
HAL Id: tel-03323613
https://theses.hal.science/tel-03323613v1

Submitted on 22 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hamilton-Jacobi Approach for State-Constrained
Differential Games and Numerical Learning Methods for

Optimal Control Problems
Nidhal Gammoudi

To cite this version:
Nidhal Gammoudi. Hamilton-Jacobi Approach for State-Constrained Differential Games and Numer-
ical Learning Methods for Optimal Control Problems. Optimization and Control [math.OC]. Institut
Polytechnique de Paris, 2021. English. �NNT : 2021IPPAE005�. �tel-03323613�

https://theses.hal.science/tel-03323613v1
https://hal.archives-ouvertes.fr

574

N
N

T
:2

02
1I

P
PA

E
00

5

Hamilton-Jacobi Approach for
State-Constrained Differential Games
and Numerical Learning Methods for

Optimal Control Problems
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Ecole Nationale Supérieure des Techniques Avancées (ENSTA)

École doctorale n◦ 574 de Mathématiques Hadamard (EDMH)
Spécialité de doctorat : Mathématiques Appliquées

Thèse présentée et soutenue à Palaiseau, le 12 avril 2021, par

NIDHAL GAMMOUDI

Composition du Jury :

M. Quentin MÉRIGOT
Professeur, Université Paris Saclay Président

M. Maurizio FALCONE
Professeur, Université de Rome La Sapienza Rapporteur

M. Peter Dower
Professeur, Université de Melbourne Rapporteur

M. Nicolas Forcadel
Professeur, Institut National des Sciences Appliquées de Rouen Examinateur

M. Xavier Warin
Ingénieur de recherche, EDF R&D Examinateur

M. Olivier Bokanowski
Maı̂tre de conférences, Université Paris-Diderot Examinateur

Mme. Hasnaa Zidani
Professeur, Ecole Nationale Supérieure des Techniques Avancées Directrice de thèse

Remerciements
Ces quelques lignes sont pour moi l’occasion d’exprimer ma gratitude envers tous ceux qui m’ont ac-

compagné dans cette thèse.

Je tiens à remercier d’abord ma directrcie de thèse Hasnaa Zidani pour sa disponibilité et la grande con-
fiance qu’elle m’a accordée pour mener à bien ce travail de recherche. Je remercie également Olivier
Bokanowski qui a participé à l’encadrement d’une grande partie de ma thèse. Je suis très reconnaissant
pour le temps qu’ils ont accordé à mon suivi et à ma formation.

Mes remerciements s’adressent également aux professeurs Maurizio Falcone et Peter Dower pour m’avoir
fait l’honneur d’être les rapporteurs de ma thèse, pour leurs lectures attentives du manuscrit et leurs re-
marques pertinentes.

Je tiens à remercier aussi les autres membres du jury, les professeurs Quentin Mérigot, Nicolas Forcadel
et Xavier Warin. Un remerciement tout particulier à Xavier Warin et aussi à Nicolas Langrene pour leur
collaboration et leurs remarques précieuses sur la dernière partie de mon travail.

Je remercie tous les membres de l’Unité des Mathématiques Appliquées (UMA) de l’Ecole Nationale
Supérieure des Techniques Avancées (ENSTA) de Paris pour avoir contribuer à rendre mon environ-
nement de travail particulièrement accueillant et amical. Un remerciement spécial à Frederic Jean pour
son infinie disponibilité et sa grande gentillesse et à Sourour Elloumi pour ses conseils et son encourage-
ment. Je tiens à remercier Anya Desilles pour sa disponibilité et son aide précieuse au début de ma thèse
et Eliane Becache pour m’avoir aider sur le plan administratif en tant que directrice adjointe de l’Ecole
Doctorale de Mathématiques Hadamard EDMH. Un grand merci à Corinne Chen, Maurice Diamantini et
Christophe Mathulik pour leur aide, leur gentiellesse et leur disponibilité. Je remercie aussi Pierre Car-
pentier, Christophe Hazard, Zacharie Ales, Francessco Rosso et Jerome Perez avec qui les discussions
étaient agréables. Un remerciement spécial aux doctorants de l’UMA pour leur soutien, leur aide et les
échanges que nous avons eu ensemble pendant les pauses. Ainsi, je remercie Mahrane, Othmane, Jean-
François, Veljko, Akram.

Enfin je remercie tous les membres de ma famille pour m’avoir soutenu pendant tout mon parcours en
particulier durant mon projet de thèse. Je remercie également tous mes amis qui m’ont été proches.

1

Contents

1 Introduction 7
1.1 Differential games . 10
1.2 Numerical learning methods for optimal control problems 12

1.2.1 Optimistic planning approach . 13
1.2.2 Deep learning numerical methods for dynamic programming 14

2 Unconstrained Finite Horizon Differential Games 16
2.1 Introduction . 16
2.2 Definitions and hypothesis . 18
2.3 Unconstrained problem with delay strategies . 19

2.3.1 Problem formulation . 19
2.3.2 Some properties of value functions . 21
2.3.3 Characterization of value functions . 23

2.4 Unconstrained problem with nonanticpative strategies . 27
2.4.1 Problem formulation . 27
2.4.2 Characterization of value functions . 27

2.5 General comparison result . 31
2.6 Approximation by discrete time games and trajectory reconstruction 31

2.6.1 Approximation by discrete time games . 32
2.6.2 Trajectory reconstruction . 35

2.7 A game example . 43
2.7.1 Problem of the first player . 44
2.7.2 Problem of the second player . 44

3 Hamilton-Jacobi Approach For Differential Game Problems With State Constraints 45
3.1 Introduction . 45
3.2 Problem formulation . 48

3.2.1 Settings of the constrained differential game . 48
3.2.2 Associated auxiliary problem . 49

3.3 Properties of the value functions v and w . 50
3.4 Trajectory reconstruction based on the value function and approximation by discrete time

games . 57
3.4.1 A general reconstruction procedure . 58
3.4.2 Reconstruction with a specific approximation . 63

3.5 Application to an aircraft landing problem . 71
3.5.1 Introduction . 71
3.5.2 5D differential game model . 72

3.6 Appendix: Properties of the auxiliary value function w . 76

2

4 Optimistic Planning Algorithms For Constrained Optimal Control Problems 82
4.1 Introduction . 82
4.2 Problem formulation and discrete settings . 84
4.3 Preliminary results . 87
4.4 Optimistic planning . 89

4.4.1 Optimistic planning approach . 89
4.4.2 Optimistic Planning (OP) Algorithm . 92
4.4.3 Simultaneous Optimistic Planning (SOP) Algorithm 93
4.4.4 Simultaneous Optimistic Planning with Multiple Steps (SOPMS) Algorithm 94
4.4.5 Resolution procedure for a constrained problem . 95

4.5 Extension to infinite horizon problems . 96
4.6 Numerical experimentation . 99

4.6.1 Choice of the numerical parameters . 99
4.6.2 Numerical examples . 100

4.7 Appendix . 111
4.7.1 Appendix: Proofs of convergence results for OP and SOP algorithms 111
4.7.2 Appendix B. Numerical parameters of example 4 . 117

5 Deep Learning Numerical Methods For Dynamic Programming 119
5.1 Introduction . 119
5.2 Neural networks for functions approximation . 121
5.3 Problem settings . 125
5.4 Deep learning numerical methods . 126

5.4.1 Neural networks for dynamic programming (DP) . 126
5.4.2 Neural networks for partial derivatives equations (PDE) 128

5.5 Numerical examples . 129

6 Conclusion and perspectives 147

3

Abbreviations and Notations

DPP Dynamic Programming Principle
PDE Partial Derivatives Equation
HJ Hamilton-Jacobi
HJB Hamilton-Jacobi-Belman
HJI Hamilton-Jacobi-Isaacs
u.s.c upper semi continuous
l.s.c lower semi continuous
DNN Deep Neural Networks
Rp Euclidean p-dimensional space
Rp×q Space of (p× q) real matrices
Ip The identity matrix of size p
〈·, ·〉 The inner product in some Euclidean space
‖ · ‖ The Euclidean norm
BRp The closed unit ball of Rp
B(x, r) The open ball of center x and radius r > 0

B(x, r) The closed ball of center x and radius r > 0
A
⋂
B The intersection of two sets A and B

A
⋃
B The union of two sets A and B

◦
Y The interior of a set Y ⊂ Rp
∂Y The boundary of a set Y ⊂ Rp
d(·, Y) The distance function to a set Y ⊂ Rp
dY (·) The signed distance function to a set Y ⊂ Rp
Dxφ The gradient of φ w.r.t. x
∂tφ The partial derivative of φ w.r.t. t
b·c The floor function
d·e The ceiling function
a
∨
b max(a, b), for a, b ∈ R

a
∧
b min(a, b), for a, b ∈ R

|U | The cardinality of a finite set U
X ∼ µ The random variable X is described by the probability distribution µ

4

Synthèse(en français)

L’objectif de cette thèse est d’étudier des problèmes de jeux différentiels avec contraintes d’état par
l’approche Hamilton-Jacobi et de développer des méthodes numériques d’apprentissage pour résoudre
des problèmes de commande optimale.

La théorie de commande optimale est une branche de mathématiques appliquées qui s’intéresse à l’étude
de l’évolution d’un système dynamique dans le temps afin de minimiser un coût, maximiser un gain, attein-
dre une cible finale ou stabiliser le système. L’évolution temporelle du système définit une trajectoire régie
par des équations différentielles ordinaires pour les problèmes de commande optimale déterministes.
Cette trajectoire est directement affectée par les actions d’un contrôleur dites lois de contrôle admissibles
si elles satisfont certaines conditions. D’autre part, dans de nombreuses applications, l’espace d’état peut
être restreint, ce qui définit certaines contraintes qui doivent être respectées par la trajectoire au cours de
l’évolution du système.

Parmi les principales approches pour étudier les problèmes de commande optimale, on peut trouver dans
la littérature l’approche de Programmation Dynamique (PD) formulée par Richard Bellman dans les an-
nées 1950, voir [18, 19], qui considère la valeur optimale du problème d’optimisation en fonction de la
condition initiale définissant ainsi la fonction valeur.

Une classe très importante de la théorie de commande optimale est celle des jeux différentiels, liée
également à la théorie des jeux. Dans ce contexte, l’évolution du système dynamique est affectée par
les actions de plus d’un joueur impliqué dans le jeu et chaque joueur vise à améliorer son gain. Ainsi,
les jeux différentiels constituent un cadre très commode pour étudier des problèmes caractérisés par des
situations conflictuelles entre plusieurs joueurs ayant des intérêts différents. Une autre motivation pour
les jeux différentiels consiste à étudier des problèmes de commande optimale où le système dynamique
est affecté par des perturbations inconnues [126, 13, 66, 87].

Dans ce travail, nous nous intéressons aux jeux différentiels à somme nulle et à deux joueurs où le gain
d’un joueur correspond certainement à une perte de son adversaire. Par conséquent, on peut définir
pour chaque joueur sa propre fonction de valeur. D’autre part, il existe plusieurs cadres pour étudier les
jeux différentiels en fonction des informations disponibles pour chaque joueur au cours du jeu. Un cadre
intéressant consiste à restreindre les informations disponibles pour les deux joueurs au cours du jeu.
Désormais, chaque joueur n’a aucune idée des choix futurs de son adversaire. Nous commençons par
introduire au chapitre 2 quelques définitions générales et résultats de base pour les jeux différentiels à
somme nulle et à deux joueurs. La principale contribution de ce chapitre est de proposer une procédure de
reconstruction de stratégies et de contrôles optimaux pour les jeux différentiels à horizon fini. Le chapitre
3 est consacré à l’étude d’un jeu différentiel avec contraintes d’état et fonction de coût maximum où nous
n’imposons aucune hypothèse de contrôlabilité et où les contrôles des deux joueurs peuvent être couplés
dans la dynamique, les fonctions de coût et les contraintes d’état. En particulier, nous caractérisons la
fonction valeur de ce problème à travers un jeu différentiel auxiliaire sans contraintes d’état. De plus, nous
établissons un lien entre les stratégies optimales du problème contraint et celles du problème auxiliaire
et nous présentons une approche générale permettant de construire des lois optimales approchées au
jeu différentiel contraint pour les deux joueurs. Enfin, un problème d’atterrissage d’avion en présence de
perturbations du vent est donné à titre d’exemple numérique illustratif.

L’approche de Programmation Dynamique est largement utilisée pour résoudre les problèmes de com-
mande optimale en calculant une approximation de la fonction de valeur à travers plusieurs méthodes
numériques telles que les méthodes Différences finies ([51]), semi-lagrangien ([61, 63]) et les méthodes
Fast Marching ([122]). Un inconvénient de cette classe de méthodes numériques est la forte dépendance
à la dimensionnalité de l’état puisque les calculs sont effectués sur une grille espace-temps. Pour cette
raison, notre objectif dans le seconde partie de cette thèse était de développer des méthodes numériques

5

permettant de résoudre des problèmes de commande optimale avec une grande dimension d’état.

Dans cette thèse, nous exploitons des idées de l’intelligence artificielle et de l’ Optimisation Optimiste
de [106, 105, 39, 38] et nous proposons des algorithmes de Planification Optimiste pour résoudre des
problèmes de commande optimale sous contraintes d’état en affinant l’ensemble des contrôles, au lieu de
discrétiser l’espace d’état, ce qui rend cette approche très intéressante pour de nombreuses applications
où la dimension de contrôle est très faible par rapport à la dimension d’état. En outre, nous établissons
des résultats de convergence de ces algorithmes qui dépendent d’un budget de calcul donné. Finale-
ment, nous étudions des méthodes numériques, basées sur l’apprentissage profond et la programmation
dynamique, pour des problèmes de commande optimale déterministe avec contraintes d’état et pour des
jeux différentiels à somme nulle et à deux joueurs. Une analyse numérique de ces méthodes est effectuée
sur plusieurs exemples dans un espace d’état de grande dimension.

6

Chapter 1

Introduction

The purpose of this thesis is to study differential games under state constraints with the Hamilton-Jacobi
approach and to develop numerical learning methods for solving state-constrained optimal control prob-
lems.

Strictly related with optimization, optimal control is a branch of applied mathematics that has been used
in different engineering areas such as aerospace, energy, chemistry, economy

The main aim of optimal control theory is to affect the evolution of a dynamical system in time in order to
minimize a cost, maximize a gain, reach a final target or to stabilize the system. The time evolution of the
system defines a trajectory governed by means of ordinary differential equations for deterministic optimal
control problems and by stochastic differential equations for stochastic problems. The system trajectory is
directly affected by the controller actions called the admissible control inputs if satisfying some properties.
On the other hand, in many applications, the state space can be restricted which defines some constraints
that should be respected by the trajectory during the system evolution.

A significant interest has been accorded to deterministic optimal control since 1950’s. The first motivation
was for aerospace applications. Later, stochastic optimal control has appeared in 1970’s to study prob-
lems in finance with a pioneer work for the portfolio optimization [102].

Among the main approaches to study optimal control problems, one can find in the literature the Pontrya-
gin Maximum Principle that was introduced in 1956 by Lev Semenovich Pontryagin [28]. This approach
consists in formulating some necessary optimality conditions for the control law. In this work, we will focus
on another approach which is the Dynamic Programming (DP) approach formulated by Richard Bellman
in 1950’s, see [18, 19].

The DP approach considers the optimal value of the optimization problem as a function of the initial condi-
tion which defines the value function. This value function satisfies a specific equation called the Dynamic
Programming Principle (DPP) which decomposes the optimal control problem into simpler subproblems
before solving it in a recursive way. From the DPP and if the value function is smooth enough, it becomes
the solution of a particular nonlinear partial differential equation called the Hamilton-Jacobi-Bellman (HJB)
equation. Nevertheless, even for simple problems, one cannot guarantee the regularity of the value func-
tion which does not allow to characterize it as the solution of an HJB equation in a classical sense. For
this reason, several theories has been appeared to define non-classical notions for solutions of Hamilton-
Jacobi (HJ) equations. In this context, M.G. Crandall and P.L. Lions introduced, in the early 80’s, a weak
sense for HJ solutions, called viscosity solutions, which presents a very suitable framework to study ex-
istence, uniqueness and stability for a wide class of nonlinear Partial Derivatives Equations (PDE’s) that
includes HJ equations, see for instance [83, 84, 86].

On the other hand, many applications can be modeled by optimal control problems while taking into ac-
count some constraints on the system state which adds some difficulties. In particular, the value function

7

may become discontinuous and one cannot guarantee its uniqueness as viscosity solution to the corre-
sponding HJ equation unless some controllability assumptions are satisfied. Among the most popular
controllability assumptions, one can find the inward pointing condition, introduced by Soner in [124, 125],
which states that, at each point of the constraints set boundary, there exists a control variable allowing
the dynamical system to point in the interior of this set. Another controllability assumption, the outward
pointing condition, was formulated in [68, 70]. This assumption imposes that each point belonging to the
constraints set boundary can be hit by a trajectory coming from the interior of this set. Unfortunately,
such assumptions cannot be verified in many cases. Our work here is based on an alternative technique,
introduced in [5], that characterizes the constrained problem through an auxiliary optimal control problem
free of state constraints.

A very important class of optimal control theory is differential games, related also with game theory. In this
context, the evolution of the dynamical system is affected by the actions of more than one player involved
in the game and each player aims to ameliorate his payoff. Henceforth, differential games constitute a
very convenient framework to study problems characterized by conflict situations between several players
having different interests. Differential games theory appeared in 1960’s with a competition between the
U.S.A., with a pioneer work for Isaacs [81], and the Soviet Union, represented by the Pontryagin school
[109]. At that time, the aim was to study military applications and essentially pursuit evasion games, see
[46, 12, 13]. Another motivation for differential games consists in investigating optimal control problems
where the dynamical system is affected by some unknown disturbances [126, 13, 66, 87]. This situation
can be modeled by a game where a real controller tries to counteract to the worst possible behaviors of
the disturbances.

In this work, we are interested in two-person zero-sum differential games where the gain of one player
corresponds certainly to a loss of his opponent. Therefore, one can define for each player its own value
function. On the other hand, there are several frameworks to study differential games depending on the
available information for each player during the course of the game. The static game corresponds to the
case where each player has a complete information about his opponent future choices. In this context,
one cannot guarantee the existence of a value for the game, i.e. equality between the two players value
functions. Moreover, the dynamic programming approach cannot be applied here to characterize and
compute the different value functions. A more interesting framework consists in restricting the available
information for both players during the course of the game. Henceforth, each player has no idea about his
opponent future choices. Nevertheless, an advantage of information can be accorded to only one of the
two players by knowing the past and the current choices of his opponent which defines non-anticipative
strategies introduced in [59, 60, 119, 129, 56]. A more restrictive class of non-anticipative strategies
is delay strategies, see [45, 56]. Games can be studied in another different context, feedback strategies
[49, 126, 16, 58], where one player knows the current state of the system and keep track of its past history.
As for stochastic differential games, there are other information patterns in the literature such as random
strategies, see [43, 44, 9]. Those different information contexts provide a convenient framework to study
differential games with the dynamic programming approach and hence to characterize value functions as
unique viscosity solutions to the appropriate HJ equations. Furthermore, one can find suitable conditions
under which a value of the game exists. The most popular one is the Isaacs’ condition, see [56]. We
refer also to [67, 14] where two-person zero-sum stochastic differential games have been investigated
in the viscoity solutions framework and to [32, 89] for the general theory of more than two players, the
N−players game.

The DP approach is widely used to solve optimal control problems by computing an approximation of the
value function known as the unique viscosity solution of the corresponding HJ equation. The advantage
of such method is to allow to synthesize approximated optimal controls in feedback form which gives
sub-optimal solutions. Moreover, several numerical methods have been proposed to approximate the
solutions of first order HJ equations, derived from deterministic optimal control problems, such as Finite

8

Differences ([51]), semi-Lagrangian ([61, 63]) schemes and Fast Marching methods ([122]). For second
order HJ equations, arisen in the stochastic case, one can cite Markov chain approximations [92] and we
refer also to [14, 91]. One drawback of this class of numerical methods is the strong dependence on the
state dimensionality since computations are done on a time-space grid. For this reason, solving problems
with a dimension grater than 4 or 5 becomes very complex in time and requires huge memory capacities
(curse of dimensionality).

In order to deal with the curse of dimensionality, several alternative numerical methods have been pro-
posed in the literature. The problem can be solved by considering a simplified form which can be obtained
for instance by ignoring some uncertainties in the stochastic case or by reducing the size of the state
space and hence the DP approach will be applied only on a reduced subset of states and the solution
of the problem will be extended by interpolation to the whole state space, see [21]. Another form of sim-
plification consists in domain decomposition techniques for partial differential equations [110]. In [65], an
approximated scheme was proposed to solve Hamilton-Jacobi equations by splitting the original problem
into simpler problems on two sub-domains with a linking condition and by imposing constraints on the
system state. Recently, a state-tree-structure method has appeared in order to approximate the solution
of a dynamic programming equation, see [3, 120]. This approach eliminates the space discretization and
constructs a tree, starting from a given initial state, by adding only the states that will be encountered by a
discrete time dynamics and a finite number of controls. Then, the value function will be computed by the
dynamic programming principle on the constructed tree.

Another class of methods allowing to solve the curse of dimensionality is On-line approaches where the
optimization is done only for the current states that will be encountered during the control process. Among
those methods, one can find Rollout algorithms using heuristic ideas, see [21], and the Model Predictive
Control approach, see [94, 21].

Furthermore, Neural Network Training has been used to approximate the value function, see [21, 22] for
an overview of such approach. In this context, a neural network is a parametric function depending on the
system state and involving some free parameters that will be chosen in such a way to fit the value function,
representing the Target function. This operation, called the training of the neural network, uses a set of
state-value pairs known as the training set. The theoretical justification of this approach comes from the
Kolmogorov-Arnold representation theorem and the universal approximation theorem, see [98, 52, 72, 99].

In this thesis we exploit ideas from artificial intelligence and Optimistic Optimization from [106, 105, 39, 38]
and we propose Optimistic Planning algorithms to solve state-constrained optimal control problems by
refining the set of controls, instead of discretizing the state space, which makes this approach very inter-
esting for many applications where the control dimension is very low compared to the state dimension.
Moreover, we propose a deep learning algorithm exploiting the DP approach to solve optimal control
problems. The latter will be compared to another approach that tries to approximate the solutions of
Hamilton-Jacobi equations.

Recall that the objective of this thesis is to apply the Hamilton-Jacobi approach to investigate state-
constrained differential games and to develop learning numerical methods to solve high-dimensional op-
timal control problems with state constraints. First, we start by introducing in chapter 2 some general
definitions and basic results for two-person zero-sum differential games. The main contribution of this
chapter is to present a reconstruction procedure of optimal strategies and controls for finite-horizon dif-
ferential games. Chapter 3 is devoted to study a differential game with state constraints and maximum
cost function. An auxiliary differential game, free of state constraints, is introduced in order to character-
ize the original problem and to approximate its optimal strategies and controls. Here, controls of the two
players are allowed to be coupled within the dynamics, the state constraints and the cost functions. Then
in chapter 4, we develop optimistic planning algorithms to solve state-constrained optimal control prob-
lems. Moreover, we provide theoretical convergence results of our proposed algorithms. The relevance

9

of our approach will be illustrated even for high-dimensional problems. Finally, in chapter 5 we propose
two different numerical approaches based on deep learning to solve optimal control problems under state
constraints and we compare their performances.

1.1 Differential games

In chapter 2, we start by studying two-person zero-sum differential games in finite time horizon with
cost functional of type Bolza in the context of nonanticipative strategies with delay, based on notes of
P.Cardaliaguet in [45]. Then, we focus on the framework of nonanticipative strategies. In particular, some
regularity properties are verified by the two players value functions. Moreover, each value function verifies
a dynamic programming equation which implies its characterization as the unique viscosity solution of an
appropriate Hamilton-Jacobi-Isaacs equation. Furthermore, we state a comparison result involving the
different value functions defined in the context of delay and nonanticpative strategies. Finally, as we said
before, the main contribution of this chapter is the introduction of a reconstruction procedure of optimal
strategies and controls by means of a discrete time game that converges to the continuous time problem
when the time step goes to zero, see subsection 2.6. This reconstruction procedure will be extended in
chapter 3 to deal with maximum cost functions.

In chapter 3, we consider the following state-constrained differential game:

v(t, x) := inf
α[·]∈Γ

π(t, x;α) (1.1)

with the convention that inf ∅ = +∞, α[·] ∈ Γ is a nonanticipative strategy of the first player and where π
is defined by:

π(t, x;α) :=

 sup
b(·)∈B

{(
max
s∈[t,T]

φ(y
α[b],b
t,x (s))

)∨
ψ(y

α[b],b
t,x (T))

}
, if yα[b],b

t,x (s) ∈ K, ∀s ∈ [t, T], ∀b(·) ∈ B,

+∞, else,

for (t, x) ∈ [0, T] × Rd with T > 0 is the final time, b(·) ∈ B and α[b](·) ∈ A are the actions of the second
and the first players respectively, K is a closed set of Rd representing the set of constraints and yα[b],b

t,x (·)
is the unique absolutely continuous solution of the following dynamical system:{

ẏ(s) = f(s, y(s), α[b](s), b(s)), a.e. s ∈ [t, T],

y(t) = x.
(1.2)

The cost functions φ : Rd → R and ψ : Rd → R and the dynamics f :[0, T]×Rd×A×B → Rd are continuous
functions with A and B are two compact subsets of Rp and Rq respectively, p, q ≥ 1, in which the players
actions take values. Moreover, yα[b],b

t,x (·) which represents the trajectory of the system corresponding to
(α[b](·), b(·)) ∈ A × B, is said to be admissible if it remains in the admissible set K. See section 3.2 for
further definitions and more precise assumptions.

This problem formulation describes the situation where the first player is exploiting his information advan-
tage and trying to find nonanticipative strategies that guarantee the admissibility of trajectories against
any choice of the second player and minimize the cost functional π. This can model the case where a
controller tries to counteract to unknown disturbances which can affect the system and the cost functions.
One can imagine another game example where the second player objective is to maximize the cost π or
to violate the state constraints.

This problem was studied in a particular case, K ≡ Rd, in [121, 15, 116]. It was also considered in the
case of a single-controller in [111] through characterizing the value function epigraph by use of a viability

10

kernel.

In the general case, K 6= Rd, some difficulties appear. The value function v may become discontinu-
ous and its uniqueness as a viscosity solution of an HJ equation requires some additional assumptions
involving the dynamics f and the constraints set K. In the case of single-controller problems, the most
popular assumption, the Inward Pointing Condition, states that at each point of the boundary of K, there
exists a control value that lets the dynamics point in the interior of K. We refer to [34, 104, 124] for this
assumption and to [103, 116, 121] for weaker inward pointing assumptions. Equivalent assumptions for
the case of a two-person game was also given in [46, 23, 24]. Such assumptions cannot be guaranteed
for several control problems. For this reason, we follow the level set approach, introduced in [5] for single-
controller optimal control problems, and we show that, even for state-constrained differential games, the
value function v may be characterized by means of a locally Lipschitz continuous value function of an
auxiliary differential game free of state constraints. Moreover, the auxiliary value function is the unique
viscosity solution of an HJ equation with an obstacle term. Another contribution of this chapter is that
controls of the two players are allowed to be coupled within the dynamics, the state constraints and the
cost functions. Moreover, here we consider weaker assumptions on f , φ and ψ, compared to [5].

First, since K is a closed set it can be characterized via the signed distance dK(·), which is Lipschitz
continuous, in the following form:

∀y ∈ Rd, dK(y) ≤ 0⇔ y ∈ K.

The value function of the auxiliary problem is defined, for t ∈ [0, T] and (x, z) ∈ Rd × R, by:

w(t, x, z) := inf
α[·]∈Γ

sup
b(·)∈B

{(
max
s∈[t,T]

φ̂(y
α[b],b
t,x (s), z)

)∨
ψ̂(y

α[b],b
t,x (T), z)

}
(1.3)

where for (y, z) ∈ Rd × R, the functions φ̂ and ψ̂ are given by:

φ̂(y, z) := (φ(y)− z)
∨
dK(y) and ψ̂(y, z) := ψ(y)− z.

Moreover, the value function w is the unique viscosity solution of the following HJ equation:{
min

(
−∂tw(t, x, z) +H(t, x,Dxw(t, x, z)), w(t, x, z)− φ̂(x, z)

)
= 0, in [0, T [×Rd × R,

w(T, x, z) = φ̂(x, z)
∨
ψ̂(x, z), in Rd × R,

(1.4)

where the Hamiltonian H is given by:

H(t, x, p) := min
b∈B

max
a∈A
− 〈f(t, x, a, b), p〉, for (t, x, p) ∈ [0, T]× Rd × Rd.

Now, by exploiting the level sets of the auxiliary value function w and when some convexity assumption is
verified by f , the value function v can be determined by the following relation:

v(t, x) = inf
{
z ∈ R | w(t, x, z) ≤ 0

}
.

Moreover, we prove that an optimal strategy of the auxiliary problem (1.3), associated to a particular initial
condition, remains also optimal for the constrained problem (1.1). Another contribution of this chapter is
to present a reconstruction procedure to approximate the optimal strategies and controls of both players.
Indeed, we exploit some ideas from [6, 118] about trajectory reconstruction and we propose algorithms to
reconstruct approximated optimal trajectories for the continuous time auxiliary differential game by use of
a discrete time game.

As an illustrative example, we study an aircraft landing problem in the presence of windshear. Indeed,

11

the best strategy to avoid a failed landing, that can occurs because of quick changes of the wind velocity,
is to steer the aircraft to the maximal altitude that can be reached, during an interval of time, in order to
prevent a crash on the ground. In [103, 104], a Chebyshev-type optimal control problem was proposed
and an approximated solution is provided. The Hamilton-Jacobi-Bellman approach was applied in [6] to
solve this problem after supposing the knowledge of the wind velocity fields. In [29], the aircraft landing
problem was formulated as a nonlinear differential game with state constraints and a semi-Lagrangian
scheme was applied to compute an approximation of the value function.

In this work, we propose a 5D differential game model with maximum running cost, where wind distur-
bances are considered as a second player and the first player tries, by use of nonanticipative strategies,
to counteract to some catastrophic scenarios that can occur because of wind disturbances.

1.2 Numerical learning methods for optimal control problems

In chapters 4 and 5, we exploit ideas from reinforcement and deep learning and we propose two different
approaches to solve state-constrained optimal control problems. The common aim of those numerical
methods is to be able to solve problems with high state dimension.

For a fixed time horizon T > 0, a non empty and closed set K ⊂ Rd, d ≥ 1, representing the state
constraints set, and a compact subset A of Rq, q ≥ 1, consider the following constrained optimal control
problem:

v(t, x) := inf
a(·)∈A

{∫ T

t
`(yat,x(s), a(s))ds+ Φ(yat,x(T)) | yat,x(s) ∈ K, ∀s ∈ [t, T]

}
. (1.5)

for (t, x) ∈ [0, T] × Rd, where A is the set of measurable function a(·) : [0, T] → A and yat,x(·) is the
continuous solution of the following dynamical system{

ẏ(s) = f(y(s), a(s)) a.e. s ∈ [t, T],

y(t) = x.
(1.6)

The functions f , ` and Φ are continuous, see chapters 4 and 5 for the convenient assumptions.

It is known that when the problem is free of state constraints, K = Rd, the value function v is Lipschitz
continuous and can be characterized as the unique viscosity solution of the following HJ equation:−∂tv(t, x) + max

a∈A

{
− 〈f(x, a), Dxv(t, x)〉 − `(x, a)

}
= 0 on [0, T [×Rd,

v(T, x) = Φ(x) on Rd.

This characterization provides a convenient framework for computing approximations of the value function
v that allow to synthesize approximated optimal controls in feedback form and hence to obtain sub-optimal
solutions. Nevertheless, the most popular numerical schemes for solving HJ equations (semi-Lagrangian,
finite differences...) suffer from the curse of dimensionality since it approximate the solution on a grid
(time and space) which reduces the ability of solving problems in high state dimension. Another diffi-
culty is added in presence of state constraints, K 6= Rd. In fact, v may become discontinuous and the
above characterization (via HJ equations) is no longer valid, unless some controllability assumptions are
satisfied. For this reason, we follow again the level set approach, introduced in [5], which consists in char-
acterizing the constrained problem through an auxiliary optimal control problem free of state constraints
whose value function is Lipschitz continuous and can be characterized as the unique viscosity solution of
an HJ equation.
First, since the set of constraints K is a closed subset of Rd, there exists a Lipschitz continuous function g
characterizing K in the following form:

∀y ∈ Rd, g(y) ≤ 0 ⇐⇒ y ∈ K.

12

The value function of the auxiliary control problem associated to the constrained problem (1.5) is defined,
for (t, x, z) ∈ [0, T]× Rd × R, by:

w(t, x, z) := inf
a(·)∈A

{(∫ T

t
`(yat,x(s), a(s))ds+ Φ(yat,x(T))− z

)∨(
max
s∈[t,T]

g(yat,x(s))
)}
. (1.7)

From [5], we already know that, under a convexity assumption on f , v can be characterized as follows:

v(t, x) = inf{z ∈ R | w(t, x, z) ≤ 0}.

Moreover, an optimal solution of problem (1.7), for a particular value of the auxiliary variable z, coincides
with an optimal solution for problem (1.5).

Exploiting this characterization, we shall compute an approximation of the auxiliary value function. Al-
though w can be characterized through HJ equations, its approximation by solving numerically the corre-
sponding HJ equation may seem unreasonable for problems with high state dimension. Indeed, the state
vector of the auxiliary problem is increased by one more variable (the auxiliary variable z), compared to
the state of the original problem, and it is known that classical numerical methods for solving HJ equations
are grid-dependent which makes those approaches applicable only for problems where the dimension of
the state variable is low. For this reason, we are looking for numerical methods to approximate w while
avoiding or reducing the direct dependence between the state dimensionality and the resolution complex-
ity.

For sake of simplicity, the initial time t is set to t = 0. Consider a uniform partition of [0, T], s0 = 0, ..., sk =
kh, ..., sN = T , N ∈ N∗, with time steps size h := T

N . Moreover, let ρh be an instantaneous cost that
approximates the integral of ` over a time sub-interval [sk, sk+1] and (yak)k be the discrete trajectory asso-
ciated to (1.6) and corresponding to a discrete control sequence (ak)k ∈ AN .

1.2.1 Optimistic planning approach

In chapter 4, we propose optimistic planning algorithms that refine the set of controls instead of discretizing
the state space. This approach is very interesting especially for many applications where the control
dimension is very low compared to the state dimension.

The discrete auxiliary control problem, free of state constraints, is defined as follows:

W (x, z) := inf
(ak)k∈AN

J(x, z, a),

where the cost functional J is given by:

J(x, z, a) =
(N−1∑
k=0

ρh(yak , ak) + Φ(yaN)− z
)∨(

max
0≤k≤N

g(yak)
)
.

It is worth to mention that W (x, z) converges to w(0, x, z), over compact subsets of Rd × R, as N → +∞
(i.e. h→ 0), see [11, 64].

Optimistic planning algorithms are based on the principles of optimistic optimisation (see [56]). This ap-
proach requires the Lipschitz continuity of J with respect to the control sequence. In order to approximate
W (x, z), we will refine iteratively the search space, AN , in an optimistic way into smaller subsets and for
each subset, we attribute a control sequence and hence a value of the objective function J .

Our first two algorithms are an adaptation of the algorithms presented in [39, 38, 35, 75, 76] to our case
in finite time horizon and with maximum cost. The first method, Optimistic Planning, refines optimistically
the subsets minimizing a lower bound on the auxiliary value function W (x, z). However, the Simultaneous

13

Optimistic Planning algorithm discovers simultaneously several subsets of the search space character-
ized by minimal values of the objective function J . Furthermore, we prove convergence results for those
algorithms in a similar way to [39].

Finally, we propose a third algorithm, Simultaneous Optimistic Planning with Multiple Steps, which is de-
signed by combining both the optimistic planning approach with ideas from the MPC (Model Predictive
Control). Indeed, at each time step k = 0, ..., N − 1, this algorithm picks the first value of the near opti-
mal control sequence, obtained by minimization of the objective function over control sequences of length
N−k, in order to simulate the next state system. This procedure ameliorates the precision of the algorithm
and reduces significantly the computational time compared to the previous methods.

In order to show the relevance of our proposed approach, we illustrate with several numerical applications.
First, we consider the Zermelo problem where a boat tries to reach a circular target at the final time T with
minimal fuel consumption. We consider also two rectangular obstacles in the navigation domain that the
boat should avoid. Then, we study the optimal control of the heat equation in order to show the relevance
of our approach in higher dimensions, the dimension here is d = 103 . Our aim is to minimize, by using
a control input, the temperature in a given domain which is the solution of a partial derivatives equation.
Furthermore, we add some constraints to this example where we impose that the solution should remain
above the initial solution multiplied by some non-negative parameter. Finally, we consider an abort land-
ing problem where the aim is to steer an aircraft to the maximum altitude that can be reached during an
interval of time in the presence of the wind velocities for which we assume having an explicit model, see
[6, 33, 34].

On the other hand, we give in chapter 6 some ideas about how to extend the optimistic planning approach
in order to deal with two-person zero-sum differential games under constraints on the system state.

1.2.2 Deep learning numerical methods for dynamic programming

We propose two deep learning approaches to approximate the auxiliary value function w. The first one is
based on the dynamic programming principle while the second method tries to approximate the solutions
of HJ equations.

Deep neural networks have shown to be relevant in approximating a large class of complex non linear
functions on finite dimensional space. This relevance can be theoretically justified by the Kolmogorov-
Arnold representation theorem and the universal approximation theorem, see [98, 52, 72, 99].

It is known that the value function of an optimal control problem, under suitable assumptions, is the
solution of a dynamic programming equation. In this context, one can discretize in time and then try to
approximate the value function, at each time step, by neural networks after its learning on a training grid
with reduced size, see [21]. For instance, the Hyprid-Now Algorithm, introduced in [78, 10, 77], estimates
first the optimal policy by neural networks then this estimated policy is injected in a backward process to
approximate the discrete value function. This approach is very interesting especially when the optimal
policy is regular. In this chapter, we propose to adapt this algorithm to deterministic control problems for
which the optimal control is not always regular enough. To this end, we will try to approximate only the
value function by using neural networks and by exploiting the dynamic programming principle. Moreover,
we extend this approach to deal with constraints on the system state.

On the other hand, DNN have been successfully used to solve some nonlinear partial differential equations
(PDE) derived from physics and mathematics, see [115, 114, 113, 112, 71, 128]. Indeed, the solution
of the PDE can be directly approximated by neural networks that will be learned, on a reduced training
domain, in order to satisfy the boundary conditions and the given equation law. In this context, we propose
to approximate the value function, solution of some HJ equation, by use of spatio-temporal neural networks
while computing its derivatives by means of automatic differentiation, see [17].

14

A first-order approximation of the auxiliary value function w at time sk, for k = 0, ..., N , can be given by:

Wk(x, z) = min
(ai)i∈AN−k

{(N−1∑
i=k

ρh(yai , ai) + Φ(yaN)− z
)∨(

max
k≤i≤N

g(yai)
)}
.

In fact, (Wk)
N
k=0 is the unique solution of the following discrete dynamic programming equation:WN (x, z) = (Φ(x)− z)

∨
g(x),

Wk(x, z) = min
a∈A

{
Wk+1(F̂h(x̂, a))

∨
g(x)

}
, for k = N − 1, ..., 1, 0,

where F̂h is a discrete approximation of the augmented dynamics f̂(x, a) :=

(
f(x, a)
−`(x, a)

)
.

By backward induction and by using Ŵk+1, an approximation of Wk+1 for k = 0, ..., N −1, we first compute
Ŵk on a generated training grid. Then, the latter approximation, computed on a reduced domain, will be
used as an input data to extend Ŵk, by use of neural networks and stochastic optimization, to the whole
computational domain which defines an approximation of Wk. This approach will be compared to another
one that consists in approximating w, at any time instant t ∈ [0, T], by training neural networks, on a
reduced domain, in order to satisfy the following HJ equation whose unique solution is w:{

min
(
− ∂tw(t, x̂) +H(x,Dx̂w(t, x̂)), w(t, x̂)− g(x)

)
= 0, on [0, T [×Rd+1,

w(T, x̂) = (Φ(x)− z)
∨
g(x), on Rd+1,

for x̂ := (x, z) ∈ Rd × R and where H is the Hamiltonian function given by:

H(x, p) = max
a∈A

{
− 〈f̂(x, a), p〉

}
, ∀(x, p) ∈ Rd × Rd+1.

Furthermore, both approaches can be extended to handle state-constrained two-person zero-sum differ-
ential games.

15

Chapter 2

Unconstrained Finite Horizon Differential
Games

2.1 Introduction

This chapter is devoted to recall some definitions about differential games theory and basic results con-
cerning the application of the Hamilton-Jacobi approach to solve differential games.

Differential games theory can be seen as an intersection of game theory, where more than one player are
involved, and of optimal control theory, as each player looks for the best possible decisions to influence
the evolution of a dynamical system in such a way to ameliorate his payoff. On the other hand, differential
games are considered as a convenient framework to investigate conflict situations for dynamical systems
controlled by several agents while having different interests.

The first main motivation of differential games is to model conflict situations between two players hav-
ing opposite interests. The most popular application concerns the study of pursuit-evasion games, see
[46, 12, 13]. Another very useful motivation is the analysis of a controlled system with some unknown
disturbances [126, 13, 66, 87]. It is known that the most widely used approach for solving such problems
is to establish a statistical model for disturbances and to optimize the expected value of the objective
function. Nevertheless, optimizing the expected value does not guarantee a good performance of the
system against some dangerous behaviours of the disturbances. Moreover, it is not always possible to
find an efficient statistical model for disturbances. Henceforth, this problem can be modeled by a game
where a real controller, representing the first player, tries to counteract to the worst possible actions of the
disturbances, considered as a second player of the game.

In this chapter, we are interested in two-person zero-sum differential games without state constraints, with
finite time horizon and where the objective function is of type Bolza. The first player, by choosing a control
input a(·) ∈ A, tries to minimize an objective function J(t, x, a, b), where x is the initial position of the sys-
tem at the first time instant t ∈ [0, T] for T > 0 and b(·) ∈ B is the second player decision. A and B denote
respectively the actions sets of the first and the second players. Conversely, −J(t, x, a, b) corresponds to
the cost that the second player should pay. In other words, the loss of one player coincides with the gain
of his opponent.

According to the classical game theory, both players should optimize over A and B which defines a static
game with a lower and an upper value functions defined by:

v−s (t, x) := sup
b(·)∈B

inf
a(·)∈A

J(t, x, a, b) ≤ v+
s (t, x) := inf

a(·)∈A
sup
b(·)∈B

J(t, x, a, b)

It is worth mentioning that the lower value function v−s describes the case where the second player chooses
his action b(·) ∈ B based on the knowledge of the first player future decisions. Conversely, from the def-

16

inition of v+
s , the first player has a complete information about his opponent future choice. On the other

hand, the dynamic programming approach cannot be applied to compute the value functions v−s and v+
s .

Moreover, one cannot guarantee the existence of a value for the game in this context, i.e. equality be-
tween the lower and the upper value functions.

A more interesting setting for differential games is to restrict the available information for both players
during the course of the game which can be modeled by the notion of game strategies where each
player has no idea about his opponent future choices. This information pattern allow us to investigate
differential games by means of the dynamic programming approach and hence the Hamilton-Jacobi ap-
proach. Moreover, under some suitable assumptions, one can prove the existence of a value for the
game. Among the most popular strategies in the literature, we cite nonanticipative strategies, introduced
in [59, 60, 119, 129, 56], where only one of the two players knows the past and current choices of his op-
ponent without any idea about his future decisions. A particular type of non-anticipative strategies is delay
strategies, see [45, 56]. Some practical examples cannot be described by the notion of non-anticipative
strategies. To this end, the game can be studied in another context: feedback strategies. In this case,
one player knows the current state of the system and keep track of its past history, see [49, 126, 16, 58].
Another example of information pattern is the random strategies where each player has a part of the infor-
mation concerning the objective function to optimize. The latter class of strategies was introduced to deal
with differential games with incomplete information, see [43, 44, 9].

In this chapter, we will start by giving some basic results established for differential games in the context
of delay strategies. Then, we will move to a more general information pattern which is nonanticipative
strategies.

The main question now is how to characterize the players’ value functions of a differential game. In 1950’s,
Isaacs observed, for the first time, that if the value function of a differential game is sufficiently regular,
then it is solution to some non-linear first order PDE called the Hamilton-Jacobi-Isaacs (HJI) equation,
see [82]. However, for many examples, the value function is not smooth enough to be a PDE solution in
a classical sense. Later in 1980’s, M. G. Crandall and P.L. Lions have introduced the theory of viscosity
which gives a weaker sense for a solution of an Hamilton-Jacobi equation [50]. Not only that but they have
also proved, under suitable conditions, the uniqueness of such solutions. Then, it was shown in [60], that
a differential game value function, defined via nonanticipative strategies, is the unique viscosity solution
of an appropriate Hamilton-Jacobi-Isaacs equation. An adaptation of those results for the infinite horizon
can be found for instance in [11, Chapter VIII]. On the other hand, the fundamental tool to characterize a
value function as a viscosity solution of an HJ equation is the dynamic programming approach introduced
in [18, 20, 19].

The main contribution of this chapter is to extend the results concerning the approximation of optimal
strategies and controls for both players, presented in [11, Chapter VIII] for infinite horizon problems, to
our case with finite time horizon. Indeed, we construct a specific approximation of the value function veri-
fying a discrete dynamic programming principle and corresponding to the value function of some discrete
time game. Then, we show the existence of optimal strategies and controls for this discrete time game that
will be used later to compute approximated optimal strategies and control for the continuous time game.

This chapter is organized as follows. After presenting in section 2.2 the main definitions and hypothesis
that will be used along this chapter, we study in section 2.3 differential games in the context of nonantic-
pative strategies with delay. First, the different value functions are defined and some regularity proprieties
satisfied by those functions are presented. Then, we show how to characterize them as semi-viscosity
solutions of the appropriate Hamilton-Jacobi-Isaacs equations. In addition to that, we introduce a com-
parison principle result to compare sub and super-solutions of Hamilton-Jacobi equations in the viscosity
sense. In section 2.4, we consider differential games in another context: nonanticpative strategies. First,
we define the value functions corresponding to the finite time horizon. Furthermore, we characterize those
value functions as the unique viscosity solutions of the appropriate Hamilton-Jacobi-Isaacs equations. In

17

addition to that, we present a feedback reconstruction procedure based on the knowledge of an approx-
imation of the value function. Finally, we propose a game example for which one can compute optimal
strategies and controls and get explicit expressions of both value functions. In order to conclude this
chapter, section 2.5 gives a comparison result between all the value functions introduced in sections 2.3
and 2.4.

2.2 Definitions and hypothesis

Let T > 0 be the finite time horizon and A and B be two compacts sets of Rp and Rq (p, q ≥ 1) in which
actions of the first and the second players take values respectively. The set of admissible control functions
of the first player, A, can be defined as follows:

A := {a(·) : [0, T]→ A, measurable}.

In a similar way, the set of admissible controls of the second player is given by:

B := {b(·) : [0, T]→ B, measurable}.

In the literature, there exist different notions of game strategies. One can mention nonanticipative and
delay strategies [59, 60, 119, 129, 56, 45], feedback strategies [49, 126, 16, 58] for deterministic differential
games and random strategies for differential games with incomplete information, see [43, 44, 9]. In this
chapter, we will focus on delay and nonanticipative strategies.

Definition 2.2.1 (Nonanticipative strategies). A nonanticipative (or casual) strategy for the first player is
a map α[·] : B → A, s.t. for any t ≤ T and b(·), b′(·) ∈ B, if b(s) = b′(s) for almost every s ≤ t, then
α[b](·) = α[b′](·) almost everywhere in [0, t].

A nonanticipative strategy for the second player is defined in a symmetric way. We denote by Γ (resp. ∆)
the set of nonanticipative strategies of the first player (resp. second player).

In other words, the player using nonanticipative strategies takes his control decision at each time instant
with the knowledge of the past and current choices of his opponent and without any idea about his future
decisions.

Now, we define delay strategies which constitute a restrictive type of nonanticipative strategies.

Definition 2.2.2 (Delay strategies). A map α[·] : B → A is a delay strategy (nonanticipative strategy with
delay) for the first player if there is a delay τα > 0 such that for any two controls b(·), b′(·) ∈ B, and any
t ≥ 0, if b(·) = b′(·) almost everywhere in [0, t], then α[b](·) = α[b′](·) almost everywhere in [0, (t+ τα)

∧
T].

A delay strategy for the second player is defined in a symmetric way. We denote by Γd (resp. ∆d) the set
of delay strategies for the first player (resp. second player).

Remark 2.2.3. The last definition implies that if α[·] is a delay strategy, α[b](·) does not depend on b(·)
on the interval [0, τα

∧
T]. Indeed, for any b(·), b′(·) ∈ B, b(·) = b′(·) almost everywhere at 0. Therefore,

α[b](·) = α[b′](·) almost everywhere in [0, τα
∧
T].

The following remark comes from the definitions of delay and nonanticipative strategies and will be
useful later.

Remark 2.2.4. Delay strategies are nonanticipative strategies i.e. Γd ⊂ Γ and ∆d ⊂ ∆.

18

In all the control problems that will be studied in this chapter, consider a dynamic f , a distributed cost
` and a final cost Ψ satisfying the following assumptions:

(H2.1) The dynamics f : [0, T]×Rd ×Rp ×Rq → Rd is a continuous function and there exits L1 > 0, such
that for any t, s ∈ [0, T], for any x, y ∈ Rd and for any (a, b) ∈ A×B:

‖f(t, x, a, b)− f(s, y, a, b)‖ ≤ L1(|t− s|+ ‖x− y‖).

(H2.2) The distributed cost ` : [0, T]× Rd × Rp × Rq → R is a continuous function and there exits L2 > 0,
such that for any t, s ∈ [0, T], for any x, y ∈ Rd and for any (a, b) ∈ A×B:

|`(t, x, a, b)− `(s, y, a, b)| ≤ L2(|t− s|+ ‖x− y‖).

(H2.3) The final cost Ψ : Rd → R is a Lipschitz continuous function with Lipschitz constant L3 > 0.

Consider the following nonlinear dynamical system:{
ẏ(s) = f(s, y(s), a(s), b(s)), a.e. s ∈ [t, T],

y(t) = x,
(2.1)

where x ∈ Rd is the initial system state and (a(·), b(·)) ∈ A× B are the actions of the first and the second
players respectively. The corresponding absolutely continuous solution of (2.1) is denoted by ya,bt,x(·) and
represents the system trajectory.

Finally, let J be the cost functional, of type Bolza, that the first player wants to minimize and the second
player wants to maximize:

J(t, x, a, b) =

∫ T

t
`(s, ya,bt,x(s), a(s), b(s))ds+ Ψ(ya,bt,x(T)) (2.2)

for (t, x) ∈ [0, T]× Rd and (a(·), b(·)) ∈ A× B.

2.3 Unconstrained problem with delay strategies

2.3.1 Problem formulation

We start by presenting the most important property of delay strategies which allows us to put the game in
the so-called normal form. This result corresponds to [45, Lemma 2.3].

Lemma 2.3.1. Let (α[·], β[·]) ∈ Γ ×∆ be two nonanticipative strategies. Assume that either α[·] or β[·] is
a delay strategy. Then there is a unique pair of controls (a(·), b(·)) ∈ A× B such that

a(·) = α[b](·) and b(·) = β[a](·) almost everywhere on [0, T]. (2.3)

Proof. Without loss of generality, consider a delay strategy of the first player α[·] ∈ Γd, with a delay τα > 0,
and a nonanticipative strategy of the second player β[·] ∈ ∆.

We claim that for any integer k ≥ 1, there exists a unique pair of measurable maps (ak(·), bk(·)) : [0, kτα]→
A×B s.t. α[bk](·) = ak(·) and β[ak](·) = bk(·) on [0, kτα]. We will prove this claim by induction.

For k = 1, let’s pick a control b(·) ∈ B and set a1(·) = α[b](·) ∈ A. Then let b1(·) = β[a1](·). From remark
2.2.3 and since α[·] is a delay strategy, the restriction of α[b](·) to [0, τα] is independent of b(·). Hence,
α[b1](·) = α[b](·) = a1(·) on [0, τα]. Therefore the claim holds for k = 1.

19

Suppose now that the claim is true for any k ≥ 1 and let’s prove it for k + 1.

There is a unique pair (ak(·), bk(·)) : [0, kτα] → A × B s.t. α[bk](·) = ak(·) and β[ak](·) = bk(·) on
[0, kτα]. We extend ak(·) and bk(·) to arbitrary controls on [0, T]. For this, we set ak+1(·) = α[bk](·)
and bk+1(·) = β[ak+1](·). Then from this construction, ak+1(·) = ak(·) a.e. on [0, kτα]. Since β[·] is a
nonanticipative strategy, we get bk(·) = β[ak](·) = β[ak+1](·) = bk+1(·) a.e. on [0, kτα]. Now since α[·] is a
delay strategy with delay τα, then ak+1(·) = α[bk](·) = α[bk+1](·) a.e. on [0, (k + 1)τα]. This completes the
proof of the claim by induction.

Thanks to the above Lemma, the cost functional J defined in (2.2) can be extended to any couple of
delay strategies (α[·], β[·]) ∈ Γd ×∆d as follows:

J(t, x, α, β) = J(t, x, a, b),

where (a(·), b(·)) ∈ A× B is the unique pair defined in Lemma 2.3.1.

Now, we can define the lower and the upper values of the game in the context of delay strategies.

Definition 2.3.2. The upper value function is given by:

v+(t, x) := inf
α[·]∈Γd

sup
β[·]∈∆d

J(t, x, α, β), (2.4)

while the lower value is defined by:

v−(t, x) := sup
β[·]∈∆d

inf
α[·]∈Γd

J(t, x, α, β). (2.5)

Remark 2.3.3. From Definition 2.3.2, we can already compare the value functions v+ and v−. The follow-
ing inequality is always true : v− ≤ v+.

Thanks again to Lemma 2.3.1, the value functions v+ and v− can be expressed differently.

Lemma 2.3.4 (Equivalent definitions of the value functions). We have:

v+(t, x) := inf
α[·]∈Γd

sup
b(·)∈B

J(t, x, α[b], b), (2.6)

and
v−(t, x) := sup

β[·]∈∆d

inf
a(·)∈A

J(t, x, a, β[a]). (2.7)

Proof. We will prove the first equality for v+, the second equality can be obtained by the same arguments.

Let α0[·] ∈ Γd and consider a constant delay strategy of the second player β0[·] ∈ ∆d such that, for any
b(·) ∈ B, β0[b](·) = b0(·) for some fixed b0(·) ∈ B. By Lemma 2.3.1, we have:

J(t, x, α0, b0) = J(t, x, α0[b0], b0).

Since the controls in B can be considered as constant strategies of the second player, i.e. B ⊂ ∆d, we get
for any α[·] ∈ Γd

sup
b(·)∈B

J(t, x, α, b) ≤ sup
β[·]∈∆d

J(t, x, α, β),

henceforth
inf

α[·]∈Γd
sup
b(·)∈B

J(t, x, α[b], b) ≤ v+(t, x).

20

By Lemma 2.3.1, for any (α[·], β[·]) ∈ Γd ×∆d, there is a unique pair of controls (a(·), b(·)) ∈ A × B such
that (2.3) holds. Then

J(t, x, α, β) = J(t, x, α[b], b) ≤ sup
b′(·)∈B

J(t, x, α[b′], b′).

Therefore
sup

β[·]∈∆d

J(t, x, α, β) ≤ sup
b′(·)∈B

J(t, x, α[b′], b′).

Taking the infimum over α[·] ∈ Γd in the last inequality completes the proof.

Remark 2.3.5. Notice that
− v−(t, x) = inf

β∈∆d

sup
a∈A
− J(t, x, a, β[a]),

which means that the value function (−v−) can be seen as an upper value of a game with running cost −`,
terminal payoff −Ψ, and where the first player is the maximizer while the second player is the minimizer.
Henceforth, any result verified by v+ can be directly deduced for (−v−) and hence for v−.

2.3.2 Some properties of value functions

In this subsection, we discuss and prove some properties verified by the value functions. Thanks to
remark 2.3.5, we give the proofs only for the upper value function v+. The proofs for v− can be obtained
by similar arguments.

We start by the following dynamic programming principle which holds for v+.

Theorem 2.3.6. Assume (H2.1), (H2.2) and (H2.3). For any h ∈ [0, T − t], we have:

v+(t, x) = inf
α[·]∈Γd

sup
b(·)∈B

{∫ t+h

t
`(s, y

α[b],b
t,x (s), α[b](s), b(s))ds+ v+(t+ h, y

α[b],b
t,x (t+ h))

}
. (2.8)

Theorem 2.3.6 is a classical result and we refer to [45, Theorem 3.4] for its proof.

Now, we cite the following result concerning the regularity of the value functions.

Proposition 2.3.7. The value functions v+ and v− are Lipschitz continuous on [0, T]×Ω for any compact
set Ω ⊂ Rd.

In order to prove Proposition 2.3.7, we will use the following result:

Lemma 2.3.8. Let U and V be two arbitrary sets and let g, h : U × V → R be two maps. Assume that
there is a real constant k ≥ 0 such that

sup
u∈U,v∈V

|g(u, v)− h(u, v)| ≤ k.

Therefore
| inf
u∈U

sup
v∈V

g(u, v)− inf
u∈U

sup
v∈V

h(u, v)| ≤ k,

as soon as the inf-sup of g or h is finite.

The proof of Lemma 2.3.8 is not complicated and can be found in [45].

21

Proof. We start by proving that v+ is Lipschitz continuous w.r.t. the x variable uniformly in the time variable.
To this end, let (t, x1, x2) ∈ [0, T] × Rd × Rd and (a(·), b(·)) ∈ A × B be fixed. We set y1(·) := ya,bt,x1

(·) and
y2(·) := ya,bt,x2

(·). Since f is Lipschitz continuous, Gronwall’s Lemma implies that for any s ∈ [t, T]:

‖y1(s)− y2(s)‖ ≤ eL1(s−t)‖x1 − x2‖.

By using the Lipschitz continuity of ` and Ψ and the Gronwall’s Lemma, we get:

|J(t, x1, a, b)− J(t, x2, a, b)| ≤
∫ T

t
|`(s, y1(s), a(s), b(s))− `(s, y2(s), a(s), b(s))|ds

+ |Ψ(y1(T))−Ψ(y2(T))|

≤ L2

∫ T

t
‖y1(s)− y2(s)‖ds+ L3‖y1(T)− y2(T)‖

≤ C‖x1 − x2‖,

where the real constant C > 0 depends only on L1, L2, L3 and T .

The above inequality holds for any pair of controls (a(·), b(·)) ∈ A× B. From Lemma 2.3.1, we get for any
(α[·], β[·]) ∈ Γd ×∆d:

|J(t, x1, α, β)− J(t, x2, α, β)| ≤ C‖x1 − x2‖,

henceforth
sup

(α[·],β[·])∈Γd×∆d

|J(t, x1, α, β)− J(t, x2, α, β)| ≤ C‖x1 − x2‖,

and finally by using Lemma 2.3.8, we get the Lipschitz continuity with respect to the space variable.

Now let (t, t′, x) ∈ [0, T]× [0, T]×Rd be fixed and without loss of generality assume that t′ > t. We fix also
ε > 0, there exists αε[·] ∈ Γ and bε(·) ∈ B such that:

v+(t, x) ≥ sup
b(·)∈B

{∫ T

t
`(s, y

αε[b],b
t,x (s), αε[b](s), b(s))ds+ Ψ(y

αε[b],b
t,x (T))

}
− ε

≥
∫ T

t
`(s, y

αε[bε],bε
t,x (s), αε[bε](s), bε(s))ds+ Ψ(y

αε[bε],bε
t,x (T))

}
− ε,

and

v+(t′, x) ≤ sup
b(·)∈B

{∫ T

t′
`(s, y

αε[b],b
t′,x (s), αε[b](s), b(s))ds+ Ψ(y

αε[b],b
t′,x (T))

}
≤
∫ T

t′
`(s, y

αε[bε],bε
t′,x (s), αε[bε](s), bε(s))ds+ Ψ(y

αε[bε],bε
t′,x (T))

}
+ ε.

From the two above inequalities, we deduce that:

v+(t′, x)− v+(t, x) ≤ 2ε+

∫ t′

t
|`(s, yαε[bε],bεt,x (s), αε[bε](s), bε(s))|ds

+

∫ T

t′
|`(s, yαε[bε],bεt′,x (s), αε[bε](s), bε(s))− `(s, yαε[bε],bεt,x (s), αε[bε](s), bε(s))|ds

+ |Ψ(y
αε[bε],bε
t′,x (T))−Ψ(y

αε[bε],bε
t,x (T))|.

22

Moreover, the trajectory yαε[bε],bεt,x (·) coincides with yαε[bε],bεt′,x′ (·) for s ≥ t′ where x′ := y
αε[bε],bε
t,x (t′). Henceforth,

the last inequality becomes:

v+(t′, x)− v+(t, x) ≤ 2ε+M |t′ − t|+ L2

∫ T

t′
‖yαε[bε],bεt′,x (s)− yαε[bε],bεt′,x′ (s)‖ds

+ L3‖yαε[bε],bεt′,x (T)− yαε[bε],bεt′,x′ (T)‖,

where M is an upper bound of s 7→ `(s, y
αε[bε],bε
t,x (s), αε[bε](s), bε(s)), for s ∈ [t, t′].

Since f is Lipschitz continuous and by using Gronwall’s Lemma, there exist C1 > 0 and C2 > 0 such that:

‖yαε[bε],bεt′,x (s)− yαε[bε],bεt′,x′ (s)‖ ≤ C1‖x− x′‖, ∀s ∈ [t, t′] and ‖x− x′‖ ≤ C2|t′ − t|.

More precisely, the exact expressions of C1 and C2 are given by:

C1 := eL1T and C2 := eL1T (L1‖x‖+ Cf),

where Cf := max
{
‖f(s, 0, a, b)‖ for (s, a, b) ∈ [0, T]×A×B

}
.

Combining the above inequalities implies the existence of C3 > 0, depending on M , L2, L3, C1 and C2,
such that:

v+(t′, x)− v+(t, x) ≤ 2ε+ C3|t′ − t|.

In a similar way, one can prove that:

v+(t, x)− v+(t′, x) ≤ 2ε+ C3|t′ − t|,

which ends the proof since ε is chosen arbitrarily.

2.3.3 Characterization of value functions

For this game, one can define the two following Hamilton-Jacobi-Isaacs equations:{
−∂tV +H−(t, x,DxV) = 0, t ∈ [0, T [, x ∈ Rd

V (T, x) = Ψ(x), x ∈ Rd,
(2.9)

where the hamiltonian H− is given by:

H−(t, x, p) := max
a∈A

min
b∈B

{
− 〈f(t, x, a, b), p〉 − `(t, x, a, b)

}
, (2.10)

and {
−∂tV +H+(t, x,DxV) = 0, t ∈ [0, T [, x ∈ Rd

V (T, x) = Ψ(x), x ∈ Rd,
(2.11)

where H+ is defined by:

H+(t, x, p) := min
b∈B

max
a∈A

{
− 〈f(t, x, a, b), p〉 − `(t, x, a, b)

}
. (2.12)

The following Lemma gives a half-characterization of the value functions v+ and v−. Its proof can be found
in [45, Lemma 3.15]

23

Lemma 2.3.9 (Viscosity solutions). Assume (H2.1), (H2.2) and (H2.3). The upper value v+ is a viscosity
sub-solution of (2.9), while the lower value v− is a super-solution of (2.11).

Now we present a comparison principle result which gives an order between a sub-solution and a
super-solution of an Hamilton-Jacobi equation. Consider the following HJ equation:{

−∂tV +H(t, x,DxV) = 0, t ∈ [0, T [, x ∈ Rd

V (T, x) = g(x), x ∈ Rd
(2.13)

where g is a given continuous function and the hamiltonian H:[0, T]×Rd×Rd → R is a continuous function
satisfying the following Lipschitz properties:

‖H(t2, x2, p)−H(t1, x1, p)‖ ≤ C(1 + ‖p‖)(|t2 − t1|+ ‖x2 − x1‖) (2.14)

and
‖H(t, x, p2)−H(t, x, p1)‖ ≤ C‖p2 − p1‖ (2.15)

for any t1, t2 ∈ [0, T], x1, x2, p1, p2 ∈ Rd and where C > 0.

Theorem 2.3.10 (Comparison principle). Under assumptions (2.14) and (2.15), let V1 be an u.s.c. sub-
solution of (2.13) and let V2 be a l.s.c. super-solution of the same HJ equation. Assume that V1(T, x) ≤
V2(T, x) for any x ∈ Rd, then

V1(t, x) ≤ V2(t, x), ∀(t, x) ∈ [0, T]× Rd.

In order to prove Theorem 2.3.10, we will need the following result from [45]. We postpone its proof to
the end of the proof of Theorem 2.3.10.

Lemma 2.3.11. Assume that H is continuous and satisfies (2.15). If u is an u.s.c function and a sub-
solution of (2.13) on [0, T] × Rd (resp. is a l.s.c. function and a super-solution of (2.13) on [0, T] × Rd),
then for any (t0, x0) ∈ [0, T [×Rd, u is also a sub-solution (resp. super-solution) in the cone

Ct0,x0 :=
{

(t, x) ∈ [t0, T]× Rd, ‖x− x0‖ ≤ C(t− t0)
}
.

In other words, if a function φ of class C1 such that u − φ is maximal (resp. minimal) on Ct0,x0 at some
point (t, x) with t < T , then

−∂tφ(t, x) +H(t, x,Dxφ(t, x)) ≤ 0, (resp. ≥ 0).

The aim of Lemma 2.3.11 is to restrict V1 and V2 to bounded domains while preserving the property of
being sub and super-solution of (2.13). In other words, this lemma claims that a solution on a set is also
a solution on a bounded subset of that set.

Proof. Now, we can start the proof of Theorem 2.3.10. We claim that:

for any σ > 0, ∀(t, x) ∈ [0, T]× Rd, V1(t, x)− V2(t, x)− σ(T − t) ≤ 0. (2.16)

The claim (2.16) can be shown by contradiction. Hence, suppose that there exists σ0 > 0 and (t0, x0) ∈
[0, T [×Rd such that

M := sup
(t,x)∈Ct0,x0

V1(t, x)− V2(t, x)− σ0(T − t) ≥ V1(t0, x0)− V2(t0, x0)− σ0(T − t0) > 0.

Now, we use the doubling variable technique. Indeed, for ε > 0 we set:

φε((t, x), (s, y)) = V1(t, x)− V2(s, y)− 1

2ε
‖(s, y)− (t, x)‖2 − σ0(T − s)

24

and consider the following optimization problem:

Mε := sup
(t,x),(s,y)∈Ct0,x0

φε((t, x), (s, y)). (2.17)

Note that Mε ≥ M . Since V1 and −V2 are u.s.c. functions in Ct0,x0 , so is the map φε. On the other hand,
Ct0,x0 is a compact set, therefore problem (2.17) has a maximum point denoted by ((tε, xε), (sε, yε)).

Since the map (t, x) → φε((t, x), (sε, yε)) has a maximum at the point (tε, xε) on Ct0,x0 , we have for any
(t, x) ∈ Ct0,x0 :

V1(t, x) ≤ φ(t, x) := V1(tε, xε) +
1

2ε

(
‖(sε, yε)− (t, x)‖2 − ‖(sε, yε)− (tε, xε)‖2

)
.

Notice that φ is a smooth function which coincides with V1 at (tε, xε). Therefore, V1 − φ has a maximum at
(tε, xε) on the set Ct0,x0 . Since V1 is a sub-solution of (2.13) and tε < T , Lemma 2.3.11 implies that

−∂tφ(tε, xε) +H(tε, xε, Dxφ) ≤ 0,

which means that
− tε − sε

ε
+H

(
tε, xε,

xε − yε
ε

)
≤ 0. (2.18)

In a symmetric way, since the map (s, y)→ φε((tε, xε), (s, y)) has a maximum at the point (sε, yε) on Ct0,x0 ,
we get, for any (s, y) ∈ Ct0,x0 :

V2(s, y) ≥ V2(sε, yε)−
1

2ε

(
‖(s, y)− (tε, xε)‖2 − ‖(sε, yε)− (tε, xε)‖2

)
+ σ0(s− sε)

and since V2 is a super-solution of (2.13), we obtain again by Lemma 2.3.11:

− tε − sε
ε
− σ0 +H

(
sε, yε,

xε − yε
ε

)
≥ 0. (2.19)

The difference between (2.18) and (2.19) gives

−σ0 +H
(
sε, yε,

xε − yε
ε

)
−H

(
tε, xε,

xε − yε
ε

)
≥ 0.

Now, from assumption (2.15) on H, we obtain:

−σ0 − C
(

1 +
‖xε − yε‖

ε

)
‖xε − yε‖ ≥ 0.

Finally, by letting ε → 0+ and using Lemma 2.3.12, we get a contradiction since we have supposed that
σ0 > 0.

The following Lemma, used in the proof of Theorem 2.3.10, gives some estimates on ((tε, xε), (sε, yε)).

Lemma 2.3.12. We have:

(i) lim
ε→0+

Mε = M .

(ii) lim
ε→0+

1
ε‖(sε, yε)− (tε, xε)‖2 = 0.

(iii) For ε small enough, sε < T and tε < T .

25

Proof of Lemma 2.3.11. Here, we give only the proof of the result concerning sub-solutions. In order to
prove the result verified by a super-solution, one can consider its opposite, which is a sub-solution of some
modified HJ equation.

Let u be an u.s.c function and a sub-solution of (2.13) on [0, T] × Rd and let φ be a function of class C1

s.t. u − φ has a strict local maximum on Ct0,x0 at some point (t, x). For σ > 0, we consider the map φσ
defined, for (s, y) ∈ C(t0, x0), by:

φσ(s, y) = u(s, y)− φ(s, y) +
σ

2
log(C2(s− t0)2 − ‖y − x0‖2)

Since Ct0,x0 is a compact set and φσ(s, y)→ −∞ as soon as (s, y) goes to some point at the boundary of
Ct0,x0 , φσ has a maximum point (sσ, yσ) on Ct0,x0 .

Notice that (sσ, yσ)→ (t, x) when σ → 0+. Henceforth, for σ small enough, we get sσ < T because we
have considered t < T in Lemma 2.3.11.

On the other hand, since u is a sub-solution of (2.13), we obtain:

∂tφ(sσ, yσ)− σC2 sσ − t0
Aσ

+H(sσ, yσ, Dxφ(sσ, yσ) + σ
yσ − x0

Aσ
) ≥ 0,

where Aσ := C2(sσ − t0)2−‖yσ −x0‖2. By using assumption (2.15), we deduce from the above inequality

∂tφ(sσ, yσ)− σCC(sσ − t0)− ‖yσ − x0‖
Aσ

+H(sσ, yσ, Dxφ(sσ, yσ)) ≥ 0.

Now, the fact that Aσ > 0 and C(sσ − t0)− ‖yσ − x0‖ > 0 gives:

∂tφ(sσ, yσ) +H(sσ, yσ, Dxφ(sσ, yσ)) ≥ 0.

As a conclusion, since ∂tφ and H are continuous (φ is a function of class C1), and by letting σ → 0+, we
obtain the desired result.

Proof of Lemma 2.3.12. We already know that Mε ≥ M . Let K be an upper bound for V1 − V2 on Ct0,x0 .
Therefore,

0 < M ≤Mε = V1(tε, xε)− V2(sε, yε)−
1

2ε
‖(sε, yε)− (tε, xε)‖2 − σ(T − sε)

≤ K − 1

2ε
‖(sε, yε)− (tε, xε)‖2.

This implies that 1
2ε‖(sε, yε)− (tε, xε)‖2 is bounded and therefore

(
(sε, yε)− (tε, xε)

)
→ 0 when ε→ 0+.

Now, let (t, x) be a cluster point of the bounded sequences (sε, yε)ε and (tε, xε)ε. Since V1 − V2 is an u.s.c
function, we get:

M ≤ lim
ε→0

Mε ≤ lim sup
ε→0

V1(tε, xε)− V2(sε, yε)− σ(T − sε) ≤ V1(t, x)− V2(t, x)− σ(T − t) ≤M

Henceforth, Mε →M when ε→ 0 and

lim
ε→0

V1(tε, xε)− V2(sε, yε)− σ(T − sε) = V1(t, x)− V2(t, x)− σ(T − t) = M,

which implies that:

lim
ε→0

1

2ε
‖(sε, yε)− (tε, xε)‖2 = lim

ε→0
V1(tε, xε)− V2(sε, yε)− σ(T − sε)−M = 0.

Finally, we will show that t < T . Suppose that t = T , therefore

M ≤ V1(T, x)− V2(T, x) ≤ 0

which is impossible since we have supposed that M > 0. Henceforth sε < T and tε < T for ε small
enough, which completes the proof of this Lemma.

26

Now, we introduce a sufficient condition for which the game has a value which means that the lower
value v− coincides with the upper value v+. This condition is called the Isaacs’ condition, which holds
when:

H+(t, x, p) = H−(t, x, p), ∀(t, x, p) ∈ [0, T]× Rd × Rd. (2.20)

Theorem 2.3.13 (Value of the game). Assume (H2.1), (H2.2) and (H2.3). If Isaacs’ condition (2.20)
holds, then the game has a value v = v+ = v−. Moreover, this value is the unique viscosity solution of
the Hamilton-Jacobi-Isaacs’ equation (2.9) (or (2.11), since (2.9) and (2.11) are reduced to the same HJI
equation with the same hamiltonian function H = H+ = H−).

Proof. If Isaacs’ condition holds, v− which is a viscosity super-solution of (2.11), from Lemma 2.3.9,
becomes a viscosity super-solution of (2.9). Moreover, from Lemma 2.3.9, v+ is a viscosity sub-solution
of (2.9). Henceforth, from Theorem 2.3.10, we obtain v− ≥ v+. On the other hand, we have already
v+ ≥ v− (see remark 2.3.3), which concludes the proof.

2.4 Unconstrained problem with nonanticpative strategies

In this section, we focus on the context of nonanticipative strategies. In particular, we extend the results
of Capuzzo-Dolcetta and Bardi in [11, Chapter VIII], concerning the trajectory reconstruction for both
players, where they studied a differential game with infinite time horizon.

2.4.1 Problem formulation

We consider again a problem of type Bolza where the cost function J is defined as in (2.2) and we use
the same hypothesis introduced in section 2.1. We define two value functions of this game according to
the player having the advantage of information.

The value function of the first player corresponds to the case when he uses nonanticpative strategies
α[·] ∈ Γ to minimize the objective function J . It can be defined as

v](t, x) := inf
α[·]∈Γ

sup
b(·)∈B

J(t, x, α[b], b). (2.21)

By the same way, we define the value function of the second player which corresponds to the case when
he uses nonanticpative strategies β[·] ∈ ∆ to maximize the objective function J :

v[(t, x) := sup
β[·]∈∆

inf
a(·)∈A

J(t, x, a, β[a]). (2.22)

Remark 2.4.1. From this definition, we cannot compare directly the value functions v] and v[since the
infimum and the supremum are not taken over the same sets of controls and strategies. Nevertheless,
we will be able to give an order between the two value functions after their characterisation as unique
viscosity solutions to two different Hamilton-Jacobi-Isaacs equations and by exploiting the comparison
principle Theorem 2.3.10.

2.4.2 Characterization of value functions

The aim of this part is to characterize the value functions v] and v[by means of HJI equations. To this
end, we start by presenting a dynamic programming principle and a regularity property verified by both
value functions.

27

Theorem 2.4.2. Assume (H2.1), (H2.2) and (H2.3).

(i) For t ∈ [0, T], x ∈ Rd and h ∈ [0, T − t], we have

v](t, x) = inf
α[·]∈Γ

sup
b(·)∈B

{∫ t+h

t
`(s, y

α[b],b
t,x (s), α[b](s), b(s))ds+ v](t+ h, y

α[b],b
t,x (t+ h))

}
, (2.23)

and

v[(t, x) = sup
β[·]∈∆

inf
a(·)∈A

{∫ t+h

t
`(s, y

a,β[a]
t,x (s), a(s), β[a](s))ds+ v[(t+ h, y

a,β[a]
t,x (t+ h))

}
. (2.24)

(ii) Both value functions v] and v[are Lipschitz continuous on [0, T]× Ω, for any compact set Ω ⊂ Rd.

The proof of (i) can be done by using the same arguments as in [11, Chapter VIII]. As for (ii), it can
be proven in a similar way to Proposition 2.3.7.

From the previous result, we get the following characterization of the two players value functions v] and
v[.

Theorem 2.4.3. v] is the unique viscosity solution of (2.11) while v[is the unique viscosity solution of
(2.9).

In order to prove Theorem 2.4.3, we will need the following result whose proof is postponed to the end.

Lemma 2.4.4. Let φ be a function of class C1 such that −∂tφ(t, x) + H+(t, x,Dxφ(t, x)) = δ > 0. Then,
there exists a strategy α∗[·] ∈ Γ, such that for any b(·) ∈ B and h > 0 small enough:∫ t+h

t

(
∂tφ(s, y∗(s)) + 〈f(s, y∗(s), a∗(s), b(s)), Dxφ(s, y∗(s))〉+ `(s, y∗(s), a∗(s), b(s))

)
ds ≤ −δh

4
,

where a∗(·) := α∗[b](·) ∈ A and y∗(·) := ya
∗,b
t,x (·).

Proof. We will prove the result only for v], and by the same way, one can get the proof of the result for v[

.

We start by showing that v] is a viscosity super-solution of (2.11). Let φ be a function of class C1 and
(t, x) be a local minimum for v] − φ such that (v] − φ)(t, x) = 0. Assume that there exists δ > 0 such that:

−∂tφ(t, x) +H+(t, x,Dxφ(t, x)) = −δ < 0.

Therefore, there exists b∗ ∈ B, such that for any a ∈ A,

−∂tφ(t, x)− 〈f(t, x, a, b∗), Dxφ(t, x)〉 − `(t, x, a, b∗) ≤ −δ.

Now, let’s fix h > 0 small enough and α[·] ∈ Γ. Denote by a∗(·) := α[b∗](·) ∈ A and by y∗(·) := ya
∗,b∗

t,x . For
any s ∈ [t, T], we have a∗(s) ∈ A. From the last inequality, we deduce that

−∂tφ(t, x)− 〈f(t, x, a∗(s), b∗), Dxφ(t, x)〉 − `(t, x, a∗(s), b∗) ≤ −δ, for any s ∈ [t, T].

By continuity of f ,`, ∂tφ and Dxφ, we get for any s ∈ [t, t+ h]:

−∂tφ(s, y∗(s))− 〈f(s, y∗(s), a∗(s), b∗), Dxφ(s, y∗(s))〉 − `(s, y∗(s), a∗(s), b∗) ≤ −δ
2
,

henceforth∫ t+h

t

(
− ∂tφ(s, y∗(s))− 〈f(s, y∗(s), a∗(s), b∗), Dxφ(s, y∗(s))〉 − `(s, y∗(s), a∗(s), b∗)

)
ds ≤ −δh

2
,

28

which implies

φ(t, x)− φ(t+ h, y∗(t+ h))−
∫ t+h

t
`(s, y∗(s), a∗(s), b∗)ds ≤ −δh

2
.

On the other hand, for any s ∈ [t, t+ h], we have:

(v] − φ)(s, y∗(s)) ≥ (v] − φ)(t, x).

From the two above inequalities, we deduce that:

δh

2
+ v](t, x) ≤ v](t+ h, y∗(t+ h)) +

∫ t+h

t
`(s, y∗(s), a∗(s), b∗)ds.

Therefore we get

δh

2
+ v](t, x) ≤ sup

b(·)∈B

{
v](t+ h, y

α[b],b
t,x (t+ h)) +

∫ t+h

t
`(s, y

α[b],b
t,x (s), α[b](s), b(s))ds

}
.

The last inequality holds for any α[·] ∈ Γ, hence

δh

2
+ v](t, x) ≤ inf

α[·]∈Γ
sup
b(·)∈B

{
v](t+ h, y

α[b],b
t,x (t+ h)) +

∫ t+h

t
`(s, y

α[b],b
t,x (s), α[b](s), b(s))ds

}
= v](t, x),

which contradicts (2.23). Hence, we conclude that:

−∂tφ(t, x) +H+(t, x,Dxφ(t, x)) ≥ 0,

which means that v] is a viscosity super-solution of (2.11).

Now, we will prove that v] is a viscosity sub-solution of (2.11). Let φ be a function of class C1 and (t, x) be
a local maximum for v] − φ such that (v] − φ)(t, x) = 0.

Moreover, suppose that there exists δ > 0, such that −∂tφ(t, x) + H+(t, x,Dxφ(t, x)) = δ. From Lemma
2.4.4, we deduce the existence of a strategy α∗[·] ∈ Γ, such that for any b(·) ∈ B and h > 0 small enough:

φ(t+ h, y
α∗[b],b
t,x (t+ h))− φ(t, x) +

∫ t+h

t
`(s, y

α∗[b],b
t,x (s), α∗[b](s), b(s))ds ≤ −δh

4
.

Since (t, x) is a local maximum of v] − φ, the last inequality becomes:

sup
b(·)∈B

{∫ t+h

t
`(s, y

α∗[b],b(s)
t,x (s), α∗[b](s), b(s))ds+ v](t+ h, y

α∗[b],b
t,x (t+ h))

}
− v](t, x) ≤ −δh

4
,

which implies that

inf
α[·]∈Γ

sup
b(·)∈B

{
v](t+ h, y

α[b],b
t,x (t+ h)) +

∫ t+h

t
`(s, y

α[b],b
t,x , α[b](s), b(s))ds

}
− v](t, x) ≤ −δh

4
< 0.

From (2.23), the last inequality is impossible. Therefore

−∂tφ(t, x) +H+(t, x,Dxφ(t, x)) ≤ 0,

which means that v] is a viscosity sub-solution of (2.11).

The uniqueness of v] as a viscosity solution of 2.11 comes from the comparison Theorem 2.3.10. Indeed,
let u be a viscosity solution of (2.11). Since u and v] are respectively a sub and a super-solution of (2.11),
we deduce from Theorem 2.3.10 that u ≤ v]. Conversely, we get v] ≤ u.

29

Proof of Lemma 2.4.4. We set for (s, z, a, b) ∈ [0, T]× Rd ×A×B,

G(s, z, a, b) := −∂tφ(s, z)− 〈f(s, z, a, b), Dxφ(s, z)〉 − `(s, z, a, b).

We recall that H+(t, x,Dxφ(t, x)) = min
b∈B

max
a∈A

{
− 〈f(t, x, a, b), Dxφ(t, x)〉 − `(t, x, a, b)

}
. Henceforth, we

obtain
min
b∈B

max
a∈A

G(t, x, a, b) = δ.

Therefore, for any b ∈ B, there exists a ∈ A (depending on b) such that:

G(t, x, a, b) ≥ δ.

On the other hand, G(t, x, a, ·) is uniformly continuous since it is continuous over the compact set B. Thus,
for any b ∈ B,

G(t, x, a, b) ≥ 3δ

4
, ∀ b ∈ B(b, r)

⋂
B,

for some r = r(b) > 0. Moreover, since B is compact, there exist a finite number m of points b1, ..., bm ∈ B
and radius r1, ..., rm > 0 such that

B ⊂
m⋃
i=1

B(bi, ri),

and for ai = a(bi), i ∈ {1, ...,m},

G(t, x, ai, b) ≥
3δ

4
, ∀ b ∈ B(bi, ri)

⋂
B.

Now, consider the mapping Λ : B → A, such that for any b ∈ B, Λ(b) := ak, where 1 ≤ k ≤ m is the
smallest index verifying b ∈ B(bk, rk).

For any b(·) ∈ B, Λ(b(·)) is measurable, thus we can define the strategy α∗[·] ∈ Γ as follows:

α∗[b](s) := Λ(b(s)).

By definition of Λ,

G(t, x,Λ(b), b) ≥ 3δ

4
, ∀ b ∈ B.

By continuity of G and the trajectory yα
∗[b],b

t,x , for any b(·) ∈ B, there exists h > 0 small enough such that for
any b(·) ∈ B:

G(s, y
α∗[b],b
t,x (s), α∗[b](s), b(s)) ≥ δ

2
, ∀s ∈ [t, t+ h].

Finally, it is enough to integrate the last inequality between t and t+ h to get the desired result.

After characterizing the value functions v] and v[as unique viscosity solutions to Hamilton-Jacobi-
Isaacs equations in Theorem 2.4.2 and by using the comparison principle Theorem 2.3.10, we can now
compare the values of the two players.

Corollary 2.4.5. In general, we have, for any (t, x) ∈ [0, T]× Rd,

v](t, x) ≤ v[(t, x).

30

Proof. Since v[is a viscosity solution of (2.9), it is also a super-solution of the same equation. Therefore

−∂tv[+H−(t, x,Dxv
[) ≥ 0,

in the viscosity sens. Now since H+ ≥ H−, we obtain:

−∂tv[+H+(t, x,Dxv
[) ≥ 0,

which means that v[is a super-solution of (2.11). On the other hand, v] is a sub-solution of (2.11). The
comparison principle Theorem 2.3.10 concludes the result.

In a similar way to Theorem 2.3.13, one can prove, in this context, the equality between v[and v] if the
Isaacs’ condition (2.20) holds:

Corollary 2.4.6 (Value of the game). Assume that (H2.1), (H2.2), (H2.3) and condition (2.20) hold. There-
fore, the game has a value v = v[= v].

Proof. If the Isaacs’ condition holds, (2.9) and (2.11) become reduced to the same HJ equation with an
hamiltonian H = H+ = H−. In this case, v] becomes a super-solution of equation (2.9). Since v[is the
unique viscosity solution of (2.9), it is also a sub-solution of the same equation. From the comparison
principle Theorem 2.3.10, we deduce that v[≤ v]. Moreover, we know already from Corollary 2.4.5 that
v] ≥ v[which ends the proof.

2.5 General comparison result

The aim of this part is to compare the different value functions v−, v+, v] and v[defined is sections 2.3
and 2.4. This result is deduced essentially from the theorems of characterization of those different value
functions and the comparison principle Theorem 2.3.10 for Hamilton-Jacobi equations.

Corollary 2.5.1. We have the following order:

v] ≤ v− ≤ v+ ≤ v[.

Proof. From Lemma 2.3.9, v− is a super-solution of (2.11). Since v] is the unique viscosity solution of
(2.11), v] is the smallest super-solution of this equation. Therefore, we have v] ≤ v−.
On the other hand, aging from Lemma 2.3.9, v+ is a sub-solution of (2.9) whose unique viscosity solution
is v[. By the comparison theorem, we get v+ ≤ v[. The fact that v− ≤ v+ ends the proof.

Remark 2.5.2. The equality between all the value functions holds when the Isaacs’ condition (2.20) is
verified.

2.6 Approximation by discrete time games and trajectory reconstruction

In this section, we present a method to reconstruct the optimal strategies and controls for both players.
Without loss of generality, we will just focus on the problem of the first player (2.21). We extend the results
presented in [11, Chapter VIII] for infinite time horizon differential game to our setting with finite time
horizon. To this end, we will proceed as follow:

• First, we introduce a discrete time differential game with value function Vh and a reconstruction
procedure based on the knowledge of Vh.

31

• Then, we introduce some regularity results of Vh and we show how to characterize it by means of a
discrete dynamic programming principle.

• Next, we use the characterization of Vh to prove the optimality of the first player discrete strategy
and the second player discrete control generated by our proposed reconstruction procedure for the
discrete time differential game.

• After that, we prove that Vh is an approximation of v]. In particular, Vh converges uniformly, over
compact subsets, to v] when the time step h goes to zero.

• Finally, we construct an optimal strategy of the first player and an optimal control of the second
player for the continuous time problem (2.21).

2.6.1 Approximation by discrete time games

Consider a uniform partition of [0, T], with a time step h = T
N (for N ≥ 1): sk = kh, k = 0, ..., N . Starting at

time t ∈ [sk, sk+1[, for some 0 ≤ k ≤ N − 1 and from an initial state x ∈ Rd, we define the following Euler
forward scheme:

yk = x,

yk+1 = x+ (sk+1 − t)f(t, x,ak,bk)
yi+1 = yi + hf(si, yi,ai,bi), i ≥ k + 1.

(2.25)

corresponding to two finite sequences of controls (ai)i ∈ AN−k and (bi)i ∈ BN−k of the first and the
second players respectively. The solution of (2.25), representing the discrete trajectory of the system, will
be denoted by (yi)

N
i=k.

Consider also an approximation of the cost functional J , denoted by Jh and given by:

Jh(t, x,a,b) := (sk+1 − t)`(t, x,ak,bk) + h

N−1∑
i=k+1

`(si, yi,ai,bi) + Ψ(yN),

for any (ai)i ∈ AN−k and (bi)i ∈ BN−k.

Moreover, we follow the definition of discrete time nonanticpative strategies given in [11, Chapter VIII]. In
fact, at each time step si, 0 ≤ i ≤ N − 1, the first player, and before choosing his action ai ∈ A, observes
the choice of his opponent bi ∈ B. In other words, the second player must take his decision before the
first player at each time step. The mathematical formulation of a discrete nonanticpative strategy for the
first player is given as follows:

Definition 2.6.1. A discrete nonanticpative strategy αh[·] of the first player is a mapping from BN to AN ,
such that for any (bi)i, (b′i)i ∈ BN and for any 0 ≤ j ≤ N − 1, if bi = b′i, ∀ i ≤ j, then αh[b]i = αh[b′]i,
∀i ≤ j.
The set of discrete nonanticipative strategies of the first player will be denoted by Γh.

The discrete value function of the first player is defined, for t ∈ [sk, sk+1[with 0 ≤ k ≤ N − 1 and
x ∈ Rd, by:

Vh(t, x) := inf
αh[·]∈Γh

sup
(bi)i∈BN−k

Jh(t, x, αh[b],b). (2.26)

Now, we will state the result concerning the convergence of Vh to v].

Theorem 2.6.2. The approximated value function Vh converges uniformly to v] over compact subsets of
[0, T]× Rd.

32

In order to prove this Theorem, we will need the following Lemma from [11, Chapter VIII].

Lemma 2.6.3. Let uε : E → R, for a given set E, be an u.s.c and locally uniformly bounded function
(respectively, l.s.c) and u := lim sup

ε→0
uε (respectively, u := lim inf

ε→0
uε). Let φ be a function of class C1 on E

and B0 := B(x∗, r)
⋂
E where x∗ ∈ B0 is a strict maximum (respectively, minimum) for u−φ (respectively,

u−φ) on B0. Then there exist a sequence (xn)n in B0 and (εn)n such that xn is a maximum (respectively,
minimum) for uεn − φ in B0, εn > 0 and

lim
n→∞

εn = 0, lim
n→∞

xn = x∗, lim
n→∞

uεn(xn) = u(x∗) (respectively, u(x∗)).

Proof of Theorem 2.6.2. First, let’s define the function v by:

v(t, x) := lim sup
(s,y)→(t,x),h→0+

Vh(s, y),

and let’s prove that v is a sub-solution of the HJ equation (2.11) whose unique viscosity solution is v].
Indeed, let φ be a function of class C1 and (t, x) a strict maximum of v − φ in B := B((t, x), r), with a
radius r > 0. By Lemma 2.6.3, there exist (hn)n and ((tn, xn))n ∈ B such that (tn, xn) is the maximum of
Vhn − φ over B and

hn → 0, (tn, xn)→ (t, x), Vhn(tn, xn)→ v(t, x), when n→∞.

Now consider a uniform partition of [0, T] with a time step hn: sn0 = 0,...,snk = khn,... There exists k ≥ 0
such that tn ∈ [snk , s

n
k+1[. We set τn := snk+1 − tn > 0.

Applying the discrete dynamic programming principle for Vhn between tn and snk+1 (relation (2.27) of
Proposition 2.6.4) gives:

Vhn(tn, xn) = max
b∈B

min
a∈A

{
τn`(tn, xn, a, b) + Vhn(snk+1, xn + τnf(t, xn, a, b))

}
.

There exists bn ∈ B s.t. for any a ∈ A:

Vhn(tn, xn) ≤ τn`(tn, xn, a, bn) + Vhn(snk+1, xn + τnf(t, xn, a, bn)).

We set yn := xn + τnf(t, x, a, bn). For hn small enough, (snk+1, yn) will still in B. Since (tn, xn) is the
maximum of Vhn − φ over B we have:

(Vhn − φ)(tn, xn) ≥ (Vhn − φ)(snk+1, yn).

From the two above inequalities, we deduce for any a ∈ A:

φ(tn, xn)− φ(snk+1, yn)− τn`(tn, xn, a, bn) ≤ 0.

The Taylor expansion of φ gives:

φ(snk+1, yn) = φ(tn, xn) + τn
∂φ(tn, xn)

∂t
+ 〈Dxφ(tn, xn), (yn − xn)〉

+
√

(snk+1 − tn)2 + ‖yn − xn‖2 × ε
(

(snk+1, yn)− (tn, xn)
)
,

where ε
(

(snk+1, yn)− (tn, xn)
)
→ 0 when n→ +∞. From the last inequality and the Taylor expansion, and

after dividing by τn, we get, for any a ∈ A:

− ∂φ(tn, xn)

∂t
− 〈Dxφ(tn, xn), f(tn, xn, a, bn)〉 − `(tn, xn, a, bn)

+
√

1 + ‖f(tn, xn, a, bn)‖2 × ε
(

(snk+1, yn)− (tn, xn)
)
≤ 0.

33

Now, we can extract a sequence from (bn)n which converges to b ∈ B and we let n → ∞, we get for any
a ∈ A:

−∂φ(t, x)

∂t
− 〈Dxφ(t, x), f(t, x, a, b)〉 − `(t, x, a, b) ≤ 0.

It follows that:
−∂φ(t, x)

∂t
+ max

a∈A

{
− 〈Dxφ(t, x), f(t, x, a, b)〉 − `(t, x, a, b)

}
≤ 0,

therefore
−∂φ(t, x)

∂t
+ min

b∈B
max
a∈A

{
− 〈Dxφ(t, x), f(t, x, a, b)〉 − `(t, x, a, b)

}
≤ 0,

which means that
−∂φ(t, x)

∂t
+H+(t, x,Dxφ(t, x)) ≤ 0.

As a conclusion, v is a sub-solution of (2.11).
Now, consider the function v defined by:

v(t, x) := lim inf
(s,y)→(t,x),h→0+

Vh(s, y),

and the aim is to prove that v is a super-solution of (2.11). Let φ be a function of class C1 and (t, x) a
strict minimum of v − φ in B := B((t, x), r), with r > 0. Again by Lemma 2.6.3, there exist (hn)n and
((tn, xn))n ∈ B such that (tn, xn) is the minimum of Vhn − φ over B and when n goes to +∞, we have

hn → 0, (tn, xn)→ (t, x), Vhn(tn, xn)→ v(t, x).

Moreover, there exists k ≥ 0 such that tn ∈ [snk , s
n
k+1[. We set τn := snk+1 − tn > 0. From the discrete

dynamic programming principle (2.27), we deduce that for any b ∈ B:

Vhn(tn, xn)−min
a∈A

{
τn`(tn, xn, a, b) + Vh(snk+1, xn + τnf(tn, xn, a, b))

}
≥ 0.

We fix b ∈ B, there exists an := a(b) ∈ A (depending on b) such that:

Vhn(tn, xn)−
(
τn`(tn, xn, an, b) + Vhn(snk+1, xn + τnf(tn, xn, an, b))

)
≥ 0.

We set now yn := xn + τnf(tn, x, an, b). For hn small enough, (snk+1, yn) will still in B. Since (tn, xn) is the
minimum of Vhn − φ over B, we obtain

(Vhn − φ)(tn, xn) ≤ (Vhn − φ)(snk+1, yn).

From the two above inequalities, we deduce that:

φ(tn, xn)− φ(snk+1, yn)− τn`(tn, xn, an, b) ≥ 0.

The Taylor expansion of φ gives:

φ(snk+1, yn) = φ(tn, xn) + τn
∂φ(tn, xn)

∂t
+ 〈Dxφ(tn, xn), (yn − xn)〉

+
√

(snk+1 − tn)2 + ‖yn − xn‖2 × ε
(

(snk+1, yn)− (tn, xn)
)
,

34

where ε
(

(snk+1, yn)− (tn, xn)
)
→ 0 when n→ +∞. From the last inequality and the Taylor expansion and

after dividing by τn, we obtain:

− ∂φ(tn, xn)

∂t
− 〈Dxφ(tn, xn), f(tn, xn, an, b)〉 − `(tn, xn, an, b)

+
√

1 + ‖f(tn, xn, an, b)‖2 × ε
(

(snk+1, yn)− (tn, xn)
)
≥ 0.

Now, we can extract a sequence from (an)n which converges to a ∈ A and we let n→∞, we get:

−∂φ(t, x)

∂t
− 〈Dxφ(t, x), f(t, x, a, b)〉 − `(t, x, a, b) ≥ 0,

henceforth
−∂φ(t, x)

∂t
+ max

a∈A

{
− 〈Dxφ(t, x), f(t, x, a, b)〉 − `(t, x, a, b)

}
≥ 0,

therefore
−∂φ(t, x)

∂t
+ min

b∈B
max
a∈A

{
− 〈Dxφ(t, x), f(t, x, a, b)〉 − `(t, x, a, b)

}
≥ 0,

which means that
−∂φ(t, x)

∂t
+H+(t, x,Dxφ(t, x)) ≥ 0.

As a conclusion, v is a super-solution of (2.11).
To conclude, we have shown that v and v are respectively a sub and a super-solution of (2.11) which has
v] as a unique solution in the viscosity sense. Therefore, by applying the comparison principle Theorem
2.3.10 , we obtain v ≤ v] ≤ v. Since we have already v ≤ v, we get v = v] = v. Finally, by exploiting the
properties of weak limits, see for instance [11, Chapter V], we deduce the uniform convergence of Vh to
v] over compact subsets of [0, T]× Rd.

2.6.2 Trajectory reconstruction

Now, we present how to synthesize an optimal strategy for the first player and an optimal control for the
second player in feedback form using the value function Vh, see Algorithm 2.1. Recall that an optimal
choice of the second player corresponds to the worst case that can occur for the first player. In order to
prove the optimality of the first player discrete strategy and the second player discrete control generated
by Algorithm 2.1, Vh should verify a discrete dynamic programming principle. This is the purpose of the
following Proposition which starts with a regularity result on Vh needed to prove the discrete dynamic
programming principle.

Proposition 2.6.4. Assume (H2.1), (H2.2) and (H2.3), then:

(i) Vh is Lipschitz continuous w.r.t. the space variable uniformly in the time variable.

(ii) For t ∈ [sk, sk+1[, with 0 ≤ k ≤ N − 1, and x ∈ Rd, we have:

Vh(t, x) = max
b∈B

min
a∈A

{
(sk+1 − t)`(t, x, a, b) + Vh(sk+1, x+ (sk+1 − t)f(t, x, a, b))

}
. (2.27)

Proof. (i) We fix t ∈ [0, T [and let 0 ≤ k ≤ N − 1 such that t ∈ [sk, sk+1[and x, y ∈ Rd. For ε > 0, there
exists αεh[·] ∈ Γh such that:

Vh(t, y) ≥ sup
(bi)i∈BN−k

Jh(t, y, αεh[b],b)− ε

2
.

35

Algorithm 2.1: Worst case
1: Initialize y∗k = x with 0 ≤ k ≤ N − 1.
2: for i = k to N − 1 do
3: The optimal choice of the second player b∗i ∈ B is defined by:

b∗i ∈

argmax
b∈B

min
a∈A

{
τ`(t, x, a, b) + Vh(sk+1, x+ τf(t, x, a, b))

}
, if i = k,

argmax
b∈B

min
a∈A

{
h`(si, y∗i , a, b) + Vh(si+1, y∗i + hf(si, y∗i , a, b))

}
, else,

where τ := (sk+1 − t).
4: The optimal reaction of the first player α∗h[b∗]i := a∗i ∈ A is given by:

a∗i ∈

argmin
a∈A

{
τ`(t, x, a, b∗k) + Vh(sk+1, x+ τf(t, x, a, b∗k))

}
, if i = k,

argmin
a∈A

{
h`(si, y∗i , a,b

∗
i) + Vh(si+1, y∗i + hf(si, y∗i , a,b

∗
i))
}
, else.

5: The new state position y∗i+1 is given by:

y∗i+1 =

{
x+ τf(t, x,a∗k,b

∗
k), if i = k,

y∗i + hf(si, y∗i ,a
∗
i ,b
∗
i), else.

6: end for
7: return A discrete optimal strategy α∗h[·] of the first player, a discrete optimal control (b∗i)i of the

second player and a discrete optimal trajectory (y∗i)i.

On the other hand, there exists (bεi)i ∈ BN−k such that:

Vh(t, x) ≤ sup
(bi)i∈BN−k

Jh(t, x, αεh[b],b) ≤ Jh(t, x, αεh[bε],bε) +
ε

2
.

Denote by (aεi)i := αεh[bε] ∈ AN−k. From the first inequality involving Vh(t, y), we deduce that:

Vh(t, y) ≥ Jh(t, y,aε,bε)− ε

2
.

Now from the two above inequalities, we get:

Vh(t, x)− Vh(t, y) ≤ Jh(t, x,aε,bε)− Jh(t, y, aε,bε) + ε.

Denote by (yxi)i and (yyi)i the solutions of (2.25) corresponding to ((aεi)i, (b
ε
i)i) ∈ AN−k×BN−k and starting

respectively from x and y. We have the following estimation:

|Jh(t, x,aε,bε)− Jh(t, y, aε,bε)| ≤ (sk+1 − t)|`(t, x,aεk,bεk)− `(t, y,aεk,bεk)|

+ h

N−1∑
i=k+1

|`(si, yxi ,aεi ,bεi)− `(si, y
y
i ,a

ε
i ,b

ε
i)|+ |Ψ(yxN)−Ψ(yyN)|.

Now we use the Lipschitz continuity of ` and Ψ to get:

|Jh(t, x,aε,bε)− Jh(t, y,aε,bε)| ≤ hL2‖x− y‖+ hL2

N−1∑
i=k+1

‖yxi − yyi ‖+ L3‖yxN − yyN‖,

36

where L2 and L3 are the Lipschitz constants of ` and Ψ respectively.
By the Lipschitz continuity of f , with Lipschitz constant L1, we get the following estimation:

‖yxi − yyi ‖ ≤ (1 + hL1)i−k‖x− y‖, i ≥ k + 1,

which implies that:

N−1∑
i=k+1

‖yxi − yyi ‖ ≤
eTL1

hL1
‖x− y‖ and ‖yxN − yyN‖ ≤ e

TL1‖x− y‖.

Combining the above estimations implies the existence of some constant C > 0 such that:

|Vh(t, x)− Vh(t, y)| ≤ C‖x− y‖+ ε.

The fact that ε is chosen arbitrarily ends the proof (i).

(ii) Now we prove the discrete dynamic programming principle. We set, for t ∈ [sk, sk+1[and x ∈ Rd,

u(t, x) := max
b∈B

min
a∈A

{
(sk+1 − t)`(t, x, a, b) + Vh(sk+1, x+ (sk+1 − t)f(t, x, a, b))

}
.

We start by showing that Vh(t, x) ≤ u(t, x). For any b ∈ B, there exists a(b) ∈ A (depending on b) such
that:

u(t, x) ≥ min
a∈A

{
(sk+1 − t)`(t, x, a, b) + Vh(sk+1, x+ (sk+1 − t)f(t, x, a, b))

}
= (sk+1 − t)`(t, x, a(b), b) + Vh(sk+1, x+ (sk+1 − t)f(t, x, a(b), b)).

Let (bi)i ∈ BN−k be a sequence of actions of the second player and let’s define:

x′ := x+ (sk+1 − t)f(t, x, a(bk),bk).

For ε > 0, let αεh[·] ∈ Γh verifying:

ε+ Vh(sk+1, x
′) ≥ sup

(b′i)i∈BN−k−1

Jh(sk+1, x
′, αεh[b′],b′).

Now let’s define δh[·] ∈ Γh such that, for any (bi)i ∈ BN−k,

δh[b]i :=

{
a(bk), if i = k

αεh[b]i, if i ≥ k + 1.

For any (bi)i ∈ BN−k, we have

Jh(t, x, δh[b],b) = (sk+1 − t)`(t, x, a(bk),bk) + h

N−1∑
i=k+1

`(si, yi, δh[b]i,bi) + Ψ(yN)

= (sk+1 − t)`(t, x, a(bk),bk) + Jh(sk+1, x
′, αεh[b′],b′)

where (b′i)i ∈ BN−k−1 is the restriction of (bi)i for i ≥ k + 1. Therefore we get

Vh(t, x) ≤ sup
(bi)i∈BN−k

Jh(t, x, δh[b],b)

≤ sup
(bi)i∈BN−k

{
(sk+1 − t)`(t, x, a(bk),bk) + Jh(sk+1, x

′, αεh[b′],b′)
}

≤ sup
bk∈B

{
(sk+1 − t)`(t, x, a(bk),bk) + sup

(b′i)i∈BN−k−1

Jh(sk+1, x
′, αεh[b′],b′)

}
≤ sup

bk∈B
{ε+ (sk+1 − t)`(t, x, a(bk),bk) + Vh(sk+1, x

′)}.

37

On the other hand, we have

u(t, x) = max
b∈B

min
a∈A

{
(sk+1 − t)`(t, x, a, b) + Vh(sk+1, x+ (sk+1 − t)f(t, x, a, b))

}
,

and

max
b∈B

min
a∈A

{
(sk+1 − t)`(t, x, a, b) + Vh(sk+1, x+ (sk+1 − t)f(t, x, a, b))

}
= max

b∈B

{
(sk+1 − t)`(t, x, a(b), b) + Vh(sk+1, x

′)
}
.

Combining the above estimations gives Vh(t, x) ≤ ε + u(t, x), for any ε > 0, which implies that Vh(t, x) ≤
u(t, x).

Now, we will prove the converse inequality. Let b ∈ B, such that

u(t, x) = min
a∈A

{
(sk+1 − t)`(t, x, a, b) + Vh(sk+1, x+ (sk+1 − t)f(t, x, a, b))

}
.

For any discrete control of the second player, (bi)i ∈ BN−k, we define the following control sequence
(b̂i)i ∈ BN−k:

b̂i :=

{
b, if i = k,

bi, else.

For ε > 0, consider an ε-optimal discrete nonanticpative strategy αεh[·] ∈ Γh for Vh(t, x) i.e.

ε+ Vh(t, x) ≥ sup
(bi)i∈BN−k

Jh(t, x, αεh[b],b). (2.28)

Since αεh[·] is a nonanticipative strategy, we deduce from Definition 2.6.1 that αεh[b̂]k depends only on
b. Now let a := αεh[b̂]k and define the system state x′ at time step sk+1, corresponding to a and b, by
x′ := x+(sk+1− t)f(t, x, a, b). Moreover, we define the discrete nonanticipative strategy δh[·] ∈ Γh starting
from sk+1, for (bi)i ∈ BN−k−1, by

δh[b]i := αεh[b̂]i, for i ≥ k + 1.

From the definition of δh[·], we get

Vh(sk+1, x
′) = inf

αh[·]∈Γh
sup

(bi)i∈BN−k−1

Jh(sk+1, x
′, αh[b],b)

≤ sup
(bi)i∈BN−k−1

Jh(sk+1, x
′, δh[b],b)

≤ Jh(sk+1, x
′, δh[bε],bε) + ε (2.29)

where (bεi)i ∈ BN−k−1 is an ε-optimal for the term sup
(bi)i∈BN−k−1

Jh(sk+1, x
′, δh[b],b).

Claim that u(t, x) ≤ Jh(t, x, αεh[b̂
ε
], b̂

ε
) + ε, where (b̂

ε

i)i ∈ BN−k is defined as follows:

b̂
ε

i :=

{
b, if i = k,

bεi , if i ≥ k + 1.

From the above claim, we deduce that

u(t, x) ≤ sup
(bi)i∈BN−k

Jh(t, x, αεh[b],b) + ε.

38

Together with (2.28), we get u(t, x) ≤ Vh(t, x) + 2ε, for any ε > 0 which ends the proof. Now let’s prove the
above claim.

u(t, x) = max
b∈B

min
a∈A

{
(sk+1 − t)`(t, x, a, b) + Vh(sk+1, x+ (sk+1 − t)f(t, x, a, b))

}
= min

a∈A

{
(sk+1 − t)`(t, x, a, b) + Vh(sk+1, x+ (sk+1 − t)f(t, x, a, b))

}
≤ (sk+1 − t)`(t, x, a, b) + Vh(sk+1, x

′)

≤ (sk+1 − t)`(t, x, a, b) + Jh(sk+1, x
′, δh[bε],bε) + ε,

where the last inequality holds from (2.29). Since. a = αεh[b̂
ε
]k, b̂

ε

k = b and δh[bε]i = αεh[b̂
ε
]i, for any

i ≥ k + 1, we obtain the following equality which ends the proof of the claim:

(sk+1 − t)`(t, x, a, b) + Jh(sk+1, x
′, δh[bε],bε) = Jh(t, x, αεh[b̂

ε
], b̂

ε
).

Thanks to the results given in Proposition 2.6.4, we deduce an additional result on the regularity of Vh.

Corollary 2.6.5. Vh is locally Lipschitz continuous w.r.t. the time variable uniformly in the space variable.

Proof. Let x ∈ Rd and t ∈ [0, T [be fixed and take s ∈ [0, T] close enough to t. We can distinguish two
cases:

• Suppose that t ∈]sk, sk+1[for some k ∈ {0, ..., N − 1}. In this case, s ∈]sk, sk+1[and from (2.27) we
can write:

|Vh(s, x)− Vh(t, x)| ≤ max
b∈B

min
a∈A

{
|(sk+1 − s)`(s, x, a, b)− (sk+1 − t)`(t, x, a, b)|

+ |Vh(sk+1, x
s)− Vh(sk+1, x

t)|
}
,

where xs := x+ (sk+1 − s)f(s, x, a, b) and xt := x+ (sk+1 − t)f(t, x, a, b).
Since ` is continuous w.r.t. to all its arguments and [0, T], A and B are compact sets, (τ, a, b) 7→
`(τ, x, a, b) is bounded by some constant M . Using also the Lipschitz continuity of `, we get:

|t`(t, x, a, b)− s`(s, x, a, b)| ≤ t|`(t, x, a, b)− `(s, x, a, b)|+ |t− s||`(s, x, a, b)| ≤ (tL2 +M)|t− s|,

where L2 is the Lipschitz constant of `. Henceforth, we obtain:

|(sk+1− s)`(s, x, a, b)− (sk+1− t)`(t, x, a, b)| ≤ sk+1L2|t− s|+ (tL2 +M)|t− s| ≤ (2TL2 +M)|t− s|.

Furthermore, since f is continuous w.r.t. to all its arguments and [0, T], A and B are compact sets,
(τ, a, b) 7→ f(τ, x, a, b) is bounded. By the Lipschitz continuity of f and similar computations as we
did above for `, we can deduce the existence of some real constant c1 > 0 such that the following
estimation holds:

‖xs − xt‖ ≤ c1|t− s|.

From Proposition 2.6.4, Vh is Lipschitz w.r.t. the space variable together with the last inequality, we
deduce the existence of a real constant c2 > 0 such that:

|Vh(sk+1, x
s)− Vh(sk+1, x

t)| ≤ c2|t− s|.

Combining the above inequalities implies the existence of some real constant c > 0 such that:

|Vh(s, x)− Vh(t, x)| ≤ max
b∈B

min
a∈A

c|t− s| = c|t− s|.

39

• Now suppose that t = sk for some k ∈ {0, ..., N − 1}. First consider the case where s ∈ [sk, sk + θ[
with θ > 0. Again, we can write:

|Vh(s, x)− Vh(t, x)| = |Vh(s, x)− Vh(sk, x)| ≤ max
b∈B

max
a∈A

{
|(sk+1 − s)`(s, x, a, b)

−(sk+1 − sk)`(sk, x, a, b)|

+|Vh(sk+1, x
s)− Vh(sk+1, xk+1)|

}
,

where xs is defined as above and xk+1 := x + hf(t, x, a, b). In a similar way to the first case, we
obtain the desired estimation i.e. |Vh(s, x)− Vh(sk, x)| ≤ c|t− s|.
Now, consider the other case where s ∈]sk − θ, sk]. By the discrete dynamic programming principle
(2.27), Vh(s, x) can be written as follows:

Vh(s, x) = max
b∈B

min
a∈A

{
(sk − s)`(s, x, a, b) + Vh(sk, x+ (sk − s)f(s, x, a, b))

}
.

Therefore, we can write:

|Vh(s, x)− Vh(sk, x)| = max
b∈B

min
a∈A

{
(sk − s)|`(s, x, a, b)|+ |Vh(sk, x+ (sk − s)f(s, x, a, b))− Vh(sk, x)

}
.

From Proposition 2.6.4, Vh is Lipschitz w.r.t. the space variable. Hence there exists some real
constant c > such that:

|Vh(sk, x+ (sk − s)f(s, x, a, b))− Vh(sk, x)| ≤ c‖x+ (sk − s)f(s, x, a, b)− x‖
≤ c|sk − s| × ‖f(s, x, a, b)‖ ≤ cM ′|sk − s|,

since (τ, a, b) 7→ f(τ, x, a, b) is bounded by some real constant M ′ > 0.

Moreover, (τ, a, b) 7→ `(τ, x, a, b) is bounded by another real constant M > 0. Therefore, |(sk −
s)`(s, x, a, b)| ≤M |sk − s|. As a conclusion, we get:

|Vh(s, x)− Vh(sk, x)| ≤ max
b∈B

min
a∈A

(cM ′ +M)|sk − s| = (cM ′ +M)|sk − s|.

Corollary 2.6.6. Vh is the unique solution of the discrete dynamic programming equation (2.27) with a
terminal condition of type Vh(T, x) = Ψ(x), for any x ∈ Rd.

Proof. Consider two continuous functions u and w that satisfy the discrete dynamic programming equation
(2.27) and u(T, x) = w(T, x), for any x ∈ Rd.
We claim that u ≤ w. Indeed, let (t, x) ∈ [sk, sk+1[×Rd, for k ∈ {0, ..., N − 1}. By continuity of u and f and
by compactness of B, there exists b0 ∈ B such that for any a ∈ A:

u(t, x) ≤ (sk+1 − t)`(t, x, a, b0) + u(sk+1, x+ (sk+1 − t)f(t, x, a, b0)).

Moreover, by continuity of w and f and by compactness of A, there exists a0 ∈ A such that:

w(t, x) ≥ min
a∈A

{
(sk+1 − t)`(t, x, a, b0) + w(sk+1, x+ (sk+1 − t)f(t, x, a, b0))

}
≥ (sk+1 − t)`(t, x, a0, b0) + w(sk+1, x+ (sk+1 − t)f(t, x, a0, b0))

From the two above inequalities, we deduce that:

u(t, x)− w(t, x) ≤ u(sk+1, xk+1)− w(sk+1, xk+1), with xk+1 := x+ (sk+1 − t)f(t, x, a0, b0).

40

By the same arguments, we get

u(sk+1, xk+1)− w(sk+1, xk+1) ≤ u(sk+2, xk+2)− w(sk+2, xk+2) ≤ ... ≤ u(sN , xN)− w(sN , xN),

for some xk+2,...,xN ∈ Rd. The fact that u(sN , xN)−w(sN , xN) = u(T, xN)−w(T, xN) = 0 ends the proof
of the claim and in a similar way, we get u ≥ w which gives the desired result.

The following Proposition concerns the optimality of (α∗h[·], (b∗i)i) ∈ Γh × BN , generated by Algorithm
2.1 for the discrete time differential game (2.26).

Proposition 2.6.7. Let (t, x) ∈ [sk, sk+1[×Rd, for k ∈ {0, ..., N − 1}. For any (bi)i ∈ BN−k, we have:

Jh(t, x, α∗h[b],b) ≤ Vh(t, x),

and the equality holds when (bi)i = (b∗i)i.

Proof. From Proposition 2.6.4, we have:

Vh(t, x) = max
b∈B

min
a∈A

{
(sk+1 − t)`(t, x, a, b) + Vh(sk+1, x+ (sk+1 − t)f(t, x, a, b))

}
.

Through the instructions of Algorithm 2.1, we deduce:

Vh(t, x) = min
a∈A

{
(sk+1 − t)`(t, x, a, b∗k) + Vh(sk+1, x+ (sk+1 − t)f(t, x, a, b∗k))

}
= (sk+1 − t)`(t, x,a∗k,b∗k) + Vh(sk+1, y∗k+1).

By the same way we get

Vh(sk+1, y∗k+1) = h`(sk+1, y∗k+1,a
∗
k+1,b

∗
k+1) + Vh(sk+2, y∗k+2),

and in general, we have for any i ∈ {k + 1, ..., N − 1}:

Vh(si, y∗i) = h`(si, y∗i ,a
∗
i ,b
∗
i) + Vh(si+1, y∗i+1).

At the last time step sN = T , we have Vh(sN , y∗N) = Ψ(y∗N). Therefore we conclude:

Vh(t, x) = (sk+1 − t)`(t, x,a∗k,b∗k) + h
N−1∑
i=k+1

`(si, y∗i ,a
∗
i ,b
∗
i) + Ψ(y∗N)

= Jh(t, x, α∗h[b∗],b∗).

In a similar way, one can prove that for any (bi)i ∈ BN−k:

Jh(t, x, α∗h[b],b) ≤ Vh(t, x).

Remark 2.6.8. For (t, x) ∈ [0, T] × Rd, the couple (α∗h[·], (b∗i)i), generated by Algorithm 2.1, constitutes a
Nash equilibrium for the discrete game (2.26) in the terminology of the theory of noncooperative games.
This means that every player cannot improve his guaranteed outcome, given by Vh(t, x), by any unilateral
deviation from his optimal choice, α∗h[·] for the first player and (b∗i)i for the second player.

In order to conclude this part, we present the following result whose aim is to define a strategy for
the first player and a control for the second player, such that when the time step h goes to zero, the
corresponding value of J converges to the first player value function v].

41

Theorem 2.6.9. Let (t, x) ∈ [0, T [×Rd, there exist (α̃∗h[·], b∗h(·)) ∈ Γ× B verifying

lim
h→0+

J(t, x, α̃∗h[b∗h], b∗h) = v](t, x).

Proof. We introduce a new subset of B denoted by Bh and defined by

Bh :=
{
b(·) ∈ B | b(s) = b(si), ∀s ∈ [si, si+1[, for i = 0, ..., N − 1

}
.

Ah is the subset of A defined in a similar way to Bh.
Let (t, x) ∈ [0, T [×Rd and k ∈ {0, ..., N−1

}
such that t ∈ [sk, sk+1[and consider (α∗h[·], (b∗i)i) ∈ Γh×BN−k,

generated by Algorithm 2.1 and (α̃∗h[·], b∗h(·)) ∈ Γ× B defined by:

b∗h(s) := b∗bs/hc, and α̃∗h[b](s) := α∗h[b̂]bs/hc

where for any b(·) ∈ B, we define (b̂i)i ∈ BN−k by b̂i := b(ih) for i = k, ..., N − 1. Notice that b∗h(·) ∈ Bh
and, for any b(·) ∈ B, α̃∗h[b](·) ∈ Ah.
First, recall that the cost functional J , for (a(·), b(·)) ∈ A× B, is given by the following expression:

J(t, x, a, b) =

∫ T

t
`(s, ya,bt,x(s), a(s), b(s))ds+ Ψ(ya,bt,x(T)),

and Jh, for ((ai)i, (bi)i) ∈ AN−k ×BN−k, is given by:

Jh(t, x,a,b) = (sk+1 − t)`(t, x,ak,bk) + h
N−1∑
i=k+1

`(si, yi,ai,bi) + Ψ(yN).

For (a(·), b(·)) ∈ Ah × Bh, let’s define ((âi)i, (b̂i)i) ∈ AN−k ×BN−k such that:

âi = a(ih) and b̂i = b(ih) for i = k, ..., N − 1.

For any (a(·), b(·)) ∈ Ah × Bh, we claim that:

|J(t, x, a, b)− Jh(t, x, â, b̂)| ≤ O(h), (2.30)

which implies
|J(t, x, α̃∗h[b∗h], b∗h)− Jh(t, x, α∗h[b∗],b∗)| ≤ O(h). (2.31)

On the other hand, from Proposition 2.6.7 and Theorem 2.6.2, we have

Jh(t, x, α∗h[b∗],b∗) = Vh(t, x) and lim
h→0+

Vh(t, x) = v](t, x).

Combining the two above equalities with estimation (2.31) ends the proof.
Now, we will justify the claim (2.30). Let (a(·), b(·)) ∈ Ah×Bh and ((âi)i, (b̂i)i) ∈ AN−k×BN−k be defined
as above and denote by (ŷi)i the solution of (2.25) corresponding to ((âi)i, (b̂i)i).
One can prove the following estimations:

• For any s ∈ [t, sk+1[:
‖ya,bt,x(s)− ŷk‖ ≤ O(h).

• By induction, for any i ∈ {k + 1, ..., N − 1} and for any s ∈ [si, si+1[:

‖ya,bt,x(s)− ŷi‖ ≤ O(h).

42

• And finally:
‖ya,bt,x(T)− ŷN‖ ≤ O(h).

Using the definitions of J and Jh above, we obtain:

|J(t, x, a, b)− Jh(t, x, â, b̂)| ≤
∫ sk+1

t
|`(s, ya,bt,x(s), a(s), b(s))− `(t, x, âk, b̂k)|ds

+

N−1∑
i=k+1

∫ si+1

si

|`(s, ya,bt,x(s), a(s), b(s))− `(si, ŷi, âi, b̂i)|ds

+ |Ψ(ya,bt,x(T))−Ψ(ŷN)|.

Moreover, from the definition of a(·), b(·), (âi)i and (b̂i)i, we deduce:

• For any s ∈ [t, sk+1[, a(s) = a(t) = âk and b(s) = b(t) = b̂k.

• For any i ∈ {k + 1, ..., N − 1} and any s ∈ [si, si+1[, a(s) = a(si) = âi and b(s) = b(si) = b̂i.

Therefore, using the Lipschitz continuity of ` and Ψ, the last inequality becomes:

|J(t, x, a, b)− Jh(t, x, â, b̂)| ≤
∫ sk+1

t
L2(|s− t|+ ‖ya,bt,x(s)− ŷk‖)ds

+
N−1∑
i=k+1

∫ si+1

si

L2(|si+1 − si|+ ‖ya,bt,x(s)− ŷi‖)ds+ L3‖(ya,bt,x(T)− ŷN)‖,

where L2 and L3 are the Lipschitz constants of ` and Ψ respectively.
By the above estimations between the trajectories ya,bt,x(·) and (ŷi)i, we obtain the following estimations:∫ sk+1

t
L2(|s− t|+ ‖ya,bt,x(s)− ŷk‖)ds ≤

∫ sk+1

t
L2(h+O(h))ds ≤ hO(h) = O(h2),

and
N−1∑
i=k+1

∫ si+1

si

L2(|si+1 − si|+ ‖ya,bt,x(s)− ŷi‖)ds ≤
N−1∑
i=k+1

∫ si+1

si

L2(h+O(h))ds ≤ NhO(h) = TO(h) = O(h).

As a conclusion, we get:
|J(t, x, a, b)− Jh(t, x, â, b̂)| ≤ O(h).

2.7 A game example

Consider a zero-sum differential game with a finite time horizon T > 0 and state dimension d = 1. The
dynamics of the system is given by:

ẏ(s) = f(s, y(s), a(s), b(s)) = |a(s)− b(s)|, s ∈ [0, T],

where the first and the second player controls a(·) and b(·) take values respectively in the control sets A
and B with A = B = [−1, 1].
The distributed and the final cost functions are given by `(s, x, a, b) = ex and Ψ(·) = 0. The cost functional
J , starting from (t, x) ∈ [0, T]× R and corresponding to the controls (a(·), b(·)) ∈ A× B, is given by:

J(t, x, a, b) =

∫ T

t
`(s, ya,bt,x(s), a(s), b(s))ds.

43

2.7.1 Problem of the first player

This game corresponds to the case when the first player, by using nonanticipative strategies, tries to
minimize J . The value function corresponding to this problem is of the form:

v(t, x) = inf
α[·]∈Γ

sup
b(·)∈B

∫ T

t
ey
α[b],b
t,x (s)ds.

Since ẏ = f ≥ 0 and the distributed cost ` is strictly increasing w.r.t. x, the optimal strategy of the the first
player is to keep the system in its initial position. In other words, he tries to keep the dynamics f equal to
zero. Henceforth, the first player optimal strategy is of the form:

α∗[b](s) = b(s), ∀s ∈ [0, T].

for any choice b(·) ∈ B of the second player. Finally, we get the explicit expression of the value function v:

v(t, x) = (T − t)ex, for any t ∈ [0, T] and x ∈ R.

2.7.2 Problem of the second player

Now, we investigate the case when the second player uses nonanticipatives strategies in order to max-
imise J . The value function corresponding to this problem is:

u(t, x) := sup
β[·]∈∆

inf
a(·)∈A

∫ T

t
ey
a,β[a]
t,x (s)ds.

Again, as the distributed cost ` is strictly increasing, the optimal choice for the second player is to maximize
the dynamics f . Thus,

β∗[a](s) =

{
1 if a(s) < 0,

−1 else.

Knowing this information, the best choice of the first player is the one that minimizes the dynamics, hence
a∗(·) ≡ 0.
As a conclusion, the optimal trajectory associated to those choices is given by:

y∗t,x(s) = x+ s− t, s ∈ [t, T],

and the value function u(t, x) = ex(eT−t − 1) for any t ∈ [0, T] and x ∈ R.
On the other hand, one can check that u ≥ v, which is in accordance with the result of Corollary 2.4.5.

44

Chapter 3

Hamilton-Jacobi Approach For Differential
Game Problems With State Constraints

Publication from this chapter

N.Gammoudi and H.Zidani, A differential game control problem with state constraints, Mathematical Con-
trol and Related Fields, 2020 (submitted).

3.1 Introduction

In this chapter, we study the Hamilton-Jacobi (HJ) approach for a two-person zero-sum differential game
with state constraints and where the controls of the two players are coupled within the dynamics, the cost
functions and the state constraints. We characterize the value function of such a problem through an
auxiliary differential game free of state constraints. Furthermore, we establish a link between the optimal
strategies of the constrained problem and those of the auxiliary problem and we propose a general ap-
proach allowing to construct approximated optimal feebacks of the constrained differential game for both
players.

Two-person zero-sum differential games provide a convenient framework for analyzing real conflict situa-
tions between two players where the gain of one player corresponds certainly to a loss of the other player.
The most classical example is the Target Problem where the dynamics is controlled by both players, one
player wants the dynamical system to reach, in finite time, a given set called the target while his opponent
tries to avoid this target forever (see [41, 40, 42]). Another classical example is the Pursuit-Evasion game
for which each player controls only half of the system’s coordinates and the cost is the capture time which
is the first time instant when the first player’s coordinates become close enough to those of his opponent
(see [46, 12, 62]).

Differential games can be studied in different contexts depending on the information advantage accorded
to the two players. The most popular class of information pattern is nonanticipative strategies where one
of the two players knows, at each time instant, the past and present choices of his opponent without hav-
ing any idea about his future actions, see [59, 60, 119, 129, 56, 57].

We consider a two-person zero-sum differential game subject to state constraints where the first player is
allowed to use nonanticipative strategies which are mappings from the set of controls of the second player,
B, to the actions set of the first player, A. For a given finite time horizon T > 0, consider the following
dynamical system: {

ẏ(s) = f(s, y(s), α[b](s), b(s)), a.e. s ∈ [t, T],

y(t) = x,
(3.1)

45

where α[·] ∈ Γ is a nonanticipative strategy of the first player, b(·) ∈ B is an action of the second player,
and f is a continuous function (more precise definitions and assumptions are given in section 3.2). The
absolutely continuous solution of (3.1) is denoted by yα[b],b

t,x (·) and will be referred as the system trajectory
corresponding to (α[b](·), b(·)) ∈ A × B. This trajectory is said to be admissible if for any s ∈ [t, T],
y
α[b],b
t,x (s) ∈ K where K is a closed non-empty subset of Rd representing the constraints set.

We are interested in the following differential game with maximum running cost:

v(t, x) := inf
α[·]∈Γ

π(t, x;α) (3.2)

with the convention that inf ∅ = +∞ and where π is defined by:

π(t, x;α) :=

 sup
b(·)∈B

{(
max
s∈[t,T]

φ(y
α[b],b
t,x (s))

)∨
ψ(y

α[b],b
t,x (T))

}
, if yα[b],b

t,x (·) is admissible, ∀b(·) ∈ B,

+∞, else.

The cost functions φ : Rd → R and ψ : Rd → R are continuous. This problem formulation can model the
situation where the first player, representing the controller, uses his advantage of information to counteract
to unknown disturbances, representing the second player of the game, that can affect the system and the
cost functions, see section 3.5. For such situations, the traditional approach is to represent the distur-
bances via a statistical model and to optimize the expected value of the cost. However, this approach may
not be effective against some catastrophic cases and it is not always possible to have a good statistical
model. Therefore this situation can be modeled by a two-person zero-sum differential game where the
first player minimizes the cost in the case of the worst behavior of his opponent. We can also imagine
another game example where the second player objective is to maximize the cost π or to violate the state
constraints.

Without state constraints, K ≡ Rd, this differential game was considered in [121, 15] with a maximum
bounded cost function and in [116] with a Lipschitz continuous infimum cost. It was also studied in the
case of a single controller in [111] through characterizing the value function epigraph by use of a viability
kernel.

In the presence of state constraints, K 6= Rd, some difficulties appear. Indeed, the value function v may
become discontinuous and its characterization as the unique viscosity solution of an HJ equation requires
some additional assumptions involving the dynamics f and K. In the case of one controller problems,
the most popular assumption which is the Inward Pointing Condition, imposes the existence of a control
value, at each point of the boundary of K, that lets the dynamics point into the interior of K. We refer to
[34, 104, 124] for this assumption and to [103, 116, 121] for weaker inward pointing assumptions. Equiv-
alent assumptions in the case of a two-person game can be found in [46, 23, 24]. Such assumptions
cannot be always satisfied, which complicates the characterization of the value function as solution of
an HJ equation. In this general setting, K 6= Rd, this problem has been studied in [6] in the case of a
single controller and without assuming any controllability assumption by following the level set approach
introduced in [5].

The first contribution of this chapter is that we do not assume any controllability assumption on the dy-
namics or on the set of state constraints. In addition to that, controls of the two players are allowed to be
coupled within the dynamics, the cost functions and the state constraints. Moreover, we consider weak
assumptions on f , φ and ψ which are supposed to be unbounded and locally Lipschitz continuous.

Here, we characterize v through a locally Lipschitz continuous value function of an unconstrained auxiliary
differential game which is the unique viscosity solution of an HJ equation with an obstacle term. First, the
set of state constraints K can be characterized via the signed distance dK(·) as follows:

∀y ∈ Rd, dK(y) ≤ 0⇔ y ∈ K.

46

The value function w of the auxiliary problem is defined, for t ∈ [0, T] and (x, z) ∈ Rd × R, by:

w(t, x, z) := inf
α[·]∈Γ

sup
b(·)∈B

{(
max
s∈[t,T]

φ̂(y
α[b],b
t,x (s), z)

)∨
ψ̂(y

α[b],b
t,x (T), z)

}
(3.3)

where for (y, z) ∈ Rd × R, the functions φ̂ and ψ̂ are given by:

φ̂(y, z) := (φ(y)− z)
∨
dK(y) and ψ̂(y, z) := ψ(y)− z.

Then, we prove that w is the unique viscosity solution of the following HJ equation:{
min

(
−∂tw(t, x, z) +H(t, x,Dxw(t, x, z)), w(t, x, z)− φ̂(x, z)

)
= 0, on [0, T [×Rd × R,

w(T, x, z) = φ̂(x, z)
∨
ψ̂(x, z), on Rd × R,

(3.4)

where the hamiltonian H is given by:

H(t, x, p) := min
b∈B

max
a∈A
− 〈f(t, x, a, b), p〉, for (t, x, p) ∈ [0, T]× Rd × Rd.

The level sets of the auxiliary value function w can be used, without any additional assumptions, to esti-
mate the constrained differential game value function v as follows:

inf{z ∈ R | w(t, x, z) ≤ 0} ≤ v(t, x) ≤ inf{z ∈ R | w(t, x, z) < 0},

and when some convexity assumption is verified by f , we extend the main result of [5] to the case of a
two-player games and we determinate v by the following relation:

v(t, x) = inf{z ∈ R | w(t, x, z) ≤ 0}.

Another contribution of this chapter is to present a general approach allowing to construct approximated
optimal feebacks of the constrained differential game for both players by use of the auxiliary differential
game value function w. Indeed, we prove that an optimal strategy of the auxiliary problem (3.3) associ-
ated to a particular initial condition remains also optimal for the constrained problem (3.2). In addition to
that, we propose algorithms to reconstruct approximated optimal strategies and controls for the auxiliary
differential game.

Finally, as an illustrative example, we study an aircraft landing problem in the presence of windshear.
Indeed, the best strategy to avoid a failed landing, that can occurs because of quick changes of the wind
velocity, is to steer the aircraft to the maximal altitude that can be reached, during an interval of time, in
order to prevent a crash on the ground. In [103, 104], a Chebyshev-type optimal control problem was pro-
posed and an approximate solution is provided. The Hamilton-Jacobi-Bellman approach was applied in [6]
to solve this problem after supposing the knowledge of the wind velocity fields. In [29], the aircraft landing
problem was formulated as a nonlinear differential game with state constraints and a semi-Lagrangian
scheme was applied to compute an approximation of the value function.

In chapter 3, we propose a 5D differential game model with maximum running cost, where wind distur-
bances are considered as a second player and the first player tries, by use of nonanticipative strategies,
to counteract to some dangerous scenarios that can occur because of wind disturbances.

We organize this chapter as follows. Section 3.2 introduces the constrained differential game with maxi-
mum running cost and formulates its associated auxiliary problem. Section 3.3 shows how the auxiliary
problem can be used to overcome the difficulties coming from the state constraints for the original problem.
Section 3.4 presents some results concerning reconstruction of optimal trajectories for the auxiliary prob-
lem. A numerical example is given in section 3.5 which concerns an aircraft landing problem in presence
of wind disturbances.

47

3.2 Problem formulation

3.2.1 Settings of the constrained differential game

Consider a two-person zero-sum differential game with finite time horizon T > 0. Actions of the first
and the second players are measurable functions that take values respectively in A, a compact set of Rp
(p ≥ 1), and B, a compact set of Rq (q ≥ 1). The set of admissible controls of the first and the second
players, A and B, are defined respectively as follows:

A :=
{
a(·) : [t, T]→ A, measurable

}
and B :=

{
b(·) : [t, T]→ B, measurable

}
.

In this chapter, the first player is allowed to use nonanticipative strategies.

Definition 3.2.1. Following the formulation of Elliott and Kalton [56], a nonanticipative strategy of the first
player is a map α[·] : B → A, such that for any τ ≤ T and any b(·), b′(·) ∈ B, if b(s) = b′(s) for almost every
s ≤ τ , then α[b](·) = α[b′](·) almost everywhere in [0, τ].
We denote by Γ the set of nonanticipative strategies of the first player.

In other words, the first player takes his control decision at each time instant with the knowledge of the
past and current choices of his opponent and without any idea about his future decisions.

For a choice (α[·], b(·)) ∈ Γ× B of the two players, consider the following dynamical system{
ẏ(s) = f(s, y(s), α[b](s), b(s)), a.e. s ∈ [t, T],

y(t) = x ∈ Rd.
(3.5)

The corresponding absolutely continuous solution of (3.5) is denoted by yα[b],b
t,x (·) and represents the sys-

tem trajectory.

Furthermore, the following hypothesis will be considered throughout this chapter:

(H3.1) The dynamics f : [0, T] × Rd × Rp × Rq 7→ Rd is continuous and for any R > 0, there exists
Lf (R) > 0, such that for any (a, b) ∈ A×B, s ∈ [0, T] and y1, y2 ∈ Rd verifying ‖y1‖, ‖y2‖ ≤ R:

‖f(s, y1, a, b)− f(s, y2, a, b)‖ ≤ Lf (R)‖y1 − y2‖.

Moreover, there exists cf > 0, s.t. ∀ y ∈ Rd, max
{
‖f(s, y, a, b)‖, s ∈ [0, T], (a, b) ∈ A×B

}
≤ cf (1 + ‖y‖).

(H3.2) The running cost function φ : Rd 7→ R is locally Lipschitz continuous, i.e. for any R > 0 there exists
Lφ(R) > 0 s.t. for any y1, y2 ∈ Rd verifying ‖y1‖, ‖y2‖ ≤ R:

|φ(y1)− φ(y2)| ≤ Lφ(R)‖y1 − y2‖.

Moreover, there exists cφ > 0 such that ∀y ∈ Rd, |φ(y)| ≤ cφ(1 + ‖y‖).

(H3.3) The final cost function ψ : Rd 7→ R is locally Lipschitz continuous, i.e. for any R > 0 there exists
Lψ(R) > 0 s.t. for any y1, y2 ∈ Rd verifying ‖y1‖, ‖y2‖ ≤ R:

|ψ(y1)− ψ(y2)| ≤ Lψ(R)‖y1 − y2‖.

There exists also cψ > 0 such that ∀y ∈ Rd, |ψ(y)| ≤ cψ(1 + ‖y‖).

Let K be a non-empty closed subset of Rd representing the set of state constraints.

48

Definition 3.2.2. A trajectory ya,bt,x(·), associated to a couple of actions of the two players (a(·), b(·)) ∈ A×B,
is said to be admissible if it remains in K at any time instant s ∈ [t, T].

We are interested in the following state-constrained differential game with maximum running cost:

v(t, x) := inf
α[·]∈Γ

π(t, x;α) (3.6)

with the convention that inf ∅ = +∞ and where π is defined by:

π(t, x;α) :=

 sup
b(·)∈B

{(
max
s∈[t,T]

φ(y
α[b],b
t,x (s))

)∨
ψ(y

α[b],b
t,x (T))

}
, if yα[b],b

t,x (·) is admissible, ∀b(·) ∈ B,

+∞, else.

Problem (3.6) describes the situation where the first player is exploiting his information advantage and
trying to find nonanticipative strategies that guarantee the admissibility of trajectories against any choice
of the second player and minimize the cost functional π. This formulation can model the case where a
controller tries to counteract to unknown disturbances which can affect the system and the cost functions.
One can imagine another game example where the second player objective is to maximize the cost π or
to violate the state constraints.

In general, for such state-constrained optimal control problems (K 6= Rd), the value function v is not
essentially continuous and may require further controllability assumptions to characterize it as the unique
viscosity solution of an appropriate HJ equation. An idea about such assumptions in the case of a two-
person differential game can be found in [46, 23, 24].

As we said in section 3.1, we do not impose any controllability assumptions in this work. Following [5], we
introduce an auxiliary control problem free of state constraints with a more regular value function allowing
us to characterize v.

3.2.2 Associated auxiliary problem

First consider the augmented dynamics f̂ , defined for s ∈ [0, T], x̂ := (x, z) ∈ Rd × R and (a, b) ∈ A× B,
by:

f̂(s, x̂, a, b) :=

(
f(s, x, a, b)

0

)
(3.7)

Denote by ŷ
α[b],b
t,x,z (·), for (α[·], b(·)) ∈ Γ × B, the unique solution of the following augmented differential

system: {
˙̂y(s) = f̂(s, ŷ(s), α[b](s), b(s)), a.e. s ∈ [t, T],

ŷ(t) = (x, z) ∈ Rd × R.
(3.8)

Since the last component of the augmented dynamics f̂ is equal to zero, ŷα[b],b
t,x,z (·) can be expressed also

as ŷα[b],b
t,x,z (·) :=

(
y
α[b],b
t,x (·), z

)
, where yα[b],b

t,x (·) is the solution of (3.5).

Moreover, the set of constraints K is closed. Henceforth, it can be characterized as follows:

∀y ∈ Rd, dK(y) ≤ 0⇔ y ∈ K, (3.9)

where dK(·) is the signed distance to K, defined by:

dK(x) :=

{
−d(x, ∂K) if x ∈ K
d(x, ∂K) else,

49

which is a Lipschitz continuous function. Therefore an admissible trajectory yα[b],b
t,x (·), corresponding to a

couple of controls (α[b](·), b(·)) ∈ A× B can be characterized by means of the signed distance:

y
α[b],b
t,x (s) ∈ K, ∀s ∈ [t, T]⇔ max

s∈[t,T]
dK(y

α[b],b
t,x (s)) ≤ 0.

The value function w of the auxiliary problem can be defined, for t ∈ [0, T] and (x, z) ∈ Rd × R, by :

w(t, x, z) := inf
α[·]∈Γ

sup
b(·)∈B

{(
max
s∈[t,T]

φ̂(y
α[b],b
t,x (s), z)

)∨
ψ̂(y

α[b],b
t,x (T), z)

}
(3.10)

where for (x, z) ∈ Rd × R and s ∈ [0, T], the functions φ̂ and ψ̂ are given by:

φ̂(x, z) := (φ(x)− z)
∨
dK(x) and ψ̂(x, z) := ψ(x)− z.

Remark 3.2.3. When the constrained problem (3.6) is of type Bolza, the auxiliary problem can be for-
mulated by modifying the augmented dynamics f̂ and the functions φ̂ and ψ̂. In this case, the objective
function J is given by:

J(t, x, a, b) :=

∫ T

t
`(s, ya,bt,x(s), a(s), b(s)) + ψ(ya,bt,x(T))

for (t, x) ∈ [0, T] × Rd and (a(·), b(·)) ∈ A × B and where ` and ψ are respectively the distributed and the
final cost functions. For x̂ = (x, z) ∈ Rd × R, consider the augmented dynamics f̂ :

f̂(s, x̂, a, b) :=

(
f(s, x, a, b)
−`(s, x, a, b)

)
,

and the cost functions φ̂ and ψ̂:

φ̂(x̂) := dK(x) and ψ̂(x̂) = ψ(x)− z.

Let ŷα[b],b
t,x̂ (·) be the unique continuous solution of the following differential system, associated to (α[b](·), b(·)) ∈

A× B: {
˙̂y(s) = f̂(s, ŷ(s), α[b](s), b(s)), a.e. in [t, T],

ŷ(t) = x̂ := (x, z) ∈ Rd × R.

Therefore, the corresponding auxiliary problem is given, for t ∈ [0, T] and x̂ ∈ Rd × R, by:

w(t, x̂) := inf
α[·]∈Γ

sup
b(·)∈B

{(
max
s∈[t,T]

φ̂(ŷ
α[b],b
t,x̂ (s))

)∨
ψ̂(ŷ

α[b],b
t,x̂ (T))

}
.

The above formulation still valid even for a problem of type Mayer (` ≡ 0). Furthermore, all the results that
will be seen in the following sections still true also for a state-constrained problem of type Bolza or Mayer.

3.3 Properties of the value functions v and w

This section is devoted to some properties of the auxiliary value function w and to show how it can be
used to characterize v, the value function of the constrained problem (3.6).

The following Proposition gives some results concerning the regularity of w and its characterization
through Hamilton Jacobi equations.

50

Proposition 3.3.1. Assume that hypothesis (H3.1), (H3.2) and (H3.3) hold, then:

(i) w verifies a dynamic programming principle. For any h ∈ [0, T − t],

w(t, x, z) = inf
α[·]∈Γ

sup
b(·)∈B

{
w(t+ h, y

α[b],b
t,x (t+ h), z)

∨(
max

s∈[t,t+h]
φ̂(y

α[b],b
t,x (s), z)

)}
. (3.11)

(ii) The value function w is locally Lipschitz continuous on [0, T]× Rd × R.

(iii) w is the unique viscosity solution of the following HJ equation:{
min

(
−∂tw(t, x, z) +H(t, x,Dxw(t, x, z)), w(t, x, z)− φ̂(x, z)

)
= 0, in [0, T [×Rd × R,

w(T, x, z) = φ̂(x, z)
∨
ψ̂(x, z), in Rd × R,

(3.12)

where the hamiltonian H is given by:

H(t, x, p) := min
b∈B

max
a∈A
− 〈f(t, x, a, b), p〉, for (t, x, p) ∈ [0, T]× Rd × Rd. (3.13)

Proof. Here, we give only the proof of statement (iii). The proofs of (i) and (ii) can be found in Appendix
3.6 of this chapter.

We start by showing that w is a super-solution of (3.12). Let ξ be a function of class C1 and (t, x, z) be a
local minimum for w − ξ such that w(t, x, z) = ξ(t, x, z). Assume that there exists δ > 0 such that

−∂tξ(t, x, z) +H(t, x,Dxξ(t, x, z)) = −δ < 0.

In this case, there exists b0 ∈ B such that, for any a ∈ A,

−∂tξ(t, x, z)− 〈f(t, x, a, b0), Dxξ(t, x, z)〉 ≤ −δ.

Now let’s fix h > 0 small enough and α[·] ∈ Γ. We have α[b0](s) ∈ A for any time instant s ∈ [t, T].
Henceforth, from the last inequality, we get:

−∂tξ(t, x, z)− 〈f(t, x, α[b0](s), b0), Dxξ(t, x, z)〉 ≤ −δ, for any s ∈ [t, t+ h].

By continuity of ξ, f and Dxξ, we obtain for any s ∈ [t, t+ h]:

−∂tξ(s, yα[b0],b0
t,x (s), z)− 〈f(s, y

α[b0],b0
t,x (s), α[b0](s), b0), Dxξ(s, y

α[b0],b0
t,x (s), z)〉 ≤ −δ

2
,

henceforth∫ t+h

t

(
− ∂tξ(s, yα[b0],b0

t,x (s), z)− 〈f(s, y
α[b0],b0
t,x (s), α[b0](s), b0), Dxξ(s, y

α[b0],b0
t,x (s), z)〉

)
ds ≤ −δh

2
,

which implies that

ξ(t, x, z)− ξ(t+ h, y
α[b0],b0
t,x (t+ h), z) ≤ −δh

2
.

On the other hand, since w − ξ has a local minimum at (t, x, z) we obtain:

(w − ξ)(t+ h, y
α[b0],b0
t,x (t+ h), z) ≥ (w − ξ)(t, x, z).

From the two above inequalities, we deduce that

δh

2
+ w(t, x, z) ≤ w(t+ h, y

α[b0],b0
t,x (t+ h), z) ≤ w(t+ h, y

α[b0],b0
t,x (t+ h), z)

∨(
max

s∈[t,t+h]
φ̂(y

α[b0],b0
t,x (s), z)

)
.

51

Therefore we get

δh

2
+ w(t, x, z) ≤ sup

b(·)∈B

{
w(t+ h, y

α[b],b
t,x (t+ h), z)

∨(
max

s∈[t,t+h]
φ̂(y

α[b],b
t,x (s), z)

)}
.

Since the last inequality holds for any α[·] ∈ Γ, we deduce that

δh

2
+ w(t, x, z) ≤ inf

α[·]∈Γ
sup
b(·)∈B

{
w(t+ h, y

α[b],b
t,x (t+ h), z)

∨(
max

s∈[t,t+h]
φ̂(y

α[b],b
t,x (s), z)

)}
= w(t, x, z),

which is impossible. We conclude that

−∂tξ(t, x, z) +H(t, x,Dxξ(t, x, z)) ≥ 0.

On the other hand, φ̂(x, z) ≤ max
s∈[t,T]

φ̂(y
α[b],b
t,x (s), z) ≤ w(t, x, z) = ξ(t, x, z). As a conclusion, min

(
−

∂tξ(t, x, z) +H(t, x,Dxξ(t, x, z)), ξ(t, x, z)− φ̂(x, z)
)
≥ 0, which means that w is a super-solution of (3.12).

Now, we will show that w is a sub-solution of (3.12). Let ξ be a function of class C1 such that w − ξ has a
maximum at (t, x, z) and w(t, x, z) = ξ(t, x, z). If ξ(t, x, z) ≤ φ̂(x, z), then ξ satisfies:

min
(
− ∂tξ(t, x, z) +H(t, x,Dxξ(t, x, z)), ξ(t, x, z)− φ̂(x, z)

)
≤ 0,

which means that w is a sub-solution of (3.12).

If not, we have w(t, x, z) > φ̂(x, z). Henceforth, there exists τ > 0, such that for any admissible trajectory
y
α[b],b
t,x (·), we have w(s, y

α[b],b
t,x (s), z) > φ̂(y

α[b],b
t,x (s), z), for any s ∈ [t, t + τ]. In this case and by using the

dynamic programming principle (3.11) verified by w between t and t+ h, for any 0 < h ≤ τ , we get

w(t, x, z) = inf
α[·]∈Γ

sup
b(·)∈B

w(t+ h, y
α[b],b
t,x (t+ h), z). (3.14)

Now, suppose that there exists δ > 0, such that −∂tξ(t, x, z) + H(t, x,Dxξ(t, x, z)) = δ. From Lemma
2.4.4 of chapter 2, there exists α∗[·] ∈ Γ such that for any b(·) ∈ B and h > 0 small enough the following
inequality holds:

ζ(t+ h, y
α∗[b],b
t,x (t+ h), z)− ζ(t, x, z) ≤ −δh

4
.

On the other hand, from the definition of ξ, we get for any b(·) ∈ B

w(t+ h, y
α∗[b],b
t,x (t+ h), z) ≤ ζ(t+ h, y

α∗[b],b
t,x (t+ h), z),

which implies that

sup
b(·)∈B

w(t+ h, y
α∗[b],b
t,x (t+ h), z)− w(t, x, z) ≤ −δh

4
,

henceforth, we conclude that

inf
α[·]∈Γ

sup
b(·)∈B

w(t+ h, y
α[b],b
t,x (t+ h), z)− w(t, x, z) ≤ −δh

4
< 0.

From the equality (3.14), the last inequality is not possible. Hence, we deduce that

−∂tξ(t, x, z) +H(t, x,Dxξ(t, x, z)) ≤ 0,

which concludes the proof. Uniqueness of w as the viscosity solution of (3.12) comes from the comparison
result given in [5, Appendix].

52

After its characterization, w can be exploited to get an estimation of the value function v defined in
(3.6) and this is the aim of the following Theorem.

Theorem 3.3.2. Assume that hypothesis (H3.1), (H3.2) and (H3.3) hold. The value function v can be
estimated by means of w through the following relation :

inf{z ∈ R | w(t, x, z) ≤ 0} ≤ v(t, x) ≤ inf{z ∈ R | w(t, x, z) < 0}, (3.15)

for any (t, x) ∈ [0, T]×K.

Proof. We start by proving that if v(t, x) ≤ z, then w(t, x, z) ≤ 0. Let z ∈ R such that v(t, x) < z. By
definition of v, there exists a nonanticipative strategy α0[·] ∈ Γ such that for any b(·) ∈ B, the trajectory
y
α0[b],b
t,x (·) remains in K and π(t, x;α0) ≤ z. Therefore for any b(·) ∈ B we get

max
s∈[t,T]

dK(y
α0[b],b
t,x (s)) ≤ 0 and sup

b(·)∈B

{(
max
s∈[t,T]

φ(y
α0[b],b
t,x (s))

)∨
ψ(y

α0[b],b
t,x (T))

}
≤ z.

From the two above inequalities, we deduce that

w(t, x, z) ≤ sup
b(·)∈B

{(
max
s∈[t,T]

φ̂(y
α0[b],b
t,x (s), z)

)∨
ψ̂(y

α0[b],b
t,x (T), z)

}
≤ 0.

We conclude that w(t, x, z) ≤ 0 whenever z > v(t, x). By continuity of w w.r.t. z, we deduce that for any
z ≥ v(t, x) we have w(t, x, z) ≤ 0. Henceforth

inf{z ∈ R | w(t, x, z) ≤ 0} ≤ v(t, x).

Now let z ∈ R such that w(t, x, z) < 0 and δ0 := −w(t, x, z) > 0. From the definition of w, there exists
α0[·] ∈ Γ verifying:

sup
b(·)∈B

{(
max
s∈[t,T]

φ̂(y
α0[b],b
t,x (s), z)

)∨
ψ̂(y

α0[b],b
t,x (T), z)

}
≤ w(t, x, z) + δ0 = 0.

Therefore for any b(·) ∈ B the trajectory yα0[b],b
t,x (·) is admissible and

sup
b(·)∈B

{(
max
s∈[t,T]

φ(y
α0[b],b
t,x (s))

)∨
ψ(y

α0[b],b
t,x (T))

}
≤ z,

which means that π(t, x;α0) ≤ z. By definition of v, we deduce that v(t, x) ≤ z. This proves that

v(t, x) ≤ inf{z ∈ R | w(t, x, z) < 0}.

Remark 3.3.3. For any (t, x) ∈ [0, T] × K, if inf{z ∈ R | w(t, x, z) ≤ 0} = +∞, thereby v(t, x) = +∞
which means that there is no strategies of the first player that guarantee the admissibility of the trajectories
for any action b(·) ∈ B of the second player. However if

inf{z ∈ R | w(t, x, z) ≤ 0} ∈ R,

then the infimum is reached by some z ∈ R. Furthermore, if inf{z ∈ R | w(t, x, z) < 0} ∈ R then one can
prove that:

inf{z ∈ R | w(t, x, z) ≤ 0} = v(t, x) = inf{z ∈ R | w(t, x, z) < 0}.
On the other hand it may occur that

inf{z ∈ R | w(t, x, z) ≤ 0} ∈ R and inf{z ∈ R | w(t, x, z) < 0} = +∞

and in this case we have no information on v(t, x).

53

Remark 3.3.4. In [5], it was shown that when some convexity assumption is verified by f , a precise
connection is established between v and w. Theorem 3.3.2 gives a more general result on the link between
those two value functions.

When some convexity assumption is verified by f and A, we can prove a more precise connection.
For this, assume that:

(H3.4) A is a convex subset of Rp and the dynamics f is affine in the first control variable a i.e. f is of the
form

f(t, x, a, b) := f0(t, x, b) + f1(t, x, b)a.

The aim of the following Theorem is to characterize the value of the constrained problem v through the
auxiliary value functionw. In addition to that, it establishes a link between optimal strategies of the auxiliary
and the constrained problems.

Theorem 3.3.5. Assume that assumptions (H3.1), (H3.2), (H3.3) and (H3.4) hold and let (t, x) ∈ [0, T]×K.

(i) Suppose that w(t, x, z) ≤ 0 for some z ∈ R, then there exists α∗[·] ∈ Γ such that for any b(·) ∈ B, the
trajectory yα

∗[b],b
t,x (·) is admissible and(

max
s∈[t,T]

φ(y
α∗[b],b
t,x (s))

)∨
ψ(y

α∗[b],b
t,x (T)) ≤ z.

(ii) The exact value of v can be determined through the following relation:

v(t, x) = inf{z ∈ R | w(t, x, z) ≤ 0}. (3.16)

(iii) If z := v(t, x) <∞, then any optimal strategy of the auxiliary problem (3.10) on [t, T] starting from the
initial state (x, z) is optimal for the constrained problem (3.6) on [t, T] associated with the initial position x.

Proof. (i) The proof of this assertion uses some basic ideas from [40, 41, 42, 69]. First, let Λ : B → A be
a set-valued map defined, for any b(·) ∈ B, by:

Λ(b) :=

{
a(·) ∈ A |

(
max
s∈[t,T]

φ̂(ya,bt,x(s), z)
)∨

ψ̂(ya,bt,x(T), z) ≤ 0

}
.

Λ(·) is said to be nonanticipative if for any τ ∈ [0, T − t], for any b1(·), b2(·) ∈ B which coincide almost
everywhere on [t, t + τ] and for any a1(·) ∈ Λ(b1), one can find a2(·) ∈ Λ(b2) which coincides with a1(·)
almost everywhere on [t, t+ τ] (see [40, 41, 42]).

Now, let (t, x, z) ∈ [0, T] × Rd × R such that w(t, x, z) ≤ 0. By the definition of w, for any n ∈ N∗, there
exists αn[·] ∈ Γ such that:

sup
b(·)∈B

{(
max
s∈[t,T]

φ̂(y
αn[b],b
t,x (s), z)

)∨
ψ̂(y

αn[b],b
t,x (T), z)

}
≤ 1

n
.

We start by showing that the set-valued map Λ(·) has nonempty values. Indeed, let fix b(·) ∈ B and let
yn(·) be the solution of: {

ẏn(s) = f(s, yn(s), αn[b](s), b(s)), a.e. s ∈ [t, T],

yn(t) = x.

54

Therefore, for any n ∈ N∗, yn(·) verifies:(
max
s∈[t,T]

φ̂(yn(s), z)
)∨

ψ̂(yn(T), z) ≤ 1

n
.

Now, denote by S[t,T](x) the set of absolutely continuous solutions of:{
ẏ(s) ∈ f(s, y(s), A, b(s)), a.e. s ∈ [t, T],

y(t) = x.

Under hypothesis (H3.1) and (H3.4), S[t,T](x) is a compact subset of W 1,1([0, T]) for the topology of
C([0, T];Rd) (see [7, 8]). Therefore when n→∞, yn(·) converges to y∗(·) ∈ S[t,T](x) solution of:{

ẏ∗(s) ∈ f(s, y∗(s), A, b(s)), a.e. s ∈ [t, T],

y∗(t) = x.

By the measurable selection theorem from [69], there exists a control of the first player, ab(·) ∈ A, depend-
ing on b(·) ∈ B which is already fixed, verifying y∗(·) = yab,bt,x (·) almost everywhere on [t, T]. By continuity
of φ̂ and ψ̂, we conclude that: (

max
s∈[t,T]

φ̂(yab,bt,x (s), z)
)∨

ψ̂(yab,bt,x (T), z) ≤ 0,

which means that ab(·) ∈ Λ(b) and therefore Λ(·) has nonempty values.

Then, we claim that the set-valued map Λ(·) is nonanticipative. To prove this claim, let τ ∈ [0, T − t],
b1(·), b2(·) ∈ B coinciding almost everywhere on [t, t+ τ] and consider a1(·) ∈ Λ(b1). From the definition of
Λ, the trajectory ya1,b2

t,x (·) is admissible (will remain in K on [t, t+ τ]) and verifies:(
max

s∈[t,t+τ]
φ(ya1,b2

t,x (s))
)∨

ψ(ya1,b2
t,x (t+ τ)) ≤ z.

Now, consider a2(·) ∈ A such that a2(·) := a1(·) on [t, t + τ]. Starting at time t + τ from x′:=ya1,b2
t,x (t + τ)

and by exploiting the same arguments already used to show that Λ(·) has nonempty values, there exists
ab2(·) ∈ A s.t. y

ab2 ,b2
t+τ,x′(·) is admissible i.e. will remain in K on [t+ τ, T] and verifies:(

max
s∈[t+τ,T]

φ(y
ab2 ,b2
t+τ,x′(s))

)∨
ψ(y

ab2 ,b2
t+τ,x′(T)) ≤ z.

Define the control a2(·) ∈ A by:

a2(·) =

{
a1(·) on [t, t+ τ],

ab2(·) on [t+ τ, T]

which belongs to Λ(b2) and coincides almost everywhere with a1(·) on [t, t + τ]. Henceforth we conclude
that Λ(·) is nonanticipative.

Finally, Λ(·) has closed values for the weak topology of L2([0, T], A). Indeed, let (an(·))n be a sequence of
Λ(b), for a fixed control of the second player b(·) ∈ B, that converges, for the weak topology of L2([0, T], A),
to some control a(·) ∈ A.

Since for any n ∈ N, an(·) ∈ Λ(b), the trajectory yan,bt,x (·) verifies:(
max
s∈[t,T]

φ̂(yan,bt,x (s), z)
)∨

ψ̂(yan,bt,x (T), z) ≤ 0.

55

Under hypothesis (H3.1) and (H3.4), the sequence (yan,bt,x (·))n will converge, for the compact convergence,
to ya,bt,x(·). By continuity of φ̂ and ψ̂, we deduce that:(

max
s∈[t,T]

φ̂(ya,bt,x(s), z)
)∨

ψ̂(ya,bt,x(T), z) ≤ 0.

Therefore, a(·) belongs to Λ(b). We conclude that the set-valued map Λ(·) has closed values for the weak
topology of the Hilbert space L2([0, T], A).

To end this proof, it is enough to use [41, Lemma 4.1] that guarantees the existence of a nonanticipative
selection α∗[·] such that for any b(·) ∈ B, α∗[b](·) ∈ Λ(b). We conclude that there exists α∗[·] ∈ Γ s.t. for
any b(·) ∈ B, the trajectory yα

∗[b],b
t,x (·) is admissible and(

max
s∈[t,T]

φ(y
α∗[b],b
t,x (s))

)∨
ψ(y

α∗[b],b
t,x (T)) ≤ z.

(ii) From Theorem 3.3.2, we already know that

inf{z ∈ R | w(t, x, z) ≤ 0} ≤ v(t, x).

On the other hand, let z ∈ R such that w(t, x, z) ≤ 0. From assertion (i), there exists α∗[·] ∈ Γ s.t. for any
b(·) ∈ B, the trajectory yα

∗[b],b
t,x (·) is admissible and(

max
s∈[t,T]

φ(y
α∗[b],b
t,x (s))

)∨
ψ(y

α∗[b],b
t,x (T)) ≤ z,

which means that π(t, x;α∗) ≤ z. By definition of v, we conclude that v(t, x) ≤ z, for any z ∈ R verifying
w(t, x, z) ≤ 0. Henceforth,

v(t, x) ≤ inf{z ∈ R | w(t, x, z) ≤ 0}.

(iii) Let z̄ := v(t, x) < ∞ and α∗[·] ∈ Γ be an optimal strategy of the auxiliary problem (3.10) on [t, T]
associated with the initial point (x, z̄) which means that

w(t, x, z̄) = sup
b(·)∈B

{(
max
s∈[t,T]

φ̂(y
α∗[b],b
t,x (s), z̄)

)∨
ψ̂(y

α∗[b],b
t,x (T), z̄)

}
.

Since z̄ = v(t, x), we get w(t, x, z̄) ≤ 0 and hence

sup
b(·)∈B

{(
max
s∈[t,T]

φ̂(y
α∗[b],b
t,x (s), z̄)

)∨
ψ̂(y

α∗[b],b
t,x (T), z̄)

}
≤ 0.

Therefore, for any b(·) ∈ B, the trajectory yα
∗[b],b

t,x (·) is admissible and

sup
b(·)∈B

{(
max
s∈[t,T]

φ(y
α∗[b],b
t,x (s))

)∨
ψ(y

α∗[b],b
t,x (T))

}
≤ z̄ = v(t, x).

Henceforth, π(t, x;α∗) ≤ v(t, x) = inf
α[·]∈Γ

π(t, x;α). We conclude that α∗[·] is an optimal strategy for the

constrained problem (3.6) associated with the initial state x.

Comments: Reduction of the computational domain Since problem (3.10) is free of state con-
straints, the auxiliary value function w is defined on [0, T] × Rd × R. Nevertheless, for computational
issues, we should restrict the domain of interest of w to a neighbourhood of K × R. To this end, we will
follow a technique developed in [6] where the auxiliary value function w will keep a constant value outside
the neighbourhood of K ×R. Let µ > 0 be a fixed parameter and Kµ be a neighbourhood of K defined by

56

Kµ := K + µBRd .

The idea consists in introducing a truncation of dK, φ̂ and ψ̂ to obtain a new control problem free of state
constraints with value function wµ characterized by a constant value outside Kµ.

First consider the Lipschitz continuous function dµK := dK
∧
µ which verifies for any y ∈ Rd:

dµK(y) ≤ 0⇔ y ∈ K, dµK(y) ≤ µ, and dµK(y) = µ⇔ y /∈ Kµ.

Furthermore, we consider a truncation of φ̂ and ψ̂ as follows:

φ̂µ := φ̂
∧
µ and ψ̂µ := ψ̂

∧
µ.

Finally, we define the specific auxiliary value function wµ, for (t, x, z) ∈ [0, T]× Rd × R as:

wµ(t, x, z) := inf
α[·]∈Γ

sup
b(·)∈B

{(
max
s∈[t,T]

φ̂µ(y
α[b],b
t,x (s), z)

)∨
ψ̂µ(y

α[b],b
t,x (T), z)

}
,

which verifies the following relation:

wµ(t, x, z) = w(t, x, z)
∧
µ.

Since, we are interested in the region {z | w(t, x, z) ≤ 0}, for (t, x) ∈ [0, T] × K, which coincides with
{z | wµ(t, x, z) ≤ 0} for any µ > 0, it does not matter which auxiliary value function we use (w or wµ).
Therefore, for the sequel we will confound w and wµ, for any µ > 0, which will be denoted simply by w.

The question now is how to characterize wµ and this is the aim of the following Proposition.

Proposition 3.3.6. wµ is the unique viscosity solution of the following HJ equation:
min

(
−∂twµ(t, x, z) +H(t, x,Dxwµ(t, x, z)), wµ(t, x, z)− φ̂µ(x, z)

)
= 0, on [0, T [×

◦
Kµ × R,

wµ(T, x, z) = φ̂µ(x, z)
∨
ψ̂µ(x, z), on

◦
Kµ × R,

wµ(t, x, z) = µ, for t ∈ [0, T], x /∈
◦
Kµ and z ∈ R.

Proposition 3.3.6 can be proven in a similar way to assertion (iii) of Proposition 3.3.1.

The aim of Proposition 3.3.6 is to characterize the specific auxiliary value function, wµ, having the same
region of interest as w and for which the computational domain is restricted to a neighbourhood of [0, T]×
K × R in contrary to w which is defined on [0, T]× Rd × R.

Remark 3.3.7. Suppose that the cost functions φ and ψ are bounded (they take values in some interval
[m,M]). Thus, to establish estimations of the value function v or to find its exact value, as in (3.15) or
(3.16), it is enough to consider the auxiliary variable z in the interval [m,M].

3.4 Trajectory reconstruction based on the value function and approxi-
mation by discrete time games

This section is devoted to present our proposed reconstruction procedure that will be applied to approx-
imate optimal strategies and controls of the auxiliary problem (3.10). To this end, we will consider a
differential game free of state constraints having the following general form:

u(t, χ) := inf
α[·]∈Γ

sup
b(·)∈B

{(
max
s∈[t,T]

Φ(ζ
α[b],b
t,χ (s))

)∨
Ψ(ζ

α[b],b
t,χ (T))

}
, (3.17)

57

where T > 0, Φ and Ψ are the maximum running and the final cost functions respectively and ζα[b],b
t,χ (·) is

the unique continuous solution of the following dynamical system:{
ζ̇(s) = F (s, ζ(s), α[b](s), b(s)), a.e. in [t, T],

ζ(t) = χ,
(3.18)

where χ ∈ Rm, m ≥ 1, (α[b](·), b(·)) ∈ A×B are the actions of the first and the second players respectively
and F is a nonlinear dynamics.

Furthermore, throughout this section we suppose that F , Φ and Ψ satisfy respectively hypothesis (H3.1),
(H3.2) and (H3.3). Henceforth, from section 3.2 we already know that u is the unique viscosity solution of
the following HJ equation:{

min (−∂tu(t, χ) +H(t, χ,Dχu(t, χ)), u(t, χ)− Φ(χ)) = 0, for (t, χ) ∈ [0, T]× Rm,
u(T, χ) = Φ(χ)

∨
Ψ(χ), for χ ∈ Rm,

(3.19)

where the Hamiltonian H is given by:

H(t, χ, p) := min
b∈B

max
a∈A
− 〈F (t, χ, a, b), p〉, for (t, χ, p) ∈ [0, T]× Rm × Rm.

We denote by J the cost functional in (3.17):

J(t, χ, a, b) :=
(

max
s∈[t,T]

Φ(ζa,bt,χ(s))
)∨

Ψ(ζa,bt,χ(T)), (3.20)

for (t, χ) ∈ [0, T]× Rm and (a(·), b(·)) ∈ A× B.

Recall that the aim of this section is to approximate optimal feedbacks of the differential game (3.17). To
this end, we will discretize in time and synthesize from the discrete time differential game an approximation
of the optimal strategy of the first player and the optimal control of the second player. Consider a uniform
time partition of [0, T] with time step h := T

N , N ∈ N∗ : s0 = 0, s1 = h,..., sk = kh,..., sN = T .

The dynamical system (3.18) can be approximated by the following Euler forward scheme:
ζk = χ

ζk+1 = χ+ (sk+1 − t)F (t, ζk,ak,bk)
ζi+1 = ζi + hF (si, ζi,ai,bi), i = k + 1, ..., N − 1.

(3.21)

for t ∈ [sk, sk+1[with 0 ≤ k ≤ N−1, χ ∈ Rm, (ai)i ∈ AN−k and (bi)i ∈ BN−k. More precise approximations
of (3.18) can be considered by using higher order Runge-Kutta schemes.

Finally, even for the discrete time game, we attribute to the first player an advantage of information. This
advantage of information can be modeled by discrete nonanticipative strategies. Indeed, at each time
step si, for i ∈ {0, ..., N − 1}, and before choosing his action ai ∈ A, the first player knows the choice of
his opponent bi ∈ B without having any information about his future choices.

Subsection 3.4.1 deals with the case of trajectory reconstruction by use of a general class of approximated
functions uh while in subsection 3.4.2, we show a convergence result when the approximation uh verifies
a specific criterion.

3.4.1 A general reconstruction procedure

In this part, consider a general approximation uh that may come from the numerical resolution of a dis-
cretized form of the Hamilton Jacobi equation (3.19) verified by u. Let Eh denote the uniform error estimate
between u and uh given by Eh := ‖uh − u‖.

58

(H3.5) Suppose that the error estimate Eh satisfies Eh = o(h).

The reconstruction procedure presented in Algorithm 3.1 corresponds to the case where choices of the
second player are not optimal and take arbitrary values in B. The first player will observe his opponent
choice and will choose his optimal reaction. This algorithm is given for a particular reconstruction from the
initial time instant t = 0 and an initial position χ ∈ Rm.

Algorithm 3.1: Arbitrary case
1: Initialise ζ0 = χ.
2: for i = 0, ..., N − 1 do
3: An arbitrary choice of the second player bi ∈ B.
4: The optimal reaction of the first player a∗i ∈ A is defined by:

a∗i ∈ argmin
a∈A

{
uh(si+1, ζi + hF (si, ζi, a,bi))

∨
Φ(ζi)

}
.

5: The new state position: ζi+1 = ζi + hF (si, ζi,a∗i ,bi).
6: end for

For χ ∈ Rm, let (a∗i)i, (bi)i and (ζi)i be the sequences of controls and trajectory generated by Algorithm 3.1
and we define the following piecewise constant controls (α̃∗h[bh](·), bh(·)) ∈ A×B, such that α̃∗h[bh](s) := a∗k
and bh(s) := bk, for s ∈ [sk, sk+1[with k ∈ {0, ..., N − 1}, and an approximate trajectory ζh(·) solution of:{

ζ̇h(s) = F (s, ζh(s), α̃∗h[bh](s), bh(s)), a.e. in [0, T],

ζh(0) = χ.
(3.22)

Theorem 3.4.1. Assume that hypothesis (H3.5) holds and that assumption (H3.4) is verified by the set A
and the dynamics F . For χ ∈ Rm, the trajectory ζh(·), defined in (3.22), verifies:

lim sup
h→0+

{(
max
s∈[0,T]

Φ(ζh(s))
)∨

Ψ(ζh(T))
}
≤ u(0, χ). (3.23)

Proof of Theorem 3.4.1. Let χ ∈ Rm and let (ζi)i, (a∗i)i and (bi)i be the sequences of trajectory and
players’ actions generated by Algorithm 3.1.

Since F is locally Lipschitz continuous, there exists R > 0 such that for any time step h > 0 and any
0 ≤ k ≤ N , we have ‖ζk‖ ≤ R. We can choose the constant R large enough such that any trajectory
starting from any initial position ζk will remain in B(0, R), the ball of Rd centred at 0 and with radius R. Let
MR > 0 be a constant verifying:

‖F (s, ζ, a, b)‖ ≤MR, for any s ∈ [0, T], ζ ∈ B(0, R) and (a, b) ∈ A×B.

Step 1. We claim that there exists εh > 0, s.t. lim
h→0

εh = 0, and

uh(s0, ζ0) ≥ uh(s1, ζ1)
∨

Φ(χ)− hεh − 2Eh with s0 = 0 and ζ0 = χ. (3.24)

By the dynamic programming principle verified by u, between s0 and s1 = h, we get

u(s0, χ) = inf
α[·]∈Γ

sup
b(·)∈B

{
u(s1, ζ

α[b],b
s0,χ (s1))

∨(
max

s∈[s0,s1]
Φ(ζα[b],b

s0,χ (s))
)}
,

which implies that
u(s0, χ) ≥ inf

α[·]∈Γ
sup
b(·)∈B

{
u(s1, ζ

α[b],b
s0,χ (s1))

∨
Φ(χ)

}
.

59

For ε > 0, we pick an ε-optimal strategy, αε[·] ∈ Γ, and the above inequality becomes:

u(s0, χ) ≥ −ε+ sup
b(·)∈B

{
u(s1, ζ

αε[b],b
s0,χ (s1))

∨
Φ(χ)

}
.

Let b0(·) ∈ B be a constant control such that b0(·) = b0 ∈ B where b0 is generated by Algorithm 3.1. The
above inequality becomes:

u(s0, χ) ≥ −ε+ u(s1, ζ
αε[b0],b0
s0,χ (s1))

∨
Φ(χ). (3.25)

We set aε(·) := αε[b0](·) ∈ A. On the other hand, from assumption (H3.4) the set F (s0, χ,A, b0) is convex.
Hence, there exists a0 ∈ A such that:∫ s1

s0

F (s0, χ, a
ε(s),b0)ds = hF (s0, χ, a0,b0).

Moreover, from the Lipschitz continuity of F there exists δ(h) ≥ 0, the modulus of continuity of F , defined
as:

δ(h) := max
{
‖F (s, ζ, a, b)− F (s′, ζ, a, b)‖, for ζ ∈ B(0, R), (a, b) ∈ A×B and s, s′ ∈ [0, T]

with |s− s′| ≤ h
}
.

The trajectory ζa
ε,b0
s0,χ (·) verifies ‖ζa

ε,b0
s0,χ (s)− χ‖ ≤MRh, for any s ∈ [s0, s1], and

‖ζaε,b0s0,χ (s1)− χ− hF (s0, χ, a0,b0)‖ ≤
∫ s1

s0

‖F (s, ζa
ε,b0
s0,χ (s), aε(s),b0)− F (s0, χ, a

ε(s),b0)‖ds

≤
∫ s1

s0

‖F (s, ζa
ε,b0
s0,χ (s), aε(s),b0)− F (s, χ, aε(s),b0)‖ds

+

∫ s1

s0

‖F (s, χ, aε(s),b0)− F (s0, χ, a
ε(s),b0)‖ds

≤
∫ s1

s0

LF (R)‖ζaε,b0s0,χ (s)− χ‖ds+ hδ(h)

≤ LF (R)MRh
2 + hδ(h).

From the last inequality and the Lipschitz continuity of u, we get:

u(s1, ζ
′)− hLu(R)× (δ(h) + LF (R)MRh) ≤ u(s1, ζ

aε,b0
s0,χ (s1)), (3.26)

where ζ ′ := χ+ hF (s0, χ, a0,b0) and Lu(R) denotes the Lipschitz constant of u. We set

εh := Lu(R)× (δ(h) + LF (R)MRh).

Therefore from (3.25) and (3.26), we deduce:

u(s0, χ) ≥ −ε− hεh + u(s1, ζ
′)
∨

Φ(χ),

where the last inequality holds since (a1 − a3)
∨
a2 ≥ a1

∨
a2 − a3, for any a1, a2, a3 ∈ R s.t. a3 ≥ 0.

Now, by using the fact that ‖uh − u‖ = Eh, we deduce from the last inequality:

uh(s0, χ) ≥ −ε− hεh − 2Eh + uh(s1, ζ
′)
∨

Φ(χ).

60

From Algorithm 3.1 and since a∗0 is a minimizer of a 7→ uh(s1, χ+ hF (s0, χ, a, b0))
∨

Φ(χ), we obtain:

uh(s1, ζ1)
∨

Φ(χ) ≤ uh(s1, ζ
′)
∨

Φ(χ),

where ζ1 is defined in Algorithm 3.1. Therefore by exploiting the two above inequalities, we get:

uh(s0, χ) ≥ −ε− hεh − 2Eh + uh(s1, ζ1)
∨

Φ(χ),

which concludes (3.24) because ε is chosen arbitrarily.

Finally, the inequality (3.24) can be generalized by the same arguments to obtain for any k = 0, ..., N − 1:

uh(sk, ζk) ≥ uh(sk+1, ζk+1)
∨

Φ(ζk)− hεh − 2Eh, (3.27)

where ζk is the system state at time step sk, generated by Algorithm 3.1.

Step 2. From (3.27) and by using the fact that (a1 − a3)
∨
a2 ≥ a1

∨
a2 − a3, for any a1, a2, a3 ∈ R s.t.

a3 ≥ 0, we get by induction:

uh(s0, χ) ≥
(
uh(sN , ζN)

∨
Φ(ζN−1)

∨
· · ·
∨

Φ(χ)
)
−Nhεh − 2NEh. (3.28)

Recall that Eh is the uniform error between u and uh. Therefore, we deduce from (3.28):

uh(s0, χ) ≥ (u(sN , ζN)− Eh)
∨(

max
0≤k≤N−1

Φ(ζk)
)
−Nhεh − 2NEh.

Since sN = Nh = T and u(T, ζN) = Φ(T, ζN)
∨

Ψ(ζN), the last inequality becomes:

uh(s0, χ) ≥
(

max
0≤k≤N

Φ(ζk)
)∨

Ψ(ζN)− Tεh − (
2T

h
+ 1)Eh.

By hypothesis (H3.5), we conclude that:

lim sup
h→0+

(
max

0≤k≤N
Φ(ζk)

)∨
Ψ(ζN) ≤ u(0, χ). (3.29)

Step 3. In this step, we will establish an estimation between (ζk)k, the trajectory generated by Algorithm
3.1, and ζh(·), the solution of (3.22).

We claim that for any k = 0, ..., N − 1, we have:

max
s∈[sk,sk+1]

‖ζh(s)− ζk‖ ≤ O(h) and ‖ζh(T)− ζN‖ ≤ O(h). (3.30)

We start by proving the claim by induction. For k = 0, we have for any s ∈ [s0, s1]:

‖ζh(s)− χ‖ ≤
∫ s

s0

‖F (θ, ζh(θ),a∗0,b0)‖dθ ≤MR(s− s0) ≤MRh = O(h),

which gives the result for k = 0, i.e. max
s∈[s0,s1]

‖ζh(s)− χ‖ ≤ O(h).

Suppose that (3.30) is verified for k ≤ N − 2, and let’s prove it for k + 1. For any s ∈ [sk+1, sk+2]:

‖ζh(s)− ζk+1‖ = ‖ζh(sk+1) +

∫ s

sk+1

F (θ, ζh(θ),a∗k+1,bk+1)dθ − hF (sk, ζk,a∗k,bk)− ζk‖

≤ 2MRh+ ‖ζh(sk+1)− ζk‖.

61

Using the estimation verified by ‖ζ(sk+1)− ζk‖ concludes the proof. Now, let’s prove that ‖ζh(T)− ζN‖ ≤
O(h). Indeed, we have:

‖ζh(T)− ζN‖ ≤ ‖ζh(T)− ζN−1‖+ h‖F (sN−1, ζN−1,a∗N−1,bN−1)‖.

Moreover, we have proven that ‖ζh(s)−ζk‖ ≤ O(h), for any k = 0, ..., N−1 and s ∈ [sk, sk+1]. In particular,
for k = N − 1 and s = T , we have ‖ζh(T)− ζN−1‖ ≤ O(h). Finally, since ‖F (sN−1, ζN−1,a∗N−1,bN−1)‖ ≤
MR, we conclude:

‖ζh(T)− ζN‖ ≤ O(h) +MRh = O(h).

Step 4. Now, let’s prove that:

| max
0≤k≤N

Φ(ζk)− max
s∈[0,T]

Φ(ζh(s))| ≤ O(h).

Indeed, we have:

| max
0≤k≤N

Φ(ζk)− max
s∈[0,T]

Φ(ζh(s))| = | max
0≤k≤N−1

Φ(ζk)
∨

Φ(ζN)

− max
0≤k≤N−1

(
max

s∈[sk,sk+1]
Φ(ζh(s))

)∨
Φ(ζh(T))|

≤ | max
0≤k≤N−1

Φ(ζk)− max
0≤k≤N−1

(
max

s∈[sk,sk+1]
Φ(ζh(s))

)
|∨

|Φ(ζN)− Φ(ζh(T))|,

where the last line holds since |a
∨
b− c

∨
d| ≤ |a− c|

∨
|b− d|, for any a, b, c, d ∈ R. First, we have:

|Φ(ζN)− Φ(ζh(T))| ≤ LΦ(R)‖ζN − ζh(T)‖,

where LΦ(R) is the Lipschitz constant of Φ. From Step 3., we get |Φ(ζN)− Φ(ζh(T))| ≤ O(h). Moreover,

| max
0≤k≤N−1

Φ(ζk)− max
0≤k≤N−1

(
max

s∈[sk,sk+1]
Φ(ζh(s))

)
| ≤ max

0≤k≤N−1
|Φ(ζk)− max

s∈[sk,sk+1]
Φ(ζh(s))|

≤ max
0≤k≤N−1

max
s∈[sk,sk+1]

|Φ(ζk)− Φ(ζh(s))|

≤ max
0≤k≤N−1

max
s∈[sk,sk+1]

LΦ(R)‖ζk − ζh(s)‖.

From Step 3., we already know that:

max
s∈[sk,sk+1]

‖ζh(s)− ζk‖ ≤ O(h),

henceforth we deduce:
| max
0≤k≤N

Φ(ζk)− max
s∈[0,T]

Φ(ζh(s))| ≤ O(h).

Finally, by using again the fact that ‖ζh(T)− ζN‖ ≤ O(h), we get:

|
(

max
0≤k≤N

Φ(ζk)
)∨

Ψ(ζN)−
(

max
s∈[0,T]

Φ(ζh(s))
)∨

Ψ(ζh(T))| ≤ O(h). (3.31)

By combining the estimates (3.29) and (3.31), we obtain:

lim sup
h→0+

{(
max
s∈[0,T]

Φ(ζh(s))
)∨

Ψ(ζh(T))
}
≤ u(0, χ).

Remark 3.4.2. In practice, the approximated value function uh that will be used later (in the next section
3.5) comes from the numerical resolution of a discretized form of the Hamilton-Jacobi equation (3.19)
whose unique viscosity solution is u.

62

3.4.2 Reconstruction with a specific approximation

In this part, we extend the results about the approximation by discrete time games presented in [11,
Chapter VIII] to our case with finite time horizon and maximum running cost functions. We propose a
specific approximation uh of the value function u which verifies a discrete dynamic programming principle.
Then, we prove the existence of an optimal strategy of the first player and an optimal control of the
second player associated with the discrete time game. Henceforth, we deduce an approximation of optimal
feedbacks for problem (3.17).

Following the formulation presented in [11, Chapter VIII], a discrete nonanticpative strategy of the first
player can be mathematically formulated as follows:

Definition 3.4.3. A discrete nonanticpative strategy of the first player αh[·] is a mapping from BN to AN ,
such that ∀ j ∈ {0, ..., N − 1} and for any (bi)i, (b′i)i ∈ BN , if bi = b′i ∀ i ≤ j, then αh[b]i = αh[b′]i, ∀i ≤ j.
Let Γh denote the set of discrete nonanticipative strategies of the first player.

Let Jh be an approximation of the cost functional J defined, for t ∈ [sk, sk+1[with k ∈ {0, ..., N − 1},
χ ∈ Rm, a := (ai)i ∈ AN−k and b := (bi)i ∈ BN−k, by:

Jh(t, χ,a,b) := Φ(χ)
∨(

max
i=k+1,...,N

Φ(ζi)
)∨

Ψ(ζN),

where (ζi)i is the solution of (3.21) associated to the control sequences ((ai)i, (bi)i).

Now, we define the following specific approximation uh of the value function u on [0, T]× Rm:

uh(t, χ) := inf
αh[·]∈Γh

sup
(bi)i∈BN−k

Jh(t, χ, αh[b],b) (3.32)

if t ∈ [sk, sk+1[, for k ∈ {0, ..., N − 1}, and with the terminal condition uh(T, χ) := Φ(χ)
∨

Ψ(χ).

Finally, we present Algorithm 3.2 corresponding to a reconstruction procedure based on the value function
uh in the worst case where the second player takes optimal decisions which corresponds to the worst situ-
ation for the first player. This algorithm is presented in a general form for some initial time instant t ∈ [0, T [
and from an initial position χ ∈ Rm.

The following Proposition presents some results verified by the approximated value function uh, the re-
constructed trajectory (ζ∗i)i, the discrete strategy α∗h[·] ∈ Γh and the control (b∗i)i ∈ BN−k generated by
Algorithm 3.2.

Proposition 3.4.4. For t ∈ [sk, sk+1[with k ∈ {0, ..., N − 1} and χ ∈ Rm, we have:

(i) uh verifies the following discrete dynamic programming principle:

uh(t, χ) = max
b∈B

min
a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a, b))

∨
Φ(χ)

}
(3.33)

(ii) Furthermore, Jh(t, χ, α∗h[b],b) ≤ uh(t, χ) for any (bi)i ∈ BN−k. The equality holds when (bi)i = (b∗i)i.

(iii) Finally, uh converges to u, when h→ 0, over compact subsets of [0, T]× Rm.

Remark 3.4.5.
(
α∗h[·], (b∗i)i

)
represents a Nash equilibrium for (3.32) in the terminology of the theory of

noncooperative games. This means that every player cannot improve his guaranteed outcome, given by
uh(t, χ), by any unilateral deviation from his optimal choice, α∗h[·] and (b∗i)i for the first and the second
players respectively.

Proof of Proposition 3.4.4. (i) In order to prove the discrete dynamic programming principle, we will need
the continuity of uh in its space variable. To this end, we start by proving that uh is locally Lipschitz

63

Algorithm 3.2: Worst case
Require: t ∈ [sk, sk+1[, for 0 ≤ k ≤ N − 1 and χ ∈ Rm.

1: Initialise ζ∗k = χ.
2: for i = k, ..., N − 1 do
3: The optimal choice of the second player b∗i ∈ B is

b∗i ∈

argmax
b∈B

min
a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a, b))

∨
Φ(χ)

}
, if i = k,

argmax
b∈B

min
a∈A

{
uh(si+1, ζ

∗
i + hF (si, ζ

∗
i , a, b))

∨
Φ(ζ∗i)

}
, else.

4: The optimal reaction of the first player α∗h[b∗]i := a∗i is

a∗i ∈

argmin
a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a, b∗k))

∨
Φ(χ)

}
, if i = k,

argmin
a∈A

{
uh(si+1, ζ

∗
i + hF (si, ζ

∗
i , a,b

∗
i))
∨

Φ(ζ∗i)
}
, else.

5: The new state position: {
ζ∗k+1 = χ+ (sk+1 − t)F (t, χ,a∗k,b

∗
k), if i = k,

ζ∗i+1 = ζ∗i + hF (si, ζ
∗
i ,a
∗
i ,b
∗
i), else.

6: end for
7: return A discrete strategy α∗h[·] of the first player, a discrete control (b∗i)i of the second player and a

discrete trajectory (ζ∗i)i.

continuous w.r.t. the space variable uniformly in the time variable. We fix t ∈ [0, T [and let 0 ≤ k ≤ N − 1
such that t ∈ [sk, sk+1[and x and y be two arbitrary vectors of Rm such that ‖x‖, ‖y‖ ≤ R with some
R > 0.

For ε > 0, there exists αεh[·] ∈ Γh such that:

uh(t, y) ≥ sup
(bi)i∈BN−k

Jh(t, y, αεh[b],b)− ε

2
.

On the other hand, there exists (bεi)i ∈ BN−k such that:

uh(t, x) ≤ sup
(bi)i∈BN−k

Jh(t, x, αεh[b],b) ≤ Jh(t, x, αεh[bε],bε) +
ε

2
.

Denote by (aεi)i := αεh[bε] ∈ AN−k. From the first inequality involving uh(t, y), we deduce that:

uh(t, y) ≥ Jh(t, y,aε,bε)− ε

2
.

Now from the two above inequalities, we get:

uh(t, x)− uh(t, y) ≤ Jh(t, x,aε,bε)− Jh(t, y,aε,bε) + ε.

Denote by (ζxi)i and (ζyi)i the solutions of (3.21) corresponding to ((aεi)i, (b
ε
i)i) ∈ AN−k×BN−k and starting

respectively from x and y. We have the following estimation:

|Jh(t, x,aε,bε) − Jh(t, y,aε,bε)| ≤ |Φ(x) − Φ(y)|
∨(

max
i=k+1,...,N

|Φ(ζxi) − Φ(ζyi)|
)∨

|Ψ(ζxN) − Ψ(ζyN)|.

64

Now we use the Lipschitz continuity of Φ and Ψ to deduce that:

|Jh(t, x,aε,bε) − Jh(t, y,aε,bε)| ≤ LΦ(R)‖x − y‖
∨
LΦ(R)

(
max

i=k+1,...,N
‖ζxi − ζ

y
i ‖
)∨

LΨ(R)‖ζxN − ζ
y
N‖,

where LΦ(R) and LΨ(R) are respectively the Lipschitz constants of Φ and Ψ. Moreover, by the Lipschitz
continuity of F , with Lipschitz constant LF (R), one can prove the following estimation on the discrete
trajectories (ζxi)i and (ζyi)i:

‖ζxi − ζ
y
i ‖ ≤ (1 + hLF (R))i−k‖x− y‖, for any i ≥ k + 1.

We conclude that there exists some constant C(R) > 0 such that:

|uh(t, x)− uh(t, y)| ≤ C(R)‖x− y‖+ ε.

The fact that ε is chosen arbitrarily gives the desired result.

Now we will prove the discrete dynamic programming equation (3.33). To this end, we define for t ∈
[sk, sk+1[and χ ∈ Rm

ρ(t, χ) := max
b∈B

min
a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a, b))

∨
Φ(χ)

}
.

We start by showing that uh(t, χ) ≤ ρ(t, χ). Since uh is continuous w.r.t. the space variable, for any b ∈ B
there exists a(b) ∈ A, depending on b, such that:

ρ(t, χ) ≥ min
a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a, b))

∨
Φ(χ)

}
≥ uh(sk+1, χ+ (sk+1 − t)F (t, χ, a(b), b))

∨
Φ(χ).

Let (bi)i ∈ BN−k be a discrete control of the second player and define χ′ the system state at time sk+1,
χ′ := χ+ (sk+1 − t)F (t, χ, a(bk),bk). For any ε > 0, consider a discrete strategy αεh[·] ∈ Γh verifying:

ε+ uh(sk+1, χ′)
∨

Φ(χ) ≥ sup
(b′i)i∈BN−k−1

{
Jh(sk+1, χ

′, αεh[b′],b′)
∨

Φ(χ)
}
.

Let δh[·] ∈ Γh be defined, for (bi)i ∈ BN−k, as follows:

δh[b]i =

{
a(bk), i = k

αεh[b]i, i ≥ k + 1.

For any (bi)i ∈ BN−k we have:

Jh(t, χ, δh[b],b) = Jh(sk+1, χ
′, αεh[b′],b′)

∨
Φ(χ),

where (b′i)i ∈ BN−k−1 is the restriction of (bi)i to i ≥ k + 1. We deduce that:

uh(t, χ) ≤ sup
(bi)i∈BN−k

Jh(t, χ, δh[b],b)

≤ sup
bk∈B

sup
(b′i)i∈BN−k−1

{
Jh(sk+1, χ

′, αεh[b′],b′)
∨

Φ(χ)
}

≤ ε+ sup
bk∈B

{
uh(sk+1, χ

′)
∨

Φ(χ)
}
.

65

On the other hand, we have

sup
bk∈B

{
uh(sk+1, χ

′)
∨

Φ(χ)
}

= max
bk∈B

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a(bk),bk))

∨
Φ(χ)

}
= ρ(t, χ)

therefore for any ε > 0, we conclude that uh(t, χ) ≤ ε + ρ(t, χ). Hence, we obtain the desired inequality
since ε is chosen arbitrarily.

Now, we will show that uh(t, χ) ≥ ρ(t, χ). Let b ∈ B such that:

ρ(t, χ) = min
a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a, b))

∨
Φ(χ)

}
.

For ε > 0, let αεh[·] ∈ Γh be an ε-optimal discrete strategy for uh(t, χ) i.e.

ε+ uh(t, χ) = sup
(bi)i∈BN−k

Jh(t, χ, αεh[b],b). (3.34)

For any discrete control (bi)i ∈ BN−k, we define the following control sequence (b̂i)i ∈ BN−k by:

b̂i :=

{
b, if i = k,

bi, if i ≥ k + 1.

Since αεh[·] is a discrete nonanticipative strategy, αεh[b̂]k depends only on b. Let a ∈ A and χ′ ∈ Rm be
given by:

a := αεh[b̂]k and χ′ := χ+ (sk+1 − t)F (t, χ, a, b).

Finally, we define the strategy δh[·] ∈ Γh, for (bi)i ∈ BN−k−1, by:

δh[b]i := αε[b̂]i, for i ≥ k + 1.

We have

uh(sk+1, χ
′)
∨

Φ(χ) = inf
αh[·]∈Γh

sup
(bi)i∈BN−k−1

{
Jh(sk+1, χ

′, αh[b],b)
∨

Φ(χ)
}

≤ sup
(bi)i∈BN−k−1

{
Jh(sk+1, χ

′, δh[b],b)
∨

Φ(χ)
}

≤ Jh(sk+1, χ
′, δh[bε],bε)

∨
Φ(χ) + ε

where (bεi)i is an ε-optimal sequence for sup
(bi)i∈BN−k−1

Jh(sk+1, χ
′, δh[b],b)

∨
Φ(t, χ).

Claim that
ρ(t, χ) ≤ Jh(t, χ, αεh[b̂

ε
], b̂

ε
) + ε,

where

b̂
ε

i :=

{
b, if i = k,

bεi , if i ≥ k + 1.

From the above inequality, we obtain:

ρ(t, χ) ≤ sup
(bi)i∈BN−k

Jh(t, χ, αεh[b],b) + ε,

together with (3.34), we obtain ρ(t, χ) ≤ uh(t, χ) + 2ε, which ends the proof of (i) since ε is chosen
arbitrarily.

66

Now let’s prove the claim.

ρ(t, χ) = max
b∈B

min
a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a, b))

∨
Φ(χ)

}
= min

a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a, b))

∨
Φ(χ)

}
≤ uh(sk+1, χ

′)
∨

Φ(χ)

≤ Jh(sk+1, χ
′, δh[b̂

ε
], b̂

ε
)
∨

Φ(χ) + ε.

Combining the last inequality with the following equality justifies our claim:

Jh(sk+1, χ
′, δh[b̂

ε
], b̂

ε
)
∨

Φ(χ) = Jh(t, χ, αεh[b̂
ε
], b̂

ε
).

(ii) From (i) and Algorithm 3.2, we obtain:

uh(t, χ) = max
b∈B

min
a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a, b))

∨
Φ(χ)

}
= min

a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (s, χ, a, b∗k))

∨
Φ(χ)

}
= uh(sk+1, ζ

∗
k+1)

∨
Φ(χ).

By the same argument, we get:

uh(sk+1, ζ
∗
k+1) = uh(sk+2, ζ

∗
k+2)

∨
Φ(ζ∗k+1),

which can be generalized for any i ≥ k + 1:

uh(si, ζ
∗
i) = uh(si+1, ζ

∗
i+1)

∨
Φ(ζ∗i).

From the above equalities, we conclude:

uh(t, χ) = Φ(χ)
∨(

max
i=k+1,...,N

Φ(ζ∗i)
)∨

Ψ(ζ∗N) = Jh(t, χ, α∗h[b∗],b∗).

In a similar way, one can prove that for any (bi)i ∈ BN−k:

Jh(t, χ, α∗h[b],b) ≤ uh(t, χ).

(iii) First, consider the function u defined by

u(t, χ) := lim sup
(s,y)→(t,χ),h→0+

uh(s, y).

Let’s prove that u is a sub-solution of the HJ equation (3.19) whose unique viscosity solution is u. Indeed,
let ξ be a function of class C1 and (t, χ) be a strict maximum of u− ξ in B := B((t, χ), r), with r > 0. From
Lemma 2.6.3, there exist two sequences (hn)n and ((tn, χn))n such that for any n ∈ N, hn > 0 and (tn, χn)
is a maximum point of uhn − ξ over B and:

hn → 0, (tn, χn)→ (t, χ), and uhn(tn, χn)→ u(t, χ) when n→ +∞.

Furthermore, consider a uniform partition of [0, T] with time steps: sn0 = 0, ..., sni = ihn, ... There exists
k ≥ 0 such that tn ∈ [snk , s

n
k+1[and let τn := snk+1 − tn > 0. From the discrete dynamic programming

equation (3.33), there exists bn ∈ B s.t. for any a ∈ A:

uhn(tn, χn) ≤ uh(snk+1, yn)
∨

Φ(χn),

67

where yn := χn + τnF (tn, χn, a, bn). We denote by rhs(n) the right hand side of the above equation.
There exists a subsequence of ((tn, χn))n, denoted by ((tσ(n), χσ(n)))n, such that rhs(n) is equal to either

uh(s
σ(n)
k+1 , yσ(n)) or Φ(χσ(n)).

If rhs(n) = Φ(χσ(n)), then uhσ(n)
(tσ(n), χσ(n)) ≤ Φ(χσ(n)). When n → ∞, we obtain u(t, χ) ≤ Φ(χ), which

gives the result. In the other case, rhs(n) = uhσ(n)
(s
σ(n)
k+1 , yσ(n)) and hence

uhσ(n)
(tσ(n), χσ(n)) ≤ uhσ(n)

(s
σ(n)
k+1 , yσ(n)).

On the other hand, we have

(uhσ(n)
− ξ)(tσ(n), χσ(n)) ≥ (uhσ(n)

− ξ)(sσ(n)
k+1 , yσ(n)).

From the two last inequalities, we get

ξ(tσ(n), χσ(n))− ξ(s
σ(n)
k+1 , yσ(n)) ≤ 0.

The Taylor expansion of ξ at (tσ(n), χσ(n)) gives

ξ(s
σ(n)
k+1 , yσ(n)) = ξ(tσ(n), χσ(n)) + τσ(n)

∂ξ

∂t
(tσ(n), χσ(n)) + 〈yσ(n) − χσ(n), Dχξ(tσ(n), χσ(n))〉

+
√
τ2
σ(n) + ‖yσ(n) − χσ(n)‖2 × ε

(
‖(sσ(n)

k+1 , yσ(n))− (tσ(n), χσ(n))‖
)
,

where ε
(
‖(sσ(n)

k+1 , yσ(n)) − (tσ(n), χσ(n))‖
)
→ 0 when ‖(sσ(n)

k+1 , yσ(n)) − (tσ(n), χσ(n))‖ → 0. From the last
inequality and the Taylor expansion, and after dividing by τσ(n), we obtain:

− ∂ξ

∂t
(tσ(n), χσ(n))− 〈F (tσ(n), χσ(n), a, bσ(n)), Dχξ(tσ(n), χσ(n))〉

+
√

1 + ‖F (tσ(n), χσ(n), a, bσ(n))‖2 × ε
(
‖(sσ(n)

k+1 , yσ(n))− (tσ(n), χσ(n))‖
)
≤ 0.

Since B is compact, we can extract a sequence from (bσ(n))n, denoted also by (bσ(n))n for simplicity, that
converges to some b ∈ B and when n→∞, we get:

−∂ξ
∂t

(t, χ)− 〈F (t, χ, a, b), Dχξ(t, χ)〉 ≤ 0.

Since the last inequality still true for any a ∈ A, we deduce that:

−∂ξ
∂t

(t, χ) +H(t, χ,Dχξ(t, χ)) ≤ 0.

Finally, since

min
(
− ∂ξ

∂t
(t, χ) +H(t, χ,Dχξ(t, χ)), ξ(t, χ)− Φ(χ)

)
≤ −∂ξ

∂t
(t, χ) +H(t, χ,Dχξ(t, χ))

we conclude that u is a sub-solution of (3.19). Now, consider the function u defined by:

u(t, χ) := lim inf
(s,y)→(t,χ),h→0+

uh(s, y),

and let’s prove that u is a super-solution of (3.19). Let ξ be a function of class C1 and (t, χ) a strict
minimum of u − ξ in B := B((t, χ), r), with r > 0, such that (u − ξ)(t, χ) = 0. From Lemma 2.6.3, there

68

exist two sequences (hn)n and ((tn, χn))n such that for any n ∈ N, hn > 0, (tn, χn) is a minimum point of
uhn − ξ over B and:

hn → 0, (tn, χn)→ (t, χ) and uhn(tn, χn)→ u(t, χ) when n→ +∞.

Consider again the uniform partition of [0, T] with time steps: sn0 = 0, ..., sni = ihn, ... There exists k ≥ 0
such that tn ∈ [snk , s

n
k+1[and let τn := snk+1 − tn > 0.

For any b ∈ B, there exists an ∈ A (depending on b) such that:

uhn(tn, χn) ≥ uhn(snk+1, χn + τnF (tn, χn, an, b))
∨

Φ(χn).

First, we have uhn(tn, χn) ≥ Φ(χn) and when n→∞, we obtain

ξ(t, χ) = u(t, χ) ≥ Φ(χ). (3.35)

Moreover, we have uhn(tn, χn) ≥ uh(snk+1, yn) where yn := χn + τnF (tn, χn, an, b). Since (tn, χn) is the
minimum of uhn − ξ over B, we get:

ζ(tn, χn)− ξ(snk+1, yn)

τn
≥ 0.

Now, we use the Taylor expansion of ξ at (tn, χn), we extract a sequence from (an)n that converges to
some a ∈ A and we let n→∞ to obtain:

−∂ξ
∂t

(t, χ)− 〈F (t, χ, a, b), Dχξ(t, χ)〉 ≥ 0,

therefore,

−∂ξ
∂t

(t, χ) + max
a∈A
− 〈F (t, χ, a, b), Dχξ(t, χ)〉 ≥ 0.

Since the last inequality is verified for any b ∈ B, we deduce that:

−∂ξ
∂t

(t, χ) +H(t, χ,Dχξ(t, χ)) ≥ 0.

Finally, from (3.35) and the last inequality we deduce that u is a super-solution of (3.19).

As a conclusion, we have shown that u and u are respectively super and sub-solution of (3.19). Therefore,
by applying the comparison principle theorem that holds for (3.19) (see [5, Appendix]), we obtain u ≤ u ≤
u. Since in general u ≤ u, we get u = u = u. Finally, by exploiting the properties of weak limits, see
for instance [11, Chapter V], we deduce the uniform convergence of uh to u over compact subsets of
[0, T]× Rm.

Finally, we present the following result that defines a continuous time strategy for the first player and
control for the second player, such that when the time step h goes to zero, the corresponding value of J
converges to the continuous time value function u.

Theorem 3.4.6. Let t ∈ [0, T [, there exist (α̃∗h[·], b∗h(·)) ∈ Γ× B verifying

lim
h→0+

J(t, χ, α̃∗h[b∗h], b∗h) = u(t, χ).

69

Proof. We define Bh, a subset of B, by:

Bh :=
{
b(·) ∈ B, s.t. b(s) = b(kh), ∀s ∈ [kh, (k + 1)h[, for k = 0, ..., N − 1

}
,

and let Ah be the subset of A defined in a similar way to Bh.

Now, let’s define (α̃∗h[·], b∗h(·)) ∈ Γ× B by:

b∗h(s) := b∗bs/hc and α̃∗h[b](s) := α∗h[b̂]bs/hc

where α∗h[·] ∈ Γh and (b∗i)i ∈ BN−k are generated by Algorithm 3.2 and (b̂i)i ∈ BN−k is defined by
b̂i := b(ih), for i = k, ..., N − 1, for any b(·) ∈ B. Notice that b∗h(·) ∈ Bh and α̃∗h[b](·) ∈ Ah, for any b(·) ∈ B.
Furthermore, for any (a(·), b(·)) ∈ Ah × Bh, we define ((âi)i, (b̂i)i) ∈ AN−k ×BN−k by:

âi = a(ih) and b̂i = b(ih) for i = k, ..., N − 1.

We claim that:
|J(t, χ, a, b)− Jh(t, χ, â, b̂)| ≤ O(h), (3.36)

where J is given by the following expression:

J(t, χ, a, b) =
(

max
s∈[t,T]

Φ(ζa,bt,χ(s))
)∨

Ψ(ζa,bt,χ(T)),

for any (a(·), b(·)) ∈ A× B and Jh, for any ((ai)i, (bi)i) ∈ AN−k ×BN−k, is given by:

Jh(t, χ,a,b) = Φ(χ)
∨(

max
i=k+1,...,N

Φ(ζi)
)∨

Ψ(ζN).

First, the estimation (3.36) implies

|J(t, χ, α̃∗h[b∗h], b∗h)− Jh(t, χ, α∗h[b∗],b∗)| ≤ O(h). (3.37)

Then, from (ii) and (iii) of Proposition 3.4.4 we have:

Jh(t, χ, α∗h[b∗],b∗) = uh(t, χ) and lim
h→0+

uh(t, χ) = u(t, χ).

Finally, combining the two above equalities with inequality (3.37) gives the desired result. Now, we will
justify the claim (3.36). We have:

|J(t, χ, a, b)− Jh(t, χ, â, b̂)| ≤ | max
s∈[t,sk+1]

Φ(ζa,bt,χ(s))− Φ(χ)|
∨

max
i=k+1,...,N−1

| max
s∈[si,si+1]

Φ(ζa,bt,χ(s))− Φ(ζi)|∨
|Φ(ζa,bt,χ(T))− Φ(ζN)|

∨
|Ψ(ζa,bt,χ(T))−Ψ(ζN)|.

Moreover, we have:

| max
s∈[t,sk+1]

Φ(ζa,bt,χ(s))− Φ(χ)| ≤ max
s∈[t,sk+1]

|Φ(ζa,bt,χ(s))− Φ(χ)| ≤ max
s∈[t,sk+1]

LΦ(R)‖ζa,bt,χ(s)− χ‖,

and for any i = k + 1, ..., N − 1:

| max
s∈[si,si+1]

Φ(ζa,bt,χ(s))− Φ(ζi)| ≤ max
s∈[si,si+1]

|Φ(ζa,bt,χ(s))− Φ(ζi)| ≤ max
s∈[si,si+1]

LΦ(R)‖ζa,bt,χ(s)− ζi‖,

and finally:

|Φ(ζa,bt,χ(T))− Φ(ζN)| ≤ LΦ(R)‖ζa,bt,χ(T)− ζN‖ and |Ψ(ζa,bt,χ(T))−Ψ(ζN)| ≤ LΨ(R)‖ζa,bt,χ(T)− ζN‖.

70

Then, by following the same arguments used in Step 3. and Step 4. from the proof of Theorem 3.4.1 and
by exploiting the Lipschitz continuity of F , Φ and Ψ, one can prove that:

‖ζa,bt,χ(s)− χ‖ ≤ O(h), for any s ∈ [t, sk+1],

and for any i = k + 1, ..., N − 1:

‖ζa,bt,χ(s)− ζi‖ ≤ O(h), for any s ∈ [si, si+1],

and
‖ζa,bt,χ(T)− ζN‖ ≤ O(h).

Combining the above estimations ends the proof of the claim (3.36).

Even for a trajectory reconstructed by Algorithm 3.2 (the worst case), we cannot prove the equality in
(3.23) (see Theorem 3.4.1) when the approximation uh is general. In other words, one cannot guarantee
the existence of a Nash equilibrium for the discrete time game if uh does not satisfy the discrete dynamic
programming principle (3.33). Nevertheless, we will see in the illustrative example, in the following section,
how the performances of the trajectories generated by Algorithm 3.1 (arbitrary case) are better than those
obtained by Algorithm 3.2 (worst case).

3.5 Application to an aircraft landing problem

3.5.1 Introduction

Aircraft accidents can occur because of quick changes of the wind velocity at low altitudes which present
a real danger. For this reason, it is important to look for the best flying configurations to avoid a failed
landing. It consists in steering the aircraft to the maximum altitude that can be reached, during an interval
of time, in order to prevent a crash on the ground.

In papers [104, 103], a Chebyshev-type optimal control was proposed and an approximated solution of
the problem is computed in order to deduce an approximated feedback control. In paper [6], the Hamilton-
Jacobi-Bellman approach was used to characterize and compute the value function of the control problem
when the wind behavior is supposed to be known.

A more realistic situation can be found in [29] where a nonlinear differential game with integral payoff func-
tional and state constraints was studied. In particular, the dynamic programming approach was applied to
the problem of an aircraft control during take-off in a windshear. In this case, the first player (the minimizer,
the pilot) uses feedback strategies, while the second player (the maximizer, the wind) uses nonanticipative
strategies (the wind is permitted to measure the current value of the first player’s control). To solve this
problem, a semi-Lagrangian scheme is applied to compute an approximation of the value function.

Consider the flight of an aircraft in a vertical plane. Different forces are acting on the center of gravity of
the aircraft. Among those forces one can cite:

• The thrust force FT with a modulus of the form FT (u) where u is the modulus of the aircraft velocity.

• The lift and drag forces FL and FD with modulus FL and FD depending on u and the angle of attack
θ.

• The weight force FP with modulus FP = mg, where m is the aircraft mass and g is the gravitational
constant.

71

From the Newton’s law, we deduce the following equations of motion (see [6, 33]):

ẋ(s) = u(s) cos(γ(s)) + ωx(s)

ḣ(s) = u(s) sin(γ(s)) + ωh(s)

u̇(s) = FT (u(s))
m cos(θ(s) + δ)− FD(u(s),θ(s))

m − g sin(γ(s))− ω̇x(s) cos(γ(s))− ω̇h(s) sin(γ(s))

γ̇(s) = FT (u(s))
mu(s) sin(θ(s) + δ) + FL(u(s),θ(s))

mu(s) − g cos(γ(s))
u(s) + ω̇x(s) sin(γ(s))

u(s) − ω̇h(s) cos(γ(s))
u(s)

θ̇(s) = a(s),

where x is the horizontal distance, h denotes the aircraft altitude, u is the velocity, γ is the relative path
inclination, θ is the angle of attack, δ > 0 is a parameter of the model, ωx and ωh are respectively the
horizontal and the vertical components of the wind velocity vector, ω̇x and ω̇h are their derivatives and a
represents the control variable.

Precise expressions of FT , FL and FD and numerical values of different parameters of the model can be
found in [6, 33, 34] and in Appendix 4.7.2 of chapter 4.

3.5.2 5D differential game model

In this paper, we propose a differential game model with maximum running cost in which wind disturbances
are considered as a second player and our aim is to steer the aircraft to the maximum altitude that can be
reached during an interval of time, by means of nonanticipative strategies, in order to prevent a crash on
the ground.

Model presentation and differential game

The wind disturbances are represented by ω̇x and ω̇h which are the derivatives of the horizontal and the
vertical components of the wind velocity vector. To simplify the notations, denote b(·) = (b1(·), b2(·)) :=
(ω̇x(·), ω̇h(·)) that takes values in a compact set B ⊂ R2 of the form:

B := B1 ×B2 = [b1,min, b1,max]× [b2,min, b2,max].

Moreover, we consider new state variables represented by y(·) : [0, T]→ R5 with T > 0 and

y(·) := (h(·), u(·), γ(·), ωh(·), θ(·))>.

Henceforth, the above 5-D differential system becomes:

ḣ(s) = u(s) sin(γ(s)) + ωh(s)

u̇(s) = FT (u(s))
m cos(θ(s) + δ)− FD(u(s),θ(s))

m − g sin(γ(s))− b1(s) cos(γ(s))− b2(s) sin(γ(s))

γ̇(s) = FT (u(s))
mu(s) sin(θ(s) + δ) + FL(u(s),θ(s))

mu(s) − g
u(s) cos(γ(s)) + b1(s)

u(s) sin(γ(s))− b2(s)
u(s) cos(γ(s))

ω̇h(s) = b2(s)

θ̇(s) = a(s),

where a(·) is the control of the first player that takes values in a compact and convex set given by A :=
[amin, amax] with amax = −amin. This differential system can be expressed differently:

ẏ(t) = f(t, y(t), a(t), b(t)) := g0(y(t)) + b1(t)g1(y(t)) + b2(t)g2(y(t)) + a(t)e5

72

where e5 = (0, 0, 0, 0, 1)T and for y = (h, u, γ, ωh, θ) ∈ R5

g0(y) =

u sin(γ)

FT (u)
m cos(θ + δ)− FD(u,θ)

m − g sin(γ)
1
u

(
FT (u)
m sin(θ + δ) + FL(u,θ)

m − g cos(γ)
)

0
0

 , g1(y) =

0

− cos(γ)
1
u sin(γ)

0
0

 and g2(y) =

0

− sin(γ)
1
u cos(γ)

1
0

 .

In order to transform our problem into a minimization problem, the maximum running cost function φ is
defined as φ(y) := Hr − h, where h is the aircraft altitude (the first component of the state vector y) and
Hr > 0 is a given reference altitude. Finally, the admissible set K has the following form:

K = [hmin, hmax]× [umin, umax]× [γmin, γmax]× [ωh,min, ωh,max]× [θmin, θmax].

Numerical resolution

In order to determinate the intervals in which the state variables, the control of the first player and the wind
disturbances take values, we exploit the wind model presented in [6, Appendix A]. Therefore, we obtain
the following constraints on the system state and the players controls, presented respectively in tables 3.1
and 3.2:

State variable h(ft) u(ft s−1) γ (deg) ωh(ft s−1) θ (deg)
min 450 160 -7.0 -100.0 0.0
max 1000 260 15.0 50.0 17.2

Table 3.1: State constraints: domain K.

Control variables a (deg s−1) b1(ft s−2) b2(ft s−2)
min -3.0 0.0 -2.0
max 3.0 7.7 2.0

Table 3.2: Control constraints: sets A and B.

Remark 3.5.1. Since φ is bounded, the auxiliary variable z will take values in an interval of the form
[zmin, zmax]. Here, we take zmin = Hr − hmax and zmax = Hr − hmin.

To solve the auxiliary optimal control problem, we extend the computational domain in all directions
(see Proposition 3.3.6 of section 3.3) to obtain Kµ := K + µB∞ where B∞ := [−1, 1]5 and the parameter
µ is a small fixed positive value (here, we take µ = 0.05). Then, consider the following mesh steps
∆ := (δt, (δyi)1≤i≤5, δz). For a given multi-index i = (i1, ..., i5) ∈ N5, let yi := ymin,i + iδyi, zj := zmin + jδz,
j ∈ N and tn := nδt, n = 0, ..., N , where N is the integer part of T/δt. Therefore, we define the following
grid on Kµ × [zmin, zmax] by:

G :=
{

(yi, zj) ∈ Kµ × [zmin, zmax], i ∈ N5, j ∈ N
}
.

On the other hand, the Hamiltonian function H(y, p), for (y, p) ∈ R5 × R5, can be explicitly calculated:

H(y, p) = min
b∈B

max
a∈A
− 〈f(t, y, a, b), p〉

= −〈g0(y), p〉 − max
b1∈B1

b1〈g1(y), p〉 − max
b2∈B2

b2〈g2(y), p〉+ amax|p5|.

73

The last equality is justified by the fact that amax = −amin. Therefore, the corresponding numerical Hamil-
tonian can be given by:

H(y, p−, p+) =

i=4∑
i=1

max
(
− fi(y, bopt), 0

)
p−i + min

(
− fi(y, bopt), 0

)
p+
i + amax max

(
p−5 ,−p

+
5 , 0

)
,

where bopt ∈ argmax
b∈B

〈(b1g1(y) + b2g2(y)) , p〉 with p = p−+p+

2 .

Finally, to approximate the auxiliary value function w, we solve numerically a discretized form of the
corresponding HJ equation by using the following explicit scheme (see [6, 25]):{

wNi,j = φ̂i,j

wni,j = max
(
wn+1
i,j − δtH(yi, D

−wn+1
i,j , D+wn+1

i,j), φ̂i,j
)
, n ∈ {N − 1, ..., 0}, (yi, zj) ∈ G,

(3.38)

where φ̂i,j := φ̂(yi, zj), wni,j is an approximation of w(tn, yi, zj) and the terms D±wni,j are approximated
through a second order ENO scheme, see [108], given by the following expression:

D±k w
n
i,j := ±

wni±ek,j − w
n
i,j

δyk
∓ δyk

2
σ(D2

k,0w
n
i,j , D

2
k,±1w

n
i,j)

with D2
k,εw

n
i,j := (wni+(ε−1)ek,j

+2wni+2εek,j
−wni+(ε+1)ek,j

)/(δyk)
2, for k ∈ {1, ..., 5}, ek denotes the k−element

of the canonical basis of R5 and σ is defined, for any a, b ∈ R, as follows:

σ(a, b) :=

a if ab > 0 and |a| ≤ |b|,
b if ab > 0 and |a| > |b|,
0 if ab ≤ 0.

Remark 3.5.2. The numerical Hamiltoanian H is consistent with H, i.e.

H(y, p, p) = H(y, p), for any y, p ∈ R5,

monotone, i.e. for any k = 1, ..., 5, ∂H
∂p−k

(y, p−, p+) ≥ 0 and ∂H
∂p+
k

(y, p−, p+) ≤ 0 and Lipschitz continuous w.r.t.

all its arguments. Furthermore, the time step δt is chosen in order to satisfy the Courant-Friedrich-Levy
condition:

δt
(4∑
i=1

|fi(y)|
δyi

+
amax

δy5

)
≤ CFL,

where CFL ≤ 1 is a real number in [0, 1] (in our model, we take CFL = 0.5). Under those conditions, the
approximation wni,j converges to w, the viscosity solution of (3.12) (see [25]).

As a conclusion, to solve the constrained problem (3.6), we proceed as follows:

1. First, we compute an approximation of the auxiliary value function w by solving (3.38). Denote this
approximation by W∆.

2. Then, thanks to Theorem 3.3.5, we get an approximation of the value function v at an initial state y0,
denoted by z∆(y0) and defined by:

z∆(y0) := min{z ∈ [zmin, zmax] | W∆(y0, z) ≤ 0}.

3. Finally, we apply our reconstruction procedure (Algorithm 3.1 or 3.2) to the approximated auxiliary
value function W∆, starting from (y0, z

∆(y0)), to get approximated optimal strategies of the first
player for the constrained problem (3.6), starting at time t = 0 from the initial state y0 (see assertion
(iii) of Theorem 3.3.5).

74

Numerical test: Reconstruction of optimal trajectories and controls

The final time horizon is set to T = 8 and consider a grid G containing 40× 204 × 5 points. In this test, we
show results of trajectory reconstruction for some initial positions obtained with algorithms 3.1 and 3.2.
As initial points, we take:

y1 = (600, 239.7,−2.249,−26.0, 7.373), y2 = (650, 230,−2.249,−28.0, 7.373)

and
y3 = (800, 200.0,−2.249,−30.0, 7.373).

First, we shall mention that the reconstruction of admissible trajectories is not theoretically possible for
any initial position. Indeed, there are some initial points from which we cannot find any strategy α[·] ∈ Γ of
the controller (the first player) that guarantees the admissibility of trajectories, for any perturbation of the
wind. Those initial points correspond to a positive value of the auxiliary value function w for any value of
the auxiliary variable z and hence to an infinite value of the constrained problem (3.6) (see remark 3.3.3).

Furthermore, one can get an idea about all the initial positions from which there exists at least one strategy
of the first player that corresponds to a trajectory satisfying the state constraints for any perturbation of
the wind. The set of such initial positions is called the feasible set which can be obtained by the negative
level set of the auxiliary value function w.

Figure 3.1: Trajectories and controls reconstruction as a response to an arbitrary case (random distribu-
tion, Algorithm 3.1, in blue) and to the worst case (Algorithm 3.2, in red) starting from y1.

In figures 3.1 and 3.2, starting from y1 and y2 respectively, as expected, we observe that the altitudes
reached in the worst case (Algorithm 3.2) are always below those obtained in the random case (Algorithm
3.1).

75

In the worst case, perturbations aim to decrease as much as possible the altitude h. Therefore, its ob-
jective is to have ḣ ≤ 0. Since ḣ(s) = u(s) sin(γ(s)) + ωh(s), wind perturbations in this case will take
values that decrease ωh and u sin(γ). For this reason, we observe that the first component of the wind
disturbances takes the maximal possible value, b1(·) ≡ b1,max > 0, in order to decrease u along time.
However, b2(·) is equal to b2,min < 0 a.e. in order to decrease ωh since ω̇h(s) = b2(s), for s ∈ [0, T].

Figure 3.2: Trajectories and controls reconstruction as a response to an arbitrary case (random distribu-
tion, Algorithm 3.1, in blue) and to the worst case (Algorithm 3.2, in red) starting from y2.

In figure 3.3, starting from y3, we remark that the perturbations values in the worst case do not change
compared to the previous initial flight configurations (y1 and y2). Nevertheless, we observe that the alti-
tudes reached in the random case (Algorithm 3.1) are similar to those obtained in the worst case and there
are even sensibly lower at some time instants. This observation can be justified by the high initial altitude
of y3 compared to y1 and y2. In other words, when the initial altitude of the aircraft is higher enough,
worst perturbations cannot have the same effect as in the previous situations (initial flight configuration
with lower altitude such as the case of y1 and y2).

3.6 Appendix: Properties of the auxiliary value function w

Proof of Proposition 3.3.1. (i) We start by proving the dynamic programming principle (3.11). To simplify
notations, let’s denote x̂ := (x, z) ∈ Rd × R and let u be defined by:

u(t, x̂) := inf
α[·]∈Γ

sup
b(·)∈B

{
w(τ, ŷ

α[b],b
t,x̂ (τ))

∨
max
s∈[t,τ]

φ̂(ŷ
α[b],b
t,x̂ (s))

}
,

with τ := t+ h ≤ T for some h ≥ 0.

76

Figure 3.3: Trajectories and controls reconstruction as a response to an arbitrary case (random distribu-
tion, Algorithm 3.1, in blue) and to the worst case (Algorithm 3.2, in red) starting from y3.

We will start by proving that w(t, x̂) ≤ u(t, x̂). Let ε > 0 and let αε[·] ∈ Γ be an ε-optimal strategy for u, i.e.

u(t, x̂) + ε ≥ sup
b(·)∈B

{
w(τ, ŷ

αε[b],b
t,x̂ (τ))

∨
max
s∈[t,τ]

φ̂(ŷ
αε[b],b
t,x̂ (s))

}
. (3.39)

For a given strategy α[·] ∈ Γ, we denote by α1[·] and α2[·] its restrictions to [t, τ] and [τ, T] respectively. In a
similar way, for any b(·) ∈ B, we will denote by b1(·) and b2(·) its restrictions to [t, τ] and [τ, T] respectively.
Furthermore, for a given b(·) ∈ B, let ŷ1(·) denote the restriction of ŷαε[b],bt,x̂ (·) to [t, τ]. Finally, we define
στ (t, x̂; b1) by

στ (t, x̂; b1) := w(τ, ŷ1(τ))
∨

max
s∈[t,τ]

φ̂(ŷ1(s)).

We have the following equality:

στ (t, x̂; b1) = inf
α2[·]

sup
b2(·)

{(
max
s∈[τ,T]

φ̂(ŷ
α2[b2],b2

τ,ŷ1(τ)
(s))

)∨
ψ̂(ŷ

α2[b2],b2

τ,ŷ1(τ)
(T))

}∨
max
s∈[t,τ]

φ̂(ŷ1(s)).

Since
(

max
s∈[t,τ]

φ̂(ŷ1(s))
)

does not depend on α2[·] in the above equality, we deduce that:

στ (t, x̂; b1) = inf
α2[·]

{
sup
b2(·)

(
max
s∈[τ,T]

φ̂(ŷ
α2[b2],b2

τ,ŷ1(τ)
(s))

∨
ψ̂(ŷ

α2[b2],b2

τ,ŷ1(τ)
(T))

)∨
max
s∈[t,τ]

φ̂(ŷ1(s))

}
.

Now, let δε[·] be an ε-optimal strategy for στ (t, x̂; b1), which means that:

sup
b2(·)

{
max
s∈[τ,T]

φ̂(ŷ
δε[b2],b2

τ,ŷ1(τ)
(s))

∨
ψ̂(ŷ

δε[b2],b2

τ,ŷ1(τ)
(T))

}∨
max
s∈[t,τ]

φ̂(ŷ1(s)) ≤ ε+ στ (t, x̂; b1). (3.40)

77

We define the strategy α0[·] ∈ Γ as follows

α0[·] =

{
αε[·] on [t, τ],

δε[·] on [τ, T].

From the definition of w, we have:

w(t, x̂) ≤ sup
b(·)∈B

{(
max
s∈[t,T]

φ̂(ŷ
α0[b],b
t,x̂ (s))

)∨
ψ̂(ŷ

α0[b],b
t,x̂ (T))

}
.

On the other hand, from the definition of α0[·], we have for any b(·) ∈ B

max
s∈[t,T]

φ̂(ŷ
α0[b],b
t,x̂ (s)) = max

s∈[t,τ]
φ̂(ŷ1(s))

∨
max
s∈[τ,T]

φ̂(ŷ
δε[b2],b2

τ,ŷ1(τ)
(s))

and
ψ̂(ŷ

α0[b],b
t,x̂ (T)) = ψ̂(ŷ

δε[b2],b2

τ,ŷ1(τ)
(T)),

where ŷ1(·) is the restriction of ŷαε[b],bt,x̂ (·) to [t, τ]. Therefore, the above inequality becomes:

w(t, x̂) ≤ sup
b1(·)

{
sup
b2(·)

(
max
s∈[τ,T]

φ̂(ŷ
δε[b2],b2

τ,ŷ1(τ)
(s))

∨
ψ̂(ŷ

δε[b2],b2

τ,ŷ1(τ)
(T))

)∨
max
s∈[t,τ]

φ̂(ŷ1(s))

}
.

From (3.40), we deduce that:

w(t, x̂) ≤ sup
b1(·)

{
ε+ στ (t, x̂; b1)

}
= ε+ sup

b1(·)

{
w(τ, ŷ1(τ))

∨
max
s∈[t,τ]

φ̂(ŷ1(s))
}
.

Furthermore, we have:

sup
b1(·)

{
w(τ, ŷ1(τ))

∨
max
s∈[t,τ]

φ̂(ŷ1(s))
}

= sup
b(·)∈B

{
w(τ, ŷ

αε[b],b
t,x̂ (τ))

∨
max
s∈[t,τ]

φ̂(ŷ
α1[b],b
t,x (s))

}
≤ ε+ u(t, x̂),

where the last line holds by using (3.39). As a conclusion, by combining the two last inequalities we obtain
w(t, x̂) ≤ u(t, x̂) + 2ε for any ε > 0, which gives the desired inequality.

Now, we will show that w(t, x̂) ≥ u(t, x̂). For any ε > 0, there exists an ε-optimal strategy for w(t, x̂),
denoted by αε[·], such that:

w(t, x̂) + ε ≥ sup
b(·)∈B

{
max
s∈[t,T]

φ̂(ŷ
αε[b],b
t,x̂ (s))

∨
ψ̂(ŷ

αε[b],b
t,x̂ (T))

}
. (3.41)

Let A(τ) and B(τ) be the set of restrictions of the first and the second players controls respectively to the
time interval [τ, T]:

A(τ) := {a2(·) : [τ, T]→ A, measurable} and B(τ) := {b2(·) : [τ, T]→ B, measurable}.

Let’s fix a control of the second player b(·) ∈ B and let α2[·] be a nonanticpative strategy of the first player
defined, for any b2(·) ∈ B(τ), by:

α2[b2](s) := αε[b̂](s) for s ∈ [τ, T],

where b̂(·) ∈ B is given by:

b̂(s) =

{
b(s) for s ∈ [t, τ]

b2(s) for s ∈ [τ, T].

78

We mention here that α2[·] /∈ Γ since α2[·] is a mapping from B(τ) to A(τ). Finally, we define B(t, τ, b) ⊂ B,
by:

B(t, τ, b) :=
{
b(·) ∈ B | b(s) = b(s) a.e. s ∈ [t, τ]

}
.

For a second player control b(·) ∈ B, we set ŷ1 := ŷ
αε[b],b
t,x̂ (τ) ∈ Rd+1. From the definition of w(τ, ŷ1), we

have:
w(τ, ŷ1) ≤ sup

b2(·)∈B(τ)

{
max
s∈[τ,T]

φ̂(ŷ
α2[b2],b2

τ,ŷ1 (s))
∨
ψ̂(ŷ

α2[b2],b2

τ,ŷ1 (T))
}
. (3.42)

Now, let b0(·) ∈ B(t, τ, b) and denote by b20(·) ∈ B(τ) its restriction to [τ, T]. Following the definition of α2[·]
above, we obtain α2[b20](·) = αε[b̂0](·) on [τ, T]. On the other hand, b̂0(·) = b0(·) because b0(·) ∈ B(t, τ, b).
We deduce that α2[b20](·) = αε[b0](·) on [τ, T] and which implies that:

max
s∈[t,T]

φ̂(ŷ
αε[b0],b0
t,x̂ (s)) = max

s∈[t,τ]
φ̂(ŷ

αε[b],b
t,x̂ (s))

∨
max
s∈[τ,T]

φ̂(ŷ
α2[b20],b20
τ,ŷ1 (s))

and
ψ̂(ŷ

αε[b0],b0
t,x̂ (T)) = ψ̂(ŷ

α2[b20],b20
τ,ŷ1 (T)),

where ŷ1 = ŷ
αε[b0],b0
t,x̂ (τ) = ŷ

αε[b],b
t,x̂ (τ) since b0(·) = b(·) on [t, τ]. From the two above equalities, we deduce:

sup
b0(·)∈B(t,τ,b)

{
max
s∈[t,T]

φ̂(ŷ
αε[b0],b0
t,x̂ (s))

∨
ψ̂(ŷ

αε[b0],b0
t,x̂ (T))

}
= sup

b20(·)∈B(τ)

{
max
s∈[t,τ]

φ̂(ŷ
αε[b],b
t,x̂ (s))

∨
max
s∈[τ,T]

φ̂(ŷ
α2[b20],b20
τ,ŷ1 (s))

∨
ψ̂(ŷ

α2[b20],b20
τ,ŷ1 (T))

}
. (3.43)

Now since B(t, τ, b) ⊂ B, we deduce from (3.41) that:

sup
b0(·)∈B(t,τ,b)

{
max
s∈[t,T]

φ̂(ŷ
αε[b0],b0
t,x̂ (s))

∨
ψ̂(ŷ

αε[b0],b0
t,x̂ (T))

}
≤ w(t, x̂) + ε,

and from (3.43), the last inequality becomes, for any b(·) ∈ B:

sup
b20(·)∈B(τ)

{
max
s∈[t,τ]

φ̂(ŷ
αε[b],b
t,x̂ (s))

∨
max
s∈[τ,T]

φ̂(ŷ
α2[b20],b20
τ,ŷ1 (s))

∨
ψ̂(ŷ

α2[b20],b20
τ,ŷ1 (T))

}
≤ w(t, x̂) + ε.

The inequality (3.42) allows us to conclude that for any b(·) ∈ B, we have:

w(τ, ŷ
αε[b],b
t,x̂ (τ))

∨
max
s∈[t,τ]

φ̂(ŷ
αε[b],b
t,x̂ (s)) ≤ w(t, x̂) + ε.

Taking the supremum over b(·) ∈ B in the last inequality gives:

u(t, x̂) ≤ sup
b(·)∈B

{
w(τ, ŷ

αε[b],b
t,x̂ (τ))

∨
max
s∈[t,τ]

φ̂(ŷ
αε[b],b
t,x̂ (s))

}
≤ w(t, x̂) + ε,

which gives the desired inequality since ε is chosen arbitrarily.
(ii) Now, we give the proof of the local Lipschitz continuity of w. We start by proving that w is Lipschitz

continuous with respect to the (x, z) variables. To simplify the notations, denote by x̂ := (x, z), x̂′ :=
(x′, z′) ∈ Rd × R and let w0 be defined by w0(x̂):=w(T, x̂) = φ̂(x̂)

∨
ψ̂(x̂). We notice that w0 is locally

79

Lipschitz continuous with a Lipschitz constant L0(R), for any R > 0, since φ̂ and ψ̂ are locally Lipschitz
continuous. For t ∈ [0, T], we have:

w(t, x̂)− w(t, x̂′) ≤ sup
α[·]∈Γ

sup
b(·)∈B

{(
max
s∈[t,T]

φ̂(ŷ
α[b],b
t,x̂ (s))

∨
ψ̂(ŷ

α[b],b
t,x̂ (T))

)
−
(

max
s∈[t,T]

φ̂(ŷ
α[b],b
t,x̂′ (s))

∨
ψ̂(ŷ

α[b],b
t,x̂′ (T))

)}
,

since inf
x∈X

f(x)− inf
x∈X

g(x) ≤ sup
x∈X

(f − g)(x) for any arbitrary set X and any functions f and g from X to R.

From the definition of w0, the last inequality becomes:

w(t, x̂)− w(t, x̂′) ≤ sup
α[·]∈Γ

sup
b(·)∈B

{(
w0(ŷ

α[b],b
t,x̂ (T))− w0(ŷ

α[b],b
t,x̂′ (T))

)
∨

max
s∈[t,T]

(
φ̂(ŷ

α[b],b
t,x̂ (s))− φ̂(ŷ

α[b],b
t,x̂′ (s))

)}
,

since max(a, b)−max(c, d) ≤ max(a− c, b− d), for any a, b, c, d ∈ R. By the Lipschitz continuity of w0 and
φ̂, we deduce that:

w(t, x̂)− w(t, x̂′) ≤ sup
α[·]∈Γ

sup
b(·)∈B

{(
L0(R)‖ŷα[b],b

t,x̂ (T)− ŷα[b],b
t,x̂′ (T)‖

)
∨(

Lφ̂(R) max
s∈[t,T]

‖ŷα[b],b
t,x̂ (s)− ŷα[b],b

t,x̂′ (s)‖
)}
.

Since f̂ is locally Lipschitz continuous, with Lipschitz constant Lf̂ (R) for any R > 0, and from the Gronwall
Lemma, we obtain for any (α[·], b(·)) ∈ Γ× B and any s ∈ [t, T]:

‖ŷα[b],b
t,x̂ (s)− ŷα[b],b

t,x̂′ (s)‖ ≤ eLf̂ (R)T ‖x̂− x̂′‖.

As a conclusion, we obtain:

w(t, x̂)− w(t, x̂′) ≤
(
L0(R)

∨
Lφ̂(R)

)
eLf̂ (R)T ‖x̂− x̂′‖.

Now, since x̂ and x̂′ play symmetric roles, we have also:

w(t, x̂′)− w(t, x̂) ≤
(
L0(R)

∨
Lφ̂(R)

)
eLf̂ (R)T ‖x̂− x̂′‖,

from which we conclude that:

|w(t, x̂)− w(t, x̂′)| ≤
(
L0(R)

∨
Lφ̂(R)

)
eL̂f (R)T ‖x̂− x̂′‖. (3.44)

For the sequel of the proof, denote Lw(R) :=
(
L0(R)

∨
Lφ̂(R)

)
, for any R > 0.

Now, let x̂ = (x, z) ∈ Rd × R, t, t1 ∈ [0, T] and without loss of generality assume that t1 > t. Notice
that w(t1, x̂) ≥ φ̂(x̂), which implies that w(t1, x̂) = w(t1, x̂)

∨
φ̂(x̂) . By using the dynamic programming

principle (3.11) between t and t1, we get:

|w(t, x̂)− w(t1, x̂)| = | inf
α[·]∈Γ

sup
b(·)∈B

{(
w(t1, ŷ

α[b],b
t,x̂ (t1)

∨
max
s∈[t,t1]

φ̂(ŷ
α[b],b
t,x̂ (s))

)
− w(t1, x̂)

∨
φ̂(x̂)

}
|

≤ inf
α[·]∈Γ

sup
b(·)∈B

{
|w(t1, ŷ

α[b],b
t,x̂ (t1))− w(t1, x̂)|

∨
| max
s∈[t,t1]

φ̂(ŷ
α[b],b
t,x̂ (s))− φ̂(x̂)|

}
≤ inf

α[·]∈Γ
sup
b(·)∈B

{
|w(t1, ŷ

α[b],b
t,x̂ (t1))− w(t1, x̂)|

∨
max
s∈[t,t1]

|φ̂(ŷ
α[b],b
t,x̂ (s))− φ̂(x̂)|

}
≤ inf

α[·]∈Γ
sup
b(·)∈B

{
Lw(R)‖ŷα[b],b

t,x̂ (t1)− x̂‖
∨
Lφ̂(R) max

s∈[t,t1]
‖ŷα[b],b
t,x̂ (s)− x̂‖

}
.

80

We denote by Cf̂ := max
(s,a,b)∈[0,T]×A×B

‖f̂(s, 0, a, b)‖. Cf̂ is finite since (s, a, b) 7→ f̂(s, 0, a, b) is continuous over

the compact set [0, T] × A × B. Therefore, we have ‖f̂(s, x̂, a, b)‖ ≤ Cf̂ + Lf̂ (R)‖x̂‖ for any x̂ ∈ Rd × R.
Hence by a Gronwall estimate, we obtain

‖ŷα[b],b
t,x̂ (s)− x̂‖ ≤ (Cf̂ + Lf̂ (R)‖x̂‖)eLf̂ (R)T |s− t|, for any s ∈ [t, t1].

Henceforth, there exits some constant C > 0 such that:

|w(t, x̂)− w(t1, x̂)| ≤ C(1 + ‖x̂‖)|t1 − t|.

Combining (3.44) with the last inequality implies the existence of a real constant C ′ > 0 such that for any
t, t′ ∈ [0, T] and any x̂, x̂′ ∈ Rd+1:

|w(t, x̂)− w(t′, x̂′)| ≤ C ′(1 + ‖x̂‖)(|t− t′|+ ‖x̂− x̂′‖).

81

Chapter 4

Optimistic Planning Algorithms For
Constrained Optimal Control Problems

Publication from this chapter

O.Bokanowski, N.Gammoudi and H.Zidani, Optimistic Planning Algorithms For State-Constrained Optimal
Control Problems, Computers and Mathematics with Applications, 2020 (submitted).

4.1 Introduction

In this chapter, we study optimistic planning methods to solve some state-constrained optimal control
problems in finite horizon. While classical methods for calculating the value function are generally based
on a discretization in the state space, optimistic planning algorithms have the advantage of using adaptive
discretization in the control space. These approaches are therefore very suitable for control problems
where the dimension of the control variable is low and allow to deal with problems where the dimension
of the state space can be very high. Our algorithms also have the advantage of providing, for given
computing resources, the best control strategy whose performance is as close as possible to optimality
while its corresponding trajectory comply with the state constraints.

Let T > 0 be a fixed time horizon and let K and C be two closed subsets of Rd, with d ∈ N∗. For any
(t, x) ∈ [0, T]× Rd, consider the following state-constrained optimal control problem:

v(t, x) := inf
a(·)∈A

{∫ T

t
`(yat,x(s), a(s))ds+ Φ(yat,x(T)) | yat,x(s) ∈ K, ∀s ∈ [t, T] and yat,x(T) ∈ C

}
, (4.1)

where A is the set of controls taking values in some compact subset A of Rq, q ≥ 1, and yat,x(·), rep-
resenting the system trajectory, is the unique absolutely continuous solution of the following dynamical
system: {

ẏ(s) = f(y(s), a(s)) a.e. s ∈ [t, T],

y(t) = x.
(4.2)

The dynamics f and the cost functions ` and Φ are supposed to be Lipschitz continuous, see section 4.2
for the precise assumptions. Recall that if the problem (4.1) is free of state constraints, K = C = Rd, then
the value function v is Lipschitz continuous and can be characterized as the unique viscosity solution of
an appropriate HJ equation. Such characterization allows to compute an approximation of v and hence
to synthesize approximated optimal controls in feedback form which gives sub-optimal solutions. In this
context, several numerical methods have been proposed in the literature to approximate the solutions of
HJ equations such as finite differences ([51]) and semi-Lagrangian ([61, 63]). Since the computations are

82

done over a grid on the state space, the complexity of this class of methods depends strongly on the state
dimensionality which reduces the ability of solving optimal control problems with high state dimension
(curse of dimensionality).

In order to reduce this curse of dimensionality, several techniques have been proposed in the litera-
ture. Among those approaches, one can mention max-plus finite element method, see [1] and references
therein. Furthermore, the value function of an optimal control problem can be approximated by use of
occupation measures, see for instance [95]. Another idea is to seek for an approximation of the value
function by means of sparse grid schemes [27], which requires strong regularity properties on the value
function. One can mention also domain decomposition techniques for partial differential equations [110].
In particular, an approximated scheme was proposed in [65] to solve Hamilton-Jacobi equations by split-
ting the original problem into simpler problems on two sub-domains with a linking condition and by im-
posing constraints on the system state. Recently, a state-tree-structure method has appeared in order to
approximate the solution of a dynamic programming equation, see [3, 120, 4]. This approach eliminates
the space discretization and constructs a tree, starting from a given initial state, by adding only the states
that will be encountered by a discrete time dynamics and a finite number of controls. Then, the value
function will be computed by the dynamic programming principle on the constructed tree.
Another important class of approaches solving the curse of dimensionality is On-line methods where com-
putations are done locally for just current states that will be encountered during the control process. For
instance, Rollout algorithm, at a current state, looks for the best control choice improving the cost by use
of heuristic ways and uses it to move to the next time step, see [21]. Another method is model predictive
control, see [94, 21], where at each time step, an optimization problem, over finite control sequences, is
solved and only the first value of the resulting sequence is used to move to the next time step.

In this chapter, we investigate the optimistic planning approach that, instead of discretizing the state space,
it refines the set of controls and tries, after a discretization of the time interval, to find the best control value
that should be applied on each time sub-interval. This approach is very interesting especially for many
applications where the control dimension q is very lower compared to the state dimension d.

Optimistic planning algorithms are based on the principles of optimistic optimisation (see [105]). This
approach performs the best control search by refining, iteratively and in an optimistic way, the control
set (the notion optimistic will be clarified in section 4.4). A main strength of this approach is the relation
between the convergence rates to the optimal solution and the computational resources allowed, which is
established using some ideas of bandit theory and reinforcement learning [106].

Several optimistic planning methods have been proposed with heuristic rules for the refinement selection
and without providing convergence analysis, see for instance [131, 100, 75] for finite time horizon and
[76, 101, 36] for infinite time horizon with a discount factor. In [39, 38], other variants are proposed with
adaptive selection rules of the control set refinement and convergence analysis results are also provided.
We refer also to [37] for the case of two-person games in infinite horizon and without state constraints.

Our contribution in this chapter consists in extending the optimistic planning approach to deal with finite
horizon problems in presence of state constraints. Recall that in this case, K 6= Rd or C 6= Rd, the value
function is in general discontinuous and its characterization as solution to an HJ equation is no longer valid,
unless some controllability assumptions are satisfied. First, we follow the level set approach, introduced in
[5, 6], which is showed to be relevant to characterize the constrained problem by an auxiliary control prob-
lem free of state constraints. Then, we adapt two algorithms from [39, 38], OPC - "Optimistic Planning with
Continuous actions", and SOPC - "Simultaneous OPC", in order to solve the auxiliary problem and hence
to get an approximation of the optimal solution for the original state-constrained problem. Moreover, even
in this framework, we prove convergence results similar to those established in [39]. Besides, we improve
the analysis of the complexity of these algorithms and provide simplified proof arguments for this analysis.
Finally, we propose an algorithm which combines both the optimistic planning approach with ideas from
the MPC (Model Predictive Control). This algorithm gives better numerical results than those obtained by

83

the previous methods and reduce significantly the computational time. We illustrate the relevance of our
algorithms on several non-linear optimal control problems (in one of these examples, the dimension of the
state is 103).

We organize this chapter as follows. Section 4.2 formulates the state-constrained problem and presents
its associated auxiliary reformulation. Section 4.3 gives some preliminary results that will be used to de-
sign the algorithms. Section 4.4 is devoted to present the different optimistic planning algorithms with an
analysis of their convergence. In section 4.5, we show how our approach can be extended to constrained
optimal control problems with infinite time horizon. Several numerical examples are presented in section
4.6.

4.2 Problem formulation and discrete settings

For a fixed final time T > 0 and a given non-empty compact subset A of Rq, q ≥ 1, consider the following
dynamical and controlled system:{

ẏ(s) = f(y(s), a(s)) a.e. s ∈ [t, T],

y(t) = x,
(4.3)

where x ∈ Rd and the input variable a(·) is a control in

A := {a(·) : [0, T]→ A, measurable},

and the dynamics f : Rd ×A→ Rd is a Lipschitz continuous function satisfying:

(H4.1) There exist Lf,x, Lf,a ≥ 0, such that for any y, y′ ∈ Rd and a, a′ ∈ A:

‖f(y, a)− f(y′, a′)‖ ≤ Lf,x‖y − y′‖+ Lf,a‖a− a′‖.

Moreover, consider a distributed cost ` and a final cost Φ verifying:

(H4.2) ` : Rd × A → R is a Lipschitz continuous function i.e. there exist L`,x, L`,a ≥ 0 such that for any
y, y′ ∈ Rd and a, a′ ∈ A:

|`(y, a)− `(y′, a′)| ≤ L`,x‖y − y′‖+ L`,a‖a− a′‖.

(H4.3) Φ : Rd → R is a Lipschitz continuous function i.e. there exists LΦ ≥ 0 such that for any y, y′ ∈ Rd:

|Φ(y)− Φ(y′)| ≤ LΦ‖y − y′‖.

Finally, consider the following additional convexity assumption:

(H4.4) The set
{(

f(x, a)
`(x, a) + b

)
, a ∈ A, 0 ≤ b ≤ 2L`,x‖x‖

}
is convex, for any x ∈ Rd.

We are interested in the following optimal control problem:

v(t, x) := inf
a(·)∈A

{∫ T

t
`(yat,x(s), a(s))ds+ Φ(yat,x(T)) | yat,x(s) ∈ K, ∀s ∈ [t, T] and yat,x(T) ∈ C

}
, (4.4)

84

with the convention that inf ∅ = +∞ and where yat,x(·), the unique absolutely continuous trajectory satis-
fying (4.3), is said to be admissible if it remains in K and reachs C at the final time T . K and C are two
non-empty closed subsets of Rd representing respectively the constraints set and the target.

Recall that in general, when K 6= Rd or C 6= Rd and without assuming further controllability assumptions,
the value function v may become discontinuous and its characterization as the unique viscosity solution
of an appropriate HJ equation is not guaranteed, see [124, 70, 85, 26]. Moreover, v may take infinite
values since the set of admissible trajectories may be empty and its domain of definition (the set where
it takes finite values) is not known a priori. Similarly to chapter 3, we follow in this chapter the level set
approach, developed in [5], which consists in characterizing v by means of an auxiliary control problem
free of state constraints. This approach allows to determinate the domain of definition of v and to compute
its value. Even though the latter is infinite, one can exploit the auxiliary problem to compute trajectories
that minimize the cost functional in (4.4) and remain as close as possible to the sets of constraints.

First, since the sets K and C are closed, there exist two Lipschitz continuous functions verifying the follow-
ing characterization:

∀y ∈ Rd, g(y) ≤ 0 ⇐⇒ y ∈ K and Ψ(y) ≤ 0 ⇐⇒ y ∈ C.

Denote by Lg and LΨ the Lipschitz constant of g and Ψ respectively. For instance, g and Ψ can be chosen,
respectively, as the signed distance to K and the signed distance to C.
Then, the auxiliary control problem corresponding to (4.4) is defined, for (t, x, z) ∈ [0, T] × Rd × R, as
follows:

w(t, x, z) := inf
a(·)A

{(∫ T

t
`(yat,x(s), a(s))ds+ Φ(yat,x(T))− z

)∨(
max
s∈[t,T]

g(yat,x(s))
)∨

Ψ(yat,x(T))

}
. (4.5)

The following result gives a characterization of w and presents its link with the constrained problem (4.4).
We refer to [5, 6] for more details and the proof of this result.

Proposition 4.2.1. Assume that (H4.1)-(H4.3) hold then:

(i) w is a locally Lipschitz continuous function and is the unique viscosity solution of the following HJ
equation:{

min (−∂tw(t, x, z) +H(x,Dxw(t, x, z), ∂zw(t, x, z)), w(t, x, z)− g(x)) = 0, on [0, T [×Rd × R,
w(T, x, z) = (Φ(x)− z)

∨
g(x)

∨
Ψ(x), on Rd × R,

where the Hamiltonian H is given by:

H(x, p, p′) := max
a∈A

{
− 〈f(x, a), p〉+ p′`(x, a)

}
, for (x, p, p′) ∈ Rd × Rd × R.

(ii) Assume that (H4.4) also holds. For any (t, x) ∈ [0, T]× Rd, we have:

v(t, x) = inf{z ∈ R | w(t, x, z) ≤ 0},

and if z := v(t, x) < +∞ then any optimal solution of (4.5) with z = z is optimal for the constrained
problem (4.4).

Assertion (ii) of the above Proposition shows the relevance of considering the problem formulation
(4.5) in order to solve the original constrained problem (4.4). Moreover, the characterization of the aux-
iliary function w, as unique Lipschitz continuous solution of an HJ equation (i), provides a very useful
framework for numerical approximation of w and the control feedback. However, it is known that the clas-
sical numerical methods for solving HJ equations, such as finite differences ([51]) and semi-Lagrangian

85

([61, 63]) are grid-dependent since computations are based on a discretization of the state space. This
makes this approach applicable only for problems where the dimension of the state variable is low (curse
of dimensionality) and henceforth it may seem unreasonable to apply it for the auxiliary problem where
the state vector has been increased by one more variable (the auxiliary variable z). In this chapter, we
propose a different approach which, instead of considering a grid in the state space, proposes an adaptive
refinement of the control space. This approach becomes then interesting for many applications in high
dimensional state space and with low dimensional control space.

Now, we will define the discrete setting allowing to approximate the auxiliary value function w. In order to
simplify the presentation, from now on, the initial time for the controlled system is set to 0. First, for N ≥ 1,
consider a uniform partition of [0, T] with N time steps: s0 = 0, ..., sk = k∆t, ..., sN = T , where ∆t = T

N is
the time steps size. Let F be a discrete dynamics associated to f and defined, through the Heun scheme,
as follows:

F (x, a) := x+
∆t

2

(
f(x, a) + f(x+ ∆tf(x, a), a)

)
.

The discrete dynamical system, associated to (4.3), is given by:{
yk+1 = F (yk, ak), k = 0, ..., N − 1,

y0 = x,
(4.6)

where a := (ak)k ∈ AN is a finite sequence of actions. The solution of (4.6), representing the discrete
trajectory of the system, will be denoted by (yak)k. This trajectory is admissible if:

yak ∈ K, for any k = 0, ..., N and yaN ∈ C.

Moreover, consider an instantaneous cost ρ that approximates the integral of ` over an interval [sk, sk+1],
for k = 0, ..., N − 1, by a quadrature rule, as follows:

ρ(x, a) :=
∆t

2

(
`(x, a) + `(F (x, a), a)

)
.

Under assumptions (H4.1) and (H4.2), the functions F and ρ are Lipschitz continuous:

‖F (y, a)− F (y′, a′)‖ ≤ LF,x‖y − y′‖+ LF,a‖a− a′‖,
|ρ(y, a)− ρ(y′, a′)| ≤ Lρ,x‖y − y′‖+ Lρ,a‖a− a′‖,

where
LF,x := 1 + ∆tLf,x(1 +

∆t

2
Lf,x), LF,a := ∆tLf,a(1 +

∆t

2
Lf,xLf,a), (4.7)

and
Lρ,x := ∆tL`,x

(
1 + LF,x

)
, Lρ,a := ∆t

(
L`,a +

1

2
L`,xLF,a

)
. (4.8)

The discrete auxiliary control problem, free of state constraints, is defined as follows:

W (x, z) := inf
(ak)k∈AN

J(x, z, a), (4.9)

where, for (x, z) ∈ Rd × R, the cost functional J is defined by

J(x, z, a) :=
(N−1∑
k=0

ρ(yak , ak) + Φ(yaN)− z
)∨(

max
0≤k≤N

g(yak)
)∨

Ψ(yaN). (4.10)

It is worth to mention that W (x, z) converges to w(0, x, z), over compact subsets of Rd × R, as N → +∞
(i.e. ∆t → 0). More details and quantitative results about time approximation of finite horizon value func-
tions and its convergence order can be found in [11, 64]. Moreover, the sequence of discrete time optimal

86

trajectories (for N ≥ 1) provide convergent approximations of optimal trajectories of the continuous time
auxiliary problem (4.5) and we refer to [6] for a precise claim and its proof.

In the particular case when the problem is free of state constraints, i.e. K = C = Rd, a discrete time ap-
proximation of problem (4.4) can be solved by applying optimistic planning methods for finite time horizon,
see for instance [131, 100, 75]. In our setting and in order to compute an approximation of W , we extend
the optimistic planning approach to deal with maximum cost functions in finite horizon (which is the case
of the cost functional J).

4.3 Preliminary results

The aim of this section is to give some preliminary results that will be useful to present our numerical
methods and to analyse its convergence.

We start by the following Proposition which states that J satisfies some Lipschitz property w.r.t. the
discrete control sequence.

Proposition 4.3.1. Assume that hypothesis (H4.1), (H4.2) and (H4.3) hold. For (x, z) ∈ Rd×R and (ak)k,
(āk)k ∈ AN , we have the following estimate:

|J(x, z, a)− J(x, z, ā)| ≤ σ :=
(N−1∑
k=0

αk‖ak − āk‖
)∨(N−1∑

k=0

βk‖ak − āk‖
)

(4.11)

where

αk := Lρ,xLF,a
LN−k−1
F,x − 1

LF,x − 1
+ Lρ,a + LΦLF,aL

N−k−1
F,x ,

and
βk :=

(
Lg
∨
LΨ

)
LF,aL

N−k−1
F,x .

Proof. We start the proof by introducing the following Lemma:

Lemma 4.3.2. Given yk+1 = F (yk, ak) and ȳk+1 = F (ȳk, āk), for 0 ≤ k ≤ N − 1, with y0 = ȳ0 = x, we have

‖yk − ȳk‖ ≤ LF,a
k−1∑
j=0

Lk−1−j
F,x ‖aj − āj‖, 0 ≤ k ≤ N.

Now, consider (x, z) ∈ Rd × R, (ak)k, (āk)k ∈ AN and the corresponding costs J(a) := J(x, z, a) and
J(ā) := J(x, z, ā). It holds that:

|J(a)− J(ā)| ≤
(N−1∑
k=0

Lρ,x‖yk − ȳk‖+

N−1∑
k=0

Lρ,a‖ak − āk‖+ LΦ‖yN − ȳN‖
)

∨(
Lg max

0≤k≤N
‖yk − ȳk‖

)∨(
LΨ‖yN − ȳN‖

)
.

From Lemma 4.3.2, we obtain:

N−1∑
k=0

‖yk − ȳk‖ ≤ LF,a
N−1∑
k=0

k−1∑
j=0

Lk−1−j
F,x ‖aj − āj‖

≤ LF,a
N−1∑
k=0

LN−k−1
F,x − 1

LF,x − 1
‖ak − āk‖,

87

and for any k = 0, ..., N

‖yk − ȳk‖ ≤
k−1∑
j=0

βk,j‖aj − āj‖, where βk,j := LF,aL
k−1−j
F,x .

On the other hand, we observe that the function b(k) :=
∑k−1

j=0 βk,j‖aj− āj‖ is non-decreasing with respect
to k ≥ 0, hence we will use the bound max

0≤k≤N
b(k) ≤ b(N), in order to deduce that:

(
Lg max

0≤k≤N
‖yk − ȳk‖

)∨(
LΨ‖yN − ȳN‖

)
≤
(
Lg
∨
LΨ

)
LF,a

N−1∑
k=0

LN−k−1
F,x ‖ak − āk‖.

Combining the above inequalities gives the desired result (4.11).

An estimate of the difference of performances is also established in [39, 38] for the case of an infinite
horizon sum with a positive discount factor and under a boundedness assumption on the instantaneous re-
ward. Here, the cost functional J is defined, in finite horizon, as a maximum of several terms. Henceforth,
the error term σ, see (4.11), is also defined by taking the maximum between a first term corresponding to
the cost functional and a second term representing the constraints.

Now, we give a second result that establishes a larger upper bound on the difference of performances
between two different control sequences.

Corollary 4.3.3. There exists a constant C > 0, independent of N , such that for any (x, z) ∈ Rd × R and
(ak)k, (āk)k ∈ AN we have:

|J(x, z, a)− J(x, z, ā)| ≤ σ ≤ δ := C∆t

N−1∑
k=0

(
1

LF,x
)k‖ak − āk‖. (4.12)

Proof. For sake of simplicity and only in this proof, denote by L := LF,x. From (4.7), we know that
L = 1 + ∆tL′ with L′ := Lf,x(1 + ∆t

2 Lf,x). Hence, for any k ∈ {0, ..., N − 1}:

LN−k−1 − 1

L− 1
≤ L−kL

N−1

L− 1
≤ L−k e

N∆tL′

∆tL′
.

Moreover, from the definitions of LF,a and Lρ,x, we deduce:

Lρ,xLF,a
LN−k−1 − 1

L− 1
≤ C1,1∆tL−k,

with C1,1 :=
Lf,aL`,x

2Lf,x

(
2 +TLf,x(1 + T

2Lf,x)
)(

1 + T
2Lf,xLf,a

)
eTLf,x(1+T

2
Lf,x) is a constant independent of N

and where the last inequality holds by using the fact that

L ≤ 1 + TLf,x(1 +
T

2
Lf,x) and Lf,x ≤ L′ ≤ Lf,x(1 +

T

2
Lf,x).

Now, from (4.8), we get:

Lρ,a = Lρ,aL
−kLk ≤ Lρ,aL−kek∆tL′ ≤ C1,2∆tL−k,

with C1,2 :=
(
L`,a + 1

2L`,xLf,aT (1 + T
2Lf,xLf,a)

)
eTLf,x(1+T

2
Lf,x) and where the last inequality holds since

LF,a ≤ Lf,aT (1 + T
2Lf,xLf,a). With similar arguments, we obtain:

LΦLF,aL
N−k−1 ≤ C1,3∆tL−k with C1,3 := LΦLf,a

(
1 +

T

2
Lf,xLf,a

)
eTLf,x(1+T

2
Lf,x).

88

Finally, by setting C1 := C1,1 +C1,2 +C1,3, we conclude that αk ≤ C1∆t(1
L)k, for k = 0, ..., N − 1. By using

similar arguments, we obtain an upper bound on βk as follows:

βk ≤ C2∆t(
1

L
)k, with C2 :=

(
Lg
∨
LΨ

)
Lf,a

(
1 +

T

2
Lf,xLf,a

)
eTLf,x(1+T

2
Lf,x).

In conclusion, we get the desired result by setting C := C1
∨
C2.

Remark 4.3.4. The upper bound δ, defined in (4.12) with 1
LF,x

< 1, is quite similar to the bound established
in [39, 38] for infinite time horizon problems. This new upper bound will be useful to prove the convergence
results of our planning algorithms in the following section.

4.4 Optimistic planning

In order to simplify the presentation and without loss of generality, we suppose that the control is of
dimension q = 1 and we takeA = [0, 1]. The unit interval here can be obtained by normalizing any compact
set of R. Furthermore, our approach can be generalized to control variables with multiple dimensions.

4.4.1 Optimistic planning approach

Planning algorithms are based on the principles of optimistic optimisation (see [56]). In order to minimize
the objective function J , we refine, iteratively and in an optimistic way, the global search space AN into
smaller search spaces.

A subset of the global search space AN , called a node and denoted by Ai with i ∈ N, is a cartesian
product of sub-intervals of A i.e. Ai := Ai,0 × Ai,1 × ...× Ai,N−1 ⊆ AN , where Ai,k ⊂ [0, 1] represents the
control interval at time step k, for k = 0, ..., N − 1. The collection of nodes will be organized into a tree
Υ that will be constructed progressively by expanding the tree nodes. Expanding a node Ai consists of
choosing an interval Ai,k, for k = 0...N − 1, and splitting it uniformly to M sub-intervals where M > 1 is a
fixed parameter of the algorithm.

In figure 4.1, we represent a simple example of a tree construction to explain how it works.
At the beginning, the tree contains only the root A0 (A0 = AN), from which we generate 3 children

nodes A1 = [0, 1
3] × AN−1, A2 = [1

3 ,
2
3] × AN−1 and A3 = [2

3 , 1] × AN−1, after splitting its first interval.
Then, suppose that A1 is the second node to be refined by splitting its second interval. Hence, we get
A4 = [0, 1

3]× [0, 1
3]×AN−2, A5 = [0, 1

3]× [1
3 ,

2
3]×AN−2 and A6 = [0, 1

3]× [2
3 , 1]×AN−2. Finally, we choose

A6 and we split its first interval [0, 1
3] to generate A7 = [0, 1

9]× [2
3 , 1]×AN−2, A8 = [1

9 ,
2
9]× [2

3 , 1]×AN−2 and
A9 = [2

9 ,
1
3]× [2

3 , 1]×AN−2. In this example, the order of expanding the nodes and splitting the intervals is
arbitrary. The true selection rules will be clarified later.

Some useful notations related to the tree Υ

• We associate, for any node Ai ∈ Υ, a sample control sequence ai := (ai,k)
N−1
k=0 such that ai,k

corresponds to the midpoint of the interval Ai,k for any k = 0, ..., N − 1.

• Denote by di,k, for k = 0, ..., N − 1, the diameter of the interval Ai,k of some node Ai ∈ Υ. For
example, in figure 4.1, we have d7,0 = d8,0 = d9,0 = 1

9 , d7,1 = d8,1 = d9,1 = 1
3 and d7,k = d8,k = d9,k =

1 for k ≥ 2.

• For any node Ai ∈ Υ corresponds a split function si(·) such that si(k) indicates the number of splits
needed to obtain the interval Ai,k for k = 0, ..., N − 1. For example, in figure 4.1, s0(·) ≡ 0 for the
root A0. As for A7, we have s7(0) = 2, s7(1) = 1 and s7(k) = 0 for k ≥ 2.

89

A0

A1 A2 A3

A4 A5 A6

A7 A8 A9

0

1

2

3

p (depth)

Figure 4.1: Illustrative example of refinement of AN with M = 3 after splitting 3 nodes A0, A1 and A6.

• The depth of a node Ai, denoted by pi, is to the total number of splits effectuated to obtain this node:

pi :=

N−1∑
k=0

si(k). (4.13)

• A node Ai is called a tree leaf if it has not been expanded. The set of the tree leaves is denoted by
Λ. In figure 4.1, at this level the set of the tree leaves is formed by Λ = {A2,A3,A4,A5,A7,A8,A9}.

• Finally, we denote by Λp the set of leaves of Υ at some depth p ∈ N:

Λp :=
{
Ai ∈ Υ s.t. pi = p

}
.

Remark 4.4.1. The control value ai,k can be selected somewhere else in the corresponding interval Ai,k
for any Ai ∈ Υ and k = 0, ..., N − 1.

Remark 4.4.2. We can express the intervals diameters by means of the split function as follows: di,k =
M−si(k).

Remark 4.4.3. By selecting the control sequence ai at the centers of intervals of the node Ai and by
taking M odd, we guarantee that after expanding Ai we generate at least one node Aj with J(x, z, aj) ≤
J(x, z, ai). Indeed, the middle child Aj contains the same control sequence as Ai hence J(x, z, aj) =
J(x, z, ai).

Thanks to Proposition 4.3.1 and Corollary 4.3.3, we get a lower and an upper bound on the optimal
value W (x, z) of the discrete auxiliary problem.

Proposition 4.4.4. By the tree construction, we guarantee that there exists at least a leaf node Ai ∈ Λ
containing an optimal control sequence and verifying:

J(x, z, ai)− σi ≤W (x, z) ≤ J(x, z, ai) (4.14)

90

where ai is the sample control sequence associated to the node Ai and

σi :=
1

2

(N−1∑
k=0

αkdi,k

)∨(N−1∑
k=0

βkdi,k

)
, (4.15)

with αk and βk are given in Proposition 4.3.1.

Proof. By construction of the tree Υ, the set of leaves covers the entire space AN . Therefore, there exists
at least a leaf node Ai ∈ Λ that contains an optimal control sequence a∗ := (a∗k)k ∈ AN . From Proposition
4.3.1 and since W (x, z) = J(x, z, a∗), we get:

|J(x, z, ai)−W (x, z)| = |J(x, z, ai)− J(x, z, a∗)| ≤
(N−1∑
k=0

αk|ai,k − a∗k|
)∨(N−1∑

k=0

βk|ai,k − a∗k|
)
,

where ai is the sample control sequence associated to the node Ai. Moreover, since ai is chosen at the
centers of the intervals of Ai, we obtain |ai,k − a∗k| ≤

di,k
2 , for any k = 0, ..., N − 1. It follows that

|J(x, z, ai)−W (x, z)| ≤ σi.

In the optimistic planning algorithms, at each iteration, one or several optimistic nodes are chosen and
expanded to generate from each node M children. The choice of the optimistic nodes is based on some
criterion that we explain hereafter.

Recall that to expand a node Ai, we choose an interval from Ai,0 × Ai,1 × ... × Ai,N−1 and we partition it
uniformly to M sub-intervals. If we choose to split the interval Ai,k, for some k = 0, ..., N − 1, then we will
generate M nodes with an error term σ+

i (k) defined by:

σ+
i (k) :=

(N−1∑
j=0,j 6=k

αjdi,j + αk
di,k
M

)∨(N−1∑
j=0,j 6=k

βjdi,j + βk
di,k
M

)
.

Henceforth, in order to minimize the error σ+
i (k), the best choice of the interval to split, k∗i , is defined by:

k∗i := argmin
0≤k≤N−1

σ+
i (k). (4.16)

The following result gives an upper bound on the error term σi, of any node Ai ∈ Υ. This result will be
used later in the convergence analysis of optimistic planning algorithms. The proof of this Theorem is
given in Appendix 4.7.1.

Theorem 4.4.5. Assume that M > LF,x > 1 and N ≥ 2τ where τ := dlog(M)/ log(LF,x)e. For any node
Ai ∈ Υ at some depth p := pi large enough, the corresponding error σi is bounded as follows:

σi ≤ δp := c1(N)∆tM−
p
N , (4.17)

where c1(N) := C 1

1− M
1
τ

LF,x

M q(N) with q(N) := 2− (N − 1) τ−2
2τ(τ−1) and C > 0 is a real constant independent

of N and p.

Notice that, by definition, we have τ ≥ 2 and M
1
τ

LF,x
≤ 1. Hence (4.17) is meaningful only when the strict

inequality M
1
τ

LF,x
< 1 holds. Moreover, q(N) ≤ 2 hence c1(N) is bounded independently of N .

91

We introduce some additional definitions that will be useful for the convergence analysis of the algorithms.
At any depth p ≥ 0 of the tree Υ, let Υ∗p be defined as follows:

Υ∗p := {Ai ∈ Υ at depth p | J(x, z, ai)− δp ≤W (x, z)},

where δp is defined as in (4.17). We will see later that optimistic planning algorithms will expand only
nodes in Υ∗p, for p ≥ 0. Finally, we define the asymptotic branching factor m (see [39]):

Definition 4.4.6. The asymptotic branching factor m is the smallest real in [1,M] such that there exists
R ≥ 1 verifying:

|Υ∗p| ≤ Rmp, for any depth p ≥ 0 of the tree Υ,

where |Υ∗p| denotes the cardinality of Υ∗p.

Remark 4.4.7. The asymptotic branching factor m lies in [1,M] because at any depth p, there is at least
one node in Υ∗p (the one containing the optimal solution) and at most Mp. Moreover, m measures the
complexity of the optimistic algorithms. Indeed, the nodes that will be expanded are contained in Υ∗p,
p ≥ 0, whose size is bounded by Rmp. A problem with low resolution complexity will correspond to a small
value of m.

4.4.2 Optimistic Planning (OP) Algorithm

At each iteration, we select from the tree leaves, the node Ai∗ minimizing the lower bound (J(x, z, ai)−σi)
and we split it to produce M children, see Algorithm 4.1. More precisely, we identify the interval Ai∗,k∗

i∗

whose partition in M sub-intervals will produce the lowest error σ+
i∗(k

∗
i∗), as described in (4.16).

Algorithm 4.1: Optimistic Planning (OP)
Require: The initial state x, the auxiliary variable z, the number of intervals N , the split factor M , the

maximal number of expanded nodes Imax.
1: Initialize Υ with a root A0 := AN and set n = 0 (n := number of expanded nodes).
2: while n < Imax do
3: Select the optimistic node to expand: Ai∗ = argmin

Ai∈Λ
(J(x, z, ai)− σi).

4: Select k∗i∗ , defined in (4.16), the interval to split for the node Ai∗ .
5: Update Υ by expanding Ai∗ along k∗i∗ and adding its M children.
6: Update n = n+ 1.
7: end while
8: return Control sequence ai∗ ∈ AN of the node Ai∗ = argmin

Ai∈Λ
J(x, z, ai) and J∗(x, z) = J(x, z, ai∗).

In this algorithm, the number of expanded nodes corresponds to the number of elapsed iterations
since at each iteration only one node will be expanded. The number Imax represents a maximum available
computational resource. The following Lemma characterizes the near-optimality of the OP Algorithm by
giving a computable bound on its sub-optimality. This result is similar to [38, Proposition 3] and for sake
of convenience we give its proof in Appendix 4.7.1.

Lemma 4.4.8. The OP Algorithm expands only nodes satisfying J(x, z, ai)−σi ≤W (x, z) (thus only nodes
in
⋃
p≥0 Υ∗p). Furthermore, the returned value J(x, z, ai∗) verifies

0 ≤ J(x, z, ai∗)−W (x, z) ≤ σmin,

with σmin is to the smallest computed error value σi among all the expanded nodes.

92

Finally, by combining Theorem 4.4.5 with Lemma 4.4.8, we derive the following result whose proof is
given in Appendix 4.7.1.

Theorem 4.4.9. With the assumptions of Theorem 4.4.5, let J∗(x, z) be the returned value of the OP
Algorithm. There exists an upper bound B(N,M,m, Imax) that verifies:

0 ≤ J∗(x, z)−W (x, z) ≤ B(N,M,m, Imax) −→
Imax→∞

0,

with

B(N,M,m, Imax) :=

{
c1(N)∆tM−

Imax−1
RN , if m = 1,

c1(N)∆tM− log(
(Imax−1)(m−1)

R
)/N logm, else,

where c1(N) is defined in Theorem 4.4.5 and m,R are given in Definition 4.4.6.

4.4.3 Simultaneous Optimistic Planning (SOP) Algorithm

The Simultaneous Optimistic Planning Algorithm expands, at each iteration, several nodes which are
supposed to be optimistic, see Algorithm 4.2. Indeed at each depth p ≥ 0 of the tree, one node minimizing
the objective function J is chosen to be expanded. Then, from every selected node an interval is chosen
to be split in order to generate M sub-intervals and hence M children.

Algorithm 4.2: Simultaneous Optimistic Planning (SOP)
Require: The initial state x, the auxiliary variable z, the number of intervals N , the split factor M , the

maximal number of expanded nodes Imax and the maximal depth Pmax.
1: Initialize Υ with root A0 := AN and set n = 0 (n := number of expanded nodes).
2: while n < Imax do
3: p = min

Ai∈Λ
pi : the minimal depth among the tree leaves.

4: while p ≤ Pmax do
5: Select the optimistic node at depth p: Ai∗ := argmin

Ai∈Λp

J(x, z, ai).

6: Select k∗i∗ , defined in (4.16), the interval to split for the node Ai∗ .
7: Update Υ by expanding Ai∗ along k∗i∗ and adding its M children at depth p+ 1.
8: Update p = p+ 1 and n = n+ 1.
9: end while

10: end while
11: return Control sequence ai∗ ∈ AN of the node Ai∗ := argmin

Ai∈Λ
J(x, z, ai) and J∗(x, z) := J(x, z, ai∗).

In Algorithm 4.2, Pmax denotes the maximal depth that the tree should not exceed in order to avoid an
infinite expansion of Υ. Moreover, as in Algorithm 4.1, Imax represents a maximum available computational
resource.

Lemma 4.4.10 gives a lower bound on the depth of the deepest expanded optimal node generated by the
SOP Algorithm. This result can be proven by adapting some ideas from the proof of [39, Lemma 10] and
for the convenience of the reader we give its proof in Appendix 4.7.1.

93

Lemma 4.4.10. After exploring n nodes, let p(n) be the smallest depth such that:

R

p(n)∑
p′=0

mp′ ≥ n

Pmax
. (4.18)

Therefore the SOP Algorithm has expanded an optimal node at depth p∗n := min{p(n)− 1, Pmax} and the
error of the solution obtained is bounded by δp∗n .

Now, combining the lower bound on the depth defined in Lemma 4.4.10 with the upper bound on the
error estimate from Theorem 4.4.5 gives the following convergence result of the SOP Algorithm whose
proof is also postponed to Appendix 4.7.1.

Theorem 4.4.11. With the assumptions of Theorem 4.4.5, let J∗(x, z) be the returned value of the SOP
Algorithm. When choosing Pmax = Iηmax, with η ∈]0, 1[, there exists an upper bound B(N,M,m, Imax) that
verifies:

0 ≤ J∗(x, z)−W (x, z) ≤ B(N,M,m, Imax) −→
Imax→∞

0,

with

B(N,M,m, Imax) :=

c1(N)∆tM−
√
Imax
RN , if m = 1,

c1(N)∆tM
2
NM

− log((m−1)I
1−η
max/R)

N logm , else,

where c1(N) is defined in Theorem 4.4.5 and m,R are given in Definition 4.4.6.

4.4.4 Simultaneous Optimistic Planning with Multiple Steps (SOPMS) Algorithm

We start by introducing Algorithm 4.3 (Update Tree SOP) which is a generic elementary algorithm that
describes how some given tree Υ′ should be updated in a similar way to the SOP Algorithm.

Algorithm 4.3: Update Tree SOP
Require: An initial state y, the auxiliary variable z, a tree Υ′, a maximal number of expanded nodes I

and a maximal depth P .
1: Initialize n = 0 (n := number of expanded nodes).
2: while n < I do
3: p = min

Ai∈Λ
pi : the minimal depth among the tree leaves.

4: while p ≤ P do
5: Select the optimistic node at depth p: Ai∗ = argmin

Ai∈Λp

J(y, z, ai).

6: Select k∗i∗ , defined in (4.16), the interval to split for the node Ai∗ .
7: Update Υ′ by expanding Ai∗ along k∗i∗ and adding its M children at depth p+ 1.
8: Update p = p+ 1 and n = n+ 1.
9: end while

10: end while
11: return Control sequence ai∗ of the node Ai∗ = argmin

Ai∈Λ
J(y, z, ai) and J∗(y, z) = J(y, z, ai∗).

The SOPMS Algorithm uses the elementary algorithm Update Tree SOP in order to optimize the
objective function from an initial state x ∈ Rd and an auxiliary variable z ∈ R, see Algorithm 4.4. To this
end, we define the following cost function Jk, starting from a time step k, for k = 0, ..., N − 1, as follows:

Jk(y, z, a) :=
(N−1∑
i=k

ρ(yai , ai) + Φ(yaN)− z
)∨(

max
k≤i≤N

g(yai)
)∨

Ψ(yaN),

94

where y ∈ Rd, z ∈ R, a := (ai)i ∈ AN−k and (yai)i is the discrete trajectory starting from y and associated
to the control sequence (ai)i.

Algorithm 4.4: Simultaneous Optimistic Planning algorithm with Multiple Steps (SOPMS)
Require: The initial state x, the auxiliary variable z, the number of intervals N , the split factor M , the

total maximal number of expanded nodes Imax, the local number of expanded nodes Ieval, the
maximal depth Pmax and the tolerance ε > 0.

1: Initialize k = 0, y0 = x and n = 0 (n := total number of expanded nodes).
2: while k ≤ N − 1 do
3: Initialize Υk with root A0 := AN−k, select ak := (aki)i ∈ AN−k and set Wk := Jk(yk, z, a

k).
4: while n < Imax do
5: Expand Ieval nodes to get W ′k := Update Tree SOP(Υk, Ieval, Pmax).
6: Update n = n+ Ieval.
7: if n ≥ Imax then
8: Accept the control sequence (a∗k, a

∗
k+1, ..., a

∗
N−1) ∈ AN−k and go to line 18.

9: else
10: if |W

′
k−Wk

Wk
| ≤ ε then

11: Accept only the first control value a∗k ∈ A, set yk+1 = F (yk, a
∗
k) and k = k + 1.

12: else
13: Wk = W ′k.
14: end if
15: end if
16: end while
17: end while
18: return Control sequence a∗ := (a∗k)k ∈ AN and J∗(x, z) = J(x, z, a∗.

At each time step k = 0, ..., N − 1, the SOPMS Algorithm optimizes the cost functional Jk over control
sequences in AN−k. However, only the first value of the computed control sequence will be exploited
to simulate the next system state. In order to reduce the number of expanded nodes and hence the
complexity of the algorithm, we run the Update Tree SOP algorithm, in line 5, with a local and reduced
number of expanded nodes Ieval. This parameter Ieval is chosen in an heuristic way. When the cost
functional cannot anymore be ameliorated (line 10), we cut the optimization procedure for the current time
step, we accept only the first control value to simulate the next system state and we move to the next time
step. We should mention that there is a compromise in the choice of the parameter Ieval. Small values for
Ieval may generate local minimums for the objective function. However, large values of Ieval will increase
the complexity of resolution. On the other hand, in a normal case, the condition in line 7 should not be
activated in order to allow the algorithm to iterate on all time steps. To this end, the total maximal numbers
of expanded nodes Imax should be chosen large enough.

It is worth to mention that by choosing Ieval = Imax, SOPMS Algorithm becomes equivalent to SOP and
provides the same error estimate. On the other hand, because of its heuristic parameters, Ieval and ε,
we have not established a convergence guarantee for the SOPMS Algorithm for the moment as we have
done for OP and SOP algorithms.

4.4.5 Resolution procedure for a constrained problem

We describe here the procedure to get an approximation of the optimal value and an approximated optimal
trajectory for the constrained problem (4.4), starting from an initial state x ∈ K. First, we already know

95

that, see section 4.2:
v(0, x) = inf{z ∈ R | w(0, x, z) ≤ 0}.

Then, by studying the evolution of the dynamics f and by bounding efficiently the cost functions ` and Φ,
one can get two bounds on the auxiliary variable z, Zmin and Zmax, verifying:

v(0, x) = inf{z ∈ [Zmin, Zmax] | w(0, x, z) ≤ 0}.

Since W (x, z) converges to w(0, x, z) as ∆t→ 0, see section 4.2, v(0, x) can be approximated by inf{z ∈
[Zmin, Zmax] | W (x, z) ≤ 0}. Therefore, the computations will be executed, by dichotomy on z, as follows:

• We iterate the auxiliary variable z on [Zmin, Zmax].

• For any encountered value of z, we compute, by SOP or SOPMS, an approximation of W (x, z) that
will be denoted by J∗(x, z).

• We stop this procedure when reaching a given tolerance on some variable bounds of the auxiliary
variable.

• We return the smallest encountered value of z verifying J∗(x, z∗) ≤ 0. This particular value will be
denoted by z∗.

• The returned control sequence for the constrained problem (4.4) corresponds to the one that achieves
J∗(x, z∗).

4.5 Extension to infinite horizon problems

In this section, we investigate the case of an optimal control problem with infinite time horizon, nonlinear
dynamics and state constraints. Throughout this section, assume that f and ` satisfy hypothesis (H4.1),
(H4.2) and (H4.4) and let A be the set of measurable function a(·) : [0,+∞[→ A. For any a(·) ∈ A,
consider the dynamical system:{

ẏ(s) = f(y(s), a(s)) a.e. s ∈ [0,+∞[,

y(0) = x,
(4.19)

and denote by yax(·) its solution. This solution, representing the system trajectory, is said to be admissible
if it verifies the following state constraints:

yax(s) ∈ K, ∀s ∈ [0,+∞[.

We are interested in the following state-constrained optimal control problem:

v(x) := inf
a(·)∈A

{∫ +∞

0
e−γs`(yax(s), a(s))ds | yax(s) ∈ K, ∀s ∈ [0,+∞[

}
(4.20)

with the convention that inf ∅ = +∞ and where γ > 0 corresponds to a discount factor.

In this case, the auxiliary control problem, free of state constraints, is defined, for any (x, z) ∈ Rd × R, by:

w(x, z) := inf
a(·)∈A

{(∫ +∞

0
e−γs`(yax(s), a(s))ds− z

)∨(
max

s∈[0,+∞[
e−γsg(yax(s))

)}
. (4.21)

Under assumptions (H4.1), (H4.2) and (H4.4), the constrained problem can be characterized through the
auxiliary problem as follows, see [5] for more details:

v(x) = inf{z ∈ R | w(x, z) ≤ 0}.

96

Now we will define the discrete setting in order to approximate the auxiliary value function w. For ∆t > 0,
consider the uniform partition sk = k∆t, ∀k ≥ 0 and let F and ρ be respectively the discrete dynamics and
the instantaneous cost defined as in section 4.2. The discrete dynamical system is given by:{

yk+1 = F (yk, ak), k ≥ 0,

y0 = x,
(4.22)

where ak ∈ A. The discrete trajectory (yak)k, solution of (4.22) associated with a control sequence (ak)k≥0,
is admissible if it verifies the following state constraints:

yak ∈ K, ∀k ≥ 0.

The discrete auxiliary control problem takes the following form, for (x, z) ∈ Rd × R:

W (x, z) := inf
(ak)k∈A∞

{(∞∑
k=0

λkρ(yak , ak)− z
)∨(

max
k≥0

λkg(yak)
)}

, (4.23)

where λ := 1 − γ∆t. One can check that W (x, z) converges to w(x, z), over compact subsets of Rd × R,
as ∆t→ 0. Now, consider a truncation of problem (4.23) with finite time horizon N ≥ 1:

WN (x, z) := inf
(ak)k∈AN

{(N−1∑
k=0

λkρ(yak , ak)− z
)∨(

max
0≤k≤N

λkg(yak)
)}

. (4.24)

The next result shows that WN is a good approximation for W (x, z), with an exponentially decreasing
error with respect to N . As a consequence, the algorithms developed in section 4.4 allow to approximate
WN (x, z) and so W (x, z).

Proposition 4.5.1. Assume that ρ ≥ 0, λLF,x < 1 and N ≥ max(2, 1 − log(λLF,x)). The following bound
holds:

0 ≤W (x, z)−WN (x, z) ≤ 2 max(
C1

2
, Cg + Lg‖x‖+ LgCFN)(λLF,x)N , (4.25)

where C1, Cg, Lg, CF ≥ 0 will be made explicit in the proof.

Proof. For a given a = (ak)k ∈ A∞ and a given (x, z) ∈ Rd × R let

eN−1(a) :=

N−1∑
k=0

λkρ(yak , ak)− z, rN (a) := max
0≤k≤N

λkg(yak),

e∞(a) :=

∞∑
k=0

λkρ(yak , ak)− z and r∞(a) := max
k≥0

λkg(yak).

Then we can write

WN (x, z) = inf
a:=(ak)k∈A∞

max(eN−1(a), rN (a)), and W (x, z) = inf
a:=(ak)k∈A∞

max(e∞(a), r∞(a)).

It is clear that eN−1(a) ≤ e∞(a) (because ρ ≥ 0), and rN (a) ≤ r∞(a), therefore WN (x, z) ≤ W (x, z).
Moreover, it holds

W (x, z)−WN (x, z) ≤ sup
a∈A∞

{
max(e∞(a), r∞(a))−max(eN−1(a), rN (a))

}
≤ sup

a∈A∞

{
max(e∞(a)− eN−1(a), r∞(a)− rN (a))

}
(4.26)

97

with e∞(a)− eN−1(a) =
∑∞

k=N λ
kρ(yak , ak), and by using the fact that

r∞(a) = max
(
rN (a), max

k≥N+1
λkg(yak)

)
we obtain:

r∞(a)− rN (a) ≤ max
(

0, max
k≥N+1

λkg(yak)− rN (a)
)
. (4.27)

First, by using the Lipschitz continuity of ρ, we have ρ(y, a) ≤ ρ(0, a) +Lρ,x‖y‖+Lρ,a‖a‖, and since a ∈ A
where A is a compact set, it holds

ρ(y, a) ≤ Cρ + Lρ,x‖y‖,

for some constant Cρ ≥ 0. In the same way, it also holds

‖F (y, a)‖ ≤ CF + LF,x‖y‖,

for some constant CF ≥ 0. Hence ‖yak+1‖ ≤ CF + LF,x‖yak‖, ∀k ≥ 0. In particular, it holds, for any
(ak)k ∈ A∞, with ya0 = x:

‖yak‖ ≤ CF (1 + LF,x + · · ·+ Lk−1
F,x) + LkF,x‖x‖.

Since LF,x > 1, we get 1 + LF,x + · · ·+ Lk−1
F,x ≤ kL

k−1
F,x and hence we can bound the state yak as follows:

‖yak‖ ≤ CFkLk−1
F,x + LkF,x‖x‖.

Now, let uN (λ) :=
∑

k≥N λ
k = λN

1−λ for λ < 1. We have also

λu′N (λ) =
∑
k≥N

kλk =
NλN − (N − 1)λN−1

(1− λ)2
≤ NλN

(1− λ)2
for λ < 1 and N ≥ 1.

Combining the previous bounds implies

e∞ − eN−1 =

∞∑
k=N

λkρ(yak , ak) ≤
∞∑
k=N

λk(Cρ + Lρ,x‖yak‖)

≤ CρuN (λ) + Lρ,x(CFλu
′
N (λLF,x) + ‖x‖uN (λLF,x))

≤ (Cρ + Lρ,x‖x‖)
(λLF,x)N

1− λLF,x
+ CFLρ,x

N(λLF,x)N

(1− λLF,x)2
≤ C1(λLF,x)N (4.28)

with C1 :=
(Cρ+Lρ,x‖x‖)

1−λLF,x + CF
NLρ,x

(1−λLF,x)2 , where we have used the fact that uN (λ) ≤ uN (λLF,x) and the
hypothesis λLF,x < 1. By using the fact that |g(y)| ≤ Cg + Lg‖y‖ (with Cg := |g(0)|), it holds

max
k≥N+1

λk|g(yak)| ≤ max
k≥N+1

λk(Cg + Lg‖yak‖)

≤ CgλN+1 + Lg max
k≥N+1

{
CFkλ

kLk−1
F,x + ‖x‖λkLkF,x

}
.

For a given parameter t ∈ [0, 1], using the fact that k 7→ ktk is non-increasing for k ≥ − log(t), we see that,
for k ≥ N and N ≥ − log(λLF,x), it holds k(λLF,x)k ≤ N(λLF,x)N . Henceforth

max
k≥N+1

kλkLk−1
F,x ≤

1

LF,x
max
k≥N

k(λLF,x)k ≤ 1

LF,x
N(λLF,x)N ≤ N(λLF,x)N .

It follows that
max
k≥N+1

λk|g(yak)| ≤ CN (λLF,x)N . (4.29)

98

where CN := Cgλ+ Lg‖x‖+ LgCFN . On the other hand, rN (a) ≥ λNg(yaN). As for the previous bounds,
assuming now that N − 1 ≥ − log(λLF,x), we have λN |g(yaN)| ≤ CN (λLF,x)N . Hence, combined with
(4.27) and (4.29), we obtain

r∞(a)− rN (a) ≤ 2CN (λLF,x)N .

Together with (4.26) and (4.28), we deduce the desired bound (4.25).

4.6 Numerical experimentation

4.6.1 Choice of the numerical parameters

In section 4.4, we have established some theoretical error bounds relative to the OP and SOP algorithms
(see theorems 4.4.9 and 4.4.11 respectively). Even though those bounds depend on the computational
budget Imax, they depend also on the asymptotic branching factor m for which we have only a theoretic
estimation given in definition 4.4.6. Unfortunately, this definition is not simple to exploit since we have not
a precise idea on the computational budget Imax that we should use to reach some given error bound.
In addition to that, it is known that the complexity of optimistic planning methods depends on the horizon
of resolution which corresponds to the number of intervals N in our case. Indeed, if we solve a discrete
problem of length N , with OP or SOP, by expanding a number of nodes Imax, the question is what is the
computational budget I ′max to use in order to guarantee at least the same error when solving a discrete
problem with a number of intervals N ′ 6= N . Let for example N ′ = 2×N .

When using the OP Algorithm and from Theorem 4.4.9, I ′max should satisfy the following condition:

I ′max =

{
2× Imax, if m = 1

1 + (M − 1)× I2
max else.

With the SOP Algorithm and by exploiting Theorem 4.4.11, I ′max should be chosen as follows:

I ′max =

{
4× Imax, if m = 1

(M − 1)
1

1−η × I2
max else,

where η is defined in Theorem 4.4.11.

We observe that I ′max becomes overestimated when m > 1 for both algorithms OP and SOP which
increases the numerical resolution complexity for N ′ = 2N . Henceforth, in our numerical simulations, we
will use the following rules to set the algorithms parameters.

1. The computational budget Imax: multiply Imax by 10 when the number of intervals N doubles. The
reference value for the computational budget is Imax = 103 for N = 10 in the case where the control
dimension q = 1. However, when q = 2 (as in Example 2 in the next section), we start with an
initial budget Imax = 500, for N = 10, since the complexity of algorithms depends on the control
dimension. Only for SOPMS, thanks to its low complexity (as we will see and explain later), we can
set Imax very large (free Imax). In this case, the total number of nodes expansions is limited by the
choice of the other parameters of SOPMS which are Ieval and ε.

2. The maximal depth to not exceed, Pmax, when using SOP or SOPMS: following the assumption
given in Theorem 4.4.11, this parameter should be chosen as Pmax := Iηmax with η ∈ [0, 1[. A small
value of η leads to the exploration of the tree at its width. However, if η is near to 1, the search will
be deep. In our simulations, we set η = 0.5 hence Pmax =

√
Imax.

99

3. The number of evaluations Ieval and the precision ε: Those two parameters are specific to SOPMS
algorithm. When N doubles, we multiply Ieval by 10 with a reference value Ieval = 30 (' Pmax) for
N = 10. Moreover, we set ε = 10−6.

4. As explained in remark 4.4.3, the splitting factor M should be odd. Here, we set M = 3. A larger
value of M increases the complexity.

5. The different algorithms are implemented in C++ and all the computations are done with a computer
that uses an Intel XEON E5-2695 CPU at 2.4 GHz with 128 Go RAM.

4.6.2 Numerical examples

Example 1: 2D example

Consider a control problem without state constraints and where the state dimension d = 2. The dynamics

f is given by f(x, a) =

(
−x2

a

)
for x = (x1, x2) ∈ R2 and a ∈ A = [−1, 1], the time horizon T = 1, the

distributed and final cost functions are given by:

`(x, a) = 0 and Φ(x) = ‖x‖.

Let V (x) be the value function of the discrete problem, starting from the initial state x, that can be com-
puted, with ∆t = T

N for different values of N1. Henceforth, we define the relative error w.r.t. the discrete
value function as follows:

Edisc(x) :=
|J ∗(x)− V (x)|
|V (x)|

,

where J ∗(x) is the value returned by optimistic planning algorithms. Furthermore, we define the relative
errors w.r.t the continuous time optimal control problem as follows:

Econt(x) :=
|J ∗(x)− v(0, x)|
|v(0, x)|

,

where v(0, x) is the exact value function of the continuous problem. Indeed, for any time horizon T > 0
the optimal trajectory aims to get closer to the origin (0, 0) and can be computed analytically.2

In tables 4.1, we present the relative errors w.r.t. the discrete value function obtained by OP. We observe
that the OP Algorithm does not succeed to keep the same errors when increasing N even for a large
number of iterations Imax.

1The optimal control sequence (a∗k)k of the discrete problem is determined as follows:{
a∗k = 1, k < k

a∗k = −1, k ≥ k,

where k is a switching time step.
2The optimal trajectory x∗(·) := (x∗1(·), x∗2(·)), for an initial state x := (x1, x2), is defined as follows:

• In [0, t̄], the optimal control is a∗ ≡ 1, x∗1(t) = − t
2

2
− x2t+ x1, and x∗2(t) = t+ x2.

• In [t̄, T], the optimal control is a∗ ≡ −1, x∗1(t) = t2

2
− yt+ x̄1 and x∗2(t) = −t+ x̄2.

where t̄, x̄1 and x̄2 are deduced from the continuity of the solution on t:{
− t̄

2

2
+ x1 = t̄2

2
− x̄2t̄+ x̄1,

t̄+ x2 = −t̄+ x̄2,

and the optimality condition on t̄:
x∗2(T) = x∗1(T)(T − t̄).

100

Parameters x = (1, 0) x = (1.5, 0) x = (2, 0)
N Imax V (x) Edisc(x) CPU(s) V (x) Edisc(x) CPU(s) V (x) Edisc(x) CPU(s)
10 103 6.89 e-01 1.04 e-01 0.0 1.161 5.65 e-02 0.0 1.639 4.42 e-02 0.0
20 104 6.88 e-01 1.81 e-01 5.3 1.161 1.03 e-01 5.1 1.639 7.22 e-02 4.9

2× 104 6.88 e-01 1.81 e-01 29.6 1.161 1.00 e-01 33.7 1.639 7.22 e-02 33.7
2× 105 6.88 e-01 1.47 e-01 7167.9 1.161 8.64 e-02 6987.1 1.639 6.12 e-02 6239.6

Table 4.1: (Example 1): Relative errors w.r.t. the discrete value function obtained by the OP Algorithm for
different values of N and Imax and from different initial states.

Moreover, we fix the initial state x = (1.5, 0) and we present in table 4.2 the number of iterations
I needed to reach a relative error w.r.t. the discrete value function less than a given tolerance κ. We
deduce from this table that the complexity of the OP Algorithm is very high.

N κ = 10−2 κ = 10−3 κ = 10−4

I CPU(s) I CPU(s) I CPU(s)
10 — > 1 day — > 1 day — > 1 day

Table 4.2: (Example 1): Necessary number of iterations I to reach the error κ by OP Algorithm from the
initial state x = (1.5, 0).

Finally, we present in table 4.3 the relative errors w.r.t. the continuous value function obtained by OP.
We observe that the error does not decrease when moving from N = 10 to N = 20 even when expanding
a large number of nodes Imax = 2 × 105 which increases enormously the resolution complexity in time.
All those observations can be explained by the fact that the OP Algorithm consumes the budget Imax in
expanding nodes at lower depths of the tree Υ and does not search deeply.

Parameters x = (1, 0) x = (1.5, 0) x = (2, 0)
N Imax Econt(x) CPU(s) Econt(x) CPU(s) Econt(x) CPU(s)
10 103 1.08 e-01 0.0 5.78 e-02 0.0 4.48 e-02 0.0
20 104 1.84 e-01 5.8 1.04 e-01 5.8 7.29 e-02 5.2

2× 104 1.80 e-01 30.7 9.97 e-02 35.2 7.01 e-02 34.3
2× 105 1.50 e-01 7213.4 8.78 e-02 7165.4 6.18 e-02 6414.7

Table 4.3: (Example 1): Relative errors w.r.t. the continuous value function obtained by the OP Algorithm
for different values of N and Imax and from different initial states.

Now, we present the numerical results obtained by the SOP Algorithm. We start by presenting the
relative errors w.r.t. the discrete value function in table 4.4. We observe an amelioration of the error
estimates when increasing the number of time steps N and the computational budget Imax.

Parameters x = (1, 0) x = (1.5, 0) x = (2, 0)
N Imax V (x) Edisc(x) CPU(s) V (x) Edisc(x) CPU(s) V (x) Edisc(x) CPU(s)
10 103 6.89 e-01 9.07 e-03 0.01 1.161 5.81 e-03 0.01 1.639 4.89 e-03 0.01
20 104 6.88 e-01 2.14 e-03 1.23 1.161 1.68 e-04 1.29 1.639 4.29 e-04 1.30
40 105 6.87 e-01 2.05 e-03 144.5 1.159 4.08 e-05 144.0 1.638 2.95 e-05 152.2

Table 4.4: (Example 1): Relative errors w.r.t. the discrete value function obtained by the SOP Algorithm
for different values of N and Imax and from different initial states.

101

Furthermore, we present in table 4.5 the necessary number of iterations I to reach a relative error
w.r.t. the discrete value function less than a given tolerance κ for a fixed initial state x = (1.5, 0) by the
SOP Algorithm. We observe that the complexity increases when N increases for κ = 10−2 and also for
N = 40 when decreasing the tolerance κ. On the other hand, we remark that there are some tolerances
κ that cannot be easily reached for lower values of N .

N κ = 10−2 κ = 10−3 κ = 10−4

I CPU(s) I CPU(s) I CPU(s)
10 30 0.0 — > 1 day — > 1 day
20 58 0.0 90 0.0 — > 1 day
40 120 0.0 247 0.0 1859 0.1

Table 4.5: (Example 1): Necessary number of iterations I to reach the error κ by SOP Algorithm from the
initial state x = (1.5, 0).

Parameters x = (1, 0) x = (1.5, 0) x = (2, 0)
N Imax Econt(x) CPU(s) Econt(x) CPU(s) Econt(x) CPU(s)
10 103 1.20 e-02 0.01 7.02 e-03 0.01 5.48 e-03 0.01
20 104 2.20 e-03 1.23 1.37 e-03 1.29 1.01 e-03 1.30
40 105 2.12 e-03 144.5 6.02 e-05 144.0 5.76 e-05 152.2

Table 4.6: (Example 1): Relative errors w.r.t. the continuous value function obtained by the SOP Algorithm
for different values of N and Imax and from different initial states.

Finally, we present in table 4.6 the relative errors w.r.t. the continuous value function obtained by
the SOP Algorithm. In contrary to the OP Algorithm, the error decreases for the SOP Algorithm when
increasing N and Imax for all the initial positions. Those observations are explained by the fact that the
SOP Algorithm construct the search tree Υ by adding nodes at higher depths recursively.

On the other hand, we observe in table 4.6 that the error decreases slightly for x = (1, 0) compared to
x = (1.5, 0) or x = (2, 0). This observation can be explained by the fact that the resolution complexity
depends not only on the type of the problem but also on the initial state x.

Now, we study the performance of SOPMS Algorithm. By comparing the numerical results presented in
tables 4.6 and 4.7, we deduce that, for a fixed N , SOPMS Algorithm becomes more precise than the
SOP Algorithm when Imax is large enough (free Imax). Indeed, a large value of Imax allows to the SOPMS
Algorithm to iterate on all the time steps k = 0, ..., N − 1 which leads to a better estimation of the solution.

Parameters x = (1, 0) x = (1.5, 0) x = (2, 0)
N Ieval Imax Econt(x) CPU(s) Econt(x) CPU(s) Econt(x) CPU(s)
10 30 103 7.97 e-03 0.0 5.21 e-03 0.0 2.03 e-03 0.0

free 7.96 e-03 0.0 5.21 e-03 0.0 2.03 e-03 0.0
20 300 104 1.26 e-02 0.1 3.44 e-04 0.1 4.66 e-04 0.0

free 1.37 e-03 0.4 6.73 e-04 0.2 4.65 e-04 0.2
40 3000 105 8.69 e-03 34.7 7.73 e-04 13.0 2.93 e-04 7.1

free 1.33 e-03 100.1 1.32 e-04 80.2 4.44 e-05 18.9

Table 4.7: (Example 1): Relative errors w.r.t. the continuous value function obtained by the SOPMS
Algorithm with ε = 10−6 for different values of N , Ieval and Imax and from different initial states.

102

In table 4.8, we present the relative errors w.r.t. the continuous value function obtained by the SOPMS
algorithm for different values of the tolerance parameter ε.

Parameters Initial ε = 10−2 ε = 10−4 ε = 10−6

N Ieval state x Econt(x) CPU(s) Itot Econt(x) CPU(s) Itot Econt(x) CPU(s) Itot

10 30 (1, 0) 1.76 e-02 0.0 750 8.22 e-03 0.0 1050 7.96 e-03 0.0 1200
(1.5, 0) 5.21 e-03 0.0 630 5.21 e-03 0.0 900 5.21 e-03 0.0 990
(2, 0) 6.11 e-03 0.0 600 2.03 e-03 0.0 780 2.03 e-03 0.0 1080

20 300 (1, 0) 5.32 e-03 0.0 13200 2.13 e-03 0.1 24300 1.37 e-03 0.4 35700
(1.5, 0) 8.51 e-04 0.0 12000 7.90 e-04 0.1 18300 6.73 e-04 0.2 23700
(2, 0) 4.97 e-04 0.0 11700 4.97 e-04 0.1 14700 4.65 e-04 0.2 22800

40 3000 (1, 0) 2.72 e-03 3.1 240 ×103 1.63 e-03 57.3 633 ×103 1.33 e-03 100.1 801000
(1.5, 0) 4.90 e-04 2.5 237×103 2.48 e-04 28.2 462×103 1.32 e-04 80.2 669000
(2, 0) 1.06 e-04 2.1 234×103 8.04 e-05 11.0 3×105 4.44 e-05 18.9 384000

Table 4.8: (Example 1): Relative errors w.r.t. the continuous value function obtained by the SOPMS
algorithm for different values of the tolerance parameter ε.

We notice that the SOPMS performance does not depend only on Imax but also on the heuristic pa-
rameters Ieval and ε as it is presented in table 4.8 where we choose Imax large enough in such a way
that the SOPMS algorithm iterate on all the time steps k = 0, ..., N . In table 4.8, Itot denotes the total
number of expanded nodes which depends on x, Ieval and ε. We remark that better error estimations are
obtained with small values of ε which is not a surprising result. Furthermore, we observe that by following
our chosen heuristic for Ieval, the error decreases when N doubles.

On the other hand, exploiting the CPU time given in the different tables, we remark that the SOP algorithm
consumes less time than the OP algorithm. Indeed, for the OP algorithm, the selection of the node to
expand, which minimizes the lower bound on the optimal value, is done among all the tree leaves. For
this reason, we should iterate over the whole set of the tree leaves. However, the SOP algorithm selects
the node to expand, which minimizes the criterion value Ji, among only the leaves of a given depth of the
tree. Therefore, iterations are done over a subset of the tree leaves with the same depth.

Furthermore, we remark that in general, the SOPMS algorithm consumes less time than the SOP algo-
rithm. Note that after expanding a given number of nodes I ≥ 1, the tree contains (M − 1)I + 1 leaves.
Therefore, the SOP algorithm will construct a tree of (M −1)Imax +1 leaves with control and trajectory se-
quences of lengths N and N + 1 respectively. However, the SOPMS algorithm, for each k = 0...N − 1, will
expand less than Imax nodes. Therefore, for any k, we will construct a tree of fewer leaves comparing to
the SOP algorithm, with control and trajectory sequences of lengths N −k and N −k+ 1 respectively. On
other words, constructing and exploring only one tree of a total number of leaves equal to (M − 1)Imax + 1
is more complex than working on N trees with reduced number of nodes.

Finally, we represent in figure 4.2 the trajectories obtained by the SOP Algorithm from different initial
positions.

Example 2: Zermelo problem

Consider the Zermelo problem where a boat tries to reach a circular target C with radius r0 > 0 at time
T > 0 with minimal fuel consumption. The dynamics is given by:{

ẋ1(s) = u(s) cos(θ(s))− bx2(s)2 + c,

ẋ2(s) = u(s) sin(θ(s)),

where u(s) ∈ [0, umax] and θ(s) ∈ [0, 2π], for s ∈ [0, T], denote the speed and the angle of orientation of
the boat respectively and the term c− bx2

2 represents the current drift along the x1-axis.

103

Figure 4.2: (Example 1): Trajectories obtained by the SOP algorithm for N = 20, Imax = 104 and from
different initial positions.

We set r0 = 0.1, T = 1, umax = 2.5, b = 0.5 and c = 2. The center of the circular target C is of coordinates
(1.5, 0). We consider also two rectangular obstacles with centers (−0.5, 0.5) for the first and (−1,−1.5) for
the second one. The horizontal and the vertical radius of the first obstacle are rx = ry = r1 = 0.4 and
rx = r2 = 0.2, ry = 5r2 for the second obstacle.

The cost that we want to minimise is given by Q(x, a) =
∫ T

0 u(s)ds, where x is the initial position of the
boat and a(·) := (u(·), θ(·)) is the control. Hence, the discrete cost functional J becomes given by:

J (x, a) =
N−1∑
k=0

∆t× uk, with ∆t =
T

N
.

Moreover, the obstacle and the target functions g and Ψ are given by:

g(x) :=
(
r1−‖x− (−0.5, 0.5)‖∞

)∨(
r2−max(|x1 + 1|, r2|x2 + 1.5|)

)
and Ψ(x) = ‖x− (1.5, 0)‖2− r0.

Henceforth, the discrete auxiliary value function is defined as:

W (x, z) = inf
(ak)k∈AN

{(
J (x, a)− z

)∨(
max

0≤k≤N
g(yak)

)∨
Ψ(yaN)

}
,

with A := [0, umax]× [0, 2π], and an approximation of the constrained problem value function is given by:

z∗ = inf{z ∈ R | W (x, z) ≤ 0}.

In table 4.9, we represent J ∗(x), the optimal value of the cost functional J , obtained by the SOP algorithm
for different values of N and Imax and from different initial states x.

We observe in table 4.9 that J ∗ decreases when N doubles. In addition to that, we remark that the
value of the approximation z∗ is very close to J ∗(x).

On the other hand, we represent in figure 4.3 the trajectories obtained by the SOP Algorithm from different
initial positions. We remark that all the trajectories verify the constraints by avoiding the obstacles and
reach the target at the final time step.

104

Parameters x1 = (−2.5,−1) x2 = (−2, 0.5) x3 = (−1.5, 1.5)
N Imax J ∗(x) z∗ CPU(s) J ∗(x) z∗ CPU(s) J ∗(x) z∗ CPU(s)
10 500 2.379 2.379 0.3 1.861 1.861 0.1 2.018 2.018 0.2
20 5000 2.361 2.364 11.3 1.893 1.899 8.2 2.009 2.013 6.0
40 5× 104 2.290 2.291 4204.1 1.667 1.669 4251.4 1.996 1.998 3898.0

Table 4.9: (Example 2): Values of the cost function J obtained by the SOP Algorithm from different initial
states.

Figure 4.3: (Example 2): Trajectories obtained by dichotomy with SOP Algorithm to reach the target (in
green) and to avoid the obstacles (in red), from different initial positions and with N = 10, Imax = 500 (left)
and N = 40, Imax = 5× 104 (right).

Example 3: Optimal control of the heat equation

In this example, taken from [3], we want to illustrate the performances of our approach for solving a
control problem of a partial differential equation. The discrete formulation of the problem leads to a control
problem in a high dimensional state space. Consider the following heat equation:

∂y
∂t (s, x) = σ ∂

2y
∂x2 (s, x) + y0(x)a(s), for (s, x) ∈ [0, T]× [0, 1],

y(s, x) = 0, for (s, x) ∈ [0, T]× {0, 1},
y(0, x) = y0(x), for x ∈ [0, 1],

(4.30)

where σ = 0.1, the control a(·) takes values in A = [−1, 1], T = 1 and y0(x) = −x2 + x, for x ∈ [0, 1].
Our purpose is to minimize, by using the control input a(·), the temperature ya(t, x), solution of (4.30), for
t ∈ [0, T] and x ∈ [0, 1]. For this reason, we consider the following cost functional of type Bolza:

Q(y0, a) =

∫ T

0

(∫ 1

0
(ya(s, x))2dx+ γa2(s)

)
ds+

∫ 1

0
(ya(T, x))2dx, (4.31)

where γ > 0. In order to approximate the solution of (4.30), we will use the implicit scheme. Indeed,
consider a time grid with N = 20 time steps, tk = k∆t for k = 0, ..., N , where ∆t = T

N and a space grid
with d = 103 points on]0, 1[, xj = j∆x for j = 1, ..., d and where the space step is given by ∆x = 1

d+1 .

105

Hence, the implicit scheme approximating (4.30) is given by:{
yjk+1−y

j
k

∆t = σ
yj+1
k+1−2yjk+1+yj−1

k+1

∆x2 + y0(xj)ak, 1 ≤ j ≤ d,
y0
k = yd+1

k = 0,
(4.32)

for 0 ≤ k ≤ N −1 and where yjk is an approximation of ya(tk, xj) and ak is the control value at time tk. The
implicit scheme (4.32) can be rewritten as follows:

Yk+1 = F (Yk, ak) :=
(
Id +

σ∆t

∆x2
P
)−1(

Yk + ∆t× ak × Y0

)
, (4.33)

where Yk := (yjk)1≤j≤d ∈ Rd represents the system state and P is a d× d matrix given explicitly by:

P =

2 −1 · · · 0

−1
.

...
...

. −1
0 · · · −1 2

 .

Notice that (4.33) is meaningful since the matrix
(
Id + σ∆t

∆x2P
)

is invertible. In order to solve (4.33), we will

use a Cholesky decomposition for tridiagonal matrix since (Id + σ∆t
∆x2P) can be written as follow:

Id +
σ∆t

∆x2
P = L× tL, where L :=

α1 0 · · · 0

β1
.

...
...

. 0
0 · · · βd−1 αd

with {

α2
1 = β2

1 + α2
2 = · · · = β2

d−1 + α2
d = 1 + 2 σ∆t

∆x2

α1β1 = α2β2 = · · · = αd−1βd−1 = − σ∆t
∆x2 .

On the other hand, we have ‖(Id + σ∆t
∆x2P)−1‖2 ≤ 1 hence the Lipschitz constants of the dynamics F can

be chosen as follow:
LF,x = 1 and LF,a = ∆t‖Y0‖2.

Furthermore, the cost functional Q, defined in (4.31), can be approximated by:

J (Y0, a) =
N−1∑
k=0

ρ(Yk, ak) + Φ(YN),

where the instantaneous cost ρ and the terminal cost Φ are given by:

ρ(Y, a) =
∆t

2

(
‖Y ‖22 + ‖F (Y, a)‖22 + 2γa2

)
and Φ(Y) = ‖Y ‖22,

where Y ∈ Rd and a ∈ A. Moreover, the Lipschitz constants associated to the ρ and Φ are given by:

Lρ,x = ∆t‖Y0‖2
(

1 + LF,x

)
and Lρ,a = ∆t

(
‖Y0‖LF,a + 2γ

)
.

The uncontrolled solution, presented in the top left panel of figure 4.4, corresponds to a numerical
solution of (4.30) while taking a(·) ≡ 0. As expected, the controlled solutions, obtained by OP, SOP and

106

Figure 4.4: (Example 3): Uncontrolled solution (top left) and controlled solutions with OP (top right), SOP
(bottom left) and SOPMS (bottom right), for Imax = 104, γ = 0.01 and d = 103.

Algorithm OP SOP SOPMS
CPU(s) 238.43 101.12 145.37

Table 4.10: CPU time required to compute the controlled solutions by the different optimistic planning
algorithms

Figure 4.5: (Example 3): Controls computed by OP, SOP and SOPMS algorithms (left), time comparison
of cost functions (middle), norms of the solutions (right), for Imax = 104, γ = 0.01 and d = 103.

SOPMS algorithms are below the uncontrolled solution. Furthermore, the solutions obtained by the SOP
and SOPMS algorithms are similar and are better than the solution computed with the OP Algorithm (see
figure 4.4). This observation can be confirmed by a comparison between the solutions norms and the cost

107

values computed with different planning algorithms (see figure 4.5).
On the other hand, in figure 4.6, we remark that the controlled solution corresponding to γ = 10−4 or

γ = 10−6 is below the controlled solution for γ = 10−2. This is can be explained by the control difference
between the two cases. Indeed, when γ is equal to 10−4 or 10−6, we allow values of the control with
larger norms. In addition to that, due to its important weight in the distributed cost function, the control
corresponding to γ = 10−2 is more regular than the control simulated with γ = 10−4 or γ = 10−6.

Figure 4.6: (Example 3): Controls (left), time comparison of the cost function (middle) and norms of the
solutions (right) computed by the SOP algorithm, for different values of the parameter γ, Imax = 104 and
d = 103.

Finally, we add constraints on the solution of the heat equation ya(·, ·), corresponding to some control
a(·), of the form ya(t, x) ≥ θy0(x) for any t ∈ [0, T] and x ∈ [0, 1] and where θ ∈]0, 1[. To this end, we
consider the following obstacle function g given by:

g(ya(t, ·)) := max
x∈[0,1]

{
θy0(x)− ya(t, x)

}
.

The bounds on the auxiliary variable z are taken as follow:

Zmin = 0 and Zmax = 2

∫ T

0
y2

0(x)dx+ γ.

In figure 4.7, we represent the uncontrolled solution (a(·) ≡ 0), the unconstrained solution obtained with
SOP and the constrained solution obtained by dichotomy with SOP Algorithm. We observe that the
constrained solutions for both cases, θ = 1

3 and θ = 2
3 , verify the constraints for any t ∈ [0, T] and

x ∈ [0, 1].

Example 4: Windshear problem

Consider the abort landing problem studied in chapter 3 as a game where the wind disturbances are
unknown and modelled as a second player. This problem was also studied in [6] by the HJ approach.
Here, we propose to solve it by use of optimistic planning algorithms.

Consider the flight of an aircraft in a vertical plane over a flat earth. We assume that all the forces act on
the center of gravity G of the aircraft and lie in the same plane of symmetry. From the Newton’s law, the

108

Figure 4.7: (Example 3): Unconstrained solution with SOP (left), constrained solutions for θ = 1
3 (middle)

and θ = 2
3 (right) obtained by dichotomy with SOP Algorithm for d = 103, γ = 0.01 and Imax = 104.

aircraft’s motion is described by (see [6, 33] for more details):

ẋ(s) = u(s) cos(γ(s)) + ωx(x(s))

ḣ(s) = u(s) sin(γ(s)) + ωh(x(s), h(s))

u̇(s) = FT (u(s))
m cos(θ(s) + δ)− FD(u(s),θ(s))

m − g sin(γ(s))− ω̇x(x(s)) cos(γ(s))

−ω̇h(x(s), h(s)) sin(γ(s))

γ̇(s) = 1
u(s)

(
βFT (u(s))

m sin(θ(s) + δ) + FL(u(s),θ(s))
m − g cos(γ(s)) + ω̇x(x(s)) sin(γ(s))

−ω̇h(x(s), h(s)) cos(γ(s))
)

θ̇(s) = a(s),

(4.34)

where x is the horizontal distance, h denotes the altitude, u is the aircraft velocity, γ is the relative path
inclination, θ is the angle of attack, δ > 0 is a parameter of the model, a represents the control variable.
Moreover, ωx and ωh are respectively the horizontal and the vertical components of the wind velocity
vector, ω̇x and ω̇h are their derivatives, FT , FL and FD denote respectively the thrust, lift and drag forces
whose expressions can be found in [6, 33, 34] and are given in the Appendix 4.7.2.

We represent the state variables by a vector y ∈ R5 given by y := (x, h, u, γ, θ)>, hence the dynamical
system (4.34) can be written as ẏ(s) = f(y(s), a(s)).

The sets of control, A, and of state constraints, K, are of the form:

A := [amin, amax] and K := R4 × [θmin, θmax],

with amin = −amax = −3 deg s−1, θmin = −180 deg and θmax = 17.2 deg.

In order to determinate the Lipschitz constant Lf,x, let y and y′ be two vectors of R5. For any i = 1, ..., 5,
there exist non-negative coefficients (li,j)

5
j=1 such that:

|fi(y, a)− fi(y′, a)| ≤
5∑
j=1

li,j |yj − y′j |, for any a ∈ A.

Henceforth, Lf,x = ‖P‖2 where the matrix P is given by P := (li,j)1≤i,j≤5. Moreover, the Lipschitz constant
Lf,a is equal to 1.

109

Recall that the aim is to steer the aircraft to the maximum altitude that can be reached during an interval
of time. The maximum running cost function Φ is defined as Φ(y) := h∗−h, where h is the aircraft altitude
and h∗ > 0 is a given reference altitude.

The value function of this problem, for T = 40 and starting from an initial position y ∈ R5, is defined by:

v(0, y) = inf
a(·)

{
max
s∈[0,T]

Φ(ya0,y(s)) | ya0,y(s) ∈ K, for all s ∈ [0, T]
}
.

In order to solve this problem, we discretize uniformly [0, T] with N sub-intervals and the auxiliary problem
to be solved is of the form:

W (y, z) = inf
(ak)∈AN

max
0≤k≤N

{(
Φ(yak)− z

)∨
g(yak)

}
,

where (yak)k is the discrete trajectory corresponding to the control sequence (ak)k ∈ AN , starting from the
initial state y and the obstacle function g is given by:

g(y) = max(θmin − θ, θ − θmax).

We already know that an approximation of the constrained problem value is given by:

z∗ = inf
{
z ∈ [0, h∗] | W (y, z) ≤ 0

}
.

On the other hand, the value of the criterion, associated to the trajectory sequence (y∗k)k returned by
optimistic planning algorithms, is defined by:

J ∗(y) := max
0≤k≤N

Φ(y∗k).

We consider the following initial configurations:

y0 = (0, 600, 239.7,−2.249 deg, 7.373 deg) and y1 = (0, 650, 239.7,−3.400 deg, 7.373 deg).

Initial Parameters J ∗ z∗ CPU
configurations N Imax (ft) (ft) (s)

10 103 544.116 544.189 1.79
y0 20 104 520.624 524.185 31.7

40 105 480.713 480.746 2911.5
10 103 521.720 521.729 1.85

y1 20 104 487.649 487.661 30.3
40 105 479.735 479.739 2793.9

Table 4.11: (Example 4): Performance of the dichotomy with SOP Algorithm, for T = 40, different values
of N and Imax and from different initial configurations.

We observe in tables 4.11 and 4.12 that the performances of trajectories, from y0 and y1, are ame-
liorated when N doubles (decrease of the cost functional J ∗ and hence increase of the lowest altitude).
Moreover, we remark that the value of the approximation z∗ is very close to J ∗.
On the other hand, by comparing tables 4.11 and 4.12, we observe that SOP performances are better
than SOPMS performances for the initial state y0 for a value of Ieval not large enough. This is not the case
for larger values of Ieval. This is due to the compromise in the choice of the parameter Ieval between the
solution quality and the resolution complexity (see subsection 4.4.4).

Finally, the difference on the altitude evolution observed in figures 4.8 and 4.9 can be explained by the
fact that the control actions applied by the SOPMS Algorithm are computed and updated while progress-
ing in time in contrary to the SOP Algorithm where all the actions are first computed then applied to the
dynamical system.

110

Figure 4.8: (Example 4): Trajectories obtained by the dichotomy with SOP Algorithm, for T = 40, N = 40,
Imax = 105 and from different initial configurations.

Initial Parameters J ∗ z∗ CPU
configurations N Ieval (ft) (ft) (s)

10 30 519.498 520.047 1.2
y0 20 300 509.953 510.221 9.7

40 3000 494.862 495.745 714.2
40 6000 477.281 478.638 3252.9
10 30 517.106 517.986 1.4

y1 20 300 508.532 509.844 8.3
40 3000 459.393 459.981 673.4
40 6000 452.100 453.354 3017.1

Table 4.12: (Example 4): Performance of the dichotomy with SOPMS Algorithm, for T = 40, different
values of N and Ieval and from different initial configurations.

4.7 Appendix

4.7.1 Appendix: Proofs of convergence results for OP and SOP algorithms

Proof of Theorem 4.4.5. Let Ai be a node of the tree Υ at some depth pi. From Corollary 4.3.3, the error
σi is bounded by:

σi ≤ δi :=
C

2
∆t

N−1∑
k=0

(
1

LF,x
)kdi,k,

111

Figure 4.9: (Example 4): Trajectories obtained by the dichotomy with SOPMS Algorithm, for T = 40,
N = 40, Ieval = 6000 and from different initial configurations.

where C > 0 is the same real constant as in Corollary 4.3.3. Consider a new criterion to choose the
interval to split among the intervals Ai,k, for k = 0, ..., N − 1, composing the node Ai, relative to the new
bound δi, given by:

k]i = argmax
0≤k≤N−1

(
1

LF,x
)kdi,k. (4.35)

Only in this proof, denote by γ := 1
LF,x

< 1 and we will omit the node index i for all the derivation.

By using similar arguments as in [39], the split function s(·), indicating the number of splits per time step,
is decreasing and decreases of at most 1 i.e.

s(k − 1)− 1 ≤ s(k) ≤ s(k − 1), for any k ∈ {1, ..., N − 1}.

Indeed, let 1 ≤ k ≤ N − 1 and s(k − 1) = s(k) + 1. The gap between s(k − 1) and s(k) becomes
equal to 2 if the interval of rank k − 1 will be split before the one of rank k. In this case we should have
γk−1M−s(k−1) = γk−1M−s(k)−1 ≥ γkM−s(k) from the selection principle (4.35) which implies that M ≤ 1

γ
and this contradicts the assumption M > LF,x.

Now consider τ0, τ1,...,τn the lengths of the ranges constant in s, for n ∈ N such that n ≤ N + 1. The last
range, of length τn, is where s ≡ 0 which can be empty i.e. τn = 0 if all the intervals are split at least one
time. Since we have supposed that the depth p is large enough, we can consider for the sequel τn = 0.

The interval that will be split, if this node is selected at a future iteration, is the first interval of some range
of index 0 ≤ e ≤ n− 1. Let k be the rank of this interval, 0 ≤ k ≤ N − 1. Again by using similar arguments
as in [39], we obtain:

τe ≥
logM

log(1
γ)

and if e ≥ 1, τe−1 ≤
logM

log(1
γ)
. (4.36)

Indeed the first interval of the range e − 1 is of rank k1 = k − τe−1 and the first one of the range e + 1 is
of rank k2 = k + τe. On the other hand, s(k1) = s(k) + 1 and s(k2) = s(k)− 1 since the gap between two

112

consecutive ranges is equal to 1. Now the interval of rank k is the first to be split at a future iteration which
means that this interval is preferred to intervals of rank k1 and k2. From the selection procedure (4.35),
we obtain γkM−s(k) ≥ γk1M−s(k1) and γkM−s(k) ≥ γk2M−s(k2). Replacing k1, k2, s(k1) and s(k2) by their
expressions concludes the proof of (4.36). From (4.36) we deduce that τe ≥ τ and τe−1 ≤ τ − 1 if e ≥ 1,
where τ := dlogM/ log(1

γ)e.
Now, we will prove that τ0, τ1,...,τn−1 (recall that τn = 0 for p large enough) verify:{

τ0 ≤ τ,
τe ∈ {τ − 1, τ} for 1 ≤ e ≤ n− 1.

(4.37)

The assertion (4.37) can be also proven by the same arguments as in [39]. On the other hand, in our
case, we have assumed that the number of intervals N verifies N ≥ 2τ . This assumption is necessary
to guarantee that the first p0 := 3τ + 2 splits are done in the same order as given in figure 4.10 (see the
small dashed squares with numbers indicating the order inside the squares). Indeed, one can consider
any depth p′ ≤ p0 and try to split an interval without respecting the order given in figure 4.10 and in this
way (4.36) will be violated.

Now, suppose that (4.37) holds for an arbitrary node at depth p ≥ p0 and try to prove it for one of its
descendant at depth p + 1 (proof by induction). We denote by s′ and (τ ′e)e respectively the split function
and the constant range lengths of the descendant node.

c

a

b

k

d

K N − 1

s(k)

k

τe−1

τe

1 2

τ + 3τ + 1

3τ + 1

· · · τ τ + 2

· · · 3τ − 13τ + 2

τ + 4 · · ·· · ·· · · 3τ

Figure 4.10: An example of a split function s(·) with 4 possibilities of the next interval split.

Four possible cases for the next interval to be split should be considered which are represented by
dashed squares with letters a, b, c and d inside the squares in figure 4.10:

• Case a: The first interval A0 (was denoted by Ai,0 before omitting the index i) is split. From (4.36)
we get that τ0 ≥ τ and from (4.37) we know that τ0 ≤ τ , hence τ0 = τ . As for the descendent node,
we get τ ′0 = 1 and τ ′1 = τ0 − 1 = τ − 1. The other ranges are unchanged.

• Case b: The second interval A1 is split. From (4.36) we have τ0 ≤ τ − 1 and τ1 ≥ τ and from (4.37)
we know that τ1 ∈ {τ−1, τ}, hence τ1 = τ . We deduce that for the descendant node, τ ′0 = τ0 +1 ≤ τ
and τ ′1 = τ1 + 1 = τ . The other ranges are unchanged.

• Case c: The first interval Ak of some arbitrary range τe is split, 1 < e < n. From (4.36) we have
τe−1 ≤ τ − 1 and τe ≥ τ and from (4.37) we know that τe−1, τe ∈ {τ − 1, τ}, hence τe−1 = τ − 1

113

and τe = τ . This implies that τ ′e−1 = τe−1 + 1 = τ and τ ′e = τe − 1 = τ − 1. The other ranges are
unchanged.

• Case d: An interval of rank K ≤ N − 1 will be split for the first time (see figure 4.10). From (4.36),
we have τn−1 ≤ τ − 1 and from (4.37), τn−1 ∈ {τ − 1, τ}, hence τn−1 = τ − 1. We deduce that
τ ′n−1 = τn−1 + 1 = τ . The other ranges are unchanged.

From this point, our analysis departs slightly from [39]. The previous results enable us to bound s(k) as
follows:

s(k) ≥ s(k) := r − 1− k − (N − 1)

τ
, (4.38)

and
s(k) ≤ s(k) := r + 1− k − (N − 1)

τ − 1
, (4.39)

where r = s(N − 1) (see figure 4.11).

k

s(k)

s(k)

s(k)

τ

τ − 1

N − 10 1 k

r − 1

r = s(N − 1)

r + 1

s(0)

s(k)

Figure 4.11: Example of split function s(·) (black dots) and the lower and upper bounds s(·) (in green) and
s(·) (in red).

Recall that the diameter of the interval Ak can be obtained by dk = M−s(k). Henceforth, from (4.38),
we get:

δ =
C

2
∆t

N−1∑
k=0

γkM−s(k) ≤ C

2
∆t

N−1∑
k=0

γkM−s(k) ≤ C

2
∆t

1

1− γM
1
τ

M−r+1−N−1
τ . (4.40)

It remains to find a lower bound for r. By using (4.39), we have:

p =
N−1∑
k=0

s(k) ≤
N−1∑
k=0

s(k) ≤ N(r + 1) +
N(N − 1)

2(τ − 1)
.

114

From the last inequality, we deduce that r ≥ p
N − 1− N−1

2(τ−1) together with (4.40), we conclude that:

σ ≤ δ ≤ C

2
∆t

1

1− γM
1
τ

M q(N)M−
p
N

with q(N) := 2− (N − 1) τ−2
2τ(τ−1) .

Proof of Lemma 4.4.8. Denote by Ain ∈ Λ the node chosen at some iteration n to be expanded by the
OP Algorithm. By construction of the tree, the set of leaves Λ, at any iteration of the algorithm, covers the
entire space AN . Therefore, there exists Ai∗n ∈ Λ containing an optimal control sequence that verifies:

J(x, z, ai∗n)− σi∗n ≤W (x, z) ≤ J(x, z, ai∗n).

On the other hand, Ain = argmin
Ai∈Λ

{
J(x, z, ai)− σi

}
, therefore

J(x, z, ain)− σin ≤ J(x, z, ai∗n)− σi∗n ≤W (x, z).

Now, among the descendants of Ain , there exists a leaf Aj such that J(x, z, aj) ≤ J(x, z, ain) (see remark
4.4.3). Moreover, the returned node of the OP Algorithm verifies Ai∗ = argmin

Ai∈Λ
J(x, z, ai). Therefore

J(x, z, ai∗) ≤ J(x, z, aj) ≤ J(x, z, ain) ≤W (x, z) + σin .

As a conclusion, we get J(x, z, ai∗)−W (x, z) ≤ σin , for any expanded node Ain , which gives the desired
result.

Proof of Theorem 4.4.9. The cost of expanding one node is one iteration. Recall that the OP Algorithm
expands only nodes in

⋃
p≥0 Υ∗p and that Υ∗p contains at most Rmp.

Suppose that m > 1 and let Imax be the maximal number of iterations. At any depth p ≥ 0, the algorithm
expands at most Rmp nodes thus at most Rmp iterations. Now let p be the smallest depth such that
1 +R

∑p−1
p′=0m

p′ ≥ Imax. Hence at least one node at depth p was expanded such that

p ≥ p∗ :=
log
(

(Imax−1)(m−1)
R

)
logm

.

Therefore the smallest error term among all the expanded nodes verifies σmin ≤ σp ≤ δp, where δp is
defined in (4.17), and from Lemma 4.4.8, we conclude that:

J∗(x, z)−W (x, z) ≤ σmin ≤ δp ≤ c1(N)∆tM−
p∗
N ,

which gives the result for m > 1. The case m = 1 can be deduced by similar arguments.

Proof of Lemma 4.4.10. We claim that for any depth p ∈ {0, ..., Pmax}, if the number of expanded nodes n
verifies:

n ≥ RPmax

p∑
p′=0

mp′ , (4.41)

then at least one node containing an optimal control sequence, at depth p, has been expanded.

Now, let p(n) be the smallest depth verifying (4.18). Therefore, (4.41) is verified by p = p(n) − 1 which
implies that, by using the above claim, the SOP Algorithm has expanded at least one optimal node at
depth p(n)− 1 if p(n)− 1 ≤ Pmax. However, if p(n)− 1 > Pmax and since SOP Algorithm does not expand
nodes with depth grater than Pmax, the deepest expanded optimal node is at depth p = Pmax, which

115

concludes the proof of Lemma 4.4.10.

Finally, let’s prove the above claim by induction. For p = 0, if n ≥ RPmax ≥ 1, the algorithm has expanded
the tree root A0 = AN which contains an optimal control sequence.

Now suppose that the claim is true for p ≥ 0 and let’s prove it for p+ 1. Consider n ∈ N such that:

n ≥ RPmax

p+1∑
p′=0

mp′ .

and let n′ := n − RPmaxm
p+1. By the induction hypothesis and since n′ ≥ RPmax

∑p
p′=0m

p′ , we deduce
that the algorithm has expanded an optimal node, Ai∗p , at depth p, after expanding n′ nodes. The optimal
node Ai∗p will generate another optimal node at depth p+ 1 denoted by Ai∗p+1

.

Let Ai′p+1
be a node that will be expanded by the SOP Algorithm, at depth p + 1, before expanding

Ai∗p+1
. This node verifies certainly J(x, z, ai′p+1

) ≤ J(x, z, ai∗p+1
). Moreover, since Ai∗p+1

is optimal and
σi∗p+1

≤ δp+1, see Theorem 4.4.5, we get:

J(x, z, ai′p+1
)− δp+1 ≤ J(x, z, ai∗p+1

)− δp+1 ≤ J(x, z, ai∗p+1
)− σi∗p+1

≤W (x, z),

which means that the node Ai′p+1
belongs to Υ∗p+1. In conclusion, any node Ai′p+1

that will be expanded
before expanding Ai∗p+1

belongs certainly to Υ∗p+1.

Finally, recall that |Υ∗p+1| ≤ Rmp+1 and that the difference between the maximal tree depth and the
smallest depth with unexpanded nodes, at any iteration of the SOP Algorithm, is smaller than Pmax.
Henceforth, the SOP Algorithm is sure to expand Ai∗p+1

after expanding at most PmaxRm
p+1 nodes. As a

conclusion, after expanding at most n nodes (n = n′+PmaxRm
p+1), the SOP Algorithm will expand Ai∗p+1

.

Proof of Theorem 4.4.11. In the case where m > 1 and Pmax = Iηmax, for η ∈]0, 1[, and after expanding
Imax nodes, let p(Imax) be defined as in Lemma 4.4.10. Therefore, p(Imax)− 1 verifies:

Imax ≥ RPmax

p(Imax)−1∑
p′=0

mp′ ,

which implies that:
p(Imax) ≤ b1 log(I1−η

max) + b2,

for some real constants b1, b2 > 0. We deduce from the last inequality that for Imax large enough,
p(Imax) << Pmax since Pmax = Iηmax. Henceforth, the depth of the deepest expanded optimal node
p∗, defined in Lemma 4.4.10, is equal to p(Imax)−1. From (4.18) and by taking n = Imax and Pmax = Iηmax,
we get:

p∗ ≥ log(I1−η
max)

logm
−

log(R
m−1)

logm
− 2.

Since J∗(x, z)−W (x, z) ≤ δp∗ = c1(N)∆tM−
p∗
N , using the lower bound on p∗ found in the above inequality

gives the desired result for m > 1.

Now suppose that m = 1 and let Pmax =
√
Imax. After expanding Imax nodes, from (4.41) and since R ≥ 1,

we get:

p(Imax) <

√
Imax

R
≤
√
Imax = Pmax.

116

Therefore, p∗ = p(Imax) − 1. Again from (4.18) and by taking n = Imax and Pmax =
√
Imax, we get√

Imax

R − 1 ≤ p(Imax) and hence p∗ ≥
√
Imax

R − 2. As a conclusion:

J∗(x, z)−W (x, z) ≤ δp∗ = c1(N)∆tM−
p∗
N ≤ c1(N)∆tM2M−

√
Imax
RN .

4.7.2 Appendix B. Numerical parameters of example 4

The model of the wind disturbances (ωx, ωh), considered here, is represented in figure 4.12.

Figure 4.12: Horizontal and vertical wind velocity components, ωx(x) and ωh(x, h), as functions of x for
fixed h = 1000 ft.

The mathematical expressions of the wind velocity components are given by:

ωx(x) = kC(x) and ωh(x, h) = k
h

h∗
D(x),

where C(·) and D(·) depend only on the horizontal position x as follow:

C(x) =

−50 + ax3 + bx4, 0 ≤ x ≤ 500

(x− 2300)/40, 500 ≤ x ≤ 4100

50− a(4600− x)3 − b(4600− x)4, 4100 ≤ x ≤ 4600

50, 4600 ≤ x,

D(x) =

dx3 + ex4, 0 ≤ x ≤ 500,

−51 exp
(
− c(x− 2300)4

)
, 500 ≤ x ≤ 4100

d(4600− x)3 + e(4600− x)4, 4100 ≤ x ≤ 4600

0, 4600 ≤ x.
The derivatives of the horizontal and the vertical components of the wind velocity vector, ω̇x and ω̇h, are
defined as:

ω̇x =
∂ωx
∂x

(u cos(γ) + ωx) +
∂ωx
∂h

(u sin(γ) + ωh),

ω̇h =
∂ωh
∂x

(u cos(γ) + ωx) +
∂ωh
∂h

(u sin(γ) + ωh).

117

On the other hand, the modulus of the thrust, lift and drag forces are given by the following expressions:

FT (u) := A0 +A1u+A2u
2, FL(u, θ) =

1

2
ρSu2c`(θ), FD(u, θ) =

1

2
ρSu2cd(θ),

where c` and c` are polynomials of the variable θ given by:

cd(θ) = B0 +B1θ +B2θ
2,

c`(θ) =

{
C0 + C1θ, θ ≤ θ∗,
C0 + C1θ + C2θ

2, θ ≥ θ∗.

The different parameters of the aircraft model and the wind velocities are presented in the following table:

Parameter Value Unit
h∗ 1000 ft
δ 3.49 e-02 rad
k 0.9
θ∗ 0.2094 rad
S 1560.0 ft2

ρ 2.203 10−3 Ib s2 ft−4

a 6 ×10−6 s−1 ft−2

b - 4 ×10−11 s−1 ft−3

c - log(25
30.6)× 10−12 ft−4

d -8.02881 ×10−8 s−1 ft−2

Parameter Value Unit
e 6.28083 ×10−11 s−1 ft−3

A0 4.456 ×104 Ib
A1 -23.98 Ib s ft−1

A2 1.42 ×10−2 Ib s2 ft−2

B0 0.1552
B1 0.1237 rad−1

B2 2.4203 rad−2

C0 0.7125
C1 6.0877 rad−1

C2 -9.0277 rad−2

Table 4.13: (Example 4): Numerical data of the model.

118

Chapter 5

Deep Learning Numerical Methods For
Dynamic Programming

5.1 Introduction

This chapter is devoted to study numerical methods for deterministic optimal control problems based on
deep learning. We propose two approaches in order to deal with state-constrained problems. The first
one is based on the dynamic programming principle while the second method tries to approximate the
solutions of HJ equations. Both approaches can be extended to handle two-person zero-sum differential
games under constraints on the system state.

Thanks to advances in deep learning and data analysis, Deep Neural Networks (DNN) have been ex-
ploited in diverse scientific fields such as genomics [2], natural language processing [93], image recog-
nition [90] and cognitive sciences [96]. DNN have shown to be relevant in approximating a large class
of complex non linear functions in finite dimensional space. This relevance can be theoretically justi-
fied by the Kolmogorov-Arnold representation theorem and the universal approximation theorem, see
[74, 98, 52, 72, 99].

It is known that the value function of an optimal control problem, under suitable assumptions, is the solu-
tion of a dynamic programming equation. Nevertheless, the dynamic programming approach suffers from
the curse of dimensionality since the value function should be projected on a grid of the state space. One
alternative solution is to discretize in time and then try to approximate the discrete time value function, at
each time step, by neural networks after its learning on a training grid with reduced size [21]. For instance,
in [78, 77], deep learning algorithms are proposed in order to solve high-dimensional stochastic control
problems. We focus on the Hyprid-Now Algorithm for which the optimal policy is first estimated by neural
networks and dynamic programming. Then, this estimated policy is injected in a backward process in the
aim of approximating the discrete value function by neural networks. This approach is very interesting
especially when the optimal policy is regular. In this chapter, we propose to adapt this algorithm to de-
terministic control problems for which the optimal control is not always regular enough. To this end, we
will try to approximate only the value function by using neural networks and by exploiting the dynamic
programming principle. Moreover, we extend this approach to deal with constraints on the system state.

On the other hand, DNN have been successfully used to solve some nonlinear partial differential equa-
tions (PDE) derived from physics and mathematics, see [115, 114, 113, 112, 71, 128]. Indeed, the solution
of the PDE can be directly approximated by neural networks that will be learned, on a reduced training
domain, in order to satisfy the boundary conditions and the given equation law. In this context, one can
hope to use neural networks in order to solve Hamilton–Jacobi equations derived from non linear optimal
control problems [47, 107, 123]. Moreover, it has been shown in [53] that some neural network architec-
tures, under certain conditions, can be shown to be viscosity solutions to some particular HJ equations

119

with hamiltonians and initial data defined from the neural networks parameters. Another approach, con-
sisting in estimating the solution and its gradient by neural networks, was introduced and discussed in
[79, 80]. In this chapter, we propose to approximate the value function, solution of some HJ equation, by
use of spatio-temporal function approximators (neural networks) while computing its derivatives by means
of automatic differentiation, see [17].

Consider an optimal control problem with finite time horizon T > 0 and state constraints:

v(t, x) := inf
a(·)∈A

{∫ T

t
`(yat,x(s), a(s))ds+ Φ(yat,x(T)) | yat,x(s) ∈ K, ∀s ∈ [t, T]

}
, (5.1)

where A is the set of controls taking values in a compact set A ⊂ Rq, with q ≥ 1, K is a closed subset of
Rd representing the state constraints set and yat,x(·), representing the system trajectory, is the continuous
solution of the following dynamical system{

ẏ(s) = f(y(s), a(s)) a.e. s ∈ [t, T],

y(t) = x ∈ Rd.
(5.2)

The functions f : Rd × Rq → Rd, ` : Rd × Rq → R and Φ : Rd → R are supposed to be continuous, see
section 5.3 for more definitions and precise assumptions.

The resolution of the constrained problem (5.1) becomes more difficult without assuming any controllability
assumption, see chapter 4 and even chapter 3 for the case of state-constrained two-person differential
games. For this reason, we follow here the level set approach, introduced in [5], where we consider an
auxiliary optimal control problem free of state constraints:

w(t, x, z) := inf
a(·)∈A

{(∫ T

t
`(yat,x(s), a(s))ds+ Φ(yat,x(T))− z

)∨(
max
s∈[t,T]

g(yat,x(s))
)}
, (5.3)

for (t, x, z) ∈ [0, T]×Rd ×R and where g is a continuous function that characterizes the constraints set K
as follows:

∀y ∈ Rd, g(y) ≤ 0 ⇐⇒ y ∈ K.

The auxiliary value function w characterizes v in the following way:

v(t, x) = inf{z ∈ R | w(t, x, z) ≤ 0},

and can be exploited to determinate the optimal controls and trajectories of problem (5.1), see [5, 6] and
chapter 4 for more details. In this chapter, we propose to approximate w by means of neural networks.
First, under some assumptions on the problem data, w is approximated by a discrete time auxiliary value
function (Wk)

N
k=0, N ≥ 1, that verifies a discrete dynamic programming equation. Then, by backward

induction and by using Ŵk+1, an approximation of Wk+1 for k = 0, ..., N − 1, we first compute Ŵk on a
generated training grid. This approximation, computed on a reduced domain, will be used later as an input
data to extend Ŵk, by means of neural networks and stochastic optimization, to the whole computational
domain which yields an approximation of Wk. This first approach will be compared to another one that
consists in approximating w, at any time instant t ∈ [0, T], by training neural networks, on a reduced
domain, in order to satisfy the following HJ equation whose unique solution is w:{

min (−∂tw(t, x̂) +H(x,Dx̂w(t, x̂)), w(t, x̂)− g(x)) = 0, on [0, T [×Rd+1,

w(T, x̂) = (Φ(x)− z)
∨
g(x), on Rd+1,

for x̂ = (x, z) ∈ Rd × R and where H is the Hamiltonian function that will be made precise later.

This chapter is organized in the following form. Section 5.2 presents some preliminaries on the neural

120

network approximations and the stochastic optimization widely exploited to train neural networks. Sec-
tion 5.3 presents the state-constrained optimal control problem of type Bolza and formulates its associated
auxiliary problem. Section 5.4 introduces the deep learning numerical methods that will be used to approx-
imate the auxiliary value function. Finally, we present in section 5.5 some illustrative numerical examples
to compare the performances of the proposed approaches.

5.2 Neural networks for functions approximation

Consider the problem of approximating a function J(·) : Rr → R, r ≥ 1, given only on some restricted do-
main Γ ⊂ Rr. This is can be done by considering a parametric function π(·; θ), involving some parameters
vector θ ∈ Rp, p ≥ 1, that will be chosen in order to minimize some distance measure between J(·) and
π(·; θ) expressed on the restricted domain Γ. In this chapter, the set of all the parametric functions π(·; θ),
θ ∈ Rp, corresponding to some given architecture will be denoted byWr.

The process of choosing the optimal parameters vector is called training or learning of the parametric
function π(·; θ) and the distance measure between J(·) and π(·; θ) is called the loss function, denoted
by L(·; θ). The most popular training method uses least squares optimization (called also least squares
regression) corresponding to a choice of the loss function L as:

L(x; θ) :=
(
J(x)− π(x; θ)

)2
, for any (x, θ) ∈ Γ× Rp. (5.4)

In practice, even though J(·) is known on Γ, for numerical issues it may be complicated to evaluate the
loss function L(·; θ), for a given θ, on the whole restricted domain Γ. For this reason, consider a random
variable X that lies in Γ and let µ be a given general probability distribution of X (X ∼ µ), called the
training distribution. The stochastic optimization problem to be considered in order to fit J(·) with the
approximation π(·; θ) is given by:

inf
θ∈Rp

E
[
L(X; θ)

]
. (5.5)

When L is chosen as in (5.4), the stochastic optimization problem (5.5) becomes:

inf
π(·;θ)∈Wr

E
[(
J(X)− π(X; θ)

)2]
.

From the training distribution µ, a training samples Xm, m = 1, ...,M , of the random variable X is drawn
on the domain Γ where M ≥ 1 is the number of training points. Henceforth, an estimation of the objective
function in the stochastic optimization problem (5.5) can be given by the empirical mean as follows:

L(θ) =
1

M

M∑
m=1

L(Xm; θ), for any θ ∈ Rp.

Among the most chosen algorithms to deal with large scale optimization for machine learning, one can
find Stochastic Gradient Descent (SGD) methods, see [117, 30] and see also [31] for a recent survey.
SGD updates the solution of problem (5.5), in an iterative way, as follows:

θk+1 = θk − γkG(X; θk), for k ≥ 0,

where (γk)
∞
k=0 is a deterministic non-negative sequence representing the learning rates and G(X; θk) is

an estimation of the gradient of the loss function L in θk, depending on samples of the random variable
X. We distinguish essentially 3 types of SGD methods:

121

• Stochastic Gradient Descent: The gradient of L is approximated over a single random instance
among the training samples Xm, for m = 1, ...,M . Then, θk is updated as follows:

θk+1 = θk − γkDθL(Xm; θk), for some m ∈ {1, ...,M},

where Xm is chosen randomly from the training set. This method is fast since it computes the
gradient by using only one random instance but it may be unstable.

• Batch Gradient Descent: The gradient of the loss function is computed by using all the training
samples. Given θk, the next parameters vector is given by:

θk+1 = θk − γk
1

M

M∑
m=1

DθL(Xm; θk).

Although this method is stable, using the full training set to approximate the gradient of L makes it
very slow especially when the size of the training set M is large.

• Mini Batch Gradient Descent: this approach is faster than the Batch Gradient Descent and may be
more stable than the SGD because it computes an approximation of the gradient of L over random
small subsets of the training samples representing mini-batches. Denote by Mb the size of mini-
batches. At any iteration k:

1. Draw randomly a subset (Xm)Mb
m=1 from the training set.

2. Iterate: θk+1 = θk − γk 1
Mb

∑Mb
m=1DθL(Xm; θk).

Mini Batch Gradient Descent can be seen as a generalization of the two above methods since it
coincides with SGD when taking Mb = 1 and with Batch Gradient Descent if Mb = M .

It is worth to mention that the convergence of SGD methods is heavily affected by the choice of the
learning rates (γk)

∞
k=0. This was a great motivation to develop new variants of SGD, that adapt, at each

iteration of the algorithm, the learning rate γk by means of the loss function gradients already computed
during the past iterations, see [97, 132, 133]. Examples of such adaptive stepsizes stochastic optimization
methods include AdaGrad [55], Adadelta [134], RMSProp [127] and ADAM [88]. Furthermore, we refer
to [54, 48, 130, 135] for a study of the convergence of those different adaptive methods. In practice, one
can find the different above algorithms are already implemented in TensorFlow, which is an open source
platform for machine learning. Tensorflow includes also other stochastic optimization algorithms allowing
to approximate the solution of problem (5.5).

In this chapter, we focus on deep neural networks to set the architecture of the parametric functions π(·; θ),
θ ∈ Rp, that will be used to approximate different unknown target functions. In contrast with the additive
approximation theory designed by basis functions, such as polynomials, neural networks are defined
through the composition of simple functions.

The mathematical architecture of a deep neural network is presented as a function given by:

x ∈ Rr 7→ π(x; θ) := σI ◦ PI ◦ σI−1 ◦ PI−1 ◦ ... ◦ σ1 ◦ P1(x) ∈ RdI , (5.6)

where (Pi)
I
i=1 are polynomial functions, (σi)

I
i=1 are nonlinear monotone functions, called activation func-

tions and dI ∈ N∗.
Each polynomial function Pi, for i = 1, ..., I, is defined from a matrix ωi ∈ Rdi−1×di , called the weight
matrix, and a vector bi ∈ Rdi , called the bias vector:

y ∈ Rdi−1 7→ Pi(y) = ωiy + bi ∈ Rdi .

122

The collection of the weights matrices and bias terms will be aggregated to define the parameters vector
θ ∈ Rp of the neural network π(·; θ). Hence, the size p of θ is directly deduced as follows:

p =

I∑
i=1

di(1 + di−1).

The activation function σi : Rdi → Rdi , for i = 1, ..., I, will be applied to the outputs of the polynomial
function Pi. Among standard examples of activation functions, one can find:

• Sigmoid function, σ : y ∈ Rd 7→ (1
1+e−y1

, ..., 1
1+e−yd

), has a smooth gradient.

• Softmax function, σ : y ∈ Rd 7→ (ey1∑d
i=1 e

yi
, ..., eyd∑d

i=1 e
yi

), used only for the output layer when classifying

the inputs into different categories for example images classification problems.

• Exponential linear unit ELU σ : y ∈ Rd 7→ (σ′(y1), ..., σ′(yd)) where

σ′ : x ∈ R 7→

{
x, x > 0

ex − 1, x ≤ 0.

Elu has a smooth gradient and allows to get non-positive values.

• Rectified linear units ReLU, σ : y ∈ Rd 7→ (max(0, y1), ...,max(0, yd)), is less computationally expen-
sive because it involves simple mathematical operations.

123

Input

y0 = x ∈ R4,

Hidden

y1 ∈ R3,

Hidden

y2 ∈ R3,

Output

y3 ∈ R.

Figure 5.1: Architecture of a deep neural network with input layer d0 = 4, two hidden layers d1 = d2 = 3
and output layer d3 = 1.

For a given vector x ∈ Rr, consider y0 = x and yi+1 = σi+1 ◦ Pi+1(yi) ∈ Rdi+1 , i = 0, ..., I − 1. The
neural network (5.6) can be represented by I + 1 layers where the layer of rank i represent the vector yi,
for i = 0, ..., I. In figure 5.1, we represent an example of a deep neural network with I = 3.

• The neurons of the layer of rank i represent the coordinates of the vector yi and hence their number
is equal to di which is the dimension of yi. The nodes in figure 5.1 represent the neurons.

• The link between two successive layers of ranks i and i + 1 respectively, for i = 0, ..., I − 1, corre-
sponds to the application of the function σi+1 ◦ Pi+1 to the vector yi. Those links are represented
by the arrows in figure 5.1. In particular, the arrows drawn from the input layer corresponds to the
application of σ1 ◦ P1 to the vector x ∈ R4 to obtain y1 = σ1 ◦ P1(x) ∈ R3.

• The first layer, with rank i = 0, corresponds to the input layer with d0 = r neurons. In figure 5.1,
r = 4.

• I − 1 hidden layers ranked from 1 to I − 1. The are two hidden layers for the example given in figure
5.1 with numbers of neurons d1 = d2 = 3.

• The last layer of rank i = I corresponds to the output layer with dI neurons. When approximating
real-valued functions, dI = 1 which is the case in figure 5.1 where y3 ∈ R.

The relevance of using neural networks to approximate complex and non-linear functions can be theo-
retically justified by the universal approximation theorems, see [74, 98, 52, 72, 99]. In particular, we have
the following approximation theorem:

Theorem 5.2.1 (Universal approximation theorem, see [73]). Any measurable function J : Rr → R can
be approximated by a neural network with a single hidden layer and a continuous non-constant activation
function. Moreover, when the activation function, used in the neural networks architecture, is of class Ck,
k ≥ 1, then this class of neural networks approximates also the derivatives of J up to order k.

124

Moreover, deep neural networks are capable of approximating real-valued continuous functions over
compact subsets of Rr with an arbitrary accuracy, see [74].

A more precise approximation result is established when using neural networks with a single hidden layer
to fit a Lipschitz continuous function J , see [77]. LetWK,γ

r be the set of neural networks composed by only
one hidden layer with K neurons, ReLU activation function for the hidden layer, a total variation1 smaller
than γ and no activation function for the output layer

WK,γ
r :=

{
π(·; θ) : Rr → R, θ =

(
(ωi)1≤i≤K , (bi)1≤i≤K , (νi)0≤i≤K

)
, s.t. for any i = 1, ...,K

ωi ∈ Rr, bi, νi, , ν0 ∈ R,
K∑
i=0

νi ≤ γ and π(y; θ) =
K∑
i=1

νi max(〈ωi, y〉+ bi, 0) + ν0

}
. (5.7)

In this setting, we get a rate of convergence of the approximation error that depends on the Lipschitz
constant LJ of J , the dimension r, the number of neurons K and γ:

Theorem 5.2.2. Given K ∈ N∗ and γ > 0, there exists a neural network π(·; θ∗) ∈ WK,γ
r , with θ∗ ∈

R(r+2)K+1, such that:

‖π∗ − J‖∞ ≤ LJ
(γ

LJ

) −2
r+1

log
(γ

LJ

)
+ γK−

r+3
2r ,

over compact subsets of Rr.

5.3 Problem settings

For a finite time horizon T > 0 and a non-linear dynamics f , consider the following dynamical system:{
ẏ(s) = f(y(s), a(s)) a.e. s ∈ [t, T],

y(t) = x ∈ Rd,
(5.8)

where the input variable a(·) takes values in A, a compact set of Rq (for q ≥ 1).

The state-constrained optimal control problem with a distributed cost function ` and a final cost function
Φ, is defined as follows:

v(t, x) := inf
a(·)∈A

{∫ T

t
`(yat,x(s), a(s))ds+ Φ(yat,x(T)) | yat,x(s) ∈ K, ∀s ∈ [t, T]

}
, (5.9)

where K ⊂ Rd is a non-empty and closed set representing the set of state constraints, yat,x(·) is the
absolutely continuous solution of (5.8) and A is the set of admissible controls defined by:

A := {a(·) : [0, T]→ A, measurable}.

Throughout this chapter the dynamics f and the distributed cost ` are continuous functions and in contrary
to chapter 4, they are supposed to be Lipschitz continuous w.r.t. only the state variable. Moreover, asume
that Φ : Rd → R is a Lipschitz continuous function.

As we have mentioned before in chapters 1, 3 and 4, in the presence of state constraints, K 6= Rd, some
difficulties concerning the regularity of v and its characterization may appear. In particular, v may be dis-
continuous unless some controllability assumptions are satisfied and therefore one cannot guarantee an
accurate approximation of such function by means of neural networks. For this reason and similarly to the

1The total variation ofWK,γ
r is equal

∑K
i=0 νi.

125

previous chapters, we follow here the level set approach, introduced in [5], which consists in characterizing
the constrained problem (5.9) by means of an auxiliary optimal control problem free of state constraints.

First, since the set of constraints K is a closed subset of Rd, there exists a Lipschitz continuous function g
characterizing K in the following way:

∀y ∈ Rd, g(y) ≤ 0 ⇐⇒ y ∈ K.

The value function of the auxiliary control problem associated to the constrained problem (5.9) is given
by:

w(t, x, z) := inf
a(·)∈A

{(∫ T

t
`(yat,x(s), a(s))ds+ Φ(yat,x(T))− z

)∨(
max
s∈[t,T]

g(yat,x(s))
)}
, (5.10)

for (t, x, z) ∈ [0, T]× Rd × R.

It is known that the auxiliary value function w is Lipschitz continuous, satisfies a dynamic programming
principle and hence can be characterized as the unique viscosity solution of an HJ equation, see [5, 6] and
chapter 4 for single-controller problems and even chapter 3 for zero-sum differential games. Moreover, v
can be determined as follows:

v(t, x) = inf{z ∈ R | w(t, x, z) ≤ 0}, (5.11)

when some convexity assumption is verified (see Assumption (H4.4) in chapter 4). In addition to that, the
optimal controls and trajectories of problem (5.9) can be characterized by use of w. The auxiliary value
function is approximated in chapter 3, for the case of two-person differential games, by solving numerically
the corresponding HJ equation and by means of optimistic planning methods in chapter 4. In this chapter,
we propose two different numerical methods based on the training of neural networks to approximate w
by exploiting either the dynamic programming principle or its associated HJ equation.

5.4 Deep learning numerical methods

The aim of this section is to present the different numerical approaches that will be used to approximate
the auxiliary value function w.

5.4.1 Neural networks for dynamic programming (DP)

Consider a uniform partition of [0, T] with N time steps, s0 = 0, ..., sk = kh, ..., sN = Nh = T , where
N ∈ N∗ is the number of time steps and h := T

N is the time steps size. An approximation in time of w can
be given by:

wh(t, x, z) := min
(ak)k∈AN−k

{(
(sk+1 − t)`(x, ak) + h

N−1∑
i=k+1

`(yai , ai) + Φ(yaN)− z
)∨(

max
k≤i≤N

g(yai)
)}

, (5.12)

for t ∈ [sk, sk+1[, with 0 ≤ k ≤ N − 1, (x, z) ∈ Rd × R and (yai)i is a discrete trajectory associated to (5.8)
(see chapters 3 and 4 for more details).

For the sequel, let’s define Wk(·, ·) := wh(sk, ·, ·), for k = 0, ..., N . The discrete auxiliary value function
(Wk)

N
k=0 verifies the following properties.

Proposition 5.4.1. (i) For any k = 0, ..., N , Wk is a Lipschitz continuous function.

126

(ii) (Wk)
N
k=0 is the unique solution of the following discrete dynamic programming equation:WN (x, z) =

(
Φ(x)− z

)∨
g(x),

Wk(x, z) = min
a∈A

{
Wk+1(F̂h(x̂, a))

∨
g(x)

}
, with x̂ := (x, z) for k = N − 1, ..., 0

(5.13)

where F̂h := Id + hf̂ with f̂ is the augmented dynamics given by f̂(x, a) :=

(
f(x, a)
−`(x, a)

)
(other approxima-

tions, such as the Heun scheme, can be considered to define F̂h).

The proof of Proposition 5.4.1 can be done by using some classical arguments, see for instance [11,
Chapter III].

This first subsection is devoted to present a deep learning algorithm to approximate the discrete aux-
iliary value function (Wk)

N
k=0 by training neural networks. Here, we adapt the Hyprid-Now Algorithm

presented in [78, 10, 77] for stochastic control problems to the deterministic case with state constraints.
In [78, 10, 77], the optimal policy is first estimated by neural networks and dynamic programming. Then,
the estimated control policy is injected in a backward process in order to approximate the value function
by means of neural networks. In our case, the optimal control is not always regular enough therefore its
approximation by neural networks may not be a good idea. To this end, we propose to approximate only
the discrete auxiliary value function by training neural networks and by exploiting the dynamic program-
ming principle (5.13).

The constraints set K may be unbounded. Nevertheless in practice, we will compute v on a restricted
and bounded subset of K. Moreover, starting from bounded initial states and by studying the evolution
of the dynamics f , one can get bounds on the cost functions and hence on the auxiliary variable z in
order to determinate v through the relation (5.11). For this reason, we will need to evaluate the auxiliary
value function w only on some compact set Ω ⊂ K×R, that will be made precise later for each numerical
example.

Recall that Wd+1 denotes the set of neural networks which is the set of all the parametric functions
π(·; θ) : Rd+1 → R corresponding to some given architecture where θ ∈ Rp is the parameters vector and
its size p ≥ 1 can be calculated as in section 5.2.

Finally, at each time step k = 0, ..., N−1 and in order to train the neural networks to fit Wk, we will consider
a random variable X̂k, on the compact set Ω, described by some given probability distribution µk, called
the training distribution. For sake of simplicity, we consider that µk does not depend on the time step k
and let µk = µ, ∀k ∈ {0, ..., N − 1}, where µ is a given training distribution.

Algorithm 5.1: Deep learning algorithm to approximate the value function

1: Initialize ŴN (x, z) = (Φ(x)− z)
∨
g(x) for any (x, z) ∈ Ω.

2: for k = N − 1,...,0 do
3: Knowing Ŵk+1(·), compute the neural network Ŵk(·) as follows:

Ŵk ∈ argmin
π(·;θ)∈Wd+1

E
[(

min
a∈A

{
Ŵk+1(F̂h(X̂k, a))

∨
g(Xk)

}
− π(X̂k; θ)

)2]
, (5.14)

where X̂k := (Xk, Zk) ∼ µ is a random variable lying in Ω.
4: end for
5: return Ŵk(·), for k = 0, ..., N .

Algorithm 5.2 iterates in time, in a backward way, and tries at each time step k, for k = 0, ..., N − 1, to
find the best neural network π(·; θ) ∈ Wd+1 that approximates Wk(·) by use of the neural network Ŵk+1(·)
already obtained in the previous time step k + 1.

127

Remark 5.4.2. 1. The approximated value function Ŵk(·) is computed in (5.14) by considering a train-
ing samples X̂m

k := (Xm
k , Z

m
k), m = 1, ...,M , of the random variable X̂k, drawn from the training

distribution µ on the computational domain Ω where M ≥ 1 is the number of training points. The
corresponding optimization problem to be solved, by means of the Mini Batch Gradient Descent
method presented in section 5.2, has the following form:

inf
π(·;θ)∈Wd+1

1

M

M∑
m=1

(
min
a∈A

{
Ŵk+1(F̂h(X̂m

k , a))
∨
g(Xm

k)
}
− π(X̂m

k ; θ)

)2

.

2. Furthermore, the minimum over A in (5.14) will be approximated by the minimum over a discretized
set from A.

3. Algorithm 5.2 can be extended for the case of two-person zero-sum differential games. To this end,
one shall exploit the discrete dynamic programming principle corresponding to games, see chapter
3, in the training step (5.14) that becomes:

Ŵk ∈ argmin
π(·;θ)∈Wd+1

E
[(

max
b∈B

min
a∈A

{
Ŵk+1(F̂h(X̂k, a, b))

∨
g(Xk)

}
− π(X̂k; θ)

)2]
,

where B is a compact set in which controls of the second player take values.

5.4.2 Neural networks for partial derivatives equations (PDE)

We already know that the auxiliary value function w is the unique viscosity solution of the following
Hamilton-Jacobi equation, see [5, 6]:{

min
(
− ∂tw(t, x̂) +H(x,Dx̂w(t, x̂)), w(t, x̂)− g(x)

)
= 0, on [0, T [×Rd+1,

w(T, x̂) = (Φ(x)− z)
∨
g(x), on Rd+1,

where x̂ := (x, z) ∈ Rd × R and the Hamiltonian H is given by:

H(x, p) = max
a∈A
− 〈f̂(x, a), p〉, for (x, p) ∈ Rd × Rd+1.

The PDE approach consists in approximating the solution of the above HJ equation through training spatio-
temporal function approximators to fit the terminal condition, at time T , and to satisfy the equation law. To
this end, let Wd+2 denote the set of all the parametric functions (neural networks) π(·, ·; θ) : Rd+2 → R
corresponding to some given architecture where θ ∈ Rp is the parameters vector. Moreover, consider
a given training distribution µ on the computational domain [0, T] × Ω where Ω is already defined in the
previous section.

This approximated value function is computed in (5.15) by considering a training samples (τm, X̂m),
m = 1, ...,M , of the random variable (τ, X̂), drawn from the training distribution µ on the computational
domain [0, T] × Ω where M ≥ 1 is the number of training points for the equation law. Moreover, to fit w
at the final time T , one shall consider training samples X̂m := (Xm, Zm), m = 1, ...,M0, of the random
variable X̂ drawn on Ω with M0 ≥ 1. The corresponding optimization problem to be solved has the
following form:

min
π(·,·;θ)∈Wd+2

1

M

M∑
m=1

(
min

(
−∂tπ(τm, X̂m; θ) +H(Xm, Dx̂π(τm, X̂m; θ)), π(τm, X̂m; θ)− g(Xm)

))2

+
1

M0

M0∑
m=1

(
π(T, X̂m; θ)− wT (X̂m)

)2

128

Algorithm 5.2: Deep learning algorithm to approximate the solution of an HJ equation
1: Let (τ, X̂) := (τ,X,Z) be a random variable, described by µ, that lies in [0, T]× Ω.

2: The returned neural network, is the one that minimizes, overWd+2, the sum of the following expected quadratic
loss functions:

Ŵ ∈ argmin
π(·,·;θ)∈Wd+2

E
[(

min
(
−∂tπ(τ, X̂; θ) +H(X,Dx̂π(τ, X̂; θ)), π(τ, X̂; θ)− g(X)

))2]
+ E

[(
π(T, X̂; θ)− wT (X̂)

)2]
(5.15)

where wT (x̂) := (Φ(x)− z)
∨
g(x) for x̂ = (x, z) ∈ Rd × R.

3: return Ŵ .

Remark 5.4.3. 1. The partial derivatives of the neural networks here are computed by means of au-
tomatic differentiation [17]. One can also estimate those derivatives by considering other neural
networks, see [79, 80]. Nevertheless, such method will increase the complexity in time of the train-
ing process since further variables (parameters of the additional neural networks) will be involved in
the optimization problem (5.15).

2. The PDE approach can also handle two-person zero-sum differential games where the hamiltonian
function becomes given by:

H(x, p) = min
b∈B

max
a∈A
− 〈f̂(x, a, b), p〉, for (x, p) ∈ Rd × Rd+1.

5.5 Numerical examples

In all the following numerical examples:

• The training distribution µ is the uniform probability distribution on the computational domain Ω that
will be made precise for each example.

• The hidden layers of the neural networks architectures considered are composed by the same num-
ber of neurons, i.e. di = di+1, ∀i ∈ {1, ..., I − 2}. Notice that d0 is equal to the dimension of the
system state for the DP approach and it is increased by one, for the PDE method, since the time
variable is involved in the training process. Moreover, dI = 1 because we approximate real-valued
functions. On the other hand, we take as an activation function ELU, i.e. σi = ELU, ∀i ∈ {1, ..., I}.

• The stochastic optimization algorithm that will be used to train neural networks, i.e. to solve problems
(5.14) and (5.15), is ADAM with mini batch, see [88].

• The neural networks will be trained on a training grid of size M ≥ 1 and tested on a test grid G of
size NG . The training grid is built on the computational domain Ω, from the training distribution µ,
while G corresponds to a uniform grid on Ω.

• The minimum over the control set A in (5.14) is approximated by taking the minimum over a uniform
grid Ag on A with size nA ∈ N∗.

• Because of the stochastic optimization used in (5.14) and (5.15), we notice that the numerical results
(errors when knowing the exact solution or cost functional values for the control of the heat equation
(example 2)) corresponding to two different executions may be very different. For this reason, all

129

the numerical results presented in the following tables correspond to the mean over 5 different
measures. However, the illustrative figures (approximated value functions and optimal trajectories
and controls) correspond to the best measure among the 5 effectuated measures.

• Our numerical methods are implemented in PYTHON with the Tensorflow library and all the compu-
tations are done with a computer that uses an Intel Core i5 at 1,8 GHz with 8 Go RAM.

Example 1: 1D problem without state constraints

Let T = 1 and A = [0, 1]. The dynamics, the distributed and the final cost functions are given by:

f(x, a) = −xa, `(x, a) = x and Φ(x) = 0.

The exact value function is given, for (t, x) ∈ [0, T]× R, by:

v(t, x) =

{
Tx, for x ≤ 0,

(e−t − e−T)x, for x > 0.

Notice that this example is without state constraints. Henceforth, the DP and PDE approaches will be
directly applied to approximate the unconstrained value function v. The computational domain for this
example is Ω = [−1, 1]. For the DP approach, we used N = 20 time steps for the time-discretization of
[0, T] and nA = 11 points to generate the uniform control grid Ag from the control set A.

The relative errors presented in the following tables are computed with respect to the exact value function,
at the initial time instant t = 0, as follow:

L1 error :=

∑NG
i=1 |V̂0(xi)− v(0, xi)|∑NG

i=1 |v(0, xi)|
,

L2 error :=

√√√√∑NG
i=1(V̂0(xi)− v(0, xi))2∑NG

i=1 v(0, xi)2
,

L∞ error :=

max
1≤i≤NG

|V̂0(xi)− v(0, xi)|

max
1≤i≤NG

|v(0, xi)|
,

where NG = 5000 is the size of the uniform grid G on the computational domain Ω and V̂0(·) is an approxi-
mation of the value function at the initial time instant, v(0, ·).

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M

2 10 50 3.417 e-02 3.762 e-02 4.511 e-02 15.22
4 20 100 1.445 e-02 1.493 e-02 1.480 e-02 23.03
6 40 200 1.236 e-02 1.247 e-02 1.341 e-02 53.48
8 60 400 1.194 e-02 1.218 e-02 1.325 e-02 93.56

Table 5.1: (Example 1): Relative L1, L2 and L∞ errors between the exact and the predicted solution
obtained by Algorithm 5.2 with different network architectures and values of M .

First, we mention that the training samples size M for the DP approach is less than the one used for
the PDE approach since for the latter the training involves the time and the space variables. In tables 5.1
and 5.2, we remark an amelioration, in general, of the error estimates when increasing simultaneously the

130

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M M0

2 10 125 10 1.828 e-02 1.861 e-02 2.748 e-02 2.31
4 20 250 20 1.457 e-02 1.501 e-02 2.063 e-02 7.40
6 40 5× 102 40 1.050 e-02 1.152 e-02 1.178 e-02 49.72
8 60 103 80 1.097 e-02 1.168 e-02 1.194 e-02 85.41

Table 5.2: (Example 1): Relative L1, L2 and L∞ errors between the exact and the predicted solution
obtained by the PDE approach with different network architectures and values of M0 and M .

training samples size, the depth of the neural networks and the number of neurons per layer. Moreover,
we observe that the approximation obtained by the PDE approach is in general more accurate than the
DP approximation. This can be explained by the error accumulation through the time steps for the DP
approach.

We represent in figure 5.2 the exact and the approximated value functions, obtained by the PDE approach.

Figure 5.2: (Example 1): Exact and predicted value functions at t = 0, v(0, ·) and V̂0(·) obtained by the
PDE approach with 6 layers, 40 neurons per layer, M = 5× 102 and M0 = 40.

Example 2: Optimal control of the heat equation

Secondly, we consider the control problem of the heat equation taken from [3]. Recall that this problem
was already studied and solved in chapter 4 and its discrete formulation leads to a control problem in a
high dimensional state space. The corresponding partial derivatives equation is given by:

∂y
∂t (s, x) = σ ∂

2y
∂x2 (s, x) + y0(x)a(s), for (s, x) ∈ [0, T]× [0, 1],

y(s, x) = 0, for (s, x) ∈ [0, T]× {0, 1},
y(0, x) = y0(x), for x ∈ [0, 1],

(5.16)

where σ = 0.1, the control a(·) takes values in A = [−1, 1], T = 1 and y0(x) = −x2 + x, for x ∈ [0, 1].
In order to transform (5.16) into a dynamical system similar to (5.8), we first consider a space grid with
d ∈ N∗ points on]0, 1[, xj = j∆x for j = 1, ..., d and where the space step is defined as ∆x = 1

d+1 . Then

131

we use the centered finite difference scheme to obtain:{
Ẏ (s) = D × Y (s) + a(s)× Y0, s ∈ [0, T],

Y (0) = Y0,
(5.17)

where Y (s) ∈ Rd is an approximation of the solution at time s and over the space grid, the matrixD ∈ Rd×d
is given by D = −σ

∆x2P , with P ∈ Rd×d is already defined in chapter 4, and the vector Y0 ∈ Rd is given by
Y0 = (y0(xj))

d
j=1.

The aim is to minimize, by using the control input a(·), the temperature Y a(·) which is the solution of (5.17).
For this reason, we consider the following cost functional of type Bolza:

J(y0, a) =

∫ T

0

(
∆x‖Y a(s)‖2 + γa2(s)

)
ds+ ∆x‖Y a(T)‖2, (5.18)

where γ > 0. Therefore, the Hamiltonian function that will be considered for the PDE approach is given
by:

H(Y, p) = −〈D × Y, p〉 −∆x‖Y ‖2 + max
a∈A

{
− 〈B, p〉a− γa2

}
, for Y, p ∈ Rd.

As for the DP approach, we will use a time-discretization of [0, T] with N = 20 time steps, tk = kh
for k = 0, ..., N , where h = T

N . Applying the implicit scheme for (5.17) leads to the following discrete
dynamics

Y a
k+1 = Fh(Y a

k , ak) :=
(
Id − hD

)−1(
Y a
k + h× ak × Y0

)
, (5.19)

where Y a
k ∈ Rd is an approximation of the solution of (5.17) at time tk, see chapter 4 for more details. On

the other hand, the cost functional J , defined in (5.18), can be approximated by:

J (Y0, a) =
N−1∑
k=0

ρh(Y a
k , ak) + Φ(Y a

N),

where the instantaneous cost ρh and the final cost Φ are given, for Y ∈ Rd and a ∈ A, by:

ρh(Y, a) =
h

2

(
∆x‖Y ‖2 + ∆x‖Fh(Y, a)‖2 + 2γa2

)
and Φ(Y) = ∆x‖Y ‖2.

The computational domain is given by Ω =]0, 1[d and the training grid (yi)
M
i=1, with yi ∈]0, 1[d, is generated

as follow:

• Let (xj)
d
j=1 be the uniform partition of]0, 1[, defined above, and (αi)

M
i=1 be a uniform distribution in

[0, 1].

• For any i = 1, ...,M , yi := αiY0, with Y0 = (y0(xj))
d
j=1 ∈]0, 1[d.

Moreover, for this example the test grid coincides with the initial position Y0. The approximated optimal
controls and trajectories, (a∗k)

N−1
k=0 and (Y ∗k)Nk=0 with Y ∗k ∈]0, 1[d, are computed in feedback form by using

the approximated value function (V̂k)
N
k=0 as follows:

Y ∗0 = Y0 ∈]0, 1[d,

a∗k = argmin
a∈Ag

{
ρh(Y ∗k , a) + V̂k+1(Fh(Y ∗k , a))

}
, k = 0, ..., N − 1,

Y ∗k+1 = Fh(Y ∗k , a
∗
k), k = 0, ..., N − 1,

132

where Ag is the control grid obtained by the uniform discretization of A with a number of points nA = 11.
Henceforth, the cost functional J , corresponding to the solution ((a∗k)

N−1
k=0 , (Y

∗
k)Nk=0), is computed as:

J (Y0, a
∗) =

N−1∑
k=0

ρh(Y ∗k , a
∗
k) + Φ(Y ∗N).

In tables 5.3 and 5.5, we present the values of the controlled cost functional J (Y0, a
∗) for different values

of γ corresponding to the dimensions d = 102 and d = 103 respectively and obtained by the DP while
tables 5.4 and 5.6 corresponds to the PDE approach. We observe that the controlled values obtained
by the DP approach are less than those corresponding to the PDE approach which are grater even than
the uncontrolled cost J (Y0, 0) (for instance J (Y0, 0) = 2.038 e-02 for d = 102). This observation shows
the bad performance of the PDE approach and its high complexity, compared to the DP method, for large
values of the dimension d. We observe also, in the different tables, that we ameliorate, in general, the
quality of the solution when increasing simultaneously the number of hidden layers, the number of neurons
and the size of the training set. However, this results in increasing the CPU time needed to train the neural
networks.

Training parameters γ = 10−2 γ = 10−4

Layers Neurons M J (Y0, a
∗) CPU(s) J (Y0, a

∗) CPU(s)
2 10 50 1.774 e-02 17.40 9.557 e-03 17.47
4 20 100 1.606 e-02 25.71 9.242 e-03 21.36
6 40 200 1.585 e-02 39.87 9.213 e-03 30.53
8 60 400 1.531 e-02 51.70 9.208 e-03 63.24

Table 5.3: (Example 2): Values of the cost J corresponding to the controlled solutions obtained by Algo-
rithm 5.2 for different neural network architectures and different values of the training set size M and for
d = 102.

Training parameters γ = 10−2 γ = 10−4

Layers Neurons M M0 J (Y0, a
∗) CPU(s) J (Y0, a

∗) CPU(s)
2 10 5× 102 50 2.938 e-02 16.69 2.415 e-02 17.30
4 20 103 102 2.801 e-02 32.74 2.298 e-02 34.61
6 40 2× 103 2× 102 2.835 e-02 75.48 2.316 e-02 78.38
8 60 4× 103 4× 102 2.642 e-02 210.70 2.114 e-02 221.77

Table 5.4: (Example 2): Values of the cost J corresponding to the controlled solutions obtained by the
PDE approach for different neural network architectures and different values of the training sets sizes M ,
M0 and for d = 102.

The uncontrolled solution corresponds to a numerical solution of (5.16) when taking a(·) = 0. As
expected, we observe in figure 5.3 that the controlled solution, obtained by Algorithm 5.2 for d = 103, is
below the uncontrolled solution. Moreover, figure 5.4 represents the evolution of the loss function versus
the number of iterations of the stochastic gradient algorithm used for the training of the neural networks
in (5.14), for γ = 10−2 (a similar evolution of the loss, not represented here, is obtained for γ = 10−4).
We remark that the loss reaches some threshold, for high number of iterations, and does not decrease
enough (the behaviour of the loss function becomes of the form Cαn, where n is the number of iterations,
C > 0 is a small real constant and α < 1 is close to 1).

Furthermore, the controlled solution corresponding to γ = 10−4 is below the controlled solution corre-
sponding to γ = 10−2, see figure 5.3. This observation can be explained by the control differences

133

Training parameters γ = 10−2 γ = 10−4

Layers Neurons M J (Y0, a
∗) CPU(s) J (Y0, a

∗) CPU(s)
2 10 5× 102 1.892 e-02 30.10 9.373 e-03 29.23
4 20 103 1.687 e-02 55.49 9.215 e-03 48.13
6 40 2× 103 1.495 e-02 99.22 9.033 e-03 110.26
8 60 4× 103 1.513 e-02 249.09 9.095 e-03 238.02

Table 5.5: (Example 2): Values of the cost J corresponding to the controlled solutions obtained by Algo-
rithm 5.2 for different neural network architectures and different values of the training set size M and for
d = 103.

Training parameters γ = 10−2 γ = 10−4

Layers Neurons M M0 J (Y0, a
∗) CPU(s) J (Y0, a

∗) CPU(s)
2 10 5× 103 5× 102 2.625 e-02 257.86 1.750 e-02 256.28
4 20 104 103 2.491 e-02 526.33 1.626 e-02 561.35
6 40 2× 104 2× 103 2.376 e-02 1194.07 1.603 e-02 1236.19
8 60 4× 104 4× 103 2.305 e-02 2735.58 1.590 e-02 2610.62

Table 5.6: (Example 2): Values of the cost J corresponding to the controlled solutions obtained by the
PDE approach for different neural network architectures and different values of the training sets sizes M ,
M0 and for d = 103.

Figure 5.3: (Example 2): Uncontrolled (in red) and controlled solutions (in blue) when d = 103, corre-
sponding to γ = 10−2 (left) and γ = 10−4 (right) obtained by Algorithm 5.2 with 6 layers, 40 neurons per
layer and M = 2000.

between the two cases, see figure 5.5. Indeed, when γ is equal to 10−4, we allow values of the control
with larger norms as it is shown in figure 5.5. In addition to that, due to its important weight in the dis-
tributed cost function, the control corresponding to γ = 10−2 is more regular than the control obtained with
γ = 10−4.

On the other hand, we remark that the DP method requires approximately the same execution time used
to solve this example by the Optimistic Planning approach (see example 3 of section 4.6). Because of
the stochastic optimization process used for the regression (5.14) in Algorithm 5.2, the numerical results

134

Figure 5.4: (Example 2): Evolution of the loss function versus the number of iterations of the stochastic
gradient algorithm for d = 103 and γ = 10−2 (6 layers, 40 neurons per layer and M = 2000).

Figure 5.5: (Example 2): Controls for γ = 10−2 (left) and γ = 10−4 (right) with dimension d = 103 obtained
by Algorithm 5.2 with 6 layers, 40 neurons per layer and M = 2000.

obtained here are worst and less stable than those obtained in chapter 4. Nevertheless, the advantage of
the DP method here is the ability of solving this problem for different initial conditions y0 in contrary to the
Optimistic Planning approach that computes the solution for only one fixed initial condition. On the other
hand, the DP and the PDE approaches are unable to solve this example after adding some constraints
on the system state. Indeed, we have considered a constraint of the form ya(t, x) ≥ θy0(x), ∀x ∈ [0, 1], for
θ ∈]0, 1[as we did in section 4.6, and we have obtained a non-negative approximation of the correspond-
ing auxiliary value function w for any value of the auxiliary variable z which means that both approaches
cannot compute admissible trajectories for this case.

Front propagation

Consider a first example of front propagation (Example 3), in a dimension d ∈ N∗, where the dynamics f
is given by f(x, a) := a with a ∈ A := ∂BRd (recall that BRd denotes the closed unit ball of Rd and ∂BRd
denotes its boundary) and the initial condition is given by:

Φ(x) = min(ε, ‖x−A0‖ − r0, ‖x−B0‖ − r0),

135

with ε = 1, r0 = 0.5, A0 =

1
0
...
0

 and B0 = −A0. The corresponding PDE equation (Eikonal equation), for

T > 0, is defined as: {
−∂tv(t, x) + ‖Dxv(t, x)‖ = 0, t ∈ [0, T], x ∈ Rd

v(T, x) = Φ(x), x ∈ Rd

and its solution is given by:

v(t, x) := min(ε,max(0, ‖x−A0‖ − T + t)− r0,max(0, ‖x−B0‖ − T + t)− r0).

The computational domain here is Ω = [−2, 2]d. For the DP approach, we used N = 10 time steps for
the time-discretization of [0, T] = [0, 0.8], nA = 102 points when d = 2 and nA = 104 when d = 6, for the
generation of the control grid Ag from the control set A.

Again, we observe, in the different tables, that the precision of the approximation can be improved, in
general, by increasing simultaneously the number of hidden layers, the number of neurons and the size of
the training set. Furthermore, we remark that the PDE approach is more accurate than the DP approach
for d = 2 and even for d = 6. This result can be justified by the error that comes from the discretization of
the control set A, used in (5.14), which is of dimension equal to d. On the other hand, both approaches
failed to solve this problem for higher dimensions (d ≥ 8).

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M

2 10 500 7.583 e-02 8.644 e-02 1.916 e-01 5.40
4 20 103 4.273 e-02 4.968 e-02 1.275 e-01 22.31
6 40 2× 103 4.511 e-02 5.184 e-02 1.307 e-01 68.05

Table 5.7: (Example 3): Relative L1, L2 and L∞ errors between the exact and the predicted solutions
obtained by Algorithm 5.2 corresponding to the dimension d = 2 with different neural network architectures
and different values of M .

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M M0

2 10 103 100 4.415 e-02 5.838 e-02 1.190 e-01 4.55
4 20 2× 103 200 1.526 e-02 1.752 e-02 9.865 e-01 16.92
6 40 4× 103 400 1.472 e-02 1.705 e-02 9.388 e-01 73.18

Table 5.8: (Example 3): Relative L1, L2 and L∞ errors between the exact and the predicted solutions
obtained by the PDE approach corresponding to the dimension d = 2 with different neural network archi-
tectures and different values of M and M0.

136

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M

2 10 104 7.593 e-01 9.289 e-01 1.944 e00 483.61
4 20 2× 104 2.617 e-01 4.009 e-01 1.366 e00 754.20
6 40 4× 104 2.801 e-01 4.173 e-01 1.391 e00 1203.51

Table 5.9: (Example 3): Relative L1, L2 and L∞ errors between the exact and the predicted solutions
obtained by Algorithm 5.2 for the dimension d = 6 with different neural network architectures and different
values of M .

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M M0

2 10 2× 104 2× 103 3.754 e-01 4.130 e-01 1.500 e00 136.53
4 20 4× 104 4× 103 1.099 e-01 1.859 e-01 1.105 e00 329.08
6 40 8× 104 8× 103 9.840 e-02 1.245 e-01 9.954 e-01 918.28

Table 5.10: (Example 3): Relative L1, L2 and L∞ errors between the exact and the predicted solutions
obtained by the PDE approach for the dimension d = 6 with different neural network architectures and
different values of M and M0.

Figure 5.6: (Example 3): Exact and predicted value functions obtained by the PDE approach for d = 2 (6
layers, 40 neurons per layer, M = 4× 103 and M0 = 400).

Now consider a second front propagation example (Example 4), in a dimension d ∈ N∗, where the

dynamics f is given by f(x, a) = a ×

1
...
1

 ∈ Rd, with a ∈ A = [0, 1], and the initial condition is given by

Φ(x) = min(‖x − A0‖ − r0, ε), where ε = 0.2, r0 = 0.5 and A0 = −

1
...
1

 ∈ Rd. The corresponding PDE

equation, for T > 0, is defined as:{
−∂tv(t, x) + max(0,

∑d
i=1 ∂xiv(t, x)) = 0, t ∈ [0, T], x ∈ Rd,

v(T, x) = Φ(x), x ∈ Rd.

The computational domain here is Ω = [−2, 2]d. We used N = 10 time steps for the time-discretization

137

Figure 5.7: (Example 3): Exact and predicted zero levels obtained by the PDE approach for d = 2 (left, 6
layers, 40 neurons per layer, M = 4 × 103 and M0 = 400) and for d = 6 (right, 6 layers, 40 neurons per
layer, M = 8× 104 and M0 = 8× 103).

of [0, T] and nA = 11 points to generate the control grid Ag from the control set A for the DP approach.
The relative errors presented in the following tables are computed with respect to the exact value function,
which can be determined analytically2, in a similar way to the first example on a uniform grid G on the
computational domain Ω with size NG = 102d.

In tables 5.11, 5.13 and 5.15, we present the errors corresponding to different dimensions d obtained by
the DP approach while tables 5.12, 5.14 and 5.16 corresponds to the PDE approach. We remark that
increasing the size of the training set simultaneously with the number of hidden layers and the number of
neurons per layer helps to ameliorate, in general, the accuracy of the approximated solution. Nevertheless,
this leads to increasing the CPU time needed to train the neural networks.

Furthermore, for a low dimension (d = 2 for instance), we cannot decide which approach is better since
their performances are comparable. This is not the case for higher dimensions (d = 4 and d = 6) where it
is clear that the DP approach gives more accurate approximations. On the other hand, both approaches
failed to solve this problem for higher dimensions (d ≥ 8).

We represent in figure 5.8 the exact and the approximated solutions and the zero levels obtained
by Algorithm 5.2 and corresponding to the dimension d = 2 while figure 5.9 contains the exact and
approximated zero levels corresponding to dimensions d = 4 and d = 6.

2The exact solution for this example can be computed as follows. Define

At := A0 + (T − t)×

1
...
1

 , u :=

−−−→
A0At

‖
−−−→
A0At‖

, h := 〈
−−→
A0x, u〉

hP := min
(

max(h, 0), ‖
−−−→
A0At‖

)
, and xP := A0 + hPu,

where xP is the projection of x on the segment [A0;At]. Then the exact solution is given by

v(t, x) = min(r0,t − r0, ε), where r0,t = ‖x− xP ‖. (5.20)

138

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M

2 10 500 4.31 e-01 4.96 e-01 1.43 e00 8.57
4 20 1000 7.34 e-02 9.38 e-02 3.94 e-01 13.25
6 40 2000 4.95 e-02 6.51 e-02 3.09 e-01 25.88
8 60 4000 3.72 e-02 6.42 e-02 2.93 e-01 60.52

Table 5.11: (Example 4): Relative L1, L2 and L∞ errors between the exact and the predicted solutions
obtained by Algorithm 5.2 corresponding to the dimension d = 2 with different neural network architectures
and different values of M .

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M M0

2 10 1250 100 4.07 e-02 4.42 e-02 1.32 e00 6.87
4 20 2500 200 6.82 e-02 8.91 e-02 3.76 e-02 10.45
6 40 5× 103 400 5.12 e-02 6.89 e-02 3.27 e-01 48.04
8 60 104 800 5.58 e-02 7.07 e-02 3.49 e-01 175.41

Table 5.12: (Example 4): Relative L1, L2 and L∞ errors between the exact and the predicted solutions
obtained by the PDE approach corresponding to the dimension d = 2 with different neural network archi-
tectures and different values of M and M0.

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M

2 10 125× 102 4.369 e-01 9.238 e-01 1.495 e00 21.66
4 20 25× 103 3.045 e-01 6.389 e-01 9.763 e-01 90.79
6 40 5× 104 6.871 e-02 8.174 e-02 3.501 e-01 367.40
8 60 105 6.919 e-02 8.359 e-02 3.690 e-01 935.66

Table 5.13: (Example 4): Relative L1, L2 and L∞ errors between the exact and the predicted solutions
obtained by Algorithm 5.2 for the dimension d = 4 with different neural network architectures and different
values of M .

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M M0

2 10 2× 104 103 9.519 e-01 1.628 e00 1.897 e00 56.74
4 20 4× 104 2× 103 6.740 e-01 8.869 e-01 1.277 e00 216.79
6 40 8× 104 4× 103 9.461 e-02 1.195 e-01 7.221 e-01 894.56
8 60 16× 104 8× 103 9.284 e-02 1.032 e-01 7.019 e-01 2719.41

Table 5.14: (Example 4): Relative L1, L2 and L∞ errors between the exact and the predicted solutions
obtained by the PDE approach for the dimension d = 4 with different neural network architectures and
different values of M and M0.

Example 5: Front propagation with state constraints

Now, consider a front propagation problem with an obstacle. Let T = 1, the dimension d ∈ N∗, the
dynamics f is given by:

f(x, a) = a×

1
...
1

 ∈ Rd, with a ∈ A = [0, 1],

139

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M

2 10 375× 102 4.762 e-01 9.617 e-01 1.305 e00 35.71
4 20 75× 103 4.877 e-01 9.784 e-01 1.399 e00 105.44
6 40 15× 104 8.110 e-02 8.926 e-02 5.773 e-01 506.39
8 60 3× 105 7.651 e-02 8.737 e-02 5.642 e-01 3216.11

Table 5.15: (Example 4): Relative L1, L2 and L∞ errors between the exact and the predicted solutions
obtained by Algorithm 5.2 for the dimension d = 6 with different neural network architectures and different
values of M .

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M M0

2 10 5× 104 25× 102 1.014 e00 1.433 e00 1.605 e00 67.81
4 20 105 5× 103 9.829 e-01 1.305 e00 1.553 e00 231.41
6 40 2× 105 104 1.176 e-01 1.292 e-01 8.351 e-01 944.78
8 60 4× 105 2× 104 1.240 e-01 1.403 e-01 8.622 e-01 4117.73

Table 5.16: (Example 4): Relative L1, L2 and L∞ errors between the exact and the predicted solutions
obtained by the PDE approach for the dimension d = 6 with different neural network architectures and
different values of M and M0.

Figure 5.8: (Example 4): Exact solution (left), predicted solution (middle) and exact and predicted zero
levels (right) obtained by Algorithm 5.2 corresponding to the dimension d = 2 with 8 layers, 60 neurons
per layer and M = 4000.

and the initial condition is given by:

Φ(x) = min(‖x−A0‖ − r0, ε0),

where ε0 = 0.2, r0 = 0.5 and A0 = −

1
...
1

 ∈ Rd. The obstacle function, g : Rd → R, is defined as follows:

g(x) = max(−ε1, r1 − ‖x−B0‖),

140

Figure 5.9: (Example 4): Exact and predicted zero levels obtained by Algorithm 5.2 for d = 4 (left, 6
layers and 40 neurons per layer, M = 5 × 104) and for d = 6 (right, 8 layers and 60 neurons per layer,
M = 3× 105).

where ε1 = 0.2, r1 = 0.5 and B0 =

0
...
0

 ∈ Rd. The corresponding PDE equation, for T > 0, is defined as:

{
min

(
− ∂tw(t, x) + max(0,

∑d
i=1 ∂xiw(t, x)), w(t, x)− g(x)

)
= 0, t ∈ [0, T], x ∈ Rd,

w(T, x) = Φ(x)
∨
g(x), x ∈ Rd.

The computational domain here is the same as in the previous example, Ω = [−2, 2]d. We used N = 10
time steps for the time-discretization of [0, T] and nA = 11 points to generate the control grid Ag from the
control set A. The relative errors presented in the following tables are computed with respect to the exact
value function, which can be determined analytically3, in a similar way to the first example on a uniform
grid G on the computational domain Ω with size NG = 102d.

In tables 5.17, 5.19 and 5.21, we present the errors obtained by the DP approach and corresponding to
different values of d while tables 5.18 and 5.20 contains the errors obtained by the PDE approach for
dimensions d = 2 and d = 4 respectively. We represent in figure 5.10 the exact and the approximated
solutions and the zero levels corresponding to the dimension d = 2 and in figure 5.11 the exact and
approximated zero levels obtained by Algorithm 5.2 and corresponding to dimensions d = 4 and d = 6

3The exact solution is given by the following expression:

w(t, x) = max(v(t, x), gt(x)),

where v(t, x) is the exact solution of the unconstrained case, defined in (5.20), and where

gt(x) := max
θ∈[0,t]

g(x+ θ ×A0).

Furthermore gt(x) can be computed as follows:

Bt := B0 − (T − t)×A0, u :=

−−−→
B0Bt

‖
−−−→
B0Bt‖

, h′ := 〈
−−→
B0x, u〉

h′P := min(max(h, 0), ‖
−−−→
B0Bt‖), and yP := B0 + h′Pu,

where yP is the projection of x on the segment [B0;Bt]. Henceforth, gt can be expressed differently:

gt(x) = max(−ε1, r1 − r1,t), where r1,t := ‖x− yP ‖.

141

while figure 5.12 represents the exact and approximated zero levels and the evolution of the loss function,
versus the number of iterations of the stochastic gradient algorithm used for the training of the neural
networks, obtained by the PDE approach for d = 4.

Similarly to the previous examples, we remark that increasing the size of the training samples simultane-
ously with the number of hidden layers and the number of neurons per layer ameliorate, in general, the
accuracy of the approximated solution and increases the CPU time needed to train the neural networks.
Furthermore, we observe, in tables 5.17 and 5.18, the near performances of the different approaches for
a small dimension (d = 2).

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M

2 10 500 3.741 e-01 4.408 e-01 1.035 e00 7.72
4 20 1000 7.822 e-02 1.082 e-01 4.352 e-01 16.32
6 40 2000 3.105 e-02 5.621 e-02 2.278 e-01 30.50
8 60 4000 2.948 e-02 4.370 e-02 1.967 e-01 62.32

Table 5.17: (Example 5): Relative L1, L2 and L∞ errors between the exact and the predicted solution
obtained by Algorithm 5.2 corresponding to the dimension d = 2 with different neural network architectures
and different values of M .

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M M0

2 10 1250 100 1.956 e-01 2.260 e-01 9.871 e-01 5.33
4 20 2500 200 7.045 e-02 8.493 e-02 3.972 e-01 14.06
6 40 5000 400 3.428 e-02 6.070 e-02 2.877 e-01 36.10
8 60 104 800 3.607 e-02 6.499 e-02 3.088 e-01 102.28

Table 5.18: (Example 5): Relative L1, L2 and L∞ errors between the exact and the predicted solution
obtained by the PDE approach corresponding to the dimension d = 2 with different neural network archi-
tectures and different values of M and M0.

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M

2 10 25× 103 2.290 e-01 3.218 e-01 1.774 e00 36.87
4 20 5× 104 7.743 e-02 1.416 e-01 6.978 e-01 111.02
6 40 105 4.846 e-02 5.098 e-02 1.018 e-01 667.14
8 60 2× 105 4.520 e-02 4.701 e-02 9.521 e-02 2698.00

Table 5.19: (Example 5): Relative L1, L2 and L∞ errors between the exact and the predicted solution
obtained by Algorithm 5.2 for the dimension d = 4 with different neural network architectures and different
values of M .

Now, by comparing tables 5.19 and 5.20, we deduce again that the DP approach becomes more
accurate than the PDE approach for higher dimensions (d = 4). Moreover, we observe in figure 5.11 that
the DP approach is able to capture the front and the obstacle form for d = 4 and d = 6 which seems
more difficult to handle with the PDE approach, see table 5.20 and figure 5.12. We remark also that
the behaviour of the loss function, in figure 5.12, becomes of the form Cαn, where n is the number of

142

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M M0

2 10 75× 103 5× 103 9.561 e-01 7.460 e-01 1.771 e00 369.30
4 20 15× 104 104 9.394 e-01 7.393 e-01 1.649 e00 1180.41
6 40 3× 105 2× 104 9.683 e-01 7.711 e-01 1.854 e00 4319.05

Table 5.20: (Example 5): Relative L1, L2 and L∞ errors between the exact and the predicted solution
obtained by the PDE approach for the dimension d = 4 with different neural network architectures and
different values of M and M0.

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M

2 10 375× 102 1.580 e-01 2.209 e-01 8.166 e-01 109.19
4 20 75× 103 1.737 e-01 2.385 e-01 8.406 e-01 351.43
6 40 15× 104 8.097 e-02 1.497 e-01 7.101 e-01 900.71
8 60 3× 105 5.206 e-02 6.161 e-02 1.919 e-01 2937.42

Table 5.21: (Example 5): Relative L1, L2 and L∞ errors between the exact and the predicted solution
obtained by Algorithm 5.2 for the dimension d = 6 with different neural network architectures and different
values of M .

Figure 5.10: (Example 5): Exact solution (left), predicted solution (middle) and exact and predicted zero
levels (right) obtained by Algorithm 5.2 corresponding to the dimension d = 2 with 8 layers, 60 neurons
per layer and M = 4000.

iterations, C > 0 is a small real constant and α < 1 is close to 1. Hence, the loss does not decrease
enough, for high number of iterations, and reaches some threshold.

143

Figure 5.11: (Example 5): Exact and predicted zero levels obtained by Algorithm 5.2 for d = 4 (left, 6
layers, 40 neurons per layer, M = 105) and for d = 6 (right, 8 layers, 60 neurons per layer, M = 3× 105).

Figure 5.12: (Example 5): Exact and predicted zero levels obtained by the PDE approach (left) and the
loss function evolution versus the number of iterations of the stochastic gradient algorithm (right) for d = 4
(6 layers, 40 neurons per layer, M = 105 and M0 = 5× 103).

Example 6: An unconstrained game

Consider now a zero-sum differential game with finite time horizon T = 1 and state dimension d = 1. The
dynamical system is given by

ẏ(s) = f(y(s), a(s), b(s)) = |a(s)− b(s)|, s ∈ [0, T],

where the first and the second player controls a(·) and b(·) take values respectively in the control sets
A and B with A = B = [−1, 1]. The distributed and the final cost functions are given by `(x, a, b) = ex

and Φ(·) = 0. The value function, corresponding to the case where the first player tries to minimize the
cost functional by using nonanticipative strategies α[·] ∈ Γ, is defined by (see chapters 2 and 3 for more
definitions about differential games):

v(t, x) = inf
α[·]∈Γ

sup
b(·)∈B

∫ T

t
ey
α[b],b
t,x (s)ds = (T − t)ex.

144

This value function is the unique viscosity solution of the following HJI equation:{
−∂tv(t, x) +H(x, ∂xv(t, x)) = 0, t ∈ [0, T], x ∈ R,
v(T, x) = Φ(x), x ∈ R,

where the hamiltonian function is given, for any (x, p) ∈ R× R, by:

H(x, p) = min
b∈B

max
a∈A

{
− pf(x, a, b)− `(x, a, b)

}
=

{
−p− ex, if p ≤ 0,

−ex, else.

The computational domain for this example is Ω = [−1, 1]. For the DP approach, we used N = 20 time
steps for the time-discretization of [0, T] and nA = nB = 11 points to generate the uniform control grids
Ag and Bg from the control sets A and B respectively. The errors, presented in tables 5.22 and 5.23, are
calculated at time t = 0 over a uniform grid G on the computational domain Ω with NG = 5000 points.

Similarly to the previous examples, increasing simultaneously the training samples size, the depth of the
neural networks and the number of neurons per layer helps to ameliorate the precision of the approxima-
tions obtained by the DP and the PDE approaches, see tables 5.22 and 5.23. Moreover, we observe that
the approximation obtained by the PDE approach is more accurate than the DP approximation which can
be explained again by the error accumulation through the time steps for the DP approach.

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M

2 5 50 1.096 e-01 1.794 e-01 3.538 e-01 62.41
4 10 100 6.314 e-02 6.501 e-02 1.104 e-01 76.84
6 20 200 2.668 e-02 3.150 e-02 6.358 e-02 125.20
8 40 400 2.611 e-02 3.025 e-02 5.145 e-02 148.92

Table 5.22: (Example 6): Relative L1, L2 and L∞ errors between the exact and the predicted solution
obtained by the DP approach with different network architectures and values of M .

Training parameters L1 error L2 error L∞ error CPU(s)
Layers Neurons M M0

2 5 125 10 3.963 e-02 4.056 e-02 1.357 e-01 22.80
4 10 250 20 1.197 e-02 2.072 e-02 9.408 e-02 36.94
6 20 5× 102 40 9.159 e-03 9.846 e-03 7.408 e-02 71.07
8 40 103 80 7.923 e-03 8.025 e-03 7.010 e-02 109.47

Table 5.23: (Example 6): Relative L1, L2 and L∞ errors between the exact and the predicted solution
obtained by the PDE approach with different network architectures and values of M0 and M .

We represent in figure 5.13 the exact and the approximated value functions obtained by the DP and
PDE approaches.

145

Figure 5.13: (Example 6): Exact and predicted value functions at t = 0, v(0, ·) and V̂0(·), obtained by the
DP approach (left, M = 400) and the PDE approach (right, M = 103 and M0 = 80) with 8 layers and 40
neurons per layer.

Comparison between the DP and the PDE approaches

Throughout the numerical examples tested in this chapter, we have obtained the following observations:

• First, the numerical performances of both approaches, DP and PDE, can be improved, in general,
by increasing simultaneously the number of hidden layers, the number of neurons and the size of
the training set.

• The PDE approach is more accurate than the DP approach when either the state dimension is low or
the control set dimension is high (see examples 1, 3 and 6). Nevertheless, the PDE approach seems
unable to handle problems with obstacle terms in high state dimension (example 5 with d = 4).

• The DP approach becomes more accurate than the PDE approach for higher values of the state
dimension d (see examples 2, 4 and 5).

• Both approaches can be extended to deal with zero-sum differential games, see example 6.

• For the moment and with the available tools in the Tensorflow library (tensors, neural networks archi-
tectures, algorithms for machine learning optimization...), our approaches are unable to solve other
state-constrained problems, such as Zermelo, optimal control of the heat equation and windshear
problems. Indeed, we have obtained non-negative approximations of the auxiliary value function w,
for any value of the auxiliary variable z, which means that both approaches cannot compute ad-
missible trajectories. Recall that those problems are solved, in chapter 4, by use of the Optimistic
Planning approach. Furthermore, the DP and the PDE approaches failed to solve the different front
propagation problems (examples 3, 4 and 5) for higher dimensions (d ≥ 8).

146

Chapter 6

Conclusion and perspectives

In this work, we apply the Hamilton-Jacobi approach to study state-constrained two-person zero-sum dif-
ferential games. Moreover, we provide optimistic planning and deep learning algorithms to solve optimal
control problems involving state constraints.

In chapter 3, we study a two-person zero-sum differential game under state constraints and where the
controls of the two players are coupled within the dynamics, the cost functions and the state constraints.
In particular, we show that the original state-constrained problem can be characterized by means of an
auxiliary differential game free of state constraints. Furthermore, we propose a reconstruction procedure
to approximate optimal strategies and controls of both players for the auxiliary game and hence for the
constrained problem.

In chapter 4, we propose optimistic planning algorithms to solve state-constrained finite-horizon nonlinear
optimal control problems. Thanks to the level set approach from [5], it is known that the value function
of such problem can be characterized by use of an unconstrained auxiliary problem. In order to compute
an approximation of the auxiliary value function, we have adapted optimistic planning methods proposed
in [39, 38, 35, 75, 76] to the finite time horizon and extended them to our case with maximum cost func-
tional. Furthermore, we have established theoretical convergence results of those algorithms. Finally, we
have designed another algorithm with better performance by exploiting some ideas from model predictive
control theory.

A possible future direction of research, from chapters 3 and 4, will be to adapt the optimistic planning
approach to solve state-constrained differential games in finite horizon. We refer to [37] where a game
with two players having opposite interests and taking decisions in turn was studied without constraints on
the system state and with infinite time horizon. As we have seen in section 3.3, the constrained problem
can be characterized through a differential game free of state constraints having the following form (for
simplicity, let t = 0):

w(0, x, z) := inf
α[·]∈Γ

sup
b(·)∈B

{(
max
s∈[0,T]

Φ(ŷ
α[b],b
x̂ (s))

)∨
Ψ(ŷ

α[b],b
x̂ (T))

}
where T > 0, x̂ = (x, z) ∈ Rd×R, Φ and Ψ are the cost functions and ŷα[b],b

x̂ (·) is the trajectory associated
to the augmented dynamical system. From section 3.4, w can be approximated by the following discrete
time differential game:

wh(x, z) := inf
αh[·]∈Γh

sup
(bi)i∈BN

(
max

i=0,...,N
Φ(ŷαh[b],b

i)
)∨

Ψ(ŷαh[b],b
N),

where h = T
N with N ∈ N∗, αh[·] ∈ Γh is a discrete nonanticipative strategy of the first player, (bi)i ∈

BN is a control sequence of the second player and (ŷαh[b],b
i)Ni=0 is the discrete trajectory approximating

147

the continuous time trajectory ŷ
α[b],b
x̂ (·). Moreover, from the definition of nonanticipative discrete time

strategies, the advantage of information attributed to the first player means that the latter makes his choice
ai ∈ A, for i = 0, ..., N − 1, after observing his opponent action bi ∈ B. Therefore, wh can be rewritten as
follows:

wh(x̂) = max
b0

min
a0

· · ·max
bN−1

min
aN−1

(
max

i=0,...,N
Φ(ŷa,b

i)
)∨

Ψ(ŷa,b
N), (6.1)

with a := (a0, ...,aN−1) ∈ AN and b := (b0, ...,bN−1) ∈ BN . The Formulation (6.1) is similar to the mini-
max problem considered in [37] for the case of an infinite horizon sum with a positive discount factor and
under a boundedness assumption on the instantaneous reward. In our context, the cost functional, that
the first player wants to minimize while the second player tries to maximize, is defined in finite horizon by
taking the maximum of several terms depending on the actions of the two players.

The main question now is how to adapt the optimistic search algorithm for minimax sequential deci-
sions, introduced in [37], and to propose, in a similar way to chapter 4, optimistic planning algorithms to
solve problem (6.1). Furthermore, one can provide theoretical convergence results that relate the near-
optimality of the returned solution with the computational budget allowed. Recall that the advantage of
the optimistic planning approach is to remove the direct dependence between the resolution complexity
and the dimension of the system state. Nevertheless, we have seen, in chapter 4, that the complexity of
such numerical methods depends on the resolution horizon N (the number of time steps or the number of
actions to be applied) and also on the control dimension q ∈ N∗. For this reason, it will be very interesting
to propose improvements of the existing algorithms in such a way to alleviate the complexity of those
methods with respect to N and q.

Another practical contribution in the future can be by parallelizing the C++ code of optimistic planning
algorithms with respect to the auxiliary variable z. In such a way, one can execute computations to ap-
proximate the auxiliary value function for several values of z in the same time which reduces the global
computational time.

Finally, in chapter 5 we investigate numerical methods based on deep learning for constrained determin-
istic optimal control problems. In particular, we propose two different approaches. The first algorithm
exploits the dynamic programming principle while the aim of the second approach is to approximate the
solutions of Hamilton-Jacobi equations. Those approaches can be extended to handle two-person zero-
sum differential games.

In this subject, there are two broad directions of research. First, it will be very interesting to prove theo-
retical convergence results of the proposed approaches at least when using neural networks with a single
hidden layer. We mention that such results has been proven in [78, 77] for deep learning algorithms,
based on the dynamic programming principle, when studying stochastic optimal control problems free of
state constraints. The second direction concerns the amelioration of the precision and the complexity of
our approaches. This can be done essentially by either modifying the architecture design of the paramet-
ric functions (the neural networks) or ameliorating the precision of the stochastic optimization process (the
training).

148

Bibliography

[1] M. Akian, S. Gaubert, and A. Lakhoua. The max-plus finite element method for solving deterministic
optimal control problems: basic properties and convergence analysis. SIAM Journal on Control and
Optimization, 47(2):817–848, 2008.

[2] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey. Predicting the sequence specificities of
DNA-and RNA-binding proteins by deep learning. Nature biotechnology, 33(8):831–838, 2015.

[3] A. Alla, M. Falcone, and L. Saluzzi. An efficient DP algorithm on a tree-structure for finite horizon
optimal control problems. SIAM Journal on Scientific Computing, 41(4):A2384–A2406, 2019.

[4] A. Alla, M. Falcone, and L. Saluzzi. A tree structure algorithm for optimal control problems with state
constraints. arXiv preprint arXiv:2009.12384, 2020.

[5] A. Altarovici, O. Bokanowski, and H. Zidani. A general Hamilton-Jacobi framework for non-linear
state-constrained control problems. ESAIM: Control, Optimisation and Calculus of Variations,
19(2):337–357, 2013.

[6] M. Assellaou, O. Bokanowski, A. Desilles, and H. Zidani. Value function and optimal trajectories
for a maximum running cost control problem with state constraints. application to an abort landing
problem. ESAIM: Mathematical Modelling and Numerical Analysis, 52(1):305–335, 2018.

[7] J.-P. Aubin and A. Cellina. Differential inclusions: set-valued maps and viability theory, volume 264.
Springer Science & Business Media, 2012.

[8] J.-P. Aubin and H. Frankowska. Set-valued analysis. Springer Science & Business Media, 2009.

[9] R. J. Aumann, M. Maschler, and R. E. Stearns. Repeated games with incomplete information. MIT
press, 1995.

[10] A. Bachouch, C. Huré, N. Langrené, and H. Pham. Deep neural networks algorithms for stochastic
control problems on finite horizon: numerical applications. arXiv preprint arXiv:1812.05916, 2018.

[11] M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-
Bellman equations. Springer Science & Business Media, 2008.

[12] M. Bardi, S. Koike, and P. Soravia. Pursuit-evasion games with state constraints: dynamic program-
ming and discrete-time approximations. Discrete & Continuous Dynamical Systems-A, 6(2):361,
2000.

[13] M. Bardi and P. Soravia. A PDE framework for games of pursuit-evasion type. In Differential games
and applications, pages 62–71. Springer, 1989.

[14] G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully nonlinear second
order equations. Asymptotic analysis, 4(3):271–283, 1991.

149

[15] E. Barron. Differential games with maximum cost. Nonlinear analysis: Theory, methods & applica-
tions, 14(11):971–989, 1990.

[16] T. Başar and P. Bernhard. H∞ optimal control and related minimax design problems: a dynamic
game approach. Springer Science & Business Media, 2008.

[17] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine
learning: a survey. The Journal of Machine Learning Research, 18(1):5595–5637, 2017.

[18] R. Bellman. On the theory of dynamic programming. Proceedings of the National Academy of
Sciences of the United States of America, 38(8):716, 1952.

[19] R. Bellman and R. E. Kalaba. Dynamic programming and modern control theory, volume 81. Cite-
seer, 1965.

[20] R. E. Bellman and S. E. Dreyfus. Applied dynamic programming. Princeton university press, 2015.

[21] D. P. Bertsekas. Reinforcement learning and optimal control. Athena Scientific Belmont, MA, 2019.

[22] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming: an overview. In Proceedings of
1995 34th IEEE Conference on Decision and Control, volume 1, pages 560–564. IEEE, 1995.

[23] P. Bettiol, P. Cardaliaguet, and M. Quincampoix. Zero-sum state constrained differential games:
existence of value for Bolza problem. International Journal of Game Theory, 34(4):495–527, 2006.

[24] P. Bettiol, M. Quincampoix, and R. Vinter. Existence and characterization of the values of two
player differential games with state constraints. Applied Mathematics & Optimization, 80(3):765–
799, 2019.

[25] O. Bokanowski, N. Forcadel, and H. Zidani. Reachability and minimal times for state constrained
nonlinear problems without any controllability assumption. SIAM Journal on Control and Optimiza-
tion, 48(7):4292–4316, 2010.

[26] O. Bokanowski, N. Forcadel, and H. Zidani. Deterministic state-constrained optimal control prob-
lems without controllability assumptions. ESAIM: Control, Optimisation and Calculus of Variations,
17(4):995–1015, 2011.

[27] O. Bokanowski, J. Garcke, M. Griebel, and I. Klompmaker. An adaptive sparse grid semi-
Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. Journal of Scientific Com-
puting, 55(3):575–605, 2013.

[28] V. Boltyanskiy, R. V. Gamkrelidze, Y. MISHCHENKO, and L. Pontryagin. Mathematical theory of
optimal processes. 1962.

[29] N. Botkin and V. Turova. Dynamic programming approach to aircraft control in a windshear. In
Advances in dynamic games, pages 53–69. Springer, 2013.

[30] L. Bottou. Online learning and stochastic approximations. On-line learning in neural networks,
17(9):142, 1998.

[31] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
Siam Review, 60(2):223–311, 2018.

[32] T. Bqar and G. J. Olsder. Dynamic noncooperative game theory, 1982.

150

[33] R. Bulirsch, F. Montrone, and H. J. Pesch. Abort landing in the presence of windshear as a min-
imax optimal control problem, part 1: Necessary conditions. Journal of Optimization Theory and
Applications, 70(1):1–23, 1991.

[34] R. Bulirsch, F. Montrone, and H. J. Pesch. Abort landing in the presence of windshear as a minimax
optimal control problem, part 2: Multiple shooting and homotopy. Journal of Optimization Theory
and Applications, 70(2):223–254, 1991.

[35] L. Buşoniu, A. Daniels, R. Munos, and R. Babuška. Optimistic planning for continuous-action deter-
ministic systems. In 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), pages 69–76. IEEE, 2013.

[36] L. Busoniu and R. Munos. Optimistic planning for markov decision processes. In Artificial Intelli-
gence and Statistics, pages 182–189, 2012.

[37] L. Buşoniu, R. Munos, and E. Páll. An analysis of optimistic, best-first search for minimax sequential
decision making. In 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), pages 1–8. IEEE, 2014.

[38] L. Buşoniu, E. Páll, and R. Munos. Discounted near-optimal control of general continuous-action
nonlinear systems using optimistic planning. In 2016 American Control Conference (ACC), pages
203–208. IEEE, 2016.

[39] L. Buşoniu, E. Páll, and R. Munos. Continuous-action planning for discounted infinite-horizon non-
linear optimal control with lipschitz values. Automatica, 92:100–108, 2018.

[40] P. Cardaliaguet. A differential game with two players and one target: The continuous case. 1994.

[41] P. Cardaliaguet. A differential game with two players and one target. SIAM Journal on Control and
Optimization, 34(4):1441–1460, 1996.

[42] P. Cardaliaguet. Nonsmooth semipermeable barriers, Isaacs’ equation, and application to a differen-
tial game with one target and two players. Applied Mathematics and Optimization, 36(2):125–146,
1997.

[43] P. Cardaliaguet. Differential games with asymmetric information. SIAM journal on Control and
Optimization, 46(3):816–838, 2007.

[44] P. Cardaliaguet. Representations formulas for some differential games with asymmetric information.
Journal of optimization theory and applications, 138(1):1, 2008.

[45] P. Cardaliaguet. Introduction to differential games, volume 126. Université de Brest, 2010.

[46] P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre. Pursuit differential games with state con-
straints. SIAM Journal on Control and Optimization, 39(5):1615–1632, 2000.

[47] Q. Chan-Wai-Nam, J. Mikael, and X. Warin. Machine learning for semi linear PDEs. Journal of
Scientific Computing, 79(3):1667–1712, 2019.

[48] X. Chen, S. Liu, R. Sun, and M. Hong. On the convergence of a class of ADAM-type algorithms for
non-convex optimization. arXiv preprint arXiv:1808.02941, 2018.

[49] J. Clark and R. Vinter. On the interpretation of non-anticipative control strategies in differential
games and applications to flow control. In Optimal Control, Stabilization and Nonsmooth Analysis,
pages 29–47. Springer, 2004.

151

[50] M. G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton-Jacobi equations. Transactions of
the American mathematical society, 277(1):1–42, 1983.

[51] M. G. Crandall and P.-L. Lions. Two approximations of solutions of Hamilton-Jacobi equations.
Mathematics of computation, 43(167):1–19, 1984.

[52] G. Cybenko. Approximations by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2:183–192, 1989.

[53] J. Darbon, G. P. Langlois, and T. Meng. Overcoming the curse of dimensionality for some Hamilton–
Jacobi partial differential equations via neural network architectures. Research in the Mathematical
Sciences, 7(3):1–50, 2020.

[54] S. De, A. Mukherjee, and E. Ullah. Convergence guarantees for RMSProp and ADAM in
non-convex optimization and an empirical comparison to Nesterov acceleration. arXiv preprint
arXiv:1807.06766, 2018.

[55] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7), 2011.

[56] R. Elliott and N. Kalton. The existence of value in differential games, volume 126. American Math-
ematical Soc., 1972.

[57] R. Elliott and N. Kalton. Values in differential games. Bulletin of the American Mathematical Society,
78(3):427–431, 1972.

[58] R. J. Elliott. Feedback strategies in deterministic differential games. In Differential Games and
Applications, pages 136–142. Springer, 1977.

[59] R. J. Elliott and N. J. Kalton. Cauchy problems for certain Isaacs-Bellman equations and games of
survival. Transactions of the American Mathematical Society, 198:45–72, 1974.

[60] L. C. Evans and P. E. Souganidis. Differential games and representation formulas for solutions of
Hamilton-Jacobi-Isaacs equations. Indiana University mathematics journal, 33(5):773–797, 1984.

[61] M. Falcone. Numerical solution of dynamic programming equations. Optimal Control and Viscosity
Solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, 3:2, 1997.

[62] M. Falcone. Numerical methods for differential games based on partial differential equations. Inter-
national Game Theory Review, 8(02):231–272, 2006.

[63] M. Falcone and R. Ferretti. Semi-Lagrangian approximation schemes for linear and Hamil-
ton—Jacobi equations. SIAM, 2013.

[64] M. Falcone and T. Giorgi. An approximation scheme for evolutive Hamilton-Jacobi equations. In
Stochastic analysis, control, optimization and applications, pages 289–303. Springer, 1999.

[65] M. Falcone, P. Lanucara, and A. Seghini. A splitting algorithm for Hamilton-Jacobi-Bellman equa-
tions. Applied Numerical Mathematics, 15(2):207–218, 1994.

[66] W. H. Fleming and W. M. McEneaney. Risk sensitive optimal control and differential games. In
Stochastic theory and adaptive control, pages 185–197. Springer, 1992.

[67] W. H. Fleming and P. E. Souganidis. On the existence of value functions of two-player, zero-sum
stochastic differential games. Indiana University Mathematics Journal, 38(2):293–314, 1989.

152

[68] H. Frankowska and S. Plaskacz. Semicontinuous solutions of Hamilton–Jacobi–Bellman equations
with degenerate state constraints. Journal of mathematical analysis and applications, 251(2):818–
838, 2000.

[69] H. Frankowska, S. Plaskacz, and T. Rzezuchowski. Measurable viability theorems and the Hamilton-
Jacobi-Bellman equation. Journal of Differential Equations, 116(2):265–305, 1995.

[70] H. Frankowska and R. Vinter. Existence of neighboring feasible trajectories: applications to dynamic
programming for state-constrained optimal control problems. Journal of Optimization Theory and
Applications, 104(1):20–40, 2000.

[71] Y. Gu, H. Yang, and C. Zhou. Selectnet: Self-paced learning for high-dimensional partial differential
equations. arXiv preprint arXiv:2001.04860, 2020.

[72] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257, 1991.

[73] K. Hornik, M. Stinchcombe, and H. White. Universal approximation of an unknown mapping and its
derivatives using multilayer feedforward networks. Neural networks, 3(5):551–560, 1990.

[74] K. Hornik, M. Stinchcombe, H. White, et al. Multilayer feedforward networks are universal approxi-
mators. Neural networks, 2(5):359–366, 1989.

[75] J.-F. Hren. Planification optimiste pour systemes déterministes. PhD thesis, 2012.

[76] J.-F. Hren and R. Munos. Optimistic planning of deterministic systems. In European Workshop on
Reinforcement Learning, pages 151–164. Springer, 2008.

[77] C. Huré. Numerical methods and deep learning for stochastic control problems and partial differen-
tial equations. PhD thesis, 2019.

[78] C. Huré, H. Pham, A. Bachouch, and N. Langrené. Deep neural networks algorithms for stochastic
control problems on finite horizon, part i: convergence analysis. arXiv preprint arXiv:1812.04300,
2018.

[79] C. Huré, H. Pham, and X. Warin. Some machine learning schemes for high-dimensional nonlinear
PDEs. arXiv preprint arXiv:1902.01599, 2019.

[80] C. Huré, H. Pham, and X. Warin. Deep backward schemes for high-dimensional nonlinear PDEs.
Mathematics of Computation, 89(324):1547–1579, 2020.

[81] R. Isaacs. Differential Games. 1965.

[82] R. Isaacs. Differential games: a mathematical theory with applications to warfare and pursuit,
control and optimization. Courier Corporation, 1999.

[83] H. Ishii. A boundary value problem of the dirichlet type for Hamilton-Jacobi equations. Annali della
Scuola Normale Superiore di Pisa-Classe di Scienze, 16(1):105–135, 1989.

[84] H. Ishii. On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic
PDE’s. Communications on pure and applied mathematics, 42(1):15–45, 1989.

[85] H. Ishii and S. Koike. A new formulation of state constraint problems for first-order PDEs. SIAM
Journal on Control and Optimization, 34(2):554–571, 1996.

153

[86] H. Ishii and P.-L. Lions. Viscosity solutions of fully nonlinear second-order elliptic partial differential
equations. Journal of Differential equations, 83(1):26–78, 1990.

[87] M. R. James. Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential
games. Mathematics of Control, Signals and Systems, 5(4):401–417, 1992.

[88] D. P. K. JLB. Adam: A method for stochastic optimization. In 3rd international conference for
learning representations, San Diego, 2015.

[89] A. Kleimenov and N. P. D. Igry. Nonantagonistic positional differential games. Science, Ekaterinburg,
1993.

[90] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[91] N. V. Krylov. On the rate of convergence of finite-difference approximations for Bellman’s equations.
, 9(3):245–256, 1997.

[92] H. J. Kushner and P. Dupuis. Numerical methods for stochastic control problems in continuous time,
volume 24. Springer Science & Business Media, 2001.

[93] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through proba-
bilistic program induction. Science, 350(6266):1332–1338, 2015.

[94] G. Lars and P. Jürgen. Nonlinear model predictive control theory and algorithms. Springer, 2011.

[95] J. B. Lasserre, D. Henrion, C. Prieur, and E. Trélat. Nonlinear optimal control via occupation mea-
sures and LMI-relaxations. SIAM journal on control and optimization, 47(4):1643–1666, 2008.

[96] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[97] X. Li and F. Orabona. On the convergence of stochastic gradient descent with adaptive stepsizes. In
The 22nd International Conference on Artificial Intelligence and Statistics, pages 983–992. PMLR,
2019.

[98] S. Liang and R. Srikant. Why deep neural networks for function approximation ? arXiv preprint
arXiv:1610.04161, 2016.

[99] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural networks: A view from
the width. In Advances in neural information processing systems, pages 6231–6239, 2017.

[100] C. R. Mansley, A. Weinstein, and M. L. Littman. Sample-Based planning for continuous action
Markov decision processes. In ICAPS, 2011.

[101] K. Máthé, L. Buçoniu, R. Munos, and B. De Schutter. Optimistic planning with a limited number
of action switches for near-optimal nonlinear control. In 53rd IEEE Conference on Decision and
Control, pages 3518–3523. IEEE, 2014.

[102] R. C. Merton. Optimum consumption and portfolio rules in a continuous-time model. In Stochastic
Optimization Models in Finance, pages 621–661. Elsevier, 1975.

[103] A. Miele, T. Wang, and W. Melvin. Quasi-steady flight to quasi-steady flight transition for abort
landing in a windshear: trajectory optimization and guidance. Journal of Optimization Theory and
Applications, 58(2):165–207, 1988.

154

[104] A. Miele, T. Wang, C. Tzeng, and W. Melvin. Optimal abort landing trajectories in the presence of
windshear. Journal of Optimization Theory and Applications, 55(2):165–202, 1987.

[105] R. Munos. Optimistic optimization of a deterministic function without the knowledge of its smooth-
ness. In Advances in neural information processing systems, pages 783–791, 2011.

[106] R. Munos. From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization
and planning. 2014.

[107] T. Nakamura-Zimmerer, Q. Gong, and W. Kang. Adaptive deep learning for high dimensional
Hamilton-Jacobi-Bellman equations. arXiv preprint arXiv:1907.05317, 2019.

[108] S. Osher and C.-W. Shu. High-order essentially nonoscillatory schemes for Hamilton–Jacobi equa-
tions. SIAM Journal on numerical analysis, 28(4):907–922, 1991.

[109] L. S. Pontryagin. On the theory of differential games. RuMaS, 21(4):193–246, 1966.

[110] A. Quarteroni and A. Valli. Domain decomposition methods for partial differential equations. Oxford
University Press, 1999.

[111] M. Quincampoix and O. S. Serea. A viability approach for optimal control with infimum cost. Annals.
Stiint. Univ. Al. I. Cuza Iasi, sI a, Mat, 48:113–132, 2002.

[112] M. Raissi and G. E. Karniadakis. Hidden physics models: Machine learning of nonlinear partial
differential equations. Journal of Computational Physics, 357:125–141, 2018.

[113] M. Raissi, P. Perdikaris, and G. Karniadakis. Physics informed deep learning (part II): Data-
driven discovery of nonlinear partial differential equations, arxiv preprint (2017). arXiv preprint
arXiv:1711.10566.

[114] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part I): Data-driven
solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561, 2017.

[115] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

[116] E. A. Rapaport. Characterization of barriers of differential games. Journal of optimization theory
and applications, 97(1):151–179, 1998.

[117] H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical statis-
tics, pages 400–407, 1951.

[118] J. Rowland and R. Vinter. Construction of optimal feedback controls. Systems & control letters,
16(5):357–367, 1991.

[119] E. Roxin. Axiomatic approach in differential games. Journal of Optimization Theory and Applica-
tions, 3(3):153–163, 1969.

[120] L. Saluzzi, A. Alla, and M. Falcone. Error estimates for a tree structure algorithm solving finite
horizon control problems. arXiv preprint arXiv:1812.11194, 2018.

[121] O. S. Serea. Discontinuous differential games and control systems with supremum cost. Journal of
mathematical analysis and applications, 270(2):519–542, 2002.

155

[122] J. A. Sethian and A. Vladimirsky. Ordered upwind methods for static Hamilton–Jacobi equations:
Theory and algorithms. SIAM Journal on Numerical Analysis, 41(1):325–363, 2003.

[123] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential
equations. Journal of computational physics, 375:1339–1364, 2018.

[124] H. M. Soner. Optimal control with state-space constraint I. SIAM Journal on Control and Optimiza-
tion, 24(3):552–561, 1986.

[125] H. M. Soner. Optimal control with state-space constraint. II. SIAM journal on control and optimiza-
tion, 24(6):1110–1122, 1986.

[126] P. Soravia. H∞ control of nonlinear systems: Differential games and viscosity solutions. SIAM
Journal on control and optimization, 34(3):1071–1097, 1996.

[127] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

[128] R. van der Meer, C. Oosterlee, and A. Borovykh. Optimally weighted loss functions for solving PDEs
with neural networks. arXiv preprint arXiv:2002.06269, 2020.

[129] P. P. Varaiya. On the existence of solutions to a differential game. SIAM Journal on Control,
5(1):153–162, 1967.

[130] R. Ward, X. Wu, and L. Bottou. Adagrad stepsizes: Sharp convergence over nonconvex landscapes.
In International Conference on Machine Learning, pages 6677–6686, 2019.

[131] A. Weinstein and M. L. Littman. Bandit-based planning and learning in continuous-action markov
decision processes. In Proceedings of the Twenty-Second International Conference on International
Conference on Automated Planning and Scheduling, pages 306–314, 2012.

[132] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal value of adaptive gradient
methods in machine learning. In Advances in neural information processing systems, pages 4148–
4158, 2017.

[133] M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar. Adaptive methods for nonconvex optimiza-
tion. In Advances in neural information processing systems, pages 9793–9803, 2018.

[134] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

[135] D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu. On the convergence of adaptive gradient methods
for nonconvex optimization. arXiv preprint arXiv:1808.05671, 2018.

156

Titre: Approche Hamilton-Jacobi pour les jeux différentiels avec des contraintes d’état et méthodes
numériques d’apprentissage pour des problèmes de commande optimale

Mots clés: Commande optimale, Jeux différentiels, Contraintes d’état, Planification optimiste, Ap-
prentissage profond

Résumé: L’objectif de cette thèse est d’étudier
des jeux différentiels avec contraintes d’état par
l’approche Hamilton-Jacobi et de développer des
méthodes numériques d’apprentissage pour ré-
soudre des problèmes de commande optimale.
La première partie considère un jeu différen-
tiel à somme nulle et à deux joueurs où nous
n’imposons aucune hypothèse de contrôlabilité
et où les contrôles des deux joueurs peuvent
être couplés dans la dynamique, les fonctions
de coût et les contraintes d’état. En particulier,
nous caractérisons la fonction valeur de ce prob-
lème à travers un jeu différentiel auxiliaire, sans
contraintes d’état, et nous proposons une procé-
dure générale permettant d’approcher les con-
trôles optimaux des deux joueurs pour le prob-
lème initial. La seconde partie de cette thèse
présente des méthodes numériques permettant

de résoudre des problèmes de commande opti-
male avec une grande dimension d’état. Notre
première contribution dans cette partie consiste
à étendre la méthode de planification optimiste
pour traiter des problèmes de commande opti-
male à horizon fini et en présence de contraintes
d’état. En outre, nous établissons des résultats
de convergence de ces algorithmes qui dépen-
dent d’un budget de calcul donné. Une anal-
yse numérique de ces méthodes est effectuée
sur plusieurs exemples dans un espace d’état
de grande dimension. Finalement, nous étu-
dions des méthodes numériques, basées sur
l’apprentissage profond et la programmation dy-
namique, pour des problèmes de commande op-
timale déterministe avec contraintes d’état ou
pour des jeux différentiels à somme nulle et à
deux joueurs.

Title: Hamilton-Jacobi Approach for State-Constrained Differential Games and Numerical Learning
Methods for Optimal Control Problems

Keywords: Optimal control, Differential games, State constraints, Optimistic planning, Deep learning

Abstract: The aim of this work is to study state-
constrained differential games by the Hamilton-
Jacobi approach and to develop numerical learn-
ing methods to solve optimal control problems.
The first part considers a two-person zero-sum
differential game where we do not assume any
controllability assumption and the controls of the
two players are allowed to be coupled within the
dynamics, the cost functions and the state con-
straints. In particular, we characterize the value
function of such a problem through an auxiliary
differential game free of state constraints and
we propose a general approach allowing to con-
struct approximated optimal feebacks of the con-
strained differential game for both players. The
second part of this thesis presents some numer-

ical methods allowing to solve optimal control
problems in high dimensional state space. Our
first contribution in this part consists in extend-
ing optimistic planning methods to deal with finite
horizon problems in the presence of state con-
straints. Moreover, we provide convergence re-
sults of those algorithms that depend on given
computing resources. A numerical analysis of
these methods is carried out on several exam-
ples in high dimensional state space. Finally, we
investigate numerical methods, based on deep
learning and dynamic programming, for state-
constrained deterministic optimal control prob-
lems or for controlled two-person zero-sum dif-
ferential games.

Institut Polytechnique de Paris
91120 Palaiseau, France

157

	Introduction
	Differential games
	Numerical learning methods for optimal control problems
	Optimistic planning approach
	Deep learning numerical methods for dynamic programming

	Unconstrained Finite Horizon Differential Games
	Introduction
	Definitions and hypothesis
	Unconstrained problem with delay strategies
	Problem formulation
	Some properties of value functions
	Characterization of value functions

	Unconstrained problem with nonanticpative strategies
	Problem formulation
	Characterization of value functions

	General comparison result
	Approximation by discrete time games and trajectory reconstruction
	Approximation by discrete time games
	Trajectory reconstruction

	A game example
	Problem of the first player
	Problem of the second player

	Hamilton-Jacobi Approach For Differential Game Problems With State Constraints
	Introduction
	Problem formulation
	Settings of the constrained differential game
	Associated auxiliary problem

	Properties of the value functions v and w
	Trajectory reconstruction based on the value function and approximation by discrete time games
	A general reconstruction procedure
	Reconstruction with a specific approximation

	Application to an aircraft landing problem
	Introduction
	5D differential game model

	Appendix: Properties of the auxiliary value function w

	Optimistic Planning Algorithms For Constrained Optimal Control Problems
	Introduction
	Problem formulation and discrete settings
	Preliminary results
	Optimistic planning
	Optimistic planning approach
	Optimistic Planning (OP) Algorithm
	Simultaneous Optimistic Planning (SOP) Algorithm
	Simultaneous Optimistic Planning with Multiple Steps (SOPMS) Algorithm
	Resolution procedure for a constrained problem

	Extension to infinite horizon problems
	Numerical experimentation
	Choice of the numerical parameters
	Numerical examples

	Appendix
	Appendix: Proofs of convergence results for OP and SOP algorithms
	Appendix B. Numerical parameters of example 4

	Deep Learning Numerical Methods For Dynamic Programming
	Introduction
	Neural networks for functions approximation
	Problem settings
	Deep learning numerical methods
	Neural networks for dynamic programming (DP)
	Neural networks for partial derivatives equations (PDE)

	Numerical examples

	Conclusion and perspectives

