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Abstract

Recursion is becoming a key construct in analytic systems, thanks to the increasing
popularity of data structures such as graphs and growth in data over the internet. This
resurgence has seen different optimization techniques proposed for recursive queries.
Recursive queries are particularly useful for retrieving nodes reachable along deep paths
in a graph. Their evaluation involves an iterative application of a function or operation
until some condition is satisfied. Cost models remain an essential component of a query
optimizer, most important for estimating the cost of query plans andquality plans selection
by the optimizer. For recursive queries, however, cost estimation is far from trivial and
has received less attention.

One of the challenges encountered in costing a recursive query operator or plan include
determining the convergence rate of the recursive. Many systems ignore convergence
rate in the data statistics, implementation algorithm and other factors that determine a
good cost estimation for recursive query execution. The lack of cost estimation framework
support for recursive queries and a validation framework in general for cost model are
the main motivation for this work.

In this thesis, we propose a cost estimation technique for recursive terms of the
extended relational algebra. This technique uses data statistics and information about the
maximum iterative steps needed for recursive evaluation to converge, to estimate the cost of
query plans and select an estimated cheapest query plan, in terms of computing resources
usage e.g. memory footprint, CPU and I/O, and evaluation time. We also present a
cost validation framework where we define a set of metrics and standard specifications
for cost model, and the conditions for query plan optimality. These set of metrics and
specifications are then used for assessing the efficacy and consistency of plan-selection
function of a cost model and they can also serve as a guide for developing advanced cost
models. We evaluate the effectiveness of our cost estimation technique on a set of recursive
graph queries on both generated and real datasets of significant size. Experiments show
that our cost estimation technique improves the performance of recursive query evaluation
on popular relational database engines.

xi





Résumé

La récursivité devient un élément clé des systèmes analytiques, grâce à la popula-
rité croissante des structures de données telles que les graphes et à l’augmentation des
données sur Internet. Cette résurgence a vu différentes techniques d’optimisation propo-
sées pour cette classe de requêtes. Les requêtes récursives sont particulièrement utiles
pour récupérer les nœuds accessibles le long de chemins profonds dans un graphe. Leur
évaluation implique une application itérative d’une fonction ou d’une opération jusqu’à
ce qu’une condition soit satisfaite. Le modèle de coût reste une composante essentielle
d’un optimiseur de requêtes, surtout pour l’estimation du coût des plans de requête et
la sélection des plans de qualité par l’optimiseur. Pour les termes récursifs, cependant,
l’estimation des coûts est loin d’être triviale et a reçu moins d’attention.

L’une des difficultés rencontrées dans le calcul du coût d’un opérateur ou d’un plan
d’interrogation récursif consiste à déterminer le taux de convergence du récursif. De
nombreux systèmes ignorent le taux de convergence dans les statistiques de données,
l’algorithme de mise en œuvre et d’autres facteurs qui déterminent une bonne estimation
du coût de l’exécution d’une requête récursive. L’absence d’un cadre d’estimation des
coûts pour les requêtes récursives et d’un cadre de validation en général pour le modèle
de coût sont la principale motivation de ce travail.

Dans cette thèse, nous proposons une technique d’estimation des coûts pour les termes
récursifs de l’algèbre relationnelle étendue. Cette technique utilise des statistiques de don-
nées et des informations sur les étapes itératives maximales nécessaires à la convergence
de l’évaluation récursive, pour estimer le coût des plans de requête et sélectionner un plan
de requête estimé le moins cher, en termes d’utilisation des ressources informatiques, par
exemple l’empreintemémoire, le CPU et les E/S, et le temps d’évaluation. Nous présentons
également un cadre de validation des coûts dans lequel nous définissons un ensemble de
mesures et de spécifications standard pour le modèle de coût, et la condition d’optimalité
du plan de requête. Cet ensemble de mesures et de spécifications est ensuite utilisé pour
évaluer l’efficacité et la cohérence de la fonction de sélection du plan d’un modèle de
coût et peut également servir de guide pour l’élaboration de modèles de coût efficaces.
Nous évaluons l’efficacité de notre technique d’estimation des coûts sur un ensemble de
requêtes de graphes récursives sur des ensembles de données générées et réelles de taille
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significative, notamment. Les expériences montrent que notre technique d’estimation des
coûts améliore la performance de l’évaluation des requêtes récursives sur les moteurs de
bases de données relationnelles les plus populaires.
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1
Introduction

Query engines usually generate different equivalent plans during query optimization
process among which the best plan is executed. Choosing efficient query plan for execution
in query engines can not be effectively accomplished without a properly planned cost
estimation techniques accompanied by cardinality estimation. Despite several years of
research and techniques on query optimization there is still a huge gap in cost estimation
for recursive query plan evaluation.

1.1 Background

Research on database systems are focusedmostly on two aspects (i) data storage and access,
and (ii) query optimization. Early works on data storage and access database technologies
have been concernedmostly with how to efficiently store, retrieve andmanage data in data
banks. Over the years, the focus shifted on how to effectively speed up query evaluation
time and reduce resources consumption paving way for several research works on query
optimization.

Research in DBMS

data storage and access

optimization

optimization techniques

plan space generation

enumeration algorithm

cardinality,
selectivity,

cost estimation

Figure 1.1 – Areas of research in database systems
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CHAPTER 1. INTRODUCTION

Figure 1.1 shows the areas of research in database systems.

Since relational model was first introduced by Codd [1], relational database manage-
ment systems (RDBMS) has been by far the most popular and dominant data analytic
systems for many decades now and they are effective in storing, managing and retrieving
data and are ACID-compliant1. The relational model stores data in a predefined schema
and is implemented through the standard Structured Query Language (SQL) interface in
many relational database management systems (RDBMS) like MSSQL Server, Postgres,
Oracle, MySQL MariaDB, etc.

Over the years, there has been a paradigm shift from centralizedRDBMS to distributed
big data platforms, this is in part due to the need for large scale query processing on
data from heterogeneous sources and increasingly growing size of data. Distributed
analytic engines like Hadoop [2], Spark [3] and Flink [4] among others, provide means of
handling computation on massive amount of data by distributing data and computation
across several machines thus allowing them to efficiently handle computation on very
large datasets. Many data-intensive applications have since taken advantages of these
frameworks.

To efficiently store and extract values from linked data, researchers started focusing
their attention to graph databases. Graph data are usually represented by nodes and edges
where any two entities (nodes) are possibly connected by an edge. Traditional databases
can store graph data but unfortunately, they were not designed for that purpose; they
are good for storing and managing structured tabular data. If many relationships exist
between data, RDBMS usually requires several joins in order to evaluate a given query
[5], hence, they are not as efficient in processing graph data. Relationships among data
are directly represented in a graph database, allowing queries to directly use the graph
structure [6]. Graph database are generally faster compared to traditional database when
it comes to finding complex relationships between the nodes.

Data stored using RDBMS, graph databases or big data systems needs to be retrieved,
transformed, and updated from time to time. For RDBMS, SQL has been the de-facto
query language formany traditional database systems and there are different SQL versions
adopted by different vendors. As for querying graph data, most systems have their own
domain-specific language e.g. SPARQL is the standard language for querying RDF data,
Cypher forNeo4j andAQL for ArangoDB, and some even offered an SQL flavoured dialect
to add some familiarity for traditional database users migrating to their platform. The
main idea behind writing query in high-level languages like SQL is to allow users to write
queries without having to bother about the implementation or execution details of how
the query will run. Unfortunately, user-written queries may not always be optimized in
such a way that query execution will efficiently utilize and/or exploit the opportunities
or computing power provided by the analytic systems. For data application to efficiently

1they are characterized by the Atomicity, Consistency, Isolation and Durability features where data
integrity is enforced in database transactions regardless of errors, power failures, etc.
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benefit from the opportunities offered by both RDBMS and distributed big data platforms,
there is a need for query analysis and optimization.

Query optimization is a process of generating different alternative plans or ways of
executing a given query and selecting the best query execution plan for evaluation [7, 8]
from those set of alternatives. It is a challenging task that has attracted several interests
in the research community over the last few decades resulting in different techniques
and implementations [9–16] in various commercial and open source database systems.
Some of these works focused on improving plan space generation which is a process
that involves generating alternative plans and algorithms for implementing underlying
operators efficiently.

Advances in this areas (query optimization) led to further questions on how to quantify
what determines a better query plan. To answer this question, early researchers of database
queryoptimizationdevise some setofpredefinedrules knownasheuristics fordetermining
what order and combination of query sub-expressions forms a better execution strategy.
The reliance of heuristics is not entirely a bad idea but many of these transformation
rules are not always the best for performance. The query optimizer therefore needs
additional information to make better decisions regarding the ordering or arrangement
of expressions on query trees of candidate query plans to be considered and eventually
selected for execution. Information about the data properties (i.e. data statistics) e.g
relation and column cardinalities, index selectivity, etc. are crucial to understanding how
much an operator or expression costs and the estimate of the amount of time the query
engine will spent evaluating them. The process of estimating the cost for each operator
and query plan is known as cost estimation.

Query evaluation is composed of two key components; the query optimizer and the
query execution engine [10]. In a typical query optimizer, queries are represented as a tree
of operators know as the query execution plan QEP. A traditional query engine is made
up of three main components shown in Figure 1.2, (i) search space consisting of execution
plans, (ii) cost model to estimate the cost of each QEPand assign the individual cost to the
QEPs and cardinality estimation to keep track of the changes in the size throughout the
optimization process and (iii) enumeration algorithm and plan selection, to determine the
choice of algorithm to be used or implemented for the execution of a particular operation.
Equivalent QEPs are generated per query by the optimizer in the search space, each with
different evaluation cost.

The query engine includes a query optimizer, a crucial component in charge of search-
ing for equivalent plans but in which operators are rearranged for efficiency search
purposes while preserving the semantics of the initial query. The query optimizer re-
quires a cost estimation technique that selects a best plan, i.e. that provides a priori a
better evaluation time and minimizes resources usage. For a given query sent to a query
engine for evaluation, the optimizer first translates the query into a QEP, then generates a
potentially huge number of equivalent QEPs.

Recursion expresses a category of query that has several important applications in
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Figure 1.2 – Query optimizer architecture

data analytics especially with the volume and veracity of data in the era of big data and
they are very useful in exploring and finding relationships among connected data. Typical
recursive algorithms used in data-instensive applications include Page Rank, Connected
Component, Shortest Path etc. Recursive evaluation involves an iterative application of a
function or operation until certain conditions (of termination) are satisfied –know as the
fixpoint. The growing need for recursive query support and processing in analytic systems
has been driven partly by advances in large-scale data analytics and knowledge database
development, popularity of data structure such as graph, growth in semantic web and,
the rapid growth of data over the internet [17–20].

A number of studies have been conducted on recursive queries optimization includ-
ing [17, 21–23] and more recently [4, 24–26]. Recursive operators are often difficult to
implement and it is even more challenging to optimize [27] their execution. In order
to efficiently handle recursive query evaluation, some of the techniques that have been
proposed include implementing recursive operator in an intermediate language that
compiles to standard SQL for evaluation on RDBMS [18, 19, 26], and others include
leveraging the computational power i.e. task execution in batch over clusters of machine
offered by distributed data analytics framework like Spark and Hadoop e.g. REX [28],
BigDatalog [25], Haloop [29], [24] and Flink [4] which natively support iterative workflows.
Whichever method or platform chosen to implement the fixpoint operator, optimization
process crucially relies on QEPs enumeration. QEP enumeration is carried out using the
optimizer’s cost estimation combined with cardinality estimation techniques to form an
overal metric that will then be used for comparing equivalent QEPs. All equivalent QEPs
generated for a given recursive query produce the same output, i.e. number of results but
they differ in terms of cost and amount of time that will be spent evaluating them.

Despite the recent attention received by recursive query evaluation, optimizers for
recursive operators still suffer from inadequacy of selecting best QEP for execution. Itera-
tive algorithms execution incurs significant amount of overhead [28], one reason is that
recursion is a repeated operation performed until no new results are available for further
computation or certain termination criteria is satisfied.
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1.2 Motivation

While recursive queries can appear in different domains and their applications are diverse,
we take a look at an example from the ongoing Covid-19 pandemic. To give more context,
a single host of Covid-19 virus can propagate the disease to several hundreds or thousands
of people. Assuming we have a graph, where the nodes represents people in a locality or
country and edges are the interaction between those people. In Example 1.1, we examine
a query which tracks the spread of Covide-19 infection.

Example 1.1 Covid-19

During the Covid-19 pandemic one of the common task is identifying the spread of
coronavirus. The question that is often asked for any patient is who have you been in contact
with and who has been in with those people as well. This question can easily be formulated
as a recursive query.
Let us assume that we have a query to retrieve a list of person ?x that JohnDoe (a patient)
was in contact with and the people that have been in contact with these people.

?x wasWith+ ?y

JohnDoe inContactWith ?x

}
Q1

In Example 1.1, line 1 wasWith+ represents the transitive closure of wasWith.
There are several possible set of solutions or ways to evaluate the query in Example 1.1.

The possible set of solutions (loosely translated intoMuRA [26]) are as follows;

1. P1: Filter(John, Join(inContactWith, Fixpoint X→wasWith ∪ X/wasWith))

2. P2: Filter(John, Fixpoint X→ Join(inContactWith, wasWith)) ∪ X/wasWith)

3. P3: Fixpoint X→ Join(Filter(John, inContactWith), wasWith) ∪ X/wasWith

It should be noted that there are other ways to evaluate Q1 above.
Similar to treating the query in Ex. 1.1 first, as two separate queries, and joining their

results, plan 1 (P1) starts by computing the transitive closure of everyone that have been
with (wasWith) someone and joining that with a list of ?x that JohnDoe has been in contact
with (inContactWith). A downside of this approach is that we perfom a join as many
times as the number of wasWithwhichmight be quite expensive since only the connections
to JohnDoe are only needed in the end. P1 runs in 0(n2) time.

Another option in P2 is to push the join inside the fixpoint. This means we start from
inContactWith/wasWith and iteratively add wasWith, then filter by JohnDoe. This is a
fairly better approach than P1 since the number of joins performed is reduced.

The last approach we consider is P3 where the filter is pushed inside the join in the
fixpoint operator. This approach is very common in query optimizer and the idea is
to filter early so as to reduce the intermediate result size or the degree of nodes to be
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computed (inside the fixpoint in this case). It is a lot more efficient approach than P1 and
P2 and runs in 0(n) time i.e. the number of solutions is linear to the number of nodes in
the graph.

In the end, Q1 has different different equivalent plans with varying cost of execution.
In order for the optimizer to make this clever decision of selecting the cheapest query plan
e.g. P3 in this example, a better cost model that effectively the best cost estimate for each
QEP is needed.

Cost estimation plays a bigger role in query optimization, faciliting the selection of
cheapest query execution plan by the query planner —cheapest in terms of computing
resources usage e.g. memory footprint, CPU and I/O and evaluation time. The classical
approach to cost estimation is given in [7] and have since served as the foundation for cost
model implemented in mainstream database systems. In this approach of [7], the cost
model is built for the SPJ (Select Join Project) families of query and the cost is estimated
in terms of the CPU and IO cost needed for a query to be processed.

A cost model takes as input QEPs, data statistics collected on the base relations (e.g
cardinality, number of distinct tuple per column) and other metrics like selectivity estimate,
access path etc. The effectiveness of cost-based optimization for non-recursive constructs has
been studied in [7, 10, 20, 30–32], however, for recursive terms, cost estimation has received
less attention and as a result existing systems lack a better cost estimation technique for
recursive query evaluation.

QEP cost estimation is necessary to ensure that the cheapest query plan selected by
the optimizer intelligently selects operators precedence (as with P3 above). Tuples or
rows that will not be part of the final result should be discarded as early as possible. For
example, filter operator reduce the intermediate result size of data by eliminating tuples
that does not satisfy a given predicate. Evaluating this operator as early as possible in the
query tree will improve the query performance.

Recursion usually involves iterating over a set of elements in a relation in a certain
number of steps, say Nj, where j is the depth of the recursive tree. Estimating Nj has
proved to be a great challenge in cost estimation for this class of queries. We have observed
that existing systems in this domain most often assume a constant number of iteration
as in [33, 34]. One downside of this approach is that a query could take say 50 steps for
the recursion to converge on a dataset and even more steps if the number of nodes are
increased. Another pitfall observed is that P3will take less steps than P1 in Example 1.1
above since a filter is pushed earlier inside the fixpoint reducing the number of nodes to
be computed. As a result, assuming a constant number of steps will eventually lead to a
bad estimation of the cost. Due to lack of specialized recursive operator in many database
systems, there has been limited interest in cost estimation techniques that focuses on
recursive query evaluation.

Many work have been done to improve the cost estimation accuracy, but as we will
show later, these techniques are not adapted for every situation. The lack of experimental
validation to demonstrate the effectiveness of recursive cost estimation proposed in [23]
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for example or an oversimplified cost estimation in [21] are examples of the limitations of
existing works for recursive cost estimation.

Accuracy of cardinality estimation is also important as this can greatly influence the
effectiveness of cost model and subsequently, the QEP quality [35]. Some works on
cardinality estimation [35–41], have demonstrated the impact of cardinality estimation on
a query optimizer. The cardinality of the base relation of a given dataset for a given query
is obtained either from the table of the database catalogue or just before query evaluation
time. The cardinality retrieved is part of the statistics used by the cost model and this
statistics are usually propagated through the entire query tree. The intermediate result
size which is the cardinality of each operator on the query tree may change (increase or
decrease) depending on the operation performed and the cost model uses this information
to estimate the cost of each operator in the QEP, allowing the optimizer to chose between
different QEP alternatives based on their cost. Selectivity refers to the set of tuples in a
relation that satisfy a given predicate [7, 30]. Selectivity factor is an important property
for estimating the result size of operators that involves the elimination of tuples from a
relation such as join, filter.

An accurate cardinality estimation does not automatically translate into a significant
improvement in query evaluation time since cost estimation in a query optimizer is a
complex combination of factors. It is therefore, important to have an accurate cardinality
estimation together with an efficient cost estimation technique. We believe that in order
to achieve a "near-optimal" estimation of QEPs’ cost and accurate cost model, cost esti-
mation in query optimizers should be considered with equal importance as cardinality
estimation. Finding a good balance between both (cost and cardinality estimations) will
ultimately ensure accurateQEPs’ cost estimation and subsequently improve query runtime
performance.

Another aspect that is lacking in query optimizers is a proper cost validation framework.
Many works on cost models in query optimizers rely on the query evaluation time for
comparing how effective a cost model is compared to others. This information alone does
not give the needed insights into the behaviour of cost model. Modification of cost model
input paramters introduce changes to the behaviour of the cost model and eventually the
quality of the plan selected. The lack of standard evaluation approaches makes it complex
to track these changes. In practise, the cheapest plan selected by the optimizers’ costmodel
are not always the plan with the minimum evaluation time and as a result, errors are
introduced in the estimation. And to which extent do we consider this errors acceptable
or query plans near-optimal and how do we set the bounds? We provide answers to these
questions in this thesis.

As mentioned above, our main focus are on recursive queries. A recursive query
contains a fixpoint operator with other non-recursive constructs to form a query tree. This
work focuses on generating efficient query plans, one that has the minimum cost among
a set of alternative plans.
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1.3 Contribution

To address the limitations of existing systems, we present a cost model for recursive query
optimization which allow for efficient selection of "cheapest" QEP for evaluation. Based
on the aforementioned, we summarize our contribution on cost estimation for recursive
query evaluation as follows;

1. Maximum iterative steps in a fixpoint operator.

The first problem we address is determining the number of iterative steps needed
for a recursive query evaluation to converge. We present a technique for estimating
this number and gather the results during a fixpoint operation in Chapter 4. The
steps estimation is important for the cardinality estimation and determining the
estimated cost for the recursive evaluation.

2. Cardinality estimation.

Accurate cardinality estimation plays an important role in the quality of query plans
selected by an optimizers’ cost model since its one of the statistical information the
cost model rely on. Although cardinality estimation for non-recursive constructs has
been well-studied, for recursive queries this is not the case. We present a cardinality
estimation technique in Chapter 4 for fixpoint operator and extend the work to
rdf graph summaries by Stefano et al. [36] to accurately estimate the cardinality
of recursive operator. In particular, this allows us to extend the definition of the
relational algebra presented in [26] with cardinality information of each operator.

3. Cost estimation.

In Chapter 4, we present a cost estimation technique that utilizes (1) and (2) above
and other relevant set of parameters or statistics to efficiently estimate the cost
of query plans. We present the cost specification, assumptions and functions for
each relational operator. Specifically, we present a novel approach for the cost
estimation for the fixpoint (recursive) operator. We walk through the computation
steps involved in the fixpoint operator, giving a deep insight into how the cardinality
and cost is computed at each step.

4. Validation framework.

We introduce a cost validation framework in Chapter 5. We begin by defining a set
of metrics and standard specifications that cost models are required to conform to.
We also define the conditions for optimality of query plans selected by an optimizers’
cost model. By using a rank-based approach and an error model, this framework
does not only provide a way for assessing the effectiveness of a cost model’s plan-
picking function but also a means for comparing different query optimizer’s cost
functions.
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5. Implementation and evaluation.

Finally, our cost estimation technique is implemented based on the algebra pre-
sented in [26]. Using both real world and generated graph datasets and regular
path queries, we conducted a comprehensive performance study, comparing our
estimation technique with existing systems. Results show that regardless of the size
of the graph or complexity of queries, our technique performs better on average
compared to existing systems.

This work enables query engines that support recursive query evaluation to effectively
select the cheapest query plans hence, an improved query evaluation time and resources
utilization. This work also serves as a foundation for the understanding of recusive query
plans and cost estimation and highlights the difficulty of recursive query cost estimation.

All experiments carried out in this work were conducted on recursive terms and
particularly tested for the extended relation algebra presented in [26]. We show that our
approach can be easily implemented in any mainstream database or analytic system that
support fixpoint operator or recursive query evaluation.

1.4 Thesis Outline

This thesis is structured as follows; in Chapter 2, we present the definition of terms, the
datamodel and notations used throughout this thesis. We also discuss query optimization
techniques, heuristics, and cost-based query optimization. In addition, we discuss recur-
sion and recursive query evaluation which the contributions in this thesis are centered
around. We give and overview of transitive closure algorithms and we conclude the
chapter by presenting the algebraic framework which will be referenced throughout this
work and for which our cost estimation techniques have been designed on. A survey
of cost estimation methods are presented in Chapter 3, we categorize cost models and
examine the different cardinality and cost estimation approaches in existing systems for
both non-recursive and recursive queries both in centralized and distributed settings.
From the lessons learned and inspiration derived from the state-of-art, we set a baseline
for formulation of our cost estimation techniques.

In Chapter 4 we present our novel cost estimation technique for fixpoint operator based
on the extended relational algebraic framework of Chapter 2. We also present a cardinality
estimation technique for fixpoint operator based on graph summarization technique
(SumRDF) [36]. Cardinality and selectivity estimation together with data statistics are
used as input for the cost model to efficiently estimate the cost for recursive QEPs.

We present a cost model validation framework in Chapter 5, outlining the criteria
for determining the optimality of query plans and defining the method to do so. In
Chapter 6, we described the implementation for the cost formulas proposed in Chapter
5. The underlying architecture, design choices are also explained. We experimentally
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evaluate the implementation presented and we demonstrate its effectiveness. Finally, we
give the conclusion and directions for future work in Chapter 7.
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2
Preliminaries

To facilitate readers’ understanding of the work presented in this thesis, it is important to
introduce the notations and provide the foundation and necessary technical background
used throughout this work; this we present in this chapter. Relational and graph model,
query optimization, and recursion are some of the concept discussed herewith.

2.1 Introduction

The standard SQL does not support recursive queries until SQL99, however, some vendors
like Oracle and IBM already supported this class of queries. Even though many RDBMS
systems now support recursive queries in the form of SQL "RECURSIVE CTE" or similar
dialects, this support is still very limited in that they can mostly handle the case of linear
recursion in which reference to recursive or moving part of the query is restricted to one
call. Recursive patterns in graph are very common. In order to mine answers from graphs,
recursion can be nested andmerge as (in [26]) at depths depending on the size and number
of connections between nodes of the graph.

In this chapter, we discuss relational and graph data models and give some important
definitions. In Section 2.2, we present the relational model, storage methods, query
language and the relational algebra. In addition, we introduce the graph model in
Section 2.3 where we give examples of graphs, we describe the storage facilities for graphs
and also the different languages for querying them. We also introduce query optimization
in Section 2.4 and describe the different optimization approaches employed in query
engines. Finally, in Section 2.5, we introduce recursion and present transitive closure
algorithms and fixpoints.
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2.2 Relational Model

The relational model was first introduced by E. F. Codd in 1970 and have since been the
foundation of relational dabatase management systems. The simplicity of the relational
model helped it gainwide acceptance in the research community anddata analytics sphere.
The relational model is based on the concept of mathematical relation and relations are
manipulated via the relational algebra and query languages. The relational model uses
attributes and the relationships between those attributes.
We give some definitions to describe the relational data model as follows;

Definition 2.2.1. (Relation) Let R is a relation over domain values A1,A2, . . .An then,

r(R)⊆ dom(A1)×dom(A2)× . . .dom(An)

where r(R) is an instance of the relation R and {t1, t2, . . . tn} ∈ r(R) are the tuples

Definition 2.2.2. (Attribute) An attribute defines the properties of that relation.

Definition 2.2.3. (Tuple) A tuple refers to a row of a relation.

Definition 2.2.4. (Cardinality) The cardinality of a relation R refers to the total number of
rows or tuples contained in a relation R table. The cardinality is written as |R| or rowCount(R).

Table 2.1 – Relation example

id Employee Salary

1 Ola 8
2 Peter 7
3 Jumoke 5
4 Abiola 3

In Table 2.1, each row represents a tuple; a single item of the relation. Each cell or field
represents an attribute and the columns consist of a set of attributes; labeled items of a
tuple.

2.2.1 Storage

RDBMS is used to store data in a relational model. Basically data is organized or stored
in a database table as rows and columns where the rows hold the information and the
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columns refers to the data type and category. RDBMS are generally ACID (Atomicity,
Consistency, Isolation, Durability) compliant.

2.2.2 Query Language

Data is updated and retrieved in relational database systems using the Structured Query
Language SQL, the standardized query language for the relational model. Many systems
including commercial databases and big data platforms have adopted the SQL standard
while some have only implemented a flavoured version of it. At the minimum, a query
language allows users to write clear and simple queries without having to understand
about how the query will be processed [42].

Definition 2.2.5. (Query) Given a database instance D, a query q involves mapping D to a
relation q(D).

01 | SELECT *

02 | FROM Emp

03 | WHERE age = 25;

Listing 2.1 – Query language example

Listing 2.1 shows an example of an SQL query that selects all employees that are 25
years old.
Query evaluation is done in several stages as follows;

• parsing/transformation: the stage includes syntax validation, attribute and access
permission and query transformation into algebraic expression

• optimization and code generation: the optimization phase involves rewriting al-
gebraic expressions into more efficient ones leading to the construction of several
alternative physical plans. Based on the statistics of the data and the execution
environment, a cost model is used to select the cheapest QEP.

• query evaluation: the cheapestQEPs selected by the help of a cost model in previous
step are then executed.

2.2.3 Relational Algebra

In this section, we discuss how the database uses the query language to retrieve andupdate
stored data, the relational algebra (RA) allows for describing operations on relations using
formal mathematical notation.
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Definition 2.2.6. A relation algebra consists of a relation R together with a set of operations to
be performed on R.

A relational algebra operator takes one or more relations as input which can be base
relations (read directly from the database table) or outputs of intermediate relation(s). An
operator could be unary, binary or a closure. Unary operators accept only one relation,
binary operators involve two relations as input while closure operators accept relation as
input and output one or more relations.

Some examples of RA operators include;

• Filter: an example of unary operatorwhich takes a selection predicate f and a relation
R. Filter involves selecting only tuples that satisfy a given predicate condition. The
relation returned after a filter operation has the same schema as the initial relation
but whose tuples are a subset of this relation. Filter is written as σf(R).

• Projection: written as π, a projection operation takes a relation as input and returns
a subset of the initial relation. Usually, the output relation have the same number of
tuples as the input relation unless duplicate attributes are removed.

• Join: Join is a binary relationwritten ason,.. Given a set of terms R and S, this operator
involves combining compatible pairs of tuples from R and S. The two relations must
be join compatible. The join (on) of two terns R and S is written as Ron S.

• Union: Given two terms R and S, the union (∪) operation corresponds to the
compatible set of tuples from R and S. The result of a union operation is a relation
R+S. The union of two terms R and S is written as R∪S.

A comprehensive description of these operators used in this work will be given in
subsequent chapters.

2.3 Graph Model

Some of the inherent limitations of RDBMS which has been designed for general tables
has led to the development of graph databases, optimized for storing and querying graphs.
Essentially, a graph is a collection of nodes and edges. In the graph model, entities are
represented as nodes and their relationships as edges.

Definition 2.3.1. (Graph) Let graph G be an undirected graph containing a set of vertices V
and edges E respectively, we define G = (V,E) such that E ⊆ V ×V , where V is a set of nodes
and E is a set of edges. Assuming E(s,t) is a relation, there exist an edge y that is mutually
reachable from x iff (x,y) is a tuple of E.

14
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The basic entity of a graph is the node, connection between two nodes is established
through an edge.
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Figure 2.1 – Graph example

Definition 2.3.2. (Path and path length) Let G = (V,E). A path p is a sequence of nodes
v1,v2,v3, ...vk, vi ∈ V such that (vi−1,vi) ∈ E for i= 1,2,3, ...k. The length of the path is the
number of edges in the path.

Definition 2.3.3. Graph size Given a graph G|G = (V,E). The size of graph G is the defined
as the sum of the total number of nodes |V | and edges |E| in the graph.

|G|= |V |+ |E|

Definition 2.3.4. (Transitive Closure) Let G= (V,E) with v,w ∈ V . The transitive closure
is the graph G+ = (V,E+) with E+ = (v,w)|v w inG.

Definition 2.3.5. (Fixpoint) A fixpoint of a function f ∈ D→ D is an element x ∈ D such that
f(x) = x.

2.3.1 Storage

The last decade has seen an emergence of many different graph databases. Research on
graph data management has mainly been focused on two aspects, (i) the native data stores,
(ii) non-native data stores.

• Native data stores: the native data storage system are usually RDF model compliant
which could be in-memory or disk-based [43]
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• Non-native data stores: this category of graph storage system make use of relational
systems e.g. Apache Jena, C-Store [16], Neo4j, SQLGraph [18], MuIR [26] or NoSQL
systems e.g. OrientDB or XML/HTML/Web API-based e.g. RSS feeds.

Definition 2.3.6. (RDF) Resource Description Framework (RDF) [44] is a W3C recommen-
dation for representing web resources or knowledge bases. It describes the syntax and encoding
for writing, exchanging and reuse of structured knowledge.

Entities in RDF are uniquely identified by their IRIs but they can also be literals and blank
nodes. RDF is built on the subject-predicate-object (s, p, o) triple pattern model where the
predicate indicates the relationship between the subject and the object

2.3.2 Query Language

The graph data model allow paths to be specified in queries by the user [45]. There is no
particular standard query language, each systems tends to have their specific language for
retireving and updating records stored in graph databases. SPARQL is the standard query
language for RDF graphs. AQL (Arango Query Language), a declarative language for
querying record stored in ArangoDB, OrientDB uses a flavoured SQL dialect and Neo4j
uses CQL (Cypher Query Language). Regular Path Queries (RPQs) [46], Conjuction and
Union of Regular Path Queries (UCRPQs) [27, 45, 47] are also query languages for graph
databases, navigational in nature as they are used to query labeled edges or paths in the
graphs.

Definition 2.3.7. (SPARQL) is the query language for RDF

01 | PREFIX sd: <http://example.org/knowledge-base#>

02 | PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

03 | SELECT *

04 | WHERE {

05 | ?person sd:livesIn ?city

06 | }

Listing 2.2 – SPARQL query example

Definition 2.3.8. Regular PathQueries (RPQ) are regular expressions that are matched against
labeled directed paths in graph databases. A regular expression R of an RPQ over labeled edges
is of the form;

RPQ(x, y) := (x, R, y)
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where x and y are the edges
Examples of an RPQ query is given in Listing 2.3. RPQs permit users to formulate

queries about arbitrarily long paths in graphs [48] and they can contain more complex
paths, a complete description can be found in the work of [27, 45–47].

01 | ?person livesIn/locatedIn ?city

Listing 2.3 – RPQ query example

2.4 Query Optimization

For a given query, there could be several ways to execute the query and the optimizer
generates different equivalent QEPs accordingly among which a best plan is selected for
execution. The difference in equivalent query plan can be observed in terms of their
evaluation time and computing resources consumption. Query optimization process is
basically carried out in a sequence of steps where a given query is first subjected to a series
of transformations then all possible combinations of operators are generated making up
different execution plans. The query engine then select the cheapest QEP that produce
an output equivalent to the original query. We discuss query processing strategies in the
next section.

2.4.1 Bottom-up vs Top-down

There are two prominent architectures that has been adopted for query optimization
during the last few decades (1) System R, bottom-up dynamic programming optimizers
[7, 49] and (2) Volcano top-down memoization optimizers [50, 51].

Bottom-up style enumerates plan in a bottom-up fashion using dynamic programming
[7, 49]. It was first prototyped at IBM Research and has been implemented in various
database systems such as IBM DB2 and Oracle. In terms of search space and plan genera-
tion, the original query is transformed into semantically equivalent algebraic expressions
otherwise known as the logical plans. This stage is referred to as the query rewriting stage.
Semantically equivalent expressions or logical plans are translated into a tree of physical
operators –the physical plan, where the search space is further broadened or enlarged
and an efficient QEP is selected for evaluation with the help of a cost model. System R
consider properties of a query like columns ordering which are then used in selecting
the efficient plan for execution. Optimization process in bottom-up approach is two-fold;
rule-based query rewriting followed by the application of cost estimation. Volcano style on
the other hand translates queries into logical expressions and apply transformation rules
that maps algebraic expressions to other expressions. Physical plans then implements the
logical expressions and the cheapest physical QEP is sent for execution. This process is
exhaustive and all possible transformation rules are applied in a top-down manner. In
contrast to bottom-up style, Volcano style optimizers are single-phasedwhere all algebraic
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transformation are cost-based and the mapping of algebraic expression to physical ones
is done in a single step. Systems that implement the Volcano style optimization include
Apache Calcite (and by extension Flink), SQL Server, etc.

Plan enumeration in bottom-up optimizers uses dynamic programming where only
the cheapest plans for sub-expressions are considered and the final search tree consists of
the possible solutions of orders in which these expressions or plans can be combined to
retrieve the query results. This is achieved in an incremental way such that enumeration
starts from lowest level nodes in the access plan then proceed by enumerating combination
of two of these type of plans up until the highest level. There are n! permutation of ways
in which access plans can be combined for a query but dynamic programming reduces
this from O(n!) to O(n2n−1).

Enumeration of plans in top-down optimizers are done through backward chaining
using branch-and-bound search and memoization [50, 51] this avoids the duplication
of effort. The optimizer checks the logical and physical properties of expressions to
determine whether the query expression has already been optimized, in which case it
does not re-apply this optimization. If the optimization has not been performed before,
it applies transformation and implementation rules and modify the properties with an
enforcer. A bound derived from siblings and parent expressions is used as baseline in
pruning the search space for expressions that do not have to be enumerated.

Cost estimation for both query optimization approaches are similar. Cost is estimated
for each operator or sub-plan and the cost for each intermediate operators or sub-plans
are combined into a final estimated cost for each QEP allowing the optimizer to select the
cheapest query plan for execution. The cost model is a combination of arithmetic formulas
that rely on the CPU and I/O cost. The cost model takes as input, the data and index
statistics e.g cardinality, column distinct values, intermediate result size, etc., the predicate
in the query, access path and particular order of evaluation of the query [7]. In both query
optimization architectures, the cost estimation is performed in a bottom-up manner since
the final cost of each plan is the cumulative sum of that of all of its sub-plans.

2.4.2 Heuristics vs. Cost-Based Query Optimization

Choosing an efficient QEP from several possible alternatives is a very hard task that the
query optimizer must perform. There are two common approaches that the optimizer
uses to carry out this task. Heuristics is the first approach which is based on applying
equivalence rules to systematically generate equivalent expressions to a given expression
without the knowledge of statistics of the dataset [11]. They are usually applied to deal
with huge search spaces and they reduce the number of choices.

On the other hand, cost-based optimization involves the enumeration of all possible
plans in the search space and it assigns a cost to each plan in the search space. The cost is a
relativemeasure of the amount of resources a particularQEPwill use during the execution.
The final cost of a QEP is the summation of the cost of all its sub-plan or operations. The
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query optimizer choose the QEPwith the cheapest cost after enumeration for execution.
Onemight think that heuristics are sufficient for query optimization given the overhead

sometimes incurred by cost estimation, thismight be true for trivial queries only. Recursive
queries are a complex class of queries. In particular, if they contain a fixpoint, therefore,
their evaluation requires careful planning and appropriate cost estimation.

Some analytic systems completely rely on heuristics while others rely on a combination
of heuristics and cost estimation to select the cheapest QEP for execution.

The cost of a query plan is expressed as a linear combination of intermediate result
sizes (cardinalities) weighed by carefully defined factors for CPU cost, I/O cost, etc.

2.4.3 Cardinality Estimation

Cost estimation utilizes statistics of input data, the query, the cardinality of the data.
The cardinality can be base relation or otherwise known as the table cardinality and the
column cardinality. The defintion of cardinality given earlier in this section refers to the
base relation cardinality. Column cardinality on the other hand refers to the number of
distinct values in a database column or the number of distinct nodes in a graph.

The cardinality is important for several reason, one being that the cost model uses the
information to estimate the cost of query plans. In fact, in many cost model architectures,
the cardinality is usually the dominant factor in the cost function. In some ways the cost
function keeps track of the changes introduced to the cardinality (increase or decrease)
by performing certain operations at different stages in the query plan. This changes are
estimated using what is known as the selectivity factor which is the number of tuples in
the relation that satisfy a given predicate condition. Cardinality at different stages in the
query tree are referred to as the intermediate cardinality or result size. In subsequent
chapters, we will examine in details the cardinality and the selectivity of a query.

2.5 Recursion

In the the past years, there has been a resurgence in the interest and use of recursive
graph queries. Recursion has it roots in deductive database and they are useful for
expressing reachability properties or finding connections between connected data. One of
the fundamental mechanism in modern data processing is recursion [52] and it has been
applied and still useful in many domains and their use include finding the shortest paths,
page rank, power and adjacency matrix, connected components, social network analysis
in connected data which requires writing queries to traverse graphs. Recursion offers a
good flexibility for describing relationships within graphs and performing computations
on connected data.

Recursive queries expresses a category of complex queries that involves an iterative
application of a function or operation until a certain predicate is satisfied — known as
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the fixpoint. Several optimization techniques have been proposed for this class of queries
including [17, 21–23] and more recently [4, 24–26].

Example: Letus consider thepopular transitive closure example; the ancestor-descendant
relationship. Given a parents-children relation, the idea is to find the ancestor of each
person and their descents as well. We can express this relationship using transitive closure
algorithms.

Starting from an empty ancestors-descendants relation, the initial parents-children relation
immediately becomes the first ancestors and descendants respectively. In the next iteration,
the computation starts by looking for pairs of common nodes – yellow-colored rows i.e.
any two nodes with a connection as shown in Figure 2.3. This process continues until no
new results can be found and this point the computation terminates.

Figure 2.2 – Table describing parent-child relationship

Figure 2.3 – ancestors-descendants relationship

Figure 2.3 shows the result at each step of the iteration. One could notice that the
relation grows at each iteration, this is because new ancestor-descendant relations are
being discovered from the ones of the previous steps.
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2.5.1 Transitive Closure Algorithm and Evaluation

There are several algorithms for implementing the transitive closure which include naive,
semi-naive, smart algorithm etc. In this section, we take a closer look at two of the most
common and implemented transitive closure algorithms; naive and semi-naive algorithms.
It should be noted that the type of transitive closure algorithm affects the evaluation time
and cost.

2.5.1.1 Naive Algorithm

With naive iteration, results from the previous iteration are consumed in the next step of
the iteration. As shown in Algorithm 1, naive evaluation involves performing repeated
application of the function f on v until no new results are added.

Algorithm 1 Naive iteration
1: function naiveEval(F, S)
2: while F(S) , S do . termination condition
3: S← F(S)

In line 3, the operation is repatedly applied on S until the termination condition in
line 2 is satisfied. This approach is inefficient as it does not eliminate duplicates which
can be introduced during the iterations and this might lead to significant amount of data
shipped across the network (in the case of distributed systems) or lodged in memory or
disk.

2.5.1.2 Semi-naive Algorithm

Semi-naive evaluation of a fixpoint ensures that redundant re-computations are avoided,
only new results generated in the last iteration steps are used in the current iteration.

Algorithm 2 Semi-naive evaluation
1: function semiNaiveEval(R)
2: δ := R
3: S := R
4: while δ ,∅ do . termination condition
5: δ := (δon R)−S
6: S := S∪ δ

In Algorithm 2, an operator is applied only on the tuples produced during the previous
iteration, δ is updated with the new results. In this manner, the algorithm avoids fully
recomputing the join at each iterative step and the final result for a semi-naive algorithm
is computed by taking the union of all the sets in its kth steps in Line:6.
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2.5.2 Fixpoint

Given an undirected graph G, containing a set of vertices V and edges E respectively, we
define G= (V,E) such that E⊆ V ×V . Assuming E(s,t) is a relation, there exists an edge
y that is mutually reachable from x iff (x,y) is a tuple of E.

A fixpoint for an operator f(s) iteratively evaluates the function f on s until a cer-
tain predicate is satisfied [4, 22, 53, 54]. Basically, the function f is repeatedly ap-
plied on v until no new result can be added to the solution at the n-iteration such
that s,f1(s), f2(s), ...fn+1(s) represents each steps of the iteration. At the n− th iteration,
fn = fn+1(s) at which point the computation terminates.

2.5.3 Algebraic Framework

Jachiet et al. [26] introduced an extended relational algebra called MuRA or ϕ-RA which
implements novel optimization techniques by rewriting for fixpoint operators. The algebra
presented corresponds to Codd’s classical relational algebra extended with a fixpoint
operator, and whose grammar is given as follows:

MuRA Grammar

ϕ ::= term
R relation variable

| X recursive variable
| |c→ v| constant
| ϕ1 ∪ϕ2 union
| ϕ1 onϕ2 join
| ϕ1 .ϕ2 antĳoin
| σf(ϕ) filtering
| ρba(ϕ) renaming
| π̃a(ϕ) anti-projection
| µX. ϕ︸︷︷︸

constant part

∪ (Ronϕ)︸     ︷︷     ︸
recursive part

fixpoint

Since the only way to evaluate the effectiveness of a cost model is to integrate them
into a query optimizer, MuRA framework is suitable for our work thanks to the advanced
rewriting techniques which allows merging and nesting of fixpoints.

Description of Grammar

R relation variable for accessing the database relation

X variable that reference the recursive relation

|c→ v| mapping of constant to variable

ρba(ϕ) rename a to b
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π̃a(ϕ) set-based operator that removes column a from the relation

σf(ϕ) eliminates tuples that does not satisfy the boolean condition f

ϕ1 ∪ϕ2 set union between ϕ1 and ϕ2

ϕ1 onϕ2 combine compatible tuples from ϕ1 and ϕ2

ϕ1 .ϕ2 the set of tuples in ϕ1 that are not present in ϕ2.

µX. ϕ∪ (Ronϕ) the fixpoint operator contains two parts; the constant part and the recur-
sive part. They both consists of a set of operators that will be evaluated. However,
the evaluation of the recursive part requires many steps until no further result can
be obtained from the set of operators in it.

Additional definitions for all of the operators described here is given in Chapter 4 where
we give the cardinality and cost estimation formulas for each one of them. We refer the
reader to the work of [26] where the author elaborate on the grammar and rewriting
techniques.
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An Overview of Cost Model in Query

Optimizer: Towards a Recursive Query Cost

Estimation

With several decades of research and development on query optimization, cost estimation
still remains a central part of query optimization and they determine the quality of plan
selection. In this chapter, we present a survey of cost models in existing systems by
making a comparison between those systems and examine their support for recursive
query cost estimation. We conclude the chapter by outlining the limitations and the
directions we took for designing a cost model for the query optimizer.

3.1 Introduction

A query optimizer consist of three main components; the plan enumeration, cardinality
andcost estimationwhichwork together to carry outoptimization process. One of the areas
of query optimization that has been a subject of active research apart from optimization
techniques are the cost and cardinality estimation. Query optimizers use the cost model
to make accurate estimation of the cost of QEP [7, 32, 55, 56]. During query optimization,
different alternative plans are generated and the optimizer is charged with finding the
best plan or strategy to evaluate a given query. The alternative plans generated by the
optimizer differs in terms of their runtime cost from a few seconds to several minutes
and even hours. And as a result this, the cost estimation has significant influence on the
quality of plans selected by the query optimizer and the query performance. The cost
model computes the cost for eachQEP in the plan space and the optimizer selects the plan
with the minimum cost for execution.
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Cost estimations are particularly useful in selecting the best join order that improve
query performance [7, 57], determining the appropriate algorithm for executing opera-
tors [7, 55], query performance prediction [58–60] and query scheduling and progress
monitoring [32].

In section Section 3.2, we present the challenges that are often faced when estimating
the cost of a query plan. We present an overview of cardinality estimation andmethods for
statistics collection for costmodel in section Section 3.3. Costmodel and their classifications
is discussed in Section 3.4 where we classify cost models based on their architecture, plan
style and graph-centric cost model. A set of criteria were defined and on that basis, we
compared cost estimation techniques of state-of-the-art systems ranging from traditional
databases to distributed big data systems to graph database in Section 3.6. We summarize
our findings in Section 3.7.

3.2 Challenges of Cost Estimation

There are several factors that could affect the accuracy of cost estimation in database
systems. In this section, we present some of those challenges.

• Advancement in software-hardware: database systems and their underlying soft-
ware and hardware platforms become increasingly sophisticated [58], improvement
on the state-of-the-art in cost model are often affected by the advancement in hard-
ware. Early cost models [7] were made for centralized architectures. [61] gave a
generalized cost model for the distributed setting but it neglects interaction between
hardware and the different components of the database.

• Estimation error: one of the biggest challenges of query plan cost estimation is a
bad cardinality estimation [35, 55]. Estimation error comes from two part of the
cost model. First, errors can be introduced as a result of poor cardinality estimation.
Second, the estimation error can originate from the cost function. Because the cost
function uses the cardinality as part of its input parameter, if there is any error
generated as a result of cardinality estimation, these errors are introduced and
propagated to the cost function. In some cases, the errors are mitigated in the cost
function resulting in the selection of near-optimal plan for execution. In other cases,
the result of propagating these errors can be catastrophic resulting in the optimizer’s
selected plan (according to the cost function) being a very bad plan. Some of
the reasons for inaccurate cardinality estimation includes inaccurate base statistics,
the presence of multiple join relationships, inaccurate selectivity estimation, bad
assumption about the distribution of data etc. Many database systems including
commercial ones suffer from this problem of estimation error propagation.

• Dynamic or Changing Job Parameters: in a dynamic environment where job
paramters and data changes during query execution, relying on static paramters can
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introduce significant errors into the cost estimation.

• Complex Job profile: this characteristic is specific to the distributed setting, the
cost parameters are either too complex [31, 59] or too simple [62] and do not cover
other necessary factors or parameters that can influence query performance like
the underlying hardware info or cluster description at runtime. Another example
of complex job profiles can be found in learning-based approaches [58, 63] where
different job paramters like execution plan, actual query cost and training (historical)
datasets are needed to efficiently predict query runtime.

• Complex queries/Limited operator support: cost estimation for multi-join queries
involving several database tables is often difficult and error-prone, since the presence
of local predicate on any of the participating relations affect the intermediate result
size. If this is not properly taken into consideration during cardinality estimation,
the local predicate on participating relations can introduce error significant enough
to cause the query optimizer to select a bad plan. In addition, recursive queries has
made itway tomainstreamdatabases allowing for the formulationof complexqueries
on nested data structures. RDBMS systems lack native support for the recursive
operator but rather support only the limited form called linear recursive queries as
a recursive CTE. While the support for simple recursion is now common in many
known database systems like Oracle, Postgres, MS SQL etc, more complex forms
of recursion (or non-linear recursive queries) like fixpoint operation are verebose
and often formulated in a WHILE loop. We note that query plan cost estimation on
these systems mostly covers SPJ (Selection, Projection, Join) family of SQL queries
which is sufficient to a certain extent for queries that does not involve recursion.

3.3 Cardinality Estimation

Relation cardinality is not the only parameter or input statistics used by the cost function
to estimate the cost of a query operator and query plan at large but perhaps the most
discussed and studied because of their relevance in selecting quality query plans. We take
a look here at the research on cardinality estimation in RDBMS and graph database.

In Figure 3.1, we classify cardinality estimation into three broad categories; sampling-
based, synopsis and learning-based methods which are cardinality estimation methods
with originated from RDBMS some of which are also applied to graph data. Synopsis
method is further classified into three; histogram, sketches and other methods that do
not fit the first two. Graph-centric cardinality estimation methods are only applicable to
graph data. They mostly focus on data sampling algorithms and reducing the complexity
of RDF data by summarizing the data into more concise form for an easier estimation.
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Others
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77]

Histograms
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Sampling-based
[15, 30, 84–86]

Figure 3.1 – Cardinality estimation

3.3.1 Statistics and Methods of Collection

Cost estimation in query optimizer rely on a number of parameters in order to make better
estimation. Perhaps, two of such factors include cardinality and selectivity estimation.
Accurate cardinality estimation has been demonstrated to have a significant impact on
the quality of plans selected by the optimizer [32, 38, 41, 55]. Cardinality estimation is an
important factor in query optimization and typically relies on heuristics andbasic statistical
approximations [39]. Cost input parameters can be categorized into two; the database
profile and the amount of available system resources. The database profile contains (1) the
catalog statistics which holds basic information of data properties like relation size and
the number of distinct attribute values, index, block size, size (in mb) of the data etc. (2)
query-specific information like the cardinality and selectivity [87]. The system resources
paramaters include the amount of memory allocated (or available) for the execution, the
number of nodes and cores, the replication factor etc. Total QEP cost returned by the
query optimizer are usually a combination of the different cost components.

Collection of statistics for the cost function is done prior to query planning and execu-
tion as statistics collection is an expensive process that will eventually affect significantly
the query execution time. Statistics collected on data are stored in a database catalogue
or filesystem and accessed during cost estimation. In distributed settings, resources are
often specified just before the execution and this indicate the amount of system resources
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usable by the running application. These informations are also used by the cost function
since applications behave differently depending on the resources. At execution time,
base relation cardinality is known and propagated through the query tree [10]. For the
cardinality of the other operators apart from relational variables that access the cardinality
catalogue statistics directly, the input cardinality is given by the output cardinality of
the child node in the query tree [88]. When a query involves joining relations, this will
affect the intermediate result size (or cardinality) and also have significant influence on
the chosenQEP. When a filter operation is applied to a relation, only the tuples that satisfy
the given conditions will be returned. This property is referred to as the selectivity.

3.4 Cost Model

In the section, we define a cost model and give an architectural view of a traditional cost
model in both traditional database system and distributed big data platforms.

Figure 3.2 – Cost model architecture

Figure 3.2 show a cost model architecture. The cost model accepts a set of query plans,
input statistics, cluster parameters (in the case of distributed systems) and estimate the
cost for each plan and output QEP with the cost attached. The optimizer then selects a
plan with the minimum cost. As we will see in the next section, cost models have a tight
relationship with the architecture of the underlying system and in some cases the query
plan types.

In most traditional database systems, the cost is usually a summation of the CPU and
I/O cost [7, 32] since they are based on the main-memory architecture and do not involve
transferring data over the network. Cost models in the distributed setting accounts for for
message passing cost over the network anytime such an operation is performed. I/O time
is the time spent accessing the disk while the CPU cost is the weighted CPU time.
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3.4.1 Cost Model By Plan Enumeration Style

In a query optimizer, there are several levels of optimization and broadly they are divided
into logical and physical optimization. The difference between these two is that logical
optimization often deals with the process of generating optimal sequence of equivalent
relational expressions or subexpressions for a query while physical optimization is con-
cerned with finding the best algorithm to implement the logical sequence of operators
and the order in which the physical operations are performed. For example the implemen-
tation details of a join operator like using a hash join or nested loop join is an information
that is available only at the physical level. This distinction between optimization level
gives rise to the (i) logical and (ii) physical cost models.

3.4.1.1 Logical Plan Cost

A logical cost model is simply the series of cost functions applied to logical query subex-
pressions. They are appliedon the relational algebraic operator and the goal is to determine
which is the best combination of operators of the query tree and in which order to execute
them. In many cases, the logical cost considers only the data distributions and the opera-
tional semantics of the relational algebraic operations to estimate intermediate result sizes
of a given logical QEP.

Figure 3.3a shows an example of a logical query plan. Usually the logical plan
cost function in many database systems rely solely on the cardinality estimation (and
intermediate result size) to determine the best combination and predict the efficiency of
the logical query plan.

πname, price, quantity

onA.id = B.pid

σquantity > 2000A

B

a Logical query plan G

π

Hash Join

σSequential Scan

Index Scan

b Physical query plan

Figure 3.3 – Query Plans
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3.4.1.2 Physical Plan Cost

Physical query plans contain the logical query plan with the addition of annotations on
the access path with which the relation is accessed, algorithms used to implement each
operator and the order in which the operations are performed. Cost functions for the
physical plans usually take this information into consideration. A cost model for the
physical QEP usually encompass the information about the CPU speed, I/O latency, I/O
bandwidth, and network bandwidth [88], especially for systems that use more complex
cost models, accounting for almost every possible scenario and paramter values. For
example, there are different types of join algortihm e.g. Nested Loop Join, Merge Join and
Hash Join, the cost of using any of these join strategies depend on a variety of conditions
like the intermediate result size, join ordering in the initial query statement, etc. An
example of physical query plan is shown in Figure 3.3b.

3.4.2 Cost Model By Architecture Type

Cost models can also be categorized by architecture type. Most relational database
systems like Postgres, MySQL, Oracle, and many others are main-memory architecture-
style databases and they are referred to as centralized database system; computation
happens mainly on disk. On the other hand, we have the distributed processing systems
like Spark, Flink, Presto etc. that allows data and computations to be distributed across
several worker nodes making them scalable and allowing for faster computation. We
discuss the cost model for these two architecture in the next section.

3.4.2.1 Cost Model for Centralized Database

In a traditional database system, data storage and computation are centralized such that
whenever a user-defined query is executed, the query engine access the data and perform
its processing by accessing a single data location and returns the result avoiding any need
for movement of data across the network. This approach offers a cheap alternative and
avoids any need for data to be made redundant.

Query plans’ cost estimation for this type of architectures has been based on the work
of Selinger et al. [7] which defines the cost functions that recursively (in a bottom-up
fashion) estimate the CPU and I/O cost for each operator in a query tree starting from the
relational variables. A final combination of these two cost components for all operators in
a query tree gives the cost of the entire query plan. Many RDBMS like Postgres, MySQL,
Oracle etc. implement and use this type of cost model. The cost model is shown in
Equation 3.1.

total cost= I/O+w ∗CPU (3.1)

I/O is the disk I/O, CPU represents the CPU utilization cost and w is an adjustable
weight factor that represent the balance of importance between and CPU and I/O.
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3.4.2.2 Cost Model for Distributed Settings

Distributed data analytic systems like Apache Spark, Flink and Hadoop are designed in
such a way that data reside or is distributed across several machine connected through a
network and computations are either done locally first and the results from the individual
worker nodes are merged in a central node referred to as the master. In some cases
computations are carried out by requiring data with similar characteristics to reside in the
same worker node before an actual computation is performed leading to data movements
across the network.

Resources and a set of paramters are allocated to any running computation. These set
of paramters are described in Section 3.3.1 and the resources include the number of worker
nodes, the number of cores etc. As a result of this architectural design, cost functions for
operators on these systems must reflect these characteristics. [61] present a cost model
for distributed evaluation of queries on R∗ system a successor of the popular System R
[7]. Their cost function combines four cost components; the CPU cost, I/O cost, the total
number of messages (sent and received) and the total number of byte transferred in every
message.

Total cost= CPU ∗ #insts + I/O ∗ #I/Os︸                                     ︷︷                                     ︸
local computation cost

+ MSG ∗ #msgs + TR ∗ #bytes︸                                     ︷︷                                     ︸
communication cost

(3.2)

CPU is the time spent executing the CPU instructions and I/O is the time spent for
disk I/O, combination of which forms the local computation cost. MSG is the time spent
initiating and receiving a message and TR is the time spent sending bytes of data from
one node to another. The combination of the last two cost component is referred to as the
communication cost.

Equation 3.2 is often rewritten as three components as opposed to four where the
communication cost components are often combined to form theNetwork cost. Herodotou
[59] present a cost model for the execution of MapReduce job on Hadoop based on three
cost components; the CPU, IO, and Network costs. Similarly, [31] modeled the cost in
terms of read, write, shuffle and broadcast.

3.4.2.3 Cost Model for Graphs

We explained in the previous chapter that graphs are a natural data structure when it
comes to representing relationships between data. They are very powerful in this regard
and have seen a resurgence in their use in the recent years. The standard language
for extracting and querying information from RDF graphs is SPARQL query language.
SPARQL can be translated based on the relational algebra of RDBMS, represented in a
similar select-project-join queries in the relational model [89] but the underlying RDF
graphs are represented in a SPO (Subject-Project-Object) pattern where subject S has
property P with value O, where S and P are resource URIs and O is either a URI or a
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literal value. Cost estimation techniques for SPARQL query plans are usually based on
the underlying storage system and the complexity of the query.

3.4.3 Cost Estimation Strategies

As mentioned in the previous chapter (see Section 2.4.1), there are two widely adopted
strategies for query optimization (i) top-down and (2) bottom-up. Even though these
are different optimization strategies, the cost estimation is done in the same bottom-up
fashion for these two strategies since the total cost of each plan is based on the sub-plan
costs.

The estimated cost returned by the cost model in many database systems is usually
a tuple of cost components e.g. estimated cost, cardinality, byte transferred. which are
computed for every operator. Even though cost component types returned per operator
are the same, some operators return no values for some components. For example, [59]
defines a cost for queries on distributed; Hadoop which returns the network, CPU and IO
costs. The filter operation for example does not have a Network cost as computation is
transformational and local to the each worker, thereby having no Network cost.

Algorithm 3 : Cost estimation algorithm
Input: query execution plan qep
1: function costEstim(qep)
2: while (child ∈ qep.node) do
3: if (qep.child= baseRel) then . baseRel refers to base relation
4: stats← retrieveBaseStats(qep.child)
5: cost← apply cost

6: costEstim(child)← (cost,stats)
7: else

8: prev← costEstim(child)
9: apply cost

10: return cost(qep) . Total QEP cost

During query plan cost estimation, the QEP is traversed in a bottom-up fashion and
cost estimation is done recursively. The cost of each operator in the query tree is estimated
using an engine-specific cost formulas defined for each operator. Algorithm 3 shows
the cost estimation algorithm, the function accepts a query plan and data statistics and
compute the cost for each child node. For relational operators (index or sequential scan)
which access the relation directly, the cost formula uses the base relation statistics and this
information is propagated to the other child operator as the intermediate result which is
later used for its own estimation in Line:9.
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3.5 State-of-the-art

In this section, we review some previous works on costmodels for query optimization. We
broadly classify work in this sphere into three categories; (i) works on improving existing

cost and plan quality (ii) performance prediction (iii) insights paper; which give new
perspective to cost estimation in query optimizer. This classification spans across the types
of cost model described in Section 3.4, ranging from cost model for logical and physical
query plans to centralized, distributed and graphs. We discussed some representative
works for each category.

3.5.1 New or Improvement on Existing Cost Model

In this section, we examine the research works on new methods for cost estimation for
both centralized and distributed environments, for both RDBMS and graph models, for
either logical or physical plans. We begin this section with early works on cost estimation
in query optimizer of the R Systems [7, 61] spanning both centralized and distributed
architectures. The discussion here also covers costmodels in commercial database systems,
graph models and works that extends existing framework with the objective to improve
the quality of query plan selection.

System R [7] introduces a query optimizer for SQL queries. The cost covers the the
SPJ (selection, projection, and join) family of SQL queries. In order to compute the cost
and subsequently optimize the query plan, the optimizer uses statistics maintained on
relations and access path, predicate in the query, the access paths available on the relations
and an query order e.g, ORDER BY or GROUP BY. By using statistics of input data and
assigning a selectivity factor for each boolean operation in the predicate list and a set of
simple assumptions, they estimate the cost for query plan in a centralized manner using a
bottom-up approach. The cost returned by the computation is in terms of the IO andCPU
cost. The cost model assumes that CPU cost is mostly negligible and so a weighted factor
(W) between the IO and CPUwas assigned. The cost formula is given in Equation 3.3

Cost= costIO+W · costcpu (3.3)

While the cost model described here is not entirely suitable for distributed setting since
it does not account for the cost of message passing and data shipping over the network,
it has set precedent for most modern cost models and has even been adopted by modern
query engines. The cost model described in this work makes an assumption, the uniform
distribution of attribute values.

PostgreSQL query optimizer uses a cost-based approach to select efficient query plans
among the possible list of alternative physical query plans for a given query and also
uses relation and column statistics as well as histograms for selectivity. The statistical
information that is used by the cost model is stored in the pg_statistic of the database
catalogue or pg_stats that provide public access to the information stored in pg_statistic.
To estimate the cost, PostgreSQL computes the CPU cost of an operator in the query tree
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by using the cardinality estimate and compute the IO cost as a function of the estimates
of the the number of pages accessed. Cost estimation in PostgreSQL follows the formula
given in [7] and the CPU and IO costs are summed to get the final cost [32, 55].

The cost of an operator, Co in PostgreSQL [32] is given as;

Co = ns.cs+nr.cr+nt.ct+ni.ci+no.co (3.4)

where;

• ns: number of disk pages fetched sequentially

• nr: number of disk pages fetched randomly

• nt: number of tuples processed

• ni: number of index entries processed during an index scan

• no: number of operations performed

And cs represents the cost of sequential page access, the cost of random pages access is
given as cr. ct represents the cost of processing a tuple, ci the cost of processing a tuple
via index access and co is the cost of performing hash or aggregation operation.

Catalyst [62] is an extensible cost-based optimizer for Spark SQL which allows for easy
addition of optimization techniques ontop of Spark SQL. Spark SQL performs cost-based
optimization both on the logical and physical level. The logical cost model is done by
generating multiple plans using rules, and then computing their costs. The logical cost
estimation is based on the number of output rows in the result relation. The physical
cost model is only used to select join algorithms. Figure 3.4 shows the Catalyst optimizer

Figure 3.4 – Spark Catalyst optimizer architecture

architecture. The cost-based optimization is carried out in a series of steps in Spark SQL;
collect, infer and propagate relation statistics (number of rows, table size in bytes) and
column statistics (e.g. distinct and null count, average and max length, histogram etc.) on
source or intermediate data. The cost per operator is estimated in terms of the number of
output rows, output size, etc., based on the cost estimation, the best query plan is then
selected for execution. The cost function in the Spark Catalyst optimizer also follows the
work of [7].
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Golfarelli et al. [31] develop a cost model that measures query execution time for SQL
queries on Apache Spark SQL platform. The cost model covers the Generalized Projection,
Selection and Join SQL operators (referred to by the authors as GPSJ) family of SQL
operators. The cost estimated is based on disk access, network time and cpu (serialization
and compression) time. It models the execution plan in terms of the costs of the physical
plan returned by Spark Cost-Base Optimizer (CBO) – Catalyst. They define the execution
time as the time needed to execute nodes of the trees coding the physical plan produced
by Catalyst. Operations in a GPSJ query is categorized into "read", "write, "shuffle" and
"broadcast". Using application and cluster configuration parameters, the statistics of the
input data, they present a cost model tailored only for query execution on the Apache
Spark platform.

In the COBRA [90], the author presents a framework for rewriting data processing
programs using program transformations. The author defined a cost estimation for
individual nodes in Region DAG of algebraic expressions based on the Volcano/Cascade
framework.

Sun and Li [63] proposed an end-to-end learning-based estimator for estimating the
cost and cardinality of query operators and plans using a tree-structured (deep neural
network) LSTM model. The learned cost estimator is composed by three components; (i)
training data generator for generating varying training data based on data and workload,
(ii) feature extractor for extracting meaningful features from the query plan, and (iii)
tree-structured model which learns the tree representation of query plan effectively by
matching sub-plans to sub-model.

Obermeier and Nixon [91] presents a cost model for distributed SPARQL processing.
Since SPARQL algebra can be translated to the relational algebra, the authors mapped
the techniques for cost estimation from the RDBMS domain to estimate the cost in a
SPARQL graph query model. The cost focuses on three components, the number of CPU
instructions, I/O operations and network delay for data retrieval. CostFed [92] presents
an index-based SPARQL federation engine that uses cost selectivity information stored
in an index to make efficient source selection and cost-based query planning. The cost
model proposed there considers the skew in the frequency distribution for triple patterns.

Errors introduced by inaccurate cardinality estimation significantly affects quality of
selected query plans. This is because the cost model rely on the cardinality estimation for
computing the cost of the different alternative query plans for any given query among
which the cheapest plan is selected. In practise, this errors in cardinality are propagated in
the cost functionmeaning that the cheapest plan selectedby the optimizer couldpotentially
be a significantly suboptimal plan. Wolf et al. [93] present three metrics that quantify
the robustness of query execution plans at optimization time and consider the potential
implications of errors introduced from the cardinality estimation during plan selection.
The authors presents their robust plan selection technique in three phases; (i) enumeration
of robust plan sets, (ii) computation of the robustness value for each candidate query plan,
(iii) selection of the most robust query plan among these candidate plans.
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Lanzelotte et al. [23] introduced cost-controlled strategies for optimizing recursive
object-oriented graph queries. The authors propose an optimization method that relies on
a cost model for selective pushing of operators through recursion. The authors argue that
for efficient query plan optimization (especially when objects and recursion are involved)
and rewriting, a cost model is needed to measure the impact of each of the optimizer’s
actions.

Fixpoint (Fix(T,P)) cost deserves a special mention here as the authors give the cost
for a semi-naive TC algorithm as follows;

Fix(T,P) =

n∑
i=0

cost(Exp(Ti))
c (3.5)

where n is the number of iteration, Exp(Ti) denotes the fixpoint equation contained
in P having Ti input.

The cost of PT node rooted at N such that N(child0,child1, ...childk−1) is given as;

cost(PT) = cost(N)+

k−1∑
i=0

cost(childi) (3.6)

Ioannidis [21] presents algorithms for computing transitive closure (TC) of the rela-
tional operators. In order to compare performance of several TC algorithms they devised
an I/O cost analysis use of simpler set of statistics to estimate the cost for each TC algorithm.
I/O cost analysis for semi-naive transitive closure algorithm is given as follows;

1. Sort original relation on appropriate field(s). It is done only once.

2. At each step read sorted original relation

3. Sort the second relation for the join

4. Write the outcome of the join

5. At the end read all the intermediate results and put them into one relation.

6. Create and Destroy the N intermediate results and also create the final result.

3.5.2 Performance Prediction

Work on performance prediction covers works on cost model tunning and performance
prediction. And they also include works that use machine learning, deep learning and AI
to predict the behaviour of query workload.

To tackleuncertainty in the runtimebehaviourofa query– execution timeandresources
consumption, Ganapathi et al. [60] present performancemetricmodel for predicting query
performance. Using statistical relationships, their goal is to find correlations among the
query properties and query performance metrics on a training set of queries to predict
performance of future workloads. These features are then used by the machine learning
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technique to learn appropriate cost functions for each operator based on the system
configuration.

In [58], Akdere et al. present a learning-based approach to predict the query per-
formance. The predictive model learn the query execution time at both plan-level and
operator-level where feature and performance values are extracted.

While many research work are focusing on finding alternatives to traditional cost
model by adopting (machine, deep) learning methods, Wu et al. [32] argued that instead
of treating query optimizer cost model as a blackbox, the information about the query and
optimizater can be used to accurately predict query execution time. The authors proposed
a cost model tunning approach that uses (i) hardware profiling and cost units calibration
and (ii) cardinality sampling method for obtaining operators true cardinality per query,
to predict query execution times.

Herodotou [59] described a cost model for MapReduce job execution on Hadoop. The
model described the cost for a MapReduce job at a finer granularity while capturing the
different phases for both map and reduce tasks. The sum of the cost from each of the
task phases represents the overall (total) cost of a MapReduce job. The cost component
tracks the CPU, I/O and Network costs using the general formula proposed in [61]. The
paramaters used for costing query plan are divided into three; (i) hadoop parameters
which define the set of hadoop-specific parameters that effect job execution, (ii) profile
statistics which is basically the input data statistics and the properties of the user-defined
functions and (iii) profile cost factors which are a set of parameters that define the CPU,
I/O and Network cost. The goal of the cost function is to predict performance and find
optimal settings for a MapReduce jobs on Hadoop. It should be noted however, that some
of the paramaters used by the author are rather too rigid and complex.

COMET [94] present a statistical learning technique for query performance prediction
on semi-structured data: XML. The authors adopted a four-step approach to costing XML
operators; (i) identification – of important determinants features (e.g. as algorithm, query,
and data) of the cost (ii) feature value estimation using statistics and analytic formulas (iii)
learn relationship – between cost and feature values using machine learning algorithms
(iv) application – of the learned cost for optimization.

Hasan et al. [95] present a machine learning approach for predicting SPARQL query
performance. The approach presented there learn from historical information about query
execution (query execution times only) and apply machine learning to predict the query
execution times for future workloads with similar properties.

3.5.3 Experimental or Insight Studies

In this section, we present some representative works on cost models that shed more light
into the main problems encountered in existing systems and proposed solutions to solve
them.
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3.5.3.1 How Good Are Query Optimizers, Really? [55]

In this work [55], the authors started by decomposing traditional query optimizer archi-
tecture into several components. These components were studied in isolation (and also
together) and their effect on query performance was presented.

Figure 3.5 – Traditional query optimizer architecture

A Job Order Benchmark (JOB) was introduced which uses a realistic dataset that
diverges from the simple "uniformity", "independence" and "principle of inclusion" as-
sumptions in order to answer the following questions;

• How good are cardinality estimators and when do bad cardinality estimates lead to
slower queries?

• Of what importance is an accurate cost model to the overall query optimization
process?

• How query plan space must be?

The authors performed extensive sets of experiments on the different components of the
query optimizer using the following setup;

• Dataset: realistic dataset (3.6GB consisting of two large tables each of 36M and 15M
rows rsp.) which are full of correlations and non-uniform distributions of values.

• JOB queries: a 33–structure query set totalling 113 queries consisting of an average
of 8 joins each, analytically constructed.

• Database System: a total of five(5) database systems were used to validate some
of the propositions. Being open source, Postgres was used at all stages of the
experiment.

• Cardinality extraction and injection: In a first step of the experimental evaluation,
statistics gathering command was run on each database system and cardinality
estimates for all intermediate results were obtained. Also, the true cardinalities for
each intermediate result was obtained and later used to obtain optimal query plans
with respect to each system. Lastly, PostgreSQLwasmodified tomanually inject true
cardinalities for arbitrary join expressions allowing an effective measure of query
performance.
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Cardinality Estimates

Cardinality estimation plays an important part in query optimization. The authors noted
that cardinality estimate remains the most important factor for obtaining a good query
plan arguing that its importance outweighs that of costmodel and plan space enumeration.
Cardinality misestimation (misestimation here is under- and over-estimation) is an inher-
ent problem in many database systems and these misestimations are more pronounced
in query optimizers that assumes independence and correlation between data. Their
findings showed that query optimizers that uses data sampling produces estimates that are
closer to the true values. Cardinality misestimation increases as the number of join grows,
however, this misestimation does not necessarily mean bad query performance.

Misestimation and Slow Queries

Cardinality misestimation does not necessarily mean a bad query performance, further
investigations on when misestimation can lead to bad query performance was achieved.
Since query optimization is closely intertwined with physical database design, the type
and number of indexes, plan search space and subsequently cardinality estimation.

It was discovered that one query optimizer selects join algorithm which are more
expensive. For instance, PostgreSQL introduces nested-loop join instead of an index
lookup with a cardinality return a way smaller than the true one. A purely cost-based
optimizer which does not takes into account the complexities of the chosen algorithm and
the uncertainty of cardinality estimates can lead to bad plans. The findings concluded that
in main memory - where index and data are fully cached, picking an index-nested-loop
join over a hash join will be better in terms of performance.

Cost Model

From different alternative plans in the search space, the cost model guides the plan
selection. The role of a cost model is to predict which of the alternative query plans will
be fastest, given the cardinality estimates. The authors noted that cost models even in
modern database systems are mostly traditional disk-based.

By introducing a simple costmodel and tunning the costmodel of the database systems
discussed here to use true cardinalities. The following was reported;

• Cost & Runtime: it was reported that PostgreSQL cost model produces a high
standard error with so many outliers because it misestimates cardinality. When true
cardinalities were injected, it was noticed that PostgreSQL cost model produces a
more reliable estimation of the runtime with little outliers. It was also mentioned
that most database systems always assign higher cost for expensive queries.

• Tunning the cost model for main memory: default parameters of cost models for
most database systems are sub-optimal e.g. PostgreSQL suggest that page read
is 400x times more expensive than processing a tuple. By making the CPU cost
parameters of the PostgreSQL costmodel 50x timesmore expensive, it was observed
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that there was an improvement in the correlation between the cost and the runtime.
However, by using the true cardinalities, there was a significant improvement in the
cost and runtime.

• Complex cost models: to verify if complex cost models are needed to properly
estimate costs thathave high correlationswith the query time, the authors introduced
a very simple cost model and compare the query time with the original cost from
the PostgreSQL cost model. This very simple cost model outperforms PostgreSQL
cost model using the true cardinalities with a 41% improvement.

The experiments in this section further confirms the author’s claim that cardinality
estimation is more important than the cost model for main memory database systems.

3.5.3.2 Notes on Cost Modeling [96]

Wu [96] present a study on the robustness of operator-level cost modeling. The author
noted three challenges in current cost modeling using query execution feedback which
include; (i) lack of appropriate training, (ii) unavailability of sufficient training data, and
(iii) difficulty in combining learning-based approach with default optmizer’s cost. To
address these challenges, a framework that operates on a limited execution feedback
scenario was proposed consisting of three steps;

• identification of backbone leaf operators; in this case able scans, index scans, and
index seeks

• using existing techniques, build an external cost model for each leaf operator in a
query plan

• combination of the query optimizer’s internal operators cost estimates with the
external cost model for leaf operators

Results from detailed experimental studies shows the effectiveness of the technique. This
study presents a new strategy for mixing operator cost estimates using sparse feedback.

3.6 Cost Classification Criteria

In Table 3.1, we summarize the various features of existing cost model in state-of-art
systems. We discuss each criteria below. The first column represents the system or paper
under study, a total of 16 systems/approaches were considered; 12 in centralized and
distributed setting and 4 learning-based approaches.

• Settings: given the components of cost models (whether they accounted for the
network or not), we have categorized them as either centralized or distributed. As
metioned earlier in this chapter, a graph-centric cost model is also dependent on the
underlying storage system which can be either be centralized or distributed.
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• Time function: the cost returned by the cost model is either a measure of the time
in seconds – absolute time for the query evaluation or a score which represents how
expensive the query evaluation will be – relative time, mostly the lower the better.

• Cost component: cost formulas are made up of components that are summed up
to get the cost of each operator in a query tree. We explained that this components
are either CPU, I/O, Network (or communication) cost. In a centralized setting,
the cost components only consist of the first two, the later is specific to distributed
environments.

• (Input) Statistics: the statistics available for computing the different components in
the cost model. These statistics ranges from table (row count, column distinct count
and average length of tuple), index (number of distinct index, number of pages in
index), histogram on the distribution of tuples in the relation and in the distributed
setting we have cluster parameters and network-related constants.

• Cost type: based on the classification in Section 3.4, the type of cost models con-
sidered are either physical or logical cost models. Catalyst [62] has both physical
and logical costs just like many distributed systems. The logical cost is based on the
number of output rows by each operator. And the physical cost model in Catalyst is
used for join order re-optimization.

• Query type: represents the set of operators captured under the cost function for
each system. There are four common types of operators of interest here: Selection,
Projection, Join and Recursion (transitive closure or fixpoint) operators. Specifically,
R column indicates whether the system under study has support for specialized
recursive cost estimation function. Of all the systems considered, only two [21, 23]
have the support for cost estimation for recursive operators. [21] only focus on
transitive closure, [23] defines the cost for query processing tree which includes a
cost formula for fixpoint operator. All the other systems only consider cost functions
for the SPJ family of queries.

3.7 Our Findings

In Section 3.4, we examine numerous cost estimation techniques in traditional relational
database system, distributed and the graph domain. These methods or techniques either
focus on improving existing cost models, present a new way of estimating the cost
for query plans or present a study to gain insights into already proven methods. An
important aspect to note is that, although the work of [7] is focused on the centralized
cost estimation of query plans, it is the foundation for cost estimation in many database
systems, including commercial ones like PostgreSQL, Oracle etc. Mackert [61] extended

42



3.7. OUR FINDINGS

this work for distributed settings, accounting for the response time of query with the
introduction of additional cost paramters; the communication cost.

3.7.1 Support for Recursive Cost Estimation

We found that cost models for recursive operator support and user-defined functions in
mainstream database is still lacking. Learning-based approach, while they are not mature
enough for query performance prediction also suffer similar drawbacks as in existing
systems. Cost-based optimization in system that rely on the techniques discussed so far
are presented with the difficulty of optimizing the recursive operator. In Table 3.1, only
two [21, 23] out of the 16 systems considered cost estimation for recursive operators.

Lanzelotte et al. [23] present an algebraic (logical) cost model for query plans with the
fixpoint operator. The cost of the fixpoint operator is, however, over-simplified as it does
not account for the true behaviour of the operator. This raises many questions like how
does the cost model tracks the changing result size at each iterative steps, when does a
recursive operation terminates or ends. The fixpoint operator is evaluated in such a way
that at each step, new results are added to the facts already derived until there is no new
results that satisfy a particular condition.

Similarly, the I/O cost analysis of Ioannidis [21] for semi-naive and smart transitive
closure algorithms focuses on binary relations. For the evaluation of the cost analysis,
the author rely on a simulation of the cost paramters. In addition to not reflecting the
real-world scenario, some implementations of the recursive algorithm can permit nested
recursion as in [26] where the fixpoint operator can be nested.

3.7.2 Possible Future Directions

The cheapest query plan selected by an optimizer’s cost model can differ significantly
from observed more efficient ones. Current methods of evaluating the effectiveness of a
cost model by comparing the query runtime is not enough to give a clearer view of what
happens under the hood of a cost function. Instead of comparing the cost models based on
the query time of the selected plans, a cost validation framework that takes into account
the estimation errors (cardinality and cost) and query plan ranks, will help shed more
lights on the behaviour of the cost model.

Support for recursive cost estimation is crucial in todays database systems. As a first
step, more and more systems need to provide native support for the recursive operator.
Many distributed analytic frameworks like Spark, Flink and MapReduce already offer a
relatively fast way of evaluating queries but they are still lacking support for recursion.

Learning-based methods for query optimization is an active area of research. Model
training time and data to be used for training are two of the biggest obstacles in using
learning-based techniques. A standard cost feature repository will help in the long run in
terms of feature collections and historic information providing more data for evaluating
learning-based techniques.
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4
Cost Estimation for Extended Relational

Algebra

For any given query with a set of equivalent plans generated in the query plan space, the
goal of the cost model is to select a query plan with the least cost among a set of equivalent
query plans. The cost model associates a cost to each relation algebra (RA) operator in a
query plan. Cost estimation is a set of mathematical formulas or function which is made
up from a complex combination of parameters such as the cardinality, number of distinct
attributes, hardware parameters etc, that are used to measure the resources consumption
per RA operator or experssion in a query plan and subsequently the whole query plan.

4.1 Introduction

The plan selected by the optimizer in a heuristic-based optimization or planner as the
best plan might not always be the cheapest plan. The reason is that operations are not
paramtized and nothing guarantees that the selected plan is the best in the pool of query
plans generated from the plan space. The same idea goes for cost-based query optimizers
as well, if the cost estimation is not achieved adequately, this can lead to the selection of
query plans with high resources consumption and large query evaluation time. In the case
of recursive queries which are already difficult to optimize, the estimation error might
vary significantly from the real cost. The enormous task of choosing the best plan from
a pool of equivalent plans requires a cost function that make accurate use of statistical
information on data and query to efficiently distinguish the plans based on their cost and
estimated behaviour at runtime.

In this chapter we present our contributions on cost estimation techniques for the
recursive relational algebraic framework presented in the previous chapter. We reiterate
that accurate cardinality estimation is important for efficient query plan cost estimation
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CHAPTER 4. COST ESTIMATION FOR EXTENDED RELATIONAL ALGEBRA

and it is one of the building blocks for any cost model. As such, we begin this chapter by
presenting in general, the statistics used by our cost estimation technique, the selectivity
estimation for tuple-eliminating operators and we discuss the mathematical formula for
obtaining the cardinality for each RA operator or expression.

In section Section 4.3, we start by defining our cost functions and assumptions followed
by a step-wise cost analysis for each RA operator and present the algorithm and techniques
for estimating the maximum number of iterations in a fixpoint in Section 4.5. This to
facilitates an accurate cost estimation for fixpoint operator. We then present the cost
estimation for fixpoint operator. Improving cardinality estimation has been directly linked
to the improvement in the quality of selectedqueryplan [32, 55], as suchwe integrated state-
of-the-art cardinality estimation for RDF graphs [36] into our cost estimation framework.

Finally, we detail how statistics and cost of RA operators are propagated through the
query plan tree and give a summary of the chapter.

4.2 Statistical Profile, Selectivity and Cardinality Estimation

As discussed in the previous chapters, a query plan is an ordered sequence of operators
organized as a tree; a query tree or plan. The idea of cost estimation is to be able to estimate
the cost for each operator in a query tree taking into consideration the dependencies and
propagating the cost and statistics through the query tree. In the section we present the
set of statistics, and the cardinality and selectivity estimation techniques used by the cost
model.

4.2.1 Statistical Profile

The cost model makes use of statistics in order to make an accurate estimation for each
operator in a given query tree and for each QEP in the plan space. In this section we
examine the set of statistics and other parameters that will be used later during the cost
estimation.

A base relation refers to a database table. The set of statistics computed for relation
variables include the number of rows in the table, the distinct value per column (attribute)
and the number of tuples per. These statistics are kept in the system catalogue and used
by the cost estimator. This process is automatic in many commercial systems but it can
also be updated from time to time as required by simply running the statistics generator.
The statistics collected for our use in this work is summarized in Table 4.1.

Data statistics are collected in the database catalogue before the query is run and
initially, they are only available for the base relation, intermediate statistics needs to
be calculated and propagated through the query tree. The number of tuples and other
parameters calculated and propagated through the query evaluation tree.
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4.2. STATISTICAL PROFILE, SELECTIVITY AND CARDINALITY ESTIMATION

Table 4.1 – Base relation statistics for a relation E

Parameter Description

rowCount(E) number of tuples
relPages(E) number of pages that holds the

relation E i.e relPages(E) =
rowCount(E)

bf
bf number of tuples that fit into one

block: bf = blocksize
tuplelength

Da1,a2...,an number of distinct values in column
a1,a2 . . . ,an

selFactor selectivity
w weighted factor between i/o and cpu

operCost per operator cost

4.2.2 Selectivity Estimation

Selectivity is an important property for calculating the result size of operators that involve
the elimination of tuples from a relation such as like filter, join, and antĳoin.

Definition 4.2.1. Selectivity. Given a relation R whose cardinality is defined as rowCount(R)
and a predicate pred which is a boolean function on R. We define the selectivity as the set of
tuples in R that satisfy the a predicate pred.

pred : R→ {true,false}

The factor by which the tuples in R reduces after the application of the predicate accepting
operator is known as the selectivity factor represented as selFactor throughout this thesis.

rowCount(R)pred = rowCount(R)× selFactor (4.1)

rowCount(R)pred is the number of tuples in R that satisfy the predicate condition

Sometimes calculating selectivity can be hard. Very popular simplification in many
database systems is to apply an empirical constant (e.g. 0.33). So, for any given boolean
predicate "<,6,>,>" on two columns (e.g. column A (pred) Column B), the cost estimator
assumes a constant of 0.33. For example the selectivity factor of Column A< Column B is
given in Figure 4.1. A relation is said to bemore selective if the selectivity factor (selFactor)
of its predicate is small and less selective if it is high.

The method described above is not accurate enough and could often lead to poor
estimation of intermediate result size and should only be considered as the last option.
Instead of relying on a constant as described above, the selectivity factor can also be
calculated from the distinct attributes per column in the predicate condition. This will,
however, require some assumptions on the distribution of data (evenly distributed data
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CHAPTER 4. COST ESTIMATION FOR EXTENDED RELATIONAL ALGEBRA

Figure 4.1 – Selectivity factor assuming evenly distributed data (without propagation)

for example) and the cost function needs to properly track the changes in resuls size of a
relation in a query tree.

We explore selectivity factor [7] for different predicate conditions of the distribution
of attributes in the relations.

• Condition 1: (colum A= v)

The column (A) selected is the same as the number of attributes present in the
relation. This assumes that the values of an attribute are evenly distributed. Values
of different attributes are assumed independent of each other.
If the column is indexed by some index I, the selectivity factor can be given as;

selFactor(A=v) =
1

DA
(4.2)

where DA is the estimated number of distinct values in column A.
If the column is not indexed, the selectivity factor is given as 0.1

• Condition 2: (colum A= column B)

If there are indexes I1 and I2 on columns A and B, the selectivity factor can be
estimated by;

selFactor(A=B) =
1

max(DA,DB)
(4.3)

The formula above assumes that the attribute with smaller distinct values has a
corresponding match in the other attribute.

If only one column has an index I, the estimation can be simplified to;

selFactor(A=B) =
1

D
(4.4)

• Condition 3: column A in v
When the column selected is contained in the list of the attribute. The selectivity
factor for this case is given below;

selFactorA∈v = number of attributes in the list× selFactor(A=v) (4.5)
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4.2. STATISTICAL PROFILE, SELECTIVITY AND CARDINALITY ESTIMATION

selFactorA∈v = number of attributes in the list× 1

D
(4.6)

• Condition 4: Range selections (A> v)
The statistics about the maximum (Dhigh) and minimum (Dlow) distinct values of
the relation is obtained, the selectivity is given as follows;

selFactor(A>v) =
Dhigh− v

Dhigh−Dlow
(4.7)

Dhigh represents the high key value and Dlow is the low key value.

• Condition 5: NOT pred
The selectivity factor for this case is given as;

selFactor(NOT pred) = 1− selFactor(pred) (4.8)

This case is considered a less selective case and the selectivity factor can also be
estimated as 0.9.

4.2.2.1 Histograms

The traditional selectivity estimationmethod described above rely on several assumptions,
one assumption is that efficient intermediate result size and distinct attributes estimation,
and uniform attribute distribution are already calculated. The reality is that estimating
intermediate result size is difficult as data are not often uniformly distributed in real
datasets.

Histograms are convenient technique to capture data distribution and they are used
to store frequency of attributes of a relation. Histograms are particularly useful for
determining the selectivities of predicates and subsequently the result size of queries.
Basically, data is partitioned into buckets representing intervals where values are captured
within these intervals. Each bucket is equiped with the most common value (mcv) and the
count of these attributes in each bucket is referred to as the most frequent value (mfv).
These information about the histogram values and frequencies are stored in the database
catalogue.

Some popular types of histigram include equi-width and equi-depth histograms. The
mfv of each buckets are different in equi-width histogram while the bucket length of each
bucket is the same. For equi-height histogram, themfv of each bucket is the same but the
interval length may vary.

4.2.3 Cardinality Estimation for Non-recursive Terms

Cardinality estimation is an important ingredient in query optimization and it has been
a subject of many research works [10, 32, 36, 38, 40, 41, 55, 56, 98] and many others. [55]
reported that cardinality estimation plays a central role in the quality of plan selection in
query engines.
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In a typical query tree, cardinality of the base relation is propagated through the query
tree as different expressions or operations are applied. Most of the operators described
in the previous chapter usually appear as an intermediate node or level in a query plan
tree. As a result we need to be able to somehow account for the changes introduced to
the intermediate relations as a result of previous evaluation or computation performed
on them.

Definition 4.2.2. (Cardinality of a term) Given a term ϕ expressed as G = (V,E). Let
v1, ...vn ∈ V a finite set of nodes, we say;

• rowCount(V) is the cardinality of G which also holds for ϕ

• distinct(V)c is the number of distinct nodes

A relation is accessed through a relation variable or constant mapping. Estimating the
cardinality for a base relation is straightforward butwhat is more challenging is estimating
these cardinalities for the other operators in the query tree, for example filter and join
operations might affect the number of rows in the relation.

While estimated cardinality might not always represent the true number of tuples in
the intermediate relations, they approximate the proportion of changes in the dataset.

Table 4.2 – Cardinality Estimate for µ-RA operators

# Operator Cardinality

Let c= cost(ϕ), cost is given in Section 4.3.1.
1. E rowCount(E)

2. X 1

3. |c→ v| 1

4. ρba(ϕ) c.rowCount

5. πa1(ϕ) c.rowCount× rFactor
6. σa1(ϕ) c.rowCount× selFactor
Let c1 = cost(ϕ1), c2 = cost(ϕ2) and selFactor is the selectivity factor
7. ϕ1 ∪ϕ2 c1.rowCount+ c2.rowCount

8. ϕ1 onϕ2 c1.rowCount× c2.rowCount× selFactor
9. ϕ1 .ϕ2 c1.rowCount× c2.rowCount× selFactor

In Table 4.2, we present the cardinality estimation formulas for the extended rela-
tion algebra operators discussed in the previous section. In any part of this work we
interchangeably refer to the cardinality of operators as the number of tuples, rowCount,
and result size. We discuss in details how we obtained the cardinality formula for each
operator in Section 4.4.
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4.3 Cost Estimation for Extended RA

In this section we present the definition of cost model component used in this work and
present the cost function.

4.3.1 Definitions

We can define a cost model as a (set of) numerical functions that accepts as input some
parameters like relation size, information about index and access methods, selectivity
estimate etc. and output a numerical or set of numerical values. Cost-based optimization
is the process of obtaining the plan with the minimum cost using the estimated cost
values calculated from input parameters. Following [99], we define a cost model and it
components as follows;

Definition 4.3.1. (Cost Model). A cost model can be defined as;

costModel= 〈β, Si, Fn , δ〉

where;

• β⊆ {CPU,IO} is the cost component type which effect the factors that made up the
cost estimation. In our case, the cost can be expressed as a summation of all these
CPU and I/O parameters.

• Si a set of resources or parameters assigned to the cost component type

• Fn is the cost function

• δ⊆ {abs. time, rel. time, size} is the objective function of the cost model

Definition 4.3.2. (Cost Parameters). Si =
{
res1, res2, res3 . . . resn

}
is a set of parameters

such that resi ∈ Res=
{
dbparam, stats, qep, selFactor, τ

}
where;

• dbparams is the database and hardware parameters

• stats is the set of statistics maintained on the data

• selFactor is the selectivity factor

• τ are other constants such as the weighted CPU and I/O constant
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Definition 4.3.3. (Objective Function). The measure of the cost function is referred to as the
objective function (δ). δ⊆ {abs. time, rel. time, size}

where;

• abs. time refers to the computation in absolute time

• rel. time refers to the computation in relative time

• size is the measure of query function in terms of the number of rows or block size
returned in the result

Definition 4.3.4. (Cost Function) Cost calculation is achieved through a function Fn that is
based on a cost component type β which uses a set of parameters or resources Si and output the
cost in terms of δ.

Fn = 〈s, δ〉 where s⊆ Si

Definition 4.3.5. (Cost Minimization) Given a set of alternative query plan QEPalt =
{P1,P2 . . . ,Pi}, a set of resources Si, the cost optimization function selects a plan that minimizes
the cost function such that;

P∗ = arg min
P∈QEPalt

Fn(Pi,Si) (4.9)

4.3.2 Assumptions

In order for our cost model to compute the cost for a query plan, certain assumptions are
made. These assumptions include;

• Tuples are stored in blocks

• There are several tuples stored in a block

• We assume that only sequential scan is possible since we have no information on
the index

• Each operator in the query tree carries a cost and the total cost of a query plan is the
summation of all these individual costs.
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4.3.3 Cost Function

We propose a cost estimation technique suitable for algebraic framework (terms) of the
extended relational algebra [26] we follow the initial idea first described in the seminal
approach of System R [7] and followed by extensive works on the topic [10, 30, 32, 55,
61]. The cost function computes an estimated cost for every query plan in the plan
space. Following our previous defintion of a cost fucntion Fn , our cost estimation function
accepts a query plan, data statistics and returns a measure in terms of the relative time i.e.
evalCost and rowCount. For notational conveniency, we refer to the cost function Fn as
“cost” throughout the rest of this work.

Based on the aforementioned syntax in Chapter 3, we define a cost estimation function
for a term ϕ as:

cost(ϕ) =
(
evalCost,rowCount

)
(4.10)

where;

• evalCost is the estimated computation cost and,

• rowCount is the estimated result size, i.e. the number of tuples returned

cost(ϕ) keeps track of the evalCost and rowCount. The function cost(ϕ) is paramatized by
the statistics of the input relation and is defined recursively using a bottom up approach,
starting from the tree leaves (constants and relational variables).

The evalCost follows a general formula given by [7] as given in Equation 4.11

evalCost= CPUcost+ I/Ocost ∗w (4.11)

where;

• CPUcost is the cost of executing cpu instruction,

• IOcost is the disk I/O cost times a weighted average between the cpu and io.

• w is the weighted factor between the CPU and I/O

4.4 Cost Analysis for Non-recursive RA Operators

In this section, we present the cost formulas for the non-recursive relational algebraic
operators described in previous chapters. Query processing starts by accessing records
from the relation or table through relation variable or through constant record, as such
we derive the cost formula for the different operators starting from these base cases —
relation variable and constant and then define the cost for the other operators.
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4.4.1 Relation Variable

The relational variable denoted by E is the fundamental variable that retrieve the relational
data stored on disk and it is from this that the cost of every node or operator is computed.
Given a base relation E, the cost of a relation variable cost(E) is calculated as follows;

Recall Equation 4.11,

evalCost= relPages(E) + rowCount(E) × w (4.12)

rowCount(E) and relPages(E) are the ones retrieved from the base relation. w is the
weighted factor

cost(E) =
(
evalCost,rowCount(E)

)
(4.13)

The input of other operators in a query tree can be sub-expression computed directly
from a relation variable or indirectly through proper estimation of intermediate result
size and cost.

4.4.2 Recursive Variables

A recursive variable (X) returns the unit result size estimate of the variable supplied to it.
Therefore, the rowCount and cost are both 1.

cost(X) = (1.0,1.0) (4.14)

4.4.3 Constant Mapping

Constant mapping (|c→ v|) is a one-tuple-one-attribute relation. The cost is given as;

cost(|c→ v|) = (1.0,1.0) (4.15)

4.4.4 Filter

Filter involves selecting only tuples that satisfy a given predicate condition. Written as
σf(ϕ), Filter involves traversing the rows of a relation and comparing them with the filter
condition. This is because the result returned consists only of tuples that satisfy the
predicate thereby reducing the result size.

There are two filter conditions available in µ-RA [26];

• True(): this is the default condition which means that all tuples satisfy the predicate
and all of the tuples will be returned as the result size.

Let c= cost(ϕ), the cost and result size in this case is given as the cost of ϕ term.

cost= (c.evalCost,c.rowCount) (4.16)

• Equal (col= value): where col is the specific column to filter and value is used to
exclude tuples that do not satisfy the predicate condition. In this case, the number
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of tuples returned in this case is expected to be lesser than the original number of
tuples. The cost of applying the filter operation on a term ϕwritten as σf(ϕ) can be
expressed as follows;

Let c = Cost(ϕ) be the cost of ϕ, where c.evalCost = cost of scanning the relation
and c.rowCount = number of tuples in the relation.

The number of tuples returned after a Filter operation (i.e. rowCount) is applied on a
relation is given as;

rowCount= Total #tuples in the relation× selFactor (4.17)

where selFactor is the selectivity of the applicable predicate. The result size of
Filter can be calculated as;

rowCount= c.rowCount× selFactor (4.18)

The evaluation cost is given as follows;

evalCost= c.evalCost+Cost of tuple elimination (4.19)

Also,

Cost of tuple elimination= #tuples left after filter has been applied (4.20)

And the evaluation cost is also given below;

evalCost= c.evalCost+ c.rowCount (4.21)

4.4.5 Anti-projection

Anti-projection written as π̃A(ϕ), removes only attributes of the relation mentioned in
A. Anti-projection here is the opposite of SQL projection which returns only attributes
specified in the operator. This operator is set-based and removes duplicates from the
original relation. Lets consider the following example;

As demonstrated in the Table 4.3,

• the result is constructed in the relation E by discarding the attributes on d1,d2,
returning the remaining attributes d3,d4,d5 of the relation as the result.

• we argue that the more columns we remove from the relation, the more the proba-
bility of having tuples discarded from the relation.
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Table 4.3 – Anti-Projection Example

d1 d2 d3 d4 d5

1 1 1 1
2 2 2 2
3 3 4
4 3 4
5 5 5 5
6
7 7

π̃(d1,d2)(E)→
d3 d4 d5

1 1
2 2 2
3 3

4
5 5

A relation E
before anti-projection

Relation E
after removing columns (d1,d2)

We introduce the notion of reduction factor (rFactor). The rFactor is calculated by taking
the ratio of the number of attributes to be removed and the total number of attributes in
the relation.

rFactor= 1−
#attr. in projection
total attr. in relation

(4.22)

Unlike Filter, this operator does not traverse the rows of a relation. The cost of anti-projection
operation on a term ϕwritten as π̃A(ϕ) can be expressed as follows;

Let c= Cost(ϕ) be the cost ofϕ, where c.evalCost = cost of scanning the relation and
c.rowCount = number of tuples in the relation

The number of tuples left after an anti-projection operation is estimated as follows;

rowCount= #Rows in the relation× rFactor

rowCount= c.rowCount× rFactor (4.23)

The evaluation cost evalCost for anti-projection is estimated as the cost of ϕ.

evalCost= cost of scanning the relation (4.24)

evalCost= c.evalCost (4.25)

4.4.6 Union

Given two relations R and E, the union (∪) operation corresponds to the compatible set
of tuples from R and E. The union of two terms R and E is written as R∪E.

The example below retrieves the list of all countries of employees and customers.
We can see that the duplicates (France, Japan) were removed from the result.
The following steps describe the processes involved in the cost estimation of a union

operator.

• For relation R

{• Read blocks of relation R

• For each tuples tcountry of relation R, output tcountry
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Table 4.4 – Union example

R

emp_id country

1 Japan
2 France
3 Australia
4 Germany

Rcountry ∪Scountry S

cust_id country

1 UK
3 France
4 Nigeria
5 Japan

Result

country

Japan
France

Australia
Germany

UK
Nigeria

• For relation S

{• Read blocks of relation S

• For each tuples tcountry of relation S, output rcountry

• Remove duplicates from result

Given two terms ϕ1 and ϕ2, the cost estimate for union between these two terms can be
estimated as follows;

Let c1 = cost(ϕ1) and c2 = cost(ϕ2), the cost for terms ϕ1 and ϕ2 respectively.
The result size (rowCount) of union operator can also be estimated as follows;

rowCount= #tuples in the left rel.+ #tuples in the right rel. (4.26)

The result size, rowCount given in Eq. 4.27 below is an overestimation for the result
size of the union because duplicates are eliminated from the final result.

rowCount= c1.rowCount+ c2.rowCount (4.27)

The evaluation cost (evalCost) of a union operator is given as;

evalCost= cost of scanning the left rel.+ cost of scanning the right rel. (4.28)

The computation cost, evalCost for union onϕ1 andϕ2 is computed from the cost of
each term. We assume that the cost of duplicate elimination is negligible since it can be performed
in O(n) time.

evalCost= c1.evalCost+ c2.evalCost (4.29)

4.4.7 Join

Given two relations R and S, join operator involves combining compatible pairs of tuples
from R and S. The two relations must be join compatible. The join (on) of two terns R and
S is written as Ron S.

To illustrate join, we consider the two relations below;
Joining the two tables above (R and S) on the user_id and id gives the user name and

their likes.
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Table 4.5 – Join example

R

id name

1 Yves
2 Jones
3 Sam
4 Larry
5 Bode

Ronid=user_id S S

user_id likes

3 Soccer
1 Racing
1 Movies
4 Coding
6 Kenny

Result

name likes

Sam Soccer
Yves Racing
Yves Movies
Larry Coding

Given two terms ϕ1 and ϕ2, the cost estimate for join between these two terms can be
estimated as follows;

Let c1 = cost(ϕ1) and c2 = cost(ϕ2), the cost for terms ϕ1 and ϕ2; the small and
big relations respectively.
where;

• c1.evalCost= cost of scanning the small relation

• c1.rowCount= number of tuples in the small relation

• c2.evalCost= cost of scanning the big relation

• c2.rowCount= number of tuples in the big relation

The result size (rowCount) of join operator can also be estimated as follows;

rowCount= #tuples in the left rel.× #tuples in the right rel.×Selectivity (4.30)

The selectivity estimationmostly rely on the distinct values per attribute of the relation.
But because this distinct values might have changed (e.g reduced) before a join operation
is performed on the relations (or intermediate relations), for example, performing a filter
on one of the join tables before applying a join will significantly affect the cardinality of
the result size. To this end, we adopt the work of [35] for calculating the number of distinct
values of the join column which will later be used for selectivity estimation.

We then calculate the join size

rowCount= c1.rowCount × c2.rowCount × selFactor (4.31)

For the evaluation cost evalCost,

evalCost= Cost of scanning the small rel.+Cost of finding matching tuples

+Cost of gathering the results
(4.32)

Cost of finding matching tuples corresponds to the cost of scanning the contiguous group
of the bigger relation which corresponds to one join column value in the smaller relation.
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Cost of finding matching tuples= cost of scanning the big relation

×number of tuples in small rel.
(4.33)

The cost of finding matching tuples in the big relation can therefore be given as;

Cost of finding matching tuples= c1.rowCount× c2.evalCost (4.34)

The Cost of gathering the results is estimated as the number of tuples obtained after the
join (i.e. join size) given below;

Cost of gathering the results= join size (4.35)

The cost of scanning the big relation is already given above as c2.evalCost and join
size is rowCount given in Equation 4.31 above.

Evaluation cost of join can be estimated as follows;

evalCost= c1.evalCost + (c1.rowCount× c2.evalCost) + join size (4.36)

One of the key strategies we adopt in estimating the cost of join is ensuring that the
left relation is the smallest of the two relations.

4.4.8 Anti-join

Given two relations R and S, anti-join (R . S) returns the mappings from R that has no
matching mapping in S. The tuples retained from the relation after performing anti-join
are those ones from Rwith no match in S.

With anti-join, the inner relation R is first evaluated and the result is used as a predicate
for the outer relation S.

Given two terms ϕ1 and ϕ2, the cost for anti-join can be estimated as follows;
Let c1 = cost(ϕ1) and c2 = cost(ϕ2), the cost for terms ϕ1 and ϕ2 respectively.

where;

• c1.evalCost= cost of scanning the outer relation

• c1.rowCount= number of tuples in the outer relation

• c2.evalCost= cost of scanning the inner relation

• c2.rowCount= number of tuples in the inner relation

We then calculate the anti-join size

rowCount= c1.rowCount× selFactorNot(ϕ1=ϕ2) (4.37)

Here selFactor is the cardinality of the outer relation (ϕ1)multiplied by the selectivty
factor of "NOT pred" (see section 4.2.2). "pred" here indicates that the selectivity factor
for "column A= column B".

59



CHAPTER 4. COST ESTIMATION FOR EXTENDED RELATIONAL ALGEBRA

The selectivity selFactorNot(a=b) is given by the equation below;

selFactorNot(ϕ1=ϕ2) = 1− selFactor(col a = col b) (4.38)

This selectivity is retrieved from the histogram values of the database catalogue. In the
absence of this histogram selectivity value, we use the number of distinct values D1,D2
for the participating columns to estimate the selectivity factor.

selFactorNot(ϕ1=ϕ2) = 1−
1

max(D1,D2)
(4.39)

The computation cost evalCost for anti-join on ϕ1 and ϕ2 is computed from the cost
of each term as given in Equation 4.40.

evalCost= c1.evalCost + (c1.rowCount× c2.evalCost) + c1.rowCount (4.40)

With anti-join, the inner relation ϕ2 is first evaluated and the result is used as a predicate
for the outer relation ϕ1.

4.5 Fixpoint Operator

We re-introduce the fixpoint operator presented in Chapter 3 here and discuss the chal-
lenges encountered in estimating its cost. A cost analysis of fixpoint operator is conducted
and we present our technique for estimating the maximum nnumber of recursive steps in
a recursive operator, the cardinality and its cost estimates.

A fixpoint operator f(s) iteratively evaluates the function f on s until a certain predicate
is satisfied [4, 22, 54]. Basically, the function f is iteratively applied on s and reaches the
fixpoint at nth-iteration – the point atwhich the operation terminates. At thenth iteration,
fn = fn+1(s).

µX. ϕ︸︷︷︸
constant part

∪ (Ronϕ)︸     ︷︷     ︸
recursive part

(4.41)

Recursive terms contains two parts: the constant part and the recursive part as depicted
in Equation 4.41. The recursive part is executed several times until it no longer produces
further results. The constant part, executed just once, provides the initial results used as a
starting point for the recursion (see [26] for a formal semantics).

4.5.1 Problem Definition

Achallengingpart consists in determiningwhen the recursive part of thefixpoint operation
terminates. This is crucial for estimating the number of rows returned and subsequently
the cost of the whole fixpoint operator.
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Definition 4.5.1. Maximum number of iteration. The number of iterative steps N is the
total path from node s to t consisting of one or more adjacent edges that are mutually reachable
from s.

(s,x1), (x1,x2), (x2,x3), ... (xn−1, t)

s x1 x2 x3 ... xn−1 t

N

Figure 4.2 – Maximum iteration in a recursive path traversal

In Figure 4.2, a node s is connected to a node t through paths x1 to xn−1, these edges
could also be connected to other nodes but for the sake of simplicity we assumed a simple
scenario. Depending on the connection between nodes in a graph or the structure of the
graph, representing the maximum number of iterative steps for the node traversal as a
constant could significantly lead to cost bad estimation and the selection of low quality
query plan.

Another problem that could emanate from this is that the performance gain of queries
observed through algebraic transformation rules like predicate pushdown can be missed.
Predicate pushdown is a tuple-eliminating algebraic rule where operators like filter is
pushed as close to the source as possible in a query tree enabling a decrease in the result
size of intermediate expressions thereby reducing the cost and execution time. Bad cost
estimation approximation that originate from using a constant number of iteration for
recursive query cost estimation can lead the optimizer to missing such transformation
rules that are beneficial for overall query performance.

Let us consider an example, Figure 4.3 represents the query plans for our Covid-19
example in Chapter 1. There are two different plans represented on the tree. In Plan 1,
after computing the fixpoint, the result returned is 5000 rows. The number of people that
have been in contact with someone is 1000, we then combine the result of the fixpoint
with the list of people that have been in contact with someone using a join operator which
results in 1500 rows containing people who have been in contact with any person that was
with a Covid-19 patient.In the final step, we filter by join i.e. we only select people that
John has been in contact with and a connected list of people those people have been with.
The total number of tuples returned for the query is 600.

Contrarily, in Plan 2 all the computation is done inside the fixpoint. We start by finding
the a list a people that John has been in contact with in the constant part of the fixpoint
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Query

Plan1

σJohn

on

ϕx

∪

x/wasWith

rel(A)

σwasWith

rel(C)

σcontactWith

rel(B)

Plan2

ϕx

∪

x/wasWith

rel(A)

on

σJohn

σcontactWith

rel(B)

σwasWith

rel(C)

x

x

〈Rows= 600〉

〈Rows= 1.5k〉

〈Rows= 5k〉

〈Rows= 50k〉

〈Rows= 1k〉

〈Rows= 50k〉

〈Rows= 1k〉

〈Rows= 50k〉

〈Rows= 600〉

〈Rows= 50k〉

〈Rows= 275〉

〈Rows= 200〉

〈Rows= 1k〉

〈Rows= 50k〉

〈Rows = 50k〉

Figure 4.3 – QEP for Covid-19 contact tracing example in Chapter 1

which are 200 rows in total, we then join that with the list of people he has been with. The
intermediate result at this point (after the join) yields 275 rows. The result is combined
with the final result from the recursive part of the fixpoint as a union and the result (600
rows) is returned.

For better understanding, the difference between Plan 1 and Plan 2 in Figure 4.3 is that
because the filter (σJOHN) is pushed down inside the fixpoint in Plan 2 the number of
intermediate result participating in the join is reduced, enhancing query evaluation time.
The time spend performing the join differs in the two queries due to this. The disparity in
query time as a result of this algebraic transformation rule and cost-based plan selection
can range from a few milliseconds to minutes and even days.

4.5.2 Iterative Step Analysis

In the previous section we have already emphasized the importance of estimating the
maximum iterative steps rather than using constant like being used in many data process-
ing systems that support recursion (linear or non-linear). We describe the process at each
recursive step followed by an algorithms for estimating the number of iterative steps in
the recursive part of a fixpoint operator.

To estimate the cost of a fixpoint, we follow the steps below:
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Table 4.6 – Recursive steps computation in the fixpoint operator

Step Input Computation Step termination

0 X ∅ −

By iterative susbstitution of X in Section 6.3.2, where selFactor = selectivity

1 ∅
E∪ (Ron∅) = E ⇒ X1

Γ1 = rowCount(E)
∆X1 = X1 | ∆X1 ,∅

2 X1
X1 ∪Ron ∆X1⇒ X2

Γ2 = Γ1 ∗ rowCount(X1 ∪R) ∗ selFactor
∆X2 = X2−X1 | ∆X2 ,∅

3 X2
X2 ∪Ron ∆X2⇒ X3

Γ3 = Γ2 ∗ rowCount(X2 ∪R) ∗ selFactor
∆X3 = X3−X2 | ∆X3 ,∅

. . . . . . . . . . . .

n Xn−1
Xn−1 ∪Ron ∆Xn−1⇒ Xn Γn = Γn−1 ∗ rowCount(Xn−1 ∪R) ∗ selFactor

∆Xn = Xn−Xn−1 | ∆Xn =∅ Γn 6 selFactor ∧ ∆Xn =∅

1. we start from X which is initially an empty relation (∅), we substitute X into the
equation of the fixpoint and perform a union, the whole fixpoint term then reduces
to ϕ∪ (Ron ∅) =ϕ, thus we have rowCount= rowCount(ϕ)

2. at this step, the value of X is now ϕ∪ (R on ϕ). Given the cardinality of ϕ and R
and the selectivity factor of the join, by substituting the result of X (i.e R on ϕ), we
compute the evalcost and rowcount of this step;

3. by iterative substitution of X, the computation continues repeatedly until some
step N such that the result size is less or equal than the initial selectivity factor, i.e.
rowCount6 Sel. At this point, we estimate that the maximum number of iterations
has been reached and that the iteration terminates.

The steps are described in Table 4.6

Theorem 4.5.1. (Fixpoint Convergence) If f is a recursive function applied on x, then

f(x), f1(x), f2(x), . . . fi(x)

Thus the iteration continues until

∆fn(x) = fn(x)− fn−1(x) =∅, for some n > 0

In algorithm 4, we present the algorithm for computing the result size of fixpoint
operation.

The step and result size estimation relies on several assumptions, that are inspired by
the so-called semi-naïve evaluation of transitive closures found in the literature [4, 17, 21,
24]. In particular, we assume that only the new results generated by an iteration are used
for the next iteration and that the number of tuples reduces until a maximum number
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Algorithm 4 : Algorithm for computing #steps and size of recursive part
1: function Recursion(rowCount(ϕ), rowCount(Ronϕ))
2: X←∅
3: step(X)← 1

4: size← rowCount(Ronϕ) . Calculate join size
5: while size> selFactor do
6: size← size ∗ selFactor
7: step(X)← step(X)+ 1

8: return step(X) . The maximum #step of the recursive part

of iterations N is reached. At each step, the result size is reduced by a factor s which we
compute from the base case of the fixpoint (i.e. R on ϕ). We estimate the number N of
iterations as:

N= logs(K) (4.42)

where K = rowCount(R on ϕ) is the estimated number of tuples in the recursive part of
the fixpoint.

4.5.3 Cardinality Estimation

To estimate the cardinality of a fixpoint operator we apply the knowledge of the maximum
number of iterative steps and the selectivity factor. The result size of the constant part of
the fixpoint computation is fairly deterministic and can be estimated from the intermediate
result size of its children node operators or sub-expressions.

As stated above, in each iterative step, the result size increases until a maximum
iteration n is reached. We noted that the result size grow by a factor selFactor. In a
decomposedfixpoint (consisting of constant and recursive part), the recursive computation
requires at least k− 1 joins of Ron X (where X is recursive). In the first step of the iteration
X= E and the first join is Ron E.

Theorem 4.5.2. (Step-wise Cardinality) If the result size grow by a factor selFactor and
the total iterative steps is N, then we can say that the total number of tuples after the recursion is;

rowCount(Ronϕ)N = c1.rowCount ∗ (1+ selFactor)N (4.43)

where c1.rowCount is the result size of the join (rowCount(Ronϕ)N) at step one.

Table 4.7 shows the cardinality estimation formula at each iterative step.
Figure 4.4 shows the graph of increment of the result size of the recursive computation

in a fixpoint using Equation 4.43. The cardinality keeps growing until it reachs a point;
the maximum Nwhere no new results are available, then the computation terminates and
the result is gathered and merged with the intermediate results from the constant part of
the fixpoint computation.
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Table 4.7 – Cardinality estimation for recursive computation

Step Formula

n= 0 c1.rowCount

n= 1 c1.rowCount ∗ (1+ selFactor)
n= 2 c1.rowCount ∗ (1+ selFactor)2

n= 3 c1.rowCount ∗ (1+ selFactor)3

. . . . . .

N c1.rowCount ∗ (1+ selFactor)N

* selFactor= 0.05
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2,000
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Figure 4.4 – Result size growth through step N

4.5.4 Cost Estimation for Fixpoint Operator

We extend the notion of our cost model (discussed earlier) to recursive queries over graph
database by presenting the cost formula for a fixpoint operator. We now know how to
compute the number N of iterative steps. We proceed to compute the cost of the overall
fixpoint term. Let c1 = cost(ϕ), c2 = cost(R) respectively:

• c1.evalCost= cost of computing ϕ

• c1.rowCount= number of tuples in ϕ

• c2.evalCost= cost of computing the recursive relation R

• c2.rowCount= number of tuples in the recursive relation R

The evaluation cost for a fixpoint is given as;

evalCost= c1.evalCost+(c2.evalCost×N)+ rowCount (4.44)
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At step 1 above, X is empty, then the rowCount at step 1 is;

rowCount(X) = c1.rowCount (4.45)

The evaluation cost at this point is estimated as c1.evalCost and c2.rowCount respec-
tively. We then estimate the join size i.e. rowCount(Ronϕ)

rowCount(Ronϕ) = c2.rowCount× c1.rowCount× selFactor (4.46)

The evaluation cost is estimated as:

evalCost= cost of computing const. part+(N× cost of scanning rec. part)

+ cost of gathering the results (4.47)

We estimate the cost of gathering the results Costres as the maximum of the cardinality
of relation E (i.e. c1.rowCount) and rowCount(Ronϕ).

Costres =max(c1.rowCount,rowCount(Ronϕ)) (4.48)

The result size (rowCount) of a fixpoint operator is estimated as;

rowCount= c1.rowCount+ rowCount(Ronϕ))N (4.49)

where rowCount(Ronϕ))N is the result size after the computation of recursive part of the
fixpoint operator at step N.

4.6 Improving Cardinality Estimation with Graph

Summarization

RDF graph summarization is the process of compressing graph by merging their nodes
and extracting meaningful summaries from RDF knowledge depicting as close as possible
the actual contents of the graph [36, 100]. Categorization of studies on RDF graph summa-
rization has been conducted in [100] and these categories include (i) structural methods
consider both paths and subgraphs in RDF graph, (ii) pattern mining methods are based
on data mining techniques (iii) statistical methods involves quantitative summarization
of graph using counting instances or histograms and (iv) hybrid methods combining the
different approaches. We refer our readers to [100] on categorization of graph summa-
rization techniques. The different categories of graph summarization techniques target
different applications.

4.6.1 SumRDF

In this work we are interested in the application of graph summarization to cardinality
estimation. We adopt the work of [36] (SumRDF), a hybrid RDF graph summarization
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technique used for estimating the cardinality for RDF queries of the basic graph pattern.
SumRDF [36] cardinality estimation technique for RDF graphs is based on grouping nodes
that have exactly the same set of types, outgoing and incoming properties.

Definition 4.6.1. (Summary) A Summary S= 〈H,w,µ〉 is a triple whereH is an RDF graph
called the summariation graph, w : H→ N is a weight function assigning a positive natural
number to each triple in H, and α is a surjective summarization function from a finite set of
resources dom(µ) to resources of H res(H). The resources of res(H) are called buckets.

X0

X1X2

P2

X3Y1

P1Y2

a RDF graph G

b1 b2

b3

b4

1

1

2 1

2

b Summary S of graph G

student
teacher
lyon
grenoble

c Legend

Figure 4.5 – Graph summary example

Let α be the summarization function consisting of a many-to-one mapping from a
data node n to a summary bucket b. Nodes are grouped into buckets based on their
types and any two nodes that have the same type are collapsed into the same bucket.
As summary size may be large for instance for very large graphs, the the target size has
been introduced. A target size (specified by the user) can be used to reduce the growing
size of the summary and it works by merging nodes with similar incoming and outgoing
properties. A summary bucket is assigned a numeric weight for every node or edge
mapped to it. The total number of weights for a bucket b which is also the number of
resources mapped to that bucket is referred to as the bucket size s[b]. Concisely, s[b] is
defined as s[b] = | d ∈ dom(α)| α(d) = b |, and S-size of buckets (b1,b2, ...bn) | b ∈ res(H)
is defined as s[b1]× s[b2]× ... s[bn].

Figure 4.5a shows an RDF graph for Covid-19 patients where male patients are
connected to female patients, and their connections to the type of places they lived in i.e.
lyon and grenoble. The summary S of the graph G is constructed such that X0, and X1
collapse into a self loopandaremapped to the samebucketb1,X2 andX3 aremapped tob3,
Y1 and Y2, and P1 and P2. The size of the buckets s[b1] = 2, s[b2] = 2, s[b3] = 2, s[b4] = 2.
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Table 4.8 – Summary bucket and possible expansion

(a) Summary buckets

Nodes Size

b1 s[b1] = 2

b2 s[b2] = 2

b3 s[b3] = 2

b4 s[b4] = 2

(b) Weight

Nodes Weight

(b1, b2) w[〈b1, livesIn : lyon, b2,〉] = 1
(b1, b3) w[〈b1, contactWith, b3,〉] = 2
(b3, b2) w[〈b3, livesIn : lyon, b2,〉] = 1
(b3, b4) w[〈b4, livesIn : grenoble, b3,〉] = 2

Let q1 = {f1, f2} where f1 = 〈X0 contactWith X2〉 and f2 = 〈X2 livesIn P2〉. The
query can be summarized as h1 = 〈b1 contactWith b3〉 and h2 = 〈b3 livesIn b4〉. With
the “Possible world semantics” discussed in [36], there are

(
s1
w1

)
possible expanison of h1

i.e. every expansion of h1 is determined by the choice of w1 triples from s1 possibilities,
the same for h2. The product of expansion of h1 and h2 is the total number of expansions.

For clarity purpose, let c = contactWith and g = livesIn. We can calculate the total
expansion

(
si
wi

)
.
(s[b1] · s[b3]
w(s1, c, b3)

)
·
(s[b3] · s[b4]
w(s3, g, b4)

)
=
(
4
2

)2
= 36 possible worlds. Among the 36

possibleworlds,
((s[b1] · s[b3])−1
w(s1, c, b3)−1

)
·
((s[b3] · s[b4])−1
w(s3, g, b4)−1

)
=
(
3
1

)2
= 9. We say there are 9

36 = 0.25

possibilities. Since there are only four (4) possible expansions as shown in Table 4.8a, the
expected cardinality is 4× 0.25= 1.

4.7 Result Size Estimation Problem

Bad cardinality estimation is an inherent problem in database systems and the effect they
can have on query performance depends on the type of query and operators together with
their implementationmethods or evaluation algorithms. Leis et. al. [55] also reportedother
problems of cardinality estimation ranging from assumptions made on data distribution,
methods used for selectivity estimation, join algorithms used, index usage etc.

Concisely speaking, some operators like join and filter discard tuples from the relation
during query evaluation. Bad cardinality estimation is more noticable in queries with
multiple joins [55]. Estimating the result size of these operators involves calculating
the selectivity of the predicate (using the number of distinct values in the participating
column) and multiplying that with the cardinalities of the participating relations.

Given two relationsA and B, a join operation on these two relations will involve joining
qualifiying columns from relations A and B. Let assume relation A contains columns (t,x)
and relation A has columns (x,s) and the number of distinct value in the participating
column in A is represented as dAx and dBx in B. The join size can be calculated using the
formula of Section 4.2 as follows;

rowCount(Aon B) = rowCount(A) × rowCount(B) × selFactor

Where the selectivity factor selFactor is given as;
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(t,x) on(x,s)

BA

dx = 1000dx = 200

a Simple join

(t,x) on(x,s)

σpredA

B

d′x = 500dx = 200

dx = 1000

b Join with local predicate

Figure 4.6 – Effect of local predicate on join

selFactor=
1

max(dAx , d
B
x )

The case described above is a simple join case as shown in Figure 4.6a where dAx = 200

and dBx = 1000. Let us assume the rowCount(A) = 1000 and rowCount(B) = 1200.
According to the formula above the selFactor= 0.001 and join size is 1200.

Let us consider another case with a local predicate before the join operation1. The
presence of local predicates reduces the column cardinality thereby affecting the join result
size [35]. Using the same paramters (i.e. rowCount(A) = 1000 and rowCount(B) = 1200)
as above, if we do not manage to keep track of the changes in the number of distinct
values introduced by the filter, the selectivity value is estimated as 1

max(200, 1000) = 0.001

(same as before) and the result size of the join between A and B in Figure 4.6b is thereby
estimated as 1200.

However, if we consider the presence of the filter predicate in Figure 4.6b and keep
track of the changes introduced by the filter before the join operation, the distinct values
after the filter has been applied on B is dBx = 500. The join selectivity is estimated as

1
max(200, 500) = 0.002 and the result size of the join rowCount(Aon B) = 2400.

We can clearly see that if we do not consider the effect of local predicates, we will be
underestimating the resulting cardinality. In order to effectively estimate intermediate
results size or cardinality, we need to be able to keep track of the changes in the number
of distinct values. To this end, we have adopted the work of [35] which is based on the
principle of sampling without replacement, we refer interested readers to the literature
[35] for more on this.

d′ = dd× (1−(1− 1/d)|R|)e (4.50)

where d′ is the effective (expected) cardinality2, d is the current column cardinality
(without considering local predicate) and |R|= rowCount(R). The interesting property of

1predicate that involves a single table
2taking into consideration the local predicate
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this formula is that when d= |R|, d× selFactor, when d� |R| the value returned is closer
to d.

4.8 Propagating Cost Parameters Through the Query Tree

We have discussed the cost formulas for each relational operator of [26] in Section 4.4.
Estimating the cost for these relation operators is straight-forward, however, a query plan
is a sequence of relational operators (with data dependency) is chained to form a tree; a
QEP. The idea of a cost model is to be able to propagate statistics and cost parameters so
that a changes in size, cost and any of the statistical parameters are capture and utilized
by the cost model to make accurate cost estimation.

(cost = 20, rows= 50)

(cost= 20, rows= 50)(cost= 20, rows= 50)

(cost= 20, rows= 50)

(cost= 20, rows= 50)

(cost= 20, rows= 50)(cost= 20, rows= 50)

(cost= 20, rows= 50)(cost= 20, rows= 50)

σ : typσ : typ

π : typ

rel(C)

on: typ

rel(D)

rel(B)rel(A)

Figure 4.7 – Cost Estimation Graph (CEG)

The cost and statistical properties on the branches are propagated through the Cost
Estimation Graph (CEG). Figure 4.7 shows a CEG, a tree representation of the cost
information or properties of operators in a given QEP. In a CEG, links between nodes
shows the dependencies and connections between parent and child operators.

Cost and data statistics propagation started from bottom of the CEG to the top. The
cost of a particular branch of the CEG is the summation of the costs of each child node
belonging to that branch. The cost of each branch is summed as the total cost of the QEP.

Cost(QEP) =
∑
P∈ϕ

(evalCost(P), rowCount(P)) (4.51)

Given a CEG, we estimate the cost of a query plan by adding together the evaluation
cost (evalCost) of all the child operators of the query tree. The cost of a query plan is
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given in Equation 4.51. Similarly, the total result size (rowCount) is obtained through
statistics and cost propagation and the total correspond to the addition of all the operators
result sizes taking into consideration the selectivities and reduction factors.

4.9 Summary

In this chapter, we discussed cost estimation techniques for recursive queries. We started
the chapter from the basic knowledge of cost estimation techniques available in the
literatures for non-recursive physical query plans, adapting it first to relational algebraic
operator (LQEP) and deriving a novel cost estimation technique for fixpoint operators.

The components that made up the cost formulas like selectivity and cardinality were
discussed comprehensively andwe showed how they are combinedwith other parameters
to form the cost formula. In Table 4.9, we present the summary of the cardinality and cost
formulas for the operators considered in this work.
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5
Effectiveness of Cost Model QEP Selection

Like with many other systems, validation of cost model in database query optimizer is
crucial to identifying and improving the accuracy and quality of plan selected by the
query optimizer.

5.1 Introduction

Performance of query engines is an important factor for choosing appropriate database
system for query evaluation [87, 101]. Query engines performance are mostly measured
in terms of it plan-picking function through it cost model. As presented in Chapter 3,
there are a variety of cost models depending on the query engine and their optimization
approach and the type of operators they support.

A typical query optimizer consists of different components that work together to
generate efficient ways for evaluating a given query. Validating query optimizers quality
independently remains an open challenge as researchers have focused on one aspect of the
optimizer than the other. Instead of assessing the effectiveness of the optimizer’s term (or
plan) selection and the quality of the selected query plans through its cost estimation, some
existing benchmarks like TPC benchmarks assesses the query runtime system, JOB [55]
benchmarks research in cardinality estimation and join order optimization, [93] provides
a robustness metric for plan selection with respect to the cardinality estimation error.

In order to address these challenges, we present a framework for assessing query
optimizers cost models quality. By decoupling query optimizer components, we isolate
the cost model from other components of the query optimizer and focus our attention
on how they can be validated regardless of the underlying system or architecture. In the
next section we define the problem statement and we go on to explain the optimality
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conditions for query plans, thus guiding the validation of cost models using these set of
conditions.

5.2 Problem Statement

As previously explained in Chapter 4, cost estimation relies on statistics of input data and
query tomake accurate estimation. In practise, many query optimizers choose query plans
that are inefficient and a plethora of query optimization algorithms and cost estimation
techniques exist.

The least cost query plan according to the cost model does not always imply the least
actual runtime plan. We are at risk of missing out on quality query plans. For example,
if we are given a query with 100 equivalent plans and two cost models A and B. Let
us assume that A selects a plan whose actual observed runtime is the 20th cheapest
and B selects a plan whose actual runtime is the 21th cheapest, based on current cost
comparison methods, A is a better cost model of the two, this is true. But at the same time
what happens to the 19 other cheapest plan and how exactly does these cost rank in terms
of their plan-picking capabilities?

Many query engines’ cost estimation techniques exhibit changes in plan-selection
behaviour when certain input paramters are slightly adjusted. Wu et al. [32] showed
that calibrating cost paramters in PostgreSQL database results in improvement in query
runtime. In contrast to that, Leis et al. [55] demonstrated that using the true cardinality
of query often improve the cost estimation and quality of the plan selected by query
optimizer, suggesting that even the simplest cost formulas in the presence of accurate
cardinality will be sufficient enough for any query optimizer.

Additionally, query optimization and execution are a complex combination of several
factors like storage models, optimization algorithms, data or result caching etc. Query
engines are different and they have different optimization techniques implemented, hence,
execution of queries on different query engine differs, even for sub-optimal query plans
some query engine performs relatively better than others. Some have better costmodel but
not the fastest execution or optimization algorithm implemented i.e. they have moderate
speed of execution for query plans. As a result, direct comparisons of query execution
time from different optimizers might not accurately give a clearer understanding of the
effectiveness of the cost model.

For learning-assisted cost estimation or learning-based plan selection techniques, data
about previously run query, plan cost and workload are important data that this method
use to learn and further improve estimation accuracy, meaning that for changingworkload
and query, there might be need to train and re-train. Until now, there has not been a
structured data model and repository for collecting information like this.

In general, we note a lack of standard method for validating cost models in query
optimizers. To this end we present a cost model validation framework in this chapter.

74



5.3. METRICS AND SPECIFICATIONS

Definition 5.2.1. (Actual Cost). of a query plan refers to the total time used by a query engine
to evaluate a given query plan. We interchangeably use “True” and “Actual” cost throughout
this work. Actual cost of a query plan P is denoted by cost(P)true

Definition 5.2.2. (Exact Cardinality). refers to the actual number of tuples or nodes returned
by an expression, an operator or a query plan obtained by an actual execution of a given query
plan.

5.3 Metrics and Specifications

In this section, we discuss the metrics that measure the efficiency of a cost model and we
also present a set of standard specification for a cost model.

5.3.1 Metrics

What often comes to mind is what is what do we measure the validity of a cost model
by. In this section, we define a set of metrics that will help us validate cost models by
answering several questions.

• Are query plans selected by the costmodel always optimal and howdowe determine
optimality of query plan?

• What is the impact of estimation errors on query plan quality?

• Are there any correlation between cost variables and query execution time?

5.3.2 Specifications

A framework for assessing a query optimizer cost model must satisfy the following
requirements.

• Quality of Plans Selected: the cost validation framework must be able to assess the
effectiveness of a cost model with respect to the quality of query plans they choose.
This means that the cost validation framework must use the quality of the plan
selected as one of the many paramters to assess the effectiveness of the cost model.

• Isolated Assessment: cost validation framework should be able to assess the cost
model in a decoupled manner from the query optimizer plan space generation for
instance. This will facilitate accurate comparisons between different cost models
and this will give users the freedom to easily extend the framework.

• Extensibility: the framework should be designed in such a way that new features
or functionalities can easily be added.
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• Uniformity and Generality of Configuration: an assessment framework should be
able to compare query optimizer costmodels using uniform configuration settings in
order to ensure that every system tested at the same time are given equal chances to
prove their effectiveness. For example, if a given timeout is given to a system A, the
same amount of timeout should be used to test other systems it is being compared
to. For query engine running on different platform, metrics that are incomparable
on all platforms needs to be avoided. Irrespective of the platform, the framework
should be easy to setup and run with minimal effort.

5.4 Optimality of Query Plan

The cost model returns a list of plans with their respective costs as the CEG. The plan
with the minimum cost is termed the “optimal plan” and this plan is sent for execution.

Definition 5.4.1. (Optimal Plan) Let P be a plan space such that P1,P2, . . .Pn ∈ P be the
equivalent query plans for a query Q, evalCost(P) represents the application of cost function
on the plans in the plan space. We say a plan P′ is the optimal term iff;

evalCost(P′) = argmin(evalCost(P)) (5.1)

Definition 5.4.2. (Near-optimal plan). Given a plan space for a queryQ containing a set of
equivalent plans P1,P2, . . .Pn ∈ P, with actual costs (i.e the total time taken to run the query
and return results), there exist a plan Pi with actual query time or cost that is larger than the
optimal plan cost but whose cost still falls within the first quartile range of the costs of all the
plans considered in the plan space.

Let T(P)nopt be the actual cost of the near optimal plan, T(P)min is the cost of the
optimal plan and T(P)25th be the cost in the first quertile,we say that;

T(P)min 6 T(P)nopt 6 T(P)25th (5.2)

With near-optimal plan we can be sure that the selected query plans are always good
enough and as competitive in terms of actual query time. Contrary to the definition
given in [93] where a near optimal plan is deemed to be at least 1.2x times larger than
the estimated optimal plan, we believe that this value might become too big in many
cases making query plans to be more sensitive to estimation errors and as such, the better
performance cannot always be assessed.

Figure 5.1 illustrates the cost of all equivalent plans for a given query. The cost is
ranked by obtaining the percentile (further discussion on the percentile is in later section
of this chapter) of all the costs. We start by getting the plan with the minimum actual cost
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Figure 5.1 – Cost ranking showing optimality of plan

and getting the quartiles and maximum values (max) for the costs. A near-optimal plan
should have its cost between the minimum (min) and 25th percentile at all times. The
horizontal line on graph in Figure 5.1 represents the near-optimal plan cost. Generally,
the closer this value is tomin, the better it is.

5.4.1 Condition for Optimality

For any given set of query plans of a user-defined query, we define the following conditions
that needs to be satisfied in order to guarantee optimality.

1. 100-Plan: all (100%) of the plans generated from the search space (under the given
timeout period) are considered. This condition ensures that in most cases, good
plans are not left out during the search for optimality (or near-optimality) in case
the optimizer poorly estimates the cost of the plans. If the optimizer’s cost model is
fairly accurate, this rule can be relaxed to 90% or lesser in order to reduce evaluation
time.

2. Least-cost Plan (LCP): a query plan with the least cost is always considered as the
cheapest. In the presence of estimation errors which is mostly inevitable in query
plan cost estimation, we expect that the actual cost of the plan selected always falls
within the minimum actual cost and the 25th percentile of the total cost of all the
plans in the query plan space. The closer the value to the minimum, the better.

3. Least Cost Error (LCE): an optimal query plan must be a plan with the minimum
cost estimation error among all the query plans cost estimation errors, with or
without using an actual cardinality during cost estimation. Similarly, a near-optimal
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planmust be a plan with cost estimation error closer to the minimum cost estimation
error. We discuss cost estimation errors later in this chapter.

4. Cost Variables Correlation (CVC): there is correlation between the estimated cost
and the actual cost or runtime of the plans generated for any given query. What this
means is that, the higher the estimated cost of a query plan the higher the actual
time taken by the query engine to evaluate the plan.

5. Logical Operator Ordering (LOO): to push things a bit further, this condition
ensures that logical precedence of operator is observed in the choosen query plan.
As an example, a filter (σ) operator is expected to be pushed close to the source node
as possible in a query tree. This condition also serves as some kind of stress test
for the cost model since it allows for the query plan selected by the cost estimation
function as the cheapest to be compared with some pre-defined set of rules or know
pattern that guarantees optimality.

We discuss more on conditions 2, 3, 4 and 5 below. We have left out the first condition
1 (100-plan) as we believe this conditions is clear and straightforward.

5.5 QEP Cost Estimation Ranking

Another important way to validate a cost model is by ranking the term or plan picking
function of the cost model. Given a query Q with a set of equivalent query plans
P1,P2, . . .Pi ∈ P, a term or plan picking function selects the best plan based on the cost
estimation from a pool of plans generated in the plan space.

In order to assess how a cost model qep-picking function compares to the best query
plan of P (i.e the ones with the minimum observed query runtime) and compute the cost
estimation ranking, we normally need to run all equivalent query plans from the plan
space P that are generated by the optimizer.

Ranking cost models with respect to query plans gives an insight into the closeness of
the cost model to reality i.e. the closeness of the cheapest plan selected by the cost model
to the actual optimal plan based on measured runtimes. Our ranking approach is based
on interval of estimates using percentile ranking to determine in which percentile the
plan chosen by the cost model lies. There are seven ranking categories in total; min, 15th,
25th, 50th, 75th, 90th and max. When comparing two cost models, the percentile analysis
shows how good or bad the cost estimation function is. A better cost model chooses more
query plans that rank in the lower percentile range.

Recall, in Equation 5.2, we define the condition for a near-optimality where we set the
upperbound for the ranking to be in the 25th range. We note that this range is fairly large
and a lower range like 15th percentile will be better if there is high variation in the query
time of the plan spcae.
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If P represents the set of plans generated in the plan space, T is the runtime for a given
plan, we define a ranking threshold function Φ as follows;

Φ=

1−
Tmin(P)
T25th(P)

, if Tmin < T25th
0 otherwise

(5.3)

where Tmin(P) is the plan with the minimum actual runtime of all the plans in the
plan space and T25th(P) is the runtime in the 25th percentile range. Φ is between 0 and 1.

Definition 5.5.1. (Cost Model Rank). A cost model rank (for a plan) is the factor by which the
execution time of a plan P∗ selected by a cost model is greater than the plan with the minimum
query execution time in the same plan space and less than the ranking threshold for that plan
space.

Let λP be the factor by which the query evaluation time of a plan P is greater than the
minimum query evaluation time of a given plan space.

λP = 1−
Tmin(P)

T(P∗)
(5.4)

The cost model rank for a set of queries Qn is the number of times the ranking factor
of the best plans choosen by the cost function is equal to or less than the ranking threshold
for their respective queries. For a set of queries Qn, a cost model cm is ranked wrt Φ;

Rank(cm) = |λP∈Qn | such that λP∈Qn 6 ΦP∈Qn (5.5)

Table 5.1 consists of cost model ranking from [20] for two different cost models; System P

and System P ′ over 20 queries. System P selects 6 query plans for six different queries
whose actual cost is the minimum of all the plans generated from the plan space for each
query. This means that the cost model selects optimal plans in 30% of total number of
queries compared to 35% (7 total minimum pick) of System P ′.

Table 5.1 – Cost model ranks with number of plans in each rank

Cost Model min 15th 25th 50th 75th 90th max

System P 6 - - 1 11 1 1
System P’ 7 4 4 2 1 1 1

If we consider a near-optimal range of 25th percentile, we can see that System P ′ is
55% of the time pick near-optimal plans compared with 30% for System P. We can clearly
say that System P ′ is a better cost model than System P based on the ranking presented
in Table 5.1.

79



CHAPTER 5. EFFECTIVENESS OF COST MODEL QEP SELECTION

5.6 Estimation Errors

Estimation errors are important in predicting the correctness of cardinality and cost
estimation of query plan. Given a set of query plans P, belonging to a queryQ, an efficient
cost model will aim to select a plan Pi that minimizes the estimation errors. In this
section, we divide the estimation errors into two (2) categories; cardinality and runtime
cost estimation errors.

5.6.1 Cardinality Estimation Errors

For any given queryQ, we consider the q-errorwhich measures in absolute the deviation
of estimated cardinality (rowCountest(Q)) from true cardinality (rowCounttrue(Q)).
The cardinality error is tested per cost model for each queries.

q-error(Q) =max

(
rowCounttrue(Q)

rowCountest(Q)
,
rowCountest(Q)

rowCounttrue(Q)

)
(5.6)

In Equation 6.3, we define the q-error to be the upperbound of the ratio of the true and
estimated cardinality following the work of [102]. Usually, the closer to 1 the estimation
error is, the better it is.

We divided the q-error into intervals where the first interval is always [0, 1] and it
means that the estimation is accurate i.e the number of tuples returned by the cardinality
estimation framework is the same as the true cardinality.

Table 5.2 – q-error interval

q-error interval Frequency
Dataset 1 Dataset 2 Dataset 3

[0, 1]
[1, 2]
[2, 4]
. . . . . . . . . . . .

[n-1, n]

Table 5.2 shows an example q-error interval. When comparing optimizers’ cardinality
estimation accuracy, the model that has more items in the lower interval range has a better
cardinality framework. The table can be represented as a graph.

The formula in Equation 6.3 measure the error property of the cost model cardinality
estimation but there is noway to tell if this is the resultofoverestimation orunderestimation.
To this end, we redefine q-error to capture this properties and we present estimation error
s′(Q) for a query Q in Equation 5.7.

s′(Q) =

| ĉ−cĉ |, if c > ĉ
c−ĉ
c otherwise

(5.7)

where c= rowCounttrue(Q) and ĉ= rowCountest(Q)
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We have two cases of cardinality estimation errors according to Equation 5.7;

• Under-estimation: (case 1 in Equation 5.7) when the cost model under-estimates the
cardinality of a query plan, the q-error is a positive value greater than 0.

• Over-estimation: (case 2 in Equation 5.7) a cost model can over-estimate the cardi-
nality and when it does the q-error is less than 0 i.e. a negative value

The plan that minimizes the q-error for the cardinality estimation is expected to be the
best plan or at least a near-optimal plan because cost estimation significantly rely on the
accuracy of the cardinality estimates [55] but as we will show in the next chapter, this
assumption does not always hold in practise if the cost estimation is not well-planned and
formulated.

5.6.2 Cost Estimation Error

As previously mentioned, the cost returned by the cost model for any given plan is only
an a priori estimation and not the exact measure of the true observed cost. We introduce
two error metrics (i) c-error and (ii) mean realtive error (MRE) to measure the deviation
of the estimated cost of query plans from the actual cost (the real measured ones).

5.6.2.1 c-error

This cost error is used to compare the closeness of the estimated cost for a plan compared
to the actual query execution time for that plan. This metric enables us to refer to the
return value of a cost model as either absolute or relative measurement. An absolute
measurement means that the estimated cost is close in value to the execution time formost
cases and they are given as time value. Relative measurement refers to an estimated cost
having a large disparity with the actual execution time of a plan.

We apply a variation of the q-errorwhich has been previously described in [55] and
[36] used mostly for cardinality estimation error as the cost estimation error.

If we denote evalCost(P) as the estimated evaluation cost of a term ϕ consisting of
a sequence of RA expressions, let exactCost(P) denote the exact cost (measured as the
query time). We define the cost-error for the evaluation cost as;

c-error(Q) =‖ exactCost(P)
evalCost(P)

‖Q

Let P = {p1,p2, . . .pn} denote a set of equivalent plans generated from the plan space
for a termϕ. Let p∗ be the best plan in Pminimizing exactCost(p) and p′ be the cheapest
plan selected in P according to the cost estimation for a query Q. We now focus our
attention on the different factor between the exact cost and the estimated cost.
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Theorem 5.6.1. If for all pi ∈ P

‖ evalCost(pi)
exactCost(pi)

‖Q 6 q (5.8)

for some q, then

‖ exactCost(pi)
exactCost(pi)

‖Q 6 q2 (5.9)

In Theorem 5.6.1, we give an upper bound of the factor difference between the exact
and estimated cost and the precision of our cost model is given up to q factor. The query
plan selected by the cost model is erroneous up to q2 away from the actual optimal plan
(derived by running all query plans).

Proof. We say that p′ is the cheapest plan under the evaluation cost function evalCost,
then we must have

evalCost(p′)6 evalCost(P∗)

recall that p∗ is minimal under exactCost, then

exactCost(p∗)6 exactCost(p′)

Since for any plan p, we have ‖ exactCost(p)
evalCost(p) ‖Q6 q

exactCost(p′) 6 q · evalCost(p′)

exactCost(p∗) >
1

q
evalCost(p∗)

We then derive the following

‖ exactCost(p
′)

exactCost(p∗)
‖Q 6

exactCost(p′)

exactCost(p∗)

6
q · evalCost(p′)

(1/q) evalCost(p∗)

6
q · evalCost(p∗)

(1/q) evalCost(p∗)

6 q2

�

5.6.2.2 Mean Relative Error

Another metric we considered is the Mean Relative Error (MRE). MRE is a metric defined
in [58] and it is used to minimize the relative cost estimation error in all queries regardless
of their execution time. This metric is useful for comparing two cost models. Comparison
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is achieved by taking the relative error (RE) for each query and using this to calculate the
MRE.

RE=
evalCost(Qi)− Ti

Ti
(5.10)

In Equation 5.11, evalCost(Qi) is the estimated cost of a selected plan for a given query
Qi while Ti is the actual execution time for the query. MRE is always a positive number.

MRE=
1

N

N∑
i=1

evalCost(Qi)− Ti
Ti

=
1

N

N∑
i=1

REi (5.11)

where N is the number of queries.
Again, the MRE is used to validate the effectiveness of the cost model. Lets assume we
have two cost modelsA1 andA2 havingMRE1 andMRE2 respectively. IfMRE1 <MRE2,
then we say A1 minimizes the MRE thus being a better cost model of the two.

5.7 Cost Metrics and Query Time Correlation

Cost variables correlation test the relationships between various cost metrics. Correalation
is a statistical method and there are three different correlation types as shown in Figure 5.2;
(i) positive correlation, in which case the values on the y-axis increases as the values
on x-axis increases (ii) negative correlation, where the values on the y-axis decreases as
the values on x-axis increases and (iii) no correlation, where the the relationship is not
identifiable and relationship can not be fully established between the two features.
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Figure 5.2 – Correlation

Depending on themetrics betweenwhichwe try to establish the correlation typemight
have different interpretations. Some of the cost metric that will be interesting to establish
a correlation between include;

• q-error vs. execution time

• cost ranking vs. execution time vs. plan quality

• MRE vs. average execution time

• cost error vs. execution time
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A positive correlation between the q-error and query execution time implies that
estimation error affects query execution time in such a way that the higher the estimation
error, the slower the query execution is. A strong positive correlation might also tell us if
the cost model underestimate the cardinality. A strong negative correlation point towards
a cardinality overestimation by the cost model. In general, we expect a strong positive
correlation between the cost rank λCM and the plan quality, indicating that the higher the
cost ranking threshold is, the slower the query execution time is and the less quality the
query plan is selected by the given cost model.

5.8 Operator Ordering on the Query Tree

As mentioned in the previous chapter, a query tree is an ordered sequence of operators or
sub-expressions chained together to perform a single task of query evaluation and return
results (if any) upon completion. How these operators are combined in a query tree has a
significant influence on the query runtime and resources utilization.

πname, price, quantity

σquantity > 2000

onA.id = B.pid

A B

a QEP A: plan selected by cost
model

πname, price, quantity

onA.id = B.pid

σquantity > 2000A

B

b QEP B: Optimal plan

Figure 5.3 – Equivalent plans with different ordering of operator

We show a simple example of operator ordering in Figure 5.3. The query retrieves
product names, prices and quantities whose quantity of products is greater than 2000.
The most natural way to write this kind of queries is QEP B where unnecessary rows are
removed prior to the join operation, reducing the number of rows unlike QEP A where
the two relations A and B are joined before removing any product with a quantity less
than 2000. It should be noted that this operator ordering we see here is a common logical
optimization but it is helpful to check this ordering in case of cost estimation errors where
a different plan (say QEP A) might be deemed to be the cheapest.
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By comparing the query tree of the plan selected by the cost model in Figure 5.3a with
an expected ordering predefined as the optimal plan in Figure 5.3b, we could easily tell
that the selected plan is not optimal. Also, this approach could be useful for supervised
learning-based method where this type of ordering can be encoded into the training
model.

5.9 Modeling Cost Validation Framework

So far, we have discussed the important conditions and metrics for testing to the limit, the
optimality of query plans and the validation of an optimizers’ cost model. In this section,
we propose a cost validation framework for storing information about queries together
with their respective execution plans, cost models and the results of their validation.

A data model for the cost validation framework is presented in Figure 5.4. This model
describes the data types and relationships that exist between the different entities. The
model provides a convenient way to assess the plan-picking capabilities of a cost model
and also allows comparing different cost models.

Query

query_id: (PK)
query_str: text
property: varchar(255)

Plans

plan_id: (PK)
query_id: (FK)
plan_str: text

Plan Cost

id: (PK)
query_id: (FK)
plan_id: (FK)
cmodel_id: (FK)
evalCost: int(12)
rowCount: int(12)

Cost Model

id: (PK)
name: varchar(255)
cost_type: varchar(255)

Plan Info

id: (PK)
query_id: (FK)
plan_id: (FK)
numPlans: int(9)
timeout: varchar(255)

Cost Error

id: (PK)
cmodel_id: int(4) (FK)
c_error: int(4)

Ranking

id: (PK)
percent_id: (FK)
cmodel_id: (FK)
query_id: (FK)
plan_id: (FK)
rank: varchar(255)

Execution Info

id: (PK)
plan_id: (FK)
query_time: int(8)

Cardinality Error

id: (PK)
plan_id: (FK)
q_error: int(4)

Percentile

id: (PK)
plan_id: (FK)
min: int(8)
15th: int(8)
25th: int(8)
50th: int(8)
75th: int(8)
90th: int(8)
max: int(8)

has qep

Figure 5.4 – Cost validation model

While Ouared et al. [99] proposed a domain-specific language for designing cost
models which designers can adapt to collaboratively callibrate cost model paramaters,
our work here is very different in that it is focused on building a metadata repository for
cost validation and plan quality improvement. This helps to give structure to an already
challenging cost model validation. In addition, where learning-based method is deemed
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appropriate, this framework can serve as a data store where information about query
execution can be stored for future workload to learn from. We do not provide a specific
language for the framework but it is our believe that a structured model like the one
presented here has provided a foundation that makes it easier to develop a language to
interact with this framework.

5.10 Summary

We started the chapter by describing the metrics and specifications for our cost model
validation framework. In Section 5.4, we define what is an optimal plan and specify the
set of conditions that guarantees the optimality of query plan. Each of this conditions are
described in further details in a later section. Metrics such as cost ranking, estimation error,
cost metric correlation and validating operators depth on query tree are important factors
that help in measuring the consistency and impact of such metrics on the plan-picking
and the effectiveness of a cost model.

We then present the data model for the cost validation framework, although, we do
not provide a language for the framework, we believe that the specifications is helpful for
the design of an evaluation method for query optimizers.
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6
Implementation and Evaluation

6.1 Introduction

Nowadays, one of the biggest challanges is estimating the cost of recursive query plans.
Even for the simplest case of recursive queries, most data processing systems rely on
several assumptions and magic constants in order estimate the cost of recursive operators
or in some cases no estimation is done at all and the query planner just rely on heuristics
for the optimization of this class of queries. In the previous chapter we present a cost
estimation technique for recursive relational algebraic terms for MuRA [26]. Query and
plan space generation is beyond the scope of this work and as a result of that, we rely on
existing infrastructure of MuRA.

To this end, we will now focus on the implementation of the cost model discussed
earlier for a broader set of regular path queries (RPQs) which covers the conjunction
(CRPQ) and union (UCRPQ) of this class of queries in their translated RA forms. We focus
on logical query plans (LQEPs) generated from path queries and discuss the different
components of our cost model.

In Section 6.2, we present the cost model implementation. We start by giving an
architectural overview of the cost model components then proceed to discussing each
component. The statistics, their collection method and design choices are also discussed
in the section. In Section 6.3, we discuss the integration of state-of-the-art cardinality
estimation for RDF graphs into our cost model in order to improve the accuracy of the
estimation. Estimating the cardinality of subexpressions on a query plan needs to be
carefully carried out in order to avoid estimation errors during query decomposition and
translation from one form to another, we discussed this in Section 6.3.

In Section 6.4, we present all the techniques used to assess effectiveness of our cost
model, this include evaluation of our cost function on different dataset and queries, the
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effects of the cardinality estimation technique used, percentile analysis of the cost model
showing how we ranked against the state-of-the-art.

6.2 Implementation

Since query rewriting is beyond the scope of this work, we restrict our focus on the cost
estimation aspect and we give the implementation details of the different components of
the cost estimation framework.

Query P1

P2

Pn

Plan space
(LQEPs)

Relation
stats

Attribute
stats

CPU & IO
estimates

Selectivity
estimate

Cardinality
estimate

Evaluation
cost

Statistics Cost
formula

Cost model

Figure 6.1 – Cost model architecture

The architecture of the cost model used in this work is shown in Figure 6.1. Relation
and attribute statistics together with query plans are fed as input parameters to the cost
formulas which are data that are either retrieved if they are base relations or calculated if
they are intermediate operators. The cost function calculate two factors; (i) theCPUand IO
costs and (ii) the selectivity to track the changes in cardinality. The final cost returned by
the cost function for a query plan is an estimate of the evaluation cost and the cardinality.

6.2.1 Obtaining Base Relation and Attributes Statistics

As stated in Section 4.2, the cost model makes use of statistics in order to estimate the cost
of a given query plan. These sets of statistics are broadly divided into two; the relation and
column statistics. The relation statistics which include the number of tuples in the relation,
number of pages that hold the tuple of the relation. These statistics are available in the
pg_stats class of PostgreSQL (with a first run of theANALYZE command) or computed by
counting the number of tuples for systems where these information is not available. The
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number of pages that holds the tuple of the relation can be calculated using the number
of tuples, the page size and the maximum size of strings.

The other set of statistics is the column statistics which include the number of distinct
values per attribute of the relation, the histogram of frequencies of the attributes in
the relation. Distinct column count and histograms are useful for result size estimation.
Histogrampartition values into bucketswhich stores frequencies (mcf) of attributes values
present in the corresponding intervals, most common values (mcv) in the interval (number
of values in the intervals), number of distinct values and the number of NULL-values. We
rely on the equi-width histogram similar to the one used in PostgreSQL.

During cost estimation, the cost model looks through the histogram to retrieve the
selectivity of a given predicate. Remember there are only two cases of filter predicates
considered in MuRA and discussed in the previous chapter. When the selectivity value is
not present in the histogram bucket, we apply the formula in Equation 6.1 which assumes
a uniform distribution of data.

selFactor= (1−Sum(mcf)) / (Di−Count(mcv)) (6.1)

where Sum(mcf) is the sum of the most frequent values, Di is the number of distinct
values for the column and Count(mcv) is the total number ofmcvs.

Whenever the histogram data is not available the cost model falls back to the formula
described in Section 4.2 from [7].

6.2.2 Cost Formulas and Query Plan Costing

MuRA translates a path query (U/C/RPQ) queries to its internal representation; the
relational algebra (RA) and undergo different rewriting techniques in a bottom-upmanner.
In the plan space, different equivalent plans P1,P2, . . .Pn are generated for each given
query Q.

The query optimizer returns a list of equivalent logical query execution plans (LQEP),
each of which is a tree corresponding to the operation to be performed. The list of LQEP is
sent to the costmodel where each operator is given a cost using themathematical formulas
presented in Chapter 4 and the cost for each operator is propagated and added to form a
final cost for each LQEP. Cost estimation for query plans are done in parallel in order to
speed up estimation. The cost model returns a list of plans with their respective costs as
the CEG. The plan with the minimum cost is chosen as the “best plan” and is forwarded
for execution.

Cost estimation is done by combining the CPU and IO cost factors. The cost of a given
query plan is recursively computed such that the children expressions or operators and
the root are summed to arrive at a final cost for the plan. At each step, every operator
estimate the evaluation cost evalCost and the cardinality rowCount. Operators could be
unary (e.g. rename, filter, antiprojection), binary (e.g. union, join) or a fixpoint operator
and their cost are computed using the cost formula described in the previous chapter but
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the cost vary from one plan to another depending the query, statistics and the arrangement
of operators or expressions in the query tree.

The cost estimation given here is modeled in terms of the relative time taken to execute
a given query plan.

6.2.3 Design Choices

Some design decisionswere taken for the implementation of the cost estimation techniques
of this work. They include the choice of fixpoint evaluation algorithm and the query
optimizer we have chosen.

The cost formula for the fixpoint operator described in Chapter 4 is based on a semi-
naive recursive query implementation. The semi-naive evaluation of fixpoint is more
efficient than the naive method in that ensures that redundant re-computation of datasets
is avoided by generating new sets of tuples from the result of the last iteration result. Apart
from being applicable to a simple case of linear recursion where reference to recursion
is only made once to itself, the techniques introduced in MuRA [26] facilitates having
nested fixpoint operators and the technique introduced here are adapted for both kinds
of transformation rules.

At the moment, we employ an explore-first-cost-later approach in which the optimizer
first generates a list of possible equivalent plans and these plans are sent to the cost model
afterwards for cost estimation as opposed to using the cost to prune the plan space which
is characteristic of Volcano-style [50, 51] optimizers. To this end, we plugged our technique
into the bottom-up System-R [7] style optimizer. The techniques proposed in this work in
general can be applied to any query optimizer.

6.3 Integrating SumRDF Cardinality Framework

SumRDF [36] is a cardinality estimation technique for non-recursive SPARQL queries over
RDF graphs. To facilitate the integration of this technique for recursive query cardinality
estimation over graphs there is a need to ensure seamless conversion and decomposition
of queries. The cost estimation techniques presented here is primarily targeted for the
logical phase of query optimization. We decompose and translate complex RA expressions
into a dialect supported by SumRDF.

As stated earlier, we are dealing with complex recursive queries that contains at least
one union, multiple joins and fixpoint operators. Basically, we unnest regular path queries
to have a finer grain of the cardinality estimation and produce a set of queries that conform
to the SPARQL v1.0 standard used in SumRDF.

In Figure 6.2 we show how we design our cardinality estimation framework by inte-
grating SumRDF and annotating query plans with information with the cardinality of
sub-terms or expressions. When a recursive query is given, we first decompose the recur-
sive query into non-recursive SPARQL queries and estimate the cardinality with SumRDF.
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Q+

Decomposed
path queries

MuRA (ϕ)

SumRDF
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(q2,cardTyp2)
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(qn,cardTypn)

Cost estimation

decompose

translate

estimate
cardinality

annotate

match term

Figure 6.2 – SumRDF integration

Next, we retrieve the decomposed queries together with their respective cardinalities. The
decomposed queries are matched with the LQEPs generated from the MuRA plan space
and each subexpression or sub-term are annotated with their respective cardinalities. We
refer to this new formed terms as the "Extended MuRA" which are simply a set of query
plans with cardinality information.

In order to avoid estimation problems that could arise as a result of the query decom-
position, we ensure that queries are decomposed and translated without loss of semantics
and appropriate utilization the cost and cardinality estimation techniques discussed in
Chapter 4. In addition, the matching phase ensures that decomposed subexpressions
are correctly matched to the equivalent subexpressions of the query tree and that their
cardinalities are updated respectively.

6.3.1 Query Decomposition Strategy

In the previous section we described the integration of SumRDF into our cost estimation
framework. This section presents the algorithm for decomposing recursive regular path
queries and match the decomposed subexpressions to nodes in the LQEPs. Following the
decomposition algorithm, we examine the regular path queries constructs as described in
[26]. We then proceed by giving examples and a detailed translation to SPARQL for the
operators introduced in Chapter 2.

Algorithm 5 implements the cardinality estimation framework based on SumRDF [36].
It starts by decomposing complex queries into sub-queries on line 4. We then proceed
by further decomposing any sub-queries that contains recursive queries i.e. fixpoints into
constant and recursive parts with a call to the decomposition function on line 6. The
decomposition function (lines 15 – 20) recursively decomposes sub-queries since queries
in [26] can also contain nested fixpoint operators.

LetQ be a regularpath expressionwithpath p over a graphG such that r1, r2, . . . rn ⊂Q,
thus we define constructs of regular path expression in Table 6.1.
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Algorithm 5 : RA term decomposition and cardinality estimation framework
Input: Recurive Path query in RA+ form, Graph G,Summary S and target size t;
1: card← {};
2: while (RA+ ,∅) do
3: if RA+ contain sub-structure then
4: (q1,q2, . . . ,qn)←DecomposeQuery(RA+);
5: for k= 1 to n do

6: subQuery←DecomposeFX(qk) . decompose fixpoint
7: for each s in subQuery do

8: bgp[s]← GetBgpEquiv(s) . convert RA to SPARQL BGP
9: card← estimateCard(bgp[s], G, S, t); . cardinality for each query

10: else

11: bgp[qn]← GetBgpEquiv(qn) . convert RA to SPARQL BGP
12: card← estimateCard(bgp[qn], G, S, t); . cardinality for each query
13: return card;

14: // fixpoint decompostion
15: function DecomposeFX(Q)
16: if Q isFixpoint then

17: (const, rec)← SPLIT(Q);
18: DecomposeFX(const);
19: else

20: result←Q;

Table 6.1 – Path query definition

Construct Description

r edge
r1/r2 the concatenation of two paths
r1 | r2 the alternative choice between two paths
r− a reversed path
r+ the transitive closure of the path r

We now shift our focus to UCRPQ queries conversion to SumRDF SPARQL. We use
Algorithm 5 for decomposing path queries into sub-paths for two reasons;

• to ensure that we adhere to the SPARQL fragment implemented in SumRDF, since
they only support union the syntax is strictly compliant with SPARQL v1.0

• we are interested in the cardinality estimate for sub-paths in order to use the cost
estimation equations of µ-RA.

To guarantee correctness of the decomposed query, a semantic-preserving translation
is needed to ensure that the semantics of a subexpression or a term in the query plan
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is equivalent to the semantics of the translated SPARQL query and that the expected
cardinality is computed.

Definition 6.3.1. (SPARQL query). We redefine a SPARQL query QG over a graph G as;

QG→ [[SELECT (v1,v2, . . .vn)WHERE {bgp} ]]G (6.2)

where v1,v2, . . .vn ∈ vari is an ordered list of query variables such that vari ⊆
var(bgp)

We define a translation trans function which translates a path query into semantically
equivalent relational algebraic term. Table 6.2 summarizes the translation of path queries
to relational algebra and their decomposition into SPARQL BGP.

Table 6.2 – Path query decomposition

Translated RA form BGP

r trans(r) bgp(r)

r− trans(r−) bgp(r−)

r1/r2 trans(r1)on trans(r2) bgp(r1 . r2)

r1|r2 trans(r1)∪ trans(r2) bgp1(r1), bgp2(r2)

r+ µ X . trans(r)∪ trans(r/X) bgp(r)

As an example, a regular path query of the form r can be translated to SPARQL BGP
in Table 6.3.

The cases described in Table 6.3 are simple cases and the translations are almost direct
with no further decomposition is required. Path queries with alternative path of the form
r1/r2 needs to be decomposed inside a single BGP block as bgp(r1 r2). While r1 and r2
are translated as Table 6.3 above. The decomposition of query of the form r1|r2 yields two
sets of SPARQL queries and bgp1(r1) and bgp2(r2) are automatically derived. Details of
the fixpoint decomposition is given in the next section.

6.3.2 Fixpoint Decomposition

Fixpoint operator is of the form r+ and consists of the constant and the recursive part
which is evaluated in 1 to several iterative steps. The relational algebraic form is given

Table 6.3 – BGP templates

Path Template

r x r ?y
r− ?y r x
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below;
µX · r ∪ r/X

Before we dive into the decomposition phase, we first examine the query forms in
SPARQL. There are two query forms; (i) queries with only query variables e.g. ?x r+ ?y=
µX · r ∪ X/r (ii) queries with constant filter e.g. c r+ ?x= µX ·σc(r) ∪ X/r.

At query translation time, each time there is a recursion of the form r+, there are two
ways to translate it as a MuRA term: µX · r∪ X/r the one that navigates from left to right
in the graph and µX · r∪ r/X and the one that navigates from right to left in the graph.
The two translations are obtained by using different renamings before joining X/r which
stands for join(rename(X), rename(r)). This is the reason why a set of MuRA terms is
obtained from any given RPQ/CRPQ/UCRPQ. The two translations (corresponding to
both directions) are equivalent so they end up having the same cardinality estimation.

However whenever filters are involved (constants used in CRPQs introduce filters),
then the two navigationsmight have a very different cost. Filters introduced after algebraic
term transformations (which causes an increase in the number of MuRA terms). After this
phase, filters may have been pushed inside the constant part (and/or even the recursive
part) of a fixpoint. The different ways of navigatingmay have a significantly different costs.
This cost heavily depends on the direction of navigation and on the size of intermediate
results, and in particular the number of the initial graph nodes from which the navigation
starts. Hence, having accurate cardinality estimations is instrumental to precisely estimate
a cost which is used for selecting which algebraic term variants will be passed to the next
phase; the physical plan selection. This is why it is important to determine these costs
by SumRDF cardinality estimation. Now let us examine at when we can achieve that
properly.

At translation times, (if we keep our current way of translating), filters basically stay
out of recursions. That is, if we have a constant like in c r+ ?x then you will end up
having σc(µX · r∪X/r) and σc(µX · r∪ r/X)which is not convenient for using SumRDF
estimation at this stage. After applying transformation rules, however, the filters will
be pushed inside the mu (whenever possible), and this will yield (among other terms):
µX· σc(r) ∪ X/r and µX.σc(r) ∪ r/X. This is getting better because at this stage, it becomes
easier to resort to SumRDF cardinality estimations to select which one is the best.

We use Algorithm 5 to precisely do the decomposition and translation. We then
retrieve the cardinality for the decomposed queries from SumRDF.

6.3.3 Annotating Query Plans with Cardinality Estimate

After retrieving the cardinality estimate for queries in SumRDF, the next task is to annotate
the relational algebraic tree (i.e. logical plan) with these cardinality estimates. In a first
step, we extend the definition of the relational algebraic framework presented in MuRA
[26] with cardinality type cardTyp which is the cardinality retrieved from SumRDF in
this case. The grammar for the extend RA framework is presented below.
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ϕτ ::= term (with cardinality)

(E, cardTyp) relation variable

(X, cardTyp) recursive variable

| const(c, v, cardTyp) constant

| union(ϕ1, ϕ2, cardTyp) union

| join(ϕ1, ϕ2, cardTyp) join

| antijoin(ϕ1 .ϕ2, cardTyp) antijoin

| filter(ϕ, pred, cardTyp) filtering

| rename(ϕ, a, b, cardTyp) renaming

| remove(ϕ, a, cardTyp) anti−projection

| decMu(ϕ, X, R, cardTyp) fixpoint

Grammar: Extended MuRA grammar

6.4 Evaluation

In this section, we present the evaluation of our cost estimation technique by comparing
it against state-of-the-art systems. Our results are categorized into three parts; in the
first part, we present the cardinality and selectivity evaluation coupled with the varying
effects of data statistics calibration on query performance. Secondly, we demonstrate the
effectiveness of our recursive cost estimation framework using recursive UCRPQ queries
over graph datasets of varying sizes.

6.4.1 Experimental Setup

We conduct several experiments to assess the effectiveness of our cost estimation technique
by evaluating recursive graph queries (that are union of conjunctive regular path queries
[103]) using the translation found in [26] for the recursive relational algebra. A graph query
is first translated into a term ϕ, then all equivalent terms are exhaustively enumerated
resulting in a plan space P. Finally among all terms in P, the term ϕ which minimizes a
cost estimation function f is retained, and executed.

We evaluate queries using two systems corresponding to two settings:

• System P is the popular PostgreSQL system [104], where f is the function that returns
the cost estimated by PostgreSQL using the explain API;

• System P’ is also the PostgreSQL system, but where f is the cost function that we
propose in this thesis.

The comparison between the two settings is fair since the only difference is the cost
estimation function.
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Experiments on the Yago dataset were conducted on a 128 GB RAM server with 2 Intel
Xeon E5-2630 v4 CPUs (2.20 GHz, 20 cores each). All other experiments reported here were
conducted on a 16GB RAM Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHzmachine.

6.4.1.1 Datasets

We experiment with two kinds of datasets: a real-world dataset: Yago2s [105] and two
synthetic datasets (Shop and Uniprot) generated by the GMark system [106]:

Table 6.4 – Dataset and statistics

Column cardinality

Dataset cardinality src trg predicate

Yago2s 62,643,951 35,165,791 8,572,450 83
Shop 268054 46,696 88,454 81

Uniprot 773,280 86,000 11,8124 7
* column cardinality refers to the number of distinct values in each column

Table 6.4 shows the data statistics for data used in this evaluation. In some cases, we
vary the number of nodes in these data especially the synthetic (generated) ones.

6.4.1.2 Queries

We experiment with a total of 40 regular path queries specifically UCRPQ, CRPQ and
RPQ queries. These queries have at least one recursive path.

6.4.1.3 Metrics

We measured different performance metrics for each the queries against each dataset and
system by profering answers to the following question.

• How accurate are the statistics and what is their impact on the query time?

• What is the impact of (1) cardinality estimation and (2) cost model on query plan
quality?

• How does our approach compare to the state-of-art in terms of query runtime?

The questions above led to the introduction ofmetrics such as query running time, number
of iterative steps in a fixpoint, size of join and their effect on query plan quality as well
as the effect of the different cardinality and selectivity estimation techniques considered
in this work. Other metrics considered include plan cost estimation time, ranking cost
model in quartiles as disccused in the previous chapter and [20].
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6.4.2 Data Statistics

We compare the statistics generation time for three (3) different datasets. This experiment
is carried out to measure the time taken to compute the data statistics for each of the
datasets considered. Computing the exact statistics (e.g. counting the number of tuples
in the dataset) is slower since each row or node needs to be accounted for. As a result we
rely on the estimated values for the statistics but when unavailable we compute the exact
statistics.
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Uniprot_700k

Shop_200k
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Figure 6.3 – Statistics computation time

Figure 6.3 shows the time taken to compute the data statistics. Yago dataset has the
highest statistics computation time followed by Uniprot and Shop datasets. The label
consist of the graph name together with the number of nodes present in the dataset. The
higher the number of nodes is, the more time it takes to compute the statistics.

6.4.3 Cardinality Estimation

In Chapter 4, we defined cardinality estimation and a set of formulas for estimating the
cardinality of the different operators we have identified. In this section, we examine
the quality of our cardinality estimation framework and the formulas described earlier
through;

• the precision or closeness to reality of our cardinality estimation for recursive queries

• estimation error and their effect on the overall plan quality

Estimating the cardinality for recursive queries is more complex compared to non-
recursive ones. The evaluation of recursive queries happens in several steps and this
makes it even harder to project the final estimate of the cardinality of the fixpoint operator.
This experiment give insights into how precise the cardinality estimation formulas are
for recursive queries. RA operators considered here include, renaming, filter and anti-
projection. We consider these operator not independently but combined in a full query
plan through intermediate results.

With this experiment, we compared the estimated cardinalitywith the exact cardinality
i.e. the actual result count after executing the query against the datasets. For the purpose
of the experiment in this section, we consider only non-empty queries.
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Following the work of [102] and as discussed in Chapter 5, we use the q-error (in
Equation 6.3) to determine the factor by which the cost model deviates from the actual
cardinality.

q-error(Q) =max

(
c

ĉ
,
ĉ

c

)
(6.3)

For any given query Q, we consider the q-error which measures in absolute the
deviation of estimated cardinality (c) from true cardinality (ĉ).

We also use the estimation error s′(Q) defined in Chapter 5.

s′(Q) =

 ĉ−cĉ , if c > ĉ
c−ĉ
c otherwise

(6.4)

Table 6.5 – Cardinality Estimation for queries

# c(Q) ĉ(Q) q-error(Q) s′(Q)

Q1 32 20 1.6 0.6
Q2 108 250 2.31 -1.31
Q3 7 89 12.71 -11.71
Q4 6 36 6 -5
Q5 148 301 2.03 -1.03
Q6 128 118 1.08 0.07
Q7 1 465770 465770 -465769
Q8 8 4909 613.6 -612
Q9 10 4 2.5 0.4
Q10 51 3 17 0.94
Q11 6 3 2 0.5
Q12 4563 1 4563 0.99
Q13 190 3 63.33 0.98
Q14 351 3 117 0.99
Q15 48 3 16 0.94
Q16 264721 3 88240 0.99
Q17 24118 3 8039.3 0.99
Q18 46 4 11.5 0.91

Table 6.5 shows the actual and estimated cardinality, the q-error and estimation error
factor for selected queries across three (3) different datasets.

The q-error(Q) column shows the cardinality estimation error from the cost model
and as we see in the table the cost model estimates the cardinality with at least an error
factor of two in most cases. The fifth column in the table shows the estimation error factor
s′(Q). In queries 2,3,4,5,7,8, the cost model overestimates the cardinality of the queries
and underestimates the cardinality for all other cases.
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To give more insights to how accurate the current cardinality estimation method is,
we group the q-error into intervals in Table 6.6 (according to the format in Chapter 5)
with [0,1]meaning the estimation is 100% accurate and the inaccuracy grows as we move
down the table.

Table 6.6 – q-error interval for cardinality estimations

q-error interval Frequency Percentage of total queries

[0, 1] - 0
[1, 2] 3 16.7
[2, 4] 3 16.7
[4, 8] 1 5.5
[8, 17] 4 22.2

[17, 103] 3 16.7
[103, 105] 4 22.2
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Figure 6.4 – Distribution of queries on q-error interval

As shown in Figure 6.4, the cost model does not accurately estimate the cardinality for
any of the queries considered. In the [1,2] interval, 16.7% of the queries is misestimated
by a factor of at most 2. Another 16.7% falls within the [2,4] q-error interval. The largest
misestimation comes in the [8− 17] and [103, 105] range.

We investigate next, the effect of cardinality misestimation on the overall query execu-
tion time.
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Tracking Result Size in Fixpoint Operator

Recall that in Chapter 4, we present the step-wise cardinality where we present the
formula that reflects the changes in result size of the recursive operation of a fixpoint
operator. We seek here to validate the formula given in Equation 4.43 by analyzing and
tracking the increase in the result size of the recursive part of the fixpoint operator. Similar
to Equation 6.3, the size increase can be estimated by taking the final result size at the
end of the recursive computation minus the cardinality at the first step of the recursive
computation (see Table 4.6).

∆rec = rowCountN− rowCountstep0 (6.5)

where ∆rec is the incremental factor, rowCountstep0 is the number of tuples at the
beginning of the iteration and rowCountN is the result size at the final step N of the
iteration just before combining them with the result of the constant part of the fixpoint
operation.

Table 6.7 – Result size for queries on Uniprot graph

# N step= 0 step= 1 step= N ∆rec

Fx1 7 53 3083 3141 3088
Fx2 9 55 365202 371906 371851
Fx3 7 15 5571 5931 5916
Fx4 12 48 1.33× 108 1.36× 108 1.359× 108

Fx5 6 19 351 370 351
Fx6 9 33 836710 862612 862579
Fx7 8 101 31477 31790 31689
Fx8 8 84 17154 17360 17276
Fx9 11 137 1.66× 107 1.66× 107 1.659× 107

Fx10 10 33 1641552 1692169 1692136

If we take Fx1 in Table 6.7 for example, the number of tuples in the beginning of the
iteration is 7. At maximum iteration N = 7, the intermediate result size of the recursive
part of this fixpoint is 3141 i.e after 7 iterations no new results were be added to the
intermediate results. At this point the intermediate result size is combined using a union
operation.

6.4.3.1 SumRDF Cardinality Estimation

We decomposed queries on the three different datasets and performed cardinality estima-
tion of those decompositions as described earlier. We quantify the accuracy and efficiency
of SumRDF estimation technique using an upperbound q-error [102].

There are 40 queries in total, 20 of which are evaluated on synthetic graphs generated
using GMark and the other 20 queries are evaluated on Yago2s graph. We considered
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Table 6.8 – Graph, summary for SumRDF estimation

Dataset Graph G Summary S Queries

#resources #triples buckets triples
reduction
factor

constr.
time Q0 Qdec

Uniprot 92 k 382.8k 2k 151 2535.5 0.56 s 10 361
Shop 57.1k 93.3k 2k 36.9k 2.53 0.83 s 10 789
Yago2s 42.8 M 62.5 M 20k 1.9 M 22.48 15.9 h 20 173

* Q0 is the initial number of queries
* Qdec is the number of decomposed queries

every combinations of the decomposed queries so that every posible combination of
subexpressions on the query tree can be accounted for. We use a Uniprot graph consisting
of382.8k tripleswith92k resourceswhichwhen summarizedusing 2000 buckets shrink the
original graphG to a summary S of 151 triples. Similarly, the Shop dataset is summarized
using the same number of buckets and yields 36.9k summaries. Yago2s graph, being the
largest contains 62M triples, 42.8M resources with a summary triple of 1.9M taking a
little more than 15h to construct the summary.

Table 6.9 – q-error interval for SumRDF estimations

q-error interval Frequency
Uniprot Shop Yago2s

[0, 1] 209 598 166
[1, 2] 101 180 7
[2, 4] 17 11 -
[4, 8] 18 - -
[8, 45] 16 - -

In Table 6.9, we use intervals to capture the q-error for all queries on the three
considered datasets. The interval [0,1] represents the case where there is no error i.e. the
number of tuples returned by SumRDF is the same as the actual number of tuples. An
error bound of [1− 2] represents the case where the estimated cardinality differs from the
true cardinality by at most a factor of 2. Generally, the more values a dataset has in the
lowest bound, the higher the accuracy of the estimation technique for that dataset is.

Figure 6.5 shows the q-error for the three datasets. In 57% of the queries for Uniprot
graph, the SumRDF estimation technique accurately predicts the cardinality while 27% of
the estimation lies in the [1−2] bound. Another 4.9% and 4.3% are erroneously predicted
having q-error in [4− 8] and [8− 50] respectively. Estimation for Shop queries resulted
in 75% accuracy with 22% in the [1− 2] and 1.4% in the [4− 8] q-error range respectively.
Cardinality estimation of the queries on Yago2s yields a little above 95% accuracy having
just 4.04% in the [1− 2] error interval.

We have seen so far how SumRDF cardinality estimation works on three datasets. In
the next chapter, we will show how cardinality estimation helps guide the cost model for
selecting accurate plans.
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Figure 6.5 – Distribution of queries on q-error interval

6.4.4 Relative Query Performance

We evaluate the cost model for recursive queries by assessing the plan quality of the query
plans selected by the cost model in terms of the query runtime, cost, cost evaluation time
and the average query time for queries on the different datasets. Query performance is
given in terms of the actual query time.
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Figure 6.6 – Query evaluation times for queries on the Uniprot datasets
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Figure 6.7 – Query evaluation times for queries on the Shop datasets

Figure 6.8 – Query evaluation times for queries on the Yago2s dataset

Figure 6.6 shows the query evaluation time for 10 queries from GMark Uniprot graph.
Results shows that we outperform System P in all cases considered. In particular, we
outperform SystemP in query 5 by 2.64 seconds and by a few milliseconds in all other
cases. SystemP timeout after a period of 30minutes in query 9.

Figure 6.7 shows the times spent by the two systems for evaluating queries on the
GMark Shop datasets. Results show that both systems evaluate all the queries in a
comparable amount of time: all queries are evaluated by both systems in less than 0.3
seconds. Specifically, System P’ outperforms System P for 9 out of the 10 queries. For the
remaining case of q4 on the Shop dataset, System P performs better by 150 milliseconds.

Figure 6.8 shows the times spent for evaluating the 20 queries of [26] on the real-world
Yago2s dataset [105]. Results show that System P’ outperforms System P. In particular,
System P could not answer queries q8,q13,q17,q20 within the allowed time frame of
15 minutes, while System P’ evaluates these queries in 146, 108, 34 and 14 seconds,
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respectively. For the 16 other queries remaining, the results of System P’ are comparable
or even slightly better than System P’.

6.4.5 Simplified (Cmm) Cost Model

We experiment with the Cmm cost model from Leis et al.[55]; a simplified cost model
designed to serve as a baseline for more complex cost models. This cost function put
emphasis on the cardinality of the join and it is only counts the number of tuple that pass
through each operator.

Cmm(T) =

τ · |R|, if T = R∨ T = σ(R)

|T |+Cmm(T1),+Cmm(T2), if T = T1 on T2
(6.6)

In addition to not modeling the I/O cost, the Cmm cost model brings about changes
to the way we calculate the cost for join and filter operators such that a constant τ = 0.2
is now used in place of filter selectivity factor which is calculated in our cost model. The
general formula for calculating the cost of recursive operator still remains the same as the
one presented in Chapter 4 because the Cmm cost model does not give any cost formula
for recursive operator. R represents the base relation, T1 and T2 are the left and right
relations respectively. T is the join result size.
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Figure 6.9 – Comparison of the execution times for Cmm and Cm on Uniprot datasets

The result from our experiment with Cmm cost model are shown in Figure 6.9. Cm
represent the cost model proposed in this work i.e. System P′. The simplified cost model
performs significantly better in Q1, Q2 and has relatively the same performance as Cm
in Q7, Q9 and Q10. In query 5, however, Cmm cost model perform poorly by 10 seconds.
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Table 6.10 – Cost and runtime for different cost models

Cm Runtime (s) Cm Est. Cost Cmm Runime (s) Cmm Est. Cost

Q1 0.625 6613 0.124 1.03× 1017

Q2 0.525 9518 0.272 8.85× 1012

Q3 0.159 4640 0.161 6.07× 1014

Q4 0.054 230947 0.054 2.40× 1017

Q5 224.329 902535869 234.628 9.89× 1010

Q6 0.091 5514818712 0.98 5.96× 1014

Q7 0.206 3755 0.194 1.752× 1012

Q8 - 5990180 144.545 4.02× 1015

Q9 0.693 50954 0.621 9.37× 1017

Q10 0.097 6932 0.089 1.01× 1012

Q11 0.094 6519818 0.226 4.95× 1010

Q12 1.746 78262248 4345.940 7.44× 1013

Q13 0.193 9256831 0.470 2.39× 1015

Q14 0.413 369475 0.590 9.24× 1014

Q15 0.098 27322 0.082 4.24× 1010

Q16 0.117 5343762 0.179 1.55× 1012

Q17 0.155 5512520 0.145 2.75× 1013

Q18 0.277 18700 0.173 6.22× 1012

Q19 0.634 16366 0.712 4.45× 1011

Q20 0.172 4665 0.121 4.31× 109

Avg. time 11.5s 241.3s

* Cm default cost model (i.e. System P′ cost model)
* Cmm simplified cost model
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Figure 6.10 – Comparison of the execution times for Cmm and Cm on Shop datasets
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Cm cost model time out after 27 minutes and does not return any result. In all other cases,
Cm cost model is better but compared to the simplified cost model Cmm, the overall
performance of the simplified model is better for this case.

Figure 6.10 shows the execution times for queries on Shop graph using the Cmm and
Cm (our default cost model). Results shows that we outperform the simplified cost model
in six cases out of 10. In particular, the simplified cost model Cmm perform worse by an
order of magnitude in queries 1 and 2 and slightly worse in queries 3, 6 and 9. For the rest
of the cases, our cost model runs in almost comparable times where as in queries 5, 7, 8,
and 10 it performs slightly better than the default cost model.

From the results, we can deduce that using our cost formula for recursive operator
even with a simplified cost model that only count the number of tuple that passes through
each operator gives a comparable performance. Q12 is an exception where the simplified
cost model selects a query plan with very bad performance making the average query
runtime (for all of the 20 queries) of the simplified model to be ×21more than our default
cost model.

6.4.6 Impact of True Cardinality on Plan Quality

To understand the impact of accurate cardinality estimation on the quality of the plan
selected by the cost model, we compare the time spent evaluating queries selected by our
cost model without accurate cardinality estimation and the time spent evaluating queries
selected by our cost model using the SumRDF cardinality estimation technique. We use
System P′+ SumRDF to represent when we use SumRDF estimated cardinality on our
cost model.

In Figure 6.11, we compare the time spent evaluating the queries on SystemP,
System P′ and by using the true cardinality with System P′ (System P′ + SumRDF)
on Uniprot graph. Results shows that System P′ + SumRDF outperforms System P in
8 out of 10 cases and System P′ (where we plugged the real cardinality into our cost
function) in 7 out of 10 cases. For q3 and q10, System P performs better by 1.93 seconds
and 13 milliseconds respectively.

Similarly, Figure 6.12 shows the results of evaluation of 10 queries on the Shop graph.
Results also shows that System P′ + SumRDF outperforms System P in 9 out of 10
cases considered and outperforms System P′ in all 10 cases considered. Only in q1
that System P was better than our cost function with the true cardinality from SumRDF
estimation by 150 milliseconds.

Figure 6.11 and Figure 6.12 shows that having accurate cardinality estimation improves
the quality of the query plan chosen by the cost model. In contrast, Figure 6.13 shows that
this is not always the case. Results show that the systems under consideration evaluates
most of the queries in a comparable amount of time and having accurate cardinality does
not significantly change the result outcome when we rely on the estimates from our cost
model. When we plug the cardinality estimate from SumRDF (SystemP′ + SumRDF),
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Figure 6.11 – Query evaluation times using SumRDF technique for queries on the Uniprot
datasets
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Figure 6.12 – Query evaluation times using SumRDF technique for queries on the Shop
datasets
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Figure 6.13 – Query evaluation times using SumRDF technique for queries on the Yago2s
datasets

the query evaluation times in 8 cases; q1−q5, q9,q10, and q13 are better than the rest.
Surprisingly, the misestimated cardinality from our cost model (SystemP′) yields better
performance in seven cases; q6,q11,q14,q15,q17,q18, and q20. A few exceptions show
that bad cardinality estimation leads to very poor performance as in q1, q13 and q16.

This illustrates the practical usefulness of the refined cost estimation presented in this
work.

6.4.7 Cost Estimation Time vs. Number of Plans

Using the two generated datasets, we evaluate the cost estimation time and the number
of plans generated for each of the considered 20 queries. The cost estimation time in this
context refers to the time spent computing the cost for all the plans generated from the
plan space for a given query.

Table 6.11 – Query execution details for queries on Shop dataset

# Plan cost time (ms) Query time (ms) #Plans

Q1 1022 402 10110
Q2 1051 - 176683
Q3 1696 600 348826
Q4 991 238 119399
Q5 832 120 95363
Q6 1178 259 247279
Q7 1506 7417 599497
Q8 1143 138 230809
Q9 659 7854 29310
Q10 1219 350 210952
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Figure 6.15 – Correlation between cost estimation time vs. number of plans

Figure 6.14 shows the time spent computing the cost for all of the equivalent plans
generated in the plan space for each query and the time spent evaluating each plan
selected by the cost model for each query. In q7, the time spent costing the query plans
is significantly higher since the number of plans is high. For q9, the cost estimation is
unsually high (higher than q7) and the number of query plans costed is lower than q7.
A factor that contributed to this is the complexity of the query considered. In all other
cases, the time spent evaluating the query are higher than the time spent costing the query
plans.

Furthermore, we are interested in understanding (i) the correlation between the cost
estimation timeand thenumberofplans (ii) predicting the amountof time spent computing
the cost for a single query.

Figure 6.15 shows the scatterplot of the cost estimation time and number of query
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plans. We observe a strong positive correlation (with coefficient r = 0.71) between the
cost estimation time and the number of plans generated. According to the model, each
additional query plan is associated with a cost of 2.51 ∗ 10−3 millisecond.

6.4.8 Varying Graph Size

We performed additional experiments with a varying number of nodes with an intention
to understand how increasing graph size can affect the query evaluation time. Using
the GMark [106] synthetic dataset, we are able to generate graphs of varying size. The
experiment was carried out using the same set of queries over different graph size.
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Figure 6.16 – Average query time for queries on GMark graphs

Figure 6.16 shows the result of executing the same queries over 20k, 50k, 100k and
200k nodes for Uniprot and Shop graph datasets. Result shows that the smallest graph of
20k nodes have higher average query time (3.15s and 0.39s respectively) than the graph
of 50k nodes. From 50k upward, we see a trends where increasing the graph size also
increases average query time.

6.4.9 Ranking of Cost Estimations

We also run all equivalent terms of the plan space P that are generated by the optimizer,
in order to assess how our term-picking function compares to the best terms of P: the
ones with the minimum actual measured query times. Cm represents the cost function
presented in this work, Cmm is the simplified cost model [55] disccused earlier in this
chapter and PostgreSQL is the cost function for PostgreSQL.

Figure 6.17 shows the number of queries for which the plan picked by each system are
the ones with minimum cost, or in the 15th percentile, the 25th percentile, etc. among all
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Figure 6.17 – Query rank by percentile for GMark

plans in P ranked in increasing order of actual running times. We observe that our cost
modelCm picks more efficient termsmore often. In 7 out of the 20 queries, our cost model
selected the QEPs with the minimum evaluation time compared to 4 for the simplified
model and 2 for PostgreSQL. We can see that most queries plans selected by PostgreSQL
cost model mostly falls above the 25th percentile (50th percentile and above) and QEP
with the slowest evaluation time in 6 cases. Our cost model and the simplified cost model
both selects one plan each which ranked in the 100th (max) percentile.

Table 6.12 – Ranking for cost model

Cost model #Queries Rank score

Cm 8 1st

Cmm 5 2nd

PostgreSQL 2 3rd

If we use the 15th percentile as our baseline for the ranking, we can count the number
of queries that satisfy the condition presented in Chapter 5. We give the ranking score in
Table 6.12. This ranking also illustrates the effectiveness of our estimation techniques.

6.4.10 Accuracy of Cost Estimation

In order to validate the effectiveness of our cost model Cm, calculate the estimation error
(see Chapter 5) generated, comparing this error with the ones generated by the Postgres
cost model and Cmm the cost model discussed earlier in this work. We compare the
estimation errors for 20 queries on the synthetic datasets from GMark [106]. For each
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query considered, we measure the running time for all possible query plans. Because we
need to execute all the equivalent plans generated by the query optimizer in order to get
their actual execution time, we reduce the number of nodes for each graph to just 100k
nodes.

Using the formula for relative error defined in Equation 5.10, we can substitute the
cost for the selected plan for the actual query evaluation time as follows;

Err=
TP − Tmin
Tmin

where TP denotes the query evaluation time for the query plan selected by the cost
model and Tmin represents the plan with the minimum query evaluation time in the plan
space. The closer the relative error is to zero the more effective the cost model is.

Table 6.13 – Cost estimation error

Query ErrCm ErrCmm Errpostgres

U
ni
pr
ot

Q1 0 0.38 0.608
Q2 0.0516 0.0516 0.0516
Q3 0.146 0.662 0.131
Q4 0 0.601 0
Q5 0.507 0.507 0
Q6 0.0375 0 0.169
Q7 0.0631 0.0631 0.0842
Q8 0 0 0.385
Q9 0.757 0.757 0.757
Q10 0 1.255 1.704

Sh
op

Q11 0.0204 0.0204 0.0204
Q12 0.022 0.022 0.044
Q13 0.097 0.097 0.097
Q14 0.125 0.1607 0.25
Q15 0 0 0.03
Q16 0 0 0.044
Q17 0.441 0.0735 0.441
Q18 0 0.063 7.82
Q19 0.22 0.104 0.104
Q20 0.014 0.014 0.181

Relative Error 2.1045 4.686 12.88

Table 6.13 shows the relative cost error for three different considered cost models. Cm
refers to the cost function described in Chapter 4 and Cmm is the simplified cost model
from [55] and the last one is the PostgreSQL cost model. ErrCm, ErrCmm and Errpostgres
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denote the relative error with the default cost model, the simplified and postgres cost
models, respectively.

From Table 6.13, our cost model Cm selects the query plan (with the minimum query
evaluation time in the plan space) in queries Q1, Q4, Q8, Q10, Q15, Q16 and Q18
resulting in a cost error of 0. Similarly, the simplified cost model also selects the cheapest
query plans inQ6,Q8,Q15 andQ16. And PostgreSQL cost model select queries with the
minimum query evaluation time in queries Q4 and Q5.

In all cases, Cm performs relatively better than Cmm and significantly better than
postgres. PostgreSQL cost model in particular selects a very bad query plan for query 18.

To demonstrate the overall performance of each cost model, we define MRE (mean
relative error) in Equation 5.11 which takes the average relative error.

MRE=
1

N

N∑
i=1

Erri

where N is the total number of queries.

Table 6.14 – MRE for cost model

Cost model Mean Relative Error

Cm 0.105
Cmm 0.234

PostgreSQL 0.644

Results for MRE in Table 6.14 shows that the cost function described in this work is
more accurate than the simplified cost model and PostgreSQL cost model.

6.4.11 Analyzing QEP: Observing Selective Operation Pushdown

One of the principles of query optimization is the optimal arrangement of operators of the
query tree. This has been a subject of study for decades and it is categorized into the logical
and physical optimizations. Logical optimization refers to process of generating optimal
sequence of equivalent relational expressions or subexpressions for a query. Physical
optimization is concernedwith finding the best algorithm to implement for a given logical
sequence of operators and the order in which the physical operations are performed.

In this chapter, we focused on logical optimization and we considered the operator
ordering on the logical level in [26]. Some examples of these optimization include pushing
filter operations down the query plan tree as possible and pushing filter through recursion
and inside joins whenever possible.

For example, the query ?x A/B c involves joining path A and B and filtering with a
constant c. The query can be translated into RA as follows;

1. σc (Aon B): join A and B, then filter for c
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2. σc(A) on σc(B): remove tuples from both relations A and B before joining them.

The second option is intuitively more efficient than the first translation since this option
ensures that the number of tuples participating in the join is reduced. What this means in
terms of performance is that the amount of memory space used in doing the unnecessary
joiningofextra tuples thatwillnot satisfy condition c is avoided, leading to fasterevaluation
time.

For the queryplans selectedbyour costmodel, this arrangement and the ones described
in [26] are most of the times retained.

In search for optimal plans, query optimizers cost models should favour this arrange-
ment. However, in reality this is often not the case if poor or inaccurate statistics (e.g.
cardinality) are used or if the cost function is not adequately designed. These deficiencies
can lead to expensive query plans having cheap cost estimates and becoming a candidate
query plan potentially selected by the optimizer.

In summary, we implemented the cost functions defined in Chapter 4 for recursive
query evaluation andwent through the different components of the costmodel architecture
and the integration of the improved cardinality estimation framework; SumRDF [36] into
our estimation framework.

Using the validation framework presented in Chapter 5 as the guidelines for our
practical experiments, the results of the evaluation of our cost estimation technique on
various datasets and query forms has been given. We carried out several in-depth experi-
ments, comparing our estimation technique with the state-of-the-art and demonstrated
its effectiveness of our estimation techniques by showing that in most cases, our approach
outperforms these systems by an order of magnitude.
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7
Conclusion and Future Work

7.1 Conclusion

In this thesis, we propose a cost estimation technique for recursive queries which uses data
statistics. Estimating the maximum number of steps needed for a recursive evaluation to
converge and return result is perhaps one of the most challenging aspect of cost estimation
for the recursive operator (the fixpoint). In the first part of our contribution, rather than
treating a recursive evaluation as a blackbox where recursion is considered to happen
in a constant step, instead we present a step by step analysis of the operation in each
step of the recursive evaluation. We use this knowledge of the iterative steps to then
formulate a cost function for recursive query evaluation. We also extend the state-of-the-
art cardinality estimation technique for non-recursive queries on RDF graphs for recursive
queries cardinality estimation with the objective to improve the accuracy of the cardinality
estimation and query plan quality.

Our second contribution is a cost validation framework where we propose a set of
metrics, specifications and conditions for the optimality of query plan. These metrics
are used to support the assessment of cost model query plan-selection quality. This
framework does not only provide a way for assessing the effectiveness of a cost model but
also a method for comparing different query optimizer’s cost functions which is currently
lacking. Rather than using just the query execution times for comparing the effectiveness of
a cost model, we develop a technique that uses intervals of estimates and a ranking-based
approach where cost models are ranked based on the quality of the selected plans.

Experiments with a prototype of the approach shows that this technique improves
the performance of recursive query evaluation on popular relational database engines
such as Postgres. This contribution is generic and can be implemented in any mainstream
database management systems supporting recursive query evaluation. Finally, the work
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presented here provides foundations for recursive query cost estimation.

7.2 Future Work

Selectivity and Cardinality Estimation

Selectivity estimation is important for the cardinality and cost model accuracy. In this
thesis, we use the equi-width histogram for maintaining the selectivities of attributes.
Histograms have a known limitation of not adequately capturing the correlation between
(join) attributes from different tables and updating the histograms for these multi-tables
attributes (using multi-dimension histogram) requires a lot of space and are often difficult
to carry out. Thus, for futurework, a sampling-based approach could bemore efficient. We
also plan to expand our experimental study to include more recent cardinality estimation
models.

Cardinality Estimations for Specific Data Models

The cardinality estimation method considered in Chapter 4 is centered around recursive
queries execution on relational model. In future work, it is also necessary to test this
cardinality estimation together with the cost estimation techniques for recursive queries
on data models such as knowledge or property graphs.

Graph Summarization

In this work, we made experiments with state-of-the-art RDF graph summarization
technique for cardinality estimations andwehave seen howaccurate cardinality estimation
can improve the quality of plan selection or at least ensure that selected plans are usually
near the optimal ones. For large dataset, however, the summarization process is time-
consuming. We plan to reduce the time required to generate summaries for a given
dataset by moving the computation to a distributed systems like the Apache Spark. In
the future, we would also like to experiment this technique in other query optimizers in
order to improve their cost model performance and provide support for recursion. The
idea being that, if cardinality estimation error is minimized, developers can focus more
on formulating a better cost model and improving the accuracy of the cost estimation.

Cost Estimation and Plan Selection for the Distributed Setting

We would like to expand the scope of the cost model to allows the development of
additional cost functions for join algorithms and scan. For example, the cost model
presented in Chapter 4 only support sequential scan and natural join, a future work will
include cost formulas for different types of join algorithms like hash join, sort-merge join,
and broadcast and shuffle joins in the distributed setting. In order to improve effectiveness
of query plan selection, another idea for the cost model would be considering the topN
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cheapest (according to the cost model) query plan from the set of plans for a given query
and then applying additional techniques to further determine a better plan among these.
This could potentially eliminate bad plans from being selected for execution by the query
optimizer. We also expect further work to be able to support distributed and cloud-based
environments.

In Chapter 5, we present a cost validation framework that defines the metrics and spec-
ifications, estimation error models and the query plan ranking. We intend to implement
these ideas in a benchmark that will be suitable for testing and validating different cost
models. This will also help to establish the relationships between the accuracy of the cost
models and the optimality of the selected query plan.

Learning-based Approach

Recently, we have seen many learning-based techniques that learn from query plan cost
and query runtime information to make predictions for future query workloads. While
these techniques have been applied in the context of non-recursive queries both on RDBMS
and RDF data, it will be interesting to extend such techniques to recursive queries. The
combination of learning techniques with traditional cost estimation can improve the
quality of plan selection.
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ix A
Appendix 1 Queries

A.1 Uniprot Queries

Q1 ?x0, ?x3, ?x1, ?x4, ?x2 <- ?x0 ((-HasKeyword/-
Interacts)/Reference)|((-HasKeyword/Interacts)/Reference) ?x1, ?x1 (((-
Reference/Interacts)/Interacts)/Interacts)|((-Reference/-Interacts)/Interacts)
?x2, ?x2 (((-Interacts/Interacts)/Interacts)/Interacts)+ ?x3, ?x3 (((((-
Interacts/Interacts)/-Interacts)/Interacts)|(((Interacts/Interacts)/-Interacts)/-
Interacts))|((Interacts/Interacts)/Interacts))+ ?x4

Q2 ?x0, ?x2, ?x1 <- ?x0 (((((Interacts/Interacts)/Interacts)/-Interacts)|(-
Interacts/Interacts))|((Interacts/-Interacts)/-Interacts))+ ?x1, ?x0 ((((-
Interacts/Interacts)/-Interacts)/Interacts)|(-Interacts/Interacts))+ ?x2,
?x0 (((((Interacts/Interacts)/Interacts)/-Interacts)|((Interacts/-Interacts)/-
Interacts))|(Interacts/Interacts))+ ?x3

Q3 ?x0, ?x4 <- ?x0 (((-Interacts/-Interacts)/Interacts)|(((-Interacts/-Interacts)/-
Interacts)/Interacts))+ ?x1, ?x1 ((-Interacts/-Interacts)/Interacts)+ ?x2,
?x2 (Interacts/Reference)|((Interacts/Interacts)/Reference) ?x3, ?x3 (Au-
thoredBy|AuthoredBy)|AuthoredBy ?x4

Q4 ?x0, ?x2, ?x1 <- ?x0 (((-Interacts/-Interacts)/Interacts)/Interacts)+ ?x1, ?x1 (((-
Interacts/-Interacts)/-Interacts)/-Interacts)+ ?x2, ?x0 (Interacts/-Interacts)+ ?x3, ?x3
((Reference/-Reference)/Interacts)/-Interacts ?x2

Q5 ?x0, ?x3 <- ?x0 (-AuthoredBy/-Reference)/OccursIn ?x1, ?x1 ((-
OccursIn/OccursIn)/-OccursIn)/-Interacts ?x2, ?x2 (((Interacts/Interacts)|((-
Interacts/Interacts)/Interacts))|((-Interacts/-Interacts)/-Interacts))+ ?x3
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Q6 ?x0, ?x2, ?x1 <- ?x0 ((((-HasKeyword/HasKeyword)/-HasKeyword)/Interacts)|(-
HasKeyword/Interacts))|(((-HasKeyword/OccursIn)/-OccursIn)/-Interacts)
?x1, ?x1 (((-Interacts/-Interacts)/-Interacts)|(((-Interacts/-Interacts)/-Interacts)/-
Interacts))+ ?x2, ?x2 (-Interacts/Interacts)+ ?x3

Q7 ?x0, ?x3 <- ?x0 ((((Interacts/Interacts)/Interacts)/-Interacts)|((-
Interacts/Interacts)/Interacts))+ ?x1, ?x1 (-Interacts/-Interacts)|(((Interacts/-
Interacts)/-Interacts)/-Interacts) ?x2, ?x2 (((-Interacts/Interacts)/-
Interacts)/OccursIn)|(((-Interacts/-Interacts)/-Interacts)/OccursIn) ?x3

Q8 ?x0 <- ?x0 (((-OccursIn/-Interacts)/Reference)|((-OccursIn/-
Interacts)/Reference))|((-OccursIn/Interacts)/Reference) ?x1, ?x1
((((PublishedIn/-PublishedIn)/-Reference)/-Interacts)|((-Reference/OccursIn)/-
OccursIn))|((AuthoredBy/-AuthoredBy)/-Reference) ?x2, ?x2 ((((Interact-
s/Interacts)/Interacts)/Interacts)|((Interacts/Interacts)/Interacts))+ ?x3, ?x3
(-Interacts/-Interacts)+ ?x4

Q9 ?x3, ?x1, ?x2, ?x0 <- ?x0 (((Interacts/Interacts)/-Interacts)|((-Interacts/-
Interacts)/-Interacts))+ ?x1, ?x1 ((((-Interacts/Interacts)/-Interacts)|(-
Interacts/Interacts))|(((Interacts/Interacts)/-Interacts)/Interacts))+
?x2, ?x0 (((Interacts/Interacts)|(((Interacts/Interacts)/Interacts)/-
Interacts))|(((-Interacts/Interacts)/-Interacts)/Interacts))+ ?x3, ?x3
(((((-Interacts/-Interacts)/Interacts)/-Interacts)|((-Interacts/-Interacts)/-
Interacts))|((Interacts/Interacts)/-Interacts))+ ?x2

Q10 ?x0, ?x2, ?x1 <- ?x0 (Interacts/Interacts)/EncodedOn ?x1, ?x0 (((-
Interacts/Interacts)|(-Interacts/-Interacts))|((-Interacts/Interacts)/Interacts))+ ?x2,
?x2 ((-Interacts/Reference)/-Reference)/HasKeyword ?x1

A.2 Shop Queries

Q1 ?x0, ?x1, ?x2, ?x3 <- ?x0 (((employee/follows)/-artist)|(((offers/-
offers)/contactPoint)/-artist))|((employee/follows)/-artist) ?x1, ?x1 ((-
purchaseFor/purchaseFor)|(((homepage/-homepage)/-reviewer)/-hasReview))+
?x2, ?x2 (homepage/-homepage)/homepage ?x3

Q2 ?x0, ?x2 <- ?x0 ((-nationality/like)/hasGenre)|((-editor/includes)/hasGenre) ?x1,
?x1 (((-hasGenre/conductor)/age)|((-hasGenre/author)/age))|((-hasGenre/-
like)/age) ?x2, ?x0 -nationality/-reviewer ?x3, ?x3 (((-hasReview/hasReview)|(((-
hasReview/-purchaseFor)/purchaseFor)/hasReview))|(((-hasReview/editor)/-
author)/hasReview))+ ?x2

Q3 ?x0 <- ?x0 ((((homepage/-subscribes)/-editor)|(((-purchaseFor/purchaseFor)/-
includes)/includes))|((homepage/-subscribes)/-editor))+ ?x1, ?x1
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((editor/friendOf)/-author)+ ?x2, ?x2 (((author/makesPurchase)/purchaseFor)|(((-
includes/includes)/conductor)/-author))+ ?x3, ?x3 ((((keywords/-
performer)/contentRating)/-hits)|(printSection/-hits))|((text/-
composer)/homepage) ?x4

Q4 ?x0, ?x2 <- ?x0 ((-director/director)|((-actor/director)/friendOf))+ ?x1, ?x1 (-
friendOf/-friendOf)+ ?x2, ?x0 (((telephone/-eligibleQuantity)|((like/release)/-
validForm))|((givenName/-title)/-includes))+ ?x3, ?x2 ((like/numberOfPages)/-
eligibleQuantity)+ ?x4

Q5 ?x0, ?x1 <- ?x0 ((-nationality/-director)/language)|(((-parentContry/-location)/-
director)/language) ?x1, ?x0 ((((-nationality/userId)/-isbn)/homepage)|((-
nationality/like)/trailer))|(((-nationality/-friendOf)/-friendOf)/homepage) ?x2,
?x2 ((-homepage/author)/homepage)+ ?x1

Q6 ?x0, ?x3, ?x1, ?x4, ?x2 <- ?x0 (((((purchaseFor/director)/-actor)/-
purchaseFor)|(purchaseFor/-purchaseFor))|((-makesPurchase/-editor)/-
purchaseFor))+ ?x1, ?x1 (((purchaseFor/-includes)/includes)/-like)|(purchaseFor/-
like) ?x2, ?x2 ((friendOf/friendOf)/follows)/-artist ?x3, ?x3 ((contentRating/-
numberOfPages)/title)|(-like/jobTitle) ?x4

Q7 ?x1, ?x2, ?x0 <- ?x0 ((-contentRating/-includes)|((-contentRating/recordNumber)/-
eligibleQuantity))|(-opus/-includes) ?x1, ?x1 (((includes/hasReview)/-
hasReview)/-includes)+ ?x2, ?x0 ((((-printColumn/description)/-
description)/text)|(((-contentRating/duration)/-contentRating)/keywords))|(-
openingHours/name) ?x3, ?x3 (((-keywords/-includes)/editor)|(-
jobTitle/nationality))|((-description/artist)/nationality) ?x2

Q8 ?x2, ?x0, ?x1<- ?x0 ((purchaseFor/-purchaseFor)|((purchaseFor/director)/makesPurchase))+
?x1, ?x0 (((price/-printEdition)|((purchaseFor/title)/-caption))|(price/-
wordCount))+ ?x2, ?x1 ((price/-contentSize)|((purchaseFor/expires)/-
datePublished))+ ?x3

Q9 ?x2, ?x0, ?x1 <- ?x0 ((purchaseFor/contentRating)/-contentSize)/hasGenre ?x1, ?x1 ((-
hasGenre/producer)/-description)/-includes ?x2, ?x2 (includes/-includes)+ ?x3,
?x3 ((((includes/-purchaseFor)/purchaseFor)/-includes)|(includes/-includes))+
?x4

Q10 ?x0, ?x3 <- ?x0 (((-expires/composer)/-title)|(-validForm/includes))|((-
expires/homepage)/-homepage) ?x1, ?x1 (-includes/includes)+
?x2, ?x2 ((((caption/-caption)/hasGenre)/type)|(((title/-
text)/hasGenre)/type))|(hasGenre/type) ?x3
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A.3 Yago Queries

Q1 ?x <- ?x <isMarriedTo>/<livesIn>/<isLocatedIn>+/<dealsWith>+ <Argentina>

Q2 ?x <- ?x <hasChild>/<livesIn>/<isLocatedIn>+/<dealsWith>+ <Japan>

Q3 ?x <- ?x <influences>/<livesIn>/<isLocatedIn>+/<dealsWith>+ <Sweden>

Q4 ?x <- ?x <livesIn>/<isLocatedIn>+/<dealsWith>+ <United_States>

Q5 ?x <- ?x <hasSuccessor>/<livesIn>/<isLocatedIn>+/<dealsWith>+ <India>

Q6 ?x <- ?x <hasPredecessor>/<livesIn>/<isLocatedIn>+/<dealsWith>+ <Germany>

Q7 ?x <- ?x <hasAcademicAdvisor>/<livesIn>/<isLocatedIn>+/<dealsWith>+ <Nether-
lands>

Q8 ?x <- ?x <isLocatedIn>+/<dealsWith>+ <United_States>

Q9 ?x <- ?x (<actedIn>/-<actedIn>)+ <Kevin_Bacon>

Q10 ?area<-<wikicategory_Capitals_in_Europe> -rdf:type/(<isLocatedIn>+/<dealsWith>|<dealsWith>)
?area

Q11 ?a, ?b <- ?a <isLocatedIn>+/<dealsWith> ?b

Q12 ?a, ?b <- ?a <isLocatedIn>+/<dealsWith>+ ?b

Q13 ?a, ?b, ?c <- ?a <wasBornIn>/<isLocatedIn>+ ?b, ?b <isConnectedTo>+ ?c

Q14 ?a, ?b, ?c <- ?a (<isLocatedIn>|<isConnectedTo>)+ ?b, ?c <wasBornIn> ?a

Q15 ?a, ?b, ?c <- ?a <isLocatedIn>+ ?b, ?b <isConnectedTo>+ ?c, ?a <wasBornIn> ?c

Q16 ?a, ?c <- ?a <wasBornIn>/<isLocatedIn>+ <Japan>, ?a rdf:type/rdfs:subClassOf ?c

Q17 ?a <- ?a <isLocatedIn>+/(<isConnectedTo>|<dealsWith>)+ <Japan>

Q18 ?a, ?c <- ?a <isLocatedIn>+ <Japan>, ?a <isConnectedTo>+ ?c

Q19 ?a <- ?a <isLocatedIn>+/<isLocatedIn> <Japan>

Q20 ?a <- ?a <isLocatedIn>+/<isConnectedTo>+/<dealsWith>+ <Japan>
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Figure B.1 – Word cloud for Chapter 1 — Conclusion
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