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EXTENDED ABSTRACT 
 
Extrapolation from lab to industrial scale is challenging when dealing with gas-particles flows 
encountered in Circulating Fluidized Bed (CFB) processes and technologies. Extrapolation 
relates in a first step, to the understanding of physical phenomena at accessible scales through 
dedicated and focused experiments. In a second step, modeling is often used to transpose 
observation from lab scale to an industrial perspective. In my Ph.D. project, we present how 
Computational Fluid Dynamic (CFD) tools can be used for both steps with first the 
characterization of local phenomena which allows a better understanding of lab scale 
experiments in a context of attrition phenomena extrapolation. Second, we present how CFD 
tools can be used for the scale extrapolation of hydrodynamic phenomena through a relevant 
simulation strategy.  
 
Concerning the first topic, it is essential in the early stage of the process development, to 
quantify attrition phenomena expected at industrial scale when selecting the solid particles to 
be used. Indeed, attrition can first be the cause of particles circulation problems, and second it 
can induce important particle inventory losses which may then impact the process economics. 
We faced this situation during the development of the Chemical Looping Combustion (CLC) 
process where little information is available concerning long term operation of the oxygen 
carrier particles used in this process. In our work, we propose a new procedure using a jet cup 
apparatus to compare the mechanical resistance to attrition of particles used in the CLC 
process under development with particles used in the Fluid Catalytic Cracking (FCC) process 
(hundreds of units in operation for more than seventy years). The latter is then used as a 
reference since attrition data are available both at lab and industrial scales for FCC catalyst. In 
this study, we use CFD tools for the understanding of local physical phenomena in our testing 
apparatus to then orientate the experimental strategy to assess and compare the mechanical 
resistance to attrition of the different powders of interest in a context of early stage 
extrapolation. Experimental results confirmed the findings from the CFD simulations with the 
attrition rate being dependent on the initial particles volume implemented in the jet cup. The 
experimental methodology was then applied on three solids (equilibrium FCC catalyst, fresh 
and equilibrium oxygen carriers). The results obtained showed that the fresh and equilibrium 
oxygen carriers performed respectively better and worse than the reference FCC catalyst. The 
effect of the CLC process conditions on the mechanical resistance of the particles considered 
was therefore clearly emphasized by the test. This experimental procedure can therefore be 
used in the future to evaluate the mechanical resistance of other oxygen carriers and evaluate 
also the effect of the CLC process conditions on the particles mechanical structure. Finally, 
the main perspective is then to correlate lab scale experimentation with the main sources of 
attrition in circulating fluidized bed for finally implementing a population balance modeling 
to assess attrition at industrial scale as a function of precise design criteria. A PhD in 
partnership with the university of Leeds and Total was launched in 2015 to develop such a 
multi-scale approach with the use of CFD tools.  
 
Concerning the second topic with the use of CFD tools to extrapolate hydrodynamic 
phenomena in circulating fluidized beds, we propose a simulation strategy in order to assess 
the CFD models extrapolation capability and their potential limits in term of fluidization 
regimes representativeness. For this purpose, different experimental set ups were used with 
first a 20 cm turbulent fluidized bed to characterize different gas injection configurations, 
second a 90 cm turbulent fluidized bed where several gas superficial velocities were 
investigated and finally a 30 cm riser to characterize transport regime conditions. In the three 
experiments, FCC catalysts with similar physical properties were used in order to focus 



 

 
 

mainly on gas distribution, scale-up and fluidization regime effects. Local and global 
experimental flow characterizations were acquired. All the information collected was then 
used to evaluate CFD prediction of gas distribution, multi scale and operating conditions 
effects. Two CFD approaches were  evaluated with first the Multiphase Particle In Cell (MP-
PIC) approach with the software Barracuda VR® and second the Euler/Euler with the Kinetic 
Theory of Granular Flows (KTGF approach) using the open source software openFOAM. In 
the first simulation strategy steps we demonstrated that for both approaches, default 
parameters with the Gidaspow drag law failed predicting the 20 cm fluidized bed density and 
local solid volume fraction profiles. We therefore develop dedicated drag laws and boundary 
conditions to get satisfactory hydrodynamic predictions of the different 20 cm fluidized bed 
operating conditions. In the next simulation strategy step, the CFD model parameters 
developed from the 20 cm fluidized bed simulations were applied for the 90 cm fluidized bed 
simulation. This step was crucial since it was a differentiator between both approaches with 
the parameters developed for Barracuda VR® failing to predict the bed hydrodynamic while 
the parameters developed for openFOAM predicted well the change of bed density and the 
particles entrainment trends for the different superficial gas velocities simulated. This step is 
therefore essential since it justifies the evaluation of CFD models at different scales and it also 
shows that CFD can be used for extrapolation. In the last simulation strategy step, the 
openFOAM modeling parameters developed were then applied for the simulation of the riser 
transport regime. The simulation failed capturing the riser pressure drop and local solid flux 
profiles. A dedicated drag law was then developed to capture reasonably well these riser 
experimental data. This last step shows that the drag models developed are fluidization regime 
dependent and it is therefore important to investigate the limits of the models developed. For 
the perspectives of this work, the same simulation strategy could be developed against a wider 
set of experimental data in term of fluidized bed characterizations (bubbling structures, 
mixing and local velocities characterization) as well as in term of fluidization regimes 
(minimum fluidization to transport regime). Other extrapolation parameters to industrial 
conditions such as pressure and temperature could be investigated following a similar strategy 
developed in this work with the final objective being to simulate an industrial size Circulating 
Fluidized Bed.  
 
KEYWORDS –  
 
Extrapolation, Circulating Fluidized Beds, Computational Fluid Dynamic, attrition, 
hydrodynamic.  
  



 

 
 

RESUME ETENDU 
 

L’extrapolation de l’échelle laboratoire à l’échelle industrielle est un réel challenge pour les 
écoulements gaz-particules rencontrés dans les procédés et technologies en lit fluidisé 
circulant. L’extrapolation consiste dans une première étape à la compréhension des 
phénomènes physiques à des échelles accessibles basée sur des expérimentations dédiées. 
Dans une deuxième étape, la modélisation est souvent utilisée pour transposer les 
observations effectuées à échelle laboratoire à une perspective industrielle. Dans mon projet 
de thèse, nous présentons comment les outils de simulation numériques des écoulements 
(CFD) peuvent être utilisés dans ces deux étapes. En effet, dans une première étude nous 
avons employé la CFD pour la caractérisation et la compréhension d’une expérimentation afin 
d’orienter notre procédure expérimentale dans un contexte d’extrapolation des phénomènes 
d’attrition. Dans une deuxième étude, nous présentons comment les outils CFD peuvent être 
utilisés pour l’extrapolation des phénomènes hydrodynamiques à travers une stratégie de 
simulation pertinente.   
 
Concernant la première étude, il est essentiel dans les premières étapes d’un développement 
de procédé en lit fluidisé circulant, de quantifier l’attrition à l’échelle industrielle des 
particules sélectionnées. En effet, les phénomènes d’attrition peuvent être à l’origine de 
problème de circulation dans l’unité mais peuvent aussi générer des pertes d’inventaire qui 
vont impacter directement les coûts de fonctionnement du procédé. Nous avons rencontré ce 
type de problématique lors du développement du procédé de combustion en boucle chimique 
(CLC) pour lequel peu d’informations sont disponibles concernant les opérations sur le long 
terme des particules porteuses d’oxygène utilisées dans le procédé. Dans notre travail, nous 
proposons une nouvelle méthode utilisant un dispositif expérimental caractéristique de 
l’attrition appelé « Jet Cup » pour comparer la résistance mécanique des particules utilisées 
dans le procédé CLC avec les particules utilisés dans le procédé de craquage catalytique FCC 
pour lequel des centaines d’unités industrielles sont en opération depuis plus de 70 ans. Les 
particules de FCC sont donc utilisées comme référence puisque des données d’attrition sont 
disponibles aussi bien à l’échelle de laboratoire qu’à échelle industrielle. Dans cette étude, 
nous avons utilisé les outils CFD pour la caractérisation et la compréhension de l’écoulement 
dans notre dispositif expérimental afin d’orienter notre stratégie de test pour la comparaison 
de l’attrition générée sur les différentes types de particules d’intérêts. Les résultats 
expérimentaux ont ensuite confirmés les conclusions de l’étude CFD avec une attrition 
générée dans le test proportionnelle au volume initial de particules inséré. La méthodologie 
expérimentale développée a ensuite été appliquée sur trois types de particules (un catalyseur 
d’équilibre FCC, un porteur d’oxygène frais et un porteur d’oxygène d’équilibre). Les 
résultats montrent que les porteurs d’oxygène frais et d’équilibre ont respectivement une 
meilleure et moins bonne performance comparés au catalyseur FCC de référence. Les effets 
des conditions opératoires du procédé CLC sur la résistance mécanique des particules ont 
donc été clairement mis en avant par notre procédure expérimentale. Celle-ci peut donc être 
utilisée dans le futur pour évaluer d’autres porteurs d’oxygènes ainsi que les effets des 
conditions opératoires du procédé sur les particules. La principale perspective de ce travail est 
la corrélation des phénomènes d’attrition sur pilote dédié aux phénomènes d’attrition générés 
par les principales sources dans les procédés en lit fluidisé circulant (cyclone, jet) afin 
d’implémenter un modèle de population pour la prédiction quantitative de l’attrition dans les 
unités industrielles. Une thèse a été lancée en 2015 en partenariat avec Total et l’université de 
Leeds pour développer une telle approche multi-échelle.  
 
Dans la deuxième étude sur l’utilisation des outils CFD pour l’extrapolation des phénomènes 
hydrodynamiques en lit fluidisé circulant, nous avons proposé une stratégie de simulation afin 



 

 
 

d’évaluer les capacités d’extrapolation des modèles CFD et aussi d’évaluer leurs potentielles 
limites en terme de représentativité des différents régimes de fluidisation. Pour cela, 
différentes expérimentations ont été utilisées avec premièrement un lit fluidisé turbulent de 20 
cm de diamètre pour la caractérisation de différentes configuration d’injection gaz, 
deuxièmement un lit fluidisé turbulent de 90 cm de diamètre avec lequel différentes vitesses 
superficielles de gaz ont été étudiées et troisièmement un riser de 30 cm de diamètre pour la 
caractérisation du régime de transport des particules. Dans toutes les expérimentations, des 
catalyseurs FCC avec des propriétés physiques similaires ont été utilisés afin de se concentrer 
uniquement sur les effets de distribution gaz, d’échelle et de régime de fluidisation. Des 
données de caractérisation locale et globale des écoulements ont été recueillies. Toutes ces 
données sont ensuite utilisées pour évaluer la capacité des modèles CFD à prédire les 
différents effets mentionnés auparavant (distribution gaz, échelle et régime de fluidisation). 
Deux approches CFD ont été évaluées avec tout d’abord l’approche « Multiphase Particle in 
Cell » (MP-PIC) et le logiciel Barracuda VR® et deuxièmement une approche Euler/Euler 
avec la théorie cinétique des écoulements granulaires (KTGF) en utilisant le logiciel open-
source openFOAM. Dans la première étape de notre stratégie, nous avons démontré que les 
paramètres par défaut des deux approches, en utilisant la corrélation de Gidaspow pour la 
force de traînée, échouent à prédire l’hydrodynamique du lit fluidisé turbulent de 20 cm. Nous 
avons donc développé pour chaque approche un modèle de force de traînée et des conditions 
limites spécifiques pour obtenir des prédictions satisfaisantes de l’hydrodynamique du lit 
fluidisé de 20 cm pour les différentes configurations d’injection gaz étudiées. Dans l’étape 
suivante, les modèles CFD développés à partir des simulations du lit fluidisé turbulent de 20 
cm ont été appliqués pour la simulation du lit fluidisé turbulent de 90 cm. Cette étape est 
fondamentale puisqu’elle a permis de mettre en évidence la différence entre les deux modèles 
CFD utilisés ; les prédictions de Barracuda VR® ont échoué à prédire l’hydrodynamique du lit 
alors que les simulations openFOAM arrivent à prédire quantitativement l’évolution de la 
masse volumique du lit en fonction de la vitesse superficielle de gaz dans le lit et que la 
tendance de l’entrainement des particules est qualitativement prédite. Cette étape est donc 
essentielle puisqu’elle justifie l’évaluation des modèles CFD à différentes échelles et qu’elle 
démontre aussi la possibilité ou non de prédire les effets d’extrapolation avec ces outils. Dans 
la dernière étape de notre étude, le modèle CFD développé avec le logiciel openFOAM a été 
appliqué pour la simulation du régime de transport des expérimentations riser. Les résultats 
obtenus sont insatisfaisants avec une sous-estimation importante de la perte de charge dans le 
riser et des profils locaux de flux solide différents de ceux mesurés. Une nouveau modèle 
corrélatif de force de traînée a ensuite été développé avec une prédiction satisfaisante des 
paramètres expérimentaux étudiés. Cette dernière étape démontre donc que les modèles de 
traînées développés dans cette étude sont dépendants du régime de fluidisation simulé et qu’il 
est donc important d’étudier et d’évaluer les limites de ces modèles. Pour les perspectives de 
cette étude, une stratégie de simulation similaire pourrait être développée basée sur une base 
de données élargies en terme de caractérisation expérimentale de l’hydrodynamique des lits 
fluidisées (structure gaz, mélange particules/gaz, caractérisation des vitesses locales) mais 
aussi en terme de régime de fluidisation (minimum de fluidisation jusqu’au transport de 
particules). D’autres paramètres d’extrapolation aux conditions industrielles telles que les 
effets de pressions et de température pourraient être étudiés en utilisant une stratégie de 
simulation similaire avec pour objectif final de simuler un réacteur industriel en lit fluidisé 
circulant. 
 
MOT CLES –  
 

Extrapolation, lit fluidisé circulant, Simulation numérique des écoulements, attrition, 
hydrodynamique. 
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LATIN LETTERS 

SYMBOL DESCRIPTION UNITS 𝐴𝐻 Hamakar constant for the calculation of the Van Der Walls force  

AORIFICE Valve orifice surface m2 
Ar Archimede number  𝐵𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 Initial attrition generated characteristic constant  
C Smagorinsky Barracuda VR® coefficient  𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 Attrition rate characteristic constant  
Cd Valve orifice coefficient  𝑑𝑏(𝑧) Bubble diameter at height z in the bed m 𝑑𝑏_𝑀𝐴𝑋𝐼𝑀𝑈𝑀  Maximum bubble diameter m 𝑑𝑝 Particle diameter m 𝑑𝑝,𝑖 Particle diameter of the class i m 𝑑𝑝,50 Particle distribution mean diameter m 𝑑𝑝,𝑠𝑣 Particle distribution Sauter diameter m 𝑑𝑃𝑑𝑧  Pressure gradient over a height dz Pa.m-1 𝑒𝑠  coefficient of restitution for particles collisions  𝐸𝑟 total particle entrainment rate kg.m-2s-1 𝐸𝑖∞ Entrainment rate of particles having a diameter dp,i kg.m-2s-1 𝑓𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑗𝑒𝑡 Averaged particles contacting frequency with the jet s-1 

f(x,up,m,t) Probability function in the MP-PIC approach  

F 
Mass fraction of particles lower than 45 microns in the 

Abrahamsen correlation for the minimum bubbling gas velocity 
 

Fr Froude number  
Frt Froude number with particle terminal velocity  
Fs Solid flowrate through valve kg/s 𝐹𝑣𝑝_𝑗𝑒𝑡 Global volume flux of particles circulating in the jet m3s-1 𝐹𝑉𝑊 Van der Walls force N 𝑔 Gravitational acceleration m.s-2 𝑔0,𝑠 radial distribution function  𝐺𝑠 Particles mass flux kg.m-2.s-1 𝐻 Bed height m 𝐻𝑚𝑓 Bed height at minimum of fluidization m 

i Particle class number  
k kinetic turbulent energy m2s-2 𝐾𝑑 Drag coefficient  𝐾𝑑_𝑑𝑒𝑓𝑎𝑢𝑙𝑡 Default Drag coefficient  𝐾𝑑_𝑀𝑈𝐿𝑇𝐼𝑃𝐿𝐼𝐸𝑅 Drag coefficient with multiplier  



 

 

n number of classes of particle diameters in the fluidized bed  

N 
Number of holes per square meter of distributor in the Darton 

correlation 
m-2 

P Pressure Pa 
PC_1 Particle contacting frequency with the air jet s-1 

PC_tracer Particle tracer contacting frequency with the jet s-1 
Ps Solid pressure Pa 𝑃𝑠,𝐾𝑇𝐺𝐹   Solid pressure from Kinetic Theory of Granular Flow Pa 𝑃𝑠,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙   Frictional solid pressure Pa (𝑅𝑒)𝑐 Particulate Reynold number at turbulent fluidization  𝑅𝑒𝑝  Particulate Reynold number  𝑅𝑒𝑝,𝑚𝑓 Particulate Reynold number at minimum of fluidization  𝑆𝑃𝑎𝑡𝑖𝑐𝑙𝑒𝑠 Surface of particles m2 

TDH Transport Disengaging Height m 
Uannular to 

homogeneous 

Gas superficial velocity at the transition between annular to 
homogeneous regime in transport conditions 

m.s-1 𝑈𝑐 , 𝑈𝑘 Superficial gas velocities characteristic of the turbulent regime m.s-1 𝑈𝐶ℎ𝑜𝑐𝑘𝑖𝑛𝑔 Gas superficial velocity at chocking conditions m.s-1 𝑈𝑚𝑏 Gas superficial velocity at minimum bubbling conditions m.s-1 𝑈𝑚𝑓 Gas superficial velocity at minimum fluidization conditions m.s-1 𝑈𝑠𝑔, 𝑉𝑠𝑔 Gas superficial velocity m.s-1 𝑢𝑚 
Velocity of phase m (m=g for the gas phase, m=s for the solid 

phase) 
m.s-1 𝑢𝑝  Particle cloud velocity in the MP-PIC approach m.s-1 𝑢′ Velocity fluctuations m.s-1 

Vsample Jet cup particle sample volume m3 𝑉𝑡  particle terminal velocity m.s-1 𝑉𝑜𝑙𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 Volume of particles m3 𝑥𝑐𝑙𝑜𝑢𝑑𝑛
 Clouds position at t in the MP-PIC approach m 𝑥𝑐𝑙𝑜𝑢𝑑𝑛+1  Clouds position at t+Δt in the MP-PIC approach m 𝑥𝑖 weight fraction of particles in fluidized bed having a diameter 

dp,i 
%wt 

z Height coordinate m 
 

  



 

 

 

GREEK LETTERS 

SYMBOL DESCRITPION UNITS 𝛷  specularity coefficient for particle wall collisions  θ𝑠  Granular temperature J/kg λ𝑠 Bulk viscosity kg/m.s 𝜏𝑚 Stress tensor of phase m (m=g for the gas phase, m=s for the solid phase) Pa 𝛼𝑚 
Volume fraction of phase m (m=g for the gas phase, m=s for the solid 

phase) 
 𝛼𝑠,𝑚𝑎𝑥  Maximum solid volume fraction  𝛼𝑠,𝑚𝑖𝑛 Minimum solid volume fraction for the particle frictional model  𝜌𝑚 Density of phase m (m=g for the gas phase, m=s for the solid phase) kg/m3 ∅𝑠  Particle sphericity  𝜇𝑔 Gas viscosity kg/m.s 𝜇𝑠 Solid viscosity kg/m.s 𝜇𝑠,𝑐𝑜𝑙  Solid viscosity due to particles collisions kg/m.s 𝜇𝑠,𝑘𝑖𝑛  Solid kinetic viscosity  kg/m.s 𝜇𝑡 Turbulent viscosity kg/m.s 𝛿 Distance between particles for the calculation of the Van der Walls force m 𝛽 Constant in the MP-PIC particles stress model  𝜀 kinetic turbulent dissipation rate m2s-3 𝜀𝑔 gas volume fraction  𝜀𝑠 solid volume fraction  ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒 Solid volume fraction in bubble phase of the fluidized bed  ε𝑠,𝑑𝑒𝑛𝑠𝑒  Solid volume fraction in dense phase of the fluidized bed  𝜀𝑚𝑓 Gas volume fraction at minimum of fluidization  𝜀𝑠,𝑚𝑓 Solid volume fraction at minimum of fluidization  𝜀𝑃𝑜𝑟𝑒𝑠 Volume fraction of pores inside the particles  𝜌𝐵𝐸𝐷 Fluidized bed density kg/m3 𝜌𝐵𝑢𝑙𝑘 Bulk density kg/m3 𝜌𝑃 Particle density kg/m3 𝜌𝑆𝑘𝑒𝑙𝑒𝑡𝑎𝑙 Skeletal density kg/m3 𝜌𝑆𝑡𝑎𝑛𝑑−𝑝𝑖𝑝𝑒 Stand-pipe density kg/m3 ∆𝑃 Pressure drop Pa 

t  Delta time s  
 

ABBREVIATIONS 

SYMBOL DESCRITPION UNITS 

CFD Computational Fluid Dynamic  

CFB Circulating Fluidized bed  

CLC Chemical Looping Combustion  

FCC Fluid Catalytic Cracking  

PSD Particle Size distribution  

TPGI Total Particles Generated Index wt% 
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INTRODUCTION 
 
 
Research and development dedicated to multiphase flow still faces challenging extrapolation/scale-up 
issues, especially in the field of energy where processes reach very large capacities and sizes to minimize 
production cost. Extrapolation relates to first the understanding of physical phenomena at accessible 
scales through dedicated and focused experiments. In a second step, modeling is often used to transpose 
observation from lab scale to an industrial perspective. Minimizing the risk of extrapolation is mandatory 
when developing processes both from an economical and technology feasibility point of view [1].  
 
Extrapolating is particularly difficult when dealing with gas-solid flows encountered in Circulating 
Fluidized Bed (CFB) processes and technologies. In this field, physical phenomena and corresponding 
reactor technologies are complex with regard to hydrodynamics, reaction kinetics, mass and heat transfers 
[2]. In my Ph.D. dissertation, two topics of interest regarding extrapolation of circulating fluidized beds 
are investigated with first the extrapolation of attrition phenomena and second the extrapolation of 
hydrodynamic phenomena.  
 
Concerning the first topic, it is essential in the early stage of the process development, to quantify attrition 
phenomena expected at industrial scale when selecting the solid particles to be used. Indeed, attrition can 
first be the cause of particles circulation problems, and second it can induce important particle inventory 
losses which may then impact the process economics. We faced this situation during the development of 
the Chemical Looping Combustion (CLC) process [3] where little information is available concerning 
long term operation of the oxygen carrier particles used in this process. In our work, we propose a new 
procedure using a jet cup apparatus [4] to compare the mechanical resistance to attrition of particles used 
in the CLC process under development with particles used in the Fluid Catalytic Cracking (FCC) process 
(hundreds of units in operation for more than seventy years). The latter is then used as a reference since 
attrition data are available both at lab and industrial scales for FCC catalyst. In this study, we use 
Computational Fluid Dynamic (CFD) tools for the understanding of local physical phenomena in our 
testing apparatus to then develop a relevant experimental strategy to assess and compare the mechanical 
resistance to attrition of the different powders of interest in a context of early stage extrapolation.  
 
The second part of this PhD project explores extrapolation of hydrodynamic phenomena encountered in 
fluidized bed systems using CFD. Indeed, CFD tools are increasingly used for the understanding, the 
development, and the extrapolation of processes and technologies [5]. However, concerning CFD for 
circulating fluidized beds, modeling the fundamental gas-particles and particles-particles interactions 
phenomena still remain challenging [6,7]. We therefore, face a situation where CFD tools are essential for 
extrapolation purposes [8,9], but their prediction capacities need to be evaluated for each configuration 
simulated in order to check the validity and put into perspectives the simulation results. When using CFD 
for extrapolation, it is therefore important to investigate if CFD tools predictions can capture scaling up 
effects. Indeed, most of the CFD developments found in the literature focus on the simulation of a 
specific equipment with a rather narrow range of operating conditions [10–13]. Then authors investigate 
the modeling of different phenomena such as the gas/particles, particles/particles and wall/particles 
interactions with effects of mesh refinement on their simulation results. There is however, no precise 
characterization against experimental data concerning the use of a CFD model, developed from 
experiments at a given scale, for the simulation at larger scales where larger mesh cell sizes have to be 
used because of computational power limitation. In my PhD research, I investigate this issue. For this 
purpose, we developed a specific simulation strategy focusing on Geldart Group A particles 
hydrodynamic. We used two CFD tools with first Barracuda VR®, which uses the MP-PIC approach [14] 
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and second the OpenFOAM solver “twoPhaseEulerFOAM” which uses a Euler/Euler approach [15]. We 
then followed our simulation strategy which consists in a first step to modify the code modeling 
parameters (gas/particles drag model and boundary conditions) to best match the experimental data from 
a specific experiment at specific operating conditions. It is important to point out that this first step 
corresponds to most of the study found in the literature. In the following steps, keeping the same CFD 
model parameters, simulations are then evaluated against experimental data of equipment at larger scales. 
We discovered that a code showing good prediction results at a given scale does not necessarily have the 
same prediction quality when used for larger scale simulations. It is therefore necessary to implement 
such a multi-scale evaluation step when using CFD for extrapolation purposes.  
 
The manuscript is organized as follow:  
 

- In the first chapter, the general context of this work is presented in a literature review with a 
presentation of the industrial processes which motivated these R&D efforts followed by a focus on 
circulating fluidized bed characterization and on CFD tools for gas/particles flow simulations. 
Extrapolation modeling tools are then presented and discussed. Finally, a focus on attrition 
phenomena is given. 

 
- In a second chapter, the study carried out on the evaluation of the attrition phenomena using a jet 

cup apparatus is presented. 
 

- Chapters 3 to 5 present the study on the hydrodynamic phenomena extrapolation using CFD tools. 
Chapter 3 present the simulation strategy developed in this work and the material and methods 
used to carry out this strategy. Chapter 4 presents the experimental results used to evaluate the 
CFD predictions and Chapter 5 actually shows the simulations results based on the simulation 
strategy. The conclusions and perspectives of this study are also presented in Chapter 5. 

 
A general conclusion with perspectives is finally presented. 
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I. LITTERATURE REVIEW 
 
 
The literature review presented in this chapter sets the global context of this PhD project and focuses on 
the main topics investigated with the extrapolation of particles attrition and hydrodynamic phenomena.  
 
The general context is first presented with a focus on the Circulating Fluidized Bed (CFB) processes 
which motivated our R&D efforts. Then, a literature review on hydrodynamic phenomena extrapolation is 
carried out, many of the items addressed being common with the topic on attrition phenomena 
extrapolation. A focus on the different fluidization hydrodynamic regimes and their characteristics is first 
carried out followed by a focus on the experimentation and measurement techniques for the 
characterization of CFB hydrodynamic. Computational Fluid Dynamic (CFD) approaches for 
gas/particles flow are then addressed in a dedicated chapter. Finally, the modeling of CFB for 
extrapolation purposed is investigated.  
 
Eventually, the topic of the attrition phenomena extrapolation is addressed in the last chapter of this 
literature review.  
 
Despite the large number of industrial CFB processes in operation for a very long time, and the extended 
amount of literature in the field of fluidization, it will be shown that there are still important efforts to 
conduct to improve the understanding and modeling of CFB systems for scale-up purposes.  
 

 Circulating fluidized bed processes 
 
Circulating Fluidized Beds (CFB) technologies are used in many industrial processes among various 
fields such as refining for the conversion of heavy feedstock [16], petro-chemistry with the ethylene and 
propylene polymerization [17], coal and waste combustion/ gasification [18], biomass pyrolysis for bio-
oil or bio-chemicals production [19]. 
 
In CFB technologies, the principle of fluidization is used. It consists in mixing particles with gas, the 
mixture of the two behaving as a pseudo fluid (more details are given in Chapter II-2). This technique 
presents many advantages from a process point of view: 
 

- First, it allows operating reactors with a high continuous catalyst circulation. It is therefore a great 
advantage when continuous regeneration of catalyst is necessary in a process.   

 
- Second, the particle mixing allows having an efficient heat transfer and therefore a good reactor 

temperature control which is crucial in case of highly exothermic reactions. Moreover particles 
can also be used as heat carrier between different sections of the process.  
 

- Finally, fluidization allows using fine particles with reasonable reactor pressure drops. The use of 
fine particles helps preventing diffusional limitations in the catalyst.  
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In this chapter, a focus is made on the two processes which motivated our R&D efforts presented in this 
PhD project: 
 

-  First, the Chemical Looping Combustion (CLC) process. It is a promising concept under 
intensive development for carbon dioxide (CO2) capture. The investigation presented in Chapter II 
is related to attrition prediction at industrial scale for this process. 
 

- Second the Fluid Catalytic Cracking (FCC) process. It is a well-known and established process in 
refining. The study presented in the second part of this PhD project deals with the use of 
Computational Fluid Dynamic (CFD) tools for circulating fluidized beds with FCC type of 
catalyst. 

 

 Chemical Looping Combustion (CLC) process 
 
The Chemical Looping Combustion (CLC) process is currently under development [3] in a context where 
carbon dioxide (CO2) emission reduction has become the main target to mitigate global warming. Indeed, 
in a context where CO2 emissions from fuel combustion has increased from 23.2 Gtons/year in 2000 to 
33.4 Gtons/year in 2018 [20], the International Energy Agency (IEA) [21] predicted the need for 
capturing over 7 Gtons/year of CO2 by 2050 in order to limit the earth global temperature increase below 
2°C.  
 
Different technologies can be considered to reduce CO2 emissions from fuel combustion in industrial 
applications with post-combustion, oxy-fuel combustion and pre-combustion systems. The CLC process 
is an oxy-combustion like technology with low energy penalty costs compared to other technologies [22]. 
It is therefore a promising concept even if technical challenges as well as economic issues still need to be 
solved in order to reach the industrial demonstration [3,22,23]. Several type of reactors have been 
considered for CLC going from fixed beds to fluidized beds systems [24]. For large scale applications 
such as power generation from coal combustion, fluidized bed technology is promising since it is already 
demonstrated at industrial scale with coal CFB boilers having large power generation [25]. Circulating 
fluidized bed technology has been therefore chosen by IFP Energies nouvelles and Total for their CLC 
development [3,22]. Figure I-2 presents the global concept of the process.  
 

 

Figure I-1: Scheme of the CLC process 

Depleted Air 
 (N2) 

 

Air Reactor 
(oxidation) 

 

Fuel Reactor 
(combustion) 
 

Metal oxide 

carrying O2 

 
Metal Oxide 

without O2 

Combustion Gas 
(CO2, H2O) 

Fuel 

Chemical Looping Combustion 

(CLC) 

Air 
  



CHAPTER I LITTERATURE REVIEW 

 5 

 
The process is divided into two main sections, the Air reactor and the Fuel reactor. Metal oxide particles 
circulate in a loop between the two sections where they get oxidized in the air reactor and become oxygen 
carriers. They are then separated from the depleted air, composed mainly of nitrogen, and sent to the Fuel 
Reactor where they bring the oxygen necessary for the combustion and then get sent back to the Air 
Reactor. Since only oxygen is used for combustion, the gas generated from the combustion is composed 
of CO2 and water and it is therefore not diluted in nitrogen (N2). The water can thus be easily separated by 
condensation and the CO2 compressed for storage. 
 
Different technical challenges can be pointed out for the development of this process [3]: 
 

- The first one is the limitation of the pressure drop in the Air Reactor since it is directly connected 
to the cost of the air compression and therefore the economics of the process. This issue has been 
investigated at IFP Energies nouvelles [26] in order to develop a model predicting the pressure 
drop in an air reactor.  
 

- The second one is the control of the particles circulation at high temperature where mechanical 
devices such as slide valves cannot be used. A possible alternative studied at IFP Energies 
nouvelles is the use of a non-mechanical L-Valve where gas injections control the particles 
circulation [27].  
 

- The third crucial point is the choice of the oxygen carrier particles. Many different oxygen carriers 
have been tested for the CLC process [28], the criteria of selection being the high conversion rates 
and reactivity, low rate of agglomeration, the resistance to the attrition phenomena and the cost of 
production.  

 
It is in the context of the oxygen carrier selection regarding its resistance to attrition that my work 
presented in Chapter III has been conducted.  
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 Fluid Catalytic Cracking (FCC) process 
 
Fluid Catalytic Cracking (FCC) is one of the most important conversion processes used in refineries all 
over the world. It is used for the conversion of heavy oil feedstock with high boiling temperature to 
produce gasoline, diesel and light olefins. In this process, a zeolite-based catalyst is used to crack the long 
hydrocarbon molecules of the feed; detailed information on the catalyst structure and the catalytic 
cracking reactions can be found in [29]. The FCC process has continuously evolved over the last 80 years 
going from a fixed bed technology to the current circulating fluidized bed technology [16,30]. It is now a 
key process in refineries and is used in more than half of them. Figure I-2 presents the scheme of a 
circulating fluidized bed FCC process. The feed is injected into the riser section of the reactor where it 
gets vaporized and cracked in contact with the zeolite-based catalyst. The cracking reactions deposit coke 
on the catalyst as a reaction by-product, which causes its deactivation. The deactivated catalyst is then 
sent to a regenerator where the coke on catalyst is burnt in contact with air and where part of the 
combustion heat is absorbed by the catalyst. Finally, the catalyst carries the heat generated by the 
combustion back to the reactor, where it is then consumed for the vaporization of the feed and the 
endothermic cracking reactions. 
 

 

Figure I-2: Scheme of the FCC process 
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The evolution toward heavier FCC feedstock as well as the complex hydrodynamic of gas / particles 
flows led to the development of dedicated technologies [31,32]. One example is the development of the 
R2RTM Resid FCC, concept developed to process feedstock with a high Conradson Carbon Residue [33]. 
This technology is developed and licensed by the FCC Alliance which comprises of Axens, TechnipFMC, 
Total and IFP Energies nouvelles (IFPEN), the schematic diagram is presented in Figure I-3. 
 

 

Figure I-3: Schematic diagram of a FCC alliance R2RTM Resid FCC unit 
 
As shown in Figure I-3, hot regenerated catalyst flows from the second stage regenerator to the riser 
bottom where it is contacted with finely atomized feedstock. At the riser top, a termination device called 
RS2 rapidly disengages vapor products from the catalyst to reduce further thermal and catalytic cracking. 
The spent catalyst then flows down a stripper section where it is contacted counter-currently with steam. 
Steam plays the role of fluidization and stripping media, strips the hydrocarbons from the catalyst before 
it leaves the stripper. The hydrocarbon stripped spent catalyst is then sent to the regeneration section to 
burn the coke deposit. The particular two stages regenerator configuration allows treating heavier 
feedstock compared to previous FCC units. The first regenerator operates in partial combustion mode 
with oxygen in default, it allows burning 50% to 70% of the coke on catalyst while limiting the heat 
generation. The rest of the coke is then burnt in a second stage regenerator in full combustion mode with 
oxygen in excess. Limiting the heat generation in the regeneration section for heavy feedstock is the key 
in order to maintain a reasonable catalyst circulation and a reasonable temperature in the reaction section.   
 
One can appreciate the complexity of the FCC process where the comprehension and characterization of 
the catalyst flow is essential in many different areas of the process: in the riser for an efficient feed 
vaporization, in the riser termination device for an efficient gas/particles separation, in the stripper for an 
efficient steam/catalyst contacting, in the transfer lines (stand-pipes) for a good pressure recovery and in 
the regenerator for an  efficient air/catalyst contacting leading to an efficient combustion. The main 
difficulties to better understand all this phenomena and to develop technologies are first the flow 
characterization at laboratory scale where it can be challenging to investigate gas/particles flows with 
local measurements (as discussed in Chapter I.3) and second the extrapolation of the laboratory results to 
the industrial scale and operating conditions. It is in this context of extrapolation for technology 
development that the work presented in Chapter IV has been conducted. 
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 Fluidization phenomena 
 
Fluidization consists in mixing gas and particles in order to give to the mixture the properties of a fluid. 
Indeed, when gas transfers to the particles enough momentum to compensate their weight and their 
internal friction forces, particles starts moving and the mixture behaves as a pseudo-fluid. 
 
Fluidization has been studied intensively already since 1930 with the development of the FCC process 
[30] and other processes then. The objective of this chapter is to present an overview of fluidization 
phenomena and their characterization. The reader will appreciate the difficulty of understanding and 
characterizing fluidization going from evaluating particles physical properties to then investigate 
fluidization regimes and phenomena such as the influence of fine particles content, pressure and 
temperature as well as particles clustering. Fluidization remains difficult to characterize with fundamental 
physical phenomena, the consequences being that empirical correlations are most of the time used to 
predict characteristics of interest. This chapter gives a non-exhaustive list of correlations to better 
illustrate this characterizing approach.  
 

 Characterization of particles 
 
The first and crucial step when dealing with fluidization of particles is the characterization of their 
physical properties. It is important to realize that powders used in fluidization are composed of a high 
number of dispersed particles. As an example, 100 grams of FCC catalyst has a number of particles in the 
order of 108. While it is relatively easy to characterize a single particle, it becomes complex and 
challenging to characterize a powder with a high number of particles having different properties such as 
the particle diameter and internal structure. Indeed, particles can have inner pores and interstices with 
complex structures that can vary and be influenced by the process operations.  
 
This chapter presents the main properties needed in order to describe the particles behavior to fluidization 
[34].  
 

2.1.1 Particle size distribution 
 
Particle Size Distribution (PSD) is a key parameter to describe the particles behavior to fluidization. 
Moreover, Grace et al. [35] also showed that PSD can affect the performances of fluidized bed reactors. 
Different techniques exist to measure PSDs as described by Allen [36]: 
 

- Mechanical sieving, which consist in separating the powder in different classes of diameter with 
different sieve sizes. 
   

- Optical measurements with laser diffraction techniques where the particles flow in front of a laser 
cell, the particles size changing the diffraction pattern obtained. 
 

- Coulter-counter measurements where particles flowing through an orifice of an electrode change 
the electrical intensity which allows getting a particle size distribution. 

 
Mechanical sieving is a robust technique which presents the advantage that no mathematical 
reconstruction is needed. However, the measurement accuracy depends of the number of sieve classes 
used and it can be difficult to apply such a technique for fine powders with cohesive particles (diameter 
lower than 100 microns) where optical measurements are preferred [2,37]. The laser diffraction is a 
technique relatively easy to use especially for fine powders. However the diffraction phenomena need to 
be modeled and the final result therefore depends on the model used for the PSD reconstruction. The 
Coulter counter technique is a good compromise in term of accuracy and signal reconstruction influence 
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since the particle diameter directly influence the electrical signal measured. However, its application can 
be long with the use of multiple electrode pore diameter to get the full range of the PSD.  
 
Once the PSD is measured different representative diameters can be defined: 
 

- The mean diameter Dp50 which is the diameter with 50% of the total particles being smaller in size 
and other 50% being larger.  
 

- The Sauter diameter dp,sv defined by Equation 1  
 𝑑𝑝,𝑠𝑣 = 1∑( 𝑥𝑖𝑑𝑝𝑖) Equation 1 

 
o where xi is the mass fraction of particles having a particle size dp,i. 

 
The Sauter Diameter is more representative of the smaller particle diameter classes of the distribution. To 
illustrate this concept, Figure I-4 presents two PSDs with the same mean diameter Dp50  of 80 microns.  
 

 
Figure I-4: Example of two Particle Size Distribution with the same mean diameter Dp50  but with 

different Sauter Diameter DpSV 

 
From Figure I-4, one can see the effect of fines particles for the second particle size distribution shown in 
red. Indeed the Sauter diameter is lower for this distribution due to the highest amount of fine particles 
compared to the first distribution shown in black. 
 
Finally, another important parameter of the Particle Size Distribution is the content of fine particles. For 
FCC catalyst, fine particles are typically defined for particles below 40 microns [4].  
 
To conclude, one can wonder if one representative diameter can fully characterized the powder behavior 
when fluidized. For example, in CFD simulations some approaches use a representative diameter which is 
often equal to the Sauter Diameter while other approaches consider different particle size classes. This 
topic is further discussed in Chapter I.4.  
  

0 20 40 60 80 100 120 140 160
0.00

0.02

0.04

0.06

0.08

0.10

0.12

DpSAUTER(2nd)=69 microns %
m

a
s
s

Particles Diameter (microns)

 1st 

 2nd DpSAUTER(1st)=75 microns 



CHAPTER I LITTERATURE REVIEW 

 10 

2.1.2 Densities 
 
Density is a physical property as important as the particle size distribution. Different densities have to be 
considered as shown in Figure I-5: 
 

- The bulk density corresponding to the mass of particles divided by the volume of the bed 
including the interstitial void between particles and the volume of particles with the pores. 
 

- The particle density corresponding to the mass of particles divided by the volume of the particle 
including the particles pores volume. 
 

- The skeletal density corresponding to the mass of particles divided by the volume of the particles 
without the pores volume. 
 

 

Figure I-5: Fluidization densities definition 
 
Equation 2 presents the relation between the different densities. 
 𝜌𝐵𝑢𝑙𝑘 = (1 − 𝜀𝑔)𝜌𝑃 = ((1 − 𝜀𝑔)(1 − 𝜀𝑃𝑜𝑟𝑒𝑠)𝜌𝑆𝑘𝑒𝑙𝑒𝑡𝑎𝑙 Equation 2 

 
With:  - 𝜀𝑔    Volume fraction of interstitial gas 

  - 𝜀𝑃𝑜𝑟𝑒𝑠  Volume fraction of pores inside the particles 
  - 𝜌𝐵𝑢𝑙𝑘  Bulk density 

- 𝜌𝑃 Particle density 
- 𝜌𝑆𝑘𝑒𝑙𝑒𝑡𝑎𝑙 Particle skeletal density 

 
For fluidization, bulk density and particle density are the main physical properties of interest for 
describing the gas/particles flows. Bulk density can be measured considering the particles weight and the 
volume they occupy in a vessel. However at rest the bulk density is very sensitive to the way the particles 
are packed with is influence by the tapped conditions. Particle and skeletal densities are more challenging 
to measure, techniques such as mercury porosimetry are often used [38].  
 

2.1.3 Miscellaneous 
 
Other physical properties are important to investigate: 
 

- The particle sphericity which is defined by the ratio of the surface area of a sphere with the same 
volume as the given particle to the surface area of the particle as presented in Equation 3. In their 
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work, Rodrigues et al. [26] found that particles sphericity was a crucial parameter for the pressure 
drop in a vertical riser.  
 

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =  𝜋13(6𝑉𝑜𝑙𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠)23𝑆𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠  Equation 3 

 
With:  - 𝑉𝑜𝑙𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠   Volume of the particles 
  - 𝑆𝑃𝑎𝑡𝑖𝑐𝑙𝑒𝑠  Surface of the particles 
 

- The particles frictional angle and repose angle respectively α and β in Figure I-6. These angles are 
important to characterize when designing internals to avoid local accumulation of particles in 
hoppers for example  

 

 

Figure I-6: Particles angle characteristics 
 

2.1.4 Inter-particle forces and clustering 
 
Different inter-particle forces are often mentioned when dealing with fluidized bed of fine particles with 
the electrostatic, the capillary and the Van der Walls forces. These forces can be at the origin of particles 
clusters formation which can then influence the hydrodynamic of the gas-particles flow. Indeed, clusters 
of particles will generate a different interaction with the gas phase compared to single particles. 
 
Visser et al. [39] highlighted the contribution of the Van der Walls force on the clusters formation in 
fluidized beds. They stated that the Van der Walls force is dominant compared to the electrostatic and 
capillary forces. They also demonstrated that Van der Walls forces become dominant compared to the 
particle weight for small particle diameters which explain why clusters formation occur mostly for fine 
particles (Geldart Group A and Group C presented in the next chapter). For two smooth spheres, the Van 
der Walls force can be written with Equation 4[40]: 
 𝐹𝑉𝑊 = 𝐴𝐻𝑑𝑝𝛿  Equation 4 
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Where A is the Hamakar constant which depends on the material and fluid properties and δ is the distance 
between particles. Van der Walls forces are considered non-negligible when distance between particles 
are in the order of 0.1 to 1 nanometer [39]. In fluidized bed, particles contact each other at a high 
frequency therefore the distance between particles is in the range where Van der Walls forces are 
noticeable. It is also important to mention that particle asperities and shapes have a great influence on the 
Van der Walls forces [41]. Then, Kaye and Boardman [42] stated that particle clustering becomes 
significant in many systems where particles volume concentration exceed 0.1% which is the case in 
circulating fluidized bed even for dilute regime flows.  
 
Cahyadi et al. [43] and Cocco et al. [44] also highlighted that the formation of particles cluster can be 
connected to hydrodynamic phenomena with non-rigid clusters under the form of streamers while other 
rigid clusters are formed because of the inter-particle forces. It then becomes interesting to wonder if 
single particles or cluster of particles have to be considered for modeling the gas/particles interaction 
having in mind that cluster consideration will necessarily add complexity to the model. Indeed cluster 
formation is first difficult to characterize experimentally and it is then dependent on the particles 
properties, fluidization regimes and system used as demonstrated by Cahyadi et al. [43].  
 
Many phenomena observed in fluidization are attributed to particle clustering as presented in the next 
chapters of this literature review. 
 

2.1.5 Geldart classification 
 
Geldart [45] defined in 1973 a classification of particles with respect to their behavior when fluidized 
with a gas. Four groups of particles where distinguished according to their physical properties as shown 
in Figure I-7 with first the difference between particles density and gas density (ρpaticles-ρGas) and second 
the particle size distribution Sauter diameter (DpSV)  
 

 

Figure I-7 : Geldart classification of powders with respect to their fluidization behavior 

 
The characteristics of each group are: 
 

- Group C: Fine particles difficult to fluidize. Inter-particle forces(electrostatics, van der Waals and 
capillary forces) have an important effect on the fluidization quality and gas tends to channel 
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through the bed [2]. FCC catalyst particles with a diameter below 20 microns are an example of 
Geldart Group C particles. 
 

- Group A: Particles easy to fluidize and characterized by a homogenous fluidization regime where 
the bed expands without bubbles formation before reaching the bubbling regime. Bubbles 
generated in Geldart Group A particles present a maximum stable diameter even for large 
fluidized beds. Particle weight is rather small and inter-particles forces can affect particle flow [2]. 
FCC catalyst is an example of Geldart Group A particles. 
 

- Group B: Particles having larger diameter and/or larger density than Geldart Group A particles. 
Bubbles are formed in the bed as soon as the minimum velocity of fluidization is reached. Inter-
particles forces are less dominant, the bubbles size is not limited and can reached the vessel bed 
diameter. Large bubbles can be problematic in term of operation with slugging effects [2]. Sand is 
an example of Geldart Group B particles. 
 

- Group D: large and heavy particles, stable spouted beds can be easily formed with this group of 
particles. In order to be fluidized beds of Geldart Group D, particles need very large quantities of 
gas.  

 

 Regime of fluidization 
 
Fluidization of gas-solid systems depends on the particles properties as discussed in Chapter 2.1.5, as well 
as the fluidization gas velocity. Different regimes can be defined according to the flow structure observed 
when increasing the superficial gas velocity as described in Figure I-8.  
 

 

Figure I-8 : Regime of fluidization 
 
The different fluidization regimes are presented below, when increasing the superficial gas velocity, from 
the fixed bed to the pneumatic transport regimes. The main flow characteristics are introduced for each 
regime.  
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2.2.1 Fixed bed and minimum of fluidization regime 
 
In the fixed bed regime, particles do not move. The pressure drop through the bed can be calculated 
according to the Ergun’s empirical equation presented below which takes into account the particle 
sphericity factor. For small particles, the second term can be neglected compared to the first one and the 
pressure drop thus increases linearly with the gas velocity. 
 ∆𝑃𝐻 = 150(1 − 𝜀𝑔)2𝜇𝑔∅𝑠2 𝜖𝑔3 𝑑𝑝2 𝑈𝑠𝑔 + 1.75(1 − 𝜀𝑔)𝜌𝑔∅𝑠  𝜖𝑔3 𝑑𝑝 𝑈𝑠𝑔2 Equation 5 

 
The minimum of fluidization is then defined as the transition from fixed bed to homogeneous fluidization 
regime, for Geldart Group A particles, and to bubbling regime for Group B particles. At the minimum of 
fluidization, the pressure drop through the bed can therefore be calculated according to Ergun’s equation 
as shown in Equation 6 and according to the Equation 7 which describes the pressure drop through a 
fluidized bed where the mixture behaves as a liquid.  
 ∆𝑃𝐻𝑚𝑓 = 150(1 − 𝜀𝑚𝑓)2𝜇𝑔∅𝑠2 𝜖𝑚𝑓3  𝑑𝑝2 𝑈𝑚𝑓 + 1.75(1 − 𝜀𝑚𝑓)𝜌𝑔∅𝑠2 𝜖𝑚𝑓3  𝑑𝑝 𝑈𝑚𝑓2 Equation 6 

 ∆𝑃𝐻𝑚𝑓 = 𝑔(𝜌𝑝 − 𝜌𝑔)(1 − 𝜀𝑚𝑓) Equation 7 

 
Equalizing Equation 6 and Equation 7, the minimum fluidization equation is obtained as shown in 
Equation 8 
 𝐴1𝑅𝑒𝑝,𝑚𝑓2 +𝐴2𝑅𝑒𝑝,𝑚𝑓 = 𝐴𝑟 

with 𝑅𝑒𝑝,𝑚𝑓 = 𝑢𝑚𝑓∅𝑑𝑝𝜌𝑔𝜇   ; 𝐴𝑟 = (∅𝑑𝑝)3𝜌𝑔(𝜌𝑝−𝜌𝑔)𝜇2  ;  𝐴1 = 1.75𝜀𝑚𝑓3 ∅  ; 𝐴2 = 150(1−𝜀𝑚𝑓)𝜀𝑚𝑓3 ∅2  

Equation 8 

 
The analytical solution of Equation 8 being: 
 

𝑅𝑒𝑝,𝑚𝑓 = √( 𝐴22𝐴1)2 + 𝐴𝑟𝐴1 − 𝐴22𝐴1 Equation 9 

 
The unknowns of the analytical solution presented in Equation 9 are 𝜀𝑚𝑓 in the terms A1 and A2 and 𝑢𝑚𝑓 

in 𝑅𝑒𝑝,𝑚𝑓. Many authors have given empirical values for the coefficient A1 and A2 based on experimental 

investigation as shown in Table I-1. 
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Table I-1– Empirical values of A1 and A2 for minimum of fluidization conditions for Equation 9 [2] 

 A1 A2 

Wen and Yu (1966) 33.7 0.0408 

Richardson (1971) 25.7 0.0365 

Saxena and Vogel (1977) 25.3 0.0571 

Babu et al. (1978) 25.25 0.0651 

Grace (1982) 27.2 0.0408 
Chitester et al. (1984) 28.7 0.0494 

 
Values of A1 and A2 differ according to the authors and the experiments used to set the data base. This 
variation may be due to the discrepancy between experiments but also to the characteristic used for the 
powder description with only a representative diameter. Indeed, Bruni et al. [46] demonstrated that the 
fine content also influences the minimum fluidization velocity.  
 
This first example illustrates the difficulty of characterizing experimentally basic parameters such as the 
minimum of fluidization velocity where many parameters must be characterized and taken into account.  
 

2.2.2 Bubbling and turbulent regimes 
 
In the bubbling regime, bubbles are formed and rise through the so-called emulsion phase with a regular 
frequency and burst at the top of the bed which has a stable and well defined level. The emulsion phase is 
often considered as particles fluidized at the minimum fluidization conditions (εg=εmf). The bubbling 

regime is characterized with the bubbling velocity Umb with 
𝑈𝑚𝑏𝑈𝑚𝑓>1 for Geldart Group A particles and 𝑈𝑚𝑓𝑈𝑚𝑏=1 for Geldart Group B particles. Abrahamsen and Geldart [47] proposed the correlation presented in 

Equation 10 for the ratio of 
𝑈𝑚𝑏𝑈𝑚𝑓 for Geldart Group A particles where F is the solid mass fraction of 

particles lower than 45 microns: 
 𝑈𝑚𝑏𝑈𝑚𝑓 = 2300𝜌𝑔0.126𝜇𝑔0.523𝑒𝑥𝑝0.716𝐹(∅𝑑𝑝,𝑠𝑣)0.8𝑔0.934(𝜌𝑝 − 𝜌𝑔)0.934 Equation 10 

 
Many studies have been carried out in order to characterize the bubbles size and velocity in fluidized beds 
[2,48–52] with many correlations developed [34]. Darton et al. [50] proposed the correlation presented in 
Equation 11 for bubbles growth based on a theory that bubbles tend to rise in preferred paths and that the 
distance travelled by two neighboring bubbles coalescence is proportional to their lateral distance 
separation.  
 

𝑑𝑏(𝑧) = 0.54 (𝑈𝑠𝑔 − 𝑈𝑚𝑓)0.4 (𝑧 + 4√1𝑁)0.8
𝑔0.2  

Equation 11 

 
- Where N is the number of holes per square meter of distributor. 

 
The author found that the correlation worked quite well if the bubble size is not limited by the presence of 
fine particles and therefore more applicable for Geldart Group B particles. Indeed, Werther [53] and 
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Matsen [54] reported a stable bubble size for Geldart Group A particles. Geldart [55] proposed the 
following correlation to compute the maximum stable bubble size: 
 𝑑𝑏_𝑀𝐴𝑋𝐼𝑀𝑈𝑀 = 2𝑉𝑡∗2𝑔  Equation 12 

 
Where:  - 𝑑𝑏_𝑀𝐴𝑋𝐼𝑀𝑈𝑀 is the maximum stable bubble size 

- 𝑉𝑡∗ is the terminal velocity of the a particle having the size of the PSD Sauter diameter 
times 2.7  
- g is the gravitational acceleration equals to 9.81 ms-2. 

 
Hilligart and Werther [49] proposed a correlation for the local average bubble rise velocity for Geldart 
Group A and Group B particles presented in Equation 13 based on the assumption that all the gas which 
is not in the emulsion phase flows under the form of bubbles.  
 𝑢𝑏 = 𝜑(𝑈𝑠𝑔 − 𝑢𝑚𝑓) + 0.71𝜗√𝑔𝑑𝑏 

with 𝐺𝑟𝑜𝑢𝑝 𝐴:  𝜗 = 3.2 𝐷0.33 for 0 <
𝑧𝐷 < 1 and 𝜗 = 3.2 𝑓𝑜𝑟 𝑧𝐷 > 1 𝐺𝑟𝑜𝑢𝑝 𝐵:  𝜗 = 2.0 𝐷5 for 0 <

𝑧𝐷 < 1 and 𝜗 = 2.5 𝑓𝑜𝑟 𝑧𝐷 > 1 

Equation 13 

 
In turbulent regime, bubbles are difficult to observe and the bed level is also hardly distinguishable. The 
transition from the bubbling regime to the turbulent regime is often characterized by the gas velocity Uc 
defined as the velocity when the maximum pressure fluctuations through the bed are reached as shown in 
Figure I-9. However, disagreement appears in the literature when defining turbulent fluidization, and 
transport regimes [56]. Indeed, another characteristic velocity Uk is defined where the pressure 
fluctuations of the bed reach a threshold as shown in Figure I-9. Yerushalmi et al. [57] considered that the 
turbulent regime starts from Uk while the most common approach proposed by Rhodes and Geldart 
considered that turbulent regime occurs from Uc to Uk.  
 

  

Figure I-9 : Transition between bubbling, turbulent, fast fluidization regimes according to Rhodes and 
Geldart [56] 
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Many correlations exist for the prediction of Uc and Uk [2]. Cai et al. [58] correlated the literature data 
based on absolute pressure fluctuation and bed expansion measurements up to 1989 with the turbulent 
Reynold number shown in Equation 14.  
 (𝑅𝑒)𝑐 = 𝑑𝑝𝜌𝑓𝑈𝑐𝜇𝑔 = 0.57𝐴𝑟0.46 Equation 14 

 
Later on Bi and Grace [59] proposed another correlation presented in Equation 15. They also 
demonstrated the influence of operating parameters, such as the bed level and solid cyclone return 
configuration, as well as the measurement techniques on the experimental determination of Uc and Uk 
[59].  
 (𝑅𝑒)𝑐 = 𝑑𝑝𝜌𝑓𝑈𝑐𝜇𝑔 = 1.243𝐴𝑟0.447 

for 2 < Ar < 1 x 108 

Equation 15 

 
Issangya et al. [60] also demonstrated for FCC catalyst that the fines content, defined by the amount of 
particles with a diameter lower than 40 microns, as well as bed level and internals influenced the pressure 
fluctuations and therefore the determination of the turbulent regime. The explanation highlighted by the 
authors was that high fines contents and internals had the tendency to mitigate the gas by-passing through 
the bed and the pressure drop fluctuations were consequently reduced.  
 
From bubbling to turbulent fluidization regime, the pressure drop through the bed can be expressed with 
the bed average gas volume fraction as indicated in Equation 16: 
 ∆𝑃𝐻 = 𝑔(𝜌𝑝 − 𝜌𝑔)(1 − 𝜀𝑔) Equation 16 

 
Investigations were then carried out to predict the average gas volume fraction in a fluidized bed 
according to the superficial gas velocity. For this purpose, King [61] developed an empirical correlation 
for Geldart Group A particles for turbulent bed as shown in Equation 17.  
 𝜀𝑔 = 𝑈𝑠𝑔 + 1𝑈𝑠𝑔 + 2 Equation 17 

 
However, as highlighted by Bi et al. [62] in their state of the art on turbulent fluidization, parameters such 
as column diameter, fines content, internals in the bed clearly influence the hydrodynamic of turbulent 
beds. Issangya et al. [63] also showed the influence of the dilute phase pressure on the bed gas 
maldistribution. It is therefore difficult to develop predictive models including all these effects and 
correlations are consequently connected to the experiment used to set them up. 
 
Finally, some authors investigated the formation of particles clusters in turbulent fluidized beds. Cocco et 
al. [44] studied the cluster formation in a dense and dilute part of a fluidized bed with polyethylene and 
FCC particles having both a mean diameter around 70 microns. They observed visually the flow with a 
high speed camera system (boroscope) inserted into the bed. For the polyethylene, they observed in the 
dilute phase particles cluster with a mean size of 240 microns. The observation in the dense phase was 
more difficult clusters being observed in the vicinity of gas bubbles. Concerning the FCC particles, 
smaller clusters were observed in the dilute phase with some pictures of clusters around 100 microns. The 
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authors proposed a mechanism for cluster formation where the granular temperature therefore the 
collision between the particles needs to decrease in a certain range in order to let the inter-particle forces 
act to form clusters. 
 

2.2.3 Transport regime in a vertical upstream flow 
 
Solid circulation in a CFB system is maintained through a circulation loop pressure balance. Figure I-10 
gives an example of such a loop with solid circulating from a fluidized bed into a stand-pipe, a valve, then 
a riser with a vertical upstream flow and finally through a cyclone where particles recovered fall back into 
the fluidized bed. 
 

 

 

Figure I-10: Solid circulation loop pressure balance example 
 
As shown in Figure I-10, there are parts in the circulating loop where pressure is recovered with an 
increase of pressure in the direction of the circulation and parts with a loss of pressure with a decrease of 
pressure in the direction of the circulation. The pressure balance in the loop can be written with Equation 
18.  
 ∆𝑃𝑟𝑖𝑠𝑒𝑟  𝐶→𝐷=∆𝑃𝑏𝑒𝑑 𝐺→𝐸 + ∆𝑃𝑠𝑡𝑎𝑛𝑑𝑝𝑖𝑝𝑒 𝑏𝑒𝑑 𝐸→𝐴 − ∆𝑃𝑉𝐴𝐿𝑉𝐸 𝐴→𝐵 − ∆𝑃𝑐𝑦𝑐𝑙𝑜𝑛𝑒  𝐼→𝐺 − ∆𝑃 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐷→𝐼 Equation 18 

 
Where: - ∆𝑃𝑟𝑖𝑠𝑒𝑟  𝐶→𝐷 is the pressure drop in the vertical upflow riser 
 

- ∆𝑃𝑏𝑒𝑑 𝐺→𝐸 is the pressure recovered in the bed and is equal to 𝜌𝐵𝐸𝐷 × 𝑔 × 𝐻𝐵𝐸𝐷 with 𝜌𝐵𝐸𝐷 and                    𝐻𝐵𝐸𝐷 being the bed density and height 
 

- ∆𝑃𝑠𝑡𝑎𝑛𝑑𝑝𝑖𝑝𝑒 𝑏𝑒𝑑 𝐸→𝐴  is the pressure recovered in the stand-pipe and is equal to 𝜌𝑆𝑃 × 𝑔 × 𝐻𝑆𝑃 

with 𝜌𝑆𝑃 and 𝐻𝑆𝑃 being the stand-pipe density and height 
 
- ∆𝑃𝑉𝐴𝐿𝑉𝐸 𝐴→𝐵 is the pressure drop generated in the valve 
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- ∆𝑃𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐷→𝐼 is the pressure drop generated by the riser termination 
 
- ∆𝑃𝑐𝑦𝑐𝑙𝑜𝑛𝑒  𝐼→𝐺  is the pressure drop generated in the cyclone 

 
From Equation 18 one can see that the maximum riser pressure drop is dependent on the circulating loop 
characteristics and the pressure recovery in the bed and stand-pipe. The pressure recovery of these 
elements being dependent on their height, a circulation loop with a high bed and stand-pipe length will 
have a high pressure recovery and can consequently reach high riser pressure drop and therefore high 
solid circulation rate. On the other hand, a circulating loop with a low pressure recovery will have a 
limited solid circulation rate.  
 
Figure I-11 describes qualitatively the particle vertical upflow conveying in a riser with the pressure drop 
versus superficial gas velocity. 
 

 

Figure I-11 : Qualitative characterization of vertical upflow pneumatic conveying 
 
In transport regime, the pressure drop increases with the solid flowrate carried by the gas. At high 
velocity, the particles are transported in a dilute uniform type of flow. When decreasing the air velocity 
for the same solid flowrate transported (from right to left on Figure I-11), the solid volume fraction 
increases in the riser while the pressure drop related to the wall friction decreases, the overall pressure 
drop decreasing as shown in Figure I-11. At the choking velocity conditions, the suspension of gas and 
particles becomes unstable, the pressure drop through the riser increases dramatically, and particles are 
transported in a dense flow regime which can lead to slugging in some cases. Most of the studies carried 
out in the literature have been done for dilute transport with gas velocities above the choking velocity. 
Many correlations exist for the prediction of choking velocity [64]. Bi et al. [65] proposed the following 
correlation for Geldart Group A and Group B particles: 
 𝑈𝐶ℎ𝑜𝑐𝑘𝑖𝑛𝑔√𝑔𝑑𝑝 = 21.6 𝐴𝑟0.105 ( 𝐺𝑠𝜌𝐺𝑈𝐶ℎ𝑜𝑐𝑘𝑖𝑛𝑔)0.542

 Equation 19 

 
It is interesting to point out that choking conditions are also connected to the pressure balance in the 
circulation loop where the pressure recovery available limits the riser pressure drop and therefore the 
solid circulation as explained above. 
 
Bi et al. [65] then made a distinction between two types of transport regime with first the core-annular 
dilute transport regime occurring at lower gas velocities and second the homogeneous dilute transport 

Choking conditions 

Usg 
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regime for higher gas velocities. The core-annulus regime [66,67] consists on the segregation of particles 
into a dilute core and a denser annulus with lower particles velocity  as shown in Figure I-12 .  
 

 

 

Figure I-12: Core-annulus structure in a riser 
 
Bi et al. [65] proposed the following correlation as an attempt to estimate the transition between the core-
annulus and homogeneous dilute transport regimes: 
 𝑈𝑎𝑛𝑛𝑢𝑙𝑎𝑟 𝑡𝑜 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 = 10.1(𝑔𝑑𝑝)0.347 (𝐺𝑠𝜌𝐺)0.31  (𝑑𝑝𝐷 )−0.139 𝐴𝑟−0.021 Equation 20 

 
Karri and Knowlton [68] then put in evidence with experiments on a 20 cm diameter riser with FCC 
catalyst that particles in the annulus region have a downward or upward velocity depending on the 
superficial gas velocity and particles mass flux.   
 
Concerning the pressure drop prediction in risers, Nieuwland et al. [69] proposed a one dimensional 
model with Equation 21 which includes the sum of the following contributions :  

- Pressure drops due to the acceleration of the gas and the particles. 
- Pressure drops due to the friction of the gas and particles with the wall.  
- Pressure drops due to the weight of the gas and particles.  

 𝑑𝑃𝑑𝑧 = (𝑑𝑃𝑑𝑧)𝐺𝑎𝑠,𝐴𝑐𝑐 + (𝑑𝑃𝑑𝑧)𝐺𝑎𝑠,𝑊𝑒𝑖𝑔ℎ𝑡 + (𝑑𝑃𝑑𝑧)𝐺𝑎𝑠,𝐹𝑟𝑖𝑐_𝑤𝑎𝑙𝑙 + (𝑑𝑃𝑑𝑧)𝑃𝑎𝑟,𝐴𝑐𝑐+                                + (𝑑𝑃𝑑𝑧)𝑃𝑎𝑟,𝑊𝑒𝑖𝑔ℎ𝑡 + (𝑑𝑃𝑑𝑧)𝑃𝑎𝑟,𝐹𝑟𝑖𝑐_𝑤𝑎𝑙𝑙 Equation 21 

 
Using this approach, Rodrigues et al. [26] measured pressure profiles in a riser with Gerdart Group B 
particles. They assumed that particles were accelerated in the fully developed flow region where the 
pressure gradient versus height in the riser was constant. They then obtained the solid concentration in the 
accelerated zone modeling the pressure drops due to the gas and particles wall friction through the 
Fanning and Konno & Saito equations [69–71]. Finally, by discretizing the gas and particles momentum 
equation in the riser, they managed to get local velocities and concentrations for both gas and particles. 
They also obtained an expression of a one dimensional drag force between gas and particles depending on 
the operating conditions.  
  

Core 

Annulus 

Riser wall 
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Patience et al. [72] in their study on scaling risers proposed the following correlation for the slip velocity 
factor in the fully developed flow region defined as the ratio of the particles velocity over the gas velocity.  
 Slip factor = 𝜖𝑉𝑠𝑈𝑔 = (1 + 5.6𝐹𝑟 + 0.47𝐹𝑟𝑡0.41)−1 Equation 22 

 
With :   - Fr: Froude number Ug/(gD)0.5 

  - Frt: Froude number with particle terminal velocity Vt/(gD)0.5 

  - Vt Particle terminal velocity 
 
They then claimed that this ratio is around 0.5 for FCC industrial risers with diameters in the order of the 
meter.  
 
Finally in their literature review, Cahyadi et al. [43] investigated the particles cluster formation 
phenomenon in risers. They mentioned its influence on the riser hydrodynamic with cluster of particles 
having a different interaction with the gas phase compared to single particles. They also demonstrated 
that the experimental characterization of particles clusters formation is difficult with a result dependency 
on the experimental set-up used. The question on the cluster consideration can then be raised when using 
equation 22 since the cluster will have a different terminal velocity compared to single particles.  
 

 Entrainment of particles in fluidized bed 
 
In turbulent regime, particles can be entrained with the gas out of the fluidized bed vessel. The flux of 
particles entrained is referred as entrainment. The mechanism of entrainment is shown in Figure I-13. 
 

 

Figure I-13:Mechanism of entrainment in fluidized bed 
 
Bubbles bursting at the bed level surface eject clouds of particles out of the bed into the dilute region. 
Different mechanisms have been observed for the particles ejection out of the bed with particles being 
ejected either by the roof or/and the wake of the bubbles as shown by Levy et al. [73]. Then in the dilute 
region, particles are subjected to two forces, their weight and the drag force due the interaction with the 
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gas. According to their size and potential cloud structure, particles can either fall back into the bed or 
being transported with the gas. The particles concentration in the dilute region of the bed decreased with 
the height until reaching a threshold where particles entrained do not fall back into the bed and are 
therefore entrained. This height is called the Transport Disengaging Height (TDH).  
 
The effect on entrainment of different parameters has been investigated. The most influencing parameters 
are the particles properties and the superficial gas velocity. First, entrainment rate increases when 
decreasing the particle size and density which can be directly explained by a force balance on one particle. 
However, some authors found that entrainment rate can be decreased with the injection of fine particles 
for fluidization of Geldart Group A particles. This phenomenon is explained by the formation of particle 
clusters and it is discussed in Chapter II-2.4. The entrainment rate is then found increasing proportionally 
with the gas velocity to a power generally between 2 to 4 [2]. Colakyan et al. and Tasirin et al. [74,75] 
found no significant influence of the vessel diameter on the entrainment rate for bed diameters between 
0.1 and 0.9 m with particles from Geldart Groups A and B. Choi et al. [76] found on their study on 
fluidized bed combustors that the bed level did not have a strong influence as long as the vessel height 
was above the TDH.  
 
Different attempts were made to model entrainment [2,77,78]. One important parameter is the 
determination of the TDH. Correlations can be found in the literature [2], Chan and Knowlton [79] 
proposed from experiments with sand particles the correlation presented in Equation 23 taking into 
account only the superficial gas velocity: 
 𝑇𝐷𝐻 = 0.85 𝑈𝑠𝑔1.2(7.33 − 1.2𝑙𝑜𝑔𝑈𝑠𝑔)  Equation 23 

 
Sciazko et al. [80] proposed a correlation based on particle and fluidized bed height presented in  
 𝑇𝐷𝐻 = 1500 𝐻 𝑅𝑒𝑝𝐴𝑟   Equation 24 

 
With :   -H fluidized bed height (m) 
  - Rep particle Reynold number (ρgUgdp/μg) 
  - Ar Archimede number ρg(ρg-ρg)gdp

3/ μg
 2 

 
Cahyadi et al. [81] demonstrated the high discrepancy obtained between 25 TDH correlations. The 
authors pointed the lack of fundamental understanding of the TDH phenomenon and the dependency of 
the empirical correlation on the experimental set up used to develop them.  
 
The total entrainment rate above TDH is then modeled according to the entrainment rate per size of 
particles, and it is defined with Equation 25  
 𝐸𝑟 = ∑𝑥𝑖𝐸𝑖∞𝑛

1  Equation 25 

 
With:  𝐸𝑟: total entrainment rate (kg/m2/s) 
  𝑥𝑖: weight fraction of particles in fluidized bed having a diameter dp,i 
  𝐸𝑖∞: entrainment rate of particles having a diameter dp,i rate (kg/m2/s) 
  n: number of classes of particle diameters in the fluidized bed 
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Many correlations exist for the determination of 𝐸𝑖∞ . Colakyan and Levenspiel [74] proposed the 
correlation presented in Equation 26 based on experiments on Geldart Group A and Group B particles. 
 𝐸𝑖∞ = 0.011 𝜌𝑝 (1 − 𝑉𝑡,𝑖𝑈𝑠𝑔)2

 Equation 26 

 
Choi el al [82] proposed then a correlation based on a wider number of experiments including pressure 
and temperature effects, it is presented in Equation 27 : 
 𝐸𝑖∞𝑑𝑝𝜇𝑔 = 𝐴𝑟0.5𝑒𝑥𝑝 (6.92 − 2.11𝐹𝑔0.303 − 13.1𝐹𝑑0.902)2

 Equation 27 

 

With :  - 𝐹𝑔 = 𝑔𝑑𝑝(𝜌𝑠 − 𝜌𝑔) gravity force per projection area 

  - 𝐹𝑔 = 𝐾𝑑 𝑈22  drag force per projection area 

 
Yang [2] and Chew [83] listed many correlations of entrainment rate. These authors compared some of 
the correlations with experimental data. A great discrepancy in the predicted entrainment was obtained 
according to the correlation used. An important scatter was also observed in the experimental data 
according to the authors. These comparisons clearly shows that entrainment modelling and experimental 
characterization remains a challenging topic where the influence of many parameters such as fines 
content, temperature, pressure, presence of internals are not clearly characterized and understood. 
 
Finally, clustering effects on particle entrainment were also demonstrated. Geldart and Wong [84] 
observed the reduction of the particles entrainment rate when injecting fine particles in a Geldart Group A 
particles fluidized bed. The decrease was explained by the particles cluster formation due to the fines 
injection, particles cluster having a higher weight than single particles and being less prone to be 
entrained. Baeyens et al. [85] found similar results where the entrainment rate reached a threshold when 
decreasing the bed particle size at a diameter between 25 and 40 μm. Then as mentioned before, Cocco et 
al. [44] observed clusters of particles with a boroscope in the dilute phase of a turbulent bed.  
 

 Effect of pressure and temperature 
 
Most of the experimental studies to characterize circulating fluidized bed are carried out at ambient 
conditions while industrial processes operate at elevated pressure and temperature. It is therefore 
necessary to investigate the effect of these two parameters to transpose lab scale results to industrial 
conditions.  
 
The pressure and temperature affect the gas density and viscosity and therefore affect the interaction 
between the gas and solid phases. The characteristic such as the minimum, bubbling and turbulent 
velocities are therefore influenced, studies showing that the consequences are not identical for all particle 
Geldart fluidization groups. Indeed, the Wen-Yu minimum fluidization correlation shows that viscosity is 
the most influencing parameter for small particles while density is more influencing for large particles 
[86]. Therefore, as described by Rowe et al. [87] pressure affects the minimum fluidization velocity for 
particles higher than 100 microns so mostly Geldart Groups B and D particles. On the other hand, 
temperature decreases the minimum fluidization velocity for small particles and increases it for large 
particles. Pressure and temperature also affect the transition to the turbulent flow regime. Cai et al. [58] 
showed with experiments using particles from Geldart Groups A and B with temperature and pressure 
varying respectively from 50°C to 450°C and from 1 to 64 atmospheres that temperature increases and 
pressure decreases the transition to the turbulent regime. Concerning the bed expansion, it was shown that 
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pressure increases the dense phase voidage for Geldart Group A particles and had not influence for 
Geldart Group B particles [86]. Botterill et al. [88] found that temperature increases the bed voidage in 
the dense phase for all Geldart Groups except Group D.  
 
Concerning the bubbles size, it was found that pressure decreases the bubble diameter for Geldart Group 
A particles while it does not have any influence for Geldart Group B particles [2]. A possible explanation 
is that more gas goes in the dense emulsion phase when increasing the pressure for Geldart Group A 
particles and therefore less gas is available for bubbles.  
 
The particles entrainment rate is also greatly affected with an increase of pressure and temperature. 
Indeed, increasing the pressure and temperature leads to respectively a higher gas density and a higher gas 
viscosity which leads to an increase of the drag force between the gas and particles and therefore 
entrainment is increased. Chan and Knowlton [79] confirmed this mechanism with a significant increase 
of the entrainment rate with the pressure increase while Findley and Knowlton [86] confirmed the 
influence of the gas viscosity increase on entrainment.  
 
Finally, Cui et al. [89] stated from their experiments on FCC catalyst at high temperature that particles 
tested increasingly shift from typical Geldart Group A towards Geldart Group B with increasing 
temperature due to a decrease of the inter-particle attractive forces and a simultaneous increase of inter-
particle repulsive  forces. 
 

 Experimentation and measurement techniques 
 
Experimental characterization of hydrodynamic phenomena is essential in a purpose of modeling for 
process extrapolation. However multiphase flow in circulating fluidized beds are challenging to 
characterize with heterogeneous non-stationary moving structures such as gas bubbles and moving 
particles. The extent of work in the literature is extremely large with different regimes of fluidization 
investigated with a wide range of solids using multiple experimental techniques. Werther et al. [90], Van 
Ommen et al. [91], Yates et al. [92] published reviews on experimental techniques used for CFB 
characterization. 
 
The purpose of this chapter is to the discuss the different type of experimental techniques according to the 
scale of interest with first the characterization of macro scale hydrodynamic descriptors such as bed level, 
bed averaged gas volume fraction, and second the characterization of local parameters like gas and 
particles voidage and velocities. The challenges related to local measurements are also highlighted.  
 

 Global hydrodynamic characterization 
 
A first challenge when investigating CFB systems is their characterization at a global scale, where macro-
scale hydrodynamic descriptors are investigated.  
 
The first and easy method to characterize the overall circulating fluidized beds hydrodynamic is flow 
observations. It also important to point that such observations are most of the time carried out at ambient 
conditions where the implementation of transparent walls is possible. Flow visualization can help 
appreciating the bed hydrodynamic behavior through the different fluidization regimes transitions. 
Interesting phenomena can be observed such as bubble bursting at the bed surface in bubbling regimes 
[74], bed defluidization when interrupting the gas injection, the particles entrainment versus the gas 
velocity increase, etc. Flow visualization therefore helps understanding the fluidized bed hydrodynamic 
from a qualitative point of view and in some cases it can also confirm other measurements such as the bed 
level.  
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The most common experimental technique is then the use of pressure probes connected on the vessel wall 
in order to measure the pressure drop generated by the flow. This robust and easy to implement technique 
is used on industrial processes to follow global hydrodynamic parameters [90]. As described in Chapter 
II-2, the time averaged pressure drop allows getting the bed expansion and the average gas volume 
fraction in fluidized beds, it also allows distinguishing the acceleration and fully developed regions in 
transport regime risers. The time analysis of the pressure drop signal allows getting useful information as 
well. As mentioned before, the transition to the turbulent regime is measure with the peak of pressure 
fluctuations. Issangya et al. [63] also demonstrated the detection of bed gas by-passing phenomenon 
evaluating the bed pressure drop fluctuations. Pressure probes appears to be a robust and simple 
measurement technique however some issues need to be faced when carrying out such measurements in 
fluidized beds. Van Ommen et al. [91] reported the importance of pressure transducer dimensions in order 
to avoid resonance effects. They also highlighted the issue of pressure ports plugging due to particles 
infiltration and therefore the necessity of using a constant flush with a porous media to avoid particle 
blockage. Bi et al. [59] then demonstrated the influence of such porous media with flushing systems on 
the pressure fluctuations with a change of amplitude depending on the pressure drop generated by the 
porous media. This type of issue illustrates the challenge of fluidized bed experimental characterization 
where even measurements which appear to be easy to implement should be treated with great care.   
 
Tracing is another technique for global hydrodynamic characterization. Tracer injection in a multiphase 
flow reactor and its time evolution measurement at various locations allows studying the hydrodynamic 
behavior of the phase traced. Once injected, the tracer evolution versus time is measured and it can then 
be modeled with theoretical flow models (plug-flow, CSTR, dispersed plug flow, …) which can also be 
combined. Sane et al. [93] and Ege et al. [94] used this technique at laboratory scale in order to describe 
the gas phase hydrodynamic in a respectively bubbling and turbulent fluidized bed. Gauthier et al. [1] 
used radioactive tracing on an industrial FCC unit to characterize the gas hydrodynamic in a gas particles 
separator. The authors pointed out the challenges related to the implementation of such a technique at 
industrial scale with first the management of radioactive elements and second the careful implementation 
of the probes in order to describe the gas flow in the best way. Indeed, tracing is a standard method 
widely used in the chemical engineering field. However, its implementation in circulating fluidized bed is 
challenging where the presence of particles and the relative short flow characteristic time bring to the use 
of specific tracer injection and sampling methods.  
 
Fluidized bed particles entrainment can also be characterized on a global hydrodynamic point of view. 
For this purpose, the entrained flux of particles recovered into the cyclone is measured by momentarily 
interrupting the particles return into the bed. Colakyan et al. [74] used a butterfly valve at the bottom of 
the cyclone return dipleg to momentarily orientate the flux of recovered particles toward a weighting 
scale. It is important which such technique to make sure that while interrupting the circulation of particles, 
the bed level is not decreased significantly since it would directly affect the bed TDH and therefore the 
entrainment flux itself. High entrainment fluxes are thus difficult to measure with this technique. 
 

 Local characterization 
 
Global hydrodynamic descriptors such as bed level and density, entrainment, phase tracing descriptions 
are essential for hydrodynamic modeling. However local CFB characterization has shown flow 
heterogeneity with gradient of velocities and concentrations in fluidized beds and risers [1,26]. Therefore 
for rigorous hydrodynamic modeling such as Computational Fluid Dynamic simulations where non-
stationary flows are simulated in three dimensions, local phase voidage and velocities are essential to 
fully estimate the model validity.  
 
Local measurements are generally complex for multiphasic CFB reactors. Indeed the flow opacity and the 
non-stationary moving structures make the estimation of local parameters difficult. To tackle this 
difficulty, advanced experimental techniques are used and can be split into two categories: 
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-  The invasive techniques where probes are inserted inside the flow. Measurements are often 
carried out at different positions on a long period in order to have representative averaged values. 
It is important to evaluate the probes invasiveness effects with such techniques. Cocco et al. [95] 
discussed the effect of particles accumulation around an optical fiber probe in a riser transport 
regime flow while Tebianian [96] showed that the fiber optical probe presence did not affect the 
flow in a fluidized bed using X-Ray tomography.  
 

- The non-invasive techniques where probes are located outside the flow with for example 
tomography methods (Electrical Capacitance Tomography, X-ray Tomography). 

 
Table I-2 present a non-exhaustive list of experimental techniques used for CFB local hydrodynamic 
characterization. For more details, one can refer to the literature reviews on experimental techniques in 
CFB mentioned above.  
 

Table I-2– Local measurements techniques for CFB local hydrodynamic characterization 

Technique Probe Measurements and principle 

Invasive 

Fiber optical 
probes 

Measurement of gas/particles voidage and velocity. 

Measurement of gas bubbles properties 
 
Based on the intensity signal measurement of a light source reflected 
on particles, the light intensity being proportional to the solid 
concentration [97] 

Capacitance probe 

Measurement of gas/particles voidage and velocity. 

Measurement of gas bubbles properties 
 

Based on the capacitance measurement between two closely space 
electrodes, the signal intensity being proportional to the solid 
concentration 

Boroscope 
Measurement of particles velocity 

 
Based on high frequency imaging and image particle tracking  

Extraction probes 
or isokinetic probes 

Measurement of local solid fluxes 
 
Based on iso-kinetic sampling where the gas velocity at the tip of 
the extraction probe is equal to the measured gas flow velocity 

Non-
invasive  

Electrical 
capacitance 
tomography 

Measurement of gas/particles voidage. Measurement of gas 

bubbles properties 
 

Based on capacitance measurement between electrodes located 
around the vessel with dynamic electrodes excitation and their 
corresponding capacitance measurement with non-exited electrodes.  

X-ray, Gamma Ray 
tomography 

Measurement of gas/particles voidage. Measurement of gas 

bubbles properties 
 

Based on the attenuation of a radioactive source signal located on 
the opposite side of the signal detectors.  

Radioactive 
Particle tracking 

Measurement of particle velocity 
 

Based on the attenuation of moving radioactive particles measured 
by detectors located outside of the vessel 
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All these techniques come with complex signal post-processing which depends on the theory behind the 
experimental method but also on the calibration procedure [90–92]. Calibration is usually difficult for 
CFB experiments where it is easy to calibrate probes for maximum solid concentration with a fixed 
packed bed and for minimum solid concentration with an empty bed but where it is difficult to produce 
controlled conditions of solid concentrations between these two configurations. For example, different 
methods are used to calibrate optical fiber signals as reported by Dubrawski et al. [98] with some authors 
calibrating their probe on a fixed bed mixture of particles of interest with black particles to mimic void, 
others calibrating their probe in a stirred mixture of water and particles.  
 
Then, for the same experimental technique, different methods are reported to obtain the hydrodynamic 
parameter of interest. With tomography techniques, different image reconstruction algorithms can be 
applied as reported by Van Ommen et al. [91]. With optical fiber probes, some authors used a direct 
conversion from the probes signal to the particle volume fraction based on their calibration as reported by 
Dubrawski et al. [98], on the other hand Schweitzer et al. [97] differentiated a bubble and an emulsion 
region on a signal histogram to get the mean particle volume fraction.  
 
Tebianian et al. [96] carried out an interesting comparison between different experimental techniques for 
local particles voidage and velocity characterization in a fluidized bed of FCC and sand particles. They 
used the following measurement techniques: pressure probe, optical fiber, electrical capacitance 
tomography, X-Ray tomography and boroscope image analysis. They demonstrated that all techniques 
gave rather good qualitative results with for example the same trends obtain when investigating the bed 
voidage versus gas fluidization velocity. However the quantitative comparisons showed rather important 
discrepancies especially when measuring particle velocities. This study clearly highlights the challenge of 
measuring quantitatively local hydrodynamic parameters in CFBs, where results obtained should always 
be treated carefully and where trends might be the most important result to look at when comparing 
experimental data with models. Different authors reported the importance of connecting the measured 
local hydrodynamic parameters with macro-scale descriptors with for example the comparison of 
integrated radial profiles of gas volume fraction with the mean gas volume fraction obtained by pressure 
probes measurements [97,99]. Herbert et al. [100] also compared the global solid flux in a downer  
reactor with local particle concentration and velocity obtained with fiber optical probes. These types of 
comparison allow checking the pertinence of local measurements. 
 

 Computational Fluid Dynamic for gas particles flow 
 
From the two previous chapters, the reader can apprehend the challenge of characterizing fluidization 
where local physical phenomena are difficult to apprehend and where correlative approaches are often 
used. In this context, Computational Fluid Dynamic (CFD) tools became popular for multiphase chemical 
engineering applications around 1990 with the work of Gidaspow et al. [101,102]. The authors indeed 
demonstrated the potential of using a multidimensional fluid mechanic approach to better characterize 
multiphase flows. CFD tools are nowadays used for the understanding and the characterization of CFB 
hydrodynamic from particles to industrial scales [103,104]. Indeed with the improvement of 
computational power, CFD tools allow characterizing flows in three dimensions on large scales taking 
into account complex geometrical features such as distributors and internals. However, CFD modeling of 
multiphase flow remains challenging with many developments on-going. The modeling of the key 
gas/particles and particle/particles interactions remains complex and is a source of great interest where 
models allowing predictions on a wide range of operating conditions have not yet been found. In this 
context, many gas/particles and particles/particles interactions model are available, authors often 
investigating these models predictions on a specified experiment with a rather narrow operating 
conditions range.  
 
This chapter first presents the different approaches available for the modeling of gas/particles flow with a 
focus on the Euler/Euler and Multiphase Particle in Cell (MP-PIC) methods which are later on used in 
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this PhD project. A discussion is then carried out on the main differences between these two approaches 
followed by a focus on the different model available for gas/particles interactions.  
 
F.Euzenat [104] summarized the different scales of gas /particles CFD investigations in an explicit sketch 
presented in Figure I-14. 
 

 

Figure I-14:Multi scales simulations of gas/particles flow from F.Euzenat[104]  
 
Three different scales are identified: 
 

- First, the micro scale where the CFD flow resolution is made at the particle size level through the 
so-called Direct Numerical Simulation (DNS). For this purpose, the mesh used to discretize the 
geometry volume is smaller than the particles size as shown in Figure I-14. The gas phase is 
considered continuous and resolved using an Eulerian approach. Particles are tracked individually 
using a Lagrangian approach, particle-particle and particle-wall collisions are detected and 
modeled with for example hard or soft sphere collisions models. No closure law is needed to 
compute the interaction force between the gas and particles since the fine mesh allows integrating 
this force over the particles surface. With the current computational power, this type of approach 
allows simulating in the order of 103 particles [104]. 
 

- Second, the meso-scale where the flow resolution is made at a larger scale than the particle size 
with a larger mesh as shown in Figure I-14. This approach is communally called CFD-DEM 
method where similarly to the DNS approach gas is treated as a continuum with an Eulerian 
approach and particles are tracked individually using a Lagrangian approach with collisions 
detected and modeled. The difference is that the force between gas and particles cannot be directly 
computed from integrating forces on particles surface since the mesh size is larger than particles. 
An interphase exchange closure law is therefore needed, this closure law being referred as the 
drag law. With the current computational power, this type of approach allows simulating in the 
order of 108 to 109 particles [104]. 
 

- Third, the macro scale where both gas and particles phase are considered as a continuum using an 
Eulerian approach. The modeling of the solid phase in an Eulerian frame is challenging especially 
for the solid phase “viscosity” representation via the solid stress tensor. For this purpose, the 
Kinetic Theory of Granular Flow (KTGF) [7] is often used, this theory is detailed below. This 
type of approach does not have a limit in term of particle number, the computational limitation 
coming from the number of cells in the mesh.   
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Each approach presents advantages and challenges. The DNS approach allows simulating directly the 
gas/particles and particles/particles interactions, however the meshing of geometry with moving particles 
and the modeling of particles/particles contact forces remain challenging. The CFD-DEM approach 
allows simulating larger geometry while simulating the contacts between particles. The modeling of the 
gas/particles interaction as well as the particles/particles forces however remains a source of development. 
Finally, the Euler/Euler approach allows simulating large and complex geometry but as mentioned before 
the closure models are still a source of intensive development.   
 
Table I-3 presents a particle number estimation for fluidized bed going from lab scale to industrial scales. 
Particles are assumed to be monosized and spherical at a volume concentration of 0.52. Two sizes are 
investigated with first sphere of 75 microns corresponding to Geldart Group A particles and sphere of 250 
microns corresponding to Geldart Group B particles.  
 

Table I-3– Particles number assuming sphere of monosized particles at a volume concentration of 0.52 

Bed Diameter (m) 0.2 1 5 10 

Bed Length over Diameter Ratio 2.5 3 1.5 0.7 

Bed length (m) 0.5 3 7.5 7 

Bed volume (m^3) 0.02 2.4 147.3 549.8 

Number of particles 

 with Particle size of 75 microns 
3.07E+10 4.60E+12 2.88E+14 1.07E+15 

Number of particles 

 with Particle size of 250 microns 
1.01E+09 1.51E+11 9.42E+12 3.52E+13 

 
It is obvious when looking at Table I-3 that the DNS and CFD-DEM methods are not suitable for CFD 
simulations of fluidized beds from lab to industrial scales with Geldart Groups A and B solids where the 
number of particles exceeds the capacity of these approaches. It is however important to point out that 
these micro and meso scale approaches are intensively used in the literature to better characterize the 
gas/particles and particles/particles interactions in order to provide closure models for macro scale 
approaches [104,105]. 
 
A focus is now given on macro scale Eulerian methods which are used in this PhD project, with first the 
Euler/Euler approach using the Kinetic Theory of Granular Flow (KTGF) and second the Multiphase 
Particle In Cell approach.  
 

 Euler/Euler with KTGF approach  
 
The most common approach when simulating fluidized bed in an Eulerian frame is the use of the Kinetic 
Theory of Granular Flow (KTGF) in order to model the particle phase stress tensor. The equations from 
the work of Gidaspow [7] are presented below. In all equations, variables are averaged over a region that 
is large compared with the particle spacing but much smaller than the flow domain.  
 
First, conservation equation of both gas and solid phases is presented in Equation 28, where “m” stands 
for both gas and solid phases.  
 𝜕(𝛼𝑚𝜌𝑚)𝜕𝑡 + ∇ ∙ (𝛼𝑚𝜌𝑚𝑢𝑚⃗⃗ ⃗⃗  ⃗) = 0 Equation 28 

 
The Equation 29 and Equation 30 present respectively the gas momentum balance equation and its stress 
force tensor 𝜏𝑔.  
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 𝜕(𝛼𝑔𝜌𝑔𝑢𝑔⃗⃗⃗⃗ )𝜕𝑡 + ∇ ∙ (𝛼𝑔𝜌𝑔𝑢𝑔⃗⃗⃗⃗ 𝑢𝑔⃗⃗⃗⃗ ) = −𝛼𝑔∇𝑃 + 𝛼𝑔𝜌𝑔𝑔 + ∇(𝜏𝑔) + 𝐾𝑑(𝑢𝑔⃗⃗⃗⃗ − 𝑢𝑠)⃗⃗⃗⃗⃗⃗  Equation 29 

 𝜏𝑔 = 𝜇𝑔(∇ 𝑢𝑔⃗⃗⃗⃗ + ∇𝑇 𝑢𝑔⃗⃗⃗⃗ ) − 23 𝜇𝑔∇ 𝑢𝑔⃗⃗⃗⃗ 𝐼 Equation 30 

 
A turbulence contribution can also be added in the gas stress force tensor with a turbulent viscosity 
according to the Boussinesq approach.  
 
The determination of the gas/particles exchange term 𝐾𝑑 is crucial for CFB simulations and it has been 
widely investigated in the literature. This aspect is discussed in Chapter I.4.4. 
 
The Equation 31 and Equation 32  present respectively the solid momentum balance equation and its 
stress force tensor 𝜏𝑠.  
 𝜕(𝛼𝑠𝜌𝑠𝑢𝑠⃗⃗⃗⃗ )𝜕𝑡 + ∇ ∙ (𝛼𝑠𝜌𝑠𝑢𝑠⃗⃗⃗⃗ 𝑢𝑠⃗⃗⃗⃗ ) = −𝛼𝑠∇𝑃 + ∇𝑃𝑠 + 𝛼𝑠𝜌𝑠𝑔 + ∇(𝜏𝑠) + 𝐾𝑑(𝑢𝑠⃗⃗⃗⃗ − 𝑢𝑔)⃗⃗ ⃗⃗ ⃗⃗   Equation 31 

 𝜏𝑠 = 𝜇𝑠(∇ 𝑢𝑠⃗⃗⃗⃗ + ∇𝑇 𝑢𝑠⃗⃗⃗⃗ ) + (λ𝑠 − 23 𝜇𝑠) ∇ 𝑢𝑠⃗⃗⃗⃗ 𝐼 Equation 32 

 
Different terms appear compared to the gas phase equations in order to model the solid phase internal 
forces with the solid pressure 𝑃𝑠, the solid shear viscosity 𝜇𝑠 and the solid bulk viscosity λ𝑠.representing 
the resistance of the solid to compression. The expressions of these terms presented below are the one 
used in this PhD project. One can refer to [106] for other models formulation available.  
 
The Lun solid pressure expression is presented with Equation 33: 
 𝑃𝑠 = 𝜌𝑠𝛼𝑠θ𝑠 + 2𝜌𝑠(1 + 𝑒𝑠)𝛼𝑠2𝑔0,𝑠θ𝑠 Equation 33 

 
Where 𝑒𝑠 is the coefficient of restitution for particles collisions, θ𝑠 is the granular temperature defined in 
Equation 34 from the solid phase velocity fluctuations and 𝑔0,𝑠 is the radial distribution which describes 
the probability of particle collisions which becomes infinite at the highest solid concentration. Different 
expressions exist for the radial distribution, Equation 35 presents the Sinclair Jackson formulation used in 
this thesis. 
 θ𝑠 = 13 〈𝑢𝑠′⃗⃗⃗⃗ 〉2 Equation 34 

 𝑔0,𝑠 = 11 − ( 𝛼𝑠𝛼𝑠,𝑚𝑎𝑥)1/3 Equation 35 

 
The shear viscosity is expressed in Equation 36 with the contributions of the collisions and kinetics 
viscosities expressed respectively in Equation 37 and Equation 38 with the Gidaspow formulation.  
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𝜇𝑠 = 𝜇𝑠,𝑐𝑜𝑙 + 𝜇𝑠,𝑘𝑖𝑛 Equation 36 

 𝜇𝑠,𝑐𝑜𝑙 = 45𝛼𝑠2𝜌𝑠𝑑𝑝𝑔0,𝑠(1 + 𝑒𝑠)√θ𝑠𝜋  Equation 37 

 𝜇𝑠,𝑘𝑖𝑛 = 10 √𝜋θ𝑠96 𝑔0,𝑠(1 + 𝑒𝑠) 𝜌𝑠𝑑𝑝 [1 + 45𝛼𝑠 𝑔0,𝑠]2 Equation 38 

 
The bulk viscosity is expressed in Equation 39 with the Shaeffer formulation 
 λ𝑠 = 43𝛼𝑠2𝜌𝑠𝑑𝑝𝑔0,𝑠(1 + 𝑒𝑠)√θ𝑠𝜋  Equation 39 

 
The granular temperature is described with a transport equation presented in Equation 40. It is derived by 
writing the Boltzmann integral-differential conservation equation for the probability distribution of 
random particle motion [7].  
 32 [𝜕(𝛼𝑠𝜌𝑠θ𝑠)𝜕𝑡 + ∇ ∙ (𝛼𝑠𝜌𝑠𝑢𝑠⃗⃗⃗⃗ θ𝑠)] = (−𝑃𝑠 + 𝜏𝑠): ∇ 𝑢𝑠⃗⃗⃗⃗ + ∇(K𝑠∇θ𝑠) − 𝛾𝑠 − 𝐽𝑣𝑖𝑠 Equation 40 

 
With:   

 (−𝑃𝑠 + 𝜏𝑠): ∇ 𝑢𝑠⃗⃗⃗⃗  Production term 
 +∇(K𝑠∇θ𝑠)  Granular energy diffusion flux 
 −𝛾𝑠   Dissipation due to inelastic collisions 
 −𝐽𝑣𝑖𝑠   Dissipation due to fluid viscosity 

 -  
 
The diffusion coefficient K𝑠 is expressed with Equation 41 with the Gidaspow formulation 
 K𝑠 = 150√𝜋θ𝑠𝜌𝑠𝑑𝑝384𝑔0,𝑠(1 + 𝑒𝑠) [1 + 65𝛼𝑠 𝑔0,𝑠(1 + 𝑒𝑠)]2 + 2𝛼𝑠2𝜌𝑠𝑑𝑝𝑔0,𝑠(1 + 𝑒𝑠)√θ𝑠𝜋  Equation 41 

 
The dissipation due to inelastic collisions 𝛾𝑠 is expressed with Equation 42 with the Shaeffer formulation 
 𝛾𝑠 = 12(1 − 𝑒𝑠2)𝑔0,𝑠 𝑑𝑝√𝜋 𝜌𝑠𝛼𝑠2(θ𝑠)3/2 Equation 42 

 
The dissipation due to fluid viscosity 𝐽𝑣𝑖𝑠 is expressed with Equation 43 with the Shaeffer formulation 
 𝐽𝑣𝑖𝑠 = 3K𝑠θ𝑠 Equation 43 

 
The Euler/Euler with KTGF approach allows considering the particles phase as a continuum thanks to a 
complex modeling of the particle-particle interactions. It is important to point out that this model takes 
into account a single particle diameter which is usually taken as the mean or Sauter diameter for particles 
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with a distribution of sizes. If several particles diameter should be considered with such model, several 
particle phases must be defined for each particle diameter multiplying the number of equations by the 
number of phases. This type of approach can become time and computational resource consuming. 
Moreover interactions between the solid phases should also be defined and modeled.  
 

 Multiphase Particle In Cell (MP-PIC) approach 
 
The MP-PIC approach has been described by Andrew, O’Rourke and Snider [14,107]. The main 
advantage of this method is that it allows taking into account particle size distributional for a low 
computation cost. For this purpose, authors use a so-called “hybrid Eulerian/Lagrangian” approach for the 
particles phase as detailed below. 
 
The gas phase is considered in an Eulerian frame as the Euler/Euler with KTGF approach. The gas mass 
and momentum balance equations are therefore the same as shown with Equation 44 to Equation 46.  
 𝜕(𝛼𝑔𝜌𝑔)𝜕𝑡 + ∇ ∙ (𝛼𝑔𝜌𝑔𝑢𝑔⃗⃗⃗⃗ ) = 0 Equation 44 

 𝜕(𝛼𝑔𝜌𝑔𝑢𝑔⃗⃗⃗⃗ )𝜕𝑡 + ∇ ∙ (𝛼𝑔𝜌𝑔𝑢𝑔⃗⃗⃗⃗ 𝑢𝑔⃗⃗⃗⃗ ) = −𝛼𝑔∇𝑃 + 𝛼𝑔𝜌𝑔𝑔 + ∇(𝜏𝑔) + 𝐹 Equation 45 

 𝜏𝑔 = 𝜇𝑔(∇ 𝑢𝑔⃗⃗⃗⃗ + ∇𝑇 𝑢𝑔⃗⃗⃗⃗ ) − 23 𝜇𝑔∇ 𝑢𝑔⃗⃗⃗⃗ 𝐼 Equation 46 

 
The solid phase mass and momentum equations are derived from the Liouville equation presented in 
Equation 47 which describes the transport of a particle probability distribution function f(x,v,m,t) in an 
Eulerian frame. f(x,up,m,t) represents the probability of having particles at a position “x” with a velocity 
“up”, with a mass “m” at a time “t”. 
 𝜕𝑓𝜕𝑡 + ∇𝑥 ∙ (𝑓𝑢𝑝⃗⃗ ⃗⃗ ) + ∇𝑢𝑝 ∙ (𝑓𝐴) = 0 

with 𝐴 = 𝐾𝑑(𝑢𝑔⃗⃗⃗⃗ − 𝑢𝑝⃗⃗ ⃗⃗ ) − 1𝜌𝑝 ∇𝑃 + 𝑔 − 1𝛼𝑠𝜌𝑠 ∇𝜏 

Equation 47 

 
The mass and momentum balance equations for the particle phase can be obtained by taking the moments 
of Equation 47 as explained by O’Rourke , they are presented respectively in Equation 48 and Equation 
49. 
 𝜕(𝛼𝑠𝜌𝑠)𝜕𝑡 + ∇ ∙ (𝛼𝑠𝜌𝑠𝑢𝑠⃗⃗⃗⃗ ) = 0 Equation 48 

 𝜕(𝛼𝑠𝜌𝑠𝑢𝑠⃗⃗⃗⃗ )𝜕𝑡 + ∇ ∙ (𝛼𝑠𝜌𝑠𝑢𝑠⃗⃗⃗⃗ 𝑢𝑠⃗⃗⃗⃗ ) + ∇τ + 𝛼𝑠∇𝑃= 𝛼𝑠𝜌𝑠𝑔 + ∬𝑓𝑚𝐾𝑑(𝑢𝑔⃗⃗⃗⃗ − 𝑢𝑝⃗⃗ ⃗⃗ )𝑑𝑚𝑑𝑢𝑝− ∇ [∬𝑓𝑚(𝑢𝑝⃗⃗ ⃗⃗ − 𝑢𝑠⃗⃗⃗⃗ )(𝑢𝑝⃗⃗ ⃗⃗ − 𝑢𝑠⃗⃗⃗⃗ )𝑑𝑚𝑑𝑣] Equation 49 
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With the solid volume fraction and the mean solid velocity defined by respectively Equation 50 and 
Equation 51. 
 𝛼𝑠 = ∬𝑓 𝑚𝜌𝑠 𝑑𝑚 𝑑𝑢𝑝 with 𝛼𝑔 + 𝛼𝑝 = 1 

Equation 50 

 𝑢𝑠⃗⃗⃗⃗ = 1𝛼𝑠𝜌𝑠 ∬𝑓𝑚𝑢𝑝⃗⃗ ⃗⃗ 𝑑𝑚 𝑑𝑢𝑝 Equation 51 

 
The second term on the right hand of Equation 49 corresponds to the interphase drag momentum 
exchange while the third term accounts for the kinematic stress from the particle velocity fluctuations 
with respect to the mean solid velocity. All this terms are expressed with the integration of the particles 
probability distribution function f(x up,m,t). 
 
The particle normal stress model 𝜏  is expressed with Equation 52 [108]. 
 𝜏 = 𝑃𝑠 𝛼𝑠𝛽𝑚𝑎𝑥⌊ (𝛼𝑠,𝑚𝑎𝑥 − 𝛼𝑠), 𝜀𝑏𝑎𝑟𝑟𝑎𝑐𝑢𝑑𝑎(1 − 𝛼𝑠)⌋ Equation 52 

 
With:  Ps  Constant of pressure (Pa) 
  𝛽  Model constant recommended to be between 2 and 5  
   𝛼𝑠,𝑚𝑎𝑥  Maximum close packing solid volume fraction 
  𝜀𝑏𝑎𝑟𝑟𝑎𝑐𝑢𝑑𝑎 Small number in the order of 10-7 to remove singularity 
 
The MP-PIC method consists then in using a hybrid Eulerian/Lagrangian approach to solve the gas and 
particles mass and momentum balances. For this purpose, the particles distribution function f(x up,m,t) is 
discretized into clouds of particles, each cloud having a certain number of real particles Np with the same 
diameter, mass and velocity. The number of real particles per cloud therefore becomes a simulation 
parameter. Then at a given simulation time t, clouds properties (Np, velocity, mass, diameter) are 
interpolated to the Eulerian mesh using interpolation functions [14,107]. The integrals of the distribution 
function in Equation 49 to Equation 51 become then summations over interpolated clouds properties. 
From this point, gas and solid phases mass and momentum equations are solved to get flow properties at 
t+Δt on the Eulerian mesh. Once the solution found, clouds position is updated at t+Δt using Equation 53 
and Equation 54 where Eulerian mesh flow properties such as the gas velocity, the pressure and particle 
stress are interpolated to the clouds positions.  
 𝑥𝑐𝑙𝑜𝑢𝑑𝑛+1 = 𝑥𝑐𝑙𝑜𝑢𝑑𝑛 + ∆𝑡 𝑢𝑐𝑙𝑜𝑢𝑑𝑛+1  Equation 53 

 

𝑢𝑐𝑙𝑜𝑢𝑑𝑛+1 = 𝑢𝑐𝑙𝑜𝑢𝑑𝑛 + ∆𝑡 [𝐾𝑑𝑢𝑔,𝑐𝑙𝑜𝑢𝑑𝑛+1 − 1𝜌𝑝 ∇𝑃𝑐𝑙𝑜𝑢𝑑𝑛+1 + 𝑔 − 1𝜃𝑝𝜌𝑝 ∇𝜏𝑐𝑙𝑜𝑢𝑑𝑛+1 ]1 + ∆𝑡 𝐾𝑑  
Equation 54 

 
With:  𝑢𝑔,𝑐𝑙𝑜𝑢𝑑𝑛+1   gas velocity at t+Δt interpolated to the cloud position 

  𝑃𝑐𝑙𝑜𝑢𝑑𝑛+1    pressure at t+Δt interpolated to the cloud position 

  𝜏𝑐𝑙𝑜𝑢𝑑𝑛+1    solid stress at t+Δt interpolated to the cloud position 
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As explained by Snider [14], Equation 54 is first used in the Eulerian resolution of the momentum 
balances to express the cloud particle velocity at t+ Δt with to Eulerian flow properties. Snider also 
pointed out that for this resolution, the solid volume fraction 𝛼𝑠 at t+ Δt is not implicitly coupled with the 
parcels positions at t+ Δt, meaning that at t+ Δt  there is a difference between the Eulerian solid volume 
fraction and the solid volume fraction calculated from the updated clouds positions.  
 

 Discussion on Euler/Euler KTGF and MP-PIC approaches 
 
This chapter discusses the comparison of the Euler/Euler KTGF and the MP-PIC approaches from the 
equations presented in Chapter II-4.2 and Chapter II-4.3.  
 
First concerning the inter-particle forces, one can notice the more advanced modeling in term of physical 
phenomena considered with the Euler/Euler KTGF. Indeed, this approach takes into account different 
parameters such as solid pressure, solid bulk and shear viscosities all depending of the granular 
temperature which is transported with a dedicated equation taking into account physical phenomena such 
as granular energy diffusion, inelastic particles collisions and fluid viscosity dissipations. On the other 
hand, the MP-PIC approach presents a rather simplistic modeling of particle interactions with an 
orthogonal stress tensor correlative model and with the kinematic stress from the particle velocity 
fluctuations contribution taken into account. As described with the last term of Equation 49, this 
kinematic stress is calculated with the following term, where up is the particle velocity and us is the mean 
volume particle velocity defined in Equation 51: 
 MP − PIC Kinematic stress = ∇ [∬𝑓𝑚(𝑢𝑝⃗⃗ ⃗⃗ − 𝑢𝑠⃗⃗⃗⃗ )(𝑢𝑝⃗⃗ ⃗⃗ − 𝑢𝑠⃗⃗⃗⃗ )𝑑𝑚𝑑𝑣] Equation 55 

 
As explained in Chapter II-4.3, clouds are used to discretize the distribution function and their properties 
are interpolated on the Eulerian mesh, the integral term presented in Equation 55 becoming a summation 
on interpolated clouds properties. It is then interesting to analyze the difference between the mean clouds 
velocity and the clouds velocity presented in Equation 54. Indeed, from this equation, one can see that the 
cloud velocity is calculated from the drag, pressure and particle stress contributions. For clouds being 
close to each other in space, the pressure and particle stress contributions can be considered similar since 
they are interpolated from the Eulerian mesh to the clouds positions. Therefore, the only term which can 
create a difference for the velocity calculation of two clouds being close to each other is the drag term Kd 
in Equation 54. Thus, the kinematic stress with the difference between mean particles velocity and 
particle velocity of Equation 55 is mainly influence by drag which is itself influence by particle size for a 
given drag correlation.  
 
The second point of discussion is the difference in term of particle size taken into account in the two 
approaches. Indeed, with the Euler/Euler KTGF method, only one representative diameter is considered. 
As explained before, several classes of diameter can be considered by having different solid phases, the 
number of equations solved being multiplied by the number of phases. This method is time consuming in 
term of computational power moreover interactions between the different solid phases must also be 
described. Concerning the MP-PIC approach, the full particle size distribution can be taken into account 
for a low computational cost.  
 
It appears that each approach have its own advantage. The Euler/Euler KTGF method describes with a 
more complex model the particle interactions but only a representative particle diameter is considered 
while the MP-PIC method takes into account the full particle size distribution through the population of 
clouds but with a rather simplistic modeling of particles interactions. One can then wonder if the 
combination of the two approaches could be possible with the more complex particles interaction model 
from the Euler/Euler KTGF approach incorporated in the MP-PIC approach.  
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To conclude, both approaches are used on the same simulation cases in this dissertation. It should be 
added that these two approaches are the most commonly used in the literature for gas/particles flow 
simulations, investigations and development being mainly carried out on the gas/particles and 
particles/particles interactions models.  
 

 Drag closure laws 
 
Both Euler/Euler KTGF and MP-PIC approaches use a drag closure law through the term Kd for the 
gas/particles exchange in the momentum Equation 31 and Equation 49. The modeling of Kd has been 
widely investigated and proven crucial for CFBs hydrodynamic predictions [7,8,10,12,26,109–112].  
 
Different common drag closure laws are often mentioned in the literature, a non-exhaustive list being 
presented in Table I-4. 
 

Table I-4– Common drag closure laws 

Ergun model 
[113] 

𝐾𝑑 = 150𝛼𝑠2𝜇𝑔 𝛼𝑔2 𝑑𝑝2 + 1.75𝛼𝑠𝜌𝑔 𝛼𝑔2 𝑑𝑝 |𝑢𝑔 − 𝑢𝑠| 

Wen-Yu model 
[114] 

𝐾𝑑 = 34𝐶𝑑 𝛼𝑠𝛼𝑔𝜌𝑔|𝑢𝑔 − 𝑢𝑠|𝑑𝑝 𝛼𝑔−2.65 

with  𝐶𝑑 = 24𝑅𝑒𝑝 (1 + 0.15𝑅𝑒𝑝0.687)𝑓𝑜𝑟 𝑅𝑒𝑝 < 1000 ;  𝐶𝑑 = 0.44 𝑓𝑜𝑟 𝑅𝑒𝑝 ≥ 1000    
𝑅𝑒𝑝 = 𝜌𝑔𝑑𝑝|𝑢𝑔 − 𝑢𝑠|𝜇𝑔  

Gidaspow model 
[7] 

𝐾𝑑 = 𝐸𝑟𝑔𝑢𝑛 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝛼𝑠 > 0.2 𝑎𝑛𝑑 𝐾𝑑 = 𝑊𝑒𝑛𝑌𝑢 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝛼𝑠 < 0.2 (no 
physical continuity at the transition between the Ergun and Wen-Yu model) 

Syamlal&O’Brien 
model [115] 

𝐾𝑑 = 34𝐶𝑑𝛼𝑠𝛼𝑔 𝜌𝑔|𝑢𝑔 − 𝑢𝑠|𝑑𝑝𝑣𝑟𝑠2  

with 𝑣𝑟𝑠 = 0.5(𝐴 − 0.06𝑅𝑒𝑝 + √(0.06𝑅𝑒𝑝)2 + 0.12𝑅𝑒𝑝(2𝐵 − 1) + 𝐴2+ 

with 𝐴 = 𝛼𝑔4.14; 𝐵 = 0.8𝛼𝑔1.28 𝑓𝑜𝑟 𝛼𝑔 ≤ 0.85 𝑎𝑛𝑑 𝐵 = 𝛼𝑔2.65 𝑓𝑜𝑟 𝛼𝑔 ≥ 0.85 

 
Simulations with Geldart Group A particles are often reported to fail using these common drag laws [6]. 
Indeed, authors showed for Geldart Group A fluidized bed simulations that common drag laws 
overestimate the momentum exchange between gas and solid phases with over prediction of the bed 
expansion in bubbling regimes [109] and no dense phase predicted for turbulent bed simulations as shown 
by Li et al. [10]. A first simple corrective approach proposed by Cocco et al. [116] in order to reduce the 
gas/particles drag force was to multiply the drag coefficient Kd by a factor between 0 and 1, the factor 
being set according to experimental data. Then two schools of thoughts can be found in the literature to 
explain the particle drag overestimation phenomena. First authors claim that the formation of clusters due 
to the inter-particle forces in the fluidized bed changes the effective diameter of the solid phase and the 
drag closure law should be calculated with this larger effective diameter. Li et al. [10] simulated a 
turbulent bed of FCC particles having a mean diameter of 60 microns. They used an effective particle 
diameter of 300 microns in their drag closure law at high solid volume fraction where clustering is 
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supposed to occur and an effective diameter equals to the particles mean diameter of 60 microns at low 
solid volume fraction. With this approach they managed to predict the bed density of their turbulent bed. 
Motlagh et al. [12] used a more complex physical clustering model based on a force balance between 
inter-particle forces to compute an effective diameter for the drag closure law. With this method they 
managed to predict with accuracy bed expansions for different superficial gas velocity in a FCC fluidized 
bed. The other school of thought claims that the overestimation of the particles drag comes from the non-
resolved structure when using a coarse mesh and a large time step. The non-resolved structure refers to 
the formation of particles streamers or clusters that are due only to hydrodynamic phenomena and not 
inter-particle forces. Authors developed strategy when they resolve the gas/particles flow with a fine 
mesh where they can actually solve the structures such as hydrodynamic streamers and cluster. They then 
develop filter approaches to modify the drag closure law for coarser mesh simulations. Ozel et al. [8] 
proposed a drag filter formulation with a drift velocity formulation based on the well-resolve simulation 
of a periodic FCC riser using 17 million cells. Parmentier et al. [117] used the same approach with a well-
resolved two dimensional dense fluidized bed. Another method for considering the effect of non-resolved 
structure on the drag is the Energy Minimization Multi Scale (EMMS) approach proposed by Li 
[118,119]. This approach consists in considering for the drag calculation, a particle dense cluster phase 
and a particle dilute phase. Then gas/particles interactions are considered separately in the dense and 
dilute phases. An additional drag interaction terms is then considered between the particles dense and 
dilute phases. The consideration of the additional phases brings additional parameters and equations to be 
solved. The closing of this equation sets is made through the minimization of the mass-specific energy 
consumption for suspending and transporting particles. Indeed, as stated by Ghadirian et al. [120], the 
fundamental concept in the EMMS approach is the fact that in a fluidized bed, the gas and solid phase 
interact with each other so that the net energy transfer between phases is minimized. In their work, Wang 
et al. [119] showed good agreement with experimental data for their riser simulations using the EMMS 
drag model.  
 
To conclude, gas/particles drag closure law development remains a challenge with many developments 
on-going and where models allowing predictions on a wide range of systems and operating conditions 
have not yet been found. 
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 Extrapolation of circulating fluidized bed processes through modelling 
 
Extrapolating the circulating fluidized bed lab scale characterization to the industrial scale is a major 
challenge and topic of interest for processes performance prediction and trouble-shooting. This chapter 
presents different modelling methodology for such extrapolation with first the phases flow theory and 
seconds the use of CFD tools.  
 

 Extrapolation using the two-phase flow theory 
 
The two-phase flow theory consists in representing the different phases or structures of a fluidized bed or 
riser with theoretical flow models (plug-flow, CSTR, dispersed plug flow, …). Figure I-15 presents an 
example of a fluidized bed representation with the distinction of an emulsion, a bubble and a dilute phase 
used by Davidson et al. [121].  
 

 

Figure I-15: Fluidized bed representation with two phase flow theory 
 
In this model, authors considered the emulsion phase as a plug dispersed flow at minimum fluidization 
conditions with a gas volume fraction and a gas velocity of respectively εmf and Umf. The bubble phase is 
considered as a plug dispersed flow while the dilute phase is considered as a plug flow. Parameters such 
as bubble diameter and velocity as well as particles entrainment are calculated with correlations 
developed from experiments as presented in Chapter I.2.2. The main assumption with this model is that 
all the gas which is not in the emulsion phase at εmf flows under the form of bubbles. More complex 
models have then been developed with kinetic reactions, heat and mass transfers between the different 
phases [122]. Lee et al. [123] used a phase theory model similar to Davidson et al. model [121] coupling 
kinetic and heat balance to simulate an industrial FCC regenerator. They also included a jet grid model to 
take into account the air distributor effect. The model predicted more qualitative than quantitative results 
in term of temperature and coke combustion rate. A similar approach was used by Filho et al. [124] to 
simulate the regenerator of an industrial FCC unit operated by Petrobras. In their hydrodynamic model, 
they assumed a jet zone above the air injection where no reaction occurs. Good agreement was found 
between the experimental and predicted regenerator temperatures. Soundararajan et al. [125] used a phase 
flow theory approach to model Methanol to Olefin (MTO) reactions in a riser. As presented in Figure I-18, 
they distinguished a gas/particles acceleration zone at the riser bottom followed by an established zone 
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divided into a core and annulus region. Authors also implemented a riser termination effect on 
hydrodynamic based on experimental measurements.  
 

 

Figure I-16: Riser representation from Soundararajan et al. [125] 
 
The extrapolation capacity of two phase flow theory models depends on the extrapolation capacity of the 
hydrodynamic, kinetic heat and mass transfers parameters input in the model. Indeed these parameters 
characterization rely on the experimentation and measurement techniques set up to determine them, the 
way they have been modeled/correlated and how these modeling/correlations extrapolate to industrial 
conditions. For example, in fluidized bed modeling shown in Figure I-15, bed expansion will be 
dependent on the bubble properties (diameter, velocity), these properties being first difficult to 
characterize experimentally especially in turbulent regime and second it is difficult to assess their 
extrapolability at industrial conditions. Mass transfer characterization is also crucial when modeling 
reactive systems. The development of precise mass transfer model is therefore necessary but challenging. 
This issue is however not investigated in this dissertation.  
 
Finally, two phase flow models allow investigating the extrapolation of global parameters such as bed 
expansions, entrainment, and reactor yields for reactive systems. However, local information and three-
dimensional effects with complex geometries (internals, gas injectors design, solid injections) are difficult 
to characterize with such a modeling strategy. In this context, CFD tools became another modeling 
alternative as presented in the next chapter.   
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 Extrapolation using CFD tools 
 
Compared to phases flow theory, CFD relies on the more fundamental but complex physical modeling of 
gas/particles and particles/particles interactions as presented in Chapter II-4. Within the last twenty years 
and the continuous improvement of computational power, CFD tools became a topic of great interest for 
modeling fluidized beds. The main advantage is that geometrical and three-dimensional effects are 
directly taken into account with local phases properties determined in the entire simulated geometry. 
Therefore, CFD tools allow investigating potential design changes as carried out by Lopes et al. [126] 
who studied the effect of different riser termination for an FCC industrial unit with an Euler/Euler with 
KTGF approach. CFD tools also allow studying phenomena at industrial scale which are difficult or 
almost impossible to characterize experimentally on site. Amblard et al. [9] simulated using the MP-PIC 
approach an industrial FCC regenerator coupling hydrodynamic with a coke combustion kinetic model. 
Authors highlighted the potential useful insights obtained which are not accessible on the industrial unit 
in term of gas distribution, temperature profiles and coke combustion rate. However, Amblard et al. also 
highlighted the difficulty to estimate directly the validity of CFD modeling versus industrial data where 
only macroscopic daily averaged data are available and where it is difficult to decouple the effects of the 
different phenomena occurring (hydrodynamic, kinetic, heat transfer). 
 
CFD modeling at industrial scale is therefore challenging for two main reasons, the computational 
resources available with the limitation of the mesh size that can be used and the estimation of results 
validity. Indeed, precise investigation of CFD modeling predictions is carried out at laboratory scale 
where local measurements can be carried out (bed expansion, entrainment rate, local volume fraction and 
velocities). It should be pointed out that such validations are already not trivial since experimental local 
characterization can be challenging are should be considered with care as presented in Chapter II-3.2. 
With lab scale simulations, authors usually investigate the gas/particles and particle/particles interactions 
models and the results independency with respect to the mesh cell size [10,12,127]. However, due to 
computational power limitations, it is usually impossible to keep the same cell size between lab scale and 
industrial scale simulations. Table I-5 presents an estimation of mesh sizes with different hexahedral cell 
size for vessel diameters from 0.2 meter to 10 meters. 

Table I-5– Mesh size estimation for different geometries with hexahedral cells 

Vessel Diameter (m) 0.2 1 5 10 

Vessel length (m) 1 5 15 25 

Vessel volume (m3) 0.03 3.9 294.5 1963.5 

number of cells with hexahedral cells of 0.5 cm 2.51E+05 3.14E+07 2.36E+09 1.57E+10 

number of cells with hexahedral cells of 1 cm 3.14E+04 3.93E+06 2.95E+08 1.96E+09 

number of cells with hexahedral cells of 5 cm 2.51E+02 3.14E+04 2.36E+06 1.57E+07 

 
Assuming that transient CFD simulations can be obtained in a reasonable time frame with meshes lower 
than 10 million cells, it is clear from Table I-5 that large industrial scale simulations cannot be run with a 
mesh size lower than 5 cm. Shah et al. [128] simulated an industrial fluidized bed furnace with cell sizes 
of 10 cm. They then adjusted the model drag closure law based on the industrial pressure drop 
measurements. However, one can wonder about the hydrodynamic representatively of such model where 
the drag closure law had been adjusted based on a global averaged measurement characteristic for one 
operating condition. Ozel et al. [8] developed a filtered approach to modify their drag and 
particle/particles models according to the cell size used. Authors evaluated their filtered approach from a 
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numerical point of view and highlighted that comparisons between filtered simulations and experimental 
data should also be carried out. Amblard et al. [9]with their simulation of the coke combustion in an 
industrial FCC regenerator compared the combustion gas composition of the plant with the simulation 
data. Even if a good agreement was obtained, authors highlighted that such a comparison is not enough to 
fully validate all the model parameters (kinetic rates, heat transfer, …). Indeed, at industrial scale, the data 
available to estimate the simulation predictions are global and averaged (bed level, temperature, gas 
composition) and even if a certain agreement is reached with the simulation, it is difficult to estimate if 
local properties such as gas and solid velocities are also well predicted by the simulation. 
 
It therefore appears that the extrapolation capacity of CFD gas/particles simulations is a topic where 
further investigation is needed. The work presented in this dissertation is an attempt to bring a 
methodology to study this issue.  
 

 Particles Attrition in circulating fluidized bed and attrition testing 
 
From the previous chapters, we have seen that circulated fluidized bed put particles under a high 
mechanical stress with continuous particles/particles and particles/wall interactions. The consequence of 
this stress is the degradation of the particles structure also commonly named attrition. Attrition linked to 
fluidization is a topic of interest intensively studied in the industry. Indeed, generation of fines due to 
attrition causes many problems such as inventory loss, which has a strong economic impact on the 
process, as well as change in the flow hydrodynamic with difficulties to operate the units. Therefore, two 
main issues related to attrition can be pointed out when developing new circulating particles and/or a new 
CFB process: 
 

- First, it is important to reach a good compromise between particles resistance to attrition and 
particles reactivity. Indeed, better particle reactivity requires a higher porosity in order to increase 
the internal particle surface area but a higher porosity also weakens the particles mechanical 
structure. 
 

- Second, it is important to estimate at industrial scale the particles losses for the process economics 
and operations.  

 
The study presented in Chapter III investigates attrition phenomena and their extrapolation for the 
development of the CLC process. This chapter therefore presents a literature review on this topic.  
 

 Attrition phenomena and their characterization 
 
Abrasion and fragmentation are the two mechanisms that govern attrition. As shown in Figure I-17, 
abrasion corresponds to daughter particles removed from the surface of a mother particle which generates 
fines while fragmentation corresponds to daughter particles generated from the splitting of a mother 
particle which generates intermediate size particles. 
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Figure I-17 : Attrition mechanisms 

 
In fluidization, the physic behind these mechanisms is not quite understood and difficult to model, 
therefore attrition studies remain correlative. J.Werther and J.Reppenhagen [129] summarize the work 
and techniques used to study particles attrition. Different approaches and many apparatus exist to 
characterize attrition. The two main issues investigated being to characterize the resistance to attrition for 
a given solid and then predict attrition in a CFB system as a function of operating conditions for the same 
given solid.  
 
A first approach consist in characterizing attrition due to the principal sources of breakage such as 
cyclones, gas injections and gas bubbles in fluidized beds. The attrition sources modeling remains 
correlative with attrition rates expressed in function of attrition source dimensions (injection orifice 
diameter, bed height, …), gas properties (velocity, density) and empirical terms depending on the 
materials as carried out by Ghadiri et al. [132] for the prediction of jet attrition. The modeling of attrition 
sources can then be used in a population balance model in order to predict attrition at an industrial case. 
J.Werther and E. Hartge [130] used this method to predict the attrition generated in a reactor/regenerator 
system. Based on this approach, more recently, Kramp et al. [131] made an attempt to simulate attrition in 
a CLC process. This method is probably the most precise in order to evaluate attrition at industrial scale, 
however it requires a tedious experimental work and a large quantity of material of interest in order to 
characterize the different sources of attrition. Moreover, experiments to estimate attrition phenomena are 
often made at ambient conditions which differ from the industrial conditions.  
 
A second approach consists in using attrition test in order to evaluate the attrition potential of a material. 
Such tests allow ranking different materials with respect to their mechanical resistance to attrition and can 
give useful information during catalyst and process development. Many attrition tests exist. A first 
category such as the shear and crushing tests evaluate the mechanical resistance of particles applying a 
well-defined mechanical stress. Discussions exist concerning on how the results of such tests can be 
correlated to attrition in a circulating fluidized bed. Knight and Bridgwater [133] showed that when 
comparing the mechanical resistance of different solids with the shear and crushing tests, the rank is 
different depending on which test is used. Magnus Rydén et al. [134] found no strong correlation between 
the crushing test and the attrition data from their continuous chemical looping experiments in reactors at 
Chalmers University of Technology. A second category of attrition test consist in applying a “less-
controlled” mechanical stress by putting particles under a mechanical stress similar to conditions in 
circulating fluidized beds. For example, the standard method ASTM D-5757 [135] consists in putting 50 
grams of a solid sample in a mini-fluidized bed with three vertical air injections at high velocity during 5 
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hours, the attrition being characterized by the amount of fine elutriated. This method has been design for 
FCC catalyst only. Cocco et al. [4] developed a jet cup test where air is injected tangentially at high 
velocity in a conical shape container where the particles sample is placed. The high gas velocity injection 
reproduces the mechanical stress of gas injectors while the tangential inlet induces a swirling flow that 
reproduces a mechanical stress similar to cyclones. In their study, Cocco et al. [4] compared for several 
types of FCC catalyst, the attrition generated in a 30 cm fluidized bed with the attrition generated in the 
Jet Cup. They found that their jet cup results correlated well with attrition rate measured on the 30 cm 
fluidized bed. Moreover, Magnus Rydén et al. [134] found that their jet cup results correlated well with 
attrition rates measured on their continuous chemical looping experiments at Chalmers University of 
Technology with Group B oxygen carriers. Therefore, the jet cup seems to be a relevant tool to 
characterize the attrition generated in fluidized beds.  
 
The effects of thermal and chemical stresses on particles attrition were also investigated. Knight et al. 
[136] studied the effect of temperature on attrition by carrying out tests on an oxygen sorbent at ambient 
temperature and at 500 degrees Celsius. They used an air jet attrition test apparatus based on the standard 
ASTM D5727. Knight et al. clearly report that when temperature is increased, if the gas mass flowrate is 
kept constant, the attrition generated in the test increases since the jet velocity increases because of the 
gas density change. Therefore, the authors reduced the gas mass flowrate in order to keep the jet velocity 
constant compared with the ambient conditions testing. It resulted that the attrition generated became 
similar to the one observed at ambient temperature. Concerning the chemical stress, Magnus Rydén et al. 
[134] investigated the impact of the chemical reaction in a Chemical looping Combustion process by 
comparing Jet Cup attrition results on fresh particles and on particles that have been through several 
chemical cycles. 
 

 Jet cup attrition index 
 
Different indexes are used to characterize the attrition generated during a jet cup test. The first method 
consists in comparing the particles size distribution of the tested sample before and after the test. Figure 
I-18 shows the particle size distributions of a FCC catalyst sample before and after a jet cup test. Cocco et 
al. [4] use two indexes AI(20) and AI(44) which corresponds to the weight of particles generated by 
attrition below respectively 20 µm and  44 µm.  
 

 

Figure I-18: Definition of the attrition indexes used by Cocco et al.  
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These two indexes have limitations when comparing solids with large particles. Indeed, when considering 
group B powders that are used for the CLC process, generation of fine particles below 20 or 44 microns is 
not enough to describe particles breakage since the particle size generated by attrition might be higher.  
 
Magnus Rydén et al. [134] characterize the attrition in the jet cup test by measuring the weight of fines 
that are elutriated and recovered in a filter. The advantage of this method is that it is independent from the 
measure of particle size distributions which can be challenging. However, one problem is that the amount 
of particles elutriated at a constant gas velocity depends also on the particles properties such as the 
density. Therefore when comparing two solids with different densities, the amount of fines elutriated to 
the filter might be lower for the heaviest solids but it does not mean that the attrition rate is lower.  
 

 CFD studies carried out on the Jet Cup 
 
In order to better understand the hydrodynamic and the breakage mechanisms within the jet cup, several 
Computational Fluid Dynamic (CFD) studies have been carried out.  
 
Cocco et al. carried out CFD simulations in order to study the influence of the jet cup shape on the gas-
solid flow hydrodynamic. For this purpose they used the commercial code Barracuda VR® from CPFD-
Software. Barracuda VR® uses the multiphase particle-in-cell (MP-PIC) method presented in Chapter 
I.4.2. The particle–fluid drag force was expressed using the Gidaspow drag function [7] which combines 
the Wen-Yu and Ergun models. Cocco et al. simulated jet cup tests in three dimensions with 100 grams of 
FCC catalyst that represents about 108 real particles. The simulations took into account a particle size 
distribution with a mean diameter of about 80 microns. It is important to notice that attrition is not 
simulated and therefore the particle size distribution stays constant during the simulations. CFD 
simulations revealed that with the cylindrical shape jet cup, a large part of the particles remains stagnant. 
This result was confirmed experimentally with a cold flow study. The problem is that stagnant particles 
do not go under stress and are not subject to attrition which makes the results from the jet cup test 
difficult to interpret. Afterwards they studied a jet cup configuration with a conical shape. Both 
experimental CFD studies confirm that almost all particles were in motion with this configuration, the 
experimental attrition rates found were higher than with the previous cylindrical shape configuration. 
 
Wei Xu et al. [137] used another approach to simulate the jet cup gas-solid hydrodynamic. They carried 
out CFD simulations using the open source code MFIX–DEM where the gas phase is treated as a 
continuum in a Eulerian framework while the solid phase is treated in a Lagragian framework using a 
Discrete Element Method (DEM). Real particles are directly represented and the main advantage of this 
approach is that particles inter-collisions are directly detected and modeled using the soft-sphere approach 
[138]. Moreover, Wei Xu et al. [137] also implemented a model for particle size reduction due to 
chipping and abrasive wear from particle–particle and particle–wall interactions. The particle interactions 
are therefore described in a more precise way and at a lower physical scale compared to the MP-PIC 
method presented before. However, with the DEM approach the number of particles is limited by the 
expensive computational cost of the method. Wei Xu et al. [137] simulated a jet cup in two dimensions 
with about 103 particles taken into account. Both polydispersed and monodispersed particle size 
distributions were simulated with particle size going from 200 to 600 microns. Moreover, the particle size 
is limited at 100 microns in order to avoid numerically the generation by attrition of particles smaller than 
this diameter. They studied the influence of different parameters on the attrition rate: the air jet velocity, 
the initial diameter of a mono-dispersed distribution going from 200 to 600 microns, the particles density 
and the jet cup shape. First, they found that attrition increases with the air jet velocity. Then there was no 
direct correlation between the attrition and the initial diameter of the mono-dispersed distribution. The 
attrition decreases with the particle density the explanation being that although higher density can 
increase the particle inertia, it will reduce the particle mobility that appears to be more dominant in the 
attrition process. Finally, they found that changing the shape of the jet cup can create regions where 
particles are stagnant and therefore the attrition rates is decreased, this is confirmed by the experimental 
work done by Cocco et al. [4].  
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 Conclusions 
 
This literature review sets the context of the different investigations carried out in this dissertation.  
 
First concerning attrition, the reader could appreciate the importance of estimating attrition phenomena 
when developing a new circulating fluidized bed process and the difficulty to estimate the particles 
resistance to attrition with tests using a well-defined mechanical stress. Different studies then 
demonstrated that jet cup tests are representative of the mechanical stress applied to particles in a 
fluidized bed and that it can be used to evaluate the resistance to attrition of different types of particles. 
However, based on the literature, it is not a well-defined methodology to compare attrition resistance of 
particles having different sizes and densities. The investigation presented in Chapter III therefore 
introduces a methodology using a jet cup test to evaluate and compare the resistance to attrition of Geldart 
Group B particles used in the CLC process with Geldart Group A particles used in the FCC process. The 
purpose of such a comparison is to use FCC particles, where industrial attrition data are available, as a 
reference to assess the resistance to attrition of the potential oxygen carriers where data at industrial scale 
are not available.  
 
The reader could then appreciate the difficulty of characterizing CFB hydrodynamic with complex flow 
structures where many physical parameters such as superficial gas velocity, solid circulation rate, fines 
content, pressure, temperature, geometry  and internals have a strong influence, while their 
characterization and modeling remaining mostly correlative due to a lack in fundamentals for describing 
gas-particle interactions. The challenges connected to experimentation were also presented, highlighting 
the difficulty to get precise local hydrodynamic descriptors. These different issues make the CFB 
hydrodynamic extrapolation challenging whatever the approach: 
 

-  If using phase flow theory, the challenge for scale-up is to develop correlative models used to 
describe the hydrodynamic phenomena at macroscopic scale. Three dimensional effects with 
complex geometry are then difficult to take into account with this approach.  
 

- If using CFD, three dimensional effects and complex geometries can be described but the 
challenge relies on the more fundamental but complex modeling of gas/particles and 
particles/particles interactions.  

 
With the improvement of computational power, CFD tools allows characterizing multiphase flows in 
three dimensions on large scales taking into account complex geometrical features such as distributors 
and internals. Two CFD approaches for large scale simulations were introduced in the literature review 
with the Euler/Euler KTGF and the MP-PIC approaches. For both approaches, modeling of the 
gas/particles drag closure law is proven to be critical but it remains challenging and complex. Indeed, 
many models exist in the literature which are often investigated and tuned for simulations of a specified 
experiment with a rather narrow range of operating conditions. The use of the same mesh cell size 
between lab and industrial scales is impossible due to computational power limitations. Therefore, 
different methodology were then introduced for CFD simulations at industrial scale with authors 
investigating their drag closure law based on industrial data, other others proposing filtered drag closures 
law in order to take into account the large mesh cell size effect. Validation of CFD models extrapolation 
capability by analyzing simulation results on a wide range of conditions is a topic of interest but it is not 
yet clearly addressed. The work presented in in this dissertation is therefore an attempt to bring a 
methodology to study this issue. We conducted or used experiments at different scales that were then 
simulated using both Euler/Euler with KTGF and MP-PIC approaches.  
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II. ATTRITION PHENOMENA EXTRAPOLATION AT 
THE EARLY STAGE OF A PROCESS DEVELOPMENT 

 

 Introduction 
 

The present study is part of the process study conducted together by IFP Energies nouvelles and Total to 
develop a Chemical Looping Combustion process [3]. As presented in the literature review, the CLC 
process is an oxy-combustion like technology for CO2 capturing where oxygen-carrying particles are 
used to supply oxygen for combustion. The process uses group metal oxide particles as an oxygen carrier 
to transfer oxygen in a circulating fluidized bed from an air reactor to a fuel reactor where combustion 
takes place. The choice of the oxygen carrier particles is a key parameter for the process development. 
Apart from reactivity, oxygen transfer capacity, fluidization properties and cost, it is also important to 
study attrition. Indeed, during their life-time, particles go through a high mechanical stress due to their 
circulation between the different reactors. Particles with low mechanical resistance will produce fines 
which can cause operating issues such as solid circulation upset as well as loss of material which may 
impact significantly the operating costs of the unit considering that the solid inventory at industrial scale 
is several hundred tons. 
 
Particles belonging to Group B powders may be more suitable to control circulation in the CLC process 
[139] and also to separate more easily oxygen carriers from unburnt particles [140]. However, there is 
presently very little information available concerning long term operation with Group B oxygen carriers 
and industrial data are not available for the CLC process. It is therefore difficult to predict attrition at 
industrial scale based on existing tools and methodologies for the different oxygen carriers available in 
limited quantities at the early stage of the process development. Therefore, we propose to compare the 
resistance to attrition of the different potential oxygen carriers with the one of catalyst used for the Fluid 
Catalytic Cracking process (FCC), where industrial attrition data already exist. Indeed, the CLC process is 
similar in its configuration to the FCC process with particles circulating in a loop between different 
reactors as shown in Figure II-1. 
 

  

Figure II-1 : Sketches of the CLC and FCC processes 
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As presented in the literature review, in the FCC process particles circulate in a loop between the reactor 
sections, where the feed is cracked by catalytic reaction, and the regenerator section where the coke 
formed during the reaction is burnt in order to regenerate the catalyst. Therefore, in both CLC and FCC 
processes, particles go through a mechanical stress proportional to the solid circulation due to different 
attrition sources like cyclones, gas injections, fluidized beds and so on. Thus, comparing the different 
potential oxygen carriers with FCC catalyst gives a good indication to rank their mechanical resistance 
and evaluate their potential use at an industrial scale considering only mechanical attrition. 
 
This investigation presents a method to compare the mechanical resistance to attrition of a Group A FCC 
catalyst with Group B oxygen carriers using a jet cup apparatus originally developed to characterize FCC 
catalysts. The goal is to compare the mechanical resistance to attrition of the different solids on the same 
mechanical stress basis in the jet cup. For this purpose, CFD was used to characterize the particles 
circulation within the jet cup for solids with different properties (FCC catalyst, oxygen carriers) which 
would be very difficult to measure experimentally. This work therefore shows how CFD can help 
understanding physical phenomena difficult to characterize experimentally and how CFD can orientate 
the testing method development.  
 
In the following, materials and methods are first introduced with the presentation of the powders 
characteristics used in the investigation, followed by a description of the experimental jet cup apparatus 
and procedure and CFD tools and methods. Then, we present the CFD investigation conducted to 
characterize the jet cup hydrodynamic. Finally, we show experimental results using CFD findings to 
adjust the testing method.  
 

 Material and methods 
 
This study was conducted in order to compare attrition resistance of an equilibrium FCC and two oxygen 
carriers using a jet cup apparatus. This chapter presents first the physical properties of the different 
powders used. A presentation of the jet cup apparatus and procedures is then carried out, and the CFD 
tools and method used to characterize the jet cup hydrodynamic are finally introduced since CFD was 
used to characterize the hydrodynamic within the jet cup of the different solids. 
 
 

 Particles properties 
 
Three solids are used for this investigation: 
 

-  First a Geldart Group A equilibrium FCC catalyst which comes from the Total refinery in Feyzin, 
France.  
 

- Second a fresh Group B oxygen carrier which is a crushed natural manganese ore.  
 

- Third, a Group B equilibrium oxygen carrier. It is actually the fresh oxygen carrier presented 
above collected after being used in IFP Energies nouvelles hot pilot [3] under real CLC process 
conditions with several oxydo-reduction cycles.  

 
The particle size distribution (PSD) and physical properties of the different solids can be found in 
respectively Figure II-2 and Table II-1. PSDs are measured by laser diffraction with a master sizer 3000 
and particle densities are measured by mercury porosimetry.  
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Figure II-2 : Particle size distribution of the material investigated 
 

Table II-1– Particles physical properties 

 Equilibrium FCC 
Fresh oxygen carrier 

particles 
Equilibrium oxygen 

carrier particles 

Particle Density 
(kg/m3) 

1 450 3 600 3300 

Particles mean 
diameter dp50 (µm) 

70 180 210 

Particles Sauter 
Diameter (µm) 

51 170 205 

 
One can see that the fresh and equilibrium CLC oxygen carriers have similar mean physical properties. 
The equilibrium CLC presents a narrower particle size distribution with less fine particles as shown in 
Figure II-2.  
 
Oxygen carrier particles and FCC particles have very different properties. One can therefore wonder how 
to handle these different powders in a jet cup test that has been developed for FCC catalysts and how we 
can evaluate and compare properly their attrition resistance. These questions are investigated in the next 
sections.  
 
Finally, it is important to point out that the amount of equilibrium oxygen carrier particles available is low 
compared to the two other solids. Therefore, most of the tests to characterize and develop the jet cup 
attrition method were carried out with the equilibrium FCC and the fresh oxygen carrier particles. The 
equilibrium oxygen carrier particles were used only for the final comparison tests. This is a classical issue 
for process development. In early stages, particle quantities available are limited and it is important to be 
able to reach conclusions based on tests with limited solid amounts. 
 

 Jet cup attrition testing 
 
The jet cup used for the attrition testing is presented in Figure II-3. It consists in a conical cup where air is 
injected tangentially in the bottom at high velocity through a 5 mm diameter orifice as presented by 
Cocco et al. [4]. The jet cup is connected to a disengagement vessel where the superficial air velocity is 
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low which allows particles above a certain size to go back into the jet cup, precise dimensions can be 
found in Appendix 1. Elutriated fines are collected with a filter placed into the disengagement vessel.  
 
The air flowrate is controlled with a flowmeter Brooks 2580S. The accumulation of particles on the filter 
makes the pressure in the vessel increasing which affects the air jet velocity. For this reasons a maximum 
pressure variation of 100 mbars is tolerated during the test. In order to limit electrostatic effects that make 
particles stick to the walls, air is humidified before entering the jet cup.  
 
After testing, all materials collected inside the jet cup and on the filter are weighed. A material balance is 
conducted to ensure that at least 95% of the material is accounted for. Attrition generated is characterized 
with the difference between the particle size distribution before and after the test. The particle size 
distribution at the end of the test is reconstructed with the particles collected on the filter and inside the 
cup. Particle size distributions are measured by laser diffraction technique using a Malvern Mastersizer 
3000. 
 

 

Figure II-3 : Jet cup attrition rig  
 
Figure II-4 and Figure II-5 show the particle size distributions (PSD) of jet cup tests carried out 
respectively with the Group A FCC catalyst and the Group B fresh oxygen carrier. The red and black 
curves correspond respectively to the initial and the final particle size distributions. The blue curve 
corresponds to the difference between the initial and the final particle size distribution. The positive area 
delimited by the differential blue curve corresponds to the amount of particles generated by attrition while 
the negative area corresponds to the amount of particles, which went through attrition phenomena. When 
the blue curve cut the x-axis it indicates the maximum diameter of the particles generated by attrition 
which is shown by the red arrow on the Figures. With FCC catalyst, the maximum diameter is in the 
range of 50 microns. Usually when people conduct investigations on FCC catalyst, they characterize the 
fine particles generation below 20 or 44 microns [4], which is consistent with the maximum diameter 
found in our case . However, when considering large particles such as the oxygen carrier studied, attrition 
indexes based on the generation of fine particles below 20 or 44 microns are not sufficient to describe 
particle breakage mechanisms as shown in Figure II-5 where the maximum diameter of the particles 
generated by attrition is 110 microns. Therefore, in order to compare both solids on the same basis, we 
propose to introduce a new attrition index that does not depend upon a given particle size [141]. This 
index is based on the total percentage of particles generated by attrition which corresponds to the positive 
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area delimited by the differential blue curve shown with the green lines on Figure II-4 and Figure II-5. 
This index is referred as TPGI (Total Particles Generated Index) in the rest of the investigation. 
 

 

Figure II-4 : equilibrium FCC ; Particle Size Distributions for a jet cup test ; sample mass of 100 grams 
air jet velocity: 90 m/s; test duration: 6 hours 

 

 

Figure II-5 : fresh oxygen carrier ; Particle Size Distributions for a jet cup test ; sample mass of 250 
grams air jet velocity: 90 m/s; test duration: 6 hours 

 

 Choice of the jet velocity for attrition testing 
 
 

When using the jet cup, the main parameter to determine is the velocity of the air jet implemented at the 
jet cup inlet. It is important to choose a jet velocity that first generates attrition in a reasonable test 
duration frame without applying a mechanical stress which would generate attrition phenomena to be 
avoided in circulating fluidized bed processes such as particle fragmentation [129,130].  
 
Several tests were then carried out with air jet velocities of 30, 60, 90, 120, 150 and 180 m/s with the 
equilibrium FCC and with the fresh oxygen carrier. Figure II-6 presents the Total Particle Generated 
Index (TPGI) against the air jet velocity for tests of one hour carried out with 100 grams of both solids.  
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Figure II-6 : TPGI index against air jet velocity for a sample mass of 100 grams test duration of 1 hour 
 
Two ranges of velocities can be pointed out. In the first range of velocities from 30 m/s to 90 m/s, the 
TPGI increases moderately with respect to the air jet velocity for both solids. This corresponds to the 
zone where abrasion phenomena are dominant. Figure II-7 shows the initial and final particle size 
distribution for the fresh oxygen carrier test with an air injection of 90 m/s. The difference between the 
two curves is a typical example of abrasion where only fines are generated. In the second range of 
velocities from 120 m/s to 180 m/s, the TPGI increases dramatically with respect to the air jet velocity, it 
corresponds to the zone where fragmentation phenomena are dominant. Figure II-8 shows the initial and 
final Particle Size Distribution for the fresh oxygen carrier test with an air injection of 180 m/s. The 
difference between the two curves is a typical example of fragmentation where the breakage of the big 
particles leads to intermediate size particles. Similar results are obtained with the equilibrium FCC as 
shown in Appendix 1.  
 

  

Figure II-7 : Initial and Final Particle Size 
Distribution for a test with 100 grams of fresh 
oxygen carrier particles during one hour ; Air 

Injection velocity = 90 m/s 

Figure II-8 : Initial and Final Particle Size 
Distribution for a test with 100 grams of fresh 
oxygen carrier particles during one hour ; Air 

Injection velocity = 180 m/s 
 
From these results, it was decided to take an air injection velocity for the comparison method of 90 m/s 
which is at the limit between the zone where abrasion phenomena are dominant and the zone where 
fragmentation is dominant. Cocco et al. [4] and Rydén et al. [134] used jet velocities in the same range for 
their tests with respectively FCC and CLC particles.   
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 CFD simulation  
 
CFD simulations were carried out in order to investigate the impact of particles properties on the jet cup 
hydrodynamics and especially on the internal particles contact frequency with the jet. Indeed, as 
explained in Chapter II.3, it is assumed that the attrition within the jet cup is generated through the 
particles contacting frequency with the jet. It is therefore important to estimate the circulation rate of 
particles within the jet in order to characterize and compare their resistance to attrition. This chapter 
presents the CFD approach and parameters used. 
 
The Barracuda VR® v17.2 software was used for the jet cup CFD simulations. Barracuda VR® uses the 
Multiphase Particle In Cell (MP-PIC) approach presented in Chapter I.4.2. Moreover, a contribution of 
the gas phase turbulence is modeled and taken into account in the calculation of the gas stress tensor, 
Equation 46 therefore becomes: 
 𝜏𝑔 = 𝜇(∇ 𝑢𝑔⃗⃗⃗⃗ + ∇𝑇 𝑢𝑔⃗⃗⃗⃗ ) − 23 𝜇∇ 𝑢𝑔⃗⃗⃗⃗ 𝐼 Equation 56 

 𝜇 = 𝜇𝑔 + 𝜇𝑡 Equation 57 

 
Where 𝜇𝑡 is the turbulence viscosity from a Smagorinsky turbulence model [142,143] presented in 
Equation 67. Large eddies are calculated and the unresolved sub-grid turbulence is modeled by an eddy-
viscosity 
 𝜇𝑡 = 𝐶𝜌𝑓∆2√(𝜕𝑢𝑖𝜕𝑥𝑗 + 𝜕𝑢𝑗𝜕𝑥𝑖)2

 Equation 58 

 
where Δ is the sub-grid length scale which is the cube root of the sum of the product of distances across a 
calculation cell in the three orthogonal directions. The Smagorinsky Barracuda VR® default coefficient C 
used in all simulations is constant and is equal to 0.01. 
 
Concerning the meshing, Barracuda VR® has its own meshing software which generates a structured 
hexahedral mesh. For this reason, the 5 mm cylindrical jet inlet at the bottom of the jet cup was modified 
with a hexahedral shape of the same surface to facilitate the geometry meshing. The mesh used has 
500 000 cells with an average cell size of 2.5 mm. A picture of the hexahedral structure mesh can be 
found in Appendix 1. The default Barracuda VR® parameters set a maximum Courant number of 1.5, the 
resulting time step used was in the order of 4 10-5 seconds for a total simulation time of 20 seconds.  
 
The domain simulated is presented in Figure II-9. Only part of the disengagement vessel is taken into 
account. A pressure value of 2 kPag is imposed at the top surface of the geometry with a pressure 
boundary condition, particles cannot escape. The air injection is set with a mass flow boundary condition. 
The air density and viscosity are automatically calculated by the software according to the air temperature 
which is fixed at 25°celcius. The solids density and particle size distribution are taken from the 
experimental values presented in Figure II-2 and Table II-1.  
 
The objective of the simulation is to determine particle circulation pattern in the jet cup. Attrition is not 
simulated and the particle size distribution remains constant during the simulations. We therefore assume 
that attrition phenomena do not affect the particles circulation rate within the jet cup.  
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Figure II-9 : Domain simulated for the CFD study 
 
The particle gas drag interaction model used is the default Barracuda VR® Gidaspow model presented in 
Equation 59. 
 𝐾𝑑 = 𝐷1 = 𝐸𝑟𝑔𝑢𝑛 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝛼𝑠 > 0.85𝛼𝑠,𝑚𝑎𝑥 

 𝐾𝑑 = 𝐷2 = 𝑊𝑒𝑛𝑌𝑢 𝑚𝑜𝑑𝑒𝑙  𝑓𝑜𝑟 𝛼𝑠 < 0.75𝛼𝑠,𝑚𝑎𝑥 
 𝐾𝑑 = (𝐷2 − 𝐷1) 𝛼𝑠 − 0.750.75𝛼𝑠,𝑚𝑎𝑥0.85𝛼𝑚𝑎𝑥 − 0.75𝛼𝑠,𝑚𝑎𝑥 + 𝐷1 𝑓𝑜𝑟 0.75𝛼𝑠,𝑚𝑎𝑥 < 𝛼𝑠 < 0.85𝛼𝑠,𝑚𝑎𝑥 

Equation 59 

 
It is important to point out that with this model the transition between the Ergun and WenYu model 
occurs at a higher solid volume fraction of around 0.5 compared to the classical Gidaspow model where 
the transition occurs at a solid volume fraction of 0.2 as shown in Table I-4. 
 
A no slip wall boundary condition is used for the gas phase. No clear description of the solid wall 
boundary condition was found in the literature. The software provider then gave the following 
information [144] “the particles at the wall see the velocity of the cell at the walls. Due to this, the 
boundary will occasionally appear as a partial slip condition. The momentum retention factors are then 
used during the advection of the particles to determine how any particles that intersect a wall will be 
reflected back into the domain and this is not closely coupled to the fluid and pressure solvers”. Therefore, 
the normal and tangential retention factors are used to compute the clouds properties which are in contact 
with the wall when computing their new positions as explained in Chapter I.4.2. It appears that the new 
positioning of the particles contacting the wall is not coupled with the fluid solver. 
 
Finally, Table II-2 presents the parameters for the three simulations carried out. The same drag, 
turbulence, solid stress models as well as boundary conditions were used by Cocco et al. [4] for their jet 
cup simulations using Barracuda VR®. 
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Table II-2– Simulations parameters 
 Simulation n°1 Simulation n°2  Simulation n°3 

Mesh size 500 000 hexahedral cells 
Cell size 2.5 mm 

Particles type FCC catalyst Fresh oxygen carrier Fresh oxygen carrier 
Particle Size Distribution From Figure II-2 
Particle density (kg/m3) 1 450 3 600 3 600 
Pressure at top boundary 

condition (kPa g) 
2 kPag 

Bottom air flowrate through jet 
(kg/hr)  

7.8 (to get a jet velocity of 90 m/s) 

Air temperature (°C) 20 
particles mass (g) 100 100 250 

Total number of particles 8 108 1.34 107 3.34 107 

Averaged Number of Particles 
per Cloud 

5.2 104 2.2 103 2.2 103 

Number of clouds 1.53 104 6.2 103 1.53 104 
Simulation time step (s) in the order of 4.10-5 (CFL<1.5) 

Simulation time (s) 25 
Drag Law model Barracuda VR® Wen-Yu/Ergun 

Gas Wall boundary condition No slip 

Solid stress model 
model of Equation 52, 𝑃𝑠 = 1 ; β = 3 ; 𝜀𝑏𝑎𝑟𝑟𝑎𝑐𝑢𝑑𝑎 = 10-8,  𝛼𝑠,𝑚𝑎𝑥 = 0.62 

Solid Wall boundary condition 
Particle to wall normal retention coefficient: 0.3 

Particle to wall tangential retention coefficient: 0.99 
 
CFD simulations were carried out to evaluate the particles circulation frequency within the air jet at the 
bottom of the cup. Basically, the objective here is to simply evaluate how many times in average the 
particles will go through the air jet during a given test duration. To get this circulation rate, a virtual plane 
is set just above the air injection as shown in Figure II-10.  
 

 

Figure II-10 : Virtual plane above the air injection to evaluate the solid circulation 
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Barracuda VR® allows tracking the cumulated mass flow rate of particles going up and down through a 
virtual plane. Then, we defined the total particles contacting frequency within the air jet PC_1 with 
Equation 60: 
 

 timeSimulation

1

mass Sample Solid

plane  virtualgh thedown throu going flowrate mass Cumulated
)( 1_ 1 










sPC  Equation 60 

 
PC_1 represents a percentage of inventory passing into the air jet per second. For example, when 
simulating a jet cup test with a 100 grams inventory, if after ten seconds there is 200 grams of cumulated 
particles that went down through the virtual plane, PC_1 is equal to 0.2 s-1 which means that in one 
second 20% of the inventory passed into the air jet. With this definition of PC_1, we assume that the flow 
is homogeneous, that all particles go exactly the same number of time in the air jet. However, there is the 
possibility that some particles remain stagnant while others go several times within the air jet. In order to 
evaluate the homogeneity of the solid flow, two groups of particles within the solid inventory are taken 
randomly as tracers and two contacting frequency PC_tracer1 and PC_tracer2 are calculated from 
Equation 61 and Equation 62: 
 

 timeSimulation

1

mass  1Tracer 

plane  virtualgh thedown throu going  flowrate mass 1 tracer Cumulated
)1( 1_ 








stracerPC  Equation 61 

 

 timeSimulation

1

mass  2Tracer 

plane  virtualgh thedown throu going  flowrate mass 2 tracer Cumulated
)( 2_ 1 








stracerPC  Equation 62 

 
Figure II-11 presents pictures taken during the simulation of 100 grams of FCC catalyst. The first picture 
shows the solid volume fraction of the entire sample, while the two other pictures show the position of 
particles of respectively tracer n°1 and tracer n°2.  
 

 
 

  

Figure II-11: equilibrium FCC catalyst ; sample mass of 100 grams ; 
Pictures taken at a certain simulation time ; Air injection velocity of 90 m/s;  
from left to right: Volume fraction of the entire sample ; Particles of Tracer n°1; Particles of Tracer n°2 
 
The comparison of the particles contacting frequencies obtained with the two random groups of particles 
(PC_tracer1 and PC_tracer2) and the particles contacting frequencies obtained with the entire inventory 
(PC_1) gives a characteristic parameter to estimate the homogeneity of the solid circulation rate into the 
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jet. Indeed, in the case the three values are close it means that all the particles are circulating in the same 
way and that there is no stagnant region. 
 
It is important to highlight that the method applied, which consists in isolating and tracking a group of 
particles, can be easily implemented with the MP-PIC approach where clouds are tracked through a 
hybrid Eulerian/Lagrangian method. It is more challenging to implement such a method with a classic 
Euler/Euler KTGF approach and this is the main reason why we chose to use Barracuda VR® in the first 
place.  
 

 Conclusions 
 
The main goal of this investigation is the development of a method to assess and compare the mechanical 
resistance of FCC particles and CLC oxygen carriers using the conical jet cup. We therefore presented in 
this chapter the properties of the different powder used in this investigation with first an equilibrium FCC 
catalyst taken as a reference from a mechanical resistance to attrition point of view. Two CLC solids 
where then introduced which are actually the same oxygen carrier one being fresh the other one being 
considered as an equilibrium oxygen carrier since it was used in the IFP Energies Nouvelles hot pilot 
under CLC process conditions.  
 
The jet cup apparatus used was then introduced with first the presentation of the equipment where 
attrition is generated through hydrodynamic phenomena with a high jet velocity. Second a new attrition 
index named TGPI was defined, it allows the mechanical resistance comparison of particles with different 
properties. This TPGI index, based on the particle size distribution before and after the test, characterizes 
the total amount of particles generated by attrition. The jet velocity used in the experiments was then 
chosen at 90 m/s based on tests carried out on both FCC catalyst and fresh oxygen carrier. 
 
Finally, a method was developed using CFD in order to characterize the jet cup hydrodynamics and the 
particles contacting frequency with the jet. It is important to highlight that CFD is used in this 
investigation to characterize the particles contacting frequency with the jet since it would have been very 
difficult to characterize this phenomenon experimentally. 
 
The next chapters present the results obtained with first the CFD investigation followed by the 
experimental results and method developed.  
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 CFD investigation 
 

 Introduction 
 
The next step of this investigation is to implement tests conditions which results in a similar mechanical 
stress exposure for the different solids tested. For this purpose, an analogy was made between the attrition 
generated in CFB processes and the attrition generated in the jet cup.  
 
In CFB processes, attrition is generated by attrition sources such as cyclones and gas distributor [129]. 
However, the main parameter controlling attrition is the particles circulation between the different 
elements/reactors of the CFB process related to the particles inventory. Indeed, the particle circulation, for 
a given particle inventory, will directly determine the particles contacting frequency with attrition sources. 
The same analysis can be made in the jet cup: the main attrition source is the high velocity jet and the 
main parameter impacting the overall attrition rate is the particles contacting frequency with the jet for a 
given inventory. Therefore, to compare attrition of the different solids on the same basis with the jet cup, 
the particle contacting frequency with the jet should be equal for both solids. However, the jet cup 
particles internal circulation is not easily accessible experimentally and it may also depends upon particle 
properties The objective is, thus, to evaluate particles circulation and therefore particle contacting 
frequency within the jet using CFD. 
 

 Characterization of the particles circulation rate within the jet 
 
The particles circulation is determined for both equilibrium FCC and fresh oxygen carrier particles using 
the CFD method presented in Chapter II.2.4. Simulations with the equilibrium oxygen carrier were not 
carried out since its mean physical properties are close to the fresh oxygen carrier properties. 
 
One potential parameter identified, which can impact the particle contacting frequency with the jet, is the 
inventory of particles initially implemented in the jet cup. One can indeed wonder with particles having 
such a large difference of density if they should be compared with the same initial mass or the same initial 
volume. To answer this question, three simulations were carried out as presented in Table II-2. First the 
reference case with 100 grams of equilibrium FCC was simulated. It is important to highlight that the jet 
cup standard method developed by Cocco et al. [4] uses 100 grams of material. Then two other cases 
were simulated with the fresh oxygen carrier, one with the same mass than the reference case (M=100g), 
the other one with the same initial particles volume than the reference case (M=250g). All simulations 
were run for 20 second of simulation times, the simulation was considered at steady state when the 
average particles contacting frequency with the jet does not vary anymore with the simulation time. 
Steady state was therefore reached after about 10 seconds of simulation and results were then averaged 
from 10 to 20 seconds. 
 
As expected, the flow pattern obtained for the simulations with the fresh oxygen carrier is quite different 
than with the equilibrium FCC as shown in Figure II-12. With the equilibrium FCC, all particles are 
suspended and go once in a while into the air jet, where they are carried upward again with a high 
velocity. With the fresh oxygen carrier, there is an accumulation on the side of the air injection. Particles 
going into the air jet are then carried upward with a high velocity and fall at the top of the particles 
accumulation zone where they flow slowly downward toward the air injection. A qualitative validation of 
the flow pattern was carried out at PSRI using a transparent jet cup. The same trend was visually observed.  
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Figure II-12: Solid volume fraction ;simulation with the same volume of solids ; Air injection velocity of 
90 m/s On the left: equilibrium FCC; On the right: fresh oxygen carrier 

 
Then, Barracuda VR® allows tracking the cumulated impact of particles on the geometry wall. For this 
purpose an impact number is defined and it is proportional to the particles velocity and mass, a correction 
factor is then applied according to the impact angle, Barracuda VR® default parameters were used. 
Barracuda VR® then calculates the cumulated impact number over the entire simulation time.  
 
Figure II-13 presents the cumulated impact number for the simulations with respectively the equilibrium 
FCC catalyst and the fresh oxygen carrier. 
 

 
 

 

 

Figure II-13: Barracuda VR® impact number at the end of the simulation ;  
Air injection velocity of 90 m/s 

On the left: Group A  equilibrium FCC; On the right: Group B fresh oxygen carrier 
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For both solids, the higher cumulated impact number and therefore the higher mechanical stress applied 
on particles due to the wall is located exactly on the opposite side of the air injection. One can then 
assume that the most important stress applied on particles is carried out in this region of the jet cup and 
therefore even if the global hydrodynamic is different for both solids tested, the mechanical stress applied 
remains similar for the same particles circulation frequency into the jet. 
 
The results obtained for the three particle contacting frequency with the jet PC_1, PC_tracer1 and 
PC_tracer2 are presented in Table II-3.  
 

Table II-3 : Jet particles contacting frequency PC_1, PC_tracer1 and PC_tracer2 

 Solid 
Solid 

Density 
(kg/m3) 

Solid 
Mean 

Diameter 
D50 (µm) 

Solid 
Sample 
mass 
(g) 

Initial 
Volume 
(cm3) 

PC_1 
(s-1) 

PC_tracer1 
(s-1) 

PC_tracer2 
(s-1) 

n°1 
Group A 

equilibrium 
catalyst 

1 450 70 100 115 0.26 0.25 0.28 

n°2 
Group B  

Fresh Oxygen 
carrier 

3 600 180 100 46 0.68 0.65 0.69 

n°3 
Group B 

 Fresh Oxygen 
carrier 

3 600 180 250 115 0.24 0.25 0.27 

 
First, for the three simulations the particles contacting frequency with the jet measured with the tracers 
(PC_tracer1 and PC_tracer2) are similar to the one measured with the entire inventory (PC_1) which 
shows that the solid flow tends to be homogeneous in all cases. 
 
When comparing results for the two simulations conducted with the fresh oxygen carrier, one can see that 
PC_1 changes dramatically with the solid initial inventory. Indeed, the PC_1 frequency is inversely 
proportional to the inventory. Then comparison between simulation n°1 and n°3 further suggests that the 
particle contacting frequency with the jet is set by the initial sample volume since similar PC_1 values 
were obtained for both cases. Thus, in order to have the same particles contacting with the jet and 
therefore compare solids on the same mechanical stress exposure, the comparison between the FCC 
equilibrium catalyst and the fresh oxygen carrier should be done with the same initial volume of particles 
in the jet cup.  
 

 Conclusions 
 
The CFD investigation allowed the determination of test conditions to compare solids with the same 
mechanical stress exposure using a similar contacting frequency with the jet. Based on results obtained, 
the same particles initial volume should be used in order to evaluate and compare attrition resistance of 
the powders of interest.  
 
As mentioned before, this study is a clear example on how CFD can be used to help characterizing 
physical phenomena that are difficult to access experimentally. It allowed for a better comprehension of 
the jet cup test and a better exploitation of the attrition results obtained in the context of the CLC process 
extrapolation.  
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It is then important to remind that experimental flow characterization based on visual observation 
confirmed qualitatively simulations for both solids. In a future work, one could develop a more precise 
experimental procedure to measure the actual solid contacting frequency with the jet using tracers for 
example. At present, based on our CFD results, an experimental strategy is proposed as presented in the 
next chapter with the jet cup experimental results. 
 

 Mechanical resistance to attrition characterization 
 
From the previous discussions, the jet cup testing was adapted in order to compare the different solids of 
interest:  
 

- First, the Total Particle Generated Index (TPGI), based on global PSD evolution, is used to 
characterize attrition in the jet cup for all solids. 

- Second an air injection velocity of 90 m/s was chosen based on preliminary testing of each solid. 
- Third, the comparison of attrition results is carried out with the same particle initial volume as 

suggested by the CFD study. 
 
Tests were then conducted as a function of time and initial inventory in the jet cup in order to quantify 
attrition experimentally for each solid.  
 
Figure II-14 presents the Total Particle Generated Index (TPGI) against several test durations for both 
equilibrium FCC catalyst and fresh oxygen carrier in comparative conditions (same initial volume of 115 
cm3 equivalent of 100 grams of the equilibrium FCC catalyst, jet velocity of 90m/s). The equilibrium 
oxygen carrier was not tested in these conditions (sample amounts limited).  
 

 

Figure II-14 : Comparison of the Group A FCC catalyst with the Group B oxygen carrier 
TPGI versus test duration ; comparison at iso initial particles volume ; air velocity injection at 90 m/s 
 
For both solids, one can see that the TPGI increases proportionally to the testing time. The particles 
mechanical resistance is then characterized by the TGPI linear increasing rate equation against time 
which can be expressed in the general form shown in equation 63: 
 𝑇𝑃𝐺𝐼 (%) = 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 × 𝑇𝑒𝑠𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 equation 63 
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Where 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒   is the TPGI increase rate constant versus test duration and 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 
characterizes the initial attrition generation. Indeed, we considered the attrition increase linear over the 
range of test duration tested but one should not forget that at a test duration of 0 hour the attrition rate is 
necessarily 0. Therefore, the term 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 characterizes the attrition generation in the first period 
of the test. It is then interesting to wonder if 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛  is dependent only on intrinsic particle 
mechanical properties or if is dependent on the test operating conditions with for example the sample 
initial inventory. This question is investigated further with the next experimental results.  
 
The parameters 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒  and 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛  can then be used as a comparison basis for the 
characterization of the solid mechanical resistance to attrition demonstrating that the fresh oxygen carrier 
shows better performances. Different questions were then raised: can we apply the same procedure for a 
lower initial sample volume since powder inventories can be limited? What is the effect of using a smaller 
sample volume on the characterizing coefficients 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒  and 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛  ? Will we get the 
same ranking of powders concerning their resistance to attrition?  In order to investigate these different 
issues, another series of tests were carried as explained below. 
 
Tests were first carried out for all solids with a percentage of 100, 80, 65, 50, 35, 30 and 25 of the initial 
volume equivalent to 100 grams of FCC. Figure II-15 presents the TPGI versus the inverse of the initial 
sample volume. 
 

 

Figure II-15 : TPGI against the inverse of the initial sample volume ;  
Air injection velocity of 90 m/s ; Test duration of 2 hours 

 
One can see that the TPGI index increases almost linearly against the inverse of the initial sample volume 
for all solids tested. This trend therefore confirms the hypothesis that attrition in the jet cup is 
proportional to the particles contacting frequency with the jet for all cases. Indeed, one can express the 
averaged particle contacting frequency with the jet using Equation 64: 
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 𝑓𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑗𝑒𝑡  = 𝐹𝑣𝑝_𝑗𝑒𝑡𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 Equation 64 

 
Where:  - 𝑓𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑗𝑒𝑡 Averaged particles contacting frequency with the jet (s-1) 

- 𝐹𝑣𝑝_𝑗𝑒𝑡 Global volume flux of particles circulating in the jet  (volume 

of particles per second) 
 
The results presented in Figure II-15 clearly demonstrate that the global volume flux of particles 
circulating in the jet 𝐹𝑣𝑝_𝑗𝑒𝑡 is constant between all experiments. Using a smaller amount of particles will 

then generate a higher contact frequency and a higher attrition rate since the volume of particles 
circulating in the jet 𝐹𝑣𝑝_𝑗𝑒𝑡 is constant and since the global particle volume in the jet cup is smaller. 

Moreover it also confirms that all solids can be compared with a lower initial sample volume since the 
attrition remains proportional to the circulation rate in these conditions. 
  
Finally, one could conclude that the test procedure with the variation of the initial sample volume can be 
suitable to compare the different solids. Indeed, from the comparison of the three solids curves increase 
rate in Figure II-15, one can see that the fresh oxygen carrier presents the best resistance to attrition 
performances, followed by the equilibrium FCC and finally the equilibrium oxygen carrier with the 
poorest performances. However, this test procedure is not considered suitable since it requires solid 
inventories that might not always be available. Second, it is difficult to interpret the curves tendency 
when the inverse to the volume “1/V” tends to 0 meaning an infinite inventory. Indeed, an infinite 
inventory is of course not possible and large inventories will anyway affect the flow hydrodynamic with a 
jet cup full of particles. The procedure with the variation of the test duration is therefore preferred since 
the two coefficients 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 and 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 can be used to characterize the solids resistance to 
attrition. 
 
The following method was then applied on the three solids using an equivalent volume of 35 grams of 
FCC for all solids (volume around 40 cm3).  
 

- Two test durations were investigated with respectively two and three hours. These shorter test 
durations were chosen in order to repeat the test more rapidly and also because attrition rates 
obtained are higher when using smaller amount of particles. The test duration can therefore be 
reduced.  
 

- For all solids, the same solid sample is used for the two tests durations. Therefore, after two hours, 
an amount of particles lower than 2 grams is taken to measure the TPGI and the test is ran for 
another hour to get the TPGI at three hours.  
 

- The test with the two durations is repeated 6 times for the equilibrium FCC and the Group B fresh 
oxygen carrier. Tests were repeated only 2 times for the equilibrium oxygen carrier because of the 
low amount of particles available.  

 
Using this procedure we assume that the small amount of particles taken from the test to measure the 
TPGI at two hours does not influence the result for the TPGI at three hours. The amount of particles 
withdrawn represents about 5%wt of the total inventory.   
 
Figure II-16 presents all TPGI values obtained for the three solids. The line connecting two points 
indicates the experiments carried out on the same solid sample.  
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Figure II-16 : Comparison of the three solids of interest 
TPGI versus test duration ; comparison at iso initial particles volume ; air velocity injection at 90 m/s 
 
Table II-4 shows the average values and standard deviation of the coefficient 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒  and 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 for the three solids. All coefficients 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒  and 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 corresponding to 
individual on each solid can be found in Appendix 1.  
 
Table II-4 : Average values and standard deviation of the coefficient 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 and 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛for 

the three solids with a volume equivalent to 35 grams of FCC (40 cm3) 
 

Solids 
Coefficient 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 
Average value / standard 

deviation 

Coefficient 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 
Average value / standard 

deviation 
equilibrium FCC 6.5 / 0.5 13.5 / 1.2 

fresh oxygen carrier 2 / 1 12.15 / 0.8 
equilibrium  oxygen carrier 7.1 / 0.2 33.2 / 2 

 
Different remarks can be pointed out: 
 

- First, concerning the evaluation of the resistance to attrition of the three solids, one can see a clear 
ranking with the equilibrium oxygen carrier showing poor performances while the fresh oxygen 
carrier has the best resistance to attrition. Equilibrium oxygen carrier is clearly more fragile than 
fresh oxygen carrier. This is consistent with observation made by Nelson et al. [145] and can be 
explained by the fact that oxygen transfer cycles and temperature effects tend to weaken the 
particle mechanical structure.  
 

- Second, it is interesting to notice that both coefficients 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 and 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛have to 
be considered to compare the solids. Indeed, looking only at coefficient 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒, one could 
assume that the Group A equilibrium FCC and Group B equilibrium oxygen carrier demonstrate 
similar attrition performances. However, the initial attrition characterized by the coefficient 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 is much higher for the second solid.  
 

- Third, concerning the repeatability, one can see that tests with the Group B fresh oxygen carrier 
show an important variation in term of slopes with a high standard deviation for coefficient 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒. This important variation can be explained by the fact that it is more challenging 
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with the fresh solid to have a good repeatability in term of homogeneous solid samples compared 
to equilibrium solids.  
 

 
For FCC catalyst and fresh oxygen carrier particles, experimental results have been obtained as function 
of time for various inventories (shown respectively in Figure II-14 and Figure II-16). We can then 
compare the two coefficients values for the experiments with an initial volume equivalent to respectively 
100 grams and 35 grams of FCC as shown in Table II-5. 
 
Table II-5 : Comparison of 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 and 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 as a function of the sample inventory with 

an equivalent volume of 100 grams and 35 grams of FCC  

Solids 
equilibrium FCC coefficient 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 

fresh oxygen carrier coefficient 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 

Tests with an initial volume 
equivalent of 100 g of FCC  

𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(100)  = 2.2 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(100)   = 0.7 

Tests with an initial volume 
equivalent of 35 g of FCC 

𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(35)   = 6.5 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(35)   =2 

Ratio 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(35)  over 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(100)   2.95 2.85 

Ratio Volume (V100/V35)   2.86 
 

Solids 
equilibrium FCC coefficient 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 

fresh oxygen carrier coefficient 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 

Tests with an initial volume 
equivalent of 100 g of FCC  

𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛(100)  = 7.9 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛(100)   = 10.6 

Tests with an initial volume 
equivalent of 35 g of FCC 

𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛(35)   = 13.5 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛(35)   = 12.15 

Ratio 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛(35)  over 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛(100)   1.71 1.15 

Ratio Volume (V100/V35)   2.86 
 
One can see from Table II-5 that the attrition increase rate coefficient 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 increases for both 
solids when decreasing the initial sample volume. The most interesting result is that the ratio 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(35)  over 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(100)   is in the same range for both solids and it is also in the same 
range than the ratio of the highest volume divided by the smallest volume (V100/V35). This result 
demonstrates that for both solids the attrition rate is linearly proportional to the sample volume and 
therefore when decreasing the initial sample volume the attrition rate is affected in the same way for both 
solids. Moreover, it comforts the CFD simulation results. Indeed, CFD indicated that having the same 
initial sample volume is the parameter to respect to compare solids on the same mechanical stress basis. 
The results of Table II-5 confirm this result since for both solids the attrition rate is changed in the same 
proportion between the two initial volume tests.  
 
Concerning the coefficient 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛, one can see that it is less affected by the change of the sample 
inventory especially for the fresh oxygen carrier. Therefore, the coefficient 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛  could be 
dependent on the intrinsic particle mechanical property. Indeed, its variation was important between the 
two oxygen carriers tested (see Figure II-16) and one can then conclude that the mechanical properties of 
the equilibrium solid has been affected by the CLC process conditions which is in accordance with the 
results of Nelson et al. [145]. Further work is however needed to connect 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 attrition to the 
intrinsic particle properties. 
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 Discussion 
 
Several points can be discussed concerning the comparison method developed based on the results 
presented. 
 

- To characterize the attrition resistance of our solids of interest, we first defined the attrition index 
TPGI and we then chose the jet velocity based on experiments carried out on different solids. The 
CFD investigation suggested that solids should be compared with the same initial sample volume 
in order to be exposed to a similar mechanical stress. Experimental results comforted this result 
with the attrition rate evolving in the same proportion for both solids when changing the initial 
sample volume. One can then wonder about the need to develop a precise experimental 
measurement of the particle contacting frequency with the jet. The experimental results clearly 
suggest that the trends highlighted by CFD simulations are valid.  
 

- Based on our results, we demonstrated that the fresh oxygen carrier shows better resistance to 
attrition than equilibrium FCC catalyst while the equilibrium oxygen carrier shows the poorest 
performances. Therefore, oxygen carrier properties were modified and deteriorate during the CLC 
process operations. Attrition resistance was strongly affected and we therefore need to find 
alternative oxygen carriers showing better performances after reaction or to apply different CLC 
process operating conditions to minimize oxygen carrier changes. The strategy developed in this 
work will then allow for a fast screening of the future oxygen carriers resistance to attrition after 
testing in process condition, using a comparison with the reference equilibrium FCC catalyst.  
 

- It is also important to point out that if we had used standard jet cup testing conditions with a 
sample mass of 100 grams for all solids, we would have concluded that the fresh oxygen carrier is 
less resistant to attrition. But in fact, in this case, with a smaller initial volume, the particles 
contacting frequency with the jet is increased as well as the attrition generated. It is therefore 
crucial to understand the jet cup mechanisms and phenomena to orientate the test strategy if one 
wants to reach the correct conclusions.  
 

- It was demonstrated that the coefficient 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒  is clearly dependent of the attrition 
resistance related to jet contacting. Further work is then needed to connect coefficient 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 to intrinsic particle mechanical resistance and also jet cup testing conditions. In 
the future, the effect of the jet velocity on the coefficients 𝐶𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 and 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 could 
also be investigated in order to characterize the attrition kinetics rates on a large range of gas 
velocities. These results could then be used to connect the jet cup attrition rates to the fluidized 
bed main sources of attrition (cyclones, jets).  
 

- Then, the methodology developed allows screening different solids with respect to their resistance 
to attrition. However, these data are difficult to extrapolate if one wants to estimate precisely the 
attrition due to mechanical stress in an industrial circulating fluidized bed process. In general, a 
better characterization of the attrition rates and hydrodynamic in the jet cup is needed in order to 
connect the jet cup attrition with the circulating fluidized bed sources of attrition such as cyclone 
and distributor jets. If such connection is carried out, one could then implement a multi scale 
approach with the characterization of the process sources of attrition using the jet cup and then the 
use of a population balance model to estimate the attrition at industrial scale as carried out by 
Werther et al. [129,130].  

 
- Finally, the study clearly shows that particles properties are affected when exposed to process 

conditions (and most likely to reduction/oxidation cycles) as shown by the difference exhibited 
between fresh and equilibrium oxygen carriers. It is therefore critical to relate particle attrition 
resistance to their process conditions exposure. 
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 Conclusions and perspectives 
 
We have shown that that it is important to assess the attrition phenomena at the early stage of a process 
development but that there is little information available on attrition at industrial scale for the Group B 
oxygen carriers used in the CLC process. A methodology was then proposed in order to compare the 
resistance of attrition of the oxygen carriers with FCC catalyst for which attrition at industrial scale is 
well characterized.  
 
A methodology using a jet cup test developed by Cocco et al. [116] was then developed in order to 
compare  different solids with regard to attrition. The jet cup allows assessing the resistance to attrition 
using a small amount of particles which is an advantage at the early stage of the CLC process 
development where different oxygen carriers can potentially be used and where the quantities of solids 
available are limited.  
 
In order to compare solids with different Particle Size Distributions, we first defined a new attrition index 
that does not depend upon a given particle size. This index is based on the total percentage of particles 
generated by attrition and it is called TPGI (Total Particles Generated Index). This index also gives the 
possibility to estimate the maximum diameter of particles generated by attrition. We then chose a jet 
velocity of 90 m/s based on the attrition phenomena generated in the jet cup, particle abrasion being the 
phenomena targeted. As suggested by CFD, solids were compared with the same initial sample volume. 
The particles mechanical resistance was then characterized by the TPGPI increase rate versus test 
duration equation, this increase being considered linear. 
 
The methodology was applied on three solids (equilibrium FCC catalyst and fresh and equilibrium 
oxygen carriers). It provided satisfying results with the fresh and equilibrium oxygen carriers performing 
respectively better and worse than the reference FCC catalyst. The effect of the CLC process conditions 
on the mechanical resistance of the particles considered was therefore clearly emphasized by the test. 
 
The use of CFD allowed a better characterization and understanding of the jet cup test. We indeed 
demonstrated that solids should be compared with the same initial sample volume in order to apply a 
similar mechanical stress, which was not obvious at all when starting the present work. This CFD result 
was then confirmed experimentally when we showed that the attrition increase rate was linearly 
proportional to the initial sample volume for both solids and changing the initial sample volume affected 
both solids attrition increase rate in the same proportion. A global validation of CFD simulations was 
therefore achieved, meaning that the relevant hydrodynamic aspects were captured. It is then important to 
highlight that the prediction of local parameters such as particle and gas velocities in the jet cup cannot be 
considered validated and further work is needed for this purpose. This study therefore shows that CFD 

can be used to characterize physical phenomena that are difficult to access experimentally and how 

it can improve and orientate the data analysis in the context of attrition phenomena extrapolation. 
 
Finally, the methodology developed allows for a first screening of solids with respect to their mechanical 
resistance to attrition in a jet cup. Useful information can be obtained from such a test especially at the 
early stage of a process development. Further work is however needed if one wants to extrapolate attrition 
results from a lab scale experiment such as the jet cup to an industrial scale. For this purpose, a better 
characterization of the particles kinetic rates versus hydrodynamic conditions is necessary. Then the next 
step consists in correlating lab scale experimentation with the main sources of attrition in circulating 
fluidized bed for finally implementing a population balance modeling to assess attrition at industrial scale 
as a function of precise design criteria. A PhD in partnership with the university of Leeds and Total was 
launched in 2015 to develop such a multi-scale approach [146,147].  
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III.  USE OF CFD FOR EXTRAPOLATION MATERIAL 
AND METHODS 

 Introduction 
 
Minimizing the risk of extrapolation is mandatory when developing processes and technologies. 
Extrapolation relates to first the understanding of physical phenomena at accessible scales through 
dedicated and focused experiments. In a second step, modeling is utilized to transpose observation from 
lab scale to an industrial perspective. CFD modeling tools are increasingly used for the development and 
extrapolation of processes and technologies. However, as discussed in the literature review concerning 
CFD for Circulating Fluidized Beds (CFB), modeling of the crucial gas-particles and particles-particles 
interactions remain challenging. Thus, most of the CFD studies in the literature usually focus on a given 
configuration at a given scale where mesh refinement dependency and closure models such as drag laws 
are investigated against experimental data when available. However, there is a lack of published studies to 
evaluate the reliability of simulation results when using a CFD model validated at a given scale and 
operating conditions to another scale or to different operating conditions. This is however essential since 
one of the CFD ultimate goals is to facilitate scale-up which remains a very complex task for multiphase 
flow systems such as fluidized bed. The work presented in the second part of this PhD is therefore an 
attempt to study this issue. Our strategy is presented in Figure III-1.  
 

 

Figure III-1: Investigation on CFD field of prediction capability 
 
In this figure, the CFD field of prediction is defined against two axis with first the experiment scale and 
second the experiment operating conditions which gather a certain number of parameters such as particles 
properties, fluidization regimes, gas distribution, temperature, pressure, etc. To be rigorous, each of these 
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parameter should be represented on a separate axis, but for a better understanding and simplicity, we put 
them on the same axis in Figure III-1. During a scale-up study, it is important to focus on the most 
important parameters to be carefully studied. The choice of these relevant parameters is critical and relies 
mostly on knowledge and experience. One can therefore consider for instance that it is more important to 
focus on changes related to operating conditions than on changes on particles properties if the solid to be 
used industrially is the solid used during cold flow testing.  
 
It is important to highlight that we focused only on fluidized bed with Geldart Group A particles since 
this work has been carried out in the context of FCC process developments. The simulation strategy that 
we proposed then consists in the following steps: 
 

- First, as carried out in many CFD investigations, an experiment is taken as a reference to study 
and optimize simulation predictions as a function of the CFD code parameters such as drag law 
and boundary conditions. This experiment is indicated in red on Figure III-1, it consists of a 
turbulent 20 cm fluidized bed of FCC particles with a homogeneous gas injection as detailed later.  
 

- In a second step, the parameters found in the first step are used to investigate the codes capability 
to predict a different operating condition at the same scale. In our case, we chose the same 20 cm 
fluidized bed experiment with FCC particles but with a different gas injection configuration.  
 

- Third, the CFD code predictions capability are investigated at another scale with experiments 
carried out on a 90 cm fluidized bed using solids and operating conditions similar to the reference 
case.  
 

- Finally, the CFD code predictions capability for another scale with different operating conditions 
in a different fluidization regime is investigated using riser experiments with FCC particles.  

 
Different points can be discussed regarding the choices taken for this strategy: 
 

- First, we chose to focus on the FCC process. The reason is that technology development and 
extrapolation using CFD for this process is a topic of great interest [1,148,149]. Moreover, this 
type of development is also interesting for other Circulating Fluidized Bed processes using 
Geldart Group A particles [17,19].  
 

- Second, we focused in the second step of the simulation strategy on the effect of gas injection 
distribution in turbulent beds. We chose to investigate this aspect since it is an important factor for 
turbulent bed reactor performances [9]. It is therefore important to study if CFD can predict gas 
distribution effects.  
 

- For the third step, we focused on the effect of size extrapolation. We therefore chose a larger 90 
cm fluidized bed with operating conditions similar to the 20 cm fluidized bed experiments in order 
to evaluate size effect keeping the same fluidization regime.  

 
- Finally, we also chose to investigate CFD predictions by changing operating conditions but also 

fluidization regime to investigate the potential limits of the CFD model. Indeed, it is also 
important to be able to model different fluidization regimes in the same simulation if one wants to 
investigate for example the injection of a dilute transported mixture of gas and particles in a 
turbulent fluidized bed as it is the case for the second stage regenerator of the R2RTM Resid FCC 
[33].  
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This work is divided in three chapters: 
 

- In this chapter, we present the material and methods used to develop our simulation strategy. 
Three different experimental set-up are used with first a 20 cm fluidized bed, second a 90 cm 
fluidized bed and finally a 30 cm riser. The characteristics of the FCC powders used in the three 
different experiments are first presented. Then, each experimental set-up with their corresponding 
measurement techniques is introduced. Finally, the CFD approaches and codes as well as the 
common simulation parameters are presented.  

 
- Then in the next Chapter VI, experimental results obtained are presented and discussed. 

 
- Finally, in Chapter VII we present the CFD developments and results based on the experimental 

results presented in Chapter V.  
 

 Powder characteristics used in experiments 
 
Three different FCC catalyst powders were respectively used in the three experimental set ups. A fresh 
catalyst powder was used for the 20 cm fluidized bed experiments, equilibrium FCC catalyst powders 
coming from industrial units were used for the 90 cm fluidized bed and 30 cm riser experiments. 
 
It is first important to point out that we targeted experimental systems at different scales and operating 
conditions having similar powder properties. Indeed, if particles with different properties are used 
between experiments, it then becomes an effect to be investigated and characterized. We do not target to 
study this effect and we therefore chose experiments with powders having similar properties. Figure III-2 
and Table III-1 present respectively the particle size distribution and the characteristics of the powders 
used in the three different experimental systems. The particle size distribution was measured by laser 
diffraction while the particle density was measured by mercury porosimetry technique.  
 

 

Figure III-2. Particle size distribution of the powders used in the three experiments 
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Table III-1: Characteristics of the powders used in the three experiments 

 20 cm fluidized bed 90 cm fluidized bed 30 cm riser 
Particle density 

(kg/m3) 
1 260 1490 1450 

dp50 (microns) 75 78 73 
dp,sv (microns) 71 74 55 
Percentage of 
fines below 40 
microns (wt%) 

7.2 6.4 13.8 

 
First, one can notice differences between the powders characteristics which shows that FCC catalyst 
properties are not standard and can vary according to the catalyst formulation and fabrication as well as 
the catalyst life cycles in the industrial unit with phenomena of attrition and change of internal structure 
[150]. It is therefore challenging to obtain results from different experimental systems using the exact 
same powder properties.  
 
Then from Table III-1, one can observe a 13% variation between the highest and the lowest particle 
density values. The mean diameters are in the same range for the three powders while the Sauter 
diameters are in the same range for the 20 cm and 90 cm fluidized beds powders, it is however lower for 
the 30 cm riser powder because of the higher fines content.  
 
In the experiments CFD simulations, particles density is an input of the solid phase description. Then, in 
the MP-PIC CFD approach used in this study, the particle size distributions presented in Figure III-2 are 
used as an input. For the second CFD Euler/Euler approach investigated in this study, the Sauter mean 
diameter is initially used as an input to describe the full particle size distribution. This parameter was then 
modified with larger diameters to model particles clustering phenomena as described in Chapter V.2.2.  
 
Finally, the solid volume fraction at the minimum of fluidization was determined for the catalyst used in 
the 20 cm fluidized bed. This value is used for the optical probe signal post-processing as presented in 
Chapter III.3.3.2. The minimum of fluidization was determined on a 4 cm fluidized bed using 90 grams of 
catalyst. The minimum of fluidization velocity was evaluated with the bed pressure drop evolution versus 
gas flowrate method [2] and the solid volume fraction was then obtained measuring the bed height. Table 
III-2 presents the characteristics at minimum of fluidization obtained. 
 
Table III-2: Characteristics at the minimum of fluidization for the catalyst used in the 20 cm fluidized bed 

Minimum fluidization velocity (mm/s) Solid volume fraction at minimum of fluidization  
2.8 0.58 
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 Fluidized bed of 20 cm 
 
The 20 cm fluidized bed experimental results are used in the simulation strategy Steps 1 and 2 in order to 
evaluate the CFD code predictions at lab scale for different operating conditions. We chose a fluidized 
bed of this size for several reasons. First, it is a simple configuration where instrumentation can be easily 
implemented. It also allows having a column diameter larger than gas bubbles in a turbulent Geldart 
Group A fluidized bed.  
 

 Equipment and operating conditions 
 
Figure III-3 presents the configuration of the 20 cm fluidized bed used to study turbulent fluidization with 
two different gas distribution systems as presented in the simulation strategy.  
 

 
 

Figure III-3. 20 cm fluidized bed configuration. 
Left: entire cold flow model; right: detail of the column bottom. 

 
The cold flow mockup, located at IFP Energies nouvelles in Solaize, consists in a fluidized bed vessel 
with an inner diameter of 19.2 cm and a height of 3 meters. A 7.5 cm restriction is then implemented at 
the top of the bed before the cyclone. The entire equipment is made of PVC material except for the 
cyclone which is made of metal. All equipment parts are grounded and electrostatic effects such as 
electrical arcs in the column were not observed during experiments. The particles recovered by the 
cyclone are then sent back to the bed with a 4 cm dipleg. As shown in Figure III-3, the dipleg returns into 
the bed 15 cm above the column bottom where gas is injected through a porous plate. The porous plate 
characteristics and pressure drop curve can be found in Appendix 2. Another gas injection is implemented 
inside the bed through a 4 cm tube with an elbow connected to a side tube, precise dimensions being 
indicated in Figure III-3.  
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The air used for fluidization comes from the research center utility network. It is dry compressed air 
supplied in the lab at ambient condition with an average temperature of 20°C. 
 
Two operating conditions are investigated as shown in Table III-3.  
 

Table III-3: Operating conditions for the 20 cm fluidized bed experiments 
 

 Injection through 
Porous plate (Nm3/hr) 

Injection through jet 
tube (Nm3/hr) 

Bed superficial velocity 
(m/s) 

Experiment n°1 66 0 0.64 
Experiment n°2 16.5 49.5 (Vjet=12 m/s) 0.64 

 
The pressure in the dilute phase is measured before the restriction at the top of the bed and was equal to 
6kPg for all experiments.  
 
In both experiments, the same superficial turbulent regime velocity is used. In experiment n°1 all the gas 
is injected in the porous media. In experiment n°2, 75% of the gas is injected through the jet, the jet 
velocity being around 12 m/s, the other 25% of the gas being injected through the bottom porous plate. 
The choice of the jet velocity is based on the superficial gas velocity criteria used in the R2RTM Resid 
FCC [33] units for the injection of the dilute gas/catalyst mixture through a transport line into the second 
stage regenerator (one can refer to Figure I-3 for a schematic diagram of a FCC alliance R2RTM Resid 
FCC unit). Indeed, one objective is to investigate if CFD is able to predict the effect of such a gas 
distribution. For this purpose, our experimental set up allows generating two well controlled gas 
repartitions with the experimental characterization of their effects on the bed hydrodynamic. The 
experimental results will then be used to investigate if the CFD codes can predict these effects in a 
context of extrapolation where gas distribution is a key factor for turbulent bed reactors performances. 
 

 Experimental techniques 
 
Two Keller differential pressure probes are used to measure the bed density and bed level, their 
implementation is shown in Figure III-4. The acquisition signal frequency is 5 Hz. All the probes 
branches have a diameter of 4 mm and are flushed with an air flowrate in the range of 15 to 20 liters per 
hour. The flushing air flowrate is controlled separately in each branch in order to have a pressure drop 
measurement of zero when the bed is empty.  
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Figure III-4: Pressure probes implementation on the 20 cm fluidized bed 
 
The bed density and level are then obtained with Equation 65 and Equation 66.  
 𝜌𝐵𝐸𝐷 (𝑘𝑔𝑚3) = ∆𝑃1𝑔 × 𝐻1 = ∆𝑃1𝑔 × 0.5 Equation 65 

𝐻𝐵𝐸𝐷 = ∆𝑃2𝑔 × 𝜌𝐵𝐸𝐷 Equation 66 

 
Optical probes are then used to measure solid volume fraction profiles in the column. Figure III-5 
presents the optical probes used in this investigation which have been supplied by the University of 
British Colombia in Vancouver. Similar probe has already been used by Tebianian [96] to measure local 
solid volume fractions as well as local particles velocity in a 13.3 cm fluidized bed. Liu [99] also used 
similar probes to characterize solid volume fraction and particles velocity in a dense riser.  
 

  

Figure III-5: Fiber optic probes used 
(a) Dual probe ; (b) Emitting and receiving fibers arrangement 

(a) (b) 
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The probe consists in two 3 mm diameter channels next to other, each channel being composed of light 
emitting and light receiving fibers in a parallel arrangement. The signal of each channel is post-processed 
separately as presented in the next chapter. The light receiving fibers signal is converted into an electric 
signal with a photodiode. The electric signal can then be modified with an amplifying circuit using gain 
and off-set options and finally the electric signal is numerically converted using an acquisition card. A 
user interface software allows choosing the acquisition frequency and duration.  
 
The probe is inserted in the bed through dedicated taps to conduct in situ measurements. In total, six 
profiles are acquired as shown in Figure III-6. First, three different height are investigated with 
respectively position 1 (low), position 2 (intermediate) and position 3 (high). These 3 heights are located 
respectively 5cm, 10cm and 15 cm above the jet outlet. For each height, two profiles are then acquired in 
the “West/East” and “North/South” directions as shown in Figure III-6. 
 

 

 

Figure III-6: Optical probes profiles positions 
 
It is interesting to notice that the jet side tube is located in the same direction than the West/East profile 
while the dipleg return is located in the North/south direction. Eleven points are acquitted for each profile 
as shown in Table III-4. The six profiles represent therefore a total of 66 acquisition points.  
 

Table III-4. Optical probe profile points locations 
 

Measurement distance from the column center (mm) 
-90 ; -72 ; -54 ; -36 ; -18 ; 0 ;  
+18 ; +36 ; +54 ; +72 ; +90 

Measurement distance from the jet (mm) 50 – 100 – 150 
 
  



CHAPTER III USE OF CFD FOR EXTRAPOLATION: MATERIALS AND METHODS 

 

 74 

 

 Optical probe signal post-processing 
 
As mentioned in the literature review, different methods are used to calibrate and post-process the optical 
probe signals in order to get local solid volume fractions [97,98]. This chapter presents the methodology 
used in this study, with first a simple characterization of the probes signal response and second the 
experimental procedure developed to convert the probes signal into a local solid volume fraction.   
 

3.3.1 Optical signal characterization 
 
Before using the probe in complex situations as encountered in the fluidized bed, we spent some time to 
evaluate / understand the way the probes work using basic and well defined configurations.   
 
A graduation of black and white printed on a sheet of paper shown in Figure III-7 was first used to 
characterize and understand better the probe signal response. The system acquisition system shown in 
Appendix 2 allows setting the light intensity of the emitting fibers and the offset and gain of the received 
signal. For this characterization, the signal offset and gain were set to the value “0”. Then the probe was 
faced to the pure white part of the graduation sheet presented in Figure III-7 and the light intensity of the 
emitting fibers was set in order to have a signal of 4V. The probe was then moved through the different 
black and white graduations. 
 

 

 

Figure III-7: Black and white graduation 
used for the probe signal characterization 

Figure III-8: Probe Signal at different elevation 
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Figure III-8 presents the signal results obtained with two elevations of the probe with respect to the 
graduation sheet. The black curve corresponds to the case where the probe was faced to the sheet 
(elevation of 0 mm), the red curve corresponds to the case where the probe is located 2 mm above the 
sheet. First, one can see that the signals obtained are not linear over the entire graduation scale. Then an 
interesting point is there are two possibilities for the signal value of 2400 mV: the first one with the black 
curve and a graduation of about 45% and the second one with the red curve and a graduation of 100%. 
Therefore, in a real test condition with particles, the same voltage could lead to two possibilities as shown 
in Figure III-9.  
 

 

Figure III-9: Possibilities for the same probe signal value 
 
In possibility n°1, there are particles located at “0 mm” of the probe with a certain concentration. In 
possibility n°2, particles at the maximum volume fraction are located at a distance of 4 mm from the 
probe. Based on this observation one can conclude that in a real test condition with particles, the same 
voltage can lead to infinity of possibilities related to particle concentration and distance from the probe.  
 
This first simple characterization shows that the probe signal is affected by particles which are located 
within a certain distance with respect to the probe, this distance defining a volume of measurement which 
is important to characterize. It is also worth noticing that the calibration method with a mixture of black 
and white particles to get the signal value versus white particles concentration [98] cannot work for the 
probe used in this study since it does not take into account the fact that particles can be located at 
different distances from the probe with void between them.  
 
In order to evaluate the optical probe measurement volume, its signal value was plotted against the 
distance with respect to a white surface, the results is shown in Figure III-10. 
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Figure III-10: Signal versus probe height with respect to a white surface 
One can see that the volume of measurement has a length of about 4 mm. All particles flowing in this 
volume will therefore influence the probe signal value. Figure III-11 present a theoretical examples of 80 
microns spherical particles positions with respect to the probe for different solid volume fractions.  
 

 

Figure III-11: Theoretical examples of particles positions with respect to the probe for different solid 
volume fraction, particles are considered as 80 microns spheres 

 
It is interesting to notice that for all these solid volume fraction configurations, the light emitted by the 
probe will be reflected within a distance of maximum 240 microns where the signal presented in Figure 
III-10 is varying from 4000 mV to 3750 mV. This theoretical example demonstrates that even relative 
low solid volume fraction can generate a high signal voltage due to the signal generated by the light 
reflection on particles within the measuring volume.   
 
This first signal characterization study showed that the fiber probes used in this study performed 
measurement which are affected by particles flowing within a 4 mm distance in front of the probe, the 
consequences being that first one signal voltage can correspond to different solid volume fraction 
possibilities and that low solid volume fraction can still generate a high signal voltage. For these reasons, 
in real life with complex systems, the post-processing approach used in this study relates on a statistical 
evaluation of the signal as presented in the next chapter.  
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3.3.2 Experimental procedure and solid volume fraction reconstruction 
 

The procedure carried out for the calibration of the probe is the following: 
 

 The probe is first inserted in the bed which is not fluidized. 
 

 Light intensity is set to get a signal at a value around 4000 mV. It is important mentioning that 
reaching exactly 4000 mV is difficult due to the acquisition set sensitivity; a spread of +/- 200 mV 
was usually obtained. This value is then taken as the upper voltage reference.   

 
 The probe is then withdrawn from the bed and inserted in a dark environment to get the lower 

voltage reference value corresponding to 100% voidage. 
 

 The probe is then re-inserted in the bed for the experiment. 
 

 Signal from both channels are post-processed separately and they always show similar values, the 
averaged of both signal post-processing is therefore considered. 
 

 At the end of the experiment, another measurement is made in the bed non-fluidized to observe if 
there is a shift compared to the same measurement before the test. A maximum shift of 100 mV 
was considered to validate the experiment, which has always been respected. 
 

It is also interesting to mention that the probe light intensity was increased from 5.1 to 6 on a scale of 10 
over one month of experiments showing that the probe gets damaged over time and it is therefore 
important to track this phenomena as carried out in this study.  
 
The data acquisition was conducted with a frequency of 1 kHz. Table III-5 presents the number of 
acquisition points where the probe is inserted in the bubble according to its diameter and velocity, the 
velocity being calculated with Equation 13 (see Chapter I.2.2.2). 
 

Table III-5. Acquisition points where the probe is inserted in bubbles according to their properties 
 

bubble 
diameter (m) 

bubble velocity calculated 
from Equation 13 (m/s) 

period of probe inserted 
in the bubble (s) 

Number of acquisition 
point in the bubble 

0.003 0.9 0.003 3 

0.005 1.1 0.005 5 

0.01 1.3 0.008 8 

0.02 1.6 0.013 13 

0.03 1.8 0.017 17 

0.04 2.0 0.020 20 

0.05 2.1 0.023 23 
 
One can see that the acquisition frequency chosen allows detecting the presence of a large range of 
bubbles with the probes being inserted in the bubbles for always more than two acquisition points. It is 
also worth mentioning that this acquisition frequency is well suited for solid volume fraction 
measurements, but a higher frequency is necessary if one wants to measure bubbles/ particles velocities. 
Indeed, Schweitzer et al. [97] and Herbert et al. [100] used an acquisition frequency of respectively 5kHz 
and 50 kHz to measure respectively bubbles and particles velocities. 
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Figure III-12 presents an optical probe signal example when inserted in the fluidized bed with a 
superficial velocity of 0.7 m/s. One can see different peaks with low signal values corresponding to the 
case where the probe is within a dilute phase or bubble where the light emitted is not reflected by particles 
which then generates a low signal value. One can also see peaks with intermediate value corresponding to 
a phase with higher concentrations of particles.  
 

  

Figure III-12: Example of optical probe signal in the 20 cm fluidized bed 
 
In order to extract the local voidage fraction of the fluidized bed from the signals, the same method 
introduced by Schweitzer et al. [97] was applied on the optical probe signal with a differentiation of a 
dense and a bubble phase from a signal values histogram. The key with this method is the definition of 
the voltage threshold which defines the limit between the two phases. For this purpose, a histogram is 
used as shown in Figure III-13 where the signal measured values are numbered in different voltage 
classes of 20 mV each. The blue bars indicates the number of measured values per class, the red curve 
their accumulation over the entire range of classes. Figure III-14 shows all cumulative curves of the 
different points of a profile measured for experiment n°1 with a homogeneous injection.  
 

 
 

Figure III-13: Example of an histogram obtained 
for one acquisition with cumulative curve 

Figure III-14: Signals cumulative curves  
profile carried out for experiment n°1 with 

homogeneous injection 
 
One can notice from Figure III-14 that the cumulative curves present a sharp increase at classes around 
3900 mV shown with the black dotted lines. High voltage classes on the right correspond to bubbles 
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while lower voltage classes on the left correspond to emulsion phase. It is also important to notice that 
before this sharp increase, the shape of the cumulative curves differs depending on the profile probe 
position with higher cumulative values when the probe is located at the center. We therefore considered 
that the point where the cumulative curves show a sharp increase is representative of the transition 
between bubble and emulation phase. Indeed, depending of the position in the column, the cumulative 
curves shows different values at this transition point which is representative of the bubble concentration at 
that position. 
 
In order to have a precise determination of this transition, the derivative of the cumulative curve was 
plotted as shown in Figure III-15.  
 

 
 

 

Figure III-15: Example of signal histogram cumulative curve and its derivative 
 
The transition point is considered when the derivative curve shows a high variation with a sudden 
increase as shown in Figure III-15. The solid volume fraction is then calculated from the optical probe 
signal histogram with Equation 67 
 ε𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑏𝑒𝑙𝑜𝑤 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒                                                    + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑏𝑜𝑣𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 ∗ ε𝑠,𝑑𝑒𝑛𝑠𝑒  

Equation 67 
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Figure III-14 and Figure III-16 present the signal cumulative curves of a profile measured for experiment 
n°1 and its corresponding solid volume fraction profile with ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒=0 and ε𝑠,𝑑𝑒𝑛𝑠𝑒 = ε𝑠,𝑚𝑓 = 0.58.  
 

  

Figure III-14: Signals cumulative curves  
profile carried out for experiment n°1 with 

homogeneous injection 

Figure III-16: Solid volume fraction profile from 
cumulative curves of Figure III-14 post-processing 

with ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒=0 and ε𝑠,𝑑𝑒𝑛𝑠𝑒 = ε𝑠,𝑚𝑓 = 0.58 
 

It is important to point out that this method to determine the transition between emulsion and bubble 
phases from the histogram was developed in this study and it differs from the method used by Schweitzer 
et al. [97]. Indeed, in their work they considered that the emulsion phase from the histogram was 
symmetric with respect to the maximum peak value. They then determine the transition voltage from the 
voltage at the peak and the maximum voltage. One can refer to Appendix 2 for more details. Figure III-18 
presents the effect of the transition determination between the emulsion and bubbles phases with the 
method used in this study and the one from Schweitzer et al. [97]. 
 
Different sampling durations (30 s, 60 s, 120 s) were investigated in order to minimize the sampling time 
without compromising reproducibility of average concentration profiles. Figure III-17 presents the effect 
of the sampling duration on a solid volume fraction profile obtained with ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒=0 and ε𝑠,𝑑𝑒𝑛𝑠𝑒 =ε𝑠,𝑚𝑓 = 0.58. 

 

 
Figure III-17: Solid volume fraction profile post-processing with ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒=0 and ε𝑠,𝑑𝑒𝑛𝑠𝑒 = ε𝑠,𝑚𝑓 = 0.58 
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One can see that the profiles for the sampling time of one and two minutes are similar with an average 
relative error over all solid volume fraction values lower than 2%. On the other hand, the 30 seconds 
sampling duration profile presents a relative error compared to the profile with a 2 minutes sampling 
duration profile of 6.5%. The sampling duration of 1 minute was therefore chosen since it minimizes the 
test duration without affecting the solid volume fraction values obtained.  
 
Different points can be discussed concerning the signal post-processing method presented here above: 
 

- First, it is important to point out that the method presented to determine the transition between 
emulsion and bubble phases from the histogram was developed in this study and it differs from the 
method used by Schweitzer et al. [97]. Indeed, in their work they considered that the emulsion 
phase from the histogram was symmetric with respect to the maximum peak value. They then 
determine the transition voltage from the voltage at the peak and the maximum voltage. One can 
refer to Appendix 2 for more details. Figure III-18 presents the effect of the transition 
determination between the emulsion and bubbles phases with the method used in this study and 
the one from Schweitzer et al. [97]. 

 

 

Figure III-18: Effect of the transition determination, Solid volume fraction profile from cumulative 
curves post-processing with ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒=0 and ε𝑠,𝑑𝑒𝑛𝑠𝑒 = ε𝑠,𝑚𝑓 = 0.58 

 
One can see that the profile shapes remain the same for both method but the one from Schweitzer 
et al. [97] gives lower solid volume fraction values since the transition between the emulsion and 
gas phases always occur at higher voltages with this method. This comparison shows that the post-
processing of the optical probe signal depends on different hypothesis and the results therefore 
need to be validated against other experimental data as discussed below. 
 

- When calibrating the probe signal on the catalyst fixed bed, it is difficult to set a precise maximum 
value of 4000 mV due to the lack of sensitivity of the acquisition system settings, therefore the 
maximum value can reach values up to 4300 mV. However, the determination of the transition 
between the bubble and dense phase is independent of the initial probe calibration since the 
transition value is determined based on the derivative of the cumulative curve for each 
measurement and not based on a fixed threshold value for all measurements.  
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- The transition between bubble and dense phase occurs at high voltages implying that low solid 
concentration generates also high signal values. This phenomenon was explained in the previous 
chapter with Figure III-11. 
 

- The influence of the transition voltage value on the solid volume fraction profile was also 
investigated for our post processing method. For this purpose, the solid volume fraction profile 
presented in Figure III-16 was plotted considering different voltage transitions as shown in Figure 
III-19. As a reminder, each class represents voltage values number within a range of 20 mV.  
 

 

Figure III-19: Effect of transition voltage value 
 
The default curve is the same as the one shown in Figure III-16. The transition values were then 
set with one and two classes above and below the default transition value. Table III-6 presents the 
averaged solid volume fraction obtained from the profile integration over the column surface for 
the different transition voltages. One can see from Figure III-19 and Table III-6 that the transition 
voltage has almost no influence on the solid volume fraction profile shape and averaged value.   

 
Table III-6. Averaged solid volume fraction from profile integration, influence of the transition voltage 

 
Class Default - 1 class - 2 class +1 class +2 class 

Averaged solid 

volume fraction 
0.43 0.42 0.42 0.43 0.42 

%error - 1.0% 2.0% 0.9% 1.7% 

 
- The solid volume fraction obtained is obviously connected to the values of ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒 and ε𝑠,𝑑𝑒𝑛𝑠𝑒 in 

Equation 67. In the previous examples, ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒 and ε𝑠,𝑑𝑒𝑛𝑠𝑒were considered as indicated in the 
two phases theory equal to respectively 0 and the solid volume fraction at the minimum of 
fluidization 0.58. However, when observing the histogram cumulative curves on Figure III-14, the 
bubble and dense phases cover a certain range of voltages implying that ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒  and ε𝑠,𝑑𝑒𝑛𝑠𝑒 
correspond to an average value of different solid concentrations. Figure III-20 and Figure III-21 
presents the effect of the ε𝑠,𝑑𝑒𝑛𝑠𝑒 and ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒values on the solid volume fraction profile presented 
before. Table III-7 presents the averaged solid volume fraction obtained from the profiles 
integration.  
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Figure III-20: Effect of ε𝑠,𝑑𝑒𝑛𝑠𝑒 values on the solid 
volume fraction profile 

Figure III-21: Effect of ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒 values on the 
solid volume fraction profile 

 
Table III-7. Effect of ε𝑠,𝑑𝑒𝑛𝑠𝑒 and ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒 on averaged solid volume fraction 

εdense 0.58 0.55 0.52 0.58 0.58 

εbulle 0 0 0 0.02 0.04 

Averaged solid 

volume fraction 
0.43 0.41 0.39 0.43 0.44 

%error - 5% 10% 1.5% 2.9% 

 
All profiles present a similar shape. Depending on  ε𝑠,𝑑𝑒𝑛𝑠𝑒 and ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒  value considered, the 
average averaged solid volume fraction is affected, the most influencing parameter being ε𝑠,𝑑𝑒𝑛𝑠𝑒 

which results from independent measurement. . ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒  is evaluated to 0 considering the two 
phase theory but it remains an hypothesis.  
 

 
One can see from the discussion above that the evaluation of local bed voidage using optical probes relies 
on several hypothesis / assumptions. In order to gain confidence into the measurement method as well as 
the signal processing and to check that the probe does not have a strong intrusiveness impact, it is 
essential to validate the optical probes results with experimental data obtained from other independent 
measurement techniques. For this purpose, we compared the averaged solid volume fraction resulting 
from optical fibers profile integration with macroscopic measurement of bed density resulting from the 
pressure drop measurements probe. This comparison is presented in Chapter IV.2. 
 
 
 
  

-0.10 -0.05 0.00 0.05 0.10
0.2

0.3

0.4

0.5

0.6


S

Radial position (m)

 
dense

=
mf
= 0.55 ; 

b
=0

 
dense

=
b
=0

 
dense

=
b
=0

-0.10 -0.05 0.00 0.05 0.10
0.2

0.3

0.4

0.5

0.6


S

Radial position (m)

 
dense

= 0.58 ; 
b
=0

 
dense

= 0.58
b
=0.02

 
dense

= 0.58 ; 
b
=0.04



CHAPTER III USE OF CFD FOR EXTRAPOLATION: MATERIALS AND METHODS 

 

 84 

 Fluidized bed of 90 cm 
 
This chapter presents the 90 cm fluidized bed equipment and related instrumentation. It is located at 
Particulate Solid Research Incorporation (PSRI) in Chicago. Experiments were conducted for PSRI 
consortium and the results were used in this dissertation with their agreement. 
 
The 90 cm fluidized bed experimental results are used in the simulation strategy Step 3 to evaluate the 
prediction of CFD at a larger scale compared to the 20 cm fluidized bed experiments and simulations.   
 

 Equipment 
 
Figure III-22 presents a general sketch of the PSRI 90 cm fluidized bed with the air injector used at the 
bottom.  
 

 
 

 
 

Figure III-22: PSRI 90 cm fluidized bed 
 
The experimental set up consists of a cylindrical carbon steel vessel with an inner diameter of 0.89 m and 
a total height of 6.85m. The vessel and cyclones are made of metal. A distributor is located at 0.82m from 
the vessel bottom and consists of 36 nozzles with a diameter of 2.5cm connected to a main rectangular 
ring. Details of the distributor design can be found in Appendix 3. The gas outlet at the top of the bed is 
connected to a series of two cyclones. The particles recovered by the first cyclone are recycled back to the 
bed through a 0.2m dipleg using an automatic L-valve system that prevents gas leakage through the 
dipleg [151,152]. The particles recovered by the second cyclone are sent back to the bed through a 0.2m 
second stage dipleg. A flapper valve is located at the tip of the second stage cyclone dipleg to prevent gas 
from the fluidized bed to flow up through the dipleg. 
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Compressed dry air at ambient conditions is used for fluidization with a temperature assumed to be 20°C. 
The pressure in the dilute phase of the bed is maintained at a pressure of 35kPag. Table III-8 presents the 
operating conditions of the three tests carried out with a superficial gas velocity of respectively 0.3 m/s, 
0.6 m/s and 0.85 m/s. The superficial velocities are calculated at the top the bed with the dilute pressure 
of 35 kPag. 
 

Table III-8. Acquisition points where the probe is inserted in bubbles according to their properties 
 

 Bed superficial velocity (m/s) 
Test 1 0.3 
Test 2 0.6 
Test 3 0.85 

 
Finally, it is important to point out that the 90 cm fluidized bed experiment has a gas distribution system 
different compared to the 20 cm fluidized bed where gas is injected at the bottom through a porous media. 
This difference is discussed here: the two experiment set ups where chosen to investigate the CFD 
predictions when extrapolating a CFD model from a given scale to a larger one. In this case, the main 
extrapolation parameter considered is the change of scale for the same fluidization regime. Then, for an 
ideal comparison meaning only the change of scale effect is investigated, it would be necessary to have 
two experiments at different scales with the same gas distribution system, one could also add the use of 
the same powder and experimental techniques. It is not the case for our comparison since porous plate 
distributors are rarely used at large scales because of potential mechanical issues and homogeneous gas 
distribution problems [2]. Nevertheless, we still consider that the choice of these two experiments is 
pertinent since they have in common particles with similar properties fluidized at similar superficial gas 
velocities and since the effect of the gas distribution system is taken into account directly in the 
simulations through the choice of pertinent boundary conditions as shown in Chapter IV.  
 

 Experimental techniques 
 
Two different experimental techniques were used to characterize the fluidized bed hydrodynamic with 
first density profile measurements using differential pressure probes and second particle entrainment 
measurements 
 
Figure III-23 presents the ports location for the differential pressure probes measurements that are used to 
get the density profile with respect to the vessel height.  
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Figure III-23. Ports location for differential pressure probes 
 
The pressure transmitters (Honey well Model STD904) are connected with 6 mm diameter polyethylene 
tubes to the array of pressure ports that had high porosity snubbers (McMaster Carr, Model 3820K27) to 
prevent the tubes from getting plugged with solids. The pressure ports are located 0.3 m apart starting 
from the sparger and continued to the 3rd steel section. Above this section, the pressure ports were placed 
at 0.6 m increments to the top of the column in the freeboard. The responses were time averaged, 
normalized to the spacing of the ports multiplied by gravity to give an axial and localized bed density.  
 
The overall particle entrainment rate of the fluidized bed was measured by closing a pneumatically 
operated butterfly valve located at the bottom of the first stage cyclone dipleg. The accumulation of 
particles in the dipleg versus time was then measured with a differential pressure probe. The measurement 
period never exceeded 30 seconds in order to limit the variation of particles inventory in the fluidized bed. 
The main assumptions for this measurement are: 
 

- During the measurement, the entrainment is not affected by the variation of the fluidized bed level 
due to the interruption of the particles return from the first stage cyclone dipleg. 
 

- The particles losses that are not recovered in the first stage cyclone are neglected which is 
acceptable since the first cyclone efficiency is estimated above 99%.  
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 Riser of 30 cm 
 
The experiments for the vertical transport regime in a riser were carried out on a large circulating 
fluidized bed loop at IFP Energies nouvelles Solaize.  
 
These experiment results are used in the simulation strategy step n°4 in order to evaluate the CFD 
predictions at large scale with operating conditions different compared to the previous steps.  
 

 Equipment 
 
Figure III-24 presents a sketch and a picture of the CFB set up.  
 

 

 

Figure III-24. Particles circulating loop with a riser 
 
The cold flow mock-up is composed of two solid loops. The primary loop shown in Figure III-24 is used 
for stationary hydrodynamic experiments where the solid circulate in a loop from the fluidized bed n°1 
into a stand-pipe then through a valve, then to a riser and it is finally separated from the riser gas into two 
cyclones in series and sent back to the fluidized bed n°1. The second loop, operated in batch mode, is 
used for solid flowrate calibration. It consists in emptying the fluidized bed n°1 into the fluidized bed n°2 
through the riser and the cyclones located on the left side. Solid flowrate is estimated by measuring the 
decrease of the fluidized bed n°1 level and is correlated to the valve pressure drop as explained below.  
 
The main characteristics of the mock up are: 
 

- Fluidized bed n°1 and n°2: Internal diameter of 1 meter, height of 6 meters 
- Standpipe: Internal diameter of 26 cm, total height of 9 meters. 
- Riser: Internal diameter of 30 cm, total length of 18 meters.  
- Catalyst inventory: around 2.5 tons 
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Figure III-25 presents the riser bottom gas injection configuration. As for the other experimental set-ups 
already described it is specific and different from the previous distributors. Indeed, in CFB risers, gas 
flow is much larger than in fluidized beds and solid circulation has also to be accounted for. Inlet 
configuration is important as discussed by Cocco et al. [95] and Grace et al. [2]. Indeed, in order to 
achieve well distributed flows, it is better to feed the solid into a fluidized bed below the main gas 
injection. Gas can then be fed all around the riser through multiple points or axially with an internal 
injection system. Wang et al. [153] also demonstrated that feeding the particles above the gas injection 
can lead to asymmetric particles profile in the riser.  
 

 

Figure III-25: Riser bottom gas injection configuration 
 
In our system shown on Figure III-25, the catalyst from the fluidized bed n°1 comes from a standpipe 
connected to the riser bottom through a 45° inclined pipe shown with the “A2” symbol on Figure III-25. 
This inclined pipe is located 30 cm below the 10 cm tube main riser gas inlet as shown in Figure III-25. A 
ring located at the riser bottom allows maintaining the solid coming from the standpipe fluidized at a 
superficial velocity around 10 cm/s.  
 
The solid circulation in the loop is maintained through an appropriate pressure balance. An example of 
pressure balance corresponding to a solid circulation of 220 kg/m2/s and a superficial velocity in the riser 
of 8.15 m/s is presented in Figure III-26. 
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Figure III-26: Main loop pressure balance example, Solid flux of 220 kg/m2/s, superficial gas velocity of 
8.15 m/s 

 
As explained in the literature review, the pressure balance in the loop can be written with Equation 68.  
 ∆𝑃𝑉𝐴𝐿𝑉𝐸 𝐴→𝐵=∆𝑃𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑏𝑒𝑑 𝐺→𝐸 + ∆𝑃𝑠𝑡𝑎𝑛𝑑𝑝𝑖𝑝𝑒 𝑏𝑒𝑑 𝐸→𝐴 − ∆𝑃𝑟𝑖𝑠𝑒𝑟  𝐶→𝐷 − ∆𝑃𝑐𝑦𝑐𝑙𝑜𝑛𝑒  𝐼→𝐺  Equation 68 

 
Table III-9 presents the tests matrix for the riser experiments that were conducted in the present work. 
Superficial gas velocity is calculated using the absolute pressure measured at the top of the riser which is 
constant for all tests and equal to 110 kPa abs (+/- 1 kPa).  
 

Table III-9: Tests matrix for riser experiments 
 Superficial velocity at riser top (m/s) Solid Flux in riser (kg/m2/s) 

Test 1 6.9 80 
Test 2 8.15 160 
Test 3 8.15 220 

 
The procedure used to determine the solid flowrate circulating in the loop is presented in the next section. 
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 Experimental techniques 
 

5.2.1 Solid flux measurements 
 
There is no direct method to measure the solid flowrate while circulating in the loop. Therefore, the solid 
flux in the loop was calibrated against the orifice valve pressure drop using the secondary loop where the 
fluidized bed n°1 is emptied in to the fluidized bed n°2 (see Figure III-24). Three valve orifices were used 
with respectively 3.5cm, 5cm and 7cm.  
Figure III-27 presents the different pressure drop recordings while running the cold flow mock-up in 
batch mode through the secondary loop using the 3.5 cm orifice. The curve in red is the pressure drop 
across the orifice valve, the curve in blue represents the level in the fluidized bed n°1 and the two other 
curves represent the ∆P in the standpipe. 
 

 

Figure III-27: Pressure drops measurement in transfer mode with an valve orifice of 3.5 cm 
 
The solid mass flow rate going through the orifice valve is classically expressed with Equation 69: 
 

ORIFICEPIPESTANDORIFICE PACdFs  2  Equation 69 

 
Where:  AORIFICE is the surface area of the orifice (m2)  
 Fs is the solid flowrate (kg.s-1) 
 Cd is the orifice coefficient 
 ρstand pipe is the density in the stand-pipe (kg.m-3 ) 
 ∆Porifice is the pressure across the orifice (Pa) 
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The solid mass flowrate is also given by the level decrease in fluidized bed n°1 with Equation 70. 
 

 
Sbed

g

tPtP
Fs BEDBED 




1)(
 Equation 70 

 
 
Where: ∆PBED is the pressure corresponding to the level of catalyst in T01  (Pa) 
 Sbed is the surface area of the fluidized bed n°1   (m2) 
 
 
The coefficient Cd is then calculated combining Equation 69 and Equation 70, its value is averaged over 
the period of time indicated by the green bars on Figure III-27.  
 
Table III-10 presents the values obtained for the orifice coefficients. For each orifice, four tests were 
carried out. 
 

Table III-10: Valve Cd coefficient determination 

Orifice 3.5 cm 

Test N° 1 2 3 4 

Value 0.6411 0.6246 0.6635 0.6379 

Cd Averaged value 0.6418 

Difference with averaged value 0.1% 2.7% 3.4% 0.6% 

Orifice 5 cm 

Test N° 1 2 3 4 

Value 0.6837 0.6757 0.6718 0.6574 

Cd Averaged value 0.6721 

Difference with averaged value 1.7% 0.5% 0.1% 2.2% 

Orifice 7 cm 

Test N° 1 2 3 4 

Value 0.7138 0.7101 0.6926 0.6812 

Cd Averaged value 0.6994 

Difference with averaged value 2.1% 1.5% 1.0% 2.6% 

 
The coefficients presented above were then used to calculate the solid flux in the riser during experiments. 
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5.2.1 Riser pressure drop measurements 
 
Pressure drops measurements were carried out during experiments along the riser height as shown in 
Figure III-28.  Different pressure drop sensors are installed on the riser. PDT16 and PDT41 allows 
measuring the riser pressure drop profile by switching through the different ports shown in Figure III-28 
with a higher space definition at the riser bottom to better characterize the pressure drop due to particle 
and gas accelerations.  
 

 

Figure III-28: Riser pressure drop and pseudo isokinetic sampling measurements 
 
Data acquisition of pressure drop signals was conducted at 1Hz by Keller pressure sensors for a minimum 
period of three minutes. To avoid pressure taps plugging, continuous air aeration was set and controlled 
through a rotameters system. The taps aeration was set to generate zero pressure drop when there was no 
circulation inside the riser. The average aeration flowrate was 25 NL/h. Finally, an absolute pressure 
sensor is located at the riser top before the riser blind-tee.  
 
It is important to mention that the pressure profiles were measured with the same pressure sensor PDT41. 
A system of valves allowed changing the position of the riser pressure taps the sensor was connected to. It 
took in average one hour and a half to measure a full profile, during this period it was checked that the 
total riser pressure drop measured by the PDT 20 remained constant. An example of a pressure profile 
measurement versus time can be found in Appendix 4. The consistency of the pressure values from 
PDT41 and PDT20 was checked by comparisons with other pressure drop measurements from the sensor 
PDT19, PDT 18 and PDT 17.  
  

Isokinetic sampling 



CHAPTER III USE OF CFD FOR EXTRAPOLATION: MATERIALS AND METHODS 

 

 93 

5.2.1 Local flux measurement 
 
The pseudo isokinetic sampling technique was used to measure local flux profiles in our experimental set 
up. As presented in detail below, the technique consists in inserting a tube connected to a vacuum pot in 
order to withdraw locally particles from the flow to measure a local flux. This technique has been already 
used and discussed in the literature. Herbert [154] validated this technique in a downer flow by comparing 
the local solid flux profile obtained with an pseudo isokinetic probe with the combination of local 
particles concentration and velocity profiles obtained from an optical probe. They also found a good 
agreement between the particles circulation in the system and the total particles flux calculated from the 
pseudo isokinetic probe profile integration. Issangya et al. [155] used pseudo isokinetic probes to measure 
particles fluxes in a riser of FCC particles with solid fluxes from 70 to 700 kg/m2/s and superficial gas 
velocity going from 9 to 17 m/s. They use a probe with a diameter of 13 mm bent smoothly at 90 degrees. 
The authors demonstrated with their measurements the influence of the solid riser side inlet on the 
asymmetry of the solid profiles.  
 
In our work, we use isokinetic sampling technic to measure a riser local flux profile in one direction at a 
height of 12 meters above the main gas injection as shown in Figure III-28. This height was chosen in 
order to be in the fully developed section of the flow without being influenced by the riser termination 
effect presents a sketch of the pseudo- isokinetic probe used to during the tests. Figure III-29 presents the 
dimensions of the pseudo isokinetic probe used. Dimensions and shape are similar to the probe used by 
Issangya et al. [155]. Then, as shown in Figure III-30 the profile measured is in the same direction that 
the side particles riser inlet and outlet tubes. Only one profile was measured using one port to insert the 
probe located on the opposite side of the particle inlet tube. Previous investigations carried out at IFP 
Energies nouvelles using a 31 cm riser with FCC particles and similar operating conditions demonstrated 
the repeatability of the pseudo isokinetic profiles using two ports to insert the probe opposite to each 
other with an angle of 180°.  These results demonstrate the limited intrusiveness of the pseudo isokinetic 
probe, one can refer to Appendix 4 for more details.  
 

  

Figure III-29: Isokinetic probe 
Figure III-30: Direction of the pseudo 

isokinetic probe profile 
 
As shown in Figure III-31, the probe is connected to a particle collection pot that is operated under 
vacuum. The vacuum pressure is set in order that the velocity at the probe tip is equal to the superficial 
gas flow velocity in the riser. The weight of the collection pot is measured over time in order to get the 
local mass flux. For each profile point time was measured in order to get 1 kg of particles. For the riser 
chord investigated, two profile measurements are carried out with the probe facing respectively 
downward and upward. 
 

Isokinetic probe profile 
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Figure III-31: Isokinetic probe measurement set 
 
The pseudo isokinetic probe is moved along the diameter in different points as shown on Figure III-32, 
Table III-11 presents the different sampling points locations. 
 

 

Figure III-32: Profile measurements with the isokinetic probe 
 

Table III-11. Isokinetic probe profile points locations 
 

Measurement distance from the column center (cm) 
-14.7 ; -12.9 ; -10.9 ; -8.4 ; -3.5 ; 0 ;  
+3.5 ; +8.4 ; +10.9 ; +12.9 ; +14.7 

Measurement Height in Figure III-28 (m) 10 
 
Local solid flux measurement to characterize a flux distribution is a classical approach but it remains a 
complex measurement. Indeed it relies on different measurements over a certain test duration. In our case, 
22 measurement points have to be made to get a full profile for a period depending on the flux measured 
as shown in Table III-12 with the averaged sampling duration per probe profile point.  
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Table III-12. Averaged sampling duration per probe profile points to extract 1 kg of particles  

Riser flux Flux of 80 kg/m2/s Flux of 160 kg/m2/s Flux of 220 kg/m2/s 
Averaged sampling time per profile 

point to get 1 kg of solid (s) 
240 125 75 

 
The cold flow has therefore to be run in steady state conditions for the entire profiles measurements. Due 
to all these different experimental challenges, it is necessary to check the consistency of data by 
comparing the mass flux estimated through the local flux measurements with global solid mass flux 
estimated through orifice pressure drop calibration. For this purpose, the global mass flux is calculated 
integrating the local flux profile with Equation 71. 
 

TOTAL

PROBE

TOTAL
A

t Ai

At

Mi

Gs

 


 1 2
 

Equation 71 

 
Where:  GsTOTAL is the total mass flux  (kg.m2.s-1) 
 t is the number of measuring point 
 APROBE is the surface area of the tip of the isokinetic probe (m2)  
 Mi is the mass of the collection pot (kg) 
 t is the time over the collection pot mass is measured (s) 
 Ai is the surface area of the ring i (m-2) 
 ATOTAL is the surface area of the total section (m-2) 
 
The comparison between the global flux from the orifice valve calibration and the integration of the local 
flux profile is presented in Chapter IV.4. 
 
  



CHAPTER III USE OF CFD FOR EXTRAPOLATION: MATERIALS AND METHODS 

 

 96 

 CFD approaches 
 
The simulation strategy is developed using two CFD approaches, the MP-PIC and Euler/Euler KTGF 
approach. The main reason is to study if two different approaches can first predict experimental results in 
step n°1 and n°2 for the 20 cm fluidized bed and then study the predictions of the two approaches when 
extrapolating at a larger scale with the 90 cm fluidized bed in step n°3.  
 
As discussed in the literature review, the Euler/Euler KTGF approach describes better the particle 
interactions but only a representative particle diameter is considered for the solid phase while the MP-PIC 
method takes into account the full particle size distribution through a population of computational clouds 
but with a rather simplistic modeling of particles interactions. These two approaches were used in this 
investigation with the software OpenFOAM v17.12 for the Euler/Euler KTGF approach and Barracuda 
VR® for the MP-PIC approach 
 
For a better understanding, the simulations set up description with the geometry, mesh, boundary 
conditions and drag law is described together with the simulation results in Chapter IV in order to have all 
information in the same chapter. This section therefore focusses on general information to describe the 
conditions in which simulations were conducted and to give more details on the two approaches models.  
 
All simulations are transient, the time step being taken to get a Courant number defined by Equation 72 
always lower than one (1.0) in the entire simulation domain.  
 𝐶𝑜𝑢𝑟𝑎𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 =  𝑢𝑔∆𝑡 ∆𝑥  Equation 72 

 
With:   - 𝑢𝑔  gas velocity    (m/s) 

  - ∆𝑡     simulation time step  (s) 
  - ∆𝑥 cell size   (m) 
 

 Euler/Euler with KTGF approach: OpenFOAM v17.12 CFD software 
 
Open Source Field Operation And Manipulation (OpenFOAM) is an open-source C++ CFD software with 
different solvers, each solver corresponding to a particular application. The solver twoPhaseEulerFOAM 
version 17.12 developed for the fluidized bed simulation with the Euler/Euler KTGF approach was used 
in this project. One can refer to Rollins [15] and Engen [127] for more details on the code development 
and structure.  
 
The mass and momentum conservation equations solved for both phases are presented in Chapter I.4.1. 
However, OpenFOAM takes into account an additional turbulence model for the gas phase and a friction 
model for the solid phase as presented below.  
 

6.1.1 Gas phase turbulence model 
 
The standard Launder and Spalding [156] “k-ε” model is considered for the gas phase turbulence, the gas 
stress tensor presented in Equation 30 then becomes: 
 𝜏𝑔 = (𝜇𝑔 + 𝜇𝑡) (∇ 𝑢𝑔⃗⃗⃗⃗ + ∇𝑇 𝑢𝑔⃗⃗⃗⃗ − 23∇ 𝑢𝑔⃗⃗⃗⃗ 𝐼) Equation 73 
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With 𝜇𝑡corresponding to the turbulent viscosity defined by Equation 74: 
 𝜇𝑡 = 𝜌𝑔𝐶𝜇 𝑘2𝜖  Equation 74 

 
Where k is the kinetic turbulent energy defined by the sum of the gas velocity fluctuations components 
squared as presented in Equation 75.  
 𝑘 = 12 (𝑢𝑥′ 2 + 𝑢𝑦′ 2 + 𝑢𝑧′ 2) Equation 75 

 𝜖 is the kinetic turbulent dissipation rate and 𝐶𝜇is a constant.  

 𝑘 and 𝜖 are transported with respectively Equation 76 and Equation 77. 
 𝜕(𝛼𝑔𝜌𝑔𝑘)𝜕𝑡 + ∇ ∙ (𝛼𝑔𝜌𝑔𝑢𝑔⃗⃗⃗⃗ 𝑘) = ∇ [((𝜇𝑔 + 𝜇𝑡𝜎𝑘) ∇k] + 2𝛼𝑔𝜇𝑡𝑆𝑖𝑗𝑆𝑖𝑗 − 𝛼𝑔𝜌𝑔𝜖 Equation 76 

 

With:   -𝑆𝑖𝑗 mean strain rate tensor equals to 
𝜕𝑈𝑖𝜕𝑥𝑗 + 𝜕𝑈𝑗𝜕𝑥𝑖  

 𝜕(𝛼𝑔𝜌𝑔𝜖)𝜕𝑡 + ∇ ∙ (𝛼𝑔𝜌𝑔𝑢𝑔⃗⃗⃗⃗ 𝜖) = ∇ [((𝜇𝑔 + 𝜇𝑡𝜎𝜖)∇𝜖] + 𝛼𝑔𝐶𝜖1 𝜖𝑘 2𝜇𝑡𝑆𝑖𝑗𝑆𝑖𝑗 − 𝛼𝑔𝐶𝜖2𝜌𝑔 𝜖2𝑘  Equation 77 

 𝐶𝜇, 𝜎𝑘, 𝜎𝜖, 𝐶𝜖1and 𝐶𝜖2are constant taken from the study of Launder and Spalding [156] on experimental 

characterization of monophasic turbulent flows and are equal respectively to 0.09, 1, 1.3, 1.44 and 1.92. 
The use of a turbulent model developed for monophasic flow in a multiphase simulation is discussed in 
Chapter V. 
 

6.1.2 Solid phase frictional model 
 
When solid volume concentration is high the particle collision are no longer instantaneous, as it is 
assumed in kinetic theory. The resulting frictional stress due to sustained contact between the particles is 
therefore taken into account by adding a frictional stress component to the solid pressure equation and the 
viscous stress equation with the model of Johnson and Jackson [157].  
 𝑃𝑠 = 𝑃𝑠,𝐾𝑇𝐺𝐹  + 𝑃𝑠,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙   Equation 78 

 
With:  - 𝑃𝑠,𝐾𝑇𝐺𝐹  : the solid pressure from the Kinetic Theory of Granular flow with the Lun model 

presented in Equation 33. 
 
The Johnson and Jackson solid pressure from particle friction model is presented in Equation 79, it is 
implemented only when the solid volume concentration is greater than a specified minimum solid volume 
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fraction value. This minimum value chosen for this study is the openFOAM default value of 0.55. This 
parameter was not investigated in this work.  
 𝑃𝑠,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 = 𝐹𝑟 (𝛼𝑠−𝛼𝑠,min)𝑛(𝛼𝑠,𝑚𝑎𝑥−𝛼𝑠,)𝑝 if 𝛼𝑠 > 𝛼𝑠,min 𝑃𝑠,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 = 0 if 𝛼𝑠 < 𝛼𝑠,min 

Equation 79 

 
With :   𝛼𝑠,min equals to 0.55 in this study 

   𝛼𝑠,max equals to 0.62 in this study 
   Fr constant equals to 0.05 
   n constant equals to 2 
   p constant equals to 5 
 
The solid viscosity is then calculated from Equation 80: 
 𝜇𝑠 = 𝜇𝑠,𝐾𝑇𝐺𝐹  + 𝜇𝑠,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙   Equation 80 

With:  - 𝜇𝑠,𝐾𝑇𝐺𝐹  : solid viscosity from the Kinetic Theory of Granular flow with the Gidaspow 
model presented in Equation 33 to Equation 38. 

 
The Johnson and Jackson solid viscosity from particle friction model is presented in Equation 79, it is 
implemented only when the solid volume concentration is greater than a specified minimum solid volume 
fraction value. 
 𝜇𝑠,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙  = 𝑃𝑠,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙  sin (𝜑)  Equation 81 

 
With:  𝜑: internal flow angle taken at 28.5° in this study 
 

6.1.3 Wall boundary conditions  
 
Wall boundary conditions for gas/particles flow is a topic of great interest already discussed in the 
literature. Fede et al. [13] and Li et al. [158] investigated and showed the influence of the particle wall 
boundary conditions on their fluidized bed simulations but no general agreement can be found in the 
literature concerning this particles wall boundary conditions modeling. It therefore remains a challenging 
topic.  
 
In our study, we chose the Johnson and Jackson [157] partial slip wall boundary condition for the particle 
phase which is one of the most common model for fluidized bed simulation [159]. The Equation 82 and 
Equation 83 present respectively the wall velocity and granular temperature conditions.  
 𝑛⃗ 𝜇𝑆∇𝑉𝑝,𝑤⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜋𝛷𝜌𝑠𝛼𝑠𝑉𝑝,𝑤⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑔0,𝑠√3θ𝑠6𝛼𝑠,𝑚𝑎𝑥  Equation 82 

 𝑛⃗ K𝑠∇θ𝑠 = 𝜋6 √3 𝛼𝑠𝛼𝑠,𝑚𝑎𝑥 𝜌𝑠𝑔0,𝑠√θ𝑠𝑉𝑝,𝑤2 − 𝜋4 √3 𝛼𝑠𝛼𝑠,𝑚𝑎𝑥 (1 − 𝑒𝑤2)𝜌𝑠𝑔0,𝑠θ𝑠3/2 Equation 83 
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With:   - 𝑛⃗  unit normal vector to the wall 
   - 𝑉𝑝,𝑤 particle slip velocity parallel to the wall (m/s) 

   - 𝛼𝑠,𝑚𝑎𝑥 equals to 0.62 in this study 
   - 𝛷 specularity coefficient for particle wall collisions taken at 0.01 in this study 
   - 𝑔0,𝑠 radial distribution from Equation 35 with the Sinclair Jackson model 
   - θ𝑠 granular temperature 
 - K𝑠  granular temperature conductivity coefficient K𝑠  from Equation 41 with the 

Gidaspow model 
 - 𝑒𝑤 coefficient of restitution for particle wall collisions equals to 0.85 in this study 
 
The specularity and restitution coefficients 𝛷 and 𝑒𝑤  were set with the default openFOAM values of 
respectively 0.01 and 0.85. These values were also used in the work of Engen [127] with the simulations 
of Geldart Group A and Group B particles using openFOAM. It is also important to point out that 
Motlagh et al. [12] showed that the variation of the specularity coefficient from 0.001 to 0.1 did not affect 
significantly the results of his Geldart Group A turbulent bed simulations. Then Fede et al. [13] showed 
that the restitution coefficient 𝑒𝑤 variation from 0.86 to 1 did not affect their Geldart Group B fluidized 
bed simulation results.  
 
Concerning the gas phase, a no slip condition is applied at the wall as it is usually applied in gas/particles 
simulations [159]. The code default wall boundary conditions were used for the turbulence k and 𝜖 
parameters.  
 
 

6.1.4 Simulation parameters and models summary  
 
Table III-13 presents the parameters and models summary of the simulations carried out with openFOAM. 
 

Table III-13: Simulation parameters and models summary for OpenFOAM simulations 
 

Gas turbulence model 

Standard k-ε Launder and Spalding [156] ; 𝐶𝜇= 0.09 , 𝜎𝑘 = 1, 𝜎𝜖=1.3, 𝐶𝜖1= 1.44 and 𝐶𝜖2=1.92 

 
Kinetic theory of Granular Flow αs,max 0.62 

Coefficient of restitution for particles collisions es 0.9 

Granular Pressure Ps,KTGF   model  Lun (Equation 33) 

Viscosity  μs,KTGF  model Gidaspow (Equation 33 to Equation 38) 

granular temperature conductivity coefficient Ks model Gidaspow (Equation 41) 

Radial distribution g0,s  Sinclair Jackson model (Equation 35) 

 
Frictional stress 

 𝑃𝑠,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙  and 𝜇𝑠,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙  model Johnson and Jackson [157] 𝛼𝑠,min 0.55 

Angle 𝜑 28.5 
r  2 

Fr 0.05 
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s 5 
 

Wall boundary conditions 

model Johnson and Jackson [157] αs,max 0.62 

specularity coefficient 𝛷 0.01 
coefficient of restitution for particle wall collisions 𝑒𝑤 0.85 

 
Particle density 

Input from the experimental measurements  
(Table III-1) 

 
Particle mass 

1 815 kg 
 
 

Parameters investigated and/or discussed in Chapter III 

Mesh size and mesh type 
Gas/ particles drag Law 

particle representative diameter 
Geometry simulated and boundary conditions imposed 

Simulation time step and duration 
 
The solver and numerical schemes selected are detailed in Appendix 5 and Appendix 6 which include 
respectively the fvSolution and fvSchemes files of the openFOAM simulations.  
 

6.1.5 MP-PIC approach: Barracuda VR®  
 
Barracuda VR® and the MP-PIC approach have already been introduced in Chapter I.4.2 and Chapter 
II.2.4. Table III-14 presents the parameters and models used for Barracuda VR® simulations. 

 
Table III-14: Simulation parameters and models summary for Barracuda VR® simulations 

 
Gas turbulence model 

Smagorinsky (1963) turbulence model, Smagorinsky coefficient C=0.01 
 

Solid stress model 

model of Equation 52, 𝑃𝑠 = 1 ; β = 3 ; 𝜀𝑏𝑎𝑟𝑟𝑎𝑐𝑢𝑑𝑎 = 10-8,  𝛼𝑠,𝑚𝑎𝑥 = 0.62 

 
Wall boundary conditions 

Particle to wall normal retention coefficient: 0.3 
Particle to wall tangential retention coefficient: 0.99 

 
Particle size distribution 

Input from the experimental particle size distribution measurements  
(Figure II-2) 
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Particle density 

Input from the experimental measurements  
(Table II-1) 

 
Particle mass 

1 815 kg 
 

Parameters investigated and/or discussed in Chapter IV 

Mesh size  
Gas/ particles drag Law 

Number of particles per cloud 
Geometry simulated and boundary conditions imposed 

Simulation time step and duration 
 
The constants used in the turbulence, solid stress and wall boundary conditions models are the default 
values of the software Barracuda VR®. Many authors [9,11,160] used the same values for their circulating 
fluidized bed simulations with Geldart Group A particles. No investigation on the effect of changing these 
models constants were found in the literature.   
 

 Conclusions 
 
In this chapter, we first proposed a strategy to evaluate the use of CFD models in a context of 
extrapolation with an investigation of two CFD approaches predictions at different scales and different 
fluidization regimes. For this purpose, we then presented the three experimental set-ups used to 
investigate scale and operating conditions effects. The 20 cm fluidized bed experiments allowed 
measuring local solid volume fraction and bed density for two gas distributions. It is indeed important to 
evaluate if CFD can predict gas distribution effects in a context of extrapolation where it directly affects 
industrial fluidized bed reactors performances [9]. The 90 cm fluidized bed experiments then allowed 
measuring bed density profiles and entrainment rates for different superficial gas velocities. These 
experiments are used to evaluate the extrapolation capacity of the CFD predictions from the 20 cm 
fluidized bed scale toward the 90 cm fluidized bed scale with similar fluidization regimes and operating 
conditions. The riser experiments allows measuring for different solid circulation rates macro and local 
data with respectively the riser pressure drop profile and a riser local flux profile. This data are used to 
evaluate the extrapolation capacity of CFD predictions from the 20 cm fluidized bed scale using turbulent 
regime operating conditions toward the riser scale with a different fluidization regime (transport regime) 
and different operating conditions (increasing gas velocity and increasing solid flowrate).  
 
It is important to highlight that all experiments are run at ambient conditions with FCC catalyst particles 
having similar properties. We therefore do not investigate temperature, pressure and particle properties 
effects in this work. As mentioned before, only the scale and operating conditions effects are investigated. 
 
Finally, we introduced the two CFD approaches used in this dissertation. The first MP-PIC approach 
allows taking into account the full particle size distribution with a rather simplistic particle interactions 
model. The second Euler/Euler KTGF approach has a more complex modeling of particle interactions and 
uses a single representative particle diameter. The objective is first investigating if two different 
approaches can predict experimental results at a given scale with the 20 cm fluidized bed experiments and 
then investigate the two approaches predictions at another scale with the 90 cm fluidized bed experiments.  
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Experimental results obtained with the three experimental set up are presented in Chapter IV. The 
experiments simulations results and the investigation of the CFD approaches extrapolation capabilities are 
presented in Chapter V. 
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IV. USE OF CFD FOR EXTRAPOLATION 
EXPERIMENTAL RESULTS 

 
 

 Introduction 
 
This chapter presents and discusses all experimental results which are then used as comparison basis in 
the CFD simulation strategy. The results of the 20 cm fluidized bed results are first presented, followed 
by the experimental results obtained in the 90 cm fluidized bed. The experimental results obtained with 
the riser experiments are finally presented.  
 

  Fluidized bed of 20 cm 
 
The 20 cm fluidized bed is used to study axial and radial distribution of solid volume fraction in the bed 
as a function of gas distribution. 
 
Table IV-1 presents the bed density and equivalent averaged solid volume fraction obtained from the 
pressure probe measurements for both experiments with homogeneous and jet gas injections. The values 
are averaged over five experiments of 15 minutes each. Values in parenthesis show the standard deviation 
over all experiments.  
 

Table IV-1: Bed density and equivalent averaged solid volume fraction from pressure probe 
measurements (Vsg = 0.64 m/s) 

 
 Experiment n°1: homogeneous 

gas injection  
Experiment n°2: gas injection 

with jet 
Bed density (kg/m3) 504 (+/- 5) 631 (+/- 4) 

Averaged Solid volume fraction 0.4 (+/- 0.005) 0.50 (+/- 0.003) 
 
The averaged solid volume fraction found in Experiment n°1 is in agreement with the results found by 
Taxil [161] using a 20 cm fluidized bed of FCC particles. The bed density and averaged solid volume 
fraction are higher in experiment n°2 with the jet. This phenomenon is expected since the jet injection 
promotes gas by-passing which results in a higher bed density and averaged solid volume fraction. 
Similar results were found by Issangya et al. [162]. 
 
Particles entrainment was not measured experimentally but it was evaluated from a PSRI model that 
cannot be disclosed (due to confidentiality), it actually uses an approach similar to the one presented in 
the literature review [2,74]. The model takes into account the column diameter, the particle size 
distribution, the particle density and the superficial gas velocity. The model assumes a homogeneous gas 
distribution, it is therefore applied to experiment n°1 only. The entrainment rate from the model was 
estimated at 0.07 kg/s. It is important to highlight that this value is used here only as a qualitative 
comparator to assess if the CFD modeling predicts entrainment rate in the same range. 
 
The two next sections present the results from the optical probe measurement to characterize the solid 
volume fraction in the bed for both experiments.  
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 Experiment n°1: homogeneous fluidization 
 

As discussed in Chapter III.3.3, the solid volume fraction reconstruction from the optical probe signal 
depends on the bubble and dense phase solid volume fraction, for the following results they were chosen 
at respectively ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒=0 and ε𝑠,𝑑𝑒𝑛𝑠𝑒=ε𝑠,𝑚𝑓 =0.58. This choice is then discussed when comparing the 

averaged solid volume fraction from pressure probe and from optical probe measurements. 
 
Figure IV-1 and Figure IV-2 present the solid volume fraction profiles obtained from optical probes for 
respectively the north-south and west-east directions. The results presented are averaged over five 
experiment repetitions and the error bars show the standard deviation over all experiments.  
 

 

 

Figure IV-1: Homogeneous fluidization, solid volume fraction profiles North-South direction,  
Vsg = 0.64 m/s 

 

 

 

Figure IV-2: Homogeneous fluidization, solid volume fraction profiles West-East direction 
Vsg = 0.64 m/s 
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Different points can be highlighted: 
 

- The solid volume fraction profiles obtained are elliptical and almost symmetrical with respect to 
the bed axis which shows that gas bubbles have a tendency to flow in the column center. These 
results are in accordance with the findings of Schweitzer et al. [97] and their experiments on a 20 
cm fluidized bed with FCC catalyst.  
 

- The “north-south” profiles tend to shift toward the south direction. One explanation for this shift 
could be the non-symmetrical nature of the column configuration with the return of the cyclone 
dipleg located on the bottom north side. The particles recovered by the cyclone and re-entering in 
the bed could therefore influence the solid volume profiles and gas repartition in the column. To 
verify this hypothesis, it would be interesting in a future investigation to switch the dipleg return 
on the south side of the column and check if the solid volume fraction profiles shift in the other 
direction. 

 
- The profiles at the lowest position 1 give lower solid volume fraction values, then profiles at 

position 2 and 3 are similar. One can wonder if this difference can be connected to a tube effect. 
Experiments without tube could therefore be carried out in the future to answer this question.  

 
Considering the symmetrical aspect of the profiles, the averaged solid volume fraction was calculated 
integrating the profiles with respect to the column radius with Equation 84: 
 

TOTAL

RiS

AVERAGEDS
A

n Ai 
 1 2

,

,


  

Equation 84 

 
Where:   
 εs,averaged    averaged solid volume fraction 
 εs,Ri   solid volume fraction at the location of radius Ri with respect to column center  
 n is the number of measuring point 
 Ai is the surface area of the ring with a center of radius Ri (m-2) 
 ATOTAL is the surface area of the total section (m-2) 
 
The averaged solid volume fraction obtained from the profile integration was then calculated for the six 
profiles (two profiles for the three elevations) and the six values were then averaged. Table IV-2 present 
the comparison between this averaged value and the one obtained from the pressure probe measurement.  
 
Table IV-2 : Comparison of averaged solid volume fraction from optical probe and pressure measurement  
 

 
Averaged value from optical 

probe profiles integration 
Averaged pressure probe 

(bed density) 
Relative error 

(%) 
Averaged Solid 
volume fraction 

0.42 0.40 4.6% 

 
One can notice that both values are close to each other with a relative error of 4.6% between the two 
experimental techniques. This result is satisfying since the local bed hydrodynamic characterization is in a 
reasonable accordance with the macro scale measurement from the pressure probe. It therefore comforts 
the choice of ε𝑠,𝑏𝑢𝑏𝑏𝑙𝑒=0 and ε𝑠,𝑑𝑒𝑛𝑠𝑒=ε𝑠,𝑚𝑓 =0.58 for the optical probe signal post-processing.  
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 Experiment n°2: Gas injection with jet 
 
Figure IV-3 and Figure IV-4 present the solid volume fraction profiles obtained from optical probes for 
respectively the north-south and west-east directions. The results presented are averaged over five 
experiment repetitions and the error bars show the standard deviation over all experiments. 
 

 

 

Figure IV-3: Fluidization with jet, solid volume fraction profiles North-South direction,  
Vsg = 0.64 m/s (25%vol of air in bottom porous, 75%vol of air in the jet) 

 

 

 

Figure IV-4: Fluidization with jet, solid volume fraction profiles West-East direction 
Vsg = 0.64 m/s (25%vol of air in bottom porous, 75%vol of air in the jet) 
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Different points can be highlighted: 
 

- First, one can clearly notice the effect of the jet by comparing the results obtained to the profiles 
of experiment n°1 especially for the lowest position 1 with low solid volume fraction close to the 
column center where the jet injection is located. 
 

- Second, the flow is now clearly asymmetric:  
o The gas stream from the jet is shifted toward the south side on the north-south direction. 

Similarly to the results obtained in experiment n°1, this shift can be explained by the presence 
of the dipleg return on the north side. Again this hypothesis could be verified by moving the 
dipleg return on the south side and observe if the profiles shifts on the other direction. 
 

o  In the other direction, the jet gas stream shifts toward the west side with the position 2 profile 
highly shifted. This result can be explained by the non-symmetrical aspect of the column 
configuration in this direction with the presence of the tube for the jet injection. To verify this 
hypothesis, the tube position could be modified in order to observe if it affects the profile 
shifting. 

 
o The important shift observed for the position 2 profile in the west-east direction is surprising. 

Indeed when looking at Figure IV-1, Figure IV-2 and Figure IV-3 the profiles of position 2 
and 3 are always similar in shape. In Figure IV-4, the position 2 and position 3 profiles are 
different with the important shift observed at position 2 being cancelled at position 3 the 
difference of height being 5 cm between the two profiles.  

 
- As a consequence, since profiles shapes are not symmetrical with respect to the bed axis, the 

procedure of integrating these profiles to obtain an average solid volume fraction as carried out for 
experiment n°1 is not possible. Indeed, additional profiles in other directions are needed to 
reconstruct precisely the solid volume fraction over the bed section at a given height, this could be 
done in a future study. 
 

- The effect of the jet is dissipated at the highest position 3 where profiles have a shape similar to 
experiment n°1 profiles is obtained. Therefore, jet dissipation is quite fast and occurs within 10 to 
15 cm from the jet inlet cm with a ratio of the dissipation length over jet diameter between 2.5 and 
3.75.  

 

 Conclusions 
 

The experiments carried out allowed characterizing local flow structure in a turbulent fluidized bed with 
the measurement of solid volume fraction profiles at different height. Two gas injection distributions were 
investigated. The results obtained with the homogeneous injection showed that gas tend to flow in the 
center of the column which is in accordance with results from the literature [161]. When the gas 
distribution was modified with the implementation of a gas injection through the jet, the local flow 
structure was affected with by-passing phenomena and asymmetric solid volume fraction profiles. The 
averaged bed solid volume fraction was also affected with a lower value compared to the homogeneous 
injection case result.  
 
In a context of extrapolation and scaling up of fluidized beds, gas distribution is therefore an important 
parameter to consider. We now have experimental data characterizing two well controlled gas 
distributions. It is then important to evaluate if CFD can predict the differences obtained between the two 
configurations in order to potentially use CFD as an extrapolation tool to characterize gas distributions at 
a larger scale.  
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 Fluidized bed of 90 cm 
 
This section presents the results for the 90 cm fluidized bed experiments carryout at PSRI. The main 
objective with these experimental results is first the evaluation of the size effect between the 20 cm and 
the 90 cm fluidized beds using similar operating conditions (superficial gas velocity of 0.64 m/s and 0.60 
m/s for respectively the 20 cm and 90 cm fluidized beds). We can then evaluate if CFD can predict the 
change of scale effects which is of course a necessary condition if one wants to use this tool for 
extrapolation purposes. Moreover, the 90 cm fluidized bed experiments with a superficial gas velocity of 
respectively 0.3 and 0.85 m/s allow evaluating CFD predictions capabilities for different operating 
conditions at large scale. 
 

 Experimental results 
 
Figure IV-5 presents the bed density profiles for the different superficial gas velocities tested.  
 

 

Figure IV-5: Bed density profiles for the different superficial gas velocities 
 
One can see clearly observe for all profiles three different zones with first the dense bed with high bed 
density values, then the transition between the dense and dilute phases and finally the dilute phase with 
low bed density value. Concerning the dense bed, the density values decrease with the increase of 
superficial gas velocity which is in accordance with the literature [61]. Concerning the dilute phase, one 
can wonder why the bed density values and therefore the pressure drop measured are more important at 
the top of the column for lower superficial gas velocities. One could expect the opposite trend since 
pressure drop is supposed to be more important at higher gas velocities especially since the particles 
entrainment is also higher as shown below. This issue was not investigated further since our main interest 
concerns predictions of the bed hydrodynamic characteristics and not boundary effects such as this 
variation of pressure at the top of the bed.  
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Figure IV-6 then presents the bed overall density for the 20 cm and 90 cm fluidized bed experiments 
versus the superficial gas velocities. The King correlation, which expresses the bed solid volume fraction 
as a function of the superficial gas velocity (see Equation 17 in Chapter I.2.2.2), is also plotted.  
 

 

Figure IV-6: Overall bed density for the different superficial gas velocities 
 
Different remarks can be made: 
 

- First, the 90 cm fluidized bed solid volume fraction decreases with the superficial gas velocity 
which is in accordance with the results presented in Figure IV-5.  
 

- The decrease of solid volume fraction observed from the 90 cm fluidized bed experiments follows 
the same trend than the King correlation, however, experimental values obtained are higher 
compared to the correlation.  
 

- The solid volume fraction obtained in the 20 cm fluidized bed experiment with a homogeneous 
injection is also lower compared to the 90 cm fluidized bed experiment and closer to the King 
correlation result. The higher value obtained in the case of an injection with jet for the 20 cm 
fluidized bed was already explained by the fact the gas bypassing phenomena.  
 

The higher solid volume fraction obtained with the 90 cm fluidized bed show that the gas goes through 
the bed with a higher velocity compared to the 20 cm fluidized bed experiment for similar operating 
conditions. This phenomenon can be explained through scale effects. Indeed, as highlighted by Bi et al. 
[62] in their state of the art on turbulent fluidization, parameters such as the column diameter can clearly 
influence the hydrodynamic of turbulent beds. It can also be explained by gas distribution effects as 
demonstrated with the experiments on the 20 cm fluidized bed where gas distribution affects the averaged 
bed volume fraction. As mentioned in the literature review it is difficult to develop predictive models 
including all these effects. It therefore explains the differences observed between experimental results and 
the King correlation. It is now interesting to evaluate if CFD is able to predict these different effects 
which is the main objective of our simulation strategy.  
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Finally, Figure IV-7 presents the particle entrainment measured versus superficial gas velocities for the 90 
cm fluidized bed experiments as well as values predicted from the PSRI model for the 90 cm and 20 cm 
fluidized bed experiments.  
 

 

Figure IV-7: Particle entrainment versus superficial gas velocities 
 
First, the velocities at which entrainment was measured are lower compared to the results for the bed 
density. This comes from the fact that entrainment rate for a superficial velocity of 0.85 m/s was too high 
to be measured with the experimental technique used. Therefore, entrainment values are reported only up 
to 0.6 m/s.  
 
Then, one can see that entrainment increases with the superficial velocity as expected and as reported in 
the literature [2] . It is also interesting to notice that the PSRI model predicts reasonably well the 
evolution of the entrainment rate with a slight overestimation for the highest velocity. However, 
experimental error bars are not indicated and one can imagine that the entrainment rate for the gas 
superficial velocity of 0.6 m/s can be challenging considered that measurement at 0.85 m/s was not 
possible. It would be interesting in future work to indicate the error bars obtained from experiments 
repetitions. The model predictions are still considered satisfactory which then comforts its use to evaluate 
the entrainment of the 20 cm fluidized bed experiment n°1 with a homogeneous injection. It should also 
be pointed out that no column diameter effect is taken into account in the PSRI model for entrainment 
rates above TDH. The difference of the predicted entrainment between the 20 cm and 90 cm fluidized 
beds comes from the difference of particles properties with a lower density for the 20 cm fluidized bed 
experiments.  
 

 Conclusions 
 
The data acquired with the 90 cm fluidized bed experiments are interesting and pertinent for our 
simulation strategy. We now have experimental data at two different scales where usual correlations fail 
to predict the experimental differences obtained between the two scales. It therefore becomes relevant 
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from an extrapolation point of view to investigate if CFD can predict these differences which is exactly 
the purpose of our simulation strategy.  
 
Moreover the entrainment data acquired are also interesting from a CFD point of view with an increase of 
the particle circulation rate depending only on superficial gas velocity and representing a transition to the 
transport regime. It is therefore interesting to investigate if CFD is able to predict the entrainment rate 
trend with a perspective of simulating other regimes. 
 

 Riser of 30 cm 
 
This chapter presents the results of the riser experiments. It is first important to highlight that the regime 
investigated in these experiments is different from the turbulent fluidized bed experiments presented 
before. Indeed, as presented in the literature review, the transport regime hydrodynamic depends on both 
superficial gas velocity and particles circulation compared to the turbulent regime where superficial gas 
velocity is the main characterizing parameter.  
 
The riser experiments are used in the simulation strategy to evaluate if the CFD model developed from 
turbulent fluidized bed experiments can also predict such transport regime. It is indeed important to 
evaluate the CFD prediction over a large range of fluidization regime in order first to potentially target 
physical phenomena that should be taken into account or modeled differently depending on the 
fluidization regime. It is also important to assess if the CFD model predict different regimes in the same 
simulation with for example the injection of the gas/particle mixture into a turbulent bed through a riser as 
it is the case in the R2RTM Resid FCC [33] (see Figure I-3) 
 

 Experimental results 
 
Figure IV-8 presents the riser pressure drop profiles for the three operating conditions tested. As 
mentioned before, the superficial velocity are calculated at the riser top before the blind tee where the 
absolute pressure is measured and was equal to 110 000 Pa abs for all experiments. Tests were not 
repeated therefore no error bars are indicated.  
 

 
Figure IV-8: Riser pressure drop profile for the three operating conditions tested 
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Different remarks can be pointed out: 
 

- First, the riser pressure drop increases with the solid flux which was expected. 
 

- As mentioned in the literature review, each profile can be split into three zones: 
 

o  The particles acceleration zone with an important pressure drop increase. The pressure 
drop for particles acceleration increases with the solid flux. It takes also a longer riser 
height for particles acceleration, from 0 to around 2 meters for the solid flux of 77 kg/m2/s, 
from 0 to around 3 meters for the solid flux of 162 kg/m2/s and from 0 to around 5 meters 
for the solid flux of 220 kg/m2/s. 
 

o The second zone corresponds to a linear pressure drop increase with height where the 
particles seem to be fully accelerated due to the linear pressure gradient obtained. 

 
o Finally, the last zone at the top of the riser with the effect of the riser termination with an 

increase of the pressure drop. This zone is located at a height of 15 to 16 meters.  
 
The global hydrodynamic in the riser is also different from the turbulent fluidized bed hydrodynamic. The 
flow is indeed more dilute with low solid volume fraction in the range of 0.1 at the riser bottom to 0.01 in 
the riser developed region while the fluidized bed exhibited solid volume fraction in the range of 0.4 to 
0.5.  
 
Figure IV-9, Figure IV-10 and Figure IV-11 present the local flux profiles measured for a solid flux of 
respectively 77 kg/m2/s, 162 kg/m2/s and 220 kg/m2/s. Tests were not repeated therefore no error bars are 
indicated. The black and red curves correspond to measurements of the upward and downward fluxes. 
The blue curve corresponds to the net flux which is the difference between the black and red curves. 
 

  

Figure IV-9: Local solid flux profile for Solid flux 
of 77 kg/m2/s and Vsgtop = 6.9 m/s 

Figure IV-10: Local solid flux profile for Solid flux 
of 162 kg/m2/s and Vsgtop = 8.15 m/s 
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Figure IV-11: Local solid flux profile for Solid flux of 220 kg/m2/s and Vsgtop = 8.15 m/s 
 
Different remarks can be pointed out regarding the core annulus type of flow obtained: 
 

- First all net flux profiles obtained are symmetrical. Therefore even if only one profile in one 
direction was measured, one can make the hypothesis of a symmetrical profile with respect to the 
riser axis and then calculate the total flux by integrating the profiles over the riser surface. The 
measurement of other profiles in other directions could be carried out in a future work to check 
this hypothesis. 
 

- There is a clear core annulus structure, already reported in the literature [66,67], with upward flow 
only in the center, and both upward and downward flow close to the wall. 
 

- When the solid mass flux increases, the annulus size seems to increase as well as the absolute 
downward fluxes.   
 

 
Table IV-3 presents the comparison of the total solid mass fluxes circulating in the riser based on valve 
calibration and based on local fluxes profiles integration. 
 
Table IV-3 : Comparison of total solid fluxes from valve calibration and local fluxes profiles integration  

Solid flux from valve calibration 
(kg/m2/s) 

77 162 220 

Solid From local flux profile 
integration (kg/m2/s) 

74 154 208 

Relative error (%) 3.9 4.9 5.5 
 
One can notice that for all three cases, the total fluxes from valve calibration and profiles integration are 
close with a relative error lower than 6%. This result is satisfying since the local riser hydrodynamic 
characterization is in accordance with the macro scale measurement from the valve calibration.  
 
Finally, it is important to mention that similar experimental results with the effect of solid circulation on 
the riser pressure drop and local fluxes were obtained by Issangya et al. [155]. 
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 Conclusions 
 
The experiments presented in this section allowed characterizing the riser hydrodynamic for different 
solid circulation rate at a similar superficial gas velocity with both local and global measurements. One 
could notice the important differences compared to the fluidized bed experiments with a more dilute flow 
where all particles are entrained and are circulating. Then, the pressure profiles obtained allowed the 
differentiation of axial physical phenomena with the particles acceleration region at the riser bottom and 
the fully developed region in the upper part. On the other side the local flux profiles measurements 
allowed the characterization of radial structures with the core annulus flow. In future work, one could 
investigate the effect of the superficial gas velocity in order to complete the characterization map of the 
transport regime. However the data collected can already be used to assess the CFD predictions for such 
regime which is the aim of the simulation strategy step n°4. 
 

 Conclusions on the experimental results 
 
This chapter presented all experimental results collected in order to develop our simulation strategy. Both 
local and global characterizations were investigated allowing the experimental demonstration of gas 
distribution effects, scale effects between the 20 cm and 90 cm fluidized beds with different bed volume 
fraction for a similar fluidization velocity, allowing also the experimental demonstration of fluidization 
regime effects with the important hydrodynamic differences obtained between the turbulent bed and riser 
experiments. One could appreciate the complexity of the experimental procedure and how results rely on 
calibrations and signal post-processing hypothesis. It is therefore important to check the consistency of 
experimental results. In this study, satisfactory results were obtained by comparing the integrated profiles 
of local voidages in the turbulent bed with the average voidage deduced from global pressure drop 
measurements. In the riser, the integrated local solid mass flux profiles were consistent with the global 
solid circulation in the CFB loop. It is finally important to mention that experiments results found are 
globally in accordance with the literature. 
 
The experimental results collected represent a complete set of data for the investigation of CFD prediction 
for scale and operating conditions extrapolation. Results of these experiments simulations carried out with 
the two CFD approaches are presented in the next chapter to evaluate the reliability of their predictions in 
a context of extrapolation.  
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V. USE OF CFD FOR EXTRAPOLATION SIMULATION 
RESULTS 

 

 Introduction 
 
We have conducted experiments in fluidized beds and circulating fluidized beds at different size and in 
different operating conditions to collect global and local experimental data. These data will now be used 
to challenge CFD capabilities according to the strategy presented before. Each step of the simulation 
strategy is presented in a dedicated chapter.  
 
It is important to remind that all simulations carried out in this investigation are transient and three 
dimensional; the results presented are averaged once the simulation is considered at steady state. The 
definition of the steady state is presented for each type of simulation. As a reminder all CFD code 
parameters that are not investigated (turbulence models, particles interactions models, wall boundary 
conditions) and that are common to all simulations have already been presented and can be found in Table 
III-13 and Table III-14 for respectively OpenFOAM and Barracuda VR®. 
 

 First simulation strategy step: investigation on the CFD models parameters 
 
As indicated in Figure V-1, the first step of the simulation strategy consists in investigating CFD models 
parameters using the 20 cm fluidized bed experiment n°1 with a homogeneous injection. For this purpose, 
we studied the influence of the drag models and simulations boundary conditions in order to best match 
the experimental results available. 
 

 

Figure V-1: First step of the simulation strategy 
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For all simulations carried out, the steady state was considered once the particle entrainment rate at the 
top of the bed and the bed pressure profile reached steady state values. For the 20 cm fluidized bed 
simulations, steady state happens at around 6 seconds of simulation time, results presented are then 
averaged from 6 to 20 seconds of simulation time. The MP-PIC approach was investigated first followed 
by the Euler/Euler with KTGF approach. Results showing the steady state determination and the influence 
on the average period can be found in Appendix 9.  
 
For the investigation on each approach, the simulation strategy was first, to choose a mesh cell size of 6 
mm to investigate different parameters (drag model and boundary conditions) in order to best match the 
experimental results and then to investigate the cell size effect by reducing and enlarging the mesh cell 
size in order to study the results mesh dependency. Indeed, it is important to remind that for large scale 
simulations, a large cell size will have to be used (see Chapter I.5.2), it is therefore necessary to 
investigate the effect of using large cells.  
 

 MP-PIC approach, Barracuda VR® 
 
Figure V-2 and Figure V-3 presents respectively the column geometry simulated and the bottom column 
configuration. 
 

 

 

Figure V-2: Geometry simulated Figure V-3: Column bottom configuration 
 
The column height considered is three meters which correspond to the height before the restriction shown 
in Figure III-3. The piping above this height, the cyclone and cyclone dipleg are not taken into account in 
the simulation.  
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The boundary conditions imposed are: 
 

- Bottom porous plate gas injection: injections points where gas mass flowrate and velocity are 
imposed for each injection point. As shown in Figure V-3 the injection points repartition is 
uniform with a spacing of 5 mm between each injection in order to insure that there is at least one 
injection per mesh cell. The injection point gas velocity is imposed at a value given by Equation 
85: 

 𝑉𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑈𝑠𝑢𝑝𝑒𝑟𝑓𝑖𝑐𝑖𝑎𝑙 𝑔𝑎𝑠 𝑏𝑜𝑡𝑡𝑜𝑚𝛼𝑏𝑒𝑑 =1.5 m/s Equation 85 

 
Where 𝑉𝑠𝑢𝑝𝑒𝑟𝑓𝑖𝑐𝑖𝑎𝑙 𝑔𝑎𝑠 𝑏𝑜𝑡𝑡𝑜𝑚  is the superficial gas velocity calculated from experimental data 

considering the gas bottom mass flowrate and the gas density with the pressure at the column 
bottom. 𝛼𝑏𝑒𝑑 is the bed averaged solid volume fraction equals to 0.4.  

  
- Top outlet: A pressure value is imposed at 6kPag corresponding to the experiment measurement. 

  
- Dipleg return: 

o Solid Phase: Barracuda VR® allows connecting the top outlet boundary condition to the 
dipleg return as shown in Figure V-2. In this way, the particle clouds escaping at the top 
outlet at a certain time step are re-injected through the dipleg return at the next time step 
resulting in a constant particles mass in the simulation. 

o Gas phase: the gas phase mass flowrate is imposed dynamically according to the particle 
phase mass flowrate with the following expression: 

 𝑄𝑔 = 𝑄𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑝ℎ𝑎𝑠𝑒( 1𝜌𝑑𝑖𝑝𝑙𝑒𝑔 − 1𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒)𝜌𝑔 Equation 86 

 Where:  𝑄𝑔 is the imposed gas mass flowrate (kg/s) 

   𝑄𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑝ℎ𝑎𝑠𝑒 is the mass flowrate of particles re-injected through the dipleg (kg/s) 

   𝜌𝑑𝑖𝑝𝑙𝑒𝑔 is the cyclone dipleg density taken at 600 kg/m3 

   𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 is the particle density equals to 1 260 kg/m3 

   𝜌𝑔 gas density at dipleg return conditions (kg/m3) 

 
- jet injection inlet: wall boundary conditions since no gas is injected through the jet for experiment 

n°1.   
 
One can wonder about the choice regarding the bottom gas injection condition with injections points 
instead of a uniform mass flowrate condition. The reason of this choice is to have the possibility of 
imposing a non-uniform gas profile at the bottom which was proven necessary as explained below.  
 
The drag law model used was the default Barracuda VR® Wen-Yu/Ergun model presented in Equation 59 
(see Chapter II.2.4). Different remarks can be pointed out when comparing the Barracuda VR® model 
compared to the classic Wen-Yu/Ergun or Gidaspow model presented in Table I-4. 
 

- First, the Barracuda VR® drag law presents a smooth transition between the Ergun and Wen-Yu 
models for solid volume fraction between 0.75 𝛼𝑠,𝑚𝑎𝑥 and 0.85 𝛼𝑠,𝑚𝑎𝑥 
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- Second, the transition between the Ergun and Wen-Yu models occurs at higher solid volume 

fraction values for the Barracuda VR® drag law. Indeed, for the classic drag model the transition 
occurs at a solid volume fraction of 0.2 while with the Barracuda VR® model the transition starts 
at a solid volume fraction of 0.53 and finishes at a solid volume fraction of 0.47.  

  
Three different simulations were carried out in order to determine the Barracuda VR® code parameters to 
best match the experimental results, all simulations parameters are presented in Table V-1. The 
development of these three simulations is presented below.  
 

Table V-1 : 20 cm fluidized bed experiment n°1 homogeneous gas injection, simulations parameters 
 Simulation n°1 Simulation n°2 Simulation n°3 

Mesh size 470 000 hexahedral cells 
Cell size 6 mm 

Particle Size Distribution From Figure III-2 
Particle density (kg/m3) 1 260 
Pressure at top boundary 

condition (kPa g) 
6 kPag 

Bottom gas flowrate injected 
through injection points (kg/s) 

0.0238 

Air temperature (°C) 20 
Bed mass (kg) 17 

Averaged Number of Particles 
per Cloud 

41 103 

Number of clouds 8.64 106 
Simulation time step (s) in the order of 1.10-4 

Simulation time (s) 20 
Gas repartition through the 

injection points 
Uniform Uniform 

Reduced close to the 
wall (see Figure V-10) 

Drag Law model 
Barracuda VR® 
Wen-Yu/Ergun 

Barracuda VR® 
Wen-Yu/Ergun  with 

multiplier of 0.4 

Barracuda VR® 
Wen-Yu/Ergun  with 

multiplier of 0.4 and 0.6 
 
The mesh is composed of 470 000 hexahedral cells with a size of 6 mm, one can refer to Appendix 7 for a 
mesh visualization.  
 
The comparison of the bed density and particle entrainment between experiment/PSRI model and the 
simulations are shown in Table V-2 for all simulations. Then, Figure V-4, Figure V-5, and Figure V-6 
present the bed averaged volume fraction profile for respectively simulation n°1, simulation n°2 and 
simulation n°3 with the multiplier of 0.4.  
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Table V-2 : Bed density and Particle entrainments from experiment and Barracuda VR® simulations 

Bed density (kg/m3)  

Experimental 
Simulation n°1 with 

default parameters 

Simulation n°2 with 

drag law multiplier of 

0.4 

Simulation n°3 with drag 

coefficient multiplier + bottom 

boundary condition modified 

504 295 517 

Multiplier of 
0.4 

Multiplier of 
0.6 

513 461 

Relative error 42% 2.6 % 1.8% 8.5% 

Particle entrainment (kg/s) 

PSRI model 
Simulation n°1 with 

default parameters 

Simulation n°2 with 

drag law multiplier 

Simulation n°3 with drag 

coefficient multiplier + bottom 

boundary condition modified 

0.07 0.6 0.06 

Multiplier of 
0.4 

Multiplier of 
0.6 

0.05 0.04 

 

   

 
Figure V-4:  Simulation n°1 

Averaged solid volume 
fraction profile 

Figure V-5: Simulation n°2 
Averaged solid volume 

fraction profile 

Figure V-6:  Simulation n°3 
with multiplier of 0.4 Averaged 

solid volume fraction profile 
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One can see from the table and figures above that simulation n°3 with the multiplier of 0.4 predicts better 
the experimental/PSRI model results. The investigation which led to these results is presented in detailed 
below with also the comparison of experimental and simulation local solid volume fraction profiles.  
The first simulation uses Barracuda VR® default parameters with a homogeneous bottom gas injection 
with the same amount of gas injected through all injection points. Figure V-7 presents the comparison 
between experimental and simulation solid volume fraction profile in the North-South direction. The 
profile in the other West-Est direction can be found in Appendix 7. The predicted bed density and 
entrainment rate are presented in Table V-2. Finally, Figure V-4 presents the simulation average solid 
volume fraction in a plane crossing the column center.  
 

 

Figure V-7: Simulation n°1 Barracuda VR® , default parameters, Comparisons of solid volume fraction 
profiles in the North South direction, experiment n°1 homogeneous injection 

 
One can clearly conclude that simulation n°1 underestimates the solid volume fraction in the bed, with the 
overall bed density underestimated by 42% compared to the experiment and with flat solid volume 
fraction profiles with values around 0.2. Moreover, as presented in Table V-2, the predicted entrainment 
rate is almost 10 times higher than the PSRI model value. The results of simulation n°1 show similar 
result compare to the literature where standard drag model overestimates the gas/particles interactions for 
Group A particles.  
 
In the second simulation, we used a similar approach than Cocco et al. [116] which consists in 
multiplying the drag law model by a constant multiplier factor between 0 and 1 to reduce the drag 
overestimation found in simulation n°1. By experience with similar simulations, the multiplier was set at 
0.4. The drag correlation is then calculated with Equation 87: 
 𝐾𝑑_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 ∗  𝐾𝑑_𝐷𝐸𝐹𝐴𝑈𝐿𝑇 Equation 87 

 
Where:  - 𝐾𝑑_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 drag coefficient calculated with multiplier 

  - 𝐾𝑑_𝐷𝐸𝐹𝐴𝑈𝐿𝑇 Default Wen-Yu/Ergun Barracuda VR® drag law 
  - Multiplier equals to 0.4 in simulation n°2 
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Figure V-8 presents the comparison between experimental and simulation n°2 solid volume fraction 
profile in the North-South direction. The profile in the other West-Est direction can be found in Appendix 
7. The predicted bed density and entrainment rate are presented in Table V-2. Finally, Figure V-5 presents 
the simulation average solid volume fraction in a plane crossing the column center. 
 

 

Figure V-8: Simulation n°2 drag modified with multiplier, Comparisons of solid volume fraction profiles 
in the North South direction, experiment n°1 homogeneous injection 

 
From Table V-2 one can see that the predicted bed density and entrainment are in really good accordance 
with data from respectively experiments and PSRI model. However, the solid volume fraction profiles are 
not well predicted with a reverse tendency with lower solid volume fraction close to the wall and higher 
ones in the center. This profile shape can be explained with the bottom boundary condition effect 
presented in Figure V-9 which shows the averaged solid volume fraction profile at the column bottom.  
 

 
 

Figure V-9: Simulation n°2 Barracuda VR® , drag modified with multiplier, averaged solid volume 
fraction profile at the column bottom 
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One can see from this figure that at the bottom boundary condition the averaged solid volume fraction is 
lower close to the wall indicating that gas from the boundary condition is mainly flowing close to the 
walls. This explains the low solid volume fractions observed on the profiles of Figure V-8.  
 
In the simulation n°3, the gas repartition through the bottom injections points was modified in order to 
inject less gas through the bottom outer ring where low solid volume fraction were observed on Figure 
V-9. Figure V-10 presents on the left side all the injection points and on the right side the injections 
points of the outer ring where the gas mass flowrate was reduced. From Figure V-9 the outer ring was 
defined from a radius of 0.08 m to the radius of the column walls.  
 

  

Figure V-10: (a) All bottom injection points, (b) injection points where gas mass flowrate was reduced 
 
Table V-3 presents the difference in gas repartition between the uniform distribution and the distribution 
with gas reduced on the outer ring.  
  

(a) (b) 
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Table V-3 : Gas repartition among bottom injection points  

 uniform distribution and reduced gas flowrate on the outer ring distribution 

 Uniform distribution 
Distribution with gas flowrate 

reduced on the outer ring 
percentage of gas through the 
outer ring of injection points 

30% 5% 

Percentage of gas through the 
rest of the injection points 

70% 95% 

 
Figure V-11 and Figure V-12 presents the comparison between experimental and simulation n°3 solid 
volume fraction profile in respectively the North-South and West-East directions. The predicted bed 
density and entrainment rate are presented in Table V-2. Finally, Figure V-6 presents the simulation 
average solid volume fraction in a plane crossing the column center. 
 
 

 

Figure V-11: Simulation n°3 Barracuda VR® , drag modified with multiplier  of 0,4 and modified bottom 
injection distribution, Comparisons of solid volume fraction profiles in the North South direction,  

experiment n°1 homogeneous injection 
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Figure V-12: Simulation n°3 Barracuda VR®, drag modified with multiplier of 0,4 and modified bottom 
injection distribution, Comparisons of solid volume fraction profiles in the North South direction,  

experiment n°1 homogeneous injection 
 
Different remarks can be pointed out regarding the results of simulation n°3: 
 

- First the overall bed density is well predicted with a relative error compared to experiments of 
1.8%.  
 

- Second the entrainment predicted is in the range of the PSRI model prediction. 
 

- Third, the solid volume fraction profiles are much better predicted compared to previous 
simulations. Indeed, the elliptical shape with higher values close to the wall and lower in the 
center are well captured. Then, in order to have a quantitative comparison between experimental 
and simulation profiles, the relative error between experiments and simulations was calculated for 
each experimental profile points according to Equation 88. The relative error obtained for each 
point was then averaged over all profiles in one direction. Results are presented in Table V-4. The 
averaged relative errors are around 14% for both directions.  
 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝑎 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 = |𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒|𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒  Equation 88 

 
Table V-4 : Barracuda VR® Simulation n°3 averaged relative errors for profiles points in both directions 

 North South direction West –East Direction 
Averaged relative error (%) 13.6 13.8 

 
 

- Finally, the predicted profiles in the West-East direction tend to shift slightly toward the East 
direction which can be explained by the jet tube effect as discussed before.  
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Effect of the drag law multiplier was finally investigated with changing the previous value of 0.4 to 0.6. 
Comparison between experimental and simulation solid volume fractions profiles can be found in 
Appendix 7. The predicted bed density and entrainment rate are presented in Table V-2. One can see that 
the simulation with the 0.6 multiplier does not predict well the bed density compared to the simulation 
with the 0.4 multiplier and that solid volume fraction profiles shown in Appendix 7 are also 
underestimated  
 
It is finally interesting to notice that Simulation n°2 and Simulation n°3 predict well the averaged bed 
density while predicted solid volume fraction profile are totally different with simulation n°2 profiles 
having the inverse shape compared to experimental values. This point highlights the fact that macro 
hydrodynamic descriptors like bed density are necessary but not sufficient to fully investigate CFD 
predictions. Then one can wonder about the bottom gas reparation modification that was implemented to 
match the experimental results: is it a real physical effect with gas flowing more preferably in the porous 
plate center due to the bed hydrodynamic or is it a simulation boundary condition artifact?  This question 
is further discussed in Chapter V.2.4 based on additional elements presented afterwards. 
 
To conclude, the parameters of simulation n°3 were considered satisfactory with good predictions of bed 
density and solid volume fraction profiles and with an entrainment rate is the range of the PSRI model. It 
was therefore necessary to modify the drag model and adjust the boundary conditions to match reasonably 
the experimental results. One can then wonder if these modifications have a physical meaning and can 
then be applied to other simulation conditions or if it is just a tuning effect for this single simulation. This 
question is investigated in the next simulation strategy steps.  
 

 Euler/Euler with KTGF approach: OpenFOAM 
 
The same investigation presented in the previous chapter was carried out with the Euler/Euler KTGF 
approach using openFOAM. 
 
The geometry considered was the same as the one taken for Barracuda VR® simulations shown in Figure 
V-2. The mesh cell size was also taken at 6mm with hexahedral cells, the mesh was however generated 
with a different software (Ansys Workbench meshing) since the mesh used in the Barracuda VR® 
simulations could not be exported to the OpenFOAM format. The total number of cells remains however 
similar with a difference in cells number lower than 1%.  
 
The same boundary conditions philosophy than the Barracuda VR® simulations are applied except for the 
bottom gas plate gas injection where a uniform gas velocity is applied. Indeed, this difference is due to 
the fact that with OpenFOAM, it was not necessary to impose a specific gas profile at the bottom to get a 
good comparison with experimental data. This point is further discussed in Chapter V.2.4. Table V-5 
presents the conditions imposed on the different boundaries for the air and particle velocity (U.air and 
U.particle), for the air and particles volume fraction (alpha.air and alpha.particle), for the pressure and the 
granular temperature (P-rgh and Theta.particles). It is interesting to point out that OpenFOAM being an 
open-source code, we actually have access to all the conditions imposed for all the simulation parameters 
as shown in Table V-5 which is not the case for commercial codes such as Barracuda VR®.  
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Table V-5: Boundary conditions types for the gas and solid phases 

 U.air alpha.air p_rgh 
Bottom porous plate 

gas injection 
interstitialInletVelocity; zeroGradient; fixedFluxPressure 

jet injection inlet same as walls same than walls same than walls 

Dipleg return 

InletVelocity 
Value changed dynamically 

with respect to entrainment rate 
fixed value 0.52; fixedFluxPressure 

Top outlet 
pressureInletOutlet 

Velocity 
zeroGradient; 

prghPressure; 
p uniform 107 000; 

walls 
fixedValue; 

uniform (0 0 0); 
zeroGradient; fixedFluxPressure 

 
 U.particles alpha.particles Theta.particles 

Bottom porous plate 

gas injection 

fixedValue; 
uniform (0 0 0); 

zeroGradient; 
fixedValue; 

value uniform 1e-4; 

jet injection inlet same than walls same than walls same than walls 

Dipleg return 

InletVelocity 
Value changed dynamically 

with respect to entrainment rate 
fixed value 0.48; 

fixedValue; 
value uniform 1e-4; 

Top outlet pressureInletVelocity zeroGradient; zeroGradient; 

walls 

JohnsonJacksonParticlesSlip; 
specularityCoefficient 0.01; 

value uniform (0 0 0); 
zeroGradient; 

JohnsonJacksonTheta
; 

specularityCoefficient 
0.01; 

restitutionCoefficient 
0.85; 

 
Different remarks can be point out from Table V-5: 
 

- An “interstitial Inlet Velocity” condition is imposed for the air velocity of the bottom porous plate 
gas injection. This condition imposes a superficial velocity sets in order to have a superficial 
velocity at the top of the column of 0.65 m/s. 
 

- For the particles velocity at the top outlet, a “pressure inlet velocity” is imposed in order to 
prevent particles backflow in the simulation.  

 
Finally, contrary to the MP-PIC approach, the particle size distribution cannot be taken into account with 
this approach. Therefore, the simulation representative particle diameter was first taken equal to the 
particle size distribution average diameter dp50 of 75 microns as shown in Table III-1.  
 
The same simulation strategy developed for the Barracuda VR® simulations was applied as shown in 
Table V-6, using first the Barracuda VR® Wen-Yu/Ergun drag model shown in Equation 59 (see Chapter 
II.2.4) and second the same drag law with a multiplier of 0.4 as shown in Equation 87.  
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Table V-6: OpenFOAM simulation n°1 and n°2 parameters 
 Simulation n°1 Simulation n°2 

Particle representative diameter (microns) 75 
Particle density (kg/m3) 1 260 

Air temperature (°C) 20 
Bed mass (kg) 17 

Simulation time step (s) 1.10-4 
Simulation time (s) 20 

Drag Law model 
Barracuda VR® 
Wen-Yu/Ergun 

Barracuda VR® 
Wen-Yu/Ergun  with 

multiplier of 0.4 
 
Table V-7 presents simulations bed density and entrainment rate versus experimental and PSRI model 
values. Figure V-13 and Figure V-14 present the simulation instantaneous and average solid volume 
fraction profiles in a plane passing through the column center for respectively simulation n°1 and 
simulation n°2. And finally, Figure V-15 and Figure V-16 presents the comparison between experimental 
and simulations solid volume fraction profiles for respectively simulation n°1 and simulation n°2 in the 
North-South direction.  
 
Table V-7 : Bed density and Particle entrainments from experiment and openFOAM simulations n°1 and 

n°2 
Bed density (kg/m3) 

Experimental 
Simulation n°1 with default 

parameters 

Simulation n°2 with drag law 

multiplier of 0.4 

504 245 319 
Relative error 51% 37% 

 
Particle Entrainment (kg/s) 

PSRI model 
Simulation n°1 with default 

parameters 

Simulation n°2 with drag law 

multiplier of 0.4 

0.07 2.2 0.31 
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Figure V-13: Simulation n°1 openFOAM, default 
drag, instantaneous and averaged solid volume 

fraction profile 

Figure V-14: Simulation n°2 openFOAM, default 
drag with multiplier of 0.4, instantaneous and 

averaged solid volume fraction profile 
 

 

Figure V-15: Simulation n°1 OpenFOAM, default drag,  Comparisons of solid volume fraction profiles 
in the North South direction,  experiment n°1 homogeneous injection 
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Figure V-16: Simulation n°2 OpenFOAM, default drag with multiplier of 0.4,  Comparisons of solid 
volume fraction profiles in the North South direction,  experiment n°1 homogeneous injection 
 
Different remarks can be pointed out: 
 

- First in both simulations, the bed density and the solid volume fraction profiles are clearly 
underestimated. Then the entrainment rate is overestimated especially for the first simulation 
where the high entrainment recreate an important solid flux in the cyclone dipleg return which 
causes a solid accumulation in the bottom of the column as shown in Figure V-15.  
 

- Second, even if solid volume fraction profiles are underestimated, one can see that the profile 
shape is captured by the simulations with higher values close to the wall and lower value in the 
column center. Therefore, we concluded that contrary to Barracuda VR® simulations, there was no 
need to modify the bottom gas repartition in order to obtain the correct profile shape. This point 
raises the questions on why this repartition had to be modified with Barracuda VR®. This matter is 
further discussed in Chapter V.2.4.  

 
The two codes at this stage do not give the same results. With openFOAM, the bottom boundary 
condition did not have to be modified in order to get an elliptical solid volume fraction profile shape; 
however the drag modification did not allow having a correct bed density prediction. One can then 
wonder if this difference is due to the fact that with OpenFOAM only a single representative particle 
diameter is taken into account. To investigate this issue, we then decided to use a different approach for 
the openFOAM drag model development with a model based on a more physical basis compared to the 
more empirical method with multiplier. For this purpose, the drag model developed by Li et al. [10] 
assuming clustering and equivalent diameters based on the solid volume fraction was used. In such 
approach, the actual simulation particle diameter is then replaced by alternative diameters trying to 
represent agglomeration and clustering in the different parts of the bed (as a function of the local solid 
volume fraction). It should be mentioned that the clustering model used by Li et al. [10] remains simple 
and correlative compared to more complex model with for example the approach developed by Motlagh 
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et al. [12] with particles clustering depending on a balance between hydrodynamic and inter-particle 
forces.  
 
Based on Li et al. [10] work, three different equivalent diameters were defined according to three solid 
volume fraction classes corresponding to the dense, intermediate and dilute phases as shown in Table V-8. 
Two different equivalent diameters distribution were investigated in respectively simulation n°3 and 
simulation n°4. It is important to mention that for these two simulations, the Barracuda VR® Wen-
Yu/Ergun drag model was kept, but used with representative particle diameter. As a reminder with this 
drag correlation the transition between the Wen-Yu and Ergun models occurs at higher solid volume 
fraction around 0.5 compared to the classic Gidaspow model where the transition occurs at a solid volume 
fraction of 0.2.  
 

Table V-8 : Equivalent diameters versus solid volume fraction classes for OpenFOAM simulation n°3  
and simulation n°4 

 Solid Volume fraction 
Equivalent 
diameter 

Drag law model 

Simulation n°3 
dense: 0.62 to 0.08 400 Barracuda VR® 

Wen-Yu/Ergun 
model 

intermediate: 0.08to 0.02 150 
dilute: 0.02 to 0 75 

 

 Solid Volume fraction 
Equivalent 
diameter 

Drag law model 

Simulation n°4 
dense: 0.62 to 0.08 500 Barracuda VR® 

Wen-Yu/Ergun 
model 

intermediate: 0.08to 0.02 150 
dilute: 0.02 to 0 75 

 
Concerning the equivalent diameters presented in Table V-8, it is assumed that large clusters are formed 
for the highest solid volume fraction and that the equivalent diameter is equal to the mean diameter of the 
particle size distribution for the lowest particle size distribution. These assumptions are further discussed 
in Chapter IV-3.1.4.  
 
Figure V-17 presents the experimental and simulation solid volume fraction for position n°1 and n°3 in 
the north-south direction. The other profiles can be found in Appendix 8. Table V-9 presents the 
simulations bed density and entrainment versus experimental and PSRI model data.  
 

Experiment n°1: Homogeneous injection 

  

Figure V-17: Simulations n°3 and n°4 openFOAM, default Barracuda VR® drag, solid volume fraction 
profile at position 1 and 3, Experiment n°1 Homogeneous injection 
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Table V-9 : Bed density and Particle entrainments from experiment and openFOAM simulations n°3 and 

n°4 
Bed density (kg/m3) 

Experimental Simulation n°3 Simulation n°4 

504 390 425 
Relative error 23% 16% 

Particle Entrainment (kg/s) 

PSRI model Simulation n°3 Simulation n°4 

0.07 0.42 0.36 
 
One can clearly see that both simulations still underestimate the bed density and solid volume fraction 
profiles. From these results it was decided to then use the same drag law as Li et al. [10] which consists in 
a classic Gidaspow model with a transition between the Ergun and Wen-Yu correlation at a solid volume 
fraction of 0.2. Table V-10 presents the equivalent diameters versus solid volume fraction classes for the 
five simulations carried out.  
 
Table V-10 : Equivalent diameters versus solid volume fraction classes for OpenFOAM simulation n°5 to 

simulation n°9 

 Solid Volume fraction 
Equivalent 
diameter 

Drag law model 

simulation n°5 
dense: 0.62 to 0.08 400 

Gidaspow intermediate: 0.08to 0.02 150 
dilute: 0.02 to 0 75 

 

 Solid Volume fraction 
Equivalent 
diameter 

Drag law model 

simulation n°6 
dense: 0.62 to 0.08 400 

Gidaspow intermediate: 0.08to 0.02 300 
dilute: 0.02 to 0 75 

 

 Solid Volume fraction 
Equivalent 
diameter 

Drag law model 

simulation n°7 
dense: 0.62 to 0.08 500 

Gidaspow intermediate: 0.08to 0.02 150 
dilute: 0.02 to 0 75 

 

 Solid Volume fraction 
Equivalent 
diameter 

Drag law model 

simulation n°8 
dense: 0.62 to 0.08 500 

Gidaspow intermediate: 0.08to 0.02 300 
dilute: 0.02 to 0 75 

 

 Solid Volume fraction 
Equivalent 
diameter 

Drag law 
model 

simulation n°9 

dense: 0.62 to 0.08 500 

Gidaspow intermediate: 0.08to 0.02 
150 + drag 

multiplier of 0.31 
dilute: 0.02 to 0 75 
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Similarly to simulation n°3 and simulation n°4, it is assumed that large clusters are formed for the highest 
solid volume fraction and that the equivalent diameter is equal to the mean diameter of the particle size 
distribution for the lowest particle size distribution. Moreover, one can see in simulation n°9 that a drag 
multiplier of 0.31 is used for the second solid volume fraction class, in this case the drag correlation is 
calculated according to Equation 87 with the implementation of a multiplier in the drag model. It is 
important to notice that the value of 0.31 was found after a trial of different coefficient values with the 
same equivalent diameter of 150 microns. Figure V-18 presents the experimental and simulation solid 
volume fraction for position n°1 and n°3 in the north-south direction for simulation n°5 and n°9 which 
presented the most important results difference. The other profiles can be found in Appendix 8. Table 
V-11 presents the simulations bed density and entrainment versus experimental and PSRI model data. 
 

  

Figure V-18: Simulations n°5 and n°9 openFOAM, Gidaspow drag with clustering approach, solid 
volume fraction profile at position 1 and 3, Experiment n°1 Homogeneous injection 

 
Table V-11 : Bed density and Particle entrainments from experiment and openFOAM simulations n°5 to 

n°9 

 Bed density (kg/m3) Relative error 
Bed Entrainment 

(kg/s) 

Experimental 504  0.07 (PSRI model) 
simulation n°5 435 14% 0.28 
simulation n°6 454 10% 0.2 
simulation n°7 462 8% 0.29 
simulation n°8 468 7% 0.14 
simulation n°9 482 4% 0.12 

 
One can see that among all simulations, simulation n°9 predicts better the experimental bed and solid 
volume fraction profiles with an entrainment rate in the same range than the PSRI model. It is also 
interesting to focus on the predicted entrainment rates of simulation n°7 and n°8. Indeed, the only 
difference between the two is the intermediate representative diameter which is 150 microns and 300 
microns for respectively simulation n°7 and simulation n°8. The dense and dilute phase representative 
diameters (500 and 75 microns) remain the same. One can see that the entrainment rate of simulation n°7 
is twice higher compared the simulation n°8 showing the influence of the intermediate representative 
diameter. Moreover when comparing simulation n°6 and n°8 where this time only the dense phase 
diameter differs with respectively 400 microns and 500 microns, the entrainment rate is higher for 
simulation n°6 showing the influence of the dense phase diameter on entrainment. These results therefore 
show that drag through the entire solid volume fraction range influences entrainment. It then interesting to 
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point out that when predicting better the solid void fraction, the bed entrainment is also better predicted 
which is promising.  
 
Figure V-19 and Figure V-20 present the simulation n°9 solid volume fraction profiles versus 
experimental profiles. Table V-12 shows the average relative error of the profiles points in both directions 
and finally Figure V-21 present an instantaneous and average solid volume fraction profile in a plane 
passing through the column center.  
 

 

Figure V-19: Simulation n°9 OpenFOAM , Gidaspow drag with clustering approach, Comparisons of 
solid volume fraction profiles in the North South direction,  experiment n°1 homogeneous injection 

 

 

Figure V-20: Simulation n°9 OpenFOAM , Gidaspow drag with clustering approach, Comparisons of 
solid volume fraction profiles in the North South direction,  experiment n°1 homogeneous injection 
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Table V-12 : OpenFOAM Simulation n°9 averaged relative errors for profiles points in both directions 
 North South direction West –East Direction 

Averaged relative error (%) 11.6 14.1 
 

 

  

Figure V-21: Simulation n°9 openFOAM, Gidaspow drag with clustering approach, instantaneous and 
averaged solid volume fraction profile 

 
The results obtained with the simulation n°9 parameters are considered satisfactory since the simulation 
predicts well the bed density with a relative error compared to the experiment of 4% and the entrainment 
rate is in the range of PSRI model. Moreover, the averaged relative errors for profiles points in both 
directions is around 14% which is considered satisfying and it is in the same range than the Barracuda 
VR® simulations. Again, this parameter should be taken as a qualitative indicator since the profile shape 
is a more pertinent parameter to validate the simulation compared to the quantitative solid volume 
fraction values.  
 
To conclude, one can see that only the drag model had to be modified for the openFOAM simulation but 
the bottom boundary condition was kept uniform. The empirical drag modification with a multiplier did 
not give satisfying results and a more physical approach was used with the assumption of particle 
clustering in the bed. With these changes, a reasonable agreement was found between simulations and 
experiments in the 20 cm fluidized bed with homogeneous injection. 
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 Effect of mesh size, cloud numbers and mesh type 
 
At this point of the investigation, we now have two different CFD approaches with distinct optimized 
parameters presented in Table V-13 that give similar reasonable predictions of the experimental data 
investigated as shown in Table V-14.  
 

Table V-13 : Final optimized parameters for Barracuda VR® and OpenFOAM simulations 
MP-PIC approach, BarracudaVR parameters 

Particle size Distribution From Figure III-2 

Gas particle interaction 
Barracuda VR® Wen-Yu/Ergun + multiplier of 0.4 

(Equation 59 and Equation 87) 

Bottom Boundary conditions 
Injection points with specific distribution (less gas 

injected close to the wall) 

Euler/Euler with KTGF approach, OpenFOAM parameters 
Bottom boundary condition Uniform gas injection 

Gas / particles interaction with 
clustering approach 

Solid Volume 
fraction 

Equivalent 
diameter 

Drag law model 

0.62 to 0.08 500 

Gidaspow (Table I-4) 0.08to 0.02 
150 + drag 

multiplier of 0.31 
0.02 to 0 75 

 
Table V-14 : Barracuda VR® and openFOAM simulations results with optimized parameters 

Bed density (kg/m3) 

Experimental Barracuda VR® OpenFOAM 

504 513 482 
Relative error 1.8% 4% 

Particle Entrainment (kg/s) 

PSRI model Simulation n°3 Simulation n°4 

0.07 0.05 0.12 
Averaged relative error for solid volume fraction points profiles 

 Simulation n°3 Simulation n°4 

North-South direction 13.6 11.6 
West-East direction 13.8 14.1 

 
This chapter now investigates the effect of the mesh cell size for both codes, the effect of cloud numbers 
for Barracuda VR® and the effect of the mesh type for openFOAM keeping the same boundary conditions 
developed in Chapter V.2.1 and V.2.2  
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2.3.1 Effect of mesh cell size 
 

As carried out in many CFD investigations, it is important to evaluate the solution mesh dependency. In 
this chapter, we evaluate two meshes effects as presented in Table V-15: 
 

- First, the effect when refining the mesh. It is the most common effect investigated in the literature 
for CFD simulations where authors investigates that the physic implemented in the code is mesh 
independent. In this study, we generated a mesh with twice the number of cells compared to the 
default mesh. 
 

- Second, the effect of using a coarse mesh cell size. The context behind this study is the use of 
CFD for extrapolation where coarser mesh cell sizes have to be used to simulate larger geometry. 
We therefore want to check the effect of using a large mesh cell size of 18 mm similar to the one 
that will be used for the 90 cm fluidized bed simulations. 

 
 

Table V-15 : Meshes cells number and sizes investigated 
 Cell size (mm) Mesh cells number 

Default Mesh 6 470 000 
Refined mesh 5 1 000 000 
Coarse mesh 18 20 000 

 
 

Figure V-22 and Figure V-23 present the solid volume fraction profiles in the North-South direction for 
position 1 and position 3 for both Barracuda VR® and openFOAM simulations. The other profiles can be 
found in Appendix 7 and Appendix 8. Table V-16 presents the comparison between experimental and 
simulations data.  
 

  

  

Figure V-22: Barracuda VR® simulations, effect of 
mesh, experiment n°1 20 cm fluidized bed 

Figure V-23: openFOAM simulations, effect of 
mesh, experiment n°1 20 cm fluidized bed 
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Table V-16 : Simulations mesh effect, comparison with experimental data, 20 cm fluidized bed 

experiment n°1 
Barracuda VR® simulations 

 Experimental 
Simulation default 

mesh (470K) 
Simulation refined 

mesh (1M) 
Simulation coarse 

mesh (20k) 
Bed density (kg/m3) / 

relative error 
504 513 (1.8%) 524 (3.9%) 445 (11.7%) 

Particle Entrainment 
0.07 (PSRI 

model) 
0.05 0.03 0.12 

Relative error 
north-south profile 

- 13.6 10.9 18.4 

Relative error 
West-East profile 

- 13.8 13.4 25.5 

 
openFOAM simulations 

 Experimental 
Simulation default 

mesh (470K) 
Simulation refined 

mesh (1M) 
Simulation coarse 

mesh (20k) 
Bed density (kg/m3) / 

relative error 
504 482 (4%) 478 (3%) 510 (1.1%) 

Particle Entrainment 
0.07 (PSRI 

model) 
0.12 0.13 0.15 

Relative error 
north-south profile 

- 11.6 14.2 11.8 

Relative error 
West-East profile 

- 14.1 14.4 14.1 

 
Different remarks can be made: 
 

- For both codes, the mesh refinement has a limited effect on the simulations prediction with similar 
bed density, entrainment rates and profiles relative errors for the default simulation and the 
simulation with 1 million cells. 
 

- The use of a coarse mesh has a different effect depending on the code. Indeed, with openFOAM 
the bed density and profiles relative error remains similar and the entrainment rate is not much 
affected. However for Barracuda VR® simulations, the bed density predicted becomes 
significantly lower with a relative error of around 12% compared to the experimental data while 
the solid volume fraction profiles become clearly flat which leads to higher profiles relative error. 
Concerning the flat profiles, one can wonder about the wall boundary conditions imposed in 
Barracuda VR® (see Chapter II.2.4 for more details on the particle wall boundary condition). 
Indeed, with openFOAM all the simulations give higher solid volume fraction at the wall which 
can be attributed to the wall boundary condition. This issue with Barracuda VR® could also 
explain why the bottom boundary conditions needed to be modify in order to match experimental 
results. 
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2.3.1 Effect of clouds number 
 
As explained in Chapter I.4.2, Barracuda VR® and the MP-PIC approach discretizes the particle phase 
into clouds of particles having the same properties (size, density, velocity, …). The average number of 
real particles per cloud therefore becomes a simulation parameter that can be adjusted. This chapter 
investigates the cloud number effect on the 20 cm fluidized bed experiment n°1 simulation with the 
coarse mesh configuration presented in Table V-15. Three configurations are investigated as shown in 
Table V-17. It should be pointed out that the coarse mesh configuration is chosen since it corresponds to 
the mesh cell size and the range of average number of particles per cloud that will be used for the 90 cm 
fluidized bed as shown in Table V-18. 
 

Table V-17 : Simulations parameters with coarse mesh, number of clouds effect 

 Number of Clouds 
Averaged Number of particles 

per Cloud 
Medium cloud number (default) 3.36 105 1.05 106 

High cloud number 2.35 106 1.51 105 
Low cloud number 4.38 104 8.09 106 

 
Table V-18 : Clouds configurations for the 20 cm fluidized bed and the 90 cm fluidized bed 

 Number of particles 
Averaged Number of 
particles per Cloud 

Number of Clouds 

20 cm fluidized bed 
default coarse mesh 

simulation 
3.5 1011 3.36 105 3.36 105 

90 cm fluidized bed 1.45 1013 1.3 106 1.1 107 

 
It is interesting to add that with the current computational power available for our simulations the 
maximum clouds number that the code can take into account is in the order of 107-108. With the 90 cm 
fluidized bed simulation, the number of clouds shown in Table V-18 is close to the limit and therefore the 
average number of particles per cloud cannot be decreased below a value around 106.  
 
Table V-19 presents the simulations versus experimental data, while Figure V-24 presents the 
experimental and simulations solid volume fraction profile for position 1and position 3 in the north-south 
direction, the other profiles can be found in Appendix 7. 
 

Table V-19 : Barracuda VR® simulations cloud number effect, comparison with experimental data 

 Experimental 
Low number of 

clouds 
Medium number 

of clouds (default) 
High number of 

clouds  
Bed density (kg/m3) / 

relative error 
504 453 (10.1%) 445 (11.7%) 456 (9.5%) 

Particle Entrainment 
0.07 (PSRI 

model) 
0.001 0.12 0.13 

Relative error 
north-south profile 

- 30.9 18.4 23.8 

Relative error 
West-East profile 

- 34.6 25.5 29.1 
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Figure V-24: Barracuda VR® coarse mesh simulations, cloud number effect, experiment n°1 20 cm 
fluidized bed 

 
The following points can be made: 
 

- First, the cloud number does not influence significantly the bed density prediction, with a 
predicted density still lower compared to the simulations with refined meshes.  
 

- Surprisingly, the entrainment rate is dramatically influenced in the simulations with a low clouds 
number where almost no particles are entrained.  
 

- Finally, the solid volume fraction experimental profile shape is not well captured in any of the 
simulations. Moreover, predicted profiles are affected by the clouds number effect with different 
shapes obtained especially in the simulation with a low clouds number.   
 

It appears that the clouds number and therefore the average number of real particles per cloud have an 
influence on the simulations results. It is therefore a parameter to take into account when using the code 
for extrapolation to larger geometries and larger solid inventories.  
 
It appears that the clouds number and therefore the average number of real particles per cloud have an 
influence on the simulations results but do not improve the quality of simulation at this stage with a 
coarse mesh It could be interesting to evaluate also its impact with a refined mesh in the future, we did 
carry out this investigation since the objective of the PhD is the use of CFD for extrapolation with 
therefore coarse mesh cell sizes.  
 

2.3.1 Effect of mesh cell type for openFOAM simulations 
 

So far, only hexahedral type of cells has been used for all simulations. This chapter investigates the effect 
of the mesh cell type using tetrahedral cells for openFOAM only. Indeed, Barracuda VR® does not 
provide the option of using such a cell type.  
 
Tetrahedral cells offer the advantage of meshing more precisely complex geometries. It is therefore 
important to check that results are independent when using them. For this purpose a first simulation with 
tetrahedral cells with about the same cells number of 470 000 cells than the default mesh was carried out. 
Pictures of the meshes can be found in Appendix 8. A second simulation was then carried out with larger 
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tetrahedral cells for with a total cell number of 80 000. The purpose of this simulation is to check the 
influence of the mesh cell size with tetrahedral cells. It should be highlighted that the number of 80 000 
was used because it was the minimum number of cells that allows a correct meshing of the internal jet 
tube.  
 
Figure V-25 presents the cell type effect investigation with a comparison between the simulation with 
hexahedral and tetrahedral mesh with 470 000 cells.  
 

  

Figure V-25: openFOAM simulations, cell type effect, experiment n°1 20 cm fluidized bed 
 

Figure V-26 presents the mesh size effect for tetrahedral cells. 
 
 

  
Figure V-26: openFOAM simulations, mesh size effect with tetrahedral cells, experiment n°1 20 cm 

fluidized bed 
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Table V-20 presents the comparison between simulations and experimental data. 
 

Table V-20 : openFOAM simulations, cell type effect and cell size effect with tetrahedral cells, 
comparison with experimental data, experiment n°1 

 Experimental 
Hexahedral mesh 

(470k cells) 
Tetrahedral mesh 

(470k cells) 
Tetrahedral mesh 

(80k cells) 
Bed density (kg/m3) / 

relative error 
504 482 (4%) 510 (1.2%) 513 (1.8%) 

Particle Entrainment 
0.07 (PSRI 

model) 
0.12 0.11 0.14 

Relative error 
north-south profile 

- 14.1 13.5 13.9 

Relative error 
West-East profile 

- 11.6 10.5 11.2 

 
One can clearly see that simulations results are not significantly affected either by the mesh type or by the 
mesh size for tetrahedral cells with predicted density, entrainment rate and profile relative errors in the 
same range.  
 

 Discussions 
 
In this first simulation strategy step, we have used a simple fluidized bed experiment to evaluate and tune 
CFD codes. The amount of work conducted to reach acceptable results already shows that CFD is not a 
straight forward tool.  
 
It is then important to remind that as presented in the literature review, the two CFD approaches 
considered in this study present some modeling advantages and drawbacks. The MP-PIC approach 
considers the full particle size distribution but presents a rather simplistic particle interactions model 
while the Euler/Euler with KTGF approach has a more complex and developed particle interactions 
model but taking into account only one representative diameter for the particles phase.  
 
The first step presented in Chapter V.2.1 and V.2.2 was to study and find optimized parameters in term of 
drag model and boundary conditions to best match the 20 cm fluidized bed experiment n°1 data.  
 

- With Barracuda VR® (MP-PIC approach), the default Barracuda VR® Wen-Yu/Ergun drag law 
was modified with a rather simplistic and correlative approach using a multiplier of 0.4.  
Moreover the bottom boundary condition was modified with a less gas injected close to the walls 
in order to obtain the correct solid volume fraction profiles shape. 

 
- Concerning openFOAM and the Euler/Euler with KTGF approach, a uniform bottom boundary 

condition was sufficient to predict the solid volume fraction profiles shapes. Indeed, the correct 
solid volume fraction profiles shape was always obtained independently of the drag model used. 
Second, the drag model with multiplier used in Barracuda VR® did not provide satisfying results 
and the clustering approach of Li et al. [10] was implemented investigating different 
representative diameter classes distribution. After different simulations, the simulation n°9 
distribution presented in Table V-10 gave the best matching results compared to experiments.  

 
  



CHAPTER V USE OF CFD FOR EXTRAPOLATION: SIMULATION RESULTS 

 

 142 

Different points can be discussed concerning this first step: 
 

- First concerning the drag model modifications for the two codes, one can clearly notice that the 
Barracuda VR® modification is purely correlative and not based on physical phenomena. We 
indeed set one parameter to match the experimental data. Concerning openFOAM and the 
clustering approach, the approach is still correlative since we tested different representative 
diameter distribution in a trial and error scheme but it can be connected to physical phenomenon 
presented in the literature review. Indeed, Cocco et al. [44] put in evidence large particle structure 
inside a fluidized bed, while clustering was also observed in the dilute phase with entrained 
particles. Ozel et al. [8] also put in evidence the need of reducing the drag force due to the creation 
of large structures compared to the particle size which were not captured by classic mesh 
refinements similar to our simulation. Then the clustering approach used in this study is rather 
simplistic and more complex model (Motlagh et al. [12]) or the filtering approach (Ozel et al. [8]) 
or a combination of both could be tested in the future. 
 

- Second, it is important to remind that Barracuda VR® simulation n°2 and simulation n°3 predicted 
similar averaged bed densities but different solid volume fraction profiles demonstrating that 
macro hydrodynamic descriptors such as bed density are necessary but not sufficient to investigate 
CFD codes predictions.  
 

- Third, concerning the bottom boundary condition modification in Barracuda VR® with less gas 
injected close to the wall, one can wonder if this gas distribution occurs in the actual experiment 
or if it is a code boundary condition artifact. Unfortunately, we did not characterize 
experimentally the gas distribution at the outlet of the porous plate, so this question cannot be 
answered from an experimental point of view. However, as mentioned before, in the openFOAM 
simulations, correct profiles shape with higher solid volume fraction close to the wall was always 
obtained for all simulations independently of the drag model. Therefore, one can wonder if the 
wall boundary condition imposed in Barracuda VR® can be the cause of the wrong profile shape 
when imposing a uniform bottom distribution. This conclusion is also confirmed by the simulation 
using a coarse mesh where the correct profile shape is conserved with openFOAM while it is 
again not correctly predicted with Barracuda VR®. Unfortunately, no clear description of the 
Barracuda VR® particle wall boundary conditions is available for further analysis of this issue. 
 

- Fourth, it is important to highlight that other parameters such as the gas turbulence model, the 
particles interaction models and the particles wall boundary conditions were not investigated in 
this work. Concerning the gas turbulence, one can wonder about the use of models developed 
from monophasic flows and about the effect of particles on the gas turbulence modeling. Tsuji et 
al. found that the presence of small particles decreased significantly the gas turbulence intensity 
[163]. Motlagh et al. [12] did not use a gas turbulence model in their turbulent fluidized bed 
simulations. Other authors used similar gas turbulence models than the one used in this study 
[127,164]. The influence of gas turbulence model therefore remains a topic to be investigated for 
future work. It is the same for the effect of particles interactions models and particle wall 
boundary condition model. Indeed, Fede et al. [13] demonstrated that these models can influence 
the results of fluidized bed simulations. It is therefore a point to be investigated in the future.  
 

- Finally, this first step highlights the fact that a CFD simulation is an ensemble gathering different 
aspects such as an approach (MP-PIC, Euler/Euler with KTGF), sub-grid models (drag and 
particle interactions) and boundary conditions modeling. One could also add numerical methods 
and equation discretization. It is then important to point out that all these aspects are inter 
dependent and therefore when optimizing the drag law for one code with its own approach, 
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particle interactions model and boundary conditions, this drag law is not necessarily valid for the 
other code (with different approaches, boundary conditions, …) as demonstrated in this study. 
This point highlights the difficulty to get intrinsic characterization of one physical phenomenon in 
a complex multiphasic flow. Indeed, in our case it is difficult to dissociate drag phenomena from 
particle interactions phenomena.  

 
In a second step, simulations parameters such as mesh cell size and type as well as cloud numbers were 
investigated. It appeared that openFOAM predictions were quite independent from the mesh type and size 
while Barracuda VR® predictions were affected when using a coarse mesh and when reducing the number 
of clouds. Different points can be discussed: 
 

- First from a point of using CFD for extrapolation and simulating larger geometry, it appeared that 
two parameters need to be investigated and taken into account for Barracuda VR® and the MP-
PIC approach: the cell size and the number of real particles per cloud. On the other hand, only the 
cell size should be considered for openFOAM with the Euler/Euler with KTGF approach. 
 

- Due to the limitation of computational power, we demonstrated that the average number of 
particles per cloud could not be lower than 106 in the simulation of the 90 cm fluidized bed with a 
total of 1013 particles. Therefore when simulating an industrial FCC regenerator with a total of 
1015 particles, the average number of particles per cloud will necessarily be in the order of 108. 
From this observation, it appears that the average number of particles per cloud is a parameter 
which is impossible to conserve when extrapolating simulation geometries and solid inventories. 
This is an issue whose consequences should be investigated in more details in a future study.  

 
In a context of using CFD for extrapolation, from the different effects investigated in this study (cell size, 
cell shape, cloud numbers), openFOAM with the Euler/Euler KTGF approach seems to be the most 
pertinent tool. Indeed, with Barracuda VR® (MP-PIC approach), results were significantly affected by 
using larger cell sizes and the cloud number effect did not improve the predictions.  
 
Finally, it is important to highlight that simulations optimized parameters were chosen based on a certain 
type and numbers of experimental data with macro descriptors (bed density) and local measurements 
(solid volume fraction profiles). Figure V-27 presents respectively a bubbling characterization of the 
Barracuda VR® and openFOAM optimized simulations showing area where the solid volume fraction is 
inferior to 0.01. Figure V-28 shows the mean solid axial velocity at an intermediate height of 0.6 m in 
bother directions for both simulations. 
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Figure V-27: Simulations bubbling characterization at a certain simulation time 
solid volume fraction < 0.01, mesh of 470k cells 

Optimized parameters, left: Barracuda VR® ; right: openFOAM 
 

  

Figure V-28: Simulations solid mean axial velocity, mesh of 470k cells 
Optimized parameters, left: Barracuda VR® ; right: openFOAM 

 
As shown in Figure V-27, openFOAM tends to predict the formation of large bubbles in the bed while the 
Barracuda VR® predicts heterogeneous gas structures. Then the particle mean axial velocities predicted in 
openFOAM are almost twice larger in the center of the column which results in a faster particles mixing. 
Other experimental data such as gas structure characteristics (size, velocity), particle velocity, gas and 
particles mixing are therefore necessary to fully investigate the CFD codes predictions. Among these 
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experimental data, particle and gas mixing are probably more accessible from an experimental point of 
view since local gas and particles velocity measurements can be challenging and instrumentation 
dependent as demonstrated by Tebianian et al. [98]. Moreover, gas and particles mixing can directly be 
connected to the local velocities. It is clearly a perspective for future work.  
 
We have spent lots of effort to investigate and choose the CFD parameters and models for both 
Euler/Euler KTGF and MP-PIC approaches in order to simulate a simple fluidized bed experiment. We 
will now evaluate how the tuned CFD models behave when simulating larger scales, different operating 
conditions and other fluidization regimes.  
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 Second simulation strategy step: CFD codes prediction when changing operating 
conditions 

 
In the first step presented in the previous chapter, optimized parameters were found for both CFD codes 
to best match results from the 20 cm fluidized bed experiment n°1 with a homogeneous injection. As 
shown in Figure V-29, the second step of the simulation strategy consists in investigating the predictions 
of the two codes using the same optimized parameters on an experiment at the same scale with different 
operating conditions. The purpose is to put in evidence if the optimized parameters are case dependent or 
if they can be extrapolated to different operating conditions.  
 
The 20 cm fluidized bed experiment n°2 with gas injected through the jet in the middle of the bed is used 
for this second step. It should be highlighted that the change of operating condition between the two 
experiments can be considered moderate since only the gas distribution is modified. However, as shown 
by experiments, it led to significant changes that can hopefully be captured by the CFD models developed 
in the first simulation strategy step.  
 

 

Figure V-29: Second step of the simulation strategy 
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 Base case 
 
The base case considered here consists in using the default mesh of 470 000 cells with the optimized 
parameters found in the first step and presented in Table V-13. Then, Table V-21 presents the other 
parameters required for the simulation of the 20 cm fluidized bed experiment n°2 with jet injection. 
 

Table V-21 : Simulation parameters of the 20 cm fluidized bed experiment n°2 with jet injection 
Mesh size 470 000 hexahedral cells 
Cell size 6 mm 

Particle density (kg/m3) 1 260 
Pressure at top boundary 

condition (kPa g) 
6 kPag 

Bottom gas flowrate injected 
through injection points (kg/s) 

0.0060 

Gas injected through the jet 
(kg/s) 

0.0179 

Air temperature (°C) 20 
Bed mass (kg) 17 

Simulation time step (s) 1.10-4 
Simulation time (s) 20 

 
The only modification compared to the previous simulations is for the jet boundary condition which was 
considered before as a wall and it is now considered for both codes as a uniform gas inlet. Table V-22 
presents the comparison between experiment and simulation data. Figure V-30 and Figure V-31 shows 
the instantaneous and averaged volume fraction profile in a plane passing through the column center for 
respectively Barracuda VR® and openFOAM simulations. Finally, Figure V-32 and Figure V-33 present 
the solid volume fraction profiles in both directions for respectively the Barracuda VR®R and openFOAM 
simulations.  
 
Table V-22 : Comparison between experiment and simulations data, 20 cm fluidized bed experiment n°2 

with jet injection 

 Experimental 
Barracuda VR® 

Simulation 
OpenFOAM simulation 

Bed density (kg/m3) / 
relative error 

631 671 (6.3%) 666 (5.5%) 

Particle Entrainment 
Experiment n°2 

- 0.04 0.15 

Particle Entrainment 

Experiment n°1 
0.07 (PSRI model) 0.05 0.12 

Relative error 
north-south profile 

 24.9 25.1 

Relative error 
West-East profile 

 43.8 22.1 
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Figure V-30: Experiment n°2 Barracuda VR® 
simulation, instantaneous and averaged solid 

volume fraction profile 

Figure V-31: Experiment n°2 openFOAM 
simulation, instantaneous and averaged solid 

volume fraction profile 
 

  

Figure V-32: Barracuda VR® simulations, default mesh of 470k cells, experiment n°2 20 cm fluidized bed 
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Figure V-33: openFOAM simulations, default mesh of 470k cells, experiment n°2 20 cm fluidized bed 
 
Different points can be made: 
 

- First both codes capture the change of bed density compared to experiment n°1 with a relative 
errors around 6% which is a satisfying result. 
 

- Second, compared to experiment n°1, Barracuda VR® predicts a lower entrainment rate while 
openFOAM predict a higher entrainment rate. It would therefore be interesting to experimentally 
measure the entrainment rate for both experiments in a future work to assess which trend is the 
correct one.  
 

- Third, concerning the profiles prediction: 
o Both codes predict rather well the influence of the jet in the center of the column at the lowest 

position 1 with low solid volume fraction in the same range than the experimental value. 
 

o Both codes fail to predict the position n°2 profile in the West-East direction shifting toward 
the west side, especially Barracuda VR® with a profile shifting on the other side. It is 
important to remind that this experimental profile shift was attributed to the jet side tube 
entering the column on the west side. Therefore, with Barracuda VR®, it seems that the side 
tube has the opposite effect while no effect is observed with openFOAM. The boundary 
condition imposed on the side tube wall could be investigated further in order to observe if it 
has an impact on the gas jet orientation (the same boundary conditions than the column wall 
were applied on the tube walls).  

 

o We have also to keep in mind that the important experimental shift of the jet is surprising. It 
should therefore be confirmed with additional experiments, by moving for instance the side 
tube in another direction to observe if the gas shift goes in the same direction.   

  

o For openFOAM, symmetrical profiles are obtained with respect to the column center for all 
positions in all directions while experimental profiles tend to shift toward the south and west 
directions. Then, the jet effect is attenuated progressively with predicted profiles showing 
elliptical shapes with higher solid volume fraction in the center especially for position n°3. 
Then, the solid volume fraction values on the sides are rather well captured while, in the 
center, values are underestimated. Average relative profiles points errors are around 25% 
which is higher than experiment n°1 predictions. 

 

o For Barracuda VR®, the profile shift toward the south side seems to be captured however the 
West-Est direction the predicted shift goes in the opposite side compared to experiment. The 
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consequence is that the average relative profile points error goes to almost 50% in this 
direction. Then, the attenuation of the jet is less progressive compared to openFOAM with 
similar profiles obtained at position n°2 and n°3.  

 

o It is also important to remind that experimental results should not be considered for the 
quantitative solid volume fraction value since we demonstrated that the optical probe signal 
can have a strong influence on the final quantitative results. Therefore the trend of profile 
shapes between experiment n°1 and n°2 is the important experimental result and from this 
point of view, simulation results can be considered rather satisfying since trends are captured 
between experiment n°1 and n°2 with elliptical profiles predicted for experiment n°1 and jet 
effect and jet dissipation rather well captured for experiment n°2 with openFOAM showing 
slightly better overall predictions. 

 
Overall, the simulations results are considered quite satisfying for both codes since the trend of bed 
density and solid volume fraction profiles between experiment n°1 and n°2 are captured. 
 
 

 Influence of the mesh size and mesh type 
 
The exercise of investigating the mesh size and mesh type effects was again carried out on the experiment 
n°2 simulation. The cloud effect was not investigated since we do not expect different conclusions 
compared to the work presented in Chapter V.2.3.1.  
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3.2.1 Mesh size 
 
The same mesh sizes than the one presented in Chapter V.2.3.1 and Table V-15 were used for this study. 
Figure V-34 and Figure V-35 presents the solid volume fraction profiles for position 1 in the north-south 
direction and for position 3 in both directions for respectively the Barracuda VR® and openFOAM 
simulations. Other profiles can be found in Appendix 10 and Appendix 11. Table V-23 presents the 
comparison between experimental and simulation data.  
 

  

 
 

  
Figure V-34: Barracuda VR® simulations, effect of 

mesh, experiment n°2 20 cm fluidized bed 
Figure V-35: openFOAM simulations, effect of 

mesh, experiment n°2 20 cm fluidized bed 
 

  

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 20k cells

 470k cells

 1MM cells


S

   Position 1 (low)

North / South 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 20k cells

 470k cells

 1MM cells


S

     Position 1 (low)

  North / South 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 20k cells

 470k cells

 1MM cells


S

    Position 3 (high)

  North / South 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 20k cells

 470k cells

 1MM cells


S

     Position 3 (high)

   North / South 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 20k cells

 470k cells

 1MM cells


S

   Position 3 (high)

  West / East 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 20k cells

 470k cells

 1MM cells


S

   Position 3 (high)

  West / East 



CHAPTER V USE OF CFD FOR EXTRAPOLATION: SIMULATION RESULTS 

 

 152 

Table V-23 : Simulations mesh effect, comparison with experimental data, 20 cm fluidized bed 
experiment n°2 

Barracuda VR® simulations 

 Experimental 
Simulation default 

mesh (470K) 
Simulation refined 

mesh (1M) 
Simulation coarse 

mesh (20k) 
Bed density (kg/m3) / 

relative error 
631 671 (6.3%) 640 (1.4%) 520 (17.6%) 

Particle Entrainment  0.04 0.02 0.09 
Relative error 

north-south profile 
 43.8 31.8 22.4 

Relative error 
West-East profile 

 24.9 31.4 51.7 
 

openFOAM simulations 

 Experimental 
Simulation default 

mesh (470K) 
Simulation refined 

mesh (1M) 
Simulation coarse 

mesh (20k) 
Bed density (kg/m3) / 

relative error 
631 666 (5.5%) 664 (5.2%) 668 (5.9%) 

Particle Entrainment  0.15 0.15 0.13 
Relative error 

north-south profile 
 25.1 24.2 23.9 

Relative error 
West-East profile 

 22.1 25.8 22.4 

 
Results obtained lead to the same conclusions as with the mesh size effect study on experiment n°1 
simulations. The mesh refinement with 1 million cells does not affect in a significant way the predicted 
results with prediction slightly improved for Barracuda VR® and with almost no changes for openFOAM. 
However the use of a coarse mesh leads to degraded prediction for Barracuda VR® with a bed density 
underestimated by 18% and solid volume fraction profiles highly modified especially in the West-East 
while openFOAM prediction remains in the same range with pretty good agreement obtained with 
experiment data. It is however interesting to point out that with the coarse mesh, the openFOAM profiles 
are less elliptical for position n°2 and n° 3 where the jet effect is more visible.  
 

3.2.2 Effect of mesh cell type for openFOAM simulations 
 
The use of tetrahedral cells and the size effect with this type of cells were also investigated for experiment 
n°2 simulations. Figure V-36 and Figure V-37 presents the experimental and simulations profiles for 
respectively the cell type effect investigation and for the mesh size effect with tetrahedral cells 
investigation. Table V-24 presents the comparison between simulations and experimental data. 
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Figure V-36: openFOAM simulations, cell type effect, experiment n°2 20 cm fluidized bed 

 

  
Figure V-37: openFOAM simulations, mesh size effect with tetrahedral cells, experiment n°2 20 cm 

fluidized bed 
 

Table V-24 : openFOAM simulations, cell type effect and cell size effect with tetrahedral cells, 
comparison with experimental data, experiment n°2 

 Experimental 
Hexahedral mesh 

(470k cells) 
Tetrahedral mesh 

(470k cells) 
Tetrahedral mesh 

(80k cells) 
Bed density (kg/m3) / 

relative error 
631 666 (5.5%) 667 (5.5%) 668 (5.9%) 

Particle Entrainment  0.15 0.13 0.10 
Relative error 

north-south profile 
- 25.1 24.7 25.4 

Relative error 
West-East profile 

- 22.1 23.8 24.3 

 
Conclusions remain the same with predictions rather independent of the mesh cell type and size. One can 
notice however a slightly lower entrainment with tetrahedral cells compared to hexahedral cells and when 
using larger cells.  
  

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 Hexahedral Mesh

 Tetrahedral mesh


S

    Position 1 (low)

 North / South 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 Hexahedral Mesh

 Tetrahedral mesh


S

        Position 3 (high)

      North / South 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 80k cells

 470k cells


S

    Position 1 (low)

 North / South 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 80k cells

 470k cells


S

        Position 3 (high)

      North / South 



CHAPTER V USE OF CFD FOR EXTRAPOLATION: SIMULATION RESULTS 

 

 154 

 

 Discussions 
 
The main conclusion obtained from the jet simulations is that both CFD approaches predicted reasonably 
well the change of bed hydrodynamic compared to the homogeneous injection configuration. This result 
is satisfying and it shows that the parameters and models developed in the first simulation strategy steps 
allow reasonable prediction of other operating conditions at the same scale.  
 
Then, similar results compared to the first simulation strategy step were obtained when investigating the 
effect of the mesh cell size. The predictions of the OpenFOAM approach (Euler/Euler KTGF) were not 
significantly affected which is not the case for the Barracuda VR® predictions (MP-PIC approach).  
 
We are now going to investigate the use of both approaches for the simulation of a turbulent fluidized bed 
at a larger scale as described in the next chapter.  
 
  



CHAPTER V USE OF CFD FOR EXTRAPOLATION: SIMULATION RESULTS 

 

 155 

 

 Third simulation strategy step: CFD codes predictions at larger scale 
 
The first and second steps of this study consisted in finding optimized parameters for the simulation of a 
specified experiment at given operating condition and then in investigating the CFD prediction using the 
same parameter for another operating condition simulation with the same experiment. The results showed 
that both codes captured relatively well the change of bed density and solid volume fraction profile shape 
related to the change of gas distribution. This type of CFD exercise where different operating conditions 
on the same experiment are investigated is rather classical and can be found in many literature studies 
[10,12]. The next step of the simulation strategy we propose consists in investigating the CFD codes 
predictions when changing scale of experiments as shown in Figure V-38. For this purpose, the 90 cm 
fluidized bed experiments conducted at PSRI are used. It should be highlighted that to our knowledge, 
this type of study where CFD codes predictions of fluidized bed at different operating conditions and 
scales are evaluated against experimental data cannot be found in the literature. 
 

 

Figure V-38: Third step of the simulation strategy 
 
 

 Geometry, mesh and boundary conditions 
 
This chapter presents the geometry, mesh and boundary conditions used for the Barracuda VR® and 
openFOAM simulations. First, the coarse mesh cell size of 18 mm used for the 20 cm fluidized bed was 
chosen. The goal is to keep a common cell size between the two experiments simulations. Table V-25 
presents the mesh cell numbers for each scale of fluidized beds simulated with a hexahedral cell size of 
18 mm, a projection for an industrial Fluidized Bed of 5 meters is also presented. 
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Table V-25 : Mesh cell numbers for fluidized beds at different scales  
with a hexahedral cell size of 18 mm 

 
20 cm fluidized bed 

experiment 
90 cm fluidized bed 

experiment 

Industrial fluidized bed 
(Diameter of 5 m and 

height of 10 m) 
number of cells with a 

cell size of 18 mm 
20 103 600 103 33 000 103 

 
One can see that for the industrial fluidized bed, the mesh cell numbers using a cell size of 18 mm is in 
the order of 30 million which would imply a high computational power for a transient two phase flow 
simulation. It should be highlighted that from a computational power and parallelization point of view 
this simulation would be possible with openFOAM but not possible with Barracuda VR® which uses, at 
the time this manuscript is written, a calculation parallelization method with a single GPU card.  
 
Two different meshes where used for Barracuda VR® and openFOAM simulations. This difference comes 
from the meshing of the bottom fluidized bed distributor shown in Figure V-39, one can refer to 
Appendix 3 for more details on this design.  
 

 

Figure V-39: 90 cm fluidized bed bottom distributor 
 
As shown in Figure V-39, the distributor is composed of 36 nozzles with a diameter of 2.5cm connected 
to a main rectangular ring. The nozzles on the outside distribution ring are orientated with an angle of 30° 
with respect to the axial “z” axis. As explained in Chapter II.2.4, Barracuda VR® uses a structured 
hexahedral meshing method which in this case makes the meshing of the distributor impossible with a 
cell size of 18 mm. It would actually takes in the order of 10 million cells to mesh correctly the ring 
geometry. For this reason, the nozzles where not considered in Barracuda VR® simulations and injection 
points where used for the gas injection as explained below. On the other hand, openFOAM allows the use 
of non-structured hexahedral and tetrahedral cells which make possible the mesh refinement around the 
distributor.  
 
Figure V-40 and Figure V-41 present the mesh used for respectively the Barracuda VR® and openFOAM 
simulations.  
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Figure V-40: Mesh used for Barracuda VR® 
simulations of the 90 cm fluidized bed 

Figure V-41: Mesh used for openFOAM 
simulations of the 90 cm fluidized bed 

 
As discussed before, the cell size used above the distributor is the same for both meshes. Tetrahedral cells 
between 7 and 18 mm are used around the distributor for the openFOAM mesh. The total cell number is 
600 103 and 800 103 for respectively Barracuda VR® and openFOAM meshes, the difference between the 
two being due to the refinement around the distributor of the openFOAM mesh.  
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Figure V-42 presents the geometry considered for openFOAM simulations, the geometry for Barracuda 
VR® simulation being the same except for the gas distributor as discussed below. In order to facilitate the 
geometry meshing with hexahedral cells, the first cyclone dipleg return is simulated with a squared 
surface having the same surface area than the real circular dipleg surface. The second cyclone dipleg is 
taken into consideration with a dead volume removed from the geometry. The top outlet real ring shape is 
the same than the experiment configuration.  
 

 

 

Figure V-42: 90 cm fluidized bed geometry considered 
Figure V-43: Gas distributor for openFOAM 

simulations 
 
Figure V-43 presents the gas distributor geometry in openFOAM simulations. Gas is injected through all 
the nozzles tips surfaces assuming a homogeneous distribution between all nozzles.  
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Figure V-44 presents the gas distribution used for Barracuda VR® simulations. Two injections points per 
nozzle were used with a distance of 10 cm between each other, this distance being calculated from an in-
house jet penetration correlation. The reason of using two injections points is to make sure that the jet 
penetration is well represented. Indeed, a single injection point close to the nozzle with a mesh cell size of 
18 mm was estimated as coarse condition to well represent the jet penetration. The gas flowrate is divided 
homogenously between all gas injection points. Figure V-44 (b) shows an example of injections points 
locations, it should be highlighted that the nozzles were not taken into in the geometry, only the main ring 
is considered. Figure V-44 (c) presents all injections points from a top view. One can see from this figure 
that the gas injection is rather uniform except in the column center.  
 

 

 

 

Figure V-44: Gas distributor for Barracuda VR® simulations 
(a) Injection points principle per nozzle; (b) example of injections points ; (c) all injections points top 

view 
 
It important to point out that the choice of the gas injection boundary conditions for the Barracuda VR® 
and openFOAM simulations was estimated as the best compromise in order to evaluate both codes on a 
similar basis. Indeed, injections point boundary condition is not available in openFOAM while Barracuda 
VR® does not allow meshing the distributor correctly. We could have assumed a uniform gas inlet 
boundary condition at the column bottom surface but this assumption was considered too strong since one 
objective is also to investigate potential gas distribution effects compared to the homogeneous injection 
porous media used in the 20 cm fluidized bed experiment.  
 
 
  

(a) 

(b) 

(c) 
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The boundary condition imposed for both codes simulations are: 
 

- Gas injection: Total gas mass flowrate calculated from the top superficial gas velocity and gas 
density with a temperature of 20°C and a pressure of 35 kPag 

o Barracuda VR®: uniform distribution among all injection points, injection velocity equals 
to nozzle injection velocity divided by two (2 injection points per nozzle).  

o openFOAM: uniform gas velocity at all nozzle tip surface. 
 

- First cyclone dipleg return: all the solid escaping at the top outlet is re-injected through the first 
cyclone dipleg therefore assuming a 100% efficiency for the cyclone.  

o Barracuda VR®: option used to connect the top outlet with the dipleg return. Gas flowrate 
calculated from Equation 86. 

o openFOAM: uniform solid velocity adjusted to match solid flowrate escaping at the top 
and gas uniform velocity calculated from Equation 86. 
 

- Top outlet, pressure imposed of 35 kPa g.  
 

- Walls: same parameters than the 20 cm fluidized bed simulation for both codes. 
 
For openFOAM, all boundary conditions imposed for all parameters (volume fraction, velocity, pressure, 
granular temperature) can be found in Appendix 12. 
 

 Base case 
 
The first case investigated of the 90 cm fluidized bed experiments is the one with a superficial velocity of 
0.6 m/s which is similar to the superficial velocity of the 20 cm fluidized bed experiments of 0.64 m/s. 
Table V-27 presents the simulation parameters for both code. The same optimized parameters found with 
the 20 cm fluidized bed simulations were applied. It is important to point out that particles used in both 
experiments have similar characteristics diameter but a density difference of 13% as shown in Table III-1 
that is accounted for in the simulation particles description. It is therefore interesting to see if CFD can 
predict bed densities considering that particle density changes are taken into account. 
 
 

Table V-26 : Simulation parameters of the 90 cm fluidized bed experiment, Usg = 0.6 m/s. 
 Barracuda VR® openFOAM 

Mesh size 600 000 800 000 
Cell size above distributor 18 mm 

Particle density (kg/m3) 1 490 

Particle size distribution From Figure III-2 
Representative diameters 

from Table V-13 

Drag law 
Default Barracuda VR®  

(Equation 59) 
Gidaspow (Table I-4) 

Pressure at top boundary condition (kPa 
g) 

35 kPag 

gas flowrate (kg/s) 0.62 
Air temperature (°C) 20 

Bed mass (kg) 1 800 
simulation time step (s) 5.10-4 

Simulation time (s) 60 
Number of clouds 1.1 107 - 

Average Number of particles per cloud 1.3 106 - 
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The first item checked was the gas distribution for both simulations. Figure V-45 presents the averaged 
solid volume fraction profile in a plane just above the nozzles tips, average carried over the 60 seconds of 
simulation time.  
 

  

 

 

Figure V-45: Averaged solid volume fraction profile in a plane just above the nozzles tips 
(a) Barracuda VR® simulation ; (b) openFOAM simulation 

 
One can see that Barracuda VR® gas distribution is more spread compared to openFOAM especially for 
the side nozzles. This comes from the fact that we assumed and imposed the jet penetration with 
Barracuda VR® which is not the case with openFOAM. However, we can consider that the difference 
between the two distributions is not significant and does not have an impact on the observations presented 
afterward.  
 
The simulations steady state was considered when the pressure profile and particles entrainment reached 
stable values. For openFOAM simulations, steady state was reached at around 15 seconds of simulation 
time (as shown in Appendix 12), and simulations results presented were then averaged from 15 to 60 
seconds of simulation time.  Different results were obtained with the Barracuda VR® simulation. First it 
took about 25 to 30 seconds of simulation time to have a stable simulation pressure profile as shown in 
Appendix 12. Once steady state as considered was reached, no particle entrainment was obtained and 
finally large defluidized zone appeared during the course of the simulation. Figure V-46 and Figure V-47 
present instantaneous solid volume fraction profiles in a plane passing through the column center at 10, 
15 and 30 seconds of simulation time as well as the averaged solid volume fraction profile for 
respectively the Barracuda VR® and the openFOAM simulations.  
  

(a) 

(b) 
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Figure V-46: Barracuda VR® simulation, gas velocity of 0.6 m/s 
a) instantaneous solid volume fraction at 10 seconds (b) instantaneous solid volume fraction at 15 
seconds (c) instantaneous solid volume fraction at 30 seconds (d) averaged solid volume fraction 

 

 

    

Figure V-47: OpenFOAM simulation, gas velocity of 0.6 m/s 
a) instantaneous solid volume fraction at 10 seconds (b) instantaneous solid volume fraction at 15 
seconds (c) instantaneous solid volume fraction at 30 seconds (d) averaged solid volume fraction 

 
One can clearly see the difference between the two simulations with steady conditions and similar 
instantaneous solid volume fraction profiles for openFOAM and with the creation of defluidized zones in 
the course of the simulation with gas by-passing the bed for Barracuda VR®. Figure V-48, Figure V-49 

(a) (b) (c) (d) 
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and Table V-27 presents respectively the experimental and simulations bed pressure profiles, the 
simulations average solid volume fraction profiles at a height of 1.5 meter above the distributor and the 
comparison between experimental and simulations data.  
 

 

Figure V-48: Bed density profile from experiment and simulations 
 

 

Figure V-49: Averaged solid volume fraction profiles from simulation at a height of 1.5 meter above the 
distributor 
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Table V-27 : Comparison between experimentation and simulations for the bed density 

 Experimental 
Barracuda VR® 

simulation 
OpenFOAM simulation 

Bed density (kg/m3) 
( relative error with 

experimental) 
706 777 (10%) 684 (2.8%) 

Entrainment (kg/m2/s) 1.21 0 5.8 
 
Different remarks can be pointed out: 
 

- First, the Barracuda VR® simulations overestimate by 10% the density and no entrainment is 
predicted.  
 

- Second the openFOAM simulation predicts with accuracy the bed density while entrainment rate 
is highly overestimated with a factor 5 between experiment and simulation data.  
 

- Third, the openFOAM solid volume fraction profile is symmetrical and similar to what was 
observed for the 20 cm fluidized bed experiment n°1 simulation while the Barracuda VR® profile 
clearly shows a gas-pass in the center of the bed. An experimental measurement is however 
necessary to fully validate this profile.  
 

Barracuda VR® simulation results are considered unsatisfactory for different reasons: 
 

-  First, no entrainment is predicted while entrainment was observed for the 20 cm fluidized bed 
simulations at the same conditions. Experimentally, an entrainment of 1.21 kg/m/s was observed. 
 

- Despite a good gas distribution (Figure V-45 shows that the gas distribution at the column bottom 
is more spread for BarracudaVR® simulation), gas ends-up by-passing the bed with large 
defluidization zone created within the bed which does not fit with openFOAM simulation. It also 
important to add that the same simulation was also performed in partnership with the Fluid 
Mechanic Institute of Toulouse (IMFT) using their code NEPTUNE_CFD and their filtered drag 
approach. This code also uses an Euler/Euler KTGF approach, one can refer to [165] for more 
details. In this simulation, the distributor nozzles are not represented and the gas is injected 
through the distributor squared central pipe. Results similar to the OpenFOAM simulation are 
obtained with elliptical solid volume profiles shape.  
 

- The bed density is overestimated by 10% in the Barracuda VR®  simulation. This is consistently 
linked with gas bypassing. It is interesting to point out that this overestimation can be considered 
as acceptable. Comparing only the overall bed density one could then consider the simulation as 
rather predictive. This point highlights the need of looking at the maximum number of 
experimental data to fully estimate the simulation predictions.  
 

In general, the global “behavior” of the simulation is totally different from the 20 cm fluidized bed 
experiment n°1 where the Barracuda VR® parameters were optimized. This result can be attributed to the 
fact that these parameters are dependent of the scale and experimentation from which they were 
optimized and they cannot be used at larger scale with larger cell sizes. It is then interesting to remind that 
the 20 cm fluidized bed simulations with a coarse mesh having the same cell size than the one used for 
the 90 cm fluidized bed simulation already showed that simulations predictions were affected with 
Barracuda VR®. It would therefore be interesting to conduct simulations with the initial 20 cm fluidized 
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bed simulation cell size of 6mm. It however remains challenging with our current computational power 
with Barracuda VR®. 
 
Concerning openFOAM 90 cm fluidized bed simulation, results obtained are considered satisfactory with 
a global behavior similar to the results of the 20 cm fluidized bed simulation (symmetrical solid volume 
fraction and bed density well predicted). However, entrainment is highly overestimated at large scale. It 
was also overestimated for the 20 cm fluidized bed but not in the same proportion. This point is further 
investigated in the next simulations where the other operating conditions of the 90 fluidized bed 
experiments were simulated. However, due to the poor results obtained with Barracuda VR®, these other 

operating conditions simulations were carried out only with openFOAM.  
 
Finally concerning the comparison between both codes made from the 90 cm fluidized bed simulations, 
one can argue that we did not use the same boundary conditions for the gas distribution and that the 
comparison cannot directly be made. However, Figure V-45 clearly shows that at the level of the 
distributor, the gas distribution is better in the BarracudaVR® simulation. Therefore we considered that 
the bottom boundary conditions chosen for the BarracudaVR® simulation is not at the origin of the poor 
predictions obtained.  
 

 Other operating conditions 
 
The other two operating conditions with a superficial gas velocity of 0.3 and 0.85 m/s where investigated 
in order to study the prediction trends of the openFOAM optimized parameters. The same boundary 
conditions were used with only the gas injection flowrate being modified to get the correct superficial 
velocity at the top.  
 
In order to better predict the entrainment rate, two sets of representative diameters shown in Table V-28 
were investigated to improve the drag model, defined originally in Table VI-8 in section VI.2.2. In the 2nd 
case, the solid volume fraction range for the smallest representative diameter is reduced from [0.02;0] to 
[0.01;0]. The purpose is to observe the influence of this minor modification on entrainment but also on 
the bed density predictions.   
 

Table V-28 : Sets of representative diameter tested for the 90 cm fluidized bed experiments simulations 
 Solid Volume fraction Representative diameter 

1st set 
default parameters 

0.62 to 0.08 500 
0.08to 0.02 150 + multiplier 
0.02 to 0 75 

 
 Solid Volume fraction Representative diameter 

2nd set 
0.62 to 0.08 500 
0.08to 0.02 150 + multiplier 
0.01 to 0 75 

 
The condition with a superficial gas velocity of 0.85 m/s was not simulated with the first set of 
representative diameters since the entrainment prediction with for the other condition was highly 
overestimated as shown below. Figure V-50 and Figure V-51 present respectively the average solid 
volume fraction and particle entrainment from experiments and simulations for the 90 cm and 20 cm 
fluidized beds.  
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Figure V-50: Simulation and experimental overall bed densities, 90 cm fluidized bed experiments 
 

 

Figure V-51: Simulation and experimental particle entrainment, 90 cm fluidized bed experiments 
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Table V-29 presents the simulations and experimental data for the 90 cm fluidized bed.  
 

Table V-29 : Simulations and experimental average solid volume fraction and entrainment rate 
Superficial gas 
velocity (m/s) 

 Experimental Set 1 Set 2 

0.3 

Solid volume fraction 
( relative error with 
experimentation) 

0.53 0.51 (2.8%) 0.52 (2.0%) 

Entrainment (kg/m2/s) 0.06 0.8 0.4 

0.6 

Solid volume fraction 
( relative error with 
experimentation) 

0.47 0.46 (2.8%) 0.51 (2.5%) 

Entrainment (kg/m2/s) 1.21 5.8 2.6 

0.85 

Solid volume fraction 
( relative error with 
experimentation) 

0.44 - 0.42 (4.6%) 

Entrainment (kg/m2/s) - - 5.3 
 
Different points can be highlighted: 
 

- First, the bed density trends and quantitative predictions are excellent with relative error lower 
than 5% for all 90 cm fluidized bed simulations. It is also interesting to notice that trends between 
the 20 cm and 90 cm fluidized bed are also captured which is also satisfying. As discussed in 
Chapter IV.3.1, the difference of experimental bed solid volume fraction between both 
experiments can be explained by scale and also distribution effects that are not taken into account 
in the King correlation indicated in Figure V-50. On the other hand, one can see that CFD 
managed in this case to predict the difference between experiments meaning that CFD captured 
somehow the scale and distribution effects.  
 

- Concerning the entrainment for the 90 cm fluidized bed, results obtained are interesting. Indeed, 
the minor change of the solid volume fraction range for the smallest representative diameter in the 
drag model detailed description divided the entrainment predictions by 2. Entrainment rate is still 
overestimated for the lowest superficial velocity experiments but predicted values are closer to 
experimental data and the general trend over the full superficial velocity range experiments is 
rather well predicted. The most important remark concerning this point is that one can appreciate 
how entrainment predictions are sensitive and therefore difficult to model. Indeed, one can 
remember from the 20 cm fluidized bed simulations presented in Chapter V.2.2 that modifications 
in all classes of representative diameters affected the predicted entrainment rate. As discussed 
before, mesh size also affects entrainment calculation (see Table V-16 and Table V-24). Therefore 
predicting accurately entrainment remains more challenging than predicting bed hydrodynamics 
and density. 
 

- Then concerning the diameter effect on entrainment, one can see when comparing the 90 cm and 
20 cm fluidized bed simulations with the first set of representative diameter that a scale effect is 
predicted with lower entrainment rates for the smallest column. It should also be reminded that the 
PSRI model does not take into account a column diameter in its entrainment prediction above the 
TDH. It is therefore interesting for future work to measure experimentally entrainment at different 
scale to investigate this trend prediction.  
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Finally, Figure V-52 presents the experimental and simulation bed density profiles for the set n°2 if 
representative diameters. The profiles for the set n°1 can be found in Appendix 12. 
 

 

Figure V-52: Simulation and experimental bed density profiles, 90 cm fluidized bed experiments 
 
The predicted pressure profiles are in good accordance with the experimental data with trends respected 
between the difference cases which confirm the results of the overall bed density. One can also notice a 
difference between experiments and simulation at the top of the bed, a problem of pressure experimental 
measurement is suspected at this position as explained in Chapter III.4.2. 
 

 Discussion 
 
The first part of this chapter presented the comparison of openFOAM and Barracuda VR® simulations for 
the 90 cm fluidized bed experiment with a superficial gas velocity of 0.6 m/s. We can emphasize the 
following points: 
 

- One could appreciate the difficulty of simulating accurately the bottom distributor at the bottom of 
the bed. Indeed the meshing method of Barracuda VR® does not allow to accurately describing the 
complex geometry and therefore assumptions had to be made related to the gas jet penetration and 
therefore the injected gas bed coverage. For future work, one could first simulate the nozzle jet 
penetration for a single nozzle and then integrate the result in the overall simulation. As shown in 
Figure V-45, the gas repartition close to the distributor between Barracuda VR® and openFOAM 
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simulations was slightly different it cannot clearly be the reason for the not satisfying behavior 
observed for the Barracuda VR® simulations.  
 

- Second, the openFOAM simulations results were considered rather satisfactory with good bed 
density prediction even if the entrainment was overestimated (entrainment prediction was then 
revealed to be extremely sensitive to the representative diameters distribution). The main point is 
that openFOAM showed coherent predictions for the 20 cm fluidized bed simulations with refined 
and coarse mesh as well as for the 90 cm fluidized bed with the same cell size than the coarse 
mesh 20 cm fluidized bed simulation. By coherent prediction we mean that bed densities were 
well predicted and that solid volume fraction profiles were similar at both scale when for a 
homogeneous gas injection at the bottom.  
 

- The same conclusions were not reached with Barracuda VR® simulations since results for the 90 
cm fluidized bed simulation were considered unsatisfactory. No entrainment was obtained, large 
defluidized zone appeared in the bed with gas by-passing. A really important parameter to 
consider is the differences obtained along the simulation strategy developed. Indeed for Barracuda 
VR® simulations at small scale the bed density is well predicted and entrainment is observed when 
using optimized parameter on a refined mesh. Then it appeared that predicted results were affected 
when using large cells at small scale and finally results were not satisfactory at the large scale 
when using the same cell size. The simulation parameters used in Barracuda VR® are therefore 
considered not reliable for extrapolation at larger scales with large cell sizes. The result can be 
explained by the simple drag law modification carried out with the use of a multiplier. The 
multiplier of 0.4 is likely to be drag model, experiment, scale and approach dependent. One could 
also add that other parameters such as the simple particle interaction model could also be the 
cause of the particle accumulation observed in the Barracuda VR® simulation. Finally, it could 
also be interesting in the future with an improvement of computational power, to simulate the 90 
cm fluidized bed with the 20 cm fluidized bed default mesh cell size of 6 mm in order to definitely 
conclude if the CFD scale-up issue is only connected to the cell size and cloud numbers.  
 

Based on the openFOAM simulations of the 90 cm fluidized bed for different operating conditions, we 
can point out that: 
 

- Satisfactory results were obtained in term of trends for the entrainment rate prediction and 
quantitative characterization for the bed density especially with the second set of representative 
diameter. Is also really important to point that trends between the 20 cm and 90 cm fluidized bed 
were also predicted showing that CFD captured the scale and distribution effects compared to the 
classic King correlation.  
 

- The sensitivity of the entrainment prediction was demonstrated when changing the solid volume 
fraction range of the smallest representative diameter of 75 microns from [0.02;0] to [0.01;0]. 
Entrainment was decreased by a factor of 2 when using the second range, the value being still 
higher compared to experimental data, while bed hydrodynamics was not significantly affected. It 
is probably possible to “play” furthermore on this range to match better the experimental result 
and it could be done in future work. However, the model would probably be dependent on this 
experimental set of data and further validation should therefore be made by investigating 
entrainment with different column geometries and particle properties.  
 

Finally, we can  make the same remark already made for the 20 cm fluidized bed column simulation 
concerning the need of further experimental data to investigate the CFD predictions of the bed gas 
structure, particle velocity, gas and particle mixing. Figure V-53 presents an instantaneous solid volume 



CHAPTER V USE OF CFD FOR EXTRAPOLATION: SIMULATION RESULTS 

 

 170 

fraction profile for the simulation with a superficial gas velocity of 0.85 m/s. One can notice the creation 
of a large gas structure at the top of the bed that occupies almost the entire bed diameter. This type of 
structure is more characteristic of group B powder fluidized bed and could be attributed to the cluster 
approach we are using. Indeed as mentioned in the literature review, gas bubbles in Geldart group A 
powder fluidized bed tend to a maximum stable bubble size and large bubbles above 10 to 20 cm are not 
expected with FCC catalyst.   
 
 

 

 

Figure V-53: Instantaneous solid volume fraction profile after 40 second of simulation time, OpenFOAM 
simulation , gas velocity of 0.85 m/s 

 
This point shows that for fluidized bed CFD model development it is absolutely necessary to investigate 
many parameters at the same time with macro descriptors (bed density, entrainment, gas and particles 
mixing) but also local descriptors (volume fractions, bubble size and velocities). Indeed, our work was 
focused on bed density, local solid volume fraction and entrainment measurements but further work 
should also consider bubble characteristics. Our predictions were rather satisfactory. However what 
would happen if we now add the constraints of predicting smaller gas structure for all our previous 
simulations? It would be interesting in future work to investigate different ideas for this purpose. How to 
do this? We could for example modify the particles interaction model in order to have a more “viscous” 
solid phase. We could also add different particles classes to better represent the particles interactions. But 
then one could also wonder about the fact that smaller gas structure would have a lower velocity which 
would imply a lower bed density and the current model predictions would be affected. This would 
probably imply to modify again the drag model or other parameters. This highlights the fact that CFD 
model is dependent on the experimental data set that was used for development and validation, as it is 
always the case with modeling. It is therefore necessary to confront the model to many data characterizing 
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macro and local phenomena for both phases at different operating conditions in order to make the CFD 
model more physical and universal and less dependent on a specific set of data.  
 
Finally, for future CFD model development and to investigate their extrapolation capability in fluidized 
beds, one could imagine two sets of experiments at different scales similar to the one presented in this 
PhD thesis. Then experimental data should be acquired on both experiments using the same particles and 
the same measuring techniques in order to remove the potential bias induced by the use of different 
experimental techniques and different particles. A wide range of operating conditions should be 
investigated from minimum fluidization regime to turbulent regime measuring macro descriptors such as 
bed density, entrainment, gas and particles mixing as well as local measurements such as local volume 
fractions, bubble size and velocities, particle velocity. This is however a considerable task and apart from 
modeling challenges, the challenge of measuring local characteristics should also be considered when 
confronting CFD and experimental results. 
 
 
 
  



CHAPTER V USE OF CFD FOR EXTRAPOLATION: SIMULATION RESULTS 

 

 172 

 Fourth simulation strategy step: CFD code prediction at larger scale and different 
operating conditions (change of fluidization regime) 

 
 

The study presented so far allowed investigating the extrapolation of CFD codes predictions for fluidized 
beds with simulations of experiments at different scales, different superficial velocities from 0.30 to 0.85 
m/s and with different gas distribution configurations. The study clearly shows that, despite the two CFD 
codes using different approaches had similar good predictions for a given experiment at small scale, very 
different results were obtained when changing scale of experiments. Clearly, the simulations performed at 
a larger scale with openFOAM and the Euler/Euler KTGF represented much better the experiments that 
were considered.  
 
In a last step presented in this chapter, we investigate the CFD predictions for experiments conducted 
with the same kind of solid materials (FCC equilibrium catalyst) but in a different fluidization regime 
characterized by very different operating conditions compared from the ones where the code parameters 
have been set. Indeed, the drag law models that have been used so far were adjusted on turbulent beds 
experiments. In a turbulent fluidized bed, hydrodynamics mostly relies on superficial gas velocity in the 
range of 0.3 to 1-1.3 m/s for FCC catalyst. A dense phase is observed and solid circulation is limited to 
entrainment which relies mostly on superficial velocity in the bed. Then in the transport regime, all 
particles are yet transported and hydrodynamics relies on gas superficial velocity, but also on solid 
flowrate (or mass flux). Since there is more gas flowing, the flow is therefore more dilute. Particles flow 
faster and take time to accelerate which results in axial and radial flow developments. One can then 
wonder if the model already tuned will apply in the transport regime or if it is operating condition 
dependent.  
 
Figure V-54 presents the fourth and last step of the simulation strategy. It consists in simulating the riser 
experiments presented in Chapter IV.4. In these experiments the superficial velocity for transporting 
particles is in the order of 7 to 8 m/s which are well above the velocity used in the turbulent bed 
experiments. Only openFOAM code predictions were investigated since we considered that the 

parameters chosen for barracudaVR failed for the simulation strategy third step. 
 

 

Figure V-54: Fourth step of the simulation strategy 
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 Geometry, meshing and boundary conditions.  
 
Figure V-55 presents the geometry considered and the boundary conditions applied. 
 

 

 

Figure V-55: openFOAM simulation, geometry and boundary conditions for riser simulation 
 
Different remarks can be pointed out: 
 

- First, the geometry is simplified compared to the real riser configuration presented in Chapter 
III.5.1. Indeed, the solid side inlet and outlet are not represented, the riser is considered straight. 
The main reason for this simplification is to have a regular mesh of hexahedral cells over the 
entire riser length as shown in Figure V-56 which presents the hexahedral cells in a vertical riser 
section. Most of the cells have a size of 18 mm to be consistent with the 90 cm fluidized bed 
simulations. However we chose from the beginning to refine the mesh close to the walls in order 
to better capture the physical phenomena at the wall as carried out in the work of Abdulkadir et al. 
[166]. The cells close to the wall have a size of about 3 mm.  
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Figure V-56: openFOAM simulation , Mesh in a vertical riser section 
 

- The second remark concerns the fact that the riser blind-T termination device is not taken into 
account in these simulations. For these reasons, pressure profiles will be compared only over a 
length of 15 meters in order to remove the termination device effects observed on the 
experimental profiles shown in Figure IV-8.  
 

- Finally, we assume that the solid distribution is uniform through the bottom inlet surface while the 
solid arrives through a side inlet in the experiment. However, the solid inlet is located in the dense 
phase below the main gas injection point and we therefore take the assumption that the flow at the 
bottom of the riser behaves at a uniform moving fluidized bed. Pseudo-isokinetic profiles in 
different directions could be carried out in the future close to the main gas injection point to 
confirm the flow homogeneity.  
 

 
The boundary conditions used are presented below. For more details on can refer to Appendix 13. 
 

- Bottom inlet:  
o Gas phase: Velocity imposed corresponding to the gas flowrate from the fluidization ring.  
o Solid phase: Velocity imposed corresponding to the solid flowrate. The solid and gas 

volume fraction are imposed to have a mixture density of 700 kg/m3 as measured on the 
cold flow pilot for all solid circulations.  
 

- Jet gas inlet: Velocity imposed corresponding to the flowrate to have the superficial velocity at the 
top minus the flowrate from the ring. 
 

- Top outlet: Pressure of 110 000 Pa abs imposed. 
 
Table V-30 presents the riser simulations parameters. 
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Table V-30 : Riser simulations parameters 
Mesh size 930 000 

Cell size above distributor 3 to 18 mm 
Particle density (kg/m3) 1 450 
Particle size distribution Representative diameters from Table V-13 second set 

Drag law Gidaspow 
Pressure at top boundary 

condition (Pa abs) 
110 000 

Air temperature (°C) 20 
simulation time step (s) 1.10-4 

Simulation time (s) 50 
 
Simulations are considered at steady state when the pressure profile reaches stable values and that the 
solid mass in the system is constant which means that the solid going in is equal to the one going out. For 
more details one can go to Appendix 13. Steady state was always reached after 30 seconds of simulation 
time, results presented are therefore averaged from 30 seconds to 50 seconds of simulation time.  
 

 Base case 
 

The experiment with the highest flux of 220 kg/m2/s was considered as the base case. Figure V-57 and 
Figure V-58 present the simulation and experimental data for respectively the riser pressure profile and 
mean solid local flux at the same height than the experimental isokinetic sampling. The mean local solid 
flux in each mesh cells is obtained from Equation 89. 
 𝐹𝑙𝑢𝑥𝑀𝐸𝐴𝑁 = 𝜌𝑆 × 𝑈𝑠_𝑧_𝑀𝐸𝐴𝑁 × 𝛼𝑠_𝑀𝐸𝐴𝑁 Equation 89 

 
Where:    𝐹𝑙𝑢𝑥𝑀𝐸𝐴𝑁 is the local flux in the mesh cell (kg/m2/s) 
  𝜌𝑆 is the particle density equals to 1450 kg/m3 
  𝑈𝑠_𝑧_𝑀𝐸𝐴𝑁 is the mean axial velocity in the mesh cell (m/s) 
  𝛼𝑠_𝑀𝐸𝐴𝑁 is the mesh cell solid volume fraction 
 

 

Figure V-57: openFOAM simulation and experimental pressure profile 
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Figure V-58: openFOAM simulation and experimental local flux profile, drag model from 90 cm 
fluidized bed simulations 

 

First, it is clear that the simulation failed predicting the pressure profile with a total pressure drop over 15 
meters underestimated by 54%. Moreover, one can notice from Figure V-58 that the local solid volume 
fraction is flat which is in accordance with the fact that no solid recirculation was observed on the walls in 
the simulation. However, the experimental radial profile of local mass flux is very different, with very 
high flux (twice the average) toward the riser axis and light down flow at the wall.  
 
Figure V-59 and Figure V-60 present respectively the mean velocity profile and an instantaneous and 
averaged solid volume fraction profile at the riser bottom.  
 

Solid Flux of 220 kg/m2/s ; Vsg = 8.15 m/s 

 

 

 

  

Figure V-59: openFOAM simulation mean 
velocity profile 

Figure V-60: openFOAM Simulation solid volume 
fraction (a) Instantaneous profile ; (b) averaged profile 
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One can see from Figure V-59 that gas velocity at the jet outlet is high with values in the order of 60 m/s. 
Then, from Figure V-60 we can see that there is no difference between instantaneous and averaged solid 
volume fraction profiles. The flow simulated therefore reaches a stable steady state really quickly after 
the gas injection with a fast acceleration of the particles. Finally, Figure V-61 presents the simulation 
pressure profile and the mean slip factor profile in the column center. The slip is defined in this case as 
the ratio of the solid mean velocity over the gas mean velocity.  
 
 

Solid Flux of 220 kg/m2/s ; Vsg = 8.15 m/s 

 

Figure V-61: openFOAM simulation pressure and slip factor velocity profile 
 
It is interesting to notice that there is a really fast acceleration of the particles at the bottom of the riser 
which also corresponds to a fast increase of the pressure drop profile. From these observations, we 
concluded that the drag between the gas and the solid was overestimated at the riser bottom where high 
gas velocity in the range of 60 m/s occurs.  
 
The first conclusion from this simulation is that the code parameters applied with a rather good success 
for the prediction of the fluidized bed experimental data investigated do not give good predictions for the 
riser experimental data. From the riser simulation results presented above, the drag overestimation at the 
riser bottom with high gas velocity is suspected. This results should be put in perspective with the fact 
that the predictions of the CFD model developed so far (including the approach, boundary conditions, 
mesh cell size, particle interaction and turbulence model) is dependent on the operating conditions 
simulated which means that some physical phenomena such as the drag or the particles/wall interactions 
are not well modeled through the entire range of operating conditions investigated and mesh cell size used.  
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 Investigation on the drag model for the riser simulation 
 
We then decided to investigate further if the drag overestimation could be a reason that explains the 
results presented in the previous chapter. It is important to point out that the study presented here is 
simply prospective with the aim to investigate a simple drag modification and better understand key 
modeling aspects based on numerical results. 
 
From Figure V-61 showing the pressure and slip factor profiles, we first pointed out the fast pressure 
increase corresponding to the particle acceleration zone where the slip factor also increases dramatically. 
As shown with the red dotted lines in Figure V-61, the fast pressure increase stops for a slip factor value 
at around 0.7. We then decided to implement a modification in the model to reduce the drag in this fast 
pressure increase zone. For this purpose, we proposed the following modification: 
 𝐾𝑑_𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑟𝑖𝑠𝑒𝑟 = 𝐾𝑑_𝑓𝑙𝑢𝑖𝑑𝑖𝑧𝑒𝑑_𝑏𝑒𝑑 ∗ (𝑆𝑙𝑖𝑝 𝑓𝑎𝑐𝑡𝑜𝑟)𝑛   𝑖𝑓  𝑆𝑙𝑖𝑝 𝑓𝑎𝑐𝑡𝑜𝑟 < 0.7 

 𝐾𝑑_𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑟𝑖𝑠𝑒𝑟 = 𝐴 ∗ 𝐾𝑑_𝑓𝑙𝑢𝑖𝑑𝑖𝑧𝑒𝑑_𝑏𝑒𝑑 𝑖𝑓 𝑆𝑙𝑖𝑝 𝑓𝑎𝑐𝑡𝑜𝑟 > 0.7 

 𝑆𝑙𝑖𝑝 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠𝑉𝑔𝑎𝑠  

Equation 90 

 
When: 𝐾𝑑_𝑓𝑙𝑢𝑖𝑑𝑖𝑧𝑒𝑑_𝑏𝑒𝑑 is the drag model developed from the fluidized bed simulations, see Table 

V-13 
  n and A are tuning factors.  
 
With this modification, we first want to reduce the drag in the acceleration zone in function of the slip 
factor for slip factors values inferior to 0.7. The tuning factor n being superior to 1, drag will be reduced 
more for lowest slip velocity factor values occurring at the riser bottom. Then the decrease of drag is 
supposed to reduce momentum transfer between gas and particles and therefore particle acceleration will 
be slower. For slip factors higher than 0.7 where particles are accelerated in Figure V-61, the idea is to 
implement a simple drag modification with a multiplier. It is important to mention that this drag 
correlation modification is implemented to investigate the effect of the drag reduction and it is based only 
on numerical observations.  
 
We then adjusted the tuning factor n and A in order to best match the experimental pressure profile based 
only on the simulation with a solid flux of 220 kg/m2/s. Figure V-62 presents the pressure profiles 
obtained for different values combinations of n and A  
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Solid Flux of 220 kg/m2/s ; Vsg = 8.15 m/s 

 

Figure V-62: openFOAM simulation and experimental pressure profiles 
 
It is interesting to notice that a high” n” value overestimates the pressure drop in the bottom riser 
acceleration zone while a high “A” value underestimates the pressure increase in the upper riser 
accelerated zone. The best match was obtained with n equals to 1.3 and A equals to 0.02. Table V-31 
presents the comparison between this simulation and the experimental data. The pressure increase versus 
height in the riser accelerated zone was calculated from a riser height of 5 meters.  
 

Table V-31 : Riser simulations versus experimental data, solid flux of 220 kg/m2/s, Vsg = 8.15 m/s 

 Experiment 
Simulation with drag from 
fluidized bed simulations 

Simulation with drag 
modified n=1.3 and  

A =0.02 
Total pressure drop  at 15 

meters (Pa) 
19 295 8 920 (53.7%) 16 000 (17%) 

Pressure increase in the 
accelerated zone (Pa/m) 

1 010 347 (65%) 750 (25.7%) 

 
One can see that the simulation with the modified drag model has much better predictions than the default 
drag from the fluidized bed simulations. Relative errors compared with experiments remain however 
rather high with the total pressure drop underestimated by 17% and the pressure increase in the 
accelerated zone underestimated by 26%. At this point, these results were considered satisfactory since 
the main goal was to investigate the drag modification effect without reaching a perfect match with 
experimental data.  
 
Figure V-63 presents the mean slip factor values in the column center for the default simulation with the 
drag law from fluidized bed simulations and for the riser modified drag model with n equals to 1.3 and A 
equals to 0.02. Figure V-64 and Figure V-65 present respectively the mean slip factor profile and the 
instantaneous slip factor profile for the simulation with the modified drag model.  
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Solid Flux of 220 kg/m2/s ; Vsg = 8.15 m/s 

 

Figure V-63: openFOAM simulations, Slip factor profiles 
 

Solid Flux of 220 kg/m2/s ; Vsg = 8.15 m/s 

 

 

 

 

Figure V-64: openFOAM simulation Mean slip 
factor profile 

Figure V-65: OpenFOAM, Instantaneous slip 
factor profile, focus on values above 0.7  
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- First in Figure V-63 the mean slip factor increases sharply at the riser bottom, this sharp increase 

corresponding to the riser acceleration zone. The mean slip factor then reaches a stable value 
around 0.64 as shown in Figure V-63 and Figure V-64, this value being lower than the transition 
value of 0.7 set in the drag model. However, when looking at the instantaneous slip factor profile 
on Figure V-65, one can notice values higher than 0.7. It is finally worth pointing out that the 
Patience correlation presented in Equation 22 gives a lower mean slip factor value of 0.46. 
 

- Second, it is interesting to look at the instantaneous slip factor profile at a given time in Figure 
V-65 which focuses on values higher than 0.7. One can see that slip factor values above 0.7 are 
mostly located close to the walls. As a reminder, a drag multiplier of 0.02 is used for slip factor 
values above 0.7 as shown in Equation 90. Therefore, this low multiplier value reduces drastically 
the drag close to the wall which allows having particles negative velocity and particles 
recirculation at the wall as shown in Figure V-67 which present the zones where the solid volume 
fraction is higher than 0.1 with solid negative velocities. One can also see from Figure V-66 which 
presents the instantaneous and average solid volume fraction profiles that unsteady structures are 
obtained with higher solid volume fractions at the wall.  

 
 

Solid Flux of 220 kg/m2/s ; Vsg = 8.15 m/s 

 

  

 

 

Figure V-66: openFOAM, Drag modified Simulation 
solid volume fraction  Instantaneous profile ; (b) 

averaged profile 

Figure V-67: openFOAM, Drag modified Solid 
volume fraction higher than 0.1 with negative 

solid axial velocity 
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Figure V-68 and Figure V-69 present the local flux profiles for respectively the default drag from the 
fluidized bed simulation and the simulation with the riser modified drag. Figure V-70 presents the 
comparison between experimental and simulated local mass flux profiles.  
 
 

Solid Flux of 220 kg/m2/s ; Vsg = 8.15 m/s 

   

Figure V-68: openFOAM, Drag from fluidized bed 
simulation, Mean volume fraction profile at height of 12 m 

Figure V-69: openFOAM, Drag 
modified, Mean volume fraction profile 

at height of 12 m 
 

 

Figure V-70: openFOAM simulation and experimental local solid flux profiles 
 
One can see that the simulation with the modified drag predicts better the local flux profile shape with 
lower fluxes data close to the wall. This can be explained by the observations made earlier with the 
particles recirculation and the higher solid volume fraction at the riser wall when implementing the drag 
modification (one can refer to Appendix 13 to look at the mean volume fraction profiles at the height of 
12 meters). However, one can notice that the experimental local flux close to the wall remains lower with 
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negative values indicating that the particles recirculation at the wall remains underestimated in the 
simulation. 
 
The two other experiments with a flux of respectively 162 kg/m2/s and 77 kg/m2/s were then simulated 
using the modified drag model (as defined in Equation 90) Figure V-71 presents the comparison between 
experiments and simulations of the riser pressure profiles. Table V-32 shows the comparison of the 
experiments and simulations data of the total riser pressure drop and the pressure increase in the 
accelerated zone. The pressure profiles simulated fit the experiments reasonably well.  Other simulations 
information can be found in Appendix 13. It should be noticed that the simulated local mass flux profiles 
obtained at this stage are not as symmetrical as the one obtained for the 220 kg/m2/s flux simulation 
(shown in Figure V-69). More work is needed to investigate this issue with two parameters to be 
investigated one being to average simulations over a longer duration since experimental results were also 
acquired on a longer duration as shown in Table III-12, the second parameter being the influence of the 
drag model parameters at the riser wall where solid concentration varies around the drag model transition 
solid volume fractions (see Table V-13).  
 

 

Figure V-71: Simulation and experimental pressure profiles for all fluxes 

 
Table V-32 : Riser simulations versus experimental data for all fluxes  
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One can notice that pressure profile trend between experiments is rather well captured with better 
predictions for the lower flux experiments. The acceleration zone trend between experiments is also 
captured as well as the difference of slopes in the fully developed flow zone.  
 

 Discussions 
 
The last part of this study consisted first in simulating the riser experiment with a flux of 220 kg/m2/s 
using the same CFD model developed from the turbulent fluidized bed simulations. The simulation failed 
predicting the experimental data investigated with a total pressure drop underestimated by 54% and a flat 
local flux profile. The overestimation of the drag was pointed out as a reason for these wrong predictions. 
This result shows that, based on the initial tuning, the CFD model and in particular the drag model 
developed from the turbulent fluidized bed simulation is operating condition dependent. It therefore 
means that some physical phenomena are not well captured or taken into account by the current CFD 
model with the mesh cell size used. This is the main conclusion of this last simulation strategy step. 
Indeed, in previous chapters we first demonstrated that CFD code extrapolation capacity between 
different scales with similar operating conditions should be investigated with care on experiments at 
different scales with relevant experimental data. We now point out that the operating condition prediction 
range should also be investigated to at least define the limit of the model, the final and idealistic goal 
being to develop a CFD model that can be predictive on the full operating condition range from minimum 
of fluidization regime to transport regime. One can wonder if this objective is realistic, our work at least 
shows that it is possible to adjust simulation parameters to predict experiments within the same 
fluidization regime at different scales.   
 
In a second part, it was decided to investigate a drag model modification in order to reduce the particles 
acceleration observed in the first simulation. The slip factor was determined as the main flow 
characteristic and was then used to modify the drag model correlation. Different points can be discussed 
related to this study: 
 

- First, the study presented is prospective. The main purpose was to show the effect of the drag 
reduction on the CFD code predictions but further work is absolutely necessary to well represent 
flows in transport regime. In particular, the investigation of the mesh cell size influence and other 
parameters such as wall functions and turbulence models need to be explored. A similar strategy 
with simulations of riser experiments at different scale should also be carried out to assess the 
extrapolation capacity of the CFD model developed.  
 

- Second, it is interesting to notice that once the drag model was modified by tuning one riser 
pressure drop profile, we could then observe that the solid local flux profile was also better 
predicted and that other operating condition predictions were also satisfying. The modification 
carried out therefore has a certain physical meaning.  
 

- Third, it was shown that the slip factor higher than 0.7 are observed mostly close to the walls. As a 
reminder, the drag model proposed reduces drastically the drag with a multiplier of 0.02. This 
drag modification then generates particle negative velocity and therefore particles recirculation 
which is in good accordance with experimental results. However, one can wonder about the 
physical meaning of this drag modification. Is drag coefficient really reduced at the wall or is the 
gas velocity at the wall overestimated which then force us to reduce the drag in order to have 
particle recirculation? This type of question shows again the difficulty to get intrinsic physical 
phenomenon characterization in a complex multiphase flow system. It also shows that other 
phenomena such as turbulence model and wall functions should absolutely be investigated in 
future work. 
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- Then, one can wonder if the approach using characteristic diameter for the drag model could also 

have been applied on the riser simulations using bigger diameter values. This question first 
highlights the need to get more precise local experimental characterization, it also highlights that 
different approaches might be used to get the same CFD predictions for a given experiment (as 
shown in V.2) and it is therefore necessary to test the CFD models on a wide range of operating 
conditions to evaluate their physical representation.  
 

- Finally, one can wonder why the drag model had to be modified (with a high reduction 
implemented) between the turbulent fluidized bed and the transport riser simulations. Is it 
connected to the fact that drag is overestimated at low solid concentration or at high velocity 
gradient between gas and particles or both? Is it also an effect enhanced when using large mesh 
cells? These are questions that could be investigated in a multi scale approach with simulations 
using finer meshes and also other approaches such as CFD-DEM or Direct Numerical Simulations 
(DNS).  

 

 Use of CFD for extrapolation: Conclusions and perspectives 
 
In this study, we have built a simulation strategy to evaluate CFD tools predictions on a multi scale basis 
in a wide range of operating conditions. For this purpose, we first presented the experiments carried out to 
collect data for the CFD investigation. Three experimental set ups were considered with first a 20 cm 
fluidized bed used to characterize different gas injection configurations, second a 90 cm fluidized bed 
where several gas superficial velocities were investigated and finally a 30 cm riser to characterize 
transport regime conditions. In the three experiments, FCC catalysts with similar physical properties were 
used in order to focus mainly on gas distribution, scale-up and fluidization regime effects. Local and 
global experimental flow characterizations were acquired. In this work, we demonstrated the challenges 
and complexity of acquiring experimental data for such gas/particle multiphase flows. All the information 
collected represents a rather important set of data for the evaluation of CFD prediction of gas distribution, 
multi scale and operating conditions effects. 
 
We then developed our simulation strategy using two CFD approaches with first Barracuda VR® and the 
MP-PIC approach which takes into account a particle size distribution for a rather simplistic particle 
interactions model. Second, we worked with openFOAM and the Euler/Euler KTGF approach which uses 
a single representative diameter for the solid phase with a more complex particles interactions modeling. 
The main conclusions of this work are: 
 

-  We first found that the default CFD models parameters for both approaches failed predicting the 
hydrodynamic of the 20 cm fluidized bed and we therefore had to modify these models to capture 
the experimental data investigated. For this purpose, different drag laws were developed for each 
approach, the drag modification for Barracuda VR® being purely correlative, the one for 
openFOAM being based on a more physical approach with a simple clustering model.  
 

- Both approaches with their modified parameters captured rather well the change of hydrodynamic 
due to the different gas distribution within the 20 cm fluidized bed. However, the predictions 
quality of Barracuda VR® was significantly affected when using a larger mesh cell size which was 
not the case for openFOAM.  
 

- The simulations at a larger scale of the 90 cm fluidized bed showed the same trend with Barracuda 
VR® predictions failing to capture the bed hydrodynamic while openFOAM showed good bed 
density predictions and satisfactory entrainment trends for the different superficial gas velocities 
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experiments. It is an important result since we demonstrated that scale effect is a clear 

differentiator between both CFD models and it therefore justifies the simulation strategy 

developed. We also demonstrated that CFD can be used for extrapolation with openFOAM 

capturing scale effects between the 20 cm and 90 cm fluidized bed simulations.  
 

- Finally, the riser simulations first showed that the CFD model developed from the fluidized bed 
experiments failed to predict the transport regime hydrodynamic. Second, we demonstrated that it 
was possible to modify again the drag law to capture the riser experimental data investigated. The 
drag law models developed have therefore limitations and for now we have to use a dedicated 
drag model for each fluidization regime investigated. 

 
Different perspectives to this work can then be identified from an experimental point of view: 
 

- First it is necessary even if challenging to collect more data to fully characterize the fluidized bed 
hydrodynamic such as bubbling, mixing and local particle velocities characterizations.  
 

- For the evaluation of scale up effect, it would be ideal to perform experiments at different scales 
using the same catalyst, the same distribution system and the same experimental techniques in 
order to remove as much as possible experimental bias and characterize only scale up effects. In 
general, other extrapolation effects could be investigated experimentally using the same strategy 
with for example effects of temperature and pressure.  
 

- Finally, it would be also interesting to characterize precisely the transition between turbulent and 
transport regimes. This set of experimental data could then be used to improve the modeling of 
CFD codes for the transition between these regimes in order to get the same CFD model being 
able to predict a wide range of operating conditions.  
 

From a CFD point of view the perspectives are: 
 

- First, it is necessary to develop the same simulation strategy based on a more complete set of 
experimental data with gas structures and local velocities characterization. Indeed all fluidized bed 
hydrodynamic aspects (bed density, entrainment rates, local volume fractions and velocities, 
mixing) should be investigated simultaneously to fully validate the CFD model hydrodynamic 
predictions in order to then implement the modeling of other physical phenomena (kinetic, mass 
and heat transfer, …). Such a study would probably lead to the development of a more complex 
modeling of gas/particles interactions taking into account physical phenomena (particles 
clustering,) but also numerical issues with the change of mesh cell size for large scale simulations 
(filtered drag laws).  
 

- Other simulation modeling parameters should be investigated such as wall boundary condition 
effects, turbulence effects especially for dilute transport conditions with the ambitious objective of 
predicting different fluidization regimes with a universal set of modeling parameters. The 
modeling could then be extended to other type of particles (Geldart Group B). 
 

- Other extrapolation parameters such as temperature and pressure could also be investigated 
following a similar simulation strategy.  
 

- Finally, the simulation of a real industrial configuration could be carried out, one should target an 
industrial unit with the maximum characterizing data available with possibly different operating 
conditions in order to be able to estimate the validity of the CFD predictions.  
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GENERAL CONCLUSIONS AND PERSPECTIVES 
 
 
This dissertation focused on extrapolation issues for the development of circulating fluidized beds 
processes. Indeed, minimizing the risk of extrapolation is mandatory when developing such processes 
both from an economical and technology feasibility point of views [1]. Extrapolation relates in a first step 
to the understanding of physical phenomena at accessible scales through dedicated and focused 
experiments. In a second step, modeling is used to transpose observation from lab scale to an industrial 
perspective. In the first part of my dissertation, we focused on the first step of the extrapolation process 
with the use of CFD for a better understanding of physical phenomena at lab scale to then better interpret 
our results in a context of attrition extrapolation phenomena. In the second part of this dissertation, the 
use of CFD to directly extrapolate hydrodynamic phenomena was then investigated through a dedicated 
simulation strategy. 
 
The investigation on the extrapolation of attrition phenomena first highlighted the challenges we have to 
face when developing the new Chemical Looping Combustion (CLC) process where particles attrition 
characterization on a long operation term basis is not available. We then presented a methodology to get a 
first preliminary attrition characterization of the potential oxygen carrier particles available. The method 
consists in comparing with a jet cup apparatus, the oxygen carriers attrition resistance with the one of 
Fluid Catalytic Cracking (FCC) catalyst for which attrition at lab and industrial scales is well 
characterized. This investigation then put in evidence how CFD tools allowed for a better understanding 
of the jet cup test with the characterization of the particles contacting frequency with the jet, parameter 
controlling the attrition generated in the apparatus. Experimental results then comforted the conclusion 
obtained from CFD with the attrition generated in the jet cup being inversely proportional to the initial 
sample volume. This CFD characterization step was therefore essential since without it the jet cup results 
could have been misinterpreted. The jet cup methodology developed then allowed comparing three solids 
of interest, with the fresh and equilibrium oxygen carriers performing respectively better and worth than 
the reference FCC equilibrium catalyst. With the oxygen carrier considered, the detrimental change of 
mechanical structure due to the CLC process condition was therefore clearly demonstrated. Other 
materials have therefore to be considered and can be evaluated at the early stage of the process 
development using the methodology developed in this work. We also demonstrated the importance of 
testing the solids after an exposure the process conditions. For better quantitative predictions of attrition 
at industrial scales, we finally highlighted the need of a multi scale approach connecting the lab scale 
attrition testing results to the main sources of attrition in a CFB process for the implementation of a 
population balance model. A PhD in partnership with the university of Leeds and Total was launched in 
2015 to develop such a multi-scale approach [146,147] 
 
In the second part of this project, we focused on the use of CFD for the extrapolation of hydrodynamic 
phenomena in circulating fluidized bed with Geldart Group A FCC particles. Most of the CFD studies in 
the literature focus on CFD model development with validation carried out against experimental data on a 
specific lab scale equipment with a rather narrow ranges of operating conditions [10–13]. Authors also 
use CFD for industrial scale simulation with comparison of their results against few daily averaged macro 
experimental data often corresponding to one operating condition [9]. The CFD ability to predict scale 
effects when extrapolating is therefore usually not clearly investigated with comparisons against 
experimental data at different scales and operating conditions. Moreover, due to computational power 
limitations, CFD for large scale simulation impose the use of a coarser mesh compared to the lab scale 
simulation from which CFD models are evaluated. It is therefore also important to evaluate this parameter 
effect. Finally, it is also important to investigate the potential limits of CFD models in term of operating 
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conditions representativeness if one wants to model different fluidization regime in the same simulation. 
The simulation strategy presented in this project was developed to evaluate all these aspects.  
 
We first carried out or used experiments at different scales and operating conditions using particles with 
the similar physical properties. Experiments on a 20 cm and a 90 cm turbulent fluidized beds experiments 
allowed characterizing scale and distribution effects. Experiments on a 30 cm riser were then carried out 
to characterize the hydrodynamic changes between turbulent and transport regimes. Local and global 
hydrodynamic characterization measurements were acquired and used for the CFD investigation. This 
first experimental step also highlighted the challenge to get local fluidized bed characterizations where 
data have always to be carefully validated against global hydrodynamic descriptors when possible.  
 
Two CFD approaches were then evaluated with first Barracuda VR® and the MP-PIC approach and 
second openFOAM and the Euler/Euler KTGF approach. Default CFD models parameters failed 
predicting the 20 cm fluidized bed experimental data investigated. Dedicated drag models and boundary 
conditions where then developed for both CFD approaches with success for the predictions of the two gas 
injection configurations of the 20 cm fluidized bed. We then demonstrated that scale effect was a clear 
differentiator between the two CFD approaches with the parameters chosen for Barracuda VR® failing to 
predict the 90 cm fluidized bed hydrodynamic while openFOAM parameters predicted with success the 
bed density and entrainment trends for the different superficial gas velocities experiments. It is an 
important result which first justifies the proposed simulation strategy and second it shows that CFD can 
be used for extrapolation purposes with openFOAM predicting the effect of scale on the bed density. 
Finally we demonstrated that the model developed from fluidized bed experiments failed to predict the 
transport regime hydrodynamic and that a different drag model had to be developed to well capture the 
riser experimental data. Therefore at this stage it is possible to develop a dedicated drag model for each 
fluidization regime but the development of a universal model is complicated and requires further 
investigations with probably many efforts. 

 
As a perspective, a wider set of experimental data could be used to fully cover all hydrodynamic aspects 
of a fluidized bed (characterization of local gas structures, local velocities, mixing) to then apply the same 
simulation strategy. It is however important to realize that data collection is a large and complex amount 
of work. It should not be neglected and clearly, availability of experimental set of data for CFD 
development and validation is an issue. Then, it is also necessary to investigate all modeling parameters 
such as gas turbulence model, wall boundary conditions, particles interactions models with the 
confrontation of the CFD models against a wide range of operating conditions in order to make the 
models less operating conditions dependent and therefore more physical. Other extrapolation aspects to 
industrial operating conditions such as pressure and temperature could be investigated following a similar 
experimental and simulation strategy. Finally, a real industrial configuration could be simulated as a last 
step of our simulation strategy.   
 
Extrapolation remains a complex and difficult challenge for multiphase flow reactors. We therefore have 
to use all the tools available with lab scale experimentation, exploitation of industrial units data and of 
course modeling. This work shows that CFD can be used for the understanding of local phenomena as 
well as for extrapolation purposes. However, it remains a practical tool where universal theoretical 
models for gas/particles and particles/particles interactions are not available. We therefore cannot use 
CFD tools without a careful validation and determination of their limits in order to better interpret their 
results and use them efficiently. The work carried out in this dissertation is an illustration of this last 
statement.  
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APPENDIX 
 

Appendix 1 Jet cup attrition testing 
 

 

Figure 0-1: Sketch of the jet cup (dimensions are in inches) 
 

 

Figure 0-2: Sketch of the overall configuration 
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Figure 0-3: Jet cup hexahedral structure mesh 
 

  
Figure 0-4: Initial and Final Particle Size 
Distribution for a test with 100 grams of Group A 
equilibrium FCC particles during one hour ; Air 
Injection velocity = 90 m/s 

Figure 0-5: Initial and Final Particle Size 
Distribution for a test with 100 grams of Group A 
equilibrium FCC particles during one hour ; Air 
Injection velocity = 180 m/s 
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Table 0-1: Results for jet cup testing repetitions on the three solids of interest 

Solids Test number Coefficient D Coefficient E 

Group A equilibrium 
FCC 

Test 1 15.2 5.8 
Test 2 11.5 6.1 
Test 3 13.3 6.9 
Test 4 13.6 7 
Test 5 13.5 6.8 
Test 6 14.2 6.7 

Average / Standard 
deviation 

13.5 / 1.2 6.5 / 0.5 

Group B fresh oxygen 
carrier 

Test 1 12.9 1.2 
Test 2 11.2 3.2 
Test 3 11.9 2.8 
Test 4 13.3 0.5 
Test 5 11.3 2.1 
Test 6 12.3 2 

Average / Standard 
deviation 

12.15 / 0.8 2 / 1 

Group B equilibrium 
oxygen carrier 

Test 1 34.7 6.9 
Test 2 31.8 7.2 

Average / Standard 
deviation 

33.2 / 2 7.1 / 0.2 
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Appendix 2 20 cm fluidized bed experiments characteristic  
 

Characteristic of the porous media used for gas injection at the column bottom 
 

- Characteristics: Poral in copper, class 15, diameter 212 mm, thickness 5 mm 
 
http://sintertech.org/fr/wp-content/uploads/sites/10/2014/08/2016_04_Brochure-SINTERTECH-PORAL-
compressed.pdf 
 

 
Figure 0-6: Porous media pressure drop versus gas flowrate 

 
Fiber probes acquisition system used at IFPEN 
 

 
Figure 0-7: Signal Acquisition set 

 
- A: Light intensity adjustment    - C:Signal Gain adjustment 
- B: Signal Offset adjustment 

B 

A 

C 

http://sintertech.org/fr/wp-content/uploads/sites/10/2014/08/2016_04_Brochure-SINTERTECH-PORAL-compressed.pdf
http://sintertech.org/fr/wp-content/uploads/sites/10/2014/08/2016_04_Brochure-SINTERTECH-PORAL-compressed.pdf
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Figure 0-8: Schweitzer et al., Method to determine the transition between emulsion and bubble phases 

from the optical probe histogram signal values 
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Appendix 3 PSRI 90 cm fluidized bed distributor design 
 
 

 

Figure 0-9: Distributor dimensions in inches 
 

 

 

Figure 0-10: Distributor dimensions in inches 
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Appendix 4 30 cm riser experiments 
 
 

 

Figure 0-11: Pressure profile measurement example (Flux of 160 kg/m2/s, Vsg = 8.15 m/s) 
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Figure 0-12: Riser experiments carried out at IFP Energies Nouvelles in 2001 on a 31 cm riser with FCC 
particles. Investigation of the pseudo isokinetic probe profile repeatability using two riser ports opposite 

to each other (port 1 and port 4) 
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Appendix 5 fvSolution file for OpenFOAM simulations 
 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "system"; 
    object      fvSolution; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
solvers 
{ 
    "alpha.*" 
    { 
        nAlphaCorr      1; 
        nAlphaSubCycles 2; 
 
        smoothLimiter   0.1; 
 
        implicitPhasePressure yes; 
        solver          smoothSolver; 
        smoother        symGaussSeidel; 
        tolerance       1e-9; 
        relTol          0; 
        minIter         1; 
    } 
 
    p_rgh 
    { 
        solver          GAMG; 
        smoother        DIC; 
        tolerance       1e-8; 
        relTol          0; 
    } 
 
    p_rghFinal 
    { 
        $p_rgh; 
        relTol          0; 
    } 
 
    "U.*" 
    { 
        solver          smoothSolver; 
        smoother        symGaussSeidel; 
        tolerance       1e-5; 
        relTol          0; 
        minIter         1; 
    } 
 
    "(h|e).*" 
    { 
        solver          smoothSolver; 
        smoother        symGaussSeidel; 
        tolerance       1e-6; 
        relTol          2; 
        minIter         0; 
 maxIter  0;  
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    } 
 
    "Theta.*" 
    { 
        solver          smoothSolver; 
        smoother        symGaussSeidel; 
        tolerance       1e-6; 
        relTol          0; 
        minIter         1; 
    } 
 
    "(k|epsilon).*" 
    { 
        solver          smoothSolver; 
        smoother        symGaussSeidel; 
        tolerance       1e-5; 
        relTol          0; 
        minIter         1; 
    } 
} 
 
PIMPLE 
{ 
    nOuterCorrectors 3; 
    nCorrectors      1; 
    nNonOrthogonalCorrectors 0; 
} 
 
relaxationFactors 
{ 
    equations 
    { 
        ".*"            1; 
    } 
} 
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Appendix 6 fvSchemes file for OpenFOAM simulations 
 
 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "system"; 
    object      fvSchemes; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
ddtSchemes 
{ 
    default     Euler; 
} 
 
gradSchemes 
{ 
    default     Gauss linear; 
} 
 
divSchemes 
{ 
    default                         none; 
 
    "div\(phi,alpha.*\)"            Gauss vanLeer; 
    "div\(phir,alpha.*\)"           Gauss vanLeer; 
 
    "div\(alphaRhoPhi.*,U.*\)"      Gauss limitedLinearV 1; 
    "div\(phi.*,U.*\)"              Gauss limitedLinearV 1; 
 
    "div\(alphaRhoPhi.*,(h|e).*\)"  Gauss limitedLinear 1; 
    "div\(alphaRhoPhi.*,K.*\)"      Gauss limitedLinear 1; 
    "div\(alphaPhi.*,p\)"           Gauss limitedLinear 1; 
 
    div(alphaRhoPhi.particles,Theta.particles) Gauss limitedLinear 1; 
 
    "div\(alphaRhoPhi.*,(k|epsilon).*\)"  Gauss limitedLinear 1; 
 
    div((((alpha.air*thermo:rho.air)*nuEff.air)*dev2(T(grad(U.air))))) Gauss linear; 
 
    
div((((thermo:rho.particles*nut.particles)*dev2(T(grad(U.particles))))+(((thermo:rho.particles*lambda.particles)*div(phi.partic
les))*I)))  Gauss linear; 
} 
 
laplacianSchemes 
{ 
    default     Gauss linear uncorrected; 
    bounded     Gauss linear uncorrected; 
} 
 
interpolationSchemes 
{ 
    default     linear; 
} 
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snGradSchemes 
{ 
    default     uncorrected; 
    bounded     uncorrected; 
} 
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Appendix 7   20 cm fluidized bed experiment n°1 Barracuda VR® 

simulations 
 

 

Figure 0-13: 470 000 cells Barracuda VR® mesh, cell size of 5mm 
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Figure 0-14: Simulation n°1 Barracuda VR®, Default Barracuda VR® parameters, Comparisons of solid 
volume fraction profiles in the North South direction, experiment n°1 homogeneous injection 

 
 

 
Figure 0-15: Simulation n°2 Barracuda VR®  drag modified with multiplier of 0.4 , Comparisons of solid 

volume fraction profiles in the North South direction, experiment n°1 homogeneous injection 
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Figure 0-16: Simulation n°3bis Barracuda VR® drag modified with multiplier of 0.6 and modified 

bottom injection distribution, Comparisons of solid volume fraction profiles in the North South direction,  
experiment n°1 homogeneous injection 

 

 
Figure 0-17: Simulation n°3bis Barracuda VR® drag modified with multiplier of 0.6 and modified bottom 

injection distribution, Comparisons of solid volume fraction profiles in the West East direction,  
experiment n°1 homogeneous injection 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6


S

Experiment n°1 homogeneous injection

North / South 

 simulation, position 1 

 simulation, position 2 

 simualtion, position 3 

radial position (m)

 Experiment, position 1 

 Experiment, position 2

 Experiment, position 3

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6


S

Experiment n°1 homogeneous injection

West / East 

 simulation, position 1 

 simulation, position 2 

 simualtion, position 3 

radial position (m)

 Experiment, position 1 

 Experiment, position 2

 Experiment, position 3



 

 213 

Experiment n°1: Homogeneous injection 

  

  

  
Figure 0-18: Effect of mesh size Barracuda VR®, default Barracuda VR® drag multiplier of 0.4 and 

modified bottom injection distribution, Comparisons of solid volume fraction profiles  
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Experiment n°1: Homogeneous injection 

  

  

  
Figure 0-19:  Barracuda VR® coarse mesh, Effect of clouds number VR, default Barracuda VR® drag 

multiplier of 0.4 and modified bottom injection distribution, Comparisons of solid volume fraction 
profiles  
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Appendix 8  20 cm fluidized bed experiment n°1 OpenFOAM  simulations 
 
 
 

  
Figure 0-20: Hexahedral mesh Figure 0-21:Tetrahedral mesh 
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Figure 0-22: Simulation n°1 openFOAM, default Barracuda VR® drag, Comparisons of solid volume 

fraction profiles in the West East direction, experiment n°1 homogeneous injection 
 

 
Figure 0-23: Simulation n°2 openFOAM, default Barracuda VR® drag with multiplier of 0.4, 

Comparisons of solid volume fraction profiles in the West East direction, experiment n°1 homogeneous 
injection 
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Experiment n°1: Homogeneous injection 

  

  

  
Figure 0-24: Simulation n°3 and simulation n°4  openFOAM, default Barracuda VR® drag with clustering 

approach, Comparisons of solid volume fraction profiles in the West East direction, experiment n°1 
homogeneous injection 
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Experiment n°1: Homogeneous injection 

  

  

  
Figure 0-25: Simulation n°5 and simulation n°9  openFOAM, Gidaspow drag law with clustering 

approach, Comparisons of solid volume fraction profiles in the West East direction, experiment n°1 
homogeneous injection 
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Experiment n°1: Homogeneous injection 

  

  

  

Figure 0-26: Mesh effect  openFOAM, Gidaspow drag law with clustering effect, Comparisons of solid 
volume fraction profiles in the West East direction, experiment n°1 homogeneous injection 
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Experiment n°1: Homogeneous injection 

  

  

  
Figure 0-27: Cell type effect openFOAM, Gidaspow drag law with clustering effect, Comparisons of 

solid volume fraction profiles in the West East direction, experiment n°1 homogeneous injection 
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Experiment n°1: Homogeneous injection, tetrahedral cells 

  

  

  
Figure 0-28: Size effect with tetrahedral cells openFOAM, Gidaspow drag law with clustering effect, 

Comparisons of solid volume fraction profiles in the West East direction, experiment n°1 homogeneous 
injection 
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Appendix 9   20 cm fluidized bed experiment n°1 Barracuda VR® 

simulations, analysis to define simulation steady state 
 

 
Figure 0-29: Simulation n°3 drag modified with multiplier of 0.4 and modified bottom injection 

distribution, Pressure profile, influence of the average period 
 

 
Figure 0-30: Simulation n°3 drag modified with multiplier of 0.4 and modified bottom injection 

distribution, Entrainment rate versus simulation time (s) 
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Figure 0-31: Simulation n°3 drag modified with multiplier of 0.4 and modified bottom injection 

distribution, Effect of time average period on solid volume fraction profile result, north south direction, 
position 1 
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Appendix 10   20 cm fluidized bed experiment n°2 Barracuda VR® 

simulations 
 
 

  

  

  

Figure 0-32: Barracuda VR® simulations, optimized parameters, mesh size effect, 20 cm fluidized bed 
experiment n°2 
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Appendix 11   20 cm fluidized bed experiment n°2 openFOAM simulations 
 

  

  

  

Figure 0-33: openFOAM simulations, optimized parameters, mesh size effect, 20 cm fluidized bed 
experiment n°2 
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Figure 0-34: openFOAM simulations, optimized parameters, mesh type effect, 20 cm fluidized bed 

experiment n°2 
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Figure 0-35: OpenFOAM simulations, optimized parameters, mesh size effect with tetrahedral cells, 20 

cm fluidized bed experiment n°2 
 
  

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 80k cells

 470k cells


S

    Position 1 (low)

 North / South 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 80k cells

 470k cells


S

    Position 1 (low)

 West / East 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 80k cells

 470k cells


S

    Position 2 (intermediate)

      North / South 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 80k cells

 470k cells


S

    Position 2 (intermediate)

         West / East 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 80k cells

 470k cells


S

        Position 3 (high)

      North / South 

-0.10 -0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

radial position (m)

 Experiment

 80k cells

 470k cells


S

        Position 3 (high)

      West / East 



 

 228 

 

Appendix 12   90 cm fluidized bed simulation 
 

Table 0-2: OpenFOAM Boundary conditions types for the gas and solid phases 
 U.air alpha.air p_rgh 

Nozzles tip 
InletVelocity calculated from 

Nozzle tip velocity 
fixed value 1; fixedFluxPressure 

Dipleg return 

InletVelocity 
Value changed dynamically 

with respect to entrainment rate 
fixed value 0.52; fixedFluxPressure 

Top outlet 
pressureInletOutlet 

Velocity 
zeroGradient; 

prghPressure; 
p uniform 136 325; 

walls 
fixedValue; 

uniform (0 0 0); 
zeroGradient; fixedFluxPressure 

 
 U.particles alpha.particles Theta.particles 

Nozzles tip 
fixedValue; 

uniform (0 0 0); 
fixed value 0; 

fixedValue; 
value uniform 1e-4; 

Dipleg return 

InletVelocity 
Value changed dynamically 

with respect to entrainment rate 
fixed value 0.48; 

fixedValue; 
value uniform 1e-4; 

Top outlet pressureInletVelocity zeroGradient; zeroGradient; 

walls 

JohnsonJacksonParticlesSlip; 
specularityCoefficient 0.01; 

value uniform (0 0 0); 
zeroGradient; 

JohnsonJacksonTheta
; 

specularityCoefficient 
0.01; 

restitutionCoefficient 
0.85; 

 
 

 
Figure 0-36: openFOAM simulations, 90 cm fluidized bed experiment, entrainment rate for superficial 

gas velocity of 0.6 m/s 
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Figure 0-37: Barracuda VR® simulations, 90 cm fluidized bed experiment, pressure at a bed height of 3 

meters superficial velocity of 0.6 m/s 
 

 
Figure 38: Barracuda VR® simulations, 90 cm fluidized bed experiment, pressure at a bed height of 3.2 

meters superficial velocity of 0.6 m/s 
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Figure 0-39: openFOAM simulations, 90 cm fluidized bed experiment, bed density profiles, set n°1 

default representative diameters distribution 
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Appendix 13   Riser simulations with openFOAM 
 

Table 0-3: OpenFOAM Boundary conditions types for the gas and solid phases 
 U.air alpha.air p_rgh 

Bottom inlet 
InletVelocity calculated from 

fluidization ring velocity 
fixed value 0.48; fixedFluxPressure 

Jet gas inlet 

InletVelocity 
calculated to match superficial 

gas velocity at the riser top 
fixed value 1; fixedFluxPressure 

Top outlet 
pressureInletOutlet 

Velocity 
zeroGradient; 

prghPressure; 
p uniform 110 000; 

walls 
fixedValue; 

uniform (0 0 0); 
zeroGradient; fixedFluxPressure 

 
 U.particles alpha.particles Theta.particles 

Bottom inlet 
InletVelocity calculated from 

solid flowrate 
fixed value 0.52; 

fixedValue; 
value uniform 1e-4; 

Jet gas inlet 
fixedValue; 

uniform (0 0 0); 
fixed value 0; 

fixedValue; 
value uniform 1e-4; 

Top outlet pressureInletVelocity zeroGradient; zeroGradient; 

walls 

JohnsonJacksonParticlesSlip; 
specularityCoefficient 0.01; 

value uniform (0 0 0); 
zeroGradient; 

JohnsonJacksonTheta
; 

specularityCoefficient 
0.01; 

restitutionCoefficient 
0.85; 
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Figure 0-40: Riser simulation with a solid flux of 220 kg/m2/s, drag from fluidized bed simulations and 

drag modified n=1.3 ; 1 =0.02, total particles mass in the riser versus time 
 
 

 
Figure 0-41: Riser simulations; drag modified n=1.3 ; 1 =0.02, total particles mass in the riser versus 
time 
 

0 5 10 15 20 25 30 35 40 45 50

20

40

60

80

100

120

140
T

o
ta

l 
p

a
rt

ic
le

s
 m

a
s
s
 i
n

 r
is

e
r 

(k
g

)

Simulation time (s)

 Drag model from fluidized bed simulations

 Drag model modified with slip factor

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

T
o
ta

l 
p

a
rt

ic
le

s
 m

a
s
s
 i
n

 r
is

e
r 

(k
g

)

Simulation time (s)

 Flux of 77 kg/m2/s

 Flux of 162 kg/m2/s



 

 233 

 
 

  

  
Figure 0-42: Riser simulation with a solid flux of 220 kg/m2/s, drag modified n=1.3 ; 1 =0.02, local flux 

reconstruction; (a) mean solid volume fraction ; (b) mean solid axial velocity ; (c) local solid flux 
 
 
 
 

(a) 

(b) 

(c) 



 

 234 

 

 

  

 

  

Figure 0-43: Simulation with a flux of 77 kg/m2/s, 
Drag modified n=1.3 and A =0.02 solid volume 

fraction instantaneous and averaged profiles  

Figure 0-44: Simulation with a flux of 77 kg/m2/s 
Drag modified n=1.3 and A =0.02 Solid volume 

fraction higher than 0.03 with negative solid 
axial velocity 
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Figure 0-45: Simulation with a flux of 162 kg/m2/s, 
Drag modified n=1.3 and A =0.02 solid volume 

fraction instantaneous and averaged profiles  

Figure 0-46: Simulation with a flux of 162 
kg/m2/s Drag modified n=1.3 and A =0.02 Solid 
volume fraction higher than 0.06 with negative 

solid axial velocity 
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Figure 0-47: Simulation and experimental local 
flux profile at a height of 12 meters, flux of 77 

kg/m2/s 

Figure 0-48: Simulation and experimental local 
flux profile at a height of 12 meters, flux of 162 

kg/m2/s 
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