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Acknowledgements
First of all, I would like to thank a lot my two thesis advisers Laurent and Denis for initially
suggesting me the subject of vortex meandering, which turned out to be a very challenging
and interesting topic, covering very different areas of physics, fluid mechanics, mathematics
and experiments. The liberty they let me in choosing my approaches and their confidence
cannot be acknowledged enough.

I am grateful to Laurent, whose great background in physics in general and the problem
of vortex meandering in particular was always a great source of inspiration. His motivation
and support in the right moments were very helpful.

I will never forget the long and intense discussions we had with Denis (especially con-
cerning the JFM), where he put into question many of my ideas. I recognise that he was
mostly right with his suggestions – although I was sometimes frustrated and did not want
to hear it – and I wish to say that he taught me a lot! It was a real pleasure to work with
him and to try to defend my ideas against his extremely valuable criticism and ingenuity.

Of course, the greatest thanks go to my supervisor Vincent who was always there for
me in all respects and at all time. His passion and expertise were of highest value for the
preparation of this thesis; I enjoyed a lot the many discussions we had and the experience
he shared with me. I hope that there will be a way to continue this work one day together.

Eventually, I would like to thank Jean-Christophe for his implication in the preparation
of this thesis; what started as a collaboration finally turned into an additional supervision.
I am very grateful for all the discussions we had (mostly together with Denis and Vincent)
and which helped to improve my studies. His impressive background in fluid mechanics
and mathematics was always an important source.

It was finally to a large part the fellow PhD and post-doc students at ONERA to whom
I am thankful for the very good time that I passed at Meudon. Remaining particularly good
souvenirs are the very friendly welcome of Nicolas with whom I had the pleasure to share
the office during the first couple of months and the many long discussions with Navrose
over all problems of fluid mechanics; it was him who reminded me that PhD means Doctor
of Philosophy. I also would like to thank Jahnavi and Catherine for the many exhaustive
discussions we had on turbulence, its modelling and mathematics. I will always remember
these good moments we passed.

And last but not least, I am very grateful for the investment, excellent suggestions and
comments of all jury members. Thanks a lot GertJan van Heijst and Stéphane Le Dizès
for the interest in reading my manuscript and the valuable remarks. And of course many
thanks to Pierre Brancher and Carlos del Pino for their curious questions and suggestions.



ii



Contents

1 Introduction 1

2 Characterization of vortex meandering 3
2.1 Canonical configuration and experimental parameter space . . . . . . . . . . . 3

2.1.1 Geometric parameters – characterization of the observation domain
and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Fluid parameters – characterization of the flow field . . . . . . . . . . 7
2.1.3 The typical evolution of wing wakes . . . . . . . . . . . . . . . . . . . . 8

2.2 Vortex notions in the present context . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 The dynamic–kinematic duality of vortices . . . . . . . . . . . . . . . . 10
2.2.2 Partition of the fluid domain . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 The scales of vortex dynamics . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 What is vortex meandering? A first definition . . . . . . . . . . . . . . . . . . 18
2.4 Specific characterization of trailing-vortex meandering . . . . . . . . . . . . . 20

2.4.1 Characterization in physical space . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Characterization in frequency space . . . . . . . . . . . . . . . . . . . . 26

3 Discussion of the possible mechanisms 35
3.1 Extrinsic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Intrinsic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 First mechanism: Brownian meandering? 45
4.1 A dimensional argument: the scaling law . . . . . . . . . . . . . . . . . . . . . 45
4.2 Derivation from the Navier–Stokes equations . . . . . . . . . . . . . . . . . . . 49

5 Second mechanism: return to order! 51
5.1 Organization and low-dimensionality in wing wakes . . . . . . . . . . . . . . . 51

5.1.1 Is there a universal scaling law of the meandering frequency? . . . . . 52
5.1.2 Is meandering a stochastic or coherent dynamics? . . . . . . . . . . . . 52

5.2 An analogy between vortices and rotating turbulence . . . . . . . . . . . . . . 61
5.2.1 Entrainment and persistence: is there fluid exchange with the free

stream? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Transition from three- to two-dimensional dynamics: a different view

on the wake evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Third mechanism: energy amplification via mother–daughter interplay 69
6.1 Vortex–turbulence interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 The distinct characteristics of vortex and free-stream dynamics . . . 70
6.1.2 Bi-directional vortex–turbulence coupling . . . . . . . . . . . . . . . . . 73

6.2 Energy transfer and the mother–daughter mechanism . . . . . . . . . . . . . . 76
6.2.1 The integral fluctuation-energy balance . . . . . . . . . . . . . . . . . . 76

iii



Contents

6.3 Linear receptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.1 Analysis in frequency space: the resolvent . . . . . . . . . . . . . . . . 88
6.3.2 Analysis in time domain: transient growth . . . . . . . . . . . . . . . . 89

7 Some final thoughts 97

8 Conclusion 99

Bibliography 101

A Details of the experiments 113
A.1 Presentation of the experimental configuration . . . . . . . . . . . . . . . . . . 113
A.2 Symbols of the experiments in figs. 2.2, 2.4 and 3.1 . . . . . . . . . . . . . . . 114
A.3 Details of the experiments in fig. 4.3 . . . . . . . . . . . . . . . . . . . . . . . . 115
A.4 Details of the experiments in fig. 5.7 . . . . . . . . . . . . . . . . . . . . . . . . 115

B Brownian meandering 117

C The linear receptivity of vortices in frequency space 123

D Long French résumé 153

iv



Recurrent notations and definitions

b Wing span
b̃ Spacing of the trailing-vortex

pair
c Chord length
d Dimension of physical space

(= 2 or 3)
Eu(ω) Power spectral density of the

signal u(t)
f Real-valued frequency (∈ R)
i, j, . . . Other indices (∈ 0, . . . ,∞)
L2(A) Space of square-integrable

functions on A
M Fluid domain
q Swirl number (defined in

(2.13))
r0 Dispersion radius
r1 Core radius
r2 Support radius
Rc Chord-based Reynolds num-

ber
RΓ Circulation-based Reynolds

number
Rδ Axial-velocity-deficit-based

Reynolds number
S Strouhal number
s Complex-valued frequency (∈

C)
T Time interval
tc Advection time (∶= cU−1

∞ )
tr Rotation time (∶= Ω−1

0 )
u(t,x) Root-mean-square velocity
U ,u Mean and fluctuation velo-

city
U∞ Free-stream velocity
W ,w Mean and fluctuation vorti-

city

X(t) Vortex centre (random pro-
cess)

x(t) Realization of vortex-centre
random experiment

x, y, z Coordinates of the earth-
fixed frame

x1, x2 Coordinates of the
laboratory-fixed frame

α Angle of incidence
αz Streamwise wavenumber
α,β, . . . Spatial indices (∈ 1, . . . , d)
δ Correlation dimension
Γ(r) Circulation
Γ0 Initial circulation
Γ∞ Circulation at infinity (∶=

Γ(r →∞))
µX Probability density of the

random variable X
ν Kinematic viscosity
ρu(τ) Autocorrelation of the sig-

nal u(t) for the time lag τ
σ(t) Vortex centre standard devi-

ation (∈ R2)
σ(L) Spectrum of the linear oper-

ator L
Ω0 Mean angular velocity on

the vortex axis
ω Real-valued angular fre-

quency (= 2π f)
DNS Direct Numerical Simula-

tion
HWA Hot-Wire Anemometry
LDV Laser Doppler Velocimetry
PIV Particle Image Velocimetry
POD Proper Orthogonal Decom-

position
PSD Power Spectral Density

– A tilde ∼ between two statements a and b: a ∼ b – means that a and b are of the same
order.
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– If they are approximately the same, we write a ≈ b.
These two notions are mathematically not well defined.
– a ∶= b means that a is equal to b by definition.
– The big-O notation (Landau symbols), e.g. f(x) = O(g(x)) (x → x0), is defined in

Dahmen & Reusken (2008, p. 20).
– Sets are denoted as: (a, b) = ’all real elements between a and b, the limits not being

included’; [a, b] is the same but with the limits included; {a, b, . . .} = ’list of given elements’.
– Angle brackets are used for all types of averages: ⟨a⟩ denotes either the mathematical

expectation (probability measure µ), the ensemble average or the time average.
– An asterisk superscript ∗ denotes complex conjugation.
– Subscript 0 = theoretical values; 1 = evaluation at core radius (e.g. U1,Γ1).
– The real and imaginary part of a complex number z are zr and zi, such that z = zr+izi,

and i2 = −1 the imaginary unit.
– In the case of Eulerian observables (e.g. the velocity or vorticity field), capital letters,

U (say), denote the mean flow and lowercase letters fluctuations, such that U + u is the
Reynolds decomposition of the whole velocity field. In contrast, the vortex centre random
process is denoted with the capital letter X(t), while a particular realization is x(t); the
mean centre position is ⟨X(t)⟩.

– Concatenation of a matrix A with a vector x or another matrix B indicates a matrix-
vector (resp. matrix-matrix) product Ax ∶= ∑lAklxl; the same as Af means application of
the operator A to the function f .

– Scalar products are defined as follows:

(a,b)Cn ∶= n∑
l=1
al b

∗
l

(a,b)Rn ∶= n∑
l=1
al bl

(a,b)L2(A) ∶= ∫
A
dmx

n∑
l=1
al(x) b∗l (x)

The induced norms are denoted as ∣∣a∣∣2Rn ∶= (a,a)Rn and the like.
The modulus of a scalar z ∈ C (or R) uniformly reads ∣z∣ ∶= √

z z∗ (or ∶= √
z2), as the

case may be.
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1 | Introduction

Wenn jene suchenede Lust in mir ist, die nach
Unentdecktem die Segel treibt, wenn eine
Seefahrer-Lust in meiner Lust ist: Wenn je mein
Frohlocken rief: »die Küste schwand , – nun fiel mir
die letzte Kette ab – das Grenzenlose braust um
mich, weit hinaus glänzt mir Raum und Zeit,
wohlan! wohlauf! altes Herz!«

— F. Nietzsche: Also sprach Zarathustra

The mean and turbulence characteristics of (trailing) vortices are of considerable im-
portance, determining lifetime, persistence and breakdown. However, the ’actual’ or ’true’
turbulence activity is overshadowed by an undulation of the ’vortex’ which adds significant
(fictitious) Reynolds stresses without impacting mixing, diffusion and persistence.

In the scope of (first-order) lifting-line theory, ’trailing vortices are straight lines’
(Prandtl, 1918, p. 25),1 while the reality is shown in fig. 1.1 – Fixed-point measurements
of the ’actual’ velocity fields in wind-tunnel experiments are obscured by the phenomenon
of vortex wandering or meandering, manifesting as an erratic side-to-side motion2 at a
given downstream position (Green & Acosta, 1991, p. 107; Devenport et al., 1996, p. 73).
From a practical point of view, this apparently random oscillation has a significant ef-
fect on ’measured’ vortex data, essentially resulting in an increased core radius, while the
peak tangential velocity is decreased (Corsiglia et al., 1973, p. 756; Baker et al., 1974,
pp. 331–332). Jacquin et al. (2001, p. 1) state that vortex meandering constitutes ‘the
main manifestation of unsteadiness . . . observed in wind-tunnel experiments’.

The phenomenon is recurrently observed since the 1970s (Corsiglia et al., 1973), how-
ever, ‘’vortex meandering’ . . . still escapes our understanding in spite of its universal charac-
ter’ (Jacquin et al., 2005, p. 400). Still about five years ago, Edstrand et al. (2016, pp. 1–2)
state that ‘although this phenomenon has been observed in experiments for decades, the
underlying mechanism that causes the wandering remains uncertain’.

One of the most puzzling controversies is the duality between apparently stochastic
meandering motion, while at the same time the evolution of wing wakes is remarkable in
that it is not associated with global decay but rather with the establishment of orderliness
and the progressive concentration of vorticity and energy in the vortex. Indeed, it is typical
of vortex experiments that, concomitantly with overall energy decay, non-axisymmetric
complex waves develop in the core (Hussain et al., 2011, p. 309). Vortex meandering is
typically characterized as this coherent low-frequency motion which seems to be universal
for (wind-tunnel-generated) vortices (Devenport et al., 1996, pp. 67, 73).

As of this writing, the two essential problems in this context can be formulated as –
What is vortex meandering and why do vortices meander?

1In Prandtl, L.; Betz, A. (editor: A. Dillmann): Vier Abhandlungen zur Hydrodynamik und Aerodynamik.
Göttinger Klassiker der Strömungsmechanik. Vol. 3.

2The meaning of the word ’motion’ is defined in Truesdell (1954, p. 29) and Engel & Nagel (2000, p. 533).

1



Chapter 1. Introduction

In this regard, they are concerned with two fundamental questions, namely the manifest
nature (Sein) and the dynamic causality (Werden). In other words, the objective of the
present study is to answer the question – What are the main characteristics and governing
mechanisms of vortex meandering?

x
(t)−

⟨X⟩

t y(t) − ⟨Y ⟩
Figure 1.1: Vortex meandering in a measurement plane at z = 26 c of the PIV measurements
presented in appendix A.1. (a) Lateral vortex-centre displacement in the x−coordinate over
time t (duration of the ’actual’ experiment). (b) Vortex-centre scattering in the plane.

Outline. This question leads us to globally structuring the following treatise into
two blocks, dealing with the characterization (chapter 2) and governing mechanisms
(chapters 3–6) of vortex meandering, respectively. In some sense, chapter 2 is a pre-
paration for the following chapters 3–6 in the sense that we first must know what the
phenomenon is, before we can make any attempt to explain it.

The first block (chapter 2) is divided into four parts. To start with, it will be necessary
to present the minimal experimental configuration needed to observe the phenomenon
and introduce the relevant notation. From a semantic point of view, vortex meandering
concerns the particular motion of a fluid object – the vortex. In order to make sense of
this expression, we define what is meant by a vortex in the scope of the present study and
what meandering consists of. This first general definition of the meandering motion is then
refined for the case of trailing vortices in the last part of chapter 2. This analysis leads
to the identification of three fundamental characteristics indispensably associated with the
meandering of (trailing) vortices. Any comprehensive model therefore must explain at least
these three aspects of the dynamics.

In the first part of the second block (chapter 3), we confront the previously suggested
explanation approaches with these minimal characteristics. This discussion leads us to
the conclusion that the meandering dynamics shares important aspects of intrinsic and
extrinsic mechanisms and propose to model it in terms of a generalized receptivity. We then
proceed to propose models for the three main meandering characteristics in chapters 4–6.
We terminate with some final thoughts and a conclusion in chapters 7–8.

In the words of J. W. von Goethe – Was also ist des Pudels Kern?
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2 | Characterization of vortex me-
andering

The formation of large, isolated vortices is an
extremely common, yet spectecular phenomenon in
unsteady flow. Its ubiquity suggests an explanation
on statistical grounds.

— L. Onsager: Statistical Hydrodynamics

The objective of this chapter is to answer the question, what is vortex meandering? A
clear statement of what the problem consists of, is necessarily the first step in explaining
it. This is beautifully expressed by F. Nietzsche (Also sprach Zarathustra) –

Habe ich – noch ein Ziel? Einen Hafen, nach dem mein Segel läuft?
Einen guten Wind? Ach, nur wer weiss, wohin er fährt, weiss auch, welcher
Wind gut und sein Fahrtwind ist.1

To this end, we review the literature in conjunction with the exploration of an experi-
mental database gathered at ONERA, which is shortly presented in appendix A.1. The
thus deduced universal characteristics form the basis for the subsequent discussion of the
governing mechanisms and modelling approaches.

2.1 Canonical configuration and experimental parameter
space

L’expérience est la source unique de la verité : elle
seule peut nous apprendre quelque chose de
nouveau ; elle seule peut nous donner la certitude.

— H. Poincaré: La Science et l’hypothèse

Before formulating an operational definition of vortex meandering in sections 2.2–2.4,
it is necessary to recall the general circumstances under which the phenomenon is observed
– that is, under which it is custom to refer to it.

Vortex meandering is a robust feature of trailing-vortex experiments observed for vari-
ous models and wing shapes, such as rectangular full-wing (Corsiglia et al., 1973; Baker
et al., 1974) and half-wing configurations (Devenport et al., 1996; Roy & Leweke, 2008;
Edstrand et al., 2016) as well as Delta wings (Gursul & Xie, 2000), fins (Beresh et al.,
2010) and flat plates (Rokhsaz et al., 2000; Navrose et al., 2019) and model aeroplanes

1Have I – still a goal? A haven towards which my sail is set? A good wind? Ah, he only who knows
where he sails, knows what wind is good, and a fair wind for him.
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Chapter 2. Characterization of vortex meandering

(Jacquin et al., 2001). This variety of vortex generators suggests that the occurrence of
meandering is not restricted to a particular shape, geometry or configuration of the vortex
generator. Closer inspection even suggests that the mean characteristics of vortex mean-
dering are essentially unaffected by these geometric details2 and, therefore, can be studied
for a canonical rectangular half-wing flow sketched in fig. 2.1. Or, more drastically, all that
is needed to observe vortex meandering is the existence of a vortex (perhaps embedded
into an unsteady flow).

We assume an incompressible fluid with constant, homogeneous material properties.
The problem to solve are the incompressible Navier–Stokes equations (viscosity ν ≥ 0)

(2.1) ∂tu = Nν(u, p), div u = 0, in M ⊂ R3

subject to boundary conditions on ∂M and an initial condition in M . The choice of
boundary conditions and fluid parameters will be discussed below.

While there is no unanimous agreement whether meandering manifests for trailing
vortices in the atmosphere, as a matter of fact it is observed in experiments. The present
work focuses on explaining experimental meandering. The first step, namely abstracting
experiments into a mathematical model, is guided by the question: What is indispensable?
More precisely, we explore the possibility of geometrical restrictions. Is there a correlation
between the experimental configuration (chord length, wing profile, aspect ratio, angle of
incidence) and the meandering characteristics? If so, what are the minimum requirements
for the setup to observe meandering? Or, can we conceive of an experiment where we
suppress meandering only by the geometrical arrangement (e.g. placing a particular model
in a particular way)?

Λ = b
c

L

H

B

z,uz

c

y, uy
vortex centreline

x,ux

y, uy

X(t)v2

v1

U∞

wing (a) (b)
Figure 2.1: Schematic of the experimental setting (wind-tunnel dimensions L,B,H), show-
ing a bottom-mounted half wing (chord length c and aspect ratio bc−1). (a) Side view in
the y − z-plane, showing the meandering vortex centreline. (b) Cross-plane cut, showing
the instantaneous vortex-centre position X(t) and the variance ellipse (red) spanned by
the eigenvectors v1, v2 of the covariance tensor of the vortex-centre position.

2.1.1 Geometric parameters – characterization of the observation do-
main and boundary conditions

A schematic of the canonical configuration is shown in fig. 2.1. Unless the particular
facility is of importance, we shall conveniently refer to wind tunnels synonymously for all
experiments. Length and width of the experimental facility are denoted L and

√
H2 +B2,

respectively; the geometry of the facility may be cylindrical.
2Nevertheless, some footprint of the vortex generator in the meandering characteristics can be expected,

as it is responsible for the vortex formation; for instance, the angle of incidence determines the circula-
tion. The statement must be understood in the sense that, as soon as the circulation (and perhaps other
parameters) is fixed, the mere origin becomes unimportant.
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2.1. Canonical configuration and experimental parameter space

– The geometrical details of the vortex generator are not discussed in this work. If
necessary, we merely assume a rectangular shape, defined by the chord length c and span
b; the aspect ratio is defined by bc−1.

– We assume a Cartesian coordinate system {x, y, z} with z pointing in the direction of
the free-stream velocity U∞, y outwards along the trailing edge and x in order to obtain a
right-handed system (the corresponding unit vectors are {ex,ey,ez}). The corresponding
velocity components ul are labelled alike. Unless stated otherwise, capital letters (of velo-
city and vorticity) indicate mean values with respect to a sensible average. Angle brackets
Φ = ⟨φ⟩ are used to denote all kinds of averages (mathematical expectation, ensemble or
time average) and we assume all prerequisites to be fulfilled for their equivalence. Lower-
case letters ϕ usually stand interchangeably for fluctuations3 or perturbations4 such that
φ = Φ + ϕ.

– The circulation of the velocity u around the closed curve ∂S (infinitesimal element
ds and tangent vector t) is defined by (Truesdell, 1954, p. 10; Landau & Lifšic, 1959, p. 12;
Batchelor, 2000, p. 93)

(2.2) Γ ∶= ∮
∂S

ds (t,u)R3 = ∫
S
d2x (n,∇ ×u)R3 .

Herein, the surface S (infinitesimal element d2x and normal n) is bounded by ∂S. The
second identity in (2.2) is a consequence of Stokes’ theorem, stating that the circulation
of a quantity around a closed circuit equals the flux of its curl across any surface bounded
by the circuit (Truesdell, 1954, p. 13).

Geometry and orientation of the vortex generator. Placing a solid object in the
fluid flow changes the boundary conditions and thus impacts the flow field, depending on
form and orientation of the object.

– The shape of the vortex generator is essentially determined by the wing profile.
Various profiles (including flat plates) and further geometric details (such as rounded tips)
have been examined (e.g. Giuni, 2013). Since we are not aware of any reasonable (lift
producing) configuration which does not result in vortex meandering, this topic is not
further discussed here.

– The aspect ratio in meandering experiments published since its first observation
scatters almost continuously among bc−1 ∈ [2,8.7]. The smallest aspect ratio bc−1 = 1 is
documented for the fin experiments of Beresh et al. (2010). Vortex meandering is reported
in all cases with no obvious trends or correlations.

– The angle of incidence is varied in the range of α ∈ [0○,12○] whereas mostly α =
5○ . . .10○ yielding a no-stall regime. We have considerable evidence that larger angles of
incidence lead to reduced meandering amplitudes.

These geometrical parameters describing shape and orientation of the vortex generator
can be combined to yield the circulation Γ which is an – perhaps the most – important
quantity characterizing the wake intensity (Gerz et al., 2002, pp. 185, 189; Jacquin et al.,
2003, p. 578).5 Its dependence on the form and the orientation (α = angle of incidence) of
the wing is reflected in

(2.3) Γ = 2CL
πbc−1U∞b → Γ

U∞c
∼ CL(shape, α,Rc)

3Latin flūctuātiō, restless motion, indecisiveness (unruhige Bewegung, Unentschlossenheit; Stowasser,
p. 212).

4Latin perturbō, to confuse or disarrange (in Unordnung bringen; Stowasser, p. 378).
5Since vorticity is generated at the boundaries, i.e. the object, (Batchelor, 2000, p. 266) the circulation

is a measure of the integral effect of the vortex generator.
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Chapter 2. Characterization of vortex meandering

showing that the lift coefficient CL is a function of the (complicated) dependencies on the
vortex-generator geometry, inclination, and fluid-flow conditions (Rc is the chord-based
Reynolds number defined in (2.5)).6 Assuming potential theory and using the Kutta–
Joukowski theorem (see also Landau & Lifšic, 1959, pp. 153–155), Prandtl (1923, p. 180)
shows that

(2.4) Γ(α) ∼ sinα,

indicating that the circulation increases nonlinearly with the angle of incidence α. Rela-
tion (2.4) is confirmed in the experiments of Roy & Leweke (2008, p. 17) for the range of
α ∈ [0○,12○], as extrapolated from the discrete set α ∈ {6○,9○,12○}.

Albeit, for the question of vortex meandering, it would seem that these factors inde-
pendently are of secondary importance, while mere vortex generation counts. The im-
portant parameter is probably the circulation. Of course, for a particular configuration
Γ = Γ(shape), however, we expect that the reproducible (statistical) aspects of meandering
should be unaffected by modifications of the shape – which for the rest leave invariant the
circulation. Even more, we postulate that meandering should be similar if the vortex origin
is not a wing (again leaving circulation unchanged), e.g. a tornado (Singh & Uberoi, 1976,
p. 1862 arrive at a similar conclusion).

Conclusion 2.1.1: Restriction to the wake flow

We come to the conclusion that – for questions concerning the statistics of mean-
dering – we can restrict to the wake region assuming the existence of a vortex with
given circulation.

Deducing boundary conditions from the wind-tunnel dimensions. Comparing
experimental arrangements from the first observation in the 1970s until today, we observe
the striking trend that earlier studies emphasized large-dimensional settings and long down-
stream measurement distances (up to about 31 wing spans) while more recent experiments
are carried out in wind-tunnels with comparably smaller cross-sectional dimensions and
significantly shorter measurement distances.

Taken together, we have experimental evidence for vortex meandering over a down-
stream range of roughly zc−1 ∈ [0.5,165]. From the very terminology, vortex meandering
concerns the motion of a vortex. There is agreement that the vortex formation is termin-
ated within one to two chord lengths from the wing. While this range might be crucial
for the origin of meandering, the absence of a well-defined vortex suggests that we cannot
speak of vortex meandering in this range. The upper limit of the observation interval
should be bounded by the onset of cooperative instabilities of the counter-rotating vor-
tex system. The onset of the Crow (1970) instability in realistic landing conditions is
zcrow ≈ 30 b = 0.5 b2 (Fabre & Jacquin, 2004, p. 259). Hence, we expect meandering to be
dominant roughly in z ∈ [c, b2], where the upper bound follows from the Crow instability
(see also Jacquin et al., 2001, p. 17).

Jammy et al. (2014, p. 352) resume that ‘no causal relation between meandering amp-
litude and domain size is known’. In order to assess the influence of the wind-tunnel walls on
the development of an isolated vortex more quantitatively, tab. 2.1 lists the characteristic
dimensions normalized with the vortex-core radius r1 (defined in (2.15)). The shortest
distance for half-wing configurations is typically half the aspect ratio, varying over one
order of magnitude for the listed experiments. For sufficiently short distances the wall-
boundary-layer turbulence might be entrained into the vortex during roll up (Jacquin et

6NASA on https://www.grc.nasa.gov/WWW/K-12/airplane/liftco.html, called 27 Oct 2020.
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2.1. Canonical configuration and experimental parameter space

Table 2.1: Wing and wind-tunnel dimensions normalized with the vortex-core radius r1.

br−1
1 Lr−1

1 Br−1
1 Hr−1

1

Devenport et al. (1996) 290 1200 300 300
Jacquin et al. (2001) – 1071 300 385
Roy & Leweke (2008) 60 300 74 100
Bailey & Tavoularis (2008) 29 240 34 50
Edstrand et al. (2016) 50 – 47 71
Bailey et al. (2018) 69 488 80 120

al., 2001; Beresh et al., 2010). The remaining dimensions equally spread over one order of
magnitude, being at least roughly 50 core radii away. Experiments with a very narrow test
section are presented in Vandernoot et al. (2008, fig. 2). Bailey et al. (2018, p. 726) judge
a distance of about 26 r1 between the (mean) vortex axis and the side walls sufficient to
exclude strong effects from the boundaries. This is consistent with our (linear) studies (cf.
sec. 6.3) which suggest that an interaction of the vortex with its surrounding is restricted
to a fairly narrow free-stream layer (less than 10 r1) around the vortex. The idea was spelt
out that wind-tunnel walls could be modelled analogously to free-stream perturbations.7
This would then imply, however, that (linear) meandering dynamics is not a consequence
of the core excitation by the walls.

As already conjectured by Corsiglia et al. (1973, p. 756), assessment of the available
experimental results suggests that the model scale as well as the wind-tunnel dimensions
have negligible influence on the phenomenon.

Conclusion 2.1.2: Canonical configuration

We are unable to discern any geometrical trends (see also Sarpkaya & Daly, 1987,
p. 401). Thus, meandering can be studied for the canonical setting of an isolated
vortex (e.g. trailing from a rectangular half wing) in a laterally unbounded domain
within downstream distances between about one to two chords and the onset of
cooperative instabilities.

2.1.2 Fluid parameters – characterization of the flow field
We are tempted to ask the same question as in sec. 2.1.1: can we conceive of an ensemble
of fluid parameters which prevents meandering? What are the governing fluid parameters?

Global parameters. For the most part, the phenomenon of vortex meandering was
observed in experiments at sufficiently low Mach numbers that the flow can be considered
as incompressible (in air of about 290 K the Mach number is typically of the order of
M ∶= U∞a−1 ∼ 10−1, a = the speed of sound in the medium). The compressible study of
Beresh et al. (2010, p. 604) found no Mach-number dependence in the rangeM = 0.5 . . .0.8.

By appeal to fig. 2.1, we define the chord-based Reynolds number

(2.5) Rc ∶= U∞c
ν

7By A. Antkowiak and P. Brancher (IMFT Toulouse) according to a private communication with V.
Brion (ONERA Meudon).
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Chapter 2. Characterization of vortex meandering

with the chord length c and the free-stream velocity U∞. Reynolds numbers in wind-tunnel
experiments usually range among

Rc ∈ [2 × 104,107] whereas mostly Rc ∼ 105.

At this Reynolds number the boundary-layer flow at the wind-tunnel walls is turbulent.8
In some experiments the wing was tripped to accelerate transition of the flow past the wing
(e.g. Devenport et al., 1996, p. 70; Bailey & Tavoularis, 2008, p. 284).

The mean measures of vortex meandering would seem to be at best weakly affected
by the Reynolds number (Sarpkaya & Daly, 1987, p. 399; Del Pino et al., 2011, p. 5).
This apparent independence might be a consequence of the fact that the considered range
is systematically above a critical value (Gursul & Xie, 2000, fig. 3 and p. 350). Solitons
observed on vortices in rotating turbulence (Hopfinger et al., 1982; Maxworthy et al.,
1985) might be characteristic of meandering in the lower Reynolds-number range (as also
simulated by Navrose et al., 2019, pp. 417–418). This possibility is further discussed in
sec. 6.3.2.

Free-stream parameters. The strength of the ambient turbulence is measured in terms
of the turbulence intensity (Schlichting, 1997, p. 511)

(2.6) u(t,x)
U∞

∶=
√

1
d⟨∣∣u(t,x)∣∣2Rd⟩

U∞
(d = 1,2,3).

This is the spatio-temporal standard deviation of the Eulerian velocity field. In meandering
experiments, the turbulence intensity varies between

u

U∞
∈ [0.05 %,1.5 %] whereas mostly u

U∞
≲ 0.5 %

if no additional grids are installed. In this case, the free-stream fluctuation velocity (2.6)
can be modelled as a nearly stationary (or streamwise homogeneous) stochastic process with
invariant standard deviation u = const. Grid-turbulence experiments achieve turbulence
intensities up to u(0)U−1

∞ = 2.5 . . .6.8 % at the wing position (with the wing removed),
depending on the grid size (Bailey & Tavoularis, 2008; Pentelow, 2014; Bailey et al., 2018,
pp. 725–726). The integral scales in these experiments range between one and three core
radii at the wing position.

2.1.3 The typical evolution of wing wakes
For the sake of later reference, we briefly recall the common classification of the different
regimes of wing-wake flow. Jacquin et al. (2001, pp. 5–6) [J] classify the wake as being
composed of the following four regions according to the distance from the wing (see also
Gerz et al., 2002, pp. 184, 194, who provide additional typical fluid-flow characteristics)
[G]. The streamwise extent of the regions depends on the Reynolds number (García-Ortiz
et al., 2019, p. 183).

1. Near wake [zc−1 ∼ 1]. The flow field is characterized by the coexistence of the
trailing vortex rolling up at the tips, a spanwise shear layer at the trailing edge and
a streamwise boundary-layer momentum deficit (Bailey et al., 2006, p. 1282). The
dynamics may contain variable contributions from boundary-layer separation, roll up,

8Given that the inflow is at least one chord upstream of the leading edge and the critical Reynolds number
for boundary-layer transition Rz,crit ∶= (zU∞ν−1)crit ∼ 105 . . .106 readily yields Rc ≥ Rz,c (Schlichting, 1997,
p. 418).
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2.2. Vortex notions in the present context

vortex merging, instabilities, etc.[G]. Irrespective of this multitude of contributing
flow features and dynamics, the net effect always is the emergence and formation of
small highly concentrated vortices from all surface discontinuities [J].
Several experiments indicate that the roll up is essentially terminated in the near
wake (Del Pino et al., 2011, p. 5: zc−1 ≈ 2 . . .3, depending on the vortex strength;
Iungo, 2017, p. 1782: zc−1 ≈ 1).
The roll up continues until the full merging of the shear layer vorticity into the vortex
by diffusion; this state is called a fully-developed vortex (Bailey et al., 2006, p. 1283).

2. Intermediate wake [zb−1 ≤ 10]. Roll up and vortex merging leading to the establish-
ment of two strong counter-rotating vortices [J] of approximately equal strength [G].
The intermediate wake is characterized by a strong interaction of the vortex with the
wake (Edstrand et al., 2018, p. 861). While wake and vortex are significantly coupled
(in the streamwise velocity component) close to the wing (up to 1.5 c), down-wash
induced uncoupling of the vortex from the remainder of the wake is accomplished at
zc−1 = 5 latest, such that ‘the wake insignificantly affects the transversal motion, im-
plying that the wake is unnecessary to model the base flow for the wandering motion’
(Edstrand et al., 2016, pp. 7, 9).

3. Far wake [10 ≤ zb−1 ≤ 100]. No major changes and emergence of linear (cooperative)
instabilities [J].

4. Dispersion region [zb−1 > 100]. Instability-induced strong interaction between
the two vortices, topological changes, decreasing circulation, breakdown [J]. In the
far wake, ‘the impact of the atmosphere on the wake vortices becomes dominant
. . . [with a] huge spectrum of energy containing and interacting scales’ (Gerz et al.,
2002, pp. 184, 194).

Conclusion 2.1.3

We thus come to the conclusion that all we need to observe vortex meandering is
a vortex; probably at high Reynolds number and embedded into an unsteady free
stream. This leaves us with the question: what is a vortex? and when does it
meander?

2.2 Vortex notions in the present context

. . . tourbillon . . . pour signifier toute la matière qui
tourne ainsi en rond autour de chacun de ces centres

— R. Descartes: Principes de la Philosophie. III

The word ’vortex’ (German, Wirbel; French, tourbillon) from the Latin vertō,9 meaning
to turn or revolve, as such, has an intuitive meaning to everyone (Lugt, 1979, pp. 309–310).
Despite ’vortices’ being ubiquitous in fluid flows and are commonly attributed primary
kinematic and dynamic importance, there seems to exist no universally accepted definition
and we are unable to identify unambiguously vortices in a given complex fluid flow in
general (Haller et al., 2016, p. 136). In the special case of trailing-vortex flow, matter seems
clearer, though not completely unequivocal. We do not strike for a universal definition of a
vortex here, rather we seek an operational definition which is sharp enough for the present

9drehen, wenden (Stowasser, p. 546).
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Chapter 2. Characterization of vortex meandering

purpose. On the one hand, definitions are necessary to develop a physical theory, while on
the other hand, it seems that ambiguity of even essential notions is an unavoidable – and
perhaps stimulating – fact (Heisenberg, 1959, pp. 237–262).

2.2.1 The dynamic–kinematic duality of vortices
The essential point we want to make regarding the nature of vortices is, that they have a
dynamic and a kinematic identity. Which is perhaps even the most characteristic aspect
of vortices. By a dynamic identity is meant, that we can associate a vortex unambiguously
with a distinguished state (at least in theory) of the dynamical system governed by the
Navier–Stokes equations. However, at the same time, we identify a vortex with a definite
fluid volume consisting of the same particles (Haller et al., 2016, pp. 136–138). We suggest
that the manifestation of a vortex is where both definitions overlap.

The dynamic vortex: characterization of the mean field. The dynamic-vortex
definition does not pose a serious problem. Let the dynamical system (2.1) be associated
with some function space; at any time, the dynamic vortex is a distinct element (state) of
this space.
Definition 2.1. The dynamic vortex is defined as the trajectoryW (t) (the mean vorticity)
in the function space of the admissible dynamics.
Remark 2.1. We find it more appropriate to associate the vortex with the vorticity
W and think of the velocity U (where ∇×U = W ) as being induced by the vortex.
This identification implies that vortices are typically strongly spatially confined (having
practically compact support; Helmholtz, 1858; Saffman, 1992) while they have non-local
influence.

First model: the Lamb–Oseen vortex. For the present purpose, it is sufficient to
introduce the Lamb–Oseen (or Gaussian or Hamel) vortex which is the analytical solution of
the two-dimensional vorticity equation in R2 for the initial condition of δ-localized vorticity
of initial circulation Γ0. The length scale (Batchelor, 1964, p. 652)

(2.7) r0(t) ∶= 2
√
νt = 2

√
ν
z

U∞
yields the similarity variable η(t) ∶= r

r0(t) = r

2
√
νt
.

The vorticity of the Lamb–Oseen vortex then follows from a heat equation, (Barenblatt,
1996, p. xii)

(2.8) Wz(t, r) = Γ0
4πνt

eη
2(t) = 2Γ0

2πr2
0
eη

2(t),

which leads to the integral vorticity (or circulation)

(2.9) Γ(t, r) = Γ0(1 − eη2(t)).
The induced azimuthal and angular velocities are

(2.10) Uθ(t, r) = Γ(t, r)
2πr

= Γ0
2π

1 − eη2(t)

r
, Ω(t, r) = Uθ(t, r)

r
= Γ0

2π
1 − eη2(t)

r2 .

In theoretical vortex dynamics of the Lamb–Oseen vortex in a parallel approximation,
we non-dimensionalize (2.8)–(2.10) with

(2.11) r0 ∶= 1 and Γ0 ∶= 2π thus U = Γ0
2πr0

, Ω0 = Γ0
2πr2

0
.

The Choice r0 = 1 is arbitrary and fixes the vortex age.
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2.2. Vortex notions in the present context

Remark 2.2. In extension to remark 2.1, we see that for Lamb–Oseen vortices Wz(t) ∈
L2(0,∞) and Ω(t) ∈ L2(0,∞) (appearing in the perturbation equation), while the effect
(Wirkung) Uθ(t) /∈ L2(0,∞).
Second model: the Batchelor vortex. For the Batchelor vortex, we add the Gaussian
axial velocity (Batchelor, 1964)

(2.12) Uz(t, r) = q−1(t)eη2(t).

Isolated line vortices without inflexion point are destabilized by the superposition of a suf-
ficiently strong axial mean-velocity in the core. The stability problem is thus parametrized
by the ratio of the azimuthal and the axial velocity scales called swirl number (Batchelor,
1964, p. 653; Lessen et al., 1974, p. 755). Instead of the original definition it is common
practice to work with the equivalent swirl number (Fabre, 2002, p. 31)

(2.13) q(t) ∶= π
2

Uθ,1(t)∣Uz(t,0) −Uz(t, r →∞)∣ (δUz(t) ≠ 0),
where Uθ,1(t) ∶= maxr Uθ(t, r) denotes the maximum azimuthal velocity and δUz(t) ∶=
Uz(t,0) −Uz(t, r →∞).10

The maximum azimuthal velocity and the axial-velocity deficit are shown in fig. 2.2 as
fractions of the free-stream velocity for the experiments listed in appendix A.2. Despite
the considerable variance, we assume the mean values

(2.14)
Uθ,1

U∞
≈ 1

4
and ∣δUz ∣

U∞
≈ 1

8

indicated by horizontal lines, for later reference.
The objective of the present study is not in the characterization and description of the

vortex mean fields but in the meandering dynamics. We shall therefore content us in stating
that generally the Lamb–Oseen and Batchelor vortex are accepted as fair approximations
of trailing vortices (e.g. Heaton & Peake, 2007, p. 272; Stout & Hussain, 2016, p. 354). A
further discussion can be found in appendix C.

The kinematic vortex. Vortices combine important aspects of being a distinguished
dynamic object of the phase space (cf. def. 2.1), while at the same time being associated
with the same fluid mass (Lugt, 1979; Provenzale, 1999, p. 55; Haller et al., 2016, p. 137),
which is a kinematic Lagrangian characteristic.

By a vortex, we think of an objectively identifiable cylindrical (up to reasonable
topology-preserving deformations which ’almost’ preserve axisymmetry) subset of the fluid
domain of concentrated axially oriented mean vorticity (cf. also Saffman, 1992, p. 63).
The mean kinematics of a vortex thus represent rotation about the z-axis. Superposition
of an axial or radial mean-velocity component is possible as long as the overall kinematics
is ’dominated’ by rotation (this is subjective but otherwise we give the fluid flow another
name, e.g. jet). For the sake of visualization, we think of a vortex as a rotating mass of
fluid with cylindrical geometry embedded in the surrounding free stream. In the case of
trailing vortices, this definition of a vortex is not problematic; there remains however some
flexibility as to where the vortex ’ends’, i.e. the definition of the (radial) vortex boundary
is ambiguous.

10The experimentally inaccessible theoretical velocity scale U (cf. (2.11)) is related to the maximum
value by Uθ,1 = Γ1

2πr1
≈ 0.716Γ0

2π1.12(2√νt)U = 0.716
1.12 U ≈ 0.64U (Saffman, 1992, p. 254).
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Figure 2.2: Downstream variation of the maximum azimuthal velocity (a) and the axial-
velocity deficit (b). While Uθ,1 ≈ const over z the axial velocity in the core admits larger
values in the very proximity of the wing then drops rapidly to a small and rather constant
value (cf. appendix A.2). The approximate mean values are shown by straight lines.

Definition 2.2. The kinematic vortex is defined as the material fluid sub-volume rotating
around the same axis.

Definition 2.1 would be of little value if it would not coincide with what we identify as
the vortex in experiments.

Conjecture 2.1. The actual manifestation of a vortex in terms of a rotating fluid mass
(def. 2.2) always spatially coincides with the fluid volume carrying (practically all of) the
mean vorticity (def. 2.1). We therefore drop the specification attributes and simply refer to
the vortex as the fluid volume where both definitions coincide.

We shall loosely speak of vortices in order to refer to their manifestation and expect
them to coincide with the volumes to be introduced in defs. 2.4–2.5. (See also the discussion
in Spalart, 1998, pp. 115–117.)

2.2.2 Partition of the fluid domain

Vortex meandering is observed in subsets of Euclidean space of various extents (e.g. wind
tunnels or perhaps the atmosphere). This suggests that we can define some universal fluid
domain as the subset of this larger embedding space in which the fluid motion of interest
is going to be observed and which is subjected to some conservation laws. Conservation of
integral observables (e.g. energy, vorticity) is equivalent to the condition that there is no
net exchange of these observables between the fluid domain and the embedding space (see
also Landau & Lifšic, 1959, footnote on p. 50).

Definition 2.3. The fluid domain is defined as the subset M of Rd (d = 2,3) having no
integral mass, energy and vorticity flux over its lateral boundary ∂M .
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Figure 2.3: Module of the mean vorticity ∣Wz(x)∣ at zc−1 = 4 in (a) and zc−1 = 26 in (b).
Inner and outer circle representing the vortex core and support. Profile along x through
the centre (thick line) and fitted Gaussian (thin line). The vorticity is normalized with
t−1
c ∶= U∞c−1. (From the PIV measurements presented in appendix A.1.)

The entire fluid-flow field can roughly be classified into a core region, a surrounding
layer and an external flow which is essentially irrotational. Several ’vortex-core’ definitions
and characteristic length scales are discussed in Jacquin et al. (2001, p. 3) and Fabre (2002,
§ 2.2). These studies conclude that realistic (trailing-vortex) cores have at least two length
scales.

Let us assume that it is always possible to define a dichotomy of the fluid domain into
a subset V (t) which we identify with the vortex and its set complement F (t) = M/V (t),
called the free stream. Since the vortex obeys an unsteady motion these volumes occupy
different parts of the fluid domain for all t. Let X(t) denote the vortex centre (loosely,
the central point of V (t)), which we define below. For all t, we assume the following
decomposition:

M = V (t) ∪ S(t) = V1(t) ∪ V2(t) ∪ F (t).
The vortex core11 V1(t), also referred to as internal or viscous core, roughly corresponds

to the fluid volume which is in solid-body rotation about the instantaneous vortex centre
(Wz(r) ∼ 2Ω(r) ⇔ Uθ(r) ∼ r). In an earth-fixed frame of reference x = (x, y), the radius
is defined by r ∶= ∣∣x −X(t)∣∣R2 with respect to the instantaneous vortex centre.

Definition 2.4. The vortex core is defined as the subset V1(t) ∶= πr2
1(t) of the fluid domain

centred about the instantaneous vortex centre, where

(2.15) r1(t) ∶= arg max
r
Uθ(t, r(t))

defines the core radius.

We only consider axisymmetric vortices for which the core radius uniquely defines the
vortex core and the two notions are equivalent. Definition 2.4 is used in Corsiglia et al.

11Latin cor, heart or spirit (Herz, Geist; Stowasser, p. 126).
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(1973), Baker et al. (1974, p. 330), Singh & Uberoi (1976, p. 1858), Devenport et al. (1996,
p. 74), Heyes et al. (2004, p. 4), Van Jaarsveld et al. (2011, p. 222) and Bailey et al. (2018,
p. 726). Spalart (1998, p. 116) concludes ‘that r1 and the associated ’peak velocity’ U1
have received too much attention . . . ; r1 cannot be called the core radius.’ In meandering
experiments the vortex-core radius is typically (see also Bailey et al., 2018, p. 726)

(2.16) r1
c
≈ 5 × 10−2.

The external or inviscid core is defined as the fluid volume which essentially contains
all of the mean vorticity (see also Van Jaarsveld et al., 2011, p. 216). We shall call this
volume the (vortex) support12 V2(t). Batchelor (1964, p. 647) calls V2 the vortex core.

Definition 2.5. The vortex support is defined as the subset V2(t) ∶= πr2
2(t) of the fluid

domain centred about the instantaneous vortex centre where

(2.17) r2(t) ∶= arg min
r

{Γ(t, r(t)) = 0.98}
defines the support radius.

Fabre (2002, p. 24) refers to r1 and r2 as the internal and external radii, respectively –
emphasizing the difficulty in defining the latter.

Remark 2.3. Unless stated otherwise, we define r2(t) ∶= 2 r1(t) as motivated from the
Lamb–Oseen vortex. Probably the same argument has been used by Bandyopadhyay et al.
(1991, p. 1629), who define the core radius as the radius used in the computation of the
reference circulation. While formally at infinity (surrounding the entire vorticity), twice
the radius of the maximum azimuthal velocity is a sensible working definition.

This volume is used by Sarpkaya & Daly (1987, p. 401), Roy & Leweke (2008, p. 4) and Del
Pino et al. (2011, p. 5). The latter two studies identify the core with the vorticity, respect-
ively dye, containing region. This emphasizes the above mentioned dynamic–kinematic
duality of vortices, being vorticity support and distinguished material (Lagrangian) ob-
ject at the same time. Two-layer structure and localization of vorticity in the support is
evidenced in figs. 2.3 and 5.5.

Remark 2.4. Our definition of a vortex (def. 2.1) based on the vorticity readily implies
that the circulation (i.e. the integrated vorticity) is a measure for the vortex strength. The
de facto confinement of vorticity to the vortex support (conj. 2.1 and def. 2.5) guarantees
that it is finite (assuming it being continuous on the support). Conventionally, the vortex
strength is defined as the circulation at two times the core radius (Maxworthy et al.,
1985, p. 148; Heyes et al., 2004, p. 4; Van Jaarsveld et al., 2011, p. 224). According to
Iungo (2017, p. 1789), ‘the vortex strength is the principal parameter that controls vortex
meandering’. We shall elaborate on this statement in chap. 4.

The mutual interaction between vortex and surrounding (organization and excitation)
seems to be of restricted reach in practice (cf. rem. 6.1).

Definition of the vortex centre. The vortex centre is not defined uniquely. Probably
the most natural and widespread way is to assume Lamb–Oseen-like mean profiles and
then identify the vortex centre with the point of zero cross-flow velocity or peak-vorticity
location (Devenport et al., 1996, p. 90; Heyes et al., 2004, p. 4; Bailey & Tavoularis, 2008,
p. 292). Measurements on a discrete grid might make a fit to analytic vortex profiles

12Latin supportō, to carry (Stowasser, p. 498).
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necessary (Roy & Leweke, 2008, p. 2; Deem et al., 2013, p. 227). The dual material
character of vortices is reflected in the identification procedure of Del Pino et al. (2011,
p. 5), who identify the centre of mass of the dye concentration with the vortex centre.
That is, assuming that vorticity and fluid-particle concentrations are strictly correlated
(cf. conj. 2.1).

Instead of fitting the discrete data to an analytic profile, integral vortex-centre defini-
tions might be employed. Van Jaarsveld et al. (2011, p. 220) define the vortex centre as the
maximum cross-plane stream function (assuming near streamwise invariance; ∂zuz ≈ 0).

A dynamics-based definition of the vortex centre exploits the common observation
(regardless of geometry and Reynolds number) that the maximum of the azimuthal root-
mean-square (rms) velocity

uθ,max(t) ∶= max
x

√⟨(uθ(t,x) −Uθ(x))2⟩
is attained in the vortex centre X(t): uθ,max(t) = uθ(X(t)) (Gursul & Xie, 2000, p. 348).

In the present study, we identify the vortex centre with the barycentre of the vorticity
field on M (formally identifying mass with total vorticity), viz.

(2.18) X(t) ∶= 1
Γ ∫M d2xxwz(t,x), Γ ∶= ∫

M
d2xwz(t,x), ∀t ≥ 0,

see also Saffman (1992, p. 66). Since meandering is an essentially transversal motion, we
take the fluid domain M (def. 2.3) to be a subset of R2 for which ez is everywhere normal.
In particular, M is supposed to contain V (t) (the vortex volume) for all times and does
not cross the symmetry plane (y = −b/2, cf. fig. 2.1). Since the bulk of the vorticity is
highly concentrated in the vortex (while the free stream is almost irrotational) a variation
of the integration domain does not significantly alter the centre of gravity in practice.

2.2.3 The scales of vortex dynamics
Taylor’s hypothesis. Experiments suggest to take the chord c and the free-stream ve-
locity U∞ as reference scales. For the following estimates, we shall use the typical experi-
mental values of c ≈ 10−1 m and U∞ ≈ 10 ms−1 (e.g. Devenport et al., 1996). In this scale
system, the advection time scale is defined by

(2.19) tc ∶= c

U∞
≈ 10−2 s.

By Taylor’s hypothesis (Rotta, 1972, pp. 71–72; Tennekes & Lumley, 1973, p. 253)
t

tc
= tU∞

c
= z
c
,

which establishes a duality between temporal and spatial evolution in the streamwise dir-
ection. Taylor’s hypothesis holds in good approximation for perturbations of characteristic
velocity which is much less than U∞ (see also Monin & Yaglom, 1975, p. 11). As a matter
of fact, vortex meandering is usually assumed to be associated with very small velocity
(cf. assumption 2.2). Jacquin et al. (2001, p. 21 and fig. 22) state that ‘the low-frequency
perturbations associated to meandering are convected at the free-stream velocity’.

Further advection time scales. According to Ash & Khorrami (1995, p. 321), it is ad-
vantageous to use the dispersion radius r0 and the centreline axial-velocity excess or defect∣δUz ∣ ≠ 0 as the reference scales. This yields the characteristic time scale for Batchelor-like
vortices

(2.20) tδ ∶= r0∣δUz ∣ ≈ 5 × 10−3 s,
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Chapter 2. Characterization of vortex meandering

using r1 ≈ 1.12 r0 and (2.14) and (2.16). We eventually introduce the advection time scale

tr1 ∶= r1
U∞

≈ 5 × 10−4 s.

The rotation time scale. The natural time scale issuing from the Lamb–Oseen scales
(and perhaps of vortex dynamics in general) is the rotation or turn-over time (for values
in Devenport et al., 1996; Bailey & Tavoularis, 2008)

(2.21) tr ∶= 1
Ω0

≈ r1
Uθ,1

= 2π r
2
1

Γ1
≈ 5 × 10−4 s,

where r1 is defined in (2.15) as the approximate end of the rigid-body rotation (operational
definition). The corresponding circulation Γ1 is an approximation of Γ∞.

Relations between the time scales. We are let to the time-scale sequence

(2.22) tr1 ≈ tr
4
≈ tc

20
,

meaning that tr1 is four times shorter than tr and twenty times shorter than tc. That is,
within one advection time unit tc the vortex completes about five rotations and advects an
equivalent of approximately twenty core radii. Or in yet other words, it takes five rotation
periods to advect the vortex by one chord length at U∞.

Conclusion 2.2.1: Time–space correspondence

In experiments the equivalence 1 c ↔ 5 tr approximately holds.

This scaling is consistent with the estimate of Heaton (2007b, p. 505) that tt−1
r = 500

(i.e. zc−1 ≈ 100) corresponds to about 25 wing spans.

Remark 2.5 (A comment on the time scales.). The velocity gradient imposes two natural
time scales for vortices. Namely, rotation t−1

r = Ω0 is the characteristic scale of the rotating,
energy-redistributing, stabilizing dynamics, while shear t−1

s ∼ rdΩ/dr characterizes energy
amplification (Bölle et al., 2020).

Reynolds numbers of isolated vortex dynamics. For the characterization of the
vortex dynamics two Reynolds numbers are conventionally employed (e.g. Mayer & Powell,
1992, p. 104; Fabre, 2002, p. xi).

– In the discussion in sec. 2.1.1 we concluded that the circulation is an important
wake parameter, which also turns out to be fundamental for analytical vortex models,
introduced in sec. 2.2.1. While theoretical approaches are based on the initial circulation
Γ0 (see (2.11)), in experiments the circulation at infinity Γ∞ (in practice at a radius deemed
sufficiently large) is used (cf. def. 2.5 and rem. 2.3).13 We thus define the circulation-based
Reynolds number

(2.23) RΓ ∶= Γ0
2πν

.

While the Reynolds number is of the order of RΓ ∼ 107 . . .108 in real aerodynamic ap-
plications, this value is not realized in experiments (Jacquin et al., 2001, p. 5). Over a

13As a matter of fact, the initial circulation Γ0 is proportional to the angular velocity on the vortex axis
Ω0 and identical to the circulation at infinity Γ∞.
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2.2. Vortex notions in the present context

streamwise range 5 ≤ zc−1 ≤ 30 and angles of incidence 2.5○ ≤ α ≤ 7.5○, Devenport et al.
(1996, p. 81) find

Γ0
ν

∈ [104,6 × 104] ∼ 104 . . .105,

which is the correct order of magnitude across various experiments (Bandyopadhyay et al.,
1991, p. 1627; Jacquin et al., 2001, pp. 6, 8; Beninati & Marshall, 2005, pp. 248–249; Roy
& Leweke, 2008, tab. 1; Iungo et al., 2009, tab. 1; Van Jaarsveld et al., 2011, p. 221; Iungo,
2017, p. 1785; Bailey et al., 2018, p. 725).

– In the light of the above introduced scales, we can also define a Reynolds number
with the axial-velocity deficit,

(2.24) Rδ(z) ∶= ∣δUz(z)∣r0(z)
ν

.

Fixing δUz ∶= const and r0 ∶= const is known as the parallel approximation.

2 × 103

102

103

104

105

0 10 20 30 40 50 60 70
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Figure 2.4: Downstream variation of the Reynolds number Rδ(z) in experiments (cf. ap-
pendix A.2).

Unlike the circulation-based Reynolds number – essentially invariant for typical exper-
iments – the downstream variation of (2.24) is shown in fig. 2.4 for the experiments listed
in appendix A.2. From this, we see that the average Reynolds number is Rδ ≈ 2 × 103, al-
though this value is subject to considerable variation, especially for zc−1 ≲ 10. The largest
Reynolds number Rδ ≈ 105 is reported in the experiment of Chow et al. (1997).14 The
Reynolds number during landing of a commercial aircraft is estimated as Rδ ≈ 3 × 105

(Fabre & Jacquin, 2004, p. 259).

Symmetries of the velocity field (dynamics). We assume statistical stationarity
over the measurement duration to hold in all measurement planes (z = const). Thus, the
(lowest-order) statistics are independent of the origin of time and temporal averages are
meaningful (Rotta, 1972).

14This is a consequence of the significant axial-velocity excess of δUzU−1∞ ≈ 0.7 and the estimated core
radius of r1c

−1 ≈ 0.03 (Chow et al., 1997, p. 53)
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Chapter 2. Characterization of vortex meandering

The experiments of Green & Acosta (1991, p. 119) indicate that the vortex is axisym-
metric beyond zc−1 = 2. This implies stochastic homogeneity of the mean in θ. It should
be emphasized though that the variance (kinetic energy) has dominant contributions from
m = 1 hence is not stochastically homogeneous. Stochastic axisymmetry is corroborated by
the observation that on the mean centreline the cross-flow variances equal, ⟨uruθ⟩ = ⟨uruz⟩
while ⟨uθuz⟩ = 0 (uncorrelated) (Beninati & Marshall, 2005, p. 249 at zc−1 = 25).

Statistical homogeneity in z only holds approximately for the azimuthal component of
the mean velocity while it is not true for the mean axial velocity. Also, it is a fundamental
characteristic of meandering that the variance (velocity and vortex centre) changes in
the streamwise direction. Perhaps, the dynamics approaches some state of approximate
invariance or symmetry (Beninati & Marshall, 2005, p. 247).

2.3 What is vortex meandering? A first definition

Einer verbindet die Vorstellung eines gewissen
Wortes mit einer Sache, der andere mit einer
anderen Sache.

— I. Kant: Kritik der reinen Vernunft

We restrict our attention to the dynamics of isolated slender line vortices. That is,
vortices of elongated linear topology that do not close on themselves (no circular geometry)
and where the characteristic transversal length scale is much smaller than the longitudinal
length scale. These characteristics are representative of trailing vortices and tornadoes, for
instance, however, exclude vortex rings or vorticity concentrations of similar aspect ratio
(Stout & Hussain, 2016, p. 354). We call longitudinal, axial or streamwise z-coordinate
and expect only slow variation and gradients in this direction. The plane defined by the
normal ez and spanned by ex,ey (resp. er,eθ) accommodates the lateral motion.

We define vortex meandering as follows (cf. also Gursul & Xie, 2000, p. 348).

Definition 2.6. Vortex meandering is the lateral, topology-preserving displacement of the
vortex. In other words, meandering designates a displacement of the vortex as a whole.

The notion of a vortex in the present context has been introduced in sec. 2.2. The word
’meandering’15 origins from the Greek μαίανδρος16 and, in its common use, designates the
lateral displacement of a trajectory generated by some flow (in a functional-analytic sense).
Our trajectory is defined by the evolution of the vortex, supposed to be a discernible object
throughout. Meandering is then defined to be the contribution to the whole vortex motion
which corresponds to a lateral displacement of the vortex as a whole. That is, displacements
which do not change the topology (filamentation, merging, break down, ...). It should
be emphasized that ’meandering’ is an expression of foremost poetic usage, bearing the
connotation of some ’randomness’ or ’complexity’, since otherwise we would have merely
decided to call it ’oscillation’ or the like.

Translation into a mathematical model. This definition indicates that, from the
outset, vortex meandering describes an inherently kinematic phenomenon of a distinguished
fluid volume. Let V ⊂ Rd (d = 2,3 is the dimension of the fluid domain or the projection
on the cross plane) be the fluid volume identified with the vortex. Meandering is then
formally defined as

M(t) ∶ V ↦M(t)V = V (t) s.t. V (t) preserves its topology for all t ≥ 0
15The same phenomenon instead of being called ’meandering’ is referred to as vortex wandering, too.
16Which was the name given to the patron deity of the Maiandros river (modern Turkey).
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2.3. What is vortex meandering? A first definition

and t↦M(t) is the meandering semigroup (vol V, fracatal dim V ≠ f(t)). Displacement as
a whole implies that deformation (also topology preserving) is irrelevant for meandering.
We can therefore identify the motion of the entire vortex with the motion of one point in
V (t). Conventionally, we chose the vortex centre X(t). Assuming bijectivity between the
meandering motion of the whole vortex and the measured centreline time series, we can
establish a characterization of meandering which does not rely on the notion of the vortex,
but its centreline.

Conjecture 2.2. Vortex meandering is equivalent to the vortex-centre time series.

Remark 2.6. While the assumption of a rigid-body displacement of the vortex may be
true for the low frequencies, the high frequencies are likely due to core turbulence which
does not displace the vortex but solely cause fluctuation of the centreline inside the core (as
presumably observed by Beresh et al., 2010, p. 608; meandering correction left invariant
the mean profiles). We might say that the centreline is material to first order. This is
consistent with the observation that for low turbulence intensity meandering becomes less
discernible (as it merges with the turbulent motion of the centreline inside the core).

Definition of the meandering amplitude. Let the vortex centre Xl(t) (l = 1,2) be
a stochastic process. The meandering amplitude is conventionally defined as follows (De-
venport et al., 1996, pp. 74, 76; Rokhsaz et al., 2000, p. 1026; Bailey & Tavoularis, 2008,
p. 292; Deem et al., 2013, p. 220).

Definition 2.7. The meandering amplitude is defined as the standard deviation of the
vortex centre

(2.25) σl(t) ∶= √⟨(Xl(t) − ⟨Xl(t)⟩)2⟩, l = 1,2.

Remark 2.7. For zero mean, the stationary variance is

(2.26) σ2 ∶= ∣∣X ∣∣2L2(R) = ∫R dt ∣∣X(t)∣∣2R2 = ∫
R
dω ∣∣X̂(ω)∣∣2R2 = ∣∣X̂ ∣∣2L2(R).

By Plancherel’s theorem the integral signal energies in time and frequency domain are
identical (see also Bailey et al., 2018, p. 734). This suggests that the bulk contribution
to meandering may be estimated from the (pre-multiplied) power spectral density (cf.
sec. 2.4.2).

Fundamentally, meandering is not stationary, meaning that the amplitude (2.25) de-
pends on time (whereas t = zU−1

∞ here). Nevertheless, except in the near wake and in
grid-turbulence studies, the meandering amplitude is typically found to be a fraction of
the core radius

(2.27) σ

c
≈ 1

2
r1
c
≈ 2 × 10−2

over the experimentally accessible measurement length.

Meandering conserves the mean core circulation. From the definition of the cir-
culation in (2.2), we define the mean core circulation of an axisymmetric vortex in the
earth-fixed reference frame by

(2.28) Γ1(z) ∶= Γ(z, r1(z)) = 2πr1(z)Uθ,1(z) where Uθ,1(z) ∶= Uθ(r1(z)).
We speculate that Γ1 is conserved:
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Chapter 2. Characterization of vortex meandering

Conjecture 2.3. The mean core circulation is invariant in z.

Corollary 2.1. Conjecture 2.3 implies that the growth of r1(z) and the decay of Uθ,1(z)
mutually balance for all z.

Evidence for streamwise invariance of the core circulation is provided by the experi-
ments of Corsiglia et al. (1973, p. 756), Devenport et al. (1996, p. 75), Iungo et al. (2009,
tab. 1) and Van Jaarsveld et al. (2011, p. 223 and fig. 8b).

Meandering is a universal feature of vortex flow. Del Pino et al. (2011, p. 1) resume
that vortex meandering is a typical feature of wing-tip vortices, having broad application
in aerodynamic and marine engineering as well as in propulsion and generator turbines,
for instance. Unlike its universal observation in wind-tunnel or water-channel experiments
no final consensus seems to exist whether the phenomenon definitely occurs under real
free-flight conditions (see e.g. Beresh et al., 2010, p. 599, Jammy et al., 2014, p. 351 and
Bailey et al., 2018, p. 722 for opposite statements).17 Nonetheless, meandering (def. 2.6)
is documented in geophysical systems such as tornadoes (e.g. Aref & Flinchem, 1984;
Lund & Snow, 1993; Nolan & Farrell, 1999). Also, Vadarevu (2017, pp. 24, 122) resumes
that turbulent boundary-layer bursting involves meandering vortices which, additionally,
are characteristic of all exact invariant states documented for wall-bounded flows. In
fact, ‘small-scale polarized structures are unavoidable companions of coherent structures’18

(Melander & Hussain, 1993b, pp. 2001, 2002) which suggests that meandering is a natural
phenomenon rather than a strangeness. Lateral vortex motion is documented in rotating
flow experiments (Hopfinger et al., 1982; Maxworthy et al., 1985), inlet vortices (Wang
& Gursul, 2012), in simulations (McWilliams, 1984; Zurheide et al., 2009; Jammy et al.,
2014) and for optical vortices (Gu, 2013).

Conjecture 2.4. Meandering according to def. 2.6 is a universal feature of vortices.

2.4 Specific characterization of trailing-vortex meandering

I soon understood that there was little hope of
developing a pure, closed theory, and, because of
absence of such a theory, the investigation must be
based on hypotheses obtained on processing
experimental data.

— A. N. Kolmogorov: Selected Works

The definition of vortex meandering in def. 2.6 is still too vast to be of practical utility.
Of course, we could call any vortex deformation whatsoever ’meandering’, but there is no
point in doing so if we intend to understand what we observe in experiments. We use

17An essential open question related to this controversy is whether meandering is boundary-condition
induced (presence of wind-tunnel walls) or whether atmospheric turbulence is sufficient.

18The word ’structure’ derives from the Latin strūctūra, meaning assemblage (Zusammenfügung;
Stowasser, p. 484). According to the dictionary, ’structure is the order, arrangement, connection and
organization of simpler elements’ (see also chap. 5 and Bohm & Peat, 1987, pp. 141–144). In this sense,
the notion of a ’coherent structure’ (from the Latin cohaereō, to consist of (mit anderem zusammenhängen;
Stowasser, p. 95)) would appear either redundant or inconsistent. In the present work, a structure is
understood as the ordered appearance of a spatio-temporal field u(t,x) (say). In the similar vein, we use
occasionally the word ’mode’, from the Latin modus, amount, kind (Maß, Art, Weise; Stowasser, p. 320)
and the word ’pattern’, from the Latin patrōnus, outline, plan, model (Schutzherr, Verteidiger ; Stowasser,
p. 366) to refer to the shape of a mode.
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terminology against the backdrop of our experience with the intention to (necessarily am-
biguously) try to grasp a complex idea (Heisenberg, 1959). And here, as already remarked
after def. 2.6, the expression ’meandering’ implies a certain complexity and irregularity of
the motion. In what follows, we concentrate on trailing vortices and strike for a refined
characterization in this particular case.

2.4.1 Characterization in physical space
Characterization of meandering in physical space essentially serves the purpose to elucidate
amplitude and velocity (or what is the same here, kinetic energy) systematics. We do so
by means of a stochastic model.

The stochastic meandering model: the centreline is a random process

Due to the broadband spectral signature of whatsoever time series typically considered
equivalent to the meandering motion19 (Jacquin et al., 2001, p. 11) and the lack of distinct
frequencies (Corsiglia et al., 1973, p. 754; Rokhsaz et al., 2000, p. 1027), meandering is
commonly modelled as a random process.

Assumption 2.1. The vortex centreline is a vector-valued stochastic process t ↦ X(t) ∈
R2, the joint-probability distribution µtX of which is a priori unknown and not stationary.

For the conventional interpretation, let us considerer a measurement plane at some
fixed z = const and conduct one vortex-meandering (random) experiment. The realization
of the centreline time series x(t) is shown in fig. 2.5a for the x-component. By the law of
large numbers, we expect the relative occurrences to converge (in an appropriate sense) to
the probability distribution µX , as shown in fig. 2.5b; the mean is denoted ⟨X⟩ and the
standard deviation σX .

Linearity, reversibility and correction. While large-amplitude meandering may be
irreversible, typical meandering (viz. amplitudes of the order of the core radius, cf. (2.27))
can be corrected for and is thus reversible (Devenport et al., 1996, p. 73). This implies that
vortex dynamics is linearly additive consisting of (i) the meandering motion and (ii) the
core dynamics, with no nonlinear coupling between these two components! The meandering
correction of Devenport et al. (1996, p. 73) is based on the following assumption.

Assumption 2.2. Meandering is independent of any turbulent motion and meandering
velocities are negligible compared to vortex-generated velocities.

Independence implies additivity such that meandering is simply linearly superposed
without affecting the core turbulence and vice versa. The spectral separation between
meandering and core turbulence activity (as evidenced e.g. from filtering; Frisch, 1995,
pp. 22–26) would seem to corroborate this hypothesis (Jacquin et al., 2001, p. 16; Beninati
& Marshall, 2005).20 If turbulence in the core was significant compared to velocity fluctu-
ations due to meandering, the equivalence between the vortex-centre and the meandering
motion might break down. This could be either because the conventional vortex-centre

19Namely, Eulerian fluctuation velocity on the mean centreline, leading POD expansion coefficients or
the vortex centre.

20A priori, in nonlinear systems, all scales are coupled and vortex meandering would be expected to
interfere with the core turbulence. In this case, linear filtering would be problematic (Abarbanel et al.,
1993, pp. 1377–1388; Bradley & Kantz, 2015, p. 7). Albeit, the effective separation of the two dynamics
by a linear filter does not imply that vortex meandering itself is a linear dynamics. Rather, it indicates a
product dynamical system composed of two non-interacting (nonlinear) subsystems (Eckmann & Ruelle,
1985, p. 648).
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Figure 2.5: The conventional experiment. (a) Vortex-centre time series of the X coordin-
ate in the fixed measurement plane at zc−1 = 26 in the PIV measurements presented in
appendix A.1. (b) The reconstructed Gaussian marginal probability density showing the
mean and standard deviation.

identification procedures become ambiguous (Bailey & Tavoularis, 2008, pp. 290, 293), or
because the core turbulence is strongly fluctuating without actually displacing the vortex.
Generally, it is assumed that ‘on the vortex axis, . . . any deviations from zero velocity are
due only to vortex wandering’ (Deem et al., 2013, p. 226). Negligible meandering as com-
pared to mean velocities leaves intact the mean profiles. In a monochromatic idealization
this implies small-amplitude or low-frequency deflections. In other words, this means that
meandering is the solid-body displacement of the vortex as a whole (def. 2.6), consist-
ent with experimentally observed cross-correlation at zb−1 = 4.78,5 and various vertical
stations (Jacquin et al., 2001, p. 20).

The Lagrangian point of view of meandering suggests to refer to any X(t) ∈ R2 as a
possible state of the system (and x(t) is a particular realization). A measurable function
F ∈ L2(R2) mapping a state into some real-valued scalar is called an observable.21 Under
assumption 2.2, the effect of meandering corresponds to a linear integral operator22 on the
observables which can be inverted (reversed) (Devenport et al., 1996, p. 74)

Tµ ∶L2(R2)→ L2(R2)
F (x)↦ (TµF )(x) ∶= ∫

R2
d2y µX(y)F (x − y) ∀x ∈ R2.

Suppose the vortex-centre location in the cross plane is a vector-valued random process
and µX(x) the associated probability density function. Then, the above model means
that the actually measured velocity (say) at a fixed probe location Um(x) = (TµU)(x) is
given by the convolution of the ’true’ velocity field U (which would be observed in a frame
following the meandering motion) with the probability density function of the centreline

21Example observables are the mean velocity or Reynolds stress.
22Fredholm of the first kind, thus Hilbert–Schmidt (Kato, 1980, pp. 230, 262–264).
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position

(2.29) Um(x) = (U ∗ µX)(x) ∀x ∈ R2.

This model goes back to Baker et al. (1974) and was substantially refined by Devenport
et al. (1996). A priori, the probability density function associated with vortex meandering
is unknown but was assumed to obey an isotropic Gaussian distribution parametrized by
an eddy viscosity by Baker et al. (1974, p. 331), suggesting an isotropic eddy-diffusivity
parametrization νt ≈ 2.5 . . .5ν for the surrounding turbulence (the larger value correspond-
ing to a larger Reynolds number Rc). Devenport et al. (1996, p. 76) relaxed the isotropy
assumption to the non-isotropic bivariate Gaussian distribution

(2.30) µX(x) = 1
2πσxσy

√
1 − e2

exp [− 1
2(1 − e2) (x2

σ2
x

+ y2

σ2
y

− 2exy
σxσy

)] ,
where σx, σy are the standard deviations of the centreline position and e ∶= Cov(X,Y )/(σxσy)
denotes the correlation coefficient (measure for anisotropy). The experiments of Heyes
et al. (2004, p. 5), Bailey & Tavoularis (2008, p. 295 validity extends to isotropic grid
turbulence), Deem et al. (2013, p. 227) and Edstrand et al. (2016, p. 3) as well as the
statistical simulations of the Lamb–Oseen vortex due to Iungo et al. (2009, p. 437) confirm
the assumption that the vortex centreline obeys a bivariate Gaussian distribution in the
transverse plane (cf. also figs. 2.5 and 2.6). The effect of meandering as modelled by (2.29)
and (2.30) is equivalent to the application of a Gaussian filter smoothing the original ’true’
signal. At any fixed position in space the actual measurement constitutes a weighted
average in space and time (Baker et al., 1974, p. 331; Green & Acosta, 1991, p. 107;
Devenport et al., 1996, p. 73; Iungo et al., 2009, p. 435).

v1

v2

µX1(x1)

µX2(x2)

x1

x
2

Figure 2.6: Experimentally (cf. appendix A.1) detected cloud of realizations of x(t) for
some fixed t > 0 and the associated marginal probability densities obeying normal distri-
butions N (0, σXl) (t fixed). The principal axes v1,v2 spanning the standard-deviation
ellipse.

The normal distribution maximizes entropy among all continuous distributions and
hence, knowing only the first two stochastic moments, requires the least a-priori inform-
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ation. Examination of the second stochastic moment generally provides considerable in-
sight into the nature of random processes; if the actual probability distribution is normal,
knowledge of the first two stochastic moments is equivalent to knowing the probability
distribution (Lumley, 1970, p. 68).

Consider the centreline random process X(t) in a measurement plane at z = const
(a possible realization being shown in fig. 2.5) and suppose it to have zero mean (i.e.⟨X(t)⟩ = 0).23 We then define the covariance operator24 (cf. Lumley, 1970, pp. 20, 24)

(2.31) C = ⟨X ⊗X⟩ ⇔ Cβγ = ⟨XβXγ⟩ (β, γ = 1,2).
For C being symmetric real-valued, the spectral theorem guarantees orthogonal diagon-
alization (T = transpose) C = V Σ2V T with real-valued eigenvalues.25 Geometrically, the
eigenvectors designate the principal axes of the centreline position and the eigenvalues rep-
resent the mean-square fluctuation in this direction. This is shown in fig. 2.6 and also in
figs. 6.6–6.7. From ∣∣σ∣∣2R2 = trC = trΣ = ∑2

β=1 σ
2
β,26 the meandering amplitude defines an

ellipse in the measurement cross plane spanned by the eigenvectors and centred about the
mean vortex position. Representation of the centre motion in the principal axes results in
uncorrelated expansion coefficients (Karhunen–Loève theorem).

The convolution in (2.29) is invertible such that, in principle, the original ’true’ signal
can be recovered from the measured velocity. Deconvolution is discussed by Iungo et al.
(2009, p. 437) and Deem et al. (2013, § 6). Since the bivariate probability density function
(2.30) is stochastically independent along the principal axes, the total deconvolution can be
accomplished by a sequence of one-dimensional deconvolutions (Iungo et al., 2009, p. 450).

A note on the anisotropy of meandering. Anisotropy of vortex meandering is ex-
pressed by the cross-correlation e in (2.30). According to Iungo (2017, p. 1785), the cor-
relation coefficient is the meandering parameter with the largest experimental uncertainty.
This is reflected in the rather diverging results. Vanishing correlation upon high-pass fil-
tering would seem to indicate that anisotropy is solely due to the meandering motion; this
was indeed observed by Iungo et al. (2009, p. 443) while it is not the case in Beninati &
Marshall (2005, p. 256). Increasing the Reynolds number in the range Rc ∼ 5 × 106 . . .107,
Roy & Leweke (2008, p. 5 and fig. 11) observe tilting of the standard-deviation ellipse
from vertical to horizontal. Iungo et al. (2009, p. 449) conclude that, quite generally, the
meandering amplitude is larger in the spanwise direction. The experiments of Bailey & Ta-
voularis (2008, p. 310) find vanishing correlation, implying isotropic Gaussian meandering.
We make a similar observation in figs. 2.5 and 2.6.

Conclusion 2.4.1

Meandering is assumed to be (stochastically) independent of the core-turbulence
dynamics and its statisticsX(t) ∼ N (0,σX(t)) is commonly found to obey a normal
distribution. This latter result may be a consequence of the central limit theorem,
discussed in appendix B.

23The parameter t is thought to either represent time (conventional interpretation) or the index of the
random experiment (Lagrangian point of view), related by the ergodic hypothesis (cf. appendix B).

24Where ⊗ is the tensor product in R2.
25The result is equivalent to singular value decomposition (also called principal axes or proper orthogonal

decomposition) of X.
26The trace trC is defined in Kato (1980, pp. 18, 523).
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Amplitude downstream evolution

Amplitude growth of the vortex unsteadiness downstream of the wing is an established fact
already recognized in the first study by Corsiglia et al. (1973, p. 752). This growth was
long believed to be roughly linear (Devenport et al., 1996, p. 80; Heyes et al., 2004, p. 6;
Deem et al., 2013, p. 227). Iungo et al. (2009, p. 436) seem to be the first to point towards
a square-root amplitude growth. We shall postpone further discussion of the scaling to
chap. 4 and merely recall some general characteristics here.

At which downstream position does meandering first occur? Whereas the low-
aspect-ratio fin experiments of Beresh et al. (2010, p. 604) report a significant non-zero
meandering amplitude already at the trailing edge, it is not entirely clear whether this
observation translates to other geometries, e.g. to wings with larger aspect ratios. In the
particular first case, the vortex is born in the boundary layer. Extrapolation of linearly
fitted curves for the downstream amplitude growth obtained by Heyes et al. (2004, fig. 10)
seem to support the findings of Beresh et al. (2010) for a rectangular wing model: for grid
turbulence of increasing length scale the meandering amplitude seems to retain increasing
non-zero initial values. The experimental results of Del Pino et al. (2011, fig. 10) suggest
that the meandering amplitude admits very weak but finite values at the tip.

On the other hand, Jacquin et al. (2001, p. 24) find velocity correlations to vanish
when approaching the model thus concluding that meandering is not an immediate con-
sequence of wing-surface flow unsteadiness. Non-vanishing correlations of low-frequency
perturbations of the vortex downstream with disturbances contained in the near-field and
the 0.5 b-fuselage, however, are observed (Jacquin et al., 2001, pp. 21, 23 and figs. 23c,
24).27 This would seem to indicate sustained forcing rather than an initial-value problem.
In accordance, Edstrand et al. (2016, p. 7) show curves of the integral perturbation kinetic
energies associated with the most energetic POD modes (Berkooz et al., 1993) that, when
extrapolated to the trailing edge, drop to zero, too.

Irrespective the precise spatial origin of the phenomenon, there seems to be decided
evidence that the meandering amplitude is growing (monotonously) downstream. Being
usually negligible within downstream distance of zc−1 ≲ 2 (Green & Acosta, 1991, p. 108;
Green, 1995, p. 445), amplitudes become significant a few chord lengths downstream (Iungo
et al., 2009, p. 448; Del Pino et al., 2011, p. 1). Beyond zc−1 ≈ 5 amplitudes are non-
negligible and vortex meandering is an issue (Devenport et al., 1996, p. 67; Edstrand et
al., 2016, p. 3). It should be mentioned though that closer examination of the near field
due to Del Pino et al. (2011, p. 5 and fig. 10) revealed that until about zc−1 ≈ 2 . . .3 the
meandering amplitude behaves not necessarily monotonically. As already stated above, we
think that it is difficult to speak of meandering (def. 2.6) in this downstream range.

Meandering depends on local rather than upstream turbulence: history counts.
The grid-turbulence study of Heyes et al. (2004, pp. 6–7 and fig. 10) shows that the
downstream amplitude growth is correlated with the decay of the free-stream turbulence.
This implies weaker amplitude-growth rates for increased initial turbulence intensities as
a consequence of the convergence towards a universal ’no-grid value’ (Heyes et al., 2004,
p. 8). Comparing the spatial energy distributions across the core shown in Beninati &
Marshall (2005, figs. 8 and 12) for the no-grid and grid-turbulence case, the latter tends to
promote the concentration of energy in the core at the first station at zc−1 = 8. Enhanced
ambient turbulence causes an increased amplitude at the first station, while at zc−1 = 25 the
distributions admit very similar shape and magnitude. These observations indicate, that
free-stream turbulence has an essentially local effect and that sufficiently far downstream

27Cum hoc ergo propter hoc – correlations do not imply causality.
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Chapter 2. Characterization of vortex meandering

meandering asymptotes towards a universal state independent of the background flow and
the upstream turbulence intensity.

As a corollary of the proportionality between meandering amplitude and turbulence
intensity (discussed in chap. 4 in detail) it follows that meandering must vanish in the
absence of any free-stream turbulence. This contradicts the possibility of sustained or
even increasing meandering in decaying turbulence. For this reason, Bailey et al. (2018,
p. 734) postulate that rather than on the local conditions, the meandering amplitude should
depend on a scale taking into account the entire history. At least for a linear system, this
corresponds to a convolution integral as the response to sustained forcing or, what is the
same, the resolvent in complex frequency space.

Energy concentration in the vortex core

In what follows, let us assume that the Eulerian velocity (as detected in a measurement
plane in experiments) u(t,x) is a random process (actually, a field).

The first stochastic moment (mean velocity) is structurally unaffected by Gaussian
meandering (Birch, 2012, p. 5; Jammy et al., 2014, p. 360). This is plain if the ’true’
vortex (in the co-meandering frame)28 is Gaussian, since then it is invariant under Gaus-
sian convolution. Devenport et al. (1996, appendix) further show that sufficiently strong
meandering smooths arbitrary vortices to an apparently Gaussian in the laboratory frame.
To the contrary, second-order statistics (Reynolds stresses and fluctuation kinetic energy)
are known to be highly sensitive and significantly affected by meandering (Jammy et al.,
2014, p. 360). In other words, meandering is said to be associated with fictitious Reynolds
stresses in the laboratory frame.

Sharp fluctuation-velocity excess in the core, cumulating on the mean centreline.
It is characteristic of meandering experiments that the Eulerian-velocity unsteadiness peaks
on the mean centreline while it drops to a small quasi-constant level in the surrounding
(Green & Acosta, 1991, p. 133; Gursul & Xie, 2000, pp. 348–349). The measured Eulerian-
velocity fluctuations in the core are believed to be primarily due to the meandering motion
(Baker et al., 1974, p. 328).

The typical signature of meandering consists of the progressive concentration of fluctu-
ation kinetic energy in the core downstream of the wing, with the main contribution from
the transversal components (Devenport et al., 1996, pp. 80, 99). Beyond about three wing
spans, energy is contained almost exclusively in the core (Jacquin et al., 2007, pp. 5, 7 and
figs. 6, 7). This and the fact that the spectral signature remains nearly unchanged after-
wards led Beninati & Marshall (2005, p. 255) to conjecture that within about zc−1 ∈ [14,25]
‘the total turbulent kinetic energy in the core seems to reach an asymptotic state’.

PIV experiments of Yeung & Lee (1999, p. 484) report meandering amplitudes of the
order of the core radius which corresponds to a meandering velocity of about 4 % of the free-
stream velocity (estimation based on the image sampling rate). Baker et al. (1974, p. 328)
and Jacquin et al. (2003, p. 577) resume that, while at least until zb−1 ≈ 10 meandering
is characterized by small-amplitude core displacements, it is associated with large velocity
fluctuations due to the significant gradients close to the vortex axis.

2.4.2 Characterization in frequency space

Vortex meandering is commonly perceived as a low-frequency, long-wavelength coherent
motion of the vortex core in space and time (e.g. Jammy et al., 2014). Although having

28That is, a frame of reference following the meandering motion of the vortex centre, see appendix B for
details.
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2.4. Specific characterization of trailing-vortex meandering

probably contributions from several frequencies, there seems to be nevertheless the ex-
pectation that it is possible to identify the meandering frequency which would reduce the
phenomenon to an essentially monochromatic oscillation.

Definitions. Analysis in frequency space is conventionally based on the power spectral
density (PSD) of some representative time series at a fixed measurement station. Repres-
entative here means that the time series is thought to be equivalent to the meandering
motion in the sense discussed in sec. 2.3. Let u(t) be such a signal – assumed to be the
realization of a stationary random process registered at a fixed point x of the fluid domain.
For instance, different centreline velocities, POD expansion coefficients and the vortex-
centre time series have been considered. For arbitrary t ≥ 0, the autocorrelation is defined
by (Tennekes & Lumley, 1973, p. 210; Monin & Yaglom, 1975, p. 3)29

(2.32) ρu(τ) ∶= lim
T→∞

⟨u∗(t)u(t + τ)⟩⟨u2⟩ ∀τ ≥ 0.

Due to stationarity, the origin of time t does not matter and we can normalize with the
constant variance u2 = ⟨u2⟩ = const of the random process.

The integral tu ∶= ∫ ∞0 dτ ρu(τ) defines an integral scale which is conventionally assumed
to be finite (Tennekes & Lumley, 1973, p. 210); this is plausible since an infinite integral
scale would indicate a correlation of the signal with itself at arbitrarily distant times (see
also Rotta, 1972, pp. 25–27). We conclude that ρ ∈ L1(R) (i.e. an integrable function)
such that its Fourier transform exists, called power spectral density Eu(ω).30 The Fourier-
transform pair reads (Rotta, 1972, p. 30)

(2.33) ρu(τ) = ∫
R
dω eiωτEu(ω), Eu(ω) = 1

2π ∫R dτ e−iωτρu(τ).
Proposition 2.1. The correlation function is a real, symmetric function, majorized by
unity at the origin that decays faster to zero than τ−1 as τ → ∞. The power spectral
density is a continuous, symmetric, positive, real function.

Proof. See Tennekes & Lumley (1973, pp. 201–206, 210–214) and Monin & Yaglom (1975,
pp. 1–8).

It is common practice in vortex-meandering experiments, to trace the graph of the
power spectral density over some Strouhal number S. With regards to the scales introduced
in sec. 2.2.3, we define Sc ∶= fcU−1

∞ (f = frequency); other Strouhal numbers are defined
alike.

Physically, the power spectral density represents the energy partition (per unit time)
over frequency of the given signal (by the Wiener–Khinchin theorem; Eckmann & Ruelle,
1985, p. 628). However, logarithmic plots over the frequency warp (verzerren) the percep-
tion of the energy partition over different frequency ranges; this is a purely visual issue.
The visually correct proportionality of the relative energy content in a certain frequency
band and the corresponding integrated area under Eu(f) is retained if the power spectral
density is pre-multiplied by the frequency f (Pope, 2000, p. 242). The integral is under-
stood here in the sense of Riemann (Riesz & Sz-Nagy, 1956, pp. 19–21); then accounting
for the non-uniform spacing of a logarithmic abscissa the energy reads31

⟨u2⟩ = ∫ df Eu(f) = ∫ d ln f fEu(f),
29Due to stationarity, the average is defined as the temporal mean over (0, T ) for T →∞ (Rotta, 1972,

p. 19).
30The power spectral density is commonly simply referred to as the ’spectrum’; although confusion with

the spectrum σ(A) of a linear operator A is unlikely, we stick to the full expression or call it ’power spectrum’.
31It is readily shown that df = d(ln f) f holds for the line element.
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Chapter 2. Characterization of vortex meandering

where integration is over an arbitrary frequency interval.
The spectral characteristics of the meandering dynamics are best elucidated by compar-

ing power spectral densities at different points along the radial coordinate approaching the
vortex axis from its periphery keeping z fixed, and on the centreline along the streamwise
coordinate; these two cases are shown in figs. 2.7 and 2.8, respectively.

The universal meandering spectral signature

Power spectral densities registered at fixed positions along a radial coordinate approaching
the core show gradual dominance of an inactive core motion (i.e. meandering) at low
frequencies (below Sc ∼ 10), while smaller turbulence structure (above Sc ∼ 10) is an order
less than in the wake (see fig. 2.7). This characteristic suggests that the vortex core is
a fluid volume which generates little or no turbulence of its own (Devenport et al., 1996,
p. 94 and fig. 21).
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Figure 2.7: Power spectral densities at zb−1 = 3 obtained from hot-wire measurements
along the core-traversing line indicated in the inset (LDV of the axial velocity component).
Same line styles reveal flow symmetry as the measurement points approach the centre from
the core periphery. (See appendix A.1.)

Beninati & Marshall (2005, p. 251) state that for all stations downstream of zc−1 = 8
perturbations with Sc ≪ 2 correspond to meandering. Typically the power spectral density
admits a sharp energy excess for frequencies smaller than Sc ≈ 1 with the bulk of the kinetic
energy (typically 95%) below this threshold (Jacquin et al., 2001, p. 11; Devenport et al.,
1996, p. 80). Beninati & Marshall (2005, pp. 251–252) find the bulk of the kinetic energy to
be contained in a frequency band of Sc ∈ [2,100] which corresponds to wavelengths of the
order of the core diameter and about 2 % thereof, while the energy content in the typical
meandering frequency Sc ≈ 0.2 was found to be insignificant.32

Bailey & Tavoularis (2008, p. 298) suggest that the typical signature of vortex mean-
dering in frequency space consists of a plateau in the power spectral density for Sc ≲ 1

32The fact that they relate these perturbations to rather short wavelengths (order of the core diameter)
stems from the fact that their core is a factor ten larger than usual, while Sc is of the same order as usual.
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2.4. Specific characterization of trailing-vortex meandering

followed by a drop of constant slope that kinks followed by a drop of higher slope. This
principal partition is consistent with the findings of Devenport et al. (1996, p. 93), Jacquin
et al. (2001, p. 37) for axial velocity spectra and Roy & Leweke (2008, pp. 26–28) for the
leading POD expansion-coefficient time series of the dye concentration (∼ vorticity)33 and
reasonably applies to fig. 2.7.

The (first) slope in the power spectral density obeys a power law of the generic form fβ

where the exponent is usually of the value β ≈ −3 (Devenport et al., 1996, p. 93; Beninati
& Marshall, 2005, p. 252). This power-law decay suggests two-dimensional turbulence-like
blocking of the three-dimensional energy cascade at high frequencies (Jacquin et al., 2001,
p. 14). However, this does not imply that low-frequency dynamics (such as meandering) is
two dimensional.

Meandering is characterized by a high level of fluctuation kinetic energy, with the typical
signature that, when approaching the core, the contribution to the total energy of the low-
frequency modes increases (Devenport et al., 1996, p. 94; Jacquin et al., 2001, p. 16). This
is clearly visible in fig. 2.7, showing measurement positions symmetrically approaching the
centre (thick continuous line) from the vortex periphery (thin dashed lines). Moreover,
the power spectral densities themselves are almost identical for the same radial distance±r from the centre: this suggests a certain rotation symmetry, or isotropy. Iungo et
al. (2009, pp. 437, 440) observe that despite the wake turbulence vanishing downstream,
low-frequency unsteadiness in the vortex core persists. As evidenced by filtering, the low-
frequency fluctuations are restricted to the core (at six chords) but do not extend to the
wake spiral (cf. sec. 2.4.1). For the core unsteadiness at six chords being dominated by low-
frequency fluctuations, Iungo et al. (2009) conclude that ‘they cannot thus be considered
as the result of a real turbulence activity’.

Applying gradually increased high-pass filters to the Reynolds stresses shows that long-
wavelength perturbations are concentrated in the core and gradually increase in energy con-
tent, essentially affecting the transverse velocity components while the axial fluctuations
are mainly of short-wavelength (Beninati & Marshall, 2005, pp. 253–255 and figs. 12, 13).
Confinement of the long-wavelength perturbations to the core while they are negligible out-
side the core is consistent with the observation of meandering corrections and contributions
being negligible beyond rc−1 > 0.1 (Devenport et al., 1996, p. 83).

The spectral separation of the characteristic meandering frequencies and turbulence
scales suggests independence (Tennekes & Lumley, 1973, p. 65; Devenport et al., 1996,
p. 73; Jacquin et al., 2001, p. 16).

Conjecture 2.5. The effect of meandering on the vortex development is almost certainly
negligible.

Conjecture 2.5 is equivalent to the assumption that meandering merely consists of a
linear superposition of a deflection kinematics that has no impact on the core turbulence
or any other vortex dynamics (cf. also ass. 2.2). In other words, everything happens as if
there was no meandering if we gather data in a reference frame following the meandering
motion. Meandering thus simply corresponds to a linear coordinate transformation.

Conclusion 2.4.2: Spectral signature

The spectral signature of meandering consists of a low-frequency plateau (roughly
Sc ≲ 10) with growing energy content downstream, followed by an inertial range
with ∼ f−3 slope, characteristic of two-dimensional turbulence. The low-frequency
(meandering) perturbations are confined to the vortex core.

33This same approach is employed by Del Pino et al. (2011, p. 8).

29



Chapter 2. Characterization of vortex meandering

Is there one meandering frequency?

The broadband spectral signature without discernible peaks evidenced in fig. 2.8a suggests
that the signal does not show any dominant frequency but that meandering is largely
stochastic (Corsiglia et al., 1973, p. 754; Rokhsaz et al., 2000, p. 1026). A multi-frequency
characteristic is also implied in the observation that, although small-scale turbulence in
the core decays more rapidly than long-wavelength perturbations, significant small-scale
fluctuations remain detectable until zc−1 = 25 (Beninati & Marshall, 2005, pp. 252, 255).

Although meandering time series undoubtedly have broadband spectral signature,
Bailey et al. (2018, p. 734) resume that ‘there seems to be a general agreement that the
meandering of the vortex has a relatively long wavelength’. Despite this common long-
wavelength inference, we are not aware of any sufficiently resolved experiment providing
details about the actual streamwise wave form of the vortex (see also Bailey et al., 2011,
p. 1). Although identifying a characteristic frequency, Del Pino et al. (2011, p. 9) conclude
that meandering may probably be characterized by more than one frequency. At least,
there seems to be agreement that meandering is (essentially) assembled from frequencies
in the range 0.1 ≤ Sc ≤ 5 (Devenport et al., 1996, p. 99; Jacquin et al., 2001, p. 11; Roy &
Leweke, 2008, p. 7; Iungo et al., 2009, pp. 437, 440).

Attempts at extracting one characteristic meandering frequency are due to e.g. Roy
& Leweke (2008, p. 6), Del Pino et al. (2011, p. 8) and Bailey et al. (2018). It would
appear that this expectation of the existence of one meandering frequency is borne by
two observations, namely (i) that meandering visualizations appear to be much more
organized than the time series suggests34 and (ii) the existence of a sharp peak in the
pre-multiplied power spectral densities. This peak is centred around a frequency of Sc ≈ 1
in the experiments of Jacquin et al. (2001, p. 37) (see also fig. 2.8b). What is remarkable,
is that the same signature and peak value is reported by Jacquin et al. (2005, fig. 12 on
p. 412) for the tip- and flap-vortices of an aeroplane model as obtained in experiments at
ONERA (zb−1 = 1) and TU Munich (zb−1 = 5.56) as well as by Bailey et al. (2018, p. 736)
for grid-turbulence experiments.

For definiteness, we use the following definition for the meandering frequency.

Definition 2.8. The meandering frequency is defined by

(2.34) fm ∶= arg max
f

fEu(f) on a log-scale abscissa,

as the argument of the maximum of the graph of the pre-multiplied PSD.

Remark 2.8. At present, we have no direct access to the streamwise waveform of me-
andering. We therefore infer the meandering wavelength from Taylor’s hypothesis, viz.
λc−1 ∶= S−1

c .

This suggests that meandering is characterized by a dominant frequency (Bailey &
Tavoularis, 2008) which seems, moreover, to be universal across various experiments.

Conjecture 2.6. It exists a dominant universal meandering wavelength λc−1 ≈ 2 . . .3
(λr−1

1 ≈ 40 . . .60 using (2.15)), independent of the free-stream conditions. Since this
wavelength is much larger than the integral (grid) turbulence scale, free-stream turbulence
cannot be the source of meandering.

34For instance, in the FAR-Wake presentation ’Experiments on vortex meandering’ of C. Roy and T.
Leweke held at the International Workshop on Fundamental Issues related to Aircraft Trailing Wakes,
27–29 May 2008, Marseille, France, pp. 2–5.
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Figure 2.8: (a) Power spectral densities of the streamwise Eulerian velocity component
uz(⟨X(z)⟩) on the respective mean centrelines at zb−1 = 3 and zb−1 = 8 obtained from
hot-wire measurements (see appendix A.1). (b) Same as (a) but frequency pre-multiplied.

Conjecture 2.6 (orginally spelt out by Bailey & Tavoularis, 2008, p. 311) qualitatively
extents to other experiments (λr−1

1 ≈ 120 at zc−1 = 11.2 in Roy & Leweke, 2008, p. 7;
Beresh et al., 2010, p. 599; λr−1

1 ≈ 30 . . .60 in the wind tunnel and less 50 r1 in water-
channel LIF in Bailey et al., 2018, pp. 738–739). Unlike conj. 2.6, it should be noted that
an order of magnitude shorter wavelengths O(1 . . .3 r1) have been identified with the bulk
core unsteadiness, too (Bandyopadhyay et al., 1991; Beninati & Marshall, 2005).

The characteristic frequency closer to the wing. The near-wake experiments of
Chow et al. (1997, p. 60) identify a characteristic meandering frequency35 of about Sc ≈ 10−2

at zc−1 ≤ 0.678.36 This frequency in the near wake is two orders of magnitude smaller than
stated in conj. 2.6 (postulated for the extended near field). Similarly, Del Pino et al. (2011,
p. 9 and fig. 23) report a meandering frequency associated with the most-energetic POD
mode of Sc ≈ 2.5 × 10−2 (λc−1 ≈ 40, which is an order of magnitude larger than conj. 2.6),
asymptotically for 2 ≲ zc−1 ≤ 4, independent of the angle of incidence and Reynolds number.
Slightly farther downstream at zc−1 = 5, Edstrand et al. (2016, p. 8) identify37 Sc ≈ 10−1

which is intermediate between the near-wake findings and conj. 2.6.
This very-long-wave characteristic in the near wake is also stated for the unsteady

behaviour of inlet vortices, the characteristic meandering wavelength of which is estimated
to be λr−1

1 ∼ 103 (Wang & Gursul, 2012, p. 16).
Unlike the above experiments associating meandering with longer wavelengths in the

near wake than suggested by conj. 2.6, Bailey et al. (2018, fig. 7a) identify an order-of-

35Chow et al. (1997, p. 33) refer to McAlister & Takahashi (1991) for this value.
36The corresponding amplitude was estimated to be of the order σc−1 ∼ 10−4 which corresponds to

σr−1
1 ∼ 10−2 assuming r1c

−1 ∼ 10−2.
37This value corresponds to the frequency of the least stable eigenvalue in a spatial stability analysis of

a fitted Batchelor vortex.
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magnitude smaller dominant frequency Sc ∼ 10 (Sr ∶= fr1U
−1
∞ ∼ 10−1), corresponding to

λc−1 ∼ 10−1, for the smallest ambient turbulence intensity at zc−1 = 3.75.
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Figure 2.9: Frequency shift. Pre-multiplied power spectral densities of the streamwise
Eulerian velocity component uz(⟨X(z)⟩) in the respective mean vortex centres in the
measurement planes zc−1 ∈ {2, . . . ,26} obtained from PIV (cf. appendix A.1). Thick lines
(lower; zc−1 = 3.75) show rescaled pre-multiplied PSD of the vortex centreline of Bailey
et al. (2018). Arrows highlight trends in the frequency shift of the energy-containing scales.

Spectral peak shift and convergence of the characteristic frequency. While the
identification of one meandering frequency seems too ambitious, we can identify universal
trends. Most notably, Bailey et al. (2011, p. 4) resume that ‘the wavelength of low-
frequency/long-wavelength motion increases gradually with streamwise distance from the
wing’. In the light of the above discussion, we should rather state that the available data
provides evidence for a general convergence of the pre-multiplied PSD towards a single
sharp peak centred around the frequency of conj. 2.6 (see also Bailey et al., 2011, p. 5;
Bailey et al., 2018, p. 737). We can resume these findings as follows.

Conjecture 2.7. At least for low free-stream turbulence intensity there is a spectral shift
in the dominant (meandering) frequency downstream. In all cases, the dominant (mean-
dering) frequency converges towards the universal asymptotic value given in conj. 2.6.

This spectral shift is visualized in the pre-multiplied power spectral densities of Bailey
et al. (2011, fig. 6a) and Bailey et al. (2018, fig. 7a) (reproduced and compared to PIV in
fig. 2.9). Assuming Taylor’s hypothesis, the first peak (at zc−1 = 3.75) in these experiments
could be a manifestation of linear transient growth by the resonance mechanism of An-
tkowiak & Brancher (2004) (Bailey et al., 2018, p. 736). A qualitative assessment of areas
and magnitudes in the pre-multiplied power spectral densities of these experiments might
suggest some ’feeding mechanism’ from the primary to the secondary peak downstream.
Albeit, the energy budget (cf. fig. 6.4) precludes this interpretation as all energy to the
perturbation space is provided by the mean flow.
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Conclusion 2.4.3: Trends rather than concrete values

Meandering comes with an intricate duality between ’disorder’ (broadband signa-
ture) and ’order’ (coherent, recurrent properties). The apparent orderliness seems
to increase downstream and progressively converge towards a universal behaviour.
If a distinguished frequency (wavelength) exists, it seems to be subject to a shift
(at least for low ambient turbulence intensity). At present, all we can say is that
meandering is expected to correspond to the plateau Sc ≲ 10 (cf. conclusion. 2.4.2).

Independence of the meandering and free-stream scales

While the dependence of the meandering amplitude on the free-stream turbulence intensity
seems to be undoubted (cf. sec. 2.4 and chap. 4), it appears to be uncoupled from the free-
stream turbulence scales. The variety of measurement techniques (PIV, LDV, hot wire,
...), facilities (wind tunnel, water channel, ...), flow conditions and post-processing schemes
(zero-crossing, deconvolution, ...) to assess the effects of meandering, readily suggests a
certain robustness of the experimental findings discussed so far. Bailey et al. (2018, p. 734)
draw the following conclusion.

Conjecture 2.8. The meandering amplitude is disconnected from the integral length scales
of the free-stream turbulence.

Independence of the spectral signature with respect to changes in the free-stream con-
ditions implies that free-stream turbulence can only excite inherent vortex modes (see also
conj. 5.1). Borrowing terminology from stability theory, (strong) vortices behave similar
to oscillators despite being asymptotically stable (Huerre & Monkewitz, 1990, p. 475).

Characterization of the dynamics. Probably the most remarkable feature of vortex
meandering is its intrinsic linearity with respect to the remainder of the core dynamics
in the sense that there seems to be no interaction between these two dynamics. For this
reason, the meandering motion is conventionally termed inactive, meaning that it does not
constitute a true turbulence activity.

Conclusion 2.4.4: Dynamical independence

The spectral separation of the meandering motion and core turbulence is taken as
evidence that the two dynamics are independent and, moreover, that meandering is
essentially irrelevant for the vortex development. Unlike the lack of interaction with
the core dynamics, meandering depends on the free-stream turbulence intensity,
while it seems to be insensitive to the free-stream scales.

We emphasize the importance of the second part of this conclusion! At present, all
experiments seem to indicate that the large-scale, slow meandering motion is externally
excited by short-scale, fast random dynamics of the free stream. Furthermore, as regards
the statistics, the intricate scale interactions (i.e. the ’details’) of the free stream are largely
irrelevant and meandering only depends on the random net effect of the external excitation.
This model has striking parallels with the Langevin equation describing Brownian motion
(e.g. Yaglom, 1962, p. 69); we postpone further discussion to chaps. 4 and 6.

Characterization of the phenomenology. The absolute phenomenological foundation
of (trailing-)vortex meandering can be boiled down to the following three cornerstones.
They are indispensable for the phenomenon in the sense that meandering does not manifest
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without showing all of them; however, they are not disjoint, but rather seem to causally
overlap.

Conclusion 2.4.5: The three pillars of vortex meandering

The meandering (of trailing vortices) is characterized by(1) the amplitude growth downstream of the vortex generator,(2) a broadband spectral signature with energy accumulation in a low-frequency
band approximately below Sc ≈ 10: stochastic–coherent duality, and(3) the progressive energy concentration in the core.
We shall call these three key aspect the three pillars of vortex meandering.

34



3 | Discussion of the possible mech-
anisms

Aller guten Dinge Ursprung ist tausendfältig.

— F. Nietzsche: Also sprach Zarathustra

We terminate the review part of this mémoire by discussing the explanation approaches
put forth as of this writing.

For low turbulence intensities the characteristic power spectral densities computed on
the mean centreline might show several peaks (e.g. Jacquin et al., 2001, p. 37 as compared
to the flat spectra of fully-developed turbulence). This led Jacquin et al. (2001, p. 25) and
Bailey & Tavoularis (2008, p. 298) to conclude that vortex meandering most likely has
multiple sources. Different effects (such as stratification, ambient and core turbulence,
etc.), however, are not linearly additive (Sarpkaya & Daly, 1987, p. 399). Increasing the
turbulence intensity, this source multitude would seem to be lost and meandering becomes
dominated by only one source (Bailey & Tavoularis, 2008, p. 299).

As regards the thus far proposed mechanisms, the principal controversy is most beau-
tifully and clearly introduced by quoting H. Hesse (Siddhartha) –

Die meisten Menschen, Kamala, sind wie ein fallendes Blatt, das weht und
dreht sich durch die Luft, und schwankt, und taumelt zu Boden. Andre aber,
wenige, sind wie Sterne, die gehen eine feste Bahn, kein Wind erreicht sie, in
sich selber haben sie ihr Gesetz und ihre Bahn.1

Anticipating the conclusion of this chapter, this black–white distinction seems not to hold.
Rather, meandering would be like a falling star (Sternschnuppe) in this metaphor: bearing
strong internal dynamics, while at the same time being influenced by the surrounding.

The discussion of the meandering characteristics in sec. 2.4 suggests that vortices com-
bine characteristics of ’amplifier-’ and ’oscillator-like’ flows (although not in the strict sense
of Huerre & Monkewitz, 1990, p. 475). On the one hand, proportionality of the meander-
ing amplitude with respect to the free-stream turbulence intensity and the broadband,
apparently stochastic spectral signature is indicative of an extrinsic mechanism. On the
other hand, meandering seems to scale on the circulation while it is independent of the
free-stream turbulence scales. Together with a certain universality of the characteristic
meandering scales suggests an intrinsic mechanism. Also there is the controversy whether
meandering persists for (ideally) vanishing free-stream turbulence. If very low values of u
are seen as practically no free-stream turbulence, the only possibility remains an inherent
mechanism.

1Most people, Kamala, are like a falling leaf, which is blown and is turning around through the air, and
wavers, and tumbles to the ground. But others, a few, are like stars, they go on a fixed course, no wind
reaches them, in themselves they have their law and their course.
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We will therefore categorize the ensemble of previous explanation approaches into two
families. The first class of extrinsic mechanisms presumes that meandering is essentially
the response to external sources, while the second family of intrinsic mechanisms seeks
to explain the phenomenon through inherent vortex dynamics. The review of Jacquin
et al. (2005, p. 413) concludes with stating that essentially mechanisms of the second
family (namely, linear dynamics) and receptivity to external turbulence should be further
concerned (see also Del Pino et al., 2011, p. 2).

3.1 Extrinsic dynamics

Daß ich erkenne, was die Welt
Im Innersten zusammenhält,
Schau’ alle Wirkenskraft und Samen,
Und tu’ nicht mehr in Worten kramen.

J. W. von Goethe: Faust

The predominant perception of vortex dynamics and meandering can be formulated as
follows: Unlike turbulence inside the core being damped by rotation, it is wrapped into
filaments outside the core, forming strong aligned secondary coherent structures which buf-
fet the core (Beninati & Marshall, 2005, p. 244). This contains the recurrent conclusions
that core and free-stream dynamics are distinct and the former is laminarising. The vor-
tex organizes the surrounding fluid flow and the emerging filaments contribute to passive
buffeting of the core again. However, it is never clearly stated how this should really work.

Excitation by free-stream unsteadiness. Historically the first explanation for mean-
dering sought its origin in the flow unsteadiness inherent in wind-tunnel experiments (Cor-
siglia et al., 1973, pp. 753, 754). Corsiglia et al.’s reasoning is based on essentially identical
spectral signature of meandering and isotropic turbulence. We have compelling evidence
that the meandering power spectral density differs in important aspects from isotropic
turbulence (cf. sec. 2.4.2). Despite this inconsistency, the hypothesis remains that vortex
meandering is the mere result of an excitation by the wind-tunnel free-stream turbulence.
In some sense, this hypothesis marks one extreme of the range of explanation approaches
which reduces the phenomenon to a completely external mechanism. The assumption that
meandering persists even in the absence of any free-stream turbulence defines the other
extreme of entirely inherent dynamics which shall be discussed in sec. 3.2.

This hypothesis is corroborated by the experimental observation of significantly less
meandering upon systematic reduction of the free-stream turbulence intensity (e.g. Baker
et al., 1974, p. 331; below uU−1

∞ ≈ 0.5 %). For values of about uU−1
∞ = 0.2 . . .0.3 % (no grid),

Bailey & Tavoularis (2008, p. 290) state that the effect of meandering was essentially
negligible within zc−1 ∈ [3.75,9.75].

On the other hand, in a private communication with L. Jacquin (2018, ONERA Pal-
aiseau), the opinion was spelt out that meandering subsists even in virtually turbulence-free
ambient flow. Meandering is still observed for free-stream turbulence levels of uU−1

∞ ≈ 0.1 %
(e.g. Devenport et al., 1996; Jacquin et al., 2001). Such low levels are not expected to
have dominant dynamical significance by Jacquin et al. (2001, p. 14).

The present study suggests that the mere intensity is not the most interesting para-
meter, but that rather the ’form’ counts.2 We have the tendency to reduce the significance
of excitations to their magnitude (quantity), while we neglect their structure or pattern
(quality). In fact, the case of a resonant excitation is a prominent example showing that

2This is, by the way, a fundamental property of linear theories in general.
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3.1. Extrinsic dynamics

first and foremost the ’kind’ of excitation plays a role. What matters is the ’correct type’
of excitation together with a continuous supply of energy. This remark equally applies to
the Reynolds–Orr equation which tells us that perturbation shape, not magnitude counts.

The limit of zero angle of incidence. According to (2.3)–(2.4), changes in the angle
of incidence engender modifications of the circulation and therewith impact the vortex
dynamics. Albeit, meandering seems to persist even at α = 0, where actually no vortex
forms at all (Baker et al., 1974, footnote on p. 331). This observation led several researchers
to argue that meandering is caused mainly by the free-stream turbulence since it is not
linked to the presence of a vortex (e.g. Baker et al., 1974, p. 331; Devenport et al.,
1996, p. 68).3 On the other hand, we have substantial experimental evidence that the
meandering amplitude grows with downstream distance, seemingly contradicting a purely
passive buffeting effect in decaying or stationary free-stream turbulence, suggesting some
vortex-induced mechanism, instead (see also Del Pino et al., 2011, p. 2; Edstrand et al.,
2016, p. 2).

The stabilizing effect of rotation is visible in the meandering of wakes and vortices
(compare Foti et al., 2016, figs. 7, 8 with Bailey et al., 2018, fig. 3). This might be taken
as evidence to conjecture that a mean axial core velocity is a necessary requirement for
meandering while mean rotation has a purely stabilizing effect.

Further support to this hypothesis comes from the direct numerical simulations of the
core dynamics due to Melander & Hussain (1994, p. 34), stating that a (self-induced)
axial flow is crucial. In a concomitant study emphasizing vortex–turbulence interaction,
Melander & Hussain (1993a, p. 2676) come to the conclusion that ‘even though axial
transport is slow relative to the swirl velocity it is of central importance’, notably essen-
tially contributing to the organization of the surrounding turbulence. Also, Iungo (2017,
p. 1789) reports a ’drastic’ reduction of the meandering amplitude for vortices with smaller
axial velocity deficit (in fact almost constant for ±15 % defect). Comparing this finding
to related studies of turbine-hub wake meandering, Iungo concludes that this amplitude
dependence on the axial velocity deficit suggests that axial shear within the core might
play an important role, most likely involving a significant non-linear interaction.

The scale separation. The typical scaling behaviour suggests that meandering should
be excited by external forcing, with the main source being the turbulence contained in the
wrapping shear layers (Devenport et al., 1996; Iungo, 2017, p. 1789). While we have com-
pelling evidence that meandering amplitudes are affected by variations of the background-
turbulence level, there seems to be no final conclusion whether vortex-core perturbations
should be induced by turbulence contained in the free stream or from the shear layer rolling
up around the core (Heyes et al., 2004, p. 8; Beresh et al., 2010, p. 605).

At the same time, meandering and free-stream turbulence are spectrally separated
in the sense that the characteristic meandering frequencies are substantially lower than
the turbulent ones (Bailey & Tavoularis, 2008, p. 297). Even more, typically there is no
significant energy present in the flow (with and without grid) that is of the same order of
the final long-wavelength perturbations (Beninati & Marshall, 2005, p. 255). This scale
separation between free-stream turbulence and meandering suggests almost independence
(Miyazaki & Hunt, 2000; Jacquin et al., 2001, p. 16). In some cases, three-dimensional
instabilities in the shear layer may lead to wake fluctuations, e.g. in the flow past delta
wings. However, it remained unclear whether these low-energetic shear-layer instabilities

3As a matter of fact, jet meandering is a known geophysical phenomenon (e.g. of the Gulf stream;
Samelson & Wiggins, 2006, p. 8) and is also observed in aerodynamic wakes (e.g. behind wind turbines;
Larsen et al., 2008).
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(respectively perturbations) are sufficient to trigger very large core fluctuations (Menke &
Gursul, 1997, p. 2966).

With regards to the energy argument of Beninati & Marshall and Menke & Gursul, we
refer back to our above argument. Moreover, this reasoning seems to be based on the wrong
perception that there is an energy transfer from the free stream to the vortex (see chap. 6
for further discussion). The issue of distinct scales finds its origin in the expectation of a
linear dynamics, where the excitation and response frequencies are identical. If frequency
’selection’ (if there is one) was nonlinear, this expectation could prove wrong.

Kelvin–Helmholtz instability. A definite correlation between the Kelvin–Helmholtz
instability of the shear layer and vortex meandering was suggested by Gursul & Xie (2000,
pp. 348, 350). Namely, vortex meandering is due to nonlinear interaction of the trailing
vortex with several secondary vortices generated by the Kelvin–Helmholtz instability of the
vortex sheet shed from the trailing edge. This meandering scenario assumes the generation of
small-scale vortices by a Kelvin–Helmholtz instability of the shear layer that are advected
around the primary trailing vortex, causing a displacement of the latter due to mutual
Biot–Savart induction. This multiple nonlinear interaction of a system of several vortices
results in a chaotic dynamics of the primary vortex (Gursul & Xie, 2000, p. 350 referring to
Sen, 1997). Unsteadiness of the secondary vortices is essential, whereas stationary small-
scale vortex structures (e.g. due to steady instabilities) cannot cause meandering (Gursul
& Xie, 2000, p. 350).

Conversely, Bailey et al. (2018, p. 737) indicate that ‘the action of vortices from the
free stream can make at most a small contribution to the overall meandering motion of the
main vortex’. Although such vortices are experimentally observed their streamwise spacing
of 2 . . .6 r1 is consistent with small-wavelength meandering only, however, unlikely to cause
the long-wavelength characteristic.

Though perhaps a valid scenario for delta wings, meandering is observed in the absence
of a shear-layer Kelvin–Helmholtz instability. With regards to the general problem, the
assumption of a Kelvin–Helmholtz instability seems not justified and even unnecessary.
In fact, in the light of the previous discussion it would seem sufficient to concentrate on
the general interaction of a vortex with surrounding disturbances naturally contained in
the free stream. In this interpretation, the Kelvin–Helmholtz scenario can be considered a
particular sub-situation of a more generic receptivity approach.

Entrainment. While free-stream turbulence is probably a source of meandering in ex-
periments, another mechanism must be active if we suppose that vortices meander under
real flight conditions in an ideally quiescent earth atmosphere, too. Considering that vortex
formation happens close to a rigid body (aeroplane, missile, wall), low-speed turbulent fluid
from the boundary layer might be entrained during roll up (Beresh et al., 2010, p. 600).
This turbulence entrainment of the wall-boundary layer could be an additional source of
meandering, which remains pertinent in real conditions (e.g. for missiles) (Beresh et al.,
2010, p. 608). Entrainment-induced meandering, however, does neither exclude possible
other sources such as free-stream turbulence or shear-layer instabilities, nor does it provide
a statement of its importance (Beresh et al., 2010, p. 610).

Entrainment is observed in jet–vortex flow and depends crucially on the initial spacing
of the jet with respect to the wing tip (Jacquin et al., 2007, p. 9). The behaviour is discrete
in the sense that entrainment is possible or even unavoidable for jet locations close to the
wing tip, while it is completely prohibited otherwise. In the latter case the jet is rolled up
analogously to any other free-stream disturbances. The possibility of entrainment will be
further discussed in sec. 5.2.1.
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Jacquin et al. (2001) installed a half-model configuration, employing a solid separation
wall at the model symmetry plane (y = const). Fluid flow past the separating wall developed
a fully-developed turbulent boundary layer of standard thickness δc−1 ≈ 1 (2δb̃−1 ≈ 0.3 nor-
malized with the vortex-centre position; similar to Beresh et al., 2010, fig. 3). Hence, the
vortex core is well outside the boundary layer (distance of about 2 c or 20 r1 between core
and boundary-layer edge). This setup left the meandering characteristics essentially unaf-
fected in the sense that the power spectral densities for the full- and half-model configura-
tions were essentially identical. This suggests that significant influence of the wind-tunnel
walls on vortex meandering can be discarded (Jacquin et al., 2001, p. 15).

Albeit, Beresh et al. (2010, p. 602) emphasize that the vortex core behaves like an en-
trainment barrier on average, while the instantaneous velocity fields show core penetration
by turbulence patches spiralling in.

Beresh et al. (2010, pp. 608–609) suggest that turbulence is lifted from the boundary
layer due to the inherent rotational motion, admitting that this mechanism is unable to
explain the finite meandering amplitudes at the trailing edge and that it is inconsistent
with the characteristic time scale for transport inside a turbulent boundary layer. Thus,
conjecturing that ‘some other means must exist by which the wind-tunnel wall boundary
layer influences the vortex meander’. Immediate transferability to wings with higher aspect
ratios may not be given though (Beresh et al., 2010, p. 610).

Confinement and boundary conditions. As stated above, it exists no unanimous
agreement whether vortex meandering is a mere artefact of the unavoidable spatial confine-
ment in experiments which does not manifest under realistic flight conditions. According
to Jammy et al. (2014, pp. 352, 354), meandering depends sensibly on the boundary condi-
tions, viz. meandering is caused by initial and boundary conditions inherently imposed by
the wind tunnel. As to further investigate this hypothesis, Jammy et al. (2014, p. 353) con-
duct a temporal DNS of the parallel Batchelor vortex in decaying homogeneous isotropic
turbulence at RΓ = 4 × 103, considering periodic and symmetric lateral boundary condi-
tions, respectively. While different boundary conditions indeed change the magnitude and
qualitative evolution of the perturbation kinetic energy, the meandering-corrected second-
order statistics closely match (Jammy et al., 2014, p. 356). This suggests that meandering
is the only contribution to the total core perturbation which is sensibly affected by changes
in the boundary conditions.

However, it should be noted that none of the tested boundary conditions attempted
to model the wind-tunnel walls as a no-slip wall but both intended to simulate a laterally
infinite domain.

The present study indicates that regions of the fluid domain that really concern vortex
dynamics seem to be restricted to some close neighbourhood (in r, z and t). Everything
that lays farther away does not have significant influence on the dynamics. This short-
reach influence region of vortex dynamics (organization and excitation: resolvent) rather
precludes significant dependence on boundary conditions as long as they do not penetrate
the ’interaction layer’ around the vortex. The magnitude of different experimental config-
urations, all yielding similar behaviour, seems to indicate that boundary conditions do not
matter too much.

The rapid adjustment of the free stream to the presence of the vortex suggests that the
particular initial condition is not crucial either.

Model vibrations. For the sake of completeness, we should mention that Jacquin et
al. (2001, p. 14) put forth the principal possibility of vortex meandering being related to
the propagation of wind-tunnel model vibrations. However, further analysis led Jacquin
et al. (2001, p. 24) to conclude that the influence of model-vibration induced perturbations
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on meandering is weak, whereas its contribution to linear instabilities may be significant.
Model vibrations as a source of vortex meandering have been excluded in the experiments
of Iungo et al. (2009) (see also Iungo, 2017, p. 1789) and Beresh et al. (2010, p. 609). The
experimental setup of Beninati & Marshall (2005, pp. 246, 251) was designed particularly
to prevent any model vibrations.

3.2 Intrinsic dynamics

Alle Versuche des Verstehens bedürfen ja der
Hilfsmittel, der Theorien, der Mythologien, der
Lügen.

— H. Hesse: Der Steppenwolf

The opposed evolution – decaying (or stationary) free-stream turbulence as compared
to increasing core integral kinetic energy – would seem to indicate a vortex-induced mean-
dering mechanism. While at this point often instabilities are put forth, this reasoning is
unnecessarily restrictive and we should rather think of resonant excitation. The pseudo-
spectrum provides a map (Karte) of the possible pseudo-resonant amplification by decay-
ing perturbations off the spectrum. (Parts of the theory are introduced in sec. 6.3 and
a comprehensive treatise can be found in Trefethen & Embree, 2005.) In the scope of a
linear dynamics, intrinsic mechanisms (sometimes called core dynamics; e.g. Melander &
Hussain, 1994) are inextricably linked with the discrete spectrum of the linearised Navier–
Stokes operator (e.g. Arendt et al., 1997). Restriction to the discrete spectrum prevents
all interaction with the free stream, which, in fact, is governed by the (inviscid) continuous
spectrum (this is discussed in appendix C; see also Roy & Subramanian, 2014).

Self-induction and circulation dependence

Considering a single vortex filament, Rokhsaz et al. (2000, p. 1023) employ a first order
kinematic approach to derive an equation of motion dA/dt = β A, C ∋ β = β(Γ) ∼ Γ,
for the temporal amplitude function of the filament A(t). Solution by separation of the
variables yields temporally oscillating solutions with the amplitude growing or decaying
exponentially in time. Since βr = βr(Γ) ∼ Γ the amplitude growth depends on the vortex
strength. Thus, Rokhsaz et al. (2000, p. 1027) suggest that vortex meandering is self
induced due to the Biot–Savart law.

This explanation for the observed amplitude growth can almost certainly be rejected
from the compelling evidence of a reciprocal relation between amplitude and circulation
(Devenport et al., 1996; Heyes et al., 2004; Bailey & Tavoularis, 2008; Roy & Leweke, 2008;
Iungo et al., 2009; Beresh et al., 2010; Iungo, 2017). In other words, a strong vortex resists
deflection by external impacts (Devenport et al., 1996, p. 100). This relation is quantified
in (4.1) and fig. 4.2.

Heyes et al. (2004, p. 6 and fig. 8) and Iungo et al. (2009, p. 450) report a linear relation
between the meandering amplitude and vortex strength. The studies of Devenport et al.
(1996, p. 80), Roy & Leweke (2008, p. 5) and Beresh et al. (2010, p. 604) show results for
the variation of the meandering amplitude over the (wing) angle of incidence. This relation
seems to be generally non-linear, principally consistent with (2.4).

The experimental fact that meandering amplitudes reduce for increasing vortex strength
(Bailey & Tavoularis, 2008, p. 311) (idem, angles of incidence) is usually argued to provide
strong support to the conjecture that meandering can be thought of as the vortex being
buffeted by an external source (Devenport et al., 1996, p. 80). If it was an exclusively
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intrinsic mechanism, we would expect meandering to scale on the characteristic vortex
scales alone.

Isolated-vortex instability

Jacquin et al. (2001, p. 19) and Jacquin et al. (2003) compare estimates of the character-
istics of (isolated-)vortex instabilities with their spectra, concluding that the broadband
spectrum may be the consequence of many simultaneously active instability mechanisms.
However, although their spectrum revealed possible signatures of several instabilities, the
measurement distance up to zb−1 = 9 was judged insufficient to finally identify the governing
mechanism for meandering and a definite relation could not be established.

Among the principally possible instabilities, the deflection characteristic of meandering
readily suggests the following hypothesis.
Conjecture 3.1. Vortex meandering is related to a linear instability of ∣m∣ = 1 symmetry.

Conjecture 3.1 is put forth by Edstrand et al. (2016, p. 2) due to the strikingly similar
patterns of the leading POD modes of the coherent part in a triple decomposition of the
velocity field with the (spatially) least stable mode of a Batchelor vortex fitted at zc−1 = 5.
The actual result of the linear stability analysis by Edstrand et al. (2016, p. 8) yields at
worst a (marginally) stable mode but no spatial instability for the considered configuration.
Thus, conj. 3.1 is, in fact, solely based on the visual resemblance of the respective modes
obtained and the monotonic energy growth of the leading-order POD modes with z. In
fact, this structural similarity together with perturbation-energy growth alone provided
sufficient evidence for Edstrand et al. (2016, p. 8) to claim that all indices ‘strongly point
towards an instability as the underlying mechanism for vortex meandering; the type of
instability, however, is still subject to debate’. The problem here might be a confusing use
of the terminology of what precisely is meant by an ’instability’. Stricto sensu, there is no
instability in the sense of Lyapunov.

Isolated vortices can principally be destabilised by either a centrifugal instability or an
axial-flow-induced instability (Stout & Hussain, 2016, p. 354; Viola et al., 2016, p. 525; see
also Gallay & Smets, 2019, 2020 for a recent account). We shall only give a brief account
here on the relevance of the loss of (temporal) stability due to the vortex comprising an
axial mean-flow component. The prototype reference flow in this case is given by the
Batchelor vortex.4 The dispersion relation in this case reads (the azimuthal wave number∣m∣ is assumed to be unity)

(3.1) s = s(α, q,R) ∈ C.
The parameters α, q,R are taken to be real valued and the perturbation ansatz such that
sr represents the temporal growth rate.

From fig. 2.4, we see that the average Reynolds number is Rδ ≈ 2 × 103, although this
value is subject to considerable variation, especially for zc−1 ≲ 10.

A reference state is called stable here, if it is asymptotically stable, i.e. Lyapunov stable
and the perturbed state tends asymptotically to the reference state as t → ∞ (Joseph,
1976, p. 26; Yudovich, 1989, p. 100). Asymptotic stability is equivalently to the discrete
spectrum of the linearised Navier–Stokes operator. We note that the signature of the
discrete spectrum extends to the nonlinear problem (Monin & Yaglom, 1971, p. 157):5

Proposition 3.1. Linear stability implies non-linear stability.
4To be precise, the Batchelor vortex is no fixed point of the Navier–Stokes equations but a slowly

diffusing solution of the boundary-layer approximation. For dynamics which are fast compared to the slow
diffusion, it is assumed essentially equivalent to a fixed point, also called q vortex (Fabre & Jacquin, 2004).

5The proposition that linear instability implies nonlinear instability is less obvious, see e.g. Georgescu
(1985), Friedlander et al. (1997), Friedlander & Yudovich (1999) and Friedlander et al. (2006).
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The swirl number. As the definition suggests, the swirl number (2.13) should increase
with vortex strength (i.e. the angle of incidence) for otherwise fixed conditions. This is
indeed observed in the experiments of Devenport et al. (1996, p. 81) for fixed Rc and
zc−1 = 10:

q ≈ 1.85 . . .7.85 for α = 2.5○, . . . ,7.5○ at Rδ ≈ 1500 . . .2000.

Similarly, varying the angle of incidence α = 4○, . . . ,12○ at zc−1 = 9, Chigier & Corsiglia
(1972, fig. 3) find q ≈ 1.57 . . .7.85 followed by a drop to q ≈ 4.2 for the highest angle of
incidence (probably due to stall). Keeping the angle of incidence fixed the swirl number
seems to be rather unaffected by changes in the Reynolds number Rc (Devenport et al.,
1996, tab. 1).
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Figure 3.1: Variation of the swirl number (2.13), compared to the viscous and inviscid
neutral stability limits to helical perturbations (for the experiments listed in appendix A.2).
The swirl numbers computed from the experiments of Jacquin et al. (2007) (cf. also
appendix A.1) can be estimated from fig. 2.2 to be q > 6 for all measurement positions and
are thus not shown.

The (monotonous) downstream growth of the core kinetic energy and meandering amp-
litude might be taken as evidence that experimental meandering is the result of flow trans-
ition as observed in various shear flows (Schlichting, 1997). A possible scenario assumes an
initial instability of the laminar vortex followed by some kind of a transition eventually res-
ulting in the turbulent state corresponding to experimental meandering. This perception
would require vortex instability in the near wake of zc−1 ≤ 3 (say).

The downstream variation of the swirl number is shown in fig. 3.1. The horizontal lines
indicate the viscous (Mayer & Powell, 1992) and inviscid (Heaton, 2007a, p. 327) neutral
stability limits of helical perturbations to the Batchelor vortex.

Reducing the question of vortex stability to the swirl number, the experimental results
are not conclusive. While some studies find swirl numbers of q ≈ 2 . . .3 for zc−1 ≤ 2 (Green
& Acosta, 1991, fig. 14; Chow et al., 1997, pp. 53, 55), others report a weakly unstable
condition q ≈ 1.25 . . .1.5 for zc−1 ≈ 1 (Chigier & Corsiglia, 1971, figs. 4–6; Jacquin et al.,
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2001, p. 15). These values of the swirl number are close to the inviscid critical value which,
however, may be viscously weakly destabilised at the given Reynolds number (Fabre &
Jacquin, 2004, p. 248). Despite the possibility of initial growth the swirl number in both
experiments is rapidly stabilised to values of q ≈ 4.71.

Beyond approximately zc−1 = 5, the swirl number would seem to stabilise at a value
of q ≈ 3 . . .4 (Devenport et al., 1996, p. 81; Fabre & Jacquin, 2004, p. 259; Edstrand et
al., 2016, p. 4). This might be indicative of the vortex reaching a persistent equilibrium
state for which q ≥ 1.5 (Jacquin & Pantano, 2002, p. 167). Systematically larger swirl
numbers of q ≈ 5.5 can be estimated for the experiments of Beninati & Marshall (2005,
p. 248). Downstream stabilisation in the sense of rapidly increasing q is also observed in
spatial direct numerical simulations of the non-parallel Batchelor vortex (Heaton et al.,
2009, p. 144 and fig. 3, as well as similar simulations due to Jacquin & Pantano, 2002,
p. 163 and Viola et al., 2016, figs. 1–2).

The only experiment known to us being persistently in a potentially unstable config-
uration over zc−1 ∈ [3.6,12.8] at an angle of incidence α = 5○ is due to Pentelow (2014,
figs. 5.21 and 5.25); in this case, q ≈ 1.6.

Growth rates. Since some experiments indicate weakly unstable conditions shortly be-
hind the wing, we should estimate the growth rates6 in order to decide on their pertinence.
For this purpose, we must express the time scale used in stability studies in terms of experi-
mentally accessible scales. The experimental scales of least uncertainty which are pertinent
for vortex meandering are probably the chord length c and free-stream velocity U∞.

The temporal growth rates sr of the viscous modes of Khorrami (1991) and Fabre &
Jacquin (2004) decay as sr = O(R−1

δ ) and sr = O(R−1/3
δ ) as Rδ →∞, respectively. In either

case, the maximum growth rate is bounded above by sr,max ∼ 10−2t−1
δ for finite Reynolds

numbers (Heaton, 2007a, p. 326). Converting scales, sr,max ∼ 10−1t−1
c which corresponds

to a growth length of zc−1 = (U∞s−1
r,max)c−1 ∼ 10. That is, perturbation growth by one

unit happens, at best, over a downstream distance of ten chord lengths. Except possibly
for cruise conditions at very low angle of incidence in a quiescent environment, growth of
viscous instabilities of a Batchelor-like vortex is too slow to be of practical importance for
meandering. Even in the parameter range where viscous instabilities are active, they are
less important on the time scale where inviscid mechanisms are active (Heaton & Peake,
2007, p. 285).

The maximum growth rate of an inviscid instability is sr = 0.46 (Mayer & Powell,
1992; Heaton, 2007a, p. 326). Repeating the same estimates as above, this instability
develops over a time scale of sr ∼ 4.6 t−1

c which corresponds to a growth length of zc−1 ∼
0.5. Nevertheless, Reynolds numbers in experiments are finite (fig. 2.4) and these inviscid
instabilities are damped in practice. Non-linear integration of these instabilities by direct
numerical simulation shows that the developing fine-scale turbulence is stabilised and the
core relaminarises (Jacquin & Pantano, 2002).

Cooperative instabilities

Jacquin et al. (2001, p. 14) suggest the following.

Conjecture 3.2. Vortex meandering is associated with a linear cooperative instability.

Already Baker et al. (1974, p. 331) presumed that far downstream some meandering may be
induced by mutual vortex instability of the trailing-vortex pair while they estimated it to be

6The modulus of a complex number u(t) = ûest, s ∈ C, is ∣u(t)∣ = ûesrt. Let û ∶= 1 without loss of
generality, then the amplitude at time t is A(t) = esrt. Thus, the time t to attain a certain amplification
C = lnA becomes t = Cs−1

r ∼ s−1
r or (t = zU−1∞ ) zc−1 ∼ (U∞s−1

r )c−1.
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most certainly negligible at downstream positions less than zc−1 ≤ 60. Trailing vortices in
free-flight measurements show neither significant growth nor decay about 20 wing spans (i.e.
zc−1 ≲ 160) from the trailing edge. For about this distance the trailing vortices of a full-wing
setting can, in good approximation, be assumed to develop independently (Devenport et al.,
1996, p. 68). This is consistent with the time scale of cooperative instabilities ∼ b̃2Γ−1 ∼ b̃3; b̃
is the vortex separation and the circulation (through lift) is inversely proportional to vortex
spacing (Jacquin et al., 2001, p. 5). Eventually, according to Beninati & Marshall (2005,
pp. 246, 251), their experimental set-up was designed especially to prevent cooperative
instabilities. This and particularly the fact that the phenomenon is observed already
shortly behind the wing (see sec. 2.4), cooperative instabilities as a necessary prerequisite
for vortex meandering are excluded. It should be noted that conj. 3.2 was eventually
rejected by Jacquin et al. (2005, p. 412), too.

The near wake is typically characterized by the coexistence of several vortices (e.g.
Jacquin et al., 2001). Bailey et al. (2006, pp. 1285–1286) find the vortex positions to be
independent of the free-stream turbulence intensity in their experiment. However, arrange-
ment and number of the vortices depend strongly on the geometry of the vortex generator
and are not universal. Observed n−vortex instability in a particular setting is therefore
most likely not representative in general. The universal observation (e.g. trailing from
canonical rectangular wing) would seem to be inconsistent with the systematic formation
of certain vortex systems.

Conclusion 3.2.1: Linear stability

We conclude that vortex destabilisation due to the vortex comprising an axial mean-
velocity component is largely irrelevant: meandering is not a direct consequence of
an axial-flow-induced linear instability. While viscous instabilities can be excluded
due to swirl-number restrictions and extremely weak growth, inviscid instabilities are
shown to be insignificant due to finite Reynolds numbers and nonlinear stabilisation.
The only potential exceptions might be for small angles of incidence or very close to
the trailing edge, within one chord say. Albeit, in this case validity of the theoretical
model of an isolated parallel Batchelor vortex in an infinite fluid container is certainly
doubted. Eventually, even if all conditions are fulfilled and an instability is possible,
it is probably overpowered by the dynamics resulting from the nonnormality of the
linearised operator (Heaton, 2007b).

Ad idem, Fabre & Jacquin (2004, p. 259) conclude that (at least in the experiment
of Jacquin et al., 2001) vortex meandering is not due to a viscous instability of vortices
comprising an axial velocity, but conjecture that:7

Conjecture 3.3. Vortex meandering is due to the (transient) excitation of Kelvin waves
in the vortex core by the surrounding turbulence.

This mechanism does not follow the rigid separation into intrinsic or extrinsic mechan-
isms adopted thus far but assumes a contribution from both. Indeed, meandering would
seem to be likely associated with a generalized (spatio-temporal) receptivity problem of
the vortex core with respect to free-stream disturbances. We postpone a further discussion
to chap. 6.

7This proposition can already be found in Jacquin et al. (2003, p. 590).
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4 | First mechanism: Brownian
meandering?

Es ist der Einblick in eine neue Welt. Statt der
erwarteten Kirchhofruhe bemerkt er einen äußerst
lebhaften, munteren Tanz . . .

— M. Planck: Dynamische und statistische
Gesetzmäßigkeit

At the end of sec. 2.4, we concluded that meandering (of trailing vortices) is character-
ized by three pillars. The first pillar – downstream amplitude growth – is the subject of
the present chapter. The here suggested theory is best motivated with the aid of fig. 4.1,
showing the Brownian motion of a suspended particle (taken from the famous experiment
of J. Perrin, 1913, p. 166). Comparing this trajectory to realizations of experimental vor-
tex meandering shown in fig. 4.2, we propose that, had we access to measurement planes
spaced more closely and over a longer downstream range, the trajectories shown in fig. 4.2
would be indistinguishable (in its characteristics) from the path shown in fig. 4.1. What
we want to show henceforth resumes in the following conjecture and corollary.

Conjecture 4.1. The vortex-centre random process t↦X(t) ⊂ R2 is a Brownian motion.

Corollary 4.1. If we assume – what we do! – that there exists a bijection betweenX(t) and
what we call meandering, vortex meandering is a Brownian motion, too. The meandering
vortex volume (presumably comparable to the core or support) is then material and the
vortex behaves like a fluid particle.

4.1 A dimensional argument: the scaling law

Auch spielt das Zufällige, Unberechenbare,
Inkommensurable eine zu große Rolle. Unsere
Gesetze fußen nur auf Wahrscheinlichkeiten, auf
Statistik, nicht auf Kausalität, treffen nur im
allgemeinen zu, nicht im besonderen.

— F. Dürrenmatt: Das Versprechen

It should probably be recalled that the ’meandering amplitude’ is defined as the stand-
ard deviation of the vortex-centre position in def. 2.7. In the following, we recall some
heuristic modelling, augmented by dimensional arguments, which leads to a simple scaling
law for the meandering amplitude; reminiscent of Brownian motion (as already motivated
at the end of sec. 2.4).
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Chapter 4. First mechanism: Brownian meandering?

Figure 4.1: Brownian motion of a suspended particle traced under the microscope by
J. Perrin (1913, p. 166).
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Figure 4.2: Centred vortex centre (from the PIV measurements presented in ap-
pendix A.1). Time is defined by t = zU−1

∞ and the points {1,2, . . . ,5} label subsequent
measurement planes at zc−1 ∈ {2,4, . . . ,26}. The shown realizations correspond to
s ∈ {100(▲),102(▼),103(⧫)} (s is the index of the ’random experiment’ defined in ap-
pendix B). The core scale r1 is shown for comparison.
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4.1. A dimensional argument: the scaling law

Experimental evidence for σ ∼ u. It is universally observed that meandering amp-
litudes increase when the vortex is immersed in ambient turbulence of enhanced kinetic
energy (Baker et al., 1974, p. 331; Heyes et al., 2004, fig. 10; Beninati & Marshall, 2005;
Bailey & Tavoularis, 2008, p. 291 and fig. 6; Van Jaarsveld et al., 2011, p. 222; Hussain
et al., 2011, p. 314; Bailey et al., 2018, p. 733). Amplitude modification as a consequence
of increased free-stream turbulence intensity is obvious in the Laser Induced Fluorescence
(LIF) visualisations of the water-tunnel experiments of Bailey et al. (2018, p. 731) (also
refer to Pentelow, 2014, §5.1). Besides the absolute deflection amplification, strong local
distortions of the vortex axis for higher turbulence intensities manifest (Bailey et al., 2018,
p. 729).

Brownian motion. The dynamics leading to vortex meandering are twofold: namely, a
balance between external driving and internal resistance. This is reminiscent of Brownian
motion. The essentials of Brownian motion, namely that it is the ‘outcome of rival tenden-
cies’ – ordering vs disordering forces –, is very concisely illustrated by Schrödinger (1992,
p. 12).

Without specifying the receptivity mechanism, Bailey & Tavoularis (2008, p. 293) spec-
ulate that ‘the ’beating-about’ of the vortex by the free-stream turbulence and induction by
nearby eddies might result in velocity fluctuations in the core. On the other hand, the vor-
tex naturally resists deformation so that meandering-velocity amplitudes bounded above
by amplitude of free-stream fluctuation velocity amplitudes’. This must be understand in
the sense that vortex only resists deformation but does not ’own-meander’.

Dimensional analysis of the two-trailing-vortex system subject to grid turbulence in the
far field (emphasizing cooperative instabilities, decay and breakdown) due to Sarpkaya &
Daly (1987, pp. 401–402) yields

H

d̃0
=H (U∞t

d̃0
, ε,

l

d̃0
)

for the elevation H of the vortex pair, normalized with the initial vortex-core spacing
d̃0. The dissipation rate ε defined in Sarpkaya & Daly (1987, eq. (8)) and l denotes the
integral length scale. The elevation was found to be insensitive with respect to the Froude
and Reynolds number. Further investigation suggested that the dissipation rate ε is the
governing parameter for the determination of the vortex deflection amplitude, while the
integral length scale of the surrounding turbulence l only plays a minor role (Sarpkaya &
Daly, 1987, p. 403). The dissipation rate can always be estimated as ε ∼ U3l−1 (Tennekes
& Lumley, 1973, p. 68).

Rokhsaz et al. (2000, p. 1026) proposed σ = σ(z,Γ) as the general lawfulness (Gesetz-
mäßigkeit). From purely dimensional arguments, we derive: –

Conjecture 4.2. Take the experimental evidence that the meandering amplitude σ grows
for stronger free-stream turbulence intensity u and downstream z of the wing. The amp-
litude decreases as the vortex strength Γ increases. In general, σ ∼ uazbΓ−c for a, b, c > 0,
and for dimensional reasons σr−1

1 ∼ u × (t/Γ)1/2.

– Baker et al. (1974, eq. (9)) suggested the amplitude growth σ2(z) = 2νtz/U∞ (νt is a
scalar characteristic of the ambient turbulence) to follow a law similar to vortex diffusion.

– Van Jaarsveld et al. (2011, p. 222) propose that the standard deviation of the vortex-
centre location can be described analogously to that of a passive scalar in homogeneous
turbulence. This problem was first solved by G. I. Taylor (1921). In this case, the charac-
teristic time scale corresponds to that of the ambient turbulence field, which Van Jaarsveld
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et al. (2011, p. 222) suggest to substitute by the vortex-turnover time tr. Then,

(4.1) σ(t) ∼ u
√
trt ∼ u

¿ÁÁÀr2
1t

Γ1
⇔ σ(t)

r1
∼ u

√
t

Γ1

or equivalently

σ(t)
r1

∼ u

√
t

r1Uθ,1

¿ÁÁÀUθ,1

Uθ,1
= u

Uθ,1

√
Uθ,1t

r1
∼ u

U∞

√
t

tr
.

The last form indicates that vortex meandering is proportional to the ambient turbulence
intensity and the residence time of the vortex in the turbulent surrounding. Bailey et al.
(2018, p. 734 and fig. 5) match their results obtained in two facilities with this linear
(with respect to the free-stream turbulence intensity) amplitude law which supports ‘van
Jaarsfelds observation that the vortex turnover time is an important scaling parameter for
the meandering amplitude’. This is also shown in fig. 4.3.
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Figure 4.3: Temporal (t = zU−1
∞ ) evolution of the normalized vortex-centre standard devi-

ation σ(t) according to (4.1) (solid line) and compilation of experiments (symbols).

From the importance of the rotation time as a scaling parameter of vortex meandering,
Bailey et al. (2018, pp. 724, 745) conclude the following.

Conjecture 4.3. Vortex wandering scales on intrinsic vortex rather than external turbu-
lence scales.

Bailey et al. (2018, p. 733) stress that Taylor’s theory assumes homogeneous turbulence
(i.e. statistics independent of z, implying e.g. u = const) which is not the case in grid-
turbulence experiments, where u = u(z) decays downstream (−1.3 power law; cf. (6.1)).

A comment on two-dimensional turbulence. It is characteristic of two-dimensional
turbulence to gradually concentrate vorticity in several ’vortices’ which ’meander’ around
(McWilliams, 1984, 1990). Most likely, this vortex motion is ’true’ meandering in the sense

48



4.2. Derivation from the Navier–Stokes equations

of def. 2.6. Yet, the situation is different with respect to trailing-vortex meandering in that
normally more than one ’dominant vortex’ forms. The dynamics is therefore likely due to
the interaction of several vortices of comparable strength and the governing mechanisms
might differ from the here discussed.

4.2 Derivation from the Navier–Stokes equations
The attempt at deriving a Brownian meandering motion directly from the Navier–Stokes
equations is appended in appendix B. Brownian meandering is also evidenced in fig. 4.4,
where the diffusion of the normal probability density according to σ(t) ∼ t1/2 is shown. In
appendix B, we suggest that the universal Gaussian statistics (see also sec. 2.4) may be an
artefact of the central limit theorem.
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Figure 4.4: Diffusion of the marginal probability density µtX1

(x1) ∼ N (0, σ1
R1
t1/2) for the

five measurement stations in the experiment (cf. appendix A.1 and B).
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5 | Second mechanism: return to
order!

Es ist aber immer auch etwas Vernunft im
Wahnsinn.

— F. Nietzsche: Also sprach Zarathustra

At the end of sec. 2.4, we identified some sort of stochastic–coherent duality as one
of the cornerstones characterizing vortex meandering. By this figurative description, we
intended to put into one concept the fact that meandering involves scales spreading over
several orders of magnitude, all the same having a somewhat well-ordered appearance.
That there is always a regular skeleton underlying manifesting irregularity is precisely the
content of the above quotation from F. Nietzsche and, in fact, characteristic of chaotic
rather than stochastic dynamics (see the definition of chaos in Devaney, 1989, p. 50).

On the basis of the general trends of the meandering dynamics worked out in sec. 2.4.2,
we conjecture that (trailing-)vortex meandering obeys a return-to-order principle. Bohm &
Peat (1987, p. 141) state that – ‘as with order, so with structure, there can be no complete
definition’. To get an idea, recall that the word ’order’ has its root in the Latin ōrdō,
meaning row, rank, regular arrangement1. As such, it describes the state of an ensemble of
elements in which the parts are subject to certain uniform, established proportions yielding
structural regularity or form. Bohm (1980, pp. 146–149) defines order in terms of similar
differences. That is, a system2 is highly ordered if it has very few degrees of freedom or
free parameters that characterize it (see also Bohm & Peat, 1987, p. 116). In the present
context, the degrees of freedom are identified with the dynamically active modes (viz. the
span of the supporting phase-space volume). In order to emphasize the intention or desire
of the system towards order, we may employ the word ’orderliness’. According to the
dictionary, the suffix ’-ly’ means ’having qualities of, of the form or nature of’.

Eventually, the word ’organization’ is sometimes used with a similar meaning (e.g.
Bandyopadhyay et al., 1991; Jacquin et al., 2001, p. 1; Bailey et al., 2018, pp. 734–744).
The word ’organization’ derives from the Greek όργανον, meaning instrument, tool. Rather
than a state, it bears the connotation of a process that assembles parts to a viable whole.

5.1 Organization and low-dimensionality in wing wakes

No one knows what entropy really is, so in a debate
you will always have the advantage.

— J. von Neumann to C. Shannon.
1Reihe, Schicht, Ordnung (Stowasser, p. 355).
2The word ’system’, from the Greek σύστεμα, means ’the whole assembled from connected elements’.

51



Chapter 5. Second mechanism: return to order!

The following section is guided by the questions – What does the broadband continuous
power spectrum tell us about the meandering dynamics? And – How can we quantify the
apparent increase of orderliness?

5.1.1 Is there a universal scaling law of the meandering frequency?
In chap. 4, we have shown how the meandering amplitude results from a balance between
external excitation and internal resistance. Considerable evidence for the idea of an extern-
ally determined frequency selection (amplifier-like dynamics; Huerre & Monkewitz, 1990,
p. 475) is typically seen in the scaling λ ∼ c of the characteristic meandering wavelength
(i.e. the peak frequency); cf. conj. 2.6. Proportionality to the chord length c suggests that
(part of) the meandering scales with the model dimension (Jacquin et al., 2005, p. 413).

At the same time, universality and convergence irrespective of the turbulence conditions
(conj. 2.6–2.7) is seen as an indicator for a vortex-induced selection principle. Experience
tells us that the vortex strength is one of the key parameters of meandering (e.g. in chap. 4).
It would appear that it is in this spirit that Bailey et al. (2018, p. 739) ‘assert with some
confidence’ that the meandering wavelength scales on the vortex turnover time λ ∼ tr.

On the other hand, Devenport et al. (1996, p. 96) find the power spectral densities to
collapse, when scaled on the parameters of the two-dimensional unrolled-up wake though
not when scaled on the core parameters. This suggests an externally induced meander-
ing frequency by the surrounding flow. This scaling, to the best of our knowledge, has
never been confirmed. The vortex-surrounding, energy-containing turbulence structures
are typically associated with integral length scales of 0.1 . . .5 r1 (Beninati & Marshall,
2005, pp. 245, 251; Bailey et al., 2018, p. 737). This turbulence scale is about an order of
magnitude smaller than the characteristic meandering wavelength postulated in conj. 2.6
(see also Bailey & Tavoularis, 2008, p. 298 and fig. 13). Comparison with the ’eddy-
travelling distance’ (estimated to be 1 . . .2 × 102 r1; Bailey et al., 2018, p. 737) shows that
these two turbulence scales constitute, at best, lower and upper bounds for the true mean-
dering wavelength. This scale independence (and furthermore invariance with respect to
the turbulence intensity) provides evidence that (see also sec. 2.4.2 and Bailey et al., 2011,
p. 5):

Conjecture 5.1. Free-stream turbulence only excites inherent vortex modes, while it does
not cause the development of new modes.

5.1.2 Is meandering a stochastic or coherent dynamics?
There is the ongoing controversy as to whether the meandering dynamics is stochastic
or coherent. To begin with, understanding these attributes without rigour, the essential
question seems to be whether meandering is either an externally induced phenomenon lack-
ing intrinsic dynamics or a fundamentally vortex-induced mechanism manifesting through
inherent vortex modes.

Experimental evidence. The existence of organized periodic motion underlying me-
andering is inferred from non-vanishing cross-correlation of the meandering amplitudes.
Cross correlation, weak periodicity and identical wavelengths in x, y indicates the exist-
ence of a helical pattern of long-wavelength, organized meandering co-rotating with the
vortex (Bailey et al., 2011, p. 5). Correlation analysis of Singh & Uberoi (1976, pp. 1860–
1862) suggests that among the distinguished core fluctuations (m = 0,1) more energy is in
the low-frequency helical ∣m∣ = 1 core perturbation.

On the other hand, Bailey et al. (2018, p. 743) find a cross correlation of ρXY < 0.1 (X
and Y are the Cartesian components of the vortex centre), stating that almost uncorrelated
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axes coordinates imply negligible contribution from helical axis motion. Zero-crossing
analysis of Bailey & Tavoularis (2008, p. 310) suggests that the meandering motion is
incompatible with dominant helical or sinusoidal modes.

As shown in fig. 2.8 the meandering energy spreads over scales in the range of three
orders of magnitude and although well-defined peaks in the pre-multiplied power spectral
densities exist, Bailey et al. (2018, pp. 735–736, 740) conclude that the corresponding
relative energy content (within ±50 % of the peak value) only constitutes a small fraction
of the total energy. From this and the Gaussian Lagrangian centreline-velocity probability
density function, Bailey et al. infer that ‘meandering was largely stochastic [and] . . .motions
with frequencies at or near the most probable values were rare’.

At the same time, the fact that meandering seems to affect vortices in general and
that, moreover, the characteristics are essentially universal, irrespective of the details of
the initial and boundary conditions, suggests the existence of some supporting structure
in phase space which accommodates vortex meandering (Guckenheimer, 1986, p. 17). For
the ease of understanding, we call this supporting phase-space volume the ’meandering
attractor’, emphasizing though that this terminology is not necessarily mathematically
rigorous here, and that further analysis would be required for its confirmation.

Low dimensionality of the meandering attractor

The above discussion shows that the main evidence for the association of meandering
with a stochastic dynamics stems from the difficulty to identify one particular (expectedly
helical) mode in experiments together with the fact that the phenomenon is associated
with a broadband continuous power spectral density (as shown in sec. 2.4.2). While the
inference of randomness from the power spectrum is common practice (Schlichting, 1997,
p. 409), it strictly allows the identification of quasi-periodic3 dynamics, at best, whereas
little information can be gained for more complicated flows (Malraison et al., 1983, p. 897;
Guckenheimer, 1986, pp. 16, 21, 24). In view of a quasi-periodic motion, the physical
system is perceived as the superposition of an ensemble of independent oscillators (Eckmann
& Ruelle, 1985, p. 618). This is a linear representation of the inherently nonlinear Navier–
Stokes dynamics. In fact, according to Eckmann & Ruelle (1985, p. 619),

if we are confronted experimentally with a continuous power spectrum, there
are two possibilities: We are either in the presence of a system that ’explores’
an infinite number of dimensions in phase space, or we have a system that
evolves nonlinearly on a finite-dimensional attractor.

In other words, experimentally observed broadband continuous power spectra can be due
to (i) a linear superposition of a large number of independent modes (oscillators) or (ii)
the nonlinear interaction of a small number of modes. The latter situation was shown to
apply to several fluid flows, such as Taylor–Couette flow and Rayleigh–Bénard convection,
while it seems not to hold for grid turbulence, for instance (Swinney & Gollub, 1986,
pp. 448–450). This problem can be approached by appeal to nonlinear time-series analysis
(Grassberger et al., 1991; Kantz & Schreiber, 2004; Bradley & Kantz, 2015). A primary
objective here is to discriminate deterministic chaos from random noise.

Assumption 5.1. We assume that experimental vortex meandering is either a determin-
istically chaotic or stochastic dynamics. In the former case, we assume the existence of a
finite phase-space volume where the motion takes place and call it attractor.

3That is, the motion corresponds to the phase trajectory on a torus of incommensurable frequencies
(Eckmann & Ruelle, 1985, p. 631; Landau & Lifšic, 1959, pp. 109–110).
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Phase-space reconstruction. While the Navier–Stokes equations formally define a dy-
namical system on an infinite-dimensional phase space, the dynamics is in practice restric-
ted to a finite (presumably small) phase-space volume (Eckmann & Ruelle, 1985, p. 618;
Guckenheimer, 1986, p. 24; Foiaş et al., 2001). Suppose this volume is m-dimensional,
then Packard et al. (1980, p. 713) argue that the measurement of any m independent (in
some appropriate sense) quantities captures the whole dynamics uniquely. Moreover, all
such complete sets are conjectured to be diffeomorphically equivalent. This is the essence
of Takens’ embedding theorem (Takens, 1981) which allows the reconstruction of a full
nonlinear dynamical system from an experimental time series. This a very remarkable
result, that all the geometrical and statistical information of the whole dynamical system
is already contained in the scalar time series registered at a fixed measurement point in
experiment! In practice, delay coordinates are used (Packard et al., 1980, p. 713; Malraison
et al., 1983, p. 898; Swinney & Gollub, 1986, p. 449; Bradley & Kantz, 2015, p. 2).

Let u(t) ∈ R be the experimentally measured time series. We then construct the delay
vector zt ∶= (u(t), u(t + τ), . . . , u(t + (n − 1)τ)) ∈ Rn with the fixed delay τ > 0.4 The delay
vector zt describes a trajectory in the phase space Rn; n is called embedding dimension,
for which n ≥ 2m+ 1 is required (m is the dimension of the ’actual’ dynamics) (Swinney &
Gollub, 1986, p. 449). As motivated above, in order to yield a complete picture of the sup-
porting phase-space structure, the measurement of m independent quantities is required.
Linear independence between the components is assured by setting τ as the first zero of the
autocorrelation function of the signal (Bradley & Kantz, 2015, p. 3). Guckenheimer (1986,
p. 25) recommends to set the delay as about one forth of the characteristic oscillation of
the system.

Attractor dimension. We shall estimate the attractor dimension in terms of the correl-
ation dimension (Grassberger & Procaccia, 1983a; Grassberger & Procaccia, 1983c). Let
there be given the trajectory {zt}Nt=1 in the embedding space Rn. The correlation function
C(ε) is proportional to the number of pairs (s, t) whose distance ∣∣zs − zt∣∣ is less than ε.
Grassberger & Procaccia (1983a, p. 346) establish that C(ε) ∼ εδ in the limit as ε → 0
and call δ the correlation dimension (for details see Grassberger & Procaccia, 1983c). We
therefore have (see also Eckmann & Ruelle, 1985, pp. 620–621, 647):

Definition 5.1. The correlation function is defined as

(5.1) C(ε) ∶= lim
N→∞

1
N2

N∑
s,t=1

Θ(ε − ∣∣zs − zt∣∣)
where Θ(f) ∶= (1 + sgn f)/2 (Heaviside function). It follows the correlation dimension

(5.2) δ = lim
ε→0

logC(ε)
log ε

(N large).
Remark 5.1. The correlation dimension is a lower bound of the information and fractal di-
mension (Grassberger & Procaccia, 1983a, p. 348; Grassberger & Procaccia, 1983c, pp. 191,
196–198).

Remark 5.2. Different norms may be used to define the radius ∣∣zs−zt∣∣ of the hypersphere
(Malraison et al., 1983, p. 898; Eckmann & Ruelle, 1985, p. 647). Calculations with the
1-, Euclidean and maximum norm led to comparable results in the present study so that
we assume the Euclidean norm in the following (see e.g. Lax, 2007, for definitions).

4Time-delay coordinates are analogous to the use of position and its derivatives in classical mechanics
(Packard et al., 1980, p. 713; Swinney & Gollub, 1986, p. 449; Abarbanel et al., 1993, pp. 1336, 1343).
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The essential point for the present analysis is that stochastic dynamics is associated with
a space-filling trajectory. That is, if meandering was stochastic, we expect the correlation
dimension to be always identical with the embedding dimension – δ = n (Grassberger &
Procaccia, 1983c, pp. 191–192, 204, 206; Malraison et al., 1983, p. 898). On the other hand,
if δ stabilizes at a constant value less than n, we would expect that δ is representative of the
dimension of the supporting phase-space structure and that the dynamics is not stochastic.

Dimension estimates from the meandering experiment. To estimate the attractor
dimension of experimental vortex meandering, the analysis in sec. 6.2 suggests that the
leading POD expansion coefficient a1(t) ∶= (u(t),φ1)L2(M) constitutes a representative
time series. (We recall that a1(t) is equivalent to the component of the vortex-centre
time series along the principal axis.) Guckenheimer (1986, p. 25) states that spatially
different regions may have different dynamics so that time series at different points would
be required to capture the whole of the system. This is likely the case here for the vortex
and the free stream. However, since the interest is in vortex meandering, we assume the
selected time series to be representative.

In practice, the correlation dimension (5.2) is evaluated graphically by appeal to a log-
log plot. This is shown in fig. 5.1 for PIV measurements at zc−1 = 26 (cf. appendix A.1).
The graph of the correlation function over the radius always admits a characteristic ’S-like’
shape (the upper arc approaching unity is not resolved in fig. 5.1). For small ε the plateau
results from the fact that each element is correlated only with itself, while for large ε all
elements are correlated and C(ε) → 1 as ε → ∞. The correlation dimension is identical
with the slope of the branch connecting the two plateaus as ε→ 0 and ε→∞.

The delay is fixed at τ = 150 τs (τs = 3×10−4 s is the experimental sampling period) with
regards to the above recommendations. Increasing the embedding dimension n, the correl-
ation dimension is found to stabilize at approximately δ ≈ 6, independent of n, the norm
and the delay. Further analysis is required to definitely establish this dimension, however,
the general trends strongly suggest that meandering (at zc−1 = 26) is not stochastic but
rather a deterministic dynamics, restricted to a comparably small phase-space volume.

The frequency content of the PIV measurements (sampling rate fs = 3 kHz) is roughly
restricted to the plateau in the power spectra (cf. sec. 2.4.2 and appendix A.1). This is
presumably enough to capture the essence of the meandering dynamics, while it excludes
the core dynamics. We did not have access to a frequency-resolved time series, but would
expect the correlation function to admit a kink (or ’knee’), allowing the identification of
two correlation dimensions (Ben-Mizrachi et al., 1984). This behaviour is characteristic of
product dynamics where the whole dynamical system is assembled from two non-interacting
subsystems (Eckmann & Ruelle, 1985, pp. 647–648). Detection of this characteristic would
provide strong support to the common assumption that vortex meandering and core dy-
namics are independent. This has already been anticipated in footnote 20 on p. 21.

Downstream evolution of the dimension. The same analysis as for zc−1 = 26 above
is repeated for the other measurement planes at zc−1 ∈ {2,4,12,20}, whereas the delay τ is
successively decreased (as the first zero of the correlation function and the characteristic
period). The resulting correlation dimensions are shown in fig. 5.2, revealing a monotonic
decrease from δ ≈ 15 at zc−1 = 4 to δ ≈ 6 at zc−1 = 26. We emphasize that the calculations
of the first value (at zc−1 = 2) seemed not to converge towards a final dimension, while,
at the same time, they remained smaller than the embedding dimension. This suggests
that already at the first measurement station the dynamics is not stochastic, while it has
probably not yet converged to the meandering attractor either. However, irrespective of the
definite values, we clearly observe a decreasing trend, implying that the vortex dynamics
is confined to ever smaller volumes in phase space.
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Figure 5.1: Correlation function C(ε) based on the leading POD expansion coefficient over
the radius ε at zc−1 = 26. Embedding dimension n, time lag τ = 150 τs, Euclidean 2-norm.
(For the PIV measurements presented in appendix A.1.)
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Figure 5.2: Downstream evolution of the correlation dimension. (For the PIV measure-
ments presented in appendix A.1.)

As the wing wake evolves, the formation of a strong isolated vortex is compatible with
relaminarisation. The overall vortex dynamics obeys a ’return-to-order’-principle – i.e. the
emergence of a gradually more organized state out of a complex dynamics –, rather than the
classical ’route to turbulence’. This is the opposite of the transition (to turbulence) problem
(Schlichting, 1997, § 15; Yaglom, 2012). Although this conclusion seems fairly trivial, it is
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not the commonly held point of view, which sees trailing-vortex dynamics as the gradual
evolution of a laminar state close to the wing towards a fully-turbulent dynamics further
downstream (i.e. framed in the classical transition problem) (e.g. Antkowiak & Brancher,
2004, p. 4; Stout & Hussain, 2016, p. 354). It is likely that all attempts to explain vortex
meandering through intrinsic dynamics are in fact based on this perception.

Kolmogorov–Sinai entropy. Nonlinear time series analysis is appealing since it puts
the analysis of experimental data on a solid and rigorous mathematical foundation. Much
more analysis could be done on the experimental time series. For instance, the present
framework is straightforwardly extended to compute the Kolmogorov–Sinai entropy (Grass-
berger & Procaccia, 1983b). Since the Kolmogorov–Sinai entropy equals the sum of the
positive Lyapunov exponents (Bradley & Kantz, 2015, p. 5), zero entropy indicates non-
chaotic dynamics.

Increasing orderliness of the phase support: recurrence plots

An important aspect of time-series analysis lies in the identification of redundancies. An
approximate repetition is called recurrence (Kantz & Schreiber, 2004, p. 43). The analysis
by means of recurrence plots has been proposed by Eckmann et al. (1987) (see Kantz &
Schreiber, 2004, pp. 43–46 and Marwan et al., 2007 for details). As in def. 5.1, we define
the correlation matrix by

(5.3) Cst(ε) ∶= Θ(ε − ∣∣zs − zt∣∣) (s, t = 1, . . . ,N).
As a matter of fact, the qualitative structure and statistics of recurrence plots are

unaffected by the embedding dimension (Iwanski & Bradley, 1998; March et al., 2005).
Even more, embedding can lead to spurious correlations, manifesting as faulty small-scale
structure in the recurrence plots (Marwan et al., 2007, pp. 251–253). Therefore, since the
information can be extracted directly from the unembedded time series (March et al., 2005,
pp. 173–174), we consider the scalar time series zt = a1(t) (n = 1) in the following.

The recurrence plot is obtained by drawing the matrix Cst(ε) with black colour (=
1) indicating recurrence (with respect to the norm and ε) and white (= 0) meaning no
recurrence. This is shown in fig. 5.3 for zc−1 ∈ {2,26}. The structure of the recurrence plot
is practically not affected by the choice of ε within reasonable limits.

The essential point here for regarding recurrence plots is, that the particular system
behaviour can be inferred from typical patterns.5 Eckmann et al. (1987, p. 974) distinguish
large-scale typology and small-scale texture. A comprehensive classification of the various
patterns and corresponding dynamics can be found in Marwan et al. (2007, pp. 248–251).

If meandering was associated with a dominant periodic motion, the recurrence plots
should reveal a (quasi-)periodic typology. That is, the structure should be dominated
by diagonal lines, yielding a chequerboard arrangement. This is clearly not the case in
fig. 5.3 and does not manifest for the measurement planes lying in between either. For
zc−1 ∈ {4,12,20} the structure smoothly transitions between the limits shown in fig. 5.3.
This observation is consistent with the before said and provides further evidence that there
does not exist one meandering frequency. It would seem that the phenomenon cannot be
reduced to a monochromatic or even quasi-periodic motion.

At the first measurement station (zc−1 = 2) the recurrence plot is characterized by a
homogeneous typology and a texture of single isolated points. This indicates a strongly
fluctuating motion as typically associated with a stationary uncorrelated random processes

5This is, by the way, one of the fundamental ideas underlying the dynamical-system approach to turbu-
lence (Lanford, 1982, p. 347).
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Figure 5.3: Time series (top row) and recurrence plots (bottom row) at zc−1 = 2
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1 ≈ 4 × 10−4 s (Jacquin et al., 2007, pp. 4–5). (For the PIV measurements

presented in appendix A.1.)

(noise). Dynamics without any recurrence are likely to be transient; that is, the initial
condition was not yet in the attracting set and the motion continuous to settle (Kantz &
Schreiber, 2004, p. 44). It is very probably that this dynamics does not yet correspond to
vortex meandering as defined in sec. 2.3. Quite generally, we cannot speak of meandering
before about zc−1 ≈ 4; the upstream dynamics is transient and has not yet relaxed to the
’meandering attractor’.6

In agreement with all previous results, comparison of the recurrence plots and time
series at the first and last measurement stations (i.e. zc−1 = 2,26) in fig. 5.3 suggests a
gradual evolution towards increasing order. The disrupted typology visible at zc−1 = 26
is indicative of non-stationary data (like Brownian motion) with abrupt changes between
rare events. Texture in form of horizontal or vertical (white) bands implies that the state
is trapped for some time and changes only slowly. This behaviour may indicate a lam-
inar dynamics (Marwan et al., 2007, table 1 on p. 251). It suggests that experimentally
observed meandering is analogous to the phase-space meandering between different ele-
mentary solutions. This idea is very close to the suggestion of Hopf (1948).

Quantification of organization and persistence: entropy

The notion of entropy7 was coined by R. Clausius as a measure of irreversibility and dis-
order. For a closed thermodynamic system, the second law of thermodynamics states that
the entropy cannot decay (Atkins, 1984, p. 78). In other words, the disorder or chaos in a
closed system (without energy input from the outside) must inevitably increase (or stag-

6We emphasize that this conclusion by no means implies that the dynamics and wake–vortex interactions
in the near field are of no importance for vortex meandering. It merely means that the very phenomenon
does not yet exist as such.

7From the Greek εν, inside and τροπέ, reversal.
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5.1. Organization and low-dimensionality in wing wakes

nate) and maximum disorder is attained when all degrees of freedom of the system under
consideration have equal probability. This brings us naturally to the work of L. Boltzmann
and W. Gibbs to whose legacy we owe the relation between (macroscopic) entropy and
probabilities of the (microscopic) dynamics (see Truesdell, 1984, pp. 1–48 for details).

To the best of our knowledge, it was E. Schrödinger who first proposed the existence
of distinguished (living) organisms which correspond to spatio-temporally confined regions
of matter where entropy decreases (Schrödinger, 1992, pp. 70–74). A particularly striking
formulation for this is due to N. Wiener (1988, p. 12) –

In Gibb’s universe order is least probable, chaos most probable. But while the
universe as a whole, if indeed there is a whole universe, tends to run down,
there are local enclaves whose direction seems opposed to that of the universe
at large and in which there is a limited and temporary tendency for organization
to increase. Life finds its home in some of these enclaves.8

The notion of entropy is by no means restricted to (classical) thermodynamics and stat-
istical mechanics but straightforwardly extends to other subject matters (e.g. information
theory; Shannon, 1948; Wiener, 1988 and biology; Schrödinger, 1992).

Definition of the entropy. In sec. 2.2, we identified the vortex with a definite state,
namely the mean flow. Now, in a thermodynamic analogy, let us identify the mean flow
(i.e. the vortex) with a heat bath (Wärmebad), i.e. a (practically) inexhaustible reservoir
of energy. This identification is justified by the experimental evidence that the mean flow
has several orders of magnitude larger kinetic energy than the perturbations (cf. fig. 6.4
and discussion). A sketch of this can be found in fig. 6.12.

The totality of all admissible perturbations define the system, which, in the present
context, is an (infinite-dimensional) function space, L2(M) for definiteness, called phase
space.9 (L2(M) is separable; Riesz & Sz-Nagy, 1956.) Analogously to statistical mechan-
ics, the system is characterized on the macroscopic level by its (macro) state (e.g. kinetic
energy) which can always be associated with a certain point in the phase space, called phase
point or micro state (Landau & Lifšic, 1980, p. 2). The symbolic or coordinate-free rep-
resentation u(t) ∈ L2(M) is equivalent to an infinite-dimensional vector with components
al(t) ∶= (u(t),φl)L2(M) (l = 1, . . . ,∞) with respect to a given basis span{φl}∞l=1 = L2(M)
for all t. In a dissipative system, the number of dynamically active modes will always be
finite, such that a(t) ∈ Rm, where m denotes the effective degrees of freedom (Swinney &
Gollub, 1986, pp. 448–449; Foiaş et al., 2001, pp. 115–123). All micro states which lay on
the same energy surface (Energieschale) are macroscopically indistinguishable in the sense
that they lead to the same macroscopic kinetic energy; the family of equivalent systems
constitutes the canonic ensemble (kanonisches Ensemble).

8As regards the notion of life, Wiener (1988, p. 32) continues that

. . . the problem as to whether the machine is alive or not is, for our purpose, semantic and we
are at liberty to answer it one way or another . . . If we wish to use the word ’life’ to cover all
phenomena which locally swim upstream against the current of increasing entropy, we are at
liberty to do so.

An abstract notion of ’life’ can also be found in Dürr (2009, p. 141) –

Wir können auch sagen: Das Pendel wird an diesem Punkt »lebendig«. Es tritt in Kontakt mit
dem Informationsfeld des Ganz-Einen.
(We can also say: the pendulum comes ’alive’ at this point. It makes contact with the inform-
ation field of the All-One.)

This idea of living bears the important aspect of communication between the considered element and all of
the surrounding in the very perception of wholeness.

9This corresponds to the notion of a ’system’ as defined by G. Nickel (Engel & Nagel, 2000, pp. 533–534).
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We then chose the eigenvectors of the covariance operator10 {φl}∞l=1 as a basis of the
system such that u(t) = ∑∞l=1 al(t)φl is a possible state. (Representing the distribution
of the actual micro state over the various degrees of freedom in the statistical-mechanics
analogy.) One and the same macroscopic energy of the system E(t) ∶= ∣∣u(t)∣∣2L2(M) can
evidently result from an infinite combination of micro states a(t) ∈ R∞ constituting the
same energy surface. The energy of the l-th mode is El(t) ∶= a2

l (t) = λl(t) (λl is the
eigenvalue belonging to φl) and the relative energy content becomes

(5.4) pl(t) ∶= El(t)∑∞k=1Ek(t) = λl(t)∑∞k=1 λk(t) .
Equation (5.4) serves as a measure for the probability to find the system in this particular
micro state.11 We then define the entropy by (Landau & Lifšic, 1980, p. 26)

(5.5) H(t) ∶= − lim
m→∞

1
log m

m∑
l=1
pl(t) log pl(t)

The entropy has been defined essentially identically by Aubry et al. (1991, pp. 701–702)
and Sirovich (1991, p. 141).

Downstream evolution of the entropy in the experiment. Figure 5.4 shows the
downstream evolution of the entropy (5.5) for two different systems. In the top panel, the
mean flow (energy λ0(t), see sec. 6.2) is added to the system, while in the bottom panel
the entropy is computed for the perturbations alone.
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Figure 5.4: Downstream evolution of the entropy. (a) The system including the mean
increases its entropy according to the second law of thermodynamics. (b) Identifying the
system with the perturbation space, the entropy decreases downstream. (For the PIV
measurements presented in appendix A.1.)

10Derived from POD, see sec. 6.2.
11That (5.4) indeed qualifies for a probability follows from the normalization to unity and additivity.
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Including the mean flow, the system is closed and the entropy increases downstream
according to the second law of thermodynamics. We recall that the state of maximum
disorder corresponds to the equipartition of the energy over all degrees of freedom (POD
modes here), while the maximum possible order is reached if all energy is concentrated
in one single mode. It is readily verified that these two limits correspond to H = 1 and
H = 0, respectively.12 Increasing entropy is consistent with the spreading of energy shown
in fig. 6.3; while at the first measurement station practically all energy is contained in
the mean flow, it gradually feeds into the perturbation space. This means that in the
system including the mean flow, progressively more degrees of freedoms get involved and
the system increases its disorder.

On the other hand, the bottom panel of fig. 5.4 shows that the entropy decreases when
the system is identified with the perturbations alone. This is an open system which receives
energy from the mean flow. Again, on the microscopic level, the observed increase in order
conforms with fig. 6.3 in that initially all modes have approximately equal probability (i.e.
energy) which progressively concentrates in the leading degrees of freedom (modes).

Since L. Boltzmann, entropy is regarded as a measure for disorder. However, the above
discussion shows, that what entropy really quantifies here is the dispersal or spread of
energy among the micro states (or modes). This interpretation was put forth, among
others, by Atkins (1984, p. 78) and is related to the idea of information entropy (Shannon,
1948). The link to disorder is established by supposing that, as energy disperses, the
number of dynamically active modes increases and, thus, the order decreases.

Conclusion 5.1.1: The ’life’ of vortices – return to order

A vortex is an enclave of order (like a ship) embedded in a sea of disorder or chaos;
the embedding free-stream or grid turbulence is highly complex and nonlinearity
important. Meandering is the competition between external excitation and internal
resistance (’steering of the ship’). There is no distinct meandering frequency, rather
the dynamics alternate between different elementary solutions, being trapped in
their neighbourhood for a while before being repelled.

5.2 An analogy between vortices and rotating turbulence

When is a piece of matter said to be alive? When it
goes on ’doing something’, moving, exchanging
material with its environment, and so forth, and
that for much longer period than we would expect
an inanimate piece of matter to ’keep going’ under
similar circumstances.

— E: Schrödinger: What is Life?

The objective of this section is to provide evidence that vortices are associated with
material fluid volumes (thus having no mass exchange with their surrounding) and that
the core dynamics is two-dimensional turbulence. In this regard, we ask – How closed are
vortices to the transport of physical observables (mass, momentum and energy)?

12Uniform probability of all m degrees of freedom, pl = m−1 for all l yields H = − 1
log m ∑ml=1 1

m
log 1

m
=

1
log m

1
m

log m∑ml=1 = 1. One degree of freedom is a sure event, p1 = 1 and pl = 0 for l > 1 yields H =− 1
log m1 log 1 = 0.
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5.2.1 Entrainment and persistence: is there fluid exchange with the free
stream?

In contrast to other free shear flows, turbulent vortices decay at a nearly viscous rate
(i.e. Lamb–Oseen-like, r0(t) ∼ √

νt), resulting in remarkably long persistence (Lingevitch
& Bernoff, 1995, p. 1015; Cotel, 2002, p. 2933; Pradeep & Hussain, 2010; Van Jaarsveld
et al., 2011, p. 223). Jacquin & Pantano (2002, p. 160) suggest two possible mechanisms
for persistence, namely either (i) a rapid laminarisation principle in the core effectively
preventing turbulence to exist inside a vortex or (ii), given turbulence inside the vortex to
exist, some kind of a shielding or protecting mechanism that prevents momentum transport
across the lateral border and hence entrainment of the surrounding flow. Thus,

the main mechanism that must be accounted for to understand turbulence in
a vortex is the coupling between rotation and shear.

Perturbation dynamics in rotating flow shows some striking similarity to the propaga-
tion of gravity waves in a stably stratified fluid. Along vortices, the equivalent dynamics
consists of the propagation of Kelvin waves (dispersive inertia waves) (Jacquin et al., 2003,
p. 580). The ability of wave transport is a common intrinsic property of various vortices
(Wu et al., 2006, p. 406). These core waves can be intense without having appreciable
Reynolds stress which would be required for faster than laminar decay (Hussain et al.,
2011, p. 309). (Typical turbulence models impinge the Reynolds-stress tensor to molecular
diffusion, attributing it a principal effect of fluid mixing.) The fluctuation-energy equation
shows that attenuation via the production term is possible depending on the alignment of
the Reynolds stress with the mean-velocity gradient (Bölle et al., 2020).

Takahashi et al. (2005) state that no external turbulence can penetrate the core directly
but is effectively blocked due to the strong rotational motion of the vortex. The numerical
studies of Jacquin & Pantano (2002, p. 162) indicate that short-wave perturbations to
the Batchelor vortex lead to the formation of a dispersion buffer surrounding the core (q
dependence). Inside the dispersion buffer perturbations are transformed into non-amplified
propagating waves hardly interacting with the base flow. Any disturbance present in the
core must traverse this region before it can diffuse, suggesting that the dispersion buffer
is responsible for the confinement of turbulence in the core (Jacquin & Pantano, 2002,
p. 163). This ’dynamical barrier’ due to differential rotation is believed to govern the core
contamination in the jet–vortex experiments of Jacquin et al. (2007, p. 5 and fig. 4; p.
9 and fig. 8). Depending on the spacing between jet and wing tip, either no penetration
of the jet plume into the core at all or immediate entrainment and conservation of the
contaminant in core (for the closest spacing) are observed (see also p. 38).

On the other hand, Bandyopadhyay et al. (1991, p. 1633) state that ‘the vortex core is
not a benign solid body of rotation but has a dynamic nature’, intermittently exchanging
momentum (ejection of fluid packets) with the outer region (this seems to be observed
in the experiments of Beresh et al., 2010). This exchange of momentum, vorticity and
energy between the core and the free stream is governed by azimuthally aligned filaments
(of opposite polarization) wrapped around the vortex core. By the Biot–Savart law each
filament pair contributes a radial velocity, causing entrainment and scalar mixing across
the lateral vortex boundary (Melander & Hussain, 1993a, p. 2684). Due to conservation of
linear momentum, intermittent ejection of fluid patches causes the remainder of the core to
bend in the opposite direction, resulting in the observed wave-like character (Green, 1995,
p. 445). Due to strong rotational motion, turbulent patches absorbed in the core region
are partially relaminarised. Some further discussion in this respect can be found on p. 75.
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Vortices are associated with entrainment barriers. Exchange of fluid between the
vortex and the surrounding free stream, either by entrainment or ejection, is a matter of
radial transport across the vortex boundary. Generally, the ability of significant radial
momentum transport in the core is an inevitable requirement for faster than laminar de-
cay by viscous diffusion. To approach this question, Bradshaw (1969) devised an analogy
between flows with curved streamlines and stratification. The central parameter of Brad-
shaw’s analogy is the Richardson number,13 representing the local strength of an analogous
stratification in rotating flow (see also Cotel, 2002, p. 2933). Cotel & Breidenthal (1999,
p. 3026) suggest that in stratified turbulence the transport of mass, momentum and energy
across a thin interface depends on the four parameters, Richardson, Reynolds, Schmidt or
Prandtl and persistence number. However, streamlines are not Galilean invariant which
renders these approaches subjective to the particular observer with respect to elementary
symmetry groups of physics.

Respecting Galilean invariance, Provenzale (1999, p. 55) resumes that ‘vortices induce
regular Lagrangian motion inside their cores and are highly impermeable to inward and
outward particle fluxes’ (see also Haller et al., 2016, p. 137 for further discussion). It
appears that rotation imposes powerful barriers to radial transport of mass and momentum,
thus separating significantly different Lagrangian behaviour inside the vortex from that in
the external field (Provenzale, 1999, p. 67).

Since vortices exchange little fluid with their surrounding, it is proposed here to model
the vortex boundary by an impenetrable but flexible wall. This is shown schematically in
fig. 5.5, where, ad hoc, we assume the boundary to be (roughly) at the support radius r2.
The vortex then corresponds to a flexible material cylinder or tube containing practically
all vorticity and inside which the motion is dominated by rotation.14

5.2.2 Transition from three- to two-dimensional dynamics: a different
view on the wake evolution

Turbulence evolution in a rotating rigid cylinder has been studied experimentally by
Hopfinger et al. (1982), Maxworthy et al. (1985) and Hopfinger & Van Heijst (1993).

The mean Rossby number. A strong rotational motion is known to have a stabilizing
effect on the dynamics in many circumstances. As such, rotation tends to organize the
motion, driving the dynamics towards an equilibrium state. In that, it counteracts fluctu-
ation (and therewith turbulence) growth, hence rotation promotes relaminarisation – the
return to order. Thus, the observations of turbulent vortex cores at short downstream
distances seems not to be inconsistent with a laminar core dynamics further downstream
(cf. sec. 6.1) as a consequence of the rotation-induced inherent relaminarisation property of
the vortex core. The non-dimensional group associated with rotation in the Navier–Stokes
equations is the Rossby number and is defined as the ratio of the rotation to the advection
time scale. We thus define

(5.6) Roδ ∶= tr
tδ

= ∣δUz ∣
2r0Ω0

≈ 0.32 ∣δUz ∣
Uθ,1

= 1
2 q

as the reciprocal of the swirl number q (up to a constant factor) (Wu et al., 2006, p. 647,
Alekseenko et al., 2007, p. 168; Lesieur, 2008, p. 48).

13As noticed by Holzäpfel et al. (2002, p. 298) and Cotel (2002, p. 2933), the original definition of the
Richardson number by Bradshaw (1969, p. 179) is erroneous since it relies on different frames of reference.

14The idea of defining vortices as rotation-dominated fluid volumes in a flow underlies various identifica-
tion criteria (Truesdell, 1954, p. 107; Okubo, 1970; Weiss, 1991, p. 275; Hunt et al., 1988, p. 196; Jeong &
Hussain, 1995).
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Figure 5.5: Vorticity profile of the Lamb–Ossen vortex Wz(r) and the vorticity integral
Γ(r) reaching the asymptotic value at approximately r2. The equivalent fluid container
delimited by r2 modelled as an impenetrable wall and the angular velocity Ω0 on the vortex
axis.

Equation (5.6) differs slightly from the definition of Bandyopadhyay et al. (1991,
p. 1630) and Devenport et al. (1996, p. 92). The latter study reports ∣δUz ∣U−1

θ,1 ≈ 0.5
(this value also follows from (2.14)) which corresponds to Roδ ≈ 0.15. (The dynamics
is rotation dominated if Ro ≪ 1.) Bandyopadhyay et al. (1991, p. 1631) conclude that
the essential parameter governing the turbulence structures is the Rossby rather than the
Reynolds number, while Green (1995, p. 445) states that both effects are significant.

The Rossby number (5.6) characterizes linear stability of the (Batchelor) vortex. From
fig. 3.1, we can see that the dynamics indeed typically stabilizes downstream. However, this
seems not to be the most relevant, since Roδ(z) remains almost always in the parameter
range of linear stability. The essential conclusion to be drawn from fig. 3.1 then is that
conventional trailing-vortex experiments are unaffected by linear instabilities of the isolated
vortex (as already concluded in sec. 3.2).

The transition Rossby number. In order to characterize the transition from three-
dimensional, turbulence-like to two-dimensional, rotation-dominated dynamics, we define
the (transition) Rossby number

(5.7) Rot(z) ∶= uz(z)
2Ω0l(z)

analogously to Hopfinger et al. (1982, p. 512). Herein, uz(z) is the root-mean-square velo-
city in the mean vortex-centre location and l(z) denotes some representative perturbation
length scale, which we assume to have the same dependence on z as the core radius, viz.
l(z) ∼ z1/2. Since Ω0 ∼ Γ∞ is approximately constant, the principal behaviour of (5.7) is
reflected by Rot(z) ∼ uz(z)z−1/2, shown in fig. 5.6. Superposed in fig. 5.6 is the ∼ z−1−decay
that applies close to the grid in rotating-turbulence experiments (Hopfinger et al., 1982,
p. 515). We can see that the Rossby-number decay in the present experiment in the near
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Figure 5.6: Transition Rossby number as a function of z assuming l(z) ∼ z1/2 for the
integral scale of the vortex dynamics. Comparison with a z−1−decay close to the wing and
a constant asymptotic which determines the transition to rotation-dominated dynamics
(Hopfinger et al., 1982, p. 515). (For the PIV measurements presented in appendix A.1.)

wake follows a similar law. At about 20 chord lengths, the Rossby number settles to a
constant value which is indicative of rotation-dominated dynamics beyond this point. The
corresponding z-position is called the transition distance (Hopfinger et al., 1982, p. 515).

The decay of the streamwise component of the rms velocity in the mean vortex centre
is also observed in Green & Acosta (1991, pp. 122, 123), Jacquin et al. (2001, fig. 10)
and Beninati & Marshall (2005, figs. 7, 9). This tendency is consistent with the idea of
downstream laminarisation (cf. also sec. 6.1).

Comparison with the features of rotating turbulence. Hopfinger et al. (1982,
p. 511) observe that, as the background rotation rate Ω0 is decreased, the mean flow
substantially deviates from a rigid-body rotation (which holds for the fastest rotation rate)
and the mean vorticity progressively drifts towards the centre.15 This can be observed
in fig. 2.3 which suggests that, with respect to Hopfinger et al.’s definition of the Rossby
number, trailing vortices should be comparably slowly rotating cylinders.

As a key feature, rotating turbulence tends to locally accumulate vorticity in elongated
structures roughly aligned with the rotation axis (Hopfinger et al., 1982, pp. 506, 516–517;
Maxworthy et al., 1985, pp. 141, 147). If the background rotation rate Ω0 is decreased for
otherwise unchanged conditions, some of the vorticity concentrations become retrograde
(counter-rotating in the co-rotating frame), the total number of vortices decreases while
their size increases. The strength of the local vorticity accumulations typically exceeds
the background vorticity (Hopfinger et al., 1982, p. 510). In a formal analogy, we propose
to associate the vortex mean flow (fig. 2.3) with Hopfinger et al.’s background vorticity
and the leading POD mode (figs. 6.6–6.7) with their vorticity concentrations. In this

15Disregarding vorticity concentration at the tank wall, an extrapolation of the mean vorticity profile in
Hopfinger et al. (1982, fig. 5, Rog = 33.2) is compatible with the Lamb–Oseen vortex shown in fig. 5.5 when
the tank radius is identified with r2.
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analogy, trailing vortices correspond to the slowly-rotating limit, where only a dipole pair
of vorticity concentrations emerges whose magnitude exceeds the mean flow, which deviates
substantially from a rigid-body rotation. The gradual (in z) emergence of strong elongated
vortex filaments in the vortex (viz. the leading perturbation modes) becomes evident in
the instantaneous vorticity snapshots shown in fig. 6.8 (as compared to the instantaneous
streamlines of Hopfinger et al., 1982).

The above discussion suggests that the vortex-support radius r2 is a characteristic
length scale of vortex dynamics. Indeed, fig. 5.7b shows that the (normalized) power
spectra taken from various experiments match fairly well when normalized with r2. This
is clearly not the case when normalized with the chord length c (fig. 5.7a).
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Figure 5.7: Rescaled (to unity) power spectral densities. (a) Chord length c as length
scale. (b) Support radius r2 as length scale. The proposed meandering and core regimes
are indicated as well as the −3 power-law in the inertial range. Experiments are detailed
in appendix A.4.

Triple decomposition of the meandering motion. Meandering (i.e. the vortex
displacement as a whole) is associated only with the low frequencies. The high fre-
quencies constitute core turbulence unable to displace the vortex (’local fluctuations’).
Due to strong rotation, the core turbulence is (or becomes) two dimensional, thus fa-
vours the generation of vorticity (dipole) concentration. This is a triple decomposition
X(t) = ⟨X(t)⟩+Xm(t)+X2d(t) of the vortex centreline. This decomposition has concep-
tual similarity with the triple decomposition of the velocity field (proposed by Reynolds
& Hussain, 1972; Hussain, 1986, appendix A) and has been applied to the analysis of vor-
tex meandering by Bailey & Tavoularis (2008, p. 311), who propose to decompose vortex
meandering into a deterministic and a random contribution due to the surrounding tur-
bulence and associated with the wind-tunnel geometry, respectively. The latter since they
found the characteristic meandering wavelength being of the same order as the half-wing
aspect ratio and the gap between tip and opposite wall. This seems not to be generally
true. A velocity triple decomposition is also employed to identify the coherent meandering
motion by Edstrand et al. (2016, p. 4). In this approach, the mean flow is perturbed by a
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coherent meandering motion and random fluctuations which are, by definition, free from
meandering.

Energy condensation in two-dimensional turbulence. The emergence of local vor-
ticity concentrations is not only characteristic of rotating turbulence but also fundamental
for two-dimensional turbulence (Hopfinger & Van Heijst, 1993, p. 241). Kraichnan (1967)
conjectured that two-dimensional turbulence in a closed container without large-scale dis-
sipation tends to concentrate energy and enstrophy at the integral scale (the container size,
r2 here), analogously to a Bose–Einstein condensate (see also Kraichnan & Montgomery,
1980; Hossain et al., 1983; Boffetta & Ecke, 2012). The resulting perturbation pattern is
that of a vorticity dipole (Boffetta & Ecke, 2012, pp. 440–441).

Conjecture 5.2 (Meandering scenario). A vortex is a flexible, material fluid tube inside
which the motion is dominated by rotation. This configuration inherently favours the emer-
gence of elongated vorticity concentrations and convergence towards two-dimensionality.
Two-dimensional turbulence condenses energy at the integral scale, viz. ∼ r2. The form-
ation of the leading dipole perturbation pattern is thence intrinsic and the deformation
follows from the fact that the vortex tube is flexible.
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6 | Third mechanism: energy amp-
lification via mother–daughter
interplay

Die stillsten Worte sind es, welche den Sturm
bringen. Gedanken, die mit Taubenfüssen kommen,
lenken die Welt.

— F. Nietzsche: Also sprach Zarathustra

The previous chapter 5 (and the discussion in sec. 2.2) suggest that vortices are distinct
material entities of the fluid domain. At the same time, they remain a part of the whole
and their evolution is governed by the mutual ’communication’ with the surrounding free
stream. The ’tension’ between the part and the whole is a fundamental aspect of ancient
Greek philosophy1 (Heisenberg, 1959, p. 91) and profoundly influences science ever since
(Heisenberg, 1969; Bohm, 1980). Indeed, in chap. 3, we concluded that vortex meandering
probably results from an intricate combination of intrinsic and extrinsic dynamics.

The objective of this chapter is in the detailed characterization and modelling of the
third meandering pillar elucidated at the end of chap. 2 – the progressive energy con-
centration in the core. For this purpose, the present chapter is organized in three parts.
First, we review some fundamental properties of vortex–turbulence interaction in sec. 6.1,
which are augmented by a detailed analysis of the energy evolution in the experiments
presented in appendix A.1 in sec. 6.2. As already anticipated, we propose to model the
meandering dynamics in terms of a generalized receptivity, which we discuss in sec. 6.3.
The proposed model is essentially similar to the mother–daughter mechanism of Boberg
& Brosa (1988). An important aspect of this model is that it puts the emphasis on form
rather than magnitude and information transfer rather than physical penetration. This
idea of a high-energetic large-scale organism being directed by a low-energetic small-scale
influence of a highly subtle nature is beautifully expressed in the introducing quotation of
F. Nietzsche.

6.1 Vortex–turbulence interaction

That the exchange of material should be the
essential thing is absurde.

— E: Schrödinger: What is Life?

Although there is considerable acceptance among researchers that meandering is some
sort of a passive core buffeting, Bailey et al. (2018, pp. 723, 724) state that the (precise)

1The cradle of modern Western culture and thinking (Schrödinger, 1996).
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link between meandering and free-stream turbulence has not been established yet. It is true
that very few studies go beyond this qualitative statement. In particular, there seems to be
no agreement whether meandering persists in the absence of any free-stream turbulence.

Is vortex dynamics generic? The notions of a vortex vs eddy. ‘Well-organized,
elongated vortices (coherent structures) commonly occur in turbulent flows and dominate
phenomena of technological interest, such as entrainment, mixing, drag, and aerodynamic
sound’ (Pradeep & Hussain, 2006, p. 251). Vortices might be conceived as the organizing
cells embedded into the surrounding fluid flow, having the power to organize and determine.
This perception is generic, ‘the turbulence evolution in the vicinity of a relatively large-
scale vortex structure is a ubiquitous problem affecting most high-Reynolds number flows
at some scale’ (Beninati & Marshall, 2005, p. 244). This is essentially the same idea as put
forth in the self-similar cascade argument of Melander & Hussain (1993a, fig. 19).

Beyond uni-directional organization, ‘many flow problems involve the interaction of
one (a few) prominent large scale coherent structures with small scale turbulence; trailing-
vortex wake is a prominent example. These problems are still today not understood’
(Hussain et al., 2011, p. 304). On the other hand, Jacquin (2005, p. 397) stresses the
fact that there are important differences between ’eddies’ in turbulent flow and ’trailing
vortices’, notably, short vs long lifetime and the existence of an energy cascade vs the
concentration of energy. Indeed, Jacquin (2005, p. 397) claims that ‘the concentration
of the vertical momentum behind a wing into big and weakly interacting vortices is the
opposite of a turbulent process’.

6.1.1 The distinct characteristics of vortex and free-stream dynamics

Globally, wing wakes are characterized by the rapid decay of in-coherent background tur-
bulence due to viscous diffusion concomitantly with the persistence of coherent vorticity
(Melander & Hussain, 1993a, p. 2673). This rapid wake-turbulence decay as opposed to
maintained core unsteadiness led Singh & Uberoi (1976, fig. 6) to conclude that wake
and vortex are not associated. The dynamics inside the vortex is characterized by high
vorticity and low momentum, while outside the vortex dynamics is highly turbulent with
only very low vorticity. Apparently, vortex-dominated flow has the tendency to separate
dynamic regimes into spatially disjoint regions of the fluid domain.2 We shall contrast the
(universal) characteristics in the free stream and vortex core below.

The typical evolution of wake turbulence outside the vortex. Turbulence in the
wake can be separated into an ambient and an aircraft-induced contribution. Whereas
the former can, in principle, be formally absent (e.g. perfectly quiescent atmosphere),
the latter constitutes the lower turbulence bound always present due to boundary-layer
separation and mounted devices, inevitable, at the typically high Reynolds numbers (Gerz
et al., 2002, p. 190).

The fluid flow outside the core is dominated by the remainder of the wing wake which
rolls up into an ever increasing spiral pattern. The wake spiral ’simply’ decays downstream
and there seems to be no large region of axisymmetric or vortex-rotation-generated and
sustained turbulence around the core (Devenport et al., 1996, abstract and figs. 7, 8d, e
on pp. 87–88). This free-stream organization is generic in the sense that initially random,
isotropic, homogeneous, solenoidal fine-scale turbulence adjusts to the presence of a laminar
vortex column embedded within few rotations (Melander & Hussain, 1993a, p. 2671).

2We note that this intrinsic separation associated with vortices extends to Lagrangian aspects as dis-
cussed e.g. in sec. 2.2 and has implications on the modelling of the dynamics in sec. 6.3.
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Figure 6.1: Downstream growth of the kinetic energy on the instantaneous mean centreline
u2(⟨X(t)⟩) and of the integral kinetic energy associated with the first POD mode λ1(t)
(scaled by a factor of 10−1) as compared to almost stationary turbulence intensity u2

fs at
an arbitrary fixed point in the vortex periphery. All quantities are normalized with U2

∞.
(For the PIV measurements presented in appendix A.1.)

In any case, we assume that the free stream is characterized by only one representative
velocity scale ufs called turbulence intensity (if unambiguous, we drop the subscript).

In general, experiments are conducted with a uniform background flow in an essentially
unbounded fluid domain (i.e. the walls are far away). In this case, the velocity gradient
vanishes such that there is no production of turbulent kinetic energy. While redistribution
of energy between different parts of the fluid domain remains possible, the integral free-
stream turbulence in the whole fluid domain must decay monotonously. The downstream
evolution of grid turbulence (of characteristic grid scale M) is characterized by a decrease
in intensity and increase in integral length scale (Batchelor, 1953; Rotta, 1972, pp. 107–
112; Tennekes & Lumley, 1973, pp. 71–73; Pope, 2000, pp. 158–160). Experiments of
vortex–turbulence interaction report power-law behaviour according to

(6.1) u2
fs(z) ∼ ( z

M
)−1.3

and lfs(z) ∼ ( z
M

)0.4
.

These laws are confirmed in the experiments of Sarpkaya & Daly (1987, p. 400), Bailey
et al. (2006), Bailey & Tavoularis (2008, pp. 288–289) and Van Jaarsveld et al. (2011, fig.
3). The turbulent kinetic energy in the free stream is approximately independent of the
grid details beyond 10M (Rotta, 1972, p. 110; Beninati & Marshall, 2005, p. 248). If no
grids are installed the turbulence intensity is nearly stationary.

The integral-energy decay of the core-surrounding spiral becomes obvious from the
leading POD modes, revealing gradual diminishing structure within zc−1 = 0.1 . . .4 (Del
Pino et al., 2011, figs. 16, 17; Edstrand et al., 2016, fig. 4).

Figure 6.1 shows the downstream evolution of the turbulence intensity ufsU
−1
∞ at an

arbitrary but fixed point in the vortex periphery of the PIV measurements presented in
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appendix A.1. As the wake spiral dissipates, the turbulence intensity settles to an almost
constant value of about ufsU−1

∞ ≈ 3 %.
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Figure 6.2: Power spectral densities at zb−1 = 3 obtained from hot-wire measurements at
the points indicated in the inset (LDV of the axial velocity component); cf. appendix A.1.

The typical evolution of vortex-core unsteadiness. Trailing vortices support core-
velocity fluctuations until far downstream. The root-mean square velocity u(t,x) (or tur-
bulent kinetic energy) peaks on the mean centreline and remains at a nearly constant
level after an initial decay irrespective of the free-stream-turbulence intensity (Beninati
& Marshall, 2005, pp. 250, 252). This decay behaviour is the characteristic signature of
meandering but not fully-developed equilibrium turbulence (Jacquin et al., 2001, p. 11
and fig. 10).

Despite the concentration of fluctuation kinetic energy in the core, there seems to be no
consensus as of this writing whether the dynamics in the vortex core is laminar or turbulent.
Turbulence entrainment in the core during roll up of the turbulent boundary layer of the
wing (Chow et al., 1997 as referred to by Devenport et al., 1996, p. 68; Spalart, 1998 as
cited by Bailey & Tavoularis, 2008, p. 282; Beninati & Marshall, 2005, p. 255) is the only
inevitable source of turbulence in (trailing) vortices. For certain configurations, turbulence
development inside the vortex via some instability mechanism might be an additional
potential sources (Jacquin & Pantano, 2002, p. 160). However, whereas turbulent core
dynamics may be conceivable in the near wake, Corsiglia et al. (1973, p. 754) find a
laminar-like appearance in the vortex core beyond zc−1 ≳ 48. Already at zc−1 = 22.9,
Heyes et al. (2004, p. 6) observe a laminar vortex core with all unsteadiness being entirely
associated with vortex meandering. Laminar core flow is also suggested by the numerical
simulations (Ragab & Sreedhar, 1995; Zeman, 1995; see also Devenport et al., 1996, p. 69).

The fact that the characteristic core length scale increases at a nearly viscous rate
while the maximum mean azimuthal velocity decays at a similar rate (in the co-meandering
frame) is typically taken as evidence for the core dynamics being laminar, whereas core
turbulence is insignificant (Rokhsaz et al., 2000, p. 1026; Van Jaarsveld et al., 2011, pp. 223,
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233). According to Birch (2012, p. 1) there is ‘compelling evidence that turbulence [in the
core] plays only a passive role in vortex development’.

While the question of whether the core dynamics is laminar or turbulent can perhaps
not be answered (because it is probably ill-posed), we have considerable experimental
evidence that the core dynamics is relaminarising downstream. This characterization of
vortex dynamics in terms of trends rather than hard facts is consistent with the conclusions
drawn in sec. 2.4 and the particular tendency of trailing-vortex dynamics to increase its
orderliness (discussed in chap. 5). The experiments of Singh & Uberoi (1976, p. 1858)
confirm that initial turbulence in the vortex core decays downstream, however seemingly
periodic disturbances of axisymmetric and helical type persist in the extended near field
(zc−1 = 13 . . .40). Farther downstream the vortex core motion looses periodicity again,
passing to a chaotic state. In the far field, Singh & Uberoi (1976, p. 1862) observe large
spatial excursions of the vortex core with the fluctuation kinetic energy being essentially
concentrated at the vortex axis admitting a broad peak. Experiments and simulation
indicate that small-scale turbulence has little effect on the evolution of an isolated vortex
which, at least in the far field, always evolves as if the dynamics was laminar. Linear
instability is at best transient, or in other words ‘isolated axisymmetric vortices, far from
their source, are laminar’ (Jacquin et al., 2001, p. 15). In fig. 6.9, we see that the velocity
fluctuations are essentially concentrated in the core, while at the same time diffusion at an
almost viscous rate suggests progressive downstream relaminarisation of the core dynamics.
The common conclusion drawn from this concomitancy is that the vortex core cannot
be a region of turbulence activity or production but rather velocity fluctuations are a
manifestation of a passive motion (Devenport et al., 1996, p. 69) – the meandering motion.

Scaling of the core-velocity fluctuations on the wake (rather than core) parameters
(at zc−1 = 10) is considered as evidence for laminar core dynamics without turbulence
production by Devenport et al. (1996, p. 96). Consequently, all velocity fluctuations in the
core must inevitably be inactive passive motions due to buffeting by the surrounding wake
turbulence. Most of the turbulence in the core (as detected in the laboratory frame) is an
artefact of meandering associated with fictitious Reynolds stresses. After transformation
to a co-meandering frame of reference, they can effectively be removed, in stark difference
to the wake turbulence which is unaffected by the transformation (Heyes et al., 2004, p. 8;
Beresh et al., 2010, p. 606). This corresponds essentially to a laminar vortex surrounded
by turbulence, subjected to intermittent interaction and rotation-induced stabilization in
the core (Beresh et al., 2010, p. 606).

6.1.2 Bi-directional vortex–turbulence coupling

There are major differences between turbulent trailing vortices and other shear flows: con-
trary to the uni-directional energy cascade in classical turbulence theory, there is consider-
able evidence for significant interaction in both directions causing momentum and energy
transport between large-scale coherent structures and fine-scale turbulence (Jacquin, 2005,
p. 397). This bi-directional dynamical coupling might be true of all ’coherent structures’
generating sufficiently strong local shear (Melander & Hussain, 1993a, pp. 2669, 2675).

The different vortex–turbulence interaction regimes. ‘Single vortices have a very
long lifetime except when embedded in strong ambient turbulence’ (Gerz et al., 2002,
p. 195). Depending on the external turbulence intensity vortices are observed to axisym-
metrise ceasing to be turbulent, develop bending waves sustaining azimuthally wound sec-
ondary fluctuation modes or disappear altogether (Melander & Hussain, 1993a, p. 2681).
This finding conforms with the simulations of Marshall (1997) who investigates the dynam-
ics of periodic vortex rings around a columnar vortex, finding standing waves and vorticity
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stripping for weak and strong external turbulence, respectively (Beninati & Marshall, 2005,
p. 245 and idem in Marshall & Beninati, 2005; Holzäpfel et al., 2003).

The typical vortex-induced organization of the free stream. The wrapping and
near-azimuthal alignment of elongated, cylindrical, ribbon-like vorticity modes around the
core is a typical feature of vortex–turbulence interaction (Van Jaarsveld et al., 2011, p. 233).
From their characteristic shape, these free-stream modes are also referred to as filaments,
threads (Melander & Hussain, 1993a) or worms (Jiménez et al., 1993). Typical here means
that the emergence of these patterns is observed for various configurations, namely in the
roll up of experimental trailing vortices and numerical vortex–turbulence interaction stud-
ies. In the latter, this pattern emerges irrespective of the chosen initial turbulence structure
(including white noise) and even without spectral separation to the vortex, provided it per-
sists (Melander & Hussain, 1993a, p. 2671). It can be thought that these characteristics
principally extend to general ’coherent structures’ which tend to organize the surround-
ing fluid, increasing anisotropy at all scales in their vicinity and bi-directional interaction
(Melander & Hussain, 1993a, p. 2685; Melander & Hussain, 1994, p. 34). Numerical ex-
periments indicate that the filaments are stacked along the vortex core with alternating
polarization (Melander & Hussain, 1993a, p. 2676).3

The observed organization is due to the vortex-induced shear and hence of effectively
finite extent, prescribing geometrical constraints similar to two-dimensional vorticity dy-
namics and turbulence (Melander & Hussain, 1993a, pp. 2674, 2687). The short-reach
impact is reflected in the jet–vortex interaction experiments of Jacquin et al. (2007, p. 9)
who find faster wrapping of the jet around the core the closer the jet is to the wing
tip. Characteristic aspects of the free-stream organization such as pairing, dipole motion
and axi-symmetrization are reminiscent of two-dimensional turbulence. The filaments are
stretched by the large-scale vortex structure, thereby increasing the (odd) symmetry of the
flow about the axis and characteristic length scale of the in-coherent fluctuations (McWil-
liams, 1984; Melander et al., 1987, p. 149; Melander & Hussain, 1993a, pp. 2671, 2674).
The organization of in-coherent small scales by a large-scale coherent structure is essen-
tially inviscid (Melander & Hussain, 1993a, pp. 2671, 2676). It should be noted though
that besides the inviscid organization leading to larger scales (two-dimensional character-
istic), inviscid mechanisms generating smaller scales are also at work, e.g. filamentation,
vorticity shedding by the vortex, secondary threads tearing vorticity from the main vortex
and vortex stretching (Melander & Hussain, 1993a, p. 2676).

The thus far discussed free-stream organization characteristics are essentially obtained
from numerical experiments. However, there is evidence that similar organization holds
for trailing-vortex experiments, such that it can be assumed that similar dynamics is at
play. The wrapping of the vortical free-stream (turbulence) structure around the core is
observed in the LIF visualisation of Bailey et al. (2018, p. 737) at zc−1 ≈ 6 and is also
visible in the experiments of Beresh et al. (2010, figs. 3, 4 and 15) for 0.5 ≲ zc−1 ≲ 4 in
the mean and instantaneous velocity and kinetic-energy fields. Self-similarity of the wake
scaling implies that the turbulence structure outside the core varies only slightly in the
streamwise direction (Devenport et al., 1996, p. 89). A secondary vortex structure in the
core periphery (at roughly 4 . . .5 core radii) is still observed at xc−1 ≈ 27 (Corsiglia et al.,
1973, p. 756) and xc−1 = 40 (Bandyopadhyay et al., 1991, p. 1631). Visualization in this
latter experiments suggests the winding of a vortex pair around the trailing vortex helically
‘in opposite cork-screw fashion’.

3Filament polarization is defined as log2 ∣wR∣ ∣wL∣−1,wL ≠ 0, where wR,wL denote right and left-
propagating eigenfunctions of the curl operator (Melander & Hussain, 1993a, p. 2683).
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The emergence of perturbation structure in the core periphery (at less than about 3
core radii) also manifests in the presence of a secondary peak in turbulent kinetic energy for
zc−1 ≤ 8. Near azimuthal alignment close to the vortex edge is reflected in the anisotropy of
the spectra (Beninati & Marshall, 2005, pp. 250, 252). This maximum in Reynolds stress
(after high-pass filtering), attained in a ring between approximately one to two core radii,
is not sustained by the vortex and rapidly attenuated (Devenport et al., 1996, pp. 99–100
and fig. 28).

It is likely that these organization characteristics extend to still other configurations,
e.g. in geophysics. While vortex-induced organization is probably of great importance for
several questions (such as mixing), we should not felicitate us too early, as the mere or-
ganization may not be compatible with energy production (Reynolds–Orr equation). Even
more, it is most likely not! Since energy production (between mean and perturbations)
works both ways, this then would mean that the more the free stream is organized it should
attenuate core perturbations (Landau damping) (see also Pradeep & Hussain, 2006). In
this sense it is perhaps the fact that the free-stream turbulence decays sufficiently fast that
prevents an energy back flow while the core is a wave guide.

Excitation of core perturbations: the buffeting picture. Devenport et al. (1996,
pp. 95–97) find the power-spectral-density graphs of the velocity fluctuation on the
mean centreline at different streamwise measurement stations to collapse when non-
dimensionalised with scales of the two-dimensional unrolled-up portion of the wake, while
the core fluctuations appear independent from the core parameters. Therefore, Devenport
et al. conclude that the core dynamics is laminar while the measured velocity fluctuations
are a result of inactive motions due to buffeting by the surrounding, rapidly decaying
spiral-wake turbulence (Devenport et al., 1996, p. 96; Beninati & Marshall, 2005, pp. 244,
255; Marshall & Beninati, 2005, p. 242; Jammy et al., 2014, p. 367). Remarkably, a
highly energetic free stream, instead of forming new structures, ’simply’ tends to bend and
distort the vortex (Holzäpfel et al., 2003). The attribute ’inactive’ means that meandering-
associated fluctuations do not contribute to turbulence production and that the effect can
be linearly superposed, i.e. does not change the topology but ’simply’ displaces (see also
Jammy et al., 2014, pp. 352, 354). Meandering has no dynamic contribution or coupling
but is a merely additional kinematic feature (see sec. 2.4).

It seems that this perception of meandering has its origin in the work of Bandyopadhyay
et al. (1991, p. 1633) who proposed that turbulence is transferred from the free stream
to the core by means of intermittent momentum transport, all the same as core fluid is
ejected into the surrounding. This exchange between the core and the free stream is
governed by organized structures surrounding the core (see also Beninati & Marshall, 2005,
p. 244), as detailed in sec. 5.2.1. Similarly, Fabre et al. (2006, pp. 266–267) suggest that
perturbations can be introduced into the vortex core by critical-layer waves which enable
a ‘’communication’ between the core and regions located outside the core. Consequently,
they are physically significant in all situations where a transfer of energy occurs between
the vortex core and its surroundings. . . . an external perturbation can transfer its energy
to the core [transient growth]’.

Bending (Kelvin) waves can be excited by energetic small-scale azimuthal perturbations
in the free stream (Melander & Hussain, 1993a, pp. 2683, 2687; Van Jaarsveld et al., 2011,
p. 233). Beninati & Marshall (2005, p. 253) conclude that the observed core bending
wave – of characteristic wavelengths and energies substantially greater than the exciting
external turbulence – are essentially a manifestation of (energy) backscatter from the small
(free-stream) scales to the vortex.

Similarly, Bailey et al. (2018, p. 744) conclude that ‘stochastic meandering is the result
of . . .momentum exchanges between the vortex and coherent structures (’eddies’) from the
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free stream’.4 Bailey et al. suggest that the vortex–turbulence interaction time scale is the
turnover time.

In this section, we provided evidence that there is no energy (perhaps also momentum)
transfer. However, the existence of a control instance which rules the communication
between core and free stream is probably correct. This is the mother–daughter mechanism
(sketched in fig. 6.12) to be described hereafter.

6.2 Energy transfer and the mother–daughter mechanism

So lässt sich nicht abweisen, dass die Welt
unendliche Interpretationen in sich schließt, ohne
dass man zu einer endgültigen gelangen könnte.

— F. Nietzsche: Die fröhliche Wissenschaft

The meandering amplitude obeys a Brownian motion (cf. chap. 4). However, the energy
(and momentum) transfer to the perturbation space seems to be more intricate than in
molecular Brownian motion where this happens via (randomly) impacting atoms. Rather,
vortices are subject to a mother–daughter excitation mechanism (Boberg & Brosa, 1988),
illustrated in fig. 6.12.

6.2.1 The integral fluctuation-energy balance
Proper orthogonal decomposition. The idea of the proper orthogonal decomposition
(POD) is closely related to the paradigm of coherent structures, namely, the objective
identification of the deterministic structure underlying stochastic or chaotic dynamics (e.g.
Lumley, 1981, pp. 215–220; Sirovich, 1989, p. 126; Holmes et al., 1998, pp. 86–87). The
purpose here is only to give a concise introduction, for a more general presentation and
details of the mathematical foundations see Lumley (1970), Monin & Yaglom (1975), Aubry
et al. (1991), Aubry et al. (1992) and Berkooz et al. (1993), among others.

In typical vortex-meandering experiments, we are in possession of Eulerian velocity
fields gathered in several streamwise measurement planes (z = const) during some time
T . (The following analysis uses the PIV measurements presented in appendix A.1.) In
this case, the fluid domain M is a subset of the two-dimensional measurement plane and
x ∈ M . For all z ∈ Z and t̃ ∈ R or Z, let u(t̃, z) ∈ L2(M) be a vector-valued stochastic
process with zero mean. We emphasize already that, in fact, the (measurement) time t̃
merely is equivalent to a ’counter’ of the random experiments by the ergodic hypothesis,
while z, by Taylor’s hypothesis – t = zU−1

∞ , encompasses the actual meaning of ’temporal
evolution’. For convenience, we suppress the dependence on z, since the analysis is the
same for all measurement planes.

Since the space of square-integrable functions is separable (i.e. denumerably infinite),
we can express every element of it in an infinite series of basis functions (Riesz & Sz-Nagy,
1956, pp. 64–70). The proper orthogonal decomposition then is defined as the expansion

(6.2) u(t̃) ∈ L2(M) ∶ u(t̃,x) = ∞∑
l=1
al(t̃)φl(x) ∀x ∈M and z = const,

whereas the expansion coefficients al(t̃) ∶= (u(t̃),φl)L2(M) follow from projection (Holmes
et al., 1998, p. 90). The infinite-dimensional basis {φl}∞l=1 is defined as the solutions of the

4This statement (as many others) lacks precision as to what exactly is meant by the ’vortex’ – namely,
where is its boundary or which fluid volume is considered to be the interior of the vortex? The same, it is
not unambiguously clear what precisely is meant by free-stream ’coherent structures’.
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eigenvalue problem

(6.3) Cφl = λlφl (l ∈ N)
where C ∶ L2(M)→ L2(M) is the covariance operator (Da Prato & Zabczyk, 1992, pp. 26–
27). For C being a compact self-adjoint operator, the spectral decomposition (6.3) into
a set of mutually orthonormal functions (φk,φl)L2(M) = δkl is guaranteed by Hilbert–
Schmidt theory (Riesz & Sz-Nagy, 1956, pp. 233–234, 242–246; Kato, 1980, pp. 262–264).
Equation (6.3) is symbolic for the Fredholm integral equation (Riesz & Sz-Nagy, 1956,
p. 145)

(6.4) ∫
M

ddx′C(x,x′)φl(x′) = λlφl(x) ∀x ∈M and z = const (l ∈ N)
with symmetric kernel Cβγ(x,x′) ∶= ⟨uβ(x)u∗γ(x′)⟩ (β, γ = 1, . . . , d), called (two-point)
covariance function (Monin & Yaglom, 1971, pp. 226–228).5

By appeal to variational calculus, it can be shown that the spectral decomposition (6.3)
is equivalent to an optimization problem to identify the optimal (in the L2(M)−sense)
representation of the given u(t̃) ∈ L2(M) (Riesz & Sz-Nagy, 1956, pp. 232–233; Lumley,
1981, pp. 224–225; Holmes et al., 1998, pp. 88–89). In the particular case that u(t̃) ∈ L2(M)
is the velocity field, optimality is expressed by the relative energy content.

The energy content in the l-th POD mode is identical to the corresponding eigenvalue

(6.5) ⟨aka∗l ⟩ = (φk,Cφl)L2(M) = (φk, λlφl)L2(M) = λlδkl (k, l ∈ N),
while the total energy content in the perturbation space equals the sum of all eigenvalues,

(6.6) ⟨∣∣u∣∣2L2(M)⟩ = ⟨ ∞∑
k,l=1

aka
∗
l (φk,φl)L2(M)⟩ = ∞∑

l=1
⟨a2
l ⟩ = ∞∑

l=1
λl,

using the fact that the decomposition (6.3) is into deterministic and orthonormal eigenfunc-
tions, thus showing that the expansion coefficients are uncorrelated random variables with
zero mean (see also Sirovich, 1987, p. 565). For convenience, we identify λ0 (the zeroth
eigenvalue if the mean is not subtracted) with the energy of the mean flow ∣∣U ∣∣2L2(M)
(supposing that it exists).

We define the relative energy content in the l-th POD mode by

(6.7) λ+l (z) ∶= λl(z)∑k∈I λk(z) ∀z ≥ 0 and l ∈ I,
whereas I ⊆ N is a pertinent subset of the non-negative integers. Due to the normalization,
(6.7) bears the interpretation of a probability on the function space (this was equally
remarked by Aubry et al., 1991; Sirovich, 1991, and used in sec. 5.1). The remaining
eigenvalues are ordered in the decreasing sequence λ0 ≥ λ1 ≥ . . . ≥ λn ≥ 0, reminding that
all positive eigenvalues have finite multiplicities and zero is the only accumulation point
(Riesz & Sz-Nagy, 1956, pp. 232–242; Lumley, 1970, p. 58; Holmes et al., 1998, pp. 90–91).

In practice, we solve (6.3) by the method of snapshots (Sirovich, 1987, pp. 567–568).

5The average is defined as ⟨u⟩ ∶= lim
T→∞

1
T

T∫
0
dt̃ u(t̃) (if t̃ ∈ R) or ⟨u⟩ ∶= 1

T
lim
T→∞

T∑̃
t=1u(t̃) (if t̃ ∈ Z), as the

matter stands.
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Figure 6.3: Downstream evolution of the first ten eigenvalues of the covariance operator
(normalized with the eigenvalue sum including the zeroth order λ0(z)), showing gradual
energy accumulation in the leading, nearly degenerate pair. (For the PIV measurements
presented in appendix A.1.)

Downstream evolution of the kinetic energy. The energy partition over the first
ten POD modes is shown in fig. 6.3 for experimental measurement planes located between
2 ≤ zc−1 ≤ 26. It can be seen that the energy drops very quickly and then stabilizes at
an almost constant level of 10−3 . . .10−4. The perturbation space spanned by the first ten
POD modes accommodates

∑10
l=1 λl(z)∑∞k=1 λk(z) = 31 % . . .65 % (for zc−1 = 2 . . .26)

of the total fluctuation kinetic energy (without λ0). The low values are due to the plateau
beyond l ≳ 6 such that a considerable portion of the energy persistently spreads over a
large number of modes. It is a common expectation that the phase volume where the
dynamics resides should be spanned by the leading modes containing practically all energy
(e.g. Sirovich, 1987, p. 568; Sirovich, 1989, p. 139; Holmes et al., 1998, p. 105).

Figure 6.3 then shows how the energy is distributed over the perturbation space (λl
such that l > 0) relative to the total energy of the system ∑∞k=0 λk – including the mean flow.
Since ∣∣U(z)∣∣2L2(M) = λ+0(z) ≈ 1 for all zc−1 ∈ [2,26], the most energetic perturbation has
about two to three orders of magnitude less energy than the mean flow. This suggests to
think of the mean flow as an ’inexhaustible energy reservoir’ (or ’heat bath’ (Wärmebad) in
the terminology of classical thermodynamics) that continually and unchangingly furnishes
energy to the perturbation space.

The second important observation from fig. 6.3 is that, while energy is essentially
equally distributed over all degrees of freedom at zc−1 = 2, it is gradually and systematically
accumulated in the leading perturbation pair for zc−1 ≥ 4. The remainder of the perturb-
ation energy λl (l ≥ 3) does not evolve markedly. Beyond approximately zc−1 ≈ 10 . . .15,
the energy in the leading pair (l = 1,2) is separated from the remainder (l ≥ 3) by a gap of
about one order of magnitude. This suggests that the dimension (number of dynamically
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6.2. Energy transfer and the mother–daughter mechanism

active modes) of the perturbation space effectively decreases downstream. The persisting
degeneracy of the leading perturbation pair is indicative of a translational symmetry or
near streamwise homogeneity (Aubry et al., 1992, § 3). A similar characteristic is observed
in free-shear-flow turbulence (Rajaee et al., 1994, pp. 9–10) and boundary-layer transition
(Rempfer & Fasel, 1994, p. 360; Rempfer, 1996, p. 181), too. Rempfer & Fasel (1994,
p. 359) define the span of the degenerate pairs of POD modes as ’coherent structures’.

λ+0(z) - 0.998

λ+1(z)λ+1(z) + λ+2(z)
8 × 10−4

8 × 10−4

(a)

0 5 10 15 20 25 30

λ+l (z) ∶= λl(z)
∑∞k=0 λk(z)

(b)

zc−1

λ+0 (mirrored)
λ+1 + λ+2

Figure 6.4: Downstream evolution of the leading eigenvalues of the covariance operator
(normalized with the eigenvalue sum including the zeroth order). (a) Energy decay of the
(shifted by −0.998) mean λ0(z) and amplification of the first and first two POD modes at
the same rate, suggesting energy transfer from the mean to the two-dimensional perturb-
ation subspace. (b) Superposition of the graphs in (a) reveals perfect correlation of the
energy budgets. (For the PIV measurements presented in appendix A.1.)

We observe an increase of the energy in the perturbation space (fig. 6.3) (the near-
wake growth is consistent with Edstrand et al., 2016, fig. 5). Where does the energy come
from? In order to answer this question, fig. 6.4a, b compares the downstream evolution
of the integral energy in the mean flow and the perturbation space spanned by the first
two POD modes, showing that the perturbation energy increases precisely at the expense
of the mean flow. This correlation suggests that the energy in the perturbation space is
completely provided by the mean flow (we give details below).6

The same graphs as in fig. 6.4b are reproduced in fig. 6.5 for varying fluid volumes,
namely M,V2, V1 as defined in sec. 2.2 and illustrated in the inset of fig. 6.5. Irrespective
of the volume, the perturbation energy always increases precisely at the expense of the
mean-flow energy. The smaller the volume, the more the energy is concentrated in the
leading perturbation pair relative to the total energy contained in the volume.

The same mutual perturbation-energy growth at the expense of the mean energy can
be deduced from the numerical experiment of Takahashi et al. (2005, figs. 10, 12).

6In principle, we must be extremely cautious with correlations, for they do not imply causality! This
point was raised in footnote 27 on p. 25.
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Figure 6.5: Downstream evolution of the leading eigenvalues of the covariance operator
and the (reflected) mean energy (normalized with the eigenvalue sum including the zeroth
order λ0(z)) for the different integration volumesM,V2, V1 defined in sec. 2.2 and shown in
the inset. In all cases the same correlation as in fig. 6.4 holds. (For the PIV measurements
presented in appemdix A.1.)

Conclusion 6.2.1

The total energy in the perturbation space is at least two orders of magnitude less
than in the mean flow. This suggests to idealize the mean flow as an inexhaust-
ible energy reservoir which feeds the perturbation space. The system progressively
increases its orderliness in the sense that the number of dynamically active modes
decreases while the leading pair obeys a translation-invariance symmetry.

The integral kinetic-energy budget. Consider the fluid volume A defined to have
no integral energy flux over its boundary ∂A on average. Let E(t) ∶= ν⟨∣∣W (t)∣∣2L2(A)⟩
and ε(t) ∶= ν⟨∣∣w(t)∣∣2L2(A)⟩ be the average integral dissipation of the mean flow and per-
turbations, respectively. The average integral kinetic energy budgets of the mean and
perturbations read (Tennekes & Lumley, 1973, pp. 62–62; Foiaş et al., 2001, p. 28)

∂t⟨∣∣U(t)∣∣2L2(A)⟩ = ⟨(u(t),∇U(t)u(t))L2(A)⟩ − E(t),(6.8)
∂t⟨∣∣u(t)∣∣2L2(A)⟩ = −⟨(u(t),∇U(t)u(t))L2(A)⟩ − ε(t).(6.9)

Since by definition there is no energy flux over ∂A, Monin & Yaglom (1971, p. 368)
resume that

. . . for flows of incompressible fluid in a field of nonfluctuating body forces, the
only possible source of turbulent energy within a volume which has no influx
of turbulent energy across its boundary is the transformation of the energy of
the mean motion.
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6.2. Energy transfer and the mother–daughter mechanism

Thus, from figs. 6.4–6.5 and eqs. (6.8)–(6.9) we have evidence that, indeed, all the
fluctuation energy is fed to the perturbation space by the mean and that all the con-
sidered volumes (M,V2, V1) are energetically closed in the sense that there is no flux
over their boundaries (recall that t = zU−1

∞ ). The mutual interaction term in (6.8)–(6.9)
is ±⟨(u(t),∇U(t)u(t))L2(A)⟩, implying that the magnitude and direction of the energy
transfer between the perturbations and the mean depends on the L2−projection of the
Reynolds stresses on the mean gradient. This means that besides the mean and the core
perturbations there is a third actor – namely the Reynolds stress – which controls the
energy exchange. It should be emphasized that this ’control instance’ may have much
less energy than the two primary actors (see also Wiener, 1988, p. 38). However, if any
one of these elements is missing, the whole ceases to exist. This observation is strongly
reminiscent of the mother–daughter mechanism elucidated by Boberg & Brosa (1988).

Remark 6.1. It should be emphasize here that a strikingly similar model is underlying
the De-Broglie–Bohm mechanics of quantum physics.7 In essence, a low-energetic non-
local information field controls the much greater energy of a particle motion, whereas the
energy supply comes from the particle itself (Bohm & Peat, 1987, pp. 90–94). The special
form of the quantum potential (reminiscent of the numerical range) allots all importance to
the information form rather than its intensity – this is called active information (Bohm &
Peat, 1987, pp. 89, 93). This is precisely what happens in the Reynolds–Orr equation. The
important non-local interaction is due to the appearance of the Laplacian in the bilinear
form (Bohm & Peat, 1987, p. 89), whereas the typical vortex velocity gradient only permits
effectively restricted interactions (as follows from spectral decomposition).

Conclusion 6.2.2: Closeness and control

A vortex is energetically closed in the sense that there is no integral energy transfer
over its boundary on average. The accumulation of core energy is likely to be due
to the mother–daughter mechanism, where external structures outside the vortex
control the exchange without themselves providing energy, though.

Identification of meandering with the leading perturbation pair obtained from POD and
the fact that energy enters the perturbation space at scales comparable to the integral scale
(Tennekes & Lumley, 1973, p. 68) is consistent with the assumption that meandering is
associated essentially with the large scales (cf. sec. 2.4.2). On a simplified level, the energy-
input range (i.e. vortex meandering) is governed by the linear dynamics, while the pressure
gradient and advective non-linearity are essentially responsible for inter-scale redistribution
in the inertial range and viscous diffusion governs the dissipative range (Monin & Yaglom,
1971; Rotta, 1972; Tennekes & Lumley, 1973).

The leading-order POD-mode dipole pattern. The leading POD-mode pair com-
puted from the vorticity field at zc−1 = 26 is shown in fig. 6.6. POD analysis of vortex flow
is commonly based on the vorticity field (Roy & Leweke, 2008, p. 22; Del Pino et al., 2011,
p. 6) rather than the velocity field. It should be kept in mind that then the eigenvalues do
not represent physically kinetic fluctuation energy but enstrophy (Foiaş et al., 2001, p. 28).
Nevertheless, POD of the vorticity and velocity fields are essentially comparable, showing
the same trends and global behaviour.8

7Indeed, the conceptual connection between vortex dynamics and quantum mechanics seems to be quite
tight (e.g. Hasimoto, 1972; Hirota, 1973; Klein & Majda, 1991).

8It should also be mentioned that POD analysis of the numerical data at far lower Reynolds numbers
(provided by Navrose 2018, ONERA) by myself yielded qualitatively identical structures.
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Figure 6.6: Leading POD modes φwl (x) (l = 1,2) at zc−1 = 26 (normalized with tc ∶= cU−1
∞ ).

Inner and outer circle representing the vortex core and support. The principal axes vl
(l = 1,2) from spectral decomposition of the centreline covariance tensor ⟨XXT ⟩. (For the
PIV measurements presented in appendix A.1.)

The subsequent POD modes (not shown here) progressively (as l is increased beyond
two) correspond to multi-pole structures (see Roy & Leweke, 2008; Del Pino et al., 2011),
reminiscent of the ∣m∣ ≥ 2 modes pertaining to the discrete spectrum of the Lamb–Oseen
and Batchelor vortices (Mayer & Powell, 1992; Fabre & Jacquin, 2004; Fabre et al., 2006).

The characteristic dipole structure of the leading POD modes has been taken as evid-
ence that the most energetic contribution to vortex meandering corresponds to perturbation
waves with helical ∣m∣ = 1 symmetry (conj. 3.1 and Del Pino et al., 2011, pp. 7, 10; Edstrand
et al., 2016, p. 7). The superposition of two ∣m∣ = 1 Kelvin waves φwl (l = 1,2) mutually
rotated by 90○ is sufficient for arbitrary displacements in the plane (Roy & Leweke, 2008,
p. 6). Since furthermore the inclination angle of the leading POD-mode pair coincides
with the tilt derived from the vortex-centre correlation tensor (as shown in fig. 6.6), the
meandering dynamics is believed to be characterized (entirely) by the leading POD-mode
pair (Del Pino et al., 2011, pp. 7, 10). This is further corroborated by observing that

xl(t) = al(t) ∶= (u(t),φl)L2(M) and Exl(ω) = Eal(ω) (l = 1,2)
holds, whereas xl(t) are the realizations of the vortex-centre components with respect to
the principal-axes system. That is, the time series obtained from projecting the velocity
field on the l-th POD mode (l = 1,2), viz. the expansion coefficient, is identical with
the realization of the vortex-centre time series in the direction of the principal axis vl.
The same correspondence applies to the respective power spectral densities (the same
observation was made by Del Pino et al., 2011, p. 11). We conclude that the kinematic
description of vortex meandering through the centreline time series X(t) is equivalent to
the dynamic representation in terms of the leading POD dipole pair.

Repeating the same analysis for the other measurement planes at zc−1 = 2, . . . ,20 leads
to qualitatively identical patterns and alignment with the principal direction of the vortex-
centre time series. As an example, fig. 6.7 shows the leading POD-mode pair at zc−1 = 2.
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Figure 6.7: Leading POD modes φwl (x) (l = 1,2) at zc−1 = 2 (normalized with tc ∶= cU−1
∞ ).

Otherwise same as fig. 6.6. (For the PIV measurements presented in appendix A.1.)

While the structures and inclinations are similar to fig. 6.6, we find the result to be much
less representative of the actual vorticity field than farther downstream. This is evidenced
by comparison with an instantaneous snapshot of the fluctuation vorticity w(t,x) (t fixed
arbitrarily and x ∈ M) as shown in fig. 6.8 for zc−1 ∈ {2,26}. We conclude that close
to the wing the dynamics is not yet truly dominated by the leading dipole pair and that
meandering – if we can already call it that – should be extremely weak (this is in agreement
with Green & Acosta, 1991). This initial lack of a concise representation is consistent with
the (quasi-uniform) spreading of the energy over multiple scales found in fig. 6.3. The
quality of the representation of any (vorticity-field) realization by the leading POD modes
becomes gradually more reliable as the energy content increases downstream.

The dynamics of the coherent structure itself is entirely represented by the ’core dy-
namics’.9 The core dynamics can be expressed as the unique superposition (Melander &
Hussain, 1993b, p. 1996; Lesieur, 2008, pp. 163–166) and interaction of complex helical
waves moving in opposite directions (eigenfunctions of operator rot ∶= ∇×) which, taken
together, yield the actual entire vorticity field. This analysis reveals that ‘the deformation
of the vortex column results primarily from the relative motion of two slowly deforming
polarized vorticity structures’ (Melander & Hussain, 1993b, p. 2002).

Reynolds stresses. Recall that, in this section, we denote the measurement time by
t̃ and that ⟨⋅⟩ is the time average over the measurement duration T . We then recall the
definition of the Reynolds stress as the second-order covariance tensor of the d−dimensional
random field u(t̃; z,x) (Monin & Yaglom, 1971, p. 261; Rotta, 1972, p. 56; Tennekes &
Lumley, 1973, p. 32) –

(6.10) Rβγ(z,x) ∶= ⟨uβ(z,x)u∗γ(z,x)⟩ ∀(z,x) ∈ [0, L] ×M (β, γ = 1, . . . , d),
9Defined as the influence of the vortex’ own vorticity distribution on the dynamics (Melander & Hussain,

1994, p. 1).
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Figure 6.8: Instantaneous fluctuation vorticity at zc−1 = 2 and zc−1 = 26 (normalized with
tc). Same colour on the right corresponds to twice the vorticity magnitude on the left.
(For the PIV measurements presented in appendix A.1.)

where L is the length of the experimental test section (see fig. 2.1). In fact, for u(t̃) ∈
L2(M), R ∶ L2(M) → L2(M) is the special case of the covariance operator C introduced
above for x = x′. Equation (6.10) is then the symmetric (hermitian) kernel. The trace
tr R(z,x) = ∑dβ=1⟨u2

β(z,x)⟩ is therefore defined and is, by construction, identical with the
total fluctuation kinetic energy ⟨∣∣u(z,x)∣∣2Rd⟩ (Kato, 1980, p. 521).

The sum of the normal Reynolds stresses, i.e. the trace or total kinetic energy, is
shown in fig. 6.9 for zc−1 ∈ {4,26}. In both measurement planes, the energy is essentially
concentrated in the vortex core, whereas the bulk contribution comes from the transversal
components. (The result is qualitatively the same for all other measurement planes in
between.) Outside the core, the energy rapidly ceases while it amplifies by a factor of
approximately ten within 4 ≤ zc−1 ≤ 26. This is, of course, consistent with fig. 6.1.

The transversal Reynolds stresses naturally appear in the production (’communica-
tion’) term of (6.8)–(6.9), thus ruling the energy exchange between the mean and the
perturbations (cf. conclusion 6.2.1). As such, the decisive requirement for integral energy
amplification on average is that the L2−projection on the mean-velocity gradient be non-
zero. In fact, since both arguments in the production bilinear form (u,∇Uu)L2(M) are
identical, only the symmetric part of ∇U can yield a non-zero contribution. We are thus
led to analyse the possibility of projection on S ∶= 0.5(∇U + ∇UT ). For vortices, where
generically U(r) = Uθ(r)eθ +Uz(r)ez, we have (details are given in Bölle et al., 2020)

(6.11) S = 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 rdΩ/dr dUz/dr

rdΩ/dr 0 0
dUz/dr 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This shows that the relevant Reynolds-stress components are ⟨uruθ⟩ and ⟨uruz⟩ for
projection on the symmetric gradient of the azimuthal and axial velocity, respectively. In
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Figure 6.9: Normal Reynolds stress ∑3
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β⟩. In both measurement planes the streamwise
energy is more than an order of magnitude less than the transversal contributions ⟨u2
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z⟩. (For the PIV measurements presented in appendix A.1.)
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Figure 6.10: Transversal Reynolds stress ⟨uxuy⟩. (For the PIV measurements presented in
appendix A.1.)

Cartesian coordinates, fig. 6.10 shows the in-plane transversal component and fig. 6.11
the combined transversal and normal component. The latter is much weaker and unlikely
to play an important role at least at the first measurement station. In both cases, the
Reynolds stresses are amplified by one order of magnitude over the measurement distance.
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The same patterns of normal and transversal Reynolds stresses at zc−1 = 26 are found
in the PIV measurements of Heyes et al. (2004, fig. 7) at zc−1 = 22.9 and Vandernoot et al.
(2008, figs. 12, 16). In the experiments of Heyes et al., the Reynolds-stress magnitude
is about three times larger than shown in figs. 6.9–6.10, which is consistent with the
fact that their turbulence intensity is also at least a factor two larger. The magnitudes
detected by Vandernoot et al. are comparable, as is their turbulence intensity. Similar
shapes and localization but weaker stresses are also observed by Phillips & Graham (1984,
pp. 362–366). A qualitatively similar evolution as shown in fig. 6.10, namely the gradual
concentration of transversal Reynolds stresses in the core downstream, is consistent with
the simulations of Hussain et al. (2011, fig. 14b).
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Figure 6.11: Reynolds stress ⟨uxuz + uyuz⟩. (For the PIV measurements presented in
appendix A.1.)

6.3 Linear receptivity

. . . ein fehlerloses Vernunftsgebilde durchzusetzen,
denn gerade seine fehlerlose Vollkommenheit wäre
seine tödliche Lüge und ein Zeichen der
schrecklichsten Blindheit.

— F. Dürrenmatt: Das Versprechen

The notion of receptivity was coined by I. Kant and derives from the Latin recipio,10

designating the sensitivity of an organism to external influences (Empfänglichkeit). In the
Kritik der reinen Vernunft, I. Kant states that

Unsre Erkenntnis entspringt aus zwei Grundquellen des Gemüts, deren die er-
ste ist, die Vorstellungen zu empfangen (die Rezeptivität der Eindrücke), die

10aufnehmen (Stowasser, p. 429).
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6.3. Linear receptivity

zweite das Vermögen, durch diese Vorstellungen einen Gegenstand zu erkennen
(Spontaneität der Begriffe).11

That is, an action is the outcome of two complementary concepts. The passive receptiv-
ity, permitting to obtain external excitation, is followed by the active spontaneity of the
organism. This is reminiscent of the duality observed in vortex meandering, namely the
specific reaction (an intrinsic mechanism) to the principal exposition to external stimuli.
To be precise, the common understanding of receptivity in fluid dynamics (introduced by
Morkovin, 1969; Obremski et al., 1969) is actually receptivity–spontaneity in the sense of
Kant. Before discussing the linear receptivity of generic vortices in frequency space and
subsequently in time domain, some comments are required.

The preceding chap. 5 suggests to formally identify the (manifesting) vortex with an
(abstract) organism. (Greek όργανισμός, usually meaning a (living) entity or system.)
The notion of a system here is to be distinguished (but is not disjoint) from the notion
in chap. 5; the meaning here is rather in the thermodynamic sense (Atkins, 2010, p. 1;
Klein & Nellis, 2012, p. 3). That is, the system (viz. the organism) is identified with a
distinct geometrical space-time object (i.e. the vortex), delimited from its surrounding by
the system boundary. This approach allows to distinguish the interior from the exterior of
the system.

The external influence12 should not be understood literally but rather abstractly, for
the previous analysis suggests that the vortex is exposed to an information13 field. This
idea of the external excitation puts the emphasis on the content, form or kind, rather
than magnitude in agreement with the before said (notably rem. 6.1). Metaphorically, the
vortex is an organism ’living’ in the fluid domain and subjected to the information field
emanating from the surrounding free stream. Receptivity then determines the principal
susceptibility to the various kinds of information and the vortex response is the spontaneity
in the sense of Kant. The mutual communication between the vortex and the free stream
will be shown to happen by appeal to secondary elements in the vortex periphery.

These considerations suggest that receptivity actually designates the process or action,
rather than the state. As such, it is mathematically associated with transformations, or
operators (Riesz & Sz-Nagy, 1956). In the henceforth discussed linear model, receptivity
to the initial condition u(0) or sustained forcing f(t) is generically expressed by

u(t) = T(t)u(0) + ∫ t

0
dτ T(t − τ)f(τ) ∀t ≥ 0,

where t↦ T(t) is the semigroup generated by the linearised Navier–Stokes operator L (see
appendix C and Engel & Nagel, 2000). Analysis of the semigroup will be the subject of
sec. 6.3.2. The Laplace transform of the semigroup s↦ R(s; L) is called resolvent and will
be discussed in sec. 6.3.1 (Kato, 1980). However, it is clear that both analyses are different
views of the same problem.

In both cases, the canonical decomposition of the linear operator families R(s; L) and
T(t), respectively, is used (the technical details necessary for the present work can be
found in appendix C). Canonical decomposition amounts to a decomposition of the linear
operator into a series of rank-1 operators (taking s, t as fixed parameters), ordered with
respect to their energy amplification. The respective rank-1 operators can be understood
as a (Hilbert-space) tensor product between the optimal input–output mode pairs. This

11 Our knowledge springs from two fundamental sources of our soul; the first receives representations
(receptivity of impressions), the second is the power of knowing an object by the representations (spontaneity
of concepts).

12From the Latin ῑnfluō, ’to flow into’ (hineinfließen, eindringen; Stowasser, p. 262).
13From the Latin fōrma, shape (Gestalt, Form; Stowasser, p. 214)
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analysis of the semigroup T(t) is called transient-growth analysis and the optimal input
mode is referred to as (linear) optimal perturbation. Details can be found in Farrell &
Ioannou (1996), Trefethen & Embree (2005), Schmid (2007) and Kerswell (2018) among
many others.

6.3.1 Analysis in frequency space: the resolvent

Analysis of the linear receptivity in frequency space by means of the resolvent can be found
in Bölle et al. (2020), which is appended in appendix C. Here, we merely add fig. 6.12
illustrating the mother–daughter mechanism adapted from Boberg & Brosa (1988) in the
case of vortex dynamics. The daughters typify the core perturbations (figs. 6.6–6.7) which
receive their energy u2

T from the vortex mean flow (symbolized by an inexhaustible energy
reservoir). The mothers take over the role of the control device which rules the transfer
of energy, represented by a valve in the schematic. In the case of vortices, the mothers
correspond to filaments wound up around the vortex core at a radial position identical with
the critical layer. If this mechanism is responsible for the experimentally observed energy
amplification in the vortex core, free-stream disturbances (with non-zero projection onto
the shown excitation mode) are absolutely necessary, since otherwise no energy transfer is
possible. It is, however, important to remember that the actual energy transfer is between
the mean flow and the perturbation space, while the free-stream disturbances merely take
the role of an indispensable mediator (Vermittler). In other words, the proposed mechanism
implies that in a perfectly quiescent environment (or if the projection is zero), the vortex
would not meander – not because there is no energy transfer from the free stream to the
vortex, but because the external stimulus, which incites the perturbations to draw energy
from the mean flow, is missing.

vortex flow

daughters

mothers
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Figure 6.12: Mother–daughter mechanism. (a) Adaptation of the schematic elucidated
by Boberg & Brosa (1988, fig. 1). (b) Critical-layer excitation of the Lamb–Oseen vortex
derived from a canonical decomposition of the resolvent (Bölle et al., 2020).

As in the case of Boberg & Brosa (1988), we add the typical qualitative energy evolution
of the mothers and daughters. The factor ten is in principal agreement with the experi-
mental finding shown in fig. 6.1 and re-emphasizes the fact that a comparably low-energetic
’control unit’ is capable of ruling the energy budget of a high-energetic organism.
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6.3. Linear receptivity

Eventually, Boberg & Brosa (1988) proposed that nonlinearity acts to re-establish the
decaying daughters and therewith gives rise to a self-sustaining mechanism. It is not clear,
whether this idea holds for vortices. Rather, the mothers would seem to be organized by
the vortex mean flow and the nonlinearity might be considered as an abstract forcing. This
is consistent with the previous remark that vortices tend to separate dynamic regimes into
spatially distinct regions. It would also be consistent with a Brownian motion.

6.3.2 Analysis in time domain: transient growth

All approaches to vortex flow, such as experiments, simulation, linear dynamics of different
reference flows etc., unanimously observe the preferred excitation of a few characteristic,
possibly generic, wave modes, commonly believed to be related to a linear transient-growth
mechanism (Hussain et al., 2011, p. 305). Since the transient-growth dynamics of the
Lamb–Oseen vortex essentially extends to the Batchelor vortex, we discuss both flows
together. In particular, the peak due to resonance excitation (Antkowiak & Brancher,
2004) persists for all stable conditions at a comparable wave number (Heaton & Peake,
2007, fig. 7).

Review of the theory. We assume perturbations of the form

φ(t, r, θ, z) = φ̂(t, r)ei(mθ+αzz)

with wavenumbers m ∈ Z and αz ∈ R. The perturbation kinetic energy is defined by (for
fixed m,αz)

(6.12) E(t) ∶= ∣∣u(t)∣∣2L2(M).

For fixed t > 0, the gain is defined as

(6.13) G(t) ∶= max
u(0)≠0

E(t)
E(0) ,

that is, the maximum normalized amplification over all admissible initial conditions for
the considered horizon time t. The maximum gain, or global optimum, is defined by
Gmax ∶= maxtG(t) and tmax ∶= arg maxtG(t) (Pradeep & Hussain, 2006, p. 264; Heaton
& Peake, 2007, p. 275). For later reference, the graph of the global optima Gmax(αz) as
a function of the streamwise wave number αz is reproduced in fig. 6.13 from Antkowiak
& Brancher (2004, fig. 1). We discern two peaks at αzr0 ≈ 1.5 and as αz → 0 which are
natural candidates for meandering.

Antkowiak (2005) and Roy & Leweke (2008, fig. 25) extrapolate the optimal-time curves
of Antkowiak & Brancher (2004, fig. 1) for the Lamb–Oseen vortex (fig. 6.13) in the same
range of Reynolds numbers to observation times of their experiments for an estimated
characteristic meandering wavelength of λr−1

1 = 120. Roy & Leweke (2008, p. 9) suggest:

Conjecture 6.1. Vortex meandering is due to transient growth of optimal perturbations
‘initiated by background noise in the flow or by turbulence in the wake of the wing’.

Jacquin et al. (2007, p. 8) speculate that meandering in their jet–vortex interaction ex-
periment is due to transient growth of core perturbations initiated by the jet turbulence.
Assuming essential similarity between meandering of inlet and trailing vortices, Wang &
Gursul (2012, pp. 16–17) also refer to a linear transient-growth mechanism to explain the
observed long-wavelength vortex deformation.
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Figure 6.13: Top figure: maximum gain Gmax (called G(τopt) here) over the wavenumber
αz (caller k here) for perturbations to the Lamb–Oseen vortex with m = 1. The Reynolds
number is Re ∶= r2

0Ω0/ν. Bottom figure: the associated horizon time tmax (called τopt here)
to reach the maximum gain. (Taken from Antkowiak & Brancher, 2004.)

Scale estimates for resonant transient growth. Increasing the Reynolds number
leaves the wave-number location of the (resonance) peak almost unaffected while Gmax
grows since the governing mechanisms are essentially inviscid (Pradeep & Hussain, 2006,
p. 279). For the Reynolds number Γ/ν ∼ 104 the global optimum attains values of the order
of Gmax ∼ 102 . . .103. The time to reach this value also increases and is estimated to be
beyond tmax = 30 tr (extrapolated from the trend shown in Antkowiak & Brancher, 2004,
fig. 1). This lower-bound estimate matches reasonably with the value of tmaxt−1

r ≈ 102 for
the Batchelor-vortex resonant transient growth of the m = −1 perturbation at Γ/ν = 5×103

(Heaton & Peake, 2007, p. 291).
Assume tmaxt−1

r ∼ 102 for the time required to attain the global optimum due to res-
onance. The corresponding travelling distance of the vortex is zc−1 ∼ 102trt

−1
c ≈ 20. It is

not evident to decide whether the dynamics at about twenty chords is governed by (linear)
transient growth of an optimal initial perturbation (see also Hussain et al., 2011, p. 316).

Scale estimates for αz → 0 transient growth. Assuming perturbation dynamics of
helical symmetry in the meridional plane, energy amplification is maximized by streamwise
homogeneous (viz. αz = 0) perturbations (Mao & Sherwin, 2012, p. 48). Ad idem, the
global optima curves in Antkowiak & Brancher (2004, fig. 1), Pradeep & Hussain (2006,
fig. 19) and Heaton & Peake (2007, fig. 7) all show significantly increased gain in the
limit of very long wavelengths: Gmax(αz) → ∞ as αz → 0 (Heaton et al., 2009, p. 291).
Infinite amplification is physically infeasible and is an artefact of vanishing viscous terms

90
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for ∣m∣ = 1 perturbations (Heaton & Peake, 2007, p. 293). However, the time to attain
maximum amplification diverges tmax(αz) → ∞ as αz → 0 (Antkowiak & Brancher, 2004,
fig. 1), which would seem to limit the physical significance of these modes. As a matter of
fact, this formal divergence is a consequence of en extremely flat gain curve and Heaton &
Peake (2007, pp. 293–294) state that

the growth rate for any transients should be reasonable for small-αz bending
modes, and indeed faster than the growth rates involved in the bending mode
resonance [and] conclude that the small-αz bending mode disturbances are cap-
able of contributing significant transient growth . . . comparable to the resonant
effect.

For αzr0 ∼ 10−1 and q = 4, the gain envelope has similar shape as compared to the resonance
case for early times tt−1

r ≲ 102 (Heaton & Peake, 2007, fig. 9). This suggests that the
global optima and associated optimization times are an insufficient measure for the actually
possible transient growth of long-wave perturbations. In fact, significant transient energy
growth of the same order as for the resonant case within similar time may be expected
(Heaton & Peake, 2007, pp. 293–294).

Energy amplification in the long-wave limit has been analysed by means of the two-
dimensional linear perturbation equation (Antkowiak & Brancher, 2004; Johnson, 2016;
Navrose et al., 2018). In this case the m = 1 optimal gain increases linearly with the
optimization time and the slope depends on the Reynolds number. However, initial per-
turbations move away from the core as the time is increased (Antkowiak & Brancher,
2004, p. 3). This gradual outward motion limits the relevance in practical applications to
tt−1
δ ≲ 100 (Mao & Sherwin, 2012, p. 56). With regards to this threshold value the required

optimal time tt−1
r = 150± 10 extrapolated by Roy & Leweke (2008, p. 30) would be achiev-

able (cf. time-scale estimates in sec. 2.2). This behaviour is completely analogous to the
gradual outward motion of the optimal forcing, obtained from canonical decomposition of
the resolvent, as ω → 0 (see appendix C).

The nonlinear evolution of linear optimal perturbations

Integration of an isolated line vortex embedded into initially fine-scale turbulence of initial
intensity uU−1

∞ ≈ 4 × 10−2 (corresponding to 15 % of Uθ,1) leads to the formation of non-
axisymmetric perturbations of multiple axial wavelengths. Like in experiments, the dom-
inant wavelength increases with time, thus promoting the enhanced relative importance of
one particular wavelength (Hussain et al., 2011, p. 309). The dominant perturbation mode
has strong structural similarity with the resonantly excited linear optimal perturbation.
The simulation time is ttr ≤ 250 – by (2.22) corresponding to zc−1 = 250 trt−1

c ≈ 50. For
the given turbulence intensity, the spectral evolution manifests in the gradually increas-
ing importance of one isolated peak (Hussain et al., 2011, fig. 5), not usually observed in
experiments (e.g. Bailey & Tavoularis, 2008, fig. 11).

Resonant optimal perturbation. Hussain et al. (2011, pp. 312–313, 317–318) and
Stout & Hussain (2016) study the nonlinear evolution of the Lamb–Oseen vortex initially
subjected to the resonant linear optimal perturbation (with αzr0 = 1.4, located around
the critical layer at about rr−1

0 ≈ 2.5) of amplitude uU−1
θ,1 ≈ 6 × 10−2 (corresponding to

the turbulence intensity uU−1
∞ ≈ 0.25uU−1

θ,1 ≈ 1.25 %). For Γ/ν = 5 × 103, this initial per-
turbation excites core perturbations with an order of magnitude larger kinetic energy
(u(⟨X(t)⟩)U−1

θ,1 ≈ 40 × 10−2 or u(⟨X(t)⟩)U−1
∞ ≈ 10 %) during an integration time of 50 tr

(the equivalent of zc−1 ≈ 10), as shown in fig. 6.14.
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Figure 6.14: Perturbation kinetic energies in the Navier–Stokes DNS of Hussain et al.
(2011, figs. 14 and 16). integral kinetic energy; kinetic energy on the vortex axis (scaled
by a factor 0.2); ▲ rescaled and shifted local energy from fig. 6.1.

Amplification by one order of magnitude over a downstream range of the order of ten
chord lengths is in very good agreement with the observations in figs. 6.1 and 6.9. The
final energy in the numerical experiment of Hussain et al. (2011) equals u2(⟨X(t)⟩)U−2

∞ =
10−2. This is precisely the energy in the experiments of Heyes et al. (2004, fig. 7) and
(as discussed above) a factor of three less than in figs. 6.1 and 6.9. However, this is not
inconsistent, as the turbulence intensities in this latter experiment was about a factor
three less than in the simulation. Moreover, the circulation-based Reynolds number in
the experiment is approximately an order of magnitude larger, which indicates stronger
resistance to deflection.

For comparison, the evolution of the kinetic energy (rescaled by a constant factor) at
the vortex axis ⟨X(t)⟩ (fig. 6.1) is superposed on fig. 6.14. The agreement with the local
kinetic energy in the simulation is reasonable.

Long-wave optimal perturbation. The axially homogeneous (αz = 0) linear optimal
perturbation leads to the most significant energy amplification (Antkowiak & Brancher,
2004; Heaton & Peake, 2007) and is therefore selected by Mao & Sherwin (2012, p. 51)
for nonlinear time integration. Further linear and nonlinear transient-growth analysis of
the two-dimensional dynamics is carried out by Navrose et al. (2018). In a linearised
framework, the gain increases linearly with the specified finite time (in the optimization
problem) (Antkowiak & Brancher, 2004, fig. 3; Navrose et al., 2018, fig. 1).

The vortex-centre trajectory from the computations of Mao & Sherwin (2012, fig. 14c)
is reproduced in fig. 6.15c. Mao & Sherwin (2012) assume Rδ = 103, q = 3 and initialize the
liner optimal perturbation with the energy14 ∣∣u(0)∣∣2L2(M) = 10−3; the integration is carried
out until tt−1

δ = 500. The perturbation-energy amplification follows the linearised dynamics

14Non-dimensionalized with ∣δUz ∣.
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for a substantial time before eventually saturating at about 50 tδ (Mao & Sherwin, 2012,
p. 55).

Navrose et al. (2018, p. 938) compare the nonlinear evolution of the two-dimensional
Lamb–Oseen vortex initially perturbed by the linear and nonlinear optimal perturbation
(RΓ = 5 × 103), both initialized with a perturbation energy15 of ∣∣u(0)∣∣2L2(M) = 10−2. The
resulting vortex-centre trajectories are shown in fig. 6.15a, b, e, f . Despite the different vor-
tex models and parameter values, we observe essentially the same vortex motion as found
by Mao & Sherwin (2012). Nonlinearity in the determination of the optimal perturbation
seems to impact mainly the resulting energy amplitudes and sustainability, while it does
not lead to a fundamentally different motion.

Figure 6.15: Vortex-centre trajectories. Nonlinear integration of the linear (bottom) and
nonlinear (top) optimal perturbations to the Lamb–Oseen vortex (taken from Navrose et
al., 2018, fig. 14e, f , 15a, b). Nonlinear evolution of the linear optimal perturbation to the
Batchelor vortex (reproduced from Mao & Sherwin, 2012, fig. 14c) and the corresponding
schematic probability density.

Mao & Sherwin (2012, pp. 53–54) leave little doubt – ‘we see that this meandering is
driven by the transient response of the vortex to the [linear, αz → 0] periphery perturbation,
which is associated with the continuous spectra and induces perturbations inside the vortex
core.’

However, comparing the centreline trajectories in fig. 6.15 to fig. 1.1, would not seem
to describe the same motion – not even qualitatively. In fact, the most fundamental
universal properties of experimental meandering are not met, namely amplitude growth and
Gaussian statistics. By the law of large numbers, we expect the density of the trajectories to
converge to the probability density of the vortex-centre position. Assume the trajectories
in fig. 6.15 being statistically meaningful in this respect, the corresponding probability
density of the vortex centre is sketched in fig. 6.15 (top right). Clearly, the spiralling
motion (sinusoidal oscillation) in the numerical experiments corresponds to an M−shaped
probability density rather than Gaussian statistics (Spalart, 1998, p. 112). As regards the
experimental amplitude growth, we note two inconsistencies: the initial amplification is
too fast, while the long-term dynamics is not sufficiently sustained.

It should probably also be noted, that the oscillatory motion in fig. 6.15, associated
with meandering by Mao & Sherwin (2012) and Navrose et al. (2018), does not correspond
to the ’transient-growth phase’ sensu stricto. In fact, if meandering corresponds to the
oscillatory motion, transient growth literally describes a transient here, merely driving the
system to the meandering motion of interest. However in this case, meandering would

15Normalized with Γ/(2πr0).
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not be directly related to transient growth, but rather sets in once the transient energy
amplification phase is terminated. This puts not only into question the very motivation
for doing transient-growth analysis but is also incompatible with the typical energy growth
(cf. sec. 6.2).

Remark 6.2. The fact, that the linear response to the optimal perturbation visually re-
sembles the ’displacement mode’ of Fabre et al. (2006), led Navrose et al. (2018, p. 931)
to conclude that the ’displacement mode’ in fact must be in the span of the linear optimal
perturbation. Recalling that the ’displacement mode’ is associated with the discrete spec-
trum of the linearised Navier–Stokes operator, this conclusion is in stark contrast to the
finding of Mao & Sherwin (2012, p. 42) (admittedly not for the same parameter values
and base flow), that the linear optimal perturbations are constructed from the (inviscid)
continuous spectrum. The analysis in sec. 6.3.1 shows that the communication between
the vortex and the free stream is governed by the continuous spectrum (thus excluding the
displacement mode, which pertains to the discrete spectrum). It should also be emphas-
ized, that non-congruent input–output pairs are possible in a linear non-normal setting.
In other words, the input and output spans can be different.

Nonlinear evolution of the linearly initialized wake dynamics: evidence for
vortex solitons? Navrose et al. (2019) further compute the linear optimal perturbation
of the flat-plate wake flow (α = 5○, Rc = 103, corresponding to Γ/ν ≈ 170; Navrose et
al., 2019, fig. 4). It is noted that the linear optimal perturbation to the trailing vortex
is located around the vortex generator, i.e. upstream of the vortex formation (Navrose
et al., 2019, p. 411). Nonlinear integration of this linear optimal perturbation (initial
energy ∣∣u(0)∣∣2L2(M) = 10−4U2

∞c
3) leads to the propagation of a wave packet along the

trailing vortex at a speed close to U∞ (Navrose et al., 2019, p. 413 and fig. 13). The
phase shift between the perturbation velocities implies a helical core motion, such that the
vortex centre traces an elliptical trajectory in a cross plane; this is reproduced in fig. 6.16a.
Navrose et al. (2019, p. 421) propose the transient growth of perturbations located about
the vortex generator as a candidate mechanism for vortex meandering. This identification
of the observed dynamics with vortex meandering is probably based on a misconception of
the experimental data shown in fig. 6.16b, in that Navrose et al. (2019) seem to infer an
elliptical vortex-centre trajectory from the standard-deviation ellipse shown in red.

Figure 6.16: Vortex-axis trajectories in a cross plane. (a) Simulations of Navrose et al.
(2019) and (b) Roy & Leweke (2008).

To be more precise, the motion shown in fig. 6.16 constitutes a valid manifestation
of vortex meandering according to def. 2.6, yet it seems not to comply with the essential
features of experimental trailing-vortex meandering (cf. sec. 2.4). It should be noted that
the motion is qualitatively very similar to the trajectories shown in fig. 6.15. Furthermore,
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Navier–Stokes DNS of the Lamb–Oseen vortex initially subjected to resonant linear optimal
perturbation leads to a helical deflection of the vortex axis, too (Stout & Hussain, 2016,
p. 361).

Indeed, this perturbation evolution seems rather reminiscent of soliton propagation
on the vortex core than what is commonly referred to as meandering in trailing vor-
tices. As shown by Hasimoto (1972), soliton perturbations of a vortex obey a non-linear
Schrödinger equation for curvature and torsion of the vortex filament (see also Wu et al.,
2006, p. 404). This dynamics was observed experimentally on vortex columns in rotating
turbulence (Hopfinger et al., 1982; Maxworthy et al., 1985).

Critique of transient growth. The normal distribution of the vortex centre is incom-
patible with the presence of a dominant helical vortex motion as it could result from an
instability (Bailey & Tavoularis, 2008, p. 310).

The scale inconsistency between wrapped filaments in experiments and long-wavelength
meandering on the one hand as well as long time scales of long-wavelength transient growth
on the other hand led Bailey et al. (2018, p. 738) to conclude

it is unlikely that the observed long-wavelength meandering motions would be
caused by transient growth.

The primary peak in the initial two-peak spectral signature of the no-grid case matches
fairly well with the characteristic wavelength of resonance-induced transient growth at
about αr−1

1 ≈ 1.4 ⇔ λr−1
1 ≈ 2π/1.4 ≈ 4 . . .5. Nevertheless, this wavelength is too short

for ’universal meandering’ and transient growth incapable to explain the shift in peak
frequency; the associated perturbation is not sustained. Bailey et al. (2018, p. 736) spec-
ulate that this comparably short-wavelength critical-layer wave dissipates due to viscous
diffusion. Almost identical energy content at subsequent stations suggests that a certain
cross-feeding mechanism may be active (cf. sec. 2.4.2).

Pentelow (2014, p. 58), referring to Bailey et al. (2011), state that it exists ‘a regular
helical component of vortex meandering, which is unaffected by the free-stream turbulence’.

Bailey et al. (2018, p. 744) observe that within the stochastic meandering it exists an
azimuthal average motion reminiscent of a weak ∣m∣ = 1 bending mode that did not scale
on the turnover time. On average, the vortex was found to obey a clockwise helical motion
along a path around the time-averaged axis, yet constituting a rare event. Put differently,
‘the vortex axis was on average in nearly rigid-body rotation about its average position
. . . covering the entire domain of its meandering’ (Bailey et al., 2011, p. 6; Bailey et al.,
2018, pp. 740–743). They explain this (rare) motion in terms of a self-induced solid-body
rotation of the vortex axis about its mean position on average (necessarily countergrade).
Bailey et al. (2018, p. 743) come to the conclusion that

all these observations prove conclusively that the organized helical motion was
only a small component of the overall meandering, which was largely stochastic.

This point of view corresponds to an ’inverse’ scenario or causality (Bailey et al., 2018,
p. 745, cf. Alekseenko et al., 2007):

Conjecture 6.2. Meandering is first and foremost stochastic due to momentum exchange
with impacting eddies. The interaction is limited by the turnover time (intrinsic scaling)
privileging long-wavelength motion. As a consequence of this long-wave small-amplitude
motion self induction is a generic feature which establishes a helical wave form on average
as a rare event.
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Pentelow (2014, §5.1.3) (see also Bailey et al., 2018, p. 731) found that the instant-
aneous axis deformation (reconstructed 9th-order polynomial from LIF) was often nearly
planar with the plane including the mean axis but the orientation gradually changing
among frames. Thus, arguing that a helical axis motion can be excluded as the most
pertinent contribution to meandering. The deformed vortex axis often appeared to have a
sinusoidal shape in these planes.
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7 | Some final thoughts

Knowledge is a function of being.

— A. Huxley: The Perennial Philosophy

The Navier–Stokes dynamics is inherently nonlinear, so that meaningfulness and per-
tinence of a linear model can and perhaps should a priori be doubted. It is however true
that highly important mechanisms can be unveiled from the linear dynamics which are of
relevance for the full problem. This principal conflict is nicely expressed by F. Dürrenmatt
(Das Versprechen) –

Ihr versucht nicht, euch mit der Realität herumzuschlagen, die sich uns immer
wieder entzieht, sondern ihr stellt eine Welt auf, die zu bewältigen ist. Diese
Welt mag vollkommen sein, möglich, aber sie ist eine Lüge. Laßt die Vollkom-
menheit fahren, wollt ihr weiterkommen, zu den Dingen, zu der Wirklichkeit,
wie es sich für Männer schickt, sonst bleibt ihr sitzen, mit nutzlosen Stilübungen
beschäftigt.1

A possible argument here for the validity of a linear model is provided by the often
called intrinsic property of vortices to separate different regimes. As such, the statistics
of meandering might be explainable by a linear reaction of ordered nature to random
forcing by the free stream. Mathematically, the driving random force is associated with
the advective nonlinearity f ∶= ⟨∇uu⟩−∇uu (∇u is the covariant derivative; Synge & Schild,
1978). This idea of turbulence as a driven linear system has been developed by Landahl
(1967; 1975; 1989) and is frequently used in the mathematical theory of the Navier–Stokes
equations (e.g. Sohr, 2001). Recent popularity is mainly due to mean-flow and resolvent
analysis (McKeon, 2017; Jiménez, 2018, among many others).

We provided some evidence here that this idea and a linear model indeed holds (at
least in some respects) for vortex meandering. To be precise, it would seem to be able
to elucidate some important aspects of the dynamics which are related to amplitudes and
energy, while it seems to fail for the question of ’frequency selection’ (if it exists).

So far, the validity of linearity has been approved (exclusively) by its invariance with
respect to scalar multiplication (i.e. finite vs infinitesimal perturbations). This is only one
aspect of a linear transformation, and not necessarily the more relevant. By definition, an
operator A ∶X → Y is linear if and only if

A(α1x1 + α2x2) = α1Ax1 + α2Ax2

for all x1, x2 ∈ X and scalars α1, α2 (Kato, 1980, p. 16). Perhaps, by carefully designing
an experiment, the superposition principal could indicate a way to corroborate (or reject)
linearity of vortex meandering.

1 You do not try to deal with the reality that surrounds us, you set up a world that can be managed;
this world may be perfect, but it’s a lie. Let perfection go, if you want to get ahead, to things, to the reality
that is appropriate for men, otherwise you will remain seated, occupied with useless style exercises.
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Chapter 7. Some final thoughts

In any case, the fact that we systematically observe structurally similar responses (viz.
the dipole pattern) in experiment and by various linear approaches is not conclusive. In
the words of Schrödinger (1992, p. 47) –

The evidence that two features, similar in appearance, are based on the same
principle, is always precarious as long as the principle itself is unknown.

Unlike the energy balance and amplitude growth, where reasonable agreement between
theory and experiment has been obtained, the ’frequency selection’ would not seem to be
governed by a linear mechanism. The here held point of view is best illustrated by quoting
A. Einstein in a conversation with W. Heisenberg (Heisenberg, 1969, p. 80) –

Erst die Theorie entscheidet darüber, was man beobachten kann.2

In the case of vortex meandering, this causality is observed in at least two respects. First,
the general turbulence theory assumes a ’transition problem’, where the laminar state
passes over into a gradually more complex turbulent state. We suggest here that vortex
dynamics does not follow the ’route to turbulence’, but is atypical in the sense that it
progressively increases its orderliness, while the dynamics is not of a simple diffusion kind.

The second aspect where the theory seems to dictate expectations in experiments which
have not been satisfied yet, is the ongoing seek for coherence and ’the meandering fre-
quency’. It appears that the idea of coherence originated in the work of Bandyopadhyay
et al. (1991) and is historically correlated with the emphasis on linear dynamics in general
and particularly with considerable progress made in the understanding of linear stability
and transient growth. As such, it seems that the expectation that there is one meandering
frequency is largely induced by the contemporary theory. This is not far from the quotation
of A. Huxley above.

2It is the theory which decides what we can observe.
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8 | Conclusion

Zwischen dem Ähnlichsten gerade lügt der Schein
am schönsten; denn die kleinste Kluft ist am
schwersten zu überbrücken.

— F. Nietzsche: Also sprach Zarathustra

Vortex meandering is the principal manifestation of unsteadiness affecting experiments
of vortex-dominated fluid flow. Despite recurrent observation of the phenomenon for trail-
ing vortices since the 1970s, the governing physics and mechanisms continue to escape a
through understanding as of this writing. The objective of the present work was formulated
in the Introduction by the question – Why do vortices meander?

Before attempting an explanation of the origins of the phenomenon, we must define
what vortex meandering consists of. Despite the multitude of studies, clear cut definitions
are rare and even fundamental notions are often employed without proper introduction.
We propose an elementary meandering definition, viz. the displacement of the vortex as a
whole, which turns out to be not sufficiently sharp for practical purposes. Restricting to
trailing vortices, we then isolated three fundamental characteristics which are generically
and inevitably associated with meandering. Namely,(i) downstream amplitude growth(ii) apparent coherent–stochastic duality and(iii) progressive concentration and amplification of energy in the vortex core.

Before attempting explanations of these three main features of trailing-vortex mean-
dering, we discussed the previously proposed explanation approaches. To a large extent,
they fall into either one of the two categories called ’extrinsic’ or ’intrinsic’ mechanisms.
That is, they seek to explain the phenomenon as either completely externally induced (e.g.
by the surrounding turbulence) or as purely internally caused (e.g. as the consequence
of an instability). Both restrictions seem inappropriate and rather meandering combines
both aspects in an intricate manner. We propose to model meandering as a problem of
generalized receptivity.

As regards the downstream amplitude growth, we have considerable experimental evid-
ence for σ(t) ∼ u

√
tΓ−1 (t = zU−1

∞ ) to hold universally. This finding has several important
implications. First, the meandering amplitude σ depends linearly on the turbulence in-
tensity u, thus suggesting a linear excitation mechanism of the vortex by the free stream.
Second, meandering is inversely and nonlinearly proportional to the vortex strength Γ,
which hints at a combined intrinsic-extrinsic receptivity dynamics – a conflict between ex-
ternal excitation and internal resistance. This excitation-resistance duality together with
the characteristic time dependence ∼ √

t of the vortex-centre standard deviation σ(t) is
strongly reminiscent of a Brownian motion of the vortex as a whole. This is resumed in the
metaphor (in the sense of D. Bohm) – a vortex is a particle and meandering is a Brownian
motion.
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Chapter 8. Conclusion

The apparent coexistence of stochastic and coherent, ordered dynamics is probably the
most puzzling and woolly aspect of vortex meandering. In essence, the broadband con-
tinuous spectral signature is commonly taken as evidence that the dynamics is stochastic.
At the same time, meandering is usually associated only with the low-frequency range and
visualizations suggest a rather organized nature. The idea of coherence is so profound
that several previous studies attempted to identify the meandering frequency. The point
we want to make in the present work is, that vortex meandering is the manifestation of a
’return-to-order’ principle rather than a classical ’transition-to-turbulence’ problem. This
has important implications for modelling and breaks with previously and commonly hold
perceptions. We suggest a formulation as a generalized receptivity. Increasing orderliness
is quantified by appeal to nonlinear time series and information entropy analysis (for the
first time to the best of our knowledge). This analysis strongly shows that meandering is
not stochastic, while it is not associated with a distinct frequency either. The progressive
trend towards orderliness is reflected in the gradually decreasing phase volume which ac-
commodates the dynamics, decreasing entropy and the characteristic recurrence structure.
A provocative metaphor resuming the findings would be: a vortex is a ’living’ organism.

The concentration and amplification of kinetic energy in the vortex core is a very
unusual behaviour as compared to other open shear flows. In some sense, it is just a
complementary perspective of the inherent ordering nature of vortices previously discussed.
The progressive accumulation of fluctuation energy inside the vortex unlike global decay
in wing wakes is just one example of the intrinsic tendency of vortices to separate different
regimes inside from outside. Another such characteristic of first importance for meandering
being the closeness with respect to mass transport. This general distinction suggests that
the nonlinear advection in the Navier–Stokes equations is spatially associated with the free-
stream turbulence, while the vortex-meandering dynamics are essentially linear. The very
nature of vortex meandering suggests that the free-stream and core dynamics are indeed
coupled by a linear transfer operator. This is the dynamic formulation of the problem of
generalized receptivity, which we solve formally by appeal to the resolvent.

The essential outcome of this study is that linear receptivity of vortices to free-stream
disturbances is intimately linked to the (inviscid) continuous spectrum. The thus identified
three protagonists of vortex meandering are (i) the mean flow (inexhaustible energy reser-
voir), (ii) the (dipole-like) core perturbation (daughter) and (iii) filament-like periphery
perturbations with non-zero L2−projection onto the Reynolds stresses (mother). This in-
terplay is precisely the mother–daughter mechanism proposed by Boberg & Brosa (1988).
It further has crucial parallels with the De-Broglie–Bohm interpretation of quantum mech-
anics.

Complementary POD analysis of the experimental data confirms the theoretically pre-
dicted (dipole-like) response structure. More importantly, the perturbation energy ampli-
fication at the expense of the mean flow is entirely consistent with the suggested model.
We would like to emphasize that the proposed model of an external low-energy information
field (mother or forcing) remotely controlling the high-energy transfer between the mean
and the core perturbations breaks with the commonly held idea of energy transfer between
the free-stream and vortex-core perturbations directly.

Therefore, this study suggests – while the amplitude and core-energy amplification seem
indeed to be governed by linear mechanisms to some extent (at least they seem to hint at
the pertinent mechanisms), the ’frequency selection’ is nonlinear. It appears that the scales
are imposed by the vortex (inherently nonlinear), while the amplitudes are significantly
determined by the surrounding flow, obeying an essentially linear dynamics.
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A | Details of the experiments

A.1 Presentation of the experimental configuration

The experimental results are computed from several databases gathered in the F2 wind
tunnel of ONERA at Fauga-Mauzac between 1998 and 2017. To a large extent, these
experiments are presented in Jacquin et al. (2001), Fabre (2002) and Jacquin et al. (2007).
The measurement techniques employed in all these studies were hot-wire anemometry
(HWA) and laser-Doppler velocimetry (LDV) (for technical details see e.g. Comte-Bellot,
1976; Buchhave et al., 1979). The setup in these experiments is illustrated in Jacquin et al.
(2001, fig. 2 on p. 28).

Figure A.1: Experimental setup (Jacquin et al., 2007).

The majority of the experimental results is computed for an unpublished measurement
campaign from 2017, where high-speed stereoscopic Particle Image Velocimetry (PIV) has
been used (cf. Adrian, 1991; Westerweel et al., 2013, for technical details). The con-
figuration is the same as in the LDV measurements of Jacquin et al. (2007), for which
the setup and essential geometrical dimensions of the model are shown in fig. A.1. In the
present study, only the experimental runs without the additional jets shown in fig. A.1 are
considered.
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Appendix A. Details of the experiments

Geometry of the facility and model. The test section of the wind tunnel has a length
of L = 5 m and rectangular cross section of width B = 1.4 m and height H = 1.8 m (diagonal√
B2 +H2 = 2.3 m) (cf. fig. 2.1). A wing with NACA 0012 profile is positioned in the

test-section centre, 0.75 m downstream of the inlet, at an angle of incidence α = 9○. The
chord length c = 0.125 m and wing span b = 0.5 m yield the aspect ratio bc−1 = 4. PIV
measurements are taken in cross planes at zc−1 ∈ {2,4,12,20,26}. In each measurement
plane 4100 snapshots of the velocity field are registered at an image sampling rate of
fs = 3 kHz. It follows a measurement duration of approximately 1.4 s (≈ 220 tc).

Fluid parameters. The free-stream velocity is U∞ = 20 ms−1, which yields the chord-
based Reynolds number Rc ≈ 2 × 105. Jacquin et al. (2007, p. 4) compute the circulation
based Reynolds number RΓ ≈ 9 × 103. The turbulence intensity in the F2 wind tunnel is
uU−1

∞ < 0.5 % (Jacquin et al., 2001, p. 14; Jacquin et al., 2007, p. 5).

Some scale estimates. If we suppose that the meandering dynamics is essentially as-
sociated with frequencies approximately below Sc ∶= fcU−1

∞ ≲ 10 (cf. conj. 2.6, figs. 2.8–2.9
and the discussion there), the resolution of the smallest characteristic meandering period
T would be

T

Ts
= T fs = 1

10
c

U∞
fs ≈ 2.

In other words, the smallest expected time scale of vortex meandering is sampled twice
(or inversely, fs = 2T−1), which is the theoretical limit according to the Nyquist–Shannon
sampling theorem (Shannon, 1949).

It is convenient to define the integral scales of the whole dynamics by

l = c = 0.125 m U = U∞ = 20 ms−1.

Using these estimates the production (equal to the dissipation; Tennekes & Lumley, 1973,
p. 20) is of the order of

ε ∼ U3l−1 = 6.4 × 104 m2s−3

and the viscosity of air is given in Spurk (2006, tab. D.2 on p. 555) for 290 K and 1 bar
atmospheric pressure as (this value is in very good agreement with the Reynolds number)

ν ≈ 1.5 × 10−5 m2s−1.

Thereof, the Kolmogorov scales are estimated to be (Tennekes & Lumley, 1973, p. 20)

η = (ν3ε−1)1/4 ∼ 1.3 × 10−5 m = 13 µm
τ = (νε−1)1/2 ∼ 1.5 × 10−5 s = 0.015 ms ⇔ τ−1 ∼ 70 kHz
v = (νε)1/4 ∼ 1 ms−1.

A.2 Symbols of the experiments in figs. 2.2, 2.4 and 3.1
The symbols in figs. 2.2, 2.4 and 3.1 correspond to the following experiments:
Chigier & Corsiglia (1971) = ÷×;
Chigier & Corsiglia (1972) = ∎;
Baker et al. (1974) = ●;
Chow et al., 1997 =▲;
Devenport et al. (1996) =▼;
Jacquin et al. (2001) = ⧫;
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A.3. Details of the experiments in fig. 4.3

Beninati & Marshall (2005) = ;
Jacquin et al. (2007) =▲;
Bailey & Tavoularis (2008) = ;
Pentelow (2014) = ;
Iungo (2017) = .

A.3 Details of the experiments in fig. 4.3
The symbols in fig. 4.3 correspond to the experiments listed in tab. A.1, together with
the turbulence intensity and circulation. Additional experiments are added to tab. A.1
for which not all parameters were available. For the estimated values, those experiments
collapse with the scaling law, too.

Table A.1: Experimental parameters for meandering-amplitude scaling.

uU−1
∞ Γ0(cU∞)−1 α

Devenport et al. (1996) ◻ 10−3 (p. 70) 6 × 10−2 (p. 81) 5○

◻ 10−3 2 × 10−2 2.5○

◻ 10−3 3 × 10−2 3.75○

◻ 10−3 12 × 10−2 7.5○

Jacquin et al. (2007, PIV) × 10−3 5.5 × 10−2 9○

Bailey & Tavoularis (2008) ○ 2 × 10−3 (p. 284) 18 × 10−2 (fig. 21a) 5○

○ 15 × 10−3 (estimated) 12 × 10−2 (fig. 21a) 5○

○ 25 × 10−3 (p. 293) 8 × 10−2 (estimated) 5○

Iungo et al. (2009) △ 7.5 × 10−3 (p. 437) 9.5 × 10−2 (tab. 1) 8○

Van Jaarsveld et al. (2011) ▽ 5 × 10−3 (p. 217) 37.5 × 10−2 (p. 221) –
Del Pino et al. (2011) ◇ 20 × 10−3 (p. 2) 10 × 10−2 (estimated) 4 . . .12○

Deem et al. (2013) + 7 × 10−3 (p. 226) 6 × 10−2 (estimated) 5○

A.4 Details of the experiments in fig. 5.7
Power spectral densities are computed from the:

axial velocity (Devenport et al., 1996; Jacquin et al., 2001);
turbulent kinetic energy (Beninati & Marshall, 2005);
transversal fluctuation velocity (Bailey & Tavoularis, 2008);
vortex centreline (Bailey et al., 2018).
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On the statistics of vortex meandering as a Brownian motion

Tobias Bölle∗

DAAA, ONERA–The French Aerospace Lab
8 Rue des Vertugadins, 92190 Meudon, France

(Dated: 23rd February 2021)

Vortex meandering denotes the apparently random lateral displacement of the vortex core as a
whole, as such having an inherently Lagrangian notion. We derive an equation for the meandering
amplitude σ(t) analogous to Brownian motion which explains the experimental findings that σ(t) ∼√
t. Adopting a random-walk model, we argue that the commonly observed Gaussian statistics

might be an artefact of the central-limit theorem.

INTRODUCTION

Probably all vortices are affected by the apparently
random lateral displacement of the vortex core as a
whole, called meandering. This motion becomes particu-
larly visible and problematic in large-scale configurations
such as trailing vortices or tornadoes [1–3]. Despite its
universal observation in experiments since the 70s, the
governing physics remain poorly understood [4]. Never-
theless, we have considerable experimental evidence that
the meandering amplitude σ(t) (defined below) always
grows like σ(t) ∼

√
t downstream of the vortex generator

[5, 6]. This characteristic is reminiscent of Brownian mo-
tion, which is an established fact for suspended and fluid
particles [7, pp. 545, 580]. The identification of vortex
meandering with a Brownian motion implies that vortex
cores as a whole constitute (generalized) fluid particles.

In a first step, we derive a Langevin equation for the
meandering amplitude which explains the experimental
observations. Secondly, by appeal to a random-walk
model, we argue that the universally observed Gaussian
statistics may be an artefact of the central-limit theorem.

The meandering motion manifests in the (x, y)-planes
orthogonal to the mean advection D along z, see fig. 1a.
It will thus be convenient to assume an (x1, x2)-frame
of reference following the mean displacement D. In this
laboratory frame we identify the vortex core with a defin-
ite two-dimensional fluid volume (a disc say) whose posi-
tion depends on time. Suppose the dynamics in the core
is essentially due to meandering, then the vortex-centre
time seriesX(t,a) (with respect to the laboratory frame)
is equivalent to the motion of the vortex as a whole. The
essential point here is that the core is identified with a
material fluid volume which evolves along the trajectory
t 7→ X(t,a) ∈ R2. This is a Lagrangian point of view
where we identify the vortex core with a fluid particle
labelled a.

We shall assume that X(t,a) is a (discrete or continu-
ous) stochastic process (t ∈ {Z,R}), denoting it with a
capital letter, having probability density µX and x(s)(t)
is the realization of the s-th experiment. The average
of an observable φ(t,X(t)) is defined by 〈φ(t,X(t))〉 :=∫
R2 dµtX(x)φ(t,x) [8, pp. 19–20] [9]. The standard devi-

ation of X(t,a) is called meandering amplitude [1].
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Figure 1. (a) Observation of a meandering realization
x(t,a) + Dt in the earth-fixed frame (x, y, z) and laboratory
frame (x1, x2) moving with D. (b) Random-walk realization
rt = r(t,a) in the meandering frame (r1, r2) corresponding to
vector-sum meandering xt = x(t,a) in the laboratory frame.

The perception of vortex meandering as the Lag-
rangian dynamics of a fluid particle suggests a modified
interpretation of the experiment. The conventional point
of view is that we conduct one experiment, taking meas-
urements in the n streamwise planes shown in fig. 1a,
each during a time m. Consequently, the result consists
of n vortex-centre sequences, each of the length m. The
experimental outcome of one such sequence in one such
plane is shown in fig. 3.

The Lagrangian point of view, however, suggests to
define the experiment as follows. At some initial time
we tag the vortex centre a and follow its evolution
in time. Keeping this initial condition fixed while re-
peating this same random experiment m times yields
an ensemble of m different meandering trajectories (see
fig. 1a). Assuming the same n measurement planes as be-
fore, (x(s)(t1),x(s)(t2), . . . ,x(s)(tn)) ∈ R2×n is then the
outcome of the s-th experiment (s = 1, . . . ,m). This
amounts to the ergodic hypothesis where we relate the
measurement durationm with the number of realizations.
In this view now, every point in fig. 3 corresponds to the
detection of one out of m identically prepared random
experiments for fixed t.

BROWNIAN MEANDERING

Assume the vortex centre is material. The Lagrangian
velocity reads dX(t,a)/dt|a = ∂tX(t,a) = v(t,a) which
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equals the Eulerian velocity u(t,X(t,a)) on the instant-
aneous centreline [7, p. 529]. Since by definition the
vortex centre corresponds to the point of zero cross-flow
velocity in the meandering frame [2], u(t,X(t,a)) is the
velocity only due to the displacement of X(t,a). Meas-
urement in the s-th experiment amounts to the position–
velocity realization pair {x(s)(t),u(s)(t,x(t))} at time t.
Observing the realization pair at a certain position and
with a certain velocity is determined by the probability
distribution µX .

We note that [10]

(X(t,a),
du(t,X(t,a))

dt

∣∣∣∣
a

) = (X(t,a),
d2X(t,a)

dt2

∣∣∣∣
a

) =

=
d2

dt2
||X(t,a)||2

2

∣∣∣∣
a

−
∣∣∣∣
∣∣∣∣
dX(t,a)

dt

∣∣∣∣
a

∣∣∣∣
∣∣∣∣
2

. (1)

By the above definition of meandering, a measurement
of the Eulerian velocity field taken in plane t corres-
ponds to the superposition of the vortex-induced velocity
U(x−X(t,a)) centred around the instantaneous centre
position X(t,a) and a fluctuation field u(t,x). Precisely
in the vortex centre u(t,X(t,a)) is identical to the Lag-
rangian velocity of vortex meandering and U(0) = 0 for
all t, by definition. In general, the dynamics in the in-
stantaneous vortex centre is governed by [7, p. 148]

∂u

∂t
+ (u,∇)u+ (U ,∇)u = −∇Uu−∇p+ ν∇2u (2)

where for all t all terms are evaluated at X(t,a). By
definition, in the vortex centre U = 0 and the third term
on the left of (2) vanishes. We then identify ∂/∂t+(u,∇)
in (2) with d/dt for fixed a in (1) to obtain

du(t,X(t))

dt
= −∇U |X(t)u(t,X(t)) + f(t,X(t)) (3)

where we suppress dependence on a for simplicity. Equa-
tion (3) has the form of a Langevin equation when we
agree to assemble the pressure gradient and viscous dif-
fusion in the (stochastic) forcing f := −∇p+ν∇2u (ν−1

is the Reynolds number). While these terms might be sig-
nificant for perturbation dynamics inside the core which
do not displace the vortex, we expect them to have a
negligible effect on the integral motion of the vortex as a
whole. Considering meandering as an integral dynamics,
the pressure gradient drops out in the energy balance of
an incompressible fluid, while it depends crucially on the
velocity gradient [11]. The relative unimportance of the
pressure gradient for fluctuation-energy evolution is also
stated in Ref. [7, pp. 382–383]. We therefore assume that
X(t) and f(t) are stochastically independent such that
〈(X,f)〉 = (〈X〉, 〈f〉) = 0 [1].

The velocity gradient in the instantaneous vortex
centre is the skew-adjoint matrix Ω. Graphical evalu-
ation shows that the corresponding rigid-body rotation is

a good approximation up to approximately 0.5 core radii
which is the order of typical meandering amplitudes [1].

Due to symmetry of the probability distribution
(fig. 4), functions of the random process X(t,a) are eval-
uated in the mean centre to leading order [12] . Combin-
ing (1) with (3) and averaging then yields [13]

d2

dt2
〈||X(t)||2〉

2
+ Ω

d

dt

〈||X(t)||2〉
2

= 〈||u(t, 〈X〉)||2〉. (4)

Equation (4) is an inhomogeneous Cauchy problem for
the ’variance velocity’ with skew-adjoint generator Ω un-
like (3) where ∇U |X(t) is non self-adjoint. The spectral
theorem guarantees that Ω is unitary diagonalisable with
imaginary eigenvalues ±iΩ0. Transformation to the prin-
cipal axes uncouples the problem but leaves the norm
invariant (mere rotation).

For molecular Brownian motion in thermal equilibrium
the equipartition theorem states that the kinetic energy
of the particle can be expressed in terms of the energy of
the surrounding fluid. By analogy, we pose

〈||u(t, 〈X〉)||2〉 ∼ u2(t) (5)

where u2(t) is the characteristic turbulent kinetic energy
of the free stream [14, p. 63]. If meandering was essen-
tially an inactive buffeting of the core by the surrounding
turbulence [1], u2(t) should constitute an upper bound for
the centreline kinetic energy in some sense [2]. Bounded-
ness should not be understood literally but rather em-
phasizes the experimental observation that meandering
is driven by a balance between external excitation and
internal resistance. The stronger the free-stream tur-
bulence (i.e. the larger u(t)), the more the vortex will
meander.

For simplicity, we assume isotropy in the principal-axes
system and write σ2(t) := 〈X2(t)〉 for the variance. Com-
bining (4)–(5) yields (C = const.)

d2

dt2
σ2(t)

2
+ Ω0

d

dt

σ2(t)

2
= Cu2(t). (6)

Equation (6) is of Langevin type with time-dependent
right-hand side describing Brownian-motion-like
meandering-amplitude evolution.
Comparison with experiment. The generator Ω in

(4) physically represents an ’equivalent friction’ for the
Brownian motion of a vortex particle. In the case of a
vortex, diffusivity is proportional to the mean angular
velocity on the mean centreline. This is a remarkable
difference to actual molecular Brownian motion in that
the vortex imposes its own intrinsic ’equivalent friction’
to resist displacement.

The general solution of (6) can be written as the sum
of the homogeneous and particular solution. The former
governs the transient adjustment to the initial condition.
We shall concentrate only on the particular solution

σ(t) ∼
√

1

Ω0

∫ t

0

dτ u2(τ)
u6=u(τ)∼ u

√
t

Ω0
. (7)
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Figure 2 shows a comparison of the scaling law (7) with a
compilation of the data reported in the literature. We ob-
serve good principal agreement and trends, particularly
for later times.

10−2

10−1

100

101

102

10−1 100 101 102 103 104

σ
(t
)√

Ω
0

u

t

0.3 t1/2

[1]

[2]

[15]

[5]

[6]

Figure 2. Temporal evolution of the normalised vortex-centre
standard deviation σ(t) according to (7) (solid line) and com-
pilation of experiments (symbols).

Comparing (7) to (8) suggests that the vortex imposes
the Lagrangian time scale TL ∼ Ω−10 , provided that (5)
holds, viz. v ∼ u. We can then estimate a typical exper-
imental measurement duration to be of the order of 102

Lagrangian integral scales which justifies application of
the central-limit theorem above [16]

Eventually, we shall show that (7) is compatible with
the previously proposed meandering-amplitude models.
The classical mixing-length argument identifies the char-
acteristic turbulence scales with a net effect of enhanced
diffusivity u2TL =: νt where νt is the eddy viscosity [14,
p. 229]. Replacing in (7) yields σ(t) ∼ √νtt which
is analogous to viscous vortex-core diffusion. Assum-
ing meandering to be a passive buffeting of the vortex
core by the surrounding turbulence of statistical strength
νt this relation has been proposed in Ref. [4]. Equa-
tion (4) is also consistent with the meandering-amplitude
guess σl ∼ ul(∂ul/∂r)−1, l = 1, 2 (evaluated on the
mean centreline) employed in the correction algorithm
of Ref. [1]. Essentially the same scaling law as (7) has
been suggested recently in Ref. [6] upon merely repla-
cing the Lagrangian integral scale by the vortex-rotation
period.

CENTRAL-LIMIT THEOREM

Besides the laboratory frame, we shall use the mean-
dering frame which is attached to the vortex-core motion
(the small grey coordinate systems shown in fig. 1b). Let
R(t,a) denote the vortex-centre motion in the meander-
ing frame, which is assumed to be a discrete random pro-

cess (t ∈ Z). We shall assume R(t,a) being stochastic-
ally independent and identically distributed [17]. Thus,
the probability density µR of R(t,a) is invariant in time
which implies that the standard deviation σR = const.
An observer in the meandering frame sees meandering as
a sequence of random steps. That is, being in r(t,a) at
some time t the vortex will effectuate a step in some direc-
tion r(t+δt,a) away from the present position according
to the (local) probability distribution µR (fig. 1b). This
is the problem of the random walk [18].

The laboratory-fixed observer as defined in the Intro-
duction follows the mean motion of the vortex centre.
In general, this means advection in the streamwise dir-
ection, downwash and drift towards the symmetry plane
of the trailing-vortex system. Let us assume that the
combined translation D represents a uniform rectilin-
ear motion. The laboratory frame of reference is re-
lated to the earth fixed frame by Galilean transforma-
tion and, hence, is an inertial frame of reference (fig. 1a).
A laboratory-fixed observer recognises a random pro-
cess being the vector sum of the meandering observer
X(t,a) :=

∑t
q=1R(q,a) + a ([7, p. 540], [14, pp. 224–

225]). We suppose that 〈R(t,a)〉 = 0 for all t, meaning
that Lagrangian meandering has no preferred direction,
which yields 〈X(t,a)〉 = a.

The central-limit theorem states that the limiting
probability distribution of X(t,a) approaches a normal
distribution N (0,σX(t)), where σX(t) = σRt

1/2, as
t → ∞ [8, pp. 30–31]. We notice from this result that
unlike R(t,a) the statistics of X(t,a) are not station-
ary and that the actually measured standard deviation
σX(t) is proportional to σR. In the limit of long exper-
imental runs (in terms of the Lagrangian integral scale;
[14, p. 46]), the laboratory-fixed observer should observe
meandering being normally distributed. This is indeed
the case in experiments as shown in figs. 3–4.

We modelled meandering as a discrete random process
with stochastically independent elements. The central-
limit theorem also holds for a continuous random process
if (t ∈ R)� TL where TL is the Lagrangian integral scale
[19]. We estimate validity of this condition below.

It is in fact the probability distribution of the ”true”
Lagrangian meandering µR which determines the next
step in a random walk. While µX is sufficient in practice
(e.g. for correction of mean velocity profiles [1]), it does
not illuminate the governing dynamics which is represen-
ted by µR [see also 14, p. 216].

The vortex trajectory is the integral curve X(t,a) =∫ t
0

dτ v(τ,a) where v(t,a) denotes the Lagrangian velo-
city (see also below). The variance of X(t,a) for station-
ary velocity has been derived by Taylor:

〈(X l)2(t)〉 = 2〈(vl)2〉t
∫ t

0

dτ
t− τ
t

ρ(τ) ≈ 2(vl)2T lLt, (8)

where ρ(τ) is the correlation coefficient [14, p. 225] and
l = 1, 2 is the component index. The difficulty with (8)
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Figure 3. Experimentally detected cloud of realizations of
x(t,a) for some fixed t > 0 and the associated marginal
probability densities obeying normal distributions N (0, σXl)
(t fixed). The principal axes v1,v2 spanning the standard-
deviation ellipse (meandering amplitude) [15].
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Figure 4. Diffusion of the marginal probability density
µtX1(x1) ∼ N (0, σ1

R1t
1/2) for the five measurement stations

in the experiment [15].

is that it is not evident how the Lagrangian quantities
(vl)2 := 〈(vl)2〉 and T lL are related to Eulerian statistics
in general. We look at this below.
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The present work investigates the excitation process by which freestream disturbances
are transformed into vortex-core perturbations. This problem of receptivity is modelled
in terms of the resolvent in frequency space as the linear response to forcing. This
formulation of receptivity suggests that nonnormality of the resolvent is necessary to
allow freestream disturbances to excite the vortex core. Considering a local (in frequency)
measure of nonnormality, we show that vortices are frequency-selectively nonnormal
on a narrow frequency band of retrograde perturbations while the rest of the range
is governed by an effectively normal operator, thus not contributing to receptivity.
Canonical decomposition of the resolvent reveals that vortices are most susceptible to
coiled filaments localised about the critical layer that induce bending waves on the
core. Considering Lamb-Oseen, Batchelor and Moore-Saffman vortices as reference-flow
models, we find freestream receptivity to be essentially generic and independent of the
axial wavelength on the considered range. A stochastic interpretation of the results could
be a model for trailing-vortex meandering.

1. Introduction

Trailing-vortex experiments systematically display unsteady dynamics manifesting as
the lateral displacement of the vortex, called meandering. Despite having broadband
spectral signature, kinetic energy is typically essentially concentrated in a low-frequency
bending wave (Devenport et al. 1996; Jacquin et al. 2001; Bailey et al. 2018). Similar
dynamics is observed for related configurations such as inlet vortices or tornadoes (Wang
& Gursul 2012; Karami et al. 2019) as well as in the interaction of canonical vortices
with turbulence (Melander & Hussain 1993; Marshall & Beninati 2005). For this reason,
we only consider helical perturbations with ∣m∣ = 1 (m is the azimuthal wavenumber).

Discussion of the origin of vortex unsteadiness divides researchers into two camps, who
attribute it either to intrinsic or extrinsic mechanisms. The former approach assumes
that dynamics is governed in essence by the vortex in isolation, e.g. instability or self-
induction (Fabre & Jacquin 2004; Ting et al. 2007). We assume the second approach,
assessing vortex unsteadiness as a consequence of external disturbances (e.g. residual
turbulence in wind tunnels or the atmosphere or residual vortex sheets from the roll-
up of the vortex itself). The excitation of vortex-core perturbations by the surrounding
freestream is a (generalised) receptivity problem.

There is no reason to believe that receptivity in general should be a linear mechanism
(Saric et al. 2002) and nonlinear studies have been pursued. Nevertheless, trailing-vortex
experiments provide evidence that variation of the freestream-turbulence intensity only
affects the displacement amplitude linearly (Van Jaarsveld et al. 2011, p. 222) while

† Email address for correspondence: tobias.bolle@onera.fr
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the dominant meandering frequency is universal irrespective of the turbulence intensity
(Bailey et al. 2018, fig. 7). These findings altogether suggest that vortices tend to
spatially separate dynamical regimes which interact linearly (at least for the question
of meandering). That is, on the one hand freestream dynamics is nonlinear and complex
whereas on the other hand the vortex response is governed by core dynamics of organised
nature (Bandyopadhyay et al. 1991; Devenport et al. 1996; Jacquin et al. 2001). This
distinction is generic and independent of the (structural) details of freestream turbulence
(at least sufficiently far from the wing, about five chord lengths, say). For this reason,
we neglect all internal structure and interactions of the advective nonlinearity (∼ ∇uu,
u being the perturbation velocity about the reference state U) but simply consider its
compiled action in terms of the forcing field f = f(u) (Kato & Fujita 1962, p. 244;
Landahl 1967, p. 456; Sharma et al. 2016, p. 6). Identification of the freestream with the
given forcing field f(t), the exact evolution equation for perturbations u(t) (cf. Joseph
1976, p. 8) takes on the form of an inhomogeneous linear abstract Cauchy problem. The
general solution in time domain is the sum of the homogeneous uh(t) and a particular
solution up(t). By Duhamel’s principle,

u(t) = uh(t) +up(t) = T(t)u(0) + ∫ t

0
dτ T(t − τ)f(τ), t ≥ 0, (1.1)

where t ↦ T(t) is the propagator (semigroup) generated by the linearised Navier-Stokes
operator L (Kato 1980, p. 488, Engel & Nagel 2000, p. 436; see also Kato & Fujita 1962,
pp. 244–245 and Sohr 2001, p. 8).

Alternatively, the solution in frequency space is obtained by Laplace transform of (1.1),

û(s) = R(s)(u(0) + f̂(s)) for admissible frequency s ∈ C. (1.2)

The family of transfer operators s ↦ R(s) = ∫ ∞0 dt exp(−st)T(t) is called the resolvent
(Kato 1980, p. 484, Engel & Nagel 2000, p. 58). Equation 1.2 shows that the resolvent
determines the homogeneous and particular solution in frequency space. The steady-state
response of an asymptotically stable system (the case here) corresponds to the particular
solution in (1.1) and is characterised in frequency space by taking the Fourier transform.
Roughly speaking, setting s = iω, ω ∈ R in (1.2) and u(0) = 0 we study response to
harmonic forcing.

So far, most analysis of linear vortex dynamics concentrated on the representation
in time domain. The homogeneous solution of (1.1) governs transient dynamics for all
t ≥ 0 while asymptotic stability (as t → ∞) is determined by the spectrum of L (Joseph
1976, p. 9; Arnol’d 1992, p. 212). Linear stability of Lamb-Oseen, Batchelor and Moore-
Saffman vortices has been studied by Fabre et al. (2006), Fabre & Jacquin (2004) and
Feys & Maslowe (2014) among others. From these studies, one concludes that vortices are
asymptotically stable for typical parameters of aeronautical applications. More import-
antly, the spectrum is the union of a discrete spectrum of isolated eigenvalues (governing
asymptotic stability) and two continuous spectra due to spatial unboundedness and an
inviscid singularity, respectively (strictly speaking, continuity of the latter is true only
in the inviscid limit; Heaton & Peake 2007). It is in fact this latter inviscid continuous
spectrum which seems to be of primary importance for transient dynamics (Heaton &
Peake 2007, p. 294, Mao & Sherwin 2012, p. 42).

As a matter of fact, despite asymptotic stability, transient energy growth is possible if
the linear operator L is nonnormal (i.e. it does not commute with its adjoint) (Farrell &
Ioannou 1996; Trefethen & Embree 2005, § 14). Canonical decomposition (as in § 3.2) of
the propagator T(t) for fixed t > 0 identifies those pairs of optimal initial and associated
final-time perturbations which maximise energy growth for the given t. The possibility of
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transient growth has been shown numerically for Lamb-Oseen and Batchelor vortices by
Antkowiak & Brancher (2004), Pradeep & Hussain (2006), Heaton & Peake (2007) and
Mao & Sherwin (2012) among others. For helical perturbations with ∣m∣ = 1, the main
finding is the resonant excitation of core bending waves by remote filaments in the core
periphery (Antkowiak & Brancher 2004). This mechanism also applies for the Batchelor
vortex (Heaton & Peake 2007, p. 295).

Stochastic-forcing analysis in the time domain is concerned with the particular solution
of (1.1) assuming stationary dynamics, viz. considering the t → ∞ limit (Farrell &
Ioannou 1996). The probability distribution of f(t) is a priori unknown and the forcing
is usually assumed to be Gaussian spatio-temporal white noise (Farrell & Ioannou 1996;
Fontane et al. 2008; Towne et al. 2018). Stochastic-forcing analysis has been conducted
by Fontane et al. (2008) and Guo et al. (2011) for the Lamb-Oseen and Batchelor vortex,
respectively. These studies identify the same resonance prototype as in transient-growth
analyses to contribute most to stationary kinetic perturbation energy and covariance.

Fewer studies dealt with the solution in frequency space (1.2). Instead of analysing
the propagator, transient dynamics can be described from tracing out contours of the
resolvent norm, i.e. the pseudospectrum, in the complex plane (Trefethen & Embree 2005,
pp. 31, 135). To the best of our knowledge, pseudospectra have only been computed for
axisymmetric (m = 0) perturbations of the Batchelor vortex (Mao & Sherwin 2011). We
compute the pseudospectrum of the Lamb-Oseen vortex for m = 1 and show that it is
qualitatively identical to the results of Mao & Sherwin (2011) despite the important
parametric difference.

However, by appeal to the above motivated physical model of trailing-vortex dynamics,
the majority of our analysis concerns response to harmonic forcing (i.e. for s = iω, ω ∈ R
in (1.2) and u(0) = 0). As in transient-growth studies, canonical decomposition (§ 3.2)
of the resolvent R(iω) for fixed ω ∈ R yields pairs of spatial forcing and response
structures which are optimal in terms of energy amplification. Canonical decomposition
of the resolvent has been computed previously for Lamb-Oseen and Batchelor vortices
by Guo & Sun (2011) and Blanco-Rodŕıguez et al. (2017) for ∣m∣ ∈ {0,1,2}. However, no
thorough attempt has been made to relate these results to physics and linear dynamics
in general. Recently, Viola et al. (2016) analysed the resolvent of perturbation dynamics
about the non-parallel, convectively unstable Batchelor vortex in a global approach and
compared their results to linear stability analysis and nonlinear simulations of the Navier-
Stokes equations. Their work focused on mode selection (i.e. identification of dominant
azimuthal wavenumbers) and concludes applicability of the resolvent for this question.

The resolvent for harmonic forcing is a convenient model for linear receptivity to
sustained excitation by the freestream (cf. also McKeon & Sharma 2010, p. 342).
Assuming the forcing to be the compiled action of the (turbulent) freestream that
we have no further knowledge of, f(t) is naturally modelled as a random process. In
this case the response u(t) is also a stochastic process (T(t), R(s) are deterministic)
and U = const. is the mean state. It should be noted that U + u(t) is the Reynolds
decomposition where the perturbation may be finite (Towne et al. 2018, p. 836). This
setting is to be contrasted with traditional linear analysis where U is the base flow
(i.e. a fixed point of the Navier-Stokes equations; Arnol’d 1992, p. 210) and u(t) is an
infinitesimal deterministic process. Despite the motivation, the mathematical framework
we employ does not distinguish between deterministic or stochastic forcing, neither is
the restriction to freestream disturbances essential and f(t) could conceptually represent
e.g. control. Our analysis only addresses the operator properties of the (deterministic)
resolvent, specifically its nonnormality.

The notion of freestream receptivity crucially relies on remote excitation in the sense
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that forcing and response have spatially distinct support. Nonnormality of the resolvent
is a means to excite core perturbations by radially disjoint forcing structures (cf. also
Trefethen & Embree 2005, p. 201). We conclude that nonnormality is necessary for linear
freestream receptivity (conj. 1, § 2). Since nonnormality is the essential feature of linear
vortex dynamics in general, we expect our results to be of fundamental interest beyond
the particular question of freestream receptivity.

Against this backdrop, the main objective must be a thorough understanding and
quantification of the resolvent nonnormality. Various scalar measures have been proposed
(cf. Trefethen & Embree 2005, § 48) which, though, might significantly overestimate
effective nonnormality and hence be misleading for actual dynamics. Trefethen & Embree
(2005, p. 446) conclude that ‘nonnormality is too complex to be summarized in a single
number’. We make use of resolvent bounds to classify nonnormality of linear vortex
dynamics in frequency domain. While the governing operator is nonnormal, it will be
shown that the effective behaviour for vortices depends on the excitation frequency, we
call this selective nonnormality (conj. 2, §§ 3–4). First studying the linearised operator L
for a generic vortex in § 4.1, we deduce that nonnormality should be maximal for forcing
localised about the critical layer (radial location where the phase velocity equals advection
by the mean; Le Dizès 2004, p. 319). Assuming the (parallel) Lamb-Oseen vortex as a
reference state (base-flow model), we confirm this result numerically in §§ 4.2–4.4.

The second objective is the corroboration of these results under variation of the
reference flow and the axial wavenumber. For this purpose, we analyse the resolvent for
(parallel) Batchelor and Moore-Saffman vortices in § 5 which constitute approximations
to experimental mean flow (see § 2.2). This sequence of reference states serves two
purposes, namely to assess differences between dynamics about base and mean flow as
motivated above and to evaluate the impact of (weak) axial mean velocity in the vortex
core. We discuss the relation to previous linear studies throughout.

Lastly, results in frequency space are often easier related to experiments than time-
domain analysis. Still, idealising vortex meandering as a monochromatic wave, the
associated frequency in experiments corresponds to an infinity of wavenumber-frequency
pairs in theory by the Doppler relation. Nevertheless, by appeal to our results of selective
nonnormality, in § 6 we show how the actually contributing frequency range can be
significantly reduced.

2. Linear receptivity in the resolvent formalism

Let the fluid domain be the entire Euclidean space R3 with cylindrical coordinates
x = (r, θ, z) and corresponding velocities v = (vr, vθ, vz). The z coordinate is chosen to
coincide with the axis of mean rotation, r pointing radially outwards and θ being such
that {r, θ, z} yields a right-handed system. The fluid is assumed incompressible with
constant, homogeneous material properties.

All physical quantities are non-dimensionalised on the length scale r0 = 2
√
νt0, where

t0 > 0 determines the vortex age and is chosen such that r0 ∶= 1 without loss of generality,
and the azimuthal mean velocity at this radius (2πr0)−1Γ0 ∶= 1. It follows the circulation-
based Reynolds number RΓ ∶= Γ0/(2πν) = ν−1.

2.1. Trailing vortex dynamics as a generalised receptivity problem

The dynamics of trailing vortices in experiments is dominated by low-frequency dis-
placement waves (vortex meandering). In the intermediate wake (z ≤ 10b, b is the
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wingspan; Jacquin et al. 2001, p. 5) destabilising effects from consideration of the counter-
rotating pair are of second order (Crow ∼ b−2; Jacquin et al. 2001, p. 17) and the isolated
line vortex is asymptotically stable for parameters of typical aeronautic applications
(Fabre & Jacquin 2004, p. 259). Rather it appears that the observed dynamics is due to
temporally sustained excitation of the vortex by the surrounding freestream (as already
suggested by Baker et al. 1974, p. 331). This internalisation of external disturbances is
reminiscent of receptivity.

While strictly speaking the classical notion of receptivity applies to the transition
problem and the excitation of instability modes (Morkovin 1988, p. 76), it is used here
to describe the general reaction of a system to initial or temporally sustained external
disturbances (see also Fontane et al. 2008, p. 236). For these reasons, let us refer to the
problem of receptivity in the following generalised sense which is not restricted to laminar
reference states but straightforwardly extends to turbulent mean flows. (This generalised
perception of receptivity is also implicitly understood in McKeon & Sharma 2010, p. 342
and Towne et al. 2018, §5.1 among others.)

Definition 1. The excitation of general perturbations inside the vortex by external
disturbances is called (freestream) receptivity.

The essential aspect of receptivity according to def. 1 is perturbation internalisation
in the sense that external disturbances in the freestream are converted into internal
perturbations inside the vortex. For this excitation to be well-defined, we must partition
the fluid domain into a subset V identified with the interior of the vortex and its
complement R3/V, viz. the freestream.

Trailing-vortex experiments provide considerable evidence that rather rapidly (within
about two wing chords c at chord-based Reynolds number Rc ∶= U∞c/ν ∼ 105; Devenport
et al. 1996, p. 68) the flow develops a coherent vortex in the sense of a single concen-
tration of streamwise vorticity which is axisymmetric and parallel to leading order. For
definiteness, we define the system boundary as a concentric cylinder at the vortex-core
radius r1 = 1.12, corresponding to the location of the maximum azimuthal velocity of a
Gaussian vortex. Similar identification of the vortex core is used by Pradeep & Hussain
(2006, p. 266) and Takahashi et al. (2005, p. 6) for example. Thus, perturbations with
radial support less than r1 are interior to the vortex while those disturbances supported
on r > r1 are external, viz. in the freestream. It must be stressed that the notion of
internalisation here only serves the purpose to highlight the essential aspect of receptivity
(according to def. 1) of being inherently related to a spatial shift between forcing and
response in the (spatio-temporal) fluid domain. In fact, as discussed in § 3.1, freestream
receptivity may not require actual transport (e.g. of energy) over the system boundary.

2.2. Choice of the reference flow

Trailing vortices are generically associated with an axisymmetric mean velocity of the
form U(r) = Uθ(r)eθ + Uz(r)ez, blending rotational and jet kinematics. Restriction to
parallel vortices is justified by previous studies of Antkowiak (2005, fig. 3.18), Heaton
et al. (2009) and Viola et al. (2016, fig. 5), showing numerically that consideration of
base-flow diffusion does not alter considerably transient-growth and stability properties.

We consider receptivity of Lamb-Oseen, Batchelor and Moore-Saffman vortices. The
motivation for this sequence of reference flows is twofold. Firstly, it gradually shifts
between different conceptual points of view, viz. from base to mean flow. Considering
the Lamb-Oseen vortex as (an approximation to) a base flow yields receptivity of
the laminar state. On the other hand, the Moore-Saffman vortex rather constitutes
an approximation to the mean flow thus building on the above generalised notion of
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receptivity in a turbulent (stochastic) framework. Secondly, the effect of including an
axial mean velocity on freestream receptivity can be assessed (we assume weak axial
mean velocity as discussed below).

The parallel approximation of the Batchelor vortex (Batchelor 1964) reads (see also
Fabre & Jacquin 2004, p. 242 and Heaton & Peake 2007, p. 285)

Ur(r) = 0, Uθ(r) = 1 − e−r2
r

, Uz(r) = q−1e−r2 . (2.1)

Equation (2.1) is parametrised by the swirl number q ≠ 0 (the ratio of mean azimuthal to
axial velocity; Jacquin et al. 2001, p. 15). The Lamb-Oseen vortex is formally obtained
as the ∣q∣→∞ limit of the Batchelor vortex (2.1).

The parallel approximation of the Batchelor vortex is typically considered as a base
flow in stability analysis. Nevertheless, Iungo (2017, p. 1785) observe the Batchelor vortex
to fit experimental data well, which is also claimed by Heaton & Peake (2007, p. 272).
Qualitative matching is equally reported in numerical studies of Takahashi et al. (2005,
p. 5) and Heaton et al. (2009, pp. 142, 144). At least, the Batchelor vortex constitutes a
useful prototype, containing the essential aspects of trailing-vortex mean velocity.

The Moore-Saffman vortex is defined by a system of differential equations (Moore &
Saffman 1973) which is solved numerically. From a practical point of view the important
aspect of this model is its parametrisation by the real value n ∈ (0,1) which determines the
radial decay of the velocity profiles and leads to jet-wake coexistence for sufficiently small
values. Generally, the Moore-Saffman vortex is observed to be a good fit to experimental
mean velocity. There is considerable experimental evidence that a representative value
is about n ≳ 0.75 for trailing vortices. For instance, experiments conducted at ONERA
suggest a calibration with n ∈ {0.79,0.72,0.80} in the streamwise range of one to five
wingspans (private communication). Similarly, experiments and iLES of Garćıa-Ortiz
et al. (2019, fig. 6(b)) report a range of roughly n ∈ [0.8,0.95] over a streamwise range
of 40 chords and chord Reynolds number Rc ∼ 104. For these representative values of n
departure from a Gaussian vortex is essentially negligible.

2.3. Resolvent for the linear dynamics of a trailing vortex

Let there be given a time-invariant reference state (U , P ) of the form U(r) = Uθ(r)eθ+
Uz(r)ez and P = P (r) (the pressure) defining the vortex in the sense of § 2.1 by one of
the reference states of § 2.2, subjected to the perturbation (u, p) such that (U +u, P +p)
solves the Navier-Stokes equations. Consider perturbations in the form of Fourier modes
u(t, r, θ, z) = û(s, r,m,α) exp(i(mθ+αz)−st)+c.c. whereas m ∈ Z, α ∈ R and s = sr+isi ∈ C
and equivalently for the pressure. For convenience, parameters in the Fourier amplitudes
will be dropped if unambiguous. Complex frequencies s are used in the computation of
spectra and pseudospectra (defined below) while the response to temporally-sustained
forcing assumes purely imaginary values s = iω,ω ∈ R. We seek perturbations with finite
kinetic energy, thus endowing the solution space with the inner product

(û, v̂) ∶= ∫ ∞
0

dr r
3∑
l=1 ûl(r)v̂l(r), (2.2)

where an overbar (⋅) denotes complex conjugation.
Inserting the decomposition (U + u, P + p) into the Navier-Stokes equations and

subtracting the equation for the reference flow yields a nonlinear transport equation
for the perturbation. Restriction only to linear terms yields the linearised perturbation
transport equation (Joseph 1976, pp. 7–8). In studying receptivity, we suppose a non-



On the linear receptivity of trailing vortices 7

vanishing inhomogeneity f to drive the system. Introducing the above Fourier ansatz into
the linear perturbation transport equation yields a boundary-value problem on r ∈ [0,∞)
for the system of linear ordinary differential equations, parametrised by the wavenumbers
m ∈ Z, α ∈ R and frequency s ∈ C. For m = ±1,

(L − sP)(û
p̂
) = (f̂

0
) such that {dûr/dr∣0 and dûθ/dr∣0 = 0

ûz(0) = p̂(0) = 0
, (û

p̂
)(r →∞)→ 0. (2.3)

The restriction to perturbations with finite kinetic energy on an unbounded domain
requires faster than algebraic decay as r →∞ (Ash & Khorrami 1995, pp. 339–342). The
linear operators in (2.3) are formally given by the projection

P ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎦
=∶ BB†

and

L ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

imΩ + iαUz − ν(∆ − r−2) −2Ω + 2νimr−2 0 d/dr
Wz − 2νimr−2 imΩ + iαUz − ν(∆ − r−2) 0 imr−1

dUz/dr 0 imΩ + iαUz − ν∆ iα−r−1 − d/dr −imr−1 −iα 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
whereas

∆ ∶= d2

dr2
+ 1

r

d

dr
− (m

r
)2 − α2 and Ω ∶= Uθ

r
, Wz ∶= Ω + dUθ

dr

are the Laplace operator of a scalar field, the angular velocity and axial vorticity of the
reference flow, respectively. The radius rc ∈ R for which mean advection mΩ(rc)+αUz(rc)
equals the perturbation frequency ω = si ∈ R is called critical layer (Le Dizès 2004, p.
319).

Suppose the inverse of (2.3) exists, then the solution formally reads

û(s) = B†(L − sP)−1Bf̂(s) for all s ∈ ρ(L) (2.4)

and the operator-valued one-parameter family s ↦ R(s;L) ∶= B†(L − sP)−1B is referred
to as the resolvent (Kato 1980, p. 173). Bounded inversion exists for frequencies which
do not pertain to the spectrum σ(L). The subset of the complex plane for which the
resolvent is defined and bounded is called resolvent set ρ(L) (Riesz & Sz.-Nagy 1956,
§132). For the here considered asymptotically stable systems iR ⊂ ρ(L) holds and the
resolvent is defined on the entire imaginary axis. The pseudospectrum is defined by
σε(L) ∶= {s ∈ C ∣ ∣∣R(s;L)∣∣ > ε−1} as contours of the resolvent norm (defined in § 3.2) for
fixed values of ε > 0 (Trefethen & Embree 2005, p. 31).

The resolvent (2.4) is obtained numerically from finite-element discretisation of (2.3)
and inversion of the corresponding matrix, see app. A.

Due to symmetries of the linearised perturbation equation (2.3) the parameter space
can be reduced. For the Lamb-Oseen vortex it is sufficient to consider m,α ≥ 0 and
ω ∈ R (Fabre et al. 2006, pp. 241–242). Inclusion of an axial velocity component breaks
azimuthal symmetry, making a distinction between positive and negative azimuthal
wavenumbers necessary (Fabre & Jacquin 2004, p. 247; Heaton & Peake 2007, p. 289).
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3. Estimation of linear receptivity by analysis of the nonnormality

Let A be a formal operator on a Hilbert space (see e.g. Kato 1980, p. 146 for this
terminology) and denote by A† its formal adjoint. Then A is formally normal if the
commutator [⋅, ⋅] of A and A† is equal to zero, i.e. [A,A†] ∶= AA† − A†A = 0 (Riesz &
Sz.-Nagy 1956, p. 284; Kato 1980, p. 276).

3.1. Necessity of nonnormality for linear freestream receptivity

Receptivity according to def. 1 is intimately linked to the excitation of vortex-core
perturbations by spatially remote disturbances. For receptivity of vortices to freestream
disturbances this implies a radial perturbation shift in order to internalise external
disturbances. Now, if the linear receptivity problem (2.4) is associated with a normal
operator R(iω;L) any forcing-response pair {f̂(ω), û(ω)} should have the same radial
support. On the other hand, Trefethen & Embree (2005, p. 10) states that resonance
of nonnormal systems is the fundamental principle in receptivity. Indeed, the following
may be suggested (see also Roy & Subramanian 2014, p. 405).

Conjecture 1. Let perturbations have finite kinetic energy, then nonnormality of
R(iω;L) is necessary for the linear model of vortex receptivity to freestream disturbances.

Assuming linear dynamics, vortices are receptive to freestream disturbances by two
distinct mechanisms, namely through (i) generalised eigenvectors pertaining to the
continuous spectrum σ∞c (L) (defined in § 4.2) and (ii) critical-layer forcing discussed
in §§ 4.2–4.3. Efficiency of the former is typically significantly diminished due to shear
sheltering such that disturbances only slightly penetrate the core (Jacobs & Durbin
1998). In fact, the penetration mechanism is viscous (no penetration in the inviscid
limit; Jacobs & Durbin 1998, p. 2010) and should not be significant for high Reynolds
numbers in experiments. Restriction to perturbations with finite kinetic energy in conj. 1
excludes receptivity associated with generalised eigenvectors pertaining to σ∞c (L).

There is considerable evidence that a vortex essentially constitutes a material subset of
the fluid domain which does not exchange fluid particles with its surrounding (Haller et al.
2016). Therefore, perturbation-energy amplification in the core must preclude significant
mass or momentum transport, e.g. through intermittent vorticity stripping or ejection,
as proposed by Bandyopadhyay et al. (1991, pp. 1629, 1633). Indeed, strong ambient
turbulence intensity is required to enable exchange of core fluid with the freestream (Mar-
shall & Beninati 2005, pp. 231, 233). For low to moderate levels, numerical experiments
indicate that coiled vorticity filaments in the freestream cannot penetrate into the core
(Jacobs & Durbin 1998, p. 2006; Takahashi et al. 2005, p. 12). Low turbulence intensities
in experiments therefore call for receptivity mechanisms which excite core perturbations
without significant mass transport. The proposed receptivity mechanism by nonnormality
does not require physical exchange of fluid, hence, constitutes a candidate in moderate-
turbulence regimes.

3.2. Canonical decomposition and bounds on the resolvent

The present study uses canonical decomposition of the resolvent, cf. (2.4). Let R(s;L)
be a compact linear operator and n > 0. Then, for all admissible forcing fields f̂ , the
expansion

û(s) = R(s;L) f̂(s) = n∑
k=1µk(s)uk(s)(fk(s), f̂(s)), s ∈ ρ(L), (3.1)



On the linear receptivity of trailing vortices 9

converges, whereas orthogonality (fk(s),f l(s)) = (uk(s),ul(s)) = δkl holds and µ1(s) ≥
µ2(s) ≥ ⋅ ⋅ ⋅ ≥ µn(s) > 0 (Riesz & Sz.-Nagy 1956, p. 203; Kato 1980, pp. 160–161 and
260–262). The pair {uk(s),fk(s)} defines a hierarchy of rank-1 operators and µk(s) is
referred to as singular value. From a physics point of view, each pair defines the radial
pattern of the kth-optimal response uk(s) to forcing fk(s). We call fk(s), fk(s) forcing
and response structures, respectively. The respective singular values µk(s) signify the kth-
optimal energy amplifications and the leading singular value is identical to the norm of
the resolvent µ2

1(s) = ∣∣R(s;L)∣∣2 which can be interpreted as the maximum amplification
obtained for all admissible forcing fields (Riesz & Sz.-Nagy 1956, p. 149).

The canonical decomposition (3.1) is inherently related to the respectively self-adjoint
eigenvalue problems (Kato 1980, p. 261)

R†Rfk = µ2
kfk and RR† uk = µ2

kuk with uk ∶= µ−1k Rfk, µk ≠ 0.

If R(s;L) is normal the two eigenvalue problems can be identified, implying that forcing
and response are structurally identical. By def. 1, receptivity relies on perturbation
internalisation, hence, forcing and response structures must have different spatial support.
This is possible if the resolvent is nonnormal; cf. conj. 1. The degree of nonnormality can
be estimated from bounds on the resolvent norm.

Let φ(L) ∶= cl{s ∈ C ∣ s = (q,PLq), q = (u, p)T such that div u = divB†Lq = 0, ∣∣u∣∣ = 1}
be the closure cl{⋅} of the numerical range (Kato 1980, p. 267; Gustafson & Rao 1997,
p. 1). Then, for all s ∈ ρ(L) which are in the complement of φ(L),

1

d(s, σ(L)) ≤ ∣∣R(s;L)∣∣ ≤ 1

d(s, φ(L)) , (3.2)

where d(s, σ(L)) ∶= infλ∈σ(L) ∣s − λ∣ > 0 defines the distance of s ∈ ρ(L) from the closest
element in the spectrum and analogously for d(s, φ(L)) with s /∈ φ(L) (Kato 1980, Thm.
3.2; Gustafson & Rao 1997, eq. (4.6-7) and Lem. 6.1-4). Equality with the lower bound
holds in (3.2) if the resolvent is normal (Kato 1980, pp. 272, 277).

From a physical point of view, the left-hand side of (3.2) describes the ”classical” reson-
ance behaviour of the equivalent normal operator (solely determined by its spectrum) as
the excitation frequency s differs from elements of the spectrum (Arnol’d 1992, p. 235). In
contrast, nonnormal operators are principally amenable to significant amplification even
far from the spectrum (Trefethen & Embree 2005, p. 10). Contours of the resolvent norm
(i.e. the pseudospectrum) therefore represent generalised resonance (pseudo-resonance)
of the system. Comparison of the graphs of the lower bound with the resolvent norm
along the imaginary axis (s = iω) therefore reveals frequency ranges where the resolvent
is nonnormal and thus pseudo-resonance outweighs ”classical” resonance (cf. fig. 3).

The right-hand side of (3.2), defining the distance to the numerical range φ(L), is
physically not associated with resonance but related to the capacity of energy growth
which we use in § 4.1 to derive the location of the instantaneously most amplified
perturbation. Despite identical structure of the two bounds in (3.2), it should be em-
phasized that we cannot use the upper bound to draw a meaningful graph (similar to
fig. 3(a)) which bounds pseudo-resonance ∣∣R(s = iω;L)∣∣ from above along the imaginary
axis. Rather the intention is to gain insight into nonnormality from patterns the linear
operator L defines in the complex plane. The smallest set characterising L (sufficient for
the dynamics of normal operators) is the spectrum σ(L) while the numerical range φ(L)
is the largest set determining dynamics. Pseudospectra σε(L) ⊂ C, determining transient
dynamics, continuously fill the gap whereas limε→0 σε(L) ↔ σ(L) and limε→∞ σε(L) ↔
φ(L) (Gustafson & Rao 1997, p. 106; Trefethen & Embree 2005, p. 172). We expect that
resolvent nonnormality can be inferred from differences in these sets.



10 T. Bölle et al.

4. Selective nonnormality of linear vortex dynamics

Hill (1995, p. 183) noted that receptivity is determined by geometry, physical location
and frequency of the source as well as the reference-flow characteristics. Indeed, wind-
tunnel and numerical experiments provide evidence that vortices favour a response at dis-
tinguished frequencies and to particular disturbance patterns (e.g. Marshall & Beninati
2005; Bailey et al. 2018). Adopting the linear model developed in §2.3 the last of Hill’s
points is obvious since the formal operator is essentially determined by the reference-flow
profile as discussed below. Further assessment shows that the reference flow also imposes a
preferred position and frequency for disturbances contributing to freestream receptivity;
we find that vortices are generally most susceptible to the archetypal forcing pattern
of coiled filaments aligned with the critical layer. As stated in conj. 1 nonnormality is
a necessary requirement for linear receptivity to freestream turbulence and hence to
quantify the above aspects; we thus conclude the main result of this section:

Conjecture 2. Linear perturbation dynamics about axisymmetric vortices satisfying
U(r) = Uθ(r)eθ + Uz(r)ez are governed by an ω-selectively nonnormal linear operator.
In the inviscid limit, nonnormality is maximised for critical-layer perturbations.

4.1. Analysis of the formal operator and its numerical range

To the best of our knowledge no analytic expression of the resolvent for three-
dimensional inhomogeneous perturbations about smooth viscous vortices exists today
(e.g. Ash & Khorrami 1995, p. 321; Roy & Subramanian 2014, p. 439). However, it can
be shown that normality of a linear operator implies normality of its resolvent (Kato
1980, pp. 276–277) so that we proceed by analysing L, expecting similar properties to
hold for R(iω;L), too.

In order to attribute nonnormality a physical significance, the linear operator in (2.3)
is written as the sum

L = ∇U +∇U +A, (4.1)

comprising contributions from advection ∇U , mean-velocity gradient ∇U and the Stokes
operator A (governing the Stokes system; Sohr 2001, §4), respectively. Pressure gradient
and continuity equation are contained in the Stokes operator by definition.

The formal adjoint of (4.1) is defined through the Lagrange identity (Friedman 1962,
p. 148) and reads

L† = ∇†
U + (∇U)† +A† = −∇U + (∇U)† +A. (4.2)

Comparing (4.1) and (4.2) element-wise, it is evident that the Stokes operator A is
(formally) self-adjoint and hence normal. Taken independently, the advection operator∇U is formally skew-adjoint thus also normal.† While dynamics on unbounded or periodic
fluid domains (in the direction of the mean flow) seems to promote actual self-adjointness,
realisations on bounded domains are associated with (inflow-outflow) boundary con-
ditions which break the formal behaviour. In terms of physics, this latter advective
nonnormality known in the global approach manifests as the spatial separation (in z)
of the direct and adjoint eigenfunctions (Sipp et al. 2010, p. 7). From the three terms in
(4.1) only the velocity-gradient operator ∇U is inherently nonnormal in isolation.

Since the Stokes operator is normal (independently) and increasing viscosity consist-
ently found to dampen nonnormal dynamics, nonnormality of L should result from the
inviscid advection and mean-velocity gradient operators (Antkowiak 2005, p. 3; Pradeep

† A skew-adjoint operator generates a unitary (inner-product preserving) propagator, viz.

T(t)† = T(t)−1 for all t (Engel & Nagel 2000, p. 20).
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φ(L), L = Lr + iLi
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Figure 1: Schematic comparison of the dissipative dynamics (contraction) generated by
the equivalent normal operator (i.e. solely defined by its spectrum σ(L) and its convex
hull convσ(L)) with the actual dynamics (determined by the numerical range φ(L))
showing that nonnormality is associated with the numerical abscissa η(L) (see (4.5)).
The unstable half plane is visualised by grey shading.

& Hussain 2006, p. 279; Heaton & Peake 2007, p. 278). It should be noted though that
the sum of normal operators is not necessarily normal, as shown e.g. for the advection-
diffusion operator by Reddy & Trefethen (1994, p. 1647).

Neglecting A in (4.1) and (4.2), formal nonnormality of the advection-velocity-gradient
operator is associated with the commutator [L,L†]→ [∇U ,2S] + [∇U , (∇U)†] (recalling
that advection is formally normal) where S ∶= (∇U + (∇U)†)/2 denotes the hermitian
part of the velocity gradient. Explicitly,

[L,L†]→
⎡⎢⎢⎢⎢⎢⎣
−(Wz + 2Ω)rdΩ/dr − (dUz/dr)2 0 0

0 (Wz + 2Ω)rdΩ/dr ΩdUz/dr
0 ΩdUz/dr (dUz/dr)2

⎤⎥⎥⎥⎥⎥⎦
. (4.3)

Writing (Wz +2Ω)rdΩ/dr =W 2
z − (2Ω)2 readily shows that dynamics is formally normal

if the reference flow is that of a rigid-body rotation and translation (i.e. Wz = 2Ω and
Uz = const.). In other words, nonnormality is unaffected by the superposition of rotation
or translation as a rigid body and, in particular, indistinguishable for observers being in
rigid-body rotation or translation to one another, e.g. between aeroplane cruise condition
and laboratory experiment.

To get a deeper understanding of the resolvent nonnormality, let us now consider the
upper bound in (3.2), which, as we re-emphasize, is not amenable to the same physical
and graphical interpretation as the lower bound in terms of resonance but rather the
intention is the assessment of nonnormality. In fact, the upper bound merely means
that the pseudospectrum σε(L) cannot be much larger than the numerical range φ(L)
(Trefethen & Embree 2005, p. 169). Figure 1 shows a qualitative sketch illustrating the
principal terminology used thereafter.

We write L = Lr+iLi with the hermitian part Lr ∶= (L+L†)/2 and the skew-hermitian part
Li ∶= (L−L†)/(2i), respectively. This decomposition implies the inclusion the spectrum in
the numerical range, σ(L) ⊂ φ(Lr + iLi) ⊂ φ(Lr) + iφ(Li), which is shown in fig. 1 (Kato
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1980, pp. 309–310; Gustafson & Rao 1997, pp. 6, 103). From a physical point of view,
the hermitian part Lr = S + A determines energy growth while the skew-hermitian part
Li = −i∇U +W (∇U = S + iW where W is the skew-hermitian mean-vorticity operator)
is associated with conservative redistribution (cf. also the remark in the context of ∇U

above). In agreement, Pradeep & Hussain (2006, p. 264) conclude that mean vorticity
promotes vortex waves which do not contribute to energy growth. A priori this does
not tell us anything about the origin of nonnormality, however, our interest in energy
amplification suggests closer examination of φ(Lr).

This reasoning is reflected in the Hille-Yosida generation theorem (Engel & Nagel 2000,
pp. 73–76). Let c ∈ R be a constant (which we identify with the numerical abscissa η(L)
below), then the propagator T(t) is a pseudo-contraction if and only if

∣∣T(t)∣∣ ≤ ect ∀t ≥ 0 ⇔ ∣∣R(s;L)∣∣ ≤ 1

sr − c , sr > c. (4.4)

By definition, the associated generator L is contractive if its numerical range does
not protrude into the unstable half plane while it is pseudo-contractive if it becomes
contractive upon a constant shift L − c (Kato 1980, pp. 278–279; Engel & Nagel 2000,
p. 75). Physically, a contractive propagator represents dissipation (of energy; c = 0 ⇒∣∣T(t)∣∣ ≤ 1) whereas a pseudo-contraction is dissipative beyond a certain threshold c.

If L was a normal operator, the numerical range would be the convex hull of its
spectrum φ(L) = convσ(L) as sketched in fig. 1 (Gustafson & Rao 1997, Thm. 1.4-4).
Since the considered vortices are asymptotically stable this would imply c = 0 in (4.4) and
the equivalent normal operator would describe pure dissipation. The present deviation
from this equivalent normal dynamics is a consequence of nonnormality and in a sense
proportional to the protrusion of the numerical range into the unstable half plane. The
maximum protrusion (recall that divu = 0)

η(L) ∶= sup
s∈φ(L) sr = sup

u≠0
(u,Lru)∣∣u∣∣2 = sup

u≠0
(u, (S − ν∆)u)∣∣u∣∣2 (4.5)

is called the numerical abscissa (Trefethen & Embree 2005, p. 174). The operator S−ν∆
in (4.5) is self-adjoint and the numerical abscissa is identical to its largest eigenvalue.
Since the viscous term is necessarily negative (Sohr 2001, p. 101) and by the above
remarks on the damping effect of viscosity for nonnomal dynamics, we assume an inviscid
fluid in the following.

In terms of physics, the numerical abscissa represents the maximum instantaneous
energy growth. Let ν = 0 in (4.5), then the momentary change of integral energy is
governed by the inviscid Reynolds-Orr equation for all t ≥ 0 (Joseph 1976, p. 10)

d

dt

∣∣u(t)∣∣2
2

= (u(t), 1

2

⎡⎢⎢⎢⎢⎢⎣
0 rdΩ/dr dUz/dr

rdΩ/dr 0 0
dUz/dr 0 0

⎤⎥⎥⎥⎥⎥⎦
u(t)), ∣∣u(0)∣∣ = 1, (4.6)

assuming the generic reference flow U(r) = Uθ(r)eθ + Uz(r)ez. Searching for the max-
imum of (4.6), the right-hand side is seen to coincide with the definition of the numerical
abscissa (4.5) in the limit as t→ 0. This is equivalent to d∣∣T(t→ 0)∣∣/dt = η(L) where the
numerical abscissa is the largest eigenvalue of S for an inviscid fluid (see also Trefethen
& Embree 2005, Thm. 17.4). Comparing (4.6) with the commutator (4.3) confirms that
energy growth in an asymptotically stable system is possible only for reference states
which are not in rigid-body motion (cf. also Joseph 1976, p. 10). The actual maximum
energy-amplification capacity serves as a measure to assess nonnormality.

The hermitian part of the velocity gradient is self-adjoint, hence, the spectral theorem
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guarantees existence of real eigenvalues λ1 = 0, λ2,3 ∶= ±λ = ± 1
2

√(rdΩ/dr)2 + (dUz/dr)2
and mutually orthogonal eigenvectors

v1 = ⎛⎜⎝
0−dUz/dr

rdΩ/dr
⎞⎟⎠ , v2,3 = ⎛⎜⎝

±2λ
rdΩ/dr
dUz/dr

⎞⎟⎠ . (4.7)

Physically, the eigenvectors (4.7) span three orthogonal eigenspaces for which the pro-
duction bilinear form in (4.6) vanishes (zero strain) and is negative/positive, respectively.
The maximum eigenvalue corresponds to the numerical abscissa which is attained if the
perturbation projects identically on the associated eigenvector v3.

Eigenvectors v2,3 only differ in the sign of the radial component while their projections
onto a cylinder of radius r, v ∶= v2,3 − er(er,v2,3) say, are identical and are conveniently
represented in terms of their streamlines rdθ/vθ = dz/vz. On the other hand, an analogous
representation on the cylinder holds for arbitrary perturbations û and the streamlines
take on the form of helices due to the assumed symmetry. The pitch of the perturbation
streamlines (streamwise increment dz per azimuthal increment rdθ) defines the angle

1

r

dz

dθ
= −m

rα
while

1

r

dz

dθ
= 1

r

dUz/dr
drΩ/dr

is the streamline angle of the eigenvector projection. In order that perturbation and
eigenvector align, it is necessary that the above angles match, i.e.

−m
rα

= 1

r

dUz/dr
drΩ/dr ⇔ d

dr
(mΩ + αUz) = 0 ⇔ mΩ + αUz = ω = const. (4.8)

which is precisely the critical-layer condition (cf. § 2.3). Perturbation alignment on the
cylinder is necessary but not sufficient for energy growth. It is in fact the radial component±λ in (4.7) that decides whether energy is amplified or attenuated. The situation of energy
attenuation through critical-layer perturbations is known as Landau damping (Antkowiak
2005, p. 13; Fabre et al. 2006, p. 255).

The importance of stationary values of mΩ(r)+αUz(r)−ω for inviscid instability was
previously shown by Leibovich & Stewartson (1983) (see also Ash & Khorrami 1995, p.
332). Approximate alignment of viscous and inviscid instability modes with the principal
eigenvector was shown by Abid (2008, p. 28) for the Batchelor vortex and increases with
q ≤ 1 (see (2.1)). Nevertheless, while perturbation alignment has been identified as the
condition for maximum energy growth before, it seems that equivalence with the critical-
layer condition (4.8) has not been stated explicitly, yet. Moreover, we are not aware of
any previous result relating critical-layer perturbations directly to nonnormality.

In order to quantify nonnormality for Batchelor (Lamb-Oseen) and Moore-Saffman
vortices, fig. 2 shows graphs of the mean profiles Uz(r),dUz(r)/dr,Ω(r) and Wz(r).

With regards to axial mean velocity and its gradient, shown in fig. 2(a) for the
Batchelor and Moore-Saffman vortex, the most essential aspect for the present work
is substantial localisation in the vortex core. For the Batchelor vortex (2.1), UBz is
exponentially confined to the core. For the Moore-Saffman vortex UMS

z (r) ∼ (n−1−1)r−2n
as r →∞ holds by definition (Moore & Saffman 1973, eq. (3.5)). Nevertheless, jet-wake
coexistence renders this asymptotic irrelevant for the practically pertinent behaviour in
the core vicinity where the Moore-Saffman vortex behaves effectively identically as the
Batchelor vortex. This substantial confinement of axial mean velocity is in agreement
with its importance for the discrete spectrum (discussed in § 4.2) and suggests negligible
pertinence for disturbances located in the freestream. The critical-layer location for peak
amplification of the Batchelor (Lamb-Oseen) vortex (m = 1, ω = 0.1, q = 4) is indicated
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Figure 2: Comparison of radial mean-flow profiles for Batchelor (B) and Moore-Saffman
(MS) vortices (n = 0.75). Axial velocity and mean-shear profiles on the left show (at least
visually) exponential localisation in the core region, restricting significant contribution to
r ≲ 2. Mean angular velocity Ω and axial vorticity Wz on the right panel show essentially
identical behaviour for the two models, the latter being also strongly localised. For
reference the vortex core is shown in gray shading as well as the critical layer rc of
the Lamb-Oseen vortex for ω = 0.1,m = 1.

by a straight line at rc ≈ π where no measurable effect of the axial mean flow is to be
expected any more.

The second direct source of nonnormality is by differential mean angular velocity
Ω ≠ const. and mean streamwise vorticity Wz, shown in fig. 2(b). Vorticity is again
substantially localised in the core, obeying an exponential law for the Batchelor (Lamb-
Oseen) vortex (2.1) and qualitatively similar behaviour for the Moore-Saffman vortex.
From the characteristic reference-flow profiles shown in fig. 2, angular velocity Ω is
the only quantity which is not (almost) exponentially decreasing. As a matter of fact,
Ω(r) ∼ r−n−1 as r →∞ holds for all models, whereas n = 1 corresponds to the Batchelor
(Lamb-Oseen) vortex (Moore & Saffman 1973, eq. (3.5)) and n = 0.75 is a lower bound
for the Moore-Saffman vortex fitting experimental trailing vortices (see § 2.2).

We conclude that receptivity to the freestream should be largely independent of the
vortex model and subsequent discussion will focus on the Lamb-Oseen vortex. Variation
of the reference flow will be further discussed in § 5.

4.2. Selective nonnormality of the Lamb-Oseen vortex

According to the left-hand side of (3.2), the difference between the resolvent norm
and the reciprocal of the shortest distance of any given frequency iω ∈ ρ(L) to the
spectrum is a local measure for nonnormality. Comparing graphs of these two functions
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we find vortices to be effectively nonnormal only on a narrow frequency band (termed
(ω-)selective nonnormality).

All results of this section are obtained for the Lamb-Oseen vortex andRΓ = 5000,m = 1,
α = 1.55 as in Guo & Sun (2011, p. 3191). By (3.1) a compact resolvent can be expanded
in a convergent series of rank-1 operators, weighted by the associated singular value.
We find the singular values to be rapidly decreasing for all considered frequencies, thus,
restricting to leading-order structures henceforth (constituting the rank-1 approximation
of the resolvent by (3.1)). It should be noted though that this is not true for steady
perturbations (ω ≈ 0) due to the continuous spectrum σ∞c (L) introduced below.

Figure 3(b) shows nested isocontours of the pseudospectrum in the complex s-plane for
values of ε = ∣∣R(s;L)∣∣−1 ∈ {10n ∶ n = −1,−1.5,−2,−2.5,−3,−4,−5}, effectively approaching
the spectrum shown by dots (for details on pseudospectra see e.g. Trefethen & Embree
2005). The particular case of s = iω is shown in fig. 3(a) and will be discussed thereafter.

It should be noted that the spectrum is organised into the same branching structure as
the spectrum shown in Fabre et al. (2006, fig. 7) for the Lamb-Oseen vortex with m = 1,
α = 3 and RΓ = 1000. Even more, qualitatively the same pseudospectrum and eigenvalue
scattering is reported in Mao & Sherwin (2011, p. 8) for the Batchelor vortex with m = 0,
α = 10, RΓ ≈ 2000 and q = 3. These findings provide further support for conj. 3 that linear
vortex dynamics is generic as discussed in § 5.

The spectrum of the linear operator L governing three-dimensional perturbation dy-
namics about vortices comprises contributions from discrete eigenvalues σd(L) as well as
a (semi-infinite) continuous spectrum σ∞c (L) due to spatial unboundedness. The latter
is argued to be σ∞c (L) = {s = sr + isi ∈ C ∣ α2ν < sr < ∞, si = 0} (Fabre et al. 2006, app.
A; Mao & Sherwin 2011, p. 14 and app. B) and can be anticipated from eigenvalue and
contour clustering along the real axis in fig. 3(b). Receptivity of the Batchelor vortex
to axisymmetric disturbances has previously been related to long-wavelength generalised
eigenmodes pertaining to σ∞c (L) which penetrate into the core (Mao & Sherwin 2011,
pp. 1, 10 and fig. 3). We exclude this mechanism by restricting to finite kinetic energy
solutions and rather emphasize remote receptivity without mass transport across the
system boundary (cf. discussion at the end of §2.1). Rather σ∞c (L) is an artefact of
the mathematical model of an unbounded domain and the associated perturbations are
considered irrelevant here (cf. also Heaton & Peake 2007, pp. 275, 295).

Considering an inviscid fluid, an additional inviscid continuous spectrum σ0
c = {s ∈

C ∣ si = ω = mΩ(r), sr = 0} exists as a consequence of a critical-layer singularity of
the homogeneous problem (Le Dizès 2004, p. 319; Roy & Subramanian 2014, §3.2).
For non-vanishing viscosity it degenerates to a discrete spectrum of a large number of
stable discrete modes (Heaton & Peake 2007, p. 282) which are algebraically localised
in the core vicinity, referred to as potential modes by Mao & Sherwin (2011, p. 2).
This viscous remnant of the inviscid continuous spectrum, denoted σνc (L), is observed as
the apparently random eigenvalue scattering in the rectangular central part of fig. 3(b).
Small values and shape of the (ε = 10−5)-pseudospectrum (innermost thick contour in
fig. 3(b)) led Mao & Sherwin (2011, p. 10) to speculate that the spectrum in fact remains
continuous.

The distinguished situation of neutral harmonic perturbations corresponds to a cut
at si = ω, sr = 0 which yields the resolvent norm shown in fig. 3(a) in comparison with
the graph of the reciprocal distance. By (3.2) we observe the resolvent to be selectively
nonnormal in a frequency band of roughly 0 ≲ ω ≲ 1 while it is effectively normal outside
this range. Considering the associated perturbation structures we will show in § 4.3 that
the nonnormality frequency interval is essentially correlated with the critical layer, as
already anticipated from analysis of the operator structure in § 4.1.
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Figure 3: Comparison of the resolvent norm for the Lamb-Oseen vortex (m = 1, α = 1.55,
RΓ = 5000) with the reciprocal distance in (a) assuming a harmonic ansatz ω = si ∈ R
and sr = 0, revealing ω-selective nonnormality roughly for 0 ≲ ω ≲ 1. Distinction of
dynamical regimes of the resolvent: N signifying a nominally normal operator and {F,
R, C} being associated with nonnormality due to critical-layer singularity. The latter
distinguish dynamics essentially situated in the far field (F) and core (C), respectively,
while only the intermediate range critical-layer forcing (R) is associated with receptivity.
Solid dots mark frequencies of forcing/response structures shown in fig. 4. Numbering
refers to the (pseudo)spectrum in (b), showing nested isocontours of the resolvent norm
and the spectrum (solid dots) in the complex s-plane.

Applying the same numbering in figs. 3(a, b) indicates that peaks in the resolvent norm
match with the least damped elements of the spectrum. Furthermore, the response modes
associated with peaks 1, 4 and 5 belong to the D-, V- and C-families in the classification
of Fabre et al. (2006) and are equivalent to the modes obtained from the eigenvalue
problem for L. The associated peak forcing structures are identical to the eigenmodes of
the adjoint L†. A thorough classification of perturbations in the (ω,α)-plane is postponed
to §5 (cf. also figs. 7–9).

These observations suggest that perturbations for which roughly ω /∈ [0,1] the dynamics
is governed by an effectively normal operator and hence irrelevant for receptivity
according to def. 1 by conj. 1. From a physical standpoint, the dynamic regimes labelled
N in fig. 3(a) constitute classical resonance between congruent perturbation patterns,
e.g. f1(ωl) ≅ u1(ωl) where l ∈ {1,4,5} labels the peaks. Amplification away from the
singularity is simply d−1(iω,{ωl}), ω ∈ R, in these cases (cf. (3.2)).

In order to gain further insight into the mechanisms of freestream receptivity, let
us now turn to the perturbation structures. Typical patterns of forcing-response pairs{u1(ω),f1(ω)} for gradually increasing frequencies ω ∈ {0.05,0.1,0.5,0.9} are shown
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ω = 0.05 ω = 0.1 ω = 0.5 ω = 0.9

Figure 4: Streamwise component of rotf1(ω) and rotu1(ω) for ω ∈ {0.05,0.1,0.5,0.9}
(solid dots in fig. 3(a)) in the top and bottom row, respectively, for the Lamb-Oseen
vortex (m = 1, α = 1.55, RΓ = 5000). Positive and negative values corresponding to blue
and red colouring, the scale not being chosen uniformly across different panels. The solid
circle of radius r1 = 1.12 indicates the vortex-core boundary.

in the top and bottom row of fig. 4. Contours and colouring represent the streamwise
component of the curl of the forcing and response structures. Magnitudes are understood
to be qualitative and not uniform across panels to emphasize the relative locations and
perturbation patterns. For this purpose a solid circle of radius r1 = 1.12 indicates the
vortex boundary, revealing that forcing structures are gradually located closer to the
core as the frequency is increased. The forcing structure crosses the vortex boundary at
a frequency of ω ≈ 0.5 and hence disqualifies perturbations from ω ≳ 0.6 (say) from
contributing to freestream receptivity as defined in def. 1 for the absence of radial
transport, despite local nonnormality. Associated forcing-response pairs are not congruent
but systematically located in the vortex core and, for this reason, are referred to as C-
regime, cf. fig. 3(a).

Significant amplification is observed for quasi-steady excitation ω ≈ 0 in fig. 3(a).
Considering the sequence ω ↘ 0, the associated forcing and response structures are found
to be located at increasingly large radii as shown in fig. 4. The most important implication
for receptivity is that below a certain frequency forcing and response structures take on
the form of localised wave packets of comparable shape that are both far outside the
vortex core, labelled F-regime in fig. 3(a). This kind of forcing, although causing large
amplification, is unable to cause (at least directly) core perturbations. For this reason
it is assumed to be irrelevant for linear receptivity. The two cases of F- and C-regimes
underline that by conj. 1 nonnormality is necessary but not sufficient, the actual range
of freestream receptivity (R-regime) is indicated in fig. 3. This considerable restriction of
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Figure 5: Archetypal critical-layer perturbations of the Lamb-Oseen vortex for α = 1.55,
m = 1, RΓ = 5000. Candidate wave frequencies ω in the critical layer (red line) and
modulus of the streamwise component of rotf1(ω) for selected forcing structures (thick
black graphs) being centred around the critical layer and getting sharper as ω increases
(as they approach the core) in (a). Prototype of the critical-layer forcing-response pair
at ω = 0.1 showing the perturbation shift from the critical layer into the vortex core in(b). The shaded region signifying the vortex core delimited by r1 = 1.12 in panels (a, b).
the receptivity frequency band suggests that vortices behave like strongly selective filters
to freestream turbulence (see also Antkowiak 2005, p. 72).

4.3. Critical-layer alignment of the forcing structures

As shown in §§ 4.1 and 4.2, the range of effective nonnormality is essentially correlated
with the inviscid continuous spectrum. The inviscid nature of linear nonnormal dynamics
and the retained importance of the singular continuous spectrum even for a viscous fluid
(cf. also Heaton & Peake 2007, pp. 278–279, 287) is underscored by tracking the radial
location of the forcing structures as a function of frequency, closely following the critical
layer, in fig. 5.

In § 2.3 we recalled the definition of the critical layer as the radial location where mean
advection equals perturbation propagation. Using the spatio-temporal Fourier ansatz of
§ 2.3 the material-derivative operator (including streamwise transport for now) becomes
a multiplication operator associated with the symbol

∂

∂t
+Ω(r) ∂

∂θ
+Uz(r) ∂

∂z
→mΩ(r) + αUz(r) − ω.

Discussion in § 2.2 suggests that Uz is (nearly) exponentially localised in the core such
that for disturbances in the freestream

mΩ(r) + αUz(r) − ω ≈mΩ(r) − ω
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and receptivity to critical-layer forcing should be essentially independent from the axial
mean velocity in practice. Thus, Lamb-Oseen, Batchelor and Moore-Saffman vortices
are expected to have essentially identical critical-layer dynamics with regards to re-
ceptivity. Let m = 1, the critical layer of the Lamb-Oseen vortex becomes the locus{r ∈ (0,∞) ∣ Ω(r)−ω = 0}, shown in fig. 5(a) as a thick red line. The associated frequency
range for critical-layer forcing is somewhat smaller than the range of nonnormality shown
in fig. 3(a). Deviations from the Lamb-Oseen critical layer in fig. 5(a) due to axial mean
velocity (Batchelor or Moore-Saffman vortex) are essentially restricted to the core, unless
α ≫ 0 or q → 0. Both situations are excluded here since trailing-vortex dynamics is of
long wavelength (meandering) and dominated by mean rotation rather than axial velocity
(i.e. jet behaviour).

Forcing structures in fig. 5(a) are indeed systematically localised about the critical layer
which strongly suggests a relation to the inviscid continuous spectrum and critical-layer
forcing as the essential mechanism for receptivity. Archetypal freestream receptivity is
associated with the characteristic forcing-response patterns displayed in fig. 5(b), showing
the modulus of the streamwise curl component in fig. 4 for ω = 0.1. The most important
aspect qualifying this forcing-response pair as a candidate for freestream receptivity is the
fact that forcing and response structures have (almost) disjoint radial support, showing
that vortices are susceptible to disturbances which do not physically penetrate the core.

The receptivity prototype shown in figs. 4 for ω = 0.1 and 5(b), i.e. coiled forcing
filaments in the critical layer resonantly exciting a core bending wave, is analogous to
findings in transient-growth studies (Antkowiak & Brancher 2004; Pradeep & Hussain
2006). Its importance for receptivity to sustained (stochastic) forcing has been pointed
out previously by Fontane et al. (2008, p. 250) who speculated that it might constitute
a potential mechanism for vortex meandering (see also Viola et al. 2016, p. 545). While
these two approaches formally discuss solutions to (2.3) in the time domain, the resolvent
provides an analysis in frequency space (cf. (1.1)–(1.2) in § 1). All three approaches are
mathematically related since the resolvent is the Laplace transform of the propagator (cf.
§ 1). All linear studies are complementary and analysis in frequency space (as opposed
to time domain) has the same principal advantages and inconveniences as in the analysis
of a time signal, for example. Specifically, it identifies those frequencies which contribute
most to complex temporal dynamics (such as vortex meandering). As such, it is the
natural framework for receptivity, characterising the vortex as a selective filter with
frequency-dependent susceptibility.

4.4. Variation of the axial wavenumber

So far, (arbitrarily) fixing α = 1.55 we showed that vortices are receptive in a narrow
frequency band to a particular disturbance pattern localised in a certain radial range
of the freestream. Despite this selectivity in ω and r, we will provide evidence that
receptivity is largely insensitive to variations in the axial wavelength. To illustrate that
the choice of α is not essential for values on the considered interval, fig. 6 shows the
variation of forcing-response pairs taken for α ∈ {0,1,2,3} keeping ω = 0.1 = const. in
comparison with the receptivity prototype at α = 1.55 (thick line). Apparently, forcing
structures (red lines, hollow symbols) are almost indistinguishable for all cases and
localised about the critical layer. The excited responses (black lines, solid symbols of
same shape) all have radially disjoint support and are localised in the core (indicated
by grey shading). Nevertheless, the complexity of the response, measured in terms of its
roots, say, is seen to increase with the axial wavenumber.

This finding provides evidence for the archetypal receptivity structures shown in
fig. 5(b) existing in principle over the considered range of wavenumbers irrespective
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Figure 6: Real and imaginary part of the leading-order forcing and response structures
(hollow red and solid black symbols, respectively) for the Lamb-Oseen vortex (m = 1,
RΓ = 5000) at ω = 0.1 and α ∈ {0,1,2,3} in comparison with the archetype at α = 1.55
(thick line; cf. also fig. 5). The characteristic forcing structures have essentially identical
radial patterns in the vicinity of the critical layer at rc ≈ π. Resonantly excited forcing
structures show comparable behaviour with spatial complexity increasing with α.

whether the resolvent norm peaks or not and further underscores the generality of the
mechanism. It would appear that our conclusion is consistent with Antkowiak (2005,
fig. 3.26), yet contrary to previous statements that receptivity characteristics depend on
α (e.g. Fontane et al. 2008, p. 245). Further corroboration of insensitivity to variations
in α will be presented in § 5 when discussing resolvent-norm surfaces over (ω,α) in fig. 7.

The observed selectivity in ω and r but not in α is consistent with the matching of
critical layers for all vortex models discussed in § 4.3.

5. Robustness of linear vortex receptivity

It is well-known that a sufficiently strong jet component in the core is necessary to
destabilise an isolated unstrained vortex. This fact suggests that linear stability (i.e. the
discrete spectrum) quite crucially depends on the precise vortex structure. In contrast,
receptivity according to def. 1 is rather insensitive to major changes in the reference flow
as will be affirmed henceforth by comparing different vortex models. We believe that this
makes sustained forcing a better candidate to explain trailing-vortex dynamics which is
found to obey universal characteristics, too.

Assessment of Lamb-Oseen, Batchelor and Moore-Saffman vortices as reference-flow
models suggests the following generality conjecture which will be detailed thereafter.
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Figure 7: Resolvent norm of the Batchelor vortex in the (α,ω)-plane forRΓ = 6000 and q =
4 showing (thin) nested contours for amplification levels {10n ∶ n = 0.5,1.0,1.5, . . . ,4.5}
peaking at the thick lines, comparing m = −1 (left) and m = 1 (right). Superposition of the
least damped eigenvalues obtained from solution of the eigenvalue problem (thick lines)
reveals alignment with the peaks of the resolvent norm. Grey shading measures effective
local nonnormality defined by log10 ∣∣Rm,α(iω;L)∣∣/d(ω,σm,α(L))−1 ∈ [0,∞), α ∈ [0,3],
the lower bound being perfect local normality (white). Nonnormality happens to be
essentially correlated with the possibility of having critical-layer forcing. Inclined graphs
D = D(Sm) indicate the loci of candidate (ω,α)-pairs for the experimental meandering
frequency Sm (from Bailey et al. 2018, fig. 7(a)) obtained from the Doppler relation.

Conjecture 3. Receptivity of a trailing vortex to freestream disturbances (as defined
in § 2.1) in the framework of § 2.3 is generic for the reference flows introduced in § 2.2.

Results for the Batchelor vortex have been computed for the case discussed in Fabre
& Jacquin (2004, p. 259) with regards to the vortex-meandering experiments of Jacquin
et al. (2001) with q = 4 and Rδ = 1500, corresponding to RΓ = 6000.† The Moore-Saffman
vortex is parametrised on n ∈ {0.7,0.8}. While parameters in § 4 were chosen for the
sake of comparability to other theoretical approaches, the present choice is realistic for
wind-tunnel experiments.

Contours (thin lines) of the resolvent norm in the (α,ω)-plane are shown in fig. 7
for m = ±1 in comparison with curves of the least damped eigenvalues (thick lines).
Essentially the same amplification contours and perturbation families are obtained for
the Lamb-Oseen and Moore-Saffman vortex (not shown). This already suggests some
generality of perturbation dynamics with α > 0, m = 1 and for q, RΓ sufficiently large.

Perturbations are conventionally classified according to their relative motion with

† Rδ ∶= r0 δUz/ν is related to RΓ through the swirl number as RΓ = ∣q∣Rδ (Fabre & Jacquin
2004, p. 242).
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respect to the reference flow. Thus, comparing signs of the azimuthal phase and mean
velocity we define modes with sgn ω/m ≠ sgn Uθ as countergrade, modes with sgn ω/m =
sgn Uθ and ∣ω/m∣ ∈ [0,1] as retrograde and modes with sgn ω/m = sgn Uθ and ∣ω/m∣ > 1
as cograde (cf. Fabre et al. 2006, p. 241). The different regimes are indicated in figs. 7 and
8. As for the Lamb-Oseen vortex, one broadly distinguishes four families of perturbation
structures, namely of core C, viscous V, displacement D and mixed L type (see Fabre
et al. 2006, pp. 247–255). Countergrade perturbations with m = −1 belong to the D and
L1 families (Fabre et al. 2006, fig. 14(a)) with increasing structural complexity in r for
subsequent branches as α is increased. Generally, forcing structures having n > 0 zero
crossings induce response with n ≥ 0 roots, both being essentially localised in the core.

Different shapes of the resolvent norm ∣∣Rm,α(iω;L)∣∣ for m = ±1 are due to the axial
mean velocity breaking azimuthal symmetry (cf. § 2.3). However, this distinction seems to
be not fundamental since co-, retro- and countergrade perturbations are always associated
with essentially the same families. This similarity between results for m = ±1 is further
highlighted in fig. 8.

Selective nonnormality can be quantified by inspection of the quantity

log10

∣∣Rm,α(iω;L)∣∣
d(ω,σm,α(L))−1 ∈ [0,∞), α ∈ [0,3], m = ±1.

By the left-hand side of (3.2) the argument is identically unity if Rm,α(iω;L) is (locally)
effectively normal, hence, corresponding to the lower bound. As for the Lamb-Oseen
vortex, countergrade waves are always associated with an effectively normal resolvent.
On the other hand, for retrograde waves, pseudo-resonance exceeds classical resonance
of the equivalent normal operator by up to three orders of magnitude. Most importantly,
fig. 7 confirms conj. 2 that effective nonnormality, and thus receptivity, are strongly
confined to a small frequency band, correlated with the critical layer. These findings
hold irrespective of the considered vortex model, m = ±1 and α.

Figure 7 clearly shows that the resolvent norm of the Batchelor vortex develops sharp
distinguished crests, all being aligned with the least stable eigenvalues. Each of the
crests induces a dynamic regime in its neighbourhood such that the entire (ω,α)-plane
is partitioned into different parameter subsets associated with distinguished dynamic
behaviour. Therefore, the spectral signature (ω and α) of the forcing field will in general
matter as it favours a response to different perturbation subspaces (D, L, etc.). However,
as already anticipated in fig. 6, grey shading in fig. 7 affirms that receptivity is confined
to a universal frequency band and the generic family of critical-layer waves with only
small variations in alpha.

In order to gain further insight into axial-flow induced nonnormality, fig. 8 shows a
comparison of the resolvent norm extracted from fig. 7 at α = 1.55 for m = ±1 and for the
Lamb-Oseen vortex. For the ease of comparison, the m = −1 spectrum is plotted on the
negative frequency (i.e. reflected along the vertical axis at ω = 0). In all cases the central
peaks of the L family are universally observed as well as the general behaviour away
from steady forcing. Receptivity candidates at higher frequencies are labelled V as in
Fabre et al. (2006, p. 252) to emphasize their viscous nature. In fact, the discussion in §4
indicates that they are transitional structures between the pure critical-layer receptivity
structures L and core perturbations C. The only noticeable difference in the three cases
is the location of the peaks of the D and L1 families. In the light of the above discussion
this suggests that for vortices nonnormal dynamics is generic while normal dynamics is
more sensitive to the reference state.

Generality and robustness is further highlighted in fig. 9, showing a comparison of the
resolvent norm for the three different reference states and m = 1. The essential behaviour
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Figure 8: Resolvent norm of the Batchelor vortex for RΓ = 6000 and q = 4 comparing
m = −1 (plotted on the negative frequency axis −ω) and m = 1 for α = 1.55, as well as
the resolvent norm for the Lamb-Oseen vortex (RΓ = 5000). The critical-layer region of
candidate receptivity is shaded in gray while the darker subset indicates the receptivity
regime R indicated in fig. 3.

is unchanged by modification of the reference flow. As to be expected from discussion of
the linear operator in § 4.1, differences mostly manifest for core perturbations associated
with the C family.

Together, figs. 8 and 9 provide evidence that for vortex receptivity, and thus presum-
ably vortex meandering, the detailed core structure of the reference state is of minor
importance. These considerations support conj. 3, at least for the considered dynamics,
and hence a posteriori justify limitation to the canonical case of a Lamb-Oseen vortex
in § 4. It should be noted that this conclusion is in agreement with Antkowiak (2005, p.
47) and Pradeep & Hussain (2006, p. 252).

Our study affirms that generally vortices are most receptive to disturbances in the
critical layer. Heaton & Peake (2007, p. 272) and Mao & Sherwin (2012, pp. 42, 44) come
to the related conclusion that transient growth of the Batchelor vortex is essentially a
consequence of the interaction of non-orthogonal eigenvectors pertaining to the inviscid
continuous spectrum, with negligible contributions from the discrete spectrum. (Different
from Antkowiak 2005, stating that combination of discrete and (unbounded) continuous
spectrum.) Roy & Subramanian (2014, p. 405) demonstrate how the inclusion of singular
modes pertaining to the inviscid continuous spectrum enables interaction between vortex
and freestream, suggesting that a linear model of receptivity to ambient turbulence is
intimately related to the inviscid continuous spectrum.

More generally, optimal localisation of input disturbances in the critical layer is
universally observed in shear flows. In the context of boundary-layer flow, analysis of
the eigenmodes of the adjoint, led Hill (1995, p. 185) to conclude that perturbations are
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Figure 9: Comparison of resolvent-norm spectra for the Lamb-Oseen, Batchelor and
Moore-Saffman (MS) vortices for α = 0.5, m = 1, RΓ = 5000, Rδ = 1000 and q = 10,
showing that axial velocity has a significant effect for perturbations in the core only.

most sensitive to forcing in the critical layer. Systematic alignment of perturbations with
the critical layer in boundary-layer flow similarly to our fig. 5(a) is equally shown in
McKeon (2017, figs. 7, 8, 10). The importance of critical-layer dynamics is also reported
for pipe and Couette flow as well as for exact coherent states (e.g. McKeon & Sharma
2010; Hall & Sherwin 2010).

6. Frequency selection in meandering experiments

Trailing-vortex experiments reveal that meandering is principally associated with a
broadband power spectral density (Devenport et al. 1996, p. 93), however, the principal
energy-carrying structures are confined to a narrow frequency band (Jacquin et al. 2001;
Bailey et al. 2018). Sufficiently far downstream (more than five chord lengths, say),
experiments consistently report convergence towards the universal Strouhal number of
Sm ∶= fmr1/U∞ ∼ 10−2 (m stands for meandering), while closer to the wing, energy
may be concentrated at a higher frequency (Bailey et al. 2018, fig. 7). Hence, despite
its formal broadband nature, trailing-vortex dynamics bears spectral coherence in the
sense that the most energetic feature (i.e. meandering) happens at a specific frequency
irrespective of freestream intensity, suggesting idealisation in terms of a monochromatic
wave. Experiments of Bailey et al. (2018, fig. 7) identify the peak frequencies Sm ∈{0.02,0.3} for measurement stations z ≲ 5c and z ≳ 5c, respectively.

Direct comparison of these characteristic experimental frequencies with the spectral
signature of the resolvent is, however, complicated since the two analyses do not use
the same reference frames. The principal issue is a manifestation of the Doppler effect
for space-time signals (Landau & Lifshitz 1959, §68). In experiments, probing a spatio-
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temporally varying signal at a fixed position in space, spatial and temporal variations are
indistinguishably recognised as temporal unsteadiness. Consequently, the experimentally
obtained frequencies in fact correspond to the locus D(Sm) ∶= {(ω,α) ∈ R2 ∣ Sm − (ω +
αU∞)/(2π) = 0} (up to changes in non-dimensionalisation; r1/r0 = 1.12), assuming
constant background advection U∞/(Γ0/(2πr0)) = 1.83 (Bailey et al. 2018). The loci
D(Sm) ⊂ R2 for Sm ∈ {0.02,0.3} are shown in fig. 7 for the case of the Batchelor vortex.

If vortex meandering is due to generalised receptivity, assessment of the effective local
nonnormality (shown in grey shading in fig. 7) allows us to restrict considerably the
range of candidate (ω,α)-pairs identified from the Doppler relation. Taking into account
that receptivity relies on radial perturbation transport, Sm = 0.3 would be composed
from 1.3 ≲ α ≲ 1.7 and 0 < ω ≲ 0.6 while Sm = 0.02 would have contributions from
0 ≲ α ≲ 0.1 and 0 < ω ≲ 0.3. It should be noted that (nearly) steady excitation is excluded
since the associated forcing-response structures are both localised in the freestream. The
resolvent norm along the Doppler curve for Sm = 0.3 is qualitatively identical to that
shown in fig. 8. Since the resolvent norm peaks sharply at the frequency-wavenumber
pair of (ω,α) ≈ (0.15,1.6) it is expected that the response should be dominated by this
monochromatic contribution.

7. Conclusion

We have investigated linear vortex receptivity by means of the resolvent (i.e. a family
of transfer operators mapping the external forcing to the vortex response in frequency
space). Discussion of (1.1) and (1.2) makes clear that the present study is complementary
to previous linear approaches. In fact, the resolvent is at the root of all linear theories.
Similarity of our results with those reported in the literature is therefore of structural
rather than physical origin. Nevertheless, analysis of the resolvent is best suited for the
question of freestream receptivity. Furthermore, analysis in frequency space allows us
to relate the spectrum (determining the equivalent normal dynamics) and nonnormal
dynamics. Our findings confirm previous results of Heaton & Peake (2007) and Mao &
Sherwin (2012) in time domain (analysis of the propagator T(t)).

The essential prerequisite for linear receptivity is nonnormality. Formulation of the
problem in terms of the resolvent is appropriate to quantify nonnormality locally (in
frequency space). Despite the governing operator being nonnormal, it was shown that
the effective behaviour for vortices depends on the excitation frequency (called selective
nonnormality). To the best of our knowledge, this work contains the first systematic use
of resolvent bounds to classify nonnormality of linear vortex dynamics (considerable use
of these bounds can be found in e.g. Reddy et al. 1993, too).

We found nonnormality of linear vortex dynamics to be essentially restricted to
frequencies aligned with the inviscid continuous spectrum (characterising perturbation
dynamics with stationary material advection). Accordingly, the associated forcing struc-
tures are localised in the critical layer. Using an upper bound of nonnormality in
terms of the numerical range, we showed that disturbance alignment with the critical
layer is necessary to maximise nonnormality. This finding is given physical meaning by
consideration of the instantaneous variation of the integral kinetic energy.

Considering Lamb-Oseen, Batchelor and Moore-Saffman vortices as reference states,
we found the above features of nonnormality to be robust. In particular, irrespective of
the vortex model, linear dynamics turns out to be frequency-selectively nonnormal on
the same range with forcing structures being systematically localised about the critical
layer. On the contrary, nonnormality is almost invariant under variations of the axial
wavenumber on the considered range. We conclude that freestream receptivity as a
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consequence of nonnormal dynamics is largely independent of the precise vortex-core
structure and in particular does not rely on axial mean velocity. This is in stark contrast
to results of asymptotic stability (discrete spectrum) which crucially depends on the
vortex model. Yet, universality of experimental trailing-vortex dynamics suggests that
it should be associated with a robust mechanism, common for a large class of vortices.
As motivated in § 1, we suggest a model of trailing-vortex dynamics as a linear system
driven by the advective nonlinearity.
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Appendix A. Numerical implementation, verification and validation

The present study relies on canonical and spectral decomposition of the linear operators
R(s;L), L and L† as given in (2.3) which are approximated using a finite-element
discretisation (see § 2 of Sipp & Marquet 2013 for details). The implementation uses
freefem++ (Hecht 2018) which uses the ARPACK library to solve eigenvalue problems
(Lehoucq et al. 1997). Finite-element functions are fixed to the linear P1 and quadratic P2
Lagrangian finite elements for pressure and velocity, respectively (Hecht 2018, pp. 174–
175). The radial domain in all computations is R = (0, rmax) = (0,1]∪ (1,6]∪ (6, rmax) =
R1∪R2∪R3 with rmax = 30. The number of elements in each part of this partition is 200,
200 and 150 for R1, R2 and R3, respectively. Grid refinement studies have been done
for verification and convergence of the presented results is assured by variation of the
maximum radius rmax ∈ [30,200].

The results of the canonical decomposition of the resolvent have been validated
against the studies of Guo & Sun (2011) and Blanco-Rodŕıguez et al. (2017). Spectral
decomposition of L is validated by comparing with the results of Fabre et al. (2006). To the
best of our knowledge spectral decomposition of the adjoint L† has not been reported for
vortices before; validation of the computation is therefore obtained by assuring condition(i) σ(L) = σ(L†) on the spectra and (ii) bi-orthogonality to hold (Kato 1980, Thm. 6.22;
Friedman 1962, p. 112).
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28 T. Bölle et al.

Landahl, M. T. 1967 A wave-guide model for turbulent shear flow. Journal of Fluid Mechanics
29, 441–459.

Landau, L. D. & Lifshitz, E. M. 1959 Fluid mechanics. Pergamon Press.
Le Dizès, S. 2004 Viscous critical-layer analysis of vortex normal modes. Studies in Applied

Mathematics 112 (4), 315–332.
Lehoucq, R. B., Sorensen, D. C. & Yang, C. 1997 Arpack users guide: Solution of large

scale eigenvalue problems by implicitly restarted arnoldi methods.
Leibovich, S. & Stewartson, K. 1983 A sufficient condition for the instability of columnar

vortices. Journal of Fluid Mechanics 126, 335–356.
Mao, X. & Sherwin, S. 2011 Continuous spectra of the Batchelor vortex. Journal of Fluid

Mechanics 681, 1–23.
Mao, X. & Sherwin, S. 2012 Transient growth associated with continuous spectra of the

Batchelor vortex. Journal of Fluid Mechanics 697, 35–59.
Marshall, J. S. & Beninati, M. L. 2005 External turbulence interaction with a columnar

vortex. Journal of Fluid Mechanics 540, 221–245.
McKeon, B. J. 2017 The engine behind (wall) turbulence: Perspectives on scale interactions.

Journal of Fluid Mechanics 817, 1–86.
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow.

Journal of Fluid Mechanics 658, 336–382.
Melander, M. V. & Hussain, F. 1993 Coupling between a coherent structure and fine-scale

turbulence. Physical Review E 48 (4), 2669.
Moore, D. W. & Saffman, P. G. 1973 Axial flow in laminar trailing vortices. Proceedings of

the Royal Society of London. A. Mathematical and Physical Sciences 333 (1595), 491–508.
Morkovin, M. V. 1988 Recent insights into instability and transition to turbulence in open-flow

systems. Institute for Computer Applications in Science and Engineering, NASA Langley
Research Center.

Pradeep, D. S. & Hussain, F. 2006 Transient growth of perturbations in a vortex column.
Journal of Fluid Mechanics 550, 251–288.

Reddy, S. C., Schmid, P. J. & Henningson, D. S. 1993 Pseudospectra of the Orr-Sommerfeld
operator. SIAM Journal on Applied Mathematics 53 (1), 15–47.

Reddy, S. C. & Trefethen, L. N. 1994 Pseudospectra of the convection-diffusion operator.
SIAM Journal on Applied Mathematics 54 (6), 1634–1649.

Riesz, F. & Sz.-Nagy, B. 1956 Functional analysis. Blackie.
Roy, A. & Subramanian, G. 2014 Linearized oscillations of a vortex column: The singular

eigenfunctions. Journal of Fluid Mechanics 741, 404–460.
Saric, W. S., Reed, H. L. & Kerschen, E. J. 2002 Boundary-layer receptivity to freestream

disturbances. Annual Review of Fluid Mechanics 34 (1), 291–319.
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D | Long French résumé

Le flottement tourbillonnaire (vortex meandering en anglais) est une manifestation de
l’instationarité tourbillonnaire observée dans les expériences depuis les années 1970. Celle-
ci échappe encore aujourd’hui à une compréhension solide des mécanismes qui la sous-
tendent. L’objectif de la présente thèse est de décrire et d’expliquer ces mécanismes. A ce
titre, les travaux sont guidés par les questions suivantes :

– Pourquoi les tourbillons flottent-ils ? – Quelle est l’origine de ce phénomène ? –
Quels sont les mécanismes essentiels ? – Quelles sont les caractéristiques récurrentes ? –
Qu’est-ce qui est indispensable pour son occurrence ?

Le "meandering" du tourbillon, dans sa forme la plus générale, est le déplacement latéral
et apparemment aléatoire du tourbillon dans son ensemble. Le phénomène est documenté
pour divers écoulements dominés par les tourbillons, notamment dans l’aéronautique (tour-
billon marginal et d’entrée des moteurs jet) et la géophysique (tornades et cyclones); on
peut toutefois s’attendre à ce que les tourbillons soient affectés à toutes les échelles. Dans
le cas particulier du "meandering" du tourbillon marginal, auquel on s’intéresse ici, la
dynamique est toujours associée aux trois caractéristiques suivantes :(i) croissance de l’amplitude,(ii) coexistence d’une signature spectrale universelle à large bande et manifestation
d’une cohérence ou d’une organisation progressive,(iii) concentration progressive et amplification de l’énergie de fluctuation dans le (cœur
du) tourbillon.

La signature spectrale (c’est-à-dire l’accumulation progressive d’énergie dans le do-
maine des basses fréquences) témoigne du "retour à l’ordre" ; cela signifie que l’évolution
typique des sillages de l’aile s’oppose au problème de transition vers la turbulence ("route
vers la turbulence"), augmentant plutôt progressivement l’ordre à partir d’un état non
ordonné et initialement complexe près de l’aile. Nous quantifions le niveau d’ordre en
faisant appel à l’entropie et à l’analyse des séries temporelles non linéaires (à savoir, par
des estimations de la dimension de "l’attracteur du meandering" et à partir de la structure
caractéristique des récurrences). Une analyse du nombre de Rossby révèle des parallèles
avec les caractéristiques de l’évolution de la turbulence dans les expériences d’écoulement
en rotation.

En ce qui concerne la croissance de l’amplitude, nous avons des preuves expérimentales
importantes que "amplitude ∼ intensité de la turbulence×√

temps/circulation" est valable
universellement. Ce comportement rappelle fortement un mouvement Brownien du tour-
billon dans son ensemble. Nous soulignons deux observations importantes de cette loi –
la réponse du tourbillon est linéairement forçée par l’intensité de la turbulence externe
tandis que le tourbillon résiste à la déformation d’autant plus qu’il est fort (mesuré par la
circulation).

Dans l’ensemble, nous proposons de modéliser la dynamique du tourbillon marginal en
tant que réceptivité généralisée du tourbillon à l’excitation de l’écoulement libre (free stream
en anglais) de manière à concentrer l’énergie de fluctuation dans le cœur tout en s’efforçant
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d’obtenir un ordre général. Une décomposition en modes orthogonaux (POD) de la base
de données expérimentale montre que les principales perturbations correspondent à une
paire de dipoles localisés dans le cœur. L’énergie cinétique dans l’espace de perturbation
couvert par ces deux modes croît en aval précisément au détriment de l’écoulement moyen.

Comme modèle théorique, nous partons des équations de Navier–Stokes linéarisées,
que nous résolvons formellement dans l’espace de Fourier avec la résolvante. Dans un
cadre d’opérateur de transfert linéaire, la non-normalité est nécessaire pour la réceptivité
du tourbillon à l’excitation dans l’écoulement libre car, sinon, l’excitation et la réponse
partagent inévitablement la même localisation. Cette condition préalable conduit à une
restriction importante de la bande de fréquence admissible, qui est entièrement corrélée à
un forçage de couche critique (c’est-à-dire le spectre continu non visqueux). L’archétype
de la réceptivité (et probablement du "meandering") obéit au mécanisme mère–fille élucidé
par Boberg & Brosa (1988).1 C’est-à-dire des filaments à faible énergie (mères) enroulés
autour de la couche critique dans la (proche) périphérie du cœur du tourbillon excitent par
résonance des perturbations du cœur dipolaire (sœurs), aspirant l’énergie de l’écoulement
moyen. Ce mécanisme est valable pour différents modèles de tourbillon et est donc un bon
candidat pour le "meandering" des tourbillons observés de manière universelle.

1Boberg, L. & Brosa, U. (1988). Onset of turbulence in a pipe. Zeitschrift für Naturforschung A,
43(8–9), 697–726.
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Titre : Étude sur le flottement tourbillonnaire

Mots clés : flottement tourbillonnaire, résolvante, analyse du série temporelle, mouvement Brownien

Résumé : Le ”meandering” est une manifesta-
tion de l’instationarité tourbillonnaire, observée dans
les expériences depuis les années 1970, qui reste
mal comprise. L’objectif de la présente étude est de
décrire et d’expliquer le phénomène.
Le ”meandering” est le déplacement latéral, appa-
remment aléatoire, du tourbillon dans son ensemble,
connu pour divers écoulements tourbillonnaires. Dans
le cas d’un tourbillon marginal, le mouvement est tou-
jours associé avec les caractéristiques suivantes :
(i) croissance d’amplitude en aval,
(ii) coexistence d’une signature spectrale large
bande universelle et d’une organisation progressive,
(iii) concentration et amplification graduelles de
l’énergie de fluctuation dans le tourbillon.
La signature spectrale est un témoignage du ”retour à
l’ordre” ; c’est-à-dire que l’évolution typique du sillage
augmente progressivement l’ordre en dehors d’une
dynamique complexe proche de l’aile. Nous quanti-
fions le niveau d’ordre en faisant appel à l’entropie et
à l’analyse des séries temporelles non-linéaires. Une
analyse du nombre de Rossby révèle des parallèles
avec l’évolution de la turbulence dans les expériences

d’écoulement en rotation.
En ce qui concerne la croissance d’amplitude, nous
avons des preuves expérimentales que ”amplitude ∼
intensité de la turbulence ×

√
temps/circulation” est

universellement valable. Cette loi suggère un mouve-
ment Brownien du tourbillon dans son ensemble.
Nous modélisons la dynamique des tourbillons margi-
naux comme la réceptivité généralisée du tourbillon à
l’excitation de l’écoulement libre. Une décomposition
en modes orthogonaux (POD) de la base de données
expérimentale montre que les principales pertur-
bations correspondent à une paire de dipoles de
déplacement dans le cœur. L’énergie des perturba-
tions croı̂t en aval au détriment du champ moyen.
Théoriquement, nous résolvons formellement les
équations de Navier–Stokes linéarisées dans l’es-
pace de Fourier avec la résolvante. Dans ce cadre, la
non-normalité est nécessaire pour la réceptivité. Ce
prérequis montre que le forçage pertinent est corrélé
à la couche critique. L’archétype de réceptivité est
constitué de filaments de faible énergie enroulés au-
tour de la couche critique, qui excitent les perturba-
tions du cœur, aspirant l’énergie du champ moyen.

Title : Treatise on the Meandering of Vortices

Keywords : Vortex meandering, resolvent, nonlinear time-series analysis, Brownian motion

Abstract : Meandering is a manifestation of vor-
tex unsteadiness observed in experiments since the
1970s which remains puzzling in essential aspects.
The objective of the present study is to describe and
explain the subject matter – Why meander vortices?
Vortex meandering is the lateral, apparently random
motion of the vortex as a whole, documented for va-
rious flows. In the case of trailing vortices, the motion
is always associated with the following characteristics:
(i) downstream amplitude growth,
(ii) coexistence of a universal broadband spectral si-
gnature and progressive organization,
(iii) gradual concentration and amplification of the
fluctuation energy in the vortex.
The spectral signature is a testimony of the ’return
to order’; that is, the typical evolution of wing wakes
progressively increases orderliness out of a complex
state close to the wing. We quantify the level of or-
derliness by appeal to the entropy and nonlinear time-
series analysis. An analysis of the Rossby number re-
veals striking parallels to the turbulence evolution in
rotating-tank experiments.

As regards the amplitude growth, we have conside-
rable experimental evidence that ’amplitude ∼ turbu-
lence intensity×

√
time/circulation’ holds universally.

This behaviour is strongly reminiscent of a Brownain
motion of the vortex as a whole.
We model trailing-vortex dynamics as the generali-
zed receptivity of the vortex to excitation from the free
stream. Proper Orthogonal Decomposition of the ex-
perimental database shows that the leading pertur-
bations correspond to a pair of displacement-wave
dipole patterns in the core. The energy in the per-
turbation space spanned by these two modes grows
downstream at the expense of the mean flow.
As a theoretical model, we formally solve the lineari-
sed Navier–Stokes equations in Fourier space using
the resolvent. In this framework, non-normality is ne-
cessary for receptivity. This prerequisite shows that
the pertinent forcing is correlated with the critical layer.
The receptivity archetype consists of low-energy fila-
ments around the critical layer, which excite core per-
turbations, sucking energy from the mean flow.
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