

Exploration génétique de la polyploïdie du genre Juniperus (Cupressaceae)

Perla Farhat

▶ To cite this version:

Perla Farhat. Exploration génétique de la polyploïdie du genre Juniperus (Cupressaceae). Génétique des plantes. Université Paris Saclay (COmUE); Université Saint-Joseph (Beyrouth), 2019. Français. NNT : 2019SACLS125 . tel-03311356

HAL Id: tel-03311356 https://theses.hal.science/tel-03311356

Submitted on 31 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Exploration génétique de la polyploïdie du genre *Juniperus* (Cupressaceae)

Thèse de doctorat de l'Université Saint-Joseph et de l'Université Paris-Saclay préparée à l'Université Paris-Sud

École doctorale n°567 Sciences du végétal : du gène à l'écosystème (SdV) Spécialité de doctorat : Biologie

Thèse présentée et soutenue à Beyrouth, le 31 mai 2019, par

Perla FARHAT

Composition du Jury :

UNIVERSITÉ

Comprendre le monde, construire l'avenir

Richard MAROUN Professeur, Université Saint-Joseph Président Joan VALLÈS Professeur, Universitat de Barcelona Rapporteur Thierry GAUQUELIN Professeur, Université Aix Marseille Rapporteur Bouchra DOUAIHY Maitre de conférence, Université Libanaise Examinatrice Michel DRON Professeur, Université Paris-Saclay Examinateur Thierry ROBERT Maitre de conférence, Université Paris-Sud Directeur de thèse Magda BOU DAGHER KHARRAT Professeur, Université Saint-Joseph Co-Directrice de thèse Sophie NADOT Professeur, Université Paris-Sud Invitée

À mon ange, mon oncle Tony de qui j'ai hérité l'amour des plantes,

À ma famille,

Et à tous ces genévriers que j'adore...

Remerciements

Ce n'est pas par hasard que cette section est placée en premier dans un rapport de thèse! Même avant la table des matières!! En effet, sans l'aide de toutes les personnes citées ci-dessous, je n'aurais pas pu commencer et terminer ma thèse! Je tiens donc à les remercier sincèrement de m'avoir accompagnée et aidée à mener à bout cette thèse.

Je tiens tout d'abord à remercier le Conseil National de la Recherche Scientifique au Liban (CNRS-L), le Conseil de la recherche de l'Université Saint-Joseph et l'Université Paris-Sud pour le financement de ce projet de thèse.

Je suis très reconnaissante à la Faculté des sciences de l'USJ, à son doyen le Professeur Richard Maroun, à l'école doctorale "Sciences, d'Ingénierie et de Technologie (EDSIT)" et au laboratoire "Biodiversité et Génomique Fonctionnelle". Mes grands remerciements vont également à l'Université Paris-Sud, Université Paris Saclay, l'école doctorale "Sciences du Végétal: du gène à l'écosystème (SDV)" et au laboratoire "Ecologie, Systématique et Evolution". Merci beaucoup de m'avoir donnée la possibilité de faire cette thèse au sein de vos établissements et avec vos équipes de choc.

Mes plus grands remerciements vont à Dr Sonja Siljak-Yakovlev, celle qui m'a sauvée quand le monde s'est écroulé sou mes pieds : au moment où le co-directeur de thèse précédent était contraint à abandonner le travail pour des raisons personnelles. Vous avez cru en ce projet et en moi (sans même connaître mes capacités) et vous avez redonné vie à ce projet dans le laboratoire de votre affiliation ESE. En plus, vous avez été d'un grand soutien pendant mon séjour en France avec vos yeux passionnés par la science, avides à découvrir et pleins d'espoir. Assurez-vous que je n'oublierai jamais vos petits conseils et suggestions, je les garderai toujours en mémoire.

De plus, je suis reconnaissante au co-directeur de cette thèse, Dr Thierry Robert, qui a accepté le défi et m'a pris sous son aile ! Il a cru en ce projet dès la première seconde. Je suis vraiment chanceuse de vous avoir comme directeur de thèse. Vous m'avez fait confiance et donné une grande liberté pour choisir et concevoir les expériences et apprendre l'autonomie. Vous m'avez beaucoup soutenue au cours de cette thèse.

Que puis-je dire pour vous, Prof. Magda Bou Dagher Kharrat, tous les remerciements du monde ne suffiront peut-être pas. Je n'oublierai pas que vous avez rédigé la proposition de ma thèse à l'hôpital pour ne pas rater la date limite pour postuler à la bourse et pour me donner l'occasion de travailler sur

ce beau sujet. Je n'oublierai jamais toutes nos visites de terrain pleines d'action, d'infractions et des fous rires. Merci d'être la directrice de thèse et la grande sœur en même temps.

Je voudrais également remercier vivement Prof. Robert P. Adams, le père des genévriers, qui a été d'un grand soutien lors de ma thèse et qui m'a confié du matériel inestimable de sa précieuse collection de genévriers.

"Un pour tous et tous pour un", voilà comment nous vivons dans notre famille et c'est cet amour qui m'a encouragée tout au long de ma thèse. Le plus grand merci va à mes parents : Yasmina et Farhat, à mes sœurs, frères, nièces, neveux, belles sœurs et beaux-frères. Je suis si chanceuse d'avoir une si belle famille. Je vous remercie fortement.

À tous mes amis, surtout les plus proches : Alodie Snirc, Amani Ojeil, Katia Saadé, Rana Jardak, Rhéa Kahale, Stephanie Le Prieur et Yuincho Lo. Je n'aurais pas pu y arriver sans votre soutien, votre aide et votre amour. J'ai de la chance de vous avoir dans ma vie. Vous n'êtes pas seulement ma deuxième famille; mais des membres de ma famille.

À toutes les personnes qui m'ont prêté main forte dans les manipes, merci beaucoup. Dr. Oriane Hidalgo pour son aide dans la reconstruction ancestrale de la taille du génome, Professeur Ilia Leich et le laboratoire Jordwell au Royal Botanical Gardens, Kew pour les facilités données pendant les mesures de la taille du génome. Dr Najat Takvorian pour son aide précieuse dans les expériences de transformation bactérienne. Carole Saliba, Liliane Bou Khdoud, Rana Jardak, Rhéa Kahale pour le coup de main dans les extractions d'ADN. Anthony Roukoz, Gaelle Daou, Manea Mln et Lucy Tbt pour avoir participé dans les mesures des milliers de pollen de genévriers. Dr Mickael Bourge et Nicolas Valentin pour la mesure de la taille du génome.

Je tiens à remercier l'association Jouzour Loubnan et plus particulièrement Anthony Roukoz de m'avoir ouvert les portes du Laboratoire de Conservation et de Germination des Graines pour y effectuer des tests et des expérimentations sur les semences de genévrier.

Merci beaucoup à tous les fournisseurs d'échantillons et plus particulièrement le Conservatoire Botanique des Alpes (France) représenté par Luc Garreau, le passionné des thurifères qui nous a guidés durant notre excursion dans les Alpes à la recherche de *J. thurifera* et *J. sabina*.

Liste des abbreviations

%	Pourcentage	
°C	Degré centésimal	
μg	Microgramme	
μl	Microlitre	
2C DNA	Quantité totale d'ADN par génome	
2 <i>n</i>	Nombre de chromosome dans une cellule diploide	
ADN	Acide Désoxyribonucléique	
AFLP	P Amplified fragment length polymorphism	
BAYLU	Baylor University Herbarium	
BCN	University of Barcelona Herbarium	
BLB	Bering Land Bridge	
C value	Quantité totale d'ADN par génome haploïde	
CBNA	National Alpine Botanical Conservatory	
CCDB	Chromosome Counts Database	
cm	centimètre	
CMF	Cytométrie en flux	
CTAB	cetyltrimethyl ammonium bromide	
CV	Pourcentage de variation	
Cx	Monoploid genome size	
df	Degrees of freedom	
dNTPs	Deoxyribonucleotide triphosphates	
EDTA	Ethylenediaminetetraacetic acid	
EE	Représente le génome d'une espèce diploide	
FAM	6-fluorescein amidite (6-FAM)	
FCM	Flow cytometry	
GNB	Gif nuclear-isolation buffer	
GS	Genome size	
h	heure	
INRA	Institut national de la recherche agronomique	
ITS	Internal Transcribed Spacer	

JS	J. sabina	
JT	J. thurifera	
Κ	Genetic clusters	
L.	Linnee	
LB buffer	Lithium borate buffer	
m	Mètre	
Μ	Molaire	
Mbp	Megabase pairs	
MCMC	Markov chain Monte Carlo	
mg	Milligramme	
min	minutes	
mM	Millimolaire	
MOPS	4-morpholine propane sulphonate	
Mw	Megawatt	
Mya	Million years ago	
n	Nombre de chromosome dans une cellule haploïd	
NALB	North Atlantic Land Bridge	
nDNA	ADN nucléaire	
ng	Nanogramme	
Nj	Neighbor Joining	
nrDNA	ADN ribosomal nucléaire	
ONF	Office National des Forêts	
pb	Paire de base	
PBF	Polyploïdie de basse Fréquence	
PCR	Polymerase chain reaction	
pg	Picogramme	
pН	Potential hydrogen	
PH	Putative hybrid	
PHF	Polyploïdie de haute Fréquence	
PI	Propidium iodide	
PLP	Proportion de fragments polymorphes	
pmol	Picomole	

PP	Représente le génome d'une espèce diploide		
PPEE	2 séries de chromosomes non homologues P et E		
PPI	Polyploïdie pas d'information		
PPPP	2 séries de chromosomes homologues P		
PVP	Polyvinil pirolidoine		
Q	Genome admixture proportions		
RBGK	Royal Botanic Gardens Kew		
rpm	Révolutions par minute		
S	seconde		
S.S	sensus stricto		
sect.	section		
SNP	Single Nucleotide polymorphism		
SSR	Simple Sequence Repeats		
TE	Tris-EDTA		
TG	Taille du génome		
Tm	Melting temperature		
Tris	Tris (Hydroxymethyl) aminomethane		
UICN	Union internationale pour la conservation de la nature		
V.	Version		
WGD	Whole genome duplication		
x	Niveau de ploïdie		

Liste des figures

Figure 1. Plan de la thèse	. 12
Figure 2. Illustration simplifiée de l'autopolyploïdie et de l'allopolyploïdie. PP représente le génome de l'espè	èce
1. EE représente le génome de l'espèce 2. PPPP est le génome de la progéniture suite à l'autopolyploïdie et	
PPEE est le génome de la progéniture suite à l'allopolyploïdie.	. 14
Figure 3. Exemples des voies de formation des tétraploïdes via l'allopolyploïdie et l'autopolyploïdie en une ét	ape
(les rectangles représentes les taxons et les cercles représentes les gamètes)	. 16
Figure 4. Exemples des voies de formation des tétraploïdes par autopolyploïdie via un pont triploïde (les	
rectangles représentes les taxons et les cercles représentes les gamètes).	. 17
Figure 5. Exemples des voies de formation des tétraploïdes par allopolyploïdie via un pont triploïde (les	
rectangles représentes les taxons et les cercles représentes les gamètes).	. 18
Figure 6. Exemples des voies de formation des hexaploïdes par autopolyploïdie (les rectangles représentes les	ŀ
taxons et les cercles représentes les gamètes).	. 19
Figure 7. Exemples des voies de formation des hexaploïdes par allopolyploïdie (les rectangles représentes les	
taxons et les cercles représentes les gamètes).	. 19
Figure 8. Résumés des effets de la polyploïdie à court et à long terme	. 22
Figure 9. a. Les événements anciens de la polyploïdie dans les principaux groupes de plantes, d'après Clark &	5
Donoghue, (2018) modifié. b. La fréquence actuelle de la polyploïdie chez les espèces existantes en allant des	;
fréquences les plus élevées (PHF: Polyploïdie de haute fréquence) à la fréquence la plus basse (PBF: Polyploï	idie
de basse fréquence). PPI signifie qu'il n'y a pas d'information (Polyploïdie pas d'information). c. Représente	les
polyploïdes d'angiospermes et de gymnospermes qui présentent les nombres de chromosomes les plus élevés	
déduits de la revue de Husband et al. (2013).	. 24
Figure 10. Répartition géographique mondiale des trois sections de Juniperus	. 26
Figure 11. Les formes de graines et de feuilles des sections de Juniperus. A. Section Caryocedrus représentée	;
par J. drupacea. B. Section Juniperus représentée par J. oxycedrus et C. Section Sabina représentée par J.	
excelsa	. 27
Figure 12. A. la forme de Juniperus foetidissima photo prise à la population de Hermel au Liban. B. Représer	nte
la répartition géographique de J. foetidissima déduite d'après Adams (2014)	. 32
Figure 13. A. la forme de Juniperus sabina photo prise à la forêt de Saint Crépin (Alpes Française). B. La	
répartition géographique de J. sabina d'après Adams (2014).	. 33
Figure 14. A. la forme de Juniperus thurifera, photo prise à la forêt de Saint Crépin (Alpes Française). B. La	
répartition géographique de <i>J. thurifera</i> d'après Adams (2014)	. 34

Table des matières

Remero	ciements	2
Liste d	es abbreviations	4
Liste de	es figures	7
Introdi	uction	9
Chapit	re I : Généralités	13
A-	La polyploïdie	13
a.	Anomalies chromosomique et polyploïdie	13
b.	Les mécanismes conduisant à la polyploïdie	14
c.	Voies de formation de polyploïdie	15
d.	Effets de la polyploïdie	20
e.	Fréquence de la polyploïdie	22
B-	Le genre Juniperus	25
a.	Aperçu historique du genre Juniperus	27
b.	Ecologie et reproduction	28
c.	Importance du genévrier	29
d.	Polyploïdie et hybridation dans le genre Juniperus	30
e.	Les taxons d'intérêt de cette thèse	31
Problé	matique	35
Chapit	re II : La découverte d'un taux inattendu de polyploïdie chez le genre Juniperus	
(Cupre	essaceae)	37
Chanit	re III: Variation de la taille du génome et du niveau de ploïdie de Juninerus sabina L. dan	LS
son air	e de répartition géographique (Cupressaceae).	53
Chapiti zone sy	re IV: Premières évidences d'hybridation entre Juniperus thurifera et J. sabina dans leux Impatrique dans les Alpes Françaises	۔ 56
Chapit	re V: Décryptage de l'origine de l'hexaploïde Méditerranéen Juniperus foetidissima	83
Discus	sion générale	109
Conclu	ision et perspective	115
Référei	nces bibliographiques	118
Résum	é	

Abstract

Introduction

La polyploïdie ou la duplication du génome entier a été considérée comme l'un des principaux moteurs de l'évolution des plantes (Soltis *et al.*, 2004; Soltis & Soltis, 2009; Husband *et al.*, 2013). Ce phénomène fût l'intérêt principal des scientifiques depuis des décennies au cours desquelles de nombreuses études ont été menées pour découvrir les conséquences de la polyploïdie sur la diversification, l'adaptation et l'évolution génétique et génomique de groupes de plantes (Chen, 2007; Tayalé & Parisod, 2013; Van de Peer *et al.*, 2017).

La polyploïdie a été détectée dans toutes les groupes de plantes (Barker *et al.*, 2016). Au cours de l'histoire évolutive des plantes, l'évènement le plus ancien de polyploïdie a dû avoir lieu chez l'ancêtre des plantes à graines, avant la divergence des gymnospermes et des angiospermes. Cet événement nommé « zêta » a été suivi d'un autre évènement se situant à la base des angiospermes, pendant la période ancestrale d'*Amborella* nommé « epsilon ». Ensuite, plusieurs évènements anciens de polyploïdie ont été détectés au sein des angiospermes, en particulier après le développement du séquençage du génome entier (Van de Peer *et al.*, 2017; Clark & Donoghue, 2018). Les événements ancestraux de polyploïdie détectés au cours de l'évolution des angiospermes sont remarquablement plus élevés que ceux présentés dans le groupe des gymnospermes (Li *et al.*, 2015). Dans ce dernier groupe, trois épisodes anciens de polyploïdie ont été détectés, deux d'entre eux étant présents dans les conifères; un dans la lignée des Pinaceae et l'autre dans la lignée des cupressophytes (Li *et al.*, 2015). Cette détection met en évidence l'importance de ce phénomène à la base de l'évolution précoce des conifères. Cependant, ce phénomène est rare chez les espèces existantes de gymnosperme (à l'exception des espèces du genre *Ephedra* L. (Ephedraceae)) et supposé être plus rare chez les conifères existants (Khoshoo, 1959; Husband *et al.*, 2013).

Parmi les conifères, le genre *Juniperus* L. (Cupressaceae) a montré quelques cas de polyploïdie, contrairement à tous les autres genres où la plupart des peuplements sauvages étudiés étaient diploïdes, ce qui rend *Juniperus* potentiellement exceptionnel entre les conifères. Jusqu'à présent, parmi les peuplements de genévrier sauvages, *Juniperus thurifera* L. était considéré comme «exclusivement tétraploïde» ce qui signifie que toutes les populations étudiées étaient tétraploïdes (Romo *et al.*, 2013; Vallès *et al.*, 2015). Des variations intra spécifiques des niveaux de ploïdie (diploïdie et tétraploïdie) ont été observées chez *Juniperus chinensis* L. (Sax & Sax, 1933; Nagano *et al.*, 2007) et *Juniperus sabina* L. (Siljak-Yakovlev *et al.*, 2010; Vallès *et al.*, 2015). Dans le cas de *Juniperus sabina* alors que

deux populations espagnoles étudiées par Vallès *et al.* (2015) se sont avérées être diploïdes, la seule population des Balkans étudiée par Siljak-Yakovlev *et al.* (2010) s'est avérée être tétraploïde. A l'est du bassin Méditerranéen, *J. foetidissima* Willd. semble être hexaploïde comme le suggère sa taille de génome trois fois supérieure à celle des autres espèces de genévriers diploïdes (Bou Dagher-Kharrat *et al.*, 2013).

Comparé aux autres conifères, *Juniperus* est le « genre de tous les records » ! Avec ses 75 espèces, il est l'un des genres les plus diversifiés du groupe des conifères. Il est l'un des conifères les plus répandus dans l'hémisphère nord. Certaines espèces de *Juniperus* colonisent des zones de haute altitude où aucun autre conifère ne s'aventure. C'est le cas par exemple de *J. indica* Bertol. trouvé au mont Everest à 5050 m d'altitude (Adams, 2014). En plus, certains genévriers possèdent une grande adaptation à la sécheresse (McDowell *et al.*, 2008; Kukowski *et al.*, 2013).

De nombreuses études ont été consacrées à ce genre mettant l'accent sur son écologie (Adams, 2014), sa diversité génétique (Douaihy *et al.*, 2011; Teixeira *et al.*, 2015), son adaptation aux facteurs environnementaux extrêmes (Rawat & Everson, 2012; Kukowski *et al.*, 2013) et sur les services ethnobotaniques qu'il prodigue tels que la production d'huiles essentielles (Parada *et al.*, 2011; Tayoub *et al.*, 2012; Vallès *et al.*, 2017). Cependant, nos connaissances sur la polyploïdie chez *Juniperus* sont limitées. Ce phénomène, qui pourrait affecter ou même être à l'origine de toutes ces caractéristiques citées ci-dessus, n'a pas été suffisamment exploré dans ce genre. Par conséquent, l'objectif principal de cette thèse est donc d'élargir nos connaissances sur la polyploïdie au sein du genre *Juniperus*, tant au niveau des espèces qu'au niveau intra spécifique, afin d'élucider l'effet de ce phénomène sur l'évolution et la diversification de ce genre (Figure 1).

Pour atteindre l'objectif principal de cette thèse, plusieurs techniques ont été appliquées, elles seront traitées dans les chapitres suivants:

Nous débuterons par le chapitre I traitant le genre *Juniperus* et la polyploïdie dans un contexte général; les principaux mécanismes et voies conduisant à ce phénomène et son effet à court et long terme sur l'évolution et la diversité des plantes. La fréquence de ce phénomène chez les plantes et plus particulièrement chez les gymnospermes et les conifères est développée. Finalement une description du modèle étudié dans cette thèse qui est le genre *Juniperus* est présentée. Dans le chapitre II, nous avons évalué l'étendue de la polyploïdie chez *Juniperus* en réalisant la première étude complète pour presque toutes les taxa du genre, sur la base de la taille du génome et les comptages chromosomiques. De plus, dans ce chapitre, nous avons utilisé les données obtenues dans un cadre phylogénétique afin de déterminer la fréquence potentielle des événements de polyploïdisation au cours de l'évolution de ce genre.

Dans le chapitre III, nous nous sommes concentrés sur la variation intra spécifique du niveau de ploïdie, en prenant l'exemple de *J. sabina*. Malgré sa large distribution dans l'Eurasie, seules trois populations (deux en Espagne et une dans la région des Balkans) ont été déjà étudiées pour leur niveau de ploïdie. Dans ce chapitre, le niveau de ploïdie de *J. sabina* a été déduit de l'estimation de la taille du génome. Cette étude englobe un vaste échantillonnage de l'aire de répartition géographique des sabines au monde.

La polyploïdie a été liée à «l'hybridation interspécifique». Ces deux phénomènes ont été classés comme partenaire pour l'évolution des plantes. Dans le chapitre IV, l'effet de la présence sympatrique des espèces de genévrier sur l'hybridation interspécifique et donc sur la polyploïdie a été étudié dans la forêt de Saint-Crépin (Hautes Alpes, France). Dans cette forêt, *J. thurifera* et *J. sabina* sont présentes en sympatrie avec des individus présentant des phénotypes intermédiaires des deux espèces.

Au cours de l'étude qui a été présentée dans le chapitre II, *J. foetidissima* s'est avéré d'être hexaploïde par la taille du génome et par le nombre chromosomique, ce qui en fait le seul hexaploïde de ce genre et seulement le deuxième parmi tous les conifères. Dans le chapitre V, le premier aperçu de l'origine potentielle de l'hexaploïdie de *J. foetidissima* a été effectué avec la technique AFLP (Amplified fragment length polymorphism). Cette étude englobe des populations de l'espèce hexaploide ainsi que des populations de 9 parents potentiels sélectionnés en fonction de leur position relativement proche de l'espèce hexaploïde, géographiquement et dans la phylogénie des genévriers.

Ces chapitres sont discutés ensemble au chapitre VI afin d'avoir une vision plus large de la polyploïdie au sein de ce genre de conifères du point de vue évolutif. Enfin, une conclusion générale sera fournie avec les perspectives.

Chapitre II Genre Criblage de la polyploïdie chez Juniperus L.		
Espèce	Chapitre V Premier aperçu de I'hexaploïdie de <i>Juniperus foetidissima</i> Willd.	Chapitre IV Interaction entre les genévriers en sympatrie dans les Alpes françaises
Sous- espèce	Chapitre III Détermination du niveau de ploïdie de <i>Juniperus</i> <i>sabina</i> L. dans presque toute sa distribution géographique	

Figure 1. Plan de la thèse.

Chapitre I : Généralités

A- La polyploïdie

a. Anomalies chromosomique et polyploïdie

Le mot chromosome est initialement un mot grec; Chromo qui signifie couleur et la deuxième partie du mot vient de <u>soma</u> qui signifie le corps. Au 19ème siècle, les chromosomes ont été découverts après une préparation microscopique des cellules avec coloration (Waldeyer, 1888; Fauth & Speicher, 2001). Il existe plusieurs types d'anomalie chromosomique (structurelle et numérique) (Khandekar et al., 2013; Jain et al., 2018). L'anomalie est dite structurelle quand une réorganisation du matériel génétique a lieu entre et /ou au sein des chromosomes. On distingue des réarrangements déséquilibrés (gain ou perte du contenu génétique du chromosome) et des réarrangements équilibrés (le contenu génétique est préservé; des changements sont apportés à son emplacement ou à son ordre). Dans ce type d'anomalies, on trouve la suppression, la duplication, la translocation, l'inversion. En ce qui concerne l'anomalie numérique, c'est lorsque le nombre de chromosomes diffère du cas normal. Il est divisé en aneuploïdie et polyploïdie. Quand un ou quelques chromosomes sont ajoutés ou réduits, on parle d'aneuploïdie (exemple : monosomique (2n - 1), trisomique (2n + 1)) (Khandekar *et al.*, 2013; Jain *et al.*, 2018). La polyploïdie c'est lorsqu'un individu possède plus de deux séries complets de chromosomes (Comai, 2005). L'ensemble complet de chromosomes dans un organisme est défini par le terme «niveau de ploïdie» représenté par un «x». Par conséquent, un organisme diploïde est représenté par 2x (Ranney, 2006). Quant aux cas de polyploïdie, par exemple chez les individus triploïdes, tétraploïdes et hexaploïdes, ils sont représentés par 3x, 4x et 6x respectivement (Ranney, 2006).

Deux types principaux de polyploïdie sont distingués en fonction de la similitude taxonomique et génétique des génomes impliqués (Stebbins, 1947; Comai, 2005) : L'autopolyploïdie est une polyploïdie impliquant le doublement des génomes homologues au sein d'une population ou entre des populations de la même espèce. Par exemple, si le génome diploïde est représenté par «PP», par conséquent, un individu tétraploïde dispose de 4 séries de chromosomes homologues «PPPP» (Figure.2). Une «allopolyploïdie» se produit lorsqu'un organisme provient d'une hybridation interspécifique (entre deux espèces) représentées par exemple par « PP » et « EE » suivie d'un dédoublement du nombre chromosomique «PPEE» (Figure 2) (Stebbins, 1947; Comai, 2005). C'est une allo-tétraploïdie

Figure 2. Illustration simplifiée de l'autopolyploïdie et de l'allopolyploïdie. PP représente le génome de l'espèce 1. EE représente le génome de l'espèce 2. PPPP est le génome de la progéniture suite à l'autopolyploïdie et PPEE est le génome de la progéniture suite à l'allopolyploïdie.

Ehrendorfer (1980), a présenté une autre classification de la polyploïdie basée sur les progrès des organismes polyploïdes dans le processus de polyploïdie. Il a distingué trois types; «néopolyploïdes», «mésopolyploïdes» et «paléopolyploïdes» (Ehrendorfer, 1980). Lorsque la polyploïdie survient au niveau intra-spécifique, les cytotypes sont appelés «néopolyploïdes» (de nombreux exemples pourraient être cités notamment, *Heuchera grossulariifolia* Rydb. (Oswald & Nuismer, 2011) et *Tragopogon miscellus* Ownbey (Chester *et al.*, 2012)). Les polyploïdes qui sont séparés des diploïdes existants ou de ceux dont le niveau de ploïdie est inférieur, mais qui leur sont apparentés, sont des «mésopolyploïdes» (par exemple *Brassica rapa* L. (Wang *et al.*, 2011)). Les «paléopolyploïdes» sont ceux dont tous leurs ancêtres de niveaux de ploïdie inférieurs sont éteints (par exemple *Juniperus thurifera* L. (Vallès *et al.*, 2015)) (Ehrendorfer, 1980; Bennett, 2004).

b. Les mécanismes conduisant à la polyploïdie

Trois mécanismes majeurs conduisant à la formation d'autopolyploïdes et d'allopolyploïdes ont été proposés: le doublement somatique, les gamètes non réduits et la polyspermie (Ramsey & Schemske, 1998; Soltis *et al.*, 2004; Tayalé & Parisod, 2013).

i. Le doublement somatique :

Le doublement somatique c'est quand par accident le nombre chromosomique double dans une cellule. Donc se mécanisme doit se passer au début du développement embryonnaire ou à la phase zygotique pour produire un individu polyploïde complet. Sinon, si cela se produit ultérieurement dans un tissu ou organe spécifique ça générera un mixoploïde (le niveau de ploïdie varie au sein d'un même individu) (Ramsey & Schemske, 1998). Les facteurs induisant un doublement somatique dans la nature ne sont pas très bien documentés. Néanmoins, expérimentalement, les basses températures ont induit efficacement le doublement somatique dans les plants de maïs par exemple (Randolph, 1932).

ii. Les gamètes non réduits :

Les gamètes non réduits ont été reconnus comme le mécanisme le plus important pour la formation de polyploïdes chez les angiospermes (Otto & Whitton, 2000). Un gamète non réduit est un gamète contenant le nombre total de chromosomes identiques à ceux présents dans les cellules somatiques. Les contraintes environnementales telles que les températures élevées ou basses et les facteurs génétiques tels que les problèmes de méiose ont été les principaux facteurs induisant la formation des gamètes non réduits (Mason *et al.*, 2011; Sora *et al.*, 2016).

iii. La polyspermie :

La polyspermie, c'est quand un gamète femelle est fécondé par au moins deux gamètes mâles. La présence de la polyspermie dans la nature est encore hypothétique (Ramsey & Schemske, 1998). Néanmoins, expérimentalement, la polyspermie a été produite, donnant naissance à des progénitures viables polyploïdes (Toda & Okamoto, 2016). En plus, dans un essai expérimental sur *Arabidopsis* Heynh. in Holl et Heynh., il a été prouvé qu'un gamète femelle pouvait être fécondé par deux gamètes mâles de deux pères, ce qui pourrait être très avantageux pour des applications d'amélioration des cultures végétales (Nakel *et al.*, 2017).

c. Voies de formation de polyploïdie

L'étude de l'origine et des voies menant à la polyploïdisation d'un taxon est très complexe et est souvent associée à une grande incertitude. En effet, plusieurs origines et voies différentes pourraient être impliquées dans la polyploïdisation d'un taxon, ce qui pourrait donner lieu à une diversité phénotypique et génétique importante chez ce taxon (Segraves *et al.*, 1999; Symonds *et al.*, 2010; Chester *et al.*, 2012; Madlung, 2013). Par exemple, plusieurs origines indépendantes de l'allopolyploïde récent, *Tragopogon miscellus* (Tate *et al.*, 2009; Symonds *et al.*, 2010; Chester *et al.*, 2012) et de *Heuchera*

grossulariifolia (Segraves *et al.*, 1999) ont été mises en évidence. Dans le cas de *Sequoia sempervirens* (D.Don) Endl., le seul hexaploïde trouvé chez les conifères, la détermination de l'origine de son hexaploïdie n'est pas complètement résolue jusqu'à présent. La première étude menée dans ce cas-là et basée sur des études des fossiles, la morphologie, l'embryologie, la cytologie, l'analyse chromosomique somatique et méiotique, la taxonomie et la phylogénétique, a suggéré diverses voies entre l'autopolyploïdie et l'autoallopolyploïdie (Ahuja & Neale, 2002). Alors que sur la base du séquençage du transcriptome et l'inférence phylogénétique, la polyploïdie de cette espèces a été mieux expliquée par une autopolyploïdie ou une allopolyploïdie entre des espèces qui appartiennent au clade de séquoias californien (Scott *et al.*, 2016).

Les voies de polyploïdisation ont été simplifiées en deux voies générales pour atteindre un niveau de tétraploïdie depuis un état de diploïdie (Ramsey & Schemske, 1998; Hegarty & Hiscock, 2008; Tayalé & Parisod, 2013). La première est la voie où la polyploïdie est obtenue en une étape. Par exemple, après la fécondation de deux gamètes non réduits (n = 2x) de deux individus diploïdes appartenant ou non à la même espèce (Figure 3a, c) donnant un individu tétraploïde (2n = 4x). Le doublement somatique (Figure 3b) ou la polyspermie aussi peuvent donnés une polyploïdie en une étape.

Figure 3. Exemples des voies de formation des tétraploïdes via l'allopolyploïdie et l'autopolyploïdie en une étape (les rectangles représentes les taxons et les cercles représentes les gamètes).

La deuxième voie générale comprend deux étapes pour atteindre le niveau final de la ploïdie dont une étape intermédiaire de triploïdie « Pont triploïde » (Husband, 2004). Cette voie est la plus fréquente chez les angiospermes et concerne principalement des gamètes non réduits. Par exemple, une fécondation de gamètes réduits (n = x) et non réduits (n = 2x) donnera un triploïde (2n = 3x). Dans la nature, les individus triploïdes ne se sont pas toujours stériles et ils ont la capacité de produire des gamètes viables non réduits (3x), partiellement réduits (2x) et réduits (x) (Ramsey & Schemske, 1998; Schinkel *et al.*, 2017). Par conséquence, de nombreuses voies pourraient être possibles après le stade triploïde (quelques exemples de voies de polyploïdie donnant lieu à des tétraploïdes ont été illustrés dans le cas d'autopolyploïdie (Figure 4) ou d'allopolyploïdie (Figure 5)), impliquant des rétrocroisements avec des gamètes réduits et / ou non réduits des parents, aboutissant à divers niveaux de ploïdie. Par exemple, une fécondation entre un gamète non réduit du triploïde et un gamète réduit de l'un des parents diploïdes donnera un tétraploïde (Figures 4b, 5b). Ou une fécondation entre un gamète partiellement réduit du triploïde donnera également un tétraploïde (Figures 4a, 5a).

Figure 4. Exemples des voies de formation des tétraploïdes par autopolyploïdie via un pont triploïde (les rectangles représentes les taxons et les cercles représentes les gamètes).

Figure 5. Exemples des voies de formation des tétraploïdes par allopolyploïdie via un pont triploïde (les rectangles représentes les taxons et les cercles représentes les gamètes).

Pour des niveaux de ploïdie plus élevés, la complexité des voies augmentera également. Un individu hexaploïde pourrait être obtenu de différentes manières (Figure 6 et 7): soit par un simple doublement du triploïde obtenue lors du pont triploïde, soit, par une fécondation entre deux gamètes triploïdes non réduits de l'ancêtre triploïde. Un hexaploïde pourrait également résulter de deux événements de polyploïdie, impliquant tout d'abord un événement de polyploïdie conduisant à la formation d'un tétraploïde (via l'autopolyploïde ou allopolyploïde), suivi d'une hybridation avec des gamètes réduits du tétraploïde et d'un diploïde conduisant à un triploïde, et enfin, une autre polyploïdie donnant lieu à un hexaploïde.

Figure 6. Exemples des voies de formation des hexaploïdes par autopolyploïdie (les rectangles représentes les taxons et les cercles représentes les gamètes).

Figure 7. Exemples des voies de formation des hexaploïdes par allopolyploïdie (les rectangles représentes les taxons et les cercles représentes les gamètes).

d. Effets de la polyploïdie

La formation d'un polyploïde ne signifie pas forcément que cette polyploïdie sera établie. Après la polyploïdie, divers changements phénotypiques et génomiques de l'individu vont avoir lieu (Chen, 2007; Tayalé & Parisod, 2013; Van de Peer *et al.*, 2017; Wendel *et al.*, 2018). Si le polyploïde nouvellement formé parvenait à surmonter ces changements, il s'établira et donnerait lieu à une nouvelle espèce, sinon il aboutirait à une impasse évolutive « dead end » (Figure 8) (Comai, 2005; Van de Peer *et al.*, 2017).

Parmi les facteurs qui opposent l'établissement de la polyploïdie, nous mentionnons les difficultés mitotiques et méiotiques (Comai, 2005). Ces problèmes ont d'abord été interprétés par la possibilité que le polyploïde produise des cellules somatiques et des gamètes aneuploïdes qui sont susceptibles d'induire des modifications épigénétiques. Les problèmes méiotiques, quant à eux, vont réduire la fertilité (Tayalé & Parisod, 2013). Ceci est surtout attribué aux polyploïdes à nombre impair de chromosomes tels que la triploïdie et la pentaploïdie (Giles, 1941). L'instabilité épigénétique résultant de la polyploïdie pourrait être délétère (Comai, 2005). Néanmoins, ces mêmes changements épigénétiques et les variations dans l'expression des gènes pourraient toutefois renforcer la diversité génétique, conduisant probablement à des modifications morphologiques, écologiques et physiologiques du polyploïde, susceptibles de contribuer à sa survie et à son adaptation aux stress environnementaux (Figure 8) (Van de Peer et al., 2017; Clark & Donoghue, 2018). La polyploïdie pourrait aussi jouer un rôle direct ou indirect dans les interactions entre les plantes polyploïdes et les pollinisateurs, herbivores et les pathogènes (Segraves & Anneberg, 2016). Par exemple, la morphologie et la phénologie florale peuvent différer entre les polyploïdes et leurs homologues diploïdes ce qui influencera leurs interactions avec les pollinisateurs. Ceci a été prouvé dans le cas de Tragopogon miscellus (Tate et al., 2009) et Brassica napus L. (Schranz & Osborn, 2000). Les événements de polyploïdie chez les Brassicales ont abouti à des néo-fonctionnalisations des gènes, créant de nouveaux composés chimiques ayant un rôle dans la lutte contre les papillons ravageurs (Edger *et al.*, 2015).

D'autres variations génétiques telles que la modification de la méthylation de l'ADN et le réarrangement chromosomique du polyploïde pourraient conduire à de nouvelles fonctions (et / ou de sous-fonctions) des gènes, améliorant son adaptation aux stress environnementaux et aux habitats extrêmes tels que la sécheresse, stress salin et hautes / basses températures (Figure 8) (Otto, 2007; Van de Peer *et al.*, 2017).

La polyploïdie est par ailleurs associée à deux « stratégies » contribuant à la persistance et à la survie du polyploïde en cas de difficultés dans la reproduction sexuée: la propagation végétative (prolifération clonale) et l'apomixie (formation asexuée d'une graine à partir des tissus maternels de l'ovule, en évitant le processus de fécondation) (Bicknell & Koltunow, 2004; Herben *et al.*, 2017). En effet, la reproduction asexuée a été suggérée comme l'une des raisons du succès de l'établissement de nombreux cas de polyploïdie, cas de *Sequoia* et d'*Ephedra* (Scott *et al.*, 2016; Wu *et al.*, 2016). Quant à la reproduction asexuée, elle pourrait être très avantageuse dans le cas de niveaux de ploïdie impairs, comme la triploïdie, où la méiose semble être fortement affectée, ce qui amène à une réduction de fertilité importante (Giles, 1941; Khoshoo, 1959; Ahuja, 2005). Néanmoins, comme mentionné précédemment, dans la nature les triploïdes ne sont pas totalement stériles et pourraient produire une variété de gamètes fertiles euploïdes (1*x*, 2*x* et 3*x*) (Ramsey & Schemske, 1998; Schinkel *et al.*, 2017).

Les changements phénotypiques, génétiques et chromosomiques après un évènement de polyploïdisation peuvent aboutir à un isolement reproducteur et par conséquent peuvent conduire à la spéciation (Clark & Donoghue, 2018). En effet la polyploïdie a été de tout temps liée à la diversité et à la spéciation ce qui fait de ce phénomène, un des plus importants dans l'évolution des plantes (Blanc & Wolfe, 2004; Otto, 2007; Alix *et al.*, 2017; Van de Peer *et al.*, 2017).

Après un évènement de polyploïdisation, un processus de «diploïdisation» peu se mettre en place à long terme. Ce processus est associé à la perte de copies de gènes, au retrait d'ADN répétitif, à la fusion et à la fission de chromosomes (réarrangement chromosomique) (Mandáková *et al.*, 2010; Mandáková & Lysak, 2018). Des mécanismes complexes tels que la délétion basée sur la recombinaison, mènent à une réduction de la taille du génome et probablement à la réorganisation du génome, induisant des néo-fonctionnalisation et/ou des sous-fonctionnalisation des gènes et par conséquent augmentant la diversité génétique (Figure 8) (Mandáková *et al.*, 2010; Van de Peer *et al.*, 2017; Mandáková & Lysak, 2018). Dodsworth *et al.* (2015), ont suggéré que la diploïdisation du génome après un évènement de polyploïdisation est une étape importante pour parvenir à la spéciation. En effet, il a lié le modèle de temps de latence de la polyploïdie (environ des millions d'années) avant la spéciation (Eric Schranz *et al.*, 2012) au temps nécessaire à la mise en place de la diploïdisation.

Figure 8. Résumés des effets de la polyploïdie à court et à long terme

e. Fréquence de la polyploïdie

La polyploïdie s'est avérée plus fréquente chez les plantes que chez les animaux (Ahuja, 2005). Chez les animaux, deux événements anciens de polyploïdisation ont été déterminés durant la période de développement de la lignée des vertébrés (Wertheim *et al.*, 2013). Ce qui met en relief l'importance de la polyploïdie dans l'évolution de ces animaux (Comber & Smith, 2004). En plus, la polyploïdie a été déclarée relativement fréquente dans certains groupes d'animaux (Otto & Whitton, 2000; Gregory & Mable, 2005), notamment chez les amphibiens (nombre élevé de polyploïdies au sein du genre *Xenopus* Wagler. (Mable, 2004)), chez les poissons (Comber & Smith, 2004) et parmi les animaux capables de se reproduire d'une manière asexuée (espèces apomictiques) tels que les insectes (Lokki & Saura, 1980) et les mollusques (Goldman *et al.*, 1983; Otto & Whitton, 2000). Plusieurs hypothèses ont été suggérées pour expliquer la rareté de la polyploïdie chez les animaux surtout chez ceux où qui la polyploïdisation pose des problèmes dans la reproduction sexuée (Mable, 2004).

Chez les plantes, la polyploïdie a été évaluée comme l'un des phénomènes les plus importants dans leur évolution et leur diversification (Figure 9a) (Otto, 2007; Van de Peer *et al.*, 2017; Clark & Donoghue, 2018; Wendel *et al.*, 2018). En effet, la polyploïdie a été observée dans tous les groupes de plantes au cours de l'évolution de leur lignée ancestrale jusqu'aux espèces existantes (Figure 9a, b). Cependant, les fréquences de polyploïdie entre les groupes de plantes ne sont pas égales; la polyploïdie a été plus impliquée dans certains groupes que d'autres (Figure 9b) (Husband *et al.*, 2013; Alix *et al.*, 2017; Van de Peer *et al.*, 2017; Clark & Donoghue, 2018).

Dans le groupe des algues, aucune preuve de polyploïdie n'a été découverte chez les glaucophytes (algues microscopiques d'eau douce) (Keeling, 2004; Husband *et al.*, 2013). Cependant, elle a été fréquente chez le Rhodophyta (Kapraun, 2005) et dans le groupe des algues vertes (Kapraun, 2005; 2007; Husband *et al.*, 2013).

Parmi les plantes terrestres, la fréquence de la polyploïdie diffère également entre les groupes (Figure 9b) (Otto & Whitton, 2000; Wood *et al.*, 2009; Husband *et al.*, 2013; Barker *et al.*, 2016). En ce qui concerne les bryophytes, la polyploïdie est quasi absente chez les anthocérotes, rare chez les hépatiques et relativement fréquente chez les mousses (environ 20-80% des mousses existantes) (Husband *et al.*, 2013). Chez les lycopodiophytes et les monilophytes, la polyploïdie s'est avérée être très élevée, pouvant atteindre 95% chez les monilophytes (Troìa, 2001; Luebke & Budke, 2003; Chao *et al.*, 2012; Husband *et al.*, 2013).

La polyploïdie est fortement impliquée dans l'évolution des angiospermes où plusieurs évènements ancestraux ont été découverts. Cette fréquence parmi les espèces existantes (les monocotylédones et les dicotylédones) est très élevée, estimée à environ 50 à 80% (Masterson, 1994; Otto & Whitton, 2000; Husband *et al.*, 2013; Van de Peer *et al.*, 2017). Aussi, les fréquences de polyploïdie varient également avec les formes de vie où les plantes herbacées vivaces ont des fréquences plus élevées que celles des plantes annuelles et des espèces ligneuses (Stebbins, 1938).

Contrairement à tous les groupes de plantes terrestres, la polyploïdie semble être rare chez les gymnospermes (environ 5%) (Khoshoo, 1959; Ahuja, 2005). Les gymnospermes regroupent cinq groupes existants; cycas, ginkgo, conifères et gnétophytes. Aucune preuve de polyploïdie n'a été trouvée ni chez les cycadales ni chez les ginkgoales. Les gnétophytes et plus particulièrement le genre *Ephedra* ont montré une fréquence exceptionnelle de polyploïdie (Ahuja, 2005). Environ 65% des

espèces d'*Ephedra* sont tétraploïdes et deux espèces *E. gerardiana* Wallich ex C. A. Meyer. et *E. funerea* Coville & C. V. Morton. sont octoploïdes (2n = 8x) (Husband *et al.*, 2013; Ickert-Bond *et al.*, 2015; Wu *et al.*, 2016).

Figure 9. a. Les événements anciens de la polyploïdie dans les principaux groupes de plantes, d'après Clark & Donoghue, (2018) modifié. b. La fréquence actuelle de la polyploïdie chez les espèces existantes en allant des fréquences les plus élevées (PHF: Polyploïdie de haute fréquence) à la fréquence la plus basse (PBF: Polyploïdie de basse fréquence). PPI signifie qu'il n'y a pas d'information (Polyploïdie pas d'information). c. Représente les polyploïdes d'angiospermes et de gymnospermes qui présentent les nombres de chromosomes les plus élevés déduits de la revue de Husband *et al.* (2013).

En ce qui concerne les conifères, le groupe le plus diversifié parmi les gymnospermes (Christenhusz *et al.*, 2011), la polyploïdie est très rare et estimée d'après les dénombrements chromosomiques a environ 1,5% (Khoshoo, 1959; Ahuja, 2005). Dans les peuplements naturels, seulement trois cas de polyploïdie ont été observés et tous appartiennent à la famille des Cupressacées: *Sequoia sempervirens* (le seul hexaploïde parmi les conifères) (Ahuja & Neale, 2002; Scott *et al.*, 2016), *Fitzroya cupressoides*

Johnst. (2n = 4x = 44) (Hair, 1968) et *Juniperus thurifera* (2n = 4x = 44) (Romo *et al.*, 2013; Vallès *et al.*, 2015). Il faut souligner que le genre *Juniperus* présente également des cas de variation intra spécifiques de niveaux de ploïdie notamment chez *J. chinensis* et *J. sabina* (Sax & Sax, 1933; Nagano *et al.*, 2007; Siljak-Yakovlev *et al.*, 2010; Vallès *et al.*, 2015). En outre, *J. foetidissima* a montré une taille de génome (environ 59 pg / 2C) trois fois plus grande que celle des espèces diploïdes du même genre (environ 20 pg / 2C) (Bou Dagher-Kharrat *et al.*, 2013). Par conséquent, compte tenu de la taille du génome, *J. foetidissima* serait hexaploïde (Bou Dagher-Kharrat *et al.*, 2013). Cette polyploïdie relativement fréquente à l'intérieur du genre *Juniperus* comparée à d'autres genres de conifères a accru notre intérêt pour ce genre.

B- Le genre Juniperus

Les genévriers sont des arbres ou des arbustes à feuilles persistantes et cônes femelles charnus appartenant à la famille des Cupressacées (Adams, 2014). Sa position sur le clade terminal de l'arbre phylogénétique des gymnospermes fait de ce genre l'un des genres les plus évolués parmi les gymnospermes (Rai *et al.*, 2008). Soixante-quinze espèces appartiennent au genre *Juniperus* (Adams, 2014). Ce grand nombre d'espèces fait de ce genre le plus diversifié de sa famille et seulement le deuxième parmi les conifères après le genre *Pinus* L. (Farjon, 2010). Les espèces de genévriers sont largement répandues dans l'hémisphère nord sauf une espèce, *J. procera* Hochst. Ex Endl., dont la répartition est concentrée dans l'hémisphère sud, de la Péninsule Saoudienne jusqu'à l'Éthiopie, le Kenya et la Tanzanie (Figure 10) (Adams, 2014).

Figure 10. Répartition géographique mondiale des trois sections de Juniperus

Le genre *Juniperus* est monophylétique (Adams, 2004; Little, 2006; Adams, 2008) et il est subdivisé en trois sections monophylétiques; *Caryocedrus, Juniperus* et *Sabina* (Adams, 2004; 2008; 2014).

- La section *Caryocedrus* comprend une seule espèce, *J. drupaceae* Labill. distribuée dans la région Est méditerranéenne. Cette espèce est dioïque, possédant des feuilles aciculaires et de gros cônes femelles d'environ 18-25 mm contenant trois graines (Figure 11. A) (Adams, 2014).
- (ii) la section *Juniperus* comprenant 14 espèces dioïques largement réparties dans l'hémisphère Est, à l'exception de deux espèces; *J. jackii* (Rehder) R. P. Adams dont leur distribution géographique est au nord de l'Amérique (endémique) et *Juniperus communis* L. qui a une large aire de répartition dans l'hémisphère nord (répartition circumboréale). Dans cette section, les espèces ont des feuilles aciculaires, les cônes femelles de 8 à 18 mm de diamètre qui contiennent trois graines (Figure 11. B) (Adams, 2014).
- (iii) La section Sabina est la section la plus diversifiée avec 60 espèces dioïques ou monoïques largement réparties dans l'hémisphère nord. Les espèces de cette section possèdent des feuilles ressemblant à des écailles (squamiformes) au stade adulte et des feuilles décurrentes durant la période juvénile. Les cônes femelles sont plus petits que celles trouvées chez les

autres sections, d'environ 6-15 mm contenant 1 à 12 graines selon les espèces (Figure 11. C) (Adams, 2014).

Figure 11. Les formes de graines et de feuilles des sections de *Juniperus*. A. Section *Caryocedrus* représentée par *J. drupacea*. B. Section *Juniperus* représentée par *J. oxycedrus* et C. Section *Sabina* représentée par *J. excelsa*.

a. Aperçu historique du genre Juniperus

Carl Sagan a déclaré: «Il faut connaître le passé pour comprendre le présent.» En effet, lorsqu'on étudie un phénomène évolutif, il est essentiel de connaître l'origine du groupe d'intérêt, comme par exemple, la répartition géographique ancienne des lignées ancestrales. Ce type d'information peu élargir notre connaissance sur les interactions précédentes qui auraient pu se produire entre les lignées d'espèces dont la distribution actuelle ne se recouvre plus. Les fossiles sont très informatifs pour ce type d'études, où à partir des fossiles on en pourrait déduire une estimation de la datation et de l'origine de la distribution géographique des espèces (Lieberman, 2003; Silvestro *et al.*, 2016). De nombreux fossiles ont été décrits pour *Juniperus* mais ils sont peu fiables vu la nécessité de trouver les feuilles avec les cônes femelles pour une correcte identification du fossile (Kvaček, 2002). Le fossile le plus ancien identifié dans le cas des genévriers est *Juniperus pauli* Z. kvaček. qui appartient à la section *Sabina* et qui date de la limite Eocène/Oligocène (Kvaček, 2002).

La divergence entre les deux genres *Juniperus* et *Cupressus sensu lato* a été estimée à environ 71,9 à 49,7 Mya. *Juniperus* a commencé à se diversifier après environ 15 à 20 Mya (Mao *et al.*, 2010). La vitesse de diversification au sein de ce genre variait au cours de l'évolution. Les facteurs derrière la diversification des genévriers étaient les changements climatiques et la suppression massive du «plateau Qinghai-Tibétain», qui s'est produite en deux périodes 20 et 8 Mya, créant de nouvelles niches écologiques (Harrison *et al.*, 1992; Spicer *et al.*, 2003; Mao *et al.*, 2010). Effectivement, pendant l'Éocène (entre 43 et 32 Mya), le taux de diversification du genre était élevé, suivi par un faible taux de diversification au cours de l'Oligocène (de 32 à 20 Mya environ) (Mao *et al.*, 2010), durant la période

où les températures mondiales étaient stables et froides (Zachos *et al.*, 2001). Ensuite, ce taux augmente pendant le Miocène (de 20 à 15 Mya environ) (Mao *et al.*, 2010).

Il est très probable que *Juniperus* soit originaire d'Eurasie et il a atteint le nord de l'Amérique à la fin de l'Oligocène au début du Miocène (Mao *et al.*, 2010). La répartition géographique moderne des genévriers est liée probablement à deux facteurs; la dispersion par des oiseaux à longue distance de leurs graines ressemblant à des baies (Holthuijzen & Sharik, 1985; Santos *et al.*, 1999) et les migrations ancestrales à travers des ponts terrestres, notamment le pont terrestre de l'Atlantique Nord (North Atlantic Land Bridge; NALB) et le pont terrestre de Bering (Bering Land Bridge; BLB) (Mao *et al.*, 2010; Adams, 2014).

b. Ecologie et reproduction

Les espèces de genévriers ont une grande plasticité vis-à-vis des habitats grâce à leur grande adaptation aux facteurs environnementaux extrêmes tels que la sécheresse, les substrats pauvres en nutriments, les fortes pentes et le froid hivernal (Noble, 1990; McDowell *et al.*, 2008; Rawat & Everson, 2012; Kukowski *et al.*, 2013; Mathaux *et al.*, 2016). En effet, certaines espèces se trouvent en haute altitude, qui peuvent atteindre selon l'espèce la limite boisée, telles que *J. monticola*, *J. indica* à 5050 m sur la montagne de l'Everest, *J. thurifera* sur les sommets de l'Atlas à environ 2700 m (Gauquelin *et al.*, 1988; Hammi *et al.*, 2010). D'autres espèces sont trouvées au niveau de la mer, notamment *J. lutchuensis*, *Juniperus phoenicea* L. var. *turbinata* (Guss.) Parl. et *Juniperus macrocarpa* Sibth. & Sm. (Mazur *et al.*, 2010; Adams, 2014; Díez-Garretas & Asensi, 2014; Pinna *et al.*, 2015). Certaines espèces se trouvent dans des zones désertiques, notamment *J. coahuilensis*, *J. osteosperma* et *J. californica* (Adams, 2014).

En ce qui concerne le substrat, la plupart des espèces de genévrier préfèrent le calcaire (Adams, 2014). Elles peuvent même colonisé les falaises rocheuses comme les genévriers de Phénicie (*J. phoenicea*) sur les falaises rocheuses des gorges de l'Ardèche, en France (Mathaux *et al.*, 2016).

En général, les espèces de ce genre ont été classées comme colonisatrices opportunistes. En outre, dans certaines régions d'Amérique du Nord, certains genévriers sont des envahisseurs, notamment *J. aishei*, *J. virginiana*, *J. monosperma*, *J. deppeana* et *J. pinchotii* (Willson et al., 2008; Adams, 2014). Il faut toutefois noter que d'autres espèces ont été classées en danger critique d'extinction d'après la liste rouge de l'UICN, telles que *J. bermudiana* (Wingate et al., 2011), *J. saxicola* (Roberto Gonzalez Torres *et al.*, 2013) et *J. comitana* (Farjon, 2013a).

La réussite des genévriers à coloniser divers habitats est liée en partie à leur adaptation aux divers facteurs environnementaux, mais également aux cônes femelles colorés et charnus. Ces cônes attirent les mammifères et les oiseaux, contribuant à leur dispersion à des distances importantes. Les espèces de genévrier sont majoritairement dioïques avec certaines espèces monoïques comme *J. excelsa*, *J. pingii* et *J. przewalskii* (Adams, 2014). La taille et le nombre de graines à l'intérieur de chaque baie femelle diffèrent entre les trois sections de *Juniperus*. Les sections *Caryocedrus* et *Juniperus* possèdent des cônes femelles de taille plus grande que la section *Sabina*. Pourtant, les cônes femelles de la section *Sabina* pourraient contenir plus de graines (1 à 13 graines) que celles de la section *Caryocedrus* (3 graines) et de la section *Juniperus* (3 graines) (Adams, 2014).

L'un des problèmes les plus importants chez certaines espèces de genévrier est la faible régénération naturelle due principalement au faible taux de germination des graines (García *et al.*, 2000; Douaihy *et al.*, 2013; Adams *et al.*, 2014). En effet, le pourcentage de graines vides est élevé selon les espèces de genévrier et les localités. Par exemple, sur 31 populations de *J. communis* réparties dans 7 régions, une forte variation des semences remplies a été observée en fonction de la localité: elle fût très faible dans la Péninsule Ibérique centrale (environ 2 à 12%) et relativement élevée en Sibérie (environ 75-80%) (García *et al.*, 2000). Même au niveau du même pays, Douaihy *et al.* (2013) ont constaté une variation des graines remplies entre deux populations de *J. excelsa* relativement proches localisées au nord du Liban. De plus, Adams *et al.* (2014) ont observé qu'en plus de l'effet de localisation de la population, l'année pouvait également jouer un rôle dans la qualité de la graine. Par exemple, le pourcentage de graines remplies de *J. osteosperma* dans la population de Sedona (États-Unis) a été évalué à 79% en 2010 et à seulement 7,2% en 2011 (Adams *et al.*, 2014).

Alternativement à la reproduction sexuée, la multiplication végétative a été rapportée dans ce genre, notamment chez *J. sabina* et *J. communis* (Houle & Babeux, 1994; Ronnenberg, 2005; Wesche *et al.*, 2005). Cette capacité est très avantageuse pour la survie des espèces, en particulier lorsque la reproduction sexuée n'est pas très efficace dans certains cas, plus particulièrement dans les environnements extrêmes et difficiles, où de nombreux problèmes de méiose se produisent.

c. Importance du genévrier

 i) Importance écologique. En raison de sa grande tolérance aux facteurs environnementaux extrêmes (Noble, 1990; McDowell et al., 2008; Rawat & Everson, 2012; Kukowski et al., 2013; Mathaux et al., 2016), Juniperus a retenu l'attention pour les actions de reboisement et de restauration écologique (Jones, 1991; Tavankar, 2015). De plus, leur système racinaire à croissance verticale et latérale est très efficace pour la protection du sol de l'érosion (Karasz, 1996; Krämer *et al.*, 1996). En outre, les arbres et arbustes des genévriers constituent un habitat et une source nutritionnelle pour de nombreux oiseaux et animaux (Rumble & Gobeille, 1995; Santos *et al.*, 1999).

- ii) Propriétés médicales. Depuis longtemps, les feuilles et les baies de certains genévriers ont été utilisées pour le traitement du rhume, de l'hémorragie, des rhumatismes, des infections microbiennes et fongiques (Moein *et al.*, 2010; Ehsani *et al.*, 2012; Khan *et al.*, 2012; Vallès *et al.*, 2017). Il est intéressant de noter que plus récemment des nouvelles propriétés médicales plus complexes des genévriers ont été découvertes par exemple les activités cytotoxiques sur plusieurs cellules cancéreuses des extraits de *J. foetidissima* et de *J. sabina* (Sadeghi-aliabadi *et al.*, 2010). En plus, les propriétés antioxydantes et anti-glycation de *J. foetidissima* agissent potentiellement sur la prévention du diabète (Emami *et al.*, 2011).
- iii) Services industriels. Les extraits de genévrier ont été utilisés dans les produits cosmétiques, les parfums, les bougies et les savons. Le bois de genévrier a été utilisé pour la fabrication de meubles, de stylos et divers objets d'artisanat, ce qui explique la vaste coupe de bois et son exploitation historique menant à sa dégradation dans certaines localités (Adams, 2014). Actuellement, l'activité industrielle la plus répandue de nos jours est basée sur la distillation des extraits de baies de genévrier et plus particulièrement du genévrier commun pour la production de l'alcool connue par le « Gin » (Greer et al., 2008).

d. Polyploïdie et hybridation dans le genre Juniperus

La polyploïdie et l'hybridation sont des partenaires dans l'évolution des plantes (Otto & Whitton, 2000; Alix *et al.*, 2017; Goulet *et al.*, 2017). Les deux phénomènes ont été détectés à l'intérieur du genre *Juniperus* (Ahuja, 2005; Adams & Wingate, 2008; Vallès *et al.*, 2015). Sur la base des caractéristiques morphologiques, des hybrides potentiels ont été identifiés entre *J. sabina* et *J. phoenicea*, entre *J. thurifera* et *J. phoenicea* et entre *J. thurifera* et *J. sabina* présentent en sympatrie en Espagne (Rojo & Díaz, 2006; Rojo & Uribe-Echebarría, 2008; Rojo & Díaz, 2009). Au nord de l'Amérique, plusieurs cas d'hybridation ont été rapportés, notamment entre *J. maritima* R. P. Adams et *J. scopulorum* Sarg et dans des zones de sympatrie entre *J. virginiana* var. *silicicola* et *J. bermudiana*, *J. virginiana* L. et *J. horizontalis* Moench, *J. osteosperma* Hook et *J. occidentalis* Torr. Peu. (Vasek, 1966; Palma-Otal *et al.*, 1983; Terry *et al.*, 2000; Adams & Wingate, 2008; Adams, 2015). Récemment, sur la base de données moléculaires, une nouvelle variété, *J. sabina* var. *balkanensis* R. P. Adams et A. Tashev. a été identifié comme résultant d'une ancienne hybridation entre J. sabina et J. thurifera (Adams et al., 2016). Aucun lien n'avait été établi auparavant entre l'hybridation et la polyploïdie au sein de ce genre, peut-être en raison des rares cas de polyploïdie découverts jusqu'à présent et qui, dans certains cas, sont peu fiable (cas de polyploïdie basés sur un seul dénombrement chromosomique et/ou un ancien synonyme de l'espèce est utilisé). Le nombre chromosomique des genévriers diploïde est de 22 chromosomes. Sur la base de données des dénombrements chromosomiques CCDB (Chromosome Counts Database) (Rice et al., 2015), parmi 41 espèces et variétés de Juniperus dont le nombre chromosomique est publié, quatre cas de tétraploïdie (2n = 4x = 44) ont été trouvés dans des populations naturelles. Juniperus thurifera est la seule espèce de ce genre qui a été largement étudiée et toutes ses populations étaient identifiées comme tétraploïdes (2n = 4x = 44, ca. 40 pg / 2C) (Romo *et* al., 2013; Vallès et al., 2015). Juniperus indica est considérée comme tétraploïde à la base d'un seul dénombrement chromosomique de son synonyme Juniperus wallichiana Hook. & Thomson ex E. Brandis (2n = 4x = 44) (Rice *et al.*, 2015). Par ailleurs, des cytotypes tétraploïdes et diploïdes de J. chinensis ont été découverts, avec une variété tétraploïde, J. chinensis var. procumbens (2n = 4x = 44)(Nagano et al., 2007; Rice et al., 2015). Une variation intra spécifique des niveaux de ploïdie a été observée chez J. sabina: deux populations Espagnoles sont diploïdes (environ 21 pg / 2C; 2n = 2x = 22) (Vallès et al., 2015) et une seule population est tétraploïde dans la région de Balkan ayant une taille de génome deux fois plus grande que les populations Espagnoles (ca. 40 pg / 2C) (Siljak-Yakovlev et al., 2010). D'après les mesures de la taille du génome, un hexaploïde potentiel, J. foetidissima, dont la taille du génome était trois fois supérieure à celle de l'espèce diploïde (ca.59 pg/ 2C) (Bou Dagher-Kharrat et al., 2013), serait le premier hexaploïde si le dénombrement chromosomique le confirme.

Enfin, des cas de tétraploïdie et de triploïdie ont été identifiés chez des espèces cultivées de *Juniperus*, nous mentionnons *J. virginiana* (2n = 3x) (Khoshoo, 1959), *J. chinensis* 'Hetzii' (2n = 3x) (Evans & Rasmussen, 1971), *J. squamata* 'Meyeri' (2n = 44) (Jensen & Levan, 1941; Khoshoo, 1959) et *J. fargesii* (syn. *J. squamata* var. *fargesii*) (2n = 4x) (Sax & Sax, 1933).

e. Les taxons d'intérêt de cette thèse

Dans le cadre de ce travail, l'accent sera mis sur les espèces polyploïdes suivantes: *J. foetidissima*, *J. sabina* et *J. thurifera*. Par conséquent, une description plus détaillée et une distribution géographique de chacun des taxons sont développées dans le paragraphe suivant.

i. Juniperus foetidissima Willd.

عرعر كريه الرائحة Noms communs: genévrier puant, Stinking juniper, عرعر

Juniperus foetidissima est un arbre monoïque ou dioïque qui peut atteindre 20 m de hauteur (Figure 12.A). Il appartient à la section *Sabina*. Les feuilles adultes ressemblent à des écailles (squamiformes) d'environ 1,5 mm et les feuilles juvéniles sont décurrentes. Les cônes femelles sont globuleux de 7 à 12 mm de diamètre qui atteignent leur maturation en 2 ans. Les cônes femelles contiennent généralement une à deux graines. Cette espèce se trouve sur des zones rocheuses de haute altitude (Adams, 2014). *Juniperus foetidissima* est réparti dans les montagnes de la péninsule balkanique (Albanie, Macédoine, République yougoslave de Grèce), Turquie, Russie, Arménie, Azerbaïdjan, Turkménistan, Iran, Chypre et Liban (Figure 12.B) (Farjon, 2013b; Adams, 2014).

Figure 12. A. la forme de *Juniperus foetidissima* photo prise à la population de Hermel au Liban. B. Représente la répartition géographique de *J. foetidissima* déduite d'après Adams (2014)

ii. Juniperus sabina L.

Noms communs: genévrier sabine, Savin Juniper, الأبهل

Juniperus sabina appartient à la section *Sabina*. C'est un arbuste dioïque et plus rarement monoïque. Il s'agit généralement d'un petit arbuste mesurant moins de 1 m en hauteur (Figure 13. A) sauf en Espagne (Sierra Nevada) et en Mongolie, où ils forment des arbustes prostrés (Adams & Schwarzbach, 2006; Perez-Latorre & Cabezudo, 2009). Les feuilles adultes ressemblent à des écailles (1-2,5 mm) avec des glandes centrales abaxiales blanches. Les feuilles juvéniles sont décurrentes. Les cônes

femelles sont généralement globuleux irréguliers (5,8 à 5,9 mm) contenant une à deux graines. A maturité en 2 ans, elles prennent une couleur bleu violacée. Cette espèce se trouve à haute altitude sur des pentes rocheuses mais aussi sur des dunes de sable. *Juniperus sabina* a la distribution la plus large parmi tous les taxons de la section *Sabina*. Il est distribué en Europe, en Asie centrale et en Chine (Figure 13. B) (Adams, 2014).

Figure 13. A. la forme de *Juniperus sabina* photo prise à la forêt de Saint Crépin (Alpes Française). B. La répartition géographique de *J. sabina* d'après Adams (2014).

iii. Juniperus thurifera L.

عر عار الاسبانى Noms communs: Genévrier d'Espagne, Spanish juniper, عر عار الاسبانى

C'est une espèce relique et paleopolyploïde (Terrab *et al.*, 2008; Vallès *et al.*, 2015). C'est un arbre dioïque qui peut atteindre 20 m en hauteur (Figure 14. A). Les feuilles adultes ont une taille d'environ 1,5-2 mm, portant des glandes oblongues blanches. Les feuilles juvéniles sont décurrentes. Les cônes femelles (7-12 mm) sont violet foncé à maturité en 2 ans et contiennent 1 à 5 graines. *Juniperus thurifera* se trouve sur les hautes montagnes et sa répartition géographique est relativement limitée. Elle se trouve dans les montagnes de l'Atlas, au Maroc, en Algérie, dans la péninsule ibérique et dans les Alpes françaises (Figure 14. B) (Adams, 2014).

Figure 14. A. la forme de *Juniperus thurifera*, photo prise à la forêt de Saint Crépin (Alpes Française). B. La répartition géographique de *J. thurifera* d'après Adams (2014).
Problématique

Parmi les rares cas de polyploïdie trouvés dans les populations naturelles des Conifères, la plupart de ces cas appartiennent au genre *Juniperus*. Il reste néanmoins un grand nombre de taxons appartenant à ce genre qui ne sont pas encore prospectés. *Juniperus* se distingue par son très grand nombre d'espèces et par la large aire de distribution couvrant diverses conditions environnementales parfois extrêmes. Quel est la fréquence exacte de la polyploïdie chez ce genre? Est-ce que la polyploïdie a joué un rôle dans sa diversification?

L'objectif principal de ce travail de recherche est l'exploration de l'incidence de la polyploïdie chez le genre *Juniperus* et son aptitude à instiguer la spéciation. Pour ce faire, plusieurs techniques ont été appliquées dans des études à plusieurs échelles allant du global et de l'échelle du genre entier jusqu'au contexte local et le niveau intra-spécifique respectivement.

La technique de choix pour l'exploration rapide de la taille du génome et par la suite le niveau de ploïdie fût la cytométrie en flux. Une optimisation de cette technique pour emploi sur un matériel sec d'herbier, vieux de plusieurs dizaines d'années dans certains cas, a été nécessaire. Cette technique simple, rapide, et reproductible nous a permis d'évaluer la taille du génome et par suite le niveau de ploïdie d'une façon rapide pour un grand nombre d'échantillons, chez la quasi-totalité des taxons de ce genre. Les résultats de ces analyses sont repartis entre les chapitres II, III et IV.

Des études moléculaires basées sur des analyses de la séquence de l'ADN nucléaire (ITS) et sur quatre régions chloroplastique (petN/psbM; TrnL/trnF ; trnS/trnG ; trnD/trnT) ont été entreprises pour révéler l'occurrence d'hybridation interspécifique entre deux espèces de genévriers sympatriques dans les Alpes françaises. La région ITS est caractérisée par son polymorphisme élevé entre les espèces et par l'occurrence de plusieurs copies dans le génome. En tant que marqueur co-dominant, les ITS peuvent révèler des cas d'hétérozygotie découlant d'hybridations interspécifiques. Nous avons utilisé cette région pour dépister l'occurrence de l'hybridation interspécifique chez des individus à morphologies intermédiaires entre *J. sabina* et *J. thurifera* vivant en sympatrie. En général chez les conifères l'ADN chloroplastique possède une hérédité paternelle. L'analyse des quatre régions du chloroplaste nous a donné des informations sur les parents paternels des hybrides potentiels. Ces analyses ont été appuyées par de mesures des diamètres des grains de pollen des hybrides et de ceux de leurs parents potentiels. Le diamètre du grain de pollen est un bon indicateur de la régularité de la méiose. Les résultats de ces analyses sont détaillés dans le chapitre IV. Finalement, dans le chapitre V, des marqueurs AFLP (Amplified fragment length polymorphism) ont été développés pour déchiffrer les relations phylogénétiques entre des espèces méditerranéennes et pour découvrir des origines de certains taxons polyploïdes notamment le seul taxon hexaploïde du genre, *J. foetidissima*. Cette technique rapide et reproductible, génère une grande quantité de marqueurs qui couvrent la quasi-totalité du génome.

Chapitre II : La découverte d'un taux inattendu de polyploïdie chez le genre *Juniperus* (Cupressaceae)

Des recherches récentes suggèrent que la fréquence de la polyploïdie a peut-être été sous-estimée chez les gymnospermes. Un exemple notable est celui du genre *Juniperus*, où quelques cas de polyploïdie ont déjà été signalés, bien que les données manquent encore pour la plupart des espèces.

Dans cette étude, nous avons évalué l'étendue de la polyploïdie chez *Juniperus* en réalisant le premier criblage complet sur presque tout le genre à partir de matériel secs. Les données de taille de génome provenant de matériel frais, ainsi que le nombre de chromosomes, ont été utilisés pour démontrer que les tailles de génome estimées à partir de matériel secs pouvaient être utilisées pour révéler l'étendue de la diversité du niveau de ploïdie dans le genre.

Notre analyse a révélé que 16 taxons de *Juniperus* étaient polyploïdes, avec des tétraploïdes et un hexaploïde. En outre, en analysant la taille du génome et les données chromosomiques dans un cadre phylogénétique, nous fournissons les premières estimations du nombre d'anciens évènements de polyploïdisation au sein du genre *Juniperus*. La réduction de la taille du génome suite à un évènement de polyploïdisation était modérée, ceci suggère une restructuration limitée du génome.

Cette étude souligne l'importance de la polyploïdie chez *Juniperus*, et en fait le premier genre de conifères et le deuxième genre des gymnospermes où la polyploïdie est fréquente. En ce sens, *Juniperus* représente un modèle intéressant pour l'étude des conséquences génomiques et écologiques de la polyploïdie chez les conifères.

Chapitre II Genre Criblage de la polyploïdie chez Juniperus L.		
Espèce	Chapitre V Premier aperçu de I'hexaploïdie de <i>Juniperus foetidissima</i> Willd.	Chapitre IV Interaction entre les genévriers en sympatrie dans les Alpes françaises
Sous- espèce	Chapitre III Détermination du niveau de ploïdie de <i>Juniperus</i> <i>sabina</i> L. dans presque toute sa distribution géographique	
Manda		

Monde

Local

Polyploidy in the Conifer Genus Juniperus: An Unexpectedly High Rate

Perla Farhat^{1,2}, Oriane Hidalgo^{3,4}, Thierry Robert^{2,5}, Sonja Siljak-Yakovlev², Ilia J. Leitch³, Robert P. Adams⁶ and Magda Bou Dagher-Kharrat^{1*}

¹ Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Université Saint-Joseph, Campus Sciences et Technologies, Beirut, Lebanon, ² Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France, ³ Royal Botanic Gardens Kew, Richmond, United Kingdom, ⁴ Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Unitat Associada CSIC, Barcelona, Spain, ⁵ Biology Department, Sorbonne Université, Paris, France, ⁶ Biology Department, Baylor University, Waco, TX, United States

Recent research suggests that the frequency of polyploidy may have been underestimated in gymnosperms. One notable example is in the conifer genus Juniperus, where there are already a few reports of polyploids although data are still missing for most species. In this study, we evaluated the extent of polyploidy in Juniperus by conducting the first comprehensive screen across nearly all of the genus. Genome size data from fresh material, together with chromosome counts, were used to demonstrate that genome sizes estimated from dried material could be used as reliable proxies to uncover the extent of ploidy diversity across the genus. Our analysis revealed that 16 Juniperus taxa were polyploid, with tetraploids and one hexaploid being reported. Furthermore, by analyzing the genome size and chromosome data within a phylogenetic framework we provide the first evidence of possible lineage-specific polyploidizations within the genus. Genome downsizing following polyploidization is moderate, suggesting limited genome restructuring. This study highlights the importance of polyploidy in Juniperus, making it the first conifer genus and only the second genus in gymnosperms where polyploidy is frequent. In this sense, Juniperus represents an interesting model for investigating the genomic and ecological consequences of polyploidy in conifers.

OPEN ACCESS Edited by:

Michael R. McKain, University of Alabama, United States

Reviewed by:

Dirk Carl Albach, University of Oldenburg, Germany Petr Koutecký. University of South Bohemia, Czechia

*Correspondence:

Magda Bou Dagher-Kharrat magda.boudagher@usj.edu.lb

Specialty section:

This article was submitted to Plant Systematics and Evolution, a section of the journal Frontiers in Plant Science

> Received: 12 March 2019 Accepted: 06 May 2019 Published: 22 May 2019

Citation:

Farhat P, Hidalgo O, Robert T, Siljak-Yakovlev S, Leitch IJ, Adams RP and Bou Dagher-Kharrat M (2019) Polyploidv in the Conifer Genus Juniperus: An Unexpectedly High Rate. Front. Plant Sci. 10:676. doi: 10.3389/fpls.2019.00676 Keywords: Juniperus, gymnosperms, conifers, polyploidy, genome size, flow cytometry

INTRODUCTION

Polyploidy or whole genome duplication (WGD) is the heritable condition of possessing more than two complete sets of chromosomes (Comai, 2005). Typically, polyploidy arises either as a result of genome duplication within a species (i.e., autopolyploidy), or from hybridization between two different species followed by chromosome doubling (allopolyploidy) (Stebbins, 1947; Comai, 2005). Most of our understanding of the consequences of polyploidy in plants has come from the study of angiosperms, where it has been shown that polyploidization generally causes a dramatic change in genomic structure, dynamics and expression, and cell organization (Tavalé and Parisod, 2013; Van de Peer et al., 2017; Wendel et al., 2018). Indeed, polyploidy is considered to have played a major role in angiosperm evolution (Blanc and Wolfe, 2004; Chen, 2007; Otto, 2007; Soltis and Soltis, 2009).

1

While polyploidy has been reported to occur across all major taxonomic land plant groups (Barker et al., 2016), it has been estimated to be very frequent in angiosperms with 50-80% of species being polyploid (Masterson, 1994; Otto and Whitton, 2000) and possibly all angiosperms contain at least one WGD in their ancestry (Van de Peer et al., 2017). In contrast, only 5% of all gymnosperms are reported to be polyploid based on chromosome counts (Khoshoo, 1959; Ahuja, 2005; Husband et al., 2013; Rice et al., 2015). Nevertheless, recent analyses of transcriptomic and genomic data (e.g., Li et al., 2015; Guan et al., 2016; Roodt et al., 2017) have suggested that the evolution of gymnosperms was accompanied by several ancient WGD events, including two within conifers, one at the base of Pinaceae (c. 200-342 million years ago) and one at the base of the cupressophytes (including Cupressaceae but excluding Araucaceae) (c. 210-275 million years ago). This highlights the importance of polyploidy in the very early evolution of conifers in contrast to the extreme rarity of this phenomenon among extant species [estimated to be 1.5% based on chromosome counts (Khoshoo, 1959; Husband et al., 2013; Rice et al., 2015)]. The one notable exception to the low frequency of polyploidy in extant gymnosperms is in Ephedra, which belongs to the non-coniferous lineage Gnetales. Here, polyploidy has been reported in over 65% of extant Ephedra species (Ickert-Bond et al., 2015). In this genus no evidence for any ancient WGDs has been detected in its ancestry (Li et al., 2015).

Conifers comprise the largest group of extant gymnosperms (Christenhusz et al., 2011), and from a phylogenetic perspective, they are divided into two major clades—(i) the Pinaceae and (ii) cupressophytes as they include Cupressaceae which is the most species-rich family (Lu et al., 2014; Ran et al., 2018). Within extant conifers, chromosome counts of all studied wild stands of all genera of Pinaceae are reported to be diploid (2n = 2x = 24) (Hizume, 1988; Murray, 2013) despite an exceptional genome size variation in some genera, such as *Pinus* L. (34.5–72.0 pg/2C) (Bogunic et al., 2003; Murray et al., 2012).

Similarly, in Cupressaceae, among ca. 91 species studied for their chromosome number to date (Hair, 1968; Murray, 2013), nearly all are diploid (2n = 2x = 22), with just three natural polyploids reported: *Sequoia sempervirens* is hexaploid with 2n = 6x = 66 (Ahuja and Neale, 2002; Scott et al., 2016), while *Fitzroya cupressoides* (Molina) I. M. Johnst. (alerce) and *Juniperus thurifera* L. are tetraploid with 2n = 4x = 44 (Hair, 1968; Romo et al., 2013; Vallès et al., 2015). It is also notable that within *Juniperus*, the study of just three species revealed each had polyploid cytotypes in some populations (Sax and Sax, 1933; Nagano et al., 2007). These findings raise the question of whether polyploidy may be common in this genus and hence whether it has played a more significant role in the evolution of Cupressaceae than previously recognized in gymnosperms as a whole, and in conifers in particular.

In this study, we focused on exploring the prevalence of polyploidy in wild populations of *Juniperus*. With 115 taxa (75 species with 40 varieties; Adams (2014), also see **Table 1** for species and varieties), *Juniperus* is the most diverse genus in Cupressaceae and the second most diverse in all conifers after *Pinus* (Farjon, 2010; Romo et al., 2013). *Juniperus* has been

shown to be a well-supported monophyletic genus (Mao et al., 2010; Adams and Schwarzbach, 2013; Adams, 2014), that can be divided into three monophyletic sections: (i) section Caryocedrus, with one species in the Mediterranean; (ii) sect. Juniperus, with 14 species, 12 in East Asia and the Mediterranean, and one with a circumboreal distribution (Juniperus communis L.) and one [J. jackii (Rehder) R. P. Adams] endemic to North America; and (iii) sect. Sabina, with \sim 60 species distributed in southwestern North America, Asia and the Mediterranean region, with outlier species in Africa and the Canary Islands. The few polyploids in wild populations noted above have all been reported to occur in species belonging to sect. Sabina. Both diploid and tetraploid cytotypes have been found in some populations of J. chinensis L. (Sax and Sax, 1933; Hall et al., 1973; Zonneveld, 2012) and in some populations of J. sabina L. (Siljak-Yakovlev et al., 2010; Farhat et al., 2019). Few sporadic triploid and tetraploid cytotypes have also been found in some ornamental cultivars. Juniperus thurifera is the only species reported to be exclusively tetraploid (2n = 4x = 44 and 40 pg/2C) (Romo et al., 2013; Vallès et al., 2015). More recently, Bou Dagher-Kharrat et al. (2013) showed that J. foetidissima Willd. had a very large genome (59.74 pg/2C), c. 3-fold larger than confirmed diploid Juniperus species which range from 19.02 to 26.40 pg/2C (Bennett and Leitch, 2012). The exceptional genome size of J. foetidissima, suggests this species may be hexaploid (Bou Dagher-Kharrat et al., 2013) but cytogenetic studies are needed to confirm this since genome size alone may be misleading as it can be highly variable between species of the same genus that have the same ploidy level (Ledig, 1998; Morse et al., 2009; Abdel Samad et al., 2014).

Altogether, these observations suggest that *Juniperus* may have undergone an unusual evolutionary trajectory, involving polyploidization more frequently than encountered in other conifers. This paper takes a first step toward addressing these gaps in our data to fully understand the role that polyploidization has played in the evolutionary history of *Juniperus*. The objective was to assess variation in genome size across the whole genus and use these data as a proxy to estimate ploidy levels. Using classical cytogenetics approaches, we also determined the ploidy level of *J. foetidissima*, which has the biggest genome in this genus. Finally, we used phylogenetically-informed trait evolution modeling approaches to reconstruct ancestral genome sizes for the three main clades of *Juniperus* and identify the occurrence of polyploidization events during the evolution of *Juniperus*.

MATERIALS AND METHODS

Plant Material

The origins of the studied accessions are presented in **Table 1**. We used Robert P. Adams's worldwide collection of *Juniperus* leaf material, dried in silica gel and kept frozen at -20° C. This material has been stored for years (the oldest sample was collected in 1985). To address its suitability for genome size analysis and ploidy screening, we carried out measurements on both dry and fresh material for a sub-sample of 12 species which were selected to cover as much of the genus diversity at the taxonomic (representatives of sections *Juniperus* and *Sabina*), morphological (needles-like and scale leaves) and cytogenetic (species with

TABLE 1 | List of the Juniperus taxa studied with indication of data collection, type of material, genome size data, and chromosome numbers.

Section	Species	var.	Coll #	Location source	Dried/ Fresh	Date coll.	2C (pg)	CV plant (%)	CV standard (%)	2n	1Cx (pg)
Caryocedrus	J. drupacea Labill.		Adams 14693	Turkey	Dried	2015	23.48	7.19	2.44	22 ⁽ⁱ⁾	11.74
Juniperus	<i>J. brevifolia</i> (Seub.) Ant.		Adams 8152	Azore Islands	Dried	1997	22.28	4.42	2.34	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.14
	<i>J. cedrus</i> Webb and Berthol.		Adams 11510	La Palma	Dried	2008	24.70	7.54	2.67	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.35
	J. communis L.		Adams 9035	France	Dried	2000	24.48	4.98	3.56	22 ⁽ⁱ⁾	12.24
	J. communis L.		RBGK 1977-1318	NA	Fresh	2017	22.28	2.9	2.42	22 ⁽ⁱ⁾	11.14
	J. communis	<i>charlottensis</i> R. P. Adams	Adams 10304	Canada	Dried	2004	22.32	4.71	2.28	22 ⁽ⁱ⁾	11.16
	J. communis	depressa Pursh	Adams 10940	New Mexico	Dried	2005	22.13	3.93	2.38	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.07
	J. communis	<i>hemispherica</i> (J. and C. Presl) Parl.	Adams 9045	Italy	Dried	2000	22.66	3.67	2.09	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.33
	J. communis	<i>kamchatkensi</i> s R. P. Adams	Adams 9182-9164	Denmark	Dried	2000	-	-	-	-	-
	J. communis	<i>kelleyi</i> R. P. Adams	Adams 10890	USA	Dried	2005	22.30	2.86	2.29	22 ⁽ⁱ⁾	11.15
	J. communis	<i>megistocarpa</i> Fernald and H. St. John	Adams 8576	Quebec	Dried	1998	22.50	4.2	2.44	22 ⁽ⁱ⁾	11.25
	J. communis	<i>nipponica</i> (Maxim.) E. H. Wilson	Adams 8579	Japan	Dried	1998	21.92	3.97	2.22	22 ⁽ⁱ⁾	10.96
	J. communis	<i>oblonga</i> hort. ex Loudon (=var. <i>communis</i>)	Adams 8765	Armenia	Dried	1999	22.29	3.72	2.67	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.15
	J. communis	saxatilis Pall.	Adams 8686	Japan	Dried	1998	22.87	4.93	2.47	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.44
	J. communis	saxatilis Pall.	Adams 10378	Spain	Dried	2004	22.30	4.2	3.1	22 ⁽ⁱ⁾	11.15
	J. communis	saxatilis Pall.	Adams 11206	Norway	Dried	2006	21.82	4.06	2.44	22 ⁽ⁱ⁾	10.91
	J. communis	saxatilis (sibirica) Pall.	Adams 7589	Mongolia	Dried	1995	23.92	4.22	2.42	22 ⁽ⁱ⁾	11.96
	<i>J. deltoides</i> R. P. Adams		Adams 14466	Azerbaijan	Dried	2014	22.87	3.87	2.88	22 ⁽ⁱ⁾	11.44
	<i>J. deltoides</i> R. P. Adams	<i>spilinanus</i> (Yalt., Elicin and Terz.) Terz.	Adams 12064-12065	Turkey	Dried	2010	22.93	4.34	3.26	22 ⁽ⁱ⁾	11.47
	J. formosana Hayata		Adams 9071	Taiwan	Dried	2000	22.31	4.06	2.33	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.16
	J. formosana Hayata		RBGK 1995-2911	NA	Fresh	2017	23.03	3.01	2.44	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.52
	<i>J. jackii</i> (Rehder) R. P. Adams		Adams 10287	USA	Dried	2004	22.57	3.87	2.44	22 ⁽ⁱ⁾	11.29
	<i>J. macrocarpa</i> Sibth. and Sm.		Adams 14047	Turkey	Dried	2013	25.74	4.33	3.2	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.87
	<i>J. maderensis</i> (Menezes) R. P. Adams		Adams 11497	Madeira Island	Dried	2008	22.64	5	2.15	22 ⁽ⁱ⁾	11.32
	<i>J. mairei</i> Lemee and H. Leveille		Adams 6772	China	Dried	1991	23.16	3.9	2.69	22 ⁽ⁱ⁾	11.58
	J. navicularis Gand.		Adams 8240	Portugal	Dried	1997	22.66	4.93	2.5	22 ⁽ⁱ⁾	11.33
	J. oxycedrus L.		Adams 9039	France	Dried	2000	23.08	4.98	2.69	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.54
	J. oxycedrus	<i>badia</i> H. Gay	Adams 7795	Spain	Dried	1996	22.32	3.87	2.93	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.16
	<i>J. rigida</i> Siebold and Zucc.		Adams 8544	Japan	Dried	1998	22.31	4.25	2.56	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.16
	J. rigida	conferta Parl.	Adams 8585	Japan	Dried	1998	21.81	3.43	2.13	22 ⁽ⁱ⁾	10.91
	<i>J. taxifolia</i> Hook. and Arn.		Adams 8448	Japan	Dried	1998	22.44	4.79	4.66	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.22
	J. taxifolia	<i>lutchuensis</i> (Koidz.) Satake	Adams 8541	Japan	Dried	1998	22.04	3.42	2.5	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.02
	<i>J. angosturana</i> R. P. Adams		Adams 6881	Mexico	Dried	1991	26.79	3.85	2.51	22 ⁽ⁱ⁾	13.4

Section	Species	var.	Coll #	Location source	Dried/ Fresh	Date coll.	2C (pg)	CV plant (%)	CV standard (%)	2n	1Cx (pg)
	<i>J. arizonica</i> R. P. Adams		Adams 14908	USA	Dried	2015	27.64	3.98	2.42	22 ⁽ⁱ⁾	13.82
	J. ashei Buchholz		Adams 12260	USA	Dried	2004	25.30	3.24	2.24	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.65
	J. barbadensis L.		Adams 5368	St. Lucia	Dried	1996	24.20	2.73	2.35	22 ⁽ⁱ⁾	12.1
	J. barbadensis	lucayana Britton	Adams 11408	Bahamas	Dried	2008	24.21	3.16	2.67	22 ⁽ⁱ⁾	12.11
	J. bermudiana L.		Adams 2554	Bermuda Island	Dried	1995	25.81	3.2	2.7	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.91
Sabina	J. bermudiana L.		RBGK 2011-1530	NA	Fresh	2017	25.51	3.19	2.71	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.76
	J. blancoi Martinez		Adams 10258-10259	Mexico	Dried	2004	24.82	3.97	2.35	22 ⁽ⁱ⁾	12.41
	J. blancoi	<i>huehuentensis</i> R. P. Adams, S. Gonzalez, and M. G. Elizondo	Adams 10247	Mexico	Dried	2004	24.83	3.95	2.95	22 ⁽ⁱ⁾	12.42
	J. blancoi	<i>mucronata</i> (R. P. Adams) Farjon	Adams 8701	Mexico	Dried	1998	25.28	3.15	2.37	22 ⁽ⁱ⁾	12.64
	J. californica Carriere		Adams 8698	Aizona, USA	Dried	1998	28.16	3.53	2.15	22 ⁽ⁱ⁾	14.08
	J. californica Carriere		Adams 10154	California, USA	Dried	2004	28.45	3.16	2.28	22 ⁽ⁱ⁾	14.23
	<i>J. carinata</i> Y. F. YU and V L. K. FU		Adams 8504	China	Dried	1998	24.30	3.31	2.21	22 ⁽ⁱ⁾	12.15
	J. chinensis L.		Adams 8535	Japan	Dried	1998	47.51	3.38	2.78	44 ⁽ⁱ⁾ /22 and 44 ⁽ⁱⁱ⁾	11.88
	J. chinensis	<i>procumbens</i> Sieb. ex Endl.	Adams 8683	Japan	Dried	1998	46.77	3.11	3.07	44 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.7
	J. chinensis	sargentii A. Henry	Adams 8688	Japan	Dried	1998	49.67	3.77	2.52	44 ⁽ⁱ⁾ /22	⁽ⁱⁱ⁾ 12.42
	<i>J. coahuilensis</i> (Martinez) Gaussen		Adams 14814	Texas, USA	Dried	2016	26.56	5.79	2.88	22 ⁽ⁱ⁾	13.28
	J. comitana Martinez		Adams 6859	Mexico	Dried	1991	27.57	5.06	2.8	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	13.79
	<i>J. convallium</i> Rehder and Wilson		Adams 6781	China	Dried	1991	26.29	4.14	2.96	22 ⁽ⁱ⁾	13.15
	<i>J. coxii</i> A. B. Jacks		Adams 8137	Chimili Valley, Burma	Dried	1997	50.70	4.51	2.11	44 ⁽ⁱ⁾	12.68
	J. davurica Pallas		Adams 7253	Mongolia	Dried	1994	23.99	3.49	2.6	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12
	J. davurica	<i>arenaria</i> (E. H. Wilson) R. P. Adams	Adams 10347	China	Dried	2004	24.30	3.38	2.43	22 ⁽ⁱ⁾	12.15
	J. davurica	<i>mongolensis</i> R. P. Adams	Adams 7254	Mongolia	Dried	1994	23.80	2.96	2.35	22 ⁽ⁱ⁾	11.9
	J. deppeana Steudel		Adams 10539	Mexico	Dried	2005	26.39	3	2.32	22 ⁽ⁱ⁾	13.2
	J. deppeana Steudel		Adams 10927	Arizona, USA	Dried	2005	25.93	4.05	2.55	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.97
	J. deppeana	<i>gamboana</i> (Mart.) R. P. Adams	Adams 6869	Mexico	Dried	1991	26.36	4.1	2.7	22 ⁽ⁱ⁾	13.18
	J. deppeana	<i>patoniana</i> (Martinez) Zanoni	Adams 6837-11904	Mexico	Dried	1991	-	-	-	-	-
	J. deppeana	robusta Martinez	Adams 10255	Mexico	Dried	2004	25.83	3.01	2.49	22 ⁽ⁱ⁾	12.92
	J. deppeana	robusta Martinez	Adams 10256	Mexico	Dried	2004	25.76	3.62	2.45	22 ⁽ⁱ⁾	12.88
	J. deppeana	<i>sperryi</i> (Correll) R. P. Adams	Adams 11494	USA	Dried	2008	25.75	3.91	2.67	22 ⁽ⁱ⁾	12.88
	J. deppeana	<i>zacatacensi</i> s (Mart.) R. P. Adams	Adams 10517-10518	Mexico	Dried	2009	25.80	2.9	2.33	22 ⁽ⁱ⁾	12.9
	<i>J. durangensis</i> Martinez		Adams 10253-11929	Mexico	Dried	2009	25.54	3.73	2.58	22 ⁽ⁱ⁾	12.77
	J. durangensis	<i>topiensis</i> R. P. Adams and S. Gonzalez	Adams 11923	Mexico	Dried	2009	25.64	4.33	2.12	22 ⁽ⁱ⁾	12.82

Section	Species	var.	Coll #	Location source	Dried/ Fresh	Date coll.	2C (pg)	CV plant (%)	CV standard (%)	2n	1Cx (pg)
	<i>J. erectopatens</i> (Cheng and L. K. Fu) R. P. Adams		Adams 8532-8533-8534	China	Dried	1998	_	-	-	-	_
	J. excelsa MBieb.		Adams 14742	Greece	Dried	2015	27.41	4.47	2.27	22 ⁽ⁱ⁾⁽ⁱⁱ⁾⁽ⁱⁱⁱ⁾	13.71
	<i>J. fargesii</i> (Rehder and Wils.) Kom.		Adams 6769	China	Dried	1991	25.33	3.65	2.27	22 ⁽ⁱ⁾	12.67
	J. flaccida Schlecht.		Adams 6892	Mexico	Dried	1991	26.05	3.56	2.37	22 ⁽ⁱ⁾	13.03
	J. foetidissima Willd.		Adams 14511	Greece	Dried	2015	71.32	3.56	3.15	66 ⁽ⁱ⁾⁽ⁱⁱⁱ⁾	11.89
	J. foetidissima Willd.		Adams (waiting for assignment)	Lebanon	Fresh	2017	69.71	3.84	3.91	66 ⁽ⁱ⁾⁽ⁱⁱⁱ⁾	11.62
	J. foetidissima Willd.		Adams (waiting for assignment)	Turkey	Fresh	2018	70.7	3.4	3.2	66 ⁽ⁱ⁾⁽ⁱⁱⁱ⁾	11.78
	J. gracilior Pilger		Adams 7664	Dom. Rep.	Dried	1996	24.97	3.15	2.29	22 ⁽ⁱ⁾	12.49
	J. gracilior	<i>ekmanii</i> (Florin) R. P. Adams	Adams 7653	Haiti	Dried	1996	25.59	4.44	2.6	22 ⁽ⁱ⁾	12.8
	J. gracilior	<i>urbaniana</i> (Pilger and Ekman) R. P. Adams	Adams 12314	Dom. Rep.	Dried	2009	28.05	4.28	2.42	22 ⁽ⁱ⁾	14.03
	J. gracilior	<i>saxicola</i> (Britton and P. Wilson) R. P. Adams	Adams 5284	Cuba	Dried	1985	25.55	3.29	2.24	22 ⁽ⁱ⁾	12.78
	<i>J. grandi</i> s R. P. Adams		Adams 11963	California, USA	Dried	2009	25.81	3.04	2.47	22 ⁽ⁱ⁾	12.91
	<i>J. horizontalis</i> Moench		Adams 14381	Canada	Dried	2014	24.64	5.25	3.23	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.32
	J. indica Bertol.		Adams 8775	Nepal	Dried	1999	48.81	3.95	2.55	44 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.2
	J. indica Bertol.		Adams 12943	Nepal	Dried	2011	48.07	3.7	2.68	44(i)	12.02
	J. indica Bertol.		RBGK 2010-2167	NA	Fresh	2017	48.85	2.13	2.03	44 ⁽ⁱ⁾	12.21
	J. indica	caespitosa Farjon	Adams 7625-7626	Nepal	Dried	1995	-	-	-	-	-
	J. jaliscana Martinez		Adams 15491-15492	Mexico	Dried	1991	29.50	3.41	3.02	22 ⁽ⁱ⁾	14.75
	J. komarovii Florin		Adams 8518	China	Dried	1998	24.76	3.55	2.21	22 ⁽ⁱ⁾	12.38
	<i>J. maritima</i> R. P. Adams		Adams 11056	Vancouver Island, Canada	Dried	2006	25.17	3.75	2.35	22 ⁽ⁱ⁾	12.59
	<i>J. martinezii</i> Perez de la Rosa		Adams 14901	Mexico	Dried	2016	27.31	3.87	3.07	22 ⁽ⁱ⁾	13.66
	<i>J. microsperma</i> (Cheng and L. K. Fu) R. P. Adams		Adams 8522	China	Dried	1998	23.66	3.89	1.97	22 ⁽ⁱ⁾	11.83
	<i>J. monosperma</i> (Engelm.) Sarg.		Adams 10932	New Mexico	Dried	2005	26.96	4.02	2.12	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	13.48
	J. monticola Martinez		Adams 6876	Mexico	Dried	1991	24.86	4.82	2.15	22 ⁽ⁱ⁾	12.43
	<i>J. morrisonicola</i> Hayata		Adams 8681	Taiwan	Dried	1998	46.61	2.8	2.62	44 ⁽ⁱ⁾	11.65
	J. occidentalis Hook.		Adams 13546	Oregon, USA	Dried	2012	26.39	3.85	2.03	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	13.2
	<i>J. osteosperma</i> (Torr.) Little		Adams 14310	Utah, USA	Dried	2014	26.87	5.41	3.18	22 ⁽ⁱ⁾	13.44
	J. ovata R. P. Adams		Adams 12279	Texas, USA	Dried	2010	25.48	4.95	2.9	22 ⁽ⁱ⁾	12.74
	J. phoenicea L.		Adams 13813	Spain	Dried	2013	24.76	4.43	2.98	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.38
	J. phoenicea L.		RBGK 1996-114	NA	Fresh	2017	24.86	2.96	2.47	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.43
	J. pinchotii Sudworth		Adams 10463	Texas, USA	Dried	2004	26.24	3.3	2.04	22 ⁽ⁱ⁾	13.12
	<i>J. pingii</i> Cheng and Ferre		Adams 8506	China	Dried	1998	25.49	3.23	2.16	22 ⁽ⁱ⁾	12.75
	J. pingii	<i>miehei</i> Farjon	Adams 13598	Tibet	Dried	2000	29.11	5.55	1.9	22 ⁽ⁱ⁾	14.56

Section	Species	var.	Coll #	Location source	Dried/ Fresh	Date coll.	2C (pg)	CV plant (%)	CV standard (%)	2n	1Cx (pg)
	<i>J. poblana</i> (Mart.) R. P. Adams		Adams 15208-15209	Mexico	Dried	2016	24.39	3.98	2.75	22 ⁽ⁱ⁾	12.2
	<i>J. poblana</i> (Mart.) R. P. Adams		Adams 14898	Nayarit, MX	Dried	2016	26.95	4.42	2.29	22 ⁽ⁱ⁾	13.48
	<i>J. poblana</i> (Mart.) R. P. Adams	<i>decurrens</i> R. P. Adams	Adams 11926	Durango, Mexico	Dried	2009	-	-	-	-	-
	<i>J. polycarpos</i> K. Koch		Adams 14171	Azerbaijan	Dried	2013	24.92	4.68	3.09	22 ⁽ⁱ⁾	12.46
	J. polycarpos	<i>turcomanica</i> (B. Fedtsch.) R. P. Adams	Adams 8757	Turkmenistan	Dried	1999	24.89	2.76	2.4	22 ⁽ⁱ⁾	12.45
	<i>J. procera</i> Hochst. ex. Endl.		Adams 15222-15223	Ethiopia	Dried	2016	24.44	4.2	2.46	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.22
	<i>J. procera</i> Hochst. ex. Endl.		RBGK 2013-277	NA	Fresh	2017	24.01	3.42	2.34	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.01
	J. przewalskii Kom.		Adams 6775	China	Dried	1991	48.90	3.27	2.38	44 ⁽ⁱ⁾	12.23
	<i>J. pseudosabina</i> Fisch., Mey. and Ave-Lall.		Adams 7808	Kazakstan	Dried	1996	24.73	3.22	2.32	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.37
	<i>J. recurva</i> BuchHam. ex D. Don.		Adams 7215	Nepal	Dried	1993	47.50	2.87	3.78	44 ⁽ⁱ⁾ /22	⁽ⁱⁱ⁾ 11.88
	<i>J. recurva</i> BuchHam. ex D. Don.		RBGK 1976-826	NA	Fresh	2017	49.05	2.55	2.62	44 ⁽ⁱ⁾ /22	⁽ⁱⁱ⁾ 12.26
	<i>J. rushforthiana</i> R. P. Adams		Adams 8140	Bhutan	Dried	1997	49.94	4.52	2.2	44(i)	12.49
	J. sabina L.		Adams 14316	Azerbaijan	Dried	2014	24.65	4.49	2.76	22 ⁽ⁱ⁾⁽ⁱⁱ⁾ / 44(ⁱⁱ⁾	12.33
	J. sabina L.	<i>balkanensis</i> R. P. Adams and A. N. Tashev	Adams 14722	Bulgaria	Dried	2015	46.36	-	-	44 ⁽ⁱⁱⁱⁱ⁾	-
	<i>J. saltillensis</i> M. T. Hall		Adams 6886	Mexico	Dried	1991	26.32	3.02	2.06	22 ⁽ⁱ⁾	13.16
	<i>J. saltuaria</i> Rehder and Wils.		Adams 6789	China	Dried	1991	26.04	4.61	2.34	22 ⁽ⁱ⁾	13.02
	J. scopulorum Sarg.		Adams 10895	Utah, USA	Dried	2005	25.10	3.34	2.37	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.55
	J. scopulorum Sarg.		RBGK 2004-1660	NA	Fresh	2017	25.89	2.78	2.21	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.95
	J. semiglobosa Regel		Adams 8210	Kyrgystan	Dried	1997	26.41	4.4	2.03	22 ⁽ⁱ⁾	13.21
	<i>J. semiglobosa</i> Regel	<i>jarkendensis</i> (Kom.) R. P. Adams	Adams 7820	China	Dried	1996	24.96	4.06	2.3	22 ^(I)	12.48
	J. semiglobosa Regel	<i>talassica</i> (Lipsky) Silba	Adams 8220-8221-8222	Kyrgystan	Dried	1997	27.24	4.8	2.1	22 ^(I)	13.62
	<i>J. seravschanica</i> Kom.		Adams 8224	Kazakhstan	Dried	1997	48.58	2.89	2.99	44 ⁽ⁱ⁾ /22 ⁽	⁽ⁱⁱ⁾ 12.15
	<i>J. squamata</i> BuchHam. ex. D. Don in Lambert		Adams 6796	China	Dried	1991	48.55	4.86	2.74	44 ⁽ⁱ⁾	12.14
	J. squamata	<i>meyeri</i> Rehder (cv.)	Adams 13547	China	Dried	2012	46.29	3.88	3.38	44 ⁽ⁱ⁾	11.57
	J. squamata	<i>wilsonii</i> (Rehder) R. P. Adams	Adams 12912	China	Dried	2012	25.60	9.33	3.14	22 ⁽ⁱ⁾	12.8
	<i>J. standleyi</i> Steyermark		Adams 15396	Mexico	Dried	1991	30.30	4.26	2.56	22 ⁽ⁱ⁾	15.15
	J. thurifera L.		Adams 9452	Spain	Dried	2001	48.81	3.54	2.56	44 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.2
	J. thurifera L.		RBGK 2015-61	NA	Fresh	2017	47.14	2.59	2.31	44 ⁽ⁱ⁾⁽ⁱⁱ⁾	11.79

Section	Species	var.	Coll #	Location source	Dried/ Fresh	Date coll.	2C (pg)	CV Plant (%)	CV Standard (%)	2n	1Cx (pg)
	J. thurifera	africana Maire	Adams 9420	Morocco	Dried	2001	48.23	3.53	2.16	44(i)(ii)	12.06
	J. tibetica Kom.		Adams 8516	China	Dried	1998	48.27	2.9	2.26	44(i)	12.07
	J. tibetica Kom.		RBGK 2013-276	NA	Fresh	2017	49.43	2.96	2.63	44 ⁽ⁱ⁾	12.36
	<i>J. tsukusiensis</i> Masam.		Adams 8806	Japan	Dried	1999	23.75	2.94	2.5	22 ⁽ⁱ⁾	11.88
	J. tsukusiensis	<i>taiwanensis</i> (R. P. Adams and C-F. Hsieh)	Adams 9061	Taiwan	Dried	2000	23.95	3.84	2.67	22 ⁽ⁱ⁾	11.98
	J. turbinata Guss.		Adams 7202	Spain	Dried	1993	25.28	4.65	2.8	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.64
	J. turbinata Guss.		Adams 12397	Turkey	Dried	2010	26.38	4.14	1.96	22 ⁽ⁱ⁾	13.19
	<i>J. uncinata</i> R. P. Adams		Adams 7212	Nepal	Dried	1993	24.51	3.56	2.75	22 ⁽ⁱ⁾	12.26
	J. virginiana L.		Adams 10231	Tennessee USA	Dried	2004	24.91	2.49	1.79	22 ⁽ⁱ⁾⁽ⁱⁱ⁾	12.46
	J. virginiana	<i>silicicola</i> (Small) E. Murray	Adams 11113-11114	Florida, USA	Dried	2006	24.81	3.53	2.2	22 ⁽ⁱ⁾	12.41
	J. virginiana	<i>silicicola</i> (Small) E. Murray	RBGK 1984-8179	NA	Fresh	2017	24.66	4.6	3.94	22 ⁽ⁱ⁾	12.33
	<i>J. zanonii</i> R. P. Adams		Adams 6900	Mexico	Dried	1991	25.19	3.3	3	22 ⁽ⁱ⁾	12.6

"coll #" correspond to the herbarium voucher specimens deposited at Baylor University Herbarium (BAYLU) "Adams #" or to accessions from the living collections of the Royal Botanic Gardens Kew "RBGK #," Chromosome numbers ⁽¹⁾ deduced from genome size data, ⁽ⁱⁱ⁾ retrieved from CCDB, ⁽ⁱⁱⁱ⁾ directly observed in this study, ⁽ⁱⁱⁱⁱ⁾ from Farhat et al. (2019), CV: coefficient of variation of the 2C values.

different ploidy levels) levels. Fresh leave material was obtained from plants growing in the living collections of the Royal Botanic Gardens, Kew, UK.

Genome Size Assessments by Flow Cytometry

Nuclear DNA contents of about 3,000 stained nuclei were estimated for each sample with a CyFlowSL Partec flow cytometer (Partec GmbH) following the one-step protocol of Doležel et al. (2007) with minor modifications as described in Clark et al. (2016). We selected *Allium cepa* L., 2C = 34.89 pg (Doležel et al., 1998; Clark et al., 2016) and the "CyStain PI Absolute P kit" buffer (Sysmex UK) as the most appropriate internal calibration standard and nuclei isolation buffer for ploidy screening in *Juniperus*.

Chromosome Counts

We compiled published *Juniperus* chromosome numbers from the Chromosome Counts Database (CCDB; Rice et al., 2015). New chromosome counts were made for *J. foetidissima* and *J. excelsa* using 3 years old plants cultivated from seed of natural origin (from Turkey), and following Vallès et al. (2015) for protoplast preparation and Chromomycin A3 (CMA, Serva) staining.

Analyses of Genome Size and Chromosome Number Evolution

Trait evolution was modeled on the phylogenic tree of Adams (2014), pruned to the set of species and varieties with genome size

data and made ultrametric with R v.3.2.2 (Team, 2016). However, five taxa with genome size estimates were not represented in the phylogeny and so they were discarded from these analyses [Juniperus communis var. kelleyi R. P. Adams, J. deltoides var. spilinanus (Yalt., Elicin and Terz.) Terz, J. durangensis var. topiensis R. P. Adams and S. Gonzalez, J. poblana var. decurrens R. P. Adams, J. semiglobosa var. talassica (Lipsky) Silba)]. The inference of ancestral genome size values was based on monoploid GS (1Cx-values) sensu Greilhuber et al. (2005). Ancestral 1Cx-values were reconstructed under ML using the "fastAnc" command and mapped onto the phylogeny with the "contMap" command of the Phytools package of R (Revell, 2012).

We used ChromEvol v.2 (Glick and Mayrose, 2014) to infer ancestral haploid (*n*) chromosome numbers in *Juniperus*. This program implements a series of likelihood models to infer duplication events, chromosome gains/losses and demiduplications at ancestral nodes. The model that best fitted the data set was chosen under the Akaike information criterion (AIC) using default parameters.

RESULTS

Genome Size Diversity

Genome sizes were assessed for 111 *Juniperus* species and varieties (**Table 1**), representing 96.5% of taxonomic diversity. Low differences were found between values obtained with dried and fresh material for the 12 species analyzed using both types of leaf material. Differences varied around zero with six positive (minimum = 0.6%, maximum = 9.8% and mean difference

FIGURE 1 Genome size (2C-values, represented by black dots) classes in *Juniperus* and their unequivocal relationship with the chromosome number. Class A represents the range of genome sizes for all diploid species confirmed by published chromosome numbers. Class B represents the range of genome sizes for all tetraploid species confirmed by published chromosome number. Class C represents the genome size of the only hexaploid species so far reported (i.e., *J. foetidissima*). (A) Chromosomes of the diploid *J. excelsa* (our data); (B) chromosomes of the tetraploid *J. thurifera* (reproduced from Vallès et al., 2015), and (C) Chromosomes of *J. foetidissima* confirming its hexaploid status (our data). Monoploid genome size (1Cx-values, represented by yellow dots) of the three sections were also illustrated.

= 3.1%) and six negative percentages (minimum = -0.42%, maximum = -3.16% and mean difference = -2.15%). Overall, the genome size estimates for *Juniperus* ranged 3.2-fold (from 21.81 to 70.58 pg/2C) but they were seen to be distributed into three non-overlapping classes (**Figure 1**), class A: 21.81–30.3 pg/2C, B: 46.29–50.7 pg/2C, and C: 70.58 pg/2C.

Ploidy Levels Inferred From Genome Size Data

We gathered chromosome number data from the CCDB for 41 Juniperus species and varieties (Table 1). In addition, we made the first chromosome counts for J. excels-a diploid with 2n = 22, and J. foetidissima—a hexaploid with 2n = 66(Figures 1A,C, respectively). Ploidy levels based on chromosome numbers agreed with those inferred from genome size for all but two taxa, suggesting a strong correlation between genome size, ploidy level and chromosome number. Genome size values of class A corresponded to diploids with 2n = 2x = 22, class B to tetraploids with 2n = 4x = 44 and class C to hexaploids with 2n = 6x = 66 (Table 1; Figure 1). The two exceptions were J. seravschanica Kom. and J. chinensis var. sargentii A. Henry, which were both reported to be diploid in the CCDB but had genome size estimates indicating the samples analyzed here were tetraploid. We thus considered these taxa to have two cytotypes, as previously established for *J. chinensis* and *J. sabina* (Table 1).

Evolution of Chromosome Numbers

The best-fitting model in ChromEvol to explain the evolution of chromosome numbers in Juniperus was the CONST_RATE model (Supplementary Table S1), suggesting that polyploidy is the predominant mode of chromosome evolution in Juniperus. The ancestor of the whole genus was inferred to be diploid, with n = 11. It is noted that the polyploids were exclusively restricted to sect. Sabina (Figure 2). Three lineage-specific polyploidization events leading to tetraploidy were detected in the ancestors of the clades giving rise to (i) J. recurva, J. rushforthiana, J. indica, (ii) J. preswalskii, J. tibetica, J. morrisonicola, J. squamata, and (iii) J. thurifera, J. foetidissima (Figure 2). A further gain of 22 chromosomes was inferred in the lineage giving rise to the hexaploid J. foetidissima. Six species-specific or within-species polyploidization events (i.e., cytotypes) were found in J. coxii, J. sevaschanica, J. chinensis, J. chinensis var. procumbens, J. chinensis var. sargentii and J. sabina, all of which contained both diploid and tetraploid individuals (Figure 2).

Evolution of Genome Size

Beside the genome size variation explained by chromosome number difference, a small variation at the 1C*x*-level was detected between ploidy levels. In addition, the distribution of 1C*x*-values across *Juniperus* presented in **Figures 1**, **2** showed an ancestral genome size of 12.37 pg for the whole genus and overall larger values in species belonging to sect. *Sabina* (mean 1C*x* 12.7 pg, ancestral 1C*x* 12.64 pg) compared with those of sect. *Caryocedrus* (mean 1C*x* 11.74 pg, ancestral 1C*x* 12.15 pg) and sect. *Juniperus* (mean 1C*x* 11.38 pg, ancestral 1C*x* 11.59 pg). Nevertheless, decreases in 1C*x*-values were observed in several taxa from sect. *Sabina*, including some –but not all– polyploids. Polyploid taxa showed limited 1C*x* variation relative to the value inferred for their most recent ancestors, with a maximum 1C*x* downsizing of 5.70% for *J. squamata* var. *meyeri*, and a maximum 1C*x* upsizing of 1.71% in *J. rushfortiana* (**Supplementary Table S2**).

DISCUSSION

Reliability of Genome Size Estimates From Desiccated Leaf Material of *Juniperus*

Over the years considerable attention has focused on exploring the suitability of dried plant material for genome size and ploidy level analysis, especially given the challenges of collecting and analyzing fresh material from plants growing in remote locations. Dried material has certainly shown to be suitable for ploidy level analysis in many vascular plants (Suda and Trávníček, 2006; Schönswetter et al., 2007; Suda et al., 2007; Popp et al., 2008; Krejčíková et al., 2013; Wang and Yang, 2016). Nevertheless, the quality of data generated by flow cytometry using dried material has been shown to differ between species, buffers (Bainard et al., 2011) and type of desiccation used (Šmarda et al., 2005; Šmarda and Stančík, 2006; Suda and Trávníček, 2006) and it is now generally accepted that while desiccated material is suitable for ploidy level analysis, it is usually not reliable enough for accurate genome size estimations.

In contrast to these previous studies, our analyses of *Juniperus* showed that leaves dried in silica gel and stored continuously

at -20° C are suitable for genome size estimations using flow cytometry, giving reasonable data quality (i.e., mean %CV = 3.9, S.D. = 0.96). This was supported by comparisons of 2C-values estimated for the same species from dried and fresh material where low differences between the two variances were found in the 12 species analyzed. We are thus confident that the genome size data generated from the desiccated material analyzed here are reliable and hence suitable for exploring genome size [but there might be a slight shift in "absolute" genome sizes (9.8% at maximum)] and ploidy diversity and evolution across *Juniperus*. Our results broadly agree with Bainard et al. (2011) who found that leaves desiccated immediately in the field using silica gel, was one of the most promising conservation methods, yielding reasonable quality flow cytometry peaks for some species.

Variability in Genome Size and Polyploidy in *Juniperus*

This study showed that junipers are characterized by possessing large genomes (mean genome size for diploid taxa = 25 pg/2C) with extensive variation between species (ranging 3.2-fold from 21.81 to 71.32 pg/2C). This large variation perfectly correspond to known ploidy levels (2x - 6x), while the variation in 1Cx is only 1.38-fold. The data considerably extend our knowledge of genome sizes in *Juniperus* which was previously based on data for just 19 species (Bennett and Leitch, 2012). They also show *Juniperus* now has the largest range in genome size so far reported for any conifer genus.

There are three main mechanisms which can lead to variation in genome size; (i) rapid loss or expansion of transposable and/or other repetitive elements, (ii) loss or gain of chromosomes (aneuploidy and dysploidy), and (iii) polyploidization, possibly followed by genome downsizing (Ramsey and Schemske, 1998; Leitch and Bennett, 2004; Greilhuber et al., 2005; Morse et al., 2009). While in Pinus the high variability in genome size (34.50-72.00 pg/2C; Murray et al., 2012) has been shown to be mainly driven by variation in copy numbers of repeats, such as retrotransposable elements (Morse et al., 2009; Kovach et al., 2010; Nystedt et al., 2013), in Juniperus, our data indicate that most of the variation in genome size is due to variation in ploidy levels. This does not exclude the occurrence of limited genome size variation within each ploidy level, but based on the data presented, it is relatively small, ranging just 1.4-fold in diploids (95 taxa) and 1.1-fold in tetraploids (15 taxa). The source of this variation is still unclear but likely to represent variation in repeat content since, to date, there have been no reports of aneuploidy in the genus (Murray, 2013).

Among the 111 taxa analyzed, just two (J. chinensis var. sargentii and J. seravschanica) showed a discrepancy between the chromosome number reported in the CCDB and the ploidy level estimated from the genome size data obtained here. This could be due to a technical error, such as misidentification of the species used for counting chromosomes and such an explanation is possible for J. seravschanica, where the synonym taxa J. macropoda Boiss. has been used to determine the ploidy level (Rice et al., 2015). Nevertheless, these exceptions could also be explained by the existence of intra-specific variability in ploidy levels (=cytotype diversity), a well-documented phenomenon encountered in many land plant lineages, especially in angiosperms and ferns (Husband et al., 2013). In contrast, cytotype diversity is rarely reported in gymnosperms, with *Ephedra* being the only genus where it occurs extensively (>50% of species have >1 cytotype-Ickert-Bond et al., 2015). Prior to this study, natural intraspecific variation in ploidy level in Juniperus had only been reported in a few species including in J. chinensis (2x, 4x) (Sax and Sax, 1933; Hall et al., 1973) and J. *sabina* (2*x*, 4*x*) (Siljak-Yakovlev et al., 2010; Farhat et al., 2019).

In view of these previous studies, the results presented here are striking-revealing a much higher frequency of polyploidy in Juniperus than hitherto detected, with 15% of taxa being tetraploid, and the discovery of an hexaploid (J. foetidissima), which is only the second hexaploid to be found in conifers. In addition, the use of ChromEvol to infer the evolution of chromosome numbers across the phylogeny of Juniperus suggests that there have been an unexpectedly high number of polyploidization events throughout its evolutionary history compared with other gymnosperm lineages (except Ephedra). Such a result suggests that mechanisms that promote polyploidization and/or the evolutionary success of polyploid species have occurred at a much higher frequency in Juniperus than in other conifers, and even in gymnosperms in general, apart from Ephedra. It is also worth noting that only one individual was analyzed for most taxa in this study. It is therefore possible that our data underestimate the importance of polyploidization in Juniperus as additional intraspecific ploidy diversity may well be uncovered when more individuals are analyzed, as already seen in J. sabina and J. chinensis.

Genome Size Evolution and Ploidy Levels of *Juniper* Ancestors

Studies exploring the evolution of genome size diversity across different land plant groups, have uncovered contrasting dynamics in genome size fluctuations throughout their evolution (Bainard and Villarreal, 2013; Clark et al., 2016; Soltis et al., 2018). Now that genome size data are available for almost every recognized taxa of Juniperus and that ploidy levels can be inferred given the robust relationship with genome size (Figure 1), the reconstruction of the ancestral genome size within this genus and inferred ancestral ploidy level is highly instructive. Indeed, apart from Pinus (Grotkopp et al., 2004), our study is the first to reconstruct ancestral genome size within a species-rich genus for any gymnosperm. Our analysis revealed that the ancestral ploidy level for Juniperus was diploid with an estimated genome size of 12.37 pg/1C, which fits within the range of 9–12.38 pg/1C inferred by Burleigh et al. (2012), based on a sampling including only two Juniperus species amongst 165 gymnosperm species.

Within the genus, we found evidence suggesting that fluctuations in genome size, both upsizing and downsizing, independent of polyploidy, have taken place during evolution, as also found in Pinus (Grotkopp et al., 2004) and across other gymnosperm lineages as well (Burleigh et al., 2012). However, while, in most other gymnosperm genera the shifts in genome size are likely to be driven by changes in the abundance of repetitive DNA (Nystedt et al., 2013; De La Torre et al., 2014), in Juniperus the large shifts in genome size are associated with polyploidization events, with a minimum of 10 such events predicted from our analyses (Figure 2). Whether the occurrence and frequency of polyploidy, which was seen to be restricted to sect. Sabina, contributes to the higher number of species in this section (c. 60 species) compared with the other two sections of Juniperus (sect. Juniperus = c. 13 species, sect. Caryocedrus = one species) is unclear, although previous studies pointing to higher diversification rates in some angiosperm lineages following polyploidy suggest this is possible (Wood et al., 2009; Landis et al., 2018).

Concerning the origin of the hexaploid, J. foetidissima, there are several possible pathways. It could have arisen from a triploid ancestor following one step. If so, then there are two possible routes; (i) fertilization between two unreduced triploid gametes of a triploid ancestor, or (ii) somatic doubling of a triploid, giving rise directly to the hexaploid. Alternatively, it could have arisen following two WGD events (two steps) as envisaged for the hexaploid Sequoia sempervirens (Scott et al., 2016). The first step being a WGD event either via autopolyploidy or allopolyploidy leading to the formation of a tetraploid with n = 2x, followed by hybridization with a diploid (n = x) leading to a triploid. The second step involves a WGD giving rise to a hexaploid. The reports of sporadic triploid Juniperus individuals indicate that triploids can indeed form (Hall et al., 1973). However, yet another possibility is that the origin of J. foetidissima does not involve a triploid, but instead arose from hybridization between an unreduced gamete from a tetraploid (4x) with either (a) a reduced gamete from another tetraploid (2x) or (b) an unreduced gamete from a diploid (2x). Currently, there is no information about the genomic makeup of J. foetidissima to know whether it is an auto- or allo-polyploid, or its mode of origin.

Why Is Polyploidy More Common in *Juniperus* Than Other Conifers?

The success of hexaploid *Sequoia sempervirens* and polyploid *Ephedra* species (4x - 8x), has been partially attributed to their capacity for vegetative propagation (Scott et al., 2016; Wu et al., 2016) and this may also contribute to the survival of polyploid *Juniperus* species as there is evidence that they too have the capacity for vegetative propagation [e.g., in *J. sabina* and *J. communis* (Houle and Babeux, 1994; Ronnenberg, 2005; Wesche et al., 2005; Tylkowski, 2010)]. Furthermore, the extreme longevity has been suggested to be another factor contributing to the success of polyploidy in *S. sempervirens* (Scott et al., 2016), and since *Juniperus* has been classified as long-lived (Ward, 1982; Gauquelin et al., 2012) this may also help the survival of polyploids, enabling them to become established.

Here we propose a novel hypothesis that may also contribute to higher frequency of polyploidy revealed in Juniperus-this is the high frequency of sympatry between juniper species. In contrast to most of the conifers, the geographical ranges of Juniperus species overlap considerably which opens up lots of opportunities for natural hybridization between species. For example, in Spain, hybrids between *J. thurifera* × *J. sabina* and *J.* thurifera \times J. phoenicea and J. sabina \times J. phoenicea in sympatry have been described (Rojo and Díaz, 2006, 2009; Rojo and Uribe-Echebarría, 2008). More recently, Adams et al. (2016) suggested that an ancient hybridization between J. thurifera and J. sabina gave rise to J. sabina var. balkanensis. Juniper hybrids are also common in North America between closely related species in areas of sympatry [e.g., between J. virginiana L. and J. horizontalis Moench, J. osteosperma Hook and J. occidentalis Torr. Little, J. virginiana var. silicicola, and J. bermudiana (Vasek, 1966; Palma-Otal et al., 1983; Adams and Kistler, 1991; Adams and Wingate, 2008; Adams, 2014)].

Even though the sympatry is a *sine qua non* condition for natural hybridization, there are few cases of conifers occurring in sympatry that do hybridize without giving rise to polyploids: e.g., *Pinus taeda* and *P. echinata* (Edwards-Burke et al., 1997). Furthermore, induced hybridization like for *Cedrus* species (Fady et al., 2003) produced only homoploids. Cases of unreduced gamete production were documented in Cupressaceae (Pichot and El Maâtaoui, 2000) and Ephedraceae (Wu et al., 2016). This ability to produce unreduced gametes may be the explanation for polyploidisation in *Juniperus*.

On the other hand, the genomic shock arising from hybridization can often be ameliorated by WGD and subsequent diploidization as it was shown in angiosperms (Hegarty et al., 2006). Given the high frequency of hybrid formation in *Juniperus*, and assuming that similar levels of genomic shock following hybridization also occur here, as in angiosperms, then it is possible to envisage that polyploidy may offer one potential solution to these genomic challenges, tipping the balance toward their survival in the wild. Clearly, studies are now needed at the molecular level to provide insights into whether our understanding of the genomic consequences of hybridization and polyploidization in angiosperms is also applicable to the growing list of gymnosperm polyploids.

CONCLUSION

Polyploidy or whole genome duplication is rare in conifers. The lack of studies on polyploidy within Juniperus prompted the present study, in which the ploidy level of 96.5% of the genus was screened in order to explore the extent of polyploidy across the genus. Silica gel-dried leaves of Juniperus were found to be highly suitable for genome size measurements using flow cytometry. This study uncovered a relatively high number of polyploidization events (at least 10) in Juniperus, compared to other conifers, and revealed that at least 15% of Juniperus taxa are tetraploids. In addition, we used both chromosome and genome size data to validate the presence of the only hexaploid in Juniperus (J. foetidissima) so far reported, and only the second hexaploid found in conifers (after Sequoia sempervirens). An analysis of the phylogenetic distribution of polyploids across Juniperus showed they were restricted to sect. Sabina and that three clades are exclusively made of polyploids (one including the hexaploid J. foetidissima), providing the first evidence of possible lineage-specific polyploidizations in the genus.

Overall, it seems clear that *Juniperus* is exceptional within conifers, and represents a second genus within gymnosperms where polyploidy is common. We propose that *Juniperus* should be considered to be a highly relevant model for studying polyploidization mechanisms and pathways in conifers, and comparisons with *Ephedra* will provide a comprehensive understanding of the evolutionary dynamics and consequences of polyploidy in gymnosperms.

AUTHOR CONTRIBUTIONS

MB designed the study. RA provided the *Juniperus* material. PF and OH carried out the flow cytometry measurements and analyzed the data. PF and SS-Y determined the chromosome numbers. PF wrote a first draft of the manuscript that was further critically reviewed by MB, RA, OH, SS-Y, IL, TR.

FUNDING

The authors thank the National Council for Scientific Research grant number CNRS-FS90—Lebanon, the Saint Joseph University Research Council (CR-USJ) FS-111 for supporting financially this work.

ACKNOWLEDGMENTS

The authors thank the Royal Botanic Gardens Kew, London, UK for providing access to the flow cytometry facilities and living collections.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2019. 00676/full#supplementary-material

REFERENCES

- Abdel Samad, F., Baumel, A., Juin, M., Pavon, D., Siljak-Yakovlev, S., Médail, F., et al. (2014). Phylogenetic diversity and genome sizes of *Astragalus* (Fabaceae) in the Lebanon biogeographical crossroad. *Plant Syst. Evol.* 300, 819–830. doi: 10.1007/s00606-013-0921-8
- Adams, R. (2014). Junipers of the World: The Genus Juniperus. Bloomington, IN: Trafford Publishing.
- Adams, R., and Kistler, J. (1991). Hybridization between Juniperus erythrocarpa Cory and Juniperus pinchotii Sudworth in the Chisos mountains, Texas. Southwest. Nat. 36, 295–301. doi: 10.2307/3671679
- Adams, R., Schwarzbach, A., and Tashev, A. (2016). Chloroplast capture by a new variety, *Juniperus sabina* var. *balkanensis* RP Adams and AN Tashev, from the Balkan peninsula: a putative stabilized relictual hybrid between *J. sabina* and ancestral *J. thurifera. Phytologia* 98, 100–111.
- Adams, R., and Wingate, D. (2008). Hybridization between *Juniperus bermudiana* and *J. virginiana* in Bermuda. *Phytologia* 90, 123–213.
- Adams, R. P., and Schwarzbach, A. E. (2013). Phylogeny of *Juniperus* using nrDNA and four cpDNA regions. *Phytologia* 95, 179–187.
- Ahuja, M. R. (2005). Polyploidy in gymnosperms: revisited. Silvae Genet. 54, 59–69. doi: 10.1515/sg-2005-0010
- Ahuja, M. R., and Neale, D. B. (2002). Origins of polyploidy in coast redwood (Sequoia sempervirens (D. don) Endl. and relationship of coast redwood to other genera of Taxodiaceae. Silvae Genet. 51, 93–99.
- Bainard, J. D., Husband B. C., Baldwin, S., Fazekas, A., Gregory, T., Newmaster, S., et al. (2011). The effects of rapid desiccation on estimates of plant genome size. *Chromosome Res.* 19, 825–842. doi: 10.1007/s10577-011-9232-5
- Bainard, J. D., and Villarreal, J. (2013). Genome size increases in recently diverged hornwort clades. *Genome* 56, 431–435. doi: 10.1139/gen-2013-0041
- Barker, M. S., Arrigo, N., Baniaga, A. E., Li, Z., and Levin, D. A. (2016). On the relative abundance of autopolyploids and allopolyploids. *New Phytol.* 210, 391–398. doi: 10.1111/nph.13698
- Bennett, M., and Leitch, I. (2012). *Plant DNA C-Values Database (release 6.0, Dec. 2012)*. Available online at: http://www.kew.org/cvalues/
- Blanc, G., and Wolfe, K. H. (2004). Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. *Plant Cell* 16, 1667–1678. doi: 10.1105/tpc.021345
- Bogunic, F., Muratovic, E., Brown, S., and Siljak-Yakovlev, S. (2003). Genome size and base composition of five *Pinus* species from the Balkan region. *Plant Cell Rep.* 22, 59–63. doi: 10.1007/s00299-003-0653-2
- Bou Dagher-Kharrat, M., Abdel-Samad, N., Douaihy, B., Bourge, M., Fridlender, A., Siljak-Yakovlev, S., et al. (2013). Nuclear DNA C-values for biodiversity screening: case of the Lebanese flora. *Plant Biosyst.* 147, 1228–1237. doi: 10.1080/11263504.2013.861530
- Burleigh, J. G., Barbazuk, W. B., Davis, J. M., Morse, A. M., and Soltis, P. S. (2012). Exploring diversification and genome size evolution in extant gymnosperms through phylogenetic synthesis. J. Bot. 2012:292857. doi: 10.1155/2012/ 292857
- Chen, Z. J. (2007). Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. *Annu. Rev. Plant Biol.* 58, 377–406. doi: 10.1146/annurev.arplant.58.032806.103835
- Christenhusz, M. J., Reveal, J. L., Farjon, A., Gardner, M. F., Mill, R. R., and Chase, M. W. (2011). A new classification and linear sequence of extant gymnosperms. *Phytotaxa* 19, 55–70. doi: 10.11646/phytotaxa.19.1.3
- Clark, J., Hidalgo, O., Pellicer, J., Liu, H., Marquardt, J., Robert, Y., et al. (2016). Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. *New Phytol.* 210, 1072–1082. doi: 10.1111/nph.13833
- Comai, L. (2005). The advantages and disadvantages of being polyploid. *Nat. Rev. Genet.* 6, 836–846. doi: 10.1038/nrg1711
- De La Torre, A., Birol, I., Bousquet, J., Ingvarsson, P., Jansson, S., Jones, S. J., et al. (2014). Insights into conifer giga-genomes. *Plant Physiol*. 114, 1724–1732. doi: 10.1104/pp.114.248708
- Doležel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysák, M., Nardi, L., et al. (1998). Plant genome size estimation by flow cytometry: inter-laboratory comparison. *Ann. Bot.* 82(Suppl_1), 17–26. doi: 10.1093/oxfordjournals.aob.a010312
- Doležel, J., Greilhuber, J., and Suda, J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. *Nat. Protoc.* 2:2233. doi: 10.1038/nprot.2007.310

- Edwards-Burke, M. A., Hamrick, J. L., and Price, R. A. (1997). Frequency and direction of hybridization in sympatric populations of *Pinus taeda* and *P. echinata (Pinaceae).* 84, 879–886. doi: 10.2307/2446277
- Fady, B., Lefèvre, F., Reynaud, M., Vendramin, G. G., Bou Dagher-Kharrat, M., Anzidei, M., et al. (2003). Gene flow among different taxonomic units: evidence from nuclear and cytoplasmic markers in *Cedrus* plantation forests. *Theor. Appl. Genet.* 107, 1132–1138. doi: 10.1007/s00122-003-1323-z
- Farhat, P., Siljak-Yakovlev, S., Robert, A., Magda, B., and Robert, T. (2019). Genome size variation and polyploidy in the geographical range of *Juniperus sabina* L. (*Cupressaceae*). Bot. Lett. 68, 92–96. doi: 10.1080/00087114.2015.1024546
- Farjon, A. (2010). A Handbook of the World's Conifers (2 Vols.). Leiden: Brill Academic Publishers.
- Gauquelin, T., Chondroyannis, P., Boukhdoud, N., Bouyssou, M., Brunel, C., Danneyrolles, V., et al. (2012). Le Genévrier thurifère, espèce partagée au Nord et au Sud de la Méditerranée. *Forêt Méditerranéenne* 33, 227–240.
- Glick, L., and Mayrose, I. (2014). ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. *Mol. Biol. Evol.* 31, 1914–1922. doi: 10.1093/molbev/msu122
- Greilhuber, J., DoleŽel, J., Lysák, M. A., and Bennett, M. D. (2005). The origin, evolution and proposed stabilization of the terms 'genome size'and 'C-value'to describe nuclear DNA contents. *Ann. Bot.* 95, 255–260. doi: 10.1093/aob/mci019
- Grotkopp, E., Rejmánek, M., Sanderson, M. J., and Rost, T. L. (2004). Evolution of genome size in pines (*Pinus*) and its life-history correlates: supertree analyses. *Evolution* 58, 1705–1729. doi: 10.1111/j.0014-3820.2004.tb00456.x
- Guan, R., Zhao, Y., Zhang, H., Fan, G., Liu, X., Zhou, W., et al. (2016). Draft genome of the living fossil *Ginkgo biloba*. *Gigascience* 5, 1–13. doi: 10.1186/s13742-016-0154-1
- Hair, J. (1968). The chromosomes of the Cupressaceae: 1. Tetraclineae and Actinostrobeae (Callitroideae). N. Z. J. Bot. 6, 277–284. doi: 10.1080/0028825X.1968.10428813
- Hall, M. T., Mukherjee, A., and Crowley, W. R. (1973). Chromosome counts in cultivated junipers. J. Arnold Arboretum 54, 369–376.
- Hegarty, M. J., Barker, G. L., Wilson, I. D., Abbott, R. J., Edwards, K. J., and Hiscock, S. J. (2006). Transcriptome shock after interspecific hybridization in *Senecio* is ameliorated by genome duplication. *Curr. Biol.* 16, 1652–1659. doi: 10.1016/j.cub.2006.06.071
- Hizume, M. (1988). Karyomorphological studies in family Pinaceae. Nat. Sci. 8, 1–108.
- Houle, G., and Babeux, P. (1994). Variations in rooting ability of cuttings and in seed characteristics of five populations of *Juniperus communis* var. depressa from subarctic Quebec. *Can. J. Bot.* 72, 493–498. doi: 10.1139/b94-066
- Husband, B. C., Baldwin, S. J., and Suda, J. (2013). "The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes," in *Plant Genome Diversity Volume 2: Physical Structure, Behaviour and Evolution of Plant Genomes*, eds. J. Greilhuber, J. Dolezel, and J. F. Wendel (Vienna: Springer Vienna), 255–276. doi: 10.1007/978-3-7091-1160-4_16
- Ickert-Bond, S., Pellicer, J., Souza, A., Metzgar, J., and Leitch, I. J. (2015). "Ephedrathe gymnosperm genus with the largest and most diverse genome sizes driven by a high frequency of recently derived polyploidy taxa and a lack of genome downsizing," in *Annual Meeting of the Botanical Society of America, Botany* 2015, Abstract ID 862 (Edmonton).
- Khoshoo, T. (1959). Polyploidy in gymnosperms. Evolution 13, 24–39. doi: 10.1111/j.1558-5646.1959.tb02991.x
- Kovach, A., Wegrzyn, J. L., Parra, G., Holt, C., Bruening, G. E., Loopstra, C. A., et al. (2010). The *Pinus taeda* genome is characterized by diverse and highly diverged repetitive sequences. *BMC Genomics* 11, 1–14. doi: 10.1186/1471-2164-11-420
- Krejčíková, J., Sudová, R., Lučanová, M., Trávníček, P., Urfus, T., Vít, P., et al. (2013). High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of *Oxalis* in the Greater Cape Floristic Region. *Ann. Bot.* 111, 641–649. doi: 10.1093/aob/mct030
- Landis, J. B., Soltis, D., Li, Z., Marx, H., Barker, M., Tank, D., et al. (2018). Impact of whole-genome duplication events on diversification rates in angiosperms. *Am. J. Bot.* 105, 348–363. doi: 10.1002/ajb2.1060
- Ledig, F. T. (1998). "Genetic variation in Pinus," in Ecology and Biogeography of Pinus, ed. D. M. Richardson (Cambridge: Cambridge University Press).

- Leitch, I. J., and Bennett, M. D. (2004). Genome downsizing in polyploid plants. Biol. J. Linn. Soc. 82, 651–663. doi: 10.1111/j.1095-8312.2004.00349.x
- Li, Z., Baniaga, A., Sessa, E., Scascitelli, M., Graham, S., Rieseberg, L., et al. (2015). Early genome duplications in conifers and other seed plants. *Sci. Adv.* 1:e1501084. doi: 10.1126/sciadv.1501084
- Lu, Y., Ran, J.-H., Guo, D.-M., Yang, Z.-Y., and Wang, X.-Q. (2014). Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. *PLoS ONE* 9:e107679. doi: 10.1371/journal.pone.0107679
- Mao, K., Hao, G., Liu, J., Adams, R., and Milne, R. (2010). Diversification and biogeography of *Juniperus* (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. *New Phytol.* 188, 254–272. doi: 10.1111/j.1469-8137.2010.03351.x
- Masterson, J. (1994). Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. *Science* 264, 421–424. doi: 10.1126/science.264.5157.421
- Morse, A. M., Peterson, D. G., Islam-Faridi, M. N., Smith, K. E., Magbanua, Z., Garcia, S. A., et al. (2009). Evolution of genome size and complexity in *Pinus*. *PLoS ONE* 4:e4332. doi: 10.1371/journal.pone.0004332
- Murray, B., Leitch, I. J., and Bennett, M. D. (2012). Gymnosperm DNA C-Values Database (release 5.0, Dec. 2012). Available online at: http://www.kew.org/ cvalues/
- Murray, B. G. (2013). "Karyotype variation and evolution in gymnosperms," in *Plant Genome Diversity, Vol. 2*, eds I. J. Greilhuber, J. Doležel, and J. Wendel (Vienna: Springer-Verlag), 231–243. doi: 10.1007/978-3-7091-1160-4_14
- Nagano, K., Matoba, H., Yonemura, K., Matsuda, Y., Murata, T., and Hoshi, Y. (2007). Karyotype analysis of three *Juniperus* species using fluorescence *in situ* hybridization (FISH) with two ribosomal RNA genes. *Cytologia* 72, 37–42. doi: 10.1508/cytologia.72.37
- Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A., Lin, Y.-C., Scofield, D. G., et al. (2013). The Norway spruce genome sequence and conifer genome evolution. *Nature* 497:579. doi: 10.1038/nature12211
- Otto, S. P. (2007). The evolutionary consequences of polyploidy. *Cell* 131, 452–462. doi: 10.1016/j.cell.2007.10.022
- Otto, S. P., and Whitton, J. (2000). Polyploid incidence and evolution. *Annu. Rev. Genet.* 34, 401–437. doi: 10.1146/annurev.genet.34.1.401
- Palma-Otal, M., Moore, W., Adams, R., and Joswiak, G. (1983). Morphological, chemical, and biogeographical analyses of a hybrid zone involving *Juniperus* virginiana and J. horizontalis in Wisconsin. Can. J. Bot. 61, 2733–2746. doi: 10.1139/b83-301
- Pichot, C., and El Maâtaoui, M. (2000). Unreduced diploid nuclei in Cupressus dupreziana A. Camus pollen. Theor. Appl. Genet. 101, 574–579. doi: 10.1007/s001220051518
- Popp, M., Gizaw, A., Nemomissa, S., Suda, J., and Brochmann, C. (2008). Colonization and diversification in the African 'sky islands' by *Eurasian Lychnis L. (Caryophyllaceae). J. Biogeogr.* 35, 1016–1029. doi: 10.1111/j.1365-2699.2008.01902.x
- Ramsey, J., and Schemske, D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. *Annu. Rev. Ecol. Syst.* 29, 467–501. doi: 10.1146/annurev.ecolsys.29.1.467
- Ran, J.-H., Shen, T.-T., Wang, M.-M., and Wang, X.-Q. (2018). Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. *R. Soc.* 285:20181012. doi: 10.1098/rspb.2018.1012
- Revell, L. (2012). phytools: an R package for phylogenetic comparative biology (and other things). *Methods Ecol. Evol.* 3, 217–223. doi: 10.1111/j.2041-210X.2011.00169.x
- Rice, A., Glick, L., Abadi, S., Einhorn, M., Kopelman, N. M., Salman-Minkov, A., et al. (2015). The Chromosome Counts Database (CCDB)-a community resource of plant chromosome numbers. *New Phytol.* 206, 19–26. doi: 10.1111/nph.13191
- Rojo, J., and Díaz, P.-E. (2006). *Juniperus* × *palancianus*, nuevo híbrido de la provincia de castellón. *Toll Negre* 8, 5–8.
- Rojo, J., and Díaz, P.-E. (2009). *Juniperus × cerropastorensis*, nuevo híbrido entre *Juniperus sabina* L. Y *Juniperus thurifera* L. *Toll Negre* 11, 6–13.
- Rojo, J., and Uribe-Echebarría, P. (2008). *Juniperus × herragudensis*, otro nuevo híbrido de la provincia de Castellón. *Mainhardt* 60, 83–85.
- Romo, A., Hidalgo, O., Boratynski, A., Sobierajska, K., Jasinska, A. K., Vallès, J., et al. (2013). Genome size and ploidy levels in highly fragmented

habitats: the case of western Mediterranean Juniperus (Cupressaceae) with special emphasis on J. thurifera L. Tree Genet. Genomes 9, 587–599. doi: 10.1007/s11295-012-0581-9

- Ronnenberg, K. (2005). Reproductive ecology of two common woody species, Juniperus sabina and Artemisia santolinifolia, in mountain steppes of southern Mongolia. Erforsch. Biol. Ress. Mongolei (Halle/Saale) 9, 207–223.
- Roodt, D., Lohaus, R., Sterck, L., Swanepoel, R., Van de Peer, Y., and Mizrachi, E. (2017). Evidence for an ancient whole genome duplication in the cycad lineage. *PLoS ONE* 12:e0184454. doi: 10.1371/journal.pone.0184454
- Sax, K., and Sax, H. J. (1933). Chromosome number and morphology in the conifers. J. Arnold Arboretum 14, 356–375. doi: 10.5962/bhl.part.9959
- Schönswetter, P., Suda, J., Popp, M., Weiss-Schneeweiss, H., and Brochmann, C. (2007). Circumpolar phylogeography of *Juncus biglumis* (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. *Mol. Phylogenet. Evol.* 42, 92–103. doi: 10.1016/j.ympev.2006.06.016
- Scott, A. D., Stenz, N. W., Ingvarsson, P. K., and Baum, D. A. (2016). Whole genome duplication in coast redwood (*Sequoia sempervirens*) and its implications for explaining the rarity of polyploidy in conifers. *New Phytol.* 211, 186–193. doi: 10.1111/nph.13930
- Siljak-Yakovlev, S., Pustahija, F., Šolić, E., Bogunić, F., and Muratović, E., Bašić, N., et al. (2010). Towards a genome size and chromosome number database of Balkan flora: C-values in 343 taxa with novel values for 242. *Adv. Sci. Lett.* 3, 190–213. doi: 10.1166/asl.2010.1115
- Šmarda, P., Müller, J., Vrána, J., and Kočí, K. (2005). Ploidy level variability of some Central European fescues (*Festuca* subg. *Festuca*, Poaceae). *Biologia (Bratislava)* 60, 25–36.
- Šmarda, P., and Stančík, D. (2006). Ploidy level variability in South American fescues (*Festuca L.*, Poaceae): use of flow cytometry in up to 5 1/2year-old caryopses and herbarium specimens. *Plant Biol.* 8, 73–80. doi: 10.1055/s-2005-872821
- Soltis, D., Soltis, P., Endress, P., Chase, M. W., Manchester, S., Judd, W., et al. (2018). *Phylogeny and Evolution of the Angiosperms: Revised and Updated Edition*. Chicago, IL: University of Chicago Press.
- Soltis, P. S., and Soltis, D. E. (2009). The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60, 561–588. doi: 10.1146/annurev.arplant.043008.092039
- Stebbins, G. L. (1947). Types of polyploids: their classification and significance. *Adv. Genet.* 1, 403–429. doi: 10.1016/S0065-2660(08)60490-3
- Suda, J., and Trávníček, P. (2006). Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—new prospects for plant research. *Cytometry Part A* 69, 273–280. doi: 10.1002/cyto.a.20253
- Suda, J., Weiss-Schneeweiss, H., Tribsch, A., Schneeweiss, G. M., Trávníček, P., and Schönswetter, P. (2007). Complex distribution patterns of di-, tetra-, and hexaploid cytotypes in the European high mountain plant *Senecio carniolicus* (Asteraceae). Am. J. Bot. 94, 1391–1401. doi: 10.3732/ajb.94.8.1391
- Tayalé, A., and Parisod, C. (2013). Natural pathways to polyploidy in plants and consequences for genome reorganization. *Cytogenet. Genome Res.* 140, 79–96. doi: 10.1159/000351318
- Team, R. C. (2016). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: http://www.R-project.org/
- Tylkowski, T. (2010). Dormancy breaking in Savin juniper (*Juniperus sabina* L.) seeds. *Acta Soc. Bot. Pol.* 79, 27–29. doi: 10.5586/asbp.2010.004
- Vallès, J., Garnatje, T., Robin, O., and Siljak-Yakovlev, S. (2015). Molecular cytogenetic studies in western Mediterranean *Juniperus* (Cupressaceae): a constant model of GC-rich chromosomal regions and rDNA loci with evidences for paleopolyploidy. *Tree Genet. Genomes* 11, 1–8. doi: 10.1007/s11295-015-0860-3
- Van de Peer, Y., Mizrachi, E., and Marchal, K. (2017). The evolutionary significance of polyploidy. *Nat. Rev. Genet.* 18, 1–14. doi: 10.1038/nrg.2017.26
- Vasek, F. (1966). The distribution and taxonomy of three western junipers. Brittonia 18, 350–372. doi: 10.2307/2805152
- Wang, G., and Yang, Y. (2016). The effects of fresh and rapid desiccated tissue on estimates of Ophiopogoneae genome size. *Plant Divers.* 38, 190–193. doi: 10.1016/j.pld.2016.08.001
- Ward, L. K. (1982). The conservation of juniper: longevity and old age. J. Appl. Ecol. 19, 917–928. doi: 10.2307/2403293

- Wendel, J. F., Lisch, D., Hu, G., and Mason, A. (2018). The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. *Curr. Opin. Genet. Dev.* 49, 1–7. doi: 10.1016/j.gde.2018.01.004
- Wesche, K., Ronnenberg, K., and Hensen, I. (2005). Lack of sexual reproduction within mountain steppe populations of the clonal shrub *Juniperus* sabina L. in semi-arid southern Mongolia. J. Arid Environ. 63, 390–405. doi: 10.1016/j.jaridenv.2005.03.014
- Wood, T. E., Takebayashi, N., Barker, M. S., Mayrose, I., Greenspoon, P. B., and Rieseberg, L. H. (2009). The frequency of polyploid speciation in vascular plants. *Proc. Natl. Acad. Sci. U.S.A.* 106, 13875–13879. doi: 10.1073/pnas.0811575106
- Wu, H., Ma, Z., Wang, M. M., Qin, A.-L., Ran, J. H., and Wang, X. Q. (2016). A high frequency of allopolyploid speciation in the gymnospermous genus *Ephedra* and its possible association with some biological and ecological features. *Mol. Ecol.* 25, 1192–1210. doi: 10.1111/mec.13538
- Zonneveld, B. (2012). Conifer genome sizes of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram. *Nord. J. Bot.* 30, 490–502. doi: 10.1111/j.1756-1051.2012.01516.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Farhat, Hidalgo, Robert, Siljak-Yakovlev, Leitch, Adams and Bou Dagher-Kharrat. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Chapitre III: Variation de la taille du génome et du niveau de ploïdie de *Juniperus sabina* L. dans son aire de répartition géographique (Cupressaceae).

La polyploïdie et l'hybridation naturelle sont considérées comme deux processus évolutifs majeurs impliqués dans la spéciation et la diversification des plantes. Chez les Conifères, l'hybridation naturelle est plus fréquente que la polyploïdie. Néanmoins, quelques cas de polyploïdie ont été rapportés dans le genre *Juniperus*. Dans ce genre, une nouvelle variété, *Juniperus sabina* var. *balkanensis* est supposée être le produit d'une ancienne hybridation entre le tétraploïde *Juniperus thurifera* et le diploïde *Juniperus sabina* var. *sabina*. La variation de la taille du génome et le niveau de ploïdie de deux taxons de *J. sabina* ont été estimés par cytométrie en flux au sein d'un panel de 29 populations. Nos résultats montrent que les 13 populations de *J. sabina* var. *sabina* var. *balkanensis* sont tétraploïdes avec des tailles de génome qui vont de 41,99 pg à 51,33 pg / 2C. Ces résultats ouvrent de nouvelles perspectives de recherches pour déterminer quel a été la voie de polyploïdisation de *J. sabina* var. *balkanensis*, et pour comprendre les facteurs historiques et écologiques responsables de sa répartition géographique actuelle.

Chapitre II Genre Criblage de la polyploïdie chez Juniperus L.		
Espèce	Chapitre V Premier aperçu de I'hexaploïdie de <i>Juniperus foetidissima</i> Willd.	Chapitre IV Interaction entre les genévriers en sympatrie dans les Alpes françaises
Sous- espèce	Chapitre III Détermination du niveau de ploïdie de <i>Juniperus</i> <i>sabina</i> L. dans presque toute sa distribution géographique	
Monde		Local

54

Citation de l'article:

Perla Farhat, Sonja Siljak-Yakovlev, Robert P. Adams, Magda Bou Dagher Kharrat & Thierry Robert (2019): Genome size variation and polyploidy in the geographical range of *Juniperus sabina* L. (Cupressaceae), Botany Letters, DOI: 10.1080/23818107.2019.1613262

Lien vers l'article: https://doi.org/10.1080/23818107.2019.1613262

Chapitre IV: Premières évidences d'hybridation entre *Juniperus thurifera* et *J. sabina* dans leur zone sympatrique dans les Alpes Françaises

L'hybridation interspécifique est un phénomène évolutif important chez les plantes vasculaires. Cependant, il a été démontré que l'hybridation entre espèces présentant des niveaux de ploïdie différents se produit rarement dans la nature. Fait intéressant, à Saint Crépin (Alpes françaises), trois genévriers (une femelle et deux mâles) aux phénotypes intermédiaires entre le tétraploïde *J. thurifera* et le diploïde *J. sabina* présents en sympatrie dans cette population ont été présumés hybrides. Dans cette étude, une évaluation de la taille du génome a été réalisée pour vérifier le niveau de ploïdie de ces trois hybrides présumés. Des séquences chloroplastiques et nucléaires (ITS) de ces présumés hybrides, ainsi que les espèces parentales potentielles, ont été analysées pour révéler l'occurrence d'hybridation. La variabilité de la taille du pollen a également été évaluée pour avoir un premier aperçu de la régularité de leur microsporogenèse.

Sur la base de la taille du génome, nous avons montré que les trois individus morphologiquement intermédiaires étaient des triploïdes. Les analyses des séquences de chloroplastes et de la région ITS ont révélé que les trois individus intermédiaires sur le plan morphologique étaient issus d'une hybridation entre *J. sabina* (parent maternel) et *J. thurifera* (parent paternel). Nous avons également remarqué que la taille du pollen chez *Juniperus* augmente avec le niveau de ploïdie. En outre, la possibilité de produire des gamètes non réduits chez les deux espèces parentales a été détectée. Les deux hybrides triploïdes mâles produisent une majorité de grains de pollen conformes. Pour l'un d'entre eux, les pollens échantillonnés présentaient une variation de diamètres beaucoup plus grande que celle trouvée chez les espèces parentales. Des grains de pollen avortés ont également été observés dans l'un des deux triploïdes mâles.

Cette étude met en évidence la singularité de l'hybridation naturelle entre les espèces de *Juniperus* présentant différents niveaux de ploïdie en présence sympatrique, ce qui en fait le premier genre de conifères où des hybrides triploïdes ont été détectés dans la nature. En ce sens, *Juniperus* représente un modèle intéressant pour l'étude des barrières de reproduction entre espèces sympatriques et de leurs conséquences génétiques pour la diversification et l'évolution de ce genre de conifères.

Chapitre II Genre Criblage de la polyploïdie chez <i>Juniperus</i> L.		
Espèce	Chapitre V Premier aperçu de I'hexaploïdie de <i>Juniperus foetidissima</i> Willd.	Chapitre IV Interaction entre les genévriers en sympatrie dans les Alpes françaises
Sous- espèce	Chapitre III Détermination du niveau de ploïdie de <i>Juniperus</i> <i>sabina</i> L. dans presque toute sa distribution géographique	
Monde		

57

First evidence for allo-triploid hybrids between *Juniperus thurifera* and *J*.
 sabina in their sympatric area in the French Alps

3	Perla Farhat ^{1,2} , Najat Takvorian ^{2,5} , Luc Garraud ³ , Robert Adams ⁴ , Sonja Siljak-Yakovlev ² ,
4	Magda Bou Dagher Kharrat ¹ , Thierry Robert ^{2,5}

¹ Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Université
 Saint-Joseph, Campus Sciences et Technologies, Mar Roukos, Mkalles, BP: 1514 Riad el

- 7 Solh, Beirut 1107 2050, Lebanon.
- ² Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université
 Paris-Saclay, 91400, Orsay, France.
- ³ Conservatoire botanique national alpin, Domaine de Charance, 05000 Gap, France.

⁴ Biology Department, Baylor University, Box 97388, Waco, TX 76798.

⁵ Biology Department, Sorbonne Université, Jussieu, 75005 Paris, France.

13 Abstract:

Interspecific hybridization is an important evolutionary phenomenon in vascular plants. 14 Natural hybridization between species living in sympatry occurs frequently. Less frequent are 15 hybridizations between species having different ploidy levels. Interestingly, at Saint Crépin 16 location (French Alps), where sympatry between the tetraploid J. thurifera and the diploid J. 17 sabina occurs, three individuals (one female and two males) with intermediate phenotypes, 18 have been observed. The question whether these individuals are interspecific hybrids is 19 opened. In this study, we used flow cytometry for a rapid screening of ploidy levels of both 20 21 putative parents and potential hybrids and molecular sequences to track introgressions events of these taxa. Also, variability of pollen size was assessed to have a first insight on the 22 23 regularity of their microsporogenesis.

24 Based on genome size, we showed that the three morphologically intermediate individuals 25 were triploids. Chloroplastic and ITS sequences revealed that these three individuals are hybrids originated from a cross between J. sabina (as maternal parent) and J. thurifera (as 26 paternal parent). We also noticed that the pollen size in *Juniperus* increase with the ploidy 27 level. Besides, the possibility for the production of unreduced gametes in both parental 28 species was detected. The two male triploid hybrids produced a majority of well-conformed 29 pollen grains. For one of them, the sampled pollen population displayed a much high 30 variation in pollen diameter than pollen grains produced by parental species. Also aborted 31 32 pollen grains were produced only in one of the two male triploids.

This study highlights the singularity of natural hybridization between *Juniperus* species with different ploidy levels in sympatric occurrence, making it the first conifer genus where triploid hybrids were detected in nature. In this sense, *Juniperus* represents an interesting model for investigating the importance of gene flow between species in sympatry and their consequences for diversification, evolution and adaptation in this coniferous genus.

Keywords: French Alps, interspecific hybridization, *Juniperus*, polyploidy, Saint Crépin,
triploid hybrids.

40

41 Introduction

Juniperus L. species are evergreen trees and shrubs of Cupressaceae family. It has been 42 classified as the most diversified genus inside its family and the second most diversified 43 among conifers after the genus Pinus L. Juniperus is a monophyletic genus comprising 75 44 species clustered into three monophyletic sections: Caryocedrus, Juniperus and Sabina 45 (Adams, 2014). They are widely distributed in the Northern Hemisphere except for J. procera 46 Hochst. ex Endl., the only species distributed in the Southern Hemisphere (Adams, 2014). 47 This wide distribution of juniper species is mainly due to their tolerance to extreme 48 49 environmental factors such as drought, nutrient-poor substrates and winter cold (Noble, 1990; McDowell et al., 2008; Rawat & Everson, 2012; Kukowski et al., 2013; Mathaux et al., 50 51 2016), allowing them to adapt to diverse habitats. Indeed, species from this genus are found from the see level until high altitudes, in forests and deserts, on rocky cliff and on sand dunes 52 53 (Gauquelin et al., 1988; Mazur et al., 2010; Douaihy et al., 2012; Adams, 2014; Díez-Garretas & Asensi, 2014; Pinna et al., 2015; Mathaux et al., 2016). In addition, wide 54 55 overlapping geographical distributions of Juniperus species and varieties have been noticed. Potential hybrids have been described based on their morphology in sympatric locations in 56 57 Spain between species either with the same or different ploidy levels, as for example potential hybrids between J. sabina L. (2n=2x) and J. phoenicea L. (2n=2x), J. thurifera L. 58 (2n=4x) and J. phoenicea (2n=2x), J. thurifera (2n=4x) and J. sabina (2n=2x) (Rojo & Díaz, 59 2006; Rojo & Uribe-Echebarría, 2008; Rojo & Díaz, 2009). Besides, hybridization has been 60 commonly reported between closely related diploid species in areas of sympatry in the north 61 of America, as for example between J. virginiana var. silicicola and J. bermudiana, J. 62 virginiana L. and J. horizontalis Moench and J. osteosperma Hook and J. occidentalis Torr. 63 Little (Vasek, 1966; Palma-Otal et al., 1983; Terry et al., 2000; Adams & Wingate, 2008). 64

Natural interspecific hybridization is an important evolutionary process and a frequent 65 66 phenomenon in vascular plants. It could enhance genetic diversity, species adaptation and 67 may lead to speciation (Mallet, 2007; Hopkins, 2013; Goulet et al., 2017; Kerbs et al., 2017). Interspecific hybridization may arise with or without whole genome duplication defined, in 68 that case as "allo-polyploidization" and classified as one of the most common mechanisms of 69 70 speciation in sympatric area (Rieseberg, 1997; Soltis & Soltis, 2009; Abbott et al., 2013). 71 Hybridization has been linked to habitat disturbance and global warming specially in 72 mountain regions (Nolte & Tautz, 2010; Gómez et al., 2015). Indeed, environmental changes 73 were shown to be promoters for interspecific hybridization and hybrid speciation by changing distribution ranges of plants resulting in the increase the sympatric occurrence between
related species (Chunco, 2014; Gómez *et al.*, 2015; Vallejo-Marín & Hiscock, 2016; Klonner *et al.*, 2017).

Interspecific hybridization hotspots have been previously noticed in the Atlantic, 77 Mediterranean and Alpine biogeographic regions (Marques et al., 2017). Lately, the 78 European Alps have undergone an alarming retreat of glaciers due to the global warning 79 (Paul et al., 2004; Diolaiuti et al., 2011). This might have produced conditions more 80 81 favorable for hybridization events by reducing geographical barriers between species (Vallejo-Marín & Hiscock, 2016). In the French Alps, six juniper species has been identified. 82 Three species of Juniperus section: J. nana Willd. (= Juniperus sibrica Burgsd.), J. 83 communis L., J. oxycedrus L. and the other three species belong to the Sabina section: J. 84 85 sabina, J. thurifera and J. phoenicea (Lebreton et al., 2013). The distribution of those species in this region has been well surveyed by the National Alpine Botanical Conservatory 86 (CBNA) and occurrence of those species in sympatry, especially between J. thurifera and J. 87 sabina, has been observed (Lebreton et al., 2013). These two species are morphologically 88 very different. Juniperus thurifera is a pyramidal tree that could reach 20 m in height 89 compared to J. sabina which is a shrub less than 1 m in height except in Mongolia and in 90 91 Spain; in Sierra Nevada location where it forms a horizontal shrub (Adams & Schwarzbach, 2006; Perez-Latorre & Cabezudo, 2009; Adams, 2014; Adams et al., 2016). Both species has 92 93 scale-like leaves but differences occur in the leaf glands which are abaxial in J. sabina and oblong on J. thurifera leaves. Female cones in J. sabina are smaller than those of J. thurifera 94 95 and contains one or two seeds in contrast to J. thurifera where female cones could hold up to 5 seeds (Adams, 2014). Interestingly, three junipers (two males and one female) displaying 96 morphologically intermediate phenotypes between the tetraploid J. thurifera and the diploid 97 98 J. sabina have been reported by CBNA in Saint Crépin forest (French Alps), where these two 99 species co-occur. The question whether these three individuals could be the result of 100 hybridization between J. thurifera and J. sabina is opened.

In this study, first the ploidy level of these phenotypically intermediate individuals was determined by flow cytometry. nrDNA (ITS) and chloroplast sequences analyses were used to confirm that those individuals in Saint Crépin were hybrids between *J. thurifera* and *J. sabina*. Finally, observation of pollen conformity and size was carried out to check whether microsporogenesis in putative hybrids seems normal. Pollen size was used as a proxy to discuss the potential diversity of male gamete cytotypes produced by the different taxa.

107 Material and method

108 Studied area and Plant material

109 The studied area was the Saint Crépin forest in the department of "Hautes-Alpes" in the 110 South of France. The site's substrate was limestone. Altitude ranged from 1100 m to 1250 m 111 with moderate slopes (20° to 40°). Three putative hybrids (PH1, PH2 and PH3) have been 112 identified in this locality based on their shape. They are shrubs semi-prostrate with erected 113 edge: PH1 is a female shrub of 50 cm in height, PH2 is a male shrub of 80 cm in height and 114 PH3 is a male shrub of 2 m in height (Figure 1).

- 115
- Leave samples of 6 individuals of *J. thurifera* (JT1 to JT6), 6 individuals of *J. sabina* (JS1 to
- 117 JS6) and the 3 putative hybrid individuals (PH1, PH2 and PH3) were collected and directly
- 118 preserved in silica gel until use.
- 119 Male cones from three J. thurifera male trees (JT1, JT2, JT4), three J. sabina male shrubs
- 120 (JS3, JS5, JS6) and the two male potential hybrids (PH2, PH3) were collected and dried.
- 121 [Figure 1 near here].
- 122 Details of the studied individuals and locations are present in Table 1 and on Figure 2.
- 123 All the samples analyzed in this study have been conserved in the herbaria of the National
- 124 Alpine Botanical Conservatory.

125 [Figure 2 near here].

- 126 [Table 1]
- 127

128 Genome size measurement

Sample preparation. The total nuclear DNA amount was assessed by flow cytometry (FCM) 129 according to Bourge et al. (2018) on silica dried leaves of Juniperus samples and fresh 130 Hordeum vulgare L. 'Sultan' (2C= 9.81 pg, (Garnatje et al., 2004) used as a standard. The 131 132 leaves (approx. 30 mg) of both the internal standard and Juniperus sample were simultaneously chopped using a razor blade in a plastic Petri dish with 600 µl of cold Gif 133 nuclear-isolation buffer-GNB (Bourge et al., 2018): 45 mM MgCl₂, 30 mM sodium citrate, 134 60 mM MOPS (4-morpholine propane sulphonate, pH 7), and 1% (w/v) polyvinylpyrrolidone 135 10,000, pH 7.2 containing 0.1% (w/v) Triton X-100, supplemented with 5 mM sodium 136 metabisulphite and RNase (2.5 U/ml). The nuclei suspension was filtered through 30 µm 137 nylon mesh. The nuclei were stained with 100 µg/ml propidium iodide (PI), a specific DNA 138 fluorochrome intercalating dye, and kept 5 min at 4°C. 139

Flow cytometric analyses. DNA content of about 3,000 stained nuclei was determined for each sample (JT1 to JT6, JS1 to JS6, PH1, PH2 and PH3) using the cytometer CytoFLEX S (Beckman Coulter- Life Science United States. Excitation 561 nm, 26 mW; emission through a 610/20 nm band-pass filter). The software CytExpert was used for histogram analyses. The total 2C DNA value was calculated using the linear relationship between the fluorescent signals from stained nuclei of the sample and the internal standard, according to the following formula:

147 2C DNA content/nucleus (pg) = (<u>Sample 2C peak mean / Standard 2C peak mean</u>) x

- 148 Standard 2C DNA (pg).
- 149

150 DNA polymorphisms analysis

151 DNA extraction.

Total genomic DNA was extracted by cetyltrimethyl ammonium bromide (CTAB) method (Doyle & Doyle, 1990) according to the modifications for conifers elaborated by Dagher-Kharrat *et al.* (2007). Approximately 30 mg of dried leaves were grinded in a 2% CTAB solution (1.4 M NaCl, 20 mM EDTA, 100 mM Tris-HCl pH 8.0, 2% CTAB and 2% polyvinylpyrrolidone (PVP)). The DNA was quantified and diluted for a concentration of 50 ng/ μ l.

- 158
- 159 *Polymerase chain reaction (PCR)*

ITS and four chloroplastic regions (petN/psbM; TrnL/trnF; trnS/trnG; trnD/trnT) were 160 amplified. Each PCR reaction contained 10 pmol of each forward and reverse primer 161 (sequences are given in Table 2), 0.2 mM of each dNTPs, 1X DreamTaq Buffer (Thermo 162 Scientific), 2.5 units of DreamTaq DNA Polymerase (Thermo Scientific) and 100 ng of 163 genomic DNA in a final volume of 50 µl. The amplification program was : one cycle initial 164 165 denaturation at 95 °C for 3 min, followed by 30 cycles of : denaturation at 95 °C for 30 s; 30 s at annealing temperature (given in Table 2) ; 1 min extension at 72 °C. Then a final 166 167 extension was done at 72 °C for 10 min.

In order to determine sequence haplotypes in potential hybrids (possibly heterozygous), PCR amplicons of ITS from these potential hybrids were cloned. Further cloned amplicons were obtained by using the Taq DNA polymerase (MP Biomedicals). In each reaction, 100 ng of genomic DNA was added to 10 pmol of each ITS forward and reverse primer, 0.2 mM of each dNTPs, 1X Taq DNA polymerase buffer with 25mM MgCl₂ and 2.5 units of Taq DNA

6

polymerase. The PCR protocol was: initial denaturation at 94 °C for 1 min, followed by 27
cycles at 94 °C for 1 min, 61 °C at 1 min, and 72 °C at 1 min and a final extension at 72 °C

175 for 5 min.

176 [Table 2 near here].

177 Cloning

Ligation of the fresh PCR product into pCR®2.1 vector (Thermo Scientific) was done in a 178 final volume of 10 µl following the manufacturer's instructions. Then, 2 µl of the ligation 179 product were added to 50 µl vial of frozen One Shot® Competent Cells (Thermo Scientific) 180 resistant to ampicillin. The competent cells were transformed based on the manufacturer's 181 instructions. Transformed colonies that have been checked to possess a recombinant plasmid 182 were grown overnight in 5 ml LB liquid medium with 50mg/ml ampicillin at 37 °C on 183 225rpm. Plasmid extraction of the cultured colonies was done using MACHEREY-NAGEL 184 Nucleospin Plasmid kit following the manufacturer's protocol. 185

186 Sequencing and sequence analysis.

187 Sanger sequencing was carried out at GENEWIZ Genomics platform. All sequencing 188 reactions were performed directly on PCR products except for the clones ITS sequences of 189 the three hybrids individuals for which four clones of each individual were sequenced using 190 M13 universal primers.

All sequencing reactions were performed on the forward and reverse directions. Consensus
sequences construction and alignments were conducted under BioEdit software v7.2.6 using
global alignment algorithm.

194

195 Pollen size measurement

Alexander's stain (Alexander 1969) was applied on pollen sampled from 10 male cones of each *J. thurifera* tree (JT1, JT2, JT4), from 5 male cones for each *J. sabina* shrub (JS3, JS5, JS6) and from 10 male cones for each putative hybrids (PH2 and PH3). Pollen slides were examined using Zeiss Axiophot microscope and pollen grains were photographed using a highly sensitive CCD camera (RETIGA 200R, Princeton Instruments, Every, France) and image analyzer (Metavue, Every, France). Diameters of around 100 pollen/cone were measured using the software ImageJ. Pollen diameters of *J. thurifera*, *J. sabina* and the 2 potential male hybrids were tested for
their normal distribution. One way ANOVA and Kruskal Wallis tests were carried out to test
pollen size differences among *J. sabina* and *J. thurifera*.

206 <u>Results</u>

207 Genome size estimation of the parental species and their putative hybrids

The genome size of the six *J. sabina*, six *J. thurifera* individuals and the three putative hybrids were successfully measured using flow cytometry. The 2C DNA values of *J. thurifera* and *J. sabina* were 45.8 ± 1.04 pg and 23.25 ± 0.25 pg respectively. Regarding the putative hybrid individuals, the 2C DNA values were very close to each other with 34.07 pg, 34.6 pg and 35.3 pg for PH1, PH2 and PH3 respectively, showing an intermediate genome size between *J. sabina* and *J. thurifera* (Figure 3).

More details on the genome size measurements for each sample and the corresponding coefficient of variation which gave estimation on the quality of the measurement are given in Annex I.

217 [Figure 3 near here].

218 Genetic differentiation of parental species and putative hybrids based on chloroplast

219 and ITS region

220 No intra-specific polymorphism was detected in the chloroplast sequences studied within J. sabina and J. thurifera. Chloroplastic regions displayed a high level of fixed differences 221 222 between the two species. However, the rate of nucleotide divergence between J. sabina and J. thurifera varied according to the chloroplast region (petN/psbM; TrnL/trnF; trnS/trnG; 223 224 trnD/trnT). For petN/psbM region 10 Single Nucleotide Polymorphism (SNPs) and 61 indels were found between J. sabina and J. thurifera within a total of 863 bp (details are present in 225 table 3). For trnD/trnT region, 7 SNPs and three indels where found between J. thurifera and 226 J. sabina within a total of 620 bp (Table 3). Regarding trnS/trnG region, within 785 pb 227 analyzed, 5 SNPs and 19 indels were detected between J. thurifera and J. sabina (Table 3). In 228 the TrnL/trnF region, within 660 pb analyzed, 2 SNPs and 22 indels were found between J. 229 thurifera and J. sabina (Table 3). The three putative hybrids PH1, PH2 and PH3 displayed 230 the same haplotype as J. thurifera for the four sequenced chloroplastic regions (Table 3). 231

[Table 3 near here].

- 233 Concerning the ITS region, 1008 bp sequences were successfully analysed. Very few intra-
- specific polymorphisms were detected (4 SNPs within *J. sabina* and 2 SNPs within *J.*
- *thurifera*). The ITS studied sequences displayed fixed differences between these two species:
- 13 SNPs and 3 indels (Table 3). Each putative hybrid showed 2 haplotypes which correspond
- to non-recombinant haplotypes from *J. sabina* and *J. thurifera* respectively (Table 4).

[Table 4 near here].

239 Pollen size characterization of Juniperus taxa

In total, 1712 pollen grains were measured for J. sabina. Pollen sizes ranged from 13.6 µm to 240 35.6 μ m (Figure 4). The mean pollen size was 21.3 \pm 2.3 μ m and the mode of the distribution 241 was 20.9 µm. Regarding J. thurifera, 3171 pollen were measured. Pollen sizes ranged from 242 20 μ m to 45.5 μ m. The mean pollen size was 27.8 \pm 3.2 μ m and the mode of the distribution 243 was 27.5 µm. In both, J. sabina and J. thurifera, a small frequency of pollen grains showed 244 extreme high diameter values comparing to those of haploid grains, with a maximum 245 diameter of 35.6 μ m and 45.5 μ m respectively (Figures 4 and 5). Both ANOVA (F= 48193, 246 df=1, p < 2e-16) and Kruskal wallis (chi-squared = 2924, df = 1, p-value < 2.2e-16) tests 247 between measured pollen of the diploid J. sabina and the tetraploid J. thurifera showed that 248 the tetraploid species produces significantly bigger pollens than the diploid J. sabina. 249

For the two potential male hybrids, PH2 and PH3, 686 and 928 pollen were measured respectively. For PH2, pollen size varied from 17 to 44 μ m (Figure 4), the mean size was 25.4 \pm 3.2 μ m and the mode of the distribution was 24.8 μ m. For PH3, pollen size varied from 17.8 to 57 μ m (Figure 4). The mean pollen size was 27 \pm 5.5 μ m and the mode of the distribution was 27.8 μ m. PH3 presented a larger variance in sizes than PH2 and the two parental species (Figures 4 and 5). Also, aborted pollen grains were only observed in PH2 (Figure 5d).

- 257 [Figure 4 near here]
- 258 [Figure 5 near here]

259 **Discussion**

260 Genome size and ploidy level diversity in the hybrid zone

In this study, estimated genome size showed that *J. thurifera* (45.8 ± 1.04 pg) studied trees had a mean 2C DNA content approximately 2 fold bigger than the studied shrubs of *J. sabina*

 $(23.25 \pm 0.25 \text{ pg})$. Estimated genome sizes suggested that studied individuals of J. thurifera 263 and J. sabina were tetraploid and diploid respectively. These results broadly agree with 264 previous studies of genome size and chromosome number for other populations of those two 265 species reporting that J. sabina was diploid (2n=2x=22 with ca. 23 pg) and J. thurifera was 266 tetraploid with 2n=4x=44 and ca. 41.2 pg/ 2C (Romo *et al.*, 2013; Vallès *et al.*, 2015). 267 Regarding the three putative hybrids, estimated genome sizes were showed to be intermediate 268 (mean 2C DNA content of the three putative hybrids was 34.69 ± 0.64 pg) between those of 269 the potential parents. It has been demonstrated in Juniperus that genome size could be 270 271 utilized as a reliable proxy for the ploidy level determination (Farhat et al., 2019a). Three classes of genome sizes have been shown to correspond to three ploidy levels, (i) the first 272 class including genome size from 21.81 to 31.3 pg/2C has been referred to diploid juniper 273 species, (ii) genome size from 46.29 to 50.7 pg/2C represented tetraploid species and (iii) 274 genome size ca. 70.5 pg/ 2C referring to the only hexaploid species in this genus, Juniperus 275 foetidissima Willd.. Therefore, based on these classes, genome size estimated for the three 276 putative hybrids individuals showed that they are most likely triploids. In this genus, few 277 sporadic triploid cytotypes have already been found in some ornamental cultivars (Hall et al., 278 279 1973). However, this study brought the first evidence for natural triploid in Juniperus genus 280 and generally among all conifers.

281 Hybridization patterns of *Juniperus* taxa in the population of Saint Crépin

It has been commonly assumed that species with different ploidy levels are mostly 282 reproductively isolated and that hybridization between them is very limited (Coyne & Orr, 283 2004). Nevertheless, if hybridization occurs, the establishment of those hybrids must 284 overcome severe post-zygotic barriers such as unviability and sterility (Husband & Sabara, 285 2004; Widmer et al., 2009; De Hert et al., 2011; Baack et al., 2015). Various examples have 286 been reported in angiosperms regarding the hybridization between diploid and polyploid 287 species such as in Orchidaceae (Aagaard et al., 2005; Ståhlberg, 2007; Pinheiro et al., 2010). 288 Our results on ITS nuclear sequences, showing that the three morphologically intermediate 289

individuals displayed two ITS haplotypes; one corresponding to the haplotype found in *J. sabina* and the other to the haplotype found in *J. thurifera*, proved that these three individuals
are hybrids between these two species. In addition, because of the paternal inheritance of
chloroplast in conifers and more particularly in Cupressaceae family (Neale & Sederoff,
1988; B Neale & Sederoff, 1989; Hipkins *et al.*, 1994; Kondo *et al.*, 1998; Terry *et al.*, 2000;
Sakaguchi *et al.*, 2014), the fact that the three hybrids had the same chloroplast DNA

sequences of *J. thurifera*, claims that this species was the paternal parent, and therefore, *J. sabina* was the maternal parent.

Ancient hybridization between ancestral lineages of those two species has been previously suggested leading to the tetraploid variety *J. sabina* var. *balkanensis* (Adams *et al.*, 2016; Farhat *et al.*, 2019b). Also, other putative hybrids displaying intermediate morphology between those two species have been also described in one sympatric area from Spain (Rojo & Díaz, 2009). These observations together with our own results, suggest that reproductive barriers between *J. sabina* and *J. thurifera* are not absolute, allowing for interspecific hybridization to occur.

In our case study, the combination of genome size with molecular data argued in favor that 305 306 the three hybrids were produced through the fertilization of a haploid female gamete (n=1x)307 of the diploid J. sabina by a reduced diploid pollen (n=2x) of the tetraploid J. thurifera and are therefore first generation hybrids. In the French Alps, J. sabina has been shown to be 308 distributed more in altitudes (average altitudinal range 1610 m) than noticed for J. thurifera 309 (average altitudinal range 1002 m) (Lebreton et al., 2013). Areas of co-occurrence of these 310 two species at the highest altitudinal limit of J. thurifera and the lowest altitudinal limit of J. 311 sabina have already been reported (Lebreton et al., 2013). These altitude ranges correspond 312 to the altitude where hybrids are observed in Saint-Crépin forest. A big attention has been 313 devoted lately to the effect of climatic changes on the altitudinal movement of plants and the 314 changes in species distributions which increase species contact zones and interspecific 315 hybridization (Chunco, 2014; Gómez et al., 2015). Also, the importance of interspecific 316 317 hybridization for plant adaptation to climatic changes has been highlighted (Becker et al., 2013). The alarming retreat of glacier of the European Alps might also have had contributed 318 to the formation of hybrid zones (Paul et al., 2004; Gómez et al., 2015; Gramlich et al., 2016; 319 Vallejo-Marín & Hiscock, 2016). For example, hybrid populations have been discovered 320 321 between Salix purpurea L. and Salix helvetica Vill. following glacier retreat in the European 322 Alps (Gramlich et al., 2016). Interestingly those hybrids were successfully established and showed higher tolerance to extreme environmental conditions than the parental species 323 324 (Gramlich et al., 2016). In our case study, the hybridization discovered between the diploid J. sabina and the tetraploid J. thurifera in sympatry could be also the consequent of the recent 325 326 climatic change effects on the European Alps species. The fact that the three hybrids are likely first generation hybrids could witness their newness which would be in agreement with 327 328 the above stated hypothesis.

Pollen production of the parental species and their triploid hybrids

A strong positive correlation has been observed in many studies between pollen size and both genome size and ploidy level (Katsiotis & Forsberg, 1995; De Storme *et al.*, 2013). This was also the case in our study where the mean pollen diameter of the tetraploid *J. thurifera* was shown to be 1.3 fold bigger than the mean of pollen diameter of the diploid *J. sabina*.

- Very few data on *Juniperus* pollen size have been published. Nevertheless, the mean value of the tetraploid *J. thurifera* pollen showed to be higher than the mean values previously measured in some diploid junipers. Contrarily, the mean pollen size in *J. sabina* was close to values already obtained in other diploid juniper species (Bunderson & Levetin, 2015; Surso, 2018). These observations confirm that in *Juniperus* pollen size increases with ploidy level.
- In this study, both J. sabina and J. thurifera displayed pollen grains with extreme high 339 diameter values at small frequencies. Both unusual high pollen sizes found in J. sabina and J. 340 thurifera are also the largest ones reported up to date in the genus Juniperus. Also, it seems 341 that J. thurifera displayed the largest pollens among all studied pollens of species belonging 342 to Juniperus and Cupressus genera (Pichot & El Maâtaoui, 2000; Bunderson & Levetin, 343 344 2015; Surso, 2018). Those extreme large pollens sampled in J. sabina and J. thurifera could witness the production of unreduced gametes. In conifers, unreduced gametes have been 345 346 found only in the diploid Cupressus dupreziana A.Camus. with a pollen diameter of ca. 38 µm (Pichot & El Maâtaoui, 2000). Conversely, in angiosperm, the production of unreduced 347 348 gametes has been noticed to be frequent and classified as a major mechanism leading to polyploidy (Ramsey & Schemske, 1998; Otto & Whitton, 2000). The potential production of 349 350 unreduced gametes found in this study suggested that this mechanism could be one of the 351 reasons contributing to the high rate of polyploidy previously found in Juniperus (Farhat et 352 al., 2019a). However, further work must be conducted to confirm the production of 353 unreduced gametes in *Juniperus* by measuring genome size of the pollen grains.
- Regarding the male hybrids, based on the mean pollen diameter, the first male hybrid PH2 showed to display a mean pollen size approximately intermediate between the mean pollen sizes of the two parental species. However, the second male hybrid PH3 presented a mean pollen diameter closer to the one of *J. thurifera*. Obviously, the high proportion of large pollen produced by this hybrid contributed to this result. Also, the large variance observed in pollen sizes of the hybrid PH3, as well as the observation of the aborted pollen grains of PH2, might reflect the irregular meiosis of these hybrids (Figure 3). Indeed, meiotic

irregularities are a well-documented phenomenon in interspecific hybrids, especially those 361 with odd ploidy levels such as triploidy, which are often considered as sterile (Giles, 1941; 362 Comai, 2005; Karlsdóttir et al., 2008; Tayalé & Parisod, 2013). However, it has also been 363 shown that triploids hybrids could produce viable euploid (1x, 2x, 3x) gametes (Ramsey & 364 Schemske, 1998; Schinkel et al., 2017). However, further work must be conducted to 365 confirm the production of partially reduced and unreduced gametes by the triploid hybrids 366 using flow cytometry. Also, more research should be conducted to assess the viability of 367 pollens produced by the two hybrids and by the parental species. 368

369 Conclusion

This study reports the first evidence for the presence of three triploid interspecific hybrids 370 between two juniper species of different ploidy levels, J. sabina (2n = 2x) and J. thurifera (2n = 2x)371 = 4x) that are found in sympatry in Saint Crépin forest in the French Alps. The two male 372 hybrids produced seemingly well-conformed pollen grains. However, the observation of a big 373 size variation of pollen collected on several trees in this forest suggested the possibility for 374 the production of unreduced gametes in both parental species. This mechanism, if it were also 375 present in other juniper lineages, would provide an explanation that would have contributed 376 to the relative high rate of polyploidy found by Farhat et al. (2019a) in the genus Juniperus. 377

Further investigation on genome size and genetic diversity of a much larger sample of individuals in Saint Crépin forest is needed to check the possible existence of progenies from back crosses between hybrids and one of the parents. This could open new avenues towards studying the ecological and genetic consequences of genetic introgressions that might occur between those two species.

383 Acknowledgment

This study was supported with funds provided by National Council for Scientific Research
grant number CNRS-FS90 – Lebanon, the Saint Joseph University Research Counsel (CRUSJ) FS-111, International Relations of Paris-Saclay University and The Doctoral School «
Sciences du Végétal: du gène à l'écosystème » of Paris Sud University.

Authors want to thanks Mr. Daniel Benefice and Mr. Bertrand Lienard from the National
Alpine Botanical Conservatory and Mr. Frédérique Marais from the Forests National office
(ONF) for their kind help in the field work.
391 Tables and figures:

392

393	Figure 1. Saint Crépin forest showing putative hybrids. A. Represents the semi prostrated shrub PH1.
394	B and D. More focused pictures for PH2 representing the erected edge of the shrub. C. Shrub PH3,
395	showing its semi-erected feature.

Table 1. Details of samples corresponding to *J. thurifera* (JT), *J. sabina* (JS) and putative hybrids (PH)
 collected and analyzed in this study

Species	sample abbreviation	Gender	Altitude	GPS
L thurifera	IT1	male	1200	N 44°43'14.8"
J. thunjeru	JIT	Indie	1200	E 6°36'01.8"
L thuriforg		malo	1220	N 44°43'17.1"
J. thunjeru	JIZ	Indie	1220	E 6°36'3.224"
1 thurstone	ТЭ	male	1220	N 44°43'16.767"
J. thunjeru	112		1220	E 6°36'3.185"
L thuriforg	JT4	male	1240	N 44°43'15.828"
J. thunjeru			1240	E 6°36'3.982"
L thuriforg	ITC	mala	1220	N 44°43'14.755"
J. thunjeru	112	Indie	1250	E 6°36'6.05"
L thuriforg	ITC	malo	1060	N 44°42'44.25"
J. thurijera	110	male	1060	E 6°36'24.802"
J. sabina	JS1	male	1200	N 44°43'14.9"

				E 6°36'01.7"
Lsahina	152	Undetermined	1220	N 44°43'16.981"
J. Subiliu	132	Undetermined	1220	E 6°36'3.278"
Laping	102	malo	1220	N 44°43'14.868"
J. Subinu	122	male	1220	E 6°36'3.932"
Lachina	104	mala	1240	N 44°43'15.14"
J. Subinu	JS4 male		1240	E 6°36'5.382"
J. sabina	JS5	male	1250	N 44°43'13.632"
				E 6°36'10.528"
Laping	JS6	male	1150	N 44°42'53.087"
J. Subinu				E 6°36'17.049"
L cabina y L thurifora		famala	1240	N 44°43'16.132"
J. Subinu X J. thurijeru	JEUT	Ternale	1240	E 6°36'4.478"
L cabina y L thurifora	כעסו	mala	1220	N 44°43'14.268"
J. Subinu X J. thurijeru	JPHZ	male	1250	E 6°36'5.071"
L cabina y L thurifora		mala	1240	N 44°43'15.453"
J. Subinu x J. thunjeru	JEUD	IIIale	1240	E 6°36'5.975"

399 Table 2. Primer sequences and PCR annealing temperatures. F: Forward, R: reverse.

Primer F	Primer F sequence	Primer R	Primer R sequence	Annealing
				temperature
ITSA	GGA AGG AGA AGT CGT	ITSB	CTT TTC CTC CGC TTA	61°C
	AAC AAG G		TTG ATA TG	
petN	AAC GAA GCG AAA ATC	psb	AAA GAG AGG GAT TCG	57°C
	AAT CA		TAT GGA	
TrnL	CGA AAT CGG TAG ACG	trnF	ATT TGA ACT GGT GAC	60°C
	CTA CG		ACG AG	
trnS	GCC GCT TTA GTC CAC	trnG	GAA CGA ATC ACA CTT	62°C
	TCA GC		TTA CCA C	
trnD	ACC AAT TGA ACT ACA	trnT	CTA CCA CTG AGT TAA	60°C
	ATC CC		AAG GG	

Figure 2. Samples locations of *J. thurifera* (in red circles), *J. sabina* (in blue rectangles) and their
putative hybrids (in green triangles) at Saint Crépin.

411 Figure 3. Histogram with fluorescence intensity representing the DNA content on x-axis and number

412 of events (count) on y-axis of *J. sabina* (A), putative hybrid PH2 (B) and *J. thurifera* (C). The leaves of

413 the three individuals belonging to *J. sabina* (JS3), *J. thurifera* (JT3) and the putative hybrid PH2 were 414 chopped simultaneously without the internal standard plant. Each peak correspond to one of three

415 ploidy level: (A) 2*x*, (B) 3*x* and (C) 4*x*.

418 Figure 4. Plot of pollen grain sizes of *J. sabina*, *J. thurifera* and the two male hybrids PH2-PH3.

Figure 5. Microscopic pictures of pollen grains. (a) *J. sabina* pollen grains showing two distinct pollen sizes; the biggest ones were pollen with extreme sizes and they were considered as harboring potentially unreduced gametes. (b) *J. thurifera* pollen grains showing size variation range representative of most pollen from this species. (c) *J. thurifera* pollen grain showing an extreme size,

- 424 considered as possibly unreduced. (d) Represent aborted pollen collected on the hybrid PH2. (e) PH2
- 425 pollen grains showing various sizes. (f), (g) and (h) represent PH3 pollen grains of different sizes.

- 427 Table 3. Molecular polymorphism observed between *J. sabina*, *J. thurifera* and the putative hybrids
- 428 (PH1, PH2 and PH3) for the chloroplastic studied sequences (petN/psbM, TrnD/TrnT, TrnL/TrnF,
 429 TrnS/TrnG).

	Loci			
	(position			
	in bp			
	within			
	the			
	amplified			
Chlorplast region	sequence	J. sabina	J. thurifera	Putative hybrids
	170->176	CTAATTA	-	-
	189->197	AGAAAAAAA	-	-
	267	Т	С	С
	268->271	-	TCGT	TCGT
	290	С	Т	Т
	324->338	TTGAAAA	-	-
	425	А	С	С
	504->512	-	TAGATT	TAGATT
netN/nshM	517	А	G	G
petitypsbivi	540	А	G	G
	570	Т	А	А
	571	А	Т	Т
	584	-	А	А
	585	А	Т	Т
	658	С	А	А
	659->668	-	ATTAAT	ATTAAT
	709	С	Т	Т
	711->716	TTATCA	-	-
	28	G	С	С
	65	G	А	А
	71	Т	С	С
	301	Т	-	-
TroD/TroT	451	G	А	А
	487	-	Т	Т
	497	С	G	G
	521	Т	G	G
	585	Т	-	-
	588	G	A	Α
	4	A	G	G
TrnL/TrnF	345	G	С	С
	444->463	CTGTAAAA	-	-

	474	Т	-	-
	475	А	-	-
	9	Т	С	С
	52	2 T -		-
	97	97 T C		С
TrnS/TrnG	272->289	-	ATTTCT	ATTTCT
	301	А	С	С
	613	А	G	G
	753	Т	С	С

Table 4. Polymorphic sites observed within ITS sequences between *J. sabina*, *J. thurifera* and the putative hybrids

		r			r	r	r			r				r		r
Site Location	75	126	134	247	257	262	323	500	508	509	533	657	679	699	703	893
Таха																
J. sabina	С	С	Т	Т	А	С	Т	А	-	-	С	G	С	G	-	А
J. thurifera	Т	А	С	С	G	Т	С	С	Т	G	Т	Т	Т	А	А	С
Putative hybrids	С	С	Т	Т	А	С	Т	А	-	-	С	G	С	G	-	А
PH1, PH2 and PH3																
Type 1																
Putative hybrids	Т	А	С	С	G	Т	С	С	Т	G	Т	Т	Т	А	А	С
PH1, PH2 and PH3																
Туре 2																

435 Annexe I

Table A.1. Genome size (2C/ pg) of the studied individuals (hybrids and individuals from parental

437 species). CV: coefficient of variation (%).

Species	sample abbrevi ation	Gender	Altitud e (m)	ltitud GPS		CV sample (%)	CV standard (%)
J. thurifera	JT1	male	1200	N 44°43'14.8" E 6°36'01.8"	47.5	3.42	3.67
J. thurifera	JT2	male	1220	N 44°43'17.1" E 6°36'3.224"	44.9 3	3.92	3.32
J. thurifera	JT3	male	1220	N 44°43'16.767" E 6°36'3.185"	46.0 8	4.47	2.24
J. thurifera	JT4	male	1240	N 44°43'15.828" E 6°36'3.982"	45.3 2	3.35	2.89
J. thurifera	JT5	male	1230	N 44°43'14.755" E 6°36'6.05"	46.3 5	3.59	2.68
J. thurifera	JT6	male	1060	N 44°42'44.25" E 6°36'24.802"	44.7 7	3.65	3.23
J. sabina	JS1	male	1200	N 44°43'14.9" E 6°36'01.7"	23.1 9	3.19	3.39
J. sabina	JS2	Indeterminate	1220	N 44°43'16.981" E 6°36'3.278"	23.3 2	3.21	2.84
J. sabina	JS3	male	1220	N 44°43'14.868" E 6°36'3.932"	23.3 6	3.41	1.85
J. sabina	JS4	male	1240	N 44°43'15.14" E 6°36'5.382"	23.4 7	4.15	2.69
J. sabina	JS5	male	1250	N 44°43'13.632" E 6°36'10.528"	23.3 7	3.52	3.52
J. sabina	JS6	male	1150	N 44°42'53.087" E 6°36'17.049"	22.7 7	4.00	4.12
J. sabina x J. thurifera	JPH1	female	1240	N 44°43'16.132" E 6°36'4.478"	34.0 8	2.92	2.99
J. sabina x J. thurifera	JPH2	male	1230	N 44°43'14.268" E 6°36'5.071"	34.6 3	3.3	2.59
J. sabina x J. thurifera	JPH3	male	1240	N 44°43'15.453" E 6°36'5.975"	35.3 5	3.5	2.5

440 **References**

- 441 Aagaard SMD, Såstad SM, Greilhuber J, Moen A. 2005. A secondary hybrid zone between diploid
 442 Dactylorhiza incarnata ssp. cruenta and allotetraploid D. lapponica (Orchidaceae). Heredity
 443 94: 488-496.
- Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJ, Bierne N, Boughman J, Brelsford A,
 Buerkle CA, Buggs R. 2013. Hybridization and speciation. *Journal of evolutionary biology* 26(2): 229-246.
- Adams RP. 2014. Junipers of the World: The genus Juniperus. Bloomington, Indiana, USA: Trafford
 Publishing.
- Adams RP, Schwarzbach A, Tashev A. 2016. Chloroplast capture by a new variety, *Juniperus sabina* var. *balkanensis* RP Adams and AN Tashev, from the Balkan peninsula: A putative stabilized relictual hybrid between *J. sabina* and ancestral *J. thurifera. Phytologia* 98(2): 100-111.
- 453 Adams RP, Wingate D. 2008. Hybridization between *Juniperus bermudiana* and *J. virginiana* in
 454 Bermuda. *Phytologia* 90: 123-213.
- 455 Adams RP, Schwarzbach AE. 2006. A new variety of *Juniperus sabina* from Mongolia: *J. sabina* 456 var. mongolensis. Phytologia 88: 179-185.
- 457 Alexander PM. 1969. Differential staining of aborted and nonaborted pollen. *Stain Technology* 44:
 458 117-122.
- Baack E, Melo MC, Rieseberg LH, Ortiz-Barrientos D. 2015. The origins of reproductive isolation
 in plants. *New phytologist* 207(4): 968-984.
- Becker M, Gruenheit N, Steel M, Voelckel C, Deusch O, Heenan PB, McLenachan PA,
 Kardailsky O, Leigh JW, Lockhart PJ. 2013. Hybridization may facilitate in situ survival
 of endemic species through periods of climate change. *Nature Climate Change* 3: 1039-1043.
- Bou Dagher-Kharrat M, Mariette S, Lefèvre F, Fady B, Grenier-de March G, Plomion C,
 Savouré A. 2007. Geographical diversity and genetic relationships among *Cedrus* species
 estimated by AFLP. *Tree Genetics Genomes* 3(3): 275-285.
- Bourge M, Brown SC, Siljak-Yakovlev S. 2018. Flow cytometry as tool in plant sciences, with
 emphasis on genome size and ploidy level assessment. *Genetics Applications* 2(2): 1-12.
- 469 Bunderson LD, Levetin E. 2015. Hygroscopic weight gain of pollen grains from *Juniperus* species.
 470 *International journal of biometeorology* 59(5): 533-540.
- 471 Chunco AJ. 2014. Hybridization in a warmer world. *Ecology and evolution* 4(10): 2019-2031.
- 472 Comai L. 2005. The advantages and disadvantages of being polyploid. *Nature reviews genetics* 6(11):
 473 836-846.
- 474 Coyne JA, Orr HA. 2004. Speciation. Sunderland, Massachusetts U.S.A.: Sinauer Associates.
- 475 De Hert K, Jacquemyn H, Van Glabeke S, Roldán-Ruiz I, Vandepitte K, Leus L, Honnay O.
 476 2011. Reproductive isolation and hybridization in sympatric populations of three
 477 Dactylorhiza species (Orchidaceae) with different ploidy levels. Annals of botany 109(4):
 478 709-720.
- 479 De Storme N, Zamariola L, Mau M, Sharbel TF, Geelen D. 2013. Volume-based pollen size
 480 analysis: an advanced method to assess somatic and gametophytic ploidy in flowering plants.
 481 *Plant reproduction* 26(2): 65-81.
- 482 Díez-Garretas B, Asensi A. 2014. The coastal plant communities of *Juniperus macrocarpa* in the
 483 Mediterranean region. *Plant Biosystems* 148(3): 429-438.
- 484 Diolaiuti GA, Maragno D, D'Agata C, Smiraglia C, Bocchiola D. 2011. Glacier retreat and climate
 485 change: Documenting the last 50 years of Alpine glacier history from area and geometry

- 486 changes of Dosde Piazzi glaciers (Lombardy Alps, Italy). *Progress in Physical Geography*487 35(2): 161-182.
- 488 Douaihy B, Sobierajska K, Jasińska AK, Boratyńska K, Ok T, Romo A, Machon N, Didukh Y,
 489 Bou Dagher-Kharrat M, Boratyński A. 2012. Morphological versus molecular markers to
 490 describe variability in *Juniperus excelsa* subsp. *excelsa* (Cupressaceae). *AOB Plants* 2012: 1 491 14.
- 492 Doyle JJ, Doyle JL. 1990. Isolation of plant DNA from fresh tissue. *Focus* 12(13): 39-40.
- Farhat P, Hidalgo O, Robert T, Siljak-Yakovlev S, Leitch I, Robert P, Magda B. 2019a.
 Polyploidy in the conifer genus *Juniperus*: an unexpectedly high rate. *Frontiers in Plant Science* 10: 1-14. doi: 10.3389/fpls.2019.00676.
- Farhat P, Siljak-Yakovlev S, Robert P, Magda B, Robert T. 2019b. Genome size variation and
 polyploidy in the geographical range of *Juniperus sabina* L. (Cupressaceae). *Botany Letters*:
 1-10. doi: 10.1080/23818107.2019.1613262.
- Garnatje T, Vallès J, Garcia S, Hidalgo O, Sanz M, Canela MÁ, Siljak-Yakovlev S. 2004.
 Genome size in *Echinops* L. and related genera (Asteraceae, Cardueae): karyological, ecological and phylogenetic implications. *Biology of the Cell* 96(2): 117-124.
- Gauquelin T, Idrissi Hassani M, Lebreton P. 1988. Le Genévrier thurifère, *Juniperus thurifera* L.
 (Cupressacées): analyse biométrique et biochimique; propositions systématiques. *Ecologia Mediterranea* 14: 31-42.
- 505 Giles N. 1941. Spontaneous chromosome aberrations in triploid *Tradescantia* hybrids. *Genetics* 506 26(6): 632-649.
- 507 Gómez JM, González-Megías A, Lorite J, Abdelaziz M, Perfectti F. 2015. The silent extinction:
 508 climate change and the potential hybridization-mediated extinction of endemic high-mountain
 509 plants. *Biodiversity Conservation biology* 24(8): 1843-1857.
- Goulet BE, Roda F, Hopkins R. 2017. Hybridization in plants: old ideas, new techniques. *Plant physiology* 173(1): 65-78.
- Gramlich S, Sagmeister P, Dullinger S, Hadacek F, Hörandl E. 2016. Evolution in situ: hybrid
 origin and establishment of willows (*Salix* L.) on alpine glacier forefields. *Heredity* 116(6):
 531-541.
- Hall MT, Mukherjee A, Crowley WR. 1973. Chromosome counts in cultivated junipers. *Journal of the Arnold Arboretum* 54(3): 369-376.
- 517 Hipkins VD, Krutovskii KV, Strauss S. 1994. Organelle genomes in conifers: structure, evolution,
 518 and diversity. *Forest Genetics* 1(4): 179-189.
- 519 Hopkins R. 2013. Reinforcement in plants. *New Phytologist* 197(4): 1095-1103.
- Husband BC, Sabara HA. 2004. Reproductive isolation between autotetraploids and their diploid
 progenitors in fireweed, *Chamerion angustifolium* (Onagraceae). New phytologist 161(3):
 703-713.
- 523 Karlsdóttir L, Hallsdóttir M, Thórsson AT, Anamthawat-Jónsson K. 2008. Characteristics of
 524 pollen from natural triploid *Betula* hybrids. *Grana* 47(1): 52-59.
- 525 Katsiotis A, Forsberg R. 1995. Pollen grain size in four ploidy levels of genus *Avena*. *Euphytica*526 83(2): 103-108.
- Kerbs B, Ressler J, Kelly JK, Mort ME, Santos-Guerra A, Gibson MJ, Caujapé-Castells J,
 Crawford DJ, Hiscock SJ. 2017. The potential role of hybridization in diversification and
 speciation in an insular plant lineage: insights from synthetic interspecific hybrids. *AoB Plants* 9(5): plx043.
- Klonner G, Dullinger I, Wessely J, Bossdorf O, Carboni M, Dawson W, Essl F, Gattringer A,
 Haeuser E, van Kleunen M. 2017. Will climate change increase hybridization risk between

- potential plant invaders and their congeners in Europe? *Diversity and Distributions* 23(8):
 934-943.
- Kondo T, Tsumura Y, Kawahara T, Okamura M. 1998. Paternal inheritance of chloroplast and
 mitochondrial DNA in interspecific hybrids of *Chamaecyparis* spp. *Japanese Journal of Breeding* 48(2): 177-179.
- 538 Kukowski KR, Schwinning S, Schwartz BF. 2013. Hydraulic responses to extreme drought
 539 conditions in three co-dominant tree species in shallow soil over bedrock. *Oecologia* 171(4):
 540 819-830.
- Lebreton P, Garraud L, Genis J-M. 2013. Contribution à la connaissance écologique du Genévrier
 thurifère, comparé aux autres espèces du genre *Juniperus* dans le sud-est de la France
 continentale. *Ecologia Mediterranea* 39(1): 55-59.
- 544 Mallet J. 2007. Hybrid speciation. *Nature* 446(7133): 279-283.
- Marques I, Loureiro J, Draper D, Castro M, Castro S. 2017. How much do we know about the
 frequency of hybridisation and polyploidy in the Mediterranean region? *Plant Biology* 20: 21 37.
- 548 Mathaux C, Mandin J-P, Oberlin C, Edouard J-L, Gauquelin T, Guibal F. 2016. Ancient juniper
 549 trees growing on cliffs: toward a long Mediterranean tree-ring chronology.
 550 Dendrochronologia 37: 79-88.
- Mazur M, Klajbor K, Kielich M, Sowinska M, Romo A, Montserrat JM, Boratynski A. 2010.
 Intra-specific differentiation of *Juniperus phoenicea* in the western Mediterranean region revealed in morphological multivariate analysis. *Dendrobiology* 63: 21-31.
- McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West
 A, Williams DG. 2008. Mechanisms of plant survival and mortality during drought: why do
 some plants survive while others succumb to drought? *New phytologist* 178(4): 719-739.
- Neale DB, Sederoff RR. 1988. Inheritance and Evolution of Conifer Organelle Genomes. In:
 Hanover JW, Keathley DE, Wilson CM, Kuny G eds. *Genetic Manipulation of Woody Plants*.
 Boston, MA: Springer US, 251-264.
- 560 Neale DB, Sederoff R. 1989. Paternal inheritance of chloroplast DNA and maternal inheritance of
 561 mitochondrial DNA in loblolly pine. *Theoretical and Applied Genetics* 77(2): 212-216.
- 562 Noble DL. 1990. Juniperus scopulorum Sarg. Rocky Mountain juniper. Silvics of North America 1:
 563 116-126.
- Nolte AW, Tautz D. 2010. Understanding the onset of hybrid speciation. *Trends in Genetics* 26(2):
 54-58.
- Otto SP, Whitton J. 2000. Polyploid incidence and evolution. *Annual review of genetics* 34(1): 401 437.
- Palma-Otal M, Moore W, Adams R, Joswiak G. 1983. Morphological, chemical, and
 biogeographical analyses of a hybrid zone involving *Juniperus virginiana* and *J. horizontalis*in Wisconsin. *Canadian Journal of Botany* 61(10): 2733-2746.
- 571 Paul F, Kääb A, Maisch M, Kellenberger T, Haeberli W. 2004. Rapid disintegration of Alpine
 572 glaciers observed with satellite data. *Geophysical research letters* 31(21): 1-4.
- 573 Perez-Latorre A, Cabezudo B. 2009. Gimnospermas. in Blanca G. et al., eds. *Flora Vascular De* 574 *Andalucía Oriental. Volumen 1.* Sevilla, España: Consejería de Medio Ambiente, Junta de
 575 Andalucía, 77-88.
- 576 Pichot C, El Maâtaoui M. 2000. Unreduced diploid nuclei in *Cupressus dupreziana* A. Camus
 577 pollen. *Theoretical Applied Genetics* 101(4): 574-579.
- 578 Pinheiro F, de Barros F, Palma-Silva C, Meyer D, Fay MF, Suzuki RM, Lexer C, Cozzolino S.
 579 2010. Hybridization and introgression across different ploidy levels in the Neotropical orchids

- 580 Epidendrum fulgens and E. puniceoluteum (Orchidaceae). Molecular ecology 19(18): 3981581 3994.
- Pinna MS, Cañadas EM, Fenu G, Bacchetta G. 2015. The European Juniperus habitat in the
 Sardinian coastal dunes: Implication for conservation. Estuarine, Coastal and Shelf Science
 164: 214-220.
- Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in
 flowering plants. *Annual Review of Ecology and Systematics* 29(1): 467-501.
- Rawat YS, Everson CS. 2012. Ecological status and uses of juniper species in the cold desert
 environment of the Lahaul valley, North-western Himalaya, India. *Journal of Mountain Science* 9(5): 676-686.
- 590 Rieseberg LH. 1997. Hybrid origins of plant species. Annual review of Ecology and Systematics
 591 28(1): 359-389.
- 592 Rojo J, Díaz P-E. 2006. *Juniperus x palancianus*, nuevo híbrido de la provincia de castellón. *Toll* 593 *Negre* 8: 5-8.
- **Rojo J, Díaz P-E. 2009.** Juniperus x cerropastorensis, nuevo híbrido entre Juniperus sabina L. Y
 Juniperus thurifera L. Toll Negre 11: 6-13.
- **Rojo J, Uribe-Echebarría P. 2008.** *Juniperus x herragudensis*, otro nuevo híbrido de la provincia de
 Castellón. *Mainhardt* 60: 83-85.
- Romo A, Hidalgo O, Boratyński A, Sobierajska K, Jasińska AK, Vallès J, Garnatje T. 2013.
 Genome size and ploidy levels in highly fragmented habitats: the case of western
 Mediterranean Juniperus (Cupressaceae) with special emphasis on J. thurifera L. Tree
 Genetics & Genomes 9(2): 587-599.
- Sakaguchi S, Tsumura Y, Crisp MD, Bowman DMJS, Isagi Y. 2014. Genetic evidence for
 paternal inheritance of the chloroplast in four Australian *Callitris* species (Cupressaceae).
 Journal of Forest Research 19(1): 244-248.
- Schinkel CC, Kirchheimer B, Dullinger S, Geelen D, De Storme N, Hörandl E. 2017. Pathways to
 polyploidy: indications of a female triploid bridge in the alpine species *Ranunculus kuepferi* (Ranunculaceae). *Plant Systematics and Evolution* 303(8): 1093-1108.
- Soltis PS, Soltis DE. 2009. The role of hybridization in plant speciation. *Annual Review of Plant Biology* 60: 561-588.
- 610 Ståhlberg D. 2007. Habitat differentiation, hybridization and gene flow patterns in mixed populations
 611 of diploid and autotetraploid *Dactylorhiza maculata* s.l. (Orchidaceae). *Evolutionary Ecology* 612 23(2): 295-328.
- 613 Surso M. 2018. Pollination and pollen germination in common juniper (*Juniperus communis*:
 614 Cupressaceae). *Arctic Environmental Research* 18: 162-174.
- Tayalé A, Parisod C. 2013. Natural pathways to polyploidy in plants and consequences for genome
 reorganization. *Cytogenetic and genome research* 140(2-4): 79-96.
- 617 Terry RG, Nowak RS, Tausch RJ. 2000. Genetic variation in chloroplast and nuclear ribosomal
 618 DNA in Utah juniper (*Juniperus osteosperma*, Cupressaceae): evidence for interspecific gene
 619 flow. *American Journal of Botany* 87(2): 250-258.
- Vallejo-Marín M, Hiscock SJ. 2016. Hybridization and hybrid speciation under global change. *New phytologist* 211(4): 1170-1187.
- Vallès J, Garnatje T, Robin O, Siljak-Yakovlev S. 2015. Molecular cytogenetic studies in western
 Mediterranean *Juniperus* (Cupressaceae): a constant model of GC-rich chromosomal regions
 and rDNA loci with evidences for paleopolyploidy. *Tree Genetics & Genomes* 11(3): 1-8.
- 625 Vasek FC. 1966. The distribution and taxonomy of three western junipers. *Brittonia* 18(4): 350-372.
- Widmer A, Lexer C, Cozzolino S. 2009. Evolution of reproductive isolation in plants. *Heredity* 102(1): 31-38.

Chapitre V: Décryptage de l'origine de l'hexaploïde Méditerranéen Juniperus foetidissima

L'hybridation et la polyploïdie ont été suggérées comme contributeurs principaux à la riche biodiversité dans la région méditerranéenne. Les deux phénomènes se sont avérés fréquents chez *Juniperus* par rapport à d'autres genres appartenant au groupe des conifères. Récemment, on a découvert que *Juniperus foetidissima* qui est majoritairement répartit dans la région méditerranéenne était le seul hexaploïde de ce genre et le deuxième parmi tous les conifères.

Dans ce chapitre, nous avons mené la première étude consacrée à déchiffrer l'origine de *J. foetidissima* en utilisant des marqueurs moléculaires (AFLP). Toutes les espèces de *Juniperus* étroitement apparentées à *J. foetidissima* et réparties à proximité de cette espèce ont été incluses dans cette étude. Le but était d'identifier les espèces parentales putatives de *J. foetidissima* et de déterminer s'il existait un mélange génétique entre ces espèces en conséquence du flux de gènes.

Notre analyse a révélé que les espèces étudiées appartenaient à deux grands groupes où il était prouvé que *J. foetidissima* appartenait à *J. thurifera*, *J. sabina et J. chinensis* et appartenait à la branche sœur de *J. thurifera*. Les populations libanaises de *J. foetidissima* ont été démontrées d'être issues d'une lignée ancestrale unique. Cependant, la population grecque de cette espèce semble résulter d'un mélange inégal de deux lignées anciennes. Ces deux lignées ont également contribué au tétraploïde *J. thurifera*. Cette analyse a également montré que *J. excelsa* et *J. procera* partagent la même lignée ancestrale. Des analyses complémentaires sont nécessaires pour une interprétation plus complète des données, notamment en incluant un échantillonnage plus complet des taxons étudiés.

Chapitre II Genre Criblage de la polyploïdie chez <i>Juniperus</i> L.		
Espèce	Chapitre V Premier aperçu de I'hexaploïdie de <i>Juniperus foetidissima</i> Willd.	Chapitre IV Interaction entre les genévriers en sympatrie dans les Alpes françaises
Sous- espèce	Chapitre III Détermination du niveau de ploïdie de <i>Juniperus</i> <i>sabina</i> L. dans presque toute sa distribution géographique	
Monde		Local

1	Deciphering polyploidy origin of the Mediterranean hexaploid
2	Juniperus foetidissima
3 4	Perla Farhat ^{1,2} , Sonja Siljak-Yakovlev ² , Robert P. Adams ³ , Magda Bou Dagher Kharrat ¹ , Thierry Robert ^{2,4} ,
5	¹ Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Université Saint-
6	Joseph, Campus Sciences et Technologies, Mar Roukos, Mkalles, BP: 1514 Riad el Solh, Beirut
7	1107 2050, Lebanon.
8	² Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-
9	Saclay, 91400, Orsay, France
10	³ Biology Department, Baylor University, Box 97388, Waco, TX 76798.
11	⁴ Biology Department, Sorbonne Université, Jussieu, 75005 Paris, France.

12 Abstract

Hybridization and polyploidy have been suggested to contribute mainly to the high biodiversity level in the Mediterranean regions. Both phenomena were found to be frequent in *Juniperus* relatively to other genus within conifer group. Recently, *Juniperus foetidissima* has been found to be the only hexaploid in this genus and just the second between all conifers.

Here, we conducted the first study devoted at deciphering the origin of *J. foetidissima* by using molecular (AFLP) markers. All *Juniperus* species closely related to *J. foetidissima* and distributed near this species have been included in this study. The aim was to identify putative parental species of *J. foetidissima* and to assess whether genetic admixture does exist between those species as a consequence of gene flow.

Our analysis revealed that studied species belong to two major clusters. Juniperus foetidissima 22 23 was shown to belong to J. thurifera, J. sabina and J. chinensis cluster and was on the sister branch of J. thurifera. The Lebanese populations of J. foetidissima were inferred to be issued 24 25 from a unique ancestral lineage. However, the Greek population of this species seems to be the result of an unequal admixture of two ancient lineages. These two lineages contributed also to 26 27 the tetraploid J. thurifera. This analysis showed also that the Mediterranean J. excelsa and the African taxa J. procera share the same ancestral lineage. Further analyses are needed for a more 28 29 in-depth understanding of evolutionary scenarios that produced the observed genetic patterns, especially by including more complete sampling of the studied taxa. 30

31 Keywords: AFLP, conifers, genetic admixture, hybridization, Juniperus, polyploidy.

32 Introduction

The Mediterranean region has been classified as a hotspot of biodiversity, coupled with a high 33 rate of endemism (Verlaque et al., 1997; Médail & Quézel, 1999; Comes, 2004). Also, this 34 region has been classified as a polyploidy hotspot (Marques et al., 2017). One of the 35 characteristics of plant species of the Mediterranean region is their high ability to hybridize 36 37 (Marques et al., 2017) which could lead to polyploid formation. Natural hybridization and 38 polyploidy has been for long time considered as partners in plant evolution and a promoter for biodiversity (Alix et al., 2017). Indeed, those two phenomena may have had big contribution to 39 the high biodiversity of the Mediterranean region. The geographical and climatic characteristics 40 of this region would be one of the reasons behind the occurrence of those phenomena (Marques 41 42 *et al.*, 2017).

Recently, an unexpected frequency of polyploidy (15% of natural taxa) has been determined in 43 the coniferous genus Juniperus L.. It has been suggested that at least ten polyploidy events have 44 45 occurred in the course of Juniperus evolution (Farhat et al., 2019a). All polyploid Juniperus taxa are distributed in the old world and mainly in the Mediterranean region (Farhat et al., 2019a). 46 Juniperus is the most diversified genus in Cupressaceae family and the second in conifers after 47 *Pinus*, with approximately 75 species widely distributed in the Northern Hemisphere from sea 48 level till tree line, except for one species. Only, Juniperus procera Hochst. Ex Endl., is restricted 49 to the Southern Hemisphere (Adams, 2014). This monophyletic genus is divided into three 50 monophyletic sections, Caryocedrus (one species, Juniperus drupaceae Labill.), Juniperus (13 51 species) and Sabina (61 species) (Adams, 2014). All polyploidy cases in this genus have been 52 53 observed in Sabina section (Nagano et al., 2007; Romo et al., 2013; Vallès et al., 2015; Farhat et 54 al., 2019a; Farhat et al., 2019b). This section includes diploid species (2n = 2x = 22), tetraploid species (2n = 4x = 44) and just one hexaploid Juniperus foetidissima Willd. (2n = 6x = 66)55 (Nagano et al., 2007; Romo et al., 2013; Vallès et al., 2015; Farhat et al., 2019a; Farhat et al., 56 2019b). Interestingly, J. foetidissima is the only identified hexaploid conifer found in the 57 58 Mediterranean region and only the second identified in the all world (Farhat et al., 2019a).

59 Juniperus foetidissima is a dioecious, conical tree reaching up to 20 m in height. Its scale leaves 60 are thick (ca. 1.5 mm) comparing to Juniperus closely related species. Seed cones, globose of 7-61 12 mm, maturing in 2 years and commonly contains just one or two seeds. This species is

distributed in the Eastern Mediterranean region mainly on rocky high mountains. It is found on 62 Balkans Mountains, on Caucasus Mountains, in Turkey, Greece and Lebanon high mountains 63 (Mouterde, 1966; Adams, 2014). The origin of J. foetidissima, and especially whether it is an 64 allopolyploid or an autopolyploid, is still unclear. Molecular phylogenetic inferences have 65 allowed to locate J. foetidissima in the third major clade (corresponding to Sabina section) 66 within the whole phylogenetic tree of the genus Juniperus (Adams, 2014). Juniperus foetidissima 67 appears to be closely related to J. excelsa M. Bieb., J. polycarpos K. Koch. and J. seravschanica 68 Kom., on the sister branch of the tetraploid species J. thurifera L. (Adams, 2014). This suggests 69 that ancestors of some of these species could have been involved in the origin of J. foetidissima, 70 if it were an allopolyploid. Nevertheless, this phylogenetic tree of Juniperus was built using ITS 71 (nuclear region) and four chloroplast regions. Those markers have been showed to be efficient 72 for phylogenetic reconstructions. However, due to their relatively low polymorphism compared 73 to other markers such as AFLP, their ability to resolve relationships between closely related 74 species is limited (Meudt & Clarke, 2007). AFLP technique has been showed to generate a large 75 76 amount of markers which are sampled in approximately all the genome. Studies have showed 77 that AFLP markers displayed strong phylogenetic signals among closely related species despite the potential for undetectable homoplasy (Kokotovic et al., 1999; Bou Dagher-Kharrat et al., 78 79 2007; Jacobs et al., 2008; Dasmahapatra et al., 2009; Prebble et al., 2012).

The aim of this study was to decipher the origin of the hexaploid *J. foetidissima* by using a molecular systematics based on AFLP markers. *Juniperus* species of *Sabina* section were selected for this study based on their belonging to the same clade of *J. foetidissima* in the phylogenetic tree (Adams 2014) and based on their close geographical distribution near this species (Fig.1). This would also shed light on patterns of genetic admixture and phylogenetic relationships among these selected *Juniperus* species.

86 Method:

87 Plant material

88 The selected species included in this study were: J. chinensis L., J. excelsa, J. foetidissima, J.

89 phoenicea L., J. polycarpos, J. procera, J. sabina L., J. seravschanica, J. thurifera and J.

90 *turcomanica* B. Fedtsch.. *Juniperus phoenicea* was chosen as an outgroup.

In this study, fresh or dried leaves from *Juniperus* samples were utilized (details are present in
Table 1). All dried leaves samples were provided in silica gel from Baylor University Herbarium
(BAYLU) except for samples of *J. thurifera* from the French Alps which were provided dried
from the herbaria of the National Alpine Botanical Conservatory (CBNA). All details of studied
populations are presented in Table 1 and Figure 1.

96 Table 1. Details of the studied populations of *Juniperus* species

Species	Population	Country	Fresh / Dried	individual #	GPS
Juniperus excelsa	Afqa*	Lebanon	Fresh	6	N 34° 4' 25",
	Barga*	Lebanon	Frech	1	E 35° 54' 20 " N 34° 11' 48"
	Baiqa	Lebanon	Fiesh	1	E 36° 8' 15"
	Devas Mountain-Agios Georgious Forest	Greece	Fresh	1	N 39° 45' 0.4716'', E 19° 40' 59.8944''
	Qammoua forest*	Lebanon	Fresh	5	N 34° 29' 34", E 36° 15' 14"
	Mrebbine	Lebanon	Fresh	2	N 34° 34' 4.008", E 36° 7' 33.996"
	Nebha, Alkedam, Wadi ghned, Arsal	Lebanon	Fresh	2	N 34° 11' 19.7952", E 36° 12' 57.6684"
Juniperus chinensis	Japan	Japan	Dried	3	N 35° 01.44', E 138° 47.30'
	Lanzhou	China	Dried	4	N 36° 6' 0", E 103° 43' 59.88"
	Xian	China	Dried	2	N 34°08'50.2", E 109°34'41.3"
Juniperus foetidissima	Devas Mountain-Agios Georgious Forest	Greece	Fresh	9	N 39° 45' 0.4716'', E 19° 40' 59.8944''
	Hermel	Lebanon	Fresh	14	N 34° 19' 8.7528", E 36° 15' 29.7792"
	Qammoua forest	Lebanon	Fresh	3	N 34° 30' 44.388", E 36° 16' 30.36"
Juniperus phoenicea	Baćina	Croatia	Fresh	9	N 43°05'12.6", E 17°22'36.2"
Juniperus polycarpos	Arsal*	Lebanon	Fresh	17	N 34° 4' 57", E 36° 28' 33.996"
	Azerbaijan	Azerbaijan	Dried	2	N 40° 44' 41.064", E 47° 35' 19.14"
	Wadi El Njass*	Lebanon	Fresh	8	N 34° 19' 49", E 36° 3' 16"
	Wadi El Njass	Lebanon	Fresh	8	N 34° 20' 48", E 36° 5' 17"
Juniperus procera	Ethiopia	Ethiopia	Dried	4	N 9° 1' 59.9988", E 38° 23' 60"
	near Abha	Saudi Arabia	Dried	4	N 18° 16' 59.988", E 42° 21' 0"

Juniperus sabina	Austria, Alps	Austria	Dried	3	N 46° 56' 6", E 11° 2' 20 4"
		р [,]	F 1	7	E 11 2 20.4
	Mts Cyrsnica and Cabulja	Bosnia-	Fresh	/	N 43° 34' 18.084",
		Herzegovina			E 1/° 30' 39.888"
	Biokovo Mts	Croatia	Fresh	7	N 43° 19' 31.1808'',
					E 17° 2' 57.0228"
Juniperus	Kazakhstan	Kazakhstan	Dried	2	N 42° 24' 31.788",
seravschanica					E 70° 28' 30"
Γ	Kazakhstan	Kazakhstan	Dried	3	N 42° 10' 46.2",
					E 70° 20' 0.816"
	Oman	Oman	Dried	3	N 23° 7' 41.016",
					E 57° 36' 9.288"
F	Pakistan	Pakistan	Dried	2	N 30° 13' 0.012",
					E 67° 5' 60"
Juniperus thurifera	Alps	France	Dried	6	N 44° 43' 7.986".
J. J. J. L. J. J. L. J. J. J. J. L. J.	I ·			-	E 6° 36' 13.0392"
	Monegros region	Spain	Fresh	3	N 41° 36' 19.3428",
		-			W 0° 15' 7.092"
	southern Iberian Central Range	Spain	Fresh	4	N 40° 0' 14.4936",
	-	-			W 5° 1' 11.82"
Juniperus turcomanica	Turkmenistan	Turkmenistan	Dried	2	N 38° 25' 7.212",
*					E 56° 58' 48"
F	Shahmirzad	Iran	Dried	1	N 35° 50' 54.996",
					E 53° 26' 24.216"
	Bajgirna	Iran	Dried	1	N 37° 25' 9.804",
	30				E 58° 32' 0.204"
	Baladae	Iran	Dried	1	N 36° 14' 34.404".
					E 51° 50' 20.4"
l F	Fasa	Iran	Dried	1	N 29° 9' 57.816",
					E 53° 40' 7.788"

*Material collected and used in the PhD research of Bouchra Douaihy 2011 (Douaihy, 2011).

99

100 Figure 1 Localities of the studied populations of *Juniperus* species included in the investigation.

101 **DNA extraction**

Total genomic DNA was extracted by cetyltrimethyl ammonium bromide (CTAB) method
(Doyle & Doyle, 1990) according to the modifications for conifers elaborated by Bou DagherKharrat *et al.* (2007). Approximately 30 mg of dried leaves were grinded in a 2% CTAB solution
(1.4 M NaCl, 20 mM EDTA, 100 mM Tris-HCl pH 8.0, 2% CTAB and 2% Polyvinylpyrrolidone
(PVP)).

107 Amplified fragment length polymorphism (AFLP) analysis

108

The AFLP method used was based on the standard protocol (Vos *et al.*, 1995). To improve the reliability of AFLP data, 34 replicates of AFLP profiles were generated from independent restriction digests of the same DNA (repetition type 1) and from different DNA extractions of the same sample (repetition type 2) (Table. 2). Replicates cover around 23% of the entire samples of the dataset. Also 8 repetitions of the negative control have been included. 114 Table 2. Number of replicates for each selected species from: the repetition Type 1 (repetition from 115 same DNA and independent restriction digests) and the repetition Type2 (repetition from the same

	-	
116	sample and different DNA extractions).	

117	Species	Replicate number	Replicate number of
118	species	of repetition type	repetition type 2
119	Juniperus excelsa	1	2
120	Juniperus polycarpos	3	6
121	Juniperus foetidissima	1	12
122	Juniperus seravschanica	1	0
173	Juniperus turcomanica	1	0
125	Juniperus chinensis	1	0
124	Juniperus procera	1	0
125	Juniperus sabina	1	2
176	Juniperus thurifera	1	0
120	Juniperus phoenicea	1	0
127	L	1	1

128

Genomic DNA (250 ng) was digested at 37° C for 2h30 min. The digestion reaction contained 5 units of *Eco*RI and 5 units of *Tru*1I restriction enzymes in 1X ligase buffer (Fermentas MBI) in a final volume of 25µl. Then, restriction enzymes were inactivated at 70°C for 20 min. The ligation reaction mix contains 5 pmol *Eco*RI adaptors and 50 pmol *Tru*1I adaptors, 1X ligase buffer (Fermentas MBI), 1 unit of T4 DNA ligase (Fermentas MBI) and the entire digestion product (25µl) in a final volume of 50µl. Ligation was performed at 20°C for 2h30 min. Digested and ligated DNA was diluted 10X with TE buffer (10 mM Tris, pH 8.0 and 1 mM EDTA, pH 8.0).

Preselective amplification was carried out using a primer pair complementary to each restriction site plus one specific nucleotide at the 3' end of each primer (Table 3). Polymerase chain reaction (PCR) was carried out in a final volume of 50µl. In each reaction, 5µl of diluted restriction-ligation products were added to 10 pmol of each primer, 0.2 mM of each dNTPs, 2.5mM of MgCl₂, 1X Taq DNA polymerase buffer without MgCl₂ and 1 unit of Taq DNA polymerase (MP Biomedicals).

The preselective amplification protocol was: initial denaturation at 94°C for 1 min, followed by
20 cycles at 94°C for 30 s, 56°C at 1 min, and 72°C at 1 min and a final extension at 72°C for 5
min.

- 145 To verify the preselective amplification success, 7µl of the PCR products was electrophoresed on
- 146 2% agarose gel stained by gel red at 100 Volt for 1h.
- 147 The pre-selective amplified PCR products were diluted 50X with ddH₂O.
- 148 Selective amplifications using four primers combination were performed using three labeled
- 149 EcoRI primers (two primers labeled with FAM and one with PET (Table 3)) and four unlabeled
- 150 *Tru*1I (Table 3). Selective primers were similar to the pre-selective ones with the addition of two
- 151 nucleotides randomly chosen at 3'end of the sequences (Table 3). The selective PCR contained
- 152 for each reaction, 4µl of the diluted pre-selective PCR product, 1X of Dream Tag buffer, 0.5mM
- of MgCl₂, 0.2 mM of each dNTPs, 0.2μ M of each selective primers and 1 unit of DreamTaq
- 154 polymerase (Thermo Fisher Scientific) in a final volume of 25µl.
- The PCR protocol was initial denaturation at 94 °C for 1 min, 10 cycles at 94°C for 1 min, annealing at 65°C to 56°C (touchdown of 1°C per cycle) for 1min, 72°C for 1 min 30s, followed by 23 cycles at 94°C for 30s, 56°C for 30s, 72°C for 1 min and a final extension at 72°C for 3 mins. To check the selective PCR reactions success, 7 μ l of the PCR products was electrophoresed on 2% agarose gel stained by gel red at 100 Volt for 1h.
- 160 Table 3. Details of the AFLP adapters and primers used in this study

	CODE	Primer (5'-> 3')	Length	GC (%)	Tm	Label
Adapters	<i>Eco</i> RI - adapter L	CTCGTAGACTGCGTACC	17	58.8	55.2	No label
	<i>Eco</i> RI - adapter S	AATTGGTACGCAGTC	15	46.7	45.1	No label
	Tru1I -adapter L	GACGATGAGTCCTGAG	16	56.3	51.7	No label
	Tru1I -adapter S	TACTCAGGACTCAT	14	42.9	40	No label
Pre- amplification	<i>Eco</i> RI - PA	ACTGCGTACCAATTC <u>A</u>	16	43.8	46.6	No label
	Tru1I -PA	GATGAGTCCTGAGTAA <u>C</u>	17	47.1	50.4	No label
Amplification	EcoRI-1	ACTGCGTACCAATTCACG	18	50	53.7	FAM
	EcoRI-2	ACTGCGTACCAATTCACT	18	44.4	51.4	FAM
	EcoRI-4	ACTGCGTACCAATTCACC	18	50	53.7	PET
	Tru1I -1	GATGAGTCCTGAGTAACTA	19	42.1	52.4	No label
	Tru1I -2	GATGAGTCCTGAGTAACTG	19	47.4	54.5	No label
	Tru1I -3	GATGAGTCCTGAGTAA <u>CAG</u>	19	47.4	54.5	No label
	Tru1I -4	GATGAGTCCTGAGTAA <u>CTT</u>	19	42.1	52.4	No label
Amplification primers combinations	l	EcoRI-1/ Tru1I -1				
	EcoRI-1/ Tru1I -3					
	I					
	l					

162 AFLP scoring

AFLP products along with GS-500 LIZ size standard were run on a capillary sequencer Applied 163 Biosystems® 3730XL at GENTYANE Platform- INRA, Clermont-Ferrand (France). AFLP 164 migration profiles were analyzed using GeneMapper v.5 (Thermo Fisher Scientific). AFLP 165 default settings of GeneMapper software for allele parameters, peak detection algorithm, peak 166 quality and quality flags were used. Fragment sizes between 50 bp and 500 bp were taken into 167 consideration in the analysis. The allele's bins were scored as "0" if the peak height was ≤ 50 , 168 scored as "1" if the peak height was ≥ 100 and by a "check" to the bins with the peak heights 169 170 between 50 and 100.

171 Manual analysis for the bin was performed based on the control individuals.

Each allele was examined according to the following procedure: firstly all the alleles that have score "1" in one of the negative control, were discarded from the following analysis. Secondly, for each allele, genotyping error based on the repetitions Type 1 (repetition from same DNA and independent restriction digests) and the repetition Type 2 (repetition from the same sample and different DNA extractions) was estimated using "Bonin error rate" as following:

177 Bonin error rate=
$$\frac{\sum(0,1) + \sum(1,0)}{\sum(0,1) + \sum(1,0) + \sum(0,0) + \sum(1,1)}$$

This type of error measurement takes in consideration the score 0 (absence of allele) or 1 (presence of allele) of each replicate in each allele. Therefore, if "i" was the sample score and "j" was the score of the repetition of this sample, the replicate score will be represented by (i, j). Which means, if the replicate showed the same scores it was represented as: (0,0) in the absence of allele or (1,1), in case of the presence of the allele. When the replicate does not show the same scores it was represented as: (0,1) or (1,0).

- Bonin error rate calculated for each allele represents the sum of all the replicates in the allele that don't have the same scores (0,1) and (1,0) over all replicates in the allele (Bonin *et al.*, 2004).
- 186 Alleles that show an error rate less than 25% where taken into consideration for further analyses.
- 187 All alleles that showed an error rate more than 25% were discarded.

188 Then, peaks patterns that were scored as "check" were examined manually on GeneMapper.

189 AFLP data analysis

190 The proportion of polymorphic fragments (PLP) for each primer combination was determined191 using AFLP- SURVEY 1.0 software (Vekemans, 2002).

Pairwise dissimilarity indices between individuals were performed according to Nei and Li (Nei & Li, 1979). Neighbor Joining (Nj) tree was implemented using PAUP v.4 based on the matrix of individuals dissimilarities. Robustness of each node was tested using 10 000 bootstraps. Starting seed was generated automatically, length of recognition sequence=6. All characters have equal weight. The Nj tree built was rooted by the outgroup *J. pheonicea*.

A Bayesian clustering approach was carried out on the basis of the AFLP fragments on the whole 197 198 data set using STRUCTURE software v. 2.3. This procedure allowed to assign individuals to genetic clusters (K) and to estimate genome admixture proportions (Q) of each individual 199 200 (Pritchard et al., 2000). In this simulation, spatial information on samples was not taken into consideration. Admixture model and independent allele frequencies were used. MCMC were 201 202 carried out using a burn-in period of 50,000 followed by 100,000 iterations. The number of genetic clusters (K) varied from 1 to 10. The best solutions for K were identified according to 203 204 Evanno et al. (2005), on the basis of 10 repetitions for each K value.

205 Result and discussion

206 AFLP markers polymorphism between Juniperus species

207 In total, the four analyzed primers combinations generated 1244 locus. The proportion of polymorphic loci (PLP) differed between species and primers combination (Table 4). PLP was 208 209 ranged from 38.4% (for J. polycarpos) to 68.5% (for J. chinensis) in the primer combination EcoRI-1/ Tru1I-1. In the primer combination EcoRI-1/ Tru1I-3, PLP ranged from 36.2% (for J. 210 211 thurifera) to 58.5% (for J. chinensis). The EcoRI-2/ Tru1I-4 primer combination, showed the highest PLP between all the other three primer combinations with 73.1% (for J. chinensis), the 212 lower PLP in this primer combination was 43.8% (for J. thurifera). The primer combination, 213 EcoRI-4/ Tru1I-2 showed a PLP ranged from 31.2% (for J. turcomanica) to 59.9% (in J. 214 chinensis). Interestingly, J. chinensis showed the highest PLP for all primers combinations 215

- despite the low sample size analysed (only 9 individuals). Whether this result is due to an overall
 higher genetic diversity within this species than the others, or to a very high population
 differentiation is still to be assessed on the basis of a more representative sampling scheme
- Table 4. Proportion (PLP) of polymorphic loci (%) generated by AFLP from the four primers
- combinations on the studied *Juniperus* species. The red star (*) represented the highest PLP in a
- 221 primer combination and the black star (*) represented the lowest PLP.

Primers pairs	EcoRI-1/Tru1I-1	EcoRI-1/ Tru1I-3	EcoRI-2/ Tru1I-4	EcoRI-4/ Tru1I-2
Species				
J. chinensis	68.5 *	58.5 *	73.1 *	59.9 *
J. excelsa	46.8	48.1	60.6	44.2
J. foetidissima	50.9	42.2	48.5	41.6
J. phoenicea	39.1	42.5	49.8	37.2
J. polycarpos	38.4 *	36.9	50.8	32
J. procera	40.4	38.7	50.8	32
J. sabina	49.1	41.1	53.2	37.2
J. seravschanica	56.8	46	56.6	43.9
J. thurifera	44.2	36.2 *	43.8 *	32.7
J. turcomanica	39.9	37.6	54.5	31.2 *

223 Phylogenetic relationships between J. foetidissima and other Juniperus taxa

224 Our results showed that all individuals of the same species were clustered together except in 225 three cases (Figure 2). Firstly, two individuals of J. excelsa from Mrebbine population in North 226 Lebanon were clustered in the same clade with all individuals of J. polycarpos. The two species are morphologically very similar and the separation between them has been based on genetic 227 228 profiles (Adams, 2014; Adams et al., 2014a). In Lebanon, the presence of J. polycarpos has been demonstrated on the basis of microsatellite (SSR), nrDNA (ITS) and chloroplast sequences 229 230 (Douaihy et al., 2011; Adams et al., 2014a). Douaihy et al. (2011), have shown on the basis of 231 SSR markers, that two populations of J. excelsa in Lebanon (Wadi El Njass and Arsal 232 populations) were genetically strongly differentiated from the other populations of the same species. Then, Adams et al. (2014a), by using ITS and chloroplastic markers, have determined 233 that those two populations were in fact J. polycarpos and not J. excelsa as it was previously 234 thought. Up to date, this study is the only one reported regarding the occurrence of J. polycarpos 235 236 in Lebanon. Thus, the distribution of J. excelsa and of J. polycarpos in Lebanon is still unclear.

- In our study the AFLP markers provided a very clear separation between *J. polycarpos* and *J. excelsa* as showed in the NJ distance tree (Figure 2). Our results showed that the individuals
 from the population of Mrebbine- Lebanon, previously thoughts to be *J. excelsa*, are more likely
- to be *J. polycarpos.*

Figure 2. NJ tree based on the matrix of Nei and Li individuals dissimilarities constructed using AFLP data

242 The second phylogenetic incongruence revealed by AFLP data concerned one out of the 8 243 individuals of J. polycarpos from the population Wadi El Njass in Lebanon collected in this 244 study. This individual was included in the same clade with J. seravschanica. No evidence of J. 245 seravschanica has been yet identified in Lebanon and the nearest population of this species to Lebanon was in Iran. This fact indicated that an introgression between the Lebanese population 246 of J. polycarpos and J. seravschanica was unlikely. However, due to the very low number of 247 studies on J. polycarpos in Lebanon and the surrounding countries, interpretation of this result 248 must be treated with caution. More studies are needed regarding the Lebanese population of J. 249 250 *polycarpos* to define their geographical delimitation and to get a full insight on the population 251 genetic structure of this taxon.

252 The third case of phylogenetic incongruence was observed for the individual of J. turcomanica from Fasa, Southern Iran that was shown to be present in the same clade with J. seravschanica. 253 Conversely, the other populations of J. turcomanica from the North of Iran were clustered 254 together with other population of J. turcomanica. In a recent study in the Iranian juniper 255 256 populations, it has been found that the three species J. polycarpos, J. turcomanica and J. seravschanica seem to hybridize (Adams et al., 2014b). Moreover, based on nuclear and 257 258 chloroplastic DNA sequences, J. turcomanica (= J. polycarpos var. turcomanica) of Southern Iran has shown potential hybridization with J. polycarpos and J. seravschanica of Iran (Hojjati et 259 260 al., 2018). Based on our AFLP markers, J. turcomanica from South Iran was placed in the same 261 clade with J. seravschanica which might also confirm the hybridization suggested by Hojjati et al. (2018). More detailed analysis must be performed based on AFLP markers by taking in 262 consideration more populations of the three species to gain more insights on the organization of 263 264 genetic variability at the inter and intraspecific levels and to support or disprove the hypothesis of interspecific hybridizations at the local level (Southern Iran especially). 265

Phylogenetic relationships based on AFLP data showed that studied juniper species were clustered into two main groups; the first one including *J. foetidissima*, *J. thurifera*, *J. chinensis* and *J. sabina*. The second cluster included *J. procera*, *J. excelsa*, *J. seravschanica*, *J. polycarpos* and *J. turcomanica* (Figure 2). The AFLP based phylogenetic tree showed high similarities with the phylogenetic tree of most *Juniperus* taxa based on ITS and chloroplastic DNA sequences (Adams, 2014). In both phylogenetic trees, *J. procera*, *J. excelsa*, *J. seravschanica*, *J. polycarpos* 272 and J. turcomanica are in the same main clade while J. sabina and J. chinensis are in the second 273 main clade. Also, in both trees, J. foetidissima and J. thurifera are on sister branches. However, 274 AFLP data showed that J. foetidissima and J. thurifera were in the same clade as J. chinensis and 275 J. sabina which is not the case in the nucleotide sequence based phylogenetic tree (Adams, 2014). This mismatch between those two trees might be explained by the very high number of 276 AFLP loci produced in this study comparing to the low polymorphic sites generated through the 277 highly conserved loci of nrDNA and chloroplast regions. It is now well known that the large 278 amount of loci generated by AFLP markers displays strong phylogenetic signals among closely 279 related species (Kokotovic et al., 1999; Bou Dagher-Kharrat et al., 2007; Jacobs et al., 2008; 280 281 Dasmahapatra et al., 2009; Prebble et al., 2012). The interest of using AFLP data to study the phylogenetic relationships between closely related species has increased for the last decade 282 (Aggarwal et al., 1999; Kokotovic et al., 1999; Jacobs et al., 2008; Dasmahapatra et al., 2009; 283 Prebble et al., 2012; Tikhonova et al., 2012). Homoplasy or co-migration of DNA fragments 284 generated from different loci (Vekemans et al., 2002), has been pointed out as a potential 285 286 challenge to the phylogenetic reconstruction based on AFLP. However, it has been shown to be a 287 minor issue for studies dealing with closely related species (Meudt & Clarke, 2007; Quesada et al., 2009). In our study, all studied species were closely related with the exception of J. 288 289 phoenicea which was chosen as an-outgroup. The fact that the two major clades found in the phylogenetic tree based on nucleotide diversity (Adams, 2014) are also found in the phylogenetic 290 291 tree based on AFLP suggested also that homoplasy is likely unfrequent in our data. The AFLP 292 based phylogenetic tree suggested therefore that ancestral lineages of J. thurifera, J. 293 chinensis and J. sabina could have contributed to the origin of the hexaploid J. foetidissima.

294 Admixture patterns between Juniperus studied taxa

STRUCTURE analysis provided the highest value of ΔK for K = 2 (two genetic groups) with a suboptimal solution for K=5 (five genetic groups) (Figure 3A-B). It has been noted that the adhoc Evanno method (Evanno *et al.*, 2005) favors K =2 by default (Vigouroux *et al.*, 2008) for that reason we took both K=2 and K=5 as possible results.

Globally, structure results are in accordance with the dissimilarities based tree. In addition, the results for both K values showed admixture rates, which are relatively high in some populations and species which suggested that hybridization might have played a role in the evolution of this 302 group of junipers. Another alternative is that shared ancestral polymorphism was still present in

303 some of current studied species.

304

Figure 3. Results of Bayesian inferences from STRUCTURE analysis of AFLP data on 10 *Juniperus* species. A DeltaK; K plotted against the second order rate of change of the likelihoods. B. Absolute value of the 2nd order rate of change of the likelihood distribution (mean). C. STRUCTURE clustering results for K=2 and K=5 as suggested in the deltaK plot. *Material collected and used in the PhD research of Bouchra Douaihy 2011 (Douaihy, 2011).

For the solution K=2, the first cluster (represented by an orange color) included *J. polycarpos* (2,

311 3, 4), J. turcomanica (9) and J. seravschanica (8). However, J. seravschanica showed a clear

- 312 signal of genetic admixture with the second cluster (represented by a blue color). The second
- 313 cluster included J. excelsa (1), J. procera (11) J. foetidissima (5, 6, 7), J. chinensis (10), J.
- sabina (12, 13), J. thurifera (14) and J. phoenicea (15). However, J. excelsa (1) and J. procera
- 315 (11) presented a strong signal of genetic admixture with the first cluster. In both K=2 and K=5,
- the two trees morphologically identified as *J. excelsa* from the population Mrebbine (Lebanon)

317 were clearly assigned to the same genetic cluster as J. polycarpos from STRUCTURE results. Same was shown for the individual of J. polycarpos from Wadi El Njass population (Lebanon) 318 319 that was located in the same clade with J. seravschanica in the Nj base tree (Figure 2). With 320 K=5, J. phoenicea belonged to a separate genetic cluster as expected. This was consistent with the phylogenetic tree of Adams (2014). Also, the solution with 5 clusters (K=5) confirmed J. 321 excelsa and J. procera belonged to the same genetic cluster. Similarly, J. polycarpos and J. 322 323 turcomanica were assigned to the same cluster consistently with the previous study of Adams (2014). Nevertheless, J. seravschanica showed an admixed genome composition with the biggest 324 part being assigned to the same genetic cluster than J. polycarpos and J. turcomanica. Also, 325 another proportion of J. seravschanica genome composition was assigned to the same cluster as 326 J. thurifera and J. foetidissima. This result is in accordance with the relatedness between J. 327 328 seravschanica and J. foetidissima as was established in the phylogenetic tree of Adams (2014). Interestingly, it has lately been suggested based on nrDNA (ITS) and chloroplast regions 329 sequences that J. seravschanica possesses an ancient chloroplast capture from an ancestor of J. 330 foetidissima / J. thurifera (Adams, 2016), meaning that hybridization has occurred in the past 331 332 between these two lineages (J. seravschanica on one side and J. foetidissima / J. thurifera the other side). Therefore, the AFLP data supports this hypothesis and suggests that the fingerprint 333 334 of introgression of J. seravschanica genome by nuclear genes from the J. foetidissima / J. thurifera lineage is still present. Interestingly, J. seravschanica has been lately shown to be 335 336 tetraploid (Farhat et al., 2019a). Therefore, our results suggest that this species is likely an allotetraploid. 337

Both varieties of J. sabina, e.g. J. sabina var. sabina (12) and J. sabina var. balkanensis (13) 338 339 belonged to the same genetic cluster. Juniperus sabina var. balkanensis has been recently described on the basis of molecular data since it holds the nrDNA (ITS) of J. sabina var. sabina 340 and the chloroplast of J. thurifera (Adams et al., 2016; Adams et al., 2018a; Adams et al., 341 2018b). Based on AFLP results, we didn't find evidence of genetic admixture between J. 342 thurifera and J. sabina var. balkanensis despite the large number of polymorphic loci between 343 these two taxa. Lately, this variety has been shown to be tetraploid and hypothetical 344 polyploidization pathways have been suggested showing how after a hybridization between J. 345 346 sabina and J. thurifera lineages, the J. sabina-like nuclear DNA just persist in the variety J. sabina var. balkanensis (Farhat et al., 2019b). In addition, all studied populations of Juniperus 347

thurifera, showed a strong signal of genetic admixture involving approximately equal 348 contributions of the two genetic clusters, one of them being the same genetic cluster as J. 349 350 foetidissima (blue color, Figure 3), the other being the same genetic cluster as J. sabina (green color, Figure 3). Therefore, it is possible to find evidence from the genetic cluster of J. thurifera 351 (of the green color) inside the genetic composition of J. sabina var. balkanensis if higher K 352 values are tested. More fine STRUCTURE analysis including those three taxa must be conducted 353 354 by taking in consideration higher possibilities of K that maybe will give higher resolution on J. sabina var. balkanensis genome composition. 355

All the populations of *Juniperus thurifera* have been proved to be tetraploid (Romo *et al.*, 2013; Vallès *et al.*, 2015). The strong admixted pattern showed for this species at K=5, suggests that *J. thurifera* is an allotetraploid between the ancestral lineage of this species with the ancestor linage of *J. sabina*.

The clustering results with K=5 also showed that J. foetidissima displayed common ancestry 360 361 with J. thurifera and different from all the other species. However, a clearly different assignation pattern was observed between the two populations of J. foetidissima from Lebanon on one side 362 363 and for the population from Greece on the other side. Indeed, the population from Greece displayed a strong admixture pattern between the genetic cluster which is also shared by J. 364 thurifera (blue color) and the one shared by J. sabina (green color) which is found in this country 365 and not in Lebanon. This result might witness recent genomic introgression of J. foetidissima 366 from Greece by J. sabina which is found in this country but not in Lebanon. However, this 367 hypothesis is unlikely since J. foetidissima and J. sabina are hexaploid and diploid, respectively, 368 369 so that the descent of such an hybridization event would not be hexaploid as found by Farhat et 370 al. (2019a). Another hypothesis that could be invoked to explain the different assignment pattern of the Lebanese and the Greek populations of J. foetidissima could be that two independent 371 372 events have produced this species, both of them involving J. thurifera lineage. In that case, our results would suggest that the first event occurred before the introgression of the lineage of J. 373 374 sabina into the J. thurifera lineage. This event would have produced the J. foetidissima lineage which is at the origin of Lebanese populations. Multiple origins have been suggested in many 375 376 polyploid species, especially for higher ploidy levels (Tayalé & Parisod, 2013). For example, 377 several independent origins have been shown for the recent allopolyploid *Tragopogon miscellus*

(Tate *et al.*, 2009; Symonds *et al.*, 2010; Chester *et al.*, 2012) and for *Heuchera grossulariifolia*Rydb. (Segraves *et al.*, 1999). Further studies targeting the population genetic structure and
admixture patterns of *J. foetidissima*, based on a larger and more geographically representative
sample of this species and of *J. thurifera* and *J. sabina* should allow to draw possible scenarios
for the evolution of *J. foetidissima* and its two related species.

Juniperus chinensis showed a complex mosaic pattern which involved the genetic clusters of J. 383 384 excelsa/J. procera, J. phoenicea and for the biggest part, from the genetic cluster of J. sabina. Baring such an admixed pattern could be explained either by being a cradle of all these genetic 385 clusters or a destination. The first hypothesis could be immediately discarded since the ability to 386 these genetic clusters to be separated and give rise to other species showing no admixed genetic 387 388 cluster like J. procera or J. sabina is very improbable. The destination hypothesis is more plausible reflect the introgression events from neighboring taxa. Two cytotypes 2x and 4x have 389 390 been found in J. chinensis (Sax & Sax, 1933; Nagano et al., 2007). In our study the individual from the population of Japan has been previously measured for its genome size by Farhat et al. 391 392 (2019a) showing to be a tetraploid. This result suggested that the tetraploid cytotype was an 393 allotetraploid.

394 Conclusion:

This study is the first to use AFLP markers to clarify phylogenetic relationships between closely related species of *Juniperus* belonging to *Sabina* section. AFLP analysis conducted in this study showed mostly high consistency with previously published phylogenetic tree for *Juniperus*, except for *J. foetidissima* and *J. thurifera*. Based on AFLP data, those two species were both located in the same clade with *J. sabina* and *J. chinensis*.

400 As a first insight, AFLP data suggests for the first time that J. thurifera, J. chinensis and J. seravschanica were allopolyploid, Also, our results suggested that at least two independent 401 402 origins of J. foetidissima might have occurred, involving autopolyploidy for the population in 403 Lebanon and allopolyploidy for the population in Greece. However, further investigations must 404 be conducted to clarify the genetic diversity and genetic composition of *J*. 405 foetidissima throughout its geographical distribution. Other possible clustering solutions with K>10 must be explored in order to complete the analyses of AFLP data. Also, analyses focusing 406

on sub-samples such as for *J. sabina* var. *sabina*, *J. sabina* var. *balkanensis* and *J. thurifera* should be carried out to have a more detailed view of the pattern of their genetic diversity. However, even though the analyses given in this chapter are preliminary but they appeared to be highly consistent with previous knowledge. This study opened new venues for further discovery towards genetic diversity and evolution of *Juniperus* species.

412

413

414 Acknowledgments

The authors thank the National Council for Scientific Research grant number CNRS-FS90 – Lebanon, the Saint Joseph University Research Council (CR-USJ) FS-111, Paris Sud University and Ecology Systematic and Evolution laboratory for supporting financially this work. We would like to thank Teresa Garnatje, Joan Vallès and Angel Romo for plant collection and supplying from Spain, Luc Garraud and the National Alpine Botanical Conservatory (CBNA) for plant collection from the French Alps and F. Bogunic for the samples from Mts Cvrsnica, Balkan.

422 **References**

- Adams RP. 2014. Junipers of the World: The genus Juniperus. Bloomington, Indiana, USA: Trafford
 Publishing.
- Adams RP, Boratynski A, Marcysiak K, Roma-Marzio F, Peruzzi L, Bartolucci F, Conti F,
 Mataraci T, Schwarzbach A. 2018a. Discovery of *Juniperus sabina* var. *balkanensis* RP Adams
 and AN Tashev in Macedonia, Bosnia-Herzegovina, Croatia and Central and Southern Italy and
 relictual polymorphisms found in nrDNA. *Phytologia* 100(2): 117-127.
- Adams RP, Bou Dagher-Kharrat M, Douaihy B, Schwarzbach A, Farzaliyev V. 2014a. Geographic
 variation in nrDNA and four cpDNA regions of *Juniperus excelsa* and *J. polycarpos* from
 Greece, Turkey, Lebanon and Azerbaijan. *Phytologia* 96: 89-95.
- Adams RP, Farhat P, Shuka L, Siljak-Yakovlev S. 2018b. Discovery of *Juniperus sabina* var.
 balkanensis RP Adams and AN Tashev in Albania and relictual polymorphisms found in nrDNA.
 Phytologia 100: 187-194.
- Adams RP, Schwarzbach A, Tashev A. 2016. Chloroplast capture by a new variety, *Juniperus sabina*var. *balkanensis* RP Adams and AN Tashev, from the Balkan peninsula: A putative stabilized
 relictual hybrid between *J. sabina* and ancestral *J. thurifera. Phytologia* 98(2): 100-111.
- Adams RP. 2016. Two new cases of chloroplast capture in incongruent topologies in the *Juniperus excelsa* complex: *J. excelsa* var. *turcomanica* comb. nov. and *J. excelsa* var. *seravschanica* comb.
 nov. *Phytologia* 98: 219-231.
- Adams RP, Hojjati F, Schwarzbach AE. 2014b. Taxonomy of *Juniperus* in Iran: DNA sequences of
 nrDNA plus three cpDNAs reveal *Juniperus polycarpos* var. *turcomanica* and *J. seravschanica* in
 southern Iran. *Phytologia* 96(1): 19-25.
- Aggarwal RK, Brar DS, Nandi S, Huang N, Khush GS. 1999. Phylogenetic relationships among *Oryza* species revealed by AFLP markers. *Theoretical Applied Genetics* 98(8): 1320-1328.
- Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison J. 2017. Polyploidy and interspecific
 hybridization: partners for adaptation, speciation and evolution in plants. *Annals of botany* 120(2): 183-194.
- Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P. 2004. How to track and
 assess genotyping errors in population genetics studies. *Molecular ecology* 13(11): 3261-3273.
- Bou Dagher-Kharrat M, Mariette S, Lefèvre F, Fady B, Grenier-de March G, Plomion C, Savouré
 A. 2007. Geographical diversity and genetic relationships among *Cedrus* species estimated by
 AFLP. *Tree Genetics Genomes* 3(3): 275-285.
- 454 Chester M, Gallagher JP, Symonds VV, da Silva AVC, Mavrodiev EV, Leitch AR, Soltis PS, Soltis
 455 DE. 2012. Extensive chromosomal variation in a recently formed natural allopolyploid species,
 456 *Tragopogon miscellus* (Asteraceae). *Proceedings of the National Academy of Sciences* 109(4):
 457 1176-1181.
- 458 Comes HP. 2004. The Mediterranean region-a hotspot for plant biogeographic research. *New phytologist* 459 164(1): 11-14.
- 460 Dasmahapatra KK, Hoffman JI, Amos W. 2009. Pinniped phylogenetic relationships inferred using
 461 AFLP markers. *Heredity* 103: 168.
- 462 Douaihy B. 2011. Caractérisation écogéographique et génétique de Juniperius excelsa dans l'est du
 463 bassin méditerranéen. Thèse de doctorat, Préparée en co-tutelle entre la
- 464 Faculté des sciences de l'Université Saint- Joseph de Beyrouth et Museum National D'Histoire
 465 Naturelle Paris, France.
- 466 Douaihy B, Vendramin GG, Boratynski A, Machon N, Bou Dagher-Kharrat M. 2011. High genetic
 467 diversity with moderate differentiation in *Juniperus excelsa* from Lebanon and the East
 468 Mediterranean Region. *AOB Plants*: 1-14.
- 469 **Doyle JJ, Doyle JL. 1990.** Isolation of plant DNA from fresh tissue. *Focus* **12**(13): 39-40.
- 470 Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the
 471 software structure: a simulation study. *Molecular ecology* 14(8): 2611-2620.
- 472 Farhat P, Hidalgo O, Robert T, Siljak-Yakovlev S, Leitch I, Robert P, Magda B. 2019a. Polyploidy
 473 in the conifer genus *Juniperus*: an unexpectedly high rate. *Frontiers in Plant Science* 10: 1-14.
 474 doi: 10.3389/fpls.2019.00676.
- Farhat P, Siljak-Yakovlev S, Robert P, Magda B, Robert T. 2019b. Genome size variation and
 polyploidy in the geographical range of *Juniperus sabina* L. (Cupressaceae). *Botany Letters*: 110. doi: 10.1080/23818107.2019.1613262.
- Hojjati F, Kazempour-Osaloo S, ADAMS RP, Assadi M. 2018. Molecular phylogeny of *Juniperus* in Iran with special reference to the *J. excelsa* complex, focusing on *J. seravschanica*. *Phytotaxa* 375(2): 135-157.
- Jacobs MMJ, van den Berg RG, Vleeshouwers VGAA, Visser M, Mank R, Sengers M, Hoekstra R,
 Vosman B. 2008. AFLP analysis reveals a lack of phylogenetic structure within *Solanum* section
 Petota. BMC Evolutionary Biology 8(1): 145.
- Kokotovic B, Friis NF, Jensen JS, Ahrens P. 1999. Amplified-Fragment Length Polymorphism
 Fingerprinting of *Mycoplasma* Species. *Journal of Clinical Microbiology* 37(10): 3300-3307.
- 486 Marques I, Loureiro J, Draper D, Castro M, Castro S. 2017. How much do we know about the
 487 frequency of hybridisation and polyploidy in the Mediterranean region? *Plant Biology* 20: 21-37.
- 488 Médail F, Quézel P. 1999. Biodiversity hotspots in the Mediterranean Basin: setting global conservation
 489 priorities. *Conservation biology* 13(6): 1510-1513.
- 490 Meudt HM, Clarke AC. 2007. Almost Forgotten or Latest Practice? AFLP applications, analyses and
 491 advances. *Trends in plant science* 12(3): 106-117.
- 492 Mouterde P. 1966. Nouvelle flore du Liban et de la Syrie. Beyrouth, Lebanon: Imprimerie Catholique.
- 493 Nagano K, Matoba H, Yonemura K, Matsuda Y, Murata T, Hoshi Y. 2007. Karyotype analysis of
 494 three *Juniperus* species using fluorescence in situ hybridization (FISH) with two ribosomal RNA
 495 genes. *Cytologia* 72(1): 37-42.
- 496 Nei M, Li W-H. 1979. Mathematical model for studying genetic variation in terms of restriction
 497 endonucleases. *Proceedings of the National Academy of Sciences* 76(10): 5269-5273.
- 498 Prebble JM, Meudt HM, Garnock-Jones PJ. 2012. Phylogenetic relationships and species delimitation
 499 of New Zealand bluebells (*Wahlenbergia*, Campanulaceae) based on analyses of AFLP data. *New* 500 Zealand Journal of Botany 50(3): 365-378.
- 501 Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus
 502 genotype data. *Genetics* 155(2): 945-959.
- Quesada H, García-Pereira MJ, Caballero A. 2009. Evaluating the Relationship between Evolutionary
 Divergence and Phylogenetic Accuracy in AFLP Data Sets. *Molecular Biology and Evolution* 27(5): 988-1000.
- Romo A, Hidalgo O, Boratyński A, Sobierajska K, Jasińska AK, Vallès J, Garnatje T. 2013.
 Genome size and ploidy levels in highly fragmented habitats: the case of western Mediterranean

- 508 Juniperus (Cupressaceae) with special emphasis on J. thurifera L. Tree Genetics & Genomes 509 9(2): 587-599.
- Sax K, Sax HJ. 1933. Chromosome number and morphology in the conifers. *Journal of the Arnold Arboretum* 14(4): 356-375.
- 512 Segraves K, Thompson J, Soltis P, Soltis D. 1999. Multiple origins of polyploidy and the geographic
 513 structure of *Heuchera grossulariifolia*. *Molecular ecology* 8(2): 253-262.
- 514 Symonds VV, Soltis PS, Soltis DE. 2010. Dynamics of polyploid formation in *Tragopogon* (Asteraceae):
 515 recurrent formation, gene flow, and population structure. *Evolution: International Journal of* 516 Organic Evolution 64(7): 1984-2003.
- Tate JA, Symonds VV, Doust AN, Buggs RJ, Mavrodiev E, Majure LC, Soltis PS, Soltis DE. 2009.
 Synthetic polyploids of *Tragopogon miscellus* and *T. mirus* (Asteraceae): 60 Years after
 Ownbey's discovery. *American Journal of Botany* 96(5): 979-988.
- Tayalé A, Parisod C. 2013. Natural pathways to polyploidy in plants and consequences for genome reorganization. *Cytogenetic and genome research* 140(2-4): 79-96.
- Tikhonova NA, Polezhaeva MA, Pimenova EA. 2012. AFLP analysis of the genetic diversity of closely
 related rhododendron species of the section *rhodorastra* (Ericaceae) from Siberia and the Far East
 of Russia. *Russian Journal of Genetics* 48(10): 985-992.
- Vallès J, Garnatje T, Robin O, Siljak-Yakovlev S. 2015. Molecular cytogenetic studies in western
 Mediterranean *Juniperus* (Cupressaceae): a constant model of GC-rich chromosomal regions and
 rDNA loci with evidences for paleopolyploidy. *Tree Genetics & Genomes* 11(3): 1-8.
- 528 Vekemans X. 2002. AFLP-SURV 1.0: A program for genetic diversity analysis with AFLP (and RAPD)
 529 population data. http://www.ulb.ac.be/sciences/lagev/aflp-surv.html : Distributed by author.
 530 Laboratoire de Génétique et Ecologie Végétale, Universite´ Libre de Bruxelles, Belgium.
- 531 Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I. 2002. Data from amplified fragment length
 532 polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between
 533 degree of homoplasy and fragment size. *Molecular ecology* 11(1): 139-151.
- 534 Verlaque R, Médail F, Quézel P, Babinot J-F. 1997. Endémisme végétal et paléogéographie dans le
 535 bassin méditerranéen. *Geobios* 30: 159-166.
- Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sánchez G. J, Doebley J. 2008. Population
 structure and genetic diversity of New World maize races assessed by DNA microsatellites.
 American Journal of Botany 95(10): 1240-1253.
- Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J,
 Kuiper M. 1995. AFLP: a new technique for DNA fingerprinting. *Nucleic acids research* 23(21):
 4407-4414.

542

Discussion générale

Cette thèse est composée d'un ensemble d'approches explorant la polyploïdie chez le genre *Juniperus* L.. La polyploïdie considérée comme un processus majeur dans l'évolution des plantes (Van de Peer *et al.*, 2017; Clark & Donoghue, 2018), a été considérée comme très rare chez les gymnospermes et particulièrement chez les conifères. (Khoshoo, 1959; Ahuja, 2005; Husband *et al.*, 2013). Plusieurs de ces rares cas concernaient le genre *Juniperus* (Nagano *et al.*, 2007; Siljak-Yakovlev *et al.*, 2010; Romo *et al.*, 2013; Vallès *et al.*, 2015), ce qui a renforcé notre intérêt à ce genre. Afin de mieux cerner l'incidence de la polyploïdie dans ce genre, cette étude a été déclinée à différentes échelles; de l'échelle du genre jusqu'au niveau intra-spécifique et de la distribution mondiale jusqu'à la répartition locale.

La mesure de la taille du génome de presque tous les taxons de ce genre, fait ressortir *Juniperus* comme le genre qui détient le plus grand intervalle de taille du génome de tous les conifères (Min 21.81 pg/ 2C – Max 70.58 pg/ 2C) (Murray *et al.*, 2012). A l'instar de ce qu'on observe dans le genre *Pinus*, certains représentants du genre *Juniperus* possèdent des tailles de génome élevées (Murray *et al.*, 2012). Alors que les tailles de génome des espèces de *Pinus* étaient distribuées de manière continue et correspondaient toujours à des génomes diploïdes puisqu'elles sont liées aux séquences répétées (Bogunic *et al.*, 2003; Morse *et al.*, 2009; Kovach *et al.*, 2010), les tailles de génome des espèces de *Juniperus* ont été classées en trois groupes bien séparés, correspondants à trois niveaux de ploïdie: diploïdie, tétraploïdie et hexaploïdie. Ces résultats nous ont permis d'utiliser les estimations de la taille du génome comme un indicateur indirect du niveau de ploïdie trouvée dans tout le genre. En effet, 16 taxons étaient polyploides; 15 tétraploïdes et un hexaploïde. Pour ce dernier nous avons effectué dans le cadre de cette étude les premiers comptages chromosomiques (2n = 6x = 66). *Juniperus* détient donc le record de la plus grande fréquence de polyploïdie au sein des conifères. Ce record est partagé avec le genre *Ephedra* (Gnetales) chez les gymnospermes (Ickert-Bond *et al.*, 2015; Wu *et al.*, 2016).

De plus, après la reconstruction ancestrale de la taille du génome, au moins 10 événements de polyploïdisation indépendants ont été trouvés, soulignant l'importance de ce phénomène dans l'évolution de ce genre. Fait intéressant, tous les cas de polyploïdie détectés provenaient de la section *Sabina*, qui est la section la plus diversifiée du genre. En fait, la forte incidence de la polyploïdie dans cette section serait en partie à l'origine de sa grande diversité d'espèces (61 espèces) comparée à *Caryocedrus* (1 espèce) et *Juniperus* (13 espèces). En effet, la polyploïdie est considérée comme

moteur de la diversification et de la spéciation des plantes (Wood *et al.*, 2009; Clark & Donoghue, 2018). Wood *et al.* (2009) ont montré que 15% et 31% des événements de spéciation chez les angiospermes et les fougères respectivement, étaient accompagnés d'une augmentation du niveau de ploïdie.

La fréquence de polyploïdies dans notre étude pourrait être toutefois sous-estimées car, pour la majorité des taxons, nous n'avons étudié qu'une seule population. Etant donné que le changement de niveau de ploïdie entre différentes populations d'une même espèce n'est pas à exclure chez les genévriers, nous aurions pu facilement passer à côté de tels cas sans le noter et par la suite sous-estimer la fréquence de la polyploïdie.

Les genévriers ont une distribution géographique très vaste et sous des conditions environnementales diverses. Ils survivent parfois dans des environnements extrêmes où aucun autre conifère n'ose s'aventurer (Noble, 1990; McDowell *et al.*, 2008; Rawat & Everson, 2012; Kukowski *et al.*, 2013; Mathaux *et al.*, 2016). Cette grande diversité des habitats est observée tant au niveau des espèces qu'au niveau intra-spécifique (Adams, 2014).

Il existe une corrélation entre la polyploïdie et les conditions environnementales extrêmes. A titre d'exemple, les stress environnementaux semblent affecter la méiose chez les plantes conduisant à une augmentation de la production de gamètes non réduits; l'un des mécanismes les plus fréquents induisant la polyploïdie (Ramsey & Schemske, 1998; Otto & Whitton, 2000; Mason *et al.*, 2011; Sora *et al.*, 2016). Ceci infère une variation intra-spécifique du niveau de ploïdie (Keeler, 1998; Nagano *et al.*, 2007; Husband *et al.*, 2013). Des variations intra-spécifiques du niveau de ploïdie chez *Juniperus*, ont déjà été indiquées chez *J. chinensis* et *J. sabina* (Nagano *et al.*, 2007; Siljak-Yakovlev *et al.*, 2010; Vallès *et al.*, 2015). Alors que dans la littérature les deux cytotypes diploïde et tétraploïde sont reportés chez *J. chinensis* (Hall *et al.*, 1973; Nagano *et al.*, 2007), dans notre prospection effectuée sur tous le genre *Juniperus*, toutes les variétés examinées de *J. chinensis* étaient tétraploïdes avec une taille de génome de 47.98 \pm 1.5 pg/2C.

Dans le cas de *J. sabina*, une seule population a été évaluée dans le cadre de nos prospections sur la taille du génome de tout le genre. Il s'agit d'une population de *J. sabina* d'Azerbaïdjan. Cette population était diploïde avec une taille de génome 24.65 pg /2C alors que les données de la littérature sur le niveau de ploïdie de *J. sabina* ont montré deux population diploïdes en Espagne (Vallès *et al.*,

2015) et une population tétraploïde de la région des Balkans (Siljak-Yakovlev et al., 2010). Il est donc impossible de prédire comment la taille du génome et le niveau de ploïdie changent avec la distribution géographique. En effet, J. sabina est l'espèce la plus répandue géographiquement de la section Sabina (Adams, 2014). N'ayant pas davantage de données sur cette espèce, nous avons mené une étude exhaustive sur la taille du génome de 29 populations de J. sabina, représentant presque toute sa distribution géographique. Récemment, une capture de chloroplaste de J. thurifera a été découverte dans une variété de J. sabina, décrite sous le nom de J. sabina var. balkanensis (Adams et al., 2016). Les auteurs ont suggéré une ancienne hybridation entre les lignées ancestrales de ces deux espèces conduisant à cette variété (Adams et al., 2016). Plus récemment, la seule population déjà trouvée comme tétraploïde a été identifiée comme étant J. sabina var. balkanensis (Adams et al., 2018). Nous avons constaté que toutes les populations étudiées de J. sabina var. sabina étaient diploïdes avec une taille moyenne de génome (23.73 \pm 0.98 pg/ 2C) et toutes les populations étudiées de J. sabina var. *balkanensis* étaient tétraploïdes avec une taille moyenne du génome ($46.36 \pm 2.8 \text{ pg}/2\text{C}$). En prenant en considération l'interprétation de l'ancienne hybridation par Adams et al. (2016), cette variété a été analysée comme un allopolyploïde. Deux arguments pourraient s'opposer à l'interprétation de l'allopolyploïdie. Le premier est la répartition géographique actuelle de J. sabina var. balkanensis qui ne chevauche pas avec la distribution actuelle de J. thurifera (Adams, 2014). Cependant, J. thurifera est une espèce relique dont la distribution ancienne couvrait l'Eurasie (Terrab et al., 2008; Mao et al., 2010; Vallès et al., 2015), ce qui rend l'hybridation ancienne possible. Le deuxième argument qui s'oppose à l'hybridation ancienne suggéré par Adams et al. (2016), est que l'ADN nucléaire étudié (région ITS) de J. sabina var. balkanensis a montré une grande similitude avec J. sabina var. sabina. Pour expliquer l'homogénéisation de l'ADNrn de J. sabina var. balkanensis et sa grande similitude avec J. sabina var. sabina, Adams et al. (2016) a suggéré que des multiples rétrocroisements de J. sabina var. balkanensis avec le parent J. sabina var. sabina ont eu lieu. En se basant sur nos résultats AFLP, les analyses de STRUCTURE à K = 2 et K = 5 ont montré que *J. sabina* var. *sabina* et *J. sabina* var. balkanensis appartiennent au même groupe génétique. Des analyses plus fines de STRUCTURE incluant ces trois taxons doivent être réalisées en prenant en considération des possibilités plus élevées de K pouvant donner une résolution supérieure sur la composition du génome de J. sabina var. balkanensis.

A l'appui de ce qui vient d'être énoncé, la possibilité d'une hybridation récente entre *J. thurifera* et *J. sabina* a été explorée dans la forêt de Saint Crépin dans les Alpes françaises où ces deux espèces sont

en sympatrie. En effet, trois individus ayant des caractères morphologiques intermédiaires entre les deux espèces ont retenu l'attention des forestiers. Sur la base des ITS et de quatre marqueurs chloroplastiques, nous avons constaté que ces trois individus de morphologies intermédiaires étaient des hybrides avec J. thurifera comment parent paternel et J. sabina comme parent maternel. Nous avons également trouvé que ces individus étaient triploïdes et qu'ils avaient une taille de génome intermédiaire entre le diploïde J. sabina et le tétraploïde J. thurifera. Les triploïdes ont longtemps été considérés comme peu fertiles avec des difficultés de méioses (Giles, 1941; Tayalé & Parisod, 2013). Cependant, les triploïdes ne sont pas complètement stériles et pourraient produire des gamètes euploïdes viables (1x, 2x, 3x) (Ramsey & Schemske, 1998; Schinkel et al., 2017). Ce qui fut à notre avantage dans cette étude c'est que les trois hybrides identifiés (une femelle et deux mâles) ont dejà atteint leur maturité sexuelle (âge évalué à plus de 20 ans) (Baldoni et al., 2004; Montesinos et al., 2006). Pour ces individus, il existe deux façons de se reproduire: tout d'abord d'une façon asexuée, ce qui a été prouvé chez J. sabina (Ronnenberg, 2005; Wesche et al., 2005) ou de façon sexuée et ce, en produisant des gamètes viables. Il était intéressant d'évaluer la viabilité du pollen étudié. Cependant, dans cette étude, nous avons juste mesuré leurs diamètres faute de pollen frais requis pour la mesure de la taille du génome. Chez les hybrides mâles, nous avons constaté plusieurs anomalies, telles que des grains de pollens vides, ainsi que des graines de pollens normaux de tailles différentes pouvant atteindre 50 um. A ce même titre, nous avons également constaté que le tétraploïde J. thurifera produisait des graines de pollens plus gros que le diploïde J. sabina et que tous deux produisaient des graines de pollens plus gros que leur la normale mais à faible fréquence correspondant potentiellement à des gamètes non réduits. Cette possibilité de produire des gamètes non réduits dans ce genre serait probablement l'une des explications relative à la forte implication de la polyploïdie chez Juniperus. Cependant, pour être sûr de cette hypothèse, d'autres mesures de la taille du génome doivent être effectuées sur des graines de pollens. Cette découverte met en évidence l'importance de l'interaction de ces deux espèces. La plus grande question est quelle serait la prochaine étape?! Quel serait l'avenir de ces triploïdes?! l'extinction? ou des rétrocroisements avec un des parents ? Est-ce qu'ils resteront l'un des rares cas de triploïdie naturelle des conifères ou bien ils doubleront leur nombre chromosomique produisant des hexaploïdes ou ils feront comme J. sabina var. balkanensis et donneront des tétraploïdes? C'est pourquoi des études complémentaires sur la diversité génétique et les niveaux de ploïdie des genévriers dans l'ensemble de la forêt de Saint Crépin doivent être menées.

Les deux études présentées au chapitre III et chapitre IV concernant *J. sabina* var. *balkanensis* et les hybrides triploïdes de Saint Crépin respectivement, montrent que les deux espèces *J. sabina* et *J. thurifera* sont capable de s'hybrider et d'engendrer une descendance viable. Même si ces deux espèces possèdent des niveaux de ploïdie différents et qu'elles sont toutes les deux pas trop proches dans l'arbre phylogénétique des genévriers (dans le même grand clade mais dans deux sous-clades différents), les deux espèces s'hybrident entre elles (Adams, 2014). Précédemment, il a était constaté que plus les espèces sont génétiquement distantes plus l'hybride entre ces deux espèces subit un choc génomique plus important en raison de l'union de deux génomes bien différents, conduisant à des difficultés méiotiques de l'hybride (Hegarty *et al.*, 2006). Comme mentionné précédemment dans nos résultats d'AFLP, *J. thurifera* semble contenir deux groupes génétiques, peut-être due à une ancienne hybridation avec la lignée ancestrale de *J. sabina*. Cela pourrait être l'une des raisons du succès des hybrides entre ces deux espèces, car le choc génétique n'a peut-être pas été aussi puissant.

Selon les résultats de l'analyse AFLP, le seul hexaploïde, *J. foetidisima* appartient au cluster de *J. sabina, J. thurifera* et *J. chinensis* et semble partager un pool génétique commun avec *J. thurifera*. La parenté avec ce dernier a été déjà soulignée par Adams (2014) dans ses analyses basées sur les marqueurs nucléaires et chloroplastiques. Toutefois, dans l'arbre phylogénétique élaboré par Adams (2014), *J. foetidissima* fait partie du cluster de *J. excelsa, J. polycarpos* et ne correspond pas à ce que nous avons trouvé avec les AFLPs. Cela pourrait être lié à la supériorité de la résolution de la technique AFLP générant des marqueurs en masse hautement polymorphes et couvrant tout le génome, comparé aux séquences plus ou moins conservées telles que les régions ITS et régions chloroplastiques.

Nous avons également constaté, que les populations libanaises de *J. foetidissima* présentent un fond génétique homogène contrairement à la population Grecque qui présente deux groupes génétiques: le groupe majoritaire étant celui présent dans la population du Liban. Ce groupe est également partagé par *J. thurifera*. Ce dernier quant à lui est formé également de deux groupes le premier, celui qu'on vient de présenter comme partagé avec *J. foetidissima* alors que le deuxième groupe génétique est celui de *J. sabina*. Ceci suggère deux origines possibles de *J. foetidissima*. Cela n'était pas surprenant, la complexité d'origine polyploïde augmente avec le niveau de ploïdie c'était le cas par exemple de *Tragopogon miscellus* (Tate *et al.*, 2009; Symonds *et al.*, 2010; Chester *et al.*, 2012) et de *Heuchera grossulariifolia* Rydb. (Segraves *et al.*, 1999). Davantage d'études doivent être menées avec un échantillonnage plus large pour avoir plus de clarifications sur la diversité génétique et la composition

génétique de *J. foetidissima* sur l'ensemble de son aire de distribution géographique et en mettant davantage l'accent sur *J. sabina*, *J. thurifera* et *J. chinensis*.

Conclusion et perspective

Juniperus, le genre de tous les records! Un des genres les plus diversifiés parmi les conifères, un des genres couvrant une très large distribution à l'échelle du globe et un des genres dont les représentants poussent aux plus hautes altitudes. Voilà un autre record pour ce genre qui a montré la fréquence la plus élevée de polyploïdie chez les conifères.

La polyploïdie a été fortement sous-estimé dans ce genre. Après avoir mené la première étude exhaustive, *Juniperus* a présenté 15% de polyploïdie dont un hexaploide. « *Sequoia sempervirens* » est tombé de son piédestal. Un proverbe célèbre au Liban dit: "Sa chaussure est tombée de l'étagère"! Cela signifie que vous n'êtes plus le seul! En effet, *J. foetidissima* a rejoint *Sequoia sempervirens* pour symboliser le sommet des niveaux de ploïdie et du nombre de chromosomes chez les conifères. Les deux étant hexaploïdes et les deux semblent avoir des origines complexes. Les résultats AFLP ont montré que *J. foetidissima* semble avoir deux origines: une autopolyploïdie au Liban et une allopolyploïdie en Grèce. Cette même étude a révélé l'allopolyploïdie de *J. thurifera*, *J. chinensis* et *J. seravschanica* suggérant l'importance de l'hybridation et de la polyploïdie dans l'évolution de ce genre. Ces résultats restent toutefois à prendre avec précaution. Il faudra insister davantage sur les espèces présentes dans le même clade que *J. foetidissima* et incluant davantage des populations de cette espèce.

L'analyse cytogéographique de *J. sabina* a montré que plusieurs populations étaient tétraploïdes, au lieu d'une seule déjà signalée dans la région des Balkans. Les populations tétraploïdes sont localisées dans plusieurs régions des Balkans depuis la Croatie jusqu'en Grèce, ainsi qu'en Italie et en Turquie. Toutes ces populations tétraploïdes appartiennent à la variété récemment décrite, *J. sabina* var. *balkanensis* et toutes les populations diploïdes sont des représentants de *J. sabina* var. *sabina*. La variété *Juniperus sabina* var. *balkanensis* dont l'origine d'après Adams *et al.* (2016) est due à une ancienne hybridation entre les deux lignés ancestrales de *J. thurifera* et de *J. sabina*, serait fort probablement allopolyploïde.

En outre, nous avons démontré une hybridation récente entre *J. thurifera* et *J. sabina* qui sont présentes en sympatrie dans la forêt de Saint Crépin (Alpes de France). Ces hybrides triploïdes représentent un cas exceptionnellement rare à observer dans la nature. Cette découverte accroît la fiabilité de notre hypothèse innovatrice suggérée dans le deuxième chapitre où nous avons lié l'allopolyploïdie à la présence en sympatrique, relativement fréquente, des espèces de genévrier. Ceci pourrait expliquer la fréquence élevée de la polyploïdie dans ce genre. Nous avons également démontré en étudiant les diamètres des pollens, et en partant du principe qu'un gamète non réduit est plus gros qu'un gamète réduit, que la faculté de ces espèces à produire des gamètes non réduits observés à Saint Crépin serait également derrière les nombreux évènements de polyploïdisation dans ce genre. Cette dernière hypothèse reste à prouver par des études ultérieures de la taille du génome des graines des pollens et de leur viabilité.

Quant aux autres perspectives de ce travail, il serait intéressant d'élucider l'origine de chacun des taxons tétraploïdes trouvés dans le cadre de cette étude.

En ce qui concerne *Juniperus foetidissima*, il est intéressant d'étudier les réarrangements chromosomique suite à la polyploïdisation, en étudiant par exemple la localisation et le nombre de signaux des gènes ribosomiques 5S et 18S. L'estimation de la date d'émergence de *J. foetidissima* par rapport à d'autres espèces apparentées devrait également être estimée.

La diversité génétique de toutes les populations de *J. foetidissima* par AFLP ou par SSR ainsi que l'application de techniques plus avancées telles que les Radseq ou le séquençage du transcriptome seraient de mise afin d'obtenir d'informations supplémentaires sur son origine.

Concernant le tétraploïde *J. sabina* var. *balkanensis*, il sera très intéressant d'étudier les raisons derrière sa répartition géographique restreinte. Il s'agirait peut être d'une sous estimation de cette aire de répartition due à l'incapacité de discriminer *J. sabina* var. *balkanensis* et *J. sabina* var. *sabina* morphologiquement. Les outils moléculaires pourraient être dans ce cas un outil de choix pour délimiter l'aire de répartition de toutes les populations de ces deux taxons.

Nos investigations sur la forêt de Saint Crépin ne s'arrêtent pas là. A la lumière des introgressions importantes et de la triploïdie constatées, un dépistage complet de la diversité génétique de cette population devrait être effectué. Nous allons également essayer de tenter des actions de conservation sur ce site en raison de son importance en tant que laboratoire vivant générateur de diversité.

Des actions de conservation doivent également être entreprises pour *J. foetidissima* le seul hexaploïde de ce genre. Cette mesure de conservation devrait toutefois obligatoirement couvrir l'ensemble de son aire répartition vu la présence de différentes entités génétiques au sein de ce taxon comme ce que nous l'avons démontré entre les populations Grecques et Libanaises.

Au Liban les populations de *Juniperus foetidissima* sont en position marginale de leur aire de répartition représentant le « bord de fuite » par rapport à l'aire de distribution de l'espèce. Ils comprennent par conséquent un pool génétique important résilient aux changements climatiques.

Au Liban les trois espèces *J. foetidissima*, *J. excelsa* et *J. polycarpos* qui sont difficilement discernables selon des critères morphologiques sont considérés comme un seul taxon dans les cartographies forestières. Or la fréquence de chacun de ces 3 taxons n'est pas la même ce qui rend difficile la délimitation des aires de répartition de chacun et par la suite sous-estimer la fragmentation des populations des taxons les plus rares qui sont dans ce cas *J. foetidissima* et *J. polycarpos*. Cette fragmentation limite les flux de gènes et la dispersion des graines et menace à terme la survie de ces espèces. Une délimitation fine de ces trois espèces doit être effectuée comme première mesure en vue de leur conservation qui revêt un caractère capital et urgent. Les essences forestières connaissent des coupes intempestives malgré les restrictions législatives en vigueur.

Pour terminer sur une note de recherche fondamentale, *Juniperus* présente le genre idéal pour prospecter le lien entre la polyploïdie, l'adaptation et l'évolution.

Dans ce travail nous avons démontré que la polyploïdie est un moteur de la diversification du genre *Juniperus*. Mais nous n'avons pas eu le temps d'ouvrir le grand volet qui élucide le rôle de cette polyploïdie dans la grande adaptation des représentants de ce genre à diverses conditions environnementales extrêmes. La polyploïdie est-elle la raison derrière les records de *Juniperus*?

Références bibliographiques

- Adams RP. 2004. Junipers of The World: The Genus Juniperus. Vancouver, Victoria, BC, Canada: Trafford Publishing.
- Adams RP. 2008. Junipers of The World: The Genus Juniperus. Vancouver, Victoria, BC, Canada: Trafford Publishing.
- Adams RP. 2014. Junipers of the World: The genus Juniperus. Bloomington, Indiana, USA: Trafford Publishing.
- Adams RP, Boratynski A, Marcysiak K, Roma-Marzio F, Peruzzi L, Bartolucci F, Conti F, Mataraci T, Schwarzbach A. 2018. Discovery of *Juniperus sabina* var. *balkanensis* RP Adams and AN Tashev in Macedonia, Bosnia-Herzegovina, Croatia and Central and Southern Italy and relictual polymorphisms found in nrDNA. *Phytologia* 100(2): 117-127.
- Adams RP, Schwarzbach A, Tashev A. 2016. Chloroplast capture by a new variety, *Juniperus sabina* var. *balkanensis* RP Adams and AN Tashev, from the Balkan peninsula: A putative stabilized relictual hybrid between *J. sabina* and ancestral *J. thurifera. Phytologia* **98**(2): 100-111.
- Adams RP, Wingate D. 2008. Hybridization between *Juniperus bermudiana* and *J. virginiana* in Bermuda. *Phytologia* 90: 123-213.
- Adams RP. 2015. Allopatric hybridization and introgression between *Juniperus maritima* RP Adams and *J. scopulorum* Sarg. II. Additional Evidence from nuclear and cpDNA genes in Montana, Wyoming, Idaho and Utah. *Physiologia* 97(3): 187-199.
- Adams RP, Schwarzbach AE. 2006. A new variety of *Juniperus sabina* from Mongolia: *J. sabina* var. *mongolensis. Phytologia* 88: 179-185.
- Adams RP, Thornburg D, Corbet M. 2014. A survey of percent-filled and empty seeds in *Juniperus* of the western United States. *Phytologia* 96: 2-12.
- Ahuja MR. 2005. Polyploidy in Gymnosperms: Revisited. Silvae Genetica 54(2): 59-69.
- Ahuja MR, Neale DB. 2002. Origins of polyploidy in coast redwood (*Sequoia sempervirens* (D. Don) Endl.) and relationship of coast redwood to other genera of Taxodiaceae. *Silvae Genetica* **51**(2-3): 93-99.
- Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison J. 2017. Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. *Annals of botany* **120**(2): 183-194.
- Baldoni M, Biondi E, Ferrante L. 2004. Demographic and spatial analysis of a population of *Juniperus* oxycedrus L. in an abandoned grassland. *Plant Biosystems* 138(2): 89-100.
- Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA. 2016. On the relative abundance of autopolyploids and allopolyploids. *New phytologist* 210(2): 391-398.
- Bennett MD. 2004. Perspectives on polyploidy in plants–ancient and neo. *Biological Journal of the Linnean Society* 82(4): 411-423.
- Bicknell RA, Koltunow AM. 2004. Understanding apomixis: recent advances and remaining conundrums. *The Plant Cell* 16: 228-245.
- Blanc G, Wolfe KH. 2004. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. *The Plant Cell* **16**(7): 1667-1678.
- **Bogunic F, Muratovic E, Brown S, Siljak-Yakovlev S. 2003.** Genome size and base composition of five *Pinus* species from the Balkan region. *Plant Cell Reports* **22**(1): 59-63.
- Bou Dagher-Kharrat M, Abdel-Samad N, Douaihy B, Bourge M, Fridlender A, Siljak-Yakovlev S, Brown S. 2013. Nuclear DNA C-values for biodiversity screening: case of the Lebanese flora. *Plant Biosystems* 147(4): 1228-1237.

- Chao Y-S, Liu H-Y, Chiang Y-C, Chiou W-L. 2012. Polyploidy and speciation in *Pteris* (Pteridaceae). *Journal of Botany* 2012: 1-7.
- Chen ZJ. 2007. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. *Annual Review of Plant Biology* 58: 377-406.
- Chester M, Gallagher JP, Symonds VV, da Silva AVC, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE. 2012. Extensive chromosomal variation in a recently formed natural allopolyploid species, *Tragopogon miscellus* (Asteraceae). *Proceedings of the National Academy of Sciences* 109(4): 1176-1181.
- Christenhusz MJ, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW. 2011. A new classification and linear sequence of extant gymnosperms. *Phytotaxa* 19(1): 55-70.
- Clark JW, Donoghue PC. 2018. Whole-genome duplication and plant macroevolution. *Trends in plant science* 23(10): 933-945.
- Comai L. 2005. The advantages and disadvantages of being polyploid. *Nature reviews genetics* 6(11): 836-846.
- Comber SCL, Smith C. 2004. Polyploidy in fishes: patterns and processes. *Biological Journal of the Linnean Society* 82(4): 431-442.
- Díez-Garretas B, Asensi A. 2014. The coastal plant communities of *Juniperus macrocarpa* in the Mediterranean region. *Plant Biosystems* 148(3): 429-438.
- **Dodsworth S, Chase MW, Leitch A. 2015.** Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? *Botanical Journal of the Linnean Society* **180**(1): 1-5.
- Douaihy B, Restoux G, Machon N, Dagher-Karrat M. 2013. Ecological characterization of the *Juniperus* excelsa stands in Lebanon. *Ecologia Mediterranea* **39**(1): 169-180.
- **Douaihy B, Vendramin GG, Boratynski A, Machon N, Bou Dagher-Kharrat M. 2011.** High genetic diversity with moderate differentiation in *Juniperus excelsa* from Lebanon and the East Mediterranean Region. *AOB Plants* **2011**: 1-14.
- Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G, Platts AE, Heckel DG, Der JP, Wafula EK, Tang M, et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. *Proceedings of the National Academy of Sciences* 112(27): 8362-8366.
- Ehrendorfer F 1980. Polyploidy and Distribution. In: Lewis WH ed. *Polyploidy: Biological Relevance*. Boston, MA: Springer US, 45-60.
- Ehsani E, Akbari K, Teimouri M, Khadem A. 2012. Chemical composition and antibacterial activity of two *Juniperus* species essential oils. *African Journal of Microbiology Research* **6**(38): 6704-6710.
- Emami S, Asgary S, Naderi G, Ardekani M, Kasher T, Aslani S, Airin A, Sahebkar A. 2011. Antioxidant activities of *Juniperus foetidissima* essential oils against several oxidative systems. *Revista Brasileira de Farmacognosia* 21(4): 627-634.
- Eric Schranz M, Mohammadin S, Edger PP. 2012. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. *Current opinion in plant biology* **15**(2): 147-153.
- Evans GE, Rasmussen HP. 1971. Chromosome Counts in Three Cultivars of *Juniperus* L. *Botanical Gazette* 132(4): 259-262.
- Farjon A. 2010. A Handbook of the World's Conifers (2 vols.). Leiden, Boston, USA: Brill Academic Publishers.
- Farjon A 2013a. Juniperus comitana. The IUCN Red List of Threatened Species 2013: e.T32500A2820912. http://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T32500A2820912.en. [accessed 20 May 2011].
- Farjon A 2013b. Juniperus foetidissima. The IUCN Red List of Threatened Species 2013: e.T42234A2965043. http://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T42234A2965043.en. [accessed 19 July 2011].

- Fauth C, Speicher M. 2001. Classifying by colors: FISH-based genome analysis. *Cytogenetic Genome Research* 93(1-2): 1-10.
- García D, Zamora R, Gómez JM, Jordano P, Hódar JA. 2000. Geographical variation in seed production, predation and abortion in *Juniperus communis* throughout its range in Europe. *Journal of Ecology* 88(3): 435-446.
- Gauquelin T, Idrissi Hassani M, Lebreton P. 1988. Le Genévrier thurifère, *Juniperus thurifera* L. (Cupressacées): analyse biométrique et biochimique; propositions systématiques. *Ecol. Mediterr* 14: 31-42.
- Giles N. 1941. Spontaneous chromosome aberrations in triploid *Tradescantia* hybrids. *Genetics* 26(6): 632-649.
- Goldman MA, LoVerde PT, Chrisman CL. 1983. Hybrid origin of polyploidy in freshwater snails of the genus *Bulinus* (Mollusca: Planorbidae). *Evolution* 37(3): 592-600.
- Goulet BE, Roda F, Hopkins R. 2017. Hybridization in plants: old ideas, new techniques. *Plant physiology* **173**(1): 65-78.
- Greer D, Pfahl L, Rieck J, Daniels T, Garza O. 2008. Comparison of a novel distillation method versus a traditional distillation method in a model gin system using liquid/liquid extraction. *Journal of Agricultural food chemistry* 56(19): 9030-9036.
- **Gregory T, Mable BK. 2005.** CHAPTER 8 Polyploidy in Animals. In: Gregory TR ed. *The Evolution of the Genome*. Burlington: Academic Press, 427-517.
- Hair J. 1968. The chromosomes of the Cupressaceae: 1. Tetraclineae and Actinostrobeae (Callitroideae). *New Zealand Journal of Botany* 6(3): 277-284.
- Hall MT, Mukherjee A, Crowley WR. 1973. Chromosome counts in cultivated junipers. *Journal of the Arnold Arboretum* 54(3): 369-376.
- Hammi S, Simonneaux V, Cordier JB, Genin D, Alifriqui M, Montes N, Auclair L, Management. 2010. Can traditional forest management buffer forest depletion? Dynamics of Moroccan High Atlas Mountain forests using remote sensing and vegetation analysis. *Forest Ecology* 260(10): 1861-1872.
- Harrison TM, Copeland P, Kidd W, Yin A. 1992. Raising tibet. Science 255(5052): 1663-1670.
- Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ. 2006. Transcriptome shock after interspecific hybridization in *Senecio* is ameliorated by genome duplication. *Current biology* **16**(16): 1652-1659.
- Hegarty MJ, Hiscock SJ. 2008. Genomic clues to the evolutionary success of polyploid plants. *Current biology* **18**(10): 435-444.
- Herben T, Suda J, Klimešová J. 2017. Polyploid species rely on vegetative reproduction more than diploids: a re-examination of the old hypothesis. *Annals of botany* **120**(2): 341-349.
- Holthuijzen AM, Sharik TL. 1985. The avian seed dispersal system of eastern red cedar (*Juniperus virginiana*). *Canadian Journal of Botany* 63(9): 1508-1515.
- Houle G, Babeux P. 1994. Variations in rooting ability of cuttings and in seed characteristics of five populations of *Juniperus communis* var. *depressa* from subarctic Quebec. *Canadian Journal of Botany* 72(4): 493-498.
- Husband BC. 2004. The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. 82(4): 537-546.
- Husband BC, Baldwin SJ, Suda J 2013. The Incidence of Polyploidy in Natural Plant Populations: Major Patterns and Evolutionary Processes. In: Greilhuber J, Dolezel J, Wendel JF eds. *Plant Genome Diversity Volume 2: Physical Structure, Behaviour and Evolution of Plant Genomes*. Vienna: Springer Vienna, 255-276.

- Ickert-Bond S, Pellicer J, Souza A, Metzgar J, Leitch I 2015. *Ephedra*-the gymnosperm genus with the largest and most diverse genome sizes driven by a high frequency of recently derived polyploidy taxa and a lack of genome downsizing. *Annual Meeting of the Botanical Society of America, Botany 2015, Abstract ID*. Alberta, Canada
- Jain AK, Singh D, Dubey K, Maurya R, Pandey AK 2018. Chapter Four Chromosomal Aberrations. In: Kumar A, Dobrovolsky VN, Dhawan A, Shanker R eds. *Mutagenicity: Assays and Applications*: Academic Press, 69-92.
- Jensen H, Levan A. 1941. Colchicine-induced tetraploidy in Sequoia gigantea. Hereditas 27(3-4): 220-224.
- Jones PS. 1991. Restoration of Juniperus excelsa Bieb. and Olea europaea L. subsp. africana (Mill.) PS Green woodlands in Eritrea. PhD thesis, Doctor of Philosophy, University of Stirling, Scotland, UK.
- **Kapraun DF. 2005.** Nuclear DNA content estimates in multicellular green, red and brown algae: phylogenetic considerations. *Annals of botany* **95**(1): 7-44.
- **Kapraun DF. 2007.** Nuclear DNA content estimates in green algal lineages: Chlorophyta and Streptophyta. *Annals of botany* **99**(4): 677-701.
- Karasz I. 1996. The root system of *Juniperus communis* L. in a sandy soil in Central Hungary. Acta phytogeographica Suecica 81: 32-34.
- Keeler KH. 1998. Population biology of intraspecific polyploidy in grasses. In: Cheplick G, ed. *Population Biology of Grasses*. Cambridge, UK: Cambridge University Press, 183-206.
- Keeling PJ. 2004. Diversity and evolutionary history of plastids and their hosts. *American Journal of Botany* 91(10): 1481-1493.
- Khan M, Khan A-u, Rehman, ur-N, Gilani A-H. 2012. Pharmacological explanation for the medicinal use of *Juniperus excelsa* in hyperactive gastrointestinal and respiratory disorders. *Journal of natural medicines* 66(2): 292-301.
- Khandekar S, Dive A, Munde P. 2013. Chromosomal abnormalities-a review. *Central India Journal of Dental Sciences* **4**(1): 35-40.
- Khoshoo T. 1959. Polyploidy in gymnosperms. Evolution 13(1): 24-39.
- Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, Loopstra CA, Hartigan J, Yandell M, Langley CH, Korf I. 2010. The *Pinus taeda* genome is characterized by diverse and highly diverged repetitive sequences. *BMC genomics* 11(1): 1-14.
- Krämer S, Miller P, Eddleman L. 1996. Root system morphology and development of seedling and juvenile *Juniperus occidentalis. Forest Ecology Management* 86(1-3): 229-240.
- Kukowski KR, Schwinning S, Schwartz BF. 2013. Hydraulic responses to extreme drought conditions in three co-dominant tree species in shallow soil over bedrock. *Oecologia* 171(4): 819-830.
- Kvaček Z. 2002. A new juniper from the Palaeogene of Central Europe. Feddes Repertorium 113(7-8): 492-502.
- Li Z, Baniaga A, Sessa E, Scascitelli M, Graham S, Rieseberg L, Barker M. 2015. Early genome duplications in conifers and other seed plants. *Science Advances* 1(10): e1501084.
- Lieberman BS. 2003. Paleobiogeography: the relevance of fossils to biogeography. *Annual Review of Ecology, Evolution, Systematics* 34(1): 51-69.
- Little DP. 2006. Evolution and circumscription of the true cypresses (Cupressaceae: *Cupressus*). *Systematic Botany* 31(3): 461-480.
- Lokki J, Saura A. 1980. Polyploidy in Insect Evolution. In: Lewis WH ed. *Polyploidy: Biological Relevance*. Boston, MA: Springer US, 277-312.
- Luebke NT, Budke JM. 2003. Isoëtes tennesseensis (Isoëtaceae), an octoploid quillwort from Tennessee. American Fern Journal 93(4): 184-190.

- Mable B. 2004. 'Why polyploidy is rarer in animals than in plants': myths and mechanisms. *Biological Journal of the Linnean Society* 82(4): 453-466.
- Madlung A. 2013. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. *Heredity* 110(2): 99-104.
- Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA. 2010. Fast diploidization in close mesopolyploid relatives of *Arabidopsis*. *The Plant Cell* 22: 2277–2290.
- Mandáková T, Lysak MA. 2018. Post-polyploid diploidization and diversification through dysploid changes. *Current opinion in plant biology* **42**: 55-65.
- Mao K, Hao G, Liu J, Adams R, Milne R. 2010. Diversification and biogeography of *Juniperus* (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. *New phytologist* 188(1): 254-272.
- Mason AS, Nelson MN, Yan G, Cowling WA. 2011. Production of viable male unreduced gametes in *Brassica* interspecific hybrids is genotype specific and stimulated by cold temperatures. *BMC plant biology* **11**(1): 103.
- Masterson J. 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. *Science* 264(5157): 421-424.
- Mathaux C, Mandin J-P, Oberlin C, Edouard J-L, Gauquelin T, Guibal F. 2016. Ancient juniper trees growing on cliffs: toward a long Mediterranean tree-ring chronology. *Dendrochronologia* 37: 79-88.
- Mazur M, Klajbor K, Kielich M, Sowinska M, Romo A, Montserrat JM, Boratynski A. 2010. Intra-specific differentiation of *Juniperus phoenicea* in the western Mediterranean region revealed in morphological multivariate analysis. *Dendrobiology* **63**: 21-31.
- McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? *New phytologist* **178**(4): 719-739.
- Moein M, Ghasemi Y, Moein S, Nejati M. 2010. Analysis of antimicrobial, antifungal and antioxidant activities of *Juniperus excelsa* M. B subsp. *Polycarpos* (K. Koch) Takhtajan essential oil. *Pharmacognosy research* 2(3): 128-131.
- Montesinos D, Raventós J, De Luís M, Verdú M, García-Fayos P. 2006. When, How and How Much: Gender-specific Resource-use Strategies in the Dioecious Tree Juniperus thurifera. Annals of botany 98(4): 885-889.
- Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, Kubisiak TL, Amerson HV, Carlson JE, Nelson CD, et al. 2009. Evolution of Genome Size and Complexity in *Pinus*. *PloS one* 4(2): 1-11.
- Murray B, Leitch I, Bennett M 2012. Gymnosperm DNA C-values database. <u>http://www.kew.org/cvalues/</u>. [assessed 5.0, December 2012].
- Nagano K, Matoba H, Yonemura K, Matsuda Y, Murata T, Hoshi Y. 2007. Karyotype analysis of three *Juniperus* species using fluorescence in situ hybridization (FISH) with two ribosomal RNA genes. *Cytologia* 72(1): 37-42.
- Nakel T, Tekleyohans DG, Mao Y, Fuchert G, Vo D, Grob-Hardt R. 2017. Triparental plants provide direct evidence for polyspermy induced polyploidy. *Nature communications* 8: 1-8.
- Noble DL. 1990. Juniperus scopulorum Sarg. Rocky Mountain juniper. Silvics of North America 1: 116-126.
- **Oswald BP, Nuismer SL. 2011.** Neopolyploidy and diversification in *Heuchera grossulariifolia*. *Evolution: International Journal of Organic Evolution* **65**(6): 1667-1679.
- Otto SP. 2007. The evolutionary consequences of polyploidy. *Cell* 131(3): 452-462.

Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annual review of genetics 34(1): 401-437.

- Palma-Otal M, Moore W, Adams R, Joswiak G. 1983. Morphological, chemical, and biogeographical analyses of a hybrid zone involving *Juniperus virginiana* and *J. horizontalis* in Wisconsin. *Canadian Journal of Botany* 61(10): 2733-2746.
- Parada M, Carrió E, Vallès J. 2011. Ethnobotany of food plants in the Alt Emporda region (Catalonia, Iberian Peninsula). *Journal of Applied Botany and Food Quality* 84(1): 11-25.
- Perez-Latorre A, Cabezudo B. 2009. Gimnospermas. in Blanca G. et al., eds. *Flora Vascular De Andalucía Oriental. Volumen 1.* Sevilla, España: Consejería de Medio Ambiente, Junta de Andalucía, 77-88.
- Pinna MS, Cañadas EM, Fenu G, Bacchetta G. 2015. The European *Juniperus* habitat in the Sardinian coastal dunes: Implication for conservation. *Estuarine, Coastal and Shelf Science* 164: 214-220.
- Rai HS, Reeves PA, Peakall R, Olmstead RG, Graham SW. 2008. Inference of higher-order conifer relationships from a multi-locus plastid data set. *Botany* 86(7): 658-669.
- **Ramsey J, Schemske DW. 1998.** Pathways, mechanisms, and rates of polyploid formation in flowering plants. *Annual Review of Ecology and Systematics* **29**(1): 467-501.
- Randolph L. 1932. Some effects of high temperature on polyploidy and other variations in maize. *Proceedings* of the National Academy of Sciences of the United States of America 18(3): 222-229.
- Ranney TG. 2006. Polyploidy: From evolution to new plant development. *Combined Proceedings International Plant Propagators' Society* 56: 137-142.
- Rawat YS, Everson CS. 2012. Ecological status and uses of juniper species in the cold desert environment of the Lahaul valley, North-western Himalaya, India. *Journal of Mountain Science* 9(5): 676-686.
- Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I. 2015. The Chromosome Counts Database (CCDB)–a community resource of plant chromosome numbers. *New phytologist* 206(1): 19-26.
- Roberto Gonzalez Torres L, Adams R, Gardner M. 2013. Juniperus saxicola. The IUCN Red List of Threatened Species 2013: e.T31618A2806956. http://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T31618A2806956.en. [accessed 15 October 2010].
- Rojo J, Díaz P-E. 2006. Juniperus x palancianus, nuevo híbrido de la provincia de castellón. Toll Negre 8: 5-8.
- **Rojo J, Díaz P-E. 2009.** Juniperus x cerropastorensis, nuevo híbrido entre Juniperus sabina L. Y Juniperus thurifera L. Toll Negre **11**: 6-13.
- **Rojo J, Uribe-Echebarría P. 2008.** *Juniperus x herragudensis*, otro nuevo híbrido de la provincia de Castellón. *Mainhardt* **60**: 83-85.
- Romo A, Hidalgo O, Boratyński A, Sobierajska K, Jasińska AK, Vallès J, Garnatje T. 2013. Genome size and ploidy levels in highly fragmented habitats: the case of western Mediterranean *Juniperus* (Cupressaceae) with special emphasis on *J. thurifera* L. *Tree Genetics* & *Genomes* 9(2): 587-599.
- Ronnenberg K. 2005. Reproductive Ecology of Two Common Woody Species, Juniperus sabina and Artemisia santolinifolia, in Mountain Steppes of Southern Mongolia. Erforschung biologischer Ressourcen der Mongolei (Halle/Saale) 9: 207–223.
- Rumble MA, Gobeille JE. 1995. Wildlife associations in Rocky Mountain juniper in the Northern Great Plains, South Dakota. In Douglas WS, Aldon EF, Losapio C, eds. *Desired future conditions for piñon-juniper* ecosystems. General Technical Report RM-258. Flagstaff, Arizona, U.S, Department of Agriculture, 80-90.
- Sadeghi-aliabadi H, Emami A, Saidi M, Sadeghi B, Jafarian A. 2010. Evaluation of in vitro cytotoxic effects of *Juniperus foetidissima* and *Juniperus sabina* extracts against a panel of cancer cells. *Iranian Journal* of Pharmaceutical Research 8: 281-286.

- Santos T, Tellería JL, Virgós E. 1999. Dispersal of Spanish juniper *Juniperus thurifera* by birds and mammals in a fragmented landscape. *Ecography* 22(2): 193-204.
- Sax K, Sax HJ. 1933. Chromosome number and morphology in the conifers. *Journal of the Arnold Arboretum* 14(4): 356-375.
- Schinkel CC, Kirchheimer B, Dullinger S, Geelen D, De Storme N, Hörandl E. 2017. Pathways to polyploidy: indications of a female triploid bridge in the alpine species *Ranunculus kuepferi* (Ranunculaceae). *Plant Systematics and Evolution* 303(8): 1093-1108.
- Schranz M, Osborn T. 2000. Novel flowering time variation in the resynthesized polyploid *Brassica napus*. *Journal of Heredity* 91(3): 242-246.
- Scott AD, Stenz NW, Ingvarsson PK, Baum DA. 2016. Whole genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers. New phytologist 211(1): 186-193.
- Segraves K, Thompson J, Soltis P, Soltis D. 1999. Multiple origins of polyploidy and the geographic structure of *Heuchera grossulariifolia*. *Molecular ecology* **8**(2): 253-262.
- Segraves KA, Anneberg TJ. 2016. Species interactions and plant polyploidy. *American Journal of Botany* 103(7): 1326-1335.
- Siljak-Yakovlev S, Pustahija F, Šolić E, Bogunić F, Muratović E, Bašić N, Catrice O, Brown S. 2010. Towards a genome size and chromosome number database of Balkan flora: C-values in 343 taxa with novel values for 242. Advanced Science Letters **3**(2): 190-213.
- Silvestro D, Zizka A, Bacon CD, Cascales-Minana B, Salamin N, Antonelli A. 2016. Fossil biogeography: a new model to infer dispersal, extinction and sampling from palaeontological data. *Philosophical Transactions of the Royal Society B* 371(1691): 20150225.
- Soltis DE, Soltis PS, Tate JA. 2004. Advances in the study of polyploidy since plant speciation. *New phytologist* 161(1): 173-191.
- Soltis PS, Soltis DE. 2009. The role of hybridization in plant speciation. *Annual Review of Plant Biology* 60: 561-588.
- Sora D, Kron P, Husband B. 2016. Genetic and environmental determinants of unreduced gamete production in *Brassica napus, Sinapis arvensis* and their hybrids. *Heredity* 117(6): 440-448.
- Spicer RA, Harris NB, Widdowson M, Herman AB, Guo S, Valdes PJ, Wolfe JA, Kelley SP. 2003. Constant elevation of southern Tibet over the past 15 million years. *Nature* **421**(6923): 622-624.
- Stebbins G. 1947. Types of polyploids: their classification and significance. Advances in Genetics 1: 403-429.
- **Stebbins JGL. 1938.** Cytological characteristics associated with the different growth habits in the dicotyledons. *American Journal of Botany* **25**(3): 189-198.
- Symonds VV, Soltis PS, Soltis DE. 2010. Dynamics of polyploid formation in *Tragopogon* (Asteraceae): recurrent formation, gene flow, and population structure. *Evolution: International Journal of Organic Evolution* 64(7): 1984-2003.
- Tate JA, Symonds VV, Doust AN, Buggs RJ, Mavrodiev E, Majure LC, Soltis PS, Soltis DE. 2009. Synthetic polyploids of *Tragopogon miscellus* and *T. mirus* (Asteraceae): 60 Years after Ownbey's discovery. *American Journal of Botany* **96**(5): 979-988.
- Tavankar F. 2015. Structure of natural Juniperus excelsa stands in Northwest of Iran. *Biodiversitas Journal of Biological Diversity* 16(2): 161-167.
- Tayalé A, Parisod C. 2013. Natural pathways to polyploidy in plants and consequences for genome reorganization. *Cytogenetic and genome research* 140(2-4): 79-96.

- Tayoub G, Odeh A, Ghanem I. 2012. Chemical composition and efficacy of essential oil from Juniperus foetidissima willd against the Khapra beetle. International Journal of Medicinal and Aromatic Plants 2(3): 501-508.
- Teixeira H, Rodríguez-Echeverría S, Nabais C. 2015. Correction: genetic diversity and differentiation of *Juniperus thurifera* in Spain and Morocco as determined by SSR. *PLoS ONE* 10(5): e0126042.
- **Terrab A, Schönswetter P, Talavera S, Vela E, Stuessy TF. 2008.** Range-wide phylogeography of *Juniperus thurifera* L., a presumptive keystone species of western Mediterranean vegetation during cold stages of the Pleistocene. *Molecular Phylogenetics Evolution* **48**(1): 94-102.
- Terry RG, Nowak RS, Tausch RJ. 2000. Genetic variation in chloroplast and nuclear ribosomal DNA in Utah juniper (*Juniperus osteosperma*, Cupressaceae): evidence for interspecific gene flow. *American Journal of Botany* 87(2): 250-258.
- Toda E, Okamoto T. 2016. Formation of triploid plants via possible polyspermy. *Plant signaling behavior* 11(9): e1218107.
- **Troìa A. 2001.** The genus *Isoëtes* L.(Lycophyta, Isoëtaceae): synthesis of karyological data. *Webbia* **56**(1): 201-218.
- Vallès J, Garnatje T, Robin O, Siljak-Yakovlev S. 2015. Molecular cytogenetic studies in western Mediterranean Juniperus (Cupressaceae): a constant model of GC-rich chromosomal regions and rDNA loci with evidences for paleopolyploidy. Tree Genetics & Genomes 11(3): 1-8.
- Vallès J, D'Ambrosio U, Gras A, Parada M, Rigat M, Serrasolses G, Garnatje T. 2017. Medicinal and food plants in ethnobotany and ethnopharmacology: Folk functional foods in Catalonia (Iberian Peninsula). In: Torrero MD, Riu M and Feliu C, eds. *Recent Advances in Pharmaceutical Sciences VII*. Kerala, India: Research Signpost Trivandrum, 1-17.
- Van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. *Nature Reviews Genetics* 18(7): 1-14.
- Vasek FC. 1966. The distribution and taxonomy of three western junipers. *Brittonia* 18(4): 350-372.
- Waldeyer W. 1888. Über Karyokinese und ihre Beziehungen zu den Befruchtungsvorgängen. Archiv für mikroskopische Anatomie 32(1): 1-122.
- Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F. 2011. The genome of the mesopolyploid crop species *Brassica rapa*. *Nature genetics* **43**(10): 1-6.
- Wendel J, Lisch D, Hu G, Mason A. 2018. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. *Current opinion in genetics & development* **49**: 1-7.
- Wertheim B, Beukeboom L, Van de Zande L. 2013. Polyploidy in animals: effects of gene expression on sex determination, evolution and ecology. *Cytogenetic Genome Research* 140: 256-269.
- Wesche K, Ronnenberg K, Hensen I. 2005. Lack of sexual reproduction within mountain steppe populations of the clonal shrub *Juniperus sabina* L. in semi-arid southern Mongolia. *Journal of Arid Environments* 63(2): 390-405.
- Willson CJ, Manos PS, Jackson RB. 2008. Hydraulic traits are influenced by phylogenetic history in the drought-resistant, invasive genus *Juniperus* (Cupressaceae). *American Journal of Botany* **95**(3): 299-314.
- Wingate DB, Adams R, Gardner M. 2011. Juniperus bermudiana. The IUCN Red List of Threatened Species 2011: e.T30376A9532928. http://dx.doi.org/10.2305/IUCN.UK.2011-.RLTS.T30376A9532928.en. [accessed 5 August 2010].
- Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. *Proceedings of the National Academy of Sciences* **106**(33): 13875-13879.

- Wu H, Ma Z, Wang MM, Qin A-L, Ran JH, Wang XQ. 2016. A high frequency of allopolyploid speciation in the gymnospermous genus *Ephedra* and its possible association with some biological and ecological features. *Molecular ecology* 25(5): 1192-1210.
- Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. *Science* 292(5517): 686-693.

Titre : Exploration génétique de la polyploïdie du genre Juniperus (Cupressaceae)

Mots clés : conifères, diversité génétique, taille du génome, hybridation interspécifique, *Juniperus*, évolution des plantes, polyploïdie

Résumé : La polyploïdie est un processus important et un moteur de la diversification et de l'évolution des plantes. Peu de polyploïdes naturels ont été décrits chez Juniperus, un genre de conifère représenté par 75 espèces d'arbres ou arbustes à feuilles persistantes, largement réparties dans l'hémisphère nord. Dans ce travail de recherche, l'implication de la polyploïdie dans l'évolution de Juniperus et l'élucidation des mécanismes sous-jacents à ces événements de polyploïdisation sont explorées.

La taille du génome (TG) et le niveau de ploïdie ont été évalués chez 111/115 taxons en utilisant la cytométrie en flux et les comptages chromosomiques. Le taux de polyploïdie chez les genévriers s'est avéré être exceptionnellement élevé : 15 taxons sont des tétraploïdes et un seul taxon (J. foetidissima) est hexaploïde. Juniperus foetidissima représente le seul conifère hexaploïde découvert à ce jour à part Sequoia sempervirens. Nous avons utilisé également des approches de modélisation phylogénétique pour déterminer la TG ancestrale dans les trois clades de Juniperus et pour reconstruire le processus évolutif de la polyploïdisation chez ce genre. Au moins 10 événements de polyploïdisation ont eu lieu au cours de l'évolution et de la diversification de Juniperus.

Nous avons ensuite exploré l'origine de la polyploïdie chez certaines espèces méditerranéennes. La variation de la TG et le niveau de ploïdie de deux variétés de *J. sabina* ont été estimés : Les populations échantillonnées de *J. sabina* var. *sabina* se sont avérées être diploïdes, tandis que les populations de *J. sabina* var. *balkanensis* étaient toutes tétraploïdes.

Ces derniers auraient été issus d'une ancienne hybridation entre le tétraploïde *J. thurifera* et le diploïde *J. sabina*.

Dans les Alpes françaises, où *J. sabina* var. *sabina* et *J. thurifera* sont en sympatrie, des individus présentant des morphologies intermédiaires entre ces deux espèces sont observés. Suite à des estimations des TG, de séquençage des ITS et de régions chloroplastiques, ces individus sont considérés comme des hybrides triploïdes.

Enfin, l'utilisation des marqueurs AFLP déchiffrer pour les relations phylogénétiques entre des espèces méditerranéenne a montré que plusieurs pools génétiques contribuent à la diversité de Juniperus. Aussi ces marqueurs ont contribué à la découverte des contributions de ces pools génétiques aux taxons polyploïdes. Alors que les populations libanaises de l'hexaploïde J. foetidissima sont issues d'une lignée ancestrale unique. la population grecque semble résulter d'un mélange inégal de deux lignées anciennes. Ces deux lignées contribuent également au tétraploïde J. thurifera. Cette analyse a également montré que l'espèce méditerranéenne J. excelsa et l'espèce africaine J. procera partagent la même lignée ancestrale. Cependant, des analyses supplémentaires sont nécessaires pour une interprétation plus complète des données.

de l'hybridation L'importance interspécifique et de la polyploïdie dans l'évolution des espèces de Juniperus nécessite d'amples recherches visant à comprendre le lien entre ces mécanismes et l'adaptation de ces espèces à un large spectre d'habitats extrêmes. Ces recherches futures devraient aussi contribuer à découvrir comment les espèces de conifères peuvent s'adapter aux changements climatiques.

UNIVERSITE PARIS-SACLAY

Title : Genetic exploration of polyploidy in the genus *Juniperus* (Cupressaceae)

Keywords : conifer, genetic diversity, genome size, interspecific hybridization, *Juniperus*, plant evolution, polyploidy

Abstract : Polyploidy is considered as an important phenomenon and a key driving diversification force for plant and evolution. Few natural polyploid species have been described in Juniperus, a coniferous genus represented by 75 species of evergreen trees or shrubs widely distributed in the North Hemisphere. The occurrence of polyploidy in the evolution of this genus as well as a more comprehensive view of pathways that were involved in these polyploidization events are explored in this research work.

Genome size (GS) and ploidy level assessments were conducted on 111/115 taxa using flow-cytometry and chromosome counts. Juniperus holds an exceptionally high rate of polyploidy, 15 taxa being tetraploids and just one (J.foetidissima) being hexaploid. It represents the only hexaploid conifer discovered to date after Sequoia sempervirens. We also phylogenetically-informed used trait evolution modelling approaches to determine ancestral GS in the three clades of Juniperus and to reconstruct the evolutionary process of polyploidization in Juniperus. At least 10 polyploidization events have occurred during Juniperus evolution and diversification.

We then explored the origin of polyploidy in selected Mediterranean species. The GS variation and the ploidy level of two *J*. *sabina* varieties were estimated: *J. sabina* var. *sabina* sampled populations were shown to be diploid, while *J. sabina* var. *balkanensis* populations were all tetraploid. The latter has been postulated to have arisen from an ancient hybridization between the tetraploid *J. thurifera* and the

diploid *J. sabina*. In the French Alps, where *J. sabina* var. *sabina* and *J. thurifera* occur in sympatry, individuals with intermediate morphologies between these two species are observed. Evidences based on GS assessments, ITS and chloroplastic sequences demonstrated these individuals as triploid hybrids.

Finally, the use of AFLP markers to decipher phylogenetic relationships between Mediterranean Eastern and Mediterranean species showed that multiple lineages contributes to Juniperus diversity and shed light on some polyploid While taxa origins. the Lebanese populations of the hexaploid J. foetidissima are issued from a unique ancestral lineage, the Greek population seems to be the result of an unequal admixture of two ancient lineages. These two lineages contribute also to the tetraploid J. thurifera. This analysis showed also that the Mediterranean J. excelsa and the African taxa J. procera shares the same ancestral lineage. However, further analyses are needed for a more complete interpretation of the data.

The importance of interspecific hybridization and of polyploidization in the evolution of *Juniperus* species argues in favor of the development of researches aiming at understanding the link between these mechanisms and the adaptation of those species to a wide range of extreme habitats. Such future researches should contribute to predict how conifer species may adapt to dramatic changes in the Earth's climate.