
HAL Id: tel-03299466
https://theses.hal.science/tel-03299466

Submitted on 26 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arithmétique efficace des extensions de corps finis
Édouard Rousseau

To cite this version:
Édouard Rousseau. Arithmétique efficace des extensions de corps finis. Number Theory [math.NT].
Institut Polytechnique de Paris, 2021. English. �NNT : 2021IPPAT013�. �tel-03299466�

https://theses.hal.science/tel-03299466
https://hal.archives-ouvertes.fr

574

N
N

T
:2

02
1I

P
PA

T0
13 Efficient Arithmetic of Finite Field

Extensions
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦574 École doctorale de mathématiques Hadamard (EDMH)
Spécialité de doctorat : Mathématiques fondamentales

Thèse présentée et soutenue à Versailles, le 12 Juillet 2021, par

M. EDOUARD ROUSSEAU

Composition du Jury :

Daniel Augot
Directeur de recherche, INRIA Saclay (LIX) Président

Stéphane Ballet
Maı̂tre de conférence, Université d’Aix-Marseille (Equipe
Arithmétique et Théorie de l’Information) Rapporteur

Claus Fieker
Professor, University of Kaiserslautern (Department of Mathematics) Rapporteur

Julia Pieltant
Maı̂tresse de conférence, CNAM (Équipe Sécurité et Défense) Examinatrice

Luca De Feo
Maı̂tre de conférence, IBM Research et Université de Versailles
Saint-Quentin-en-Yveline (LMV) Directeur de thèse

Eric Schost
Professor, University of Waterloo (SCG) Co-directeur de thèse

David Madore
Maı̂tre de conférence, Télécom Paris (LTCI) Invité

Hugues Randriambololona
Maı̂tre de conférence, ANSSI et Télécom Paris (LTCI) Invité

Contents

Préface 4
Remerciements . 5
Applications des corps finis . 6

Cryptographie . 6
Théorie des codes . 10

Arithmétique des corps finis . 11
Résumé des travaux . 12

Arithmétique efficace dans une extension fixée . 13
Arithmétique efficace dans réseau d’extensions . 15

1 Introduction 18
1.1 Finite fields in computer algebra . 19
1.2 Organization of the document . 20

1.2.1 Efficient arithmetic in a single finite field 20
1.2.2 Efficient arithmetic in a lattice of finite fields 22

I Efficient arithmetic in a single finite field 26

2 Preliminaries 27
2.1 Finite fields . 28

2.1.1 Finite field structure . 28
2.1.2 Subfields and field extensions . 28

2.2 Algebraic function fields . 30
2.2.1 Places . 31
2.2.2 Independence of valuations . 34
2.2.3 Divisors . 34

2.3 Complexity models . 37
2.3.1 Algebraic complexity . 38
2.3.2 Landau notations . 38

2.4 Fundamental algorithms . 39
2.4.1 Finite field arithmetic . 39
2.4.2 Classic routines . 40

3 Bilinear complexity and Chudnosky2-type algorithms 41
3.1 Bilinear complexity . 42
3.2 Chudnovsky-Chudnovsky algorithm . 46

1

3.2.1 Evaluation - Interpolation . 46
3.2.2 Asymptotic complexity . 48

3.3 Algorithmic searches in small dimension . 49
3.3.1 Barbulescu, Detrey, Estibals and Zimmerman’s algorithm 50

4 Hypersymmetric bilinear complexity 57
4.1 Symmetric and hypersymmetric fomulas . 58

4.1.1 Generalization to multilinear maps . 58
4.1.2 Trisymmetric and hypersymmetric complexity 60
4.1.3 Galois invariance . 63
4.1.4 Multiplication formulas in algebras . 65

4.2 Algorithmic search in small dimension . 65
4.2.1 General algorithm description . 66
4.2.2 Implementation . 74
4.2.3 Universal formulas . 77

4.3 Asymptotic complexities . 80

II Efficient arithmetic in a lattice of finite fields 88

5 Isomorphism algorithms 89
5.1 Preliminaries and naive algorithm . 90

5.1.1 Description of the problem . 90
5.1.2 Embedding description problem and naive algorithm 92

5.2 Lenstra-Allombert algorithm . 92
5.2.1 Preliminaries . 92
5.2.2 Kummer algebras . 96
5.2.3 The isomorphism algorithm . 101
5.2.4 Computing (H90) solutions . 102

5.3 The embedding evaluation problem . 103
5.3.1 Linear algebra . 104
5.3.2 Inverse maps and duality . 104
5.3.3 Modular composition . 108

6 From a single finite field to plenty: lattice of embeddings 110
6.1 The compatibility problem . 111
6.2 Conway polynomials . 112
6.3 The Bosma-Canon-Steel framework . 114

6.3.1 The Bosma-Canon-Steel algorithm . 114
6.3.2 Implementation in Nemo . 120

7 Standard lattice of compatibly embedded finite field 130
7.1 The Lenstra-Allombert algorithm and lattices of embeddings 132

7.1.1 From isomorphism to embedding . 132
7.1.2 Cyclotomic lattices . 134
7.1.3 Kummer embeddings . 135

7.2 Standard solution of Hilbert 90 . 141
7.2.1 Complete algebras and standardization . 141

2

7.2.2 Towards standard embeddings . 146
7.3 Standard embeddings . 148
7.4 Implementation . 152

7.4.1 Complexity analysis . 153
7.4.2 Experimental results . 156

Conclusion 162

Bibliography 163

3

Préface

Cette préface est destinée à tous les lecteurs, toutes les lectrices, et pas seulement les mathémati-
ciens et mathématiciennes. Après les remerciements d’usage, on présentera quelques applications
des corps finis, l’objet au cœur de ce document, afin de comprendre l’étendue de leur utilité.
Celles et ceux voulant assouvir leur soif de détails techniques et de mathématiques pourront le
faire en parcourant les références bibliographiques proposées. Cela sera sans doute aussi possible
(jusqu’à un certain point) en lisant les autres chapitres de ce manuscrit, ainsi que la fin de cette
préface, qui donne un résumé détaillé du contenu du document.

Contents
Remerciements . 5
Applications des corps finis . 6

Cryptographie . 6
Théorie des codes . 10

Arithmétique des corps finis . 11
Résumé des travaux . 12

Arithmétique efficace dans une extension fixée 13
Arithmétique efficace dans réseau d’extensions 15

4

Remerciements

Je crois que ce document est le fruit d’innombrables rencontres et discussions, avec des personnes
qui m’ont aidé, inspiré et enseigné (pas seulement en mathématiques), parfois sans qu’elles ne
le sachent, et parfois sans que je ne le sache moi-même. Je n’arriverai donc pas à toutes les
remercier ici, mais je ferai de mon mieux.

Mes premiers remerciements vont à mes directeurs de thèse Luca De Feo, Hugues Randri-
ambololona et Eric Schost. Merci de m’avoir fait confiance, parfois quand on ne se connaissait pas
beaucoup. Merci pour m’avoir fait découvrir de beaux sujets de recherche, pour votre disponibilité
et vos conseils. Merci aussi pour l’ambiance de travail chaleureuse, cela a été un plaisir de faire
des mathématiques avec vous.

Je voudrais également remercier les rapporteurs Stéphane Ballet et Claus Fieker, qui ont
permis d’améliorer ce texte par leur travail de relecture minutieux et leurs remarques. Merci
aussi à Daniel Augot, David Madore et Julia Pieltant de m’avoir fait l’honneur d’accepter de
faire partie du jury de ma soutenance de thèse.

Je ne suis pas sûr que j’avais un amour prédestiné pour les mathématiques, je voudrais donc
remercier tous ceux qui ont contribué à faire grandir mon goût pour cette discipline passionnante :
tous mes enseignants depuis que je suis entré à l’école. En particulier, je remercie ceux qui m’ont
encadré lors de stages ou de projets : Nicolas Thiéry, Stéphane Fischler, Pierre-Guy Plamondon
et Michaël Quisquater.

J’ai été de passage dans plusieurs équipes pendant ma thèse, et malgré ma présence partielle
dans chacune d’entre elles, j’y ai toujours trouvé des gens m’accueillant amicalement. Merci donc
à tous les gens de passage, et bien entendu aux membres permanents, de l’équipe CRYPTO de
l’université de Versailles, de l’équipe MC2 de Télécom Paris, et du Symbolic Computation Group
de l’université de Waterloo. Vous êtes malheureusement trop nombreux pour que je ne commette
pas un oubli impardonnable.

Merci à celles et ceux qui m’ont accompagné dans les autres moments : mes vieux copains de
Cholet, et ceux rencontrés plus récemment à Orsay et Versailles. Merci aux Gibbons Masqués
pour les moments d’évasion, de rire, mais aussi de débats sans fin lors des assemblées générales.

Enfin, merci à ma (belle-)famille pour son soutien indéfectible. On ne peut surévaluer tout
ce que mes parents m’ont appris, et pour tout cela je leur serai éternellement reconnaissant. Et
finalement merci à toi Amandine pour ta présence, pour le voyage qu’on a commencé et qu’on
continue de mener, pour le bonheur quotidien et ineffable.

5

Message Message chiffré Message

SecretChiffrement Déchiffrement

Figure 1: La stratégie générale d’un protocole de chiffrement symétrique.

Applications des corps finis

On peut se demander, probablement à juste titre, à quoi sert une thèse en mathématiques
fondamentales. J’ai la chance d’avoir travaillé sur un sujet qui, quoique relativement abstrait,
possède des applications extrêmement utiles, et ce dans la vie de tous les jours, pour quasiment
tout le monde. Nous allons donc voir deux applications élégantes des corps finis, qui illustrent
l’intérêt de ces objets mathématiques.

Cryptographie

Pendant toute la durée de mon doctorat, j’ai expliqué aux non-mathématiciens que je faisais une
thèse en cryptographie. C’est en fait un mensonge, car même si le titre initial du projet de thèse
était Arithmétique efficace pour la cryptographie et la cryptanalyse, je me suis finalement intéressé
aux deux premiers mots seulement : arithmétique efficace. Cependant, la cryptographie reste une
source d’inspiration et une des motivations derrière ces travaux. Les recherches que nous avons
menées viennent souvent de la cryptographie, ou bien ont une application dans cette discipline,
nous commencerons donc par expliquer ce que “cryptographie” signifie.

Nous sommes des animaux sociaux, et nous avons donc besoin de communiquer les uns
avec les autres. Parfois, nous voulons que nos échanges restent privés. Les raisons derrière ce
souhait peuvent être multiples : informations militaires, commerciales, médicales, bancaires,
histoires amoureuses... La cryptographie est la science qui étudie les techniques utilisées pour
sécuriser les communications, en présence d’une tierce partie appelée adversaire. Historiquement,
la cryptographie s’est d’abord concentrée sur le chiffrement des messages (leur confidentialité),
c’est-à-dire rendre le message illisible pour quelqu’un qui l’intercepterait ou en obtiendrait une
copie. Pour que le destinataire légitime du message puisse le lire, il faut alors le déchiffrer. C’était
uniquement possible lorsqu’à la fois l’émetteur du message et son destinataire partagaient un
secret commun au préalable, secret qui était alors utilisé aussi bien pour chiffrer que pour déchiffrer
le message. Dans un protocole cryptographique, le secret commun est appelé une clé, parce que
le chiffrement est vu comme un cadenas. Cette méthode de chiffrement est appelée chiffrement
symétrique car les deux participants partagent le même secret. La situation est résumée sur la
Figure 1. Le chiffre de César est un vieil exemple de protocole cryptographique, dans lequel
chaque lettre du message est remplacée par une autre lettre. Toutes les lettres sont décalées
par un nombre constant n de positions vers le début de l’alphabet. Par exemple, avec n = 3,
la lettre D devient A, la lettre E devient B, la lettre F devient C, et ainsi de suite. Ce protocole
doit son nom à Jules César, qui l’utilisait pour communiquer avec sa famille, avec un décalage
de n = 3. Dans la Figure 2, on a dessiné un schéma représentant la correspondance entre les

6

A

A

B

B

C

C

D

D
E

E
F

F

G

G

H

H

I

I J

J KK
L

L

M

M

N

N

O

O

P

P

Q

Q
R

R
S

S

T

T

U

U

V

V

W

WX X
Y

Y

Z

Z

+3

Figure 2: Representation du chiffre de César avec le décalage n = 3.

lettres avec le décalage n = 3. L’anneau extérieur représente les lettres dans le texte brut (le
texte original, sans chiffrement), tandis que l’anneau intérieur correspond aux lettres dans le texte
chiffré. Dans cet exemple, la clé secrète du protocole est la valeur n du décalage : connaissant
n, on peut à la fois chiffrer et déchiffrer des messages. Le chiffre de César est suffisamment
simple pour être exécuté par une machine, mais il n’est plus utilisé aujourd’hui. En effet, le faible
nombre de clés possibles lorsque ce protocole est utilisé est petit, et un adversaire (un espion, un
ennemi...) peut donc facilement deviner le message brut en essayant toutes les clés possibles. On
pourrait même demander à un ordinateur de faire cette recherche, ce qui accélèrerait encore les
choses. C’est pourquoi, en cryptographie moderne, le nombre de clés utilisables doit être bien
plus grand. Par exemple, le protocole standard de chiffrement symétrique, appelé AES (pour
Advanced Encryption Standard), a été créé en 1999 [DR99, DR02] et peut être utilisé avec 2128,
2192, ou 2256 clés différentes, en fonction de la version de chiffrement utilisée. Le plus petit de ces
nombres peut aussi s’écrire

2128 = 340282366920938463463374607431768211456,

alors qu’un milliard s’écrit
109 = 1000000000,

ce sont donc des nombres vraiment très grands.
Le nombre de clés possibles n’est pas la seule chose ayant changé depuis Jules César. D’abord,

les communications sont désormais essentiellement numériques, et donc la cryptographie fait partie
de l’informatique. C’est très important parce que cela signifie que les travaux réalisés pendant cette
thèse sont aussi orientés vers l’informatique : on souhaite obtenir des résultats mathématiques
qui sont effectifs, c’est-à-dire qui sont utilisables par un ordinateur. Ensuite, l’étendue de la
cryptographie est aujourd’hui bien plus large. Dans la cryptographie moderne, le chiffrement
symétrique ne constitue qu’un seul domaine de la cryptographie, qui possède bien d’autres aspects,
comme le chiffrement asymétrique (aussi appelé chiffrement à clé publique), l’intégrité des données,
l’authentification, les signatures numériques (la liste n’est pas exhaustive). Nous n’expliquerons
pas tous ces termes, mais les personnes intéressées peuvent lire les introductions sur chacun de
ces sujets dans [MVOV18], par exemple. Un changement majeur en cryptographie a eu lieu en
1976, avec l’article pionnier New Directions in Cryptography [DH76] de Diffie et Hellman, qui ont

7

Message Message chiffré Message déchiffré

Bob Alice

Clé publique Clé privée

Chiffre
Déchiffre

Crée

Figure 3: Idée générale du chiffrement à clé publique.

inventé ce qu’on appelle la cryptographie à clé publique. On présente brièvement la cryptographie
à clé publique, afin de la comparer avec la cryptographie symétrique.

Un des désavantages principaux du chiffrement symétrique est que les deux personnes partici-
pantes doivent détenir un secret en commun afin de pouvoir communiquer de manière sécurisée.
On peut imaginer qu’elles se donnent rendez-vous en personne pour se mettre d’accord sur un
secret, mais cela n’est pas toujours possible, par exemple si elles vivent très loin l’une de l’autre.
Elles pourraient alors trouver un autre moyen de communication pour s’échanger leur secret,
mais ce moyen de communication ne serait pas sécurisé justement parce qu’elles n’ont pas encore
pu échanger de secret. On a ainsi l’impression qu’on se mord la queue et que le problème est
insoluble. En fait, le chiffrement à clé publique vient justement résoudre ce problème, car il
permet de chiffrer des messages sans avoir connaissance d’un secret commun. L’idée très élégante
de Diffie et Hellman est de casser la symétrie entre les personnes participantes (qu’on appellera
Alice et Bob, car c’est la tradition en cryptographie). Au lieu de se mettre d’accord sur un secret
commun, seul l’un des participants (par exemple Alice) crée une paire de clés : l’une d’elle va
être publique et est destinée à être transmise à tout le monde, alors que l’autre est privée et doit
être connue d’Alice seulement. Avec la clé publique, chacun peut chiffrer un message, alors que la
clé privée est nécessaire quant à elle au déchiffrement. En utilisant ce genre de système, tout le
monde peut envoyer un message chiffré à Alice, car la clé à utiliser pour cela est publique, mais
seule Alice peut déchiffrer ces messages, même s’ils sont interceptés par un éventuel adversaire.
Ainsi les communications restent sécurisées. Nous donnons un schéma du fonctionnement général
du chiffrement à clé publique dans la Figure 3. Avec un tel système, Bob ne peut pas recevoir
de message, il peut uniquement en envoyer à Alice. Si Alice veut envoyer un message à Bob
en utilisant du chiffrement à clé publique, Bob doit alors créer sa propre paire de clé. Il donne
alors sa clé publique à Alice, qui peut l’utiliser pour chiffrer un message et l’envoyer à Bob. Bob
déchiffre alors le message en utilisant sa clé privée. La cryptographie à clé publique est plus
lourde à mettre en place que la cryptographie symétrique, une autre solution est donc pour Bob
de choisir un secret, de le chiffrer, puis de l’envoyer à Alice, qui pourra le déchiffrer et ils pourront
alors tous les deux l’utiliser pour mettre en place un protocole de chiffrement symétrique. C’est ce
qui est fait en pratique : seul un échange de clé a lieu en utilisant la cryptographie à clé publique,
le reste étant géré par la cryptographie symétrique. Néanmoins, la cryptographie à clé publique
est fondamentale car elle permet la mise en place de la cryptographie symétrique.

Le premier protocole d’échange de clé a été inventé par Diffie et Hellman en 1976 [DH76],
et un exemple de chiffrement à clé publique est donné par Rivest, Shamir et Adleman avec le
protocole RSA [RSA78] qu’ils ont décrit en 1977. Ces deux protocoles sont tous les deux basés

8

0

1

2

3

4
5

67
8

9

10

11

12

13

14

15

16

17
18

19 20
21

22

23

24

25

Figure 4: Le groupe cyclique Z/26Z représenté par un cercle.

sur des structures mathématiques. En effet, les mathématiques sont un moyen pratique d’étudier
et d’expliquer la cryptographie, par exemple le chiffre de César avec le décalage n = 3 peut être
expliqué en représentant les lettres par des nombres entre 0 et 25

A! 0, B! 1, . . . , Y! 24, Z! 25

et en définissant le chiffrement par la soustraction par 3. Avec cette représentation, on admet
que le nombre −1 est équivalent au nombre 25, c’est-à-dire qu’avant le A vient la lettre Z, que le
nombre −2 est équivalent au nombre 24, c’est-à-dire que deux lettres avant le A vient la lettre Y,
et ainsi de suite. En fait, une partie des mathématiques appelée théorie des nombres est dédiée
à l’étude de ce genre de nombres joints à des règles comme celle que nous venons d’énoncer :
−1 = 25. Ces ensembles de nombres sont appelés des groupes cycliques, car ils peuvent être
représentés par un cercle. Celui que nous avons évoqué est noté

Z/26Z

et peut être représenté par la Figure 4. De nombreuses autres structures intéressantes existent,
on peut lire [Lan04, Per96] pour en apprendre plus à leur sujet ou pour découvrir les richesses
de l’algèbre. Avec le développement de la cryptographie à clé publique, la théorie des nombres
en est devenue la pierre angulaire, et des concepts mathématiques plus élaborés ont été utilisés,
comme les corps finis, les courbes elliptiques, ou les isogénies. Sans entrer dans les détails, ce qui
est important est que la sécurité des protocoles cryptographiques est basée sur des problèmes
mathématiques difficiles faisant intervenir ces concepts. Ainsi, une meilleure compréhension de ces
objets implique une meilleure compréhension de la sécurité de nos protocoles cryptographiques.
La partie de la cryptographie dont le rôle est d’analyser la sécurité de ces protocoles (c’est-à-dire,
de les “casser”) est appelée la cryptanalyse.

En outre, puisque les protocoles sont basés sur des manipulations dans ces objets, une meilleure
compréhension de ces derniers implique également de meilleurs (en particulier, plus rapides)
protocoles cryptographiques. Comme la cryptographie est omniprésente dans les communications
modernes (sur Internet, quand vous utilisez votre carte de crédit, sur les applications de messagerie

9

0010110001010111

0010010101010110

Canal de communication

Figure 5: Un canal de communication imparfait.

de votre téléphone, ...), avoir des protocoles efficaces est crucial. Il est donc nécessaire d’être
capable de manipuler efficacement les concepts mathématiques qui se cachent derrière nos
protocoles, que ce soit pour la cryptographie (mettre en place des protocoles performants) ou
la cryptanalyse (analyser leur sécurité). Par “manipuler”, on entend être capable de faire des
additions, des multiplications, et parfois des opérations plus compliquées avec ces objets. La
science qui étudie comment faire tout cela s’appelle l’arithmétique. En conclusion, il est nécessaire
d’avoir une arithmétique efficace pour la cryptographie et la cryptanalyse.

Théorie des codes

Une autre application élégante (et utile) des corps finis est la théorie des codes. Comme la
cryptographie, la théorie des codes est liée aux communications, mais elle répond à un problème
complètement différent. Nous faisons maintenant l’hypothèse qu’Alice et Bob veulent communi-
quer, et que les informations qu’ils veulent échanger vont traverser un canal de communication. En
pratique, ce canal peut être de la fibre optique, des fils électriques, des ondes radio, et beaucoup
d’autres choses encore. On suppose qu’Alice veut envoyer le message “Salut ! Ça va ?” à Bob.
En réalité, ces lettres vont probablement d’abord être transformées en une suite de bits : 0 et 1,
on imaginera donc qu’Alice envoit le message

m = 0010110001010111

à travers le canal. Souvent, dans des conditions réelles, le canal de communication est imparfait,
et est sujet à du bruit, c’est-à-dire qu’à cause de la qualité du canal, ou à cause de l’environnement,
des erreurs peuvent apparaître et changer le message envoyé par Alice, comme montré sur la
Figure 5. Sans autre outil ou contexte, il peut être difficile (voire impossible) pour Bob de deviner
ce que voulait dire Alice. La théorie des codes étudie les moyens de lutter contre l’apparition
d’erreurs et de retrouver le message initial, même une fois modifié. Le but est de construire ce
qu’on appelle des codes qui vont être capable de corriger des erreurs, on les nommera donc codes
correcteurs d’erreurs. L’idée est que pour être sûr qu’une information, qui est représentée par un
0 ou un 1, arrive jusqu’à Bob sans erreur, Alice va la répéter plusieurs fois. Par exemple, si Alice
répète chaque bit trois fois, en faisant des mots de trois symboles :

0! 000 1! 111,

alors une erreur peut être corrigée, car si Bob reçoit, par exemple, le mot 001, il sait qu’il s’agit
probablement du mot 000 qui a subit une erreur de transmission. Il peut alors interpréter le
mot 001 comme venant du bit initial 0 dans le message d’Alice. Plus généralement, si Bob reçoit
un mot abc, il l’interprétera comme venant du bit 0 s’il y a une majorité de 0 dans le mot abc.
Réciproquement, s’il y a une majorité de 1 dans le mot abc, il l’interprétera comme venant du bit
1. Bien entendu, s’il y a trop d’erreurs de transmission dans un seul mot, il est possible de mal

10

0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1

000 000 111 000 111 111 000 000 000 111 000 111 000 111 111 111

000 010 111 000 011 111 001 000 011 111 010 111 000 110 111 011

Canal de communication

0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1

Figure 6: Le code de répétition de longueur 3.

interpréter le message. Par exemple, si le mot 000 devient 110 après être passé dans le canal de
communication, alors Bob le décodera comme 111! 1. Cette stratégie est connue sous le nom
de code de répétition de longueur 3, et est un exemple de code correcteur d’erreur. La procédure
complète est décrite dans la Figure 6. Afin de corriger plus d’erreurs, on pourrait utiliser des
codes de répétition avec des longueurs plus grandes. Néanmoins, lorsqu’on utilise un code de
répétition de longueur n, il faut envoyer n fois plus d’information à travers le canal, ce qui peut
avoir un prix dans des situations réelles. Il faut donc trouver un équilibre entre le surcoût induit
par la longueur du code et le nombre d’erreurs que l’on souhaite être capable de corriger. En fait,
en fonction de la qualité du canal de communication, tous les codes ne conviennent pas. Claude
Shannon a prouvé en 1948 [Sha48] que l’on peut définir une quantité appelé capacité du canal
qui mesure essentiellement la quantité d’information que l’on peut faire passer à travers un canal.
Cela mesure aussi combien de répétitions on doit inclure dans notre code pour que le message
soit transmis de manière fiable. La théorie des codes est un domaine de recherche actif, et il
n’existe donc pas de réponse définitive à la question “Quel est le meilleur code que nous pouvons
utiliser ?”. Les codes utilisés en pratique sont un peu plus subtils que le code de répétition, mais
ils suivent la même logique. Par exemple, les codes de Reed-Solomon [RS60], utilisés dans des
technologies de la vie de tous les jours comme les CDs, les DVDs, les disques Blu-ray, ou encore
dans les missions de la NASA, font intervenir des mots composés de suites de valeurs prises dans
un corps fini. D’autres codes, comme les codes de Goppa géométriques [Gop81], sont basés sur
les corps de fonctions algébriques, une structure mathématique qui est construite à partir des
corps finis. En conclusion, exactement comme en cryptographie, les corps finis sont omniprésents
en théorie des codes, et une arithmétique efficace dans les corps finis permet à la fois un codage
et un décodage performant.

Arithmétique des corps finis

Comme énoncé dans les pages précédentes, les protocoles cryptographiques et les codes sont
basés sur des structures mathématiques pour fonctionner. Celle que nous étudions tout au long
de ce document est appelée corps fini. Un corps est une structure mathématique (on dit aussi
structure algébrique) composée d’éléments que l’on peut additionner, soustraire, multiplier, et
diviser (excepté par zéro). C’est une structure bien connue : l’ensemble des nombres réels, noté
R, en est un exemple. En effet, les éléments de R, par exemple 0, 1, −3, 5631, mais aussi des
nombres plus compliqués comme π,

√
2, ou 7

13 peuvent être additionnés, soustraits, multipliés, ou
divisés. Les nombres dans R peuvent avoir une infinité de décimales, par exemple les 60 premières

11

décimales de la constante π sont

π = 3.14159265358979323846264338327950288419716939937510582097494

Un ordinateur n’a qu’une mémoire finie, c’est-à-dire que la quantité d’information qu’il peut
stocker n’est pas illimitée. Par conséquent, il est impossible de stocker toutes les décimales de π,
et, plus généralement, les décimales de beaucoup d’autres nombres de R, sur un ordinateur. Cela
reste possible de travailler avec des nombres dans R sur un ordinateur, mais il est plus simple de
manipuler des éléments qui viennent d’une structure algébrique finie, c’est-à-dire composée d’un
nombre n d’éléments, avec

n <∞.

Un exemple de ce type de structure a déjà été donné : le groupe cyclique Z/26Z qui est composé
des “nombres” 0, 1, . . . , 25. Cependant, ce ne sont pas les mêmes nombres que ceux que nous
connaissons, car avec les éléments de Z/26Z, on a par exemple l’égalité

3− 4 = −1 = 25,

ce qui n’est pas correct pour les vrais nombres dans R, mais nous écrivons tout de même les
nombres de Z/26Z comme ceux de R par simplicité. Nous avons déjà défini une addition et
une soustration dans Z/26Z, et nous pourrions aussi définir une multiplication et une division
d’une manière naturelle. Les corps finis sont une généralisation des espaces comme Z/26Z. Bien
que l’ensemble Z/26Z ne soit pas un corps, pour des raisons techniques, cela reste une bonne
approximation, pour cette introduction en tous cas, de penser les corps finis comme ce genre
d’ensemble.

Comme les éléments d’un corps fini sont, par définition, en nombre fini, c’est relativement
plus facile de les manipuler avec un ordinateur. De plus, la structure de corps nous permet
de manipuler les éléments des corps finis comme des nombres classiques (c’est-à-dire avec des
additions, multiplications, ...), ce qui les rend utiles. C’est pourquoi aujourd’hui, les corps finis
sont absolument partout dans des domaines comme la cryptographie ou la théorie des codes.

Parfois, certains problèmes mathématiques simples sont bien compris d’un point de vue
théorique, mais il existe toujours des questions ouvertes concernant certains aspects pratiques.
Par exemple, la multiplication de deux entiers a et b de N est un problème simple, qui peut être
fait à la main par des enfants. Pourtant, la façon optimale de multiplier deux entiers grâce à
un ordinateur reste un problème ouvert, pour lequel des articles de recherche sont régulièrement
publiés [HVDH19a]. L’arithmétique des corps finis, c’est-à-dire comment faire des opérations
comme l’addition ou la multiplication, est très bien comprise, car la structure des corps finis est
assez simple. Pour autant, la meilleure façon de multiplier deux éléments dans un corps fini est
également inconnue. C’est exactement le sujet de cette thèse : l’étude de l’arithmétique des corps
finis.

Résumé des travaux

Ce résumé présente de manière détaillée l’ensemble des travaux réalisés pendant ma thèse, ainsi
que la façon dont est organisé ce manuscrit. Cette partie est donc dédiée à un “public scientifique
averti”.

12

Arithmétique efficace dans une extension fixée

Ce document est composé de deux parties, qui sont essentiellement indépendantes. Dans la
Partie I, nous étudions l’arithmétique d’une extension de corps fini fixée

Fpk .

Préliminaires. Nous commençons dans le Chapitre 2 par rappeler les faits fondamentaux
concernant les objets que nous utiliserons dans le reste du document. En particulier, on rappelle
la structure des corps finis, ainsi que la manière de les construire comme des quotients d’anneaux
de polynômes

Fp[x]/(P (x)).

Nous donnons quelques propriétés des extensions de corps finis concernant leur structure d’espace
vectoriel ainsi que sur leur groupe d’automorphismes.

Dans la Section 2.2, nous présentons les corps de fonctions algébriques, une structure algébrique
que nous utilisons dans les preuves des Chapitres 3 et 4. On rappelle brièvement ce que sont
les places, et qu’elles sont essentiellement équivalentes aux notions de valuations discrètes et
d’anneaux de valuations. On décrit comment évaluer un élément z d’un corps de fonction
algébrique à une place P , et on donne la définition d’un zéro et d’un pôle, ce qui justifie le nom
de corps de “fonction”. Enfin, on donne la définition d’un diviseur et on rappelle les résultats
habituels de la théorie : le lien entre le degré et la dimension d’un diviseur, la définition du genre
d’un corps de fonctions algébrique, et le théorème de Riemann-Roch.

Dans la Section 2.3, on donne le modèle de la complexité algébrique et on explique pourquoi
ce modèle est pertinent pour nos travaux. On rappelle également les notions de grand O et petit
o, qui sont utilisées pour exprimer des résultats asymptotiques.

Enfin, dans la Section 2.4, nous donnons des références bibliographiques, ainsi que la complexité
de certains algorithmes classiques et importants dans notre travail : l’algorithme de Brent-Kung
pour la composition modulaire, le calcul de polynôme minimal, et l’algorithme de Berlekamp-
Massey. Ces routines sont utilisées dans plusieurs algorithmes de ce manuscrit, notamment dans
les Chapitres 5 et 7.

Complexité bilinéaire et algorithmes de type Chudnovsky2. Dans le Chapitre 3, nous
présentons la théorie de la complexité bilinéaire, un modèle alternatif de complexité utilisé
pour mesurer le coût de calcul de certaines applications bilinéaires. Dans ce modèle, seules les
multiplications sont comptées, ce qui est justifié par le fait qu’en pratique les multiplications sont
plus coûteuses que les additions. La complexité bilinéaire d’une application est alors donnée par le
nombre minimal de multiplications nécessaires au calcul de l’application en question. L’algorithme
de Karatsuba est un exemple pratique de l’intérêt de ce modèle de complexité. En effet, l’idée
derrière cet algorithme est de multiplier deux polynômes de degré 1

A = a1X + a0 et B = b1X + b0

avec seulement trois produits
c0 = a0b0,

c1 = (a0 + a1)(b0 + b1),

et
c∞ = a1b1,

13

à la place des quatre produits classiques a0b0, a0b1, a1b0 et a1b1 comme suit :

AB = c∞X
2 + (c1 − c∞ − c0)X + c0.

Dans la Section 3.1, après avoir rigoureusement défini la complexité bilinéaire d’une application
bilinéaire Φ en utilisant des formules bilinéaires, nous expliquons que cette définition est en
réalité équivalente au rang du tenseur correspondant à Φ. Nous présentons également la ver-
sion symétrique de la complexité bilinéaire, qui compte le nombre minimal de multiplications
symétriques nécessaires au calcul de Φ, et qui est également étudiée dans la littérature. Nous
sommes particulièrement intéressés par la multiplication dans les extensions de corps finis, et par
sa complexité bilinéaire (symétrique).

Dans la Section 3.2, nous redonnons le principe d’évaluation-interpolation et nous présentons
un algorithme dû à Chudnovsky et Chudnovsky [CC88] basé sur l’évaluation et l’interpolation
sur des places d’un corps de fonctions algébrique. Cet algorithme fondateur donne une borne
asymptotique linéaire en le degré de l’extension, que ce soit pour la complexité bilinéaire ou la
complexité bilinéaire symétrique de la multiplication dans une extension de corps fini. Il a été
très étudié, et nous présentons brièvement quelques améliorations [BR04, CÖ10, Ran12].

Toutefois, l’algorithme de Chudnovsky et Chudnovsky donne uniquement une borne sur la
complexité bilinéaire, qui s’avère être asymptotiquement bonne. Ainsi, nous donnons aussi dans
la Section 3.3 un algorithme de Barbulescu, Detrey, Estibal et Zimmermann [BDEZ12] qui permet
de calculer la complexité bilinéaire en petite dimension. Leur algorithme énumère toutes les
formules bilinéaires pour une longueur donnée, et peut ainsi être utilisé pour obtenir la longueur
minimale d’une formule permettant de calculer une application bilinéaire Φ, autrement dit cet
algorithme permet de calculer la complexité bilinéaire de Φ. L’algorithme est expliqué en détails,
et quelques améliorations dûes à Covanov [Cov19] sont mentionnées.

Complexité bilinéaire hypersymétrique. Dans le Chapitre 4, nous nous intéressons à de
nouveaux modèles de complexité, et nous donnons des résultats à la fois en petite dimension et
asymptotiques. Dans la Section 4.1, nous généralisons la notion de complexité bilinéaire dans le
cas du produit de s ≥ 2 variables

x1 × x2 × . . . xs−1 × xs

dans une extension de corps fini Fpk . En adaptant l’algorithme de Chudnovsky et Chudnovsky
dans ce cas, nous montrons dans la Section 4.3 que cette complexité multilinéaire reste linéaire en
le degré k de l’extension, comme dans le cas de la complexité bilinéaire classique.

Dans ce chapitre, on définit également une nouvelle complexité appelée complexité bilinéaire
hypersymétrique, qui est inspirée de la complexité bilinéaire symétrique usuelle, dans laquelle une
condition de symétrie additionnelle est étudiée. Dans la Section 4.2, nous donnons un algorithme
ad hoc de recherche de formules hypersymétriques, inspiré par l’algorithme de Barbulescu, Detrey,
Estibal and Zimmermann, qui nous permet de calculer la complexité bilinéaire hypersymétrique.
Nous analysons notre algorithme en détails, et donnons des résultats expérimentaux issus de
notre implémentation, dans le cas de la multiplication dans les extensions de corps finis. En
utilisant des formules universelles, c’est-à-dire des formules qui sont vraies pour presque tout
nombre premier p, nous donnons aussi des résultats théoriques concernant la complexité bilinéaire
hypersymétrique dans les extensions de corps finis

Fpk

14

et dans des algèbres de polynômes tronqués

Fp[T]/(T k)

en petite dimension k, qui généralisent des résultats connus pour la complexité bilinéaire. Nous
obtenons également la linéarité de la complexité bilinéaire hypersymétrique de la multiplication
dans l’extension Fpk en le degré de l’extension k, comme corollaire du même résultat pour la
complexité multilinéaire.

Arithmétique efficace dans un réseau d’extensions

Dans la Partie II, nous étudions comment gérer plusieurs corps finis simultanément, dans ce que
l’on appelle un réseau de corps finis compatiblement plongés. D’un point de vue théorique, cela
revient à se demander comment calculer dans la clôture algébrique

F̄p =
⋃
k≥1

Fpk

du corps de base Fp.

Algorithmes d’isomorphisme. Le Chapitre 5 est dédié au problème de l’isomorphisme, qui
demande de calculer efficacement un isomorphisme (ou plus généralement un plongement)

K ↪! L

entre deux corps finis K et L. Dans la Section 5.1, nous exposons le problème de l’isomorphisme,
et, suivant la présentation faite dans [BDFD+17], nous le divisons en deux parties : le problème
de la description du plongement et le problème de l’évaluation du plongement. Le problème de la
description du plongement consiste à trouver des éléments α ∈ K et β ∈ L tels que

K = Fp(α)

et tel qu’il existe un plongement φ : K ↪! L qui envoie α vers β. Connaissant α et β, le problème
de l’évaluation du plongement consiste alors à évaluer φ de manière efficace. Nous traitons d’abord
le problème de la description et nous présentons l’algorithme naïf, basé sur la factorisation de
polynômes, dans la Section 5.1.2.

Dans la Section 5.2, nous présentons un algorithme plus élaboré dû à Allombert [All02a]
et inspiré par le travail de Lenstra [LJ91], que nous appelons algorithme de Lenstra-Allombert.
L’algorithme de Lenstra-Allombert est basé sur la théorie de Kummer, qui étudie certaines
extensions de corps, et utilise des racines primitives de l’unité. Si l’extension Fpn admet une
racine n-ième de l’unité primitive ζn, alors la description de l’algorithme est plus simple et est
donnée dans la Section 5.2.1. Sinon, il est nécessaire d’ajouter artificiellement une racine ζn à
l’extension Fpn , ce qui nous conduit à étudier les algèbres de la forme

An = Fpn ⊗ Fp(ζn)

que nous appelons algèbres de Kummer. Les éléments α et β décrivant le plongement donné par
l’algorithme de Lenstra-Allombert sont alors déduits des solutions d’équations de la forme

(σ ⊗ 1)(x) = (1⊗ ζ)x

15

dans des algèbres de Kummer. Ces équations sont appelées Hilbert 90. Les algèbres de Kummer,
ainsi que les solutions de Hilbert 90, sont étudiées en détail dans la Section 5.2.2, car elles jouent
un rôle central dans le Chapitre 7.

En utilisant les résultats de la Section 5.2.2, nous expliquons dans la Section 5.2.3 comment
obtenir les éléments α et β des solutions de Hilbert 90. Puis, on présente les techniques pour
obtenir les solutions de Hilbert 90 dans la Section 5.2.4. Enfin, les techniques standards permettant
de répondre au problème de l’évaluation du plongement sont traitées dans la Section 5.3.

D’un seul corps fini vers une multitude : réseaux de plongements. Dans le Chapitre 6,
nous étudions le problème de la compatibilité, qui demande comment calculer efficacement des
plongements entre potentiellement beaucoup plus que deux corps finis, de manière compatible,
c’est-à-dire tel que les diagrammes issus des plongements commutent. En d’autres termes, dès
que l’on a trois extensions de corps finis

k ⊂ K ⊂ L

et des plongements φ : k ! K, ψ : K ! L et χ : k ! L entre eux, nous voulons l’égalité

χ = ψ ◦ φ.

k

K

L

φ

χ

ψ

Le problème général, ainsi que des objectifs additionnels, sont présentés dans la Section 6.1.
Dans la Section 6.2, nous donnons une première solution, basée sur les polynômes de Con-

way [Par, Sch92]. Ces polynômes sont utilisés pour définir les extensions de corps finis et possèdent
une propriété très intéressante de compatibilité aux normes, c’est-à-dire que prendre la norme
d’une racine d’un polynôme de Conway donne une racine d’un autre polynôme de Conway. Cela
donne des plongements faciles à calculer : en effet, le problème de la description du plongement est
résolu en calculant une norme. Naturellement, avant d’utiliser les polynômes de Conway, il faut
d’abord les calculer. Ceci constitue un problème car nous ne connaissons pas d’algorithme efficace
pour calculer les polynômes de Conway. Par conséquent, ils sont le plus souvent précalculés
jusqu’à un certain degré d dans la plupart des systèmes de calcul formel, et il n’est plus possible,
ou alors très coûteux, de calculer des plongements avec des extensions de corps fini qui ont un
degré supérieur à d.

Dans la Section 6.3, nous présentons une autre solution au problème de la compatibilité appelé
l’algorithme de Bosma-Canon-Steel [BCS97]. Cet algorithme permet l’utilisation de polynômes
arbitraires pour définir nos extensions de corps finis, et est incrémentale, c’est-à-dire qu’on peut
ajouter de nouvelles extensions dans notre structure de données sans avoir à recalculer quoi
que ce soit. Cette solution est beaucoup plus souple que celle donnée par les polynômes de
Conway, et est donc une alternative très intéressante. On décrit l’algorithme en détails dans
la Section 6.3.1. Cet algorithme a d’abord été disponible au sein du système de calcul formel
MAGMA [BCP97] uniquement. À ma connaissance, le seul autre logiciel utilisant l’algorithme de
Bosma-Canon-Steel est Nemo [H+16]. En effet, il a été implémenté à l’Automne 2019, lorsque
j’ai gentiment été invité à l’université de Kaiserslautern par les développeurs de Nemo. Tous les
détails de l’implémentation, et les résultats expérimentaux, sont donnés dans la Section 6.3.2.

16

Réseau standard de corps finis compatiblement plongés. Enfin, dans le Chapitre 7,
nous construisons une nouvelle méthode [DFRR19] pour calculer des réseaux de corps finis
compatiblement plongés, qui est à mi-chemin entre les polynômes de Conway et l’algorithme
de Bosma-Canon-Steel. L’élément central de cette construction est l’algorithme de plongement
de Lenstra-Allombert. Dans la Section 7.1, nous expliquons comment cet algorithme peut être
utilisé pour produire des plongements compatibles, en choisissant des solutions de Hilbert 90
compatibles, et les nouveaux défis que cela engendre.

Dans la Section 7.2, nous montrons que certaines grosses algèbres de Kummer appelées algèbres
de Kummer complètes, qui sont décrites par

Apa−1 = Fppa−1 ⊗ Fp(ζpa−1) = Fppa−1 ⊗ Fpa ,

admettent des solutions spéciales de Hilbert 90, que l’on nomme des solutions standards. Nous
prouvons ensuite que de ces solutions standards dans l’algèbre complète Apa−1, nous pouvons
déduire des solutions de Hilbert 90 dans n’importe quelle algèbre de Kummer

An = Fpn ⊗ Fp(ζn)

telle que [Fp(ζn) : Fp] = a. Nous remarquons que les solutions déduites des solutions standards
partagent elles aussi des propriétés remarquables, et que toutes ces solutions peuvent être utilisées
pour construire des plongements compatibles entre les corps finis Fpn qui leur sont associés.

Dans la Section 7.2.2, nous montrons que si a | b, les solutions de Hilbert 90 dans les algèbres
de Kummer complètes Apa−1 et Apb−1 peuvent aussi être reliées via un opérateur que l’on appelle
opérateur de norme scalaire et qui agit essentiellement comme la norme classique des extensions
de corps finis. Nous utilisons ce résultat dans la Section 7.3 pour obtenir des plongements
compatibles entre deux extensions arbitraires Fpm et Fpn , dès lors que l’on a m | n.

Nous analysons la complexité de notre nouvelle construction dans la Partie 7.4 et nous donnons
une implémentation dans le language de programmation Julia [Jul], en utilisant Nemo. Nous
voyons que notre construction peut être utilisée en pratique, et que les plongements peuvent être
calculés en temps raisonnable.

17

Chapter 1

Introduction

In this Chapter, we briefly recall the special role of finite fields in computer algebra. We explain
some challenges, as well as our contributions in understanding them. We also give an overview of
the whole document and specify what to expect in each chapter.

Contents
1.1 Finite fields in computer algebra . 19
1.2 Organization of the document . 20

1.2.1 Efficient arithmetic in a single finite field 20
1.2.2 Efficient arithmetic in a lattice of finite fields 22

18

1.1 Finite fields in computer algebra

Finite fields are the central object of this thesis. They play a special role in computer algebra,
since they are the building block of more complex structures like for example vector spaces of
matrices or of polynomials. Other useful objects, like agebraic curves, are also built upon them.
As a consequence, the applications of finite fields are abundant. They are especially important in
modern communication, since they are ubiquitous in coding theory and cryptography. Because of
their special role, it is crucial to understand how to efficiently compute in finite fields, and there
has been extensive research on how to do so. Let

k = Fp

be a finite field of size p and let
Fpk

be an extension of k of degree k. There are several ways of representing the extension Fpk , and
a very common one is to represent the elements of Fpk by polynomials over k modulo some
irreducible polynomial of degree k, i.e. we construct Fpk as

Fpk = k[T]/(P (T)),

where P ∈ k[T] is an irreducible polynomial of degree k. With this representation, addition
between two elements x and y in Fpk is done by adding the coefficients of the polynomials
representing x and y, thus addition in Fpk costs up to k additions in k. The situation for
multiplication is not so clear, since it is linked with polynomial multiplication, which is a more
complex operation. The optimal way of multiplying two polynomials over a finite field is not
known, and there was even some progress on that question quite recently [HVDH19b], yielding
an algorithm for finite field multiplication in Fpk with an asymptotic complexity of O(k log(k)).
In practice, depending on the size of k, the fastest way of multiplying elements in Fpk is different,
thus computer algebra systems typically change which algorithm is used depending on the size of
k. For very small k, the naive multiplication algorithm for polynomials, that has an asymptotic
(algebraic) complexity of O(k2), is the best. Then Karatsuba’s algorithm [Kar63] is used, with a
complexity of O(klog2(3)) and log2(3) ≈ 1.58. Finally the best option for large k is to use the Fast
Fourier Transform (FFT) [CT65, SS71], with a complexity of O(k log(k) log log(k)).

All these costs are measured using the algebraic complexity model, where all operations
are assumed to cost the same unit amount. However, as suggested by timings in practice, the
multiplication operation in k is more expensive (i.e. takes more time) than addition. Thus, in
order to obtain efficient multiplication algorithms in finite field extensions Fpk , research has been
done on the minimal number of multiplications in k needed to multiply two elements in Fpk . This
quantity, known as the bilinear complexity, is hard to compute in general and is only known for
small extensions. Even when it is known that two elements in Fpk can be multiplied using n
multiplications in k, actual formulas using n multiplications are not always known. There is still
a lot to discover in bilinear complexity theory.

Since the cost of addition is linear in the extension degree, and the cost of multiplication is
quasi-linear, computer algebra systems handle finite field extensions arithmetic quite well. The
links between finite field extensions are well understood, e.g. we know that

Fpk ⊂ Fpl

if and only if k | l, we know how to construct extensions

Fqk/Fq

19

over a non-prime field Fq, with q = pl and l > 1. Nevertheless, these links are often not handled by
computer algebra system, e.g. the number theory library FLINT [Har10] only supports extensions
of prime fields. In Sagemath [Dev21], the same is true for default finite fields, where asking for
an extension of degree 3 of Fp3 gives the extension

Fp9/Fp,

that is described by an irreducible polynomial in k[x] of degree 9. In the majority of computer
algebra systems, it is impossible to easily manage user-defined finite fields, i.e. compatible
embeddings between finite fields are supported only when the fields are defined using Conway
polynomials. Consequently, even if the arithmetic of each finite field extension is usually efficient,
there is often room to improvement when it comes to the management of several finite field
extensions.

Yet, these features are sometimes needed in algorithms, for example the quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic [GKZ14] is based on a tower
of extensions of Fq, and deals with polynomials defined over a field K that changes during the
algorithm and belongs to the tower.

Contributions. While preparing this thesis, we studied both the arithmetic of individual finite
field extensions, and the arithmetic of several extensions at once. In [RR21], we generalize
results known for the bilinear complexity to the multilinear complexity and to the hypersymmetric
complexity. We also give a new algorithm to find formulas for the multiplications in k-algebras,
and give experimental results in the case of a finite field extension Fpk .

Concerning the arithmetic of several extensions, we studied how to deal with an arbitrary
collection of extension, that we call a lattice of compatibly embedded finite fields. In [DFRR18], we
describe an implementation of a framework due to Bosma, Canon and Steel [BCS97], that allows
to embed user-defined finite fields, and is thus an alternative to Conway polynomials. Thanks to
the kind invitation by its developpers, this implementation is now part of the computer algebra
system Nemo. Prior to that, it was only available in Magma [BCP97]. We also worked on a new
framework for computing compatible embeddings between finite fields in [DFRR19]. This new
framework is an in-between of the Bosma-Canon-Steel framework and the Conway polynomials
and brings new ideas to compute compatible embeddings, based on Kummer theory.

This document also presents an extended version of the articles [RR21] and [DFRR18],
respectively in Parts I and II.

1.2 Organization of the document

1.2.1 Efficient arithmetic in a single finite field

This work is composed of two parts, that are essentially independent. In Part I, we study the
arithmetic of one fixed finite field extension

Fpk .

Preliminaries. We begin in Chapter 2 by recalling fundamental facts about the mathematical
objects that we use in the rest of the document. We present some properties about finite fields,
that are at the center of this thesis. In particular, we recall the structure of finite fields, and how

20

to construct them as quotients of polynomial rings

Fp[x]/(P (x)).

We also give some properties of finite field extensions concerning their vector space structure and
their group of automorphisms.

In Section 2.2, we present algebraic function fields, an algebraic structure that we use in
some proofs in Chapters 3 and 4. We briefly recall what places are, and that they are essentially
equivalent to a discrete valuation or a valuation ring. We describe how to evaluate an element z
of the algebraic function field at a place P , and give the definition of zero and pole, justifying the
name of “function” field. We finally give the definition of divisors and recall the usual results
of the theory: the link between the degree and the dimension of a divisor, the definition of the
genus of an algebraic function field, and the Riemann-Roch theorem.

In Section 2.3, we give the model of algebraic complexity and explain why it is suitable for
our work. We also give the usual asymptotic notations big O and little o, that are used in the
thesis to express asymptotic results.

Finally in Section 2.4, we give references and recall the complexity of some classic and very
important routines: the Brent-Kung algorithm for modular composition, minimal polynomial
computation, and the Berlekamp-Massey algorithm. These routines are used in some algorithms
that are presented in this thesis, especially in Chapters 5 and 7.

Bilinear complexity and Chudnosky2-type algorithms. In Chapter 3, we present the
theory of bilinear complexity, an alternative model of complexity used to measure the cost of
computing bilinear maps. In this model, only multiplications are counted, which is justified
because in practice multiplications are harder to compute than additions. The bilinear complexity
of a map is then given by the minimal number of needed multiplications. Karatsuba’s algorithm
is a practical example of the interest in this complexity model. Indeed, the idea behind this
algorithm is to multiply two degree 1 polynomials

A = a1X + a0 and B = b1X + b0

with only three products
c0 = a0b0,

c1 = (a0 + a1)(b0 + b1),

and
c∞ = a1b1,

instead of the four classic ones a0b0, a0b1, a1b0 and a1b1 as follows:

AB = c∞X
2 + (c1 − c∞ − c0)X + c0.

In Section 3.1, after rigorously defining the bilinear complexity for a bilinear map Φ using bilinear
formulas, we explain how it is equivalent to the rank of the tensor corresponding to Φ. We also
present the symmetric version of the bilinear complexity, which counts the minimal number of
symmetric multiplications that we need in order to compute Φ, and that is also studied in the
litterature. We are in particular interested in the multiplication in finite field extensions and in
understanding the (symmetric) bilinear complexity of this bilinear map.

In Section 3.2, we recall the principle of evaluation-interpolation and present an algorithm due
to Chudnovsky and Chudnovsky [CC88] based on evaluation and interpolation on the places of

21

an algebraic function field. This seminal algorithm gives an asymptotic linear bound on both the
bilinear complexity and the symmetric bilinear complexity of the product in finite field extensions.
It was extensively studied, giving birth to many improvements [BR04, CÖ10, Ran12] that we
succinctly present.

However, Chudnovsky and Chudnovsky’s algorithm only gives good asymptotic bilinear
formulas, hence we also give in Section 3.3 an algorithm due to Barbulescu, Detrey, Estibal and
Zimmermann [BDEZ12] to compute the bilinear complexity in small dimension. Their algorithm
enumerates all bilinear formulas of a given length, and can thus be used to find the minimal
length of a formula for some bilinear map Φ, i.e. the bilinear complexity of Φ. The algorithm is
explained in details, and some improvements due to Covanov [Cov19] are mentioned.

Hypersymmetric bilinear complexity. In Chapter 4, we investigate new types of interesting
complexity models, and provide results both in small dimension and asymptotically. In Section 4.1,
we generalize the notion of bilinear complexity to the product of s ≥ 2 variables

x1 × x2 × · · · × xs−1 × xs

in a finite field extension Fpk . Adapting the algorithm of Chudnovsky and Chudnovsky to this
case, we show in Section 4.3 that this so called multilinear complexity is still linear in the degree
k of the extension [RR21], as is the case with the classic bilinear complexity.

In this chapter, we define a new kind of complexity called the hypersymmetric bilinear
complexity, that is inspired by the usual symmetric bilinear complexity, where an additional
symmetry property is asked. We provide an ad hoc algorithm, inspired by the algorithm of
Barbulescu, Detrey, Estibal and Zimmermann, to compute this complexity in small dimension. We
explain our algorithm in details and provide experimental results concerning the hypersymmetric
bilinear complexity of the multiplication in finite field extensions in Section 4.2. Using universal
formulas, i.e. formulas that are true for almost any prime p, we also give theoretical results on
the hypersymmetric complexity in finite field extensions

Fpk

and truncated polynomials algebras
Fp[T]/(T k)

in small dimension k, that generalize known results for the bilinear complexity. Aditionally, we
obtain the asymptotic linearity in k of the hypersymmetric complexity of the multiplication in a
finite field extension Fpk as a corollary of the same result for multilinear complexity.

1.2.2 Efficient arithmetic in a lattice of finite fields

In Part II, we study how to deal with multiple finite fields at once, in what we call a lattice of
compatibly embedded finite fields. This is the equivalent to asking how to compute in the algebraic
closure

F̄p =
⋃
k≥1

Fpk

of the base field Fp.

22

Isomorphism algorithms. Chapter 5 is dedicated to the isomorphism problem, which asks
how to efficiently compute an isomorphism (or more generally an embedding)

K ↪! L

between two finite fields K and L. In Section 5.1, we present the isomorphism problem and,
following [BDFD+17], we divide it in two parts, the embedding description problem and the
embedding evaluation problem. The embedding description problem consists in finding elements
α ∈ K and β ∈ L such that

K = Fp(α)

and such that there exists an embedding φ : K ↪! L mapping α to β. Then, knowing α and
β, the embedding evaluation problem consists in efficiently evaluating φ. We first deal with
the description problem and present the naive algorithm, based on polynomial factorization, in
Section 5.1.2. This algorithm plays an important role in Chapter 6.

In Section 5.2, we present a more elaborate algorithm due to Allombert [All02a] and inspired
by Lenstra’s work [LJ91], that we call the Lenstra-Allombert algorithm. The Lenstra-Allombert
algorithm is based on Kummer theory, the study of certain field extensions, and works with
primitive roots of unity. If a primitive n-th root of unity ζn is in Fpn , then the description of the
algorithm is simpler and is given in Section 5.2.1. Otherwise, we need to artificially add ζn to
Fpn , and this leads to the study of the algebras

An = Fpn ⊗ Fp(ζn),

that we call Kummer algebras. The elements α and β describing the embedding given by the
Lenstra-Allombert algorithm are deduced from the solutions of equations of the form

(σ ⊗ 1)(x) = (1⊗ ζ)x

in Kummer algebras. We call these equations Hilbert 90. Kummer algebras, together with the
solutions of Hilbert 90, are extensively studied in Section 5.2.2, because they are also of central
importance in Chapter 7.

Using the results of Section 5.2.2, we explain in Section 5.2.3 how to derive the elements α
and β from the solutions of Hilbert 90. Finally, we present the known techniques to compute
solutions of Hilbert 90 in Section 5.2.4. The Lenstra-Allombert algorithm serves as the building
block of the algorithms in Chapter 7. Finally, the standard techniques that are used to answer
the embedding evaluation problem are presented in Section 5.3.

From a single finite field to plenty: lattices of embeddings. In Chapter 6, we investigate
the compatibility problem, that asks how to compute embeddings between potentially many more
that two finite fields, in a compatible way, i.e. so that the diagrams made of the embeddings
always commute. This can be expressed in other words: given any three finite field extensions

k ⊂ K ⊂ L

and embeddings φ : k ! K, ψ : K ! L, χ : k ! L between them, we want the equality

χ = ψ ◦ φ.

23

k

K

L

φ

χ

ψ

The general problem, as well as additional sub-goals, are presented in Section 6.1.
In Section 6.2, we present a first solution, based on the Conway polynomials [Par, Sch92].

These polynomials are used to define the finite field extensions and possess the very interesting
property of being norm-compatible, meaning that taking the norm of the root of a Conway
polynomial sends it to the root of another Conway polynomial. This provides easy-to-compute
embeddings: indeed the embedding description problem is solved by computing a norm. Naturally,
before using Conway polynomials, we first need to compute them. This is a problem because we
do not know any efficient algorithm to compute Conway polynomials. As a consequence, Conway
polynomials are usually precomputed up to some degree d in most computer algebra systems,
and it is no longer possible, or computationally expensive, to compute embeddings with finite
field extensions that have a degree larger than this given degree d.

In Section 6.3, we introduce another solution to the compatibility problem, called the Bosma-
Canon-Steel framework [BCS97]. This framework allows us to use any given polynomial to define
our finite field extensions, and is incremental, meaning that we can always add more extensions to
our data structure, without having to recompute anything. It is much more flexible than Conway
polynomials, and is thus a very interesting alternative to them. We describe it in details in
Section 6.3.1. This framework was first available in the computer algebra system Magma [BCP97]
since at least 1997. To the best of my knowledge, the only additional computer algebra system
using the Bosma-Canon-Steel framework is Nemo [H+16]. The framework was implemented in
Fall 2019, when I was kindly invited to the university of Kaiserslautern by the developers of
Nemo. All the implementation details, as well as experimental results, are given in Section 6.3.2.

Standard lattice of compatibly embedded finite field. Finally, in Chapter 7, we construct
a new method [DFRR19] for computing lattices of compatibly embedded finite fields, that is
halfway between the Conway polynomials and the Bosma-Canon-Steel framework. The central
element of this construction is the Lenstra-Allombert embedding algorithm. In Section 7.1,
we explain how this algorithm can be used to produce compatible embeddings, by choosing
compatible solutions of (H90), and the new challenges it raises.

In Section 7.2, we show that some large Kummer algebras called complete Kummer algebras,
that can be described by

Apa−1 = Fppa−1 ⊗ Fp(ζpa−1) = Fppa−1 ⊗ Fpa ,

admit special solutions of (H90), that we call standard solutions. We then prove that from these
standard solutions in the complete algebra Apa−1, we can deduce solutions of (H90) in every
Kummer algebra

An = Fpn ⊗ Fp(ζn)

such that [Fp(ζn) : Fp] = a. We see that the solutions derived from the standard solution also
share some special properties, and that all these solutions can be used to obtain compatible
embeddings between all the associated finite field extension Fpn .

In Section 7.2.2, we show that if a | b, the solutions of (H90) in the complete Kummer algebras
Apa−1 and Apb−1 can also be linked by some operator that we call scalar norm operator and

24

that essentially acts like the usual norm of finite fields. We use these results in Section 7.3 to
obtain compatible embeddings between arbitrary finite field extensions Fpm and Fpn , provided
that m | n.

We analyze the complexity of this new framework in Section 7.4 and provide an implementation
in the Julia programming language [Jul], using Nemo. We see that our construction is practical,
and that embeddings are computed in a reasonable time.

25

Part I

Efficient arithmetic in a single finite
field

26

Chapter 2

Preliminaries

Throughout all this document, we will use a lot of results from algebra. This chapter is here to
sum up these results and try to maintain the illusion that this thesis is self-contained. Our
references for standard results in algebra are [Lan04] or [Per96]. The reader familiar with the
notions of finite fields, algebraic function fields, or complexity model may very well skip this
chapter.

Contents
2.1 Finite fields . 28

2.1.1 Finite field structure . 28
2.1.2 Subfields and field extensions . 28

2.2 Algebraic function fields . 30
2.2.1 Places . 31
2.2.2 Independence of valuations . 34
2.2.3 Divisors . 34

2.3 Complexity models . 37
2.3.1 Algebraic complexity . 38
2.3.2 Landau notations . 38

2.4 Fundamental algorithms . 39
2.4.1 Finite field arithmetic . 39
2.4.2 Classic routines . 40

0

1

23
4

5

6

7
8 9

10

Figure 2.1: Cyclic group structure of (F11,+) (red) and (F×11,×) (blue).

27

2.1 Finite fields

Finite fields are ubiquitous in cryptography and coding theory, probably because their field
structure, a rigid one, allows to understand how they work, and their finiteness makes them easier
to represent on a computer. They are also everywhere in this thesis, and are probably on almost
every paper I wrote on during these last three years. They are quite important. A detailed book
about finite fields is [LN97].

2.1.1 Finite field structure

A finite field is a field k whose cardinality is finite. The first examples of finite fields are the rings

Z/pZ

with p ∈ N a prime number. More generally, we denote by Fq the finite field with q elements.
The cardinality of a finite field is very well understood.

Proposition 2.1.1. There exists a unique (up to isomorphism) finite field of cardinality q = pl

for each prime number p ∈ N and integer l ≥ 1, and every finite field has cardinality of the form
q = pl.

Let q = pl a prime power, there are several ways of representing the finite field with q elements,
but the one that we will almost always have in mind is the following.

Proposition 2.1.2. Let P ∈ Fp[x] be an irreducible polynomial of degree l with coefficients in
Fp. Then

Fp[x]/(P (x))

is a finite field with q = pl elements.

We often write
Fq ∼= Fp[x]/(P (x)) ∼= Fp(α)

in order to say that we work with a finite field of q elements, represented by the quotient
Fp[x]/(P (X)), and where the projection of x in the quotient is denoted by α = x̄.

2.1.2 Subfields and field extensions

The finite field Fpl is a field extension of Fp of dimension l, i.e. it is a Fp-vector space of dimension
l. When dealing with the vector space structure of Fpl = Fp(α), we almost always choose to work
with the canonical basis

1, α, α2, . . . , αl−1.

Other interesting types of bases exist, such as for example normal bases [Gao93], but we always
specify the basis when it is not clear from the context. Given q = pm a prime power and l ∈ N
an integer, we also write

Fql

the field with ql = pml elements. We have

Fql ∼= Fplm ,

28

Fq

Fq2 Fq3

Fq4 Fq6

Fq12

Figure 2.2: The subfields of Fq12 . Two fields are linked if one is a subfield of the other.

but the difference is that we see Fql as an extension of Fq of dimension l, and not as an extension
of the prime field Fp. Again, we usually think that our field Fql is represented as

Fql = Fq[x]/(P (x)),

where P (x) ∈ Fq[x] is an irreducible polynomial of degree l with coefficients in the base field Fq.
The subfields of Fql are also well understood.

Proposition 2.1.3. Let q = pm be a prime power and l ∈ N an integer. Then there is an
extension Fqm of Fq of degree m included in Fql

Fqm ⊂ Fql

if and only if m divides l. The elements in this subfield of Fql are the roots of the polynomial

xq
m − x

in Fql .

Figure 2.2 describes the subfields of Fq12 , as an illustration of Proposition 2.1.3. The Fq-
automorphisms of the extension Fql are given by the following result.

Proposition 2.1.4. Let q = pm be a prime power and l ∈ N an integer. The group of Fq-
automorphisms of Fql is a cyclic group of order l generated by

σ : t 7! tq.

Let u ∈ Fql , the conjugates of u are the elements

σ(u), σ2(u), . . . , σl−1(u)

and the orbit of u is the set {
u, σ(u), . . . , σl−1

}
.

This orbit might have any length m dividing l. The orbit of u is of length exactly m if and only
if the smallest subfield u belongs to is the subfield Fqm of Fql . We also sometimes write

uσ = σ(u).

Two maps, defined with the conjugates of a given element, will play a very important role, the
trace and the norm.

29

Definition 2.1.5 (Trace and norm). Let q a prime power and

Fql/Fq

an extension of degree l, let G be the group of Fq-automorphisms of Fql , and let u ∈ Fql . Then
the trace of u is

TrF
ql
/Fq

(u) =
∑
σ∈G

uσ

and the norm of u is
NF

ql
/Fq

(u) =
∏
σ∈G

uσ.

We may only write Tr or N when the extension considered is clear from the context. The
trace over the field Fq is a Fq-linear map, and the norm is a multiplicative map, they are also
both transitive, as described in the next proposition.

Proposition 2.1.6. Let q ∈ N a prime power and a | b | c three integers, giving the tower of
extensions that follows.

Fqa

Fqb

Fqc

Let u ∈ Fqc, then
TrFqc/Fqa

(u) = TrF
qb
/Fqa

(TrFqc/Fqb
(u))

and
NFqc/Fqa

(u) = NF
qb
/Fqa

(NFqc/Fqb
(u)).

Finally, the map
(x, y) 7! Tr(xy)

is a non-degenerate bilinear map that we will also sometimes write as

〈x, y〉 = Tr(xy).

2.2 Algebraic function fields

Together with algebraic curves, algebraic function fields are a way of describing the algorithms of
Chapters 3 and 4. In this document, we choose to use the algebraic function field point of view.
The function fields we need are constructed on top of finite fields, so we present the theory with
that context in mind. For this section, our reference is [Sti09]. In all the section, k is a finite
field of characteristic p.

30

2.2.1 Places

Let us first define what an algebraic function field is, together with important notions leading to
the definition of places.

Definition 2.2.1 (Algebraic function field). An algebraic function field F of one variable over k
is an extension field

F/k

such that F is a finite algebraic extension of k(x) for some element x ∈ F which is transcendental
over k.

From now on, the notation F will represent an algebraic function field over k. Since it is not
critical to the theory, we also assume that k is algebraically closed in k for simplicity.

Definition 2.2.2 (Valuation ring). A valuation ring O of the function field F/k is a ring

O ⊂ F

with the following properties

1. k (O (F ;

2. for all z ∈ F , we have z ∈ O or z−1 ∈ O.

Proposition 2.2.3. Let O be the a valuation ring of the function field F .

(a) The ring O is local, i.e. it has a unique maximal ideal that is given by

P = O \ O×

where O× is the group of units of the ring O.

(b) For any nonzero x ∈ F , we have

x ∈ P ⇐⇒ x−1 /∈ O.

Theorem 2.2.4. Let O be the valuation ring of the function field F and P be its unique maximal
ideal. Then

(a) The ideal P is principal.

(b) If P = tO then any nonzero z ∈ F has a unique representation of the form

z = tnu

with n ∈ Z and u ∈ O×

(c) The ring O is a principal ideal domain. More precisely, if P = tO and

{0} 6= I ⊆ O

is an ideal then
I = tnO

for some n ∈ N.

31

A ring having the properties described in Theorem 2.2.4 is called a discrete valuation ring.

Definition 2.2.5 (Place). A place P of F is the maximal ideal of some valuation ring O of F .

Definition 2.2.6 (Prime element). Let O be a valuation ring and P its maximal ideal. Any
element t ∈ P such that

P = tO

is called a prime element for P . It is also sometimes called a local parameter or a uniformizing
variable.

If O is a valuation ring of F and if P is its maximal ideal, then O is uniquely determined by
P , indeed we have

O =
{
z ∈ F | z−1 /∈ P

}
thanks to Proposition 2.2.3(b). Thus, the notions of valuation rings and places are essentially
equivalent. There is a third way of describing a place, given by discrete valuations.

Definition 2.2.7 (Discrete valuation). A discrete valuation of F is a function

v : F ! Z ∪ {∞}

with the following properties:

1. v(x) =∞⇔ x = 0;

2. for any x, y ∈ F , v(xy) = v(x) + v(y);

3. for any x, y ∈ F , v(x+ y) ≥ min(v(x), v(y));

4. there exists an element z ∈ F with v(z) = 1;

5. for any nonzero element a ∈ k, v(a) = 0.

Here, the symbol ∞ means an element that is not in Z, such that ∞+∞ =∞+ n =∞ and
∞ > m for any m,n ∈ Z.

Definition 2.2.8. To any place P ∈ PF , we associate a function

vP : F ! Z ∪ {∞}

that is in fact a discrete valuation ring. Let t be a prime element for P . Then every nonzero
element z ∈ F has a unique representation

z = tnu

with u ∈ O× and n ∈ Z. We define
vP (z)

def
= n

and
vP (0)

def
= ∞.

This definition does not depend on the prime element t that was chosen. It allows us to give
the third equivalent way of describing a place of F .

Theorem 2.2.9. Let F be a function field.

32

(a) For any place P ∈ PF , the function vP defined above is a discrete valuation of F . Moreover,
we have

OP = {z ∈ F | vP (z) ≥ 0} ,
O×P = {z ∈ F | vP (z) > 0} ,
P = {z ∈ F | vP (z) = 0} .

An element x ∈ F is a prime element for P if and only if vP (x) = 1.

(b) Conversely, if v is a discrete valuation of F , then the set

P = {z ∈ F | v(z) > 0}

is a place of F , and
OP = {z ∈ F | v(z) ≥ 0}

is the corresponding valuation ring.

We let PF be the set of places of F . If P ∈ PF is a place of F , we denote by OP the
corresponding valuation ring. Since P is a maximal ideal of O, we also know that the quotient
ring

FP = OP /P

is a field. We call this field FP the residue class field of P .

Definition 2.2.10 (Residue class map). Let P ∈ PF be a place of F . For x ∈ F , we let

x(P)

be the residue class of x modulo P . If x /∈ OP , we define x(P) = ∞. The map from F to
FP ∪ {∞}

x 7! x(P)

is called the residue class map.

Definition 2.2.11 (Degree of a place). Let P ∈ PF be a place of F . The residue class field FP
is a finite extension of k and we call

degP = [FP : k]

the degree of P .

In fact, the degree of a place if always finite. If P is a place of degree 1, then its residue class
field FP is equal to

FP = k.

The residue class map then maps F to k ∪ {∞}. In particular, if k is algebraically closed, any
place has degree 1, thus we can interpret an element z ∈ F as a function

z : PF ! k ∪ {∞}
P 7! z(P)

.

This justifies the name function field for F . With this interpretation, places of degree 1 are
viewed as points and elements in k are viewed as constant functions. This is also a reason behing
the following terminology.

33

Definition 2.2.12 (Zero and pole). Let z ∈ F be an element in the function field F and P ∈ PF
a place of F . We say that P is a zero of z if vP (z) > 0 and that P is a pole of z if vP (z) < 0. If
vP (z) = n > 0, then P is a zero of order n; if vP (z) = −n < 0, then P is a pole of order n.

Note that if P is a zero of z ∈ F , we have z(P) = 0, while we have z(P) =∞ if P is a pole of
z. Another important result states that every element not in k yields a non-constant function.

Proposition 2.2.13. Let F be a function field and z ∈ F an element in F that is not in k. Then
z has at least one zero and one pole. In particular, this proves that the set PF of places is not
empty.

2.2.2 Independence of valuations

Before talking about the central notions of divisors and Riemann-Roch spaces, we must mention
one important theorem called the weak approximation theorem (also refered to as theorem of
independence). It essentially says that if we have pairwise distinct discrete valuations v1, . . . , vn
of F and an element z ∈ F for which we know the values v1(z), . . . , vn−1(z), then we cannot
conclude anything about the value vn(z).

Theorem 2.2.14. Let F be a function field, P1, . . . , Pn ∈ PF be pairwise distinct places of F ,
x1, . . . , xn ∈ F be elements in F and r1, . . . , rn ∈ Z be integers. Then there is some x ∈ F such
that

vPi(x− xi) = ri for all 1 ≤ i ≤ n.

The name “approximation theorem” comes from the fact that vPi(x− xi) can be interpreted
as some “distance” between x and xi. With this interpretation, Theorem 2.2.14 says that the
distances between x and xi can be made simultaneously arbitrarily small using one element x.
This theorem allows us to mention important results.

Corollary 2.2.15. Any function field F has infinitely many places.

Proposition 2.2.16. Let F be a function field and P1, . . . , Pr be the zeros of some element
x ∈ F . Then

r∑
i=1

vPi(x) · degPi ≤ [F : k(x)] .

Corollary 2.2.17. In a function field F , any nonzero element x ∈ F has only finitely many
zeros and poles.

2.2.3 Divisors

Now that we know what places are, we can define divisors. In this section, we keep the notation
of the last section: we let F be an algebraic function field over a finite field k of characteristic p.

Definition 2.2.18 (Divisor). The divisor group Div(F) of F is defined as the free abelian group
generated with the places of F . The elements of Div(F) are called the divisors of F . In other
words, a divisor is a formal sum

D =
∑
P∈PF

nP · P

with nP ∈ Z and nP = 0 for all but finitely many places P .

34

Definition 2.2.19 (Support). Let
D =

∑
P∈PF

nP · P

be a divisor of F . We define the support of D as

suppD = {P ∈ PF |nP 6= 0} .

Two divisors
D =

∑
P∈PF

nP · P

and
D′ =

∑
P∈PF

n′P · P

in Div(F) are added coefficient-wise:

D +D′ =
∑
P∈PF

(nP + n′P) · P

and the zero element is the divisor
0

def
=
∑
P∈PF

nP · P

with nP = 0 for all places P ∈ PF . If

D =
∑
P∈PF

nP · P

is a divisor Div(F) and Q ∈ PF is a place of F , we let

vQ(D) = nQ

be the coefficient multiplying Q in the formal sum D. We then have

suppD = {P ∈ PF | vP (D) 6= 0} .

We then define a partial ordering on Div(F) by

D1 ≤ D2
def⇐⇒ vP (D1) ≤ vP (D2) for all P ∈ PF .

A divisor D ≥ 0 is called positive (or effective).

Definition 2.2.20 (Degree). Let D ∈ Div(F) be a divisor, its degree is defined by

deg(D) =
∑
P∈PF

vP (D) deg(P)

and yields a homomorphism deg : Div(F)! Z.

35

Definition 2.2.21. Let x ∈ F be a nonzero element in F , Z ⊂ PF be the set of its zeros and
N ⊂ PF be the set of its poles. Then, we define

(x)0 =
∑
P∈Z

vP (x)P, the zero divisor of x,

(x)∞ =
∑
P∈N

(−vP (x))P, the pole divisor of x,

(x) = (x)0 − (x)∞, the principal divisor of x.

We have (x)0 ≥ 0, (x)∞ ≥ 0 and

(x) =
∑
P∈PF

vP (x)P.

If x ∈ K, then x does not have zeros nor poles and the sum is then empty, conversely a function
in F \ k has at least one zero and one pole, we thus have

x ∈ k⇔ (x) = 0.

Definition 2.2.22 (Equivalence). Let D,D′ ∈ Div(F) be two divisors of F . We can define an
equivalence relation by

D ∼ D′ ⇐⇒ there exists x ∈ F such that D = D′ + (x).

In that case, we say that D and D′ are linearly equivalent, or just equivalent.

Principal divisors play a crucial role in the algebraic function field theory. They allow us to
define spaces that play a fundamental role.

Definition 2.2.23. Let D ∈ Div(F) be a divisor of F . We let

L(D) = {x ∈ F | (x) ≥ −D} ∪ {0} .

This definition can be interpreted in the following way: if

D =

r∑
i=1

niPi −
s∑
j=1

mjQj ,

with ni > 0 and mj > 0, then L(D) consists of all elements x ∈ F such that

1. for all 1 ≤ j ≤ s, x has a zero of order at least mj at Qj ;

2. the places P1, . . . , Pr are the only poles of x, and for all 1 ≤ i ≤ r, the order of the pole Pi
is bounded by ni.

We recall some properties of the spaces L(D) in Proposition 2.2.24.

Proposition 2.2.24. Let D ∈ Div(F) be a divisor.

(a) L(D) is a finite-dimensionnal k-vector space.

(b) L(D) 6= {0} if and only if there exists a divisor D′ ∼ D with D′ ≥ 0.

36

(c) If D′ ∼ D, then L(D) and L(D′) are isomorphic as k-vector spaces.

(d) x ∈ L(D) if and only if vP (x) ≥ −vP (D) for all P ∈ PF .

(e) L(0) = k.

(f) If deg(D) < 0 then L(D) = {0}. In particular if D < 0 then L(D) = {0}.

Definition 2.2.25 (Dimension). Let D ∈ Div(F) be a divisor of F . The dimension of D is
denoted by `(D) and is defined by

`(D) = dimL(D).

We can now define the most important invariant of a function field F , its genus.

Definition 2.2.26 (Genus). Let F be a function field. The genus g of F is the nonnegative
integer defined by

g = max {degD − `(D) + 1 | D ∈ Div(F)} .

Definition 2.2.27 (Index of specialty). Let D ∈ Div(F) be a divisor of F , the nonnegative
integer

i(D) = `(D)− deg(D) + g − 1

is called the index of specialty of D. A divisor D such that i(D) = 0 is called non-special ; a
divisor D such that i(D) > 0 is called special.

Definition 2.2.28 (Canonical divisor). Let F be a function field of genus g. A divisor W of
degree degW = 2g − 2 and dimension `(W) = g is called a canonical divisor.

In fact, all canonical divisors are equivalent, and they are involved in the very important
Riemman-Roch theorem.

Theorem 2.2.29 (Riemann-Roch). Let W ∈ Div(F) be a canonical divisor of F . Then, for any
divisor D ∈ Div(F), we have

`(D) = deg(D) + 1− g + `(W −D).

Remark 2.2.30. Note that with Definition 2.2.27, Theorem 2.2.29 means that

i(D) = `(W −D).

2.3 Complexity models

When studying algorithms, it is of central interest to understand how our algorithms scale, i.e. to
understand how they perform if the size of the input is getting larger and larger. Complexity
theory studies this phenomenon and gives us models of computation in order to quantify the
behaviour of our algorithms. Depending on the situation, not all models are relevant, and one
has to balance between the concreteness of a model and its ease of use. An extreme viewpoint
is to specify an operating system with a compiled programming language and to compare the
running time or the memory requirements between algorithms. The advantage of such a model is
that it is very concrete, but it is also its main disadvantage because it makes the model hard
to use. Thus, there exist other models of idealized computers, such as Turing machines [Pap03],
random access machines, or the algebraic complexity model. We use the latter, that we present
in more details in the next section.

37

2.3.1 Algebraic complexity

This model is widely presented in [BCS13], we only give a brief presentation of the subject. This
model assumes that we use an abstract computer that is able to perform operations in some base
field k at a constant, unit cost. We also assume that accessing the memory of the computer is
free. Algebraic complexity is especially useful with algorithms dealing with algebraic structures.
This is very handy for us, since we usually work with algebras

(A,+,×, ·)

over some base field k. As an example, with this model, the complexity of an addition in the
extension field

F4 = F2[T]/(T 2 + T + 1) = F2(x)

where x = T̄ , if elements are represented in the basis {1, x}, is 2, because we only need 2 additions
in F2 to perform an addition in F4. Indeed, if

a = a0 + a1x ∈ F4

and
b = b0 + b1x ∈ F4,

we have
a+ b = (a0 + b0) + (a1 + b1)x.

In the case of a multiplication, we have

ab = (a0b0 + a1b1) + (a0b1 + a1b0)x,

so the complexity of a multiplication in F4 (at least with this formula) is 6, because we need 4
multiplications and 2 additions in F2. In the context of finite fields, it makes sense to consider that
the cost of an operation is independent of the operands, because the elements have a fixed size;
but this is no longer the case in other rings, for example in Z, Q, R, or C. We could also argue
that the different operations in k should not have the same cost, we thus present an other manner
of computing the complexity of an algorithm, that is called bilinear complexity, in Chapter 3.

2.3.2 Landau notations

In order to describe the asymptotic behaviour of an algorithm, we use the classical big O and
little o notations O and o. Let f : R! R and g : R! R be two functions, we write

f(x) = O(g(x))

if there exist M ∈ R and C > 0 such that

∀x ≥M, |f(x)| ≤ Cg(x).

and we write
f(x) = o(g(x))

if there exist M ∈ R and ε : R! R, a function with ε(x)! 0 when x!∞, such that

∀x ≥M, |f(x)| ≤ ε(x)g(x).

38

We say that f is equivalent to g and we write

f(x) ∼ g(x)

if
f(x)− g(x) = o(g(x))

when x!∞. Finally, we also use the soft O notation Õ to neglect logarithmic factors in the big
O notation, we write

f(x) = Õ(g(x))

if there exist some k with f(x) = O(g(x) logk(g(x))).

2.4 Fundamental algorithms

In this section, we briefly review the fundamental algorithms that are used in the thesis. Unless
explicitely stated otherwise, we measure the complexities using the algebraic complexity presented
in Section 2.3.1, i.e. in number of operations +,×,÷ in some base field k. References for this
section are [VZGG13, BCG+17, BDFD+17].

2.4.1 Finite field arithmetic

Since finite fields are so important in this thesis, we first review the complexity of the basic
operations in finite fields. We let

k = Fq
be the finite field with q elements, where q is a prime power and we let p be the characteristic of
k. We consider Fqn a finite field extension of degree n of k, and we assume that the elements
in Fqn are represented by univariate polynomials in k [x]. We let P ∈ k [x] be the irreducible
polynomial defining Fqn , i.e. we have

Fqn = k [x] /(P (x)).

Then, the cost of the operations in Fqn are those of polynomial operations modulo P in k [x] and
depend on polynomial arithmetic. We let M(n) be a function such that polynomials in k [x] of
degree less than n can be multiplied in M(n) operations in k. We assume that the function M
has the superlinearity property [VZGG13, Chapter 8.3], i.e. that for any m,n ∈ N \ {0}, we have

M(mn) ≥ mM(n)
M(n+m) ≥M(m) +M(n)
M(n) ≥ n

.

We also assume that M(mn) is in O(m1+εM(n)) for all ε > 0. Using Fast Fourrier Trans-
form [CT65, SS71], Cantor and Kaltofen [CK91] then proved that we have

M(n) ∈ O(n log(n) log log(n)).

Linear algebra operations play an important role too. We denote by ω the exponent of linear
algebra, i.e. a constant such that n × n matrices in any field k can be multiplied using O(nω)
additions and multiplications in k. One can take

ω < 2.37286

39

using [AW21]; on the other hand, we also suppose that ω > 2. The algorithms achieving the
best asymptotic complexity for matrix multiplications are not practical, thus when estimating
the complexity of algorithms we sometimes take ω = 3, the complexity coming from the usual
formula for matrix multiplication, or ω ≈ 2.807 using Strassen’s algorithm [Str69].

Adding two elements in Fqn takes O(n) additions in k. Similarly, adding two polynomials of
degree up to s in Fqn [T] takes O(s) additions in Fqn , thus takes O(sn) additions in k. Multiplying
and dividing polynomials of degree at most s in Fqn [T] is done in O(M(sn)) operations in k,
using Kronecker’s substitution [Moe76, Kal87, VZGG13, VZGS92, Har09]. If h(T) ∈ Fqn [T] is a
monic polynomial, multiplication in Fqn [T]/(h(T)) is also done in O(M(sn)), using the technique
in [PS06]. In particular, this means that multiplication in Fqn costs O(M(n)) operations in k.
Using the same techniques, the greatest common divisor (gcd) of degree s polynomials in Fqn [T]
and inverses in Fqn [T]/(h(T)) can be computed using O(M(sn) log(sn)) operations in k. Again,
this means that inverses in Fqn can be computed using O(M(n) log(n)) operations in k.

2.4.2 Classic routines

We now give a few standard routines that are used in a lot of algorithms involving finite fields,
for example the algorithms presented in Chapters 5 and 7 extensively use these routines. Given
polynomials e, g, h ∈ Fqn [T] of degree at most s, the modular composition is the problem of
computing

e(g(T)) mod h(T).

An upper bound on the algebraic complexity is obtained using the Brent-Kung algorithm [BK78].
Following our discussion on the costs of polynomial and matrix multiplication, its cost is
O(s(ω+1)/2M(n)) operations in k. In the binary RAM complexity model, the Kedlaya-Umans
algorithm [KU11] and its extension [PS13] yield an algorithm with essentially linear complexity in
s, n and log(q). Unfortunately, these algorithms prove to be hard to implement in a competitive
way, and Brent and Kung’s algorithm seems to outperform them in practice.

By applying transposition techniques [BLS03, DF10, DFS10, BCS13] to Brent and Kung’s
algorithm, Shoup [Sho94, Sho99] derived an algorithm to compute the minimal polynomial (over
k) of an element in Fqn using O(n(ω+1)/2) operations in k. We say a bit more about these
techniques, called transposition principle (or Tellegen’s principle) in Section 5.3.3.

We also sometimes use the Berlekamp-Massey algorithm in order to compute the minimal
generating polynomial of a sequence satisfying a linear recurrence relation. The Berlekamp-
Massey algorithm takes as input the 2n first terms a0, . . . , a2n−1 ∈ k of the sequence for which
we know that the minimal generating polynomial has its degree bounded by n. Using rational
reconstruction [BCG+17, Chapter 7], the Berlekamp-Massey algorithm outputs the minimal
generating polynomial of the sequence a0, . . . , a2n−1 using O(M(n) log(n)) operations in k.

40

Chapter 3

Bilinear complexity and
Chudnosky2-type algorithms

We have presented in Section 2.3 an abstract model made to understand the asymptotic
behaviour of our algorithms. In this chapter, we present an alternative notion of complexity
called bilinear complexity, where the focus is on the number of multiplications needed to compute
some map.

Contents
3.1 Bilinear complexity . 42
3.2 Chudnovsky-Chudnovsky algorithm 46

3.2.1 Evaluation - Interpolation . 46
3.2.2 Asymptotic complexity . 48

3.3 Algorithmic searches in small dimension 49
3.3.1 Barbulescu, Detrey, Estibals and Zimmerman’s algorithm 50

Figure 3.1: Representation of Karatsuba’s algorithm complexity.

41

3.1 Bilinear complexity

In the algebraic complexity model [BCS13], we assume that our machine is able to perform any
operation in some base field k in constant, unit time. This is an idealized model made in order to
simplify the computation of the complexity of algebraic algorithms. Nevertheless, multiplication
of two quantities in k that are both variable is arguably more expensive than addition, or
than multiplication of a variable by a fixed constant. In the context of the computation of
bilinear maps, extensive work has been done to reduce the number of 2-variable multiplications
involved. Notable examples are Karatsuba’s algorithm [Kar63] and Strassen’s algorithm [Str69].
Karatsuba’s algorithm is based on the fact that the bilinear map associated to the product of
two polynomials of degree 1

A = a1X + a0 and B = b1X + b0

can be computed with three products
c0 = a0b0,

c1 = (a0 + a1)(b0 + b1),

and
c∞ = a1b1,

instead of the four classic ones a0b0, a0b1, a1b0 and a1b1 as follows:

AB = c∞X
2 + (c1 − c∞ − c0)X + c0.

It will become clear in Section 3.2.1 why we use the subscript ∞ instead of 2 for c∞ = a1b1.
Strassen’s algorithm exploits a similar idea in the case of 2× 2 matrices: only 7 products are used
instead of 8 in order to compute a matrix product. Both these algorithms have very practical
consequences. Karatsuba’s algorithm is used in computer algebra software, when the standard
multiplication is no longer optimal, and when the Fast Fourier Transform (FFT) [CT65, SS71] is
not yet the fastest. Though Strassen’s algorithm does not achieve the best asymptotic complexity
(see for example [CW90, AW21]), in practice, when used recursively, it is the fastest strategy
available for large symbolic matrix multiplication. Both these questions are treated in [VZGG13].
Thus the idea of minimizing the number of multiplications, even if it means having to compute
more additions and substractions, seems a good idea.

The bilinear complexity µ(Φ) of a bilinear map Φ over k represents the minimum number of
2-variable multiplications in a formula that computes Φ, discarding the cost of other operations
such as addition or multiplication by a constant. In other words, in this model of computation,
we only count 2-variable multiplications, and other operations are assumed to be free. It is
motivated by the fact that 2-variable multiplication is often more expensive to compute than
other operations and by the practicality of algorithms minimizing the multiplications, such as
Karatsuba’s and Strassen’s. In particular when A is a finite dimensional algebra over k, we define
the bilinear complexity of A as µ(A/k) = µ(mA) where mA : A×A! A is the multiplication
map in A seen as a k-bilinear map.

Let k2×2 be the algebra of 2× 2 matrices over k. We know thanks to Strassen’s algorithm
that

µ(k2×2/k) ≤ 7.

In fact, this is optimal [Win71, Theorem 3.1], so we have exactly µ(k2×2/k) = 7. In general,
it seems to be hard to find the bilinear complexity of a given algebra, for example the bilinear

42

complexity of k3×3 is not known. In the litterature, work has been done both to algorithmically find
the bilinear complexity of small algebras [BDEZ12, Cov19] and to understand how the bilinear
complexity asymptotically grows [CC88, BPR+21]. In 1988, Chudnovsky and Chudnovsky
proposed a new method using evaluation-interpolation on curves, leading to the proof that the
bilinear complexity of an extension field Fqk/Fq is linear in the degree k of the extension [Bal99].
We present this method in Section 3.2.1.

Bilinear formulas. We can precisely define bilinear complexity with bilinear formulas. We
also sometimes use the terms bilinear decomposition, or bilinear algorithm, but it is really the
same notion. For any vector space V , we let V ∨ be its dual space, i.e. the vector space of k-linear
forms on V .

Definition 3.1.1 (Bilinear formula). Let V1, V2 and W be three finite dimensional vector spaces
over k and

Φ : V1 × V2 !W

a bilinear map. A bilinear fomula, or bilinear decomposition, or bilinear algorithm of length n
for Φ is a collection of 2n linear forms ϕ1, . . . , ϕn ∈ V ∨1 and ψ1, . . . , ψn ∈ V ∨2 , and n vectors
w1, . . . , wn in W such that for all x ∈ V1 and y ∈ V2, we have

Φ(x, y) =

n∑
j=1

ϕj(x)ψj(y)wj .

Let V1 and V2 be k-vector spaces of respective dimensions l and m and let

x = (x1, . . . , xl) ∈ V1

and
y = (y1, . . . , ym) ∈ V2

be two vectors. A bilinear formula of length n for a bilinear map Φ is essentially a way of
computing Φ(x, y) using a number n of 2-variable multiplications in k. Indeed, for each 1 ≤ j ≤ n
we have

ϕj(x) =
l∑

i=1

ai,jxi

and

ψj(y) =

m∑
i=1

bi,jyi

where the elements ai,j and bi,j are constants depending only on Φ. Thus the evaluation

ϕj(x)ψj(y)

only requires one 2-variable multiplication. The vectors wj ∈ W are also constants depending
only on Φ, so we still need one 2-variable multiplication to compute

ϕj(x)ψj(y)wj .

We said that the bilinear complexity measures the minimal number of 2-multiplications needed
to compute a bilinear map Φ. Knowing that a bilinear formula of length n for Φ implies that we
can compute Φ with the same number n of 2-variable multiplications, the definition of bilinear
complexity follows.

43

Definition 3.1.2 (Bilinear complexity). Let V1, V2 and W be three finite dimensional vector
spaces over k and

Φ : V1 × V2 !W

a bilinear map. The bilinear complexity
µ(Φ)

of Φ is the minimal length n of a bilinear formula for Φ.

Equivalently, we can define the bilinear complexity as the rank of the tensor in

V ∨1 ⊗ V ∨2 ⊗W

corresponding to Φ [Ran12], as shown in Example 3.1.3.

Example 3.1.3. Let k = F2 and V1 = V2 = W = (F2)2. We consider the bilinear map Φ that
follows.

Φ : (F2)2 × (F2)2 ! (F2)2

((x0, x1), (y0, y1)) 7! (x0y0 + x1y1, x0y1 + x1y0 + x1y1)

Let e0 = (1, 0) and e1 = (0, 1) the vectors of the canonical basis of (F2)2, and let e∨0 and e∨1 the
vectors of the dual basis, i.e. the linear forms e∨0 and e∨1 are given by

e∨0 : (F2)2 ! F2

(x0, x1) 7! x0

and
e∨1 : (F2)2 ! F2

(x0, x1) 7! x1
.

Let x = (x0, x1) and y = (y0, y1), we have

Φ(x, y) = (x0y0 + x1y1, x0y1 + x1y0 + x1y1)

= (x0y0, x0y0) + (x1y1, 0) + (0, (x0 + x1)(y0 + y1))

= e∨0 (x)e∨0 (y)(e0 + e1) + e∨1 (x)e∨1 (y)e0 + (e∨0 + e∨1)(x)(e∨0 + e∨1)(y)e1.

This last line is a bilinear formula of length 3 for Φ, and we can check that no formula of length 2
exists. Therefore the bilinear complexity of Φ is

µ(Φ) = 3.

Equivalently, the tensor in ((F2)2)∨ ⊗ ((F2)2)∨ ⊗ (F2)2 corresponding to Φ is

Φ̃ = e∨0 ⊗ e∨0 ⊗ e0 + e∨1 ⊗ e∨1 ⊗ e0 + e∨0 ⊗ e∨1 ⊗ e1 + e∨1 ⊗ e∨0 ⊗ e1 + e∨1 ⊗ e∨1 ⊗ e1

= e∨0 ⊗ e∨0 ⊗ (e0 + e1) + e∨1 ⊗ e∨1 ⊗ e0 + (e∨0 + e∨1)⊗ (e∨0 + e∨1)⊗ e1,

and we can check that no smaller decomposition of Φ̃ into a sum of simple tensors a⊗ b⊗ c exists,
so we also see that the rank of the tensor Φ̃ is 3.

When the spaces V1 and V2 are equal

V1 = V2 = V

44

the bilinear maps
Φ : V × V !W

can be symmetric, i.e. they can verify that, for all x, y ∈ V

Φ(x, y) = Φ(y, x).

In that case, it is natural to investigate the existence and the length of symmetric bilinear formulas,
i.e. bilinear formulas where the linear forms ϕj and ψj are equal, for all j. From an algorithmtic
point of view, it should also be easier to find all such formulas because the search space is smaller.
It is also easier to represent such formulas because we only need to store n linear forms instead of
2n.

Definition 3.1.4 (Symmetric bilinear formula). Let V and W be two finite dimensional vector
spaces over k and

Φ : V × V !W

a symmetric bilinear map. A symmetric bilinear fomula, or symmetric bilinear decomposition, or
symmetric bilinear algorithm of length n for Φ is a collection of n linear forms ϕ1, . . . , ϕn ∈ V ∨
and n vectors w1, . . . , wn in W such that for all x, y ∈ V , we have

Φ(x, y) =
n∑
j=1

ϕj(x)ϕj(y)wj .

Definition 3.1.5 (Symmetric bilinear complexity). Let V and W be two finite dimensional
vector spaces over k and

Φ : V × V !W

a bilinear map. The symmetric bilinear complexity

µsym(Φ)

of Φ is the minimal length n of a symmetric bilinear formula for Φ.

In other words, a symmetric bilinear formula is a bilinear formula where the domain spaces
are equal: V1 = V2; and such that for all 1 ≤ j ≤ n, the linear forms ϕj = ψj are equal too.
Note that it is not clear from Definition 3.1.4 that a symmetric bilinear formula always exists
for symmetric bilinear maps, but it is indeed true [Ran12, Lemma 1.6], thus Definition 3.1.5
makes sense. The formula obtained in Example 3.1.3 is an example of bilinear formula that is
also a symmetric bilinear formula, therefore the symmetric bilinear complexity is the same as the
bilinear complexity in that case. We are particularly interested in algebras A of the form

A = Fqk [T]/(T l)

and for that reason we introduce a special notation for the bilinear complexity of those algebras

µq(k, l) = µ(A/k).

Among these algebras, the case l = 1, where the algebra A is a finite field extension of Fq of
degree k also plays a special role, so we define

µq(k) = µq(k, 1).

45

Because these algebras are all commutative, the product

mA : A×A ! A
(x, y) 7! xy

is a symmetric bilinear map, and we define the symmetric bilinear complexity of the algebra A as
the symmetric bilinear complexity of mA

µsym(A) = µsym(mA).

We also define the quantities
µsym
q (k, l)

and
µsym
q (k)

the same way it was done for the usual bilinear complexity. Since a symmetric bilinear formula is
in particular a bilinear formula, we have for all k ≥ 1 and l ≥ 1

µq(k, l) ≤ µsym
q (k, l).

In the other direction, we know ([SL84, Theorem 1] or [Ran12, Lemma 1.6]) that when the
characteristic of A is not 2, or equivalently when k is not a power of 2, we have

µsym
q (k, l) ≤ 2µq(k, l).

Finally, we have no example of algebra A = Fqk [T]/(T l) where the quantities µq(k, l) and µ
sym
q (k, l)

are different when q ≥ 3.

3.2 Chudnovsky-Chudnovsky algorithm

Chudnovsky and Chudnovsky’s algorithm is based on evaluation-interpolation on algebraic curves,
we thus begin by presenting this principle.

3.2.1 Evaluation - Interpolation

Let P ∈ k[x] be a polynomial with coefficients in a finite field k. The evaluation-interpolation
strategy is based on two facts:

• a polynomial of degree n can be described by its values at n+ 1 points and reconstructed
via interpolation;

• the evaluation map at some point a ∈ k is a homomorphism of rings from k[x] to k.

Interpolation. The fact that a polynomial P ∈ k[x] of degree n is uniquely determined by its
values at n+ 1 (different) points in k follows from the fact that a nonzero polynomial of degree n
with coefficients in k has up to n roots. This gives us the uniqueness of the polynomial. As for
the existence, it follows from the Lagrange interpolation. Let x1, . . . , xn+1 ∈ k be n+ 1 points in
k and y1, . . . , yn+1 the corresponding evaluation values, such that

∀j ∈ {1, . . . , n+ 1} , yj = P (xj).

46

Let
Lj =

∏
i 6=j

x− xi
xj − xi

,

we then have Lj(xi) = δi,j with

δi,j =

{
1 if i = j
0 if i 6= j

the Kronecker symbol. Now, the polynomial

P =
n+1∑
j=1

yjLj

meets all the evaluation conditions and is the sum of polynomials of degree n so P is of degree at
most n.

Evaluation. Let P,Q ∈ k[x] be two polynomials with coefficients in k and a ∈ k, then we have

(P +k[x] Q)(a) = P (a) +k Q(a)

and
(P ×k[x] Q)(a) = P (a)×k Q(a),

where +k[x],×k[x] (resp. +k,×k) are the addition and multiplication operations in k[x] (resp. k).
In other words, the map

eva : k[x] ! k
P 7! P (a)

is a homomorphism of rings from k[x] to k.
We are used to represent polynomials by their coefficients, but these two facts suggest that we

can also represent polynomials by their values at some points. With this representation, adding
two polynomials is done by adding the values, which is done with linear algebraic complexity, the
same as with the coefficient representation. But the multiplication of polynomials is also obtained
via the multiplication of the values, which is linear again and better than the quadratic complexity
obtained with the usual multiplication formula for the coefficients. An important problem is
then to be able to change between representations at a small cost, this is done using well-chosen
points of evaluation and this strategy is known under the name of Fast Fourier Transform
(FFT) [SS71, VZGG13, Chapter 8]. Let P,Q ∈ k[x] be two polynomials with coefficients in k
represented by their coefficients, such that deg(PQ) = n− 1. In order to multiply P and Q we
need at least n points in k and the evaluation-interpolation strategy consists in 3 steps:

1. evaluation of P and Q at n points a1, . . . , an;

2. coordinate-wise multiplication;

3. interpolation to reconstruct the product PQ.

When there are not enough points in k to use this method, instead of evaluating on points of k,
we can evaluate the polynomials on points of algebraic curves over k with enough points. As a
first example, we can interpret Karatsuba’s algorithm as an evaluation-interpolation scheme on
the projective line P1(k). Let

P = a1x+ a0

47

and
Q = b1x+ b0,

then
c0 = ev0(P)ev0(Q) = a0b0

is obtained via evaluation at 0,

c1 = ev1(P)ev1(Q) = (a0 + a1)(b0 + b1)

is obtained via evaluation at 1, and

c∞ = ev∞(P)ev∞(Q) = a1b1

is obtained via evaluation at the point at infinity, where the evaluation at infinity ev∞ is the
function mapping a polynomial to its leading coefficient. This strategy can be generalized to
curves (or their function fields) more complex than P1(k), as was done by Chudnovsky and
Chudnovsky in 1988 [CC88].

3.2.2 Asymptotic complexity

In 1988, Chudnovsky and Chudnovsky [CC88] extended the idea of polynomial interpolation to
interpolation on rational places, i.e. places of degree 1, of a function field. It led to an algorithm
for the finite field product with an asymptotically linear complexity in the extension degree. We
first present the historical theorem in [CC88].

Theorem 3.2.1. Let F be a function field over Fq. Assume there exist a place Q ∈ PF of F of
degree k, P1, . . . , Pn ∈ PF places of F of degree 1, and a divisor D ∈ DF of F such that the places
Q and P1, . . . , Pn are not in the support of D and such that the following conditions hold.

(i) The evaluation map
evQ,D : L(D) ! Fqk

f 7! f(Q)

is surjective.

(ii) The evaluation map

evP,2D : L(2D) ! (Fq)n
h 7! (h(P1), . . . , h(Pn))

is injective.

Then the product in the extension field
Fqk/Fq

admits a symmetric formula of length n, i.e. we have µsym
q (k) ≤ n.

Theorem 3.2.1 can be interpreted in terms of evaluation and interpolation. Condition (i)
ensures that any element x ∈ Fqk can be represented by a function fx ∈ L(D). Given two
elements x, y ∈ Fqk that we want to multiply, we thus represent them as functions fx, fy ∈ L(D)
and we evaluate these functions at the n places P1, . . . , Pn of degree 1. We obtain two elements

ax = (fx(P1), . . . , fx(Pn))

48

and
ay = (fy(P1), . . . , fy(Pn))

that we multiply coefficient-wise in order to obtain

axy = (fx(P1)fy(P1), . . . , fx(Pn)fy(Pn)).

Now, the injectivity in Condition (ii) ensures that the element axy, i.e. the evaluations at the
points P1, . . . , Pn, defines a unique function in L(2D), that is in fact fxfy. Indeed, we see that
the function fxfy is in L(2D) since fx and fy are each in L(D), and we have

evP,2D(fxfy) = axy.

Given the evaluations axy, we thus interpolate, i.e. reconstruct a function

g = fxfy ∈ L(2D)

that we finally evaluate at the place Q to recover

g(Q) = fx(Q)fy(Q) = xy.

This whole process costs n multiplications: those that appear when we compute the coefficient-wise
multiplication of ax and ay. Details can be found in [CC88]. Another version of Theorem 3.2.1,
generalized to the case of the multiplication of an arbitrary number s ≥ 2 of variables, is also
discussed in Proposition 4.3.2. One can also give sufficient numerical conditions [Bal98, Bal99]
on the genus g of the function field F and the number n of places P1, . . . , Pn of degree 1 to
ensure that Conditions (i) and (ii) are met. The challenge is then to find function fields that
meet the conditions: they must have many places of degree 1, while trying to maintain the
genus at a minimum. Using for example [STV92] or [Pie12], we know that there exist suitable
families of function fields, but it is quite arduous to find good asymptotic families. Following the
pioneer idea of Chudnovsky and Chudnovsky and additionnal work from Shparlinski, Tfasman and
Vlăduţ [STV92], Ballet was able to prove [Bal99] that the bilinear complexity of the multiplication
in the finite field extension

Fqk/Fq
is linear in the degree of the extension k. Theorem 3.2.1 was then generalized by Ballet and
Rolland [BR04] and Cenk and Özbudak [CÖ10] in order to exploit places of higher degrees.
Finally the most general version, allowing us to use asymmetric formulas, was proposed by
Randriambololona in [Ran12]. All the historical and technical details can be found in the survey
of Ballet, Chaumine, Pieltant, Rambaud, Randriambololona and Rolland [BPR+21].

3.3 Algorithmic searches in small dimension

The last results based on Chudnovsky and Chudnovsky’s algorithm allow us to find one decompo-
sition, and thus give us an (asymptotic) upper bound on the bilinear complexity of algebras

A = Fqk [T]/(T l).

When one wants to find the exact value of the bilinear complexity of a given bilinear map Φ,
one can either find all bilinear formulas for Φ, or find a theoretical argument to directly find the
bilinear complexity of Φ. The latter solution is often hard, and there also exist some in-between

49

approaches such as finding a bilinear formula of a given length and proving that no shorter formula
could exist. Still, because it seems hard to directly find the bilinear complexity of a bilinear map,
algorithms were developped to find bilinear formulas. These algorithms are essentially exhaustive
searches, so they have an exponential complexity, but they also exploit the eventual symmetries
in the definition of Φ to eliminate a lot of potential candidates along the way, in order to be as
efficient as possible in practice. We first look at Barbulescu, Detrey, Estibals and Zimmerman’s
algorithm [BDEZ12].

3.3.1 Barbulescu, Detrey, Estibals and Zimmerman’s algorithm

In 2012, Barbulescu, Detrey, Estibals and Zimmerman published a new framework to find bilinear
formulas for arbitrary bilinear maps over finite fields. Let V1, V2 andW be three finite dimensional
k-vector spaces of respective dimensions l, m, and n, such that we have

V1
∼= kl V2

∼= km W ∼= kn.

Let
Φ : V1 × V2 !W

be a bilinear map, and denote by B the space of bilinear forms from V1 × V2 to k. Let γ ∈ B a
bilinear form, then if

x = (x1, . . . , xl) ∈ V1

and
y = (y1, . . . , ym) ∈ V2,

then γ is given by

γ(x, y) =
l∑

i=1

m∑
j=1

γi,jxiyj .

Hence, B is a k-vector space of dimension lm and we can see γ as a vector

γ = (γ1,1, . . . , γl,m).

Another interesting representation is to see γ as a l ×m matrix

G = (γi,j)i,j ,

such that γ is given by
γ(x, y) = xGyt

where yt is the transpose of y and thus yt is a column vector. We let γj be the j-th coordinate of
Φ in W , such that

Φ = (γ1, . . . , γn).

If n = 1, Φ is a bilinear form and its bilinear complexity is given by the rank of its matrix
representation. The reason is that the rank of a matrix is invariant by change of basis, a rank r
matrix is the sum of r matrices of rank 1, and a rank 1 matrix corresponds to a bilinear form
that can be evaluated using only one 2-variable multiplication. Indeed, let A be a l ×m matrix
of rank 1, we know that there exist a nonzero vector

b = (b1, . . . , bm) ∈ km

50

such that the rows (rj)1≤j≤m of A, seen as vectors km, are all multiples of b, i.e. for all 1 ≤ j ≤ l,
we have

rj = ajb

with aj ∈ k, and so

A =

 a1b
...
alb

 .
Let γ be the bilinear form represented by A, x ∈ kl and y ∈ km, then

γ(x, y) = xAyt

=
l∑

i=1

(xi

m∑
j=1

aibjyj)

= (
l∑

i=1

aixi)× (
m∑
j=1

bjyj).

The elements a1, . . . , al and b1, . . . , bm only depend on γ (or equivalently, on A), so they are
constants, thus evaluating γ only requires one 2-variable multiplication. When n > 1, i.e. Φ is
not a bilinear form, there is no similar way of knowing the bilinear complexity of

Φ = (γ1, . . . , γn).

Nonetheless, Barbulescu et al. presented an algorithm to find bilinear formulas for Φ. The
representation that is used for this algorithm is the vectorial one, and the subspace

V = Span {γ1, . . . , γn} ⊂ B

plays a central role. The general idea is to find a generating family of V composed of rank 1
bilinear forms.

Proposition 3.3.1. Let V1, V2, and W be three finite k-vector spaces and Φ : V1 × V2 ! W a
bilinear map such that

Φ = (γ1, . . . , γn).

Let
V = Span {γ1, . . . , γn}

and let
F = {φ1, . . . , φt}

be a generating family of V composed of rank 1 bilinear forms. Then there exists a bilinear formula
of length t for Φ.

Proof. Let
{e1, . . . , en}

be a basis of W . For each 1 ≤ j ≤ n, let

γj =

t∑
i=1

ai,jφi

51

be a decomposition of γj in the generating family F . It follows that

Φ =

n∑
j=1

γjej

=
n∑
j=1

(
t∑
i=1

ai,jφi)ej

=

t∑
i=1

φi(

n∑
j=1

ai,jej)

=
t∑
i=1

φiwi

with, for all 1 ≤ i ≤ t,

wi =

n∑
j=1

ai,jej

a (constant) vector in W and φi is a rank 1 bilinear form, so that it can be evaluated using only
one 2-variable multiplication in k. Therefore we have a bilinear formula of length t for Φ.

If Φ is a symmetric bilinear map, the same strategy can be used with a basis composed of
symmetric bilinear forms of rank 1. Now the question is how to find such generating family F .
Let

G = {φ ∈ B |φ is of rank 1}

be the set of bilinear forms of rank 1. In order to find bilinear formulas of length t, a naive
solution is to exhaustively search for elements

g1, . . . , gt ∈ G

such that
V ⊆ Span {g1, . . . , gt} . (3.1)

There are (
#G
t

)
possible choices for the t-uple (g1, . . . , gt), and for each t-uple we have to test the subspace
condition (3.1). For the sake of simplicity, we consider the combinatorial complexity of this
problem, i.e. we consider that all matrix operations have constant complexity (e.g. computing
the dimension of a vector space, checking if a vector is in a vector space). Thus the combinatorial
complexity of this strategy is

(
#G
t

)
. Unfortunately, two different t-uples of generators in G can

span the same vector space, and so the naive algorithm is non-optimal. Barbulescu et al. attack
this problem by looking directly at subspaces W such that

V ⊆W.

More precisely, if we want to find a length t formula, we search for spaces W such that

(i) V ⊆W ;

52

(ii) Span(W ∩ G) = W , i.e. W is generated by rank 1 bilinear forms;

(iii) dimW = t, i.e. t generators of G are needed.

We remark thanks to (i) that V is contained in each space W that we are looking for. Thus, we
can search for spaces W by adding elements to V . Of course, there are lots of spaces verifying (i)
alone, but this condition, together with (ii), is in fact equivalent to

(ii’) ∃W ⊂ G such that W = V ⊕ SpanW,

therefore, we need only to add elements from G to V .

Lemma 3.3.2. All spaces W that verify (i) and (ii) also verify (ii’).

Proof. Assume that conditions (i) and (ii) are satisfied, let

l = dimV

and
m = dimW.

Let B a basis of W composed of elements of G, i.e. rank 1 bilinear forms. We construct a family
(Wj)0≤j≤m−l of subsets Wj ⊂ G such that for all 0 ≤ j ≤ m− l

dim(V ⊕ SpanWj) = l + j

and
V ⊕ SpanWj ⊆W.

We let W0 = ∅ be the nullspace, and we inductively construct Wj for 1 ≤ j ≤ m − l. Assume
that dim(V ⊕ SpanWj−1) = l + j − 1 and V ⊕ SpanWj−1 ⊆W . We choose an element ϕ in B
such that

ϕ /∈ V ⊕ SpanWj−1.

Such an element exists, otherwise we would have

V ⊕ SpanWj−1 = W

and so
dim(V ⊕ SpanWj−1) = l + j − 1 = dimW = m.

Since j ≤ m− l, it would follow that

m = l + j − 1 ≤ m− 1,

a contradiction. Hence, we define
Wj =Wj−1 ∪ {ϕ} ,

and we have
dim(V ⊕ SpanWj) = l + j

and
V ⊕ SpanWj ⊆W.

We take the set W =Wm−l and we have the desired property.

53

Lemma 3.3.2 essentially tells us that the combinatorial complexity of finding a length t formula
is (

#G
t− dimV

)
because we can take advantage of the fact that we already know that a solution space W verifies
V ⊆W . We introduce some more notation: we let

St = {W ⊆ B | Span(W ∩ G) = W and dimW = t}

be the set of vector subspaces of B of dimension t that are generated by rank 1 bilinear forms.
We also let

St(V) = {W ∈ St |V ⊆W}

the subspaces in St that also contain V . With this new terminology, if we want to compute
formulas of length t for

Φ = (γ1, . . . , γn),

our goal is now to compute St(V) with

V = Span({γ1, . . . , γn}).

In order to effectively compute these sets, we use Algorithm 1 to check if a vector space is generated
by rank 1 bilinear forms. The algorithm following Lemma 3.3.2 is described in Algorithm 2.

Algorithm 1 HasRankOneBasis
Input: V ⊆ B a subspace of B of dimension l
Output: A boolean indicating if V ∈ Sl
1: H Span(V ∩ G)
2: if dimH = dimV then
3: return true
4: else
5: return false
6: end if

There is another advantage of Algorithm 2 compared to the naive algorithm. We see in Line 7
and Line 14 that it takes into account the equivalence relation “modulo V ”, i.e. if there are two
elements φ and φ′ of G such that

V ⊕ Spanφ = V ⊕ Spanφ′,

only one representative is explored in the tree of recursive calls. As an example, if

G = {φ1, φ2, φ3, φ4}

contains 4 rank 1 bilinear forms, and if t− dimV = 3, the tree of recursive calls would generically
(e.g. if the bilinear forms φj are independent modulo V) look like Figure 3.2, where we let

Wi = Span({φi}),

Wi,j = Span({φi, φj}),

54

Algorithm 2 Barbulescu, Detrey, Estibals, Zimmerman
Input: V ⊆ B a subspace of B.; t ∈ N an integer
Output: A list of formulas of length t for Φ.
1: function ExpandSubspace(X, H, d, t)
2: if d = t and dimX = t and HasRankOneBasis(X) then
3: return {X}
4: else
5: S ∅
6: for i = 1 to #H do . H = {φ1, . . . , φv}
7: H′ {φi+1, . . . , φv} mod φi . Gaussian elimination modulo φi
8: S S ∪ ExpandSubspace(X ⊕ Span(φi),H′, d+ 1, t)
9: end for

10: return S
11: end if
12: end function
13: V = Span({γ1, . . . , γn})
14: return ExpandSubspace(V , G mod V , dimV , t) . Gaussian reduction of G modulo a

basis of V

V

V ⊕W1 V ⊕W2 V ⊕W3 V ⊕W4

V ⊕W1,2 V ⊕W1,3 V ⊕W1,4 V ⊕W2,3 V ⊕W2,4 V ⊕W3,4

V ⊕W1,2,3 V ⊕W1,2,4 V ⊕W1,3,4 V ⊕W2,3,4

(
#G
1

)
subspaces

(
#G
2

)
subspaces

(
#G
3

)
subspaces

Figure 3.2: Tree of recursive calls in Algorithm 2, with #G = 4 and t− dimV = 3.

55

and
Wi,j,k = Span({φi, φj , φk}).

Algorithm 2 can also be adapted to find symmetric formulas: instead of searching in the set G,
we search in the set

Gsym = {φ ∈ B |φ is symmetric and is of rank 1} .

Since
#Gsym =

√
#G,

the complexity of Algorithm 2 adapted to the symmetric case is naturally better. Although
not initially published in [BDEZ12], Barbulescu, Detrey, Estibals and Zimmerman improved on
their algorithms by using symmetries in the definition of the subspaces of B. Their strategy
was described in [Cov19], as well as further improvements from Covanov, exploiting even more
symmetries. These ideas inspired our work on other kinds of decompositions introduced in
Chapter 4, for which we provide an ad hoc search algorithm.

56

Chapter 4

Hypersymmetric bilinear complexity

In Chapter 3, we have seen the notions of bilinear complexity and symmetric bilinear complexity.
We now investigate even stronger notions of symmetry, yielding very short representations of a
bilinear map.

Contents
4.1 Symmetric and hypersymmetric fomulas 58

4.1.1 Generalization to multilinear maps . 58
4.1.2 Trisymmetric and hypersymmetric complexity 60
4.1.3 Galois invariance . 63
4.1.4 Multiplication formulas in algebras . 65

4.2 Algorithmic search in small dimension 65
4.2.1 General algorithm description . 66
4.2.2 Implementation . 74
4.2.3 Universal formulas . 77

4.3 Asymptotic complexities . 80

57

4.1 Symmetric and hypersymmetric fomulas

Let k be a finite field, V1, V2 and W three finite-dimensional k-vector spaces and

Φ : V1 × V2 !W

a bilinear map. Recall Definition 3.1.1:

Φ(x, y) =

t∑
j=1

ϕj(x)ψj(y)wj ,

where for all 1 ≤ j ≤ t, ϕj ∈ V ∨1 and φj ∈ V ∨2 are linear forms and wj ∈W is a vector, is called
a bilinear formula of length t. If the spaces V1 and V2 are equal and if the bilinear map Φ is
symmetric, i.e. if for all x, y ∈ V

Φ(x, y) = Φ(y, x),

we can investigate the existence of formulas satisfying the same condition of symmetry, i.e.
formulas where for all 1 ≤ j ≤ t, ϕj = ψj , resulting in a symmetric bilinear formula:

Φ(x, y) =
t∑

j=1

ϕj(x)ϕj(y)wj .

In fact, we can define other interesting types of symmetries, but it is useful to first generalize the
notions that we saw in Chapter 3 to higher dimensions.

4.1.1 Generalization to multilinear maps

The definitions of bilinear formula and bilinear complexity are not limited to the bilinear case and
can be generalized to arbitrary dimension. These general definitions will be used in Section 4.1.2
to define hypersymmetric complexity.

Definition 4.1.1 (Multilinear formula). Let V1, V2, . . . , Vs and W be s + 1 finite-dimensional
k-vector spaces and

Φ : V1 × V2 × · · · × Vs !W

an s-linear map. A multilinear formula, or multilinear decomposition, or multilinear algorithm of
length t for Φ is a collection of s×t linear forms ϕ(1)

1 , ϕ
(1)
2 , . . . , ϕ

(1)
t ∈ V ∨1 up to ϕ(s)

1 , ϕ
(s)
2 , . . . , ϕ

(s)
t ∈

V ∨s and t vectors w1, . . . , wt, such that for all x1 ∈ V1, . . . , xs ∈ Vs, we have

Φ(x1, . . . , xs) =
t∑

j=1

ϕ
(1)
j (x1) . . . ϕ

(s)
j (xs)wj .

Definition 4.1.2 (Multilinear complexity). Let V1, V2, . . . , Vs and W be s+ 1 finite-dimensional
k-vector spaces and

Φ : V1 × V2 × · · · × Vs !W

an s-linear map. The multilinear complexity µ(Φ) of Φ is the minimal length t of a multilinear
formula for Φ.

58

As in the case of bilinear complexity, the multilinear complexity µ(Φ) of a multilinear map Φ
can also be defined as the rank of the tensor in

V ∨1 ⊗ · · · ⊗ V ∨s ⊗W

corresponding to Φ, see Example 3.1.3 for an illustration of this correspondence in the bilinear
case. In the case where

V1 = V2 = · · · = Vs,

symmetric formulas and symmetric complexity can also be generalized when Φ is a symmetric
multilinear map, i.e. when for all permutations σ ∈ Ss and for all vectors x1, . . . , xs ∈ V , we
have

Φ(x1, . . . , xs) = Φ(xσ(1), . . . , xσ(s)).

Definition 4.1.3 (Symmetric multilinear formula). Let V and W be two finite-dimensional
k-vector spaces and

Φ : V × · · · × V︸ ︷︷ ︸
s times

!W

be a symmetric s-linear map. A symmetric multilinear formula, or symmetric multilinear
decomposition, or symmetric multilinear algorithm of length t for Φ is a collection of t linear forms
ϕ1, ϕ2, . . . , ϕt ∈ V ∨ and t vectors w1, . . . , wt, such that for all x1, . . . , xs ∈ V , we have

Φ(x1, . . . , xs) =

t∑
j=1

ϕj(x1) . . . ϕj(xs)wj .

Definition 4.1.4 (Symmetric multilinear complexity). Let V and W be two finite-dimensional
k-vector spaces and

Φ : V × · · · × V︸ ︷︷ ︸
s times

!W

be a symmetric s-linear map. The symmetric multilinear complexity µsym(Φ) of Φ is the minimal
length t of a symmetric multilinear formula for Φ. If no such formula exists, we set

µsym(Φ) =∞.

Contrary to the bilinear case, some symmetric multilinear maps do not admit a symmetric
decomposition, but the problem of whether a symmetric multilinear map admits a symmetric
multilinear formula is well understood and follows from Theorem 4.1.5.

Theorem 4.1.5 ([Ran15, Thm. A.7]). Let Φ : V s ! W be a s-linear map between finite
dimensional vector spaces over Fq. Then Φ admits a symmetric decomposition if and only if Φ is
Frobenius-symmetric, i.e. if and only if it is symmetric and one of the following two conditions
holds:

• s ≤ q

• s ≥ q + 1 and for all u, v, z1, . . . , zs−q−1 in V ,

Φ(u, . . . , u︸ ︷︷ ︸
q times

, v, z1, . . . , zs−q−1) = Φ(u, v, . . . , v︸ ︷︷ ︸
q times

, z1, . . . , zs−q−1).

59

4.1.2 Trisymmetric and hypersymmetric complexity

Under even stricter conditions, we can study the existence of even more symmetric formulas.
These formulas allow us to describe a multilinear map with fewer elements, and thus give a
compact definition of the map. Since the symmetry conditions are stronger there are fewer such
formulas, and as a consequence the search space is smaller. Thus, we expect search algorithms
to be faster, as was the case when using Barbulescu et al.’s algorithm (Algorithm 2) to find
symmetric formulas. Let us define those “stricter conditions”. Let

Φ : V s ! V

be an s-linear symmetric map, i.e. we additionally ask that W = V . We also assume that V has
a non-degenerate symmetric bilinear form, that we write as a scalar product

V × V ! k
(v, w) 7! 〈v, w〉 .

In that case, we know that the vector space V is isomorphic to its dual space V ∨:

V ∼= V ∨,

i.e. for each linear form ϕ ∈ V ∨, there exist a unique vector a ∈ V such that for all x ∈ V , we
have

ϕ(x) = 〈a, x〉 .

Under these conditions, we can now write a symmetric formula for Φ as

Φ(x1, . . . , xs) =
t∑

j=1

〈aj , x1〉 . . . 〈aj , xs〉wj .

where for all 1 ≤ j ≤ t, aj ∈ V is a vector of V . As a consequence, we can also describe a
symmetric formula for Φ as the data of vectors (aj)1≤j≤t and (wj)1≤j≤t. In order to have an even
more compact description of Φ, one can ask for the vectors wj to be proportional to ai, leading
to the definition of hypersymmetric formula.

Definition 4.1.6 (Hypersymmetric formula). Let V be a finite-dimensional k-vector space
equipped with a scalar product and

Φ : V × · · · × V︸ ︷︷ ︸
s times

! V

a symmetric s-linear map. A hypersymmetric formula, or hypersymmetric decomposition, or
hypersymmetric algorithm of length t for Φ is a collection of t vectors a1, . . . , at ∈ V and t scalars
λ1, . . . , λt ∈ k, such that for all x1, . . . , xs ∈ V , we have

Φ(x1, . . . , xs) =
t∑

j=1

λj 〈aj , x1〉 . . . 〈aj , xs〉 aj .

Definition 4.1.7 (Hypersymmetric complexity). Let V be a finite-dimensional k-vector space
equipped with a scalar product and

Φ : V × · · · × V︸ ︷︷ ︸
s times

! V

60

a symmetric s-linear map. The hypersymmetric complexity µhyp(Φ) of Φ is the minimal length t
of a hypersymmetric formula for Φ. If no such formula exists, we set

µhyp(Φ) =∞.

Example 4.1.8. We take the same case as in Example 3.1.3, but viewed a bit differently. Let
k = F2 and

V = F4
∼= F2[T]/(T 2 + T + 1) ∼= F2(ζ)

seen as a F2-vector space of dimension 2 using the base (1, ζ). The F2-bilinear map Φ that we
consider is the product in F4:

Φ : F4 × F4 ! F4

(x, y) 7! xy.

We also consider the non-degenerate symmetric bilinear form

F4 × F4 ! F2

(v, w) 7! Tr(vw),

where Tr is the trace of the field extension F4/F2, and we write

Tr(xy) = 〈x, y〉 .

If x = x0 +x1ζ ∈ F4 is an element in the extension field, we have Tr(x) = x1, and if y = y0 +y1ζ ∈
F4 is another element, then their product is

xy = x0y0 + x1y1 + (x0y1 + x1y0 + x1y1)ζ.

We also see that
〈1, x〉 〈1, y〉 = x1y1

〈1 + ζ, x〉 〈1 + ζ, y〉 = x0y0

〈ζ, x〉 〈ζ, y〉 = (x0 + x1)(y0 + y1)

and thus we have

xy = 〈1, x〉 〈1, y〉 · 1 + 〈1 + ζ, x〉 〈1 + ζ, y〉 · (1 + ζ) + 〈ζ, x〉 〈ζ, y〉 · ζ.

This is an hypersymmetric formula of length 3, and we can prove that there are no formulas of
length 2, so we have

µhyp(Φ) = 3.

This is in fact the very same formula as in Example 3.1.3.

In order to investigate the existence of hypersymmetric decompositions, we remark that there
is a natural link between hypersymmetric decompositions of the s-linear map

Φ : V s ! V

and symmetric decompositions of the (s+ 1)-linear form Φ̃ defined by

Φ̃ : V s+1 ! k
(x1, . . . , xs+1) 7! 〈Φ(x1, . . . , xs), xs+1〉

given by Lemma 4.1.9. Definition 4.1.10 follows from this correspondence.

61

Lemma 4.1.9. Let V a k-vector space and

Φ : V s ! V

a symmetric s-linear map. Elements (aj)1≤j≤t in V and scalars (λj)1≤j≤t in k define a hyper-
symmetric formula for the s-linear map Φ,

Φ(x1, . . . , xs) =

t∑
j=1

λj 〈aj , x1〉 · · · 〈aj , xs〉 aj ,

if and only if they define a symmetric formula for the (s+ 1)-linear form Φ̃,

Φ̃(x1, . . . , xs, xs+1) =
t∑

j=1

λi 〈aj , x1〉 · · · 〈aj , xs〉 〈aj , xs+1〉 .

Thus, Φ admits a hypersymmetric formula if and only if Φ̃ is Frobenius-symmetric (in the
sense of Theorem 4.1.5), and we have

µhyp(Φ) = µsym
(

Φ̃
)
.

In particular, if q ≥ s+ 1, then any hypersymmetric s-linear map over Fq admits a hypersym-
metric formula.

Proof. Assume that Φ admits a hypersymmetric decomposition, such that for all x1, . . . , xs ∈ V ,
we have

Φ(x1, . . . , xs) =
t∑

j=1

λi 〈aj , x1〉 · · · 〈aj , xt〉 aj ,

then, by taking the scalar product with any xs+1, we obtain

〈Φ(x1, . . . , xs), xs+1〉 = Φ̃(x1, . . . , xs, xs+1) =
t∑

j=1

λi 〈aj , x1〉 · · · 〈aj , xs〉 〈aj , xs+1〉 ,

which defines a symmetric decomposition for Φ̃. In the other direction, assume that Φ̃ admits a
symmetric decomposition, such that for all x1, . . . , xs+1 ∈ V , we have

Φ̃(x1, . . . , xs, xs+1) =
t∑

j=1

λi 〈aj , x1〉 · · · 〈aj , xs〉 〈aj , xs+1〉 .

It can also be written as

〈Φ(x1, . . . , xs), xs+1〉 =

〈
t∑

j=1

λj 〈aj , x1〉 · · · 〈aj , xs〉 aj , xs+1

〉
,

so that we have 〈
Φ(x1, . . . , xs)−

t∑
j=1

λj 〈aj , x1〉 · · · 〈aj , xs〉 , xs+1

〉
= 0.

62

Since the scalar product 〈·, ·〉 is non-degenerate, it means that

Φ(x1, . . . , xs) =
t∑

j=1

λi 〈aj , x1〉 · · · 〈aj , xt〉 aj .

Hence Φ admits a hypersymmetric decomposition. The other assertions follow.

Definition 4.1.10 (Hypersymmetric map). An s-linear map

Φ : V s ! V

is called hypersymmetric if the associated (s+ 1)-linear form Φ̃ is symmetric.

The most important case is arguably the bilinear case, where s = 2, because it was thoroughly
studied. For that reason, we sometimes replace the word hypersymmetric by trisymmetric in that
particular case, because of the form of the formulas

Φ(x, y) =

t∑
j=1

λj 〈aj , x〉 〈aj , y〉 aj

that includes the same element aj three times, and we write µtri(Φ) instead of µhyp(Φ). Lemma 4.1.9
states that, if q ≥ 3, a trisymmetric map Φ always admits a trisymmetric decomposition.

4.1.3 Galois invariance

Another type of interesting decompositions is Galois invariant decompositions, that we also call σ-
invariant decompositions. It is motivated by the study of group actions on the set of decompositions,
that can sometimes be used to cut branches in the search tree of the algorithms [Cov19]. Let

σ : V ! V
x 7! xσ

be a k-automorphism of V that respects the scalar product, i.e. for all x, y ∈ V , we have

〈xσ, yσ〉 = 〈x, y〉 .

Then, if σ is also compatible with some multilinear map Φ, it induces an action on the set of
decompositions, as explained in Lemma 4.1.11.

Lemma 4.1.11. Let V be a finite-dimensional k-vector space and

Φ : V s ! V

be a symmetric s-linear map that is compatible with σ, i.e. for all x1, . . . , xs in V , we have

Φ(xσ1 , . . . , x
σ
s) = Φ(x1, . . . , xs)

σ.

If (aj)1≤j≤t and (bj)1≤j≤t define a symmetric formula for Φ

Φ(x1, . . . , xs) =

t∑
j=1

〈aj , x1〉 . . . 〈aj , xs〉 bj ,

then (aσj)1≤j≤t and (bσj)1≤j≤t) also define a symmetric formula for Φ

Φ(x1, . . . , xs) =
t∑

j=1

〈
aσj , x1

〉
. . .
〈
aσj , xs

〉
bσj .

63

Proof. Assume that we have a symmetric decomposition for Φ, with the same notations as in the
Lemma. First, notice that for every x, y ∈ V , we have

〈xσ, y〉 = 〈x, yσ−1〉.

Then, it follows that

Φ(x1, . . . , xs) = Φ(xσ
−1

1 , . . . , xσ
−1

s)σ

= (

t∑
j=1

〈aj , xσ
−1

1 〉 . . . 〈aj , xσ
−1

s 〉bj)σ

=
t∑

j=1

〈
aσj , x1

〉
. . .
〈
aσj , xs

〉
bσj .

Thus we have a new symmetric formula for Φ.

When this action does not change the formula, we then say that it is σ-invariant.

Definition 4.1.12 (σ-invariance). Let (aj)1≤j≤t and (bj)1≤j≤t define a symmetric formula for Φ

Φ(x1, . . . , xs) =
t∑

j=1

〈aj , x1〉 . . . 〈aj , xs〉 bj .

We say that this formula is σ-invariant if it is the same as the formula defined by (aσj)1≤j≤t and
(bσj)1≤j≤t, i.e. if there is a permutation π ∈ St of {1, . . . , t} such that (aσj , b

σ
j) = (aπ(j), bπ(j)) for

all j. This also applies to hypersymmetric formulas, setting bj = λjaj .

Example 4.1.13. In fact, the trisymmetric formula seen in Example 4.1.8 was already σ-invariant.
Recall that we work in F4, defined by

F4
∼= F2[T]/(T 2 + T + 1) ∼= F2(ζ),

and we take
Tr(xy) = 〈x, y〉 .

The F2-automorphism that we consider is the Frobenius automorphism

σ : F4 ! F4

x 7! x2.

We still have, for all x, y ∈ F4

xy = 〈1, x〉 〈1, y〉 · 1 + 〈1 + ζ, x〉 〈1 + ζ, y〉 · (1 + ζ) + 〈ζ, x〉 〈ζ, y〉 · ζ.

Since
1σ = 1
ζσ = ζ + 1
(ζ + 1)σ = ζ

we see that the formula is σ-invariant.

64

4.1.4 Multiplication formulas in algebras

In the previous pages, we defined (hyper)symmetric formulas for any multilinear map defined
over some finite-dimensional k-vector space. Nevertheless, as seen in the examples, we are often
interested in special instances of multilinear maps. In fact, the map that we have in mind is
almost always the binary product of some k-algebra A. There are two types of algebras we are
particularly interested in.

• The finite field extensions A = Fqk , in which we take the trace bilinear form

〈x, y〉 = Tr(xy)

for our scalar product, and the Frobenius automorphism

σ : Fqk ! Fqk
x 7! xq.

for our k-automorphism.

• Algebras of truncated polynomials A = Fq[T]/(T k). In this case, we let

τ : A ! k∑k−1
j=0 xjT

j 7! xk−1

and
〈x, y〉 = τ(xy).

Indeed, if x =
∑k−1

j=0 xjT
j and y =

∑k−1
j=0 yjT

j , we have

τ(xy) = x0yk−1 + x1yk−2 + · · ·+ xk−1y0,

thus 〈·, ·〉 is a non-degenerate bilinear form.

We denote by µtri
q (k) the trisymmetric bilinear complexity of the 2-variable product in Fqk and

by µ̂tri
q (k) the trisymmetric bilinear complexity of the 2-variable product in Fq[T]/(T k).

4.2 Algorithmic search in small dimension

In very small dimension, e.g. in Examples 3.1.3 and 4.1.8 where we are working with k-vector
spaces of dimension 2, the search for formulas can be done by hand relatively easily because
the length of the formulas is short. Though, even in small dimension, if the size of k is large,
the number of different formulas can be big, thus making it hard to list all different solutions.
For these reasons, it is highly desirable to algorithmically find the formulas. Let V be a finite
dimensional k-vector space and Φ : V × V ! V a bilinear map. When wanting to list all the
symmetric formulas of the form

Φ(x, y) =

t∑
j=0

ϕj(x)ϕj(y)aj ,

Barbulescu et al.’s and Covanov’s algorithms exhaustively search through all linear forms ϕ,
cleverly eliminating useless branches in the search tree. Nevertheless, their methods exploit the

65

fact that it is possible to freely choose the vectors aj ∈ V , independently of the linear forms
ϕj ∈ V ∨. This is no longer possible when searching for trisymmetric decompositions

Φ(x, y) =

t∑
j=0

λj 〈aj , x〉 〈aj , y〉 aj ,

because each linear form ϕ ∈ V ∨ is linked with a unique vector a ∈ V such that for all x ∈ V

ϕ(x) = 〈a, x〉 ,

and the choice of a linear form ϕj with ϕj(x) = 〈aj , x〉 imposes the choice of the vector aj ∈ V .
We thus propose an ad hoc algorithm to find trisymmetric formulas, exploiting the vector space
structure.

4.2.1 General algorithm description

In all the section, we assume that k = Fq is the finite field with q elements, V is a finite-dimensional
k-vector space equipped with a non-degenerate bilinear form, written as a scalar product 〈·, ·〉,
and Φ : V ×V ! V is a hypersymmetric bilinear map for which we want to compute trisymmetric
decompositions

Φ(x, y) =
t∑

j=1

λj 〈aj , x〉 〈aj , y〉 aj .

Assume that
V ∼= kk

is a k-vector space of dimension k, for which a basis has been chosen and allows us to identify V
to kk, and let (bj)1≤j≤k be the projections of Φ on each coordinate, i.e. for all x, y ∈ V , we have

Φ(x, y) = (b1(x, y), . . . , bk(x, y)).

We already saw that the difficulty in the trisymmetric case resides in the fact that each linear form,
or equivalently each symmetric rank 1 bilinear form, comes with a given vector in V that dictates
its impact on the different coordinates in a trisymmetric formula. Therefore, a central idea is to
exhaustively search through vectors in V instead of linear forms in V ∨. This is equivalent since

V ∼= V ∨

in this case anyway. Moreover, we search through special sets of vectors that have easy-to-manage
coordinates, e.g. well-placed zeros and ones, in order to control the impact on certain coordinates.
Assume (aj)1≤j≤t in V and (λj)1≤j≤t in k define a trisymmetric decomposition

Φ(x, y) =

t∑
j=1

λj 〈aj , x〉 〈aj , y〉 aj .

Without loss of generality, we can consider that every element aj is “normalized”, i.e. its first
nonzero coordinate is 1. Indeed, if we have one

aj0 = 0

66

for some 1 ≤ j0 ≤ t, then we just remove one term from the formula and we still have a
trisymmetric decomposition, of length t− 1. Now if for every 1 ≤ j ≤ t,

aj 6= 0,

we let xj be the first nonzero coordinate of aj and we write

aj = xj ãj .

We can now write the trisymmetric formula as

Φ(x, y) =

t∑
j=1

λj 〈aj , x〉 〈aj , y〉 aj

=
t∑

j=1

λj 〈xj ãj , x〉 〈xj ãj , y〉xj ãj

=

t∑
j=1

λjx
3
j 〈ãj , x〉 〈ãj , y〉 ãj

=
t∑

j=1

λ̃j 〈ãj , x〉 〈ãj , y〉 ãj ,

where λ̃j = λjx
3
j . Therefore any trisymmetric formula is equivalent to a trisymmetric formula

with normalized vectors, and thus we only search for formulas with normalized elements. In other
words, for all 1 ≤ i ≤ k, we let

Ei = {x = (x1, . . . , xk) ∈ V | ∀l ≤ i− 1, xl = 0 and xi = 1}

and

E =

k⋃
i=1

Ei,

and we search for elements aj in E instead of the entire vector space V . Limiting the search to E
helps us in two different ways. First, it reduces the complexity of the exhaustive search since the
size of E is smaller than the size of V . Indeed, the sets Ei are disjoint, so

#E =

k∑
i=1

#Ei

=
k∑
i=1

qk−i

=
qk − 1

q − 1
,

whereas
#V = qk.

Second, it leads to a better understanding of what happens in the algorithm, because if we have
some vector

a ∈ Ei

67

for a given 1 ≤ i ≤ k, we know that the associated bilinear form

(x, y) 7! 〈a, x〉 〈a, y〉

can only impact the coordinates l ≥ i. Thus, we further use the vector space structure of V by
searching for solutions on each coordinate, starting with the first coordinates and vectors in E1,
then the second coordinate and vectors in E2, and so on until the last coordinate. Let us focus on
the first coordinate and give some details.

Recall that the goal is to obtain a trisymmetric decomposition for the hypersymmetric bilinear
map Φ : V × V ! V , that is written

Φ(x, y) = (b1(x, y), . . . , bk(x, y)).

in the basis of V . We first see how to decompose the bilinear form b1 as a sum of rank 1 bilinear
forms. Let B be the set of bilinear forms of V × V , recall that B is a k-vector space of dimension
k2, and that we identify b1 with the k × k matrix B1 ∈ kk×k such that for all vectors x, y ∈ V ,
we have

b1(x, y) = XB1Y
t,

where X,Y ∈ k1×k are the row vectors representing x and y and where Y t is the transpose of y.
Let r1 be the rank of b1, we know that b1 can be decomposed as a sum of r1 bilinear forms of
rank 1. Let f be the application mapping an element in V to its associated bilinear form:

f : V ! B
a 7! (x, y) 7! 〈a, x〉 〈a, y〉 .

In order to find these decompositions, we begin by exhaustively searching through scalars λ1 ∈ k
and vectors a1 ∈ E1 such that

r1 − 1 = rank(b1 − λ1f(a1)) < rank(b1) = r1.

Then, for each such pair (λ1, a1), we exhaustively search through scalars λ2 ∈ k and vectors
a2 ∈ E1 such that

r1 − 2 = rank(b1 − λ1f(a1)− λ2f(a2)) < rank(b1 − λ1f(a1)) = r1 − 1.

We continue this process until we have r1 pairs (λ1, a1), . . . , (λr1 , ar1) such that

0 = rank(b1 −
r1∑
j=1

λjf(aj)) < rank(

r1−1∑
j=1

λjf(aj)) = 1,

which exactly means that

b1 =

r1∑
j=1

λjf(aj),

and we have found our decomposition. In fact, we can search in a more clever way. Since the rank
of b1 is r1 and we are looking for decompositions as a sum of exactly r1 bilinear forms of rank 1,
we must choose pairs (λj , aj) that decrease the rank of our bilinear form at each step, otherwise
we will need strictly more than r1 bilinear forms of rank 1. Therefore, at each step, we can search

68

only through the vectors that can decrease the rank of the last considered bilinear form. After
each choice of (λ1, a1), we will thus exhaustively search through scalars λ2 ∈ k and vectors a2 in

E{(λ1,a1)}
1 = {a ∈ E1 | ∃λ ∈ k, rank(b1 − λf(a)) < rank(b1)} .

Then, after each choice of (λ2, a2), we will search through scalars λ3 ∈ k and vectors a3 in

E{(λ1,a1),(λ2,a2)}
1 =

{
a ∈ E{(λ1,a1)}

1 | ∃λ ∈ k, rank(b1 − λ1f(a1)− λf(a)) < rank(b1 − λ1f(a1))
}
,

and we use the same idea until the end of the process. This strategy, used in Algorithm 3, saves
a lot of time in the search because we look only at the vectors that have the potential to decrease
the rank, instead of all the vectors in E1.

Algorithm 3 (Minimal decomposition)
Input: b ∈ B a bilinear form of rank r, E ⊂ E the space of vectors where to search
Output: A list of decompositions of b as a sum of bilinear forms of rank 1, each decomposition

represented by a set of r pairs {(λ1, a1), . . . , (λr, ar)}.
1: procedure MinimalDecomposition(b, E,Rglob, Rloc = ∅)
2: if ϕ = 0 then . rank(ϕ) = 0
3: Rglob Rglob

⋃
{Rloc}

4: else
5: C ∅ . C is the set of pairs that decrease the rank
6: for all a ∈ E do
7: for all λ ∈ k do
8: if rank(b− λf(a)) < rank(b) then
9: C C

⋃
{(λ, a)}

10: break . breaks only the inner loop
11: end if
12: end for
13: end for
14: for i = 1 to #C do . we note C = {(γ1, c1), . . . , (γu, cu)}
15: E′ {ci+1, . . . , cu}
16: MinimalDecomposition(b− γif(ci), E

′, Rglob, Rloc ∪ {(γi, ci)})
17: end for
18: end if
19: end procedure
20: R ∅
21: MinimalDecomposition(b, E,R)
22: return R

For each decomposition of b1

b1(x, y) =

r1∑
j=1

λj 〈aj , x〉 〈aj , y〉

that we compute this way, we obtain

Φ(x, y)−
r1∑
j=1

λj 〈aj , x〉 〈aj , y〉 aj = (0, b′2(x, y), . . . , b′k(x, y)),

69

where b′2, . . . , b′k ∈ B are new bilinear forms, depending on the coordinates of a1, . . . , ar1 , and
where the first coordinate is 0 because the first coordinate of the vectors a1, . . . , ar1 is always 1.
Then, we use Algorithm 3 with the bilinear form b′2 of rank r2 and the initial set of vectors E2.
For each decomposition of b′2

b′2(x, y) =

r1+r2∑
j=r1+1

λj 〈aj , x〉 〈aj , y〉

obtained, we have

Φ(x, y)−
r1+r2∑
j=1

λj 〈aj , x〉 〈aj , y〉 aj = (0, 0, b′′3(x, y), . . . , b′′k(x, y)),

where b′′3, . . . , b′′k ∈ B are again new bilinear forms, depending on the coordinates of the elements
ar1+1, . . . , ar1+r2 . We continue this process on all the coordinates, such that in the end we obtain
trisymmetric decompositions of the form

Φ(x, y) =
t∑

j=1

λj 〈aj , x〉 〈aj , y〉 aj .

The overall strategy is described in Algorithm 4.

Algorithm 4 (Trisymmetric search with minimal decompositions)
Input: Φ = (b1, . . . , bk) a bilinear map; t ∈ N an integer
Output: A list of trisymmetric decompositions of Φ of length up to t.
1: procedure TriSymSearchMin(Φ, t, Sglob, i = 1, Sloc = ∅)
2: if Φ = 0 then
3: Sglob Sglob

⋃
{Sloc}.

4: else if rank(bi) ≤ t then
5: R ∅
6: MinimalDecomposition(bi, Ei,R) . We have Φ = (b1, . . . , bk)
7: for all S ∈ R do
8: Φ′ Φ−

∑
(λ,α)∈S λf(α)α

9: TriSymSearchMin(Φ′, t−#S, Sglob, i+ 1, Sloc ∪ S)
10: end for
11: end if
12: end procedure
13: S ∅
14: TriSymSearchMin(Φ, t,S)
15: return S

Let (λj)1≤j≤t be some scalars in k and (aj)1≤j≤t some vectors in

E =

k⋃
i=1

Ei

that define an optimal trisymmetric decomposition for Φ (i.e. the length of the decomposition is
minimal):

Φ(x, y) =
t∑

j=1

λj 〈aj , x〉 〈aj , y〉 aj .

70

Although the formula is optimal, it is entirely possible for the individual coordinate decompositions
to be sub-optimal. Assume that for all vectors x, y ∈ V , we have

Φ(x, y) = (b1(x, y), . . . , bk(x, y)),

with r1 the rank of the bilinear form b1 ∈ B. If we have strictly more than r1 different vectors
in (aj)1≤j≤t that belong to E1, then Algorithm 4 will not find this decomposition. Indeed,
Algorithm 3 only finds minimal decompositions of b1 into r1 bilinear forms of rank 1, i.e. finds
decompositions with exactly r1 vectors in (aj)1≤j≤t that are in E1. More generally, in Algorithm 3,
when working with a bilinear form b of rank r, it is possible that the best local decompositions
(i.e. on only one coordinate) of length r are not the best in order to find global decompositions
(i.e. on all the coordinates), because of the impact the decompositions of b have on the other
coordinates. For that reason, it is important to add the option in Algorithm 3 to search for
non-optimal decompositions. That is exactly what is done in Algorithm 5: if we want to find all
decompositions of some bilinear form b of rank r of length r+ µ, with µ > 0, we still exhaustively
search through scalars λ ∈ k and vectors a ∈ E , but we allow the rank not to decrease on µ
different times. Once this number of “exceptions” have all been used, we go back to the strategy
previously presented (i.e. Algorithm 3).

We let µj be the number of times we allow the rank not to decrease when dealing with the
j-th coordinate during the trisymmetric search, and we let

M = (µ1, . . . , µk).

We call this m-uple the margin of the exhaustive search. Algorithm 6 is then a generalization of
Algorithm 4 that includes the notion of margin. In the other direction, Algorithm 4 is the special
case of Algorithm 6 with the margin

M = (0, . . . , 0).

Algorithm 6 behaves differently, both in performance and in number of decompositions found,
when used with a variety of margins. Example 4.2.1 shows a simple case of this phenomenon on
a small field extension.

Example 4.2.1. In order to illustrate the impact of the choice of a given margin, let us see the
case of the extension

F33
∼= F3[x]/(x3 − x+ 1) ∼= F3[z]

over F3. There are 4 trisymmetric decompositions of length 6 of the product in F34 :

d1 =
{

(1, z2 + z), (2, z2 + z + 1), (1, z2 − z + 1), (1,−z2 + 1), (2,−z2 + z + 1), (1,−z2 − z + 1)
}

d2 =
{

(2, z2), (2, z2 + 1), (1, z2 + z + 1), (2,−z2 + 1), (1,−z2 + z), (2,−z2 − z + 1)
}

d3 =
{

(1, z), (1, z + 1), (2,−z + 1), (2, z2 + z), (1,−z2 + 1), (1,−z2 + z)
}

d4 =
{

(1, z2), (1, z2 + 1), (2, z2 + z), (2, z2 − z + 1), (2,−z2 + z), (1,−z2 + z + 1).
}

How the elements of each decomposition fall into the sets E1, E2 or E3 is described in Table 4.1.
Table 4.2 describes which choice of margin produces which decompositions. There is a checkmark
Xwhen the algorithm succeeds in finding the decomposition.

71

Algorithm 5 (Decomposition with margin)
Input: b ∈ B a bilinear form of rank r, E ⊂ E the space of vectors in which to search, µ the

margin, t the maximum length of a decompositon of b
Output: A list of decompositions of b as a sum of at bilinear forms of rank 1, each decomposition

represented by a set of at most t pairs {(λ1, a1), . . . , (λt, at)}.
1: procedure DecompositionWithMargin(b, E, r, µ,Rglob, Rloc = ∅)
2: if rank b ≤ t then
3: if b = 0 then . rank b = 0
4: Rglob Rglob

⋃
{Rloc}

5: else if µ = 0 then . No margin left!
6: MinimalDecomposition(ϕ,E,Rglob, Rloc) . "naive" strategy: Alg. 3
7: else
8: for i = 1 to #E do . We note E = {c1, . . . , cu}
9: E′ {ci+1, . . . , cu}

10: for all λ ∈ Fp do
11: b′ b− λf(ci)
12: R′loc Rloc

⋃
{(λ, ci)}

13: if rank(b′) < rank(b) then
14: DecompositionWithMargin(b′, E′, t− 1, µ,Rglob, R

′
loc)

15: else
16: DecompositionWithMargin(b′, E′, t− 1, µ− 1, Rglob, R

′
loc)

17: end if
18: end for
19: end for
20: end if
21: end if
22: end procedure
23: R ∅
24: DecompositionWithMargin(b, E, µ,S)
25: return R

Decomposition
Set E1 E2 E3

d1 5 1 0
d2 4 1 1
d3 3 3 0
d4 3 2 1

Table 4.1: The decompositions of the product in F33 and how many of their vectors are in each
set E1, E2 and E3, see Example 4.2.1 for details.

72

Algorithm 6 (Trisymmetric search with margins)
Input: Φ = (b1, . . . , bk) a bilinear map; t ∈ N an integer, M a margin
Output: A list of trisymmetric decompositions of Φ with up to t elements.
1: procedure TriSymSearchMargin(Φ, t,M, Sglob, i = 1, Sloc = ∅)
2: if Φ = 0 then
3: Sglob Sglob

⋃
{Sloc}.

4: else if rank(bi) ≤ t then
5: R ∅ . We note M = (µ1, . . . , µk)
6: DecompositionWithMargin(bi, Ei, t, µi,R) . We note Φ = (b1, . . . , bk)
7: for all S ∈ R do
8: Φ′ Φ−

∑
(λ,α)∈S λf(α)α

9: TriSymSearchMargin(Φ′, t−#S,M, Sglob, i+ 1, Sloc ∪ S)
10: end for
11: end if
12: end procedure
13: S ∅
14: TriSymSearchMargin(Φ, t,M,S)
15: return S

Decomposition
Margin

(0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (2, 1, 0)

d1 X
d2 X X X
d3 X X X
d4 X X X X X

Table 4.2: The decompositions of the product in F33 and whether our algorithm finds them,
depending on the margin used. See Example 4.2.1 for details.

73

4.2.2 Implementation

The ideas discussed in Section 4.2.1, in particular Algorithms 5 and 6, were implemented using
Nemo [H+16], a number theory library written in the Julia programming language [Jul]. Nemo
functionalities includes a wrapper for Flint [Har10], a number theory library written in the C
programming language. The code is available online at https://github.com/erou/TriSym.jl.

Julia and Nemo. Julia is a free and open-source, high-level programming language developed
since 2012, with dynamic type system and high-performance. It is a compiled language, with
a just-in-time (jit) compilation, meaning that the compilation is almost invisible for the user
but performances are comparable with other compiled languages. It is easy to learn and to read,
especially for someone who already worked with a high-level language like Python. There are of
course many other things to say about this new language, the interested reader can find additional
information on Julia’s website1 and, of course, in the documentation of the language. Julia is
designed for numerical computing, but there are many other possibilities, e.g. some symbolic
computer algebra packages, such as Nemo. Nemo is a computer algebra package for Julia. It
aims to cover commutative algebra, number theory and group theory. It contains wrappers for
MPIR, Flint, Arb and Antic, and other features written directly in Julia. Among these libraries,
the C library Flint (Fast library for number theory) is the only one that we use. One of the
advantages of Julia is that it is fairly easy to directly call C functions contained in other libraries.
Therefore, all the Nemo functions that we use in TriSym.jl are in fact Flint functions. This
provides efficiency, the main reason why we use the duo Julia/Nemo, as well as simplicity, because
we are not directly using the C programming language. On top of that, if a Flint function is not
available in Nemo, we can directly call it from Julia. Moreover, it is also possible to write crucial
parts of the code directly in C and call the code if necessary.

Trisymmetric search in finite fields. An algorithm in our Julia library Trisym.jl is specially
designed to handle trisymmetric decompositions of the product in finite fields. We use a lot of
native Nemo types, that are wrappers for Flint types. Finite field elements are represented by
univariate polynomials modulo an irreducible polynomial and only prime field extensions

Fpk/Fp,

where p is a prime number, can be considered. Two types represent finite fields in Flint: fq and
fq_nmod, the latter only works for word-size primes p. Because the algorithms for trisymmetric
searches have exponential complexity, we focused our implementation on finite fields with a
word-size characteristic, but there are no theoretical nor implementation obstacles preventing an
implementation with the type fq and arbitrary large characteristic. Nonetheless, implementing
the algorithms for any kind of extension

Fqk/Fq,

where q is a prime power, would require additional work. The bilinear forms in Fpk are represented
by k × k matrices over Fp, and the product in Fpk is represented by a k-uple of k × k matrices.
The matrix manipulations are all done by Flint using efficient C code: it is in particular true
for the rank computation, that plays a central role in Algorithm 5. We always precompute a
dictionary mapping elements in the finite field

a ∈ Fpk
1https://julialang.org/

74

https://github.com/erou/TriSym.jl
https://julialang.org/

Field Margin Solutions Length Time (s)
F32 (0, 0) 1 3 8.5 · 10−5

F33 (0, 0, 0) 1 6 4.0 · 10−4

F33 (2, 1, 0) 4 6 6.2 · 10−3

F34 (0, 0, 0, 0) 2 9 1.6 · 10−3

F34 (1, 0, 0, 0) 5 9 2.5 · 10−2

F34 (0, 1, 0, 0) 5 9 3.9 · 10−3

F34 (1, 1, 0, 0) 10 9 2.7 · 10−2

F34 (2, 1, 0, 0) 18 9 1.6 · 10−1

F34 (2, 1, 2, 2) 18 9 1.6 · 10−1

F34 (3, 2, 2, 2) 25 9 9.1 · 10−1

F34 (4, 3, 3, 3) 27 9 4.7

F34 (5, 5, 5, 5) 27 9 18

F35 (0, 0, 0, 0, 0) 0 11 7.3 · 10−2

F35 (1, 0, 0, 0, 0) 0 11 1.6

F35 (1, 1, 0, 0, 0) 0 11 15

F35 (2, 1, 1, 0, 0) 0 11 77

F35 (2, 2, 1, 1, 1) 0 11 100

F35 (3, 2, 2, 2, 2) 0 11 500

F35 (4, 2, 2, 2, 2) 0 11 6100

Table 4.3: Experimental results for q = 3.

to the matrix representing the bilinear form

(x, y) 7! 〈a, x〉 〈a, y〉 .

This bilinear form is not hard to compute: it suffices to compute a matrix-vector multiplication,
but since we have to compute the same bilinear forms several times, we prefer to store them in a
dictionary.

Experimental results All the tests in this section were performed on an Intel Core i7-7500U
CPU clocked at 2.70GHz, using Nemo 0.19.1 running on Julia 1.5.3, and Nemo’s corresponding
version of Flint. The benchmark functions are available in the file bencharks.jl of the repository
of the package TriSym.jl2, while the data generated from the benchmarks can be found in the
repository of the thesis3. All plots were made using gnuplot version 5.2 patchlevel 8, and the
gnuplot files can also be found in the thesis repository. As previously said, our search algorithm
has exponential complexity in the dimension of the algebra we are searching in. This is similar
to the algorithms searching for (symmetric) bilinear formulas, such as [Cov19, BDEZ12]. For
the smallest case of q = 3, we are able to compute solutions up to k = 4 with Algorithm 6.
For k = 5, we know there exist bilinear formulas of length 11, but there are no trisymmetric
decomposition of that length that can be found with small margin, thus Algorithm 6 is not able to
find a trisymmetric decomposition in dimension k = 5. The results are reported in Table 4.3. It
is clear that the dimension has an important impact on the timings, but the margin is even more
impactful, as can be seen with the different timings obtain for F34 and F35 . As the dimension

2https://github.com/erou/TriSym.jl
3https://github.com/erou/thesis/

75

https://github.com/erou/TriSym.jl
https://github.com/erou/thesis/

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

T
im

e
 (

s)

Characteristic

Figure 4.1: Timings for the computation of the trisymmetric decompositions in Fp2 with a margin
M = (0, 0).

grows, it becomes less and less likely that a formula can be found using a small margin, it thus
makes the algorithm relevant mostly in small dimension. The characteristic p of the finite field
also has a big influence, because it directly impacts the size of the finite field, and thus the search
is longer. We can see in Figure 4.1 the timings related to the computation of all the trisymmetric
decompositions in Fp2 for 3 ≤ p ≤ 300 with a fixed margin M = (0, 0). In these timings, we
assume that the dictionary mapping an element a ∈ Fp2 to its symmetric bilinear form

(x, y) 7! 〈a, x〉 〈a, y〉

is already precomputed. In practice, this precomputation is about 5 to 10 times faster than the
computation of the trisymmetric formulas. In dimension k = 3, the exhaustive search is already
quite difficult, as there are many formulas. For example, in F373 , we find 3558 different formulas
in about 81 seconds. For that reason, we also plot a version of Algorithm 6 that stops after the
discovery of only one formula. This allows us to go further: in Figure 4.2, we show the timings
for the computations in Fp3 for 3 ≤ p ≤ 150 with a margin M = (0, 0, 0). To compare with the
last algorithm, the computation in F373 now takes 0.13 second. With our algorithms, we are
able to compute µtri

3 (3) = 6, µtri
p (3) = 5 for all primes 5 ≤ p ≤ 257, µtri

3 (4) = 9, µtri
5 (4) = 8,

and µtri
p (4) = 7 for all primes 7 ≤ p ≤ 23. In dimension k = 5, these algorithms are not able

to find formulas. We also implemented a naive search algorithm for Galois invariant formulas,
that exhaustively search through all orbits. Although naive, this algorithm is quite fast for
small dimension because the search space is smaller than the one at hand with Algorithm 6.
Consequently, it allows us to find Galois invariant formulas of length 11 for F35 and of length 10
for F55 and F75 . Joint with the obvious inequalities µq(k) ≤ µsym

q (k) ≤ µtri
q (k) ≤ µtri,G

q (k) and
with known lower bounds from [BPR+21, Thm. 2.2] and [BDEZ12], this gives

10 ≤ µ3(5) ≤ µsym
3 (5) = µtri

3 (5) = µtri,G
3 (5) = 11,

76

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160

T
im

e
 (

s)

Characteristic

Figure 4.2: Timings for the computation of one trisymmetric decomposition in Fp3 with a margin
M = (0, 0, 0). Logarithmic scale was used on the y-axis, otherwise only the last points were
visible.

µ5(5) = µsym
5 (5) = µtri

5 (5) = µtri,G
5 (5) = 10,

and
µ7(5) = µsym

7 (5) = µtri
7 (5) = µtri,G

7 (5) = 10.

For q ≥ 3 we know no example where one of the inequalities in µq(k) ≤ µsym
q (k) ≤ µtri

q (k) is strict.
However, it turns out that the inequality with µtri,G

q (k) can be strict. Indeed, let q = 3 and k = 7.
In this setting our exhaustive search found no Galois invariant decomposition of length up to
15. Since all orbits are of length 7, except the trivial orbit of length 1, the minimal length for a
Galois invariant decomposition is congruent to 0 or 1 modulo 7, so we deduce that it is at least
21. Furthermore, we know [BPR+21, Table 2] that µsym

3 (7) ≤ 19, so we have

µ3(7) ≤ µsym
3 (7) ≤ 19 < 21 ≤ µtri,G

3 (7).

Although these algorithms are very useful to understand and find trisymmetric bilinear formulas,
their algorithmic complexities are prohibitive. With more optimization, one could hope to push a
little further the computations, but it is likely that new methods have to be found to really make
a breakthrough.

4.2.3 Universal formulas

In our experiments, we were not able to find any example of an algebra

A = Fqk or A = Fq[T]/(T k)

77

where the bilinear complexity and the trisymmetric bilinear complexity are different. In fact, this
is an open problem: we do not know whether there exist q ≥ 3 and k ≥ 2 such that

µtri
q (k) 6= µq(k) or µ̂tri

q (k) 6= µ̂q(k).

In fact, for small values of k, we are even able to prove that these quantities are equal, by
exhibiting universal formulas, i.e. formulas that are true for (almost) any choice of q ≥ 3. In
order to obtain such formulas, we slightly change our point of view on the problem. Assume that
we want to compute a trisymmetric decomposition of the product

Φ : A×A ! A
(x, y) 7! xy.

in A, a commutative algebra of degree k over Fq. After the choice of a basis of A and a basis of
the space B of the bilinear forms on A, we can represent Φ by its coordinates (πj)1≤j≤k in the
basis of B. We then see

Φ = (π1, . . . , πk)

as a column vector B of length k3. The first coordinates correspond to π1, the next k2 coordinates
correspond to π2, and so on up to πk. Now, recall that we let

f : A ! B
a 7! (x, y) 7! 〈a, x〉 〈a, y〉 .

be the application mapping an element in A to its associated symmetric bilinear map. We also
recall that we let

Ei = {x = (x1, . . . , xk) ∈ A | ∀l ≤ i− 1, xl = 0 and xi = 1}

and

E =
k⋃
i=1

Ei

be subsets of A. Now, for each a ∈ E , we write

f(a) = a⊗ f(a),

where a is the column vector of length k corresponding to a in the basis of A, f(a) is the column
vector of length k2 corresponding to f(a) ∈ B, and ⊗ is the Kronecker product. With these
notations, finding a trisymmetric decomposition of the product in A is the same as finding
elements a1 . . . , an ∈ E and λ1, . . . , λn ∈ Fq with

B =
n∑
j=1

λjf(aj).

Let A be the matrix which columns are the f(a) for all a ∈ E , then the problem is to find a
solution X of

AX = B

with the smallest possible number of nonzero entries in X. With this new point of view in mind,
we first consider the case A = Fq2 over k = Fq, where the characteristic of k is not 2.

78

Proposition 4.2.2. For any odd q we have

µq(2) = µtri
q (2) = 3.

Proof. The fact that µq(2) = 3 is not new and follows, for example, from [BPR+21, Thm. 2.2].
In order to prove that µtri

q (2) = 3, we find a universal trisymmetric formula of length 3. We know
that we can find a non-square element ζ in Fq, we can then define

Fq2 ∼= Fq[T]/(T 2 − ζ) = Fq(α),

where α = T̄ is the canonical generator of Fq2 . Let x = x0 + x1α and y = y0 + y1α be two
elements of Fq2 , we have

xy = (x0 + x1α)(y0 + y1α) = x0y0 + ζx1y1 + (x0y1 + x1y0)α.

We can lift the matrix B coming from the multiplication formula, that has coefficients in Fq, to
a matrix with coefficients in Q(ζ), where ζ is an indeterminate. We can also lift the matrix A,
because the map f (and therefore f) has the same expression for all q not divisible by 2. Indeed,
one can check that the map f is given by

f(x0 + x1α) =

(
S

[
x0

x1

])(
S

[
x0

x1

])ᵀ

= 4

[
x2

0 ζx0x1

ζx0x1 ζ2x2
1

]
.

where

S =
[〈
αi, αj

〉]
0≤i,j≤1

=
[
Tr(αi+j)

]
0≤i,j≤1

=

[
2 0
0 2ζ

]
.

We can then solve AX = B over Q(ζ) and finally check that

B = (1− ζ−1)4−1f(1) + (8ζ)−1f(1 + α) + (8ζ)−1f(1− α),

so that the trisymmetric bilinear complexity of Fq2/Fq is 3.

Using the same strategy, we can also find universal formulas for another type of algebra:

A = Fq[T]/(T k),

namely the truncated polynomials. In that context, we first observe that we have

µ̂tri
q (k) ≥ µ̂q(k) ≥ 2k − 1

for all q and k. Indeed this is a special case of [Win77, Thm. 4], which holds for any polynomial
that is a power of an irreducible polynomial. Conversely we are able to find formulas for 2 ≤ k ≤ 4
that match this lower bound.

Proposition 4.2.3. For any odd q we have

µ̂tri
q (2) = 3.

Proof. Let A = Fq[T]/(T 2) = Fq[α] with α = T̄ , so α2 = 0. If x = x0 + x1α and y = y0 + y1α
are two elements of A, we have

xy = (x0 + x1α)(y0 + y1α) = x0y0 + (x0y1 + x1y0)α.

We can again construct the matrix B and A, and solve AX = B, this time simply over Q. We
obtain

B = −f(1) + 2−1f(1 + α) + 2−1f(1− α)

so that the trisymmetric bilinear complexity of A = Fq[T]/(T 2) is at most 3, which allows us to
conclude.

79

Proposition 4.2.4. For any q not divisible by 2 nor 3 we have

µ̂tri
q (3) = 5 and µ̂tri

q (4) = 7.

Proof. We use the same notations as before. For A = Fq[T]/(T 3), we obtain

B = −f(1− α− α2) + 3−1f(α+ 2α2) + 2−1f(1− α− 2α2)− 3−1f(α− α2) + 2−1f(1− α).

Therefore the trisymmetric bilinear complexity of A = Fq[T]/(T 3) is 5.
Finally, for A = Fq[T]/(T 4), we obtain

B = 2−1f(1− α2 + α3)− f(1− α2) + 12−1f(α+ 2α2 + 2α3)− 12−1f(α− 2α2 + 2α3)

− 6−1f(α+ α2 − α3) + 6−1f(α− α2 − α3) + 2−1f(1− α2 − α3) · (1− α2 − α3).

The trisymmetric bilinear complexity of A = Fq[T]/(T 4) is then 7.

4.3 Asymptotic complexities

Parallel to the question of finding the hypersymmetric complexity of bilinear maps over k-vector
spaces of small dimension, it is also of theoretical importance to understand how these quantities
asymptotically grow. In the bilinear case, we have rather precise bounds on

lim sup
k!∞

(
1

k
µq(k)).

In particular, these bounds imply that the bilinear complexity µq(k) grows linearly in k. Since
we have similar results for the symmetric bilinear complexity, we also know that µsym

q (k) grows
linearly in k. A natural question that follows is then if we can also prove that the trisymmetric
complexity

µtri
q (k)

still grows linearly in k. In this section, we work with either the algebra

A = Fqk or A = Fq[T]/(T k),

seen as algebras over k = Fq, and equipped with the scalar product

〈x, y〉 = τ(xy)

introduced in Section 4.1.4, i.e.

• if A = Fqk , τ = Tr is the trace map;

• if A = Fq[T]/(T k) and x =
∑k−1

j=0 xjT
j , then τ(x) = xk−1 is the map sending an element to

its leading coefficient.

Our aim is to show that the trisymmetric bilinear complexities µtri
q (k) and µ̂tri

q (k) grow linearly as
k !∞. Our proof will involve higher multilinear maps, and in turn, give results for them as well.

For any s we define the s-multilinear multiplication map in A over k

ms : As ! A
(x1, . . . , xs) 7! x1 · · ·xs

80

and the s-multilinear trace form
τs = τ ◦ms : As ! A

(x1, . . . , xs) 7! τ(x1 · · ·xs).

If needed, we will write ms
A/k or τsA/k to keep A and k explicit. The (symmetric) multilinear

complexity of ms has been considered in [Bsh13].

Lemma 4.3.1. The map ms is hypersymmetric, and we have

µhyp(ms) = µsym(τs+1) ≤ µsym(ms+1).

Proof. Recall that we have

m̃s(x1, . . . , xs+1)
def
= 〈ms(x1, . . . , xs), xs+1〉
= 〈x1 . . . xs, xs+1〉
= τ(x1 . . . xs+1)

= τs+1(x1, . . . , xs+1),

and thus the equality on the left is a special case of Lemma 4.1.9. For the inequality on the right,
assume we have a symmetric formula of length n for ms+1, such that for all x1, . . . , xs+1 ∈ A, we
have

ms+1(x1, . . . , xs+1) = x1 . . . xs+1 =
n∑
j=1

〈aj , x1〉 . . . 〈aj , xs+1〉 bj

and apply τ . We obtain

τ(x1 . . . xs+1) =
n∑
j=1

〈aj , x1〉 . . . 〈aj , xs+1〉 τ(bj),

that is precisely a symmetric decomposition for τs+1 so the right inequality is proven.

When studying the variation with the degree of the extension field Fqk over Fq, we will

write µsym
q (k,ms) for µsym

(
ms

F
qk
/Fq

)
, and we will also use the similar notations µhyp

q (k,ms),
µsym
q (k, τs), etc. In particular for s = 2 we have

µtri
q (k)

def
= µhyp

q (k,m2) = µsym
q (k, τ3).

When working in Fq[T]/(T k) over Fq, we will write likewise µ̂sym
q (k,ms), µ̂

hyp
q (k,ms), etc.

Our aim is, for fixed q and s with q ≥ s+ 1, to show that µhyp
q (k,ms) and µ̂hyp

q (k,ms) grow
linearly with k !∞. This is thus a stronger result than the proof that only the trisymmetric
complexity, i.e. s = 2, grows linearly in the degree of the extension. Thanks to Lemma 4.3.1, it
suffices to show that µsym

q (k,ms+1) and µ̂sym
q (k,ms+1) grow linearly with k ! ∞. Again, this

is a generalization of the case s = 2 for which we already know that the symmetric bilinear
complexity is linear in the dimension of the considered vector space. To ease notations we will set

M sym
q,s = lim sup

k!∞

1

k
µsym
q (k,ms),

Mhyp
q,s = lim sup

k!∞

1

k
µhyp
q (k,ms),

M tri
q = lim sup

k!∞

1

k
µtri
q (k) = Mhyp

q,2

and likewise for M̂ sym
q,s , M̂hyp

q,s , M̂ tri
q , etc.

81

Evaluation-interpolation method. We use the function field terminology and notations
presented in [Sti09] and recalled in Section 2.2. Let F/Fq be an algebraic function field of
one variable over Fq and let PF be the set of places of F . Let DF be the set of divisors on
F , and if D ∈ DF is a divisor on F , we denote by L(D) its Riemann-Roch space and we let
`(D) = dimL(D) be the dimension of this space. Proposition 4.3.2 generalizes the idea of the
Chudnovsky brothers to the product of s variables and highlights the method to obtain symmetric
formulas.

Proposition 4.3.2. Assume there exist a place Q ∈ PF of F of degree k, P1, . . . , Pn ∈ PF places
of F of degree 1, and a divisor D ∈ DF of F such that the places Q and P1, . . . , Pn are not in the
support of D and such that the following conditions hold.

(i) The evaluation map
evQ,D : L(D) ! Fqk

f 7! f(Q)

is surjective.

(ii) The evaluation map

evP,sD : L(sD) ! (Fq)n
h 7! (h(P1), . . . , h(Pn))

is injective.

Then ms
F
qk
/Fq admits a symmetric formula of length n, i.e. we have µsym

q (k,ms) ≤ n.

Proof. Since the map evQ,D is surjective, it admits a right inverse, i.e. a linear map

u : Fqk ! L(D)

such that
evQ,D ◦u = IdF

qk
.

For all x ∈ Fqk , we denote u(x) ∈ L(D) by fx, so the map x 7! fx is linear, and fx(Q) = x. We
also let

a : Fqk ! (Fq)n
x 7! (fx(P1), . . . , fx(Pn))

be the composite map a = evP,D ◦u. The situation is summed up in the following diagram.

L(D)

Fqk (Fq)n

u

evQ,D

evP,D

a

Observe that a is linear, so we can write

a(x) = (ϕ1(x), . . . , ϕn(x))

where ϕi : Fqk ! Fq is a linear form, namely ϕi(x) = fx(Pi).

82

Similarly, since the map evP,sD is injective, it admits a left inverse, i.e. a linear map

r : (Fq)n ! L(sD)

such that
r ◦ evP,sD = IdL(sD) .

We also let b : (Fq)n ! Fqk be the composite map b = evQ,sD ◦r. The situation is summed up in
the following diagram.

L(sD)

Fqk (Fq)n
evP,sD

r

evQ,sD

b

The map b is linear, so there are b1, . . . , bn in Fqk such that, for all y = (y1, . . . , yn) ∈ (Fq)n,

b(y) =

n∑
i=1

yibi.

Now for x, . . . , xs ∈ Fqk , let

p = (p1, . . . , pn) = ((
s∏
j=1

fxj)(P1), . . . , (
s∏
j=1

fxj)(Pn))

in (Fq)n be the coordinatewise product of the vectors a(x1), ..., a(xs). Then

h = r(p)

is an element of L(sD) such that h(Pi) = pi = (
∏s
j=1 fxj)(Pi) for all i. Since the map evP,sD is

injective, this forces

h =
s∏
j=1

fxj .

Then, we have

b(p) = evQ,sD(r(p)) = evQ,sD(h) = h(Q) =

s∏
j=1

fxj (Q) =

s∏
j=1

xj .

But we also have

b(p) =

n∑
i=1

pibi =

n∑
i=1

(

s∏
j=1

fxj (Pi))bi =
n∑
i=1

(
s∏
j=1

ϕi(xj))bi

and finally we get a symmetric formula for ms:
s∏
j=1

xj =

n∑
i=1

(

s∏
j=1

ϕi(xj))bi.

83

Now that we have a method to find formulas, we have to prove that Conditions (i) and (ii)
can be satisfied. Proposition 4.3.3 gives sufficient assumptions to obtain these conditions.

Proposition 4.3.3. Let F/Fq be an algebraic function field of genus g. Assume that F admits a
place Q of degree k, and a set S of places of degree 1 of size

|S| ≥ (k + g − 1)s+ 1.

Then we have
µsym
q (k,ms) ≤ ks+ (g − 1)(s− 1).

Proof. Set n = ks + (g − 1)(s − 1). We will show that there are places P1, . . . , Pn in S, and a
divisor D on F , such that Proposition 4.3.2 applies, which gives µsym

q (k,ms) ≤ n as desired.
Using e.g. [Bal99, Lemma 2.1] we know F admits a non-special divisor R of degree g − 1.

By the strong approximation theorem [Sti09, Thm. 1.6.5] we can then find a divisor D linearly
equivalent to R+Q and of support disjoint from Q and S.

Then D −Q and D are non-special, with `(D −Q) = 0 and `(D) = k. We thus find

Ker(evQ,D : L(D)! Fqk) = L(D −Q) = 0,

so evQ,D is injective, hence also surjective by equality of dimensions, i.e. the surjectivity condi-
tion (i) in Proposition 4.3.2 is satisfied.

Likewise, sD is non-special, with deg(sD) = (k + g − 1)s and `(sD) = ks+ (g − 1)(s− 1).
Then the evaluation map

evS,sD : L(sD) ! (Fq)|S|
h 7! (h(P))P∈S

has kernel L(sD−
∑

P∈S P) = 0, because deg(sD−
∑

P∈S P) = (k+ g− 1)s−|S| < 0. So evS,sD
is injective, with image of dimension dim Im(evS,sD) = `(sD) = n. Then we can find a subset
P = {P1, . . . , Pn} ⊂ S of size n, such that evP,sD : L(sD)! (Fq)n is an isomorphism, and the
injectivity condition (ii) in Proposition 4.3.2 is also satisfied.

Choice of the curves for q a large enough square. Now that we have somewhat easier
assumptions to fulfill, that are only based on the existence of a certain number of places, we prove
that we can indeed find algebraic function fields that satisfy these properties. We first prove it in
the special case, where the size q of the base field k is a large enough square.

Proposition 4.3.4. Let s be given, and assume q is a square, q ≥ (s+ 2)2. Then we have

M sym
q,s ≤ (1 + εs(q))s

with εs(q) = s−1√
q−s−1 .

Proof. We know [STV92] that there exists a family of function fields Fi/Fq of genus gi !∞ such
that

(i) gi+1

gi
! 1

(ii) Ni ∼ (
√
q − 1)gi

84

where Ni = # {P ∈ PFi | degP = 1} is the number of places of degree 1 of Fi. We can also
assume that the sequence gi is increasing.

For any k let i(k) be the smallest index such that

Ni(k) ≥ (k + gi(k) − 1)s+ 1.

Such an i(k) always exists since by (ii) we have Ni ∼ (
√
q − 1)gi, with

√
q − 1 > s.

By definition we thus have

Ni(k) ≥ (k + gi(k) − 1)s+ 1 > (k + gi(k)−1 − 1)s+ 1 > Ni(k)−1.

As k !∞ we have i(k)!∞, and by (i) we get

gi(k) ∼ gi(k)−1,

so by (ii) we also get
Ni(k) ∼ Ni(k)−1.

This then gives

Ni(k) ∼ (k + gi(k) − 1)s+ 1

∼ (k + gi(k))s

while by (ii),
Ni(k) ∼ (

√
q − 1)gi(k).

From these two relations we deduce

gi(k) ∼
s

√
q − 1− t

k.

For k large enough this implies in particular 2gi(k) + 1 ≤ q(k−1)/2(
√
q− 1), so Fi(k) admits a place

of degree k by [Sti09, Cor. 5.2.10].
From this we are allowed to apply Proposition 4.3.3 to Fi(k), which gives

µsym
q (k,ms) ≤ ks+ (gi(k) − 1)(s− 1) ∼ ks+ gi(k)(s− 1) ∼ ks(1 + εs(q))

as desired.

Corollary 4.3.5. For q a square, q ≥ (s+ 3)2 we have

Mhyp
q,s ≤ (1 + εs+1(q))(s+ 1),

with εs(q) = s−1√
q−s−1 , and in particular we have

M tri
q ≤ 3

(
1 +

2
√
q − 4

)
for q a square, q ≥ 25.

85

Conclusion for arbitrary q. Finally, we complete our objective of proving that the symmetric
multilinear complexity is linear in the degree of the extension by extending the previous result to
arbitrary q.

Lemma 4.3.6. Let q be a prime power. Then for any integers s, d, k we have

µsym
q (k,ms) ≤ µsym

q (dk,ms) ≤ µsym
q (d,ms)µ

sym
qd

(k,ms).

Proof. For the inequality on the left, there is nothing to prove if µsym
q (dk,ms) = ∞. So let us

assume m
F
qdk

/Fq

s admits a symmetric multiplication formula of length n = µsym
q (dk,ms), i.e.

∀x1, . . . , xs ∈ Fqdk , x1 · · ·xs =
n∑
i=1

ϕi(x1) · · ·ϕi(xs)ai

for linear forms ϕi : Fqdk ! Fq and elements ai ∈ Fqdk . Choose a linear projection

p : Fqdk ! Fqk

left inverse for the inclusion Fqk ⊆ Fqdk . Then we get

∀x1, . . . , xs ∈ Fqk , x1 · · ·xs = p(x1, . . . , xs) =

n∑
i=1

ϕi(x1) · · ·ϕi(xs)p(ai)

which is a symmetric multiplication formula of length n for m
F
qk
/Fq

s .
Likewise, for the inequality on the right, there is nothing to prove if µsym

q (d,ms) = ∞ or

µsym
qd

(k,ms) = ∞. So let us assume m
F
qd
/Fq

s and m
F
qdk

/F
qd

s admit symmetric multiplication
formulas of length ρ = µsym

q (d,ms) and µ = µsym
qd

(k,ms) respectively, so

∀y1, . . . , ys ∈ Fqd , y1 · · · ys =

ρ∑
u=1

ψu(y1) · · ·ψu(ys)bu

∀z1, . . . , zs ∈ Fqdk , z1 · · · zs =

µ∑
v=1

χv(z1) · · ·χv(zs)cv

for linear forms ψu : Fqd ! Fq, χv : Fqdk ! Fqd and elements bu ∈ Fqd , cv ∈ Fqdk . Then setting
y1 = χv(z1), ..., ys = χv(zs) we find

∀z1, . . . , zs ∈ Fqdk , z1 · · · zs =

µ∑
v=1

ρ∑
u=1

(ψu ◦ χv)(z1) · · · (ψu ◦ χv)(zs) · (bucv)

which is a symmetric multiplication formula of length ρµ for m
F
qdk

/Fq

s .

Theorem 4.3.7. Let s ≥ 2 be an integer and q a prime power. If q < t, then µsym
q (k,ms) =∞

for all k ≥ 2.
On the other hand, if q ≥ s, then µsym

q (k,ms) grows at most linearly with k, i.e. we have

M sym
q,s ≤ Cs(q)

for some real constant Cs(q) <∞.

86

Proof. If q < t and k ≥ 2, then µsym
q (k,ms) =∞ follows from Theorem 4.1.5.

On the other hand, for q ≥ s, we have µsym
q (d,ms) <∞ for any integer d. Choose d such that

qd is a square, qd ≥ (s+ 2)2. Then Proposition 4.3.4 shows µsym
qd

(k,ms) grows linearly with k.
The Theorem then follows thanks to Lemma 4.3.6, with Cs(q) = µsym

q (d,ms)(1 + εs(q
d))s.

Corollary 4.3.8. For q ≥ s+ 1 we have

Mhyp
q,s ≤ Cs+1(q)

and in particular for q ≥ 3 we have
M tri
q ≤ C3(q).

87

Part II

Efficient arithmetic in a lattice of finite
fields

88

Chapter 5

Isomorphism algorithms

We studied in Part I the arithmetic of a single finite field extension. We now study a set of
several extensions. The very first step will be to understand how to compute an isomorphism (or
an embedding) between two finite fields: this is the material of this chapter.

Contents
5.1 Preliminaries and naive algorithm . 90

5.1.1 Description of the problem . 90
5.1.2 Embedding description problem and naive algorithm 92

5.2 Lenstra-Allombert algorithm . 92
5.2.1 Preliminaries . 92
5.2.2 Kummer algebras . 96
5.2.3 The isomorphism algorithm . 101
5.2.4 Computing (H90) solutions . 102

5.3 The embedding evaluation problem 103
5.3.1 Linear algebra . 104
5.3.2 Inverse maps and duality . 104
5.3.3 Modular composition . 108

89

Our reference for this chapter is [BDFD+17]: although it provides a variety of isomorphism
algorithms (and their analysis), we are mainly interested in the naive isomorphism algorithm
(used in Chapter 6) and in Allombert’s algorithm (used in Chapter 7). We thus do not cover
all the isomorphism algorithms, the reader interested in Rains’ algorithm [Pin92, Rai96] and its
elliptic variant can take a look at the paper cited above.

5.1 Preliminaries and naive algorithm

Even if our real goal is to compute embeddings of finite fields, i.e. ring homomorphisms

φ : K ! L

with K and L finite fields, we often refer to the algorithms as isomorphism algorithms. Indeed,
computing the embedding φ is the same as computing an isomorphism

φ′ : K
∼
! K ′

of K with a subfield K ′ ⊂ L of L. The isomorphism φ′ is just the embedding φ with its codomain
being restricted to K ′. That is why in the remainder of this chapter, we present isomorphism
algorithms, rather than embedding algorithms.

5.1.1 Description of the problem

We let p be a prime number, k = Fp be the field with p elements, and f, g ∈ k[X] two irreducible
polynomials of degree m = deg(f) and n = deg(g), with

m | n.

Let
K = k[X]/(f(X)) ∼= Fpm

and
L = k[Y]/(g(Y)) ∼= Fpn

be two extensions of k. We know there is an embedding

φ : K ! L,

unique up to k-automorphism of K, i.e. there are

Gal(K/k) = m

different embeddings from K to L, that can be described as

φ ◦ σ

for σ ∈ Gal(K/k). Equivalently, they can also be described as

σ′ ◦ φ

with σ′ ∈ Gal(φ(K)/k). The embedding problem is then to efficiently find, represent and evaluate
one such embedding φ. Following [BDFD+17], the problem is split in two parts.

90

Embedding description problem. Compute elements α ∈ K and β ∈ L such that

K = k(α)

and such that there exists an embedding φ mapping α to β.

Embedding evaluation problem. Given elements α and β defined above, and elements x ∈ K,
y ∈ L, solve the following problems:

• compute φ(x) ∈ L;
• test if y ∈ φ(K);
• if y ∈ φ(K), then compute φ−1(y) ∈ K.

As the name suggests, the embedding description problem focuses on finding a pair of elements
that are sufficient to describe an embedding. Indeed, if

K = k(α)

we know that every element x ∈ K can be uniquely written as

x =
m−1∑
j=0

ajα
j

with aj ∈ k for al 0 ≤ j ≤ m− 1, and the embedding φ is then defined by

φ(x) =

m−1∑
j=0

ajβ
j .

Proposition 5.1.1. The elements α and β describe an embedding if and only if they have the
same minimal polynomial over k.

Proof. Let φ : K ! L be an embedding mapping α to β and let

P = Minpolyk(α)

be the the minimal polynomial of α. Then

P (β) = P (φ(α))

= φ(P (α))

= φ(0)

= 0

thus Minpolyk(β) 6= 1 divides P which is irreducible so

Minpolyk(β) = P.

Conversely, if α and β have the same minimal polynomial P , then the map φ is well-defined and
defines an isomorphism between the fields k(α) and k(β), that are both isomorphic to the field

k[X]/(P (X)).

While the first problem focuses on finding a description of φ, the embedding evaluation problem
independently asks how to efficiently use the description to compute the actual embedding. We
target this question in Section 5.3.

91

5.1.2 Embedding description problem and naive algorithm

Until the end of this section and in Section 5.2, we deal with the embedding description problem,
although we only review a subpart of the existing algorithms (see [BDFD+17] for other algorithms).
As above, let f and g be two irreducible polynomials with coefficients in k and with respective
degree m and n, such that

m | n.

Let
K = k[X]/(f(X)) ∼= Fpm

and
L = k[Y]/(g(Y)) ∼= Fpn

be two finite fields. Then one can simply take α to be the class of X in K and choose β to be
any root of f in L. Indeed, we know that there is an isomorphic copy of K in L and thus that f
splits over L. Furthermore, any root of f will have f as its minimal polynomial, which is also the
minimal polynomial of α by construction. By Proposition 5.1.1, the map

φ : K ! L

sending α to β is an embedding. The critical routine in that algorithm is to find a root of f in
L, that can be done using the Shoup-Kaltofen equal degree factorization algorithm [KS97]. The
complexity analysis of [BDFD+17] indicates that the cost is strictly larger than quasi-quadratic
complexity Õ(m2). A more efficient algorithm, due to Lenstra and Allombert, is discussed in
Section 5.2.

5.2 Lenstra-Allombert algorithm

Both Lenstra [LJ91] and Allombert used Kummer theory, the study of certain field extensions,
to compute isomorphisms between finite fields. But while Lenstra’s focus was on proving the
existence of a deterministic isomorphism algorithm, Allombert wanted to provide a practical
algorithm. This led to the invention of the Lenstra-Allombert algorithm [All02a] in 2002, for
which we give a description in this section. The ideas of Allombert play an important part in
Chapter 7 too. The techniques based on Kummer theory work for extensions of degree n coprime
to the characteristic p. In order to have an algorithm working for any type of extension, the
solution is to deal with the part of the extension which degree is divisible by p separately using
Artin-Shreier theory and to glue the results together in the end. More details can be found
in [BDFD+17, Section 3.2].

5.2.1 Preliminaries

Let us first discuss a simpler case than the general one, that will highlight the method behind the
Lenstra-Allombert isomorphism algorithm. Let K and L be two finite fields of cardinality pn,
such that

K ∼= L ∼= Fpn .

Assume that gcd(p, n) = 1 and that
n | p− 1,

or equivalently that there is a primitive n-th root of unity in k = Fp, that we denote by ζ. The
algorithm is based on Proposition 5.2.1.

92

Proposition 5.2.1 (Hilbert 90 theorem). Let K be a finite extension of k = Fp of degree n such
that there exists a primitive n-th root of unity ζ ∈ k in the base field k, i.e. such that n divides
p− 1. Let σ be the Frobenius automorphism of the extension

K/k

and consider the following equation in K:

σ(x) = ζx. (H90)

The solutions of (H90) form a one dimensional k-vector space and if α ∈ K is such a solution,
we have

αn ∈ k.

If α is also nonzero, then it is a generator of K over k.

Proof. Let us first construct a nonzero solution of (H90). Consider the polynomial

P =

n−1∑
j=0

ζ−jXpj

of degree pn−1. The polynomial P has at most pn−1 roots in K, which has cardinality pn, so
there exists some element x ∈ K such that

y = P (x) 6= 0.

Now, by construction, we have

σ(y) = σ(
n−1∑
j=0

ζ−jxσ
j
)

=

n−1∑
j=0

ζ−jxσ
j+1

= ζ ×
n−1∑
j=0

ζ−(j+1)xσ
j+1

= ζ ×
n∑
j=1

ζ−jxσ
j

= ζy

and thus y is a nonzero solution of (H90). All the elements

λy

with λ ∈ k are also solutions of (H90) since

σ(λy) = λσ(y) = ζλy,

and the equation has at most p solutions because the polynomial

Xp − ζX

93

has at most p roots in K. Thus there are exactly p different solutions, that are the elements of
Vect(y). Let z be a solution of (H90), then we have

σ(zn) = σ(z)n

= (ζz)n

= zn,

therefore zn is fixed by σ, which means that

zn ∈ k.

If z is also nonzero, then for all 0 ≤ j < n, we have

σj(z) = (σ ◦ · · · ◦ σ)︸ ︷︷ ︸
j times

(z)

= (σ ◦ · · · ◦ σ)︸ ︷︷ ︸
j−1 times

(ζz)

= ζ (σ ◦ · · · ◦ σ)︸ ︷︷ ︸
j−1 times

(z)

= ζjz

6= z.

Consequently, z is not in any subfield of K and is thus a generator of K over k.

Note that Proposition 5.2.1 applies both to the fields K and L, therefore we can solve
Equation (H90) in both fields. Let αK be a solution of Equation (H90) for the root ζ in K, and
αL a solution in L. Since we want the primitive n-th root of unity ζ to be the same in K and L,
we assume that we already have an embedding from k in both these fields. In practice, since k is
a prime field and the fields K and L are represented by polynomials over k = Fp = Z/pZ, the
assumption is not really hard to meet. Let

aK = αnK

and
aL = αnL.

By Proposition 5.2.1, we know that aK and aL are both in k and this can be used to compute an
isomorphism between K and L.

Proposition 5.2.2 (Allombert [All02a]). The quotient

aK/aL

is an n-th power in k, and if
cn = aK/aL

then the map sending αK to cαL is an isomorphism from K to L.

94

Proof. Let φ : K ! L be a k-isomorphism between K and L. We have

σ(φ(αK)) = φ(αK)p

= φ(αpK)

= φ(σ(αK))

= φ(ζαK)

= ζφ(αK)

thus φ(αK) is a solution of (H90) and by Proposition 5.2.1 there exists λ ∈ k such that

φ(αK) = λαL.

We also have
φ(αK)n = φ(αnK) = φ(aK) = aK ,

therefore the quotient

aK/aL = φ(αK)n/αnL

= λn

is an n-th power in k. Now let c ∈ k be any n-th root of aK/aL, then

c = ζjλ

for some 0 ≤ j ≤ n− 1, that is c and λ differ by a n-th root of unity, and so do φ(αK) and cαL:

cαL = ζjφ(αK) = σj(φ(αK)).

Finally, the elements cαL and φ(αK) have the same minimal polynomial, because they are
conjugates, and φ(αK) has the same minimal polynomial as αK because φ is an isomorphism, so
by Proposition 5.1.1, the map sending αK to cαL is an isomorphism from K to L.

In this simpler case (n divides p− 1), Lenstra-Allombert algorithm consists in

1. finding αK ∈ K and αL ∈ L with σ(αK) = ζαK and σ(αL) = ζαL;

2. computing a n-th root c ∈ k of αnK/α
n
L;

3. returning the isomorphism described by αK 7! cαL.

General case. When n - p− 1, which is always the case asymptotically since we work with p
fixed and we let n grow, there are no n-th roots of unity in k, and the strategy of Section 5.2.1
cannot be applied as if. Nevertheless, it is still possible to apply a similar idea by extending the
space so that it contains artificial roots of unity.

95

5.2.2 Kummer algebras

Instead of “just” working in Fpn , we work in

An = Fpn ⊗ Fp(ζ),

where ζ is a primitive n-th root of unity, and where ⊗ is the tensor product over k = Fp. We thus
extend the scalars and force the existence of suitable roots of unity. The k-algebra An can now be
used instead of Fpn in the Lenstra-Allombert algorithm. Following the terminology of [DFRR19],
we call these algebras Kummer algebras.

Definition 5.2.3 (Kummer algebra). Let p ∈ N a prime number and k = Fp the finite field with
p elements. We call the k-algebra

An = Fpn ⊗ Fp(ζ),

where ⊗ is the tensor product over k, a Kummer algebra of degree n.

Definition 5.2.4 (Field of scalars). Let An be a Kummer algebra of degree n. Then we define
Fp(ζ) as the field of scalars of An, and we define the level ν(n) of An as

ν(n) = ord(Z/nZ)×(p) = [Fp(ζ) : k] ,

where ord(Z/nZ)×(p) is the order of p in the multiplicative group (Z/nZ)×. The level ν(n) of An
is the degree of its field of scalars.

Let σ : x 7! xp be the Frobenius automorphism of the extension

Fpn/k,

and extend it to An by defining the linear map

σ ⊗ 1 : An ! An∑
j xj ⊗ yj 7!

∑
j σ(xj)⊗ yj .

The map σ ⊗ 1 will play the role of σ in the simpler case.

Lemma 5.2.5. The map σ ⊗ 1 is a 1⊗ Fp(ζ)-linear endomorphism with n distinct eigenvalues,
that are the powers of 1⊗ ζ.

Proof. Because of the linear independence of characters [Lan04, Chapter VI, §4], we know that
the automorphisms

Id, σ, σ2, . . . , σn−1

are independent. We also know that
σn = Id,

therefore the minimal polynomial of the k-linear endomorphism σ is

Xn − 1.

By the Cayley-Hamilton theorem, we deduce that the characteristic polynomial of σ is also Xn−1.
Now let B = {b1, . . . , bn} be a basis of Fpn/k and let M be the matrix of σ in this basis. Then
the matrix of the 1⊗ Fp(ζ)-linear endomorphism σ ⊗ 1 in the basis

B ⊗ 1 = {b1 ⊗ 1, . . . , bn ⊗ 1}

96

is also M . Thus, the characteristic polynomial of σ ⊗ 1 is again Xn − 1, that splits completely in

1⊗ Fp(ζ) ∼= Fp(ζ),

the roots being the elements
1⊗ ζj

for 0 ≤ j ≤ n− 1. Finally, the eigenvalues are the roots of the characteristic polynomial so this
concludes the proof.

Since there are exactly n distinct eigenvalues, we know that the corresponding eigenspaces are
all one-dimensional 1⊗ Fp(ζ)-vector spaces, and the eigenspace corresponding to the eigenvalue ζ
is described by the equation

(σ ⊗ 1)(x) = (1⊗ ζ)x (H90)

that we again denote by (H90). The field of scalars of An now plays the role of the base field k
in the simpler case and the solutions of (H90) have similar properties.

Lemma 5.2.6. The set of elements in An fixed by σ ⊗ 1 is

1⊗ Fp(ζ) ∼= Fp(ζ),

a subfield isomorphic to the field of scalars of An.

Proof. Let
B = {b1, . . . , ba}

be a basis of
Fp(ζ)/k.

Then, every element α in An can be uniquely written in the form

α =
a∑
j=1

xj ⊗ bj

where for all 1 ≤ j ≤ a, xj ∈ Fpn . If
a∑
j=1

σ(xj)⊗ bj = (σ ⊗ 1)(α)

= α

it follows that for all 1 ≤ j ≤ a, we have

σ(xj) = xj

and thus we have xj ∈ k. Consequently, the element α belongs to the set

k⊗ Fp(ζ) = 1⊗ Fp(ζ) ∼= Fp(ζ).

Conversely, if an element α is in 1⊗ Fp(ζ), then it is fixed by σ ⊗ 1.

Remark 5.2.7. We can use the proof of Lemma 5.2.6, mutatis mutandis, in order to prove that
the set of elements in An fixed by 1⊗ σ′, with σ′ the Frobenius automorphism of the extension
Fp(ζ)/k, is Fpn ⊗ 1. In the remainder of the document, we write σ for both σ and σ′.

97

Lemma 5.2.8. Let α be a nonzero solution of (H90) for the root ζ. Then

αn ∈ 1⊗ Fp(ζ)

and α is a generating element for An as an algebra over 1⊗ Fp(ζ) that is also invertible.

Proof. We have

(σ ⊗ 1)(αn) = (σ ⊗ 1)(α)n

= ((1⊗ ζ)α)n

= (1⊗ ζn)αn

= αn,

thus αn ∈ 1 ⊗ Fp(ζ) by Lemma 5.2.6. Since α is a solution of (H90) for ζ, then for every
1 ≤ j ≤ n− 1, αj is a solution for ζj , indeed

(σ ⊗ 1)(αj) = ((σ ⊗ 1)(α))j

= (1⊗ ζj)αj .

Then, the elements 1, α, . . . , αn−1 are eigenvectors for distinct eigenvalues of σ ⊗ 1 and thus form
a basis of An over 1⊗ Fp(ζ). Assume that αn = 1⊗ c for some c ∈ Fp(ζ). There are no nonzero
nilpotent elements in An; one way of seeing it is to say that

An ∼= Fp(ζ)[T]/(h(T))

where h is the irreducible polynomial defining

Fpn = k[X]/(h(X)).

Since the degree n of h is not a multiple of p, the polynomial h is separable and

Fpn [T]/(h(T))

has no nonzero nilpotent elements. Then αn is nonzero thus c ∈ Fp(ζ) is also nonzero. It follows
that α is invertible, indeed

α−1 = (1⊗ c−1)αn−1.

Definition 5.2.9 (Kummer constant). Let α ∈ An be a nonzero solution of (H90) for the root ζ.
The constant c ∈ Fp(ζ) such that

αn = 1⊗ c
is called the Kummer constant of α.

One key property of the solutions of (H90) is still missing, and we need a new notation to
express it. Let K and L be two finite field extensions of k and let µ ∈ L be an element of degree
d over k. As used several times already, we know that an element

β ∈ K ⊗ k(µ) ⊂ K ⊗ L

can be uniquely written as

β =

d−1∑
j=0

xj ⊗ µj ,

and we set
bβcµ = x0.

98

Proposition 5.2.10 ([All02a, Proposition 3.6]). Let α be a nonzero solution of (H90) for the
root ζ, then

bαcζ
is a generating element of the extension

Fpn/k.

Proof. Let r = [Fp(ζ) : k] and

P = Xr −
r−1∑
j=0

zjX
j

the minimal polynomial of ζ over k. Let also

α =
r−1∑
j=0

aj ⊗ ζj .

It follows that

r−1∑
j=0

σ(aj)⊗ ζj = (σ ⊗ 1)(α)

= (1⊗ ζ)α

=
r−1∑
j=0

aj ⊗ ζj+1

=

r−2∑
j=0

aj ⊗ ζj+1 + ar−1 ⊗ (

r−1∑
i=0

ziζ
i)

= ar−1z0 ⊗ 1 +
r−1∑
j=1

(aj−1 + ar−1zj)⊗ ζj ,

we thus have {
σ(a0) = ar−1z0

σ(aj) = aj−1 + ar−1zj for all 1 ≤ j ≤ r − 1.

With these equations, we will prove that

Fp(a0) = Fpn ,

thus concluding the proof. We have σ(a0) ∈ Fp(a0) and z0 ∈ k. Since z0 is nonzero, we have that

ar−1 = σ(a0)z−1
0 ∈ Fp(a0).

Going from j = r− 1 down to 1, it also follows that aj−1 ∈ Fp(a0). Now assume that e ∈ N is an
integer such that

σe(x) = x

for all x ∈ Fp(a0), and such that e < n, i.e.

Fp(a0) (Fpn .

99

Since all the aj are in Fp(a0), we also have

(1⊗ ζe)α = (σ ⊗ 1)e(α)

= (σe ⊗ 1)(α)

= α

and thus ζe = 1, which is a contradiction since ζ is a primitive n-th root of unity and e < n.
Therefore we must have e = n and Fp(a0) = Fpn .

Remark 5.2.11. With the equations{
σ(a0) = ar−1z0

σ(aj) = aj−1 + ar−1zj for all 1 ≤ j ≤ r − 1

found in the proof of Proposition 5.2.10, we note that we can in fact also recover α from bαcζ .
Similarly to the case where n | p− 1, where the solutions α ∈ Fpn of (H90) directly generate

Fpn , we now know that the solutions α ∈ An of (H90) in the general case can also be used to
generate Fpn through bαcζ . We can study these solutions a bit further: in fact the element bαcζ
essentially depends on αn, rather than on α.

Proposition 5.2.12. Let

α =

r−1∑
j=0

aj ⊗ ζj ∈ An

be a nonzero solution of (H90) for ζ and let αn = 1⊗ c. There are exactly n elements x ∈ An
that are solutions of (H90) for ζ and such that

xn = 1⊗ c.

These elements are the
(1⊗ ζu)α = (σu ⊗ 1)(α)

for 0 ≤ u ≤ n− 1. The corresponding generating elements of Fpn/k are the

b(σu ⊗ 1)(α)cζ = σu(a0);

they all have the same minimal polynomial, which is an irreducible polynomial defining Fpn/k
that only depends on the Kummer constant c ∈ Fp(ζ).

Proof. The solutions of (H90) form a one-dimensional 1⊗ Fp(ζ)-vector space, so all solutions are
of the form

x = (1⊗ λ)α

with λ ∈ Fp(ζ). Since we also ask for xn = αn, we must have λn = 1 and thus

λ = ζu

for some 0 ≤ u ≤ r − 1. Conversely all the solutions of the form x = (1 ⊗ ζu) verify xn = αn.
Therefore, if x is such an element, we have

x = (σu ⊗ 1)(α)

=

r−1∑
j=0

σu(aj)⊗ ζj ,

100

thus
bxcζ = σu(a0).

All these elements are conjugates, thus share the same minimal polynomial, that is known to
define Fpn/k by Proposition 5.2.10 and that depends only on the constant c ∈ Fp(ζ).

5.2.3 The isomorphism algorithm

Let p ∈ N a prime number and n ∈ N be an integer such that gcd(n, p) = 1. Let K and L be two
finite fields of cardinality pn, such that

K ∼= L ∼= Fpn .

Let ζ be a primitive n-th root of unity. In this section, we show how to construct a single
isomorphism between K and L, using the results of Section 5.2.2. How to construct embeddings
between extensions of different degrees, and how to deal with a lattice of embeddings, is discussed
in Chapter 7, together with additionnal results on Kummer algebras. We let

AK = K ⊗ Fp(ζ)

and
AL = L⊗ Fp(ζ)

be the two Kummer algebras constructed with K and L and with the same field of scalars Fp(ζ).
The next proposition is the generalization of Proposition 5.2.2.

Proposition 5.2.13. Let αK ∈ AK (respectively αL ∈ AL) be a nonzero solution of (H90) for
the root ζ in the Kummer algebra AK (resp. AL) and let cK ∈ Fp(ζ) (resp. cL ∈ Fp(ζ)) the
Kummer constant of αK (resp. αL). The quotient

cK/cL

is a n-th power in Fp(ζ), and if
κn = cK/cL

then the map sending bαKcζ to b(1⊗ κ)αLcζ is an isomorphism from K to L.

Proof. The proof is very similar to the one of Proposition 5.2.2. Let

φ : K ! L

be an isomorphism from K to L. Then φ⊗ 1 is a morphism of algebras from AK to AL and

(φ⊗ 1)(αK)

is a solution of (H90) for ζ in AL. Therefore there exist λ ∈ Fp(ζ) such that

(φ⊗ 1)(αK) = λαL.

The Kummer constant of (φ⊗ 1)(αK) is still cK , and we have

cK/cL = λn.

Hence, if κ is an n-th root of cK/cL, we have

((1⊗ κ)αL)n = cK ,

i.e. the elements αK and (1 ⊗ κ)αL share the same Kummer constant. By Proposition 5.2.12,
the elements bαKcζ and b(1⊗ κ)αLcζ have the same minimal polynomial and thus describe an
isomorphism from K to L by Proposition 5.1.1.

101

Finally, Lenstra-Allombert algorithm, in the general case, consists in

1. finding αK ∈ K ⊗ Fp(ζ) such that

(σ ⊗ 1)(αK) = (1⊗ ζ)αK

and αL ∈ L⊗ Fp(ζ) such that

(σ ⊗ 1)(αL) = (1⊗ ζ)αL;

2. computing an n-th root κ ∈ Fp(ζ) of the quotient αnK/α
n
L;

3. returning the isomorphism described by bαKcζ 7! b(1⊗ κ)αLcζ .

The computational cost of Lenstra-Allombert algorithm resides in the computation of (H90)
solutions, i.e. Step 1 of the previous list.

5.2.4 Computing (H90) solutions

In this section, we briefly present the different known solutions to compute (H90) solutions,
details can be found in [BDFD+17]. Allombert first proposed to use linear algebra. The idea is
to compute the matrix M of the Frobenius automorphism σ of Fpn/k, that is the same as the
matrix of σ ⊗ 1, and then to compute an eigenvector of M over

1⊗ Fp(ζ) ∼= Fp(ζ)

for the eigenvalue
1⊗ ζ ∼= ζ.

Allombert later revised his algorithm [All02a, All02b]: instead of directly using linear algebra
over Fp(ζ), we can use the factorization

P (X) = (X − ζ)b(X)

where P is the minimal polynomial of ζ over k. If we write

P = Xr +
r−1∑
j=0

zjX
j ,

we can check that

b(X) =

r−1∑
j=0

bj(X)ζj , where
{
br−1(X) = 1,
bj−1(X) = bj(X)X + zj for all 0 ≤ j ≤ r − 1.

Indeed, direct computation shows that

(X − ζ)b(X) = b0(X)X + z0 = b−1(X)

and Horner ’s rule also shows that
b−1(X) = P (X).

102

We then get a solution of (H90) by evaluating b(X) at an element in the kernel of

P (σ) = (σ − ζ Id) ◦ b(σ),

hence we still use linear algebra, but over k = Fp instead of Fp(ζ) this time. A different strategy
follows from the fact that if x ∈ Fpn , then

αx =
n−1∑
j=0

σj(x)⊗ ζ−j−1

verifies
(σ ⊗ 1)(αx) = (1⊗ ζ)αx.

This is also a consequence of the factorization

Xn − 1 = (X − ζ)
n−1∑
j=0

ζ−j−1Xj

= (X − ζ)Θ(X).

The question is now whether the solution αx is nonzero. By the theorem on character indepen-
dence [Lan04, Chapter VI, §4] the maps 1, σ, σ2, . . . , σn−1, all distinct, are independent. Therefore,
the k-linear map

x 7! αx

cannot be indentically zero on Fpn and has rank at least 1. A random αx thus has a probability
of being zero less than 1/p, so we need O(1) trials to find a nonzero αx at random. Depending
on the relative size of p, n, and s = [Fp(ζ) : k], the computational cost of finding a nonzero αx is
discussed in details in [BDFD+17] and is bounded by O(M(n2) log(n) +M(n) log(p)). If ω = 3,
where ω is the exponent of matrix multiplication, then the cost is at best quadratic in n.

5.3 The embedding evaluation problem

Let us first recall the problem. Let k = Fp the prime field with p elements, where p ∈ N is a
prime number, and let K and L be two finite extensions of k. Let m = [K : k] and n = [L : k]
be the respective degrees of the extensions K/k and L/k and assume that

m | n.

Let α ∈ K and β ∈ L be two elements such that the k-linear map

φ : α 7! β

sending α to β describes an embedding from K to L. The embedding evaluation problem consists
in three sub-goals: given α and β defined above and elements γ ∈ K, δ ∈ L:

• compute φ(γ) ∈ L;

• test if δ ∈ φ(K);

• if δ ∈ φ(K), then compute φ−1(δ) ∈ K.

In this section too, we follow the presentation of [BDFD+17] and we develop three solutions
constructed on top of each other.

103

5.3.1 Linear algebra

Until the end of the section, we assume that the elements in K are represented on the monomial
basis

(1, X, . . . ,Xm−1)

and the elements in L are represented on the monomial basis

(1, Y, . . . , Y n−1).

We are particularly interested in the k-vector space structure ofK and L and in order to emphasize
which basis is used, we let

VX

be the vector space K equipped with the basis (1, X, . . . ,Xm−1) and

VY

be the vector space L equipped with the basis (1, Y, . . . , Y n−1). Similarly, we let

Vα

be the vector space K equipped with the basis (1, α, . . . , αm−1) and

Vβ

be the subspace Vβ ⊂ L equipped with the basis (1, β, . . . , βm−1), that is isomorphic to Vα. Since
the map φ is k-linear, we can store the n×m matrix representing φ in the monomial bases and
evaluate φ via a matrix-vector product. We know that φ maps α to β, hence we write φ as the
composition of three maps

VX
∼
−! Vα

∼
−! Vβ ↪−! VY .

First, we apply a change of basis from VX to Vα. Then we apply the isomorphism from Vα to
Vβ , that is represented by the identity matrix. Finally we write the obtained element, expressed
in (1, β, . . . , βm−1), in the monomial basis of L, i.e. we embed Vβ in VY . The map Vβ ↪! VY is
represented by an n ×m matrix whose columns are the vectors (βj)0≤j≤m−1 expressed in the
monomial basis of L. The inverse of this map is obtained by solving a linear system. Similarly, the
map VX

∼
! Vα is represented by the m×m matrix whose columns are the vectors (Xj)0≤j≤m−1

expressed in the basis (1, α, . . . , αm−1), that is also the inverse of the matrix whose columns are
the vectors (αj)0≤j≤m−1 expressed in the monomial basis of K. The cost of the evaluation of φ
and its inverse is thus dominated by the solving of the linear system, that is O(mω−1n). This
cost can be reduced to O(mn) with some precomputation, e.g. an LU decomposition, but the
biggest drawback of the linear algebra approach is the memory complexity rather than the time
complexity. Indeed, storing the matrices requires O(mn) elements in k.

5.3.2 Inverse maps and duality

The first improvement to the linear algebra method consists in replacing the linear system solving
used in the computation of the inverse of

Vβ ↪! VY

104

by simpler operations, such as matrix-vector product, in order to reduce the overall complexity. We
first recall facts about bilinear forms and duality, the presentation follows the one in [BDFD+17]
and [DFDS14], and a standard presentation is also available in [Lan04]. Recall that

K ∼= Fpm

admits a monomial basis (1, X, . . . ,Xm−1) and that

L ∼= Fpn

admits a monomial basis (1, Y, . . . , Y n−1). The trace TrK/k from K to k defines a non-degenerate
bilinear form denoted by

〈x, y〉K = TrK/k(xy).

Therefore, we can define a dual basis (X∗0 , X
∗
1 , . . . , X

∗
m−1) to (1, X, . . . ,Xm−1), characterized by

〈
Xj , X∗i

〉
=

{
1 if i = j
0 otherwise.

Similarly, we can define a non-degenerate bilinear form from L to k by

〈x, y〉L = TrL/k(xy),

and a dual basis (Y ∗0 , . . . , Y
∗
n−1) to (1, . . . , Y n−1) corresponding to this bilinear form. Now, let

ψ : K ↪! L

be an embedding. It is a k-linear map and thus there exists a unique dual map ψt, such that

〈ψ(x), y〉L =
〈
x, ψt(y)

〉
K

for all x ∈ K and y ∈ L. Furthermore, if M is the matrix representing ψ in the monomial bases
of K and L, then its transposed matrix M t represents the map ψt in the dual bases. This allows
us to efficiently compute ψt, because the conversions from the monomial basis to the dual basis
of Fpm can be done at a cost of O(M(m) log(m)) operations in k, as explained in [DFDS14].
Fortunately, the map ψt, that is easy to compute, is closely related to ψ−1, the map that we
want. In particular, if K ∼= L and ψ is an isomorphism of fields, we have that ψt is exactly ψ−1.
Indeed, in that case, the map ψ preserves the bilinear form, i.e. for all x, y ∈ K, we have

〈ψ(x), ψ(y)〉L = 〈x, y〉K .

We thus have 〈
x, (ψt ◦ ψ)(y)

〉
K

= 〈x, y〉K ,

and it follows that ψt ◦ ψ is the identity map, because the bilinear form is non-degenerate. Now
if K and L are not isomorphic, i.e. m < n, we can still use ψt to recover ψ−1. Let

d = [L : K] =
n

m

and
x ∈ ψ(K) (L,

105

we have

TrL/k(x) =
n−1∑
i=0

σi(x)

=
d−1∑
i=0

m−1∑
j=0

σim+j(x)

=
d−1∑
i=0

m−1∑
j=0

σj(x)

=
d−1∑
i=0

Trψ(K)/k(x)

and thus it follows that
TrL/k(x) = dTrψ(K)/k(x).

Hence, in that case, the map ψ does not preserve the bilinear form, but we still have

〈ψ(x), ψ(y)〉L = d 〈x, y〉K

for all x, y ∈ K. If d is not a multiple of the characteristic p, then the map d−1ψt is the inverse
of ψ, by the same argument as before. Otherwise, let x ∈ ψ(K) (L and let u ∈ L an element
such that

TrL/ψ(K)(u) = 1.

Then, by transitivity of the trace, and by ψ(K)-linearity of the trace TrL/ψ(K), it follows that

TrL/k(ux) = Trψ(K)/k(TrL/ψ(K)(ux))

= Trψ(K)/k(xTrL/ψ(K)(u))

= Trψ(K)/k(x).

Therefore we have

〈x, y〉K = TrK/k(xy)

= Trψ(K)/k(ψ(x)ψ(y))

= TrL/k(uψ(x)ψ(y))

= 〈ψ(x), uψ(y)〉L ,

and if we let U the map defined by z 7! uz, we conclude that

ψt ◦ U ◦ ψ = ψt ◦ U t ◦ ψ

is the identity map, and we can once again compute ψ−1. Let us go back to our original problem:
we want to compute the embedding

φ : K ! L

that is described by φ(α) = β. Recall that we can decompose φ into three maps

VX
∼
−! Vα

∼
−! Vβ ↪−! VY ,

106

and that we want to be able to compute both φ and its inverse φ−1. The map Vα
∼
! Vβ is

represented by the identity matrix, thus it is straighforward to compute. The map Vα
∼
! VX

(the inverse of VX
∼
! Vα) is represented, in the monomial bases of Vα and VX , by the matrix

whose columns are the vectors (αj)0≤j≤m−1 in the monomial basis of K. The map Vβ ↪! VY is
similarly represented by the vectors (βj)1≤j≤m−1 in the monomial basis of L. Both these maps
are embeddings, thus we can compute their inverse using duality theory instead of solving linear
systems like described in Section 5.3.1. The inverse of Vβ ↪! VY is evaluated by multiplying by a
fixed element u that has a trace equal to 1, then the result is converted in the dual basis of VY , a
matrix-vector product with the transposed matrix of Vβ ↪! VY is computed, and the product
is then converted back to the monomial basis of VY . The inverse of the embedding Vα

∼
! VX is

obtained similarly, but without the need to multiply by an element u, because the embedding is
actually an isomorphism in that case.

It is possible to apply these steps on every element in VY , although φ−1 is defined only on the
image of φ, i.e. the subfield

φ(K) ⊂ L.

If the element we apply our steps to is not in φ(K), we just obtain an arbitrary projection in K.
Indeed, if x ∈ K and y ∈ L, we can decompose y as

y = y − TrL/K(uy) + TrL/K(uy)

= y′ + TrL/K(uy),

where u ∈ L is an element such that TrL/K(u) = 1 and y′ = y − TrL/K(uy). Then we have〈
φ(x), uy′

〉
L

= TrL/k(φ(x)uy′)

= TrK/k(TrL/K(φ(x)uy′))

= TrK/k(TrL/K(φ(x)u(y − TrL/K(uy))))

= TrK/k(TrL/K(φ(x)uy))− TrK/k(TrL/K(φ(x)uTrL/K(uy)))

= TrK/k(xTrL/K(uy))− TrK/k(xTrL/K(uy) TrL/K(u))

= TrK/k(xTrL/K(uy))− TrK/k(xTrL/K(uy))

= 0,

therefore

〈φ(x), uy〉L =
〈
φ(x), uy′

〉
L

+
〈
φ(x), uTrL/K(uy)

〉
L

=
〈
φ(x), uTrL/K(uy)

〉
L

=
〈
x,TrL/K(uy)

〉
K
,

that means that applying our solution on y results in the element TrL/K(uy) in Vβ , which coincides
with y if y is in the subfield φ(K) ⊂ L. In order to test if an element y is in φ(K), the best way
is then to project y to z = TrL/K(uy), and then check that

φ(z) = y.

After precomputation of the matrices, the most expensive operation is the matrix-vector product,
that costs O(mn) operations in k. It is thus better than the cost of solving a linear system.
Nevertheless, the problem of the memory complexity remains.

107

5.3.3 Modular composition

In order to tackle the memory complexity problem, we can replace the matrix computations
by modular compositions, a technique initiated by Shoup [Sho94, Sho95, Sho99]. Indeed, the
computation of the embedding

Vβ ↪! VY

is precisely a modular composition computation: we want to express a polynomial

γ =
m−1∑
j=0

cjβ
j ,

representing an element in Vβ, into the monomial basis (1, . . . , Y n−1), given the polynomial
expression of β in VY

β =

n−1∑
j=0

bjYj .

If g is the polynomial defining L over k, i.e.

L ∼= k[Y]/(g(Y)),

then the computation of Vβ ↪! VY is exactly the modular composition

γ(β(Y)) mod g(Y),

and this can be done efficiently by a dedicated algorithm [KU08]. In order to compute the
inverse of Vβ ↪! VY , we cannot use the same algorithm, since this is not a modular composition
problem, but we use a generalization of the duality results of Section 5.3.2 called the transposition
principle. This technique, also known as Tellengen’s principle [BLS03, DF10, DFS10], allows one
to transpose an algorithm used to compute a linear map into a new algorithm that computes
the transposed linear map, without changing the complexity of the algorithm. We can use the
transposition principle with the modular composition, since the map

γ ! γ(β) mod g

is linear. The dual problem to modular composition was called power projection by Shoup, who
popularized the transposition principle. It takes as inputs the polynomials β, g ∈ k[Y], and an
element γ∨ in k[Y]∨, the dual space of k[Y], i.e. the space of linear forms on k[Y]. Its output is
the list of elements

γ∨(1), γ∨(β), γ∨(β2), . . . , γ∨(βn−1)

in k. Thanks to the transposition, the power projection problem can be solved within the same
complexity bound as modular composition. Finally, the inverse of the embedding φ : Vβ ↪! VY is
computed by Algorithm 7. This algorithm takes y ∈ L and computes TrL/K(uy), where u is still
an element of relative trace equal to one:

TrL/K(u) = 1.

As discussed in Section 5.3.2, this is also the result of applying

φt ◦ U = φ−1

108

Algorithm 7 Inverse embedding
Input: An element y ∈ L, and two precomputed values: an element β ∈ L generating a subfield

isomorphic to K and an element u ∈ L such that TrL/K(u) = 1.
Output: The element TrL/K(uy) written in the basis (1, β, . . . , βm−1).
1: Compute the minimal polynomial of β over k;
2: compute y′ = uy;
3: convert y′ to the dual basis (Y ∗0 , . . . , Y

∗
n−1);

4: compute z = TrL/K(y′) using power projections;
5: convert z to the monomial basis (1, β, . . . , βm−1);
6: return z.

to y, where U : y ! uy is the multiplication-by-u map. When y is in the subfield φ(K) (L, we
obtain the element

TrL/K(uy) = y

expressed in the basis (1, . . . , βm−1). Since the trace is computed using power projection, rather
than by a transposed matrix-vector product, this solves the quadratic memory complexity issue.
The minimal polynomial of β, computed in Line 1, is required to perform conversions between the
monomial and the dual basis generated by β. It is computed with O(M(n) log(n)) operations,
using the Berlekamp-Massey algorithm. Conversions are then also computed with O(M(n) log(n))
operations with the algorithms in [DFDS14]. Finally, the power projection costs O(n(ω+1)/2)
operations with one of the algorithms in [Sho95, KU08], thus the total complexity of Algorithm 7
is O(n(ω+1)/2). We have yet to see how to compute the element u ∈ L. If

d = [L : K]

is not divisible by the characteristic p of k, then d−1 is such an element. Otherwise we can take any
element whose trace is nonzero and divide it by its trace to have an element whose trace is exactly
equal to 1. To obtain an element whose trace is nonzero, we take random elements and compute
their trace: a number of O(1) trials is expected until a suitable element is found. Computing one
trace can be done using O(n(ω+1)/2 log(n) +M(n) log(p)) operations, thus the computation of u
has a cost of O(n(ω+1)/2 log(n) +M(n) log(p)). To conclude, after this precomputation, all the
sub-problems of the embedding evaluation problem can be solved using O(n(ω+1)/2) operations in
k.

109

Chapter 6

From a single finite field to plenty:
lattice of embeddings

In Chapter 5, we have seen algorithms to comput. isomorphisms, or embeddings, between pairs
of finite fields. Now, we want to integrate these algorithms in a larger global system with
potentially as many finite fields as we want.

Contents
6.1 The compatibility problem . 111
6.2 Conway polynomials . 112
6.3 The Bosma-Canon-Steel framework 114

6.3.1 The Bosma-Canon-Steel algorithm . 114
6.3.2 Implementation in Nemo . 120

Fp
Fp2

Fp4

Fp3

Fp9

Fp5

Fp25

Fp`
F
p`2

Figure 6.1: Extensions of Fp.

110

6.1 The compatibility problem

Now that we know how to go from one finite field Fpa to another Fpb , with p ∈ N a prime number
and

a | b

two integers, we would like to manage more than two finite fields simultaneously. In other words,
given a family

F = {Fpa | a ∈ E}

for E a subset of N \ {0}, we want to be able to compute an embedding

Fpa ↪! Fpb

each time that we have Fpa ,Fpb ∈ F with a dividing b, while maintaining compatibility between
all these embeddings. From a pratical point of view, we want to build a computer algebra system
where the users can embed the field they are working with in a bigger finite field, or conversely if
an element is known to belong to a smaller field than the ambient field, project it to a smaller
field. In cryptology and coding theory, finite fields are ubiquitus, and some algorithms require
frequent change of field. For example, in the quasi-polynomial algorithm for discrete logarithm
in small characteristic by Granger, Kleinjung and Zumbrägel [GKZ14], we have to work with a
tower of finite field extensions, and thus a computer algebra system automatically dealing with
the changes would be very convenient in order to implement their algorithm. From a theoretical
point of view, this leads to the question of the arithmetic in the algebraic closure of some finite
field Fp

F̄p =
⋃

j∈N\{0}

Fpj

and its representation on a computer, a question that was for example investigated in [DFDS14].
If we just want to compute embeddings between two finite fields in F when it makes sense,

we can use one of the algorithms presented in Chapter 5 each time we need it. In fact, we want
to build a data structure Λ to represent all the extensions of Fp that we need, and additional
sub-goals might be desirable.

Effective embeddings: for any pair of extensions k ⊂ K in Λ, there exists an efficiently
computable embedding φ : k ! K, and algorithms to evaluate φ on k, and the section φ−1

on K.

Compatibility: the embeddings are compatible, i.e. for any triple k ⊂ K ⊂ L in Λ, and
embeddings φ : k ! K, ψ : K ! L, χ : k ! L such as shown in Figure 6.2, one has
χ = ψ ◦ φ.

k

K

L

φ

χ

ψ

Figure 6.2: Embeddings between finite fields k ⊂ K ⊂ L.

111

Incrementality: the data associated with an extension (e.g. its irreducible polynomial, change-
of-basis matrices, . . .) must be computable efficiently and incrementally, i.e. adding a new
field extension to Λ does not require recomputing data for all extensions already in Λ.

Uniqueness: any extension of Fp is determined by an irreducible polynomial whose definition
only depends on the characteristic p and the degree of the extension.

Generality: extensions of Fp can be represented by arbitrary irreducible polynomials.

We cannot fulfill all these conditions simultaneously, as uniqueness and generality are in conflict
with each other. One might prefer to look for uniqueness or generality, depending on the situation,
but it would always be better to have effective embeddings, compatibility and incrementality.
In order to achieve the “effective embeddings” condition, we can use the efficient algorithms
presented in Chapter 5. The only problem is that if we have three finite fields

k ⊂ K ⊂ L

and three embeddings φ : k ! K, ψ : K ! L, χ : k ! L, there is no guaranty that the diagram
of Figure 6.2 commutes, i.e.

χ = ψ ◦ φ.

If we want to achieve compatibility, we have to provide extra-work. The two constructions
presented in Sections 6.2 and 6.3 are both solutions oriented towards this goal. Conway polynomials
yield uniqueness while the Bosma, Cannon and Steel framework grants generality.

6.2 Conway polynomials

Conway polynomials [Par, Sch92] are named after J. H. Conway, they were introduced by Parker
in 1990 and provide embeddings that are easy to compute.

Definition 6.2.1 (Conway polynomials). Let p ∈ N be a prime number. The m-th Conway
polynomial

Cm ∈ Fp[X]

is the lexicographically smallest monic irreducible polynomial of degree m that is also primitive
(i.e. its roots generate F×pm) and norm-compatible, i.e. if

m |n

we have
Cm(X

pn−1
pm−1) mod Cn = 0.

The norm compatibility means that if one takes the norm relatively to the extension

Fpn/Fpm

of a root of Cn, one obtains a root of Cm. This compatibility will allow us to define compatible
embeddings. Let p ∈ N be a prime number, m,n ∈ N be two integers such that

m |n

112

and let Cm ∈ Fp[X], Cn ∈ Fp[Y] be the m-th and the n-th Conway polynomial. Let

k = Fpm = Fp(αm) ∼= Fp[X]/(Cm)

and
K = Fpn = Fp(αn) ∼= Fp[Y]/(Cn)

with αm = X̄ ∈ k and αn = Ȳ ∈ K. Now, we define the embedding

φk↪!K : k ↪! K

αm 7! (αn)
pn−1
pm−1

that sends αm to (αn)
pn−1
pm−1 , the norm of αn relative to k. Because this is a field morphism, it

is implied that every polynomial in αm is sent to the same polynomial in (αm)
pn−1
pm−1 . That is

indeed an embedding because of the norm-compatibility condition in Conway polynomials. This
definition also provides compatibility thanks to the transitivity of the norm: let

k ⊂ K ⊂ L

three finite fields defined using Conway polynomials, let

NK/k, NL/K , NL/k

be the respective norms of the extensions

K/k,L/K,L/k

and
φk↪!K , φK↪!L, φk↪!L

the corresponding embeddings. Then, for any element x ∈ L, we have

NL/k(x) = NK/k(NL/K(x)),

and it follows, using the fact that φK↪!L and NK/k commute, that

φk↪!L = φK↪!L ◦ φk↪!K .

Therefore, using Conway polynomials to define all finite field extensions allows compatibility a
priori : adding a new extension in the lattice does not require any computation and the form
of the embedding is already known. The only condition is to define each extension using the
Conway polynomial of the corresponding degree. These polynomials always exist so this is
possible, although the best known algorithm to compute Conway polynomials has exponential
complexity [HL04] in the degree of the polynomial. Because the cost of computing Conway
polynomials is prohibitive, they are often precomputed and tabulated up to a certain degree
in many computer algebra systems. As a result, most computer algebra systems use Conway
polynomial to represent finite fields of small degrees, and switch to other representations when
Conway polynomials are no longer available. This strategy leads to efficient lattices of compatibly
embedded finite fields, at least in small degrees, but at the cost of generality, because the finite
fields extensions cannot be user-defined and high degree extensions cannot be included in the
lattice. We see in Section 6.3 that those issues can be adressed by using another method defined
by Bosma, Canon, and Steel [BCS97], but the price to compute each embedding is higher.

113

6.3 The Bosma-Canon-Steel framework

In 1987, Bosma, Canon and Steel proposed a new framework [BCS97] to deal with lattices of
finite field extensions. These algorithms were initially implemented in the computer algebra
system MAGMA [BCP97]. The framework allows the user to define finite fields with custom
polynomials, and compute the correct embeddings on the fly, in a way that guarantees that at
least one compatible embedding will always exist between two finite fields, when that makes sense.
To the best of my knowledge, this framework was only used in MAGMA until very recently. We
first implemented the framework using Nemo and Flint and presented our software in the symbolic
computation conference ISSAC in 2018 [DFRR18]. In 2019, the code was also added to the official
branch of Nemo, and Nemo can now deal with finite field extensions and compatibly embed them,
in the case where the characteristic p of the fields fits in a machine word. There are no theretical
obstacles preventing from implementing the algorithm in arbitrarily large characteristic, but some
tools were lacking at the C level (i.e. in Flint).

6.3.1 The Bosma-Canon-Steel algorithm

Notations and first results. Let p ∈ N be a prime number and q a power of p. We present
the results over the prime field Fp, but they can be extended to Fq without any new difficulty.
Given two finite fields k and K with cardinalities

#k = pm

and
#K = pn

such that m divides n, we know that k can be embedded in K. In other words, we know that K
contains one subfield

k′ =
{
x ∈ K |xpm = x

}
⊂ K

with
#k′ = pm.

There is exactly one subfield k′ in K that has the same cardinality as k, but there exist m different
ways to map k to k′. One way of seeing that is to say that an element α ∈ k generating k has a
minimal polynomial π over Fp of degree m, and that α can be mapped to any one of the m roots
of π in K. This choice sets the embedding because any element in k can be written as

m−1∑
j=0

ajα
j ,

with aj ∈ Fp. We write k ↪! K if an explicit embedding has been chosen. Let

k ⊂ K ⊂ L

with k ↪! K and k ↪! L, as in Figure 6.3. The foundations of the Bosma-Canon-Steel framework
lay on the fact that we precisely know how many compatible embeddings from K to L we can
find.

114

k

K

L

φ

χ

Figure 6.3: Incomplete embedding diagram.

Proposition 6.3.1 ([BCS97, Thm. 2.1]). Let l |m |n be three integers and let

k ⊂ K ⊂ L

be three finite field extensions of Fp, with respective cardinalities pl, pm and pn. If k is embedded
in K and L, i.e. if k ↪! K and k ↪! L, then there are m/l compatible embeddings from K to L.

Proof. Let φ : k ! K be the embedding from k to K and χ : k ! L the embedding from k to
L. Let ψ̃ : K ! L be any embedding from K to L. The maps χ and ψ̃ ◦ φ are two embeddings
from k to L. There are only l such maps, because if α is a generating element in k and if π is its
minimal polynomial over Fp, then an embedding from k to L necessarily sends α ∈ k to a root
β ∈ L of π in L. The embedding is then uniquely defined by

α 7! β

and there are l such roots, that are all conjugates, thus we know that there exists

σ ∈ Gal(L/Fp)

such that
χ = σ ◦ ψ̃ ◦ φ.

If we set
ψ = σ ◦ ψ̃,

we obtain a compatible embedding ψ : K ! L from K to L. If we compose ψ with a χ(k)-
automorphism of L, i.e. an automorphism of ψ(K) that fixes the subfield χ(k), we still obtain a
compatible embedding because the images of the elements in χ(k) are unchanged. Now, we know
that

Gal(ψ(K)/χ(k)) = m/l,

thus we know that there are exactly m/l embeddings from K to L that are compatible with φ
and χ.

In the future, if we have two finite fields k and K such that k ↪! K with an explicit embedding
φ : k ! K, we will often identify k with its isomorphic image φ(k) ∼= k in K, for the sake of
simplicity. We also have a constructive version of Proposition 6.3.1.

Proposition 6.3.2 ([BCS97, Thm. 2.2]). Let l |m |n be three integers and let

k ⊂ K ⊂ L

115

k

K

L

k

K

L

k

K

L

Figure 6.4: The different configurations with triangles.

be three finite field extensions of Fp, with respective cardinalities pl, pm and pn. Assume that
k ↪! K and k ↪! L, and let φ = φk↪!K , χ = φk↪!L be the respective embeddings. Let also α ∈ K
be an element that generates K over k and

πk = Minpolyk(α)

the minimum polynomial of α over k. Let ρ ∈ L be a root of πk in L. Let ψ : K ! L be the map
defined by

ψ

m/l−1∑
j=0

xjα
j

 =

m/l−1∑
j=0

xjρ
j ,

using the unique representation of any element of K as
∑

j xjα
j with xj ∈ k. Then ψ is an

embedding from K to L that is compatible with φ and χ, i.e. we have

χ = ψ ◦ φ.

Proof. The root ρ in L exists since we know that πk has a root in K and K ⊂ L. The map ψ is
then well-defined because of the uniqueness of the representation of the elements in K as

∑
j xjα

j .
The elements α and ρ have the same minimum polynomial so the map ψ is a homomorphism. The
map ψ is also injective and thus it is an embedding from K to L. The compatibility condition
holds by construction.

Remark 6.3.3. In fact, in our implementation and even in Proposition 6.3.5, this result will not
be used as is and we will usually take α ∈ K an element generating K over the base field Fp
instead of over k. Indeed, if α generates K over Fp, it also generates K over k. We can still take
a root ρ of Minpolyk(α) because

Minpolyk(α) | MinpolyFp
(α)

and so a root of Minpolyk(α) is necessarily a root of MinpolyFp
(α). As a result, we can use the

Fp-algebra structure of K and still achieve compatibility with the subfield k.

Although the result of Proposition 6.3.1 captures only one configuration among the three
different possibilities of Figure 6.4, it is the most important case. Indeed, if we already know
φk↪!K and φK↪!L (the configuration in the middle of Figure 6.4), we can just set

φk↪!L = φK↪!L ◦ φk↪!K .

Finally the configuration on the right, where we know φk↪!L and φK↪!L, is also irrelevant because,
by construction, this case never happens when working with the Bosma-Canon-Steel framework.

116

Description of the framework. The general strategy of Bosma, Canon, and Steel to compute
and maintain the data of several finite fields and compatible embeddings between them is to
ensure that some properties are conserved at all times. If k = Fpm is a finite extension of Fp, we
define

deg(k) = [k : Fp] = m

the extension degree over Fp.

Definition 6.3.4 (Lattice of compatibly embedded finite fields). Let q be a power of p a prime
number and Fp the finite field with q elements. The pair

Λ = (K,Φ),

where K is a collection of finite fields sharing the same base field Fp and Φ is a collection of
embeddings between members of K, is called a lattice of compatibly embedded finite fields if the
following conditions are satisfied:

CE1 (unicity) for each pair (k,K) of elements in K, there exists at most one corresponding
embedding φk↪!K ∈ Φ.

CE2 (reflexivity) For each k ∈ K, the identity map Idk = φk↪!k is in Φ.

CE3 (base subfield) There is exactly one k ∈ K such that deg(k) = 1, and for all K ∈ K,
there exists φFp↪!K ∈ Φ.

CE4 (invertibility) If k ↪! K and deg(k) = deg(K), then K ↪! k and φK↪!k = φ−1
k↪!K .

CE5 (transitivity) For any triple (k,K,L) of elements in K, if k ↪! K ↪! L then k ↪! L and
φk↪!L = φK↪!L ◦ φk↪!K .

CE6 (intersections) For each k,K,L ∈ K such that K ↪! L and k ↪! L, there exists I ∈ K
such that deg(I) = gcd(deg(k),deg(K)) and I ↪! k, I ↪! K.

Conditions CE1 to CE5 are quite natural, some of them are technical and are not important
in our implementation. For example, Condition CE3 is totally free in our implementation
because we work with q = p and the elements of our fields are represented by polynomials over
Fp = Z/pZ, thus the subfield Fp ⊂ Fpm is always represented by the constant polynomials and the
embedding is trivial. Nevertheless, Condition CE6 is important both from a theoretical and on an
implementation point of view: it ensures that the implicit embeddings between common subfields
are made explicit, in order to prevent any possible future incompatibility, and it forces the
computer algebra software to compute extra embeddings that the user might not need. Assume
that we have embedded Fp4 and Fp6 into Fp12 , there is now an implicit isomorphism between the
two copies of the quadratic subfield Fp2 in Fp4 and Fp6 . Any future embedding from Fp4 or Fp6 in
an extension of Fp12 , say Fp24 for example, must now take into account the isomorphism between
the two quadratic fields. Condition CE6 ensures that this implicit isomorphism is made explicit
by adding a quadratic field Fp2 in the lattice and explicitly embedding it in Fp4 and Fp6 , and by
transitivity in Fp12 and Fp24 .

117

k1 k2 kr

K

L

. . .

Figure 6.5: An incomplete diagram with several subfields.

Fp4 Fp6

Fp12

Fp24

⊂ ⊂

Fp2 Fp2∼=

Under the conditions described in Definition 6.3.4, we can add new embeddings in our lattice Λ
without compromising the compatibility of the lattice. Assume that we want to embed K into
L. We have seen that the relevant elements that restrict the number of compatible embeddings
are the common subfields of K and L. If there is only one common subfield k, we are in the
case described by Propositions 6.3.1 and 6.3.2. Now, assume that there are many common
subfields, like shown in Figure 6.5. In the same fashion as was done in Proposition 6.3.1, we
can abstractly describe how many compatible embeddings exist (this is done in [BCS97, Section
2.5]), but we rather focus on the constructive part. In some sense, this is just a generalization of
Proposition 6.3.2, where we allow an arbitrary number of common subfields.

Proposition 6.3.5. Let K,L ∈ K be two finite fields with

K ⊂ L

and let k1, . . . , kr ∈ K be the common subfields of K and L, i.e. for all 1 ≤ j ≤ r, we have

kj ↪! K and kj ↪! L.

Let α ∈ K be an element generating K over Fp and

π = gcd
1≤j≤r

(Minpolykj (α)).

Let ρ ∈ L be a root of π in L and let ψ : K ! L be the map defined by

ψ

deg(K)−1∑
j=0

xjα
j

 =

deg(K)−1∑
j=0

xjρ
j

using the unique representation of elements in K as
∑

j xjα
j with xj ∈ Fp. Then ψ is an

embedding from K to L that is compatible with all the embeddings φkj ↪!K and φkj ↪!L.

118

Proof. Let α ∈ K be an element generating K over the base field Fp. Then, for all 1 ≤ j ≤ r, α
also generates K over kj . Now consider the polynomial

π = gcd
1≤j≤r

(Minpolykj (α)).

For all 1 ≤ j ≤ r, we have by definition

(Minpolykj (α))(α) = 0

and so
T − α | Minpolykj ,

thus the polynomial T − α ∈ K[T] also divides π, which consequently is not the constant
polynomial 1 and has a root in K. Since we have

K ⊂ L,

it follows that π also has a root in L. Let ρ ∈ L be a root of π in L, then for all 1 ≤ j ≤ r, ρ is a
root of the polynomial Minpolykj (α) and thus the map ψ is an embedding that is compatible, by
Proposition 6.3.2 and Remark 6.3.3, with the embeddings φkj ↪!K and φkj ↪!L.

Remark 6.3.6. There is another way of describing the polynomial π in Proposition 6.3.5. Let
K ′ ⊂ K be the subfield of K generated by the fields kj ⊂ K, in fact we have

π = MinpolyK′(α).

Indeed, we have

Gal(K/K ′) =
{
σ ∈ Gal(K/Fp) | ∀x ∈ K ′, σ(x) = x

}
= {σ ∈ Gal(K/Fp) | ∀1 ≤ j ≤ r, ∀x ∈ kj , σ(x) = x}

=
⋂

1≤j≤r
Gal(K/kj),

and thus it follows that

MinpolyK′(α) =
∏

σ∈Gal(K/K′)

T − σ(α)

=
∏

σ∈
⋂

1≤j≤r Gal(K/kj)

T − σ(α)

= gcd
1≤j≤r

 ∏
σ∈Gal(K/kj)

T − σ(α)

= gcd

1≤j≤r
(Minpolykj (α)).

where T is the indeterminate. In fact, in [BCS97], it is shown that there is exactly one compatible
ismorphism between K ′ and L′, the subfield of L generated by the subfields kj in L, and that
there are

deg(K)/deg(K ′),

which is the degree of π, different compatible embeddings from K to L.

119

6.3.2 Implementation in Nemo

Although Proposition 6.3.1 suggests to compute a random embedding and then to “correct”
it, we follow the method of Propositions 6.3.2 and 6.3.5 and we directly compute compatible
embeddings using the naive algorithm, that relies on polynomial factorization. The whole
framework is implemented in Nemo [H+16] since Fall 2019, at least for finite fields with word-sized
characteristic, i.e. finite fields extensions

Fpm

where p is a prime number that fits in 64 bits. The source code is available in Nemo’s github
repository1. Almost all of the code is directly written in the Julia library Nemo, because it
consists mostly of high level manipulations, but the critical routines, such as factorization, are
implemented in the C library Flint and are called from Nemo.

Types and data structures. There are two types of finite fields in Nemo/Flint, those with
a word-sized characteristic and those with arbitrarily large characteristic. The former have the
type fq_nmod_ctx_t in Flint and FqNmodFiniteField in Nemo, while the field elements have
the type fq_nmod_t in Flint and fq_nmod in Nemo. The corresponding types in arbitrarily large
characteristic are fq_ctx_t, FqFiniteField, fq_t and fq. We may use a Flint name for a type
in Nemo or vice versa, because the types represent the same things: Nemo being a wrapper of
Flint in this case. The main difference between the two types is that the polynomials representing
the elements of these fields have different types, depending on whether they have arbitrarily
large coefficients (fmpz_mod_poly_t) or if their coefficients fit in a 64 bit word (nmod_poly_t).
Since the representation of the elements varies, so do the algorithms for manipulating various
elements in Flint (matrices, polynomials) with word-sized or arbitrarily large coefficients. Some
of the algorithms implemented for matrices with word-sized coefficients are not implemented for
arbitrarily large coefficient and as a consequence we were only able to implement the Bosma-
Canon-Steel algorithm for the type FqNmodFiniteField. This type contains

• the characteristic p (that fits in 64 bits);

• the irreducible polynomial used to define the field (of type nmod_poly_t);

• various technical precomputations that are stored for performance;

• two dictionaries containing information about the lattice of compatible embeddings.

Let K be some finite field represented by the type FqNmodFiniteField, the two dictionaries
stored in the data structure representing K are called subfields and overfields. They both
map integers to lists of embeddings. If the subfields dictionary has a key l, then the associated
value subfields[l] is a list of embeddings

φj : kj ! K

where all the kj are finite fields of the corresponding degree l. Note that this is a list, because
there might be several different finite fields of the same degree embedded in K. Similarly, if
the overfields dictionary has a key m, then the corresponding value overfield[m] is a list of
embeddings

ψj : K ! Lj

1https://github.com/Nemocas/Nemo.jl

120

https://github.com/Nemocas/Nemo.jl

where all the Lj are finite fields of degree m. Finally, the embeddings φ : K ! L are represented
by the type FinFieldMorphism, that essentially contains information about the domain K, the
codomain L, the function φ and the preimage function φ−1.

General strategy. The essential idea is to maintain a lattice of compatibly embedded finite
fields, i.e. ensure that the conditions described in Definition 6.3.4 are met, at all times. To do so,
each time the user asks for a new embedding

φ : K ! L,

we must go through 3 steps:

1. for each subfield
M ⊂ L

of L, check that the finite field M ∩K is embedded in M and K, and if not, embed it. If
there is not any finite field of degree

d = gcd(deg(M),deg(K)),

compute an arbitrary finite field I of degree d using Flint and embed I in M and K.

K

L

M

K ∩M

? ?

This step ensures that Condition CE6 on the intersections holds. It is important to begin
with this step, so that every implicit isomorphism between the different common subfields
are made explicit and that the compatibility conditions concerning the embedding K ↪! L
include them.

2. Embed K in L using the procedure described in Proposition 6.3.5.

3. Compute the “transitive closure” of the lattice, i.e. compute the embeddings such that
Condition CE5 on transitivity holds.

The first step might contain a recursive call to the embedding algorithm, thus one might have to
compute many additional embeddings behind the scenes in order to have only one new embedding.

Main algorithms. The embedding algorithm, called embed, thus follows the steps described
in the general strategy, alongside trivial verifications such as checking if the embedding makes
sense, checking if an embedding already exists, and so on. There are three main algorithms,
intersections, find_morphism and transitive_closure, each one respectively corresponding
to the first, the second, and the third step. In the first step, we loop through all the subfields M

121

K = I = K ∩M

M

L

?

K

M = I = K ∩M

L

?

K

L

M

K ∩M

? ?

Figure 6.6: Three different configurations when computing the intersection step of the Bosma-
Canon-Steel framework.

embedded in L and we check that the intersection I = K ∩M is also embedded in K and M .
Different cases can occur, depending on the relative position of K and M in the lattice of finite
fields, as described in Figure 6.6. If I = K (case of the left side of Figure 6.6), then we only need
to check that K is embedded in M . When this is done, we do not need to compute anything
else because the embedding from K to L is then obtained via transitive closure. If I = M (case
in the middle), then we need to check that M is embedded in K. If I is neither K or L (case
on the right side), then we first check if I already exists in the lattice of compatibly embedded
finite fields, we create it if necessary, and we finally check that it is embedded in both K and L.
In order to know whether further computations are needed in the embed algorithm, we return
a boolean that is false if the encountered case was the one where I = K. The intersection
algorithm is also explained in Algorithm 8. In Algorithm 9, called find_morphism, we follow the
method of Proposition 6.3.5 in order to find a compatible embedding. If there are no particular
conditions to meet, we just use polynomial factorization to obtain an embedding, i.e. we use the
naive embedding algorithm. When a suitable embedding φ : K ↪! L has been found, in order to
ensure that the lattice Λ is transitive, we apply Algorithm 10 that loops through all subfields k
of K, and letting ψ : k ↪! K be an embedding into K, checks that the embedding φ ◦ ψ is also in
the lattice. We then recursively call the transitive_closure procedure on the fields that L is
embedded into.

Experimental results. All the tests in this section were performed on an Intel Core i7-7500U
CPU clocked at 2.70GHz, using Nemo 0.19.1 running on Julia 1.5.3, and Nemo’s corresponding
version of Flint. The benchmark functions are available in the file bencharks.jl of the repository
of the thesis2, as well as the data that was used to plot the timings. All plots were made using
gnuplot version 5.2 patchlevel 8, and the gnuplot files can also be found in the repository. Because
of how the Bosma-Canon-Steel framework works, in particular because of the condition on the
intersections, the time needed to compute a specific embedding

Fpm ↪! Fpn

heavily depends on the other embeddings in the lattice. Indeed, if there are no embeddings in
the lattice, the embedding computation is in that case essentially the same as the factorization of
a degree m polynomial in Fpn [X]. On the contrary, if a subfield Fpd of degree d | m exists in the
lattice (see Figure 6.7 for an illustration) and is embedded in both Fpm and Fpn , then the degree

2https://github.com/erou/thesis/.

122

https://github.com/erou/thesis/.

Algorithm 8 intersections
Input: K and L two finite fields of a lattice of compatibly embedded finite fields (K,Φ)
Output: A boolean b being false if and only if no additional work is required
1: b true
2: for all M ↪! L do
3: d gcd([K : Fp] , [M : Fp])
4: if d = [K : Fp] then
5: b false . We obtain the final embedding by transitive closure
6: embed(K,M)
7: else if d = [M : Fp] then
8: embed(M,K)
9: else if I ∼= Fpd ↪! K then . Fpd already exists in the computer algebra system

10: embed(I,M)
11: else if I ∼= Fpd ↪! L then . Fpd already exists in the computer algebra system
12: embed(I,K)
13: embed(I,M)
14: else
15: I Fpd . We create the field Fpd in the computer algebra system
16: embed(I,K)
17: embed(I,M)
18: end if
19: end for
20: return b

Algorithm 9 find_morphism
Input: K and L two finite fields of a lattice of compatibly embedded finite fields (K,Φ)
Output: φ : K ! L a compatible embedding
1: C {k ∈ K | k ↪! K and k ↪! L}
2: π gcdk∈C(Minpolyk(α)) . α is a generator of K over Fp, the minimum polynomial is

obtained via the Berlekamp-Massey algorithm.
3: ρ any root of π
4: return φ : K ! L, α 7! ρ

Algorithm 10 transitive_closure
Input: φ : K ↪! L an embedding between two finite fields
Output: ensures that the lattice of compatibly embedded finite fields (K,Φ) is transitive
1: for all ψ : k ↪! K do
2: Φ Φ ∪ {φ ◦ ψ}
3: end for
4: C {M ∈ K | L ↪!M}
5: for all M ∈ C do
6: θ (L ↪!M)
7: transitive_closure(θ)
8: end for

123

of the polynomial that is factorized is at most m
d , and could be less if several subfields exist, as

explained in Proposition 6.3.5 and Remark 6.3.6. As an illustration of that phenomenon, note

Fpd

Fpm

Fpn

Figure 6.7: The computation of an embedding with a common subfield, that leads to the
factorization of a polynomial of degree at most m/d.

that if the finite fields Fp2 , Fp3 , Fp6 and Fp12 are in our lattice, and if the embeddings

Fp2 ↪! Fp12

and
Fp3 ↪! Fp12

are already computed, then there is only one compatible embedding from Fp6 to Fp12 . In this

Fp2 Fp3

Fp6

Fp12

? ?

Figure 6.8: A lattice with four finite fields of size p2, p3, p6, p12 with some embeddings already
computed.

case, factorization in Fp12 [X] is not required, and the work is essentially already done, although
the embeddings from Fp2 and Fp3 in Fp6 (easier to compute) have to be computed if they are not
already (see Figure 6.8). In fact, when computing the embedding

Fpm ↪! Fpn ,

one of the decisive parameters is the degree of the extension

Fpm/(L ∩ Fpm),

where L is the finite field generated by the subfields already embedded in Fpn . This measures
both the freedom that we have to choose the embedding Fpm ↪! Fpn and how much we already
know about it. If

[Fpm : (L ∩ Fpm)] = 1,

then Fpm is essentially already embedded in Fpn and there is only one compatible embedding.
On the contrary, if

[Fpm : (L ∩ Fpm)] = m,

124

i.e. if L ∩ Fpm = Fp, then there is absolutely no compatibility condition to meet and we can
take any embedding we want, but at the same time we do not have any information about the
embedding Fpm ↪! Fpn . We call this parameter the defect of the embedding Fpm ↪! Fpn . The
defect depends on the state of the lattice Λ at the moment of the computation and has an
important impact on the timings. Consequently, there are several reasonable ways of measuring
the timings of the Bosma-Canon-Steel framework, which produce quite different results. There is
no major difference between two choices of characteristic p so we arbitrarily chose p = 3. We
computed all the possible embeddings between finite fields of degree up to 400 in two different
ways. The first one consists in looping through the degrees while increasing them, i.e. for all
1 ≤ m ≤ 200 and m+ 1 ≤ n ≤ 400, we compute the embedding

Fpm ↪! Fpn

whenever that makes sense, starting with m = 1, n = 2, then m = 1, n = 3, and so on, so that
the last embedding we compute is

Fp200 ↪! Fp400 .

The second way consists in looping through the degrees while decreasing them, i.e. starting with
Fp200 ↪! Fp400 , then Fp199 ↪! Fp398 and so on until Fp ↪! Fp2 . Again, these two methods produce
different timing results because at the moment an embedding is computed, the state of the lattice
if not the same in the two cases. For example, the embedding Fp200 ↪! Fp400 takes 3.5 seconds to
be computed in the first test, while it takes 47.5 seconds in the second one. In Figure 6.9, we plot
the time needed to compute embeddings of the form

Fp2 ↪! Fpm

for m ≤ 400 with the first method, i.e. increasing degrees. In this case, there are no common
subfields when the embeddings are computed, thus the defect is always 1 and the naive embedding
algorithm is applied. When the embeddings are computed with decreasing degrees, there are a
lot more embeddings already in the lattice, thus the defect can be either 1 or 2. We observe that
the time needed to compute the embeddings is completely different in those two cases, thus we
use a logarithmic scale to emphasize the difference. The difference between the two methods is
also noticeable when looking at the embeddings to a fixed finite field. We look at the embeddings
to the finite fields of degree 360 because it is a highly composite number, having 24 different
divisors: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180 and 360. In the
first experiment, with increasing degrees, all embeddings are computed in under one second, as
shown in Figure 6.11. This is understandable because the defect is never very high. In the second
experiment, shown in Figure 6.12, the timing to compute the embedding

Fp180 ↪! Fp360

is approximately 30 seconds, with a defect of 180 because Fp360 has no embedded subfields yet.
After this computation, only the embedding Fp120 ↪! Fp360 has a defect equal to 2 and all the
others have a defect equal to 1. This leads to very fast computation for some embeddings, that
are essentially already computed. When computing embeddings corresponding to extension of a
fixed degree, e.g. extensions of type

Fp2m/Fpm ,

the difference is also noteworthy: when the embeddings are computed with the degrees decreasing
(Figure 6.14), then the defect is always maximum, thus the timings are rather smooth, while

125

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400

T
im

e
(m

s)

Degree of the destination field

Figure 6.9: Timings for the computation of embeddings from Fp2 to Fpm for m ≤ 400 and 2 | m,
with p = 3. The embeddings were computed with increasing degrees.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

T
im

e
(m

s)

D
ef

ec
t

o
f

th
e

em
b
ed

d
in

g

Degree of the destination field

 1

 2

Figure 6.10: Timings (logarithmic scale) for the computation of embeddings from Fp2 to Fpm for
m ≤ 400 and 2 | m, with p = 3. The embeddings were computed with decreasing degrees.

126

 0.001

 0.01

 0.1

 1

 1 10 100

T
im

e
(s

)

D
ef

ec
t

o
f

th
e

em
b
ed

d
in

g

Degree of the departure field

 1

 2

 3

 5

Figure 6.11: Timings for the computation of embeddings from Fpm to Fp360 for m | 360, with
p = 3. The embeddings were computed with increasing degrees. We use logarithmic scales on
both axes for readability.

10
-8

10
-6

10
-4

10
-2

10
0

10
2

 1 10 100

T
im

e
(s

)

D
ef

ec
t

o
f

th
e

em
b
ed

d
in

g

Degree of the departure field

 1

 180

Figure 6.12: Timings for the computation of embeddings from Fpm to Fp360 for m | 360, with
p = 3. The embeddings were computed with decreasing degrees. We use logarithmic scales on
both axes for readability.

127

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
(s

)

D
ef

ec
t

o
f

th
e

em
b
ed

d
in

g

Degree of the departure field

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Figure 6.13: Timings (logarithmic scale) for the computation of embeddings from Fpm to Fp2m
for 1 ≤ m ≤ 200, with p = 3. The embeddings were computed with increasing degrees.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
(s

)

D
ef

ec
t

o
f

th
e

em
b
ed

d
in

g

Degree of the departure field

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Figure 6.14: Timings (logarithmic scale) for the computation of embeddings from Fpm to Fp2m
for 1 ≤ m ≤ 200, with p = 3. The embeddings were computed with decreasing degrees.

128

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60

T
im

e
(m

s)

log2(p)

Figure 6.15: Timings for the computation of embeddings from Fp12 to Fp24 with p a prime number
growing up to approximately 260.

the computations with the increasing degrees (Figure 6.13) produce erratic timings because low
defects lead to a huge speedup. In order to show the impact on the characteristic p on the
timings, we also plot the time needed to compute the embedding

Fp12 ↪! Fp24

for different primes p. Because the impact on the timing is logarithmic in the characteristic
p, we use each prime number found immediately after 2j , for 1 ≤ j ≤ m, i.e. p ≈ 2j . The
result is shown in Figure 6.15. Whether or not compatibility conditions have to be fufilled when
computing an embedding implies different internal routines in the Bosma-Canon-Steel framework,
such as intersections computations and recursive computations of other embeddings. However,
the different possible scenarios share the preponderance of the root finding in the timings: it
is the critical routine in all cases. Although, for embeddings involving small degree finite fields
and with a low defect (i.e. when other embeddings have already been computed and information
is known) the time spent dealing with high level routines can be substantial. It is not really a
problem because in that case the computations are very fast, but it indicates that the Julia code
could be optimized some more.

129

Chapter 7

Standard lattice of compatibly
embedded finite field

We have seen in Chapter 6 two independant methods to create lattices of compatibly embedded
finite fields. In this chapter, we present a new framework, inspired by both Conway polynomials
and the Bosma-Canon-Steel framework, that we call standard lattice of compatibly embedded
finite fields.

Contents
7.1 The Lenstra-Allombert algorithm and lattices of embeddings 132

7.1.1 From isomorphism to embedding . 132
7.1.2 Cyclotomic lattices . 134
7.1.3 Kummer embeddings . 135

7.2 Standard solution of Hilbert 90 . 141
7.2.1 Complete algebras and standardization 141
7.2.2 Towards standard embeddings . 146

7.3 Standard embeddings . 148
7.4 Implementation . 152

7.4.1 Complexity analysis . 153
7.4.2 Experimental results . 156

130

Outline of Chapter 7. In this chapter, we construct new theoretic tools to build a new
framework to manage finite field extensions. Before studying these objects in details in the
following sections, we briefly explain our general strategy. If we have three integers

l | m | n,

we can define embeddings between the finite fields Fp(ζl),Fp(ζm) and Fp(ζn), where ζl (resp.
ζm, ζn) is a primitive l-th (resp. m-th, n-th) root of unity.

Fp(ζl)

Fp(ζm)

Fp(ζn)

Indeed, one can send ζl to (ζm)m/l or to (ζn)n/l to embed Fp(ζl) in either Fp(ζm) or Fp(ζn).
Similarly, one can send ζm to (ζn)n/m to obtain an embedding from Fp(ζm) to Fp(ζn). In order
to achieve compatibility between these embeddings, one must have

((ζn)n/m)m/l = (ζm)m/l = ζl.

This is similar to how Conway polynomials work: one ensures that every finite field can be
described as Fp(ζ) for some primitive root ζ that is compatible with every other primitive root. A
simple way of obtaining such a compatible configuration is to start from the root ζn and compute
ζl and ζm from ζn.

We see in Section 7.1 that this situation can be generalized to arbitrary extensions Fpl ,Fpm ,Fpn
using the Lenstra-Allombert algorithm. Starting from a primitive n-th root ζn, one can compute
the roots ζl, ζm and construct the algebra An = Fpn ⊗ Fp(ζn), and the corresponding algebras
Al and Am. Then, from a solution αn ∈ An of (H90) for ζn, we can compute solutions αl, αm
of (H90) in Al and Am, and deduce compatible embeddings between the finite fields Fpl ,Fpm ,Fpn .

Fpl

Fpm

Fpn

Fpl ⊗ Fp(ζl)

Fpm ⊗ Fp(ζm)

Fpn ⊗ Fp(ζn)

Because we can deduce compatible embeddings from a solution α of (H90) in a large algebra, we
study the largest algebra for a given field of scalars Fpa = Fp(ζpa−1), i.e. the largest algebra for a
given level a. We call this largest algebra the complete algebra of level a, and it is given by

Apa−1 = Fppa−1 ⊗ Fp(ζpa−1).

We see in Section 7.2.1 that the solutions α of (H90) for ζpa−1 in complete algebras all share a
very special property: they satisfy

αp
a−1 = (ζpa−1)a,

i.e. they all have the same Kummer constant. We also see that the solutions β of (H90) in smaller
Kummer algebras of the same level a that are computed from α also share the same Kummer
constant. Conversely, we can prove that the solutions that have the desired Kummer constant

c = (ζpa−1)a

131

are linked to a solution α in the complete algebra of level a. We thus call these special solutions
standard, and we show in Section 7.2.2 how to construct compatible embeddings from them, that
we call standard embeddings. Given a Kummer algebra An = Fpn ⊗ Fp(ζn) of degree a, we do
not have to compute the complete algebra of degree a in order to find a standard solution in An,
we can directly compute it in the smaller algebra An. We call the pair (An, αn), where αn is a
standard solution, a decorated algebra. Decorated algebras allow us to compute embeddings in an
incremental way, which is important when managing finite field extensions. We finally show how
to link complete algebras of different levels in Section 7.3, so that two standard solutions of (H90)
in two arbitrary Kummer algebras can always be used to compute a compatible embedding
between the associated finite fields. Again, in the general case of two arbitrary Kummer algebras,
the computed embedding is called standard, and it is also compatible with future embeddings,
meaning that the framework is incremental. We then discuss the implementation of the framework
in Section 7.4.

7.1 The Lenstra-Allombert algorithm and lattices of embeddings

The two methods of Chapter 6 both have their drawbacks: Conway polynomials are expensive to
compute and thus need to be precomputed, making them inefficient for large extensions, while
the Bosma-Canon-Steel framework needs more computation each time an embedding is added
to the lattice. Our starting point in order to propose an alternative framework for lattices of
compatibly embedded finite fields is the Lenstra-Allombert algorithm and the study of Kummer
algebras done in Section 5.2.2. In all this chapter, k = Fp is a finite field of size p, where p is a
prime number.

7.1.1 From isomorphism to embedding

Let us first recall the Lenstra-Allombert isomorphism algorithm. We keep the notations of
Section 5.2, where the details can be found. Let K and L be two finite fields with pn elements,
where gcd(p, n) = 1, i.e.

p - n.

We know that K and L are isomorphic and, if ζ is a primitive n-th root of unity taken in the
algebraic closure F̄p of k, we know we can find an isomorphism by finding two solutions αK and
αL to the equation (H90)

(σ ⊗ 1)(α) = (1⊗ ζ)α,

respectively in K ⊗ Fp(ζ) and L⊗ Fp(ζ). We then compute κ ∈ Fp(ζ) such that

1⊗ κn = αnK/α
n
L

and the map
φ : bαKcζ 7! b(1⊗ κ)αLcζ

is then an isomorphism from K to L. A key part of the algorithm is that the root ζ must be
the same in the two Kummer algebras K ⊗ Fp(ζ) and L⊗ Fp(ζ). In practice, it means that we
need to use elements that have the same minimal polynomial to define ζ in both algebras. This
constraint might seem easy to fulfill in this case, but it becomes harder in the case of a compatible
embedding computation. Assume that m,n ∈ N are two integers such that

m | n

132

and gcd(p,m) = gcd(p, n) = 1. Let K be a finite field with pm elements and L a finite field with
pn elements. We know that K is isomorphic to a subfield of L, i.e. we have an embedding

K ↪! L.

To compute an embedding, one solution is to compute the algebras K ⊗ Fp(ζm) and L⊗ Fp(ζm),
where ζm is a primitive m-th root of unity, as done in the isomorphism case, then compute
solutions αK,m, αL,m of (H90) and the constant κ = κK↪!L. This solution is satisfying as long as
we only want to compute a single embedding in L. Indeed, assume we also have an integer l ∈ N
that divides n, such that gcd(p, l) = 1, and a finite field H of size pl. Then there is an embedding

H ↪! L,

and in order to compute it we must find a primitive l-th root of unity ζl, compute L⊗ Fp(ζl),
compute a new solution αL,l of (H90) for ζl and the associated constant κH↪!L. Therefore, each
new embedding comes with the computation of a new Kummer algebra, a new solution of (H90),
and a new element κ. We must also store the elements κ and the elements defining the embeddings.
Now, recall that if we want to use the Bosma-Canon-Steel framework in order to compatibly
embed K in L, we must recursively embed the intersection K ∩M in both fields K and M , for
each already embedded subfield M of L.

K

L

M

K ∩M

? ?

This yields a quadratic memory complexity in the number of extensions in the lattice and their
degrees, as well as a quadratic number of new embedding computations, i.e. computations of
Kummer algebras and solutions of (H90). It motivates a new solution with only one computation
of Kummer algebra and (H90) solution per extension in the lattice, independently of the number
of embedded subfields. Assume we have ζm and ζn respectively two m-th and n-th primitive
roots of unity that are compatible, i.e. such that

(ζn)n/m = ζm.

We compute the Kummer algebras K ⊗ Fp(ζm) and L⊗ Fp(ζn), αK a solution of (H90) for the
root ζm and αL a solution of (H90) for the root ζn. In that case, the element

(αL)n/m ∈ L⊗ Fp(ζn)

is a solution of (H90) for the root (ζn)n/m = ζm, indeed

(σ ⊗ 1)((αL)n/m) = ((σ ⊗ 1)(αL))n/m

= ((1⊗ ζn)αL)n/m

= (1⊗ (ζn)n/m)(αL)n/m.

133

The embedding K ↪! L is then described by

bαKcζm 7!
⌊
(1⊗ κK↪!L)(αL)n/m

⌋
(ζn)n/m

,

where κK↪!L ∈ Fp(ζn) is a m-th root of αnL/α
m
K . There are still two issues with such a solution.

First, it is still necessary to store the constants κK↪!L for each embedding

K ↪! L

in the lattice. We would like these constants κ to be equal to 1, or maybe that a close formula
exists for these constants, by choosing special solutions α of (H90). We achieve the latter by
constructing standard solutions of (H90) in Section 7.2.

7.1.2 Cyclotomic lattices

The second, and most important, issue is the compatibility condition between the roots of unity
ζ. When we write a compatibility condition like

ζm = (ζn)n/m,

we implicitly state that there is a natural inclusion

Fp(ζm) ⊆ Fp(ζn)

that makes the embedding from Fp(ζm) to Fp(ζn) trivial, i.e. the embedding is the identity in
that case. In practice, this is not always the situation at hand. For example, if for some reason
the root ζm already exists in some field Fpa in the current state of our computer algebra system,
and if the root ζn lives in a strictly bigger field Fpb = Fp(ζn) that we have to compute, then the
field Fpa is not included in the field Fpb , and the embedding

Fpa ↪! Fpb

is not trivial. In the general case, if we want to use the Lenstra-Allombert embedding algorithm,
what we need is a cyclotomic lattice, given by Definition 7.1.1.

Definition 7.1.1 (Cyclotomic lattice). A cyclotomic lattice is composed of two things:

• a collection
SI = {(Km, ζm)}m∈I

over some support set I ⊂ N \ pN. The element Km is an explicitly represented finite
extension of k = Fp, and the element ζm ∈ Km is a generating element of Km that is also a
primitive m-th root of unity, i.e. we have

Km = Fp(ζm)

and
(ζm)m = 1.

• explicit embeddings
ιm,n : Km ↪! Kn

ζm 7! (ζn)n/m

whenever (m,n) ∈ I2 are such that m | n.

134

Again, there is no problem if we know beforehand all the degrees of the extensions in the
lattice that we will use, i.e. if the support set I is finite. Indeed, in that case there is an efficient
randomised algorithm to compute the cyclotomic lattice: consider

N = lcmm∈I(m)

and construct the smallest finite field Fpa such that N divides pa − 1, i.e. the smallest finite field
containing an N -th primitive root of unity. Then take x ∈ Fpa at random, compute

y = x(pa−1)/N

and check that the multiplicative order of y is N . If it is, we can construct all roots ζm as powers
of this element:

ζm = yN/m

for all m ∈ I, and we can set
Km = Fp(ζm) ⊂ Fpa

and let the embeddings ιm,n be natural inclusions. But once again, this methode does not produce
an incremental lattice, thus it is not really user friendly: one would like to have a lattice where
new elements can be added on the fly. Conway polynomials, that were introduced in Section 6.2
in order to construct a lattice of compatibly embedded finite fields, offer an other example of
cyclotomic lattice. In fact, a cyclotomic lattice is always a lattice of compatibly embedded finite
fields, because each time we have l,m, n ∈ I with

l | n | n,

we have
(ζn)n/l = ((ζn)m/l)n/m

and it follows that
ιl,n = ιm,n ◦ ιl,m.

One can thus wonder why we need a structure than can be used to represent a lattice of compatibly
embedded finite fields, precisely to construct a lattice of compatibly embedded finite fields. In fact,
we will see in the next sections that with a fairly small cyclotomic lattice, we are able to construct
a much larger lattice of compatibly embedded finite fields, thus making the whole construction
interesting, above all if the cyclotomic lattice is incremental, like with Conway polynomials. In
the next sections, we consider that we have an abstract cyclotomic lattice, without specifying any
particular construction. We only assume that we have a collection SI satisfying the conditions of
Definition 7.1.1.

7.1.3 Kummer embeddings

As we have seen in the last sections, asking for a compatibility condition

ζm = (ζn)n/m

each time we want to use the Lenstra-Allombert embedding algorithm to embed Fpm in Fpn , in a
compatible way, is not trivial: it requires the availability of a cyclotomic lattice. Moreover, this
equation implies that there is a natural inclusion

Fp(ζm) ⊂ Fp(ζn),

135

which is not the case in general. In order to be as thorough as possible, we will thus write the
image of ζm in the larger field Fp(ζn) as ιm,n(ζm). By definition, we have

ιm,n(ζm) = (ζn)n/m.

We then generalize the discussion of Section 7.1.1 and the results of Section 5.2.3 in this setting. We
keep the “Kummer algebra” terminology, already used in Section 5.2.2, that is based on [DFRR19].
We now assume that a cyclotomic lattice SI is available. Let

m | n

be two integers prime to p, we then have an embedding

ιm,n : Fp(ζm) ↪! Fp(ζn)

ζm 7! (ζn)n/m.

We also let
Am = Fpm ⊗ Fp(ζm)

and
An = Fpn ⊗ Fp(ζn)

be two Kummer algebras. As was the case for the Lenstra-Allombert isomorphism algorithm, we
want to deduce a field embedding from an algebra embedding between Am and An, using the
properties of the solutions of (H90). We are thus interested in a special class of morphisms that
are closely linked with these solutions.

Definition 7.1.2 (Kummer embedding). A Kummer embedding of Am into An is an injective
k-algebra morphism

Φ : Am ↪! An

such that:

• the morphism Φ extends the scalar embedding 1⊗ ιm,n;

• the morphism Φ commutes with σ ⊗ 1.

We can in fact give a simpler characterization of Kummer embeddings, and see that they are
of the form Φ = φ ⊗ ι, where ι is the embedding described by the cyclotomic lattice SI . The
embedding φ is then the one for which we will try to obtain a description, using the properties of
the solutions of (H90).

Proposition 7.1.3. There is a 1-to-1 correspondence between Kummer embeddings

Φ : Am ↪! An

and embeddings of finite fields
φ : Fpm ↪! Fpn ,

given by
Φ = φ⊗ ιm,n ! φ.

Moreover, this correspondence commutes with composition of embeddings.

Proof. We will prove that the correspondence is given by:

136

• if Φ is a Kummer embedding, then Φ maps Fpm ⊗ 1 into Fpn ⊗ 1. Thus the restriction of Φ
to Fpm is of the form φ⊗ 1 for some embedding φ : Fpm ↪! Fpn , and we have Φ = φ⊗ ιm,n;

• conversely, if φ : Fpm ↪! Fpn is an embedding of finite fields, then Φ = φ⊗ ιm,n is a Kummer
embedding.

Let Φ : Am ↪! An be a Kummer embedding. Since Φ is an algebra morphism, we have

Φ(βp) = Φ(β)p

for all β ∈ Am. Since (σ⊗σ)(β) = βp, this proves that Φ commutes with σ⊗σ. It also commutes
with σ ⊗ 1, and thus with its inverse σ−1 ⊗ 1. It then also commutes with

(σ−1 ⊗ 1) ◦ (σ ⊗ σ) = 1⊗ σ.

Now, if β ∈ Fpm ⊗ 1, we know thanks to Remark 5.2.7 that it is fixed by 1⊗ σ, thus we have that

(1⊗ σ) ◦ Φ(β) = Φ ◦ (1⊗ σ)(β)

= Φ(β).

Again, using Remark 5.2.7, we then know that Φ(β) ∈ Fpn ⊗ 1. This proves that Fpm ⊗ 1 is
mapped into Fpn ⊗ 1. Now, this means that every element of the form x ⊗ 1 with x ∈ Fpm is
mapped to an element of the form Φ(x⊗ 1) = y ⊗ 1 with y ∈ Fpm . Because Φ is a morphism of
algebras, if we let φ(x) = y, we can check that

φ : Fpm ! Fpn

is also a morphism. Therefore, the restriction of Φ on Fpm is of the form φ⊗1, where φ : Fpm ↪! Fpn
is an embedding of finite fields. We conclude that Φ = φ⊗ ιm,n. Indeed, if

β =
∑
j

xj ⊗ yj

is an element of the Kummer algebra Am, we then have

Φ(β) = Φ(
∑
j

xj ⊗ yj)

=
∑
j

Φ(xj ⊗ yj)

=
∑
j

Φ(xj ⊗ 1)× Φ(1⊗ yj)

=
∑
j

(φ⊗ 1)(xj ⊗ 1)× (1⊗ ιm,n)(1⊗ yj)

=
∑
j

(φ(xj)⊗ 1)× (1⊗ ιm,n(yj))

=
∑
j

φ(xj)⊗ ιm,n(yj)

=
∑
j

(φ⊗ ιm,n)(xj ⊗ yj)

= (φ⊗ ιm,n)(
∑
j

xj ⊗ yj),

137

and thus
Φ(β) = (φ⊗ ιm,n)(β)

for every element β ∈ Am.
Conversely, if φ : Fpm ↪! Fpn is an embedding of finite fields and if we define

Φ = φ⊗ ιm,n,

we see that Φ is a morphism of k-algebras that extends the scalar embedding ιm,n by definition.
The embedding φ is a power of the Frobenius automorphism σ and thus commutes with σ, hence
σ ⊗ 1 commutes with Φ = φ⊗ ιm,n, and this proves that Φ is a Kummer embedding.

Now, if we have three Kummer algebras Al, Am, An such that

l | m | n

and two Kummer embeddings Φl,m : Al ↪! Am and Φm,n : Am ↪! An, we know that there exists
φl,m : Fpl ↪! Fpm and φm,n : Fpm ↪! Fpn such that we have the following diagram.

Al

Am

An

Φl,m = φl,m ⊗ ιl,m

Φm,n = φm,n ⊗ ιm,n

Now the map Φm,m ◦ Φl,m is a Kummer embedding from Al into An, hence there exist an
embedding φ : Fpl ↪! Fpn such that

Φm,m ◦ Φl,m = φ⊗ ιl,n.

But we also have
Φm,m ◦ Φl,m = (φm,n ◦ φl,m)⊗ (ιm,n ◦ ιl,m),

and since ιl,n = ιm,n ◦ ιl,m by definition, we obtain

φm,n ◦ φl,m = φ,

thus the correspondence commutes with compositions of embeddings.

Proposition 7.1.4. Let αm ∈ Am be a nonzero solution of (H90) for ζm, and let cm be its
Kummer constant. Then, there is a 1-to-1 correspondence between Kummer embeddings

Φ : Al ↪! Am

and solutions α̂ ∈ An of (H90) for (ζn)n/m = ιm,n(ζm) that also satisfy

α̂m = 1⊗ ιm,n(cm).

The correspondence is given by
Φ(αm) = α̂.

138

Proof. Let Φ : Am ↪! An be a Kummer embedding. Lemma 5.2.8 shows that αm is a generator
of Am as an 1⊗ Fp(ζm) algebra. Thus every element β ∈ Am can be written in the form

β =

m−1∑
j=0

(1⊗ bj)(αm)j ,

and we obtain

Φ(β) =
m−1∑
j=0

(1⊗ ιm,n(bj))Φ(αm)j ,

therefore we see that Φ is determined by its image Φ(αm). Moreover, α̂ = Φ(αm) is a solution
of (H90) for (ζn)n/m = ιm,n(ζm) that satisfies α̂m = ιm,n(cm). Indeed, this is a generalization of
the computations done in Section 5.2.2 and a consequence of Definition 7.1.2. We have

(σ ⊗ 1)(α̂) = (σ ⊗ 1)(Φ(αm))

= Φ((σ ⊗ 1)(αm))

= Φ((1⊗ ζm)αm)

= (1⊗ ιm,n)(ζm)Φ(αm)

= (1⊗ ιm,n(ζm))α̂

and

α̂m = Φ(αm)m

= Φ(αmm)

= Φ(1⊗ cm)

= 1⊗ ιm,n(cm).

Converserly, if α̂ is a solution of (H90) for ιm,n(ζm) such that α̂m = ιm,n(cm), we see that

Φ(β) =
m−1∑
j=0

(1⊗ ιm,n(bj))α̂
j ,

for any element

β =
m−1∑
j=0

(1⊗ bj)(αm)j

gives a well-defined morphism of algebras from Am into An that satisfies Φ(α) = α̂ and the
conditions in Definition 7.1.2, i.e. it extends ιm,n and commutes with σ ⊗ 1.

With these two correspondences, we can now describe a little more the link between solutions
of (H90) and the finite field embeddings φ that we compute from them.

Corollary 7.1.5. Let αm ∈ Am be a nonzero solution of (H90) for ζm with Kummer constant
cm and let α̂ ∈ An be a solution of (H90) for (ζn)n/m that satisfies α̂m = ιm,n(cm). Then

• the solution α̂ belongs to the subset Fpl ⊗ Fp((ζn)n/m) ⊂ An;

• the assignation bαmcζm 7! bα̂c(ζn)n/m defines an embedding φ : Fpm ↪! Fpn;

139

• the map Φ = φ⊗ ιm,n is the unique Kummer embedding such that Φ(αm) = α̂.

Proof. By Proposition 7.1.4, we know that there exists a unique Kummer embedding

Φ : Am ↪! An

such that Φ(αm) = α̂. We also know thanks to Proposition 7.1.3 that

Φ = φ⊗ ιm,n

for some embedding of finite fields φ : Fpm ↪! Fpn . If αm =
∑a−1

j=0 xj ⊗ (ζm)j , where a is the level
of Am, we obtain

α̂ =
a−1∑
j=0

φ(xj)⊗ (ζn)
in
m ,

thus we have α̂ ∈ Fpm ⊗ Fp((ζn)n/m). We also see that x0 = bαmcζm is mapped to φ(x0) =
bα̂c(ζn)n/m , but bαmcζm is a generating element of Fpm by Proposition 5.2.10, hence the assignation

bαmcζm 7! bα̂c(ζn)n/m

defines φ.

With these results we are ready to generalize Proposition 5.2.13 to the embedding case, with
the cyclotomic lattice setting, giving a minor variation of the original algorithm of Allombert.

Algorithm 11 (Allombert’s algorithm)
Input: Fpm ,Fpn , for m | n integers prime to p, and a cyclotomic lattice S{l,m}.
Output: s ∈ Fpm , t ∈ Fpn , such that the assignation s 7! t defines an embedding φ : Fpm ↪! Fpn .
1: Construct the Kummer algebras Am and An.
2: Find αm ∈ Am and αn ∈ An, nonzero solutions of (H90) for ζm and ζn respectively.
3: Compute their Kummer constants: (αm)m = 1⊗ cm and (αn)n = 1⊗ cn.
4: Compute κ, a m-th root of ιm,n(cm)/cn.
5: Return bαmcζm and

⌊
(1⊗ κ)(αn)

n
m

⌋
(ζn)

n
m
.

Proposition 7.1.6. Algorithm 11 is correct: it returns elements that define an embedding
φ : Fpm ↪! Fpn.

Proof. The ideas of the proof are the same as the ones found in the proof of Proposition 5.2.13,
which were already present in the simpler case of Proposition 5.2.2, where all the roots of unity
are in k. By Proposition 7.1.3, let

Φ = φ⊗ ιm,n
be a Kummer embedding from Am into An. Let αm ∈ Am a solution of (H90) for ζm with
Kummer constant cm, and let αn ∈ An a solution of (H90) for ζn with Kummer constant cn. By
Proposition 7.1.4, there is a solution α̂ ∈ An of (H90) for (ζn)n/m that satisfies α̂m = ιm,n(cm)
and such that Φ(αm) = α̂. Now, we also have that (αn)n/m is a solution of (H90) for (ζn)n/m,
and the solutions of (H90) for (ζn)n/m form a one-dimensional 1⊗ Fp(ζn)-vector space, so there
exists a constant λ ∈ Fp(ζn) such that

α̂ = (1⊗ λ)(αn)n/m.

140

We conclude that
ιm,n(cm)

cn
= λm

is a m-th root in Fp(ζn). If we let
κ = (ζn)

in
m λ,

for some integer i, be a m-th root of ιm,n(cm)
cn

, it follows that

α̃ = (1⊗ κ)(αn)n/m = (1⊗ (ζn)
in
m)α̂

is a solution of (H90) for (ζn)n/m that satisfies α̃m = ιm,n(cm). By Corollary 7.1.5, we know that
the assignation

bαmcζm 7! bα̃c(ζn)n/m

defines an embedding from Fpm into Fpn .

Remark 7.1.7. Taking the same notations as the one in the proof of Proposition 7.1.6, we see
that the embedding returned by the algorithm is σi ◦ φ. Indeed, we have

α̃ = (1⊗ (ζn)
in
m)α̂

= (σ ⊗ 1)i(α̂)

= (σi ⊗ 1)(α̂).

If we let x0 = bα̂c
(ζn)

n
m
, we wee that the returned embedding is defined by the assignation

bαmcζm 7! σi(x0)

while φ is defined by
bαmcζm 7! x0.

7.2 Standard solution of Hilbert 90

7.2.1 Complete algebras and standardization

We discussed in Section 7.1.1 the obstacles when constructing a lattice of compatibly embedded
finite fields using the Lenstra-Allombert algorithm. The first one is that we need to have
compatibility between the roots of unity that we use, and that can be hard to obtain in practice.
We solved that problem by assuming the availability of a cyclotomic lattice SI , and we proved
that all the results concerning the Lenstra-Allombert algorithm can be expressed in that setting in
Section 7.1.3. Now, we can obtain compatibility by replacing the naive embedding algorithm by the
Lenstra-Allombert algorithm in the Bosma-Canon-Steel framework. This solution immediately
gives a compatible lattice of embedded finite fields. Still, among the sub-goals presented in
Section 6.1 that such a lattice may achieve, there are two of them on which we would like to
improve.

Uniqueness: the element bλmcζm is a generator of Fpm , or equivalently, it provides an irreducible
polynomial in k[X] of degree m. However this polynomials depends on the choice of αl,
because it depends on the Kummer constant cl of αl by Proposition 5.2.12, thus there is no
uniqueness.

141

Compatibility: the embedding of finite fields φ : Fpm ! Fpn depends on the choice of the
constant κ, which itself depends on the choice of the solutions αm and αn of (H90), and
also of the choice of a m-th root of unity. In order to achieve compatibility, we must keep
track of the constants κ for each embedding computation

Fpm ↪! Fpn

in the lattice, which grow quadratically with the number of fields, because of the common
subfield compatibility condition in the Bosma-Canon-Steel framework.

In this section and in Section 7.3, we will see how to choose special solutions of (H90), in order
to manage these constants κ. Our dream would be to be able to choose the solutions of (H90) in
a way that makes the constants trivial, i.e.

κFpm ↪!Fpn
= 1.

From Algorithm 11, we see that the constant κFpm ↪!Fpn
is a m-th root of the quotient

ιm,n(cm)

cn
,

thus the condition κFpm ↪!Fpn
= 1 implies

ιm,n(cm) = cn,

which in turn implies that cn belongs to the subset

Fp((ζn)
n
m) ⊆ Fp(ζn).

This could possibly fail if the Kummer algebras Am and An are of distinct level, i.e. if their field
of scalars are different. This motivates the study of Kummer algebras of a given level, and the
introduction of the notion of complete algebra.

Definition 7.2.1 (Complete Kummer algebra). A Kummer algebra is complete if it is of the
largest degree for a given level.

Therefore, the complete Kummer algebra of level a is the Kummer algebra

Apa−1 = Fppa−1 ⊗ Fp(ζpa−1)

= Fppa−1 ⊗ Fpa

with field of scalars
Fpa ∼= Fp(ζpa−1).

given by the element ζpa−1 in the cyclotomic lattice SI . In fact these algebras have an interesting
property.

Lemma 7.2.2. All nonzero solutions αpa−1 ∈ Apa−1 of (H90) for ζpa−1 have the same Kummer
constant

cpa−1 = (ζpa−1)a.

142

Proof. Let αpa−1 ∈ Apa−1 a solution of (H90) for ζpa−1. For all β ∈ Apa−1, we have βp =
σ ⊗ σ(β) = βp, so we also obtain

(αpa−1)p
a

= (σa ⊗ σa)(αpa−1).

Now, we know that σa is the identity on Fpa , hence we have

(αpa−1)p
a

= (σa ⊗ 1)(αpa−1)

= (1⊗ ζpa−1)aαpa−1.

Since αpa−1 is invertible by Lemma 5.2.8, we obtain that

(αpa−1)p
a−1 = 1⊗ cpa−1 = (1⊗ ζpa−1)a

and it follows that
cpa−1 = (ζpa−1)a.

Now this result is very important because we know that the degree pa−1 irreducible polynomial
in k[X] derived from the solution αpa−1, i.e. the minimal polynomial of the element bαpa−1cζpa−1

,
only depends on the Kummer constant cpa−1 of αpa−1, thus it means that all solutions give the
same polynomial. This will be the central idea behind the notion of standard elements.

Definition 7.2.3 (Standard Kummer constant). Let m be an integer prime to p. We define the
standard Kummer constant of order m as

cm = (ιm,pa−1)−1((ζpa−1)a) ∈ Fp(ζm),

where a = ν(m) is the level of the Kummer algebra Am.

Remark 7.2.4. Since Am is of level a, we have

Fp(ζm) ∼= Fp(ζpa−1),

hence the map ιm,pa−1 is an isomorphism and cm is well-defined.

Definition 7.2.5 (Standard solution). Let m be an integer prime to p. We say that a solution
αm ∈ Am is standard if its Kummer constant is standard, i.e. if we have

(αm)m = 1⊗ cm.

Definition 7.2.6 (Decorated Kummer algebra). Let m be an integer prime to p. We define a
decorated Kummer algebra as a pair

(Am, αm),

where αm is a standard solution of (H90) for ζm.

It follows from Lemma 7.2.1 that all nonzero solutions of (H90) in a complete algebra are
standard. This is no longer the case in a non complete Kummer algebra, but we can still find
standard solutions.

Proposition 7.2.7. Let m be an integer prime to p. Then Am can be decorated, i.e. it admits a
standard solution αm. Moreover, this solution αm is unique up to a m-th root of unity.

143

Proof. Let a = ν(m) be the level of Am and let α′m ∈ Am be a nonzero solution of (H90) for ζm.
Let also αpa−1 be a nonzero solution of (H90) for ζpa−1, then it is standard by Lemma 7.2.1. The
element

(αpa−1)
pa−1
m

is a solution of (H90) for
ιm,pa−1(ζm) = (ζpa−1)

pa−1
m .

Now let
Φ : Am ↪! Apa−1

be a Kummer embedding and let
α̂ = Φ(α′m),

then α̂ is also a solution of (H90) for ιm,pa−1(ζm) and thus there exists a scalar λ ∈ Fp(ζpa−1)
such that

(αpa−1)
pa−1
m = (1⊗ λ)α̂.

If we let
λ̃ = ι−1

m,pa−1(λ),

we obtain

(αpa−1)
pa−1
m = (1⊗ λ)Φ(α′m)

= Φ((1⊗ λ̃)α′m).

If we set
αm = (1⊗ λ̃)α′m,

it follows that

Φ((αm)m) = (αpa−1)p
a−1

= 1⊗ (ζpa−1)a,

therefore

(αm)m = 1⊗ ι−1
m,pa−1((ζpa−1)a)

= 1⊗ cm

and αm is standard. If β ∈ Am is another solution of (H90) for ζm, then there exists a scalar
µ ∈ Fp(ζm) such that

αm = (1⊗ µ)β,

but then we obtain
(αm)m = (1⊗ µm)βm.

As a consequence, β is standard if and only if µm = 1 and the standards solutions are the

(1⊗ ζum)αm

for 0 ≤ u ≤ m− 1.

From Proposition 7.2.7, it follows that for any integer m prime to p, we can define Fpm in a
standard way.

144

x+ 1
x3 + x+ 1
x5 + x3 + 1
x7 + x+ 1
x9 + x7 + x4 + x2 + 1
x11 + x8 + x7 + x6 + x2 + x+ 1
x13 + x10 + x5 + x3 + 1
x15 + x+ 1
x17 + x11 + x10 + x8 + x7 + x6 + x4 + x3 + x2 + x+ 1
x19 + x17 + x16 + x15 + x14 + x13 + x12 + x8 + x7 + x6 + x5 + x3 + 1

Table 7.1: The first ten standard polynomials derived from Conway polynomials for p = 2.

Definition 7.2.8 (Standard generating element). A generating element x ∈ Fpm is called standard
if it is of the form

x = bαmcζm
for αm ∈ Am a standard solution of (H90).

Definition 7.2.9 (Standard defining polynomial). The standard defining polynomial Pm for Fpm
is the minimal polynomial over k of a standard generating element of Fpm .

Definition 7.2.10 (Decorated finite field). Let m ∈ N an integer prime to p. A decorated finite
field is a pair (Fpm , sm) where sm ∈ Fpm is a standard generating element.

Remark 7.2.11. By Remark 5.2.11, we can recover αm the standard solution of (H90) from
the standard generating element sm, thus decorated Kummer algebras can be recovered from
decorated finite fields.

By Proposition 5.2.12, we know that Pm is entirely determined by cm, and thus by the
cyclotomic lattice SI up to order pa − 1, with a = ν(m) the level of m. This helps to achieve
the uniqueness sub-goal of our lattice, because once the cyclotomic lattice has been chosen, the
standard defining polynomials are unique. As an example, we give in Table 7.1 the first ten
standard defining polynomials induced by the cyclotomic lattice given by the Conway polynomials
with p = 2. A small variation of the Lenstra-Allombert algorithm, given by Algorithm 12, allows
us to compute all these standard elements.

Algorithm 12 (Decoration – Standardization)
Input: Fpm , for m prime to p, and SI a cyclotomic lattice.
Output: (Am, αm) decorated, Pm standard irreducible polynomial of degree m, and s ∈ Fpm

standard generating element inducing Fpm ' Fp[T]/(Pm).
1: Compute the Kummer algebra Am.
2: Compute cm = (ιm,pa−1)−1((ζpa−1)a) ∈ Fp(ζm).
3: Find α′m ∈ Am a nonzero solution of (H90) for ζm.
4: Compute its Kummer constant: (α′m)m = 1⊗ c′m.
5: Compute κ a m-th root of cm/c′m.
6: Set αm = (1⊗ κ)α′m.
7: Compute Pm the minimal polynomial of bαmcζm over k.
8: Return (Am, αm), Pm, and bαmcζm .

145

Proposition 7.2.12. Algorithm 12 is correct, i.e. the computed element αm is indeed standard.

Proof. By Proposition 7.2.7, we know that there exists a standard solution of (H90) for ζm, let
ααα ∈ Am be such a solution. Let α′m ∈ Am be any nonzero solution of (H90) for ζm and let c′m be
its Kummer constant. Then we know that there exists λ ∈ Fp(ζm) a scalar such that

ααα = (1⊗ λ)α′m.

It follows that
cm = λmc′m,

thus
cm/c

′
m

is indeed a m-th power. If we let κ be a m-th root of cm/c′m and if we set

αm = (1⊗ κ)α′m,

we obtain
(αm)m = 1⊗ cm.

We have thus proven that αm is a standard solution of (H90) for ζm. By definition, bαmcζm is
then a standard generating element of Fpm and its minimal polynomial Pm is a standard defining
polynomial.

7.2.2 Towards standard embeddings

Now that we have found a way to compute standard solutions of (H90), and to deduce standard
generating elements to define our finite fields, it is natural to work towards the definition of
compatible embeddings between these finite fields that are also standard. Our goal is also to
simplify the storage of the constants κ involved in the computation of such embeddings.

Proposition 7.2.13. Let m | n be two integers prime to p and such that

ν(m) = ν(n),

i.e. the (decorated) Kummer algebras (Am, αm) and (An, αn) have the same level. Then there is a
unique Kummer embedding

Φm,nΦm,nΦm,n : Am ↪! An

such that
Φm,nΦm,nΦm,n(αm) = (αn)

n
m .

Proof. The element α̂ = (αn)
n
m is a solution of (H90) for (ζn)

n
m = ιm,n(ζm). We also know that

the Kummer constant of αm is
cm = ι−1

m,pa−1((ζpa−1)a)

and the Kummer constant of αn is

cn = ι−1
n,pa−1((ζpa−1)a).

The embeddings ι are compatible by definition, thus we have

ιm,pa−1 = ιn,pa−1 ◦ ιm,n

146

and
ι−1
n,pa−1 = ιm,n ◦ ι−1

m,pa−1.

It follows that
cn = ιm,n(cm).

By Proposition 7.1.4, there exists a unique Kummer embedding Φm,nΦm,nΦm,n such that

Φm,nΦm,nΦm,n(αm) = α̂ = (αn)
n
m .

Proposition 7.2.13 guarantees that decorated Kummer algebras (Am, αm), (An, αn) of the
same level are power-compatible, i.e. we can describe a unique Kummer embedding by

αm 7! (αn)
n
m .

Therefore, there is no constant κ to store in this case because we are in the trivial case κ = 1,
which was our goal. However, we see that power compatibility implies

cn = ιm,n(cm),

hence implies that the decorated Kummer algebras share the same level. If the Kummer algebras
do not share the same level, we can ask for norm-compatibility instead of power-compatibility, at
least between two complete decorated Kummer algebras. Let us first describe what “norm” we
will be using. Let An be a Kummer algebra of level ν(n) = b, so that

An = Fpn ⊗ Fpb ∼= Fpn ⊗ Fp(ζpb−1),

where the isomorphism is given by 1⊗ ιn,pb−1. Then, if a | b is another integer, the subalgebra of
An invariant under 1⊗ σa is identified (by the same isomorphism) with

(An)1⊗σa ∼= Fpn ⊗ Fp((ζpb−1)
pb−1
pa−1)

where
(ζpb−1)

pb−1
pa−1 = NFpn/Fpa

(ζpb−1) = ιpa−1,pb−1(ζpa−1)

and where NFpn/Fpa
is the relative norm of the finite field extension

Fpb/Fpa .

Definition 7.2.14 (Scalar norm operator). Let n an integer prime to p and An a Kummer
algebra of level ν(n) = c. Let a, b two integers such that a | b | c, then we define the scalar norm
operator as

Nb/a,An
: (An)1⊗σb

! (An)1⊗σa

γ 7!
∏

0≤j≤a
b
(1⊗ αja)(γ)

This operator is well-defined, as the elements in the image of Nb/a,An
are indeed invariant

under 1⊗ σa. We often omit An and only write Nb/a, as the ambient space An is implicit. By
construction, Nb/a acts on the scalar field 1⊗ F×

pb
as the usual norm 1⊗NF

pb
/Fpa

. Scalar norms
are multiplicative, i.e. for any γ, γ′ ∈ An, we have

Nb/a(γγ′) = Nb/a(γ)Nb/a(γ′),

147

they are transitive, i.e. for any a | b | c, we have

Nc/a = Nb/a ◦ Nc/b,

and they commute with σ ⊗ 1. All these nice properties make the scalar norm an excellent
candidate to generalize the powering used to define standard embeddings between decorated
Kummer algebras of same level.

Proposition 7.2.15. Let a | b be two integers prime to p and let (Apa−1, αpa−1), (Apb−1, αpb−1)
two decorated complete Kummer algebras of levels a and b respectively. Then there is a unique
Kummer embedding (that we again call standard)

Φpa−1, pb−1Φpa−1, pb−1Φpa−1, pb−1 : Apa−1 ↪! Apb−1

such that
Φpa−1, pb−1Φpa−1, pb−1Φpa−1, pb−1(αpa−1) = Nb/a(αpb−1).

Proof. Let α̂ = Nb/a(αpb−1), by the properties of the scalar norm, we have

(σ ⊗ 1)(α̂) = (σ ⊗ 1)(Nb/a(αpb−1))

= Nb/a((σ ⊗ 1)(αpb−1))

= Nb/a((1⊗ ζpb−1)αpb−1)

= (1⊗ (ζpb−1)
pb−1
pa−1)Nb/a(αpb−1),

therefore α̂ is a solution of (H90) for (ζpb−1)
pb−1
pa−1 . We also have

α̂p
a

= (σa ⊗ σa)(α̂)

= (σa ⊗ σa)(Nb/a(αpb−1))

= (σa ⊗ 1)(Nb/a(αpb−1))

= Nb/a((σa ⊗ 1)(αpb−1))

= Nb/a((1⊗ (ζpb−1)a)(αpb−1))

= (1⊗ ιpa−1, pb−1(ζpa−1)a)Nb/a(αpb−1),

thus α̂ satisfies
α̂p

a−1 = 1⊗ ιpa−1, pb−1(cpa−1),

and by Proposition 7.1.4 there is a unique embedding such that

Φpa−1, pb−1Φpa−1, pb−1Φpa−1, pb−1(αpb−1) = α̂.

7.3 Standard embeddings

From Proposition 7.2.13, we learned how to construct a standard Kummer embedding between
two decorated Kummer algebras sharing the same level, using power compatibility. From
Proposition 7.2.15 we learned how to construct a standard Kummer embedding between two

148

decorated complete Kummer algebras, using norm compatibility. Our goal is now to use both
results together in order to construct a standard Kummer embedding between any two decorated
Kummer algebras. Consider the general case where we have two integers m | n not divisible by p,
set a = ν(m), b = ν(n), and consider the diagram

(Apa−1, αpa−1)
Φ

pa−1, pb−1
Φ

pa−1, pb−1Φ
pa−1, pb−1
−−−−−−−! (Apb−1, αpb−1)

Φm, pa−1Φm, pa−1Φm, pa−1

x xΦ
n, pb−1

Φ
n, pb−1Φ
n, pb−1

(Am, αm) (An, αn)

of standard embeddings of decorated algebras.

Lemma 7.3.1. In this setting, there exists a unique Kummer embedding

Φm,nΦm,nΦm,n : Am ↪! An

that makes the diagram commute. We call this embedding the standard Kummer embedding from
Am to An.

Proof. Let
α̃ = Φpa−1, pb−1Φpa−1, pb−1Φpa−1, pb−1(Φm, pa−1Φm, pa−1Φm, pa−1(αl)) ∈ Apb−1.

The element α̃ is fixed by both σm ⊗ 1 and 1 ⊗ σa, because αm is, and Kummer embeddings
commute with both σ ⊗ 1 and 1⊗ σ. Therefore, α̃ is also fixed by σn ⊗ 1 and 1⊗ σb, and thus is
in the image of An by Φn, pb−1Φn, pb−1Φn, pb−1. We then let

α̂ = (Φn, pb−1Φn, pb−1Φn, pb−1)−1(α̃) ∈ An.

By construction, the element α̃ is a solution of (H90) for

ιm, pb−1(ζm) = (ζpb−1)
pb−1
m

that satisfies
α̃m = 1⊗ ιm, pb−1(cm)

It thus follows that α̂ is a solution of (H90) for

ι−1
n, pb−1

(ιm, pb−1(ζm)) = ιmn(ζm) = (ζn)
n
m

that also satisfies
α̂m = 1⊗ ιm,n(cm).

By Proposition 7.1.4, we then have a unique Kummer embedding such that

Φm,nΦm,nΦm,n(αm) = α̂,

and that concludes the proof.

Definition 7.3.2 (Standard embedding). Let m | n two integers prime to p. By Proposition 7.1.3,
there exists a unique finite field embedding

φm,nφm,nφm,n : Fpm ↪! Fpn

such that the standard Kummer embedding Φm,nΦm,nΦm,n satisfies

Φm,nΦm,nΦm,n = φm,nφm,nφm,n ⊗ ιm,n.

This finite field embedding φm,nφm,nφm,n is called the standard embedding from Fpm to Fpn .

149

The existence result of Lemma 7.3.1 is “constructive”, but requires to compute the complete
Kummer algebra Apa−1, that can be very large, thus it is impractical. However, one should be
able to write

α̂ = (1⊗ κ)(αn)
n
m

for some constant κ ∈ Fp(ζn), since both α̂ and (αn)
n
m are solutions of (H90) for (ζn)

n
m . We

proved in Lemma 7.3.1 that there was a unique, standard, Kummer embedding corresponding to
this solution α̂, thus there should also be a unique constant κ corresponding to this embedding.
Our aim is now to give an explicit expression of κ, so that we do not have to compute the complete
algebra Apb−1 to obtain the Kummer embedding

Φm,nΦm,nΦm,n.

We start with the simpler case of complete algebras nonetheless, i.e. we study the constant κ
when m = pa − 1 and n = pb − 1.

Proposition 7.3.3. In the complete algebra Apb−1 we have

(αpb−1)
pb−1
pa−1 = (1⊗ ζpb−1)

(b−a)pb+a−bpb+apa

(pa−1)2 Nb/a(αpb−1).

Proof. Using the fact that (σ ⊗ σ)(β) = βp for any β ∈ Apb−1, and then (H90), we get:

(αpb−1)
pb−1
pa−1

Nb/a(αpb−1)
=

∏
0≤j< b

a

(σja ⊗ σja)(αpb−1)

(1⊗ σja)(αpb−1)

=
∏

0≤j< b
a

(1⊗ σja)

(
(σja ⊗ 1)(αpb−1)

αpb−1

)

=
∏

0≤j< b
a

(1⊗ σja)(1⊗ ζpb−1)ja

= (1⊗ ζpb−1)
∑

0≤j< b
a
japja

.

We conclude thanks to the identity∑
0≤j<n

jT j = T
d

dT

(
Tn − 1

T − 1

)
=

(n− 1)Tn+1 − nTn + T

(T − 1)2
.

From Proposition 7.3.3, we can deduce the constant κ involved in the computation of
Φpa−1, pb−1Φpa−1, pb−1Φpa−1, pb−1. The results also extends to non complete algebras.

Corollary 7.3.4. Let (Am, αn) and (An, αn) be two decorated Kummer algebras of respective
degrees m | n prime to p and respective levels a and b. Then the standard embedding

Φm,nΦm,nΦm,n : Am ↪! An

is defined by the assignation
αm 7! (1⊗ κm,n)(αn)

n
m ,

where

κm,n = ι−1
n,pb−1

(ζpb−1)
− (b−a)pb+a−bpb+apa

(pa−1)m .

150

Proof. Recall that Φm,nΦm,nΦm,n is, by construction, the unique Kummer embedding that makes the
following diagram commute.

(Apa−1, αpa−1)
Φ

pa−1, pb−1
Φ

pa−1, pb−1Φ
pa−1, pb−1
−−−−−−−! (Apb−1, αpb−1)

Φm, pa−1Φm, pa−1Φm, pa−1

x xΦ
n, pb−1

Φ
n, pb−1Φ
n, pb−1

(Am, αm) (An, αn)

Therefore, if we set
α̂ = (1⊗ κm,n)(αn)

n
m ,

it is sufficient, by Lemma 7.3.1, to prove that

Φpa−1, pb−1Φpa−1, pb−1Φpa−1, pb−1(Φm, pb−1Φm, pb−1Φm, pb−1)(αm) = Φn, pb−1Φn, pb−1Φn, pb−1(α̂).

However, using Proposition 7.2.15 and Proposition 7.2.13, we know that

Φpa−1, pb−1Φpa−1, pb−1Φpa−1, pb−1(Φm, pb−1Φm, pb−1Φm, pb−1)(αm) = Nb/a(αpb−1)
pa−1
m ,

and we also know that
Φn, pb−1Φn, pb−1Φn, pb−1((αm)

n
m) = (αpb−1)

pb−1
m .

Therefore, using Proposition 7.3.3, we obtain

Φn, pb−1Φn, pb−1Φn, pb−1(α̂) = (ζpb−1)
− (b−a)pb+a−bpb+apa

(pa−1)m (αpb−1)
pb−1
m

= ((ζpb−1)
− (b−a)pb+a−bpb+apa

(pa−1)2 (αpb−1)
pb−1
pa−1)

pa−1
m

= Nb/a(αpb−1)
pa−1
m

= Φpa−1, pb−1Φpa−1, pb−1Φpa−1, pb−1(Φm, pb−1Φm, pb−1Φm, pb−1)(αm),

which completes the proof.

Proposition 7.3.5. Standard Kummer embeddings are compatible: let (Al, αl), (Am, αm) and
(An, αn) three decorated Kummer algebras with respective degrees

l | m | n,

then the corresponding standard embeddings satisfy

Φl, nΦl, nΦl, n = Φm,nΦm,nΦm,n ◦Φl,mΦl,mΦl,m.

Proof. Corollary 7.3.4 gives us explicit formulas for the standard Kummer embeddings, thus we
can check by direct computation that the embeddings are compatible. Let

a = ν(l) b = ν(m) c = ν(n)

the respective levels of Al, Am and An. Then we have the corresponding commutative diagram
where the arrows represent the standard Kummer embeddings.

Apa−1 −−−−! Apb−1 −−−−! Apc−1x x x
Al −−−−! Am −−−−! An

151

Using Lemma 7.3.1, it is sufficient to show that

Φl, nΦl, nΦl, n(αl)

and
(Φm,nΦm,nΦm,n ◦Φl,mΦl,mΦl,m)(αl)

have the same image in Apc−1 under Φn, pc−1Φn, pc−1Φn, pc−1. However, it follows from the diagram that this
common image is

Nc/a(αpc−1)
pa−1

l .

All these results ensure that Algorithm 13 is correct and provides embeddings that are
compatible.

Algorithm 13 (Standard compatible embeddings)
Input: SI a cyclotomic lattice, and (Fpm , sm), (Fpn , sn), decorated finite fields, for m | n integers

prime to p.
Output: t ∈ Fpn , such that the assignation sm 7! t defines a standard embedding φm,nφm,nφm,n : Fpm ↪!

Fpn , compatible with composition.
1: Compute the Kummer algebras Am and An.
2: Recover αm from sm and αn from sn using Remark 5.2.11.

3: Compute κm,n = (ιn,pb−1)−1

(
(ζpb−1)

− (b−a)pb+a−bpb+apa

(pa−1)m

)
where a = ν(m), b = ν(n).

4: Return
⌊
(1⊗ κ)(αn)

n
m

⌋
(ζn)

n
m
.

Proposition 7.3.6. Standard finite field embeddings are compatible with composition: if (Fpl , sl),
(Fpm , sm), and (Fpn , sn) are decorated finite fields with l |m |n, the corresponding standard em-
beddings satisfy φl, nφl, nφl, n = φm,nφm,nφm,n ◦φl,mφl,mφl,m.

Proof. Proposition 7.3.5 ensures that standard Kummer embedding are compatible, and by
Corollary 7.1.5 this also implies the compatibility of the standard embeddings between the finite
fields.

7.4 Implementation

In the preceding sections, we proposed a new method to construct a lattice of compatibly
embedded finite fields and proved that our method was correct. However, the description of
Kummer embedding was abstract, and many computational details were left unspecified. There
are various ways in which the algorithms can be implemented, depending on how the finite fields
are represented and how the cyclotomic lattice SI is constructed. In order to demonstrate the
praticality of this method, we implemented it in Nemo/Flint [H+16, Har10]. In this section, we
present the experimental results and the complexity analysis, depending on the representation we
used in our code.

152

7.4.1 Complexity analysis

In order to prove a bound on the complexity of our algorithms, we have to specify which
representation we assume for our finite fields. A reasonable option, and also the one we use in
practice, is to use Conway polynomials to represent the cyclotomic part of the lattice, i.e. the
fields

Fp(ζ).

To do so, we use the Conway polynomials to represent the finite fields

Fp(ζpa−1)

and we deduce from them the smallest possible representation for any other field

Fp(ζm).

We first study the complexity of computing a standard solution of (H90).

Proposition 7.4.1. Given a collection of Conway polynomials for k = Fp, of degree up to d,
standard solutions αm of (H90) can be computed for any m | (pi − 1) for any i ≤ d using

O(M(m2) log(m) +M(m) log(m) log(p))

operations.

Proof. Let
a = ν(m)

be the level of Am, we take the a-th Conway polynomial from the collection and use it to define
ζpa−1. We have

a = ord(Z/mZ)×(p)

where ord(Z/mZ)× is the multiplicative order in the group (Z/mZ)×, and since a ≤ m − 1, we
have a = O(m), and then the cost of multiplication in

Fp(ζpa−1) ∼= Fpa

is bounded by O(M(m)). We can then compute

(ζpa−1)
pa−1
m

using O(mM(m)) operations in k with the square-and-multiply algorithm. Then, its minimal
polynomial can be computed using O(m

ω+1
2) operations with the algorithm presented in [Sho94].

The Kummer constant
cpa−1 = (ζpa−1)a

can then be computed using a negligible (logarithmic in a) number of operations in k, and the
Kummer constant

cm = ι−1
m, pa−1(cpa−1)

can be computed using the algorithm presented in Section 5.3.3, that is also based on [Sho94],
within the same complexity bound O(m

ω+1
2). To construct the Kummer algebra

Am = Fpm ⊗ Fp(ζm),

153

we only need an irreducible polynomial over k of degree m, since we already have the minimal
polynomial of ζm. Very efficient, quasi-optimal algorithms [BFSS06, CL13, DFDS13] exist to
compute such polynomials, thus the cost is also negligible. We then represent the Kummer
algebra as

Fpm [T]/(h(T))

where h is the minimal polynomial of ζm over k, and where Fpm is defined with the irreducible
polynomial of degree m that we found. With the Kummer algebra constructed, we can compute
a solution αm ∈ Am of (H90) for ζm at a cost of

O(M(m2) log(m) +M(m) log(p))

operations in k, as explained in Section 5.2.4. We can then compute the Kummer constant

c′m = (α′m)m

with O(M(m2) log(m)) operations in k via Kronecker substitution, and the m-th root extraction
of

cm/c
′
m = κm

costs O(M(m) log(m) log(p)) operations in k, according to the analysis in [BDFD+17]. The
standard solution

αm = (1⊗ κ)α′m

is finally computed with a negligible number of operations. In conclusion, the two dominating
steps are the m-th root extraction and the computation of the solution of (H90), hence the total
complexity is

O(M(m2) log(m) +M(m) log(m) log(p)).

Proposition 7.4.2. Under the same assumptions as in Proposition 7.4.1 and after the computa-
tion of two decorated algebras (Am, αm) and (An, αn), a standard embedding of finite fields

Fpm ↪! Fpn

can be computed using
O(M(n2) log(n))

operations in k.

Proof. The projection
xm = bαmcζm

comes for free because αm is already represented in the (Fpm ⊗ 1)-basis (1⊗ (ζm)j)j of Am, i.e. as

αm =

m−1∑
j=0

aj ⊗ (ζm)j ,

and the minimal polynomial of xm over k is computed using O(m
ω+1
2) operations. We now need

to compute the scalar

κm,n = ι−1
n,pb−1

(ζpb−1)
− (b−a)pb+a−bpb+apa

(pa−1)m .

154

which is done using O(M(n)n) operations in k, and the element

(αn)
n
m ,

which is done using O(M(n2) log(n)) operations. The only remaining step is to compute

xn =
⌊
(1⊗ κm,n)(αn)

n
m

⌋
(ζn)

n
m
,

but it is not free this time, because

α̂ = (1⊗ κm,n)(αn)
n
m

is represented in the basis (1⊗ (ζn)j)j , when we need a representation in the basis (1⊗ (ζn)
jn
m)j . A

generic change of basis algorithm would be too expensive because we need to convert n elements
from the field of scalar Fp(ζn) to

Fp((ζn)
n
m) ∼= Fp(ζm),

which costs O(n
ω+3
2). Instead, we note that we only need

bα̂c
(ζn)

n
m
,

thus we only need one coordinate in the basis (1⊗ (ζn)
jn
m)0≤j≤m−1, and we proceed as follows.

Let Tr denote the trace map of the extension

Fp(ζn)/Fp((ζn)
n
m)

and let u ∈ Fp(ζn) be an element such that Tr(u) = 1. In this case, the embedding

Fp((ζn)
n
m) ↪! Fp(ζn)

is just the identity because we have

Fp((ζn)
n
m) ⊆ Fp(ζn).

Then, as explained in Section 5.3.2, the map

x 7! Tr(ux)

is Fp((ζn)
n
m)-linear and every element in Fp((ζn)

n
m) is fixed, thus the map agrees with the inverse

of the embedding
Fp((ζn)

n
m) ↪! Fp(ζn)

on its image Fp((ζn)
n
m). We thus need to obtain the first coordinate of

Tr(ux)

in the power basis of (ζn)
n
m , that we denote by

bTr(ux)c
(ζn)

n
m
.

In the end, we need to evaluate the map

x 7! bTr(ux)c
(ζn)

n
m

155

for many values x ∈ Fp(ζn), but this map is a k-linear form, hence we can precompute its vector
on the power basis of ζn. Let hn, hm be the minimal polynomials of ζn and (ζn)

n
m , and let b, a be

their degrees. Let h0 be the constant coefficient of hm, and let

τ = − h0

(ζn)
n
m

h′n(ζn)

h′m((ζn)
n
m)
∈ Fp(ζn),

direct calculation shows that

b−1∑
i=0

⌊
Tr(ζin)

⌋
(ζn)

n
m
Zi =

τ(Z−1)

Zhn(Z−1)
mod Zb,

where by τ(Z) we mean τ ∈ Fp(ζn) seen as a polynomial in ζn. Hence, we can compute the
vector of the linear form x 7! bTr(x)c

(ζn)
n
m

using only basic polynomial arithmetic and modular

composition, i.e. in O(n(ω+1)/2) operations. Finally, we compute

(1⊗ u)α̂ = (1⊗ κm,nu)(αn)
n
m ,

we see it as a polynomial with coefficients in Fp(ζn), and we apply the map bTr(x)c
(ζn)

n
m

to each
coefficient to recover xn. This costs O(nM(n)) operations.

In terms of memory complexity, we remark that storing the standard solution of (H90) αm
costs O(m2) elements in k, but thanks to Remark 5.2.11, we only have to store

bαmcζm ,

hence we need only O(m) field elements.

7.4.2 Experimental results

We implemented our lattice of compatibly embedded finite fields in the computer algebra sys-
tem Nemo [H+16], written in the Julia [Jul] programming language, and based on the library
Flint [Har10], that is written in the C programming language. The code is available as a
Julia package at https://github.com/erou/LatticeGFH90.jl. The package implements Algo-
rithms 12 and 13. The high level manipulations are done directly in Julia while the critical
routines are performed by the C library libembed. The libembed library is part of the Julia
package LatticeGFH90, it is based on Flint and is compiled against Nemo’s version of Flint when
LatticeGFH90 is built. All the tests in this sections were performed on an Intel Core i7-7500U
CPU clocked at 2.70GHz, using Nemo 0.19.0 running on Julia 1.5.3, and Nemo’s corresponding
version of Flint. All the figures were created using gnuplot version 5.2 patchlevel 8. The benchmark
functions are available in the file benchmarks.jl of the library LatticeGFH90, while the data and
the gnuplot files are available in the benchmark directory at https://github.com/erou/thesis/.

We first measured the time needed to compute Kummer algebras and solutions of (H90),
i.e. the time needed to perform Algorithm 12, with various small prime p, using the Conway
polynomials available in Nemo. It seems that the behaviour of Algorithm 12 is essentially the
same, no matter what prime we use, as shown in Figure 7.1 (p = 3) and in Figure 7.2 (p = 11).
Consequently, we only show the experiments made with p = 3 in the rest of this section. Note
that in Figures 7.1 and 7.2, we compute solutions for (H90) with m ≤ 1000, but not all the
degrees m up to 1000 are computed: indeed we need that p - m, and if the level of Am is a, we

156

https://github.com/erou/LatticeGFH90.jl
https://github.com/erou/thesis/

 0.1

 1

 10

 100

 1000

 200 400 600 800

T
im

e
(m

s)

L
ev

el
 o

f
th

e
al

g
eb

ra

Degree of the algebra

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Figure 7.1: Timings for computing decorated Kummer algebras (Am, αm) (logarithmic scale)
with p = 3.

 0.1

 1

 10

 100

 1000

 10000

 200 400 600 800

T
im

e
(m

s)

L
ev

el
 o

f
th

e
al

g
eb

ra

Degree of the algebra

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Figure 7.2: Timings for computing decorated Kummer algebras (Am, αm) (logarithmic scale)
with p = 11.

157

 0

 100

 200

 300

 400

 500

 600

 200 400 600 800

T
im

e
(m

s)

Degree of the algebra

Figure 7.3: Timings for computing decorated Kummer algebras (Am, αm) with p = 3 and with a
given level a = 12.

also need the a-th Conway polynomial to be available, which is not always the case. In the
complexity analysis of Proposition 7.4.1, the level of the algebra Am was bounded by its degree
m, leading to a quasi-quadratic complexity. However, we see in the timings that this bound
is not always relevant in practice. Indeed, the time results show that the level of the algebra
has a great impact on the timings: when the level is low, the computations are much faster. In
Figure 7.3, we selected only the computations that occured on a fixed level a = 12, and we see
that in that case the time complexity seems to be quasi-linear in the degree m. We also see that
the characteristic p has a small impact on the timings, as shown in Figure 7.4 where we measure
the timings for computing the algebra A16 and the corresponding solution of (H90) α16, i.e. we
work with the fixed degree m = 16 and we let the characteristic be a prime number p that grows
from 3 to 104. The bottleneck of Algorithm 12 appears to be the computation of the m-th root
extraction routine. When the decoration of two Kummer algebras Am and An, with m | n, has
been done; i.e. when Algorithm 12 has been performed and solutions αm, αn are available, then
the computation of the standard embedding

Fpm ↪! Fpn

is quite fast. In other words, Algorithm 13 is much faster than Algorithm 12, which is a good
thing because we only have to call Algorithm 12 once for each degree m, while Algorithm 13
is called for each embedding computation, and thus can be called several times with the same
degree m. In Figure 7.5, we show the timings needed to compute embeddings from Fp2 to Fpm , in
the case where p = 3, and for every 4 ≤ m ≤ 1000 such that p - m, 2 | m, and a suitable Conway
polynomial is available. Once again, the level of the destination algebra has an important impact
on the timings. We also measured the time needed to compute embeddings with extensions of a

158

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2000 4000 6000 8000

T
im

e
(m

s)

L
ev

el
 o

f
th

e
al

g
eb

ra

Prime

 1

 2

 4

Figure 7.4: Timings for computing decorated Kummer algebras (A16, α16) in characteristic p,
with p a prime number satisfying 3 ≤ p ≤ 104.

 0.1

 1

 10

 100

 200 400 600 800

T
im

e
(m

s)

L
ev

el
 o

f
th

e
d
es

ti
n
at

io
n
 a

lg
eb

ra

Degree of the destination algebra

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Figure 7.5: Timings to compute the standard embedding from Fp2 to Fpm (logarithmic scale), for
p = 3.

159

 0.1

 1

 10

 200 400

T
im

e
(m

s)

L
ev

el
 o

f
th

e
d
es

ti
n
at

io
n
 a

lg
eb

ra

Degree of the departure algebra

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Figure 7.6: Timings to compute the standard embedding from Fpm to Fp2m (logarithmic scale),
for p = 3.

fixed degree [
Fp2m : Fpm

]
= 2

in Figure 7.6, and we obtain similar results as in in Figure 7.5 where the degree of the extension
was varying but the base field was fixed. Thus, it appears that the most important parameter
is the degree of the destination algebra. Nevertheless, embedding computations seems to be
faster with a small extension degree. This is in particular shown in Figure 7.7, where we plot the
timings for computing standard embeddings

Fpd ↪! Fp880

with d | 880. The number 880 was chosen because it is not divisible by p = 3 and because it has
20 different divisors, which is the maximum we can obtain for numbers coprime to 3 and less than
1000. The number 560 is also suitable and produces similar results. We use logarithmic scale on
the x-axis because there is a greater number of small divisors. The bottleneck of Algorithm 13
for computing a standard embedding

Fpm ↪! Fpn

seems to be the powering (αn)
n
m occuring in the destination algebra An, which explains both

the fact that the algorithm is faster when the extension degree n
m is smaller, and the fact that

the level of the destination algebra has an important impact of the timings. Again, we see in
Figure 7.8 that the impact of the characteristic p on the timings is minimal, compared to the
other parameters.

160

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 10 100

T
im

e
(m

s)

Degree of the destination algebra

Figure 7.7: Timings to compute the standard embedding from Fpd to Fp880 , for p = 3 and d | 880.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2000 4000 6000 8000

T
im

e
(m

s)

L
ev

el
 o

f
th

e
al

g
eb

ra

Prime

 1

 2

 4

Figure 7.8: Timings to compute the standard embedding from Fp2 to Fp16 , for p a prime number
satisfying 3 ≤ p ≤ 104.

161

Conclusion

In this thesis, we investigated the arithmetic of finite field extension from two different angles,
the arithmetic of a single finite field extension, and the arithmetic of a lattice of compatibly
embedded finite fields.

We studied an alternative, more rigid, kind of bilinear complexity, called hypersymmetric
bilinear complexity. Our algorithm to find trisymmetric formulas is very useful to understand
and exhibit formulas, but its complexity is prohibitive. We were able to replicate the last known
records in the dimension k in which formulas were found, but we were not able to go beyond that
point. With more optimization, one could hope to push a little further the computations, but it
is likely that new methods have to be found to really make a breakthrough. Asymptocically, we
proved that the hypersymmetric complexity of the multiplication in

Fpk

is linear in the degree k of the extension, just like with bilinear complexity. However, our approach
is clearly not optimal, since we obtain the result as a corollary from the same result in higher
dimension. One could hope to obtain better bounds on the hypersymmetric complexity by using
an ad hoc proof.

We implemented the Bosma-Canon-Steel framework in Nemo, and we introduced a new idea
to produce a lattice of compatibly embedded finite fields, based on both Conway polynomials
and the Bosma-Canon-Steel framework. Conway polynomials are used in many computer algebra
systems, and the Bosma-Canon-Steel framework is used in Magma (and Nemo). Our idea exploits
new techniques and is thus interesting in itself. Furthermore, it also leads to a new family of
(standard) polynomials that can be used to define finite fields. Nevertheless, this new family has
no practical impact at the moment. Indeed, we can prove that computing these polynomials is
essentially equivalent to the computation of Conway polynomials. Indeed, with our polynomials,
one can recover a standard solution αm of (H90) and deduce the value

(ζpa−1)a.

Then, by taking an a-th root, which is done in polynomial time in m, one can find ζpa−1 and
recover the associated Conway polynomial by computing a minimal polynomial. This means that
an efficient algorithm to compute our standard polynomials would lead to an efficient algorithm
to compute Conway polynomials, which would be unexpected. We thus do not have great hope
of finding such an algorithm, however the implemention presented in Section 7.4 is not the only
possible way to exploit our definitions. Indeed, it could be possible to loosen the assumption
that a cyclotomic lattice is pre-computed, and thus find a middle ground between the rigidity of
Conway polynomials and the flexibility of the Bosma-Canon-Steel framework, for example by
lazily computing the roots of unity only when needed. An orthogonal line of work would be to
construct a complete lattice of compatibly embedded finite fields, i.e. working even with degrees
that are not coprime with the characteristic p of the base field k.

162

Bibliography

[All02a] Bill Allombert. Explicit computation of isomorphisms between finite fields. Finite
Fields and Their Applications, 8(3):332–342, 2002.

[All02b] Bill Allombert. Explicit computation of isomorphisms between finite fields. Revised
version. https://www.math.u-bordeaux.fr/~ballombe/fpisom.ps, 2002.

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster
matrix multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 522–539. SIAM, 2021.

[Bal98] Stéphane Ballet. Etude de la complexité bilinéaire de la multiplication dans les corps
finis par interpolation sur des courbes algébriques. PhD thesis, Aix-Marseille 2, 1998.

[Bal99] Stéphane Ballet. Curves with many points and multiplication complexity in any
extension of Fq. Finite Fields and their Applications, 5:364–377, 1999.

[BCG+17] Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Grégoire Lecerf,
Bruno Salvy, and Éric Schost. Algorithmes efficaces en calcul formel. Published by
the authors, 2017.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

[BCS97] Wieb Bosma, John Cannon, and Allan Steel. Lattices of compatibly embedded finite
fields. Journal of Symbolic Computation, 24(3-4):351–369, 1997.

[BCS13] Peter Bürgisser, Michael Clausen, and Mohammad A Shokrollahi. Algebraic com-
plexity theory, volume 315. Springer Science & Business Media, 2013.

[BDEZ12] Razvan Barbulescu, Jérémie Detrey, Nicolas Estibals, and Paul Zimmermann. Finding
optimal formulae for bilinear maps. In International Workshop on the Arithmetic of
Finite Fields, pages 168–186. Springer, 2012.

[BDFD+17] Ludovic Brieulle, Luca De Feo, Javad Doliskani, Jean-Pierre Flori, and Éric
Schost. Computing isomorphisms and embeddings of finite fields. arXiv preprint
arXiv:1705.01221, 2017.

[BFSS06] Alin Bostan, Philippe Flajolet, Bruno Salvy, and Éric Schost. Fast computation of
special resultants. Journal of Symbolic Computation, 41(1):1–29, 2006.

163

https://www.math.u-bordeaux.fr/~ballombe/fpisom.ps

[BK78] Richard P Brent and Hsiang T Kung. Fast algorithms for manipulating formal power
series. Journal of the ACM (JACM), 25(4):581–595, 1978.

[BLS03] Alin Bostan, Grégoire Lecerf, and Éric Schost. Tellegen’s principle into practice.
In Proceedings of the 2003 international symposium on Symbolic and algebraic
computation, pages 37–44, 2003.

[BPR+21] Stéphane Ballet, Julia Pieltant, Matthieu Rambaud, Hugues Randriambololona,
Robert Rolland, and Jean Chaumine. On the tensor rank of multiplication in
finite extensions of finite fields and related issues in algebraic geometry. Russian
Mathematical Surveys, 76(1):29, 2021.

[BR04] Stéphane Ballet and Robert Rolland. Multiplication algorithm in a finite field and
tensor rank of the multiplication. Journal of Algebra, 272:173–185, 2004.

[Bsh13] Nader H. Bshouty. Multilinear complexity is equivalent to optimal tester size.
Electronic Colloquium on Computational Complexity, 20:11, 2013.

[CC88] David V. Chudnovsky and Gregory V. Chudnovsky. Algebraic complexities and
algebraic curves over finite fields. Journal of Complexity, 4(4):285–316, 1988.

[CK91] David G Cantor and Erich Kaltofen. On fast multiplication of polynomials over
arbitrary algebras. Acta Informatica, 28(7):693–701, 1991.

[CL13] Jean-Marc Couveignes and Reynald Lercier. Fast construction of irreducible polyno-
mials over finite fields. Israel Journal of Mathematics, 194(1):77–105, 2013.

[CÖ10] Murat Cenk and Ferruh Özbudak. On multiplication in finite fields. Journal of
Complexity, 26(2):172–186, 2010.

[Cov19] Svyatoslav Covanov. Improved method for finding optimal formulas for bilinear
maps in a finite field. Theoretical Computer Science, 2019.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. Journal of symbolic computation, 9:251–280, 1990.

[Dev21] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
9.2), 2021. http://www.sagemath.org.

[DF10] Luca De Feo. Algorithmes rapides pour les tours de corps finis et les isogenies. PhD
thesis, PhD thesis. Ecole Polytechnique X, 2010.

[DFDS13] Luca De Feo, Javad Doliskani, and Éric Schost. Fast algorithms for l-adic towers
over finite fields. In Proceedings of the 38th International Symposium on Symbolic
and Algebraic Computation, pages 165–172, 2013.

[DFDS14] Luca De Feo, Javad Doliskani, and Éric Schost. Fast arithmetic for the algebraic
closure of finite fields. In ISSAC ’14, pages 122–129. ACM, 2014.

164

[DFRR18] Luca De Feo, Hugues Randriambololona, and Édouard Rousseau. Lattices of
compatibly embedded finite fields in nemo/flint. ACM Communications in Computer
Algebra, 52(2):38–41, 2018.

[DFRR19] Luca De Feo, Hugues Randriam, and Édouard Rousseau. Standard lattices of
compatibly embedded finite fields. In Proceedings of the 2019 on International
Symposium on Symbolic and Algebraic Computation, pages 122–130, 2019.

[DFS10] Luca De Feo and Eric Schost. transalpyne: a language for automatic transposition.
ACM Communications in Computer Algebra, 44(1/2):59–71, 2010.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inf. Theor.,
22(6):644–654, Nov 1976.

[DR99] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. 1999.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael, volume 2. Springer,
2002.

[Gao93] Shuhong Gao. Normal Bases over Finite Fields. PhD thesis, University of Waterloo,
1993.

[GKZ14] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. On the powers of 2.
IACR Cryptology ePrint Archive, 2014:300, 2014.

[Gop81] Valerii Denisovich Goppa. Codes on algebraic curves. In Soviet Math. Dokl.,
volume 24, pages 170–172, 1981.

[H+16] William Hart et al. Nemo Package (Version 0.5.0). http://nemocas.org, 2016.

[Har09] David Harvey. Faster polynomial multiplication via multipoint kronecker substitution.
Journal of Symbolic Computation, 44(10):1502–1510, 2009.

[Har10] William Hart. Fast library for number theory: an introduction. Mathematical
Software-ICMS 2010, pages 88–91, 2010.

[HL04] Lenwood S Heath and Nicholas A Loehr. New algorithms for generating Conway
polynomials over finite fields. Journal of Symbolic Computation, 38(2):1003–1024,
2004.

[HVDH19a] David Harvey and Joris Van Der Hoeven. Integer multiplication in time O (n log n).
2019.

[HVDH19b] David Harvey and Joris Van Der Hoeven. Polynomial multiplication over finite fields
in time O (n log n). 2019.

[Jul] Julia : a high-level, high-performance dynamic language for technical computing.
http://julialang.org.

[Kal87] Erich Kaltofen. Computer algebra algorithms. Annual review of computer science,
2(1):91–118, 1987.

[Kar63] Anatolii Karatsuba. Multiplication of multidigit numbers on automata. In Soviet
Physics Doklady, volume 7, pages 595–596, 1963.

165

http://nemocas.org
http://julialang.org

[KS97] Erich Kaltofen and Victor Shoup. Fast polynomial factorization over high algebraic
extensions of finite fields. In Proceedings of the 1997 international symposium on
Symbolic and algebraic computation, pages 184–188, 1997.

[KU08] Kiran S Kedlaya and Christopher Umans. Fast modular composition in any charac-
teristic. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science,
pages 146–155. IEEE, 2008.

[KU11] Kiran S Kedlaya and Christopher Umans. Fast polynomial factorization and modular
composition. SIAM Journal on Computing, 40(6):1767–1802, 2011.

[Lan04] Serge Lang. Algebra, volume 211. Springer, 2004.

[LJ91] Hendrik W Lenstra Jr. Finding isomorphisms between finite fields. Mathematics of
Computation, pages 329–347, 1991.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20. Cambridge university
press, 1997.

[Moe76] Robert T Moenck. Another polynomial homomorphism. Acta Informatica, 6(2):153–
169, 1976.

[MVOV18] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied
cryptography. CRC press, 2018.

[Pap03] Christos H Papadimitriou. Computational complexity. John Wiley and Sons Ltd.,
2003.

[Par] Richard Parker. Finite fields and Conway polynomials. 1990. Vortrag am IBM
Scientific Center Heidelberg.

[Per96] Daniel Perrin. Cours d’algèbre, volume 30. Ellipses Paris, 1996.

[Pie12] Julia Pieltant. Tours de corps de fonctions algébriques et rang de tenseur de la
multiplication dans les corps finis. PhD of Université d’Aix-Marseille, Institut de
Mathématiques de Luminy, 2012.

[Pin92] RICHARD GE Pinch. Recognising elements of finite fields. In Cryptography and
coding, II, pages 193–197. Citeseer, 1992.

[PS06] Cyril Pascal and Éric Schost. Change of order for bivariate triangular sets. In Pro-
ceedings of the 2006 international symposium on Symbolic and algebraic computation,
pages 277–284, 2006.

[PS13] Adrien Poteaux and Éric Schost. Modular composition modulo triangular sets and
applications. computational complexity, 22(3):463–516, 2013.

[Rai96] Eric M. Rains. Efficient computation of isomorphisms between finite fields. personal
communication, 1996.

[Ran12] Hugues Randriambololona. Bilinear complexity of algebras and the chudnovsky-
chudnovsky interpolation method. Journal of Complexity, 28(4):489–517, 2012.

166

[Ran15] Hugues Randriambololona. On products and powers of linear codes under compo-
nentwise multiplication. In Algorithmic Arithmetic, Geometry, and Coding Theory,
volume 637 of Contemporary Mathematics, pages 3–78. AMS, 2015.

[RR21] Hugues Randriambololona and Édouard Rousseau. Trisymmetric multiplication
formulae in finite fields. In Jean Claude Bajard and Alev Topuzoğlu, editors,
Arithmetic of Finite Fields, pages 92–111, Cham, 2021. Springer International
Publishing.

[RS60] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields.
Journal of the society for industrial and applied mathematics, 8(2):300–304, 1960.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[Sch92] Alfred Scheerhorn. Trace-and norm-compatible extensions of finite fields. Applicable
Algebra in Engineering, Communication and Computing, 3(3):199–209, 1992.

[Sha48] Claude E Shannon. A mathematical theory of communication. The Bell system
technical journal, 27(3):379–423, 1948.

[Sho94] Victor Shoup. Fast construction of irreducible polynomials over finite fields. Journal
of Symbolic Computation, 17(5):371–391, 1994.

[Sho95] Victor Shoup. A new polynomial factorization algorithm and its implementation. J.
Symb. Comput., 20(4):363–397, 1995.

[Sho99] Victor Shoup. Efficient computation of minimal polynomials in algebraic extensions
of finite fields. In Proceedings of the 1999 international symposium on Symbolic and
algebraic computation, pages 53–58, 1999.

[SL84] Gadiel Seroussi and Abraham Lempel. On symmetric algorithms for bilinear forms
over finite fields. Journal of Algorithms, 5:327–344, 1984.

[SS71] Arnold Schönhage and Volker Strassen. Fast multiplication of large numbers. Com-
puting, 7:281–292, 1971.

[Sti09] Henning Stichtenoth. Algebraic function fields and codes, volume 254. Springer
Science & Business Media, 2009.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, 1969.

[STV92] Igor E. Shparlinski, Michael A. Tsfasman, and Serge G. Vladut. Curves with many
points and multiplication in finite fileds. In Coding Theory and Algebraic Geometry,
volume 1518 of Lecture Notes in Mathematics, pages 145–169. Springer, 1992.

[VZGG13] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge
university press, 2013.

[VZGS92] Joachim Von Zur Gathen and Victor Shoup. Computing frobenius maps and factoring
polynomials. Computational complexity, 2(3):187–224, 1992.

167

[Win71] Shmuel Winograd. On multiplication of 2 × 2 matrices. Linear Algebra and its
Applications, 4:381–388, 1971.

[Win77] Shmuel Winograd. Some bilinear forms whose multiplicative complexity depends on
the field of constants. Mathematical Systems Theory, 10:169–180, 1977.

168

Titre : Arithmétique efficace des extensions de corps finis

Mots clés : Calcul formel, corps finis, extensions

Résumé : Les corps finis sont omniprésents en cryp-
tographie et en théorie des codes, deux domaines de
première importance dans les communications mo-
dernes. Ainsi, il est crucial de représenter les corps
finis et d’y faire des calculs de la façon la plus effi-
cace possible. Dans cette thèse, nous travaillons sur
l’arithmétique des extensions de corps finis, de deux
manières différentes et indépendantes.
Dans la première partie, nous étudions l’arithmétique
d’une unique extension de corps fini Fpk . Une manière
d’estimer la complexité d’un algorithme dans une ex-
tension est de compter le nombre de multiplications
effectuées dans le corps de base Fp. Ce modèle
est connu sous le nom de complexité bilinéaire.
Dans cette thèse, nous généralisons les résultats
connus pour la complexité bilinéaire à de nouveaux
types de complexités, qualifiées de complexité hyper-
symétrique et de complexité multilinéaire. Nous four-
nissons un algorithme pour calculer la complexité hy-
persymétrique de la multiplication dans l’extension
Fpk , ainsi qu’une implémentation et son analyse.
Dans la seconde partie, notre but est de construire
une structure de donnée efficace pour représenter

plusieurs extensions simultanément, ainsi que les
plongements entre elles. Ces plongements sont ra-
rement uniques, et il faut donc s’assurer que les choix
effectués soient compatibles, c’est-à-dire que dès lors
que trois corps finis sont en jeu, le plongement cal-
culé est indépendant du chemin parcouru. Nous don-
nons une implémentation de l’algorithme de Bosma-
Canon-Steel, qui permet d’obtenir des plongements
compatibles, et qui était uniquement disponible dans
MAGMA, mais est désormais disponible dans le
système de calcul formel Nemo. Nous proposons
également une nouvelle construction nommée réseau
standard de corps finis compatiblement plongés, ins-
pirée de l’algorithme de Bosma-Canon-Steel et des
polynômes de Conway, qui sont à la base d’une
autre méthode populaire pour obtenir la compatibi-
lité. Contrairement à l’utilisation des polynômes de
Conway, notre méthode permet d’utiliser des corps fi-
nis définis de manière arbitraire, tout en restant effi-
cace. Nous analysons en détails la complexité de nos
algorithmes, et donnons une implémentation mon-
trant que notre construction peut être utilisée en pra-
tique.

Title : Efficient Arithmetic of Finite Field Extensions

Keywords : Computer algebra, finite fields, extensions

Abstract : Finite fields are ubiquitous in cryptography
and coding theory, two fields that are of utmost impor-
tance in modern communications. For that reason, it is
crucial to represent finite fields and compute in them
in the most efficient way possible. In this thesis, we in-
vestigate the arithmetic of finite field extensions in two
different and independent ways.
In the first part, we study the arithmetic of one fixed
finite field extension Fpk . A way of estimating the com-
plexity of an algorithm in an extension is to count the
number of multiplications performed in the base field
Fp. This model is called bilinear complexity. In this
thesis, we generalize results on bilinear complexity
to other types of complexities called hypersymmetric
complexity and multilinear complexity. We give an al-
gorithm to compute the hypersymmetric complexity in
the extension Fpk , as well as an implementation and
its analysis.
In the second part, out goal is to construct an effi-
cient data structure to represent several extensions si-

multaneously, as well as embeddings between them.
These embeddings are rarely unique, thus we have to
make sure that our choices are compatible: i.e. each
time three extensions are involved the embedding that
is computed does not depend on the actual path ta-
ken in the lattice of extensions. We give an implemen-
tation of Bosma, Canon and Steel’s algorithm, which
produces compatible embeddings, and which was ori-
ginally only available in MAGMA, but is now in the free
computer algebra software Nemo. We also propose a
new construction called standard lattice of compatibly
embedded finite fields, inspired by both Bosma, Ca-
non and Steel’s algorithm and Conway polynomials.
Another popular method to obtain compatibility is ba-
sed on these polynomials, but contrary to Conway
polynomials, our method enables to work with user-
defined finite fields, while being efficient. We give an
analysis of our algorithms, as well as an implementa-
tion that shows that our construction is practical.

Institut Polytechnique de Paris
91120 Palaiseau, France

