Ces quelques lignes sont pour moi l'occasion d'exprimer ma gratitude envers tous ceux qui m'ont accompagné dans cette thèse.

Je tiens à remercier d'abord ma directrcie de thèse Hasnaa Zidani pour sa disponibilité et la grande confiance qu'elle m'a accordée pour mener à bien ce travail de recherche. Je remercie également Olivier Bokanowski qui a participé à l'encadrement d'une grande partie de ma thèse. Je suis très reconnaissant pour le temps qu'ils ont accordé à mon suivi et à ma formation.

Mes remerciements s'adressent également aux professeurs Maurizio Falcone et Peter Dower pour m'avoir fait l'honneur d'être les rapporteurs de ma thèse, pour leurs lectures attentives du manuscrit et leurs remarques pertinentes.

Abbreviations and Notations

DPP

The cardinality of a finite set U X ∼ µ The random variable X is described by the probability distribution µ Synthèse(en français) L'objectif de cette thèse est d'étudier des problèmes de jeux différentiels avec contraintes d'état par l'approche Hamilton-Jacobi et de développer des méthodes numériques d'apprentissage pour résoudre des problèmes de commande optimale.

La théorie de commande optimale est une branche de mathématiques appliquées qui s'intéresse à l'étude de l'évolution d'un système dynamique dans le temps afin de minimiser un coût, maximiser un gain, atteindre une cible finale ou stabiliser le système. L'évolution temporelle du système définit une trajectoire régie par des équations différentielles ordinaires pour les problèmes de commande optimale déterministes. Cette trajectoire est directement affectée par les actions d'un contrôleur dites lois de contrôle admissibles si elles satisfont certaines conditions. D'autre part, dans de nombreuses applications, l'espace d'état peut être restreint, ce qui définit certaines contraintes qui doivent être respectées par la trajectoire au cours de l'évolution du système.

Parmi les principales approches pour étudier les problèmes de commande optimale, on peut trouver dans la littérature l'approche de Programmation Dynamique (PD) formulée par Richard Bellman dans les années 1950, voir [START_REF] Bellman | On the theory of dynamic programming[END_REF][START_REF] Bellman | Dynamic programming and modern control theory[END_REF], qui considère la valeur optimale du problème d'optimisation en fonction de la condition initiale définissant ainsi la fonction valeur.

Une classe très importante de la théorie de commande optimale est celle des jeux différentiels, liée également à la théorie des jeux. Dans ce contexte, l'évolution du système dynamique est affectée par les actions de plus d'un joueur impliqué dans le jeu et chaque joueur vise à améliorer son gain. Ainsi, les jeux différentiels constituent un cadre très commode pour étudier des problèmes caractérisés par des situations conflictuelles entre plusieurs joueurs ayant des intérêts différents. Une autre motivation pour les jeux différentiels consiste à étudier des problèmes de commande optimale où le système dynamique est affecté par des perturbations inconnues [START_REF] Soravia | H ∞ control of nonlinear systems: Differential games and viscosity solutions[END_REF][START_REF] Bardi | A PDE framework for games of pursuit-evasion type[END_REF][START_REF] Fleming | Risk sensitive optimal control and differential games[END_REF][START_REF] James | Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential games[END_REF].

Dans ce travail, nous nous intéressons aux jeux différentiels à somme nulle et à deux joueurs où le gain d'un joueur correspond certainement à une perte de son adversaire. Par conséquent, on peut définir pour chaque joueur sa propre fonction de valeur. D'autre part, il existe plusieurs cadres pour étudier les jeux différentiels en fonction des informations disponibles pour chaque joueur au cours du jeu. Un cadre intéressant consiste à restreindre les informations disponibles pour les deux joueurs au cours du jeu. Désormais, chaque joueur n'a aucune idée des choix futurs de son adversaire. Nous commençons par introduire au chapitre 2 quelques définitions générales et résultats de base pour les jeux différentiels à somme nulle et à deux joueurs. La principale contribution de ce chapitre est de proposer une procédure de reconstruction de stratégies et de contrôles optimaux pour les jeux différentiels à horizon fini. Le chapitre 3 est consacré à l'étude d'un jeu différentiel avec contraintes d'état et fonction de coût maximum où nous n'imposons aucune hypothèse de contrôlabilité et où les contrôles des deux joueurs peuvent être couplés dans la dynamique, les fonctions de coût et les contraintes d'état. En particulier, nous caractérisons la fonction valeur de ce problème à travers un jeu différentiel auxiliaire sans contraintes d'état. De plus, nous établissons un lien entre les stratégies optimales du problème contraint et celles du problème auxiliaire et nous présentons une approche générale permettant de construire des lois optimales approchées au jeu différentiel contraint pour les deux joueurs. Enfin, un problème d'atterrissage d'avion en présence de perturbations du vent est donné à titre d'exemple numérique illustratif. L'approche de Programmation Dynamique est largement utilisée pour résoudre les problèmes de commande optimale en calculant une approximation de la fonction de valeur à travers plusieurs méthodes numériques telles que les méthodes Différences finies ([START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF]), semi-lagrangien ([START_REF] Falcone | Numerical solution of dynamic programming equations. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Falcone | Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations[END_REF]) et les méthodes Fast Marching ([START_REF] Sethian | Ordered upwind methods for static Hamilton-Jacobi equations: Theory and algorithms[END_REF]). Un inconvénient de cette classe de méthodes numériques est la forte dépendance à la dimensionnalité de l'état puisque les calculs sont effectués sur une grille espace-temps. Pour cette raison, notre objectif dans le seconde partie de cette thèse était de développer des méthodes numériques permettant de résoudre des problèmes de commande optimale avec une grande dimension d'état.

Dans cette thèse, nous exploitons des idées de l'intelligence artificielle et de l' Optimisation Optimiste de [START_REF] Munos | From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning[END_REF][START_REF] Munos | Optimistic optimization of a deterministic function without the knowledge of its smoothness[END_REF][START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF][START_REF] Buşoniu | Discounted near-optimal control of general continuous-action nonlinear systems using optimistic planning[END_REF] et nous proposons des algorithmes de Planification Optimiste pour résoudre des problèmes de commande optimale sous contraintes d'état en affinant l'ensemble des contrôles, au lieu de discrétiser l'espace d'état, ce qui rend cette approche très intéressante pour de nombreuses applications où la dimension de contrôle est très faible par rapport à la dimension d'état. En outre, nous établissons des résultats de convergence de ces algorithmes qui dépendent d'un budget de calcul donné. Finalement, nous étudions des méthodes numériques, basées sur l'apprentissage profond et la programmation dynamique, pour des problèmes de commande optimale déterministe avec contraintes d'état et pour des jeux différentiels à somme nulle et à deux joueurs. Une analyse numérique de ces méthodes est effectuée sur plusieurs exemples dans un espace d'état de grande dimension.

Chapter 1 Introduction

The purpose of this thesis is to study differential games under state constraints with the Hamilton-Jacobi approach and to develop numerical learning methods for solving state-constrained optimal control problems.

Strictly related with optimization, optimal control is a branch of applied mathematics that has been used in different engineering areas such as aerospace, energy, chemistry, economy

The main aim of optimal control theory is to affect the evolution of a dynamical system in time in order to minimize a cost, maximize a gain, reach a final target or to stabilize the system. The time evolution of the system defines a trajectory governed by means of ordinary differential equations for deterministic optimal control problems and by stochastic differential equations for stochastic problems. The system trajectory is directly affected by the controller actions called the admissible control inputs if satisfying some properties. On the other hand, in many applications, the state space can be restricted which defines some constraints that should be respected by the trajectory during the system evolution.

A significant interest has been accorded to deterministic optimal control since 1950's. The first motivation was for aerospace applications. Later, stochastic optimal control has appeared in 1970's to study problems in finance with a pioneer work for the portfolio optimization [START_REF] Merton | Optimum consumption and portfolio rules in a continuous-time model[END_REF].

Among the main approaches to study optimal control problems, one can find in the literature the Pontryagin Maximum Principle that was introduced in 1956 by Lev Semenovich Pontryagin [START_REF] Boltyanskiy | Mathematical theory of optimal processes[END_REF]. This approach consists in formulating some necessary optimality conditions for the control law. In this work, we will focus on another approach which is the Dynamic Programming (DP) approach formulated by Richard Bellman in 1950's, see [START_REF] Bellman | On the theory of dynamic programming[END_REF][START_REF] Bellman | Dynamic programming and modern control theory[END_REF].

The DP approach considers the optimal value of the optimization problem as a function of the initial condition which defines the value function. This value function satisfies a specific equation called the Dynamic Programming Principle (DPP) which decomposes the optimal control problem into simpler subproblems before solving it in a recursive way. From the DPP and if the value function is smooth enough, it becomes the solution of a particular nonlinear partial differential equation called the Hamilton-Jacobi-Bellman (HJB) equation. Nevertheless, even for simple problems, one cannot guarantee the regularity of the value function which does not allow to characterize it as the solution of an HJB equation in a classical sense. For this reason, several theories has been appeared to define non-classical notions for solutions of Hamilton-Jacobi (HJ) equations. In this context, M.G. Crandall and P.L. Lions introduced, in the early 80's, a weak sense for HJ solutions, called viscosity solutions, which presents a very suitable framework to study existence, uniqueness and stability for a wide class of nonlinear Partial Derivatives Equations (PDE's) that includes HJ equations, see for instance [START_REF] Ishii | A boundary value problem of the dirichlet type for Hamilton-Jacobi equations[END_REF][START_REF] Ishii | On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE's[END_REF][START_REF] Ishii | Viscosity solutions of fully nonlinear second-order elliptic partial differential equations[END_REF].

On the other hand, many applications can be modeled by optimal control problems while taking into account some constraints on the system state which adds some difficulties. In particular, the value function may become discontinuous and one cannot guarantee its uniqueness as viscosity solution to the corresponding HJ equation unless some controllability assumptions are satisfied. Among the most popular controllability assumptions, one can find the inward pointing condition, introduced by Soner in [START_REF] Soner | Optimal control with state-space constraint I[END_REF][START_REF] Soner | Optimal control with state-space constraint[END_REF], which states that, at each point of the constraints set boundary, there exists a control variable allowing the dynamical system to point in the interior of this set. Another controllability assumption, the outward pointing condition, was formulated in [START_REF] Frankowska | Semicontinuous solutions of Hamilton-Jacobi-Bellman equations with degenerate state constraints[END_REF][START_REF] Frankowska | Existence of neighboring feasible trajectories: applications to dynamic programming for state-constrained optimal control problems[END_REF]. This assumption imposes that each point belonging to the constraints set boundary can be hit by a trajectory coming from the interior of this set. Unfortunately, such assumptions cannot be verified in many cases. Our work here is based on an alternative technique, introduced in [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF], that characterizes the constrained problem through an auxiliary optimal control problem free of state constraints.

A very important class of optimal control theory is differential games, related also with game theory. In this context, the evolution of the dynamical system is affected by the actions of more than one player involved in the game and each player aims to ameliorate his payoff. Henceforth, differential games constitute a very convenient framework to study problems characterized by conflict situations between several players having different interests. Differential games theory appeared in 1960's with a competition between the U.S.A., with a pioneer work for Isaacs [START_REF] Isaacs | Differential Games[END_REF], and the Soviet Union, represented by the Pontryagin school [START_REF] Pontryagin | On the theory of differential games[END_REF]. At that time, the aim was to study military applications and essentially pursuit evasion games, see [START_REF] Cardaliaguet | Pursuit differential games with state constraints[END_REF][START_REF] Bardi | Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations[END_REF][START_REF] Bardi | A PDE framework for games of pursuit-evasion type[END_REF]. Another motivation for differential games consists in investigating optimal control problems where the dynamical system is affected by some unknown disturbances [START_REF] Soravia | H ∞ control of nonlinear systems: Differential games and viscosity solutions[END_REF][START_REF] Bardi | A PDE framework for games of pursuit-evasion type[END_REF][START_REF] Fleming | Risk sensitive optimal control and differential games[END_REF][START_REF] James | Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential games[END_REF]. This situation can be modeled by a game where a real controller tries to counteract to the worst possible behaviors of the disturbances.

In this work, we are interested in two-person zero-sum differential games where the gain of one player corresponds certainly to a loss of his opponent. Therefore, one can define for each player its own value function. On the other hand, there are several frameworks to study differential games depending on the available information for each player during the course of the game. The static game corresponds to the case where each player has a complete information about his opponent future choices. In this context, one cannot guarantee the existence of a value for the game, i.e. equality between the two players value functions. Moreover, the dynamic programming approach cannot be applied here to characterize and compute the different value functions. A more interesting framework consists in restricting the available information for both players during the course of the game. Henceforth, each player has no idea about his opponent future choices. Nevertheless, an advantage of information can be accorded to only one of the two players by knowing the past and the current choices of his opponent which defines non-anticipative strategies introduced in [START_REF] Elliott | Cauchy problems for certain Isaacs-Bellman equations and games of survival[END_REF][START_REF] Evans | Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF][START_REF] Roxin | Axiomatic approach in differential games[END_REF][START_REF] Varaiya | On the existence of solutions to a differential game[END_REF][START_REF] Elliott | The existence of value in differential games[END_REF]. A more restrictive class of non-anticipative strategies is delay strategies, see [START_REF] Cardaliaguet | Introduction to differential games[END_REF][START_REF] Elliott | The existence of value in differential games[END_REF]. Games can be studied in another different context, feedback strategies [START_REF] Clark | On the interpretation of non-anticipative control strategies in differential games and applications to flow control[END_REF][START_REF] Soravia | H ∞ control of nonlinear systems: Differential games and viscosity solutions[END_REF][START_REF] Başar | H ∞ optimal control and related minimax design problems: a dynamic game approach[END_REF][START_REF] Elliott | Feedback strategies in deterministic differential games[END_REF], where one player knows the current state of the system and keep track of its past history. As for stochastic differential games, there are other information patterns in the literature such as random strategies, see [START_REF] Cardaliaguet | Differential games with asymmetric information[END_REF][START_REF] Cardaliaguet | Representations formulas for some differential games with asymmetric information[END_REF][START_REF] Aumann | Repeated games with incomplete information[END_REF]. Those different information contexts provide a convenient framework to study differential games with the dynamic programming approach and hence to characterize value functions as unique viscosity solutions to the appropriate HJ equations. Furthermore, one can find suitable conditions under which a value of the game exists. The most popular one is the Isaacs' condition, see [START_REF] Elliott | The existence of value in differential games[END_REF]. We refer also to [START_REF] Fleming | On the existence of value functions of two-player, zero-sum stochastic differential games[END_REF][START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] where two-person zero-sum stochastic differential games have been investigated in the viscoity solutions framework and to [START_REF] Bqar | Dynamic noncooperative game theory[END_REF][START_REF] Kleimenov | Nonantagonistic positional differential games[END_REF] for the general theory of more than two players, the N -players game.

The DP approach is widely used to solve optimal control problems by computing an approximation of the value function known as the unique viscosity solution of the corresponding HJ equation. The advantage of such method is to allow to synthesize approximated optimal controls in feedback form which gives sub-optimal solutions. Moreover, several numerical methods have been proposed to approximate the solutions of first order HJ equations, derived from deterministic optimal control problems, such as Finite Differences ([START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF]), semi-Lagrangian ([START_REF] Falcone | Numerical solution of dynamic programming equations. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Falcone | Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations[END_REF]) schemes and Fast Marching methods ([START_REF] Sethian | Ordered upwind methods for static Hamilton-Jacobi equations: Theory and algorithms[END_REF]). For second order HJ equations, arisen in the stochastic case, one can cite Markov chain approximations [START_REF] Kushner | Numerical methods for stochastic control problems in continuous time[END_REF] and we refer also to [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF][START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations[END_REF]. One drawback of this class of numerical methods is the strong dependence on the state dimensionality since computations are done on a time-space grid. For this reason, solving problems with a dimension grater than 4 or 5 becomes very complex in time and requires huge memory capacities (curse of dimensionality).

In order to deal with the curse of dimensionality, several alternative numerical methods have been proposed in the literature. The problem can be solved by considering a simplified form which can be obtained for instance by ignoring some uncertainties in the stochastic case or by reducing the size of the state space and hence the DP approach will be applied only on a reduced subset of states and the solution of the problem will be extended by interpolation to the whole state space, see [START_REF] Bertsekas | Reinforcement learning and optimal control[END_REF]. Another form of simplification consists in domain decomposition techniques for partial differential equations [START_REF] Quarteroni | Domain decomposition methods for partial differential equations[END_REF]. In [START_REF] Falcone | A splitting algorithm for Hamilton-Jacobi-Bellman equations[END_REF], an approximated scheme was proposed to solve Hamilton-Jacobi equations by splitting the original problem into simpler problems on two sub-domains with a linking condition and by imposing constraints on the system state. Recently, a state-tree-structure method has appeared in order to approximate the solution of a dynamic programming equation, see [START_REF] Alla | An efficient DP algorithm on a tree-structure for finite horizon optimal control problems[END_REF][START_REF] Saluzzi | Error estimates for a tree structure algorithm solving finite horizon control problems[END_REF]. This approach eliminates the space discretization and constructs a tree, starting from a given initial state, by adding only the states that will be encountered by a discrete time dynamics and a finite number of controls. Then, the value function will be computed by the dynamic programming principle on the constructed tree.

Another class of methods allowing to solve the curse of dimensionality is On-line approaches where the optimization is done only for the current states that will be encountered during the control process. Among those methods, one can find Rollout algorithms using heuristic ideas, see [START_REF] Bertsekas | Reinforcement learning and optimal control[END_REF], and the Model Predictive Control approach, see [START_REF] Lars | Nonlinear model predictive control theory and algorithms[END_REF][START_REF] Bertsekas | Reinforcement learning and optimal control[END_REF].

Furthermore, Neural Network Training has been used to approximate the value function, see [START_REF] Bertsekas | Reinforcement learning and optimal control[END_REF][START_REF] Bertsekas | Neuro-dynamic programming: an overview[END_REF] for an overview of such approach. In this context, a neural network is a parametric function depending on the system state and involving some free parameters that will be chosen in such a way to fit the value function, representing the Target function. This operation, called the training of the neural network, uses a set of state-value pairs known as the training set. The theoretical justification of this approach comes from the Kolmogorov-Arnold representation theorem and the universal approximation theorem, see [START_REF] Liang | Why deep neural networks for function approximation[END_REF][START_REF] Cybenko | Approximations by superpositions of a sigmoidal function[END_REF][START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF][START_REF] Lu | The expressive power of neural networks: A view from the width[END_REF].

In this thesis we exploit ideas from artificial intelligence and Optimistic Optimization from [START_REF] Munos | From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning[END_REF][START_REF] Munos | Optimistic optimization of a deterministic function without the knowledge of its smoothness[END_REF][START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF][START_REF] Buşoniu | Discounted near-optimal control of general continuous-action nonlinear systems using optimistic planning[END_REF] and we propose Optimistic Planning algorithms to solve state-constrained optimal control problems by refining the set of controls, instead of discretizing the state space, which makes this approach very interesting for many applications where the control dimension is very low compared to the state dimension. Moreover, we propose a deep learning algorithm exploiting the DP approach to solve optimal control problems. The latter will be compared to another approach that tries to approximate the solutions of Hamilton-Jacobi equations.

Recall that the objective of this thesis is to apply the Hamilton-Jacobi approach to investigate stateconstrained differential games and to develop learning numerical methods to solve high-dimensional optimal control problems with state constraints. First, we start by introducing in chapter 2 some general definitions and basic results for two-person zero-sum differential games. The main contribution of this chapter is to present a reconstruction procedure of optimal strategies and controls for finite-horizon differential games. Chapter 3 is devoted to study a differential game with state constraints and maximum cost function. An auxiliary differential game, free of state constraints, is introduced in order to characterize the original problem and to approximate its optimal strategies and controls. Here, controls of the two players are allowed to be coupled within the dynamics, the state constraints and the cost functions. Then in chapter 4, we develop optimistic planning algorithms to solve state-constrained optimal control problems. Moreover, we provide theoretical convergence results of our proposed algorithms. The relevance of our approach will be illustrated even for high-dimensional problems. Finally, in chapter 5 we propose two different numerical approaches based on deep learning to solve optimal control problems under state constraints and we compare their performances.

Differential games

In chapter 2, we start by studying two-person zero-sum differential games in finite time horizon with cost functional of type Bolza in the context of nonanticipative strategies with delay, based on notes of P.Cardaliaguet in [START_REF] Cardaliaguet | Introduction to differential games[END_REF]. Then, we focus on the framework of nonanticipative strategies. In particular, some regularity properties are verified by the two players value functions. Moreover, each value function verifies a dynamic programming equation which implies its characterization as the unique viscosity solution of an appropriate Hamilton-Jacobi-Isaacs equation. Furthermore, we state a comparison result involving the different value functions defined in the context of delay and nonanticpative strategies. Finally, as we said before, the main contribution of this chapter is the introduction of a reconstruction procedure of optimal strategies and controls by means of a discrete time game that converges to the continuous time problem when the time step goes to zero, see subsection 2.6. This reconstruction procedure will be extended in chapter 3 to deal with maximum cost functions.

In chapter 3, we consider the following state-constrained differential game:

v(t, x) := inf α[•]∈Γ π(t, x; α) (1.1)
with the convention that inf ∅ = +∞, α[•] ∈ Γ is a nonanticipative strategy of the first player and where π is defined by: (1.

2)

The cost functions φ : R d → R and ψ : R d → R and the dynamics f :[0, T]×R d ×A×B → R d are continuous functions with A and B are two compact subsets of R p and R q respectively, p, q ≥ 1, in which the players actions take values. Moreover, y This problem formulation describes the situation where the first player is exploiting his information advantage and trying to find nonanticipative strategies that guarantee the admissibility of trajectories against any choice of the second player and minimize the cost functional π. This can model the case where a controller tries to counteract to unknown disturbances which can affect the system and the cost functions. One can imagine another game example where the second player objective is to maximize the cost π or to violate the state constraints. This problem was studied in a particular case, K ≡ R d , in [START_REF] Serea | Discontinuous differential games and control systems with supremum cost[END_REF][START_REF] Barron | Differential games with maximum cost[END_REF][START_REF] Rapaport | Characterization of barriers of differential games[END_REF]. It was also considered in the case of a single-controller in [START_REF] Quincampoix | A viability approach for optimal control with infimum cost[END_REF] through characterizing the value function epigraph by use of a viability kernel.

In the general case, K = R d , some difficulties appear. The value function v may become discontinuous and its uniqueness as a viscosity solution of an HJ equation requires some additional assumptions involving the dynamics f and the constraints set K. In the case of single-controller problems, the most popular assumption, the Inward Pointing Condition, states that at each point of the boundary of K, there exists a control value that lets the dynamics point in the interior of K. We refer to [START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy[END_REF][START_REF] Miele | Optimal abort landing trajectories in the presence of windshear[END_REF][START_REF] Soner | Optimal control with state-space constraint I[END_REF] for this assumption and to [START_REF] Miele | Quasi-steady flight to quasi-steady flight transition for abort landing in a windshear: trajectory optimization and guidance[END_REF][START_REF] Rapaport | Characterization of barriers of differential games[END_REF][START_REF] Serea | Discontinuous differential games and control systems with supremum cost[END_REF] for weaker inward pointing assumptions. Equivalent assumptions for the case of a two-person game was also given in [START_REF] Cardaliaguet | Pursuit differential games with state constraints[END_REF][START_REF] Bettiol | Zero-sum state constrained differential games: existence of value for Bolza problem[END_REF][START_REF] Bettiol | Existence and characterization of the values of two player differential games with state constraints[END_REF]. Such assumptions cannot be guaranteed for several control problems. For this reason, we follow the level set approach, introduced in [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF] for singlecontroller optimal control problems, and we show that, even for state-constrained differential games, the value function v may be characterized by means of a locally Lipschitz continuous value function of an auxiliary differential game free of state constraints. Moreover, the auxiliary value function is the unique viscosity solution of an HJ equation with an obstacle term. Another contribution of this chapter is that controls of the two players are allowed to be coupled within the dynamics, the state constraints and the cost functions. Moreover, here we consider weaker assumptions on f , φ and ψ, compared to [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF].

First, since K is a closed set it can be characterized via the signed distance d K (•), which is Lipschitz continuous, in the following form:

∀y ∈ R d , d K (y) ≤ 0 ⇔ y ∈ K.
The value function of the auxiliary problem is defined, for t ∈ [0, T] and (x, z) ∈ R d × R, by:

w(t, x, z) := inf α[•]∈Γ sup b(•)∈B max s∈[t,T] φ(y α[b],b t,x (s), z) ψ(y α[b],b t,x (T), z) (1.3)
where for (y, z) ∈ R d × R, the functions φ and ψ are given by: φ(y, z) := (φ(y) -z) d K (y) and ψ(y, z) := ψ(y) -z.

Moreover, the value function w is the unique viscosity solution of the following HJ equation:

min -∂ t w(t, x, z) + H(t, x, D x w(t, x, z)), w(t, x, z) -φ(x, z) = 0, in [0, T [×R d × R,

w(T, x, z) = φ(x, z) ψ(x, z), in R d × R, (1.4)
where the Hamiltonian H is given by:

H(t, x, p) := min b∈B max a∈A -f (t, x, a, b), p , for (t, x, p) ∈ [0, T] × R d × R d .
Now, by exploiting the level sets of the auxiliary value function w and when some convexity assumption is verified by f , the value function v can be determined by the following relation:

v(t, x) = inf z ∈ R | w(t, x, z) ≤ 0 .
Moreover, we prove that an optimal strategy of the auxiliary problem (1.3), associated to a particular initial condition, remains also optimal for the constrained problem (1.1). Another contribution of this chapter is to present a reconstruction procedure to approximate the optimal strategies and controls of both players. Indeed, we exploit some ideas from [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF][START_REF] Rowland | Construction of optimal feedback controls[END_REF] about trajectory reconstruction and we propose algorithms to reconstruct approximated optimal trajectories for the continuous time auxiliary differential game by use of a discrete time game.

As an illustrative example, we study an aircraft landing problem in the presence of windshear. Indeed, the best strategy to avoid a failed landing, that can occurs because of quick changes of the wind velocity, is to steer the aircraft to the maximal altitude that can be reached, during an interval of time, in order to prevent a crash on the ground. In [START_REF] Miele | Quasi-steady flight to quasi-steady flight transition for abort landing in a windshear: trajectory optimization and guidance[END_REF][START_REF] Miele | Optimal abort landing trajectories in the presence of windshear[END_REF], a Chebyshev-type optimal control problem was proposed and an approximated solution is provided. The Hamilton-Jacobi-Bellman approach was applied in [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF] to solve this problem after supposing the knowledge of the wind velocity fields. In [START_REF] Botkin | Dynamic programming approach to aircraft control in a windshear[END_REF], the aircraft landing problem was formulated as a nonlinear differential game with state constraints and a semi-Lagrangian scheme was applied to compute an approximation of the value function.

In this work, we propose a 5D differential game model with maximum running cost, where wind disturbances are considered as a second player and the first player tries, by use of nonanticipative strategies, to counteract to some catastrophic scenarios that can occur because of wind disturbances.

Numerical learning methods for optimal control problems

In chapters 4 and 5, we exploit ideas from reinforcement and deep learning and we propose two different approaches to solve state-constrained optimal control problems. The common aim of those numerical methods is to be able to solve problems with high state dimension.

For a fixed time horizon T > 0, a non empty and closed set K ⊂ R d , d ≥ 1, representing the state constraints set, and a compact subset A of R q , q ≥ 1, consider the following constrained optimal control problem:

v(t, x) := inf a(•)∈A T t
(y a t,x (s), a(s))ds + Φ(y a t,x (T)) | y a t,x (s) ∈ K, ∀s ∈ [t, T] .

for (t, x) ∈ [0, T] × R d , where A is the set of measurable function a(•) : [0, T] → A and y a t,x (•) is the continuous solution of the following dynamical system ẏ(s) = f (y(s), a(s)) a.e. s ∈ [t, T], y(t) = x.

(1.6)

The functions f , and Φ are continuous, see chapters 4 and 5 for the convenient assumptions.

It is known that when the problem is free of state constraints, K = R d , the value function v is Lipschitz continuous and can be characterized as the unique viscosity solution of the following HJ equation:

   -∂ t v(t, x) + max a∈A -f (x, a), D x v(t, x) -(x, a) = 0 on [0, T [×R d , v(T, x) = Φ(x) on R d .
This characterization provides a convenient framework for computing approximations of the value function v that allow to synthesize approximated optimal controls in feedback form and hence to obtain sub-optimal solutions. Nevertheless, the most popular numerical schemes for solving HJ equations (semi-Lagrangian, finite differences...) suffer from the curse of dimensionality since it approximate the solution on a grid (time and space) which reduces the ability of solving problems in high state dimension. Another difficulty is added in presence of state constraints, K = R d . In fact, v may become discontinuous and the above characterization (via HJ equations) is no longer valid, unless some controllability assumptions are satisfied. For this reason, we follow again the level set approach, introduced in [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF], which consists in characterizing the constrained problem through an auxiliary optimal control problem free of state constraints whose value function is Lipschitz continuous and can be characterized as the unique viscosity solution of an HJ equation. First, since the set of constraints K is a closed subset of R d , there exists a Lipschitz continuous function g characterizing K in the following form:

∀y ∈ R d , g(y) ≤ 0 ⇐⇒ y ∈ K.
The value function of the auxiliary control problem associated to the constrained problem (1.5) is defined, for

(t, x, z) ∈ [0, T] × R d × R, by: w(t, x, z) := inf a(•)∈A T t (y a t,x (s), a(s))ds + Φ(y a t,x (T)) -z max s∈[t,T]
g(y a t,x (s)) .

(1.7)

From [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF], we already know that, under a convexity assumption on f , v can be characterized as follows:

v(t, x) = inf{z ∈ R | w(t, x, z) ≤ 0}.
Moreover, an optimal solution of problem (1.7), for a particular value of the auxiliary variable z, coincides with an optimal solution for problem (1.5).

Exploiting this characterization, we shall compute an approximation of the auxiliary value function. Although w can be characterized through HJ equations, its approximation by solving numerically the corresponding HJ equation may seem unreasonable for problems with high state dimension. Indeed, the state vector of the auxiliary problem is increased by one more variable (the auxiliary variable z), compared to the state of the original problem, and it is known that classical numerical methods for solving HJ equations are grid-dependent which makes those approaches applicable only for problems where the dimension of the state variable is low. For this reason, we are looking for numerical methods to approximate w while avoiding or reducing the direct dependence between the state dimensionality and the resolution complexity.

For sake of simplicity, the initial time t is set to t = 0. Consider a uniform partition of [0, T], s 0 = 0, ..., s k = kh, ..., s N = T , N ∈ N * , with time steps size h := T N . Moreover, let ρ h be an instantaneous cost that approximates the integral of over a time sub-interval [s k , s k+1] and (y a k) k be the discrete trajectory associated to (1.6) and corresponding to a discrete control sequence (a k) k ∈ A N .

Optimistic planning approach

In chapter 4, we propose optimistic planning algorithms that refine the set of controls instead of discretizing the state space. This approach is very interesting especially for many applications where the control dimension is very low compared to the state dimension.

The discrete auxiliary control problem, free of state constraints, is defined as follows:

W (x, z) := inf (a k) k ∈A N J(x, z, a),
where the cost functional J is given by:

J(x, z, a) = N -1 k=0 ρ h (y a k , a k) + Φ(y a N) -z max 0≤k≤N g(y a k) .
It is worth to mention that W (x, z) converges to w(0, x, z), over compact subsets of R d × R, as N → +∞ (i.e. h → 0), see [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Falcone | An approximation scheme for evolutive Hamilton-Jacobi equations[END_REF].

Optimistic planning algorithms are based on the principles of optimistic optimisation (see [START_REF] Elliott | The existence of value in differential games[END_REF]). This approach requires the Lipschitz continuity of J with respect to the control sequence. In order to approximate W (x, z), we will refine iteratively the search space, A N , in an optimistic way into smaller subsets and for each subset, we attribute a control sequence and hence a value of the objective function J.

Our first two algorithms are an adaptation of the algorithms presented in [START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF][START_REF] Buşoniu | Discounted near-optimal control of general continuous-action nonlinear systems using optimistic planning[END_REF][START_REF] Buşoniu | Optimistic planning for continuous-action deterministic systems[END_REF][START_REF] Hren | Planification optimiste pour systemes déterministes[END_REF][START_REF] Hren | Optimistic planning of deterministic systems[END_REF] to our case in finite time horizon and with maximum cost. The first method, Optimistic Planning, refines optimistically the subsets minimizing a lower bound on the auxiliary value function W (x, z). However, the Simultaneous Optimistic Planning algorithm discovers simultaneously several subsets of the search space characterized by minimal values of the objective function J. Furthermore, we prove convergence results for those algorithms in a similar way to [START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF].

Finally, we propose a third algorithm, Simultaneous Optimistic Planning with Multiple Steps, which is designed by combining both the optimistic planning approach with ideas from the MPC (Model Predictive Control). Indeed, at each time step k = 0, ..., N -1, this algorithm picks the first value of the near optimal control sequence, obtained by minimization of the objective function over control sequences of length N -k, in order to simulate the next state system. This procedure ameliorates the precision of the algorithm and reduces significantly the computational time compared to the previous methods.

In order to show the relevance of our proposed approach, we illustrate with several numerical applications. First, we consider the Zermelo problem where a boat tries to reach a circular target at the final time T with minimal fuel consumption. We consider also two rectangular obstacles in the navigation domain that the boat should avoid. Then, we study the optimal control of the heat equation in order to show the relevance of our approach in higher dimensions, the dimension here is d = 10 3 . Our aim is to minimize, by using a control input, the temperature in a given domain which is the solution of a partial derivatives equation. Furthermore, we add some constraints to this example where we impose that the solution should remain above the initial solution multiplied by some non-negative parameter. Finally, we consider an abort landing problem where the aim is to steer an aircraft to the maximum altitude that can be reached during an interval of time in the presence of the wind velocities for which we assume having an explicit model, see [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF][START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem, part 1: Necessary conditions[END_REF][START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy[END_REF].

On the other hand, we give in chapter 6 some ideas about how to extend the optimistic planning approach in order to deal with two-person zero-sum differential games under constraints on the system state.

Deep learning numerical methods for dynamic programming

We propose two deep learning approaches to approximate the auxiliary value function w. The first one is based on the dynamic programming principle while the second method tries to approximate the solutions of HJ equations.

Deep neural networks have shown to be relevant in approximating a large class of complex non linear functions on finite dimensional space. This relevance can be theoretically justified by the Kolmogorov-Arnold representation theorem and the universal approximation theorem, see [START_REF] Liang | Why deep neural networks for function approximation[END_REF][START_REF] Cybenko | Approximations by superpositions of a sigmoidal function[END_REF][START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF][START_REF] Lu | The expressive power of neural networks: A view from the width[END_REF].

It is known that the value function of an optimal control problem, under suitable assumptions, is the solution of a dynamic programming equation. In this context, one can discretize in time and then try to approximate the value function, at each time step, by neural networks after its learning on a training grid with reduced size, see [START_REF] Bertsekas | Reinforcement learning and optimal control[END_REF]. For instance, the Hyprid-Now Algorithm, introduced in [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon, part i: convergence analysis[END_REF][START_REF] Bachouch | Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications[END_REF][START_REF] Huré | Numerical methods and deep learning for stochastic control problems and partial differential equations[END_REF], estimates first the optimal policy by neural networks then this estimated policy is injected in a backward process to approximate the discrete value function. This approach is very interesting especially when the optimal policy is regular. In this chapter, we propose to adapt this algorithm to deterministic control problems for which the optimal control is not always regular enough. To this end, we will try to approximate only the value function by using neural networks and by exploiting the dynamic programming principle. Moreover, we extend this approach to deal with constraints on the system state.

On the other hand, DNN have been successfully used to solve some nonlinear partial differential equations (PDE) derived from physics and mathematics, see [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF][START_REF] Raissi | Physics informed deep learning (part I): Data-driven solutions of nonlinear partial differential equations[END_REF][START_REF] Raissi | Physics informed deep learning (part II): Datadriven discovery of nonlinear partial differential equations[END_REF][START_REF] Raissi | Hidden physics models: Machine learning of nonlinear partial differential equations[END_REF][START_REF] Gu | Selectnet: Self-paced learning for high-dimensional partial differential equations[END_REF][START_REF] Van Der Meer | Optimally weighted loss functions for solving PDEs with neural networks[END_REF]. Indeed, the solution of the PDE can be directly approximated by neural networks that will be learned, on a reduced training domain, in order to satisfy the boundary conditions and the given equation law. In this context, we propose to approximate the value function, solution of some HJ equation, by use of spatio-temporal neural networks while computing its derivatives by means of automatic differentiation, see [START_REF] Baydin | Automatic differentiation in machine learning: a survey[END_REF].

A first-order approximation of the auxiliary value function w at time s k , for k = 0, ..., N , can be given by:

W k (x, z) = min (a i) i ∈A N -k N -1 i=k ρ h (y a i , a i) + Φ(y a N) -z max k≤i≤N g(y a i) .
In fact, (W k) N k=0 is the unique solution of the following discrete dynamic programming equation:

   W N (x, z) = (Φ(x) -z) g(x), W k (x, z) = min a∈A W k+1 (Fh (x, a)) g(x) , for k = N -1, ..., 1, 0,
where Fh is a discrete approximation of the augmented dynamics f (x, a)

:= f (x, a) -(x, a) .
By backward induction and by using W k+1 , an approximation of W k+1 for k = 0, ..., N -1, we first compute W k on a generated training grid. Then, the latter approximation, computed on a reduced domain, will be used as an input data to extend W k , by use of neural networks and stochastic optimization, to the whole computational domain which defines an approximation of W k . This approach will be compared to another one that consists in approximating w, at any time instant t ∈ [0, T], by training neural networks, on a reduced domain, in order to satisfy the following HJ equation whose unique solution is w:

min -∂ t w(t, x) + H(x, D xw(t, x)), w(t, x) -g(x) = 0, on [0, T [×R d+1 , w(T, x) = (Φ(x) -z) g(x), on R d+1 , for x := (x, z) ∈ R d × R
and where H is the Hamiltonian function given by:

H(x, p) = max a∈A -f (x, a), p , ∀(x, p) ∈ R d × R d+1 .
Furthermore, both approaches can be extended to handle state-constrained two-person zero-sum differential games.

Chapter 2

Unconstrained Finite Horizon Differential Games

Introduction

This chapter is devoted to recall some definitions about differential games theory and basic results concerning the application of the Hamilton-Jacobi approach to solve differential games.

Differential games theory can be seen as an intersection of game theory, where more than one player are involved, and of optimal control theory, as each player looks for the best possible decisions to influence the evolution of a dynamical system in such a way to ameliorate his payoff. On the other hand, differential games are considered as a convenient framework to investigate conflict situations for dynamical systems controlled by several agents while having different interests.

The first main motivation of differential games is to model conflict situations between two players having opposite interests. The most popular application concerns the study of pursuit-evasion games, see [START_REF] Cardaliaguet | Pursuit differential games with state constraints[END_REF][START_REF] Bardi | Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations[END_REF][START_REF] Bardi | A PDE framework for games of pursuit-evasion type[END_REF]. Another very useful motivation is the analysis of a controlled system with some unknown disturbances [START_REF] Soravia | H ∞ control of nonlinear systems: Differential games and viscosity solutions[END_REF][START_REF] Bardi | A PDE framework for games of pursuit-evasion type[END_REF][START_REF] Fleming | Risk sensitive optimal control and differential games[END_REF][START_REF] James | Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential games[END_REF]. It is known that the most widely used approach for solving such problems is to establish a statistical model for disturbances and to optimize the expected value of the objective function. Nevertheless, optimizing the expected value does not guarantee a good performance of the system against some dangerous behaviours of the disturbances. Moreover, it is not always possible to find an efficient statistical model for disturbances. Henceforth, this problem can be modeled by a game where a real controller, representing the first player, tries to counteract to the worst possible actions of the disturbances, considered as a second player of the game.

In this chapter, we are interested in two-person zero-sum differential games without state constraints, with finite time horizon and where the objective function is of type Bolza. The first player, by choosing a control input a(•) ∈ A, tries to minimize an objective function J(t, x, a, b), where x is the initial position of the system at the first time instant t ∈ [0, T] for T > 0 and b(•) ∈ B is the second player decision. A and B denote respectively the actions sets of the first and the second players. Conversely, -J(t, x, a, b) corresponds to the cost that the second player should pay. In other words, the loss of one player coincides with the gain of his opponent.

According to the classical game theory, both players should optimize over A and B which defines a static game with a lower and an upper value functions defined by:

v - s (t, x) := sup b(•)∈B inf a(•)∈A J(t, x, a, b) ≤ v + s (t, x) := inf a(•)∈A sup b(•)∈B J(t, x, a, b)
It is worth mentioning that the lower value function v - s describes the case where the second player chooses his action b(•) ∈ B based on the knowledge of the first player future decisions. Conversely, from the def-inition of v + s , the first player has a complete information about his opponent future choice. On the other hand, the dynamic programming approach cannot be applied to compute the value functions v - s and v + s . Moreover, one cannot guarantee the existence of a value for the game in this context, i.e. equality between the lower and the upper value functions.

A more interesting setting for differential games is to restrict the available information for both players during the course of the game which can be modeled by the notion of game strategies where each player has no idea about his opponent future choices. This information pattern allow us to investigate differential games by means of the dynamic programming approach and hence the Hamilton-Jacobi approach. Moreover, under some suitable assumptions, one can prove the existence of a value for the game. Among the most popular strategies in the literature, we cite nonanticipative strategies, introduced in [START_REF] Elliott | Cauchy problems for certain Isaacs-Bellman equations and games of survival[END_REF][START_REF] Evans | Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF][START_REF] Roxin | Axiomatic approach in differential games[END_REF][START_REF] Varaiya | On the existence of solutions to a differential game[END_REF][START_REF] Elliott | The existence of value in differential games[END_REF], where only one of the two players knows the past and current choices of his opponent without any idea about his future decisions. A particular type of non-anticipative strategies is delay strategies, see [START_REF] Cardaliaguet | Introduction to differential games[END_REF][START_REF] Elliott | The existence of value in differential games[END_REF]. Some practical examples cannot be described by the notion of non-anticipative strategies. To this end, the game can be studied in another context: feedback strategies. In this case, one player knows the current state of the system and keep track of its past history, see [START_REF] Clark | On the interpretation of non-anticipative control strategies in differential games and applications to flow control[END_REF][START_REF] Soravia | H ∞ control of nonlinear systems: Differential games and viscosity solutions[END_REF][START_REF] Başar | H ∞ optimal control and related minimax design problems: a dynamic game approach[END_REF][START_REF] Elliott | Feedback strategies in deterministic differential games[END_REF]. Another example of information pattern is the random strategies where each player has a part of the information concerning the objective function to optimize. The latter class of strategies was introduced to deal with differential games with incomplete information, see [START_REF] Cardaliaguet | Differential games with asymmetric information[END_REF][START_REF] Cardaliaguet | Representations formulas for some differential games with asymmetric information[END_REF][START_REF] Aumann | Repeated games with incomplete information[END_REF].

In this chapter, we will start by giving some basic results established for differential games in the context of delay strategies. Then, we will move to a more general information pattern which is nonanticipative strategies.

The main question now is how to characterize the players' value functions of a differential game. In 1950's, Isaacs observed, for the first time, that if the value function of a differential game is sufficiently regular, then it is solution to some non-linear first order PDE called the Hamilton-Jacobi-Isaacs (HJI) equation, see [START_REF] Isaacs | Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization[END_REF]. However, for many examples, the value function is not smooth enough to be a PDE solution in a classical sense. Later in 1980's, M. G. Crandall and P.L. Lions have introduced the theory of viscosity which gives a weaker sense for a solution of an Hamilton-Jacobi equation [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF]. Not only that but they have also proved, under suitable conditions, the uniqueness of such solutions. Then, it was shown in [START_REF] Evans | Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF], that a differential game value function, defined via nonanticipative strategies, is the unique viscosity solution of an appropriate Hamilton-Jacobi-Isaacs equation. An adaptation of those results for the infinite horizon can be found for instance in [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]Chapter VIII]. On the other hand, the fundamental tool to characterize a value function as a viscosity solution of an HJ equation is the dynamic programming approach introduced in [START_REF] Bellman | On the theory of dynamic programming[END_REF][START_REF] Bellman | Applied dynamic programming[END_REF][START_REF] Bellman | Dynamic programming and modern control theory[END_REF].

The main contribution of this chapter is to extend the results concerning the approximation of optimal strategies and controls for both players, presented in [11, Chapter VIII] for infinite horizon problems, to our case with finite time horizon. Indeed, we construct a specific approximation of the value function verifying a discrete dynamic programming principle and corresponding to the value function of some discrete time game. Then, we show the existence of optimal strategies and controls for this discrete time game that will be used later to compute approximated optimal strategies and control for the continuous time game. This chapter is organized as follows. After presenting in section 2.2 the main definitions and hypothesis that will be used along this chapter, we study in section 2.3 differential games in the context of nonanticpative strategies with delay. First, the different value functions are defined and some regularity proprieties satisfied by those functions are presented. Then, we show how to characterize them as semi-viscosity solutions of the appropriate Hamilton-Jacobi-Isaacs equations. In addition to that, we introduce a comparison principle result to compare sub and super-solutions of Hamilton-Jacobi equations in the viscosity sense. In section 2.4, we consider differential games in another context: nonanticpative strategies. First, we define the value functions corresponding to the finite time horizon. Furthermore, we characterize those value functions as the unique viscosity solutions of the appropriate Hamilton-Jacobi-Isaacs equations. In addition to that, we present a feedback reconstruction procedure based on the knowledge of an approximation of the value function. Finally, we propose a game example for which one can compute optimal strategies and controls and get explicit expressions of both value functions. In order to conclude this chapter, section 2.5 gives a comparison result between all the value functions introduced in sections 2.3 and 2.4.

Definitions and hypothesis

Let T > 0 be the finite time horizon and A and B be two compacts sets of R p and R q (p, q ≥ 1) in which actions of the first and the second players take values respectively. The set of admissible control functions of the first player, A, can be defined as follows:

A := {a(•) : [0, T] → A, measurable}.
In a similar way, the set of admissible controls of the second player is given by:

B := {b(•) : [0, T] → B, measurable}.
In the literature, there exist different notions of game strategies. One can mention nonanticipative and delay strategies [START_REF] Elliott | Cauchy problems for certain Isaacs-Bellman equations and games of survival[END_REF][START_REF] Evans | Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF][START_REF] Roxin | Axiomatic approach in differential games[END_REF][START_REF] Varaiya | On the existence of solutions to a differential game[END_REF][START_REF] Elliott | The existence of value in differential games[END_REF][START_REF] Cardaliaguet | Introduction to differential games[END_REF], feedback strategies [START_REF] Clark | On the interpretation of non-anticipative control strategies in differential games and applications to flow control[END_REF][START_REF] Soravia | H ∞ control of nonlinear systems: Differential games and viscosity solutions[END_REF][START_REF] Başar | H ∞ optimal control and related minimax design problems: a dynamic game approach[END_REF][START_REF] Elliott | Feedback strategies in deterministic differential games[END_REF] for deterministic differential games and random strategies for differential games with incomplete information, see [START_REF] Cardaliaguet | Differential games with asymmetric information[END_REF][START_REF] Cardaliaguet | Representations formulas for some differential games with asymmetric information[END_REF][START_REF] Aumann | Repeated games with incomplete information[END_REF]. In this chapter, we will focus on delay and nonanticipative strategies.

Definition 2.2.1 (Nonanticipative strategies). A nonanticipative (or casual) strategy for the first player is

a map α[•] : B → A, s.t. for any t ≤ T and b(•), b (•) ∈ B, if b(s) = b (s) for almost every s ≤ t, then α[b](•) = α[b](•) almost everywhere in [0, t].
A nonanticipative strategy for the second player is defined in a symmetric way. We denote by Γ (resp. ∆) the set of nonanticipative strategies of the first player (resp. second player).

In other words, the player using nonanticipative strategies takes his control decision at each time instant with the knowledge of the past and current choices of his opponent and without any idea about his future decisions. Now, we define delay strategies which constitute a restrictive type of nonanticipative strategies.

Definition 2.2.2 (Delay strategies). A map α[•]

: B → A is a delay strategy (nonanticipative strategy with delay) for the first player if there is a delay τ α > 0 such that for any two controls b(•), b (•) ∈ B, and any

t ≥ 0, if b(•) = b (•) almost everywhere in [0, t], then α[b](•) = α[b](•) almost everywhere in [0, (t + τ α) T].
A delay strategy for the second player is defined in a symmetric way. We denote by Γ d (resp. ∆ d) the set of delay strategies for the first player (resp. second player).

Remark 2.2.3. The last definition implies that

if α[•] is a delay strategy, α[b](•) does not depend on b(•) on the interval [0, τ α T]. Indeed, for any b(•), b (•) ∈ B, b(•) = b (•) almost everywhere at 0. Therefore, α[b](•) = α[b](•) almost everywhere in [0, τ α T].
The following remark comes from the definitions of delay and nonanticipative strategies and will be useful later. In all the control problems that will be studied in this chapter, consider a dynamic f , a distributed cost and a final cost Ψ satisfying the following assumptions:

(H2.1) The dynamics f : [0, T] × R d × R p × R q → R
d is a continuous function and there exits L 1 > 0, such that for any t, s ∈ [0, T], for any x, y ∈ R d and for any (a, b) ∈ A × B:

f (t, x, a, b) -f (s, y, a, b) ≤ L 1 (|t -s| + x -y). (H2.2) The distributed cost : [0, T] × R d × R p × R q → R
is a continuous function and there exits L 2 > 0, such that for any t, s ∈ [0, T], for any x, y ∈ R d and for any (a, b) ∈ A × B:

| (t, x, a, b) -(s, y, a, b)| ≤ L 2 (|t -s| + x -y). (H2.3) The final cost Ψ : R d → R is a Lipschitz continuous function with Lipschitz constant L 3 > 0.
Consider the following nonlinear dynamical system:

ẏ(s) = f (s, y(s), a(s), b(s)), a.e. s ∈ [t, T], y(t) = x, (2.1)
where x ∈ R d is the initial system state and (a(•), b(•)) ∈ A × B are the actions of the first and the second players respectively. The corresponding absolutely continuous solution of (2.1) is denoted by y a,b t,x (•) and represents the system trajectory.

Finally, let J be the cost functional, of type Bolza, that the first player wants to minimize and the second player wants to maximize:

J(t, x, a, b) = T t (s, y a,b t,x (s), a(s), b(s))ds + Ψ(y a,b t,x (T)) (2.2) for (t, x) ∈ [0, T] × R d and (a(•), b(•)) ∈ A × B.

Unconstrained problem with delay strategies

Problem formulation

We start by presenting the most important property of delay strategies which allows us to put the game in the so-called normal form. This result corresponds to [START_REF] Cardaliaguet | Introduction to differential games[END_REF]Lemma 2.3].

Lemma 2.3.1. Let (α[•], β[•]) ∈ Γ × ∆ be two nonanticipative strategies. Assume that either α[•] or β[•] is a delay strategy. Then there is a unique pair of controls (a(•), b(•)) ∈ A × B such that a(•) = α[b](•) and b(•) = β[a](•) almost everywhere on [0, T]. (2.3)
Proof. Without loss of generality, consider a delay strategy of the first player α[•] ∈ Γ d , with a delay τ α > 0, and a nonanticipative strategy of the second player β[•] ∈ ∆.

We claim that for any integer k ≥ 1, there exists a unique pair of measurable maps

(a k (•), b k (•)) : [0, kτ α] → A × B s.t. α[b k](•) = a k (•) and β[a k](•) = b k (•) on [0, kτ α].
We will prove this claim by induction.

For k = 1, let's pick a control b(•) ∈ B and set a 1 (•) = α[b](•) ∈ A. Then let b 1 (•) = β[a 1](•). From remark 2.2.3 and since α[•] is a delay strategy, the restriction of α[b](•) to [0, τ α] is independent of b(•). Hence, α[b 1](•) = α[b](•) = a 1 (•) on [0, τ α].
Therefore the claim holds for k = 1.

Suppose now that the claim is true for any k ≥ 1 and let's prove it for k + 1.

There is a unique pair

(a k (•), b k (•)) : [0, kτ α] → A × B s.t. α[b k](•) = a k (•) and β[a k](•) = b k (•) on [0, kτ α]. We extend a k (•) and b k (•) to arbitrary controls on [0, T]. For this, we set a k+1 (•) = α[b k](•) and b k+1 (•) = β[a k+1](•). Then from this construction, a k+1 (•) = a k (•) a.e. on [0, kτ α]. Since β[•] is a nonanticipative strategy, we get b k (•) = β[a k](•) = β[a k+1](•) = b k+1 (•) a.e. on [0, kτ α]. Now since α[•] is a delay strategy with delay τ α , then a k+1 (•) = α[b k](•) = α[b k+1](•) a.e. on [0, (k + 1)τ α].
This completes the proof of the claim by induction.

Thanks to the above Lemma, the cost functional J defined in (2.2) can be extended to any couple of delay strategies

(α[•], β[•]) ∈ Γ d × ∆ d as follows: J(t, x, α, β) = J(t, x, a, b), where (a(•), b(•)) ∈ A × B is the unique pair defined in Lemma 2.3.1.
Now, we can define the lower and the upper values of the game in the context of delay strategies. Definition 2.3.2. The upper value function is given by:

v + (t, x) := inf α[•]∈Γ d sup β[•]∈∆ d J(t, x, α, β), (2.4)
while the lower value is defined by:

v -(t, x) := sup β[•]∈∆ d inf α[•]∈Γ d J(t, x, α, β). (2.5)
Remark 2.3.3. From Definition 2.3.2, we can already compare the value functions v + and v -. The following inequality is always true :

v -≤ v + .
Thanks again to Lemma 2.3.1, the value functions v + and v -can be expressed differently.

Lemma 2.3.4 (Equivalent definitions of the value functions). We have:

v + (t, x) := inf α[•]∈Γ d sup b(•)∈B J(t, x, α[b], b), (2.6
)

and v -(t, x) := sup β[•]∈∆ d inf a(•)∈A J(t, x, a, β[a]). (2.7)
Proof. We will prove the first equality for v + , the second equality can be obtained by the same arguments.

Let α 0 [•] ∈ Γ d and consider a constant delay strategy of the second player

β 0 [•] ∈ ∆ d such that, for any b(•) ∈ B, β 0 [b](•) = b 0 (•) for some fixed b 0 (•) ∈ B. By Lemma 2.
3.1, we have:

J(t, x, α 0 , b 0) = J(t, x, α 0 [b 0], b 0).
Since the controls in B can be considered as constant strategies of the second player, i.e. B ⊂ ∆ d , we get for any α

[•] ∈ Γ d sup b(•)∈B J(t, x, α, b) ≤ sup β[•]∈∆ d J(t, x, α, β), henceforth inf α[•]∈Γ d sup b(•)∈B J(t, x, α[b], b) ≤ v + (t, x). By Lemma 2.3.1, for any (α[•], β[•]) ∈ Γ d × ∆ d , there is a unique pair of controls (a(•), b(•)) ∈ A × B such that (2.3) holds. Then J(t, x, α, β) = J(t, x, α[b], b) ≤ sup b (•)∈B J(t, x, α[b], b).
Therefore sup

β[•]∈∆ d J(t, x, α, β) ≤ sup b (•)∈B J(t, x, α[b], b).
Taking the infimum over α[•] ∈ Γ d in the last inequality completes the proof.

Remark 2.3.5. Notice that -v -(t, x) = inf β∈∆ d sup a∈A -J(t, x, a, β[a]),
which means that the value function (-v -) can be seen as an upper value of a game with running cost -, terminal payoff -Ψ, and where the first player is the maximizer while the second player is the minimizer. Henceforth, any result verified by v + can be directly deduced for (-v -) and hence for v -.

Some properties of value functions

In this subsection, we discuss and prove some properties verified by the value functions. Thanks to remark 2.3.5, we give the proofs only for the upper value function v + . The proofs for v -can be obtained by similar arguments.

We start by the following dynamic programming principle which holds for v + .

Theorem 2.3.6. Assume (H2.1), (H2.2) and (H2.3). For any h ∈ [0, T -t], we have: In order to prove Proposition 2.3.7, we will use the following result:

v + (t, x) = inf α[•]∈Γ d sup b(•)∈B t+h t (s, y α[b],b t,x (s), α[b](s), b(s))ds + v + (t + h, y α[b],b t,x (t + h)) . (2
Lemma 2.3.8. Let U and V be two arbitrary sets and let g, h :

U × V → R be two maps. Assume that there is a real constant k ≥ 0 such that sup u∈U,v∈V |g(u, v) -h(u, v)| ≤ k. Therefore | inf u∈U sup v∈V g(u, v) -inf u∈U sup v∈V h(u, v)| ≤ k,
as soon as the inf-sup of g or h is finite.

The proof of Lemma 2.3.8 is not complicated and can be found in [START_REF] Cardaliaguet | Introduction to differential games[END_REF].

Proof. We start by proving that v + is Lipschitz continuous w.r.t. the x variable uniformly in the time variable. To this end, let (t,

x 1 , x 2) ∈ [0, T] × R d × R d and (a(•), b(•)) ∈ A × B be fixed. We set y 1 (•) := y a,b t,x 1 (•) and y 2 (•) := y a,b t,x 2 (•).
Since f is Lipschitz continuous, Gronwall's Lemma implies that for any s ∈ [t, T]:

y 1 (s) -y 2 (s) ≤ e L 1 (s-t) x 1 -x 2 .
By using the Lipschitz continuity of and Ψ and the Gronwall's Lemma, we get:

|J(t, x 1 , a, b) -J(t, x 2 , a, b)| ≤ T t | (s, y 1 (s), a(s), b(s)) -(s, y 2 (s), a(s), b(s))|ds + |Ψ(y 1 (T)) -Ψ(y 2 (T))| ≤ L 2 T t y 1 (s) -y 2 (s) ds + L 3 y 1 (T) -y 2 (T) ≤ C x 1 -x 2 ,
where the real constant C > 0 depends only on L 1 , L 2 , L 3 and T .

The above inequality holds for any pair of controls (a(•), b(•)) ∈ A × B. From Lemma 2.3.1, we get for any

(α[•], β[•]) ∈ Γ d × ∆ d : |J(t, x 1 , α, β) -J(t, x 2 , α, β)| ≤ C x 1 -x 2 ,
henceforth sup

(α[•],β[•])∈Γ d ×∆ d |J(t, x 1 , α, β) -J(t, x 2 , α, β)| ≤ C x 1 -x 2 ,
and finally by using Lemma 2.3.8, we get the Lipschitz continuity with respect to the space variable. Now let (t, t , x) ∈ [0, T] × [0, T] × R d be fixed and without loss of generality assume that t > t. We fix also > 0, there exists α [•] ∈ Γ and b (•) ∈ B such that:

v + (t, x) ≥ sup b(•)∈B T t (s, y α [b],b t,x (s), α [b](s), b(s))ds + Ψ(y α [b],b t,x (T)) - ≥ T t (s, y α [b],b t,x (s), α [b](s), b (s))ds + Ψ(y α [b],b t,x (T)) -, and
v + (t , x) ≤ sup b(•)∈B T t (s, y α [b],b t ,x (s), α [b](s), b(s))ds + Ψ(y α [b],b t ,x (T)) ≤ T t (s, y α [b],b t ,x (s), α [b](s), b (s))ds + Ψ(y α [b],b t ,x (T)) + .
From the two above inequalities, we deduce that:

v + (t , x) -v + (t, x) ≤ 2 + t t | (s, y α [b],b t,x (s), α [b](s), b (s))|ds + T t | (s, y α [b],b t ,x (s), α [b](s), b (s)) -(s, y α [b],b t,x (s), α [b](s), b (s))|ds + |Ψ(y α [b],b t ,x (T)) -Ψ(y α [b],b t,x (T))|.
Moreover, the trajectory y

α [b],b t,x (•) coincides with y α [b],b t ,x (•) for s ≥ t where x := y α [b],b t,x (t)
. Henceforth, the last inequality becomes:

v + (t , x) -v + (t, x) ≤ 2 + M |t -t| + L 2 T t y α [b],b t ,x (s) -y α [b],b t ,x (s) ds + L 3 y α [b],b t ,x (T) -y α [b],b t ,x (T) ,
where M is an upper bound of s → (s, y

α [b],b t,x (s), α [b](s), b (s)), for s ∈ [t, t].
Since f is Lipschitz continuous and by using Gronwall's Lemma, there exist C 1 > 0 and C 2 > 0 such that:

y α [b],b t ,x (s) -y α [b],b t ,x (s) ≤ C 1 x -x , ∀s ∈ [t, t] and x -x ≤ C 2 |t -t|.
More precisely, the exact expressions of C 1 and C 2 are given by:

C 1 := e L 1 T and C 2 := e L 1 T (L 1 x + C f),
where

C f := max f (s, 0, a, b) for (s, a, b) ∈ [0, T] × A × B .
Combining the above inequalities implies the existence of

C 3 > 0, depending on M , L 2 , L 3 , C 1 and C 2 , such that: v + (t , x) -v + (t, x) ≤ 2 + C 3 |t -t|.
In a similar way, one can prove that:

v + (t, x) -v + (t , x) ≤ 2 + C 3 |t -t|,
which ends the proof since is chosen arbitrarily.

Characterization of value functions

For this game, one can define the two following Hamilton-Jacobi-Isaacs equations:

-∂ t V + H -(t, x, D x V) = 0, t ∈ [0, T [, x ∈ R d V (T, x) = Ψ(x), x ∈ R d , (2.9)
where the hamiltonian H -is given by:

H -(t, x, p) := max a∈A min b∈B -f (t, x, a, b), p -(t, x, a, b) , (2.10)
and

-∂ t V + H + (t, x, D x V) = 0, t ∈ [0, T [, x ∈ R d V (T, x) = Ψ(x), x ∈ R d , (2.11)
where H + is defined by:

H + (t, x, p) := min b∈B max a∈A -f (t, x, a, b), p -(t, x, a, b) .
(2.12)

The following Lemma gives a half-characterization of the value functions v + and v -. Its proof can be found in [START_REF] Cardaliaguet | Introduction to differential games[END_REF]Lemma 3.15] Lemma 2.3.9 (Viscosity solutions). Assume (H2.1), (H2.2) and (H2.3). The upper value v + is a viscosity sub-solution of (2.9), while the lower value v -is a super-solution of (2.11).

Now we present a comparison principle result which gives an order between a sub-solution and a super-solution of an Hamilton-Jacobi equation. Consider the following HJ equation:

-∂ t V + H(t, x, D x V) = 0, t ∈ [0, T [, x ∈ R d V (T, x) = g(x), x ∈ R d (2.13)
where g is a given continuous function and the hamiltonian H:[0, T]×R d ×R d → R is a continuous function satisfying the following Lipschitz properties:

H(t 2 , x 2 , p) -H(t 1 , x 1 , p) ≤ C(1 + p)(|t 2 -t 1 | + x 2 -x 1) (2
. Assume that V 1 (T, x) ≤ V 2 (T, x) for any x ∈ R d , then V 1 (t, x) ≤ V 2 (t, x), ∀(t, x) ∈ [0, T] × R d .
In order to prove Theorem 2.3.10, we will need the following result from [START_REF] Cardaliaguet | Introduction to differential games[END_REF]. We postpone its proof to the end of the proof of Theorem 2.3.10. Lemma 2.3.11. Assume that H is continuous and satisfies (2.15). If u is an u.s.c function and a subsolution of (2.13) on [0, T] × R d (resp. is a l.s.c. function and a super-solution of (2.13) on [0, T] × R d), then for any (t 0 , x 0) ∈ [0, T [×R d , u is also a sub-solution (resp. super-solution) in the cone

C t 0 ,x 0 := (t, x) ∈ [t 0 , T] × R d , x -x 0 ≤ C(t -t 0) .
In other words, if a function φ of class C 1 such that u -φ is maximal (resp. minimal) on C t 0 ,x 0 at some point (t, x) with t < T , then

-∂ t φ(t, x) + H(t, x, D x φ(t, x)) ≤ 0, (resp. ≥ 0).
The aim of Lemma 2.3.11 is to restrict V 1 and V 2 to bounded domains while preserving the property of being sub and super-solution of (2.13). In other words, this lemma claims that a solution on a set is also a solution on a bounded subset of that set.

Proof. Now, we can start the proof of Theorem 2.3.10. We claim that:

for any σ > 0, ∀(t, x) ∈ [0, T] × R d , V 1 (t, x) -V 2 (t, x) -σ(T -t) ≤ 0.
(2.16)

The claim (2.16) can be shown by contradiction. Hence, suppose that there exists σ 0 > 0 and (t 0 , x 0) ∈ [0, T [×R d such that

M := sup (t,x)∈Ct 0 ,x 0 V 1 (t, x) -V 2 (t, x) -σ 0 (T -t) ≥ V 1 (t 0 , x 0) -V 2 (t 0 , x 0) -σ 0 (T -t 0) > 0.
Now, we use the doubling variable technique. Indeed, for > 0 we set:

φ ((t, x), (s, y)) = V 1 (t, x) -V 2 (s, y) - 1 2 (s, y) -(t, x) 2 -σ 0 (T -s)
and consider the following optimization problem:

M := sup (t,x),(s,y)∈Ct 0 ,x 0 φ ((t, x), (s, y)).

(2.17)

Note that M ≥ M . Since V 1 and -V 2 are u.s.c. functions in C t 0 ,x 0 , so is the map φ . On the other hand, C t 0 ,x 0 is a compact set, therefore problem (2.17) has a maximum point denoted by ((t , x), (s , y)).

Since the map (t, x) → φ ((t, x), (s , y)) has a maximum at the point (t , x) on C t 0 ,x 0 , we have for any

(t, x) ∈ C t 0 ,x 0 : V 1 (t, x) ≤ φ(t, x) := V 1 (t , x) + 1 2 (s , y) -(t, x) 2 -(s , y) -(t , x) 2 .
Notice that φ is a smooth function which coincides with V 1 at (t , x). Therefore, V 1 -φ has a maximum at (t , x) on the set C t 0 ,x 0 . Since V 1 is a sub-solution of (2.13) and t < T , Lemma 2.3.11 implies that

-∂ t φ(t , x) + H(t , x , D x φ) ≤ 0, which means that - t -s + H t , x , x -y ≤ 0. (2.18)
In a symmetric way, since the map (s, y) → φ ((t , x), (s, y)) has a maximum at the point (s , y) on C t 0 ,x 0 , we get, for any (s, y) ∈ C t 0 ,x 0 :

V 2 (s, y) ≥ V 2 (s , y) - 1 2 (s, y) -(t , x) 2 -(s , y) -(t , x) 2 + σ 0 (s -s)
and since V 2 is a super-solution of (2.13), we obtain again by Lemma 2.3.11:

- t -s -σ 0 + H s , y , x -y ≥ 0. (2.19)
The difference between (2.18) and (2.19) gives

-σ 0 + H s , y , x -y -H t , x , x -y ≥ 0.
Now, from assumption (2.15) on H, we obtain:

-σ 0 -C 1 + x -y x -y ≥ 0.
Finally, by letting → 0 + and using Lemma 2.3.12, we get a contradiction since we have supposed that σ 0 > 0.

The following Lemma, used in the proof of Theorem 2.3.10, gives some estimates on ((t , x), (s , y)).

Lemma 2.3.12. We have:

(i) lim →0 + M = M .
(ii) lim

→0 + 1 (s , y) -(t , x) 2 = 0.
(iii) For small enough, s < T and t < T .

Proof of Lemma 2.3.11. Here, we give only the proof of the result concerning sub-solutions. In order to prove the result verified by a super-solution, one can consider its opposite, which is a sub-solution of some modified HJ equation.

Let u be an u.s.c function and a sub-solution of (2.13) on [0, T] × R d and let φ be a function of class C 1 s.t. u -φ has a strict local maximum on C t 0 ,x 0 at some point (t, x). For σ > 0, we consider the map φ σ defined, for (s, y) ∈ C(t 0 , x 0), by:

φ σ (s, y) = u(s, y) -φ(s, y) + σ 2 log(C 2 (s -t 0) 2 -y -x 0 2)
Since C t 0 ,x 0 is a compact set and φ σ (s, y) → -∞ as soon as (s, y) goes to some point at the boundary of C t 0 ,x 0 , φ σ has a maximum point (s σ , y σ) on C t 0 ,x 0 . Notice that (s σ , y σ) → (t, x) when σ → 0 + . Henceforth, for σ small enough, we get s σ < T because we have considered t < T in Lemma 2.3.11.

On the other hand, since u is a sub-solution of (2.13), we obtain:

∂ t φ(s σ , y σ) -σC 2 s σ -t 0 A σ + H(s σ , y σ , D x φ(s σ , y σ) + σ y σ -x 0 A σ) ≥ 0,
where

A σ := C 2 (s σ -t 0) 2 -y σ -x 0 2
. By using assumption (2.15), we deduce from the above inequality

∂ t φ(s σ , y σ) -σC C(s σ -t 0) -y σ -x 0 A σ + H(s σ , y σ , D x φ(s σ , y σ)) ≥ 0.
Now, the fact that A σ > 0 and C(s σ -t 0) -y σ -x 0 > 0 gives:

∂ t φ(s σ , y σ) + H(s σ , y σ , D x φ(s σ , y σ)) ≥ 0.
As a conclusion, since ∂ t φ and H are continuous (φ is a function of class C 1), and by letting σ → 0 + , we obtain the desired result.

Proof of Lemma 2.3.12. We already know that M ≥ M . Let K be an upper bound for V 1 -V 2 on C t 0 ,x 0 . Therefore,

0 < M ≤ M = V 1 (t , x) -V 2 (s , y) - 1 2 (s , y) -(t , x) 2 -σ(T -s) ≤ K - 1 2 (s , y) -(t , x) 2 .
This implies that 1 2 (s , y) -(t , x) 2 is bounded and therefore (s , y) -(t , x) → 0 when → 0 + . Now, let (t, x) be a cluster point of the bounded sequences (s , y) and (t , x) . Since V 1 -V 2 is an u.s.c function, we get:

M ≤ lim →0 M ≤ lim sup →0 V 1 (t , x) -V 2 (s , y) -σ(T -s) ≤ V 1 (t, x) -V 2 (t, x) -σ(T -t) ≤ M Henceforth, M → M when → 0 and lim →0 V 1 (t , x) -V 2 (s , y) -σ(T -s) = V 1 (t, x) -V 2 (t, x) -σ(T -t) = M, which implies that: lim →0 1 2 (s , y) -(t , x) 2 = lim →0 V 1 (t , x) -V 2 (s , y) -σ(T -s) -M = 0.
Finally, we will show that t < T . Suppose that t = T , therefore

M ≤ V 1 (T, x) -V 2 (T, x) ≤ 0
which is impossible since we have supposed that M > 0. Henceforth s < T and t < T for small enough, which completes the proof of this Lemma. Now, we introduce a sufficient condition for which the game has a value which means that the lower value v -coincides with the upper value v + . This condition is called the Isaacs' condition, which holds when:

H + (t, x, p) = H -(t, x, p), ∀(t, x, p) ∈ [0, T] × R d × R d . (2

Unconstrained problem with nonanticpative strategies

In this section, we focus on the context of nonanticipative strategies. In particular, we extend the results of Capuzzo-Dolcetta and Bardi in [11, Chapter VIII], concerning the trajectory reconstruction for both players, where they studied a differential game with infinite time horizon.

Problem formulation

We consider again a problem of type Bolza where the cost function J is defined as in (2.2) and we use the same hypothesis introduced in section 2.1. We define two value functions of this game according to the player having the advantage of information.

The value function of the first player corresponds to the case when he uses nonanticpative strategies α[•] ∈ Γ to minimize the objective function J. It can be defined as

v (t, x) := inf α[•]∈Γ sup b(•)∈B J(t, x, α[b], b). (2.21)
By the same way, we define the value function of the second player which corresponds to the case when he uses nonanticpative strategies β[•] ∈ ∆ to maximize the objective function J:

v (t, x) := sup β[•]∈∆ inf a(•)∈A J(t, x, a, β[a]). (2.22)
Remark 2.4.1. From this definition, we cannot compare directly the value functions v and v since the infimum and the supremum are not taken over the same sets of controls and strategies. Nevertheless, we will be able to give an order between the two value functions after their characterisation as unique viscosity solutions to two different Hamilton-Jacobi-Isaacs equations and by exploiting the comparison principle Theorem 2.3.10.

Characterization of value functions

The aim of this part is to characterize the value functions v and v by means of HJI equations. To this end, we start by presenting a dynamic programming principle and a regularity property verified by both value functions. The proof of (i) can be done by using the same arguments as in [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]Chapter VIII]. As for (ii), it can be proven in a similar way to Proposition 2.3.7.

From the previous result, we get the following characterization of the two players value functions v and v .

Theorem 2.4.3. v is the unique viscosity solution of (2.11) while v is the unique viscosity solution of (2.9).

In order to prove Theorem 2.4.3, we will need the following result whose proof is postponed to the end. Lemma 2.4.4. Let φ be a function of class C 1 such that -∂ t φ(t, x) + H + (t, x, D x φ(t, x)) = δ > 0. Then, there exists a strategy α * [•] ∈ Γ, such that for any b(•) ∈ B and h > 0 small enough: Proof. We will prove the result only for v , and by the same way, one can get the proof of the result for v .

t+h t ∂ t φ(s, y * (s)) + f (s, y * (s), a * (s), b(s)), D x φ(s, y * (s)) + (s, y * (s), a * (s), b(s)) ds ≤ - δh 4
We start by showing that v is a viscosity super-solution of (2.11). Let φ be a function of class C 1 and (t, x) be a local minimum for v -φ such that (v -φ)(t, x) = 0. Assume that there exists δ > 0 such that:

-∂ t φ(t, x) + H + (t, x, D x φ(t, x)) = -δ < 0.
Therefore, there exists b * ∈ B, such that for any a ∈ A,

-∂ t φ(t, x) -f (t, x, a, b *), D x φ(t, x) -(t, x, a, b *) ≤ -δ.
-∂ t φ(t, x) -f (t, x, a * (s), b *), D x φ(t, x) -(t, x, a * (s), b *) ≤ -δ, for any s ∈ [t, T].
By continuity of f , , ∂ t φ and D x φ, we get for any s ∈ [t, t + h]: On the other hand, for any s ∈ [t, t + h], we have:

-∂ t φ(s, y * (s)) -f (s, y * (s), a * (s), b *), D x φ(s, y * (s)) -(s, y * (s), a * (s), b *) ≤ - δ 2
(v -φ)(s, y * (s)) ≥ (v -φ)(t, x).
From the two above inequalities, we deduce that:

δh 2 + v (t, x) ≤ v (t + h, y * (t + h)) + t+h t (s, y * (s), a * (s), b *)ds.
Therefore we get

δh 2 + v (t, x) ≤ sup b(•)∈B v (t + h, y α[b],b t,x (t + h)) + t+h t (s, y α[b],b t,x (s), α[b](s), b(s))ds .
The last inequality holds for any α

[•] ∈ Γ, hence δh 2 + v (t, x) ≤ inf α[•]∈Γ sup b(•)∈B v (t + h, y α[b],b t,x (t + h)) + t+h t (s, y α[b],b t,x (s), α[b](s), b(s))ds = v (t, x),
which contradicts (2.23). Hence, we conclude that:

-∂ t φ(t, x) + H + (t, x, D x φ(t, x)) ≥ 0,
which means that v is a viscosity super-solution of (2.11). Now, we will prove that v is a viscosity sub-solution of (2.11). Let φ be a function of class C 1 and (t, x) be a local maximum for v -φ such that (v -φ)(t, x) = 0.

Moreover, suppose that there exists δ > 0, such that -∂ t φ(t, x) + H + (t, x, D x φ(t, x)) = δ. From Lemma 2.4.4, we deduce the existence of a strategy α * [•] ∈ Γ, such that for any b(•) ∈ B and h > 0 small enough:

φ(t + h, y α * [b],b t,x (t + h)) -φ(t, x) + t+h t (s, y α * [b],b t,x (s), α * [b](s), b(s))ds ≤ - δh 4 .
Since (t, x) is a local maximum of v -φ, the last inequality becomes:

sup b(•)∈B t+h t (s, y α * [b],b(s) t,x (s), α * [b](s), b(s))ds + v (t + h, y α * [b],b t,x (t + h)) -v (t, x) ≤ - δh 4 , which implies that inf α[•]∈Γ sup b(•)∈B v (t + h, y α[b],b t,x (t + h)) + t+h t (s, y α[b],b t,x , α[b](s), b(s))ds -v (t, x) ≤ - δh 4 < 0.
From (2.23), the last inequality is impossible. Therefore

-∂ t φ(t, x) + H + (t, x, D x φ(t, x)) ≤ 0,
which means that v is a viscosity sub-solution of (2.11).

The uniqueness of v as a viscosity solution of 2.

B ⊂ m i=1 B(b i , r i),
and for By definition of Λ,

a i = a(b i), i ∈ {1, ..., m}, G(t, x, a i , b) ≥ 3δ 4 , ∀ b ∈ B(b i , r i) B.
G(t, x, Λ(b), b) ≥ 3δ 4 , ∀ b ∈ B.
By continuity of G and the trajectory y

α * [b],b t,x
, for any b(•) ∈ B, there exists h > 0 small enough such that for any b(•) ∈ B:

G(s, y α * [b],b t,x (s), α * [b](s), b(s)) ≥ δ 2 , ∀s ∈ [t, t + h].
Finally, it is enough to integrate the last inequality between t and t + h to get the desired result.

After characterizing the value functions v and v as unique viscosity solutions to Hamilton-Jacobi-Isaacs equations in Theorem 2.4.2 and by using the comparison principle Theorem 2.3.10, we can now compare the values of the two players.

Corollary 2.4.5. In general, we have, for any

(t, x) ∈ [0, T] × R d , v (t, x) ≤ v (t, x).
Proof. Since v is a viscosity solution of (2.9), it is also a super-solution of the same equation. Therefore

-∂ t v + H -(t, x, D x v) ≥ 0,
in the viscosity sens. Now since H + ≥ H -, we obtain:

-∂ t v + H + (t, x, D x v) ≥ 0,
which means that v is a super-solution of (2.11). On the other hand, v is a sub-solution of (2.11)

v = v = v .
Proof. If the Isaacs' condition holds, (2.9) and (2.11) become reduced to the same HJ equation with an hamiltonian H = H + = H -. In this case, v becomes a super-solution of equation (2.9). Since v is the unique viscosity solution of (2.9), it is also a sub-solution of the same equation. From the comparison principle Theorem 2.3.10, we deduce that v ≤ v . Moreover, we know already from Corollary 2.4.5 that v ≥ v which ends the proof.

General comparison result

The aim of this part is to compare the different value functions v -, v + , v and v defined is sections 2.3 and 2.4. This result is deduced essentially from the theorems of characterization of those different value functions and the comparison principle Theorem 2.3.10 for Hamilton-Jacobi equations.

Corollary 2.5.1. We have the following order:

v ≤ v -≤ v + ≤ v .
Proof. From Lemma 2.3.9, v -is a super-solution of (2.11). Since v is the unique viscosity solution of (2.11), v is the smallest super-solution of this equation. Therefore, we have v ≤ v -. On the other hand, aging from Lemma 2.3.9, v + is a sub-solution of (2.9) whose unique viscosity solution is v . By the comparison theorem, we get v + ≤ v . The fact that v -≤ v + ends the proof. Remark 2.5.2. The equality between all the value functions holds when the Isaacs' condition (2.20) is verified.

Approximation by discrete time games and trajectory reconstruction

In this section, we present a method to reconstruct the optimal strategies and controls for both players. Without loss of generality, we will just focus on the problem of the first player (2.21). We extend the results presented in [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]Chapter VIII] for infinite time horizon differential game to our setting with finite time horizon. To this end, we will proceed as follow:

• First, we introduce a discrete time differential game with value function V h and a reconstruction procedure based on the knowledge of V h .

• Then, we introduce some regularity results of V h and we show how to characterize it by means of a discrete dynamic programming principle.

• Next, we use the characterization of V h to prove the optimality of the first player discrete strategy and the second player discrete control generated by our proposed reconstruction procedure for the discrete time differential game.

• After that, we prove that V h is an approximation of v . In particular, V h converges uniformly, over compact subsets, to v when the time step h goes to zero.

• Finally, we construct an optimal strategy of the first player and an optimal control of the second player for the continuous time problem (2.21).

Approximation by discrete time games

Consider a uniform partition of [0, T], with a time step h = T N (for N ≥ 1): s k = kh, k = 0, ..., N . Starting at time t ∈ [s k , s k+1 [, for some 0 ≤ k ≤ N -1 and from an initial state x ∈ R d , we define the following Euler forward scheme:

     y k = x, y k+1 = x + (s k+1 -t)f (t, x, a k , b k) y i+1 = y i + hf (s i , y i , a i , b i), i ≥ k + 1.
(2.25) corresponding to two finite sequences of controls

(a i) i ∈ A N -k and (b i) i ∈ B N -k
of the first and the second players respectively. The solution of (2.25), representing the discrete trajectory of the system, will be denoted by (y i) N i=k . Consider also an approximation of the cost functional J, denoted by J h and given by:

J h (t, x, a, b) := (s k+1 -t) (t, x, a k , b k) + h N -1 i=k+1 (s i , y i , a i , b i) + Ψ(y N), for any (a i) i ∈ A N -k and (b i) i ∈ B N -k .
Moreover, we follow the definition of discrete time nonanticpative strategies given in [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]Chapter VIII]. In fact, at each time step s i , 0 ≤ i ≤ N -1, the first player, and before choosing his action a i ∈ A, observes the choice of his opponent b i ∈ B. In other words, the second player must take his decision before the first player at each time step. The mathematical formulation of a discrete nonanticpative strategy for the first player is given as follows:

Definition 2.6.1. A discrete nonanticpative strategy α h [•] of the first player is a mapping from B N to A N , such that for any (b i) i , (b i) i ∈ B N and for any 0 ≤ j ≤ N -1, if b i = b i , ∀ i ≤ j, then α h [b] i = α h [b] i , ∀i ≤ j.
The set of discrete nonanticipative strategies of the first player will be denoted by Γ h .

The discrete value function of the first player is defined, for

t ∈ [s k , s k+1 [with 0 ≤ k ≤ N -1 and x ∈ R d , by: V h (t, x) := inf α h [•]∈Γ h sup (b i) i ∈B N -k J h (t, x, α h [b], b). (2
V hn (t n , x n) = max b∈B min a∈A τ n (t n , x n , a, b) + V hn (s n k+1 , x n + τ n f (t, x n , a, b)) .
There exists b n ∈ B s.t. for any a ∈ A:

V hn (t n , x n) ≤ τ n (t n , x n , a, b n) + V hn (s n k+1 , x n + τ n f (t, x n , a, b n)).
We set y n := x n + τ n f (t, x, a, b n). For h n small enough, (s n k+1 , y n) will still in B. Since (t n , x n) is the maximum of V hn -φ over B we have:

(V hn -φ)(t n , x n) ≥ (V hn -φ)(s n k+1 , y n).
From the two above inequalities, we deduce for any a ∈ A:

φ(t n , x n) -φ(s n k+1 , y n) -τ n (t n , x n , a, b n) ≤ 0.
The Taylor expansion of φ gives:

φ(s n k+1 , y n) = φ(t n , x n) + τ n ∂φ(t n , x n) ∂t + D x φ(t n , x n), (y n -x n) + (s n k+1 -t n) 2 + y n -x n 2 × (s n k+1 , y n) -(t n , x n) ,
where (s n k+1 , y n) -(t n , x n) → 0 when n → +∞. From the last inequality and the Taylor expansion, and after dividing by τ n , we get, for any a ∈ A:

- ∂φ(t n , x n) ∂t -D x φ(t n , x n), f (t n , x n , a, b n) -(t n , x n , a, b n) + 1 + f (t n , x n , a, b n) 2 × (s n k+1 , y n) -(t n , x n) ≤ 0.
Now, we can extract a sequence from (b n) n which converges to b ∈ B and we let n → ∞, we get for any a ∈ A:

- ∂φ(t, x) ∂t -D x φ(t, x), f (t, x, a, b) -(t, x, a, b) ≤ 0.
It follows that:

- ∂φ(t, x) ∂t + max a∈A -D x φ(t, x), f (t, x, a, b) -(t, x, a, b) ≤ 0, therefore - ∂φ(t, x) ∂t + min b∈B max a∈A -D x φ(t, x), f (t, x, a, b) -(t, x, a, b) ≤ 0, which means that - ∂φ(t, x) ∂t + H + (t, x, D x φ(t, x)) ≤ 0.
As a conclusion, v is a sub-solution of (2.11). Now, consider the function v defined by:

v(t, x) := lim inf (s,y)→(t,x),h→0 + V h (s, y),
and the aim is to prove that v is a super-solution of (2.11). Let φ be a function of class C 1 and (t, x) a strict minimum of v -φ in B := B((t, x), r), with r > 0. Again by Lemma 2.6.3, there exist (h n) n and

((t n , x n)) n ∈ B such that (t n , x n)
is the minimum of V hn -φ over B and when n goes to +∞, we have

h n → 0, (t n , x n) → (t, x), V hn (t n , x n) → v(t, x).
Moreover, there exists k ≥ 0 such that

t n ∈ [s n k , s n k+1 [. We set τ n := s n k+1 -t n > 0.
From the discrete dynamic programming principle (2.27), we deduce that for any b ∈ B:

V hn (t n , x n) -min a∈A τ n (t n , x n , a, b) + V h (s n k+1 , x n + τ n f (t n , x n , a, b)) ≥ 0.
We fix b ∈ B, there exists a n := a(b) ∈ A (depending on b) such that:

V hn (t n , x n) -τ n (t n , x n , a n , b) + V hn (s n k+1 , x n + τ n f (t n , x n , a n , b)) ≥ 0.
We set now

y n := x n + τ n f (t n , x, a n , b). For h n small enough, (s n k+1 , y n) will still in B. Since (t n , x n) is the minimum of V hn -φ over B, we obtain (V hn -φ)(t n , x n) ≤ (V hn -φ)(s n k+1 , y n).
From the two above inequalities, we deduce that:

φ(t n , x n) -φ(s n k+1 , y n) -τ n (t n , x n , a n , b) ≥ 0.
The Taylor expansion of φ gives:

φ(s n k+1 , y n) = φ(t n , x n) + τ n ∂φ(t n , x n) ∂t + D x φ(t n , x n), (y n -x n) + (s n k+1 -t n) 2 + y n -x n 2 × (s n k+1 , y n) -(t n , x n) ,
where

(s n k+1 , y n) -(t n , x n) → 0 when n → +∞.
From the last inequality and the Taylor expansion and after dividing by τ n , we obtain:

- ∂φ(t n , x n) ∂t -D x φ(t n , x n), f (t n , x n , a n , b) -(t n , x n , a n , b) + 1 + f (t n , x n , a n , b) 2 × (s n k+1 , y n) -(t n , x n) ≥ 0.
Now, we can extract a sequence from (a n) n which converges to a ∈ A and we let n → ∞, we get:

- ∂φ(t, x) ∂t -D x φ(t, x), f (t, x, a, b) -(t, x, a, b) ≥ 0, henceforth - ∂φ(t, x) ∂t + max a∈A -D x φ(t, x), f (t, x, a, b) -(t, x, a, b) ≥ 0, therefore - ∂φ(t, x) ∂t + min b∈B max a∈A -D x φ(t, x), f (t, x, a, b) -(t, x, a, b) ≥ 0, which means that - ∂φ(t, x) ∂t + H + (t, x, D x φ(t, x)) ≥ 0.
As a conclusion, v is a super-solution of (2.11).

To conclude, we have shown that v and v are respectively a sub and a super-solution of (2.11) which has v as a unique solution in the viscosity sense. Therefore, by applying the comparison principle Theorem 2.3.10 , we obtain

v ≤ v ≤ v. Since we have already v ≤ v, we get v = v = v.
Finally, by exploiting the properties of weak limits, see for instance [11, Chapter V], we deduce the uniform convergence of V h to v over compact subsets of [0, T] × R d .

Trajectory reconstruction

Now, we present how to synthesize an optimal strategy for the first player and an optimal control for the second player in feedback form using the value function V h , see Algorithm 2.1. Recall that an optimal choice of the second player corresponds to the worst case that can occur for the first player. In order to prove the optimality of the first player discrete strategy and the second player discrete control generated by Algorithm 2.1, V h should verify a discrete dynamic programming principle. This is the purpose of the following Proposition which starts with a regularity result on V h needed to prove the discrete dynamic programming principle.

Proposition 2.6.4. Assume (H2.1), (H2.2) and (H2.3), then:

(i) V h is Lipschitz continuous w.r.t.
the space variable uniformly in the time variable.

(ii) For t ∈ [s k , s k+1 [, with 0 ≤ k ≤ N -1, and x ∈ R d , we have: V h (t, x) = max b∈B min a∈A (s k+1 -t) (t, x, a, b) + V h (s k+1 , x + (s k+1 -t)f (t, x, a, b)) . (2.27) Proof. (i) We fix t ∈ [0, T [and let 0 ≤ k ≤ N -1 such that t ∈ [s k , s k+1 [and x, y ∈ R d . For > 0, there exists α h [•] ∈ Γ h such that: V h (t, y) ≥ sup (b i) i ∈B N -k J h (t, y, α h [b], b) - 2 .
Algorithm 2.1: Worst case

1: Initialize y * k = x with 0 ≤ k ≤ N -1. 2: for i = k to N -1 do 3:
The optimal choice of the second player b * i ∈ B is defined by:

b * i ∈      argmax b∈B min a∈A τ (t, x, a, b) + V h (s k+1 , x + τ f (t, x, a, b)) , if i = k, argmax b∈B min a∈A h (s i , y * i , a, b) + V h (s i+1 , y * i + hf (s i , y * i , a, b)) , else,
where τ := (s k+1 -t).

4:

The optimal reaction of the first player

α * h [b *] i := a * i ∈ A is given by: a * i ∈      argmin a∈A τ (t, x, a, b * k) + V h (s k+1 , x + τ f (t, x, a, b * k)) , if i = k, argmin a∈A h (s i , y * i , a, b * i) + V h (s i+1 , y * i + hf (s i , y * i , a, b * i)) , else. 5:
The new state position y * i+1 is given by:

y * i+1 = x + τ f (t, x, a * k , b * k), if i = k, y * i + hf (s i , y * i , a * i , b * i), else.
6: end for 7: return A discrete optimal strategy α * h [•] of the first player, a discrete optimal control (b * i) i of the second player and a discrete optimal trajectory (y * i) i .

On the other hand, there exists

(b i) i ∈ B N -k such that: V h (t, x) ≤ sup (b i) i ∈B N -k J h (t, x, α h [b], b) ≤ J h (t, x, α h [b], b) + 2 .
Denote by

(a i) i := α h [b] ∈ A N -k .
From the first inequality involving V h (t, y), we deduce that:

V h (t, y) ≥ J h (t, y, a , b) - 2 .
Now from the two above inequalities, we get:

V h (t, x) -V h (t, y) ≤ J h (t, x, a , b) -J h (t, y, a , b) + . Denote by (y x i) i and (y y i) i the solutions of (2.25) corresponding to ((a i) i , (b i) i) ∈ A N -k ×B N -k
and starting respectively from x and y. We have the following estimation:

|J h (t, x, a , b) -J h (t, y, a , b)| ≤ (s k+1 -t)| (t, x, a k , b k) -(t, y, a k , b k)| + h N -1 i=k+1 | (s i , y x i , a i , b i) -(s i , y y i , a i , b i)| + |Ψ(y x N) -Ψ(y y N)|.
Now we use the Lipschitz continuity of and Ψ to get:

|J h (t, x, a , b) -J h (t, y, a , b)| ≤ hL 2 x -y + hL 2 N -1 i=k+1 y x i -y y i + L 3 y x N -y y N ,
where L 2 and L 3 are the Lipschitz constants of and Ψ respectively. By the Lipschitz continuity of f , with Lipschitz constant L 1 , we get the following estimation:

y x i -y y i ≤ (1 + hL 1) i-k x -y , i ≥ k + 1, which implies that: N -1 i=k+1 y x i -y y i ≤ e T L 1 hL 1 x -y and y x N -y y N ≤ e T L 1 x -y .
Combining the above estimations implies the existence of some constant C > 0 such that:

|V h (t, x) -V h (t, y)| ≤ C x -y + .
The fact that is chosen arbitrarily ends the proof (i).

(ii) Now we prove the discrete dynamic programming principle. We set, for t

∈ [s k , s k+1 [and x ∈ R d , u(t, x) := max b∈B min a∈A (s k+1 -t) (t, x, a, b) + V h (s k+1 , x + (s k+1 -t)f (t, x, a, b)) .
We start by showing that V h (t, x) ≤ u(t, x). For any b ∈ B, there exists a(b) ∈ A (depending on b) such that:

u(t, x) ≥ min a∈A (s k+1 -t) (t, x, a, b) + V h (s k+1 , x + (s k+1 -t)f (t, x, a, b)) = (s k+1 -t) (t, x, a(b), b) + V h (s k+1 , x + (s k+1 -t)f (t, x, a(b), b)). Let (b i) i ∈ B N -k
be a sequence of actions of the second player and let's define:

x := x + (s k+1 -t)f (t, x, a(b k), b k). For > 0, let α h [•] ∈ Γ h verifying: + V h (s k+1 , x) ≥ sup (b i) i ∈B N -k-1 J h (s k+1 , x , α h [b], b). Now let's define δ h [•] ∈ Γ h such that, for any (b i) i ∈ B N -k , δ h [b] i := a(b k), if i = k α h [b] i , if i ≥ k + 1.
For any

(b i) i ∈ B N -k , we have J h (t, x, δ h [b], b) = (s k+1 -t) (t, x, a(b k), b k) + h N -1 i=k+1 (s i , y i , δ h [b] i , b i) + Ψ(y N) = (s k+1 -t) (t, x, a(b k), b k) + J h (s k+1 , x , α h [b], b)
where

(b i) i ∈ B N -k-1 is the restriction of (b i) i for i ≥ k + 1. Therefore we get V h (t, x) ≤ sup (b i) i ∈B N -k J h (t, x, δ h [b], b) ≤ sup (b i) i ∈B N -k (s k+1 -t) (t, x, a(b k), b k) + J h (s k+1 , x , α h [b], b) ≤ sup b k ∈B (s k+1 -t) (t, x, a(b k), b k) + sup (b i) i ∈B N -k-1 J h (s k+1 , x , α h [b], b) ≤ sup b k ∈B { + (s k+1 -t) (t, x, a(b k), b k) + V h (s k+1 , x)}.
On the other hand, we have

u(t, x) = max b∈B min a∈A (s k+1 -t) (t, x, a, b) + V h (s k+1 , x + (s k+1 -t)f (t, x, a, b)) ,
and

max b∈B min a∈A (s k+1 -t) (t, x, a, b) + V h (s k+1 , x + (s k+1 -t)f (t, x, a, b)) = max b∈B (s k+1 -t) (t, x, a(b), b) + V h (s k+1 , x) .
Combining the above estimations gives V h (t, x) ≤ + u(t, x), for any > 0, which implies that V h (t, x) ≤ u(t, x).

Now, we will prove the converse inequality. Let b ∈ B, such that

u(t, x) = min a∈A (s k+1 -t) (t, x, a, b) + V h (s k+1 , x + (s k+1 -t)f (t, x, a, b)) .
For any discrete control of the second player,

(b i) i ∈ B N -k , we define the following control sequence (bi) i ∈ B N -k : bi := b, if i = k, b i , else.
For > 0, consider an -optimal discrete nonanticpative strategy

α h [•] ∈ Γ h for V h (t, x) i.e. + V h (t, x) ≥ sup (b i) i ∈B N -k J h (t, x, α h [b], b). (2
[•] ∈ Γ h starting from s k+1 , for (b i) i ∈ B N -k-1 , by δ h [b] i := α h [b] i , for i ≥ k + 1.
From the definition of δ h [•], we get

V h (s k+1 , x) = inf α h [•]∈Γ h sup (b i) i ∈B N -k-1 J h (s k+1 , x , α h [b], b) ≤ sup (b i) i ∈B N -k-1 J h (s k+1 , x , δ h [b], b) ≤ J h (s k+1 , x , δ h [b], b) + (2.29)
where

(b i) i ∈ B N -k-1
is an -optimal for the term sup

(b i) i ∈B N -k-1 J h (s k+1 , x , δ h [b], b). Claim that u(t, x) ≤ J h (t, x, α h [b], b) + , where (b i) i ∈ B N -k is defined as follows: b i := b, if i = k, b i , if i ≥ k + 1.
From the above claim, we deduce that

u(t, x) ≤ sup (b i) i ∈B N -k J h (t, x, α h [b], b) + .
Together with (2.28), we get u(t, x) ≤ V h (t, x) + 2 , for any > 0 which ends the proof. Now let's prove the above claim.

u(t, x) = max b∈B min a∈A (s k+1 -t) (t, x, a, b) + V h (s k+1 , x + (s k+1 -t)f (t, x, a, b)) = min a∈A (s k+1 -t) (t, x, a, b) + V h (s k+1 , x + (s k+1 -t)f (t, x, a, b)) ≤ (s k+1 -t) (t, x, a, b) + V h (s k+1 , x) ≤ (s k+1 -t) (t, x, a, b) + J h (s k+1 , x , δ h [b], b) + ,
where the last inequality holds from (2.29). Since.

a = α h [b] k , b k = b and δ h [b] i = α h [b] i , for any i ≥ k + 1
, we obtain the following equality which ends the proof of the claim:

(s k+1 -t) (t, x, a, b) + J h (s k+1 , x , δ h [b], b) = J h (t, x, α h [b], b).
Thanks to the results given in Proposition 2.6.4, we deduce an additional result on the regularity of V h . Corollary 2.6.5. V h is locally Lipschitz continuous w.r.t. the time variable uniformly in the space variable.

Proof. Let x ∈ R d and t ∈ [0, T [be fixed and take s ∈ [0, T] close enough to t. We can distinguish two cases:

• Suppose that t ∈]s k , s k+1 [for some k ∈ {0, ..., N -1}. In this case, s ∈]s k , s k+1 [and from (2.27) we can write:

|V h (s, x) -V h (t, x)| ≤ max b∈B min a∈A |(s k+1 -s) (s, x, a, b) -(s k+1 -t) (t, x, a, b)| + |V h (s k+1 , x s) -V h (s k+1 , x t)| ,
where x s := x + (s k+1 -s)f (s, x, a, b) and

x t := x + (s k+1 -t)f (t, x, a, b).
Since is continuous w.r.t. to all its arguments and [0, T], A and B are compact sets, (τ, a, b) → (τ, x, a, b) is bounded by some constant M . Using also the Lipschitz continuity of , we get:

|t (t, x, a, b) -s (s, x, a, b)| ≤ t| (t, x, a, b) -(s, x, a, b)| + |t -s|| (s, x, a, b)| ≤ (tL 2 + M)|t -s|,
where L 2 is the Lipschitz constant of . Henceforth, we obtain:

|(s k+1 -s) (s, x, a, b) -(s k+1 -t) (t, x, a, b)| ≤ s k+1 L 2 |t -s| + (tL 2 + M)|t -s| ≤ (2T L 2 + M)|t -s|.
Furthermore, since f is continuous w.r.t. to all its arguments and [0, T], A and B are compact sets,

(τ, a, b) → f (τ, x, a, b) is bounded.
By the Lipschitz continuity of f and similar computations as we did above for , we can deduce the existence of some real constant c 1 > 0 such that the following estimation holds:

x s -x t ≤ c 1 |t -s|.
From Proposition 2.6.4, V h is Lipschitz w.r.t. the space variable together with the last inequality, we deduce the existence of a real constant c 2 > 0 such that:

|V h (s k+1 , x s) -V h (s k+1 , x t)| ≤ c 2 |t -s|.
Combining the above inequalities implies the existence of some real constant c > 0 such that:

|V h (s, x) -V h (t, x)| ≤ max b∈B min a∈A c|t -s| = c|t -s|.
• Now suppose that t = s k for some k ∈ {0, ..., N -1}. First consider the case where s ∈ [s k , s k + θ[with θ > 0. Again, we can write:

|V h (s, x) -V h (t, x)| = |V h (s, x) -V h (s k , x)| ≤ max b∈B max a∈A |(s k+1 -s) (s, x, a, b) -(s k+1 -s k) (s k , x, a, b)| +|V h (s k+1 , x s) -V h (s k+1 , x k+1)| ,
where x s is defined as above and x k+1 := x + hf (t, x, a, b). In a similar way to the first case, we obtain the desired estimation i.e.

|V h (s, x) -V h (s k , x)| ≤ c|t -s|.
Now, consider the other case where s ∈]s k -θ, s k]. By the discrete dynamic programming principle (2.27), V h (s, x) can be written as follows:

V h (s, x) = max b∈B min a∈A (s k -s) (s, x, a, b) + V h (s k , x + (s k -s)f (s, x, a, b)) .
Therefore, we can write:

|V h (s, x) -V h (s k , x)| = max b∈B min a∈A (s k -s)| (s, x, a, b)| + |V h (s k , x + (s k -s)f (s, x, a, b)) -V h (s k , x) .
From Proposition 2.6.4, V h is Lipschitz w.r.t. the space variable. Hence there exists some real constant c > such that:

|V h (s k , x + (s k -s)f (s, x, a, b)) -V h (s k , x)| ≤ c x + (s k -s)f (s, x, a, b) -x ≤ c|s k -s| × f (s, x, a, b) ≤ cM |s k -s|, since (τ, a, b) → f (τ, x, a, b) is bounded by some real constant M > 0. Moreover, (τ, a, b) → (τ, x, a, b) is bounded by another real constant M > 0. Therefore, |(s k - s) (s, x, a, b)| ≤ M |s k -s|.
As a conclusion, we get:

|V h (s, x) -V h (s k , x)| ≤ max b∈B min a∈A (cM + M)|s k -s| = (cM + M)|s k -s|.
Corollary 2.6.6. V h is the unique solution of the discrete dynamic programming equation (2.27) with a terminal condition of type V h (T, x) = Ψ(x), for any x ∈ R d .

Proof. Consider two continuous functions u and w that satisfy the discrete dynamic programming equation (2.27) and u(T, x) = w(T, x), for any x ∈ R d .

We claim that u ≤ w. Indeed, let

(t, x) ∈ [s k , s k+1 [×R d , for k ∈ {0, ..., N -1}.
By continuity of u and f and by compactness of B, there exists b 0 ∈ B such that for any a ∈ A:

u(t, x) ≤ (s k+1 -t) (t, x, a, b 0) + u(s k+1 , x + (s k+1 -t)f (t, x, a, b 0)).
Moreover, by continuity of w and f and by compactness of A, there exists a 0 ∈ A such that:

w(t, x) ≥ min a∈A (s k+1 -t) (t, x, a, b 0) + w(s k+1 , x + (s k+1 -t)f (t, x, a, b 0)) ≥ (s k+1 -t) (t, x, a 0 , b 0) + w(s k+1 , x + (s k+1 -t)f (t, x, a 0 , b 0))
From the two above inequalities, we deduce that:

u(t, x) -w(t, x) ≤ u(s k+1 , x k+1) -w(s k+1 , x k+1), with x k+1 := x + (s k+1 -t)f (t, x, a 0 , b 0).
By the same arguments, we get

u(s k+1 , x k+1) -w(s k+1 , x k+1) ≤ u(s k+2 , x k+2) -w(s k+2 , x k+2) ≤ ... ≤ u(s N , x N) -w(s N , x N),
for some x k+2 ,...,x N ∈ R d . The fact that u(s N , x N) -w(s N , x N) = u(T, x N) -w(T, x N) = 0 ends the proof of the claim and in a similar way, we get u ≥ w which gives the desired result.

The following Proposition concerns the optimality of

(α * h [•], (b * i) i) ∈ Γ h × B N ,
Let (t, x) ∈ [s k , s k+1 [×R d , for k ∈ {0, ..., N -1}. For any (b i) i ∈ B N -k , we have: J h (t, x, α * h [b], b) ≤ V h (t, x),
and the equality holds when

(b i) i = (b * i) i .
Proof. From Proposition 2.6.4, we have:

V h (t, x) = max b∈B min a∈A (s k+1 -t) (t, x, a, b) + V h (s k+1 , x + (s k+1 -t)f (t, x, a, b)) .
Through the instructions of Algorithm 2.1, we deduce:

V h (t, x) = min a∈A (s k+1 -t) (t, x, a, b * k) + V h (s k+1 , x + (s k+1 -t)f (t, x, a, b * k)) = (s k+1 -t) (t, x, a * k , b * k) + V h (s k+1 , y * k+1).
By the same way we get

V h (s k+1 , y * k+1) = h (s k+1 , y * k+1 , a * k+1 , b * k+1) + V h (s k+2 , y * k+2),
and in general, we have for any i ∈ {k + 1, ..., N -1}:

V h (s i , y * i) = h (s i , y * i , a * i , b * i) + V h (s i+1 , y * i+1).
At the last time step s N = T , we have V h (s N , y * N) = Ψ(y * N). Therefore we conclude:

V h (t, x) = (s k+1 -t) (t, x, a * k , b * k) + h N -1 i=k+1 (s i , y * i , a * i , b * i) + Ψ(y * N) = J h (t, x, α * h [b *], b *).
In a similar way, one can prove that for any

(b i) i ∈ B N -k : J h (t, x, α * h [b], b) ≤ V h (t, x). Remark 2.6.8. For (t, x) ∈ [0, T] × R d , the couple (α * h [•], (b * i) i)
, generated by Algorithm 2.1, constitutes a Nash equilibrium for the discrete game (2.26) in the terminology of the theory of noncooperative games. This means that every player cannot improve his guaranteed outcome, given by V h (t, x), by any unilateral deviation from his optimal choice, α * h [•] for the first player and (b * i) i for the second player.

In order to conclude this part, we present the following result whose aim is to define a strategy for the first player and a control for the second player, such that when the time step h goes to zero, the corresponding value of J converges to the first player value function v . Theorem 2.6.9.

Let (t, x) ∈ [0, T [×R d , there exist (α * h [•], b * h (•)) ∈ Γ × B verifying lim h→0 + J(t, x, α * h [b * h], b * h) = v (t, x).
Proof. We introduce a new subset of B denoted by B h and defined by

B h := b(•) ∈ B | b(s) = b(s i), ∀s ∈ [s i , s i+1 [, for i = 0, ..., N -1 .
A h is the subset of A defined in a similar way to B h .

Let (t, x) ∈ [0, T [×R d and k ∈ {0, ..., N -1 such that t ∈ [s k , s k+1 [and consider (α * h [•], (b * i) i) ∈ Γ h ×B N -k , generated by Algorithm 2.1 and (α * h [•], b * h (•)) ∈ Γ × B defined by: b * h (s) := b * s/h , and α * h [b](s) := α * h [b] s/h
where for any b(•) ∈ B, we define (bi

) i ∈ B N -k by bi := b(ih) for i = k, ..., N -1. Notice that b * h (•) ∈ B h and, for any b(•) ∈ B, α * h [b](•) ∈ A h . First, recall that the cost functional J, for (a(•), b(•)) ∈ A × B,
is given by the following expression:

J(t, x, a, b) = T t (s, y a,b t,x (s), a(s), b(s))ds + Ψ(y a,b t,x (T)),
and

J h , for ((a i) i , (b i) i) ∈ A N -k × B N -k
, is given by:

J h (t, x, a, b) = (s k+1 -t) (t, x, a k , b k) + h N -1 i=k+1 (s i , y i , a i , b i) + Ψ(y N). For (a(•), b(•)) ∈ A h × B h , let's define ((âi) i , (bi) i) ∈ A N -k × B N -k such that: âi = a(ih) and bi = b(ih) for i = k, ..., N -1.
For any (a(•), b(•)) ∈ A h × B h , we claim that:

|J(t, x, a, b) -J h (t, x, â, b)| ≤ O(h), (2.30)
which implies

|J(t, x, α * h [b * h], b * h) -J h (t, x, α * h [b *], b *)| ≤ O(h). (2.31)
On the other hand, from Proposition 2.6.7 and Theorem 2.6.2, we have

J h (t, x, α * h [b *], b *) = V h (t, x) and lim h→0 + V h (t, x) = v (t, x).
Combining the two above equalities with estimation (2.31) ends the proof. Now, we will justify the claim (2.30

). Let (a(•), b(•)) ∈ A h × B h and ((âi) i , (bi) i) ∈ A N -k × B N -k
be defined as above and denote by (ŷi) i the solution of (2.25) corresponding to ((âi) i , (bi) i).

One can prove the following estimations:

• For any s ∈ [t, s k+1 [: y a,b t,x (s) -ŷk ≤ O(h).
• By induction, for any i ∈ {k + 1, ..., N -1} and for any s ∈ [s i , s i+1 [:

y a,b t,x (s) -ŷi ≤ O(h).
• And finally:

y a,b t,x (T) -ŷN ≤ O(h).
Using the definitions of J and J h above, we obtain:

|J(t, x, a, b) -J h (t, x, â, b)| ≤ s k+1 t | (s, y a,b t,x (s), a(s), b(s)) -(t, x, âk , bk)|ds + N -1 i=k+1 s i+1 s i | (s, y a,b t,x (s), a(s), b(s)) -(s i , ŷi , âi , bi)|ds + |Ψ(y a,b t,x (T)) -Ψ(ŷN)|.
Moreover, from the definition of a(•), b(•), (âi) i and (bi) i , we deduce:

• For any s ∈ [t, s k+1 [, a(s) = a(t) = âk and b(s) = b(t) = bk . • For any i ∈ {k + 1, ..., N -1} and any s ∈ [s i , s i+1 [, a(s) = a(s i) = âi and b(s) = b(s i) = bi .
Therefore, using the Lipschitz continuity of and Ψ, the last inequality becomes:

|J(t, x, a, b) -J h (t, x, â, b)| ≤ s k+1 t L 2 (|s -t| + y a,b t,x (s) -ŷk)ds + N -1 i=k+1 s i+1 s i L 2 (|s i+1 -s i | + y a,b t,x (s) -ŷi)ds + L 3 (y a,b t,x (T) -ŷN) ,
where L 2 and L 3 are the Lipschitz constants of and Ψ respectively. By the above estimations between the trajectories y a,b t,x (•) and (ŷi) i , we obtain the following estimations:

s k+1 t L 2 (|s -t| + y a,b t,x (s) -ŷk)ds ≤ s k+1 t L 2 (h + O(h))ds ≤ hO(h) = O(h 2),
and

N -1 i=k+1 s i+1 s i L 2 (|s i+1 -s i | + y a,b t,x (s) -ŷi)ds ≤ N -1 i=k+1 s i+1 s i L 2 (h + O(h))ds ≤ N hO(h) = T O(h) = O(h).
As a conclusion, we get:

|J(t, x, a, b) -J h (t, x, â, b)| ≤ O(h).

A game example

Consider a zero-sum differential game with a finite time horizon T > 0 and state dimension d = 1. The dynamics of the system is given by:

ẏ(s) = f (s, y(s), a(s), b(s)) = |a(s) -b(s)|, s ∈ [0, T],
where the first and the second player controls a(•) and b(•) take values respectively in the control sets A and

B with A = B = [-1, 1].
The distributed and the final cost functions are given by (s, x, a, b) = e x and Ψ(•) = 0. The cost functional J, starting from (t, x) ∈ [0, T] × R and corresponding to the controls (a(•), b(•)) ∈ A × B, is given by:

J(t, x, a, b) = T t (s, y a,b t,x (s), a(s), b(s))ds.

Problem of the first player

This game corresponds to the case when the first player, by using nonanticipative strategies, tries to minimize J. The value function corresponding to this problem is of the form: s) ds.

v(t, x) = inf α[•]∈Γ sup b(•)∈B T t e y α[b],b t,x (
Since ẏ = f ≥ 0 and the distributed cost is strictly increasing w.r.t. x, the optimal strategy of the the first player is to keep the system in its initial position. In other words, he tries to keep the dynamics f equal to zero. Henceforth, the first player optimal strategy is of the form:

α * [b](s) = b(s), ∀s ∈ [0, T].
for any choice b(•) ∈ B of the second player. Finally, we get the explicit expression of the value function v:

v(t, x) = (T -t)e
x , for any t ∈ [0, T] and x ∈ R.

Problem of the second player

Now, we investigate the case when the second player uses nonanticipatives strategies in order to maximise J. The value function corresponding to this problem is:

u(t, x) := sup β[•]∈∆ inf a(•)∈A T t e y a,β[a] t,x (s) ds.
Again, as the distributed cost is strictly increasing, the optimal choice for the second player is to maximize the dynamics f . Thus,

β * [a](s) = 1 if a(s) < 0, - 1 else.
Knowing this information, the best choice of the first player is the one that minimizes the dynamics, hence a * (•) ≡ 0.

As a conclusion, the optimal trajectory associated to those choices is given by:

y * t,x (s) = x + s -t, s ∈ [t, T],
and the value function u(t, x) = e x (e T -t -1) for any t ∈ [0, T] and x ∈ R.

On the other hand, one can check that u ≥ v, which is in accordance with the result of Corollary 2.4.5.

Introduction

In this chapter, we study the Hamilton-Jacobi (HJ) approach for a two-person zero-sum differential game with state constraints and where the controls of the two players are coupled within the dynamics, the cost functions and the state constraints. We characterize the value function of such a problem through an auxiliary differential game free of state constraints. Furthermore, we establish a link between the optimal strategies of the constrained problem and those of the auxiliary problem and we propose a general approach allowing to construct approximated optimal feebacks of the constrained differential game for both players.

Two-person zero-sum differential games provide a convenient framework for analyzing real conflict situations between two players where the gain of one player corresponds certainly to a loss of the other player.

The most classical example is the Target Problem where the dynamics is controlled by both players, one player wants the dynamical system to reach, in finite time, a given set called the target while his opponent tries to avoid this target forever (see [START_REF] Cardaliaguet | A differential game with two players and one target[END_REF][START_REF] Cardaliaguet | A differential game with two players and one target: The continuous case[END_REF][START_REF] Cardaliaguet | Nonsmooth semipermeable barriers, Isaacs' equation, and application to a differential game with one target and two players[END_REF]). Another classical example is the Pursuit-Evasion game for which each player controls only half of the system's coordinates and the cost is the capture time which is the first time instant when the first player's coordinates become close enough to those of his opponent (see [START_REF] Cardaliaguet | Pursuit differential games with state constraints[END_REF][START_REF] Bardi | Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations[END_REF][START_REF] Falcone | Numerical methods for differential games based on partial differential equations[END_REF]).

Differential games can be studied in different contexts depending on the information advantage accorded to the two players. The most popular class of information pattern is nonanticipative strategies where one of the two players knows, at each time instant, the past and present choices of his opponent without having any idea about his future actions, see [START_REF] Elliott | Cauchy problems for certain Isaacs-Bellman equations and games of survival[END_REF][START_REF] Evans | Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF][START_REF] Roxin | Axiomatic approach in differential games[END_REF][START_REF] Varaiya | On the existence of solutions to a differential game[END_REF][START_REF] Elliott | The existence of value in differential games[END_REF][START_REF] Elliott | Values in differential games[END_REF].

We consider a two-person zero-sum differential game subject to state constraints where the first player is allowed to use nonanticipative strategies which are mappings from the set of controls of the second player, B, to the actions set of the first player, A. For a given finite time horizon T > 0, consider the following dynamical system: t,x (s) ∈ K where K is a closed non-empty subset of R d representing the constraints set. We are interested in the following differential game with maximum running cost:

ẏ(s) = f (s, y(s), α[b](s), b(s)), a.e. s ∈ [t, T], y(t) = x, (3.1
v(t, x) := inf α[•]∈Γ π(t, x; α) (3.2)
with the convention that inf ∅ = +∞ and where π is defined by:

π(t, x; α) :=    sup b(•)∈B max s∈[t,T] φ(y α[b],b t,x (s)) ψ(y α[b],b t,x (T)) , if y α[b],b t,x (•) is admissible, ∀b(•) ∈ B, +∞, else.
The cost functions φ : R d → R and ψ : R d → R are continuous. This problem formulation can model the situation where the first player, representing the controller, uses his advantage of information to counteract to unknown disturbances, representing the second player of the game, that can affect the system and the cost functions, see section 3.5. For such situations, the traditional approach is to represent the disturbances via a statistical model and to optimize the expected value of the cost. However, this approach may not be effective against some catastrophic cases and it is not always possible to have a good statistical model. Therefore this situation can be modeled by a two-person zero-sum differential game where the first player minimizes the cost in the case of the worst behavior of his opponent. We can also imagine another game example where the second player objective is to maximize the cost π or to violate the state constraints.

Without state constraints, K ≡ R d , this differential game was considered in [START_REF] Serea | Discontinuous differential games and control systems with supremum cost[END_REF][START_REF] Barron | Differential games with maximum cost[END_REF] with a maximum bounded cost function and in [START_REF] Rapaport | Characterization of barriers of differential games[END_REF] with a Lipschitz continuous infimum cost. It was also studied in the case of a single controller in [START_REF] Quincampoix | A viability approach for optimal control with infimum cost[END_REF] through characterizing the value function epigraph by use of a viability kernel.

In the presence of state constraints, K = R d , some difficulties appear. Indeed, the value function v may become discontinuous and its characterization as the unique viscosity solution of an HJ equation requires some additional assumptions involving the dynamics f and K. In the case of one controller problems, the most popular assumption which is the Inward Pointing Condition, imposes the existence of a control value, at each point of the boundary of K, that lets the dynamics point into the interior of K. We refer to [START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy[END_REF][START_REF] Miele | Optimal abort landing trajectories in the presence of windshear[END_REF][START_REF] Soner | Optimal control with state-space constraint I[END_REF] for this assumption and to [START_REF] Miele | Quasi-steady flight to quasi-steady flight transition for abort landing in a windshear: trajectory optimization and guidance[END_REF][START_REF] Rapaport | Characterization of barriers of differential games[END_REF][START_REF] Serea | Discontinuous differential games and control systems with supremum cost[END_REF] for weaker inward pointing assumptions. Equivalent assumptions in the case of a two-person game can be found in [START_REF] Cardaliaguet | Pursuit differential games with state constraints[END_REF][START_REF] Bettiol | Zero-sum state constrained differential games: existence of value for Bolza problem[END_REF][START_REF] Bettiol | Existence and characterization of the values of two player differential games with state constraints[END_REF]. Such assumptions cannot be always satisfied, which complicates the characterization of the value function as solution of an HJ equation. In this general setting, K = R d , this problem has been studied in [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF] in the case of a single controller and without assuming any controllability assumption by following the level set approach introduced in [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF].

The first contribution of this chapter is that we do not assume any controllability assumption on the dynamics or on the set of state constraints. In addition to that, controls of the two players are allowed to be coupled within the dynamics, the cost functions and the state constraints. Moreover, we consider weak assumptions on f , φ and ψ which are supposed to be unbounded and locally Lipschitz continuous.

Here, we characterize v through a locally Lipschitz continuous value function of an unconstrained auxiliary differential game which is the unique viscosity solution of an HJ equation with an obstacle term. First, the set of state constraints K can be characterized via the signed distance d K (•) as follows:

∀y ∈ R d , d K (y) ≤ 0 ⇔ y ∈ K.
The value function w of the auxiliary problem is defined, for t ∈ [0, T] and (x, z) ∈ R d × R, by:

w(t, x, z) := inf α[•]∈Γ sup b(•)∈B max s∈[t,T] φ(y α[b],b t,x (s), z) ψ(y α[b],b t,x (T), z) (3.3)
where for (y, z) ∈ R d × R, the functions φ and ψ are given by: φ(y, z) := (φ(y) -z) d K (y) and ψ(y, z) := ψ(y) -z.

Then, we prove that w is the unique viscosity solution of the following HJ equation:

min -∂ t w(t, x, z) + H(t, x, D x w(t, x, z)), w(t, x, z) -φ(x, z) = 0, on [0, T [×R d × R, w(T, x, z) = φ(x, z) ψ(x, z), on R d × R, (3.4)
where the hamiltonian H is given by:

H(t, x, p) := min b∈B max a∈A -f (t, x, a, b), p , for (t, x, p) ∈ [0, T] × R d × R d .
The level sets of the auxiliary value function w can be used, without any additional assumptions, to estimate the constrained differential game value function v as follows:

inf{z ∈ R | w(t, x, z) ≤ 0} ≤ v(t, x) ≤ inf{z ∈ R | w(t, x, z) < 0},
and when some convexity assumption is verified by f , we extend the main result of [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF] to the case of a two-player games and we determinate v by the following relation:

v(t, x) = inf{z ∈ R | w(t, x, z) ≤ 0}.
Another contribution of this chapter is to present a general approach allowing to construct approximated optimal feebacks of the constrained differential game for both players by use of the auxiliary differential game value function w. Indeed, we prove that an optimal strategy of the auxiliary problem (3.3) associated to a particular initial condition remains also optimal for the constrained problem (3.2). In addition to that, we propose algorithms to reconstruct approximated optimal strategies and controls for the auxiliary differential game.

Finally, as an illustrative example, we study an aircraft landing problem in the presence of windshear. Indeed, the best strategy to avoid a failed landing, that can occurs because of quick changes of the wind velocity, is to steer the aircraft to the maximal altitude that can be reached, during an interval of time, in order to prevent a crash on the ground. In [START_REF] Miele | Quasi-steady flight to quasi-steady flight transition for abort landing in a windshear: trajectory optimization and guidance[END_REF][START_REF] Miele | Optimal abort landing trajectories in the presence of windshear[END_REF], a Chebyshev-type optimal control problem was proposed and an approximate solution is provided. The Hamilton-Jacobi-Bellman approach was applied in [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF] to solve this problem after supposing the knowledge of the wind velocity fields. In [START_REF] Botkin | Dynamic programming approach to aircraft control in a windshear[END_REF], the aircraft landing problem was formulated as a nonlinear differential game with state constraints and a semi-Lagrangian scheme was applied to compute an approximation of the value function.

In chapter 3, we propose a 5D differential game model with maximum running cost, where wind disturbances are considered as a second player and the first player tries, by use of nonanticipative strategies, to counteract to some dangerous scenarios that can occur because of wind disturbances.

We organize this chapter as follows. Section 3.2 introduces the constrained differential game with maximum running cost and formulates its associated auxiliary problem. Section 3.3 shows how the auxiliary problem can be used to overcome the difficulties coming from the state constraints for the original problem. Section 3.4 presents some results concerning reconstruction of optimal trajectories for the auxiliary problem. A numerical example is given in section 3.5 which concerns an aircraft landing problem in presence of wind disturbances.

Problem formulation

Settings of the constrained differential game

Consider a two-person zero-sum differential game with finite time horizon T > 0. Actions of the first and the second players are measurable functions that take values respectively in A, a compact set of R p (p ≥ 1), and B, a compact set of R q (q ≥ 1). The set of admissible controls of the first and the second players, A and B, are defined respectively as follows:

A := a(•) : [t, T] → A, measurable and B := b(•) : [t, T] → B, measurable .
In this chapter, the first player is allowed to use nonanticipative strategies.

(•), b (•) ∈ B, if b(s) = b (s) for almost every s ≤ τ , then α[b](•) = α[b](•) almost everywhere in [0, τ].
We denote by Γ the set of nonanticipative strategies of the first player.

In other words, the first player takes his control decision at each time instant with the knowledge of the past and current choices of his opponent and without any idea about his future decisions.

For a choice (α[•], b(•)) ∈ Γ × B of the two players, consider the following dynamical system ẏ(s) = f (s, y(s), α[b](s), b(s)), a.e. s ∈ [t, T], y(t) = x ∈ R d . (3.5)
The corresponding absolutely continuous solution of (3. Furthermore, the following hypothesis will be considered throughout this chapter:

(H3.1) The dynamics f : [0, T] × R d × R p × R q → R d is continuous and for any R > 0, there exists L f (R) > 0, such that for any (a, b) ∈ A × B, s ∈ [0, T] and y 1 , y 2 ∈ R d verifying y 1 , y 2 ≤ R: f (s, y 1 , a, b) -f (s, y 2 , a, b) ≤ L f (R) y 1 -y 2 .
Moreover, there exists

c f > 0, s.t. ∀ y ∈ R d , max f (s, y, a, b) , s ∈ [0, T], (a, b) ∈ A × B ≤ c f (1 + y).
(H3.2) The running cost function φ : R d → R is locally Lipschitz continuous, i.e. for any R > 0 there exists

L φ (R) > 0 s.t. for any y 1 , y 2 ∈ R d verifying y 1 , y 2 ≤ R: |φ(y 1) -φ(y 2)| ≤ L φ (R) y 1 -y 2 .
Moreover, there exists

c φ > 0 such that ∀y ∈ R d , |φ(y)| ≤ c φ (1 + y).
(H3.3) The final cost function ψ : R d → R is locally Lipschitz continuous, i.e. for any R > 0 there exists

L ψ (R) > 0 s.t. for any y 1 , y 2 ∈ R d verifying y 1 , y 2 ≤ R: |ψ(y 1) -ψ(y 2)| ≤ L ψ (R) y 1 -y 2 .
There exists also

c ψ > 0 such that ∀y ∈ R d , |ψ(y)| ≤ c ψ (1 + y).
Let K be a non-empty closed subset of R d representing the set of state constraints. We are interested in the following state-constrained differential game with maximum running cost:

v(t, x) := inf α[•]∈Γ π(t, x; α) (3.6)
with the convention that inf ∅ = +∞ and where π is defined by:

π(t, x; α) :=    sup b(•)∈B max s∈[t,T] φ(y α[b],b t,x (s)) ψ(y α[b],b t,x (T)) , if y α[b],b t,x (•) is admissible, ∀b(•) ∈ B, +∞, else.
Problem (3.6) describes the situation where the first player is exploiting his information advantage and trying to find nonanticipative strategies that guarantee the admissibility of trajectories against any choice of the second player and minimize the cost functional π. This formulation can model the case where a controller tries to counteract to unknown disturbances which can affect the system and the cost functions. One can imagine another game example where the second player objective is to maximize the cost π or to violate the state constraints.

In general, for such state-constrained optimal control problems (K = R d), the value function v is not essentially continuous and may require further controllability assumptions to characterize it as the unique viscosity solution of an appropriate HJ equation. An idea about such assumptions in the case of a twoperson differential game can be found in [START_REF] Cardaliaguet | Pursuit differential games with state constraints[END_REF][START_REF] Bettiol | Zero-sum state constrained differential games: existence of value for Bolza problem[END_REF][START_REF] Bettiol | Existence and characterization of the values of two player differential games with state constraints[END_REF].

As we said in section 3.1, we do not impose any controllability assumptions in this work. Following [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF], we introduce an auxiliary control problem free of state constraints with a more regular value function allowing us to characterize v.

Associated auxiliary problem

First consider the augmented dynamics f , defined for s ∈ [0, T], x := (x, z) ∈ R d × R and (a, b) ∈ A × B, by:

f (s, x, a, b) := f (s, x, a, b) 0 (3.7) Denote by ŷα[b],b t,x,z (•), for (α[•], b(•)) ∈ Γ × B
, the unique solution of the following augmented differential system:

ẏ(s) = f (s, ŷ(s), α[b](s), b(s)), a.e. s ∈ [t, T], ŷ(t) = (x, z) ∈ R d × R. (3.8)
Since the last component of the augmented dynamics f is equal to zero,

ŷα[b],b t,x,z (•) can be expressed also as ŷα[b],b t,x,z (•) := y α[b],b t,x (•), z , where y α[b],b t,x (•)
is the solution of (3.5). Moreover, the set of constraints K is closed. Henceforth, it can be characterized as follows:

∀y ∈ R d , d K (y) ≤ 0 ⇔ y ∈ K, (3.9)
where d K (•) is the signed distance to K, defined by:

d K (x) := -d(x, ∂K) if x ∈ K d(x, ∂K) else,
y α[b],b t,x (s) ∈ K, ∀s ∈ [t, T] ⇔ max s∈[t,T] d K (y α[b],b t,x (s)) ≤ 0.
The value function w of the auxiliary problem can be defined, for t ∈ [0, T] and (x, z) ∈ R d × R, by :

w(t, x, z) := inf α[•]∈Γ sup b(•)∈B max s∈[t,T] φ(y α[b],b t,x (s), z) ψ(y α[b],b t,x (T), z) (3.10)
where for (x, z) ∈ R d × R and s ∈ [0, T], the functions φ and ψ are given by:

φ(x, z) := (φ(x) -z) d K (x) and ψ(x, z) := ψ(x) -z.
Remark 3.2.3. When the constrained problem (3.6) is of type Bolza, the auxiliary problem can be formulated by modifying the augmented dynamics f and the functions φ and ψ. In this case, the objective function J is given by:

J(t, x, a, b) := T t (s, y a,b t,x (s), a(s), b(s)) + ψ(y a,b t,x (T)) for (t, x) ∈ [0, T] × R d and (a(•), b(•)) ∈ A × B
and where and ψ are respectively the distributed and the final cost functions. For x = (x, z) ∈ R d × R, consider the augmented dynamics f :

f (s, x, a, b) := f (s, x, a, b) -(s, x, a, b) ,
and the cost functions φ and ψ: φ(x) := d K (x) and ψ(x) = ψ(x) -z.

Let ŷα[b],b t,x (•) be the unique continuous solution of the following differential system, associated to

(α[b](•), b(•)) ∈ A × B: ẏ(s) = f (s, ŷ(s), α[b](s), b(s)), a.e. in [t, T], ŷ(t) = x := (x, z) ∈ R d × R.
Therefore, the corresponding auxiliary problem is given, for t ∈ [0, T] and x ∈ R d × R, by:

w(t, x) := inf α[•]∈Γ sup b(•)∈B max s∈[t,T] φ(ŷ α[b],b t,x (s)) ψ(ŷ α[b],b t,x (T)) .
The above formulation still valid even for a problem of type Mayer (≡ 0). Furthermore, all the results that will be seen in the following sections still true also for a state-constrained problem of type Bolza or Mayer.

Properties of the value functions v and w

This section is devoted to some properties of the auxiliary value function w and to show how it can be used to characterize v, the value function of the constrained problem (3.6).

The following Proposition gives some results concerning the regularity of w and its characterization through Hamilton Jacobi equations. (i) w verifies a dynamic programming principle. For any

h ∈ [0, T -t], w(t, x, z) = inf α[•]∈Γ sup b(•)∈B w(t + h, y α[b],b t,x (t + h), z) max s∈[t,t+h] φ(y α[b],b t,x (s), z) . (3.11) (ii) The value function w is locally Lipschitz continuous on [0, T] × R d × R.
(iii) w is the unique viscosity solution of the following HJ equation:

min -∂ t w(t, x, z) + H(t, x, D x w(t, x, z)), w(t, x, z) -φ(x, z) = 0, in [0, T [×R d × R, w(T, x, z) = φ(x, z) ψ(x, z), in R d × R, (3.12)
where the hamiltonian H is given by:

H(t, x, p) := min b∈B max a∈A -f (t, x, a, b), p , for (t, x, p) ∈ [0, T] × R d × R d . (3.13)
Proof. Here, we give only the proof of statement (iii). The proofs of (i) and (ii) can be found in Appendix 3.6 of this chapter.

We start by showing that w is a super-solution of (3.12). Let ξ be a function of class C 1 and (t, x, z) be a local minimum for w -ξ such that w(t, x, z) = ξ(t, x, z). Assume that there exists δ > 0 such that

-∂ t ξ(t, x, z) + H(t, x, D x ξ(t, x, z)) = -δ < 0.
In this case, there exists b 0 ∈ B such that, for any a ∈ A,

-∂ t ξ(t, x, z) -f (t, x, a, b 0), D x ξ(t, x, z) ≤ -δ. Now let's fix h > 0 small enough and α[•] ∈ Γ. We have α[b 0](s) ∈ A for any time instant s ∈ [t, T].
Henceforth, from the last inequality, we get:

-∂ t ξ(t, x, z) -f (t, x, α[b 0](s), b 0), D x ξ(t, x, z) ≤ -δ, for any s ∈ [t, t + h].
By continuity of ξ, f and D x ξ, we obtain for any s ∈ [t, t + h]:

-∂ t ξ(s, y α[b 0],b 0 t,x (s), z) -f (s, y α[b 0],b 0 t,x (s), α[b 0](s), b 0), D x ξ(s, y α[b 0],b 0 t,x (s), z) ≤ - δ 2 , henceforth t+h t -∂ t ξ(s, y α[b 0],b 0 t,x (s), z) -f (s, y α[b 0],b 0 t,x (s), α[b 0](s), b 0), D x ξ(s, y α[b 0],b 0 t,x (s), z) ds ≤ - δh 2 ,
which implies that

ξ(t, x, z) -ξ(t + h, y α[b 0],b 0 t,x (t + h), z) ≤ - δh 2 .
On the other hand, since w -ξ has a local minimum at (t, x, z) we obtain:

(w -ξ)(t + h, y α[b 0],b 0 t,x (t + h), z) ≥ (w -ξ)(t, x, z).
From the two above inequalities, we deduce that

δh 2 + w(t, x, z) ≤ w(t + h, y α[b 0],b 0 t,x (t + h), z) ≤ w(t + h, y α[b 0],b 0 t,x (t + h), z) max s∈[t,t+h] φ(y α[b 0],b 0 t,x (s), z) .
Therefore we get

δh 2 + w(t, x, z) ≤ sup b(•)∈B w(t + h, y α[b],b t,x (t + h), z) max s∈[t,t+h] φ(y α[b],b t,x (s), z) .
Since the last inequality holds for any α[•] ∈ Γ, we deduce that

δh 2 + w(t, x, z) ≤ inf α[•]∈Γ sup b(•)∈B w(t + h, y α[b],b t,x (t + h), z) max s∈[t,t+h] φ(y α[b],b t,x (s), z) = w(t, x, z),
which is impossible. We conclude that

-∂ t ξ(t, x, z) + H(t, x, D x ξ(t, x, z)) ≥ 0.
On the other hand, φ(x, z) ≤ max

s∈[t,T] φ(y α[b],b t,x (s), z) ≤ w(t, x, z) = ξ(t, x, z). As a conclusion, min - ∂ t ξ(t, x, z) + H(t, x, D x ξ(t, x, z)), ξ(t, x, z) -φ(x, z) ≥ 0,
which means that w is a super-solution of (3.12). Now, we will show that w is a sub-solution of (3.12). Let ξ be a function of class C 1 such that w -ξ has a maximum at (t, x, z) and w(t, x, z) = ξ(t, x, z). If ξ(t, x, z) ≤ φ(x, z), then ξ satisfies:

min -∂ t ξ(t, x, z) + H(t, x, D x ξ(t, x, z)), ξ(t, x, z) -φ(x, z) ≤ 0,
which means that w is a sub-solution of (3.12).

If not, we have w(t, x, z) > φ(x, z). Henceforth, there exists τ > 0, such that for any admissible trajectory y

α[b],b t,x (•), we have w(s, y α[b],b t,x (s), z) > φ(y α[b],b t,x (s), z), for any s ∈ [t, t + τ].
In this case and by using the dynamic programming principle (3.11) verified by w between t and t + h, for any 0 < h ≤ τ , we get

w(t, x, z) = inf α[•]∈Γ sup b(•)∈B w(t + h, y α[b],b t,x (t + h), z). (3.14)
Now, suppose that there exists δ > 0, such that -∂ t ξ(t, x, z) + H(t, x, D x ξ(t, x, z)) = δ. From Lemma 2.4.4 of chapter 2, there exists α * [•] ∈ Γ such that for any b(•) ∈ B and h > 0 small enough the following inequality holds:

ζ(t + h, y α * [b],b t,x (t + h), z) -ζ(t, x, z) ≤ - δh 4 .
On the other hand, from the definition of ξ, we get for any b(•) ∈ B

w(t + h, y α * [b],b t,x (t + h), z) ≤ ζ(t + h, y α * [b],b t,x (t + h), z), which implies that sup b(•)∈B w(t + h, y α * [b],b t,x (t + h), z) -w(t, x, z) ≤ - δh 4 , henceforth, we conclude that inf α[•]∈Γ sup b(•)∈B w(t + h, y α[b],b t,x (t + h), z) -w(t, x, z) ≤ - δh 4 < 0.
From the equality (3.14), the last inequality is not possible. Hence, we deduce that

-∂ t ξ(t, x, z) + H(t, x, D x ξ(t, x, z)) ≤ 0,
which concludes the proof. Uniqueness of w as the viscosity solution of (3.12) comes from the comparison result given in [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF]Appendix].

After its characterization, w can be exploited to get an estimation of the value function v defined in (3.6) and this is the aim of the following Theorem. Theorem 3.3.2. Assume that hypothesis (H3.1), (H3.2) and (H3.3) hold. The value function v can be estimated by means of w through the following relation :

inf{z ∈ R | w(t, x, z) ≤ 0} ≤ v(t, x) ≤ inf{z ∈ R | w(t, x, z) < 0}, (3.15)
for any (t, x) ∈ [0, T] × K.

Proof. We start by proving that if v(t, x) ≤ z, then w(t, x, z) ≤ 0. Let z ∈ R such that v(t, x) < z. By definition of v, there exists a nonanticipative strategy α 0 [•] ∈ Γ such that for any b(•) ∈ B, the trajectory y

α 0 [b],b t,x (•) remains in K and π(t, x; α 0) ≤ z. Therefore for any b(•) ∈ B we get max s∈[t,T] d K (y α 0 [b],b t,x (s)) ≤ 0 and sup b(•)∈B max s∈[t,T] φ(y α 0 [b],b t,x (s)) ψ(y α 0 [b],b t,x (T)) ≤ z.
From the two above inequalities, we deduce that

w(t, x, z) ≤ sup b(•)∈B max s∈[t,T] φ(y α 0 [b],b t,x (s), z) ψ(y α 0 [b],b t,x (T), z) ≤ 0.
We conclude that w(t, x, z) ≤ 0 whenever z > v(t, x). By continuity of w w.r.t. z, we deduce that for any z ≥ v(t, x) we have w(t, x, z) ≤ 0. Henceforth

inf{z ∈ R | w(t, x, z) ≤ 0} ≤ v(t, x).
Now let z ∈ R such that w(t, x, z) < 0 and δ 0 := -w(t, x, z) > 0. From the definition of w, there exists

α 0 [•] ∈ Γ verifying: sup b(•)∈B max s∈[t,T] φ(y α 0 [b],b t,x (s), z) ψ(y α 0 [b],b t,x (T), z) ≤ w(t, x, z) + δ 0 = 0.
Therefore for any b(•) ∈ B the trajectory y

α 0 [b],b t,x (•) is admissible and sup b(•)∈B max s∈[t,T] φ(y α 0 [b],b t,x (s)) ψ(y α 0 [b],b t,x (T)) ≤ z,
which means that π(t, x; α 0) ≤ z. By definition of v, we deduce that v(t, x) ≤ z. This proves that

v(t, x) ≤ inf{z ∈ R | w(t, x, z) < 0}. Remark 3.3.3. For any (t, x) ∈ [0, T] × K, if inf{z ∈ R | w(t, x, z) ≤ 0} = +∞, thereby v(t, x) = +∞
which means that there is no strategies of the first player that guarantee the admissibility of the trajectories for any action b(•) ∈ B of the second player. However if

inf{z ∈ R | w(t, x, z) ≤ 0} ∈ R, then the infimum is reached by some z ∈ R. Furthermore, if inf{z ∈ R | w(t, x, z) < 0} ∈ R then one can prove that: inf{z ∈ R | w(t, x, z) ≤ 0} = v(t, x) = inf{z ∈ R | w(t, x, z) < 0}.
On the other hand it may occur that

inf{z ∈ R | w(t, x, z) ≤ 0} ∈ R and inf{z ∈ R | w(t, x, z) < 0} = +∞
and in this case we have no information on v(t, x).

Remark 3.3.4. In [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF], it was shown that when some convexity assumption is verified by f , a precise connection is established between v and w. Theorem 3.3.2 gives a more general result on the link between those two value functions.

When some convexity assumption is verified by f and A, we can prove a more precise connection. For this, assume that: (H3.4) A is a convex subset of R p and the dynamics f is affine in the first control variable a i.e. f is of the form

f (t, x, a, b) := f 0 (t, x, b) + f 1 (t, x, b)a.
The aim of the following Theorem is to characterize the value of the constrained problem v through the auxiliary value function w. In addition to that, it establishes a link between optimal strategies of the auxiliary and the constrained problems. (i) Suppose that w(t, x, z) ≤ 0 for some z ∈ R, then there exists α * [•] ∈ Γ such that for any b(•) ∈ B, the trajectory y

α * [b],b t,x (•) is admissible and max s∈[t,T] φ(y α * [b],b t,x (s)) ψ(y α * [b],b t,x (T)) ≤ z.
(ii) The exact value of v can be determined through the following relation:

v(t, x) = inf{z ∈ R | w(t, x, z) ≤ 0}. (3.16)
(iii) If z := v(t, x) < ∞, then any optimal strategy of the auxiliary problem (3.10) on [t, T] starting from the initial state (x, z) is optimal for the constrained problem (3.6) on [t, T] associated with the initial position x.

Proof. (i) The proof of this assertion uses some basic ideas from [START_REF] Cardaliaguet | A differential game with two players and one target: The continuous case[END_REF][START_REF] Cardaliaguet | A differential game with two players and one target[END_REF][START_REF] Cardaliaguet | Nonsmooth semipermeable barriers, Isaacs' equation, and application to a differential game with one target and two players[END_REF][START_REF] Frankowska | Measurable viability theorems and the Hamilton-Jacobi-Bellman equation[END_REF]. First, let Λ : B → A be a set-valued map defined, for any b(•) ∈ B, by: [START_REF] Cardaliaguet | A differential game with two players and one target: The continuous case[END_REF][START_REF] Cardaliaguet | A differential game with two players and one target[END_REF][START_REF] Cardaliaguet | Nonsmooth semipermeable barriers, Isaacs' equation, and application to a differential game with one target and two players[END_REF]).

Λ(b) := a(•) ∈ A | max s∈[t,T] φ(y a,b t,x (s), z) ψ(y a,b t,x (T), z) ≤ 0 . Λ(•) is said to be nonanticipative if for any τ ∈ [0, T -t], for any b 1 (•), b 2 (•) ∈ B which coincide almost everywhere on [t, t + τ] and for any a 1 (•) ∈ Λ(b 1), one can find a 2 (•) ∈ Λ(b 2) which coincides with a 1 (•) almost everywhere on [t, t + τ] (see
Now, let (t, x, z) ∈ [0, T] × R d × R such that w(t, x, z) ≤ 0.
By the definition of w, for any n ∈ N * , there exists

α n [•] ∈ Γ such that: sup b(•)∈B max s∈[t,T] φ(y αn[b],b t,x (s), z) ψ(y αn[b],b t,x (T), z) ≤ 1 n .
We start by showing that the set-valued map Λ(•) has nonempty values. Indeed, let fix b(•) ∈ B and let y n (•) be the solution of:

ẏn (s) = f (s, y n (s), α n [b](s), b(s)), a.e. s ∈ [t, T], y n (t) = x.
Therefore, for any n ∈ N * , y n (•) verifies:

max s∈[t,T] φ(y n (s), z) ψ(y n (T), z) ≤ 1 n .
Now, denote by S [t,T] (x) the set of absolutely continuous solutions of:

ẏ(s) ∈ f (s, y(s), A, b(s)), a.e. s ∈ [t, T], y(t) = x.
Under hypothesis (H3.1) and (H3.4), [START_REF] Aubin | Differential inclusions: set-valued maps and viability theory[END_REF][START_REF] Aubin | Set-valued analysis[END_REF]). Therefore when n → ∞,

S [t,T] (x) is a compact subset of W 1,1 ([0, T]) for the topology of C([0, T]; R d) (see
y n (•) converges to y * (•) ∈ S [t,T] (x) solution of: ẏ * (s) ∈ f (s, y * (s), A, b(s)), a.e. s ∈ [t, T], y * (t) = x.
By the measurable selection theorem from [START_REF] Frankowska | Measurable viability theorems and the Hamilton-Jacobi-Bellman equation[END_REF], there exists a control of the first player,

a b (•) ∈ A, depend- ing on b(•) ∈ B which is already fixed, verifying y * (•) = y a b ,b t,x (•) almost everywhere on [t, T]
. By continuity of φ and ψ, we conclude that:

max s∈[t,T] φ(y a b ,b t,x (s), z) ψ(y a b ,b t,x (T), z) ≤ 0, which means that a b (•) ∈ Λ(b) and therefore Λ(•) has nonempty values.
Then, we claim that the set-valued map

Λ(•) is nonanticipative. To prove this claim, let τ ∈ [0, T -t], b 1 (•), b 2 (•) ∈ B coinciding almost everywhere on [t, t + τ] and consider a 1 (•) ∈ Λ(b 1)
. From the definition of Λ, the trajectory y a 1 ,b 2 t,x (•) is admissible (will remain in K on [t, t + τ]) and verifies:

max s∈[t,t+τ] φ(y a 1 ,b 2 t,x (s)) ψ(y a 1 ,b 2 t,x (t + τ)) ≤ z. Now, consider a 2 (•) ∈ A such that a 2 (•) := a 1 (•) on [t, t + τ].
Starting at time t + τ from x :=y a 1 ,b 2 t,x (t + τ) and by exploiting the same arguments already used to show that Λ(•) has nonempty values, there exists

a b 2 (•) ∈ A s.t. y a b 2 ,b 2 t+τ,x (•) is admissible i.e. will remain in K on [t + τ, T] and verifies: max s∈[t+τ,T] φ(y a b 2 ,b 2 t+τ,x (s)) ψ(y a b 2 ,b 2 t+τ,x (T)) ≤ z.
Define the control a 2 (•) ∈ A by: Under hypothesis (H3.1) and (H3.4), the sequence (y an,b t,x (•)) n will converge, for the compact convergence, to y a,b t,x (•). By continuity of φ and ψ, we deduce that:

a 2 (•) = a 1 (•) on [t, t + τ], a b 2 (•) on [t + τ, T]
max s∈[t,T] φ(y a,b t,x (s), z) ψ(y a,b t,x (T), z) ≤ 0.
Therefore, a(•) belongs to Λ(b). We conclude that the set-valued map Λ(•) has closed values for the weak topology of the Hilbert space L 2 ([0, T], A).

To end this proof, it is enough to use φ(y

α * [b],b t,x (s)) ψ(y α * [b],b t,x (T)) ≤ z.
(ii) From Theorem 3.3.2, we already know that

inf{z ∈ R | w(t, x, z) ≤ 0} ≤ v(t, x).
On the other hand, let z ∈ R such that w(t, x, z) ≤ 0. From assertion (i), there exists

α * [•] ∈ Γ s.t. for any b(•) ∈ B, the trajectory y α * [b],b t,x (•) is admissible and max s∈[t,T] φ(y α * [b],b t,x (s)) ψ(y α * [b],b t,x (T)) ≤ z, which means that π(t, x; α *) ≤ z. By definition of v, we conclude that v(t, x) ≤ z, for any z ∈ R verifying w(t, x, z) ≤ 0. Henceforth, v(t, x) ≤ inf{z ∈ R | w(t, x, z) ≤ 0}.
(iii) Let z := v(t, x) < ∞ and α * [•] ∈ Γ be an optimal strategy of the auxiliary problem (3.10) on [t, T] associated with the initial point (x, z) which means that

w(t, x, z) = sup b(•)∈B max s∈[t,T] φ(y α * [b],b t,x (s), z) ψ(y α * [b],b t,x (T), z) .
Since z = v(t, x), we get w(t, x, z) ≤ 0 and hence

sup b(•)∈B max s∈[t,T] φ(y α * [b],b t,x (s), z) ψ(y α * [b],b t,x (T), z) ≤ 0.
Therefore, for any b(•) ∈ B, the trajectory y

α * [b],b t,x (•) is admissible and sup b(•)∈B max s∈[t,T] φ(y α * [b],b t,x (s)) ψ(y α * [b],b t,x (T)) ≤ z = v(t, x). Henceforth, π(t, x; α *) ≤ v(t, x) = inf α[•]∈Γ
π(t, x; α). We conclude that α * [•] is an optimal strategy for the constrained problem (3.6) associated with the initial state x.

Comments: Reduction of the computational domain Since problem (3.10) is free of state constraints, the auxiliary value function w is defined on [0, T] × R d × R. Nevertheless, for computational issues, we should restrict the domain of interest of w to a neighbourhood of K × R. To this end, we will follow a technique developed in [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF] where the auxiliary value function w will keep a constant value outside the neighbourhood of K × R. Let µ > 0 be a fixed parameter and K µ be a neighbourhood of K defined by

K µ := K + µB R d .
The idea consists in introducing a truncation of d K , φ and ψ to obtain a new control problem free of state constraints with value function w µ characterized by a constant value outside K µ .

First consider the Lipschitz continuous function d µ K := d K µ which verifies for any y ∈ R d :

d µ K (y) ≤ 0 ⇔ y ∈ K, d µ K (y) ≤ µ, and d µ K (y) = µ ⇔ y / ∈ K µ .
Furthermore, we consider a truncation of φ and ψ as follows:

φµ := φ µ and ψµ := ψ µ.

Finally, we define the specific auxiliary value function w µ , for

(t, x, z) ∈ [0, T] × R d × R as: w µ (t, x, z) := inf α[•]∈Γ sup b(•)∈B max s∈[t,T] φµ (y α[b],b t,x (s), z) ψµ (y α[b],b t,x (T), z) ,
which verifies the following relation:

w µ (t, x, z) = w(t, x, z) µ.
Since, we are interested in the region {z | w(t, x, z) ≤ 0}, for (t, x) ∈ [0, T] × K, which coincides with {z | w µ (t, x, z) ≤ 0} for any µ > 0, it does not matter which auxiliary value function we use (w or w µ). Therefore, for the sequel we will confound w and w µ , for any µ > 0, which will be denoted simply by w.

The question now is how to characterize w µ and this is the aim of the following Proposition.

Proposition 3.3.6. w µ is the unique viscosity solution of the following HJ equation:

         min -∂ t w µ (t, x, z) + H(t, x, D x w µ (t, x, z)), w µ (t, x, z) -φµ (x, z) = 0, on [0, T [× • K µ × R, w µ (T, x, z) = φµ (x, z) ψµ (x, z), on • K µ × R, w µ (t, x, z) = µ, for t ∈ [0, T], x / ∈ • K µ and z ∈ R.
Proposition 3.3.6 can be proven in a similar way to assertion (iii) of Proposition 3.3.1.

The aim of Proposition 3.3.6 is to characterize the specific auxiliary value function, w µ , having the same region of interest as w and for which the computational domain is restricted to a neighbourhood of

[0, T] × K × R in contrary to w which is defined on [0, T] × R d × R.

Trajectory reconstruction based on the value function and approximation by discrete time games

This section is devoted to present our proposed reconstruction procedure that will be applied to approximate optimal strategies and controls of the auxiliary problem (3.10). To this end, we will consider a differential game free of state constraints having the following general form: Furthermore, throughout this section we suppose that F , Φ and Ψ satisfy respectively hypothesis (H3.1), (H3.2) and (H3.3). Henceforth, from section 3.2 we already know that u is the unique viscosity solution of the following HJ equation:

u(t, χ) := inf α[•]∈Γ sup b(•)∈B max s∈[t,T] Φ(ζ α[b],b t,χ (s)) Ψ(ζ α[b],b t,χ (T)) , (3.17
min (-∂ t u(t, χ) + H(t, χ, D χ u(t, χ)), u(t, χ) -Φ(χ)) = 0, for (t, χ) ∈ [0, T] × R m , u(T, χ) = Φ(χ) Ψ(χ), for χ ∈ R m , (3.19)
where the Hamiltonian H is given by:

H(t, χ, p) := min b∈B max a∈A -F (t, χ, a, b), p , for (t, χ, p) ∈ [0, T] × R m × R m .
We denote by J the cost functional in (3.17):

J(t, χ, a, b) := max s∈[t,T] Φ(ζ a,b t,χ (s)) Ψ(ζ a,b t,χ (T)), (3.20)
for (t, χ) ∈ [0, T] × R m and (a(•), b(•)) ∈ A × B.
Recall that the aim of this section is to approximate optimal feedbacks of the differential game (3.17). To this end, we will discretize in time and synthesize from the discrete time differential game an approximation of the optimal strategy of the first player and the optimal control of the second player. Consider a uniform time partition of [0, T] with time step h := T N , N ∈ N * : s 0 = 0, s 1 = h,..., s k = kh,..., s N = T . The dynamical system (3.18) can be approximated by the following Euler forward scheme:

     ζ k = χ ζ k+1 = χ + (s k+1 -t)F (t, ζ k , a k , b k) ζ i+1 = ζ i + hF (s i , ζ i , a i , b i), i = k + 1, ..., N -1. (3.21) for t ∈ [s k , s k+1 [with 0 ≤ k ≤ N -1, χ ∈ R m , (a i) i ∈ A N -k and (b i) i ∈ B N -k .
More precise approximations of (3.18) can be considered by using higher order Runge-Kutta schemes.

Finally, even for the discrete time game, we attribute to the first player an advantage of information. This advantage of information can be modeled by discrete nonanticipative strategies. Indeed, at each time step s i , for i ∈ {0, ..., N -1}, and before choosing his action a i ∈ A, the first player knows the choice of his opponent b i ∈ B without having any information about his future choices. Subsection 3.4.1 deals with the case of trajectory reconstruction by use of a general class of approximated functions u h while in subsection 3.4.2, we show a convergence result when the approximation u h verifies a specific criterion.

A general reconstruction procedure

In this part, consider a general approximation u h that may come from the numerical resolution of a discretized form of the Hamilton Jacobi equation (3.19) verified by u. Let E h denote the uniform error estimate between u and u h given by E h := u h -u .

(H3.5) Suppose that the error estimate E h satisfies E h = o(h).

The reconstruction procedure presented in Algorithm 3.1 corresponds to the case where choices of the second player are not optimal and take arbitrary values in B. The first player will observe his opponent choice and will choose his optimal reaction. This algorithm is given for a particular reconstruction from the initial time instant t = 0 and an initial position χ ∈ R m . An arbitrary choice of the second player b i ∈ B.

4:

The optimal reaction of the first player a * i ∈ A is defined by:

a * i ∈ argmin a∈A u h (s i+1 , ζ i + hF (s i , ζ i , a, b i)) Φ(ζ i) . 5:
The new state position: (ζ i) i be the sequences of controls and trajectory generated by Algorithm 3.1 and we define the following piecewise constant controls Since F is locally Lipschitz continuous, there exists R > 0 such that for any time step h > 0 and any 0 ≤ k ≤ N , we have ζ k ≤ R. We can choose the constant R large enough such that any trajectory starting from any initial position ζ k will remain in B(0, R), the ball of R d centred at 0 and with radius R. Let M R > 0 be a constant verifying:

ζ i+1 = ζ i + hF (s i , ζ i , a * i , b i). 6: end for For χ ∈ R m , let (a * i) i , (b i) i and
(α * h [b h](•), b h (•)) ∈ A×B, such that α * h [b h](s) := a *
ζh (s) = F (s, ζ h (s), α * h [b h](s), b h (s)), a.e. in [0, T], ζ h (0) = χ. (3
F (s, ζ, a, b) ≤ M R , for any s ∈ [0, T], ζ ∈ B(0, R) and (a, b) ∈ A × B.
Step 1. We claim that there exists h > 0, s.t. lim h→0 h = 0, and

u h (s 0 , ζ 0) ≥ u h (s 1 , ζ 1) Φ(χ) -h h -2E h with s 0 = 0 and ζ 0 = χ. (3.24)
By the dynamic programming principle verified by u, between s 0 and s 1 = h, we get

u(s 0 , χ) = inf α[•]∈Γ sup b(•)∈B u(s 1 , ζ α[b],b s 0 ,χ (s 1)) max s∈[s 0 ,s 1] Φ(ζ α[b],b s 0 ,χ (s)) , which implies that u(s 0 , χ) ≥ inf α[•]∈Γ sup b(•)∈B u(s 1 , ζ α[b],b s 0 ,χ (s 1)) Φ(χ) .
For > 0, we pick an -optimal strategy, α [•] ∈ Γ, and the above inequality becomes:

u(s 0 , χ) ≥ -+ sup b(•)∈B u(s 1 , ζ α [b],b s 0 ,χ (s 1)) Φ(χ) .
Let b 0 (•) ∈ B be a constant control such that b 0 (•) = b 0 ∈ B where b 0 is generated by Algorithm 3.1. The above inequality becomes:

u(s 0 , χ) ≥ -+ u(s 1 , ζ α [b 0],b 0 s 0 ,χ (s 1)) Φ(χ). (3.25) We set a (•) := α [b 0](•) ∈ A.
On the other hand, from assumption (H3.4) the set F (s 0 , χ, A, b 0) is convex.

Hence, there exists a 0 ∈ A such that:

s 1 s 0 F (s 0 , χ, a (s), b 0)ds = hF (s 0 , χ, a 0 , b 0).
Moreover, from the Lipschitz continuity of F there exists δ(h) ≥ 0, the modulus of continuity of F , defined as:

δ(h) := max F (s, ζ, a, b) -F (s , ζ, a, b) , for ζ ∈ B(0, R), (a, b) ∈ A × B and s, s ∈ [0, T] with |s -s | ≤ h . The trajectory ζ a ,b 0 s 0 ,χ (•) verifies ζ a ,b 0 s 0 ,χ (s) -χ ≤ M R h, for any s ∈ [s 0 , s 1], and
ζ a ,b 0 s 0 ,χ (s 1) -χ -hF (s 0 , χ, a 0 , b 0) ≤ s 1 s 0 F (s, ζ a ,b 0 s 0 ,χ (s), a (s), b 0) -F (s 0 , χ, a (s), b 0) ds ≤ s 1 s 0 F (s, ζ a ,b 0 s 0 ,χ (s), a (s), b 0) -F (s, χ, a (s), b 0) ds + s 1 s 0 F (s, χ, a (s), b 0) -F (s 0 , χ, a (s), b 0) ds ≤ s 1 s 0 L F (R) ζ a ,b 0 s 0 ,χ (s) -χ ds + hδ(h) ≤ L F (R)M R h 2 + hδ(h).
From the last inequality and the Lipschitz continuity of u, we get:

u(s 1 , ζ) -hL u (R) × (δ(h) + L F (R)M R h) ≤ u(s 1 , ζ a ,b 0 s 0 ,χ (s 1)), (3.26)
where ζ := χ + hF (s 0 , χ, a 0 , b 0) and L u (R) denotes the Lipschitz constant of u. We set

h := L u (R) × (δ(h) + L F (R)M R h).
Therefore from (3.25) and (3.26), we deduce:

u(s 0 , χ) ≥ --h h + u(s 1 , ζ) Φ(χ),
where the last inequality holds since (a 1 -a 3) a 2 ≥ a 1 a 2 -a 3 , for any a 1 , a 2 , a 3 ∈ R s.t. a 3 ≥ 0. Now, by using the fact that u h -u = E h , we deduce from the last inequality:

u h (s 0 , χ) ≥ --h h -2E h + u h (s 1 , ζ) Φ(χ).
From Algorithm 3.1 and since a * 0 is a minimizer of a → u h (s 1 , χ + hF (s 0 , χ, a, b 0)) Φ(χ), we obtain:

u h (s 1 , ζ 1) Φ(χ) ≤ u h (s 1 , ζ) Φ(χ),
where ζ 1 is defined in Algorithm 3.1. Therefore by exploiting the two above inequalities, we get:

u h (s 0 , χ) ≥ --h h -2E h + u h (s 1 , ζ 1) Φ(χ),
which concludes (3.24) because is chosen arbitrarily.

Finally, the inequality (3.24) can be generalized by the same arguments to obtain for any k = 0, ..., N -1:

u h (s k , ζ k) ≥ u h (s k+1 , ζ k+1) Φ(ζ k) -h h -2E h , (3.27)
where ζ k is the system state at time step s k , generated by Algorithm 3.1.

Step 2. From (3.27) and by using the fact that (a 1 -a 3) a 2 ≥ a 1 a 2 -a 3 , for any a 1 , a 2 , a 3 ∈ R s.t. a 3 ≥ 0, we get by induction:

u h (s 0 , χ) ≥ u h (s N , ζ N) Φ(ζ N -1) • • • Φ(χ) -N h h -2N E h . (3.28)
Recall that E h is the uniform error between u and u h . Therefore, we deduce from (3.28):

u h (s 0 , χ) ≥ (u(s N , ζ N) -E h) max 0≤k≤N -1 Φ(ζ k) -N h h -2N E h . Since s N = N h = T and u(T, ζ N) = Φ(T, ζ N) Ψ(ζ N)
, the last inequality becomes:

u h (s 0 , χ) ≥ max 0≤k≤N Φ(ζ k) Ψ(ζ N) -T h -(2T h + 1)E h .
By hypothesis (H3.5), we conclude that:

lim sup h→0 + max 0≤k≤N Φ(ζ k) Ψ(ζ N) ≤ u(0, χ). (3.29)
Step 3. In this step, we will establish an estimation between (ζ k) k , the trajectory generated by Algorithm 3.1, and ζ h (•), the solution of (3.22).

We claim that for any k = 0, ..., N -1, we have:

max s∈[s k ,s k+1] ζ h (s) -ζ k ≤ O(h) and ζ h (T) -ζ N ≤ O(h). (3.30)
We start by proving the claim by induction. For k = 0, we have for any s ∈ [s 0 , s 1]:

ζ h (s) -χ ≤ s s 0 F (θ, ζ h (θ), a * 0 , b 0) dθ ≤ M R (s -s 0) ≤ M R h = O(h),
which gives the result for k = 0, i.e. max

s∈[s 0 ,s 1] ζ h (s) -χ ≤ O(h).
Suppose that (3.30) is verified for k ≤ N -2, and let's prove it for k + 1. For any s ∈ [s k+1 , s k+2]:

ζ h (s) -ζ k+1 = ζ h (s k+1) + s s k+1 F (θ, ζ h (θ), a * k+1 , b k+1)dθ -hF (s k , ζ k , a * k , b k) -ζ k ≤ 2M R h + ζ h (s k+1) -ζ k .
Using the estimation verified by ζ(s k+1) -ζ k concludes the proof. Now, let's prove that ζ h (T) -ζ N ≤ O(h). Indeed, we have:

ζ h (T) -ζ N ≤ ζ h (T) -ζ N -1 + h F (s N -1 , ζ N -1 , a * N -1 , b N -1)
. Moreover, we have proven that ζ h (s)-ζ k ≤ O(h), for any k = 0, ..., N -1 and s ∈ [s k , s k+1]. In particular, for k = N -1 and s = T , we have

ζ h (T) -ζ N -1 ≤ O(h). Finally, since F (s N -1 , ζ N -1 , a * N -1 , b N -1) ≤ M R , we conclude: ζ h (T) -ζ N ≤ O(h) + M R h = O(h).
Step 4. Now, let's prove that:

| max 0≤k≤N Φ(ζ k) -max s∈[0,T] Φ(ζ h (s))| ≤ O(h).
Indeed, we have:

| max 0≤k≤N Φ(ζ k) -max s∈[0,T] Φ(ζ h (s))| = | max 0≤k≤N -1 Φ(ζ k) Φ(ζ N) -max 0≤k≤N -1 max s∈[s k ,s k+1] Φ(ζ h (s)) Φ(ζ h (T))| ≤ | max 0≤k≤N -1 Φ(ζ k) -max 0≤k≤N -1 max s∈[s k ,s k+1] Φ(ζ h (s)) | |Φ(ζ N) -Φ(ζ h (T))|,
where the last line holds since |a b -c d| ≤ |a -c| |b -d|, for any a, b, c, d ∈ R. First, we have:

|Φ(ζ N) -Φ(ζ h (T))| ≤ L Φ (R) ζ N -ζ h (T) , where L Φ (R) is the Lipschitz constant of Φ. From Step 3., we get |Φ(ζ N) -Φ(ζ h (T))| ≤ O(h). Moreover, | max 0≤k≤N -1 Φ(ζ k) -max 0≤k≤N -1 max s∈[s k ,s k+1] Φ(ζ h (s)) | ≤ max 0≤k≤N -1 |Φ(ζ k) -max s∈[s k ,s k+1] Φ(ζ h (s))| ≤ max 0≤k≤N -1 max s∈[s k ,s k+1] |Φ(ζ k) -Φ(ζ h (s))| ≤ max 0≤k≤N -1 max s∈[s k ,s k+1] L Φ (R) ζ k -ζ h (s) .
From Step 3., we already know that:

max s∈[s k ,s k+1] ζ h (s) -ζ k ≤ O(h),
henceforth we deduce:

| max 0≤k≤N Φ(ζ k) -max s∈[0,T] Φ(ζ h (s))| ≤ O(h).
Finally, by using again the fact that ζ h (T) -ζ N ≤ O(h), we get:

| max 0≤k≤N Φ(ζ k) Ψ(ζ N) -max s∈[0,T] Φ(ζ h (s)) Ψ(ζ h (T))| ≤ O(h). (3.31)
By combining the estimates (3.29) and (3.31), we obtain:

lim sup h→0 + max s∈[0,T] Φ(ζ h (s)) Ψ(ζ h (T)) ≤ u(0, χ).
Remark 3.4.2. In practice, the approximated value function u h that will be used later (in the next section 3.5) comes from the numerical resolution of a discretized form of the Hamilton-Jacobi equation (3.19) whose unique viscosity solution is u.

Reconstruction with a specific approximation

In this part, we extend the results about the approximation by discrete time games presented in [11, Chapter VIII] to our case with finite time horizon and maximum running cost functions. We propose a specific approximation u h of the value function u which verifies a discrete dynamic programming principle. Then, we prove the existence of an optimal strategy of the first player and an optimal control of the second player associated with the discrete time game. Henceforth, we deduce an approximation of optimal feedbacks for problem (3.17).

Following the formulation presented in [11, Chapter VIII], a discrete nonanticpative strategy of the first player can be mathematically formulated as follows:

Definition 3.4.3. A discrete nonanticpative strategy of the first player α h [•] is a mapping from B N to A N , such that ∀ j ∈ {0, ..., N -1} and for any

(b i) i , (b i) i ∈ B N , if b i = b i ∀ i ≤ j, then α h [b] i = α h [b] i , ∀i ≤ j.
Let Γ h denote the set of discrete nonanticipative strategies of the first player.

Let J h be an approximation of the cost functional J defined, for t

∈ [s k , s k+1 [with k ∈ {0, ..., N -1}, χ ∈ R m , a := (a i) i ∈ A N -k and b := (b i) i ∈ B N -k , by: J h (t, χ, a, b) := Φ(χ) max i=k+1,...,N Φ(ζ i) Ψ(ζ N),
where (ζ i) i is the solution of (3.21) associated to the control sequences

((a i) i , (b i) i).
Now, we define the following specific approximation u h of the value function u on [0, T] × R m : Finally, we present Algorithm 3.2 corresponding to a reconstruction procedure based on the value function u h in the worst case where the second player takes optimal decisions which corresponds to the worst situation for the first player. This algorithm is presented in a general form for some initial time instant t ∈ [0, T [and from an initial position χ ∈ R m .

u h (t, χ) := inf α h [•]∈Γ h sup (b i) i ∈B N -k J h (t, χ, α h [b], b) (3.32) if t ∈ [s k , s
The following Proposition presents some results verified by the approximated value function u h , the reconstructed trajectory (i) u h verifies the following discrete dynamic programming principle:

(ζ * i) i , the discrete strategy α * h [•] ∈ Γ h and the control (b * i) i ∈ B N -k generated
u h (t, χ) = max b∈B min a∈A u h (s k+1 , χ + (s k+1 -t)F (t, χ, a, b)) Φ(χ) (3.33) (ii) Furthermore, J h (t, χ, α * h [b], b) ≤ u h (t, χ) for any (b i) i ∈ B N -k . The equality holds when (b i) i = (b * i) i . (iii) Finally, u h converges to u, when h → 0, over compact subsets of [0, T] × R m . Remark 3.4.5. α * h [•]
, (b * i) i represents a Nash equilibrium for (3.32) in the terminology of the theory of noncooperative games. This means that every player cannot improve his guaranteed outcome, given by u h (t, χ), by any unilateral deviation from his optimal choice, α * h [•] and (b * i) i for the first and the second players respectively. Proof of Proposition 3.4.4. (i) In order to prove the discrete dynamic programming principle, we will need the continuity of u h in its space variable. To this end, we start by proving that u h is locally Lipschitz

Algorithm 3.2: Worst case Require: t ∈ [s k , s k+1 [, for 0 ≤ k ≤ N -1 and χ ∈ R m . 1: Initialise ζ * k = χ. 2: for i = k, ..., N -1 do 3:
The optimal choice of the second player b

* i ∈ B is b * i ∈      argmax b∈B min a∈A u h (s k+1 , χ + (s k+1 -t)F (t, χ, a, b)) Φ(χ) , if i = k, argmax b∈B min a∈A u h (s i+1 , ζ * i + hF (s i , ζ * i , a, b)) Φ(ζ * i) , else. 4:
The optimal reaction of the first player

α * h [b *] i := a * i is a * i ∈      argmin a∈A u h (s k+1 , χ + (s k+1 -t)F (t, χ, a, b * k)) Φ(χ) , if i = k, argmin a∈A u h (s i+1 , ζ * i + hF (s i , ζ * i , a, b * i)) Φ(ζ * i) , else. 5:
The new state position: For > 0, there exists α h [•] ∈ Γ h such that:

ζ * k+1 = χ + (s k+1 -t)F (t, χ, a * k , b * k), if i = k, ζ * i+1 = ζ * i + hF (s i , ζ * i , a * i , b * i),
u h (t, y) ≥ sup (b i) i ∈B N -k J h (t, y, α h [b], b) - 2 .
On the other hand, there exists (b i) i ∈ B N -k such that:

u h (t, x) ≤ sup (b i) i ∈B N -k J h (t, x, α h [b], b) ≤ J h (t, x, α h [b], b) + 2 .
Denote by

(a i) i := α h [b] ∈ A N -k .
From the first inequality involving u h (t, y), we deduce that:

u h (t, y) ≥ J h (t, y, a , b) - 2 .
Now from the two above inequalities, we get:

u h (t, x) -u h (t, y) ≤ J h (t, x, a , b) -J h (t, y, a , b) + . Denote by (ζ x i) i and (ζ y i) i the solutions of (3.21) corresponding to ((a i) i , (b i) i) ∈ A N -k ×B N -k
and starting respectively from x and y. We have the following estimation:

|J h (t, x, a , b) -J h (t, y, a , b)| ≤ |Φ(x) -Φ(y)| max i=k+1,...,N |Φ(ζ x i) -Φ(ζ y i)| |Ψ(ζ x N) -Ψ(ζ y N)|.
On the other hand, we have

sup b k ∈B u h (s k+1 , χ) Φ(χ) = max b k ∈B u h (s k+1 , χ + (s k+1 -t)F (t, χ, a(b k), b k)) Φ(χ) = ρ(t, χ)
therefore for any > 0, we conclude that u h (t, χ) ≤ + ρ(t, χ). Hence, we obtain the desired inequality since is chosen arbitrarily. Now, we will show that u h (t, χ) ≥ ρ(t, χ). Let b ∈ B such that:

ρ(t, χ) = min a∈A u h (s k+1 , χ + (s k+1 -t)F (t, χ, a, b)) Φ(χ) .
For > 0, let α h [•] ∈ Γ h be an -optimal discrete strategy for u h (t, χ) i.e.

+ u h (t, χ) = sup

(b i) i ∈B N -k J h (t, χ, α h [b], b). (3.34)
For any discrete control (b i) i ∈ B N -k , we define the following control sequence (bi

) i ∈ B N -k by: bi := b, if i = k, b i , if i ≥ k + 1. Since α h [•] is a discrete nonanticipative strategy, α h [b] k depends only on b. Let a ∈ A and χ ∈ R m be
given by:

a := α h [b] k and χ := χ + (s k+1 -t)F (t, χ, a, b).
Finally, we define the strategy

δ h [•] ∈ Γ h , for (b i) i ∈ B N -k-1
, by:

δ h [b] i := α [b] i , for i ≥ k + 1.
We have

u h (s k+1 , χ) Φ(χ) = inf α h [•]∈Γ h sup (b i) i ∈B N -k-1 J h (s k+1 , χ , α h [b], b) Φ(χ) ≤ sup (b i) i ∈B N -k-1 J h (s k+1 , χ , δ h [b], b) Φ(χ) ≤ J h (s k+1 , χ , δ h [b], b) Φ(χ) +
where (b i) i is an -optimal sequence for sup

(b i) i ∈B N -k-1 J h (s k+1 , χ , δ h [b], b) Φ(t, χ). Claim that ρ(t, χ) ≤ J h (t, χ, α h [b], b) + , where b i := b, if i = k, b i , if i ≥ k + 1.
From the above inequality, we obtain:

ρ(t, χ) ≤ sup (b i) i ∈B N -k J h (t, χ, α h [b], b) + ,
together with (3.34), we obtain ρ(t, χ) ≤ u h (t, χ) + 2 , which ends the proof of (i) since is chosen arbitrarily. Now let's prove the claim.

ρ(t, χ) = max b∈B min a∈A u h (s k+1 , χ + (s k+1 -t)F (t, χ, a, b)) Φ(χ) = min a∈A u h (s k+1 , χ + (s k+1 -t)F (t, χ, a, b)) Φ(χ) ≤ u h (s k+1 , χ) Φ(χ) ≤ J h (s k+1 , χ , δ h [b], b) Φ(χ) + .
Combining the last inequality with the following equality justifies our claim:

J h (s k+1 , χ , δ h [b], b) Φ(χ) = J h (t, χ, α h [b], b).
(ii) From (i) and Algorithm 3.2, we obtain:

u h (t, χ) = max b∈B min a∈A u h (s k+1 , χ + (s k+1 -t)F (t, χ, a, b)) Φ(χ) = min a∈A u h (s k+1 , χ + (s k+1 -t)F (s, χ, a, b * k)) Φ(χ) = u h (s k+1 , ζ * k+1) Φ(χ).
By the same argument, we get:

u h (s k+1 , ζ * k+1) = u h (s k+2 , ζ * k+2) Φ(ζ * k+1),
which can be generalized for any i ≥ k + 1:

u h (s i , ζ * i) = u h (s i+1 , ζ * i+1) Φ(ζ * i).
From the above equalities, we conclude:

u h (t, χ) = Φ(χ) max i=k+1,...,N Φ(ζ * i) Ψ(ζ * N) = J h (t, χ, α * h [b *], b *).
In a similar way, one can prove that for any

(b i) i ∈ B N -k : J h (t, χ, α * h [b], b) ≤ u h (t, χ).
(iii) First, consider the function u defined by

u(t, χ) := lim sup (s,y)→(t,χ),h→0 + u h (s, y).
Let's prove that u is a sub-solution of the HJ equation (3.19) whose unique viscosity solution is u. Indeed, let ξ be a function of class C 1 and (t, χ) be a strict maximum of u -ξ in B := B((t, χ), r), with r > 0. From Lemma 2.6.3, there exist two sequences (h n) n and ((t n , χ n)) n such that for any n ∈ N, h n > 0 and (t n , χ n) is a maximum point of u hn -ξ over B and:

h n → 0, (t n , χ n) → (t, χ), and u hn (t n , χ n) → u(t, χ) when n → +∞.
Furthermore, consider a uniform partition of [0, T] with time steps: s n 0 = 0, ..., s n i = ih n , ... There exists k ≥ 0 such that t n ∈ [s n k , s n k+1 [and let τ n := s n k+1 -t n > 0. From the discrete dynamic programming equation (3.33), there exists b n ∈ B s.t. for any a ∈ A:

u hn (t n , χ n) ≤ u h (s n k+1 , y n) Φ(χ n),
where y n := χ n + τ n F (t n , χ n , a, b n). We denote by rhs(n) the right hand side of the above equation.

There exists a subsequence of ((t n , χ n)) n , denoted by

((t σ(n) , χ σ(n))) n , such that rhs(n) is equal to either u h (s σ(n) k+1 , y σ(n)) or Φ(χ σ(n)). If rhs(n) = Φ(χ σ(n)), then u h σ(n) (t σ(n) , χ σ(n)) ≤ Φ(χ σ(n)).
When n → ∞, we obtain u(t, χ) ≤ Φ(χ), which gives the result. In the other case, rhs(n

) = u h σ(n) (s σ(n) k+1 , y σ(n)) and hence u h σ(n) (t σ(n) , χ σ(n)) ≤ u h σ(n) (s σ(n) k+1 , y σ(n)).
On the other hand, we have

(u h σ(n) -ξ)(t σ(n) , χ σ(n)) ≥ (u h σ(n) -ξ)(s σ(n) k+1 , y σ(n)).
From the two last inequalities, we get

ξ(t σ(n) , χ σ(n)) -ξ(s σ(n) k+1 , y σ(n)) ≤ 0. The Taylor expansion of ξ at (t σ(n) , χ σ(n)) gives ξ(s σ(n) k+1 , y σ(n)) = ξ(t σ(n) , χ σ(n)) + τ σ(n) ∂ξ ∂t (t σ(n) , χ σ(n)) + y σ(n) -χ σ(n) , D χ ξ(t σ(n) , χ σ(n)) + τ 2 σ(n) + y σ(n) -χ σ(n) 2 × (s σ(n) k+1 , y σ(n)) -(t σ(n) , χ σ(n)) ,
where (s

σ(n) k+1 , y σ(n)) -(t σ(n) , χ σ(n)) → 0 when (s σ(n) k+1 , y σ(n)) -(t σ(n) , χ σ(n)) → 0.
From the last inequality and the Taylor expansion, and after dividing by τ σ(n) , we obtain:

- ∂ξ ∂t (t σ(n) , χ σ(n)) -F (t σ(n) , χ σ(n) , a, b σ(n)), D χ ξ(t σ(n) , χ σ(n)) + 1 + F (t σ(n) , χ σ(n) , a, b σ(n)) 2 × (s σ(n) k+1 , y σ(n)) -(t σ(n) , χ σ(n)) ≤ 0.
Since B is compact, we can extract a sequence from (b σ(n)) n , denoted also by (b σ(n)) n for simplicity, that converges to some b ∈ B and when n → ∞, we get:

- ∂ξ ∂t (t, χ) -F (t, χ, a, b), D χ ξ(t, χ) ≤ 0.
Since the last inequality still true for any a ∈ A, we deduce that:

- ∂ξ ∂t (t, χ) + H(t, χ, D χ ξ(t, χ)) ≤ 0.
Finally, since

min - ∂ξ ∂t (t, χ) + H(t, χ, D χ ξ(t, χ)), ξ(t, χ) -Φ(χ) ≤ - ∂ξ ∂t (t, χ) + H(t, χ, D χ ξ(t, χ))
we conclude that u is a sub-solution of (3.19). Now, consider the function u defined by: u(t, χ) := lim inf (s,y)→(t,χ),h→0 + u h (s, y), and let's prove that u is a super-solution of (3.19). Let ξ be a function of class C 1 and (t, χ) a strict minimum of u -ξ in B := B((t, χ), r), with r > 0, such that (u -ξ)(t, χ) = 0. From Lemma 2.6.3, there exist two sequences (h n) n and ((t n , χ n)) n such that for any n ∈ N, h n > 0, (t n , χ n) is a minimum point of u hn -ξ over B and:

h n → 0, (t n , χ n) → (t, χ) and u hn (t n , χ n) → u(t, χ) when n → +∞.
Consider again the uniform partition of [0, T] with time steps: s n 0 = 0, ..., s n i = ih n , ... There exists k ≥ 0 such that t n ∈ [s n k , s n k+1 [and let τ n := s n k+1 -t n > 0. For any b ∈ B, there exists a n ∈ A (depending on b) such that:

u hn (t n , χ n) ≥ u hn (s n k+1 , χ n + τ n F (t n , χ n , a n , b)) Φ(χ n).
First, we have u hn (t n , χ n) ≥ Φ(χ n) and when n → ∞, we obtain

ξ(t, χ) = u(t, χ) ≥ Φ(χ). (3
ζ(t n , χ n) -ξ(s n k+1 , y n) τ n ≥ 0.
Now, we use the Taylor expansion of ξ at (t n , χ n), we extract a sequence from (a n) n that converges to some a ∈ A and we let n → ∞ to obtain:

- ∂ξ ∂t (t, χ) -F (t, χ, a, b), D χ ξ(t, χ) ≥ 0, therefore, - ∂ξ ∂t (t, χ) + max a∈A -F (t, χ, a, b), D χ ξ(t, χ) ≥ 0.
Since the last inequality is verified for any b ∈ B, we deduce that:

- ∂ξ ∂t (t, χ) + H(t, χ, D χ ξ(t, χ)) ≥ 0.
Finally, from (3.35) and the last inequality we deduce that u is a super-solution of (3.19).

As a conclusion, we have shown that u and u are respectively super and sub-solution of (3.19). Therefore, by applying the comparison principle theorem that holds for (3.19) (see [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF]Appendix]), we obtain u ≤ u ≤ u. Since in general u ≤ u, we get u = u = u. Finally, by exploiting the properties of weak limits, see for instance [11, Chapter V], we deduce the uniform convergence of u h to u over compact subsets of

[0, T] × R m .
Finally, we present the following result that defines a continuous time strategy for the first player and control for the second player, such that when the time step h goes to zero, the corresponding value of J converges to the continuous time value function u.

Theorem 3.4.6. Let t ∈ [0, T [, there exist (α * h [•], b * h (•)) ∈ Γ × B verifying lim h→0 + J(t, χ, α * h [b * h], b * h) = u(t, χ).
Proof. We define B h , a subset of B, by:

B h := b(•) ∈ B, s.t. b(s) = b(kh), ∀s ∈ [kh, (k + 1)h[, for k = 0, ..., N -1 ,
and let A h be the subset of A defined in a similar way to B h .

Now, let's define (α * h [•], b * h (•)) ∈ Γ × B by: b * h (s) := b * s/h and α * h [b](s) := α * h [b] s/h where α * h [•] ∈ Γ h and (b * i) i ∈ B N -k are generated by Algorithm 3.2 and (bi) i ∈ B N -k is defined by bi := b(ih), for i = k, ..., N -1, for any b(•) ∈ B. Notice that b * h (•) ∈ B h and α * h [b](•) ∈ A h , for any b(•) ∈ B. Furthermore, for any (a(•), b(•)) ∈ A h × B h , we define ((âi) i , (bi) i) ∈ A N -k × B N -k by: âi = a(ih) and bi = b(ih) for i = k, ..., N -1.
We claim that:

|J(t, χ, a, b) -J h (t, χ, â, b)| ≤ O(h), (3.36)
where J is given by the following expression:

J(t, χ, a, b) = max s∈[t,T] Φ(ζ a,b t,χ (s)) Ψ(ζ a,b t,χ (T)), for any (a(•), b(•)) ∈ A × B and J h , for any ((a i) i , (b i) i) ∈ A N -k × B N -k
, is given by:

J h (t, χ, a, b) = Φ(χ) max i=k+1,...,N Φ(ζ i) Ψ(ζ N).
First, the estimation (3.36) implies

|J(t, χ, α * h [b * h], b * h) -J h (t, χ, α * h [b *], b *)| ≤ O(h). (3.37)
Then, from (ii) and (iii) of Proposition 3.4.4 we have:

J h (t, χ, α * h [b *], b *) = u h (t, χ) and lim h→0 + u h (t, χ) = u(t, χ).
Finally, combining the two above equalities with inequality (3.37) gives the desired result. Now, we will justify the claim (3.36). We have:

|J(t, χ, a, b) -J h (t, χ, â, b)| ≤ | max s∈[t,s k+1] Φ(ζ a,b t,χ (s)) -Φ(χ)| max i=k+1,...,N -1 | max s∈[s i ,s i+1] Φ(ζ a,b t,χ (s)) -Φ(ζ i)| |Φ(ζ a,b t,χ (T)) -Φ(ζ N)| |Ψ(ζ a,b t,χ (T)) -Ψ(ζ N)|.
Moreover, we have:

| max s∈[t,s k+1] Φ(ζ a,b t,χ (s)) -Φ(χ)| ≤ max s∈[t,s k+1] |Φ(ζ a,b t,χ (s)) -Φ(χ)| ≤ max s∈[t,s k+1] L Φ (R) ζ a,b t,χ (s) -χ ,
and for any i = k + 1, ..., N -1:

| max s∈[s i ,s i+1] Φ(ζ a,b t,χ (s)) -Φ(ζ i)| ≤ max s∈[s i ,s i+1] |Φ(ζ a,b t,χ (s)) -Φ(ζ i)| ≤ max s∈[s i ,s i+1] L Φ (R) ζ a,b t,χ (s) -ζ i ,
and finally:

|Φ(ζ a,b t,χ (T)) -Φ(ζ N)| ≤ L Φ (R) ζ a,b t,χ (T) -ζ N and |Ψ(ζ a,b t,χ (T)) -Ψ(ζ N)| ≤ L Ψ (R) ζ a,b t,χ (T) -ζ N .
Then, by following the same arguments used in Step 3. and Step 4. from the proof of Theorem 3.4.1 and by exploiting the Lipschitz continuity of F , Φ and Ψ, one can prove that:

ζ a,b t,χ (s) -χ ≤ O(h), for any s ∈ [t, s k+1],
and for any i = k + 1, ..., N -1: Even for a trajectory reconstructed by Algorithm 3.2 (the worst case), we cannot prove the equality in (3.23) (see Theorem 3.4.1) when the approximation u h is general. In other words, one cannot guarantee the existence of a Nash equilibrium for the discrete time game if u h does not satisfy the discrete dynamic programming principle (3.33). Nevertheless, we will see in the illustrative example, in the following section, how the performances of the trajectories generated by Algorithm 3.1 (arbitrary case) are better than those obtained by Algorithm 3.2 (worst case).

ζ a,b t,χ (s) -ζ i ≤ O(h), for any s ∈ [s i , s i+1],

Application to an aircraft landing problem

Introduction

Aircraft accidents can occur because of quick changes of the wind velocity at low altitudes which present a real danger. For this reason, it is important to look for the best flying configurations to avoid a failed landing. It consists in steering the aircraft to the maximum altitude that can be reached, during an interval of time, in order to prevent a crash on the ground.

In papers [START_REF] Miele | Optimal abort landing trajectories in the presence of windshear[END_REF][START_REF] Miele | Quasi-steady flight to quasi-steady flight transition for abort landing in a windshear: trajectory optimization and guidance[END_REF], a Chebyshev-type optimal control was proposed and an approximated solution of the problem is computed in order to deduce an approximated feedback control. In paper [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF], the Hamilton-Jacobi-Bellman approach was used to characterize and compute the value function of the control problem when the wind behavior is supposed to be known.

A more realistic situation can be found in [START_REF] Botkin | Dynamic programming approach to aircraft control in a windshear[END_REF] where a nonlinear differential game with integral payoff functional and state constraints was studied. In particular, the dynamic programming approach was applied to the problem of an aircraft control during take-off in a windshear. In this case, the first player (the minimizer, the pilot) uses feedback strategies, while the second player (the maximizer, the wind) uses nonanticipative strategies (the wind is permitted to measure the current value of the first player's control). To solve this problem, a semi-Lagrangian scheme is applied to compute an approximation of the value function.

Consider the flight of an aircraft in a vertical plane. Different forces are acting on the center of gravity of the aircraft. Among those forces one can cite:

• The thrust force F T with a modulus of the form F T (u) where u is the modulus of the aircraft velocity.

• The lift and drag forces F L and F D with modulus F L and F D depending on u and the angle of attack θ.

• The weight force F P with modulus F P = mg, where m is the aircraft mass and g is the gravitational constant.

From the Newton's law, we deduce the following equations of motion (see [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF][START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem, part 1: Necessary conditions[END_REF]):

               ẋ(s) = u(s) cos(γ(s)) + ω x (s) ḣ(s) = u(s) sin(γ(s)) + ω h (s) u(s) = F T (u(s)) m cos(θ(s) + δ) -F D (u(s),θ(s)) m -g sin(γ(s)) -ωx (s) cos(γ(s)) -ωh (s) sin(γ(s)) γ(s) = F T (u(s))
mu(s) sin(θ(s) + δ) + F L (u(s),θ(s)) mu(s)

-g cos(γ(s))

u(s) + ωx (s) sin(γ(s)) u(s) -ωh (s) cos(γ(s)) u(s) θ(s) = a(s),
where x is the horizontal distance, h denotes the aircraft altitude, u is the velocity, γ is the relative path inclination, θ is the angle of attack, δ > 0 is a parameter of the model, ω x and ω h are respectively the horizontal and the vertical components of the wind velocity vector, ωx and ωh are their derivatives and a represents the control variable.

Precise expressions of F T , F L and F D and numerical values of different parameters of the model can be found in [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF][START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem, part 1: Necessary conditions[END_REF][START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy[END_REF] and in Appendix 4.7.2 of chapter 4.

5D differential game model

In this paper, we propose a differential game model with maximum running cost in which wind disturbances are considered as a second player and our aim is to steer the aircraft to the maximum altitude that can be reached during an interval of time, by means of nonanticipative strategies, in order to prevent a crash on the ground.

Model presentation and differential game

The wind disturbances are represented by ωx and ωh which are the derivatives of the horizontal and the vertical components of the wind velocity vector.

B := B 1 × B 2 = [b 1,min , b 1,max] × [b 2,min , b 2,max].
Moreover, we consider new state variables represented by y(•) : [0, T] → R 5 with T > 0 and

y(•) := (h(•), u(•), γ(•), ω h (•), θ(•)) .
Henceforth, the above 5-D differential system becomes:

               ḣ(s) = u(s) sin(γ(s)) + ω h (s) u(s) = F T (u(s)) m cos(θ(s) + δ) -F D (u(s),θ(s)) m -g sin(γ(s)) -b 1 (s) cos(γ(s)) -b 2 (s) sin(γ(s)) γ(s) = F T (u(s)) mu(s) sin(θ(s) + δ) + F L (u(s),θ(s)) mu(s) -g u(s) cos(γ(s)) + b 1 (s) u(s) sin(γ(s)) -b 2 (s) u(s) cos(γ(s)) ωh (s) = b 2 (s) θ(s) = a(s),
where a(•) is the control of the first player that takes values in a compact and convex set given by A := [a min , a max] with a max = -a min . This differential system can be expressed differently:

ẏ(t) = f (t, y(t), a(t), b(t)) := g 0 (y(t)) + b 1 (t)g 1 (y(t)) + b 2 (t)g 2 (y(t)) + a(t)e 5
where e 5 = (0, 0, 0, 0, 1) T and for y = (h, u, γ, ω h , θ) ∈ R 5

g 0 (y) =        u sin(γ) F T (u) m cos(θ + δ) -F D (u,θ) m -g sin(γ) 1 u F T (u) m sin(θ + δ) + F L (u,θ) m -g cos(γ) 0 0        , g 1 (y) =       0 -cos(γ) 1 u sin(γ) 0 0       and g 2 (y) =       0 -sin(γ) 1 u cos(γ) 1 0      
.

In order to transform our problem into a minimization problem, the maximum running cost function φ is defined as φ(y) := H r -h, where h is the aircraft altitude (the first component of the state vector y) and H r > 0 is a given reference altitude. Finally, the admissible set K has the following form:

K = [h min , h max] × [u min , u max] × [γ min , γ max] × [ω h,min , ω h,max] × [θ min , θ max].

Numerical resolution

In order to determinate the intervals in which the state variables, the control of the first player and the wind disturbances take values, we exploit the wind model presented in [6, Appendix A]. Therefore, we obtain the following constraints on the system state and the players controls, presented respectively in tables 3. Here, we take z min = H r -h max and z max = H r -h min .

To solve the auxiliary optimal control problem, we extend the computational domain in all directions (see Proposition 3.3.6 of section 3.3) to obtain K µ := K + µB ∞ where B ∞ := [-1, 1] 5 and the parameter µ is a small fixed positive value (here, we take µ = 0.05). Then, consider the following mesh steps ∆ := (δt, (δy i) 1≤i≤5 , δz). For a given multi-index i = (i 1 , ..., i 5) ∈ N 5 , let y i := y min,i + iδy i , z j := z min + jδz, j ∈ N and t n := nδt, n = 0, ..., N , where N is the integer part of T /δt. Therefore, we define the following grid on K µ × [z min , z max] by:

G := (y i , z j) ∈ K µ × [z min , z max], i ∈ N 5 , j ∈ N .
On the other hand, the Hamiltonian function H(y, p), for (y, p) ∈ R 5 × R 5 , can be explicitly calculated:

H(y, p) = min b∈B max a∈A -f (t, y, a, b), p = -g 0 (y), p -max b 1 ∈B 1 b 1 g 1 (y), p -max b 2 ∈B 2 b 2 g 2 (y), p + a max |p 5 |.
The last equality is justified by the fact that a max = -a min . Therefore, the corresponding numerical Hamiltonian can be given by:

H(y, p -, p +) = i=4 i=1 max -f i (y, b opt), 0 p - i + min -f i (y, b opt), 0 p + i + a max max p - 5 , -p + 5 , 0 , where b opt ∈ argmax b∈B (b 1 g 1 (y) + b 2 g 2 (y)) , p with p = p -+p + 2 .
Finally, to approximate the auxiliary value function w, we solve numerically a discretized form of the corresponding HJ equation by using the following explicit scheme (see [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF][START_REF] Bokanowski | Reachability and minimal times for state constrained nonlinear problems without any controllability assumption[END_REF]):

w N i,j = φi,j w n i,j = max w n+1 i,j -δtH(y i , D -w n+1 i,j , D + w n+1 i,j), φi,j , n ∈ {N -1, ..., 0}, (y i , z j) ∈ G, (3.38)
where φi,j := φ(y i , z j), w n i,j is an approximation of w(t n , y i , z j) and the terms D ± w n i,j are approximated through a second order ENO scheme, see [START_REF] Osher | High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations[END_REF], given by the following expression:

D ± k w n i,j := ± w n i±e k ,j -w n i,j δy k ∓ δy k 2 σ(D 2 k,0 w n i,j , D 2 k,±1 w n i,j)
with D 2 k, w n i,j := (w n i+(-1)e k ,j +2w n i+2 e k ,j -w n i+(+1)e k ,j)/(δy k) 2 , for k ∈ {1, ..., 5}, e k denotes the k-element of the canonical basis of R 5 and σ is defined, for any a, b ∈ R, as follows: all its arguments. Furthermore, the time step δt is chosen in order to satisfy the Courant-Friedrich-Levy condition:

σ(a, b) :=      a if ab > 0 and |a| ≤ |b|, b if ab > 0 and |a| > |b|, 0 if ab ≤ 0.
δt 4 i=1 |f i (y)| δy i + a max δy 5 ≤ CF L,
where CF L ≤ 1 is a real number in [0, 1] (in our model, we take CF L = 0.5). Under those conditions, the approximation w n i,j converges to w, the viscosity solution of (3.12) (see [START_REF] Bokanowski | Reachability and minimal times for state constrained nonlinear problems without any controllability assumption[END_REF]). As a conclusion, to solve the constrained problem (3.6), we proceed as follows:

1. First, we compute an approximation of the auxiliary value function w by solving (3.38). Denote this approximation by W ∆ .

2. Then, thanks to Theorem 3.3.5, we get an approximation of the value function v at an initial state y 0 , denoted by z ∆ (y 0) and defined by:

z ∆ (y 0) := min{z ∈ [z min , z max] | W ∆ (y 0 , z) ≤ 0}.
3. Finally, we apply our reconstruction procedure (Algorithm 3.1 or 3.2) to the approximated auxiliary value function W ∆ , starting from (y 0 , z ∆ (y 0)), to get approximated optimal strategies of the first player for the constrained problem (3.6), starting at time t = 0 from the initial state y 0 (see assertion (iii) of Theorem 3.3.5).

Numerical test: Reconstruction of optimal trajectories and controls

The final time horizon is set to T = 8 and consider a grid G containing 40 × 20 4 × 5 points. In this test, we show results of trajectory reconstruction for some initial positions obtained with algorithms 3.1 and 3.2.

As initial points, we take: First, we shall mention that the reconstruction of admissible trajectories is not theoretically possible for any initial position. Indeed, there are some initial points from which we cannot find any strategy α[•] ∈ Γ of the controller (the first player) that guarantees the admissibility of trajectories, for any perturbation of the wind. Those initial points correspond to a positive value of the auxiliary value function w for any value of the auxiliary variable z and hence to an infinite value of the constrained problem (3.6) (see remark 3.3.3).

y 1 = (
Furthermore, one can get an idea about all the initial positions from which there exists at least one strategy of the first player that corresponds to a trajectory satisfying the state constraints for any perturbation of the wind. The set of such initial positions is called the feasible set which can be obtained by the negative level set of the auxiliary value function w. In figures 3.1 and 3.2, starting from y 1 and y 2 respectively, as expected, we observe that the altitudes reached in the worst case (Algorithm 3.2) are always below those obtained in the random case (Algorithm 3.1).

In the worst case, perturbations aim to decrease as much as possible the altitude h. Therefore, its objective is to have ḣ ≤ 0. Since ḣ(s) = u(s) sin(γ(s)) + ω h (s), wind perturbations in this case will take values that decrease ω h and u sin(γ). For this reason, we observe that the first component of the wind disturbances takes the maximal possible value, b 1 (•) ≡ b 1,max > 0, in order to decrease u along time. In figure 3.3, starting from y 3 , we remark that the perturbations values in the worst case do not change compared to the previous initial flight configurations (y 1 and y 2). Nevertheless, we observe that the altitudes reached in the random case (Algorithm 3.1) are similar to those obtained in the worst case and there are even sensibly lower at some time instants. This observation can be justified by the high initial altitude of y 3 compared to y 1 and y 2 . In other words, when the initial altitude of the aircraft is higher enough, worst perturbations cannot have the same effect as in the previous situations (initial flight configuration with lower altitude such as the case of y 1 and y 2).

Appendix: Properties of the auxiliary value function w

Proof of Proposition 3.3.1. (i) We start by proving the dynamic programming principle (3.11). To simplify notations, let's denote x := (x, z) ∈ R d × R and let u be defined by:

u(t, x) := inf α[•]∈Γ sup b(•)∈B w(τ, ŷα[b],b t,x (τ)) max s∈[t,τ] φ(ŷ α[b],b t,x (s)) ,
with τ := t + h ≤ T for some h ≥ 0. φ(ŷ 1 (s)).

We have the following equality:

σ τ (t, x; b 1) = inf α 2 [•] sup b 2 (•) max s∈[τ,T] φ(ŷ α 2 [b 2],b 2 τ,ŷ 1 (τ) (s)) ψ(ŷ α 2 [b 2],b 2 τ,ŷ 1 (τ) (T)) max s∈[t,τ] φ(ŷ 1 (s)).

Since max s∈[t,τ]

φ(ŷ 1 (s)) does not depend on α 2 [•] in the above equality, we deduce that:

σ τ (t, x; b 1) = inf α 2 [•] sup b 2 (•) max s∈[τ,T] φ(ŷ α 2 [b 2],b 2 τ,ŷ 1 (τ) (s)) ψ(ŷ α 2 [b 2],b 2 τ,ŷ 1 (τ) (T)) max s∈[t,τ] φ(ŷ 1 (s)) .
Now, let δ [•] be an -optimal strategy for σ τ (t, x; b 1), which means that:

sup b 2 (•) max s∈[τ,T] φ(ŷ δ [b 2],b 2 τ,ŷ 1 (τ) (s)) ψ(ŷ δ [b 2],b 2 τ,ŷ 1 (τ) (T)) max s∈[t,τ] φ(ŷ 1 (s)) ≤ + σ τ (t, x; b 1). (3.40)
We define the strategy α 0 [•] ∈ Γ as follows

α 0 [•] = α [•] on [t, τ], δ [•] on [τ, T].
From the definition of w, we have: φ(ŷ

w(t, x) ≤ sup b(•)∈B max s∈[t,T] φ(ŷ α 0 [b],b t,x (s)) ψ(ŷ α 0 [b],b t,x (
α 0 [b],b t,x (s)) = max s∈[t,τ] φ(ŷ 1 (s)) max s∈[τ,T] φ(ŷ δ [b 2],b 2 τ,ŷ 1 (τ) (s))
and ψ(ŷ

α 0 [b],b t,x (T)) = ψ(ŷ δ [b 2],b 2 τ,ŷ 1 (τ) (T)), where ŷ1 (•) is the restriction of ŷα [b],b t,x (•) to [t, τ]
. Therefore, the above inequality becomes:

w(t, x) ≤ sup b 1 (•) sup b 2 (•) max s∈[τ,T] φ(ŷ δ [b 2],b 2 τ,ŷ 1 (τ) (s)) ψ(ŷ δ [b 2],b 2 τ,ŷ 1 (τ) (T)) max s∈[t,τ] φ(ŷ 1 (s)) .
From (3.40), we deduce that:

w(t, x) ≤ sup b 1 (•) + σ τ (t, x; b 1) = + sup b 1 (•) w(τ, ŷ1 (τ)) max s∈[t,τ] φ(ŷ 1 (s)) .
Furthermore, we have:

sup b 1 (•) w(τ, ŷ1 (τ)) max s∈[t,τ] φ(ŷ 1 (s)) = sup b(•)∈B w(τ, ŷα [b],b t,x (τ)) max s∈[t,τ] φ(ŷ α 1 [b],b t,x (s)
)

≤ + u(t, x),
where the last line holds by using (3.39). As a conclusion, by combining the two last inequalities we obtain w(t, x) ≤ u(t, x) + 2 for any > 0, which gives the desired inequality. Now, we will show that w(t, x) ≥ u(t, x). For any > 0, there exists an -optimal strategy for w(t, x), denoted by α [•], such that:

w(t, x) + ≥ sup b(•)∈B max s∈[t,T] φ(ŷ α [b],b t,x (s)) ψ(ŷ α [b],b t,x (
α 2 [b 2](s) := α [b](s) for s ∈ [τ, T],
where b(•) ∈ B is given by:

b(s) = b(s) for s ∈ [t, τ] b 2 (s) for s ∈ [τ, T].
We mention here that α (τ) ∈ R d+1 . From the definition of w(τ, ŷ1), we have:

2 [•] / ∈ Γ since α 2 [•] is a mapping from B(τ) to A(τ).
w(τ, ŷ1) ≤ sup b 2 (•)∈B(τ) max s∈[τ,T] φ(ŷ α 2 [b 2],b 2 τ,ŷ 1 (s)) ψ(ŷ α 2 [b 2],b 2 τ,ŷ 1 (T)) . (3
](•) = α [b0](•) on [τ, T]. On the other hand, b0 (•) = b 0 (•) because b 0 (•) ∈ B(t, τ, b). We deduce that α 2 [b 2 0](•) = α [b 0](•) on [τ, T
] and which implies that:

max s∈[t,T] φ(ŷ α [b 0],b 0 t,x (s)) = max s∈[t,τ] φ(ŷ α [b],b t,x (s)) max s∈[τ,T] φ(ŷ α 2 [b 2 0],b 2 0 τ,ŷ 1 (s))
and ψ(ŷ

α [b 0],b 0 t,x (T)) = ψ(ŷ α 2 [b 2 0],b 2 0 τ,ŷ 1 (T))
,

where ŷ1 = ŷα [b 0],b 0 t,x (τ) = ŷα [b],b t,x (τ) since b 0 (•) = b(•) on [t, τ].
From the two above equalities, we deduce:

sup b 0 (•)∈B(t,τ,b) max s∈[t,T] φ(ŷ α [b 0],b 0 t,x (s)
) ψ(ŷ α [b 0],b 0 t,x (T)) = sup b 2 0 (•)∈B(τ) max s∈[t,τ] φ(ŷ α [b],b t,x (s)) max s∈[τ,T] φ(ŷ α 2 [b 2 0],b 2 0 τ,ŷ 1 (s)) ψ(ŷ α 2 [b 2 0],b 2 0 τ,ŷ 1 (T)) .
sup b 2 0 (•)∈B(τ) max s∈[t,τ] φ(ŷ α [b],b t,x (s)) max s∈[τ,T] φ(ŷ α 2 [b 2 0],b 2 0 τ,ŷ 1 (s)) ψ(ŷ α 2 [b 2 0],b 2 0 τ,ŷ 1 (T)) ≤ w(t, x) + .
The inequality (3.42) allows us to conclude that for any b(•) ∈ B, we have:

w(τ, ŷα [b],b t,x (τ)) max s∈[t,τ] φ(ŷ α [b],b t,x (s)) ≤ w(t, x) + .
Taking the supremum over b(•) ∈ B in the last inequality gives:

u(t, x) ≤ sup b(•)∈B w(τ, ŷα [b],b t,x (τ)) max s∈[t,τ] φ(ŷ α [b],b t,x (s)) ≤ w(t, x) + ,
which gives the desired inequality since is chosen arbitrarily.

(ii) Now, we give the proof of the local Lipschitz continuity of w. We start by proving that w is Lipschitz continuous with respect to the (x, z) variables. To simplify the notations, denote by x := (x, z), x := (x , z) ∈ R d × R and let w 0 be defined by w 0 (x):=w(T, x) = φ(x) ψ(x). We notice that w 0 is locally Lipschitz continuous with a Lipschitz constant L 0 (R), for any R > 0, since φ and ψ are locally Lipschitz continuous. For t ∈ [0, T], we have:

w(t, x) -w(t, x) ≤ sup α[•]∈Γ sup b(•)∈B max s∈[t,T] φ(ŷ α[b],b t,x (s)) ψ(ŷ α[b],b t,x (T)) -max s∈[t,T] φ(ŷ α[b],b t,x (s)) ψ(ŷ α[b],b t,x (T)) , since inf x∈X f (x) -inf x∈X g(x) ≤ sup x∈X (f -g)(x)
for any arbitrary set X and any functions f and g from X to R.

From the definition of w 0 , the last inequality becomes:

w(t, x) -w(t, x) ≤ sup α[•]∈Γ sup b(•)∈B w 0 (ŷ α[b],b t,x (T)) -w 0 (ŷ α[b],b t,x (T)) max s∈[t,T] φ(ŷ α[b],b t,x (s)) -φ(ŷ α[b],b t,x (s)) , since max(a, b) -max(c, d) ≤ max(a -c, b -d),
for any a, b, c, d ∈ R. By the Lipschitz continuity of w 0 and φ, we deduce that:

w(t, x) -w(t, x) ≤ sup α[•]∈Γ sup b(•)∈B L 0 (R) ŷα[b],b t,x (T) - ŷα[b],b t,x (T) L φ(R) max s∈[t,T] ŷα[b],b t,x (s) - ŷα[b],b t,x (s)
.

Since f is locally Lipschitz continuous, with Lipschitz constant L f (R) for any R > 0, and from the Gronwall Lemma, we obtain for any

(α[•], b(•)) ∈ Γ × B and any s ∈ [t, T]: ŷα[b],b t,x (s) - ŷα[b],b t,x (s) ≤ e L f (R)T x -x .
As a conclusion, we obtain:

w(t, x) -w(t, x) ≤ L 0 (R) L φ(R) e L f (R)T x -x .
Now, since x and x play symmetric roles, we have also:

w(t, x) -w(t, x) ≤ L 0 (R) L φ(R) e L f (R)T x -x ,
from which we conclude that:

|w(t, x) -w(t, x)| ≤ L 0 (R) L φ(R) e Lf (R)T x -x . (3.44)
For the sequel of the proof, denote L w (R) := L 0 (R) L φ(R) , for any R > 0.

Now, let x = (x, z) ∈ R d × R, t, t 1 ∈ [0, T]
and without loss of generality assume that t 1 > t. Notice that w(t 1 , x) ≥ φ(x), which implies that w(t 1 , x) = w(t 1 , x) φ(x) . By using the dynamic programming principle (3.11) between t and t 1 , we get:

|w(t, x) -w(t 1 , x)| = | inf α[•]∈Γ sup b(•)∈B w(t 1 , ŷα[b],b t,x (t 1) max s∈[t,t 1] φ(ŷ α[b],b t,x (s)) -w(t 1 , x) φ(x) | ≤ inf α[•]∈Γ sup b(•)∈B |w(t 1 , ŷα[b],b t,x (t 1)) -w(t 1 , x)| | max s∈[t,t 1] φ(ŷ α[b],b t,x (s)) -φ(x)| ≤ inf α[•]∈Γ sup b(•)∈B |w(t 1 , ŷα[b],b t,x (t 1)) -w(t 1 , x)| max s∈[t,t 1] | φ(ŷ α[b],b t,x (s)) -φ(x)| ≤ inf α[•]∈Γ sup b(•)∈B L w (R) ŷα[b],b t,x (t 1) -x L φ(R) max s∈[t,t 1] ŷα[b],b t,x (s) -x .
We denote by

C f := max (s,a,b)∈[0,T]×A×B f (s, 0, a, b) . C f is finite since (s, a, b) → f (s, 0, a, b) is continuous over the compact set [0, T] × A × B. Therefore, we have f (s, x, a, b) ≤ C f + L f (R) x for any x ∈ R d × R.
Hence by a Gronwall estimate, we obtain

ŷα[b],b t,x (s) -x ≤ (C f + L f (R) x)e L f (R)T |s -t|, for any s ∈ [t, t 1].
Henceforth, there exits some constant C > 0 such that:

|w(t, x) -w(t 1 , x)| ≤ C(1 + x)|t 1 -t|.
Combining (3.44) with the last inequality implies the existence of a real constant C > 0 such that for any t, t ∈ [0, T] and any x, x ∈ R d+1 :

|w(t, x) -w(t , x)| ≤ C (1 + x)(|t -t | + x -x).

Introduction

In this chapter, we study optimistic planning methods to solve some state-constrained optimal control problems in finite horizon. While classical methods for calculating the value function are generally based on a discretization in the state space, optimistic planning algorithms have the advantage of using adaptive discretization in the control space. These approaches are therefore very suitable for control problems where the dimension of the control variable is low and allow to deal with problems where the dimension of the state space can be very high. Our algorithms also have the advantage of providing, for given computing resources, the best control strategy whose performance is as close as possible to optimality while its corresponding trajectory comply with the state constraints.

Let T > 0 be a fixed time horizon and let K and C be two closed subsets of R d , with d ∈ N * . For any (t, x) ∈ [0, T] × R d , consider the following state-constrained optimal control problem:

v(t, x) := inf a(•)∈A T t (y a t,x (s), a(s))ds + Φ(y a t,x (T)) | y a t,x (s) ∈ K, ∀s ∈ [t, T] and y a t,x (T) ∈ C , (4.1)
where A is the set of controls taking values in some compact subset A of R q , q ≥ 1, and y a t,x (•), representing the system trajectory, is the unique absolutely continuous solution of the following dynamical system:

ẏ(s) = f (y(s), a(s)) a.e. s ∈ [t, T], y(t) = x. (4.2)
The dynamics f and the cost functions and Φ are supposed to be Lipschitz continuous, see section 4.2 for the precise assumptions. Recall that if the problem (4.1) is free of state constraints, K = C = R d , then the value function v is Lipschitz continuous and can be characterized as the unique viscosity solution of an appropriate HJ equation. Such characterization allows to compute an approximation of v and hence to synthesize approximated optimal controls in feedback form which gives sub-optimal solutions. In this context, several numerical methods have been proposed in the literature to approximate the solutions of HJ equations such as finite differences ([START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF]) and semi-Lagrangian ([START_REF] Falcone | Numerical solution of dynamic programming equations. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Falcone | Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations[END_REF]). Since the computations are done over a grid on the state space, the complexity of this class of methods depends strongly on the state dimensionality which reduces the ability of solving optimal control problems with high state dimension (curse of dimensionality).

In order to reduce this curse of dimensionality, several techniques have been proposed in the literature. Among those approaches, one can mention max-plus finite element method, see [START_REF] Akian | The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis[END_REF] and references therein. Furthermore, the value function of an optimal control problem can be approximated by use of occupation measures, see for instance [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI-relaxations[END_REF]. Another idea is to seek for an approximation of the value function by means of sparse grid schemes [START_REF] Bokanowski | An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations[END_REF], which requires strong regularity properties on the value function. One can mention also domain decomposition techniques for partial differential equations [START_REF] Quarteroni | Domain decomposition methods for partial differential equations[END_REF].

In particular, an approximated scheme was proposed in [START_REF] Falcone | A splitting algorithm for Hamilton-Jacobi-Bellman equations[END_REF] to solve Hamilton-Jacobi equations by splitting the original problem into simpler problems on two sub-domains with a linking condition and by imposing constraints on the system state. Recently, a state-tree-structure method has appeared in order to approximate the solution of a dynamic programming equation, see [START_REF] Alla | An efficient DP algorithm on a tree-structure for finite horizon optimal control problems[END_REF][START_REF] Saluzzi | Error estimates for a tree structure algorithm solving finite horizon control problems[END_REF][START_REF] Alla | A tree structure algorithm for optimal control problems with state constraints[END_REF]. This approach eliminates the space discretization and constructs a tree, starting from a given initial state, by adding only the states that will be encountered by a discrete time dynamics and a finite number of controls. Then, the value function will be computed by the dynamic programming principle on the constructed tree.

Another important class of approaches solving the curse of dimensionality is On-line methods where computations are done locally for just current states that will be encountered during the control process. For instance, Rollout algorithm, at a current state, looks for the best control choice improving the cost by use of heuristic ways and uses it to move to the next time step, see [START_REF] Bertsekas | Reinforcement learning and optimal control[END_REF]. Another method is model predictive control, see [START_REF] Lars | Nonlinear model predictive control theory and algorithms[END_REF][START_REF] Bertsekas | Reinforcement learning and optimal control[END_REF], where at each time step, an optimization problem, over finite control sequences, is solved and only the first value of the resulting sequence is used to move to the next time step.

In this chapter, we investigate the optimistic planning approach that, instead of discretizing the state space, it refines the set of controls and tries, after a discretization of the time interval, to find the best control value that should be applied on each time sub-interval. This approach is very interesting especially for many applications where the control dimension q is very lower compared to the state dimension d.

Optimistic planning algorithms are based on the principles of optimistic optimisation (see [START_REF] Munos | Optimistic optimization of a deterministic function without the knowledge of its smoothness[END_REF]). This approach performs the best control search by refining, iteratively and in an optimistic way, the control set (the notion optimistic will be clarified in section 4.4). A main strength of this approach is the relation between the convergence rates to the optimal solution and the computational resources allowed, which is established using some ideas of bandit theory and reinforcement learning [START_REF] Munos | From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning[END_REF].

Several optimistic planning methods have been proposed with heuristic rules for the refinement selection and without providing convergence analysis, see for instance [START_REF] Weinstein | Bandit-based planning and learning in continuous-action markov decision processes[END_REF][START_REF] Mansley | Sample-Based planning for continuous action Markov decision processes[END_REF][START_REF] Hren | Planification optimiste pour systemes déterministes[END_REF] for finite time horizon and [START_REF] Hren | Optimistic planning of deterministic systems[END_REF][START_REF] Máthé | Optimistic planning with a limited number of action switches for near-optimal nonlinear control[END_REF][START_REF] Busoniu | Optimistic planning for markov decision processes[END_REF] for infinite time horizon with a discount factor. In [START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF][START_REF] Buşoniu | Discounted near-optimal control of general continuous-action nonlinear systems using optimistic planning[END_REF], other variants are proposed with adaptive selection rules of the control set refinement and convergence analysis results are also provided. We refer also to [START_REF] Buşoniu | An analysis of optimistic, best-first search for minimax sequential decision making[END_REF] for the case of two-person games in infinite horizon and without state constraints.

Our contribution in this chapter consists in extending the optimistic planning approach to deal with finite horizon problems in presence of state constraints. Recall that in this case, K = R d or C = R d , the value function is in general discontinuous and its characterization as solution to an HJ equation is no longer valid, unless some controllability assumptions are satisfied. First, we follow the level set approach, introduced in [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF][START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF], which is showed to be relevant to characterize the constrained problem by an auxiliary control problem free of state constraints. Then, we adapt two algorithms from [START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF][START_REF] Buşoniu | Discounted near-optimal control of general continuous-action nonlinear systems using optimistic planning[END_REF], OPC -"Optimistic Planning with Continuous actions", and SOPC -"Simultaneous OPC", in order to solve the auxiliary problem and hence to get an approximation of the optimal solution for the original state-constrained problem. Moreover, even in this framework, we prove convergence results similar to those established in [START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF]. Besides, we improve the analysis of the complexity of these algorithms and provide simplified proof arguments for this analysis. Finally, we propose an algorithm which combines both the optimistic planning approach with ideas from the MPC (Model Predictive Control). This algorithm gives better numerical results than those obtained by the previous methods and reduce significantly the computational time. We illustrate the relevance of our algorithms on several non-linear optimal control problems (in one of these examples, the dimension of the state is 10 3).

We organize this chapter as follows. Section 4.2 formulates the state-constrained problem and presents its associated auxiliary reformulation. Section 4.3 gives some preliminary results that will be used to design the algorithms. Section 4.4 is devoted to present the different optimistic planning algorithms with an analysis of their convergence. In section 4.5, we show how our approach can be extended to constrained optimal control problems with infinite time horizon. Several numerical examples are presented in section 4.6.

Problem formulation and discrete settings

For a fixed final time T > 0 and a given non-empty compact subset A of R q , q ≥ 1, consider the following dynamical and controlled system:

ẏ(s) = f (y(s), a(s)) a.e. s ∈ [t, T], y(t) = x, (4.3)
where x ∈ R d and the input variable a(•) is a control in

A := {a(•) : [0, T] → A,
|Φ(y) -Φ(y)| ≤ L Φ y -y .
Finally, consider the following additional convexity assumption:

(H4.4) The set f (x, a) (x, a) + b , a ∈ A, 0 ≤ b ≤ 2L ,x x is convex, for any x ∈ R d .
We are interested in the following optimal control problem:

v(t, x) := inf a(•)∈A T t (y a t,x (s), a(s))ds + Φ(y a t,x (T)) | y a t,x (s) ∈ K, ∀s ∈ [t, T] and y a t,x (T) ∈ C , (4.4)
with the convention that inf ∅ = +∞ and where y a t,x (•), the unique absolutely continuous trajectory satisfying (4.3), is said to be admissible if it remains in K and reachs C at the final time T . K and C are two non-empty closed subsets of R d representing respectively the constraints set and the target.

Recall that in general, when K = R d or C = R d and without assuming further controllability assumptions, the value function v may become discontinuous and its characterization as the unique viscosity solution of an appropriate HJ equation is not guaranteed, see [START_REF] Soner | Optimal control with state-space constraint I[END_REF][START_REF] Frankowska | Existence of neighboring feasible trajectories: applications to dynamic programming for state-constrained optimal control problems[END_REF][START_REF] Ishii | A new formulation of state constraint problems for first-order PDEs[END_REF][START_REF] Bokanowski | Deterministic state-constrained optimal control problems without controllability assumptions[END_REF]. Moreover, v may take infinite values since the set of admissible trajectories may be empty and its domain of definition (the set where it takes finite values) is not known a priori. Similarly to chapter 3, we follow in this chapter the level set approach, developed in [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF], which consists in characterizing v by means of an auxiliary control problem free of state constraints. This approach allows to determinate the domain of definition of v and to compute its value. Even though the latter is infinite, one can exploit the auxiliary problem to compute trajectories that minimize the cost functional in (4.4) and remain as close as possible to the sets of constraints.

First, since the sets K and C are closed, there exist two Lipschitz continuous functions verifying the following characterization:

∀y ∈ R d , g(y) ≤ 0 ⇐⇒ y ∈ K and Ψ(y) ≤ 0 ⇐⇒ y ∈ C.
Denote by L g and L Ψ the Lipschitz constant of g and Ψ respectively. For instance, g and Ψ can be chosen, respectively, as the signed distance to K and the signed distance to C.

Then, the auxiliary control problem corresponding to (4.4) is defined, for (t, x, z) ∈ [0, T] × R d × R, as follows:

w(t, x, z) := inf a(•)A T t (y a t,x (s), a(s))ds + Φ(y a t,x (T)) -z max s∈[t,T]
g(y a t,x (s)) Ψ(y a t,x (T)) . (4.5)

The following result gives a characterization of w and presents its link with the constrained problem (4.4). We refer to [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF][START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF] for more details and the proof of this result. (i) w is a locally Lipschitz continuous function and is the unique viscosity solution of the following HJ equation:

min (-∂ t w(t, x, z) + H(x, D x w(t, x, z), ∂ z w(t, x, z)), w(t, x, z) -g(x)) = 0, on [0, T [×R d × R, w(T, x, z) = (Φ(x) -z) g(x) Ψ(x), on R d × R,
where the Hamiltonian H is given by:

H(x, p, p) := max a∈A -f (x, a), p + p (x, a) , for (x, p, p) ∈ R d × R d × R.
(ii) Assume that (H4.4) also holds. For any (t, x) ∈ [0, T] × R d , we have:

v(t, x) = inf{z ∈ R | w(t, x, z) ≤ 0},
and if z := v(t, x) < +∞ then any optimal solution of (4.5) with z = z is optimal for the constrained problem (4.4).

Assertion (ii) of the above Proposition shows the relevance of considering the problem formulation (4.5) in order to solve the original constrained problem (4.4). Moreover, the characterization of the auxiliary function w, as unique Lipschitz continuous solution of an HJ equation (i), provides a very useful framework for numerical approximation of w and the control feedback. However, it is known that the classical numerical methods for solving HJ equations, such as finite differences ([START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF]) and semi-Lagrangian ([START_REF] Falcone | Numerical solution of dynamic programming equations. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Falcone | Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations[END_REF]) are grid-dependent since computations are based on a discretization of the state space. This makes this approach applicable only for problems where the dimension of the state variable is low (curse of dimensionality) and henceforth it may seem unreasonable to apply it for the auxiliary problem where the state vector has been increased by one more variable (the auxiliary variable z). In this chapter, we propose a different approach which, instead of considering a grid in the state space, proposes an adaptive refinement of the control space. This approach becomes then interesting for many applications in high dimensional state space and with low dimensional control space. Now, we will define the discrete setting allowing to approximate the auxiliary value function w. In order to simplify the presentation, from now on, the initial time for the controlled system is set to 0. First, for N ≥ 1, consider a uniform partition of [0, T] with N time steps: s 0 = 0, ..., s k = k∆t, ..., s N = T , where ∆t = T N is the time steps size. Let F be a discrete dynamics associated to f and defined, through the Heun scheme, as follows:

F (x, a) := x + ∆t 2 f (x, a) + f (x + ∆tf (x, a), a) .
The discrete dynamical system, associated to (4.3), is given by:

y k+1 = F (y k , a k), k = 0, ..., N -1, y 0 = x, (4.6)
where a := (a k) k ∈ A N is a finite sequence of actions. The solution of (4.6), representing the discrete trajectory of the system, will be denoted by (y a k) k . This trajectory is admissible if: Under assumptions (H4.1) and (H4.2), the functions F and ρ are Lipschitz continuous:

y a k ∈ K,
F (y, a) -F (y , a) ≤ L F,x y -y + L F,a a -a , |ρ(y, a) -ρ(y , a)| ≤ L ρ,x y -y + L ρ,a a -a , where L F,x := 1 + ∆tL f,x (1 + ∆t 2 L f,x), L F,a := ∆tL f,a (1 + ∆t 2 L f,x L f,a), (4.7)
and

L ρ,x := ∆tL ,x 1 + L F,x , L ρ,a := ∆t L ,a + 1 2 L ,x L F,a . (4.8)
The discrete auxiliary control problem, free of state constraints, is defined as follows:

W (x, z) := inf (a k) k ∈A N J(x, z, a), (4.9)
where, for (x, z) ∈ R d × R, the cost functional J is defined by

J(x, z, a) := N -1 k=0 ρ(y a k , a k) + Φ(y a N) -z max 0≤k≤N g(y a k) Ψ(y a N). (4.10)
It is worth to mention that W (x, z) converges to w(0, x, z), over compact subsets of R d × R, as N → +∞ (i.e. ∆t → 0). More details and quantitative results about time approximation of finite horizon value functions and its convergence order can be found in [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Falcone | An approximation scheme for evolutive Hamilton-Jacobi equations[END_REF]. Moreover, the sequence of discrete time optimal trajectories (for N ≥ 1) provide convergent approximations of optimal trajectories of the continuous time auxiliary problem (4.5) and we refer to [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF] for a precise claim and its proof.

In the particular case when the problem is free of state constraints, i.e. K = C = R d , a discrete time approximation of problem (4.4) can be solved by applying optimistic planning methods for finite time horizon, see for instance [START_REF] Weinstein | Bandit-based planning and learning in continuous-action markov decision processes[END_REF][START_REF] Mansley | Sample-Based planning for continuous action Markov decision processes[END_REF][START_REF] Hren | Planification optimiste pour systemes déterministes[END_REF]. In our setting and in order to compute an approximation of W , we extend the optimistic planning approach to deal with maximum cost functions in finite horizon (which is the case of the cost functional J).

Preliminary results

The aim of this section is to give some preliminary results that will be useful to present our numerical methods and to analyse its convergence.

We start by the following Proposition which states that J satisfies some Lipschitz property w.r.t. the discrete control sequence.

|J(x, z, a) -J(x, z, ā)| ≤ σ := N -1 k=0 α k a k -āk N -1 k=0 β k a k -āk (4.11)
where

α k := L ρ,x L F,a L N -k-1 F,x -1 L F,x -1 + L ρ,a + L Φ L F,a L N -k-1 F,x
, and

β k := L g L Ψ L F,a L N -k-1 F,x .
Proof. We start the proof by introducing the following Lemma:

y k -ȳk ≤ L F,a k-1 j=0 L k-1-j F,x a j -āj , 0 ≤ k ≤ N. Now, consider (x, z) ∈ R d × R, (a k) k , (ā k) k ∈ A N
and the corresponding costs J(a) := J(x, z, a) and J(ā) := J(x, z, ā). It holds that:

|J(a) -J(ā)| ≤ N -1 k=0 L ρ,x y k -ȳk + N -1 k=0 L ρ,a a k -āk + L Φ y N -ȳN L g max 0≤k≤N y k -ȳk L Ψ y N -ȳN .
From Lemma 4.3.2, we obtain:

N -1 k=0 y k -ȳk ≤ L F,a N -1 k=0 k-1 j=0 L k-1-j F,x a j -āj ≤ L F,a N -1 k=0 L N -k-1 F,x -1 L F,x -1 a k -āk ,
and for any k = 0, ..., N

y k -ȳk ≤ k-1 j=0 β k,j a j -āj , where β k,j := L F,a L k-1-j F,x
.

On the other hand, we observe that the function b(k) := k-1 j=0 β k,j a j -āj is non-decreasing with respect to k ≥ 0, hence we will use the bound max 0≤k≤N b(k) ≤ b(N), in order to deduce that:

L g max 0≤k≤N y k -ȳk L Ψ y N -ȳN ≤ L g L Ψ L F,a N -1 k=0 L N -k-1 F,x a k -āk .
Combining the above inequalities gives the desired result (4.11).

An estimate of the difference of performances is also established in [START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF][START_REF] Buşoniu | Discounted near-optimal control of general continuous-action nonlinear systems using optimistic planning[END_REF] for the case of an infinite horizon sum with a positive discount factor and under a boundedness assumption on the instantaneous reward. Here, the cost functional J is defined, in finite horizon, as a maximum of several terms. Henceforth, the error term σ, see (4.11), is also defined by taking the maximum between a first term corresponding to the cost functional and a second term representing the constraints. Now, we give a second result that establishes a larger upper bound on the difference of performances between two different control sequences.

Corollary 4.3.3.

There exists a constant C > 0, independent of N , such that for any

(x, z) ∈ R d × R and (a k) k , (ā k) k ∈ A N we have: |J(x, z, a) -J(x, z, ā)| ≤ σ ≤ δ := C∆t N -1 k=0 (1 L F,x
) k a k -āk . (4.12)

Proof. For sake of simplicity and only in this proof, denote by L := L F,x . From (4.7), we know that L = 1 + ∆tL with L := L f,x (1 + ∆t 2 L f,x). Hence, for any k ∈ {0, ..., N -1}:

L N -k-1 -1 L -1 ≤ L -k L N -1 L -1 ≤ L -k e N ∆tL ∆tL .
Moreover, from the definitions of L F,a and L ρ,x , we deduce:

L ρ,x L F,a L N -k-1 -1 L -1 ≤ C 1,1 ∆tL -k , with C 1,1 := L f,a L ,x 2L f,x 2 + T L f,x (1 + T 2 L f,x) 1 + T 2 L f,x L f,a e T L f,x (1+ T 2 L f,x
) is a constant independent of N and where the last inequality holds by using the fact that

L ≤ 1 + T L f,x (1 + T 2 L f,x) and L f,x ≤ L ≤ L f,x (1 + T 2 L f,x).
Now, from (4.8), we get:

L ρ,a = L ρ,a L -k L k ≤ L ρ,a L -k e k∆tL ≤ C 1,2 ∆tL -k , with C 1,2 := L ,a + 1 2 L ,x L f,a T (1 + T 2 L f,x L f,a) e T L f,x (1+ T 2 L f,x
) and where the last inequality holds since

L F,a ≤ L f,a T (1 + T 2 L f,x L f,a
). With similar arguments, we obtain: • The depth of a node A i , denoted by p i , is to the total number of splits effectuated to obtain this node:

L Φ L F,a L N -k-1 ≤ C 1,3 ∆tL -k with C 1,3 := L Φ L f,a 1 + T 2 L f,x L f,a e T L f,x (1+ T 2 L f,x) . A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 0 1 2 3 p (depth)
p i := N -1 k=0 s i (k). (4.13)
• A node A i is called a tree leaf if it has not been expanded. The set of the tree leaves is denoted by Λ. In figure 4.1, at this level the set of the tree leaves is formed by Λ = {A 2 , A 3 , A 4 , A 5 , A 7 , A 8 , A 9 }.

• Finally, we denote by Λ p the set of leaves of Υ at some depth p ∈ N:

Λ p := A i ∈ Υ s.t. p i = p .
Remark 4.4.1. The control value a i,k can be selected somewhere else in the corresponding interval A i,k for any A i ∈ Υ and k = 0, ..., N -1.

Remark 4.4.2. We can express the intervals diameters by means of the split function as follows:

d i,k = M -s i (k) .
Remark 4.4.3. By selecting the control sequence a i at the centers of intervals of the node A i and by taking M odd, we guarantee that after expanding A i we generate at least one node A j with J(x, z, a j) ≤ J(x, z, a i). Indeed, the middle child A j contains the same control sequence as A i hence J(x, z, a j) = J(x, z, a i).

Thanks to Proposition 4.3.1 and Corollary 4.3.3, we get a lower and an upper bound on the optimal value W (x, z) of the discrete auxiliary problem. Proposition 4.4.4. By the tree construction, we guarantee that there exists at least a leaf node A i ∈ Λ containing an optimal control sequence and verifying:

J(x, z, a i) -σ i ≤ W (x, z) ≤ J(x, z, a i) (4.14)
where a i is the sample control sequence associated to the node A i and

σ i := 1 2 N -1 k=0 α k d i,k N -1 k=0 β k d i,k , (4.15)
with α k and β k are given in Proposition 4.3.1.

Proof. By construction of the tree Υ, the set of leaves covers the entire space A N . Therefore, there exists at least a leaf node A i ∈ Λ that contains an optimal control sequence a * := (a * k) k ∈ A N . From Proposition 4.3.1 and since W (x, z) = J(x, z, a *), we get:

|J(x, z, a i) -W (x, z)| = |J(x, z, a i) -J(x, z, a *)| ≤ N -1 k=0 α k |a i,k -a * k | N -1 k=0 β k |a i,k -a * k | ,
where a i is the sample control sequence associated to the node A i . Moreover, since a i is chosen at the centers of the intervals of A i , we obtain

|a i,k -a * k | ≤ d i,k
2 , for any k = 0, ..., N -1. It follows that

|J(x, z, a i) -W (x, z)| ≤ σ i .
In the optimistic planning algorithms, at each iteration, one or several optimistic nodes are chosen and expanded to generate from each node M children. The choice of the optimistic nodes is based on some criterion that we explain hereafter.

Recall that to expand a node A i , we choose an interval from A i,0 × A i,1 × ... × A i,N -1 and we partition it uniformly to M sub-intervals. If we choose to split the interval A i,k , for some k = 0, ..., N -1, then we will generate M nodes with an error term σ + i (k) defined by:

σ + i (k) := N -1 j=0,j =k α j d i,j + α k d i,k M N -1 j=0,j =k β j d i,j + β k d i,k M .
Henceforth, in order to minimize the error σ + i (k), the best choice of the interval to split, k * i , is defined by:

k * i := argmin 0≤k≤N -1 σ + i (k). (4.16)
The following result gives an upper bound on the error term σ i , of any node A i ∈ Υ. This result will be used later in the convergence analysis of optimistic planning algorithms. The proof of this Theorem is given in Appendix 4.7.1.

Theorem 4.4.5. Assume that M > L F,x > 1 and N ≥ 2τ where τ := log(M)/ log(L F,x) . For any node A i ∈ Υ at some depth p := p i large enough, the corresponding error σ i is bounded as follows: where

σ i ≤ δ p := c 1 (N)∆tM -p N , (4.17
c 1 (N) := C 1 1-M 1 τ L F,x M q(N) with q(N) := 2 -(N -1) τ -2
2τ (τ -1) and C > 0 is a real constant independent of N and p.

Notice that, by definition, we have τ ≥ 2 and M 1 τ L F,x ≤ 1. Hence (4.17) is meaningful only when the strict inequality M

We introduce some additional definitions that will be useful for the convergence analysis of the algorithms. At any depth p ≥ 0 of the tree Υ, let Υ * p be defined as follows:

Υ * p := {A i ∈ Υ at depth p | J(x, z, a i) -δ p ≤ W (x, z)},
where δ p is defined as in (4.17). We will see later that optimistic planning algorithms will expand only nodes in Υ * p , for p ≥ 0. Finally, we define the asymptotic branching factor m (see [START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF]): The asymptotic branching factor m lies in [1, M] because at any depth p, there is at least one node in Υ * p (the one containing the optimal solution) and at most M p . Moreover, m measures the complexity of the optimistic algorithms. Indeed, the nodes that will be expanded are contained in Υ * p , p ≥ 0, whose size is bounded by Rm p . A problem with low resolution complexity will correspond to a small value of m.

Optimistic Planning (OP) Algorithm

At each iteration, we select from the tree leaves, the node A i * minimizing the lower bound (J(x, z, a i) -σ i) and we split it to produce M children, see Algorithm 4.1. More precisely, we identify the interval

A i * ,k * i *
whose partition in M sub-intervals will produce the lowest error σ + i * (k * i *), as described in (4.16).

Algorithm 4.1: Optimistic Planning (OP)

Require: The initial state x, the auxiliary variable z, the number of intervals N , the split factor M , the maximal number of expanded nodes I max . 1: Initialize Υ with a root A 0 := A N and set n = 0 (n := number of expanded nodes). 2: while n < I max do 3:

Select the optimistic node to expand:

A i * = argmin A i ∈Λ (J(x, z, a i) -σ i).

4:

Select k * i * , defined in (4.16), the interval to split for the node A i * .

5:

Update Υ by expanding A i * along k * i * and adding its M children.

6:

Update n = n + 1. 7: end while 8: return Control sequence a i * ∈ A N of the node A i * = argmin

A i ∈Λ J(x, z, a i) and J * (x, z) = J(x, z, a i *).
In this algorithm, the number of expanded nodes corresponds to the number of elapsed iterations since at each iteration only one node will be expanded. The number I max represents a maximum available computational resource. The following Lemma characterizes the near-optimality of the OP Algorithm by giving a computable bound on its sub-optimality. This result is similar to [START_REF] Buşoniu | Discounted near-optimal control of general continuous-action nonlinear systems using optimistic planning[END_REF]Proposition 3] and for sake of convenience we give its proof in Appendix 4.7.1. Lemma 4.4.8. The OP Algorithm expands only nodes satisfying J(x, z, a i)-σ i ≤ W (x, z) (thus only nodes in p≥0 Υ * p). Furthermore, the returned value J(x, z, a i *) verifies

0 ≤ J(x, z, a i *) -W (x, z) ≤ σ min ,
with σ min is to the smallest computed error value σ i among all the expanded nodes.

Finally, by combining Theorem 4.4.5 with Lemma 4.4.8, we derive the following result whose proof is given in Appendix 4.7.1. Theorem 4.4.9. With the assumptions of Theorem 4.4.5, let J * (x, z) be the returned value of the OP Algorithm. There exists an upper bound B(N, M, m, I max) that verifies:

0 ≤ J * (x, z) -W (x, z) ≤ B(N, M, m, I max) -→ Imax→∞ 0, with B(N, M, m, I max) := c 1 (N)∆tM -Imax-1 RN , if m = 1, c 1 (N)∆tM -log((Imax-1)(m-1) R)/N log m , else,
where c 1 (N) is defined in Theorem 4.4.5 and m, R are given in Definition 4.4.6.

Simultaneous Optimistic Planning (SOP) Algorithm

The Simultaneous Optimistic Planning Algorithm expands, at each iteration, several nodes which are supposed to be optimistic, see Algorithm 4.2. Indeed at each depth p ≥ 0 of the tree, one node minimizing the objective function J is chosen to be expanded. Then, from every selected node an interval is chosen to be split in order to generate M sub-intervals and hence M children.

Algorithm 4.2: Simultaneous Optimistic Planning (SOP)

Require: The initial state x, the auxiliary variable z, the number of intervals N , the split factor M , the maximal number of expanded nodes I max and the maximal depth P max . 1: Initialize Υ with root A 0 := A N and set n = 0 (n := number of expanded nodes). Select the optimistic node at depth p: A i * := argmin A i ∈Λp J(x, z, a i).

6:

Select k * i * , defined in (4.16), the interval to split for the node A i * .

7:

Update Υ by expanding A i * along k * i * and adding its M children at depth p + 1.

8:

Update p = p + 1 and n = n + 1.

9:

end while 10: end while 11: return Control sequence a i * ∈ A N of the node A i * := argmin A i ∈Λ J(x, z, a i) and J * (x, z) := J(x, z, a i *).

In Algorithm 4.2, P max denotes the maximal depth that the tree should not exceed in order to avoid an infinite expansion of Υ. Moreover, as in Algorithm 4.1, I max represents a maximum available computational resource. Lemma 4.4.10 gives a lower bound on the depth of the deepest expanded optimal node generated by the SOP Algorithm. This result can be proven by adapting some ideas from the proof of [39, Lemma 10] and for the convenience of the reader we give its proof in Appendix 4.7.1.

0 ≤ J * (x, z) -W (x, z) ≤ B(N, M, m, I max) -→ Imax→∞ 0, with B(N, M, m, I max) :=    c 1 (N)∆tM - √ Imax RN , if m = 1, c 1 (N)∆tM 2 N M - log((m-1)I 1-η max /R) N log m , else,
where c 1 (N) is defined in Theorem 4.4.5 and m, R are given in Definition 4.4.6.

Simultaneous Optimistic Planning with Multiple Steps (SOPMS) Algorithm

We start by introducing Algorithm 4.3 (Update Tree SOP) which is a generic elementary algorithm that describes how some given tree Υ should be updated in a similar way to the SOP Algorithm.

Algorithm 4.3: Update Tree SOP

Require: An initial state y, the auxiliary variable z, a tree Υ , a maximal number of expanded nodes I and a maximal depth P . 1: Initialize n = 0 (n := number of expanded nodes). Select the optimistic node at depth p: A i * = argmin A i ∈Λp J(y, z, a i).

6:

Select k * i * , defined in (4.16), the interval to split for the node A i * .

7:

Update Υ by expanding A i * along k * i * and adding its M children at depth p + 1.

8:

Update p = p + 1 and n = n + 1.

9:

end while 10: end while 11: return Control sequence a i * of the node A i * = argmin A i ∈Λ J(y, z, a i) and J * (y, z) = J(y, z, a i *).

The SOPMS Algorithm uses the elementary algorithm Update Tree SOP in order to optimize the objective function from an initial state x ∈ R d and an auxiliary variable z ∈ R, see Algorithm 4.4. To this end, we define the following cost function J k , starting from a time step k, for k = 0, ..., N -1, as follows:

J k (y, z, a) := N -1 i=k ρ(y a i , a i) + Φ(y a N) -z max k≤i≤N g(y a i) Ψ(y a N),
where y ∈ R d , z ∈ R, a := (a i) i ∈ A N -k and (y a i) i is the discrete trajectory starting from y and associated to the control sequence (a i) i .

Algorithm 4.4: Simultaneous Optimistic Planning algorithm with Multiple Steps (SOPMS)

Require: The initial state x, the auxiliary variable z, the number of intervals N , the split factor M , the total maximal number of expanded nodes I max , the local number of expanded nodes I eval , the maximal depth P max and the tolerance > 0. 1: Initialize k = 0, y 0 = x and n = 0 (n := total number of expanded nodes). 2: while k ≤ N -1 do

3: Initialize Υ k with root A 0 := A N -k , select a k := (a k i) i ∈ A N -k and set W k := J k (y k , z, a k). 4:
while n < I max do 5:

Expand I eval nodes to get W k := Update Tree SOP(Υ k , I eval , P max).

6:

Update n = n + I eval .

7:

if n ≥ I max then 8:

Accept the control sequence (a * k , a * k+1 , ..., a * N -1) ∈ A N -k and go to line 18. 9:

else 10: if | W k -W k W k | ≤ then 11:
Accept only the first control value a * k ∈ A, set y k+1 = F (y k , a * k) and k = k + 1.

12: else 13:

W k = W k . 14:
end if

* := (a * k) k ∈ A N and J * (x, z) = J(x, z, a * .
At each time step k = 0, ..., N -1, the SOPMS Algorithm optimizes the cost functional J k over control sequences in A N -k . However, only the first value of the computed control sequence will be exploited to simulate the next system state. In order to reduce the number of expanded nodes and hence the complexity of the algorithm, we run the Update Tree SOP algorithm, in line 5, with a local and reduced number of expanded nodes I eval . This parameter I eval is chosen in an heuristic way. When the cost functional cannot anymore be ameliorated (line 10), we cut the optimization procedure for the current time step, we accept only the first control value to simulate the next system state and we move to the next time step. We should mention that there is a compromise in the choice of the parameter I eval . Small values for I eval may generate local minimums for the objective function. However, large values of I eval will increase the complexity of resolution. On the other hand, in a normal case, the condition in line 7 should not be activated in order to allow the algorithm to iterate on all time steps. To this end, the total maximal numbers of expanded nodes I max should be chosen large enough.

It is worth to mention that by choosing I eval = I max , SOPMS Algorithm becomes equivalent to SOP and provides the same error estimate. On the other hand, because of its heuristic parameters, I eval and , we have not established a convergence guarantee for the SOPMS Algorithm for the moment as we have done for OP and SOP algorithms.

Resolution procedure for a constrained problem

We describe here the procedure to get an approximation of the optimal value and an approximated optimal trajectory for the constrained problem (4.4), starting from an initial state x ∈ K. First, we already know that, see section 4.2:

v(0, x) = inf{z ∈ R | w(0, x, z) ≤ 0}.
Then, by studying the evolution of the dynamics f and by bounding efficiently the cost functions and Φ, one can get two bounds on the auxiliary variable z, Z min and Z max , verifying:

v(0, x) = inf{z ∈ [Z min , Z max] | w(0, x, z) ≤ 0}.
Since W (x, z) converges to w(0, x, z) as ∆t → 0, see section 4.2, v(0, x) can be approximated by inf{z ∈ [Z min , Z max] | W (x, z) ≤ 0}. Therefore, the computations will be executed, by dichotomy on z, as follows:

• We iterate the auxiliary variable z on [Z min , Z max].

• For any encountered value of z, we compute, by SOP or SOPMS, an approximation of W (x, z) that will be denoted by J * (x, z).

• We stop this procedure when reaching a given tolerance on some variable bounds of the auxiliary variable.

• We return the smallest encountered value of z verifying J * (x, z *) ≤ 0. This particular value will be denoted by z * .

• The returned control sequence for the constrained problem (4.4) corresponds to the one that achieves J * (x, z *).

Extension to infinite horizon problems

In this section, we investigate the case of an optimal control problem with infinite time horizon, nonlinear dynamics and state constraints. Throughout this section, assume that f and satisfy hypothesis (H4.1), (H4.2) and (H4.4) and let A be the set of measurable function a(•) : [0, +∞[→ A. For any a(•) ∈ A, consider the dynamical system:

ẏ(s) = f (y(s), a(s)) a.e. s ∈ [0, +∞[, y(0) = x, (4.19)
and denote by y a x (•) its solution. This solution, representing the system trajectory, is said to be admissible if it verifies the following state constraints:

y a x (s) ∈ K, ∀s ∈ [0, +∞[.
We are interested in the following state-constrained optimal control problem:

v(x) := inf a(•)∈A +∞ 0 e -γs (y a x (s), a(s))ds | y a x (s) ∈ K, ∀s ∈ [0, +∞[(4.20)
with the convention that inf ∅ = +∞ and where γ > 0 corresponds to a discount factor.

In this case, the auxiliary control problem, free of state constraints, is defined, for any (x, z) ∈ R d × R, by:

w(x, z) := inf a(•)∈A +∞ 0 e -γs (y a x (s), a(s))ds -z max s∈[0,+∞[e -γs g(y a x (s)) . (4.21)
Under assumptions (H4.1), (H4.2) and (H4.4), the constrained problem can be characterized through the auxiliary problem as follows, see [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF] for more details:

v(x) = inf{z ∈ R | w(x, z) ≤ 0}.
Now we will define the discrete setting in order to approximate the auxiliary value function w. For ∆t > 0, consider the uniform partition s k = k∆t, ∀k ≥ 0 and let F and ρ be respectively the discrete dynamics and the instantaneous cost defined as in section 4.2. The discrete dynamical system is given by:

y k+1 = F (y k , a k), k ≥ 0, y 0 = x, (4.22)
where a k ∈ A. The discrete trajectory (y a k) k , solution of (4.22) associated with a control sequence (a k) k≥0 , is admissible if it verifies the following state constraints:

y a k ∈ K, ∀k ≥ 0.
The discrete auxiliary control problem takes the following form, for (x, z) ∈ R d × R:

W (x, z) := inf (a k) k ∈A ∞ ∞ k=0 λ k ρ(y a k , a k) -z max k≥0 λ k g(y a k) , (4.23)
where λ := 1 -γ∆t. One can check that W (x, z) converges to w(x, z), over compact subsets of R d × R, as ∆t → 0. Now, consider a truncation of problem (4.23) with finite time horizon N ≥ 1:

W N (x, z) := inf (a k) k ∈A N N -1 k=0 λ k ρ(y a k , a k) -z max 0≤k≤N λ k g(y a k) . (4.24)
The next result shows that W N is a good approximation for W (x, z), with an exponentially decreasing error with respect to N . As a consequence, the algorithms developed in section 4.4 allow to approximate W N (x, z) and so W (x, z).

Proposition 4.5.1. Assume that ρ ≥ 0, λL F,x < 1 and N ≥ max(2, 1 -log(λL F,x)). The following bound holds:

0 ≤ W (x, z) -W N (x, z) ≤ 2 max(C 1 2 , C g + L g x + L g C F N)(λL F,x) N , (4.25)
where C 1 , C g , L g , C F ≥ 0 will be made explicit in the proof.

Proof. For a given a = (a k) k ∈ A ∞ and a given

(x, z) ∈ R d × R let e N -1 (a) := N -1 k=0 λ k ρ(y a k , a k) -z, r N (a) := max 0≤k≤N λ k g(y a k), e ∞ (a) := ∞ k=0 λ k ρ(y a k , a k) -z and r ∞ (a) := max k≥0 λ k g(y a k).
Then we can write

W N (x, z) = inf a:=(a k) k ∈A ∞ max(e N -1 (a), r N (a)), and W (x, z) = inf a:=(a k) k ∈A ∞ max(e ∞ (a), r ∞ (a)). It is clear that e N -1 (a) ≤ e ∞ (a) (because ρ ≥ 0), and r N (a) ≤ r ∞ (a), therefore W N (x, z) ≤ W (x, z). Moreover, it holds W (x, z) -W N (x, z) ≤ sup a∈A ∞ max(e ∞ (a), r ∞ (a)) -max(e N -1 (a), r N (a)) ≤ sup a∈A ∞ max(e ∞ (a) -e N -1 (a), r ∞ (a) -r N (a)) (4.26)
with e ∞ (a) -e N -1 (a) = ∞ k=N λ k ρ(y a k , a k), and by using the fact that

r ∞ (a) = max r N (a), max k≥N +1 λ k g(y a k) we obtain: r ∞ (a) -r N (a) ≤ max 0, max k≥N +1 λ k g(y a k) -r N (a) . (4.27)
First, by using the Lipschitz continuity of ρ, we have ρ(y, a) ≤ ρ(0, a) + L ρ,x y + L ρ,a a , and since a ∈ A where A is a compact set, it holds ρ(y, a) ≤ C ρ + L ρ,x y , for some constant C ρ ≥ 0. In the same way, it also holds

F (y, a) ≤ C F + L F,x y , for some constant C F ≥ 0. Hence y a k+1 ≤ C F + L F,x y a k , ∀k ≥ 0.
In particular, it holds, for any

(a k) k ∈ A ∞ , with y a 0 = x: y a k ≤ C F (1 + L F,x + • • • + L k-1 F,x) + L k F,x x . Since L F,x > 1, we get 1 + L F,x + • • • + L k-1 F,x ≤ kL k-1 F,
x and hence we can bound the state y a k as follows:

y a k ≤ C F kL k-1 F,x + L k F,x x . Now, let u N (λ) := k≥N λ k = λ N 1-λ for λ < 1.
We have also

λu N (λ) = k≥N kλ k = N λ N -(N -1)λ N -1 (1 -λ) 2 ≤ N λ N (1 -λ) 2 for λ < 1 and N ≥ 1.

Combining the previous bounds implies

e ∞ -e N -1 = ∞ k=N λ k ρ(y a k , a k) ≤ ∞ k=N λ k (C ρ + L ρ,x y a k) ≤ C ρ u N (λ) + L ρ,x (C F λu N (λL F,x) + x u N (λL F,x)) ≤ (C ρ + L ρ,x x) (λL F,x) N 1 -λL F,x + C F L ρ,x N (λL F,x) N (1 -λL F,x) 2 ≤ C 1 (λL F,x) N (4.28)
with

C 1 := (Cρ+Lρ,x x) 1-λL F,x + C F N Lρ,x (1-
λL F,x) 2 , where we have used the fact that u N (λ) ≤ u N (λL F,x) and the hypothesis λL F,x < 1. By using the fact that |g(y)| ≤ C g + L g y (with

C g := |g(0)|), it holds max k≥N +1 λ k |g(y a k)| ≤ max k≥N +1 λ k (C g + L g y a k) ≤ C g λ N +1 + L g max k≥N +1 C F kλ k L k-1 F,x + x λ k L k F,x .
For a given parameter t ∈ [0, 1], using the fact that k → kt k is non-increasing for k ≥ -log(t), we see that, for k ≥ N and N ≥ -log(λL

F,x), it holds k(λL F,x) k ≤ N (λL F,x) N . Henceforth max k≥N +1 kλ k L k-1 F,x ≤ 1 L F,x max k≥N k(λL F,x) k ≤ 1 L F,x N (λL F,x) N ≤ N (λL F,x) N .
It follows that max

k≥N +1 λ k |g(y a k)| ≤ C N (λL F,x) N . (4.29)
where C N := C g λ + L g x + L g C F N . On the other hand, r N (a) ≥ λ N g(y a N). As for the previous bounds, assuming now that N -1 ≥ -log(λL F,x), we have λ N |g(y a N)| ≤ C N (λL F,x) N . Hence, combined with (4.27) and (4.29), we obtain r ∞ (a) -r N (a) ≤ 2C N (λL F,x) N .

Together with (4.26) and (4.28), we deduce the desired bound (4.25).

Numerical experimentation

Choice of the numerical parameters

In section 4.4, we have established some theoretical error bounds relative to the OP and SOP algorithms (see theorems 4.4.9 and 4.4.11 respectively). Even though those bounds depend on the computational budget I max , they depend also on the asymptotic branching factor m for which we have only a theoretic estimation given in definition 4.4.6. Unfortunately, this definition is not simple to exploit since we have not a precise idea on the computational budget I max that we should use to reach some given error bound.

In addition to that, it is known that the complexity of optimistic planning methods depends on the horizon of resolution which corresponds to the number of intervals N in our case. Indeed, if we solve a discrete problem of length N , with OP or SOP, by expanding a number of nodes I max , the question is what is the computational budget I max to use in order to guarantee at least the same error when solving a discrete problem with a number of intervals N = N . Let for example N = 2 × N .

When using the OP Algorithm and from Theorem 4.4.9, I max should satisfy the following condition:

I max = 2 × I max , if m = 1 1 + (M -1) × I 2 max else.
With the SOP Algorithm and by exploiting Theorem 4.4.11, I max should be chosen as follows:

I max = 4 × I max , if m = 1 (M -1) 1 1-η × I 2 max else,
where η is defined in Theorem 4.4.11.

We observe that I max becomes overestimated when m > 1 for both algorithms OP and SOP which increases the numerical resolution complexity for N = 2N . Henceforth, in our numerical simulations, we will use the following rules to set the algorithms parameters.

1. The computational budget I max : multiply I max by 10 when the number of intervals N doubles. The reference value for the computational budget is I max = 10 3 for N = 10 in the case where the control dimension q = 1. However, when q = 2 (as in Example 2 in the next section), we start with an initial budget I max = 500, for N = 10, since the complexity of algorithms depends on the control dimension. Only for SOPMS, thanks to its low complexity (as we will see and explain later), we can set I max very large (free I max). In this case, the total number of nodes expansions is limited by the choice of the other parameters of SOPMS which are I eval and .

3. The number of evaluations I eval and the precision : Those two parameters are specific to SOPMS algorithm. When N doubles, we multiply I eval by 10 with a reference value I eval = 30 (P max) for N = 10. Moreover, we set = 10 -6 .

4. As explained in remark 4.4.3, the splitting factor M should be odd. Here, we set M = 3. A larger value of M increases the complexity.

5. The different algorithms are implemented in C++ and all the computations are done with a computer that uses an Intel XEON E5-2695 CPU at 2.4 GHz with 128 Go RAM.

Numerical examples Example 1: 2D example

Consider a control problem without state constraints and where the state dimension d = 2. The dynamics

f is given by f (x, a) = -x 2 a for x = (x 1 , x 2) ∈ R 2 and a ∈ A = [-1, 1]
, the time horizon T = 1, the distributed and final cost functions are given by: (x, a) = 0 and Φ(x) = x .

Let V (x) be the value function of the discrete problem, starting from the initial state x, that can be computed, with ∆t = T N for different values of N 1 . Henceforth, we define the relative error w.r.t. the discrete value function as follows:

E disc (x) := |J * (x) -V (x)| |V (x)| ,
where J * (x) is the value returned by optimistic planning algorithms. Furthermore, we define the relative errors w.r.t the continuous time optimal control problem as follows:

E cont (x) := |J * (x) -v(0, x)| |v(0, x)| ,
where v(0, x) is the exact value function of the continuous problem. Indeed, for any time horizon T > 0 the optimal trajectory aims to get closer to the origin (0, 0) and can be computed analytically. 2 In tables 4.1, we present the relative errors w.r.t. the discrete value function obtained by OP. We observe that the OP Algorithm does not succeed to keep the same errors when increasing N even for a large number of iterations I max . 1 The optimal control sequence (a * k) k of the discrete problem is determined as follows:

a * k = 1, k < k a * k = -1, k ≥ k,
where k is a switching time step. 2 The optimal trajectory x * (•) :

= (x * 1 (•), x * 2 (•)), for an initial state x := (x1, x2), is defined as follows: • In [0, t], the optimal control is a * ≡ 1, x * 1 (t) = -t 2 2 -x2t + x1, and x * 2 (t) = t + x2. • In [t, T], the optimal control is a * ≡ -1, x * 1 (t) = t 2 2 -yt + x1 and x * 2 (t) = -t + x2.
where t, x1 and x2 are deduced from the continuity of the solution on t:

- t2 2 + x1 = t2 2 -x2 t + x1, t + x2 = -t + x2,
and the optimality condition on t: Moreover, we fix the initial state x = (1.5, 0) and we present in table 4.2 the number of iterations I needed to reach a relative error w.r.t. the discrete value function less than a given tolerance κ. We deduce from this table that the complexity of the OP Algorithm is very high. Finally, we present in table 4.3 the relative errors w.r.t. the continuous value function obtained by OP. We observe that the error does not decrease when moving from N = 10 to N = 20 even when expanding a large number of nodes I max = 2 × 10 5 which increases enormously the resolution complexity in time. All those observations can be explained by the fact that the OP Algorithm consumes the budget I max in expanding nodes at lower depths of the tree Υ and does not search deeply. Now, we present the numerical results obtained by the SOP Algorithm. We start by presenting the relative errors w.r.t. the discrete value function in table 4.4. We observe an amelioration of the error estimates when increasing the number of time steps N and the computational budget I max . Furthermore, we present in table 4.5 the necessary number of iterations I to reach a relative error w.r.t. the discrete value function less than a given tolerance κ for a fixed initial state x = (1.5, 0) by the SOP Algorithm. We observe that the complexity increases when N increases for κ = 10 -2 and also for N = 40 when decreasing the tolerance κ. On the other hand, we remark that there are some tolerances κ that cannot be easily reached for lower values of N . Finally, we present in table 4.6 the relative errors w.r.t. the continuous value function obtained by the SOP Algorithm. In contrary to the OP Algorithm, the error decreases for the SOP Algorithm when increasing N and I max for all the initial positions. Those observations are explained by the fact that the SOP Algorithm construct the search tree Υ by adding nodes at higher depths recursively.

x * 2 (T) = x * 1 (T)(T -t). 100 Parameters x = (1, 0) x = (1.5, 0) x = (2, 0) N I max V (x) E disc (x) CPU(s) V (x) E disc (x) CPU(s) V (x) E disc (x) CPU(s)
Parameters x = (1, 0) x = (1.5, 0) x = (2, 0) N I max E cont (x) CPU(s) E cont (x) CPU(s) E cont (x) CPU(s) 10
Parameters x = (1, 0) x = (1.5, 0) x = (2, 0) N I max V (x) E disc (x) CPU(s) V (x) E disc (x) CPU(s) V (x) E disc (x) CPU(s) 10
Parameters x = (1, 0) x = (1.5, 0) x = (2, 0) N I max E cont (x) CPU(s) E cont (x) CPU(s) E cont (x) CPU(s) 10
On the other hand, we observe in table 4.6 that the error decreases slightly for x = (1, 0) compared to x = (1.5, 0) or x = (2, 0). This observation can be explained by the fact that the resolution complexity depends not only on the type of the problem but also on the initial state x. Now, we study the performance of SOPMS Algorithm. By comparing the numerical results presented in tables 4.6 and 4.7, we deduce that, for a fixed N , SOPMS Algorithm becomes more precise than the SOP Algorithm when I max is large enough (free I max). Indeed, a large value of I max allows to the SOPMS Algorithm to iterate on all the time steps k = 0, ..., N -1 which leads to a better estimation of the solution. We notice that the SOPMS performance does not depend only on I max but also on the heuristic parameters I eval and as it is presented in table 4.8 where we choose I max large enough in such a way that the SOPMS algorithm iterate on all the time steps k = 0, ..., N . In table 4.8, I tot denotes the total number of expanded nodes which depends on x, I eval and . We remark that better error estimations are obtained with small values of which is not a surprising result. Furthermore, we observe that by following our chosen heuristic for I eval , the error decreases when N doubles.

Parameters x = (1, 0) x = (1.5, 0) x = (2, 0) N I eval I max E cont (x) CPU(s) E cont (x) CPU(s) E cont (x) CPU(s) 10
On the other hand, exploiting the CPU time given in the different tables, we remark that the SOP algorithm consumes less time than the OP algorithm. Indeed, for the OP algorithm, the selection of the node to expand, which minimizes the lower bound on the optimal value, is done among all the tree leaves. For this reason, we should iterate over the whole set of the tree leaves. However, the SOP algorithm selects the node to expand, which minimizes the criterion value J i , among only the leaves of a given depth of the tree. Therefore, iterations are done over a subset of the tree leaves with the same depth. Furthermore, we remark that in general, the SOPMS algorithm consumes less time than the SOP algorithm. Note that after expanding a given number of nodes I ≥ 1, the tree contains (M -1)I + 1 leaves. Therefore, the SOP algorithm will construct a tree of (M -1)I max + 1 leaves with control and trajectory sequences of lengths N and N + 1 respectively. However, the SOPMS algorithm, for each k = 0...N -1, will expand less than I max nodes. Therefore, for any k, we will construct a tree of fewer leaves comparing to the SOP algorithm, with control and trajectory sequences of lengths N -k and N -k + 1 respectively. On other words, constructing and exploring only one tree of a total number of leaves equal to (M -1)I max + 1 is more complex than working on N trees with reduced number of nodes.

Finally, we represent in figure 4.2 the trajectories obtained by the SOP Algorithm from different initial positions.

Example 2: Zermelo problem

Consider the Zermelo problem where a boat tries to reach a circular target C with radius r 0 > 0 at time T > 0 with minimal fuel consumption. The dynamics is given by:

ẋ1 (s) = u(s) cos(θ(s)) -bx 2 (s) 2 + c, ẋ2 (s) = u(s) sin(θ(s)),
where u(s) ∈ [0, u max] and θ(s) ∈ [0, 2π], for s ∈ [0, T], denote the speed and the angle of orientation of the boat respectively and the term c -bx 2 2 represents the current drift along the x 1 -axis. The cost that we want to minimise is given by Q(x, a) = T 0 u(s)ds, where x is the initial position of the boat and a(•) := (u(•), θ(•)) is the control. Hence, the discrete cost functional J becomes given by:

J (x, a) = N -1 k=0 ∆t × u k , with ∆t = T N .
Moreover, the obstacle and the target functions g and Ψ are given by:

g(x) := r 1 -x -(-0.5, 0.5) ∞ r 2 -max(|x 1 + 1|, r 2 |x 2 + 1.5|) and Ψ(x) = x -(1.5, 0) 2 -r 0 .
Henceforth, the discrete auxiliary value function is defined as:

W (x, z) = inf (a k) k ∈A N J (x, a) -z max 0≤k≤N g(y a k) Ψ(y a N) , with A := [0, u max] × [0, 2π],
and an approximation of the constrained problem value function is given by:

z * = inf{z ∈ R | W (x, z) ≤ 0}.
In table 4.9, we represent J * (x), the optimal value of the cost functional J , obtained by the SOP algorithm for different values of N and I max and from different initial states x. We observe in table 4.9 that J * decreases when N doubles. In addition to that, we remark that the value of the approximation z * is very close to J * (x).

On the other hand, we represent in figure 4.3 the trajectories obtained by the SOP Algorithm from different initial positions. We remark that all the trajectories verify the constraints by avoiding the obstacles and reach the target at the final time step.

Parameters

x 1 = (-2.5, -1)

x 2 = (-2, 0.5)

x 3 = (-1.5, 1.5) N I max J * (x) z * CPU(s) J * (x) z * CPU(s) J * (x) z * CPU(s)

Example 3: Optimal control of the heat equation

In this example, taken from [START_REF] Alla | An efficient DP algorithm on a tree-structure for finite horizon optimal control problems[END_REF], we want to illustrate the performances of our approach for solving a control problem of a partial differential equation. The discrete formulation of the problem leads to a control problem in a high dimensional state space. Consider the following heat equation:

     ∂y ∂t (s, x) = σ ∂ 2 y ∂x 2 (s, x) + y 0 (x)a(s), for (s, x) ∈ [0, T] × [0, 1], y(s, x) = 0, for (s, x) ∈ [0, T] × {0, 1}, y(0, x) = y 0 (x), for x ∈ [0, 1], (4.30)
where

σ = 0.1, the control a(•) takes values in A = [-1, 1], T = 1 and y 0 (x) = -x 2 + x, for x ∈ [0, 1].
Our purpose is to minimize, by using the control input a(•), the temperature y a (t, x), solution of (4.30), for t ∈ [0, T] and x ∈ [0, 1]. For this reason, we consider the following cost functional of type Bolza:

Q(y 0 , a) = T 0 1 0 (y a (s, x)) 2 dx + γa 2 (s) ds + 1 0 (y a (T, x)) 2 dx, (4.31)
where γ > 0. In order to approximate the solution of (4.30), we will use the implicit scheme. Indeed, consider a time grid with N = 20 time steps, t k = k∆t for k = 0, ..., N , where ∆t = T N and a space grid with d = 10 3 points on]0, 1[, x j = j∆x for j = 1, ..., d and where the space step is given by ∆x = 1 d+1 .

Hence, the implicit scheme approximating (4.30) is given by:

y j k+1 -y j k ∆t = σ y j+1 k+1 -2y j k+1 +y j-1 k+1 ∆x 2 + y 0 (x j)a k , 1 ≤ j ≤ d, y 0 k = y d+1 k = 0, (4.32)
for 0 ≤ k ≤ N -1 and where y j k is an approximation of y a (t k , x j) and a k is the control value at time t k . The implicit scheme (4.32) can be rewritten as follows:

Y k+1 = F (Y k , a k) := I d + σ∆t ∆x 2 P -1 Y k + ∆t × a k × Y 0 , (4.33)
where Y k := (y j k) 1≤j≤d ∈ R d represents the system state and P is a d × d matrix given explicitly by:

P =       2 -1 • • • 0 -1 -1 0 • • • -1 2       .
Notice that (4.33) is meaningful since the matrix I d + σ∆t ∆x 2 P is invertible. In order to solve (4.33), we will use a Cholesky decomposition for tridiagonal matrix since (I d + σ∆t ∆x 2 P) can be written as follow:

I d + σ∆t ∆x 2 P = L × t L, where L :=       α 1 0 • • • 0 β1 0 0 • • • β d-1 α d       with α 2 1 = β 2 1 + α 2 2 = • • • = β 2 d-1 + α 2 d = 1 + 2 σ∆t ∆x 2 α 1 β 1 = α 2 β 2 = • • • = α d-1 β d-1 = -σ∆t ∆x 2 .
On the other hand, we have (I d + σ∆t ∆x 2 P) -1 2 ≤ 1 hence the Lipschitz constants of the dynamics F can be chosen as follow:

L F,x = 1 and L F,a = ∆t Y 0 2 .

Furthermore, the cost functional Q, defined in (4.31), can be approximated by:

J (Y 0 , a) = N -1 k=0 ρ(Y k , a k) + Φ(Y N),
where the instantaneous cost ρ and the terminal cost Φ are given by:

ρ(Y, a) = ∆t 2 Y 2 2 + F (Y, a) 2 2 + 2γa 2 and Φ(Y) = Y 2 2 ,
where Y ∈ R d and a ∈ A. Moreover, the Lipschitz constants associated to the ρ and Φ are given by:

L ρ,x = ∆t Y 0 2 1 + L F,x and L ρ,a = ∆t Y 0 L F,a + 2γ .
The uncontrolled solution, presented in the top left panel of figure 4.4, corresponds to a numerical solution of (4.30) while taking a(•) ≡ 0. As expected, the controlled solutions, obtained by OP, SOP and On the other hand, in figure 4.6, we remark that the controlled solution corresponding to γ = 10 -4 or γ = 10 -6 is below the controlled solution for γ = 10 -2 . This is can be explained by the control difference between the two cases. Indeed, when γ is equal to 10 -4 or 10 -6 , we allow values of the control with larger norms. In addition to that, due to its important weight in the distributed cost function, the control corresponding to γ = 10 -2 is more regular than the control simulated with γ = 10 -4 or γ = 10 -6 . Finally, we add constraints on the solution of the heat equation y a (•, •), corresponding to some control a(•), of the form y a (t, x) ≥ θy 0 (x) for any t ∈ [0, T] and x ∈ [0, 1] and where θ ∈]0, 1[. To this end, we consider the following obstacle function g given by: g(y a (t, •)) := max x∈[0,1] θy 0 (x) -y a (t, x) .

The bounds on the auxiliary variable z are taken as follow:

Z min = 0 and Z max = 2 T 0 y 2 0 (x)dx + γ.
In figure 4.7, we represent the uncontrolled solution (a(•) ≡ 0), the unconstrained solution obtained with SOP and the constrained solution obtained by dichotomy with SOP Algorithm. We observe that the constrained solutions for both cases, θ = 1 3 and θ = 2 3 , verify the constraints for any t ∈ [0, T] and x ∈ [0, 1].

Example 4: Windshear problem

Consider the abort landing problem studied in chapter 3 as a game where the wind disturbances are unknown and modelled as a second player. This problem was also studied in [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF] by the HJ approach. Here, we propose to solve it by use of optimistic planning algorithms.

Consider the flight of an aircraft in a vertical plane over a flat earth. We assume that all the forces act on the center of gravity G of the aircraft and lie in the same plane of symmetry. From the Newton's law, the aircraft's motion is described by (see [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF][START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem, part 1: Necessary conditions[END_REF] for more details):

                           ẋ(s) = u(s) cos(γ(s)) + ω x (x(s)) ḣ(s) = u(s) sin(γ(s)) + ω h (x(s), h(s)) u(s) = F T (u(s)) m cos(θ(s) + δ) -F D (u(s),θ(s)) m -g sin(γ(s)) -ωx (x(s)) cos(γ(s)) -ωh (x(s), h(s)) sin(γ(s)) γ(s) = 1 u(s) βF T (u(s)) m sin(θ(s) + δ) + F L (u(s),θ(s))
m -g cos(γ(s)) + ωx (x(s)) sin(γ(s))

-ωh (x(s), h(s)) cos(γ(s)) θ(s) = a(s), (4.34) where x is the horizontal distance, h denotes the altitude, u is the aircraft velocity, γ is the relative path inclination, θ is the angle of attack, δ > 0 is a parameter of the model, a represents the control variable. Moreover, ω x and ω h are respectively the horizontal and the vertical components of the wind velocity vector, ωx and ωh are their derivatives, F T , F L and F D denote respectively the thrust, lift and drag forces whose expressions can be found in [START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF][START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem, part 1: Necessary conditions[END_REF][START_REF] Bulirsch | Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy[END_REF] and are given in the Appendix 4.7.2.

We represent the state variables by a vector y ∈ R 5 given by y := (x, h, u, γ, θ) , hence the dynamical system (4.34) can be written as ẏ(s) = f (y(s), a(s)).

The sets of control, A, and of state constraints, K, are of the form:

A := [a min , a max] and K := R 4 × [θ min , θ max],
with a min = -a max = -3 deg s -1 , θ min = -180 deg and θ max = 17.2 deg.

In order to determinate the Lipschitz constant L f,x , let y and y be two vectors of R 5 . For any i = 1, ..., 5, there exist non-negative coefficients (l i,j) 5 j=1 such that:

|f i (y, a) -f i (y , a)| ≤ 5 j=1
l i,j |y j -y j |, for any a ∈ A.

Henceforth, L f,x = P 2 where the matrix P is given by P := (l i,j) 1≤i,j≤5 . Moreover, the Lipschitz constant L f,a is equal to 1.

Recall that the aim is to steer the aircraft to the maximum altitude that can be reached during an interval of time. The maximum running cost function Φ is defined as Φ(y) := h * -h, where h is the aircraft altitude and h * > 0 is a given reference altitude.

The value function of this problem, for T = 40 and starting from an initial position y ∈ R 5 , is defined by:

v(0, y) = inf a(•) max s∈[0,T]
Φ(y a 0,y (s)) | y a 0,y (s) ∈ K, for all s ∈ [0, T] .

In order to solve this problem, we discretize uniformly [0, T] with N sub-intervals and the auxiliary problem to be solved is of the form:

W (y, z) = inf (a k)∈A N max 0≤k≤N Φ(y a k) -z g(y a k) ,
where (y a k) k is the discrete trajectory corresponding to the control sequence (a k) k ∈ A N , starting from the initial state y and the obstacle function g is given by: g(y) = max(θ min -θ, θ -θ max).

We already know that an approximation of the constrained problem value is given by:

z * = inf z ∈ [0, h *] | W (y, z) ≤ 0 .
On the other hand, the value of the criterion, associated to the trajectory sequence (y * k) k returned by optimistic planning algorithms, is defined by:

J * (y) := max 0≤k≤N Φ(y * k).
We consider the following initial configurations: We observe in tables 4.11 and 4.12 that the performances of trajectories, from y 0 and y 1 , are ameliorated when N doubles (decrease of the cost functional J * and hence increase of the lowest altitude). Moreover, we remark that the value of the approximation z * is very close to J * .

y 0 = (0,
On the other hand, by comparing tables 4.11 and 4.12, we observe that SOP performances are better than SOPMS performances for the initial state y 0 for a value of I eval not large enough. This is not the case for larger values of I eval . This is due to the compromise in the choice of the parameter I eval between the solution quality and the resolution complexity (see subsection 4.4.4).

Finally, the difference on the altitude evolution observed in figures 4.8 and 4.9 can be explained by the fact that the control actions applied by the SOPMS Algorithm are computed and updated while progressing in time in contrary to the SOP Algorithm where all the actions are first computed then applied to the dynamical system.

σ i ≤ δ i := C 2 ∆t N -1 k=0 (1 L F,x) k d i,k ,
k i = argmax 0≤k≤N -1 (1 L F,x) k d i,k . (4.35)
Only in this proof, denote by γ := 1 L F,x < 1 and we will omit the node index i for all the derivation. By using similar arguments as in [START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF], the split function s(•), indicating the number of splits per time step, is decreasing and decreases of at most 1 i.e. s(k -1) -1 ≤ s(k) ≤ s(k -1), for any k ∈ {1, ..., N -1}. Indeed, let 1 ≤ k ≤ N -1 and s(k -1) = s(k) + 1. The gap between s(k -1) and s(k) becomes equal to 2 if the interval of rank k -1 will be split before the one of rank k. In this case we should have (4.35) which implies that M ≤ 1 γ and this contradicts the assumption M > L F,x . Now consider τ 0 , τ 1 ,...,τ n the lengths of the ranges constant in s, for n ∈ N such that n ≤ N + 1. The last range, of length τ n , is where s ≡ 0 which can be empty i.e. τ n = 0 if all the intervals are split at least one time. Since we have supposed that the depth p is large enough, we can consider for the sequel τ n = 0.

γ k-1 M -s(k-1) = γ k-1 M -s(k)-1 ≥ γ k M -s(k) from the selection principle
The interval that will be split, if this node is selected at a future iteration, is the first interval of some range of index 0 ≤ e ≤ n -1. Let k be the rank of this interval, 0 ≤ k ≤ N -1. Again by using similar arguments as in [START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF], we obtain:

τ e ≥ log M log(1 γ) and if e ≥ 1, τ e-1 ≤ log M log(1 γ) . (4.36)
Indeed the first interval of the range e -1 is of rank k 1 = k -τ e-1 and the first one of the range e + 1 is of rank k 2 = k + τ e . On the other hand, s(k 1) = s(k) + 1 and s(k 2) = s(k) -1 since the gap between two consecutive ranges is equal to 1. Now the interval of rank k is the first to be split at a future iteration which means that this interval is preferred to intervals of rank k 1 and k 2 . From the selection procedure (4.35), we obtain γ k M -s(k) ≥ γ k 1 M -s(k 1) and γ k M -s(k) ≥ γ k 2 M -s(k 2) . Replacing k 1 , k 2 , s(k 1) and s(k 2) by their expressions concludes the proof of (4.36). From (4.36) we deduce that τ e ≥ τ and τ e-1 ≤ τ -1 if e ≥ 1, where τ := log M/ log(1 γ) . Now, we will prove that τ 0 , τ 1 ,...,τ n-1 (recall that τ n = 0 for p large enough) verify:

τ 0 ≤ τ, τ e ∈ {τ -1, τ } for 1 ≤ e ≤ n -1.
(4.37)

The assertion (4.37) can be also proven by the same arguments as in [START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF]. On the other hand, in our case, we have assumed that the number of intervals N verifies N ≥ 2τ . This assumption is necessary to guarantee that the first p 0 := 3τ + 2 splits are done in the same order as given in figure 4.10 (see the small dashed squares with numbers indicating the order inside the squares). Indeed, one can consider any depth p ≤ p 0 and try to split an interval without respecting the order given in figure 4.10 and in this way (4.36) will be violated. Now, suppose that (4.37) holds for an arbitrary node at depth p ≥ p 0 and try to prove it for one of its descendant at depth p + 1 (proof by induction). We denote by s and (τ e) e respectively the split function and the constant range lengths of the descendant node. • Case a: The first interval A 0 (was denoted by A i,0 before omitting the index i) is split. From (4.36) we get that τ 0 ≥ τ and from (4.37) we know that τ 0 ≤ τ , hence τ 0 = τ . As for the descendent node, we get τ 0 = 1 and τ 1 = τ 0 -1 = τ -1. The other ranges are unchanged.

• • • τ τ + 2 • • • 3τ -13τ + 2 τ + 4 • • • • • • • • • 3τ
• Case b: The second interval A 1 is split. From (4.36) we have τ 0 ≤ τ -1 and τ 1 ≥ τ and from (4.37) we know that τ 1 ∈ {τ -1, τ }, hence τ 1 = τ . We deduce that for the descendant node, τ 0 = τ 0 + 1 ≤ τ and τ 1 = τ 1 + 1 = τ . The other ranges are unchanged.

• Case c: The first interval A k of some arbitrary range τ e is split, 1 < e < n. From (4.36) we have τ e-1 ≤ τ -1 and τ e ≥ τ and from (4.37) we know that τ e-1 , τ e ∈ {τ -1, τ }, hence τ e-1 = τ -1

and τ e = τ . This implies that τ e-1 = τ e-1 + 1 = τ and τ e = τ e -1 = τ -1. The other ranges are unchanged.

• Case d: An interval of rank K ≤ N -1 will be split for the first time (see figure 4.10). From (4.36), we have τ n-1 ≤ τ -1 and from (4.37), τ n-1 ∈ {τ -1, τ }, hence τ n-1 = τ -1. We deduce that τ n-1 = τ n-1 + 1 = τ . The other ranges are unchanged.

From this point, our analysis departs slightly from [START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF]. The previous results enable us to bound s(k) as follows:

s(k) ≥ s(k) := r -1 - k -(N -1) τ , (4.38)
and

s(k) ≤ s(k) := r + 1 - k -(N -1) τ -1 , (4.39)
where r = s(N -1) (see figure 4.11). Recall that the diameter of the interval A k can be obtained by d k = M -s(k) . Henceforth, from (4.38), we get:

k s(k) s(k) s(k) τ τ -1 N -1 0 1 k r -1 r = s(N -1) r + 1 s(0) s(k)
δ = C 2 ∆t N -1 k=0 γ k M -s(k) ≤ C 2 ∆t N -1 k=0 γ k M -s(k) ≤ C 2 ∆t 1 1 -γM 1 τ M -r+1-N -1 τ . (4.40)
It remains to find a lower bound for r. By using (4.39), we have:

p = N -1 k=0 s(k) ≤ N -1 k=0 s(k) ≤ N (r + 1) + N (N -1) 2(τ -1)
.

concludes the proof of Lemma 4.4.10.

Finally, let's prove the above claim by induction. For p = 0, if n ≥ RP max ≥ 1, the algorithm has expanded the tree root A 0 = A N which contains an optimal control sequence. Now suppose that the claim is true for p ≥ 0 and let's prove it for p + 1. Consider n ∈ N such that:

n ≥ RP max p+1 p =0 m p .
and let n := n -RP max m p+1 . By the induction hypothesis and since n ≥ RP max p p =0 m p , we deduce that the algorithm has expanded an optimal node, A i * p , at depth p, after expanding n nodes. The optimal node A i * p will generate another optimal node at depth p + 1 denoted by A i * p+1 . Let A i p+1 be a node that will be expanded by the SOP Algorithm, at depth p + 1, before expanding

A i *
p+1 . This node verifies certainly J(x, z, a i p+1) ≤ J(x, z, a i * p+1). Moreover, since A i * p+1 is optimal and σ i * p+1 ≤ δ p+1 , see Theorem 4.4.5, we get:

J(x, z, a i p+1) -δ p+1 ≤ J(x, z, a i * p+1) -δ p+1 ≤ J(x, z, a i * p+1) -σ i * p+1 ≤ W (x, z),
which means that the node A i p+1 belongs to Υ * p+1 . In conclusion, any node A i p+1 that will be expanded before expanding A i * p+1 belongs certainly to Υ * p+1 . Finally, recall that |Υ * p+1 | ≤ Rm p+1 and that the difference between the maximal tree depth and the smallest depth with unexpanded nodes, at any iteration of the SOP Algorithm, is smaller than P max . Henceforth, the SOP Algorithm is sure to expand A i * p+1 after expanding at most P max Rm p+1 nodes. As a conclusion, after expanding at most n nodes (n = n + P max Rm p+1), the SOP Algorithm will expand A i * p+1 .

Proof of Theorem 4.4.11. In the case where m > 1 and P max = I η max , for η ∈]0, 1[, and after expanding I max nodes, let p(I max) be defined as in Lemma 4.4.10. Therefore, p(I max) -1 verifies:

I max ≥ RP max p(Imax)-1 p =0 m p ,
which implies that: p(I max) ≤ b 1 log(I 1-η max) + b 2 , for some real constants b 1 , b 2 > 0. We deduce from the last inequality that for I max large enough, p(I max) << P max since P max = I η max . Henceforth, the depth of the deepest expanded optimal node p * , defined in Lemma 4.4.10, is equal to p(I max) -1. From (4.18) and by taking n = I max and P max = I η max , we get:

p * ≥ log(I 1-η max) log m - log(R m-1) log m -2.
Since J * (x, z)-W (x, z) ≤ δ p * = c 1 (N)∆tM -p * N , using the lower bound on p * found in the above inequality gives the desired result for m > 1.

Now suppose that m = 1 and let P max = √ I max . After expanding I max nodes, from (4.41) and since R ≥ 1, we get:

p(I max) < √ I max R ≤ I max = P max .
Therefore, p * = p(I max) -1. Again from (4.18) and by taking n = I max and P max = √ I max , we get

√ Imax R -1 ≤ p(I max) and hence p * ≥ √ Imax R -2.
As a conclusion:

J * (x, z) -W (x, z) ≤ δ p * = c 1 (N)∆tM -p * N ≤ c 1 (N)∆tM 2 M - √ Imax RN .

Appendix B. Numerical parameters of example 4

The model of the wind disturbances (ω x , ω h), considered here, is represented in figure 4.12. The mathematical expressions of the wind velocity components are given by:

ω x (x) = kC(x) and ω h (x, h) = k h h * D(x),
where C(•) and D(•) depend only on the horizontal position x as follow:

C(x) =            -50 + ax 3 + bx 4 , 0 ≤ x ≤ 500 (x -2300)/40, 500 ≤ x ≤ 4100 50 -a(4600 -x) 3 -b(4600 -x) 4 , 4100 ≤ x ≤ 4600 50, 4600 ≤ x, D(x) =            dx 3 + ex 4 , 0 ≤ x ≤ 500,
-51 exp -c(x -2300) 4 , 500 ≤ x ≤ 4100 d(4600 -x) 3 + e(4600 -x) 4 , 4100 ≤ x ≤ 4600 0, 4600 ≤ x.

The derivatives of the horizontal and the vertical components of the wind velocity vector, ωx and ωh , are defined as:

ωx = ∂ω x ∂x (u cos(γ) + ω x) + ∂ω x ∂h (u sin(γ) + ω h), ωh = ∂ω h ∂x (u cos(γ) + ω x) + ∂ω h ∂h (u sin(γ) + ω h).
On the other hand, the modulus of the thrust, lift and drag forces are given by the following expressions:

F T (u) := A 0 + A 1 u + A 2 u 2 , F L (u, θ) = 1 2 ρSu 2 c (θ), F D (u, θ) = 1 2 ρSu 2 c d (θ),
where c and c are polynomials of the variable θ given by:

c d (θ) = B 0 + B 1 θ + B 2 θ 2 , c (θ) = C 0 + C 1 θ, θ ≤ θ * , C 0 + C 1 θ + C 2 θ 2 , θ ≥ θ * .
The

Chapter 5

Deep Learning Numerical Methods For Dynamic Programming

Introduction

This chapter is devoted to study numerical methods for deterministic optimal control problems based on deep learning. We propose two approaches in order to deal with state-constrained problems. The first one is based on the dynamic programming principle while the second method tries to approximate the solutions of HJ equations. Both approaches can be extended to handle two-person zero-sum differential games under constraints on the system state.

Thanks to advances in deep learning and data analysis, Deep Neural Networks (DNN) have been exploited in diverse scientific fields such as genomics [START_REF] Alipanahi | Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning[END_REF], natural language processing [START_REF] Lake | Human-level concept learning through probabilistic program induction[END_REF], image recognition [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] and cognitive sciences [START_REF] Lecun | Deep learning[END_REF]. DNN have shown to be relevant in approximating a large class of complex non linear functions in finite dimensional space. This relevance can be theoretically justified by the Kolmogorov-Arnold representation theorem and the universal approximation theorem, see [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF][START_REF] Liang | Why deep neural networks for function approximation[END_REF][START_REF] Cybenko | Approximations by superpositions of a sigmoidal function[END_REF][START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF][START_REF] Lu | The expressive power of neural networks: A view from the width[END_REF].

It is known that the value function of an optimal control problem, under suitable assumptions, is the solution of a dynamic programming equation. Nevertheless, the dynamic programming approach suffers from the curse of dimensionality since the value function should be projected on a grid of the state space. One alternative solution is to discretize in time and then try to approximate the discrete time value function, at each time step, by neural networks after its learning on a training grid with reduced size [START_REF] Bertsekas | Reinforcement learning and optimal control[END_REF]. For instance, in [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon, part i: convergence analysis[END_REF][START_REF] Huré | Numerical methods and deep learning for stochastic control problems and partial differential equations[END_REF], deep learning algorithms are proposed in order to solve high-dimensional stochastic control problems. We focus on the Hyprid-Now Algorithm for which the optimal policy is first estimated by neural networks and dynamic programming. Then, this estimated policy is injected in a backward process in the aim of approximating the discrete value function by neural networks. This approach is very interesting especially when the optimal policy is regular. In this chapter, we propose to adapt this algorithm to deterministic control problems for which the optimal control is not always regular enough. To this end, we will try to approximate only the value function by using neural networks and by exploiting the dynamic programming principle. Moreover, we extend this approach to deal with constraints on the system state.

On the other hand, DNN have been successfully used to solve some nonlinear partial differential equations (PDE) derived from physics and mathematics, see [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF][START_REF] Raissi | Physics informed deep learning (part I): Data-driven solutions of nonlinear partial differential equations[END_REF][START_REF] Raissi | Physics informed deep learning (part II): Datadriven discovery of nonlinear partial differential equations[END_REF][START_REF] Raissi | Hidden physics models: Machine learning of nonlinear partial differential equations[END_REF][START_REF] Gu | Selectnet: Self-paced learning for high-dimensional partial differential equations[END_REF][START_REF] Van Der Meer | Optimally weighted loss functions for solving PDEs with neural networks[END_REF]. Indeed, the solution of the PDE can be directly approximated by neural networks that will be learned, on a reduced training domain, in order to satisfy the boundary conditions and the given equation law. In this context, one can hope to use neural networks in order to solve Hamilton-Jacobi equations derived from non linear optimal control problems [START_REF] Chan-Wai-Nam | Machine learning for semi linear PDEs[END_REF][START_REF] Nakamura-Zimmerer | Adaptive deep learning for high dimensional Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Sirignano | DGM: A deep learning algorithm for solving partial differential equations[END_REF]. Moreover, it has been shown in [START_REF] Darbon | Overcoming the curse of dimensionality for some Hamilton-Jacobi partial differential equations via neural network architectures[END_REF] that some neural network architectures, under certain conditions, can be shown to be viscosity solutions to some particular HJ equations with hamiltonians and initial data defined from the neural networks parameters. Another approach, consisting in estimating the solution and its gradient by neural networks, was introduced and discussed in [START_REF] Huré | Some machine learning schemes for high-dimensional nonlinear PDEs[END_REF][START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF]. In this chapter, we propose to approximate the value function, solution of some HJ equation, by use of spatio-temporal function approximators (neural networks) while computing its derivatives by means of automatic differentiation, see [START_REF] Baydin | Automatic differentiation in machine learning: a survey[END_REF].

Consider an optimal control problem with finite time horizon T > 0 and state constraints:

v(t, x) := inf a(•)∈A T t (y a t,x (s), a(s))ds + Φ(y a t,x (T)) | y a t,x (s) ∈ K, ∀s ∈ [t, T] , (5.1)
where A is the set of controls taking values in a compact set A ⊂ R q , with q ≥ 1, K is a closed subset of R d representing the state constraints set and y a t,x (•), representing the system trajectory, is the continuous solution of the following dynamical system ẏ(s) = f (y(s), a(s)) a.e. s ∈ [t, T],

y(t) = x ∈ R d .
(5.

2)

The functions f : R d × R q → R d , : R d × R q → R and Φ : R d → R are supposed to be continuous, see section 5.3 for more definitions and precise assumptions.

The resolution of the constrained problem (5.1) becomes more difficult without assuming any controllability assumption, see chapter 4 and even chapter 3 for the case of state-constrained two-person differential games. For this reason, we follow here the level set approach, introduced in [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF], where we consider an auxiliary optimal control problem free of state constraints:

w(t, x, z) := inf a(•)∈A T t (y a t,x (s), a(s))ds + Φ(y a t,x (T)) -z max s∈[t,T]
g(y a t,x (s)) ,

for (t, x, z) ∈ [0, T] × R d × R and where g is a continuous function that characterizes the constraints set K as follows: ∀y ∈ R d , g(y) ≤ 0 ⇐⇒ y ∈ K.

The auxiliary value function w characterizes v in the following way:

v(t, x) = inf{z ∈ R | w(t, x, z) ≤ 0},
and can be exploited to determinate the optimal controls and trajectories of problem (5.1), see [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF][START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF] and chapter 4 for more details. In this chapter, we propose to approximate w by means of neural networks. First, under some assumptions on the problem data, w is approximated by a discrete time auxiliary value function (W k) N k=0 , N ≥ 1, that verifies a discrete dynamic programming equation. Then, by backward induction and by using W k+1 , an approximation of W k+1 for k = 0, ..., N -1, we first compute W k on a generated training grid. This approximation, computed on a reduced domain, will be used later as an input data to extend W k , by means of neural networks and stochastic optimization, to the whole computational domain which yields an approximation of W k . This first approach will be compared to another one that consists in approximating w, at any time instant t ∈ [0, T], by training neural networks, on a reduced domain, in order to satisfy the following HJ equation whose unique solution is w: min (-∂ t w(t, x) + H(x, D xw(t, x)), w(t, x) -g(x)) = 0, on [0, T [×R d+1 , w(T, x) = (Φ(x) -z) g(x), on R d+1 , for x = (x, z) ∈ R d × R and where H is the Hamiltonian function that will be made precise later. This chapter is organized in the following form. Section 5.2 presents some preliminaries on the neural network approximations and the stochastic optimization widely exploited to train neural networks. Section 5.3 presents the state-constrained optimal control problem of type Bolza and formulates its associated auxiliary problem. Section 5.4 introduces the deep learning numerical methods that will be used to approximate the auxiliary value function. Finally, we present in section 5.5 some illustrative numerical examples to compare the performances of the proposed approaches.

Neural networks for functions approximation

Consider the problem of approximating a function J(•) : R r → R, r ≥ 1, given only on some restricted domain Γ ⊂ R r . This is can be done by considering a parametric function π(•; θ), involving some parameters vector θ ∈ R p , p ≥ 1, that will be chosen in order to minimize some distance measure between J(•) and π(•; θ) expressed on the restricted domain Γ. In this chapter, the set of all the parametric functions π(•; θ), θ ∈ R p , corresponding to some given architecture will be denoted by W r .

The process of choosing the optimal parameters vector is called training or learning of the parametric function π(•; θ) and the distance measure between J(•) and π(•; θ) is called the loss function, denoted by L(•; θ). The most popular training method uses least squares optimization (called also least squares regression) corresponding to a choice of the loss function L as:

L(x; θ) := J(x) -π(x; θ) 2 , for any (x, θ) ∈ Γ × R p .
(5.4)

In practice, even though J(•) is known on Γ, for numerical issues it may be complicated to evaluate the loss function L(•; θ), for a given θ, on the whole restricted domain Γ. For this reason, consider a random variable X that lies in Γ and let µ be a given general probability distribution of X (X ∼ µ), called the training distribution. The stochastic optimization problem to be considered in order to fit J(•) with the approximation π(•; θ) is given by: inf θ∈R p E L(X; θ) .

(5.5)

When L is chosen as in (5.4), the stochastic optimization problem (5.5) becomes:

inf π(•;θ)∈Wr E J(X) -π(X; θ) 2 .
From the training distribution µ, a training samples X m , m = 1, ..., M , of the random variable X is drawn on the domain Γ where M ≥ 1 is the number of training points. Henceforth, an estimation of the objective function in the stochastic optimization problem (5.5) can be given by the empirical mean as follows:

L(θ) = 1 M M m=1 L(X m ; θ), for any θ ∈ R p .
Among the most chosen algorithms to deal with large scale optimization for machine learning, one can find Stochastic Gradient Descent (SGD) methods, see [START_REF] Robbins | A stochastic approximation method[END_REF][START_REF] Bottou | Online learning and stochastic approximations[END_REF] and see also [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF] for a recent survey. SGD updates the solution of problem (5.5), in an iterative way, as follows:

θ k+1 = θ k -γ k G(X; θ k), for k ≥ 0,
where (γ k) ∞ k=0 is a deterministic non-negative sequence representing the learning rates and G(X; θ k) is an estimation of the gradient of the loss function L in θ k , depending on samples of the random variable X. We distinguish essentially 3 types of SGD methods:

• Stochastic Gradient Descent: The gradient of L is approximated over a single random instance among the training samples X m , for m = 1, ..., M . Then, θ k is updated as follows:

θ k+1 = θ k -γ k D θ L(X m ; θ k), for some m ∈ {1, ..., M },
where X m is chosen randomly from the training set. This method is fast since it computes the gradient by using only one random instance but it may be unstable.

• Batch Gradient Descent: The gradient of the loss function is computed by using all the training samples. Given θ k , the next parameters vector is given by:

θ k+1 = θ k -γ k 1 M M m=1 D θ L(X m ; θ k).
Although this method is stable, using the full training set to approximate the gradient of L makes it very slow especially when the size of the training set M is large.

• Mini Batch Gradient Descent: this approach is faster than the Batch Gradient Descent and may be more stable than the SGD because it computes an approximation of the gradient of L over random small subsets of the training samples representing mini-batches. Denote by M b the size of minibatches. At any iteration k:

1. Draw randomly a subset (X m) M b m=1 from the training set. 2. Iterate:

θ k+1 = θ k -γ k 1 M b M b m=1 D θ L(X m ; θ k).
Mini Batch Gradient Descent can be seen as a generalization of the two above methods since it coincides with SGD when taking M b = 1 and with Batch Gradient Descent if M b = M .

It is worth to mention that the convergence of SGD methods is heavily affected by the choice of the learning rates (γ k) ∞ k=0 . This was a great motivation to develop new variants of SGD, that adapt, at each iteration of the algorithm, the learning rate γ k by means of the loss function gradients already computed during the past iterations, see [START_REF] Li | On the convergence of stochastic gradient descent with adaptive stepsizes[END_REF][START_REF] Wilson | The marginal value of adaptive gradient methods in machine learning[END_REF][START_REF] Zaheer | Adaptive methods for nonconvex optimization[END_REF]. Examples of such adaptive stepsizes stochastic optimization methods include AdaGrad [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF], Adadelta [START_REF] Zeiler | Adadelta: an adaptive learning rate method[END_REF], RMSProp [START_REF] Tieleman | Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[END_REF] and ADAM [START_REF] Jlb | Adam: A method for stochastic optimization[END_REF]. Furthermore, we refer to [START_REF] De | Convergence guarantees for RMSProp and ADAM in non-convex optimization and an empirical comparison to Nesterov acceleration[END_REF][START_REF] Chen | On the convergence of a class of ADAM-type algorithms for non-convex optimization[END_REF][START_REF] Ward | Adagrad stepsizes: Sharp convergence over nonconvex landscapes[END_REF][START_REF] Zhou | On the convergence of adaptive gradient methods for nonconvex optimization[END_REF] for a study of the convergence of those different adaptive methods. In practice, one can find the different above algorithms are already implemented in TensorFlow, which is an open source platform for machine learning. Tensorflow includes also other stochastic optimization algorithms allowing to approximate the solution of problem (5.5).

In this chapter, we focus on deep neural networks to set the architecture of the parametric functions π(•; θ), θ ∈ R p , that will be used to approximate different unknown target functions. In contrast with the additive approximation theory designed by basis functions, such as polynomials, neural networks are defined through the composition of simple functions.

The mathematical architecture of a deep neural network is presented as a function given by:

x ∈ R r → π(x; θ) := σ I • P I • σ I-1 • P I-1 • ... • σ 1 • P 1 (x) ∈ R d I , (5.6)
where (P i) I i=1 are polynomial functions, (σ i) I i=1 are nonlinear monotone functions, called activation functions and d I ∈ N * .

Each polynomial function P i , for i = 1, ..., I, is defined from a matrix ω i ∈ R d i-1 ×d i , called the weight matrix, and a vector b i ∈ R d i , called the bias vector:

y ∈ R d i-1 → P i (y) = ω i y + b i ∈ R d i .
The collection of the weights matrices and bias terms will be aggregated to define the parameters vector θ ∈ R p of the neural network π(•; θ). Hence, the size p of θ is directly deduced as follows:

p = I i=1 d i (1 + d i-1).
The activation function σ i : R d i → R d i , for i = 1, ..., I, will be applied to the outputs of the polynomial function P i . Among standard examples of activation functions, one can find:

• Sigmoid function, σ : y ∈ R d → (1 1+e -y 1 , ..., 1
: x ∈ R → x, x > 0 e x -1, x ≤ 0.
Elu has a smooth gradient and allows to get non-positive values.

• Rectified linear units ReLU, σ : y ∈ R d → (max(0, y 1), ..., max(0, y d)), is less computationally expensive because it involves simple mathematical operations.

123

Input

y 0 = x ∈ R 4 ,
Hidden For a given vector x ∈ R r , consider y 0 = x and y i+1 = σ i+1 • P i+1 (y i) ∈ R d i+1 , i = 0, ..., I -1. The neural network (5.6) can be represented by I + 1 layers where the layer of rank i represent the vector y i , for i = 0, ..., I. In figure 5.1, we represent an example of a deep neural network with I = 3.

y 1 ∈ R 3 , Hidden y 2 ∈ R 3 , Output y 3 ∈ R.
• The neurons of the layer of rank i represent the coordinates of the vector y i and hence their number is equal to d i which is the dimension of y i . The nodes in figure 5.1 represent the neurons.

• The link between two successive layers of ranks i and i + 1 respectively, for i = 0, ..., I -1, corresponds to the application of the function σ i+1 • P i+1 to the vector y i . Those links are represented by the arrows in figure 5.1. In particular, the arrows drawn from the input layer corresponds to the application of σ 1 • P 1 to the vector x ∈ R 4 to obtain y

1 = σ 1 • P 1 (x) ∈ R 3 .
• The first layer, with rank i = 0, corresponds to the input layer with d 0 = r neurons. In figure 5.1, r = 4.

• I -1 hidden layers ranked from 1 to I -1. The are two hidden layers for the example given in figure 5.1 with numbers of neurons d 1 = d 2 = 3.

• The last layer of rank i = I corresponds to the output layer with d I neurons. When approximating real-valued functions, d I = 1 which is the case in figure 5.1 where y 3 ∈ R.

The relevance of using neural networks to approximate complex and non-linear functions can be theoretically justified by the universal approximation theorems, see [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF][START_REF] Liang | Why deep neural networks for function approximation[END_REF][START_REF] Cybenko | Approximations by superpositions of a sigmoidal function[END_REF][START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF][START_REF] Lu | The expressive power of neural networks: A view from the width[END_REF]. In particular, we have the following approximation theorem: Theorem 5.2.1 (Universal approximation theorem, see [START_REF] Hornik | Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[END_REF]). Any measurable function J : R r → R can be approximated by a neural network with a single hidden layer and a continuous non-constant activation function. Moreover, when the activation function, used in the neural networks architecture, is of class C k , k ≥ 1, then this class of neural networks approximates also the derivatives of J up to order k. Moreover, deep neural networks are capable of approximating real-valued continuous functions over compact subsets of R r with an arbitrary accuracy, see [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF].

A more precise approximation result is established when using neural networks with a single hidden layer to fit a Lipschitz continuous function J, see [START_REF] Huré | Numerical methods and deep learning for stochastic control problems and partial differential equations[END_REF]. Let W K,γ r be the set of neural networks composed by only one hidden layer with K neurons, ReLU activation function for the hidden layer, a total variation1 smaller than γ and no activation function for the output layer

W K,γ r := π(•; θ) : R r → R, θ = (ω i) 1≤i≤K , (b i) 1≤i≤K , (ν i) 0≤i≤K , s.t. for any i = 1, ..., K ω i ∈ R r , b i , ν i , , ν 0 ∈ R, K i=0 ν i ≤ γ and π(y; θ) = K i=1 ν i max(ω i , y + b i , 0) + ν 0 . (5.7)
In this setting, we get a rate of convergence of the approximation error that depends on the Lipschitz constant L J of J, the dimension r, the number of neurons K and γ: Theorem 5.2.2. Given K ∈ N * and γ > 0, there exists a neural network π(•; θ *) ∈ W K,γ r , with θ * ∈ R (r+2)K+1 , such that:

π * -J ∞ ≤ L J γ L J -2 r+1 log γ L J + γK -r+3 2r ,
over compact subsets of R r .

Problem settings

For a finite time horizon T > 0 and a non-linear dynamics f , consider the following dynamical system:

ẏ(s) = f (y(s), a(s)) a.e. s ∈ [t, T], y(t) = x ∈ R d , (5.8)
where the input variable a(•) takes values in A, a compact set of R q (for q ≥ 1).

The state-constrained optimal control problem with a distributed cost function and a final cost function Φ, is defined as follows:

v(t, x) := inf a(•)∈A T t (y a t,x (s), a(s))ds + Φ(y a t,x (T)) | y a t,x (s) ∈ K, ∀s ∈ [t, T] , (5.9)
where K ⊂ R d is a non-empty and closed set representing the set of state constraints, y a t,x (•) is the absolutely continuous solution of (5.8) and A is the set of admissible controls defined by:

A := {a(•) : [0, T] → A, measurable}.
Throughout this chapter the dynamics f and the distributed cost are continuous functions and in contrary to chapter 4, they are supposed to be Lipschitz continuous w.r.t. only the state variable. Moreover, asume that Φ : R d → R is a Lipschitz continuous function.

As we have mentioned before in chapters 1, 3 and 4, in the presence of state constraints, K = R d , some difficulties concerning the regularity of v and its characterization may appear. In particular, v may be discontinuous unless some controllability assumptions are satisfied and therefore one cannot guarantee an accurate approximation of such function by means of neural networks. For this reason and similarly to the previous chapters, we follow here the level set approach, introduced in [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF], which consists in characterizing the constrained problem (5.9) by means of an auxiliary optimal control problem free of state constraints. First, since the set of constraints K is a closed subset of R d , there exists a Lipschitz continuous function g characterizing K in the following way:

∀y ∈ R d , g(y) ≤ 0 ⇐⇒ y ∈ K.
The value function of the auxiliary control problem associated to the constrained problem (5.9) is given by:

w(t, x, z) := inf a(•)∈A T t (y a t,x (s), a(s))ds + Φ(y a t,x (T)) -z max s∈[t,T]
g(y a t,x (s)) , (5.10)

for (t, x, z) ∈ [0, T] × R d × R.
It is known that the auxiliary value function w is Lipschitz continuous, satisfies a dynamic programming principle and hence can be characterized as the unique viscosity solution of an HJ equation, see [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF][START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF] and chapter 4 for single-controller problems and even chapter 3 for zero-sum differential games. Moreover, v can be determined as follows:

v(t, x) = inf{z ∈ R | w(t, x, z) ≤ 0}, (5.11)
when some convexity assumption is verified (see Assumption (H4.4) in chapter 4). In addition to that, the optimal controls and trajectories of problem (5.9) can be characterized by use of w. The auxiliary value function is approximated in chapter 3, for the case of two-person differential games, by solving numerically the corresponding HJ equation and by means of optimistic planning methods in chapter 4. In this chapter, we propose two different numerical methods based on the training of neural networks to approximate w by exploiting either the dynamic programming principle or its associated HJ equation.

Deep learning numerical methods

The aim of this section is to present the different numerical approaches that will be used to approximate the auxiliary value function w.

Neural networks for dynamic programming (DP)

Consider a uniform partition of [0, T] with N time steps, s 0 = 0, ..., s k = kh, ..., s N = N h = T , where N ∈ N * is the number of time steps and h := T N is the time steps size. An approximation in time of w can be given by: (ii) (W k) N k=0 is the unique solution of the following discrete dynamic programming equation:

w h (t, x, z) := min (a k) k ∈A N -k (s k+1 -t) (x, a k) + h N -1 i=k+1 (y a i , a i) + Φ(y a N) -z max k≤i≤N g(y a i) , (5.12) for t ∈ [s k , s k+1 [, with 0 ≤ k ≤ N -1, (x, z) ∈ R d × R and (y a i) i
   W N (x, z) = Φ(x) -z g(x), W k (x, z) = min a∈A W k+1 (Fh (x, a)) g(x) , with x := (x, z) for k = N -1, ..., 0 (5.13)
where Fh := I d + h f with f is the augmented dynamics given by f (x, a) := f (x, a) -(x, a) (other approximations, such as the Heun scheme, can be considered to define Fh).

The proof of Proposition 5.4.1 can be done by using some classical arguments, see for instance [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]Chapter III].

This first subsection is devoted to present a deep learning algorithm to approximate the discrete auxiliary value function (W k) N k=0 by training neural networks. Here, we adapt the Hyprid-Now Algorithm presented in [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon, part i: convergence analysis[END_REF][START_REF] Bachouch | Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications[END_REF][START_REF] Huré | Numerical methods and deep learning for stochastic control problems and partial differential equations[END_REF] for stochastic control problems to the deterministic case with state constraints. In [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon, part i: convergence analysis[END_REF][START_REF] Bachouch | Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications[END_REF][START_REF] Huré | Numerical methods and deep learning for stochastic control problems and partial differential equations[END_REF], the optimal policy is first estimated by neural networks and dynamic programming. Then, the estimated control policy is injected in a backward process in order to approximate the value function by means of neural networks. In our case, the optimal control is not always regular enough therefore its approximation by neural networks may not be a good idea. To this end, we propose to approximate only the discrete auxiliary value function by training neural networks and by exploiting the dynamic programming principle (5.13).

The constraints set K may be unbounded. Nevertheless in practice, we will compute v on a restricted and bounded subset of K. Moreover, starting from bounded initial states and by studying the evolution of the dynamics f , one can get bounds on the cost functions and hence on the auxiliary variable z in order to determinate v through the relation (5.11). For this reason, we will need to evaluate the auxiliary value function w only on some compact set Ω ⊂ K × R, that will be made precise later for each numerical example.

Recall that W d+1 denotes the set of neural networks which is the set of all the parametric functions π(•; θ) : R d+1 → R corresponding to some given architecture where θ ∈ R p is the parameters vector and its size p ≥ 1 can be calculated as in section 5.2.

Finally, at each time step k = 0, ..., N -1 and in order to train the neural networks to fit W k , we will consider a random variable Xk , on the compact set Ω, described by some given probability distribution µ k , called the training distribution. For sake of simplicity, we consider that µ k does not depend on the time step k and let µ k = µ, ∀k ∈ {0, ..., N -1}, where µ is a given training distribution.

Algorithm 5.1: Deep learning algorithm to approximate the value function

1: Initialize W N (x, z) = (Φ(x) -z) g(x) for any (x, z) ∈ Ω. 2: for k = N -1,...,0 do 3: Knowing W k+1 (•), compute the neural network W k (•) as follows: W k ∈ argmin π(•;θ)∈W d+1 E min a∈A W k+1 (Fh (Xk , a)) g(X k) -π(Xk ; θ) 2 , (5.14)
where Xk := (X k , Z k) ∼ µ is a random variable lying in Ω.

π(•;θ)∈W d+1 1 M M m=1 min a∈A W k+1 (Fh (Xm k , a)) g(X m k) -π(Xm k ; θ) 2 .
2. Furthermore, the minimum over A in (5.14) will be approximated by the minimum over a discretized set from A.

3. Algorithm 5.2 can be extended for the case of two-person zero-sum differential games. To this end, one shall exploit the discrete dynamic programming principle corresponding to games, see chapter 3, in the training step (5.14) that becomes:

W k ∈ argmin π(•;θ)∈W d+1 E max b∈B min a∈A W k+1 (Fh (Xk , a, b)) g(X k) -π(Xk ; θ) 2 ,
where B is a compact set in which controls of the second player take values.

Neural networks for partial derivatives equations (PDE)

We already know that the auxiliary value function w is the unique viscosity solution of the following Hamilton-Jacobi equation, see [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF][START_REF] Assellaou | Value function and optimal trajectories for a maximum running cost control problem with state constraints. application to an abort landing problem[END_REF]:

min -∂ t w(t, x) + H(x, D xw(t, x)), w(t, x) -g(x) = 0, on [0, T [×R d+1 , w(T, x) = (Φ(x) -z) g(x), on R d+1 ,
where x := (x, z) ∈ R d × R and the Hamiltonian H is given by:

H(x, p) = max a∈A -f (x, a), p , for (x, p) ∈ R d × R d+1 .
The PDE approach consists in approximating the solution of the above HJ equation through training spatiotemporal function approximators to fit the terminal condition, at time T , and to satisfy the equation law. To this end, let W d+2 denote the set of all the parametric functions (neural networks) π(•, •; θ) : R d+2 → R corresponding to some given architecture where θ ∈ R p is the parameters vector. Moreover, consider a given training distribution µ on the computational domain [0, T] × Ω where Ω is already defined in the previous section.

This approximated value function is computed in (5.15) by considering a training samples (τ m , Xm), m = 1, ..., M , of the random variable (τ, X), drawn from the training distribution µ on the computational domain [0, T] × Ω where M ≥ 1 is the number of training points for the equation law. Moreover, to fit w at the final time T , one shall consider training samples Xm := (X m , Z m), m = 1, ..., M 0 , of the random variable X drawn on Ω with M 0 ≥ 1. The corresponding optimization problem to be solved has the following form:

min π(•,•;θ)∈W d+2 1 M M m=1 min -∂ t π(τ m , Xm ; θ) + H(X m , D xπ(τ m , Xm ; θ)), π(τ m , Xm ; θ) -g(X m) 2 + 1 M 0 M 0 m=1 π(T, Xm ; θ) -w T (Xm) 2 128
Algorithm 5.2: Deep learning algorithm to approximate the solution of an HJ equation 1: Let (τ, X) := (τ, X, Z) be a random variable, described by µ, that lies in [0, T] × Ω.

2: The returned neural network, is the one that minimizes, over W d+2 , the sum of the following expected quadratic loss functions:

W ∈ argmin π(•,•;θ)∈W d+2 E min -∂ t π(τ, X; θ) + H(X, D xπ(τ, X; θ)), π(τ, X; θ) -g(X) 2 + E π(T, X; θ) -w T (X) 2 (5.15)
where w T (x) := (Φ(x) -z) g(x) for x = (x, z) ∈ R d × R.

3: return W .

Remark 5.4.3.

1. The partial derivatives of the neural networks here are computed by means of automatic differentiation [START_REF] Baydin | Automatic differentiation in machine learning: a survey[END_REF]. One can also estimate those derivatives by considering other neural networks, see [START_REF] Huré | Some machine learning schemes for high-dimensional nonlinear PDEs[END_REF][START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF]. Nevertheless, such method will increase the complexity in time of the training process since further variables (parameters of the additional neural networks) will be involved in the optimization problem (5.15).

2. The PDE approach can also handle two-person zero-sum differential games where the hamiltonian function becomes given by:

H(x, p) = min b∈B max a∈A -f (x, a, b), p , for (x, p) ∈ R d × R d+1 .

Numerical examples

In all the following numerical examples:

• The training distribution µ is the uniform probability distribution on the computational domain Ω that will be made precise for each example.

• The hidden layers of the neural networks architectures considered are composed by the same number of neurons, i.e. d i = d i+1 , ∀i ∈ {1, ..., I -2}. Notice that d 0 is equal to the dimension of the system state for the DP approach and it is increased by one, for the PDE method, since the time variable is involved in the training process. Moreover, d I = 1 because we approximate real-valued functions. On the other hand, we take as an activation function ELU, i.e. σ i = ELU, ∀i ∈ {1, ..., I}.

• The stochastic optimization algorithm that will be used to train neural networks, i.e. to solve problems (5.14) and (5.15), is ADAM with mini batch, see [START_REF] Jlb | Adam: A method for stochastic optimization[END_REF].

• The neural networks will be trained on a training grid of size M ≥ 1 and tested on a test grid G of size N G . The training grid is built on the computational domain Ω, from the training distribution µ, while G corresponds to a uniform grid on Ω.

• The minimum over the control set A in (5.14) is approximated by taking the minimum over a uniform grid A g on A with size n A ∈ N * .

• Because of the stochastic optimization used in (5.14) and (5.15), we notice that the numerical results (errors when knowing the exact solution or cost functional values for the control of the heat equation (example 2)) corresponding to two different executions may be very different. For this reason, all the numerical results presented in the following tables correspond to the mean over 5 different measures. However, the illustrative figures (approximated value functions and optimal trajectories and controls) correspond to the best measure among the 5 effectuated measures.

• Our numerical methods are implemented in PYTHON with the Tensorflow library and all the computations are done with a computer that uses an Intel Core i5 at 1,8 GHz with 8 Go RAM.

Example 1: 1D problem without state constraints

Let T = 1 and A = [0, 1]. The dynamics, the distributed and the final cost functions are given by:

f (x, a) = -xa, (x, a) = x and Φ(x) = 0.
The exact value function is given, for (t, x) ∈ [0, T] × R, by: v(t, x) = T x, for x ≤ 0, (e -t -e -T)x, for x > 0.

Notice that this example is without state constraints. Henceforth, the DP and PDE approaches will be directly applied to approximate the unconstrained value function v. The computational domain for this example is Ω = [-1, 1]. For the DP approach, we used N = 20 time steps for the time-discretization of [0, T] and n A = 11 points to generate the uniform control grid A g from the control set A.

The relative errors presented in the following tables are computed with respect to the exact value function, at the initial time instant t = 0, as follow:

L 1 error := N G i=1 | V 0 (x i) -v(0, x i)| N G i=1 |v(0, x i)| , L 2 error := N G i=1 (V 0 (x i) -v(0, x i)) 2 N G i=1 v(0, x i) 2 , L ∞ error := max 1≤i≤N G | V 0 (x i) -v(0, x i)| max 1≤i≤N G |v(0, x i)| ,
where N G = 5000 is the size of the uniform grid G on the computational domain Ω and V 0 (•) is an approximation of the value function at the initial time instant, v(0, •). First, we mention that the training samples size M for the DP approach is less than the one used for the PDE approach since for the latter the training involves the time and the space variables. In tables 5.1 and 5.2, we remark an amelioration, in general, of the error estimates when increasing simultaneously the training samples size, the depth of the neural networks and the number of neurons per layer. Moreover, we observe that the approximation obtained by the PDE approach is in general more accurate than the DP approximation. This can be explained by the error accumulation through the time steps for the DP approach.

We represent in figure 5.2 the exact and the approximated value functions, obtained by the PDE approach.

Example 2: Optimal control of the heat equation

Secondly, we consider the control problem of the heat equation taken from [START_REF] Alla | An efficient DP algorithm on a tree-structure for finite horizon optimal control problems[END_REF]. Recall that this problem was already studied and solved in chapter 4 and its discrete formulation leads to a control problem in a high dimensional state space. The corresponding partial derivatives equation is given by:

     ∂y ∂t (s, x) = σ ∂ 2 y ∂x 2 (s, x) + y 0 (x)a(s), for (s, x) ∈ [0, T] × [0, 1], y(s, x) = 0, for (s, x) ∈ [0, T] × {0, 1}, y(0, x) = y 0 (x), for x ∈ [0, 1],
(5. [START_REF] Başar | H ∞ optimal control and related minimax design problems: a dynamic game approach[END_REF] where σ = 0.1, the control a(•) takes values in A = [-1, 1], T = 1 and y 0 (x) = -x 2 + x, for x ∈ [0, 1]. In order to transform (5.16) into a dynamical system similar to (5.8), we first consider a space grid with d ∈ N * points on]0, 1[, x j = j∆x for j = 1, ..., d and where the space step is defined as ∆x = 1 d+1 . Then we use the centered finite difference scheme to obtain:

Ẏ (s) = D × Y (s) + a(s) × Y 0 , s ∈ [0, T], Y (0) = Y 0 , (5.17)
where Y (s) ∈ R d is an approximation of the solution at time s and over the space grid, the matrix D ∈ R d×d is given by D = -σ ∆x 2 P , with P ∈ R d×d is already defined in chapter 4, and the vector Y 0 ∈ R d is given by Y 0 = (y 0 (x j)) d j=1 . The aim is to minimize, by using the control input a(•), the temperature Y a (•) which is the solution of (5.17). For this reason, we consider the following cost functional of type Bolza:

J(y 0 , a) = T 0 ∆x Y a (s) 2 + γa 2 (s) ds + ∆x Y a (T) 2 , (5.18)
where γ > 0. Therefore, the Hamiltonian function that will be considered for the PDE approach is given by:

H(Y, p) = -D × Y, p -∆x Y 2 + max a∈A -B, p a -γa 2 , for Y, p ∈ R d .
As for the DP approach, we will use a time-discretization of [0, T] with N = 20 time steps, t k = kh for k = 0, ..., N , where h = T N . Applying the implicit scheme for (5.17) leads to the following discrete dynamics

Y a k+1 = F h (Y a k , a k) := I d -hD -1 Y a k + h × a k × Y 0 , (5.19)
where Y a k ∈ R d is an approximation of the solution of (5.17) at time t k , see chapter 4 for more details. On the other hand, the cost functional J, defined in (5.18), can be approximated by:

J (Y 0 , a) = N -1 k=0 ρ h (Y a k , a k) + Φ(Y a N),
where the instantaneous cost ρ h and the final cost Φ are given, for Y ∈ R d and a ∈ A, by:

ρ h (Y, a) = h 2 ∆x Y 2 + ∆x F h (Y, a) 2 + 2γa 2 and Φ(Y) = ∆x Y 2 .
The computational domain is given by Ω =]0, 1[d and the training grid (y i) M i=1 , with y i ∈]0, 1[d , is generated as follow:

• Let (x j) d j=1 be the uniform partition of]0, 1[, defined above, and (α i) M i=1 be a uniform distribution in [0, 1].

• For any i = 1, ..., M , y i := α i Y 0 , with Y 0 = (y 0 (x j)) where A g is the control grid obtained by the uniform discretization of A with a number of points n A = 11.

Henceforth, the cost functional J , corresponding to the solution ((a * k) N -1 k=0 , (Y * k) N k=0), is computed as:

J (Y 0 , a *) = N -1 k=0 ρ h (Y * k , a * k) + Φ(Y * N).
In tables 5.3 and 5.5, we present the values of the controlled cost functional J (Y 0 , a *) for different values of γ corresponding to the dimensions d = 10 2 and d = 10 3 respectively and obtained by the DP while tables 5.4 and 5.6 corresponds to the PDE approach. We observe that the controlled values obtained by the DP approach are less than those corresponding to the PDE approach which are grater even than the uncontrolled cost J (Y 0 , 0) (for instance J (Y 0 , 0) = 2.038 e-02 for d = 10 2). This observation shows the bad performance of the PDE approach and its high complexity, compared to the DP method, for large values of the dimension d. We observe also, in the different tables, that we ameliorate, in general, the quality of the solution when increasing simultaneously the number of hidden layers, the number of neurons and the size of the training set. However, this results in increasing the CPU time needed to train the neural networks.

Training parameters γ = 10 The uncontrolled solution corresponds to a numerical solution of (5.16) when taking a(•) = 0. As expected, we observe in figure 5.3 that the controlled solution, obtained by Algorithm 5.2 for d = 10 3 , is below the uncontrolled solution. Moreover, figure 5.4 represents the evolution of the loss function versus the number of iterations of the stochastic gradient algorithm used for the training of the neural networks in (5.14), for γ = 10 -2 (a similar evolution of the loss, not represented here, is obtained for γ = 10 -4). We remark that the loss reaches some threshold, for high number of iterations, and does not decrease enough (the behaviour of the loss function becomes of the form Cα n , where n is the number of iterations, C > 0 is a small real constant and α < 1 is close to 1). Furthermore, the controlled solution corresponding to γ = 10 -4 is below the controlled solution corresponding to γ = 10 -2 , see figure 5.3. This observation can be explained by the control differences obtained here are worst and less stable than those obtained in chapter 4. Nevertheless, the advantage of the DP method here is the ability of solving this problem for different initial conditions y 0 in contrary to the Optimistic Planning approach that computes the solution for only one fixed initial condition. On the other hand, the DP and the PDE approaches are unable to solve this example after adding some constraints on the system state. Indeed, we have considered a constraint of the form y a (t, x) ≥ θy 0 (x), ∀x ∈ [0, 1], for θ ∈]0, 1[as we did in section 4.6, and we have obtained a non-negative approximation of the corresponding auxiliary value function w for any value of the auxiliary variable z which means that both approaches cannot compute admissible trajectories for this case. and its solution is given by: v(t, x) := min(, max(0, x -A 0 -T + t) -r 0 , max(0, x -B 0 -T + t) -r 0).

Front propagation

The computational domain here is Ω = [-2, 2] d . For the DP approach, we used N = 10 time steps for the time-discretization of [0, T] = [0, 0.8], n A = 10 2 points when d = 2 and n A = 10 4 when d = 6, for the generation of the control grid A g from the control set A.

Again, we observe, in the different tables, that the precision of the approximation can be improved, in general, by increasing simultaneously the number of hidden layers, the number of neurons and the size of the training set. Furthermore, we remark that the PDE approach is more accurate than the DP approach for d = 2 and even for d = 6. This result can be justified by the error that comes from the discretization of the control set A, used in (5.14), which is of dimension equal to d. On the other hand, both approaches failed to solve this problem for higher dimensions (d ≥ 8). of [0, T] and n A = 11 points to generate the control grid A g from the control set A for the DP approach.

The relative errors presented in the following tables are computed with respect to the exact value function, which can be determined analytically 2 , in a similar way to the first example on a uniform grid G on the computational domain Ω with size N G = 10 2d .

In tables 5.11, 5.13 and 5.15, we present the errors corresponding to different dimensions d obtained by the DP approach while tables 5.12, 5.14 and 5.16 corresponds to the PDE approach. We remark that increasing the size of the training set simultaneously with the number of hidden layers and the number of neurons per layer helps to ameliorate, in general, the accuracy of the approximated solution. Nevertheless, this leads to increasing the CPU time needed to train the neural networks.

Furthermore, for a low dimension (d = 2 for instance), we cannot decide which approach is better since their performances are comparable. This is not the case for higher dimensions (d = 4 and d = 6) where it is clear that the DP approach gives more accurate approximations. On the other hand, both approaches failed to solve this problem for higher dimensions (d ≥ 8). We represent in figure 5.8 the exact and the approximated solutions and the zero levels obtained by Algorithm 5.2 and corresponding to the dimension d = 2 while figure 5.9 contains the exact and approximated zero levels corresponding to dimensions d = 4 and d = 6. 2 The exact solution for this example can be computed as follows. Define min -∂ t w(t, x) + max(0, d i=1 ∂ x i w(t, x)), w(t, x) -g(x) = 0, t ∈ [0, T], x ∈ R d , w(T, x) = Φ(x) g(x), x ∈ R d .

At := A0 + (T -t) ×    1 . . .
The computational domain here is the same as in the previous example, Ω = [-2, 2] d . We used N = 10 time steps for the time-discretization of [0, T] and n A = 11 points to generate the control grid A g from the control set A. The relative errors presented in the following tables are computed with respect to the exact value function, which can be determined analytically 3 , in a similar way to the first example on a uniform grid G on the computational domain Ω with size N G = 10 2d . In tables 5.17, 5.19 and 5.21, we present the errors obtained by the DP approach and corresponding to different values of d while tables 5.18 and 5.20 contains the errors obtained by the PDE approach for dimensions d = 2 and d = 4 respectively. We represent in figure 5.10 the exact and the approximated solutions and the zero levels corresponding to the dimension d = 2 and in figure 5.11 the exact and approximated zero levels obtained by Algorithm 5.2 and corresponding to dimensions d = 4 and d = 6 3 The exact solution is given by the following expression: w(t, x) = max(v(t, x), gt(x)), where v(t, x) is the exact solution of the unconstrained case, defined in (5.20), and where gt(x) := max θ∈[0,t] g(x + θ × A0). Similarly to the previous examples, increasing simultaneously the training samples size, the depth of the neural networks and the number of neurons per layer helps to ameliorate the precision of the approximations obtained by the DP and the PDE approaches, see tables 5.22 and 5.23. Moreover, we observe that the approximation obtained by the PDE approach is more accurate than the DP approximation which can be explained again by the error accumulation through the time steps for the DP approach. We represent in figure 5.13 the exact and the approximated value functions obtained by the DP and PDE approaches.

Comparison between the DP and the PDE approaches

Throughout the numerical examples tested in this chapter, we have obtained the following observations:

• First, the numerical performances of both approaches, DP and PDE, can be improved, in general, by increasing simultaneously the number of hidden layers, the number of neurons and the size of the training set.

• The PDE approach is more accurate than the DP approach when either the state dimension is low or the control set dimension is high (see examples 1, 3 and 6). Nevertheless, the PDE approach seems unable to handle problems with obstacle terms in high state dimension (example 5 with d = 4).

• The DP approach becomes more accurate than the PDE approach for higher values of the state dimension d (see examples 2, 4 and 5).

• Both approaches can be extended to deal with zero-sum differential games, see example 6.

• For the moment and with the available tools in the Tensorflow library (tensors, neural networks architectures, algorithms for machine learning optimization...), our approaches are unable to solve other state-constrained problems, such as Zermelo, optimal control of the heat equation and windshear problems. Indeed, we have obtained non-negative approximations of the auxiliary value function w, for any value of the auxiliary variable z, which means that both approaches cannot compute admissible trajectories. Recall that those problems are solved, in chapter 4, by use of the Optimistic Planning approach. Furthermore, the DP and the PDE approaches failed to solve the different front propagation problems (examples 3, 4 and 5) for higher dimensions (d ≥ 8).

Chapter 6

Conclusion and perspectives

In this work, we apply the Hamilton-Jacobi approach to study state-constrained two-person zero-sum differential games. Moreover, we provide optimistic planning and deep learning algorithms to solve optimal control problems involving state constraints.

In chapter 3, we study a two-person zero-sum differential game under state constraints and where the controls of the two players are coupled within the dynamics, the cost functions and the state constraints.

In particular, we show that the original state-constrained problem can be characterized by means of an auxiliary differential game free of state constraints. Furthermore, we propose a reconstruction procedure to approximate optimal strategies and controls of both players for the auxiliary game and hence for the constrained problem.

In chapter 4, we propose optimistic planning algorithms to solve state-constrained finite-horizon nonlinear optimal control problems. Thanks to the level set approach from [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF], it is known that the value function of such problem can be characterized by use of an unconstrained auxiliary problem. In order to compute an approximation of the auxiliary value function, we have adapted optimistic planning methods proposed in [START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF][START_REF] Buşoniu | Discounted near-optimal control of general continuous-action nonlinear systems using optimistic planning[END_REF][START_REF] Buşoniu | Optimistic planning for continuous-action deterministic systems[END_REF][START_REF] Hren | Planification optimiste pour systemes déterministes[END_REF][START_REF] Hren | Optimistic planning of deterministic systems[END_REF] to the finite time horizon and extended them to our case with maximum cost functional. Furthermore, we have established theoretical convergence results of those algorithms. Finally, we have designed another algorithm with better performance by exploiting some ideas from model predictive control theory.

A possible future direction of research, from chapters 3 and 4, will be to adapt the optimistic planning approach to solve state-constrained differential games in finite horizon. We refer to [START_REF] Buşoniu | An analysis of optimistic, best-first search for minimax sequential decision making[END_REF] where a game with two players having opposite interests and taking decisions in turn was studied without constraints on the system state and with infinite time horizon. As we have seen in section 3.3, the constrained problem can be characterized through a differential game free of state constraints having the following form (for simplicity, let t = 0): w(0, x, z) := inf x (•). Moreover, from the definition of nonanticipative discrete time strategies, the advantage of information attributed to the first player means that the latter makes his choice a i ∈ A, for i = 0, ..., N -1, after observing his opponent action b i ∈ B. Therefore, w h can be rewritten as follows:

w h (x) = max) ∈ B N . The Formulation (6.1) is similar to the minimax problem considered in [START_REF] Buşoniu | An analysis of optimistic, best-first search for minimax sequential decision making[END_REF] for the case of an infinite horizon sum with a positive discount factor and under a boundedness assumption on the instantaneous reward. In our context, the cost functional, that the first player wants to minimize while the second player tries to maximize, is defined in finite horizon by taking the maximum of several terms depending on the actions of the two players.

The main question now is how to adapt the optimistic search algorithm for minimax sequential decisions, introduced in [START_REF] Buşoniu | An analysis of optimistic, best-first search for minimax sequential decision making[END_REF], and to propose, in a similar way to chapter 4, optimistic planning algorithms to solve problem (6.1). Furthermore, one can provide theoretical convergence results that relate the nearoptimality of the returned solution with the computational budget allowed. Recall that the advantage of the optimistic planning approach is to remove the direct dependence between the resolution complexity and the dimension of the system state. Nevertheless, we have seen, in chapter 4, that the complexity of such numerical methods depends on the resolution horizon N (the number of time steps or the number of actions to be applied) and also on the control dimension q ∈ N * . For this reason, it will be very interesting to propose improvements of the existing algorithms in such a way to alleviate the complexity of those methods with respect to N and q.

Another practical contribution in the future can be by parallelizing the C++ code of optimistic planning algorithms with respect to the auxiliary variable z. In such a way, one can execute computations to approximate the auxiliary value function for several values of z in the same time which reduces the global computational time.

Finally, in chapter 5 we investigate numerical methods based on deep learning for constrained deterministic optimal control problems. In particular, we propose two different approaches. The first algorithm exploits the dynamic programming principle while the aim of the second approach is to approximate the solutions of Hamilton-Jacobi equations. Those approaches can be extended to handle two-person zerosum differential games.

In this subject, there are two broad directions of research. First, it will be very interesting to prove theoretical convergence results of the proposed approaches at least when using neural networks with a single hidden layer. We mention that such results has been proven in [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon, part i: convergence analysis[END_REF][START_REF] Huré | Numerical methods and deep learning for stochastic control problems and partial differential equations[END_REF] for deep learning algorithms, based on the dynamic programming principle, when studying stochastic optimal control problems free of state constraints. The second direction concerns the amelioration of the precision and the complexity of our approaches. This can be done essentially by either modifying the architecture design of the parametric functions (the neural networks) or ameliorating the precision of the stochastic optimization process (the training). Abstract: The aim of this work is to study stateconstrained differential games by the Hamilton-Jacobi approach and to develop numerical learning methods to solve optimal control problems. The first part considers a two-person zero-sum differential game where we do not assume any controllability assumption and the controls of the two players are allowed to be coupled within the dynamics, the cost functions and the state constraints. In particular, we characterize the value function of such a problem through an auxiliary differential game free of state constraints and we propose a general approach allowing to construct approximated optimal feebacks of the constrained differential game for both players. The second part of this thesis presents some numer-ical methods allowing to solve optimal control problems in high dimensional state space. Our first contribution in this part consists in extending optimistic planning methods to deal with finite horizon problems in the presence of state constraints. Moreover, we provide convergence results of those algorithms that depend on given computing resources. A numerical analysis of these methods is carried out on several examples in high dimensional state space. Finally, we investigate numerical methods, based on deep learning and dynamic programming, for stateconstrained deterministic optimal control problems or for controlled two-person zero-sum differential games.

Institut Polytechnique de Paris 91120 Palaiseau, France

Y

 Euclidean p-dimensional space R p×q Space of (p × q) real matrices I pThe identity matrix of size p•, •The inner product in some Euclidean space• The Euclidean norm B R p The closed unit ball of R p B(x,r) The open ball of center x and radius r > 0 B(x, r) The closed ball of center x and radius r > 0 A B The intersection of two sets A and B A B The union of two sets A and B • The interior of a set Y ⊂ R p ∂Y The boundary of a set Y ⊂ R p d(•, Y) The distance function to a set Y ⊂ R p d Y (•) The signed distance function to a set Y ⊂ R p D x φ The gradient of φ w.r.t. x ∂ t φ The partial derivative of φ w.r.t. t • The floor function • The ceiling function a b max(a, b), for a, b ∈ R a b min(a, b), for a, b ∈ R |U |

 (T)) , if y α[b],b t,x (s) ∈ K, ∀s ∈ [t, T], ∀b(•) ∈ B, +∞, else, for (t, x) ∈ [0, T] × R d with T > 0 is the final time, b(•) ∈ B and α[b](•) ∈ A are the actions of the second and the first players respectively, K is a closed set of R d representing the set of constraints and y α[b],b t,x (•) is the unique absolutely continuous solution of the following dynamical system: ẏ(s) = f (s, y(s), α[b](s), b(s)), a.e. s ∈ [t, T], y(t) = x.

 (•) which represents the trajectory of the system corresponding to(α[b](•), b(•)) ∈ A × B,is said to be admissible if it remains in the admissible set K. See section 3.2 for further definitions and more precise assumptions.

Remark 2 . 2 . 4 .

 224 Delay strategies are nonanticipative strategies i.e. Γ d ⊂ Γ and ∆ d ⊂ ∆.

. 8)Proposition 2 . 3 . 7 .

 8237 Theorem 2.3.6 is a classical result and we refer to[START_REF] Cardaliaguet | Introduction to differential games[END_REF] Theorem 3.4] for its proof. Now, we cite the following result concerning the regularity of the value functions. The value functions v + and v -are Lipschitz continuous on [0, T] × Ω for any compact set Ω ⊂ R d .

,

 where a * (•) := α * [b](•) ∈ A and y * (•) := y a * ,b t,x (•).

 Now, let's fix h > 0 small enough and α[•] ∈ Γ. Denote by a * (•) := α[b *](•) ∈ A and by y * (•) := y a * ,b * t,x . For any s ∈ [t, T], we have a * (s) ∈ A. From the last inequality, we deduce that

Now, consider the

 mapping Λ : B → A, such that for any b ∈ B, Λ(b) := a k , where 1 ≤ k ≤ m is the smallest index verifying b ∈ B(b k , r k). For any b(•) ∈ B, Λ(b(•)) is measurable, thus we can define the strategy α * [•] ∈ Γ as follows: α * [b](s) := Λ(b(s)).

. 28)

 28 Since α h [•] is a nonanticipative strategy, we deduce from Definition 2.6.1 that α h [b] k depends only on b. Now let a := α h [b] k and define the system state x at time step s k+1 , corresponding to a and b, by x := x + (s k+1 -t)f (t, x, a, b). Moreover, we define the discrete nonanticipative strategy δ h

) where α[•] ∈ Γ is a nonanticipative strategy of the first player, b(•) ∈ B is an action of the second player, and f is a continuous function (more precise definitions and assumptions are given in section 3.2). The absolutely continuous solution of (3.1) is denoted by y α[b],b t,x (•) and will be referred as the system trajectory corresponding to (α[b](•), b(•)) ∈ A × B. This trajectory is said to be admissible if for any s ∈ [t, T], y α[b],b

Definition 3 . 2 . 1 .

 321 Following the formulation of Elliott and Kalton[START_REF] Elliott | The existence of value in differential games[END_REF], a nonanticipative strategy of the first player is a map α[•] : B → A, such that for any τ ≤ T and any b

 5) is denoted by y α[b],b t,x (•) and represents the system trajectory.

Definition 3 . 2 . 2 .

 322 A trajectory y a,b t,x (•), associated to a couple of actions of the two players (a(•), b(•)) ∈ A×B, is said to be admissible if it remains in K at any time instant s ∈ [t, T].

 which is a Lipschitz continuous function. Therefore an admissible trajectory y α[b],b t,x (•), corresponding to a couple of controls (α[b](•), b(•)) ∈ A × B can be characterized by means of the signed distance:

Proposition 3 . 3 . 1 .

 331 Assume that hypothesis (H3.1), (H3.2) and (H3.3) hold, then:

Theorem 3 . 3 . 5 .

 335 Assume that assumptions (H3.1), (H3.2), (H3.3) and (H3.4) hold and let (t, x) ∈ [0, T]×K.

 which belongs to Λ(b 2) and coincides almost everywhere with a 1 (•) on [t, t + τ]. Henceforth we conclude that Λ(•) is nonanticipative. Finally, Λ(•) has closed values for the weak topology of L 2 ([0, T], A). Indeed, let (a n (•)) n be a sequence of Λ(b), for a fixed control of the second player b(•) ∈ B, that converges, for the weak topology of L 2 ([0, T], A), to some control a(•) ∈ A. Since for any n ∈ N, a n (•) ∈ Λ(b), the trajectory y an,b t,x (•) verifies: max s∈[t,T] φ(y an,b t,x (s), z) ψ(y an,b t,x (T), z) ≤ 0.

[41 ,

 41 Lemma 4.1] that guarantees the existence of a nonanticipative selection α * [•] such that for any b(•) ∈ B, α * [b](•) ∈ Λ(b). We conclude that there exists α * [•] ∈ Γ s.t. for any b(•) ∈ B, the trajectory y α * [b],b t,x (•) is admissible and max s∈[t,T]

Remark 3 . 3 . 7 .

 337 Suppose that the cost functions φ and ψ are bounded (they take values in some interval [m, M]). Thus, to establish estimations of the value function v or to find its exact value, as in (3.15) or (3.16), it is enough to consider the auxiliary variable z in the interval [m, M].

) where T > 0, Φ and Ψ are the maximum running and the final cost functions respectively and ζ α[b],b t,χ (•) is the unique continuous solution of the following dynamical system: ζ(s) = F (s, ζ(s), α[b](s), b(s)), a.e. in [t, T], ζ(t) = χ, (3.18) where χ ∈ R m , m ≥ 1, (α[b](•), b(•)) ∈ A×B are the actions of the first and the second players respectively and F is a nonlinear dynamics.

Algorithm 3 . 1 : Arbitrary case 1 :

 311 Initialise ζ 0 = χ. 2: for i = 0, ..., N -1 do 3:

k

 and b h (s) := b k , for s ∈ [s k , s k+1 [with k ∈ {0, ..., N -1}, and an approximate trajectory ζ h (•) solution of:

. 22) 3 . 4 . 1 .

 22341 Theorem Assume that hypothesis (H3.5) holds and that assumption (H3.4) is verified by the set A and the dynamics F . For χ ∈ R m , the trajectory ζ h (•), defined in (3.22), verifies: lim sup h→0 + max s∈[0,T] Φ(ζ h (s)) Ψ(ζ h (T)) ≤ u(0, χ). (3.23) Proof of Theorem 3.4.1. Let χ ∈ R m and let (ζ i) i , (a * i) i and (b i) i be the sequences of trajectory and players' actions generated by Algorithm 3.1.

 k+1 [, for k ∈ {0, ..., N -1}, and with the terminal condition u h (T, χ) := Φ(χ) Ψ(χ).

by Algorithm 3 . 2 . 3 . 4 . 4 .

 32344 Proposition For t ∈ [s k , s k+1 [with k ∈ {0, ..., N -1} and χ ∈ R m , we have:

 and ζ a,b t,χ (T) -ζ N ≤ O(h). Combining the above estimations ends the proof of the claim (3.36).

 To simplify the notations, denote b(•) = (b 1 (•), b 2 (•)) := (ωx (•), ωh (•)) that takes values in a compact set B ⊂ R 2 of the form:

Remark 3 . 5 . 2 .

 352 The numerical Hamiltoanian H is consistent with H, i.e. H(y, p, p) = H(y, p), for any y, p ∈ R 5 , monotone, i.e. for any k = 1, ..., 5, ∂H ∂p - k (y, p -, p +) ≥ 0 and ∂H ∂p + k (y, p -, p +) ≤ 0 and Lipschitz continuous w.r.t.

Figure 3 . 1 :

 31 Figure 3.1: Trajectories and controls reconstruction as a response to an arbitrary case (random distribution, Algorithm 3.1, in blue) and to the worst case (Algorithm 3.2, in red) starting from y 1 .

 However, b 2 (•) is equal to b 2,min < 0 a.e. in order to decrease ω h since ωh (s) = b 2 (s), for s ∈ [0, T].

Figure 3 . 2 :

 32 Figure 3.2: Trajectories and controls reconstruction as a response to an arbitrary case (random distribution, Algorithm 3.1, in blue) and to the worst case (Algorithm 3.2, in red) starting from y 2 .

Figure 3 . 3 :

 33 Figure 3.3: Trajectories and controls reconstruction as a response to an arbitrary case (random distribution, Algorithm 3.1, in blue) and to the worst case (Algorithm 3.2, in red) starting from y 3 .

 T)) . On the other hand, from the definition of α 0 [•], we have for any b(•) ∈ B max s∈[t,T]

 T)) . (3.41) Let A(τ) and B(τ) be the set of restrictions of the first and the second players controls respectively to the time interval [τ, T]: A(τ) := {a 2 (•) : [τ, T] → A, measurable} and B(τ) := {b 2 (•) : [τ, T] → B, measurable}. Let's fix a control of the second player b(•) ∈ B and let α 2 [•] be a nonanticpative strategy of the first player defined, for any b 2 (•) ∈ B(τ), by:

 Finally, we define B(t, τ, b) ⊂ B, by: B(t, τ, b) := b(•) ∈ B | b(s) = b(s) a.e. s ∈ [t, τ] . For a second player control b(•) ∈ B, we set ŷ1 := ŷα [b],b t,x

. 42)

 42 Now, let b 0 (•) ∈ B(t, τ, b) and denote by b 2 0 (•) ∈ B(τ) its restriction to [τ, T]. Following the definition of α 2 [•] above, we obtain α 2 [b 2 0

(3. 43)

 43 Now since B(t, τ, b) ⊂ B, we deduce from (3.41) that: sup b 0 (•)∈B(t,τ,b)) ≤ w(t, x) + , and from (3.43), the last inequality becomes, for any b(•) ∈ B:

(H4. 1)

 1 measurable}, and the dynamics f : R d × A → R d is a Lipschitz continuous function satisfying: There exist L f,x , L f,a ≥ 0, such that for any y, y ∈ R d and a, a ∈ A: f (y, a) -f (y , a) ≤ L f,x y -y + L f,a a -a . Moreover, consider a distributed cost and a final cost Φ verifying: (H4.2) : R d × A → R is a Lipschitz continuous function i.e. there exist L ,x , L ,a ≥ 0 such that for any y, y ∈ R d and a, a ∈ A: | (y, a) -(y , a)| ≤ L ,x y -y + L ,a a -a . (H4.3) Φ : R d → R is a Lipschitz continuous function i.e. there exists L Φ ≥ 0 such that for any y, y ∈ R d :

Proposition 4 . 2 . 1 .

 421 Assume that (H4.1)-(H4.3) hold then:

 for any k = 0, ..., N and y a N ∈ C. Moreover, consider an instantaneous cost ρ that approximates the integral of over an interval [s k , s k+1], for k = 0, ..., N -1, by a quadrature rule, as follows: ρ(x, a) := ∆t 2 (x, a) + (F (x, a), a) .

Proposition 4 . 3 . 1 .

 431 Assume that hypothesis (H4.1), (H4.2) and (H4.3) hold. For (x, z) ∈ R d × R and (a k) k , (ā k) k ∈ A N , we have the following estimate:

Lemma 4 . 3 . 2 .

 432 Given y k+1 = F (y k , a k) and ȳk+1 = F (ȳ k , āk), for 0 ≤ k ≤ N -1, with y 0 = ȳ0 = x, we have

Figure 4 . 1 :

 41 Figure 4.1: Illustrative example of refinement of A N with M = 3 after splitting 3 nodes A 0 , A 1 and A 6 .

)

Definition 4 . 4 . 6 .

 446 The asymptotic branching factor m is the smallest real in [1, M] such that there exists R ≥ 1 verifying: |Υ * p | ≤ Rm p , for any depth p ≥ 0 of the tree Υ, where |Υ * p | denotes the cardinality of Υ * p .

2 :

 2 while n < I max do 3: p = min A i ∈Λ p i : the minimal depth among the tree leaves.

4 :

 4 while p ≤ P max do 5:

Lemma 4 . 4 . 10 . 18) 1 . 4 . 4 . 11 .

 44101814411 After exploring n nodes, let p(n) be the smallest depth such that: Therefore the SOP Algorithm has expanded an optimal node at depth p * n := min{p(n) -1, P max } and the error of the solution obtained is bounded by δ p * n . Now, combining the lower bound on the depth defined in Lemma 4.4.10 with the upper bound on the error estimate from Theorem 4.4.5 gives the following convergence result of the SOP Algorithm whose proof is also postponed to Appendix 4.7.Theorem With the assumptions of Theorem 4.4.5, let J * (x, z) be the returned value of the SOP Algorithm. When choosing P max = I η max , with η ∈]0, 1[, there exists an upper bound B(N, M, m, I max) that verifies:

2 :

 2 while n < I do 3: p = min A i ∈Λ p i : the minimal depth among the tree leaves.

4 :

 4 while p ≤ P do 5:

N κ = 10 - 2 κ

 102 = 10 -3 κ = 10 -4 I CPU(s) I CPU(s) I CPU(s) 10 -> 1 day -> 1 day -> 1 day Table 4.2: (Example 1): Necessary number of iterations I to reach the error κ by OP Algorithm from the initial state x = (1.5, 0).

Table 4 . 5 :

 45 (Example 1): Necessary number of iterations I to reach the error κ by SOP Algorithm from the initial state x = (1.5, 0).

Figure 4 . 2 :

 42 Figure 4.2: (Example 1): Trajectories obtained by the SOP algorithm for N = 20, I max = 10 4 and from different initial positions.

Figure 4 . 3 :

 43 Figure 4.3: (Example 2): Trajectories obtained by dichotomy with SOP Algorithm to reach the target (in green) and to avoid the obstacles (in red), from different initial positions and with N = 10, I max = 500 (left) and N = 40, I max = 5 × 10 4 (right).

Figure 4 . 4 :Table 4 . 10 :

 44410 Figure 4.4: (Example 3): Uncontrolled solution (top left) and controlled solutions with OP (top right), SOP (bottom left) and SOPMS (bottom right), for I max = 10 4 , γ = 0.01 and d = 10 3 . Algorithm OP SOP SOPMS CPU(s) 238.43 101.12 145.37 Table 4.10: CPU time required to compute the controlled solutions by the different optimistic planning algorithms

Figure 4 . 5 :

 45 Figure 4.5: (Example 3): Controls computed by OP, SOP and SOPMS algorithms (left), time comparison of cost functions (middle), norms of the solutions (right), for I max = 10 4 , γ = 0.01 and d = 10 3 .

Figure 4 .

 4 Figure 4.6: (Example 3): Controls (left), time comparison of the cost function (middle) and norms of the solutions (right) computed by the SOP algorithm, for different values of the parameter γ, I max = 10 4 and d = 10 3 .

Figure 4 . 7 :

 47 Figure 4.7: (Example 3): Unconstrained solution with SOP (left), constrained solutions for θ = 1 3 (middle) and θ = 2 3 (right) obtained by dichotomy with SOP Algorithm for d = 10 3 , γ = 0.01 and I max = 10 4 .

Figure 4 . 8 :

 48 Figure 4.8: (Example 4): Trajectories obtained by the dichotomy with SOP Algorithm, for T = 40, N = 40, I max = 10 5 and from different initial configurations.

Figure 4 . 9 :

 49 Figure 4.9: (Example 4): Trajectories obtained by the dichotomy with SOPMS Algorithm, for T = 40, N = 40, I eval = 6000 and from different initial configurations.

Figure 4 . 10 :

 410 Figure 4.10: An example of a split function s(•) with 4 possibilities of the next interval split.

Figure 4 . 11 :

 411 Figure 4.11: Example of split function s(•) (black dots) and the lower and upper bounds s(•) (in green) and s(•) (in red).

Figure 4 . 12 :

 412 Figure 4.12: Horizontal and vertical wind velocity components, ω x (x) and ω h (x, h), as functions of x for fixed h = 1000 ft.

 1+e -y d), has a smooth gradient. • Softmax function, σ : y ∈ R d → (e y 1 d i=1 e y i , ..., e y d d i=1 e y i), used only for the output layer when classifying the inputs into different categories for example images classification problems. • Exponential linear unit ELU σ : y ∈ R d → (σ (y 1), ..., σ (y d)) where σ

Figure 5 . 1 :

 51 Figure 5.1: Architecture of a deep neural network with input layer d 0 = 4, two hidden layers d 1 = d 2 = 3 and output layer d 3 = 1.

 is a discrete trajectory associated to (5.8) (see chapters 3 and 4 for more details). For the sequel, let's define W k (•, •) := w h (s k , •, •), for k = 0, ..., N . The discrete auxiliary value function (W k) N k=0 verifies the following properties. Proposition 5.4.1. (i) For any k = 0, ..., N , W k is a Lipschitz continuous function.

4 : end for 5 :Remark 5 . 4 . 2 . 1 .

 455421 return W k (•), for k = 0, ..., N . Algorithm 5.2 iterates in time, in a backward way, and tries at each time step k, for k = 0, ..., N -1, to find the best neural network π(•; θ) ∈ W d+1 that approximates W k (•) by use of the neural network W k+1 (•) already obtained in the previous time step k + 1. The approximated value function W k (•) is computed in (5.14) by considering a training samples Xm k := (X m k , Z m k), m = 1, ..., M , of the random variable Xk , drawn from the training distribution µ on the computational domain Ω where M ≥ 1 is the number of training points. The corresponding optimization problem to be solved, by means of the Mini Batch Gradient Descent method presented in section 5.2, has the following form:

 inf

Figure 5 . 2 :

 52 Figure 5.2: (Example 1): Exact and predicted value functions at t = 0, v(0, •) and V0 (•) obtained by the PDE approach with 6 layers, 40 neurons per layer, M = 5 × 10 2 and M 0 = 40.

0 =

 0 d j=1 ∈]0, 1[d .Moreover, for this example the test grid coincides with the initial position Y 0 . The approximated optimal controls and trajectories, (a* k) N -1 k=0 and (Y * k) N k=0 with Y * k ∈]0, 1[d ,are computed in feedback form by using the approximated value function (V k) N k=0 as follows:Y 0 ∈]0, 1[d , a * k = argmin a∈Ag ρ h (Y * k , a) + V k+1 (F h (Y * k , a)) , k = 0, ..., N -1, Y * k+1 = F h (Y * k , a * k), k = 0, ..., N -1,

Figure 5 . 4 :

 54 Figure 5.4: (Example 2): Evolution of the loss function versus the number of iterations of the stochastic gradient algorithm for d = 10 3 and γ = 10 -2 (6 layers, 40 neurons per layer and M = 2000).

Figure 5 . 5 :

 55 Figure 5.5: (Example 2): Controls for γ = 10 -2 (left) and γ = 10 -4 (right) with dimension d = 10 3 obtained by Algorithm 5.2 with 6 layers, 40 neurons per layer and M = 2000.

 Consider a first example of front propagation (Example 3), in a dimension d ∈ N * , where the dynamics f is given by f (x, a) := a with a ∈ A := ∂B R d (recall that B R d denotes the closed unit ball of R d and ∂B R d denotes its boundary) and the initial condition is given by: Φ(x) = min(, x -A 0 -r 0 , x -B 0 -r 0), with = 1, r 0 = 0.5, A 0 = B 0 = -A 0 . The corresponding PDE equation (Eikonal equation), for T > 0, is defined as:-∂ t v(t, x) + D x v(t, x) = 0, t ∈ [0, T], x ∈ R d v(T, x) = Φ(x), x ∈ R d

Figure 5 . 7 :

 57 Figure 5.7: (Example 3): Exact and predicted zero levels obtained by the PDE approach for d = 2 (left, 6 layers, 40 neurons per layer, M = 4 × 10 3 and M 0 = 400) and for d = 6 (right, 6 layers, 40 neurons per layer, M = 8 × 10 4 and M 0 = 8 × 10 3).

Figure 5 . 9 :

 59 Figure 5.9: (Example 4): Exact and predicted zero levels obtained by Algorithm 5.2 for d = 4 (left, 6 layers and 40 neurons per layer, M = 5 × 10 4) and for d = 6 (right, 8 layers and 60 neurons per layer, M = 3 × 10 5).

Furthermore-

 gt(x) can be computed as follows:Bt := B0 -(T -t) × A0, u := = min(max(h, 0), ---→ B0Bt), and yP := B0 + h P u,where yP is the projection of x on the segment [B0; Bt]. Henceforth, gt can be expressed differently:gt(x) = max(-1, r1 -r1,t), where r1,t := x -yP .

Figure 5 .

 5 Figure 5.11: (Example 5): Exact and predicted zero levels obtained by Algorithm 5.2 for d = 4 (left, 6 layers, 40 neurons per layer, M = 10 5) and for d = 6 (right, 8 layers, 60 neurons per layer, M = 3 × 10 5).

Figure 5 .

 5 Figure 5.12: (Example 5): Exact and predicted zero levels obtained by the PDE approach (left) and the loss function evolution versus the number of iterations of the stochastic gradient algorithm (right) for d = 4 (6 layers, 40 neurons per layer, M = 10 5 and M 0 = 5 × 10 3).

Example 6 :

 6 An unconstrained gameConsider now a zero-sum differential game with finite time horizon T = 1 and state dimension d = 1. The dynamical system is given byẏ(s) = f (y(s), a(s), b(s)) = |a(s) -b(s)|, s ∈ [0, T],where the first and the second player controls a(•) and b(•) take values respectively in the control sets A and B with A = B = [-1, 1]. The distributed and the final cost functions are given by (x, a, b) = e x and Φ(•) = 0. The value function, corresponding to the case where the first player tries to minimize the cost functional by using nonanticipative strategies α[•] ∈ Γ, is defined by (see chapters 2 and 3 for more definitions about differential games):v(t, x) = inf α[•]∈Γ sup b(•)∈B T t e y α[b],b t,x (s) ds = (T -t)e x .144 This value function is the unique viscosity solution of the following HJI equation:-∂ t v(t, x) + H(x, ∂ x v(t, x)) = 0, t ∈ [0, T], x ∈ R, v(T, x) = Φ(x), x ∈ R,where the hamiltonian function is given, for any (x, p) ∈ R × R, by:H(x, p) = min b∈B max a∈A -pf (x, a, b) -(x, a, b) = -p -e x , if p ≤ 0, -e x , else.The computational domain for this example is Ω = [-1, 1]. For the DP approach, we used N = 20 time steps for the time-discretization of [0, T] and n A = n B = 11 points to generate the uniform control grids A g and B g from the control sets A and B respectively. The errors, presented in tables 5.22 and 5.23, are calculated at time t = 0 over a uniform grid G on the computational domain Ω with N G = 5000 points.

Figure 5 .

 5 Figure 5.13: (Example 6): Exact and predicted value functions at t = 0, v(0, •) and V0 (•), obtained by the DP approach (left, M = 400) and the PDE approach (right, M = 10 3 and M 0 = 80) with 8 layers and 40 neurons per layer.

 where T > 0, x = (x, z) ∈ R d × R, Φ and Ψ are the cost functions and ŷα[b],bx (•) is the trajectory associated to the augmented dynamical system. From section 3.4, w can be approximated by the following discrete time differential game:w h (x, z) := inf α h [•]∈Γ h sup (b i) i ∈B N max i=0,...,N h = T N with N ∈ N * , α h [•] ∈ Γ h is a discrete nonanticipative strategy of the first player, (b i) i ∈ B N isa control sequence of the second player and (ŷα h [b],b i) N i=0 is the discrete trajectory approximating the continuous time trajectory ŷα[b],b

 = (a 0 , ..., a N -1) ∈ A N and b := (b 0 , ..., b N -1

Titre:

 Approche Hamilton-Jacobi pour les jeux différentiels avec des contraintes d'état et méthodes numériques d'apprentissage pour des problèmes de commande optimale Mots clés: Commande optimale, Jeux différentiels, Contraintes d'état, Planification optimiste, Apprentissage profond Résumé: L'objectif de cette thèse est d'étudier des jeux différentiels avec contraintes d'état par l'approche Hamilton-Jacobi et de développer des méthodes numériques d'apprentissage pour résoudre des problèmes de commande optimale. La première partie considère un jeu différentiel à somme nulle et à deux joueurs où nous n'imposons aucune hypothèse de contrôlabilité et où les contrôles des deux joueurs peuvent être couplés dans la dynamique, les fonctions de coût et les contraintes d'état. En particulier, nous caractérisons la fonction valeur de ce problème à travers un jeu différentiel auxiliaire, sans contraintes d'état, et nous proposons une procédure générale permettant d'approcher les contrôles optimaux des deux joueurs pour le problème initial. La seconde partie de cette thèse présente des méthodes numériques permettant de résoudre des problèmes de commande optimale avec une grande dimension d'état. Notre première contribution dans cette partie consiste à étendre la méthode de planification optimiste pour traiter des problèmes de commande optimale à horizon fini et en présence de contraintes d'état. En outre, nous établissons des résultats de convergence de ces algorithmes qui dépendent d'un budget de calcul donné. Une analyse numérique de ces méthodes est effectuée sur plusieurs exemples dans un espace d'état de grande dimension. Finalement, nous étudions des méthodes numériques, basées sur l'apprentissage profond et la programmation dynamique, pour des problèmes de commande optimale déterministe avec contraintes d'état ou pour des jeux différentiels à somme nulle et à deux joueurs. Title: Hamilton-Jacobi Approach for State-Constrained Differential Games and Numerical Learning Methods for Optimal Control Problems Keywords: Optimal control, Differential games, State constraints, Optimistic planning, Deep learning

Theorem 2.3.10 (Comparison

 , t 2 ∈ [0, T], x 1 , x 2 , p 1 , p 2 ∈ R d and where C > 0. principle). Under assumptions (2.14) and (2.15), let V 1 be an u.s.c. subsolution of (2.13) and let V 2 be a l.s.c. super-solution of the same HJ equation

		.14)
	and	
	H(t, x, p 2) -H(t, x, p 1) ≤ C p 2 -p 1	(2.15)
	for any t 1	

.20) Theorem 2.3.13 (Value of the game). Assume (H2.1), (H2.2) and (H2.3). If

	Isaacs' condition (2.20)
	holds, then the game has a value v = v + = v -. Moreover, this value is the unique viscosity solution of
	the Hamilton-Jacobi-Isaacs' equation (2.9) (or (2.11), since (2.9) and (2.11) are reduced to the same HJI
	equation with the same hamiltonian function H = H + = H -).
	Proof. If Isaacs' condition holds, v -which is a viscosity super-solution of (2.11), from Lemma 2.3.9,
	becomes a viscosity super-solution of (2.9). Moreover, from Lemma 2.3.9, v + is a viscosity sub-solution
	of (2.9). Henceforth, from Theorem 2.3.10, we obtain v -≥ v + . On the other hand, we have already
	v + ≥ v -(see remark 2.3.3), which concludes the proof.

Theorem 2.4.2. Assume (H2.1), (H2.2) and (H2.3).

 Both value functions v and v are Lipschitz continuous on [0, T] × Ω, for any compact set Ω ⊂ R d .

	(i) For t ∈ [0, T], x ∈ R d and h ∈ [0, T -t], we have	
	v (t, x) = inf α[•]∈Γ	b(•)∈B sup	t	t+h	(s, y t,x (s), α[b](s), b(s))ds + v (t + h, y α[b],b t,x (t + h)) , α[b],b	(2.23)
	and					
	v (t, x) = sup β[•]∈∆	inf a(•)∈A	t	t+h	(s, y t,x (s), a(s), β[a](s))ds + v (t + h, y a,β[a] t,x (t + h)) . a,β[a]	(2.24)
	(ii)					

 [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] comes from the comparison Theorem 2.3.10. Indeed, let u be a viscosity solution of(2.11). Since u and v are respectively a sub and a super-solution of (2.11), we deduce from Theorem 2.3.10 that u ≤ v . Conversely, we get v ≤ u. Moreover, since B is compact, there exist a finite number m of points b 1 , ..., b m ∈ B and radius r 1 , ..., r m > 0 such that

	Proof of Lemma 2.4.4. We set for (s, z, a, b) ∈ [0, T] × R d × A × B,
	G(s, z, a, b) := -∂ t φ(s, z) -f (s, z, a, b), D x φ(s, z) -(s, z, a, b).
	We recall that H + (t, x, D x φ(t, x)) = min b∈B	max a∈A	-f (t, x, a, b), D x φ(t, x) -(t, x, a, b) . Henceforth, we
	obtain		
	min b∈B	max a∈A	G(t, x, a, b) = δ.
	Therefore, for any b ∈ B, there exists a ∈ A (depending on b) such that:
			G(t, x, a, b) ≥ δ.
	On the other hand, G(t, x, a, •) is uniformly continuous since it is continuous over the compact set B. Thus,
	for any b ∈ B,		
	G(t, x, a, b) ≥	3δ 4	, ∀ b ∈ B(b, r) B,
	for some r = r(b) > 0.		

Corollary 2.4.6 (Value of the game). Assume that (H2.1), (H2.2), (H2.3) and

 condition (2.20) hold. Therefore, the game has a value

	. The
	comparison principle Theorem 2.3.10 concludes the result.
	In a similar way to Theorem 2.3.13, one can prove, in this context, the equality between v and v if the
	Isaacs' condition (2.20) holds:

Theorem 2.6.2. The

 .26)Now, we will state the result concerning the convergence of V h to v . approximated value function V h converges uniformly to v over compact subsets of[0, T] × R d .In order to prove this Theorem, we will need the following Lemma from[START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] Chapter VIII]. By Lemma 2.6.3, there exist (h n) n and((t n , x n)) n ∈ B such that (t n , x n) is the maximum of V hn -φ over B and h n → 0, (t n , x n) → (t, x), V hn (t n , x n) → v(t, x), when n → ∞.

	Lemma 2.6.3. Let u : E → R, for a given set E, be an u.s.c and locally uniformly bounded function
	(respectively, l.s.c) and u := lim sup →0	u (respectively, u := lim inf →0	u). Let φ be a function of class C 1 on E
	and B 0 := B(x * , r) E where x * ∈ B 0 is a strict maximum (respectively, minimum) for u -φ (respectively,
	u -φ) on B 0 . Then there exist a sequence (x n) n in B 0 and (n) n such that x n is a maximum (respectively,
	minimum) for u n -φ in B 0 , n > 0 and	
	lim n→∞	n = 0,	lim n→∞	x n = x * ,	lim n→∞	u n (x n) = u(x *) (respectively, u(x *)).
	Proof of Theorem 2.6.2. First, let's define the function v by:
					v(t, x) :=	lim sup	V h (s, y),
						(s,y)→(t,x),h→0 +
	and let's prove that v is a sub-solution of the HJ equation (2.11) whose unique viscosity solution is v .
	Indeed, let φ be a function of class C 1 and (t, x) a strict maximum of v -φ in B := B((t, x), r), with a
	radius r > 0. Now consider a uniform partition of [0, T] with a time step h n : s n 0 = 0,...,s n k = kh n ,... There exists k ≥ 0 such that t n ∈ [s n k , s n k+1 [. We set τ n := s n k+1 -t n > 0. Applying the discrete dynamic programming principle for V hn between t n and s n k+1 (relation (2.27) of
	Proposition 2.6.4) gives:				

 generated by Algorithm 2.1 for the discrete time differential game (2.26).

	Proposition 2.6.7.

 .35) Moreover, we have u hn (t n , χ n) ≥ u h (s n k+1 , y n) where y n := χ n + τ n F (t n , χ n , a n , b). Since (t n , χ n) is the minimum of u hn -ξ over B, we get:

Table 3 .

 3

	deg)

1 and 3.2: State variable h(ft) u(ft s -1) γ (deg) ω h (ft s -1) θ (1: State constraints: domain K. Control variables a (deg s -1) b 1 (ft s -2) b 2 (ft s

Table 3 .

 3

2: Control constraints: sets A and B. Remark 3.5.1. Since φ is bounded, the auxiliary variable z will take values in an interval of the form [z min , z max].

Table 4 .

 4 1: (Example 1): Relative errors w.r.t. the discrete value function obtained by the OP Algorithm for different values of N and I max and from different initial states.

	10	10 3	6.89 e-01 1.04 e-01 0.0	1.161 5.65 e-02	0.0	1.639 4.42 e-02	0.0
	20	10 4	6.88 e-01 1.81 e-01 5.3	1.161 1.03 e-01	5.1	1.639 7.22 e-02	4.9
		2 × 10 4 6.88 e-01 1.81 e-01 29.6	1.161 1.00 e-01	33.7	1.639 7.22 e-02	33.7
		2 × 10 5 6.88 e-01 1.47 e-01 7167.9 1.161 8.64 e-02 6987.1 1.639 6.12 e-02 6239.6

Table 4 .

 4 3: (Example 1): Relative errors w.r.t. the continuous value function obtained by the OP Algorithm for different values of N and I max and from different initial states.

		10 3	1.08 e-01	0.0	5.78 e-02	0.0	4.48 e-02	0.0
	20	10 4	1.84 e-01	5.8	1.04 e-01	5.8	7.29 e-02	5.2
		2 × 10 4 1.80 e-01	30.7	9.97 e-02	35.2	7.01 e-02	34.3
		2 × 10 5 1.50 e-01 7213.4 8.78 e-02 7165.4 6.18 e-02 6414.7

Table 4 .

 4

		10 3	6.89 e-01 9.07 e-03 0.01	1.161 5.81 e-03	0.01	1.639 4.89 e-03	0.01
	20	10 4	6.88 e-01 2.14 e-03 1.23	1.161 1.68 e-04	1.29	1.639 4.29 e-04	1.30
	40	10 5	6.87 e-01 2.05 e-03 144.5	1.159 4.08 e-05	144.0	1.638 2.95 e-05	152.2

4: (Example 1): Relative errors w.r.t. the discrete value function obtained by the SOP Algorithm for different values of N and I max and from different initial states.

Table 4 .

 4

		10 3	1.20 e-02	0.01	7.02 e-03	0.01	5.48 e-03	0.01
	20	10 4	2.20 e-03	1.23	1.37 e-03	1.29	1.01 e-03	1.30
	40	10 5	2.12 e-03	144.5	6.02 e-05	144.0	5.76 e-05	152.2

6: (Example 1): Relative errors w.r.t. the continuous value function obtained by the SOP Algorithm for different values of N and I max and from different initial states.

Table 4 .

 4 In table 4.8, we present the relative errors w.r.t. the continuous value function obtained by the SOPMS algorithm for different values of the tolerance parameter .

	30	10 3	7.97 e-03	0.0	5.21 e-03	0.0	2.03 e-03	0.0
		free 7.96 e-03	0.0	5.21 e-03	0.0	2.03 e-03	0.0
	20 300 10 4	1.26 e-02	0.1	3.44 e-04	0.1	4.66 e-04	0.0
		free 1.37 e-03	0.4	6.73 e-04	0.2	4.65 e-04	0.2
	40 3000 10 5	8.69 e-03	34.7	7.73 e-04	13.0	2.93 e-04	7.1
		free 1.33 e-03	100.1	1.32 e-04	80.2	4.44 e-05	18.9

7: (Example 1): Relative errors w.r.t. the continuous value function obtained by the SOPMS Algorithm with = 10 -6 for different values of N , I eval and I max and from different initial states.

Table 4 .

 4 8: (Example 1): Relative errors w.r.t. the continuous value function obtained by the SOPMS algorithm for different values of the tolerance parameter .

Table 4 . 9

 49 × 10 4 2.290 2.291 4204.1 1.667 1.669 4251.4 1.996 1.998 3898.0

	10	500	2.379 2.379 0.3	1.861 1.861	0.1	2.018 2.018	0.2
	20	5000	2.361 2.364 11.3	1.893 1.899	8.2	2.009 2.013	6.0
	40 5						

: (Example 2): Values of the cost function J obtained by the SOP Algorithm from different initial states.

Table 4 .

 4 600, 239.7, -2.249 deg, 7.373 deg) and y 1 = (0, 650, 239.7, -3.400 deg, 7.373 deg). 11: (Example 4): Performance of the dichotomy with SOP Algorithm, for T = 40, different values of N and I max and from different initial configurations.

	Initial	Parameters	J *	z *	CPU
	configurations N	I max	(ft)	(ft)	(s)
		10	10 3	544.116 544.189	1.79
	y 0	20	10 4	520.624 524.185	31.7
		40	10 5	480.713 480.746 2911.5
		10	10 3	521.720 521.729	1.85
	y 1	20	10 4	487.649 487.661	30.3
		40	10 5	479.735 479.739 2793.9

Table 4 .

 4 12: (Example 4): Performance of the dichotomy with SOPMS Algorithm, for T = 40, different values of N and I eval and from different initial configurations.

	Initial	Parameters	J *	z *	CPU
	configurations N	I eval	(ft)	(ft)	(s)
		10	30	519.498 520.047	1.2
	y 0	20	300	509.953 510.221	9.7
		40	3000	494.862 495.745 714.2
		40	6000	477.281 478.638 3252.9
		10	30	517.106 517.986	1.4
	y 1	20	300	508.532 509.844	8.3
		40	3000	459.393 459.981 673.4
		40	6000	452.100 453.354 3017.1
	4.7 Appendix				
	4.7.				

1 Appendix: Proofs of convergence results for OP and SOP algorithms

 Proof of Theorem 4.4.5. Let A i be a node of the tree Υ at some depth p i . From Corollary 4.3.3, the error σ i is bounded by:

 different parameters of the aircraft model and the wind velocities are presented in the following table:

	Parameter	Value	Unit	Parameter	Value	Unit
	h *	1000	ft	e	6.28083 ×10 -11 s -1 ft -3
	δ	3.49 e-02	rad	A 0	4.456 ×10 4	Ib
	k	0.9		A 1	-23.98	Ib s ft -1
	θ *	0.2094	rad	A 2	1.42 ×10 -2	Ib s 2 ft -2
	S	1560.0	ft 2	B 0	0.1552	
	ρ	2.203 10 -3	Ib s 2 ft -4	B 1	0.1237	rad -1
	a	6 ×10 -6	s -1 ft -2	B 2	2.4203	rad -2
	b	-4 ×10 -11	s -1 ft -3	C 0	0.7125	
	c d	-log(25 30.6) × 10 -12 -8.02881 ×10 -8	ft -4 s -1 ft -2	C 1 C 2	6.0877 -9.0277	rad -1 rad -2

Table 4 .

 4 13: (Example 4): Numerical data of the model.

Table 5 .

 5 1: (Example 1): Relative L 1 , L 2 and L ∞ errors between the exact and the predicted solution obtained by Algorithm 5.2 with different network architectures and values of M .

		Training parameters	L 1 error	L 2 error	L ∞ error CPU(s)
	Layers Neurons	M	
	2	10	50 3.417 e-02 3.762 e-02 4.511 e-02	15.22
	4	20	100 1.445 e-02 1.493 e-02 1.480 e-02	23.03
	6	40	200 1.236 e-02 1.247 e-02 1.341 e-02	53.48
	8	60	400 1.194 e-02 1.218 e-02 1.325 e-02	93.56

Table 5 .

 5 2: (Example 1): Relative L 1 , L 2 and L ∞ errors between the exact and the predicted solution obtained by the PDE approach with different network architectures and values of M 0 and M .

	L 1 error	L 2 error	L ∞ error CPU(s)

Table 5 .

 5 3: (Example 2): Values of the cost J corresponding to the controlled solutions obtained by Algorithm 5.2 for different neural network architectures and different values of the training set size M and for d = 10 2 . × 10 3 4 × 10 2 2.642 e-02 210.70 2.114 e-02 221.77

	-2	γ = 10 -4

Table 5 .

 5 4: (Example 2): Values of the cost J corresponding to the controlled solutions obtained by the PDE approach for different neural network architectures and different values of the training sets sizes M , M 0 and for d = 10 2 .

Table 5 .

 5 7: (Example 3): Relative L 1 , L 2 and L ∞ errors between the exact and the predicted solutions obtained by Algorithm 5.2 corresponding to the dimension d = 2 with different neural network architectures and different values of M .

		Training parameters	L 1 error	L 2 error	L ∞ error CPU(s)
	Layers Neurons	M
	2	10	500 7.583 e-02 8.644 e-02 1.916 e-01	5.40
	4	20		10 3 4.273 e-02 4.968 e-02 1.275 e-01	22.31
	6	40	2 × 10 3 4.511 e-02 5.184 e-02 1.307 e-01	68.05
		Training parameters	L 1 error	L 2 error	L ∞ error CPU(s)
	Layers Neurons	M M 0
	2	10	10 3 100 4.415 e-02 5.838 e-02 1.190 e-01	4.55
	4	20	2 × 10 3 200 1.526 e-02 1.752 e-02 9.865 e-01	16.92
	6	40	4 × 10 3 400 1.472 e-02 1.705 e-02 9.388 e-01	73.18

Table 5 .

 5 8: (Example 3): Relative L 1 , L 2 and L ∞ errors between the exact and the predicted solutions obtained by the PDE approach corresponding to the dimension d = 2 with different neural network architectures and different values of M and M 0 .

Table 5 .

 5 22: (Example 6): Relative L 1 , L 2 and L ∞ errors between the exact and the predicted solution obtained by the DP approach with different network architectures and values of M .

		Training parameters	L 1 error	L 2 error	L ∞ error CPU(s)
	Layers Neurons	M
	2	5		50 1.096 e-01 1.794 e-01 3.538 e-01	62.41
	4	10		100 6.314 e-02 6.501 e-02 1.104 e-01	76.84
	6	20		200 2.668 e-02 3.150 e-02 6.358 e-02 125.20
	8	40		400 2.611 e-02 3.025 e-02 5.145 e-02 148.92
		Training parameters	L 1 error	L 2 error	L ∞ error CPU(s)
	Layers Neurons		M M 0
	2	5		125 10 3.963 e-02 4.056 e-02 1.357 e-01	22.80
	4	10		250 20 1.197 e-02 2.072 e-02 9.408 e-02	36.94
	6	20	5 × 10 2 40 9.159 e-03 9.846 e-03 7.408 e-02	71.07
	8	40		10 3 80 7.923 e-03 8.025 e-03 7.010 e-02 109.47

Table 5 .

 5 23: (Example 6): Relative L 1 , L 2 and L ∞ errors between the exact and the predicted solution obtained by the PDE approach with different network architectures and values of M 0 and M .

Je remercie tous les membres de l'Unité des Mathématiques Appliquées (UMA) de l'Ecole Nationale Supérieure des Techniques Avancées (ENSTA) de Paris pour avoir contribuer à rendre mon environnement de travail particulièrement accueillant et amical. Un remerciement spécial à Frederic Jean pour son infinie disponibilité et sa grande gentillesse et à Sourour Elloumi pour ses conseils et son encouragement. Je tiens à remercier Anya Desilles pour sa disponibilité et son aide précieuse au début de ma thèse et Eliane Becache pour m'avoir aider sur le plan administratif en tant que directrice adjointe de l'Ecole Doctorale de Mathématiques Hadamard EDMH. Un grand merci à Corinne Chen, Maurice Diamantini et Christophe Mathulik pour leur aide, leur gentiellesse et leur disponibilité. Je remercie aussi Pierre Carpentier, Christophe Hazard, Zacharie Ales, Francessco Rosso et Jerome Perez avec qui les discussions étaient agréables. Un remerciement spécial aux doctorants de l'UMA pour leur soutien, leur aide et les échanges que nous avons eu ensemble pendant les pauses. Ainsi, je remercie Mahrane, Othmane, Jean-François, Veljko, Akram.Enfin je remercie tous les membres de ma famille pour m'avoir soutenu pendant tout mon parcours en particulier durant mon projet de thèse. Je remercie également tous mes amis qui m'ont été proches.

τ L F,x < 1 holds. Moreover, q(N) ≤

hence c 1 (N) is bounded independently of N .

The maximal depth to not exceed, P max , when using SOP or SOPMS: following the assumption given in Theorem 4.4.11, this parameter should be chosen as P max := I η max with η ∈ [0, 1[. A small value of η leads to the exploration of the tree at its width. However, if η is near to 1, the search will be deep. In our simulations, we set η = 0.5 hence P max = √ I max .

The total variation of W K,γ r is equal K i=0 νi.

Remerciements

Chapter 3

Hamilton-Jacobi Approach For Differential Game Problems With State Constraints

Publication from this chapter N.Gammoudi and H.Zidani, A differential game control problem with state constraints, Mathematical Control and Related Fields, 2020 (submitted). Now we use the Lipschitz continuity of Φ and Ψ to deduce that:

where L Φ (R) and L Ψ (R) are respectively the Lipschitz constants of Φ and Ψ. Moreover, by the Lipschitz continuity of F , with Lipschitz constant L F (R), one can prove the following estimation on the discrete trajectories (ζ x i) i and (ζ y i) i :

x -y , for any i ≥ k + 1.

We conclude that there exists some constant C(R) > 0 such that:

The fact that is chosen arbitrarily gives the desired result. Now we will prove the discrete dynamic programming equation (3.33). To this end, we define for t ∈ [s k , s k+1 [and χ ∈ R m ρ(t, χ) := max b∈B min a∈A u h (s k+1 , χ + (s k+1 -t)F (t, χ, a, b)) Φ(χ) .

We start by showing that u h (t, χ) ≤ ρ(t, χ). Since u h is continuous w.r.t. the space variable, for any b ∈ B there exists a(b) ∈ A, depending on b, such that:

≥ u h (s k+1 , χ + (s k+1 -t)F (t, χ, a(b), b)) Φ(χ).

Let (b i) i ∈ B N -k be a discrete control of the second player and define χ the system state at time s k+1 , χ := χ + (s k+1 -t)F (t, χ, a(b k), b k). For any > 0, consider a discrete strategy α h [•] ∈ Γ h verifying:

For any (b i) i ∈ B N -k we have:

where

We deduce that: Finally, by setting

By using similar arguments, we obtain an upper bound on β k as follows:

In conclusion, we get the desired result by setting

Remark 4.3.4. The upper bound δ, defined in (4.12) with 1 L F,x < 1, is quite similar to the bound established in [START_REF] Buşoniu | Continuous-action planning for discounted infinite-horizon nonlinear optimal control with lipschitz values[END_REF][START_REF] Buşoniu | Discounted near-optimal control of general continuous-action nonlinear systems using optimistic planning[END_REF] for infinite time horizon problems. This new upper bound will be useful to prove the convergence results of our planning algorithms in the following section.

Optimistic planning

In order to simplify the presentation and without loss of generality, we suppose that the control is of dimension q = 1 and we take A = [0, 1]. The unit interval here can be obtained by normalizing any compact set of R. Furthermore, our approach can be generalized to control variables with multiple dimensions.

Optimistic planning approach

Planning algorithms are based on the principles of optimistic optimisation (see [START_REF] Elliott | The existence of value in differential games[END_REF]). In order to minimize the objective function J, we refine, iteratively and in an optimistic way, the global search space A N into smaller search spaces.

A subset of the global search space A N , called a node and denoted by A i with i ∈ N, is a cartesian product of sub-intervals of A i.e.

represents the control interval at time step k, for k = 0, ..., N -1. The collection of nodes will be organized into a tree Υ that will be constructed progressively by expanding the tree nodes. Expanding a node A i consists of choosing an interval A i,k , for k = 0...N -1, and splitting it uniformly to M sub-intervals where M > 1 is a fixed parameter of the algorithm.

In figure 4.1, we represent a simple example of a tree construction to explain how it works.

At the beginning, the tree contains only the root A 0 (A 0 = A N), from which we generate 3 children nodes

, after splitting its first interval. Then, suppose that A 1 is the second node to be refined by splitting its second interval. Hence, we get A 4 = [0, 1 3] × [0, 1 3

. Finally, we choose A 6 and we split its first interval [0, 1 3] to generate

In this example, the order of expanding the nodes and splitting the intervals is arbitrary. The true selection rules will be clarified later.

Some useful notations related to the tree Υ

• We associate, for any node

k=0 such that a i,k corresponds to the midpoint of the interval A i,k for any k = 0, ..., N -1.

• Denote by d i,k , for k = 0, ..., N -1, the diameter of the interval A i,k of some node A i ∈ Υ. For example, in figure 4.1, we have

• For any node A i ∈ Υ corresponds a split function s i (•) such that s i (k) indicates the number of splits needed to obtain the interval A i,k for k = 0, ..., N -1. For example, in figure 4.1, s 0 (•) ≡ 0 for the root A 0 . As for A 7 , we have s 7 (0) = 2, s 7 (1) = 1 and s 7 (k) = 0 for k ≥ 2.

From the last inequality, we deduce that r ≥ p N -1 -N -1 2(τ -1) together with (4.40), we conclude that:

Proof of Lemma 4.4.8. Denote by A in ∈ Λ the node chosen at some iteration n to be expanded by the OP Algorithm. By construction of the tree, the set of leaves Λ, at any iteration of the algorithm, covers the entire space A N . Therefore, there exists A i * n ∈ Λ containing an optimal control sequence that verifies:

On the other hand, A in = argmin

Now, among the descendants of A in , there exists a leaf A j such that J(x, z, a j) ≤ J(x, z, a in) (see remark 4.4.3). Moreover, the returned node of the OP Algorithm verifies A i * = argmin

As a conclusion, we get J(x, z, a i *) -W (x, z) ≤ σ in , for any expanded node A in , which gives the desired result.

Proof of Theorem 4.4.9. The cost of expanding one node is one iteration. Recall that the OP Algorithm expands only nodes in p≥0 Υ * p and that Υ * p contains at most Rm p . Suppose that m > 1 and let I max be the maximal number of iterations. At any depth p ≥ 0, the algorithm expands at most Rm p nodes thus at most Rm p iterations. Now let p be the smallest depth such that 1 + R p-1 p =0 m p ≥ I max . Hence at least one node at depth p was expanded such that

Therefore the smallest error term among all the expanded nodes verifies σ min ≤ σ p ≤ δ p , where δ p is defined in (4.17), and from Lemma 4.4.8, we conclude that:

which gives the result for m > 1. The case m = 1 can be deduced by similar arguments.

Proof of Lemma 4.4.10. We claim that for any depth p ∈ {0, ..., P max }, if the number of expanded nodes n verifies:

then at least one node containing an optimal control sequence, at depth p, has been expanded. Now, let p(n) be the smallest depth verifying (4.18). Therefore, (4.41) is verified by p = p(n) -1 which implies that, by using the above claim, the SOP Algorithm has expanded at least one optimal node at depth p(n) -1 if p(n) -1 ≤ P max . However, if p(n) -1 > P max and since SOP Algorithm does not expand nodes with depth grater than P max , the deepest expanded optimal node is at depth p = P max , which between the two cases, see figure 5.5. Indeed, when γ is equal to 10 -4 , we allow values of the control with larger norms as it is shown in figure 5.5. In addition to that, due to its important weight in the distributed cost function, the control corresponding to γ = 10 -2 is more regular than the control obtained with γ = 10 -4 .

On the other hand, we remark that the DP method requires approximately the same execution time used to solve this example by the Optimistic Planning approach (see example 3 of section 4.6). Because of the stochastic optimization process used for the regression (5.14)

The computational domain here is Ω = [-2, 2] d . We used N = 10 time steps for the time-discretization

Example 5: Front propagation with state constraints

Now, consider a front propagation problem with an obstacle. Let T = 1, the dimension d ∈ N * , the dynamics f is given by: and the initial condition is given by:

where 0 = 0.2, r 0 = 0.5 and

The obstacle function, g : R d → R, is defined as follows:

while figure 5.12 represents the exact and approximated zero levels and the evolution of the loss function, versus the number of iterations of the stochastic gradient algorithm used for the training of the neural networks, obtained by the PDE approach for d = 4.

Similarly to the previous examples, we remark that increasing the size of the training samples simultaneously with the number of hidden layers and the number of neurons per layer ameliorate, in general, the accuracy of the approximated solution and increases the CPU time needed to train the neural networks. Furthermore, we observe, in tables 5.17 and 5.18, the near performances of the different approaches for a small dimension (d = 2).

Training parameters Now, by comparing tables 5.19 and 5.20, we deduce again that the DP approach becomes more accurate than the PDE approach for higher dimensions (d = 4). Moreover, we observe in figure 5.11 that the DP approach is able to capture the front and the obstacle form for d = 4 and d = 6 which seems more difficult to handle with the PDE approach, see table 5.20 and figure 5.12. We remark also that the behaviour of the loss function, in figure 5.12, becomes of the form Cα n , where n is the number of iterations, C > 0 is a small real constant and α < 1 is close to 1. Hence, the loss does not decrease enough, for high number of iterations, and reaches some threshold.