
HAL Id: tel-03324559
https://theses.hal.science/tel-03324559

Submitted on 23 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resilience and sizing in virtualized environments.
Barbe Thystere Mvondo Djob

To cite this version:
Barbe Thystere Mvondo Djob. Resilience and sizing in virtualized environments.. Hardware Ar-
chitecture [cs.AR]. Université Grenoble Alpes [2020-..], 2020. English. �NNT : 2020GRALM074�.
�tel-03324559�

https://theses.hal.science/tel-03324559
https://hal.archives-ouvertes.fr


THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ

GRENOBLE ALPES
Spécialité : Informatique

Arrêtée ministériel : 25 mai 2016

Présentée par

Barbe Thystere MVONDO DJOB

Thèse dirigée par Noël DE PALMA
et codirigéee par Alain TCHANA

préparée au sein du Laboratoire d’Informatique de Grenoble
dans l’École Doctorale Mathématiques, Sciences et technologies de
l’information, Informatique

Résilience et dimensionnement dans des
environnements virtualisés.

Thèse soutenue publiquement le 18 Décembre 2020,
devant le jury composé de :

M. Pascal Felber
Université de Neuchâtel, Rapporteur, Président

M. Willy Zwaenepoel
EPFL & Université de Sydney, Rapporteur

M. Marc Shapiro
Sorbonne Université—LIP6 & Inria, Examinateur

M. Renaud Lachaize
Université de Grenoble Alpes, Examinateur

M. Daniel Hagimont
INPT/ENSEEIHT, Invité

M. Alain TCHANA
ENS Lyon, Co-Directeur de thèse

M. Noël DE PALMA
Université de Grenoble Alpes, Directeur de thèse





"To my grand-fathers and homonym,
Late MVONDO Barthélemy, and

To my grand-mother
NGO NDJOCK ELIZABETH"





Acknowledgments

Acknowledgments
Fairly speaking, I acknowledge that many people contributed to this dissertation. I

want to apologize if I forget to mention the names of the people who helped me throu-
ghout my Ph.D. ; it is an honest mistake.

First, I would like to thank my advisors Alain Tchana and Noel De Palma. By their un-
wavering perfectionism and enthusiasm, they taught me how to do research that matters.
They sacrificed a lot of time to correctly follow and support me (and their other students).
I hope to become the same source of inspiration for others as you were to me.

I want to thank Daniel Hagimont, Pascal Felber, Marc Shapiro, Renaud Lachaize, and
Willy Zwaenepoel for being on my jury. It is an honor to be reviewed by such world-class
experts. I’m sure I will learn a lot from your criticism.

I want to thank all the members of the ERODS team in the LIG laboratory, AVALON team
in the LIP laboratory, SCALE team in the I3S laboratory, and SEPIA team in the IRIT
laboratory. During all various sojourn in these teams, I was amazed by the kindness of
everyone. Every encounter was a real step forward towards the realization of this disser-
tation. I would like to especially thank Muriel Paturel, ERODS’s administrative assistant,
for withstanding my numerous requests ; you eased my laboratory life.

I want to thank the task force with whom I worked during my Ph.D., Bao Bui, Boris
Teabe, Gregoire Todeschi, Kevin Jiokeng, Kevin Nguetchouang, Kouam Josiane, Lavoi-
sier Wapet, Lucien Arnaud, Mathieu Bacou, Mohamed Karaoui, Stella Bitchebe, Tu Dinh
Ngoc, and Yuhala Peterson. It was a real pleasure exchanging with each of you. I wish
you all a good continuation in your respective works.

I want to thank my family, especially my father Mvondo Mvondo Barthelemy, my mother
Ndjock Fleur Nadine, my younger brother Zoua Mvondo, and my younger sister Lingom
Mvondo, for all their support during this fantastic journey.

I can’t forget to thank my girlfriend, Françoise Carole Ebango Mbesse, for supporting me
through this. You were a wonderful support to me.

Lastly, I would like to thank all my friends that supported me throughout this wonderful
experience. I am lucky to have such amazing people surrounding and supporting me.

Thank you, everyone.

i





Résumé

Résumé
Les systèmes de virtualisations ou hyperviseurs jouent un rôle crucial dans la pile

logicielle des plateformes de cloud computing. Leur conception et leur mise en oeuvre ont
un impact significatif sur la performance, la sécurité et la robustesse des applications des
utilisateurs du cloud. Les hyperviseurs dits de Type-I sont les plus efficaces, car ils offrent
une meilleure isolation et de meilleures performances que leur homologue de Type-II.
Pour la majorité des hyperviseurs de Type-I actuel (ex., Xen ou Hyper-V), l’hyperviseur
s’appuie sur une machine virtuelle privilégiée (pVM). La pVM accomplit des tâches à
la fois pour l’hyperviseur (ex., l’administration des VMs) et pour les VMs (gestion des
entrées/sorties). Sur les architectures d’accès mémoire uniforme et non uniforme (UMA
& NUMA), cette architecture basée sur la pVM pose deux problèmes :
• (1) le dimensionnement et le placement des ressources de la pVM (CPU + mémoire)

— En effet, un mauvais dimensionnement et placement des ressources de la pVM
impacte fortement la performance des applications des VMs. Le problème est com-
plexe, car il existe une forte corrélation entre les besoins de la pVM et les activités
des VMs. Les solutions existantes sont soit des approches statiques qui débouchent
à un sur/sous dimensionnement ou ne prennent pas en compte le placement des
ressources dans une architecture NUMA.

• (2) la tolérance aux pannes de la pVM — La pVM étant un composant central,
elle représente un élément critique dont la zone de dommage en cas de défaillance
est très large. Les approches existantes pour améliorer la tolérance aux pannes de
la pVM offrent des faibles garanties de résilience ou génèrent des dégradations
importantes.

Cette thèse propose plusieurs modifications à la pVM d’un point de vue architectural
et logique afin de traiter les problèmes susmentionnés. Concrètement, cette thèse intro-
duit :

1. Closer, un principe directeur pour la conception d’un OS adapté aux besoins de
la pVM. Closer consiste respectivement à ordonnancer et allouer les tâches et la
mémoire de la pVM au plus près des VMs cible. Étant une approche dynamique,
il masque le besoin de dimensionner la pVM tout en gérant le placement des res-
sources sur une architecture NUMA avec sa stratégie de localité.

2. Deux nouveaux mécanismes qui réduisent les dégradations du "page flipping" (l’un
des protocoles utilisés dans la virtualisation des E/S réseau) lorsqu’elle est utili-
sée sur une architecture NUMA. En sélectionnant avec soin les pages de la pVM
qui seront utilisées lors du "page flipping" en fonction de leur emplacement, ces
mécanismes réalisent de meilleures performances que le protocole de virtualisation
réseau actuel.
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Résumé

3. Un ensemble de trois principes directeurs (désagrégation, spécialisation et proac-
tivité) et des techniques d’implémentation optimisée pour construire une pVM ro-
buste sans fortement dégrader les performances des applications des VMs.

Nous avons développé des prototypes d’hyperviseurs (en nous appuyant sur l’hyper-
viseur Xen) qui mettent en oeuvre les principes susmentionnés. Nous validons l’efficacité
de nos prototypes en effectuant plusieurs évaluations avec une série d’applications bien
choisies. Les résultats obtenus montrent de meilleures performances que les approches de
l’état de l’art tout en observant de faibles dégradations de performance.

Cette thèse met en évidence l’importance de la pVM dans un environnement virtualisé
et montre qu’elle requiert plus d’attention de la part de la communauté scientifique.

Mots-clés : Virtualisation, NUMA, hyperviseur, pVM, dimensionnement, résilience.
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Abstract

Abstract
Virtual machine monitors (VMMs) or hypervisors play a crucial role in cloud com-

puting platforms’ software stack. Their design and implementation significantly impact
the performance, security, and robustness of cloud tenants applications. Hypervisors clas-
sified as Type-I are the most efficient, since they offer stronger isolation and better per-
formance than Type-II pendant. In most of today’s Type-I virtualized systems (e.g., Xen
or Hyper-V), the hypervisor relies on a privileged virtual machine (pVM). The pVM ac-
complishes work both for the hypervisor (e.g., VM life cycle management) and client
VMs (I/O management). On uniform and non-uniform memory access (UMA & NUMA)
architectures, this pVM-based architecture raises two challenging problems :
• (1) pVM’s resource sizing (CPU + memory) and placement — Indeed, an inap-

propriate pVM sizing and resource placement impact guests’ application perfor-
mance. It is a tricky issue since there is a tight correlation between pVM’s needs
and guest activities. Existing solutions either propose static approaches which lead
to over/under-provisioning or do not consider resource placement in NUMA archi-
tectures.

• (2) pVM’s fault tolerance — Being a central component, the pVM represents a cri-
tical component with a large blast radius in case of a failure. Existing approaches
to improve the pVM’s fault tolerance provide limited resilience guarantees or pro-
hibitive overheads.

This dissertation presents several design changes brought to the pVM from architec-
tural and logical perspectives to tackle these problems. Concretely, this thesis introduces :

1. Closer, a principle for designing a suitable OS for the pVM. Closer consists of
respectively scheduling and allocating pVM’s tasks and memory as close to the
target guest as possible. Closer being a dynamic approach, alleviates the need to
size the pVM and handles its resource placement in NUMA architectures with its
locality strategy.

2. Two new mechanisms that reduce the overhead of page flipping (an efficient scheme
used in network I/O virtualization) when used on NUMA architectures. By care-
fully selecting pVM pages for page flipping depending on their location, the latter
mechanisms achieve better performance than the current network virtualization pro-
tocol.

3. A set of three design principles (disaggregation, specialization, and pro-activity)
and optimized implementation techniques for building a resilient pVM without sa-
crificing guest application performance.

We build prototypes of pVM-based hypervisors (relying on the Xen hypervisor) that
implements all the principles above. We validate the effectiveness of our prototypes by
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conducting several evaluations with a series of benchmarks. The results obtained shows
better performance than state-of-the-art approaches and low overhead.

This dissertation highlights the critical role of the pVM in a virtualized environment
and shows that it requires more attention from the research community.

Keywords : Virtualization, NUMA, hypervisor, pVM, sizing, resilience.
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Introduction

Introduction

Context

C loud computing adoption by companies is continuously growing and represents up
to 90% [1, 35]. Not surprising considering the numerous advantages brought by this ser-
vice model. Some of these advantages are no property cost, enhanced scalability, and high
availability rates [22]. Cloud computing permit companies to focus on the business logic
leaving the burden of maintenance to Cloud providers. To ensure their services to their
numerous clients while guaranteeing integrity, confidentiality, and performance, Cloud
providers rely on virtualization. Real cornerstone, virtualization enables the multiplexing
of physical server hardware (e.g., memory) between many users while ensuring isolation
among them. Cloud providers achieve virtualization via the help of virtualization systems,
generally known as hypervisors.

A hypervisor is a software that enables the sharing of physical server hardware resources
between several entities known as virtual machines (hereafter VM). Hence, it plays a vital
role in ensuring the performance and security of applications running inside VMs. Mo-
reover, it must be robust to ensure high availability rates for VMs. Hypervisors classified
as Type-I (e.g., Xen [11], Hyper-V [63], etc.) run directly after the hardware layer. Hence,
they offer better isolation and performance than those classified as Type-II that relies on
the host operating system (e.g., Oracle VM VirtualBox [95], VMWare Fusion [99], etc.).
To keep their trusted computing base (TCB) as smaller as possible, Type-I hypervisors
commonly rely on a particular VM that has more privileges than others. We denote it the
pVM (privileged VM). The pVM is in charge of hosting tools to administrate/supervise
VMs and play a role in the multiplexing I/O devices for VMs.

Problematic

Due to its central role in a virtualized environment, managing the pVM is a tricky task.
This is due to a strong correlation between its tasks and those of other VMs. Simply put,
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Introduction

the management of the pVM can be divided into two parts. The first is the sizing of pVM
in terms of hardware resources (CPU + memory). The second is the resilience of the pVM.
Regarding pVM sizing, the main question is how much resources (CPU + memory) do
the pVM needs?. A static strategy will result in oversizing (waste of ressources) or un-
dersizing (lack of resources). This is because the pVM needs relentlessly vary with to the
load imposed by VMs. Moreover, on non-uniform memory access (NUMA) architectures
where the proximity between CPUs and memory impacts latency, a new dimension must
be considered : the placement of the pVM resources. This new dimension raises a second
question which is : Should the pVM resources be placed to optimize its and VMs
tasks?

The placement of pVM resources matters once more when speaking of the zero-copy
approach, one of the best techniques used in I/O virtualization. Zero-copy consists of ex-
changing ownership rights on a set of memory pages between the pVM and a given VM,
which are later mapped by the hypervisor in their respective address space. This allows a
VM to access data aimed at it (e.g., an incoming network packet) without copying from
one address space to another. This dissertation reveals a side effect of using the zero-copy
approach on a NUMA architecture. Indeed, due to the default pVM resource placement on
NUMA architectures, which is to dedicate an entire socket to the pVM, repeated zero-
copy operations incurs transparent and undesired VMs memory pages migrations
between NUMA nodes. This results in transparent remote memory access for VMs’ ap-
plications, which results in gradual performance degradation.

Regarding resilience, the central role of the pVM makes it a single point of failure with
a large blast radius (VMs, hypervisor, I/O devices, etc.) in case of a security breach or
failure. As a result, efficient policies are needed to react in case of faults of the pVM.
Surprisingly, very few research works explore this issue, which is not irrelevant.

This dissertation details three significant contributions that aim at proposing potential
solutions to the aforementioned problems while opening some lines of discussion.

Contributions

The first contribution of this dissertation attacks the problem of pVM resource sizing
and placement. Existing approaches such as [80] propose static solutions that do not tailor

2
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with the varying load imposed on the pVM. We tackle this problem by proposing Closer.
Closer is a design principle to implement a suitable OS for the pVM. Closer promotes the
proximity with VMs and the utilization of VMs resources. Based on Closer :

• We propose an architecture where the pVM is considered as two logical entities.
The first in charge of tasks whose resource needs are static (e.g., VMs monitoring),
and the second in charge of tasks dedicated to VMs execution, such as the multi-
plexing of I/O devices. Each task of the second entity runs as close as possible as
the target VMs and uses the latter resources (those of the target VM).

• We revisit Linux to construct an OS for the pVM.

• We prove its efficiency with the Xen virtualization system, a popular open-source
hypervisor (used by Amazon AWS).

• We report results obtained with micro- and macro-benchmarks. These results show
(1) no resource waste for the pVM resources since we provision pVM resources on-
demand, (2) performance improvement for administrative tasks such as (creation,
shutdown, migration, etc.), compared to a standard Linux used as the OS of the
pVM and Xen as the hypervisor. We improve VMs shutdown and migration times
by up to 33%.

• We improve the performance of applications running in VMs, for intensive I/O
workloads, up to 36,5% for network packet latency reception, 42,33% for network
packet latency emission, and 22% for disks operations.

This dissertation’s second contribution attacks the side-effects of the zero-copy approach
for I/O in a virtualized system running on NUMA architectures. At the time of writing this
dissertation, no work reveals or corrects this issue. We propose two approaches to reduce
zero-copy side-effects and offer better performance for VMs simultaneously. Concretely :

• The first approach consists of maintaining a pool of memory pages in VMs, which
are strictly reserved for zero-copy operations. Hence, only these pages can be-
come transparently remote, which avoids unwanted remote access for applications
in VMs.

• The second approach consists of a task that periodically brings back the VMs me-
mory pages that became remote due to zero-copy to return to the initial memory
topology.

• Our evaluations with the Xen virtualization system show that zero-copy side-effects
are almost canceled while guaranteeing performance for applications running in
VMs.

Finally, the third contribution of this dissertation attacks the resilience issue of the pVM.
Despite the pertinence of this issue, it has received very little attention from the commu-
nity. [41] focused on the reliability of network device drivers hosted in the pVM. Ho-
wever, they do not consider the dependency with other pVM services. [20] propose to
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disaggregate the pVM, coupled with a periodic reboot of each disaggregated component
(via micro-reboot), to the TCB and prevail against stepping-stone attacks. Unfortunately,
periodic reboots incur degradation with up to 1300x order of magnitude, making the solu-
tion impraticable in production environments. To tackle this issue, we propose PpVMM
(Phoenix pVM-based VMM), an approach that relies on three principles : disaggrega-
tion, pro-activity, and specialization. The fault model targeted by PpVMM is the failure
of the pVM or memory corruption of its stateful components. Concretely :

• PpVMM consists of decomposing the pVM in smaller blocks in charge of a spe-
cific task (disaggregation). For each block, dedicated fault detection and correc-
tion mechanisms are designed to react to failures (pro-activity + specialization).
PpVMM relies on the hypothesis that the hypervisor is fault-free via techniques
such as [16, 41, 60].

• We implement a prototype based on PpVMM, with the Xen virtualization system.

• Our prototype’s evaluation shows performance degradation of up to 12,7% for the
95 percentiles, with the TailBench suite [42]. Nevertheless, it is hugely better com-
pared than existing approaches Xoar [36] that presents performance degradation of
up to 12999% for the 95 percentiles with the same benchmark.

The source code of our prototypes is available to the scientific community via this
link : https://djobiii2078.github.io/#experience.

Roadmap

The rest of this dissertation is organized as follows :

• Chapter 1 presents the fundamental concepts used in this dissertation. It provides an
overview of virtualization and I/O virtualization. It ends presenting of each problem
and some insights on why each issue is a significant problem.

• Chapter 2 details our contribution related to the pVM resource sizing and place-
ment. It provides an overview on the related works and reports the evaluation results
obtained with our prototypes.

• Chapter 3 details our contribution related to the side-effects of zero-copy on NUMA
architectures. It highlights the role of the pVM in this issue and presents the evalua-
tion results obtained.

• Chapter 4 details our contribution related to the pVM resilience. It presents our new
architecture with evaluation results where we compare against existing solutions.

4
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Introduction

Ending this dissertation, a conclusion that resumes our findings, details our current and
future works (short- and long- term perspectives) related to the aforementioned problems.
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1
Background and Motivations

In this chapter, we present important concepts used in this dis-
sertation (§1.1). Then, we outline challenges encountered with
pVM-centric architectures (§1.2). For each challenge, we ex-
plain how scathing it is and how prior work tries to address
them.
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1.2.2 pVM resource placement impact on memory flipping . . . . . . 19

1.2.3 pVM fault tolerance . . . . . . . . . . . . . . . . . . . . . . . 21
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Chapitre 1. Background and Motivations

1.1 Key concepts

In this section, we define the key concepts around server virtualization, NUMA, and
I/O virtualization.

1.1.1 Server virtualization

Sharing server physical resources among different entities (applications, operating
systems — OSs) while ensuring isolation has always been trendy. Server virtualization
comes as a response to the previous need. [12] defines virtualization as the application
of the layering principle through enforced modularity, whereby the exposed virtual re-
source is identical to the underlying physical resource being virtualized. The basic unit
of virtualization is a virtual machine defined as a complete compute environment with its
own isolated processing capabilities, memory, and communication channels [12]. Back
in the days, in 1964, the term virtual machine was introduced by IBM with the CP/CMS
system [21]. As shown in Figure 1.1, the term virtual machine has evolved alongside vir-
tualization techniques, leading to new tools and new virtualization paradigms. Today, we
mostly differentiate two types of VMs : system-level and lightweight VMs or containers.
System level VMs allows you the execution of multiple OSs on the hardware of a single
physical server. At the same time, containers enable you to deploy multiple applications
using the same OS on a single server or system-level VM. Figure 1.2 describes the gene-
ral architecture for system-level and containers. Each (system-level VMs and containers)
comes with their pros and cons. System-level VMs provide stronger isolation than contai-
ners while containers, being lightweight (since they rely on a ready kernel) provides better
performance due to the absence of an additional software layer between applications and
the hardware. Unless specified otherwise, VMs refers to system-level virtual machines.

Figure 1.1 – Evolution of virtual machines and containers [82].

In cloud computing, depending on the level of service requested (e.g., Software as a
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1.1. Key concepts

Service — SaaS) and the cloud provider (e.g., Amazon), services will either be powered
by VMs, containers, or both. Much research work tries to find the best of both worlds. [57]
leverage unikernels to have VMs boot times faster than containers. However, due to binary
compatibility issues with unikernels, the latter scope’s work is quite small 1. On the other
hand, works like gVisor [32] and KataContainers [43] propose approaches to strengthen
container isolation at the expense of performance [8, 109]. We can see that there’s still a
lot of interest in VMs.

Hardware

Hypervisor

Guest  Os

Libraries

Apps

Guest  Os

Libraries

Apps

Guest  Os

Libraries

Apps

Hardware

Host  Operat ing System

Libraries

Apps
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Container Engine

(a) System-level  virtual izat ion 
general  architecture (b) Container general  architecture

Figure 1.2 – General architecture of system-level virtualization against containers.

To create and manage VMs, we need a virtual machine monitor (VMM) or hypervi-
sor. A hypervisor is the software layer that will ensure physical resource sharing between
VMs that runs guest OSs. Hypervisors are usually classified into two categories : Type-I
and Type-II.

1.1.2 Type-I and Type-II hypervisors

Figure 1.3 presents the overall architecture of Type-I and II hypervisors. The main
difference between Type-I and Type-II hypervisors resides on the privilege level where
the hypervisor runs. Type-I or bare-metal hypervisors (e.g., Xen, Hyper-V, VMWare
ESX [98], etc.) run directly above the hardware in the ring of highest privilege while Type-
II or hosted hypervisors (e.g., VirtualBox, VMWare Fusion, VMWare Workstation [97],
etc.) run within an OS along with the Ring of the host OS. The ring privilege level dif-
ference between the two categories will affect each type in terms of performance and
security, as shown in Table 1.1. Overall, public cloud providers will generally prefer Type-
1 hypervisors over Type-II hypervisors due to performance and security issues. Type-II

1. Work such as [74] start providing solutions to unikernel binary compatibiliy
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Chapitre 1. Background and Motivations

hypervisors will generally be used in environments where performance and security are
lesser concerns, such as software testing environments.

Characteristics Type-I (bare-metal hypervi-
sors)

Type-II (hosted hypervisors)

Performance Due to a direct access to the
hardware, generates lesser ove-
rhead.

Due to the presence of an under-
lying OS, generates greater ove-
rhead due to an additonal level of
indirection.

Security Security flaws and vulnerabili-
ties endemic to OSes are absent
from bare-metal hypervisors due
to no underlying OS. Further-
more, the TCB (Trusted Compu-
ting Base) is smaller, thus poten-
tially lesser security issues [14].

Security flaws or vulnerabilities
in the host OS can compromise
all of the VMs running above it.

Hardware support Can benefit from hardware virtualization technologies : In-
tel VT-x [38] or AMD-V [7] to reduce virtualization ove-
rhead

Table 1.1 – Differences between Type-I & Type-II hypervisors based on different parame-
ters : performance, security, and hardware support.

This dissertation focus is on Type-I hypervisors. With most Type-I hypervisors, for
simplicity, maintainability, and security purposes, a particular VM is used as an exten-
sion of the hypervisor. We refer to this VM as the privileged VM (pVM). The latter VM
is critical to the virtualization stack. The pVM embeds unprivileged VMs (uVMs) life-
cycle administration tools (e.g., libxl in Xen, parent partition in Hyper-V) and data center
administration applications (e.g novaCompute in OpenStack [78]). In addition to these
tasks, the pVM is also used in most deployments as a proxy for sharing and accessing I/O
devices, see Figure 1.4. In this case, the pVM embeds the driver enabling access to the
hardware device and a proxy (called backend), which relays incoming (from the driver to
a uVM) or outgoing (from a uVM to the driver) requests. This pVM-based design is popu-
lar and used in production-grade, mainstream virtualization platforms(for example, Xen,
Microsoft Hyper-V, and some versions of VMware ESX) for several important reasons,
including the following ones : (i) it simplifies the development, debugging, and customi-
zation of the control plane [11], (ii) it provides isolation boundaries to contain the impact
of faults within the control plane or the I/O path (see §1.1.4), (iii) it offers flexibility for
the choice of the OS hosting the control plane (which matters for considerations like code
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Figure 1.3 – General architecture of Type-I hypervisors (bare-metal) against Type-II hy-
pervisors (hosted).

footprint, security features, and available drivers for physical devices) [87], (iv) it pro-
vides a data plane with a smaller attack surface than a full-blown operating system like
Linux.
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Figure 1.4 – Architecture of two widely used Type-I hypervisors, Xen and Hyper-V. Each
has the notion of pVM to support the hypervisor with administrative and uVM I/O mana-
gement tasks.
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Chapitre 1. Background and Motivations

1.1.3 NUMA virtualization

In the past, hardware manufacturers designed processors symmetric multiprocessors
— SMP or uniform memory access — UMA, where CPU accessed a shared memory
over a single bus. However, with the increase of the number of cores (thus CPUs) on
commodity servers, the bus rapidly a bottleneck to memory access. To overcome this
situation, in modern servers, each CPU is physically connected to its memory module(s),
forming a node, and can access remote memory of other nodes in a cache coherent manner
via a CPU interconnect [5, 37, 93, 117] as shown on Figure 1.5. CPUs are also equipped
with I/O controllers that mediate direct memory access (DMA) by devices to the system’s
main memory. Remote accesses into a module M are satisfied by the memory controller
of M’s CPU. Node topologies are such that some nodes might be connected to others
indirectly via intermediate nodes, in which case remote accesses traverse through multiple
memory controllers.
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Figure 1.5 – Example of a NUMA architecture. Nodes are linked via Interconnects (such
as AMD HyperTransport [7] or Intel QuickPath Interconnect [38]). Local accesses (in
green) are faster than remote accesses (in red).

For good performance in NUMA architectures, OSes must ensure that applications
always run on the node hosting their data to avoid remote memory accesses. Mainstream
OSs embeds NUMA placement and scheduling policies to take advantage of NUMA ar-
chitectures.

On NUMA architectures, the most common virtualization approach is known as vNUMA
[15]. With vNUMA, the hypervisor presents to uVMs a virtual NUMA topology, which
corresponds to the mapping of its allocated resources on NUMA nodes at boot time. The
OS running inside the uVM can then benefit from its NUMA-aware allocation and sche-
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duling policies. To present the virtual topology to uVMs, the hypervisor stores the virtual
topology in the uVM’s ACPI (Advanced Configuration and Power Interface) tables so
that the uVM’s OS can read them at boot time. However, vNUMA main limitation is
that a change in the real NUMA topology (e.g. vCPUs migrations between CPUs) won’t
be taken into account without rebooting the VM. This is because mainstream OSs do
not take into account changes in ACPI tables once booted. Some research work, such
as [33, 54, 83, 100], tries to tackle this issue by implementing new policies and context-
based heuristics. For now, hypervisors usually disable mechanisms such as memory bal-
looning or live/cold migration on VMs using vNUMA because they can modify target
VMs NUMA topology.

1.1.4 I/O virtualization

A benefit of virtualized systems is the decoupling of a uVM’s logical I/O devices
from its physical implementation. Decoupling enables time- and space-multiplexing of
I/O devices, allowing multiple logical devices to be implemented by a smaller number of
physical devices. Applications of virtualization such as server consolidation or running
heterogeneous operating system environments on the same machine rely on this feature.
Decoupling also enables popular uVM features such as the ability to suspend and resume
a virtual machine and the ability to move a running virtual machine between physical
machines, known as live migration. In both of these features, active logical devices must
be decoupled from physical devices and recoupled when the uVM resumes are saved or
moved.

The classic way of implementing I/O virtualization in Type-I hypervisors is to struc-
ture the software in two parts : an emulated virtual device that is exported to the uVM —
the frontend and a backend implementation that is used by the virtual-device emulation
code to provide the semantics of the device (usually hosted in the pVM). This is known
as the split-driver model 2. As shown on Figure 1.4 depicts the flow of an I/O request in
a virtualized system powered by a typical Type-I hypervisor, Xen. When an application
running within a uVM issues an I/O request, typically by making a system call, it is ini-
tially processed by the I/O stack in the guest OS within the uVM. A device driver (the
backend) in the guest issues the request to a virtual I/O device, which the hypervisor then
intercepts. The hypervisor schedules requests from multiple uVMs onto an underlying
physical I/O device via the corresponding frontend device driver managed by the pVM
with direct access to physical hardware. Upon an I/O request processing completion, the
two I/O stacks (pVM and target uVM) are traversed in the reverse order. The actual device
posts a physical completion interrupt, which is handled by the hypervisor. The hypervisor

2. The practice of modifying the guest to introduce logic to ease virtualization performance and reduce
overhead is known as para-virtualization.
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then notifies the pVM, which finds the target backend driver 3. The backend driver via the
hypervisor and shared memory initiates data transfer with the target frontend driver in the
uVM. Given that the data is stored in memory pages of the pVM, the hypervisor has to
give the access grants on these pages to the uVM. To counterbalance the transmission of
these pages, the hypervisor gives access grants on some pages from the uVM to the pVM.
This mechanism is known as memory flipping and allows a zero-copy memory com-
munication between the backend and frontend driver. The target guest OS copies the user
space’s received data and frees the pages containing the data for further usage. Memory
flipping provides a significant benefit for I/O applications but as shown n Section §1.2.2,
has a major drawback for uVMs on NUMA architectures.

Another technique for I/O virtualization is to use PCI pass-through mode. PCI pass-
through consists in granting exclusive direct access of an I/O device to a uVM. It is
relatively easy to configure the CPU virtualization, so the x86 instructions that talk to
the device can be connected directly to the device and incur zero I/O virtualization ove-
rheads. This pass-through mode can eliminate both the device emulation and back-end
implementation overheads. However, this direct I/O virtualization approach introduces
several limitations and implementation challenges. Aside from the obvious limitation that
only a single VM can use passthrough device, passthrough forms a coupling between the
hardware and the VM. As a result, many of the portability benefits of virtualization are
lost, along with key benefits such as live migration and features that depend on the abi-
lity to interpose on I/O [85]. This approach also raises strong challenges related to DMA
(Direct Memory Access). A guest device driver can program device DMA to read and
write memory belonging to the hypervisors or other guests. This can result due to bugs in
the device driver or the guest just being malicious. To eliminate both the limitations and
passthrough challenges, device builders have modified their hardware to be aware of the
virtualization layer. To handle the limitation of exclusive passthrough-only devices, such
virtualization-aware hardware exports multiple interfaces, each of which can be attached
to a different VM. As a result, each uVM is given its own directly accessible passthrough
copy of the device. For example, in Single Root I/O Virtualization — SR-IOV, a NIC
can be shared by multiple uVMs while bypassing both the hypervisor and the pVM. Ho-
wever, strong limitations such as no live migration have slowed down its adoption in
datacenters [61, 79, 84, 85, 96].

In summary, we can see that bare-metal hypervisors (Type-I) heavily rely on the pVM
for an overall good performance. However, this pVM-centric architecture raises some
challenges which are tricky. In the section below, we clearly outline each challenge and

3. To reduce overhead, some hypervisors perform virtual interrupt coalescing [4] in software, similar to
the hardware batching optimizations found in physical cards, which delay interrupt delivery with the goal
of posting only a single interrupt for multiple incoming events.
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the related work surrounding the latter.

1.2 pVM-centric architecture problems

Let’s recall the role of the pVM in most bare-metal hypervisors. The pVM acts as
a control plane for the hypervisor, through a specific interface, and is involved in all
uVM management operations (creation, startup, suspension, migration, etc.). It also hosts
I/O device drivers that are involved in all I/O operations performed by uVMs on para-
virtual devices. The most important characteristic of the pVM is the correlation between
pVM’s tasks and uVM’s activities. However, current pVMs rely on standard OSes e.g.,
Linux. A standard OS (running in a pVM/uVM) manages resources for its applications
and itself, but is not aware of resources managed in other VMs running on the same
host. Therefore, the previous correlation between pVM and uVMs is not considered in a
standard OS, thus leading to resource waste, low performance on NUMA architectures,
performance unpredictability, and vulnerability to DoS attacks [36, 71]. This is because
the latter correlation makes it difficult to correctly size and place the resources of the pVM
on UMA/NUMA architectures. Lastly, being a central component, the pVM represents a
single point of failure with a large blast radius in case of failure.

Below, we discuss the issues with pVM’s resource sizing — placement and fault tole-
rance. For each issue, we present its impact on the virtualized infrastructure performance.

1.2.1 Resource sizing & placement of pVM

Resource management for the pVM is a tricky task and it can have a significant impact
on both administrative tasks and user applications, especially on NUMA architectures
which are commonly used in today’s datacenters. A pVM resource management strategy
must correclty address these questions :

• Q1 : how much resources (# of CPUs, amount of memory) should be allocated to
the pVM?

• Q2 : how to organize such an allocation (in terms of location) in a NUMA architec-
ture?

• Q3 : in a cloud environment, to who (cloud provider or user) these resources should
be charged to?

Let’s discuss each question and present how tricky solving it is.
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1.2.1.1 Q1 — pVM sizing

Our collaboration with some datacenter operators such as Nutanix datacenter [73]
revealed that the most common strategy for sizing the pVM is a static configuration.
This means that the pVM is allocated a fixed amount of resources at startup which do
not change throughout its life-cycle. Moreover, virtualization system providers do not
provide any recommendation regarding this issue. The only recommendation we found
comes from Oracle [80] which proposes only a memory sizing strategy for the pVM based
on the following formula : pV Mmem = 502+ int(physicalmem×0.0205). More generally,
there isn’t any defined method to estimate the amount of resources required by the pVM
to perform correctly.

The resources required by the pVM are not constant as they depend on uVM activities,
therefore a static allocation cannot be the solution. In fact, the tasks executed by the pVM
can be organized in two categories : tasks related to the management of the datacenter and
tasks related to uVM I/O operations. The amount of resources required by tasks from the
second category is mercurial as it depends on uVM activities. A static allocation can lead
to two situations, either the pVM’s resources are insufficient or overbooked. These two
situations can be harmful for both the cloud provider and user applications. Below, we
focus on the consequences of an insufficient ressource provisioning to the pVM because
it is obvious that over-provisioning causes resource waste as shown by prior works [92].

A lack of resource in the pVM can make both applications executed in uVMs and
administrative services executed in the pVM inefficient and unpredictable. Performance
unpredactibility is known as one of the main issues in the cloud [24, 62, 71].

Impact on users’ applications
Figure 1.6 top right shows the performance of a uVM which hosts a web application
(wordpress) on a physical machine where we vary the number of colocated uVMs which
execute I/O intensive workloads. In this experiment, the pVM is allocated two CPUs while
each uVM is allocated one CPU. To prevent any contention (e.g. QPI link contention), all
CPUs (from the pVM or uVMs) are allocated on the same NUMA socket. Fig. 4 top
left presents the pVM CPU load during each experiment. The first observation is that
the pVM load varies according to uVMs activities. This is due to the fact that the pVM
embeds both the backends and the drivers responsible for accessing I/O devices (see Fig.
3). The second observation is that the web application’s performance decreases when the
pVM lacks CPU resources. Therefore, performance predictability is compromised.

One may ask if this unpredictability is effectively caused by lack of computation po-
wer for the pVM. Since all uVMs execute I/O intensive workloads, the I/O hardware could
be the bottleneck. To clarify this point, we ran the same experiment with 12 CPUs for the
pVM. The results on Fig. 4 bottom show that with enough resources, the performance of
the tested application remains almost constant, which proves that resources allocated to
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the pVM are the bottleneck.
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Figure 1.6 – A static resource allocation to the pVM can lead to its saturation, thus to
performance unpredictability for user applications : (left) pVM’s CPU load, (right) per-
formance of the uVM which executes a (Wordpress) workload. The pVM has 2 CPUs for
the top results and 12 CPUs for the bottom.

Impact on management tasks
The pVM hosts VM management operations, the most important ones being : VM crea-
tion, destruction and migration. The saturation of the pVM can lead to execution time
variation for these operations since they require a significant amount of resources. Figure
1.7 left and right respectively show VM creation and migration times according to the
pVM load. We observe that the pVM load has a significant impact on these execution
times. This situation may dramatically influence cloud services such as auto-scaling [71].

1.2.1.2 Q2 — pVM resource placement

On a NUMA machine, the location of the resources allocated to the pVM may signi-
ficantly influence uVMs performance. The commonly used strategy is to locate all pVM
resources on a dedicated NUMA socket, not used by any uVM. This section shows that
running the pVM close to uVMs may improve the performance of the latter.

I/O intensive applications’ improvement
We executed a web application in a uVM whose entire CPU and memory resources were
located on the same NUMA socket as the pVM. Then, we varied the location of the pVM
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Figure 1.7 – A static resource allocation to the pVM may lead to its saturation, thus to
variable uVM (left) creation and (right) migration time.

resources. We observed that the best performance is obtained when the pVM and the
uVM share the same NUMA socket (521 req/sec and 8.621 ms latency if colocated vs
491 req/sec and 13.431 ms latency if not). This is because colocation on the same socket
prevents remote memory accesses (to fetch I/O packets) from both pVM and uVM tasks.

VM migration and destruction improvement
We also observed that running the pVM close to uVMs may improve some management
tasks such as live migration. For instance, we observed in our testbed that the migration
of a 2GB RAM uVM can be improved by about 34.15% if the migration process running
in the pVM is scheduled on the same NUMA socket which hosts the migrated uVM’s
memory. We made a similar observation for uVM destruction tasks : the scrubbing step
(memory zeroing) is much faster when the migration process runs close to the NUMA
socket which hosts the uVM’s memory.

1.2.1.3 Q3 — pVM resource charging

The commonly used strategy is to leave the provider support the entire pVM resources,
which includes the resources used on behalf of uVMs for performing I/O operations. [36]
showed that this is a vulnerability, which could lead to deny of service attacks.

Overall, we observe that a bad resource management strategy (sizing + placement) for
the pVM can severely affect administrative tasks and uVMs applications’ performance.
There’s a need for a strategy that can automatically adapt to the pVM’s needs (in terms of
size and placement) with a fair charging policy. Furthermore, we discovered a side-effect
regarding the memory flipping technique (see §1.1.4) when the pVM resource placement
is not taken in account on NUMA architectures. The next section carefully describes the
issue.
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1.2.2 pVM resource placement impact on memory flipping

As mentioned in § 1.1.4, memory flipping is a mechanism that prevents data copy
between backend device driver (in the pVM) and frontend device driver in uVMs during
I/O virtualization. Meanwhile, as described in § 1.1.3, when virtualizing a NUMA archi-
tecture, the trend (with vNUMA) will be to disable features such as migration on target
uVMs since they can disrupt the mapping of target uVMs resources on NUMA nodes.

However, we found that due to the default pVM NUMA resource placement strategy
(i.e., dedicating one NUMA node for the pVM — see §1.2.1.2), memory flipping can be
the cause of topology modifications for uVMs. Indeed, frequent network communications
between the pVM and a uVM (backend ←→ frontend) lead to significant exchange of
pages, resulting in a displacement of the memory of the uVM from its initial NUMA nodes
to the pVM NUMA node and vice versa. Let’s note that after frontend drivers release
the pages containing the request data, those pages are freed and can be reused by uVMs
applications, inducing potential remote accesses for these applications therefore leading to
degraded performance. A solution to this issue is to use memory copy the communication
between the backend driver and frontend driver. However, numerous memory copies can
lead to disastrous performance for I/O applications in uVMs. To assess how harmful, the
previous scenarios (memory flipping and memory copy) can be harmful, we conducted
the following experiment.

Details about the experimental environment and used benchmarks can be found in
Section 3.3.1. The experimental procedure is as follows. Initially, in a uVM configured on
a single NUMA node, we run the Stream benchmark and measure the throughput (first
run). The Stream benchmark measures the memory bandwidth (only) and is very sensitive
to remote memory access. This first run corresponds to the reference performance for the
benchmark because it does not involve remote memory access and neither memory flip-
ping nor memory copy. Then, we execute Big Bench which is configured to perform I/O
operations with another VM on a second server. During the execution of Big Bench, we
continuously monitor the memory layout of our uVM, and we measure the performance of
the benchmark. We run Big Bench because its involve I/O operations, therefore memory
flipping or memory copy is used. This creates the pertubation we want to observe in the
NUMA topology of the uVM. Then, we rerun the Stream benchmark to obtain the new va-
lue of the memory throughput (second run). This procedure is executed with vanilla Xen
as the guest OS using firstly memory flipping (we call it xen f lip), and secondly memory
copy (we call it xencopy).

For this experiment, we are interested in four measurements : (1) the memory layout
of our uVM during the execution of Big Bench, (2) the performance of Big Bench, (3)
the throughput of Stream benchmark (first and second run) and finally, (4) the number of
remote memory allocation in our userVM during the executions of the Stream benchmark.

The obtained results are presented in Fig. 1.8 and Fig. 1.9. From left to right in Fig. 1.8,
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we have : the memory layouts of our userVM, respectively with memory flipping (a) and
memory copy (b), and the performance of Big Bench (c). Fig. 1.9 shows the through-
put of the Stream benchmark and the number of remote memory allocations during the
executions of the Stream benchmark.
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Figure 1.8 – uVM memory layout with memory flipping (a) and memory copy (b) - appli-
cation performance for Big Bench (c).

Figure 1.9 – Performance of the Stream benchmark : throughput (left axis / histogram
boxes) and number of remote allocations (right axis / solid lines).

The first observation is on Fig 1.8(a) where we simply observe a progressive displace-
ment of our uVM memory from its initial node to the pVM’s node with memory flipping.
After 180 minutes of execution, 25% of the memory of our uVM has been relocated to
the pVM’s node. This displacement is not observed with the memory copy (see Fig 1.8
(b)). However, in Fig 1.8(c), we note that the performance of Big Bench is significantly
degraded with memory copy compared to memory flipping. This shows why memory
copy cannot be a suitable solution to the problem we address. Fig. 1.9(left) shows the
loss in performance for the Stream benchmark with memory flipping, about 13% between
the two runs (first and second run). This is explained by the fact that an amount of our
VM memory which was relocated to the pVM’s node (consequently to the execution of
Big Bench) is afterward used by the Stream benchmark. The solid lines in the histogram
boxes represent the number of remote allocations during the executions of the Stream
benchmark (the axis to which it refers to is on the right). There isn’t any remote alloca-
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tion with memory flipping during the first run, but this is not the case during the second
run. This explains the performance degradation for the second run. With memory copy,
the number of remote allocation remains void. The main lessons we learn from these
experiments are :

• memory flipping can effectively lead to NUMA topology changes for an uVM ;

• memory copy is a solution to the problem, but causes significant performance de-
gradation for I/O applications ;

• the displaced memory of a uVM can later be used by applications, causing perfor-
mance degradation.

Finally, after investigating pVM’s resource sizing and placement surroundings, we
investigate the pVM fault tolerance. Being a single point of failure, it is critical to unders-
tand how the pVM can affect the virtualized infrastructure in case of failures and how that
can be dealt with. The next section discuss about the pVM fault tolerance.

1.2.3 pVM fault tolerance

pVM-based hypervisors presents two points of failures : the hypervisor and the pVM.
While the hypervisor robustness has been hugely investigated by the research commu-
nity, the pVM has not received the same attention. Surprisingly, its blast radius in case
of a failure is ridiculously enormous since it embeds services to manages administrative
tasks, multiplex I/O devices (in paravirtualization), and hosts datacenter monitoring com-
ponents. To assess the problem, we investigate the Xen virtualization system.

Failures within its pVM (dom0 — domain 0) are likely to occur since it is based on
Linux, whose code is known to contain bugs due to its monolithic design, large TCB
(trusted computing base) and ever-increasing feature set. We analyzed xen.markmail.org,
a Web site that aggregates messages from fourteen Xen related mailing lists since October
2003. At the time of writing this paper, we found 243 distinct message subjects including
the terms crash, hang, freeze, oops and panic 4. After manual inspection of each of the
243 messages, we discarded 82 of them because they were not talking about faults. 57%
of the remaining messages were related to failures of the pVM components and 43% to
the hypervisor. By zooming on dom0 faults, we observed that 66% were related to device
drivers, 26% to the tool stack, and 8% to XenStore (a procfs subsystem for storing and
sharing uVMs configuration and status informations). From this analysis, two conclusions

4. We used the search string “crash hang freeze oops panic -type=checkins”. The option
“type=checkins” excludes commit messages
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can be drawn : (1) cloud sysadmins report pVM failures ; (2) such failures are linked to
all pVM services.

At the time of writing this dissertation, the only existing exhaustive solution against
pVM failures (without resorting to physical server replication) is the one proposed in the
Xoar project [36]. This approach was initially designed against security attacks, but also
provides fault tolerance benefits. It has two main aspects. First, pVM is disaggregated
in several unikernels in order to confine each service failure. Second, each service is
periodically restarted (“refreshed”) using a fresh binary. The critical parameter in such an
approach is the refresh frequency. On the one hand, if it is large (tens of seconds), then
components that are impacted by a dom0 failure will experience this failure for a long
time. On the other hand, if the refresh period is too short (e.g., one second) then failures
are handled relatively quickly, but at the expense of significant performance degradation
for the user applications. This dilemma has been partially acknowledged by the authors of
Xoar in their paper [36] : in the case of a short refresh period (1 second), they measured
a 3.5 degradation ratio for the throughput and latency of a Web server benchmark. We
also assessed this limitation by running latency-sensitive applications from the TailBench
suite [42] in a domU while varying the refresh period of its assigned network backend
unikernel (the details of the testbed are provided in §V). Figure 1.10 reports for each
benchmark the ratio of the mean and (95th and 99th percentile) tail latencies over the
execution of the same benchmark without refresh. We can see that self refresh can incur
a 5x-2000x degradation for the mean latency, 5x-1300x for the 95th percentile, and 5x-
1200x for the 99th percentile. We also notice that the degradation remains significant even
with a large refresh period (60 seconds).
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Figure 1.10 – Mean and tail latencies for TailBench applications when self-refresh is
enabled for the (disaggregated) pVM components. The results (lower is better) are nor-
malized with respect to a baseline without self-refresh for the same metrics.

As we can see, there are some issues that must be dealt regarding the pVM, regarding
resource sizing, placement and fault tolerance. In the next chapters, we will present our
contributions to address these issues step by step. For each contribution, we discuss how
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it is different from existing approaches and present the different perspectives to improve
them.
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2
Addressing pVM resource management on

UMA — NUMA architectures

In this chapter, we present our contribution that aims at addressing pVM
resource management on UMA and NUMA architectures. We detail our
design (§2.1) and report evaluation results (§4.4). Lastly, we present a
comparative study with state-of-the-art approaches (§2.3).
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2.1. Closer : Design Principle

As presented in §1.2.1, the resources of the pVM can hugely impact uVMs’ appli-
cation performance. A good pVM resource management strategy must simultaneously
handle sizing (number of CPUs and amount of memory) and placement on NUMA ar-
chitectures with respect to uVMs. However, since the pVM relies on a standard OS, its
resource management does not consider the correlation between pVM tasks and uVMs
activities. A significant part of pVM tasks are correlated with uVMs activities : (1) in
terms of quantity, as the amount of resources required by the pVM depends on uVMs
activities (especially I/O operations), and (2) in terms of location in a NUMA architec-
ture, as resources allocated for one pVM task (e.g., memory) are likely to be used by
correlated uVM activities. In the next section, we introduce Closer, a design principle
for implementing a pVM which solves the pVM resource management issues reported in
§1.2.1.2.

2.1 Closer : Design Principle

To take into account the correlation between the pVM and uVMs, Closer influences
the design of the pVM with the three following rules :

• on-demand. Resource allocation to the pVM should not be static. Resources should
be allocated on demand according to uVMs activities. Without this rule, resources
would be wasted if over-provisioned or they would be lacking, leading to perfor-
mance unpredictability.

• pay-per-use. The resources allocated to a pVM’s task which is correlated with a
uVM activity should be charged to the concerned uVM. Without this rule, the pVM
would be vulnerable to DoS attacks from a VM executing on the same host, which
could use most of the resources from the pVM.

• locality. The resources allocated to a pVM’s task which is correlated with a uVM
activity should be located as close as possible (i.e. on the same NUMA socket) to
the uVM activity. This rule allows reducing remote memory accesses in the NUMA
architecture.

To enforce the Closer principle, we introduce an architecture where the pVM is orga-
nized in two containers (see Fig. 2.1) : a Main Container (MC) and a Secondary Contai-
ner (SC). Each container is associated with a specific resource management policy, which
controls pVM’s resource mapping on physical resources. We implemented this architec-
ture by revisiting Linux instead of building a new pVM from scratch. By this way, we
propose a ready to use pVM.

The MC is intended to host tasks (i.e. processes) whose resource consumption is
constant (i.e. do not depend on uVM activities). Other tasks which depend on the acti-
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vity of a uVM are hosted in the SC. More precisely, pVM tasks are organized into four
groups : (T1) OS basic tasks (Linux in our case), (T2) tasks belonging to the datacenter
administration framework (e.g. novaCompute in OpenStack), (T3) VM management tasks
(create, destroy, migrate, etc.) and (T4) I/O management tasks (drivers and backends, see
Fig. 1.4). Tasks from T1 and T2, and almost all tasks from T3 (except VM destruction and
migration tasks) have a constant resource consumption and are executed in the MC. All
other tasks use resources according to uVMs activities and they are executed in the SC.
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Figure 2.1 – The new pVM architecture.

2.1.1 Resource management

As shown on Figure 2.1, at physical machine startup, the pVM is configured with as
many vCPUs as available physical processors (called cores). Each vCPU is pinned on a
core (one per core). A subset of vCPUs (therefore of cores) of the pVM is associated with
the MC (i.e. used for MC tasks). The rest of vCPUs are linked to the SC and their asso-
ciated cores are shared with uVMs. Therefore, when a core is reserved for a uVM (the
core is the allocation unit), two vCPUs are pinned on that core : the uVM’s vCPU and the
SC’s vCPU associated with that core. This allows the SC to execute the tasks correlated
with the uVM on its reserved core (therefore to charge the used resources to the uVM),
following the pay-per-use and locality rules. Regarding the on-demand rule, the MC is
allocated a fixed amount of resources (vCPU and memory) according to its constant load
and the SC is granted a variable amount of resources according to tasks scheduled on its
vCPUs.
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2.1.1.1 Resource management for the main container

The resources allocated to the MC must be on provider fee, as they are used for exe-
cuting datacenter administrative tasks (e.g. monitoring). These resources are constant and
can be estimated as they only depend on the datacenter administration system (OpenS-
tack, OpenNebula, CloudStack, etc.). Neither the number of VMs nor VMs’ activities
have an impact on MC resource consumption. Therefore, we use a static allocation for
MC resources at physical machine startup and these resources are located on a reduced
number of processor sockets. Through calibration, we can estimate the resource to be al-
located to the MC. The evaluation section (Section 4.4) provides such estimations for the
most popular cloud administration systems.

2.1.1.2 Resource management for the secondary container

The SC includes as many vCPUs as available cores on the physical machine, excluding
cores allocated to the MC. At physical machine startup, the SC hosts I/O tasks from the
split-driver model (see Fig. 1.4) for uVMs. Even if the I/O tasks are not active at this stage,
they require memory for initialization. This initial memory (noted SCInitialMem 1) is
very small and assumed by the provider. It will be also used for uVM destruction and
migration tasks. Algorithm 1 synthesizes the task scheduling policy in the SC. When a
uVM is at the origin of a task (e.g. for an I/O operation), one of its vCPU is scheduled-out
and its associated core is allocated to the SC’s vCPU mapped to that core, in order to
execute this task. The following sections detail the implementation of this algorithm for
I/O, destruction and migration tasks.

Algorithm 1 Task scheduling in the SC.
Input : T : an I/O task or VM administration task that should run within pVM
targetuVM=Identification of the target uVM

targetCPU=Pick a CPU which runs targetuVM
Schedule T on the pVM’s vCPU which is pinned on targetCPU

2.1.2 I/O scheduling in the SC

pVM’s tasks which are executing I/O operations on the account of uVMs are twofold :
backends and drivers. The challenge is to identify from the pVM the uVM responsible for
each task, in order to use one of its allocated processors for scheduling this task, and to

1. The amount of SCInitialMem depends on the number of backend tasks which is bound by the
number of vCPU in the SC. We estimated that SCInitialMem accounts for about 10MB per backend
instance in Xen as an example.
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Figure 2.2 – Packet reception workflow.

allocate I/O memory buffers as close to that processor as possible. Given that the split-
driver structure is both used for network and disk I/O, we describe in the following our
solution for networking tasks which are of two types : packet reception and emission from
a uVM.

2.1.2.1 Packet reception

For illustration, let us consider the Xen implementation (see Fig. 2.2), although the
description below could be applied to other hypervisors which rely on the split-driver
model. When the network adapter receives a packet, (r0) it places the packet in a queue
which was initially allocated in main memory and then triggers an interrupt. (r1) This
interrupt is transmitted to one of the processors of the physical machine by the IOAPIC.
(r2) The interrupt handler which lies in the hypervisor notifies to the pVM the presence of
a packet as follows. A vCPU from the pVM (generally vCPU 0) is notified (thanks to the
event channel mechanism) and is responsible for reacting to this event. The hypervisor
then boosts (prioritizes) this vCPU in its scheduler. When the vCPU is scheduled, it de-
tects the presence of an event and executes the event handler (r3). This handler generates
a softIRQ on one of the vCPU from the pVM. The handler of this softIRQ (r4) triggers
the treatment of the packet which will flow up in the network protocols. There are actually
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two ways of treatment : the traditional treatment which works on a per packet basis (we
call it OAPI for old API) and a new one (that we call NAPI for new API) which groups
message handling in order to reduce the number of interrupts. (r5) In both cases, the pa-
cket has to be copied from the queue to a skbuff structure (via the copybreak primitive)
and the network adapter can then be notified that the packet was well received. The packet
is then forwarded to the protocol stack according to the protocol identified in the packet
header. In a virtualized system, the destination of the packet is the bridge. (r6) The bridge
identifies from the packet header (which includes a target MAC address) the destination
backend. The packet then flows down in the protocol stack to the backend. (r7) On re-
ception, the backend shares with the destination uVM the memory pages which include
the packet (this is called page flipping) and sends a signal to that uVM. The intervention
of the pVM stops here and the packet continues its path in the uVM (starting from the
frontend).

In order to implement our Closer principle, the general orientation is to force the
execution of all ri steps on one of the processors of the target uVM and to allocate the
buffer for the packet on the same socket as that processor.

After step r0, the incoming packet has been inserted in a queue in main memory and
an interrupt triggered on one processor (generally processor 0). The main issue is then to
execute the other steps on a processor of the target uVM, while the target uVM is known
only at the level of the bridge (step r6). Regarding step r1, we rely on IRQbalance [53]
to balance interrupts between SC’s processors (associated with uVMs vCPUs). It does
not guarantee that interrupts will be handled by a processor from the target uVM, but it
ensures that the MC is not charged for these interrupt handlings, which will be uniformly
executed by uVMs processors. This is unfair for uVMs which execute less I/O operations,
but the unfairness is limited to step r1 and mitigated as follows. In the hypervisor, we
monitor the I/O activity of each uVM 2 and the notification of a vCPU from the SC (step
r2) is done in proportion to the I/O activity of each uVM (the uVM with the highest I/O
activity will receive more notifications on its processors, i.e. SC’s vCPUs pinned on these
processors will be more solicited). This solution (called hyperLB 3) is fair, but not precise
and inadequate regarding memory management, as the memory hosting the skbuff buffer
will be allocated on the local socket (of the selected processor from the most I/O loaded
uVM) which could be different from the socket of the final target processor. To prevent
such a situation, we perform the identification of the target backend (and therefore of the
target uVM) in step r4 (it was previously performed in step r6 in the bridge) and force
the execution of the following steps on one of the processors of that uVM. This solution
performs well in the OAPI case where each packet reception generates an interrupt and

2. The monitoring is implemented at the level of the interface between the pVM backend and the uVM
frontend.

3. LB stands for load balancing.
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the execution of all the steps for each packet. In the NAPI case, a single interrupt can
be generated for the reception of a group of packets (with different target uVMs), whose
treatment relies on a poll mechanism. We modified the poll function within the driver
(we did it for e1000, this is the only non generic code) in order to identify the target
uVM for each polled packet. In the rest of the document, we call NAPI-1 the per group
implementation while NAPI-n refers to the per packet implementation.

2.1.2.2 Packet emission

The out-going path is the reverse of the receive path presented in Fig. 2.2. Applying
our Closer principle is in this case straightforward since the uVM responsible for the I/O
activity is known from the beginning step. We simply enforce the hypervisor to notify
the vCPU of the SC associated with a processor of the uVM. Then, we modified the
pVM’s scheduler for the following steps to be executed on the same processor. The same
implementation is used for disk operations.

2.1.3 uVM destruction and migration scheduling in the SC

uVM destruction and migration are administration tasks which are also executed in the
SC. Logically, resources consumed by these tasks should be charged to the provider. In
our solution, this is effectively the case for memory (with the allocation of SCInitialMem
described above), but not for CPU which is charged to the concerned uVM. This is not a
problem as the goal is here to remove the uVM from the host, and it has a main advan-
tage : the proximity with the memory of the uVM.

2.1.3.1 uVM destruction

The most expensive step in the destruction process of a uVM is memory scrubbing [71].
This step can be accelerated if the scrubbing process executes close to the uVM memory
(following the locality rule). However, the current implementation consists of a unique
process which performs that task from any free vCPU from the pVM. Our solution is as
follows. Let Si, i≤ n be the sockets where the uVM has at least one vCPU. Let S′j, j ≤ m
be the sockets which host memory from the uVM. For each Si, a scrubbing task is started
on a vCPU from the SC, the processor associated with this vCPU being local to Si and
shared with a vCPU of the uVM. This task scrubs memory locally. The uVM memory
hosted in a S′j which is not in Si is scrubbed by tasks executing on other sockets (this
remote scrubbing is balanced between these tasks).
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2.1.3.2 uVM live migration

uVM live migration mainly consists in transferring memory to the destination ma-
chine. The current implementation consists of a unique process which performs the task
from any free vCPU from the pVM. The transfer begins with cold pages. For hot pages,
the process progressively transfers pages which were not modified between the previous
transfer and the current one. An already transferred page which was modified is transfer-
red again. When the number of modified pages becomes low or the number of iterations
equals five, the uVM is stopped and the remaining pages are transferred. Then, the uVM
can resume its execution on the distant machine. We implemented a distributed version of
this algorithm which runs one transfer process per socket hosting the uVM’s memory (si-
milarly to the destruction solution), thus enhancing locality. These processes are schedu-
led on SC’s vCPUs associated with free processors if available. Otherwise, the processors
allocated to the uVM are used.

2.2 Closer : Evaluations

This section presents the evaluation results of our revisited Linux and Xen prototype.

2.2.1 Experimental setup and methodology

Servers. We used two Dell servers having the following characteristics : two sockets,
each linked to a 65GB memory node ; each socket includes 26CPUs (1.70GHz) ; the net-
work card is Broadcom Corporation NetXtreme BCM5720, equidistant to the sockets ;
the SATA disk is also equidistant to the sockets. We used Xen 4.7 and both the pVM
and uVMs run Ubuntu Server 16.04 with Linux kernel 4.10.3. Unless otherwise specified,
each uVM is configured with four vCPUs, 4GB memory and 20GB disk.
Benchmarks. We used both micro- and macro-benchmarks, respectively for analyzing
the internal functioning of our solutions and for evaluating how real-life applications are
impacted. Table 2.1 presents these benchmarks.
Methodology. Recall that the ultimate goal of our proposed pVM architecture is to res-
pect the three rules of Closer, presented in Section 2.1 : on-demand resource allocation
(to avoid resource waste and enforce predictability), locality (to improve performance),
and pay-per-use (to prevent DoS attacks). As a first step, we separately demonstrate the
effectiveness of our architecture for each principle. Notice that the evaluation of a given
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Table 2.1 – The benchmarks we used for evaluations.

Type Name Description

Micro

Memory A memory intensive application - live migration evaluation.
It builds a linked list and performs random memory access
as in [94]. It has been written for the purpose of this article.

Netperf [34] Sends UDP messages - network evaluation. The perfor-
mance metric is the average request latency.

dd Formatting a disk file - disk evaluation. It is configured in
write-through mode. The performance metric is the execu-
tion time.

Macro

Wordpress [103] Website builder - network evaluation. We used the 4.8.2 ver-
sion. The performance metric is the average request latency.

Kernbench [44] Runs a kernel compilation process - disk evaluation. We
compiled Linux kernel 4.13.3. Data caching is disabled. The
performance metric is the execution time.

Magento [56] ECommerce platform builder - both network and disk eva-
luation. We used the 2.2.0 version. The performance metric
is the average request latency.

principle may not include all contributions. Therefore, a final experiment is realized with
all the contributions enabled. For each experiment, we compare our solution with the com-
mon pVM’s resource allocation strategy (referred to as Vanilla pVM, Vanilla for short).
In the latter, a set of resources, which are located at the same place, are dedicated to the
pVM. Otherwise specified, we dedicate a NUMA socket and its entire memory node to
the pVM, corresponding to an oversized allocation.

2.2.2 Resource allocation to the MC

In our solution, MC’s resources are statically estimated by the provider. We estima-
ted MC’s resources for the majority of cloud management systems namely : OpenStack
Ocata [78], OpenNebula 5.2.1 [77] and Eucalyptus 4.4.1 [72]. For each system, we relied
on the default configuration and measured its resource consumption. The results, based
on our testbed, are presented in Table 2.2. We can see that very few resources are needed
for performing all MC’s tasks. Our experiments also confirmed that MC’s needs do not
depend on the IaaS size.
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Table 2.2 – MC’s needs for three cloud management systems.

OpenStack OpenNebula Eucalyptus

# vCPUs 2 2 1

RAM (GB) 2 1.85 1.5

2.2.3 Locality benefits

We evaluated the benefits of locality on both administrative (uVM destroy and uVM
migration) and I/O tasks. Recall that we provide locality by enforcing the execution of
SC’s vCPUs on the same socket as the concerned uVM. In order to only evaluate locality
benefits, SC’s vCPUs do not use uVM’s CPUs (unless otherwise specified).

2.2.3.1 Administrative task improvement

The effectiveness of our uVM destruction solution is obvious and has been well de-
monstrated in [71] (We do not claim this innovation and we recommend to refer to [71]).
We focus on the novel multi-threaded migration solution we propose, whose effective-
ness is not obvious due to the management of dirty pages. To this end, we evaluated our
solution when the migrated uVM runs an intensive Memory benchmark. We experimen-
ted with different uVM memory sizes (4GB-20GB). For every experiment, the uVM’s
memory is equally spread over the two NUMA nodes of the server. We considered two
situations (noted C1 and C2) : in C1, migration threads do not share the uVM’s CPUs
(assuming there are free CPUs available on the socket for migration) while they do in
C2 (assuming there aren’t any available free CPU, the socket which runs the uVM being
fully occupied). Fig. 2.3 presents the evaluation results (lower is better). We can see that
our solution outperforms Vanilla in all experimented situations. The improvement is most
important with large uVMs (up to 33% in C1, see Fig. 2.3). Intuitively, one can imagine
that the improvement will also increase when the number of sockets hosting the uVM’s
memory increases. C1 slightly outperforms C2 (up to 4%), justifying our strategy to only
use the uVM’s CPUs when there is no free CPU on the involved sockets.

2.2.3.2 I/O task improvement

We evaluated the benefits of running pVM’s tasks that are involved in a uVM’s I/O
activity on the same socket as that uVM. We evaluated both network and disk activities.
Concerning the former, we evaluated each version presented in Section 2.1.2, namely :
hyperLB at hypervisor level ; OAPI, NAPI-1 or NAPI-n at the pVM level. For these eva-
luations, we used a constant low load (100 req/sec).
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Figure 2.3 – Multi-threaded migration process (lower is better). The uVM runs a memory
intensive application.

Packet reception with a single uVM
The uVM is configured with 4vCPUs (all located on the second socket) and 4GB me-
mory. Another server runs Netperf. We are interested in the following metrics : (t1) the
treatment duration before the backend invocation (this includes r3−6 steps, see Fig. 2.2) ;
(t2) the time taken by the backend to inform the frontend (step r7) ; and (t3) the time taken
by the frontend to transfer the packet to the application’s buffer. Fig. 2.4 left presents the
evaluation results of each ti while varying packet size. Here, all versions provide almost
the same values, thus they are shown under the same label (Our-sol.) in Fig. 2.4 left. We
can see that our solution minimizes all ti in comparison with Vanilla, leading to a low
t1 + t2 + t3 (up to 36.50% improvement).

Packet reception with multiple uVMs
The previous experiments do not show any difference between our implementation ver-
sions. The differences appear only when the server runs several uVMs. To this end, we
performed the following experiment. The testbed is the same as above in which a second
uVM (noted d2, the first one is noted d1) runs on the first socket (the same which runs the
MC). The two uVMs receive the same workload. We are interested in d1’s performance
and we compare it with its performance when it runs alone (as in the previous experi-
ments). Fig. 2.5 left presents t1 + t2 + t3 normalized over Vanilla. We can see that OAPI
and NAPI-n outperform NAPI-1 by about 21%. This is because NAPI-1 (which does a
batch treatment) fails in choosing the correct target uVM for many request in r4. This is
not the case neither in OAPI nor in NAPI-n which are able to compute the correct des-
tination for each packet. Fig. 2.5 right presents the amount of errors (wrong destination)
observed for each implementation version. Thus, in further experiments, "our solution"
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Figure 2.4 – Packet reception (left) and packet emission (right) improved by locality. (lo-
wer is better)
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Figure 2.5 – Packet reception improved by locality : multiple uVMs evaluation. Results
are normalized over Vanilla (lower is better).

Packet emission
The testbed here is the same as in the experiment with packet reception and a single
uVM, except the fact that Netperf runs inside the uVM. Remember that packet emission
is agnostic about the different implementation versions of our solution (see Section 2.1.2).
We are only interested in t1 and t2 (t3 is constant). Fig. 2.4 right presents the results. We
can see that thanks to locality, our solution improves (minimizes) t1 by up to 42.33% for
large packets in comparison with Vanilla. Compared with packet reception results, the
improvement is more significant here because in the case of packet emission with Vanilla,
memory is allocated (on emission) on the uVM socket and pVM’s I/O tasks access the
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packet remotely. This is not the case with packet reception since the packet enters the
machine via the pVM’s socket (therefore, packet handling is more important in the pVM
than in the uVM).
Disk operations
The testbed here is the same as above except the fact that the benchmark is dd. The uVM’s
hard disk is configured in write-through mode in order to avoid caching. The collected
metric is the execution time. We evaluated different write block sizes. Fig. 2.6 presents
the results. We can see that our solution outperforms Vanilla, especially with large blocks
(up to 22% improvement).

0

10

20

30

40

50

60

256 512 1024 2048

E
xe

c.
ti

m
e

(s
ec

)

Block size (MB)

Vanilla Our-sol

Figure 2.6 – Disk operations (from dd) improved by locality. (lower is better).

Macro-benchmark improvement
We also evaluated the benefits of locality on macro-benchmarks. The testbed is the same
as above in which the benchmark is replaced by a macro-benchmark. Fig. 2.7 left presents
the results normalized over Vanilla. We can see that all the benchmarks are improved with
our solution : about 25% for wordpress, 21% for Kernbench, and 30% for Magento.

2.2.4 Pay-per-use effectiveness

We validated the effectiveness of our architecture in charging to uVMs resources
consumed by the pVM on their behalf. This includes demonstrating that MC’s resource
consumption remains constant regardless uVMs activities. We also evaluated the fairness
of our solution, meaning that each uVM is charged proportionally to its activity. We only
present the evaluation results for the packet reception experiment (which is the most sen-
sitive one, packet emission and disk operations being less tricky regarding pay-per-use).
To this end, we used the same testbed as previously. The server under test runs three uVMs
(noted vm1, vm2, and vm3), each configured with two vCPUs. They share the same socket
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and each vCPU is pinned to a dedicated CPU. vm1, vm2, and vm3 respectively receives
1000req/sec (which accounts for 10% of the total load), 3000req/sec (30% of the total
load) and 6000req/sec (60% of the total load). In this experiment, we do not care about
memory locality. We collected the following metrics : MC’s CPU load, and the proportion
of CPU time stolen by SC’s vCPUs from each uVM (this represents the contribution of
the uVM, used for fairness evaluation).
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Figure 2.7 – (left) Macro-benchmarks improved by locality. The results are normalized
over Vanilla (the first bar). (right) MC’s CPU load.

Fig. 2.7 right shows MC’s CPU load consumption while Fig. 2.8 presents each uVM
contribution. In Fig. 2.7, the ideal solution is the one which leads to no CPU consumption
in the MC, meaning that the MC is not impacted by uVMs activities. The load reported
for Vanilla is relative on the MC reserved capacity (e.g. 100% for Vanilla means that its
CPU consumption is equivalent to the entire MC capacity). We can see that all our im-
plementation versions are close to the ideal value, the best version being OAPI/NAPI-1
combined with hyperLB-On while the worst one is NAPI-n with hyperLB-Off. But the
difference between these versions is very low, meaning that the activation of hyperLB is
not necessary. In other words, r3’s CPU consumption is negligible. Therefore, in Fig. 2.8,
we only present results with hyperLB-Off (hyperLB-On provides the same results). The
ideal solution is the one which provides the expected result (the first bar). The latter cor-
responds to the proportion of the uVM’s I/O traffic in the total traffic generated by all
uVMs. We can see that except NAPI-1, both OAPI and NAPI-n ensure fairness.

2.2.5 All together

We evaluated our solution when locality and pay-per-use mechanisms are enabled at
the same time. The testbed is the same as above where macro-benchmarks replace micro-
benchmarks. We tested all possible colocation scenarios. Our solution is compared with
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Figure 2.8 – Fairness of our solutions. (close to the first bar is better).

Vanilla when the pVM is allocated the same amount of resources as the MC. Given a
benchmark, the baseline value is the one obtained when it runs alone. Having already
discussed the impact on performance, the interesting subject here is performance predic-
tability. Several studies [31, 59, 92] showed that this issue may occur when the pVM is
saturated due to uVMs activities. We also compared our solution with [92] (called Teabe
here). The latter presented a solution which ensures that the aggregated CPU time (in-
cluding the one generated inside the pVM) used by a uVM cannot exceed the capacity
booked by its owner. Fig. 2.9 presents the results for Kernbench using the best implemen-
tation version (NAPI-n with HyperLB-Off ), all benchmarks running at the same time. In
Fig. 2.9, each evaluation <situation>-<solution> is done in a given situation and with
a given solution. Situation can be alone or col (for colocation of the 3 benchmarks) and
Solution identifies the used solutions (all is our full solution). We can see that Teabe
enforces predictability as our solution : in Fig. 2.9 alone-all is almost equal to col.-all ;
and alone-Teabe is almost equal to col.-Teabe. However, our solution improves applica-
tion performance thanks to our locality enforcement contribution : alone-all (respectively
col.-all) performs better than alone-Teabe (respectively col.-Teabe). As mentioned above,
the improvement will increase when the number of sockets hosting the uVMs memory
increases. Fig. 2.9 also shows the results reported in the previous sections so that the we
can easily appreciate on the same curve the impact of each contribution.
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2.3 Comparison with state-of-the-art techniques

2.3.1 pVM management tasks

Several research studies have investigated pVM management task improvements. Most of
them have focused on uVM creation [45, 46, 48, 55, 57, 71, 81, 112, 113, 116] and migra-
tion [2, 39, 47, 70, 88, 102] in order to provide reactive applications (quick elasticity) and
consolidation systems. Very few of them exploit locality to improve these management
tasks as we do.

2.3.1.1 Scrubbing

Related to our scrubbing optimization, a Xen patch [105] was proposed to delay the scrub-
bing process and perform it during idle CPU cycles. Contrarily to our solution in which
scrubbing is done synchronously with uVM destruction, [105] has the drawback of letting
a completely arbitrary amount of time be spent before the memory is available again, in-
troducing a lot of non-determinism. [71] presents a solution which is quite similar to the
one we proposed.

2.3.1.2 Live migration

Concerning live migration improvement, we didn’t find any solution using a multi-threaded
algorithm in order to execute in parallel and close to the migrated uVM’s memory as we
do.
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2.3.2 I/O virtualization

Regarding I/O virtualization improvement, existing solutions either act at the hypervisor
scheduler level [3, 75, 91, 107, 108, 110] in order to minimize the scheduling quantum
length thus minimizing I/O interrupt handling latency.

2.3.3 pVM resource billing

Very few researchers studied pVM resource utilization (on behalf of uVMs) from the pay-
per-use perspective. To the best of our knowledge, [31] and [92] are the only studies which
investigated pVM’s resource partitioning as we do. [31] is limited to mono-processor
machines while [92] leads to resource waste.

2.4 Summary

We identified several issues related to the design of the pVM in today’s virtualiza-
tion systems. These issues arise from the fact that current pVMs rely on a standard OS
(e.g., Linux) whose resource manager does not consider the correlation between pVM’s
tasks and uVM’s activities. These issues lead to resource waste, low performance, per-
formance unpredictability, and vulnerability to DoS attacks.
To take into account this correlation between virtual machines, we introduce Closer, a
principle for implementing a suitable OS for the pVM. Closer promotes the proximity
and the utilization of uVMs resources. It influences the design of the pVM with three
main rules : on-demand resource allocation, pay-per-use resource charging and locality
of allocated resources in a NUMA architecture. We designed a pVM architecture which
follows Closer and demonstrated its effectiveness by revisiting Linux and Xen. An eva-
luation of our implementation using both micro- and macro-benchmarks shows that this
architecture improves both management tasks (destruction and migration) and applica-
tion performance (I/O intensive ones), and enforces predictability. However, it will be
interesting to perform more evaluations under more stressful network conditions.
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3
Mitigating pVM resource placement

effects on zero-copy approach

In this chapter, we present our contribution that aims at addressing
pVM resource placement effects on zero-copy (memory flipping) on
NUMA architectures. We propose two approaches (§3.1 and §3.2) and
report evaluation results (§3.3). Lastly, we present a comparative study
with state-of-the-art approaches (§3.4).
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As stated in §1.2.1.2, in a NUMA architecture, the trend is to grant an entire NUMA
node to the pVM to isolate its resources from those of uVMs. However, in this confi-
guration, memory flipping tends to disrupt the NUMA topology of uVMs and result in
performance degradation. To cope with this situation, we propose two solutions to reduce
the impact of memory flipping on a VM running on a NUMA architecture. The solutions
we propose have been implemented within Xen hypervisor but can be easily integrated
into other hypervisors implementing the vNUMA option.

3.1 Dedicated page pool for memory flipping

With the current implementation within Xen, after a flipping operation, uVM memory
pages that are relocated on the pVM node can be subsequently used by applications after
the uVM OS frees them. Our first solution aims to limit the number of memory pages that
can be remote for an uVM and prevent these pages from being used by applications. At
the startup of an uVM, we create a pool of pages dedicated to memory flipping. Let’s call
poolSize the size of the pool. Other applications in the uVM cannot use these pages. After
a memory flip, pages of uVM relocated on the pVM node are not freed anymore but are
instead added to the pool to replace the pages that have been yielded to the pVM to will
be used for subsequent flips and will be relocated on the pVM node. Thus, our solution
limits the number of pages that can become remote for the uVM and also ensures that any
other application cannot use these remote pages.

Fig. 3.1 illustrates our solution’s functioning in a simple scenario with the pVM run-
ning on node 1 and an uVM running on node 2. At step (1), all the pages of our uVM are
on their initial node, and some pages are placed in the page pool for memory flipping.
After a memory flip on a single page in step (2), a page of uVM is now on the pVM node.
But this page cannot be used by any application in the uVM because it is part of the page
pool dedicated to memory flipping. In step (4), after two successive memory flips, we can
observe that only pages in the pool are used for flipping, limiting the number of pages
from the uVM that can be remote. A key point of this solution is the poolSize value. We
can use two approaches to define this value for a VM : the first is static while the second
is dynamic.

3.1.1 Static value for poolSize

This approach consists of assigning a static value to poolSize for a VM. This value is
obtained by calibration. The latter is done by running several I/O applications in a VM
and monitoring for each application the number of pages needed for the memory flipping.
Then, we can use the highest number of pages required as the value of poolSize. This
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Figure 3.1 – Illustration of the dedicated page pool for memory flipping.

approach has two big disadvantages : (1) calibration is a fastidious task which requires
a lot of time and (2) with new application types appearing every day in the cloud, we
cannot ensure that a single value of pooSize will always be suitable, hence the need for a
dynamic solution.

3.1.2 Dynamic value for poolSize

The dynamic approach, which we advocate, consists of setting initially an arbitrary
value (we call it poolSizeinit) for the poolSize of a VM. The value of poolSizeinit must be
lower than the VM’s total. Then, during the execution of an I/O application in the VM,
poolSize is adjusted according to the activity. Algorithm 2 presents the algorithm used
to adjust poolSize. At each memory flip, we compute the pool percentage, which is used
(line 1). If the percentage is greater than 90%, we increase the pool size by 10% (line 3).
And similarly, if the percentage is less than 20%, we decrease the pool size by 10%. 90%
and 20% are thresholds we obtained after conducting experiments to decide which are
suitable to determine when to decrease and increase the poolSize.

47



Chapitre 3. Mitigating pVM resource placement effects on zero-copy approach

Algorithm 2 Dynamic poolSize estimation algorithm
1: compute used_poolSize
2: if used_poolSize > 90% then
3: add 10% of poolSize
4: else if used_poolSize < 20% then
5: remove 10% of poolSize
6: end if
7: set new poolSize value

3.2 Asynchronous memory migration

This solution repatriates the remote pages of an uVM, by migrating them asynchro-
nously to their initial node. Initially, we let memory flipping behave normally. But at a
given time, this solution starts a process that migrates the pages that have been relocated
on the pVM node back to the uVM nodes. This allows the uVM to recover its initial topo-
logy and avoid remote memory access for running applications. Fig. 3.2 presents a simple
example of how this solution works on two nodes. In step (1), all the memory of the uVM
is on the initial node. In step (2) and (3) we have two consecutive flips on memory pages.
In step (4), our solution migrates the pages of the uVM to their initial node, which allows
recovering the initial topology. Defining the frequency and the condition in which the
memory migration process has to be started is the main problem with this solution. Two
approaches can be used : the first is periodic, and the second based on the amount of uVM
memory turned remote.

3.2.1 Periodic memory migration

In this approach, we set a period (we call it period f lip) which defines when remote
pages of an uVM will be relocated back to their initial nodes. The administrator can set
period f lip when starting the VMs. A big value is not suitable because the amount of
remote memory can become huge before the migration process gets activated. In contrast,
a small value can lead to significant overhead. In the evaluation section, we give more
details about the order of magnitude for period f lip.

3.2.2 Based on the amount of remote memory

In this approach, we launch the migration process when an amount of remote memory
(we call it remote_memSize) is reached for an uVM. The administrator sets remote_memSize
at the startup of a VM. In the evaluation section, we give more details about the order of
magnitude of remote_mem.

Independently of the design used, the migration process is handled by the pVM re-
sources.
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Figure 3.2 – Illustration of the asynchronous memory migration.
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Figure 3.3 – uVM memory layout after running Big Bench : (a) for vanilla Xen, (b) for
the page pool solution and (c) for the asynchronuous memory migration

This section presents the evaluation results of our solutions. We implemented proto-
types of our solutions in Xen 4.7 [11].
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3.3.1 Experimental setup and methodology

Servers. We used two Dell servers with the following characteristics : two sockets, each
linked to a 65GB memory node ; each socket includes 26CPUs (1.70GHz) ; the network
card is Broadcom Corporation NetXtreme BCM5720, equidistant to the sockets ; we used
Xen 4.7 and both pVM and uVM run Ubuntu Server 14.04 with Linux kernel 4.10.3.
Otherwise specified, we configure each uVM to use vNUMA option with 16 vCPUs and
16GB of memory on a single NUMA node and 20GB of disk ; the pVM has a dedicated
NUMA node for its execution.

Benchmarks. We used well known macro-benchmarks for analyzing the impact of me-
mory flipping on the NUMA topology of an uVM and evaluate its impact on application
performance.

Table 3.1 – Benchmark descriptions

Name Description

Big Bench. [30] BigBench is an open-source big data benchmark suite. Big
Bench proposes several benchmark specifications to mo-
del five important application domains, including search en-
gine, social networks, ecommerce, multimedia data analy-
tics and bioinformatics. The metric used for this benchmark
is the execution time.

LinkBench. [10] LinkBench is a database benchmark developed to evaluate
database performance for workloads similar to those of Fa-
cebook’s production MySQL deployment. The metric used
for this benchmark is the execution time.

Stream benchmark. [58] Stream is a simple synthetic benchmark program that mea-
sures sustainable memory bandwidth (in GB/s) and the cor-
responding computation rate for simple vector kernels. The
metric used for this benchmark is the memory bandwith.

Configurations of our solutions. We start with the page pool solution. In our evaluation,
knowing all the obvious disadvantages of the static approach (see Secion 3.1), we decided
to use only the dynamic approach to set the value of poolSize (see Secion 3.1). The value
of poolSizeinit is set to 500MB during the evaluation.

For asynchronous memory migration, the results we present are those obtained with
the second approach (the migration process is started when a given amount of remote
pages is reached, see Secion 3.2). We observed that with the best value for period f lip
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(900sec) and remote_memSize (500MB), the benchmarks have the same performance.
Therefore, we decided to present only the results of the second approach with remote_memSize
set to 500MB.

Methodology. Our evaluation aims to show that :

• our solutions can limit the amount of memory that becomes remote ;

• application performance is not impacted when our solutions are used.

The experimental procedure we used is similar to the one in Section 1.2.2. The procedure
was repeated with vanilla Xen (with memory flipping), and with both of our solutions.
Initially, we run the Stream or LinkBench benchmark and measure the performance (first
run). Then, we execute Big Bench which is configured to perform I/O operations with
another VM on a second server. During the execution of Big Bench, we continuously mo-
nitor the memory layout of our uVM. Then, we rerun the Stream or LinkBench benchmark
to obtain the new performance level (second run). This procedure is executed with vanilla
Xen and both of our solutions.
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Figure 3.4 – (a) Stream and (b) LinkBench benchmark results.

3.3.2 Results analysis

Fig. 3.3 and Fig. 3.4 show the results of these experiments. Fig. 3.3 presents the me-
mory layout of the uVM during Big Bench execution. We observe that with vanilla Xen,
after 180 minutes of execution, about 25% of the memory of the uVM was moved to ano-
ther node (Fig. 3.3(a)), thus modifying its NUMA topology. With both of our solutions,
we observe that the amount of displaced memory is kept very small. This can be observed
in Fig. 3.3(b) (page pool) and (c) (memory migration). Only a very little percentage (3%)
of the memory is remote. Fig. 3.4 (a) and (b) present respectively the results for the Stream
and LinkBench benchmarks, and the number of remote allocations. The solid lines in the
histogram boxes of Fig. 3.4 represent the number of remote allocations during the execu-
tions (the axis to which it refers to is on the right). We can observe that the throughputs
obtained with our solutions for the Stream benchmark (Fig. 3.4 (a)) are very close for the
first and second run (the higher the better). This is not the case with vanilla Xen which has
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a performance degradation of about 13%. There isn’t any remote allocation with memory
flipping during the first run of the Stream benchmark, but this is not the case during the
second run. This explains the performance degradation of the Stream benchmark. With
our solutions, the number of remote allocation remains constant and nul. We observe a
similar behavior with LinkBench in Fig. 3.4 (b).

3.4 Comparison with state-of-the-art approaches

Several research studies have investigated improvements of I/O operations and NUMA
handling in virtualized environements. This state of the art is organized according to these
two topics.

3.4.1 I/O virtualization (again)

The integration of I/O devices in virtualized environments has always been a subject
of primary importance. Many research works investigated the improvement of I/O ope-
rations’ performance. We can distinguish three main categories of work according to the
implementation level : (1) hardware-level works which focus on hardware modification to
improve the I/O performance [61], (2) hypervisor level works which propose new sche-
duling approaches to reduce the latency of I/O requests [108, 111] and finally, (3) guest
OS-level works which focus on the optimization the software layer for the I/O processing
in the uVM and the pVM [107]. Works on memory flipping and memory copy techniques
are in this third category. The introduction of para-virtualization with Xen (which is the
flagship) pushed the hypervisor designers to propose more efficient I/O architecture, lea-
ding to the split driver model. The latter allows isolation for fault tolerance while offering
interesting performance compared to full virtualisation. The first implementation of the
split driver model within Xen was based on the memory copy. But the performance of
applications with this approach was very low and had to be improved. Therefore, Xen in-
troduced memory flipping, which ensures zero memory copy during the processing of I/O
operations. Several works have studied the split driver model and the frontend/backend
communication mechanism [17, 107]. The most interesting of these works proposes esta-
blishing a shared memory region between all the VMs for implementing front-end/back-
end communication [17]. This approach seems attractive because it provides much better
performance for I/O applications than memory flipping and avoids the problem we solve.
However, a critical limitation of this approach, which is significant considering that we
are in the context of the Cloud, is security. Indeed, establishing a shared memory region
between all the VMs breaks VM isolation and opens a gateway to many exploits from
malicious hackers.
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3.4.2 NUMA virtualization

NUMA management is ubiquitous in both virtualized and non-virtualized environ-
ments. Since NUMA architecture’s appearance, many scientific works have focused on
handling NUMA in non virtualized environments [23, 52]. Generally, studies on NUMA
in virtualized environments are simple translations of solutions in non-virtualized en-
vironments [100]. The main question that researchers had to answer is where NUMA
specificities should be handled : in the hypervisor or in the guest OS. Most hypervisors
(Xen, VMWare, and Hyper-V) have adopted a simple solution called vNUMA. The lat-
ter consists of presenting the VM’s NUMA topology to the guest OS and preserving this
topology (by disabling operations that would modify it). This solution is straightforward
because it allows the guest OS to benefit from all the already implemented kernel optimi-
zations for NUMA. However, some studies demonstrated that this approach is not suitable
for some applications requiring a dynamic NUMA approach [100].

3.4.3 Position of our approaches

At the time of writing this dissertation, we are the first work which addresses the pro-
blem of the compliance between vNUMA and memory flipping, which are techniques
used by almost all hypervisors. The only existing solution is that of Xen which relies on
memory copy, thus degrading I/O performance in VMs. Our solutions keep the locality
benefits in NUMA architectures while also maintaining good performance for I/O appli-
cations.

3.5 Summary

We observed that after a significant number of memory flips, a substantial part of
the memory of uVMs is moved to the node of the pVM, thus modifying their NUMA
topology and forcing these VMs to make remote memory access. This situation hurts
application performance in the VMs. We proposed two solutions that attempt to enforce
a static NUMA topology for VMs despite memory flipping. We have implemented and
evaluated our solutions in the Xen hypervisor. The evaluation shows that our solutions
allow us to get close to a static topology for VMs, limiting remote memory access and
providing better performance than vanilla Xen for I/O applications.
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4
Improving pVM fault tolerance

In this chapter, we present our contributions regarding the
pVM fault tolerance. We present PpVMM, which relies on 3
major principles (§4.2). Next, we present some implementation
details (§4.3) and report evaluation results obtained (§4.4)
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4.1. Xen pVM’s — dom0 overview

At this level, we perceive the vital role of the pVM in most Type-I hypervisors. The
pVM hosts critical services to administrate and manage uVMs. For this reason, the pVM
represents a single point of failure and is an excellent target for security attacks. Moreo-
ver, the pVM commonly relies on a standard mainstream OS (e.g., Linux), which has
a larger code base than hypervisors (which a higher growth rate — see Table 4.1). For
this reason, the pVM is more bug-prone than hypervisors. pVM failures can result in the
inability to connect to the physical server, manage user VMs, and interrupt networked ap-
plications running in user VMs. Surprisingly as mentioned in §1.2.3, pVM fault tolerance
has received little attention from the research community, and existing approaches [20]
result in unacceptable overhead (up to 1300×). In the next sections, we present PpVMM
(Phoenix pVM-based VMM), a holistic fault tolerance solution for the pVM. We use the
Xen virtualization as a case study. PpVMM assumes the hypervisor layer is reliable (via
solutions such as [16, 60, 115]). But before the main dish, let’s give a rapid overview of
Xen’s pVM (the dom0) services.

Xen Hypervisor Linux-based pVM Linux
Xen

#LOC in 2003 187,823 3.72 Million 19.81

#LOC in 2019 583,237 18.5 Million 31.76

#LOCin2019
#LOCin2003 3.11 4.98 1.6

Table 4.1 – Evolution of source code size for the Xen hypervisor and a Linux-based pVM.
LOC stands for "Lines of Code". For Linux, we only consider x86 and arm in the arch
folder. Also, only net and block are considered in drivers folder (other folders are not
relevant for server machines). We used Cloc [6] to compute the LOC.

4.1 Xen pVM’s — dom0 overview

The dom0 is a Linux system that hosts an important portion of the local virtualization
system services, namely (i) the domU life-cycle administration tool (xl), (ii) XenStore,
and (iii) I/O device drivers. The xl tool stack [106] provides domU startup, shutdown,
migration, checkpointing, and dynamic resource adjustment (e.g., CPU hotplug). XenS-
tore is a daemon implementing a metadata storage service shared between VMs, device
drivers, and Xen. It is meant for configuration and status information rather than for large
data transfers. Each domain gets its path in the store, which is somewhat similar in spirit
to the Linux procfs subsystem. When values are changed in the store, the appropriate
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components are notified. Concerning I/0 devices, dom0 hosts their drivers and imple-
ments their multiplexing, as follows. Along with I/O drivers, dom0 embeds proxies (cal-
led backend drivers) that relay incoming events from the physical driver to a domU and
outgoing requests from a domU to the physical driver. Each domU runs a pseudo-driver
(called frontend), allowing to send/receive requests to/from the domU-assigned backend
(see Figure 1.4).

Table 4.2 summarizes the negative impact of the failure of dom0 with respect to each
service that it provides. We can see that both cloud management operations (VM start,
stop, migrate, update) and end user applications can be impacted by a dom0 failure.
Concerning the former, they can no longer be invoked in case of dom0 failure. Regar-
ding user applications, those which involve I/O devices become unreachable in case of
dom0 failure. Table 4.2 also shows that XenStore (XS) is the most critical dom0 service
because its failure impacts all other services and user applications.

VM manangement operations

(impact the cloud provider)

Application operations

(impact cloud users)

Start Stop Migrate Update
Net

I/O

Disk

I/O

CPU/

Mem

Tools A A A A

Net A S

Disk A S

XS A A A A S S S

Table 4.2 – Impact of the failure of the different dom0 services (xl tools, network/disk
drivers, XenStore) on the VM management operations and on the applications (in user
VMs). An “A” mark indicates that the failure always leads to unavailability while a “S”
mark denotes correlated failures that occur only in specific situations.
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4.2 PpVMM Design

This section presents the basic idea behind PpVMM and the general fault model that
we target.

4.2.1 Basic idea

Our solution, named PpVMM (Phoenix pVM-based VMM), is based on three main
principles. The first principle is disaggregation (borrowed from Xoar [20]), meaning that
each dom0 service is launched in an isolated unikernel, thus avoiding the single point of
failure nature of the vanilla centralized dom0 design. The second principle is specializa-
tion, meaning that each unikernel embeds a FT solution chosen explicitly for the dom0
service that it hosts. The third principle is pro-activity, meaning that each FT solution
implements an active feedback loop to detect and repair faults quickly.

Driven by these three principles, we propose the general architecture of our FT dom0
in Figure 4.1. We interpret the latter as follows. dom0 is disaggregated in four uniker-
nels, namely XenStore_uk, net_uk, disk_uk, and tool_uk. Some unikernels (e.g., device
driver unikernels) are made of sub-components. We equip each unikernel and each sub-
component with a feedback loop that includes fault detection (probes) and repair (actua-
tors) agents. Both probes and actuators are implemented outside the target component.We
associate our (local) dom0 FT solution with the (distributed) data center management
system (e.g., OpenStack Nova) because the repair of some failures may require a global
point of view. For instance, VM creation request’s failure due to a lack of resources on
the server may require to retry the request on another server. The data center management
system can only take this decision. Therefore, each time a failure occurs, our system’s
first step repair solution is performed locally on the actual machine. Then, if necessary, a
notification is sent to the data center management system.

A global feedback loop coordinates per-component feedback loops to handle concur-
rent failures. The latter requires a certain repair order. For instance, the failure of XenS-
tore_uk is likely to cause the failure of other unikernels since XenStore acts as a storage
backend for their configuration metadata. Therefore, XenStore_uk repair should be laun-
ched first, before the repair of the other unikernels. We implement the global feedback
loop inside the hypervisor, which is the only component that we assume to be safe.

4.2.2 General fault model

This section presents generically the pVM (dom0) fault model that we target. Ad-
ditional details are given in the next sections for each component. In the disaggregated
architecture on which we build our FT solution, the dom0 components can be classified
into two types : stateful (XenStore_uk) and stateless (net_uk, disk_uk, and tool_uk). We
assume that all components may suffer from crash faults and that stateful components can
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Figure 4.1 – Overall architecture of our FT pVM design.

also suffer from data corruption faults. Crash faults may happen in situations in which a
component is abruptly terminated (e.g., due to invalid memory access) or hangs (e.g., due
to a deadlock/livelock problem). These situations can make a component either unavai-
lable, unreachable, or unresponsive when solicited. For stateful components, we are also
interested in data corruption issues that may stem from various causes (e.g., an inconsis-
tency introduced by a software crash, a sporadic bug, or hardware “bit rot”). Furthermore,
our fault model encompasses situations in which several components are simultaneously
in a failed state (either due to correlated/cascading failures) or due to independent issues.
Besides, our work assumes that the code and data within the hypervisor component (i.e.,
Xen) are reliable or, more reasonably, that potential reliability issues within the hypervisor
are addressed with state-of-the-art fault tolerance techniques such as ReHype [60] (dis-
cussed in §4.5). Our design requires small and localized modifications (318 LOCs) to the
Xen hypervisor ; we believe that they do not introduce significant weaknesses in terms of
reliability.

4.3 Implementation

To build our disaggregated dom0 architecture, we leverage the unikernels developed
by the Xen project (Mini-OS and MirageOS). The motivation for these unikernels in the
context of the Xen project is to contain the impact of faults in distinct pVM components.
However, our contribution goes beyond the mere disaggregation of the pVM : we explain
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how to support fine-grained fault detection and recovery for each pVM component. This
section presents the implementation details of our fault tolerance (FT) solution for each
dom0 unikernel, except (due to lack of space) for disk_uk, which is relatively similar
to net_uk. For each unikernel, we first present the specific fault model that we target,
followed by the FT solution (Table 4.3 presents a summary of the code size for each
unikernel (existing code + modifications). Finally, the section presents the global feedback
loop (which coordinates the recovery of multiple components) and discusses scheduling
optimizations.

net_uk disk_uk tool_uk xenstore_uk

# Base LOCs 193k 350k 270k 8k

# Lines + 193 87 8 27

Table 4.3 – Lines of codes added to each unikernel codebase for fault tolerance.

4.3.1 XenStore_uk FT solution

XenStore is a critical metadata storage service on which other dom0 services rely.
XenStore_uk runs within the MirageOS unikernel [65].

4.3.1.1 Fault model.

We consider two types of faults. The first type is unavailability, meaning that XenS-
tore cannot handle incoming requests, due to bugs (hangs/crashes). The second type is
silent data corruption ; such issues may be caused by bit flips, defective hardware, or pos-
sibly malicious VMs (e.g., RowHammer attacks [19, 67]).

4.3.1.2 FT solution.

We use state machine replication and sanity checks to handle unavailability and data
corruption, respectively. The overall architecture is depicted in Figure 4.2. Note that the
memory footprint of a XenStore database is typically very small (lower than 1MB for 40
VMs).

Unavailability. We organize XenStore into several replicas (e.g., three in our default
setup). Each replica runs in a dedicated unikernel based on MirageOS [65]. The set of
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Figure 4.2 – Replication-based FT solution for XenStore.

replicas is managed by a coordinator running in a dedicated unikernel. Notice that the
coordinator (noted Cm) is also replicated (the replicas are noted Cr) for FT. Cm chooses a
XenStore replica to play the role of the master (noted XSm). Let us note the other XenStore
replicas XSr. Cm is the XenStore entry point for requests sent by XenStore clients. We
enforce this by modifying the xs_talkv function of the XenStore client library, used by
the other components. Cm forwards read requests only to XSm, while write requests are
broadcast to all replicas.

We implement this state machine replication strategy using the etcd coordination
system [27] deployed in a MirageOS unikernel. We choose etcd, because of its well-
established robustness and its relatively lightweight resource requirements (compared to
other coordination systems such as ZooKeeper [28]). Also, etcd has built-in support for
high availability through strongly-consistent replication based on the Raft consensus al-
gorithm [76]. In the rest of this section, we use the term etcd to refer to Cm and the Cr

replicas.

We improve etcd to provide both failure detection and repair strategies, as follows.
etcd is augmented with a heartbeat (HB) monitor for each XenStore replica. When a re-
plica does not answer to a heartbeat, etcd pro-actively replaces the replica with a fresh
version, whose state is obtained from another alive uncorrupted XenStore replica. This
recovery process does not interrupt request handling by other replicas. In case of the una-
vailability of XSm, etcd elects another master and forwards to it the in-progress requests
that were assigned to the crashed master. Cm exchanges heartbeat messages with the hy-
pervisor so that the latter can detect the simultaneous crashing of the former and the Cr

replicas. In fact, the failure of one coordinator instance can be handled by the other ins-
tances without the hypervisor’s intervention. The latter intervenes only when all instances
crash at the same time.
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Besides, we have modified the communication mechanism used between etcd and
the other components. Instead of leveraging its default communication interface based
on the HTTP protocol, we rely on virtual IRQs and shared memory. The motivation is
twofold. First, this reduces the communication overheads on the critical path. Second, the
utilization of HTTP would involve net_uk in the failure handling path of XenStore, thus
adding a dependence of the latter with respect to the former. This dependency would make
it challenging to handle cascading failures since net_uk already relies on XenStore.

To provide a highly available metadata storage service, an alternative design could
consist of using the etcd instances as a complete replacement for the XenStore instances.
This approach would reduce the number of unikernel instances and some communication
steps between the pVM components. We have tried to implement this approach, but the
achieved performance was significantly poorer : we observed request latencies that were
higher by up to several orders of magnitude (microseconds vs. milliseconds). Indeed,
XenStore and etcd are datastores with a fairly similar data model, but their implementa-
tions are optimized for different contexts (local machine interactions versus distributed
systems). In addition, the design that we have chosen helps limit the modifications to be
made to the implement the vanilla pVM components. In particular, this allows benefiting
from new features and performance optimizations integrated into the vanilla XenStore
codebase, e.g., regarding data branching and transactions.

Data corruption. This type of fault is handled by a sanity check approach implemen-
ted on all XenStore replicas, as described below. First, we make the following assump-
tion : for a given logical piece of information that is replicated into several physical copies,
we assume that there is at most one corrupted copy. Each etcd instance stores a hash of the
content of the latest known uncorrupted XenStore database state. Besides, a sanity check
agent (called checker) runs as a transparent proxy in each XenStore replica. Upon every
write request sent to the XenStore service, each checker computes a new hash, which is
forwarded to the etcd coordinator. If the hashes sent by all the replicas match, then this
new value is used to update the hash stored by all the etcd instances. Upon receiving a
read request, the master XenStore replica computes a hash of its current database state and
compares it against the hash sent by the coordinator. If they do not match, a distributed
recovery protocol is run between the etcd coordinators to determine if the corrupted hash
stems from the coordinator or the XenStore master replica. In the former case, the hash
of the coordinator is replaced by the correct value. In the latter case, the XenStore replica
is considered faulty, and the etcd coordinator triggers the above-mentioned recovery pro-
cess.

Total XenStore failure. In the worse case, all XenStore and/or etcd components can
crash at the same time. In our solution, this situation is detected and handled by the hy-
pervisor via the heartbeat mechanism mentioned above. The hypervisor relaunches the
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impacted component according to a dependency graph (see §4.3.4). However, an addi-
tional issue is the need to retrieve the state of the XenStore database. To tolerate such a
scenario without relying on the availability of the disk_uk (to retrieve a persistent copy of
the database state), we rely on the hypervisor to store additional copies of the XenStore da-
tabase and the corresponding hashes. More precisely, the hypervisor hosts an in-memory
backup copy for the database and hash stored by each replica and each replica is in charge
of updating its backup copy.

4.3.2 net_uk FT solution

Based on the Mini-OS unikernel [64], the net_uk component embeds the NIC driver.
Following the split driver model, it proxies incoming and outgoing network I/O requests
to/from user VMs. To this end, net_uk also runs a virtual driver called netback that in-
teracts with a pseudo NIC driver called netfront inside the user VM. The interactions
between netback and netfront correspond to a bidirectional producer-consumer pattern
and are implemented via a ring buffer of shared memory pages and virtual IRQs. Overall,
net_uk can be seen as a composite component encapsulating the NIC driver and the net-
back.

4.3.2.1 Fault model.

We are interested in mitigating the unavailability of net_uk. The latter can be caused
by a crash of the NIC driver, the netback, or the whole unikernel. We assume that a fault in
the NIC driver or the netback does not corrupt the kernel’s low-level data structures. This
is a viable assumption as we can run the NIC driver in an isolated environment similar to
Nooks [90] or LXDs [69].

4.3.2.2 FT solution.

Our approach aims at detecting failures at two levels : a coarse-grained level when
the whole unikernel fails and a fine-grained level for the NIC driver and netback failures.
Before presenting the details of our solution, we first provide a brief background on the
design of the I/O path, using the reception of a new packet as an example.

Once the NIC reports the arrival of a packet, a hardware interrupt is raised and trapped
inside the hypervisor. The latter forwards the interrupt (as a virtual interrupt) to net_uk.
The handler of that virtual interrupt is then scheduled inside net_uk. In general, the inter-
rupt handler is organized in two parts namely top half (TH) and bottom half (BH). The
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top half masks off interrupt generation on the NIC and generates a softirq whose handler
is the bottom half. The latter registers a NAPI (“New API”) function, aimed at polling
for additional incoming network packets. The maximum number of packets that can be
pooled using this mechanism is controlled via a budget and a weight parameter. Upon its
completion, the bottom half unmasks interrupt generation by the NIC. Overall, this design
allows limiting the overhead of network interrupts.

To handle NIC driver failures, we leverage the shadow driver approach introduced
by Swift et al. [89]. The latter was proposed for bare-metal systems. We adapt it for a
Xen virtualized environment as follows. The original shadow driver approach states that
each (physical) driver to be made fault tolerant should be associated a with shadow driver,
interposed between the former and the kernel. This way, a failure of the target driver can
be masked by its shadow driver, which will mimic the former during the recovery period.
The shadow driver can work in two modes : passive and active. In passive mode, it simply
monitors the flow of incoming and completed requests between the kernel and the target
driver. Upon failure of the target driver, the shadow driver switches to the active mode : it
triggers the restart of the target driver (and intercepts the calls made to the kernel), and it
buffers the incoming requests from the kernel to the target driver (which will be forwarded
after the recovery process).

In our specific virtualized context, we do not create a shadow driver for each net_uk
component. Instead, we consider an improved version of the netback driver as the shadow
driver for both itself and the NIC driver (see Fig. 4.3.b). In this way, we reduce the num-
ber of shadow drivers and, as a consequence, the net_uk code base (complexity). When
a bottom half handler is scheduled, a signal is sent to the hypervisor, which records the
corresponding timestamp to. Once the execution of the bottom half ends, another signal is
sent to the hypervisor to notify completion (see Fig. 4.3.a). If no completion signal is re-
ceived by the hypervisor after to+ tmax, where tmax is the estimated bottom half maximum
completion time, the hypervisor considers that the NIC driver has failed, and triggers the
recovery of the driver (using existing techniques [89]), as shown in Fig. 4.3.b. The tuning
of tmax depends on budget and weight values (see above) and is empirically determined.
In our testbed, the values used for budget and weight are 300 and 64 respectively, and tmax

is about 4s.

Regarding the failure of the netback, the hypervisor monitors the shared ring buf-
fer producer and consumer counters between a netback and its corresponding frontend.
If the netback’s private ring counters remain stuck while the shared ring counters keep
evolving, this lag is considered as a hint revealing the failure of the netback. Hence,
the netback is reloaded (unregistered then registered). Meanwhile, its frontend’s device
attribute otherend->state value switches to XenbusStateReconfigured while the
netback undergoes repair. Once the repair is complete, the latter value switches back to
XenbusStateConnected and proceeds with the exchange of I/O requests with the net-
back.
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Figure 4.3 – net_uk, in which the shadow driver (netback) works either in passive (a) or
in active (b) mode. In the former mode (no NIC driver failure), the hypervisor records
the bottom half handler (BH) starting timestamp to and awaits a completion signal before
to+ tmax, otherwise triggers NIC driver (ND) reload. In active mode (ND failure has been
detected), the netback buffers requests and acks the netfront upon ND recovery.

Regarding the failure of the entire unikernel, we adopt the same approach as TFD-
Xen [41] : the hypervisor monitors the sum of the counters of the shared ring buffer
used by all netbacks and their corresponding netfront drivers to detect a lag between the
producer and the consumer counter. However, this approach alone cannot detect net_uk
hanging when it is not used by any user VM. Therefore, we combine it with a heartbeat
mechanism, also controlled by the hypervisor. A reboot of the net_uk VM is triggered
when any of the two above-described detection techniques raises an alarm.

4.3.3 tool_uk FT solution

The tool_uk unikernel embeds the Xen toolstack for VM administration tasks (crea-
tion, migration, etc.). We use XSM (Xen Security Modules [104]) to introduce a new role
(tooldom) which has fewer privileges than the original monolithic dom0 but enough for
administrative services. It runs in an enriched version of Mini-OS [64], a very lightweight
unikernel, part of the Xen project.

4.3.3.1 Fault model.

We strive to mitigate faults occurring during administrative operations. Apart from
live migration (discussed below), the fault tolerance requirements for all the other admi-
nistration tasks are already fully handled either locally, by the vanilla toolstack imple-
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mentation, or globally, by the data center management system (e.g. Nova in OpenStack).
In these cases, our solution provides nonetheless fast and reliable notifications regarding
the failures of the local toolstack. We now describe the specific problem of resilient live
migration. During the final phase of a live migration operation for a VM 1, the suspended
state of the migrated VM is transferred to the destination host and upon reception on the
latter, the VM is resumed. If a fault occurs during that phase, the migration process halts
and leaves a corrupted state of the VM on the destination machine and a suspended VM
on the sender machine.

4.3.3.2 FT solution.

We consider that a failure has occurred during the migration process if the sender ma-
chine does not receive (within a timeout interval) the acknowledgement message from the
destination machine, which validates the end of the operation. As other unikernels in our
solution, faults resulting in the crash/hang of the entire tool_uk are detected with a heart-
beat mechanism and trigger the restart of the tool_uk instance. In both cases (partial or
complete failure of the component), the repair operation for the failed migration is quite
simple and consists in (i) first discarding the state of the suspended VM on the destina-
tion machine, (ii) destroying the VM on the destination machine, and (iii) resuming the
original VM instance on the sender machine.

4.3.4 Global feedback loop

Our solution includes a global feedback loop for handling concurrent failures of mul-
tiple pVM components (and potentially all of them). Such a situation may or may not be
due to a cascading failure. To handle such a situation in the most efficient way, the hyper-
visor embeds a graph thats indicates the dependencies between the different unikernels,
which are represented in Figure 4.4. When a unikernel fails, the hypervisor starts the re-
covery process only when all unikernels used by the former are known to be healthy and
reachable.

1. Xen adopts a pre-copy iterative strategy for live migration [18].
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Figure 4.4 – Relationships between the different components of the disaggregated pVM.

4.3.5 Scheduling optimizations

The design that we have described so far, with the disaggregation of the pVM services
into independent unikernel VMs and the usage of heartbeats to detect their failures, raises
some challenges with respect to CPU scheduling. Indeed, it is non-trivial to ensure that
these VMs are appropriately scheduled. On the one hand, due to the number of VMs re-
sulting from the disaggregation, dedicating one (or several) distinct physical CPU core(s)
to each unikernel VM would result in significant resource waste (overprovisioning). On
the other hand, if such VMs are not scheduled frequently enough, they may not be able to
send their heartbeats on time to the hypervisor (leading to false positives, and unneeded
repair procedures), or, as a workaround, this may require to set longer timeouts (leading
to slow detection of actual failures). In order to overcome the above-described issues, we
slightly modify the CPU scheduler of the hypervisor. At creation time, each service VM
is marked with a special flag and the hypervisor CPU scheduler guarantees that such VMs
are frequently scheduled and sends a ping request to a unikernel VM before switching to
it. Each service VM is granted a time slice of 5ms for heartbeat response. As an addi-
tional optimization, the scheduling algorithm is modified to skip the allocation of a CPU
time slice to a unikernel VM if the latter has recently (in our setup, within the last 15ms)
issued an “implicit” heartbeat (for example, in the case of the net_uk VM, a recent and
successful interaction with the hypervisor for sending or receiving a packet is a form of
implicit heartbeat). This avoids the cost of context switches to a unikernel VM solely for
a ping-ack exchange when there are hints that this VM is alive.
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4.4 Evaluation

This section presents the evaluation results of our prototype.
Evaluation methodology and goals. We evaluate both the robustness and the reactivity
of our solution in fault situations. We first evaluate each dom0 service FT solution in-
dividually, meaning that a single failure (in a single component) is injected at a time in
the system. Then, we consider the failure of several services at the same time. For each
experiment, we consider a challenging situation in which both dom0 services and user
VMs are highly solicited. Crash failures are emulated by killing the target component or
unikernel. In order to simulate data corruption (in the case of XenStore_uk), we issue a
request that overwrites a path (key-value pair) within the data store.

We are interested in the following metrics : (1) the overhead of our solution on the per-
formance of dom0 services ; (2) the overhead of our solution on the performance of user
VMs ; (3) the failure detection time ; (4) the failure recovery time ; (5) the impact of fai-
lures on dom0 services ; (6) the impact of failures on user VMs. The overhead evaluation
is performed on fault-free situations. We compare our solution with vanilla Xen 4.12.1
(which provides almost no fault tolerance guarantees against pVM failures), Xoar [20]
(periodic refresh), and TFD-Xen [41] (which only handles net_uk failures). For a mea-
ningful comparison, we re-implemented the two previous systems in the (more recent)
Xen version that we use for our solution. For Xoar, we use a component refresh period of
1 second, and the different components are refreshed sequentially (not simultaneously) in
order to avoid pathologic behaviors.

Benchmarks. User VMs run applications from the TailBench benchmark suite [42]. The
latter is composed of 8 latency-sensitive (I/O) applications that span a wide range of la-
tency requirements and domains and a harness that implements a robust and statistically-
sound load-testing methodology. It performs enough runs to achieve 95% confidence in-
tervals ≤ 3% on all runs. We use the client-server mode. The client and the server VMs
run on distinct physical machines. The server VM is launched on the system under test.
We left out 3 applications from the TailBench suite, namely Shore, Silo and Specjbb. In-
deed, the two former are optimized to run on machines with solid state drives (whereas
our testbed machine is equipped with hard disk drives), and Specjbb cannot run in client-
server mode. In addition, we also measure the request throughput sustained by the Apache
HTTP server (running in a user VM) with an input workload generated by the AB (Apa-
cheBench) benchmark [9] (using 10,000 requests and a concurrency level of 10).

Testbed. All experiments are carried out on a 48-core PowerEdge R185 machine with
AMD Opteron 6344 processors and 64 GB of memory. This is a four-socket NUMA ma-
chine, with 2 NUMA nodes per socket, 6 cores and 8 GB memory per NUMA node.

The dom0 components use two dedicated sockets and the user VMs are run on the two
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other sockets. Providing dedicated resources to the pVM is in line with common practices
used in production [68] in order to avoid interference. Besides, we choose to allocate a
substantial amount of resources to the dom0 in order to evaluate more clearly the intrin-
sic overheads of our approach (rather than side effects of potential resource contention).
We use Xen 4.10.0 and the dom0 runs Ubuntu 12.04.5 LTS with Linux kernel 5.0.8. The
NIC is a Broadcom Corporation NetXtreme II BCM5709 Gigabit Ethernet interface. The
driver is bnx2. The machines are linked using a 1Gb/s Ethernet switch. Unless indicated
otherwise, user VMs run Ubuntu 16.04 with Linux Kernel 5.0.8, configured with 16 vir-
tual CPUs (vCPUs) and 16GB of memory. Concerning unikernels composing dom0, each
is configured with 1 vCPU and 1 GB of memory (128MB for the XenStore instances). The
real memory footprint during our evaluations is ≈500MB for every unikernel (≈100MB
for each Xenstore instance). For fault-free runs, compared to vanilla Xen, we achieve 1-
3% slowdown for I/O-intensive applications (disk or network). These results are similar to
those reported with Xoar (original version [20] and our reimplementation) : the intrinsic
performance overhead of disaggregation is low.

4.4.1 XenStore_uks

Recall that, in the fault model that we consider, XenStore is subject to both unavailabi-
lity and data corruption faults. XenStore is highly solicited and plays a critical role during
VM administration tasks. We use VM creation operations to evaluate XenStore, because
this type of operation is one of the most latency-sensitive and also involves Xenstore the
most (see Table 4.4).

VM create VM destroy VM migrate vCPU hot-plug

53 47 24 12

Table 4.4 – Number of XenStore requests per type of VM administration operation.

4.4.1.1 Robustness

We launch a VM creation operation and inject a crash failure into the master XenStore
replica (recall that we use a total of 3 XenStore instances) during the phase where XenS-
tore is the most solicited.We repeat the experiment ten times and we report mean values.
The observed results are as follows.

We observe that some VM creations fail with both vanilla Xen and Xoar. The latter,
after the refresh period, is not able to replay the VM creation request because it has not
been recorded. Besides, Xoar takes 1 second to detect the failure. Its recovery time is
22ms (a reboot of XenStore_uk). In contrast, using our solution, all VM creation opera-
tions complete successfully. Our solution takes 1.54ms and 5.04ms to detect crashing and
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data corruption faults respectively. The recovery process for crashing and data corruption
is 25.54ms (starting a new Xenstore_uk replica and synchronizing its database). The ove-
rall corresponding VM creation time is about 5.349s and 5.353s respectively for the two
failure types, compared to 5.346s when no fault is injected.

4.4.1.2 Overhead

We sequentially execute ten VM creation operations (without faults). The mean VM
creation time (until the full boot of the VM’s kernel) for vanilla Xen, Xoar, and our so-
lution (PpVMM ) is respectively 4.445sec, 6.741sec, and 5.346sec. Our solution incurs
about 20.27% (≈ 900ms) overhead. This is due to the fact that a VM creation operation
generates mostly write requests (89% of the requests are writes), which require synchroni-
zation between all XenStore replicas. Read requests do not require synchronization. Fig.
4.5 reports mean, 95th- and 99th-percentile latencies for read and write requests, confir-
ming the above analysis. The overhead incurred by our solution is significantly lower than
the overhead of Xoar, which is about 51.65% (≈ 2.3s).
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Figure 4.5 – Mean, 95th and 99th-percentile latencies of XenStore requests during 10 VM
creation operations. The reported latencies are in µs.

4.4.2 net_uk

For these experiments, we run independently each TailBench application inside the
user VM and we measure how it is impacted by crash failures.

4.4.2.1 Robustness

Recall that our solution enhances net_uk with several FT feedback loops in order to
detect failures at different granularities : the unavailability of the subcomponents (NIC
driver and netback) and the unavailability of the entire net_uk. Here, we only evaluate
the robustness of our system facing NIC driver crashes because it allows us, through the
same experiment, to compare fine-grained (FG) and coarse-grained (CG) FT solutions.
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We inject a fault in the NIC driver at the middle of the execution of the benchmark.
Table 4.5 and Table 4.6 present the results. We do not interpret Xoar results here (already
discussed in §1.2.3). Besides, we do not show performance results for vanilla Xen because
it is unable to achieve application completion in case of a net_uk failure.

We can see that the fine-grained solution allows quick detection compared to coarse-
grained solutions (ours and TFD-Xen) : up to a 3.6x difference for detection and 1.4x
for repair times (compared to our coarse-grained approach). TFD-Xen is faster to recover
because it relies on net_uk replicas linked to backup physical NICs : instead of recove-
ring a failed net_uk unikernel, it switches from one net_uk to another and reconfigures
the bindings with the running user VMs. However, TFD-Xen requires at least N +1 phy-
sical NICs and N +1 net_uks to survive N net_uk faults, which results in resource waste
and limited resilience over long time intervals. Furthermore, our fine-grained solution
avoids packet losses, thanks to the use of a shadow driver that buffers packets in case of
failure. For instance, we measured 212,506 buffered packets for the sphinx application.
In contrast, the other solutions lead to broken TCP sessions (caused by packet losses)
that occur during network reconfiguration (even for TFD-Xen, despite its short recovery
time). Moreover, we can see that the fine-grained FT solution reduces the tail latency de-
gradation compared to the coarse-grained solution. Considering the sphinx application for
instance, the differences are respectively 24.88%, 12.88%, and 5.88% for the mean, 95th
and 99th-percentile latencies.

Regarding the throughput measurements with the AB benchmark, we observe the fol-
lowing results. TFD-Xen achieves the best performance with 45 requests/s. The FG so-
lution is relatively close with 42 requests/s (7.14% gap). In contrast, the CG approach is
significantly less efficient with 29 requests/s (55.17%) and Xoar is much worse with 9
requests/s (400%).

DT (ms) RT (s) PL

FG FT 27.27 4.7 0

CG FT 98.2 6.9 425,866

TFD-Xen [41] 102.1 0.8 2379

Xoar [20] 52×103 6.9 1,870,921

Table 4.5 – Robustness evaluation of different FT solutions for net_uk. The failed com-
ponent is the NIC driver.
DT = Fault Detection Time; RT = Fault Recovery Time ; PL = number of (outgoing) lost
packets.
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sphinx xapian moses

mean 95th 99th mean 95th 99th mean 95th 99th

Xen 879.1 1696 1820.8 1.79 4.35 9.67 8.6 39.56 65.64

FG FT 1201.1 3100.1 3891.7 51.19 100.1 1700.3 73.2 473.2 1492.3

CG FT 1500.3 3499.4 4120.9 89.9 154.9 2101.4 100.5 591.5 1833.9

TFD-Xen 1159.2 2908.8 3304.2 50.1 98.1 1396.2 70.3 450.2 1101.4

Xoar 8100.4 11026.7 13590.3 5188.1 7238.9 8193.3 5120.4 5581.8 5909.3

masstree img-dnn

mean 95th 99th mean 95th 99th

Xen 457.6 475.7 476.2 1.7 3.42 7.6

FG FT 821.1 1891.1 2122.8 88.2 440.2 1310.8

CG FT 1091.5 2099.1 2461.9 112.1 610.9 1503

TFD-Xen 788.3 1381.2 1631.7 80.2 398.3 1116.8

Xoar 10011.2 13444.5 140881.4 1491.9 4721.3 12390.4

Table 4.6 – Performance of TailBench applications during a net_uk failure (latencies in
milliseconds). Lower is better.
The failed component is the NIC driver. The first line (“Xen”) corresponds to a fault-free
baseline.

4.4.2.2 Overhead

The experiment is the same as previous without fault injection. Table 4.7 presents the
results. The overhead incurred by our solution is up to 12.4% for mean latencies, up to
17.3% for the 95th percentiles, and up 12.3% for the 99th percentiles. This overhead is due
to periodic communication with the hypervisor to track the driver execution state (§4.3.2).
Notice that TFD-Xen [41] incurs overhead up to 2.88% for mean latencies, 17.87% for
the 95th percentiles, and up to 13.77% for the 99th percentiles.The overhead incurred by
Xoar is much higher, as already discussed in §1.2.3.

Regarding the throughput measurements with the AB benchmark, we observe the fol-
lowing results compared to the vanilla Xen baseline (123 requests/s). Both TFD-Xen and
our solutions (FG and CG) exhibit a noticeable but acceptable overhead (13.31%, 12%,
and 15% respectively), whereas Xoar incurs a more pronounced performance degradation
(1130% with a refresh period of 5s, Xoar still incurs a performance degradation of up to
697%, significantly worse than our approach).
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sphinx xapian moses

mean 95th 99th mean 95th 99th mean 95th 99th

Xen 879.11 1696 1820.84 1.79 4.35 9.67 8.6 39.567 65.642

FG FT 901.99 1711.11 1977.15 2.11 5.56 10.61 10.1 40.78 72.44

CG FT 900.12 1792.04 1963.5 2.12 5.96 11.05 11.9 41.3 72.12

TFD-Xen 889.91 1701.43 1911.33 2.11 4.98 10.89 9.12 40.44 73.19

Xoar 6616.44 9026.7 9590.54 3713.98 5535.77 5791.712 3019.33 3507.88 3660.65

masstree img-dnn

mean 95th 99th mean 95th 99th

Xen 457.61 475.37 476.2 1.7 3.42 7.6

FG FT 460.2 491.58 494.3 1.92 4.2 8.21

CG FT 461.09 489.03 490.12 1.9 4.3 7.98

TFD-Xen 461.18 489.1 493.55 1.9 4.5 8.11

Xoar 8054.53 8642.85 8695 543.9 2526 9603

Table 4.7 – Performance of TailBench applications without net_uk failure (latencies in
milliseconds). Lower is better.

4.4.2.3 CPU usage

Here, we are interested in CPU usage in the netdom. We compare the results obtained
with Xen and PpVMM . We run in a guest VM, applications from the tailbench suite.
Figure 4.6 reports CPU usage in the netdom for Xen(dom0) and PpVMM (netdom). We
observe an overall 3% increase with PpVMM compared to vanilla Xen.

4.4.3 tool_uk

Contrary to other dom0 unikernels, tool_uk does not execute a task permanently.It
only starts a task when invoked for performing a VM administration operation. The FT
solution does not incur overhead when there are no failures. Therefore we only evaluate
the robustness aspect. To this end, we consider the VM live migration operation because
it is the most critical one. We run inside the user VM a Linux kernel compilation task and
inject a failure during the second stage of the migration process, i.e., when a replica of the
migrated VM has been launched on the destination machine, and the memory transfer is
ongoing.
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Figure 4.6 – Netdom CPU usage (Xen vs PpVMM ). N-Xen stands for Normal Xen and
FT-Xen stands for PpVMM.

We observe that vanilla Xen and Xoar lead the physical machine to an inconsistent
state : the migration stops but both the original VM (on the source machine) and its replica
(on the destination machine) keep running. This situation leads to resource waste because
the replica VM consumes resources. Using our solution, the replica VM is stopped upon
failure detection. The detection time is 800ms.

4.4.4 Global failure

We also evaluate the robustness of our solution when all the pVM components crash at
the same time. We execute the sphinx application from TailBench in a guest and we inject
faults to crash all the components simultaneously. In this case, the hypervisor detects
the global crash and restores all unikernels in the appropriate order (see §4.3.4). The
whole recovery of all unikernels takes 15.8s. Concerning application performance, we
observe a downtime of 7.85s (corresponding to the time needed for XenStore_uk and
net_uk to recover), but the application survives and finishes its execution correctly. We
experience a huge degradation of tail latencies due to the long downtime but we allow full
and transparent functional recovery of the user VM, unlike vanilla Xen, TFD-Xen, and
with a much lower overhead than Xoar (esp. during failure-free execution phases).

4.4.5 Scheduling optimizations

We measure the benefits of our scheduling optimizations (§4.3.5) in terms of reactivity
and CPU time used by our unikernels. Regarding reactivity, we run the sphinx application
in a guest VM, and we trigger the crash of the net_uk. On average, with the scheduling
optimizations, we detect the crash after 141.8ms compared to 149.5ms without, i.e., a
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5.15% decrease. Besides, on a fault-free run, compared to a standard scheduling policy,
the usage of implicit heartbeats allows a 13% decrease of the CPU time consumed by the
pVM components.

4.5 Related work

4.5.1 pVM resilience.

The projects most closely related to our work are Xoar [20] and TFD-Xen [41]. Given
that they are described in detail and evaluated in the previous sections.

Beyond Xoar, a number of projects have investigated the benefits of disaggregating
the VMM into multiple isolated components. Murray et al. [66] modified the original Xen
platform design in order to move the domain builder (a security-sensitive module within
the Xen toolstack running in the pVM) to a separate virtual machine. This work did not
investigate fine-grained disaggregation nor fault tolerance. Fraser et al. [29] revisited the
design of the Xen platform in order to support “driver domains”, i.e., the possibility to
isolate each physical device driver in a separate VM. Our contribution builds on this work
but also considers fine-grained fault-tolerance mechanisms within driver domains, as well
as disaggregation and robustness of other pVM components.

As part of their Xen-based “resilient virtualization infrastructure” (RVI) [49, 51], Le
and Tamir briefly discussed how to improve the fault tolerance of the pVM and the driver
domains (dVMs). The failure of a driver domain is detected by agents within the dVM
kernel and the hypervisor, which triggers the microreboot of the dVM. The failures of
the services hosted by the pVM (e.g., XenStore) are detected by an agent running within
the pVM. Upon such a detection, the agent issues a hypercall to the hypervisor, and the
latter triggers a crash of the whole pVM. Hence, any failure of a given component hosted
by the pVM (e.g., XenStore or toolstack) leads to downtime and full recovery for all the
other components. In order to tolerate failures of the XenStore, its state is replicated in
a dVM, and XenStore and VM management operations are made transactional, through
the use of a log stored in a dVM. No detail is provided on the mechanisms used to en-
force consistency and availability despite potential concurrent failures of the pVM-hosted
components and the backup state in the dVM. Besides, the evaluation of this approach is
focused on its resilience against synthetic fault injection. The authors of this solution do
not provide any detailed performance measurements (with or without failures), and the
code of the prototype is not available. Our work has similarities with this approach but, (i)
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we apply fault tolerance techniques at a finer granularity, (ii) we explore the ramifications
of the interdependencies between services, and (iii) we provide a detailed performance
evaluation.

4.5.2 Hypervisor resilience.

Some works have focused on improving the resilience of the hypervisor. ReHype
[49,50,60] is a Xen-based system, which leverages microreboot [13,25] techniques in or-
der to recover from hypervisor failures, without stopping or resetting the state of the VMs
(including the pVM and dVMs) or the underlying physical hardware. NiLyHype [115] is
a variant of ReHype, which replaces the microreboot approach with an alternative com-
ponent recovery technique named microreset (i.e., resetting a software component to a
quiescent state that is likely to be valid rather than performing a full reboot) in order
to improve the recovery latency. TinyChecker [16] uses nested virtualization techniques
(more precisely, a small, trusted hypervisor running below a main, full-fledged hypervisor
like Xen) in order to provide resilience against crashes and state corruption in the main
hypervisor. Shi et al. [86] proposed a new modular, “deconstructed” design for Xen in
order to thwart the most dangerous types of security attacks. Their work focuses on a
redesign of the Xen hypervisor (not the dom0 pVM). All these works do not consider the
services hosted in the pVM (or driver domains) and are mostly orthogonal to our work.
Our contribution leverages these results (i.e., the fact that the hypervisor can be made
highly resilient) in order to improve the fault tolerance of the pVM components.

The FTXen project [40] aims at hardening the Xen hypervisor layer so that it can
withstand hardware failures on some “relaxed” (i.e., fast but unreliable) CPU cores. In
contrast, our work considers the resilience of the pVM components on current hardware,
with a fault model that is homogeneous/symmetric with respect to CPU cores.

Some recent projects aim at supporting live reboot and/or upgrade of VMMs without
disrupting the VMs [26,114]. These techniques are focused on code updates for improving
the safety and security of the hypervisor component. Hence, they are orthogonal to our
contribution. This trend also highlights the crucial importance of our goal : improving the
resilience of the remaining components, i.e., the pVM services.

4.6 Summary

Type-I hypervisors remain a key building block for cloud computing, and most of
them are based on a pVM-based design. We have highlighted that, in this design, the
pVM is a single point of failure. Besides, existing solutions only tackle a limited set of
pVM services (device drivers) and/or require long failure detection/recovery times and
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significant performance overheads. At the time of writing this dissertation, our contribu-
tion is the first to propose and demonstrate empirically, a complete approach allowing
to achieve both high resilience (against failures of different components and concurrent
failures of interdependent services) and low overhead. Our approach currently relies on
manual tuning of some important parameters (e.g., for failure detection and scheduling)
but, we envision that recently published works could help manage them in a more automa-
ted and robust way [101]. Another area for future work is the tuning and optimization of
resource allocation for disagreggrated pVM components, which could be extended from
the Closer principle we introduced in Chapter 2.
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Conclusion

Contributions summary

In this dissertation, we showed how performance unpredictability could result from a
component that does not spotlight the community. From resource sizing and placement
on NUMA architectures to fault tolerance issues, Type-I hypervisors relying on a pVM
must consider the latter issues. The design principle proposed regarding pVM resource
sizing and placement allows dynamic management that scales with uVMs activities. Even
though we didn’t carry out stressful network evaluations, we think this is the right way to
go (better than static approaches relying mostly on intuition). Regarding memory flipping
side effects, we propose two hacks that permit control of what pages can become remote
and enable cloud administrators to tweak the ideal strategy used based on their needs.
Future work will characterize cloud workloads and define which strategy is better suited
for each workload/behavior. However, we are conscious that memory flipping side effects
are noticeable when long intensive network workloads run in uVMs, which may not be a
common use case in the Cloud. Regarding the pVM fault tolerance, the results obtained
with PpVMM are encouraging despite the manual configuration needed (on the heartbeat
intervals, timeouts, etc.). However, autoconfiguration tools are more and more present and
can alleviate the latter burden. Some of the approaches used, such as Xenstore replication
design or netdom shadow driver, can be reused in use cases other than virtualization such
as database integrity or improving I/O device drivers’ resilience.

Short-term perspectives

Improve prototypes evaluation.

Virtualization is a large area, and there is always exciting stuff to work on. A prominent
future work after going through this dissertation is to improve the evaluations. Ideally, we
can test our contributions in production environments or large reserved clusters simulating
real user workloads scenarios. This will highlight currently hidden pitfalls and strengthen
the current designs.
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Exploit hardware virtualization features.

Another work line is to investigate hardware features such as SR-IOV or Intel DDIO to
examine if we can exploit them to improve the results we obtained while removing (or
reducing) the interoperability limitations they impose. Ideally, we could have guest VMs
devices exploiting SR-IOV to access I/O devices in a secure multiplexed manner while the
pVM carries out monitoring and administrative tasks with dynamic resource provisioning
and improved fault tolerance.

Auto-tuned parameters for pVM fault tolerance.

As mentioned earlier, our fault-tolerance approach relies on many manual parameters such
as heartbeat intervals. We need to improve these either by providing tools that can help
administrators compute them based on their needs or update our design for self-managed
values.

Long-term perspectives

Reusing our contributions in FaaS environments.

Our contributions can be helpful in FaaS environments. To recall, FaaS is a model ser-
vice where a user uploads a function on a FaaS platform and configures events that will
trigger the latter function’s execution. The user is billed based on the execution time and
resources used by this function on each execution. Frameworks generally power faaS plat-
forms with similar architecture as pVM-based hypervisors. Indeed, they generally have a
component responsible for host administrative tools, schedule requests to compute nodes,
and maintain databases used to query function states. Some of the problems encountered
in pVM-based hypervisors also arise, such as resource provisioning, fault tolerance, and
data locality. It can be interesting to show how far pVM-based hypervisors and FaaS plat-
forms differ and see what can be reused.

Improving pVM-based hypervisors (VM vs containers?)

The long battle VM vs containers is ongoing. However, improving pVM-based hypervi-
sors to have startup times faster than containers may help till the balance in favor of VMs.
However, the goal is not to show the superiority of VMs over containers but to find the
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best in between design that benefits each advantage to have a more secure and fast virtua-
lization base block. After investigating pVM-based hypervisors, the next step will be to
investigate every container engine to highlight what can be fuse together.
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