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Résumé - Abstract

Etude théorique et numérique d’équations cinétiques
stochastiques multi-échelles

Cette these est dédiée a I'étude d’une classe de systemes multi-échelles modélisés par une
Equation aux Dérivées Partielles Stochastique (EDPS) linéaire cinétique ou une Equation
Différentielle Stochastique (EDS). On étudie ces systémes d’un point de vue théorique et
numérique, dans deux régimes asymptotiques : le régime de moyennisation et le régime
d’approximation-diffusion.

Les deux premiers chapitres énoncent les principaux résultats théoriques de cette these.
On montre a chaque fois la convergence de la composante lente du systeme d’EDPS
considéré vers la solution d’une équation de diffusion munie d'un terme source qui dépend
du régime asymptotique. Dans le premier chapitre, on considére le régime d’approximation-
diffusion, dans lequel le terme source de I’équation limite est un terme diffusif au sens
probabiliste (processus de Wiener). Dans le deuxiéme, on considére le régime de moyenni-
sation, dans lequel le terme source de ’équation limite est la moyenne du terme source de
I’EDPS originale.

Les deux derniers chapitres constituent la partie numérique de cette these. De maniere
générale, un schéma numérique peut étre consistant avec un systeme multi-échelle a un
parametre € > 0 fixé mais se révéler inefficace dans le régime asymptotique ¢ — 0, a cause
d’un terme raide dans le modeéle. A 'opposé, certains schémas préservent I'asymptotique :
ils sont consistants a € > 0 fixé, convergent vers un schéma limite quand € — 0 et ce
schéma limite est consistant avec I’équation limite. Le but des deux derniers chapitres est
de proposer, respectivement pour les EDS et les EDPS considérées, des schémas préservant
I’asymptotique, de les étudier et d’illustrer numériquement leur efficacité.

Mots-clefs : équations cinétiques, Equations Différentielles Stochastiques, EDP Sto-
chastiques, approximation-diffusion, principe de moyennisation, méthodes multi-échelles,
schéma préservant ’asymptotique



Theoretical and numerical study of multiscale stochas-
tic kinetic equations

In this thesis, we study a class of slow-fast systems modeled by kinetic linear Stochastic
Partial Differential Equations (SPDEs) or Stochastic Differential Equations (SDEs). We
study these systems from theoretical and a numerical points of view in two asymptotic
regimes: the averaging regime and the diffusion approximation regime.

The first two chapters state the main theoretical contributions of this work. We prove
the convergence of the slow component of the considered SPDEs to the solution of a
diffusion equation with a source term depending on the asymptotic regime. The first
chapter focuses on the diffusion approximation regime, where the source term of the
limiting equation is a stochastic diffusive term (Wiener process). The second chapter
focuses on the averaging regime, where the limiting source term is the average of the
original source term.

The last two chapters are devoted to the numerical part of this work. In general, a
numerical scheme which is consistent with a multiscale system for a fixed parameter £ > 0
can perform badly in the asymptotic regime ¢ — 0 due to the presence of stiff terms in
the model. On the contrary, some schemes are asymptotic preserving: they are consistent
for fixed € > 0, converge to some limiting schemes when ¢ — 0 and the limiting scheme
is consistent with the limiting equation. The goal of the last two chapters is to design
asymptotic preserving schemes, respectively for the class of SDEs and SPDEs we consider.
We also analyze these schemes and illustrate numerically their efficiency.

Keywords: kinetic equations, slow-fast systems, Stochastic Differential Equations,
Stochastic PDEs, diffusion approximation, averaging principle, multiscale methods, Asymp-
totic Preserving schemes

Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11
novembre 1918, F-69622 Villeurbanne Cedex
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Introduction (francgais)

Les modeles cinétiques avec des parametres microscopiques apparaissent dans de nom-
breuses situations, par exemple dans I’étude des semi-conducteurs [GP92] et des modeles a
vitesse discrete [LT97], ou encore dans la limite de systémes de particules, que ce soit d’une
seule particule [GR09] ou de plusieurs [PV03]. Ces modeles peuvent étre déterministes
ou probabilistes. Il est important de comprendre leurs équations limites, qui sont en
général plus faciles a simuler numériquement. Les questions numériques soulevées par de
tels modeles multi-échelles sont déja étudiées en profondeur dans la littérature, mais la
plupart de ces travaux se concentrent sur la simulation soit du modele seul, soit de la
limite seule. Il est naturel de chercher a écrire des schémas numériques qui soient efficaces
simultanément pour le modele et sa limite, ce qui conduit a la notion de schémas AP
(Asymptotic Preserving, préservant I'asymptotique).

1 Description du modele

On consideére la classe d’Equations aux Dérivées Partielles Stochastiques (EDPS) linéaires
cinétiques suivante :

1 1 1
atfa,é + ga(v) . VIfE,tS _ gLfa,é + ﬁf&,éméj fa,é _ 375’ (1)

ainsi que la classe d’Equations Différentielles Stochastiques (EDS) suivante :
dX? = b(X?, md)dt + o(X?,ml)dB,. (2)

Quand on prend € = 6, b = 0 et o(x,m) = = dans le second modele, on obtient une version
en dimension finie du premier.

Ce premier modele (1) est une EDPS cinétique avec un terme source. Son inconnue
f%° est définie sur [0, 7] x T¢ x V pour un temps final T € (0, c0). Il modélise I'évolution
de I'état f°(t,x,v) d’un systéme de particules ayant pour position x et pour vitesse a(v)
au temps t, ou v € V et ou (V,du) est un espace mesuré. On suppose que a € L*(V, du).
Cette condition est satisfaite par exemple dans le cas discret (V = {£1}% et a(v) = v) ainsi

que dans le cas de particules relativistes (V = R? et a(v) = v/4/1 + |v|* dans de bonnes

unités), mais pas par le cas standard V = R? et a(v) = v. Cette hypothese est uniquement
technique, et les résultats devraient rester valable sans elle, au prix de complications
techniques non triviales non étudiées dans ce travail.

L’opérateur de Bhatnagar-Gross-Krook (BGK) L est défini sur L'(V,du) par
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ot M € LY(V,du) est une fonction positive d’intégrale 1 et ot p = SV fdpu. Le terme L f°
vient d'un processus de Poisson qui redistribue les vitesses selon la distribution Mdu avec

des intervalles de temps suivant des lois exponentielles. Nos hypotheses sont vérifiées par

le cas classique de la distribution normale ot M(v)du(v) = 2 exp(—@)dv.

Var
Le systeme dépend de deux parametres € et § tendant vers 0 : € est le chemin moyen

entre deux collisions de particules dans le domaine T¢ (de taille 1), tandis que § un
parametre séparant les échelles de temps. On se concentre principalement sur le régime
e = 0 — 0, mais on consideére aussi les régimes 6 > 0, ¢ - 0 et € > 0, § — 0 dans les
simulations numériques du chapitre V.

Le terme source m’(t, z) introduit de I’aléatoire dans le systéme. C’est un processus
stochastique ergodique défini sur R* x T. On note que ce processus ne dépend pas de
la variable de vitesse. L’évolution de m® en fonction du temps est & I'échelle /62 et le
comportement asymptotique du modele dépend de la valeur de k. Dans notre travail, on
considere les cas k = 1 et K = 0. Quand § — 0, par ergodicité, m? converge en distribution
vers son unique loi invariante. Dans le cas k = 1, il ne peut donc pas y avoir de limite si la
moyenne de cette loi invariante est non nulle. Ainsi, quand x = 1, on suppose que la loi
invariante de m? est centrée.

Comme m? évolue a la vitesse t/§? avec § — 0, on I'appelle la composante rapide,
tandis que p* = SV fe9du est la composante lente. La composante lente est p=° au lieu de
SV f#%du car le terme le plus raide de (1) est 6%L fe9. on veut donc avoir asymptotiquement
Lf =0, c’est-a-dire f = pM. Les modeles avec de telles séparations des échelles de temps
apparaissent dans de nombreuses situations, dans le cas déterministe sous forme d’Equations
Différentielles Ordinaires (EDO) et d’Equations aux Dérivées Partielles, ainsi que dans le
cas probabiliste sous forme d’EDS et d’EDPS. C’est le cas par exemple en physique, dans
I’étude de systeémes de particules [PV03, GR09] ou en astrophysique dans I’étude de grain
de poussiere dans une structure macroscopique [LBL20]. On peut aussi mentionner 1'étude
des semi-conducteurs [GP92]. Parmi ces exemples, I’étude des semi-conducteurs et des
systemes de particules peuvent tous les deux étre modélisés par des modeles cinétiques.

Dans cette these, on étudie principalement le modele (1) d’un point de vue théorique
et numérique. L’étude théorique (chapitres I et II) consiste a prouver la convergence de la
composante lente vers la solution d'une équation limite. L’étude numérique (chapitres I11
et [V) consiste a créer des schémas numériques qui soient a la fois consistant pour € > 0
et 0 > 0 fixés, et dans les régimes asymptotiques € — 0 avec 6 > 0 fixé, 6 — 0 avec ¢ > 0
fixé et ¢ = 9 — 0. Le schéma doit admettre une limite pour tout pas de temps fixé dans
chacun de ces régimes, et le schéma limite doit étre consistant avec 1’équation limite. Un
tel schéma est dit AP (Asymptotic Preserving, préservant 'asymptotique).

Le manuscrit suit l'organisation suivante.

Dans le chapitre I, on considere le cas ¢ = § — 0 et kK = 1. On prouve un résultat
d’approximation-diffusion, au sens des EDP et au sens probabiliste : quand ¢ — 0, la
composante lente p® converge en loi vers la solution p d'une équation parabolique de
diffusion linéaire avec un terme source diffusif (bruit blanc en temps). Ce travail est
une amélioration de [DV12], au sens ou on prouve le méme résultat en affaiblissant une
hypothese de borne sur le processus m®. Cette généralisation est non triviale et requiert
I'utilisation d’outils complexes comme des temps d’arréts et des probléemes de martingale
arrétés. Ce chapitre est basé sur la prépublication [RR20].

Dans le chapitre I, on considere le cas ¢ = § — 0 et kK = 0. On prouve un résultat
d’approximation-diffusion au sens EDP et de moyennisation au sens probabiliste : quand
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e — 0, la composante lente p® converge en loi vers la solution p d’'une équation parabolique
de diffusion avec un terme source étant la moyenne de la distribution invariante du terme
source ergodique. Le chapitre II est techniquement plus simple que le chapitre I mais ce
manuscrit est écrit dans l'ordre chronologique du travail de la these. Une prépublication
associée est en cours de préparation.

Dans le chapitre 111, on construit des schémas numériques pour (2), dans les régimes
d’approximation-diffusion et de moyennisation. On définit une notion de schéma AP en loi
adaptée aux problemes stochastiques multi-échelles considérés et prouve que les schémas
sont AP. On donne aussi des exemples de schémas non AP et on illustre numériquement
I’efficacité ou non de chaque schéma. On observe clairement la supériorité des schémas
AP, qualitativement et quantitativement. De plus, on prouve une propriété de précision
uniforme pour le schéma AP dans le régime de moyennisation, c¢’est-a-dire une estimée
d’erreur uniforme en 6 > 0 quand le pas de temps At — 0. Ce chapitre est basé sur la
prépublication [BRR20], & laquelle on ajoute des simulations numériques quantitatives.

Dans le chapitre IV, on combine les schémas du chapitre 111 avec des schémas AP
pour des EDP en utilisant une procédure de splitting. On illustre 'efficacité des schémas
proposés dans les régimes de moyennisation et d’approximation-diffusion. On considere
aussi tous les régimes € = § et € # 9, de sorte qu’on puisse fixer un des parametres et faire
tendre l'autre vers 0.

2 Convergence de (1) dans le régime d’approximation-
diffusion

Le chapitre I est basé sur la prépublication [RR20] et est dédié & prouver la convergence
suivante pour p° = SV fedu, ou f¢ est la solution de (1) avec € = § et Kk = 1.

Théoréme. Soit W un processus de Wiener cylindrique sur L?(T?) et p la solution faible
de l’équation parabolique de diffusion

dp = div(KVp)dt + pQ*/? o dW (1), (3)

avec la condition initiale p(0) = lim._o p§. La matrice K et l'opérateur Q) sont respective-
ment définis par (1.2.2) et (1.2.5)
Sous de bonnes hypothéses, pour tout ¢ > 0 et T' > 0, la densité p° converge en loi vers

p dans C°([0,T], H=°(T?)) et dans L*([0,T], L*(T?)).

C’est un résultat d’approximation-diffusion, aux sens EDP et probabilistes. Ce théoreme
est une généralisation de [DV12]. D’une part, on affaiblit la condition de borne presque
stire sur le processus m® en une condition sur ses moments, condition vérifiée par exemple
par un processus d’Ornstein-Uhlenbeck. D’autre part, on ajoute une convergence plus forte,
dans L?([0,T], L?), sous une hypothése supplémentaire qui permet d’utiliser un lemme de
moyenne [BD99, Theorem 2.3|. Il faut noter que cette convergence n’a lieu qu’en loi en
général.

2.1 Contexte

Les résultats d’approximation-diffusion pour des équations cinétiques déterministes sont
communs dans la littérature, en commencant par [LIK74, BLP79]. Dans ces deux articles,
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le parametre € — 0 est le ratio entre le chemin moyen entre deux collisions de particules
par la taille du domaine ou elles évoluent. La méthode est de construire un développement
asymptotique en ¢ de la solution de I’équation. Dans le cas de (1) avec m® = 0, [DGP00]
montre la convergence (déterministe) en utilisant un développement similaire f© = p*M +
£g°. Le terme d’ordre 0 ne dépend de f° qu’a travers p°, ce qui justifie qu’on ne considere
que la convergence de p®.

Obtenir une limite diffusive au sens stochastique est aussi standard : quand un terme
aléatoire est a la bonne échelle, cela induit un bruit blanc en temps dans 1’équation
limite, et la convergence vers cette limite n’a plus lieu qu’en loi en général. L’étude de
telles convergences a commencé avec Khasminskii [[Kha66a, Kha66b]. Dans ces articles, les
résultats sont prouvés en établissant la convergence des distributions de dimension finie.

Dans [PSV77], les auteurs introduisent une autre approche basée sur une formulation
martingale et des fonctions tests perturbées. Cette approche est fortement utilisée dans
les chapitres I et 11, nous allons donc I'expliquer ici. Soit X un processus stochastique et
L un opérateur. Soit

t

M, () = o(X()) — o(X(0)) - j Lo(X(s))ds

ol ¢ est une fonction test dans dans une classe ©. Le processus X résout le probleme de
martingale associé a L si, pour tout ¢ € ©, M, est une martingale. Alors, sous de bonnes
hypotheses sur la classe ©, X est un processus de Markov de générateur L si et seulement si
il résout le probleme de martingale associé a L. Ainsi, si on considere la solution X¢ d’une
EDPS de générateur £°, on obtient une famille de martingale au niveau £ > 0. Supposons
qu’on ait montré que la famille (X¢)__, est tendue et considérons une valeur d’adhérence
X pour la convergence en loi. Si on peut passer a la limite quand € — 0 dans le probleme
de martingale, on obtient un probleme de martingale limite qui permet d’identifier X sous
réserve d’unicité de la solution de ce probleme. On obtient ainsi la convergence de X*¢ vers
X en loi. Cependant, pour des problémes multi-échelles singuliers, le terme £ (X¢(t)) ne
converge pas, on ne peut donc pas prendre la limite directement. Pour remédier a cela,
I'idée est de perturber la fonction test ¢ en une fonction test ©° = ¢ + ep; + 20y + ...,
telle que L5p® — Ly pour un opérateur L. En supposant que la fonction test perturbée °
est dans la classe ©, on peut alors considérer le probleme de martingale avec ¢ et passer
a la limite pour obtenir que X résout le probleme de martingale associé a L.

Il est a noter que l'usage des fonctions tests perturbées dans le contexte d’EDP
(déterministes ou stochastiques) avec des limites diffusives n’est pas spécifique aux équations
cinétiques : [Eva89] les utilise pour des solutions de viscosité, [PP03] pour une équation
parabolique et [Mar06, dBD10, DT11, dBG12] pour des équations de Schrodinger non
linéaires.

2.2 Stratégie de la preuve dans [DV12]

Le schéma de la preuve dans [DV12], basée sur une approche martingale et sur des fonctions
tests perturbées, est la suivante :

e On montre la tension de la famille de solution (p°)..,. Ceci nécessite des estimées
sur les moments de p°, uniformément en ¢.

e On construit une perturbation ¢° d’une fonction test . Dans (1), le générateur peut
étre décomposé en L5 = 1L, +e72L,. En utilisant le développement asymptotique
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©° = @+ Y,e%p;, la convergence L@ — L n’est vérifiée que si chaque correcteur
p; résout I’équation de Poisson associée au générateur Lo suivante

L1+ Lop; = 01,

ou le membre de droite ¥;_; ne dépend que de ¢; pour j < i. Sous de bonnes
hypotheses, la solution de cette équation est bien défini et on peut construire
successivement les correcteurs ;.

e Par tension, il existe une valeur d’adhérence pour la convergence en loi, p et une
suite £; —— 0 telle que p* converge vers X en loi. Alors, on peut prendre la limite

1—00
dans la propriété de martingale

Ewﬂfﬁﬁ—wwﬁ@%jLﬁWWf%D%Lﬁisgq:Q

pour obtenir que p résout le probleme de martingale associé a £. En montrant
I'unicité d’une telle solution, cela conclut la preuve de la convergence en loi.

2.3 Stratégie de la preuve dans le chapitre I

On décrit ici les nouveautés de notre travail. Dans [DV12], les auteurs supposent que m®
est majoré par une borne presque stire. C’est une hypothese forte, qui n’est pas vérifiée
par exemple par un processus Gaussien. Dans ce chapitre, 'objectif est d’affaiblir cette
hypothese. Une conséquence directe est qu’on perd les estimées de moments uniformes en
. Pour palier ce probléme, on introduit des temps d’arréts dépendant d’'un nombre réel
arbitrairement grand A € (0, 00), tel que, pour A fixé, on a une estimation uniforme en &
du processus stoppé p=7a. Plus précisément, le temps d’arrét est défini comme

521 A Ta(CY),
ou
7 =inf {t e R* | |m°(¢t)|, > e},

pour un certain parametre «, et ou
7a(2) = inf {t e R | [2(t) |1 zay = A} ,

et .
cm=i£m%mww£”m@@

On peut alors prouver la tension de la famille (,05’75)90 et suivre la preuve standard
avec des martingales arrétées au lieu de martingales. Une difficulté majeure vient alors du
comportement asymptotique de ces temps d’arrét. D’une part, quand « est bien choisi,
7¢ — o en probabilité. D’autre part, on montre un Théoreme Central Limite pour m®,
prouvant que ¢ converge en loi vers un processus de Wiener ¢ et que 75 ((%) — 75(¢) en loi
pour tout A hors d’un ensemble dénombrable. Ainsi, 75 converge en loi vers 74 (¢) quand
¢ — 0. Pour que ce temps d’arrét soit adapté a la filtration associée au processus limite, il
faut considérer la convergence du couple (p°, (%) au lieu de la convergence seule de p*.
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On montre que le processus couplé stoppé ( (57, C“:’T/E\))DO est tendu et qu’une valeur
d’adhérence pour la convergence en loi satisfait un probleme de martingale arrétée au
temps d’arrét 74((¢), ce qui donne une famille de problémes de martingales indexée par
A. Comme chaque probléme de martingale ne caractérise sa solution X, = (pa, () que
jusqu’au temps 75 (), cette solution peut ne pas étre unique. Cependant, on prouve que la
famille de problemes de martingales arrétées est consistante, au sens ou X, est égale en
loi & X™(© pour un certain processus X. Comme TA(¢) — o0 quand A — o0, on utilise ces
résultats pour déduire la convergence du processus non stoppé p°.

3 Convergence de (1) dans le régime de moyennisa-
tion

Le chapitre II est dédié a prouver la convergence suivante pour p° = SV fedp ou f© est
solution de (1) avec € = et kK = 0.

Théorémes. Soit m la moyenne de l'unique loi invariante de m® et soit p la solution
faible de ’équation linéaire de diffusion

orp = div(K'Vp) + mp, (4)

avec p(0) = lim._ pf.

Sous de bonnes hypothéses, pour tout o > 0 et T > 0, la fonction p° converge en loi
vers p dans C°([0,T], H=°(T%)) et dans L*([0,T], L?(T%)) et f¢ converge en loi vers pM
dans L*([0,T], L*(T? x V, df\fll‘(‘s))) . De plus, si p(0) est déterministe, alors toutes ces
convergences ont lieu en probabilité.

C’est un résultat d’approximation-diffusion au sens EDP comme dans le chapitre I,
mais un résultat de moyennisation au sens probabiliste. Le principe de moyennisation pour
des systemes stochastiques a été introduit dans I’article classique [Kha68]. De nombreux
résultats sont associés a ce principe, utilisant différentes preuves et différents criteres de
convergence, voir par exemple [PS08, Cer09, CF09, Brél12, Bré20]. Certaines de ces articles
étudient aussi la vitesse de convergence de la principe de moyennisation dans des EDPS
(voir [Brél2, Bré20]). Dans le chapitre 11, on ne montre que la convergence. L’analyse de
la vitesse de convergence est laissée pour des travaux futurs.

La stratégie de la preuve est similaire au chapitre [ : on suit une approche basée sur les
problemes de martingales et sur les fonctions tests perturbées, et on obtient des estimées
sur les moments en arrétant les processus a des temps d’arréts. La principale différence
avec le chapitre précédent est qu’ici, le temps d’arrét 7 — oo en probabilité. Ainsi, le
probleme de martingale limite n’est pas un probléeme de martingale arrété, et on retrouve
le cadre classique ou la solution est unique et ou la convergence suit d’arguments simples.
Plus précisément, le processus auxiliaire est cette fois défini par

et les temps d’arrét par
T =T AT
7o, =inf {t e RT | [m°(t)||z = e},

7$ — inf {t eR* | (1)) = 5—1} .
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Comme dans le chapitre [, pour un bon choix de o, on a 7, — o0 en probabilité. Cependant,
dans le temps d’atteinte 7¢, le seuil fixe A est remplacé par e~!, ce qui permet d’obtenir
¢ — o directement.

4 Schémas préservant ’asymptotique pour des EDS

Le chapitre I1I est basé sur la prépublication [BRR20] et est dédié a construire des schémas
AP pour la classe d’EDS (2) dans les régimes d’approximation-diffusion et de moyennisation.
On travaille d’abord sur des EDS, avant de revenir au cas EDPS dans le chapitre IV,
car nous avons remarqué que dans ce cas plus simple, notre travail apportait déja des
contributions non triviales. On renvoie a [PS08] pour pour les résultats de convergence
sur des EDS multi-échelles : [PS08, Chapter 11] pour 'approximation-diffusion et [PS08,
Chapter 10] pour la moyennisation.

4.1 Contexte

Commencons par motiver ce travail. Dans le cas déterministe, le champ des schémas
numériques pour EDO est tres bien étudié [HW96]. La présence de termes raides dans le
systeme, typiquement a cause de la composante rapide, peut induire des conditions de
stabilités fortes de la forme At = o(¢®), puisqu’on veut que le pas de temps mis a 'échelle
At /e converge vers 0. Ainsi, le cofit en calculs explose quand £ — 0. Quand le systeme
est probabiliste, la simulation numérique peut étre encore plus difficile.

[FG18] donne des exemples ot I'EDS satisfaite par certaines quantités statistiques d'un
schéma (par exemple la densité de probabilité) est différent dans ’équation limite et dans
le systéme en temps continu. Un de ces exemples est 'interprétation d’Itdo du bruit quand
I’EDS limite a une interprétation de Stratonovich de ce bruit. On détaille cet exemple plus
bas.

[LAEO08] illustre comme les schémas pour des EDO raides peuvent produire de mauvaises
solutions quand la composante rapide n’est pas résolue. Les auteurs montrent méme qu’une
discrétisation peut converger vers un schéma X¢ quand At — 0 et € — 0 avec un ratio
c = At/e” fixé, ou le schéma X°¢ dépend fortement de c.

Un moyen bien étudié d’éviter ces problémes est d’approcher le modele limite pour
la composante lente d’intérét, tout en ne conservant que 'information pertinente de la
composante rapide. On détaille ici plusieurs des méthodes qui suivent cette approche.

La HMM (Heterogeneous Multiscale Method, méthode hétérogene multi-échelle, voir
[AEEVE12, Brél3, ELVEQS]) est basée sur un schéma macroscopique qui effectue les calculs
jusqu’a ce qu'un schéma microscopique est nécessaire. Plus précisément, on commence par
effectuer les calculs au niveau macroscopique. Quand on a besoin d’informations qui ne
peuvent étre obtenues qu’au niveau microscopique, on effectue des appels a un schémas
microscopiques, avec des contraintes pour étre consistant avec les calculs déja effectués au
niveau macroscopique. Cela nous permet d’estimer les informations manquantes et de les
réinjecter dans le schéma macroscopique. De maniere analogue, la méthode d’intégration
projective [GKIKO06] est basée sur un schéma macroscopique et sur des appels en temps
courts au schéma microscopique, afin d’éviter d’augmenter le colit en calcul, tout en
prenant en compte la dynamique microscopique. Ces deux méthodes sont des méthodes de
basées sur de une moyennisation de la dynamique microscopique.
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La méthode equation-free coarse-grained [KGH™ 03] approche a la place 'évolution de la
composante macroscopique via des appels correctement initialisés au schéma microscopique
pour des temps courts et de petits domaines spatiaux, par exemple en intégrant la
dynamique sur des temps long ou de grands domaines spatiaux. En particulier, cette
approche est sans équation (equation-free) au sens ot on n’a pas besoin de dériver I’équation
d’évolution macroscopique a partir de la dynamique microscopique.

Plus récemment, [APV17] propose une méthode spectrale. les coefficients de ’équation
homogénéisée sont calculés en utilisant les solutions de bonnes équations de Poisson.
Ces équations de Poisson sont résolues en utilisant une approche spectrale basée sur un
développement en fonctions de Hermite.

Dans [VZS20], les auteurs décrivent une méthode d’accélération micro-macro. L’algo-
rithme alterne entre un schéma microscopique pour des temps courts et une extrapolation de
I’état macroscopique sur des temps longs. Ensuite, ils calculent la loi qui serait consistante
avec cette extrapolation, tout en modifiant le moins possible la distribution microscopique
précédemment calculée. Cela leur permet de reconstruire 1’état microscopique.

Enfin, [LLMS20] présente une version micro-macro de 'algorithme pararéel, qui paral-
lélise les calculs en fonction de la variable de temps, ce qui permet une réduction drastique
du temps de calcul.

4.2 Principales contributions du chapitre II1

Pour la classe d’EDS sur lesquelles on se concentre, les schémas standard se comportent
mal dans le régime asymptotique. Commencons par considérer le régime d’approximation-
diffusion. Le systéme suivant est un cas particulier de (2)

o(X7)m;

ax; = ==t

=
dmi = —"tdt + ~dp,.
15 g

En prenant o(z) = x, on obtient une version en dimension finie de (1) avec e =6, Kk = 1
et ott m est un processus d’Ornstein-Uhlenbeck a I'échelle ¢/e2. Prenons d = 1. Quand
e — 0, le résultat d’approximation-diffusion (voir [PS08, Chapter 11]) dit que X*© converge
en loi vers la solution X de I'EDS

dXt = U(Xt) o dﬁt,

ou le bruit est interprété avec la convention de Stratonovich, la forme d’Ito s’écrivant
1
dXt = igl(Xt)U(Xt)dt + O'(Xt)dﬁt.

Pour € > 0 fixé, le schéma numérique

Atme
XE,, = XE 4 o(X5)—mtd
19

At . WAE

€ — PR —_—
My 1 =M, — 52 My + c Tns

avec (Yn) ey, Une suite i.i.d. de variable normale centrée réduites, est consistant avec le
systeme. Cependant, quand € — 0, on a la convergence X, — X, ou

Xni1 = Xy + VALo (X)) Vn.
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Ce schéma limite est consistant avec 'interprétation d’Ité du bruit, au lieu de 'interpré-
tation Stratonovich, il échoue donc a capturer le bon comportement asymptotique du
systeme. Dans le chapitre I1I, on construit un schéma AP, c¢’est-a-dire un schéma tel que
le diagramme suivant est commutatif :

XN At—0 X (T)

l e—0 e—0 J

Xy 22% X(7)

Ce schéma AP est basé sur une procédure de prédiction-correction :

(o o AUfXD)mna | AF(XR)g(Xy) | (X)X )V ALY,
My = My — ) + c + e )
~ At’\e
K = X0+ AB(XG) + o (X7) =
Lo ARr e | MF(Ra(XD) | (XDAEIVAR,
nHl T 2 £ € ’
Atme
Vi = X5+ ABB(XD) + o (X)) =,
XE YE At NE g
kaH-l _ Xfl + Atb(Xfl) + 0( n) +20( n+1)€mn+1 _5 mn+1‘

Ce schéma est AP pour une large classe d’EDS, y compris pour ’exemple précédent ou il
capture l'interprétation correcte du bruit, mais aussi dans les systemes considérés dans
I'article d’astrophysique [LBL20], ou I’équation limite contient un terme de dérive induit
par le bruit quand f est non constant.

Dans le régime de moyennisation, le méme type de probleme apparait. Considérons

4X5 = b(X{,m)dt,
"

e 2
dmé = —"tar + Y2 qg,.
19 19

7

En prenant b(z,m) = xm, on obtient une version en dimension finie de (1) avec ¢ = §,
k = 0 et ot m* est un processus d’Ornstein-Uhlenbeck & ’échelle t/e. Quand ¢ — 0, le
principe de moyennisation (voir [PS08, Chapter 10]) affirme que X¢ converge en loi vers
la solution X de I'EDS

X = b(X),
ot b(z) = {b(x,m)dv(m) et v = N(0,1). Pour £ > 0 fixé, le schéma

Xwi+1 = XrEL + Atb(XfL,me+1),

At 2At
il = My, — ?miﬁl T4/ T%’

est consistant avec le systéme, mais sa limite est donnée par

m

Xpp1 = Xo + At(X,,,0),
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qui est en général inconsistant avec ’équation limite. Encore une fois, on construit un
schéma AP tel que le diagramme commutatif plus haut est de nouveau commutatif, cette
fois basé sur une discrétisation exacte en loi de la composante rapide :

{XZH =X, + Atb(XfL,meH) + VAto(X,, meH)Pn (5)

me,, = e MEmE 4 /1 — e 2DUEp(XE )y,

Apres avoir construit ces schémas AP, on présente trois types de simulations. Chacun
des trois illustre la supériorité du schéma AP sur les schémas naifs :

e Le premier type est qualitatif : on trace la trajectoire de la solution en fonction du
temps t, pour une valeur donnée du pas de temps At et pour différentes valeurs de ¢.
Les trajectoires sont comparées a un schéma de référence.

e Le deuxieme type est quantitatif : on trace une estimation de 'erreur faible totale

B [o(X3)] = Efp(X(T)]],
pour une fonction test ¢, en fonction de At pour différentes valeurs de e.

e Le troisieme type est aussi quantitatif : on trace une estimation de I’erreur faible
d’approximation-diffusion ou de moyennisation au niveau discret

|E [o(X3)] = E[p(Xn)]l,
en fonction de ¢ pour différentes valeurs de At.

Dans les deux types de simulations quantitatives, on observe des résultats pour le schéma AP
cohérents avec ’analyse d’erreur ci-dessous, et on obtient méme des ordres de convergences
plus grands que ceux qu’on réussit a montrer. Le schéma non AP lui devient mauvais
quand e devient petit, les constantes d’erreur en ¢ (respectivement At) étant non uniforme
en At (respectivement ¢).

4.3 Estimées d’erreurs dans le régime de moyennisation

Dans le régime de moyennisation, on prouve un résultat de précision uniforme pour le
schéma AP (5). Ici, le processus m* est a I’échelle t/e.

Théoréme. Sous de bonnes hypothéses, pour tout T € (0,00) et toute fonction test ¢ :
T? — R de classe C*, il existe C(T, ) € (0,0) tel que pour tout At € (0, Ato] et e € (0,1],
on a

BL(XR)] - BLo(X(T)]| < O o) min (At 4} )

et le schéma est uniformément précis avec l’estimée d’erreur suivante : pour tout At €
(0, Atg], on a

sup [E [p(X5)] — E[p(X*(T))]] < C(T, p)VAL (7)

ee(0,1]
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A notre connaissance, c’est le premier résultat de précision uniforme pour un schéma
AP dans des équations stochastiques.

L’idée derriere la preuve de I'uniforme précision est d’estimer le membre de gauche de
(6) en passant par deux chemins sur le diagramme commutatif

€ A 5
XN At—0 X (T)

B l e—0 e—0 J D
At—0
XN T_’> X(T)
ou A, B, C' et D sont les erreurs dans chacune des convergences :

e L'estimée O(2!) vient du chemin direct |E [p(X§)] — E[@(X*(T))]| < A. Comme
on a utilisé un schéma classique avec un pas de temps At/e, on peut montrer que
A = O(At/e) en utilisant des arguments standards (équation de Kolmogorov).

e L’estimée O(At + ¢) vient du chemin indirect |E[p(X5)] —E[p(X(T))]] < B +
C' + D. Comme D est 'erreur dans le principe de moyennisation, on a D = O(g).
L’erreur C' est obtenue avec des équations de Poisson et de Kolmogorov, et on
obtient C' = O(At). Montrer une estimée d’erreur satisfaisante pour B est le terme

le plus difficile. On adapte la preuve de D au cas discret, et on réussit a obtenir
B = O(max(At, ¢)).

On arrive & (6) en écrivant |[E [p(X5)] — E[@(X¢(T))]| < min(A4, B+ C + D) et a (7)
en utilisant la premiére ou la deuxiéme estimée selon que VAt < € ou e < v/At. Cet ordre
% est peut-étre non optimal, les simulations montrant un ordre 1.

Dans le régime d’approximation-diffusion, on n’a pas de résultat général d’erreur
uniforme, si ce n’est dans des cas particuliers.

5 Schémas préservant ’asymptotique pour des EDP
stochastiques cinétiques

Fort du travail du chapitre I1I sur le cas EDS, on peut a présent revenir au cas EDPS : le cha-
pitre IV est dédié a construire des schémas AP pour (1) dans les régimes d’approximation-
diffusion et de moyennisation. Contrairement aux chapitres I et I, on ne considere par
seulement le cas ¢ = 9, mais on autorise les deux parametres a converger vers 0 indépen-
damment 1'un de 'autre.

5.1 Contexte dans le cas déterministe

La notion de schéma AP dans le cas déterministe est introduite dans [Jin99], avec ap-
plications a des EDP cinétiques multi-échelles convergeant vers des EDP paraboliques
de diffusion. Le systéme (1) qu’on consideére est un cas particulier de ce cadre si m? = 0.
Depuis, de nombreux schémas AP ont été construit dans ce cadre. Les paragraphes suivants
décrivent certains de ces schémas.

Pour les modeles BGK avec un échelle hyperbolique

O+ alv) Voft = L,
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les articles de revue [DP14, Section 7] et [Jin12] mentionnent tous les deux un schéma de
type splitting. Le splitting en temps est effectué en résolvant d’abord le terme de collision
Lf¢ et puis le terme de transport a(v) - V, f¢. On peut alors se concentrer sur le premier et
utiliser un schéma explicite upwind pour le terme de transport. Le schéma obtenu sera AP
si le schéma utilisé pour le terme de collision 'est. [DP 14, Section 7] donne une condition
suffisante pour que pour qu'un schéma de Runge-Kutta pour le terme de collision soit AP,
tandis que [Jin12] propose un schéma AP implicite.

Ces deux articles mentionnent aussi une famille de schémas sans splitting dits implicites-
explicites (IMEX). Par exemple, un schéma IMEX peut étre obtenu en utilisant une
discrétisation implicite du terme de collision et explicite du terme de transport. Dans ces
deux méthodes (splitting et IMEX), méme si le schéma est partiellement implicite, il peut
étre exprimé explicitement et ne nécessite donc pas d’inverser un systeme non linéaire
d’équations.

Dans [Pupl9, Section 4], 'auteur mentionne un schéma AP basé sur une discrétisation
upwind de la variable d’espace avec un schéma d’ordre élevé en espace.

Pour les modeles BGK avec une échelle parabolique comme dans (1), ¢’est-a-dire

1 1
O f + ga(v) Vo ff = E—QLfE,

des schémas AP sont proposés par [Hiv18, LMO08| par exemple.

Un premier schéma AP peut étre construit en utilisant la décomposition micro-macro
f& = p"M +eg® et puis en construisant des schémas basés sur les équations vérifiées par p°
et g°. Un deuxiéme schéma AP est obtenu par une discrétisation enticrement implicite de
I’équation vérifiée par la transformée de Fourier en espace f* de f¢. Ce second schéma est
détaillé dans le chapitre IV. Bien que ces schémas soient AP, ils ne sont pas uniformément
précis, au sens ou l'erreur n’est pas uniforme en e.

Un troisieme schéma AP, basé¢ sur une formulation intégrale de I’équation, est uni-
formément précis. Plus précisément, on écrit I’équation vérifiée par f°, on I’écrit sous
forme Duhamel puis on integre cette expression en la variable de vitesse. En discrétisant
I'intégrale en temps due a la forme Duhamel, on utilise une regle de quadrature d’ordre
2, ce qui permet a [Hiv18] de montrer que le schéma obtenu pour p° est uniformément
précis. On n’utilise pas ce schéma ici pour considérer une implémentation plus simple.
L’application de ce schéma uniformément précis dans le cadre stochastique sera étudiée
dans des travaux futurs.

5.2 Contexte dans le cas probabiliste en approximation-diffusion

Dans un contexte probabiliste, une difficulté supplémentaire s’ajoute : en général, la
convergence n’a plus lieu qu’en loi. Ainsi, la propriété AP doit étre formulée pour la
convergence en loi. On reprend donc la définition introduite dans le chapitre II1.

Les travaux mentionnés plus hauts sur des modeles déterministes ont été étendus a des
modeles probabilistes. Dans [HJ17, Jinl8, JLP18], les auteurs étudient des schémas AP
pour des EDP avec des coefficients aléatoires. Dans [DPS18; RLJ14], les auteurs utilises
des méthodes de Monte-Carlo pour des problemes déterministes. Cependant, ces deux
situations ne s’appliquent pas aux EDPS.

Dans [AF19], les auteurs considérent 'EDP stochastique cinétique

1
Af* + Zvd fodt = ;lg.c fedt + f o QdW,,
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ou le terme source est un processus de Wiener, ce qui est assez proche de notre modele (1).
Plus précisément, on retrouve cette équation en prenant la limite quand § — 0 dans (1)
dans le régime d’approximation-diffusion, bien que notre opérateur L soit différent du leur.
Ils construisent un schéma AP utilisant une décomposition micro-macro f¢ = p°M + e¢°
et une discrétisation upwind des dérivées en espace. Une conséquence est que le schéma
limite est explicite, et introduit donc une condition de stabilité CFL. Dans le chapitre
[V, on construit un schéma AP sans condition CFL et avec un bruit non nécessairement
Wiener.

5.3 Principales contributions du chapitre IV

Notre construction de schémas AP est basée sur une méthode de splitting en temps, via la
décomposition de (1) en une partie déterministe

1 1
Of* + alv) - Vo = SLF ®)

et une partie probabiliste
1
Ouf® = —6Hm5f‘5. (9)

Ainsi, le schéma AP est une combinaison des schémas mentionnés plus hauts pour (8) et
d’un schéma pour (9). Il est a noter que (9) est plus simple que le cas général (2) considéré
dans le chapitre 111, puisque linéaire en m?. Ainsi, on peut soit utiliser les schémas généraux
du chapitre III, soit d’autres schémas particuliers.

On illustre les qualités des schémas AP de trois manieres :

e Les deux premieres sont qualitatives : on trace la trajectoire de |p(t) . en fonction
de t ou la valeur au temps final p=(T, z) en fonction de z, pour une valeur fixée du
pas de temps 7 et pour différentes valeurs de € et ¢.

e La troisieme maniere et quantitative : on trace une estimation de I’erreur faible

E [0(p™°(T))] — E [(p(T))]]

en fonction du pas de temps 7, pour différentes valeurs de € et 9.

6 Perspectives

6.1 Résultats a prouver

Nous avons laissé certains résultats pour des travaux futurs. Dans la partie théorique de
cette these, 'approximation-diffusion peut étre vue comme un régime de Théoreme Central
Limite du point de vue de la moyennisation. Ce point de vue pourrait permettre d’obtenir
des informations supplémentaires sur le régime de moyennisation, comme la vitesse de
convergence de f&° vers pM.

Certaines pistes restent aussi a explorer dans les parties numériques de cette these. Par
exemple, on ne prouve la précision uniforme que dans le régime de moyennisation des EDS.
Le méme type de résultat mériterait d’étre obtenu dans le régime d’approximation-diffusion.

Dans le cas EDPS, on pourrait aussi étudier la stabilité numérique de nos schémas AP
plus précisément, par exemple en montrant des bornes uniformes en le pas de temps sur les
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moments L? des schémas. Ensuite, on pourrait aussi étudier la vitesse de convergence, a la
fois d’un point de vue théorique et numérique. Il est & noter que les simulations numériques
pour estimer la vitesse de convergence sont lourdes en calcul, il faudrait donc auparavant
implémenter des versions plus efficaces de nos schémas.

Les schémas AP ont en I’état peu de chance d’étre uniformément précis, puisque la
partie déterministe utilise un schéma non uniformément précis. Cependant, I'avantage de
la méthode de splitting est qu’il est aisé de remplacer cette partie par un autre schéma,
par exemple par le schéma basé sur la formulation intégrale donné dans [Hiv18], qui est a
la fois AP et uniformément précis. Ce nouveau schéma de splitting a des chances d’étre
uniformément précis lui aussi.

6.2 Vers d’autres modéles

Une autre perspective est d’étendre les résultats théoriques et numériques a d’autres
modeles ou vers des hypotheses plus faibles.

La principale hypothese qui mériterait d’étre affaiblie est celle demandant que la vitesse
a(v) soit bornée. Affaiblir cette hypothese est nécessaire pour inclure le cas classique
a(v) = v avec V = R%. Cependant, affaiblir cette hypotheése n’est pas chose aisée et pose
des problémes techniques non triviaux. Une autre hypothese a affaiblir est pu(V') < co. 11

faut faire cependant attention aux espaces dans lesquels on travail, puisque par exemple
on a montré que f&° — pM dans LZL2(M™1) = L2([0,T], L3(T9 x V,%)) quand
u(V) < oo dans le régime de moyennisation, mais si u(V) = oo, alors pM ¢ L2L*(M™1).

Une autre perspective importante est d’adapter la généralité du cas EDS (chapitre
I1T) au cas EDPS. Par exemple, on pourrait vouloir obtenir les résultats théoriques des
chapitres I et II en remplacant le terme source linéaire m® f° par un terme plus général
b(m?) 9. On pourrait aussi vouloir étudier des modeles couplés, ot la composante rapide
dépend de la composante lente. Dans le cas EDS, on voit dans le chapitre III que quand
ce couplage est non trivial, il peut induire un terme de dérive induit par le bruit dans
’équation limite. Une prépublication récente [CX20] étudie le cas parabolique et confirme
I'ajout d’un terme de dérive induit par le bruit dans ’équation limite.

Nos schémas numériques dans les chapitres I1] et IV sont écrit spécifiquement pour
une composante rapide sous la forme d’un processus d’Ornstein-Uhlenbeck (quand la
composante lente est gelée). Une perspective naturelle mais non triviale est de remplacer
cette composante rapide par la solution ergodique d’une EDS générale avec des coefficients
non linéaires, comme dans les chapitres I et I1.

Enfin, on pourrait étudier des modeles proches, par exemple en remplacant le terme
source 6 "m? & par un terme de force §*'m’ - V, £, ot on s’attend & &' = 2 pour
étre dans le régime d’approximation-diffusion et & k' = 1 pour étre dans le régime de
moyennisation. Ce modele a déja été étudié d’un point de vue théorique [DV20], mais il
n’existe a notre connaissance pas de schémas AP pour ce modele. L’approche par une
méthode de splitting devrait s’avérer efficace.
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Introduction (English version)

Kinetic models with small parameters appear in various situations, for example when
studying semi-conductors [GP92] and discrete velocity models [LT97] or as a limit of
a particle system, either with a single particle [GR09] or multiple ones [PV03]. These
models can either be deterministic or stochastic. It is important to understand the limiting
equations, which are in general much easier to simulate numerically. This numerical aspect
is a thoroughly studied field in the literature, but most works focus on simulating either
only the limiting equation, or only the initial model. It is natural to try to design numerical
schemes that perform well both in the model and in its limit, leading to the notion of
Asymptotic Preserving schemes.

1 Description of the model

We consider a class of linear kinetic Stochastic Partial Differential Equation (SPDE) with
the following form:

1 1 1 .
atfe,5 + ga(v) . vme,ﬁ _ ?Lfs,é + ﬁfe’émé, fs,(S _ 0,57 (1)

as well as a class of Stochastic Differential Equation (SDE)
dX? = b(X?, md)dt + o(X?,ml)dB,. (2)

The interest of the second model is that when taking ¢ = §, b = 0 and o(x, m) = x, one
gets a finite dimensional version of (1).

The first model is a kinetic SPDE with a source term and its unknown f° is defined
on [0,T] x T¢ x V for some final time T" € (0, 00). This models the evolution of the state
f9(t, z,v) of a system of particles with position 2 and velocity a(v) at time ¢, where v e V
for some measured space (V,du). We assume that a € L*(V,du). This assumption is
satisfied in the discrete case (V = {+1}% and a(v) = v) as well as in the case of relativistic

particles (V = R? and a(v) = v/4/1 + |v|* in convenient units), but excludes the natural

case V = R? and a(v) = v. This assumption is done for technical reasons and we think it
could be relaxed at the cost of non trivial technical complications that are not studied in
this work.

The Bhatnagar-Gross-Krook (BGK) operator L is defined on L'(V, du) by

where M € L'(V,dpu) is a non-negative function of mass 1 and p = §, fdu. This term
comes from a Poisson process redistributing the velocity following the distribution Mdyu in
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exponentially distributed random interval of times. Our framework includes the classical

Gaussian framework where M (v)du(v) = ﬁ exp(—@)dv.

The system depends on two small parameters € and ¢§: € is the mean path between
collisions of the particles in the domain T? of size 1, while § is a time scale separation
parameter. We mainly focus on the regime ¢ = § — 0, but also consider the regimes § > 0,
e —>0and € >0, § — 0 in the numerical experiments in Chapter V.

The source term m’(t,z) introduces randomness in the system. It is an ergodic
stochastic process defined on R x T¢. Note that this process does not depend on the
velocity variable. The evolution of m® with respect to the time is scaled as ¢/6%. The
asymptotic behavior depends on . In our work, we consider the two cases kK = 1 and
k = 0. When 6 — 0, the ergodic process m? will converge in distribution to its unique
invariant distribution. Thus, when x = 1, there cannot be a limit if the average of this
invariant distribution is non zero. Therefore, when x = 1, we assume that this invariant
distribution is centered.

Since m? evolves at speed t/6% with § — 0, it is referred to as the fast component, while
P = Sv f#9du is referred to as the slow component. The slow component is p=° instead
of SV f°dp because the stiffest term of (1) is a%L f#9. we must thus have asymptotically
Lf =0, namely f = pM. Slow-fast systems with separated time-scales appear in various
situations, in a deterministic setting both as ordinary differential equations (ODEs) and
partial differential equations (PDEs), but also in a stochastic setting, both as stochastic
differential equations (SDEs) and stochastic partial differential equations (SPDEs). For
instance they appear in physics when studying a limit of a system of particles [PV03, GR09]
or in astrophysics when studying dust grain in a macroscopic structure [LBL20]. We can
also mention the study of semi-conductors [GP92]. Among these examples, semi-conductors
and systems of particles can both be modeled using kinetic slow-fast models.

In this work, we study the model (1) both from theoretical and numerical points of
view. The theoretical study (Chapters [ and II) consists in proving the convergence of
the solution to the solution of a limiting equation. The numerical study (Chapters IT1
and IV) consists in designing numerical schemes for the slow-fast system that are both
consistent for fixed € > 0, § > 0 and in the asymptotic regimes ¢ — 0 for fixed § > 0,
0 — 0 for fixed ¢ > 0 and € = § — 0. The scheme must admit a limiting scheme for any
fixed time-step size in these regimes, and this limiting scheme must be consistent with the
limiting equation derived in the theoretical study. Such schemes are called Asymptotic
Preserving (AP).

This manuscript is organized as follows.

In Chapter I, we consider the model with e = — 0 and x = 1. We prove a diffusion
approximation result, both in the PDE and in the stochastic sense: when ¢ — 0, the slow
component p° converges in distribution to the solution p of a linear parabolic diffusion
equation with a diffusive source term (namely a white noise in time). This work is an
improvement of [DV12] in the sense that we prove the same result while relaxing the
assumption of boundedness on the source term m®. This generalization is non trivial as it
requires the use of more intricate tools, including stopping times and stopped martingale
processes. This chapter is based on the preprint [RR20].

In Chapter II, we consider the model with ¢ = d — 0 and kK = 0. We prove a diffusion
approximation in the PDE sense and an averaging principle in the stochastic sense: when
e — 0, the slow component p® converges in distribution to the solution p of a parabolic
diffusion equation governed by the stationary average value of the invariant distribution
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of the ergodic driving process. Chapter II is technically simpler than Chapter I but this
manuscript is organized in the chronological order of the work of the thesis. A preprint
based on this chapter is in preparation.

In Chapter 111, we design numerical schemes for (2), both in the diffusion approximation
regime and in the averaging regime. We define a notion of AP scheme in distribution,
adapted to the multiscale stochastic problems we consider, and prove this AP property for
our schemes, give examples of non AP schemes and illustrate numerically the performance
of the different schemes. The superiority of the AP schemes can be clearly seen in these
experiments, both qualitatively and quantitatively. Moreover, we prove a uniform accuracy
property for the AP scheme in the averaging regime, namely an error estimate when the
time-step size At — 0 which is uniform in § > 0. This chapter is based on the preprint
[BRR20], to which we add some quantitative numerical experiments.

In Chapter IV, we combine the schemes of Chapter 1] and some already known AP
schemes for PDEs to design AP schemes for our SPDE, using a splitting procedure. We
illustrate the efficiency of the proposed schemes in both the averaging regime x = 0 and
the diffusion approximation regime x = 1. We consider both cases ¢ = § and € # 9, so
that we can fix one of these two parameters and let the other one converge to 0.

2 Convergence of (1) in the diffusion approximation
regime

Chapter I is based on the preprint [RR20] and is devoted to proving the following conver-
gence for p* = SV fedp where f¢ is the solution of (1) with e = 6 and k = 1.

Theorem. Let W be a cylindrical Wiener process on L*(T%), py be a random variable in
L*(T%) and p be the weak solution of the linear stochastic diffusion equation

dp = div(K'Vp)dt + pQY* o dW (1), (3)

with initial condition p(0) = lim._,g p5. The matriz K and the operator Q are defined by
(1.2.2) and (1.2.5)

Under appropriate assumptions, for all 0 > 0 and T > 0, the density p° converges in
distribution to p in C°([0,T], H=°(T%)) and in L*([0,T], L*(T%)).

This is a diffusion approximation result, both in the PDE and stochastic sense. This
theorem is a generalization of the main result of [DV12]. First, we relax the condition of
boundedness of the driving process m® into a condition on its moments that is satisfied for
instance by an Ornstein-Uhlenbeck process. Second, we add a stronger convergence (in
L*([0,T], L?)) under an additional assumption which allows to use an averaging lemma
[BD99, Theorem 2.3]. Note that the convergence only holds in distribution in general.

2.1 Context

Results of diffusion approximation for deterministic kinetic equations (hence in the PDE
sense) are common in the literature, starting with [LK74, BLP79]. In both these articles,
the small parameter ¢ is the ratio between the mean path between collisions of particles in
a domain to the size of the domain. The method is to construct an asymptotic expansion
of the solution of the kinetic equation with respect to €. In the case of (1) with m® = 0,
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[DGPO00] proves the (deterministic) convergence using a similar expansion f¢ = p*M +eg°.
Note that the term of order 0 depends on f¢ only through p°, justifying why we consider
the convergence of p° instead of f¢.

The diffusive limit in the stochastic sense is also standard: when a correctly scaled
random term is introduced in a differential equation, it induces a white noise in time
in the limiting equation, and the convergence towards the limiting equation holds only
in distribution in general. The study of such convergence results has been initiated by
Khasminskii [[Kha66a, Kha66b]. In these papers, the results are proved by establishing
the convergence of the finite dimensional distributions.

In [PSV77], the authors introduce another approach based on martingale formulation
and perturbed test functions. Let us explain the idea of this approach, which is heavily
used in Chapters I and II. Let X be a stochastic process and £ be an operator. Set

t
M) = ¢(X(0) = 9(X(0) - | £o(X(s))ds

for all test function ¢ in a class of functions ©. The process X solves the martingale problem
associated to L if for all ¢ in ©, M, is a martingale. Then, under some assumptions on
the class ©, the process X is a Markov process of infinitesimal generator £ if and only if is
solves the martingale problem associated to L. Therefore, if we consider a solution X¢ of
a SPDE of generator L2, we get a family of martingale at level € > 0. Assume the family
(X*®)..o is tight and consider X a limit point. If one can take the limit € — 0, one can
hope to get a limiting martingale problem that allows to identify X using a uniqueness
result, and thus to get the convergence in distribution. However, for multiscale singular
problems, £5p(X*®(t)) does not converge, hence one cannot take the limit. To remediate
this, the idea is to perturb the test function ¢ into a test function ¢° = ¢ +cp; + %oy + ...,
such that £5¢®* — Ly for some operator £. Assuming the perturbed test function ¢°
belongs to the class O, one can use the martingale problem on ¢*, take the limit to retrieve
a martingale problem associated with £ and get the convergence in distribution of X* to
a Markov process X of infinitesimal generator L.

Note that perturbed test functions method in the context of PDEs (either deterministic
or stochastic) with diffusive limits is not specific to kinetic equations: [Eva89] use them
for viscosity solutions, [PP03] for a parabolic PDE and [Mar06, dBD10, DT11, dBG12]
for nonlinear Schrodinger equations.

2.2 Strategy for the proof in [DV12]

The scheme of the proof in [DV12], using a martingale approach and perturbed test
functions, is as follows:

e Prove the tightness of the family of solution (p%)__,. This requires some estimates
on the moments of p®, uniformly in €.

e Construct a perturbation ¢ of a test function ¢. In (1), the infinitesimal generator
can be decomposed as L5 = ¢ 1L, + e72L,. Owing to the asymptotic expansion
©° = @ + Y, e'p;, the convergence L — L only holds if each corrector ¢; solves
the solution of the Poisson equation associated with the operator £,

Lipiq + Lop; = V4,
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for some right-hand side 9,_; that only depends on ¢; for j < ¢. Under appropriate
assumptions, the solution of this equation is well-defined and one can construct
successively the correctors ¢;.

e Since the family (p°)._, is tight, there exists a limit point p for the convergence in
distribution and a sequence €, —— 0 such that p** converges to X in distribution.

1—00
Then, one can take the limit of the martingale property

t
B[ 0) - R0 - [ £ s | 7 s < | <0
0
to get that p is the solution of the martingale problem associated to £. Assuming
the uniqueness of such a solution, this concludes the proof of the convergence in
distribution.

2.3 Strategy for the proof in Chapter I

Let us now describe the main novelties of our work. In [DV12], the driving process m®
is assumed to be bounded. This is a strong assumption, which is not satisfied by a
Gaussian process for instance. In Chapter I, the objective is to relax this assumption. As a
consequence, uniform moment estimates are missing. To overcome this issue, we introduce
stopping times 75 depending on a arbitrarily large real number A € (0, o), such that, for
fixed A, we have an estimate on the stopped process p*7s uniformly in €. More precisely,
the stopping time is defined as
Ty = 7° A TA(C9),

where
" =inf {t e R* | |m°(¢t)|, > e},

for some parameter o, where
ma(z) = inf {t € R | [2(0)]eapa > A}

and t »
0= [t [ i

We are able to prove the tightness of the family (p”/i)po and to follow the standard
proof with stopped martingales instead of martingales. A major difficulty of this framework
comes from the asymptotic behavior of the stopping times. On the one hand, we prove a
Central Limit Theorem on m?® stating that (* converges in distribution to a Wiener process
¢, hence 7A(¢%) — 72(¢) in distribution for all A outside of a countable set. On the other
hand, for a well-chosen parameter o, 7° — o0 in probability. Hence, the stopping time 7}
converges in distribution to 74(¢) when ¢ — 0. For this stopping time to be adapted to
the filtration associated with the limiting process, we need to consider the convergence of
the coupled process (p°, (%) instead of just p°.

The stopped coupled process ((p*",¢=74))__ still form a tight family. Then, a limit
point for the convergence in distribution satisfies a martingale problem stopped at time
7A(€), hence a family of martingale problems indexed by the parameter A. Since this
stopped martingale problem only characterizes the dynamics of a limit point X, = (pa,(a)
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up to time 7,((), there can be multiple solutions of the stopped martingale problem.
However, we are able to prove that the family of stopped martingale problems are
consistent, in the sense that X, has the same distribution than X ™ for some process
X. Since 73 (¢) — o when A — o0, we use these results to deduce the convergence of the
unstopped process p°.

3 Convergence of (1) in the averaging regime

Chapter II is devoted to proving the following convergence results for p* = SV fedu where
f¢ is the solution of (1) with ¢ = ¢ and x = 0.

Theorems. Let m be the average of the unique invariant distribution of m®, let py be a
random variable in L*(T%) and let p be the weak solution of the linear stochastic diffusion
equation

op = div(K'Vp) + mp, (4)
with initial condition p(0) = lim._o pf.

Under appropriate assumptions, for all o > 0 and T > 0, the density p° converges
in distribution to p in C°([0,T], H=?(T%)) and in L*([0,T], L*(T%)) and f¢ converges in
distribution to pM in L*([0,T], L*(T? x V, dﬁ’(ﬁ;}))) . Moreover, if py is deterministic,
then every convergence holds in probability.

This is a diffusion approximation result in the PDE sense as in Chapter [, but an
averaging result in the stochastic sense. The averaging principle for stochastic system
has been introduced in the classical paper [Kha68]. Numerous results are associated to
this principle, using different proofs and different criterion of convergence, see for instance
[PS08, Cer09, CF09, Brél2, Bré20]. Some of these papers also state the convergence speed
in the averaging principle in SPDEs (see [Brél12, Bré20]). In Chapter II, we only prove
convergence. The analysis of convergence rates is left for future works.

The strategy of the proof is similar to Chapter [: we follow the approach based on
martingale problems and perturbed test functions, and cope with the unboundedness of
the driving process m® by stopping the processes and the martingale problems at some
stopping time 7. The main difference with Chapter I is that, in this framework, 7 — o0
in probability. Hence, the limiting martingale problem is not stopped at some stopping
time: it is a standard martingale problem, and since its solution is unique, we deduce the
desired convergence with simpler arguments. More precisely, the auxiliary process is this

time defined as .
1
() = 2 | m(s) ) s,
€ Jo
where the average m of the unique invariant distribution of m® is non zero. Then, the
stopping times are defined by

T =T, AT
T =inf {t e RY [ [m*(t)[p = &7},

7$ — inf {t e R | 1)) = g*l} .

As in Chapter [, for suitable o, we have 7;, — o0 in probability when ¢ — 0. However, in
the hitting time 7¢ of the auxiliary process, the fixed threshold A can be replaced by e,

yielding 7¢ — o0 in probability when ¢ — 0.
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4 Asymptotic preserving schemes for SDEs

Chapter I1II is based on the preprint [BRR20] and is devoted to designing AP schemes for
(2) in the diffusion approximation and averaging regimes. We work on SDEs first because
we noticed that our work already brought non-trivial new contributions in this simpler
case. We come back to the SPDE case in Chapter IV. We refer to [PS08] for convergence
results on multiscale SDEs: [PS08, Chapter 11] states the convergence in the diffusion
approximation regime and [PS08, Chapter 10] states the convergence in the averaging
regime.

4.1 Context

Let us motivate this work. In the deterministic case, the field of stiff ODE solvers is
well-studied [HW96]. The presence of a stiff term in a system, typically related to the fast
component, can induce strong stability conditions of the form At = o(¢%), since one needs
the scaled time step size At/e® to converge to 0. A consequence is an explosion of the
computational cost when simulating the system for small e. When the system follows a
stochastic dynamics, the simulation can prove to be even more challenging.

In [FG18], the authors give examples where the SDE satisfied by some statistical
quantities of a scheme (for instance the probability density function) differs from the
limiting SDE of the continuous-time system. One of these examples is the It6 interpretation
of the noise when the limiting SDE uses a Stratonovich interpretation. We investigate this
example further below.

In [LAEOS], the authors also illustrate how a stiff ODE solver may not be effective in
the case of stiff SDEs, when the invariant measure is non-Dirac, and how these solvers
may produce wrong solutions when the fast scale dynamics are not resolved. Even worse,
they prove how a discretization X; may converge to a scheme X“ when At — 0 and ¢ — 0
with fixed ratio ¢ = At/e*, where the scheme X¢ heavily depends on c.

A well-studied way of avoiding these issues is to approximate the limiting model for
the slow variables of interest, while only partial but relevant information coming from
the fast dynamics is taken into account. Let us mention some of the many methods that
follow this approach.

The Heterogeneous Multiscale Method (HMM) [AEEVE12, Brél3, ELVEO5] is based
on a macroscopic solver that performs computations for the microscopic dynamics when
needed. More precisely, one computes the macroscopic dynamics using a macroscopic
solver. When the macroscopic solver needs some data that cannot be computed using this
solver, typically data that can only be read at the microscopic level, one may perform
a series of microscopic computations constrained to be consistent with the value of the
macroscopic dynamics at that time. Then, using these computations, one may compute an
estimation of the missing data and inject it back to the macroscopic solver. Similarly, the
projective integration method [GKIK06] is based on a solver for the macroscopic component
and on short runs of a solver for the microscopic dynamics, to avoid high computational
cost while estimating the effect of the microscopic component on the macroscopic one. Due
to their approximation of the microscopic dynamics, the projective integration method
and the HMM can be called averaging-based methods.

The equation-free coarse-grained method [KGH™"03] instead approximate the evolution
of the macroscopic component through appropriately initialized calls to a microscopic solved
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for short times and on small spatial domains, for example by integrating the dynamics
over long times or large spatial domains. In particular, this approach is equation-free in
the sense that one does not always need to derive the macroscopic evolution equation from
the microscopic one.

More recently, in [APV17], the authors design a spectral method. The coefficients of
the homogenized equation are computed using solutions of appropriate Poisson equations.
These Poisson equations are solved using spectral Hermite methods, namely an expansion
in Hermite functions.

In [VZS20], the authors describe a micro-macro acceleration method. The algorithm
intersperse alternatively a microscopic solver for short times and an extrapolation of
the macroscopic state over a longer time interval. Then, they compute the probability
distribution that is consistent with this extrapolation, while minimally modifying the
computed microscopic distribution. This allows them to reconstruct the microscopic state.

Finally, [LLMS20] present a micro-macro version of the parareal algorithm, which
parallelize the computations with respect to the time variable, allowing to significantly
reduce the computation time.

4.2 Main contributions of Chapter III

For the class of SDEs we focus on in this manuscript, standard schemes also perform
badly in the asymptotic regime. Let us first consider the diffusion approximation regime.
Consider the particular case of (2)

X¢ €
axe = CXOmE
9

<
dm; = —ZLdt + ~dp,.
19 19

If one takes o(x) = z, it is a finite dimensional version of (1) with ¢ = 6, x = 1 and
where m? is an Ornstein-Uhlenbeck process scaled as t/e2. For simplicity, assume d = 1.
When ¢ — 0, the diffusion approximation result (see [PS08, Chapter 11]) states that X¢
converges in distribution to the solution X of the SDE

dXt = U(Xt) o] dﬁt,

where the noise is interpreted in the Stratonovich sense, the It6 form of this SDE being

dx, — ;o’(Xt)a(Xt)dt T o(X,)dB.

For fixed € > 0, the numerical scheme

Atme
Xiuy = X5+ o) =L
i AL L A
My = My — ?mn+1 + - Tns

where (7,),,en, 1 an i.i.d. sequence of standard Gaussian random variables, is consistent
with the system. However, when ¢ — 0, X converges to X,, given by

Xni1 = X + VALo (X)) Vn.
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This limiting scheme is consistent with the Itd interpretation of the noise, instead of the
correct Stratonovich one, and therefore fails to capture the asymptotic behavior of the
system. In Chapter I1I, we design an AP scheme, namely a scheme for which the following
diagram is commutative

Xy 300 X0

lsﬁo EHOl
Xy 22% X(7)

The AP scheme is based on a prediction-correction procedure:

(o o AL, ALF(XR)g(XF) | fXQAX) VALY,
My = My, — £2 + c + - )

- NI
Xe | = X5+ Ath(X2) + a(X;f;)%

)

Vo AR )me, | AF(XS)9(XD) | F(XD)R(XE)V AL,
My = My ) + c + c )
Atme
Vi = X5+ A(XE) + o (X]) =,

_ X;al + Atb(Xfl) + U(XZ) +2U<Yn6+1) gmfbﬁ-l _5 mfz-i—l )
€

€
LXn-i-l

This scheme is efficient for a large class of SDEs, including the previous example where it
captures the Stratonovich interpretation of the noise, but also in the system considered in
[LBL20], where the limiting equation contains a noise-induced drift term that is captured
by our AP scheme and not by a standard scheme.

In the averaging regime, the same kind of problems occurs. Consider the system

dX7 = b(X7,my)dt,
/3

. 7
dmé = —"tar + Y2 a3,
19 13

7

If one takes b(x,m) = xm, it is a finite dimensional version of (1) with ¢ = §, k = 0 and
where m® is an Ornstein-Uhlenbeck process scaled as t/e. When ¢ — 0, the averaging
principle (see [PS08, Chapter 10]) states that X converges in distribution to the solution
X of the ODE

X = B(X)7

where b(z) = {b(z, m)dv(m) and v = N(0,1) is the standard Gaussian random variable.
For fixed € > 0, the numerical scheme

Ko = Xo + At(X5, i ),

n+1

) N Y
My = My — ?mn+1 + - Tns

is consistent with the system. However, X 7 X,, where X, is given by
£—

Xyt = Xo + At(X,,,0),
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which is in general inconsistent with the limiting equation. Once again, we design an
AP scheme such that the aforementioned diagram is commutative, based on an exact (in
distribution) discretization of the fast component:

{XZH =X, + Atb(X7i7m7€1+1> + VAto (X, mfl+1)rn

(5)
my . = e’At/ame + A1 — e 2Atep( X2 )y,.

After constructing these AP schemes, we present three types of numerical experiments.
Each of them illustrate the superiority of the AP schemes compared to crude schemes:

e The first one is qualitative: we plot the trajectories of the discretized solution as a
function of the time ¢, for a fixed value of the time-step size At and for different
values of €. The trajectories are compared to a reference scheme.

e The second one is quantitative: we plot an estimation of the weak total error

|E [o(X3)] = E[o(X(T)]I,
for some test functions ¢, as a function of At for different values of ¢.

e The third one is also quantitative: we plot an estimation of the weak diffusion
approximation or averaging error at the discrete time level

E[p(X3)] = E[p(Xn)][,
for some test functions ¢, as a function of ¢ for different values of At.

In both quantitative experiments, the observed results for the AP scheme (5) are consistent
with the error estimates below and gives higher order of convergence than what we manage
to prove. Meanwhile, the non AP scheme does not perform well for small €, the error with
respect with e (respectively At) being non uniform in At (respectively ). The order %
may not be optimal, since the numerical experiments show an order 1.

In the diffusion approximation regime, we do not have a general uniform accuracy
result, except in some particular cases.

4.3 Error estimates in the averaging regime

In the averaging regime, prove a uniform accuracy theorem for the AP Scheme (5). In
this case, the fast component m® scales as t/e.

Theorem. Under appropriate assumptions, for any T € (0,0) and any function ¢ : T¢ —
R of class C*, there exists C(T, ) € (0,00) such that for all At € (0, Aty] and ¢ € (0,1]
one has

BL(X3)] - ELo(X(T)]| < O o) min (2 8¢+ ©)

and the AP scheme is uniformly accurate with the following error estimate: for all
At € (0, Aty], one has

sup [E [p(X5)] — E[p(X*(T))]] < C(T, o) VAL (7)

e€(0,1]
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To the best of our knowledge, this is the first uniform accuracy result for an AP scheme
for stochastic equations.

The idea of the proof of uniform accuracy is to estimate the left-hand side of (6) using
two different paths on the commutative diagram

€ A €
XN At—0 X (T>

Ble—>0 5—>OJD

Xy % X(T)

where A, B, C' and D denotes the errors in the different convergences:

e The estimate O(2!) comes from the direct path [E [p(X5)] — E[¢(X*(T))]| < A.
Since we use a classical scheme with time-step size At/e, we are able to prove that
A = O(At/e) using standard arguments (Kolmogorov equation).

e The estimate O(At + ¢) comes from the indirect path |E [o(X5)] — E[o(X(T))]| <
B+ C + D. Since D is the error is the averaging principle, we have D = O(g).
Proving a nice error estimate for the error term B is the most challenging part: we
adapt the proof for D to the discrete case and are able to get B = O(max(At,¢)).
The last error C' is estimated using Kolmogorov and Poisson equations, and we get

C = O(Ab).

This leads to (6) by writing |E [¢(X%)] — E[@(X*(T))]] < min(A, B + C + D) and to
(7) by using the first or the second estimate depending on whether VAt < € or ¢ < VAt.

5 Asymptotic preserving schemes for kinetic stochas-
tic PDEs

Using the work of Chapter 11 on SDEs, we go back to our SPDE framework: Chapter [V is
devoted to designing asymptotic preserving schemes for (1) in the diffusion approximation
and averaging regimes. Unlike Chapters [ and II, we do not only consider the case € = 9,
but allow the two parameters to converge to 0 independently from one another.

5.1 Context in the deterministic case

The notion of AP schemes in the deterministic case has been introduced in [Jin99], for
applications to multiscale kinetic Partial Differential Equations (PDEs), which converge
to parabolic diffusion PDEs. Our system (1) is a particular case of this setting if m® = 0.
By now, various AP schemes have been designed. Let us describe some of them.

For kinetic BGK models with the hyperbolic scaling

1
Off +a(v) -V, f° = gLfa,
the review articles [DP14, Section 7] and [Jin12] both mention a splitting scheme. The
splitting in time is done by solving first the collision term L f* and then the convection

term a(v) - V. f. One can then focus on the collision term and use a upwind explicit
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scheme for the convection term: the splitting scheme is AP if the scheme for the collision
term is also AP. For the collision term, [DP14, Section 7] gives a sufficient condition for a
Runge-Kutta method to be AP, while [Jin12] gives an AP implicit scheme.

The two review articles also mention a family of non splitting Implicit-Explicit scheme
(IMEX). For instance, an IMEX scheme can be obtain by using an implicit discretization of
the collision term while the discretization of the convection term is explicit. In both those
methods (splitting and IMEX), even though the scheme is at least partially implicit, the
scheme can be expressed explicitly and one does not need to invert a system of nonlinear
equations.

In [Pupl9, Section 4], the author mentions an AP scheme based on a upwind space
discretization with high order scheme in space for the equation.

For kinetic BGK models with the parabolic scaling as in (1), namely

1 1
O f° + ga(v) Vo ff = gLfE,

some AP schemes are given in [Hiv18, 1.MO8] for instance.

A first AP scheme can be designed using a micro-macro decomposition of f¢ as
fe = p*M + £¢° and designing a scheme based on the equations satisfied by p® and ¢°. A
second AP scheme is obtained using an fully implicit discretization of the equation satisfied
by f¢ the Fourier transform in space of f°. This second scheme is detailed in Chapter
IV. Even though they are asymptotic preserving, none of these schemes are uniformly
accurate, in the sense that the precision of the scheme is not uniform in ¢.

One can design a uniformly accurate AP scheme as follows: using an integral formulation
of the equation. More precisely, one writes the equation solved by f¢ the Fourier transform
in space of f¢, expresses the Duhamel form of f¢ and integrate this expression with respect
to the velocity variable. By discretizing the integral in time (due to the Duhamel form)
using a quadrature rule of order 2, [Hiv18] shows that one obtains a uniformly accurate
AP scheme on p°. We do not use this scheme in the numerical experiments, preferring a
simpler implementation. Application of this uniformly accurate in a stochastic setting will
be investigated in future work.

5.2 Context in the stochastic case, in the diffusion approxima-
tion regime

In a stochastic setting, an additional difficulty arises: in general, the convergence only
holds in distribution. Thus, the AP property must be formulated for the convergence
in distribution. This corresponds exactly to the definition of AP scheme introduced in
Chapter I1I.

The aforementioned works on deterministic dynamics have been extended to a stochastic
framework. In [HJ17, Jin18, JLP18], the authors study AP schemes for PDEs with random
coefficients. In [DPS18, RLJ14], the authors use Monte-Carlo methods for deterministic
problems. However, these methods do not apply to SPDEs.

In [AF19], the authors deal with the kinetic SPDE

1
A + Zvd.fodt = &%.c fedt + f o QAW

driven by a Q-Wiener process, which is this time very close to our framework (1). More
precisely, we recover this setting after taking the limit 6 — 0 in (1) in the diffusion
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approximation regime, albeit with a different operator L than ours. They design an AP
scheme using the micro-macro decomposition f¢ = p*M +¢e¢® and an upwind discretization
of the space derivatives. As a consequence, the limiting scheme is explicit and requires
a CFL condition for stability. In Chapter IV, we construct an AP scheme with no CFL
condition and when the noise is not necessarily a Wiener process.

5.3 Main contributions of Chapter IV

Our construction of AP schemes is based on splitting (1) into a deterministic part

1 1
O f° 4+ — -V.ff=—=Lf°, 8
O+ Zale) Voff = L )
and a stochastic part
1
atf§ = ﬁmaf(s. (9)

Therefore, we design an AP scheme using a splitting procedure by combining one of the
aforementioned AP schemes for (8) and an AP scheme for (9). Note that (9) is simpler
than the general system (2) considered in Chapter 111, since it is linear in m?. As a
consequence, one can either use the general schemes designed in Chapter III or some
specific schemes.

We present three types of experiments to illustrate the efficiency of our AP schemes
compared to crude schemes:

e The first two types are qualitative: we plot the trajectory of H pg’é(t)H ;2 as a function
of t or the value at final time p*°(T, z) as a function of x, for a fixed value of the
time-step size 7 and for different values of € and 4.

e The third type of experiments is quantitative: we plot an estimation of the weak
error

E [0(p™°(T))] — E [(p(T))]]

depending on the time-step size 7, for different values of € and 9.

6 Perspectives

6.1 Results to investigate

We left some results on our models for future works. In the theoretical part of this
manuscript, the diffusion approximation regime (Chapter I) can be seen as a Central
Limit Theorem regime for the averaging regime (Chapter II). The former may help getting
information on the latter for example to get the convergence rate of f&° towards pM.

In the numerical part of this manuscript (Chapters 111 and IV). For instance, we only
proved uniform accuracy in the averaging regime for SDEs. It is worth investigating the
same type of results in the diffusion approximation regime.

In the SPDE case, one should study numerical stability for our AP schemes more
precisely, for instance by getting L? moments uniformly with respect to the time-step
size. Then, one could study the convergence rate, both from a theoretical and a numerical
point of view. It should be noted that the numerical study of the convergence rate is
computationally heavy and requires more efficient implementations of our schemes.
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There is little hope for our AP schemes to be uniformly accurate since the deterministic
part of the splitting is computed using a non uniformly accurate scheme. However, the
splitting procedure allows to replace this part by any AP scheme, for instance the integral
formulation-based scheme given in [Hiv18], which is both AP and uniformly accurate.
The splitting scheme based on two uniformly accurate scheme will hopefully by uniformly
accurate.

6.2 Towards other models

Another possible prolongation of this work is to extend both the theoretical and the
numerical results, to weaker assumptions or to related models.

For instance, we believe that our results still holds without the boundedness assumption
on the velocity a(v), and removing this assumption is essential to retrieve the classical
framework a(v) = v with V = R? However, relaxing this assumption brings non trivial
technical complications. Similarly, relaxing the assumption (V) < oo is not straight-
forward. For instance, when p(V) = oo in the averaging regime, the functional space
LEZL2(M™Y) = L2([0,T], L*(T? x V, dﬁ’:ﬁ;j))) may not be suitable to study f&°, since
pM ¢ L2 L2 (M) and f° — pM when p(V) < .

Another perspective is to adapt the generality of our SDE model (chapitre I1I) to
our SPDE model. For instance, one could try to get the results of Chapters I et I after
replacing the linear source term m’f° by a general term b(m?)f*?. One could also
investigate coupled models, where the fast component depends on the slow component.
We only studied coupled SDE, but coupled SPDEs are a natural extension of our work.
Note that in the SDE case, a non trivial coupling can induce a noise-induced drift term in
the diffusion approximation regime. A recent preprint [CX20] studies the parabolic case
and confirms the addition of a noise-induced drift term in the limiting equation.

Another interesting perspective comes from the fact that our numerical schemes heavily
relies on the fast component being an Ornstein-Uhlenbeck process when the slow component
is frozen. Designing AP schemes when the fast component solves a general ergodic SDE
with nonlinear coefficients is not straightforward.

Finally, our results could be proved for different related models, for instance when the
source term 0~*m? £ is replaced by a forcing term 6% m? -V, &, where we expect k' = 2
in the diffusion approximation regime and s’ = 1 in the averaging regime. This model
has already been studied from a theoretical point of view [DV20], but to the best of our
knowledge, there exists no AP schemes for such kinetic stochastic PDEs. A splitting-based
approach should reveal efficient.
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Chapter 1

Convergence in the diffusion
approximation regime with an
unbounded driving process

This chapter is a detailed version of the article Diffusion limit for a stochastic kinetic
problem with unbounded driving process [RR20]. The preprint can be found at https:
//arxiv.org/abs/2009.10406.

1.1 Introduction

Our aim in this chapter is to study the scaling limit of a stochastic kinetic equation in
the diffusion approximation regime, both in Partial Differential Equation (PDE) and
probabilistic senses. For deterministic problems, this is a thoroughly studied field in the
literature, starting historically with [LK74, BLP79]. Kinetic models with small parameters
appear in various situations, for example when studying semi-conductors [GP92] and
discrete velocity models [L'T97] or as a limit of a particle system, either with a single
particle [GRO9] or multiple ones [PV03]. It is important to understand the limiting
equations, which are in general much easier to simulate numerically. For instance, in the
asymptotic regime we study, the velocity variable disappears at the limit.

When a random term with the correct scaling (here ¢/?) is added to a differential
equation, it is classical that, when ¢ — 0, the solution may converge in distribution
to a diffusion process, which solves a Stochastic Differential Equation (SDE) driven
by a white noise in time. This is a diffusive limit in the probabilistic sense. Such
convergence has been proved initially by Khasminskii [Kha66a, Kha66b] and then, using
the martingale approach and perturbed test functions, in the classical article [PSV77]
(see also [Kus84, EK86, FGPSI07, PS08, dBG12]). The use of perturbed test functions in
the context of PDEs with diffusive limits also concerns various situations, for instance
in the context of viscosity solutions [Eva89], nonlinear Schrodinger equations [Mar06,
dBD10, DT11, dBG12], a parabolic PDE [PP03] or, as in this chapter, kinetic SPDEs
[DV12, DV20, DRV20).
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In this chapter, we consider the following equation

1 1 1
0"+ Zalv) - Vaf* = SLI+ S, (L1.1)
f(0) = f5. (I.1.2)

where f is defined on R* x T¢ x V, L is a linear operator (see (I.1.3) below) and the
source term T° is a random process defined on R* x T¢ (satisfying assumptions given in
Section [.2.1). The goal of this chapter is to study the limit & — 0 of its solution f¢, and
to generalize previous results of [DV12].

The solution f¢(t,z,v) is interpreted as a probability distribution function of particles,
having position = and velocity a(v) at time ¢. The variable v belongs to a measure space
(V, 1), where p is a probability measure. The function a models the velocity.

The Bhatnagar-Gross-Krook operator L expresses the particle interactions, defined on
LY(V, ) by

Lf=pM—F, (1.1.3)

where p = {, fdyp and M e L'(V).
The source term m° is defined as

me(t, ) = m(t/e*, x), (I.1.4)

where M is a random process, not depending on €.

In the deterministic case m® = 0, such a problem occurs in various physical situations
[DGPO0]. The density p* = Sv fedp converges to the solution of the linear parabolic
equation

o — div(KVp) =0, (I.1.5)

on R* x T?¢. This is a diffusive limit in the PDE sense, since the limit equation is a
diffusion equation.

In this chapter, the diffusion limit of (I.1.1) is considered simultaneously in the
PDE and in the probabilistic sense. The main result, Theorem [.2.1, establishes that,
under appropriate assumptions, the density p* = SV fedu converges in distribution in
C°([0,T], H=°(T%)) for any ¢ > 0 and in L%([0,T], L?(T?)) to the solution of the stochastic
linear diffusion equation

dp = div(KVp)dt + p o QY2 dW (1),

with K as in (I.1.5). The equation is written in Stratonovich form and is driven by a
cylindrical Wiener process W, the covariance operator () being trace-class. As usual in the
context of diffusion limit, the stochastic equation involves a Stratonovich product. The
diffusive limit in the stochastic case has been first proved in [DV12], under a restrictive
condition on the driving random term: m is bounded almost surely. The boundedness
of m is a strong assumption, which is not satisfied by an Ornstein-Uhlenbeck process
for instance. The contribution of this chapter is to relax this assumption: we prove the
convergence under a moment bound assumption for the driving process.

The main tools of [DV12] are the perturbed test function method and the concept of
solution in the martingale sense. Our general strategy for the proof is similar, therefore
those tools are also used here. The main novelty is the introduction of stopping times to
obtain the estimates required to establish tightness and convergence. Indeed, relaxing the
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conditions on 7 implies that moments of the solutions are not controlled (exponential
moments for m would be necessary). The strategy from [DV12] needs to be substantially
modified: the martingale problem approach is combined with the use of stopping times.
At the limit, the stopping times persist, thus the limit processes solves the limit martingale
problem only up to a stopping time. We manage to identify them nonetheless as a stopped
version of the global solution.

This chapter is organized as follows: in Section 1.2, we set some notation, the assump-
tions on the driving random term and the main result, Theorem [.2.1. Section 1.3 states
some auxiliary results that are used in the later sections. In Section [.4, we introduce the
notion of martingale problem and the perturbed test function method that are used to
prove the convergence. In Section 1.6, we prove the tightness of the family of processes
((,05’75, CE’TIE\))E stopped at the random time 75. Section 1.7 takes the limit when £ — 0 in
the martingale problems and establishes the convergence of p° in C°([0,T], H=°(T%)) . In
Section 1.8, we prove the convergence in a stronger sense, namely in L?([0, T], L*(T%))),
using an additional assumption and an averaging lemma.

1.2 Assumptions and main result

Assumption I.1. The operator L is defined on L*(V, u) by (1.1.3), with M e LY(V, p)
such that infy M > 0 and {, Mdu = 1.

Let us define the spaces L?(M™!) and L? and the associated inner products:
LM = LT Ve ). (o = [ T80 oy
Td

L2 = LA(T%, de), (f.g)2 = Ldf(x)g(x)dm

We also define the norms ||| ;2o -1y and || ;2 associated with these inner products.
Note that L is an orthogonal projection in L?(M™1); hence

Vf e LM ILF | oy < UF 2oy -

Assumption 1.2. The function a is bounded (a € L®(V,u;R?)), centered for Mdy,
namely

Jv a(v)M(v)du(v) =0, (I.2.1)

and the following matrix is symmetric and positive definite
K = J M(v)du(v) > 0. (1.2.2)

The following assumption is not required to get the convergence in C°([0, T, H;?) but
is used in Section 1.8 to retrieve a stronger convergence (in L*([0,T], L2). Tt is exactly the
assumption of [BD99, Theorem 2.3].

Assumption 1.3. We have (V,du) = (R",4(v)dv) for some function ¢ € H'(R"), a €
Lip,,.(R™; R?) and there exists C' > 0 and o* € (0, 1] such that

Vue ST YA E R,V > o,f ()P + V(o) P)do < Co7".

A<a(v)-u<A+d
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Assumption 1.4. We have

sup E | |5 7o) | < 0. (123)

ee(0,1)
and p§ converges in distribution in L2 to py.

Remark 1.2.1. The moments of order 24 in Assumption [.4 are useful in Sections [.4.1 and
1.4.2.

I.2.1 Driving random term

Consider the normed space
E = C2ld/2J+4(Td>,

where the norm is given by

olBl.

oxP

Y

Iz = Z sup

18|<2]d/2]+4 €T

where 3 e N4, |B| = Zle B; and

il oIl
oz’ ozt ozl

Assumption I.5. The family of process (m(-,n)), . is a E-valued, cadlag, stochastically
continuous and homogeneous Markov process with initial condition m(0,n) = n. It admits
a unique centered stationary distribution v

JE In|, dv(n) < o and JE nd(n) = 0.

The driving process m is the stationary Markov process associated with (m(-,n)), g,
meaning that for all ¢ € R, the distribution of m(t) is v. It is adapted to a filtration
(Ft);cp+ satisfying the usual conditions (complete and right-continuous).

For € LY(E) = L'(E,v), set
(0) = f fdv.
E

Note that most of the arguments below only require m(t) € C1(T?). However, in Section
1.6, we use the compact embedding H!%?+2(T?) = C'(T%) and in Section 1.3.2, we need
m(t) € C*(T?) with H*(T9) = C'(T?), hence s = |d/2] + 2.

Definition I.2.1. For ¢ > 0, the random process m° is defined by (I.1.4) where T is
defined by Assumption 1.5. Let F; = F/.2 so that m* is adapted to the filtration (F;),cp+ -
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Assumption on moments

From now on, we depart from the setting of [DV12]. In the previous works [DV12, DV20],
it is assumed that there exists C, € R* such that, almost surely,

vt e RY, [m(t)] 5 < Ca.

The main novelty of this chapter is that we relax this assumption into Assumptions [.7
and [.6 concerning moments.

Assumption 1.6. There exists v € (4,0) such that
D [ sup |m<t>\g] <.
te[0,1]

The condition v > 4 is required below in Assumption .7, where we also assume that
the moments on m(t,n) depend polynomially on n.

Assumption I.7. There exists b € [0, 3 — 2) such that

1
L1
E[|m(t,n)|%]?
sup sup 5
neZiert 1+ ||nj

and such that v has a finite 8(b + 2)-order moment, namely

| 115 dvt) < <o

E

For instance, if m is an Ornstein-Uhlenbeck process
dm(t) = —0m(t)dt + odW (t),

with W a E-valued Wiener process, then m satisfies Assumptions 1.6 and [.7.
Moreover, any process satisfying the boundedness assumption in [DV12] also satisfies
Assumptions 1.6 and 1.7.

Mixing property

Assumption 1.8 (Mixing property). There exists a nonnegative integrable function
Ymiz € L' (RT) such that, for all ny,ny € E, there exists a coupling (m*(-,ny), m*(-,ns)) of
the processes m(-,n1) and m(-,ny) such that

]1/2

vt e R E [[m*(t,n1) —m*(t,n2)l5] " < Ymia (1) 12 — el

Typically, Yz is expected to be of the form 4y, (t) = Cpize Pmict for some B, > 0.
In the example where m is an Ornstein-Uhlenbeck process, consider m* (-, ny) and m*(-, ns)
driven by the same Wiener process W. Owing to Gronwall’s Lemma, it is straightforward
to prove that this coupling satisfies Assumption 1.8 and that 7,,;, decays exponentially
fast.

We also need Assumptions [.9 and [.10 concerning the transition semi-group associated
to the homogeneous Markov process (m(-,n)), .. Since those assumptions are quite
technical, we postpone their statement in Section [.3.1.
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1.2.2 Main result
For z,y € TY, define the kernel

o) = E | [ mOo)@mo e, 124
R
and for f € L? and x € T? let us recall from [DV12]

Qf(z) = Ld k(z,y)f(y)dy. (1.2.5)

Theorem 1.2.1. Let W be a cylindrical Wiener process on L2, py be a random variable
in L2 and p be the weak solution of the linear stochastic diffusion equation

dp = div(KVp)dt + pQ"? o dW (1), (1.2.6)

with initial condition p(0) = po, in the sense of Definition 1.5.1.

Let Assumptions 1.1, 1.2, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and 1.10 be satisfied. Also assume
that p*(0) converges in distribution to py in L2. Then, for alloc > 0 and T > 0, the density
p° converges in distribution in C°([0,T], H;) to p.

If moreover Assumption 1.3 is satisfied, then the convergence also holds in L*([0,T], L?).

The noise in (1.2.6) involves a Stratonovich product, which is usual in the context of
diffusion limit. Written with a Ito product, the limit becomes

1
dp = div(KVp)dt + 3 Fpdt + pQY2dW (t), (1.2.7)
where F' is the trace of (), namely
F(z) = k(x,z). (I.2.8)

This equation is well-posed, as discussed after Definition [.5.1.
This is the same limit than in [DV12]. Compared with [DV12], we obtain a stronger
convergence result, namely a convergence in L([0,T], L?) under additional assumptions.

I[.2.3 Strategy of the proof of Theorem 1.2.1

A standard strategy to prove the convergence of p* when ¢ — 0 (see [DV12, DV20, DRV20])
is first to establish the tightness of the family (p°)._,, and then the uniqueness of the limit
point of this family and solves (1.2.13). The tightness usually comes from estimates on
moments of trajectories. It is the case in [DV12], where the boundedness of 77 is used to get
an estimate on E [sup,eo 7y [ f(¢)|[72] for all T > 0 and p > 1. However, without an almost
sure bound on 7z, we do not manage to get this estimate. Instead, we introduce a stopping
time 75 depending on a parameter A such that the estimate holds for f&7a = fe(t A 75).
More precisely, define a first stopping time

7 = inf {t e RT | [m°(t)] 5 > e}, (1.2.9)

for some parameter a. Let C! = C*(T?) and define the hitting time of a threshold A by
z€C([0,T].C;)

7a(2) = inf {t eR" | 2(t)]ey > A}. (1.2.10)
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Then, define the auxiliary process
1 [t t/e?
CE(t) = J 2 (s)ds — gf mi(s)ds € B < CL. (1.2.11)

Observe that %ma = 0,C°.

We can now define

Ty = 7° A TA(CF). (1.2.12)

The times 7¢ and 7, (¢%) have different asymptotic behaviors. On the one hand, Lemma
[.3.4 states that 7 — oo in probability. On the other hand, Section [.7.1 establishes that
(® converges in distribution, when ¢ — 0, to a Wiener process (. Thus, we prove that,
for all A outside of a countable set, 74 ((%) converges in distribution to 74({). Hence, 7§
converges in distribution to 7 (().

In Section 1.3.5, we prove an estimate on f©7 depending only on 7', A and f§. This
estimate leads to prove the tightness of the family of stopped processes (pE’T/E\)DD. Then,
we identify the limit points of this family using the notions of martingale problems and
perturbed test functions, and we deduce the convergence of the stopped process to a limit
PA-

Since 7 — 7 (() and we expect p* — p, it is convenient to study the process (p°, (%)
to be able to write the limit of p*7A as p™(9). Moreover, to prove that p° indeed converges
to p and that p satisfies (1.2.6), we need 7A(¢) to be a stopping time for the limit
process. Thus, we need to consider the convergence in distribution of the couple (p%, (%) in
C°([0,T], H; ) x C°([0,T],CL) to the solution (p, () of

xT

1
dp = div(KVp)dt + - Fpdt + pQY2dW (t)

(1.2.13)
d¢ = QAW (1),

with initial condition p(0) = po and ¢(0) = 0. In this framework, 74 (%) is a stopping time
for (p, (%) and 75(() is a stopping time for the limit (p, ().

We first state in Section [.3 some consequences of our assumptions in Section [.2.1 and
introduce the stopping times. In Section 1.4, we define the martingale problem solved by
the process (p°, (%) and set up the perturbed test functions strategy.

In Section 1.6, we prove the tightness of the stopped process in the space C°([0, T'], H;7) x
C°([0,T],CL), using the perturbed test functions of Section I.4. Then, in Section 1.7, we
establish the convergence of the martingale problems when ¢ — 0 to identify the limit as
a solution of a stopped martingale problem, and deduce the convergence of the original
process (p, (%) in C°([0,T], H,7) x C°([0,T],C}).

In Section 1.8, we prove the tightness of the stopped process in L*([0, 7], L?) under the
assumptions of Theorem [.2.1, using an averaging lemma. Combined with the previous
results, we deduce the convergence of the original process p° in L*([0,T], L2).
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1.3 Preliminary results

I.3.1 Resolvent operator
Additional assumptions

Denote by (F;),.p+ the transition semi-group on E associated to the homogeneous Markov
process m and let B denote its infinitesimal generator

PO(n) - b(n)
t

The usual framework for Markov processes and their transition semi-groups is to
consider continuous bounded test functions 0 € CY(E), so that P, is a contraction semi-
group (see [EK86]). Here, we need unbounded test functions (see Section 1.4.2), thus
consider the action of the semi-group on C°(E) n L'(E). We also consider the domain of

B

Vne E,Bf(n) = %ir%

D(B) = {6 C°(E) n L'(E) | Vn € E, Bf(n) exists and B8 € C°(E) n L'(E)}.

We need a continuity property for the semi-group (P;),.p+. Define first the resolvent
operator.

Definition 1.3.1. For A € [0,0) and 6 € C°(E) n L'(E) such that § |Pf(n)|dt < o for
all n € E/, define the resolvent: for alln e E

R\0(n) £~[we_M}19Oﬁdt

0
Assumption I.9. The family (P;), g+ is a semi-group on C°(E) n L'(E). Moreover, for

all (Aj);;<4 € [0,00)* and (), ;4 € (C°(E) n LY(E))" such that R,,6; are well-defined
by Definition [.3.1, we have

Vj e [1,4],I)_,Ry,0; € D(B).

In addition, we assume that for A € [0,00) and 6 such that R\0 € D(B), the commutation
formula holds " "
BJ e MPO(-)dt = J e MBP,I(-)dt.
0 0
The first part of Assumption [.9 is satisfied for instance by an Ornstein-Uhlenbeck
process. The second part of Assumption 1.9 is satisfied under a continuity property for
the semi-group (F;),.p+. Indeed, consider the following computations

P, —id [* ® P —P
lir%il J e MPO()dt = lim | e Mt
S—> S 0

s—0 0 S

00]
0()dt = f M li Dt = B Pte(-)dt
0 s—0 S
To justify the first equality, it is sufficient to assume point-wise continuity of P, for all
t on the space C°(F) n L'(E). The second equality is a consequence of the bounded

convergence theorem.
Note that by means of Assumption 1.9, — Ry is the inverse of B. Indeed, for # such
that Rof € D(B), we have

BJOO Pte(-)dt:fo BPtG(-)dtzjw O PO )t — —0.

0 0 0
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We sometimes use functions having at most polynomial growth. Our last assumption
is that B preserves this property.

Assumption 1.10. If # € D(B) has at most polynomial growth, then Bf has at most
polynomial growth with the same degree. Namely, there exists Cg € (0, 00) such that, for
any # € D(B) and k € N,

Bo 0
wp B )]

Results on the resolvent operator

We introduce a class of pseudo-linear (respectively pseudo-quadratic) functions, which
behave like linear (respectively quadratic) functions for our purposes.

Definition 1.3.2. A function 6 € Lip(E) such that () = 0, is called pseudo-linear. Denote
by [0];, its Lipschitz constant.

A function 6 : E — R is called pseudo-quadratic if there exists a function by : E? — R
satisfying

e forallne E, 6(n) = by(n,n),
e for all n € E, by(n,-) and by(-,n) are Lipschitz continuous,

e the mappings n — [bs(n, )]y, and n — [bp(-,n)];;, have at most linear growth.

Lip
If 0 is a pseudo-quadratic function, then let

0 —0
womser (UF [nal + [nal) T = il

Let E* denote the dual space of E. Any element 6 € E* is pseudo-linear.

A consequence of the mixing property (Assumption 1.8) is that the pseudo-linear and
the pseudo-quadratic functions introduced in Definition 1.3.2 satisfy the conditions of
Definition 1.3.1.

Lemma 1.3.1. Let 6 be a pseudo-linear function. Then, for all X = 0, R0 is well-defined
and is pseudo-linear. Moreover, let

Cy = J e MY iz (t)dt and O = (1 v JmEdU(ng)) C.

0

Then, we have

[R)\G]Lip < [6] Ci,

Lip
and forn e F,
[RA0(n)] < C5[0], (1 + [Inllg)- (13.1)

Let 6 be a pseudo-quadratic function. Then, for A = 0, Ry [0 — (0)] is well-defined.
Moreover, there exists C € (0,0) depending only on Cy and b such that, for n € E,

[BA [0 — (B)] ()] < O [0] gyaa (1 + ]z

where b is defined in Assumption 1.7.

51



Proof. Let ny,ny € E and denote by (m*(-,ny), m*(-,ng)) the coupling introduced in
Assumption [.8. If 6 is Lipschitz continuous, then for all ¢ € R, Assumption 1.8 leads to

|[Pi0(n1) = Fib(na)] < [0] 4, Ymia (t) 01 = 12 - (1.3.2)

Recall that P, is v-invariant, i.e. vP, = v, hence we have

|P0(n1) — (0)] =

\Lﬁﬂﬂnﬁ—ﬁﬁw»dwnﬁ

L;Pw0u>—fw0w»dwna

< i) Py | s = mal o)
< (1 [l avton) ) s Bl (4 il 033

Assume that  is pseudo-linear. Since (0) = 0, (1.3.3) implies that R,6 is well-defined for
all A € [0,00), and (I.3.2) implies that R, is (w]mp C’,\>—Lipschitz continuous. Moreover,
by means of Fubini’s Theorem,

r 0

JE Ry0(n)dv(n) = JEL e MP,A(n)dtdv(n)
_ [T J PO(n)dv(n)dt

= e L O(n)dv(n)dt

JO

This concludes the proof that R0 is pseudo-linear. Finally, (1.3.1) is a straightforward
consequence of (1.3.3).

Now assume that 6 is a pseudo-quadratic function: using Assumptions [.7 and [.8 and
Cauchy-Schwarz inequality, we have for all n;,ny €

|P0(n1) — Pi0(n2)| < C[0]aa (1 + [ + an\\%) Vmiz(t) [n1 — 2,

for some constant C' depending on b. Since P, is v-invariant and v has a finite moment of
order b + 1 by Assumption 1.7, we get

|[PO(n) = ()] < C' [0 guaq Tmia () (L + [l 5),

for some constant C’ depending on b. Integrating with respect to ¢ gives the announced
result. O

Let us recall notation from [DV12]. For p, p' € L2, denote by 1, » € E* the continuous
linear form

Vne E, ¢, (n) = (pn, P/>Lg%

The linear form 1, , is pseudo-linear and
[¢p,p’]Lip = [[ppll e < HPHL% ”P’HL; :
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Hence, by Lemma 1.3.1, we have for p,p' € L2, A\ >0 and ne E
[Bathpp ()] < Clpllpz 10712 (1 + (] )

Thus, for all n € E, (p, p') — Rxtb, (n) is a continuous bilinear form on L2. By means

of Riesz Representation Theorem, there exists a continuous linear map Ry(n) : L2 — L2
such that

Vp,p € L2,¥n € E, R\, y(n) = (Rx(n)p, Pz

By a slight abuse of notation, denote Ry(n) = Ry(n). For ¢ € C'(L2), the linear mapping
Dy(p) can also be identified as an element of L2:

¥p,h e L3, Do(p)(h) = (h, Dp(p)) 12,

so that we can define Dp(p)(Rx(n)h) for p,h e L2.
Now consider p and p’ in dual Sobolev spaces H¥ and H_* (for k € N such that F < Ck,
namely k < 2|d/2| + 2). We also may define Ry(n) : H* — H¥ in a compatible way.

I.3.2 Properties of the covariance operator
Recall that k, @ and F are defined by equations (1.2.4), (1.2.5) and (1.2.8).

Lemma 1.3.2. The kernel k is symmetric and in L°(T? x T¢). Moreover, Q is a bounded,
self-adjoint, compact and non-negative operator on L2.

Proof. Since T is stationary, we have the identity

k(2. y) = L Uon (1) oty (n)di(n) + L Rotba (n) by (n)di(n), (1.3.4)

with ¢,(n) = n(z) for all n € F and = € T¢. The functions ¢, and 1, are continuous
linear forms, thus we have

wp  DecBovy(m]

z,y€Td neE 1+ Hnqu

Owing to Assumption 1.6, {, In|3, dv(n) < oo, thus k is well-defined, bounded and sym-

metric. It implies that @ is a bounded operator on L2 and is self-adjoint and compact
(see for instance [DS64, XI1.6]).
The proof of non-negativity of @) is given in [DV12]. O

By means of Lemma 1.3.2, the operator Q2 can be defined (L? — L?). Note that Q
is trace-class, that Q'/2 is Hilbert-Schmidt on L? and that

Qv = Trq - f P(x)da.
Td

Let (F}), be a orthonormal and complete system of eigenvectors of Q'/2, and (\/@)
their associated eigenvalues.

Lemma 1.3.3. For all i, F; € C! and
g FE <o

23



Proof. Let s = [%J + 2, so that we have the continuous embeddings H! < Cl. Tt is thus
sufficient to prove that )., ¢; HEH?{; < .

Since m(t) € E = C>* and is mixing, is it straightforward to prove that k € H2* using a
differentiation under the integral sign in (1.2.4).

For | 5| < s, we multiply the identity ¢;F; = QF; by aa\ ;5 and integrate by parts both
sides of the equality to get

aIBIF 2|/3\k (z,)
—1)Alg, e JJ 220 Fi(z)Fi(y)dzdy.
Using (1.3.4), we have
Ok (z, y) a%’ln
J;dJ;d PreradiC) dxdy".f J;d 5277 @ >df‘fd‘Ro¢w<n>fa<y>dydu<n>
2B Ry (n
f f 026 ))Fl<gj>dilj'f n(y) Fi(y)dydv(n).
Td 'r Td

We sum with respect to ¢, use the Parseval identity and the Cauchy-Schwarz inequality to
get

5I6IF

Zqz

‘fwwynﬁmmmmwu

<0La+mawmx

for some constant C, using Lemma [.3.1. This upper bound is finite by Assumption 1.7.
Summing with respect to 5 concludes the proof. n

I1.3.3 Behavior of the stopping time for the driving process

Recall that 7¢ is defined by (1.2.9): 7¢ = inf {t e R* | |[m°(¢)||; > ¢~ “}.

In this section, we establish Lemma [.3.4 below. Its objectives are twofold. On the one
hand, it shows that m° is almost surely bounded on any interval [0, 7], which is useful
to justify the well-posedness of (I.1.1). On the other hand, it gives us an estimate for
e [m=m (t)H  uniform in ¢ and ¢ for some small . This estimate will prove useful for
Sections [.4.1, 1.6 and 1.7. Therefore, it is a key result of this chapter.

Lemma 1.3.4. Let Assumptions 1.5 and 1.6 be satisfied and let T' > 0. Then almost surely

sup ()] < .
te[0,T7]

Moreover, let a > = 2 and define the (Ff),-stopping time ¢ by (1.2.9). Then, we have
VT > 0,P(m° <T) — 0.

e—0

Remark 1.3.1. Equation (1.2.9) implies that for ¢t € R*,
[m= ()] = Im*(t A7) p < €™ v [m(0) - (1.3.5)

In particular, on the event {|m(0)|, > e}, we have 7° = 0 and m*" (t) = m(0). Thus,
one does not necessarily have the estimate [m=™ (¢)

—

o <e
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Proof. Let (Sk), be the identically distributed random variables defined by
Vk e Ny, Sy = sup |m(t)]p.

te[k,k+1]

By means of Assumptions 1.5, 1.6 and 1.7, for all k € N, E[S]] = E[S]] < o. Thus,
almost surely, S, < oo for all k € Ny. This yields the first result:

P-a.s.,VT' > 0, sup |[m°(t)|p < sup Sk < 0.
t[0,T] k<Te=2+1

Since o > %, there exists § such that § > ¢ > % Then, the Markov inequality yields

E[S]] 1
keN keN keN

By means of the Borel-Cantelli Lemma, almost surely, there exists a random integer ky € N
such that
P-a.s.,Vk > kg, S < k°.

Define the random variable Z = supj;, Sx. Then Z is almost surely finite and
P-a.s., Vt e RY, [m(t)|, < Sy < Z + [t < Z + 1.

Finally, for T' > 0, using that o > 20, we get

P(re<T)=P ( sup |m° ()| > 5°‘> <P(Z+(Te?) >e ) —0.

te[0,T7] e—0
O
In the sequel, a will be required to satisfy the constraint
a < L (1.3.6)
b+2

Combined with the condition a > % appearing in Lemma [.3.4, this motivates the condition
v > 2(b+ 2) in Assumption [.7.

1.3.4 Pathwise solutions

By means of Lemma [.3.4, we are in position to prove the existence and uniqueness of
pathwise solutions of (I.1.1) and (I.1.2) (namely solutions when w is fixed).

Proposition 1.3.5. Let Assumptions 1.5 and 1.6 be satisfied. Let T > 0 and & > 0. Then
for any f& € L*(M™1), there exists, almost surely, a unique solution f¢ of (I.1.1) in
C([0,T]; L*(M™Y)), in the sense that

t

P-a.s.,Vt € [0,T], fe(t) = €7£Af§ +J
0

t—s 1 1
e” = A (62 Lfe(s) + 5fs(s)'rns(s)) ds
where A is the operator defined by

D(A) ={fe LAM™Y | (z,v) = a(v) - Vo f(z,0) € LQ(M_l)}
Af(xz,v) = a(v) - Vof(z,v).
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Note that here € is fixed. Thus, the proof is standard, based on a fixed-point theorem.

Proof. Let we Q and € > 0. For f e C°([0,T], L*(M™1)), let

1
€

O(f) = e M fs + Jt e f(s)me(s)) ds.

0

=2A (;Lf(s) +

Owing to the Banach fixed-point theorem, it is sufficient to prove that ® is a contraction
for some Banach norm on C°([0, 7], L*(M™1)). For r € [0, %), we consider the following
Banach norm

vf e C([0.T], LAM ™), ], = sup e [£(t)] 2 (pemy -
te[0,T]
Since the semi-group associated to A is given by
Ve LX(M™) Vo e T YueV, e f(x,v) = f(z+ta(v),v),
for f e L*(M™1), we have for all t € R and f € L*(M™!),

HetAfHL%Mfl) = ”fHL?(M*l) :

Thus, for t € [0,T], and f, g € C°([0,T], L*(M™1)), we get

0 = ) Ol < 55 [ 1 = DOy

#2107 = DT Oy

By Lemma 1.3.4, since w is fixed, m° is bounded in E on [0,T]. Since HLhHLE(M—l) <
A p2(pg-1y for he LA(M™Y), we get

I2()(0) ~ B(0) ()] pagar sy < (1 + sup m%t)\E) [e1s=alas

te[0,T 0

Hence, we have

e RS () — B(9) (1) yana 1) < (1 i1 s |m€<t>rE) = =gl

g2 € tefo,T r

and

1(1 1
|2(f) - ®(9)], < - ( = s m€<t>E> If = gl

te[0,T7]

By taking r large enough, we get that ® is contracting, which concludes the proof. [
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I.3.5 Estimate in L?(M™)

In this section, we obtain an upper bound on Hf”f\ 1y Note that in the case where

|2
the driving process m is bounded, [DV12] establishe(s a similar upper bound without
introducing a stopping time. Here, the unboundedness of the stopped process m®™
requires more intricate arguments and an additional stopping time 75 (¢%). One of these
arguments is the introduction of a weight M? that depends on e.

Proposition 1.3.6. Assume that f§ € L*(M™). For A > 0 and ¢ > 0, define (¢ by
(1.2.11) and 15(¢%) by (1.2.10).
Then almost surely, for allt € [0,T] and ¢ € (0, (4]a| . A) '],

. 1 tATA(CF) .
Hfﬂ“%ﬁéwlﬁyak L7276 a1y s < ONT) Ui agaany » (137)

for some Cy(T') > 0 depending only on A, |a|,» and T

Note that 74(¢%) > 0 almost surely since ¢¢(0) = 0.
Remark 1.3.2. The condition ¢ € (0, (4]|al| .. A)~'] only reads: we fix A, then take ¢ small
enough (¢ — 0) depending on the fixed A. From now on, we always assume

e < (@lae M) <L

In particular, we denote by sup, the supremum with respect to € € (0, (4 a] ;. A) '],

In most of the chapter, we neglect the integral term of the left-hand side of (1.3.7) and
we only use

HfE7TA(CE)(t)Hiz(M71) < Cp(T) Hffi:Hiz(Mfl

Equation (I1.3.7) will prove useful in Section I.8.

Let us introduce some notation. For any variable u, x <, y means that there exists
C such that x < C'y where C' depends only on u, a, M, B, v, 7, &, Ymiz, b and Pys the
distribution of f§. With this notation, (1.3.7) yields

HfE’TA(CE)(t)H;(M*l) <A Hfgui%/vt*l) )

and
1 [trmale®)

RN 2
2 HLfe’ s )(S>HL2(M71) ds < HngLQ(Mfl) :

Proof. Define the time-dependent weight
ME(t, z,v) = % ED M(v),

and the associate weighted norm

-

T (ffLF dmmw>a
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We have, for t € RT,

. fe(t,xz,v 1, .. 1. 1. .
,@tHf( HL2(Mat) 1 ff(/\/latxv (_5Af —l—?Lf +€fm)(t,a:,v)

|fo(t, @, 0)
- OME(t, x, dxd
2 |Me(t,z,0) (t,z,v) | drdp(v)
= A. + B.
with
fE t Z, 'U c S 52 fg .
6 = JJME t z, Lf +5f 5 Maﬁt/\/l (t,x,v)dmd,u(v)
fe(t, z,v)
e = | | oy A (G x v)dedp(v).
5 6J ME(t,,0) ot 2, v)drdu(v)
On the one hand, the weight M¢ has been chosen in order to satisfy em® — % 53\//\1/515 —0.

Moreover, since f¢ = p*M — Lf¢ and Sv Lfedu =0, we get
“(t,
- [ [ LLE (o, 0)dodp)

Me(t, x,
= J 6_245(1590))05( )f Lfs(t T U)d,u( )d
Lfe(t, z,v)
J |./\/l6 t,x,v) dp(v)dz
\Lf6 (t,x,v) 1 )
J ME t x, 'U M(U)dz - _g HLf (t)HiQ(ME(t)—l) .

On the other hand, by means of an integration by parts (we take a primitive of f¢0,, f©

and a derivative of /\}te ), we write

R PR YO\ S T ) B
b= 5JJ (v) MEe(t, x,v) dadp(v)
- _1fja(v)- %|f8(t’x7”)|2 Vo ME(E,,v)

\Ms(t,x,v)\2
Jf fE (t,z,v)
./\/l‘E t,x,v)

Then, by definition of M*® and A, we have

1 : otz 0))”
e = —= o 0x) | o
b £ Tdv ¢t 2) v ME(t,z,v)

Using once again the identity f© = p*M — Lf¢, we get
1 c
B. = —J e |7 (1, 2) [P Va1t ) J a(v)M(v)dp(v)dz
Td

€ 1%

_1 € —‘Lfa(txv)‘2av v)axr
| vt | SR

JJ o2 (o) C(t,x) - a(v)p(t,z)LfE(t, x,v)du(v)dr
=B+ B2+ B2

dxdp(v)

A./\/la(t, z,v)dxdu(v).

a(v)du(v)dz.
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e Since a is centered for My, B! = 0.

e For t < 74(¢), we have ||(°(t)] 1 < A and we assumed A < (4 a],. ). Thus, we

get
7a(¢%),

1 2
< 12 IL S22 1)1y -

e Using the Young inequality, we have

1 2 2 2 —2¢c(tw 2
B < 23 LSOy + 4l 1926 Ol | 702 |5t 0)

with HaHig(M = {, la( )|2M(v)du(v). Now using the Cauchy-Schwarz inequality

and the identity §,, M(v)du(v) = 1, we have

‘fa t z, U . 2C5(t,z)
f ”U M (t, 2, 0)dp(v) = | £ ()20 1) € )
hence

1
|B2| < 4e? |LFF @ e ate -1y + Al L2 ny 1V2C @) leogray 1O z2ume 1) -
We finally get, for t < 74((),

2 2
O Hfa(t)”L%Mf(t)*l) < T 9e2 HLfE(t)”LQ(ME(t)’l)
2 € 2 € 2
+ 4 alZo ) VG @) leogrey 1O L2 ue 1y -

For t < 7A((¢®), Gronwall’s Lemma implies
t
1 4 al? t V(e (s)]? ds
Hfs(t)Hiﬁ(Ma(t)*l) + JO 2762 HLfs( )”L2 Ma Hf(] HLQ H HLZ(M) SO” ¢ ( )HCU(Td)
Since, for t € R™, we have

2 2 —ollce(t
e a1y = 11 E2gpgery €21 Do,

we get, for t < 74((%),
¢
e 2 1 £ 2
O i + |, 5oz IEFOlrn
t
€ 2 € 2
<|f5 HL2 1y €Xp (2 il[})li] I< (3)||c0(1rd) +4 aL2(M)JO V€ (5>Hc0(1rd) ds) :

To conclude, it is sufficient to recall that for ¢t < 74(¢%), we have |[(*(t)|n < A.
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1.4 Martingale problems and perturbed test functions

The proof of Theorem [.2.1 heavily relies on the notion of martingale problems as introduced
in [SV06]. To identify a limit point of (Py)__,, we characterize it by a family of martingales
and take the limit when € — 0 in their martingale properties.

The characterization of the distribution of a solution of a SPDE in terms of martingales
is based on the Markov property satisfied by this solution. However, we expect a limit
point p, of the stopped process p*7A to be stopped at some 74 ((), as mentioned in Section
1.3.5. Since 74(() is not a stopping time for the filtration generated by pa, this latter
process should not be Markov. Thus, we need to consider the convergence of the couple
(p°, ¢°) instead of just p°. We will see more precisely in Section 1.7 at which point this
matter occurs.

I.4.1 Generator and martingales

Also note that (f¢, (%) is not a Markov process. As in [DV12], we consider the coupled
process with ¢ and thus consider the L?*(M™!) x C! x E-valued Markov process X¢ =
(fE’ CE7 m&) .

Denote by £ the infinitesimal generator of X¢. Since f¢ is solution of (I.1.1) and since
0,C¢ = 1m*, the infinitesimal generator has an expression of the type

o1 1
with

Lip(f, z,n) = Dyp(f, z,n)(=Af + nf) + D.o(f, z,n)(n)
EZ(p(fa Z,TL) = Df()p(fa 27n>(Lf) + BQO(f, 2 n)a
where B is the infinitesimal generator of m. The domain of this generator contains the
class of good test functions defined below. The terminology of "good test function" is
inherited from [DV12], although our definition is a little more restrictive.

Definition I.4.1. A function ¢ : L2(M™1) x C! x E — R is called a good test function if

e It is continuously differentiable on L?(M™1) x C! x E with respect to the first and
second variables.

e For (e {1,2}, B(p(f, 2, )" is defined for all (f,z) e L*(M™1) x CL, and
B(¢") : (M) xClx E—-R
is continuous.

e If we identify the differential D; with the gradient, then for f € L*(M™1), z € C}
and n € E, we have

Dso(f,z,n) € HY(T? x V,deM ™ (v)du(v)). (1.4.2)
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e The functions ¢, D.p, Dsp and ADyp have at most polynomial growth in the
following sense: there exists C, > 0 such that for f,h € L*(M™'), z € C} and
ni,ny € K, we have

‘@(ﬁz ny)| < C@( + 53) ( + Sb+2)
1Dso(f,z,m)(AR)| < Cp (1 + 57) (1+ 55%2)
Dyl 2m) n2h>| <Cp (1+57) (1+55%2) (14.3)
|Dyo(f, z,m1)(Lh)| < Cyp (1+ 57) (14 55+2)
1D.o(f, z,n1)(n2)| < Cy (1 + S7) (1+5572),

CQ

where 81 = [ f] a1y v Il gusy and So = il v ol

See Section [.4.2 for a justification of the need to consider growth as appearing in
(1.4.3).

A consequence of (1.4.2) is that AD ¢ is well-defined. Thus, for f,h e L2 (M), z € C}
and n € E, we can define

Df@(f? 2 n)(Ah) = _(ADf(p(f7 2y n)? h)LQ(Mfl)a

even though Ah is not necessarily defined in L?(M™1).
The class of test-function introduced in Definition [.4.1 is chosen such that the Propo-
sition [.4.1 holds.

Proposition 1.4.1. Let ¢ be a good test function in the sense of Definition 1.4.1. Define
forallt =0

ME(t) = o(X°(1) — ¢(X5(0)) — L Lop(X5(s))ds, (L.4.4)

and consider the stopping time 75 defined by (1.2.12).
Then My™ is a cadlag (F¢),-martingale and

e[l -] [ (e - 200 (2 (0)as]

0
1
_€2E[

This result is expected to holds as in the standard framework [DV20]. However, due
to the presence of stopping times, the proof is very technical.

| N B - 208) <X€<s>)ds] .

0

Proof. Note that in this section, ¢ is fixed, it is therefore not required to prove bounds
which are uniform with respect to e.

Let ¢ be a good test function. Observe that ¢ and ¢? are in the domain of £¢, by
means of Definition [.4.1.

Let s,t € Rt § > 0 and let s = ¢; < ... < t, =t be a subdivision of [s,t] such
that max; |t; 11 — t;| = §. Let g be a Fi-measurable and bounded function. To simplify
notation, let

fi = PN, G = CTA (), my = oA ().
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Then, we have

E| (M2 (1)~ MET(s)) ] = B [(wx&ﬁ (1)) — (X)) - j ﬁwmu))du) g]

=Tf+ T, + T,
where
n—1
ry= Z E [<90<fi+1; Gi1, Mir1) — ©(fi, Gir, Mig1)
i=1
tit1 AT} 1 1 1 o
- DA ) + S + €f€<u>m€<u>>du) g] ,
n—1 tit1ATH 1
r, = E [(@(fzv Ci+17mi+1) - go(fu Ci7mi+1) - J DZSO(XE(U))(gma(U))dU) g] )
i=1 ti/\*ri
and

tit1 /\’Ti

ti /\TX

Ty = nz: E [(@(fia(i,mi—s—l) - s@(fi,Q,mi) — J €QBS0(X5(U))CZU) g] ‘

Straightforward computations lead to

o[ ([ ) o] o[ ([ )

with
n—1
T}(U) = ﬂ[timj,mmrg](u) [DfSO(fE’TA (1), i1, Mig1) — Dypp( X5 (U))] (Ocfea (u)),
=1
n—1
T;(u) = ﬂ[tiATf\,tiﬂ ATX](U) [DzSO(fi: Csﬁ[s‘ (u)v mi+1) - DZSD(XE’T/E\ (U))] (atcaﬁi(u))‘
=1

Let us now check that r, = E [(Sz r%(u)du) g] with

1S . -
720 = 33 20 L funegace nrg) () [BoUe G173 () = Bo(X75 )]

For § € C°(E) n L*(F), the Markov property for m yields
E[6(m()) | Fs] = Prs0(m(s)).

Usually, this property is written for § deterministic, continuous and bounded, but it is
straightforward to check that it is still satisfied when 6 € C°(E) n L'(E) F,-measurable.
The standard proof to show that 7 solves the martingale problem associated to B (see for
example [DV20, Theorem B.3]) can be applied, and we get that, for 6 € D(B),

£ O(m(t)) — 0(m(0)) — f BO(m(u))du

0
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is an integrable F;-martingale. By rescaling the time to retrieve m®, stopping the martingale
at 75 and using a conditioning argument (g, f; and (; are F;,-measurable), we get

E[(o(fi Gomin) = ol Gumi) g] = B [g [ ;B¢<Xf<u>>du] .

€
i/\TA

Hence, we can write r,, = E [(Si T;(u)du> g] as claimed above.

Since the estimates given by (1.3.5) and Proposition 1.3.6 are uniform for ¢ € [0, 7], we
can use (I.4.3) with S <a || f§ll 72 pg-1) and Sz < &7 v [m(0)] 5. This leads to

sup 1) Spe (1 15l5ea ) (1+ 1O ) (14.5)
u€e[0,

Whlez(;e Tl € {7‘}, ., r;} Hence, the Cauchy-Schwarz inequality, Assumptions [.4 and 1.7
yie

1

E [ sup. \r;<u>r2] Sonc E| (14 1512 s ) | B[ (14 1mO1E) |
u€e[0,

< 0. (L.4.6)

Thus, the terms 7/, are uniformly integrable with respect to (u,w). Recall that f&™A and
¢57A are almost surely continuous and that 73574 is stochastically continuous. Then, the
terms 7/, converge to 0 in probability when § — 0. By uniform integrability, the terms
r. converge to 0, which proves that M;’T’E‘ is a (Fy),-martingale. Note that we only used
moments of order 12 and 4(b+ 2), instead of 24 and 8(b+ 2) as assumed in Assumptions .4
and [.7. Hence, this proof can be adapted to establish that M;’;’E‘ is also a (F; ),-martingale.

It remains to prove the formulas for the variance. This is done in several steps, following
[DV20, Appendix B]. Since ¢ and ¢?* belong to the domain of £L°, the process

&€ ' € &€ 3 1 ' €
Ne(t) = f (L") = 20L70) (X7(s))ds = 5 | (B(¢") = 2¢pBy) (X*(s))ds,
0 0
is well-defined.
The proof of the second equality is straightforward: since D = L& — E%B is a first order

differential operator, we have D(¢?) — 20Dy = 0.
Let 0 =ty <ty < ...<t, =T be a subdivision of [0,T] of step max |t;+1 — t;| = 9.

Step 1: We claim that the following convergence is satisfied in L2 = L?(Q)
NeA(t) = }SLI%ZE [NE’TA (t Atig1) — NOA(EA L) | ]—"Z] ) (1.4.7)

Let A; = N7A(t A tip1) — N*TA(E A L) — E[N®7A(E A tiy1) — NoTA(E A ) | Fi | so that
(L.4.7) is equivalent to >}, A; .Y 0 in L2. Note that E[A;A;] = 0 for ¢ # j. Hence, we

have E [[>, Ai|2] =E[Y, |Ai|2]. Using that a conditional expectation is an orthogonal
projection in L2, we get

E[|Af] <E [[N”i(t Atig1) — NA(t A ti)ﬂ
2
<.E

~E

| T (Ble?) — 20By) (X ())ds

/\ti/\TX
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By means of Assumption [.10 and Definition [.4.1,

|(B(#*) = 20B9) (X <o (1+ 156 pan)) (1+ 1) 1E)

Asin (I.4.5) and (1.4.6) (using moments of order 24 and 8(b+ 2) instead of 12 and 4(b+2)),
Proposition 1.3.6 and (1.3.5) lead to

E [ sup |(B(g02) — 290330) (X”i(s))f] Sone L.
s€[0,T]

Since t Aty AT — Tt Ativ1 ATR < tip1 — t;, wWe get
[‘A ’ ] ~p,Ae (tiJrl - ti)za

which then yields E [[3; A ] Sore 16 7 0, which proves (1.4.7).

Step 2: We claim that

E [Z \Rti,ti+1|] Sone 072, (1.4.8)
where, for 0 <t <t' < T,
e,7% e,7% 2 e €
Ry = |MER @)~ M0~ [p(xe75 (1)) — (X (1) (14.9)
t'ATR 2 . . t’/\’rf\
|| e enas| <2 (p(xeme) T e) | £ o)
t/\‘r/‘i tATf\
We can write
(X)) = (X = M ()M 020X (1) (ME(¢) - MR (1)
t//\T/E\ E t/ ATS
+ J L5(p*) (X (s))ds — 2p( XA (1)) J Lp(X*(s))ds. (1.4.10)
t/\Tf\ t/\‘rf\

As established in the first part of the proof, M;;Ti and M;’Ti are (F:),martingales.
Moreover, ¢(X; ’T‘g‘) is F;-measurable. Thus, taking the expectation in (1.4.10) yields

E|[p(x*73(t) — p(x*(0)[| =
E [ [ e es - 2o ) e o)) ds

A
As in Step 1, by Assumption [.10, (1.3.5), Proposition 1.3.6 and Definition [.4.1, the

integrand is bounded by (1 + ”fg”iz(M—1)) (1 + |m(0 )HEHQ)) (up to a constant depending
on p, A and €) and we get

E [[p(X*3(t)) = o(XTRO) | Spne ¥~ (L411)
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owing to the Cauchy-Schwarz inequality, Assumptions [.4 and I.7. The Young inequality
with a parameter n > 0 yields

, 2

1 t/\TA £ € e, 7% (41 e, 7% 2

BllRel) Spne (14 B ||| £ ()ds| |+ 0B [Joorei@) = (X 0)].
t/\‘l‘f\
Similarly, we get
2

t//\Ti

E f Loo(X5())ds| | Sone (¢ — )2
t/\*ri

Choosing n = (¢ — t)¥? yields E[|R.v|] <o (¢ —)¥2, which gives (1.4.8).

Step 3: We claim that E U]\/[Z’Ti (t)ﬂ = E[N*"A(1)].

Taking conditional expectation in (1.4.9) leads to

e,Ts €T 2
ZE UMSJ A(t A ti+1) - ]\4907 A(t A ti) ‘ ‘FZ] = ZE [R“th“tz‘ﬂ ‘ ‘Fti]
+ Z]E [‘gp(X‘E’T’E‘(t Ati1)) — (XA (t A ti))‘z ‘ ‘Fti] :

Using (1.4.10) and the martingale property on M;’;X and M;’Ti, the last term can be
rewritten as

tALi41 ATR ) E tAtip1 ATR
3 f £5(?) (X5(5))ds — 23 (X7 (¢ A 1) f L£5(X(s))ds
i JEAtinTy i AL AT

Then, (1.4.7) yields

2
ZEU Mt Ation) — MOt A L)

| ]—“ti] = N°"A(t) + 11 + 12

where
T = ZE [RtAti,t/\ti+1 ‘ ‘Fti]
7

A1 ATR

rzzngu - (w(XWs»—so(Xa’Ti(mi»)WXE(s»ds\f,;].

By means of (I.4.8), r; — 0 in L'. For 3, we have

Eflra]] < 2E ZL o |p(X=T(5)) = p(X7(t:))] IEEsO(XE(S))IdS]

. . £
| ¢ A ATR

<2 | % | X s) X 1) e XA ()| ds]

| ¢

<23 [ B[e(X(s) = (X)) | ()] ds
<23 [ [l - exen ] B [Jereteeicf]as

i
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As above, one can show E [Sups ‘Eago(XE’Ti(s))lz] Sone 1o Thus, (14.11) yields
tit1 1/2
£,T5 €,T5 2
Eliral) Sone 3 [ E[lex7i(s) - p(x i) ] ds
i vt

ti+1
Sohe ZJ (s — 152-)1/2 ds
i Jti
S Ae Z (tiv1 — ti)g/z ds
< 1/2 R
~ehe T(S 60—0 0
Thus, in L', we have

& e, 7€ 2
lim Y E UM;’TA (t Atizr) — MS™(t A ty)

0—0 ~=
i

| f;] = N"A(t). (1.4.12)

In particular, the expectation converges. Then, the martingale property and the tower

property E [E[- | F]] = E[-] yield
| fz”

E[N7H(1)] - lim E ZEU (6 A tir) — METR (6 1 1)

6—0

2
:mEZEU t/\tz+1‘—’ Aty |f;”

2
-mecssnf -]

2
~ a0 |
This conclude the proof that for t € Rt

E UMZ’T“E‘ (t)ﬂ _E [ f T o) — 2000) (Xe(s))ds] |

0

and the proof of Proposition [.4.1. O]

Remark 1.4.1. Note that if  had continuous paths, then Mg would be a continuous
martingale and (I.4.12) would mean that N7 is the quadratic variation of M;’T/E‘

A similar proof leads to the following Proposition, where we take weaker stopping
times but add some conditions on . The proof is omitted.

Proposition 1.4.2. Let ¢ be a good test function. The conclusion of Proposition I./.1
holds in the following cases.

e The function ¢ does not depend on [ and T3 is replaced by T°.

o The function ¢ is bounded uniformly in n and does not depend on z and T is replaced
by TA(C%).

o The function ¢ is bounded and depends only on n and T3 is replaced by +oo0.
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I.4.2 The perturbed test functions method

We use the perturbed test functions method as in [PSV77] to exhibit a generator £
such that a possible limit point (p,Ca) of ((p7,(*"))_solves the martingale problem
associated to £ until some limit stopping time depending on A. Given a test function ¢,
two corrector functions (; and ¢, are constructed, so that

Y(f,z,n) € LA*(M) xCx B, ¢°(f,2,n) = @(p,2) +epi(f, z,n) +2pa(f, z,n), (1.4.13)

satisfies
Lp® = Ly +o0(1), (1.4.14)

when € — 0. Then, we prove that ¢° is a good test function and that we can take the
limit when € — 0 in the martingale problem associated to £° (Proposition [.4.1) to obtain
a stopped martingale problem solved by a limit point.

Based on the decomposition (I.4.1), a sufficient condition to prove (1.4.14) for ¢° of
the form (1.4.13) is to solve the following equations (1.4.15), (1.4.16) and (1.4.17) and to
check that (I.4.18) holds when ¢ — 0.

Lop =0 (L4.15)
Lip+ Lopr =0 (1.4.16)
L1 + Lops = Lo (1.4.17)
Lips = O(1). (1.4.18)

The properties of the resolvent operators Ry are employed to invert Ls.

Framework for the perturbed test functions method

For a martingale problem to be relevant, it is sufficient that the class of test functions
satisfying the martingale problem is separating, namely that if some random variables X
and X' satisfy E [¢(X)] = E [¢(X")] for all ¢ € ®, then we have X £ X’. In this work,
we use the following class

O = {(p,2) = ¥ ((p.O)12) x(2) | ¥ € C*(R), 9" € C;(R),§ € H}, x € C(C,)

where p = SV fdu. The class O is indeed separating because it separates points (see [EK80,
Theorem 4.5)).

Note that the test functions depend only on p and z, because we expect the limit
equation to be satisfied by p and z. It is confirmed by Section [.4.2. To simplify the
notation, for ¢ € O, we sometimes write ¢(f,z,n) = @(p, z) and v(p,z) = ¥(p)x(2),
where W(p) = ¥ ((p,€)12).

Proposition 1.4.3. There exists an operator L whose domain contains © and, for all
@ € O, there exist two good test functions oy and pq such that, for all (f,z,n) € L*(M™1) x
Cl x E, we have

1 (fo )] S (U 1 i) A+ [l ) (14.19)
a2 Sp (14 [F a1+ Inl™) (1.4.20)
€567 — Lol (£.2.m) < (14 [ agrany) (1 + [nlls). (14.21)

Moreover, p° = ¢ + ep1 + €2py is a good test function.
Moreover, if p depends only on z, then @1, wg and @° depend only on z and n.
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Consistency result

Since we already expect the limit equation to be satisfied by p, equation (I.4.15) will not
give us extra information. Hence, this section only present a consistency result, namely
that (1.4.15) forces ¢ to depend on f through p.

In fact, let ¢ depend on f and z but not on n. Since ¢ does not depend on n, By = 0.
Hence, (1.4.15) can be written, for all f € L*(M™') and z € C},

Dep(f,z,n)(Lf) =0. (1.4.22)
For t e R and f € L?*(M™1), define
o6, F) = pM 4 (f — pM), (14.23)

and observe that d,g(t, f) = Lg(t, f) with g(0, f) = f. Owing to (1.4.22), the mapping
t— ¢(g(t, f), z) is constant. Since g(t, f) = pM, by continuity of ¢, we get o(f, z,n) =
©(pM, z,n), which depends on f only through p.

Construction of the first corrector function ¢

The first corrector function ¢ is defined as the solution of (1.4.16): the formal solution to
Poisson equation will provide an expression for ¢;, then we will check that this expression
indeed solves (1.4.16).

Let g(t, f) be defined by (1.4.23) and m(t, n) be defined in Section 1.2.1 (Markov process
of infinitesimal generator B starting from n). The process ((g(¢, ), z,m(t,n))),.p+ is a
L*(M™1) x CL x E-valued Markov process of generator L, starting from (f, z,n). Denote
by (Qt),er+ its transition semi-group. Note that this semi-group does not have a unique
invariant distribution, since for any p fixed, d,,®0.®v is an invariant distribution. However
on every space {(f’,2/,n) € L(M™) x CL x E | §, f'du = p,2’ = 2}, this measure is the
unique invariant distribution. Indeed, d,aq, 6, and v are respectively the unique invariant
distributions of each marginal process (on the corresponding subspaces), and o, ® 6, @ v
is the only coupling of these three marginal distributions.

For @ : L?(M™) x C! x E — R, denote by

@),..= [ @M zmavi) = | P51 @ 6. @)
E L2(M~1)xCLxE

the integral against this invariant distribution. For ¢ € O, ¢(p,2) = ¥(p)x(2), let us
compute L.
We have

Lip(f,z.n) = Drp(f,z,n)(—Af +nf) + D.o(f, z,n)(n)
= DU(p)(—Af +np)x(2) + ¥(p) Dx(2)(n),

where h = §, h(v)dpu(v).

Owing to (I.2.1), one can write, for all p € L2, A(pM) = 0. Moreover, since v is
centered by Assumption [.5, any term linear in n vanishes when integrating with respect
to v. Hence, we have checked that

Vpe L3, VzeCp, (Lrp),, = 0.
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Using the expansion of £;p, we have for all f, z,n

Lf@ﬁwﬁwﬂmﬁ=Jmewﬂﬂtﬁﬂﬂthﬂﬁ

0

:Jm(—DW@XAmLf»ﬁ@%WHDW@XWMLWHX@)

+U(p) D (=) (m(t, ) ) .

owing to the identity g(¢, f) = p. Equation (1.4.23) yields

Ag(tv f) = e_tff7

since ApM = 0. Thus, owing to Definition [.3.1, we define

Spl(fv 25 n) = JOOO Qt£1§0(f; 2 n)dt
= DU(p)(~ AT + Ro(m)p)x(2) + (p)Ro [DX(2)] (1) (14.24)

It is straightforward to check that ¢; defined by (1.4.24) solves (1.4.16). Moreover, it
satisfies the condition (1.4.19). It remains to prove that ¢; is a good test function. Owing
to Assumption 1.9 and (1.4.24), ¢ € D(B) and ¢? € D(B). For h € L*(M™!), we have

Dypi1(f,z,n)(h) = D*U(p)(—Af + Ro(n)p, h)x(z) + D¥(p)(—Ah +7Ro(n)ﬁ)x(2)

+ DU(p)(h)Ro [Dx(2)] (n),

hence Dyp1(f,z,n)(Ah) is well-defined (as in Definition [.4.1) and ¢y, Dsp1(f, z,n)(h)
and D1 (f, z,n)(Ah) have at most polynomial growth in the sense of (1.4.3). For ny € E,
we have

D.gi(f,2,n)(n2) = DU(p)(—Af + Ro(n)p) Dx(2)(n2)
+¥(p)D [z — Ro [Dx(2)] (n)] ()(na2).

Using Lemma [.3.1 and the assumption y € C}(CL), we write

DIR (D] (0] () () = D[ -+ [ PO 01t ()i

0

=fawMMmmw
= Ry [D2x(z)(-,n2)] (n).
This leads to
D.@1(f, z,n)(n2) = D¥(p)(—=Af + Ro(n)p)Dx(2)(n2) + ¥(p)Ro [ D*x(2)(-,n2)] (n).

Once again using Lemma 1.3.1 and that x € C3(Cl), one checks that D,¢; has at most
polynomial growth in the sense of (1.4.3). Thus ; satisfies (1.4.3).
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Construction of the second corrector function ¢,

The second corrector 9 is defined as a solution of (I.4.17). To solve (1.4.17), we need the
centering condition (Lp — Li¢1), . = 0. This identity will be the definition of L.

First, let us compute L£;p;. Using the derivative calculated in (1.4.24), L1 can be
written as

where ¢, ¢ and ¢ are defined by

c(f,2) = D*U(p)(Af, Af)x(2) + DU (p)(A%f)x(2) (1.4.25)
U(f,2,n) = =D*W(p)(Af, Ro(n)p + np)x(z)
- D‘If(p)(A( ) + Ro(n)(Af))x(2) (1.4.26)
— DU(p)(Af) (Ro[Dx(2)] (n) + Dx(2)(n))
q(f,z,n) = D*¥(p)(np, Ro(n)p)x(z) + D¥(p)(Ro(n)(np))x(z)
+ D‘I’(p) (np)Ro [Dx(2)] (n) + DY (p)(Ro(n)p)Dx(2)(n) (1.4.27)

U(p)Ro [D*x(2)(-,n

~—

| (n).

Note that, for fixed f and z, ¢ does not depend on n, ¢ is pseudo-linear in n and q is
pseudo-quadratic in n as introduced in Definition 1.3.2.

The function £(f, z, -) is indeed pseudo-linear as a sum of continuous linear and pseudo-
linear forms, yielding (¢) . = 0 for all p and 2. Using also that ApM = 0, we get an
explicit definition of L:

Lo(p,z) = (Lipr),, = ( )(A2pM)x(2)

[ D23 (0)(np. Roln)p)d(n)x(2)
DY(p)(Ro(n)(np))dv(n)x(z)

. (1.4.28)
D¥(p)(np)Ro [Dx(2)] (n)dv(n)

J
| PR Em)p) D) ) )
U(p

+

r

+ o+

+

_l’_

Note that by taking x = 1, we obtain the same expression of £ as in [DV12].

Since the centering condition for the Poisson equation (1.4.17) is satisfied by construction
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of L, the second corrector function ¢, can be defined as follows: for all f, z, n,

palf. zim) = f:c Qu (L1 — (Lagr), ) (2, m)de
- Jow Qi (c=(e),..) (2 mat
+ LOO Qil(f, 2, n)dt
i LOO @ (q - <Q>p,z) (f, 2, n)dt

= 05(f, 2,m) + @5(f, z.m) + @3(f. z,m).

Once again, one can check that oy satisfies (1.4.17). It only remains to prove (1.4.20),
(I.4.21) and that ¢° is a good test function. Since

LY = Lo+ eLlyips, (1.4.29)

equation (1.4.21) comes from an estimate on Lipo(f,n) in terms of f, n, and ¢.

Controls on the second corrector function ¢,

The aim of this section is to prove some estimates for ¢o(f, z,n) and its derivatives to
establish that (1.4.3), (1.4.20) and (1.4.21) are satisfied. Let f,h e L?(M™1), z € C! and
n,ny € E and let 51 = ”fHL?(M*l) v Hh||L2(M,1) and Sy = |n| 5 v [nof g

Estimates on ¢§ We have, using (c), . = c(pM, 2),
c(f,2) = c(pM, 2) = D*U(p)(Af, Af)x(2) + DU (p)(A2(f — pM))x(2)-
Recall that Ag(t, f) = e *Af. Hence, using (1.4.23), we get
Qi (e = (0),..) (f2:m) = Efelg(t. £),2) = c(pM, )
= e D*W(p)(Af, Af)x(2) + e " DW(p)(A2(f — pM))x(2).

By integration, we get

#5(F..m) = 3 DW()(AT, AP)X(2) + DU () (F(T — pM)(2). (1.4.30)
Moreover, we obtain
Dys(f, = m)(h) = 5 Do) (AT, AT, F)x(2) + D*W(o) (AT, AR)x ()
+ D*W(p) (A2(f = pM), h)x(2) + DW(p)(A%(h — hM))x(=),
D.g5 (2, m)na) = 5 DU (p) (AT, AF)DX(2)(n) + DU(p)(A2(F — pM)) Dx (=) ().

Recall that |f = pM a1y + Il = 1f17200 10 bence [ f = oMoy < 1f 2y
Then, since ¥(p) = v ((p,€)r2) and ¢” € C{(R), we get that ¢ satisfies (1.4.3). More
precisely, the following estimates hold:

c 2
@5(f. 2] S 1+ 1 agun
c 3
1L1g5(f, 2, n)| <o (L4 [ flz2 =) (1 + ] g)-
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Estimates on ¢) Using (1.4.23), (1.4.26) and that ApM = A(np)M = 0, we get
V(f, z,n),L(g(t, f),z,n) = e "U(f,z,n).
Thus, we have
Qil(f,2,n) =E[l(g(t, f),z,m(t,n))] = e "BIL(f, z,m(t,n))] = e PL(f, 2,n),
and by integrating with respect to t, we get

Spg(f> 2y n) = ng(fa Zs n)
Moreover, from Lemma [.3.1 and (1.4.26), it is straightforward to check that
[E0f iy S (14 1FZ2pe))-
Hence, Lemma [.3.1 yields
|05(f, zn)| S (L4 [ f72aen)) (1 + ] ).

Since the operator R; acts only on the variable n, it commutes with the derivatives
Dy and D, in the following sense:

D[R] (f,2z,n)(h) = Ry [Dsl(f,2,-)(h)] (n)
D, [Ril] (f,2,n)(n2) = Ri[DL(f, 2,-)(n2)] (n).

Thus, after calculating the derivatives of £, we get estimates on the derivatives of ¢4 the
same way we got estimates on 4. This leads to

|Dyes(f, z,m)(AR)] <4 (1+SY)(1+ 52)

[Dyes(f 2 m)(naf)| <4 (1+ SP)(1+ S3)

| D2 (f, 2,m)(n2)| < (1+ S7)(1+S3),
hence o} satisfies (1.4.3). Finally, the following estimates hold

[5(f, 2 m)| Sp (L4 | F72ae1)) (L + [n])
[L165(f, z.n)] S (L4 [ fl7200-1) (1 + [n]7).

Estimates on ¢3 The function ¢ depends of f only through p. Since g(¢, f) = p does
not depend on t, we get ();q = P,q and

AL 2m) = Rola—(a),.] (f:5m)

It is straightforward to compute the derivatives of ¢ with respect to f and z from
(1.4.27). One can deduce estimates for [¢(f, z,")],.q and for the first order derivatives

[Dra(f, 2 ) (M2 )] quaar [Dra(fs 2 )(Af)]uaa @0d [D2q(f; 2, ) (12)] jaq- Reasoning as for
Ry, the resolvent Ry acts only on n, and thus commutes with Dy and D,. Thus, Lemma

[.3.1 with A = 0 proves that 4 satisfies (I.4.3). Finally, the following estimates hold
b
28(f 2 m)| Sp (L4 1 f 720 (1 + [nll5™)
b
1L163(f, 2,m)] Sp (14 |72 pay) (1 + [n]5).

This concludes the proof that ¢, satisfies (1.4.3) and the proof of the estimates of
Proposition [.4.3 on ¢y and L.
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Good test function property

It only remains to prove that ¢° is a good test function. The estimates (I1.4.3) are satisfied
by ep1 and £%p,, hence by their sum ¢°. Moreover, using the notation introduced in
Section [.3.1, ° can be written as

P (f,z,m) = @(p, 2) =DV (p)(Af)x(2) + eRo [DY(p)(-p)] (n)x(2)
+ eV (p)Ro [Dx(2)] (n) + £205(f, 2) + e2Ril(f, 2,n)

+ 2R, [q - <q>p,z] (f zn).

Observe that each term either does not depend on n or can be written R)0 with 6 as in
Definition 1.3.1. As a consequence, owing to Assumption [.9, any product of at most two

of these terms belongs to D(B). Thus, ¢° € D(B) and (¢°)? € D(B). This concludes the
proof that ¢° is a good test function, and the proof of Proposition 1.4.3.

I.5 Dynamics associated with the limiting equation

In this section, we show that the operator L is the generator of the limit equation (1.2.13)
and that the martingale problem associated to £ characterizes the solution of (1.2.13).

Definition I1.5.1. Let py € L2 and let 0 > 0. A process (p, () is said to be a weak solution
to (1.2.13) in L2 if the following assertions are satisfied

(i) p(0) = po,

(ii) pe L™([0,T],L2) n C°([0,T], H;?) a.s. and ¢ € C°([0,T],C}) a.s.,

(iii) there exists (B;), a sequence of independent standard Brownian motions such that
(p, €) is adapted to the filtration generated by (B;); and such that, for all £ € L? and
t € [0,T], we have a.s.

t t

(P(5)-div(KVE) sz + | (GFo(s). sz

(1), )1z = (p0.E) 1z + j

0

+Z\@L(W(S)’5)L%d&<8) (15.1)

¢(t) = Y VaiF:Bi(t). (15.2)

i

Note that the sum in (I.5.2) does converge in C°([0,T],C}) owing to Lemma 1.3.3.

The solution to this equation exists and is unique in distribution. The existence can be
proved using energy estimates, 1t6 formula and regularization argument. The uniqueness
comes from pathwise uniqueness which derives from the same arguments. We do not
give details concerning existence and uniqueness, however, in the proof of the following
Proposition, we established the aforementioned energy estimate 1.5.4.

Proposition 1.5.1. Let o > 0 and let (p,¢) € C°([0,T], H;7) x C°([0,T],CL).
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If (p, Q) is the weak solution to (1.2.13) in H_ 7, then, for any test function ¢ € O, the
process

Maw:wmmam—wwmn—Lﬁwmgx@mS

is a martingale for the filtration generated by (p, ().
Conversely, if for all ¢ € ©, M, and My are martingales, then (p,() is the weak
solution of (1.2.13) in H_°.

Proof. Let us first prove that £ is the generator associated to (1.2.13). The expression of
Ly is given by (1.4.28). First note that A2pM = div(K'Vp), which is the first term of
(I.2.13). The third term of (1.4.28) is associated to the second term of (1.2.13):

[ v R = 5 | [~ D) mO)me)ar|
- 58| [ Dveemome)a]

= ;D‘I’(p)(pF)-

To rewrite the second term of (I1.4.28), assume first that the bilinear form D?*¥(p) on L2
admits a kernel £,. Then, we have

JDQ )(np, Ro(n)p)du(n —; U D2y 0),pm(t))dt]

- 1p [ [']] kp<:c,y>p<x>m<o><x>p<y>m<t><y>dxdydt]
” (2, 9)k(z, ) p(w)p(y) ddy.

Owing to Mercer’s Theorem (see [FMO09]), the kernel k can be expressed in terms of the
eigenvectors and eigenvalues of Q):

Va,y, k Z% i

It is straightforward to check that (/2 (z, y) = Z q/*F,(z)F,(y),z,y € T?, defines a
kernel for QY2 and satisfies k(z,y) = { k2 (x, 2)k(V/ ( z)dz. Thus, we have

| D200, Botmphav) = 5 [ [ [ itk 2)p @)k 31, 2) ) oy
5Tr[< $QY2) D2 (p)(pQ"2)"] (15.3)

By density of the functions whose second derivative admits a kernel &, in C?, this formula
holds for all test functions ¢ € ©. Using similar reasoning for the three remaining terms,
we get

Lo(p.C) = DU()(Aiv(KVp) + 5 Fp)x(C)

1 1/2 H1/2 D2‘IJ(P)X(C) DY (p) ® Dx(C) 1/2 AL/2\%
+ §Tr [(PQ / ,Q / ) (D\I’(p)@)DX(C) \If(p)DQX(C) > (PQ / ,Q / ) ] )
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which is the generator of (I.2.13). Once moment estimates for p have been obtained in L?,
integrability of M, is ensured. In addition, estimates on ¢ (p(t),(t)) and Ly(p(t),((t))
(uniformly in ¢ € [0,T]) are also obtained, since ¢ and Ly have at most quadratic growth.
Then, the proof that M, is a martingale follows the same strategy as for the proof of
Proposition 1.4.1. This proof is omitted. It thus remains to prove the moment estimates
for p.

We apply 1t6’s formula, equation (I.5.1) and we take the expectation (so that the
martingale part vanishes), to get

SE[0(0.€022] = 5E [0 03] + B (0(0).aiv(KT)12(0(5). s

FE | (3P0, 013(p(0). iz + 5 D [ Fints) 0

Then, we evaluate at & = e, with £ € Z¢ and e, the Fourier basis e;(z) = exp(2inl - ). Let
¢ = 420 - K¢ so that div(KVe;) = —\e,. We sum this formula for [¢| < L. Let Pp, be
the orthogonal projector on the space generated by {e, | |¢| < L}. Since A\, = 0, we get

1 ‘1
SE[1Po®l3: | < SE|1Puool}s ] +E j 5 IPLF ()] 3 | PLp(s)] 2 ds

3 X[ alnF) b

1 t
< E[1Pmly] + <|FLOO W |Fz~|iw> E [ 1(s)13: ds.
i 0

Taking L — oo, using Lemma [.3.3 and Gronwall’s Lemma, we get

E|lpt)l3: | < Elnol?;] - (1.5.4)

This concludes the proof of the moment estimates for p, hence the proof that M, is a
martingale.

Conversely, assume that for all ¢ € ©, M, and M, . are martingales. It holds in
particular for regular and bounded test functions . It is then standard that a solution
to this martingale problem is the Markov process of generator £ (see for instance [EK86,
Chapter 4]), based on Lévy’s martingale representation theorem in Hilbert spaces (see
[DPZ14, Theorem 8.2]). This concludes the proof since we already proved that £ is the
generator associated to (1.2.13). O

I.6 Tightness of the coupled stopped process

In this section, we prove the following Proposition.

Proposition 1.6.1. Let A € (0,0). The family of processes ((pE’TA(CE), CE’TA(CE)))6 is tight
in the space C°([0,T], H;7) x C°([0,T],C) for any o > 0. Moreover, the family ((F). is
tight in C°([0,T],CL).
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To simplify the notation, we write C%H_ 7 x C3C. for C°([0,T], H, ) x C°([0,T],C}).

Owing to Slutsky’s Lemma (see [Bil99, Theorem 4.1]) and to Lemma [.3.4, Proposition
1.6.1 is equivalent to the tightness of ((p*4, C”f\))e and (CS’TE)s.

Since these processes are pathwise continuous, we have the following inequality between
the modulus of continuity w for continuous functions and the modulus of continuity w’ for
cadlag functions (see [Bil99, equation (14.11)]):

wx (6) < 2wy (0),
with, for a cadlag function X,

wx(d) = sup [ X(s) = X(t)]
0<t<s<t+0<T
wy(0) =supmax sup  [X(s) — X(¢)],
(ti);, v tiSt<s<tiqa

where (t;); is a subdivision of [0,T"]. Therefore, the tightness in the Skorokhod space
DrH_ % x DrC} (respectively DrCl) implies the tightness in C%.H_ 7 x C2C} (respectively
in C2C1).

Owing to [Jak86, Theorem 3.1], tightness in the Skorokhod space follows from the
following claims, which are proved in Sections [.6.1 and [.6.2 respectively.

(i) For all 7 > 0, there exists some compact sets K,  H;? and K] < C, such that for

all e > 0,
P(Vte[0,T],p""A(t) e K;)) >1—n (1.6.1)
P(Vte[0,T],¢"A(t) e K)) > 1—1 (1.6.2)
P (Vte[0,T],¢57 (t) e K;) >1—n. (1.6.3)

(i) If ¢ is a sum of a finite number of bounded functions ¢; € ©, then (p(p™"a, ("))
is tight in D([0, 7], R).

For any @ € © with ¢ =1, (@(C”s))g is tight in D([0, 7], R).

€

We ask of ¢ to be a finite sum of test functions because [Jak86, Theorem 3.1] requires
the class of test functions to separate points and to be closed under addition, but © does
not satisfies the latter condition.

[.6.1 Proof of the first claim Item (i)
Using Proposition [.3.6 and the Markov inequality, we have for R > 0,

E [swpietory [0 0] _ B [1]iaoann

R =t R '
Note that stopping the processes at 74 (¢) is necessary at this point. Owing to the compact
embedding L2 = H_° for 0 > 0, we get (1.6.1).

Since (1.6.2) is a consequence of (1.6.3), it remains to prove (1.6.3). Owing to Ascoli’s
Theorem, we have a compact embedding of the Hélder space C1° < C! for any § > 0.
Moreover, with s = |d/2] + 2, we have a continuous embedding H® < C}° for any
6 € (0,s — % —1]. Then (1.6.3) is a consequence of Proposition 1.6.2 below and of the
Markov inequality.

P <3t e[0,7], |75 (1)] . > R) <
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Proposition 1.6.2. Recall that 7¢ is defined by (1.2.9). Then, for all T > 0, we have

supE [ sup Hcs,-rs (t)HiI[d/2j+2] < 0.
€ te[0,T] o

Proof. The idea of this proof is to express (¢ (and its derivatives) as a sum of a small term
and a martingale, and then to estimate the martingale using Doob’s Maximal Inequality.
This argument is used two times in a row, and the estimates heavily rely on Assumptions
[.9 and [.10.
Since (°(t) € E = CA421+4 < [l4/21+2 it is sufficient to prove that for all multi-indices

S of length |3 < |d/2]| + 2, we have

2

] o
L3

o¢ 1

sup E [ sup 277

€ te[0,T]

Fix such a g and let ¢ > 0. First note that

a|ﬂ\<€,7'5(t) 2 J‘ a\mcsfre(t QZ) 2
E| sup |[———— < |E| sup |——=—7>""2] | da. 1.6.4
[te[og] ox? L2 o] oz’ (16.4)
For z € T?, define 0, 5 € E* by
018In
Vn e E, Qx,g(n) = W(SE)

Since m*® is almost surely an E-valued cadlag function, the derivative and the integral
commute in the following computation:

It z) 1 [t VPlmE(s, @) 1 .
7l 1 f ) g - 1 f 0,571 (5)) ds.

Owing to the identity (f,3) = 0, Lemma [.3.1 and Assumption 1.9, the function v, =
—Ro0,,p is well-defined, is Lipschitz continuous with [, ]y, < [Hx,g]Lip =1 and 9, % €
D(B). Therefore Proposition 1.4.2 states that

M, (8) = 20, (1) — <a(m(0) = | eBunlm(5)ds

0

o8l e
= (1) — <t (m(0)) ~ 5 )
defines a square-integrable martingale such that
B|fuzzof | <2| [ Gun - wsn) mees]. o)

Since [¢z]1;, < [0ulL;, = 1 and v < 1in (1.3.6), we have

E [ sup e, (M7 <t>>\2] <R [e > v [m(0)]3] < 1,

te[0,T]



and by Doob’s Maximal Inequality, we get

AR (¢, ) [

1 - 1
2 . 2 2
E [ sup e ] <1+ E]| sup )M;Jz (t)‘ ]

te[0,T]

. 2
<1+E ‘M;;; (T)‘ ] . (1.6.6)
Owing to Proposition [.4.2, we have

|z | e[ (5d - 2 s

0

For now, we only know that the right-hand side is of order e72*, by (1.2.9) and (1.6.5). To
retrieve an estimate uniform in ¢, we use the same martingale argument as before. Let

0.5 = B(W?) — 20, Bib, = B((Rob..5)?) + 20, R 5,

so that -
|z @f | <[ [ st enas]. (16.7

Since 6,3 and Ry0,s3 are pseudo-linear functions, the function 6, gRy0, s is pseudo-
quadratic. Thus, by Lemma [.3.1 and Assumption 1.9, the function

e = (Roby5)? — 2Ro [0.5Ro0e.5 — (B0 5Robu )]

is well-defined and satisfies ¢, 92 € D(B) and Bip, = 6,5 — 2 (0, 5Rob4.5). As before,
introduce the martingale process

t

Mg () = 20 (1) = 20,(ml0) = | B0 (s))ds

= 2, (M (1)) — X, (M(0)) — f 0.5 (5))ds + 2t (0, s Rol, 3 -

0

Owing to Lemma [.3.1, we have for n e F

b+1 2
7+ InllE)

\ (1+ Inl;
(6 :rBRO :vﬁ>

Using the conditions a(b+1) < 2 and « < 1 in (1.3.6), and using the finiteness of moments
of order 2(b+ 1) and 4 of m(0) in Assumption 1.7, we get

T AT
EU 0, 5(m (s ))ds} ~T1+]E[M;; T)H, (1.6.8)
0
where, owing to Proposition [.4.2,

e[ of | - || 7 (B - 20,87 (6.

0
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Owing to Assumption [.10, we have for n € F
(B2 = 20.B2.) ()] < (1+ [l + [nl}).

Since a(b+ 1) < 1 and 2o < 1 in (1.3.6) and since m(0) has finite moments of order
2(b+ 1) and 4 in Assumption 1.7, we get

e 2
E UM;jZ (T)’ ] <rl (1.6.9)

Gathering the estimates (1.6.6), (1.6.7), (1.6.8) and (1.6.9), we obtain the required result

2
]STl'

This concludes the proof by (1.6.4). O

I (t, x)
o0xP

sup sup E | sup
€ xeTd te[0,T]

Proposition 1.6.2, together with the compact embedding H: < C! and the Markov
inequality, proves that (I.6.3) holds, hence (1.6.2). This concludes the proof of Ttem (i).

1.6.2 Proof of the second claim Item (ii)

As in [DV20], we prove Item (ii) using the Aldous criterion [JS03, Theorem 4.5 p356].
Let ¢ = Y, ¢; be the sum of a finite number of bounded functions ¢; € ©. We set
Xe = (f5,¢¢,m°) and X = (p°,(%). Recall that if 3 € © depends only on z, then the
perturbed test function ¢° defined by Proposition 1.4.3 depends only on n and z. Using
Proposition [.4.2, this allows us to stop the processes only at 7° instead of 7§ while keeping
the same estimates. Therefore, the proof of the tightness of (QZ(C‘E’TE))E is the same as of

@(7”‘3) , and is thus omitted. It only remains to prove (@(7”%) is tight.
The Aldous criterion gives a sufficient condition for the tightnéss of the family
(@(78“0 in D([0,T],R): since ¢ is bounded, is it sufficient to prove that
3

Vn >0, (lsir% limsup sup P (’gp(ya’Ti(TQ)) - go(XE’TX (7'1))‘ > 7]) =0, (1.6.10)
= 71 2;;-2%'?4-5

where 7y, 75 are any (F;),.p+-stopping times.
Define the perturbed test function ¢® = >, ¢5. This sum satisfies the estimates (I.4.19),
(1.4.20) and (1.4.21). Then, define

0°(t) = (X (0)) + ¢*(X°(1)) — *(X°(0)) (1.6.11)

= o(X°(0)) + L LGP (X5 (s))ds + ME-(t), (1.6.12)

where M¢. is defined by Proposition 1.4.1, so that

AKX (72)) = (XM (m)) = (078 (m2) = 073(m) = (5 (X*78(m2)) = (K7 (72)) )

+ (# (X)) - oK (m)))
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Using (1.3.5) and Propositions [.3.6 and 1.4.3, we get

(’O&(XE,TK (t)) i QO(XS’T[E‘ (t))‘
Sea (14 Hngi?(Mfl))(s(l +e v |m0)]) + 52(1 4+ gmalb+l) |, Hm(@)”bﬂ))‘

Since v < 1 and a(b+ 1) < 2 in (1.3.6), we get

E [ sup [ (XA (1)) - so<X”i<t>>]] — 0,

te[0,T]

hence,

S E || o(X°78(r2)) = (X (7)) | < sup E[|0°73 (72) = 073 ()] + o(1),

71,72 71,72

where o(1) denotes any quantity u satisfying u 0 0. Using the Markov inequality, we
E—>
get

sup P <“p (1)) — (XA (r )>‘ > 77) sup E [[6°7A(r2) — 673 (71) ] +o(1).

71,72 71,72 TI

Therefore, it is sufficient to prove that

sup E [|6°7A () — 6575 (1y)|] — 0, (1.6.13)

T1,T2,E 6—0

to deduce (1.6.10) and then to use Aldous criterion.
Owing to (1.6.12), we have

TQAT/E\ e,T% e,Ts
6778 (72) — 073 (r >\<J 1£56° (X% ()| ds + | MR (m) = MER(m)| . (16.14)

TIATS

Using once again (1.3.5), Propositions 1.3.6 and 1.4.3, we get

|[£207 (X2TA(1))

o[£ 6|+ 21+ L aga 1) (1 + 2702 v [m(0)]"*2)

o o (b2
S L+ 1517200y + €+ [ f51720001)) (1 + 2722 v [m(0) 7).

Using the Cauchy-Schwarz inequality, the condition a(b+2) < 1in (1.3.6) and Assumptions
[.4 and 1.7, we get

E [ sup L5 (XTA(t ))|] <o L. (1.6.15)
te[0,T7]

Thus, we get

sup sup E [J A ’ﬁEQOE(XE(S))’d:S] sup sup 0K [ sup ‘ﬁa *( X”A( ))| — 0.

£ T1,T2 TIATS € T1,T2 te[0,T] 6—0
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The last term of (1.6.14) is controlled using martingale arguments. Owing to Proposition
4.1, M:;;TA is indeed a square-integrable martingale and

e,75 e,75 2 e,7% 2 e,T5 2
E “M@;A(TQ) - M ()| } -E [\M¢5A<TZ)‘ - [ME ) ]
1 T2ATA £\2 5 5 €
= SE (B((¥°)?) = 2¢°B¢®) (X(s))ds
TIATR

_E [ J i air,-(XE(s))ds]

TIATR §=—2

where the terms 7; are obtained by writing ¢° = ¢ + £ + %9 and expanding B((¢°)?) —
2¢°By*. The terms containing ¢ vanish, using By = 0, B(¢?) = 0 and Byy; = pBp;
(since ¢ does not depend on n). Using Assumption .10, the remaining terms satisfy

r_o=T7T_1= 0,
ro(f,2,n) = [B(¢l) = 201Be1] (f, 2,n) S (1+ | f720000)) (1 + [2),
r(f,zn) = [2B(p192) — 01Bps = 92Be1] (£, 2,1) S (14 |f 22001y (1 + n]5),
ra(f,2m) = [B(#3) = 20895 (f,2,n) S (14 | fl 72001 (1 + )57 0).

As for (1.6.15), using that a(b + 2) < 1 in (1.3.6), we have for i € {1, 2}

te[0,T]

E [ sup giri(X”/i (t))] <o 1,

and

supsup E [J ! 5iri(XE(s))d3] — 0.

€ T1,72 TLATS

We need to be more cautious when dealing with ry, since there are no ¢ left to compensate
the £72* that would appear from bounding M7 from above using Proposition 1.3.6.
The idea is to use estimates for f7A and m® (instead of m=7A), using that for s < 7%,
meA(s) = m*(s). We write

E [JTMTX TO(Xs(S))dS] <, E [

1 /\TX

[T AR LT

1 /\T/E\

<o E [ [ s+ ma<s>|é>ds]

T1
T
Son | B 1m0+ 1) 1+ )] ds.

Then, we use the Holder inequality to write

1

E “TMTA ro(XE(s))de] Se J E [y (s)]* E [1 + HJC&HGLQ(/M*)]§ B+ Im(s)lz]

TIATR 0

W=
Wl

ds

1

T 1
Son | B [ling ) B [1 1 laguen ] B[+ 0]

ol
W=
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by stationarity of m. Using the Cauchy-Schwarz inequality, Assumptions [.4 and 1.7, we
get

NI

T1 /\Tf\ 0

T 3
S AT (J E []1[7177.2](8)] ds)

0

E [JTZMX TO(XE(S))ds] <o JTE [Liry ) (5)]? ds

1
gga,A,T 02 — Oa

uniformly in €, 7 and 7. This concludes the proof of (1.6.13).
We are now in position to apply Aldous’ criterion, which proves that ((ps alE) ¢ E’TA(CE)))a
is tight in C%.H_° x C%CL. This concludes the proof of Item (ii), and of Proposition I.6.1.

1.7 Identification of the limit points

In this section, we establish the first convergence result stated in Theorem 1.2.1.

We start by proving the convergence of the auxiliary process (° in Section [.7.1, using
the convergence of a simplified martingale problem. Then, in Section [.7.2, we determine
the stopped martingale problem solved by a limit point of the stopped process. In Section
[.7.3, we use this stopped martingale to identify the limit point of the stopped process.
We conclude on the convergence of the unstopped process in Section 1.7.4.

I.7.1 Convergence of the auxiliary process

Proving the convergence of (¢ is much simpler than for the coupled process X . Indeed,
as seen in particular in Proposition [.6.1, the only stopping time we need is 7¢, and
7¢ —— +00. Therefore, the convergence of martingale problems is a little more intricate

e—0
than the proof used in [DV12], but it remains straightforward.

Proposition 1.7.1. The process (¢ converges in distribution in C3CL to a Wiener process
of covariance () when € — 0.

Proof. Owing to the tightness established in Proposition 1.6.1, there exists a sequence
g; — 0 and ¢ € C2C! such that (% converges in distribution to ¢ when i — oo. We start

1—00
by proving that ¢ solves the martingale problem associated with the generator L.

Let pe © withy =1. Let 0 < s < 51 < ... < s, <1, let g be a continuous bounded
function and for z € C3C}, let G(z) = g(2(s1), ..., 2(s,)) and

B(z) = (@(Z(t)) ~ ol - |

s

t

Ego(z(u))du) G(z).

Note that G and ® are continuous and bounded on C$C}, so E[®(¢%)] —— E[®(()]. Let

1—>00
us establish that E [®((%)] also converges to 0.
Let ¢° be the perturbed test function introduced in Proposition [.4.3 associated to .
Since % is a good test function, and since G(¢*#™") is Fci-measurable, Proposition 1.4.1
yields

B[ (v o) - s o) - | " (i) 66| <o

SATEQ
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Owing to (1.4.13), this leads to

[E[2(¢*™)]| <4 ) ElIl]

7=1

with

r = ei(pu (¢ (), T (1) — pu (¢ (5), T (),
ra = &% (pa(CT (), T (1)) — 2 (¢ (5), T ())),

e[ W) - o ) du

SATEL
s

Ty = f Lop(C5 (u))du — J Lo(C5™ (u))du.

Using (1.3.6), (1.4.19), (1.4.20), (I.4.21) and Assumptions .4 and [.7 we have for j € {1, 2, 3},
E [|ry|] — 0 It remains to prove that E[|r4]] — 0. The term r, does not appear in
E—>

[DV12], but is simple to manage since 7¢ — © The Cauchy-Schwarz inequality and
E—>
Lemma [.3.4 lead to

IE"[|7”4|]2 S@Eﬂt_t/\'rsi 2—’—‘5—5/\7-57;
Sso T2]P) (,7_252‘ < T) —_—> 0

1—00

]

Thus, we get E[®(¢5™")] — 0, hence E [®(¢)] = 0. The same proof can be adapted
1—00

when replacing ¢ by p*. Therefore, the processes M, and M2 defined in Proposition 1.5.1
are martingales. Owing to Proposition [.5.1, ¢ satisfies (1.5.2) and is a ()-Wiener process.

This limit point being unique in distribution, ¢ converges in distribution to this Wiener
process. ]

1.7.2 Convergence of the stopped martingale problems

In this section, we use Proposition [.7.1 to establish the convergence of the stopped
martingale problems satisfied by X*7A. The proof is similar to the proof of Proposition
[.7.1, but this time the stopping time persists when € — 0 because of the fixed threshold
A.

Let us introduce the path space Q = COH_ 7 x COC! x COCL, equipped with its Borel
o-algebra. We denote by (p, ¢, () the canonical process on © and by (F,), g~ its associated
filtration. -

Define P. 5 the distribution of (p®7, (5", (%) and E. 5 the expectation under this
distribution (on ). By Proposition 1.6.1, the family (P, »),_ is tight. Thus, in this section,
we consider a sequence (g;),.y such that e, — 0 and P,, , — Py o weakly when i — oo, for
some limit point Py 5. Note that under [Py », owing to Proposition 1.7.1, g' is a Q-Wiener
process whose distribution Py does not depend on A.

We now state two continuity lemmas.

Lemma 1.7.2. For any fived A € R™, the mapping Ta(+) defined by (1.2.10) is lower semi-
continuous on CICL. Moreover, it is continuous at every z such that 7.(z) is continuous at

A.
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Lemma L.7.3. The set {A = 0| Pg(7.(¢') is not continuous at A) > 0} is at most count-
able. Let £ be its complementary.

We refer to [HS12, Lemmas 3.5 and 3.6] for the proofs of Lemmas .7.2 and 1.7.3. These
results can be applied here since H ¢ ’H c1 is a continuous finite dimensional process and its

distribution Pg under Py » does not depend on A.

Owing to Lemma 1.7.3, there exist arbitrarily large numbers A € £ and for all A € £,
7.(¢") is P s-almost surely continuous at A and by Lemma 1.7.2, 75 (+) is Py y-a.s. continuous
at i'. From now on, it is assumed that A € £.

Proposition 1.7.4. Let A € £. For all p € ©, the process

t/\TA(gl)

te o(p(t), C(8)) — o (p(0), £(0)) — j Lo(p(u), C(u))du

0
is a (F;) g+ -martingale under Py 4.

Proof. Let ¢ € ©. As for Proposition [.7.1, let 0 < s < sy < ... < s, < t, let g be a
continuous bounded function, and let

G(p. ¢, <) = g(p(s1),{(51), C(51), - pn), Cn), ¢ (),

taTa(¢)
®(p. ¢, ¢) = (@(P(t)aC(t)) —¢(p(s),¢(s)) = J ﬁsﬁ(P(u)aC(U))du) G(p, ¢, <)

saTa(¢")

As for Proposition 1.7.1, we establish that Egi,A[ (p, ¢, g)] converges, when 7 — o0, to
both Eo A[®(p, ¢, ()] and 0.

On the one hand, since ® is continuous Py y-almost everywhere, P, y 0 @1 — Py, o
®~! weakly when ¢ — o0 (see [Bou04, Proposition IX.5.7]). Moreover, (P., 5 o ®71)_ is
uniformly integrable. Indeed, using (I.4.28), we have Z

sup B [0(p, €, )| S W E 1+ £ a(es) | < =
Owing to [Bil99, Theorem 5.4], uniform integrability and convergence in distribution yield
Eea[@(p, ¢ O] 7 Boal2(p. ¢, )]
On the other hand, define the perturbed test function ¢ as in Proposition [.4.3. As

for Proposition [.7.1, we have

g

' N " i AEd €; I P U L
E [(sf"(XE"’TAZ (1)) = 7 (X7 (s)) —f L™ (X Z(U)MU) G(p™ ™, (om0

€4
SAT,

and

B, [0, ¢ O] = [E [0 ¢ ¢)]| <5 DB,
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with
r1 = i1 (X5 (1)) — 1 (X5 (5))) — 0
ry = £ (02X (1)) — 0o (X574 (5))) — 0

t/\TIE\i €; —; Tsi
| (e W) - Lo () du -0

€5

S/\TA
tATA (%) e sATA () e i
Ty = J Lo(X (u))du — J Lo(X™ (u))du.
t/\Tf\i S/\T/E\i

For the last term 74, we have

E []7“4]]2 Sen E []t ATACT) —t ATy 2y |s A TA(CT) — s A TY
Sop TP (75 < T' A 7A(C7)) using (1.2.12)
g%A T2P (TEi < T) — 0.

1—00

]

Thus, we get ]Eei,A[CD(Q, ¢, g)] —— 0, which concludes the proof of Proposition 1.7.4. [

1—00

1.7.3 Identification of the limit point

In Section 1.7.1, solving the martingale problem is sufficient to characterize the distribution
of the Markov process as a solution of a limit equation, under a uniqueness condition.
However, the limit point Py 5 solves a martingale problem only until a stopping time 75 (¢’).
The goal of this section is to explain how to identify PPy 5 using this stopped martingale
problem.

Let us come back to the space 2 to state more precise results. Recall that the

distribution of (p=4, (57A, (%) is P, 4, and define (py, (o, (') following the limit distribution

Py a (we assume  is large enough to define such a process). Recall that XOTR = (pETh, (5 TR).
Define X = (pa,(s) and X a solution of (1.2.13).

In this section, we construct a process Y, that extends X, after the stopping time
7A(¢") (in distribution) and that solves the martingale problem associated to £. It is
similar to the proof of [SV06, Theorem 6.1.2], but we adapt this proof to see precisely how
7A(C’) is linked to the extended process.

Extension after a stopping time We first need a result to assert that 7,({’) is a
hitting time for X 5. Note that until here, we did not use (¢ when considering the coupled
process (p°,(%). But had we considered p° alone, the stopping time 7, (¢’) would not be a
hitting time for p, (as a matter of fact, 74 ({’) is not even a stopping time for the filtration
generated by py).

Lemma 1.7.5. Let A € £.

The processes Cx and (¢'Y™) are indistinguishable. In particular, T4(Cy) = Ta(C).
Moreover, the processes py and pRA(C) are indistinguishable.

This result was expected, given the construction of the stopping times and the fact
that (4 and (' are the limit of the same process, respectively with and without a stopping
time. The choice A € £ is here necessary to retrieve this result by taking the limit ¢ — 0.

85



Proof. Since 7% — o0 in probability by Lemma [.3.4, Slutsky’s Lemma yields the following
convergence in distribution
(CEi’TAZ ’ Cgiﬂ—sz‘ ) <€Z> E) (C/h C/a Q,)
Now, for 21, 29, 23 € C2CL, let

T

TA(23)
D(29, 29, 23) = Hzl — 2

cocr
Owing to Lemma 1.7.2, the mapping @ is almost surely continuous at (Ca, ¢’y ¢"). Thus
O (¢, (507, (%) = 0 converges in distribution to ®(y, (', ¢’). Hence, we have almost

surely (x = (¢/)™().

The proof for p, uses similar arguments with ®(p, z) = H p— pA O

) Hch;"‘

From now on, for any process Y = (p, (), we write 74(Y) = 74(¢) so that 74 (X,) =
7A(¢’) € [0,00]. We shorten the notation to 74 = 74(X,). Introduce the measurable
function Sy that stops a process at the level A, namely Sy (Y) = Y™2(), Owing to Lemma
1.7.5, we have Sy (X ) = Xj.

This section is devoted to extending X, after 7, into a solution of the martingale
problem associated to £. Namely, we define a process Yy such that Sy(Yx) 4 X, and
such that Y, solves the aforementioned martingale problem.

Fix w’ € Q. Define the process X, . as follows:

e Yw € Q,Vt < TA (w/) ,YA’w/(t) (w) = YA(t) (OJ/). Note that TA<YA,w’) = TA (w’)

almost surely. In particular, the distribution of Sy(X, /) is the Dirac distribution
at YA (w’).
e On [7) (w'),T] (this interval can be empty), X ./ (w) is the solution of (1.2.13)
starting at time 75 (w’) from the initial state X (75 (W) (@').
It is straightforward to check that
w' — P (X4 €C)
is measurable for C = {Y € C2H_° x C3CL | Y (t;) €Ty, ....Y(t,) e T} with0 < t; < ... <
t, < T and I'; measurable. Since those sets generate the Borel o-algebra of C3.H 7 x C3C.,
and since a pointwise limit of measurable functions is measurable, we can take the limit
when the subdivision become thiner to get that the mapping is still measurable for any
measurable C. Thus, we can define a mapping C — E'P (YAW/ € C), where E' denotes the
integration with respect to w’. It is also straightforward to check that this mapping is
a probability measure, thus we can define on €) a process Y, following this distribution,
namely
P(YyeC)=EP(Xpwel).
In particular, since S;'(C) is a measurable set, we have
P (Sx(Ya) €C) = EP (Sa(Xpw)€C)
- E/H{YA(wf)ec}
=P (7[\ S C) 5

hence Y, extends X, as announced beforehand, in the sense that S A(Ya) 4 X A. Moreover,
for any measurable function ® such that E'E [|®(X s .)|] < o0, we have

E[®(Ya)] = EE[®(Xa.w)]- (1.7.1)
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Identification of the extended process It remains to prove that Y, solves the mar-
tingale problem associated to L.
For ¢ € ©, and a process Y € C3H_° x C2CL, define the process
t
MY (t) = p(Y(8) — (Y(0) — f Lo(Y (u))du.
0

Let 0 < 51 < ... <s, <s <tand g be a bounded measurable function. Let G : Y —
g(Y(s1),....,Y(sp)).

Owing to Proposition 1.5.1, for almost all w’ € €2, the process
Npwr(t) = MZae () — M¥ae (8 A 7 (o))
satisfies the martingale property
E [Naw ()G (X pw)] = E[Naw(s)G(Xaw)] -

Indeed, for t € [0,7 ()], Naw(t) = 0 and after the time 7 (w’), this process solves the
martingale problem starting at time 7 (w’) by construction. Using (I.5.4) and that ¢ and
Lo have at most quadratic growth, it is straightforward to establish

E'E [|Naw (£)G(X awr)

| < o
Thus, (1.7.1) and the identity above yield

E[(M™ () = MY (t A 7y (Ya))G(Ya)] = E[(MY(s) = MY (s A 14 (Ya)))G(Y)]
which can be rewritten as

E[M™()G(Ya)] = E[M™(5)1(r, (v <G (Ya)]
+E [MYA (t A TA(YA))IL{TA(YA)>3}G(YA)] . (172)

Using that the process Yy and Sy(Ya) are equal until the time 74 (Yy) = 7a(Sa(Ya)), and
that Sy (Ya) and X, are equal in distribution, we get for the second term

E [M(t A Ta(Ya) Ly (va)=5) G(Ya)]
[ MOV (A 7o (SA(YA)) T ry (52 (va))>5) G (Sa(Ya))]
| M (A 7)1 G(X) |

E
E

Owing to Proposition .74, t — MXa (t A 7a) is a martingale for the filtration FXa
generated by Xx. Moreover 1y, -aG(X4) is FX4-measurable, hence the martingale
property yields

E| MY (A 70) Lo g G(Xa) | = B[ M¥4(8) 15,0 G(X) |
Using again that Sx(Yy) £ X, we get

E | M ()7 G(X0) | = B [M ()7, G )]
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Finally, owing to (1.7.2), we have

E[M™()G(Ya)] = E[M™(8)1(r, (v <5y G(Ya)] + E [M™(5) L7y (vp)>5) G (Ya)]
=E[M™(s)G(Y4)],

which proves that Y, solves the martingale associated to £. Owing to Proposition [.5.1, it

solves (1.2.13) and since the solution is unique Yy £ X the solution of (I.2.13). Therefore,
the limit point is unique (ancL does not depend on A). This concludes the proof that X=7A
converges in distribution to X.

I.7.4 Convergence of the unstopped process

This section is devoted to the proof that the process X = (p°, ¢%) converges in distribution
to X = (p, ¢) solution of (I1.2.13), in C2H_° x C2CL.

Let ® be a continuous bounded mapping from C2H_° x C3C! to R. There exists a
sequence ¢; such that e; — 0 when ¢ — oo and

lim sup E[®(X7)] —E[®(X)]| = lim |E[®(X™)] - E[®(X)]].

1—00

Let A € £. Owing to Proposition [.6.1, up to the extraction of another subsequence, we can

assume that (X~ N , (1) converges in distribution to some (X,, () in (C3H ™7 x C3CL) x
CYCL. Now we write

E[o(X™)] - E[2(X)] < [E[¢(X™)] - B [2X™ ™)
)E [ X ))] _E [@(Y)]’ .
First, we have
‘IE [®(X7)] - E [CD(XEZ (¢ ” <o P(ra(C) < T).

By Lemmas [.7.2 and 1.7.3, since A € £, 74(¢%") A 2T converges in distribution to 74 (¢") A 27T
Then, by Portmanteau’s Theorem for closed sets, we have

limsup P (1 (%) < T) < P (10(¢) < 7).
Since ® is a continuous bounded function, we have
lim [E [0(X*™) | - E[0(X)]| = [E[0(X)] - E[e(X)]].

Recall that X, £ Sx(Ya), and that Yy £ X (by Section 1.7.3). Thus, we get

E[2(X4)] —E[2(X)]| = [E[®(Sa(Ya))] — E[@(YA)]]
Sq) P(TA<YA) < T) .

Since 74 (Yy) £ 74(X2) = 7a(¢') by Lemma 1.7.5, we finally get for A € £

limsup [E [@(X)] ~ E[2(X)]| <o P(1a(¢) < 7).
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Since ¢’ € C2CL, we have P (1, (¢') < T) —— 0. Recall that we can take this limit since
—m

L contains arbitrarily large A’s. Therefore, we have

This concludes the proof that X~ converges in distribution to X, and in particular that p°
converges in distribution to p in C%.H_°.

1.8 Strong convergence

In this section, we establish the second convergence result stated in Theorem [.2.1, namely
the convergence in L2L2. Given Section 1.7 and Proposition 1.6.1, it is sufficient to prove
that the sequence (pE’Tf\)DO is tight in L2L2. Indeed, assume this tightness holds. There
exists a limit point p, and a subsequence converging to p)y in distribution in L2L?2, hence
in L2.H_-°. Owing to the first part of Theorem 1.2.1, this subsequence converges to p™ ()
in distribution in C3.H_ 7, hence in LZH_°. As a consequence, py and p) are equal in
distribution. As in Section 1.7.4, we deduce the convergence in L2.L2.

Therefore, it only remains to prove that (pE’Tf\)DO is tight in L2L?2 to get this conver-
gence.

Recall that w, denotes the modulus of continuity of a H_“-valued continuous process
p. Then, using [Sim87, Theorem 5], the set

K= {pe 2| 1ol sy < B and ¥6 > 0,1,(5) < (o)}

where R > 0, ¢/ > 0 and n(9) — 0, is compact in L2L2. Using Prokhorov’s Theorem,

—0
the tightness of (,05’7/6\)8>O in L2.L2 will follow if we prove that for all > 0, there exists
R > 0 and o’ > 0 such that

(lsl_r}(l) hr?j(l)lpp (wpw;\ (0) > 77) =0, (1.8.1)
and
sgpP (HpE’TAHLQTHg, > R) <. (1.8.2)

Equation (I.8.1) is a direct consequence of (1.6.10). It remains to prove (1.8.2). Owing
to the Markov Inequality, it is sufficient to prove that, for some ¢’ > 0, we have

up® 1678 o g | 0 1 (1.8.3)

Let ¢° = €0, f° + a(v) - V. f¢. Owing to Assumption [.3, we can use an averaging lemma
([BD99, Theorem 2.3] with f(t) = fe(et), g(t) = ¢°(et) and h = 0 until the time T A 75)
and by rescaling the time, we get

TATS

771 s = L R g e

2 T/\T/E\ o 9 T/\TK . 9
g € HfO HL% + JO Hf ’ A(t>HL2(M—1) dt + JO Hg ’ A(t)HLz(Mfl) dt,
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where, using the Cauchy-Schwarz inequality,

FETR (MR (E) + LR ()

Ol =

L2(M71)
£ 158 ]- £
< O] o peny TR g + S [LFTA O L2 gy -

Then Assumption 1.4, (1.3.5) and Proposition [.3.6 lead to (1.8.3) with o' = %. Since
the sets Kg are compacts, Prokhorov’s Theorem yields, using (1.8.2) and (1.8.1), that
(p°m)__, is tight in LF.L2.

Given Section 1.7, this concludes the proof of the convergence in distribution of p°® in
L2L2 to p the solution of (I.2.13), and the proof of Theorem 1.2.1.
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Chapter 11

Convergence in the averaging regime
with an unbounded driving process

II.1 Introduction

Our aim in this work is to study the scaling limit of a stochastic kinetic equation towards
a diffusion Partial Differential Equation (PDE). For deterministic problems, this is a
thoroughly studied field in the literature, starting historically with [LK74, BLP79]. Kinetic
models with small parameters appear in various situations, for example when studying
semi-conductors [GP92] and discrete velocity models [LT97] or as a limit of a system of
particles, either with a single particle [GR09] or multiple ones [PV03]. It is important to
understand the limiting equations, which are in general much easier to simulate numerically.
In this chapter, we consider the following equation

O + Lalv) - Voft £ mtf = GLF F0) = i, (IL.L1)

where f¢ is defined on Rt x T? x V, L is a linear operator (see (I1.1.2) below) and the
source term m? is an ergodic random process defined on R* x T? (satisfying assumptions
given in Section 11.2.2). The goal of this chapter is to study the limit ¢ — 0 of its solution
fe

The solution f¢(¢,z,v) is interpreted as a distribution function of particles, having
position z and velocity a(v) at time ¢.

The Bhatnagar-Gross-Krook operator L expresses the particle interactions, defined on
LY(V,dp) by

Lf =pM—f, (I1.1.2)

where y is a finite measure on V, where p = (f) = §, fdu and where M e L'(V,dp)
satisfies Assumption II.1.

The source term m? is defined as m*(t, z) = m(te~*, z) where m is an ergodic random
process defined in Assumption I1.2, not depending on e. When ¢ — 0, te~2 — o0, hence
m® converges to m the average of the invariant distribution of the ergodic process m,
assuming m exists.

In the deterministic case m® = 0, such a problem occurs in various physical situations
[DGPO00]. The density p* = (f¢) converges to the solution of the linear parabolic equation

2

orp = div(K'Vp), (I1.1.3)
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on R* x T? where
K= L a(v) ® a(v) M(v)dp(v). (11.1.4)

This is a diffusive limit in the PDE sense, since the limit equation is a diffusion equation.
Consider now two scaling parameters € and ¢ and the equation

1 1
Of 4 Za(v) - Vof +m" f°0 = SLf".

When € > 0 is fixed and § — 0, the ergodicity of m° yields the convergence of f5° to the
solution of

1 1
é’tfa’o + ga(v) . fog’o + mfe’o = ;Lfa’o,

which converges when ¢ — 0 to a diffusive limit in the PDE sense: as in the deterministic
case, p=Y converges to the solution of

0,p°° + mp®° = div(KVp°0). (IL1.5)

Conversely, when ¢ — 0 and 6 > 0 is fixed, we get as in the deterministic case the
convergence of p*? to the solution of

Op™0 + m? % = div(K'Vp"™),

which also converges to the solution of (I1.1.5).

In this chapter, we consider the regime ¢ = § — 0. In this case, (II.1.1) is expected to
converge both to a diffusive limit in the PDE sense (as in [DGP00]) and to an averaging
limit in the probabilistic sense (owing to the averaging principle introduced in [Kha68], see
also [PS08, Cer09, CF09, Brél2, Bré20]). The main results, Theorems 11.2.1 and 11.2.2,
establish that, under appropriate assumptions, the density p® converges in distribution
in C°([0,T], H=°(T%)) for all arbitrarily small o € (0,1] and in L2([0,T], L*(T¢)) to the

solution of the deterministic linear diffusion equation with a source m
Op +mp = div(KVp), p(0) = po, (I.1.6)

and converges in probability in the same spaces if pg is deterministic. The quantities K
and m are defined in Assumption I1.1 and Assumption II.2. Moreover, we prove that f¢
converges in distribution in L2([0, T], L*>(T¢)) to pM, and in probability in the same space
if po is deterministic.

This chapter focuses on a martingale approach combined with perturbed test functions,
as in the classical article [PSV77] (see also [Kus84, EK86, FGPSI07, PS08, dBG12)).
Perturbed test functions in the context of PDEs with diffusive limits applies in various
situations, for instance in the context of viscosity solutions [Eva89], nonlinear Schrodinger
equations [dBG12], a parabolic PDE [PP03] or, as in this chapter, kinetic SPDEs [DV12,
DV20, DRV20, RR20]. As in Chapter I, we combine this martingale approach with
stopping times to get estimates on the processes. However, as opposed to Chapter I, the
stopping times all diverge to infinity when ¢ — 0 and thus do not appear in the limit
martingale formulation.

This chapter is organized as follows: in Section I1.2, we set some notation, the
assumptions and the main results, Theorems I1.2.1 and I1.2.2. Section 1.3 proves some
estimates on f¢ and m® when stopping them at some stopping times and establishes the
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well-posedness of equation (II.1.1) and of the limit equation (II.1.6). In Sections II.4 and
I1.5, we introduce respectively the notion of perturbed test functions and of martingale
formulation of equations (II.1.1) and (I1.1.6). In Section I1.6, we use these tools to prove
Theorem I1.2.1, namely the convergence in distribution of the family of processes (p°).
in C°([0,T], H=°(T%)) for all arbitrarily small o € (0,1], as well as its convergence in
probability. In Section 1.7, we prove Theorem [1.2.2, which extends the convergence in a
stronger sense, namely the convergence of both (p°), and (f¢)_ in L*([0,T'], L*(T?)), using
an additional assumption and an averaging lemma.

II.2 Assumptions and main results

I1.2.1 Functional spaces

The space V' is equipped with a finite measure pu.
In this chapter, we consider the Hilbert spaces L2, L? and L?*(M™1!) associated with
the following inner products

(h, k)2 =J h(z,v)k(x,v)dxdu(v)

(ho k) g2 gy = devh(x,v)k(x,v)dx%g;.

We write Ci = C'(T?), C2H, 7 = C°([0,T], H°(T?)) and L4L2 = L*([0,T], L*(T?)) for
any 1" € (0,00), 0 € (0,1], i € Ny and p € [1, o0].

11.2.2 Assumptions

Assumption II.1. The functions a € L®(V,du) and M € L*(V,du) satisfy

Yo e V, M(v) > 0
| M) -
f (0 M()du(v) =
K= | at) @ a(M@)da(e) >0

Ezample 11.2.1. For any o € (0,0) and any bounded odd function a # 0, the space V = R?
satisfy this assumption with M(v)du(v) = ﬁ exp(—@)dv.

Assumption II.2. The family (m(t)), defines an E-valued Markov process, with
my(0) = ¢, where E = Cl92%2_ Let £, be its infinitesimal generator. We also assume the
existence and uniqueness of an invariant distribution v for (me(t)),, with § || dv(€) < .
Let m = §, £dv(¢). In this chapter, an initial condition ¢, € E is fixed (£y does not depend
on ), and we write m(t) = my,(t).
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In this chapter, once ¢y, a, T and m are fixed, we always consider ¢ € (0,¢0], where

-1
¢ < min {ueo; (41l e (14 T 7ley) ) } - (I1.2.1)
This upped bound on ¢ is justified by Definition [1.2.3 and Proposition I1.3.3, and is not

restrictive, since we consider the regime ¢ — 0.

Assumption II.3. For € € (0,¢¢], the stochastic process m® is defined as me(t) = m(te~?)
and is adapted to a filtration (F;), g+ -

Assumption II.4. There exists v € (2,00) such that
supE [ sup |m(t)|%] < 0. (I1.2.2)
€Ny telii+1
Assumption II.5 (Mixing property). There exists a positive function Y € L*(R™) such
that, for any /1, ¢, € E, there exists a coupling (mj,, mj,) of (my,, my,) satisfying

Vi e R, E [|mf, (£) — mf,(8)] 5] < Y (8) 02 — L] -

Definition II.2.1 (Resolvent operator). For any continuous linear form 6 € E*, the
resolvent operator is defined as

Ro(0 — 6(m))(¢) = LOO E[6(me(t)) — 6(m)] dt.

Owing to the mixing property (Assumption I1.5) and the identity §, 0(¢)dv(¢) = 6(m),
the function vy = Ry(6 — 0(m)) is well-defined and we have for ¢ € E

[e(O)] < C[0] g (1 + €] ), (11.2.3)
where C' depends only on 7y, and v. Moreover, L, = — (0 — 6()).

Assumption II1.6. For any 6 € E*, let 1)y = Ry(f — 6(m)). Assume that ¢ is in the
domain D(L,,) of L,, and satisfies

2
LB (O] _
B 1+ |05

Example 11.2.2. Let us check that the conditions above are satisfied for an Ornstein-
Uhlenbeck process. Let (my(t)),. be defined by

dmey = —(mey —m)dt +dWy,  myo =1, (I1.2.4)
where W is an E-valued Wiener process. Then, we have

¢
me(t) =le " +m (1 —e") + J s HdW,. (I1.2.5)

0

Assumption I1.4 is satisfied for any v € (2,00). The coupling (mj ,mj,) of Assumption
I1.5 is obtained by driving both processes by the same Wiener process W. Indeed, (11.2.5)
becomes

my, (t) = m,(t) = (6L — L),
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and Assumption I1.5 is satisfied with v, () = e. Moreover, with the notation of

Assumption I1.6, we have

0
n(l) = | (6(0) ~ o))t = o(m) ~ 6(0)
0
Since the infinitesimal generator is given by L,,¢(¢) = De(l) - (m — £) + 1 Tr (D?*p(()),
Assumption I1.6 is also satisfied.

Assumption II.7. The family of initial conditions (f§) ) satisfies

e€(0,e0

sup E [|‘f§|‘222(m—1)] < 0,

e€(0,e0]

and the initial density p§ € L2 converges in distribution in L2 to py € L2.

11.2.3 Statement of the main results

Definition II.2.2. Let pg be the L2-valued random variable defined by Assumption I1.7.
A stochastic process p is a weak solution of (I1.1.6) in L? if p € L¥ L? almost surely and if,
for all £ € H? and t € [0, T], almost surely,

t

(P0.€)13 = () + | (0(6). v (V) — ) . s (112.6)

0
Theorem I1.2.1. Let Assumptions I1.1 to I1.7 be satisfied. Then, p° converges in distri-

bution in C3H_ 7 to the unique weak solution p of (I1.1.6) in the sense of Definition I1.2.2.
If, moreover, py € L? is deterministic, then the convergence holds in probability.

When Assumption [1.8 below is satisfied, we can prove a stronger convergence. Its
formulation corresponds to the assumptions of the averaging lemma [BD99, Theorem 2.3].

Assumption II.8. Consider the case (V,du) = (R", % (v)dv) where % e H'(R"), and
assume that a is locally Lipschitz-continuous and that there exists C' € (0,0) and ¢’ € (0, 1]
such that

@%f+hwm

Vue ST YAe R,V e O,q>,f
( ) A<a(v)u<A+d ( dv dv

2
)m<oﬁ.

Theorem I1.2.2. Let the additional Assumption I1.8 be satisfied. Then p® also converges
in distribution in L3L2 to p and f° converges in distribution in LAL*(M™') to pM.
Moreover, if py is deterministic, then those two convergences hold in probability.

Note that we get convergences in the same spaces as in the deterministic case [DGP00],
either in distribution or in probability depending on the initial condition py.

Remark 11.2.1. In this setting, the initial condition m®(0) = ¢y does not depend on e.
It may be possible to extend the analysis with some changes in Assumption [1.4 and
appropriate modifications of the proofs below:
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o If there exists a deterministic R such that sup.c(g ., [m°(0)| 5 < R almost surely,
the result holds if Assumption 1.4 is modified as follows: assume that

supE | sup sup H?”rzwﬁ(())(1f)mJ <mwand gy < R

i€Np EE(O,EQ] tE[i,i+1]

e If m®(0) is a random variable with distribution v, so that m® is a stationary process,
then one can keep Assumption [1.4. The general results still holds if one assumes
higher order moments on v (hence m) and f§. The details are omitted.

11.2.4 Strategy of the proof

A standard strategy to prove the convergence of p* when € — 0 (see [DV12, DV20, DRV20])
is to establish the tightness of the family (p°)..,, and to prove that the limit point of
this family is unique and solves (I1.1.6). The tightness usually comes from estimates
on moments of trajectories. In this chapter, these estimates require to introduce an
appropriate stopping time (see Definition 11.2.3 below). Therefore, as in Chapter I, we
prove the tightness and convergence of the family of stopped processes p*7", and deduce
the tightness and convergence of the original process.

Definition I1.2.3. Let a € (%, 1) be fixed. The (F}),.p+-stopping time 7°¢ is defined by

e _ & e
T =T, AT,

where
—inf {t e [0,7] | [ (0)] > ).
e =inf {te [0,7] ¢l =},
and ,
CE(t) = ifo (me(s) — ) ds ¢ E. (11.2.7)

The parameter « introduced in Definition I1.2.3 is fixed in all this chapter.
For any process X%, let X=™ be the process stopped at the time 7¢, namely

X (1) = X°(t A 79),

where s A t = min(s, ).

Remark H 2 2. Since av < 1 and € < ¢y, where ¢y satisfies (11.2.1), we have [|m®(0)], =
| o]l ; < e=*. Thus, owing to Definition I1.2.3, for t € R*, we have

Im=™ ()], = [m*(t A T°) |y < e (I1.2.8)
Since ¢°(0) = 0, we also have
[T @), = 1CE AT <e™ (11.2.9)
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Below, we prove that 7¢ 5 T in probability (Proposition 11.6.1). Owing to

E—>

Slutsky’s Lemma, it follows that the convergence in distribution of (p°) ) Is equivalent

e€(0,e0
to the convergence in distribution of (p”a)eE (0.20] and any limit point of (p”s)sE (0.c0] does
not depend on any stopping time. Therefore, we avoid the technical issues of having a
stopping time that persists at the limit as in Chapter I.

In Section 1.3, we prove an estimate on &7, depending only on T', and f5. This
estimate is a crucial point to prove the tightness of the family of stopped processes
(,0‘5775)90. In Section II.4, we introduce the framework of perturbed test functions, and
Section 1.5 make use of this tool to reformulate equation (II.1.1) and the limit equation
(I1.1.6) in terms of martingale problems. Then, in Section I1.6, we use the estimates of
Section 1.3 and the martingale formulation of (I1.1.1) to prove the tightness of (p”g)(Ee (0.20]
in CO.H_°. By taking the limit € — 0 in this martingale formulation, we prove that any
limit point of this family is the unique solution of the martingale problem associated with
the limit equation (II.1.6). We then deduce the convergence in distribution of the stopped
process to p, and then the convergence of the original process. Portmanteau’s Theorem
gives the convergence in probability if py is deterministic, which concludes the proof of
Theorem I1.2.1. In Section I1.7, we use an averaging lemma to extend the convergence
in C9.H_° to a convergence in L?([0,T], L2) under the assumptions of Theorem 11.2.2.
Combined with an estimate obtained in Section [1.3, we deduce the convergence of the

solution f¢ in L2([0,T], L2).

II.3 Preliminary results

I1.3.1 Well-posedness of the equation for fixed ¢

In this section, we prove that, when ¢ is fixed, equation (II.1.1) is well-posed in a almost
sure sense. Let us start by proving that, almost surely, the process m® is bounded on
[0, 7] for fixed e.

Lemma I1.3.1. For all T € (0,0) and ¢ € (0,&0], we have, almost surely,

sup [me ()], < 0. (I1.3.1)
te[0,T7]

Moreover, for any T € (0,0), we have

P (75 <T) — 0. (I1.3.2)

e—0

The proof of Lemma [1.3.1 is adapted from the proof of Lemma 1.3.4.

Proof. For 1 € Ny, let

Si= sup |m(t)|p-
tefi,i+1]

Assumption 1.4 can be rewritten sup;.y, E[S{] < c0. Thus, we have
IP’—a.s., Vie No, Sz < 0. (1133)
For € € (0,e0] and T € (0, 0), (I1.3.1) follows:

P-a.s., sup [m°(t)|p < sup S; < ow.
te[0,17] 1<Te 241
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It only remains to prove (I1.3.2). Since a > % in Definition 11.2.3, there exists ¢ such
that § >0 > % Then, owing to the Markov inequality,

,
ZP(S¢>Z'6) <ZEZ[(§’] zsupE[SZ]ZZ; < o,

ieN ieN €N ieN

where we used once again Assumption [1.4. Then, Borel-Cantelli’s Lemma yields the
existence of a random variable 7o € N such that

P-a.s., Vi > ig, S; < 4°.
Let Z = sup,;;, S;- Owing to (I1.3.3), the random variable Z is finite almost surely and
P-as., Vi € RY, [m(t)] ;< Spezy < Z + |te 2 < Z + (t=72)°.
Then, for T' € (0, 0), we get
P(r, <T)="P < sup [|m®(t)|z > €_a> <P(Z+ (T >e ) —>0,
te[0,T7 e—0
since a > 20 and since Z is almost surely finite. O

Since the equation is linear in f and a is bounded, the well-posedness of (II.1.1) is a
consequence of Lemma [1.3.1.

Proposition I1.3.2. Let T € (0,0) and € € (0,&0]. Then for any f§ € L*(M™'), there
exists, almost surely, a unique solution f¢ of (I1.1.1) in C°([0,T]; L*>(M™1)), in the sense
that

t

Pras, Ve (0.1, () = e g5 4 | o5

0

1 &€ &€ €
(gsz (s) +m(s)f (s)) ds
where A is the operator defined by

) ={fe M) | (z,v) = a(v) Vaf(z,v) e XM}
Af(xz,v) = a(v) - Vuf(z,v).

Note that in Proposition 11.3.2, ¢ is fixed. Thus, the proof is standard, based on a
fixed-point theorem.

Proof. Let we Q and € € (0,&0]. For f e Co([0,T], LA(M™1)), let

t

e A

0

1
A (»32Lf(8) + ms(s)f(s)) ds.
Owing to the Banach fixed-point theorem, it is sufficient to prove that ® is a contraction

for some Banach norm on C°([0, 7], L*(M™1)). For r € [0, ), we consider the following
Banach norm

vf e C[0, 7], L* (M), [I£], = Sup ¢ TN Ol
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The semi-group associated with A satisfies

Ve L2(M™), Ve e T Vo e V,e f(z,v) = f(x + ta(v),v).

A

As a consequence, ¢! is an isometric mapping for all ¢t € R™: for f e L2(M™1),

HetAfHLz(Mfl) = HfHL2(M*1) :

Then, for t € [0,T], and for all f,ge C°([0,T], L*(M™1)), we get

Note that L defined by (I1.1.2) is the orthogonal projector on L?(M™!) of kernel

{L hduM | h e LQ(M_l)} :

hence LA 2 -1y < [B]p2(pg-ry for h € L2(M™1). Therefore, using (I1.3.1) of Lemma
[1.3.1, we get

I2(£)(6) = BB 12ua 1) < <1+ o ||m€<t>||E> [ erasts=al..

te[o, 0
As a consequence, we have

1—

efrt
= |t -gl,,

TR = (90 oy < (1 + m€<t>|E>

and

#(/) ~ 2(g)], <+

1 €
<2 + sup |m (t)||E> ILf =gl
€ te[0,T]

Owing to Lemma [1.3.1, and since ¢ is fixed, we have almost surely

1
— + sup [m®(t)] 5 < .
€ te[0,7]

Choosing r large enough, ® is a contraction for the norm |-, which concludes the proof
of Proposition [1.3.2. O

I1.3.2 Estimate on the solution in L?(M™)
Proposition I1.3.3. For T € (0,), t € [0, T] and € € (0,&0], we have almost surely

tATE

c 1 c
I O+ 2 |, T Oy @5 < OO ey (A130)

where C(T) € (0,0) only depends on m, K (defined by (11.1.4)) and T, and where €
satisfies (11.2.1).
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Remark 11.3.1. The estimate for the second term in the left-hand side of (I1.3.4) is used in
Section 1.7 to prove Theorem I11.2.2.

The proof of Proposition 11.3.3 is very similar to its analog in Chapter I (see Proposition
[.3.6). The main differences are the different scaling in e, which requires a different weight
ME#, and the average value m # 0 which must be taken into account.

Proof. Let us introduce the weight
ME(t,z,0) = exp (—2n°(t, ) M(v),

and the associated weighted L? norm

Z, U
Wser * [ [0 i)

where

(L 7) — fo me (s, 2)ds — eC*(t, ) + tmi(z) € F,

and (° is defined by (I1.2.7). Note that, owing to (I1.2.9), we have for ¢ € [0, 7¢]

" (B)lley < 1+ T |y - (11.3.5)
For t € R, we have
1 “(t,z,v) .
5515 |fo(t )||L2(Ms ./\/l atf (t,z,v)dzdu(v)
|f‘E t,x,v
O ME(t, x,v)dxd
ff2|/\/ltxv MO, v)dadp(v)
=A. +B. +C.
with
A, = f Stz v) Lfa(t x,v)dzdu(v)
° ME(t, x,v) T .
1 fe(t, z,v E
B. = JJMEtQZ’U v) -V fo(t, z,v)dedu(v)

B |fe(t,x,v) . OME
C. = JJ Mt 2. 0) me + M (t, z,v)dxdu(v).

The weight M* has been chosen such that m® + % =0, hence C. =0 for all t € [0,T]
and x € T
On the one hand, since f¢ = p°M — Lf¢ and §,, Lf*(t, ,v)du(v) = 0, we have

A = J J Mf L) L ) dad(v)

txv

R )JLfa(t:Bvdu JJW”“ 1(v)dz

52 Td t,x,v

2
= S ILF O sqaaen -
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On the other hand, we get by integration by parts

1 “(t,z,v)Vufe(t,x,v)

N JJ Mooy dwdnv)
1 |f5txv)|V/\/l€(txv)x ;
N JJ ME(t, 2, 0) 2 drdji(v)

_ NV CER)L§
= JJa(v) -V (s,x)Wd,u(v)dx.

Using again the identity f® = p*M — Lf®, we get

Bl j 70D | (1, 0) [V 1, 2) - (fva@w(v)du(v)) d
M(v)

_z ) € € I f¢ A SV

: f f o) - V(6 ) (0 0) (.0 o (0}
=Bl + B2+ B.

These three terms are treated separately:

e By Assumption IL1 {, a(v)M(v)du(v) = 0, hence B! = 0.

-1
e Using (I1.3.5) and the condition ¢ < gy < (4 laf 0 1+ T HWH01)> , we have for
e [0,7¢]

1 2
|BZ| < 12 I LS 22 e 1)1y -

e The Young inequality 2|UV| < |U|* + |V|* with U = 2a(v) - V.n° (t, ) p° (t, z) M (v)
and V = - Lfe(t,x,v) yields

€ c(t,x € 1 €
|B2| < 4Te(K) [Varr (1), er e | pf (¢, o) [P d + 12 ILf (t)”iQ(Mg(t)*l)’

where Tr(K) = §, |a(v)]* M(v)dp(v). Owing to the Cauchy-Schwarz inequality, we
have

tm\\f’ft$“ fAftxvmm)

= [fo(¢ )HLQ(ME(t)—l) e I)7

thus, for t € [0, 7¢], one has
— (> 1 €
B < 4Te(K)(1+ T [med)? || f (t)HiQ(Mf(t)*l) T2 ILf (t)”i%./\/lf(t)*l) ;
where we used again (I1.3.5).
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Therefore, for ¢ € [0, 7¢], we get

1
2e2

and owing to Gronwall’s Lemma, we obtain the upper estimate

O 2 () Z2(ape 1) < |LF= Oz ey +ATeE) L+t ) 1O 2 g1 »

t
1
€ 2
PO + | 3

Note that, for h € L*(M™1) and t € [0, 7°], one has

2 2 AT Te(K) (1+-T|7] .1 )2
ILF () 22 e (-1 5 < | f5 72y € (4Tl 1)

2 2 —
thmmﬂg<lwmm4qu<ﬂ£ﬂ%¢@%+%mcg
s€[0,

< [hlaqugmny 5T,

using (11.2.9). Thus, we get for ¢ € [0, 7¢]

t
€ 1 3 3
gf@”E%M1)+J;2¥Lf<$§HN1UdS<CXT)jMi%MU’

with O(T) _ e2+2THchg+4TTr(K)(1+T”ch}C)2' Then, for t e [O,T], we have t A 7€ € [077_5]
and

tAT
e, ¢ 1 e,T¢
1 Wl | 5 107 O gy

£

1 £
2 ML) g ds

tAT

=wwAfwaMﬁ+f
0
< C(T) 15721y »

which concludes the proof. O]

I11.3.3 Uniqueness of the solution for the limiting equation

Proposition 11.3.4. For all T € (0, 0), the solution of (I1.1.6) in the sense of Definition
11.2.2 is unique (if it exists).

Proof. Since equation (I1.1.6) is linear, it is sufficient to prove that, if py = 0, then p(¢) = 0
for all t € [0,T].
Consider the self-adjoint operator By on L? defined by

D(By) = H?

x)

Bgp = div(KVp) — mp. (I1.3.6)

Since K is positive definite (by Assumption 11.1), for A > |7, the operator By — Aid
is invertible. Its inverse is a compact operator, owing to the compact embedding H? < L2.

Therefore, there exists a complete orthonormal system (e;), . € (Li)NO of eigenvectors for

(Bi — Aid)™". Let (Xi)ieN

eigenvectors for By associated with the eigenvalues (\;),.y,, where

’iENO

be the associated (negative) eigenvalues. Thus, (e;),.y, are

Ni=A+ N <A
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By Definition 11.2.2, p € L¥ L2, thus it only remains to prove that, for i € Ny and ¢ € [0, T'],
(P(t):ei)Lg = 0.
Fix i € Ny. Since Bx'(L2) ¢ H2, we have e; € H2. Then (I1.2.6) reads

t

(,O(t),ei)L% = )‘z’f (P(S),ez‘)Lg ds,

0

hence (p(t),e;);» = 0 for all t € [0,7"]. This proves the uniqueness of p and concludes the
proof of Proposition [1.3.4. O

Note that we do not prove the existence of a solution in this section, since it is a
consequence of Theorem I1.2.1. More precisely, owing to Proposition [1.6.2, the family
(ps)ae([) co] I tight in C%H_°. Thus, this family admits a limit point p for the convergence

in distribution in C*H_°. Owing to Proposition I1.6.3, p solves the martingale problem
associated with the hmltlng equation and owing to Proposition 11.5.2, it thus solves (I1.1.6)
in the sense of Definition 1.2.2, which concludes to prove the existence of a solution.

II.4 Description of the perturbed test functions method
Let £ be the infinitesimal generator associated with the equation (II.1.1). It is given by

L5 =Lo+e Ly +e2L,,
Lop(f,0) = =Dyp(f,0) - (€f),
Lyo(f,€) = =Dyp(f. ) - (a- Vo f),
Lop(f, €) = Dyo(f, ) - Lf + Lap(f, L)

Recall the notation A = a(v) - V,.
First, we introduce two classes of test functions:

e The first class © introduced in Definition I1.4.1 below, is the class of test functions
used to express the martingale problem for fixed ¢ € (0, &¢], see Proposition I1.5.1.
This class satisfies the property: if o € ©, then ¢ € D(LF) and ©? € D(L?).

e The second class Oy, introduced in Definition 11.4.2 below, is the class of test
functions used to characterize the solution of the limit equation by a martingale
formulation. Note that Oy, < D(L) if £ is the infinitesimal generator of the limit
equation.

Second, we construct a perturbed test function ¢° € © for any test function ¢ € Oy, see
Proposition I1.4.1.

Definition I1.4.1. Let © be the class of test functions ¢ : L2(M™!) x E — R satisfying
the following conditions:

e For (e E, ¢(-,0) e CH(LA(M™1)).
o For fe L2(M™), o(f,-) e CO(E).
e Forie{1,2} and f e L2(M™Y), p(f,) € D(L,,) and L,,(¢") € CO(L2(M™) x E).
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e Consider, for f € L*(M™!) and £ € E, the gradient V ;¢(f,¢) € L*(M™!) defined by
Yhe LM, (V56(F, 0, 1) paope sy = Dyolfo0)
Then, for all f € L*(M™1) and ¢ € E, we have

2, dp(v)
[ [19.9 et 00 a2 < 0

e There exists Cy,(0, 20) such that, for all f,h e L*(M™1) and (1,0, € E,

[, 0)] + Dol f, 6) (AR + Dy (£, 6) ()] + Dy f, ) (L)
< Cy (1+ 1 anany + Il rpy ) (1 1603 + 1213)

Definition I1.4.2. Let Oy, be the class of test functions ¢ such that
e(f,0) = o(p) = x((p: &) 12),

with x € Cj(R), £€C2 and p = (f) = {,, fdp.

Observe that Oy, c ©.

The main result of this section is the construction of the perturbed test function ¢® € ©
for any ¢ € Oy, and the identification of the infinitesimal generator £ associated with
the limit equation.

To simplify the expression of estimates, let us introduce a notation: for any variable or
collection of variables u, and for any non-negative quantities x and y, x <, y means that
there exists C' € (0,00) such that © < C'y where C depends only on u and on quantities
introduced in Section 11.2.2 (namely a, M, L,,, v, M, €9, ¥, @, Ymix and the moments of
f& uniform in €). In particular, C' does not depend on e.

Proposition I1.4.1. Consider the operator on C°(L?)
Lo(p) = Dp(p) - (dive (K Vup) —mp), D(L) = {peC(L]) | Lo (L)}, (IL41)
Then Oum < D(L) and, for all ¢ € Oy, there exists functions @1 and @y such that, with
©° = o +epr + 2y, (11.4.2)

we have for all (f,0) € L* (M) x E,

o1 (D] S 1f |2y (I1.4.3)
2 (£ 0 S (14 [ 17201y (1 + €] ) (IL.4.4)

1£°6° = L] (£:0) S e(L+ | 72 (1 + 1) + (1 + [ £l 72001) (1 + €]5).
(I1.4.5)

Moreover, ¢° € O.

104



Proof. To prove Proposition [1.4.1, we write
,CaQOE = 8_2£Q@+€_1 (52901 + ,Cl(p) + (;Cg(pg + £1Q01 + EQQO) +e (£1Q02 + EQQOl) +€2 (;60902) .
Therefore, we want for all (f,¢) e L2 (M™) x E

Loy =0, (I1.4.6)

Lopr + Lip =0, (I1.4.7)

Lops + Lip1 + Lop = Lo, (I1.4.8)

[Lrp2(f ) + Lopr(F, 0] <o (14 1720000 (1 + 1] ). (I1.4.9)
[Lopa(f. O S (14 fl7200-1) (1 + [€]7)- (IL.4.10)

One can already check that L50 = 0. Indeed, Sv Lpdp = 0 and L,,p = 0 since ¢ € Oy
does not depend on £.

I1.4.1 Poisson equation and auxiliary tools

To define ¢, and ¢, using (I11.4.7) and (I1.4.8), we need to solve Poisson equations of the
form Lyt = —9. For this purpose, let us introduce the process (g¢(t), me(t)),p+ associated
with the infinitesimal generator Ly, with the initial conditions ¢¢(0) = f and m,(0) = ¢.
We have

95(t) = pM+ e (f — pM).

As a consequence, the density p is preserved along the trajectories of gy (namely, for all

teRY, (g/(t)) - p).
Moreover, owing to Assumption 1.1, we have (Ag;(t)) = e * (Af) for f e L*(M™}).
Under the centering condition

J Jdp, = 0 (I14.11)

where 1, = 0,0 @ v is the invariant distribution of £, on the space

{roe 2y <e | an=p},

the solution of the Poisson equation L5t = — is given by

00]

B(f,0) = f E [9(g, (t), me(t))] dt. (114.12)

0

Let us introduce a particular class of functions: J(f,¢) = 0}, 1 (¢) — 05 (), where the
linear form 6y, € E* is defined by 6y, (¢) = (hl, k)2, with h,k € L*. In this case, one can
define ¢y, = Rp? as in Definition I1.2.1.

For all £ € E, y,.(¢) is a linear form on L?. Owing to Riesz Representation Theorem,
there exists a bounded operator Ry(¢) : L> — L? such that, for all £ € E and h,k € L?,

Uni(l) = (Ro(O)h, k) .
Property 11.4.2. The resolvent operator satisfies the following properties

o Forle E, Ry(0) is self-adjoint. Indeed, we have Oy, = Oy, hence ¥y k() = Yi (),
namely
(Ro(O)h, k)2 = (h, Ro(O)k) s -
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o Bstimate (11.2.3) with 0,,4(¢) < |l |kl 2 ] 5 reads [n (O] S [l [E] 2 (1 -+ €] ),
hence

[Ro(O)h]l 2 = [P 2 (1 + €] ) -

o Ifhe H, and k € L, we have 0y x(£) < ||h] g |k g1 [¢] 5 since E < C;. Then,
estimate (11.2.3) reads [tni(0)] < R gy [kl gor (1 + [€] ). Thus, Ro(€)h € H! and

[Ro(O)R gy = 1Ay (1 + 1] ) -

The last tool we need is the Cauchy-Schwarz inequality: to obtain estimates depending
on the L?(M~1)-norm, we write for i € {1,2,3}, h € C{(T%) and f € L2(M™1),

. AR) ] < s A
where \]Aih\\ig(M) = ((a(v) -V, h(:c))QM(v)du(v)dx < o0 by Assumption I1.1.

I1.4.2 Construction of the first corrector

To shorten the computations, since ¢ € Oy, is fixed, as well as x and £ as in Definition
[1.4.2, we write X, = x((p: &) 2)s X, = X' (P, €) 2), ete...

We want to solve the Poisson equation Lop; = —Lq¢ (see (11.4.7)), where
= X; <f7 145)[,2 :

The centering condition (IT.4.11) is satisfied, we then define ¢y as follows: for all (f,¢) €
L*(M™) x E,

0

e1(f, ) = J E [Li¢(gs(t), me(t))] dt.

0
Recall that (Ags(t)) = e~* (Af), hence

== e an
=X, (f, A&) 2, (11.4.13)

where we used that x{? does not depend on ¢ when evaluated at gf(t) since for all t € R*,

{gs(®)) = p.
It is straightforward to check that estimate (I1.4.3) is satisfied. This concludes the
construction of the first corrector (.

I1.4.3 Construction of the second corrector

In (I1.4.8), the centering condition (I1.4.11) is not satisfied. Therefore, we want to solve
the Poisson equation Lopy = — (Eogo + L1 — § (Lo + L1g1) dup). To ensure (11.4.8),
we need Lo(p) = § (Lo + L1p1) dp,. We have for (f,0) € (M) x E

Lop(f,0) + Ligr(f) = =X, (£p,) 2 = Xy (AF) 1) 1z (f, AE) 12 — X, (Af, AL) 12
= =X, (£p,€) 1z + Xy (A T2 + X, (£ A%E) 1z
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Since §,, a(v)M(v)du(v) = 0 by Assumption I1.1, we have § (f, AE) . du, = (pM, AE) > =
0. Moreover, owing to (IL.1.4), §, MA%¢dy = K : V2§ = div,(KV,£). The limit
infinitesimal generator £ is then defined for p € L2 by

Lo(p) = =X, (Mp,€) 15 + X, (pPM, A%E) |,
= =X, (Mp, &)1z + X, (p, K 1 V3E) (I1.4.14)
= X:) (div,(K'V,p) —mp, S)Lg )

which leads to the definition (I1.4.1).
Then, we define @5 as the solution of the Poisson equation Lops = — (L1p1 + Lo — L)
satisfying the centering condition § (Li¢1 + Lop — L) du, = 0. Equation (I1.4.12) reads

walr0 = [ "B [Low(ay(6), me(t) + Lapn(gp(t), me(t)) — Lo(o)] dt

0

Let us obtain the following expression for (j:

pa(f,0) = *Xp (f, AE) T2 + X, (f — pM, A%E) 1, = X, (p, Ro(0)€) 1 - (I1.4.15)
The corrector ¢y can be decomposed as ¢y ;) + ©2,i) + P2,3ii), corresponding to the

contributions of the different terms of Loy + L1p1. For each of these contributions, recall
that the quantities X ) do not depend on t.

(i) The term —xj, (£p, &),z gives
e ) = = | B[\ (met) =), €),5] it = =, (Rolt)p. €1
where Ry(¢) is the operator defined in Section I1.4.1.
(ii) The term x (f, A£)?, = X, ((Af) ,f)ii gives, using the identity (Ags(t)) = e7" (Af),
pran(1.0) = | MG (AR O
0
_ f —2t " (f Af)Lz
0
= *Xp (f, Af)LZ :

(iii) The term x/, (f, A*¢) > gives

o iy (2 0) = J pM, A%) , dt
J '(f — pM, A%E) L, di

=X, (f — pM,A%) ,

It is straightforward to check that oo satisfies (11.4.4). This concludes the construction
of the second corrector s.
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I1.4.4 Verification of (I1.4.5)

Straightforward computations give the following expressions for Ly, Lop; and Lops:

£1§02(f, 6) = ;XZ, (f7 Af)iz + XZ (fa "4§)L2 (f? A2£)L2 + XZ (f - pM? AQ&)[} (f? A€>L2

+ X, (f,A%€) 12 — X, (F, AK 2 V26)) 1o + X (0, Ro(0)€) 2 (f, AE) 12
=X (f; A(Ro(0)€)) 2

Lopr(f,0) = _XZ (f, A 2 (p, €§)Lg - X; (f, CAE) 2
1

Lopa(F,0) = =55 (F AL (. 66) 15 = (f LA = (F = pMLA%E) 2 (0, ) 1

=X, (f = pPMLAPE) o + X (0, Ro(0)€) 2 (p, €€) 12 + X, (p, LR (0)E) 12 -

One can then check that (I1.4.9) and (I1.4.10) are satisfied, hence so is (11.4.5).
Finally, owing to Assumption I1.6, one can also check that ¢° = ¢ + cp1 + %y € O.
This concludes the proof of Proposition I1.4.1.
O

II.5 Martingale problems

The proof of Theorem I1.2.1 heavily relies on the notion of martingale problems as
introduced in [SVO6]. To identify a limit point of (p%).(,, for the convergence in
distribution, we characterize its distribution by a family of martingales (see Proposition
I1.5.1 and take the limit when € — 0 in their martingale properties. The limit martingale
characterizes the distribution of the limit point (see Proposition 11.5.2).

The martingale formulation for fixed ¢ is also used in combination with martingale
arguments (for instance Doob Maximal Inequality) to prove Propositions I1.6.1 and I1.6.2.

In this Section, we state these martingale formulations and prove the martingale
formulation for the limit equation. The proof of the martingale formulation for fixed ¢ is
very technical, due to the presence of a stopping time, but is very similar to the classical
proof of the martingale characterization of a Markov process (see [EK86, SV06, DRV20]).
See the proof of Proposition [.4.1 for details on how to manage the stopping times.

I1.5.1 Martingale problem for the equation at fixed ¢
Recall that the stopping time 7¢ is introduced in Definition I1.2.3.

Proposition I1.5.1. Let ¢ € © and for t € R, set

t

ME(t) = ([ (), m*(t)) — p(f(0),m"(0)) - J Lop(f*(s),m*(s))ds.

0

Then, M3™ is a cddlig (F;),cg+ -martingale and

£

veeR*E|[My(0) | = E UOW

1
:ng[

(£5(0) — 20L70) <f€<s>,m€<s>>ds]

JM (£m(#%) = 20Lm) (fa(s),mE(S))dS]_

0
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I1.5.2 An equivalent formulation for the limit equation

Proposition I1.5.2. Let o € (0,1] be arbitrarily small and let p be a C3H_%-valued

stochastic process.
Then, p is a weak solution of (I1.1.6) in L2 (in the sense of Definition II.2.2) if, and
only if, for all ¢ € Oy, we have almost surely

vt 10,71 Mole) = o(p(0) — i) — Lolp(s))ds =

Proof. By definition of the infinitesimal generator £ (see (I1.4.1)), and using the notation
¢ = Xx((-,€);2) as in Definition I1.4.2, we have

t

Mo (t) = x((p(t),€) 12) = x((p0,§)12) — J X' ((p(s),€)12) (p(s), div(KVaE) —mE) 1 ds.

0
If p is a weak solution of (IT.1.6) in L2, then for ¢ € Oy, we have Lp(p(t)) =
di(p(p(t))), and p(0) = po a.s., hence M, = 0 a.s.
Conversely, assume M, = 0 for all ¢ € Oyy,. For r € R*, let x" be defined by
Yu e [0,r], x"(u) = u,
Vue[r+1,0),x"(u) =r+1,
Vue (r,r+1),x"(u) = P"(u),
Vu € (=0,0), X" (u) = —x"(-u),
)-

where P7 is a polynomial function such that x” € C3(R). Let £ € H? and consider " € Oy,

defined by
er(p) = X" ((p, £)Lg) :
Since p € C2H_ 7 a.s., the random variable
S = sup |(p(t).€) 3]
te[0,T]

is finite a.s. and ps(p) = (p(t),§) 2. Since My (t) = 0, we get that p satisfies almost
surely (I1.2.6), for & € H2. |
To satisfy Definition I1.2.2, it only remains to prove that p € L¥L? almost surely.
Consider the self-adjoint operator By on L2 defined by (I1.3.6). As proved in Section
[1.3.3, there exists a constant A € R* and a complete orthonormal system (e;), .y, of L2
such that, for all i € Ny, Bre; = \je; with \; < A. Fix i € Ny. Since e; € H2, (11.2.6) reads
for t € [0,T]

t

(P(t),ei)ngc = (ﬂo,ei)Lg + )\iL (p(s),ei)L% ds.

Therefore, we have for ¢ € [0, T]

(p(t), 61)L2 = e (Poa&)L .
(p(t), ) a|

lp(®)7s <e

This proves that p € LF L2, and that p satisfies Definition I1.2.2, which concludes the proof
of Proposition 11.5.2. O

Since \;t < AT and py € L2, is summable. We thus have p(t) € L? and

AT ”/)0H2L§ :
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I1.6 Convergence in C°([0, 7], H °(T%)

11.6.1 Asymptotic behavior of the stopping time

We are now in position to study the asymptotic behavior of the stopping time 7¢ introduced
in Definition 11.2.3.

Proposition I1.6.1. For all T > 0, we have

Remark 11.6.1 (about the proof). To prove Proposition 11.6.1, we establish the following
estimate:
|2
supE[ ¥ sup H(E )Hcll < o0,
e te[0,T] @
for p € (0,1). It is possible to prove this result with p = 0, but it requires more intricate

arguments (see the proof of Proposition 1.6.2) and is not necessary to prove Proposition
I1.6.1.

Proof. Recall that 7° = 75, A 7¢ (see Definition 11.2.3). Owing to Lemma I1.3.1, it only
remains to prove that
P(rf<T) — —0. (11.6.1)
Owing to the Markov inequality and the continuous embedding H d/2]+2 — Cl, we have
for pe (0,1)

P(TCE<T) <IF’(TCE<T,T§<T;)+P(T§<T,TE>T;)

te[0,T]

. 1
<P (ep sup HCE’T (t)Hc; > glp) +P(r, <T)

< 20 P qupE |2 sup HC“
€

\\21] +P(r5, < T)
te[0,T7] @

)

< 20 P qupE |2 sup HC“
€

ld/2]+ ] +P(T;<T).
te[0,T7]

Owing to Lemma [1.3.1, we have P (7, < T) — 0. Since (°(t) € E = HI¥2+2 it only
remains to prove that for any multi-index § of length |5 < |d/2] + 2, we have

2
< o0,
LE

M (t, )|
oxP

I (1)
oxP

supE [ €% sup
e te[0,77]

for a real number p € (0,1) to be chosen.
Fix any such  and ¢ € (0,e0]. We have

2
< f E | sup
L2 Td te[0,T7]
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For z € T¢, consider the linear form 6% € E* defined by

a\ﬂlg

Ve B0)(0) = 5
X

Since m® € E almost surely, one has

Blee(t, LBl (me(s,x) —m ‘
W:iﬁ)a (m*(s, ) )dszlf(eg(mg(s)—m))ds.

oxP oxh e Jo

Owing to Assumption I1.6, the function 12 = Ry(6% —02(m)) as in Definition I1.2.1 satisfies
Y2 e® and L9 = — (05 — 67(m)). Thus, owing to Proposition I1.5.1,

Aﬁuwﬁa>=e“m¢&wfa»—f*wwﬂnwm>—;;fz*wﬁmw£Mfw»ds
v 0
oVIge(t, )

= PP (me (1)) — e PP (m(0)) + & P (I1.6.3)

defines a martingale when stopped at 7°.
On the one hand, owing to estimates (11.2.3) and (I1.2.8), and using that o < 1 in
Definition I1.2.3, we have

E [ sup |e" Pyl (me (t))f] <P (147 < 1.
te[0,T]

On the other hand, Doob Maximal Inequality yields

2 2
Elsup ‘MW} ()‘ ] 4EUM1+W;(T)‘ ]
te[0,T *
Owing to Proposition I1.5.1 and Assumption 1.6, we get

(|| = B[ [ (en (00°) - 2022002) e (o)as|

g2 0
<r e’ (1 + S’QQ) ,

using once again the estimate (11.2.3) and (I1.2.8). We now choose p € (a, 1) (recall that
2
a < 1 in Definition 11.2.3). Then one has E UM” (T)’ ] < 1. Therefore, (I1.6.3) yields

1+pd)ﬂ

971/2
] ST 17

which concludes the proof by integrating with respect to « and using (11.6.2). O]

@Iﬁ\gaﬁi (t, x)

E | &%
[e sup P

te[0,T]

Remark 11.6.2. The regularity of order |d/2| + 2 of my(t) is used to prove Proposition
[1.6.1. In all other proofs, we only need my(t) € C..
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11.6.2 Tightness
This section is devoted to proving the following result.

Proposition I1.6.2. The family of processes (p°) is tight in the space C3.H_ 7 for

all arbitrarily small o € (0, 1].

e€(0,e0]

Proof. Owing to Slutsky’s Lemma [Bil99, Theorem 4.1] and Proposition I1.6.1, Proposition

[1.6.2 is equivalent to the tightness of (,0"3775)Ee (0.c0] in the same space, and the convergence

in distribution of (p) is equivalent to the convergence in distribution of (pE’TS)

e€(0,e0] ee(0,e0]
to the same limit. Therefore, we only prove the tightness of the family of stopped processes

(’0577- )56(0,50]'
Let us introduce auxiliary tools. Consider the Skorokhod space Dy H_?, namely the
space of H, 7-valued cadlag functions on [0,T]. For X € C%H_, the modulus of continuity

wy for continuous functions and the modulus of continuity w'y for cadlag functions are
defined for ¢ € [0, T'] by

wx(0) = sup [ X(s) — X (1)

0<t<s<t+0<T

wi(d) =supmax sup [ X(s) - X(t)],

(ti);, v tisSt<s<iip

where (t;), denotes any finite subdivision of [0, T"]. For ¢ € [0,T], [Bil99, equation (14.11)]
yields
wx (0) < 2w (9).
Thus, it suffices to establish the tightness of (,os’Te)Ee(O’EO]
11.6.2 (see for instance [Bil99, Theorems 8.2 and 15.2] which gives sufficient and necessary
conditions for tightness in C%.H_° and DrH_°).
Tightness in DyH 7 is easier to prove than in C%.H_ 7, owing to [Jak86, Theorem 3.1]:

since Oy, is closed under addition and separates points, tightness in the Skorokhod space
is equivalent to the following claims:

in DpH_? to prove Proposition

(i) For all n € (0,1], there exists a compact set K, < H_, 7 such that, for all € € (0, g¢],

P(Vte[0,T],p"" (t) e K,) >1—n.

(ii) For all ¢ € O, (9(p™7)) (g, 18 tight in D([0,T], R).

Claim (i) is a consequence of Proposition 11.3.3, of the Markov inequality and of the
compact embedding L2 < H_°.
The rest of this section is devoted to proving Claim (ii). Let us fix a test function
€ Oy, and consider the perturbed test function ¢ € © constructed in Proposition I1.4.1.
Aldous’ Criterion [JS03, Theorem 4.5 p356] gives a sufficient condition for Claim (ii):
since ¢ is bounded, one only needs to prove that

vne (0,0) limlimsup  sup P (|jp(p"" (r2) — (o™ (r))| > ) =0,  (IL6.4)

e—0 Ti<m<T+0

where sup, ., <, s denotes the supremum with respect to all (7 ),.g+-stopping times 7
and 7y satisfying a.s. 71,2 € [0,T] and 7y < 75 <77 + 4.
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To prove (11.6.4), introduce the auxiliary process
0°(1) = ¢(p°(0)) + ¢ (F°(1), m*(t)) = ¢°(f°(0), m*(0))
— ol (0) + f: £ (f(s), me(s))ds + M2 (1), (11.6.5)
where M¢. is the martingale defined in Proposition I1.5.1. One has

Pl (7)) = ol () = (67 () — 67" ()) = (& (£ (). () = (" (7))
+ (@ (). (7)) = 9™ ()

Owing to estimates (I1.4.3) and (I1.4.4) of Proposition I11.4.1, and using (I1.2.8) and

Proposition 11.3.3 to estimate ||m* (t)| . and | f* (¢) we have

I |2y

e/ pe, T &,T¢ &, 7¢ e2 —a
o= (f57 m= (1) — (0™ ()] S (L4 [ S5l reaer)) (e + %1 +7%)).
Since o < 1 in Definition 11.2.3, we get

E | sup [¢°(f57,m" () — o(p™" ()| | — 0.
te[0,7] e

Therefore, one has

sup  E[|p(p™ () — (0 (m))|]] < sup  E[]077 (1) — 657 (m1)|] + o(1),

T1<T2<T1+6 T1<T2<T1+0

where o(1) denotes a quantity converging to 0 when ¢ — 0. The Markov inequality then
yields

sup P (|e(p" (12)) — 0(p™™ (1)) > 1) < sup E[6°7(72) = 0= (n) ] +o(1).

TIST2<T1+6 TIST2<T1+6 n

£

Therefore, it only remains to prove

sup E[|6°7 (1) — 67 ()|] — 0, (11.6.6)

T1,T2,E 6—0

to deduce (I1.6.4) and to use Aldous’ Criterion.
By (I1.6.5), we have

ToATE

\mﬂm—mfmﬂ<f 265 (F5(s), me () [ ds + [MET (m2) = M (m)|. (1L6.7)

TIATE

Using estimate (I11.2.8), Propositions I1.3.3 and 11.4.1 and the expression (I1.4.14) of the
infinitesimal generator £, we get

‘,ngpa<f877'5,ma,7's(t))‘ Se |£¢(p577€(8))‘ + (1+ ‘|f(§‘|i2(M_1)) (5(1 +eTY) + €2<1 n 8_2a))
S (1 Hf5|’i2(M—1)) (1 +e(l+e™)+ 52(1 + 5—2a)) .

Since o < 1 in Definition [1.2.3, it gives

E| sup [L6°(f57 (¢),m"7 (1)]] <, 1.
te[0,T]
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Thus, we get

aw_sw s [ e rm ) o]

€ TI<Te<T1+0 TLATE

€ T<Te<Ti+0 te[0,T 60

<sup sup OE [ Sup] \ans(fg,q—i me™ (t))}] — 0.

The last term of (I1.6.7) is estimated using martingale arguments. Recall that, owing to
Proposition 11.5.1, MZ’ET is a square-integrable martingale, hence

€ e,7¢ 2 €,7¢ 2 e,7¢ 2
EUM;’; (m2) = M () ] :EUMW; ()| - |z (ﬁ)”

1
_&_QEl

Using the definitions of the correctors 1 and s (see (I1.4.13) and (I1.4.15)), one can write

[ et 268y 1o
| (11.6.8)

e (f,0) = A°(f) + B(f,0),

where 24° does not depend on £ and B°(f,{) = —*x/, (p, Ro(€)§)pz- Then, we have

L2A° = L, ((915)2) = 0 and £, (A*B°) = AL, B°. As a consequence, one obtains
L ((99)?) = 20° L, = L,,((B°)?) — 2B°L,,B° and (11.6.8) becomes

E UM;’JE (r2) = M3 (ﬁ))z] — &2(\,)’E U Ln((p°(3), Ro<-)§)ig>(m€(s>)d8]

TIATE

#2208 | [ ). Balm ()€ (5°(5) (9,5

TLATE

Using Assumption 1.6, estimate (I11.2.8), Proposition I1.3.3 and the condition |75 — 71| < 9,
we get

€ e,T¢ 2 € —ea
E UM;’J (ra) — M5 (n)‘ ] <, 0c°E [(1 + £ 32y (1 + €72 )].

Since a < 1 in Definition 11.2.3, the convergence (I1.6.6) follows.
Therefore, we can apply Aldous’ Criterion, which concludes the proof of Claim (ii),
and of Proposition 11.6.2. O

I1.6.3 Identification of the limit

Owing to Proposition I1.6.2, there exists a CoH_?-valued random variable p and a sequence

gi —> 0,¢; € (0,g0] such that p —4, p.
1—00 1—0
Recall that, owing to Slutsky’s Lemma, we also have p¥™" J—» p.
1—00

To identify the distribution of p, we take the limit £; — 0 in the martingale problem.
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Proposition I1.6.3. For ¢ € Oy,

tes o(plt)) — 9l(p(0)) — j Lolp(u))du

is a martingale (adapted to the filtration (Ff), g+ generated by p).

Proof. Fix ¢ € O Let 0 < s < 5 < ... < s5; < t, let g € C)((H;?)’) be a continuous
bounded function and define

:ipo (w(p(t)) — el - | ﬁso(p(u))du) G(p51)s o pl5,)).

S

it suffices to prove that E [®(p)] = 0 to get the martingale property and to prove Proposition

I1.6.3. To reach this goal, we prove that E [®(p*"")] converges to both E [®(p)] and 0.

—%, p, hence ®(p=™") —s &(p) [Boul4,
1—00 1—00

T4

On the one hand, ® is continuous and p®*

Proposition IX.5.7]. Moreover, (@(psi’fsi))s_ is uniformly integrable. Indeed, owing to
Definition (II.4.1) of £ and Proposition 11.3.3, we have

sup [\fb(pws)

2 €
] STy sgp]E [1 + [ £5 HiQ(M—l)] < 0.

Since (@(peiﬁei))a is uniformly integrable and converges in distribution to ®(p), we have
(see [Bil99, Theorem 5.4])
E[2(p"")] —> E[2(p)].

1—00
On the other hand, consider the perturbed test function ¢** € © defined in Proposition
[T.4.1. Owing to Proposition [1.5.1, we have

E Kso(f (0.7 (1) = g (o ) o) - [ T L () <u>>du)

SATEQ

9P (51)s s 5T (Sj))] -

Using the expansion ¢f = ¢ + g, + €2, and the boundedness of g, we write

B [(77)]] <, Y ELn,

with

= ei(a (57 (1), mT T (1) = eu(f (s), mTT(s))
ra = &/ (02(f77 (1), mTT (1) — 2T (5),mTT(s))

T T )~ Lo W) du

SATEL
s

n= [ et = ol @i

ATE SATEL
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Since a < 1 in Definition I1.2.3, using estimates (11.4.3), (I1.4.4) and (I1.4.5) of Proposition
[1.4.1 and estimates (I1.2.8) and (I1.3.4) on m®™" and f&7" we get

r| < & “féi“LQ(Mfl) )
Iral S €71+ 1f5 2 par)) (1 + 7%,
’T3| s T(l + Hfgl 3}42(/\/{71)) (51(1 + 67;_0‘) + 8?(1 + 8;20‘)) .

Since o < 1 in Definition 11.2.3, and owing to Assumption 1.7, we get for k € {1, 2,3}

Eflrel] — 0.

1—00

For the last term r4, the Cauchy-Schwarz inequality, Propositions [1.6.1 and I1.3.3 and
Assumption I1.7 yield

)’]

E[|r4]® <, E [||f§ iQ(M—l)] E[(Jt—t AT+ |s—sAT"

<, TP (1 < T) — 0.
Therefore, E [®(p)] = lim;_o E [®(p*"")] = 0, which concludes the proof of Proposition
I1.6.3. 0

Proof of Theorem I1.2.1. Recall that uniqueness of the solution of (I1.1.6) is stated in
Proposition 11.3.4. Thus, owing to Proposition [1.6.3 and the uniqueness of the limit point,
p° converges in distribution C%.H_° to p solution of (I1.1.6).
If po is deterministic, the solution p of the limit equation (I1.1.6) is also deterministic.
A classical argument gives a convergence in probability: owing to Portmanteau’s Theorem
[Bil99, Theorem 2.1], since p° converges in distribution in CrH_? to p, for any closed set
C < CrH;? we have
limsupP (p° e C) < P(pe ().

e—0
Take C,, = {he CrH; | |h — Pley— > n} for ne (0,00). Then P (p e C,) = 0, thus p°
converges in probability to p in CpH_°. [

I1.7 Convergence in L*([0,T], L*(T%))

This section is devoted to proving Theorem I1.2.2 if the additional Assumption [1.8 is
satisfied.

I1.7.1 Convergence of p°

Assume that (p%). ., is tight in L2 L2. There exists a limit point p’ and a subsequence
converging to p’ in distribution in L2L2, hence in L3 H_°. Owing to Theorem I1.2.1, this
subsequence converges to p in distribution in C3H_ 7, hence in L2 H_°. As a consequence,
p and p’ are equal in distribution. Therefore, (p%) (., i tight in L2L2 and p is its unique
limit point, thus p® P in distribution in L3.L2.
E—>

It only remains to prove that (p%).c(.,» OF equivalently (o)., 18 tight in L7L? to

get this convergence.
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We still note wx the modulus of continuity of a H ?-valued continuous process X.
Then, [Sim87, Theorem 5] yields the compactness of the set

iy = {pe 132 | ol g o < R and ¥6 € (0,0),1,(0) < 5(6) }

in L2L2, for R >0, 0” > 0and n: (0,00) — [0, 00) such that n(6) — 0. By Prokhorov’s
Tz s

—0

Theorem, to prove the tightness of (p”E)EG(O o] in L2.L2, it is sufficient to prove that, for
all n € (0,00), there exists R € (0,00) and ¢” € (0,0) such that

lim 1121531131@ (wpere () > ) =0, (11.7.1)
and
SupP ([ 3 r > ) <1 (I1.7.2)

Equation (I1.7.1) is a consequence of the tightness in C3H_ 7 [Bil99, Theorem 8.2]. To
prove (11.7.2), it suffices to prove that for some ¢” € (0, ), we have

Sng [Hpa,TE HLQTHa‘c’”] <1, (I1.7.3)

and (11.7.2) follows from the Markov inequality.

Let ¢° = €0, f° + a(v) - V. f¢. By Assumption I1.8, we can apply an averaging lemma
([BD99, Theorem 2.3] with f(t) = fe(et), g(t) = ¢°(et) and h = 0 until time T' A 7°). After
rescaling the time ¢ — t/e, we get

9 T ATE E )
e = | I Ot

H e,7¢

T ATE

T ATE
§5||f§||ig+f0 757 ) o gyt + f ™ ()}, .

and owing to the Cauchy-Schwarz inequality,

e,7¢

. . 1 i
o™ Dz qaaery = |5 Om () + 2L (1)

L2(M-1)

. . 1 e
<elfr (t)HLQ(M—l) [m=T(2) co T2 |Zfe (t)HLQ(M—l) '

!

Then, Assumption I1.7, estimate (I1.2.8) and Proposition I1.3.3 yields (I1.7.3) with 0" = %.
Note that here, we used the estimate on the second term of the left-hand side of (11.3.4).
Since we proved (I1.7.1) and (I1.7.2), and since Kg is compact in L3.L2 Prokhorov’s
Theorem gives that the family (p“s)se(ofo] is tight in L2.L2.

This concludes the proof of the convergence in distribution of p° to p in L%L2.

If py is deterministic, the convergence in probability follows from the same argument
as in Section I1.6.3.

I1.7.2 Convergence of f¢

The mapping h — hM is a continuous mapping from L3.L2 to L3.L*(M™') (it is a linear
mapping of operator norm 1 owing to Assumption I1.1). Thus, the convergence of p® in
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distribution or in probability in L2L? to p implies the same convergence for p°M to pM
in LZLA(M™).
Since
JF = —L + M,
it is thus sufficient to prove that L f® 7 0 in probability in LAL*(M™1) to conclude
£—>

the proof of Theorem [1.2.2. Indeed, assume we proved this convergence. Then, if p°
converges in distribution, Slutsky’s Lemma yields the convergence in distribution of f¢
[Bil99, Theorem 4.1]. If p° also converges in probability, then f¢ converges in probability
as a sum of two terms converging in probability).

Let us now prove that L f® —— 0 in probability in LZL*(M™1). Owing to Proposition
I1.3.3, we have almost surely

T ATE
| IO ds < ST

Therefore, on the event 7¢ > T, we get HLszL%LQ(M—l) < e/ C(T) | f5lr2am-1y- Thus, we
have for n € (0, )

P (HLJMHL%L%M*) > 77) =P (Tg < T Lf 2z 2y > 77)
+P (7’5 =T, HLfEHL%LZ’(M—l) = 77)
<P <T)+P (8\/@ HngLZ(M*) - T’)
<P <T)+n'ey/C(TE [HfSHL%M*l)] ’

owing to the Markov inequality. Since sup. E [H f5llz2¢ M—l)] < o by Assumption I1.7 and

using Proposition 11.6.1, we get that Lf¢ converges to 0 in probability in LZL*(M™!),
which concludes the proof of Theorem I1.2.2.
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Chapter 111

Asymptotic preserving schemes for
Stochastic Differential Equations

This chapter is a detailed version of the paper On Asymptotic Preserving schemes for
a class of Stochastic Differential Equations in averaging and diffusion approrimation
regimes, written with Charles-Edouard Bréhier [BRR20]. The preprint can be found at
https://arxiv.org/abs/2011.02341.

A notable difference between this chapter and [BRR20] is addition of quantitative
experiments (Section II1.6 and I11.7). The code for these additional simulations was written
by Benoit Fabreges.

III.1 Introduction

Deterministic and stochastic systems are ubiquitous in science and engineering. Traditional
modeling and numerical methods become ineffective when systems evolve at different
time scales: see for instance the monographs [E11, Kuel5] for comprehensive treatment of
multiscale dynamics. Averaging and homogenization [PS08] are two popular techniques
which are employed to rigorously derive macroscopic limiting equations, starting from
(stochastic) slow-fast systems with separated time-scales.

In the last two decades, constructing efficient numerical methods for multiscale stochas-
tic systems has been a very active research area: let us mention the Heterogeneous Mul-
tiscale Method (see [AEEVE12, Brél3, ELVEO5]), projective integration (see [GKIK06]),
equation-free coarse-graining (see [KGH'03]), spectral methods (see [APV17]), micro-
macro acceleration methods (see [VZ520]), parareal algorithms (see [LLMS20]). In the
methods mentioned above, the objective is to approximate the limiting model for the
slow variables of interest, and only partial but relevant information coming from the fast
dynamics is taken into account. As a consequence, these methods may not be appropriate
if one wants to approximate simultaneously the original multiscale model and its limit.
In this chapter, we focus on the notion of asymptotic preserving schemes, in order to
overcome this issue.

To motivate and illustrate our work, let us introduce simplified versions of the systems
of Stochastic Differential Equations (SDE) considered in this chapter. The time-scale
separation parameter is denoted by ¢ € (0, 1]. On the one hand, in the averaging regime
(see Equation (I11.2.1) in Section I11.2.1 for the more general version), we consider systems
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of the type
dXy = b(Xy, my)dt,

ﬁdﬁt. (I11.1.1)

\E
When ¢ — 0, the averaging principle (see [PS08, Chapter 10]) states that X converges (at
least in distribution) to the solution X of the Ordinary Differential Equation X = b(X)
where b(x) = {b(x, m)dv(m) and v = N(0,1) is the standard Gaussian random variable.
On the other hand, in the diffusion approximation regime (see Equation (II1.2.12) in
Section I11.2.2 for the more general version), we consider systems of the type

mE
dm§ = ——Ldt +
€

€ (II1.1.2)

<
dmi = "L dt + ~dp,.
19 g

dX; =

When e — 0, the diffusion approximation result (see [PS08, Chapter 11]) states that X
converges (in distribution) to the solution X of the SDE

dXt = O'(Xt) ) dﬁt,

where the noise is interpreted in the Stratonovich sense. This type of results is related
to results known as Wong-Zakai approximation and Smoluchowski-Kramers limits in
the literature. In the two SDE systems (II1.1.1) and (II1.1.2), the fast component is an
Ornstein-Uhlenbeck process.

In this chapter, we are interested in the behavior when £ — 0 of numerical schemes for
the SDEs (I11.1.1) and (I11.1.2). To explain the challenge faced and the solutions proposed
in this chapter, we consider the following schemes, which are both consistent for any fixed
value of € > 0. On the one hand, in the averaging regime one defines

Xi1= X0+ Ath(X;,m; ),

n+1

. . A, 2Nt (IL.1.3)
My =My — ?mn-‘rl + T")/n

On the other hand, in the diffusion approximation regime one defines

Atmé
X2, = X5+ o(X5) =L,
[

At . VAt

€ - =v Vel
My =M, — 2 My, + c Tns

(IT1.1.4)

In the schemes (II1.1.3) and (IIL.1.4), (75),ey, 18 @ sequence of independent standard
Gaussian random variables. One may check that X; — X, for all n € Ny, in probability,
when € — 0, where the limiting schemes are given by

Xy = X, + Atb(X,,,0)
in the averaging regime, and
Xn+1 = Xn + v AtU(Xn)7n7
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in the diffusion approximation regime. Note that, in the second case, the limiting scheme
is consistent with the Itd interpretation of the noise, instead of the correct Stratonovich
one. In the two cases, the limiting scheme is in general not consistent with the limiting
equation, and using such a scheme in practice may lead to drawing false conclusions about
the limiting system from numerical experiments. We refer to [FG18, LAE0S] for other
examples of situations where numerical schemes perform badly when applied to multiscale
SDE systems.

The objective of this chapter is to design and study Asymptotic Preserving (AP)
schemes, such that the following diagram commutes (where convergence is understood in
distribution): if 7= NAt, one has

X5 =55 X4(T)

l e—0 J e—0

Xy 22% X(7)

The two schemes (I11.1.3) and (II1.1.4) described above are not AP. The notion of AP
schemes has been introduced in [Jin99], for applications to multiscale kinetic Partial
Differential Equations (PDEs), which converge to parabolic diffusion PDEs. We refer
to[DP14, Section 7], [HJL17], [Jin12] and [Pupl9, Section 4] for recent reviews on AP
schemes for this type of models. To the best of our knowledge, the design and analysis
of asymptotic preserving schemes for slow-fast SDEs of the type (II1I1.1.1) and (III.1.2)
has not been considered so far in the literature. Note that a specific feature (compared
with the deterministic case) is the need to consider convergence in distribution. Let
us mention related works for Stochastic Partial Differential Equations (SPDEs), in the
diffusion approximation regime. First, in [DM16, Mar06], the authors consider Schrédinger
equations and study an abstract asymptotic preserving property. However, they do
not propose implementable schemes. In [AF19], the authors deal with some multiscale
stochastic kinetic PDEs, driven by a Wiener process. However, the structure of the
model is different from the one of (III1.1.2). In Chapter IV, we apply the findings of
this chapter to the SPDE models considered in [AF19]. The works mentioned above
concerning SPDE models are limited to diffusion coefficients of the type o(z) = z, for
which specific arguments may give a straightforward construction of AP schemes, for
appropriate discretization of the fast component. An AP scheme in the case o(z) = 1 for
(II1.1.2) is proposed in [PSZ09], however the subtlety of the interpretation of the noise at
the limit is not relevant in that case. Finally, let us also mention that AP schemes have
also been studied for PDEs with random coefficients, see [HJ17, Jinl8, JLP18] or in the
context of Monte-Carlo methods for deterministic problems, see [DPS18, RLJ14].

We are now in position to describe the contributions of this chapter. In Section I11.3.1,
we define the appropriate notion of AP schemes for SDE systems, related to convergence
in distribution, and study several general properties.

Our first main result is Theorem [11.3.3, which exhibits an example of AP scheme in
the averaging regime: for the simplified version (III.1.1), the scheme is given by

Ko = X5+ At(X5, my ),

n+1

N — (TIL.1.5)
my. =€ =m;+\1—e "= .

The fast component in the scheme above is discretized using a scheme which is exact in
distribution.
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Our second main result is Theorem [11.3.4, which states error estimates of the type

sup [ [(X3)] — E [o(X*(T))] | = O (VL)

ee(0,1]

for sufficiently smooth real-valued mappings ¢. This error estimate means that the scheme
is Uniformly Accurate.

Finally, our third main result is Theorem II1.3.5, which exhibits an example of AP
scheme in the diffusion approximation regime: for the simplified version (I11.1.2) (see
Corollary 111.3.6), the scheme is given by

(. At . WAt
My = My — ?mn+1 + c Tn,
Atm§,
Ve, =X+ U(X;)%, (I11.1.6)
X = X° + O'(XZ) + O—(Y7f+l> Atm?i-i—l.
L n+1 n ) c

A prediction-correction method is employed to retrieve the correct interpretation of
the noise for the limiting equation: the scheme (II1.1.2) is indeed consistent with the
Stratonovich interpretation of the noise.

Let us also mention that another situation is considered in Corollary [11.3.7: for the
model (I11.2.22) taken from [LBL20] (with an application in astrophysics), the limiting
equation (II1.2.23) contains a so-called noise-induced drift-term, which is captured only
for well-designed AP schemes.

Some numerical experiments (see Section I11.5) show that the AP schemes (I11.1.5)
and (I11.1.6) are effective in all regimes € > 0 and £ — 0, contrary to the schemes (II1.1.3)
and (I1I.1.4) which fail to capture the correct limiting behavior when ¢ — 0.

The chapter is organized as follows. The general SDE models in the averaging and
diffusion approximation regimes are presented in Sections II1.2.1 and I11.2.2. The main
results of this chapter are stated in Section [11.3: the general theory of AP schemes is
presented in Section I11.3.1, and it is applied in the averaging and diffusion approximation
regimes in Section [11.3.2 and I11.3.3 respectively. Qualitative numerical experiments are
reported in Section [I1.5, while quantitative numerical experiments are presented in the
averaging regime and the diffusion approximation regime, respectively in Sections [11.6
and [I1.7. Section II1.4 is devoted to the proof of the error estimates stated in Theorem
IT1.3.4. Finally, Section I11.8 gives some conclusions and perspectives.

I11.2 Slow-fast SDE models and their limits

Without loss of generality, the time-scale separation parameter ¢ satisfies € € (0, 1]. The
time-step size of the integrators studied in this work is denoted by At. It is assumed that
At = % where T' € (0,0) is a fixed time and N € N. Without loss of generality, it is
assumed that At € (0, 1].

In the slow-fast systems considered in this work, the slow component X¢ takes values
in the d-dimensional flat torus T¢, where d € N is an arbitrary integer, whereas the fast
component m® takes values in R. The framework and the models considered in this work
may be generalized in many ways to more complex situations, however the arguments and
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results below are sufficient to illustrate the difficulties of designing asymptotic preserving
schemes for stochastic equations.

Let (8t),cp+ and (By),.p+ be two independent standard Wiener processes, with values
in R and R? respectively, where D € N, defined on a probability space (2, F,P) which
satisfies the usual conditions.

The following notation for derivatives is used below: V, = (04,); ;<4 € R? and 0, are
the partial gradient and derivative operators with respect to z and m respectively. If o
is a mapping with values in M, p(R) (the space of d x D matrices with real entries), let
o* denote the transpose of o, and set oo* : V2 = 3¢ (00%); ; Ou;0;- 1f b is a R¥%valued

ij=1
mapping, let b- V, = Z?Zl b; 0y,

Assumption III.1. The initial conditions X§ € T¢ and m§ € R of the processes are
deterministic quantities and they satisfy

X5 =15 —> x9, sup |mg| < co.
Y £€(0,1]

I11.2.1 The averaging regime

In the so-called averaging regime, we consider slow-fast SDE systems of the type

dX; = b(X;, m)dt + o(X;,m;)dBy,
: Oh(X: 11.2.1
dms = —%dt + mdﬁt. ( )

NG

The coefficients appearing in (I11.2.1) are assumed to satisfy the following conditions.

Assumption IIL.2. The functions b : T x R — R? and ¢ : T¢ x R — My p(R) are
assumed to be of class C*, and h : T — R is assumed to be of class C'. Moreover, they
are all assumed to be bounded and to have bounded derivatives.

Owing to Assumption I11.2, for all initial conditions X§ € T¢ and m§ € R, and for
every ¢ € (0, 1], there exists a unique global solution (X¢, m®) of the SDE system (III.2.1).
Since h is bounded, it is straightforward to check that

E[|me(t)?
sup sup HLQL] < 0. (I11.2.2)
ce(0,1] ter+ 1+ Mg

This estimate will prove useful to prove Proposition I11.2.1.
The infinitesimal generator £° associated with the SDE (I11.2.1) has the following
expression:

1
£ = —Lov + Lo (I11.2.3)

where

1
Lo=0b(x) V,+ 500* V2,

Lou = —m0p + h(x)?02,,

(111.2.4)

Observe that for fixed z € T, Loy is the generator of an ergodic Ornstein-Uhlenbeck
process. The associated invariant distribution is v® = N(0, h(z)?).
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Define averaged coefficients as follows: for all z € T¢
b(z) = Jb(x,m)dux(m), a(zr) = Ja(z,m)o(:c,m)*dl/x(m). (II1.2.5)

Note that b : T¢ — R? is of class C*. The averaging principle result stated below requires
the following condition to be satisfied.

Assumption III.3. There exists an integer D € N and a function 7 : T — M, 5(R) of
class C* such that for all x € T¢

a(z) =o(x)o(z)". (I11.2.6)

Assumption I11.3 holds if there exists ¢ € (0,0) such that a(x) > cI for all x € T¢
(as symmetric matrices). This condition is satisfied when ¢ only depends on the slow
variable x (0,,0(z,m) = 0 for all (z,m) € T? x R), or when o(z, m)o(z,m)* = cl for all
(x,m) e T? x R. In that case, one can choose D = d. If the diffusion coefficient is of the
type a(x m) = of(m)o'(z), with o (x) € R? and o*(m) € R, then one can choose D = D
and 7(z) = ol (2)4/§ 0% (m)2dv=(m) for all z € T4

We are now in position to state the averaging principle result and to define the limiting
process X obtained when € — 0.

Proposition I11.2.1. Let Assumptions I11.1, II11.2 and I11.3 be satisfied. Let T € (0, 0).
When ¢ — 0, the C([0, T, T)-valued process (X(t))y<,er converges in distribution to the
solution (X (t))y<,<r of the limiting SDE

with initial condition X (0) = xq, where the coefficients b and & are defined by (111.2.5)—

(I11.2.6), and where (Pt)te1R+ is a standard RP -valued Wiener process.
The infinitesimal generator L associated with the limiting SDE (111.2.7) is given by

_ 1
L=0bx) V,+ iﬁ* L V2, (I11.2.8)

and is such that the following property holds: let ¢ € C*(T?), then there exists a function
' T x R — R such that

©° =@+ epy, (I1.2.9)
LE " — L. (II1.2.10)

Finally, let ¢ € CH(T?), then there exists C(T, ) € (0,00) such that
E[o(X“(T))] ~ E[¢(X(T))]| < C(T, 0)e. (L2.11)

The averaging principle stated in Proposition [11.2.1 is a standard result, see for instance
[PS08, Chapter 16]. In general the convergence stated in Proposition I11.2.1 only holds in
distribution, however it holds in stronger sense (for instance in mean-square sense) if o
only depends on x.

We refer to Section III.A.1 for a sketch of the construction of the perturbed test
function ¢° which satisfies (111.2.9)—(I111.2.10) (see [FGPSI07, Chapter 6] for a detailed
description of the perturbed test function method). Note that the perturbed test function
appears in Proposition I11.3.1 below. For the error estimate (I11.2.11), see Lemma 111.4.2
and its proof below.
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I11.2.2 The diffusion approximation regime
General model

In the so-called diffusion approximation regime, we consider slow-fast SDE systems of the
type
XE €
axe — p(xEydr + ZEOME
< (I11.2.12)
¢ X¢ h(X¢
dm; = f(X5) (~ St + g(gf)dw (gt)dﬁt).

The coefficients appearing in (I11.2.12) are assumed to satisfy the following conditions.

Assumption III.4. The functions b : T — R? and ¢,h : T¢ — R are assumed to be
of class C'. The functions ¢ : T — R? and f : T? — R are assumed to be of class C2.

Moreover, f takes values in (0,00): we assume that min f(z) > 0.
zeTd

Owing to Assumption I11.4, for all initial conditions X§ € T¢ and m§ € R, and for every
€ (0, 1], there exists a unique global solution (X*¢,m?) of the SDE system (I11.2.12). The
infinitesimal generator £° associated with the SDE (II1.2.12) has the following expression:

LE = %EOU + lﬁl + Lo, (111213)
€ €
where
E = b( ) - Vo,
mo(x) - Vg + f(2)g(x)0m, (I11.2.14)
Lov = —f(x)mo,, + ;f(a:)Qh(x)28,2n

Observe that for fixed z € T, Loy is the generator of an ergodic Ornstein-Uhlenbeck
process. The associated invariant distribution is v* = N(0, W)

We are now in position to state the diffusion approximation result and to define the
limiting process X obtained when € — 0.

Proposition I11.2.2. Let Assumptions II1.1 and II1.} be satisfied. Let T € (0,00). When
e — 0, the C([0, T], T%)-valued process (X(t)) <, converges in distribution to the solution
(X())o<i<r of the limiting SDE

X, = (b TP AT R fg) (Xe)dt + h(Xe)o(Xe)dWs,  X(0) = 2o,

2 2f
(I11.2.15)
driven by a standard one-dimensional Wiener process (W (t)), g+ -
The infinitesimal generator L associated with the limiting SDE (111.2.15) is given by

B2
Lo=(b+go) Vap+ Qfg Va <f : Vmgz)) (I11.2.16)
2 12 2
= (b+go)- Ve + ?O'O'* : Vi + ?(0 -Va)o - Vap — ﬁa -Vaufo -V,
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and is such that the following property holds: let p € C3(T?), then one constructs two
functions o1, s : T4 x R — R, such that

¥° = +epr + e, (111.2.17)
LFp® — Lop. (II1.2.18)

Finally, let o € C3(T4), then there exists C(T, ) € (0,0) such that
[E [(X*(T)] — E[p(X(T))]| < C(T, p)e. (I1.2.19)

The diffusion approximation stated in Proposition I11.2.2 is a standard result, see for
instance [PS08, Chapter 18]. We refer to Section II1.A.2 for a sketch of the construction of
the perturbed test function ¢® which satisfies (I11.2.17)—(I11.2.18) (see [FGPSI07, Chapter
6] for a detailed description of the perturbed test function method). Since the error
estimate (I11.2.19) plays no role in the sequel, the proof is omitted. We refer to [KY05]
for arguments using asymptotic expansions of solutions of Kolmogorov equations leading
to (I11.2.19), (see also [LBL20] for related computations).

Two examples in the approximation-diffusion regime

The setting described above encompasses several interesting examples of SDE systems. In
order to focus on the different possible issues which need to be overcome when constructing
asymptotic preserving numerical schemes in the regime ¢ — 0, we deal with two examples
described below. In addition, the asymptotic preserving numerical schemes will have
simpler formulations for these examples than in the general case. In both examples,
dimension is set equal to d = 1 to simplify the presentation, and b = 0.
Let us present the first example: consider the system
o(X7)

dXE = yn
(I11.2.20)

=
dm; = —ZLdt + ~dp,
€ g

where the coefficients in the fast equation are constant: f(z) = h(z) = 1 and g(x) = 0
for all x € T. Applying Proposition I11.2.2 in this example yields the following limiting
equation

dX; = o(X;) o dWy, (I11.2.21)

where the noise is interpreted using the Stratonovich convention. With the It6 convention,
the equation is written as

1
dXt = §U(Xt>0',<Xt)dt + O'(Xt)dm

Note that the diffusion approximation result (Proposition 111.2.2) may be obtained by
straightforward arguments in two cases, which will be repeated at the discrete-time levels.
Let (*(t) = %S(t) me(s)ds for all t € RT. First, if o(xz) = 1 for all x € T, then one has
dX; = d¢;. Therefore passing to the limit yields

XE() = X5+ (1) — w0 + WD),

E—>
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and the limiting equation is dX; = dW,. Second, assume that x, X¢(¢) and X(¢) take
values in the real line R (instead of the torus T) and that o(x) = x for all z € R. Then
(I11.2.21) is written as dX{ = X;d(f. Computing the solution and passing to the limit
then yields

XE(t) = Xgexp (C°(t) —o> woexp(W(t)) = X(t),

e—0
and the limiting equation is dX; = X; o dW,.

Note that when the function o is not constant, the Itd and Stratonovich interpretations
differ. Constructing an asymptotic preserving requires to capture the correction term in
a limiting scheme (which will naturally be associated with an It6 interpretation of the
noise).

Let us now present the second example, taken from [LBL.20]. The coefficients f, g, h
are allowed to depend on the slow component x, whereas it is assumed that o(z) = 1 for
all x € T. Therefore, the system in the second example has the following expression

€
dX = %dt,

hXF) (I11.2.22)

t
9

my X¢
dme = f(Xf)(—g—;dtJr g(gt)dt + dﬁt>,

Applying Proposition I11.2.2 in this example yields the following limiting equation

h(X)? f'(X4)
2f(X:)

The noise is interpreted in the Itd sense. Observe that when f is not constant, the
noise-induced drift term %{N appears. The construction of asymptotic preserving schemes
for this problem requires to be careful in order to capture this additional drift term in the
limiting scheme.

dX, = g(X,)dt — dt + h(X,)dW,. (I11.2.23)

II1.3 Numerical discretization and asymptotic pre-
serving schemes

The objective of this section is to study the notion of Asymptotic Preserving (AP)
schemes for the slow-fast SDE system (II1.2.1) (averaging regime) or (II1.2.12) (diffusion
approximation regime) when € — 0. The fundamental requirements to have an AP scheme
are the following ones: given a consistent discretization scheme for the SDE system,

e for any fixed time-step size At > 0, there exists a limiting scheme when ¢ — 0,

e this limiting scheme is consistent with the limiting equation (II1.2.7) given by
Proposition I11.2.1 (averaging regime), or the limiting equation (I11.2.15) given by
Proposition 111.2.2 (diffusion approximation regime).

For the SDE considered in this chapter, consistency is understood in the sense of convergence
in distribution. As will be clear below, caution is needed in order to satisfy the second
requirement, indeed some standard but naive schemes converge to a limiting scheme
which is not consistent with the correct limiting equation. Using such schemes would be
dangerous since it could lead to wrong conclusions about the behavior of the SDE system
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when ¢ — 0, hence the need to develop simultaneously the theoretical and numerical
analysis.

After discussing general properties of AP schemes, we will provide example of such
schemes both for the system (II1.2.1) (averaging regime) and for the system (I11.2.12)
(diffusion approximation regime) . We will also study how this scheme applies to the two
examples (I11.2.20) and (I11.2.22) described above, and provide a few examples of non AP
schemes.

I11.3.1 Asymptotic preserving schemes: definition and proper-
ties

Let T € (0,%0), and let N € N and At = L denote the time-step size. Let (I'n)ocpcn_1
and (Yn)o<p<ny_; be two independent families of independent standard R” and R-valued
Gaussian random variables. The initial conditions X§ and mg are assumed to satisfy
Assumption III.1.

On the one hand, a discretization scheme for the SDE (I11.2.1) is defined as

Vne[0,N —1],(X; 1,mp ) = P (X5, my, Ty yn). (II1.3.1)
On the other hand, a discretization scheme for the SDE (I11.2.12) is defined as

Ve [0, = 1, (X2 0, me ) = $5, (X5 2, 7). (1113.2)
The presentation is slightly different in the averaging and diffusion approximation regimes.
In the remaining of Section II1.3.1, only the case of schemes of the type (I11.3.1) is
considered. This means that if one considers the SDE (I11.2.12) and the scheme (I11.3.2)
(approximation diffusion regime) the variable I';, needs to be omitted — this is also the
case if 0 = 0 in the SDE (I11.2.1) (averaging regime).

The mapping ®4, appearing in the schemes (I11.3.1) and (II1.3.2) is referred to as the
integrator in the sequel.

Let us first discuss stability issues. Due to the presence of factors % and = in the
SDE (I11.2.1) and (II1.2.12), using the standard Euler-Maruyama scheme would impose
strong stability conditions, of the type At < Aty(e) with Atg(e) — 0 when € — 0. In
order to study the behavior of the scheme when € — 0 for any fixed time-step size At, it
is necessary to avoid such conditions, and we impose the following assumption (which is
generally satisfied for some implicit or implicit-explicit methods).

1

Assumption III.5. The integrator ®%, is defined for all € € (0,1] and At € (0, Aty],
where Aty > 0 is independent of ¢.

We are now in position to study the consistency of the scheme. First, it is assumed
that for all £ € (0,1], the scheme (II1.3.1) (resp. (I11.3.2)) is consistent with the SDE
system (I11.2.1) (resp. (I11.2.12)). When dealing with numerical methods for SDEs, there
exist several notions of convergence: in almost sure sense, in probability, in mean-square
sense, or in distribution. Since Propositions I11.2.1 and [11.2.2 state that X¢ converges in
distribution to X when ¢, the relevant notion is consistency in the weak sense, related to
convergence in distribution.
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Assumption IIL.6. For all € € (0, 1], the numerical scheme (II1.3.1) (resp. (I11.3.2))
is consistent in the weak sense with the SDE system (III.2.1) (resp. (I11.2.12)): for all
bounded continuous functions ¢ : T4 x R,

E[o(Xy, my)] ——— E[p(X*(T), m*(T))],

N—00
where the time-step size is given by At = %, for an arbitrary 7" € (0, o).

Recall that the consistency in the weak sense of the scheme can be verified using the
following equivalent criterion, expressed in terms of the integrator and of the infinitesimal
generator: for all p € CZ(T? x R),

L@@ m. T ) - plem)
1m
At—0 At

= L¢(x,m),

for all (z,m) € T¢ x R, where I and v are two independent standard R? and R-valued
Gaussian random variables.

The requirements above (Assumptions I11.5 and I11.6) only depend on the behavior of
the scheme for fixed ¢ € (0, 1]. We are now in position to study the asymptotic behavior
as ¢ — 0, with fixed time-step size At € (0, Aty]. To introduce the notion of asymptotic
preserving scheme, one first needs to assume the existence of a limiting scheme, as follows.

Assumption II1.7. For every At e (0, Aty|, there exists a mapping ®a; : T¢ x R? — T9,
such that for every (z,m) € T¢ x R, and every bounded continuous function ¢ : T¢ — R,

E [(p(q)Zt(x? m, Fv 7))] — K [QD(CDAt(ia F7 7))]

e—0
where I" and 7 are two independent standard R” and R valued Gaussian random variables.

Let (Xn)y<n<n be defined by

X"; ~ %fX."’ P ) (I11.3.3)
0= Tg= ll_I)I(l) xg.
where (I'n)g<env_1 a0d (Yn)g<p<n—1 are two independent families of independent standard
R and R valued Gaussian random variables. By a recursion argument, it is straightforward
to check that if Assumptions [11.1 and [I1.7 are satisfied, then X: converges in distribution
to X,,, when ¢ — 0, for any fixed At € (0, Atg], and 0 < n < N.

We are now in position to introduce the notion of asymptotic preserving schemes.
As for Assumptions [11.6 and II1.7 above, the consistency is understood in the sense of
convergence in distribution.

Definition ITI.3.1. Let Assumptions [I1.5, I11.6 and II1.7 be satisfied. The scheme
(I11.3.1) (resp. (II1.3.2)) is said to be Asymptotic Preserving (AP) if the limiting scheme
given by Assumption I11.7 and (II1.3.3) is consistent, in the weak sense, with the limiting
equation given by Proposition I11.2.1 (resp. Proposition I11.2.2): for every continuous
function ¢ : T — R, one has

E[o(Xn)] —— Elp(X(T)],

N—o

where At = L with an arbitrary T € (0, ).
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One of the main contributions of this chapter is the design of AP schemes in the
averaging and in the diffusion approximation regimes, see Sections [11.3.2 and I11.3.3
respectively.

To conclude this section, Proposition [11.3.1 and Corollary I11.3.2 below are general
formulations of the AP property in terms of commuting the limits ¢ — 0 and At — 0.
As explained above, the result is stated only in the averaging regime to simplify the
presentation, however the same result holds also in the diffusion approximation regime
with straightforward modifications.

Proposition 111.3.1. Let the setting of Definition I11.5.1 be satisfied. The following
statements are equivalent.

i e scheme (111.3.1) is asymptotic preserving.
(i) The scheme (IIL3.1) i toti :
(ii) For any continuous function ¢ : T — R, one has

Aim T B [o(X5)] = lim lim B [p(X5)],

where T = NAt.
(iii) For any ¢ € C*(TY), for all (x,m) € T? x R, one has

At—0e—0 At e—0 At—0 At

where ©° = o+ e is the function introduced by the perturbed test function approach
(see (111.2.9), Proposition I11.2.1 or (111.2.17), Proposition 111.2.2), and I and  are
independent RP and R valued standard Gaussian random variables.

Note that using the perturbed test function approach (see Propositions I11.2.1 and
[11.2.2) is the relevant point of view for the statement (iii) above.

Proof of Proposition I11.5.1. The equivalence of (i) and (ii) is straightforward. Indeed

lim lim E [p(X5)] = lim E[p(Xy)],

liy Jim E [p(X5)] = lim E [o(X*(T)] = E[o(X(D)],

using Assumptions [11.6 and I11.7 and Proposition I11.2.1. The two quantities coincide if
and only if the limiting scheme is consistent with the limiting equation.
It remains to prove that (i) and (iii) are equivalent. On the one hand, note that

lim lim E [90 (CI)At<x7 m, Fafy))] B 90<J7> — lim E [@(@At(flf, F,’y))] — (p(;p)
At—0e—0 At A0 At

Y

using the fact that ¢*—¢ = O(e) and the definition of the limiting scheme from Assumption
II1.7.
On the other hand, one has

e—0 At—0 At

= lim L% (2, m) = Lop(),
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using the consistency of the scheme for fixed ¢ (Assumption I11.6), and the property
(I11.2.10), by construction of the perturbed test function ¢*.
Then (iii) is equivalent to having

E [o(Pas(z,7))] — @)

A At -,
which means consistency in the weak sense of the limiting scheme with the limiting equation
(I11.2.7).
This concludes the proof of Proposition [11.3.1. O]

The following result is a simple criterion to check whether a scheme satisfies the
asymptotic preserving property.

Corollary II1.3.2. Assume that for all p € C*(T?), one has

~ _ Efo(Pac(z,7))] — o(x)
Egp(:v) - Al}glo At

where L is a second-order differential operator.
Then the scheme is AP if and only if the property stated in (iii) in Proposition 111.5.1
holds with ¢(x) = z; and p(x) = x;x;, with 1 <i,j < d.

The proof of Corollary I11.3.2 is straightforward and is thus omitted.

II1.3.2 An example of AP scheme in the averaging regime

The objective of this section is to propose an example of AP for the SDE model (I11.2.1),
see Theorem I11.3.3, in the averaging regime. The challenge is to capture the averaged
coefficients b and @, given by (II1.2.5) and (II1.2.6).

Theorem I11.3.3. Introduce the following numerical scheme:

XfL-‘rl = X, + Atb(X, m;+1) + v Ato—(‘XfL?miL-i-l)Fn
my., =c (8> ms +4/1—c <€) (X )V,

with ¢(1) = e~7. This scheme satisfies Assumptions I11.5, II1.6 and II1.7 and is asymptotic
preserving in the sense of Definition [11.5.1. Moreover the limiting scheme is given by

T

Xpit1 = X + A( X, h(X)7m) + VAL (X, B(X ) ¥n) T, (I11.3.5)

Remark 111.3.1. The results of this section can be adapted with ¢(7) = 14%7 This gives
another AP scheme which is used in Section II1.6.

Remark 111.3.2. As opposed to the AP scheme we construct in the diffusion approximation
regime (see Section I11.3.3), Scheme (I11.3.4) is not based on the Heun method (referred to
as the prediction-correction procedure in Section [11.3.3). Even though the Heun method
is a standard way to increase the order of convergence, it would not give an AP scheme in
the averaging regime, due to the identity b'b # b’ b.
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Let us discuss some properties of the AP scheme (I11.3.4) and of the limiting scheme
(I11.3.5). To simplify the discussion, assume that h(x) = 1. First, assume that o = 0.
Note that even if the limiting equation (I11.2.7) is a deterministic ordinary differential
equation, the scheme (I11.3.5) is random. However, in that case, the convergence of Xy to
X(T') when At — 0 holds in probability, instead of only in distribution; in that case, the
averaging principle result stated in Proposition I11.2.1 also holds in probability (and even
in mean-square sense). The fundamental property to obtain the AP property is that the
random quantity appearing in the limiting scheme (I11.3.5) satisfies the property

E [b(X,, h(Xn)7) | Xn] = 0(X,). (I11.3.6)

In the AP scheme (I11.3.4), the fast component is discretized exactly in distribution (when

h(z) = 1): for all n € Ny, the Gaussian random variables mZ and m®(nAt) are equal in

distribution. The fundamental property written above cannot be satisfied if one uses for

instance the implicit Euler scheme to discretize the fast component: the scheme defined by
X1 = X5, + Atb(X7, my )

At At (I11.3.7)

€ - €
M1 = My = Mgy + 2?%7

is not asymptotic preserving, since the associated limiting scheme is

Xpi1 = X + Ath(X,,,0). (I11.3.8)

oA
€ 1 € 2?15 07

using the identity

Mt = M T A
g €

—0

to pass to the limit.

Second, assume that o is not equal to 0. Then the convergence of X® to X,, only holds
in distribution in general. It does not hold in mean-square sense some cases, in which
the convergence in Proposition [11.2.1 also does not hold in the mean-square sense. It is
thus natural to consider convergence in distribution in the notion of asymptotic preserving
schemes for SDEs.

Finally, note also that, as above, the scheme

Xi =X, +VAte(X;,m; ),
At At

€ _ €
My = My, — c My41 + 2 c Tns

is not asymptotic preserving, since the associated limiting scheme is
Xni1 = X, + VAto(X,,,0),.
We are now in position to prove Theorem [11.3.3.

Proof of Theorem I11.5.3. 1t is straightforward to check that Assumption II1.5 is satisfied.
Let us prove that Assumption I11.7 holds. We have

O, (x,m,T,y) = x + Atb(x,m’) + vV Ato(x,m’)[
Opi(z,T,y) = x + Atb(x, h(z)y) + VAto(x, h(z)y)T,
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with m’ = e~ 'm + V1 — e "= h(z)y. When € — 0, m’ converges almost surely to h(z)y,
thus ®%,(x,m,T",v) converges in distribution to ®as(x,T",v), and Assumption I11.7 is
satisfied.

It remains to prove that the scheme satisfies Assumption I11.6 and is asymptotic
preserving in the sense of Definition I11.3.1, namely that the schemes (I11.3.4) and (II1.3.5)
are consistent (in the weak sense), with (I11.2.1) and (I11.2.7) respectively.

Let € > 0 be fixed. Since h is bounded, it is straightforward to check that

E [|ms[’]
sup sup

A IT1.3.9
ce(0,1] neNo 1 + ]m6]2 ( )

This estimate will prove useful to prove Lemma [11.4.4 of Theorem [I1.3.4. Since b and o
are also bounded, we get, in L1(Q), when At — 0

At 2At
My — My, = ——m, + \/jh(sz)’Vn +0:(At),

£
XE. | — X2 = Ath(XZ) + VAto(XE)T, + o.(At).

Thus, using that I',,, v, and X are independent, we get the second order Taylor expansion
of p € C3(T* x R),
E [o(X5 0 min)] = Elp(X5,m7)] = AE[b(X7, mi ) - Vap(X5,ms)]
1
+ §At]E [oo* (X5, m; ) Vigp(XfL,me)]
At
€
At €\2 12 € €

= AtE [L5%(X7, m5)] + o-(Al).

E [m;, Omp (X5, my)]

From there, it is straightforward to check that Assumption I11.6 is satisfied.
Similarly, to prove the consistency of the limiting scheme (I11.3.5) with (I11.2.7), for
¢ € C*(T9), when At — 0, observe that one has

E [p(Xn41)] — E[p(Xy)] = AtE [b(Xn, h(Xn) 1) - Vap(X,)]
+ ;At]E [00™ (X, (X )7n) - V20(X,)] + o(A0).

The key argument of this proof is the following: by conditioning with respect to X,, and the
definitions (II1.2.5)—(I11.2.6) of the averaged coefficients, using the fundamental property
(I11.3.6) for b and To* = go*, yields

E[o(Xni1)] = E[p(Xn)] + ATE [Lo(Xn)] + o(Al).

The limiting scheme is thus consistent with the limiting equation. This concludes the
proof of Theorem II1.3.3. O]

Beyond the asymptotic preserving property, it is possible to obtain error estimate,
and to prove that the scheme (I11.3.4) given in Theorem [I1.3.3 is uniformly accurate (in
distribution).
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Theorem II1.3.4 (Uniform accuracy). Let Assumptions I11.1, II1.2 and I11.3 be satisfied.
Assume moreover that there ezists Cy € (0,0) such that, for e € (0,1], dpa(xf, z0) < Coe,
where dra is the distance on T¢. Then, for any T € (0,0) and any function ¢ : T¢ — R of
class C*, there exists C(T, ) € (0,00) such that for all At € (0, Aty] and € € (0,1] one has

E[o(X3)] = E[e(X5(T))]| < C(T,¢) min(Agt, At + €>, (I11.3.10)

and the scheme (111.3.4) is uniformly accurate with the following error estimate: for all

At € (0, Aty], one has

sup [E[p(X5)] — E[p(X(T))]] < C(T, p)VAL. (I11.3.11)

ee(0,1]

The error estimate (I11.3.11) implies that the error [E [p(X§)] —E [¢(X*(T))] | goes to
0 when At — 0 uniformly with respect to ¢ — 0. Note that (II1I.3.11) is a straightforward
consequence of (I11.3.10), considering the cases VAt < € and £ < /At separately. This
argument implies a reduction in the order of convergence appearing in (II11.3.11): it is
equal to £ whereas for fixed ¢ > 0 (in (I11.3.10)) or when & = 0 the order of convergence is
equal to 1.

The proof of Theorem [11.3.4 is long, technical and requires several auxiliary results, it
is thus postponed to Section I11.4.

II1.3.3 An example of AP scheme in the diffusion approximation
regime

The objective of this section is to propose an example of AP scheme for the SDE model

(I11.2.12), see Theorem I11.3.5, in the diffusion approximation regime. The challenge is to

let the limiting scheme capture the additional drift term appearing in the limiting equation
(I11.2.15) when ¢ or f is not constant.

Theorem II1.3.5. Let 0 € [5,1]. Introduce the following numerical scheme:

(oo AHf(XD)ms . | ALF(XD)g(Xs) | F(XR)A(X)V ALy,

My 1 =m, — =2 + - + - )

~ At/\a

Rion = X5+ AB(X]) + o(X5) =2,
< me —mf — Atf<XraL+1)miL+9 + Atf<X1i+1>g<X1i> + f(Xwi)h(Xwi) V At’Yn (111312)

n+1l = '''n 2 )
£ g 15
Atmg,

?

Yr =X, +Ath(X;) + o(X) .

X¢€ Ye At ME €
\X2+1 _ Xqi + Atb(Xz) + U( n) +20( n+1)€mn+0 ;— mn-&-H’

where

Mg = (1= 0)m;, + 0m,,

My = (1= 0)mg, + 0ms .
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This scheme satisfies Assumptions [11.5, I11.6 and I11.7 and is asymptotic preserving in
the sense of Definition I11.5.1. Moreover the limiting scheme is given by

(X1 = X + At (0(X,0) + 9(X,)0 (X)) + 0(X)h(X0)V AL,
Yoo = X+ AL(B(X,) + g(X,)o(X,)) + a(X@h(X@J&’“{)@%,
o(Yous T11.3.
| Xt = X, + At <b(X) g(x,) 2En) - (¥ >> (II1.3.13)
1 f(Xn)
\ +U(Xn> +20(Yn+1) T 2( (Xn)\/EWn

The design of the scheme [11.3.12 is based on a carefully chosen prediction-correction
procedure. The limiting scheme (I11.3.13) then also contains prediction steps which are the
key elements to satisfy the consistency with the limiting SDE (I11.2.15). The choice of the
prediction-correction procedure is made clearer looking at the two examples (I11.2.20) and
(I11.2.22), see below Corollaries I11.3.6 and I11.3.7 respectively. The prediction-correction
procedure is crucial to obtain the AP property for the scheme: the following simpler
scheme (with # = 1 to simplify the presentation)

At
X’Z-‘rl X + Ath(X)) + O-(X'raz)imfz-i-l?
. e o B (I11.3.14)
.. J(XpAL f(X5)g(X5)At  f(X;)h(X;)VAL
mpy 1 =m, — T n+1 + c + c T

is not asymptotic preserving, since the associated limiting scheme (see the proof of Theorem
[11.3.5 for the derivation of the limiting scheme) is

Xni1 = Xn + AL (0(X,) + 9(Xn)o (X)) + h(X,)o(Xn)VALy,. (II1.3.15)
This limiting scheme is consistent with the SDE
dXt = (b(Xt) + g(Xt)0'<Xt)) dt + h(Xt>O'(Xt)th,

which differs in general — when o or f is non constant — from the correct limiting equation
(T11.2.15).

Observe that in the AP scheme (I11.3.12) the fast component m*® is discretized using the
¢-method. Choosing 6 € [3, 1] ensures the mean-square stability of the scheme (Assumption
I11.5), uniformly with respect to €. Note that the same quantity (1 — §)m;, + 6m; .,
appears in the expressions of m;_ , and Xn 41 in (II1.3.12). Similarly, the same quantity
(1-0)m:, +60m;,_, , appears in the expressions of m$,,, and Y7, , in (II1.3.12): this highlights
the fact that in order to get a limiting scheme, it is fundamental to choose the quadrature
rules in this consistent way.

Remark 111.3.3. There would be no loss of generality to assume that b = 0. Another
example of AP scheme would be obtained in the case b # 0, using a splitting technique:
combining the scheme (II1.3.12) with b = 0, with a standard explicit Euler scheme to treat
the contribution of b. Writing the expression of the resulting scheme is left to the reader.
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Proof of Theorem I11.3.5. 1t is straightforward to check that Assumption [11.5 is satisfied.
Let us prove that Assumption II1.7 holds, namely that (II1.3.12) converges to (I111.3.13)
when ¢ — 0. Note that for fixed At > 0 and 0 < n < N, one has

supE [|m5| + |m|] < +co. (I11.3.16)
e>0

This is proved by a straightforward recursion argument. As a consequence, one obtains
convergence of the quantity,

AtmE €
— = Atg(XE) + h(XO)V Ay, — ——— (M5, —m;,) .
Thus one has Y7, g Yot and )A(fb R An+1. Similarly, one obtains the convergence
e—> e—>
Atm?® . . c e
of ——*%, which yields Y7, 5 Yt and X, 7 Knt-

It remains to prove that the scheme satisfies Assumption [I1.6 and is asymptotic
preserving in the sense of Definition [11.3.1, namely that the schemes (I11.3.12) and
(IT1.3.13) are consistent (in the weak sense), with (I11.2.12) and (I11.2.15) respectively.

On the one hand, let ¢ > 0 be fixed. To prove that (I11.3.12) is consistent with
(I11.2.12), it is sufficient to prove that, for ¢ € C2(T¢ x R), when At — 0,

E (X0 mi)] = E[p(XG, me)] + A(E [£5p(X5, mE)] + o.(A).  (IL3.17)

n

It is straightforward to check that, in L}(€),

~€ ve € € _ (D€ € € €
(mn+1>X +17mn+1>Yn+1) - (manaman) + 08(1)7

n

hence

= LN (SO SOOI

€ g2 €

XE €
X=X, +At <b(X§) + J(;)m"> + 0-(At).

Since 7, ~ N (0,1) and the random variables 7, and X,, are independent, one obtains
(I11.3.17).

On the other hand, it remains to prove that the limiting scheme (I11.3.13) is consistent
with (I11.2.15), i.e. that, for ¢ € C%(T?), when At — 0,

E[p(Xni1)] = E[p(X,)] + AtE [Lo(X,)] + o(Al). (II1.3.18)
To simplify the presentation, for any function 1, the following notation is used below:
Un =Y(Xy), Vi = Vi(X,)

The key argument of this proof is the analysis of the asymptotic behavior of the

f(Xn)

o(Xn)+0(Yni1) T FXnaD)
2 2

quantity , which appears in the scheme in order to capture the drift
terms in the limiting equation (I11.2.15).
First, performing expansions at order v/ At for X,,,; and Y, yields

Xni1 = Xo + VAhy o, + 0o(VAL), Yot = Xy + VAhy o, + o(VAL).
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— O’(Yn+1)70‘n fn — 1 :
=0, + 5 and 5 S one obtains the
fn

Second, writing

Un+U(Yn+1)
2

following expansion at order v/ At for the quantity:

f7l/
On + U(Yn-i-l) 1+ F(Xnt1)
2 2

- (an + }\/Ehn%(an Vo + o(@)) (1 = 7\/7hn7n0-n Via+ 0(\/&0

2fn
1
=0, + VAt ( o YnOn YV fron + §hn7n(an . V)Un) + o(VAt).

2fn

Finally, one obtains the following asymptotic expansion of X,

— 1
Xn+1 = Xn + Athn’)/no-n + At (bn + gnan - 2f n,YnO-TL ’ anO'n + thfYn(o-n V)O'n)
+ o(At).

Since 7, is centered and 7, and X,, are independent random variables, one obtains the
first order expansion (I11.3.18).
This concludes the proof of Theorem [11.3.5. O]

The proposed AP scheme given by Theorem [11.3.5 can be simplified when it is applied
to one of the two examples of SDE models introduced in Section I11.2.2. These two
examples are employed in the numerical experiments below. To simplify the presentation,
we only consider the case 6 = 1.

Corollary I11.3.6. Consider the SDE (111.2.20). The AP scheme (111.3.12) given by
Theorem [11.5.5 is written as follows:

(. At . At
M1 = My — ?anrl + T%;
Atme
| Yo =0+ 0(&?)%, (I11.3.19)
| Xi=Xi+ o(X2) +o(Y7,) Atme
n n 2 -

The scheme (111.3.19) is asymptotic preserving, and the limiting scheme (111.3.13) is written
as

Yn+1 = Xn + v Ato‘(Xn)’Wn

Xn Y,
Xot = X, + /AT +20( +),

The limiting scheme (111.3.20) is consistent with the limiting SDE (111.2.21).

(111.3.20)

The prediction-correction procedure appearing in the limiting scheme (I11.3.20) allows
to recover the Stratonovich interpretation of the noise in the limiting SDE (I11.2.21).
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Corollary II1.3.7. Consider the SDE (111.2.22). The AP scheme (111.3.12) given by
Theorem I11.5.5 is written as follows:

(o o AMf(XD) . A(XR)g(XF) | fXDAXE) VALY,
n+l n n+1
m + m, — Tm + + - + -
~ Atme
Koy = X5+ = et
3 ° - (I11.3.21)
e _ oo AFXRL) o A(XS)9(XF) | f(XR)R(XE)V Ay,
My = My — 2 Mpt1 + +
£ g g
Atm;, ., +m;
\XfH-l _ XZ + ?mn-‘rl 5 Mpt1

The scheme (111.3.21) is asymptotic preserving, and the limiting scheme (111.3.13) is written

as R
Xni1 = X + Atg(X,) + h(X,)VAty,,

SXn) (I11.3.22)
Xpi1 = X + Atg(X,) + wh()@)\/ﬂ%.

The limiting scheme (111.3.22) is consistent with the limiting SDE (111.2.23).

The prediction-correction procedure appearing in the limiting scheme (I111.3.20) allows
to recover the noise-induced drift term appearing in the limiting SDE (I11.2.23).

Remark 111.3.4. Consider the first example (111.2.20), with o(x) = = and assume that x
takes values in the real line R (instead of the torus T). The following scheme

At
X = Kzexo (S0 = 0 + 0]
At VAL

My = My, — =) [(1 —0)m;, + emilr‘rl] + T%“

(111.3.23)

where 6 € [%, 1], is another example of AP scheme for this problem. The limiting scheme
is given by
X1 = X exp(VALy,) (I11.3.24)

which is consistent with the limiting equation dX; = X; o dW,.
However, the construction is more subtle if the fast component is discretized using an
exponential method: let

_9At
At 1—6252

e = €
mi,, =e =mS + 5 T

then m; — %%, and defining
At
Xo = X exp <€mi+1>

does not provide an AP scheme, since there exists no limiting scheme when £ — 0.
Inspired by the identity X S(t) me(s)ds = e(m§ —m°(t)) + B for all t € R*, one may set

X;1 =X, exp (5(mfl —mg )+ \/At'yn> ,
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so that one has N
X5 = zgexp <8(m8 —mfy) + VAL 2 %> :
n=0

When € — 0, one obtains the limiting scheme (I111.3.24) again. However, the generalization
of this construction to the case o(x) # = is not straightforward, whereas the scheme
proposed in Theorem [11.3.5 applies directly to the general case.

III.4 Uniform accuracy and error analysis

I11.4.1 Uniform accuracy in the averaging regime (proof of The-
orem II1.3.4)

The objective of this section is to prove the error estimate (I11.3.10). The proof follows
from the following four auxiliary lemmas. They are proved in Section [11.4.2 below. In
their statements, let Assumptions I11.1, I11.2 and I11.3 be satisfied. Let T" € (0, o) be fixed
and assume that ¢ : T¢ — R is of class C*. Recall that the identity 7' = N At is assumed to
hold. In addition, recall that (X (t)),cg+ and (Xy),oy, are defined by the limiting equation
(I11.2.7) and the limiting scheme (I11.3.5) respectively.

Lemma I11.4.1. There exists C(T, ¢) € (0,00) such that for all At € (0, Aty] and e € (0, 1]
one has AL
[E[p(X3)] = E[p(X(T)]| < C(T, ) —

Lemma II1.4.2. There exists C(T,p) € (0,0) such that for all e € (0,1] one has

(I11.4.1)

[E [p(X(T))] = E[p(X(T))]| < C(T' p)e. (I1.4.2)
Lemma II1.4.3. There exists C(T, ) € (0,00) such that for all At € (0, Aty] one has
[E [p(Xn)] = E[o(X(T))]| < C(T, )At. (I1.4.3)

Lemma II1.4.4. There exists C(T, ) € (0,0) such that for all At € (0, Ato] and e € (0,1]
one has

E[o(X5)] — E[p(Xn)]| < C(T, ) max(At,e). (111.4.4)

The first auxiliary result (Lemma II1.4.1) states a weak error estimate for the numerical
scheme (II1.3.4) for fixed ¢ € (0,1]. Due to the stiffness of the fast component m;, the
right-hand side is not uniform with respect to €, and it is natural to expect that the upper
bound depends on 7 = %.

The second auxiliary result (Lemma [11.4.2) gives an error estimate in the averaging
principle (see (II11.2.11) in Proposition I11.2.1), in the weak sense. This is a standard result
in the literature, see for instance [KY05] for an approach using asymptotic expansions for
solutions of Kolmogorov equations. The strategy of the proof is based on the introduction
of the solutions of relevant Poisson equations, in the spirit of [PS08, Chapter 17] where
strong convergence is studied, see [Bré20] and [RSX19] for the weak convergence case.

The two remaining auxiliary lemmas and their proofs are more original than the first
two. Lemmas [11.4.3 and [11.4.4 are quantitative statements concerning two fundamental
requirements in the notion of AP scheme (see Definition I11.3.1). On the one hand, Lemma
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[11.4.3 is a quantitative statement of the consistency of the limiting scheme (I11.3.5) with
the limiting equation (I11.2.7), since it provides a weak error when At — 0. Since the
scheme is not classical (it is not a standard Euler-Maruyama type method, in particular
recall that the scheme is random even if X (7') is deterministic, when o = 0), a proof
is required. On the other hand, Lemma [I1.4.4 is a quantitative statement about the
convergence to the limiting scheme, for fixed At € (0, Aty] (see Assumption I11.7). In
fact, the left-hand side of (I11.4.4) goes to 0 when ¢ — 0, however in the right-hand
side of (I11.4.4) an additional error term At appears. Proving Lemma [11.4.4 is the most
challenging step towards the proof of Theorem [11.3.4, whereas a key argument will be
identified in the proof of Lemma [11.4.3 related to the consistency of the limiting scheme
with the limiting equation.

The following auxiliary results concerning solutions of Kolmogorov equations are
required in order do prove the four auxiliary results stated above. They are proved in
Section [11.4.3 below.

Lemma I11.4.5. Define u®(t,x) = E,n[0(X5(t))], for all t € RT, x € T? and m € R,
where (X%, m*) is the solution of the SDE system (111.2.1), and E, ,,, means that X*(0) = z
and m#(0) = m. For all ¢ € (0,1], one has u¢ € C([0,T],C3(T? x R, R)). In addition, there
exists C(T, ) € (0,00) such that for all j € {1,2,3}, one has

sup sup |D2 . ul(t,z,m)| < C(T, ). (II1.4.5)
€€(0,1] (¢,z,m)e[0,T] x T4 xR '

Lemma I11.4.6. Define u(t,z) = E.[p(X(t))], for allt e RT and x € T?, where X is the
solution of the SDE (111.2.7) and E, means that X (0) = z. One hasu € C([0,T],C¢(T¢, R)).
In addition, there exists C(T, ) € (0,00) such that for all j € {1,2,3,4}, one has

sup  |Diu(t,z)| < C(T, ). (II1.4.6)
(t,2)e[0,T] x T4

Lemma I11.4.7. Let At € (0, Aty].

Define un(z) = E;[0(X,)], for alln € N and x € T, where (X,),oy, s defined by
the limiting scheme (111.3.5) (see Theorem I11.3.3), and E, means that Xy = z. For all
n € Ny, one has u, € C3(T%). In addition, there exists C(T,p) € (0,0) such that for all
j €{1,2}, one has

sup sup | Diu,(2)| < C(T, p) (I11.4.7)

0<n<N zeTd

and, for all At € (0, Aty], one has

sup  sup | DI, 1 (x) — Diu,(z)| < C(T, p)At. (I11.4.8)

0<n<N—1 zeTd

Based on the auxiliary results stated above, the proof of Theorem I11.3.4 is straightfor-
ward.

Proof of Theorem II1.5./. Note that

|E [o(X3)]—E [o(X(T))] | < |E[p(X(T)]-E [o(X*(T))] |+|E [¢(Xn)]-E [¢(X(T))] |
+ [E[p(X5)] — E[o(Xn)]

)
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thus combining (I11.4.2), (III.4.3) and (III.4.4) (with max(At,e) < At + ¢) yields
[E[p(X5)] - E[p(X(T)]| < C(T,¢) (At +¢).

Combining that error estimate with (II1.4.1) then concludes the proof of the error estimate
(IT1.3.10). As already explained above, the error estimate (I1L.3. 11) is a straightforward
consequence of (I11.3.10) (considering the cases v At < € and VAt > ¢).

This concludes the proof of Theorem I11.3.4. n

I11.4.2 Auxiliary error estimates

Let us now give proofs of the auxiliary lemmas [11.4.1, 111.4.2, T11.4.3 and [11.4.4, employing
the results of Lemmas I11.4.5, [11.4.6 and I11.4.7 (proofs are given in Section I11.4.3 below).

The following notation is used below in the proofs of the auxiliary results: for all
A € RTD A < o means that there exists C(T), ¢) € (0, +0), independent of At, € and n,
such that A < C(T, p)u. In addition, the following notation is used for the infinitesimal
generator of the Ornstein-Uhlenbeck process:

ou = —M0Op + h(l")zagw
in order to let the dependence with respect to x be clear.

Proof of Lemma II1.4.1. Let us introduce auxiliary continuous-time processes X¢ and M¢
, such that, for all n € [0, N], one has X = X°(¢,,) and m:, = m°(t,,) (recall the definition
(I11.3.4) of the scheme): for ¢, <t < t,41

XE(t) = X5 + (t = n)b(X5, 5 (1)) + o (X, m°(1)) (B(t) = B(tn))
~ e L V2h(X5)
dm; = —— NG —df,.
Note that m® does satisfy m? = m°(t,), since m is exact in distribution and m® is
an Ornstein-Uhlenbeck process with variance M The process X°© satisfies on each
subinterval [¢,,t,.1] the following stochastic differential equation: for all t € [¢,,, t,41], one
has

dXe = b(XE, mS)dt + o (X2, mE)dBy + (t — t,)0mb(X2, S )dis

h()i n)’ (t —t,)02 b(XE, mS)dt

N h(XE)?

+ Omo (X, M) (By — By, )dig +

—"=05,0(X5, i) (B, — By, )dt.

The expressions for X¢ are complicated due to the fact that in the scheme (I11.3.4), b and
o are evaluated with m = m; _;, which is required to satisfy the AP property.

Owing to Lemma I11.4.5, the auxiliary function u¢ is of class C? and is solution of the
Kolmogorov equation d;u® = L7u®. Using a telescoping sum argument and the definition
of the auxiliary processes X¢ and m?, the application of 1t6’s formula yields the following
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standard expression for the weak error:

E[o(X§)] = E[p(X*(T))] = E [u(0, X5, m*(in))] = E [u(T', X5, m°(0))]

= 2 E U (T =t K (), 72 (f1)

n=0

—u (T = to, X5(tn), ﬁf(tn))]

_ Ni Jt E[(=0,+ £5)u (T — 1, Xe(0), 71° (1) ]

Nt .
S I (A P ORI
n=0 n

where the auxiliary differential operator EfL is such that

~

LEu(T —t, X2(t), M7 (1)) = b(XZ,m(t)) - Vous (T — t, X°(t), m=(t))

+ ;aa*(xg, ME(t)) : V2ul(T — t, X2(1), (1)

1 xe o~
Lo (T — £, X5(1), (1)) + 73(1),

n

and where the remainder term 7 () is given by

1 c
ra(t) = —(t - ta) Lopb(X5, ME(t)) - Vul

+ iﬁg’f}a(X;i, M (1)) (B(t) — Blty)) - Vou
| X3y

— Dzt (8= 1) Omb (X5, (1)) + o (X5, 7(6)) (B(1) — B(t.)))’

+ 2L (4 1,00, (1) - V.t

2h(X2)?
| 2h(X2)

n

= (Ono (X5, () (B(8) — B(t))) - Volmu®,
where uf and its derivatives are evaluated at (7' — t, X=(t), m7(t)), and where we used the
notation D?p(xz) - (y)? = yy* : V2p(z) to simplify the presentation.

Let us first deal with the remainder term 7¢(¢). Only the second and fifth terms need
to be considered carefully. Those two terms are of the form

ig;(t)(g(t) — B(t,)) - Vo (t, Xo(1)),

with X2 () a My p(R)-valued bounded random variable and v°(¢, ) is a random variable
given by v¢(t,x) = u*(T — t,x,m*(t)) or v°(t,x) = Opus(T — t,x,m*(t)). Observe that
those two random variables are {Xg, m*(t)}-measurable and that the processes (B(t) —

B(tn>)te[t fon] and {XfL, (ﬁf(t))te[t : +1]} are independent. Thus, using a conditioning
argument, one has
1
E[_5()(B(t) — B(ta)) - Vo' (1. X;)] = 0.

142



Using that identity and Lemma ?7?, one obtains for all t € [t,, £, 1]

BLLSH0(B() - B(t.) - V', X))
< [BLLZH0B0) - B(t) - (Va6 X0) - Vi (. X)]
t—t,

As a consequence,

It remains to deal with

(B — £y (T — £, Re(0), e (1)) — i (1)
= (b0, (1)) = bR (1), 2 (1)) - Vg (T — 1, (1), 7 (1))

~

+ ; (aa*(xg,mE(t)) — oot (XE(1), ﬁf(t))) V20 (T — t, XE(t), e () (TTLA.9)

(A2 = R(XE)?) 2 (T — 1, X(0), (1)),

where the expressions (I11.2.3) and (I11.2.4) for the infinitesimal generator £° have been
used. The three quantities appearing in the right-hand side of (I11.4.9) above are of the
type

(Vo) () = VX5 7 (6) ) U (R (1), e (1),

for V. =b, oo* or h? and U¢ = V,u*(T —t), V2us(T —t) or 2u*(T —t). Using again
the independence of (B(t) — B(t,))i.<t<t,,, and {X,i, (ﬁf(t))te[tn’tnﬂ]}} and regularity
properties of u® given in Lemma [11.4.5, applying [t6’s formula and conditioning with

~

respect to (X7, (M°(t))t,<t<t,.,), one obtains
E| (Vo) me () - VX5 (6)) U (X5, ()] < £t

Moreover, [[V|c1(pa o)) < 1 and, owing to Lemma I11.4.5, [U%||c1(qa o gy < 1. Therefore,
we have

B || (VRE(0),m () = V(X5 () ) (U5(RF(0), () — U=z, e (1)) |

Xe(t) — X¢

n

< V(A5 (0)) e oo E [U&(-,m%))cw)

|

<E [H)N(f(t) - X

2
]gt—tna

where the last inequality comes from the definition of X¢ (t). Gathering the two estimates
above gives, for all t € [t,,, t,41],

B | (V=@ (1) = V(X5 (1)) UF(RE(0), ()] | < ¢ =t
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and using (I11.4.9) finally yields, for all ¢ € [t,, t,11],

B [[(25 — £ (T — 0, o) ()| s -t + 2 < A;.
One then obtains
]:Z]: f E [(Z — £ (T — 1, X°(0) 75 (1) ] | < Agt,
which concludes the proof of (II1.4.1) and of Lemma [11.4.1. O

Proof of Lemma I11.4.2. For all x € T¢, introduce the auxiliary Ornstein-Uhlenbeck pro-
cess m” solving the SDE
dm? = —m¥dt + /2h(z)dp,

Let m®(t, m) denote the solution at time ¢, if the initial condition is given by m®(0,m).
The invariant distribution of the process m? is equal to v*. Note that for m and m’ € R,
one has m*(t,m) — m*(t,m’) = (m —m/)e”". Consider V =0 or V = oo*, and let

8(t,z,m) = E[V(z,m*(t,m)) — V(z)].

Note that for m and m’ € R, one has m*(t, m)—m®(t,m’) = (m—m')e”". As a consequence,
we have
H(S(tv T, m) - 5(t7 z, m/)H S |m - m/| e,

By integrating with respect to m’ and using the equality V(z) = {V(z, m")dv"(m’), one
obtains
16(¢, 2, m)| < (1+ |m|)e". (II1.4.10)

Using the fact that 0 and its derivatives satisfy (I11.4.10) with V' = b, one is able to check
that the function 1, given by, for all z € T% and m € R,

o]

Up(x,m) = — f E [b(z, m"(t,m)) — b(x)] dt

0

is well-defined (by definition of b, see (II1.2.5)) and is of class C?(T¢ x R). Moreover,

Yy and its derivative have at most linear growth in m. In addition, ¥y(z,-) solves the

Poisson equation £%;¢y(x, m) = b(x,m) — b(x), for all x € T? (indeed v* is the invariant

distribution associated with the generator £, of the Ornstein-Uhlenbeck process m*®).
Similarly, define, for all z € T¢ and m € R,

o0

Vo (z,m) = —L E[oo*(x,m"(t,m)) —a " (x)] dt.

The function v, is well-defined: owing to (II1.2.6) (Assumption II1.2) one has the equality

§oo*(z,m)dv*(m) = 55*(x) for all z € T?, and using the same arguments as above,

Yy (, ) solves the Poisson equation £%;1,(x,m) = oo*(z,m) — o 5*(x), for all x € T
Now, for all t € [0,T], x € T? and m € R, let

(I>(t,x,m) = wb<xum) ’ vxu<T - t7x) + wo('ram) : v?:u(T - t,SL’),

where u is given by Lemma [11.4.6 and solves the Kolmogorov equation d,u = Lu.
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On the one hand, applying It6’s formula yields the following expression for the error
term:

E [p(X5(1))] — E[p(X(T))] = E [w(0, X*(T") — u(T, X(0))]
— E [u(0, X5(T)) — u(T, X5(0))] + u(T, X5(0)) — u(T, X (0))

_ L E [ (b(X*(t), m=(£)) — B(X“(1))) - Voul(T — t, X*(t))] dt

+3 L E[ (00" (X*(1),m* (1) — 00" (X(1)) : Vou(T — 1, X(1)) | dt
+u(T, zg) — u(T, o)

= L E[L5Hy®(t, X°(t), m(¢))] dt + uw(T, x5) — u(T, o),

by definition of the auxiliary function ®, since v, and 1, are solutions of Poisson equations.
On the other hand, applying It&’s formula also gives the identity

E [CI)(T7 XE(T>7 ms(T))] —E [CI)(O’ XE(O)’ me(o))]

T 1 1
- J E l(@t +b-V, + 500* V24 EE%U)q)(t,X‘S(t), ma(t))] dt.
0

Combining the two expressions then gives

T

E[o(X5(T))] = E[p(X(T))] = L E[Loy®(t, X5 (t), m®(8))] di + u(T, x5) — u(T, x0)

= ¢ (E[®(T, X*(T), m*(T))] — E[®(0, X=(0), m*(0))])

_ aLTE l@ bV, 4 ;ao—* ; vg)q>(t,X6(t),m€(t))] dt

+ u(T, zg5) — u(T, xp).

Using the regularity estimates from Lemma [11.4.6, the assumption dra(x§, o) < € and
the identity
ou=>b-Vyu+ao*: Vi,
it is then straightforward to obtain (I11.4.2). This concludes the proof of Lemma I11.4.2. [

Proof of Lemma [I11.4.5. Let us introduce the continuous-time auxiliary process X , such
that, for ¢ € [t,,t,4+1], one has

X(t) = X + (t — t)b( X, (X)) V0) + 0( Xy A(X)70) (B(t) — B(tn))-

Introduce also the second-order differential operator
~ 1
Ly, =b(Xn, (X)) -V + 5aa*(Xn, h( X)) : V2

With this notation, for any function ¢ € C?(T%), 1td’s formula gives, for all ¢ € [t,,, tn11],

t

P(X (1)) — @(X,) = L t Lop(X(s))ds + f V(X (5)) - 0(Xn, h(X,)ym)dB,.  (111.4.11)

tn
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Using the same (standard) arguments as in the proof of Lemma II1.4.1, one obtains the
following decomposition of the error:

E[o(Xn)] = E[p(X(T)] = E[u(0, Xx)] = E[p(T, Xo)]

_ N-1 rtnﬂ B [U(T T Xn+1) _ U(T —Tp, Xn)]

_ Nz_l Vm E [(—at + L)u(T —t, )?(t))] dt

_y [ E [ (50, h(X0)) ~ B (W) - Veu(T — 1, K ()] i
1

The error term E [(b(Xn, (X)) — b()?(t))) V(T —t, X’(t))] (with V = b and U =
V,u) and E [(ao*(xn, (X)) —aa*(f(’(t))) L V2u(T — t,)?(t))] (with V = oo* and

xT

U = V2u) are written as
(VX h(Xo)) = VX)) UT — 1. X (1),
Note that X(t,) = X,,. As a consequence,

E | (V(Xa, (X)) = V(X)) UT 1, X(8)) | = 050 + 62(0) + 83(¢) + 530,

where
0n(t) = E[(V(Xo, (X)) = V(X)) U(T = 1, X,)]
510 = B[ (V) - V(X)) U(T - 1.5
53(1) = E | (V(Xa, (X)) = V(X)) (U(T = 1, X)) = U(T = 1,X,) )|
o1(1) = E| (V(x) - VX)) (0T~ 1, (1) - U(T - 1, X)) |.

It remains to treat the four error terms 67 (¢), j = 1,2, 3, 4.
Let us start with the most important observation: since V(z) = {V(z, m)dv®(m), the
independence of the random variables X,, and =, yields the 1dent1ty

E [(V(Xp, MX0)1m) — V(X)) UT - t, X,,)]
=E[E [(V(Xn, h(X0) ) — V(X)) U(T — t, X,,) | X,]] = 0.

The fact that this term vanishes is fundamental since it justifies the consistency of the
scheme (I11.3.5) with the limiting equation (I11.2.7) (see also Theorem I[I1.3.3 and its
proof), and the AP property.

To treat the second term, observe that X, and (X (s), B(s))s=s, are independent random
variables, thus conditioning with respect to X,, and applying 1t6’s formula (I11.4.11) gives

E [(V(Xn) - V()?(t))) U(T —t, Xn)] —E U: L V(X (s)dsUT —t,X,) ] .
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@nce U is bounded (owing to the regularity estimates from Lemma I11.4.6) and since
V e C*(T?) (by assumptions on the coefficients b and o, see Assumption I11.2), one obtains

‘E [(V(Xn) - V(X’(t))) U(T — t,Xn)” <t—t,

The treatment of the third term uses a conditioning argument, and It6’s formula
(IT1.4.11): one has

E | (V(Xa, H(X0) ) = V(X)) (U = £, X(0) = UT = £,X,)) | X070
_E [(V(Xn, B(X)1m) — V(X)) L t FUT 1, X (s))ds | Xn,%] .
Using the regularity properties from Lemma I11.4.6, one obtains
)E [(V(Xn, WX ) — V(X)) (U(T 4, X))~ U(T —t, Xn)>” <t—t,

The treatment of the fourth error term is straightforward: since U and V are Lipschitz
continuous (owing to Lemma [11.4.6), one has
|

‘E [(U(T—t,)?(t)) - U(T—t,Xn)> (V(Xn) V(X)) )” <E Mx ~ X,

St—t,.
The estimates above are of the type
|07(8)| <t — tn,

for all ¢t € [t,,t,41] and j = 1,2, 3,4. Finally, one obtains

Elp(Xx)] - o(X(T) < Y f (t — t)dt < At,

which concludes the proof of Lemma [11.4.3. ]

Proof of Lemma I11.4.4. The idea is to adapt the proof of Lemma [11.4.2 to the discrete-
time situation. Let us start with preparatory computations. A telescoping sum argument
yields the equality

E[p(X3)] = Efp(Xn)] = E [uO(X?v)] — E[un(Xg)] + un(X5) — un(Xo)

2_] (-1 (X)) = Bl (X)]) + s (25) = (o).
o (111.4.12)

where the auxiliary function u,, is defined in Lemma [11.4.7. Using the definition of the
scheme (I11.3.4), and Markov property combined with the expression of the limiting scheme
(III.3.5), one obtains

un 1 (Xiy) = oo (X5 AB(XG, 5 ) + VAL (X, 50T

E [ux-n(X2)] = E w1 (X5 + A A(XE) ) + VAo (X5, (X573 ) |
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A second order Taylor expansion then gives

E [UN—n—l(Xraz-s-l)] —E [UN n(XrEz)]
= AtE [(b(sz my,1) — (X5, h(sz)'Yn)) ‘ vcqu—n—l(sz)]
At
+ SR (0T 0™ (X5 ) — o750 (X5, A(XE))) * Vi 1 (X5)]
+ VALE [( ( n’ n+1> (Xrgw h(XTEL)’Y”)) FTL ’ vﬂ?uN—n—l(XfL)]
+ APPE [(oT,b" (X5, m5 ) — oTub* (XS, h(XE) 1)) : Viuy—po1(X5)]
+ APE [R,(At)].
Using the regularity estimates from Lemma I11.4.7, one has |R, (At)| < 1. Note that the
terms of the orders At? and At? in the right-hand side above vanish, since the random

variables I', and (X7, mgq,7,) are independent, and E[I',] = 0. In addition, since
E[[.T%] = I, a conditioning argument yields

E [UN—n—l(XrEz-s-l) — UN- n(Xa)]
= AtE [ (b(X5, mpy1) — bXG, (X)) - Vaun—n-1(X7)]
4 AR [(00° (X2 mE 1) — 00" (X5, B(XE)3)) : Painns (X2)] (14.13)
+ APE[R,(At)].

Like in the proofs of Theorem I11.3.3 and of Lemma [11.4.3, a conditioning argument allows
us to rewrite the expressions above in terms of the functions b and @: one has

E[(0(X5 M) — b(X5, R(X5) 1) - Vaeun—n1(X7)]
— E[(b(XZ,mS, 1) — B(XE)) - Vaun - 1(X3)],

and

E[ (00" (X5 mi) — 00" (X5 (X)) : Viun-ni(X5)]
=FE [(aa*(Xﬁ,miH) — 55*()(5)) : Viuanfl(X,i)] )

We are now in position to employ similar arguments as in the proof of Lemma [11.4.2,
with important modifications due to the discrete-time setting. Introduce the auxiliary
parameter 7 = %. Instead of studying Poisson equations associated with the infinitesimal
generator L, one needs to consider the generator L¥ and the transition semigroup of a

Markov chain: let
pPr—1
T

We claim that the function 1] defined by

L* =

where Pro(m) = E, no1)[ple™m + V1 —e27h(x)y)].

Y (z,m) = —72 ((P*)" —b(z)).

is well-defined and solves the Poisson equation L*¢](x, ) = b(z,-) — b(z). Indeed, let
(m?(m)), be defined by

my 1 (m) = e "my.(m) + V1 —e 2Th(x)y,, mg(m)=m.
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Then, for all m and m’ € R, and all n € N, one has

Observe that since b is a Lipschitz continuous function, standard arguments give the follow-
ing upper bound: for alln € N, x € T¢ and all m, m’ € R, if §,(x, m) = (P*)" b(x, m)—b(x),
then one has

10, (z,m)| = | (P¥)" b(z,m) — J (P)" bz, m")dv* (m)|
< J‘Eb(x, m?(m)) — Eb(z, mf(m/)|dv" (m)

< e (1 + |m)).

Similarly, since the derivatives of m? with respect to  do not depend on m, one can check
that the inequality above holds for D,d and D2§ then concludes the proof of the claim.

Since 7Y, e " = = < max(r, 1), for all 7 € (0,0), one obtains inequalities of the
type
[¢(z,m)|
< max(r, 1), 111.4.14
1+ |m| ax(7, 1) ( )

for 47, and its derivatives D,¢f and D24j.
Similarly, define for all z € T¢ and m € R,

Vye,m) = =1 Y (PF)" oo™ (2, m) — 77" (2)).

n=0

Then 17 is well-defined and solves the Poisson equation L*,(x,-) = oo*(x,-) —o(z)7*(x),
by definition of &(x), see Assumption I11.3. In addition, ¢ and its derivatives satisfy
upper bound of the type (I11.4.14).

Like in the proof of Lemma [11.4.2, introduce the auxiliary function defined by
D, (z,m) = Y (x,m) - Voun_n_1(x) + I (x,m) : Viuy_n 1(7),

for all n € [0, N — 1], z € T? and m € R, where u,, is defined in Lemma I11.4.7. Combining
the decomposition of the error (I11.4.12) and the identity (III.4.13), one then obtains the
following new expression for the error:

N—-1

Ep(X5)] — E[p(Xx)] = A2 Y E[RJ(AD] + At S LX, (X2, me, )

+ un(xg) — uny (o). (111.4.15)
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On the one hand, a telescoping sum argument yields the following expression:
B[P (X i)~ PS5,

-y B[ P00 (Xey mi) — P, (X5, )|

n=0
N—1
Xfl-l—l € 15 Xfl-l—l =
= ]E[P ‘I)n+1(Xn+17mn+1)*PT P (Xn+1’ n+1>}
_N 1
s IE[ P, (X mi ) = PR, (X5, mi ) |

PXTL(D n mn+1) PXTL(I) (X:;?mi):l :

HMH N7

Note that using Markov property, the first sum on the right-hand side above can be written

N-—1
as Z E[ n+1(Xvi+17 miwrz) - (Xiﬂv n+2)]'
On the other hand, by definition of the operator L% with the parameter 7 = %, one
obtains

AR [0, (X5, m3, )] = B [P, (X5, mi ) — (X5 )]

n+1

= B[P0, (XEmt ) — P, (X7 m3)]

Finally, combining the two identities above, one obtains the following expression for the
error:

N—-1

E[p(X3)] ~ E[p(Xy)] = A Y E[R,] + ¢ (E[On(X5, miy.y) — Po(X5,mi)])

n=0

N—-1
— & Z E [Cbn+1(X7Ez+1a m761+2) . (X761+17 n+2)]

Xr41 € . €
— & Z E |:P7’ o (Xn+17 n+1) Pfﬂ@) (Xn n+1)]

It then remains to use auxiliary upper bounds to deduce the result, in particular using
(IT1.4.14). Note that e max(7, 1) = max(At,¢e).

e as explained above, E [| R, (At)]] < 1, thus the first term satisfies

2N—l
At Z R,
n=0

e Using the upper bound (I11.4.7) from Lemma I11.4.7 and (I11.4.14) with ¢) = v and
1 =17 the second term satisfies

e (E[@n (X5 miv1) — ®o(X5,m5)]) < max(At,e).
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Observe that one has for all z € T? and = € R,

D, 1 (x,m) — O, (z,m) =) (z,m) - (Voun—n(z) = Viun—n_1(x))
+ Y (z,m) : (ViuN_n(x) — V?EUN—n—1<m>) .

Using the upper bound (II1.4.8) from Lemma I11.4.7 and (II1.4.14), one has
D11 (z,m) — @, (x,m)| < At max(r,1)(1 + |m]).

As a consequence, owing to (I11.3.9) and Assumption I11.1, the third term satisfies

N— N—-1
Z D1 (X5py, My g0) — (I)n(XfLJrhmem)] Se¢ Z At max(7,1)
n=0 n=0

< max(At, e).

Note that ®,, and its derivatives satisfy the upper bound (II1.4.14), owing to (II1.4.7)
from Lemma I11.4.7. Let

F(wm) = PE@y (2, m) = Byonon[@alz, e Tm + V1 - e h(z)y)].

It is straightforward to check that f is twice differentiable. In addition, f] and its
derivatives satisfy (I11.4.14). Using a second order Taylor expansion, one obtains

X’IEL 1 € € 7_ T
P o (Xn+17 n+1) - P CD (Xn n+1 ‘ ‘f n+17 n+1) f ( )’
< At max(7,1)(1 + |m|).

Finally, using (I11.3.9) and Assumption III.1, one obtains

N—
Z [P, (X i) — P (X5 ) | < max (At <),

Owing to the assumption dya(zf, o) < € and to Lemma [11.4.7, we have

un (25) — un(@o)| < e

Gathering the estimates then concludes the proof of Lemma [11.4.4. O]

I11.4.3 Estimates on solutions of Kolmogorov equations

We refer to [Cer01, Theorem 1.3.6] for the proof of Lemma II1.4.6. It thus remains to
provide the arguments for the proofs of Lemmas [1[.4.5 and [I1.4.7. The strategy is
standard in the literature, see for instance [Cer(O1].

Proof of Lemma I11./.5. Owing to [Cer01, Proposition 1.3.5], for all k = (k,, k,,) € R xR,
one has

Dot (t, 7, m) - b = Eixe (0)=me(0)=m[ D (X (1)) - 155 (1)],
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where the process n°% = (n£ noE) is the solution of the first variation equation associated
with (I11.2.1): for all t € R™,

Ao = Db(XE,ms) - n;"dt + Do (Xg,m) -1y dB,

Wit VEDB(XE) i
+
: Ve

with initial conditions n5£(0) = k, and 17 £(0) = Ky,
On the one hand, the component 1% satisfies the following equality,

HEE(E) = e +j ()7

and by means of [t6’s isometry formula, one has

2h t t—s
E||nsk)]?] < k2 + 2lMeras L e SR ko) || ds.

3

E’E _
dnm,t -

dﬂta

k(s)st,

On the other hand, the functions b and o are globally Lipschitz continuous (see Assumption
I11.2), and one has Hn’E’EH = ankH Hna

ek 2 ; using It0’s isometry formula, and the
Minkowski and Young inequalities, one obtains

E| s 0)]*] < Ikl + j t (B[t )] + B[ lnike)*]) ds

Combining the two estimates above then yields

1(° s 2
E k E |[nk(s)| f 2R | |2k d)d
s [lz2)I7] = 180? +J( [l <s)u]+€ e [0 ar ) s
t
<[El+ | sup B [lt)]] s
0 r€[0,s]

where the inequality 1 {7 2= dr < i has been used. Applying Gronwall’s lemma, then
inserting the result in the estimate above, one obtains the upper bounds

sup B[ [nz=(0)]*] < 1617, suwp E[|nzEe)]*] < 16
t€[0,T t€[0,T7]

Since ¢ is Lipschitz continuous, using the expression for D, ,,u°(t, x,m) stated above, one
finally obtains (I11.4.5) for the first-order derivative: for all & € R%™!, one has

sup ’Dx,mus(ta z, m) ’ E| < HEH :
(t,2,m)e[0,T]x T4 xR

The treatment of higher-order derivatives requires the expression of \*£1£2 = (Afg’kl’kQ Ak 2)
solution of the second variation equation and p*ikeks — (/L;’EI’EQ’&)’, #%&&27&3) solution
of the third variation equation associated with (II1.2.1): if, for j € {1,2,3} and t € R*,
we write Db = DIb(XE mt), Dict = Dio(X:,ms) and D'hi = DIh(XF), then for all

ky, ko, ks € R? x R, the variation equations are given by

AN = D2 - (7™ nt2)dt + Do - (7™ n7t)dB,

+ Db - A7 kl’det + Dot - Xk,
iy A kl’kQ \fD2h€ (12 ];17772 ) V2Dhs - A
AN — dp + ——dp,
€ NG NG
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(dps it = D35 (B e 5 dt + D3of - (™ 0™ ™) d B,
+ D25 - (AT g B dt + Dot - (P ) dB,
+ D - (™ )\fk Bt + D¢ - (7™, AP B,
+ D2E - (AR S By g 4 D2ot . (ATEVR oy B,
+ Db - s gy 4 Dot etk g

< dpisy ks _ Mi@ktng k3 - V2D - (e e et

NG
B, +

e,k .k .k

V2D2hs - (NS e
Ve

df;

dpy +

V2D (N )
NG

dp

L V2D (i )
Ve
\the sk Kok
\ x@

with initial conditions A\&kik: = %s = (. The estimate for second and third order
derivatives then follow from similar arguments than for the first order derivative.
This concludes the proof of Lemma [11.4.5. O

Proof of Lemma I11.4.7. For all k € R?, one has
Duy(z) - k = E.[Dp(Xy) - 775],

dﬂtv

skk;k

where 1l = h, and for all n € [0, N — 1], one has

nt =0 AtDL( X, h(X0) ) - 1E 4+ Atdb( X, h(X,)Y,) DA (X,) - 1Fy,,
+ VALD, o (X, h(X) V) - 1ETn + VAL (X, h(X)70) DA(X) - 1E .

The functions b, h and ¢ are Lipschitz continuous (see Assumption I11.2). Since 7, and I'
are independent centered Gaussian random variables, it is straightforward to obtain the
upper bound

E||nkol’] < 1+ a0E | |2[*].

A straightforward recursion argument then gives, for all n € [0, NJ,

E|[nk]”] < I#I?

and one obtains (I11.4.7) for the first-order derivative: for all n € [0, N],
| Dup () - k| < k]

The treatment of the second order derivative is similar, using that the solution A\¥*:*2 of
the second variation equation associated with the limiting scheme satisfies

AR = Mok 4 AtD2, - (nﬁl,n]j?) + Aty Dby - 1 Dhy, - 023, + AtD,b, - Ab0h2
+ AtD,0pby, - 2 Dhy, - nf1y, + At0% b, Dh - Dh,, - nk2q2
+ Atdpbp D?hy, - (Y, 02y + Atdnby Dhy, - Nevk2o 4 A/ AtD?o,, - (n*, n2)T,
+ VA0, Dyoy - 0¥ Dhy, - 1824,y + VAED, 0, - NEVR2T,
+ VALD, 00, - 12 Dhyy - 0 Ty, + VAL 0, Dhy, - 0 Dhy, - 2T,
+ VALOon D*hy - (0, 02Ty + VALG00 Dhy - NVF2T
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where we use the short notation Db, = D'b(X,,, h(X,)V,), Do, = Dic(X,, h(X,)Vm)
and D7h,, = DIh(X,,).

It remains to prove (II1.4.8). On the one hand, by definition (II1.3.5), a second order
Taylor expansion yields, for all x € T¢ and n € [0, N — 1],

|tn41(2) = un(@)] = [Es[p(Xns1) — o(Xn)]| < A,
On the other hand, one has

Dty (7) -k — Duy () - k = E.[Do(Xp41) - 7754—1 — Dp(X,,) - Uﬁ]
= E [(De(Xns1) — Do(X,)) - (i — )]
+E[Dp(Xa) - (mr — 1) + E[(Do(Xps1) — Dp(Xn)) - ] -

It is straightforward to check that one has the inequalities E [[| X, 11 — X,,|?] < At and
E [[nF, — nE|*] < At|k[|?. Since ¢ is Lipschitz continuous, using Cauchy-Schwarz in-
equality gives

[E[(De(Xni1(2)) = Dp(Xn(2))) - (DXnia(2) - k — DX (2) - k)| < At]k].

Using a conditional expectation argument, since 7v,,I[",, X, are independent random
variables, one has

[E [D(Xn) - (mr — )| = A [E[Dp(X,) - Dob(Xo, A(Xn) 1) - 0] | < At[E].
Finally, using a second-order Taylor expansion and conditioning arguments, one obtains
[E [(Dp(Xns1) = Do(Xa)) - ]| < At|E].

As a consequence, one obtains (I11.4.8) for j = 1. Similar arguments, coupled with the
second variation equation satisfied by A2 yields (I11.4.8) for j = 2.
This concludes the proof of Lemma [11.4.7. O]

II1.4.4 On the diffusion approximation regime

In general, we do not know how to prove of uniform accuracy in the diffusion approximation.
To prove uniform accuracy, one could try proving Lemmas [11.4.1 to [11.4.4 for the AP
scheme (I11.3.12). Lemmas [11.4.2 and 111.4.3 can be proved in the diffusion approximation
regime like in the averaging regime. We also expect Lemma [11.4.1 to hold with a different

upper bound
At

[E [p(X5)] = E[p(X*(T))]| < C(T, 0)—

for some real numbers a,b € (0,00). However, the proof of Lemma [11.4.4 relies on
the averaging lemma and we did not manage to adapt this argument in the diffusion
approximation regime.

This section is devoted to proving uniform accuracy in two particular cases of the
diffusion approximation regime (see Propositions [11.4.8 and I11.4.9 below). We also prove
an estimate on the diffusion approximation error at the discrete time level in these case,
similar to Lemma [11.4.4. Note that there are several differences with the averaging regime:
first, in the two particular cases, we prove strong error estimates (instead of weak error, in
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distribution). These error estimates implies in particular weak error estimates if the test
functions are Lipschitz-continuous (as in Theorem 111.3.4 in the averaging regime). Second,
the diffusion approximation error at the discrete time level (when ¢ — 0) is uniform in
At, while the estimate on the averaging error at the discrete time level given by Lemma
[11.4.4 is max (¢, At) and therefore is not uniform in At.

Proposition I11.4.8. Consider the SDE (111.2.12) withd =1, b = =1, f= =0
and h =1, namely

dX; = "L,
g
e
dmi = =L dt + ~dp,.
9 9

In this case, the AP scheme (111.3.12) given by Theorem [11.3.5 with 6 = 1 is written as

follows:

At
Xoo =X, + ?mi—i-lv

n

i At . AL

My = My — ?mn+1 + ?’Y’m

and its limiting scheme is given by
XTL-‘r]. - XTL + V Atﬁ)/n,

where NV Aty, = [B(tn1) — B(tn). Assume moreover that there exists Cy € (0,00) such that,
for e € (0,1], dr(xf, x9) < Coe, where dr is the distance on T.
Then, there exists C(T) € (O o) such that for all At € (0, Aty] and € € (0,1] one has

E [dr(X5, X°(T))] < C(T)VAL, (I11.4.16)

and

E [dr(Xy, Xn)] < C(T)e. (I111.4.17)

Proposition I11.4.9. Consider the SDE (111.2.20) with o(z) = x and x € R as in Remark

I11.53.4, namely
Xamt

dX7 = dt,

dmy; = ——Zdt + fdﬁt.
€ £
Let us recall the AP scheme (111.3.23)

At
ntl — = X, exp <€m2+1)

X€
] At . WA

My = My — ?anrl + c s
and its limiting scheme (111.3.24)
X1 = X, exp(VALy,),

where NV Aty, = [B(tne1) — B(tn). Assume moreover that there exists Cy € (0,00) such that,
fore e (0,1], |25 — zo| < Coe.
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Then, there exists C(T') € (0,0) such that for all At € (0, Aty] and € € (0, 1] one has
E[|X5 — X°(T)|] < C(T)VAL, (I11.4.18)

and

E[| Xy — Xn[] < C(T)e. (I11.4.19)

Although we do not know of any proof to generalize these estimates to the general
diffusion approximation case, we investigate this generalization from a numerical point of
view in Section [I1.7.

In this section, for all A\, € R*, A < p means that there exists C(T') € (0, +0),
independent of At, e and n, such that A < C(T)u.

In Propositions [11.4.8 and I11.4.9, the fast component is discretized with an implicit
Euler scheme. Let us start by studying this standard scheme.

Lemma I11.4.10. Consider the Ornstein-Uhlenbeck process
¢ 1
dm; = —ZLdt + ~dB,
3 €

and its discretization using the implicit Euler Scheme

] At WAL

_ € _
My = My 62 My + c s

where \Aty, = B(t,1) — B(t,) and m*(0) = m§ satisfies Assumption I11.1.
Then, there exists C(T) € (0,00) such that for all At € (0, Ato] and € € (0,1], one has

E[|m&)?] + E [|m®(T))*] < C(T), (I11.4.20)
At
E [|ms —m*(T)|*] < C(T) (I11.4.21)
with N = T /At.
The proof of Lemma [11.4.10 use the following lemma.
Lemma I11.4.11. For alln € N and 7 € R}, we have
]' —nT 1
1+7)" n
Proof of Lemma 111.4.11. Consider the function f(7) = W —e " on Rf. Since e” >

1+ 7 for 7 € R}, f is nonnegative. Moreover, limg+ f = 0 and lim,, f = 0, thus there
exists Tmax € RY such that f(7pax) = maXp f. The function f is differentiable, thus we

have f'(Tmax) = 0 with

1
") = —n—— + ne "".
f( ) (1 +T>TL+1
As a consequence, e~ "max = m and
1 1 Timax
Tmax) = no n = n
f( ) (1 + Tmax) (1 + 7_Inax) i (]- + 7_rnax) i

Tmax 1

< < ,
I+ (n+1D)Tmax n+1

where we used that (1 + 7)™ > (n + 1)7 for 7 € R}. This concludes the proof of Lemma
I11.4.11. [
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Proof of Lemma 111.4.10. Estimate (I11.4.20) follows from elementary arguments. Set
T = %, so that

M1 = 147 e(l+7)
It follows that
N—1
mg 1 B(tn-&-l) B(tn)
mhy = + - 111.4.22
M+ e 4 (Q+r)Non ( )

Since the random variables 3(t,.1) — 8(t,) are independent with distribution N (0, At),
we get

E € _ € _ — < € -
[Im& "] = [mg] 1+ ) T3 Z (1 + 7)2N—2n u +TnZ_]1 1+ 1)

n=0
<SmEP+151,

owing to Assumption [I1.1. We also have

1 (T —t
m*(T) = mie /=" + J e dp;. (I11.4.23)
€ Jo

Owing to It6’s isometry formula, we get

1— 672T/62

I
E [|m*(T)]*] = [m§[* e/ + €2f e 3 dt = |mEf? e T .
0

1
<Imfl" +35 <1,

owing to Assumption III.1. This concludes the proof of (I11.4.20). Let us now prove
(I11.4.21). Owing to (I11.4.22) and (I11.4.23), we have

= m*(T) = s (— ) NZ f : —a) dp
My — MM =1m —— — € - - — € ¢ .
N "Na+n)N £ o \(L+7)N-n !

n=0

By means of 1t6’s isometry formula, we get

2 2 1 T/e? 2T pten 1 T—t
E s _m&(T _ € — e 1/E + — —— — ¢ 2 dt.
e = me(OF] = i | s =7 < 5 5 | g e
2 (I11.4.24)
Since e=7/#" = N7 Lemma I11.4.11 yields
1 el 1 A
e R I11.4.25
‘(1 L N2 T (I11.4.25)
Moreover, we have for n € [0, N — 1] and ¢ € [t,, t;41]
1 _Tgt < 1 _T_2in + ’ _T_zt’n _Lgt
_— € K|l — € € (& € — e € N
(14 7)N-n (1+7)N-n
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thus, owing to Lemma [11.4.11, we get

2

1 -I <9 1 —(N-m)7| 2‘ - 5t 2
Y — — € ¢ S Y — € e € — € =
(1+7)N—n (1+7)N—n

2 T—ty T—t
<(]V_n)2+4‘6_ 2 —e &2
2 4t — tn _Tgt
< (N —n)? * 2 ¢ T

by means of the identities |e* —e¥| < 2 and |e" —e’| < (u—v)e’ foru < v < 0. As a
consequence, (I11.4.24) and Assumption I11.1 give

AtS 1 AtRS (1 1
€ € 2 2 - Iz
At A (T o A At (T
<—+—| e Tdt=—+ — e °ds
g2 &2 ), &2 e?2 e ),
At
< —.
S 2
This concludes the proof of (I11.4.21) and of Lemma II1.4.10. O

We are now in position to prove Propositions [11.4.8 and [11.4.9.

Proof of Proposition I11.4.8. Observe that %miﬂ = VAty,+e(mi—m; ) and vV Atry, =
B(tni1) — B(tn). As a consequence, we have

X2+1 = sz + 6<tn+1) - ﬁ(tn) + e(mi - mfhtl)?

hence
Xy = x5+ B(T) + e(mg — miy).

Similarly, we have

T ma(t)
X(T) =x8+f . dt = x5+ B(T) + e(mg — m*(T)),
0
XN = Xy + B(T)7
thus we get
X5y = X(T) 4+ e(m*(T) — mY), (111.4.26)
X5y = Xn + (x5 — x0) + e(m§ — my). (I11.4.27)

Estimate (I11.4.16) follows from (I11.4.26) and estimate (I11.4.21) of Lemma I11.4.10.
Estimate (I11.4.17) follows from (I11.4.27), Assumption I1I.1, estimate (I11.4.20) of Lemma

[I1.4.10 and the assumption dr(xf,xo) < €. This concludes the proof of Proposition
I11.4.8. ]

Proof of Proposition I11.4.9. Using once again the identities %miﬂ — VAty, + e(mé —
m;, 1) and VAty, = B(t,11) — B(t,), we have

Xo1 =X, exp (5<tn+1) — B(ty) +e(m;, — mfwrl)) )
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hence
Xy = wgexp (B(T) + e(mg —my)) -
Similarly, we have

ng

X(T) = xjexp <
0

Xy = xzoexp (B(T))

) = exp (B(T) + (m — mA(T))

thus we get

Xy = X°(T) + X°(T) (esm" (M=) — 1), (111.4.28)
X5 = Xy + a5e’D (ee(m my) 1) + (2§ — zo) A, (I11.4.29)

Let us derive (I11.4.18) from (I11.4.28). Owing to the identity |e* — 1| < |u|e* for
u € R and to the Holder inequality,

E[|X5 — X*(T)|) < 2B |[X(T)| [m*(T) — my | e Delmil]

E [|X*(T)*]"" E [Im*(T) — m&[*]*E [+ D] E [e&\mal]“ |

The random variables m*(7") and m5, are centered and normally distributed with variance
bounded uniformly in €, owing to estimate (111.4.20) of Lemma II1.4.10. Therefore, we

have E [665|m5(T)‘] <1landE [665 |m7V|} < 1. Using similar arguments as well as the Holder

inequality and Assumption III.1, we also have E [|XE(T)|6] < 1. Then, (I11.4.28) follows
from estimate (I11.4.21) of Lemma I11.4.10.

Similar arguments allow us to derive (I111.4.19) from (II1.4.29): the Hélder inequality
yields

E HXN XNH <e |x€| E [ 48 T)]1/4E [|m8 B m§V|2]1/2 E [e4e(mg—m7‘v)]1/4 n |I(5) B :E0| <el

owing to Lemma [11.4.10 and Assumption III.1. This concludes the proof of Proposition
I11.4.9. O

Note once again that in the particular cases of the diffusion approximation regime
stated in Propositions [11.4.8 and [11.4.9, not only do we prove uniform accuracy as in the
averaging regime (see Theorem [11.3.4) when At — 0 but the error estimates (I11.4.17) and
(I11.4.19) (when € — 0 for fixed At) are uniform in At, as opposed to the corresponding
estimate in the averaging regime (see Lemma [11.4.4).

III.5 Qualitative numerical experiments
In this section, we illustrate qualitatively the superiority of AP schemes when the parameter
¢ is small, compared to non AP schemes.

To simplify the presentation, the dimension d is set equal to 1.
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I11.5.1 TIllustration in the averaging regime

The objective of this section is to illustrate qualitatively the superiority of the AP scheme
(T11.3.4) proposed in Section I11.3.2, when the parameter ¢ is small, compared with the
use of crude integrators which are not AP. In particular, the numerical experiments below
confirm that the limiting scheme (I11.3.5) is consistent with the limiting equation (I11.2.7).

We consider the equation (I11.2.1) with a drift given by b(x, m) = Cos(27rzv)e’m72, and
diffusion coefficient o(z,m) = 0. Let T' =1, 2§ = 1 and m§ = 0.

Recall that the AP scheme is given by (I11.3.4), the limiting scheme is given by (II1.3.5)
and the limiting equation is given by (I11.2.7), with b(x) = % cos(2mz) and & = 0. Let us
define X' using the standard Euler scheme applied to this limiting equation:

X = X 4 (XAt (ITL.5.1)

The scheme (I11.5.1) plays the role of a reference scheme to illustrate the consistency
of the limiting scheme (I11.3.5) with the limiting equation, and to illustrate the fact that
the crude scheme defined by (I11.3.7) fails to capture the correct limit and is not AP.

In Figure I11.1, we represent the evolution of X¢, X,, and X' as time t,, = nAt evolves,
with At = 0.004 and for different values of . In Figure IIl.1a, X and X,, are computed
using the AP scheme (I11.3.4) and the limit scheme (I11.3.5), while in Figure I1I1.1b, X¢
is computed using the crude scheme (I11.3.7). Observe that, in both cases, the scheme
converges when € — 0 and that the AP scheme (I11.3.4) does capture the correct limiting
equation only with AP scheme (I11.3.4), as opposed to the crude scheme (I11.3.7).

1.25

1.20 A

1.15 A

1.10

I}‘ -—- epsilon =0.1 f —-- epsilon = 0.01
1.05 y —-- epsilon = 0.01 1.054 7 —-- epsilon = 0.001
----- Limit scheme y --+-+ Limit scheme
1.00 4 —— Reference scheme 1.00 —— Reference
0.0 0.‘2 0:4 0.‘6 0:8 1.0 0.0 0:2 0.‘4 0:6 0.‘8 10
t t
(a) AP scheme (I11.3.4) and its limit (I11.3.5). (b) Crude scheme (I11.3.7).

Figure III.1 — Evolution of the AP scheme (111.3.4) (left), the crude scheme (I11.3.7) (right),
and the reference scheme (I11.5.1) (averaging regime), with At = 0.004.

In Figure I11.2, we represent the evolution of X¢ and X' as time t,, = nAt evolves,
with At = 0.004 and € = 0.001, when X, is computed using the AP scheme (I11.3.4) or
the crude scheme (I11.3.7). Tt illustrates the superiority of the AP scheme over the crude
scheme for a small .

I11.5.2 TIllustration in the diffusion approximation regime

As in the previous section, the objective of this section is to illustrate qualitatively the
superiority of the AP scheme (I11.3.12) proposed in Section I11.3.3, when the parameter ¢
is small, compared a not AP scheme.

The two examples described in Sections [11.2.2 are considered below.
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1.25 4

1.20 4

1.15 4

1104

1054 /g -—- AP scheme
—-- Crude scheme

1.00 4 —— Reference scheme

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
+

Figure II1.2 — Evolution of the AP scheme (I11.3.4), the crude scheme (II1.3.7) and the
reference scheme (I11.5.1) (averaging regime), with At = 0.004 and ¢ = 0.001.

First example

Let us consider the first example, see Equation (I11.2.20). The diffusion coefficient is given
by o(z) = cos(2rx). Let T =1, 2§ = 1 and m§ = 0.

Recall that the AP scheme derived from the general case (I11.3.12) in this case is given
by (I11.3.19), the limiting scheme is given by (I11.3.20) and the limiting equation is given
by (I11.2.21). Let us define X using the standard Euler-Maruyama scheme applied to
this limiting equation (rewritten in Itd form):

1
X = Xt 4 5a(X;;f)a'(X;ff)m + o( XNV Aty,. (I11.5.2)

The scheme (I11.5.2) plays the role of a reference scheme to illustrate the consistency
of the limiting scheme (I11.3.20) with the limiting equation, and to illustrate the fact that
the crude scheme defined by (I11.3.14) fails to capture the correct limit and is not AP.

In Figure I11.3, we represent the evolution of X¢ and X' as time t,, = nAt evolves,
with At = 0.004 and for different values of €. The discretization X is computed using
the AP scheme (I11.3.19) in Figure I1I.3a and the crude scheme (I11.3.14) in Figure I11.3b.
Observe that, in both cases, the scheme seems to converge when € — 0 but only the AP
scheme (I11.3.19) captures the correct limiting.

124

114

1.0 4

—-- epsilon=10.1

094 "~ —-- epsilon = 0.03
’ 1 —— Reference
0.8 W) N /Y

—=—- epsilon = 0.1 P et Sy o et = -r’,_,.__.-—-

—-- epsilon = 0.03 0.7 1 N

—— Reference 0.6 4 ]

0.0 0.‘2 0:4 0.‘6 0:8 1.0 0.0 0:2 0.‘4 0:6 0.‘8 10
t t
(a) AP scheme (II1.3.19). (b) Crude scheme (II1.3.14).

Figure II1.3 — Evolution of the AP scheme (I11.3.19) (left), the crude scheme (II1.3.14)
(right), and the reference scheme (I111.5.2) (diffusion approximation regime regime, first
example), with At = 0.004.
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In Figure I11.4, we represent the evolution of X¢ and X' as time t,, = nAt evolves,
with At = 0.004 and € = 0.01, when X¢ is computed using the AP scheme (I11.3.19) or
the crude scheme (I11.3.14). Note that the behavior of the crude scheme differs from the
reference. It reveals the superiority of the AP scheme for a small ¢.

124

1oL

—-—- AP scheme
—-- crude scheme
—— Reference scheme

10 4

0.9 1

0.8 1 Yy,

0.7 4 LJ'

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure I11.4 — Evolution of the AP scheme (I11.3.19), the crude scheme (I11.3.14) and the
reference scheme (I11.5.2) (diffusion approximation regime, first example), with At = 0.004
and ¢ = 0.01.

First example with o(z) =z

In this section, we illustrate the performance of the AP scheme presented in Remark I11.3.4,
and an important feature of all the AP schemes presented in this chapter, concerning the
consistency of quadrature rules for discretization of the fast component.

As explained in Remark 111.3.4, when o(z) = x, where z € R belongs to the real
line instead of imposing periodic conditions, another type of AP scheme (I11.3.23) can
be designed. The limiting equation is dX; = X; o dW; or, with an It6 convention,
dX; = %Xtdt + X;dW,, and the Euler-Maruyama scheme (used as a reference scheme) for
this limiting equation is written as

re: re 1 re re:
Xref = Xt Ry FAL 4+ X Aty,. (I11.5.3)
Recall that in (I11.3.23), the quadrature rule used to discretize the integral in the
exponential is closely related to the choice of the scheme for the discretization of the fast
component. Let us introduce the following scheme where the consistency is not satisfied
(scheme (I11.3.23) corresponds to 6 = ¢’ below):

€

At VAL
—ms — = [(1—0)m;, +0'm; |+ —

A
X2, = X exp (t[a — yms + emzHJ)
(IIL5.4)

My
with 6,6’ € [3,1].

In Figure I11.5, we represent the evolution of X¢ and X' as time evolves, with
At = 0.004 and € = 0.01. In Figure III.5a X¢ is computed either the specific AP scheme
(IT1.3.23) or the general AP scheme (II1.3.12), while in Figure II1.5b, it is computed using
the scheme (I11.5.4) above with § = 1 # 6’ = 0.5. It illustrates the AP property of both
schemes (I11.3.23) and (II1.3.19) and the non convergence when the quadrature rules are
not chosen consistently.
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3.0 4

—--- Specific AP scheme I —-- Different theta's
—-- General AP scheme 3.0 4 l!' —— Reference scheme
—— Reference scheme f

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
t t

(a) AP schemes (I11.3.23) and (II1.3.19). (b) Scheme (II1.5.4) with § = 1 # 6’ = 0.5.

Figure I11.5 — Evolution of the AP schemes (I11.3.23) and (I11.3.19) (left), the crude scheme
(I11.5.4) with 6 # ¢ (right), and the reference scheme (I11.5.3) (diffusion approximation
regime, first example with o(z) = z), At = 0.004 and ¢ = 0.01.

Second example

Let us now consider the second example described in Section 111.2.2; see Equation (I11.2.22).
The coefficients are given by f(z) = cos(2rx) + 1.5, g(x) = 0 and h(z) = 1. Let T = 1,
x5 = 1 and mg = 0.

The general case (111.3.12) gives in this case the AP scheme (II1.3.21) and the limiting
scheme (I11.3.22), whereas the limiting equation is given by (II1.2.23). The reference
scheme is obtained by using the standard Euler-Maruyama scheme applied to the limiting
equation:

Xref Xref f/( ref) + \/7
n+1 = 711 (11155)
"2 (xp)

We represent in Figure I11.6 the evolutions of X2 and X' as time evolves, with
At = 0.004 and € = 0.01, where X¢ is computed using the AP scheme (I11.3.21) (left)
and the crude scheme (I11.3.14) (right). Observe that the AP scheme captures the correct
limiting equation when ¢ — 0, whereas the crude scheme does not.

2.004

—=—- APscheme
—-- Crude scheme
7 —— Reference scheme

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
t

Figure II1.6 — Evolution of the AP scheme (I11.3.21), the crude scheme (I11.3.14), and
the reference scheme (II1.5.5) for the second example (I11.2.22) (diffusion approximation
regime, second example), with At = 0.004 and ¢ = 0.01.

163



II1.6 Quantitative illustration in the averaging regime

In this section, we illustrate quantitatively the superiority of an AP scheme proposed in
Section I11.3.2 in the averaging regime, compared with a non AP scheme. In particular, we
get a better order of convergence when At — 0 or ¢ — 0 than the theoretical total error.

We consider the second variant of the AP scheme (II1.3.4), introduced in Remark
I11.3.1, namely with ¢(7) = 1%7 We choose this second variant because it becomes hard
to estimate the rate of convergence when ¢ — 0 when ¢(7) = e™".

For the numerical experiments, we use b(xz, m) = b(xz +m), with b(x) = = (non-periodic
boundary conditions) or b(x) = cos(2mx). For simplicity, we take o(x, m) = 0. The initial
conditions are xj = 1 and m{ = 0. The final time is 7" = 1.

The code for these simulations was written by Benoit Fabreges.

I11.6.1 Total error

In this section, we investigate the total error in the averaging regime

Elp(X§)] = Elp(X*(T))], (I1.6.1)

with NAt = T, for the AP scheme (I11.3.4) and the non AP scheme (I11.3.7), where ¢ is
a test function.

We use a Monte-Carlo method to approximate the expectation by the average over
M samples, with M varies in {10° 107, 10%, 10%}. The reference value for E[o(X(T))] is
computed using the studied scheme with At = At = 27!7. The test function is given by
p(z) = sin(2m2)?, o(x) = 2? or p(x) = sin(rz + T).

In each figure, we plot the total error (II1.6.1) in terms of At, for different values of .
We consider € € {4°107° | i € [1,6]}, At,er = 277 and At € {2° | i € [-16, —6]}.

Note that, owing to Theorem II1.3.4, the error is of order 1 with respect to At for fixed
e, but the error uniformly in € is of order at least % with respect to At.

AP scheme

Figures I11.7, I11.8, T11.9 and II1.10 illustrate the order of convergence 1 with respect to
At of the AP scheme for fixed . In Figure I11.8, the error becomes noisy when At is too
small, due to the small number of Monte-Carlo samples and maybe to the unboundedness
of the test function . In Figures II1.7, I11.9 and II1.10, the test function is bounded
and a lower bound on the order of convergence appears on the whole range of At. For
this reason, we only consider bounded test functions in the rest of this paper. The error
becomes larger for smaller € which is consistent with the error estimate O(%) of Theorem
[11.3.4 obtained using a direct estimation. However, the error is bounded when ¢ — 0,
illustrating the error estimate O(e + At) of Theorem [11.3.4 and the uniform accuracy of
the scheme. This uniform error of order 1 with respect to At is coherent with the order
of convergence 1 of the limiting scheme, but is better than the order of convergence %
predicted by the uniform accuracy analysis (Theorem I11.3.4).

In Figures I11.7 and I11.9, the error curves are slightly concave, illustrating an order of
convergence higher than 1 (in particular, an order 2 in Figure I11.7) that is not predicted
by the error analysis. However, this phenomenon may depend on the choice of the test
function, since in Figure I11.10 with the test function ¢(x) = sin(27z + ), the error curves
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Order of convergence when At goes to 0 for some fixed €

10" { ¢ € = 0.004096
~e- £=0001024
—— £=0.000256
¥ £=64e05
- £=16e05
~o— £=4e:06

- Order 1

- Order2

Weak error

Figure II1.7 — Total error (II1.6.1) of the AP scheme (II1.3.4) with b(z) = cos(2mx),
¢(z) = sin(27rz)?* and M = 10° Monte-Carlo samples.

Order of convergence when At goes to 0 for some fixed €

— &= 0.004096
~e— £=0.001024
_, | —— e=0.000256
¥ £=6.4e-05

¢ £=1.6e-05
e £=4e06

- Order1

-~ Order2

Weak error

Figure II1.8 — Total error (II1.6.1) of the AP scheme (II11.3.4) with b(z) = cos(2mz),
¢(z) = 2% and M = 105 Monte Carlo samples.
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Order of convergence when At goes to 0 for some fixed €

— £=0.004096
~e- £=0001024 -
—— £=0.000256 L

101 { —¥- £=6.4e05 -

- £=16e05 -

~o— £=4e:06 -
-~ Order 1 -

-~ Order2 e

Weak error

Figure I11.9 — Total error (II11.6.1) of the AP scheme (II1.3.4) with b(x) = z, p(z) =
sin(2rz)? and M = 10° Monte Carlo samples.

Order of convergence when At goes to 0 for some fixed €

100 ¢ ¢ = 0.004096
e £=0.001024 -
—— £ =0.000256 L

¥ £=6.4e05 -

- £=16e05 »
o £=4e06 -
10719 -~ Order1 o
-~ Order2 e

Weak error

Figure II1.10 — Total error (II1.6.1) of the AP scheme (II1.3.4) with b(z) = cos(2mx),
¢(x) = sin(rz + §) and M = 10° Monte Carlo samples.
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are straight lines. For instance, the symmetry properties of the distribution with respect
to the test function can increase the order of convergence.

Non AP scheme

Order of convergence when At goes to 0 for some fixed &

£ =0.004096
£=0.001024
£ =0.000256
£=6.4e-05
£=16e05
£ =4e-06
Order 1
Order 2

Piekatts

Figure II1.11 — Total error (I11.6.1) of the non AP scheme (I11.3.7) with b(x) = cos(27x),
¢(z) = sin(27rx)? and M = 10° Monte Carlo samples.

In Figure I11.11, the error is capped due to the boundedness of the test function ¢.
However, the slope and the relative position of the curves hints that the error explodes
when ¢ — 0 at fixed At. This illustrates a case of non AP and non uniform accurate
scheme. Indeed, to reduce the error, one needs At to be small enough depending on ¢,

and in particular one needs At 0 0.
E—>

I11.6.2 Averaging error at the discrete time level

In this section, we investigate the averaging error at the discrete time level when £ — 0 at
fixed At

Elp(X5)] = E[p(Xn)], (I1.6.2)
with NAt = T, where X5 is computed using either the AP scheme (I11.3.4) or the non
AP scheme (I11.3.7), where Xy is computed using the corresponding limiting scheme and
where ¢ is a test function.

Owing to Lemma [11.4.4 below (see Section I11.4), the AP scheme (I11.3.4) and its
limiting scheme (I11.3.5) satisfy the following estimate: for all 7' € R* and ¢ regular
enough, there exists C(T, ¢) € (0,0) such that

[E[p(X%)] = E[p(Xn)]| < C(T), ) max(At, ).

We use a Monte-Carlo method to approximate the expectation by the average over
M samples, with M varies in {105 107,108, 10°}. The test function is given by ¢(z) =
sin(27z)? or ¢(x) = sin(rx + §).
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Note that for a fixed At, the same random variables ('yn)o <nen_ are used for all values
of . This may be seen as a reduction of variance strategy.

In each figure, we plot the averaging error (I11.6.2) in terms of ¢, for different values of
At. We consider At € {107*,107°,107%} and € € {4107 | i € [—2, 14]}.

AP scheme

Order of convergence when ¢ goes to 0 for some fixed At

—= dt=0.0001
10° dt = 1e-05
—— dt=1e-06
~==- Order 0.5
~=- Order1
~==- Order 2

Figure I11.12 — Averaging error at the discrete time level (111.6.2) of the AP scheme (I11.3.4),
with b(z) = cos(2mx), p(x) = sin(27z)? and M = 108 Monte Carlo samples.

Figures I11.12 and I11.13 illustrate the order of convergence 1 with respect to € of the
averaging error at the discrete time level. There seems to be a regime At ~ ¢ where
the error is significantly reduced, which is not predicted by the error analysis. The
anomaly becomes less relevant when choosing another test function (Figure I11.13). As a
consequence, we primarily focus on the test functions ¢(z) = sin(272 + §) from now on.

Note that the observed upper bound on the error is O(g) instead of O(max(e, At))
predicted by Theorem [11.3.4. Thus, the theoretical upper bound may not be optimal.

Non AP scheme

Figure I11.14 illustrates the convergence of the non AP scheme (I11.3.7) towards its limiting
scheme. The error remains bounded due to the boundedness of the test function ¢, but
the error is higher when At — 0. Therefore, one must satisfy a condition of the form
At — 0 to have a bounded error when using the non AP scheme.

E—
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Order of convergence when ¢ goes to 0 for some fixed At

10°1 —« dt = 0.0001
~o— dt=1e05 L
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Figure I11.13 — Averaging error at the discrete time level (I11.6.2) of the AP scheme (I11.3.4),
with b(z) = cos(2mx), p(z) = sin(rz + F) and M = 10° Monte Carlo samples.

Order of convergence when ¢ goes to 0 for some fixed At
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Figure II1.14 — Averaging error at the discrete time level (I11.6.2) of the non AP scheme
(IT1.3.7), with b(z) = cos(2mx), p(z) = sin(7z + §) and M = 10° Monte Carlo samples.
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III.7 Quantitative illustration in the diffusion approx-
imation regime

In this section, we illustrate quantitatively the superiority of an AP scheme proposed in
Section I11.3.2, compared with a non AP scheme. It allows us to conjecture the order
of convergence in the general case when At — 0 or ¢ — 0 and to confirm the orders of
convergence in the particular cases of Propositions [11.4.8 and I11.4.9.

For the numerical experiments, we use o(z) = cos(2wx) or o(x) = cos(2rz)?. The
initial conditions are zj; = 1 and mg = 0. The final time is 7" = 1.

The code for these simulations was written by Benoit Fabreges.

II1.7.1 Total error

In this section, we investigate the total error in the diffusion approximation regime

Elp(X§)] = Elp(X(T))], (HL.7.1)

with NAt = T, for the AP scheme (I11.3.12) and the non AP scheme (I11.3.14), where ¢
is a test function.

We use a Monte-Carlo method to approximate the expectation by the average over M
samples, with M e {10°,107,10%,10°}. The reference value for E[¢(X*(T"))] is computed
using the studied scheme with At = At,s = 2717. The test function is given by p(x) =
sin(rz + §)%.

In each figure, we plot the total error (II11.6.1) in terms of At, for different values of ¢.
We consider € € {21073 | i € [1, 6]}, Atyer = 2717 and At € {2° | i € [-16, —6]}.

AP scheme

We do not know of any estimate for the total error of the AP scheme (I11.3.12) uniformly
in e, and use the following numerical experiment to conjecture the order of convergence
of the total error. When ¢ is fixed, (II1.3.12) is a variant of the Heun method or the
Runge-Kutta-2 scheme. Indeed, if m® was exactly known, then it would be a Heun scheme
with an order of convergence 2 with respect to At [KP92, scheme (1.3) of Section 15.1].
However, m?® is approximated by an implicit Euler scheme, which converges at order 1.
Since we only consider X¢ instead of (X¢,m?), we expect an order of convergence 2 for
(I11.3.12) at fixed €. The limiting scheme is a classical scheme of order 1 for the limiting
SDE with a Stratonovich interpretation of the noise.

Figure I11.15 illustrates an order of convergence 2 with respect to At for large fixed
e and large At for the AP scheme (I11.3.12), which is better than the expected order 1.
This may be due to the fact that the discretization of the slow component X¢ is of order 2,
and that the lower order 1 is caused by the fast component. The error becomes larger for
smaller ¢ but does not explode when ¢ — 0, and instead is of order 1 with respect to At
when considering the whole range of At. We thus conjecture that the scheme is uniformly
accurate. For small ¢, this is consistent with the order of convergence 1 of the limiting
scheme towards the limiting equation with Stratonovich noise. This phenomenon is similar
to the averaging regime: we do not observe a reduction of the order of convergence, even
though we should expect such reduction if we had an equivalent to Theorem I11.3.4.
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Order of convergence when At goes to 0 for some fixed &
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Figure II1.15 — Total error (I11.7.1) of the AP scheme (I11.3.12), with o(z) = cos(27x),
¢(z) = sin(rz + §) and M = 10° Monte Carlo samples.

Non AP scheme

In Figure I11.16, the error reaches a threshold due to the boundedness of the test function
@, but its behavior for small enough At indicates that the error does not vanish when
e — 0. The scheme is therefore not uniformly accurate.

I11.7.2 Diffusion approximation error at the discrete time level

In this section, we investigate the diffusion approximation error at the discrete time level

Elp(X3)] — E[o(Xn)], (111.7.2)

with NAt = T, where X§ is computed using either the AP scheme (I11.3.12) or the non
AP scheme (I11.3.14), where X is computed using the corresponding limiting scheme and
where ¢ is a test function.

We do not know any estimate for this error and this scheme in the general case, and
use the following numerical experiment to conjecture the order of convergence. In the
particular cases of Propositions [11.4.8 and I11.4.9, we proved an order of convergence 1
with respect to €.

We use a Monte-Carlo method to approximate the expectation by the average over M
samples, with M e {105 107,108, 10%}. The test function is given by ¢(z) = sin(27x)? or
o(x) = sin(rx + 7).

Note that for a fixed At, the same random variables (7")0 <n<n_1 are used for all values
of e.

In each figure, we plot the averaging error (I11.6.2) in terms of ¢, for different values of
At.
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Order of convergence when At goes to 0 for some fixed €
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Figure I11.16 — Total error (II1.7.1) of the non AP scheme (II1.3.14), with o(z) = cos(27z),
¢(z) = sin(rz + T) and M = 107 Monte Carlo samples.

Order of convergence when € goes to 0 for some fixed At

- dt=0.0001
~e— dt=1e05

¥ dt=1e-07
Order 0.5
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Figure II1.17 — Diffusion approximation error at the discrete time level (I11.7.2) for the
AP scheme (I11.3.12), with o(z) = cos(27x), p(z) = sin(rz + §), M = 10° Monte Carlo
samples, At € {1074,107°,107%,107"} and ¢ € {4°10~* | i € [0, 6]}.
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AP scheme

Figure I11.17 illustrates an order of convergence 1 with respect to €. This is the same order
as in the particular cases of Propositions [11.4.8 and [11.4.8, suggesting that this is the
best order of convergence one could hope for. Moreover, we observe a convergence with
respect to € which is uniform with respect to At, and the order of convergence is the same
than in the averaging regime.

Non AP scheme

Order of convergence when & goes to 0 for some fixed At

—< dt = 0.0001
10! dt = 1e-05
—+— dt = 1e-06
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Figure I11.18 — Diffusion approximation error at the discrete time level (I11.7.2) for the
non AP scheme (I11.3.14), with o(x) = cos(27rz), p(x) = sin(2rx)?, M = 105 Monte Carlo
samples, At € {107*,107°,107%} and ¢ € {2 | i € [-10, —2]}.

Figures I11.18 and I11.19 illustrate the convergence of the non AP scheme (I11.3.14)
towards its limiting scheme. However, in Figure [11.18 one must satisfy a condition of
the form At —— 0 to have a bounded error, the scheme is thus not AP. Moreover, the

E—

limiting scheme is not consistent with the limiting equation. Once again, the threshold is
due to the boundedness of the test function ¢.

In Figure I11.19, the non AP property is more subtle. Indeed, it can only be read in
the non uniformity of the error with respect to At when ¢ — 0.

II1.8 Conclusion

In this chapter, we have studied a general notion of asymptotic preserving schemes, related
to convergence in distribution, for a class of SDE systems in averaging and diffusion
approximation regimes. Let us mention that some assumptions made to simplify the
setting (the slow component takes values in a compact set T¢ and the fast component is
one-dimensional) may easily be relaxed. Note that when the slow component takes values
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Order of convergence when ¢ goes to 0 for some fixed At
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Figure II1.19 — Diffusion approximation error at the discrete time level (I11.7.2) for the
non AP scheme (I11.3.14), with o(z) = cos(2nz), ¢(x) = sin(rz + §), M = 10° Monte
Carlo samples, At € {107%,107°,107%,1077} and € € {2 | i € [-10, —2]}.

in R?, it is necessary to also study the stability of the numerical schemes, for instance in
mean-square sense.

A limitation of our study is the fact that the fast component is an Ornstein-Uhlenbeck
process (when the slow component is frozen): even if the general theory of AP schemes
described in Section I11.3.1 holds in more general settings, the construction of implementable
AP schemes (such as the ones described in Sections I11.3.2 and I11.3.3) is not straightforward
if for instance the fast component is solution of a general ergodic SDE with nonlinear
coefficients.

We have also left open the question of obtaining a version of the error estimates stated
in Theorem [11.3.4 in the diffusion approximation case. This question will be studied in
future works.

III.A Appendix - Derivation of the limiting models

ITI.A.1 Sketch of proof of Proposition IT1.2.1 (averaging regime)

Let us first give details concerning the construction of the perturbed test function ¢°
given by (I11.2.9), such that (II1.2.10) holds. Recall that this construction is used in the
statement of Proposition I11.3.1.

Owing to the multiscale expansions (II1.2.4) and (I11.2.9) of the generator £° and of
the perturbed test function ¢° = ¢ + £y, one has

,664,05 = 5_1£OU90 + (,Cocp + EOU‘PI) + 550@1. (IIIAl)

Since the test function ¢ does not depend on m, one has Loyp = 0, thus the term of
order e~! in (II1.A.1) vanishes.
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Define, for all z € T? and m € R,

Lo(x) = JR Lop(x, m)dv®(m)

=b(z)  Vop(x) + 77" (x) : Vip(r)
19(1‘7 m) = ‘COQO($> m) - 590(1')
= (b(z,m) = b(x)) - Vap(2) + (0™ (z,m) — 77" (2)) : Vip(z),

where we recall that v* = N'(0, h(x)?) is the invariant distribution of the ergodic Ornstein-
Uhlenbeck process m® associated to Loy on R, for any fixed z € T¢

dm? = —m¥dt + \/2h(x)dp.

Let m*(t, m) denote the solution at time t, if the initial condition is given by m®*(0,m).
Therefore, the centering condition {¥(z, m)dv®(m) = 0 is satisfied and the Poisson equation
—Lovpi(z, ) = J(x,-) admits a solution

p1(x,m) = fooo E [9(z, m"(t,m))] dt.

The multiscale expansion (I11.A.1) becomes
Lo = Lo+ eLopr.

To prove (I11.2.10), it only remains to get estimates on Ly uniformly in e. Consider
V=borV =o00* and let

§(t,z,m) =E[V(z,m*(t,m)) — V(z)].

Note that for m and m’ € R, one has m*(t, m)—m?*(t,m’) = (m—m/)e~". As a consequence,
we have
Hé(t? z, TTL) - 6(t7 €, m/>H S ’TTL - m,| e,

By integrating with respect to m’ and using the equality V(z) = {V(z, m")dv*(m’), one
obtains
16(, 2, m)| < (14 |m|)e™. (ITLA.2)

Since V is of class C® with bounded derivatives, and since the derivatives of m®(t,m)
with respect to x do not depend on m, it is straightforward to generalize [11.A.2 to the
derivatives of 6. It gives that ¢ € C?(T? x R) and that ¢; and its derivatives have at
most linear growth in m, hence Lyp; also does. This leads to (II1.2.10) using (I11.2.2).
This concludes the identification of the limiting generator £ using the perturbed test
function method. The remaining ingredients of this strategy to prove the convergence in
distribution of the process X¢ to the solution X of the limiting equation associated with
the limiting generator £ are standard and are thus omitted.

ITI.A.2 Sketch of proof of Proposition I11.2.2 (diffusion approx-
imation regime)

Let us first give details concerning the construction of the perturbed test function ¢°
given by (I11.2.17), such that (II11.2.18) holds. Recall that this construction is used in the
statement of Proposition I11.3.1.
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Owing to the multiscale expansions (I11.2.14) and (II1.2.17) of the generator £° and of
the perturbed test function ¢f = ¢ + £¢1 + €%y, one has

56(,08 = 5_2£OUS0 + 6_1 (£1g0 + EOUSOI) + (,C()QD + £1Q01 + »COUQOQ)
+ € (EO(PI + El(,OQ) + €2£0(p2. (IIIA?))

Since the test function ¢ does not depend on m, one has Loyp = 0, thus the term of
order e 72 in (IT1.A.3) vanishes. Define

. oz
o1(z,m) = mew; - Vap(x). (TI1.A.4)
Then it is straightforward to check that £ + Loy, = 0, thus the term of order e~ in
(II1.A.3) vanishes.
It remains to construct the function ¢y such that the term of order 1 in (IT1.A.3) is
equal to L. Define, for all z € T¢ and m € R,

Lolr) = waoso T Lagr)(z, m)dv* (m),
Oz, m) = (Lo + L) (,m) — Loo(),

where we recall that v* = N(0, M) is the invariant distribution of the ergodic
Ornstein-Uhlenbeck process associated to Loy on R, for any fixed z € T<.

Let z € T? then the Poisson equation —Lopps(, ) = 9(z, ) admits a solution @y,
since the centering condition {9(z, m)dv®(m) = 0 is satisfied. Precisely, one has the

expressions
2
ﬁ(xvm) = = (|m2 - fg) U'Vx <; vm@) )

. im|* o o
@2('7m) = T? AV <f . Vﬂ@) . (IH.A.5)

With the functions ¢; and ¢, constructed above, the multiscale expansion (II11.A.3) is

rewritten as
Lo0" = Lo+ (Lopr + L1pa) + 2 Lo,

which gives (I11.2.18), more precisely

sup |L2¢%(z,m) — Lo(x)| < C, (elm] + €%|m[*)
zeTd
for some constant C, depending only on ¢ and on the coefficients of the SDE.

It remains to check that Lo(x) = §(Lop + Lig1)(x, m)dv”(m) gives the expression
(I11.2.16). This concludes the identification of the limiting generator £ using the perturbed
test function method. The remaining ingredients of this strategy to prove the convergence
in distribution of the process X¢ to the solution X of the limiting equation associated
with the limiting generator £ follows from standard arguments which are omitted.
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Chapter IV

Asymptotic preserving schemes for
kinetic stochastic PDEs

This chapter is a work in collaboration with Hélene Hivert. In particular, she implemented
a first version of the schemes introduced in this chapter.

IV.1 Introduction

Standard numerical schemes for deterministic or stochastic systems tend to become
ineffective when systems evolve at different time scales: see for instance [E11, Kuel5] for
comprehensive treatment of multiscale dynamics. Averaging and homogenization [PS08]
are two techniques allowing to rigorously derive macroscopic limiting equations, starting
from (stochastic) slow-fast systems with separated time-scales.

There are various efficient and well-studied numerical methods for multiscale stochastic
systems: for instance, equation-free coarse-graining (see [KGH"03]), the Heterogeneous
Multiscale Method (see [ELVE05, AEEVE12, Brél3]), projective integration (see [GIKKO06]),
spectral methods (see [APV17]), micro-macro acceleration methods (see [VZS20]) and
parareal algorithms (see [LLMS20]). In the methods mentioned above, the limiting model is
approximated for the slow variables of interest while only relevant (but partial) information
on the fast dynamics are taken into account. As a consequence, these methods may not
be appropriate if one wants to approximate simultaneously the original multiscale model
and its limit. In this chapter, we focus on the notion of asymptotic preserving schemes, in
order to overcome this issue.

Consider the following kinetic Stochastic Partial Differential Equation (SPDE) with a
source term

1 1
O + Za(v) - Vuf S = SLf 4 ml f, (Iv.1.1)

where f° is defined on R* x T¢ x V, L is a linear operator (see (IV.1.2) below) and the
source term m?° is an Ornstein-Uhlenbeck process defined on R* x T? (a detailed definition
is given in Section IV.2). This chapter aims to propose asymptotic preserving schemes for
(IV.1.1) in the regimes ¢ — 0 for fixed 9, § — 0 for fixed € and € = § — 0.

The solution f¢(¢,z,v) is interpreted as a distribution function of particles, having
position x and velocity a(v) at time ¢. The Bhatnagar-Gross-Krook operator L expresses
the particle interactions, defined on L'(V,du) by

Lf = pM— f, (IV.1.2)
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where 4 is a measure on V, where p = § fdu and where M e L'(V,du) satisfies
Assumption IV.1. We consider a general case where (V, i) is a measured space which

includes for instance the standard case V = R? and M (v)du(v) = ﬁ exp <—%> dv,
but we focus in the numerical experiment on the discrete case V = {£1}.

The fast component m? is an R’-valued Ornstein-Uhlenbeck process: for j € [1, J],
consider a function g; € C'(T?) and a one dimensional Ornstein-Uhlenbeck processes m?-
defined by

0;

52
where 6; > 0, m; € R and o; > 0. The fast component m° is then defined in the averaging
regime by

dm(t) = —<3 (mb(t) = 7,)dt + 2LdB (1), (IV.1.3)

M@”:Z@@W“ (IV.1.4)

and in the diffusion approximation regime by

J
ml(t,x) = Z

Note that in both case, n® depends on the time variable ¢ and the space variable z, but
not on the velocity variable v.

The slow component p™ = Sv f#9du converges to different limits in the averaging and
diffusion approximation regimes.

As described in Chapter 111, a scheme that is consistent for fixed values of ¢ > 0 and
0 > 0 can fail to capture the correct asymptotic regimes: such scheme is not asymptotic
preserving.

The notion of AP schemes in the deterministic case has been introduced in [Jin99], for
applications to multiscale kinetic Partial Differential Equations (PDEs), which converge
to parabolic diffusion PDEs. We refer to [DP14, Section 7], [HJL17], [Jin12] and [Pup19,
Section 4] for recent reviews on AP schemes for this type of models. Note that a specific
feature in the stochastic case is the need to consider convergence in distribution. Let
us mention related works for Stochastic Partial Differential Equations (SPDEs), in the
diffusion approximation regime. First, in [DM16, Mar06], the authors consider Schrédinger
equations and study an abstract asymptotic preserving property. However, they do
not propose implementable schemes. In [AF19], the authors deal with some multiscale
stochastic kinetic PDEs, driven by a Wiener process. In this chapter, we recover another
AP scheme for this situation after taking the limit 6 — 0 if m? is defined by (IV.1.5), but
we present AP schemes in other various situations. Finally, let us also mention that AP
schemes have also been studied for PDEs with random coefficients, see [HJ17, Jin18, JLP 18]
or in the context of Monte-Carlo methods for deterministic problems, see [DPS18, RLJ14].

In this chapter, we aim to define Asymptotic Preserving (AP) schemes for the stochastic
kinetic equation (IV.1.1). The detailed definition of AP schemes is defined in Section IV.3
and is equivalent to Definition [11.3.1 in the SDE case. Our AP schemes are designed
using a splitting procedure, which separates the deterministic and the stochastic parts of
(IV.1.1). This leads to Scheme A in the averaging regime (when m? is defined by (IV.1.4))
and to Scheme B in the diffusion approximation regime (when m? is defined by (IV.1.5)).

mi(t)g;(x), Vje[l,J],m; =0. (IV.1.5)

ST

In both schemes, we write (h) = §, hdy and X\ = ;2= € (0,1), where 7 is the time-step
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size. Moreover, h denotes the Fourier transform of h with respect to the space variable x,
computed using a Fast Fourier Transform (FFT).

Scheme A Splitting AP scheme in the averaging regime.

7e,8

n,k
(1=2) T+irea-k
Pl =
n+1/27k 1- >\<1+1/\5ak>
£,0 o
fn"‘l/ka o 1+z>\6a Icf 1+z>\€a kMpn+1/2 k

/ 2
__ /8 _ /82
mflﬂzm—kH/TW@(me—m)—k 1—<1+/T/52) 0Yng-

76 6 76
faa = exp(Tmn+1)fZ+1/2

Scheme B Splitting AP scheme in the diffusion approximation regime.
2e,6

fn,k
(1_>\) 1+idea-k
Pilijan =
- M
n+1/27k 1- >\<1+1/\6ak>
£,0 -
fn+1/27k o 1+z)\6a k-f 1+z>\€a kMpn+1/2 k

s VT
Myt = Mp — eimn-i-l + 052 Tng

d 5 0
fri = eXp(Tmn+1)fZ+1/2

The objective of this chapter is to prove via numerical experiments (see Section 1V.4)
that the AP Schemes A and B are effective in all regimes, as opposed to the crude schemes
which fail to capture the correct limiting behavior when 6 — 0 and ¢ = § — 0.

The chapter is organized as follows. The SPDE models in the averaging and diffusion
approximation regimes are presented in Section I'V.2, and we state the associated scaling
limits. Then, we give examples of AP schemes for the deterministic part and the stochastic
part in Section IV.3, and we combine them using a splitting procedure. Numerical
experiments are reported in Section [V.4. Finally, Section IV.5 gives some conclusions
and perspectives.

IV.2 Models

Assumption IV.1. The velocity space V is embedded in R? for some d’ € N and is
equipped with a finite measure u. The functions a € L*(V, du) and M € LY(V, du) satisfy

Voe V. M(v) >0

f M(v)dp(v) =

K = | at) @ aM@)da(e) > 0.

Moreover, we assume some symmetry on the space (V, du):

e The measure p is symmetric: for all measurable subset A < V| u(—A) = u(A).
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e The function a is odd: for all v e V, a(—v) = —a(v).
e The function M is even: for all v e V., M(—v) = M(v).

For the numerical experiments, we consider V' = {1}, u({1}) = p({-1}) = %, a(v) = v
and M(v) =1

Let us justify the regime corresponding to each definition of m?.

e In the averaging regime, m° is given by (IV.1.4). If m(z) = Z;‘]=1 m;g;(x), then the
term m? f5° gives, in the limiting equation when § — 0, a averaged source term 7 f¢
(see Section IV.2.1).

e In the diffusion approximation regime, m°® is given by (IV.1.5). The term m?°f&°
gives, in the limiting equation when § — 0, a term f°Q'/? o dW (t) where W is a
cylindrical Wiener process. The definition of the covariance operator @) for a general
invariant process m can be found in [DV12] and in Chapter I. When m?° is defined
by (IV.1.5), we get

Qf@) = Y o) | | 0s) Flu)dy. (v 2.)

It is a nonnegative self-adjoint operator and thus admits a square root Q'/2.

Assuming the functions g; are linearly independent and pairwise orthogonal in L?(T?),
o2

@ is of rank J, its only non-zero eigenvalues are 4% | ngiz(Td), associated with the
J

normalized eigenvectors | g;| 24 g5, and

J
Q" f(z) = Z gj(x)J 9;(y) f (y)dy.
i=1 Hg]HL2 (T4) Td
The spectral decomposition yields
J of
QY2dW (t) Z 79 g;dpB;(t) (IV.2.2)

in distribution. Moreover, the It6 form of fQY2 o dW (t) is

FQU2 o dW (1) = JFf + fQVW (1)

2 (IV.2.3)
F(z) = k(z,z) = Z ?;gj(x)2.

Let us detail how to get the expression (IV.2.1) of Q). For j € [1, J], consider the
Ornstein-Uhlenbeck process dm;(t) = —8;m;(t)dt + 0;dB;(t), so that if m;(0) =
m$(0), then m;(t0~2) = m§(t). The Markov process m; admits a unique invariant
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2
o*
J

distribution v; ~ N/ (O, R
J

stationary process, and consider the kernel k defined for =,y € T¢ by

). Let m;(0) be distributed following v; so that m; is a

o) =23 0@y | [ mym(0ar

t
m; (0) J o168, (5)dt

=2 Y (e | [ myopeoa| +e | 0

R+

=23 ) (@)gs B [my 0] | et

R+
o2
since m;(0) and f; are independent. Thus, we get k(z,y) = ijl 79i(2)g;(y).

Then, the covariance operator is defined by
o2
Qfw) = [ enrwiy =35

In the sequel, we consider for simplicity the case J = 1 and write § = 61, 0 = o,
g(z) = g1(z) and 8 = Bi.

The rest of this section is devoted to stating the limiting equations for those two models.
Note that when € — 0, the limiting equation is expressed in terms of p instead of f. In
this case, p° = SV f#9du converges to a function p or p° solution of the given limiting
equation.

IV.2.1 Averaging regime

In this section, we consider the averaging regime (IV.1.4). The following results are proved
in Chapter Il when ¢ = § and can be deduced by adapting the proofs of Chapter II when
€ #0.

First, when € — 0, the limiting equation is given by

oy’ = div(KVp®) +m?p°, (IV.2.4)

where m° is defined by (IV.1.4). It is a diffusion approximation regime in the PDE sense,
since the limiting equation is a diffusion equation. Its solution p° converges to the solution
of

op = div(K'Vp) + mp, (IV.2.5)

when § — 0.
Second, when § — 0, the limiting equation is given by

1 1
Ouf* + Zav) - Vof* = S LT +mf~. (IV.2.6)

The function p° = §, f°du converges to the solution of (IV.2.5) when ¢ — 0. It is an
averaging regime in a stochastic sense, since m? converges to its average .

Finally, when ¢ = 6 — 0, the limiting equation is given by (IV.2.5) owing to Chapter
II. Note that one obtains the same limiting equation in the three cases.
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IV.2.2 Diffusion approximation regime

In this section, we consider the diffusion approximation regime (IV.1.5). The following
results are proved in Chapter I and [AF19] when e = 0 and can be deduced by adapting
the proofs of Chapter I when € # 4.

First, when ¢ — 0, the limiting equation is given by

0’ = div(KVp®) + m°p’. (IV.2.7)

It is a diffusion approximation regime in the PDE sense, since the limiting equation is a
diffusion equation. Its solution p° converges to the solution of

dp = div(KVp)dt + pQ*/? o dW (1), (IV.2.8)

when § — 0.
Second, when § — 0, the limiting equation is given by

O+ Zalv) Vaf = L+ FQY o dW (), (1V.2.9)

It is a diffusion approximation regime in the stochastic sense, since the source term converge
to a stochastic diffusion term. The function p® = SV fedu converges to the solution of
(IV.2.8) when € — 0.

Finally, when € = § — 0, the limiting equation is given by (IV.2.8). Note that one
obtains the same limiting equation in the three cases.

IV.3 Numerical scheme: splitting procedure

The objective of this section is to give examples of AP schemes in the averaging and the
diffusion approximation regime. Given a parameter n =, 7 = § or n = € = 4, a scheme is
asymptotic preserving in the regime n — 0 if

e The scheme is consistent with the equation for fixed n > 0.
e For any fixed time-step size 7, there exists a limiting scheme when n — 0.
e The limiting scheme is consistent with the limiting equation obtained when n — 0.

Note that the second item already excludes standard explicit Euler or Euler-Maruyama

schemes, since these schemes would impose a strong stability condition of the type 7 < 79(n)

with 79(n) — 0 due to the stiff terms in (IV.1.1). To be able to choose 7 independently
’r]*)

of n, we favor implicit schemes, so that we can focus on the third item: capturing the
correct limiting equation.

Since equation (IV.1.1) can be split into a deterministic part and a stochastic part, all
our schemes are based on a splitting procedure in time. At each time-step:

e We start by solving approximately the deterministic part
3 1 € 1 g
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e Then we solve approximately the stochastic part

O f’ =mife. (IV.3.2)

It is straightforward to check that the splitting scheme obtained using an AP scheme for
each step is AP, in each of the three regimes ¢ — 0, § — 0 and ¢ = § — 0. We focus on
the discretization in time. The stochastic step is adapted to any discretization in space,
therefore the discretization in space is chosen with respect to the deterministic step. In
our case, the deterministic step is based on the Fourier transform, thus we simply consider
a regular mesh of size 2" for some n € Nj.

Remark IV.3.1. In the particular case m(t,z) = m(t) (or equivalently g = 1), one can
change the unknown in (IV.1.1) to solve a PDE and get rid of the stochastic part: the

new unknown f=9(t) = exp ( §om? ds) f5°(t) solves

~ 1 ~ 1 ~
o ga(v) Vo f = =L fe0.

In this particular case, one does not need a splitting scheme, and can instead discretize
independently fE 9 and exp <S0 ds) One can also change the unknown at a discrete

time level and would recover the same scheme.

IV.3.1 Asymptotic preserving scheme for the deterministic part

Let us first consider the deterministic part (IV.3.1) of (IV.1.1).
When e — 0, it is standard (see [DGP00]) that p* = §, fedu converges to p solution of
the limiting equation
op = div(K'Vp). (IV.3.3)
For this deterministic part, we use a fully implicit scheme written in the Fourier variable,
as stated in [Hiv18, Proposition 4]. The rest of this section is devoted to detailing the
construction of this scheme and to prove the AP property. Note that there exists other

ways to design AP schemes. For instance, [Hiv18, LMO8] gives an AP scheme based on a
micro-macro decomposition and [Hiv18] an AP scheme based on a integral formulation.
For h e L*(T%) and k € Z9, let hy, = §pa h(z)e™**dx denote the k-th coefficient of the
Fourier transform of A with respect to the space variable x.
Take the Fourier transform of (IV.3.1) with respect to the space variable x: for k € Z%,

1 1 ~
atfk za kfk = *(Mﬁi — fr)-
It is then natural to introduce the implicit scheme

A~

~ T. T

mtlk = frg — Zar k’fa+1 kT MPn+1 kT Lk
-\

- N + 7/\4/\& 9

1+idea- k"™ " 1 +idea -k Prs1,k

where the parameter )\ is defined by

mm‘ N

Sl vl 0,1). (IV.3.4)
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We deduce the following scheme for pf,, | ;. by integrating with respect to v:

- fe M
= (P = (=N (—Imk ) 4 <>
Prvn = (Frne) = )<1+i)\5a-k>+ Ptk \T 4 inea &/
where () = { -dpu.
We finally obtain the following scheme
N3 1A re A ~
LR ] fidea - kTR * 1+ iXea - kMp”H’k

(1—)\)< Tn > (IV.3.5)

1+idea-k

€ —
pn+1,/€ - 1 A M )
o < 1+idea-k >

Proposition IV.3.1. Scheme (I1V.3.5) is consistent with (IV.3.1) for fized ¢ and is asymp-

totic preserving in the following sense: (fy 1, p5 1) — (faks Png) where

fnﬂ,k = Mﬁnﬂ,k
Pk (IV.3.6)

Prttl =177 ((a-k)32M)’

which is consistent with (IV.3.3).

This result is not a novelty (see [Hiv18, Proposition 4]) but we prove it here for the
convenience of the reader.

Proof. Let us derive the limiting scheme when ¢ — 0. Observe that A 0 1, hence

E—>
fot1k = MpPni1k. It remains to derive the limiting scheme on p. Using the condition
§,y M(v)du(v) = 1, (IV.3.5) can be rewritten as

e (1 - )‘) <1+i§fa-k>

Pr+1,k (1_)\)<L>+1_<L>

1+idea-k 1+idea-k

fe
(1 - /\) <1+z',\:a-k>
= M iea-kM
<1 o )‘> <1+i)\€a-k> + <1+€1l)\ea-k>
<1+i/\sa~k>

M + 1 ixea-kM\ '’
1+idea-k 1-X\ \ 14+idea-k

idea - kM \ irea - kM N N2 (a - k)M
L+idea-k/  \1+ X2(a-k)? 1+ X2e2(a- k)2 /"

Since we assumed that V' is symmetric, a is odd and M is even, the first integral of the
right-hand side vanishes. Owing to the identity ﬁ =1+ 5, we get

1 ixea-kM\ 5 (a-k)*M
1—)\<1+i/\5a‘k>_(8 A <1+)\252(a-k:)2 '

We have
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We have A — 1, therefore

1 iXea - kM 9
1—X <1+i)\€a-k> e—0 7'<(a-) M>’

which gives to the limiting scheme (IV.3.6) when ¢ — 0. This scheme can be rewritten

ﬁn+1,k = ﬁn,k + Tﬁn+1,k <<(l : k)2M> .

Owing to the definition (IV.1) of K, the limiting equation (IV.3.3) reads in the Fourier
variable

aipw = ((a- k)*M) B

The limiting scheme above is therefore the implicit schemes associated with the parabolic
PDE (IV.3.3) in the Fourier variable. As a consequence, it is consistent. O

Note that the scheme (IV.3.5) and its limiting scheme (IV.3.6) are both implicit Euler
scheme for their respective equation and 7 can thus be chosen independently of ¢.

IV.3.2 Numerical schemes for the stochastic part

In this section, we consider the stochastic part (IV.3.2) of (IV.1.1).

The exact solution of (IV.3.2) is given by f°(t,z,v) = exp (S(t) m‘s(s,x)d5> 1°(0, z,v).
This provides a first step towards an AP scheme: we discretize this exact solution using an
implicit scheme to cope with the stiffness of the driving process. Therefore, we consider

fg+1 = eXP(Tm?Hl)fn-
It only remains to choose a discretization of m® such that the AP property is satisfied.

In this section, we consider a sequence (7,,) of independent standard normal random
variables.

neNg

Numerical schemes for the stochastic part in the averaging regime

This section gives an example of AP scheme in the averaging regime (IV.1.4). To avoid a

CFL condition of the form 7 < 79(§) where 74(9) vy 0, we use the scheme (I11.3.4) with

cot) = 145
f2+1 = exp(TmiH)fg

__ T L T\2 (IV37)
mle =m+c<§>0(mg—m) +q/1—c<5—2> OYng-
The limiting equation of (IV.1.4) can be deduced from Chapter III and is given by
O f =mf, (IV.3.8)

which has the exact solution f(t,z,v) = exp (tm(x)) f(0,2z,v). The limiting scheme of
(IV.3.7) is given by
frr1 = exp(T(M + 7)) fo- (IV.3.9)
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Note that if J > 1, the scheme (IV.3.7) becomes

0 0 0
n+l exp Z mn+1,jgj)fn

2
meH] mJ+c<52>9 (m‘svj—mj) 1—c<52> TV, ;-

Given the exact solutions of (IV.3.2) and (IV.3.8), it is straightforward to check that
the scheme is consistent and AP, since the SDE is discretized using an implicit Euler
scheme and the integral in time is discretized with a right-point quadrature rule. Since

the scheme is implicit, 7 can be chosen independently of 4.

Numerical schemes for the stochastic part in the diffusion approximation

regime

This section gives an example of AP scheme in the diffusion approximation regime (IV.1.5).
To avoid a CFL condition of the form 7 < 7¢(d) where 79(9) 7 0, we once use an implicit

BEuler-Maruyama scheme again

f2+1 = eXp(Tmel)fg,

5 5 T s VT
my, 1 = m, — géigmn+1 + ‘7572%97

since, owing to (IV.1.5), m? solves

(1) = e (1t + 7L d (1)

Let us derive the limiting for any J € N. Consider (°(¢,z) = S(t) mo

exact solution of (IV.3.2) is given by

(. 2,0) = exp (C(t,2)) (0,2, v).
Owing to (IV.1.3) and (IV.1.5), we have

d¢(t)

Oq \
<

J

-5 2

T] 1 of
;9 (5dm Zefgjdﬂj()
7J

Z g;d

7j=1

B;(t)

Cb‘q

Thus, the solution f° converges to
I
f(t,z,v) = exp (Z ;Ebﬂj(ﬂ) f(0,z,0)
j=1"
= exp (QV2W (1) £(0,.v).
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(s,z)ds, so that the



owing to (IV.2.3). This function solves the Stratonovich diffusion equation
df = fQY? o dW (1), (IV.3.11)

which is therefore the limiting equation of (IV.3.2).
Let us now go back to the case J = 1 to simplify notation and check that (IV.3.10) is
AP. By multiplying by 6% the second equation of (IV.3.10), we get

67—mi+1 = 52(mi - m751+1) + 0\ TVng.

Therefore, the limiting scheme is given by

J1 = exp(%ﬁvng)fn, (IV.3.12)

which is consistent with the limiting equation (IV.3.11). Since the scheme is implicit, 7
can be chosen independently of 9.

IV.4 Numerical experiments

The goal of this section is to illustrate the AP property or the non AP property of the
different splitting schemes. We treat separately the averaging regime (IV.1.4) and the
diffusion approximation regime (IV.1.5). In each regime, we recall the full expression of
the splitting AP scheme (Scheme A and Scheme B, respectively restated in this section as
Scheme 1 and Scheme 5). Then, in each of the three regimes ¢ « §, € » ¢ and € = 6, we
detail its limiting scheme and illustrate the asymptotic behavior of the scheme. In the
diffusion approximation regime, we compare this behavior to a non AP scheme.
We present two types of illustrations:

e We first propose qualitative results: we plot the L?-norm H pi"SH ;2 as a function of

the time ¢, as well as the final value p3’ which approximates p=*(T) as a function of
the space variable x, for a fixed value of 7 and for different values of € and 4.

e The third one is quantitative: we plot an estimation of the weak error

[E [(p™*(T))] = E[(p(T))]]

depending on the time-step size 7, for different values of € and §. The expectations
are approximated using a Monte-Carlo method, with 1000 samples. Investigating
rates of convergence would require to substantially increase the Monte-Carlo sample
size, which we have not done yet. Instead we check that, when 7 — 0, ¢ — 0 or
0 — 0, the error of an AP scheme does not explode unlike the error of a non AP
scheme.

Let us recall that A is defined by A = 11/7 5/252 (see (IV.3.4)). Also recall that, since
J =1, the expression of () simplifies (see (IV.2.2) and (IV.2.3)).

For a fixed value of 7 for a qualitative result, the sequence of standard normal random
variables (%)ne[[L N used for computation is the same in a given figure.

To simplify the legend, when we use the following convention: when the scheme used
is the limiting scheme obtained when € — 0 or § — 0, we write in the legend respectively
e=0ord=0.

The implementation of the different schemes is based on a code given by Hélene Hivert.
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IV.4.1 Illustration in the averaging regime

In this section, we illustrates the AP property of Scheme 1 (introduced in Section IV.1 as
Scheme A).

In all of our schemes, the deterministic part is still discretized using an AP scheme.
Therefore, the non AP scheme is expected to asymptotic preserving in the regime ¢ — 0

for fixed 4.

Scheme 1 AP scheme in the averaging regime.
fs ,0 FFT( fs ,0 )

fs,é
K
(1>‘)< 1+i7;\5a k >

~2,0 .
pn+1/2,k - 1= )\<

1+1Aea k >

z,0 o
fn+1/2 k 1+2)\5a kf 1+z/\6a k:Mpn+1/2 k
fn+1/2 = FFT™ (fn+1/2)

2
md. =m+ ﬁ@(mi—m) +4/1— <ﬁ> OYng.

1 5 0
St = eXp(Tmn+1>fT£L+1/2

Scheme 1 is a Lie-Trotter splitting scheme based on the AP schemes (1V.3.5) for
the deterministic part and (IV.3.7) for the stochastic part. Its limiting schemes are the
splitting schemes obtained with the limiting schemes of (IV.3.5) and (IV 3.7).

Here, we only consider the case where the source term is linear in m°. In this particular
case, in the averaging regime, most schemes satisfy the AP property, assuming they are
stable for 7 chosen independently of € and §. Therefore, we do not compare the AP scheme
to a non AP one. Note that if the source term was non-linear in m?, one should be very
careful when designing AP schemes (see Chapter 111 for AP and non AP example in the
SDE case).

For the numerical experiments below, the reference is computed using an explicit finite
difference method for the limiting equations (IV.2.4), (IV.2.5) and (IV.2.6). In the regime
e — 0 with fixed 4, it is combined with an implicit Euler-Maruyama scheme for the
stochastic component m?®.

The coefficients of the fast component m° are given by § = 1 and ¢ = 2. The
dependence in the space variable 2 of m? is given by g(x) = 2 + sin(27x + 1). We fix the
average value at T = 2g(x). The initial conditions are given by m°(0,z) = Mmgg(z) and
f(0,z,v) = (2 + v) sin(2wz), with my = 1 or my = 10. We fix a short final time 7" = 0.1
and a large mesh size, 1/32 or 1/64, because of the CFL condition on the reference scheme,
to reduce the number of time steps.

Recall that we consider d = 1, V = {£1}, p({1}) = p({-1}) = %, a(v) = v and
M(v) = 1. As a consequence, (IV.1) yields K = 1.

Qualitative experiments in the regime ¢ — 0

When ¢ is fixed and € — 0, Scheme 1 converges to Scheme 2.
Figure IV.1 represents the evolution of H pi"SH ;2 as a function of the time ¢, (Figure

IV.1a) as well as the final time p3° as a function of the space variable 2 (Figure IV.1D),
both for the AP Scheme 1 and its limiting Scheme 2. It illustrates the convergence of
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Scheme 2 Limiting scheme of Scheme 1 when ¢ — 0.
pn = FFT(pn)
~0 _ ﬁik
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(a) Evolution of [p5°],, and [pf,. as a func- (b) Final value p5° () and pd(z) as a function
tion of ¢, with mesh size % of x with mesh size 6%1.

Figure IV.1 — AP Scheme 1 and its limiting Scheme 2 in the averaging regime when ¢ — 0
for fixed 0, with initial condition my = 10.
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the scheme to its limiting scheme when ¢ — 0, as well as the consistency of this limiting
scheme with the solution of the limiting equation. Thus, it illustrates the AP property for
this scheme when ¢ — 0.

Qualitative experiments in the regime § — 0

When ¢ is fixed and § — 0, Scheme 1 converges to Scheme 3.

Scheme 3 Limiting scheme of Scheme 1 when § — 0.

~
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(a) Evolution of Hp7i"5HL2 and [p;,[ ;2 as a func- (b) Final value p;}‘;(x) and p% (z) as a function

tion of ¢, with mesh size % of x with mesh size 6%1.

Figure IV.2 — AP Scheme 1 and its limiting Scheme 3 in the averaging regime when § — 0
for fixed e, with initial condition mq = 10.

Figure IV.2 represents the evolution of H ,ofl"sH ;> as a function of the time ¢, (Figure

IV.2a) as well as the final time p3° as a function of the space variable z (Figure IV.2D),
both for the AP Scheme 1 and its limiting Scheme 3. It illustrates the convergence of
the scheme to its limiting scheme when 0 — 0, as well as the consistency of this limiting
scheme with the solution of the limiting equation. Thus, it illustrates the AP property for
this scheme when o — 0.

Qualitative experiments in the regime ¢ =6 — 0

When € = § — 0, Scheme 1 converges to Scheme 4.
Figure 1V.3 represents the evolution of H ,of;‘sH ;2 as a function of the time ¢, (Figure

IV.3a) as well as the final time p5° as a function of the space variable = (IV.3b), both for
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Scheme 4 Limiting scheme of Scheme 1 when ¢ =6 — 0.
ﬁn = FFT<pn>
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(a) Evolution of HP%’(;HB and [pn[ ;2 as a func- (b) Final value p;}&(m) and py(x) as a function
tion of ,, with mesh size 3% of x with mesh size 6%1.

Figure IV.3 — AP Scheme 1 and its limiting Scheme 4 in the averaging regime when
e = 0 — 0, with initial condition mg = 10.

the AP Scheme 1 and its limiting Scheme 4. It illustrates the convergence of the scheme
to its limiting scheme when ¢ = § — 0, as well as the consistency of this limiting scheme
with the solution of the limiting equation. Thus, it illustrates the AP property for this
scheme when € = § — 0.

Numerical analysis of the weak error

In this section, we investigate the weak error

E o)) ~ Efe(o (1))

of Scheme 1. We check that when 7 — 0, the error goes to 0 uniformly in £ and §.

We use a Monte-Carlo method to approximate both expectations and the same scheme
with Tef = 272 to approximate p*(T). The number of samples used in the Monte-Carlo
method is 1000. Since this number is relatively small, we reduce the variance of the
Monte-Carlo by using the same noise 7, with 7 and 7.

The test function is given by ¢ = |- 2.

Figure 1V 4 illustrates the weak error when 7 — 0 for different values of ¢ and §. The
color and the style of the line represents the considered asymptotic (¢ — 0 is in blue
dashed lines, 6 — 0 in red dash-dotted lines and ¢ = § — 0 is in black continuous lines),
while the marker determines the order of magnitude of the parameter that goes to 0 (0.1
is marked by triangles, 0.01 by squares and 0.001 by circles).

One can check that the error goes to 0 when 7 — 0. An interesting feature of Figure
IV.4 is that the errors with ¢ = 0.1 (namely the triangle-marked black continuous line
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Weak error with T, = 272 and 1000 Monte Carlo
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Figure IV.4 — Weak error when pﬁv‘s is computed with AP Scheme 1 in the averaging regime,
with initial condition my = 1 and mesh size —;. The curves have slope 1.

and the red dash-dotted lines) have a significantly smaller error than with ¢ < 0.01. This
illustrates how the error increases when ¢ — 0, but the error is uniformly bounded in ¢
and d, since the error does not increase when ¢ is furthermore reduced.

IV.4.2 [Illustration in the diffusion approximation regime

In this section, we illustrates the AP property of Scheme 5 (introduced in Section IV.1 as
Scheme B).

Scheme 5 AP scheme in the diffusion approximation regime.
Jif = FET(f79)

fe,é
(1=2) 1+£fﬁl~k
i S — A
- M
n+1/2k 1- A<1+'L)\Ea,k>
7e.8 o
fn+1/2k - 1+z)\z-:akf 1+z/\sakMpn+1/2k
fn+1/2 = FFT™ (fn+1/2>
5 NG
MY = My — 05m) 4 + 0% g

76 7(5
fzﬂ = eXP(Tm5n+1)fZ+1/2

Scheme 5 is a Lie-Trotter splitting scheme based on the AP schemes (IV.3.5) for the
deterministic part and (IV.3.10) for the stochastic part. Its limiting schemes are the
splitting schemes obtained with the limiting schemes of (IV.3.5) and (IV.3.10).

We can design a non AP scheme for the stochastic part by changing the discretization
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of f2. As for (IV.3.10), the scheme

n+1 - f(s + TTnn—i—lf(5
. = (IV.4.1)

me+1 = me - gﬁmn+1 + g?’yngv
converges to the limiting scheme
n n g n
J7 = VTS (IV.4.2)

which is consistent with df (t) = fQdW (t) with an Itd interpretation of the noise, which
differs from the Stratonovich interpretation in the limiting equation (IV.3.11). The scheme
(IV.4.1) is thus not AP even though it is consistent at fixed . We deduce Scheme 6, a
non AP splitting scheme based on (IV.3.5) and (IV.4.1).

Scheme 6 Non AP Scheme in the diffusion approximation regime.
fe ,0 FFT( fs ,0 )

fs,é
n,k
(1)\)<1+i)\aak>
0 = N
n+1/2k 1- )\<1+L/\eak>
7e,6 o
f“+1/2 k- 1+2)\aa kf 1+z/\£a kMpn+1/2 k

fn+1/2 = FFT™ (fn+1/2>
mfz+1 m - 9 2 n+1 + ‘7\5/2;7719

)
foi1 = fn+1/2 + f +1/27-m +1

For the numerical experiments below, the reference scheme for the limiting equations
(IV.2.7), (IV.2.8) and (IV.2.9) is obtained using finite differences to discretize div(KVp) =
02p and an explicit Euler-Maruyama scheme to discretize pQ/? o dW (t) expressed in Ito
form (see (IV.2.3).

For the numerical experiments below, the coefficients of the fast components m? are
given by § = 1 and o = 2. The dependence in the space variable 2 of m® is given by
g(z) = 2 + sin(2rx + 1). The initial conditions are given by m°(0,z) = Meg(x) and
f(0,z,v) = (2 + v) sin(2wz), with my = 1 or my = 10. We fix a short final time 7" = 0.1
and a large mesh size, 1/32 or 1/64, because of the CFL condition on the reference scheme,
to avoid a too large number of time step.

Recall that we consider d = 1, V = {+1}, p({1}) = p({-1}) = %, a(v) = v and
M(v) = 1. As a consequence, (IV.1) yields K = 1.

Qualitative experiments in the regime ¢ — 0

When § is fixed and € — 0, Scheme 5 converges to Scheme 7.
Figure IV.5 represents the evolution of H pf{‘sH ;> as a function of the time ¢, (Figure

IV.5a) as well as the final time p5° as a function of the space variable z (Figure IV.5b),
both for the AP Scheme 5 and its limiting Scheme 7. It illustrates the convergence of
the scheme to its limiting scheme when ¢ — 0, as well as the consistency of this limiting
scheme with the solution of the limiting equation. Thus, it illustrates the AP property
for this scheme when ¢ — 0. Recall that since 0 is fixed and the deterministic part is AP,
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Scheme 7 Limiting scheme of Scheme 5 when ¢ — 0.
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(a) Evolution of [p5°],, and |3 . as a func- (b) Final value p5° () and pd () as a function
tion of ,, with mesh size 3% of x with mesh size 6%1.

Figure IV.5 — AP Scheme 5 and its limiting Scheme 7 in the diffusion approximation
regime when ¢ — 0 for fixed §, with initial condition mg = 10.
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we expect this convergence for any consistent scheme for the stochastic part, and the AP
(or non AP) property of the stochastic part does not come into play. Hence, we do not
illustrate the same property for the non AP Scheme 6.

Qualitative experiments in the regime 6 — 0

When ¢ is fixed and § — 0, AP Scheme 5 converges to Scheme 8 and non AP Scheme 6

Scheme 8 Limiting scheme of the AP Scheme 5 when § — 0.

A~

FoFET(E)
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Prijank = Tl

1/2,k — M

n+ / ’ 1_>\<1+i)\5a~k>

fe _ _1=X Fe A M
fn+1/27k T 1+ideak/nk + 1+Msa-kMpn+l/2,k

f7i+1/2 = FFT_l( 761+1/2)
fre = eXP(%\ﬁ%Q)ﬁzH/Q

converges to Scheme 9.

Scheme 9 Limiting scheme of the non AP Scheme 6 when § — 0.

~

fr=FFT(f3)

e
n,
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1/ 7
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Figure V.6 represents the evolution of H pff” ;2 as a function of the time ¢, for AP
Scheme 5 and its limiting Scheme 8 (Figure IV.6a) and for non AP Scheme 6 and its
limiting Scheme 9 (Figure IV.6b). In both cases, it illustrates the convergence of the
scheme to its limiting scheme when § — 0. Figure [V.7a also illustrates the consistency
of the limiting Scheme 8 with the limiting equation, and therefore the AP property for
Scheme 5 in this regime. On Figure [V.7b, the limiting Scheme 9 is not consistent with
the limiting equation, illustrating that Scheme 6 fails to capture the correct noise in the
limiting equation (IV.2.9), and is therefore not AP.

Figure IV.7 represents the value of the solution at the final time pf\’;s(x) as a function
of the space variable = for the AP Scheme 5 and its limiting Scheme 8 (Figure 1V.7a)
and for non AP Scheme 6 and its limiting Scheme 9 (Figure IV.7b). Like Figure IV.6, it
illustrates the convergence of the schemes to their limiting schemes when 6 — 0, as well
as the AP property of Scheme 5 and the non AP property of Scheme 6. In Figure IV.7a,
the small difference between the reference scheme and the limiting scheme is due to the
step-size 7. Figure [V.7b illustrates once again how Scheme 6 fails to capture the correct
interpretation of the noise in the limiting equation (IV.2.9).
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Figure IV.6 — Evolution of | p5° | ;2 and |pf ;> for AP and non AP schemes in the diffusion
approximation regime as a function of ¢,, when § — 0 for fixed e, with initial condition
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Figure IV.7 - Final value p5° () and p5 () for AP and non AP schemes in the diffusion
approximation regime as a function of x when § — 0 for fixed ¢, with initial condition

mo = 10 and mesh size é.



Qualitative experiments in the regime ¢ =6 — 0

When ¢ = § — 0, AP Scheme 5 converges to Scheme 10 and non AP Scheme 6 converges
to Scheme 11.

Scheme 10 Limiting scheme of the AP Scheme 5 when ¢ = § — 0.
ﬁn = FFT(IOn)
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~ _ Pn,k
Pn+1/2,k = 1+7((a-k)2M)
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Scheme 11 Limiting scheme of the non AP Scheme 6 when € = § — 0.
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Figure IV.8 — Evolution of | p5°| ;2 and [p| > for AP and non AP schemes in the diffusion
approximation regime as a function of ¢, when ¢ = § — 0, with initial condition mg = 10

and mesh size é

Figure IV.8 represents the evolution of H pff” ;2 as a function of the time ¢, for AP
Scheme 5 and its limiting Scheme 10 (Figure IV.8a) and for non AP Scheme 6 and its
limiting Scheme 11 (Figure IV.8b). In both case, it illustrates the convergence of the
scheme to its limiting scheme when € = § — 0. Figure IV.8a illustrates the consistency
of the limiting Scheme 10 with the limiting equation, and therefore the AP property for
Scheme 5 in this regime. On Figure [V.8b, the limiting Scheme 11 is not consistent with
the limiting equation, illustrating that Scheme 6 fails to capture the correct noise in the
limiting equation (IV.2.8).

Figure V.9 represents the final time ,0;’,6 as a function of the space variable = for
AP Scheme 5 and its limiting Scheme 10 (Figure IV.9a) and for non AP Scheme 6 and
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Figure IV.9 — Final value p3’(z) and py(x) for AP and non AP schemes in the diffusion
approximation regime as a function of x when ¢ = § — 0, with initial condition mq = 10

and mesh size é.

its limiting Scheme 11 (Figure IV.9b). Once again, it illustrates the convergence of the
schemes to their limiting schemes when ¢ — 0, as well as the AP property of Scheme
5 and the non AP property of Scheme 6, since the reference value is computed using a
reference scheme with the same time-step size. As in Figure [V.9a, the small difference
between the reference scheme and the limiting scheme is due to the step-size 7. Figure
[V.9b illustrates how Scheme 6 fails to capture the correct noise in the limiting equation
(IV.2.8) and is therefore not AP.

Numerical analysis of the weak error

In this section, we investigate the weak error

E [0 ~Ee(o™ (1))

of Schemes 5 and 6.

We use a Monte-Carlo method to approximate both expectations and the aforemen-
tioned reference scheme with 7,f = 27'2 to approximate p=°(7). The number of samples
used in the Monte-Carlo method is 1000. Since this number is relatively small, we reduce
the variance of the Monte-Carlo by using the same noise v, with 7 and 7.

The test function is given by ¢ = |||,

Figure V.10 illustrates the weak error when 7 — 0 for different values of ¢ and 4
for both the AP and the non AP scheme. The color and the style of the line represents
the considered asymptotic (¢ — 0 is in blue dashed lines, § — 0 in red dash-dotted lines
and € = 0 — 0 is in black continuous lines), while the marker determines the order of
magnitude of the parameter that goes to 0 (0.1 is marked by triangles, 0.01 by squares
and 0.001 by circles).

One can check that the error goes to 0 when 7 — 0. The error in the AP scheme varies
with the parameters but is uniform with respect to € and 6. However, the error in the
non AP scheme heavily depends on the parameters, which illustrates the non AP property.
Note that in the regime e — 0 for fixed 6 = 0.1 (corresponding to the triangle-marked black
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Figure IV.10 — Weak error when p%’ is computed with AP Scheme 5 or non AP Scheme 6

in the diffusion approximation regime, with initial condition my = 1 and mesh size 6—14.
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continuous line and the blue dashed lines), the error is uniform in . This illustrates that
in this regime, the scheme is AP. Indeed, only the deterministic part (IV.3.1) converges
and the deterministic step in the splitting non AP scheme (6) is AP.

IV.5 Conclusion

In this chapter, we have studied a general notion of asymptotic preserving schemes, related
to convergence in distribution or in probability, for a class of SPDE systems in averaging
and diffusion approximation regimes. We have illustrated how the splitting procedure
allows to design an AP scheme for an SPDE that is sum of a PDE part and a SDE part,
starting from AP schemes for each of these parts. Even though we focused on a implicit
scheme written in the Fourier space for the PDE part, we are confident that numerical
experiment would have the same result if one uses another AP scheme (given for instance
in [Hiv18]).

A limitation of our study is the fact that the fast component is an Ornstein-Uhlenbeck
process: even if the general theory of AP schemes described in Section II11.3.1 holds in
more general settings, the construction of implementable AP schemes (such as the ones
described in Sections 111.3.2 and I11.3.3) is not straightforward if for instance the fast
component is solution of a general ergodic SDE with nonlinear coefficients.

It would also be worth investigating the case where the fast component depends on the
slow component, for example if g; = g;(p(t, x)) or if the parameters 6;, o; and 7, depend
on p(t,-).

We have also left open the question of obtaining the error estimates as in the SDE case
presented in Chapter 11, as well as a more precise form of stability, for instance by getting
L? moments uniformly with respect to the time-step size. Studying the convergence rate
from a numerical point of view requires more efficient implementations of our schemes.

Finally, one could investigate the case when the source term d*m?® f* is replaced by
a forcing term §%'m? - V, f&%, where we expect &' = 2 in the diffusion approximation
regime and x" = 1 in the averaging regime. This model has already been studied from a
theoretical point of view [DV20], but to the best of our knowledge, there exists no AP
schemes for such kinetic stochastic PDEs. A splitting-based approach similar to what we
did in this chapter should give good results.
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Theoretical and numerical study of multiscale stochas-
tic kinetic equations

Abstract: In this thesis, we study a class of slow-fast systems modeled
by kinetic linear Stochastic Partial Differential Equations (SPDEs) or
Stochastic Differential Equations (SDEs). We study these systems from
theoretical and a numerical points of view in two asymptotic regimes: the
averaging regime and the diffusion approximation regime.

The first two chapters state the main theoretical contributions of this
work. We prove the convergence of the slow component of the considered
SPDESs to the solution of a diffusion equation with a source term depending
on the asymptotic regime. The first chapter focuses on the diffusion
approximation regime, where the source term of the limiting equation is a
stochastic diffusive term (Wiener process). The second chapter focuses on
the averaging regime, where the limiting source term is the average of the
original source term.

The last two chapters are devoted to the numerical part of this work. In
general, a numerical scheme which is consistent with a multiscale system
for a fixed parameter € > 0 can perform badly in the asymptotic regime
e — 0 due to the presence of stiff terms in the model. On the contrary,
some schemes are asymptotic preserving: they are consistent for fixed € > 0,
converge to some limiting schemes when ¢ — 0 and the limiting scheme is
consistent with the limiting equation. The goal of the last two chapters
is to design asymptotic preserving schemes, respectively for the class of
SDEs and SPDEs we consider. We also analyze these schemes and illustrate
numerically their efficiency.

Keywords: kinetic equations, slow-fast systems, Stochastic Differential
Equations, Stochastic PDEs, diffusion approximation, averaging principle,
multiscale methods, Asymptotic Preserving schemes
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Résumé: Cette these est dédiée a 1’étude d’une classe de systemes multi-échelles mod-
élisés par une Equation aux Dérivées Partielles Stochastique (EDPS) linéaire cinétique ou
une Equation Différentielle Stochastique (EDS). On étudie ces systemes d’'un point de vue
théorique et numérique, dans deux régimes asymptotiques : le régime de moyennisation
et le régime d’approximation-diffusion.

Les deux premiers chapitres énoncent les principaux résultats théoriques de cette these.
On montre a chaque fois la convergence de la composante lente du systeme d’EDPS
considéré vers la solution d’une équation de diffusion munie d’un terme source qui
dépend du régime asymptotique. Dans le premier chapitre, on considere le régime
d’approximation-diffusion, dans lequel le terme source de I’équation limite est un terme
diffusif au sens probabiliste (processus de Wiener). Dans le deuxiéme, on considere le
régime de moyennisation, dans lequel le terme source de I’équation limite est la moyenne
du terme source de 'EDPS originale.

Les deux derniers chapitres constituent la partie numérique de cette these. De maniere
générale, un schéma numérique peut étre consistant avec un systeme multi-échelle a un
parametre € > 0 fixé mais se révéler inefficace dans le régime asymptotique € — 0, a cause
d’un terme raide dans le modele. A I'opposé, certains schémas préservent 1’asymptotique
. ils sont consistants a € > 0 fixé, convergent vers un schéma limite quand € — 0 et ce
schéma limite est consistant avec 1’équation limite. Le but des deux derniers chapitres
est de proposer, respectivement pour les EDS et les EDPS considérées, des schémas
préservant I’asymptotique, de les étudier et d’illustrer numériquement leur efficacité.

Mots clés: équations cinétiques, Equations Différentielles Stochastiques, EDP Stochas-
tiques, approximation-diffusion, principe de moyennisation, méthodes multi-échelles,
schéma préservant ’asymptotique

Theoretical and numerical study of multiscale stochastic kinetic
equations

Keywords: kinetic equations, slow-fast systems, Stochastic Differential Equations,
Stochastic PDEs, diffusion approximation, averaging principle, multiscale methods,
Asymptotic Preserving schemes
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