Stratégie numérique pour l'analyse qualitative des interactions aube/carter

Yann Colaïtis

le 30 juillet 2021

Membres du jury :

S. Étienne	Polytechnique Montréal	président du jury
A. Batailly	Polytechnique Montréal	membre et directeur de recherche
A. Grolet	ENSAM Lille	membre externe
P. Almeida	Safran Helicopter Engines	membre
C. Cardinal	Polytechnique Montréal	représentant de la directrice des études supérieures

Introduction

Contexte et enjeux industriels Interface aube/car

Standards industriels

RL-HBM

Industrialisation

Conclusion et perspectives

1 Introduction

Introduction

Contexte et enjeux industriels

Interface aube/carter

Standards industriels

RL-HBM

Industrialisation

Conclusion et perspectives

Conception des turbomachines modernes :

- réduction de l'empreinte environnementale
- augmentation des performances et de la durée de vie

Introduction

Contexte et enjeux industriels

Interface aube/carter

Standards industriels

RL-HBM

Industrialisation

Conclusion et perspectives

Conception des turbomachines modernes :

- réduction de l'empreinte environnementale
- augmentation des performances et de la durée de vie
 - développement de nouveaux matériaux/procédés de fabrication

Introduction

Contexte et enjeux industriels

Interface aube/carter

Standards industriels

RL-HBM

Industrialisation

Conclusion et perspectives

Conception des turbomachines modernes :

- réduction de l'empreinte environnementale
- augmentation des performances et de la durée de vie
 - développement de nouveaux matériaux/procédés de fabrication
 - optimisation des technologies existantes

Introduction

Contexte et enjeux industriels

Interface aube/carter

Standards industriels

RL-HBM

Industrialisation

Conclusion et perspectives

Conception des turbomachines modernes :

- réduction de l'empreinte environnementale
- augmentation des performances et de la durée de vie
 - 1 développement de nouveaux matériaux/procédés de fabrication
 - optimisation des technologies existantes

Nécessité de prédire les niveaux vibratoires dans un contexte **non-linéaire**

Introduction

Contexte et enjeux industriels

Interface aube/carter

Standards industriels

RL-HBM

Industrialisation

Conclusion et perspectives

Interface aube/carter

- amélioration des performances via la réduction des jeux
- forte influence des jeux sur le rendement global
- interface caractérisée par :
 - vitesses relatives élevées
 - phénomènes multiphysiques
 - multiples non-linéarités
 - décalage des fréquences de résonances

Introduction

Contexte et enjeux industriels

Interface aube/carter

Standards industriels

RL-HBM

Industrialisation

Conclusion et perspectives

- amélioration des performances via la réduction des jeux
- forte influence des jeux sur le rendement global
- interface caractérisée par :
 - vitesses relatives élevées
 - phénomènes multiphysiques
 - multiples non-linéarités
 - décalage des fréquences de résonances

défi **théorique** et **numérique** (modélisation, gestion du contact, méthode de résolution...)

Introduction

Standards industriels

Modélisation

RI-HBM

Industrialisation

Conclusion et perspectives

Introduction

Standards industriels

- Modélisation
- Résolution
- RL-HBM
- Industrialisation
- Conclusion et perspectives

- cadre numérique : aube seule encastrée et réduction modale
- illustration sur l'aube NASA rotor 37¹

Fig. NASA rotor 37 : roue complète et maillage éléments finis

- modèle éléments finis 3D de l'aube de référence
- réduction modale via la méthode de Craig-Bampton²
 - interface de contact : 8 nœuds frontière ⇒ 24 ddl physiques
 - + 10 ddl modaux
- amortissement modal

2. A. BATAILLY et al. J. Sound Vib. (2010). doi: 10.1016/j.jsv.2010.07.018 - oai: hal-00524762v1. ISSN : 0022-460X.

^{1.} L. Reio et al. Rapport technique. https://ntrs.nasa.gov/citations/19780025165, 1978 (accessed 2020-10-29). NASA Lewis Research Center Cleveland, OH, United States.

ntroductio

Standards industriels

Modélisation

Resolution

RL-HBM

Industrialisation

Conclusion et perspectives

Modélisation

Hypothèses

- pas de chargement aérodynamique ³
- pas d'effets inertiels, thermiques, ou d'usure
- interaction aube/carter
 - contact unilatéral
 - frottement sec

Déformation du carter

- carter parfaitement rigide
- deux zones de contacts privilégiées
- $\bullet \ \Rightarrow \text{contacts à n'importe quelle vitesse}$

Introduction

Standards industriels

Résolution

RL-HBN

Industrialisation

Conclusion et perspectives

Intégration temporelle

Plage de vitesses

• intersection entre le mode 1F et le quatrième régime moteur rm4

Stratégie de référence⁴

- schéma explicite de différences finies centré et multiplicateurs de Lagrange ^{5, 6}
- 1 simulation = 1 vitesse angulaire ω constante

4. A. BATAILLY et al. J. Eng. Gas Turbines Power (2012). doi: 10.1115/1.4006446 - oai: hal-00746632. ISSN: 0742-4795.

- 5. N. J. CARPENTER et al. Int. J. Numer. Methods Eng. (1991). doi: 10.1002/nme.1620320107 oai: hal-01389918.
- 6. A. THORIN et al. J. Eng. Gas Turbines Power (2018). doi: 10.1115/1.4040857 oai: hal-01989188. ISSN : 0742-4795.

Introduction

Standards industriels

Résolution

RL-HBM

Industrialisation

Conclusion et perspectives

Intégration temporelle

Plage de vitesses

• intersection entre le mode 1F et le quatrième régime moteur rm4

Stratégie de référence⁴

- schéma explicite de différences finies centré et multiplicateurs de Lagrange ^{5, 6}
- 1 simulation = 1 vitesse angulaire ω constante

Fig. résultats obtenus pour la plage de vitesses

- 4. A. BATAILLY et al. J. Eng. Gas Turbines Power (2012). doi: 10.1115/1.4006446 oai: hal-00746632. ISSN: 0742-4795.
- 5. N. J. CARPENTER et al. Int. J. Numer. Methods Eng. (1991). doi: 10.1002/nme.1620320107 oai: hal-01389918.
- 6/35 6. A. THORIN et al. J. Eng. Gas Turbines Power (2018). doi: 10.1115/1.4040857 oai: hal-01989188. ISSN : 0742-4795.

ntroductio

Standards industriels

Modélisation

Résolution

- **RL-HBM**
- Industrialisatio
- Conclusion e perspectives

Intégration temporelle

Résultats au BA du rotor 37

Fig. carte d'interaction

Fig. courbe de réponse en fréquence (CRF)

interaction linéaire (•) et résonance non-linéaire IT (▲)

Observations

- raidissement au contact $\delta \omega_{\rm c}$
- sauts en amplitude
- aperçu quantitatif de la dynamique de l'aube

ntroductio

Standards industriels

Résolution

RL-HBM

Industrialisation

Conclusion et perspectives

Projet de recherche

Problématique

• Comment obtenir des résultats qualitatifs relativement à la prédiction des interactions aube/carter?

Objectifs

Standards

RL-HBM

HBM

Régularisation

Filtrage

Industrialisation

Conclusion et perspectives

3 RL-HBM : HBM régularisée et filtrée

9/35

Introduction

Standards industriels

RL-HBM

HBM

Régularisation

Filtrage

Industrialisation

Conclusion et perspectives

- source d'excitation synchrone \Rightarrow hypothèse : réponse périodique
- paradigme fréquentiel : méthode de l'équilibrage harmonique,⁷ collocation trigonométrique,⁸ HDHB/time spectral method⁹...

^{7.} G. Von Groll et al. J. Sound Vib. (2001). doi : 10.1006/jsvi.2000.3298 - oai: hal-01333704. ISSN : 0022-460X.

^{8.} M. KRACK et al. doi : 10.1007/978-3-030-14023-6. Springer, Cham, 2019.

^{9.} L. SALLES et al. J. Eng. Gas Turbines Power (2012). doi : 10.1115/1.4004236 - oai: hal-00975699. ISSN : 0742-4795.

^{10.} M. KRACK et al. en. ASME Turbo Expo - Tutorial of Basics, 2018.

Introduction

Standards industriels

RL-HBM

HBM

Régularisation

Industrialisation

Conclusion et perspectives

Stratégies de résolution

- source d'excitation synchrone \Rightarrow hypothèse : réponse périodique
- paradigme fréquentiel : méthode de l'équilibrage harmonique,⁷ collocation trigonométrique,⁸ HDHB/time spectral method⁹...

intégration temporelle (IT)

^{7.} G. Von Groll et al. J. Sound Vib. (2001). doi : 10.1006/jsvi.2000.3298 - oai: hal-01333704. ISSN : 0022-460X.

^{8.} М. Ккаск et al. doi : 10.1007/978-3-030-14023-6. Springer, Cham, 2019.

^{9.} L. SALLES et al. J. Eng. Gas Turbines Power (2012). doi : 10.1115/1.4004236 - oai: hal-00975699. ISSN : 0742-4795.

^{10.} M. KRACK et al. en. ASME Turbo Expo - Tutorial of Basics, 2018.

Introduction

Standards industriels

RL-HBM

HBM

Régularisation

Industrialisation

Conclusion et perspectives

Stratégies de résolution

- source d'excitation synchrone \Rightarrow hypothèse : réponse périodique
- paradigme fréquentiel : méthode de l'équilibrage harmonique,⁷ collocation trigonométrique,⁸ HDHB/time spectral method⁹...

intégration temporelle (IT)

équilibrage harmonique (HBM)

^{7.} G. Von Groll et al. J. Sound Vib. (2001). doi : 10.1006/jsvi.2000.3298 - oai: hal-01333704. ISSN : 0022-460X.

^{8.} М. Ккаск et al. doi : 10.1007/978-3-030-14023-6. Springer, Cham, 2019.

^{9.} L. SALLES et al. J. Eng. Gas Turbines Power (2012). doi : 10.1115/1.4004236 - oai: hal-00975699. ISSN : 0742-4795.

^{10.} M. KRACK et al. en. ASME Turbo Expo - Tutorial of Basics, 2018.

Introduction

Standards industriels

RL-HBM

HBM

Régularisation Filtrage

Industrialisation

Conclusion et perspectives

Stratégies de résolution

- source d'excitation synchrone \Rightarrow hypothèse : réponse périodique
- paradigme fréquentiel : méthode de l'équilibrage harmonique,⁷ collocation trigonométrique,⁸ HDHB/time spectral method⁹...

- 7. G. Von Groll et al. J. Sound Vib. (2001). doi: 10.1006/jsvi.2000.3298 oai: hal-01333704. ISSN: 0022-460X.
- 8. М. Ккаск et al. doi : 10.1007/978-3-030-14023-6. Springer, Cham, 2019.
- 9. L. SALLES et al. J. Eng. Gas Turbines Power (2012). doi : 10.1115/1.4004236 oai: hal-00975699. ISSN : 0742-4795.
- 10. M. KRACK et al. en. ASME Turbo Expo Tutorial of Basics, 2018.

 H_{ς}

Introduction

Standards industriels

RL-HBM

HBM

Régularisation Filtrage

Industrialisation

Conclusion et perspectives

Stratégies de résolution

- source d'excitation synchrone \Rightarrow hypothèse : réponse périodique
- paradigme fréquentiel : méthode de l'équilibrage harmonique,⁷ collocation trigonométrique,⁸ HDHB/time spectral method⁹...

- efficace numériquement pour systèmes non-linéaires réguliers
- intérêt marqué pour la HBM dans le domaine des turbomachines ¹⁰

^{7.} G. Von Groll et al. J. Sound Vib. (2001). doi: 10.1006/jsvi.2000.3298 - oai: hal-01333704. ISSN: 0022-460X.

^{8.} М. Ккаск et al. doi : 10.1007/978-3-030-14023-6. Springer, Cham, 2019.

^{9.} L. SALLES et al. J. Eng. Gas Turbines Power (2012). doi : 10.1115/1.4004236 - oai: hal-00975699. ISSN : 0742-4795.

^{10.} M. KRACK et al. en. ASME Turbo Expo - Tutorial of Basics, 2018.

Introduction

Standards industriels

RL-HBM

- HBM
- Régularisatio
- Industrialisatio

Conclusion et perspectives

Méthode de l'équilibrage harmonique

Principe

• approximation d'une solution *T*-périodique en série de Fourier

$$\mathbf{x}(t) \simeq \frac{1}{2}\mathbf{a}_0 + \sum_{j=1}^{H} \left[\mathbf{a}_j \cos(j\omega t) + \mathbf{b}_j \sin(j\omega t) \right]$$

 $\bullet\,$ projection de Fourier-Galerkin $\Rightarrow\,$ système d'équations NL algébriques

$$R(\bar{x}, \omega) = Z(\omega)\bar{x} + \underbrace{\tilde{f}_{nl}(\bar{x}, \omega)}_{\text{efforts NL internes}} - \underbrace{\tilde{f}_{ext}}_{\text{fext}} = 0$$

• résolution par annulation d'un résidu via méthode itérative de type Newton

Combinée avec

- schéma Alternance Fréquence/Temps (AFT)
- continuation de type prédicteur/correcteur
- condensation non-linéaire exacte

Introduction

Standards industriels

RL-HBM

HBM

Régularisation

Industrialisation

Conclusion et perspectives

Principe

• approximation d'une solution *T*-periodique en série de Fourier

$$x(t) \simeq \frac{1}{2}\mathbf{a}_0 + \sum_{j=1}^{H} \left[\mathbf{a}_j \cos(j\omega t) + \mathbf{b}_j \sin(j\omega t) \right]$$

• projection de Fourier-Galerkin \Rightarrow système d'équations NL algébriques

$$R(\tilde{x}, \omega) = Z(\omega)\tilde{x} + \frac{\tilde{f}_{nl}(\tilde{x}, \omega)}{\text{efforts NL internes}} - \frac{\tilde{f}_{ext}}{\tilde{f}_{ext}} = 0$$

• résolution par annulation d'un résidu via méthode itérative de type Newton

Combinée avec

- schéma Alternance Fréquence/Temps¹¹(AFT)
- continuation de type prédicteur/correcteur¹²
- condensation non-linéaire exacte¹³

^{# 11.} Т. М. Самегом et al. J. Appl. Mech. (1989). doi: 10.1115/1.3176036 - oai: hal-01333697.

^{12.} R. SEYDEL. doi : 10.1007/978-1-4419-1740-9. Springer, New York, NY, 2009.

^{13.} E. SARROUY et al. Advances in Vibration Analysis Research. Sous la direction de Farzad Ebrahimi. doi: 10.5772/15638 - oai: hal-00730895. Rijeka : IntechOpen, 2011. Chapitre 21. 11/39.

Introductio

Standards industriels

RL-HBM

HBM

Régularisatio Filtrage

Industrialisation

Conclusion et perspectives

Traitement des non-linéarités de contact

- mauvaise convergence des séries de Fourier
- forte sensibilité de la résolution HBM au phénomène de Gibbs ¹⁴

^{14.} М. В. МЕНКСАST et al. Int. J. Non-Linear Mech. (2014). doi: 10.1016/j.ijnonlinmec.2014.01.007 - oai: hal-00955647v1. ISSN : 0020-7462. 12/35

Introductio

Standards industriels

RL-HBM

- HBM
- Régularisatio
- Industrialisation

Conclusion et perspectives

Atténuation du phénomène de Gibbs : état de l'art

- procédure mixte tir-HBM ¹⁵
- algorithmes event-driven ¹⁶
- fonctions polynomiales discontinues ¹⁷
- ondelettes ¹⁸(Haar : Fourier)
- filtrage spectral ^{19, 20}

Approche proposée : RL-HBM

- régularisation de la loi de contact
- filtrage de Lanczos des efforts de contact prédits

^{15.} F. SCHREYER et al. Arch. Mech. Eng. (2016). doi: 10.1515/meceng-2016-0017 - oai: hal-01356796v1.

^{16.} M. KRACK et al. J. Sound Vib. (2013). doi : 10.1016/j.jsv.2013.04.048. ISSN : 0022-460X.

^{17.} W.-J. KIM et al. J. Sound Vib. (2003). doi: 10.1016/S0022-460X(02)00949-5 - oai: hal-01693093v1. ISSN : 0022-460X.

^{18.} S. JONES et al. Int. J. Numer. Methods Eng. (2014). doi: 10.1002/nme.4807 - oai: hal-00806545.

^{19.} R. Djeddi et al. Int. J. Comput. Fluid Dyn. (2016). doi: 10.1080/10618562.2016.1242726.

^{20.} A. BRAMBILLA et al. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications (1996). doi: 10.1109/81.486431.

Introductior

Standards industriels

RL-HBM

- Régularisation
- Regularisa
- Industrialisation

Conclusion et perspectives

Régularisation de la loi de contact

• loi de pénalité bilinéaire classique (------)

 $f_{n,j}(t) = \kappa \max \left(0, g_j(t) \right)$

où $g_j(t) = x_j(t) - d(t)$ est la fonction de distance du *j*-ème nœud frontière • régularisation polynomiale (-----)

$$f_{\mathbf{n},j}(t) = \kappa \frac{g_j(t)}{2} + \sqrt{\left(\kappa \frac{g_j(t)}{2}\right)^2 + \gamma^2}$$

amélioration de la robustesse numérique du solveur HBM

Introductio

Standards industriels

RL-HBM

HBM

Régularisation

Filtrage

Industrialisation

Conclusion et perspectives

Filtrage de Lanczos

- réduction des oscillations parasites
- utilisation d'un filtrage spectral

$$\mathbf{f}_{nl}(\mathbf{x}, \dot{\mathbf{x}}) \simeq \frac{1}{2} \mathbf{a}_0^{nl} + \sum_{j=1}^{H} \sigma(\mathcal{X}_j) \Big[\mathbf{a}_j^{nl} \cos(j\omega t) + \mathbf{b}_j^{nl} \sin(j\omega t) \Big]$$

• filtrage de Lanczos : $\sigma(\mathcal{X}_j) = \operatorname{sinc}(\mathcal{X}_j)^m$

amélioration de la convergence hors du voisinage des discontinuités

4

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor 3

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Industrialisation

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor 37

Stabilité

NASA rotor 6

Roue aubagé industrielle

Conclusion et perspectives

Validation

Résultats aux BA/BF du rotor 37

interaction linéaire (•) et résonance non-linéaire IT (▲)

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor 37

Stabilité

NASA rotor 6

Roue aubagé industrielle

Conclusion et perspectives

Validation

Résultats aux BA/BF du rotor 37

Fig. comparaison des CRF au BA

Fig. comparaison des CRF au BF

interaction linéaire (●) et résonance non-linéaire IT (▲) et HBM (♦)

- bon accord global entre IT et RL-HBM
- raidissement au contact $\delta \omega_{\rm c}$ par RL-HBM +61 %

Introduction

Standards industriels

RL-HBM

Industrialisation

validation rotor :

Stabilité

NASA rotor 6

Roue aubagé industrielle

Conclusion et perspectives

Validation

Résultats aux BA/BF du rotor 37

Fig. comparaison des CRF au BA

Fig. comparaison des CRF au BF

interaction linéaire (●) et résonance non-linéaire IT (▲) et HBM (♦)

- bon accord global entre IT et RL-HBM
- raidissement au contact $\delta \omega_{\rm c}$ par RL-HBM +61 %
- un écart significatif pour $\omega \in [1500; 1525]$

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor 37

Stabilité

NASA rotor 6

Roue aubagé industrielle

Conclusion et perspectives

Validation

Déplacements, efforts de contact et vitesses dans la direction radiale

résultats RL-HBM/IT obtenus aux BA (-----)/(------) et BF (------)/(-------)

Validation

• 1

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor 37

Stabilité

NASA rotor 6

Roue aubagé industrielle

Conclusion et perspectives

Déplacements, efforts de contact et

vitesses dans la direction radiale

2 avec CI RL-HBM

۲

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor 37

Stabilité

NASA rotor 6

Roue aubagé industrielle

Conclusion et

Validation

 $f_r(t) \; [\times 10^3 \; \mathrm{N}]$

⁴(t) [m·s⁻¹]

-10

Déplacements, efforts de contact et vitesses dans la direction radiale

temps norm.

résultats RL-HBM/IT obtenus aux BA (-----)/(------) et BF (------)/(-------)

ntroductio

Standards

RL-HBM

Industrialisation

Validation rotor 37

Post-traitement

Stabilité

NASA rotor 6

Roue aubagée industrielle

Conclusion et perspectives

Validation

Contraintes de von Mises

 $> \sigma_{\rm Y}$

Introductio

Standards industriels

RL-HBM

Industrialisation

Validation rotor 37

- Post-traitement
- Stabilité
- NASA rotor 67
- Roue aubagée industrielle
- Conclusion et perspectives

Validation

Zone de disparité

- solution 13,5 *T*-périodique
- \Rightarrow réponse sous-harmonique

$$\mathbf{x}(t) \simeq \frac{1}{2}\mathbf{a}_0 + \sum_{j=1}^{\nu H} \left[\mathbf{a}_{j/\nu} \cos\left(\frac{j\omega t}{\nu}\right) + \mathbf{b}_{j/\nu} \sin\left(\frac{j\omega t}{\nu}\right) \right] \quad \text{pour} \quad \nu = 27$$
Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor 37

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Extension de la validation

Trois enjeux avec le développement de la méthodologie proposée :

vérifier sa robustesse

augmenter la représentativité physique des modèles

optimiser ses performances numériques

Introductio

Standards industriels

RL-HBM

Industrialisation

- Validation rotor 37
- Stabilité
- NASA rotor 67
- Roue aubagée
- Conclusion et

Robustesse de la méthodologie

Effet de la variation du jeu

Fig. CRF obtenues par variation du jeu au BA

Fig. CRF obtenues par variation du jeu au BF

- bon comportement sur l'ensemble de la plage de vitesses
- autres paramètres étudiés : amortissement modal ξ , coefficient de frottement μ , pénétration radiale du carter p_i

Introductio

Standards industriels

RL-HBM

Industrialisation

Validation rotor 37

Post-traitement

Stabilité

NASA rotor 6

Roue aubagée

Conclusion et perspectives

Enrichissement de la modélisation

Prise en compte d'effets centrifuges

• développement polynomial en ω de la matrice de raideur ²¹

$$\mathbf{K}(\omega) = \mathbf{K}_0 + \mathbf{K}_1 \omega^2 + \mathbf{K}_2 \omega^2$$

Fig. superposition CRF au BA sans (gauche) / avec (droite) effets centrifuges

- décalage des conditions d'interaction
- raidissement au contact $\delta \omega_c = 240 \text{ rad} \cdot \text{s}^{-1}$ (contre 209, soit +15%)
- plage d'interaction haute amplitude plus large

^{21.} A. STERNCHÜSS et al. Proceedings of the Int. Conference on Adv. Acoustics and Vib. Eng. oai:hal-00266394. 2006. 22/35

ntroductic

Standards industriels

RL-HBM

Industrialisation

- Validation rotor 37
- Post-traitement
- Stabilité
- NASA rotor 67
- Roue aubagée
- Conclusion et perspectives

Optimisation des performances numériques

Quelques exemples

- optimisation des opérations matricielles
- calcul analytique des jacobiennes par rFFT
- utilisation d'un compilateur juste-à-temps
- recyclage systématique des factorisations LU

Introductio

Standards industriels

RL-HBN

Industrialisation

Post-traitement

Stabilité

NASA rotor 6

Roue aubagée

Conclusion e perspectives

Post-traitement

Contributions harmoniques / carte(s) d'interaction

$$|H_{j}^{i}||_{2} = \begin{cases} \frac{|a_{0}^{i}|/2}{\sqrt{a_{j}^{i^{2}} + b_{j}^{i^{2}}}} & \text{pour } j \in [1...H] \end{cases}$$

ntroductio

Standards industriels

RL-HBN

Industrialisation

Post-traitement

Post-traitemen

Stabilité

NASA rotor 6

Roue aubagé

Conclusion et perspectives

Post-traitement

Contributions modales

$$\|\boldsymbol{\gamma}_{j,i}\|_{\infty} = \max_{i \in [[0..N-1]]} \left(|\boldsymbol{\phi}_j^\top \mathbf{M} \boldsymbol{x}(\tau_i)| \right)$$

1:1F

3 : 2F

Introductior

Standards industriels

RL-HBM

Industrialisation

Validation rotor 3

Post-traitement

Stabilité

NASA rotor 67 Roue aubagée

Conclusion et

Analyse de stabilité

Théorie de Floquet

- ajout d'une petite perturbation à une solution périodique
- détection de bifurcations
- quantités caractéristiques : multiplicateurs / exposants de Floquet

ésolution numérique

- **temporelle** : intégration 2*n*-passes, exponentielle de matrice, ondelette-Galerkin, Newmark simple passe...
- **fréquentielle** : méthode de Hill avec tri sur les valeurs / vecteurs propres, méthode des moyennes...

Défis

- les études portent essentiellement sur des systèmes phénoménologiques
- peu d'applications sur systèmes avec NL de contact ...
- ...et encore moins sur des systèmes issus d'une technique de synthèse modale

Introductior

Standards industriels

RL-HBM

Industrialisation

Validation rotor 3

Stabilité

Roue aubagée industrielle

Conclusion et perspectives

Analyse de stabilité

héorie de Floquet

- ajout d'une petite perturbation à une solution périodique
- détection de bifurcations
- quantités caractéristiques : multiplicateurs / exposants de Floquet

Résolution numérique

- temporelle : intégration 2*n*-passes, exponentielle de matrice, ondelette-Galerkin, Newmark simple passe...
- fréquentielle : méthode de Hill avec tri sur les valeurs / vecteurs propres, méthode des moyennes...

Défis

- les études portent essentiellement sur des systèmes phénoménologiques ²², ²³
- peu d'applications sur systèmes avec NL de contact ²⁴...
- ...et encore moins sur des systèmes issus d'une technique de synthèse modale ^{25, 26}
- 22. A. Lazarus et al. Comptes Rendus Mécanique (2010). doi : 10.1016/j.crme.2010.07.020 oai: hal-01452004v1. ISSN : 1631-0721.
- 23. L. Xie et al. Mech. Syst. Sig. Process. (2017). doi: 10.1016/j.ymssp.2016.09.037 oai: hal-01402109. ISSN: 0888-3270.
- 24. H. JIANG et al. Int. J. Mech. Sci. (2017). doi : 10.1016/j.ijmecsci.2017.02.001. ISSN : 0020-7403.
- 25. E. P. PETROV. J. Eng. Gas Turbines Power (2017). doi: 10.1115/1.4034353. ISSN : 0742-4795.
- 26. E. P. PETROV. J. Eng. Gas Turbines Power (2018). doi : 10.1115/1.4040850. ISSN : 0742-4795.

ntroductio

Standards industriels

RL-HBM

Industrialisation

validation rotor :

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Analyse de stabilité

Cas de validation

• NL de contact à seuil variable 27

solutions : stables (-----) et instables (----)

bifurcations : point de retournement (LP) et doublement de période (PD)

ntroductio

Standards industriels

RL-HBM

Industrialisation

validation rotor 3

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Analyse de stabilité

Cas de validation

• NL de contact à seuil variable 27

solutions : stables (-----) et instables (-----)

bifurcations : point de retournement (LP) et doublement de période (PD)

• complexité accrue de la dynamique par rapport à un seuil de contact fixe

^{27.} Solution techniques for large non-linear vibration - L. Salles. 2018 issu du code FOrced Response SuitE

ntroductio

Standards industriels

RL-HBM

Industrialisation

validation rotor 3

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Analyse de stabilité

Cas de validation

• NL de contact à seuil variable ²⁷

solutions : stables (-----) et instables (------)

bifurcations : point de retournement (LP) et doublement de période (PD)

• complexité accrue de la dynamique par rapport à un seuil de contact fixe

Introductio

Standards industriels

RL-HBM

Industrialisation

validation rotor :

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Analyse de stabilité

Cas de validation

• NL de contact à seuil variable 27

bifurcations : point de retournement (LP) et doublement de période (PD)

• mise en évidence d'un phénomène de cascade de doublements de période

ntroductio

Standards industriels

RL-HBM

Industrialisation

Validation rotor .:

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Analyse de stabilité

Résultats au BA du rotor 37

bifurcations : point de retournement (LP) et Neimark-Sacker (NS)

- solutions de haute amplitude stables
- bifurcations détectées autour de la branche 13,5 T-periodique prévue par l'IT
- identification de zones d'intérêt

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor

Post-traitemei

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Aube de soufflante : rotor 67

- extension de la méthodologie à d'autres composantes de la turbomachine
- premier étage d'une soufflante à deux étages composé de 22 aubes ²⁸
- aube plus flexible \Rightarrow dynamique plus riche

Fig. NASA rotor 67 : roue complète et maillage éléments finis

- modèle éléments finis 3D de l'aube de référence
- réduction modale via la méthode de Craig-Bampton
 - ▶ interface de contact : 9 nœuds frontière ⇒ 27 ddl physiques
 - + 12 ddl modaux
- scénario de contact et amortissement modal équivalents

^{28.} D. C. URASEK et al. Rapport technique. url: https://ntrs.nasa.gov/citations/19790018972, 1979 (accédé le 2020-04-20). NASA Lewis Research Center Cleveland, OH, United States. 30/35

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor 3

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Aube de soufflante : rotor 67

Résultats de référence : intégration temporelle

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Aube de soufflante : rotor 67

Comparaison IT/RL-HBM au BA du rotor 67

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Aube de soufflante : rotor 67

Comparaison IT/RL-HBM au BA du rotor 67

Introductior

Standards industriels

RL-HBM

Industrialisation

Validation rotor

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Aube de soufflante : rotor 67

Comparaison IT/RL-HBM au BA du rotor 67

• disparités observées, présence de branches périodiques isolées

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Aube de soufflante : rotor 67

Comparaison IT/RL-HBM au BA du rotor 67

- disparités observées, présence de branches périodiques isolées
- solutions IT \Rightarrow itérés initiaux RL-HBM \Rightarrow détection de 3 isolats (-----)
- à nouveau, bon accord global entre l'approche IT et RL-HBM
- \Rightarrow complémentarité des approches

Introductior

Standards industriels

RL-HBM

Industrialisation

Validation rotor

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Roue aubagée industrielle

• vers le développement d'un outil industriel...

Introductior

Standards industriels

RL-HBM

Industrialisatior

Validation rotor

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Roue aubagée industrielle

• vers le développement d'un outil industriel...

Introductior

Standards industriels

RL-HBM

Industrialisation

Validation rotor

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Roue aubagée industrielle

• vers le développement d'un outil industriel...

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Roue aubagée industrielle

• vers le développement d'un outil industriel...

• validation de la résonance non-linéaire

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

 $||r_{1,1}(t)||_{\infty} \, [\times 10^{-3} \, {\rm m}]$

Roue aubagée industrielle

• vers le développement d'un outil industriel...

• validation de la résonance non-linéaire

Introduction

Standards industriels

RL-HBM

Industrialisation

Validation rotor

Post-traitement

Stabilité

NASA rotor 67

Roue aubagée industrielle

Conclusion et perspectives

Roue aubagée industrielle

• vers le développement d'un outil industriel...

• validation de la résonance non-linéaire

1

Introduction

Standards industriels

RL-HBM

Industrialisation

Conclusion et perspectives

5 Conclusion et perspectives

Introduction

Standards industriels

RL-HBM

Industrialisation

Conclusion et perspectives

Conclusion

Synthèse

- développement d'une approche fréquentielle pour la prédiction des interactions aube/carter + analyse de stabilité
- validation et application sur de nombreux systèmes
- aucune restriction de modélisation par rapport à la stratégie IT de référence
 - grand nombre de nœuds frontières
 - gestion tridimensionnelle du frottement
 - prise en compte des effets inertiels
 - tout type de déformation du carter
- implémentation haute performance
- compatibilité des entrées/sorties des deux méthodologies
- les paradigmes de résolution temporel et fréquentiel sont nécessaires pour saisir toutes les interactions potentiellement dangereuses

Introduction

Standards industriels

RL-HBM

Industrialisation

Conclusion et perspectives

Conclusion

Synthèse

- développement d'une approche fréquentielle pour la prédiction des interactions aube/carter + analyse de stabilité
- validation et application sur de nombreux systèmes
- aucune restriction de modélisation par rapport à la stratégie IT de référence
 - grand nombre de nœuds frontières
 - gestion tridimensionnelle du frottement
 - prise en compte des effets inertiels
 - tout type de déformation du carter
- implémentation haute performance
- compatibilité des entrées/sorties des deux méthodologies
- les paradigmes de résolution temporel et fréquentiel sont nécessaires pour saisir toutes les interactions potentiellement dangereuses

Perspectives

- gestion de l'usure d'un revêtement abradable
- développement d'un module d'analyse modale non-linéaire
- intégration dans un processus de conception industriel

Introductior

Standards industriels

RL-HBM

Industrialisation

Conclusion et perspectives

Publications scientifiques

Articles de revue

- article publié dans le Journal of Sound and Vibration en mars 2021²⁹
- article accepté dans le Journal of Engineering for Gas Turbines and Power³⁰

Actes de conférence

- acte pour le Joint Congress of the Canadian Society for Mechanical Engineering and CFD Society of Canada de 2019
- acte pour ASME Turbo Expo 2021

^{29.} Y. COLAïTIS et al. J. Sound Vib. (2021). doi : 10.1016/j.jsv.2021.116070 - oai: hal-03163560. ISSN : 0022-460X.

^{30.} Y. Colaïtis et al. J. Eng. Gas Turbines Power, In press. (2021). ISSN : 0742-4795.

Introduction

Standards industriels

RL-HBM

Industrialisation

Conclusion et perspectives Merci pour votre attention!

Annexes Validation

GUI

6 Annexes

-

Annexes

Validation

Stabil

Robustesse de la méthodologie

Effet de la pénétration radiale

Fig. CRF obtenues par variation de la pénétration radiale au BF

Annexes

Validation

Stabil

Robustesse de la méthodologie

Fig. CRF obtenues par variation de l'amortissement au BF

Validation

 \mathbf{t}

Robustesse de la méthodologie

Effet du coefficient de frottement

Fig. CRF obtenues par variation du coeff. de frottement au BA

Fig. CRF obtenues par variation du coeff. de frottement au BF

Annexes

Validation

Stabilité

Analyse de stabilité

Cas de validation

• Non-linéarité géométrique : oscillateur de Duffing cf. A harmonic-based method for computing the stability of periodic solutions of dynamical systems - A. Lazarus, O. Thomas. 2010 - CRM

Innexes

Validation

Stabilité

Analyse de stabilité

Cas de validation

 Non-linéarité de contact (+ frottement) à seuil fixe : rotor de Jeffcott cf. Bifurcation tracking by Harmonic Balance Method for performance tuning of nonlinear dynamical systems - L. Xie et al. 2016 - MSSP

Innexes

Validation

Stabilité

Analyse de stabilité Cas de validation

• Comparaison impacteur à seuil fixe et variable

nnexes

Validation

Stabilité

Analyse de stabilité

Validation

• Non-linéarité de contact à seuil **variable** : impacteur *cf. Solution techniques for large non-linear vibration* - L. Salles. 2018 présentation **FO**rced Response **S**uit**E**

Annexes

Validation

Stabilité

Barre EF à seuil fixe

÷

Stabilité

$\|\boldsymbol{x}_{100}(t)\|_{\infty} \; [\times 10^{-4} \; \mathrm{m}]$

Analyse de stabilité

Barre EF à seuil variable

\mathbf{t}

Stabilité

Annexes

Validation

Stabili

GUI

Facilitation du post-traitement

Interface graphique

