Extension of the Spectral Difference method to simplex cells and hybrid grids - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2021

Extension of the Spectral Difference method to simplex cells and hybrid grids

Extension de la méthode des Différences Spectrales (SD) aux cellules de type simplex et aux maillages hybrides

Résumé

This thesis examines the extension of the Spectral Difference (SD) method on unstructured hybrid grids involving simplex cells (triangles, tetrahedra) and prismatic elements. The Spectral Difference method is part of high-order spectral discontinuous numerical methods. These methods rely on piecewise continuous polynomial approximation to obtain high-order accuracy with a good parallel efficiency. The standard SD scheme is first presented in the one-dimensional case and then for tensor-product elements (quadrangles and hexahedra). The treatment of simplex cells using Raviart-Thomas elements is detailed for triangles (in 2D) and tetrahedra (in 3D), followed by the implementation for prismatic elements. The linear stability of the Spectral Difference method using Raviart-Thomas elements (SDRT) is studied on triangles and tetrahedra. The SDRT scheme stability is strongly dependent on the interior flux points location. On triangles, the SDRT implementation based on interior flux points located at Williams-Shunn-Jameson quadrature points is found stable up to the fourth-order of accuracy but shown as spatially unstable for higher orders. Nevertheless, it is shown that this implementation can be stabilized for fifth- and sixth-order schemes using suitable temporal integration schemes. This approach being submitted to strict conditions, an optimization of the interior flux points location is conducted to determine spatially stable SDRT formulations for orders higher than four. The optimization process leads to spatially stable schemes up to the sixth-order of accuracy. Finally, the stability analysis on tetrahedra proves that the SDRT scheme based on the interior flux points located at Shunn-Ham quadrature points is stable up to the third-order. The SD/SDRT numerical method is validated on several academic cases for first and second-order Partial Differential Equations (linear advection equation, Euler equations, Navier-Stokes equations). Both proposed implementations (based either on Williams-Shunn-Jameson quadrature points or optimization points) are used. Numerical experiments involve grids composed of quadratic triangles, linear tetrahedral elements as well as 2D hybrid meshes.
Cette thèse analyse l'extension de la méthode des Différences Spectrales (SD) aux maillages hybrides non-structurés composés de cellules de type simplex (triangles, tétraèdres) et aux prismes. La méthode SD fait partie des méthodes numériques spectrales discontinues d'ordre élevé. Ces méthodes s'appuient sur une approximation polynomiale continue par morceaux pour obtenir une précision d'ordre élevé tout en maintenant une bonne efficacité en parallèle. Le schéma des Différences Spectrales standard est d'abord présenté dans le cas à une dimension puis pour les éléments de type produit tensoriel (quadrilatères et hexaèdres). Le traitement des cellules de type simplex, basé sur les éléments de Raviart-Thomas, est détaillé pour les triangles (2D) et les tétraèdres (3D), suivi de l'implémentation de la méthode sur prismes. La stabilité linéaire de la méthode des Différences Spectrales basée sur les éléments de Raviart-Thomas (SDRT) est étudiée sur triangles et sur tétraèdres. La stabilité du schéma SDRT dépend en particulier de la position des points flux intérieurs. Dans le cas des triangles, l’implémentation SDRT basée sur les points flux intérieurs placés selon la quadrature de Williams-Shunn-Jameson est montrée comme étant stable jusqu'au quatrième ordre de précision, mais spatialement instable pour des ordres plus élevés. Néanmoins, il est montré que cette implémentation peut être stabilisée pour les schémas du cinquième et sixième ordres en utilisant un schéma d'intégration temporel adéquat. Cette solution étant soumise à des conditions contraignantes, une optimisation de la position des points flux intérieurs est conduite de façon à déterminer une formulation SDRT spatialement stable pour des ordres de précision supérieurs à quatre. Le processus d'optimisation permet d’obtenir des schémas spatialement stables jusqu’au sixième ordre de précision. Enfin, l'analyse de stabilité sur tétraèdres démontre que le schéma SDRT basé sur des points flux intérieurs placés selon la quadrature de Shunn-Ham est stable jusqu'au troisième ordre. La méthode numérique SD/SDRT est validée sur plusieurs cas académiques pour les Équations aux Dérivées Partielles d'ordre un (équation d'advection linéaire, équations d'Euler) et deux (équations de Navier-Stokes). Les deux implémentations SDRT proposées (basées sur les points de quadrature de Williams-Shunn-Jameson ou sur les points d'optimisation) sont utilisées. Les cas de validation numérique impliquent des maillages composés de triangles quadratiques, de tétraèdres linéaires ainsi que de maillages hybrides 2D.
Fichier principal
Vignette du fichier
thesis.pdf (24.64 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03299370 , version 1 (27-08-2021)

Identifiants

  • HAL Id : tel-03299370 , version 1

Citer

Adèle Veilleux. Extension of the Spectral Difference method to simplex cells and hybrid grids. Other [cond-mat.other]. Institut National Polytechnique de Toulouse - INPT, 2021. English. ⟨NNT : 2021INPT0029⟩. ⟨tel-03299370⟩
254 Consultations
154 Téléchargements

Partager

Gmail Facebook X LinkedIn More