target signal when comparing
different iterations can be combined with a geometrical model of the experimental setup, to calcu-
late which sets of positioning uncertainties reproduce the observed results. These sets enable the
estimation of the bias and uncertainty introduced by setup misalignment.

• Calibration can be impacted by changes in the gain of internal radar components. When calibrating
BASTA mini we found that temperature introduced systematic variations in the radar gain. This
was corrected by deriving a temperature correction function, sampling the calibration value for a
wide range of environmental temperatures. It was also found that filters at the IF introduced a
range dependent loss term. This was corrected by deriving the IF gain function using the target
signal plus noise measurements (section 3.2). Gain variations caused by temperature and the IF
filters modified the calibration value of BASTA mini by up to 1 dB. It is advisable to study the
radar hardware, to identify possible systematic sources of calibration variability, and to perform
experiments to retrieve corrections for these variations.

• The calibration methodology enabled the identification and quantification of the uncertainty sources
introduced by different elements of the experimental setup (uncertainty budget). This enabled us,
for example, to identify that the main source of uncertainty for both experiments was the reflector
RCS (2 dB). Then, the second most importante source of uncertainty for the 10 m mast setup is
introduced by clutter (0.9 dB), while in the 20 m mast setup it is introduced by setup alignment
(0.28 dB). Clutter contribution on the 20 m mast setup is significantly lower (0.09 dB). This
analysis shows that the calibration methodology allows quantitative comparisons between different
experimental setups. The results from this study, and the practical experience acquired, enables us
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to propose a list of relevant points that should be considered in future reflector-based calibration
experiments:

– Saturation in the radar receiver: Corner reflectors can produce a strong return signal,
that may compress or saturate the receiver of the radar. Excessive compression or saturation
must be avoided to have a valid calibration in the linear range of the instrument. To perform
this validation it is necessary to know the power transfer curve of the receiver. This curve can
also be used to correct small compression effects. For example, it enabled us to detect and
correct compression losses of approximately 0.2 dB.

An excess in the return signal can be mitigated by placing the target farther, or switching it
for another with a lower radar cross section (RCS).

– Near field distance: The reflector used in calibration must be located farther than the
near-field distance of the radar antennas. This near field distance can be estimated using the
Fraunhofer distance formula. The Fraunhofer distance calculated for BASTA mini is of 50 m.
This distance was greatly surpassed in the two tested experimental setups, where the target
was located at 196 and 375.5 meters of distance.

– Antenna overlap: The radar equations assumes that the emitting and receiving antennas
have superimposed beam lobes. This assumption may not be valid when using bistatic radars,
where there may be incomplete antenna overlap. This incomplete antenna overlap happens
when the lobe of the emitting and receiving antenna are not completely superimposed, intro-
ducing range dependent losses with respect to the behavior predicted by the radar equation.
When calibrating bistatic radars using a point target, such as a corner reflector, it is necessary
to place it far enough so that losses due to incomplete overlap become neglible. This loss can
be calculated as a function of distance, by considering antenna beam width, the separation
between the antennas and their parallax. In our calibration experiment, the estimated loss
due to incomplete overlap, assuming parallel antennas, was smaller than 0.1 dB for the closest
mast setup, at 196 m of distance, and less for farther distances. The parallel antenna assump-
tion could not be verified experimentally due to limitations of the radar positioner accuracy.
An alternative approach to estimate the losses caused by antenna parallax errors is proposed
in the perspectives section (section 5.3).

– Clutter: Clutter, understood as the contribution of unwanted reflections on surrounding
objects to radar measurements, may introduce uncertainty when measuring the signal of
interest. The magnitude of this contribution depends on the signal to clutter ratio. Signal to
clutter ratio can be measured by comparing the power received from the target with the power
received from the target position after removing the reflector (Chandrasekar et al., 2015). It
is advisable to perform the calibration experiments in an open field several hundred meters
long, free from trees or other obstacles, and using a mast as less reflective as possible. The
impact of signal to clutter ratio in uncertainty can be highly variable, depending on its value.
For one of our experimental setups, signal to clutter ratio introduced an uncertainty of 0.9
dB, while for the other it was just of 0.09 dB.

– Environmental conditions: Calibration measurements should be done with clear conditions
at the surface, without fog or rain, and a continuous measurement of temperature, pressure
and relative humidity nearby to calculate atmospheric attenuation. It is also recommended to
monitor wind speed and turbulence, to minimize mechanical vibrations of the experimental
setup (on the radar and on the mast holding the target).
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– Experimental setup realignment: The execution of several iterations of system realign-
ment makes it important to consider the staff and time needed for the experiment. The
planning of a good experimental setup can follow one or both of the following strategies:
1.- To have a very precise alignment system, which could reduce the amount of interations
necessary to converge in the misalignment bias estimation, or 2.- To have an easy to re-align
experimental setup that could enable the execution of a large number of iterations in a short
period of time. For all cases, it is advisable to perform experiments to test the setup and
study how the misalignment bias converges for an increasing number of iterations.

In addition, the conclusions from the second step, about calibration transfer, are:

• The approach corrects differences between calibrated and uncalibrated measurements using a con-
stant term, defined as the correction coefficient. The correction coefficient can be derived by com-
paring simultaneous cloud reflectivity measurements done with the reference and the uncalibrated
radars.

• The first data selection stage is done manually, to avoid periods when wetting of the radome could
introduce unreliable measurements (during and shortly after rain). Doppler velocity measurements
can be used to support the identification of precipitation events. In three weeks (from March 20
to April 9 of 2019) it was possible to identify 11 cloud periods with valid measurements.

• Differences in the shape of the reflectivity distributions sampled by each radar, for the same clouds,
implied the need of performing a data processing stage before determining the correction coefficient.
This processing involved (for each radar): the removal of boundary layer measurements, the removal
of outliers, interpolation of the uncalibrated radar data grid to that of the reference radar, and the
application of a dynamic range filter and a correspondence filter.

The dynamic range filter removed data that could only be measured by the most sensitive radar,
to avoid a biased comparison of reflectivity statistics (which could have an impact of several dBs).
This step is key to enable calibration transfer between radars with different sensitivity.

The correspondence filter removes data with a given time-range coordinate that is measured by
only one of the radars.

• A quality control for each cloud is done using Quantil-Quantil plots. These plots enable a compari-
son of the shape of the reflectivity distributions from the reference and uncalibrated radar, for each
cloud period. When the distributions are not similar, it is not possible to assume that both radars
observe the same cloud features, and the cloud period is discarded. The quality control rejected 3
of the 11 originally selected cloud periods.

• Uncertainty in calibration transfer depends on: 1. The propagation of the uncertainty in the
estimation of the correction coefficient value, calculated in each cloud period. 2. On the variability
of the correction coefficient values obtained for different cloud periods. 3. On the reference radar
calibration uncertainty.

In our calibration transfer excercise, the main source of uncertainty comes from the reference radar
calibration (2 dB). Uncertainty source 1 contributed 0.09 dB and uncertainty source 2 contributed
0.91 dB to the final calibration uncertainty of 2.2 dB.

• The correction coefficient value and uncertainty converges when using at least 4 cloud periods. In
principle, using more cloud events should decrease uncertainty further, yet at present its value is
limited by the reference radar calibration. If the reference radar calibration uncertainty decreases,
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it will be possible to further reduce the uncertainty of the calibration transfer by increasing the
amount of clouds considered.

5.3 Perspectives

This thesis performed a quantitative study on the relationship between fog LWP and CTH based, and
about how they are related with fog evolution, through the development of a new conceptual model for
fog and the use of remote sensing measurements. This led to the identification of diagnostic variables
that can be used to quantitatively assess fog status.

The thesis also presented the development of tailored methods to calibrate a network of cloud radars,
with a comprehensive identification of the uncertainty sources, and identifying remaining challenges.

We believe that it is possible to continue advancing further in both topics. Below we propose some
tracks that could be useful for this end:

• Impact of fog microphysics on RLWP estimation: The proposed conceptual model integrates
fog microphysics implicitly, through the use of experimentally derived parametrizations for the
equivalent adiabaticity (section 2.2), and to relate surface LWC with visibility (Gultepe et al.,
2006). These parameterizations consider only macroscopic variables in their formulation (CTH or
visibility), and therefore represent only first order approximations. In addition, section 2.4 shows
that the adiabaticity parametrization is the main source of uncertainty in the CLWP calculation,
reaching values of approximately ±10 g m−2.

Therefore, it would be interesting to improve the estimation of adiabaticity by including information
on fog microphysics, to improve the estimation of the CLWP and RLWP. One approach could be to
conduct a sensitivity study, to quantify how conceptual model variables change for different known
adiabaticity profiles (observed or simulated).

This study could be done, for example, by using large eddy simulations (LES). With LES we
would get all necessary outputs to calculate conceptual model variables, while having additional
information on fog microphysics. For example, Mazoyer et al. (2017) used the Meso-NH model to
perform a LES of a fog case measured during the ParisFog campaign, at the SIRTA observatory. In
their study they were able to calculate fog LWP and CTH, alongside droplet number concentration
and mixing ratio with a 1 m vertical resolution (and a large number of other physical parameters).

Another complementary approach could be to study conceptual model calculations, based on em-
pirical data, paired with retrievals of fog microphysics. Retrievals of fog microphysics can be
obtained using cloud radar reflectivity combined with in-situ instruments, such as granulometers,
and data assimilation techniques (e.g. Khain et al. (2008); Dupont et al. (2018); Bell et al. (2021)).
This approach would also benefit from the cloud radar calibration improvements developed in this
thesis.

• Improvement of fog LWP retrievals: Microwave radiometers retrieve the LWP of the complete
atmospheric column. This means that what is measured is the addition of the LWP from all liquid
clouds in the column. Thus, when clouds are present above the fog layer, it is not possible to retrieve
fog LWP from radiometer measurements alone. This limitation is particulary important, because
clouds above can reduce LWP generation from radiative cooling by up to 100%, accelerating fog
dissipation (Wærsted et al., 2017).

At present, the conceptual model does not perform calculations when the cloud radar detects
clouds above the fog layer, to avoid the use of invalid LWP data. It would be useful to improve this
situation by creating a fog LWP product that works when clouds are present above the fog layer.
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The conceptual model already enables an estimation of fog LWP with an uncertainty of ±10.5
g m−2 based on CTH, visibility, and surface temperature and pressure. This uncertainty, which
is mostly introduced by the adiabaticity parametrization (section 2.4), remains important for the
estimation of the dissipation probability. However, improvements in this parametrization, or direct
observation of fog adiabaticity using calibrated reflectivity measurements, could be used to have a
better estimation of fog LWC and LWP, even when clouds are present above this layer (e.g. Khain
et al. (2008); Bell et al. (2021)).

• Differentiation between temporary and definitive fog dissipation: In section 2.3.2 we
observed that fog can dissipate locally for short-time periods, of less than 60 minutes, without
implying a definitive dissipation of a fog event (defined as a 60 minute period with visibility > 1000
m).

We also observed that it is not possible to distinguish temporary from definitive dissipation based
on local RLWP and visibility trends only. This requires the use of additional information. One
possibity would be to include 3D reflectivity measurements, from a scanning radar, or from a
distributed network of cloud radars, to simultaneously observe how conceptual model variables
behave at different locations. This would enable the detection of fog regions with local RLWP
decreases, which may be caused by hetereogeneities on surface conditions (Gultepe et al., 2007),
that could advect and cause temporary dissipation downwind.

The observation of fog physical processes could also provide valuable information. The thesis done
by Wærsted (2018), which is part of this project, and other authors, researched how observations
of local fog processes can be used to quantify LWP and CTH variations. This information can
be used to predict the short-term evolution of RLWP, and may enable the differentiation between
dissipation ocurring under conditions that systematically lead to RLWP depletion, from non-lasting
LWP and CTH perturbations caused by horizontal advection.

Finally, the use of forecasting tools could also be considered, such as data asimilation techniques
and numerical weather prediction (NWP) simulations (e.g. Román-Cascón et al. (2016a)). Here
the advantage of the conceptual model is that it simplifies the problem of predicting surface visi-
bility (which requires a fine vertical resolution and cloud microphysics), for the simpler problem of
predicting large scale macroscopic variables (LWP, CTH, temperature and pressure).

• Study the generality of the fog conceptual model: The conceptual model has been developed
with data from the SIRTA observatory, located near Paris, in France. Temporal variability is well
captured, by the use of 7 years of fog measurements. However, it is not known to which extent the
results obtained are applicable to other sites.

The term that is most likely to vary between different sites is the adiabaticity parametrization.
Even though its value is consistent with previous observations from other sites when fog is in its
adiabatic stage (e.g. Cermak and Bendix (2011); Braun et al. (2018)), its parametrization as a
function of CTH could change for sites with different terrain, climate or fog types (the SIRTA
observatory is mostly affected by continental radiation fog and continental stratus lowering fog).
Therefore, it would be interesting to research how our parametrization compares with observations
done in other observatories. The use of data from other sites is also interesting to improve fog
dissipation diagnostics, which are partially based on statistics. This issue reinforces the need of
fog observation networks, which are essential to reach more universal conclusions on fog properties,
and to have a better assessment and forecasting of fog dissipation tendency.

Fortunately, work is being done to have a homogeneized cloud monitoring network. The european
ACTRIS infrastructure already has 15 sites with cloud radar and microwave radiometer observa-
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tions, and therefore is a good place to start looking for stations with suitable fog measurements to
perform conceptual model calculations.

• Improvement of the reference radar calibration: At present, the predominant source of
uncertainty in the reference radar calibration is introduced by the reflector RCS (2 dB). The
uncertainty in the reference radar calibration also limits the performance of calibration transfer
when using this instrument. Using the uncertainty budget, we found that to reach a calibration
uncertainty below 1 dB, it is necessary to characterize the target RCS with an uncertainty of less
than 0.9 dB. This characterization could be done by measuring the target RCS as a function of
the beam incidence angle in anechoic chambers, or other suitable facilities (e.g. Thankappan et al.
(2013); Jayasri et al. (2018)). A study on the uncertainty of the RCS measurement should also be
conducted.

• Characterization of the impact of antenna parallax errors: At present, calibration is
retrieved assuming that the radar antennas are parallel. However, errors in antenna parallax are
possible and could have a non neglibile impact on gain for different distances, specially for cloud
radars with narrow beams (Sekelsky and Clothiaux, 2002). Thus, it is important to detect and
correct gain variations introduced by non ideal parallax. This could be done by using our calibration
method with the same target, but at different distances. Since all other sources of variability are
corrected, changes in the retrieved calibration coefficient would be produced by gain variations,
arising from imperfect antenna parallax. These variations could be compared with the results of a
forward model to estimate the most likelly antenna pointing angles, using a monte-carlo approach
analogous to what is used to estimate misalignment bias. A bistatic version of the RCS simulator
of section 3.3 could be used as this forward model, after adding new parameters to represent the
separation between the center of the antennas, and azimuth and elevation angles to indicate their
pointing direction.

• Use of UAVs for cloud radar calibration: There is ongoing research on weather radar calibra-
tion and antenna pattern characterization based on reference reflectors held by Unmanned Aerial
Vehicles (UAVs) (Duthoit et al., 2017; Yin et al., 2019). It would be interesting for the cloud radar
comunity to adapt these methods for cloud radars. Since the underlying principle is the same of
calibration using reflectors on masts, most of our recommendations are valid for this approach.
The main difficulty should arise from the narrower beam widths of cloud radars, which should
increase the precision required in the UAV positioning. It would also be necessary to develop a
tailored geometrical model and to study how does misalignment bias change with the amount of
experimental iterations.

• Calibration transfer for radars operating on different frequency bands: It would be
useful to improve the calibration transfer method, to enable calibration transfer between radars
that operate in different frequency bands. This requires the addition of atmospheric attenuation
calculations for each radar. Additionally, the data selecton stage should consider aditional steps
to guarantee that compared data is in the Rayleigh scattering regime for both radars (Doerry and
Brock (2009)), and to avoid the use of measurements that could be attenuated by liquid water
presence in the beam path. The reason for the latter is that liquid water attenuation changes
depending on the radar frequency band, and is difficult to estimate precisely because it depends on
cloud LWC (LWC estimation would introduce an additional uncertainty term in the calculation).

These proposals may help us to further improve our understanding of fog, our capacity to perform
short-range forecast of fog dissipation, and the development of a new generation of cloud radar calibration
techniques with a complete characterization of their uncertainty.
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Titre : Amélioration des produits radar nuage pour les réseaux de surveillance du brouillard : Analyses du cycle de vie du brouillard et
méthodologies de calibration

Mots clés : Brouillard, Cycle de vie du brouillard, Télédétection du brouillard, Radar nuage, Étalonnage de radars

Résumé : La réduction de la visibilité occasionnée par le brouillard
a un impact significatif sur les activités humaines. De plus, le
brouillard est un phénomène complexe dont l’évolution dépend de
l’équilibre délicat de plusieurs processus physiques. Des dévelop-
pements récents montrent que les radars nuage sont des instru-
ments clés pour améliorer l’observation des processus pilotant le
cycle de vie des brouillards. Ceci, associé à de nouveaux dévelop-
pements réduisant leur coût, ouvre la possibilité d’établir des ré-
seaux de stations de surveillance du brouillard. Pourtant, il y a des
défis à relever pour garantir la valeur de ces réseaux :
1.- Les processus qui pilotent le cycle de vie du brouillard se pro-
duisent dans une épaisseur d’atmosphère de plusieurs centaines
de mètres, en particulier à sa limite inférieure où elle interagit avec
le sol, et à son sommet où elle interagit avec l’air insaturé au-
dessus. Les capteurs in-situ sont bien adaptés pour surveiller les
variables clés dans la limite la plus basse. Les instruments de télé-
détection, y compris les radars nuage, peuvent surveiller l’état de la
couche de brouillard et les processus se produisant à son sommet.
Le contenu intégré en eau liquide (LWP) et l’altitude du sommet
du brouillard sont montrés comme deux variables de télédétection
importantes qui pilotent l’évolution temporelle du brouillard tout au
long de son cycle de vie.
Pour réussir à évaluer la tendance à la dissipation du brouillard, la
thèse propose une nouvelle approche qui repose sur des variables
détectées à distance combinées à un nouveau modèle conceptuel.
L’approche fournit deux variables de diagnostic : le LWP Critique
(CLWP) et le LWP de Réservoir (RLWP). CLWP est la quantité mi-
nimale de LWP nécessaire pour maintenir une couche de brouillard
d’une épaisseur donnée. Le RLWP est l’excès d’eau qui doit être
épuisé avant que la dissipation du brouillard puisse se produire à la
surface. Le modèle conceptuel établit un nouveau paradigme basé

sur l’observation de la colonne de brouillard afin d’évaluer sa ten-
dance à la dissipation.
2.- L’étalonnage des radars nuage est un problème non résolu qui
entrave la performance des réseaux d’observation du brouillard, en
limitant la fiabilité des mesures microphysiques et des études com-
paratives entre sites d’observation. Cette thèse étudie une straté-
gie d’étalonnage qui pourrait être appliquée sur un réseau de sur-
veillance du brouillard, à partir des résultats de deux campagnes
d’étalonnage qui ont eu lieu à l’observatoire SIRTA, dans le cadre
du développement de l’infrastructure ACTRIS.
La stratégie comprend deux étapes : d’une part calibrer un radar de
référence avec une estimation fiable de l’incertitude et d’autre part
transférer l’étalonnage à d’autres radars, en comparant ses me-
sures de réflectivité. Le radar de référence (95 GHz BASTA mini)
est étalonné avec une nouvelle méthode, basée sur des réflecteurs
trièdres. Les sources de biais et d’incertitude sont discutées et
quantifiées. Actuellement, l’incertitude de la méthode est de 2 dB, li-
mitée par l’utilisation d’un modèle théorique pour calculer la section
efficace du radar du réflecteur. Pourtant, les calculs indiquent que
l’incertitude pourrait atteindre un minimum théorique de 0.4 dB, en
fonction de l’incertitude de caractérisation du réflecteur et du mon-
tage expérimental. La méthodologie de transfert d’étalonnage est
basée sur l’analyse de mesures simultanées de nuages. En utili-
sant deux semaines d’observations, il a permis le transfert d’éta-
lonnage vers un radar nuage RPG de 94 GHz, avec une incertitude
ajoutée de 0.9 dB par rapport à l’étalonnage du radar de référence.
Les travaux techniques et scientifiques réalisés dans cette thèse
contribuent à améliorer notre capacité à surveiller les variables clés
qui contribuent à une meilleure compréhension de l’évolution du
cycle de vie du brouillard.

Title : Improvement of cloud radar products for fog surveillance networks: fog life cycle analyses and calibration methodologies.

Keywords : Fog, Fog life cycle, Fog remote sensing, Cloud radar, Radar calibration

Abstract : Visibility reduction caused by fog has a significant im-
pact on human activities. In addition, fog is a complex phenome-
non whose evolution depends on the delicate balance of several
physical processes. Recent developments show that cloud radars
are key instruments to improve observation of key fog processes.
This, paired with new developments reducing their cost, opens the
possibility of establishing networks of fog surveillance stations. Yet,
some challenges must be addressed to secure the value of such
networks:
1.- Processes that drive fog life cycle occur throughout the fog layer,
in particular at its lower boundary where the fog layer interacts with
the soil, and at the top where it interacts with the unsaturated air
above. In-situ sensors are well suited to monitor key variables in
the lowest boundary. Remote sensing instruments, including cloud
radars, can monitor the state of the fog layer and processes occur-
ring at fog top. Fog Liquid Water Path (LWP) and fog top height are
shown to be remotely sensed variables that are key drivers of fog
temporal evolution throughout its life cycles.
To address the challenge of assessing fog dissipation tendencies,
the thesis proposes a novel approach that relies on remotely sen-
sed variables combined with a new conceptual model. The ap-
proach provides two diagnostic variables: the Critical Liquid Water
Path (CLWP), and the Reservoir Liquid Water Path (RLWP). CLWP
is the minimum amount of LWP necessary to maintain a fog layer of
a given thickness. RLWP is the excess of water that must be remo-
ved before fog dissipation at the surface can occur. The conceptual
model establishes a new paradigm based on the observation of the

fog column to assess its dissipation tendency.
2.- Cloud radar calibration is an unsolved issue that hampers the
performance of fog observation networks, by limiting the reliability
of microphysical retrievals and of comparative studies between ob-
servation sites. This thesis researches a calibration strategy that
could be applied on a fog surveillance network, based on the re-
sults of two calibration campaigns that took place at the SIRTA ob-
servatory, as part of ACTRIS infrastructure developments.
The strategy consists of two steps: First, to calibrate a reference ra-
dar with a reliable estimation of uncertainty. Second, to transfer the
calibration to other radars, by comparing reflectivity measurements.
The reference radar (95 GHz BASTA mini) is calibrated using a new
method, based on corner reflectors. Bias and uncertainty sources
are discussed and quantified. At present, the method uncertainty is
of 2 dB, limited by the use of a theoretical model to calculate the
reflector radar cross section. Yet, calculations indicate that uncer-
tainty could reach a theoretical minimum of 0.4 dB, depending on
the characterization uncertainty of the reflector and on the experi-
mental setup. The calibration transfer methodology is based on the
analysis of simultaneous cloud measurements. Using two weeks of
observations, it enabled the calibration transfer from the reference
to a 94 GHz RPG cloud radar, with an added uncertainty of 0.9 dB
with respect to the reference radar calibration.
The technical and scientific work carried out in this thesis contribute
to improving our capacity to monitor key variables that contribute to
a better understanding of fog life cycle evolution.
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