
HAL Id: tel-03321687
https://theses.hal.science/tel-03321687

Submitted on 18 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and Optimization of Reconfigurable
Architectures: The FPGA Family

Hayder Mrabet

To cite this version:
Hayder Mrabet. Design and Optimization of Reconfigurable Architectures: The FPGA Family. Micro
and nanotechnologies/Microelectronics. Université Pierre et Marie Curie Paris VI, 2009. English.
�NNT : �. �tel-03321687�

https://theses.hal.science/tel-03321687
https://hal.archives-ouvertes.fr

Ph.D THESIS OF THE UNIVERSITY PIERRE
ET MARIE CURIE

Department : COMPUTER SCIENCE AND
MICRO-ELECTRONICS

Presented by :Hayder Mrabet

Thesis submitted to obtain the degree of
DOCTOR OF THE UNIVERSITY PIERRE ETMARIE CURIE

DESIGN AND OPTIMIZATION OF
RECONFIGURABLE ARCHITECTURES:

THE FPGA FAMILY

Defended : 25th September 2009

Commitee in charge :

M. Régis Leveugle TIMA, Reviewer
M. Yves Mathieu ENST, Reviewer
M. François Anceau LIP6
M. Marc Belleville CEA-LETI
M. André Tissot CEA-DAM
M. Olivier Lepape Abound Logic
M. Jean-Arnaud François STMicroelectronics
M. Habib Mehrez LIP6

Abstract
In the early stages of system design, system architects often choose between FPGAs

and ASICs implementations. Such decisions are based on the differences between these
implementations in terms of performance, power consumptions and cost, which is re-
lated to the silicon area and the target production volume. For circuits containing only
combinational logic and flip-flops, the ratio of silicon area required to implement them
in FPGA (LUT-based) and ASICs (via standard cells) is on average 40. The ratio of crit-
ical path delay is roughly 3 to 4, and approximately 12 times for the dynamic power
consumption. This gap is due to the FPGA interconnect network which is the dominant
factor in terms of FPGA area (90%) and power dissipation (65%). In order to remain at-
tractive, FPGA fabric must offer a good tradeoff between flexibility, performances and
cost. These factors are linked to quality of the architecture, quality of the CAD tools and
quality of the physical design. The subject of this dissertation is the exploration of meth-
ods and techniques to find the best tradeoff.

The first part deals with the automatic design of domain-specific reconfigurable fab-
rics with Mesh topology. Developing a domain-specific reconfigurable fabric has taken
traditionally too much time and effort to be worthwhile. We are alleviating these de-
sign costs by automating the process of creating domain specific reconfigurable fab-
rics. We develop a technology-independent layout generator which is easily adapted
to any standard cell library geometry and to any process rules. We have generated
an SRAM Mesh-based Redundant FPGA Core with fine granularity that integrates an
error-detector system for SEU mitigation. The design was successfully migrated and
taped out in 0.12 um 6-metal layer CMOS process from ST.

The second part focuses on the development and the design of new Multilevel Hi-
erarchical FPGA (MFPGA) architecture based on the Butterfly Fat Tree topology . Since
the interconnect is the dominant resource in FPGA, we believe that it is the key to re-
duce FPGA area, hence to increase performances and decrease power consumption. We
explore the effect of different architecture parameters (Rent’s parameter, cluster sizes)
to satisfy specific applicative constraints of logic density. Thanks to the good balancing
between logic and interconnect resources, MFPGA achieves a gain of 54% in term of
area compared to the common Clustered Mesh-based FPGA architecture. Finally, we
propose a physical floorplanning technique for MFPGA to illustrate layout feasibility,
scalability and density.

Keywords: FPGA, Interconnect, Rent’s rule, Tree-based architecture, Mesh-based archi-
tecture, Physical design, Layout, SEU, CAD.

Àmes parents
À ma famille

Remerciements
Je tiens à remercier vivement monsieur Alain Greiner pour m’avoir acceuilli dans

son laboratoire et pour l’énergie qu’il a dépensé afin de maintenir des bonnes condi-
tions de travail.

J’adresse mes remerciements les plus chaleureux à mon directeur de thèse, le professeur
Habib MEHREZ pour sa grande disponibilité et ses conseils qui m’ont été très utiles
dans la préparation de ce travail.

Je tiens également à remercier messieurs Régis Leveugle, professeur à l’INPG, et Yves
Mathieu, professeur à Telecom ParisTech (ENST paris), qui m’ont fait l’honneur d’être
rapporteurs de cette thèse.

Je tiens à remercier messieurs François Anceau, professeur au LIP6, Marc Belleville, Di-
recteur de recherche au CEA LETI, André Tissot, Ingénieur de recherche au CEA-DAM,
Olivier Lepape, vice président de Aboud Logic, et Jean-Arnaud François, IP manager
Ã STMicroeclectronics, pour avoir accepter d’examiner mon travail.

J’associe à ces remerciements l’équipe EIM du CEA-DAM et en particulier messieurs
André Tissot, Jean Luc Rebourg et Nicolas Fel pour avoir soutenu et encouragé ces
recherches.
Je remercie aussi messieurs Franck Wajsbürt et François Pecheux du LIP6 de m’avoir
aidé lors de la conception du circuit RedFPGA et la carte de test associé.

C’est aussi pour moi l’occasion d’exprimer ma profonde reconnaissance à monsieur
François Durbin pour sa gentillesse et ses talents linguistiques. De nombreux docu-
ments et en particulier ce manuscrit auraient été bien mal écrits sans ses aides.

Cette thèse est le résultat d’un travail d’équipe et je salut tous mes collègues Zied
Marrakchi, Husain Parvez, Umer Farooq, Emna Amouri, Sompasong Somsavaddy de
l’équipe "Arith", Christophe Alexandre, Jean Paul Chaput et DamienDupuis de l’équipe
"Coriolis". Je tiens également à remercier Arnaud Caron, ancien doctorant du LIP6 pour
ses conseils et ses encouragements. Je remercie aussi tous les étudiant duMaster 2 ACSI
ayant contibué à ce travail, ainsi que tous mes camarades du laboratoire.

Enfin je remercie mes parents et toute ma famille pour leur soutien aucours de ces
longues années d’études et sans lesquels je n’en serai pas là aujourd’hui.

Contents

Introduction 1
1 Overview and Synopsys . 1
2 Research Goals and Motivations . 3
3 Thesis Organization . 4

1 Background 7
1.1 Introduction . 7
1.2 Field Programmable Gate Array . 8
1.3 FPGA structures . 12

1.3.1 Case Study: Altera Stratix III . 12
1.3.2 Case Study: Xilinx Virtex 5 . 17

1.4 Interconnection Networks and FPGA architectures alternatives 21
1.4.1 Direct Network Topologies . 21
1.4.2 Indirect Network Topologies: . 23

1.5 Design Automation for FPGA . 25
1.6 FPGA characteristics and challenges . 28
1.7 Conclusion . 30

2 Automating Layout of Mesh Based FPGA 33
2.1 Introduction . 33
2.2 Adaptive VLSI CAD Platform . 35
2.3 Circuit Design: Architecture generator . 36

2.3.1 Architecture Modelisation . 36
2.3.2 Generic mesh FPGA model . 38
2.3.3 FPGA Tiles . 40
2.3.4 Programming access . 41

xiii

xiv Contents

2.4 VLSI Layout generator . 42
2.4.1 Tile Layout . 44
2.4.2 FPGA layout . 46

2.5 Embedded FPGA . 48
2.6 conclusion . 51

3 Redundant FPGA Core 53
3.1 Context . 53
3.2 Robustness of the FPGAs Configuration Memory 55

3.2.1 Basic SRAM Cell . 55
3.2.2 The Dual Interlocked CEll (DICE) structure 56
3.2.3 Testing the DICE: Error Injection . 60

3.3 Error Detection and Correction . 62
3.3.1 Parity Check Technique . 63
3.3.2 Hamming Code . 64

3.4 Architecture Features . 66
3.4.1 Motivations . 66
3.4.2 REDFPGA architecture overview . 66
3.4.3 SEU detection and correction in REDFPGA 68

3.5 Tape Out . 71
3.5.1 Simulation: . 72
3.5.2 Netlist layout comparison: . 72
3.5.3 Electric simulation: . 73

3.6 Configration flow . 74
3.7 Conclusion . 75

4 MFPGA Architecture 77
4.1 Issues in Reconfigurable Network Design 77
4.2 Previous Works on hierarchical architectures 79

4.2.1 Rent’s Rule . 80
4.2.2 Analytical comparison: k-HFPGA and Mesh 81

4.3 Proposed Architecture . 83
4.3.1 Downward Network . 85
4.3.2 The Upward Network . 87

xv

4.3.3 Connections with the Outside . 88
4.3.4 Interconnect Depopulation . 88

4.4 Rent’s Rule MFPGA based model . 90
4.4.1 Wires growth in MFPGA Rent model 90
4.4.2 Switch growth in Rent MFPGA model 90
4.4.3 Analysis and comparison with Mesh Model 92

4.5 Architecture exploration methodologies . 94
4.5.1 Experimental platform for MFPGA 94
4.5.2 Area Model . 96
4.5.3 Mesh-based candidate architecture 97
4.5.4 Benchmark circuits . 99

4.6 Experimental Results . 99
4.6.1 Architecture optimization . 99
4.6.2 Area Efficiency . 101
4.6.3 Clusters Arity Effect . 104
4.6.4 LUT Size Effect . 106

4.7 Conclusion . 108

5 Physical Planning of the Tree-Based MFPGA 111
5.1 Challenge for MFPGA layout design . 111
5.2 MFPGAWiring requirement . 113
5.3 Problem Formulation . 114
5.4 Network Floorplan . 115
5.5 MFPGA Full Custom Layout . 122

5.5.1 4-LUT based logic block . 122
5.5.2 Progarmmable interconnect . 122
5.5.3 Physical placement and routing . 123
5.5.4 Configuration Storage and Distribution 125

5.6 Timing analysis . 125
5.6.1 Delay Model . 125
5.6.2 Critical path extraction and speed performances 127
5.6.3 Speed performances . 129

5.7 The area gap between MFPGA and ASIC 131

xvi Contents

5.8 Conclusion . 133

Conclusion 135
1 Summary of contributions . 135

1.1 Automating layout generation of specific Mesh-based FPGA 135
1.2 Multilevel Hierarchical FPGA architectures 136

2 Future work . 137
2.1 Tree-based MFPGA architecture improvements 137
2.2 Delay and power models . 138
2.3 Large tree-based FPGA . 139

List of Publications 141

Bibliography 145

List of Figures

1 Flexibility Vs. Performances . 3

1.1 Island-style FPGA architecture . 8
1.2 Details of Logic Block architecture . 10
1.3 Basic Logic Element with a 4-LUT, a Flip-Flop and a bypass multiplexer . 11
1.4 Stratix-III LAB structure . 13
1.5 Block Diagram of the Stratix-III Adptive Logic Module 14
1.6 R4 Interconnect Connections . 16
1.7 C4 Interconnect Connections . 17
1.8 Arrangement of Slices within the CLB . 19
1.9 Virtex-5 slice . 19
1.10 General Xilinx Virtex Mesh Topology . 20
1.11 Mesh and Torus Networks . 21
1.12 Cube-Connected-Cycles Topology . 22
1.13 Crossbar Switch Fabrics . 23
1.14 Butterfly network . 24
1.15 Banyan Network . 24
1.16 Buterfly Fat Tree . 25
1.17 Illustration of HSRA’s interconnect structure 26
1.18 CAD flow for FPGA exploration . 27
1.19 Average Power Breakdown for a FPGA . 29

2.1 Alliance
CAD Flow . 35

2.2 Screenshot of the Coriolis platform in action 36
2.3 Example of Logic Block Model with 4 inputs and 2 outputs 37
2.4 Logic block input and output . 37
2.5 An example of clustered Logic block and its internal structure 38
2.6 Switch Block Description: Disjoint . 39
2.7 Input/Output Block Description . 40
2.8 FPGA array and tile . 40
2.9 Basic Tile Topology . 41
2.10 FPGA Configuration Technique: Random Access Memory 42

xvii

xviii List of Figures

2.11 FPGA layout core generation flow . 43
2.12 Partial Layout . 44
2.13 Tile mask for clock routing . 46
2.14 Tile Layout Generation . 47
2.15 Examples of clock network distribution using allocated ressources 47
2.16 Logic block topology . 49
2.17 FPGA core generation . 49
2.18 FPGA Chip Generation, verification and validation 50
2.19 FPGA Chip 32x32 in 0.12um ST process . 50

3.1 Neutrons Interaction with Integrated Circuits 54
3.2 Typical SRAM cell . 56
3.3 SRAM layout: 30λx30λ . 56
3.4 Error injection on node Q of the SRAM (275uA, 50ps) 57
3.5 principle of the DICE . 58
3.6 Transistor level of the DICE . 58
3.7 Two SRAM cells to design the DICE . 59
3.8 DICE layout: 60λx35λ . 59
3.9 Error injection on node x1 of the DICE (800uA, 200ps) 60
3.10 Error injection and recovery time . 61
3.11 Recovery time in affected node . 61
3.12 Error injection on 2 nodes simulaneously 62
3.13 10x8 RAM block using a DICE at the left and 10x8 SRAM block at the

right . 63
3.14 Hardware Implementation of 4 bits parity decoder 63
3.15 Hamming Decoder for 4 data bits + 3 parity bits 65
3.16 Parity and Hamming systems area overheads 65
3.17 Parity system: Memory area overhead . 66
3.18 The impact of SEU on routing network . 67
3.19 System decoder for the interconnect . 67
3.20 REDFPGA basic tile overview . 68
3.21 SRAM cell in symbolic layout with SXLIB template (30λx50λ) 69
3.22 The Basic Tile of the FPGA architecture . 69
3.23 Scalable error-detection mechanism . 70
3.24 Multiple error detection . 70
3.25 The redundant FPGA layout . 72
3.26 The redundant FPGA chip micrograph . 73
3.27 Configuration Flow . 74
3.28 Screenshots of automatic VPR place and route 76

4.1 Congestion-aware placement . 78
4.2 Congestion-aware clustering . 79
4.3 k-HFPGA architecture . 80

xix

4.4 Average number of terminals and blocks within circuit model 81
4.5 Bisection of a

√
Nx

√
N Mesh FPGA . 81

4.6 Butterfly Fat Tree Topology . 84
4.7 Typical cluster of level 1 . 86
4.8 MFPGA Interconnect: 2 level Downward Network with k = 4 and p = 1 . 86
4.9 MFPGA Interconnect: 2 level Upward network and IO pads connections . 87
4.10 4x4x2 MFPGA interconnect depopulation: plevel1 = 0.79, plevel2 = 0.64 . . . 89
4.11 Interconnect switches distribution . 92
4.12 LB switches number variation versus N and p 93
4.13 Switches number variation in Mesh and MFPGA both with p = 0.75 94
4.14 Architectures exploration platform . 95
4.15 Switch elements MFPGA vs. Mesh . 97
4.16 CFPGA cluster containing 4 LBs, 10 inputs and 4 outputs 98
4.17 MFPGA area Vs. Mesh area (30 benchmark circuits) 104
4.18 Area distribution between interconnect resources, logic blocks 104
4.19 Clusters arity effect on switches number . 105
4.20 Clusters arity effect on critical path crossed switches 105
4.21 Clusters arity effect on wires number (<=> Muxes number) 105
4.22 Total area for clusters sizes 4-8 (21 benchmark avg.) 107
4.23 LUTs area and LUTs number versus LUT size (for cluster arity = 4) 107
4.24 Critical path switches number clusters sizes 4-8 (21 benchmark avg.) . . . 108

5.1 The minimal bisection width of a Mesh and a binary Tree 113
5.2 light representation of 4x4 MFPGA Architecture with Rent parameter p=1 115
5.3 Flatten 4x4 Tree-based MFPGA . 116
5.4 The rearranged 4x4 Tree-based MFPGA . 117
5.5 Mini Switch Box topology . 118
5.6 3D view of the rearranged 4x4 Tree-based MFPGA 118
5.7 Rearranged 4x4 Tree-based MFPGA mapped in 2D 119
5.8 Rearrangement effect on routing congestion and structure regularity . . . 120
5.9 Rearranged 2048 nodes MFPGA layout: 8x8x8x4 architecture 121
5.10 SRAM cell . 122
5.11 Look Up Table Multiplexer . 123
5.12 Real Logic Block: 4-LUT + Flip-Flop + bypass Multiplexer + 17 SRAM cells 124
5.13 Switch Point Layout . 125
5.14 Vertical and Horizontal 4:1 Multiplexers . 126
5.15 MFPGA Basic tile topology . 127
5.16 Compact Layout of a sparce cross bar: buffers are not presented 128
5.17 The created rearranged Partlevel2 of the MFPGA layout 129
5.18 Layout congestion map of 2048 LBs MFPGA 130
5.19 6 metal layers 2048 LBs MFPGA full custom layout 130
5.20 Sub-paths timing caracterisation . 131
5.21 Timing graph modeling of a simple circuit 131

xx List of Figures

1 Coarse grained Tree based MFPGA . 137
2 Rapid connection for the upward network 138

List of Tables

1.1 Area profile of a mesh-based FPGA [G.Lemieux and D.Lewis, 2004] 29

3.1 Chip Specifications . 73

4.1 Standard cells characteristics . 97
4.2 Benchmarks characteristics used for experiment 100
4.3 Netlists and architectures characteristics . 102
4.4 Comparison between MFPGA and clustered VPR-style Mesh 103
4.5 Levels Rent’s parameters for 2 circuits . 103

5.1 Speed Comparison (0.12µm CMOS, 1.2V) 132
5.2 Area Ratio MFPGA/ASIC . 133

xxi

Introduction

1 Overview and Synopsys
A Field Programmable Gate Array (FPGA) is a pre-fabricated silicon device that can
be reconfigured to implement several applications. The reconfigurability of an FPGA
may be derived from reprogrammable Static Random Access Memory (SRAM) cells.
By programming the SRAM cells, the functionality of FPGA logic units can be tailored
to implement a particular computation. Interconnections between logic units are estab-
lished by programming SRAM cells to connect prefabricated routing wires together.
Thus, any particular application can be mapped onto FPGA by programming the func-
tionality and connectivity of logic units based on the characteristics of the application.

It should be obvious that every application would be best served by specifically tar-
geted custom circuitry. In fact, application-specific integrated circuits (ASICs) are often
made in response to special needs. Since the exact features of the application are known
beforehand, hardware resources in an ASIC are designed to provide highest perfor-
mance implementation for the application. But no one can afford to produce a custom
chip for every application he wants to develop; even when they are feasible, state-of-
the-art ASICs get more expensive every day. Once an ASIC has been fabricated, it is
generally impossible to modify the ASIC to implement any applications different from
the one it was intended for. Circuit implementation such as Standard Cells, requires
that a different VLSI chip be fabricated anew for each design. Further, since the Non-
Recurring Engineering (NRE) costs involved in designing and fabricating an ASIC are
comparatively high, it is generally infeasible to design and manufacture ASICs by small
amounts. As technology improved, a market developed for versatile off-the-shelf parts
that can be programmed to emulate arbitrary digital circuits instead of ASICs. FPGAs
are one class of such devices, distinguished by their ability to be reprogrammed (recon-
figured) any number of times.

The unlimited reconfigurability of an FPGA allows a continuous sequence of cus-
tom circuits to be employed, each one being optimized for a well defined task. This
is fundamentally different from usual general-purpose microprocessors. An applica-
tion is implemented on a microprocessor by compiling it into a stream of hardware
instructions that are sequentially decoded and executed by fixed, general-purpose logic

1

2 Introduction

resources. Unlike FPGAs, functionality of a microprocessor logic resources cannot be
modified on a per-application basis. Instead, each application is compiled to a unique
stream of instructions that are executed by the microprocessors. Since it is possible to
express almost any application as a sequence of instructions, microprocessors are ar-
guably the most flexible computational devices today. However, microprocessors often
incur a performance penalty due to its high flexibility which is its main strong point. To
support flexibility, fixed logic resources in a microprocessor are deliberately designed
to execute efficiently certain basic computations. Consequently, applications that could
benefit from customized, tailor-made logic resources often undergo a performance cut
when executed on general-purpose microprocessors.

Since their introduction in the mid eighties, FPGAs evolved from a simple, low-
capacity gate array technology to devices [Xilinx, 2008] [Altera, 2008] [Lattice, 2008] [Ac-
tel, 2008] providing a mix of coarse-grained datapath units, microprocessor cores, on-
chip A/D conversion, and gate counts by millions. Today, FPGAs are installed firmly
in the space of computational devices, originally dominated by microprocessors and
ASICs. Much like microprocessors, FPGA-based systems can be reprogrammed on a
per-application basis. At the same time, FPGAs offer significant performance gains over
microprocessor implementations for a number of applications. Although these gains are
still generally an order of magnitude less than for equivalent ASIC implementations, the
low NRE costs, fast time-to-market, and flexibility of FPGAs make them an attractive
choice for low-to-medium volume applications.

The routing network of the FPGA, consuming 90% of the chip area, is designed to
suit most circuits types. This is a considerable overdesign for circuits that are not very
congestioned. So, there is a need to customize this routing network for various classes
of circuits.
The idea of customisation has been considered before, and recently the focus has shifted
towards the FPGA routing architecture. For example, early work by Betz and Rose intro-
duced the notion of creating a family of different architectures, each member of which
designed to suit better a different type of circuit [V.Betz and J.Rose, 1995]. Betz and
Rose demonstrate the usefulness of the approach by using members with different logic
blocks. In comparaison, more recent work [S.Phillips and S.Hauck, 2002,S.Phillips et al.,
2004, I.Kuon et al., 2005] focuses on customising the routing network for a few pre-
specified circuits rather than a general class of circuits.
FPGA vendors currently produce FPGAs with varying amounts of logic, I/O pins, and
different speed grades, yet they do not offer FPGAs with different amounts of intercon-
nect for a fixed logic capacity. The main reasons for not offering a variety of interconnect
sizes are inventory control, the impact of marketing and sales of seemingly inferior or
unroutable devices, and the large amount of engineering effort required to develop a
single device. This last reason can be partially addressed by further automating the
FPGA design stage with techniques presented in chapter 3 and chapter 5.

2. Research Goals and Motivations 3

2 Research Goals and Motivations
An FPGA can be programmed in seconds, and any bug found once the chip is tested in
a system can be corrected in minutes simply by reprogramming the FPGA.
A circuit implemented on an FPGA is typically 40 times larger, roughly 4 times slower
and consume 12 times more power than the same circuit implemented via standard cell
in an equivalent process [I.Kuon and J.Rose, 2007]. This makes FPGA implementations
more expensive than ASIC for high volume production designs. These limitations re-
quire further research in new FPGA architectures, in order to reduce power, speed and
density penalities.
From the general survey above, we see that conventional FPGAs represent one chal-
lenging target in the IC world. This domain is large enough for new interesting achi-
tectures and derivatives such as domain specific FPGA and embedded-FPGA. Figure 1
shows how FPGA derivatives can be better placed than standard FPGA towards stan-
dard ASIC.

FlexibilityPerformance

ASIC
ASIC Strutured

ASIC

Domain
Specific µP

embedded

FPGA

FPGA
FPGA

Figure 1: Flexibility Vs. Performances

This work can be viewed as a contribution to the development of reconfigurable
cores that can be a viable option for specific-domain applications. The research pre-
sented here deals with 2 topics. The first deals with the development of a Mesh based
FPGA-layout generator that adapts easily the target technology process with a large
spectrum of architecture constraints. The second topic focuses on the development of
new hierarchical FPGA topology that provides better logic density and performances
than traditional FPGAs.

The thesis features:
• A high level characterization in the field of reconfigurable architectures, specially
FPGAs. This characterisation helps us understand the key characteristics of recon-
figurable devices, including the level of performance we can obtain from various
architectural features.

• Empirical relations on the key building blocks in CMOS VLSI taken from existing
designs in the literature and from our own experimental designs, including rela-
tive feature sizes (e.g. interconnect versus logic) and modeling of key area factors.

• Architecture and Physical designs which explore new points in FPGA design based
on identified needs.

4 Introduction

– Techniques producing reconfigurable hardware additional advantages to in-
tegrate large spectrum of domain-specific design (e.g embedded FPGA, Ra-
diation Hard FPGA).
– Architectures which exploit the identified cost structure to provide greater
functional density for reconfigurable devices.

• Observations and perspectives for future FPGA architects and system designers.

The major contributions of this thesis include:

An automatic Layout Generation for Mesh-Based FPGA
An automated FPGA physical planning methdology; a complete implementation flow
of this methodology that generates an optimal layout for Mesh-Based topologies under
different design constraints. This approach has significant advantages in flexibility and
portability while preserving topology regularity.

A novel FPGA routing Topology: Multilevel Hierarchical FPGA(MFPGA)
The characteristics of silicon technologies create new opportunities for FPGA Design.
We propose a new routing scheme that achieves significant performance improvement
and area saving compared with conventional methods. Exploiting the properties iden-
tified above and current device topologies described in section 1.4, we develop a new
general purpose architecture. Through an efficient well balanced allocation of device
resources, this architecture offers high global gain in terms of area over a wide range of
applications.

A physical planning of the MFPGA
Silicon implementations of Mulilevel Hierarchical FPGA must map the interconnect
and switch components onto the two-dimensional floorplan. Physical floorplanning is
particularly critical for FPGA architectures using hierarchical network topologies. The
floorplan requires preserving the network regularity while minimizing total intercon-
nect wire length to save power and reduce delay.

3 Thesis Organization
This dissertation is organized as follows. Chapter 1 first introduces the state-of-the-art of
FPGA architectures and CAD tools. In particular, we focus on the interconnect topolo-
gies used in industrial and academic FPGA architectures. Chapter 2 presents an imple-
mentation and floorplanning methodology for Mesh-based FPGA design. In particular,

3. Thesis Organization 5

it is shown that mesh network can be automatically mapped onto silicon floorplan un-
der various constraints. A tool implementation of this floorplanning and layout genera-
tion methodology is also introduced. As a proof of the concept, we describe in chapter 3
the generation of a complete SRAM based FPGA chip named REDFPGA, which in-
cludes hardware support for mitigation of SEU.
Chapter 4 introduces a new Multilevel Hierarchical network architecture that can re-
duce routing area with much smaller switches and buffer space requirement than for
traditionnal mesh-based architectures. This routing scheme is particularly useful for
FPGA design because it minimizes both area and power consumption. We focus on
Rent’s Rule to compare the new architecture named MFPGA with Mesh architecture.
Experiments performed in this chapter are also used to compare switch and wire needs
for both architectures.
Chapter 5 focuses on the physical MFPGA network implementation issues. Finally, con-
clusions are provided along with future perspectives on FPGA research.

1
Background

This chapter presents a technical background on reconfigurable hardware, beginning
with an FPGA architectural overview. Sections 1.3 and 1.4 are in-depth case studies of
the most common reconfigurable devices and a survey of interconnection strcutures.
The 5th section is a brief outline of the software used to implement circuits onto recon-
figurable hardware. The final section exposes general FPGA metrics and comparison
with ASIC.

1.1 Introduction
Hardware logic devices can be divided into two broad classes, namely fixed logic de-
vices and reconfigurable devices. Fixed logic devices, either for application specific in-
tegrated circuits (ASICs) or board solutions containing various components, are opti-
mized at design time to perform efficiently a specific task or a group of tasks. On the
other hand, reconfigurable hardware is designed with ability to handle multiple tasks
and can be changed, or reconfigured, at any time.
Fixed logic is usually the preferred device type; when the application domain is well
known in advance and the design is targeted to a large production where high perfor-
mance, low power, small device size are important design goals. However, while fixed
logic devices are used in a wide range of application domains, there are several draw-
backs associated with these devices. One of the main drawbacks of fixed hardware is
the fact that once the device is manufactured, it inherently cannot be modified any-
more. Consequently, if the device does not work as expected or if there is a change in
the requirements, then it must be redesigned, which can be extremely costly. Another

7

8 Chapter 1. Background

drawback of fixed logic devices is a long and costly time-to-market. It can take several
months or years to design and verify a fixed logic device, depending upon the device
size and complexity. Moreover, the upfront costs (NonRecurring Engineering, NRE)
can range from hundreds of thousands to millions dollars.
Reconfigurable logic devices are typically standard off-the-shelf components, providing
a wide range of logic capacity, I/O capabilities, performance, and power characteristics.
With the device specific software tools provided by the logic vendor, designers are able
to prototype and test their designs quickly on a working circuit, knowing that the re-
configurable logic device which they are testing their design on is the same device that
will be embedded into the final system. In addition, in case of design evolution, even
after the final system has been produced, this reconfigurable logic can be modified to
reflect these changes. This removes almost all NREs costs for a design, and allows an
extremely short time-to-market and a reduced bug fix or upgrade path.
With increasing adaptability and performance by following a general trend towards
lower cost devices, reconfigurable hardware is used in a wider range of applications
than ever before.

1.2 Field Programmable Gate Array
Today’s most popular reconfigurable device is the Field Programmable Gate Array
(FPGA). It is a collection of Logic Blocks(LB) embedded in a reconfigurable intercon-
nection network. Figure 1.1 shows the basic Island-style model (we can also use the
term Mesh), wich was popularized first by Xilinx in 1984.
A global view of an FPGA reminds closely the aspect of a network of processors (Net-

Figure 1.1: Island-style FPGA architecture

workOnChip: NOC). A conventional FPGA, however, differs from a conventional NOC

1.2. Field Programmable Gate Array 9

in several ways:
• Granularity - conventional FPGAs have single output bit logic blocks which are
controlled independently.

• Logic Block - In conventional FPGA, the Logic Block (LB) can perform several op-
erations, but the function cannot be changed from cycle to cycle. Once the function
is configured, it is not changed until it is reconfigured.

• Interconnect - On conventional FPGA, interconnect is purely static. Connecting
sources and sinks is achieved by reserving a path through the reconfigurable switch-
ing network controled by the configuration memory.

The most comprehensive collection of mesh architecture studies can be found in the
book by Betz, Rose and Marquardt [V.Betz et al., 1999]. Much of the information from
this section can be found in this reference as well as papers cited herein. This book
gives the major architectural parameters for FPGA created with the mesh-model. VPR,
Versatile Place and Route tool is used to experiment this typical model which includes
clustered logic block with a full cross bar inside.

Routing Architecture
Conceptually, an island-style FPGA (which is the most popular type of FPGA manufac-
tured today) is an array of LBs. The routing structure can be parametrized to intercon-
nect any LB with any other LB within the array. Every LB which implements the user’s
logic, has inputs and outputs connected to horizontal and vertical routing channels (fig-
ure 1.1). Between rows and columns of an array of LBs, the routing channels contain
Switch blocks (S_block) and Connection Blocks(C_blocks). C_blocks enable to connect
input and output signals of LBs to the routing channel and vice versa. Once signals are
in the routing channels, S_blocks carry them throughout the FPGA by enabling corner
turning and in some cases switching between routing tracks. S_blocks, like C_blocks,
are made up of user programmable switch points.
Every routing channel containsW parallel wire tracks, whereW is called channel width.
The logical length of a wire segment, Lwire, is equal to the number of LB it spans.
To minimize switch counts, FPGAs employ more restricted connection schemes to limit
the interconnect ressources which represent the dominant area in FPGA devices. Rose
and Brown [J.Rose and S.Brown, 1991] established that S_blocks should contain 3 con-
nections per wire and C_blocks should have a switch at 70-90% of all possible switch lo-
cations. They summarised these details by the flexibility parameters Fs = 3 and Fc = 0.7
to 0.9, respectively.

LB Architecture
All LBs contain N Basic Logic Elements (BLEs) grouped together. The BLE inputs are
chosen among a set of I shared LB inputs and the N outputs of BLEs in this LB (called

10 Chapter 1. Background

BLE

BLE

BLE

BLE

Switch
Block

Figure 1.2: Details of Logic Block architecture

feedbacks). These connections are provided by the local cross bar. The local interconnect
can be populated fully or sparsely (full or sparse cross-bar). Figure 1.2 shows the con-
tents of an LB with N = 4, with a local sparse cross-bar as adopted in [G.Lemieux and
D.Lewis, 2004].
In fact, BLEs are simple functions with a small number of inputs and one output. The
most general function used in BLE is the k-input Look-Up Table (k-LUT). As shown in
figure 1.3, a typical BLE consists of a lookup table (LUT), a state holding element such
as a flip-flop, and multiplexers. LUTs are small memories in which the truth table for
the desired function can be written when the FPGA is configured. Multiplexer within
the BLE, in the form of bypassing multiplexer, is controlled by a programming bit that
enables the sequential or the combinatorial mode within the BLE, depending on the
application which is being mapped onto the BLE. By using LUTs, flip-flops, and mul-
tiplexers, FPGAs can implement arbitrary logic functions, any BLE handles functions
with several inputs typically (between 3 and 6) and one output. Research at the uni-
versity of Toronto [E.Ahmed and J.Rose, 2000] shows that 4-LUTs yield the most area
efficient designs over a collection of circuit benchmarks. A 4-LUT can implement any
logic function with 4 inputs and one output. Figure 1.3 shows the canonical 4-LUT in-
side a 4-inputs BLE.

FPGA configuration
Configuration of the FPGAs is commonly saved in Static RAM (SRAM) cells distributed
across the chip. By placing the configuration bits in SRAM cells, FPGAs can be repro-

1.2. Field Programmable Gate Array 11

In A

In C
In D

In B

P1

DFF

P17

OUT

P3

P5

P7

P9

P11

P13

P15
P14

P16

P12

P10

P8

P6

P4

P2

LUT

CLK

Figure 1.3: Basic Logic Element with a 4-LUT, a Flip-Flop and a bypass multiplexer

grammed many times over their life. Thus, an FPGA can implement many different
configurations, just like general-purpose processors can run many different programs.
The ability of an FPGA to run such a wide range of programs is only limited by the
number of LBs in the array and by the quality of the routing resources.

FPGA Evolution
FPGA appeared in the mid 1980’s. In late 80’s and early 90’s reconfigurable computing
engines appeared, based on these new devices. The first FPGA on the market in 1985
was the XC2064 from Xilinx which contained 64 configurable logic blocks (CLBs), all
exhibiting two 3-LUTs. Subsequent generations reached 4-LUTs, because they offered
a more optimal balance concerning logic utilization and minimization of the number
of logic levels compared to similar designs. Reconfigurable FPGA from Xilinx [Xilinx,
2008], Altera [Altera, 2008] and Actel [Actel, 2008] use 4-LUTs as their basic constituent
LBs. Recent FPGAs use 6-LUTs and LBs are more complex than a single Look-Up table.
Throughout the thesis we use 4-LUTs, as the canonical FPGA logic grain for discussion
and comparaisons purpose in forthcoming chapters.
The island-style FPGA presented so far is a simplified version of a modern FPGA,

and therefore does not adequately characterize the complexity and functionality of to-
day’s devices. Modern devices available from vendors such as Xilinx and Altera are
blurring the line between the fine-grained island-style device described above, and a
more medium-grained device. This change in the granularity has been brought about
by the inclusion of coarse-grained components into the reconfigurable fabric, like mul-
tipliers and embedded general-purpose processors.
Today, FPGA companies including Xilinx, Altera and Lattice Semiconductor, are try-

ing to move the emphasis away from SOCs by providing systems-on-a-programmable-
chip (SOPCs). The increase in the transistor count in devices has enabled FPGA design-
ers to create reconfigurable devices providing the functionality that was typically the
province of SOCs.

12 Chapter 1. Background

An example of such FPGAs is the Virtex family from Xilinx. The Virtex II Pro has
many interesting features, including up to four PowerPCs [Xilinx, 2008], 24 embedded
Rocket IO multi-gigabit transceivers, 12 digital clock managers, 556 18x18 multipliers,
and ten megabits of block RAM. This is an expensive and large device, but it is quite
likely to handle a wide range of applications that were previously reserved to SOCs or
systems-on-a-board.
Altera, like Xilinx, has a device which can emulate many types of SOCs, specifically

its Stratix family [Altera, 2008]. Lattice Semiconductor decided to distinguish their prod-
uct by enabling designers to pick specific ASIC cores that can be embedded with the
reconfigurable fabric. Lattice called these devices as Field Programmable System Chips
(FPSC) [Lattice, 2008]. While the reconfigurable fabric is generic in nature, ASIC macro-
cells range from bus interfaces, high-speed line interfaces to high-speed transceiver
cores. All current macrocells belong to the networking domain, with the possibility for
Lattice to create more macrocells in the future if designer demand is high enough.

1.3 FPGA structures
In the following sections we present recent FPGA succesful achievement in industry,
thenwe highlight themost common academic architectures. An evaluation of the Stratix
III and Virtex-5 family devices, which are developed by the Altera Corporation and
Xilinx Corporation respectively, are presented.

1.3.1 Case Study: Altera Stratix III
Based on 65 nm all-layer copper SRAM process, the Stratix-III FPGA family was devel-
oped by Altera Corporation [Stratix-III, 2008]; it offers two family variants, optimized
to meet different application needs:

• The Stratix-IIIL family provides balanced logic, memory, and multiplier ratios for
mainstreams applications.

• The Stratix-IIIE family is rich in memory and multiplier, for data-centric applica-
tions such as wireless, medical imaging and military applications.

The Stratix-III FPGA is an island-style device containing logic array blocks (LABs), em-
bedded memories, embedded DSP and multipliers blocks, multi-function I/O elements
(IOEs), and up to 12 phase-locked loops (PLLs). All these functional elements are con-
nected to each other by a two-dimensional multi-track interconnect fabric.

Logic ArrayBlocks andAdaptive LogicModules The Logic Array Block (LAB) shown
in figure 1.4 is composed of basic building blocks known as Adaptive Logic Modules
(ALMs) which can be configured to implement logic, arithmetic, and register functions.

1.3. FPGA structures 13

Each LAB consists of ten ALMs, carry chains, shared arithmetic chains, LAB control sig-
nals, local interconnect, and register chain connection lines.
The LAB of Stratix-III has a by-product called Memory LAB (or MLAB), which adds
SRAM memory capability to the LAB. MLAB is a superset of the LAB and includes all
LAB features. MLABs support a maximum of 320 bits of simple dual-port Static Ran-
dom Access Memory (SRAM). Each ALM in an MLAB can be configured as a 16x2
block, resulting in a configuration of 16x20 simple dual port SRAM block. MLAB and
LAB blocks always co-exist as pairs in all Stratix III families, allowing up to 50% of the
logic (LABs) to be traded for memory (MLABs).
The basic building block of logic in the Stratix III architecture which is the Adaptive

Figure 1.4: Stratix-III LAB structure

Logic Module (ALM), provides advanced features with efficient logic utilization. ALM
shown in figure 1.5 expands the traditional 4-input look-up table architecture to 6 in-
puts, increasing efficiency by reducing LUTs, logic levels, and associated routing. Each
ALM includes two Adaptive LUTs (ALUTs) with a total of 64 bits of logic program-
ming space and 8 shared inputs. One ALM can implement any function with 6 inputs
and certain seven-input functions. It can also implement some combinations of com-
pletely independent functions(4LUT+4LUT, 5LUT+3LUT) and various combinations of
functions with common inputs(5LUT+5LUT with 2-common inputs, 6LUT+6LUT with
4-common inputs, 5LUT+4LUT with 1-common input). The logic capacity of Stratix3

14 Chapter 1. Background

can reach 240.000 equivalent 6-inputs LUT.
In addition to adaptive LUT-based resources, each ALM contains 2 programmable reg-
isters, 2 dedicated full adders, a carry chain, a shared arithmetic chain, and a register
chain. Through these dedicated resources, an ALM can implement various arithmetic
functions and shift registers efficiently. Each ALM drives all types of interconnects: lo-
cal, row, column, carry chain, shared arithmetic chain, register chain, and direct link
interconnects.
The LAB local interconnect can drive several ALMs in the same LAB. It is driven by

Figure 1.5: Block Diagram of the Stratix-III Adptive Logic Module

column and row interconnects and by ALM outputs in the same LAB. Neighbouring
LABs/MLABs, M9K RAM blocks, M144K blocks, or DSP blocks from the left and right
can also drive a LAB’s local interconnect through the direct link connection. The direct
link connection feature minimizes the use of row and column interconnects, providing
higher performance and flexibility. Each ALM can drive 30 ALMs through fast local and
direct link interconnects. LABs include additionally an enhanced interconnect structure
for routing-shared arithmetic chains and carry chains for efficient arithmetic functions.
The register chain connection allows the register output of one ALM to connect directly
to the register input of the next ALM in the LAB to obtain fast shift registers. These
ALM-to-ALM connections bypass the local interconnect.

EmbeddedMultipliers
Stratix III devices include dedicated high-performance digital signal processing (DSP)
blocks optimized for DSP applications requiring high data throughput. Complex sys-

1.3. FPGA structures 15

tems such as WiMAX, 3GPPWCDMA, CDMA2000, voice over Internet Protocol (VoIP),
H.264 video compression, and high-definition television (HDTV) require high perfor-
mance DSP blocks to process data. Typically, these system designs use DSP blocks to
implement finite impulse response (FIR) filters, complex FIR filters, infinite impulse
response (IIR) filters, Fast Fourier Transform (FFT) functions, and discrete cosine trans-
form (DCT) functions.
Stratix III devices have up to 112 High-speed DSP blocks that provide dedicated imple-
mentation of 9x9,12x12, 18x18, and 36x36 multipliers (550 MHz maximum frequency),
multiply-accumulate functions, and finite impulse response (FIR) filters. Multipliers can
optionally feed an adder/subtractor or accumulator in the block depending on user
configuration. This option saves ALM routing resources and increases performance, be-
cause all connections and blocks are inside the DSP block. Stratix-III provides up to 896
18x18 multipliers.

TriMatrix EmbeddedMemory Blocks
TriMatrix embedded memory blocks provide 3 different sizes of embedded SRAM to
efficiently address the needs of Stratix III FPGA designs. TriMatrix memory includes
the following blocks:

• 950 to 6,750MLAB(320-bit) blocks, optimized to implement filter delay lines, small
FIFO buffers, and shift registers.

• 108 to 1040 M9K(9-Kbit) blocks that can be used for general purpose memory ap-
plications.

• 6 to 48 M144K(144-Kbit) blocks that are ideal for processor code storage, packet
and video frame buffering.

Every embedded memory block can be configured independently to make a single or
dual-port RAM, ROM, FIFO or shift register. Multiple blocks of the same type can also
be grouped together to produce larger memories with minimal timing penalty. TriMa-
trix memory in Stratix-III provides up to 20,491 Kbits of embedded SRAM at up to 600
MHz operation.

MultiTrack Interconnect
Connections between all functional units in the Stratix-III are provided by the Multi-
Track interconnect structure with DirectDrive technology. This interconnect contains a
two-dimensional row- and column-based architecture providing 1-hop connection to
34 adjacent LABs, 2-hop connections to 96 adjacent LABs and 3-hop connections to 160
adjacent LABs. A series of column and row interconnects of varying length and speed
provides signal interconnects between logic array blocks (LABs), memory block struc-
tures, digital signal processing (DSP) blocks, and input/output elements (IOE). These

16 Chapter 1. Background

blocks communicate with themselves and with all other ones through a fabric of routing
wires.
DirectDrive is a deterministic routing technology that ensures identical routing resource
use for any function, regardless of its placement in the device.The MultiTrack intercon-
nect and DirectDrive technology simplify the integration stage of block-based designing
by eliminating extra optimization cycles that typically follow design changes and addi-
tions.
Row interconnect consists of both R4 and R20 connections, as well as direct link con-
nections between LABs and adjacent blocks; R4 interconnects span a combination of 4
LABs, memory logic array blocks (MLAB), DSP blocks, M9K blocks, andM144K blocks.
Figure 1.6 shows R4 interconnect connections from a LAB.
R4 interconnects can drive and can be driven by DSP blocks, RAMblocks and row IOEs.
R4 interconnects can drive other R4 interconnects to extend the range of LABs they
drive. They can also drive and can be driven by C4 and C12 (column interconnects) for
connections from one row to another. Additionally, R4 interconnects can drive R20 in-
terconnects.
R20 row interconnects span 20 LABs and provide high-speed resources for row con-

Figure 1.6: R4 Interconnect Connections

nections between distant LABs, TriMatrix memory, DSP blocks, and row IOEs. R20 row
interconnects drive LAB local interconnects via R4 and C4 interconnects and can drive
R20, R4, C12, and C4 interconnects. R20 can only be driven by another R20, R4 or col-
umn C12 interconnect, not directly by LABs.
The column interconnect operates similarly to the row interconnect. It routes signals
vertically to and from LABs, TriMatrix memory, DSP blocks, and IOEs. A column of
every LAB is served by a dedicated column interconnect. These column interconnect
resources include C4 and C12 vertical interconnects crossing.
The C4 interconnects span four adjacent interfaces in the same device column. Figure 1.7
shows the C4 interconnect connections from a LAB in a column. The C4 interconnects
can drive and can be driven by all types of architecture blocks, including DSP blocks,

1.3. FPGA structures 17

TriMatrix memory blocks, and column and row IOEs. For LAB interconnection, a pri-
mary LAB or its LAB neighbour can drive a given C4 interconnect. All C4 interconnects
can drive one another to extend its range; they can also drive row interconnects to ob-
tain parallel column connections.
C12 column interconnects span a length of 12 LABs and provide fast resources for

Figure 1.7: C4 Interconnect Connections

column connections between distant LABs, TriMatrix memory blocks, DSP blocks, and
IOEs. C12 interconnects drive LAB local interconnects via C4 and R4 interconnects but
do not drive LAB local interconnects directly. C20 can be driven only by R4 and R20 and
other C20 interconnects.

In this brief outline of the Stratix-III family of devices, several features and de-
tails have been left out, since they are beyond the scope of this dissertation. Please see
[Stratix-III, 2008] for more information.

18 Chapter 1. Background

1.3.2 Case Study: Xilinx Virtex 5
Virtex-5 devices introduced in 2006 by Xilinx were the world’s first FPGAs manufac-
tured with the 65nm technology. The Virtex-5 is based upon an architectural approach
that Xilinx created to reduce the cost of developing multiple FPGA platforms, each
one with different combinations of feature sets. Xilinx has dubbed this architectural
approach as the Advanced Silicon Modular Block (ASMBL) architecture. For each ap-
plication domain, such as digital signal processing, Xilinx has determined the optimum
mixture (ratio) of logic, memory, DSP slices, and so forth. Next, for each application do-
main, Xilinx creates a set of components, all based on the same "mix" but with varying
proportions. The initial release of the Virtex-5 includes devices that offer a choice of 4
new platforms, each one delivering an optimized balance of high-performance logic,
serial connectivity, signal processing, and embedded processing:

• LX : Optimized for high-performance logic

• LXT: Optimized for high-performance logic with low-power serial connectivity

• SXT: Optimized for DSP and memory-intensive applications, with low-power se-
rial connectivity

• FXT: Optimized for embedded processing and memory-intensive applications,
with highest-speed serial connectivity

FPGA designs made considerable progress over recent years. Today’s designs often fea-
ture wide data paths, especially in the case of digital signal processing (DSP) appli-
cations. Implementing these designs using 4-input LUTs can require many levels of
logic, thereby reducing performance. In order to address this issue, the ExpressFab-
ric employed by the Virtex-5 family features LUTs with 6 independent inputs, which
can significantly reduce the number of logic levels required to implement large func-
tions. Virtex-5 devices are also based on a new diagonal interconnect architecture that
facilitates shorter, faster routing. An overview of some of the more significant Virtex-5
architectural features is as follows:

Configurable Logic Block
The Configurable Logic Blocks (CLBs) are the main logic resources for implementing
sequential or combinatorial circuits. Each CLB element is connected to a switch matrix
to access the general routing matrix (shown in Figure 1.8). A CLB element contains a
pair of slices. These two slices do not have direct connections to each other, and each
slice is organized as a column. Each slice in a column has an independent carry chain.
Every slice contains 4 logic-function generators (or look-up tables), 4 storage elements,
wide-function multiplexers, and carry logic. Each of these logical functions can be used
as a true 6-input LUT or as two 5-input LUTs that share five of their inputs. In addition
to its four 6-input LUTs, a Virtex-5 slice also includes fast flip-flops to speed pipelined

1.3. FPGA structures 19

Figure 1.8: Arrangement of Slices within the CLB

designs and an improved carry chain architecture to speed arithmetic operations. More-
over, some slices support two additional functions: storing data using distributed RAM
and shifting data with 32-bit registers. Slices that support these additional functions are
called SLICEM; others are called SLICEL. Overall, Virtex-5 family can provide up to
207,360 6-inputs LUT equivalent to 330,000 logic cells (Industry defines a logic cell as a
4-input Look-up Table and a Flip-Flop).

Figure 1.9: Virtex-5 slice

Routing Architecture:
Like Aletra, the general routing topology of the Virtex family was a Mesh architec-
ture [D.Tavana et al., 1996] based on horizontal and vertical wires connecting GRMs
between them as shown in figure 1.10. No details are currently available about the
Virtex-5 routing architecture. The only available information is about the ExpressFabric

20 Chapter 1. Background

CLB

GRM

CLB

GRM

CLB

GRM

CLB

GRM

CLB

GRM

CLB

GRM

CLB

GRM

CLB

GRM

CLB

GRM

CLB

GRM

CLB

GRM

CLB

GRM

CLB

GRM

CLB

GRM

CLB

GRM

CLB

GRM

Figure 1.10: General Xilinx Virtex Mesh Topology

feature that is a radically new form of diagonal interconnect. Thanks to their 12-layer
metallization (11 copper layers and 1 aluminum layer) including an advanced diag-
onal interconnect fabric, the Virtex-5 family uses diagonally symmetric interconnects,
thus minimizing routing hops (the number of interconnects required from CLB to CLB)
to realize major performance improvements over the previous Virtex-4 devices. With
fewer hops, the diagonally interconnect patterns result in an average increase of logic
performance of 30% over the previous Virtex-4 generation of devices, yielding up to 2
speed grades.

Embedded Hard IP
Virtex-5 comes with up to 14.5Mb of block RAM, 640 DSP slices, and 1200 SelectIO. In
addition, the FXT platform includes a couple of PowerPC 440 cores, each one providing
1, 1000DMIPS at 550MHz.
The Virtex-5 DSP48E is based on 25x18 bit multipliers (versus 18x18 in Virtex-4 FPGAs).
DSP Slices are cascaded to provide greater multiplier width with 550 MHz clock man-
agement, while offering both DCM and PLL. The Block RAM (BRAM) can be used as
a 36Kbit, cascadable dual-port block RAM / FIFO with integrated 64-bit ECC (Error
Checking and Correction).

1.4. Interconnection Networks and FPGA architectures alternatives 21

1.4 Interconnection Networks and FPGA architectures al-
ternatives

Due to various performance requirements and cost metrics, many network topologies
are designed for specific applications. Originally founded for telephony, interconnection
networks are adopted in computer systems networks, parallel computing, and graph
theory. It is inspiring and informative to look back on the multiplicity of interconnec-
tion networks.
Networks can be classified into direct networks and indirect networks [J.Duato et al.,
1997]. In direct network terminal nodes are connected directly with all others by the
network. In indirect network, terminal nodes are connected by one (or more) interme-
diate switches. The switching nodes perform the routing. Therefore, indirect networks
are also often referred to as multistage interconnect networks.
Direct networks and indirect networks can have different topologies [J.Duato et al.,
1997]. It is not the objective of this chapter to discuss functionalities and performance
metrics of these different networks. Rather, we give only a brief description of some of
the well known network topologies. We use these topologies as examples to formulate
the FPGA network problems in later chapters.

1.4.1 Direct Network Topologies
Orthogonal Topology:
Nodes in orthogonal networks are connected in k-ary n-dimensional mesh (k-ary n-
mesh) or k-ary n-dimensional torus (k-ary n-cube) formations, as shown in Fig 1.11
Due to simple connection and easy routing provided by adjacency, mesh networks

4−ary 2−dim mesh 4−ary 2−dim torus 4−ary 3−dim mesh

Figure 1.11: Mesh and Torus Networks

are widely used in most FPGA as described in this chapter. Orthogonal networks are
highly regular, therefore, interconnect length between nodes is expected to be uniform
to ensure performance uniformity of logic nodes.
We can use only local connections within the array between adjacent or close, array

22 Chapter 1. Background

elements. The bisection bandwidth in a mesh topology with n elements is O(
√

n) and
hence, never dominates the logical array element size. However, communicating a piece
of data between two points in the array requires a switching delay proportional to the
manhattan distance between the source and the destination (O(

√
n)). This makes distant

communication slow and expensive and can make interconnect delay quite high-easily
dominating the delay through the logic element.

Cube-Connected-Cycles Topology:
The cube-connected-cycles (CCC) topology is proposed as an alternative to orthogonal
topologies in order to reduce the degree of each node [F.P.Preparata and J.Vuillemin,
1981], as shown in Fig 1.12. Each node has 3 degrees of connectivity, compared to 2
degrees in mesh and torus networks. CCC networks have a hierarchical structure: the 3
nodes at each corner of the cube form a local ring.

(*,001)

(*,011)(*,010)

(*,110) (*,111)

(*,101)
(*,100)

(*,000)

Figure 1.12: Cube-Connected-Cycles Topology

FPGAs with direct network topology
Currently, mesh-based (named also island-style) architecture represent the dominant
FPGA architecture style. State of the art shown previously offered by commercial ven-
dors leaders like Xilinx and Altera have 2-dimension mesh-based architecture. A well-
known academicmesh topologies are Tryptich [G.Borriello et al., 1995], VPR-style FPGA
[V.Betz and J.Rose, 1997]. There has been also some works proposing 3D mesh-based
FPGA architectures. Borrowing ideas frommulti-chipmodule (MCM) techniques, Alexan-
der et al. proposed to build a 3D FPGA by stacking together a number of 2D FPGA bare
dies [A.J.Alexander et al., 1995]. A straightforward extension of the Tryptich architec-
ture is found in the Rothko 3D architecture, which has routing and logic blocks placed

1.4. Interconnection Networks and FPGA architectures alternatives 23

on multiple layers [M.Leeser et al., 1998]. Recent work of [M.Lin and A.Gamal, 2007]
and [C.Ababei et al., 2005] present respectively a routing fabric ofmonolithically stacked
3D-FPGA and TPR: a placement and detailed routing tool for such 3D mesh-based FP-
GAs.

1.4.2 Indirect Network Topologies:
Crossbar Switch Fabrics
An NxN crossbar network connects N input ports with N output ports. Any of the N
input ports can be connected to any of the N output ports by a node switch on the corre-
sponding crosspoint (Fig 5.16). Such scheme garantees arbitrary full connectivity along
elements but the cost is prohibitively high.
For an element array where each element is a k-input function (e.g. k-LUT), the cross-

ingress

ingress

ingress

ingress

egress

egress

egress

egress

crossbar switch

Figure 1.13: Crossbar Switch Fabrics

bar would be an NxkxN crossbar. Arranged in a roughly square array, each input and
output must travel O(

√
N) distance. Since interconnect delay is proportional to inter-

connect distance, this implies the interconnect delay grows at least asO(
√

N). However,
the bisection bandwidth for any full crossbar is O(N) .

Butterfly Topology
Compared to the crossbar, the Butterfly network (Fig 1.14) can reduce the total num-
ber of switches required fromO(N) to O(nlog(N)) . Inside the butterfly fabrics, each
source-destination route uses a dedicated path. The delays between any 2 logic nodes
are identical, and the delay is determined by the number of intermediate stages on the
switch fabrics.

24 Chapter 1. Background

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

Figure 1.14: Butterfly network

ingress

ingress

ingress

ingress

egress

egress

egress

egress

Figure 1.15: Banyan Network

Butterfly topology hasmany different isomorphic variations, as described as follows:

• Banyan Network (Fig 1.15) is an isomorphic variation of Butterfly topology. It has
N = 2n inputs and N = 2n outputs, where n is called the dimension of Banyan.
It has total of 1/2.N. log2(N) switches in n stages, each stage is referred as stage i
where 0 <= i < n [H.J.Chao et al., 2001].

• Fat-tree Topology: Unlike the Butterfly network, a fat-tree network provides mul-
tiple paths from source node to destination node. As shown in Fig 1.16, the fat-
tree network can be viewed as an expanded n-ary tree network with multiple root
nodes. The network delays are dependent on the depth of the tree. SPIN network
[P.Guerrier and A.Greiner, 2000] is one design example using 4-ary fat-tree topol-
ogy for an MPSoC on-chip communication.

FPGA with indirect network topologies
Indirect networks are hierarchical structures; connections between two different blocks
at the same level are forbidden, even if the 2 blocks are in close physical proximity. For

1.5. Design Automation for FPGA 25

4x4 4x4 4x4 4x4

4x4 4x4 4x4 4x4

Figure 1.16: Buterfly Fat Tree

this reason, hierarchywas not used at implementing ciruits withmany local connections
(e.g datapaths). This was particularly important in older technologies where switch de-
lay was more significant than wire delay.
A number of indirect network variations like the Clos, Benes, Baseline, Delta, Omega
structures have been explored over the years and used in telephony and computer net-
work research. Such networks have been used in logic emulation systems composed
of large number of FPGAs but not really used inside FPGAs. Altera uses hierarchy in
many of their CPLD products, like FLEX, APEX and ACEX but they are not strictly hier-
archical since direct connections can be made at the lowest level between neighbouring
groups [C.Sung et al., 1998].
A well known academic FPGA architecture using indirect network is the Hierarchical
Synchronous Reconfigurable Array (HSRA) [W.Tsu et al., 1999]. HSRA has a strictly hi-
erarchical, tree-based interconnect structure (Figure 1.17) where logic and interconnect
structures are not closely coupled. The only wire-segments that connect directly to the
logic units are at the leaves level, all other wire segments are decoupled from the logic
blocks.

1.5 Design Automation for FPGA
Realizing that FPGA performance levels lagged behind ASICs, FPGA architectures were
intensely investigated over the past two decades. A major aspect of FPGA architecture
research is the development of Computer Aided Design (CAD) tools for mapping ap-
plications onto FPGAs. It is well established that the quality of an FPGA-based imple-
mentation is largely determined by the effectiveness of its associated collection of CAD
tools. Benefits of a well designed, feature rich FPGA architecture might be impaired if

26 Chapter 1. Background

Figure 1.17: Illustration of HSRA’s interconnect structure

CAD tools do not take advantage of the specific FPGA features. Thus, CAD algorithmic
research is crucial for the necessary architectural enhancement which narrows perfor-
mance gaps between FPGAs and other computational devices like ASICs.
A typical FPGA CAD tool-flow is shown in Figure 1.18. Initially, a circuit specification
of the application is produced either by means of schematic capture, or by a high-level
description in a Hardware Description Language (HDL). The appropriate circuit spec-
ification is used as input to a Synthesis tool. The Synthesis tool synthesizes the circuit
specification into a circuit (we use the terms circuit and netlist interchangeably from now
on) that consists of basic logic gates and their interconnections (hereafter called nets). In
the Technology Mapping phase, the gate-level netlist is transformed into a functionally
equivalent netlist expressed in terms of the logic blocks provided by the FPGA device.
The mapped netlist is used as an input to the placement tool, which determines the ac-
tual physical location of every netlist logic block in the FPGA layout. When the physical
location of each logic block is settled, the routing tool determines the FPGA routing re-
sources needed to route the nets connecting logic blocks already in place. At the end of a
successful routing phase, a stream of configuration bits is produced. The configuration
bitstream is used to program SRAM cells in the FPGA fabric so that the target applica-
tion can be implemented.
Each FPGA supplier has its specific CAD Flow with the same successive steps decribed

1.5. Design Automation for FPGA 27

Bitstream

Synthesis/Mapping

Bitstream Generation

Routing

Placement

Design Entry

Figure 1.18: CAD flow for FPGA exploration

below. Xilinx and Altera propose their customers the ISE and Quartus software tools
respectively.
Considerable work has been done in the academia to develop synthesis, placement and
routing tools to evaluate various FPGA architectures.

Mapping
For LUT-based FPGA, mapping is the process of translating the circuit description into a
netlist of LUTs and Flip-Flops. The usual cost functions are area and delay. SIS [E.Sentovich,
1992] is an open source tool that can optimize the network and convert it into a netlist
of LUTs. Several algorithms can be used for mapping, such as FlowMap [J.Cong and
Y.Ding, 1994] and CutMap [J.Cong and Y.Hwang, 1995]. These algorithms allow the
size of the LUT to be modified and may optimize delay and area. Recently the Univer-
sity of Berkeley distributes ABC [A.Mishchenko, 2005] the successor of SIS, a growing
software system for synthesis and verification of binary sequential logic circuits.

28 Chapter 1. Background

Placement and Routing
Placement problems in both FPGA and VLSI environment are fairly similar. Therefore
these techniques were udapted for use in FPGA. Placement algorithms are designed
to minimize both routing demands and critical-path delays. Routing demands are re-
duced by placing highly interconnected logic blocks together closely. Critical-path de-
lays are minimized by moving together logic blocks which are on critical nets. There are
several general approaches to placement algorithms: min-cut [D.Huang and A.Kahng,
1997], analytic [B.Riess and G.Ettelt, 1995], and simulated annealing placement algo-
rithms [M.Huang et al., 1986].
Most research work in FPGA CADs has been done for developing the router. Routing
consists in connecting different LBs together, after their position have been fixed by
the placer. Since the number of tracks in a channel is set and possible connections be-
tween tracks are fixed, routing is a critical step for FPGAs. The main goal of routing
algorithms is avoiding net congestion while minimizing critical-path delays. Net con-
gestion is avoided by balancing the use of routing resources; critical path delays are
minimized by giving higher priority to high criticality nets.
The Versatile Placement and Route (VPR) [V.Betz and J.Rose, 1997] encapsulates the
entire placement and routing tools. VPR is targeted at symmetric mesh architecture.
The tool allows specification of the various parameters such as logic bloc size, chan-
nel width, S block type and flexibility Fc in C blocks. Simulated annealing is used for
the placement step. The router is based on the Pathfinder algorithm [L.McMurchie and
C.Ebeling, 1995] which focuses on congestion avoidance and delay minimization.

Bitsream Generator
output of placement and routing tools consists in the route taken by each source-sink
pair in the netlist. The bitstream generator tool is usally employed to extract the pro-
gramming bits needed to implement the user-defined circuit.

1.6 FPGA characteristics and challenges
An overall view of conventional, reconfigurable devices shows that 80-90% of the area
is dedicated to the reconfigurable interconnect. The remaining area is dedicated to re-
configurable logical blocks. This 80-90% area includes switches, wires and configuration
memory which are reserved for interconnect. The remaining area is dedicated to recon-
figurable logic blocks.
To illustrate themagnitude of this problem, an area profile is given in table 1.1 [G.Lemieux

and D.Lewis, 2004]. From this table, it can be seen that FPGAs area profiles are approxi-
matively 80-90% for routing and only 10% of the area is used to implement logic directly.
Inability to meet timing requirements, power consumption, or logic capacity constraints
make it infeasible technically to use FPGA in the most demanding applications. De-

1.6. FPGA characteristics and challenges 29

Proportion of area
Resource Details Range Average

Logic flip-flops, lookup tables, lookup table input buffers 8-16% 12%

lookup table output buffers and switches 8-10% 9%
BLE input multiplexers 18-36% 27%

Routing LB input multiplexers 11-13% 12%
cluster input buffers (track buffers) 7-11% 9%
routing switches (switch blocks) 23-39% 31%

Total routing 84-92% 88%

Table 1.1: Area profile of a mesh-based FPGA [G.Lemieux and D.Lewis, 2004]

spite their design cost advantage, FPGAs impose large area overheads when they are
compared to custom silicon alternatives. The interconnect and configuration overhead
is responsible for the 40x density ratio disadvantage [I.Kuon and J.Rose, 2007] incurred
by reconfigurable devices, compared to hardwired logic.
According to [E.A.Kusse and J.Rabaey, 1998], FPGA energetic losses come from 3

main sources following the distribution described in Fig 1.19. Clearly the most dissipat-

Figure 1.19: Average Power Breakdown for a FPGA

ing element is always the interconnect, due to the great number of wires and switches
necessary to maintain high FPGA flexibility as explained in the previous paragraph.
Then comes the clock distribution network, a very consuming element in all VLSI de-
vices. Finally, we have the logic part of the FPGA (mostly CLB).

30 Chapter 1. Background

As discussed in [V.George and J.Rabaey, 2001], attempting to design low energy system
requires efforts at all levels of design abstraction. An efficient approach to reduce power
consumption in FPGA must comply with the following order:
1. Architecture level : Change architecture to decrease the wires number and their
loading capacity.

2. Logic level : Use various techniques and devices to decrease the dynamic and
static losses.

3. Layout level : Adapt the technology parameters to decrease the leakage current
losses.

Anyone seeking to understand the design of an FPGA must delve into the complexities
of programmable routing architecture. There is a considerable demand for FPGA with
lower area, lower delay and reduced power dissipation. One general method used to
make FPGAs more efficient is to improve the numerous algorithmic steps which map
a logic circuit into an FPGA. Improvements to the logic synthesis step can reduce the
amount and the depth of logic needed. Further improvements to the partitioning, place-
ment, and clustering steps, such as described [V.Betz et al., 1999], can reduce intercon-
nect use and delay by shortening connections. Similarly, improvements to the routing
step can enhance map critical delay paths to get faster connections. Other works such
as [K.Poon and S.J.E.Wilton, 2002] improve the CAD flow to reduce the overall FPGA
power consumption.
The definition of an FPGA architecture consists in determining the logic and routing
resources, so that these resources produce the most efficient results possible. Since both
the algorithm and the architecture can be defined simultaneously, there is a significant
amount of interaction which can influence the final result. The scope of this design prob-
lem has motivated a considerable amount of research to improve FPGAs efficiency.

1.7 Conclusion
After we defined clearly what an FPGA ismade of, it is important to identify the various
FPGA penalizing causes and to try to alleviate them. Three factors allow to determine
the characteristics of an FPGA: quality of its architecture, quality of CAD tools and the
manufacturing process (including all its electric advantages).
The gap between FPGA and ASIC is illustrated by area, performance and power con-
sumption discrepancies. ASICs are still more efficient than FPGAs but lack some flex-
ibility. To enjoy the benefits of programmable logic, we distinguish 2 alternatives for
FPGA that will be explored in the following chapters:

• ASIC designers must add some flexibility to their design by integrating embed-
ded FPGA or by developing Domain-Specific and tailored FPGA (Flexible ASIC).
Automating FPGA layout should be quite effective for fulfilling this purpose, and
thus getting closer to ASIC design.

1.7. Conclusion 31

• FPGA designers must increase logic density and optimize interconnect since it is
the most dominant resource. The most used and studied architecture is the Mesh-
based one. New architecture should be developed with better quality of routing
network. This would be beneficial for stand-alone, domain specific or embedded
FPGAs.

2
Automating Layout of Mesh Based FPGA

The main purpose of our work is to reduce the design cycle time for the developement
of an island-style FPGA core layout. We develop a technology-independent layout-
generator which can be adapted to any standard cell library geometry and to any pro-
cess rules. It also offers a garantee of portability and compatibility with the overall ASIC
design environment. The proof-of-concept we created is a set of FPGA cores validated
in 0.12µ process from STmicroelectronics.

2.1 Introduction
FPGA are getting more prevalent in digital systems and have a wide range of ap-
plications, ranging from telecommunications switching systems to wireless interfaces.
Currently, the transistor-level design and layout of an FPGA core is done mostly by
hand; developing a new FPGA is a time consuming and challenging task. It is reported
in [K.Padalia et al., 2003] that a new FPGA design involves approximately 50 to 200
person-years. It is an interesting option to reduce significantly the time-to-market of the
product at the expense of limited area penalty. This result can be reached by automating
the complete FPGA design process.

A number of previous attempts were made regarding automated generation of FP-
GAs.
Phillips and Hauck focused on the automatic layout of domain specific reconfigurable
systems [S.Phillips and S.Hauck, 2002] [S.Phillips et al., 2004]. The first step of the ap-
proach is a high level architecture generation, followed by different methods for au-

33

34 Chapter 2. Automating Layout of Mesh Based FPGA

tomating the layout process. Their findings was that the automated approach yielded
a layout 42% larger and 64% slower than a manual design. By reducing functionality
to what is required for a specific domain, the authors successfully demonstrate that
smaller and faster layouts can be created automatically. Using standard cell libraries,
Cadence tools [Cadence, 2006] are used for the VLSI layout generation. Since it applies
a global place and route for a flattened design, this method cannot take advantage of
FPGA regularity. Phillips and Hauck do not report any manufactured chips resulting
from this work.

Kafafi et al. propose a new architecture and an implementation using standard cells
to construct an FPGA from a VHDL input description [N.Kafafi et al., 2003]. Their con-
text is the creation of FPGAs embedded within a non-programmable ASIC. The layout
for this logic, called a synthesizable embedded programmable logic core, is easily cre-
ated using commercial synthesis, placement and routing tools. The authors adopted this
approach to allow for easy integration in system-on-a-chip applications and targeted a
very specific architecture, suitable only for small embedded cores. Nevertheless, this
approach could also simplify the design of standalone FPGAs. Its disadvantage is, as
expected, a significant penalty in terms of area. In [N.Kafafi et al., 2003], the authors
estimate that an automatically generated layout is 6.4 times larger than the equivalent
layout created manually. Like Phillips andHauck work, this approach does not consider
the regularity of the FPGA core which penalizes speed and performances.

GILES [I.Kuon et al., 2005] workmade amajor contribution in this domain. It demon-
strated a complete automation of FPGA creation with significantly reduced manual la-
bor. The GILES tools are used to generate the tile netlist and placement which are ex-
ported to Cadence’s Virtuso Assembly platform [Cadence, 2006] for the routing. To form
the complete FPGA, tiles are then abutted together using Cadence scripting language
named SKILL [Cadence, 2006]. GILES uses an appropriate library (which includes ba-
sic cells: LUT, buffers, muxes, etc.) that restrict migration to various industrial processes
and integration to typical ASIC design flow (Timing, area or power oriented flows).
It is demonstrated that GILES, using automated tools, can produce a layout 36% larger
than a commercial FPGA device layout. Kuon et al. [I.Kuon et al., 2005] report that an
FPGA tape-out created with this methodology in a 0.18 um process by TSMC did oper-
ate successfully.
The flexibility reported above highlights one of the gains of automated design we hope
to achieve with our methodology.

This chapter presents the generic method and the total flow to automate the process
of producing the transistor-level layout of an FPGA core and all steps involved in cre-
ating the FPGA chip. In the following sections, we present a general methodology with
the adequate CAD flow allowing designers to create their own FPGA with their own
specifications. This method is more suitable for automated FPGA generation because
prior work restricts the number of inputs, outputs, or switches; moreover there are re-

2.2. Adaptive VLSI CAD Platform 35

strictions on the basic cell library and technology choices too.

2.2 Adaptive VLSI CAD Platform

Over the past decade, research has been conducted at the uni-
versity of Paris-6 to produce a complete open source VLSI CAD
flow named ALLIANCE [Alliance, 2006]. As shown in figure 2.1
ALLIANCE offers open-source CAD tools for simulation, synthesis
and VLSI place&route.
More recently, additional research at University of Paris-6 created
a new physical design platform named CORIOLIS [C.Alexandre
et al., 2005]. This research adopted the approach of creating a circuit
design environment, allowing physical CAD tools exploration
leading to valid architectural decisions. CORIOLIS provides high
level C++ associated to Python APIs, along with a unified and con-
sistent hierarchical VLSI data model through all design steps, from
logic down to final layout. It provides an open CAD environment
(both for design flows and algorithms) by offering a progressively
enhanced set of CAD tools such as Zephyr [C.Alexandre et al.,
2006](static timing analyzer), a Python extension language STRA-
TUS [S.Belloeil et al., 2007], a set of core functionalities such as a
"lef/def" interface, and a graphical user interface(figure 2.2). We
extend ALLIANCE and CORIOLIS platform to take into account
physical layout constraints in the context of FPGA-architecture, as
well as the automated FPGA layout procedure.
We apply an efficient scheme to integrate designer-guided action in
the automated core generation, by using the procedural language
STRATUS. In this work the procedural techniques perform power
routing, clock distribution, configuration memory placement,
interface connector placement, tiles abutment, and route specific
nets. ALLIANCE VLSI CAD tools (OCP for placement, NERO for
routing) are used to complete automatically the remaining layout.

Design
Entry

Boolean

Synthesis
BooG

LooN

Simulation
Verification

Asimut

Optimization
Structural

Boolean

Physical
View

GDSII

Physical Design

BooM

Gate Level
Structural

Netlist

RTL Design

Optimization

Logic

Network

or

xor
not

and

Description

Structural
Extracted

Gates Netlist

Asimut & LVX

Cougar

Simulation &

OCP
Placement

Nero

netlist & RC
Extraction

Verification

Routing

Figure 2.1: Alliance
CAD Flow

36 Chapter 2. Automating Layout of Mesh Based FPGA

Figure 2.2: Screenshot of the Coriolis platform in action

2.3 Circuit Design: Architecture generator
2.3.1 Architecture Modelisation
In our approach, an Island Style FPGA is defined by 3 main elements: Logic Block(LB),
Switch Block(SB) and Input/Output Block(IOB). We use an architecture file to describe
the connections topology of every block as follow:

Logic Block: This block can be considered as a black box with a fixed number of in-
puts and outputs distributed on the 4 sides of the box and connected to the adjacent
routing channels as shown in figure 2.3. Every input or output pin has an associated
connection vector showing the associated fraction of tracks where it can be connected.
Pins connected to global network like the clock are distinguished by the key word global.

An example of LB interface and its corresponding description file is presented in
figure 2.3. The structural netlist of the LB interface is generated automatically and cor-
responds to programmable multiplexers for the inputs and a set of tristates for the out-
puts that drives the routing channels. Figure 2.4 shows an example of input and output
vectors.
The internal HDL logic description (netlist) of the LB is written by the designer. Gen-
erally it contains a number of different or similar subblocks interconnected together by
the internal network. Subblock is generally K-inputs Basic Logic Element (BLE) that con-
tains K-LUT, flip-flop and a bypass multiplexer. Figure 2.5 shows an example of 4-BLE
instantiated later 4 times in the clustered LB with a cross-bar for local interconnections.

2.3. Circuit Design: Architecture generator 37

Figure 2.3: Example of Logic Block Model with 4 inputs and 2 outputs

Input

Output

]0110011[

[1 0 1 1 0 0 1]sram

LB

Figure 2.4: Logic block input and output

Switch Block Each Switch Block (SB) has 4 different sides: Top, Bottom, left, right.
Connections between the different sides are described in 16 tables shown in figure 2.6.
Tracks entering through one side can reach 3 opposite sides or return to the same side.
Therefore 4 tables are associated to each source side: Side1->Side1, Side1->Side2, Side1-
>Side3 and Side1->Side4. Each table has W1 rows, W2 columns (with W1= channel
width in source side, W2= channel width in sink side) and displays the connections
from a track in the source side to tracks in the sink side.
Figure 2.6 shows the example of the Disjoint switch block with WTop = WBottom =
WLeft = WRight = 4. Note: ’1’ means there is a configurable connection, and ’0’ means
there is no connection. This technique of model presentation allows to define any switch
block topology.
Programmable SRAM-based switches within the SB allow connection between twowires.
they can be implemented using either pass-transistor, transmission gate or tristate buffer
as illustrated in figure 2.6. Generally tristates will be used since standard cell librairies
provided by foundries do not contain pass-transistor or transmission gates. Introduc-
ing these gates needs to develop specific cells in a standard cell manner including lay-

38 Chapter 2. Automating Layout of Mesh Based FPGA

in1

clk

in0

in2
in3

4−LUT
FF

out

4−inputs BLE

BLE

BLE

BLE

BLE

Figure 2.5: An example of clustered Logic block and its internal structure

out, schematic and electric models that must be compatible with standard CAD flow
(place&route, timing analysis etc.). Even if we use pass-transistors, the interconnect re-
quires buffers and to avoid conflict each signal direction has its pass-transistor. The
SRAM can be shared between 2 pass-transistors connecting 2 wires. For the generic-
ity and the simplicity of automatic netlist generation, every switch is controlled by its
independent SRAM cell.

Input/Output Block: Like the LB, the IOB is considered as a black box with 1 output
pin and 1 output pin. Each pin is connected to the adjacent routing channel respecting
the associated connection vector as shown in figure 2.7.

2.3.2 Generic mesh FPGA model
The first approach to generate a mesh-based FPGA netlist is to break the problem in
two levels of hierarchy. At the bottom level, the main blocks are defined in the architec-
ture file as shown previously and the black boxes corresponding to the IOB and LB are
written by the designer in high level design language such as VHDL. The top netlist is
composed only of IOB, SB and LB and determined automatically by duplicating these
building blocks as shown in figure 2.8.
To simplify the problem for the physical layout, we adopt a second approach which
consists to compose the FPGA in the form of regular array as shown in figure 2.8. Each
tile of the array has a square area and refers to a logic block core, a switch block, and
one set of adjacent horizontal and vertical routing tracks.

2.3. Circuit Design: Architecture generator 39

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

2

1 2
1

1
1

1

0 0 0
0
000

0 0 0

00
0
1

3

30track

2

1 2
0

0
0

0 0 0
0
000

0 0 0

00
0
1

3

30track

0

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

2

1 2
0

0
0 0 0

0
000

0 0 0

00
0
1

3

30track

0
0

2

1 2
1

1
1

1

0 0 0
0
000

0 0 0

00
0
1

3

30track

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

2

1 2
1

1
1

1

0 0 0
0
000

0 0 0

00
0
1

3

30

Top

track
Bottom

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

0 1 2 3

0
1
2
3

0
1
2
3

0 1 2 3

0 1 2 3

0
1
2
3

sram

2

1 2
1

1
0 0 0

0
000

0 0 0

00
0
1

3

30track
Top

1
1

2

1 2
1

1
1

1

0 0 0
0
000

0 0 0

00
0
1

3

30track
Left

2

1 2
1

1
1

1

0 0 0
0
000

0 0 0

00
0
1

3

30track
Right

2

1 2

0
0

0

0 0 0
0
000

0 0 0

00
0
1

3

30track
Bottom

Bottom Bottom Bottom Bottom
0

2

1 2
0 0 0

0
000

0 0 0

00
0
1

3

30track
Top

1
1

Left Right

2

1 2
1

1
1

1

0 0 0
0
000

0 0 0

00
0
1

3

30track
Bottom

1
1 Left LeftLeftLeft

Top

2

1 2
1

1
1

1

0 0 0
0
000

0 0 0

00
0
1

3

30track
Left Right

2

1 2
1

1
1

1

0 0 0
0
000

0 0 0

00
0
1

3

30track
Bottom

RightRightRightRight

2

1 2
0

0
0 0 0

0
000

0 0 0

00
0
1

3

30

Top

track
Top

0
0

2

1 2
1

1
1

1

0 0 0
0
000

0 0 0

00
0
1

3

30

Top

track
Left

2

1 2
1

1
1

1

0 0 0
0
000

0 0 0

00
0
1

3

30

Top

track
Right

0
1
2
3

0 1 2 3

Figure 2.6: Switch Block Description: Disjoint

40 Chapter 2. Automating Layout of Mesh Based FPGA

Figure 2.7: Input/Output Block Description

pin0

pin1

LB

CK

pin4
pin5

pin2

pin3

CK

CKCKCK

CK

CK

pin1

CK

pin2

LB LB LB

LBLB

IOB

IOB

IOB LB LB LB

IOB

IOB

IOB

IOB IOB IOB

IOB IOB IOB

pin0

pin1

LB

CK

pin4
pin5

pin2

pin3

CK

CKCKCK

CK

CK

pin1

CK

pin2

LB LB LB

LBLB

IOB

IOB

IOB LB LB LB

IOB

IOB

IOB

IOB IOB IOB

IOB IOB IOB

Figure 2.8: FPGA array and tile

2.3.3 FPGA Tiles
A set of 16 different tiles which are abutted repeatedly to compose the whole FPGA ar-
ray are identified (figure 2.8). The main tile is the basic tile, whereas the other tiles are
their derivations. The basic tile includes a complete switch block and part of the logic
block to form a regular square box as shown in figure 2.9. Input/Output vectors of logic
block which exceed the outline of the tile are associated to the adjacent tiles.
The tiles on the leftmost column and the bottom row do not contain any logic block.
They contain only a channel which connects adjacent IO pads to the adjacent logic block
input. The rest of the tiles contain a top horizontal channel, a right vertical channel, a
switch box, and a logic block. Any array size can be generated by replicating these tiles.
An important aspect in the tile based design is that adjacent sides of 2 abutted tiles must
have equal length. While deciding sizes of the tiles, priority is given to the tile which is
used most; in this case it is the basic tile. The sizes of the other tiles are adjusted accord-
ingly.

2.3. Circuit Design: Architecture generator 41

Logic Block

Figure 2.9: Basic Tile Topology

Each tile generator is written in the STRATUS language. The tile generator receives a set
of architectural parameters as inputs (from the architecture file). Then it generates the
tile netlist in accordance with the given parameters. Loops and conditional statements
are used to generate a tile for any parameters. The netlist of each tile is generated directly
using the standard cell library. Python routines are also merged in the tile generator for
generating VHDL model of specific components. These components are synthesized by
the Alliance synthesizer named BOOG. The netlist of each tile is mapped directly onto
the standard cell library. The generated netlists of all tiles are passed to the architec-
ture generator which links them together to construct the top level netlist of a complete
FPGA. This generated netlist may be integrated in any larger application and design
flow.

2.3.4 Programming access
As shown in figure 2.10, we adopt the random access method to write the configuration.
Configuration bits are grouped in words and can be programmed selectively. Adresses
and data buses are routed through the entire array and additional circuitry is used for
decoding. For each configuration cycle, the row and column decoders identify the word
being programmed, the data bus distributes the configuration memory content. This
programming technique allows direct and independent access to configuration mem-
ory to change only the resources in use. Moreover, this method allows the use of simple
cell such as latch or SRAM for storing configuration information.
An NX by NY FPGA contains (NX+1) by (NY+1) tiles; NX+1 is the total number of
columns andNY+1 is the total number of rows. Each FPGA tile comprises a set of SRAM
bits arranged in multiple rows. The SRAM bits in a row are called a word. In order to
write a tile word data, a row number, a column number and a word number must be

42 Chapter 2. Automating Layout of Mesh Based FPGA

Loader

Bitstream
Binary

Tile configuration
(8 16−bit words)

LutMask0

LutMask1

MUX0 MUX1 MUX2 MUX3 MUX4

MUX6 MUX7MX5 F F

Column Decoder

Ro
w

 D
ec

od
er

Data bus driver

Figure 2.10: FPGA Configuration Technique: Random Access Memory

specified. The row and column numbers give the location of the tile in the FPGA array,
whereas the word number gives the location of the word in a tile. All adress and data
bits are passed to the loader. Thanks to the row, column and word decoders, the exact
strobe is turned on. Thus when word’s strobe turns high, the data is written into the
specific word of the requested tile. This process is repeated for all words of all tiles. The
loader and decoders are generated automatically by the FPGA generator.

2.4 VLSI Layout generator
The use of standard cells requires an efficient optimized action on the FPGA architec-
ture. This necessity arises because the circuits are designed by a general method, and
thus do not inherit any design tradeoffs that are implemented when the full custom
template is used. On the other hand, standard cell method offers an opportunity to op-
timize FPGA performances. For example, if a designer requires a low power design,
then it is possible to use a low power library instead of a library that is optimized for
area or performance. In addition, use of the standard cell method allows the designer
to integrate easily the structures that he created into the typical ASIC design flow, since
standard cell flows are widely used throughout industry.
The typical standard cell method cannot take advantage of FPGAs regularity if generic
steps are used. In this section, we explore the possibility of creating regular FPGA struc-

2.4. VLSI Layout generator 43

Figure 2.11: FPGA layout core generation flow

tures by extending the standard method.
Our generator adopts a Bottom-Up methodology to build up the FPGA core from the
lowest level where it generates basic tiles. The scalability of this tiles can be modulated
to obtain the desired FPGA fit. Figure 2.11 gives an overview of the different generation
phases.

The VLSI Layout Generator automates the creation of mask-ready layouts from the
circuits provided by the Architecture Generator. It generates a layout for every tile, then
the complete FPGA core and the adequate loader mask are assembled.
The layout generator must be able to create layouts for any conceivable circuit that the
high-level architecture generator can produce. In this work we investigate standard cell
methods for layout process automating.

This generator works in 3 steps. In the first step, it generates hierarchical netlist of
the FPGA core including the top level netlist, the basic tiles and the loader netlists.
Second step, it generates a partial layout using generic parameterized algorithms. The
partial layout is generated to obtain a fast bitstream configuration mechanism, an ef-
ficient power routing and a balanced clock distribution network. Final step completes
the remaining layout using automatic placer and router. This two-step scheme allows
better layout handling, according to initial constraints.

44 Chapter 2. Automating Layout of Mesh Based FPGA

2.4.1 Tile Layout
The tile generator generates both the netlist and the partial layout of a tile. The partial
layout is generated with the help of parametrized algorithms which take a set of layout
parameters as inputs. In this case a partial layout is performed to :
- adjust abutment box.
- place critical cells (SRAM, Flip-Flop).
- place peripheral pins in order to overlap with adjacent tiles pins
- route tile power grid.
- route critical nets (clk, data, strobe).
Knowing the library cells characteristics, total tile area is estimated and its dimensions

Horizontal

Strobe_in

vdd&vss

pins
interface

Column_in

Column_out Data_out

Strobe_out

Vertical VDD&VSSData_in

Bounding box

buf buf buf buf bufbuf

sramand sram sram sram sram buf

sramand sram sram sram sram buf

sramand sram sram sram sram buf

sramand sram sram sram sram buf

DFF

Figure 2.12: Partial Layout

are saved. The X and Y dimensions of the tile are adjusted properly to make sure that a
tile does not waste any extra space.
The partial layout generator places all SRAM bits in rows and columns with a fixed
distance between 2 rows, as shown in figure 2.12. Each SRAM bit in a row receives a
vertical data signal, and an horizontal strobe signal. Data bits are written in all SRAMs
of a row only when strobe is "high" for that row and when the column is "high" for
the complete tile. The column and strobe signals come from a bitstream configurator
(loader), which is discussed later in section 4. The column and data signals from the top
are buffered before they exit on the bottom side of the tile. Similarly a strobe signal from
the left is buffered before it exits on the right side of the tile.
The algorithm starts placing the configuration cells from a layout parameter named

2.4. VLSI Layout generator 45

’Start Position’. Similarly the height and width of a tile and the total SRAM bits are
also adjustable parameters for each different channel width. These layout parameters
change with the number of SRAM bits. For this purpose a small database is created
which specifies all these variables for different channel widths. The layout algorithm
and the database specification are generic enough to handle other architectural param-
eters that are not yet generic.

Power routing:
The layout generation algorithm generates horizontal and vertical power segments as
shown in figure 2.12. The alternating VDD and GND segments in the horizontal direc-
tion are fixed, whereas the placement of vertical power segments is supported by few
layout parameters. The total number of vertical segments for power and ground in a
tile, their positions and their widths are defined in the layout database. These values
can be changed for tiles of different sizes. Horizontal power segments use the 1st and
2nd routing layer, whereas vertical power segments use the 5th routing layer.

Pin generation:
In island-style FPGA, tiles connect together by abutment, and pin locations on the
boundaries of adjacent tiles must overlap. The positions of few of these pins are cal-
culated on the basis of the layout parameters found in the database. Since the database
is common to all tiles, thus the pin abutment problem does not arise for these pins.
There are other pins which do not have fixed positions. Since the final automatic place-
ment of all tiles is done independently, it is difficult for the placer to choose correctly
the pin locations of the tiles. Consequently a generic algorithm is written to place all
remaining pins. This algorithm places the pins in the 4 directions of the tile and ensures
that the pins are not congested in a limited place. It utilizes all available space and tries
to distribute the pins with equal spacing.

Clock generation:
In this work, we use a tile based approach to route symmetric clock network. A single
tile mask is used to reserves routing ressources for clock tree inside any tile as shown
in figure 2.13. These ressources correpond to vertical and horizontal tracks in metal 3, 4
and 5. In addition, there is an allocated area for clock buffers in the 4 corners of the tile.
This tile mask is automatically merged with the FPGA tiles during the partial layout
phase.
The main advantage of this procedure is that we obtain a generic tile based and a bal-
anced clock distribution network. Once tiles are abutted, allocated area and routing
tracks give the necessary ressources to route a symmetric clock tree. Figure 2.15 shows
how we use the reserved area and tracks to route a balanced clock tree and to put the

46 Chapter 2. Automating Layout of Mesh Based FPGA

Vertical tracks reserved for Clock routing
(metal 5 and metal 3)

Horizontal tracks
reserved for clock
routing (metal4)

Area reserved
for Clock buffer

Tie

TieTie

Tie

DFF

Figure 2.13: Tile mask for clock routing

clock buffers in the right place. Since the clock routing is totally automatic, we can im-
plement new generic algorithm for other clock distribution networks. The main point to
consider for a new clock routing algorithm is the placement of clock buffers; the routing
wires must overlap with mask tile.

Automatic placement & routing
After the partial layout generation step and ressources reservation for clock routing,
automatic tool places the remaining logic of the tile netlist in the free area. The placer
automatically adds empty cells to fill up any extra space. Then automatic routing tool is
executed to route all unrouted nets inside the tile.
All the tiles are separetly routed using 4 routing layers. Metal layers 5 and 6 are reserved
mainly for the clock tree and power segments. ALLIANCE automatic tools OCP and
NERO are used for placement and routing respectively. Cells placed and nets routed in
the partial layout are respectively respected and not modified by OCP and NERO. The
NERO router also avoids using the metal ressources reserved for clock tree. An example
of a complete tile layout is shown in figure 2.14.

2.4.2 FPGA layout
Logic array generation
In this work, the logic array is implemented in 5 metal layer and using SXLIB [Alliance,
2006] which is a library of standard cells designed with symbolic rules. The overall
process of chip layout generation is shown in fig 2.17. The regularity of the island-style
simplifies the automatic structuring of an FPGA Layout. Parameters for the generator
are the number of LB per Row and the number of LB per column.

2.4. VLSI Layout generator 47

Figure 2.14: Tile Layout Generation

The FPGA generator builds the FPGA array by replicating tiles, then it generates the
power ring and the programming infrastructure that integrates the loader and adress
decoders. Finally it connects clock signals internal to the array using reserved ressources
in internal tiles and consider how these signals are distributed to generate a balanced
clock network as shown in figure 2.15. This automatic design system is scalable to large
FPGAs and includes realistic features of real FPGA chip. This flow takes into account
the periphery of the FPGA core for connecting I/O pads which are placed later using
industrial tool.

Tile Mask
for clock routing

buffer

Flip−Flop

H−tree clock network Symmetric clock network

Figure 2.15: Examples of clock network distribution using allocated ressources

To prove that this generator can be used to design FPGA, we export the symbolic

48 Chapter 2. Automating Layout of Mesh Based FPGA

array to real layout. S2R [Alliance, 2006] is an automatic tool intented to export the sym-
bolic layout to the real layout in 0.12 um fabrication process from STmicorelectronics.
Access to this technology was provided by the CMP [CMP, 2006]. Our design is gener-
ated in GDSII format and is compatible with industrial desgin flow such as Cadence’s
Virtuoso design platform and Encounter design platform [Cadence, 2006]. As shown in
figure 2.18, industrial tools can be used to place I/O pads and also to check the FPGA
design rules and circuitry (DRC and LVS).
Figure 2.19 shows a representative FPGA chip that contains 1024 tiles arranged in a 32
by 32 array. The array is surrounded by 73 input pads and 32 output pads and 7 con-
trol pads (configurations pads, scan, clk). The routing architecture consists of 8 tracks
per channel. All routing tracks have length one and use buffered switches. Every logic
block contains one 4-LUT, 4 inputs and 2 outputs. All inputs and outputs pins of the
logic block are fully connected to the adjacent channels as shown in figure 2.16.
This chip is fully generated using the design flow presented in this chapter and com-
plies with 0.12µ ST process design rules validated by DRC and LVS check. The 32x32
FPGA takes an area of 3885.6µ by 3882µ.
As mentioned in 2.1, our approach has not any restrictions on the basic cell library or
technology choices. It is technology-independent approach since we use standard cell
library as provided by the foundry and we don’t need any specific cells. Our automatic
approach using standard cell SXLIB library generates a tile layout with a total area 4.5
times larger than the equivalent full custom layout designed with optimized basic cells
such as transmission gates and 4-LUT presented in chapter 5.
The architecture choices has an important impact on the area overhead. In this work we
developed FPGA with bidirectional wires which require the use of three states logic
gates, and we are penalized when we use tristates as a standard cell instead pass-
transistors (which is not a standard cell). If we target other architectures with unidi-
rectional wires, both full custom and standard cell approches use he same architecture
of multiplexers, thus the area overhead will corresponds to the common area overhead
between full custom cells and standard cells. We note that the overhead ratio between
full-custom and standard cell designs is decreasing with the advance of technology pro-
cess (becausemetal wire width decrease slowly compared to transistor width): in 65 nm,
a standard cell design can be 1.5 times only larger than the equivalent full custom one.
We can also improve the area if we use specific library of cells as done in the GILES
work [I.Kuon et al., 2005] where the area overhead represents 36% only.

2.5 Embedded FPGA
Another motivation for designing FPGA networks of any size is provided by the to-
day’s trend of implementing system-on-chip (SoC) and platform-based designs. These
designs could benefit from embedding programmable logic cores on-chip and com-
bining multiple implementations into one piece of silicon. A number of embedded
reconfigurable core products are been developed by companies such eASIC [eASIC,

2.5. Embedded FPGA 49

LUT FF

Figure 2.16: Logic block topology

Figure 2.17: FPGA core generation

2008], m2000 [M2000,] and Actel [Varicore, 2001]. Several integrated circuits contain-
ing programmable logic cores are described [P.S.Zuchowski et al., 2002] [T.Vaida, 2001]
[M.Borgatti et al., 2002]. Other efforts to synthesize FPGA cores are reported in [A.Yan
and J.E.Wilton, 2006].
There are numerous other reasons to prefer embedded FPGA cores to regular custom
logic in SoC or platform applications. First, the use of FPGA cores retains all traditional
advantages of FPGAs, such as making changes to the circuit late in the manufacturing
cycle to correct design errors or to comply with emerging standards (post-fabrication
flexibility). It broadens market prospects for the same device, since it can be more easily
adapted to work in different customer environments or to include entirely new features.
Finally, it gives the possibility of tolerating some types of manfacturing defects.
Currently, the design of a custom FPGA core requires specialized tools and the exper-
tise of an FPGA architect. This makes it impractical to apply this methodology for all
embedded applications. Tools presented in the previous sections can be used by an em-
bedded system engineer to design a fully specific FPGA core.

50 Chapter 2. Automating Layout of Mesh Based FPGA

Figure 2.18: FPGA Chip Generation, verification and validation

Figure 2.19: FPGA Chip 32x32 in 0.12um ST process

2.6. conclusion 51

2.6 conclusion
In this work we aimed at presenting an automatic method to generate an FPGA using an
open-source VLSI tool-kit and targeting a standard cell library. We can produce FPGAs
with different architectural parameters. In the future, we intend to increase the number
of adjustable architecture parameters. We also intend to add support for other networks
topologies including coarse grain modules such as memory and DSP blocks.
The global method can be reported easily to be used with Commercial VLSI tools and
any Founder Library : custom, semi-custom, standard cell libraries and macro cells.
Using this technique we can produce a large spectrum of different architectures and
different array sizes. As we noted, our method is not automated completely. To achieve
better layout quality some manual specific tasks are suggested, which are related to
the target FPGA. The proposed method is validated by generating a set of island-style
FPGA layouts which complies with VLSI design rules: DRC, Power, Clock network,
Timing etc.

3
Redundant FPGA Core

Due to their general performance, high integration density SRAM based FPGA are very
attractive for space, avionic and military applications. But this technology uses SRAM
cells to control its logic and interconnect configuration. Since the storage elements are
themost Single Event Upset (SEU) sensitive elements, SRAM-based FPGA are penalized
for applications with high safety and robustness. This chapter introduces techniques
and methods to guarantee safe and secure SRAM-based FPGA operation. Then using
the layout generator developed in chapter 2, we create an SRAM based FPGA named
REDFPGA, which includes hardware support for the mitigation of SEU. The design was
successfully migrated and taped out in 0.12 um 6-metal layer CMOS process from ST.

3.1 Context
Recent industry interest in neutron-induced soft errors focused primarily on data cor-
ruption in memory devices. However, neutron-susceptible memory elements are used
for configuration storage in SRAM-based FPGAs. There is a significant and growing
risk of functional failure in such FPGAs due to the corruption of configuration data.This
limits their widespread use in mission critical applications (aerospace, medical, military
applications).
CMOS ICs operating in space and radiation environments are subject to 3 main tran-

sient radiation effects: single event latch up, performance degradation due to cumulated
dose and single event upset (SEU).
SEU is a change of state caused by a high-energy particle strike to a sensitive node in a
micro-electronic device, particularly on transistors in semiconductor memory. Figure 3.1

53

54 Chapter 3. Redundant FPGA Core

shows SEU phenomena induced by energetic particles hitting silicon device. SEU is not
considered damaging permanently :the transistor’s, or circuits’ functionality. A particle
hit with sufficient energy changes the logic state of the memory elements, thus pro-
ducing a soft error. Due to technology scaling and reduced supply voltage, soft errors
represent a serious problem in logic circuits because critical charge has now reached
a lower level than the charges generated by energetic particle incidence. SEU-induced
soft errors contribute significantly to the overall system FIT (Failure In Time) rate for
ground-based and airborne equipment
Terrestrial SEU is due to cosmic particles colliding with atoms in the atmosphere, cre-

N+

+ +
+++

+
+

+

N+

Oxide Insulation High EnergyGate

Drain Source

Neutron

P−Substrate

Silicon Ions from Neutron Impact
cause trail of Ionisation

Depletion Region

Figure 3.1: Neutrons Interaction with Integrated Circuits

ating cascades or showers of neutrons and protons, which in turn may interact with
electronics. In deep sub-micrometer geometries, this affects semiconductor devices in
the atmosphere. In space, high energy, ionizing particles exist as part of the natural
background, referred to as galactic cosmic rays (GCR). Solar activity and trapping of
charged particles in the earth’s magnetosphere worsen the problem. Similar energies
are possible on a terrestrial flight over the poles or at high altitude. Traces of radioactive
elements in chip packages also lead to SEUs.
There are two memory resources in FPGAs, a) user bits, and b) configuration bits. An
SEU on user bits cause a transient error. An SEU on configuration bits leads to a per-
manent and hard error which is the major error types in FPGAs because the number of
SRAM configuration cells dominates user-defined memory elements (registers inside
LB). Typically, the number of SRAM configuration cells are more than 98% of all mem-
ory elements inside an FPGA.
Conventional fault-tolerant schemes [B.W.Johnson, 1998] can only protect user-bits. The
most common applicable fault-tolerant mechanism to protect configuration bits in com-
mercial SRAM-based FPGA is to use Triple Modular Redundancy (TMR) scheme in all
used logic and routing resources [C.Carmichael et al., 1999]. However, this approach
causes area and power overhead in excess of 200% and more often close to 300%. While
TMR schemes can mask single error, they will fail if errors accumulate in the circuit.
To prevent accumulated errors, scrubbing can be used. Scrubbing includes reading back
the configuration bits, comparing those with the original configuration bits [V.Maingot

3.2. Robustness of the FPGAs Configuration Memory 55

et al., 2007], and writing the correct bits when there is an error. The combination of TMR
and scrubbing gives a highly reliable framework at the cost of 100% area overhead and
enforces high performances and power penalities. Detection and correction of config-
uration upsets in SRAM-based FPGA may need several thousands or millions of clock
cycles before functional failure is detected.

In this work, we study methods and technologies that can be used to guarantee safe
and secure SRAM-based FPGA operation based on:

• Memory cells Hardening

• Error detection and correction techniques

3.2 Robustness of the FPGAs Configuration Memory
If a soft error occurs in a memory element, it is difficult to recover the original data.
SRAM hardening can be achieved through redundancy, resistor decoupling, shielding.
Hardening with technologies such as: CMOS substrate epitaxy, CMOS on insulator sub-
strate [S.Hareland et al., 2001] and resistive or capacitive hardening [W.Wang, 2004] in-
duce a degradation of performance.
A modified storage cell called Dual Interlocked Cell (DICE) [T.Calin et al., 1996] avoids
those drawbacks and errors, thus achieving upset immunity.

3.2.1 Basic SRAM Cell
Each configuration bit in an SRAM-based FPGA is stored on four transistors forming
two cross-coupled inverters. Two additional access transistors are used to control the
access to a storage cell during read and write operations. This is the typical SRAM cell
with six MOSFETs to stores one memory bit, shown in figures 3.2 and 3.3

First, standard SRAMmemory is examined in order to evaluate its immunity and its
operating limits under SEU impact. To evaluate the maximum current that SRAM can
admit, the error duration is fixed and its current amplitude limit is measured. In this
work the Upset induced charge is simulated by a time-dependent current source with
a triangular shape. The current wave form depends on two factors: fault duration and
current amplitude.
By SPICE simulation, we have found that critical current (i.e., the minimal pulse am-

plitude that provokes a positive upset) for the standard SRAM cell presented in figure
3.3 is depending on environment caracteristics and may be:

• 180uA for a duration of 200ps or,

• 220uA for a duration of 100ps or,

56 Chapter 3. Redundant FPGA Core

vdd

nQ

Data

nData

Wen

Q

Figure 3.2: Typical SRAM cell

Figure 3.3: SRAM layout: 30λx30λ

• 270uA for a duration of 50ps.

Higher amplitude or period induce a permanent soft error. Figure 3.4 shows how the
logic state of Q node changes from 0 to 1 if the induced current ("I(HIT)") of the SEU has
an amplitude of 275uA.

3.2.2 The Dual Interlocked CEll (DICE) structure
A DICE memory cell is designed to provide upset immunity, avoiding and correcting
SEU errors. The proposed cell does not impose particular constraints on transistor sizes
or on technology process.
The DICE structure (figure 3.5) uses a 4-node redundant structure. It includes two con-
ventional cross-coupled (horizontal) inverters latch structures N0-P1 and N2-P3, con-

3.2. Robustness of the FPGAs Configuration Memory 57

Figure 3.4: Error injection on node Q of the SRAM (275uA, 50ps)

58 Chapter 3. Redundant FPGA Core

nected by bidirectional feedback (vertical) inverters N1-P2 and N3-P0. The 4 nodes X0,
X1, X2 and X3 store the data as pairs of complementary values (1010 or 0101) which are
accessed simultaneously using transmission gates for write or read operations.
In figure 3.5 the principle of dual interlocked storage cell is presented. The inverter
symbols are in fact either P-type or N-type transistors. They form two opposite feed-
back loops, a clockwise P-transistor loop P0..P3 and an anti-clockwise N-transistor loop
N3..N0. Figure 3.6 presents the flattened view of the transistor level DICE structure.

P1

N0

N1 P2

P3

N2

N3
P0

X0 X1

X2X3

CK

D D

Figure 3.5: principle of the DICE

P0 P1 P2 P3

N1 N2 N3N0
X3X2X1XO

N4 N5 N6 N7 D

CK

D

Figure 3.6: Transistor level of the DICE

The logic state of every node of the cell is controlled by two adjacent nodes located
on the opposite diagonal. The two nodes on each diagonal don’t depend directly on
each other, since their state is controlled by the two nodes of the other diagonal. A node
Xi controls the two complementary nodes on the opposite diagonal Xi-1 and Xi+1. This
is done using a single transistor for each complementary feedback control connection
through Ni-1 and Pi+1.
The logic state 1 is considered as "X0.X1.X2.X3"="1010": "N1-P2" and "N3-P0" in conduc-
tion form two latches that store the same data. The horizontal transistors pairs N0-P1

3.2. Robustness of the FPGAs Configuration Memory 59

and N2-P3 are blocked. They perform a feedback interlock function, thus insulating
each vertical latches from the other.
Analysis can be done for a positive transient upset at node Xi. A positive perturbation
at node Xi affects node Xi-1 through transistor Ni-1. Nodes Xi+1, Xi+2 keep their state
capacitively and restore the correct logic state on the two perturbed node through tran-
sistors Ni and Pi+1.

As shown in figure 3.7, the design of two adjacent CMOS SRAM cells can be di-
rectly converted into DICE by simply rewiring internal interconnects without changing
transistor sizes. Figure 3.8 shows the DICE layout that is more than twice larger than
standard SRAM.

Figure 3.7: Two SRAM cells to design the DICE

Figure 3.8: DICE layout: 60λx35λ

60 Chapter 3. Redundant FPGA Core

3.2.3 Testing the DICE: Error Injection
The SPICE model of the DICE cell is extracted from the real layout in a 120 nm technol-
ogy process. The method of simulation used for the SRAM is applied to the DICE to test
its robustness. The particle hit is always represented by a peak of current on one node.
The same scenario is applied to all nodes, one node at a time. The DICE cannot recover
2 errors on two different nodes at the same time. Errors are injected independently on
the 4 nodes X0, X1, X2 and X3 to study the behavior of the circuit.
In figure 3.9 an error is injected on node X1. It can be noted that on curve X1 the node

Figure 3.9: Error injection on node x1 of the DICE (800uA, 200ps)

has changed its logic state and after a few seconds it returns to its original state. Also
an error on node X1 causes an error on node X0. The two other nodes retain their logic
state.
An error must be injected on each node to investigate this circuit and to determine the
maximum current it can admit. Recovery time is measured to describe the behavior of
the DICE cell.

Figure 3.10 shows an error on node X1. IHIT is the injected error with a 500uA ampli-
tude. The recovery time is defined as the duration of the SEU induced error on a given
node. For node X0 the recovery time is larger than in X1, because it is a negative upset
corrected via P-transistors. In our layout P-transistors are smaller than N-transistors,

3.2. Robustness of the FPGAs Configuration Memory 61

Figure 3.10: Error injection and recovery time

thus P-transistors are slower.

Figure 3.11: Recovery time in affected node

The curves in figure 3.11 show the relation between current amplitude and recovery
time, for error durations of 50,100 and 200 picoseconds. We noticed that the recovery
time grows with the current and durations.
It should be noted that the DICE circuit is not immune to Multiple Event Upset (MEU).
If two simultaneously sensitive nodes of the cell, storing the same logic state, are flipped
by a single or multiple particle impacts, then immunity is lost and the cell is upset. The
probability of this occurrence can be made very low in ground based and commercial
airborne equipment.
To check MEU effects, 2 errors are injected in two different nodes; the system logic state
is changed. In figure 3.12, 2 nodes X1 and X3 are hit at the same time. the logic state of

62 Chapter 3. Redundant FPGA Core

all nodes are changed and they don’t return to their original state. This cell is immune
to SEU only.

Figure 3.12: Error injection on 2 nodes simulaneously

A DICE detects and corrects errors with a fast recovery time; this is due to the fact
that the restoring feedback function is embedded in the memory structure, without re-
quiring any additional feedback system.
Figure 3.26 shows the difference in area between two memory blocks with a same ca-
pacity (10 bytes each one). The block in the right using standard SRAM cells (10x8 bits),
the second using a DICE (10x8). DICEmemory is 2.3× larger than the standard one, and
adds storing configuration delay.

3.3 Error Detection and Correction
There are many error detecting techniques, like parity bit control, then specific tech-
niques are used in order to correct the detected errors. Moreover techniques of self
checking can detect and also correct errors when occurred.

3.3. Error Detection and Correction 63

Figure 3.13: 10x8 RAM block using a DICE at the left and 10x8 SRAM block at the right

3.3.1 Parity Check Technique
Parity check (sometimes called VRC, for Vertical Redundancy Check or Vertical Redun-
dancy Checking) is one of the simplest checking mechanisms. Computing parity in-
volves counting the number of ones in a data unit, and adding either a "0" or "1" (called
a parity bit) to make the count odd (for odd parity) or even (for even parity). For ex-
ample, 1001 is a 4-bit data unit containing two 1-bits; since this is an even number, a "0"
would be added to maintain even parity, or, if odd parity was maintained, another "1"
would be added.
To check even parity, the XOR operator is used as shown in figure 3.14; to calculate

odd parity, the XNOR operator is used. Single bit errors are detected when the parity
count shows that the number of ones is incorrect, indicating that a data bit has been
flipped by noise on the transmission line. Therefore, parity bit is an error detecting code,
but is not an error correcting code as there is no way to determine which particular bit
is corrupted. The data must be discarded, and retransmitted entirely. Parity does have
the advantage, however, that it is about the best possible code that uses only a single bit
of space and it requires a reduced number of XOR gates to detect one error.

d0
d1

d3
d2

parity bit
error

Figure 3.14: Hardware Implementation of 4 bits parity decoder

64 Chapter 3. Redundant FPGA Core

3.3.2 Hamming Code
This approach of "error detecting and correcting codes" is based on defining a distance
between two bit strings by the number of bits that must be changed in the first string
to obtain the second string. Extra bits are added to each string; they are set so that a
minimum number of bits is changed to obtain the second string from the first one. If the
received string isn’t valid, it is assumed that the valid string is the corrected one, closest
to the received one.
The Hamming code is a set of error-correction codes that can be used to detect and
correct bit errors that may occur when computer data are moved or stored. Hamming
code is named for R. W. Hamming of Bell Labs.
Like other error-correction code, Hamming code makes use of the concept of parity

bits, which are bits added to data so that the validity of the data can be checked when
they are read or after they are received from a data transmission link. Systems using
more than one parity bit, an error-correction code can identify not only a single bit error
in the data unit, but also its location in the data unit.
In data transmission, the ability of a receiving station to correct errors in the received
data is called Forward Error Correction (FEC) and can increase throughput on a data
link when a lot of noise is present. To implement this, a transmitting station must add
extra data (called error correction bits) to the transmission. However, correction may
not always be cost saving compared to simple information retransmitting. Hamming
codes make FEC less expensive to implement through the use of a block parity mecha-
nism.
Compared to simple parity code, Hamming codes detect two bit errors by using more
than one parity bit, each of which is computed on different combinations of bits in the
data. The number of parity bits required depends on the number of bits in the data, and
is respecting the Hamming rule:

d + p <= 2p − 1 (3.1)
The parity bits are placed inside the Hamming word, each one in a position of a power
of 2. Thus, if we consider the example of 4-bits data "d1 d2 d3 d4", the 3 parity bits "p1
p2 p3" are placed in the total Hamming code word of size n = d + p (where d is the
number of data bits and p is the number of parity bits) as follows: N= "p1 p2 d1 p3 d2
d3 d4".
Parity bits are generated by multiplying the data bits by a code generator matrix. Then
reading the entire vector, Hamming’s decoder can correct any single-bit error, or de-
tect all single-bit and two-bit errors by computing the data bits and parity bits by the
parity-check matrix. Figure 3.15 shows a hardware implementation of a Hamming(4,3)
decoder.

Compared to the Parity system, the Hamming system presents the advantage of er-
ror correction and double error detection but il also presents a disadvantage in term
of area overhead due to the additional parity bits and its decoder system. Figure 3.16

3.3. Error Detection and Correction 65

d 2
p 3
p 2

p 1

d 1

d 3

d 4

s 0

s 1

s 2

s 3

Figure 3.15: Hamming Decoder for 4 data bits + 3 parity bits

shows the area overhead for a RAMword, using the Parity system and using the Ham-
ming system. The system area represents the original SRAMs area (data bits), the addi-
tional SRAMs area (parity bits) and the decoder area.
In this work, we look to secure the configuration memory in an SRAM-based FPGA.
The original configuration corresponds to the bitstream generated by the FPGA CAD
tools. In this case, the encoding phase is done on the bitstream generation with a soft-
ware encoder module; for this reason we don’t take into account an encoder area. We
use the SXLIB library and new SRAM cell(figure 3.21) to implement and evaluate the
real area of any module.

Figure 3.16: Parity and Hamming systems area overheads

Another important factor to take into account is the number of data bits in the word.

66 Chapter 3. Redundant FPGA Core

For example, to secure a RAMblock of 1 KByte by implementing a check system for each
word, a word size of 4, 8, 16 or 32 has an important impact on the memory area required
for the parity check. Figure 3.17 shows this impact and shows that larger memory words
is better to reduce the total memory area overhead.

Figure 3.17: Parity system: Memory area overhead

3.4 Architecture Features
3.4.1 Motivations
This work is done in collaboration with the CEA (Commisariat à l’Energie Atomique) in
order to develop a first SRAM-based FPGA prototype that integrates simple hardware
technique for the configuration memory reliability. In this first step, reliability for inter-
nal registers used in the functional mode are not taken into account in this work.
The goal is to build a scalable architecture with a generic technique of error detection
and correction that can be extended or adapted if we change the reliability level and the
technologie process. We choose the technique that is most compatible with the FPGA
generation approach presented in chapter 2 and which can expect benefit from the ran-
dom access to the configuration memory, the scalability by abutment and the standard
cell flow.

3.4.2 REDFPGA architecture overview
An SEU on configuration bits may change the functionality of the look-up tables as
well as the interconnect controlled by the SRAM cells, thus can produce a hardware er-
ror if there is a driver conflict. The example in figure 3.18 shows how a bitflip changes
the signals routing and causes different type of erros. Figure 3.18.(a) shows two differ-
ent nets A and B, that cross a subset switch matrix using respectively programmable
switche (W0,S0) and (N0,E0). Figure 3.18.(b) shows an SEU (1 to 0) on switch (W0,S0)

3.4. Architecture Features 67

that causes a switch open resulting in a permanent error in the gate-level netlist. Fig-
ure 3.18.(c) shows an SEU (0 to 1) on switch (N0,S0) that causes a hard errors between
nets A and B wich can damage the device. In this cases, the configuration bit remains
erroneous until the new configuration is downloaded into the FPGA.

A

B

B

N0 N1

E1

S1S0

E0

W1

W0

N0 N1

E1

S1S0

E0

W1

W0

A

A

B

B

N0 N1

E1

S1S0

E0

W1

W0 A/B

A/B

A/B

(a) (b)
A/B

(c)

Figure 3.18: The impact of SEU on routing network

These hardware conflicts can be eliminated by using simple decoders to implement
a system dependency between switches that drive the same track. As shown in fig-
ure 3.19, the ordinary control system of the interconnect (figure 3.19.(a)) can be replaced
with an efficient system using simple decoder to control switches (figure 3.19.(b)). This
method eliminates the possibility of driver conflicts and reduces the configuration bits
number. In the proposed model, the total number of SRAM cells is reduced by 55% and
the total area increases by 6% due to the decoders area.

decoder

output

CLB

output

CLB

SRAM

Switch Element

(b)(a)

Figure 3.19: System decoder for the interconnect

The REDFPGA model comprises an array of configurable logic blocks (LBs) and fig-
ure 3.20 shows the structural basic tile. Each LB contains a 4-LUT followed by a by-pass
flip-flop. Each LB has 4 inputs (one on each side) and an output that drives adjacent
channels on its top and right sides. The LBs communicate with one another through a
disjoint bi-directional routing network. All inputs and outputs of a LB connect with all

68 Chapter 3. Redundant FPGA Core

wires in a channel. The generated FPGA matrix can haveNX LBs in the X direction, NY
LBs in the Y direction, and a channel width Ch.
The functionality of the logic block is controlled by programming the multiplexers and
the content of the look-up-table. The total number of configuration bits in the tile in-
cluding all programmable ressources is 77 bits grouped as nine 8-bits words and one
5-bits word that can be programmed selectively. If the implementation of the array is
made, we obtain an array of reconfigurable cells grouped as 8-bit words and this array
can be programmed similarly to a RAM. Figure 3.21 presents the basic SRAM cell used
to store FPGA configuration.

decoder

decoder

decoder

decoder

decoder

decoder

decoder

decoder

decoder

decoder

decoder

decoder

decoder

decoder

decoder

decoder

LUT

Switch Block

Figure 3.20: REDFPGA basic tile overview

3.4.3 SEU detection and correction in REDFPGA
The FPGA device can contain millions of configuration bits. A continuous readback and
verification of the configuration data become an expensive function in terms of cycle
number and dynamic power. To perform verification we implement a fine grain verifi-
cation mechanism. Configurable ressources are organized as an array of tiles. Configu-
rationmemory is also organized as an array of data-frames. A single data frame contains
configuration data of the tile that lie in that column and row. In each tile and for each
data frame, we integrate an SEU detection system. This system enables an error signal
if it detects any change in configuration bits. The error signal propagates through row

3.4. Architecture Features 69

Figure 3.21: SRAM cell in symbolic layout with SXLIB template (30λx50λ)

and column. Figure 3.22 shows the content of the basic grain which is a tile with differ-
ent views: functional logic view, Configuration memory frame view and error-detection
module view.
Regularity of the FPGA structure simplifies the structuring of the entire FPGA. The

O
R

OR

error
detector

sbox

CLB

logic & interconnect Error−detectordata−frame

Figure 3.22: The Basic Tile of the FPGA architecture

process of FPGA generation described in chapter 2 is used to generate the REDFPGA.
As shown in figure 3.23, the abutment of tiles gives a global error-detection mechanism
that can detect any configuration bits error. It also returns the row and column of the
defective frame.Moreover the proposed approach is still efficient if errors accumulate in
different frames at the same time. Figure 3.24 shows how this technique allows to detect
multiple simultaneous errors and indicates the failure frames that must be reconfigured.
The highlighted zone correponds to the mapped design area, frames outside this area
are known in advance by the configuration module (software module in this work) and
false alarms that come from these frames can be ignored. Example in figure 3.24 shows 3
simultaneous errors detection in frames (0,3), (1,3) and (2,2). The global error-detection

70 Chapter 3. Redundant FPGA Core

and correction mechanism will reconfigure frames (0,3), (1,3), (2,3), (1,2) and (2,2) only.

sbox

CLB

CLB

sbox

CLB

sbox

CLB

sbox

CLB

sbox

CLB

sbox

CLB

sbox

CLB

sbox

CLB

sbox

CLB

sbox

CLB

sbox

CLB

sbox

CLB

sbox

CLB

sbox

CLB

sbox

CLB

O
R

OR

error
detector

O
R

OR

error
detector O

R

OR

error
detector

O
R

OR

error
detector

O
R

OR

error
detector

O
R

OR

error
detector

O
R

OR

error
detector O

R

OR

error
detector

O
R

OR

error
detector O

R

OR

error
detector

O
R

OR

error
detector O

R

OR

error
detector

O
R

OR

error
detector

O
R

OR

error
detector

O
R

OR

error
detector

error
detector O

R

OR

Error_col1 Error_col2 Error_col3 Error_col4

error_row4

error_row1

error_row2

error_row3

Figure 3.23: Scalable error-detection mechanism

sbox

CLB

error
detector O

R

OR

error
detector

error
detector

O
R

OR

O
R

OR

error
detector

error
detector

O
R

OR

O
R

OR

error
detector

error
detector

O
R

OR

O
R

OR

error
detector

error
detector

O
R

OR

O
R

OR
sbox

CLB

sbox

CLB

sbox

CLB

sbox

CLB

CLB

sbox

CLB

sbox

CLB

sbox

CLB

error
detector

error
detector O

R

OR

O
R

OR

error
detector O

R

OR

error
detector O

R

OR

error
detector O

R

OR

error
detector O

R

OR

error
detector O

R

OR

11

1

1

1

0

0

0
(0,0)

(0,0) (1,0) (2,0) (3,0)

(3,1)

(3,2)

(3,3)

(2,1)

(2,2)

(2,3)

(1,1)

(1,2)

(1,3)

(0,1)

(0,2)

(0,3)

Figure 3.24: Multiple error detection

Thanks to random access technique to the configuration memory, the correction is
made rapidly by re-writing only the failure frame. We note that the configuration bit-
stream is stored as an array of frames. Each frame has unique address that corresponds
to the appropriate couple (row,column).
The REDFPGA prototype integrates a detection-error system based on the parity tech-
nique. For each byte of the configuration memory we associate one extra SRAM cell and
one parity-module that verify in real time the parity of the byte. Without readback, and
without comparison to an original bit-stream, this system makes continuous verifica-
tion. The correction is made on-demand once we detect an error. Only the erroneous

3.5. Tape Out 71

tile frame will be updated. The FPGA configuration system is used to load the intial
correct configuration of the tile. This means that the remaining part of the FPGA is still
operating if it is functionally independent of the faulty tile, else we wait for a few cycles
to reconfigure the faulty tile.
The proposed error-detection mechanism is scalable with any FPGA array size. The
frame granularity can be varied to obtain the best balance between area, power and
performances. Any accumulated errors are easily detected since they are in differents
byte address.
In this work we choose the parity system because it is good enough to validate the com-
plete error-detection and correction mechanism with a minimal additional silicon cost
compared to other systems. Other efficient mitigation systems such as methods based
on hamming code or CRC checker can be integrated easily in the basic tile and replace the
parity system. Such methods enhance the reliability and allow detection of accumulated
errors in the same byte.

3.5 Tape Out
The layout generation is done using a symbolic standard cell library which works on
unit λ (lambda). The ALLIANCE tool S2R [Alliance, 2006] (symbolic to real) is used to
convert the symbolic design into 120nm technology; the corresponding GDS and LEF
files are also obtained. It is noticed FPGA area increases by 19% due to hardware sup-
port for SEU mitigation (based on parity technique).
The physical routed layout of the FPGA and the chip micrograph are shown in fig-
ures 3.25 and 3.26 respectively. The chip has a logic capacity of 64 4-LUTs arranged in a
8 by 8 array and frozen periphery with 18 input pads and 16 output pads. A 1.2V sup-
ply is used for the input/output pads and the FPGA core. The chip area is 2.21mm2 in
a 0.12µ process routed using 5 layers of metal. The contribution of the array is 1.01mm2.
The rest of the area is for the power ring, loader and pads. Table 3.1 summarizes the
details of the chip.
The generic symbolic design rules help migration to any technology, but with some

area penalty. Instead of symbolic library, if the netlist of the generated FPGA is laid out
in ENCOUNTER using directly the real 120nm technology ST-library from, a 40% area
reduction is noted.
The generated FPGA layout can be used as a black box embedded in any other larger
system. For the proof-of-concept, we manufactered an independent standalone FPGA
chip. Only the pads are placed and routed using Virtuoso platform. The DRC and LVS
verification is performed using CALIBRE [MentorGraphics, 2006].

72 Chapter 3. Redundant FPGA Core

Figure 3.25: The redundant FPGA layout

3.5.1 Simulation:
The generated FPGA netlist is tested on the ALLIANCE simulator called ASIMUT. Sev-
eral test applications are mapped onto the FPGA with the configuration sofware flow
we describe in the following section 3.6. Once the FPGA is programmed, the respective
testbench of each test application is applied on its inputs and the outputs are compared.
These simulations can also be performed easily on other commercial tools like Synop-
sys.

3.5.2 Netlist layout comparison:
The netlist and the layout generated must match each other. For this purpose the AL-
LIANCE extraction tool COUGAR is used; it extracts a netlist from a layout, and the
ALLIANCE comparison tool LVX is used to compare the extracted netlist with the gen-
erated one. This confirms that the generated layout matches its netlist. This method of
layout verification is validated for a set of generated FPGAs, but the flattened 32x32
FPGA matrix is too large to be compared due to the limitations of COUGAR. Therefore
instead of LVX, CALIBRE LVS is used to compare the 32x32 FPGA layout with its netlist.

3.5. Tape Out 73

Array size 8x8
Power Supply 1.2V
Chip area 2.21mm

2

Core area 1.26mm
2

Array area 1.01mm
2

Process 0.12µ CMOS

Table 3.1: Chip Specifications

3.5.3 Electric simulation:
The ALLIANCE extraction tool COUGAR can be used to extract the SPICE model of
each tile. These models are simulated electrically later using ELDO [MentorGraphics,
2006]. Since COUGAR is unable to support large circuits, it was impossible to simulate
electrically a complete 8x8 or 32x32 FPGA. In addition COUGARdoes not condider par-
asitic and antenna constraints, that’s why a more efficient extraction using an industrial
tool is recommended. However for the proof of concept we simulated successfully the
electric model of a smaller 4x4 FPGA matrix with channel width of 8. For the 8x8 pro-
totype, SPICE models were extracted using industrial tools and simulated successfully
with ELDO.

Figure 3.26: The redundant FPGA chip micrograph

74 Chapter 3. Redundant FPGA Core

3.6 Configration flow
Exploration of the implemented FPGA requires the software flow (see figure 3.28) in-
volving logic synthesis, placement, routing and extraction of the implementation on the
target architecture named bitstream. This flow uses only freeware tools like BOOG [Al-
liance, 2006] for logic synthesis, SIS [E.M.Sentovich et al., 1992] for mapping, T-vpack
for clustering, and VPR [V.Betz and J.Rose, 1997] for place and route. We developed a
generic extractor of bitstream that analyzes all results of the previous tools to generate
the bitstream to load in the configuration memory.

Technology Mapping
SIS

Clustering
T−VPACK

Place & Route
VPR

GENSBIT
Bitstream Generation

Bitstream

DescriptionCircuit

BOOG
Logic Synthesis

HDL

Figure 3.27: Configuration Flow

The software flow is followed to configure the generated FPGA. The sample appli-
cation (in VHDL format) to be mapped onto the FPGA is the input to the software flow.
Initially BOOG synthesizes the VHDL input into a boolean logic gates netlist and flip-
flops. Then SIS transforms the boolean network into K-LUT. T-VPACK groups LUTs
and flip-flops inside LB then VPR place and route the LBs and I/O blocks using the
architecture resources as shown in figure 3.28. Finally the GENSBIT tool we developed

3.7. Conclusion 75

generates a binary stream containing all required information to configure the sample
application onto the FPGA.

3.7 Conclusion
Redundant SRAM-based FPGA (REDFPGA) which includes hardware SEU mitigation
support was developed by implementing a scalable hardware error-detector for the
configuration memory. Compared to ordinary solutions of configuration bits reliability
such as TMR, the proposed approach with an embedded parity system achieves higher
level of reliability with only 19% increase in FPGA area.
We use a generic technique based on open-source ALLIANCE VLSI CAD tools to de-
velop the physical REDFPGA chip. The REDFPGA layout uses a symbolic standard cell
librarywhich allows easymigration to any layout technology. This layout is successfully
migrated and taped out in 120nm technology CMOS process from STmicroelectronics.
To configure the REDFPGA chip we use only open-source flow adapted to this architec-
ture, including synthesis, mapping, place&route and bitstream generation tools.
This experimental work gave rise subsequently to new architectures wich are more so-
phisticated: REDFPGA-2 with 1024 LB taped out in 120nm and the work continued in
CEA taking into account those developements.

76 Chapter 3. Redundant FPGA Core

Figure 3.28: Screenshots of automatic VPR place and route

4
MFPGA Architecture

This chapter focuses on optimisation of the dominant part of an FPGAwhich consists in
the programmable interconnect. The general approach used here is to examine the net-
work distribution systematically and to balance the logic and interconnect utilization.
We build on the state-of-the-art of interconnection structures by providing new inter-
connect structure for FPGA. As an alternative, we propose a newmultilevel hierarchical
FPGA (MFPGA) architecture where logic blocks and routing resources are balanced and
sparsely partitioned into a multilevel clustered structure. We prove its validity through
an empirical approach. Next we apply analytical and experimental methods to dealwith
the routing architecture. We give some unexpected results in term of area and density
gain obtained with this topology.

4.1 Issues in Reconfigurable Network Design
Driven by Moore’s law of semiconductor scaling, larger and larger FPGAs emerge.
FPGA area is approximatively 90% programmble interconnect for only 10% logic [G.Lemieux
and D.Lewis, 2004]. According to [L.Shang et al., 2002], the power dissipation share of
routing, logic and clocking resources are 60%, 16%, and 14%, respectively. Current ar-
chitectures will not extend directly to the multi-million gate scale because routing re-
quirements grow linearly; they affect negatively area, speed and power consumption
of FPGA. In addition, placement and routing computational times are ever increasing
nowadays. Excessive FPGA placement and routing runtimes are now often measured
in hours.
Design of new devices imposes radical efficient change in architecture to improve

77

78 Chapter 4. MFPGA Architecture

speed, density, power consumption and software mapping time. Relying on industry
experience with standard ASICs, we believe that partitioning and hierarchical structur-
ing becomes unavoidable for hardware and software developments.

The ability of an FPGA to support designs with high LUT use is regularly presented
as a positive feature. However, high routability across a variety of designs generates sig-
nificant interconnect costs. Since interconnect is the dominant area component in FPGA
designs, simply adding interconnect to achieve high LUT utilization is not always area
efficient. Additional interconnect allows to use LUTs more heavily, but resulting often
in less efficient interconnect use. Low utilization rate of FPGA interconnect ressources is
inherent to such an approach. Li et al show in [F.Li et al., 2004] that this low utilization
is equal to 12% of the total routing ressources.

In [A.DeHon, 1999] DeHon asks:
• Is an FPGA with higher LUT use more area efficient than one with lower LUT
utilization?

• That is: Is LUT usability directly correlated with area efficiency?
DeHon presents initial evidence from a hierarchical array design showing that high

LUT utilization is not directly correlated with efficient silicon usage. Rather, since inter-
connect resources consume most of the area on these devices, we can achieve more area
efficient designs by allowing some LUTs to go unused, allowing us to use the dominant
resource, interconnect, more efficiently. In fact DeHon showed that 100% logic use is not
necessarily benificial for overall device area minimization.

Channel widthLogic block

Logic block Channel width

a) Highly congested regions b) balanced congestion

Figure 4.1: Congestion-aware placement

The philosophy behind logic and interconnect balancing is utilization increase through
efficient use of the interconnect structure. For a fixed interconnect scheme we must as-
sess the quality of this scheme. To make maximum use of the fixed interconnect in re-
gions of high interconnect requirements where the design is more connected than the

4.1. Issues in Reconfigurable Network Design 79

FPGA, we may use sparsely the physical LUTs in the device, resulting in a depopulated
LUT placement. In [A.Sharma et al., 2005], authors propose an efficient placement tech-
nique, called independence, for routing-poor architectures. Routing-poor architectures
attempt to increase interconnect utilization at the expense of logic utilization. As pre-
sented in figure 4.1, they integrate an approach with the aim of spreading congestion
over all the area. In this way the required routing resources (channel width) are reduced
considerably. Nevertheless, to create white spaces, instances are moved away and this
might increase delays to connect logic blocks and consequently reduce speed perfor-
mances.
In [A.Singh andM.Marek-Sadowska, 2002], authors present a routability-driven clus-

tering technique (iRac) for area and power reduction. The idea is to get a good device
utilization by reducing clusters external signals at the cost of using more clusters. As
illustrated in figure 4.2, when clusters are sparsely populated, highly congested regions
are eliminated and the required channel width is reduced, inducing a reduction in the
total area.

a) Full popuplated clusters b) sparse populated clusters

LBs cluster Channel width
LBs cluster Channel width

Figure 4.2: Congestion-aware clustering

We proceed as follows:

1. Hierarchical structuring becomes an obligation: we define a hierarchical intercon-
nect model which allows us to vary the density of the interconnect.

2. Balancing logic and interconnect: we introduce a set of tools for "depopulating"
the LBs in a hierarchical network to match the limited wiring resources.

3. We map circuits to a range of points in the interconnect space, and assess their
total area and utilization. Compare it to a Mesh reference.

4. We examine relationship between LUT utilization and area.

80 Chapter 4. MFPGA Architecture

4.2 Previous Works on hierarchical architectures
There is little published research on Hierarchical FPGA (HFPGA) architecture [W.Tsu
et al., 1999] [Y.Lay and P.Wang, 1997] [A.A.Agarwal and D.Lewis, 1994]. This is due
partly to the fact that industrial leaders use the manhattan mesh architecture. In a hi-
erarchical FPGA, logic blocks and routing resources are organized into levels. At each
level there are blocks and routing resources belonging to that level. Every leveli cluster
hasWi IO (Input/Output) wire tracks and contains a set of k leveli−1 clusters connected
with leveli switch box. Figure 4.3 shows the typical k-HFPGA as a tree containing N
logic blocks, logk(N) levels and k is the arity of the tree.

SBOX SBOX SBOX

Wi−1

Wi

SBOX

Wi−1 Wi−1

i i i

i+1level_i+1

level_i

Cluster(i,0) Cluster(i,1) Cluster(i,k−1)

Cluster(i−1,1) Cluster(i−1,k−1)Cluster(i−1,0) Cluster(i−1,k) Cluster(i−1,k+1) Cluster(i−1,2k−1) Cluster(i−1,k.(k−1)) Cluster(i−1,k −1))2

Figure 4.3: k-HFPGA architecture

Tsu et al’s HSRA [W.Tsu et al., 1999], Agarwal and Lewis’s HFPGA [A.A.Agarwal
and D.Lewis, 1994] and Lai and Wang’s interconnect [Y.Lay and P.Wang, 1997] are the
most known interconnect schemes proposed for hierarchical FPGA interconnect.

4.2.1 Rent’s Rule
A common way to compare hierachical architectures with the most studiedMesh-FPGA
is the wiring requirement using Rent’s Rule which is described by Landman and Russo
in 1971 [B.Landman and R.Russo, 1971] to characterize interconnect demand within
a circuit. It is an empirical observation which predicts that the amount IO of wiring
needed as a circuit increases in size is related to the total number of gates N by:

IO = cNp

It states that the number of external IN/OUT (IO) wiring pins of a partition is propor-
tional to a power of the cells number included in this partition. In the FPGA case, N

4.2. Previous Works on hierarchical architectures 81

corresponds to the number of LBs linked together. c is the average number of termi-
nals per LB, and p defines the growth rate of Rent’s rule. The value of p measures the
complexity of the interconnection topology,

(simple)0 <= p <= 1(complex)

If most connections are exclusively local and only few of them come from the exterior of
a local region, p is small. On the other hand, a region with large p implies that it has rel-
atively more connections with outside cells. It was shown in [J.Pistorius and M.Hutton,
2003], for real logic circuits, that p is typically between 0.5 and 0.6. Figure 4.4 shows the
implication of local Rent exponent.

p = 0.58

Figure 4.4: Average number of terminals and blocks within circuit model

4.2.2 Analytical comparison: k-HFPGA andMesh
Rent’s rule is adapted to different interconnect topologies. Using this rule and the bi-
section method presented in [Y.Lay and P.Wang, 1997], Dehon [A.DeHon, 2004] relates
the channel width parameter W of a Mesh arranged in a

√
N ×

√
N array to Rent’s

parameters. This method consists in splitting this array vertically, producing 2 entities
which contain N

2 Logic Blocks as shown in Fig. 4.5. These entities are connected together

L

L L

L

N/2 N/2
CLBN LB

Mesh structure
LB

Figure 4.5: Bisection of a
√

Nx
√

N Mesh FPGA

by IO =
(

√

(N) + 1
)

W wires (it corresponds to the total number of wires crossing

82 Chapter 4. MFPGA Architecture

horizontally the middle of the FPGA). Therefore he provides a lower bound for W to
support a design characterized by Rent’s parameters (c, p).

IO ≥ c

(

N

2

)p

Thus :
(√

N + 1
)

W ≥ c

(

N

2

)p

For large N , we can dismiss the term to obtain :

W ≥
(c

2p

)

Np−0.5 (4.1)

The total number of switches per logic block in a Mesh corresponds to the number
of switches in a basic tile, including switches in the connection boxes and switches in
the switch box. If we consider that each LB has c inputs/outputs, then the number of
switches in the tile is

Nswitch = (cFc + Fs)W

where Fc is the connection box flexibility and Fs is the switch box flexibility. Thus

Nswitch/LB = O(W) = O(Np−0.5) (4.2)

The number of wires per logic block is

Nwire/LB = 2W + c

Thus:
Nwire/LB = O(W) = O(Np−0.5) (4.3)

Rent’s rule can be easily associated to Tree-based topology. In fact a cluster located
at level i of the Tree can be considered as a partition, withWi external signals and ki LBs
(leaves). Hence:

Wi = ckip (4.4)
As the k-HFPGA uses full crossbar switch boxes (SBOX), the switching requirement

is evaluated as follows. The SBOXi in level i connectsWi wires from the level above to
k ·Wi−1 wires from the levels below. According to (4.4), the SBOXi contains kWi−1Wi =
c2k(i−1)p+ip switches. Each level i has N

ki SBOXi. Thus the level i has Nc2k2ip−i−p+1 =
Nc2kpk(2p−1)(i−1) switches. The total amount of switches in a k-HFPGA with N LBs is
the sum of switches in all tree levels and corresponds to:

Nswitch = c2kp

logk(N)
∑

i=1

Nk(2p−1)(i−1)

4.2. Previous Works on hierarchical architectures 83

Dividing by N gives the total of switches per LB:

Nswitch/LB =

{

c2kp 1−N2p−1

1−k2p−1 if p %= 0.5
c2kp logk(N) if p = 0.5

Thus:

Nswitch/LB =







O(N2p−1) if p > 0.5
O(logk(N)) if p = 0.5
O(1) if p < 0.5

(4.5)

For the wire requirement, a leveli adds kWi−1
N
ki wires. Thus the total number of wires

per LB is :

Nwire/LB = c
logk(N)
∑

i=1

k(p−1)(i−1)

Nwire/LB =

{

c logk(N) if p = 1
c1−Np−1

1−kp−1 if p %= 1

Thus:
Nwire/LB =

{

O(logk(N)) if p = 1
O(1) if p < 1

(4.6)

Equations (4.5) and (4.6) compared to equations (4.2) and (4.3) respectively show
that k-HFPGA has more efficient switching and wiring area growing as O(1) if p < 0.5.
When p > 0.5 the mesh architecture becomes more interesting. Mesh switching and
wiring area grows as O(N p−0.5) while the k-HFPGA switching resources diverge and
grows as O(N2p−1). Since typical designs have 0.5 ≤ p ≤ 0.75, mesh architecture is still
more efficient than k-HFPGA.
We note that the above k-HFPGA is penalized by the use of a full crossbar switch box

that guarantees arbitrary full connectivity, thus overestimating the required number of
switches. In spite of its low logic density, the k-HFPGA retains the advantage of lower
routing delays; there is a strong reduction of the average number of crossed switches to
connect two logic blocks. The worst case is proportional to the number of levels in the
tree which is O (logk(N)).
Both Agarwal [A.A.Agarwal and D.Lewis, 1994] and Lai [Y.Lay and P.Wang, 1997]

described hierarchical FPGA interconnect architectures with a sparse depopulated switch
box. Both topologies tend to depopulate the switch patterns while maintaining 100%
routability or at least the same routability as the depopulated linear mesh architecture.
Tsu [W.Tsu et al., 1999] describes the HSRA architecture based on the butterfly architec-
ture that needs fewer switches than in the other cases. In general, such binary tree is a
limiting interconnect structure that leads to severe routing inefficiencies.

84 Chapter 4. MFPGA Architecture

Figure 4.6: Butterfly Fat Tree Topology

4.3 Proposed Architecture
We propose a new Multilevel hierarchical FPGA (MFPGA) architecture, based on but-
terfly Fat Tree (BFT) style interconnect [C.Leiserson, 1985] shown in figure 4.6. The main
motivation for the MFPGA aims at achieving the best area efficiency by balancing logic
block and interconnect utilization. Since routing resources consume most of the area
(often 80-90%) [G.Lemieux and D.Lewis, 2004], we focus on interconnect check. We try
to underuse the first resource in order to use the other fully.

MFPGA is a hierarchical tree whose leaves are logic blocks. It has linear populated
switch boxes and unidirectionl wires. This architecture unifies two unidirectional con-
nected networks:

• The downward network based on the Butterfly Fat Tree (BFT) topology, involving
a logarithmic population growth of unidirectional switch blocks, which connects
these switch blocks to LBs inputs.

• The upward network connects logic blocks outputs to the different levels of the
downward network using a BFT-like distribution with feedback connections.

Logic Blocks (LBs) are grouped into k sized clusters and interconnect is organized
into levels. Let nb" denote the number of levels of a given Tree containing N leaves
(nb" = logk(N)). In each level " we have N

k! clusters; C is the set of clusters in all levels.
A cluster with index c belonging to level " is noted by cluster(", c). Clusters in the same
level of the hierarchy are equivalents, and every cluster(", c) whith " ≥ 1 contains a set
of inputsNin("), a set of outputsNout("), a switch block and k sub-clusters. A cluster(", c)
contains kl logic blocks with cin inputs and cout outputs, hence:

Nin(l) = cinklpandNout(l) = coutk
lp (4.7)

Sub-clusters of cluster(", c) are cluster(" − 1, k.c + i) where i ∈ {0, 1, 2, .., k − 1}. k
is called cluster(", c) arity. A cluster switch block is divided into separated Mini Switch

4.3. Proposed Architecture 85

Boxes (MSBs). Each MSB corresponds to a full crossbar. The MSBs number in a clus-
ter in level " is nbMSB("). MSB with index m belonging to cluster(", c) is denoted
MSB(", c, m).
Each cluster in level 0 is denoted cluster(0, c) or leafcluster(c) and corresponds to

the Logic Block (LB) and contains cin inputs, cout outputs, no MSBs and no sub-cluster.
Each cluster(", c) where " < nb" − 1 has an owner in level "′, where "′ > ", denoted
cluster("′, c ÷ k(!′−!)). We define for each cluster(", c) a position inside its owner in level
" + 1 (direct owner) by the following function:

pos : C −→ {0, 1, 2, .., k − 1}
cluster(", c))−→ c mod k

2 clusters belonging to level " and with the same owner at level " + 1 have 2 different
positions. To get the cluster owner in level "′ of cluster(", c) (" < "′ ≤ nb"− 1) we define
the function:

owner : C × IN −→ C

(cluster(", c), "′))−→ cluster("′, c ÷ k!′−!)

4.3.1 Downward Network
Figure 4.8 shows a sparse downward network based on unidirectional DownwardMSBs
(DMSBs). Each DMSB(", c, m) contains I(", c, m) inputs and k! outputs, where k! is the
arity of the cluster(", c). The downward interconnect topology is similar to the but-
terfly fat tree. Every DMSB in a cluster(", c) where " > 1 is connected to every sub-
cluster through one and only one input pin. Thus, the DMSBs number in a cluster
situated in level " is equal to the input number of a cluster located in level " − 1:
nbDMSB(") = Nin(l − 1). In a symetric architecture where all DMSBs have the same
number of inputs, every DMSB(", c, m) has Nin(l)n

b
DMSB(l) inputs and k outputs.

We name DMSB("′, c′, m′) as the successor of a DMSB(", c, m) where 0 < "′ < " if
there is a downward directed path from DMSB(", c, m) to DMSB("′, c′, m′). The path
between a DMSB and its successor is unique. We define the function:

Mod! : IN −→ IN
m)−→ m mod nbMSB(")

Thus eachDMSB(", c, m) has a successor in each sub-cluster belonging to level "′ DMSB("′, c′, m′)
where 0 < "′ < ", with:

m′ = Mod!′ ◦ · · · ◦ Mod!−1(m) (4.8)
In this work, we choose a logic block with 4 inputs and 1 output which contains

one 4-inputs Look-Up-Table followed by a bypass Flip-Flop. 4-LUTs are shown to be
the most efficient K-LUT for SRAM based FPGAs by J.Rose et al in [J.Rose et al., 1990].
We use Rent’s parameters to specify the bandwidth growth for every network level.

86 Chapter 4. MFPGA Architecture

According to Rent’s Rule, if we are limited to 1 logic block, we haveNin = cin(1)p inputs
and Nout = cout(1)p outputs. Thus we obtain both values of c:

• cin = 4 for the downward network.

• cout = 1 for the upward network.

Figure 4.7 shows a cluster(1, c) with the following parameters:cin = 4, cout = 1, p = 1
and k = 4 (the arity of the hierarchy). This cluster is composed of k Logic Blocks (LBs)
cin Downward MSBs (DMSB) and cout Upward MSB (UMSB). This cluster has 4 LBs so

UMSB DMSB DMSB DMSB DMSB

outputs inputs inputs inputs inputs

LB LB LB LB

Figure 4.7: Typical cluster of level 1

it must have Nin(1) = cin ∗ (k)p = 4 ∗ 41 = 16 inputs distributed on the four DMSBs.
Every DMSB is in charge of the interconnection between the upper level and one input
of every logic block. Thus the DMSB has 4 outputs and, since we deal with unidirec-
tional wires, they are composed of 4multiplexers, one for each output.
A configuration of a n level MFPGA can be described using the expression N0 x N1 x
N2 x....x Nn−1. Let’s take the example of a 4x4 MFPGA architecture with 16 logic blocks.
Figure 4.8 shows a 2 levels Downward Network (or BFT tree) with the following param-
eters: p = 1 and k = 4 (the arity of the BFT). To simplify this figure, we show only the
downward network. UMSB and upward network will be detailed in the next section.
In the same way as in the figure 4.7, we create the level2 cluster. We connect 4 level1

clusters to one Switch Block. Since the level1 cluster has 16 inputs, the level2 switch
block is divided into 16 DMSBs. Each DMSB has 4 outputs, each output will be con-
nected to one level1 cluster input. The cluster(2, c) contains 16 Logic Blocks, so it has
Nin(2 =)cink2p = 64 inputs shared out among the 16 DMSBs.

4.3.2 The Upward Network
The Downward Network allows one path from each wire-source in the top level to each
leaf (Logic Block) in the lowest level. But what can be the source ? Of course it is a logic
block output or an input pad.
Let us begin with the logic block output. How to connect the output of a logic block to

4.3. Proposed Architecture 87

UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB

UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB

Cluster with
16 inputs
4 outputs

LEVEL 1

LEVEL 2

LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB

Figure 4.8: MFPGA Interconnect: 2 level Downward Network with k = 4 and p = 1

the input of another one ? We just have to link the logic block output signal to a specific
upper level (the lowest authorized level is the lowest level common to the two logic
blocks), then the signal can flow down to the targeted logic block through the BFT. We
name these signals feedbacks.
Thewaywe distribute the feedbacks among levels has an important impact on the struc-
ture routability. Connecting a feedback to n DMSBs with different indexes increases the
paths from one source to one destination. We do it as simply as possible and we define
the solution presented in figure 4.9. This feedbacks distribution gives several possibili-
ties to reach a destination.
Upward Mini Switch Boxes (UMSB) allow cluster outputs to reach all DMSBs of the

owner cluster. The UMSBs are interconnected in a way that allows LBs outputs to reach
all DMSBs of the owner cluster. Therefore, following points can be considered as settled:
- clusters or logic blocks positions inside the direct owner cluster are equivalent and

re-arranging them is not necessary.
- The interconnect offers many routing paths to connect a net source to a given sink.

In fact, one LB instance can negotiate with other instances the use of a large number of
DMSBs. This is efficient for mapping netlists since instances may have different fanout
sizes. For example in figure 4.9, an LB ouput can reach all 4 DMSBs of its owner cluster
at level 1 and all 16 DMSBs of its owner cluster at level 2.

88 Chapter 4. MFPGA Architecture

UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB

UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB LEVEL 1

LEVEL 2

Outputs

Outputs

Inputs

Inputs

LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB

Figure 4.9: MFPGA Interconnect: 2 level Upward network and IO pads connections

4.3.3 Connections with the Outside
As shown in figure 4.9, output and input pads are grouped into specific clusters. The
cluster size and the level where it is located can be modified to obtain the best design
fit. Every input pad is connected to UMSBs of the different levels. In this way every in-
put pad can reach all LBs inside the reached cluster level through different paths. Input
pads which are connected to the upper level can reach all the LBs of the architecture
with different paths.
Similarly, output pads are connected to UMSBs in different levels; Output pads con-
nected to UMSBs of the upper level can be driven by any LBs of the architecture.
As one can notice, input/output pads have higher interconnection flexibility than LBs.
One pad can be connected to different UMSBs in the same or in different level of the hi-
erarchy to increase its flexibility. In the same way, input/output pads can be connected
to the DMSBs but this approach gives more constraints in input/output pads placement
unless they are connected to the highest level as shown in figure 4.10.

4.3.4 Interconnect Depopulation
Rent’s rule [B.Landman and R.Russo, 1971] is easily adapted to Tree-based structure.
Intuitively, p represents the locality in interconnect requirements. If most connections
are purely local and only few of them come in from the exterior of a local region, p will
be small. InMFPGA architecture, the upward and downward interconnects populations
depend on this parameter. We can depopulate the routing interconnect by reducing p
architecture parameter in every level. As shown in figure 4.10, plevel1 = 0.79 corresponds
to reduce from 16 to 12 the number of inputs in each cluster of level 1 and outputs from

4.3.
Proposed

A
rchitecture

89

UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSBUMSB DMSB DMSB DMSB DMSB

UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB

UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSBUMSB DMSB DMSB DMSB DMSB

UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB

UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSBUMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB

Outputs

Inputs

LB LB LB LB LB LB LB LB LB LB LB LBLB LB LB LB LB LB LB LB LB LB LB LB LB LB LB LBLB LB LB LB

Figure4.10:4x4x2M
FPG
A
interconnectdepopulation:p

le
v
e
l1

=
0.79,p

le
v
e
l2

=
0.64

90 Chapter 4. MFPGA Architecture

4 to 3. This induces a reduction from 16 to 12 of the number of DMSBs in each cluster of
level 2 and the UMSBs number from 4 to 3. In this case, if we consider an architecture
with 2 levels of hierarchy, we get a reduction of the interconnect switches number from
521 to 416 (19%). By doing so the architecture routability is reduced too. Thus we must
find the best tradeoff between interconnect population and logic blocks occupancy. In
MFPGA architecture, the logic occupancy factor is controlled by N , the leaves (LBs)
number in the Tree. N is directly related to the number of levels and the clusters arity
k. In most cases N is larger than the number of netlists instances. This means that in
these cases we have a low logic utilization. This is not really penalizing since it can
be compensated by a high interconnect use. In other words, the area overhead due to
unused LBs is compensated by congestion spreading and interconnect reduction. This
will be demonstrated in the following sections.

4.4 Rent’s Rule MFPGA based model
In this section, we evaluate the number of wires and switches in a k-arity MFPGA as
depicted above with N LBs. The MFPGA structure is built with inter-level signaling
bandwidth growing according to Rent’s Rule. The LBs are recursively partitioned into
equally sized clusters at each level of the hierarchy.
We note:
- Nin(") the number of inputs of a cluster located at level ".
- Nout(") the number of outputs of a cluster located at level ".
- cout the number of outputs of an LB.
- cin the number of inputs of an LB.
- k clusters arity (size).

4.4.1 Wires growth in MFPGA Rent model
At any level " of the hierarchy, and every cluster has ck!.p input/output wires, where
c = cin + cout. The total number of wires is similar to the k-HFPGA case:

Nwire_total = cN
logk(N)
∑

i=1

k(p−1)(i−1)

The total number of wires per LB in the MFPGA is

Nwire/LB =

{

c logk(N) if p = 1
c1−Np−1

1−kp−1 if p %= 1

Thus:
Nwire/LB =

{

O(logk(N)) if p = 1
O(1) if p < 1

(4.9)

4.4. Rent’s Rule MFPGA based model 91

4.4.2 Switch growth in Rent MFPGA model
We can look at the number of switches required by MFPGA knowing that each MSB is
a fully populated cross-bar. We modelize upward and downward networks separately.

Downward network:

Clusters located at level " containNin("−1)DMSBwith k outputs and Nin(!)+kNout(!−1)
Nin(!−1)

inputs. Since DMSB are full crossbar devices, we get k(Nin(") + kNout(" − 1)) switches
in the switch box of a level " cluster. As we have N

k! clusters in level ", we get a total
number of switches, related to the downward network, given by:

logk(N)
∑

!=1

k × N ×
Nin(") + kNout("− 1)

k!

Nout(0) = cout is the number of outputs of a Basic Logic Block. Following equation (4.4),
we get Nin(") = cin.k!.p and Nout("− 1) = cout.k(!−1)p. The total number of switches used
in the downward network is:

Nswitch_down = N × (kpcin + kcout) ×
logk(N)
∑

!=1

k(p−1)(!−1)

Upward network:

Clusters located at level " contain Nout(" − 1) UMSB with k inputs and k outputs. As
we assume that UMSB are full crossbar devices, we get k2 × Nout(" − 1) switches in the
switch box of a level " cluster. As we have N

k! clusters at level " we get the total number
of switches, related to the upward network:

logk(N)
∑

!=1

k2 × N

k!
× Nout("− 1)

Nout(0) = cout is the number of outputs of a Basic Logic Block. Following (4.4), we get
Nout("− 1) = cout.k(!−1)p.
The total number of switches used in the upward interconnect is:

Nswitch_up = N × k × cout ×
logk(N)
∑

!=1

k(p−1)(!−1)

The total number of MFPGA interconnect switches is:

Nswitch/MFPGA = Nswitch_down + Nswitch_up

92 Chapter 4. MFPGA Architecture

Nswitch/MFPGA = N × (kpcin + 2kcout) ×
logk(N)
∑

!=1

k(p−1)(!−1)

The number of switches per Logic Block is:

Nswitch/LB = (kpcin + 2kcout) ×
logk(N)
∑

!=1

k(p−1)(!−1)

Nswitch/LB =

{

(kpcin + 2kcout) × 1−Np−1

1−kp−1 if p %= 1
(kcin + 2kcout) × logk(N) if p = 1

(4.10)

Nswitch/LB =

{

O (1) if p < 1
O (logk(N)) if p = 1

(4.11)

4.4.3 Analysis and comparison with Mesh Model
We notice that the number of the upward network switches is smaller than the switches
number in the downward network, this is due to the LB topology where the number of
inputs linked to the downward network is higher than the number of outputs linked to
the upward network. The ratio is given by the following relationship:

Nswitch_down

Nswitch_up

= kp−1 cin

cout

+ 1

With p = 1, k = 4, cin = 4 and cout = 1 this ratio is equal to 5. In figure 4.11, we show the
distribution of interconnect resources between the upward and the downward networks
for different MFPGA sizes and with the same Rent parmeter for both networks. This
distribution has an important impact on MFPGA routability. Netlist benchmarks with
high LB fanouts may need a rich upward network to go up in the hierarchy, thus we can
use different Rent parameters for the upward and downward networks with:

pupward > pdownward

Like the Rent parameter p, the arity of the tree has an impact on the total num-
ber of switchs in MFPGA. Equation 4.10 gives the relationship between the number of
switches per LB, N , p and k. For k = 4, figure 4.12 shows the effect of the Rent parame-
ter p and the size of the MFPGA N on switch growth per LB. We see that the number of
switch per LB grows slowly with N growth especially if p < 0, 9. We see also that p has
an important impact in the switches number per LB which grows slowly for p <= 0.6
and strongly for p >= 0, 9.
Compared to common Mesh architecture, equations (4.2) and (4.11) show that in

the MFPGA architecture, switches requirement grows more slowly. These results are

4.4. Rent’s Rule MFPGA based model 93

Figure 4.11: Interconnect switches distribution

0
1

2
3

4
5

6
7

x 104

0.5

0.6

0.7

0.8

0.9

1
0

20

40

60

80

100

120

140

160

180

200

Number of LBRent parameter "p"

N
um

be
r o

f S
w

itc
he

s
pe

r L
B

Figure 4.12: LB switches number variation versus N and p

94 Chapter 4. MFPGA Architecture

Figure 4.13: Switches number variation in Mesh and MFPGA both with p = 0.75

promising for constructing very large structures, especially when p is less than 1. Fig-
ure 4.13 shows the variation in number of switches per LB in MFPGA and mesh archi-
tectures with a typical p = 0.75. MFPGA topology is more efficient in term of switches
number for small and large structures.
This comparison is still empiric, and there is no garantee that the 2 architectures

are equivalent in term of routability when they use the same Rent parameter p. But in
any case even if our architecture uses a higher p, there is enough margin to be better,
especially for large structures.
The best way to check this point is through experimental work, based on benchmark
circuits implementation; we compare the resulting areas in the case of MFPGA and the
VPR clustered Mesh FPGA.

4.5 Architecture exploration methodologies
To compare different architectures we must ensure first that they have the same flexi-
bility and the capability to implement netlists with equivalent congestion. Thus, archi-
tecture evaluation must be based on benchmark circuits implementation. We propose
an experimentation platform enclosing a set of architecture adaptive tools. Then, we
present different metrics and models to evaluate interconnect structures efficiency in
terms of area and speed.

4.5. Architecture exploration methodologies 95

Technology
MappingSynthesis Partitioning

Clustering /

Routing Placement

Circuit
Description

Cluster size

Objective

Timing
Analysis

Lut size

Timing
characteristics

Interconnect
organizationModels

Area

Architecture
Description

Performances Area
EstimationEstimation

& Array size

Figure 4.14: Architectures exploration platform

4.5.1 Experimental platform for MFPGA
Rent’s rule provides an empirical estimation of switching and wiring requirements,
which is not sufficient since it does not give accurate information about interconnect
routability. FPGA interconnect flexibility is a very important feature since it reflects the
architecture potential to route different highly congested benchmark netlists. The best
way to check this point is to implement different benchmark circuits and to evaluate the
required area and minimal clock frequency.
Since we are exploring different architectures parameters, we need as generic as pos-

sible CAD tools which can deal with different types of architectures. We propose a set
of generic tools requiring a minimum of effort to be adapted to a specific architecture
topology. In figure 4.14 we present the dependency between each phase in the CAD
flow and the target architecture.

Synthesis and Mapping
Synthesis consists in translating a circuit description into a gate-level representation.
As illustrated on figure 4.14 this operation is architecture independent. For a given cir-
cuit, SIS tool is used [E.M.Sentovich et al., 1992] to perform a technology independent
logic optimization and to conduct the technology mapping with Flowmap [J.Cong and
Y.Ding, 1994]. It can be replaced by any other commercial synthesis tool.
As explained in chapter 2, mapping consists in translating the description based on
boolean logic gates into a description with k-input LUTs and flip-flops. The only re-
quired architecture parameter is k, the LUT inputs number. In our flowwe use FlowMap

96 Chapter 4. MFPGA Architecture

algorithm [J.Cong and Y.Ding, 1994], which is included in SIS package. As presented in
figure 4.14, this tool depends only on LUTs size and can target any interconnect topol-
ogy. It can be driven by different objectives like timing (depth optimization) and area
(LUTs number).
It can be noted that today, industrial synthesis tools can target specific architectures in-
terconnects. Thus, in this early stage, they can alleviate routing congestion and improve
performance.

Partitionning
Our routing resources are depopulated and we have few different ways to connect a
source to a destination. We apply a multilevel partitionning to distribute evenly the nets
to route among clusters. We use a top-down recursive partitionning approach which in-
cludes a multilevel clustering and a multilevel refinement phases. Since logic blocks po-
sitions inside the owner cluster are equivalent, there is no need for detailed placement,
phase and clusters positions are allocated randomly inside their owners.
The way how logic LBs are distributed between MFPGA clusters has an important

impact on congestion. It is worthwhile to reduce external communications, since local
connections are cheaper in terms of delay and routability. Another way to decrease con-
gestion consists in balancing clusters occupation, distributing sparsely mapped circuits
and leaving some many logic blocks unused. Methods and algorithms used for parti-
tionning are described in [Z.Marrakchi, 2008].

Routing and Timing Analysis
FPGA routing consists in assigning netlist signals to routing resources such that no rout-
ing resource is shared by more than one net. Thus routing is interconnect dependent.
Fortunately, Pathfinder [L.McMurchie andC.Ebeling, 1995] is a truly architecture-adaptive
routing algorithm, since it can deal with any graph representing the interconnect rout-
ing resources. Consequently the only element depending on architecture interconnect is
the routing graph. It describes the way netlist instances are routed using architecture re-
sources. It also allows to evaluate routing delays between netlist instances connections.
A path connecting two instances crosses several wires and switches. The connection de-
lay is equal to the sum of resources delays.
To evaluate performances of a circuit implemented on MFPGA in terms of clock fre-
quency, we use a timing graph for critical path extraction; it is a direct acyclic graph
generated from the netlist hypergraph. Nodes correspond to instances pins and edges
to connections between them. Based on the resulting routed graph, each edge is labeled
with the corresponding routed connection delay.

4.5. Architecture exploration methodologies 97

4.5.2 Area Model
This section describes the area model used to compute performance metrics for FPGA
architectures under investigation. Based on this model, we can compare architectures
area efficiencies and achieve different tradeoffs.

tri−state

wire

SRAM

mux 8:1
mux 2:1

buffer

Figure 4.15: Switch elements MFPGA vs. Mesh

As was explained by DeHon in [A.DeHon, 2001], the large area of switches com-
pared to wires area is one of the key reasons why we must care about the number of
switches required by a network. As mentioned in [V.Betz et al., 1999], discussions with
FPGA vendors have revealed that transistor area, and not wiring density, is the area
limiting factor.
Results from DeHon [A.DeHon, 2000] show that a N-node fat-tree can be laid out

in an O(N) active area (area dedicated to nodes and switches), using O(log(N)) wiring
layers. SinceMFPGA is similar to BFT, we assume that MFPGA area is switch dominant,
and the total area is the sum of MSBs and LBs areas. The large area ratio means that we
definitely need to take much care about switch count in the interconnect. In this work
we consider 2 models for comparison:
- Switches count: the required interconnect switches number.
- Area evaluation: We estimate the FPGA area as the sum of areas required for all

logic and switching cells. We use symbolic standard cells library [Alliance, 2006] to es-
timate the FPGA required area. Basic cells areas are presented in table 4.1. Figure 4.15
shows switching cells for Mesh and MFPGA architectures based on tristates and multi-
plexers respectively.

4.5.3 Mesh-based candidate architecture
To evaluate the proposed MFPGA interconnect topology, we focus on a comparaison
with a typical Mesh based architecture. The Candidate mesh FPGA (CFPGA) is the well
known VPR clustered architecture [V.Betz et al., 1999] that uses an uniform routing with
single-length segments and a disjoint switch block. Each Clustered Logic Block (CLB) in

98 Chapter 4. MFPGA Architecture

Cell Area λ2

sram 30 × 50
tri-state 35 × 50
buffer 20 × 50
flip-flop 90 × 50
mux 2:1 45 × 50

Table 4.1: Standard cells characteristics

Switch
Block

Block

Switch
Block

Switch
Block

Switch

inFc = 0.5

Fc = 0.5out

LB

LB

LB

LB

Figure 4.16: CFPGA cluster containing 4 LBs, 10 inputs and 4 outputs

CFPGA contains 4 LBs, 10 inputs and 4 outputs which are distributed over the cluster
sides. Each LB contains one 4-LUT and a bypass Flip-Flop. LB pins are connected to
cluster pins using a full local crossbar. Connection block population is defined by Fcin

and Fcout parameters, where Fcin
is the flexibility factor for cluster input connection to

adjacent routing channel and Fcout is the cluster output flexibility factor to routing chan-
nel. Work in [E.Ahmed and J.Rose, 2000] shows that Fcin

= 0.5 and Fcout = 0.25 are the
most efficent flexibilities. In figure 4.16, we show an CFPGA cluster and its surrounding
interconnect.
We chose the CFPGA because that approach dominates by far the literature, and it was
necessary to limit the scope of comparison in order to make this work tractable. Today’s
architectures consist in improved versions of CFPGA and it is considered as a reference
to evaluate improved architectures performance. For example in [V.Betz et al., 1999],
authors state that, increasing wire segment length from 1 to 2 logic blocks manhattan
distance, increases the speed of long connections by 61% and reduces area by about 20%.

4.6. Experimental Results 99

Comparing MFPGA architecture to CFPGA gives us an idea about MFPGA efficiency
compared to different recent FPGAs.
SIS [E.M.Sentovich et al., 1992] is used to perform a technology independent logic

optimization; Flowmap [J.Cong and Y.Ding, 1994] in SIS is used to conduct the tech-
nology mapping. The physical design in VPR [V.Betz and J.Rose, 1997] is then carried
out, including timing-driven packing, placement, and routing. VPR generates an FPGA
array whose size just fits the given benchmark circuit. Further, VPR selects the rout-
ing channel width W as W = 1.2Wmin, and Wmin is the minimum channel width re-
quired to route the given benchmark successfully. This means that VPR is customizing
the FPGA for a given benchmark so that it reflects the "low-stress" routing situation
which usually occurs in industrial FPGAs for "average" circuits.

4.5.4 Benchmark circuits
In order to experiment and quantify the assets of diverse architectures, we use Mi-
croelectronics Center of North Carolina (MCNC) designs. As presented in table 4.2,
these circuits cover various application types with several sizes (<10K 4-Luts), In/Out
Pads number and congestion levels. We used also some itc and opencores circuits [itc,
1999] [opencores, 2009] which are large circuits containing only lookup-tables with 4
inputs (4-LUT) and flip-flops. When we evaluate a specific interconnect topology, we
tailor different architectures to each benchmark. For the same interconnect topology we
select an architecture with an appropriate level of routability based on the benchmark
congestion level (estimated by Rent parameter). For example in the case of Mesh archi-
tecture, VPR tool executes a binary search to determine the smallest architecture with
the minimal channel width that can route a specific benchmark circuit. Architectures
tailoring is interesting to explore different topologies and to check if they can deal with
different applications families. In the case of commercial FPGAs, the architecture is set
independently of the targeted applications. Nevertheless, we can find different FPGA
families proposed by one vendor to fit better specific applications and constraints. In our
experimentatal approach, we consider each circuit benchmark as representing a typical
design family.

4.6 Experimental Results
4.6.1 Architecture optimization
As explained in section 4.5.3 we use the channel minimizing VPR 4.3 router [V.Betz and
J.Rose, 1997] for the mesh. VPR finds the optimal size as well as the optimal channel
width needed to place and route each benchmark. We also vary the IO_ratio to achieve
the optimal array size. The number of switches needed by each benchmark corresponds
to the total number of switches used by the overall optimal target architecture.

100 Chapter 4. MFPGA Architecture

Design Name 4-LUTs In Pads Out Pads Function
MCNC
alu4 584 14 8 ALU
apex2 1878 39 3
apex4 1262 9 19
b9 61 41 21 Logic
bigkey 1707 263 179 Key Encryption
c2678 363 233 140 ALU and Control
c5315 725 178 123 ALU and Selector
c7552 881 207 108 ALU and Control
cc 33 21 20 Logic
clma 8383 61 82 Bus Interface
count 37 35 16 Counter
decod 32 5 16 Decoder
des 3235 256 245 Data Encryption
diffeq 1497 64 39
dsip 1370 229 197 Encryption Circuit
elliptic 3604 131 114
ex1010 4589 10 10
ex5p 1064 8 63
frisc 3556 20 116
i4 110 192 6 Logic
i9 471 63 522 Logic

misex3 1397 14 14
pcle 29 19 9 Logic
pcler8 40 25 19 Logic
pdc 4575 16 40
s298 1931 4 6 PLD
s38417 6406 29 106 Logic
s38584 6447 39 304 Logic
seq 1750 41 35
spla 3690 16 46
tseng 1047 52 122

ava 14964 9 74 AVA Decoder

ITC99

b_14 2217 33 54 Viper processor (subset)
b_21 4683 33 22 Two copies of b14
b_22 6648 33 22 A copy of b14 and Two modified versions of b14
b_15 3298 37 70 80386 processor (subset)
b_17 10325 38 97 Three copies of b15

Opencores

usb_funct 5284 128 121 USB function core
aes_core 8583 259 129 AES Chipter
wb_conmax 17746 1130 1416 WISHBONE Conmax IP Core
vga_lcd 31253 89 109 VGA/LCD controller

Table 4.2: Benchmarks characteristics used for experiment

4.6. Experimental Results 101

To find the best tradeoff between device routability and switches (area) require-
ments, we explore MFPGA architectures by varing the number of level, arity of every
cluster level and network Rent’s parameter pnet. The purpose is to find for all bench-
mark circuits, the architecture with the smallest necessary area. With our tools (sec-
tion 4.5) we can consider, in the same architecture, different p values for different levels.
Clusters located at the same level have the same Rent’s growth parameter. We adjust
Rent’s parameters at every level in order to obtain the smallest architecture fitting every
benchmark circuit. Like VPR which applies a binary search to find the smallest archi-
tecture channel width, we apply to each level a binary search to determine the smallest
Rent’s parameter. We apply a dichotomic approach to optimize an MFPGA. We choose
a level randomly and decrease its input/output signals number, depending on the pre-
vious result obtained in this level; then we move to an other level. In this way we move
randomly from a level to another until all levels are optimized.

4.6.2 Area Efficiency
Table 4.3 summarizes the basic results for Mesh and for MFPGA architectures.
Given a benchmark of some fixed size, and performing an experiment on MFPGA with
specified parameters, we get results which are summarized in the right part of table 4.3.
Column 9 shows the occupation average of each circuit in the target MFPGA. There is
a low occupation average in the majority of the benchmarks, due to the depopulation
of the interconnect. As mentioned previously, we underuse the logic resources in this
type of structure. In addition, the size of smallest MFPGA containing the circuit un-
der investigation is penalized due to the coarse granularity of this architecture. In spite
of these constraints we achieve a gain in area efficiency, compared to the mesh architec-
ture. Columns entitled "Switches number" and "Area" in table 4.4 exhibit the decrease of
the switches number and total area for theMFPGA structure compared to theMesh one.

In table 4.4, we observe that the MFPGA architecture has a better density and can
implement circuits with lower switches number than for circuits using the Mesh-based
architecture. An average 59% reduction of the switches number is achieved. We achieve
a 42% switches reduction with alu4 (smallest circuit), and 60% with ava (large circuit).
This confirms that MFPGA interconnect is very attractive for small circuits and even
more for large circuits.
Another advantage of the MFPGA shown in table 4.4 is the gain in SRAM number. This
is due to the efficeincy of the MFPGA routing which uses less programmable switches
than Mesh FPGA, and also thanks to the decoded multiplexers used in MFPGA com-
pared to one-hot coding in Mesh architecture (see figure 4.15).
We compare the areas of both architectures using a refined estimation model of ef-

fective circuit area described in section 4.15. We use the same cells library for both ar-
chitectures and the total area (logic, routing, and configuration memory) is the sum of
basic cells areas (SRAM, multiplexers, tristates, buffers and flip-flops).

102 Chapter 4. MFPGA Architecture

Benchmark Clustered Mesh MFPGA architecture
circuits cluster size 4

Circuits LUTs IN OUT Mesh Occupation Channel Architecture Occupation
Names Number Pads Pads NxN % Width levels in Fsize %
alu4 584 14 8 13x13 86 32 4x4x4x4x4 57
apex2 1878 39 3 23x23 88 40 4x4x4x4x4x2 91
apex4 1262 9 19 19x19 87 42 4x4x4x4x4x2 61
bigkey 1707 263 197 21x21 96 28 4x4x4x4x4x2 83
clma 8383 61 82 47x47 94 51 4x4x4x4x4x4x4 51
des 3235 256 245 29x29 96 29 4x4x4x4x4x4 78
diffeq 1497 64 39 20x20 93 29 4x4x4x4x4x2 73
dsip 1370 229 197 19x19 95 31 4x4x4x4x4x2 67
elliptic 3604 131 114 31x31 94 41 4x4x4x4x4x4 87
ex1010 4589 10 10 35x35 93 43 4x4x4x4x4x4x2 56
ex5p 1064 8 63 17x17 92 44 4x4x4x4x4x2 51
frisc 3556 20 116 30x30 98 45 4x4x4x4x4x4 86
misex3 1397 14 14 20x20 87 36 4x4x4x4x4x2 68
pdc 4575 16 40 35x35 93 61 4x4x4x4x4x4x2 55
s298 1931 4 6 23x23 91 27 4x4x4x4x4x2 94
s38417 6406 29 106 41x41 95 37 4x4x4x4x4x4x2 78
s38584 6447 39 304 41x41 96 36 4x4x4x4x4x4x2 78
seq 1750 41 35 22x22 90 40 4x4x4x4x4x2 85
spla 3690 16 46 31x31 96 53 4x4x4x4x4x4 90
tseng 1047 52 122 17x17 90 27 4x4x4x4x4x2 51

ava 14964 11 74 64x64 91 63 4x4x4x4x4x4x4 91

b_14 2217 33 54 24x24 96 44 4x4x4x4x4x3 72
b_21 4683 33 22 35x35 96 47 4x4x4x4x4x4x2 57
b_22 6648 33 22 42x42 94 50 4x4x4x4x4x4x2 81
b_15 3298 37 70 30x30 92 41 4x4x4x4x4x4 81
b_17 10325 38 97 53x53 92 47 4x4x4x4x4x4x3 84

usb_funct 5284 128 121 37x37 96 51 4x4x4x4x4x4x2 65
aes_core 8583 259 129 47x47 97 39 4x4x4x4x4x4x3 70
wb_conmax 17746 1130 1416 70x70 91 81 4x4x4x4x4x4x4x2 54
vga_lcd 31253 89 109 91x91 94 84 4x4x4x4x4x4x4x2 95

Average 5499 104 129 34x34 93 44 73

Table 4.3: Netlists and architectures characteristics

4.6. Experimental Results 103

Clustered Mesh MFPGA architecture Gain
Cluster size 4 MFPGA

Circuits Switches SRAM Total Area Switches SRAM Total Area Switches SRAM Total Area
×103

×103 (λ2)×106
×103

×103 (λ2)×106 % % %
alu4 138 101 422 47 43 182 66 57 57
apex2 506 375 1541 173 127 565 66 66 63
apex4 359 267 1092 138 103 466 62 61 57
bigkey 349 253 1056 129 101 450 63 60 57
clma 2541 1879 7672 1031 821 3614 59 56 53
des 667 487 2047 326 247 1087 51 49 47
diffeq 307 226 954 121 108 445 61 52 53
dsip 310 224 934 143 107 484 54 52 48
elliptic 944 701 2883 326 247 1087 65 65 62
ex1010 1234 915 3763 515 410 1804 58 55 52
ex5p 305 224 915 134 103 460 56 54 50
frisc 952 811 3287 346 254 1134 64 69 66
misex3 354 263 1085 150 113 502 58 57 54
pdc 1636 1207 4889 714 523 2329 56 57 52
s298 380 280 1192 121 108 445 68 61 63
s38417 1508 1126 4662 493 439 1807 67 61 61
s38584 1501 1113 4590 535 452 1898 64 59 59
seq 463 343 1411 163 123 541 65 64 62
spla 1144 847 3448 428 299 1350 63 65 61
tseng 216 157 665 110 90 370 49 43 44

ava 5618 4121 12397 1428 1047 4661 75 75 62

b_14 593 439 1793 231 179 777 61 59 57
b_21 1331 979 4011 545 448 1906 59 54 52
b_22 2002 1480 6027 681 514 2252 66 65 63
b_15 882 651 2681 351 266 1158 60 59 57
b_17 3042 2241 9185 1364 930 4250 55 59 54

usb_funct 1586 1166 4760 583 474 2010 63 59 58
aes_core 2073 1532 6332 959 751 3223 54 51 49
wb_conmax 8734 6361 21008 5865 3940 17404 33 38 17
vga_lcd 14436 10665 29599 5865 3940 17404 59 63 41

Average 1870 1381 4877 801 577 2536 60 58 54

Table 4.4: Comparison between MFPGA and clustered VPR-style Mesh

104 Chapter 4. MFPGA Architecture

Figure 4.17: MFPGA area Vs. Mesh area (30 benchmark circuits)

Circuits Level 1 Level 2 Level 3 Level 4 Level 5
apex2 1 0.89 0.86 0.84 0.77
tseng 0.79 0.79 0.79 0.72 0.67

Table 4.5: Levels Rent’s parameters for 2 circuits

As presented in figure 4.17, in all cases, the required MFPGA area is smaller than the
Mesh one. On the average with the MFPGA architecture we save 54% of the total area.

The MFPGA architecture efficiency is due essentially to its ability to control simul-
taneously logic blocks occupancy and interconnect population, based on LBs number
N and architecture Rent’s parameter p respectively. For example in the case of apex2
circuit, we used an architecture with a high logic occupancy (91%) and a high Rent’s
parameters as shown in table 4.5. In the case of tseng circuit, we have a low occupancy
(51%) and we achieve routability with a low architecture Rent’s parameters as illus-
trated in table 4.5. This confirms that we can balance interconnect use with logic blocks
utilization thanks to logic occupancy decreasing and congestion spreading. In fact we
have a 20% lower LBs occupancy than forMesh case, the logic extra area allows us to ex-
ploit interconnect better. The MFPGA high-interconnect/low-logic utilization approach
is just opposed to the high logic utilization approach that has been adopted for Mesh-
based FPGA. As shown in figure 4.18, unlike Mesh case where interconnect occupies
90% of the overall area, in MFPGA architecture interconnect occupies 73%. In this case
logic area is increased by 20% and interconnect area is reduced by 69%.

4.6. Experimental Results 105

Figure 4.18: Area distribution between interconnect resources, logic blocks

Figure 4.19: Clusters arity effect on switches number

4.6.3 Clusters Arity Effect
As one can notice, we considered in table 4.3 Tree architecture with clusters arity ba-
sicaly equal to 4. To get an idea about arity effect on architecture density and speed
performances, we vary clusters arity and we evaluate for every benchmark circuit the
required switches and wires number and the resulting critical path. To evaluate perfor-
mances, we used a simple model based on evaluation of the number of switches crossed
by the critical path. This estimation consists in determining the longest path in terms of
switches (ignoring wires delays).
We notice that when we increase clusters arity, the required switches number increases.
When clusters arity increases, the required multiplexers grow larger and consequently
the bound on area efficiency goes down. As shown in figure 4.19, switches number is
increased by 23% when we increase clusters arity from 4 to 8.
Whenwe increase clusters arity, the architecture levels number decreases. Consequently
multiplexers sizes increase and their total number decreases. Thus the total number of

106 Chapter 4. MFPGA Architecture

Figure 4.20: Clusters arity effect on critical path crossed switches

Figure 4.21: Clusters arity effect on wires number (<=> Muxes number)

4.6. Experimental Results 107

Figure 4.22: Total area for clusters sizes 4-8 (21 benchmark avg.)

wires decreases. For example, as shown in figure 4.21, wires number is reduced by 32%
whenwe increase clusters arity from 4 to 8. In terms of performance we notice, as shown
in figure 4.20, that the number of switches crossed by the critical path decreases when
we increase arity. With larger clusters arity, we can absorb larger number of nets, and
communication becomes local. For example when we increase clusters arity from 4 to 8,
the crossed switches number in the critical path is reduced by 27%.
The choice of clusters arity must be consistent with the application specifications and
constraints. For applications requiring high speed performance and low power dissi-
pation, it is recommended to use clusters with high arity (8-16). If we need to reduce
silicon area, using small clusters arities seems to be more efficient(2-4).

4.6.4 LUT Size Effect
In this section we evaluate the effect of LUTs size k (number of LUT inputs) on MFPGA
performances. Mapping is the phase where logic gates are transformed into k-bounded
cells. When k increases the size of LUTs increases and their number decreases. Thus, as
shown in [E.Ahmed and J.Rose, 2000], the effect of k increasing is not predictable and
can only be determined by experimentation.
Our experimentation is based on generating circuits with LUTs sizes ranging from 3 to
7 and implementing them on MFGA with these LUTs sizes and clusters arities ranging
from 4 to 8. First, as shown in figure 4.22, we evaluate the effect of LUTs size changing
on MFPGA area. Results correspond to the average area of 21 circuits. We notice that
initially there is a reduction in area between 3-LUT and 4-LUT and afterwards there is

108 Chapter 4. MFPGA Architecture

Figure 4.23: LUTs area and LUTs number versus LUT size (for cluster arity = 4)

an increase in area with the rise in LUT and cluster size. It can be noted that architecture
with 4-LUT 4 and cluster size 4 gives overall most efficient average area for benchmark
circuits.
The total area can be broken into two parts, the logic block area and interconnect area.
The logic area is the product of the total number of LUTs times the area per LUT. A plot
of these 2 components for clusters arity equal to 4, is given in figure 4.23 (the left verti-
cal axis presents area per LUT in (λ2) and the right vertical axis presents LUTs number).
The logic block area grows exponentially with LUT size as there are 2k bits in a k-inputs
LUT. As k increases, though, the number of LUTs decreases (because each LUT can
implement more logic functions) as shown by the downward curve in figure 4.23. How-
ever, the rate of increase in area is steeper than the rate of decrease in LUTs number.
Concerning the interconnect area we notice that it decreases with LUT size increase.
Since logic area increase is steeper than interconnect area decrease, we obtain the up-
ward trend in figure 4.22.
The second key metric is critical path delay. We only evaluate the number of switches
crossed by the critical path. Figure 4.24 shows the average critical path switches number
across all circuits as a function of clusters arities and LUTs sizes. Observing the figure,
it is clear that increasing clusters arity and LUTs size decreases the number of switches
crossed by the critical path. These decreases are significant: an architecture with cluster
arity 4 and 3-LUT has an average critical path switches number of 180 while cluster ar-
ity 8 and 7-LUT has an average critical path switches number of just 76. This behavior
is explained by the decrease of the number of LUTs and clusters in series on the critical
path. Nevertheless, to get an idea about the accurate delay we have to consider the in-
crease of intrinsic LUT delay when its size increases.

4.7. Conclusion 109

Figure 4.24: Critical path switches number clusters sizes 4-8 (21 benchmark avg.)

4.7 Conclusion
We described a new hierarchical multilevel MFPGA architecture and its suitable config-
uration tools. We show that good balancing of LUT utilization and interconnect utiliza-
tion implies lower area than the traditional Mesh topology.
The downward and upward networks are predictable interconnects, due to unicity of
the downward or upward path leading to destination. This particularity yields a very
interesting advantage for the routing phase and routability of the implemented design.
The new topology based on two hierarchical unidirectional networks seems more ro-
bust and can achieve better speed than symmetrical Mesh-based FPGA architectures.
The average path length between two LBs grows as O(logk(N)) for an MFPGA whereas
it is O(N) for a Mesh-based FPGA.
Experimental results based on implementingMCNC, opencores and ITC99 benchs shows
that MFPGA architecture has better area efficiency than the common VPR clustered
Mesh (CFPGA). We also showed that MFPGA efficiency in terms of area can be con-
trolled by interconnect Rent’s parameters and clusters arity. In this way it is a scalable
architecture which can be adapted to specific domains to satisfy different tradeoffs. Nev-
ertheless, it is not proved that the physical layout of the MFPGA is switch dominant
with a total area equivalent to the logic and switches areas. Planarization of the MFPGA
network is not a simple packing process with simple replication of basic tiles. These
difficulties for MFPGA to fit planar chip structure and the important number of wires
per logic block can induce a wire dominant layout which impacts its total area and may
distort some assumptions. For this reasons we are interested to design the MFPGA lay-
out, to test its limitations compared to the standardMesh and finally to measure the real
area.

5
Physical Planning of the Tree-Based

MFPGA

Designing the tree interconnect is a major challenge for Hierarchical FPGA such MF-
PGA. In this chapter, we propose a floorplanning method that can preserve the hierar-
chy of the MFPGA and place LBs regularly as well as switch fabrics according to user-
defined tree parameters such as network topology, physical dimension of the network
nodes, along with floorplan specification (number of levels, arity of the different levels
of hierarchy, locations of the I/O). This layout generation method is scalable and can
create a floorplan that best satisfies different design and architecture constraints.

5.1 Challenge for MFPGA layout design
Although quite different in their topologies, FPGA networks have an important aspect
in common: regularity. Preserving regularity and hierarchy assemblies in the silicon
floorplan is critical for MFPGA implementation. Furthermore, on-chip interconnect de-
lays and power consumption add additional requirements to FPGA design. In order
to reduce wiring delays and interconnect energy dissipation, total network wirelength
must be minimized.
Contemporary VLSI processes provide easily 6 layers of metalization for wiring.

With the advent of modern VLSI processes, it is feasible for process technology to add
metal layers as long as the cost of the extra mask steps and processing are justified by
the area gains, resulting in considerable progress over traditional VLSI circuits.
If active devices for some structure take up total area A, it is interesting to ask if the

active device can be laid out compactly to fit in O(A) two-dimensional surface area and

111

112 Chapter 5. Physical Planning of the Tree-Based MFPGA

can be supported by the multilayer wiring. Otherwise this device becomes wire domi-
nant. Further, we should ask how many wiring layers are required to support the most
compact active area layout.
MFPGA structure is a Butterfly Fat Tree like. Results from DeHon [A.DeHon, 2000]
show that a N-node fat-tree can be laid out in an O(N) active device area (area dedi-
cated to nodes and switches), using O(log(N)) wiring layers. No existing publication
of real physical layout prove such theoretical results until now. Those results don’t take
into account all additional problems of real layout related to configuration memory,
power tracks, congestion distribution or I/0 connections. Our work could constitute a
silicon proof of this concept.
Unlike traditional floorplanning that deals with circuit macro block placement and

wire routing, Tree-based FPGA floorplanning must solve these problems from a differ-
ent perspective, namely:

• Folding and planarization: Tree network topologies are multi-dimensional. Tree
planar layout requires that clusters are tiled and abutted on the floorplan in a
planar two-dimensional area. The planarization process is also constrained by the
pre-defined aspect ratio and by the numbers of level of the hierarchy level.

• Regularity, symmetry and scalability: planarization of the MFPGA network is not
a simple packing process with simple replication of basic tiles. In MFPGA topolo-
gies, each level of hierarchy presents a regular replication of lower level with a new
switch block that is different in other levels. Different sizes of the switch blocks at
each level creates local irregularity and makes scalability more complicated. We
adopt a specific technique for the floorplan to preserve regularity, symmetry and
scalability, .

• Critical path and total wirelength: Interconnect delays and power consumption
are the two critical issues in FPGA network design. On one hand, a large fraction
of the timing delay is spent on signal propagation through the interconnect On the
other hand, interconnect is a significant amount of energy that is also dissipated
on charging and discharging the load capacitance on the wires. Therefore, an opti-
mized interconnect floorplan is very important for FPGA performance and energy
consumption.

This work merges the issue of programmable switch circuit design with the design
of the routing architecture. We propose a novel approach for laying out tree-based archi-
tecture with a generic technique that optimizes the overall design area and preserve tree
scalability. In addition, this work consists in developing techniques for designing MF-
PGA routing networks of aribitrary size. Since specifc applications impose a particular
set of requirements on FPGA resources, it is advantageous to develop a different rout-
ing network for each application domain; for example, some circuits may have many
high-fanout signals that benefit from long wires with buffers and needs many routing

5.2. MFPGAWiring requirement 113

resources in the highest levels of hierarchy, while other circuits may be dominated by
many local connections which need more routing resources in the lowest levels of hier-
archy.

5.2 MFPGAWiring requirement
To estimate the required wiring area in a two-dimensional layout, we refer to Thomp-
son’s argument about bisection width [C.Thompson, 1979]. He defines the minimal bi-
section width of a graph as the number of cuts needed to divide it in half. In figure 5.1
we show the smallest number of edges whose removal disconnects one half of the ver-
tices from the other. Let the Minimum Bisection Width (MBW) of a network be ∝ (W)

Figure 5.1: The minimal bisection width of a Mesh and a binary Tree

(proportional to W), meaning that in any layout, MBW ∝ (W) wires are necessarily
crossing between the two halves of the layout. When we are limited to 2D-VLSI, this
means thatMBW wires must cross the 1D-line which bisects the chip. This fact gives a
lower bound of MBW on the width of the chip, if we assume a fixed number of wire
layers. Since this property holds recursively, we can establish that both the width and
height of the layout must be ∝ (W), making the entire chip area ∝ (W 2).
This property (relation between bisection width and wiring area) is an interesting fea-
ture to estimate whether FPGA area is dominated by wires or switches.
In the case of our MFPGA, at each level " of the hierarchy, every switching node has

nin(") inputs and nout(") outputs. This makes the bisection width equal to (cin + cout)k!.p.
Since

∀" ∈ {1, . . . , logk(N)} k!.p ≤ N

, the bisection width is O(Np). For a 2-dimensional network layout this bisection width
must cross the perimeter out of the subarray. Thus the perimeter of each subarray is
O(Np). The areas of the subarray will be proportional to the square of its perimeter,
making: Asubarray ∝ N2p. The required area per logic block (LB) based on wiring con-
straints, is therefore evaluated by:

ALB ∝ N2p−1

114 Chapter 5. Physical Planning of the Tree-Based MFPGA

In MFPGA architecture we can control bisection bandwidth in each level based on
Rent’s parameter (p < 1). Consequently, physical layout generation may be much opti-
mized since wiring is no more dominant and the total area is the active area of LB and
switches.

5.3 Problem Formulation
In a Mesh FPGA floorplan, each couple of logic block and switch block is placed as a
dedicated hard block tile. In direct Network as in the case of the Mesh interconnect, the
FPGA can be tiled into a two-dimensional array.
In indirect networks, as in the case of the Butterfly-like MFPGA network, the tiling of
the switch fabrics is constrained by the locations of the target logic block.
Different network topologies and application requirements impose different constraints
on floorplanning problems. To be more specific, we summarize the constraints that are
relevant for FPGA floorplanning:
1. Regularity constraints: physical FPGA placement should preserve the regularity
of the original network topology.

2. Hierarchy constraints: FPGA networks have hierarchical topologies (clusters). The
placement should also preserve this hierarchical aspect.

3. I/O constraints: An FPGA is implemented on a single chip. Some Logic Nodes
(or node switches, in the case of switch fabrics) are used as I/O nodes; therefore,
they need to be placed at the periphery of the floorplan. An FPGA floorplan must
accommodate those nodes at their own locations.

4. Aspect-ratio constraints: Chip die size is limited by the silicon area and aspect
ratio. Therefore, node logic blocks and node switch blocks need to be packed into
a two-dimensional array with predefined numbers of rows and columns.

5. Critical-path constraints: The links between some nodes of logic blocks can be the
critical paths. Therefore, the nodes connected by the critical paths must be placed
closer to each other.

6. Total net-length constraints: Reducing the total net length achieves shorter inter-
connect delays with lower power consumption.
The floorplanning problem is to determine a mapping from 3 to 2 dimensions, such

that the constraints are met and the overall wiring length is minimal. Such a problem is
computationally intractable, and is the object of extensive investigation in the ASIC do-
main. We propose an approach that takes into account the special properties of MFPGA
topologies.

5.4. Network Floorplan 115

5.4 Network Floorplan
On-chip implementation of MFPGA requires planarisation of the interconnect network
onto the slicon floorplan.We propose a physical planningmethod that allows floorplans
for different hierarchical structure under different architecures parmeters and design
constraints.
For clarity, we provide a construction of a small 4x4 tree-based MFPGA architecture
floorplan. The wires numbers in this candidate architecture grows with Rent parameter
p=1. To make the difference in switches and wires levels, upward and downward net-
works, we use different colors for all switches and wires classes. As shown in figure 5.2,
every UMSBlevel1 and its outputs wires are Red, everyDMSBlevel1 and its outputs wires
are Blue. Green and Brown colors are used for UMSBlevel2 andDMSBlevel2 respectively.

UMSB UMSB UMSB UMSB

UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB LEVEL 1

LEVEL 2

DMSB

DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

LB LB LB LBLB LB LB LB LB LB LB LBLB LB LB LB

Figure 5.2: light representation of 4x4 MFPGA Architecture with Rent parameter p=1

The flattenedMFPGA presented in figure 5.4 is topologically equivalent to the origi-
nal MFPGA view presented in figure 5.2. All MSBs are broken down in switch level and
every switch is placed in front of its successor horizontally or vertically. As shown in fig-
ure 5.5, every DMSB has 4 outputs correponding to 4 multiplexers outputs that drives
4 inputs of 4 different subclusters (or logic block in the lowest level). Every multiplexer
correponds to a set of switches grouped together and placed in the same row or the
same colum as their successor. Figure 5.3 shows new type of interconnect organizaton
which brings together every cluster and its corresponding interconnect only, in order to
form what we called Partlevel1 and Partlevel2. The Partlevel1 is replicated on column to
form level1 then Partlevel2 is replicated on rows to form level2 of the hierarchy.
By replicating Partlevel1 and Partlevel2, we can increase the arity of the tree in level1

116 Chapter 5. Physical Planning of the Tree-Based MFPGA

Part_level1 Part_level2

Figure 5.3: Flatten 4x4 Tree-based MFPGA

and level2 respectively. This is the way that gives the scalability of the hierarchy in the
terms of the arity named k. In the same way we can build the next levels of hierarchy.
In order to spread the congestion and the wires density over the MFPGA surface, we

interweave different interconnection levels to build the rearranged MFPGA presented

5.4. Network Floorplan 117

in figure 5.4, which is also topologically equivalent to the original MFPGA view pre-
sented in figure 5.2. This figure pops up a regular structure based on tiles, each one
including: Logic Block, a set of level1 switches and a set of level2 switches. In order
to vary the number of inputs or outputs in a cluster level, we do it simply by varying
the number of switches in the tile. This corresponds to change the multiplexers sizes in
level1 or level2. Thus we include a scalability in terms of clusters inputs number and
ouputs number.

Typical Tile

Figure 5.4: The rearranged 4x4 Tree-based MFPGA

Figure 5.6 shows the 3D rearranged 4x4MFPGA. For clarity we show the downward

118 Chapter 5. Physical Planning of the Tree-Based MFPGA

Mux Mux Mux Mux

Outputs

Inputs

Inputs

Outputs

Programmable Switch

Figure 5.5: Mini Switch Box topology

inter-level wires (green wires) only in the first plan, the rest is simply a replication of this
plan. Figure 5.7 shows the projection in the 2D plan of the rearranged MFPGA and its
interconnect organization that refers to figure 5.4. All tiles are equivalent in terms of
density, logic and switches distribution. All tiles of the same column are equivalent;
through tiles of the same row have some differences in routing topology, they are still
equivalent in terms of number of switches.

Figure 5.6: 3D view of the rearranged 4x4 Tree-based MFPGA

To build larger tree-based MFPGA, we apply the same technique of interweaving
the different interconnect levels of the hierarchy . This technique allows to vary the ar-

5.4. Network Floorplan 119

LB LBLBLB

LB LBLBLB

LB LBLBLB

LB LBLBLB

Figure 5.7: Rearranged 4x4 Tree-based MFPGA mapped in 2D

ity at each level and also vary the number of inputs/outputs of each cluster-level while
maintaining the regularity of the rearranged structure. In order to decrease the number
of tiles, we can enlarge the logic grain by placing an entire cluster of level1 inside every
tile. Figure 5.9 shows the rearranged compact layout of the 8x8x8x4 tree based MFPGA
architecture with the following parameters:
- level1 cluster: 8 LB, 24 inputs and 6 outputs (plevel1 = 0.86).
- level2 cluster: 64 LB, 144 inputs and 36 outputs (plevel2 = 0.86).
- level3 cluster: 512 LB, 864 inputs and 216 outputs (plevel3 = 0.86).
- level4 : 2048 LB, 70 inputs and 54 outputs connected to the Core I/O pins (blue pads
in he figure 5.9).

120 Chapter 5. Physical Planning of the Tree-Based MFPGA

For clarity, we merge the downward and upward networks routing switches and
channels in Figure 5.9. This figure shows also the basic tile which is replicated to form
the overall rearranged MFPGA. The basic tile contains 8 LB, a set of switches of level2,
level3 and level4. All tiles are by-products of the basic one. The I/O pads are connected
to tiles on the board, i.e all tiles on the 4 sides of the MFPGA core. As shown in this
figure, I/O pads can be connected to the upper level of the hierarchy (blue pads) or to
lower level such Magenta pads that are connected directly to the 3rd level of the hierar-
chy.
Compared to an automatic placement of such architecture, the rearranged compact lay-
out allows a more balanced routing congestion which is distributed across the overall
chip area. Figure 5.8(a) shows the routing congestion using a full automatic placement
done by Encounter [Cadence, 2006] and concentrated in the center of the chip. Fig-
ure 5.8(b) shows the routing congestion using the rearranged MFPGA pre-placement
that uses more wires in the upper layers (Metal 6 and 7) due to the outbreak of MSB,
being still more regular than the automatic placement approach. The proposed rear-
rangement uses more wires per tile, but this number of wires is constant, independently
of the structure size since we replicate the same tiles. However other approaches don’t
allow such scalability, and give irregular structure with very congestioned regions that
cannot be routed when we reach large sizes (4096 LBs and more).
We note that we use STmicroelectonics 0.12 standard cells library and we apply the
Encounter automatic router for both approaches.

Figure 5.8: Rearrangement effect on routing congestion and structure regularity

5.4.
N
etw
ork
Floorplan

121

1 1 1 1 11

2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

2

1

2

3 3 3 3 3 3

1 1 1 1 11

2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

2

1

2

3 3 3 3 3 3

1 1 1 1 11

2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

2

1

2

3 3 3 3 3 3

1 1 1 1 11

2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

1 1 1 1 1 11

2 2 2 2 2 2 2 2

1

2

1

2

3 3 3 3 3 3

1

2

Wires in level5 connected to I/O pads

Switches and Wires in level4

Switches and Wires in level3

Switches and Wires in level2

Switches and Wires in level1

Logic Bloc

Basic Tile

Figure5.9:Rearranged
2048nodesM

FPG
A
layout:8x8x8x4architecture

122 Chapter 5. Physical Planning of the Tree-Based MFPGA

vdd

nQ

Data

nData

Wen

Q

Figure 5.10: SRAM cell

5.5 MFPGA Full Custom Layout
5.5.1 4-LUT based logic block
The logic block (LB) structure in this MFPGA model is similar to the LB of the REDF-
PGA presented in chapter 3, but the transistor netlist and the layout is different since we
target full custom design in this section. The LB consists basically in a 4-LUT, Flip-Flop
and programmable bypass multiplexer that enables the sequential or the combinatorial
mode within the LB. Each LUT uses 16 configuration bits and one multiplexer with 16
inputs as shown in figure 5.11. The output of the logic block is driven by a bypass 2-
inputs multiplexer controled by an SRAM cell that uses either the Flip-flop output or
the LUT output. This multiplexer has an impact on the functionnal delays.
Each logic block contains a Synchrone Flip-Flop used for sequentiel user-design. Fig-
ure 5.12 shows the layout mask of the complete logic block including: LUT4, sff1_x1,
SRAM cells and the bypass multiplexer.

5.5.2 Progarmmable interconnect
All the interconnect in MFPGA is based on the scalable Mini Switch Box (MSB) which is
basicly a set of multiplexers that share the same inputs as shown in figure 5.5. By chang-
ing MFPGA architecture parameters, we observe that for an arity included between 4
and 16, typical inputs number of the multiplexers varies between 3 and 12. Compared
to decoded multiplexer for this range of inputs, "one-hot" coding multiplexer is smaller
in terms of area.
As explained before we split all MSBs to build the rearranged MFPGA. An MSB

is implemented using transmission gates with binary-encode controlled by SRAM cells.
The basic element of the programmable interconnect is the programmable switch named
Switch Point (SP). As shown in figure 5.13 the transmission gate of the SP is driven by

5.5. MFPGA Full Custom Layout 123

i1
i0

i2
i3

i4
i5
i6

i7

i8
i9
i10

i11

i12
i13

i14
i15

sig7

sig6

sig5

sig4

sig3

sig2

sig1

sig0

sig12

sig11

sig10

sig20

sig21

sigq nq

vdd

sig13

cmd0 ncmd0 cmd1 ncmd1 cmd2 ncmd2 cmd3 ncmd3

Figure 5.11: Look Up Table Multiplexer

an SRAM cell that is also inside SP. Using SP, we obtain a scalable multiplexer where
the number of inputs can be increased simply by duplicating SP.
Figure 5.13 shows the basic SP module that puts together a transmission gate and

its control SRAM cell. An SP cell is designed to be replicated easily to form a com-
plete multiplexer or cross-bar with any chosen size. Figure 5.14 shows the layout of a
4-inputs multiplexer with different geometries and flattened layout views of vertical
and horizontal multiplexers built by using the same basic switch element. During the
configuration step, the delay in the critical path is equal to the time required to latch the
data in the SRAM cell. During the functional mode, the input signal goes through only
one SP. When compared to a standard multiplexer realization (tree of pass transistors),
this situation improves overall FPGA performance.

5.5.3 Physical placement and routing
As shown in figure 5.15, the basic tile of the MFPGA contains LBs and SP from every
interconnect level. Each level is represented by a local Sparse Cross Bar (SCB) composed
of SP and outputs buffers. SCBs inside the tile are connected using short local routing
wires. Connections with other clusters use unidirectional horizontal and vertical global
routing wires. As shown in figure 5.9, wires of level3, level4, level5 driven by SCBs in
level3, level4 and I/O pads respectively, span (cross) 8, 8 and 32 tiles respectively which
correpond to k2, k3 and k4∗k2 respectively (k2,k3 and k4 are arities of level2, level3 and
level4 respectively).

124 Chapter 5. Physical Planning of the Tree-Based MFPGA

Figure 5.12: Real Logic Block: 4-LUT + Flip-Flop + bypass Multiplexer + 17 SRAM cells

The switches and their corresponding SRAM bits determine the area required by the
SCB since the input and output wires can simply be brought in on metal layers above
these devices. In order to achieve a compact layout, therefore, it is desirable to pack the
switches as closely as possible. Since we don’t use a full crossbar, there are few switches
per input line, and this causes the input lines to be more closely packed. Jogs are neces-
sary to connect input lines to some of their proper switches as shown in figure 5.16. This
figure shows a real example of the sparse cross bar layout that drives 1 LB in the MF-
PGA and where switches are placed in a very regular manner in order to obtain good
routability.
We have chosen a layout topology that restricts us to 6 or fewer wire pitches per layer
per SP in both vertical and horizontal direction. This mean that any interconnect requir-
ing more than 6 jogs or wire pitches per SP forces us to use additional metal layer or
to spread out our switches in the east-west direction, wasting silicon area in our final
layout.

Figure 5.17 shows the abutment of 4 basic tiles to build the rearranged Partlevel2.
This figure shows also vertical and horizontal wires that connect all tiles. Figures 5.18

5.6. Timing analysis 125

Figure 5.13: Switch Point Layout

and 5.19 shows a 2048 LBs MFPGA congestion map and layout view respectively. This
MFPGA corresponds to the 4-levels architecture(8x8x8x4) described in section 5.4 and
figure 5.9. The layout generation is running in CORIOLIS’s layout environment with a
symbolic grid, and uses Python routine that was written for placement and routing. The
layout is designed with cells library presented above, and uses 6 metal layers.

5.5.4 Configuration Storage and Distribution
The abutment of LB and SP cells generates a regular array of memory cells. The con-
figuration bits are grouped as words that can be programmed selectively. This allows
programming only the ressources that are needed. The size and the number of word per
array can be varied to obtain the needed SRAM storage block. The selective adressing
technique requires circuitry for decoding, and imposes the routing of configuration data
and address buses through the entire array. Configuration data and adresses buses are
routed by abutment of SP and LB cells in a manner similar to RAM structure.

5.6 Timing analysis
5.6.1 Delay Model
The delay through the routing network may easily be dominant in a programmable
technology. The 2 following factors are significant in this respect:

• Wires delay:
Delay on a wire is proportional to its length and capacitive loading (fanout).

126 Chapter 5. Physical Planning of the Tree-Based MFPGA

Figure 5.14: Vertical and Horizontal 4:1 Multiplexers

• Switches delay:
Each programmable switches (multiplexer) in a path adds delay. This delay is gen-
erally larger than wires delay.

A path connecting a source to a sink in MFPGA consists in going from a source up
to a particular level and then down to the sink. We propose to divide a path into several
sub-paths. Each sub-path connects two sucessive Multiplexers as shown in figure 5.20.
The number of crossed sub-paths depends on the number of levels.
Targeting the basic cells library in 0.12µ STmicroelectronics process, we obtain highly

accurate delay estimation for SP-basedmultiplexers and LB using the SPICE circuit sim-
ulator. We note that every multiplexer output drives one input of the succesor multi-
plexer. Due to the MFPGA topology, every downward multiplexer (Dmux) in a level i
has a fanout of ki − 1 and every upward multiplexer (Umux) in a level i has a fanout of
ki + ki+1 (ki is the tree arity in a level i).
Thus sub-path delay variations in all LB-Umux couples or Umux-Dmux or Dmux-Dmux
couples depend on wire length between the 2 concernedmodules. The delaymodel was
created by running SPICE simulations on a variety of MFPGA branches including basic
cells and wires.

5.6. Timing analysis 127

Routing Channel in Level3

Routing Channel in Level5

Routing Channel in Level4
Wires of length K3

Cluster of level1

Switches of level1

Wires of length K2

Wires of length K4xK2

Sparse crossbar
Switches in level3

Logic Block

Switches in level4
Sparse crossbar

Sparse crossbar

Local interconnect wires

Switches in level2
Sparse crossbar

Figure 5.15: MFPGA Basic tile topology

5.6.2 Critical path extraction and speed performances
Once the circuit has been placed and routed we obtain a direct graph called “routing
graph”. This graph describes wires that are used to connect LB pins as described in the
netlist. Wires and LB pins represent the “routing graph” nodes. Programmable passing
switches become directed edges. Edges are also added between LB inputs and outputs,
this corresponds for example to the combinational paths through LUT inside LB. Fig-
ure 5.21 shows a simple circuit implemented via 2-input LUTs and registers, and the
corresponding “routing graph”. On this graph we can isolate easily different sub-paths
through a depth-first traversal. We replace each sub-path by only one edge labeled with
the sub-path delay. We obtain a new direct acyclic graph called “timing graph”. In this
graph nodes represent the input and output pins of basic circuit elements, such as reg-
isters and LUTs. Register input and output are not linked, there are no edges incident to
output pin and no edges leaving the input pin (acyclic graph). Similarly, primary inputs
(input pads) have no incident edges and primary outputs (out pads) have no exit edges.

128 Chapter 5. Physical Planning of the Tree-Based MFPGA

sram

programmable Switch Point (SP)

Figure 5.16: Compact Layout of a sparce cross bar: buffers are not presented

Every edge is labeled with the corresponding sub-path delay required to pass through
circuit element or routing. Figure 5.21 shows also the generated “timing graph” of the
routed circuit.
An automatic timing analyzer tool can determine the minimum required clock period
with O(n) computation for a “timing graph” with n nodes via a breadth-first traver-
sal. This traversal begins at nodes with no incident edges (primary inputs and register
outputs) and labels each one with a signal arrival time, Tarrival, of 0. Each node which
has incident edges from previously labeled nodes is then labeled with its arrival time
according to:

Tarrival(i) = maxj∈fanin(i){Tarrival(j) + delay(j, i)}

where node i is the node being labeled, and delay(j, i) is the delay value marked on the
edge joining node j to node i. This procedure continues until labeling all nodes in the
graph. Primary output or register input node with the largest arrival time defines the
maximum delayDmax (= minimum clock period), through the circuit. "Timing graph" in
figure 5.21, shows an arrival time at node Reg equal to 5.5 ns, this represents the largest
arrival time, and hence the maximum circuit delay.

5.6. Timing analysis 129

Figure 5.17: The created rearranged Partlevel2 of the MFPGA layout

5.6.3 Speed performances
Previous comparisons shows that the MFPGA architecture is more efficient than Mesh
in terms of area and this could be a positive effect on circuit speed: the smaller the area,
the shorter the connecting wires. In addition the speed of a net is determined by the
number of routing switches it must cross. In a Mesh structure, the number of wires
segments and switches in series between LBs increases linearly with the Manhattan dis-
tance. However in a Tree topology the number of wires segments and switches in series
between LBs grows as a logarithmic function of the Manhattan distance.
We compared the speed of the MFPGA architecture to the Mesh. We implemented the
same circuits and we used our timing analyzing tool for the MFPGA and the one pro-
posed in VPR for the Mesh (note: we applied a VPR timing-driven placement and rout-
ing). Timing results are presented in table 5.1. In this comparison we only used small
benches (< 1024 BLEs).
We notice that MFPGA largely outperforms clustered Mesh architecture (40%) in

terms of speed despite we did not integrate timing driven techniques yet. Nevertheless,
we expect that the gain ratio will decrease in the case of larger benchmark circuits.

130 Chapter 5. Physical Planning of the Tree-Based MFPGA

Figure 5.18: Layout congestion map of 2048 LBs MFPGA

Figure 5.19: 6 metal layers 2048 LBs MFPGA full custom layout

5.7. The area gap between MFPGA and ASIC 131

LUT LUT

DMSB DMSB DMSB DMSBUMSB

DMSB DMSB DMSB DMSBUMSB

DMSB DMSB DMSB DMSBUMSB

DMSB DMSB DMSB DMSBUMSB

DMSB DMSB DMSB DMSBUMSB DMSB DMSB DMSB DMSBUMSB

LUT LUT

sink of
sub−path0

Source sink of sink of
sub−path2sub−path1

Figure 5.20: Sub-paths timing caracterisation

MSB

LUT

RegMSB

MSB

MSB

Primary
inputs
(pads)

LUT

MSB

MSB

Primary
(pad)
output

MSB

MSB

In In Reg InIn

Reg

Out

InIn

Out

Sub−path

Su
b−

pa
th

Sub−path

Su
b−

pa
th

Su
b−

pa
th

Out

0.5 ns 0.5 ns
1 ns

2 ns4 ns
3 ns 3 ns

1 ns

0.5 ns 0.5 ns

Timing graphRouting graphRouted circuit

Figure 5.21: Timing graph modeling of a simple circuit

5.7 The area gap betweenMFPGA and ASIC
In this section we measure the area gap betweenMFPGA and standard cell application-
specific integrated circuits (ASICs). We chose the standard cells because that approach
is currently the dominant choice in ASIC implementations. This comparaison is per-
formed by implementing a range of benchmark circuits using the same IC fabrica-
tion process geometry which is STMicroelectronic’s CMOS 120 nm. For the standard
cell we use STmicroelectronics cell libraries optimized for density provided by CMP
(http://cmp.imag.fr/). For the MFPGAwe use the cells presented above and converted
to the same process (ST 120 nm).

132 Chapter 5. Physical Planning of the Tree-Based MFPGA

Circuit LUTs Mesh MFPGA
T(ns) T(ns)

pcle 29 6.1 4.34
decod 32 5.36 3.56
cc 33 6.5 4.25
count 37 8.55 7.78
b9 61 10.77 6.98
i4 110 11.14 6.03
c2670 363 19.95 9.97
i9 471 15.67 10.90
alu4 584 20.9 11.26
C5315 725 24.63 15.17
Average 245 12.95 8.02

Table 5.1: Speed Comparison (0.12µm CMOS, 1.2V)

We select a variety of benchmarks (Verilog or VHDL) from the list descibed in sec-
tion 4.5.4 and table 4.2. The only factor that is considered in benchmarks selection was
ensuring that the design doesn’t contain multiplication operations (example "diffeq").
Our MFPGA doesn’t integrate hard structures like memories or multipliers blocks, it
would be agressively penalized if we used LUTs and Flip-flops to map such blocks.
To make sure that RTL is synthesized similarly for both targets we use the same synthe-
sis tool Synopsis design Compiler [Synopsys, 2006] to get gate level netlist, then we use
SIS for FPGA mapping. MFPGA softwares presented in figure 4.14 are used for parti-
tionning, place and route. Cadence SOC Encounter [Cadence, 2006] is used for standard
cell place&route and area evaluation.
The area of the standard cells implementation is simply the final core area of the placed
and routed design. For the MFPGA, the area is calculated using the actual silicon area
of MFPGA that can implement the benchmark design, this includes all resources of the
MFPGA.

To avoid disclosing any proprietary information, no absolute areas will be reported
in this work. The area gap between MFPGAs and ASICs is reported as the ratio of the
MFPGA area to ASIC area. The measurement methodology described above was ap-
plied to each of the benchmarks and results are shown in table 5.2. The example of b22
circuit shows that area of tree-basedMFPGA able to implement it, is 39 times larger than
its optimized standard cell implementation. We observe that the ratio of slicon area re-
quired to implement a circuit in tree-based MFPGA designed on symbolic layout and
optimized standard cell ASIC is on average 51.
The approach used in [I.Kuon and J.Rose, 2007] is more optimistic for the MFPGA

and consits in calculating only the silicon area of resources used by the design. This
means that they take only the area of blocks covered by the implemented circuit de-

5.8. Conclusion 133

ITC Gap ratio
benchmarks MFPGA/ASIC

b14 46
b15 57
b17 55
b21 59
b22 39

Average 51

Table 5.2: Area Ratio MFPGA/ASIC

sign. This includes the area of routing ressource surrounding the used LBs where the
entire area of the cluster is used regardless of whether only a portion of the cluster is
used. The candidate FPGA used in the work done by Kuon et al. is similar to the Xilinx
Virtex-E, a relatively modern commercial architecture. Their results show that circuits
implemented entirely using LUT and Flip-Flops, an FPGA is on average 40 times larger
than a standard cell implementation. This approach ignores the fact that FPGAs, un-
like ASICs, are not available in arbitrary sizes. A designer must select one particular
discrete size even if it is larger than required for the design. While this is an important
factor, we can focus on the cost of programmable fabric itself; therefore, we ignore any
area wasted due to the discrete nature of FPGA devices. In addition we can increase
the MFPGA density by a factor of 30% if we target a real layout grid instead of the ac-
tual symbolic one which penalizes the density. Using optimistic approaches, tree-based
MFPGA architectures would give better results than the Virtex-E like architecture. We
believe we can reduce to 25 the gap ratio between tree-based MFPGA and ASIC.

5.8 Conclusion
This chapter describes floorplanning methods used to create the layout of tree based
MFPGA architecture. We introduced a switch placement technique to rearrange theMF-
PGA interconnect resources and balance the routing congestion over the entire surface
of the MFPGA chip. We confirmed that the 2D rearranged tree-based MFPGA is a reg-
ular and scalable structure that uses a hierarchical interconnect with short-local and
long-global routing wires.
We develop the layout of the basic cells library to build the MFPGA and we in-

troduce the incorporation of sparse crossbar into our MFPGA architecture. We used a
switches soothing organisation to compact fully the crossbar layout, hence the MFPGA
layout.
This chapter also presented measurements quantifying the gap between MFPGAs

and ASICs. We observed that MFPGA is on average 51 times larger than a standard cell

134 Chapter 5. Physical Planning of the Tree-Based MFPGA

implementation.We note that theMFPGA layout presented in this work uses a symbolic
grid in order to allow portabiliy for different processes. The use of real processes rules
enables a substantial reduction of the layout area, thus we can achieve higher density
for the MFPGA.

Conclusion

1 Summary of contributions
This dissertation has presented methodologies to improve FPGA design position in the
IC industry. We investigated layout techniques to automate Mesh based FPGA in the
first part, then in a second part we explored a topology and physical design of a new
interconnect architecture that may prove to be important in FPGA performances en-
hancements. The following remarks were retained along various explorations.

1.1 Automating layout generation of specific Mesh-based FPGA
Technology scaling has brought IC industry to the point where several distinct compo-
nents can be integrated into a single chip. Many IC designs can benefit from inclusion of
programmable logic on the silicon die, as it can add general computing ability, provide
run-time reconfigurability, or can be used for post-manufacturing upgrades. Moreover,
by tailoring the reconfigurable fabric to specific domains, additional area/delay/power
gains can be achieved over current, more general fabrics. We deal with the automatic
design of domain-specific and embedded reconfigurable fabrics based on Mesh topol-
ogy.

In chapter 2 we show how we can reduce significantly the time-to-market of a spe-
cific FPGA fabric by automating his transistor level layout design, using standard cells
while maintaining the structure regularity. We presented a total flow to automate pro-
cess with the adequate CAD flow, allowing designers to create their own FPGA fabric.
We extend academia LIP6 CAD tools such as ALLIANCE and CORIOLIS platforms [Al-
liance, 2006,C.Alexandre et al., 2005] to take into account physical layout constraints in
the context of FPGA-architecture, as well as the automated FPGA layout procedure. We
developed a technology-independent layout generator which is easily adapted to any
standard cell library geometry and to any process rules. Using the ALLIANCE symbolic
standard cell library, we show how we can produce automatically a large spectrum of
SRAM Mesh-based FPGA cores and chips with different architectural parameters such
as routing channel width and array size. We show how alleviating the FPGA core de-
sign costs by automating the physical design process.
Chapter 3 presents a proof of the concept presented in chapter 2 by generating a specific

135

136 Conclusion

SRAM Mesh-based Redundant FPGA chip (REDFPGA) which uses a robust routing
interconnect and a fully random access to the configuration memory. This memory inte-
grates a hardware error-detector system for SEU mitigation. Compared to the ordinary
solutions of configuration bits reliability such as TMR, the proposed approach achieves
higher level of reliability with only 19% increase in the FPGA total area. The design was
successfully migrated and taped out in 0.12 um 6-metal layer CMOS process from ST.
To configure the REDFPGA chip we use only open-source software platform adapted to
this architecture, including synthesis, mapping, place&route and bitstream generation
tools.

1.2 Multilevel Hierarchical FPGA architectures
Mesh is the most common architecture in academic and industial fields. Much research
effort was deployed to improve it in terms of area, speed and power dissipation. Mod-
ern Mesh based architectures have at least two level of hierarchy with clustered logic
blocks, different wire lengths and well adapted CAD tools to optimize circuit imple-
mentation. Despite its good properties, Tree-based architecture has been overlooked up
to now; this is due to its physical design complexities and its scalability constraints.

In chapter 4 we propose a Butterfly Fat Tree (BFT) based FPGA architecture (MF-
PGA) and optimize it in terms of density and routability. Our approach is based on bal-
ancing interconnect and logic utilization in order to use more efficiently the most dom-
inant resource which is interconnect. The major features we used to depopulate inter-
connect are network topology and clusters signal bandwidths. Then we compared the
resulting MFPGA architecture to Mesh-based topology and show how we can achieve
more area efficient designs. To evaluate and compare different architectures we used an
adaptive configuration tools flow. In order to experiment and quantify the assets of sev-
eral architecture parameters, we use MCNC, ITC and Opencores circuits that contain
only lookup-tables and flip-flops. These benchmark circuits were placed and routed;
required area is evaluated by switches count and cells area sum. We showed that with
such architecture we can achieve an average gain of 54% in terms of area, compared
to Mesh-based architecture. Despite increasing logic block area by 20% we reduced the
total area more than twice thanks to a good balancing between logic and interconnect
resources. We achievedmore area efficient designs by allowing some LUTs to go unused
and by efficiently exploiting interconnect resources which accounts only for 75% of the
total area in the case of MFPGA. We see that high LUT use does not imply lower area
and that LUT usability is not always directly correlated to area efficiency.
Finally in chapter 5, to demonstrate the concept, we presented a physical floorplan-

ning technique to lay out the BFT-based architecture using modern VLSI multilayer
processes. We showed that MFPGA is not a wire dominant architecture, and given a
sufficient wiring layer, it can be laid out compactly to fit a 2D area corresponding to the
active area dedicated to logic blocks and switches.

2. Future work 137

2 Future work
In this work, we explored many of the parameters associated with designing Tree-based
MFPGA networks but many more design parameters deserve additional study. We lim-
ited this study to logic blocks holding a simple LUT; it should be interesting to see
how MFPGA interacts with heteregeneous leaves including DSP and Memories macro
blocks. We expect that larger benchmarks mixing LUT and macro blocks will better
demonstrate the efficiency and the scalabiliy of this architecture. A more careful review
of timing and power consumption effects would also be benificial.
Stimulated directions have emerged from our exploration. In particular the follow-

ing points seem promising.

2.1 Tree-based MFPGA architecture improvements
The aim of this work around tree-based MFPGA was to optimize interconnect in order
to reduce area and to improve performances. Interconnect is not the only factor that
effects FPGA performances, logic modules also influence density, speed and power. To-
day’s all industrial FPGA contain an ever increasing large number of hard macro blocks
such as DSP, RAM and sometimes Microprocessors cores. Including this macro blocks
and varying the logic block topology in a tree-based MFPGA deserves advanced ex-
ploration. Figure 1 shows what may resemble an heterogeneous MFPGA including fine
and coarse grain logic modules.

DSP DSP DSP DSP

Hard Macro Block

Figure 1: Coarse grained Tree based MFPGA

The upward network has an important impact on MFPGA routability and perfor-
mances. UMSB offers high flexibility to reach upper levels or go back to the same clus-
ters using local feedbacks. The disadvantage is that to connect 2 leaves of the same
cluster, the concerned net must cross 2 switches at least, which is expensive in terms of
performance. An intersting alternative is to use feedbacks driven by the leaves and con-
nected directly to the downward network andwithout crossing UMSB. These feedbacks

138 Conclusion

can reach the top level wihout using UMSB. Figure 2 shows an example of 4-level tree
based MFPGA with direct feedbacks driven by LB outputs and connected to all levels
of the hierarchy. In this figure, direct feedbacks look as long wires, but if we look to the
rearranged layout, these feedbacks are really short and rapid wires as shown in figure 2.
Thus finally to go for example from LB to the top level we use a short wire and we save
4 switches compared to the original solution. In the same way other alternatives of di-
rect connections between neighbours tiles and LBs that are physically adjacents should
be explored. We mention for example the carry chain for arithmetic circuits.

Rapid Feedback

Basic TileTree based topology

Figure 2: Rapid connection for the upward network

2.2 Delay and power models
Layout generation is very important to get accurate timing and power consumption
characteristics. Number of switches in a critical path or the activity of a path is easy to
determine and can be extracted from routing and simulation tools respectively, however
the wiring effects are linked to the physical layout. Wire lengh depends on physical
layout that changes for every architecture parameter change (Arity ’k’, Rent parameters
’p’, Architecture size ’N’).
In order to study these characteristics with the variation of the architecture param-

eters we can develop a generic model that allows us to estimate wire length without
developping a complete layout. The rearranged layout explored in this work represents
a high regularity and scalability which is linked to the architecture parameters, thus
we can develop a model to determine wiring constraints. Using cells library and wires
electric characteristics we can estimate delay and power consumption.

2. Future work 139

2.3 Large tree-based FPGA
New deep-submicron semiconductor technologies (65nm, 45 nm etc.) involve smaller
transistors and wires. This makes transistors faster and wires get slower [E.Lee et al.,
2006]. Long interconnect wires behave like an RC transmission line where delay grows
quadratically with length.
Considering Tree-based Layout, we showed that by increasing the tree size, wires be-
comes longer for every additional level of the hierarchy. This presents a serious limit
for large hierarchical FPGA. Evaluation based on MFPGA layout generated on 120 nm
technology show that in the case of architectures larger than 8192 LBs, wire delays in
the upper level became critical and dominant compared to switches delays. In this case
it becomes essential to decrease all these wires to reduce the quadratic delays growth.
It would be beneficial to move towards Mesh structure from this break-even point to
reduce wires delays. We propose to build a Mesh of Tree architecture where the basic
cluster corresponds to some largest effective MFPGA. In this way wires lengths in the
highest levels of the architecture depend only on Mesh cluster size. The 3D layout is
also an interseting alternativ for large tree-based FPGA where long wires in the upper
level of the tree would be converted to TSV (Through Silicon Via).

List of Publications

Some of the following publications can be downloaded from:
http://www-asim.lip6.fr/publications/

Journal papers
• FPGA Interconnect Topologies Exploration
Zied Marrakchi, Hayder Mrabet, Umer Farooq, and Habib Mehrez.
Accepted in the International Journal of Reconfigurable Computing (IJRC)
http://www.hindawi.com/journals/ijrc/aip.html

• Performances Comparison between Multilevel Hierarchical and Mesh FPGA In-
terconnects
Marrakchi Zied, Mrabet Hayder, Masson Christian, Mehrez Habib
International Journal of Electronics, Jan. 2008, vol. 95, num. 3, pp. 275-289, Taylor
and Francis

Refereed papers in international conferences
• Automatic Layout Generator of Domain Specific FPGA
Mrabet Hayder, Zied Marrkachi, André Tissot, Mehrez Habib
IEEE International Conference on Microelectronics (ICM 2008), Sharjah, UAE, De-
cember 2008

• Optimized Local Interconnect for Cluster-based Mesh FPGA Architecture
Marrakchi Zied, Mrabet Hayder, Mehrez Habib
IEEE International Conference on Microelectronics(ICM’2008), Sharjah, UAE, De-
cember 2008

• The Effect of LUT and Cluster Size on a Tree Based FPGA Architecture
Umer Farooq , Zied Marrakchi , Hayder Mrabet and Habib Mehrez
International Conference on Reconfigurable Computing and FPGAs(ReConfig’08),
Cancum, Mexico, December 2008, pp. 115-120

141

142 List of Publications

• Efficient Tree Topology for FPGA Interconnect Network
Marrakchi Zied, Mrabet Hayder, Amouri Emna, Mehrez Habib
ACM Great Lakes Symposium on VLSI (GLSVLSI’2008), Orlando, Florida, USA,
May 2008, pp. 321-326

• Efficient Mesh of Tree Interconnect for FPGA Architecture
Marrakchi Zied, Mrabet Hayder, Masson Christian, Mehrez Habib
International Conference on Field-Programmable Technology (ICFPT’2007), Ki-
takyushu, JAPAN, December 2007, pp. 269-272

• Mesh of Tree: Unifying Mesh and MFPGA for Better Device Performances
Marrakchi Zied, Mrabet Hayder, Masson Christian, Mehrez Habib
1st ACM/IEEE International Symposium onNetworks-on-Chip (NoC’2007), Prince-
ton, USA, May 2007, pp. 243-252

• Implementation of Scalable Embedded FPGA for SOC
Mrabet Hayder, Marrakchi Zied, Mehrez Habib, Tissot Andre
IEEE International Conference onDesign& Test of Integrated Systems inNanoscale
Technology (DTIS’2006), Tunis, Tunisia, September 2006, pp. 74-77

• Performances Improvement of FPGA using Novel Multilevel Hierarchical Inter-
connection Structure
Mrabet Hayder, Marrakchi Zied, Souillot Pierre, Mehrez Habib
IEEE/ACM International Conference on Computer-Aided Design (ICCAD’2006),
San Jose, California, USA, November 2006, pp. 675-679

• Evaluation of Hierarchical FPGA partitioning methodologies based on architec-
ture Rent Parameter
Marrakchi Zied, Mrabet Hayder, Mehrez Habib
2nd IEEEConference on Ph.D. Research inMicroElectronics and Electronics (PRIME’2006),
Otranto, Italy, June 2006, pp. 85-88

• A new Multilevel Hierarchical MFPGA and its suitable configuration tools
Marrakchi Zied, Mrabet Hayder, Mehrez Habib
IEEE Computer Society Annual Symposium on Emerging VLSI (ISVLSI’2006),
Technologies and Architectures, Karlsruhe, Germany, March 2006, pp. 263-268

• Hierarchical FPGA clustering based on multilevel partitioning approach to im-
prove routability and reduce power dissipation
Marrakchi Zied, Mrabet Hayder, Mehrez Habib
International Conference on Reconfigurable Computing and FPGAs (ReConFig’2005),
Puebla city, Mexico, September 2005

• Hierarchical FPGA clustering to improve routability
Marrakchi Zied, Mrabet Hayder, Mehrez Habib

143

IEEEConference on Ph.D. Research inMicroElectronics and Electronics (PRIME’2005),
Lausanne, Switzerland, July 2005, pp. 139-142

• Automatic Layout of Scalable Embedded Field Programmable Gate Array
Mrabet Hayder, Marrakchi Zied, Mehrez Habib, Tissot André
International Conference on Electrical Electronic andComputer Engineering (ICEEC’2004),
Cairo, Egypt, September 2004, pp. 469-472

Refereed Presentations at Workshops
• FPGA Interconnect Topologies Exploration
Zied Marrakchi, Hayder Mrabet, Umer Farooq, and Habib Mehrez.
Reconfigurable Communication-centric SoCs (ReCoSoC’2008), Barcelona, Spain,
July 2008

• Performance improvement of FPGA using novel multilevel hierarchical intercon-
nection structure I
Mrabet Hayder, Marrakchi Zied, Souillot Pierre, Mehrez Habib
Reconfigurable Communication-centric SoCs (ReCoSoC’2006),Montpellier, France,
July 2006

Posters
• A Routability Driven Partitioning and Detailed Placement Approach for Multi-
level Hierarchical FPGA
Marrakchi Zied, Mrabet Hayder, Souffleteau Gregory, Masson Christian, Mehrez
Habib
ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA’2007),
Monterey, Californie, USA, February 2007, pp. 225-225

• Amultilevel hierarchical interconnection structure for FPGA
Mrabet Hayder, Marrakchi Zied, Souillot Pierre, Mehrez Habib
14th ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(FPGA’2006), Monterey, California, USA, February 2006, pp. 225

• Configuration tools for a new multilevel hierarchical FPGA
Marrakchi Zied, Mrabet Hayder, Mehrez Habib
14th ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(FPGA’2006), Monterey, California, USA, February 2006, pp. 229

• Implementation of Scalable Embedded FPGA for SOC
Mrabet Hayder, Marrakchi Zied, Mehrez Habib, Tissot Andre

144 List of Publications

Reconfigurable Communication-centric SoCs (ReCoSoC’2005),Montpellier, France,
June 2005. ISBN 2-9517-4611-3.

Bibliography

[A.A.Agarwal and D.Lewis, 1994] A.A.Agarwal and D.Lewis (1994). Routing architec-
tures for hierarchical field programmable gate arrays. In Proceedings 1994 IEEE Inter-
national Conference on Computer Design, pages 475–478.

[Actel, 2008] Actel (2008). Actel corp. website. http://www.actel.com.

[A.DeHon, 1999] A.DeHon (1999). Balancing Interconnect and Computation in a Re-
configurable Computing Array (or, why you don’t really want 100% LUT utilization).
Proceedings of ACM/SIGDA International Symposium on Fiel-Programmable Gate Arrays,
Montery, CA.

[A.DeHon, 2000] A.DeHon (2000). Compact Multilayer Layout for Butterfly Fat-Tree.
ACM Symposium on Parallel Algorithms and Architectures, Bar Harbor, Maine, USA,
pages 206–215.

[A.DeHon, 2001] A.DeHon (2001). Rent’s Rule Based Switching Requirements. System
Level Interconnect Prediction Workshop.

[A.DeHon, 2004] A.DeHon (2004). Unifing Mesh and Tree-Based Programmable Inter-
connect. IEEE Transactions on VLSI Systems, (12):10.

[A.J.Alexander et al., 1995] A.J.Alexander, J.P.Cohoon, J.L.Colflesh, J.Karro, and
Robins, G. (1995). Three-Dimensional Field-Programmable Gate Arrays. Proc. Intl.
ASIC Conf., pages 253–256.

[Alliance, 2006] Alliance (2006). http://www-asim.lip6.fr/recherche/alliance/.

[Altera, 2008] Altera (2008). Altera corp. website. http://www.altera.com.

[A.Mishchenko, 2005] A.Mishchenko (2005). ABC: a system for sequen-
tial circuit synthesis. Berkeley Logic Synthesis and Verification Group:
http://www.eecs.berkeley.edu/ alanmi/abc/.

[A.Sharma et al., 2005] A.Sharma, C.Ebeling, and S.Hauck (2005). Architecture Adap-
tive Routability-Driven Placement for FPGAs. International Conference on Field Pro-
grammable Logic and Applications FPL, pages 427–432.

145

146 Bibliography

[A.Singh and M.Marek-Sadowska, 2002] A.Singh and M.Marek-Sadowska (2002). Effi-
cient circuit clustering for area and power reduction in FPGAs. International Sympo-
sium on Fiels Programmable Gate Arrays, pages 59–66.

[A.Yan and J.E.Wilton, 2006] A.Yan and J.E.Wilton, S. (2006). Product-term synthesiz-
able embedded programmable logic cores. IEEE transactions on very large scale inte-
gration (VLSI) systems, 14:474–488.

[B.Landman and R.Russo, 1971] B.Landman and R.Russo (1971). On Pin Versus Block
Relationship for Partition of Logic Circuits. IEEE Transactions on Computers, 20(1469-
1479).

[B.Riess and G.Ettelt, 1995] B.Riess and G.Ettelt (1995). Speed: Fast and Efficient Timing
Driven Placement. IEEE Symposium on Circuits and Systems , pages 377–380.

[B.W.Johnson, 1998] B.W.Johnson (1998). Design & analysis of fault tolerant digital sys-
tems. Addison-Wesley Longman Publishing, ISBN:0-201-07570-9, Boston, MA.

[C.Ababei et al., 2005] C.Ababei, H.Mogal, and K.Bazargan (2005). Three-dimensional
Place and Route for FPGAs. Proc. IEEE/ACM Asia and South Pacific Design Automation
Conference (ASP-DAC).

[Cadence, 2006] Cadence (2006). Cadence design systems.inc
http://www.cadence.com.

[C.Alexandre et al., 2005] C.Alexandre, H.Clement, S.Marek, C.Masson, and E.Remy
(2005). Tsunami: An integrated timing-driven place and route research platform. De-
sign Automation and Test in Europe Conference, Date 2005, Mucchen Genrmany, pages
920–921.

[C.Alexandre et al., 2006] C.Alexandre, M.Sroka, H.Clément, and C.Masson (2006).
Zephyr: A static timing analyzer integrated in a trans-hierarchical refinement design
flow. Power and Timing Modeling Optimization and Simulation, PATMOS’2006), Mont-
pellier, France, pages 319–328.

[C.Carmichael et al., 1999] C.Carmichael, E.Fuller, P.Blain, and M.Caffrey (1999). SEU
Mitigation Techniques for Virtex FPGAs in Space Applications. Proceedings of the
Military and Aerospace Applications of Programmable Logic Devices(MAPLD),Washington
D.C.

[C.Leiserson, 1985] C.Leiserson (1985). Fat-trees: Universal networks for hardware ef-
ficient supercomputing. IEEE Transactions on Computers, C-34(10):892–901.

[CMP, 2006] CMP (2006). Circuit Multi Project.

147

[C.Sung et al., 1998] C.Sung, R.Cliff, J.Huang, B.Wang, K.Nguyen, X.Wang, K.Veenstra,
B.Pedersen, and J.Turner (1998). A silicon efficient FLEX6000 programmable logic
architecture. IEEE Custom Integrated Circuits conference, pages 273–276.

[C.Thompson, 1979] C.Thompson (1979). Area-time complexity for VLSI. ACM Annual
symposium on theory of computing, pages 81–88.

[D.Huang and A.Kahng, 1997] D.Huang and A.Kahng (1997). Partioning-Based
Standard-Cell Global Placement with an Exact Objective. ACM Symposium on Physical
Design, pages 18–25.

[D.Tavana et al., 1996] D.Tavana, W.Yee, and V.A.Holen (1996). FPGA Architecture
with Repeatable Tiles Including Routing Matrices and Logic Matrices. , (618,445).

[E.Ahmed and J.Rose, 2000] E.Ahmed and J.Rose (2000). The effect of LUT and cluster
size on deep-submicron FPGA performance and density. Proceedings of the Interna-
tional Symposium on Field Programmable Gate Arrays, pages 3–12.

[E.A.Kusse and J.Rabaey, 1998] E.A.Kusse and J.Rabaey (1998). Low-energy embedded
FPGA structures. Int. Symp. On Low Power Electronics and DesignLow-Power FPGA,
pages 155–160.

[eASIC, 2008] eASIC (2008). eASIC nextreme 90nm NEW ASIC. www.easic.com.

[E.Lee et al., 2006] E.Lee, G.Lemieux, and S.Mirabbasi (2006). Interconnect Driver De-
sign for LongWires in Field-Programmable Gate Arrays. IEEE International Conference
on Field Programmable Technology, pages 1–8.

[E.M.Sentovich et al., 1992] E.M.Sentovich, K.J.Singh, L.Lavagno, C.Moon, R.Murgai,
A.Saldanha, H.Savoj, Stephan, P., R.K.Brayton, and A.Sangiovanni-Vincentelli (1992).
SIS: A System for Sequential Circuit Synthesis. Technical Report No. UCB/ERL M92/41.
University of California, Berkeley.

[E.Sentovich, 1992] E.Sentovich (1992). SIS: a system for sequential circuit synthesis.
Tech. Report No.UCB/ERL M92/41, University of California at Berkeley.

[F.Li et al., 2004] F.Li, Y.Lin, L.He, and J.Cong (2004). Low-power fpga using pre-
defined dual-vdd/dual-vt fabrics. Proceedings of the 2004 ACM/SIGDA 12th interna-
tional symposium on Field programmable gate arrays, pages 42–50.

[F.P.Preparata and J.Vuillemin, 1981] F.P.Preparata and J.Vuillemin (1981). The cube-
connected cycles: A versatile network for parallel computation. Comm. of the ACM,
pages 300–309.

[G.Borriello et al., 1995] G.Borriello, C.Ebeling, S.Hauck, and S.Burns (1995). The Trip-
tych FPGA Architecture. IEEE Transactions on VLSI Systems, 3(4):491–501.

148 Bibliography

[G.Lemieux and D.Lewis, 2004] G.Lemieux and D.Lewis (2004). Design of Interconnec-
tion Networks for Programmable Logic. Kluwer Academic Publishers.

[H.J.Chao et al., 2001] H.J.Chao, C.H.Lam, and E.Oki (2001). Broadband packet switch-
ing technologies: A practical guide to atm switches and ip routers. Wiley-Interscience.

[I.Kuon et al., 2005] I.Kuon, A.Egier, and J.Rose (2005). Design, Layout and Verification
of an FPGA using Automated Tools. ACM/SIGDA Symposium on Field Programmable
Gate Arrays.

[I.Kuon and J.Rose, 2007] I.Kuon and J.Rose (2007). Measuring the Gap Between FP-
GAs and ASICs. IEEE Transactions on CAD, 26(2):203–215.

[itc, 1999] itc (1999). http://www.cad.polito.it/tools/itc99.html. .

[J.Cong and Y.Ding, 1994] J.Cong and Y.Ding (1994). FlowMap: An optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table based FPGA Designs.
IEEE Transactions on Computer-Aided Design, pages 1–12.

[J.Cong and Y.Hwang, 1995] J.Cong and Y.Hwang (1995). Simultaneous Depth and
Area Minimization in LUT-Based FPGA Mapping. ACM/SIGDA International Sym-
posium on Field Programmable Gate Array, pages 68–74.

[J.Duato et al., 1997] J.Duato, Yalamanchili, S., and L.Ni (1997). Interconnection net-
works, an engineering approach. IEEE Computer Society Press.

[J.Pistorius and M.Hutton, 2003] J.Pistorius and M.Hutton (2003). Placement Rent Ex-
ponent Calculation Methods, Temporal Behaviour and FPGA Architecture Evalua-
tion. ACM/IEEE 5th Internationale Workshop on System Level Interconnect Prediction.

[J.Rose et al., 1990] J.Rose, R.Francis, D.Lewis, and P.Chow (1990). Architecture of
Field-Programmable Gate Arrays: The Effect of Logic Functionality on Area Effi-
ciency. IEEE Journal of Solid State Circuits.

[J.Rose and S.Brown, 1991] J.Rose and S.Brown (1991). Flexibility of interconnection
structures in field programmable gate arrays. IEEE Journal of Solid State and Circuits,
pages 277–282.

[K.Padalia et al., 2003] K.Padalia, R.Fung, M.Bourgeault, A.Egier, and J.Rose (2003).
Automatic transistor and physical design of FPGA tiles from an architectural specifi-
cation. in Proceedings of the 2003 ACM/SIGDA eleventh international symposium on Field
programmable gate arrays, Sigda Symposium on Field Programmable Gate Arrays, Montery,
pages 164–172.

[K.Poon and S.J.E.Wilton, 2002] K.Poon and S.J.E.Wilton (2002). A flexible power mo-
del for fpgas. International Conference on Field-Programmable Logic and Applica-
tions,britsh colombia.

149

[Lattice, 2008] Lattice (2008). Lattice semiconductors corp. website.
http://www.latticesemi.com/products/fpga/index.cfm.

[L.McMurchie and C.Ebeling, 1995] L.McMurchie and C.Ebeling (1995). Pathfinder: A
Negotiation-Based Performance-Driven Router for FPGAs. Proc.FPGA’95.

[L.Shang et al., 2002] L.Shang, A.S.Kaviani, and K.Bathala (2002). Dynamic Power Con-
sumption in Virtex-II FPGA Family. Tenth ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays.

[M2000,] M2000. FLEXEOS Configurable IP Core. www.m2000.fr.

[M.Borgatti et al., 2002] M.Borgatti, F.Lertora, B.Forêt, and L.Cali (2002). A reconfig-
urable System featuring Dynamically Extensible Embedded Microprocessor, FPGA
and Customisable I/O. in Proceedings of Custom Integrated Circuits Conference.

[MentorGraphics, 2006] MentorGraphics (2006). CALIBRE.
http://www.mentor.com/products.

[M.Huang et al., 1986] M.Huang, F.Romeo, and A.Sangiovanni-Vincentelli (1986). An
Efficient General Cooling Schedule for Simulated Annealing. International Conference
on Computer Aided Design, pages 381–384.

[M.Leeser et al., 1998] M.Leeser, W.Meleis, M.Vai, S.Chiricescu, W.Xu, and P.Zavracky
(1998). Rothko: A Three-Dimensional FPGA. IEEE Design Test Computers, pages 16–
23.

[M.Lin and A.Gamal, 2007] M.Lin and A.Gamal (2007). A routing fabric for monolith-
ically stacked 3D-FPGA. Proceedings of the ACM/SIGDA 15th international symposium
on Field programmable gate arrays, pages 3–12.

[N.Kafafi et al., 2003] N.Kafafi, K.Bozman, and Wilton, S. (2003). Architectures and al-
gorithms for synthesizable embedded programmable logic cores. ACM/SIGDA Sym-
posium on Field Programmable Gate Arrays, pages 3–11.

[opencores, 2009] opencores (2009). http://www.opencores.org. .

[P.Guerrier and A.Greiner, 2000] P.Guerrier and A.Greiner (2000). A generic architec-
ture for onchip packet-switched interconnections. Proceedings of the DesignAutomation
and Test in Europe Conference 2000 (DATE 2000), Paris, France, page 250 256.

[P.S.Zuchowski et al., 2002] P.S.Zuchowski, C.B.Reynolds, and R.J.Grupp (2002). A Hy-
brid ASIC and FPGA Architecture. International Conference on Computer-Aided Design.

[S.Belloeil et al., 2007] S.Belloeil, D.Dupuis, C.Masson, J.P.Chaput, and H.Mehrez
(2007). A procedural circuit description language based upon python. International
Conference on Microelectronics, ICM 2007, Cairo, Egypt, pages 275–278.

150 Bibliography

[S.Hareland et al., 2001] S.Hareland, J.Maiz, and M.Alavi (2001). Impact of CMOS pro-
cess scaling and SOI on the soft error rates of logic processes. VLSI Technology. Digest
of Technical Papers, pages 73–74.

[S.Phillips et al., 2004] S.Phillips, A.Sharma, and S.Hauck (2004). Automating the lay-
out of reconfigurable subsytems via template reduction. International Symposium on
Field-Programmable Logic and Applications, pages 857–861.

[S.Phillips and S.Hauck, 2002] S.Phillips and S.Hauck (2002). Automatic layout of
domain-specific reconfigurable subsytems for system-on-a-chip. ACM/SIGDA Sym-
posium on Field Programmable Gate Arrays, pages 165–173.

[Stratix-III, 2008] Stratix-III (2008). Stratix-III Device Handbook.
http://www.altera.com/literature/lit-stx3.js.

[Synopsys, 2006] Synopsys (2006). Design Complier Reference Manual.
http://www.synopsys.com.

[T.Calin et al., 1996] T.Calin, M.Nicolaidis, and R.Velazco (1996). Upset Hardened
Memory Design for Submicron CMOS Technology. IEEE Transaction on nuclear sci-
ence, 43(6).

[T.Vaida, 2001] T.Vaida (2001). PLCAdvanced Technology Demonstrator TestChip. Pro-
ceedings of the 2001 Custom Integrated Circuits Conference, pages 67–70.

[Varicore, 2001] Varicore (2001). Varicore Embedded Programmable Gate Array
Core(EPGA) 0.18 um Family Data Sheet. www.actel.com.

[V.Betz et al., 1999] V.Betz, A.Marquardt, and J.Rose (1999). Architecture and CAD for
Deep-Submicron FPGAs. Kluwer Academic Publishers.

[V.Betz and J.Rose, 1995] V.Betz and J.Rose (1995). Using architectural families to in-
crease FPGA speed and density. ACM Sigda Symposium on Field Programmable Gate
Arrays, Montery, pages 10–16.

[V.Betz and J.Rose, 1997] V.Betz and J.Rose (1997). VPR: ANew Packing Placement and
Routing Tool for FPGA research. Proceedings of the 7th International Workshop on Field-
Programmable Logic and Applications, pages 213–22.

[V.George and J.Rabaey, 2001] V.George and J.Rabaey (2001). Low-energy FPGA - Ar-
chitecture and Design. Kluwer Academic Publishers.

[V.Maingot et al., 2007] V.Maingot, J.Ferron, R.Leveugle, V.Pouget, and A.Douin (2007).
Configuration errors analysis in SRAM-based FPGAs: software tool and practical re-
sults. Microelectronics Reliability, 47(9-11):1836–1840.

151

[W.Tsu et al., 1999] W.Tsu, K.Macy, A.Joshi, R.Huang, N.Walker, T.Tung, O.Rowhani,
V.George, J.Wawrzynek, and A.DeHon (1999). HSRA: High Speed, Hierarchical Syn-
chronous Reconfigurable Array. Proceedings of the International Symposium on Field
Programmable Gate Arrays, 20(1469-1479):125–134.

[W.Wang, 2004] W.Wang (2004). RC hardened FPGA configuration SRAM cell design.
Electronics Letters, 40(9):525–526.

[Xilinx, 2008] Xilinx (2008). Xilinx Inc Website. http://www.xilinx.com.

[Y.Lay and P.Wang, 1997] Y.Lay and P.Wang (1997). Hierarchical Interconnection Struc-
tures for Field Programmable Gate Arrays. IEEE Transactions on VLSI Systems,
5(2):186–196.

[Z.Marrakchi, 2008] Z.Marrakchi (2008). Exploration and Optimization of Tree-Based
FPGA Architectures. Thesis, University Of Pierre et Marie Curie, www-asim.lip6.fr.

