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Introduction

Contents
1.1 The Broad Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Simulation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Offshell H4L Overview . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 The Broad Picture

Particle physics is the study of the smallest, fundamental building blocks of the universe, and the
properties studied have consequences at the largest scale, cosmology. Our current understanding
of the universe is incomplete, with no clear explanation for Dark Energy, Dark Matter, neutrino
mass, the amount of Matter-Antimatter asymmetry seen in the universe and gravity from a
quantum perspective. Before 2012 there was also no experimental confirmation for the Brout-
Englert-Higgs (BEH) mechanism, which we now know to be the answer to how several of the
fundamental particles obtain their masses.

To find answers to some of these questions, particle physicists endeavoured on a 20 year mission
to build the Large Hadron Collider (LHC), the world’s most powerful particle accelerator, at
CERN on the border of Switzerland and France, near Geneva. As the world’s largest machine,
this circular collider accelerates proton beams in opposite directions and smashes them together
at ‘interaction plots’ where large detectors are setup to record the new particles thrown out in
all directions due to the high energy collision. Two sister experiments, ATLAS and CMS were
built on either side of the circular ring, to independently measure properties of our quantum
universe. The original purpose was to involve more particle physicists and create a healthy
competition with the hope that it would improve results, however, in light of the recent crisis in
reproducibility of research, this turns out be all the more necessary to reaffirm the validity of
their results. The first proposals to search for experimental confirmation of the BEH mechanism
began in the 1980s but this multi-decade endeavour remained unsuccessful until the LHC was
built, culminating on 4th July 2012 with a joint announcement from the ATLAS and CMS
experiments on the discovery[1, 2] of the Higgs boson particle, almost 50 years after its first
proposals.

The LHCb and ALICE experiments were also setup on the LHC, to specialise in b quark physics
and the study of strongly interacting matter at high energy densities respectively.

Since then, despite recording more data than originally planned, the ATLAS, CMS experiments
have not found evidence for new physics that might give a hint to demystify any of the as yet
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Introduction

unsolved problems in physics. Running this machine is costly, therefore, more and more ad-
vanced algorithms are being used to squeeze out the maximum amount of information from the
raw data. The “discovery machine” has been turned into a “precision machine” to allow for in-
direct detection of new physics through small deviations of measurements from the theoretically
predicted values. One of the important measurements that particle physics graduate students
learn about in their Higgs physics lectures is the “Off-shell Higgs couplings”, which measures
how strongly the BEH field interacts with other quantum fields when the mediator of the field
(the Higgs boson particle) is highly virtual (when it has a very unusual mass).

The advantage of working at the fundamental physics level is that physicists can write down a
mathematical model of the universe, “a Lagrangian”, and simulate what they expect to see at
the detectors if this model is correct.

Having conceptualised these experiments decades before the first actual data recording, physi-
cists had to anticipate the advent of disruptive technology, and in the absence of it, build the
technology themselves. Examples of now ubquitous technology developed or significantly ad-
vanced at CERN include the World Wide Web (for smooth communication between research
institutions) and transparent capacitative touchscreen technology (for the control room of the
Super Proton Synchrotron). Further disruptive innovation is required in simulation as well as
physics inference to make the most of the available resources, and it is starting to come in the
form of an Artificial Intelligence (AI) revolution.

The idea of autonomous machines can be found in some form even in ancient mythologies, but the
computing research in Artificial Intelligence that started in the twentieth century, went through
various periods of boom and bust in terms of funding, and finally saw an exponential growth
in interest with the advent of data-driven Machine Learning (ML). This was made possible due
to the advancement of computer technology, and availability of large amount of digitally stored
data. ML algorithms quantify-ably improved the bottom line for companies, which resulting in
enormous funding for such research from the private sector.

Particle physics research has had trysts with earlier versions of neural networks in the past
and has used Boosted Decision Trees (BDTs) routinely, but since the recent machine learning
revolution, it has started to use various new algorithms developed by the Computer Science
community.

The Higgs Machine Learning challenge[3] in 2014 famously became the launching pad for a par-
ticular Boosted Decision Trees algorithm, XGBoost which quickly established itself as the gold
standard in the ML community. Sometimes rather than the algorithms, its the hardware or
differentiable programing software packages built for ML allow physicists to rework the inter-
pretation of data from the LHC in ways that were otherwise computationally infeasible.

In physics research physicists have to be incredibly careful about biases and quantify-able uncer-
tainties in their results. Although carefree in the early years of ML applications, risk assessment
of AI models is becoming more of a concern in the wider society as well.

Recently, physicists have gone beyond using off-the-shelf ML models and are actively contribut-
ing to ML research and development. There have been efforts to develop models particularly for
particle physics problems, or adapt typical statistics formalisms in the context of ML technology.
As in previous cases, such innovations are likely to find use-cases far beyond High Energy Physics
(HEP) research, particularly either for the removing biases, holistic modelling of a distributions,
or estimating uncertainties.
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1.2. SIMULATION OVERVIEW

1.2 Simulation Overview

The Standard Model (SM) of particle physics is being continuously tested at the LHC at the
TeV scale. The scope for precision of measurements of deviations between the data and Monte-
Carlo based simulations (MC) improves as more data is collected. Precise simulations of the
deposition of energy in the calorimeter due to developing showers are slow because they require
the modelling of interactions of particles with matter at the microscopic level, as implemented
using the Geant4 (GEometry ANd Tracking) toolkit [4]. The ATLAS detector has a complex
calorimeter which proves to be the bottleneck in the simulation of events (in terms of CPU
time), and the computational time scales as a function of the energy of the particles showering
in the calorimeter. This would become a limiting factor in precision measurements, unless faster
simulations are developed. ATLAS already relies on fast calorimeter simulation techniques
based on thousands of individual parameterisations of the calorimeter response [5]. These allow
significant gain in speed at the cost of accuracy.

In recent years, deep generative algorithms such as Variational Auto-Encoders (VAEs) [6, 7] and
Generative Adversarial Networks (GANs) [8] have been demonstrated to accurately model the
underlying distributions of data from various domains, including the response of an ATLAS-
like calorimeter [9–11]. Crucially, deep learning based models have demonstrated the ability to
interpolate on untrained parameter spaces, allowing to smarty curate training datasets that do
not exhaustively encompass all possible input combinations.

This thesis summarises the first application of a GAN for fast simulation of the calorimeter
response of the ATLAS detector for photons over a range of energies in the central region of the
electromagnetic calorimeter. The integration of the model into the ATLAS simulation chain for
the first time allows for a realistic validation and fair comparisons of deep generative models
with other algorithms for fast simulation of the ATLAS calorimeter in terms of accuracy as well
as speed and resource usage. The work has spurred further activities into this approach within
the ATLAS community, and has paved the way for incorporating generative models into the
ATLAS simulation framework.

1.3 Offshell H4L Overview

Although out of reach at the LHC in most decay channels, the offshell regime of the Higgs boson
can be probed in the Higgs boson to four leptons decay channel, proving a unique opportunity.
This is enabled by threshold effects coming from certain intermediate states (the top quarks and
Z bosons) that go onshell in this regime. An offshell couplings measurement allows to break
certain degeneracies such as between the Higgs couplings and the total Higgs width that cannot
be disentangled by an on-shell measurement alone. Probing the total Higgs width is a very
promising means of finding hints for any new particle that couples to the Higgs boson, such as
an invisible particle that gains its mass through its interaction with the Higgs field.

An update to the previous ATLAS study [12] using the entire Run2 data provides an opportu-
nity to develop innovative methodology to deal with quantum interference between the Higgs
processes and other standard model processes. While the previous round used simple cuts to
define the region of interest, we investigate a recently developed family of physics-aware ma-
chine learning techniques to improve the sensitivity of such an analysis, focusing on the VBF
production mode. The study is performed using only the VBF process, which consists of both
Higgs and non-Higgs processes. We show how quantum interference between the signal and
background processes introduces non-linear effects in the yield as well as kinematic distribu-
tions because of which the analysis requires re-optimising for various values of the parameter of
interest. A machine learning based inference model that is parameterised on the parameter of
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interest is shown to considerably outperform estimations based on maximum likelihood fits on
the distribution of a single observable or a few observables.

The study performed in this thesis provides a strong motivation to adapt the ATLAS simula-
tion and inference framework to incorporate these new likelihood-free inference strategies that
leverage the underlying physics and available machine learning technology to perform a neural
network based statistical inference.

As a follow up to this work, other signal and background processes need to be included in future
studies using the full ATLAS detector simulation. The work has generated interest in another
group in the ATLAS community to join the effort in bringing such simulator-assisted learning
models to an ATLAS analysis.

In brief, this thesis1 is organised in the following way: a short introduction to the Standard Model
of particle physics and the phenomenological overview of the offshell Higgs boson couplings
measurement is presented in Chapter 2, the LHC and the ATLAS detector are introduced in
Chapter 3, a review of certain concepts of Machine Learning relevant to this thesis are presented
in Chapter 4, the study of fast simulation of the ATLAS electromagnetic calorimeter with a
GAN is detailed in Chapter 5, optimisation studies using official ATLAS simulated datasets
for the offshell analysis is presented in Chapter 6, the problems faced in this chapter lead
to the investigation of physics-aware ML models for the same analysis, which is presented in
Chapter 7, a new adversarial training algorithm, refereed to as the ‘Aspiration Network’, for
mass decorrelation is presented in Chapter 8, and finally a summary of this thesis along with a
discussion on the future outlook is presented in the Conclusion chapter.

1For the sake of clarity, all the work described in this thesis, unless explicitly stated otherwise, was performed
by the author.
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This chapter will provide an overview of the Standard Model of particle physics with a focus on
the Higgs mechanism, followed by phenomenological aspects of it at the LHC and finally describe
the motivations behind coupling measurements of the Higgs boson in the off-shell regime.

2.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics is a mathematical model that attempts to describe
three of the four known forces of the universe (electromagnetic force, weak force, strong force
and excludes gravitational force). In this theory, every fundamental particle is either a fermion
with a half integer spin, in which case it obeys Fermi-Dirac statistics, or a boson with integer
spin, in which case it obeys Bose-Einstein statistics.

Photons (γ), Z, W+ and W− are gauge bosons with spin 1 that mediate the electro-weak
interaction, eight other spin 1 bosons known as gluons mediate the strong interaction, and the
scalar Higgs boson has spin 0 and is produced by the excitation of the Higgs field. Fermions
form the building blocks of matter, and can be classified into leptons and quarks. They each
exist in three ‘generations’, where each generation has greater masses than their counterpart
in the previous generation (apart from neutrinos). Each generation of leptons consists of two
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Name Symbol Charge Spin Mass
(
GeV/c2

)
Force

Photon γ 0 1 0 Electromagnetic
Z Z 0 1 91.1876 Weak

W± W± ±1 1 80.399 Weak
Gluon g 0 1 0 Strong

Table 2.1 – Properties of fundamental gauge bosons

Name Symbol Charge Spin Mass
(
MeV/c2

)
Interactions

electron e -1 1
2 0.511 Electromagnetic, Weak∗

electron neutrino νe 0 1
2 < 2.2× 10−6 Weak∗

up quark u +2
3

1
2 2.3 Electromagnetic, Weak∗, Strong

down quark d −1
3

1
2 4.8 Electromagnetic, Weak∗, Strong

muon µ -1 1
2 105.6 Electromagnetic, Weak∗

muon neutrino νµ 0 1
2 < 0.19 Weak∗

charm quark c +2
3

1
2 1.27× 103 Electromagnetic, Weak∗, Strong

strange quark s −1
3

1
2 95 Electromagnetic, Weak∗, Strong

tau τ -1 1
2 1.777× 103 Electromagnetic, Weak∗

tau neutrino ντ 0 1
2 < 18.2 Weak∗

top quark t +2
3

1
2 173× 103 Electromagnetic, Weak∗, Strong

bottom quark b −1
3

1
2 4.18× 103 Electromagnetic, Weak∗, Strong

Table 2.2 – Properties of fundamental fermions grouped by generations.∗ only left handed fermions
(and right handed anti-fermions) interact via the Weak Force.

leptons, the first with both electric charge and hypercharge (like the electron), and the second
(known as neutrinos) with only a hypercharge. Each generation of quarks consists of two quarks
with electric charge, hypercharge as well as colour charge. For each particle there is also an
anti-particle with the opposite physical charge (unless the particle is its own anti-particle, such
as photons, Z bosons, gluons and Higgs bosons)1. Another interesting property of a particle is
its chirality (left-handed or right-handed), which describes the direction of its spin. Table 2.1
lists the properties of the bosons and Table 2.2 lists the properties of the fermions.

The different charges allow particles to interact through the different forces; the electric charge
allows electromagnetic interaction, the hypercharge allows weak force interaction, and colour
charge allows strong force interaction.

The strong force is described by Quantum Chromodynamics (QCD) and one of its properties
is ‘colour confinement’, according to which any particle with colour charge (quarks and gluons)
cannot exist alone and thus can never be observed in isolation. Multiple quarks can be bound
together by gluons to form colour neutral hadrons, such as mesons (consisting of a quark-
antiquark pair), and baryons (consisting of three quarks). Examples of such hadrons include
protons (uud) and neutrons (udd). Apart from the three “valance” quarks, these hadrons also
consist of “sea quarks” that come in and out of existence through gluon mediators but do not
contribute to the overall charge of the hadron.

Predictions of the SM have been proven time and again with surprising precision, and the final
piece of the SM, the Higgs boson particle, was discovered [1, 2] in 2012 by the ATLAS and
CMS experiments at CERN. Despite its success, it is known that the SM is not a completely
theory, and various particle physics experiments are looking for hints of new physics in the form

1The anti-neutrino has the opposite lepton number as its corresponding neutrino in the SM, but other exper-
iments are studying whether it is a ‘Majorana particle’, in which case the neutrino would be its own anti-particle
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of measurements that deviate from the SM prediction.

2.1.1 Notation

In the rest of this section,

• The reduced Plank constant ~ and speed of light in vacuum c are set to 1 unless otherwise
specified.
• Greek indices span over spacetime coordinates {0,1,2,3}
• Latin indices span space coordinates {1,2,3}

2.1.2 Gauge Theories

Mathematical models in Quantum Field Theory (QFT) are described by a Lagrangian. A trans-
formation that leaves the Lagrangian (and therefore the equations of motion) unchanged under
its action represents a symmetry. If this symmetry is a function of the space-time coordinates,
then it is a local symmetry, otherwise it is a global symmetry.

In a gauge theory, the Lagrangian remains invariant under local transformations from certain
Lie groups. Consider a free Dirac Lagrangian for a fermion field ψ(x) with mass m,

LfreeDirac = ψ̄(i/∂ −m)ψ, (2.1)

where ψ̄ = ψ†γ0, ψ† the conjugate transpose of ψ, and

/∂ = γµ∂µ. (2.2)

The Pauli σk and Dirac matrices γµ are,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.3)

γ0 =
(
1 0

0 −1

)
, γk =

(
0 σk

−σk 0

)
, (2.4)

A fifth matrix that becomes useful later is defined as

γ5 = iγ0γ1γ2γ3 =
(
0 1

1 0

)
(2.5)

For a local transformation parameter α under the U(1) group,

ψ(x)→ U(x)ψ(x) = eiα(x)ψ(x) =⇒ ψ̄(x)→ e−iα(x)ψ̄(x) (2.6)

LfreeDirac → e−iα(x)ψ̄i/∂(eiα(x)ψ)− e−iα(x)ψ̄ m eiα(x)ψ

= e−iα(x)ψ̄ i
(
i/∂(α(x)) eiα(x)ψ + eiα(x)/∂ψ

)
− ψ̄ mψ

= e−iα(x)ψ̄ ieiα(x)/∂ψ − e−iα(x)ψ̄ /∂(α(x)) eiα(x)ψ − ψ̄ mψ

= ψ̄i/∂ψ − ψ̄ /∂(α(x))ψ − ψ̄ mψ

= LfreeDirac − ψ̄ /∂(α(x))ψ (2.7)

6= LfreeDirac, (2.8)
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To make the Lagrangian gauge invariant, we introduce interactions. For mathematical conve-
nience, it is done by defining a covariant derivative Dµ as,

Dµ = ∂µ + iqAµ(x), (2.9)

q is an arbitrary constant (for now) and Aµ transforms as,

Aµ(x)→ Aµ(x)− 1
q
∂µα(x). (2.10)

Now if LinvariantDirac = ψ̄(i /D −m)ψ,

LinvariantDirac = ψ̄iγµ(∂µ + iqAµ)ψ − ψ̄mψ
= ψ̄

(
iγµ∂µ −m

)
ψ − qψ̄γµAµψ

= LfreeDirac − qψ̄ /Aψ. (2.11)

The second term describes the interaction between the a fermion and an anti-fermion with the
field Aµ. To complete the Lagrangian we need to add a free field term for Aµ, and it can be
shown that the only way to do this leads to a term in the Lagrangian involving,

Fµν = ∂µAν − ∂νAµ (2.12)

which is a gauge invariant under Aµ(x)→ Aµ(x)− 1
q∂µα(x),

Fµν → ∂µ

(
Aν −

1
q
∂να

)
− ∂ν

(
Aµ −

1
q
∂µα

)
= ∂µAν − ∂νAµ −

1
q

(
∂µ∂να− ∂ν∂µα

)
= Fµν , (2.13)

since the order of the partial derivatives can be switched.

An important point to note is that adding a mass term to the gauge field 1
2m

2AµA
µ irrecoverably

breaks the symmetry,

1
2m

2AµA
µ → 1

2m
2
(
Aµ −

1
q
∂µα

)(
Aµ − 1

q
∂µα

)
= 1

2m
2AµA

µ + . . . , (2.14)

With this insight, we have the Lagrangian for Quantum Electrodynamics (QED), where Aµ is
the photon field and q is the electric charge, and it is conserved in all interactions.

LQED = −1
4FµνF

µν + ψ̄(i /D −m)ψ (2.15)

. (2.16)

In the SM, the weak force is described by SU(2), and QCD is described by the SU(3) group.

The unification of the weak interaction and electromagnetism leads to the electroweak (EW)
interaction, described by the group SU(2)I × U(1)Y , where Y is the weak hyper-charge and I
the weak isospin. This theory has four gauge fields. Three come from SU(2)I , and they are
W a
µ , while one comes from U(1)Y , and it is Bµ. Further, the EW theory is a chiral theory (it

lacks a mirror symmetry), the left and right handed spinors behave differently, and they can be
written respectively as,

ψL = 1− γ5
2 ψ and ψR = 1 + γ5

2 ψ, (2.17)
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with ψ = ψL + ψR. The gauge transformation of SU(2)I transforms only left handed doublets,
the right handed singlets therefore do not interact through the weak interaction. The first
generation left handed doublets are,

ψL ∈
{(

νe
e−

)
L

,

(
uα
dα

)
L

}
, (2.18)

and the first generation right handed singlets are,

ψR ∈
{
e−R, uR,α

}
, (2.19)

where α runs over colour indices of the quark. Right handed neutrinos are not part of the SM,
but can easily be included. The Lagrangian for the EW theory (for now without any Higgs
related scalar field) reads,

LEW = −1
4W

a
µνW

µν,a − 1
4BµνB

µν +
∑

L fermions
iψ̄L /DψL +

∑
R fermions

iψ̄R /DψR, (2.20)

with a covariant derivative defined as,

Dµ = ∂µ − ig
σa
2 W

a
µ − ig

′Y

2 Bµ, (2.21)

where g, g′ are referred to as coupling constants. We have,

Bµν = ∂µBν − ∂νBµ (2.22)

now let εabc represent the fully antisymmetric Levi-Civita tensor,

W a
µν = ∂µW

a
ν − ∂νW

a
µ − gε

abcW b
µW

c
ν . (2.23)

If we wanted to consider inserting a mass term,

mψ̄ψ = m(ψ̄L + ψ̄R)(ψL + ψR) = m
(
ψ̄LψL + ψ̄RψR + ψ̄LψR + ψ̄RψL

)
, (2.24)

we see that,

ψ̄RψR = ψ†
1 + γ5

2 γ0 1 + γ5

2 ψ = ψ†γ0 1− γ5

2
1 + γ5

2 ψ = 0, (2.25)

ψ̄LψL = ψ†
1− γ5

2 γ0 1− γ5

2 ψ = ψ†γ0 1 + γ5

2
1− γ5

2 ψ = 0,

leaving the terms ψ̄LψR + ψ̄RψL. These terms, and by implication the mass term (Equation
2.24) we considered cannot exist in an SU(2)I conserving Lagrangian. In experiments however,
masses for EW gauge bosons (apart from the photon) and all fermions have been measured to
be non-zero.

2.1.3 The BEH Mechanism

Spontaneous Symmetry Breaking (SSB) is an important concept in particle physics, as well as
in statistical mechanics. A classical analogy is shown in Figure 2.1, where a nail, or a bamboo
stick could have a perfect cylindrical symmetry, but if enough force is applied from the top,
it eventually bends in one direction, breaking the symmetry. In Ginzburg–Landau theories,
transitions of potential energy functions like the one shown often occur in second-order phase
transitions.
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Figure 2.1 – Examples of Spontaneous Symmetry Breaking

Several physicists have contributed, sometimes independently of each other, in the development
of a solution to how mass can be given the the fermions and gauge bosons without breaking gauge
symmetry. This solution is commonly refereed to as the ‘BEH mechanism’ [13–18] (for Robert
Brout, François Englert and Peter Higgs), or sometimes for simplicity the ‘Higgs mechanism’.

In the simplest working version of this theory, an SU(2) doublet a complex scalar field φ with
weak hypercharge Y = 1 is introduced as,

φ =
(
φ+

φ0

)
= 1√

2

(
φ1 + iφ2
φ3 + iφ4

)
(2.26)

with a quadratic potential,
V (φ†φ) = −µ2φ†φ+ λ|φ†φ|2, (2.27)

where {µ, λ} > 0 are real constants. The negative sign of the first term destabilises the symmetric
case of φ = 0, the second term ensures stable minima, which are solutions of

φ†φ = 1
2
(
φ2

1 + φ2
2 + φ2

3 + φ2
4
)

= µ2

2λ, (2.28)

which has a 4 dimensional spherical symmetry. According to the Goldstone theorem, each
continuous symmetry broken results in one Nambu–Goldstone (or simply Goldstone) boson.

Figure 2.2 illustrates the Higgs potential, with the unstable equilibrium at |φ| = 0 and a degen-
erate ground state. In order to keep the photon massless (as we know to be the case), we choose
the symmetry to break such that

φ1 = φ2 = φ4 = 0. (2.29)

This choice leads to
φ2

3 = µ2

λ
≡ v2 (2.30)

which is referred to as the vacuum expectation value (VEV) of φ.
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1.3. The Standard Model 11

1.3.3 Spontaneous symmetry breaking

Local symmetries of the electroweak model require fermions and vector bosons to be massless
particles; for the fermion a mass term �m  can be written as �m(�L R +  R�L), and given
that �L and  R transform differently under the gauge transformations, it is not invariant; for a
vector boson, a mass term m2AµAµ is not invariant under 1.9. This prediction is in contradiction
with experimental results which proved that the W± and Z bosons are very massive, while the
photon is indeed observed as a massless particle. The solution arises from the spontaneous
EW symmetry breaking, thanks to an additional field �, induced by the Brout-Englert-Higgs
(BEH) mechanism8 [10, 11]. The simplest possibility for the Higgs field consists in a weak
isospin doublet of complex fields with unit hypercharge value. Its Lagrangian involves the
Higgs potential, which reads :

LHiggs = (Dµ�)†(Dµ�) � V (�) with V (�) = µ2�†�+ �(�†�)2 (1.26)

RE (�)
IM (�)

V

FIGURE 1.2: Illustration of the Higgs potential in the SM. The spontaneous sym-
metry breaking arise from the vacuum value at the minimum of the potential,

which occurs for � 6= 0 along the red line.

The form of this potential is illustrated in Fig. 1.2. The Vacuum Expectation Value of the

Higgs field is v =

q
�µ2/�. Gauge invariance with respect to SU(2)I ⇥ U(1)Y local phase

transformations allows to develop the Higgs field from its ground state, picked along the real
component :

�0 =
1p
2

✓
0
v

◆
�! �(x) =

ei⌧a✓a(x)/v

p
2

✓
0

v + h(x)

◆
(1.27)

In the latter equation, the Higgs field is embodied in h(x) with mass value mH =

q
�2µ2.

Three pseudo-scalar Goldstone bosons denoted ✓a arise from the broken generators ⌧a. The
exponential is eliminated in the Lagrangian because of local phase invariance. The same mech-
anism allows granting fermions a mass term proportional to the vacuum expectation of the
Higgs field. This is often mentioned as the Yukawa interaction which describes the coupling

8Higgs mechanism for short.

Figure 2.2 – Illustration of the Higgs potential in the SM. A highly unstable equilibrium exists at
|φ| = 0. The spontaneous symmetry breaking arise from the vacuum value at the minimum of the

potential, which occurs for |φ| 6= 0 along the red line.

With this choice, φ =
( 0
v

)
, but it will fluctuate along the minimum, and we denote this as h(x),

a real valued function. Therefore,

φ = 1√
2

(
0

v + h(x)

)
, (2.31)

The EW Lagrangian with this complex scalar field doublet reads

LEW = −1
4W

a
µνW

µν,a − 1
4BµνB

µν + (Dµφ)†(Dµφ)− V (φ†φ), (2.32)

To see the interaction of h with the other fields, we insert Equation 2.31 into Equation 2.32.
Dµ is still defined as in Equation 2.21. The first terms that describe the propagation of φ with
mass mH =

√
2λv2 look like

LEW ⊃
1
2∂µh∂

µh− v2

2 λh
2 − λvh3 − λ

4h
4 + . . . . (2.33)

However, the terms of most interest are,∣∣∣∣∣−i2
(
gW 3

µ + g′Bµ g(W 1
µ − iW

2
µ)

g(W 1
µ + iW 2

µ) −gW 3
µ + g′

)(
0

v + h

)∣∣∣∣∣
2

. (2.34)

We define,

W±µ =
W 1
µ ∓ iW

2
µ√

2
. (2.35)

The component of Equation 2.34 corresponding to v leads to terms,

1
4v

2g2W+
µ W

µ− + v2

8
(
W 3
µ Bµ

)( g2 −gg′

−gg′ g′2

)(
Wµ,3

Bµ

)
. (2.36)

Now also defining

sin θW = g′√
g2 + g′2

and cos θW = g√
g2 + g′2

, (2.37)

gives us (
Zµ
Aµ

)
=
(

cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
. (2.38)
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Putting Equation 2.38 back in Equation 2.32 ,

LEW ⊃ −
1
2W

+
µνW

−µν − 1
4ZµνZ

µν − 1
4AµνA

µν +m2
WW

+
µ W

−µ + 1
2m

2
ZZµZ

µ, (2.39)

we finally get the required masses for the physical gauge bosons,

m2
W = 1

4g
2v2, m2

Z = 1
4v

2(g2 + g′2) and mA = 0. (2.40)

The Goldstone bosons provide gauge bosons with a third degree of polarisation, which is needed
for massive gauge bosons.

Although not demonstrated, this additional scalar field also gives mass to all the fermions (apart
from the neutrinos) once a Yukawa interactions between their Dirac fields and the scalar field
are added to the theory. Other terms in the Lagrangian are responsible for coupling the Higgs
to other gauge fields, and there are also terms responsible for triple and quartic self couplings
of the Higgs field.

Apart from providing a possible explanation for the masses of the several fundamental particles
of the SM, this theory predicts a relation,

cos θW = mW

mZ
. (2.41)

which has been verified by experiment. Experimental measurement of these self-couplings have
yet to be made.

2.1.4 SM Lagrangian

The final Lagrangian for the Standard Model of Particle Physics is,

LSM = −1
4

8∑
a=1

GaµνG
µν,a − 1

4

3∑
b=1

W b
µνW

µν,b − 1
4BµνB

µν (2.42)

+ (Dµφ)†(Dµφ)− V (φ†φ)

+
3∑
i=1
−y`i (L̄

i
Lφ`

i
R + h.c.)

+
3∑

a=1

3∑
i=1
−(yuij ū

a,i
L u

a,j
R φ̃+ ydij d̄

a,i
L d

a,j
R φ+ h.c.)

+
3∑
i=1

iL̄iL /DL
i
L + ¯̀i

R /D`
i
R

+
3∑

a=1

3∑
i=1

iQ̄a,iL /DQa,iL + ūa,iR /Dua,iR + d̄a,iR /Dda,iR .

The first line describes the propagating and self interaction terms of the gauge fields. The second
line describes the Higgs propagation, mass term, self couplings, and coupling to gauge bosons.
The third and fourth lines describe the fermion interactions with the Higgs fields. The fifth and
sixth lines describe the propagation of the fermions and their interaction with the gauge bosons.
The couplings of the various fields to the Higgs field determines their masses, and therefore the
photon and gluons are massless in the SM.

This Lagrangian does not describe the mass of neutrinos, the large matter-antimatter asymmetry
seen in cosmology, does not provide an explanation for why the strong force preserves charge-
parity (CP) symmetry and does not say anything about dark matter, dark energy, or gravity.
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2.1.5 Effective Field Theory Framework

An Effective Field Theory (EFT) in particle physics is an approximation of an underlying theory
that ignores substructures, additional degrees of freedom at higher energies. A famous example
of an EFT is Fermi’s theory of Beta decay which proposed a point-like interaction between four
fermions,

n→ p+ e− + ν̄e (2.43)

while ignoring the detailed electro-weak interaction later discovered which would suggest that
the interaction was mediated by W boson,

d→ u+W−, W− → e− + ν̄e. (2.44)

General relativity is also expected to be an effective field theory of full quantum theory of gravity
that has yet to be formulated.

The SM can be considered a lower energy EFT of a full QFT that describes particle physics
and in fact, a large class of BSM models can also be parameterised as EFTs at energies below
a given energy scale Λ [19]. As explained in [20], one can calculate EFT without unnecessary
reference to the high energy physics due to a ‘decoupling theorem’.

An EFT Lagrangian is a systematic expansion of the SM Lagrangian and takes the form,

LEFT = LSM +
∑
i

cd=5
i

Λ Od=5
i +

∑
i

cd=6
i

Λ2 O
d=6
i +

∑
i

cd=7
i

Λ3 O
d=7
i +

∑
i

cd=8
i

Λ4 O
d=8
i + . . . . (2.45)

where each term O(D)
i is an SU(3) × SU(2) × U(1) invariant operator of dimension d and ci

are the Wilson coefficients, interpreted as the coupling constants for the new operators that are
responsible for new effective interactions in the Lagrangian.

The idea is to define the most generic Lagrangian in each dimension, where operators of suc-
cessive dimensions being suppressed by the previous one by the energy scale Λ. This way, EFT
frameworks can be used in LHC physics for model-independent interpretation of experimental
results. The translation of experimental data into a theoretical framework has to be done only
once in the EFT context, rather than for each BSM model separately.

The reasoning is straightforward. Not all aspects of a full quantum field theory of particle
physics can be tested at the LHC and therefore a lower energy approximation of the theory,
its corresponding EFT would provide information on what new predictions of this theory are
measurable at the LHC. The additional operators of the EFT would find their counterpart in the
SM EFT expansion given above. If an experimental analysis tunes its sensitivity to operators
in the SM EFT, it can therefore set limits to various theories in a model-independent way and
old results may be used to set limits on any new BSM theory as well.

Often it is convenient to change the basis (set of complete non-redundant set of operators) of the
EFT framework, which may help make the analysis more sensitive to certain kind of operators.
The parametrisation of the space of d = 6 operators can be done using a subset of couplings in
a mass eigenstate Lagrangian as well, which is the idea behind the Higgs basis, and it is often
used in ATLAS because the parameters of the Higgs basis can be connected in a more intuitive
way to LHC Higgs observables calculated at leading order in the EFT [19]. Certain irrelevant
operators may also be removed to simplify the interpretation. Such steps have been taken in
EFT measurements in ATLAS, but these details will not be summarised in this document.
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Figure 2.3 – Tree-level Feynman diagrams of the main Higgs boson production processes at the LHC.

2.2 Higgs Boson at the LHC

2.2.1 Production and Decay

At the LHC, the Higgs boson is produced via four leading production modes:

• Gluon-Gluon fusion (ggF) process, via a quark loop (dominated by the top quark). It
accounts for 88% of the total production.
• Vector Boson Fusion (VBF) process, which leaves two forward jets coming from the two
quarks in the final state in addition to the Higgs decay products. It accounts for 7% of
the total production.
• Associated Production with Vector Bosons (VH). It accounts for 4% of the total produc-
tion.
• Associated production with a top pair (tt̄H). It accounts for 1% of the total production.

The leading Feynman diagrams for these processes are shown in Figure 2.3 and their cross
sections as a function of the LHC centre of mass energy

√
s is shown in Figure 2.4.

The Higgs boson is not a stable particle and has a lifetime of ∼ 10−22 s. Consequently, the
detectors at the LHC cannot record its interaction to the detector directly. The Higgs rest mass
and momentum are converted into the rest mass and momentum of the decay products. These
particles may further decay before they can be detected, always conserving the four-momentum.
The interaction of the final decay products with the detector are recorded. Since the couplings
of the Higgs boson to fermions is a function of the mass of these particles, it prefers to decay to
the heavier particles. The Branching Ratio (BR) is the fraction of the time a particle decays to
one particular decay mode. The evolution of the BR for Higgs boson as a function of its mass
is shown in in Figure 2.5. It is interesting to note that although the BR to two b quarks, and
two W bosons is greater than to Z bosons, the latter has much cleaner final states. The leading
decay mode H → bb̄ was observed by ATLAS only as recently as 2018 [24].
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Figure 2.4 – The SM Higgs boson production cross sections as a function of the LHC centre of mass
energy. [21]
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number of its decays. Among the various Higgs decay channels, the most abundant

are bb̄(BR = 58%), WW ∗(BR = 21%), gg(BR = 8.2%), ⌧⌧(BR = 6.2%), cc̄(BR =

2.9%), ZZ∗(BR = 2.6%), ��(BR = 0.2%), Z�(BR = 0.15%) and µµ(BR = 0.02%).

They are also shown as a function of the Higgs boson mass in Fig. 1.8.

At the end of the LHC Run 2 data-taking operations in 2018, the leading decay

mode H → bb̄ was finally observed [40].

Figure 1.8: Branching ratios of the di↵erent SM Higgs boson decay modes as a
function of the Higgs boson mass [42].

1.4.3 Higgs boson total width

The total width of the Higgs boson, �H , is the sum of the partial widths, �i, of the

various Higgs decay modes:

�H = �
i

�i (1.20)

where BRi = �i��H is the branching ratio of the ith decay mode. The Higgs boson

total width varies as a function of the Higgs boson mass, as reported in Fig. 1.9.

For a Higgs boson of mass of 125 GeV, the SM expectation is 4.07 MeV [43].

The Higgs boson total width is a fundamental measurement providing global

information on the Higgs decays. By measuring the width one can check how many
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(a) (b)

Figure 2.6 – The invariant mass distribution observed in the (a) H → ZZ∗ → 4l [26] and (b)
H → γγ channels in ATLAS. [22]

The invariant mass distribution of the four lepton and diphoton observed by ATLAS [25] is
shown in Figure 2.6, with peaks near 125 GeV corresponding to Higgs boson in each case. These
were the first two channels in which the Higgs boson was discovered in 2012.

2.2.2 Width of the Higgs Boson

The cross-section of a process is a function of the energy of its intermediate state (an unstable
particle), and peaks at the resonance energy. The width Γ of such a resonance peak is related
to the lifetime τ of the particle by,

Γ = ~
τ
. (2.46)

The total width of the Higgs boson, ΓH , is the sum of its partial widths, Γi, of the various decay
modes,

ΓH =
∑
i

Γi (2.47)

with
BRi = Γi/ΓH . (2.48)

The total width of the Higgs in the SM varies as a function of its mass, as shown in Figure 2.7.
For a mass, mH = 125 GeV, the expected width, ΓH is 4.07 MeV [27], and the partial widths are
fractions of this number, which is smaller than the resolution of the ATLAS detector at about
1 GeV. The width therefore cannot be directly measured, unless the value is much larger than
as expected from the SM.

The total Higgs width will provide information on the global Higgs decays (including to any as
yet undiscovered new particles) and is therefore a very important measurement. Indeed, several
Beyond Standard Model (BSM) theories expect a larger total width of the Higgs boson.

Indirect measurements of the Higgs width have been considered, such as by measuring the
lifetime of the particle (due to their relation through Equation 2.48). CMS set a lower bound
of ΓH > 3.5 · 10−9 MeV at 95% confidence level by this method. [28]
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Figure 1.9: SM Higgs boson total width as a function of the Higgs boson mass
MH [43].

di↵erent ways the Higgs boson is decaying; even if it decays to particles not visible

in the LHC detectors, these decays will influence the width, making it larger than

the expected value in the SM because the Higgs boson will decay faster. As seen in

Sec. 1.3, there are several BSM theories which look for new heavier Higgs bosons or

the Higgs boson could decay to exotic dark matter particles. Even if these decays

are not visible, by measuring the Higgs boson total width BSM models could be

indirectly tested. Therefore, the measurement of the Higgs boson width at the LHC

is important to determine its nature.

A direct width measurement at the resonance peak is limited by experimental

resolution, about 1 GeV [44–46], and is only sensitive to values larger than the SM

expectation [43, 47]. The CMS collaboration has also tried to constrain the Higgs

boson total width by measuring the Higgs boson lifetime6 from the flight distance

in the CMS detector resulting in a lower bound of �H > 3.5 ⋅ 10−9 MeV at 95%

confidence level (CL) [48].

6According to Heisenberg’s uncertainty principle �H > 1�⌧H where the expected SM H boson
average lifetime is ⌧H ∼ 16 10−8 fs (or 48 fm/c).

Figure 2.7 – The SM Higgs boson total width as a function of its mass. [27]

Another indirect approach involves the combination of the on-shell and off-shell Higgs boson
cross-section measurements to set upper limits on the Higgs boson width. This would require
certain assumptions, one of which is to assume the on-shell and off-shell Higgs boson couplings
to remain the same. The context of the off-shell measurements of the Higgs boson is described
in the following section.

2.3 Off-Shell Higgs Measurement in the Four Lepton Final State

This section will summarise the context of a measurement of the off-shell Higgs boson couplings
at the LHC. It will start with a brief summary of the quantum mechanical aspects at the centre
of the analysis, the concept of off-shell particles and quantum interference. This will be followed
by a short discussion about the motivations and the connection of the off-shell couplings to the
Higgs boson width, and the section will conclude with some comments about such a measurement
in a dedicated VBF category.

2.3.1 Quantum Mechanical Considerations

The Heisenberg uncertainty principle of quantum mechanics (σEσt ≥ ~
2 , where E is energy, t is

time) allows particles to become “virtual” for a short period of time, with a mass going far away
from the one described by special relativity’s mass-energy equivalence formula, E2 − |~p|2c2 =
m2

0c
4 (where E is given in terms of the rest mass m0 and momentum ~p of the particle). Since

they are not restricted to the hyperboloid described by this formula, they are referred to as
“off-shell” particles.

The probability of an interaction via a virtual particle falls off as the mass of this particle
deviates from its pole mass. Given that an event with an on-shell Higgs boson is rare enough,
being sensitive to the off-shell Higgs boson is usually beyond the reach of the LHC experiments
at the current centre of mass energy (13 TeV). Certain situations, however, could enhance the
cross section of the off-shell production and allow the study the off-shell Higgs boson. This is
precisely the case in the H∗ → ZZ decay channel (and will be described below).

Quantum mechanics also prescribes that when there are two paths from an initial state to a
final state, they are both taken, and they may interfere with one another to produce a result
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where g,o↵-shell(ŝ) and V,o↵-shell(ŝ) are the o↵-shell coupling scale factors associated with the gg ! H⇤

production and the H⇤ ! VV decay. Due to the statistically limited sensitivity of the current analysis,
the o↵-shell signal strength and coupling scale factors are assumed in the following to be independent
of ŝ in the high-mass region selected by the analysis. The o↵-shell Higgs boson signal cannot be treated
independently from the gg ! VV background, as sizeable negative interference e↵ects appear [7]. The
interference term is proportional to
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Figure 1: The leading-order Feynman diagrams for (a) the gg ! H⇤ ! VV signal, (b) the continuum gg ! VV
background and (c) the qq̄! VV background.

In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:
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which depends on the total width �H . Assuming identical on-shell and o↵-shell Higgs boson coupling
scale factors, the ratio of µo↵-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e↵ective coupling g(ŝ) for the loop-induced
gg ! H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

2g,on-shell · 2V,on-shell  2g,o↵-shell · 2V,o↵-shell , (3)

that the on-shell couplings are no larger than the o↵-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o↵-shell signal strength µo↵-shell and the o↵-shell couplings
i,o↵-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o↵-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o↵-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o↵-shell signal process gg ! H⇤ ! ZZ [25], which are also applicable to gg ! H⇤ ! WW, no
higher-order QCD calculations are available for the gg! VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg! VV
background. QCD corrections for the o↵-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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Figure 2.8 – Feynman diagrams of the main contributions to the ZZ production processes: (a) gg
produced signal (Higgs-mediated), (b) gg produced background (interferes with the signal), (c) qq̄

produced dominant background.

that is very different from a naive sum of the two. This is known as quantum interference and
it carries through also to QFT.

Usually the signal and background processes either have different initial and/or final state par-
ticles, or come from disjoint phase spaces, and can therefore be simulated separately. As a
simplified example, consider the probability of having one particular sample X, denoted P (X)
(with 0 ≤ P (X) ≤ 1) is a function of the complex Matrix Elements, Ms(X), Mb(X) (with
Ms,Mb ∈ C), for the signal and background process respectively, is given by,

P (X) = |Ms(X) +Mb(X)|2 = |Ms(X)|2︸ ︷︷ ︸
Ps(X)

+ |Mb(X)|2︸ ︷︷ ︸
Pb(X)

+2 Re(Ms(X)Mb(X))︸ ︷︷ ︸
Pi(X)

. (2.49)

If the third term (Pi(X), where ‘i’ stands for ‘interference’) is insignificant, the signal and
background contributions can be simulated separately (with Pb(X) and Ps(X)) and simply
combined (because the combination is linear). However in the gg → (H∗ →)ZZ case, both the
initial and final states of the signal (gg → H∗ → ZZ, Figure 2.8a) and background (gg → ZZ,
Figure 2.8b) processes are identical, and the phase spaces overlap, therefore the contribution
from the mixed term cannot be ignored. To produce physical samples, the two processes must be
simulated together due to the non-linear contribution from Pi(X). The interference component
can have a negative contribution to P (X). The individual components of the signal, background
and the full process can be seen in Figure 2.9, and indeed the interference contribution is negative
(explicitly shown in Figure 2.10).

A final interesting point to note is that if the couplings are scaled in such a way as to increase
the signal contribution by a factor √µ then the corresponding matrix element needs to be scaled
by √µ so that,

|Ms(X)|2 → |√µ ·Ms(X)|2, (2.50)
then the interference component consequently is scaled by the square root of that factor (i.e√
µ) as,

Re(Ms(X)Mb(X))→ Re(√µ ·Ms(X)Mb(X)), (2.51)
and therefore the full probability becomes

Pscaled(X) = µ · Ps(X) + Pb(X) +√µ · Pi(X). (2.52)

This will play a crucial role in introducing non-linear effects in the yields in Chapter 6 and
Chapter 7.

2.3.2 A unique opportunity for off-shell measurements

Since the mass of the Higgs is only around 125 GeV, the vector bosons (2mZ ≈ 182 GeV,
2mW ≈ 160 GeV) and top quarks (2mt ≈ 346 GeV) that contribute to the on-shell Higgs
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FIG. 5: Overall picture at 13 TeV, (colour online).

FIG. 6: Higgs related contributions in the high m4ℓ region, (colour online).
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(a)

Figure 2.9 – Differential cross sections as a function of the invariant mass of the four leptons for
various processes in the four lepton channel, gg → H∗ → ZZ signal (red line), gg → ZZ background
(blue line), full process gg →

(
H∗ →

)
ZZ (pink line), and the dominant background qq̄ → ZZ. [29]

processes do so through their low-mass off-shell tails (see the Feynman diagrams for the main
contributors to the ZZ production in Figure 2.8). Near twice the Z mass, off-shell production of
the SM Higgs boson has a substantial cross-section at the LHC [31, 32] (see Figure 2.9) because
although the Higgs boson is off-shell, the intermediate Z bosons in the decay process can go
on-shell. The threshold effect can be seen again near twice the top mass, corresponding to the
top quarks in the production process going on-shell. This provides a unique opportunity to
study the Higgs boson at higher energy scales. The destructive interference between certain SM
signal and background processes further enhance the possibility to measure the presence of the
signal.

The high mass off-shell study has received considerable attention because it is sensitive to various
kinds of New Physics that might change the couplings of the Higgs to other fundamental particles
in the high-mass region or change the ZZ background yield [33–35], and the measurement has
interesting interpretations in the EFT framework [36]. Non-SM operators studied by [37] lead to
enhanced yields in the off-shell regime coming from gg → X → ZZ∗ → 4` whereX indicates New
Physics. The measurements can also help break degeneracies and compliment ttH measurements
to constrain EFT parameters [38].

It is clear that at such high energies, the infinite top mass approximation often used to simplify
the coupling of the Higgs to gluons breaks down, therefore it is essential to take finite top mass
effects into account. New Physics could change the couplings to the top as well as introduce
new heavy coloured states running in the loop and these effects might remain invisible for the
on-shell Higgs [39]. The presence of any additional agent of symmetry breaking (such as a heavy
neutral Higgs) is likely to affect this region of the distribution that is sensitive to interference
effects. Finally, the off-shell measurement would help probe the total width of the Higgs boson,
and the interest for doing so have been described in the previous section.
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The dominant processes contributing to the high-mass signal region in the ZZ ! 4`, ZZ ! 2`2⌫ and
WW ! e⌫ µ⌫ final states are: the gg! H⇤ ! VV o↵-shell signal, the gg! VV continuum background,
the interference between them, VV production in association with two jets through VBF and VH-like
production modes pp! VV + 2 j (s-, t- and u-channel) and the qq̄! VV background. The LO Feynman
diagrams for the gg ! H⇤ ! VV signal, the continuum gg ! VV background and the dominant
irreducible qq̄! VV background are depicted in Fig. 1. The WW ! e⌫ µ⌫ channel also receives sizeable
background contributions from tt̄ and single-top production. In the following a Higgs boson mass of
mH = 125.5 GeV, close to the ATLAS-measured Higgs boson mass value of 125.36 GeV [11], is assumed
for the o↵-shell signal processes. This small di↵erence has a negligible impact on the predicted o↵-shell
production yields.

Figure 2 illustrates the size and kinematic properties of the gluon-induced signal and background pro-
cesses by showing the four-lepton invariant mass (m4`) distribution for the gg ! (H⇤ !)ZZ ! 2e2µ
processes after applying the event selections in the ZZ ! 4` channel (see Sect. 3) on generator-level
quantities. The process gg ! (H⇤ !)ZZ ! 2e2µ is shown for the SM µo↵-shell = 1 case and for an
increased o↵-shell signal with µo↵-shell = 10. For low masses mZZ < 2mZ the o↵-shell signal is negligible,
while it becomes comparable to the continuum gg! ZZ background for masses above the 2mt threshold.
The interference between the gg ! H⇤ ! ZZ signal and the gg ! ZZ background is negative over
the whole mass range. A very similar relation between the gg ! H⇤ ! VV signal and the gg ! VV
background is also seen for the gg! (H⇤ !)ZZ ! 2`2⌫ and gg! (H⇤ !)WW ! e⌫ µ⌫ processes.
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Figure 2: (a) Di↵erential cross-sections as a function of the four-lepton invariant mass m4` in the range of
100 GeV < m4` < 1000 GeV for the gg ! (H⇤ !)ZZ ! 2e2µ channel at the parton level, for the gg ! H⇤ ! ZZ
signal (solid line), gg! ZZ continuum background (dots), gg! (H⇤ !)ZZ with SM Higgs boson coupling (long-
dashed line, including signal plus background plus interference) and gg ! (H⇤ !)ZZ with µo↵-shell = 10 (dashed
line). (b) Di↵erential cross-section as a function of m4` in the range of 130 GeV < m4` < 1000 GeV for the SM
gg ! H⇤ ! ZZ ! 2e2µ signal (solid line) and its interference with the gg ! ZZ ! 2e2µ continuum background
(dashed line).
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Figure 2.10 – Differential cross sections as a function of the invariant mass of the four leptons for
the gg → H∗ → ZZ signal (solid red line), interference with gg → ZZ (dashed black line).[30]

2.3.3 Off-shell measurements and the Higgs Width

The width of the Higgs boson is so small that it is often approximated to zero in on-shell
simulations. The authors of Ref. [31] noticed that such a zero width approximation for the off-
shell Higgs simulations would provide inaccurate results. They made these conclusions based on
the ggF production but it holds also for the V BF production. It begs the question of whether
this relation between the Higgs boson width and off-shell effects could be inverted to measure the
Higgs boson width. The authors of Ref. [32] proposed to constrain the width of the Higgs boson
by combining its on-shell and off-shell coupling measurements. However, inverting relations that
are not bijective can be tricky. Such a measurement of the width using ggF events would be
model dependent, the reasons for which will be discussed at the end of this subsection. While
keeping that in mind, we explore below the phenomenological aspects of the the Higgs width
measurement strategy using the off-shell region.

The cross-section of gg → H → ZZ as a function of the invariant mass of the Z pair is:

dσgg→H→ZZ

dm2
ZZ

∼
g2

ggH · g
2
HZZ(

m2
ZZ −m

2
H
)2

+m2
HΓ2

H

(2.53)

where gggH is the effective coupling of the gluons to the Higgs, gHZZ is the coupling of the Higgs
to Z bosons. On-shell analyses are restricted to the mass window close to the mass of the Higgs
boson, where (m2

ZZ −m
2
H) ∼ mHΓH so the total cross section after integration is,

σon-shellgg→H→ZZ∗ ∼
g2

ggH · g
2
HZZ

mHΓH
(2.54)

which is still function of ΓH. However, for the off-resonance case, in a mass window starting above
twice the mass of the Z boson, where (mZZ −mH)� ΓH, the cross section can be approximated
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as:

σoff-shellgg→H∗→ZZ ∼
g2

ggH · g
2
HZZ

(2mZ)2 (2.55)

which is independent of ΓH [32] but still proportional to the square of the couplings gggH and
gHZZ. Now if the Higgs boson width is scaled by a factor ζ and the Higgs boson couplings are
universally scaled by some factor 4√ζ,

ΓH → ζ · ΓH, g2
ggH · g

2
HZZ → ζ · g2

ggH · g
2
HZZ (2.56)

then the on-shell cross-section remains unchanged in Equation 2.54 because the ζ drops out,
but the off-shell cross section scales linearly. Thus the degeneracy between a coupling and
width measurement is removed. Furthermore, the off-shell cross-section measurement allows to
constrain the Higgs width under the assumption that the couplings are the same for on shell
and off-shell.

Now the signal strength, µ, of any process is the ratio of its cross-section to the cross-section
predicted by the SM. Since mH and mZ are well measured quantities, they can be considered a
constant. Therefore,

µon-shellggH =
g2

ggH

g2
ggH,SM

· g2
HZZ

g2
HZZ,SM

· ΓSM
H

ΓH
, (2.57)

and

µoff-shellggH =
g2

ggH

g2
ggH,SM

· g2
HZZ

g2
HZZ,SM

. (2.58)

The relation of the two signal strengths to the Higgs width is given by

µoff-shell
µon-shell

= ΓH
ΓSMH

. (2.59)

This relation is the crux of the strategy by which the total width of the Higgs boson can be
probed by combining on-shell and off-shell measurements of the couplings of the Higgs boson in
the context of the ggF production process.

Over the years, the on-shell measurements have closely and consistently confirmed the SM
predictions (µon-shell ' 1). The off-shell measurements are not yet as precise. ATLAS has set an
upper-limit on µoff-shell at 3.8 in 2018 [12]. It appears that to measure a width greater than the
SM expectation, ΓH > ΓSM

H , and to keep µon-shell = 1 (the SM value), an enhanced cross-section
of the Higgs boson diagrams, σH > σSMH , would be required compared to the SM prediction.

However, this is a model-dependent assessment. The authors of [40] show that New Physics
contributions can decorrelate on-shell and off-shell regions for ggF in such a way that although
the Higgs boson width is greater than the SM expectation, ΓH > ΓSM

H , the cross-section in the
off-shell regime remains the same.

2.3.4 The VBF Case

In the case of the VBF production mode, the arguments are quite similar. The corresponding
equations for on-shell and off-shell cross sections for the VBF production mode are,

σon-shellpp→H→ZZ∗ ∼
g4

HZZ
mHΓH

, (2.60)

and
σoff-shellpp→H∗→ZZ ∼

g4
HZZ

(2mZ)2 . (2.61)
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Figure 2.11 – (a) A Feynman diagrams of Vecot Boson Fusion (VBF) produced Higgs decaying to
four leptons, (b) A Feynman diagram of Vector Boson Scattering (VBS)

The equations for the signal strength read,

µon-shellV BF = g4
HZZ

g4
HZZ,SM

· ΓSM
H

ΓH
, (2.62)

and
µoff-shellV BF = g4

HZZ

g4
HZZ,SM

. (2.63)

The relation of VBF signal strengths to the Higgs width are therefore identical to the ggF case,
and is representation by Equation 2.59.

The VBF production mode for the off-shell Higgs has different initial (qq) and final (4l + 2j)
states as shown in Figure 2.11a, but nonetheless also faces significant quantum interference
from the Vector Boson Scattering (VBS) background process shown in Figure 2.11b. A VBF
analysis would further receive contamination from the gg → (H →)ZZ process and from the qq̄
continuum background.

Since this constraint on the width of the Higgs boson is model dependent using ggF events, the
authors of [40] suggest that an off-shell measurement using the VBF production mode would
allow a more model-independent interpretation. The major assumption here would be only that
the Higgs boson couples similarly to the W± and Z bosons. Creating such VBF category is
possible using jet information given the two-forward-jets signature of VBF. Such a measurement
would allow to constrain certain kinds of BSM in a more model-independent way, although the
measurement would be using far smaller statistics compared to an inclusive approach.

Chapter 6 will describe an effort to optimise an event selection strategy in such a way as to
maximise the sensitivity to µoff-shellV BF with the use of BDTs. The premise being to make the final
measurement using a maximum likelihood-fit using the learnt observable. In Chapter 7 a more
sophisticated machine learning technique is studied where the maximum likelihood fit is replaced
by a neural network. The advantage in the second case would be that the network can optimally
account for interference effects.
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LHC and the ATLAS experiment
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3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s most powerful particle accelerator designed
to study the elementary particle physics at the TeV scale with proton-proton collisions, and in
addition, also study quark-gluon plasma with lead ion collisions as well as proton-lead collisions.
Built at European Organisation for Nuclear Research (CERN) near Geneva, Switzerland, the
circular collider is placed inside a 27 km tunnel below the surface of the earth. The first collisions
were achieved in 2010 with a centre-of-mass-energy of 7 TeV, and after several upgrades, the
centre-of-mass-energy was increased to 13 TeV for Run 2 (between 2015 and 2018) of the LHC.
It is expected to reach its design centre-of-mass-energy energy of 14 TeV in Run3 (between 2021
and 2024). The motivation to go to higher energies is to allow for direct searches for heavier new
unstable particles and also to probe the high energy tails of distributions, such as the off-shell
tails of the Higgs boson, which might hide hints of new physics.

During the “High Luminosity LHC” (HL-LHC) [41] phase of the LHC, scheduled to start in
2026, the instantaneous luminosity will be increased dramatically with the goal to record up to
4000 fb−1 of data.

The four major particle detectors placed at the four interaction (collision) points of the LHC
are:
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• A Toroidal LHC Apparatus (ATLAS) [42]: A general purpose experiment with a wide
range of physics objectives including the measurement of Higgs boson properties, precision
measurements of the Standard Model and new physics searchers. The studies detailed in
this document were performed in the context of ATLAS.
• Compact Muon Solenoid (CMS) [43]: An independent sister experiment using different
technology but with similar objectives as ATLAS to ensure reproducibility of measurements
made by the two experiments.
• LHCb [44]: An experiment dedicated to the study of physics related to the b quark, for
example to investigate the asymmetry between matter and antimatter in the universe
through CP violation.
• A Large Ion Collider Experiment (ALICE) [45]: A heavy ion experiment dedicated to
study the physics of strongly interacting matter at extreme energy densities from lead ion
collisions as well as proton-lead collisions.

3.1.1 The Accelerator Complex

Protons are accelerated through various stages and the LHC is the last step of the accelerator
chain as shown in Figure 3.1. Once hydrogen gas is ionised to produce protons, they are
accelerated to 50 MeV by Linac 2, then to 1.4 GeV by the Proton Synchrotron Booster (PSB),
which allows improved injection rate into the Proton Synchrotron (PS). The PS brings the energy
of the protons up to 25 GeV and is followed by the Super Proton Synchrotron (SPS), which is
a 6 km accelerator brings the proton energies up to 450 GeV. After this stage the protons are
finally injected into the even larger LHC in a series of bunches of protons separated in time by
25 ns. This accelerator system is also used to provide particles for experiments besides the LHC
such as NA62, a fixed target experiment searching for rare decays of the K-meson, NA61, an
experiment to measure the production of hadrons in different types of collisions, research and
development projects such as AWAKE for high density plasma studies as well as to the test
beam area.

The whole process of filling the LHC takes approximately two hours, because the smaller accel-
erators need to be filled multiple times to fill the LHC. To increase the probability of collisions
at the interaction points, each bunch contains approximately 1.15× 1011 protons, but this also
results in additional collisions at the same time as the collision of interest, and this problem is
known as pile-up.

The LHC uses a magnetic field to keep the particles in circular orbit, and an electric field to
increase the speed. There are two beam-pipes for protons going in two opposite directions.
Two-in-one superconductive dipole magnets are used to generate a magnetic field in each of the
rings. The magnets are cooled to 1.9K and produce a magnetic field of 8.3 T. To increase the
interaction rate, the beams are focused with quadrupoles before the collision. The electric fields
are produced by the Radio Frequency (RF) Accelerating System (ACS). It takes approximately
20 minutes to accelerate the protons from 450 GeV to 6.5 TeV in the LHC.

3.1.2 Luminosity

The statistical power of any technique is ultimately limited by the size of the dataset. In the
case of LHC experiments, the number of samples is a linear function of the number of events
(collisions between bunches) that can can be observed at the LHC. This is directly proportional
to the luminosity, which can be expressed as the number of events per unit of time per unit of
area by the relation:

L = 1
σ

dN

dt
(3.1)
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Figure 3.2 – Total integrated luminosity of pp collisions delivered to the ATLAS detector between
2011-2018 [47]

where σ is the cross section of a given process, and N is the number of times the process occurs.
A great amount of effort goes into recording the maximum amount of total integrated luminosity
for each run of the LHC to maximise the amount of data recorded. The luminosity depends on
the quality and parameters of the beams according to the following relation:

L = n1n2frevNbF
4πσxσy

(3.2)

where Nb is the number of bunches in a beam, n1 and n2 are the number of protons in the two
colliding bunches, frev is the revolution frequency, F is a geometrical factor to correct for the
fact that the crossing angle is not exactly zero, and σx, σy are the transverse size of the beam.

The uncertainly on the measured cross section for a process is limited by the uncertainty on the
luminosity, therefore, luminometers have been installed for each experiment to precisely measure
their respective recorded luminosities.

The LHC has steadily improved its performance and delivered larger than expected luminosity
to the experiments. The integrated luminosity delivered to the ATLAS experiment is given in
Figure 3.2. The integrated luminosity used for the offshell studies reported in this document is
about 36 fb−1 because the study was started in the middle of Run2 data taking and at the time
the total integrated luminosity at the end on Run2 was unknown1. However, as can be seen in the
LHC timeline illustration in Figure 3.3, ATLAS expects to record an order of magnitude more
data in the future High Luminosity LHC phase, which would greatly improve the statistical
power of most analyses if efficient algorithms are developed to handle additional pile-up. At
this stage, the simulation data available may be eclipsed by the data recorded at the LHC,
unless faster simulation algorithms are developed. This is important because reconstruction and
analysis algorithms would likely be optimised using simulation data before being applied on the
real data.
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3.2 The ATLAS Detector

The ATLAS detector consists of a few sub-detectors as illustrated in Figure 3.4:

• The Inner Detector provides precise measurement of the trajectories and momentum of
charged particles based on the curvature of the tracks in a magnetic field. It is also
used to identity the primary and secondary vertices and differentiate pile-up vertices from
hard-scatter vertices.
• The Electromagnetic and Hadronic Calorimeters measure the energies of electrons, photons
and hadrons by absorbing their energies. They are used also to measure the Missing
Transverse Energy (MET).
• The Muon Spectrometer is placed at the periphery, and provides measurements comple-
mented by information from the Inner Detector for the identification and reconstruction
of muons.

3.2.1 Coordinate System

The origin of the ATLAS coordinate system is at the nominal proton-proton interaction point,
which corresponds to the centre of the detector. The x-axis points towards the centre of the
LHC ring and the y-axis points upwards towards the surface of the earth. The z axis is along
the beam pipe such that (x,y,z) forms a right-handed coordinate system.

A more convenient cylindrical coordinate system (θ,φ,z) is also defined where φ ∈]− π, π] is the
azimuthal angle around the beam axis, with positive values for the upper half of the detector,
and θ ∈ [0, π] is the polar angle around the y-axis with θ = 0 when pointing in the positive z
direction.

η = − ln
(

tan θ2

)
. (3.3)

The pseudo-rapidity, η, defined in Equation 3.3 is more commonly used than θ, and is equivalent
to rapidity, y, defined in Equation 3.4 in the ultra-relativistic limit (when a particle’s mass is
negligible compared to its momentum).

y = 1
2ln

(
E + pz
E − pz

)
(3.4)

3.2.2 Inner Tracker

The tracking system is used to reconstruct the charged tracks for each collision at the LHC.
A high granularity detector is needed for precise measurement, particularly in the inner layers,
which becomes important because of the large number of tracks for each collision. The tracks
are composed of 3D hits, the higher the number of hits, the better is the resolution of the track
parameters (position and curvature, leading to vertices and momentum). The Inner Detector
(ID) [50] is composed of a succession of silicon sensor layers followed by a gaseous layer and is
enclosed in a 2T magnetic field generated by a solenoid. It extends up to |η| = 2.5. In a Higgs
to four leptons analysis the performance of the ID impacts the muon resolution. A schematic
diagram of the ID is presented in Figure 3.5.

The most central part of the ID consists of the Insertable B-Layer (IBL) which was installed in
the long shutdown before Run2. It was inserted to compensate for the deterioration of the ID
caused by irradiation and to improve track reconstruction. It is useful in b-tagging, an algorithm

1The optimisation performed in these studies however are expected to scale to the full Run2 data
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that identifies jets originating from b quarks based on their slightly displaced vertices (which is
caused by the relatively large lifetime of the b quark).

The Pixel detector surrounds the IBL and is composed of 3 layers of pixels up till |η|=2.0 and
has complimentary disks to extend the coverage up to |η|=2.5. These layers consist of silicon
pixel modules segmented in R and z which are highly granular, with a minimum activation size
of 50µm× 400µm. This layer contributes to approximately 80 million readout channels.

After this comes the SemiConductor Tracker (SCT), which works similarly to the pixel detector
but uses micro-strips instead of pixels to reduce costs. It also has additional disks in the forward
region to increase coverage to |η|=2.5. The SCT contributes to approximately 6.3 million readout
channels.

The final sub-detector of the tracking system is the Transition Radiation Tracker (TRT). It
provides coverage up to |η|=2.0. It is a gaseous detector with a continuous active area. It has
a much lower resolution but provides a high number of points along the track, which helps the
reconstruction algorithm. The TRT relies on the transition radiation, that is, the emitting of a
transition photon when a charged particle moves between two materials with different dielectric
constants. Since the transition radiation depends on the mass of the charged particle in motion,
measuring it allows to differentiate between electrons and pions from the track information.

3.2.3 Calorimeter

The ATLAS calorimeter measures the energy of particles by making them shower and absorbing
the energy. The calorimeters covers the entire solid angle up to η = 4.9. A schematic view of
the calorimeter is presented in Figure 3.6. It consists of three components:

• The Electromagnetic Calorimeter is a liquid argon-lead calorimeter that is used to precisely
measure and identity electrons and photons.
• The Hadronic Calorimeter measures the energy of jets from hadrons and is also useful in
preventing the showers from reaching the muon spectrometer.
• The Forward Calorimeter measures energies of particles in the forward region (covering
3.1 <η< 4.9). It can measure both electromagnetic and hadronic particles.

These are sampling calorimeters (as opposed to homogeneous calorimeters as for the CMS elec-
tromagnetic calorimeter), which are built as a succession of active layers and absorber layers.
The absorbers induce showering while the active materials are used to measure the signal. These
calorimeters can be segmented, and therefore allow granular readout, and also contain all show-
ers within a reasonable size, however, they have lower resolution compared to homogeneous
calorimeters.

The energy resolution of a calorimeter can be written as:

σ(E)
E

= a√
E
⊕ b

E
⊕ c (3.5)

where ⊕ is a quadratic sum, σ(E) is the energy resolution, E is the reconstructed energy, a
represents the stochastic term related to the development of the shower in the absorbers, b is
related to pile-up and the electronic noise from the devices used to read out the signal, and c
is a constant term caused by for example inhomogeneities, or material effects. While c can be
reduced with proper calibration of the detector, a and b are assumed to be the same for data
and simulation. This means that any new fast simulation algorithm would have to model them
correctly.
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Figure 3.5 – Schematic diagram of the ATLAS Inner Detector. [49]

Figure 3.6 – Schematic view of the various calorimeter systems of ATLAS. The liquid argon
components are shown in shades of orange, the tile calorimeter is shown in shades of green. The

tracking system is shown at the centre in grey dark). [49]
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3.2.3.1 Electromagnetic Calorimeter

The Electromagnetic Calorimeter (ECal) is a Liquid Argon Calorimeter (LAr) composed of two
barrel components (0 ≤ |η| ≤ 1.475 in each direction) and two end-cap components (1.375 ≤
|η| ≤ 3.2).

Figure 3.7 – Illustration of a particle shower in a calorimeter where the particle has already gone
through material that induces the shower.

An electron that passes through the absorption material will undergo several bremsstrahlung
interactions, losing a part of its energy to create a high energy photon each time. The photons
will convert to pairs of high energy electrons giving rise to a cascading effect, until the subsequent
particles reach the critical energy, Ec, at which the electron looses as much energy through
bremsstrahlung as by ionisation. Eventually the longitudinal shower development will cease and
all the energy will have been absorbed by the ECal. Figure 3.7 illustrates such a showering.

The number of particles created is proportional to E/Ec and the energy measured is proportional
to the final number of low energy electrons, therefore the resolution of the calorimeter depends
on the number of particles, and a lower Ec will allow a better energy resolution. The critical
energy in the lead (which make up the absorbers) is Ec = 7.4 MeV.

The first layer, often referred to as the Strips or the Front, is finely segmented in the η direction,
which allows for a precise measurement of the lateral shower shape, and it helps identification
of elections and photons. Its main objective is to measure the energy of electrons and photons
but since it is segmented into three layers, it allows for pointing, i.e. determining the straight
line trajectory, for unconverted photons that do not leave a trance in the tracker. The next
layer along the trajectory of the particle is the Middle, which is the thickest layer and absorbs
the majority of the energy. It is less granular in η but more granular in φ (in most regions of
the calorimeter). The final layer is known as the Back, and absorbs only a small amount of the
residual energy. It is less granular than the Middle layer. An additional layer, referred to as the
Pre-Sampler, is placed in front of the first layer. It is made of only liquid argon, and is used
to measure the energy lost in the material in front of the calorimeter. The detailed dimensions
of the cells in each of the layers is given in Table 3.12 and a schematic view of a section in the

2The reader is not expected to study the table in detail. The relevant segments will be described in Chapter 5.
The table is presented to demonstrate the significant variation in cell granularity in the calorimeter, which will
become relevant in the concluding discussions in Chapter 5.
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barrel is shown is Figure 3.8. The varying granularity of the calorimeter will become relevant
in discussions on how to extend the work presented in Chapter 5 to the full detector. While
the varying granularity does pose problems to a simple generative network approach, possible
solutions are discussed at the end of Chapter 5.

The resolution for the ECal is [51],

σE
E

= 10.7%√
E
⊕ 1% (3.6)

and the noise term is neglected in this equation.

Table 3.1 – Readout segmentation of the liquid argon calorimeters. The total amounts to more than
180 000 channels including the ECal, the HEC and the FCal [49].
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Figure 3.8 – Schematic view of a section of the electromagnetic calorimeter in the region
0 < η < 0.3. The presampler in the front as well as the three layers are visible. [52]

The transition region between the barrel and the endcap (1.4 ≤ |η| < 1.5) has a large amount
of passive material such as readout cables and therefore the measurement is degraded. There
is also a gap between the two barrels at η = 0 to pass cables. Since the radiation length for a
particle originating at the centre of the detector increases with η, the thickness of the calorimeter
layers is decreased once at η = 0.8. The LAr has an accordion structure (shown in the top panel
of Figure 3.9) to allow for shorter readout cables while maintaining complete coverage and
symmetry in φ. All these aspects have to be considered in simulations of the calorimeter.

3.2.3.2 Hadronic Calorimeter

The hadronic calorimeter is composed of three parts, the barrel (|η<1), the extended barrel
(0.8<η<1.7) and the end-cap (1.7<|η|<3.2). The barrel and extended barrel parts are a sampling
calorimeters which use steel as an absorber and scintillating plastic tiles as an active medium.
They surround the ECal and in general have a more coarse granularity compared to the ECal.
In the end-cap, the expected luminosity does not allow the use of scintillating tiles, therefore
radiation-hard granular liquid argon calorimeter is used with copper absorbers.

The hadronic calorimeter measures hadrons which interact via the strong force in addition to
the electromagnetism, and their energy distributions are more complex. For example, hadronic
shower shapes have much larger fluctuations compared to photons. This makes fast simulation
of the hadronic showers a difficult task.
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3.2.3.3 Forward Calorimeter

The forward calorimeter (FCal) covers the region 3.1 < |η| < 4.9 and uses liquid argon as the
active material. It is segmented into three disk layers, the first uses copper as the absorber
which allows better reconstruction of electromagnetic showers and the other two use tungsten
as absorbers which allow for better reconstruction of hadronic showers.

This detector is useful to measure forward jets and provides a better η coverage. This enables
a more complete measurement of the energy for an event, thereby allowing for a more precise
measurement of the missing transverse energy for that event.

3.2.4 Muon Spectrometer

Muons pass through the ID and the Calorimeters leaving a signal but without being completely
absorbed. They are measured by the outer most detector known as the Muon Spectrometer
(MS). The MS covers up to η=2.7 and contains four sub-detectors, two types of gas chambers
to precisely measure the position, and two dedicated chambers for fast triggering:

• The Monitored Drift Tubes (MDTs) are used for precise measurement of the track position
in the barrel and end-caps. They provide a good resolution in η but no information in the
φ coordinate.
• The Cathode Strip Chambers (CSCs) are multi-wire proportional chambers installed in the
in the end-caps that provide excellent spatial resolution and high counting rate capability
in the forward region (2 < η < 2.7).
• The Resistive Plate Chambers (RPCs) are installed in the barrel (η<1.05) and they com-

promise on precision to allow fast triggering. They also provide φ information missing from
the MDT in this region. It has no wires and is made from two resistive plates separated
by a gaseous insulator, allowing an avalanche to form when a muon passes. The timing
resolution is approximately 5 ns.
• The Thin Gap Chambers (TGCs) are installed in the end-caps (1.1<η<2.4) with the same
purpose as the RPCs, to provide trigger capability and missing φ information.

A strong magnetic field is applied in the MS (1T in the barrel and 0.5T in the end-caps) to
allow measurement of the momentum of the muons.

3.2.5 Trigger

ATLAS stores a tiny fraction (roughly one in 4×104) of the data produced. The LHC produces
collisions for ATLAS as a rate of 40 MHz and given the size of an ATLAS events (roughly 1
MB), writing every event to disk would require recording at 40 TB/s. To avoid this, a two stage
trigger system is used to filter out uninteresting events in real time.

The first stage is a hardware trigger known as L1 (Level-1) made out of logic circuits. It uses
only coarse calorimeter and MS information to increase the speed of the trigger and identifies
Regions of Interest (RoI). This drops the event rate from 40 MHz to 100 KHz. The RoI of the
events that passed the L1 are sent to the High Level Trigger (HLT).

The HLT is a software trigger that reconstructs certain objects (such as tracks, electrons, muons,
jets) in the different RoIs using information from the entire ATLAS detector. It first uses fast but
imprecise algorithms to perform a quick pre-selection before using more precise reconstruction
algorithms to perform a second round of selection. The HLT reduces the event rate from 100
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kHz to nearly 1kHz. Outlier events that take very long to process are stored in a debug stream
to be processed at the end of the run.

While most of the filtered out events are uninteresting, the trigger system does not have a zero
false negative rate, and sometimes throws out interesting events. The instantaneous luminosity
decreases with time, so the trigger thresholds can be adjusted as the run progresses to utilise
the trigger capability to its maximum bandwidth. The triggers are organised into menus for
each stream (electron, photon, missing transverse energy, etc) with different energy thresholds
for this purpose. For the low energy threshold triggers that have a bandwidth that is too high,
there is an additional randomness in the selection, where 1/N events that pass the requirements
are selected, for some factor N.

ATLAS has recently [54] started storing partial information already calculated by the trigger
reconstruction for events that do not pass the HLT, thereby reducing the disk space required and
allowing for a high event rate. There is further scope for hardware and software based machine
learning approaches to improve various aspects of the trigger system in the future, such as event
selection and trigger threshold control.

The rejection of large quantities of data, the option to store only partial information, limitation
of computational resources which lead to the need to make decisions of whether or not to run
reconstruction on an event and the choice of trigger menus all indicate interesting mechanisms
that could be optimised and automised with novel machine learning techniques in the near
future.
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Machine Learning (ML) can be considered a sub-field of artificial intelligence that has recently
been developing at an extreme pace, with growing applications in various domains including
particle physics. It deals with algorithms that can optimise themselves for a particular task or
set of tasks (which are usually explicitly defined) given some training environment, and most
often, this environment is provided in the form of a training dataset. An ML algorithm represents
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a mathematical model, and the training usually involves tuning a set of free parameters of that
model. The choice of the ML model then represents an inductive bias, that can be helpful
in restricting the class of mathematical functions to search through during the training phase.
In this sense, these algorithms similar to a polynomial fit (such as a least squares regression),
however, it would be naive to consider them as “merely an incremental step in improving fitting
tools” in the context of high energy physics.

In this field, success in application has often preceded a deeper mathematical understanding of
a given technique by several years, and in the case for Deep Learning (DL), a category of ML
algorithms described further below, it has lead to the creation of a new sub-field that attempts
to play catch up, to understand the “unreasonable” success of DL.

Advances in ML have had a two pronged effect on particle physics, the first is the availability
of off-the-shelf ML models that can be used to improve data analysis, and the second is the
development of hardware (like GPUs, TPUs) as well as free and open source software (like
Tensorflow [55], PyTorch [56], JAX [57]) that allow physicists to either re-purpose them or build
upon them for tasks that were computationally infeasible before. On the other hand, the robust
statistical analysis strategies, mathematically defined objectives, and a strong theoretical grasp
over mathematical modelling (such as complex symmetries in the data) that are ubiquitous in
the physics community allow the physics community to contribute to ML research.

This chapter gives a brief description of some relevant tools and concepts of ML and statistics
that will help the reader follow discussions in this thesis. It is by no means an exhaustive
summary.

4.1 General Overview

A general overview of the (ever growing) categories of ML algorithms and the typical ML prac-
tices are presented below.

4.1.1 Categories of Algorithms

Currently, ML algorithms are broadly categorised into:

• Supervised Learning: The model is given a set of inputs and a set of correct outputs (i.e.
a labelled dataset), and it must learn the best mapping. Examples include least squares
polynomial regression, deep neural networks for classification, decision trees.
• Unsupervised Learning: The model is required to find structure in the dataset. Usually
these algorithms are far more sensitive to inductive bias. Examples include Principle
Component Analysis, Generative Adversarial Networks.
• Semi-Supervised Learning: The model is training on a small labelled dataset and a large
unlabelled dataset for some task.
• Weakly-Supervised Learning: The model is trained on a dataset with very noisy labels.
• Self-Supervised Learning: These models are used when there are no human annotated
labels for a given task but a labeled dataset can be created from the original dataset or the
model can be trained for an auxiliary task which requires learning a useful representation.
• Reinforcement Learning (RL): An agent set inside an environment takes actions according
to a policy, and the final reward is only realised after many successive steps, so the model
must try to maximise the cumulative reward. The most famous example is AlphaZero [58]
which can teach itself to play games like go and chess better than any human.

46



4.2. BOOSTED DECISION TREES

• Active Learning: When labeled data points are expensive to acquire, active learning models
can suggest what datapoint to acquire next in order to improve the performance of the
model on a given task. Like RL, these models have to balance the trade-off between
exploration (of the unknown) and exploitation (of the known).

Not all algorithms neatly fall under just one or even any of these categories. Certain algorithms
do not optimise any model parameters during the training, but rather memorise the training
dataset, such as the k-Nearest Neighbours algorithm.

The vast majority of applications of ML involve classification of samples into two or more
classes, or the regression of a target value. The training algorithm usually minimises the ‘loss’, a
mathematical function that defines how far the output of a model is from the desired behaviour,
for example a squared error for the regression of some θTrue and where the model predicts θ̂,

L(θTrue, θ̂) = (θTrue − θ̂)
2.

4.1.2 General Machine Learning Practices

These powerful algorithms are often able to fit vastly expressive mathematical models to the
training data a bit too well, which is why a robust test of over-fitting, over-training and gener-
alisability is important. The standard practice is to randomly split the entire dataset into three
parts:

• Training Dataset: The ML model is trained (or made to fit) on this dataset. Usually at
least 50% of the full dataset if reserved for training.
• Validation Dataset: The performance of a trained model is evaluated on this independent
dataset. The model architecture is optimised to minimise the mean of the loss function
evaluated on this dataset. If the model is bring over-trained then its performance will
deteriorate on the validation dataset even as it improves on the training dataset.
• Test Dataset: An independent dataset to measure the performance of the final model
chosen for deployment.

Often a more computationally heavy strategy of k-fold Cross-Validation (CV) is employed to be
able train on a larger fraction of the dataset, and also get a robust estimate of the performance.
In this case the dataset may be split into k equal parts, trained on k− 1 parts and evaluated on
the remaining part. This can be done k times to get a mean and variance of the performance.
For model selection, a nested k-fold CV may be used. The generalisability of the model may
be tested depending on the use-case, for example the ability to interpolate well to points in the
input space where the model was not trained.

In ATLAS, samples used for training are re-used for downstream analysis, which may involve
using the output of the ML model as an observable. For this reason, a standard practice in
ATLAS is to train two identical models on 50% of the dataset each, and record their outputs
on the other 50%.

A list of useful machine learning based terminology is provided in subsection 4.4, which may
help the reader follow the discussions in the following chapters.

4.2 Boosted Decision Trees

Decision Trees (DT) for classification recursively perform cuts on input features in order to split
the dataset into ‘leaves’ with high purity of a single class of samples. The decision for which
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feature is to be used for the split, and the value of the feature at which the split is to be made
is determined based on the optimal value found from the data. This evaluation is based on a
statistical criteria such as purity or combined entropy of the two new nodes.

‘Boosting’ comprises of ensembling a set of weak learners to make one strong learner. Two
popular algorithms are AdaBoost, and Gradient Boosting. Given an objective function that
is being optimised, gradient boosting tries to iteratively improve performance on the objective
function by adding a new tree (trained on the full training data-set) to the ensemble while
freezing everything learnt by the previous trees. If x is the training dataset and y are the class
labels for this dataset,

Fm(x) = Fm−1(x) + γmhm(x), γm = arg min
γ

n∑
i=1

L(yi, Fm−1(xi) + γhm(xi)), (4.1)

where F (x) is the classifier output for input x and the subscriptm indicates the training iteration,
hm is the tree added at iteration m. L is any loss function. Often a ‘learning rate’ 0 < ν ≤ 1,
is used as,

Fm(x) = Fm−1(x) + ν · γmhm(x), 0 < ν ≤ 1 (4.2)
to prevent over-training. Modern BDT algorithms such as XGBoost [59], LightGBM [60] and
CatBoost [61] contain several further optimisations to improve speed, performance and reduce
over-fitting, and they have several tunable hyper-parameters.

The key idea behind AdaBoost is that after each iteration, the misclassified samples in the
training dataset are given a higher weight, encouraging the next tree to correctly classify them,
thereby providing complimentary information to the previous trees.

The advantage of BDTs is that they are much faster to train than neural networks, work out-
of-the-box, without need for much hyper-parameter optimisation, and they are well suited to
structured data. However they are far less flexible compared to neural networks, in terms of
architecture as well as objectives. They are not well suited for unstructured data such as images,
and they also do not interpolate well. These algorithms are widely used for typical classification
problems.

Chapter 6 will describe studies using BDTs to optimise the sensitivity of the off-shell Higgs to
four leptons analysis.

4.3 Deep Neural Networks

Artificial Neural Networks have had a long history of waxed and waned excitement in the
computer science community over the years but following a series of incremental breakthroughs
in training strategy, they are today the most popular form of machine learning.

4.3.1 A simple example

A simple densely connected feed-forward deep neural network (DNN) is shown in Figure 4.11,
where information flows from left to right. The network has a hidden layer with two nodes
each (in green) and one output layer with a single node (in blue). Each node in the network
performs a linear combination of its inputs followed by an ‘activation function’, a non-linear
transformation.

If the network takes two inputs (in red), then each node in the first layer of the model has two
coefficients (known as ‘weights’) corresponding to the two inputs, and a ‘bias’ term (usually the

1Inspired by a similar simple explanation by Stefan Wunsch

48



4.3. DEEP NEURAL NETWORKS

Figure 4.1 – A simple two layered neural network described mathematically by Equation 4.3

term ‘weights’ is used to refer to both the coefficients and the biases together). The output node
similarly performs a linear combination of its inputs (which are now the output of the nodes in
the previous layer) followed by an activation function. These terms can be written in matrix
form as,

Input : x =
[
x1,1
x2,1

]

Weight : W1 =
[
W 1

1,1 W 1
1,2

W 1
2,1 W 1

2,2

]
, W2 =

[
W 2

1,1
W 2

2,1

]

Bias : b1 =
[
b11,1
b12,1

]
, b2 =

[
b21,1

]
Activation: σ(z) = tanh(z) (as an example) applied elementwise.

The output of the network can then be mathematically expressed as in Equation 4.3.

fNN = σ (b2 + W2σ (b1 + W1x)) (4.3)

4.3.2 Backpropagation with AutoDiff

There are several possible algorithms to update the free parameters of a model (the weights of
a neural network), such as genetic algorithms inspired by natural selection. The most successful
one for deep learning is called ‘backpropagation’ [62]. It is the simple idea of correcting the
weights of a network based on the gradient of the loss function with respect to the weights.

There are several different prescriptions for how to use these gradients to make the updates to
the network weights, such as gradient descent (where the network weights are updated after the
evaluation of the loss for each individual training sample) and stochastic gradient descent (where
the updates are made together for a ‘batch’ of training samples). An entire list of ‘optimizers’
have been built to optimise this update process, which include a dampening factor for the update
(known as the ‘learning rate’), taking into account previous updates (known as ‘momentum’),
different learning rates for each parameter, and so on.

The entire training dataset may be used many times (each known as an ‘epoch’) to update the
weights until the best possible performance is attained. These algorithms are only feasible if the
entire forward pass as well as backward propagation of the gradients can be performed extremely
fast, therefore symbolic differentiation would be too inefficient and numerical differentiation
would be inexact and inefficient.

The advent of efficient automatic differentiation packages made these algorithms feasible to
implement on ever growing size of neural networks and datasets. These packages build a shadow
program expression-by-expression, are able to compute the gradients on-the-fly at a given fixed
point. Instead of computing the gradient for a big expression as in symbolic differentiation, these
packages rely on the fact that any expression is constructed from a small set core mathematical
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Figure 4.2 – Pseudo-code to illustrate the concept of shadow programs to compute exact gradients
on-the-fly. Automatic differentiation packages internally build such a map based on differentiation rules

for core mathematical functions.

functions, and knowing the differential for this smaller set is sufficient to compute the gradient
of the entire expression with the help of the chain rule, without the need to ever evaluate or
store the full derivative of the expression. An example shadow program is shown in Figure 4.2.

4.3.3 What sets DNNs apart from other ML models

Neural Networks (NN) offer far more flexibility in terms of architecture compared to other ML
algorithms. They can be trained with multiple objectives, pre-trained on alternative datasets,
and different constrains can be applied to different parts of the architecture. An apparent para-
dox of deeper learning is that over-parameterised networks and very deep networks (networks
with many hidden layers) can often leads to better performance. They also interpolate well
to untrained points in the input space. The reason why over-parameterised networks do not
over-fit, appears to be related to the self-regularised nature of deep neural networks, although
it is still an active research question .

Neural networks could be viewed as an emergent phenomena which requires far more sophisti-
cated tools for interpretability compared to polynomial fits. Nevertheless, introducing inductive
biases in the architecture often lead to better performance, and therefore domain knowledge
remains key to improving performance.

Beyond classification, neural networks can be considered function approximators, or tools for
differentiable programming, which opens the door to new approaches to solving experimental
physics problems [63–66].

4.4 Terminology

Listed below are certain useful machine learning terminology, many of which have been used in
this thesis.
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General terminology:

• Feature: Measurable property (‘observable’ in HEP context), which is usually given as an
input to an ML model.
• Preprocessing: Transformations made to the dataset that make the training easier. This
may also include handling of missing values. A typical example of preprocessing is to
standard-normalise2 the features.
• Hyper-Parameters: Parameters that define the model, beyond the free parameters that
are optimised during the training. For neural networks, typical hyper-parameters include
depth, width of the layers.
• One-Hot Vector Encoding: Is is a type of preprocessing in which a categorical feature is
converted into a format more conducive to neural networks, using only 1,0. For example, if
the feature indicates the preferred type of operating system of an organisation, [1,0,0] may
represent Linux, [0,1,0] Macintosh and [0,0,1] Windows. The idea can easily be extended
to multi-hot encoding when there are overlaps. In the case of jets in HEP, one may reserve
a single number per jet, so [0,0,1] for 1 jet, [0,1,1] for 2 jets and [1,1,1] for 3 jets.
• Transfer Learning: A technique in machine learning where information that is learnt to
solve one problem can be re-purposed to learn to solve a related problem. A typical
example in image recognition is to pre-train convolutional layers on a large but unrelated
image dataset before re-training the network on a smaller target dataset.
• Domain Adaptation: A subset of transfer learning where the task remains the same on the
source (distribution used to train the model) and target (distribution on which the model
will be applied) domains, although their distributions are not identical.
• Multi-label Classification: Classification where each sample may have multiple labels.
• Multi-Task Learning: In this scenario a model has multiple objectives to simultaneously
optimise. It can get difficult to balance the trade-off between performance at the two tasks
and there is often a hyper-parameter used to indicate the relative importance of each task.
• Anomaly Detection: A model is used to detect unexpected, rare samples compared to a
‘normal’ dataset.
• Symbolic Regression: A regression within a space of mathematical expressions. It is useful
for interpretability, and in contexts where an analytical solution is required. Although still
a small subfield within the deep learning context, it could offer useful solutions to physics
problems in the future.
• Receiver Operating Characteristic (ROC) curve: A plot of the True Positive Rate vs the
False Positive Rate of a binary classifier as the discrimination threshold is varied. A π

4 rad
diagonal line indicates performance equivalent to random guesses.
• Area Under the ROC Curve (AUC): A metric often used to evaluate the performance of a
binary classifier, with the value in the range [0,1] (the higher the better). An AUC of 0.5
indicates performance equivalent to a random chance, a classifier with a lower AUC could
be inverted to attain a better than chance performance.
• Early Stopping: For an iterative training algorithm the performance may be evaluated on a
validation dataset. If the validation performance starts to deteriorate due to over-training,
the training may be stopped earlier than the number of training iterations planned. There
may be some leniency as to how much or how consistently the performance must deteriorate
over the iterations for early stopping to be triggered.

Deep Learning related terminology:
2the mean of each variable is moved to zero and the standard deviation to one
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• Dense: In a dense layer (fully connected layer), all the nodes from the previous layer are
connected to all the nodes in the next layer.
• Regularisation: Similar to its meaning in statistics, regularisation is used in deep learning
to add information (such as requirement for smoothness, sparsity, an invariance), often in
the form of an additional objective to simultaneously optimise. It is often used to prevent
over-fitting.
• Convolutional Layer: These layers are often used in computer vision problems to add in-
ductive bias into the architecture of the network. This layer explicitly adds space invariance
or shift invariance into the architecture.
• Graph Nets: Graph based layers are an active field of development aimed at generalising
the concept of convolutional layers to much more abstract graphs. They take graphs, with
edges, nodes and general attributes as input and produce graphs as output. They can
more naturally deal with images on curved surfaces, non-traditional pixel sizes or even
particle physics inspired connections between objects.
• ONNX: Open Neural Network Exchange, is an open format built to represent machine
learning models. The neural networks are represented using the underlying set of base
mathematical functions, which allows even custom layers to be saved and loaded on dif-
ferent neural network platforms.

4.5 Generative Models

Since neural networks can be represented as a series of matrix multiplications (and non-linear,
often elementwise transformations), there is no inherent restriction to the number of outputs of
a network, as long as an appropriate loss function can be determined.

Generative networks can learn to reproduce entire probability distribution functions. If a dis-
criminative network is trained to learn a conditional probability of target Y for some observed
x as P (Y |X = x), generative networks instead learn to reproduce the conditional probability
of observable X for a given target y as P (X|Y = y). The two most popular Deep Generative
Models (DGM), that have been used extensively to generate photo-realistic images of humans,
houses, cars and so on are:

• Generative Adversarial Network (GAN) [8]: It is an unsupervised learning algorithm con-
sisting of two networks, the Generator (G) and the Discriminator (D), where the latter
assists the former in learning a high dimensional target distribution. Since a neural net-
work is deterministic, to induce stochastic behaviour, G is designed to act as a function
that takes a vector of random noise (numbers sampled from a random Gaussian distribu-
tion, for example) as input. This way a range of different outputs can be generated from
the same network G, each time with a different random input vector3. The training algo-
rithm attempts to solve a minimax game where D is trained to differentiate ‘fake’ samples
generated by G from real data (X) while G is trained to produce samples that are miss-
classified by D. The two networks are trained alternately, until the desired convergence
has been reached. The Nash Equilibrium for this two player game is where G produces
samples so similar to the target distribution X that D always outputs 1

2 , however, there
are no mathematical guarantees for convergence of this algorithm. A schematic diagram
of a GAN is shown in Figure 4.3. A variant of this model is developed for calorimeter
simulation in this thesis.

3Two identical photons entering the calorimeter may produce very different looking showers due to the quantum
randomness, the generator must be able to reproduce the full probability distribution of shower images, not just
a single image of a shower
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• Variational AutoEncoder (VAE) [6, 7]: It is an unsupervised learning algorithm that com-
bines deep learning with variational inference. It is a latent variable models that introduce
a set of random variables that are not directly observed but are responsible for the un-
derlying structures in the data. The model is composed of two stacked neural networks,
the Encoder (E) and the Decoder (D), where the latter can be used as a generative model
after training. E compresses the input data x as qθ(z|x) into a lower dimensional latent
space qθ(z), while D learns the inverse mapping, reconstructing the original input from this
latent representation as pφ(x|z). A crucial point to note is that this latent representation
is stochastic, that is qθ(z|x) maps x to a full distribution rather than being a function
x 7→ z Once the composite model is trained, the decoder can be used independently to
generate new data x̃, where new samples are synthesised by sampling z according to the
prior probability density function p(z) thus sampling x̃ from pφ(x|z). The restriction of
the distribution p(z) is enforced during the training. Often times, an adversarial constrain,
or normalising flows are used to improve the distribution of z. A schematic diagram of a
VAE is shown in Figure 4.4.
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Figure 4.3 – Schematic Diagram of a GAN
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Data

σ
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Figure 4.4 – Schematic Diagram of a VAE, where Z = µ+ ε · σ, ε is a random noise drawn from a
multidimensional standard normal distribution, N (0, I).

These models do not simply reproduce the data seen in the training, they can produce new
samples from the approximated underlying distribution and can interpolate continuously though
the input space (as will be described in Subsection 4.5.2).

4.5.1 Wasserstein GANs with Gradient Penalty

The optimisation the original ‘vanilla’ GAN is performing can be mathematically represented
as,

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (4.4)
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where G and D are the generator and discriminator networks respectively, and pz represents
the distribution of the latent space of random noise that the generator takes as input. This
algorithm is difficult to train, and suffers from problems such as:

• Training Instability: A cocktail of heuristic tricks [67] are needed to train a GAN, in ad-
dition to very fine tuning of certain hyper-parameters such as the Training Ratio (number
of training iterations of the discriminator for every iteration of the generator). There is
still no guarantee of convergence.
• Modal Collapse: The generator produces only a few modes of a multi-modal target distri-
bution at any given point in the training process, illustrated with an example in Figure 4.6.
• Vanishing Gradients: When the discriminator is fully trained it may have a loss of zero,
particularly at the very beginning of the training algorithm when the support of the real
and fake distributions are disjoint, illustrated in Figure4.5. The generator cannot learn
because the discriminator does not provide useful gradients.

The instability of the algorithm leads to problems with reproducing even similar performances
for exactly the same architecture. Randomness comes from the train-test split of the dataset,
the random noise taken by the generator, the random initialisations of the network weights and
the randomness coming from parallelisation of the training on multiple GPUs.

Authors of the Wasserstein GAN (WGAN) [68] proposed to replace the discriminator with a
‘critic’ network which estimates the Wasserstein-1 or the Earth-Mover (EM) distance4, between
the real and generated distributions. Such a loss function would not suffer from vanishing
gradients, and it would also take into account all modes of the target distribution. They show
that it can be implemented by enforcing the estimating function (here the critic network) to
be within a k-Lipschitz space5 (where k is some arbitrary natural number). In practice this
is enforced by clipping the weights of the critic network to within [−c, c], where c is a tunable
hyper-parameter. These GANs are more stable to train. The authors suggest interpreting
the critic loss as the Wasserstein-1 distance between the real and generator distributions. The
authors of the Gradient Penalty based Wasserstein GAN (WGAN-GP) [69] further improved
upon this idea by softly enforcing a 1-Lipschitz constrain on the critic. They replaced the weight
clipping with a gradient penalty term in the loss of the critic. The WGAN-GP solved certain
pathological problems of the WGAN such as estimating higher order moments, as demonstrated
in Figure 4.7.

The loss function for the critic reads,

LCritic = Ex̃∼pgen [D(x̃)]− Ex∼preal [D(x)]︸ ︷︷ ︸
Wasserstein Distance

+λEx̂∼px̂

[
(||∇x̂D(x̂)||2 − 1)2

]
︸ ︷︷ ︸

Gradient Penalty

. (4.6)

Here preal is the target probability distribution, and pgen is the probability distribution of outputs
of the generator network (which takes random numbers drawn from some distribution as the
input latent space) and D(x) is the output of the critic network for a given input x. The term
Ex̃∼pgen [D(x̃)] represents the critic’s ability to correctly identify synthesised showers, while the

4

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ
[
‖x− y‖

]
, (4.5)

where Π(Pr,Pg) denotes the set of all joint distributions γ(x, y) whose marginals are Pr and Pg respectively.
γ(x, y) indicates how much “earth” must be transported from x to y in the ‘soil distribution‘ Pr into order to
transform it into the distribution Pg, and the EM distance is minimum total earth one would have to move, a
famous solution to an optimal transport problem.

5Lipschitz constrain intuitively is an upper limit to the norm of the gradient of the function.
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Figure 4.5 – Optimal discriminator and (weighted clipped) critic when learning to differentiate two
Gaussians. The discriminator of a vanilla GAN saturates and results in vanishing gradients, whereas

the WGAN critic provides clean gradients on all parts of the space. [68]
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a real 1D number. Both networks are optimized with the Adam optimizer with the learning rate of
1e-4.

In the regularized version, we choose �1 = �2 = 0.005. The comparison between the generator
distribution from standard GAN and our proposed regularized GAN are shown in Figure 9.

Figure 9: Comparison results on a toy 2D mixture of Gaussians dataset. The columns on the left
shows heatmaps of the generator distributions as the number of training epochs increases, whereas
the rightmost column presents the target, the original data distribution. The top row shows standard
GAN result. The generator has a hard time oscillating among the modes of the data distribution, and
is only able to “recover” a single data mode at once. In contrast, the bottom row shows results of our
regularized GAN. Its generator quickly captures the underlying multiple modes and fits the target
distribution.

D APPENDIX: COMPARISON WITH VAEGAN

In this appendix section, we demonstrate the effectiveness and uniqueness of mode-regularized
GANs proposed in this paper as compared to Larsen et al. (2015) in terms of its theoretical dif-
ference, sample quality and number of missing modes.

With regard to the theoretical difference, the optimization of VAEGAN relies on the probabilistic
variational bound, namely p(x) � Eq(z|x)[log p(x|z)] � KL(q(z|x)||p(z)). This variational bound
together with a GAN loss is optimized with several assumptions imposed in VAEGAN:

1. In general, VAE is based on the assumption that the true posterior p(z|x) can be well
approximated by factorized Gaussian distribution q.

2. As to VAEGAN, It is also assumed that the maximum likelihood objectives does not con-
flict with GAN objective in terms of probabilistic framework.

The first assumption does not necessarily hold for GANs. We have found that in some trained
models of DCGANs, the real posterior p(z|x) is even not guaranteed to have only one mode, not to
mention it is anything close to factorized Gaussian. We believe that this difference in probabilistic
framework is an essential obstacle when one tries to use the objective of VAEGAN as a regularizer.
However, in our algorithm, where we use a plain auto-encoder instead of VAE as the objective. Plain
auto-encooders works better than VAE for our purposes because as long as the model G(z) is able
to generate training samples, there always exists a function E⇤(x) such that G(E(x)) = x. Our
encoder can therefore be viewed as being trained to approximate this real encoder E⇤. There are
no conflicts between a good GAN generator and our regularization objective. Hence, our objectives
can be used as regularizers for encoding the prior knowledge that good models should be able to
generate the training samples. This is why our work is essentially different from VAEGAN. In our
experiments, we also believe that this is the reason why VAEGAN generates worse samples than a
carefully tuned regularized GANs.

In terms of sample quality and missing modes, we run the official code of VAEGAN 3 with their
default setting. We train VAEGAN for 30 epochs 4 and our models for only 20 epochs. For fairness,

3https://github.com/andersbll/autoencoding_beyond_pixels
4Note that we also trained 20-epoch version of VAEGAN, however the samples seemed worse.
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Figure 4.6 – Example of a GAN with mode collapse. At every stage the discriminator only learns to
differentiate between the real images and the generator images, and the generator learns only to

produces images from one or a few modes that fool the discriminator. [70]

term Ex∼preal [D(x)] represents the critic’s ability to correctly identify showers from target distri-
bution. Together they estimate the Wasserstein-1 distance between the real distribution and the
distribution from the generator. The last term in the loss function, λEx̂∼px̂ [(||∇x̂D(x̂)||2 − 1)2],
is the two-sided gradient penalty (which leads to the “GP” in WGAN-GP), where x̂ is a random
point along the straight line connecting a point from the real distribution preal and generator
distribution pgen, and λ is a hyper-parameter that indicates the relative importance of the final
term in the loss and is known as the Gradient Penalty Weight (GPW). This additional loss
term is a way of softly enforcing the 1-Lipschitz constrain mentioned above, while also penal-
ising very low gradients (demonstrated mathematically in [69]) Penalising low gradients is not
mathematically required but is often found to help the training.

Unlike the vanilla GANs, WGANs do not require deliberate under-training of the discriminator,
on the contrary, it is advised to use a high training ratio (number of times the discriminator is
trained for each time the generator is trained) to ensure that the critic is fully trained after each
iteration of the generator. The default recommendation is a training ratio of 10. WGAN-GPs
also have certain problems:

• Slow training: WGAN-GPs take longer to train, requiring many more epochs than vanilla
GANs. The WGAN-GP developed in this thesis was trained for 25000 epochs and a related
project6 has reported having trained for over two million epochs.
• Oversold Loss Interpretability: Although the authors encourage interpreting the loss as a

6A WGAN used in ATLAS to train on voxelised calorimeter images, a technical note is in preparation at the
time of writing.
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Proposition 1. Let Pr and Pg be two distributions in X , a compact metric space. Then, there is a
1-Lipschitz function f⇤ which is the optimal solution of maxkfkL1 Ey⇠Pr [f(y)] � Ex⇠Pg [f(x)].
Let ⇡ be the optimal coupling between Pr and Pg , defined as the minimizer of: W (Pr, Pg) =
inf⇡2⇧(Pr,Pg) E(x,y)⇠⇡ [kx� yk] where ⇧(Pr, Pg) is the set of joint distributions ⇡(x, y) whose
marginals are Pr and Pg , respectively. Then, if f⇤ is differentiable‡, ⇡(x = y) = 0§, and xt =

tx + (1� t)y with 0  t  1, it holds that P(x,y)⇠⇡

h
rf⇤(xt) = y�xt

ky�xtk

i
= 1.

Corollary 1. f⇤ has gradient norm 1 almost everywhere under Pr and Pg .

3 Difficulties with weight constraints

We find that weight clipping in WGAN leads to optimization difficulties, and that even when op-
timization succeeds the resulting critic can have a pathological value surface. We explain these
problems below and demonstrate their effects; however we do not claim that each one always occurs
in practice, nor that they are the only such mechanisms.

Our experiments use the specific form of weight constraint from [2] (hard clipping of the magnitude
of each weight), but we also tried other weight constraints (L2 norm clipping, weight normalization),
as well as soft constraints (L1 and L2 weight decay) and found that they exhibit similar problems.

To some extent these problems can be mitigated with batch normalization in the critic, which [2]
use in all of their experiments. However even with batch normalization, we observe that very deep
WGAN critics often fail to converge.

8 Gaussians 25 Gaussians Swiss Roll

(a) Value surfaces of WGAN critics trained to op-
timality on toy datasets using (top) weight clipping
and (bottom) gradient penalty. Critics trained with
weight clipping fail to capture higher moments of the
data distribution. The ‘generator’ is held fixed at the
real data plus Gaussian noise.

(b) (left) Gradient norms of deep WGAN critics dur-
ing training on the Swiss Roll dataset either explode
or vanish when using weight clipping, but not when
using a gradient penalty. (right) Weight clipping (top)
pushes weights towards two values (the extremes of
the clipping range), unlike gradient penalty (bottom).

Figure 1: Gradient penalty in WGANs does not exhibit undesired behavior like weight clipping.

3.1 Capacity underuse

Implementing a k-Lipshitz constraint via weight clipping biases the critic towards much simpler
functions. As stated previously in Corollary 1, the optimal WGAN critic has unit gradient norm
almost everywhere under Pr and Pg; under a weight-clipping constraint, we observe that our neural
network architectures which try to attain their maximum gradient norm k end up learning extremely
simple functions.

To demonstrate this, we train WGAN critics with weight clipping to optimality on several toy distri-
butions, holding the generator distribution Pg fixed at the real distribution plus unit-variance Gaus-
sian noise. We plot value surfaces of the critics in Figure 1a. We omit batch normalization in the

‡We can actually assume much less, and talk only about directional derivatives on the direction of the line;
which we show in the proof always exist. This would imply that in every point where f⇤ is differentiable (and
thus we can take gradients in a neural network setting) the statement holds.

§This assumption is in order to exclude the case when the matching point of sample x is x itself. It is
satisfied in the case that Pr and Pg have supports that intersect in a set of measure 0, such as when they are
supported by two low dimensional manifolds that don’t perfectly align [1].
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Figure 4.7 – Value surfaces of WGAN critics trained on toy datasets using weight clipping and
gradient penalty, with real data in orange. The former fails to capture higher moments of the
distributions. The fake data was fixed at real data plus unit-variance Gaussian noise. [68]

measure of the Wasserstein-1 distance between the two distributions, they also note that
the critic training loss increases after a while even as the validation loss continues to fall. In
practice, conditioned WGAN-GPs often continue to improve well after the loss appears to
be only randomly fluctuating. The loss is not a sufficiently reliable metric to rank various
versions of generators or pick the best one.

• Loss of performance: The gradient penalty can inherently cripple the critic from learning
certain patterns in the data. This will demonstrated in Chapter 5 and a solution will also
be suggested in the context of HEP.

• Gradient penalty not applied in entire domain: In theory the gradient penalty on the
critic must be applied everywhere, but in practice it is only applied at random points on a
straight line between real and fake data points according to px̂. Authors of Ref. [71] have
attempted to improved upon it with an additional loss term.

Despite these shortcomings, in this thesis, WGAN-GPs were found to be most useful, since
usually there were no problems with the availability of computational resources (important due
to the long training time of WGAN-GPs, typically taking between 1 and 6 days depending on
specifications of the training and hyper-parameters). Recently a large scale study of various
flavour of GANs [72] also concluded that WGAN-GPs are the recommended flavour of GANs if
computing resources are not very limited, and recommended a different kind of regularisation if
resources are limited. Although the vanilla GANs are unstable, with the help of heuristic tricks,
once in many tries they will outperform regularised GANs [73] and they therefore remain useful
for organisations with extremely large resources, such as at Google.

4.5.2 Key aspects for application in HEP

(a) ALI [5] (64x64)

(b) Conditional PixelCNN [13] (32x32)

(c) Our results (128x128 with 128 filters)

(d) Mirror interpolations (our results 128x128 with 128 filters)

Figure 4: Interpolations of real images in latent space

see from this plot that the model converges quickly, just as was originally reported for EBGANs.
This seems to confirm the fast convergence property comes from pixel-wise losses.

4.5 Equilibrium for unbalanced networks

To test the robustness of the equilibrium balancing technique, we performed an experiment advan-
taging the discriminator over the generator, and vice versa. Figure 6 displays the results.

By maintaining the equilibrium the model remained stable and converged to meaningful results. The
image quality suffered as expected with low dimensionality of h due to the reduced capacity of the
discriminator. Surprisingly, reducing the dimensionality of z had relatively little effect on image
diversity or quality.

Figure 5: Quality of the results w.r.t. the measure of convergence (128x128 with 128 filters)

7

Figure 4.8 – Interpolation of the latent space for BEGAN. [74]
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DGMs have demonstrated the ability to interpolate smoothly through the input space, for
example in Figure 4.8. Most of the research effort has however been on producing more and
more photo-realistic images that impress the human eye, which is not necessarily the same as
objective as correctly modelling a probability distribution. Some papers acknowledging that the
entire probability distribution is not reproduced, for example the authors of Ref. [74] note “we
see few older people and there are more women than men” in the generated images compared to
the training dataset. This implies that care needs to be taken in the choice of DGM architecture
in order to correctly model the full probability distribution.

It is not straightforward to make systematic assessments of probability distributions generated
by DGM because marginal distributions do not give the full picture. Over-training is also
tricky to spot. In the context of HEP, such models can in fact be evaluated by looking at
reconstructed physics observables which catch the correlations that are of interest. In fact even
relevant over-training can be spotted at the tails of distributions, because statistical fluctuations
in the training set may result in systematic effects in the DGM distributions. Nevertheless, there
is no single metric that can be used to confidently quantify the performance of the models, and
manual comparisons by eye are prone to confirmation biases.

4.6 Likelihood-Ratio Trick

Machine Learning is traditionally used in particle physics for classification, trained on simulated
data of signal and background events and then applied on unlabelled data recorded from colli-
sions the LHC. The output of the model is either used to filter out background events, or used
as an observable for the final fit.

In HEP the final sensitivity of the analysis is highest when the selection criteria has a high back-
ground rejection (fraction of background samples that are rejected) while maintaining high signal
efficiency (fraction of signal events retained). Signals in HEP tend to be orders of magnitude
smaller than the background, but it is customary to train a classifier for a signal vs background
problem after equalising the weights of the samples, and then optimising the decision threshold
to use based on the appropriate metric of performance evaluation (some of them are discussed
in section 4.10).

The most powerful test statistic according the Neyman-Pearson lemma is the likelihood ratio,

λ (D; θ0, θ1) =
∏
x∈D

p (x | θ0)
p (x | θ1) , (4.7)

where x are individual observations, D = {x1, . . . , xn} is the observed data, p (x | θ0), p (x | θ1)
are the conditional probability distributions of x for null hypothesis θ0, and alternate hypothesis
θ1 respectively. These conditional probability distributions quickly become intractable, however,
they can be sampled from using simulators. The simulations are usually done separately for the
signal and background processes providing an estimate of the probability distributions p (x | S)
and p (x | B). While p (x | θ0) = p (x | B), p (x | θ1) = p (x | S) + p (x | B).

It can be shown [75] that

λ′ (D; θ0, θ1) =
∏
x∈D

pU (u = s(x) | θ0)
pU (u = s(x) | θ1) (4.8)

is equivalent to Equation 4.7 for U = s(x) where s is monotonic with the density ratio

r (x; θ0, θ1) = p (x | θ0)
p (x | θ1) . (4.9)
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If a probabilistic classification model (which is approximating a Bayes optimal classifier) learns
the decision function,

s∗(x) = p (x | θ1)
p (x | θ0) + p (x | θ1) , (4.10)

and if it were perfectly trained, then its output would be sufficient to obtain

r(x|θ0, θ1) = 1− s(x)
s(x) . (4.11)

Considering a signal strength (µ) estimation analysis, a classifier trained on equal weighted
number of signal and background events to differentiate them learns the decision function,

c∗(x) = p (x | S)
p (x | B) + p (x | S) , (4.12)

so for a parameter estimation of µ, we see from the relation,

p (xi | µ = 1)
p (xi | µ = 0) = p (xi | S) + p (xi | B)

p (xi | B) = c(x)
(1− c(x)) + 1, (4.13)

that indeed the output of the classifier does help arrive at the likelihood ratio.

In practice the classifier is never optimal but performs a useful dimensionality reduction. The
output of the classifier is used an an observable for the final fit of the analysis. The last bin of
the observable usually contains most of the useful information.

4.7 Physics Aware Models

Although it has been demonstrated that deep neural networks can learn high level features in
HEP datasets [76], limited training statistics necessitates feature engineering by hand, or physics
inspired inductive biases in the architecture such as Lorentz Boost Networks [77].

Going beyond classification, a new approach in HEP has been to re-imagine the inference frame-
work given the new tools available, whether it be optimising the final objective directly [64],
bump hunting [63], or detector unfolding [65]. The next section describes one such family of
strategies [66] for likelihood-free inference which will be used in an off-shell Higgs to four leptons
study in Chapter 7.
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Figure 1: Schematic overview of the techniques presented in this Letter.2

of two integrals). However, in Ref. [28] we show that they can be used to define functionals Lr[g]
and Lt[g] that are extremized by the likelihood ratio

r(x|✓0, ✓1) ⌘
p(x|✓0)

p(x|✓1)
= arg min

g
Lr[g] (4)

and the score

t(x|✓0) ⌘ r✓ log p(x|✓)
�����
✓0

= arg min
g

Lt[g] , (5)

respectively.
We implement this approach through machine learning, approximating the functionals Lr[g] and

Lt[g] through suitable loss functions based on data available from the simulator, see Fig. 1. The
extremization of the loss functional is estimated by training a deep neural network using stochastic
gradient descent on the network’s parameters.

Based on this idea, we define the Rascal1 technique that uses both pieces of information – the
joint likelihood ratio and the joint score – simultaneously to train an estimator r̂(x|✓0, ✓1) for the
likelihood ratio. This approach is essentially a machine-learning version of the Matrix Element
Method. It replaces computationally expensive numerical integrals with an upfront regression
phase, after which the likelihood ratio can be evaluated in microseconds per event and parameter
point. Instead of manually specifying simplified smearing functions, the effect of parton shower and
detector is learned from full simulations. By using all available information from the simulator, this
estimator maximizes the fidelity of the likelihood ratio estimation (and therefore the precision of
measurements), at the cost of a somewhat complex architecture.

Local approximation

In the neighborhood of the Standard Model (or any other reference point), we can approximate
the score t(x|✓) as independent of ✓, and Eq. (5) is solved by

plocal(x|✓) =
1

Z(✓)
p(t(x|✓SM ) | ✓SM ) exp[t(x|✓SM ) · (✓ � ✓SM )] (6)

1 Ratio and score approximate likelihood ratio
2 Parts of the figure are based on Ref. [31] and on an image created by Frank Krauss.

Figure 4.9 – Schematic overview of the family of techniques investigated [78]
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In several fields and particularly in particle physics, the best description of a complicated process
is often given by a simulation, rather than an analytical equation. These simulations usually
can only run in forward-mode; given initial conditions and the laws of physics it can generate a
possible outcome. Given the final outcome, the simulation framework cannot describe the pos-
sible history. Even though the full probability distribution of the outcomes becomes intractable,
it can be sampled from using, for example a Monte-Carlo forward simulation. Particle physics
is interested in the inverse problem.

It has already been described above how these simulated events in particle physics can be used to
train models from which the likelihood ratio can be extracted, however, such a strategy loses out
on the opportunity to fully take advantage of the simulation framework. Additional information
about the hidden intermediate states, which would be completely inaccessible for real events, can
be extracted from the simulator for simulated events. Since the final goal is to use the trained
model to apply the model in real data, care has to be taken in designing a training algorithm
that only requires this additional information at training time, but not at inference time.

In the HEP case, a family of ML based inference strategies have been recently introduced [66, 78–
80] that could appreciably improve constrains on EFT (see section 2.1.5) parameters compared
to traditional methods, some of these models can scale to multiple parameter estimation, while
some others significantly improve sample efficiency (require less simulated data) compared to
both traditional methods and generic machine learning methods that do not make use of the
particle physics structure.

The use of such techniques is studied for the off-shell Higgs to four leptons analysis is studied
in Chapter 7.

4.8.1 Key Ideas

The main objective in EFT studies at the LHC is often to measure a parameter, say θ, of the
EFT Lagrangian using data from the collisions, x, i.e. measure p(θ|x). The authors of these
techniques note that the probability of measuring x given some θ factorises into the parton-level
process, which depends on the theory parameters, followed by the parton shower and detector
interactions, which usually do not depend on the theory parameter,

p(x | θ) =
∫

dzdetector
∫

dzshower
∫

dz p (x | zdetector ) p (zdetector | zshower ) p (zshower | z) p(z | θ)︸ ︷︷ ︸
=p(x,zdetector ,zshower ,z|θ)

.

(4.14)
Here z ≡ zparton is the parton level momenta, zshower is the state after parton showering, and
zdetector represents the state after detector interactions. These are latent variables that cannot
be observed in real life.

The joint likelihood ratio (imagine if the parton level momenta could be observed),

r (x, z | θ0, θ1) ≡ p (x, zdetector , zshower , z | θ0)
p (x, zdetector , zshower , z | θ1)

= p (x | zdetector )
p (x | zdetector )

p (zdetector | zshower )
p (zdetector | zshower )

p (zshower | z)
p (zshower | z)

p (z | θ0)
p (z | θ1) = p (z | θ0)

p (z | θ1) ,

(4.15)
is independent of the showering and detector interactions, and it can therefore be extracted right
at the parton level, where it is still tractable. Similarly, the joint score,

t (x, z | θ0) ≡ ∇θ log p (x, zdetector , zshower , z | θ)|θ0 = ∇θp(z | θ)
p(z | θ)

∣∣∣∣
θ0

, (4.16)
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which describes the gradient of the likelihood with respect to the θ can also be obtained for any
desired value of θ.

These two quantities in themselves appear to be worthless, because in practice, z is unobserved.
If only there were a computational tool that could learn to marginalise the dependence on z. In
[79] the authors make the crucial connection to the useful quantities,

r (x | θ0, θ1) ≡ p (x | θ0)
p (x | θ1) , (4.17)

t (x | θ0) ≡ ∇θ log p(x | θ)|θ0 , (4.18)

by defining functionals,

Lr = Ep(x,z|θ1)
[
(r (x, z | θ0, θ1)− r̂(x))2

]
, (4.19)

Lt = Ep(x,z|θ0)

[(
t (x, z | θ0)− t̂ (x | θ0)

)2
]

(4.20)

that are minimised by r∗(x) = arg minr̂ Lr = Ep(z|x,θ1) [r (x, z | θ0, θ1)] = r (x | θ0, θ1), and
t∗(x) = Ep(z|x,θ0) [t (x, z | θ0)] = t (x | θ0) respectively.

This minimisation is, of course, approximated by training neural networks on suitable loss
functions, which are known to be able to learn the underlying decision function even with noisy
labels. A schematic diagram of this approach is shown in Figure 4.9.

When a classifier is trained for a θ0 vs θ1 problem (two datasets generated at different values
of a theory parameter, or even a signal vs background problem) with only {0,1} labels, the
decision function it has to learn is very different from the labels provided. Training a model to
regress the join likelihood ratio could provide labels that are closer to the target function. This
is illustrated with a toy example in Figure 4.10. A visual representation of the behaviour of the
score for a one dimensional toy example is also shown in Figure 4.11.

It is worth noting that the joint likelihood ratio for background events with a different final state
(different composition of particles) will be a constant number (there is absolutely zero probability
that a different set of particles at parton level can come from the process of interest, this is
computed at the parton-level). While the additional information from the simulator is useful
in training networks for theory parameter estimations, for simple signal strength measurement
problems, a simple signal vs background classifier is likely the best choice.

4.8.2 MadMiner Package

MadMiner [81] is a python package developed to,

• Automatise the extraction of the additional information from MadGraph5_aMC [82].

• Perform morphing, a technique that allows to cheaply re-weight samples from one theory
parameter point to another without the use of an event generator.

• Unweight events by sampling them based on their weights.

• Compute the additional labels required for training using the augmented data.

• Train various models using one of the pre-defined loss functions as specified.

• Perform simple inference.
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Figure 4.10 – Illustration of decision functions with a one-dimensional Gaussian toy example. Left:
classifiers trained to distinguish two sets of events generated from different hypotheses θ0, θ1 (green
dots) converge to an optimal decision function s(x|θ0, θ1) (in red). Right: regression on the joint

likelihood ratios r(xe, ze|θ0, θ1) of the simulated events (green dots) converges to the likelihood ratio
r(x|θ0, θ1) (red line) [66].
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Figure 4.11 – Illustration of score with a one-dimensional Gaussian toy example. Left: probability
density functions for different values of θ and the scores t(xe, ze|θ) at generated events (xe, ze). These
tangent vectors measure the relative change of the density under infinitesimal changes of θ. Right:
dependence of log p(x|θ) on θ for fixed x = 4. The arrows show the (tractable) scores t(xe, ze|θ). [66]
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The package can interact with MadGraph5_aMC, Pythia 8 [83] and Delphes [84] to allow con-
solidated phenomenological studies.

The inference capabilities are likely to be extended with an upcoming version of pyhf [85]. To
be able to use MadMiner, an LHC experiment will need to adapt its software framework to pass
through the augmented data through the simulation chain, and write the data in a MadMiner
readable format.

4.8.3 Mining Gold: The Additional Information

The “gold” that is “mined” from the simulation framework is a set of new weights for each event
under different physics scenarios. The event generator can be given a parton-level distribution
and asked what the probability is of such an event occurring based on some theory model. If
θ is the parameter to be measured, an even can be generated at say, θ = θ0 using an event
generator. The value of θ can then be changed in the event generator and the probability of
obtaining this same event can be computed for a new value of the parameter. At this stage the
simulation is indeed able to run “backwards”.

In practice these events are re-weighted using MadGraph5_aMC to several other benchmark points,
θ = {θ1, θ2, θ3, . . .}. The number of minimum benchmark points needed depends on the physics
process (as is shall be seen when morphing is discussed in Chapter 7).

The weight of an event is directly proportional to the squared matrix element. The different
weights of an event indicate the probability of observing the event under the different possible
values of θ, and can therefore be used to compute the joint likelihood ratio, r (x | θ0, θ1).

4.8.4 Models that learn on augmented data

Several prescription of ML models are listed in [66] that take advantage of the additional the
information from the simulator in different ways. The two that were found to be useful in
Chapter 7 are described below.

4.8.4.1 ALICES

The first is a parameterised model called ALICES (Approximate Likelihood with Improved
Cross-entropy Estimator and Score)[86]. It takes as input the two values of the theory param-
eter, θ0 and θ1, that are to be compared as input, in additional to the features of the samples,
x. The output is denoted ŝ(x|θ0, θ1).

Starting from the standard binary-cross entropy loss,

L[ŝ(x)] = − 1
N

∑
(xi,yi)

[
yi log(ŝ(xi)) + (1− yi) log(1− ŝ(xi))

]
, (4.21)

where ŝ(x) is the output of the network, and yi is a binary label {0,1}) that indicates whether or
not the sample xi is from θ1. yi is an unbiased but very high variance estimator for s(xi|θ0, θ1)
(see Figure 4.10), but given that the joint likelihood ratio is available from the simulator, and
the fact that it can be used to compute a much lower variance estimator s(xi, zi|θ0, θ1) (see
Equation 4.11), in this case an ‘improved cross-entropy’ loss can be obtained by replacing yi
with s(xi, zi|θ0, θ1). This change also brings both terms of the cross-entropy loss into play for
the same sample.
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In addition, given that the neural network output is differentiable with respect to its inputs, the
estimated score can be calculated as,

t̂(x|θ0, θ1) = ∇θ log r̂(x|θ0, θ1) = ∇θ log
(1− ŝ(xi|θ, θ1)

ŝ(xi|θ, θ1)

)
. (4.22)

The joint score can therefore also be used to guide the training with an additional regression
task. Note that this is different from the usual auxiliary task training where the network is made
to regress an additional quantity at an additional output node in the hope that this task helps
the network better solve the original problem. Here there is no additional output node, because
the additional loss penalises the gradient of the same output node. The final loss of ALICES
reads,

LALICES[ŝ(x|θ0, θ1)] = − 1
N

∑
(xi,zi)∼p(xi,zi)

[
s(xi, zi|θ0, θ1) log(ŝ(xi))

+ (1− s(xi, zi|θ0, θ1) log(1− ŝ(xi))

+ α (1− yi)

∣∣∣∣∣∣t(xi, zi|θ0, θ1)−∇θ log
(1− ŝ(xi|θ, θ1)

ŝ(xi|θ, θ1)

)∣∣∣∣∣
θ0

∣∣∣∣∣∣
2]
. (4.23)

Here α is a tunable hyper-parameter that balances the two loss terms. The factor (1 − yi) is
necessary to guarantee the correct minimum of the squared error on the score.

4.8.4.2 SALLY

The second model, SALLY (Score Approximates Likelihood Locally), is a neural network
trained to regress the joint score t(x, z|θ0) at the reference point θ0, with a simple loss,

LSALLY [t̂(x)] = MSE
[
t(xi, zi|θ0), t̂(xi)

]
(4.24)

Since it is not parameterised on θ, it is only locally optimal [66] near the reference point, but
requires far less training data compared to ALICES. The output of SALLY can be treated like
any other observable, binned as a histogram for maximum likelihood fit.

4.9 Permutation Importance

Permutation Importance (PI) is a technique for evaluating the importance of a particular input
feature to a model, based on an appropriate metric. Unlike feature importance provided by
certain BDT packages (based on the internal parameters of the trained BDT and the training
data), PI is computed on a given dataset, which may or may not even come from the same
distribution as the training dataset.

Arguably, the best way to evaluate the importance of a features is with the iterative removal
method. To start with, train one model with all features and another model with all-but-one
feature, and use the drop in performance (based on an appropriate metric) to quantify the
importance of the dropped feature. This assumes that the model is perfectly optimised for
each case, which is rarely done in practice. But even if the models were perfectly optimal,
this step alone would not perfectly account for correlations between features. For example, if
two features, f1 and f2, are related as f2 = 2f1, then each may individually appear to have
zero importance (if the model learns to get the same information from both features), although
dropping both together might significantly reduce performance. To be more careful in feature
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selection, one might choose the new model with one less feature than the original as the baseline,
and iteratively find the next least important feature to drop.

The iterative addition strategy which is often used in ATLAS is the opposite. It starts with one
feature and adds a new feature one at a time based on which one best improves performance.
This suffers from even worse pathological problems. Consider two features often found in ATLAS
datasets, the φ of the first and second jet. Individually, φjet1, φjet2 are totally symmetric in φ
and give no useful information. They would never be selected in this strategy. However, as soon
as both of them are included, the model might learn that ∆φjj = φjet1 − φjet2 is an incredibly
useful quantity.

Both these methods are computationally very expensive. In HEP, the search is made easier by
first comparing one dimensional distributions of signal and background events for each feature
and only investigating subset of these features that appear to have discriminating power. This
strategy disregards all correlations and in fact even with domain knowledge, it is not obvious
what higher order correlations might be useful for the model.

PI is a technique that attempts to simulate the removal of a feature for a trained model to assess
feature importance. If the values of this feature in the dataset are simply replaced with zeros,
the mean or even random numbers dawn from a uniform distribution, it may introduce biased
behaviour in the model. The values must be replaced from a random distribution of the same
shape as the distribution of this feature. This can be done in practice simply by shuffling the
values of the feature between the samples. The overall distribution of the feature remains the
same, but its correlation to the label of the sample is completely broken7.

The drop in performance of the model due to the shuffling indicates the importance of the shuffled
feature. The exact value of the importance will vary from one shuffle to another. Therefore the
shuffling and evaluation for the same feature is performed multiple times (with a new shuffle
permutation), and the mean and variance (or standard error) may be reported (which works
under the assumption of a large number of samples).

Just like iterative removal, PI can provide unrealistic feature importance in cases where two or
more features have high correlation, especially for random forests or neural networks with large
drop out rates. These are models that are forced to learn multiple ways of reconstructing the
same information, and therefore more likely to separately extract the same information from
two correlated features, which makes each of them appear less important with PI.

The metric used to evaluate PI plays a large role in determining which features are important
and it must be chosen with consideration for the final objective (which will be demonstrated in
Chapter 6). For classification, the AUC is usually a good option, although in particle physics,
there is often a better objective based metric.

The benefits of PI are:

• PI provides an error on feature importance.
• Applicable to most ML models, including neural networks. In principle applicable also to
decision making algorithms that do not use any learning.
• Objective driven evaluation metrics (such as discovery significance) can be used instead of
generic metrics such as cross-entropy gain.
• The value of the importance is interpretable (for example, the expected drop in discovery
significance by removing a given feature).
• Can be evaluated on new datasets that come from a different distribution compared to the
training dataset.

7This trick will be revisited in Chapter 8 for the Aspiration Network.
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• In practice, PI rankings where found to be more stable compared to feature importance
that come from trained BDT models for multiple identical trainings (with different random
seed) in the work described in this thesis.

The idea of permutation importance can be extended to generative models, for example by
evaluating how important each output cell of a generative network for a critic’s evaluation of
the Wasserstein distance.

There are several other tools to enhance interpretability of models with their own advantages
and disadvantages (in terms of computational cost as well as interpretability), such as SHAP
(SHapley Additive exPlanations)) [87] a strategy inspired from coolition game theory, but these
will not be discussed here.

The large majority of ML models used in ATLAS are at the final analysis stage, to improve
event selection or create a powerful observable. The ATLAS community prefers simpler models,
trained with fewer input variables if it can produce similar results to a more complex one. It is
partly because using fewer input variables demands fewer studies to entire that these features
are well described by the simulation, and not too sensitive to systematic uncertainties. Neural
networks are sometimes perceived to be less interpretable than BDTs. Considering a large
amount of effort goes into feature selection in numerous analyses, PI is a very valuable tool to
the ATLAS community.

Due to several drawbacks of existing implementations of PI, an open source package was devel-
oped that supports functionalities like sample weights, physics based metrics and AUC metric
that can handle negative weights.
PermutationImportancePhysics8.

4.10 Sensitivity Metrics

The particle physics community uses, and in certain cases has developed, a vast range of statis-
tical tools for analysis. This section will only describe the essential ideas behind certain metrics
used to evaluate the performance of various ML approaches in the following chapters.

The ideal way to evaluate a model that is meant to improve the sensitivity of a parameter mea-
surement is to look at the negative log likelihood curve for the final fit. This is computationally
expensive when performed repeatedly for a hyper-parameter scan. Some typical metrics that
are used to estimate the sensitivity of an analysis strategy are briefly discussed below. These
metrics however do not take into account quantum interference between signal and background
events, and therefore their counterparts taking interference into account has also been obtained.

4.10.1 Simple case: Counting experiment without interference

Consider a counting experiment where an event might come from the signal process or some
background process, and the objective of the experiment is to measure the signal strength µ.
The total expected number of events is,

Nexp = µS +B, (4.25)

where S, B are the expected number of signal and background events for the Standard Model,
estimated with Monte-Carlo simulations. The Poisson likelihood of observing N events is then,

L = Poisson(µS +B,N) = (µS +B)N

N ! e−(µS+B). (4.26)

8pip install PermutationImportancePhysics
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We can also compute the negative log-likelihood and its derivative,

− lnL = −N ln (µS +B) + µS +B, (4.27)

∂ − lnL
∂µ

= −N S

µS +B
+ S.

The maximum likelihood estimator µ̂ is at the minimum of the negative log-likelihood,

∂ − lnL
∂µ

∣∣∣∣
µ̂

= 0 =⇒ N = µ̂S +B.

It can be verified that it is indeed a minimum with the second derivative. Next we assume a
Gaussian likelihood curve, which is usually a reasonable approximation near µ̂. We can thus
compute the width 9,

σ2
µ = 1

∂
2 lnL
∂

2
µ

∣∣∣∣
µ̂

, (4.28)

1
σ2
µ

= NS2

(µ̂S +B)2 = S2

µ̂S +B
(4.29)

and considering
< µ̂ >= 1, (4.30)

< σµ >=
√
S +B

S
. (4.31)

This is the classical result. The inverse now gives us an approximate “significance” formula for
measurement,

Z = S√
S +B

. (4.32)

4.10.2 Counting experiment with interference

Based on the discussion in Chapter 2 that lead to Equation 2.52 it is clear that in the case of
interference, the total expected number of events no longer scales linearly with the signal strength
parameter µ, contrary to Equation 4.25. It follows straightforwardly from Equation 2.52 that
we can simply replace Equation 4.25 with

Nexp = µS +√µI +B, (4.33)

where I is the interference component. As discussed in Chapter 2, the interference component
can be (and often is) negative, which means that Nexp can sometimes decrease as µ increases.

9The second derivative of the log of a Gaussian function g(x) provides the width σ:

g(x) = 1
σ
√

2π
exp
(
−1

2
(x− µ)2

σ
2

)
, ln g(x) = ln

(
1

σ
√

2π

)
− 1

2
(x− µ)2

σ
2 ,

d

dx
ln g(x) = − (x− µ)

σ
2 ,

d
2

dx
2 ln g(x) = − 1

σ
2 .
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In practice, I can be computed from Monte-Carlo samples10 as,

I = SV I − S − V, (4.34)

where S is the signal-only simulation, V is the simulation of only the background processes
that interfere with the signal and SVI is a simulation of the signal and interfering background
processes together, taking into account interference effects.

If we also include non-interfering background processes (denoted as B2) then the Equation 4.33
becomes:

Nexp = µS +√µI + V +B2 (4.35)

but for the following derivation we will use

B = V +B2. (4.36)

Following the same steps as the previous case,

L = Poisson(µS +√µI +B,N) =
(µS +√µI +B)N

N ! e−(µS+√µI+B), (4.37)

− lnL = −N ln (µS +√µI +B) + µS +√µI +B, (4.38)

∂ − lnL
∂µ

= −N
S + I

2√µ

µS +√µI +B
+ S + I

2√µ, (4.39)

∂2 − lnL
∂2µ

= −N
[ −I

4µ
3
2

N
−
−
(
S + I

2µ
1
2

)2

N2

]
− I

4√µ. (4.40)

Replacing Equation 4.40 in Equation 4.28 and using Equation 4.30 we get

1
< σµ >

2 =
[
I

4 +
(
S + I

2
)2

N

]
− I

4 =
(
S + I

2
)2

N
, (4.41)

so

< σµ >=
√
S + I +B

S + I
2

. (4.42)

In analogy to equation Equation 4.32, a “significance” like formula will be just the inverse,

iZ =
S + I

2√
S + I +B

. (4.43)

To use the formula in practice with MC simulated samples, the interference component will need
to be replaced. Using Equation 4.34 and Equation 4.36 in Equation 4.43,

iZ = S + SV I − V
2
√
SV I +B2

. (4.44)

10In fact there is sometimes a trick by which interference “events” can directly be simulated from the event
generator MadGraph5_aMC. The trick is to only allow first order terms of a parameter in the ME computation.
Such samples were very briefly studied for work related to Chapter 7, but this additional study is not described
in this document.
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4.10.3 Asymptotic Formula

The authors of Ref. [88] show that the more precise metric for median expected significance is,

Z ′ =
√

2((S +B) ln(1 + S/B)− S), (4.45)

and it can be approximated to S/
√

(B) when S � B. Following the same logic, the formula
with interference reads,

iZ ′ =

√√√√2
[
(SV I +B2) ln

(
1 + SV I − V

V +B2

)
− (SV I − V )

]
(4.46)

Equation 4.45 and Equation 4.44 will be used in Chapter 6 for optimisation studies.
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The Standard Model (SM) of particle physics is being continuously tested at the LHC at the
TeV scale. The scope for precision of measurements of deviations between the data and Mote-
Carlo based simulations (MC) improves as more data is collected. Simulations of both SM and
Beyond Standard Model (BSM) physics is required to tune analyses strategies so that precision
measurements can be made using the data collected at the LHC. The simulation of particle
showers in the calorimeter is important because this information is used for identification of
particles and has an impact in many analyses, ones that select photons, electrons or pions and
it is also important for jet calibration.

Precise simulations of the deposition of energy in the calorimeter due to developing showers
are slow because they require the modelling of interactions of particles with matter at the mi-
croscopic level, as implemented using the Geant4 toolkit [4]. In particular, Geant4 models the
chronological evolution of the cascade of particle showering in various materials with detailed
spacial resolution, even if the only data recorded by the detector is the final stage of the cascade
and with a coarse granularity. A particle shower produces an exponential growth in the number
of particles to simulate for Geant4, increasing as a function of the energy of the incident par-
ticle. The physics processes that need to be modelled include but are not limited to Compton
scattering, Reyleigh scattering, Coulomb scattering, pair production, annihilation, ionisation,
photo effect, Bremsstrahlung, Cherenkov effect, transition radiation, scintillation, reflection and
refraction. Even though certain simplifying assumptions are made in Geant4, modelling all
these effects is computationally expensive. This is the reason particle showers usually take up
the largest fraction of detector simulation time when the simulation is performed chronologically
based on first principles.
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The ATLAS detector has a complex calorimeter which proves to be the bottleneck in the sim-
ulation of events (in terms of CPU time), and the computational time scales with the energy
of a particle showering in the calorimeter. In 2016 ATLAS spent 34% of computing wall clock
time on simulation, and about 75% of simulation time is taken up by particle shower simula-
tion [89]. Significant research and development is required to bring down the CPU consumption
of these detector simulations to stay within the expected research budget shown in Figure 5.1.
This would become a limiting factor in precision measurements, unless faster simulations are
developed. ATLAS already relies on fast calorimeter simulation techniques based on thousands
of individual parameterisations of the calorimeter response [5]. Such fast simulations are rou-
tinely used for exotics and BSM searches because the use of Geant4 simulated MC datasets is
computationally expensive.

The current fast simulator, ATLAS Fast II will be overhauled with the upcoming FastCaloSimV2 [90],
and still further upgrades are expected in the future. These allow significant gain in speed at the
cost of accuracy. Such techniques rely on storing several parameterisation files and histograms in
memory, and need to also compromise on accuracy to maintain a reasonable memory footprint.

Following a preliminary study on an ATLAS single photon dataset which included electronic
noise and a continuous spread of true photon energy, an detailed study is performed in a small
region 0.2 < |η| < 0.25 in the central region of the electromagnetic (EM) calorimeter using
photons. The intention behind this choice was to avoid regions of the calorimeter with discon-
tinuities such as at η = 0, 0.8 in the barrel as well as barrel to end-cap transition regions. The
chosen region of the calorimeter is segmented into cells in the r/z, η, φ space, with the EM
calorimeter layers, namely presampler, strips (or front), middle and back, arranged one behind
the other in the r direction, as seen in Figure 3.8. Each layer is made up of discrete cells with
a particular width in η and φ (detailed in Table 3.1), they measure a total energy deposited
and do not capture finer structures of the shower within the cell. Different cells sizes between
the layers introduce a complication of periodic changes in alignment of different layers as they
overlay the same η, φ region. The structure is presented in Figure 5.2, which shows the small
cropped images which are part of the full cylindrical EM calorimeter. Further details about the
ATLAS LAr calorimeter are presented in Chapter 3 subsection 3.2.3.

This chapter starts with a brief summary of the FastCaloSimV2 strategy, followed by the study
performed with a deep generative model. We study the viability of training a GAN to learn
the probability distribution of the final image of the calorimeter directly for a given incident
particle, bypassing the need for a first principles based physics simulation on-the-fly for full
event simulations, and avoiding the need for memory-heavy, hand designed parameterisations.
The first principles based simulation is still required to train the generative model but the cost
can be quickly amortised in the course of millions of full event simulations.

5.1 Traditional Fast Calorimeter Simulation in ATLAS

The general idea in fast simulation is to simplify the geometry of the detector (but still more
complex compared to Delphes, which is very briefly described in section 7.4), replace material
interactions with analytical or parameterised interaction models. The reconstruction may also
be simplified to gain speed but this aspect is not studied in this thesis. The ATLAS calorimeter
in particular is complex (for example compared to the one in CMS) and required significant
research and development for fast simulation. The calorimeter simulation proves to be the
bottleneck in terms of simulation time if fast calorimeter simulation is not used.

The goal is to let Geant4 simulate the particles till the calorimeter surface, and then handover
the simulation to the fast simulation software for the shower. Meaning that the tracks will
be correlated to the showers. Fast tracker simulation may be used in addition but the fast
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Figure 5.1 – The estimated CPU resources needed by the ATLAS experiment for data and
simulation processing. The brown points are estimates made in 2017, based on existing software

performance estimates and using the ATLAS computing model parameters from 2017. The blue points
show the improvements possible in three different scenarios: (1) top curve with the fast calorimeter
simulation used for 75% of the Monte Carlo simulation; (2) middle curve using in addition a faster

version of reconstruction, which is seeded by the event generator information for the tracks; (3) bottom
curve, where the time spent in event generation is halved, either by software improvements or by

re-using some of the events. The solid line shows the amount of resources expected to be available if a
flat funding scenario is assumed, which implies an increase of 20% per year, based on the current

technology trends. [91]

simulation components remain modular. The calorimeter response can be factorised into showers
from individual incident particles (such as multiple photons, electrons, pions). The calorimeter
is fundamentally linear, so simulating the raw energy recorded from the shower of two incident
particles is the same as simulating the raw energy recorded from the showering of each of
them individually and then adding up the total energy deposited in each cell. This allows to
parameterise individual particle showers and simply compose them to simulate full events.

5.1.1 FastCaloSimV2

The FastCaloSimV2 parameterisation is based on a set of Geant4 simulated single particle
showers. The (longitudinal) parameterisation is performed in η bins of size 0.05 a succession
of Principle Component Analysis (PCA) rotations (detailed below) for a fixed energy point
(fixed particle true energy) and then an interpolation mechanism is used for particles with
intermediate energies. For this reason, up to 10000 particles are generated on the calorimeter
surface and the showering is simulated with Geant4. The lateral parameterisation is based
on storing two-dimensional probability density histograms (also described below). This entire
process is repeated for each energy point (17 in total), each particle type (3 in total) and each
bin in η (100 bins ranging from -5 to 5), totalling 5100 sets of parameterisations without taking
into account z-vertex spread and additional interpolation and correct models.

Geant4 simulates hits with x, y, z coordinates which are cast into cells. FastCaloSimV2 can
therefore take advantage of this granular information to fit its parameterisation.
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Figure 5.2 – Right Top: Different possible calorimeter layer alignments for the front layer (left,
green) and back layer (bottom, purple) when the 3D calorimeter image is cropped with respect to the
‘impact cell’. Each layer has the same number of cells regardless of the alignment. p0 through p3 are

four possible alignments in φ for the front layer, (left, showing a 8× 3 portion of the 56× 3 cell image),
and e0 & e1 are the two possible alignments in η for the back layer, (bottom, showing a 4× 1 portion of

the 4× 7 cell image) with respect to the middle layer (centre, showing the full 7× 7 image). The
calorimeter layers are actually one behind another in the third dimension. [92]. Bottom: Average energy

recorded in the Back Layer for the two possible alignments. Red circles highlight η = 0 (with the
Impact Cell as the origin) falls in the third cell for e1 but second cell for e0. Left: Average energy

recorded in the Front Layer for the four possible alignments. Although represented in a flat geometry,
these images are small sections of the cylindrical calorimeter seen in Figure 3.8.

5.1.1.1 Longitudinal Parameterisation

The steps of the PCA-chain, which determine the longitudinal development of the shower are
as follows:

• Inputs: The inputs to the PCA are the total energy (sum over all layers) and the fraction
of this energy in each layer.

• Transformation: The input distributions are transformed into cumulative distributions
(integrating over the bins) and then converted into Gaussian distributions using the inverse
error function1, shown in Figure 5.3. The x-axis units of these Gaussian distributions can
be interpreted as probability quantiles.

1When z is real,

erf z = 2√
π

∫ z

0
e
−t2

dt,
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Figure 5.3 – Response of inverse error function.

• First PCA: The first PCA is applied to these Gaussian distributions without any dimen-
sionality reduction (number of input and output dimensions remain the same) to covert
the dataset into linearly uncorrelated components. These new axes are called Principle
Components (PC), and they are sorted in order of their variance.
• PCA Bins: The leading PC of the first PCA is used to divide the dataset into quantiles
(referred to as “PCA bins”).
• Second PCA: For each PCA bin, a second PCA is applied to better decorrelate the data.

Figure 5.4 illustrates an example of this procedure carried out on showers with 65.5 GeV photons
in 0.2 ≤ |η| ≤ 0.25. The information that needs to be stored in a parameterisation file includes
the cumulative energy distributions, the second PCA matrices, and the means and variance of
the Gaussian distribution after PCA rotation. For fast simulation, this process is run in reverse:

1. Choose a PCA bin at random using a uniformly distributed random number.
2. Sample random numbers from a Gaussian distribution (one for each PCA output compo-

nent).
3. Rotate these numbers using the inverse PCA.
4. The resulting Gaussians are transformed into correlated uniform random numbers using

the error function.
5. From the stored cumulative distributions, determine the energy distribution in each layer.

5.1.1.2 Lateral Parameterisation

The lateral shower parameterisation is derived separately in each relevant layer (layers with
more than 1% of total energy) for each PCA bin. This is done in two dimensions defined with

For z ∈ [−1, 1],

erf−1(z) =
∞∑
k=0

ck
2k + 1

(√
π

2 z

)2k+1

, ck =
k−1∑
m=0

cmck−1−m

(m+ 1)(2m+ 1) =
{

1, 1, 7
6 . . .

}
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Figure 1: The steps of the PCA chain for one input sample of central photons with 65 GeV energy. (a) the
distribution of the fractional energy in EM barrel 1 (termed EMB1), (b) the cumulative distribution, (c) transformed
into a Gaussian distribution, and (d) the leading principal component after PCA transformation. This distribution is
then used to divide the dataset of the Geant4 showers into several subsets. These "PCA bins" are depicted in (e) in
pink, five bins are defined in this example, each with the same (flat) probability.

.

6

Figure 5.4 – The steps of the PCA chain for one input sample of central photons with 65.5 GeV
energy. (a) the distribution of the fractional energy in EM barrel 1, (b) the cumulative distribution, (c)

transformed into a Gaussian distribution, (d) the leading principal component after PCA
transformation and (e) the “PCA bins” in pink. [90]
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Figure 5.5 – The lateral shower development of (a) photons and (b) pions of energy 265.5 GeV in the
range 0.55 ≤ |η| ≤ 0.60 parametrised in the second layer of EM barrel and Tile barrel respectively.

Th [90]

respect to the extrapolated position of the particle. For this reason, an extrapolation algorithm
also exists to calculate the position of the particle as it traverses through the calorimeter if it
had not showered.

The coordinate transformation is defined,

∆η = ηhit − ηextr

∆φ = φhit − φextr

∆ηmm = ∆η × ηJacobi, hit ×
√
r2
cell + z2

cell

∆φmm = ∆φ× rcell

where

ηJacobi = |2× exp (−ηcell ) / (1 + exp (−2ηcell ))|

and hit refers to to the energy distribution inside the calorimeter cell. The symmetry of the
shower around the centre is exploited by transforming to a new coordinate set,

rmm =
√

(∆ηmm)2 + (∆φmm)2
,

α = arctan 2 (∆φmm,∆ηmm) .

The two-dimensional histogram of the showers in these coordinates is also stored in the parame-
terisation file. Two examples of such histograms are shown in Figure 5.5. To reduce the memory
footprint, only 0 ≤ α ≤ π is stored with the assumption of a φ symmetry of the shower, which
corresponds to storing only the top half (y ≥ 0) of the histograms in Figure 5.5.

For shower simulation, hit coordinates are randomly sampled from these histograms. A simplified
geometry is used to cast the hits to cells, which neglects the accordion shape of the detector,
seen in Figure 3.9. A correction function is used to displace hits to neighbouring cells to mitigate
this difference.
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3.3 Longitudinal shower shape parametrization

The total energy deposition and the longitudinal shower development are parametrized as a function of

the longitudinal shower depth (the energy weighted distance of depositions from the calorimeter surface).

For the calorimeter energy, an internal layer-based calibration is used. The calibration constants are fitted

individually for all particle energy and |η| points to ensure an average response of unity and a minimal

resolution. This internal calibration improves the quality of the simulation of the energy response of

physics objects after their respective calibration procedures in the object reconstruction. The longitudinal

shower depth is subdivided into ∼10 bins of equal probability and all following parametrizations are

performed as function of these bins.

In order to preserve the correlation between the calibrated energy response and the shower depth, a

2-dimensional histogram of both properties is used as a basis of the parametrization. Figure 1 shows this

correlation for photons and charged pions of 200 GeV energy in the range 0.20 < η < 0.25.
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Figure 1: Correlation of the calibrated energy response and the longitudinal shower depth for simulated

photons (left) and charged pions (right) of 200 GeV energy in the range 0.20 < η < 0.25. The color of

a given point shows the relative probability density in a linear color scale from blue (low probability) to

red (high probability). The black bars indicate the mean and width of a Gaussian fit in each bin of the

shower depth. The dynamic range of the x-axis is chosen to contain 99% of all events and the y-axis to

contain 99.5% of all events.

In a similar way, the energy in each calorimeter layer is stored as 2D histograms of the energy fraction

in this layer versus the shower depth. Finally, in order to preserve the correlation between the different

energy fractions (the sum of all fractions should be unity), one correlation matrix of the energy fractions

in each calorimeter layer is built for each bin in the shower depth.

During the simulation of particles in the calorimeter, a random total energy response and shower

depth is determined from the corresponding histogram for the appropriate particle species, energy and

pseudorapidity region. Following this, random energy fractions in each calorimeter layer are determined

from the distribution of the fraction histograms using correlated random numbers created according to

the energy fraction correlation matrix. As a last step, the raw energy response is recovered by inverting

the calibration step that was performed as first step of the parametrization.

3.4 Lateral shower shape parametrization

The fast calorimeter simulation aims for a good description of the average lateral energy distribution of

particle showers within each calorimeter layer. Figure 2 (left) shows an example lateral energy profile

in the second electromagnetic calorimeter layer obtained from the the average cell energies of a large

sample of simulated photons.

3

The basic parametrization ansatz for the lateral energy distribution is a radial symmetric function

centered on the expected impact point of a particle into a calorimeter layer. Cell energies are simulated by

integrating the shape function within the area of a calorimeter cell and then adding fluctuations according

to the intrinsic energy resolution of the calorimeter technology.

The basic radial energy dependency of the shape function is described by a third order polynomial

spline function. The radial symmetric shape is then modified by parameters accounting for the asymme-

try created by particles crossing a calorimeter layer at an angle that is not perpendicular to a layer surface

and parameters that describe the effective shape distortion in φ caused by the accordion geometry of the

electromagnetic LAr calorimeters. The spline function and the additional parameters are obtained in a

global fit to all particles inside the same category, where each category is differentiated by the particle

type, energy, pseudorapidity, the bin in the shower depth distribution and the calorimeter layer. The

dependence of the lateral shape function on the bin in the longitudinal shower depth introduces a correla-

tion between the longitudinal and lateral shower shape that is needed for a good simulation of the overall

shower properties. Figure 2 (right) shows the ratio between simulated cell energies and the parametrized

shape function for photons of 200 GeV energy in the second electromagnetic barrel calorimeter layer.
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Figure 2: Lateral energy distribution of simulated photons of 200 GeV energy in the range 0.20 < η <

0.25 in the second electromagnetic calorimeter layer. Left: Profile histogram of the average simulated

cell energy as function of the distance in (r ∗ ∆η, r ∗ ∆φ) of the cell from the expected photon impact

point into the calorimeter layer. The black circle indicates the area where a parametrization of the shape

is created. Right: Average ratio between the simulated cell energies and the cell energies calculated from

the parametrized lateral shower shape as function of the distance in (r ∗ ∆η, r ∗ ∆φ) of the cell from the

expected photon impact point into the calorimeter layer.

The ansatz of an average lateral shape is well suited for photons and electrons, but not adequate for

hadrons. Hadronic showers show a complex interplay of relatively long distances traveled by secondary

hadrons and localized energy depositions caused by photons produced in the decay of secondary neutral

pions. This leads to large fluctuations in the longitudinal and lateral energy distribution. While the

longitudinal fluctuations are contained and described by the parametrization model of FastCaloSim, the

lateral hadron shapes are not well reproduced yet. However, an improved lateral shower shape model for

hadrons is currently in development.

3.5 Computing performance

The improvement reached in the event simulation speed by using FastCaloSim was evaluated in Ref. [4]

with a representative set of Monte Carlo event samples, comparing the full Geant 4 simulation, the fast

4

Figure 5.6 – 2-D Histograms of 200 GeV photons in the range 0.20 < η < 0.25 used in the current
FastCaloSim (ATLAS Fast II. (Left) Calibrated energy response and the longitudinal shower depth
(Right) average simulated cell energy as function of the distance in (∆η,∆φ) of the cell from the

expected photon impact point into EMB2. [5]

5.1.1.3 Additional Refinement and Casting

A spline interpolation is used between energy points. Further corrections such as for energy
fluctuations and wiggles are also applied, but will not be discussed in this text.

Finally the simulated energy deposits are cast into cells with the coarse and irregular shape of
the ATLAS calorimeter.

5.1.2 ATLAS Fast II (FastCaloSimV1)

The strategy used in the current ATLAS Fast II is similar in principle[5]. The parameterisation
is done separately for each particle, η bin and energy point. For the longitudinal development,
the depth is divided in 10 bins of equal number of showers. Two-dimensional histograms of
energy vs shower depth (distance of the deposit from the calorimeter surface) are stored for
total energy and energy fraction per layer. Correlations between the deposits in each layer is
stored in correlation matrices. For simulation, random values are drawn from the histograms.

For lateral development, a radially symmetric third order polynomial spline function centred
around the impact point of a particle in the calorimeter layer is used. Corrections are applied for
asymmetries when particles are not perpendicular to the calorimeter surface. These parameters
are obtained from a fit to the Geant4 single particle shower data. Examples of the 2-D histograms
used for the longitudinal and lateral parameterisation is shown in Figure 5.6.

ATLAS Fast II is also tuned to data on top of parameterisations based on Geant4, and this
aspect will not be detailed here.

The expertise gained while building ATLAS Fast II is used to build FastCaloSimV2 and there-
fore the first iteration does not use PCAs and several other refinements that are implemented
in the upcoming new version. FastCaloSimV2 has demonstrated that it outperforms ATLAS
Fast II for certain cluster level variables [90] in the calorimeter. FastCaloSimV2 is also faster
and consumes less memory compared to ATLAS Fast II, although they both consume far more
memory than ideally desirable (a comparison with the GAN is briefly discussed in section 5.5.5).

77
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5.2 GAN for Fast Simulation

The idea here is to replace most of the components of the fast calorimeter simulation chain with
one or a few generative networks (generative networks and GANs in particular are described
in Chapter 4). Considering that the final images are at the granularity of cell images, a GAN
could be trained directly on cell images, bypassing the need to cast hits to cells (drawbacks of
this approach and proposed solutions will be mentioned in the end of this Chapter).

Such a GAN would need to be parameterised on the properties of the particle such as its energy,
position, incident angle. It may be conditioned on the particle type as well, but given enough
training data, it is simpler to train separate models for each of the three particle types. It will
be shown in the next few sections that the GAN must also be conditioned on the geometry of
the detector in the local region where the shower is being simulated. The incident angle was
not used for this study, and left for follow up studies for which a dataset with various incident
angles needs to be generated.

In this study, during model optimisation, the performance of the models were compared to
Geant4 samples standalone with the use of physics observables that can be computed outside
the ATLAS software Athena and also using distributions that are more commonly used in the ML
community. A suitable network was then integrated into Athena as a new simulation service
for a realistic performance evaluation. The service picked up information about the incident
photon, mimicked both the pre-processing and post-processing for the GAN, found the correct
calorimeter cells and filled them with the generated energy.

This service can be used to simulate showers, use the full reconstruction of Athena (including the
clustering algorithms and calibration) and compute complex observables for validation using the
existing validation framework of FastCaloSimV2. This project therefore benefits greatly from
the years of effort in the ATLAS collaboration to develop a list of distributions that can be
used to assess various aspects of the performance of a fast simulation strategy. Many of these
distributions in the validation framework were totally untracked during model optimisation.

The final step of this study is to consolidate and transmit the expertise gained on this approach
for a full scale effort to simulate the entire calorimeter using a deep generative model. For this
reason, a decision was taken to refrain from the use of inelegant, non-generalisable ‘hacks’ to
refine the final performance of the GAN.

5.3 Dataset for the GAN

No dedicated Geant4 showers were generated specifically for the GAN. A subset of the dataset
generated for the FastCaloSimV2 parameterisation was re-used to build the training dataset.
The dataset built in this work was also used for a twin project to train a Variational Auto-
Encoder (VAE) [92] for fast calorimeter simulation. The common input and output structures
enabled fair comparisons between the two approaches [92]. These samples are described below.

5.3.1 Monte Carlo Samples

Samples of single unconverted photons are simulated using Geant4 10.1.patch03.atlas02, the
standard MC16 RUN2 ATLAS geometry (ATLAS-R2-2016-01-00-01) with the conditions tag
OFLCOND-MC16-SDR-14. The samples are generated for nine discrete particle energies logarith-
mically spaced in the range between approximately 1 and 260 GeV and uniformly distributed
in 0.20 < |η| < 0.25. 10000 showers each are generated for the lower and middle energies while
9000 showers are generated for last two energy points, totalling 88000 showers.

78



5.3. DATASET FOR THE GAN

The truth particles are generated on the calorimeter surface, rather than at the interaction
point. This is to avoid conversion of the particle before it arrives at the calorimeter, such as
showering in the inner detector. The generated samples do not include effects corresponding to
the expected beam spread or electronic noise. However, a small fraction of cells contained small
negative energies (possibly from cross-talk between neighbouring cells).

The samples do include dead cells (due to an oversight) which breaks translation invariance (and
can easily be simulated a posteriori), but their effect is expected to be minimal as the particle
is never directly incident on a dead cell and it was estimated that only in ∼ 0.5% of the samples
does a dead cell exist within one cell distance of the extrapolated position of the particle in the
middle layer. For the other layers also the impact of dead cells was estimated to very small.

5.3.2 Preparation of Training Dataset

The simplified geometry of ATLAS Fast II was used to extract the η, φ values for the cells and
FastCaloSimV2 extrapolation algorithm provided the extrapolated position of the particle in
each layer of the calorimeter. Access to the geometry file allowed creating a dataset with more
calorimeter geometry information, and this was crucial to improving GAN performance. Since
the simplified geometry was used, the effects of the accordion shape of the calorimeter will not
be reproduced by the GAN.

5.3.2.1 Cropping

The impact cell was defined as the cell in the middle layer closest to the extrapolated position
of the photon (see Fig. 5.2), where the extrapolation is done under the assumption that the
photon did not shower at all. For each layer of the calorimeter, the energy deposits within a
rectangular region are selected with respect to the impact cell. The dimensions for the cropped
layers are,

• Presampler: 7× 3,
• Front (Strips): 56× 3,
• Middle: 7× 7,
• Back: 4× 7,

totalling 266 cells. 99% of the total energy deposited is within this selection. The cells in
each calorimeter layer are uniformly shaped, however their widths differs as a function of the
calorimeter layer, both in η and φ directions. Therefore, the alignment between the layers is
different from shower to shower.

5.3.2.2 Alignment Configuration

After cropping consistently with respect to the impact cell for each shower, the central cell in each
layer is not necessarily at the centre of the cropped image. The possible alignment configurations
for the Front layer (p0, p1, p2 and p3) as well as the Back layer (e0 and e1) are represented
in Figure 5.2. Two of these configurations are illustrated using the cross-sectional view of the
ATLAS detector in Figure 5.7. An individual shower will be in one such configuration, for
example {p0, e0}. A simplified illustration of how the same shower can be recorded as different
images due to the alignments is presented in Figure 5.8. The configurations for the Presampler
in the φ directly follow that of the strips. In the η direction it has the same widths as the Middle
layer and therefore there is never any misalignment.
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(a)

p0

p3

(b)

Figure 5.7 – Cross-sectional mesh-grid view of the ATLAS detector (a) in full, the black boxed
region is zoomed and coloured in (b) under the p0 and p3 alignments. The yellow dot represents the
extrapolated position of the particle in the middle layer, in blue is the impact cell, and in three shades

of green the strip cells with varying amount of energy deposits (darker indicates more energy).

These alignments are a periodic function of the cell indices counting in the η (φ) direction for
the Black layer (Strip/Presampler layer). The same alignment of the Middle Layer with respect
to the Back layer (Strip/Presampler layer) occurs after moving every two (four) Middle cells in
η (φ). This η index was calculated using the formula,

indexη =
ηImpact Cell − c

δηMiddle
(5.1)

where δηMiddle = 0.025 is the width of cells in the Middle layer and c is some offset which is
different for the two halves of the detector. The φ index was similarly calculated using,

indexφ =
φImpact Cell − φReference Cell

δφMiddle
(5.2)

where δφMiddle = 2π
28 is the width of cells in the Middle layer and φReference Cell is some reference

middle cell to start counting from. indexη mod 2 and indexφ mod 4 are then useful quantities
corresponding to the {e0,e1} and {p0,p1,p2,p3} configurations. An offset by 1 was required to
make it match with the index computed using the inbuilt function in Athena.

5.3.2.3 Raw vs Real Coordinates

In reality, the ATLAS detector is not perfectly cylindrical, it sags from its own weight and it is
shifted by a few millimetres from its nominal position. The real coordinates take into account
such imperfections. The calorimeter cells’ η and φ referred to in this document are the raw
values, which assume a perfectly cylindrical shape.
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Figure 5.8 – Illustration of how a hypothetical shower (yellow) would look as an image on the Front
layer cells for three different alignments of the Front layer with respect the Middle layer. Dark green

cells do not record any energy, light green cells record energy from the shower

The extrapolation of the particle position however is performed using the real coordinates and
this inconsistency2 gives rise to certain problems that will be mentioned in Section 5.6.

5.3.2.4 Symmetry in the two halves

The two halves of the detector are identical but one is rotated to face with the other. The
symmetry around the η = 0 plane is exploited to boost training statistics, by mirroring all
shower in the η < 0 region. It is possible because there are no showers covering both halves of
the calorimeter in this dataset. A shift of ∼ 0.012 in φ between the two halves was compensated
for in the cropping and calculations of alignment related variables.

5.3.2.5 Remove Negative Energies

Cell energies are required to be positive, therefore the small amount of negative energy found
in a small fraction of the cells were set to zero in the dataset.

5.3.3 Advantages and Disadvantages of the Dataset

The advantages of using this dataset are:

• This dataset allowed training the network without electronic noise (which can be added in
quickly and accurately in the ATLAS reconstruction software), and this also helped allow
closer inspection of correlations.

• Building this dataset facilitated the addition calorimeter geometry information that was
unavailable in the previous dataset used in the preliminary studies.

• With a common training dataset and output structure, fair comparisons could be made
between the GAN and VAE approach without integration into Athena.

2This inconsistency was caused due to an oversight and could be fixed in the next stage of this project.
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The disadvantages of this dataset are:

• The dataset comprises of up to 10000 showers for exactly the same particle energy but only
nine unique energy points. The energy points are log-spaced with larger gaps at higher
energies.

• The dataset does not simulate any beam spread. All the photons are perpendicular to the
calorimeter surface, therefore the GAN cannot be conditioned in the angle of the incident
particle.

• The dataset includes dead cells (a newer version of the parent dataset does not have this
problem).

• The parent dataset contains small amount of negative energies in a few cells (which may
be due to cross-talk between neighbouring cells).

• The dataset uses an inconsistent definition for η, φ coordinates for the position of the
particle and the position of the cells. This could be corrected in future studies.

5.4 The GAN Model

A gradient penalty based Wasserstein GAN (described in Chapter 4 subsection 4.5.1) was trained
for the given task. The architecture was modified slightly to include two critic networks, referred
to as the ‘critic’ and the ‘energy critic’, and the logic behind the nomenclature will become
evident in the following sections.

5.4.1 Pre-processing

Apart from the data processing already mentioned above particular transformations are per-
formed in order to make the learning easier for the GAN. These steps are listed below.

• The cell energies are normalised by the true energy of the particle. This is to help the
GAN learn the shower shapes despite the widely varying energies from shower to shower.
Otherwise the cell energies would have extreme variations from a 1 GeV particle shower to
a 262 GeV particle shower. The true energy is given as an additional input, so the GAN
does not lose the total energy information due to this normalisation.

• The 3D image is converted into a flat vector. Although there are expected to be correlations
between neighbouring cells in the η, φ, z directions, the dense network is expected to learn
the spacial correlations on its own.

• The (natural) logarithm is applied on the true energy of the particle followed by a standard-
normalisation before giving it as an input to the GAN. Since the energy points are log-
spaced and the general variation of the shower shapes is also expected to be a function of
the logarithm of the true energy.

• The alignment of the Strip/Presampler to the Middle layer is converted into a one-hot
vector (see the terminology section 4.4 of chapter 4). Neural networks learn better when
categorical variables such as this one are one-hot vector encoded.

• By the same logic the alignment of the Back to the Middle layer is also converted to a
one-hot vector.

• The position of the particle in the impact cell is represented as the relative to the centre
of the impact cell. These two values are further standard-normalised.
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Figure 5.9 – Schematic diagram of the double critic GAN architecture (with a trainable swish[93]
activation) used in this study.

5.4.2 Inputs and Outputs

The inputs of the Critic are:

A 266 Inputs: The cropped 3D calorimeter image consisting of 266 cells from the four elec-
tromagnetic layers, given as a flat one-dimensional vector.

B 1 Input: The true energy of the incident photon.
C 4 Inputs: The configuration of the alignment of Strip/Presampler layers given as a one-hot

vector.
D 2 Inputs: The configuration of the alignment of Back layer given as a one-hot vector.
E 2 Inputs: The position of the extrapolated position of the particle in the impact cell (in
η, φ coordinates).

Therefore the total number of inputs is 275. It has a single output, the estimated Wasserstein
score.

For the energy critic apart A, the rest of the inputs (B through E) are the same from the first
one. Instead of the 266 cells, it only takes the sum of these 266 cells as an input. The total
number of inputs is therefore only 10. It also has a single output, the estimated Wasserstein
score.

The generator also takes B through E as conditional inputs. In addition it takes 300 latent
variables as input, which are random numbers sampled from a standard normal distribution.
The total number of inputs is therefore 309. The output of the generator is a single vector of
266 numbers which represent the cropped 3D electromagnetic calorimeter image.
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5.4.3 The Architecture

The GAN architecture developed in this work is shown in Figure 5.9. It consists of three
neural networks, a generator and two critics (often referred to as a ‘discriminators’), trained
with a Wasserstein loss function[68] as proposed in Ref. [69]. The additional critic was required
in order to overcome a typical limitation of gradient penalty based Wasserstein GANs, and
will be elaborated upon later (section 5.4.6). All networks are conditioned on the energy of the
incident particle, the alignments of the different calorimeter layers with the middle layer, and the
extrapolated position of the particle inside the impact cell (see Fig. 5.2). The hyper-parameter
optimisation is described in subsection 5.4.7.

The architecture of the critic consisted of:

• Three Dense hidden layers of 128 nodes.
• LeakyReLu3 activation for the three hidden layers.
• Dense output layer with one node.
• Linear activation function for the output layer.

With 275 input features, the critic network therefore has 68,481 trainable parameters.

The architecture of the energy critic consisted of:

• Three Dense hidden layers of 128 nodes.
• LeakyReLu activation for the three hidden layers.
• Dense output layer with one node.
• Linear activation function for the output layer.

With 10 input features, the energy critic network therefore has 34,561 trainable parameters.

The generative network is more complex and was found to be much more sensitive to hyper-
parameter optimisation (as described in subsection 5.4.7. The architecture consists of:

• One Dense layer with 428 nodes.
• A trainable swish. activation [93] for the layer (one trainable parameter for the entire
layer).
• Eight Dense layers with 128 nodes.
• A trainable swish activation for each of the eight layers (one trainable parameter per layer).
• One Dense output layer with 266 nodes (corresponding to the number of cells that are
being simulated).
• A Sigmoid activation on the output nodes.
• An L1 activity regulariser with a weight of 10−5 to enforce sparsity in the output.

With 309 input features, the generator network therefore has 337,499 trainable parameters.

A gradient penalty (GP) can be interpreted as a penalty on how sharply the network changes its
output as a function of the inputs. The GPs on the two critics were applied only on with respect
to the image input space (item A for the critic, the total energy for the energy critic), and not on
the conditional input space (items B through E), to allow the critics to make arbitrarily sharp

3
f(x) = α · x if x < 0, and f(x) = x otherwise, with α = 0.3.
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decisions based on the conditional input. The critics can then be considered to be estimating the
conditional Wasserstein distance between the real and fake images for a given set of conditional
inputs.

The additional term in the loss of the critic due to the GP, as described in Chapter 4, is the
Gradient Penalty Weight (GPW). The values for the GPW are 10 for the critic network and 10−8

for the energy critic (more on this apparently bizarre number below). The loss functions for the
two critics can still be described by Equation 4.6, although x, x̃ and x̂ are now single numbers,∑
cells

x,
∑
cells

x̃ and
∑
cells

x̂ respectively, and the conditional nature of the critics is now implicit.

The generator is trained again the two critics and therefore also has two loss terms, the weights
associated with the loss from the critic and energy critic are 1 and 10−6 respectively. The
combined loss for the generator reads,

LGenerator = Ex̃∼pgen [D(x̃)] + 10−6 · Ex̃∼pgen
[
DE

(
Σ
cells

x̃

)]
, (5.3)

where D(x̃) and DE( Σ
cells

x̃) are the outputs of the first critic and the energy critic for a generated
image x̃, and again the conditional nature of the critics is implicit.

5.4.4 The Training

The hyper-parameters used to train the GAN are listed below.

• Batch Size: 64 for all three networks
• Training Ratio (Number of critic updates for each generator update): 5 for both critics
• Gradient Penalty Weight: 10 for the critic, 10−8 for the energy critic
• Generator Loss Weights: 1 : 10−6 for the terms related critic and energy critic respectively
• Number of Epochs: 2500 epochs trained but best generator found at epoch 7500.
• Optimizer: RMSProp with lr=10−5, ε = None, decay=0 and all other parameters left at
their default values.

The training was performed on 50% of the available samples4 (roughly 44000 showers). A
comment about the learning curve is made in subsection 5.4.7. A training of 25000 epochs was
completed in 79 h on a NVIDIA R© KeplerTM GK210 GPU with a processing power of 2496 cores,
each clocked at 562 MHz. The card has a video RAM size of 12 GB with a clock speed of 5 GHz.
The training data size is 1 GB and is read from memory. Trainings for the hyperparameter
optimisation are performed in parallel on multiple GPUs. These resources were provided through
a batch system setup by the IN2P3 Computing Centre in Lyon.

The model is implemented and trained in Keras 2.0.8 [94] using TensorFlow 1.3.0 [55] as
the backend.

5.4.5 Epoch Picking

In typical statistical fits and while training neural networks for classification, there are usually
some mathematical guarantees for convergence of the fit, and such convergence is also empirically
observed in practice. In the case for GANs, however, there are no convergence guarantees and
they often fail to converge even in practice. The objective for the generator and the critic are

4No more official samples were available at these η regions at the time.
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constantly changing in this minimax game, and the loss fluctuates. Furthermore, the version of
the generator corresponding to the training iteration at which the Wasserstein component of the
loss (which is the loss of the critic without accounting for the GP) appears to be the lowest may
not be the best version of the generator in terms of physics objectives, since the critic knows
nothing about the physics goals.

For these two reasons, a manual inspection of the generator networks is performed with the
help of several physics observables (such as the energy response and the average η in the Back
layer) as well as the Mean Squared Error (MSE) between the covariance matrix of the 266
cells for the network generated samples and the Geant4 samples (see Figure 5.20). Neither
Kolmogorov-Smirnov test nor Anderson-Darling test based rankings consistently corresponded
well with rankings based on visual inspection of the distributions. Apart from the MSE of the
covariance matrices, the energy resolution distribution, the distributions of the average η in
the Back layer, the average φ in the Strips layer and the the correlations between the Middle
and Strip layer were used to select the best version of the generator. These distributions will
be shown in the validation section (Section 5.5) of this chapter. This methodology is highly
susceptible to confirmation biases and human errors.

5.4.6 A peculiar problem and its solution: The Second Critic

This subsection will discuss a peculiar drawback of WGAN-GPs discovered in this work from
the perspective of a detective and then propose a solution. It will start by showing hints of a
drawback in the form of a mis-modelling of a physics distribution of interest, proceed to discuss
how the usual solutions to fixing GANs failed, then show the discovery of the origin of the
problem and finally demonstrate the solution.

5.4.6.1 Mis-modelling of the Total Energy

The first round of results were made public in Ref. [92] where only a traditional critic was used
with a GPW of 10. Some of these comparisons will be presented in the beginning section 5.5.

The GAN failed to learn the total energy of the showers (which is simply the sum of energies
in the 266 cells), even though it was able to learn the distribution of more complex physics
observables, such as the width of the shower in η, φ. Figure. 5.10 demonstrates that this is the
case both for the GAN (developed in this work) and the VAE (from the sister project). The
means of the GAN match Geant4 but not the widths (shown as error bars). An example of the
total energy distribution for a single energy point is shown in Figure 5.11.

5.4.6.2 Failure of obvious solutions

Hyperparameter optimisation, many of the usual solutions used to improve GAN performances [67]
and some intuitive ideas failed to make even the slightest improvement in the energy response
modelling. These ideas included MiniBatch discrimination (where the discriminator/critic is ef-
fectively able to look at multiple data samples at once, helping it learn the distribution), different
ways of conditioning a GAN, auxiliary task to regress the total energy, training at only a single
energy point, an additional discriminator (of the traditional variety, trained with a binary-cross
entropy loss).

Explicitly writing a custom layer to help the critic calculate the total energy (Figure. 5.12) also
did not improve performance.
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Figure 5.10 – Energy response of the calorimeter as function of the true photon energy for particles
in the range 0.20 < |η| < 0.25. The calorimeter response for the full detector simulation (black markers)
is shown as reference and compared to the ones of a VAE (red markers) and a single critic GAN (blue
markers). The shown error bars indicate the standard deviation of the simulated energy deposits at

each energy point. The GAN is able to reproduce the means but not the widths of the distributions. [92]
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Figure 5.11 – Energy response of single critic GAN (red) in comparison to Geant4 (Black) for 65.5
GeV incident photons. The width of the distribution is far larger for the single critic GAN.

8

Add Physics Variables in Training

D

GX

Calculate Physics Variable

Help the discriminator see physics
Geant4 Data Generated Images

Figure 5.12 – Illustration of an idea to explicitly calculate physics variables from shower images to
help the critic. It was not used in the final model.
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5.4.6.3 Source of the problem: The Gradient Penalty

An inspection into the critic revealed that the network was flexible enough to learn to construct
the total energy feature from the raw images but was prevented from using this information
due to the gradient penalty. At the time, most WGAN-GP related literature on natural images
advised that the GPW hyper-parameter does not require much tuning, and a typical scan be-
tween 1 and 500 could be performed during hyper-parameter optimisation. This was consistent
with these preliminary findings in this study because the default value of 10 produced similar
performance to 1 or 100. Interestingly, a GPW of 0 resulted in badly modelled distributions as
well as crashes after a few epochs of training, as would be expected.

Dropping the GPW below 1e−13 showed significantly improved energy resolution plots, although
at the expense of all other distributions and training stability. If the total energy was given as
an additional input feature but with no gradient penalty applied to it, again the total energy
improved at the cost of other shower shape distributions. It is to be noted that to remove
the gradient penalty on the total energy, it must be treated as an independent feature while
training the critic (otherwise the gradients will pass through the total energy feature to 266
cells of the calorimeter image and the gradient penalty will indirectly restrict the critic from
using this additional input feature) but a (sum) function of the calorimeter image while training
the generator (so that feedback from the critic with regard to the total energy of the image
simulated by the generator passes back to the generator in the form of gradients with respect
to each of the cells of the output image).

5.4.6.4 The solution

Disentangling the two tasks into separate critic networks5 allowed to inject domain priorities
into the training algorithm. In addition to the original critic which focuses on the shower shapes,
an additional energy critic with a GPW of 10−8 was trained to be blind to all aspects of the
calorimeter image apart from the total energy. The energy critic does not provide unhelpful
feedback about the shower shape to the generator because it only has access to the total energy.

The generator network is trained against the critic and energy critic simultaneously with a loss
ratio of 1 : 18−6, forcing it to learn the shower shapes as well as total energy distributions
simultaneously. The number of layers for the generator had to be increased for four to ten to
keep up with the two tasks.

The gradient penalty on the critic is applied to restrict the class of functions it can approximate.
Since the gradient is calculated with respect to the input features (albeit a random average of
real and fake images), the critic is restricted from making very sharp decisions based on the total
energy of the shower (sum of the 266 cells). This is not usually a problem for natural images
where the sum of intensity of each pixel does not hold a lot of information, but for a calorimeter
data it has a physical meaning. Thus, a lower GPW helped the energy critic force the generator
to reproduce a sharp total energy distribution. The improved energy resolution using the new
architecture is shown in Figure 5.13.

Since the energy response of the calorimeter is known very well, an alternate solution might
have been to inject the known energy resolution function through post-processing, simply by
multiplying the cell energies by an appropriate factor. The authors of the WGAN-GP also
proposed two separate GANs, one only for the total energy and a second one for the shower
shape (this could be implemented by either conditioning the second on the output of the first
or by producing showers normalised to 1 with a softmax final activation layer and multiplying

5Idea suggested by Gilles Louppe, University of Liège, an ATLAS Analysis Consultant and Expert (ACE) and
collaborator on this project, following discussions based on the gradient penalty based studies.
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Figure 5.13 – Energy response of the calorimeter as a function of the true photon energy for
particles in the range 0.20 < |η| < 0.25. The calorimeter response for the full detector simulation
(Geant4), is shown in black full markers used as reference and is compared to the one from the

generative adversarial network (GAN), shown in green open markers. The GAN is shown with a small
artificial shift towards the right for better visibility. The shown error bars indicate the resolution of the

simulated energy deposits. The y-axis range is made smaller compared to Figure 5.10.
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the total energy to it). Fortunately such inelegant solutions were not required.

Although such sensitivity to the GPW was not mentioned in any literature on gradient penalty
based WGANs at the time, other projects that tried to use WGANs to model physics distribu-
tions have also encountered this problem in different forms. The WGAN trained for the CMS
prototype High Granularity Timing Detector had trouble modelling the hit energy spectrum
[95], a WGAN trained to generate full events used an additional Maximum Mean Discrepancy
(MMD) loss to model the mass of the particle [96] and recently a new generative project used
a post processing network to correct the energy spectrum [97]. In each of these cases, the
other distributions were usually well modelled but an additional trick was required to fix the
energy/mass distribution.

5.4.7 Hyper-Parameter Optimisation (HPO)

Many kinds of hyperparameter searches and various architectures were studied for this project
and not all of them will be listed in this section. Instead, only some of the aspects will be
mentioned below.

The performance of the generator was found to be much more sensitive to HPO compared to
the critics, improving significantly with increased depth, increased width of the first layer and
also improving significantly with the right choice of activation functions for the hidden and
output layers. Although using a ReLU activation in the output layer allowed generate cells with
exactly zero energy deposits, the lateral shower shapes were better reproduced with a sigmoid
activation. The activity regularizer too significantly improved the performance of the GAN.

The performance of the GAN improved significantly when trained on more data, going from 4%
to 40% and saturated by 75% of the available dataset. Note that the best version of the GAN
happened to be trained with 50% of the entire dataset, possibly because the GAN was trained
more times with 50% of the dataset compared to 75% (due to shorter training times) and by
chance the best version happened to be a training on 50% of the dataset.

5.4.7.1 Switching optimizers between quick experiments and experiments on the
full training dataset

Depending on the architecture and hyper-parameters training the GAN took between 1 and
6 days on a single GPU. The Adam optimizer produced better results when the GAN was
trained on a small fraction ( 4%) of the dataset but did not scale well to more data. This
is because the momentum in Adam pushes network updates in the same direction as previous
updates, and this behaviour is not well suited for adversarial training where the dynamics change
quickly. For this reason, trainings on a small fraction of the dataset (such as for quick tests of
new architectures) were often performed with Adam, while trainings on a larger fraction of the
dataset were performed using RMSProp.

5.4.7.2 Statistical Framework for HPO

At the initial stage of development, a statistical strategy was developed to tune hyper-parameters.
GANs with exactly the same architecture and trained with exactly the same algorithm still pro-
duces very different results at the end of the training, shown in Figure 5.14b. This is the case
when the random seeds are not fixed. The differences are much larger than what are usually seen
in simple classification models because of the dynamical nature of the training and the lack of
convergence guarantees. It was verified that an individual trained generative network produced
reproducible results. Three sets of showers produced by the network were consistent with each

91



CHAPTER 5. SIMULATION OF THE ELECTROMAGNETIC CALORIMETER

Jan 17, 2018 13Aishik Ghosh  | Laboratoire de l'Accélérateur Linéaire 

Variation in training for random seed
Same training seed;
different generation seeds 

Different training seeds

Initial training seed has significant impact on results. Need to average over different seed training 
to assess the GAN

Fraction of Energy

(a)

Jan 17, 2018 13Aishik Ghosh  | Laboratoire de l'Accélérateur Linéaire 

Variation in training for random seed
Same training seed;
different generation seeds 

Different training seeds

Initial training seed has significant impact on results. Need to average over different seed training 
to assess the GAN

Fraction of Energy

(b)

Jan 17, 2018 17Aishik Ghosh  | Laboratoire de l'Accélérateur Linéaire 

Variation in training for random seed
Average 5 trainings

(3 sets averages)
Different training seeds

Use this plot as reference in following slides

Fraction of Energy

(c)

Fraction of Energy

Jan 17, 2018 18Aishik Ghosh  | Laboratoire de l'Accélérateur Linéaire 

Training Ratio
1,5,10 Ratio; average 5 seed training for eachSame hyper-params,

 3 sets of 5 averaged trainings

Training Ratio of 5 is good

(d)

Figure 5.14 – Statistical approach to Hyper-Parameter Optimisation: (a) the same model
consistently produces similar performances for different random seed during evaluation (b) models with
identical architectures trained with a different random seeds exhibit very different performance, (c) three
sets of average performance (data from 5 identically trained GANs) where all three sets of GANs have
identical hyper-parameters reduce the variations, (d) three sets of average performance (5 identically
trained GANs) where each set is trained with a different value of the hyper-parameter ‘training ratio’.

other, as seen in Figure 5.14a. In fact the GAN also reproduced the statistical fluctuations at
the tails of the training set consistently if over-trained. This can be seen in Figure 5.19b, where
the GAN was trained only on 4% of the dataset.

Five identical GANs were trained with different random seeds and their average performance
was compared to find hyper-parameters that consistently improve performance, beyond random
chance. As a control, three sets of average performances (five GANs each) are also plotted
(Figure. 5.14c) to gauge the statistical uncertainty of ranking hyper-parameter values in this
way. If the variations between the sets of GANs with different hyper-parameters is larger than
the variation between the sets of GANs all trained with the same hyper-parameter, then the
ranking of hyper-parameters based on these plots is probably meaningful.

At a later stage of this project such comparisons became computationally infeasible and heuris-
tical ‘grad student decent’ was used for the optimisation instead. Having a large latent space
dimension was advantageous during development because too large a latent size was almost
never a problem. Once a good architecture was found, identical models but with smaller latent
sizes could be trained without deteriorating the performance.
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ABSTRACT

The choice of activation functions in deep networks has a significant effect on
the training dynamics and task performance. Currently, the most successful and
widely-used activation function is the Rectified Linear Unit (ReLU). Although
various hand-designed alternatives to ReLU have been proposed, none have man-
aged to replace it due to inconsistent gains. In this work, we propose to lever-
age automatic search techniques to discover new activation functions. Using
a combination of exhaustive and reinforcement learning-based search, we dis-
cover multiple novel activation functions. We verify the effectiveness of the
searches by conducting an empirical evaluation with the best discovered activa-
tion function. Our experiments show that the best discovered activation function,
f(x) = x · sigmoid(�x), which we name Swish, tends to work better than ReLU
on deeper models across a number of challenging datasets. For example, simply
replacing ReLUs with Swish units improves top-1 classification accuracy on Im-
ageNet by 0.9% for Mobile NASNet-A and 0.6% for Inception-ResNet-v2. The
simplicity of Swish and its similarity to ReLU make it easy for practitioners to
replace ReLUs with Swish units in any neural network.

1 INTRODUCTION

At the heart of every deep network lies a linear transformation followed by an activation func-
tion f(·). The activation function plays a major role in the success of training deep neural net-
works. Currently, the most successful and widely-used activation function is the Rectified Lin-
ear Unit (ReLU) (Hahnloser et al., 2000; Jarrett et al., 2009; Nair & Hinton, 2010), defined as
f(x) = max(x, 0). The use of ReLUs was a breakthrough that enabled the fully supervised training
of state-of-the-art deep networks (Krizhevsky et al., 2012). Deep networks with ReLUs are more
easily optimized than networks with sigmoid or tanh units, because gradients are able to flow when
the input to the ReLU function is positive. Thanks to its simplicity and effectiveness, ReLU has
become the default activation function used across the deep learning community.

While numerous activation functions have been proposed to replace ReLU (Maas et al., 2013; He
et al., 2015; Clevert et al., 2015; Klambauer et al., 2017), none have managed to gain the widespread
adoption that ReLU enjoys. Many practitioners have favored the simplicity and reliability of ReLU
because the performance improvements of the other activation functions tend to be inconsistent
across different models and datasets.

The activation functions proposed to replace ReLU were hand-designed to fit properties deemed
to be important. However, the use of search techniques to automate the discovery of traditionally
human-designed components has recently shown to be extremely effective (Zoph & Le, 2016; Bello
et al., 2017; Zoph et al., 2017). For example, Zoph et al. (2017) used reinforcement learning-
based search to find a replicable convolutional cell that outperforms human-designed architectures
on ImageNet.

In this work, we use automated search techniques to discover novel activation functions. We focus
on finding new scalar activation functions, which take in as input a scalar and output a scalar, because
scalar activation functions can be used to replace the ReLU function without changing the network
architecture. Using a combination of exhaustive and reinforcement learning-based search, we find
a number of novel activation functions that show promising performance. To further validate the

⇤Work done as a member of the Google Brain Residency program (g.co/brainresidency).
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While these results are promising, it is still unclear whether the discovered activation functions
can successfully replace ReLU on challenging real world datasets. In order to validate the effec-
tiveness of the searches, in the rest of this work we focus on empirically evaluating the activation
function f(x) = x · �(�x), which we call Swish. We choose to extensively evaluate Swish in-
stead of max(x, �(x)) because early experimentation showed better generalization for Swish. In
the following sections, we analyze the properties of Swish and then conduct a thorough empirical
evaluation comparing Swish, ReLU, and other candidate baseline activation functions on number of
large models across a variety of tasks.

4 SWISH

To recap, Swish is defined as x · �(�x), where �(z) = (1 + exp(�z))�1 is the sigmoid function
and � is either a constant or a trainable parameter. Figure 4 plots the graph of Swish for different
values of �. If � = 1, Swish is equivalent to the Sigmoid-weighted Linear Unit (SiL) of Elfwing
et al. (2017) that was proposed for reinforcement learning. If � = 0, Swish becomes the scaled
linear function f(x) = x

2 . As � ! 1, the sigmoid component approaches a 0-1 function, so
Swish becomes like the ReLU function. This suggests that Swish can be loosely viewed as a smooth
function which nonlinearly interpolates between the linear function and the ReLU function. The
degree of interpolation can be controlled by the model if � is set as a trainable parameter.

Figure 4: The Swish activation function. Figure 5: First derivatives of Swish.

Like ReLU, Swish is unbounded above and bounded below. Unlike ReLU, Swish is smooth and non-
monotonic. In fact, the non-monotonicity property of Swish distinguishes itself from most common
activation functions. The derivative of Swish is

f 0(x) = �(�x) + �x · �(�x)(1 � �(�x))

= �(�x) + �x · �(�x) � �x · �(�x)2

= �x · �(x) + �(�x)(1 � �x · �(�x))

= �f(x) + �(�x)(1 � �f(x))

The first derivative of Swish is shown in Figure 5 for different values of �. The scale of � controls
how fast the first derivative asymptotes to 0 and 1. When � = 1, the derivative has magnitude less
than 1 for inputs that are less than around 1.25. Thus, the success of Swish with � = 1 implies that
the gradient preserving property of ReLU (i.e., having a derivative of 1 when x > 0) may no longer
be a distinct advantage in modern architectures.

The most striking difference between Swish and ReLU is the non-monotonic “bump” of Swish when
x < 0. As shown in Figure 6, a large percentage of preactivations fall inside the domain of the bump
(�5  x  0), which indicates that the non-monotonic bump is an important aspect of Swish. The
shape of the bump can be controlled by changing the � parameter. While fixing � = 1 is effective
in practice, the experiments section shows that training � can further improve performance on some
models. Figure 7 plots distribution of trained � values from a Mobile NASNet-A model (Zoph et al.,
2017). The trained � values are spread out between 0 and 1.5 and have a peak at � ⇡ 1, suggesting
that the model takes advantage of the additional flexibility of trainable � parameters.

5

Swish(x)= x⋅sigmoid(βx)
Trainable β

~ReLu

~linear ~ReLu

~linear

~x⋅sigmoid(x)

~x⋅sigmoid(x)

Figure 5.15 – (Left) Swish activation function for various values of β and (Right) the gradient of
swish for these β values. The function is flexible enough to estimate a ReLu, x · sigmoid(x) or a linear

function.
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Figure 5.16 – Value of the β parameter of the Swish activation in the Generator network per layer.

5.4.7.3 Generator Network and Trainable Swish Activation

The generative network is more complex and was found to be much more sensitive to hyper-
parameter optimisation as described above.

The swish activation [93] is defined as,

Swish(x) = x · sigmoid(βx) (5.4)

and is often useful for deeper networks as a drop-in replacement for ReLU or LeakyReLU with
the β parameter is fixed to 1. This already provided slight improvement in performance of the
model, and further improvement was observed by allowing β to become a trainable parameter of
the model. The GAN performance improved if the swish was used either for the generator or the
critic network but consistently performed worse when used on both. The best performance was
obtained with the swish in the generator network. The flexibility of this activation function is
illustrated in Figure 5.15 using particular β values where it estimates ReLu, x · sigmoid(x) or a
linear function. The values of the trainable β parameter for each layer are shown in Figure 5.16.
Several other activation functions such as the Scaled Exponential Linear Units (SELU) were
also studied during the HPO.
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The trainable swish activation was implemented using as a custom layer in Keras.

5.4.7.4 Some optimised hyper-parameters

Apart from the depth and width of each of the networks, the training ratio, GPW, batch
size, number of epochs, learning rates, optimizers, batch normalisation, activation functions
(Exponential Linear Units (ELU), SELU, hyperbolic tangent to name a few), drop-outs, 2D
convolutional layers (with and without colour channels for the third dimension), 2D locally
connected layers, relaxing the two sided gradient penalty to a one sided gradient penalty (and
also increasing the threshold after which the penalty is applied), training size, instance noise
were also studied. An intuitively promising architecture for the generator where it outputs a
single calorimeter layer image at a time over the last four layers also not any better than an
usual set of Dense layers.

An interesting point to note is that convolutional layers also did not improve the performance for
the sister project of where photon showers are modelled with a VAE, however, 2D Convolutional
layers did improve results over Dense layers for the VAE when it was trained to model energy
fluctuations for showers coming from pions (energy fluctuations from shower to shower are much
higher for pions than photons).

Other flavour of GANs such as the Improved WGAN-GP [71] (which adds a counter term to the
loss function of the critic), Progressively Growing GANs [98](implemented in PyTorch), Vanilla
GANs with a gradient penalty only on real or fake images [99] were also tried but without full
hyper-parameter searches.

Several kinds of preprocessing of the inputs and the cell energies such as a PCA transformation,
log transformations and separate scaling of energies per layer or per cell as well as ML tricks
such as truncating the latent space distribution [73] to a maximum and minimum value were
also studied.

5.4.8 Integration of generative models in ATLAS Simulation Software

A new FastCaloSim service called ‘DNNCaloSim’ was created in Athena borrowing heavily from
the in development FastCaloSimV2 [100] infrastructure. The service builds the cell cluster,
collects the conditional information available and computes geometry information on-the-fly
needed for GAN, then simulates the shower using the generator network using the Light Weight
Trained Neural Network (LWTNN) package [101] and finally performs the post-processing re-
quired to fill the energies into the calorimeter cells, which includes the mirroring of images for
the left half of the calorimeter. The service was designed to be flexible enough to switch from a
GAN based generative network to a VAE based generative network by changing a single flag in
the simulation command.

The LWTNN is a minimalist inference package that designed to help translate neural network
models trained in Keras into a format that is readable by its C++ api, and then use this to
apply neural networks in large C++ software frameworks. It avoids loading heavy ML libraries
into the memory. It is built using the Boost library and is therefore a very small overhead for
the C++ based Athena framework.

The LWTNN package was updated6 to support a trainable swish activation function so that the
generator network could be integrated into Athena.

The trained generator network (which uses a custom activation layer written in Keras) was later
6This open source package was updated with the guidance of Daniel Guest, its main contributor
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1

1. setupATLAS 

2. asetup Athena,21.0,latest 

3. Sim_tf.py --simulator 'G4FastCaloDNN' \ 

--geometryVersion ‘default:ATLAS-R2-2016-01-00-01_VALIDATION’\ 

--inputEVNTFile “/eos/atlas/atlascerngroupdisk/proj-simul/OutputSamples/rel21/
mc16_13TeV.photon.E65536.eta20_25.EVNT.merged.pool.root”\ 

--outputHITSFile photons.G4FastCaloDNN.HITs.pool.root 

--maxEvents 1 \ 

--preExec 'from ISF_FastCaloSimServices.ISF_FastCaloSimJobProperties import 
ISF_FastCaloSimFlags;ISF_FastCaloSimFlags.ParamsInputFilename="DNNCaloSim/
DNNCaloSim_GAN_nn_v1.json"’

Figure 5.17 – Athena command to run DNNCaloSim.

translated to TensorFlow 2.0.0 to be compatible with ONNX Runtime an inference package
recently added to Athena. The model has also been tested7 and runs also with ONNX Runtime.

This integration facilitates the validation of photon shower distributions produced by the gen-
erative network using Athena with the same rigour as other fast simulation techniques used in
ATLAS. These distributions will be shown in the following section. An example command is
shown in Figure 5.17.

5.5 Validation of distributions

This section will present the distributions obtained from the generative model and compare
them to those from Geant4. The section will start by presenting the first set of distributions
that were made public with a single critic GAN. These comparisons were made outside the
Athena framework. This will be followed by comparisons of plots with the double critic GAN,
first compared outside Athena and then present the performance of the generator network after
being integrated into the Athena simulation framework.

5.5.1 First Round of Public Results

This section presents comparisons between physics properties of the synthesised showers from
the generative models and the full simulation that were made public in in [92]. A single critic was
used for the GAN and it was not conditioned on impact point of the particle. The architecture
of the GAN and VAE are shown in Figure 5.18. The histogram of the ∆ηCell (defined as ηcell −
ηImpact Cell of the cell of the cells from all the 88000 showers for each layer of the electromagnetic
calorimeter, weighted by the energy of the cells is shown in Figure 5.19.

Both the GAN and the VAE are able to model these distributions reasonably well, but completely
fail to model the energy response of the calorimeter, seen in Figure 5.10. The GAN was trained
on only 4% of the dataset and therefore shows signs of over-training on the tails of Figure 5.19b,
where it systematically reproduces the statistical fluctuations in the tails of the training dataset.
The fluctuations do not go away even if more data is generated from the GAN. This was fixed
in future iterations of the GAN.

It is to be noted that this is an unusual set of distributions because they do not depict the
7Tested by Debottam Gupta and Michael Fenton
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Figure 5.18 – Schematic representation of the architectures of (a) VAE, (b) the first GAN with a
single critic, used in [92].

properties of the showers. The rest of this chapter will use a more intuitive set of distributions
which are based on observables computed for individual showers.
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Figure 5.19 – Average energy deposition in the cells of the individual calorimeter layers ((a)
presampler, (b) front, (c) middle, (d) back) as a function of the distance in η from the impact point of
the particles for photons with an energy of approximately 65 GeV in the range 0.20 < |η| < 0.25. The

chosen bin widths correspond to the cell widths in each of the layers. The energy depositions from a full
detector simulation (black markers) are shown as reference and compared to the ones of a VAE (solid

red line) and a GAN (solid blue line). The shown error bars and the hatched bands indicate the
statistical uncertainty of the reference data and the synthesised samples, respectively. The underflow

and overflow is included in the first and last bin of each distribution, respectively. The showers
simulated by Geant4 deposit on average approximately 0.7 %, 17.2 %, 79.3 % and 0.4 % of the true

photon energy in the presampler, front, middle and back layer, respectively. The showers synthesised by
the VAE (GAN) deposit on average approximately 0.6 % (0.8 %), 19.1 % (19.8 %), 77.6 % (78.1 %) and

0.6 % (0.5 %) of the true photon energy in the presampler, front, middle and back layer, respectively. [92]
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5.5.2 Standalone Validation

In the architecture optimisation phase of this project, the GAN simulated distributions were
validated against Geant4 Monte-Carlo using simple physics variables that can be calculated
outside Athena. Electronic noise was not simulated in the training samples, which meant that
often only a single cell recorded non-zero energy in a calorimeter particular layer, giving rise to
unphysical single-bin peaks in the Geant4 histograms. Standard feed forward networks struggle
to produce exact zeros, and although these peaks could be reproduced with a ReLu activation
on output layer of the generative network, the overall distributions were better reproduced by
a sigmoid activation. A study of post-processing with electronic noise confirmed that these
unphysical peaks go away and that the differences between the GAN and Geant4 due to this
effect would be washed away by the electronic noise. This will be shown in subsection 5.5.3.

The standalone validations were done for photons generated at all 9 energy points apart from a
few distributions for which the fixed energy point is clearly stated.

The covariance matrix for the 266 cells using samples from all energies is shown in Figure 5.20.

In the following validation performed standalone will report the η and φ values measured relative
to the centre of the impact cell (so the impact cell is always at (η, φ) = (0, 0). The averages
and higher order moments are computed using all the cells in each layer (21 for the Presampler,
168 for the Strips, 49 for the Middle and 28 for the Back) for every shower and weighted by the
energy deposited in the respective cell.

5.5.2.1 Impact Conditioning

The GAN was conditioned on the extrapolated impact point of the particle in the Middle
layer (see Figure 5.2). The distribution of the difference between average η of the shower and
the impact point (∆η) shown in Figure 5.21 demonstrates that the GAN learns to centre the
shower around the impact point well, which is not possible without such a conditioning. The
distribution of the difference between the average φ of the shower and the impact point (∆φ) is
shown in Figure 5.22 for all four layers. This also allows the GAN to reproduce the “S-shape
distributions“, the average η of the shower as a function of the particle impact η, which represent
edge effects induced by the discrete nature of the calorimeter geometry. This distribution is
shown for the Middle and Strip layers in Figure 5.23 where a single “S-shape” for the Middle
layer and eight “S-shapes” for the Strip layer are seen. Reproducing this effect is not trivial
because the GAN simulates the cells directly instead of simulating hits and casting them to cells
like FastCaloSimV2. It is however clearly visible that the GAN underestimates the spread of

Figure 5.20 – Covariance Matrix for the 266 cells using samples from all energies for Geant4 (left)
and the GAN (right).
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Figure 5.21 – Distribution of difference between the average η and the extrapolated impact η of the
particle in the Middle layer: Blue is a GAN without conditioning on impact point, Black is a GAN with

conditioning

the average η in the Strip layer for any given impact η position.

The impact the conditioning has on the correlation between the Middle and Strip layers is shown
in Figure 5.24. A slight improvement is observed, which indicates that providing additional
physics information is helpful (even though in principle the GAN could learn this correlation
without the impact position information).

5.5.3 Standalone Noise Studies

Figure 5.25 for an older version of the GAN shown how the distributions in Figure 5.22 are
affected when electronic noise is added. The unphysical peaks in the Geant4 that the GAN does
not reproduce are washed away.

5.5.3.1 Detector Geometry Conditioning

The GAN was also conditioned on the alignment of the different calorimeter layers shown in Fig-
ure 5.2. The shower width in the strip layer for two different alignments is shown in Figure 5.26.
The average η of the shower for the two alignments of the Back layer are well reproduced by the
GAN, as can be seen in Figure 5.27. An old example of a GAN trained without this conditioning
is shown in Figure 5.28 as contrast. While monitoring the evolution of the GAN training over
many epochs, this conditioning was usually one of the last features of the dataset the GAN
learnt.

This particular aspect of simulating a changing detector geometry (which occurs because the
images are small cropped portions of the full calorimeter) has not been addressed by any prior
work on simulating calorimeters with generative networks (to the best of the author’s knowledge).
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Figure 5.22 – Distributions of the difference between the average φ and the extrapolated impact φ of
the particle (∆φ) in all four layers: Blue is a GAN without conditioning, Black is a GAN with

conditioning. Comparisons are made for Geant4, a GAN not conditioned on the particle position and a
GAN conditioned on the particle position.
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(a) (b)

(c) (d)

Figure 5.23 – Distribution of the average η vs extrapolated position of the particle in Middle
((a),(c)) and Strip layers((b),(d)) for Photons with a fixed energy of 65.5 GeV. Bars represent the

statistical error in (a), (b) and the standard deviation in (c), (d) (where the GAN has been artificially
shifted up for visibility. The x-axis range corresponds the width of 1 cell in the Middle layer and 8 cells

in the Strip layer.)
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Figure 5.24 – 2D distribution of average η in the Middle layer vs Strip layer for (top) Geant4,
(middle) GAN without conditioning to extrapolated position of the particle (with an MSE of 11131),
(bottom) GAN conditioned on the extrapolated position of the particle (with a MSE of 3840). The

MSE between Geant4 and the GANs are also shown.

5.5.3.2 Lateral Distributions

The average η and φ distributions in the four layers are shown in Figure 5.29 and Figure 5.30
respectively and their widths (standard deviations) are shown in 5.31 and 5.32 respectively. The
GAN matches Geant4 reasonably well for most of the distributions, although less precisely for
the Presampler and Back layers particularly for the widths. Less energy is deposited in these
two layers compared to the Strips and the Middle layer, making it is harder for the GAN to
learn these distributions.

The distribution of the difference between the average η and φ of the shower and the impact
position of the particle for all four layers can be seen in Figure 5.33 and Figure 5.34 respectively.
The GAN matches these distributions reasonably well, although it does not reproduce any of the
unphysical single bin peaks that arise in the Presampler and Back layers for showers where no
energy is deposited in these two layers. The GAN also cannot reproduce the “two horn” structure
in the Strip layer which comes from an asymmetry between the two halves of the calorimeter
in the training dataset. Since the GAN was trained under the assumption of a symmetry, it
has no knowledge of which half it is simulating, and this is the cause of the difference between
Geant4 and the GAN distributions for this observable. These drawbacks of the dataset will be
discussed at the end of this chapter.
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Figure 5.25 – A study of how electronic noise would affect the distributions of the ∆φ distributions
for an older GAN. Gaussian noise for each layer is added based on the mean expected noise for that
layer. The artificial peaks seen near 0 in the Geant4 distributions (which the GAN did not reproduce)
are no longer present. The comparisons are made for Geant4, a GAN not conditioned on the particle

position and a GAN conditioned on the particle position. To be compared with Figure 5.22.
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(a) (b)

Figure 5.26 – Distribution of the shower widths in the strip layer for sections of the calorimeter
alignments p0: (a) and p1: (b), of the cells from the Strip layer with respect to the cells from the

Middle layer.)

(a) (b)

Figure 5.27 – Distribution of the average η in the Back layer for sections of the calorimeter in the
alignment e0: (a) and e1: (b), of the Back layer with respect to the Middle layer.)
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(a)

Figure 5.28 – Example of an old GAN trained without detector geometry conditioning. The
distribution of the average φ in the Strip layer is shown, which the GAN cannot match without

geometry information.

To verify that the GAN also learns the lateral correlations between layers, a distribution of the
difference between the average η in the Middle layer and each of the three other calorimeter
layers is presented in Figure 5.35. The GAN learns the correlation between the Middle and
Strip layer well but reproduces the correlation of the Middle layer with the Presampler with
much reduced accuracy.

5.5.3.3 Energy Distributions

The new GAN architecture with two critics greatly improves the simulation of the energy re-
sponse of the calorimeter as shown in Figure 5.13, particularly in contrast to the single critic
GAN response seen in Figure 5.10. The total energy per layer distribution is shown in Fig-
ure 5.36 which shows reasonable agreement. There is a mis-modelling of the longitudinal shower
shape as can be seen in the distribution of fraction of energy per layer in Figure 5.37. The GAN
puts too much energy in Middle layer and too little in the Strip layer.

The first and second moments of average energy in each cell are shown in Figure 5.40, clear
differences between the GAN and Geant4 can be seen for the Pre-Sampler and Strip layers and
smaller differences in the Middle and Back layers. The GAN does not reproduce the structures
well, however, studies of standard-normalising each cell did not result in improved performance.
In future studies, normalising the cells by the total energy per layer may be studied to improve
the modelling of these distributions.

5.5.3.4 Distributions at Single Energy Points

It is important to verify that the GAN not only appears to learn the distributions for all energy
points but that it can also reproduce distributions at fixed energy points. The shower shapes
do vary as a function of the energy of the particle. Figure 5.38 shows the change in the fraction
of energy deposited in the central 3 × 3 cells in the Middle layer over nine energy points. The
GAN reproduces them reasonably well.

The difference between the average η of the Middle and Strip layers are shown for photons with
4 GeV and 262 GeV of energy in Figure 5.39. The distribution as a function of the energy is
well modelled by the GAN.
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Figure 5.29 – Distribution of the average η in the 4 calorimeter layers for the GAN and Monte-Carlo
(Geant4)
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Figure 5.30 – Distribution of the average φ in the 4 calorimeter layers for the GAN and Monte-Carlo
(Geant4)
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Figure 5.31 – Distribution of the width in η in the 4 calorimeter layers for the GAN and
Monte-Carlo (Geant4)
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Figure 5.32 – Distribution of the width in φ in the 4 calorimeter layers for the GAN and
Monte-Carlo (Geant4)
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Figure 5.33 – Distribution of the difference between the average η of the shower and the impact η of
the particle in the 4 calorimeter layers for the GAN and Monte-Carlo (Geant4)
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Figure 5.34 – Distribution of the difference between the average φ of the shower and the impact φ of
the particle in the 4 calorimeter layers for the GAN and Monte-Carlo (Geant4)

Figure 5.35 – Distribution of the difference between the average η of the three other layers with
respect to the Middle layer for the GAN and Monte-Carlo (Geant4)
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Figure 5.36 – Distribution of the total energy in each of the 4 calorimeter layers for the GAN and
Monte-Carlo (Geant4)
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Figure 5.37 – Distribution of the fraction of energy in each of the 4 calorimeter layers for the GAN
and Monte-Carlo (Geant4)
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Figure 5.38 – Fraction of energy deposited in the centre of the Middle layer E(3× 3)/E(7× 7).
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(a) (b)

Figure 5.39 – Distribution of the difference in average η between the Middle and Strip layers for
photons with (a) 4 GeV and (b) 262 GeV of energy.

0 5 10 15 20
Number of the cell

0

1

2

3

4

5

6

lo
g 

(M
ea

n+
1)

Mean per cell - PRESAMPLER
G4
WGAN

(a)

25 50 75 100 125 150 175
Number of the cell

0

1

2

3

4

5

6

7

8

lo
g 

(M
ea

n+
1)

Mean per cell - STRIP
G4
WGAN

(b)

190 200 210 220 230
Number of the cell

0

2

4

6

8

10

lo
g 

(M
ea

n+
1)

Mean per cell - MIDDLE
G4
WGAN

(c)

240 245 250 255 260 265
Number of the cell

0

1

2

3

4

5

lo
g 

(M
ea

n+
1)

Mean per cell - BACK
G4
WGAN

(d)

Figure 5.40 – Distribution of mean energy in each cell in the (a) Pre-Sampler, (b) Strips, (c) Middle
and (d) Back layer.
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Figure 5.41 – Demonstration of the need for epoch picking: Distribution of the average η in the four
layers for a GAN from epoch 12500 and Monte-Carlo (Geant4). This version of the generator was not

integrated into Athena.

5.5.3.5 Importance of Epoch Picking

The distribution of the average η is shown in Figure 5.41 is shown from a different iteration of
same GAN training as an example for the importance of epoch picking. This generator is from
the epoch 12500 (as opposed to epoch 7500). The distributions for the generator have clearly
deteriorated compared to Figure 5.29.

5.5.4 Validation Inside ATLAS Software

The validation of the GAN performance inside Athena was performed by simulating single
photon showers at fixed energy points distributed in 0.20 < |η| < 0.25 with realistic electronic
noise but without displacements corresponding to the expected beam spread. Several high level
physics motivated variables [102] were studied for the first time after integrating the GAN. The

116



5.5. VALIDATION OF DISTRIBUTIONS

comparisons are performed at various fixed values of incident photon energy.

5.5.4.1 Validation for 65.5 GeV Photons

The total calibrated energy is shown in Figure 5.428 which the GAN models well. The fraction
of energy in the Strip and Back layers are shown in Figure 5.43. A slight mis-modelling is seen
for the Strip layer which corresponds to the distributions in the standalone validation.

It should be noted that calibration is tuned only using Geant4, and an agreement between the
distributions of a variable before calibration does not straightforwardly translate to an agreement
between distributions of a variable after calibration. A divergence is possible if the calibration
accounts for certain other factors which are not modelled well by the fast simulation technique.

The Rη is defined as the energy recorded in a 3× 3 central region of the Middle layer over the
energy recorded in a 7x7 region where the first number indicates the number of cells in the η
direction and the second indicates the number of cells in the φ direction. Similarly Rφ is defined
as the energy recorded in a 3 × 3 region over the energy recorded in a 3x7 region. The two
distributions for 65.5 GeV photons are shown in Figure 5.44. The GAN does reasonably well
for these distributions.

The fracs1 observable is defined for the Strip layer and it is the fraction of energy in a 7 × 1
over 3× 1 region around the cell with the maximum energy. The Ecore observable is defined as
E0(3× 3) + E1(15× 2) + E2(5× 5) + E3(3× 5) where El(m× n) denotes the energy in layer
l and the other two numbers denote the number of cells in the η and φ directions respectively.
The distribution for these two observables is shown in Figure 5.45.

The ws tot observable is defined as the total lateral shower width,
√

(ΣEi (i− imax)2
)
/ (ΣEi) ,

where i runs over all cells in a window of ∆η = 0.0625 and imax is the index of the highest-energy
cell [102]. The wη1 observable is defined as the shower width using ±3 strip cells around the
one with the maximal energy deposit,

√∑
(Ei)x(i− imax)2/

∑
(Ei), where i is the number of

the strip cell and imax the number of the strip cell with the maximum energy deposit. The
distributions for ws tot1, which is the ws tot for the strip layer, and wη1 are shown in Figure 5.46.
The GAN reproduces the first reasonably well and is wider than Geant4 for the second.

The emins1 observable is defined as the energy reconstructed in a strip cell with the minimal
value between the first and the second maximum. The emaxs1 observable is defined as the energy
of strip cell with maximal energy deposit. The e2tsts1 observable is the second maximum in strip
layer calculated by summing three strip cells. These three observables are shown in Figure 5.47.

5.5.4.2 Interpolation at Untrained Parameter Point

Since the GAN was trained on only 9 photon energies, it is essential to verify that the GAN
is able to interpolate well at untrained energy points. Figure 5.48 and Figure 5.49 show that
the GAN is able to interpolate to an untrained energy point of 25 GeV for distributions that
change as a function of the energy of the incident particle, namely the distribution of the total
calibrated energy and the Rφ. The same level of performance is seen as for neighbouring energy
points used to train the models.

8The VAE studies are not discussed in this thesis. The VAE distributions shown were found to be produced
with a different reconstruction setting and will be updated in the future.
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Figure 5.42 – Distribution of the total calibrated energy the GAN and Geant4

(a) (b)

Figure 5.43 – Fraction of energy in (a) the Strip and (b) Back layers of the calorimeter.)

(a) (b)

Figure 5.44 – Distribution of (a) Reta and (b) Rphi for 65.5 GeV photons.
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(a) (b)

Figure 5.45 – Distribution of (a) fracs1 and (b) ecore for 65.5 GeV photons.

(a) (b)

Figure 5.46 – Distribution of (a) ws tot1 and (b) wη1 for 65.5 GeV photons.)
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(a) (b)

(c)

Figure 5.47 – Distribution of (a) emins1, (b) emaxs1 and (c) e2tsts1 for 65.5 GeV photons.
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(a) (b)

(c)

Figure 5.48 – Distribution of calibrated energy for (a) 16 GeV, (b) 25 GeV and (c) 33 GeV photons.
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(a) (b)

(c)

Figure 5.49 – Distribution of Rφ for (a) 16 GeV, (b) 25 GeV and (c) 33 GeV photons. The GAN is
shown in red and Geant4 in black.
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(a) (b)

Figure 5.50 – Extrapolation Test: Distribution of (a) total calibrated energy, (b) Rη for 512 GeV
photons. The GAN was never trained on any photons with energy beyond 262 GeV.

5.5.4.3 Extrapolation

Feed-forward Neural networks are not known to extrapolate well to unseen points in the input
space. A test is performed on how much the performance of the GAN deteriorates for novel
truth energies outside the training range.

The chosen energy point is 512 GeV, a factor of two larger than the highest training energy
point. Figure 5.50 shows that the GAN produces the correct mean of the total energy but fails
to model the width of the distribution correctly. It also failed to model the Rη distribution very
well.

5.5.4.4 Comparison to Atlas Fast II

The performance of the GAN is compared to the current fast simulation software ATLAS Fast
II. Since Geant4 is used at the ideal distribution the data tuning for ATLAS Fast II is turned
off, however comparisons are also shown with data tuning turned on.

The Eratio observable is defined as the ratio of the energy difference between the maximum
energy deposit and the energy deposit in a secondary maximum in the cluster to the sum of
these energies, Eratio = (emaxs1 − e2tsts1) / (emaxs1 + e2tsts1).

Figure 5.51 shows comparisons of the fraction of the energy deposited in the Strip and Back
layers, the Rφ, wη1 and Eratio between Geant4, ATLAS Fast II the GAN for 25 GeV photons.
For comparisons to ATLAS Fast II with data tuning on see Figure 5.52. The performance of
the GAN is comparable (although sometimes slightly worse) to that of ATLAS Fast II for these
distributions, and in certain cases, such as the energy fraction in the Back layer and Rφ, it
matches Geant4 better than ATLAS Fast II. Since the different algorithms perform better for
different distributions neither can be be considered consistently better than the other. However it
is encouraging to note that the performance of the GAN is already comparable to the traditional
algorithm that took considerable effort and expertise to optimise.

5.5.4.5 Comparison to FastCaloSimV2

Comparisons are also made to the in-development FastCaloSimV2. It is to be noted that since
FastCaloSimV2 is in high priority development, there are frequent new versions. The compar-
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(a) (b)

(c) (d)

(e)

Figure 5.51 – Comparisons between Geant4, ATLAS Fast II (without data tuning) and GAN for
fraction of energy in the (a) Strip layer, (b) Back layer and the observables (c) Rφ, (d) wη1 and (e)

Eratio for 25 GeV photons.
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(a) (b)

(c) (d)

(e)

Figure 5.52 – Comparisons between Geant4, ATLAS Fast II with data tuning and the GAN for
fraction of energy in the (a) Strip layer, (b) Back layer and the observables (c) Rφ, (d) wη1 and (e)

Etextratio for 25 GeV photons.
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isons shown here were produced with the latest versions of FastCaloSimV2 at that time each
comparison was made, but these versions of FastCaloSimV2 have since been superseded by
newer versions. These comparisons are only meant to put the performance of the GAN in an
understandable context, rather than to rank different fast simulation methods at the this time.

These comparisons are shown with version 9 of FastCaloSimV2 in Figure 5.53 and with version 11
of FastCaloSimV2 in Figure 5.54. Certain differences seen between the Geant4 in these figures
compared to figures from previous sections is due to slight differences in the reconstruction
specifications, but for each comparison the exact same reconstruction specifications are used the
Geant4 the GAN and the other fast simulation techniques.

The performance of the GAN is again comparable to FastCaloSimV29 but clearly a worse mod-
elling of the energy fraction in the Strip layer. The updates to FastCaloSimV2 in version 11 help
it close the gap between the performances of the GAN and FastCaloSimV2 seen in the original
comparison using version 9 of FastCaloSimV2. Further work in optimising a GAN based on
these comparisons should allow to further improve the performance of a neural network based
simulation.

5.5.4.6 Deterioration of performance at High Energy

The GAN performs significantly worse for certain distributions at higher energy points (beyond
a photon energy of 100 GeV), as can be seen in Figure 5.55, which shows the distribution of Rη
for photons with energies of 2 GeV, 8 GeV, 32 GeV and 130 GeV.

5.5.4.7 Deterioration of Impact Conditioning in Athena

Despite performing well in standalone validation, the GAN fails to simulate the correlation
between the position of the particle and the average η of the shower inside Athena, as can
be seen in Figure 5.56. It also fails to exhibit a reasonable correlation between the Strip and
Middle layer as seen in Figure 5.57. These issues were understood to be a problem in the training
dataset, described in Section 5.6.

5.5.5 Software Performance

The time required to simulate single photon showers grows with the energy of the particle
for Geant4. Measured in February 2019, on the same machine and running through Athena,
Geant4 takes 10 seconds per shower for a 65.5 GeV photon and 2.4 seconds for a 16 GeV photon,
compared to that the GAN takes 70 milliseconds per shower irrespective of the photon energy.
This is comparable the traditional parameterised fast simulation approach. In both cases, most
of this time is due to overhead that will be optimised. The actual shower generation takes 8
milliseconds out of which 7 milliseconds is spent on building the cluster and only 0.7 milliseconds
needed to run the neural network. While there is still a lot of scope to optimise the speed, the
current speed is sufficient for the fast simulation needs of the ATLAS experiment.

The simulation time for single showers as a function of the photon energy is shown in Figure 5.58.
The simulations using Geant4 were measured on three machines, referred to as ‘Machine4’,
‘Machine5’, and ‘Machine6’, and the differences between the times for each machine are negligible
when comparing Geant4 with the DNNCaloSim.

The LWTNN JSON file size is 9.6 MB on the disk, small compared toO(GBs) for FastCaloSimV2
and also has a far smaller peak memory usage of 2.3 GB (with the LWTNN taking only 5 MB)

9An even newer FastCaloSimV2 parameterisation shows an improved Rφ modelling
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(a) (b)

(c) (d)

(e) (f)

Figure 5.53 – Comparisons between Geant4, FastCaloSimV2 (version 9) and GAN for fraction of
energy in the (a) Strip layer, (b) Back layer and the observables (c) Rη, (d) Rφ, (e) wη1 and (f) total

uncalibrated energy for 65.5 GeV photons.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.54 – Comparisons between Geant4, FastCaloSimV2 (version 11) and GAN for fraction of
energy in the (a) Strip layer, (b) Back layer and the observables (c) Rη, (d) Rφ, (e) wη1 and (f) total

uncalibrated energy for 65.5 GeV photons.
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(a) (b)

(c) (d)

Figure 5.55 – Distribution of Rφ for (a) 2 GeV, (b) 8 GeV, (c) 32 GeV, (d) 131 GeV photons.

(a) (b)

Figure 5.56 – Distribution of difference between the η of the particle and the average η of the shower
in (a) Strip layer, (b) Middle layer for 65.5 GeV photons.
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Figure 5.57 – Distribution of difference between the average η of the shower in the Strip and Middle
layer for 65.5 GeV photons.
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Figure 5.58 – Simulation time for a single shower as a function of the energy of the incident photon
for Geant4 and the GAN. The blue line is a linear fit to the logarithm of time to the logarithm of the
photon energy for Geant4 measured on Machine4 and the blue dots indicate the data points. Slight

variations in simulation time were observed from one machine to another, examples of such points are
shown in orange (Machine5) and green (Machine6). The simulation time for the GAN is flat with

respect to the photon energy and is shown in black.
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Figure 5.59 – Distribution of difference between the average η of the shower and the impact point of
the particle in the Strip Layer for showers from two halves of the detector. The former uses the raw η
coordinates while the later uses the true η coordinates, giving rise to a discrepancy in the dataset.

compared to 6.0 GB for FastCaloSimV2 (last comparison made in February 2019). The ONNX
model file is even smaller at 1.3 MB. Although this GAN is trained only on a small region in η,
the total memory footprint of the DNNCaloSim service is not expected to dramatically increase
when expanded to the entire calorimeter.

5.6 Drawbacks

The “two horn” structure for the ∆φ distribution in the Strips is because of a discrepancy
in the definition of the coordinates used for the calorimeter cells and the extrapolation of the
particle position. The former uses the raw coordinates while the later uses the true coordinates.
Figure 5.59 shows that each peak comes from a separate half of the detector.

A clear φ asymmetry is seen in Figure 5.60, which is the distribution of the difference between
the φ of the shower and the impact position of the particle as a function of the φ of the particle
for showers with impact cell η = −0.238. Figure 5.61 shows the different average φ distributions
in the two halves of the detector.

This is also a consequence of the fact that the cell positions are raw coordinates while the
particle positions are in the corrected coordinates. The GAN is conditioned on the position of
the particle relative to the position of the impact cell (i.e. the difference of the two which are
measured in slightly different coordinates) and this is the source for the mis-modelling seen in
Subsection 5.5.4.7.

These issues as well as the general performance evaluation performed inside Athena give valuable
insight for the next stage of the project of simulating the ATLAS calorimeter using generative
networks.
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Figure 5.60 – Distribution of the difference between the φ of the shower and the impact position of
the particle as a function of the φ of the particle for showers with impact cell η = −0.238 in the Middle

layer. The distribution is not flat, as was assumed for the training of the GAN.

Figure 5.61 – Distribution of the average φ in the two halves of the detector for the Strip layer. It is
not the same.
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5.7 Related Work

In comparison to prior work on simulating calorimeters with generative networks, the dataset
used in this study is an official ATLAS production using Geant4 which incorporates the full
details of the ATLAS electromagnetic calorimeter. Prior work is performed on simulations
of a small cuboid of a calorimeter or on future detectors which usually have a more regular
geometry. The performance evaluation is performed using the rigorous validation framework
used in ATLAS for many physics observables. The performance of a deep generative model is
for the first time compared to the state-of-the-art fast simulation algorithms used in an LHC
experiment.

The cropped images used to train the GAN are quite small and the entire training dataset fit in
the memory. The training time for individual epochs is also very small (although many epochs
are required for training). No convolutional layers or locally connected layers were found to be
useful and therefore there is no inductive bias in the architecture to help the GAN learn the
spacial correlations.

The CaloGAN [9–11] demonstrated the idea of using GANs for fast calorimeter simulation. It
was trained on a fixed size representative volume of a calorimeter (rather than the entire η or φ
range) which including multiple layers with varying granularity. In contrast, the GAN described
in this thesis is trained on cropped images because it simulates the entire 2π range for φ. This
is also the reason this project has to accommodate the layer-to-layer alignment configuration
conditioning. The architecture of this GAN is very simple compared to the CaloGAN, which
has a more physics inspired arrangement of layers.

A WGAN-GP developed for the CMS prototype high granularity calorimeter [95] at the same
time as this project also benefited from the use of Convolutional layers and used additional
networks trained to regress physics observables from the generated images. A 3D Convolutional
GAN [103] trained on simulations of a granular calorimeter of the future Compact Linear Col-
lider (CLIC) detector experimented with both 3D and 2D convolutions and found them to be
beneficial. This project also demonstrated significant speed up in terms of training time when
scaled to multiple GPUs. In contrast the GAN from this project has little to gain from scaling
to multi-GPUs, model parallelism or data parallelism.

The CMS project10 and the 3D GAN project are applications on a granular and regular shaped
calorimeter whereas the ATLAS calorimeter is much more coarse and it is not only highly
irregular (in terms of cell sizes) but also suffers from imperfections like the ones discussed in
Section 5.6.

Instead of simulating single particle showers, a slightly different approach is taken by [104] where
CMS open data is used to train a GAN based algorithm to directly simulate reconstructed jets.
The algorithm incorporates additional loss terms architecture optimisations specific to that
dataset (such as a strong sparsity requirement).

As discussed in Section 5.4.6.4, a few other projects that train generative models for physics
simulations faced similar problems to this project in terms of simulating the correct energy/mass
distribution and used either an additional loss or a post-processing network to fix the problem.

10Which is studied on a prototype high granularity calorimeter, not to be confused with the current CMS
calorimeter.
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Table 5.1 – Table summarising the performance of Geant4, FastCaloSimV2 and DNNCaloSim
service.

Geant4 FCSV2 DNNCaloSim
Time for 65 GeV shower 10s 70ms 70ms
File Size - O(GBs) 9.6 MB
Peak Memory - 6 GB 2.3 GB

5.8 Conclusions and Future Outlook

ATLAS will require fast simulation techniques to cope with future needs and calorimeter simu-
lation is currently the bottleneck. Traditional fast simulation algorithms that use hand designed
parameterisations trade-off accuracy for speed. They also suffer from a large memory footprint.
Deep generative models may automatically learn such parameterisations and provide fast, precise
simulations without a large memory footprint.

This project was the first time a GAN was trained on the actual Geant4 simulations of the AT-
LAS electromagnetic calorimeter for this goal. Integrating the model into the ATLAS software
for the first time allowed to make realistic performance comparisons and demonstrated that
generative models can speed up simulations and bring down the memory footprint sufficiently
to be useful to the ATLAS experiment. For 65 GeV photons the speed up with respect to Geant4
is two orders of magnitude on a CPU (no GPUs) which is sufficiently for ATLAS requirements.
The parameterisation file size is three orders of magnitude smaller than FastCaloSimV2 and the
peak memory usage is only 38% of FastCaloSimV2, which would also suffice in terms of memory
footprint requirements of ATLAS but there is still plenty of room for optimisation of the over-
head in case further improvement in performance if required. The comparison is summarised in
Table 5.1. The model was also updated to run with upcoming upgrade to the interface between
the ATLAS software and deep learning models using ONNX Runtime.

At a later stage of this project, fine tuning of the generative network simulations in terms of
corrections and refinement (either using further ML or using traditional means11) will perhaps
be required, however, for this stage of the project a decision was taken not to resort to inelegant
solutions. This allows insights from this work to be more generalisable.

The GAN models several distributions well including the distribution of certain physics observ-
ables never tracked at the model optimisation stage of the project. With the help of a second
critic, it also exhibits the ability to produce showers conditioned on the energy and position
of the incident particle as well as the fast changing detector geometry. Despite training on
only nine energy points, it is able to interpolate to unseen energy points well. However, at the
next stage of this project, the performance will need to be improved much further and provide
consistency of performance at all energy points for it to be used for a real physics analysis.

It is worth noting that some conditioning was easier for the GAN to learn than others. The
smooth conditioning to the position of the particle was easy, the energy conditioning did work
but required the second critic to model the width of the total energy distribution, and the
discrete, quickly changing geometry was the hardest aspect for the GAN to learn. For this
reason the geometry conditioning and energy resolution were the primary distributions used to
filter out bad versions of the GAN for epoch picking and HPO.

The GAN simulated shower distributions in many cases agree well with Geant4 even after
calibration, which is not always the case for fast simulated samples12. In several cases the GAN

11Or by training hundreds of GANs for each section of the calorimeter, similar to FastCaloSimV2 parameteri-
sation strategy

12A distribution that agrees before calibration may not necessarily agree well after calibration because of other
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already outperforms the traditional fast simulation approaches, which took significantly more
person-power and effort over several years to fine tune, but on the other hand in several cases the
GAN still has much room for improvement and performs worse than the traditional approaches.
Of particular issue is the drop in performance at the highest energy points, which may be fixed
in the future with a more suitable training dataset. More importantly, by the end of this effort,
there was no physics observable that the GAN could not model at all. The parent dataset (from
which the training dataset was built) was simulated for a very different strategy, to optimise
the hand parameterised FastCaloSimV2 in small bins of η and for fixed energy points. The
success of this study indicates that it is worth the investment of some resources from ATLAS
community (in terms of person-power for training and validation of models and dedicated Geant4
simulations suited to for this task) for this effort. A paper is in preparation which shows the
performance of deep generative models studied in ATLAS after their integration into Athena
and using some of the high level physics observables used to validate FastCaloSimV2.

The high level variables as well as additional scrutiny that became available due to the Athena
integration revealed several distributions that need to be improved as well as problems with the
training dataset. Such insights help take forward the project of accurate and fast simulation of
the ATLAS calorimeter using generative networks.

For this highly irregular shaped and course granularity calorimeter, convolutional layers were
not found to improve the performance of the GAN, even though there are spacial correlations
to exploit. This is partly due to the fact that the cropped images have only 266 cells. Further
trouble awaits as these techniques are scaled up to the entire calorimeter. A discontinuity at
η = 0.8, the even more irregular tiles (in the Hadronic Calorimeter), the changing granularity in
the Strip layer in the end-caps imply a complete loss of a translation symmetry in {η, φ}. This
suggests a strong need to train on more granular, and uniformly binned data (voxels) which
can be cast into calorimeter cells with post-processing (FastCaloSimV2 already performs such a
casting). This is a way to avoid edge effects and ensure that there is only a smooth dependence
of the image distributions on the position of the incident particle.

It is also imperative to train on pion induced showers, where correlations and fluctuations are
significantly more difficult to model for traditional fast simulation approaches. Unlike photons,
pions deposit a non-negligible fraction of their energy in the hadronic calorimeter, therefore it
must also be included in the training.

An interesting alternate direction might be to train on point-cloud data generated by Geant4.
A wide class of graph convolutional layers have recently been developed which would assist in
such simulations. Graph convolutional layers may also be flexible enough to help improve the
simulation of the ATLAS calorimeter at the cell level.

Although it is known that certain shower shape variables are not well modeled by Geant4, a
decision was taken in ATLAS to keep Geant4 as reference for all fast simulation approaches
rather than training on real data because Geant4 samples can be corrected to match data
very well. Therefore, a fast-simulator that can mimic Geant4 can also benefit from the same
correction parameterisation. This would avoid having to validate and tune a fast simulation
algorithm with data in addition to Geant4.

In this project a problem of WGAN-GPs was discovered that usually does not affect applications
to natural images (where the total pixel intensity carries little meaning), which is modelling the
total energy of an input image, and a solution was proposed for physics datasets. The solution is
to train two critics, one with a high gradient penalty weight, and one with a much lower gradient
penalty weight which is only able to look at the aspects of the image that require improvement,
i.e. the total energy. This concept could be extended further with the insertion of additional
physics observables as inputs to the second critic, or additional critics, if necessary, in order

correlations the calibration takes into account which may not be modelled well by the fast simulation algorithm.
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to explicitly indicate the importance of modelling particular physics motivated features to the
generator within the training algorithm.

The infrastructure built during this effort and the lessons learnt from it have already benefited
other efforts working on deep generative models towards the same goal within ATLAS.

The entire work described in this chapter from curating the training dataset (including the
oversights in the process) to building the Athena service and validating performance as well as
identifying problems and solutions for the current approach were performed by the author.

These studies have been made publicly available as an ATLAS technical note [92] and follow up
public plots, and a paper is in preparation.
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Offshell Higgs to Four Leptons
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This chapter will briefly describe the off-shell Higgs boson couplings measurement strategy in
the ATLAS experiment at the time of writing and describe studies performed to the sensitivity
to the signal strength in the VBF production mode using ML classification models trained
on the official ATLAS MC samples available at the time. However, due to the presence of
quantum interference between signal and background events, and the distribution of negative
weighted events in the dataset, we eventually abandoned the strategy described in this chapter
and changed direction to a new strategy to improve sensitivity to the off-shell Higgs boson
signal strength in the VBF production mode using ML based likelihood-free inference, which is
described in Chapter 7.

6.1 The Higgs boson to four leptons channel

The Higgs boson was first discovered in the H → ZZ(∗) → 4l decay channel (where l= e or µ)
along with the H → γγ and H →WW decay channels in ATLAS and CMS [105, 106] using the
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Run1 data. Precision measurement of Higgs properties continue to be performed in this decay
channel. The Feynman diagram of the decay is given in Figure 6.1.

H

`

¯̀
`′

¯̀′

Z

Z(∗)

Figure 6.1 – Leading order diagram for the H → 4l decay.

This channel is often referred to as the “golden channel” because it is relatively clean (easy to
separate signal from background), has a fully reconstructable final state with high efficiency and
has relatively small detector uncertainties. QCD and other background processes with jets in
the final state are often causing difficulties for an analysis but in this case jets are not part of
the final state, they are only used to tag the production mode. Further, taus are excluded from
the final state because of their low efficiency and to avoid missing neutrinos. It thus allows for
precise measurements of the Higgs mass, cross-sections, couplings and spin-parity (denoted CP )
despite the smaller SM cross-section compared to other channels (see Figure 2.4).

Apart from all of these measurements, another interesting aspect of the four leptons channel,
particularly for this thesis, is that it benefits from an enhanced cross-section for the high mass
off-shell Higgs production (which will be described below). This allows for the measurement of
the off-shell couplings of the Higgs boson, which is the focus of this thesis. This measurement
is useful to indirectly constrain the width of the Higgs boson but is also useful in constraining
other kinds of BSM. The motivations for this measurement were discussed in section 2.3.

6.2 Off-shell Analysis

The high mass off-shell production of the SM Higgs boson has a substantial cross-section at the
LHC (see Figure 2.9) because although the Higgs boson is off-shell, the intermediate particles
in the Higgs production can go on-shell. This provides a unique opportunity to study the Higgs
boson at higher energy scales. The destructive interference between certain SM signal and
background processes (see Figure 2.10) further enhance the possibility to measure the presence
of the signal.

Although such studies could be done within an Effective Field Theory (EFT) framework in the
future, ATLAS has adopted the κ framework (see Section 10 of Ref. [107]) for this round of
the analysis. Since there is a strong interference between certain signal and certain background
processes, the definition and interpretation of usual experimental terms requires clarification.
The notion of signal strength (which is often interpreted as the ratio of number of excess events
measured to the number of excess events expected in the SM) breaks down in the presence of
interference.
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The signal strength for the ggF Higgs boson production mode µoff-shell,gg is defined as :

µoff−shell,gg =
σgg→H

∗→ZZ
off−shell

σgg→H
∗→ZZ

off−shell,SM

= κ2
g, off-shell · κ

2
Z, off-shell (6.1)

where σgg→H
∗→ZZ

off−shell is the cross-section of the off-shell Higgs boson production from ggF and
decay into a ZZ pair, the κg, off-shell and κZ, off-shell are the off-shell coupling modifiers with
respect to the SM of the gg → H∗ production and H∗ → ZZ decay, respectively. One can
similarly write the equation for the VBF production mode:

µoff−shell,VBF = σV V→H
∗→ZZ

off−shell

σV V→H
∗→ZZ

off−shell,SM
= κ4

V, off-shell (6.2)

where V = {W±, Z} with the requirement that the vector boson couplings are modified in the
same way. In fact in the previous round of the analysis [12] on data that corresponds to 36.1
fb−1 of luminosity, an additional assumption that µoff−shell,gg = µoff−shell,VBF was also made,
which is reasonable given the order of magnitude smaller contribution from VBF.

It is important to note however that due to destructive interference with certain background
processes, gg → ZZ background for gg → H∗ → ZZ signal and V V → ZZ background for
V V → H∗ → ZZ signal, the total yield expected is not simply a linear function of the signal
strength. In fact the total expected number of events is smaller in the case of SM with the Higgs
boson than it is without the Higgs boson. For 36.1 fb−1 of luminosity the expected yield (with
an m4l > 220 GeV requirement) in ATLAS for the gg → (H∗ →)ZZ → 4l full process is 96± 15
events, whereas for the background-only process gg → ZZ → 4l it is 101± 16 events and for the
signal-only process gg → H∗ → ZZ → 4l it is 9.8± 1.5 events [12].

The dominant background for this analysis comes from the continuum qq̄ → ZZ process. The
dominant production mode for signal is ggF and the subdominant mode is VBF. No other
contributions are considered for the analysis. The distributions of the ggF contributions and qq̄
background in the off-shell regime can be seen in Figure 2.9.

The on-shell Higgs contributions are also treated as a background for the off-shell couplings
analysis because these two measurements need to be separated to allow a Higgs width mea-
surement. In the on-shell analysis the Higgs boson mass is required to be |mgen

H − 125| < 1
GeV whereas the off-shell analysis selects events with m4l > 220 GeV. Nonetheless, the off-shell
analysis can have contamination from on-shell events that pass the m4l > 220 GeV cut, such
as from a mis-paired leptons from onshell VH production (Figure 6.2), or a rare onshell VBF
diagram (see Figure 6.3). Section 6.5 will detail the sample generation for the off-shell analysis
to account for these contributions correctly.

The analysis strategy makes certain other important assumptions. It is assumed that any new
physics which modifies the off-shell signal strength does not modify the relative phase of the
interfering signal and background processes, or make sizeable kinematic changes to the off-shell
signal1. It also assumed that there will be no sizeable new signals in the search region unrelated
to a modified off-shell signal strength.

6.3 State of the Art

ATLAS published the previous round of this analysis [12] on data that corresponds to 36.1 fb−1

of luminosity collected in 2015-16. A brief summary is given in this section.
1Performing the analysis as an EFT measurement in the future will avoid having to much such an assumption.
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Figure 6.2 – A VH Feynman diagram with an on-shell Higgs boson which is a background for the
the off-shell analysis.
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Figure 6.3 – Feynman diagram of an on-shell VBF Higgs that could contaminate the off-shell
analysis.

The ATLAS experiment set an upper limit of 3.8 on µoff-shell at 95% confidence level (CL) under
these assumption that µoff-shell,gg = µoff-shell,VBF, and set an upper limit of 14.4 MeV on the
width of the Higgs boson ΓH . The off-shell region was defined by requiring the invariant mass
of the pair of Z bosons (mZZ) to be above the on-shell ZZ production threshold. The mass of
the leading di-lepton pair (m12) is required to be in the range 50 GeV < m12 < 106 GeV and
the sub-leading pair is required to be in the range 50 GeV < m34 < 115 GeV. The invariant
mass of the four leptons (m4l) was required to be within 220 GeV < m4l < 2000 GeV, while the
on-shell region was defined as 118 GeV < m4l < 129 GeV. There were also requirements for each
electron (muon) to have a transverse momentum pT > 7 GeV (5 GeV) and within |η| < 2.47
(|η| < 2.7). The highest pT lepton was required to have a pT > 20 GeV and the second (third)
leptons were required to have pT > 15 GeV (10 GeV).

The final measurement was performed with a binned maximum likelihood fit of the matrix-
element (ME) based discriminant (sometimes referred to as MELA for ‘Matrix Element Likeli-
hood Analysis’), which was computed at Leading Order (LO) with the MCFM program [29] using
the gg induced signal and background processes as well as the qq̄ background process. The for-
mula for the discriminant is given in Equation 6.3 (slightly modified from the original proposal
by [29]).

DME = log10

(
PH

Pgg + c · Pqq̄

)
(6.3)

where PH is the ME squared for an event computed for the gg → H∗ → ZZ process, Pgg is the
ME squared for an event computed for the gg gg →

(
H∗ →

)
ZZ process, Pqq̄ is the ME squared

for an event computed for the qq̄ → ZZ process and c is a hyper-parameter fixed to 0.1.

While this is a good baseline strategy which was sufficient for the previous round of the analysis
on 36.1fb−1 of data (which was limited by statistics, particularly for VBF events), there is scope
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for more sophisticated algorithms to enhance the sensitivity of the analysis further for the next
round which will use the entire Run2 data (integrated luminosity of 139 fb−1). Developing an
optimal strategy would also setup a good platform for Run3.

6.4 Probing the VBF production mode in the four lepton decay
channel

The previous round of the analysis did not prescribe a separate categorisation for the VBF
production mode, however, it is worth exploring for the full Run2 dataset. This production
mode has two additional jets along with the Higgs decay products in the final state. A Matrix
Element (ME) based discriminant becomes infeasible because, for the non-interfering background
processes, the two additional jets come from higher order corrections, and computing these ME
based observables at higher order for every event is computationally too expensive. Further, ME
based observables do not account for detector effects, which are small for leptons, but larger for
jets. Machine learning models are studied instead to improve the separation of VBF events.

The rest of this chapter will describe the efforts made to improve the sensitivity to the VBF
production mode using official ATLAS simulated samples.

6.5 Monte Carlo samples

This subsection describes the Monte Carlo (MC) samples used to model the signal and back-
ground processes in this analyses. The events are fully simulated using the ATLAS detector
simulation [108] within the Geant4 framework [4]. Pile-up simulation due to additional pp in-
teractions is added during digitisation by superimposing previously simulated minimum-bias
events.

The MC sample for gg → (H∗ →)ZZ includes the off-shell Higgs process gg → H∗ → ZZ, the
continuum background gg → ZZ as well as the interference between them, and is generated with
SHERPA 2.2.2 + OpenLoops [109–111]. ATLAS simulates this process with SHERPA because it
allows up to one additional parton in the final state [112]. The QCD renormalisation and
factorisation scales are set tomzz/2 in SHERPA and the NNPDF3.0_nnlo [113] PDF set used. NLO
corrections are incorporated with a K-factorK(mzz) = σNLO/σLO. The K-factors are separately
calculated for the signal, background and interference components of the gg → (H∗ →)ZZ
process. LO QCD samples generated with MCFM (Monte Carlo for FeMtobarn processes) which
are also corrected for higher order QCD are used to re-weight the SHERPA samples. Future
productions might be made in MadGraph5_aMC [82] with up to two additional jets in the final
state.

Various MC samples for pp→ ZZ+2j are generated with MADGRAPH5_AMC@NLO and Pythia8 [83]
with different intermediate states and/or signal strengths. The QCD renormalisation and fac-
torisation scales are set tomW [114] and the PDF set NNPDF2.3_lo [115] was used. The off-shell
signal sample (S) pp→ H∗+ jj → ZZ+ 2j (s-channel Higgs) with SM couplings, pp→ ZZ+ 2j
background-only sample (V), and a sample including S-V interference (SVI) are available and
their differential cross-section is shown in Figure 6.4. Simulating S and V separately is possible
with MADGRAPH5_AMC@NLO but does not take into account interference effects and may violate
unitary. These samples would also ignore a negligible contribution from a t-channel Higgs boson
diagram.
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Figure 6.4 – Differential cross-sections for (a) pp→ (H∗ + jj →)ZZ → llll full process (in orange),
pp→ H∗ + jj → ZZ → llll signal-only process (red), pp→ ZZ → llll background-only process (blue)

and (b) the interference component (green).

The Breit-Wigner cut-off (bwcutoff)1 term in MADGRAPH5_AMC@NLO determines the range of
masses allowed for a particle, the higher it is, the farther its mass can go off-shell. Based
on this consideration, a high bwcutoff was applied for the off-shell Higgs boson simulations. It
was later found that changing the bwcutoff from its default value was not advisable because
a high bwcutoff in fact allows the Z to go off-shell (which is undesired for an off-shell Higgs
boson production, where the Z bosons stay on-shell), however, it was also found that Z mass
requirements in the event selection criteria prevents any distortion of the distributions. Future
productions will generate only full process qq → 4l+2j samples instead, without explicitly defin-
ing the possible decay chains and without any modification to the Breit-Wigner cut-off, because
when the decay chain is not explicitly used in the command, MADGRAPH5_AMC@NLO generates the
off-shell Higgs (and other) intermediate states irrespective of the bwcutoff value. Comparison of
various distributions for events generated with and without a high bwcutoff after applying the
event selection criteria show a close agreement, a few examples are shown in Figure 6.52. These
comparisons confirm that the current samples produced with a large Breit-Wigner cut-off can
be used to optimise the analysis.

For these simulations, mH is set to 125 GeV and the width of the Higgs ΓH = 4.− 97 MeV [21],
the scale is set to the mZ PDG value and the NNPDF4.0_lo PDF set is used. At the generation
stage an m4l ≥ 130 GeV cut is applied to remove the on-shell peak.

In addition, two samples with µ = 5, 10 are also produced with HVV couplings scaled by µ
1
4

and the ΓH scaled by µ. The scaling of the width term is an important feature of the analysis
strategy. Since the on-shell Higgs contributions are a background to this analysis, the on-shell
yield must not be modified when the couplings are changed. Given that the off-shell cross-section
is almost independent of ΓH , and the on-shell cross-section is inversely proportional to it, the
Higgs width is scaled by µ to allow a cancellation in the on-shell cross-section (see Equation 2.60)
while achieving the desired modification of the off-shell couplings.

The qq̄ → ZZ background process is simulated with SHERPA 2.2.2 using NNPDF3.0 NNLO PDF
set for the hard scattering process. The matrix element calculations are accurate to NLO order
for 0 and 1 jet states and to LO for 2 and 3 jet states. They are merged with SHERPA parton

1A resonance is considered to be on-shell if the invariant mass of an s-channel resonance is within

M ± bwcutoff ∗ Γ

2Problem spotted and studies performed by Martina Javurkova.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5 – Comparison of pp→ ZZ + 2j simulations with a large Breit-Wigner cutoff (pink) and
pp→ 4l + 2j simulations in MadGraph with the default Breit-Wigner cutoff (blue). m4l and mZ1
distributions are shown for (a), (b) a full process simulation, (c), (d) signal simulation and (e), (f)

background-only simulation. The distributions are in reasonable agreement.
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shower using the MEPs@NLO prescription [116]. Finally, NLO EW corrections as a function of
the mZZ are applied to the samples [117, 118].

6.6 ML optimisation

This section describes ML based optimisation studies with the aim to improve the sensitivity to
the off-shell signal strength of the VBF Higgs boson production mode. They were performed with
datasets normalised to a total integrated luminosity of 36.1 fb−13, and with the assumption that
the findings would scale to the entire Run2 data (now known to be 139 fb−1) straightforwardly.

Quantum interference between the signal and background processes originating from the qq
initial make it unclear what kind of classification will provide maximum sensitivity to the VBF
Higgs boson signal strength. The fact that training a classifier for signal vs background provides
an optimal observable for sensitivity as described in section 4.6 is no longer true in the context
of interference between signal and background processes.

Two strategies will be described for optimisation using classification models (with only two target
classes). The first involves training with the dataset generated using the VBF full process as one
class and all the gg and bq̄ initiated processes as the other class. The second strategy involves
training on unphysical samples. A dataset generated using only the VBF Higgs boson processes
(which is unphysical and does not account for interference effects) is treated as the first class and
a dataset generated using only the background processes originating from qq (the VBS process,
again unphysical and does not take into account interference effects), gg and qq̄ initial states is
treated as background. For clarity the first strategy will be referred to as the ‘original strategy’
and the second one will be referred to as the ‘alternate strategy’ henceforth. In the case of the
alternate strategy, it is imperative that the strategy is finally evaluated on physical simulations
to ensure the model is learning correlations that would remain useful for the final objective. The
idea is motivated by the simplistic consideration that the Higgs Feynman diagram will mostly
contribute to the full process simulation in kinematic regions where the Higgs Feynman diagram
has the largest amplitude, and an unphysical Higgs-only simulation indicates these kinematic
regions.

The immediately following subsections describe the optimisation performed using the original
strategy, and the alternate strategy will be discussed starting subsection 6.6.6.

6.6.1 Pre-selection and Preprocessing

Apart from the m4l > 220 GeV selection, as with the on-shell analysis, a pre-selection cut for
the ‘VBF region’ was applied to all datasets, requiring at least 2 jets in the final state with an
mjj > 120 GeV. This pre-selection brings down the total expected VBF SVI events from 8.5 to
6.1 (71% efficiency), but has a much larger impact on the non-interfering background events,
bringing qq̄ events from 520 to 60 (12% efficiency) and gg events from 76 to 8.8 (12% efficiency).
This pre-selection is also expected to remove on-shell contamination from VH. However, the
efficiency for VBF Higgs events is only 52%, taking expected number of events from 2.1 to
1.1 while for VBS background is 71% taking expected events from 9.8 to 6.9, suggesting the
possibility for an off-shell specific definition of “VBF region” category.

The pT4ljj variable (transverse momentum of the four lepton and two jet system) is not well
modelled in the simulation below 50 GeV, therefore following the strategy of the on-shell analysis,
values smaller than 50 GeV were set to 50 GeV before any machine learning is applied. All

3These studies began while Run2 data was still being taken and therefore the final total integrated luminosity
of Run2 was not known at the time.
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continuous input features were standard-normalised. The handling of missing values in the
dataset will be described in subsection 6.6.4.

Very similar results were obtained for two prescriptions of class weights, the first equalised the
total weights for VBF SVI and gg + qq̄ events, the second equalised weights for VBF SVI, gg
and qq̄ events. The latter is used for the following conclusions.

6.6.2 The ML Models

Boosted Decision Trees (BDTs) usually perform well on structured datasets4, therefore two such
state-of-the-art (SOTA) algorithms were studied, XGBoost [59] and LightGBM [60]. They are
several times faster [119] than TMVA [120] and considering that performance gains are usually
achieved by quickly scanning through multiple training strategies (as will also be the case in
these studies), that alone5 leads to overall gain in performance as well. A simple feed-forward
neural network without much hyper-parameter tuning was also considered for comparison.

Hyper-parameter searches for the BDT were performed with a grid search using a 3-fold cross-
validation where ‘discovery significance’ (see Equation 4.45) was used as the metric to optimise
rather than the traditional AUC.

6.6.3 Permutation Importance using Significance of Discovery

Permutation Importance (PI) is a technique that can be used to estimate the importance of a
feature to a trained model based on a relevant performance metric, which can be computed on
a dataset coming from the same or different distribution compared to the training dataset. It is
described in detail in section 4.9.

The use of PI in this study allowed a greater flexibility in estimating feature importance com-
pared to the inbuilt ‘feature importance’ functions in the BDT packages. In particular, it allowed
to estimate the drop in significance if a particular input feature (physics variable) is removed.
For this dataset, the drop in performance (specifically the drop in significance) for a new model
trained without a given feature was found to correspond well to the estimated PI.

The differences between PI calculated using AUC and PI calculated using significance are subtle
but pertinent. Table 6.1 illustrates this difference. PI with respect to significance provides a
more meaningful importance for features, particularly well illustrated for the feature pT4ljj in
this comparison table. As it shall be shown, the importance of this feature to the analysis is
underestimated by most algorithms.

In several ATLAS analyses, a tight cut is often applied on the BDT score, at around 0.8, because
the signal is usually relatively small and there is a preference for higher background rejection.
Under such circumstances, pT4ljj allows to more precisely score an event that appears signal-
like (where ‘signal-like’ is a term used to refer to events that get a score ' 0.8 from the ML
model), and therefore plays a larger role in determining the significance than the AUC. The
fact that this feature becomes crucial when considering signal-like events is illustrated in the
central column of Table 6.1 where the PI using AUC is calculated on a subset of the test dataset
that has a score > 0.8. Figure 6.6 is the ‘feature importance’, an internal scoring provided by
XGBoost (which estimates the importance of a feature based on the number of times it is used
and the gain in separation it brings) and it can be seen that pT4ljj scores significantly lower

4As opposed to unstructured datasets, for example, natural images, where neural networks often perform
significantly better.

5These packages are also better optimised for performance, have fewer bugs and have up-to-date documenta-
tion.
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AUC AUC (score 0.8) Significance
Score Error Feature Score Error Feature Score Error Feature
0.0910 0.0026 mjj 0.115 0.0149 mjj 0.8876 0.0117 mjj

0.0199 0.0018 widthj0 0.0543 0.0074 pT4ljj 0.3337 0.0399 ∆ηjj
0.0155 0.0006 ∆ηjj 0.0431 0.0102 ZZ_etazepp 0.2580 0.0267 ZZ_etazepp
0.0150 0.0007 ZZ_etazepp 0.0373 0.0050 widthj0 0.1861 0.0203 pTj1
0.0110 0.0006 pTj1 0.0335 0.0060 ∆ηjj 0.1421 0.0338 widthj0
0.0109 0.001 widthj1 0.0200 0.0072 pTj1 0.1057 0.0213 pT4ljj
0.0052 0.0006 pTj0 0.0163 0.0046 widthj1 0.1031 0.0236 widthj1
0.0031 0.0001 m4l 0.0130 0.0040 m4l 0.0878 0.0479 pTj0
0.0007 0.0004 pT4ljj 0.0070 0.0013 pTj0 0.0663 0.0221 m4l
0.0002 0.0001 TrackWidthj1 0.0010 0.0033 TrackWidthj1 0.0089 0.0231 TrackWidthj1
0.0001 0.0001 min_dRjZ 0.0002 0.0028 MELA 0.0051 0.0026 TrackWidthj0
0 0 MELA -0.0001 0.0002 ggZZtot_dxs 0 0.0004 ggZZtot_dxs
0 0 ggZZtot_dxs -0.0001 0.0003 TrackWidthj1 -0.0021 0.0073 HZZ_dxs
0 0 HZZ_dxs -0.0004 0.0004 HZZ_dxs -0.0042 0.0191 min_dRjZ
0 0 TrackWidthj0 -0.0009 0.0025 min_dRjZ -0.0217 0.0171 MELA
Table 6.1 – Table of Permutation Importance computed on the Test Dataset with AUC (left and

centre) and Significance (right), where only a subset of the Test Dataset with BDT score > 0.8 is used
for the central columns. The pT4ljj feature is highlighted to emphasise the importance of choosing the

correct metric for computing permutation importance.

than widthj1 for example, and m4l appears to be the most important feature in stark contrast
with permutation importance. The feature importance from XGBoost also do not provide any
uncertainty, and where in fact found to vary considerably from one training to another even
though the performance of the models were very similar.

6.6.4 Performance studies

Hyper-parameter optimisation was a subdominant source of performance improvement compared
to pre-processing and training strategy selection, therefore, a large scale comparison of these
strategies was performed with XGBoost, LightGBM, and a dense network while keeping the hyper-
parameters for each of the models fixed. The “default” hyper-parameters for the neural network
consisted of 3 hidden layers of 32 nodes each and a relu activation, and an output layer with 1
node with a sigmoid activation.

Table 6.2 shows a counter-intuitive result, that training without sample weights (i.e. without
‘event weights’) provides better performance than with sample weights even when the final
evaluation of the AUC, significance is done using the correct weights. The reason is elaborated
on below (subsection 6.6.5). Further, LightGBM and the Neural Network outperform XGBoost
consistently on this dataset.

While the XGBoost ‘histogram mode’ was found to be around 5x faster than default ‘exact mode’,
it was still 1.2x slower than LightGBM on this dataset. Both LightGBM and XGBoost histogram
mode optimise training speed by first histogramming the input variables, thereby reducing the
number of computations. The neural network is 15x slower to train that LightGBM. The training
time for LightGBM was between 2 and 5 seconds. The time comparisons were performed on a
DELL latitude E5570 with an intel core i5 vPro, without any GPU.

Missing values can occur for numerous reasons in ATLAS datasets, for example for jet observ-
ables if there is a missing jet or a track based observable that could not be computed for a given
event. Missing values are by default filled with numbers such as -999 or -1, depending on the
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Figure 6.6 – Feature Importance (Gain) from XGBoost

cause of the value being missing. They are often left untreated for training, however, it was
found that replacing these values with NaN improved performance for LightGBM because the
algorithm has a smart internal mechanism for missing values (as does XGBoost). In the case of
the neural network, the best performance was achieved by replacing the missing value with the
mean of that feature and also adding a corresponding binary ‘flag’ feature to indicate whether
or not the value was missing. Table 6.3 summarises further investigations into optimising the
preprocessing for LightGBM and the neural network for missing values in the dataset.

In both these tables, ten independent trainings were performed for a model from each row, and
the one with the highest significance is reported. For a more general trend, Figure 6.7 shows the
learning curve (average significance for ten independent trainings as a function of the number
of training events) for the different models, and it shows an unambiguous trend that XGBoost
is the best model for a small number of events but is soon overtaken by LightGBM and Neural
Network when training on more than 40000 events for this dataset. The learning curve has not
flattened, indicating that the model could learn more given larger training statistics. Removing
all pre-selection cuts apart from the off-shell region requirement of m4l > 220 GeV did not yield
further improvement in significance.

6.6.5 The sample weights conundrum

The reason unweighted training outperformed weighted training was found to be because 33%
of the dominant qq̄ background events had a weight of exactly 0, leading to a smaller effective
number of training events. The distribution of the weights is shown in Figure 6.8. The qq̄ events
were generated in three parts to ensure sufficient events in each part of the four lepton mass
range. Phase spaces where two simulations had a significant overlap required setting the weights
of extra events to zero. However, instead of setting the weight of these events to zero, splitting
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Model Weighted AUC (test) AUC (train) Significance
XGBoost Yes 0.86 0.86 1.86
XGBoost No 0.87 0.87 1.84
XGBoost (Hist) Yes 0.86 0.86 1.86
XGBoost (Hist) No 0.87 0.87 1.86
LightGBM Yes 0.85 0.86 1.56
LightGBM No 0.88 0.89 1.88
Neural Network Yes 0.86 0.86 1.84
Neural Network No 0.87 0.88 1.88
Table 6.2 – Table of performance comparisons, AUC on test dataset, AUC on the training dataset
and Significance on the test dataset, for the ‘original approach’ using XGBoost, XGBoost in Histogram

mode, LightGBM and a Neural Network trained with and without sample weights, while always
evaluated with correct event weights. Ten identical trainings for each case were performed, and the

model with the highest significance was chosen in each row.

Model Default Value Treatment AUC (test) AUC (train) Significance
LightGBM None 0.877 0.887 1.88
LightGBM NaN 0.877 0.887 1.98
LightGBM Mean 0.876 0.886 1.94
LightGBM NaN with Flags 0.876 0.887 1.91
LightGBM Mean with Flags 0.878 0.886 1.91
Neural Network None 0.873 0.877 1.93
Neural Network Zero 0.875 0.878 1.97
Neural Network Mean 0.876 0.877 1.97
Neural Network Zero with Flags 0.875 0.880 1.92
Neural Network Mean with Flags 0.878 0.879 2.00

Table 6.3 – Table of model performances for ‘original approach’ with various ways of treating missing
values. All trainings are performed without event weights, while the evaluation is performed with
correct event weights. Ten identical trainings for each case were performed, and the model with the

highest significance was chosen in each row. XGBoost was not used for these comparisons.
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Learning curves
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LightGBM outperform XGBoost for big datasets

Each point: mean of ten tries

Figure 6.7 – Learning Curves for XGBoost, LightGBM and Neural Network. Each point represents the
mean of ten trainings.

the weight might allow the use of more training events, but this idea is not studied further.

The reason LightGBM performed poorly on significance (but not on AUC) when trained with
weights is because it accurately identified an unphysical pattern in the dataset. It finds a phase
space where qq̄ background events had negative weights (which remains consistent even in the
validation dataset). Since the gradient boosted algorithm works in reverse for negative weighted
events, they are classified as signal-like by LightGBM (see highlighted area in Figure 6.9).

The events with zero and negative weights could be meaningfully re-weighted using a GAN like
approach to re-weighting, where the generator is required to produce positive weights for the
events and the discriminator learns to differentiate the samples with original weights from the
sample samples re-weighted by the generator. An additional requirement on the generator to
have the weights as close to one as possible would also improve the effective sample size6 of the
dataset. This would be a similar idea to Ref. [121, 122], but this direction was not investigated.

6.6.6 Alternate Strategy

Investigations were also made by training ML models using the alternate strategy of trying
to isolate the (unphysical) VBF Higgs-only events from all other (physical and unphysical)
background events, as described at the beginning of this section.

The same pre-selection cuts and the same input features to the ML model were used for the
alternate approach. In this strategy, very similar AUCs (0.86) and much lower significance of
0.52 were obtained with XGBoost. However, neither of these metrics can be directly compared to
the original strategy. A new metric, called “Interference Significance”, denoted ‘iZ’, was derived
for a fair measurement of the sensitivity of the analysis to the offshell signal strength. The metric
is analogous to the typical s/

√
(s+ b) approximate formula used when there is no interference,

and also suffers from the same drawbacks (assumes a parabolic log-likelihood curve, not reliable
at low statistics). The derivation can be found in section 4.10.1.

This metric demonstrated that the alternate approach consistently outperforms the original one,
however it was found to be too unstable to use for model optimisation. Figure 6.10 illustrates the

6
neff =

(
∑n

i=1
wi)2∑n

i=1
w

2
i

where wi are the weights for each event.
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Figure 6.8 – Distribution of weights of qq̄ background events.

evolution of iZ as a function of the threshold score for the two approaches, with the maximum
values shown in the legend (0.035±0.012 for the original strategy, 0.142±0.049 for the alternate
strategy with LightGBM).

The BDT output for the signal and the various components of the background is shown in
Figure 6.11, where the BDT is trained with the alternate strategy. To differentiate the non-
interfering background samples from the interfering one, the samples from gg and qq̄ initial
states are refereed to as B2, as in Chapter 4.

This metric also suggested that pre-selection cuts were not very useful in final sensitivity of the
signal strength, as the iZ before and after pre-selection remained 0.02.

6.6.7 Watch interference using the model output

Training a machine learning model, at times, also allows to better interpret the physics. A BDT
was trained on only S (VBF Higgs process) vs V (VBS process) and then applied to independent
test samples from S, V and also SVI (full process simulation taking into account interference).
B2 events are not used.

It is useful at this point to remind the reader that for an SVI event X with one particular set
of truth level four-momentum for the final state objects, the probability P (X) of seeing such an
event is given by,

Psvi(X) = |Ms(X) +Mv(X)|2 = |Ms(X)|2︸ ︷︷ ︸
Ps(X)

+ |Mv(X)|2︸ ︷︷ ︸
Pv(X)

+2 Re(Ms(X)Mv(X))︸ ︷︷ ︸
Pi(X)

. (6.4)

The score distribution is shown in Figure 6.12, where each distribution is normalised to the
SM expected yield. Interestingly, the score for the background VBS events has a slight peak
near the signal region, and this peak is missing in the full process simulation (SVI sample).
It is an indication that the VBS component, Mv(X) of the full process matrix element has a
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26

Negative weights

LightGBM problem with negative weights

Figure 6.9 – LightGBM score distribution when trained with weights. The peak of background events
near 1 is due to negative weighted qq̄ events.

significant but opposite contribution to the VBF Higgs component, Ms(X), in the signal-like
phase space. The signal-background interference is an almost perfectly destructive, resulting in
fewer signal-like events in the full process simulation than in the background-only simulation.

6.6.8 Further attempts at optimisation of sensitivity

Since neither of the two approaches is guaranteed to be optimal, ad-hoc combinations were also
studied. A two dimensional search using the scores from a BDT trained with each of the two
approaches was performed to further optimise the analysis. Considering that in principle the two
BDTs give complimentary information, a combination is expected to improve results. The first
BDT is trained with the original approach (SVI vs B2), and the second BDT is trained on S vs
V only (since the first BDT already learns to reject B2). The results are shown in Figure 6.13a,
and in Figure 6.14 for the same idea using two Neural Networks. The iZ for bins with negative
number of background events was set to zero. The number of bins used in this two dimensional
optimisation had to be decreased to prevent finding a bin with very few events and very high
iZ score. The four dimensional plot in these figures shows the distribution of the scores from
the two models in the x and y direction, the iZ in the z direction and the number of samples
in each bin in a colour grading. Although this strategy did provide an improved iZ (iZ = 0.22
in Figure 6.13a), the number of samples and the instability of the iZ metric prevented forming
clear conclusions.

The idea to train SVI + B2 vs V + B2 was also briefly studied, motivated by the fact that
it is signifies the true objective of the analysis, to improve sensitivity to SM with Higgs vs
SM without Higgs. Multi-class, multi-label classification, custom decision trees that split nodes
based on

∑
iZ2 (instead of entropy/purity gain), and neural networks to categorise events into

four arbitrary bins in such a way as to directly optimise
∑
iZ2 were also investigated. In every

case, the results remained inconclusive because iZ is very unstable, and the training dataset had
an easy to find phase space full of negative weighted qq̄ background events. The phase space
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Afin d’utiliser cette nouvelle métrique, les algorithmes devront arriver à déterminer l’origine de
chaque événement et cela même si une catégorie de données ne leur a pas été communiquée.

6.2 Combinaisons d’apprentissages

En se basant sur les résultats de la Figure 17, c’est donc en entrâınant les algorithmes sur le lot
de données VBF s que l’on obtient les meilleurs résultats. E↵ectivement, le maximum obtenu pour
VBF est d’environ 0.03 tandis qu’il est de 0.13 pour VBF s ce qui correspond à un facteur 4.

Figure 17 – iSignificance pour VBF (gauche) et VBF s (droite)

On peut voir sur la Figure 18 que l’on obtient alors de meilleurs résultats en combinant les
apprentissages sur les deux di↵érents lots de données. Soit une significance avec interférences de
0.179 avec combinaison pour LightGBM comparé à 0.035 pour VBF et 0.142 pour VBF s et une
significance avec interférences de 0.169 avec combinaison pour le réseau de neurones comparé à
0.032 pour VBF et 0.118 pour VBF s. Les deux lots de données contiennent donc des informations
di↵érentes dont certaines qui sont utiles pour cette séparation.

Figure 18 – Combinaison d’apprentissages pour LightGBM et le réseau de neurones
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Figure 6.10 – Evolution of iZ as a function of the threshold model score for LightGBM and a Neural
Network trained with (a) the original approach and (b) the alternate approach.

with negative weighted background events could be found with just two successive cuts on jet
observables. Results in terms of iZ were not reproducible for these strategies. In most cases the
models are overtrain very easily, even for conservative hyper-parameters.

6.7 Conclusion: A New Direction

Optimisation of the sensitivity was successfully performed to a large extent and it was con-
clusively shown that the alternate strategy (training S vs V+B2) was better for improving
sensitivity to the offshell signal strength of the VBF produced Higgs boson. While BDTs did
provide additional sensitivity compared to a simple cut, the dataset contained phase spaces with
negative weighted background events which were too easy to find for a BDT (or even two two
cuts) and this deterred more aggressive optimisation. However, using classification models to
improve signal sensitivity would not have been the optimal solution in the context of quantum
interference even if there we no issues with negative weights. Since the signal strength is no
longer just a scaling of the signal event weights, there is no guarantee that the optimisation per-
formed on the SM datasets would be optimal for other values of the signal strength µ. If only
the yield is used for a negative log-likelihood curve, two local minima are expected considering
the number of expected events is quadratic in √µ (this is elaborated further in Chapter 7), and
such a degeneracy may not be lifted completely by an optimised observable. For this reason, a
strategy is needed where the actual sensitivity of the analysis can be optimised.

Based on the insights from the work discussed in this chapter, we surveyed previous strategies to
deal with quantum interference in ATLAS (such as [123, 124]) and upcoming inference-aware [64,
66] machine learning strategies in search of a more principled approach to optimisation of this
analysis in comparison to the ad-hoc solutions studied in this chapter. We selected a very
promising new ML based approach for a further investigation which can be adapted for this
analysis in such a way that the optimisation takes into account quantum interference.

Chapter 7 will detail studies using this new approach. It will be demonstrated that there is
in fact a significant amount of sensitivity to be gained when an optimal analysis strategy is
adopted. It will be shown that certain physics-aware inference strategy promise significant gain
over the use of any single optimised observable for the final likelihood fit, when there is significant
quantum interference between the signal and background processes. These studies will not only
impact the improvement in the sensitivity to the VBF analysis but the ggF analysis as well.
Therefore, the decision to abandon the strategy described in this chapter in favour of a more
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VBF_Higgs
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Figure 6.11 – Distribution of XGBoost score for S (VBF Higgs signal), V (VBS background) and
non-interfering background processes B2 ( from qq̄, gg initial states) from a model trained using the

alternate approach ( S vs V + B2).

ambitious strategy will be shown to be worthwhile.
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Score

S

SVI

V

Figure 6.12 – XGBoost Score distribution for the S (VBF Higgs), V (VBS background), and SVI
(full process simulation of VBF including interference) for a classifier trained on S vs V only, without gg

and qq̄ backgrounds. Each distribution is normalised to its expected yield. V peaks near the signal
region with almost the same magnitude as S, whereas SVI has no peak near the signal region, due to

destructive interference between S and V processes.
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Figure 6.13 – (a) A two dimensional histogram of iZ as a function of models trained with the
original (y-axis) and alternate (x-axis) approach and (b) the same where the third dimension indicates
the iZ and the colour indicates the number of unweighted events in each bin. While two dimensional

search produces a very high iZ, the optimal selection is very stringent, at which point the iZ may not be
reliable due to low statistics.
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Figure 6.14 – A two dimensional histogram, with (a) 50 bins and (b) 20 bins, of iZ as a function of
models trained with the original and alternate approach, where the third axis indicates iZ and the

colour indicates the number of unweighted events in each bin. Even with few bins, the optimal selection
is very stringent, at which point the iZ may not be reliable due to low statistics.
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Off-Shell Higgs Signal Strength

Contents
7.1 The troubles that come with quantum interference . . . . . . . . . 158
7.2 Madminer based Likelihood-Free Inference . . . . . . . . . . . . . 161
7.3 Modelling Signal Strength in an Event Generator and Morphing . 161

7.3.1 Mimicking the signal strength . . . . . . . . . . . . . . . . . . . . . . . . 161
7.3.2 Re-weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.3.3 Morphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.4 Delphes: Very Fast Detector Simulation . . . . . . . . . . . . . . . 163
7.5 Monte-Carlo Samples and Morphing Them . . . . . . . . . . . . . 163
7.6 Training the models . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.6.1 Training SALLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.6.2 Training ALICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.6.3 Comments on stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.7 Inference and Evaluation of Results . . . . . . . . . . . . . . . . . . 173
7.7.1 Asimov Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.7.2 Inference on one Asimov Test Dataset . . . . . . . . . . . . . . . . . . . 173

7.7.2.1 ALICES Inference . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.7.2.2 Histogram/SALLY Inference . . . . . . . . . . . . . . . . . . . 174

7.7.3 Comparison of the results . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Following the insights from Chapter 6, this chapter will discuss a study performed on the fea-
sibility of using a class of machine learning based likelihood-free inference models that leverage
additional information available in particle physics simulators for the measurement of the off-
shell signal strength of the Higgs boson produced via Vector Boson Fusion. Since the use of
such simulator-assisted learning techniques require adapting the ATLAS software infrastructure
to collect and carry the additional information through the simulation chain, the study was
performed using the Delphes fast detector simulator. In parallel, the ATLAS HZZ software
chain was modified to allow the use of these techniques on ATLAS datasets with full detector
simulation in the next iteration.

The chapter will begin with a discussion on the consequences of quantum interference and the
challenges it poses to traditional techniques. It will then introduce the family of models under
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study, discuss how this strategy can be adapted for a signal strength measurement, and outline
dataset production setup. Finally it will present some very promising results for a simplified
problem (without accounting for background events coming from gg and qq̄ initial states, and
using Delphes for detector simulation) and discuss the future prospects within ATLAS.

7.1 The troubles that come with quantum interference
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Figure 9. Distributions of the BDT discriminants for the data taken at
p

s = 8 TeV in the signal
regions of the VBF (left) and boosted (right) categories for the ⌧lep⌧lep (top), ⌧lep⌧had (middle),
and ⌧had⌧had (bottom) channels. The Higgs boson signal (mH = 125 GeV) is shown stacked with
a signal strength of µ = 1 (dashed line) and µ = 1.4 (solid line). The background predictions
are determined in the global fit (that gives µ = 1.4). The size of the statistical and systematic
normalisation uncertainties is indicated by the hashed band. The ratios of the data to the model
(background plus Higgs boson contributions with µ = 1.4) are shown in the lower panels. The
dashed red and the solid black lines represent the changes in the model when µ = 1.0 or µ = 0 are
assumed respectively.

– 37 –

Figure 7.1 – Example of an ATLAS signal strength measurement: Distribution of a BDT
discriminant for data taken at

√
s = 8 TeV in the signal region of the VBF category for the
H → τhadτhad channel. [125]

In a traditional signal strength (µ) measurement analysis where quantum interference plays no
role, one can simulate the signal and background samples separately. The number of expected
events is a linear function of µ. One can then train a machine learning classifier (such as a
Boosted Decision Tree) to separate the signal and background samples and perform a parameter
estimation fit on the distribution of the score when the model is applied to real data recorded by
the detector (an example of such a fit is shown in Figure 7.1 from the ATLAS H → ττ analysis
from Run1). Neglecting systematics, and under the assumption that it is an optimal classifier,
this is the most precise measurement one can possibly perform. The expected number of events
is simply linear in µ (Nexp = µS + B, where S is the signal yield and B is the background
yield for the SM), and there is no need to train the model on separate datasets to be optimal to
different possible true values of µ in nature. The mathematical reasoning for this is discussed
in Chapter 4.

In the presence of quantum interference, this strategy is no longer optimal. The expected number
of events is no longer linear in µ, but follows the equation,

Nexp = µS +√µI +B, (7.1)
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where I denotes the interference contribution. This formula follows straightforwardly from Equa-
tion 2.52 discussed in Chapter 2. Figure 7.2 is a sketch of how the expected number of events
scales with µ, demonstrating that a deficit is expected near the SM value (µ = 1), while an excess
is expected at high values of µ. In fact it is the “signal-like” background events (background
events with kinematic properties similar to events in an unphysical signal-only simulation) that
diminish in number in the presence of signal Feynman diagrams in the simulation (as shown in
Chapter 6, Figure 6.12). In many cases the number of expected events for two very different
values of µ is exactly the same, causing a degeneracy. Optimising the analysis on the basis of
SM simulations does not necessarily make the analysis optimal when it is expecting to set upper
limits far above the SM value.

In the qq(→ H∗ →)ZZ case, Figure 7.3 shows how a physics variable (the invariant mass of the
four leptons) that is usually good for a H → 4l analysis cannot distinguish between µ = 0 and
µ = 4, however a different variable, the pseudo-rapidity (angular) difference between the two
jets, can break the degeneracy in this case. Figure 7.4 shows a p-value scan based on fits using
three different observables, ∆ηjj , m4l and pTj1 where the true value is µ = 0.5. Apart from the
expected peak at µ = 0.5, they all have a second peak at slightly different locations. This means
that if the true value of µ is smaller than the SM value, such an analysis would only be able to
set higher upper limits compared to the SM case.

Since neither a cut-based nor a traditional machine learning algorithm would be optimal for this
task a machine learning strategy that is optimal not only at the SM value but at all other values
of µ could be expected to improve the sensitivity of this analysis.

1

Run2: Expect to set limits far 
away from SM

where S is the signal-only simulation, V is the simulation of only the background processes that interfere
with the signal and SVI is a simulation of the signal and interfering background processes together, taking
into account interference e↵ects. If we also include non-interfering background processes (denoted as B2)
then the Eq. 13 becomes:

Nexp = µS +
p

µI + V + B2 (15)

but for the following derivation we will use

B = V + B2 (16)

using Eq. 13, instead of Eq. 3,
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replace Eq. 18 in Eq. 20 and use Eq. 10:
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In analogy to equation Eq. 12, a ”Significance” like formula will be just the inverse:

Z =
S + I

2p
S + I + B

(23)

4 Formula in practice

To get a practical formula we can use with MC simulation samples, we plug in Eq. 14 and Eq. 16 in Eq. 23

Z =
S + SV I � V

2
p

SV I + B2
(24)

But we still have a problem. The best cuts to optimise this metric give very small weighted number
of events, so we need a formula that is correct for small (weighted) statistics, similar to the AMS Asimov
formula for discovery significance.
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Figure 7.2 – Sketch of the expected number of events observed as a function of signal strength µ, up
to an arbitrary normalisation. The black dashed line indicates the total number of events expected for
the background only simulation, orange dashed line indicates how the expected number of events would
scale with µ if there were no interference and the blue line indicates how to total number of events scales
with µ when interference is taken into account. The golden line indicates the SM value, µ = 1, where a

deficit of events is expected compared to the background-only case. Black arrow indicates roughly
where ATLAS expects to set the upper limit on µ with the full Run2 data, which is at a value of µ

where an excess is expected (in contrast to the SM point). Exact numbers are not directly comparable
to Figure 7.3 or Figure 7.4 as this extrapolation was performed using official ATLAS simulated dataset.
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Figure 7.3 – Distributions of (a) invariant mass of the four leptons, (b) difference between the
pseudo-rapidity of the two jets for VBF full process (qq → (H∗ →)ZZ → 4l + jj) with various values of

the signal strength µ.
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Figure 7.4 – p-value scan for a test dataset generated at µ = 0.5 exhibits a second peak at slightly
different locations for the fit for each of the observables.
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7.2 Madminer based Likelihood-Free Inference

A promising family of algorithms are studied where deep learning is used to directly learn
the likelihood ratio for each event with the help of additional information extracted from the
simulator. 3

Simulation Machine Learning Inference

xz

<latexit sha1_base64="HjZ6RxRDdZu139wdkhmGLAXlGyY="></latexit><latexit sha1_base64="N0otbztN+sjGy9xqdVKMRIGUlNA="></latexit><latexit sha1_base64="N0otbztN+sjGy9xqdVKMRIGUlNA=">AAAoEHicpVrdctvGFVbSn6SK2ybtZW7WVRxbDkgTEGXLySjj5mfSzsSNY8tOWkLSLIAlsUP8ebGQSaHoQ3T6ML3r9LZv0Bfo9B1603N2QRK/lMahxyCw+53vnD179uxZUE4S8FSORv9+480f/fgnP33r7Z/tvnPj57/45bvv/epFGmfCZc/dOIjF9w5NWcAj9lxyGbDvE8Fo6ATsO2f+OfZ/d8FEyuPoRC4TdhrSWcSn3KUSms7fe+dvtsNmPMoln18m3JWZYMXkdJcQG1tSuQxY7sZRxFwUKI4nqR8LySLy6bGZSEP63J0bxBP01bETUHd+88HIIIP800nq0oAdm6eFQaLYY8SDwdDIZcd2FAV0CTaxpKFnmkXdWmAES7JSRVOfJFRKJqLjPI7IQSJJPJ0SK5HFdksa6iKWCaUMZQyXCzdg5YCmPAiOX/lcMiPkEQ+zkKT8UtmOg8H7BtmCrOn0TdUUg2wIG3LSZ5L2yHpUzAdOkLFSfv180xzd7CLzueeB07ZY0vQ4j2jwmpYvSEAdFhTkmEwkW0htnmBet1ENcL81XawzwVjU6bkuNLrodBfQt4gCodw0hmXh+sSOaMjIPWIvCY9IPjKGw6FhFgjBmZ1U5+OU3FGPAyW0T6gkd0aG5YZkAOJuuE/y4hOlZnGlCmujYrGhX9SpB2aDW5E78YKlKI3TMsH4Z55RLod6nADjYDS8b4yG430yGABl88Ea3tcPg/YTAj/p1rMiHhysJDqe1ooGXY+ILQfkm1e6a7xxVy2owRDfrDqtkk0MYg4PCXqQbFxISpXWD1JpVVVad6tKO3RqlUE8E2vG6kIDQuzTZAc1MgK+OqyxpAYRMAkEHzqp5GCkmcZ1JmvtgH5Js1PSvFIy7ZSr2N4vKrpFrepkfa73G714wbONeNGbX2v5rvshP8vWvMKO4U82G9lmaWu2fcK8GdPBhfL7TVsW17DDei07Fte2wTfRCGu43Yrxa1mBShtmWCszGlZYYMUquK8yo0OR1VSkFkNzrNgIesrwV+GkuFY1wnoRaY5UZa7tGHENDK6mMnq3w8ymW1bB2m2rDraRlp84LPJIwKby2ByVS7jbNC1mtsSs0WnNiN9CWSKpZJV1V9keT9WSG6gVB4+w4gjkh6F1qBPWB7bCno8+qC3cxRbhgbmRXtTFqtu9lj0YtvNEmTI3pMoOcDGxfSpzUXzQkUQqnLX8QT6qMq0VKEpkS5HttcmsKtUPM6zcoNZsUrPZMK+1Avz83b3RcKQ+pH1jljd7j8i3//3P228dPjl/733X9mI3C1kk3YCm6cQcJfI0p0JyqGqLXTsDA6DiohBGcIubWXqaq/NDQW5Bi0dgKcP/SBLVWpXIaZimy9ABZAgBmjb7sLGrb5LJ6dFpzqMkg1re1YqmWUBkTPAwAmcCAUsnWMINdQUHW4nrU0FdKO7rWpRNxkIbvLuLyw7uUrA1SuFgAcMmr7iEg0EQS5D0GEwMU+h8VZYWuZg5RT4aHhnoS7yYR6ODh5Z5eP/ovvVgfAj7SFsS66q16Ggteg1JVbTWRasyo4fAofiK3Vtt6VjQaLbSbGrx++MHo8OjI+vg0Ho4Ns2jUvoK4XLE4xLdNXuGl+LUG3gv4zhIaxGTpzyLuFzUG2eCJlAbNlrDLJBcxK8MJ47nkjqpAZcsoGJhTIOYynoootLjKBYhDdSZKk8zZ8pnDe2BLkUdQeesTpBP2TIKkwHNZFxnTuH8+KEbh3AaTiHSIyod7gDkCSyObxJMr+lJ/KRk8ZeJz6K0yDMRFFWWxJvCscKAnIYn7Hlq4FX5+bgSHQZx4XhUbdZTbxDgqzZjFCrHhPCUxgmLFKGM3WMaBKdoBxOCTetjZFEWAn8I60ctUugSAz3lHgHfBkzWFwt4vOGOnLourJF0RWH7kH7qMpB+6iKLFO4YSqibFPd2cGhII0+rQ5GAw6yIJSQamHPYrD1wg1DvFtIhDpJHM2jVvcMQdhm1eL9iEROQNzEJAI8E1K4dsVclfW5jDGJsFBPzFJ7gZJe6+Z5ZFHUY3CeQLlQkFjnsngKycgLGO1CVzG2Hz9I5T2ptUcwj2J9kgwnik1/gXGiNPkxC7kuZfHzvnuoaxmJ2D6L5HhihDZISBv09v/gYzWqw4Q1bWQ9umEEKpCK30+mUhjxY2ilku0RiyCuuZqLSlBVHYfaFVUnqanhYIL30RZjzpg0en0433V6zm82KPGdD25gNi780+jhkjpxDH2v3sZcZv6ABjg7Gw0P2Uhn6R4iPKCYhXTqsLrBkCSBhdcHGhsagd5opEgpF12euWhYtZ0IMefG0n0MnaKCgqWwJw9SzflHlbPVSAbbD0uXPVLDXWV6+fJlRgNrqm+ivooVZg1aoHtgGtwZqJKh/4i9T7qarGa8LwwBWMSV9lwb54+JcBVDH2sCB17DfFOcdsGAm6rCvt1AKr0lpYzl6Z8+0BZ/5cr8h4IhNBH72tEkXJhBD9bnBqzPNk+L85EwvszzkKU5NS5g1hb+8Uga2q/Rlob7PbI/OZgwyITw0YFCjQLg9Oy/J8EmHxnPYBBszwi7UMsjZi1bYrrrm7b5w1fe43Tdb9X3V7pOrvpN239TRXfDdXM6brrN80M5WSdmdtCU3XStJcMMXUHAJ7mQqy5PmesO9vJhYlSj5Q2HfhH9lpBA7hBNCwP5M9iyyDhukZQIyi+QXkEqAS+01GRxqYtHweeIxoTVMoVQkKu9LDlkSIrb6ZLXc1xTEHFlK6du2SKfMmVWVykHsrCU5bQmyAA5kpZy+t7RDP4sDr3vBQ4unDmf1WCeqQ0vk+vTWmlVERFnRLwadHSIsSXkQR1vkLqhYgTrkFw3JckUvurCX3djLLuyyG7vswl50Yy+6sLIbKzvtZSLuho/0RD5m0o+9xhy6FIrKdRHzOT7ZZW1VB4o4EBvgU3zqBqZQLC43yGfqsR/Ko7gOxoZuuEvxx5Kqteq5x94G+GkDrDZT5uKvTSSGIBXdMa7CF4ve8naVd7GplZAiiadD6gSNqoLknYVUso1BXIdBbGNIr8OQbmOQ12FolzUVhsvrMPypxRDEMFdhDInoWn5cTYoS01srTO/vI8mg+G7OKFiHaQC+iH2T6CS5sD9pj2GRCKi8WtDbnVjewp3zTuC8DZx3Aae0babOYYhuwS+b2Mse0hZQJ49OW1vYBbGNKn9LBIopxpp2nx10O3gaZ6KFHfdjl23ssg/bNB2w3R5BG1KoCoIuQ4y+IVZnsbr1HpA57KB3LDvh+2cHRZ/GPvFxVXzcKa7UJ73qk+uo7xMfV8W71SvxHn8l5B5ZCSvX3SIvmIslkiqZYAUL3jq9yFfxBXN1LaJ/7E8UcHG3mLinBEsyWxVj+Bpy3dUshNApiubgKhq4HmzlwhEqqvF1qNR1vN26klF0U4prUrbcps5b/UZ+CISa78MrLVT+U3wPt/Lh5UCbB3eHeLmvzH2At0d4ebhdkTJ7qydex27Rbbj4QYZD+H4dR+oY5lDROGxeMAGN5YFzzkSEb8/DTHXgn7uUrQPVCifQylNRFdCHiziDvZKot16gJWDRDM+b+BrMZ3gGaQwbO5TqW7sEPja+pYo1siZVP77iO3317qaUop4n4w5d+WA0PDiELF7iUM6+SHwayTiEwioLWG7i6bgqtAJDakirunTliXs3HPlFeV76grkBFFXY/E3ZCnMJFQ/87+k9gd6T3l6P01mRq2sP4inDYvAp6+t/EnOol9S1B+HGULnjpacfTh5FjpeefraAclOqt4/lewfHyb8s+uCfPS3wrURPr+8WuT+0DXfYjbiLLw1nIYXtFb5tA++2AXm0AsJdj07Bggxd+PXzPkQQz+D0zcG29V2f0sfPvixyvPQBpAgZBatkqELohM8v1U8JlT9yykfDB4duWKzaVz9s5VatUf++1QQ7sfA0Wv1hQKV9kfp8KqFZ0ej2IK0otTb4sp3pLRF1tLvwJ452Kwx5Buuo0rE2v9Wo30RXx4UdjXGdv7tnNn+Ea9+8sIbmaGh+O9p79GhHf97eeX/nNzt3dsydBzuPdn6382Tn+Y77zv9u3Lxx98ZHt/96+++3/3H7nxr65hulzK93ap/b//o/y+dThw==</latexit><latexit sha1_base64="KGKYmyKWjUVupNzZY8DVUShrvqU="></latexit>

r(x, z|✓)
<latexit sha1_base64="n4ECwTYdCfuLwJXCZl6+ybiKm1E="></latexit><latexit sha1_base64="yfNfOs7ZyWqkNT8RpYmkj2bn/mA="></latexit><latexit sha1_base64="yfNfOs7ZyWqkNT8RpYmkj2bn/mA="></latexit><latexit sha1_base64="kQLQGJ4Xe+WRfsBc6Tu8qUqoqpg=">AAAcoXicpVltc9y2Eb6kb6n65rQfow9INXbtzOl0d5IsKR3PZJx40szYtSpLjltR0oDkksQcSVAAeL4Tw/6C/pp+bf9I/00XIE/i61nTnkY8EPs8i8VisVzw7CRkUo3H//no4x/9+Cc//dknP9/4xS9/9evfPPj0t28lT4UDZw4PuXhnUwkhi+FMMRXCu0QAjewQvrdnX2v593MQkvH4VC0TuIioHzOPOVRh19WDR5aChTJ6MpeK2bYAN8/E48WQ3JAfiKUCUPRJfvVgazwamw9pNyZlY2tQfo6vPv3MsVzupBHEygmplOeTcaIuMioUc0LIN6xUQkKdGfXhHJsxjUBeZMaQnDzEHpd4XOB/rIjprTIyGkm5jGxERlQFsinTnV2y81R5hxcZi5NUQewUA3lpSBQn2jvEZQIcFS6xQR3B0FbiBFRQR6EPa6MYm4aLwuCNjYfE+FqirbHEZcNpk/dMBSQJuUKmCx6uUMvPvp1n49HhUPtSXyaH492j6WT/6eHT6cHe/iTvYNphCrfU8S31HkxfAMR1apUzPkIdRl++8bDN5oLG/mrkSUF/uncw3j88nO7uT4/2JpPDkv0BcjnjvRLdtXpDV+qlH+q24jyUtYjJJEtjphb1Tl/QJGBOozdKQ8UEfz+0OZ8passhXtKQisXQCzlV9VDUgz6LuYhoKNkNXGQytT3mN0bHgA7AHdqCzqCuIPNgGUfJNk0Vr2uWXKhHDo9we0qM9Jgqm9kIOcbN8TrRu1Ge8uNSS7BMAohlnqUizKtaEtfDDTsMmKu3/EwO9dX4+VklOobEYQqq3cXSDwnqq3brKDSOifBO8gRio1Bx5xkNwwttBwgBXn2OEKcR6o9w/5hNiiKxXSy5S9C3Iaj6ZkGPN9yRUcfBPSJXKqwgoKrOYbObOmUhsQWaYRqSsBi3WxTR2C2G05SQ4aqIJSYaXHM5JC66QZhkJ0d6kiz2sbeQjiJMbmbzfgsxCBqaJIB6FKI2rBjel+ozS8egjo38fHKRmZwpnWxrkud1GLYTTBcmEvPMwrYV8wSNtzEpzyyb+XLGklpfzFnsoisamjA+2VyvRTFigIuQBUolX+7sGNGIC38Ho3kHjSgMUgon/Y7Nv9RmNbTpBqysRzf4mAKpyCzpeTRi4dKSmO0SpUO+84FQqKw4Smdf3JWkPgyLcq1eBSLKWNMGl3nendhtisHPswxG1tAf5X9vyBhmjoyhDNoyuE7ZnIZ6djgfFsG1MfSvGB8xJxFd2lAnLCFBJO6uVIA2RnunmSIJsZwAHLMtWs7EGHK516+jSNCogkrVIuPSQz/VOBuZCuchS5e/McFe13J9fZ1ShFrmmxRfeQtzC1qhemB3uFtggcThj4OlZI5crXidjBNYxZQKHBpmr/IrE0Ade0NPvIZ9nV91wEJf1GEv16gUblOlFYKnHm9NLMH8QD1pEGxxF4HPT5rqogRjqL42+mp7WZJfnV4W2yyLmNRL0yJDk/zigxx8XMnr3HxfWi71fcBMiDcNGNYoGG5vrkpl+q4IjTN8CDZWBOZmG2TwthW2K9GsLYtWsldtmb+SfduWqZXstC3z7EKE383tfCe6zLbb2SopxUmbeSdaMdEN32DBJZidmixPmvtNP8vz82klSv6cW5/jXxkpxIqY64bwA9maktuw0WpBYGZRbI6pBHWZZ02qqOKi4fPEBVGM4GGpSEzeVwyzJEZs9W7acl+TqHNkySqabUon53JaZWVIu2wxvRYRQkVXvKI9LRz6nIdu94bHHtecCeqxToygYGTFoaG1qhoRp3k/DYUdFEgkC3m8hjenYgXq4C8azHJHL7qwN93Ymy7sshu77MLOu7HzLqzqxqpOe0Hwbvi4WMhXoALuNtbQoVhU3hYxX+s7q6yt6kDBQ3EHPNF33UCJxeLyDvnG3PZDWczrYN3RDXeoxB1btdbc99jbAJ80wOZhCo4+/hKOQSq6Y9yEry56y+Yq7+quVkKKlT4dUjxv16sKknUWUsk6DeI+GsQ6DfI+GuQ6Deo+GtplTUXDzX00/K2lIeS4VhHHRHQvP64WxdCKRysu73exAiy+myuK1uk0gF/E+pwUSXJh/bE9h0UisPJqQf/QiWUt3BXrBM7awFkX0KNtM4scptEt+E0Te9OjtAUskkenrS3sgljDqv4WBYspgKbdl7vdDvZ4KlrYvX7sso1d9mGbpiO22yPaBolVQdhlyLBvitVVrD56d8kMn6CPp1bCnlzu5n0j9tH3qvS9TroZPukdPrnP8H30vSq9e3hD7/FXQnbIimxc95C8BUeXSKZkwh0sWOv0ot7zOThFLWIDnkWzxAAXX+TnzgXRJZllijFA9K2oWQhppxg1ux9Sg9fdtbr0DI2qvfuoMte99daVGkW3SnFPlS23mfNWv5GPUGGh79EHLTT+M/qO1urTl93CPGzt68tTY+6Bbh7qy9H6gYzZaz3xv9gtug0X/5fhGL4veWyOYTYVjcPmHAR2lgfOGYiYTEb7UWoE+v172bttevEEWrnLq4TicMFTfFYS89YLRwkh9vV5U78GC0CfQRrT1gIz9MMNgh9Lv6XiBbLGqh9fsb94d1OyqOsq3jFWtj0e7e5jFi9xmmfNk4DGikdYWKUhZBN9Oq6SVmBMDbI6VlF56mc3HvlFeV76BpwQiyrd/brsxbXEigf/e6SnKD3tlbqM+nlmrj2IE9DF4An0yY85w3rJXHsQDsfKXV965HjyyDN96ZHDAstNZd4+lu8dbDt7kffBn5/k+q1EjzRw8iwYWUNn1I34Qr809COKj1f8toa6tQ7I4hUQWz1jCghT7cKXZ32IkPt4+mZo222rb9BXb17kmb70AZSIgKJVKjIhdMpmN+anBCuOYywM9dvJbDw62HeifNUf0iUICUk2rXXaEOrOBtjmwi3Q41G9fyED5insNmqK/lBWBp3e4ct+KB6Jeoy2SP/E0e7FKfu4jyqCW/NbncWb6Oq8tKAxr6sHW5Pmj3DtxtvpaDIeTf4y3vrqsPyB7pPBZ4PfDx4PJoODwVeDPw2OB2cDZ/CPwT8H/xr8e3Nr87vN482TAvrxRyXnd4PaZ/P8v/QgrgE=</latexit>

t(x, z|✓)
<latexit sha1_base64="BMHppIHEY/0iNNG8Fhs+Hd4wokw="></latexit><latexit sha1_base64="WhfdL6HX9XmJ7WXSrLsNwv05onI="></latexit><latexit sha1_base64="WhfdL6HX9XmJ7WXSrLsNwv05onI="></latexit><latexit sha1_base64="GuTW9do3dzdd+I9ZbAmjhvNlqcg="></latexit>

✓
<latexit sha1_base64="uKih3q81UG5Y39UkSUDmaMgSwo0="></latexit><latexit sha1_base64="sg4BK8w5ytAcXmQyQ0tWWWn7/Y0="></latexit><latexit sha1_base64="sg4BK8w5ytAcXmQyQ0tWWWn7/Y0="></latexit><latexit sha1_base64="cLB/gHcLXKsvdN1Ss3kTuhimZm0="></latexit>

arg min
g

L[g]
<latexit sha1_base64="K5zdKfNQlfWV+Iu2lZ+kbdAR2qQ="></latexit><latexit sha1_base64="ApOBYqsfgOriMeFGC7CAo7I3urI=">AAAcqHicpVlfc9y2Eb8kbZMq/eOkj/YDU41cx3M6350kW07HMx4nnrQzdq3Kku1UlDQguSQxBxIUAJ7vxLKfoG/9NH1tP0W/Rp/70AXIk/j3rGlPIx6I/f0Wi8ViueA5CaNSjcf/+ujjT3704598+tlPNz7/2c9/8ctbX3z5RvJUuHDscsbFO4dIYDSGY0UVg3eJABI5DN46s2+1/O0chKQ8PlLLBE4jEsTUpy5R2HV+a3vLVrBQRlHmETHbdlgKeWarEBTJN2wigojG54H14iQ4Pb+1OR6NzcdqNyZlY/Pp7X8/+/Tzv/7n4PyL267tcTeNIFYuI1KeTMaJOs2IUNRlgPpTCQlxZySAE2zGJAJ5mhlzcmsLezzL5wL/Y2WZ3iojI5GUy8hBZERUKJsy3dklO0mVv3+a0ThJFcRuMZCfMktxSzvJ8qgAV7ElNogrKNpquSERxFXoytooxqbhojB4Y2PLMi6XaGsscfVw2tZ7qkIrYVwh0wMfF6ribQFenonAybPxaH+ofakvk/3xzuPpZO/h/sPpo929Sd7BLNappI6vqDdgBgIgrlOrnPFj1GH05RtbbTYXJA5WI08K+sPdR+O9/f3pzt708e5ksl+yP0AuZ7xbortWb+hJvfRD3VacM1mLmEzSNKZqUe8MBElC6jZ6o5QpKvj7ocP5TBFHDvGSMiIWQ59xouqhqAd9EnMRESbpJZxmMnV8GjRGx4AOwRs6gsygriDzYRlHyTZJFa9rllyouy6PcJdKjPSYKIc6CDnAzfEq0ZtSHvGDUku4TEKIZZ6lguVVLYnn47YdhtTTO38mh/pq/PykEh1Dy6UKqt3F0g8t1Fft1lFoHBPhneQJxEah4u4TwtiptgOEAL8+R4jTCPVHuH/MJkWR2C6W3LPQtwxUfbOgxxvuyIjr4h6RKxV2GBJV59DZZZ2ykNgCzTANadEYt1sUkdgrhtMURnFVxBITDa65HFoeukGYnCdHepI0DrC3kI4ik+pw834PMQjCTBJAPQpRG3YM70v1mBUxBnVs5CeT08xkTulmm5M8r8OwnWC6MJGIuRTbdswTNN7B3DyzHRrIGU1qfTGnsYeuaGjC+KRzvRbFiCEuQhYqlXzz4IERjbgIHmA0P0AjCoOUwkm/o/NvtFkNbboBK+vRDQGmQCIyW/o+iShb2hKzXaJ0yDcfCyZRFSorjtLZF3elVR+GRrlWr0IRZbRpg0d9/1rsNcUQ5FkGI3sYjPK/NGQUM0dGUQZtGVykdE6Ynh3Oh0ZwYQz9AeMj5lZElg7UCUtIEIm7KxWgjdHeaaZIy7LdEFyzLVrOxBjyuN+vo0jQqIJI1SLj0kM/1TgbmQrnIUuXvzbBXtdycXGREoTa5tsqvvIW5gq0QvXArnFXwAKJwx+ES0lduVrxOhknsIopFbqEZS/zcxNAHXtDT7yGfZWfd8BYIOqwF2tUCq+p0mbgq3ubE1vQIFRfNwiOuI7AZ4dNdVGCMVRfG311/CzJz4/Oim2WRVTqpWmRoUl+/kEOPq7kRW6+z2yPBAFgJsSbBgxrFAy31+elMn1XhMYxPgQbKwJzsw0yeNMK25Vo1pZFK9nLtixYyb5vy9RKdtSW+U4hwu/mdr4WnWXb7WyVlOKkzbwWrZjohu+w4BLUSU2Wt5r7TT/L85NpJUr+kNtf4V8ZKZYdUc9j8Gdrc2pdhY1WCwIzi6JzTCWoyzxrUkUUFw2fJx6IYgQfS0XL5H1FMUtixFbvpi33NYk6R5asotmmdHLOplVWhrSzFtNvEYEpsuIV7Wnh0Geced0bHnu84oRQi3XLCArG6gjRHF8j4jTvp6GwgwKJpIzHa3hzIlagDv6iwSx39KILe9mNvezCLruxyy7svBs778KqbqzqtBcE74aPi4V8CSrkXmMNXYJF5VUR862+s8vaqg4UnIlr4KG+6wZKLBaX18jX5rYfSmNeB+uObrhLJO7YqrXmvsfeBviwATYPU3D1KdjiGKSiO8ZN+Oqit2yu8q7uaiWkWOnTIcFjd72qsLLOQipZp0HcRINYp0HeRINcp0HdREO7rKlouLyJhj+1NDCOaxVxTEQ38uNqUQyteLTi8v4+VoDFd3NF0TqdBvDLsr+yiiS5sH/bnsMiEVh5taC/6cTSFu6cdgJnbeCsC+iTtplFDtPoFvyyib3sUdoCFsmj09YWdmHZw6r+FgWLKYCm3Wc73Q72eSpa2N1+7LKNXfZhm6Yjttsj2gaJVQHrMmTYN8XqKlYfvTvWDJ+g96Z2Qr8+28n7Ruyj71bpu510M3zSO3xyk+H76LtVevfwht7jr8R6YK3IxnVb1htwdYlkSibcwYK2Ti/qPZ+DW9QiDuBZNEsMcHE/P3FPLV2S2aYYA0RfiZqFkHaKUbPzITV43VmrS8/QqNq9iSpz3V1vXalRdKsUN1TZcps5b/UbeRcVFvruftBC4z+j7/FaffqyU5iHrT19eWjMfaSb+/ryeP1Axuy1nvhf7Bbdhov/y3AM3xc8Nscwh4jGYXMOAjvLA+cMRGxNRntRagT6NXzZu2168QRaucurhOJwwVN8VlrmrReOwiAO9HlTvwYLQZ9BGtPWAjP01oaFH1u/peIFssaqH1+xv3h3U7KI5yneMVa2PR7t7GEWL3GaZ8+TkMSKR1hYpQyyiT4dV0krMKYGWR2rqDz1sxuP/KI8L30HLsOiSne/KntxLbHiwf8e6RFKj3qlHiVBnplrD+IQdDF4CH3yA06xXjLXHoTLsXLXlx45njzyTF965LDAclOZt4/lewfHyZ7nffBnh7l+K9EjDd08C0f20B11I+5n5jcbgo9X/LaHurUOSOMVEFs9YwpgqXbhi+M+BOMBnr4p2nbV6hv05evneaYvfQAlIiBolYpMCB3R2aX5KcGO4xgLQ/12MhuPHu25Ub7qZ2QJQkKSTWudDjDd2QA7XHgFejyq9y9kSH2F3UZN0c9kZdDpNb7sh+KRqMdoi/RPHO1enHKA+6giuDK/1Vm8ia7OSwsa8zq/tTlp/gjXbryZjibj0eSP482n+4Pi89ng9uDXg3uDyeDR4Ongd4ODwfHAHfxt8PfBPwb/vHP/zsGdt3d+KKAff1RyfjWofe44/wW/t7R6</latexit><latexit sha1_base64="ApOBYqsfgOriMeFGC7CAo7I3urI=">AAAcqHicpVlfc9y2Eb8kbZMq/eOkj/YDU41cx3M6350kW07HMx4nnrQzdq3Kku1UlDQguSQxBxIUAJ7vxLKfoG/9NH1tP0W/Rp/70AXIk/j3rGlPIx6I/f0Wi8ViueA5CaNSjcf/+ujjT3704598+tlPNz7/2c9/8ctbX3z5RvJUuHDscsbFO4dIYDSGY0UVg3eJABI5DN46s2+1/O0chKQ8PlLLBE4jEsTUpy5R2HV+a3vLVrBQRlHmETHbdlgKeWarEBTJN2wigojG54H14iQ4Pb+1OR6NzcdqNyZlY/Pp7X8/+/Tzv/7n4PyL267tcTeNIFYuI1KeTMaJOs2IUNRlgPpTCQlxZySAE2zGJAJ5mhlzcmsLezzL5wL/Y2WZ3iojI5GUy8hBZERUKJsy3dklO0mVv3+a0ThJFcRuMZCfMktxSzvJ8qgAV7ElNogrKNpquSERxFXoytooxqbhojB4Y2PLMi6XaGsscfVw2tZ7qkIrYVwh0wMfF6ribQFenonAybPxaH+ofakvk/3xzuPpZO/h/sPpo929Sd7BLNappI6vqDdgBgIgrlOrnPFj1GH05RtbbTYXJA5WI08K+sPdR+O9/f3pzt708e5ksl+yP0AuZ7xbortWb+hJvfRD3VacM1mLmEzSNKZqUe8MBElC6jZ6o5QpKvj7ocP5TBFHDvGSMiIWQ59xouqhqAd9EnMRESbpJZxmMnV8GjRGx4AOwRs6gsygriDzYRlHyTZJFa9rllyouy6PcJdKjPSYKIc6CDnAzfEq0ZtSHvGDUku4TEKIZZ6lguVVLYnn47YdhtTTO38mh/pq/PykEh1Dy6UKqt3F0g8t1Fft1lFoHBPhneQJxEah4u4TwtiptgOEAL8+R4jTCPVHuH/MJkWR2C6W3LPQtwxUfbOgxxvuyIjr4h6RKxV2GBJV59DZZZ2ykNgCzTANadEYt1sUkdgrhtMURnFVxBITDa65HFoeukGYnCdHepI0DrC3kI4ik+pw834PMQjCTBJAPQpRG3YM70v1mBUxBnVs5CeT08xkTulmm5M8r8OwnWC6MJGIuRTbdswTNN7B3DyzHRrIGU1qfTGnsYeuaGjC+KRzvRbFiCEuQhYqlXzz4IERjbgIHmA0P0AjCoOUwkm/o/NvtFkNbboBK+vRDQGmQCIyW/o+iShb2hKzXaJ0yDcfCyZRFSorjtLZF3elVR+GRrlWr0IRZbRpg0d9/1rsNcUQ5FkGI3sYjPK/NGQUM0dGUQZtGVykdE6Ynh3Oh0ZwYQz9AeMj5lZElg7UCUtIEIm7KxWgjdHeaaZIy7LdEFyzLVrOxBjyuN+vo0jQqIJI1SLj0kM/1TgbmQrnIUuXvzbBXtdycXGREoTa5tsqvvIW5gq0QvXArnFXwAKJwx+ES0lduVrxOhknsIopFbqEZS/zcxNAHXtDT7yGfZWfd8BYIOqwF2tUCq+p0mbgq3ubE1vQIFRfNwiOuI7AZ4dNdVGCMVRfG311/CzJz4/Oim2WRVTqpWmRoUl+/kEOPq7kRW6+z2yPBAFgJsSbBgxrFAy31+elMn1XhMYxPgQbKwJzsw0yeNMK25Vo1pZFK9nLtixYyb5vy9RKdtSW+U4hwu/mdr4WnWXb7WyVlOKkzbwWrZjohu+w4BLUSU2Wt5r7TT/L85NpJUr+kNtf4V8ZKZYdUc9j8Gdrc2pdhY1WCwIzi6JzTCWoyzxrUkUUFw2fJx6IYgQfS0XL5H1FMUtixFbvpi33NYk6R5asotmmdHLOplVWhrSzFtNvEYEpsuIV7Wnh0Geced0bHnu84oRQi3XLCArG6gjRHF8j4jTvp6GwgwKJpIzHa3hzIlagDv6iwSx39KILe9mNvezCLruxyy7svBs778KqbqzqtBcE74aPi4V8CSrkXmMNXYJF5VUR862+s8vaqg4UnIlr4KG+6wZKLBaX18jX5rYfSmNeB+uObrhLJO7YqrXmvsfeBviwATYPU3D1KdjiGKSiO8ZN+Oqit2yu8q7uaiWkWOnTIcFjd72qsLLOQipZp0HcRINYp0HeRINcp0HdREO7rKlouLyJhj+1NDCOaxVxTEQ38uNqUQyteLTi8v4+VoDFd3NF0TqdBvDLsr+yiiS5sH/bnsMiEVh5taC/6cTSFu6cdgJnbeCsC+iTtplFDtPoFvyyib3sUdoCFsmj09YWdmHZw6r+FgWLKYCm3Wc73Q72eSpa2N1+7LKNXfZhm6Yjttsj2gaJVQHrMmTYN8XqKlYfvTvWDJ+g96Z2Qr8+28n7Ruyj71bpu510M3zSO3xyk+H76LtVevfwht7jr8R6YK3IxnVb1htwdYlkSibcwYK2Ti/qPZ+DW9QiDuBZNEsMcHE/P3FPLV2S2aYYA0RfiZqFkHaKUbPzITV43VmrS8/QqNq9iSpz3V1vXalRdKsUN1TZcps5b/UbeRcVFvruftBC4z+j7/FaffqyU5iHrT19eWjMfaSb+/ryeP1Axuy1nvhf7Bbdhov/y3AM3xc8Nscwh4jGYXMOAjvLA+cMRGxNRntRagT6NXzZu2168QRaucurhOJwwVN8VlrmrReOwiAO9HlTvwYLQZ9BGtPWAjP01oaFH1u/peIFssaqH1+xv3h3U7KI5yneMVa2PR7t7GEWL3GaZ8+TkMSKR1hYpQyyiT4dV0krMKYGWR2rqDz1sxuP/KI8L30HLsOiSne/KntxLbHiwf8e6RFKj3qlHiVBnplrD+IQdDF4CH3yA06xXjLXHoTLsXLXlx45njzyTF965LDAclOZt4/lewfHyZ7nffBnh7l+K9EjDd08C0f20B11I+5n5jcbgo9X/LaHurUOSOMVEFs9YwpgqXbhi+M+BOMBnr4p2nbV6hv05evneaYvfQAlIiBolYpMCB3R2aX5KcGO4xgLQ/12MhuPHu25Ub7qZ2QJQkKSTWudDjDd2QA7XHgFejyq9y9kSH2F3UZN0c9kZdDpNb7sh+KRqMdoi/RPHO1enHKA+6giuDK/1Vm8ia7OSwsa8zq/tTlp/gjXbryZjibj0eSP482n+4Pi89ng9uDXg3uDyeDR4Ongd4ODwfHAHfxt8PfBPwb/vHP/zsGdt3d+KKAff1RyfjWofe44/wW/t7R6</latexit><latexit sha1_base64="Y+642ZFyiyZWQmFYdFZi+qnOJts="></latexit>
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Figure 1: Schematic overview of the techniques presented in this Letter.2

of two integrals). However, in Ref. [28] we show that they can be used to define functionals Lr[g]
and Lt[g] that are extremized by the likelihood ratio

r(x|✓0, ✓1) ⌘
p(x|✓0)

p(x|✓1)
= arg min

g
Lr[g] (4)

and the score

t(x|✓0) ⌘ r✓ log p(x|✓)
�����
✓0

= arg min
g

Lt[g] , (5)

respectively.
We implement this approach through machine learning, approximating the functionals Lr[g] and

Lt[g] through suitable loss functions based on data available from the simulator, see Fig. 1. The
extremization of the loss functional is estimated by training a deep neural network using stochastic
gradient descent on the network’s parameters.

Based on this idea, we define the Rascal1 technique that uses both pieces of information – the
joint likelihood ratio and the joint score – simultaneously to train an estimator r̂(x|✓0, ✓1) for the
likelihood ratio. This approach is essentially a machine-learning version of the Matrix Element
Method. It replaces computationally expensive numerical integrals with an upfront regression
phase, after which the likelihood ratio can be evaluated in microseconds per event and parameter
point. Instead of manually specifying simplified smearing functions, the effect of parton shower and
detector is learned from full simulations. By using all available information from the simulator, this
estimator maximizes the fidelity of the likelihood ratio estimation (and therefore the precision of
measurements), at the cost of a somewhat complex architecture.

Local approximation

In the neighborhood of the Standard Model (or any other reference point), we can approximate
the score t(x|✓) as independent of ✓, and Eq. (5) is solved by

plocal(x|✓) =
1

Z(✓)
p(t(x|✓SM ) | ✓SM ) exp[t(x|✓SM ) · (✓ � ✓SM )] (6)

1 Ratio and score approximate likelihood ratio
2 Parts of the figure are based on Ref. [31] and on an image created by Frank Krauss.

Figure 7.5 – Schematic overview of the family of techniques investigated [78]

These algorithms developed by the authors of Refs. [66, 78–80] and a re at the intersection
of machine learning, probabilistic programming, statistics and particle physics phenomenology.
The key ideas behind these techniques are discussed in section 4.8 and the schematic diagram of
the algorithm show in Figure 7.5 serves as a summary. The techniques rely on the extraction of
additional information from the simulator that are used to construct target values to train neural
networks that directly learn the likelihood/likelihood ratio between a test hypothesis value of a
theory parameter and the null hypothesis value.

This is well suited for a measurement in the Effective Field Theory (EFT) Framework [21], where
the theory parameters come from an EFT Lagrangian. However, such an algorithm would also
be beneficial for a signal strength measurement in the context of interference, by avoiding the
need to define “signal” and “background” class labels, or being restricted to tuning the model for
only one fixed value of µ. The extra information extracted from the simulators is only required
to train the networks, but not required at inference time, therefore amortising the computational
cost.

7.3 Modelling Signal Strength in an Event Generator and Mor-
phing

The first step required to adapt these techniques for a signal strength measurement is to make
a connection between the signal strength and the Lagrangian. Even though µ is not a theory
parameter of the Lagrangian, it can be mimicked by introducing a new theory parameter in the
model that scales the couplings of the Higgs to the vector bosons consistently.

7.3.1 Mimicking the signal strength

The MadGraph5_aMC model called sm model was used as a starting point and was modified
for this purpose. An additional parameter κ was defined1 which scales the HZZ as well as
HWW couplings such that it mimics the change of Higgs signal strength, following κ = µ

1
4

(this relation only holds while modelling µV BF ). Since the squared HVV coupling is present
in the production as well as decay vertices of the Higgs of qq → H → ZZ (see Figure 7.6), κ

1This and several steps in this study were performed with close support from Johann Brehmer.
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contributes at the order 4 to the entire process. With this prescription we can generate the full
process of qq → (H →)ZZ including signal background and interference for various values of µ.

V4

H∗

κ2
V3

V2
l4

l2

V1

q2

l1

q3q1

κ2

q4

l3

Figure 7.6 – Feynman diagram of qq → H∗ → llll VBF process. The additional contributions
coming from κ is shown.

7.3.2 Re-weighting

The additional information extracted from the simulator that helps data augmentation involves
‘re-weighting’ each event from the event-generator to other values of the theory parameter.
This means finding the probability of having observed a particular event if the true value of
the theory parameter was something else. The list of parameter values at which generator
and/or re-weighting need to be performed are together referred to as ‘benchmark points’. Such
a computation is possible at the parton-level (using MadGraph5_aMC) but not at the final stage of
the simulation after detector effects are taken into account. The ‘weight’ of an event is related to
the probability of observing it. By having the weights for each event at the various benchmark
points, one can ‘morph’ [66] (described in section 7.3.3) the events to generate a dataset for any
desired parameter point.

Re-weighing is not strictly necessary because morphing can be performed in a different way
using data generated at single parameter points, however this method introduces undesired
stochasticity (this was briefly studied in work-in-progress on extending this approach to the ggF
case, but is not detailed in this document).

7.3.3 Morphing

In this thesis, ‘morphing’ refers to a technique that allows to cheaply re-weight samples from
one theory parameter point to another without the use of an event generator. It is only possible
once an event generator has already been used to re-weight the event to a minimum number of
benchmark points. Instead of generating events for every value of κ, only a few values are used
and then interpolated on a range of values.

The technique is similar to a polynomial fit, and therefore the order of the polynomial required
determines the minimum number of benchmarks. After the fit, morphing allows to smoothly
interpolate (and to a certain extent extrapolate) the weights of an event to new values of of the
theory parameter, in our case κ.

This facilitates the re-use of samples both for training and plotting distributions for various
values of κ, thereby decreasing the need to generate samples at many different theory parameter
points. The individual events remain unchanged, but their weights are adjusted so that the
overall distributions correctly represent the new parameter point. The effective number of
events, Neffective =

∑
weights

max(weights) (as defined in [66]) is useful in spotting parameter points where
morphed event weights have extreme variations. Morphing to points where the physics is very
different would make the value of the weights extreme, therefore simulation still needs to be
done at several points.

162



7.4. DELPHES: VERY FAST DETECTOR SIMULATION

This technique is similar to distribution morphing that is already used in the ATLAS experi-
ment [126], except that it morphs individual events. Once individual events can be morphed,
any new distribution can be obtained.

In this scenario, since κ contributes to the matrix element in its fourth power, morphing would
be similar to a fourth order polynomial fit. Thus, having weights for each event at five different
parameter points is sufficient for 4th order fit, after which an event can be morphed smoothly
to any other parameter point.

7.4 Delphes: Very Fast Detector Simulation

Delphes [84, 127] is a fast multipurpose detector response simulation tool that can simulate
a tracking system, magnetic field effects, calorimeters and a muon system, and possible very
forward detectors arranged along the beam line. Over the years it has added features like
pile-up simulation, better modelling of jets and visualisation tools.

The key idea2 is to parameterise the response of the detector for extremely fast simulation to
perform studies beyond simple parton-level smearing. It can be configured for ATLAS, CMS and
various other detector designs. Although it simulates the detector effects orders of magnitude
faster than even the fast simulation tools of ATLAS, it is far less accurate than the fast simulation
algorithms developed specifically for ATLAS and it is not suited for detector studies in the case
of ATLAS3.

Delphes is open source and often used by phenomenologists who are not members of an LHC
experimental collaboration to estimate detector responses. This is because experiment specific
simulation tools can sometimes be inaccessible, difficult to run or simply not worth the compu-
tational cost for the desired level of detail required of the detector response for a given study.

Instead of performing this feasibility study at the parton-level, a Delphes detector simulation
was used to obtain slightly more realistic results.

7.5 Monte-Carlo Samples and Morphing Them

The dataset was generated with MadGraph5_aMC [82], requesting pp→ jjzz processes with the z
decaying to ee or µµ. The parton showering was simulated with Pythia 8 [83] and the detector
response was simulated with Delphes 3 [84].

The simulation was done at six ‘benchmark points’,

κ = {0, 0.8, 1, 1.2, 1.35, 1.5},

corresponding to
µ = {0, 0.4095, 1, 2.0736, 3.32150625, 5.0625},

where each event was re-weighted to all the other benchmarks at the parton level. The κ = 1.35
point is not used for the morphing fit, and instead spent to validate the morphing setup. In
this study, only events from the nearest benchmark point are used to generate a dataset at any
given parameter point. Figure 7.8 demonstrates that the morphing setup correctly predicts the
evolution of the total cross section at validation point. The distribution of effective number of

2This idea was used also by several predecessors of Delphes.
3CMS has in general used Delphes for studies more often than ATLAS and some of the authors of Delphes

are CMS members. The tuning is more accurate in the case of the CMS detector than for the ATLAS detector
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(a)
κ

(b)

Figure 7.7 – Effective number of samples for different values of κ = µ
1
4 . Events are generated at (a)

benchmark points κ = 0, 0.8, 1, 1.5 and (b) after a few more events at the SM and two additional
benchmark points κ = 1.2, 1.35. For a new point, events are morphed from the nearest benchmark point
(blue, orange, green, violet, brown and red from κ = 0, 0.8, 1, 1.2, 1.35, 1.5, respectively. It can been seen

in (a) that near κ = 1.2 the effective number of samples is very small, which lead to additional
simulations around that point.

events is given in Figure 7.7b, where

Neffective =
∑n
i=1wi

max(wi)
(7.2)

as defined in [66]. It is different from the more usual formula, Equation 7.3, used in HEP but is
easier to compute and track.

Neffective = (
∑n
i=1wi)

2∑n
i=1w

2
i

(7.3)

Interestingly, since the destructive interference is maximal near the SM point, there are very
few ‘signal-like’ events at that point, therefore the events generated at the SM do not morph
well to nearby points. To successfully morph a SM dataset to another points requires a reason-
able number of ‘signal-like’ events and the SM dataset has too few. These few events are given
extremely high weights when morphed to points away from the SM. This phenomenon is indi-
cated by the sharply falling Neffective in green. Usually for a dataset to have sufficient statistical
power, the standard deviation of the weights should be much smaller the mean of the wights (a
consequence of Equation 7.3). For this reason, small additional simulations at κ = 1.2, 1.35 and
to be performed to supplement the larger simulations at the four main benchmark points.

After detector level cuts, the full dataset consists of {8.6 M, 8.2 M, 9.2 M, 1.1 M, 1.1 M, 8.1 M}
events in ascending order of benchmark points. For contrast, the Neffective plot without these
two points is shown in Figure 7.7a. Although for the physics process of interest in this study,
the morphing function is already well known to be a quadratic in √µ,

weightµ = µ · weightSignal +√µ · weightInterference + weightBackground,

and therefore should require only three benchmark points in µ, if the morphing is done with
respect to the theory parameter κ then more benchmark points are needed. The existing gen-
eralised MadMiner [81] morphing setup morphs the coupling parameters (rather than the signal
strength) and it was more convenient to use.
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Figure 7.8 – Cross Section as a function of κ. The validation point at 1.35 matches the fitted
morphing prediction shown in blue.

7.6 Training the models

Minimal pre-selection cuts were applied, apart from a requirement of at least 2 jets and 4 leptons.
The observables used to train the network are,

• the four momentum of the final state objects
• energy of the sum of all visible objects
• pseudo-rapidity (η) of the sum of all visible objects
• missing transverse momentum
• azimuthal angle (φ) of the missing transverse momentum
• di-jet invariant mass
• differences in the angles (η, φ) between the two jets
• invariant mass of the four leptons system
• total number of leptons
• total number of jets.

In total 35 observables were considered. Their distributions are given in Figures 7.9,7.10,7.11,7.12,7.13,7.14.

From the setup mentioned section 7.3, the augmented data can be used to compute the ‘joint-
likelihood ratio’ (the parton-level likelihood ratio, where x are the observables, z the parton level
momenta) ,

r(x, z|µ0, µ1) = p(x, z|µ0)
p(x, z|µ1)

from the weights of each event for two different hypotheses, µ0 and µ1, and the ‘joint score’,
t(x, z|µ) = ∆µ log p(x, z|µ), can also be calculated from the morphing setup by taking the
gradient of the polynomial for any µ.

These terms are used to train the models using the loss functions detailed in section 4.8. They
were implemented in PyTorch within the MadMiner package, and the trainings were also per-
formed within this framework.
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Figure 7.9 – Distributions of observables used in this study at µ = 0, 1, 4, 5.
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Figure 7.10 – Distributions of observables used in this study at µ = 0, 1, 4, 5.
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Figure 7.11 – Distributions of observables used in this study at µ = 0, 1, 4, 5.
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Figure 7.12 – Distributions of observables used in this study at µ = 0, 1, 4, 5.
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Figure 7.13 – Distributions of observables used in this study at µ = 0, 1, 4, 5.
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Figure 7.14 – Distributions of observables used in this study at µ = 0, 1, 4, 5.
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7.6.1 Training SALLY

Out of the two models that were investigated in detail in this study, the first, “SALLY”
(Score Approximates Likelihood Locally), is trained to regress the joint-score at the SM point,
t(x, z|µSM ). It is not parameterised on µ and therefore its output can be treated like a regular
observable, just like in the usual case of training an ML classifier. It is only aware of how the
physics changes are the local neighbourhood of the SM and is therefore only expected to perform
well in that neighbourhood. The advantage of course is that it does not need the notion of signal
and background classes to be trained.

It was trained on 2 × 106 events only from the SM point for 50 epochs with early stopping.
These trainings took 12 mins on a CPU. The neural network has 100 nodes in the hidden layer
with hyperbolic tangent activation and an output node with linear activation. Minimal hyper-
parameter optimisation was performed for this model, only the width, depth of the network and
activations (hyperbolic tangent vs rectified linear units) were explored.

7.6.2 Training ALICES

The second model, “ALICES” (Approximate Likelihood with ImprovedCross-entropy Estimator
and Score), is also trained on the joint-score but in addition it is trained on the joint-likelihood
ratio, r(x, z|µSM , µ1) for various test hypotheses, µ1. ALICES is therefore aware of how the
physics changes at parameter points far away from the SM, and requires data from various
values of µ to be trained well.

The ALICES model was found to be very sensitive to the training dataset. Training on a random
uniform distribution of parameter values resulted in the model being well trained only for some
values of µ. The parameter points at which it was trained had to be fixed by hand for improved
results. The parameter points used for training are,

µ = {0, 0.5, 0.7, 0.8, 0.9, 0.95, 0.98, 1, 1.02, 1.05, 1.1, 1, 2, 1.5, 1.8, 2, 3, 4, 4.5, 5, 5.5, 6, 7, 8, 9, 10, 12, 16}.

These values were chosen heuristically after evaluating the performance of the model at different
values of µ and verifying the model’s ability to interpolate to values in between.

ALICES was trained on 2×106 morphed samples (which includes re-sampling the same event for
different values of µ, with probability appropriate to the value of µ, as described in Chapter 4)
for 30 epochs with early stopping. These trainings took 45 mins on a CPU. The neural network
has 300 nodes in the hidden layer with hyperbolic tangent activation and a single output node
with linear activation. The width of the network and the number of epochs were optimised.

7.6.3 Comments on stability

For both SALLY and ALICES, the training (with the same architecture) had to be preformed a
few times to obtain the best model, suggesting that there is room for optimisation to make the
learning more stable.

More extensive hyper-parameter optimisation was performed for some of the other models
(SCANDAL, ADAPTIVE-SALLY) that were also listed in [66]) but they failed to provide con-
sistent results and were therefore not used for the final round of this study, therefore details
about these models is not given here. If tricks to stabilise these models are uncovered in the
future, they may be included in the next round of this study.
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7.7 Inference and Evaluation of Results

This section describes the results obtained from these two models that were trained using the
augmented data from the simulator and compares them to fits using the distribution of some
typical observables. The objective in each set of comparisons presented below is a precise single
parameter estimation, that is to measure µ with as small an uncertainty as possible. The
networks that directly output the likelihood ratio directly (ALICES) could of course provide
unrealistically confident measurements if the model is not well trained, and this was seen during
model optimisation, therefore their performance needs to be evaluated on multiple datasets
representing different true values of µ (the model outputs could be calibrated to ensure they are
never overconfident, but it is an inelegant solution that is best avoided). There is no such fear
for SALLY because the output of the model is binned and treated like an usual observable for
a fit.

7.7.1 Asimov Dataset

To assess the sensitivity of an analysis strategy for a measurement where only a few events
are expected to be observed, the act of the this measurement needs to be performed multiple
times on many “toy” observation datasets, each with only a few events. These toy datasets are
generated based on a given theory (often the SM), and the distribution of the measurements on
these toys can be used to compute the median expected measurement and its uncertainty. This
is computationally expensive.

The ensemble of simulated experiments can be replaced by a single representative one, the
“Asimov” dataset [88]. It is a dataset upon which unbiased measurements yield exactly the
correct theory parameters and upon which the median expected sensitivity of an analysis can
be estimated along with its fluctuations. In practice we cannot have perfectly Asimov datasets,
but a very large simulation can approximate an Asimov dataset.

Since in practice, unlike the real observed data, the Asimov dataset has a large number of
events, the statistical uncertainty on the measurement is estimated differently. Instead of the
quadratic sum of weights, they are calculated as

√
N where N =

∑
W , and this provides a

realistic expected uncertainties.

7.7.2 Inference on one Asimov Test Dataset

Just like the training dataset, the Asimov test datasets are created for this evaluation by mor-
phing the data generated at the benchmark points that were reserved for evaluation. They allow
to estimate the expected sensitivity for the various inference strategies. This is a great advan-
tage of this morphing technique over the strategy used in Chapter 6 (where evaluation of the
model was restricted to a few parameter points) even if no further simulator assisted learning is
performed.

7.7.2.1 ALICES Inference

Described below is the inference steps for ALICES for one given Asimov test dataset (for example
a dataset created at µ = 1).

At inference time, the inputs of the ALICES neural network, for a given event, are the measured
observables of the event, as well as the hypothesis being tested (i.e. one particular value of
µ). There is no additional maximum likelihood fit to be preformed for this model, it provides

173



CHAPTER 7. LIKELIHOOD-FREE INFERENCE

the inference directly. The output of the network is the (log-)likelihood ratio between the test
hypothesis and the null hypothesis (i.e SM with µ = 1). For example, the first test hypothesis
to be evaluated is µ = 0, therefore for each sample in the test dataset, all the observables along
with the test hypothesis µ = 0 is given as input to the network, and it provides the log-likelihood
ratio for this event between the hypothesis µ = 1 and µ = 0. The sum of the outputs (the log
of the likelihood-ratio can be added) for all the events then provides the log-likelihood ratio
for the entire test dataset between these two hypothesis. An additional component to the total
log-likelihood ratio coming from the rate information (information regarding number of events
observed vs the number of events expected under the two hypothesis) may also be added here.

Next, the entire process is repeated for a new test hypothesis, for example µ = 0.1, to get the
log-likelihood ratio between the hypothesis µ = 0.1 and µ = 1 for the same test dataset. This
process is repeated to scan over a range of µ. The minimum of them can be subtracted off
from the rest to bring the minimum to zero in the log-likelihood ratio plots that will be shown.
This information can of course be converted into a scan of the p-value (which represents here
the probability of obtaining data at least as extreme as the test dataset, assuming that the test
hypothesis is correct), and these plots will also be shown.

A fear is that perhaps ALICES simply learns to provide a high likelihood ratio when the test
hypothesis is µ = 1 and very low values otherwise, regardless of the distribution of the shape
of the observables. In this case it would appear to outperform all other techniques on the SM
Asimov dataset while its actual performance is no better than a broken tape-recorder. A final
step in the evaluation is needed.

For the final step, this entire process is repeated for a new Asimov dataset created at another
parameter point, for example µ = 4, to see if ALICES predicts the correct value of the parameter,
and still provides a small uncertainty. This test is performed at many values (with morphing it
is cheap to perform new test datasets) to evaluate the performance everywhere.

7.7.2.2 Histogram/SALLY Inference

The log-likelihood ratio and p-values for the histogram techniques is calculated using multi-
binned Poisson likelihood fits using template histograms of particular physics variables (such as
the invariant mass of the four leptons or transverse momentum of the first jet). An example is
shown in Figure 7.15. The same is also done with the output of SALLY.

7.7.3 Comparison of the results

Two sets of comparisons will be shown, one including the rate (total yield) information and one
set without. This allows to differentiate whether the sensitivity comes from just the cross-section
or the shape of the distributions of the observables. Since the dominant background to these
processes qq̄ → ZZ is expected to have a strong effect on the total number of events measured
and add an uncertainty to the normalisation, it is useful to look at the difference in results based
on only the shape information.

Although the typical negative log-likelihood curves are shown in this study, the discussion will be
based on the equivalent information seen in the p-value scans. Rather than the usual parabolic
shape, the negative log-likelihood curves have two local minima because of quantum interference
effects, and these features were found to be visually easier to follow in the p-value scans.

A p-value scan is shown for Asimov test datasets corresponding to µ = {4, 2, 1} in Figure 7.16.
It compares a traditional 1-dimensional histogram fitting approach using three observables, the
mass of the four leptons (m4l), the transverse momentum of the leading jet (pTj1) and the
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Figure 7.15 – Example of template fit using histograms of a physics variable.

difference in the pseudo-rapidity between the two jets (∆ηjj) with two “physics-aware” neural
network approaches to measure µ on two Asimov (i.e. representative) test datasets. The first
three are treated as a baseline for the latter two techniques. The key point in interpreting these
figures is that the sharper the curve, the better the technique. In particular, the point at which
the curve crosses the 1 σ horizontal indicates the expected 1 σ upper-limit to be set by the given
technique.

SALLY performs better than traditional physics variables near the SM value (µ = 1) as antici-
pated but quickly deteriorates far away from it. In Figure 7.16c is very slightly better than the
histogram techniques (but the differences fade quick for µ values away from the SM point). For
a test dataset generated at µ = 4 in Figure 7.16a, although SALLY more confidently excludes
the SM than the three baseline and also has a much lower second peak (near 0) compared to
them, it does not perform much better than the them at setting upper limits on µ. For values
around the SM, like in Figure 7.16b SALLY outperforms the baseline to a considerable extent
and does not provide a second peak the way the baseline techniques do.

ALICES, however, is aware of physics in the entire range of µ, and therefore more confidently
excludes wrong values of µ for the test dataset generated at the SM, at µ = 2 and at µ = 4. This
was found to be true for various values tested. Since it is aware of how the physics observables
change their distributions at different parameter values, it can automatically re-optimise the
analysis for each test hypothesis (rely on the appropriate observables for the appropriate test
hypothesis), and therefore it is the best technique at being able to break degeneracies such as
the second peak in Figure 7.16b. It also performs the best for almost the full scan range also
in Figure 7.16a. Since it ‘knows’ the physics at other points, it can therefore also exclude them
with more confidence for the test performed at the SM value in Figure 7.16c.

The 1σ limits from ALICES is consistently better than all other techniques for Asimov test
datasets generated at any point of µ in this study. The comment remains true for the more
standard 2σ limits that can be inferred from Figure 7.18.

Negative log-likelihood curves with and without the cross-section information are also shown
for Asimov datasets at various values of µ in Figure 7.17. Although not clearly visibly in every
case, many of these curves have two local minima (they almost merge to give a flat appear-
ance to the negative log-likelihood curve) corresponding to the degeneracy problem discussed
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Figure 7.16 – p-value scans for Asimov test dataset generated at (a) µ = 4, (b) µ = 2, and (c)
standard model (µ = 1) for a luminosity of 36 fb−1 where the true value is indicated with the golden
vertical line and the 1σ limit threshold indicated by the grey horizontal line. The more standard 2σ
limits are not visible in these comparisons but can be inferred from Figure 7.17 and Figure 7.18.
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(c) µ = 2, without rate
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(d) µ = 2 with rate
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(e) µ = 4, without rate
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(f) µ = 4 with rate

Figure 7.17 – Negative log likelihood curves for Asimov datasets generated at µ = 1, µ = 2, µ = 4
with and without using the total cross section (rate) information.
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(a) SM without rate for 139 fb−1NLL on Test Dataset at μ=2: 2 D Histogram in pink
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m4l and Δηjj

(b) SM, without rate, lumi 139 fb−1

Figure 7.18 – Negative log likelihood curves for an integrated luminosity of 139 fb−1 for Asimov
datasets generated at (a) µ = 1, (b) µ = 2 and demonstrating the performance of using 2-dimensional
histogram templates (pink) in comparison to the 1-dimensional histogram templates and ML techniques.
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in section 7.1). Two local minima were also observed in ATLAS studies performed on ggF and
VBF events together with the optimised Matrix Element based observable (defined in Chapter 6
Equation 6.3) as can be seen in Figure 7.194.

Multi-bin fit on MELA

Figure 7.19 – Expected Negative Log-Likelihood curves using (Top) a single bin (Bottom) multiple
bins of MELA (Matrix-Element based observable) and category splitting based on the number of jets

for the ATLAS off-shell analysis using both ggF and VBF events simulated from the SM. The two local
minima structure remains even for an optimised observable.

These figures demonstrate the benefit of an analysis strategy that is optimised for all values of µ
simultaneously, rather than optimising the analysis by creating a very sensitive 1-D observable,
even when a machine learning algorithm (such as SALLY) is used to create that observable.

Given that this analysis expects to set upper limits on µ quite far away from the SM value,
SALLY would be far less useful compared to ALICES. On the other hand if there is a discovery
to be made (µ 6= 1), ALICES will get us there much sooner than the current approach of
optimising the analysis only at the SM.

Conclusion and Future Outlook

A study was performed to investigate a new family of machine learning algorithms that could be
used for the off-shell Higgs to four leptons analysis in the ATLAS experiment at CERN. These
techniques leverage the use of very accurate simulators in particle physics, to extract additional
information that is very useful in learning the likelihood ratio between a test hypothesis and
the null hypothesis. They also avoid the need to define ‘true class labels’, a concept that is
ill-defined in the presence of quantum interference between signal and background processes.

4Study and figure made by Samyukta Krishnamurthy.
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The results demonstrate a considerable improvement in performance using the new machine
learning technique compared to traditional methods of building a single highly sensitive observ-
able, however, a study using full ATLAS detector simulation, the inclusion of all other signal
and background processes and a comparison to the current ATLAS baseline strategy has yet to
be performed.

The study was performed only for the Vector Boson Fusion produced Higgs process, which
interferes with Vector Boson Scattering process in the high mass off-shell regime. The processes
that need to be included are the qq̄ → ZZ background and perhaps the gg(→ H)→ ZZ process.
The two jet requirement could also be lifted. In this case a dedicated BDT to first remove non-
interfering background events will help improve the sensitivity of this inference technique.

The SALLY model, which is trained to be optimal only near the neighbourhood of the SM
performs well for some points in that neighbourhood but will not be ideal for an analysis that
is expecting to set upper-limits very far away from the SM value. One of the reasons the
performance of SALLY does not scale well to other points in µ for this analysis might be because
physics changes extremely quickly near the SM point. This was also observed during the data
creation period, where it was seen that data generated at the SM value does not morph well to
other points.

Considering that interference brings in non-linear effects for a signal strength measurement prob-
lem, the improvement in sensitivity using ALICES comes not only from training on additional
information but in fact being able to parameterise the model for different values of µ. The
algorithm can effectively re-optimise the analysis to be sensitive to the changing physics, some-
thing a one dimensional observable will not be able to match. This would be particularly useful
compared optimising the analysis only using SM datasets given how fast the physics changes
near the SM value.

This technique could also be studied for the gg(→ H)→ ZZ processes for the measurement of
the off-shell signal strength in the gluon-gluon fusion production mode, which also has quantum
interference between signal and background processes and in addition has much higher statistics
at LHC running at a centre of mass energy of 13 TeV. Although including the gg(→ H)→ ZZ
as a signal process will improve the statistical power, the interpretation of such results for a
Higgs width measurement will become very model dependent [40]. The limit set on µoffshell, VBF
can more readily be interpreted as an upper limit on the Higgs boson width ΓH in units of ΓSMH
due to Equation 2.59.

These models are trained on datasets generated with different values of the signal strength with
the assumption that the rest of the physics behaves as described by the SM. It will also be
worth testing the analysis strategy on a simulated sample where some New Physics modifies the
apparent off-shell signal strength to assess the generalisability of the strategy. This will be of
less concern when ATLAS moves from the κ framework to an EFT framework for interpretation,
and it will make the EFT based likelihood-free inference with ALICES also simpler.

Using such techniques in a full ATLAS analysis for the first time, including all the systematic
uncertainty checks and combination of results with the νν channel, will still require significant
amount of additional effort. The ATLAS HZZ software has now been adapted5 to extract and
propagate the additional weights from the event generator through the entire analysis chain.
However, the statistical inference tools will also need to be updated to handle a network that is
parameterised on the hypothesis being tested. The pyhf [128] package is expected to support
such inference in the near future. In case not all systematic effects can be trained on with
ALICES, the output of the network could be binned into multiple histograms for a discrete set
of test hypotheses µ. This would allow the usual studies of how sensitive the output of the

5Thanks to RD Schaffer.
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network is for variations systematics. Although not a concern for the H → 4l analysis, binning
the output might also be useful in using this technique for an analysis where a data driven
background estimation needs to be performed6.

As a followup to this work, model building (in FeynRules), event generator and morphing
strategies are being investigated to this study for an off-shell ggF signal strength measurement
as well within ATLAS. The ATLAS research group at University of Massachusetts has joined
the effort of bringing MadMiner based inference to the ATLAS off-shell Higgs boson coupling
measurement analysis in the four leptons decay channel.

A first application of these techniques in ATLAS will carve the way for several other analyses
to follow. The most straightforward application being Effective Field Theory studies, but in
fact any analyses that deals with quantum interference may benefit from these parameterised
inference models, for example the HH → γγbb di-Higgs search [129] in the ATLAS experiment.

6a more involved solution might be to use a ML based correction of MC to data using side-bands.
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Apart from the studies detailed in the previous chapters of this thesis, contributions were also
made to certain side projects. A first study was made on using Optical Processor Units [130]
for fast machine learning in the context of HEP (tracking and classification from raw calorime-
ter images or low level detector information). A new adversarial training algorithm was also
developed for work related to the four leptons analysis detailed in Chapter 6, and this will be
summarised below.

8.1 Aspiration Network

Often times using ML models to optimise selections or tagging of jets results in a sculpting of a
particular observable such as the mass of a particle, which might be undesirable. This may also
happen for cut-based selections, although usually to a lesser extent. Considerable work has gone
into decorrelating the relevant mass from the output of the model in ATLAS [131]. A popular
solution is to use adversarial training [132].

This section will describe the interest in mass decorrelation in the context of the off-shell Higgs
to four leptons analysis, describe in brief how the usual adversarial training technique completely
fails for this dataset, and finally propose a modified adversarial algorithm where the model is
given information about the aspired distribution and thereby makes the learning task easier
for the neural network model. The end of the section will show the new training algorithm
succeeding in solving the problem at hand, where the usual adversarial training failed.

8.1.1 The Mass Line-Shape

The mass line-shapes shown in Figure 2.10 and Figure 7.3 (mass of the four leptons, m4l) are
a crucial aspect of the off-shell measurements, because they are changed in subtle ways due
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to BSM effects as detailed in Chapter 2. The discriminating power of a classifier is often a
function of the mass of the four leptons. As can be seen in Figure 8.1, the background is a
falling distribution in m4l while the signal falls much more slowly, making an event with high
m4l a better signal candidate. A selection based on traditional classifier will therefore distort
the line-shape and even make re-interpretations more difficult. The following discussion is with
regard to a classification task to separate the VBF full process events from all other processes,
which was one of the two classification approaches investigated in Chapter 6.

Figure 8.2 shows the correlation between the classification score and the m4l for a BDT trained
with XGBoost. It provides a significance of Z = 1.87. Neural networks show very similar issues.
The default neural network architecture used in these studies is a feed-forward dense neural
network with 4 layers, each with 32 nodes and ReLu activation apart from the last layer which
has 1 node and a Sigmoid activation function trained with an Adam optimizer.

The objective is to train a model with maximum sensitivity, yet independent of m4l.

Dropping m4l from the input variables results in a drop in the significance to Z = 1.71 without
mitigating the mass dependence, as seen in Figure 8.3 (the model trained in this example is a
neural network). Expressive models can infer the mass through its correlation to other input
variables, so dropping the mass variable alone will not necessarily remove all correlation of the
output of the model with the mass.

8.1.2 Trouble with Pivot

The original ‘pivot’ adversarial [133] method was proposed to make a classifier invariant to a
given systematic (such as jet energy scale). An idea to use this technique to make a classifier
invariant to the mass of a particular object was proposed [132] soon after. The architecture
shown in Figure 8.4. The idea is to train an adversarial network to regress the mass only from
the output of the classifier. The the classifier output is correlated to the mass, this can be done,
and the classifier will be penalised for it. The hope is that eventually the classifier will learn to
optimise two tasks simultaneously and perform the best job possible of classification of signal vs
background while at the same time remaining invariant to the mass. The loss of the classifier
therefore has two terms,

Ltotal = Lclassification − λLadversary (8.1)

the first one for classification and the other is the negative of the loss of the adversary (the
second term is very similar to a the generator of a GAN which has to fool the discriminator).
The λ is a hyper-parameter which decides the relative importance of the two tasks. This is the
typical ML based solution use in ATLAS for mass decorrelation.

This technique has been proven to work well to remove relatively obvious background mass
sculpting, but failed to decorrelate m4l from the output of the classifier for off-shell signal events
despite a large hyper-parameter search and despite consultation with the authors of the original
pivot paper [133] and the mass decorrelation paper [132]. For this dataset, the adversary was
unable to regress the mass (see Figure 8.5), even though the correlation existed. One of the
several suggested architectures involved simplifying the problem for the adversary by binning the
mass (as was the case for the adversary in the mass decorrelation paper), this changes the task
from a regression to a classification into one of few bins for the adversary. Another suggestion
was using a Gaussian Mixture Model (GMM) as an output of the adversary (this was used in the
original version of the pivot paper as well as later on in ATLAS mass decorrelation studies [131]).
Unfortunately, the adversarial network still completely failed to learn the correlation in both
these cases, which are subtle in a scatter plot (see Figure 8.6) but is visible clearly in a profile
plot (similar to a scatter plot but to reduce the noise, a binning is performed in the x-axis, and
the mean is represented in the plot, as seen in Figure 8.2). The subtle, noisy correlation with
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Figure 8.1 – Distribution of m4l for VBF full process, ggF full process, and qq̄ background process in
the VBF region.

Figure 8.2 – Distribution of score of a BDT (trained with m4l as one of the input feature) for signal
events as a function of the (log-norm) mass.

Figure 8.3 – Distribution of classification score for signal events as a function of the (log-norm) mass
for a neural network trained without m4l as an input feature.
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the line-shape is difficult for the adversary to learn, and therefore the classifier could not be
forced to decorrelated its output with respect to m4l.

An investigation was performed keeping the classifier frozen, to see how an adversary could
be trained to learn the correlation with the mass. Neural networks failed this regression task,
as seen in Figure 8.5. Interestingly, even BDTs had trouble learning this correlation. The
BDTs with close to default hyper-parameters failed a regression task, therefore the problem was
simplified considerably into a two class classification. The entire mass range was binned into only
two bins, which became the two target classes. Despite the simplification, BDTs with various
hyper-parameters achieved AUCs of between 0.5 and 0.55. Further, the BDT hyper-parameter
configurations that achieved close to a 0.55 AUC suffered from incredible overtraining, evidenced
by the fact that their AUC on the training dataset was 1.

Some success could be achieved with the use of extremely deep BDTs trained with the AdaBoost
algorithm implemented in the SciKitLearn package [134]. Figure 8.8 shows the regression
performance of a BDT with 40 estimators and a max-depth of 60 (the usual max-depth of BDTs
is around 3). It achieved a Mean Squared Error of 0.0088 compared to 0.176 for the dense neural
network corresponding to Figure 8.5. Feed-Forward Deep Neural networks failed to emulate the
performance of this BDT for a wide variety of architectures that were tried.

8.1.3 Learning Aspirations

A new adversarial training architecture was designed which makes the learning much easier
for the adversary. When an aspired distribution is known, it only makes sense to give this
additional information to the network1. Here the aspired distribution is the joint distribution
of the classifier output and the m4l observable where the two are totally uncorrelated. Since
this is the ideal distribution we aspire to have, we refer to it as the “aspired distribution”, the
corresponding dataset is then referred to as the “aspired dataset”, and the training strategy is
referred to as “aspiration targeted learning”.

In this case, the adversarial network has two input features, the mass of the four leptons and
the output of the classifier. Building the aspired distribution requires a fully decorrelated joint
distribution between these two features without modifying their respective marginal distribu-
tions. This task was discussed already in Chapter 4 with regard to Permutation Importance
(PI). Borrowing the trick used in PI, the aspired dataset is built by shuffling one of the two
features. This means that the mass for one event is now paired with the classifier output for a
random event, explicitly breaking any possible correlation.

The adversary now has to solve a classification task with a two dimensional input. The two
classes are,

• The Real Distribution: It consists of the output of the classifier for an event and the m4l
of that same event,

• The Aspired Distribution: It consists of the output of the classifier for one event and the
m4l of a randomly chosen event (without replacement).

It is preferable to shuffle rather than randomly sample from some idealised probability distri-
bution because shuffling ensures that the marginal distributions remain identical for the real
dataset and the ‘aspired dataset’. This choice also removes the possibility of overtraining on
the unphysical differences in marginal distributions. This training strategy is illustrated in
Figure 8.9.

1The reader may notice that a connection can be made to the growing field of Causal Inference.
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be optimized like any other.
The classifier network in this experiment consisted

of eleven input features, three fully-connected hid-
den layers each with 300 nodes having hyperbolic
tangent activation functions, and a single logistic
output node with the binomial cross-entropy clas-
sification objective. The adversarial network con-
sisted of a single input, 50 nodes with hyperbolic
tangent activation functions, and a softmax output
layer with 10 classes corresponding to binned val-
ues of the jet invariant mass (each bin representing
one decile of the background), and the multi-class
cross-entropy classification objective.

Because the adversary is challenged with adapt-
ing to an ever-changing input as the classifier is
trained, and also because its task is relatively easy,
two strategies were used to train the adversary faster
than the classifier. First, the adversary was given
a head start at the beginning of training with 100
updates while the classifier was fixed. Second, the
adversary was trained with a larger learning rate of
1.0 compared to 10�3 for the tagger objective.

The data set used for experiments was divided into
training (80%), validation (10%, used for hyperpa-
rameter tuning), and testing (10%) subsets. Each
classifier input feature was log-scaled if the empirical
skew estimate was greater than 1.0, then standard-
ized to zero mean and unit variance. Model param-
eters were initialized from a scaled normal distribu-
tion [27].

Training was performed using stochastic gradient
descent, applied to mini-batches of 100 examples
from each class. During training, the event weights
were scaled so that the average weight for each class
was 1.0. However, in the adversarial loss function
Ladversary, the signal events were given zero weight,
rendering them invisible to the adversary.

Updates were made using a training momentum
term of 0.5; the learning rate decayed by a factor of
10�5 after each update. Training was stopped after
100 epochs, where an epoch was defined as a single
pass through the background samples (⇡ 400k train-
ing events). Models were implemented in Keras [28]
and Theano [29], and hyperparameters were opti-
mized on a cluster of Nvidia Titan Black processors.

IV. PERFORMANCE

We compare the discrimination power of five can-
didate classifiers: the NN trained without an ad-
versary, the adversarially-trained NN, the unmodi-
fied ⌧21, and the two DDT-modified variables ⌧ 021,
and ⌧ 0021. The performance can be characterized by

... ...X
fc(X)

fa(fc(X))

Lclassification Ladversary

Classifier Adversary

FIG. 3. Architecture of the neural networks in the ad-
versarial training strategy. The classifying network dis-
tinguishes signal from background using the eleven vari-
ables (X) described in the text. The adversarial network
attempts to predict the invariant mass using only the
output of the classifier, fc(X); note that the adversary
has multiple binary classification outputs, correspond-
ing to bins in jet invariant mass, rather than a single
regression output.

measuring the signal e�ciency and background re-
jection of various thresholds on these discriminators
(Fig. 4).

The variable ⌧ 021, which is modified to reduce cor-
relation with the mass, results in a modest decrease
in its classification power relative to the unmodified
⌧21 at mZ0 = 100 GeV, though note that these ef-
fects are mass-dependent for both ⌧ 021 and ⌧ 0021. Sim-
ilarly, the adversarial network does not match the
discrimination power of the traditional classification
network, due to the additional constraint imposed in
its optimization. However, both NNs are clearly able
to take advantage of the combined power of the sub-
structure variables, and o↵er a large improvement
in background rejection for similar signal e�ciencies
compared to classification based on ⌧21 alone.

The focus of this study, however, is to look be-
yond the pure discriminatory power of these tools
and study their e↵ect on the jet mass spectrum. In
Fig. 5, it can be seen that the adversarial network
output for background events has a profile which
is largely independent of jet mass, while the clas-
sifying network is strongly dependent on jet mass.
Similarly, ⌧ 021 and ⌧ 0021 have a lessened dependence
on jet mass, compared to ⌧21. Figure 6 shows the
e↵ect on the jet mass distribution of successively
stricter requirements on these variables. Note that
the adversarial network’s dependence on jet mass is
diminished, but not eliminated, as can be seen in
the contour plot of Fig. 5. This is a reflection of the
trade-o↵ inherent in balancing classification power
with jet mass dependence.

In Fig. 5, we also show the profile of the neural net-
work output versus jet mass, for various thresholds

4

Figure 8.4 – Architecture of the adversarial neural network training strategy. The classifier (D)
distinguishes signal from background using input features X, the adversarial network (R) attempts to

predict the invariant mass using only the output of the classifier, fc(X). Instead of a continuous
regression, the task for the adversarial network is to categorise each event into one of several bins in

invariant mass. [132]

Figure 8.5 – Regression of m4l from the output of a classifier using a dense neural network.
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CHAPTER 8. THE ASPIRATION NETWORK

Figure 8.6 – Scatter plot of the classification score vs mass. The noise level remains similar whether
or not a log-norm of the mass is taken.

Figure 8.7 – Profile plot of the classification score as a function of the (log-normed) mass for a
traditional neural network classifier for (Left) all events, (Right) Signal Events.

Figure 8.8 – Regression of m4l from the output of a classifier using a BDT with 40 estimators and
max-depth of 60.
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The two dimensional input space improves training stability and performance. Neural networks
are known to optimise better on larger input space dimensions, which provide multiple paths
to multiple minima and easy escapes from plateaus. Traditional least squared regression often
outperforms its SGD counterpart on a single neuron. Unlike in the pivot case where the mass
distribution is only given to the network from back-propagation, here the network receives it as
a regular input feature. Giving ‘additional information’ in the form of the aspired distribution
may also help the adversarial network learn better.

Similar to the pivot algorithm, there is a tuneable hyper-parameter λ also for aspiration targeted
learning which weights the adversarial loss with respect to the classification loss. Unlike the pivot
algorithm however, there is no need for multiple λ parameters in case the classification needs
to be invariant to more than one feature. While the pivot algorithm requires the adversary
to perform two regression tasks in the case of invariance to two features, the adversary in this
strategy continues to perform a simple binary classification, but with three or more inputs
instead of the usual two. In principle with more input features, the learning becomes easier
for the adversary. Given that multitask learning makes tuning these hyper-parameters quite
tedious, this is quite a useful bonus for the aspiration network.

8.1.4 Mass Decorrelation

The new architecture worked out-of-the-box for off-shell dataset, both networks with the ‘default’
hyperparameters of 4 dense layers with and 32 nodes each and ReLu activation apart from the
last layer which has one node and a Sigmoid activation. A loss weight of λ = 3 was used for the
adversarial term.

Although the algorithm worked quite easily and remained stable for various hyperparameters,
a good version of the classifier had to be picked, one which exhibited the desired decorrelation.
This is usually the case for adversarially trained networks, where convergence is not guaranteed.
In this case it was found to be a very mild inconvenience because in practice a good iteration
could be found easily. One had to simply run the training for a few more iterations (51 more
batches with a batch size of 128 was used) in case the output of classifier was not flat with
respect to the mass. This ‘epoch picking’ can easily be automised. Figure 8.10 shows the
decorrelation performance of the aspiration network, which can be compared to an ordinary
classifier in Figure 8.7. Figure 8.11 shows the threshold classification score corresponding to a
80% and 90% signal efficiency as a function of logm4l where the latter is normalised. This is
the figure that determines the usefulness of the technique. The aspiration network was able to
satisfactorily decorrelate the mass and the classifier output.

The adversarial loss can be applied selectively on signal events with masking of the loss for
background events, and it often leads to slightly better classification performance. Although
this idea is also applicable to the aspiration network, in this case the training was found to be
more stable without masking, and at no cost to the classification performance. The training
stability issues come from the fact that there are far more number of background samples than
signal samples in the training dataset, and masking the loss for background events results in
large fluctuations in the effective batch size.

Such adversarial training usually requires a trade-off between pure classification performance and
decorrelation, however, in this lucky test case, the trade-off could be avoided. The discovery
significance for the traditional classifier was found to be Z = 1.85 at a threshold score cut
of 0.9, whereas for the aspiration network it was found to be Z = 1.87 (where the last digit
fluctuates due to uncertainty) at a threshold of 0.9. The change in permutation importance for
each feature, and in particular the drop in importance for the m4l can be seen in Table 8.1. It
appears that other features become more important as a result.
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Figure 8.9 – Architecture of Aspiration Network: The classifier distinguishes signal from background
using input features X. The adversarial network takes two input features and performs a classification
of real vs aspired (correlated input features vs fully decorrelated input features) distribution instead of

a regression of the mass.

Figure 8.10 – Profile plot of the classification score as a function of the (log-normed) mass for a
classifier trained with aspiration targeting. The distribution is shown (Left) for all events, (Right) for

signal events only.
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Such luck runs out when this algorithm is used to make the classification invariant to a different
features instead of m4l. The feature studied is the MELA variable. In this case, a Z < 1.6 was
achieved by making the classifier invariant to MELA.

Classical Aspiration

Table 8.1 – Permutation Importance of features for the classical (left) network and network trained
with aspiration targeting (right). The m4l feature is referred to as m4l_fsr and its importance falls for

the aspiration network.

8.1.5 Flexibility of the algorithm

Another interesting feature of the aspiration network is that one can scale up the number of
variables to which the classifier should be invariant straightforwardly, without adding hyper-
parameters. One just has to add the additional variable to the adversarial network. This is
because the adversary is still performing a classification of real vs aspired, not a regression of
multiple variables like the pivot algorithm. The loss for the classifier does not require a second
adversarial loss term. If a hyper-parameter for individual variables is desired (for example if the
importance for being invariant to one feature is more than to another), then separate adversarial
networks per variable can be trained, leading to additional loss terms for the classifier.

This idea (of using a single adversarial loss term to make the classifier invariant to two ob-
servables) was tested by making the classifier invariant to m4l and MELA simultaneously, and
worked out-of-the-box, without requiring any hyper-parameter tuning. It was noted that epoch
picking became even less of an issue in practice. A plot of the score distribution as a function
of MELA, m4l is shown in Figure 8.12.

This algorithm takes advantage of the fact that since only the classifier is used for inference,
almost any information can be given to the adversarial network as in input. For this reason it
is flexible enough for other tasks as well. In certain cases, training pivot adversarial training
applied to remove background mass sculpting makes a classifier actually increase mass sculpting
even more. If there are multiple components of the background, the classifier may try to sculpt
the mass for the different components in opposite ways so that overall background distribution
appears unsculpted. In an aspiration network, the adversary could be given the labels of the
various background components as an additional input feature, allowing it to learn a conditional
correlation, and therefore force the classifier to be invariant to the mass for each background
component individually. This proposed solution was not studied further.

In principle the aspired distribution could be different from just a decorrelation. An interesting
task (but perhaps purely of academic interest) that has not yet been studied is to deliberately
force a correlation of the classifier with some combination of features.
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It is worth noting that the classifier cannot be invariant to a variable that it cannot reconstruct
from its inputs. A study was conducted on the HiggsML dataset [135] with the addition of Tau
Energy Scale (TES) systematic smearing based on the work in [136] to study the performance
of the Aspiration Network in making a classifier invariant to TES variations. The aspiration
network (as well as the pivot algorithm as shown in [136]) failed to make the classification
invariant to the TES, and therefore the details of this study are not described here.

A paper on the Aspiration Network is in preparation.
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Figure 8.11 – Evolution of the score threshold for 80% (orange) and 90% (blue) signal efficiency as a
function of the log-normed mass for a standard classifier (top) and a classifier trained with aspiration

targeting (bottom).
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(a) Classical, MELA (b) Aspiration, MELA

(c) Aspiration, (log-norm) mass

Figure 8.12 – Classification score as a function of MELA for (a) a classical (b) an aspiration network
trained to be invariant to the MELA and mass simultaneously. (c) Classification score as a function of

(log-norm) mass for the same aspiration network. It is to be noted that the y-axis limits for the
classical network are wider than for the Aspiration targeted one.

194



Chapter 9
Conclusion

The endeavour to understand the building blocks of the universe has reached a stage where
extremely high precision measurements using equipment maintained by a large international
collaboration are needed to make the next breakthrough. Many kinds of potential New Physics
are expected to modify the apparent properties of the SM Higgs boson, because of which the
ATLAS and CMS experiments scrutinise this particle in the hope to find hints for the yet
unknown.

Although the field of particle physics has the unique benefit of building up from first principles,
such simulations get more and more computationally expensive as the demand for precise sim-
ulated data grows. This is a concern for experiments at the LHC. Particle shower simulation
in particular takes up a large portion of the simulation time, ∼ 75% of it in the case of the
ATLAS experiment. Considering the end of Moore’s Law coincides with the birth of the Deep
Learning revolution, a completely different approach to simulating particle showers in ATLAS,
based on deep learning, is studied in the first part of this thesis. A deep generative model (in
particular, a GAN) was trained to parameterise photon showers in the region 0.2 < |η| < 0.25
of the ATLAS electromagnetic calorimeter, and integrated into the simulation software. This
allowed for the first time to make fair comparisons in terms of speed, resource consumption,
and accuracy to Geant4 as well as the existing fast simulation framework ATLAS Fast II and
its upcoming upgrade FastCaloSimV2, within the ATLAS software framework and using the
standard validation framework. This strategy was shown to provide the orders of magnitude
speed up with respect to Geant4 required for future needs (70ms for the GAN compared to 10s
for Geant4 to simulate a 65 GeV photon shower), even on the single threaded CPUs without
any batching. The memory footprint was found to be orders of magnitude smaller than the
baseline fast simulation frameworks (file size of 9.6 MB compared to O(GBs) and peak memory
usage of 2.3 GB compared to 6GB for the GAN and FastCaloSimV2 respectively), and is not
projected to blow up in the future when a few generative networks are used to model the entire
calorimeter for all incident particles.

In terms of accuracy, there is no distribution that the GAN is completely unable to learn. The
model is able to condition its response to the position and energy of the indecent particle as
well as the fast changing detector geometry. The performance is comparable to traditional
fast simulation techniques, although still far from ready for routine use. The model performs
better for certain distributions than others, and the same distributions are sometimes better
modelled at low and medium energy points compared to high energy points. This is in part due
to the fact that the model was trained on only nine, log-spaced energy points, rather than on
a continuous spectrum. The gaps between energy points is larger at higher energies and with
slightly fewer training events. Despite this peculiarity in the dataset, the model is shown to
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be able to interpolate reasonably well to untrained energy points. Although it is tempting to
further improve the final performance of the GAN with the help of corrections, post-processing
or inelegant strategies, solutions that will not generalise well were not pursued at this stage of
the research and development.

The GAN also cuts down on human time spent on parameterisation compared to the hand
designed fast simulation frameworks. With the exception of the energy distribution, the GAN
learnt most other distributions without manual intervention. It reproduced new validation ob-
servables that were untracked during the model optimisation stage of the project reasonably
well. Some aspects of the simulation (such as the interpolation mechanism and the Rφ distribu-
tion) took significant human time to model correctly for the traditional fast simulation strategy,
which we get for free with the GAN. However, significant human time is required to assess GAN
performances, particularly for model optimisation and epoch picking. Monitoring the trainings
over multiple days also is time consuming.

This study assumes periodic translation invariance, which is true in φ but breaks down in η
at the edge of the barrel and in the end-cap. The different configurations of layer alignment
was accommodated into the model architecture, however, further difference in geometry exist
outside the studied region. In the end-caps the width of the cells in the Strip layer changes.
The granularity gets further complicated in the Hadronic Calorimeter which is relevant for pion
shower simulations. Training on cropped cell-level 3D images therefore faces many challenges due
to the varying granularity of the cells. Since Geant4 produces point cloud data, one possibility
is to train on point cloud level data using graph networks. Another possibility is to bin the point
cloud data into voxels of sizes that make training generative models simpler. For the next stage
of this project it is imperative to have a dedicated simulation of a training dataset using Geant4
that is better suited for a generative models assisted fast simulation strategy, particularly if just
a few networks are to be conditioned to simulate showers in all sections of the calorimeter. The
success of this study suggests that an investment of (human) time and resources required to
design and simulate an appropriate training dataset will be worth the effort.

Although WGAN-GPs are a popular flavour of GANs (due to their training stability), this study
finds that one of its key features, the gradient penalty, prevents it from learning the total energy
distribution. This feature is usually not of relevance for natural images but a key aspect of
physics datasets. A solution in the context of particle physics datasets was proposed, which
involves the use of an additional critic network with an extremely low (but non-zero) gradient
penalty weight and takes as input the total energy of the shower in place of the entire image.

Other ATLAS groups have taken these ideas forward, often based on expertise gained from this
project (and the sister project using VAEs at Université de Genève). One group is training a
collection of WGAN-GPs on voxels to model the entire detector for all particles (electrons, pho-
tons and pions). Another group is doing the same with a VAE, but in addition also conditioning
it on the η of the particle, thereby reducing the number of networks required.

These studies have been made publicly available as an ATLAS technical note [92] and follow up
public plots, and a paper is in preparation.

The second part of this thesis studied strategies to improve the measurement of the off-shell
couplings of the Higgs boson in the four leptons decay channel, with particular focus on the
vector boson fusion production mode. Usually out of reach at the LHC, the off-shell couplings
become measurable in the four leptons decay channel due to certain threshold effects. Interfer-
ence between signal and background processes makes the problem even more interesting. The
measurement allows to lift certain degeneracies that cannot be lifted from on-shell measurements
alone and it is particularly interesting in the EFT framework interpretation. The measurement
is also an indirect probe into the total width of the Higgs boson, which is predicted to be
greater than the SM value for a number of New Physics scenarios, such as a new particle cou-
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pling to the Higgs boson. Such an indirect measurement of the Higgs boson width would be
model dependent when performed using the dominant gluon fusion events, but it would be more
model-independent if performed in a VBF category, although at the expense of much smaller
statistics.

Quantum interference between VBF Higgs boson process and VBS background process makes
this signal strength measurement quite different from the usual cases that do not deal with
interference effects. For example, the expected number of events is no longer linear with the
signal strength parameter µ, and can even decrease as a function of µ due to negative interference.
The usual metrics used to estimate the sensitivity of a signal strength measurement analysis
using MC simulated events are no longer relevant in the context of quantum interference. The
usefulness of the typical strategy of using ML classification models to improve the sensitivity of
the analysis also becomes unclear because the concept of ‘class labels’ becomes ill-defined.

In this work, a new approximate metric was derived and used to estimate the sensitivity of
an analysis based on a given event selection criteria which takes into account the effects of
quantum interference. The metric was used to conclude that if classification is to be used to
improve sensitivity to this analysis, the classifier should be trained on unphysical simulations of
the VBF Higgs-only process as the signal, rather than the physical VBF full process simulation.
The metric has since then been used by another group to rank different event selection criteria,
and they found that the metric corresponds reasonably well to rankings based on negative log-
likelihood curves.

Given that the usual concept of signal and background events breaks down in the context of
quantum interference, a possible method to optimise the analysis could be to use an ML model
to directly optimise the final objective of the analysis. For this reason, a promising new family of
deep learning based likelihood-free inference models, that are able to leverage additional infor-
mation from the simulator, were adapted to a signal strength measurement problem. Developed
for Lagrangian parameter measurements (like in EFT), these physics-aware models are in prin-
ciple better suited to analyses that deal with considerable quantum interference than traditional
classification. The ALICES model is aware of how the physics changes with the parameter of
interest (µ) because it is parameterised on µ and trained on events from datasets which represent
various values of µ. It learns the likelihood ratio between two hypothesis directly with the help
of augmented data from the simulator, and it can then be applied for inference on data from
collisions at the LHC. This model could in principle also be parameterised on certain systematic
uncertainties. The SALLY model is trained only on events from the SM, and learns to regress
the score of the event. It therefore requires fewer events to train.

ALICES was found to outperform the traditional inference method and considerably improve
sensitivity for all values of the signal strength, while the SALLY model outperformed tradi-
tional methods only near the SM value. This study was performed without taking into account
contamination from gg → (H →)ZZ or qq̄ → ZZ through their higher order corrections (that
leave additional jets in the final state). For a quick turn-around time, the detector effects were
simulated using Delphes. Meanwhile the ATLAS HZZ simulation chain has been modified to
support carrying through the additional weights required for this simulated-assisted learning
strategy.

Although it is difficult to estimate the improvement in terms of numbers for full analysis using
all background samples and the ATLAS detector simulation, this study suggests in its most
conservative estimate, an improvement of a 2σ limit from 9.5 to 7.9 can be expected for a
luminosity of 32 fb−1 on the off-shell VBF signal strength over an analysis performed using
the distribution of the differential cross-section with respect a one-dimensional observable. This
estimate is based on the improvement ALICES brings to the best one dimensional observable,
SALLY, when the rate information is also used, corresponding to Figure 7.17b. Considering the
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gain from ALICES is much higher if the rate information is not used (Figure 7.17a) and the
fact that the dominant background from qq̄ would reduce the added sensitivity from the rate
information, it is reasonable to hope for a much larger relative improvement in a full analysis
(even more so if the two jet requirement is lifted).

These results have raised interest within the ATLAS community and the ATLAS research group
at University of Massachusetts has joined the effort to bring these likelihood-free inference
techniques into ATLAS. Event generation strategies are being developed to use this technique
either in both the ggF and VBF categories, or only in the VBF category. Considerable work is
still needed to understand how to study systematic effects on the ALICES model, and how to
combine the results with the llνν channel.

Apart from the off-shell couplings measurement, this parameterised inference model could also
benefit EFT measurements, any analysis which suffers from quantum interference, such as a
Higgs self-coupling measurement based on di-Higgs events.

As experiments start using neural network based likelihood-free inference, it will become in-
credibly difficult for phenomenologists to approximately replicate and reinterpret the results
compared to cut-and-count analysis or even an analysis that performs a measurement using the
distribution of the differential cross-section as a function of a Matrix Element based observable.
To make it easier for them, the ATLAS collaboration and other experiments should consider
releasing these neural network models in a format like ONNX along with the results.

This thesis also introduces an improved adversarial training algorithm, used in this case for mass
decorrelation, which is referred to as the ‘Aspiration Network’, where the training algorithm
provides information about the ‘aspired distribution’ to the adversarial network. The learning
is made easier for the adversarial network by meaningfully increasing its input dimension. The
algorithm also scales well when the classifier needs to be invariant to multiple observables without
the need for fine-tuning of additional hyper-parameter for every such observable (in contrast to
the baseline ‘pivot’ adversarial technique). It leaves open the possibility to also be adapted
to induce a particular correlation in future work. A paper on the Aspiration Network is in
preparation.

The work presented in this thesis builds upon prior work and also brings certain new ideas.
The assessments of these very ambitious ideas that may change key components of the way
experimental physics is performed has allowed the HEP community to understand the strength
and pitfalls of using these innovations in a realistic context. These ideas will likely play a large
impact on physics analysis in Run3 of the LHC.

Over the past few years, the HEP community has become more ambitious when it comes to
using creative new ML based strategies to solve physics problems, hopefully the work described
here played a small part in accelerating movement in this direction.
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La physique des particules est l’étude des plus petits éléments fondamentaux de l’univers et les
propriétés étudiées ont des conséquences à l’échelle cosmologique. Notre compréhension actuelle
de l’univers est incomplète et l’un des moyens les plus prometteurs de trouver des indices pour
la nouvelle physique est de briser des particules à très haute énergie et d’étudier le résultat de
ces collisions. C’est l’idée qui sous-tend le Grand Collisionneur de Hadrons (LHC) du CERN.

Comme le fonctionnement de ces machines est coûteux, il est impératif de tirer le meilleur
parti des données enregistrées, ce qui nécessite l’utilisation de techniques statistiques avancées.
Cette thèse a étudié l’utilisation de techniques basées sur l’apprentissage automatique (ML
pour Machine Learning) pour la simulation rapide et précise d’un sous-détecteur de l’expérience
ATLAS, pour effectuer des mesures précises en tirant parti de différents types d’informations qui
peuvent être exploitées et pour éliminer certains biais indésirables des algorithmes de sélection
basés sur le ML.
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10.1 Aperçu théorique

Le Modèle Standard (SM) de la physique des particules est un modèle mathématique qui tente
de décrire toutes les forces connues de l’univers, à l’exception de la gravité. Les particules
fondamentales du modèle standard et leurs propriétés sont résumées Table 2.1 et Table 2.2. Le
boson de Higgs est un élément essentiel du modèle car il est lié au champ qui fournit les masses
de toutes les particules massives, à l’exception des neutrinos (qui sont sans masse dans le SM).

10.1.1 Boson de Higgs au LHC

Le boson de Higgs est produit selon quatre modes de production principaux :

• Processus de fusion gluon-gluon (ggF), via une boucle de quark (dominée par le quark
top). Il représente 88% de la production totale.
• Le procédé Fusion de Bosons Vecteurs (VBF), qui laisse deux jets vers l’avant provenant
des deux quarks dans l’état final en plus des produits de décomposition de Higgs. Il
représente 7% de la production totale.
• Production associée avec Bosons Vectors (VH). Elle représente 4% de la production totale.
• Production associée à une paire de top (tt̄H). Elle représente 1% de la production totale.

Les principaux diagrammes de Feynman pour ces processus sont présentée Figure 2.3 et leurs
sections transversales en fonction de l’énergie du centre de masse du LHC

√
s est présentée

Figure 2.4.

Le boson de Higgs se désintègre avant de pouvoir être directement détecté et ses produits de
désintégration sont donc étudiés. Les principaux canaux de désintégration du boson de Higgs
sont présentés Figure 2.5. Bien qu’il se désintègre plus fréquemment en deux quarks b ou deux
bosons W, le canal de désintégration en leptons des deux bosons Z présente des états finaux
beaucoup plus propres, ce qui rend l’analyse plus facile.

10.1.2 Mesure de couplage du boson de Higgs hors résonance dans le canal
des quatre leptons

La largeur totale du boson de Higgs est d’un grand intérêt car elle fournit des informations
sur les modes de désintégration du boson de Higgs, y compris le couplage à de toute nouvelles
particules non encore découvertes. La largeur prédite par le SM est de 4,07 MeV, ce qui est trop
petit pour être mesuré directement au LHC (étant donné la précision des détecteurs), mais il
est possible de le sonder par des mesures indirectes.

La mécanique quantique permet aux particules virtuelles d’avoir une masse invariante éloignée de
leur masse polaire. Cependant, la probabilité de produire de telles particules s’éloigne générale-
ment de la masse polaire et ne peut donc pas être étudiée au LHC. Le canal de désintégration du
boson de Higgs en quatre leptons offre une occasion unique d’étudier le boson de Higgs dans son
régime hors résonance en raison d’une section transversale augmentée par certains effets de seuil.
Ceux-ci permettent de contraindre les théories BSM (Au-delà du modèle standard) ainsi que de
sonder indirectement la largeur du boson de Higgs en combinant les mesures des couplages sur-
résonance et hors-résonance [32]. Une telle mesure de la largeur du boson de Higgs dépend du
modèle (elle nécessite l’utilisation de certaines hypothèses théoriques), cependant, si la mesure
est effectuée en utilisant des événements du boson de Higgs qui sont produits via le mode de
production sous-dominant du VBF, alors elle nécessite moins d’hypothèses théoriques [40].
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Une telle étude devra tenir compte des effets d’interférence quantique entre le signal et les
processus de fond qui diminuent en fait la section transversale globale pour le SM par rapport
à un scénario de fond uniquement (SM sans le boson de Higgs) à la fois pour les modes de
production ggF et VBF, comme on peut le voir sur la Figure 2.9a.

10.2 Aperçu expérimental

Le LHC est l’accélérateur de particules le plus puissant au monde, qui fait entrer en collision
des particules à l’échelle du TeV. Il s’y trouve quatre grands détecteurs de particules placés à
quatre points d’interaction, dont le détecteur ATLAS. sur lequel porte la présente thèse.

10.2.1 Détecteur ATLAS

ATLAS est une expérience à usage général avec un large éventail d’objectifs physiques, y compris
des mesures précises des propriétés du boson de Higgs. Elle se compose de plusieurs sous-
détecteurs, comme l’illustre la figure 3.4 :

• Le Détecteur Interne fournit une mesure précise des trajectoires et de la quantité de mou-
vement des particules chargées.
• Les Calorimètres Électromagnétiques et Hadroniques mesurent l’énergie des électrons, des
photons et des hadrons en absorbant leur énergie.
• Le Spectromètre de Muons fournit des mesures complétées par les informations du dé-
tecteur interne pour l’identification et la reconstruction des muons.

Les différentes composantes du calorimètre sont illustrées dans la Figure 3.6. Une particule
électromagnétique qui passe à travers le matériau d’absorption du calorimètre électromagnétique
forme une gerbe. L’énergie totale mesurée ainsi que les formes de la gerbe fournissent des
informations précieuses qui peuvent être utilisées pour déduire quel type d’interactions a eu lieu
pour un événement donné. Cet effet en cascade est une fonction exponentielle de l’énergie de la
particule incidente.

10.3 GAN pour la simulation de calorimètre rapide dans AT-
LAS

Les simulations des interactions attendues au LHC, basées sur les équations de physique de
base, sont précises mais souvent coûteuses en termes de calcul. L’effet de cascade des gerbes qui
se produit dans les calorimètres en particulier constitue un goulot d’étranglement en termes de
temps de calcul pour l’expérience ATLAS. En effet, le temps de simulation pour chaque particule
est une fonction de son énergie. L’évolution temporelle de la gerbe n’est pas enregistrée par le
détecteur, seul le résultat final est enregistré. Une réduction significative du coût de calcul est
nécessaire pour qu’ATLAS puisse atteindre ses objectifs en matière de physique au cours de la
prochaine décennie (voir Figure 5.1).

Des paramétrages conçus à la main sont déjà utilisés [5] pour simuler la gerbe dans le calorimètre;
ces algorithmes sont plus rapides à exécuter mais moins précis et ont également une grande
empreinte mémoire. Dans cette thèse, un réseau de neurones est formé sur une petite section
(0, 2 < |η| < 0, 25, −π < φ < π) du calorimètre électromagnétique ATLAS pour simuler la gerbe
de photons individuels.
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Le réseau est intégré dans le cadre logiciel ATLAS, Athena, et des comparaisons sont faites en
termes de temps de simulation, de besoin en mémoire et de modélisation des observables de
physique qui sont calculés à partir des gerbes générées jusqu’aux simulations complètes à partir
de ATLAS Fast II et FastCaloSimV2 [90].

10.3.1 Architecture et Entraînement

Un Réseau antagoniste génératifs (GAN) de Wasserstein, qui utilise une pénalité de gradient [69]
est entrainé sur la moitié de l’ensemble des données, donc sur 44000 gerbes de photons provenant
de neuf points d’énergie répartis logarithmiquement entre 1 et 262 GeV. Le GAN utilise un réseau
critique supplémentaire avec une faible pénalité de gradient pour améliorer la modélisation de
la distribution totale de l’énergie du réseau de générateur et un régularisation d’activité est
appliqué pour encourager la parcimonie de la sortie. Le GAN est conditionné par la géométrie
du détecteur ainsi que par l’énergie et la position de la particule incidente. L’architecture est
présentée Figure 5.9.

10.3.2 Validation

La validation est effectuée d’une part de manière autonome et d’autre part après intégration
du réseau dans Athena en utilisant des observables de physique pertinentes. La résolution
énergétique du détecteur est bien modélisée par le GAN avec l’aide du deuxième réseau critique,
comme le montre la Figure 5.13. Le GAN apprend également à bien conditionner par rapport
à la position de la particule (voir Figure 5.21) et la géométrie du détecteur (voir Figure 5.26)
et modélise également bien les formes de gerbe transverses (voir Figure 5.32) et les corrélations
entre couches (voir Figure 5.35) mais modélise légèrement mal les formes longitudinales (voir
Figure 5.37). Les observables de physique complexe calculées dans Athena après simulation
du bruit électronique et application d’un calibrage sont également bien modélisés. Le GAN
est également capable d’interpoler vers des points d’énergie non entraînés (voir Figure 5.49
et Figure 5.48). Le GAN fonctionne mieux que ATLAS Fast II dans certaines distributions et
moins bien dans d’autres (voir Figure 5.51), ce qui indique que des améliorations supplémentaires
sont nécessaires. D’autres travaux sont également nécessaires pour améliorer les performances
à des énergies plus élevées.

10.3.3 Performance des logiciels

Le GAN prend 70 millisecondes par gerbe (indépendemment de l’énergie), alors que Geant4
prend 10 secondes par gerbe pour des photons de 65,5 GeV, ce qui satisfait aux exigences de
vitesse actuelles. L’évolution du temps de simulation en fonction de l’énergie est présentée dans
la Figure 5.58.

Le fichier de paramétrage du GAN a une taille de 9,6 Mo sur le disque, ce qui est beaucoup plus
petit que le fichier de paramétrage O(GBs) pour FastCaloSimV2 et le GAN a également une
utilisation de la mémoire beaucoup plus petite de 2,3 Go (le réseau lui-même ne prenant que
5 Mo) contre 6,0 Go pour FastCaloSimV2 1. Ces chiffres ne devraient pas augmenter de façon
dramatique lorsque cette méthode sera étendue à toute la gamme des η.

1dernière comparaison effectuée en février 2019
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10.3.4 Perspectives d’Avenir

Ces travaux ont jeté les bases de l’application de réseaux générateurs pour la simulation rapide
du calorimètre ATLAS et les leçons tirées de ce projet ont été utiles pour préparer une stratégie
visant à étendre cette approche à l’ensemble du détecteur et à toutes les particules incidentes.

Cette étude a été rendue public sous la forme d’une note technique ATLAS [92] et une publication
est en préparation.

10.4 Mesure de couplage de Higgs hors résonance

Les analyses précédentes pour la mesure des couplages du boson de Higgs hors-résonance dans
ATLAS n’ont pas été optimisés pour la sensibilité pour le mode de production de VBF sous-
dominant.

Une nouvelle métrique, ‘signification statistique avec interférence’, dénommée ‘iZ’ (Equation 4.44)
a été dérivée pour estimer la sensibilité des critères de sélection des événements car la métrique
habituelle ne prenait pas en compte l’interférence quantique entre le signal et les processus
de fond. Cependant, l’utilisation d’une seule observable pour la mesure finale négligerait les
effets non-linéaires introduits par l’interférence quantique et c’est pourquoi un ajustement de
maximum de vraisemblance multidimensionnel non binné et non analytique utilisant un réseau
neuronal a été étudié à la place. Cette technique repose sur l’entrainement du réseau de neu-
rones à l’aide d’informations supplémentaires extraites du simulateur. Il est démontré que cette
technique est plus performante qu’un ajustement dimensionnel traditionnel du signal.

10.4.1 Le problème de l’interférence quantique

Le nombre attendu d’événements en présence d’interférence quantique est une fonction non-
linéaire de la force du signal (qui est une approximation des forces de couplage de Higgs),
comme le montre la Figure 7.2 et entraîne des dégénérescences lorsqu’elle est mesurée sur la
base d’ajustements de probabilité maximale en utilisant une seul observable, comme le montrent
la Figure 7.4 et la Figure 7.19, même si ces dégénérescences peuvent en principe être levées en
utilisant des informations pertinentes, comme le montre la Figure 7.3.

10.4.2 Inférence sans Fonction de Vraisemblance

Le modèle ALICES (Approximate Likelihood with Improved Cross-entropy Estimator and
Score) est paramétré sur la force du signal, µ, et apprend à régresser le rapport de vraisemblance
de chaque événement pour une hypothèse donnée µ par rapport au SM (µ = 1). Le gradient du
rapport de vraisemblance par rapport à µ, appelé ‘score’, est également utilisé pour améliorer
la convergence de l’entraînement. Bien que le véritable rapport de vraisemblance ne soit pas
disponible comme cible de l’entraînement, le rapport de vraisemblance conjoint, qui est le rapport
de vraisemblance au niveau du parton, peut être utilisé comme cible pour l’entraînement. Le
réseau neuronal fournit directement l’inférence statistique finale des rapports de vraisemblance
et, par conséquent, aucun ajustement supplémentaire n’est nécessaire.

10.4.3 Résultats

ALICES surpasse de manière significative toute inférence réalisée à l’aide d’ajustements unidi-
mensionnels basés sur une seule observable. Il le fait de manière cohérente pour les ensembles
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de données de test générés à diverses valeurs de µ. C’est également la meilleure technique
pour lever les dégénérescences dans la valeur de probabilité maximale de µ car il s’agit d’un
ajustement multidimensionnel qui prend en compte toutes les observables. Ces comparaisons de
performances peuvent être vues dans les Figures 7.16 et Figure 7.17.

10.4.4 Discussion et perspectives

Ces études montrent que la réalisation d’un ajustement multidimensionnel à l’aide d’un réseau
de neurones surpasse considérablement les techniques traditionnelles de construction d’une ob-
servable optimale, car l’ajustement multidimensionnel peut prendre en compte les effets non
linéaires qui se produisent en raison de l’interférence quantique. Toutefois, ces études ont été
réalisées en utilisant uniquement le signal qq → (H∗ →)ZZ et les processus de fond où les effets
des détecteurs ont été simulés avec Delphes [84]. Tous les processus avec des états initiaux gg
et qq̄ et les effets réels du détecteur ATLAS doivent également être pris en compte à l’avenir.

Cette technique peut également être utile pour toute autre analyse où les effets d’interférences
quantiques sont significatifs.

10.5 Réseau Aspiration

Une stratégie commune au sein d’ATLAS pour supprimer la dépendance de masse de la sortie
d’un classificateur est d’utiliser l’entraînement adversariel à pivot [131–133], dont l’architecture
est présentée sur la figure 8.4. Cette technique échoue pour l’ensemble de données de Higgs
à quatre leptons dont la corrélation entre la masse des quatre leptons (m4l) et la sortie du
classificateur est très bruyante.

Dans cette thèse, il est montré que la plupart des types de réseaux neuronaux et d’arbres de
décision boostés n’apprennent pas cette corrélation, comme par exemple dans la Figure 8.5.
Nous introduisons une nouvelle stratégie d’entraînement adversariel appelée ‘réseau aspiration’,
dans laquelle la tâche du réseau adversariel est simplifiée et sa dimension d’entrée est augmentée
de de façon utile en fournissant des informations supplémentaires.

La ‘distribution aspirée’ est un ensemble de données artificielles créé pour avoir la distribution
idéale souhaitée, une décorrélation complète entre le m4l et la sortie du classificateur tout en
gardant les distributions marginales identiques à l’ensemble de données réelles (la sortie du
classificateur et le m4l des leptons, qui sont corrélés). En pratique, la distribution souhaitée est
construite en mélangeant les variables entre événements.

Le réseau aspiration fournit les résultats souhaités dès le départ, comme le montre la Figure 8.11.
Il peut même s’adapter pour rendre le classificateur invariant à plusieurs variables simultanément
(voir Figure 8.12) sans qu’il soit nécessaire de procéder à un étalonnage complexe des hyper-
paramètres supplémentaires liés à des termes supplémentaires de la fonction perte, comme c’est
le cas pour l’algorithme de pivot. Cet algorithme est également suffisamment souple pour traiter
certains problèmes supplémentaires qui surviennent parfois dans des applications réalistes. Il
est intéressant de noter que l’algorithme peut également être ajusté pour induire délibérément
une corrélation aspirée mais ces idées ne sont pas approfondies dans cette thèse.

Une publication sur le réseau Aspiration est en préparation.
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NN Neural Network
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Parton Shower
pT Transverse momentum
QCD Quantum ChromoDynamics
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Titre: Simulation du calorimètre électromagnétique de ATLAS à l’aide de Réseaux An-
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par inférence sans Fonction de Vraisemblance
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Résumé: Depuis la découverte du boson de
Higgs en 2012, les expériences du LHC tes-
tent les prévisions du modèle standard avec des
mesures de haute précision. Les mesures des
couplages du boson de Higgs hors résonance per-
mettront d’éliminer certaines dégénérescences
qui ne peuvent pas être résolues avec les mesures
sur résonance, comme la sonde de la largeur du
boson de Higgs, ce qui pourrait donner des in-
dications pour la nouvelle physique.

Une partie de cette thèse se concentre sur
la mesure des couplages hors résonance du bo-
son de Higgs produit par la fusion du boson
vecteur et se décomposant en quatre leptons.
Ce canal de désintégration offre une occasion
unique de sonder le boson de Higgs dans son
régime hors résonance grâce à des sections ef-
ficaces augmentées au-delà de 2Mz (deux fois
la masse du boson Z) de la région des quatre
leptons. L’importante interférence quantique
entre le signal et les processus de fond rend
le concept d’"étiquettes de classe" mal défini,
et pose un défi aux méthodes traditionnelles
et aux modèles génériques de classification par
apprentissage machine utilisés pour optimiser
une mesure de la force du signal. Une nou-
velle famille de stratégies d’inférence sans fonc-
tion de vraisemblance basées sur l’apprentissage
machine, qui exploitent des informations sup-
plémentaires pouvant être extraites du simula-
teur, a été adaptée à un problème de mesure
de la force du signal. L’étude montre des résul-
tats prometteurs par rapport aux techniques de
base sur un ensemble de données de simulation
rapide avec Delphes. Dans ce contexte, on a
également introduit le réseau aspiration, un al-
gorithme d’adverse amélioré pour la formation
tout en maintenant l’invariance par rapport aux

caractéristiques choisies.
Les mesures de l’expérience ATLAS re-

posent sur de grandes quantités de données
simulées précisemment. Le logiciel de simula-
tion actuel de Geant4 est trop coûteux en ter-
mes de calculs pour supporter la grande quantité
de données simulées nécessaires aux analyses fu-
tures prévues.

Autre partie de cette thèse se concentre sur
une nouvelle approche de la simulation rapide
utilisant un réseau advers génératif (GAN). La
simulation de gerbe en cascade du calorimètre
complexe d’ATLAS est la partie la plus lente
de la chaîne de simulation utilisant Geant4.
Son remplacement par un réseau de neurones
qui a appris la distribution de probabilité des
gerbes de particules en fonction des propriétés
des particules incidentes et de la géométrie lo-
cale du détecteur augmente la vitesse de sim-
ulation de plusieurs ordres de grandeur, même
sur des CPU à cœur unique, et ouvre la porte
à une accélération supplémentaire sur les GPU.
L’intégration dans le logiciel ATLAS permet
pour la première fois de faire des comparaisons
réalistes avec des simulation rapide paramètrées
“à la main”. L’étude est réalisée sur une pe-
tite section du détecteur (0, 20 < |⌘| < 0, 25)
en utilisant des photons et compare les distri-
butions en utilisant des échantillons simulés par
le modèle autonome ainsi qu’après intégration
dans le logiciel ATLAS avec des échantillons
Geant4 entièrement simulés. Des leçons impor-
tantes sur les mérites et les inconvénients des dif-
férentes stratégies, profitent à l’objectif ultime
de simuler l’ensemble du calorimètre ATLAS
avec des modèles générateurs profonds. L’étude
révèle également un problème inhérent à le GAN
de Wasserstein basé sur une pénalité de gradi-
ent, et propose une solution.
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Abstract: Since the discovery of the Higgs
boson in 2012, experiments at the LHC have
been testing Standard Model predictions with
high precision measurements. Measurements of
the off-shell couplings of the Higgs boson will
remove certain degeneracies that cannot be re-
solved with the current on-shell measurements,
such as probing the Higgs boson width, which
may lead to hints for new physics.

One part of this thesis focuses on the mea-
surement of the off-shell couplings of the Higgs
boson produced by vector boson fusion and de-
caying to four leptons. This decay channel pro-
vides a unique opportunity to probe the Higgs
in its off-shell regime due to enhanced cross-
sections beyond 2Mz (twice the mass of the Z
boson) region of the four lepton mass. The sig-
nificant quantum interference between the sig-
nal and background processes renders the con-
cept of ‘class labels’ ill-defined, and poses a chal-
lenge to traditional methods and generic ma-
chine learning classification models used to op-
timise a signal strength measurement. A new
family of machine learning based likelihood-free
inference strategies, which leverage additional
information that can be extracted from the sim-
ulator, were adapted to a signal strength mea-
surement problem. The study shows promising
results compared to baseline techniques on a fast
simulated Delphes dataset. Also introduced in
this context is the aspiration network, an im-
proved adversarial algorithm for training while
maintaining invariance with respect to chosen
features.

Measurements in the ATLAS experiment
rely on large amounts of precise simulated data.
The current Geant4 simulation software is com-
putationally too expensive to sustain the large
amount of simulated data required for planned
future analyses.

The other part of this thesis focuses on a
new approach to fast simulation using a Gener-
ative Adversarial Network (GAN). The cascad-
ing shower simulation of the complex ATLAS
calorimeter is the slowest part of the simulation
chain using Geant4. Replacing it with a neu-
ral network that has learnt the probability dis-
tribution of the particle showers as a function
of the incident particle properties and local de-
tector geometry increases the simulation speed
by several orders of magnitude, even on single
core CPUs, and opens to door the further speed
up on GPUs. The integration into the ATLAS
software allows for the first time to make real-
istic comparisons to hand-designed fast simula-
tion frameworks. The study is performed on a
small section of the detector (0.20 < |⌘| < 0.25)
using photons and compares distributions using
samples simulated by the model standalone as
well as after integration into the ATLAS soft-
ware against fully simulated Geant4 samples.
Important lessons on the merits and demerits of
various strategies, benefit the ultimate goal of
simulating the entire ATLAS calorimeter with
a few deep generative models. The study also
reveals an inherent problem with the popular
gradient penalty based Wasserstein GAN, and
proposes a solution.
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