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“Suffering becomes beautiful when anyone bears great calamities with cheerfulness,

not through insensibility but through greatness of mind.”

– Aristotle.





Abstract

This thesis proposes novel vision-based controllers for the guidance of Unmanned Aerial

Vehicles (UAVs). It considers scenarios involving both single and multiple vehicles. For the case

of a single-vehicle, novel Image-based visual servo control (IBVS) approaches are proposed for

both fixed-wing and vertical take-off and landing (VTOL) UAVs operating in urban or congested

environments. Navigation tasks in a complex environment with obstacle avoidance capabilities

are considered. In particular, the landing of fixed-wing UAVs on an airstrip and the landing

of VTOL-UAVs that includes an obstacle avoidance strategy are considered. The originality of

the study lies in the direct exploitation of the centroid of the image of the observed pattern

together with the optical flow, thereby eliminating the need to estimate the position and the

velocity of the UAV. For multiple vehicles, novel bearing formation controllers are designed

for formations under both directed and undirected interaction topologies. In order to relax

the classical conditions required by bearing rigidity theory and to lift the scale ambiguity

caused by bearings, persistence of excitation of the desired bearing reference is explored. The

proposed methodology is supported by rigorous mathematical tools (This involves nonlinear

dynamical systems and analysis using Lyapunov theory to formally prove the asymptotic (or

exponential) stability of the system, guarantee robustness, and finally ensure good performance

of the closed-loop system). Further support is provided by real experiments and/or simulation

results.

Keywords: Unmanned Aerial vehicles (UAVs); Visual servo control; Nonlinear Systems; forma-

tion control; Lyapunov method.
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Abstract in Portuguese

Esta tese propõe um conjunto de novos controladores baseados em visão para a condução de

veı́culos autónomos aéreos (VAAs), considerando cenários que envolvem um ou vários veı́culos.

Para o caso da condução de um veı́culo único são propostas novas abordagens de servo controlo

visual baseado em imagem para VAAs de asa fixa e de descolagem e aterragem vertical (VDAV)

operando em ambientes urbanos ou congestionados. São consideradas tarefas de navegação em

ambientes complexos que incluem a capacidade de evitar obstáculos. Estas são, em particular, a

aterragem de VAAs do tipo asa fixa numa pista de aterragem e a aterragem de VAAs do tipo

VDAV com incorporação de uma estratégia de evitar obstáculos. A originalidade do estudo está

na exploração direta do centróide da imagem do padrão observado e do fluxo óptico, eliminando

assim a necessidade da estimação explı́cita da posição e da velocidade do VAA. Para o caso

do controlo de formações de múltiplos veı́culos, são propostos novos controladores baseados

nas medidas da direção entre os agentes para topologias dos grafos de interação direcionadas

e não direcionadas. A fim de relaxar as condições clássicas exigidas pela teoria da rigidez

do grafo de interação da formação e para levantar a ambiguidade de escala introduzida pelo

uso das direções, é explorada a persistência de excitação da referência de direção desejada. A

metodologia proposta é suportada em ferramentas matemáticas rigorosas (envolvendo sistemas

dinâmicos não lineares e analisadas com recurso à teoria de Lyapunov para provar formalmente

a estabilidade assintótica (ou exponencial) do sistema resultante, de forma a obter a robustez

e o desempenho do sistema em malha fechada) e por experiências reais e / ou resultados de

simulação.

Palavras Chave: Veı́culos aéreos autónomos; Controlo baseado em visão; Sistemas não lineares;

Controlo de formações; Técnicas de Lyapunov.

ix





Abstract in French

Cette thèse propose de nouvelles commandes basées sur un retour visuel pour le guidage

de drones. Elle considère à la fois des scénarios impliquant un seul ou plusieurs véhicules.

Pour le cas du guidage d’un seul véhicule, de nouvelles approches d’asservissement visuel

basées image (IBVS) sont proposées pour les drones de type avion (fixed-wing) et les drones de

type VTOL (Vertical Take-Off and Landing) opérant en environnements urbains ou encombrés.

Des tâches de navigation dans un environnement complexe avec des capacités d’évitement

d’obstacle sont considérées. Il s’agit en particulier de l’atterrissage de drones de type fixed-wing

sur une piste d’atterrissage et l’atterrissage de drones de type VTOL-UAV en incluant une

stratégie d’évitement d’obstacle. L’originalité de l’étude réside dans l’exploitation directe de la

centroı̈de de l’image du motif observé et du flux optique permettant ainsi d’éliminer la nécessité

l’estimation de la position et la vitesse du drone. Pour le cas du contrôle de plusieurs véhicules

en formation, de nouveaux contrôleurs à base de la mesure de direction entre véhicules sont

également proposés pour des formations ayant une interaction topologique orientées ou non

orientées. Afin d’assouplir les conditions classiques requises par la théorie de la rigidité d’une

formation à partir de l’information de direction et lever par la même occasion l’ambiguı̈té du

facteur d’échelle causée par les mesures de directions, la notion de la persistance de l’excitation

associée à la formation de référence est explorée. La méthodologie proposée est soutenue par des

outils mathématiques rigoureux (impliquant des systèmes dynamiques non linéaires et analysés

à l’aide de la théorie de Lyapunov afin de prouver formellement la stabilité asymptotique (ou

exponentielle) du système, de garantir la robustesse et enfin d’assurer le bon fonctionnement du

système en boucle fermée) et par des expériences réelles et/ou des résultats de simulation.

Mots clés: Drones; Robots aériens; Asservissement visuel; Système non linéaire; Contrôle

multi-agents; Analyse de Lyapunov.
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1
Introduction

1.1 Literature Review and Motivation

The development of Unmanned Aerial Vehicles (UAVs) is an increasingly important area of

both robotics and control research due to a large range of applications in both civilian and

military scenarios. UAVs have strong commercial potential in remote surveillance applications

such as monitoring traffic congestion, regular inspection of infrastructure (such as bridges and

power cables), investigation of hazardous and remote environments, etc. High-performance

autonomous navigations capabilities are of paramount importance to proficiently perform

these missions. Navigation of UAVs can be roughly described as the process of determining

a suitable and safe path between a starting and a goal point for a vehicle traveling between

them. A complete navigation framework includes mapping, localization, and also control.

Traditional navigation methods include satellite navigation, inertial navigation, radar navigation,

sonar navigation, etc. However, Global Navigation Satellite System (GNSS) does not work

effectively indoors and in urban canyon environments and Inertial Navigation system (INS)

suffers from loss of accuracy to some extent due to the propagation of bias error caused by

the integral drift problem. Nowadays, reduced-size UAVs are very common but are limited in

their payload capabilities, thus, they are not able to carry lasers or certain brands of sonars.

With the rapid development of the field of computer vision, vision-based navigation becomes a

promising research direction. Visual sensors are able to acquire rich visual information from

the surrounding environment, which provides position and velocity cues of the vehicle relative

to the target. As inertial measurement units (IMUs) are getting smaller and cheaper, a common

sensor suite for vision-based navigation includes an IMU consisting of accelerometers and rate

gyros along with a camera, which is passive, lightweight, and efficient.

Vision-based Navigation systems can be roughly divided in two categories: i) previous
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knowledge of the whole environment is required, and ii) the environment is only perceived

as the vehicles navigate through it [BFOO08]. Three main solutions have been proposed for

navigation using vision in indoor environments: map-based navigation, map-building-based

navigation and map-less navigation[DK02]. The first approach depends on a user-created

geometrical model or topology map of the environment (e.g. Perspective-n-Point (PnP)) and the

second requires the use of sensors to construct their own geometric or topological models (e.g.

simultaneous localization and mapping (SLAM)). Map-less navigation systems mostly include

reactive techniques that rely on visual clues derived from the optical flow and distinctive features

in the environment. In these systems, the environment is perceived as the system navigates,

recognizes objects or tracks landmarks, thus no global representation of the environment exists.

The main vision techniques or types of clues used during the map-less visual navigation

process are optical flow, appearance-based matching and feature tracking [DK02]. Appearance-

based matching techniques rely on the storage of images in a previous recording phase which are

then used as templates, e.g.[BGC16]. The robot self-locates and navigates in the environment by

matching the current viewed frame with the stored templates. The main problems with this

method consist in finding an appropriate algorithm for the representation of the environment

and defining the on-line matching criteria [DK02]. Other approaches use optical flow as a

velocity cue, e.g. [MCH08, HHMR12, LBHM+14]. Optical flow, a visual feature inspired from

flying insects, is the pattern of apparent motion of objects, surfaces, and edges in a visual

scene caused by the relative motion between an observer and a scene[BR78]. It has been

experimentally shown that the neural system of the insects reacts to optic flow patterns to

produce a large variety of flight capabilities, such as obstacle avoidance, speed maintenance,

odometry estimation, wall following and corridor centering, altitude regulation, orientation

control and landing [FW15]. Finally, in the category of navigation using feature tracking, the

motion of moving elements, including lines, corners, or specific regions in a video sequence are

tracked. The trajectory and motion of the robot is determined by tracking and finding relative

changes in the position of extracted features.

Visual servo control is an important concept which can be included in the category of

map-less navigation techniques based on feature tracking. It refers to the use of visual features

to control the motion of a robot. The visual features may be acquired from a camera that is

mounted directly on a robot manipulator or on a mobile robot, in which the motion of the robot

induces the camera motion, or the camera can be fixed in the workspace so that it can observe

the robot motion from a stationary configuration [CHC16]. There are two main approaches for

visual servoing systems: pose-based visual servoing (PBVS) and image-based visual servoing

(IBVS). PBVS involves reconstruction of the target pose with respect to the robot and leads to a

Cartesian motion planning problem, thus the camera intrinsic parameters and 3-D model of the

observed object should be known. In IBVS, the control commands are deduced directly from
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image features. IBVS methods offer advantages in robustness to camera and target calibration

errors, a reduced computational complexity, and simple extension to applications involving

multiple cameras compared to PBVS methods[HHC96].

However, classical IBVS suffers from three key problems. Firstly, it is necessary to determine

the depth of each visual feature used in the image error criterion independently from the control

algorithm. Secondly, the rigid-body dynamics of the camera ego-motion are highly coupled

when expressed as target motion in the image plane. Thirdly, classical IBVS control design uses

a simple linearized control on the image kinematics that leads to complex non-linear dynamical

model and is not easily extended to include the dynamics. In order to overcome these problems,

the authors in [HM02] propose a novel IBVS algorithm for a class of under-actuated dynamic

systems, which relies on passivity-like properties that can be recovered for a centroid image

feature as long as a spherical camera geometry is used. The virtual spherical image points can

be obtained by transforming the image points on the perspective camera to the view that would

be seen by an ideal unified-spherical camera. The proposed algorithm does not require accurate

depth information for observed image features and overcomes some of the difficulties associated

with the highly couple dynamics of the camera ego-motion in the image dynamics.

In the early development stages of IBVS methods, the translational velocity of the vehicle

normally needs to be measured or to be estimated, e.g. [CHC16], [HM02]. Using optical flow as

velocity cue and observed feature expressed in terms of an unnormalized spherical centroid,

a fully nonlinear adaptive visual servo control design is provided in [MCH08]. Although the

height of the camera above the target plane still needs to be estimated and used as a parameter,

it is the first time that an IBVS control has been proposed for a dynamics system using vision

measurement for both position and velocity. Inspired by [MCH08] and [HHMR12], the work in

[SCH+16] proposes an IBVS controller for the landing maneuver of a VTOL vehicle using a new

centroid for position-like feedback and translational optical flow, computed from the camera

images, for velocity-like feedback. Neither the height above the target nor the relative velocity

of the vehicle to the target need to be measured or estimated.

In summary, IBVS methods based on spherical camera geometry together with optical flow

are highly preferred due to the following advantages:

i) neither the depth of image features nor the translational velocity vector need to be esti-

mated,

ii) the decoupling problem can be solved thanks to the invariance properties of spherical

point model with respect to rotational motion,

iii) simple controllers can be designed for dynamic system models.

The works mentioned above are mainly focused on vision-based navigation for a single

UAV. For multiple UAVs, using this inexpensive sensor suite, which includes an IMU and
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a camera, is also a popular choice. In considering the problem of formation control in the

deployment of UAVs, it is highly desirable to limit the transmitted information between the

vehicles in the formation, both from mission and cost perspectives. The main categories

of solutions of formation control can be classified as follows ([OPA15]): i) position-based

formation control, [RA07], ii) displacement-based formation control, [RBM05], iii) distance-

based formation control, [ADY07], and more recently, iv) bearing-based formation control,

[BBJ10]. As mentioned above, cameras can provide accurate direction (bearing) information,

but the estimation of distances from cameras is typically noisier and is not possible without a

known structure in the environment. Thus, bearing formation control has received growing

attention in both the robotics and the control communities due to its minimal requirements on

the sensing ability of each agent.

Early works on bearing-based formation control were mainly focused on controlling the

subtended bearing angles that are measured in each agent’s local coordinate frame, but were

limited to the planar formations only [BBJ10, Bis11]. The main body of work, however, builds

on concepts of bearing rigidity theory, which investigates the conditions for which a static

formation is uniquely determined up to a translation and a scaling given the corresponding

constant bearing measurements. Bearing rigidity theory in two-dimensional space (also termed

parallel rigidity) is explored in [EWM+03, SW99]. More recently, bearing rigidity theory has

been extended to arbitrary dimensions with a bearing-only formation control solution proposed

in [ZZ16]. Under the assumption that the desired formation is infinitesimally bearing rigid, the

resulting bearing controller guarantees convergence to the target formation up to a scaling factor

and a translation vector. Minimal rigidity, which determines whether or not the connections in

a graph are minimal in the sense that removing any of these connections will result in loosing

rigidity, has been extensively studied in distance rigidity theory [TW85, AYFH08] and also

explored in bearing rigidity theory. For an n-agent system, a minimally bearing rigid formation

in two dimensional space has 2n− 3 links [EWM+03] and the condition for minimally bearing

rigid formations in higher dimensional space is explored in [TVTA19].

In the more challenging context of directed graphs, achieving stabilization of a formation

requires not only bearing rigidity, as in the case of undirected graphs, but also constraint consis-

tence, which is the ability to maintain consistence between constraints induced by the desired

bearing measurements (termed bearing persistence, in [ZZ15a]). In [Ere12], the conditions for

directed bearing rigidity of a digraph in two-dimensional space are stated and a bearing control

law for nonholomonic agents is proposed. In [TZS+19], bearing control laws have been proposed

that asymptotically stabilize leader-first follower (LFF) formations in arbitrary dimensional

space to the desired formations up to a translation (the leader’s position) and a scaling factor .

Since the bearing rigidity of a static formation is invariant to scaling, the measurement of at

least one distance between two agents is required to guarantee the convergence of formations in
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terms of shape and scale. For instance, [SFZG16] proposes a controller based on bearing rigidity

of directed bearing frameworks defined in R
3 ×S1 complemented with the measurement of at

least one distance between two agents.

Overall, the main body of work on bearing-based formation control, however, only considers

static bearings and relies heavily on complex constraints on graph topology, such as bearing

rigidity and constraint consistence. It is worth taking time-varying bearing formation into

consideration and explore the possibilities of relaxing the bearing rigidity theory in a natural

manner.

1.2 Contributions of the Thesis

In this thesis, novel vision-based controllers are designed for the 3-D motion control of both

single and multiple vehicles, specifically targeting UAV applications.

For the case of a single vehicle, novel IBVS approaches are proposed for both fixed-wing

and vertical take-off and landing (VTOL) UAVs operating especially in urban or congested

environments. The originality of the study lies in the direct exploitation of the centroid of the

spherical image points of the observed pattern together with the optical flow thereby preventing

the need to estimate the position and the velocity of the UAV. For a fixed-wing UAV, a 2D

image-based controller is proposed to automatically land the vehicle on an airstrip. The main

innovations compared to the previous work [LBHM+14] result in a controller that: i) uses optical

flow measurement instead of airspeed measurements for the derivative term, ii) relies on writing

the kinematics in terms of the 3D position error instead of the visual error and thus enables an

alternative proof of stability and has the advantage of imposing less restrictive conditions on

the tunable gains. For the VTOL UAV, we extend the IBVS control solution based on spherical

image centroids to a specific problem of steering a vehicle to move from one room to a second

one by crossing a window and then land on a planar target placed in the second room. The

control law proposed for going through the window is new and for landing is an improvement

with respect to [SCH+16], with the centroid vector now directly given by the image centroid,

which is highly robust to pixel noise, and easily computed in real-time in the camera frame.

For multiple vehicles, novel bearing formation controllers are designed for formations under

both directed and undirected interaction topologies. In order to relax the classical conditions

required by bearing rigidity theory and to lift the scale ambiguity caused by bearings, the

persistence of excitation (PE) condition of the desired bearing reference is explored. The

concept of PE is a well-known concept in adaptive control and identification of linear systems.

Firstly, novel bearing control laws are proposed for leader-follower formations, which achieve

exponential stabilization of the leader-follower formation in terms of shape and scale as long

as the desired formation is bearing PE, thereby relaxing the bearing rigidity requirement.
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A coherent generalization to formations under general undirected graph topologies is also

provided.

The proposed methodologies are supported by rigorous mathematical tools (involving non-

linear dynamical systems and analysis using Lyapunov theory to formally prove the asymptotic

(or exponential) stability of the system, to guarantee the robustness and finally to ensure good

performance of the closed-loop system) and by real experiments and/or simulation results. The

following subsections summarize the individual contributions of each chapter.

1.2.1 Aircraft landing using dynamic 2D image-based guidance control [TCHS18a]

In Chapter 2, a novel 2D image-based controller is proposed, which automatically steers a fixed-

wing Unmanned Aerial Vehicle (UAV) during the first three stages of landing: alignment, glide-

slope, and flare. Observable image features of the runway and its textured ground are exploited

to derive a feedback controller for the automatic maneuver. The proposed controller ensures

the horizontal position alignment and a smooth touchdown of the aircraft without estimating

the height above the runway. In addition, the 2D image-based control structure adopted also

enforces wind disturbance rejection, without the need for an explicit wind estimator. Simulation

results are presented to illustrate the performance of the controller.

1.2.2 Quadrotor going through a window and landing: An image-based visual
servo control approach [TCHS18b, TCC+20]

Chapter 3 considers the problem of controlling a quadrotor to go through a window and land

on a planar target, the landing pad, using an IBVS controller that relies on sensing information

from two on-board cameras and an IMU. The maneuver is divided into two stages: crossing the

window and landing on the pad. For the first stage, a control law is proposed that guarantees

that the vehicle will not collide with the wall containing the window and will go through the

window with non-zero velocity along the direction orthogonal to the window, keeping at all

times a safety distance with respect to the window edges. For the landing stage, the proposed

control law ensures that the vehicle achieves a smooth touchdown, keeping at all time a positive

height above the plane containing the landing pad. For control purposes, the centroid vectors

provided by the combination of the spherical image measurements of a collection of landmarks

(corners) for both the window and the landing pad are used as position measurement. The

translational optical flow relative to the wall, window edges, and landing plane is used as

velocity cue. To achieve the proposed objective, no direct measurements nor explicit estimate of

position or velocity are required. Simulation and experimental results are provided to illustrate

the performance of the presented controller.
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1.2.3 Bearing leader-follower formation control under persistence of excitation
[TCHS20a, TCHS20c]

Chapter 4 solves the problem of leader-follower formation control in arbitrary dimensional

space by exploring persistance of excitation of the desired formation. Using only bearing mea-

surements (also relative velocity for double-integrator dynamics), distributed control laws are

derived for a group of agents with single- or double-integrator dynamics. The key contribution is

that the (local) exponential stabilization of the actual formation to the desired one is guaranteed

as long as the PE conditions on the desired formation are satisfied. The approach generalizes

stability results provided in prior work for leader-first follower (LFF) structures which are based

on bearing rigidity and constraint consistence of the graph topology to ensure the exponential

stabilization of the actual formation to a desired static geometric pattern up to a scale factor.

Simulations results are provided to illustrate the performance of the proposed control method.

1.2.4 Relaxed bearing rigidity and bearing formation control under persistence of
excitation [TCHS20b, TCHS21]

Chapter 5 extends the bearing formation control law for formations under general undirected

graph and propose a general concept, relaxed bearing rigidity, which guarantees the uniqueness

of a fixed geometric pattern without imposing bearing rigid conditions on the graph topology.

By defining a desired formation that is bearing PE, the proposed distributed control laws

guarantee exponential stabilization of the desired formation only up to a translation vector

without measurement or estimate of any distance between two agents. Simulation results are

provided to illustrate the performance of the proposed control method.

1.3 Notations and definitions

‖.‖ the euclidean norm

S
d−1 {y ∈Rd : ‖y‖ = 1}

[.]× the skew-symmetric matrix associated to its vector argument

⊗ the Kronecker product

mod(a,b) the remainder of a/b where a,b ∈N

xry the integer part of r ∈R+

sgn(.) the signum function

Null(.) the null space a matrix

tr(.) the trace of a matrix
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Chapter 1: Introduction

rank(.) the rank of a matrix

λmax(.)(λmin(.)) the maximum (minimum) eigenvalue of its matrix argument

Id identity matrix of dimension d × d

0d , 0d×q zero matrix of dimension d × d and d × q (d , q),respectively

1n [1, . . . ,1]> ∈Rn

diag(Ai) ∈Rnd×nd the block diagonal matrix with elements given by

Ai ∈Rd×d for i = 1, . . . ,n

{I} the common inertial frame

{B} the body-fixed frame attached to the vehicle’s centre of mass

ξ position vector of the vehicle expressed in {I}

ζ position vector of the vehicle expressed in {B}

v velocity vector of the vehicle expressed in {I}

Ω angular velocity vector of the vehicle expressed in {B}

m vehicle’s mass

e1 [1 0 0]>

e2 [0 1 0]>

e3 [0 0 1]>

I the inertia matrix

g the gravitational acceleration

FT the thrust magnitude

πx I − xx> ≥ 0, x ∈ Sd−1 (d ≥ 2) which is the orthogonal projection

operator in R
d onto the d − 1-dimensional vector subspace

orthogonal to x

ξi position vector of ith agent expressed in {I}

vi velocity vector of ith agent expressed in {I}

ξ stacked position vector of agents expressed in {I}

v stacked velocity vector of agents expressed in {I}
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2
Aircraft landing using dynamic

2D image-based guidance control

2.1 Introduction

The landing maneuver is still one of the most critical and dangerous flight phases. Together

with the approach phase, it accounts for the majority of airplane accidents, as reported in

[FGH03]. The development of reliable autonomous landing systems has been an important

research area, which is currently receiving a renewed interest with the advent of unmanned

aerial vehicles (UAVs). The key problem of designing an effective autonomous landing system

is the difficulty to measure an accurate position of the aircraft with respect to the runway.

Most of the airports used for civil aviation are equipped with an instrument landing system

(ILS), whereas automatic landing of Unmanned Aerial Vehicles (UAVs) rely on high-precision

differential GPS (DGPS) systems combined with tactical grade INS [LH02]. Such systems are

expensive and may require a large-scale accurate survey of the airport, making them unsuitable

for the large number of smaller recreational airports and for use with small and inexpensive

UAVs. In addition, GPS-based navigation systems are vulnerable to disruptions arising from

different sources of signal interference both passive and active [Car03]. As described in Chapter

1, cameras are cheap and reliable sensors that can be combined with the outputs of inertial

measurement units (IMU) to provide information about the motion of the vehicle relative to the

surrounding environment.

In this chapter, we propose a novel approach that we term 2D image-based feedback control

and apply it to the problem of automatically steering a fixed-wing UAV during the first three

stages of landing: alignment, glide-slope, and flare. These together with taxiing define the

standard phases of a complete landing maneuver and can be described as follows [SL03].

1. Alignment: The airplane has to align itself with the runway and maintain a fixed desired

altitude from the ground.

9
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2. Glide-Slope: The airplane follows a straight-line descending path, while keeping the

alignment with respect to the runway.

3. Flare: When the airplane approaches the runway (at about a 20-m distance for a Jet-sized

aircraft), a specific flare maneuver begins to lower the glide-path angle and ensure a

touchdown with minimal vertical velocity.

4. Taxiing: The last phase of the landing maneuver begins when the airplane touches the

runway and acts as a ground vehicle while reducing its velocity.

Although the proposed solution exploits directly visual features in the controller, it differs

from classical IBVS schemes in the sense that the derivation of the control law relies on the

system dynamics instead of the image features dynamics. It is designed for the guidance

dynamics and exploits directly optical flow measurement as a velocity cue along with geometric

image features encoding the position with respect to the runway, yielding robustness to camera

and target calibration errors. With this approach, we can avoid the main issues encountered in

classical IBVS control: 1) requiring estimation of the Jacobian matrix and therefore estimation

of the depth of each feature, 2) being specifically designed for kinematic systems.

The use of vision for automatic landing of fixed-wings UAVs has been extensively researched.

Noteworthy examples include [VG13, GAR10, BGMB07, TMS+14, KGD10, LKSM13, KKL+13,

GBC+15, LBHM+14, SCH+15], to name a few. In [VG13] and [GAR10] classical IBVS controllers

are proposed, which explore the image feature dynamics. In [BGMB07] and [TMS+14] optical

flow information is used to sense and control the height above the ground, however the height

still needs to be estimated. Other solutions, [KGD10, LKSM13, KKL+13, GBC+15], rely on

vision to estimate the 3D position and orientation of the aircraft with respect to the runway and

then apply a traditional control scheme much in the same way as with an ILS or a DGPS system.

To this end, a precise geometric model of the runway is required as well as an extreme care in

camera calibration [KGD10, LKSM13, KKL+13].

The proposed work makes some innovations with respect to the prior works [LBHM+14]

and [SCH+15] in the guidance control problem. In [LBHM+14] an IBVS control law for the

the first two phases of the aircraft landing maneuver (the alignment and the glide-slope) was

proposed while in [SCH+15] an IBVS solution for the third phase (flare) of landing is described.

The control architecture is however the same and relies on time scale separation between the

guidance control (slow dynamics) and the high gain inner-loop flight control (fast dynamics)

[19].

The main novelty with respect to [LBHM+14] is the use of optical flow measurements instead

of airspeed measurements for the derivative term, which is inspired by the work in [RHMS14].

Using optical flow as a velocity cue eliminates the need for a wind estimator and thus the

proposed controller is not augmented with extra estimation states. As a second contribution, the

10
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proposed 2D image-based feedback controller relies on writing the kinematics in terms of the

3D position error instead of the visual error and thus enables an alternative proof of stability

and has the advantage of imposing less restrictive conditions on the tunable gains. A technical

result is also provided, which highlights the fact that the visual error is a passive function of the

position error.

For the alignment and glide phases, the position error is encoded in line features, represented

by the so-called bi-normalized Plücker coordinates [MH05]. For alignment, these are extracted

from images of the side edges of the runway. For the glide phase, virtual line features are derived

from the images of the front corners of the runway and the desired glide slope angle. For the

flare phase, images of the side edges of the runway are again used but this time in a modified

form to provide a direct position error term, simply scaled by the height above the runway.

Using the translational optical flow, we obtain a velocity term, which is also scaled by the height

above the runway. Compared with [SCH+15], we do not require an explicit separation between

the control laws for horizontal alignment and touchdown and estimation of the crosswind is

also not required.

This chapter consists of five sections followed by a conclusion. Section 2.2 presents the

fundamental equations of motion of the dynamic model considered in this work. Section 2.3

describes the image features that are exploited. Section 2.4 introduces the proposed control

strategy and the stability analysis and finally Section 2.5 describes simulations results. The

chapter concludes with some final comments in Section 2.6.

2.2 Modeling

Figure 2.1: Reference frames.

In this section the aircraft dynamic model is briefly described. Let {I} denote the inertial

reference frame and {B} denote the body reference frame. Two additional reference frames

attached to the vehicle’s center of mass are introduced, the stability reference frame {S} and the

airspeed reference frame {W}, see Fig. 2.1. The angle of attack α defines the orientation of {S}
with respect to {B}, which is used to analyze the effect of perturbations from steady-state flight.
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The airspeed frame {W} is obtained from the stability frame through a rotation about the z-axis

by the side-slip angle β. Therefore, the rotation matrices from {B} to {W} is given by

B
WR = RZ(−β)RY (α) ∈ SO(3).

The flight-path, heading, and bank angles (γ,χ,µ) are the so called wind angles and describe

the orientation of the airspeed frame with respect to the inertial frame, such that

W
I R = RZ(χ)RY (γ)RX(µ) ∈ SO(3).

Assuming the presence of wind with velocity vw ∈ R3 expressed in {B}, let va ∈ R3 denote

the velocity of the aircraft relative to the wind expressed in {B} and let Bv = va + vw denote the

aircraft velocity with respect to {I} and expressed in {B}. Let Ω ∈R3 denote the angular velocity

expressed in {B}, ξ ∈R3 the aircraft position in {I} and R = B
I R ∈ SO(3) the rotation matrix from

{B} to {I}.
Note that the airplane should not be operated when the wind conditions are higher than a

limit identified upon the airplane conception. We also assume that the wind is approximately

constant in the inertial frame, yielding the following assumption.

Assumption 2.1. The wind velocity is constant in the inertial frame. That is:

v̇w = −[Ω]×vw.

And there exists εw ∈ [0,1) such that:

‖vw‖ < εwV , (2.1)

where V = ‖va‖.

The standard rigid-body model for a fixed-wing aircraft is given by [Boi98]

ξ̇ = R(va + vw)

v̇a = −[Ω]×va + gR>e3 +
FT
m
e1 + W

B RFa(V ,α,β) (2.2)

Ṙ = R[Ω]×

IΩ̇ = −[Ω]×IΩ+ Γa(V ,Ω,α,β,δe,δa,δr ), (2.3)

where g is the gravitational acceleration, m is the mass of the vehicle, FT ∈ R is thrust force

magnitude, Fa ∈ R3 are the aerodynamic forces expressed in the wind frame, I is the inertia

matrix, and Γa ∈R3 are the aerodynamic moments expressed in the body frame. The force vector

Fa can be written as a functions of V , α, and β, whereas Γa depends on V , Ω, α, β. The control

surfaces deflections δe, δa, δr (elevator, ailerons, and rudder, respectively) and the explicit

expressions for Fa and Γa can be found in [LBHM+14].

12



2.2 Modeling

Only partial measurements of the state variables are available. The angular velocity Ω and

an estimation of orientation matrix R are provided by the IMU. A set of Pitot tubes provides the

measurement of the airspeed va in both airspeed magnitude and direction (V ,α,β). Combining

the measurement of the airspeed direction with R, measurements of (µ,γ,χ) can be obtained.

However the position of the aircraft ξ and the wind velocity vw are unknown.

2.2.1 Control architecture

The aircraft control architecture is designed by resorting to a time scale separation between the

guidance control (slow dynamics) and the high gain inner-loop flight control (fast dynamics)

[HHMR12]. Let ζ ∈R3 denote the position of the origin of inertial frame {I}, expressed in body

frame {B}, such that

ζ := −R>ξ (2.4)

and recall that Bv = va + vw denotes the aircraft velocity relative to the inertial frame, expressed

in the body frame. Under Assumption 1, the guidance dynamics can be written as

ζ̇ =− [Ω]×ζ − Bv (2.5)

Bv̇ =− [Ω]×
Bv +Fc, (2.6)

where Fc is the sum of total external force defined in (2.2). Fc is used as the control input for the

guidance control and its value, which results from the guidance control design, is used to define

the references for the high gain flight control system. Following standard procedure, we impose

two constraints on the aircraft’s motion[LBHM+14]:

1) Constant airspeed: the airspeed magnitude V = ‖va‖ is constant.

2) Bank to turn or slide to turn: the aircraft will bank into any turn to ensure that the

slide-slip angle β is zero (typically in the alignment phase) or will slide into any turn to ensure

that the bank angle µ is zero (typically in the flare phase).

To enforce the first constraint, it is assumed the aircraft is running any suitable inner-loop

control law for the thrust FT = F∗T that stabilizes V = ‖va‖ to the desired constant value. Then,

(2.6) can be rewritten as
Bv̇ = −[Ω]×

Bv +π va
V
τa(α,β,µ), (2.7)

where πx = I3 − xx> ≥ 0, ∀x ∈ S
2 is the orthogonal projection operator in R3 onto the 2-

dimensional vector subspace orthogonal to x and τa ∈R3 can be interpreted as a virtual control

input. The expression in (2.7) explicitly shows that only the two components of τa belonging to

the plane orthogonal to va are used as input for the guidance system, which follows from the

fact that vTa v̇a = 0 for constant speeds V . Recalling (2.2) and noting that R>e3 can be written in

terms of α,β,γ , and µ, one has

τa(α,β,µ) = gR>e3 +
F∗T
m
e1 + W

B RFa(V ,α,β),
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where it is made explicit that τa can be written as function of α, β, and µ along with additional

known variables V , γ and F∗T . Enforcing either one of the constraints defined in 2) and provided

that the system is within the valid region of operation, we can invert either πvaτa(α,β,0) or

πvaτa(α,0,µ) to obtain the desired angles (α∗,β∗,µ∗), which will then be used as references for

the inner-loop flight control system. For that purpose, the dynamics of α, β, and µ along

with that of Ω given in (2.3) need to be considered, yielding a strongly coupled and highly

nonlinear system with inputs given by the deflections of the aircraft control surfaces. A detailed

description of the inner-loop flight controller design is beyond the scope of this chapter and can

be found in [LBHM+14, section 2]. The approach followed to obtain an inner-loop controller

that stabilizes the orientation and regulates (α,β,µ) to the reference angles (α∗,β∗,µ∗) can be

summarized as follows: i) consider the system with state given by ς = [α,β,µ,Ω>]> and input

given by δs = [δa,δe,δr ]>, ii) assuming that V is constant and the reference angles (α∗,β∗,µ∗) are

slowly time-varying, linearize the system (with state given by ς and input given by δs) about the

corresponding equilibrium points, iii) design a controller for the resulting LPV system. The

controller obtained ensures that (α,β,µ) = (α∗,β∗,µ∗) is locally exponentially stable, with an

adequate choice of high gain.

For the rest of the chapter, it is assumed that the aircraft is running any suitable inner-loop

controller stabilizing V at a desired constant value and the angles (α,β, µ) at the desired values

(α∗1, 0, µ∗1) or (α∗2 ,β∗2, 0).

2.3 Image Features

To perform the landing maneuver using an 2D image-based controller, adequate image features

need to be defined. The side borders of the runway can be used to provide information for

aligning the aircraft with the runway, whereas the ground texture, specially on the sideways

of the runway, can be used to obtain information about the velocity relative to the ground

and ensure a smooth landing. To address the problem, we consider the following additional

assumptions:

Assumption 2.2. The camera is attached to the center of mass of the aircraft, so that the camera

reference frame coincides with the body-fixed reference frame.

Assumption 2.3. The runway is placed on a flat, horizontal, and textured surface, which defines the

target plane. The normal to the target plane coincides with the gravitational force and its coordinates

in {B} denoted by ηA ∈ S2 are assumed to be known.

Note that for non-aggressive maneuvers, it is reasonable to assume that the IMU can provide

good estimates for ηA. To define an inertial reference frame {I}, we introduce a unit vector that

coincides with the main axis of the runway and has coordinates uA ∈ S2 expressed in {B}. This
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vector will be extracted from images features, as shown below. The axes of {I} expressed in {B}
are then given by (uA,ρ,ηA), where ρ = ηA ×uA. For convenience but without loss of generality,

the origin of {I} is placed at the front border of runway, equally distant from the sideways (see

Fig. 2.2).

2.3.1 Image features for the alignment phase

As shown in Fig. 2.2, we consider that two parallel straight lines define the edges of the

runway along the direction uA (full length direction). According to the placement of the inertial

frame {I}, the front corner points of each line expressed in the inertial frame are defined as

s̊1 = [0 − s 0]> and s̊2 = [0 s 0]>.

𝐵
ℎ1

𝑙2

𝐿1 𝐿2

η𝐴

𝐵
ℎ2

Figure 2.2: Parallel lines and the binormalized Plücker coordinates Bhi .

The unit vector Bhi ∈ S2 normal to the plane defined by the camera/body frame {B} together

with ith line of the runway, can be directly obtained from the image of the line as introduces

in Section A.3 in the Appendix. If at least two lines are observed, then the direction uA can be

readily obtained from

uA =
Bh2 × Bh1

‖Bh2 × Bh1‖
.

Consider the goal of the alignment phase as that of aligning the aircraft with the center of the

runway and maintaining a fixed height above the ground. The visual feature used for control

purposes in the alignment phase encodes information about the position of the aircraft relative

to the straight lines and is defined as

qA :=
1
2

(l1 + l2) ∈R3,
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𝐵
ℎ2

𝐵
ℎ1𝑙1 𝑙2

𝑢𝐴

𝑞𝐴

𝜂𝐴

ρ

Figure 2.3: Projection on the plane orthogonal to uA.

where

li = uA × Bhi ∈ S2, (2.8)

and qA can be obtained directly from image measurements only. As shown in Figures 2.2 and

2.3, (2.8) simply amounts to applying a 90 degree rotation about uA, so that the new unit vectors

li point from the camera to each line. Figure 2.3 also shows that li can be rewritten as

li =
Li
‖Li‖

,

where Li is the projection on the plane orthogonal to uA (represented in Fig. 2.2 by the light

colored plane) of any vector going from the camera to any point on the line. Recalling (2.4), the

vector Li can be written as

Li = R>s̊i +πuAζ.

The desired image feature is defined as

q∗A =
1
2

(l∗1 + l∗2) =
1
2

(
L∗1
‖L∗1‖

+
L∗2
‖L∗2‖

)
,

where L∗i = R>s̊i +πuAζ
∗. Then, the control objective can be defined as guaranteeing the conver-

gence of qA to q∗A via the asymptotic regulation of πuAζ −πuAζ
∗ to zero. Define the height of the

aircraft above the runway along the direction ηA as

dA := η>ALi .

To align the aircraft with the center of the runway and keep it at constant height d∗A above

the ground, the desired vector πuAζ
∗ is defined as πuAζ

∗ := d∗AηA. By a direct application of

Lemma A.1, as long as dA > 0, there is an one-to-one mapping between the image feature qA
and πuAζ. Hence achieving alignment, πuAζ = πuAζ

∗, is equivalent to having qA = q∗A and these

measurements can be directly obtained from the geometric image features.
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2.3.2 Image features for the glide phase

For the glide phase, the aircraft should follow a straight-line descending path, while maintaining

the alignment with respect to the runway. To define the visual features for this phase, we propose

to use the front corners of the runway along with a prespecified desired descent direction. Let

P
′

i = R>s̊i + ζ ∈ R
3 denote the coordinates in {B} of the front corner points of the runway.

Adopting the same approach as in [LBHM+14], we construct virtual lines starting from the

corner points with a pre-specified glide direction uG ∈ S2 expressed in the body frame

uG = cosγ∗uA + sinγ∗ηA,

and normal direction ηG ∈ S2 expressed in the body frame as

ηG = −sinγ∗uA + cosγ∗ηA,

where γ∗ is the angle of the desired glide slope with respect to ground (see Fig. 2.4). Notice that

u̇G = −[Ω]×uG since the angle γ∗ is constant along the glide path.

𝑑𝐴
∗ γ∗

𝑢𝐴

𝑢𝐺η𝐺

𝑑𝐺
∗

alignment phase

glide phase

η𝐴

Figure 2.4: Flight phases.

The visual feature used for control purposes in glide phase is defined by

qG :=
1
2

(g̊1 + g̊2) ∈R3,

where

g̊i =
πuGp

′

i

‖πuGp
′

i‖
∈ S2,

and hence the vector qG can be directly obtained from uG and the spherical images of the front

corners p
′

i = P
′
i

||P ′i ||
(p
′

i can be obtained using the sequence of 2D pixel locations from the camera

as presented in Section A.1). g̊i can also be rewritten as g̊i = Gi
‖Gi‖

, where

Gi = πuGP
′

i = R>s̊i +πuGζ.

17



Chapter 2: Aircraft landing using dynamic 2D image-based guidance control

Define the height of the aircraft above the virtual lines along the direction ηG as

dG := η>GGi .

Similarly to the alignment phase, the control objective for the glide phase can be defined as

ensuring the convergence of qG to q∗G via the asymptotic regulation of the error πuGζ −πuGζ
∗

to zero, where πuGζ
∗ = d∗GηG and d∗G is the desired value of dG. Again, by a direct application

of Lemma A.1, we can conclude that, for dG > 0, there is an one-to-one mapping between the

image feature qG and πuGζ.

2.3.3 Image features for the flare phase

The goal of the flare phase is to steer the airplane so that it lands smoothly on the center of the

runway and aligned with the direction uA, while keeping a constant speed along the maneuver.

The flare maneuver can be defined as driving πuAζ to zero with exponential convergence along

the vertical direction ηA to ensure a smooth touchdown. To achieve this goal using a 2D image-

based feedback control law, we slightly modify the visual feature that was defined for the

alignment phase and consider

qF :=
1
2

(
l1
η>A l1

+
l2
η>A l2

)
=

1
2

(
L1

η>AL1
+

L2

η>AL2

)
,

recalling that li = Li
‖Li‖

and the height dA above the ground is given by dA = η>AL1 = η>AL2, one

can remark that qF can also be written as a function of the system state:

qF =
πuAζ

dA
.

2.3.4 Image Kinematics and Translational Optical Flow

To obtain optical flow measurements to be used as velocity cue in the 2D image-based controller,

it is assumed that the sideways of the runway are rich in texture. The kinematics of any observed

points can be written in the body-fixed frame:

BṖ = −[Ω]×
BP − Bv,

where BP ∈R3 denotes a point on the textured ground. Similarly to Section A.4 in the appendix,

the translational optical flow with respect to the text ground

w(t) =
Bv(t)
dA(t)

, (2.9)

can be obtained from the integral of the kinematics of the image point Bp =
BP
‖BP ‖ :

Bṗ = −[Ω]×
Bp − cosθAπBp

Bv
dA

along direction ηA over a solid angle, where θA = η>A
Bp.
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2.4 Vision-based Control

In this section, the three phases of the landing maneuver (alignment, glide and flare) are

considered, assuming the presence of a constant wind disturbance. Adopting the guidance

dynamics described in Section 2.2, we propose an outer-loop control law that only relies on

image measurements to: i) align the aircraft with the center of the runway, ii) perform the

glide-slope maneuver, and iii) enforce a smooth landing in the flare phase. For that purpose, the

controller must ensure that the height above the ground dA is positive at all times and dA = 0

is exponentially reached with zero velocity, during the flare phase. The obvious constraint

of guaranteeing that dA remains positive, together with the fact that dA is unknown, adds

complexity to the control problem and requires careful consideration in the stability analysis.

We recall the guidance kinematics and dynamics (2.5) and (2.7) and define the input τa as

τa = −(va)×(u(.))×
F

v>a u(.)
=

I3 − u(.)v
T
a

uT(.)va

πu(.)
F, (2.10)

where u(.) stands for either uA or uG depending on which landing phase (uA for alignment and

flare, uG for glide-slop) is considered and F ∈ R3 is the force applied to the aircraft yet to be

defined, which will have different expressions for alignment, glide and flare phases denoted by

FA, FG and FF respectively. Note that (2.10) is well-defined provided that

u>(.)va(t) > 0, for all t ≥ 0. (2.11)

Rewriting the guidance system (2.5) and (2.7) with τa given by (2.10), we obtain

ζ̇ =− [Ω]×ζ − Bv

Bv̇ =− [Ω]×
Bv −u(.)

v>a πu(.)
F

v>a u(.)
+πu(.)

F, (2.12)

where for convenience the input was decomposed into two terms, one parallel and the other

orthogonal to u(.).

In what follows, let ζ(.) := πu(.)
ζ ∈R3 and v(.) := πu(.)

Bv ∈R3 denote the components orthogo-

nal to u(.) and let ζρ := ρ>ζ ∈R, vρ := ρ>Bv ∈R denotes the components along ρ. Assuming for

now that (2.11) holds, we obtain

ζ̇(.) =− [Ω]×ζ(.) − v(.)

v̇(.) =− [Ω]×v(.) +πu(.)
F,

(2.13)

recalling that F = FA for the alignment phase, F = FG for the glide phase, and F = FF for the
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flare phase. The control laws are given by

FA = k1(qA − q∗A)− k2

u>Ava
πuAw (2.14)

FG = k3(qG − q∗G)− k4

u>Gva
πuGw (2.15)

FF = k5qF − k6πuAw, (2.16)

where k1, k2, k5, k6, k5, and k6 are positive gains. Recalling (2.9), equations (2.14), (2.15), and

(2.16) can also be written as PD-like control laws

FA = k1(qA − q∗A)− k2

u>Ava

vA
dA

FG = k3(qG − q∗G)− k4

u>Gva

vG
dA

FF = k5
ζA
dA
− k6

vA
dA
.

The proportional term in FA and FG, given by q(.)−q∗(.), is a nonlinear function of the position

error ζ̃(.) = ζ(.) − ζ∗(.), with ζ∗A = d∗AηA for alignment and ζ∗G = d∗GηG for glide. We note that

according to (A.5), q(.) − q∗(.) can be written as

q(.) − q∗(.) = Q̄(.)ζ̃(.),

where Q̄(.) is a positive definite matrix provided that dA > 0 and dG > 0, meaning that

(q(.) − q∗(.))
>ζ̃(.) = ζ̃>(.)Q̄(.)ζ̃(.) > 0,

which highlights the fact that the image feature error q(.) − q∗(.) is a strictly passive memoryless

function of ζ̃(.)[Kha92]. The passive property guarantees that
∫ ζ(.)

ζ∗(.)
(q(.)(x)− q∗(.))

>dx is a positive-

definite function of ζ̃(.), hence one can use this integral as a storage function for stability analysis

which will be introduced later.

All other terms are linear with parameter-varying gains that arise from the division by dA
and also by u>(.)va for the derivative terms in (2.14) and (2.15). The latter is included to provide a

high-gain feedback that moves the system away from the condition u>(.)va = 0. To show that u>(.)va
is a parameter-(and not a time)-varying gain, it suffices to recall Assumption 2.1 and rewrite

u>(.)va as follows:

u>(.)va =
√
V 2 − ‖v(.) −πu(.)

vw‖2.

The division by dA arises from the direct use of image features and provides the important

property that the distance will remain always positive, while guaranteeing asymptotic stability

of the errors for the alignment and glide phases and robust exponential convergence of the

errors for the flare phase.
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Theorem 2.1. Consider the system (2.13) in closed-loop with the control law (2.14) for the alignment

phase. If there exists a sufficiently small constant εa > 0 such that for any initial condition the

following constraints are satisfied:

uA(t0)>va(t0) ≥ εaV > 0 and dA(t0) > 0,

then the closed-loop system is well defined for all t ≥ t0 and the following items hold:

(1) uA(t)>va(t) is bounded and uA(t)>va(t) ≥ εaV > 0, for all t ≥ t0;

(2) the distance dA(t) is positive and bounded for all t ≥ t0;

(3) the equilibrium point (ζA,vA) = (ζ∗A,0) is asymptotically stable.

Proof. Item (1):

Since it is assumed that ‖va‖ is regulated to the constant V by a fast inner-loop controller, it

follows that |uA(t)>va(t)| ≤ V and thus uA(t)>va(t) is bounded for all t ≥ t0.
To show uA(t)>va(t) ≥ εaV > 0, define a storage function

S(va) = V −u>Ava, (2.17)

and note that S(va) = 0 when va = VuA and S(va) = V (1− εa) when u>Ava = εaV . To show that

u>Ava(t) ≥ εaV > 0 for all t > t0 if u>Ava(t0) ≥ εaV > 0, it suffices to show that S(va) ≤ V (1 − εa)
defines a positively invariant set, or equivalently that Ṡ is negative definite when u>Ava = εaV ,

with εa arbitrarily small. Using (2.12) and (2.14), we can write

dA(u>Ava)
dt

=
1

u>Ava
[−k1v

>
a (qA − q∗A) +

k2

u>Ava
v>a πuA

va + vw
dA

],

and

Ṡ = − k2

dA(u>Ava)
2

[v>a πuA(va + vw)− k1

k2
dA(u>Ava)v

>
a (qA − q∗A)],

so the derivative of S can be upper bounded by

Ṡ ≤ −
k2‖πuAva‖
dA(u>Ava)

2
(‖πuAva‖ − ‖vw‖ −

k1

k2
dA|u>Ava|‖qA − q

∗
A‖).

Using the bounds ‖vw‖ < εwV and ‖qA − q∗A‖ ≤ 2, Ṡ can be further upper bounded by

Ṡ ≤ −
k2‖πuAva‖
dA(u>Ava)

2
(‖πuAva‖ − εwV − 2

k1

k2
dA|u>Ava|),

showing that if

‖πuAva‖ > εwV + 2
k1

k2
dA|u>Ava|, (2.18)

then Ṡ < 0. If u>Ava = εaV , ‖πuAva‖ = V
√

(1− ε2
a ), and (2.18) becomes√

1− ε2
a > εw + 2

k1

k2
dAεa, (2.19)
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leading that 0 < εa <
−2 k1

k2
εwdA+

√
4
k2
1
k2
2
d2
A+1−ε2

w

4
k2
1
k2
2
d2
A+1

< 1, as long as dA is bounded (which will be shown

further ahead in the proof), condition (2.19) will always be satisfied for εa sufficiently small,

meaning that va will not cross the boundary u>Ava = εaV .

Proof of item (2):

The proof follows similar arguments to those presented [RHMS14]. Considering the error

states ζ̃A = ζA − ζ∗A and vA, we start by defining a positive definite storage function L2(ζ̃A,vA),

and showing that if d(t) remains positive, L̇2 is negative semi-definite, meaning that the states

ζA = ζ̃A + ζ∗A and vA remain bounded. Define L2 as

L2(ζ̃A,vA) = k1L1(ζ̃A) +
1
2
‖vA‖2,

where L1 is the line integral given by

L1(ζ̃A) =
∫ ζA

ζ∗A

(qA(x)− q∗A)>dx,

and the integration can be taken over any path from ζ∗A to ζA. The proof that L1 is a positive

definite function of ζ̃A is given in Lemma A.2 in the appendix.

Taking the time derivative of L2 and using (2.14), we can conclude that

L̇2 = −k1(qA − q∗A)>vA + v>AFA

= − k2

du>Ava
‖vA‖2 ≤ 0,

which guarantees that ζA and vA are bounded, provided that dA remains positive.

To show that dA remains positive, we note that dA = η>Aζ with dynamics given by

d̈A = −k1η
>
A (qA − q∗A)− k2

u>Ava

ḋA
dA
. (2.20)

Using arguments similar to those in [RHMS14], we can rearrange the terms in (2.20) and

integrate them to obtain

k2(logdA(t)− logdA(t0)) = −
∫ t

t0

(u>Ava)(k1η
>
A (qA − q∗A) + d̈A)dτ, (2.21)

where the dependence on τ is omitted to simplify the notation. By showing that, for finite t, the

integral term in (2.21) is bounded, we can conclude that logdA(t) does not go to −∞ in finite

time and thus dA(t) cannot reach zero in finite time and remains positive for all time. The first

term
∫ t
t0

(u>Ava)k1η
>
A (qA − q∗A)dτ is bounded because all terms inside the integral are bounded. To

show that
∫ t
t0

(u>Ava)d̈A dτ is bounded, we use the fact that εaV ≤ u>Ava ≤ V , implying that∣∣∣∣∫ t

t0

(u>Ava)d̈A dτ
∣∣∣∣ ≤ V ∫ t

t0

∣∣∣d̈A∣∣∣dτ,
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2.4 Vision-based Control

which can be solved by splitting the time interval [t0, t] into smaller intervals, such that inside

those intervals the sign of d̈A does not change. For each of these intervals of integration,∫ tj
ti

∣∣∣d̈A∣∣∣dτ is either given by ḋA(ti)− ḋA(tj) or its symmetric, and since ḋA is bounded as shown

previously, we can conclude that
∫ t
t0

∣∣∣d̈A∣∣∣dτ is bounded for finite t, the right-hand side of (2.21)

is bounded, and thus dA remains positive for all time.

Proof of item (3):

Using the storage function L2 defined in proof of item (2), define the set E := {(ζA,vA) :

L̇2(ζA,vA) = 0} = {(ζA,vA) : vA = 0}. Since vA ≡ 0 implies that v̇A ≡ 0 and these two conditions

imply that ζA ≡ ζ∗A, it follows that the largest invariant set in E includes only the trivial solution

vA ≡ 0 and ζA ≡ ζ∗A. Using the fact that f or any x ∈R3, [Ω]×x is a passive term (i.e. x>[Ω]×x = 0,

see Remark 2.1), one can apply LaSalle’s invariance principle from which one concludes that

(ζA,vA) = (ζ∗A,0) is asymptotically stable.

Remark 2.1. Notice that although the guidance dynamics is expressed in the body frame where

the angular velocity Ω appears in the state dynamics (2.13), applying LaSalle’s principal here

for the stability proof is relevant and appropriate. The stability issues considered in this chapter

concern only the guidance part of the problem (a subsystem of the full dynamics of the airplane).

One could think that expressing the guidance dynamics in the body-fixed frame introduces,

due to the presence Ω, dynamic coupling that seems problematic. Clearly, if one represents

the guidance dynamics in the inertial frame, Ω does not appear into the subsystem dynamics.

The difference between the two representations is simply a change of coordinates and does not

change the structural properties of the subsystem since this change of variable is passive with

respect to change of reference frame. That is the energy due to [Ω]×ζA (respectively [Ω]×vA) is

zero because [Ω]×ζA is orthogonal to ζA (respectively [Ω]×vA is orthogonal to vA).

Proposition 2.1. Consider the system (2.13) in closed-loop with the control law (2.15) for the glide

phase. If there exists a sufficiently small constant εa > 0 such that for any initial condition the

following constraints are satisfied:

uG(t1)>va(t1) ≥ εaV > 0,d(t1) > 0,

and

L4(ζ̃G(t1),vG(t1)) < s(1− s√
s2 + d∗2G

) (2.22)

with the function

L4(ζ̃G(t),vG(t)) =
∫ ζG(t)

ζ∗G

(qG(x)− q∗G)>dx+
1
2
‖vG(t)‖2,

then the closed-loop system is well defined for all t ≥ t1 and the following items hold:

(1) uG(t)>va(t) is bounded and uG(t)>va(t) ≥ εaV > 0, for all t ≥ t1;
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(2) the distance dA(t) is positive and bounded for all t ≥ t1;

(3) the equilibrium point (ζG,vG) = (ζ∗G,0) is asymptotically stable;

(4) dG(t) is positive and g̊i(ζG(t)) is well defined for all t ≥ t1.

Proof. The proof of the first three items is identical to that of Theorem 2.1.

Proof of Item (4):

Using arguments similar to those in Lemma A.2 in the Appendix, one can show that L3 =∫ ζG
ζ∗G

(qG(x)− q∗G)>dx is a positive definite function and its explicit form is

L3(ζ̃G) = ‖G1‖(1− g̊>1 g̊
∗
1) + ‖G2‖(1− g̊>2 g̊

∗
2). (2.23)

Using (2.23), one can show that L3(ζ̃G(t)) < s(1− s√
s2+d∗2G

) is a sufficient condition to guarantee

that dG(t) > 0. Then since L̇4 is negative semi-definite (similarly to L̇2 in Proof of Theorem 2.1),

L4 is non-increasing and for any initial condition such that (2.22) is satisfied,

L3(ζ̃G(t)) ≤ L4(ζ̃G(t),vG(t)) < s(1− s√
s2 + d∗2G

),

for all t ≥ t1, which implies that dG(t) is positive and g̊i(ζG(t)) is well defined for all t ≥ t1.

Theorem 2.2. Consider the system (2.13) along with the control law (2.16) for the flare phase. If there

exists a sufficiently small constant εa > 0 such that for any initial condition the following constraints

are satisfied:

uA(t2)>va(t2) ≥ εaV > 0, dA(t2) > 0,

and √
L(t2) ≤ k6

k5
min{k6,V (

√
1− ε2

a )− εw} (2.24)

with the function

L(t) =
1
2
ζ2
ρ(t) +

k2
6

2k2
5

(vρ(t)− k5

k6
ζρ(t))2 + max{dA(t)exp{ ḋA(t)

k6
},dA(t)}2, (2.25)

then closed-loop system is well-defined for all t ≥ t2 and the following items hold:

(1) the state (ζA,vA) is bounded for all t ≥ t2 and converges asymptotically to zero;

(2) the distance dA(t) is positive and bounded for all t ≥ t2 and converges exponentially to zero;

(3) uA(t)>va(t) is bounded and uA(t)>va(t) ≥ εaV > 0, for all t ≥ t2.

Before proceeding to the proof of Theorem 2.2, we note that the closed-loop system for the

flare phase can be written as

ζ̇A =− [Ω]×ζA − vA

v̇A =− [Ω]×vA + k5
ζA
dA
− k6

vA
dA

d(u>Ava)
dt

= − 1
dA(u>Ava)

v>a (k5ζA − k6πuA(va + vw)),

(2.26)
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2.4 Vision-based Control

where we recall that Bv = va + vw. Then, the first step to show that (ζA,vA) converges to zero

and u>Ava remains positive is to determine whether or not u>Ava is positive when (ζA,vA)→ (0,0).

Recalling that ‖va‖ = V , it follows that when vA = πuA(va + vw)→ 0, u>Ava converges to either√
V 2 − ‖πuAvw‖2 or −

√
V 2 − ‖πuAvw‖2. Then, the desired equilibrium for u>Ava is

√
V 2 − ‖πuAvw‖2,

which is lower bounded by V
√

1− ε2
w > 0, provided that the wind velocity satisfies Assumption

2.1.

Proof. item (1):

By noting that (dA, ḋA) = (η>Aζ,−η
>
Av) and considering the closed-loop system formed by (2.13)

and (2.16), the dynamics of dA can be written as

d̈A = −k6

( ḋA
dA

+wd
)
,

where wd = k5
k6

.

According to the proof of Theorem 5.1 in [HHMR12], we can define the auxiliary variable

λ(t) = dA(t)exp{ ḋA
k6
}, (2.27)

and considering the change of variables from (dA, ḋA) to (dA,λ), obtain a new description for the

system given by

ḋA(t) = −k6

(
logdA(t)− logλ(t)

)
λ̇(t) = −wdλ(t), (2.28)

which is well-defined for dA(t) > 0 and λ(t) > 0. From (2.28), it follows that λ(t) = λ(t2)exp(−wdt),
which is positive for all t ≥ t2, provided that λ(t2) > 0 or equivalently dA(t2) > 0. If dA(t2) < λ(t2),

then ḋA(t2) > 0 and dA(t) increases while λ(t) is decreasing to zero, meaning that there exists a

time T1 ≥ 0 such that dA(T1) = λ(T1) and dA(t) cannot grow unbounded. After crossing the line

dA = λ at t = T1, ḋA(t) becomes negative and dA(t) starts decreasing together with λ(t) and both

converge monotonically to zero, without crossing either the line dA = λ or the line dA = 0, as

shown in Fig. 2.5.

To show that ḋA(t) also converges to zero, consider the storage function

L5 =
1
2
ḋ2
A

with time derivative given by

L̇5 = −k6
ḋA
dA

(ḋA +wddA). (2.29)
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𝑑𝐴

Figure 2.5: Phase portrait of the evolution of the state (dA,λ).

Then, the function L5 is decreasing as long as |ḋA(t)| > wddA(t). Since dA(t) is positive and

converging to zero, we can conclude that |ḋA(t)| is bounded and converging to zero. Finally, to

show that dA(t) and ḋA(t) are bounded by exponentially decaying functions, we can write the

solution of (2.28) as a function of dA(t) and ḋA(t) to obtain

0 < σ1dA(t2) exp {−wdt} ≤ dA(t) ≤ σ2dA(t2) exp {−wdt} ,

where σ1 = exp
{

1
k6

(ḋA(t2)− max{ḋA(t)})
}

and σ2 = exp
{

1
k6

(ḋA(t2)− min{ḋA(t)})
}
, showing that

dA(t) converges exponentially to zero and by (2.29) so does ḋA(t).

Proof of Item (2):

We have shown that (dA, ḋA) = (η>Aζ,−η
>
Av) converges exponentially to zero. It remains to be

proven that (ζρ,vρ) = (ρ>ζ,ρ>v) also converges to zero. From (2.26), it follows that
ζ̇ρ = −vρ

v̇ρ = − k6

dA
(vρ −wdζρ).

Define a new state as δ = vρ −wdζρ and apply a coordinate transformation to obtain
ζ̇ρ = −wdζρ − δ

δ̇ = −(
k6

dA
−wd)δ+w2

dζρ.

Then, consider a Lyapunov function

L6 =
1
2
ζ2
ρ +

1

2w2
d

δ2 (2.30)
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with time derivative given by

L̇6 =−wdζ2
ρ −

1

w2
d

(
k6

dA
−wd)δ2.

It follows that L̇6 is negative definite, provided that k6 > wddA(t) > 0, which is equivalent to

0 < dA(t) < k2
6
k5

. Since dA(t) is converging to zero from above, the condition will be satisfied after

some finite time T > 0.

Given the division by dA in the expression for v̇ρ, it is also important to show that it does not

grow unbounded. This is equivalent to showing that δ
dA

is bounded. Let

L7 =
1
2

(
δ
dA

)2

be a Lyapunov candidate, with time derivative

L̇7 = −k6 −wddA + ḋA
dA

(
δ
dA

)2

+w2
d
δ
dA

ζρ
dA
.

Then, L̇7 < 0 for ∣∣∣∣∣ δdA
∣∣∣∣∣ > wd

k6 −wddA + ḋA
|ζρ|,

showing that
∣∣∣∣ δdA ∣∣∣∣ cannot grow unbounded, given that the right-hand side of the condition is

bounded.

Proof of item (3): This part of the proof is analogous to that of item (1) of the Theorem 2.1.

Using the storage function defined in (2.17), it suffices to show that S(va) ≤ V (1− εa), with εa
arbitrarily small, defines a positively invariant set.

The time derivative of S satisfies

Ṡ =− k6

dA(u>Ava)
(‖πuAva‖

2 − k5v
>
a πuAvw +

k5

k6
v>a πuAζA)

≤−
k6‖πuAva‖
dA(u>Ava)

(‖πuAva‖ − εwV −
k5

k6
‖ζA‖).

For the level set where S = V (1− εa), we have u>Ava = εaV and ‖πuAva‖ = V
√

1− ε2
a . Then,

Ṡ ≤ − k6

dAεaV
(V

√
1− ε2

a − εwV −
k5

k6
‖ζA‖)

meaning that u>Ava(t) will remain positive if the condition

‖ζA(t)‖ ≤ k6

k5
V (

√
1− ε2

a − εw) (2.31)

is satisfied. Next, we will show that (2.31) is satisfied under the initial conditions mentioned in

Theorem 2.2. Recalling equations (2.27) and (2.30), equation (2.25) can be rewritten as

L(t) = L6(t) + max{λ(t),dA(t)}2.
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Since L̇6 is negative definite provided 0 < dA <
k2

6
k5

, as long as the initial condition (2.24) is

satisfied, L(t) is decreasing, yielding

‖ζA(t)‖ ≤
√
L(t) ≤min{

k2
6
k5
,
k6

k5
V (

√
1− ε2

a − εw)},∀t ≥ t2.

2.5 Simulation Results

In this section, simulation results are shown to illustrate the behavior of the closed-loop system,

using the landing controller on top of the high-gain inner-loop controller described in [SCH+15].

A fixed-wing aircraft (1/4 scale Extra-330) is considered (m = 12kg, I = diag(1.4759,2.8563,4.119),

g = 10 m/s2). The gains of the proposed controllers have been chosen as follows: k1 = 15, k2 = 30

for the alignment phase, k3 = 30, k4 = 60 for the glide phase, and k5 = 25, k6 = 35 for the

flare phase. The desired glide slope has been set to γ∗ = 6o and the airspeed to V = 15.5 m/s.

We use the pin-hole camera model with a focal length f = 2.4 mm. The initial conditions

were set as follows ζ(0) = [0, 3, −18] m, Bv(0) = [15.3, 4, −1.2] m/s, β(0) = 0, α(0) = 0.1732,

µ(0) = 0, γ(0) = 0, χ(0) = 0, leading to an initial wind of R(0)vw(0) = [0, 4, 1.5] m/s, and finally

Ω(0) = [0, 0, 0] s−1.

In order to test robustness of the proposed control approach, the camera is set below the

center of mass with an offset of 0.1m (pc = 0.1e3 m, in body-fixed frame) and a time varying wind

velocity is introduced R(t)vw(t) = [0, 4, 1] + 0.5[0, sin0.2t, cos0.2t] m/s. It is straightforward to

verify that εw in equation (2.1) can be fixed to 0.35.

Fig. 2.6 and Fig. 2.7 show that the aircraft lands smoothly on the center of runway and has a

rate of descent sufficiently high to touchdown within the bounds of a 70 meter length runway.

Figures 2.8 and 2.9 show the time evolution of aircraft’s position and velocity, with the first,

second, and third segments indicating the alignment, glide and flare phases, respectively. From

Fig. 2.8, we can see that the aircraft converges to the desired path, even with the presence of

unmodelled dynamic perturbations and camera offset. Fig. 2.10 shows the virtual force input

generated by the proposed outer-loop control law, which defines the reference for the inner-loop

controller.

The states controlled by the inner-loop controller are shown in Figs. 2.11 and 2.12. The time

evolution of the side-slip angle β, angle of attack α, and bank angle µ during the three phases is

presented in Fig. 2.11, whereas Fig. 2.12 shows the time evolution of Euler angles. Figures 2.11

and 2.12 indicate a good compromise in terms of time-scale separation between the outer-loop

and inner-loop controllers, showing that the inner-loop controller is sufficiently fast to track the

outer-loop references, including during the transitions between stages.

The effective simulation results show that as long as some care is taken in choosing the
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guidance control gains to ensure that the desired orientation set point is small enough, the

robustness of the proposed algorithm leads to an effective closed-loop performance even in the

presence of unmodelled dynamic perturbations and camera offset.
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Figure 2.6: 3-D plot of the aircraft trajectory.

2.6 Conclusion

This chapter proposed a 2D image-based controller to steer a fixed-wing UAV during the first

three stages of landing. The image features of the runway are exploited to achieve horizontal

alignment and smooth touchdown of the aircraft on the runway during alignment, glide-slope,

and flare phases. Using optical flow for the velocity-like term eliminates the need for including a

crosswind estimator and considerably simplifies the control laws. A formal proof of convergence

of the separate control scheme is provided and the simulation results show the effectiveness of

the proposed control algorithm.
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3
Quadrotor going through a

window and landing: An image-based
visual servo control approach

3.1 Introduction

In this chapter, we extend the IBVS control solution based on spherical image centroids to a

specific problem of steering a quadrotor to move from one room to a second one by crossing

a window and then land on a planar target placed in the second room (see Fig. 3.1). This

application has significant practical interest since many tasks (i.e. search and rescue in an

earthquake-damaged building [MSM+12], package delivery using UAVs) require UAVs to land

on a final destination or to perform intermediate landings for battery recharge or exchange, or

refueling (for larger UAVs) during long missions. The quadrotor is assumed to be equipped with

an IMU and two on-board cameras: one forward-looking and another downward-looking. Nei-

ther the translational velocity and position of the vehicle nor the location of the target (window

and landing pad) are known. In the proposed IBVS control laws, the centroid vectors provided

by the combination of the spherical image measurements of a collection of landmarks (corners)

from both the window and the landing pad are used as position cue and the translational optical

flow relative to the plane containing window and landing pad is used as velocity cue.

The control law proposed for going through the window draws inspiration from [SCH+16],

but considers a different objective. Instead of landing and ensuring an always positive height,

the control law ensures that no collision with the wall or windows edges will occur and the

vehicle will align with the center line orthogonal to the window, crossing it with non-zero

velocity. The control law for landing on the target is an improvement with respect to the one

used in [SCH+16], with the centroid vector now directly given by the image centroid, which is

highly robust to pixel noise, and easily computed in real-time in the camera frame and then

derotated.

This chapter presents the following novel contributions: 1) bounded disturbances (i.e. due
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Figure 3.1: 3-D plot of the quadrotor trajectory.

to wind, and unmodeled dynamics) are included in the dynamics of the system; 2) a complete

stability analysis shows that convergence to the desired zero-height equilibrium is guaranteed in

all cases and ultimate boundedness of the horizontal position error is guaranteed when landing

in the presence of horizontal disturbances; 3) experimental results are provided where the

controllers run on an onboard computer together with the image processing for the detection of

window and landing pad and for the computation of the translational optical flow.

The chapter consists of seven parts. Section 3.2 presents the dynamic model and the

fundamental equations of motion. Section 3.3 introduces the environment and presents the

image features that are used in the control law. Section 3.4 proposes two control laws: one for

the landing task in obstacle-free environments and the other for flying through the window.

A combination of these two control laws in the practical case is also presented in this section.

Section 3.5 shows simulation results obtained with the proposed controller. Section 3.6 presents

and analyzes the experimental results which validate the proposed controllers. The chapter

concludes with some final comments in Section 3.7.

3.1.1 Related work

There are several examples in the literature of recent work dedicated to the problem of flying

autonomous vehicles in complex environment using vision systems. In [LBMK17, FMFS17,

GL20], the authors specifically address the problem of going through a window using only a
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single camera and an IMU. However, estimation of vehicle’s position and velocity is required

in [LBMK17, FMFS17]. Besides, the pose of the window is assumed to be known in [LBMK17].

Although the work in [GL20] directly uses image feature as position cue, estimates of the image

depth are still required and the velocity vector is assumed to be known. In general, state

estimation adds computational complexity, and the output is often sensitive to image noise and

camera calibration errors. The limited work on image-based control approach can be explained

by the complexity involved in obtaining sound proofs of convergence and stability.

Landing in complex environments calls for obstacle avoidance capabilities, which are nat-

urally provided by the use of optical flow, a visual feature that draws inspiration from flying

insects. Based on [MCH08] and using optical flow, the authors proposed IBVS controllers for

landing a quadrotor [HHMR12, SCH+16] and landing a fixed-wing aircraft [LBHM+14, SCH+15]

eliminating the need to estimate the height of the vehicle above the ground . Using a distinct

paradigm, a novel setup of self-supervised learning based on optical flow was introduced

in [HDWRDC18]. Using optical flow, the proposed method learns the visual appearance of

obstacles in order to search for a landing spot for micro aerial vehicles.

When compared to related work, this chapter proposes simple IBVS controllers applied

in sequence to first go through a window and then land on a planar target, using only vision

measurements and requiring no estimation of position, velocity, image depth, nor height above

the target. The present work also provides rigorous mathematical proofs for stability and

robustness in the presence of disturbances, complemented by experimental validation of the

proposed controllers.

3.2 Quadrotor modeling and control architecture

Figure 3.2: Target plane and window plane.

Consider a quadrotor UAV equipped with an IMU and two cameras. To describe the motion

of the quadrotor, two reference frames are introduced: an inertial reference frame {I} fixed to

the earth surface and a body-fixed frame {B} attached to the quadrotor’s centre of mass (see

Fig. 3.2). Let R = B
I R ∈ SO(3) denote the orientation of the frame {B} with respect to {I} and let

ξ ∈ R3 be the position of the origin of the frame {B} with respect to {I}. Let v ∈ R3 denote the

translational velocity expressed in {I} and Ω ∈R3 the orientation velocity expressed in {B}. The
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Figure 3.3: A hierarchical control design strategy.

kinematics and dynamics of the quadrotor vehicle are then described as ξ̇ = v

mv̇ = −F +mge3 +4
(3.1)

 Ṙ = RS(Ω)

IΩ̇ = −Ω×IΩ+ Γ
(3.2)

The vector F ∈R3 expressed in {I} combines the principal non-conservative forces applied

to the quadrotor and generated by the four rotors. In quasi-hover conditions one can reasonably

assume that this aerodynamic force is always in the direction eb3 in {B}, since all the four thrusters

are aligned with eb3 and their contribution predominates over other components. Thus the F in

the direction of eb3 expressed in the inertial frame can be described as follows:

F = FTRe3 (3.3)

where the scalar FT represents the total thrust magnitude generated by the four motors. It also

represents the unique control input for the translational dynamics.

The term 4 combines the modelling errors and aerodynamic effects due to the interaction of

the rotors wake with the environment causing random wind and dynamic inflow effects [PH88].

The vector Γ ∈ R3 expressed in {B} is the torque control for the attitude dynamics. It is

obtained via the combination of the contributions of four rotors. The invertible linear map

between [FT ∈ R+,Γ ∈ R3] and the collection of individual thrusters [FT1
,FT2

,FT3
,FT4

] can be

found in [HMLO02].

3.2.1 Control architecture

A hierarchical control design strategy is adopted in this chapter (see Fig. 3.3). This choice is

motivated by the natural structure of the system dynamics and its practical implementation

[BGH+11, HHMR12]. For the translational dynamics of the quadrotor (3.1), the force F (3.3)
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Figure 3.4: Target plane and window plane.

is used as control input by means of its thrust direction and its magnitude. This constitutes

a high-level outer loop for the control design. The thrust FT is directly the magnitude of the

designed force (FT = ‖F‖) and the desired attitude Rd (partly obtained by the desired direction

Rde3 = F
‖F‖ complemented by a desired yaw) can then be reached by considering the body’s

angular velocity Ω as an intermediary control input, which constitutes again a desired angular

velocity for the fully actuated orientation dynamics (3.2) via the high gain control torque Γ . The

stabilisation of the orientation dynamics is not the subject of this paper and we assume that

a suitable low level robust stabilising control is implemented, that satisfactorily regulates the

attitude error with a fast dynamics.

3.3 Environment and Image Features

In this section adequate image features in relation to the considered tasks are derived and all

required assumptions regarding the environment and the setup are established.

Assumption 3.1. A downward -looking camera and a forward-looking camera are attached to the

center of mass of the vehicle. The downward-looking camera reference frame coincides with the

body-fixed frame {B}. The rotation matrix from the forward-looking camera reference frame to the

body frame B
c R ∈ SO(3) is known.

Assumption 3.2. The angular velocity Ω is measured and the orientation matrix R of {B} with

respect to {I} is obtained by external observer-based IMU measurements. This allows to represent all

image information and the system dynamics in the inertial frame.
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Assumption 3.3. The landing target lies on a textured plane which is called target plane. Its normal

direction ηt ∈ S2 in the inertial frame is known (typically ηt ≈ e3).

Assumption 3.4. The target window has a rectangle shape and lies on a textured wall which is called

window plane. Its width rw is known and but its normal direction ηw ∈ S2 is unknown.

Both landing plane and window plane are placed in the environment, as shown in Figure 3.4.

It assumed that the vehicle is able to recognize the landing pad and the window from landmarks

on the pad and from corners and edges of the window respectively. The background texture

on both landing plane and window plane are also exploited to obtain information about the

vehicle’s velocity with respect to the planes and also to avoid collisions with the wall and the

window’s edges.

For any initial position (along with any initial velocity) outside the room containing the

landing pad, the main objective is to design a feedback controller resorting only to image

features that can ensure automatic landing of the vehicle without any collision.

3.3.1 Image features on the landing plane

The target on the landing plane is depicted in Figure 3.4. The axes of {I} are given by (ut ,ρt ,ηt),

where ρt = ηt ×ut, and the origin of {I} is placed at the center of the landing pad. As shown in

Figure 3.4, sti ∈R
3 denotes the position of ith marker (or a corner) of the landing pad relative to

the inertial frame expressed in {I}. Note that η>t s
t
i = 0. Define the position vector of ith marker

of the target relative to {B} as

P ti = sti − ξ.

The position of the vehicle relative to the center of the landing pad is defined as

ξt = − 1
nt

nt∑
i=1

P ti = ξ − 1
nt

nt∑
i=1

sti

where nt is the number of observed markers on the landing pad and 1
nt

∑nt
i=1 s

t
i is a constant

vector. This sum is zero when all markers are in the camera field of view.

Using the spherical projection model for a calibrated camera, the spherical image points of

landing pad’s markers can be expressed as

pti =
P ti
‖P ti ‖

=
sti − ξ
‖sti − ξ‖

which can be obtained from the 2D pixel locations of the camera image as stated in Section A.1

in the appendix.

The visual feature used for the landing task is the the centroid of the observed visual feature

qt := − 1
nt

nt∑
i=1

pti ,
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whose properties of can be found in Section A.2 in the appendix.

3.3.2 Image features on the window plane

As shown in the Figure 3.4, a rectangular window is placed on a textured wall. Its corners and

edges are assumed to be recognised in camera images. Both information are combined together

to extract the normal direction ηw and provide the feedback information used in the controller.

Consider first the the windows corners and let swi ∈R
3 denote the position of ith corner of

the window expressed in {I}. Define the position vector of ith corner of the window relative to

{B} as

P wi = swi − ξ. (3.4)

From there, one can deduce the position of the vehicle with respect to the window’s center:

ξw = − 1
nw

nw∑
i=1

P wi = ξ − 1
nw

nw∑
i=1

swi ,

with nw (typically nw = 4) number of the window’s corners and 1
nw

∑nw
i=1 s

w
i constant vector.

Similarly to Section 3.3.1, the spherical image points of the corners of the window are

exploited:

pwi =
P wi
‖P wi ‖

leading the following centroid:

qw(t) := − 1
nw

nw∑
i=1

pwi (t). (3.5)

Now, to extract the normal direction ηw, recall that the axes representing the window

are given by (ηw,ρw,uw), with ρw = uw × ηw (see Figure 3.5). Using the image of ith line and

exploiting the fact that the window has a rectangular shape, it is straightforward to get the

directions uw and ρw and consequently ηw. Using the result from Section A.3 and the fact that

lines 1 and 3 (resp. lines 2 and 4) are parallel in the inertial frame, one deduces the measure of

the direction uw (resp. ρw) from the following relationships:

ρw = ± h1 × h3

‖h1 × h3‖

uw = ± h2 × h4

‖h2 × h4‖
.

where hi is normal to the plane defined by the origin of the camera/body-fixed frame and the

ith line. Then the normal vector to the window plane is directly obtained by

ηw = ±
uw × ρw
‖uw × ρw‖

(3.6)
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and the sign of equation (3.6) is chosen such that the condition η>wqw(0) < 0, with qw(t) the image

centroid of window’s corners (3.5).

To exploit the image of window’s edges, we define the vector from the vehicle to the closest

point on window’s edges as Le ∈R3, its direction le = Le

‖Le‖ can be obtained from the camera

le = {lei : max{|η>w lei |}, i = {1,2,3,4}}

where

lei = ±(hi × ρw), i = {1,3}, lei = ±(hi ×uw), i = {2,4}

are the directions from the vehicle to the nearest point on each edge i.

Form now on, we are able to derive the required information achieving the double goal of

going through the window in the meanwhile avoiding collision with the window edges and wall.

We first define the safety regionM such that

M := {ξw : ‖qw(ξw)‖ ≤ ε},

where ε > 0 is chosen such that ∀ξw ∈M, the condition ‖ξw‖ <
rw
2 − ε also holds, implying that

the regionM does not contain the window edges (see Fig. 3.6). From there, the chosen visual

feature that encodes all required information about the position of the vehicle with respect to

the window is:

q̄w := − 1
nw

∑nw
i=1p

w
i

[
αw(t) 1

η>wpwi
+ (1−αw(t)) η

>
w le

η>wpwi

]
, (3.7)
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Figure 3.6: The green volume represents the regionM which excludes the window edges.

where αw(‖qw(ξw)‖) is a weight function ensuring the continuity of q̄w. It is defined as follows:

αw(‖qw(ξw)‖) =


0 , if ‖qw‖ ≤ ε (ξw ∈M)
1
δ (‖qw‖ − ε), , if ε < ‖qw‖ < ε+ δ

1 , if ‖qw‖ ≥ ε+ δ,

(3.8)

with δ an arbitrary small positive constant. Since η>w l
e = η>wL

e

‖Le‖ = η>wP
w
i

‖Le‖ , q̄w can be expressed in

terms of the unknown distance do and de:

q̄w(t) = αw(t)
ξw(t)
do(t)

+ (1−αw(t))
ξw(t)
de(t)

(3.9)

where do := η>wP
w
i = −η>wξw is the distance from the camera to the wall and de := ‖Le‖ =√

d2
o + ‖πηwLe‖2 represents the distance from the camera to the closest window’s edge.

3.3.3 Image Kinematics and Translational Optical Flow

The kinematics of any observed points on the landing plane (including markers of the the

landing pad) can be written as:

Ṗ t = −ξ̇ = −v

where P t expressed in {I} denotes any point on the textured ground of the landing plane. So the

kinematics of the corresponding image point pt = P t

‖P t‖ can be expressed as

ṗt = −πpt
v
‖P t‖

. (3.10)

Let dt be the height of the vehicle above the landing plane:

dt := η>t P
t = η>t P

t
i = −η>t ξt ,

then equation (3.10) can be rewritten as

ṗt = −cosθtπptWt(t)
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where cosθt = dt
‖P t‖ = η>t p

t and Wt is the translational optical flow:

Wt(t) =
v(t)
dt(t)

.

It is the ideal image velocity cue that can be complemented with the centroid information for

designing a pure IBVS controller to perform the landing task. According to Section A.4, Wt can

be obtained from the integral of ṗt along direction ηt over a solid angle.

Similarly, the kinematics of any observed points on the window plane can be written in the

inertial frame as

Ṗ w = −v

where P w expressed in {I} denotes the position of a point on the textured wall of the window

plane with respect to {B} expressed in {I}, not to be confused with P wi (3.4), which is the position

of the ith corner of the window with respect to {B} and also expressed in {I}. So the kinematics

of the corresponding image point pw = P w

‖P w‖ can be written as

ṗw = −cosθwπpw
v
do

with cosθw = do
‖P w‖ = η>wp

w. Analogously to the previous case, the translational optical flow with

respect to the textured wall, v
do

, can be obtained from the integral of ṗw along the direction ηw
over a solid angle.

Now, to achieve the goal that the vehicle is going through the window smoothly, the transla-

tional optical flow with respect to the closest window’s edge is also used. The kinematics of any

observed points on the closest window’s edge is

Ṗ e = −v

where P e denotes the position of a point on the the closest edge from the window. The kinematics

of the corresponding image point pe = P e

‖P e‖ can be written as

ṗe = −cosθeπle
v
de

with cosθe = de
‖P e‖ = le>pe. The translational optical flow with respect to the closest window edge,

v
de

, can be obtained from the integral of ṗe along the direction le over a solid angle.

Analogously to (3.7), the translational optical flow used for going through the window is the

convex combination of the translational optical flow with respect to the textured wall and to the

closest window edge, respectively:

Ww = αw(t)
v(t)
do(t)

+ (1−αw(t))
v(t)
de(t)

(3.11)

with αw(t) defined already by (3.8).
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3.4 Controller design

3.4.1 Landing in obstacle free environment

Theorem 3.1. Consider the system (3.1) in the nominal case (4 ≡ 0) subjected to the following

feedback control:

Ft = K tpqt +K tdWt +mge3. (3.12)

with K tp = ktp1,2
πηt + ktp3

ηtη
>
t and K td = ktd1,2

πηt + ktd3
ηtη
>
t two constant positive definite matrices. If

for any initial condition such that dt(0) = −η>t ξt(0) ∈R+, then the following assertions hold ∀t ≥ 0:

1) the height dt(t) = −η>t ξt(t) ∈ R
+ and its derivative ḋt(t) ∈ R are well defined and uniformly

bounded ∀t and converge to zero asymptotically,

2) the acceleration v̇(t) and the states (ξt(t),v(t)) are bounded and converge asymptotically to zero.

Proof. The proof follows a reasoning very similar to that of Theorem 1 in [RHMS14]. Recalling

(3.1) and applying the control input (3.12), we can write the closed-loop system as
ξ̇t = v

v̇ = −K tpqt(ξt)−K td
v
dt
.

(3.13)

Before proceeding with the proof of item 1), we define a positive definite storage function

L2(ξt ,v) and show that if dt(t) remains positive, L̇2 is negative semi-definite, which implies that

the solutions remain bounded for all t ≥ 0. Define L2 as

L2(ξt ,v) = L1(ξt) +
1
2
v>K tp

−1
v

where L1(ξt) is the radially unbounded function given by

L1(ξt) =
1
nt

nt∑
i=1

(‖P ti (ξt)‖ − ‖P ti (0)‖).

By a direct application of Lemma A.2 in the appendix, we conclude that L1(ξt) is a positive

definite function with

∂L1

∂ξt
= q>t

∂2L1

∂ξ2
t

=Q

where Q = 1
nt

∑nt
i=1

1
‖P ti ‖

πpti is positive definite, as long as at least two of the vectors pti are non-

collinear. Noting that,

L̇1 = q>t v, (3.14)

43



Chapter 3: Quadrotor going through a window and landing: An image-based visual servo
control approach

it follows that

L̇2 = − 1
dt
v>K tp

−1
K tdv (3.15)

which is negative semi-definite as long as dt remains positive and implies that the states ξt(t)

and v(t) remain bounded for all t ≥ 0. The next steps of the proof consist in proving first Item

(1) and then the uniform continuity of (3.15) along every system’s solution in order to deduce,

by application of Barbalat’s Lemma, the asymptotic convergence of v to zero and from there we

deduce the asymptotic convergence of v̇ and then ξt to zero (Item 2).

Proof of Item 1: Using (3.13) and the fact that dt(t) = −η>t ξt and ḋt = −ηt>v yields

d̈t = −ktd3

ḋt
dt
− ktp3

βt (3.16)

with

βt(t) = −η>t qt = 1
nt

∑nt
i=1

dt
‖P it ‖

> 0, ∀t. (3.17)

This relation is of course valid as long as dt(t) > 0. From there, direct application of [RHMS14,

Th. 1-(2)] shows that if dt(0) ∈R+, the solution (dt , ḋt) ∈ (R+,R) exists and uniformly bounded

∀t and converges asymptotically to (0,0).

Proof of Item 2: To show that

L̈2 = − 2
dt
v>K tp

−1
K td v̇ +

ḋt
dt

1
dt
v>K tp

−1
K tdv

is bounded and hence L̇2 (3.15) is uniformly continuous, it suffices to show that ‖v‖dt is bounded

(so is ḋt
dt

). For that purposes, consider the dynamics of v
dt

:

d
dt

(
v
dt

) = − 1
dt

((K td + ḋtI3)
v
dt

+K tpqt). (3.18)

Since ḋt converges asymptotically to zero and qt is bounded then, by direct application of

[RHMS14, Lemma 4] one ensures that v
dt

is bounded. From there one concludes that L̇2 is

uniformly continuous and hence v converges asymptotically to zero.

To prove that qt(t) (or equivalently ξt) is asymptotically converging to zero we have to show

first v̇ is converging to zero. From (3.13), one can verify that:

v̈ = −
K td
dt
v̇ + δ0

v̇ , (3.19)

with δ0
v̇ = K td

ḋt
dt
v
dt
−K tpq̇t. Since v

dt
(and hence ḋt

dt
) is bounded and

q̇t =Qv =Q0
v
dt
, with Q0 =

1
nt

nt∑
i=1

dt
‖P ti ‖

πpti < I3,
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is also a bounded vector, one ensures that δ0
v̇ is bounded. Therefore, direct application of

[RHMS14, Lem. 3] concludes boundedness and the asymptotic convergence of v̇ to zero and

hence one has:
v
dt

= −K td
−1
K tpqt + o(t)

with o(t) a asymptotically vanishing term.

By multiplying both sides of the above equation by the bounded vector q>t (the gradient of

L1) and using the fact that L̇1 = q>t v (3.14), one obtains:

L̇1 = −dtq>t K td
−1
K tpqt + dtq

>
t o(t). (3.20)

Since dt(t) converges asymptotically to zero, then by taking the integral of (3.16)

ḋt(t)− ḋt(0) = −ktd3 log(
dt(t)
dt(0)

)− ktp3

∫ t

0
βt(τ)dτ,

one concludes that

lim
t→∞

∫ t

0
βt(τ)dτ = +∞. (3.21)

Combining equation (3.21) with the fact that d(t) ≥ βt(t) (from (3.17)) and replacing the time

index t of equation (3.20) by the new time-scale index s(t) :=
∫ t

0 dt(τ)dτ (s tends to infinity if and

only if t tends to infinity), one has:

d
ds
L1 = −q>t K td

−1
K tpqt + q>t o(t),

from which we conclude that qt (and ξt) is asymptotically converging to zero.

Proposition 3.1. Consider the system (3.1) in which 4 and 4̇ are bounded.

1) If the perturbation 4 is such that:

4 = πηt4, or equivalently η>t 4(t) = 0, ∀t ≥ 0,

then, for any initial condition such that dt(0) = −η>t ξt(0) ∈ R+, direct application of the feedback

control (3.12), ensures that: i) Item 1 of Theorem 3.1 holds, ii) v̇(t) and v(t) are bounded and

converging asymptotically to zero, and finally iii) ‖πηtξt‖ is ultimately bounded by ∆ξ , solution of

‖πηtqt‖ = ‖4‖max
ktd1,2

.

2) If η>t 4(t) , 0, then, for any initial condition such that dt(0) = −η>t ξt(0) ∈R+, the following slightly

modified feedback control:

Ft = K tpqt +K td(Wt − ηtW ∗t ) +mge3 (3.22)

with W ∗t ≥ 1
ktd3

|ηt4(t)|max, ensures that the above i) and ii) assertions hold and guarantees that ξt is

bounded.
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Proof. The proof follows and exploits the same technical steps of the proof of Theorem 1. Since

assertions made are almost the same using either (3.22) or (3.12) (equivalently (3.22) with

W ∗t = 0) except for the last item iii), we will do the proof using (3.22) as feedback control and

specify differences when necessaries.

When 4 , 0 and W ∗t , 0 , it is straightforward to verify that (3.15) becomes:

L̇2 = − 1
dt
v>K tp

−1
K tdv + v>K tp

−1(4+K tdW
∗
t ηt)

Recall now the dynamics of ḋt (3.16), v
dt

(3.18), and of v̈ (3.19) in case where 4 , 0 and W ∗t , 0.

d̈t = −ktd3

ḋt
dt
− ktp3

β4t

d
dt

(
v
dt

) = − 1
dt

((K td + ḋtI3)
v
dt

+ δ4v )

v̈ = −
K td
dt
v̇ + δ4v̇ , (3.23)

with

β4t (t) =
1
ktp3

(ktd3
W ∗t + η>t 4)− η>t qt

δ4v = K tpqt −4−K tdηtW
∗
t

δ4v̇ = Kd
ḋt
dt

v
dt
−K tpq̇t + 4̇.

Now since β4t (t) > 0,∀t independently from the value chosen for W ∗t , direct application of

[RHMS14, Th. 1-(2)] shows that the solution (dt , ḋt) ∈ (R+,R) exists and uniformly bounded ∀t
and converges (at least) asymptotically to (0,0).

By combining this with the fact that all terms involved in δ4v (qt, 4 and W ∗t ) are bounded,

direct application of [RHMS14, Lem. 4] concludes the boundedness of v
dt

. Since dt is converging

to zero, one concludes that v is converging to zero by a direct application of [RHMS14, Lem. 3].

Using the fact that 4̇ is bounded by assumption, the proof of boundedness v̈ (3.23) and its

convergence to zero is directly deduced from to proof the unperturbed case (3.19). From there

and analogously to the unperturbed case (Theorem 1- proof of Item 2), one gets:

v
dt

= −K td
−1
K tpqt +K td

−14+ ηtW
∗
t + o(t) (3.24)

with o(t) an asymptotically vanishing term.

By multiplying both sides of (3.24) by q>t and using the fact that L̇1 = q>t v (3.14), one obtains:

L̇1

dt
= −q>t K td

−1
K tpqt + q>t (K td

−14+ ηtW
∗
t + o(t)).

From there one distinguishes between the two issues stated in the proposition:

1) η>t 4(t) = 0,∀t and W ∗t = 0 (Ft given by (3.12))
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By changing the time scale index and similarly to argument used at the end of the proof

of Theorem 3.1, one concludes that ‖qt‖ is ultimately bounded by ‖4‖max
ktp1,2

. Since dt = η>t ξt

converges to zero, one concludes that ‖πηtξt‖ is ultimately bounded by ∆ξ which is the solution

of ‖πηtqt‖ = ‖4‖max
ktd1,2

.

2) η>t 4(t) , 0, and W ∗t , 0 (Ft given by (3.22))

In that case one concludes that the storage function L1 is decreasing as long as the right hand

side of the above equation is negative and dt > 0 and hence ξt is bounded. The argument of

changing the time index is not valid in this case.

Remark 3.1. The focus of the above proposition is on robustness and adaptation of the controller

with respect to the bounded perturbation 4. It is introduced particularly to show robustness of

the proposed control law with respect to bounded perturbations in the plane orthogonal to ηt
and, in the interest of a less complicated presentation, a slightly modified version of the control

law (3.12) is introduced in (3.22) to be able to analyse the robustness of the closed loop system

with respect to any bounded disturbance.

3.4.2 Going through the center of the window

To accomplish the goal of going through the window, while avoiding the wall and window edges,

we propose to use the following control law

Fw = σ (qw)(kwp πηw q̄w + kwd πηwWw + kwφηw(ηw
>Ww −W ∗w) +mge3), (3.25)

with kwp , kwd and kwφ positive gains, W ∗w > 0 and

σ (qw) =

0 , if η>wqw ≥ 0

1 , if η>wqw < 0,
(3.26)

which indicates that when the vehicle already crossed the window (do ≤ 0), Fw = 0. Note that

when η>wqw < 0, the resulting closed-loop system can be written as
ξ̇w = v

v̇ = −kwp πηw
ξw
dw
− kwd πηw

v
dw
− kwφηw(ηw

> v
dw
−W ∗w) +4,

(3.27)

The unknown term dw is a convex combination of the unknown distances do and de:

1
dw

= (αw
1
do

+ (1−αw)
1
de

)

which is deduced from (3.9) and (3.11) according to the definition of αw (3.8):

dw =


de, if ‖qw‖ ≤ ε (ξw ∈M)

dode
αwde+(1−αw)do

, if ε < ‖qw‖ < ε+ δ

do. if ‖qw‖ ≥ ε+ δ
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Remark 3.2. Note that the unknown time varying distance dw involved in the closed-loop

system is due to the use of feedback information q̄w = ξw
dw

and Ww = v
dw

in the control law. It is

the key feature to achieve the double goal of avoiding collision with the wall and window edges

as well, while ensuring the main task of going through the center of the window. When the

vehicle approaches the wall or window edges outside the regionM, dw = do approaches zero.

This leads to a high gain in the feedback control that allows avoiding the collision. When the

vehicle is inside the regionM, dw = de. This later is lower bounded by a positive constant so

that the vehicle is able to go through the center of the window with a non-zero velocity. More

details of analysis will be shown below.

Proposition 3.2. Consider the system (3.1) with the control input given by (3.25). If the positive

gains kwp , kwd and kwφ are such that k
w
d

2

kwp
> rw

2 and for any arbitrary small ε > 0, the chosen W ∗w satisfies:

W ∗w >
|η>w4(t)|max

kwφ
+ ε, ∀t ≥ 0,

then for any initial condition satisfying dw(0) > 0, the following assertions hold ∀t ≥ 0:

1) there exists a finite time tw ≥ 0 at which the vehicle enters the region M (‖qw(tw)‖ ≤ ε), and

remains there as long as σ (qw) = 1,

2) there exists a finite time tlim > tw at which the vehicle crosses the window do(tlim) = 0, with strictly

negative velocity ḋo(tlim) such that the vehicle is inside the regionM (‖qw(t)‖ ≤ ε and σ (qw) = 1) for

all t ∈ [tw, tlim).

Proof. We will consider hereafter only the case where σ (qw) = 1 (or equivalently when η>wqw < 0).

That is the situation in which the vehicle is going through the window while avoiding collision

with the wall and the window edges.

From the dynamics of the closed-loop system (3.27), we focus first on the evolution of dw.

That is the evolution of the system in the direction ηw.

When ‖qw(t)‖ ≥ ε+ δ, one has dw = do = −ηTwξw and hence:

ḋo = −η>wv

d̈o = −kwφ
ḋo
do
− kwφβw (3.28)

with βw =W ∗w + η>w4
kwφ
≥ ε.

When ε < ‖qw(t)‖ < ε + δ, one has dw = dode
αwde+(1−αw)do

with αw (defined by (3.8)) a uniformly

continuous and bounded valued function on [0,1], and hence one verifies that:

d̈o(t) = −kwφb(t)
ḋo(t)
do(t)

− kwφβw (3.29)

with b(t) = (1−αw(t))do(t)+αw(t)de(t)
de(t)

a positive uniformly continuous and bounded function as long as

ε < ‖qw(t)‖ < ε+δ and do(0) ∈R+. direct application of [HHMR12, Th. 5.1] to both equation (3.28)
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and (3.29), one can conclude that as long as do(0) ∈R+ and ‖qw(t)‖ > ε (or equivalently ξw <M),

do(t) ∈R+,∀t ≥ 0 and do(t) converges to zero exponentially (the exponential convergence of do(t)

is granted due to the fact that βw ≥ ε) but never crosses zero and hence the vehicle will never

touch the wall in a finite time. Additionally, one also proves, from [HHMR12, Th. 5.1], that

there exists a finite time t1 ≥ 0 such that ḋo(t) < 0, ∀t ≥ t1 and hence do and dw are decreasing

after t1.

When ‖qw(t)‖ ≤ ε (the situation when ξw ∈ M), one has dw = de > do. In this case one can

easily verify that (3.28) can be rewritten as:

d̈o = −k(t)ḋo − kwφβw

with k(t) =
kwφ
de

a upper bounded positive gain as long as de(t) is positive. Due to the fact

that βw ≥ ε, ḋo is ultimately bounded by −
kwφβw
k(t) ≤ −

kwφε

k(t) and hence one immediately ensures

that there exists a finite time t2 ≥ 0 from which ḋo(t) < 0,∀t ≥ t2. This implies that when

‖qw(t)‖ ≤ ε (ξw ∈ M), do is decreasing ∀t ≥ t2 and hence do crosses zero in a finite time t̄ > t2.

Note that at t = t̄, one has σ (qw(t̄)) = 0 according to (3.26).

Consider now the the dynamics of the closed-loop system (3.27) in the plane πηw . That is

the dynamics of ξ⊥ := πηwξw. By defining v⊥ := πηwv and 4⊥ := πηw4, one gets:

ξ̇⊥ =v⊥

v̇⊥ =−
kwd
dw

(v⊥ +
kwp
kwd
ξ⊥) +4⊥.

Define a new state

z = v⊥ +
kwp
kwd
ξ⊥, (3.30)

and the following positive definite storage function:

L3 =
1
2
‖z‖2 +

1
2

(
kwp
kwd

)2‖ξ⊥‖2,

with time derivative

L̇3 = −(
kwp
kwd

)3‖ξ⊥‖2 − (
kwd
dw
−
kwp
kwd

)‖z‖2 + z>4⊥

≤ −(
kwp
kwd

)3‖ξ⊥‖2 −
‖z‖
kwd

((
kwd

2

dw
− kwp )‖z‖ − kwd ‖4⊥‖),

(3.31)

which is negative-definite provided that 0 < dw <
kwd

2

kwp
and ‖z‖ ≥ dwk

w
d ‖4⊥‖max

kwd
2−dwkwp

.

Proof of Item 1:

To show there exists a finite time tw ≥ 0 at which the vehicle enters the regionM and remains

there as long as σ (qw) = 1, we proceed using a proof by contradiction in two steps.
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In the first step, we assume that ξw is not converging toM in a finite time tw and hence

‖qw(t)‖ > ε, ∀t. In the second one, we assume that ξw is switching indefinitely between the two

regions.

i) Consider the situation for which the initial condition is such that ‖qw(0)‖ > ε (outside the

regionM). Using the fact that there exists a finite time instant t1 from which dw is decreasing

and converging to zero but never crosses zero in finite time (see the above discussion), one

concludes that z (3.30) is exponentially converging to zero and hence:

v⊥ = ξ̇⊥ = −
kwp
kwd
ξ⊥ + o(t),

with o(t) an exponential vanishing term. This in turn implies that ξ⊥ (resp. v⊥) is converging

to zero exponentially. Combining this with the fact that dw(t) (resp. do(t)) is converging to

zero, one concludes that there exists a finite time tw at which ‖qw(tw)‖ < ε (ξw(tw) ∈M), which

contradicts the first part of the assumption.

ii) Consider the situation for which the vehicle is switching indefinitely between the two regions.

Since do(t) (respectively dw) is decreasing ∀t ≥max{t1, t2} for both cases of ‖qw‖ > ε and ‖qw‖ ≤ ε
with the fact that (ξ⊥,v⊥) converges exponentially to (0,0) (proof of the step (i)), one concludes

that there exists a finite time tw ≥ 0 at which the vehicle enters the regionM (‖qw(tw)‖ ≤ ε), and

remains there as long as σ (qw) = 1, which contradicts the assumption.

Proof of Item 2:

When ξw is inside the region (‖qw‖ ≤ ε), one guarantees that L3 (3.31) is decreasing as long as

0 < dw <
kwd

2

kwp
and ‖z‖ ≥ dwk

w
d ‖4⊥‖max

kwd
2−dwkwp

. Now since there exists a time t̄ > tw such that do(t̄) = 0, one

concludes that tlim exists and it is equal to t̄.

3.4.3 Application Scenario

The double goal of crossing the window and landing on the landing pad can be achieved by

simply applying the control laws Fw and Ft in sequence, with an adequate trigger to switch

from Fw to Ft. Taking the limitation of the cameras’ field of view into the consideration, there

will be four different modes during the full process of going through a window and landing

on the pad. When t ∈ [T1,T2), mode = 1 and Fw (3.25) is active. When the vehicle approaches to

the center of the window, the on-board camera loses the full image of the window and mode

changes to 2. When t ∈ [T2,T3), mode 2 is active and the open-loop control ηw|η>wFw(T −2 )| is
applied, where T −2 is the last time instance before the camera loses the image of the window.

At the time instance t = T3, when the downward-looking camera detects the landing pad, the

mode changes to 3 and the control law Ft (3.12) is applied when t ∈ [T3,T4). At time instance

t = T4, the vehicle is already close to the center of the landing target and it is safe to slowly

shutdown the quadrotor motors. In order to avoid inadequate behaviors, the switch from mode

2 to 3 is only triggered once. Moreover, in practice, due to the limitation of camera’s field of
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view, the initial errors should not be large and should converge to zero fast enough, thereby

allowing the vehicle to almost align with the center of the window before switching to mode 2.

Additionally, the position of the landing target should be close enough to the window so that

the quadrotor is able to timely detect the landing target after it goes through the window. The

switching between different modes is based on the combination of selected frames from both

the ground and horizontal on-board cameras obtained in the experiments. The detail on the

adopted procedure is described in Section 3.6.

3.5 Simulation Results

In this section, simulation results are presented to illustrate the behavior of the closed-loop

system using the proposed controller. A high-gain inner-loop controller is used to control the

attitude dynamics [TLS+15]. It generates the torque inputs in order to stabilize the orientation

of the vehicle to a desired one defined by the desired thrust direction Rde3, which is provided by

the outer-loop image-based controller, and the desired yaw chosen to align the forward-looking

camera with direction orthogonal to the wall. In the simulation, the position of the center of the

window is [−0.5 0 −1.72]> and the position of the center of the target is [0 0 0]>. The control

algorithm is tested with different initial conditions, always starting from a position outside the

room containing the target (see Fig. 3.1). The initial velocity of the quadrotor is v(0) = [0 0 0]>,

and the gains are chosen as K tp = diag[4 4 1.75], K td = 4I3, kwd = 0.8, kwp = 1, kwφ = 1 and W ∗w = 0.3

As shown in Fig. 3.1, with different initial positions the quadrotor successfully avoids the wall

and window, goes through the center of the window, and then lands on the center of the landing

target. Figures 3.7-3.15 show in detail the time evolution of quadrotor’s state variables, virtual

input, and image features for the initial position ξ(0) = [−2 0.1 − 1.82]>. The time evolution of

the active mode is also specified. In mode 1, the quadrotor is approaching the window; in mode

2, it is crossing the window with no image cues; in mode 3, it starts detecting the landing pad

and transitions to the landing maneuver; and finally in mode 4, the motors are shutdown.

Figure 3.7 shows the time evolution of the vehicle’s position and the dashed lines are the

coordinates of window’s center. From Figure 3.7, we can see the quadrotor first converges to the

center line of the window and then converges to the center point of the target. Fig. 3.8 shows

the time evolution of the vehicle’s velocity. The virtual control input F is shown in Fig. 3.9. The

angular velocity of the quadrotor is depicted in Fig. 3.10 and Fig. 3.11 depicts the time evolution
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Figure 3.7: Quadrotor’s position
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Figure 3.8: Quadrotor’s velocity
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Figure 3.9: Virtual control input F
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Figure 3.10: Evolution of angular velocity Ω
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Figure 3.11: Evolution of Euler angles
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Figure 3.12: Translational optical flow using for going through the window during mode 1.
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Figure 3.13: Translational optical flow using for landing during mode 3.
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Figure 3.14: Image feature q̄w during mode 1.
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Figure 3.15: Image feature qt during mode 3.

of Euler angles, which indicates a good compromise in terms of time-scale separation between

the outer-loop and inner-loop controller. Figures 3.12 and 3.13 show the translational optical

flow used for going through the window in mode 1 and for landing in mode 3, respectively. The

evolution of image features of q̄w and qt are depicted in Figures 3.14 and 3.15, respectively. We

can see that the image features q̄w and qt approach to the desired values [−1 0 0]> and [0 0 0]>,

respectively, before the on-board cameras lose the image information.

3.6 Experiments

3.6.1 Experimental setup

In order to set up the experiment, a movable wall was used to divide the testing space into

two smaller compartments and a landing pad was placed on the ground of the second one.

The partition wall contains a rectangular window and is textured as a brick wall to provide

the background optical flow, as shown in Fig. 3.18. The vehicle used for the experiments is an

Asctec Pelican quadrotor (Fig. 3.16) with weight 1676g and the arm length from the center of

mass to each motor is 20cm. The available commands are thrust force and attitude which are

derived from the force F provided by the outer-loop controller (3.12) (respectively (3.25)) and

the desired yaw angle. The quadrotor is equipped with two wide-angle cameras, one pointing

towards the ground and another is facing the forward direction, pointing at the wall. Recalling
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Assumption 3.1, the downward-looking camera reference frame coincides with the vehicle’s

body fixed frame and the rotation matrix from the forward-looking camera reference frame to

the body frame is B
c R = RZ(−π4 )RX(π2 ). These two cameras are uEye UI-122ILE models featuring

a 1/2-in sensor with global shutter which operate at a resolution of 752× 480 pixel at 50 frames

per second and are provisioned with 2.2-mm lenses.

Figure 3.16: Asctec Pelican quadrotor.

In the experiments, we used a rapid prototyping and testing architecture using a MAT-

LAB/Simulink environment to integrate the sensors and the cameras, the control algorithm

and the communication with the vehicle. The controller is developed and tuned on a MAT-

LAB/Simulink environment and C code is generated and compiled to run onboard the vehicle

as a final step. The onboard computer (a 4-core Intel i7-3612QE at 2.1GHz, named AscTec

Mastermind) is responsible for running in Linux three major software components that provide:

1. interface with the camera hardware, image acquisition, feature detection and optical flow

computation;

2. computation of the vehicle force references from the image features, translational optical

flow, and angular velocity and rotation matrix estimates provided by the IMU;

3. interface with microprocessor, receiving IMU data and sending force references to the

inner-loop controller.

A Python program running on the onboard computer performs detection of the window,

detection of landing target, and optical flow computation using the OpenCV library. ARUCO

markers, for which built-in detection functions exist in the OpenCV library, are used to define

the landmarks on the landing pad. In order to fit the camera’s field of view during the full

process of landing, the landmarks are composed by 4 groups of ARUCO markers and in each
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group there are 4 ARUCO markers with same border size but different identifier (id) as shown

in Fig. 3.17. When the camera is far away from the markers, the group of larger markers can be

Figure 3.17: ARUCO markers on the landing pad.

seen and when the camera is near the ground, only the smaller group of the landmarks will be

shown in the field of view. The rectangular window shape is detected using the library code

originally developed for ARUCO marker’s border detection. The detected window frame (in

green) and the window’s coordinate system overlayed on the image are show in Fig. 3.18 (1), (2),

and (3). The translational optical flow is also computed onboard. The computation is based on

the conventional image plane optical flow field provided by a pyramidal implementation of the

Lucas-Kanade algorithm. The detailed description of the computation can be found in [SCH+16].

The small vectors represented in Fig. 3.19 represent the translational optical flow of the image

pixels. In order to provide ground truth measurements and evaluate the performance of the

Figure 3.18: Selected frames from the forward-looking camera.

proposed controller, a VICON motion capture system[VIC14] which comprises 12 cameras is

used together with markers attached to the quadrotor, window, and landing target. The motion
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Figure 3.19: Selected frames from the downward-looking camera.

capture system is able to accurately locate the position of the markers, from which ground truth

position and orientation measurements are gathered. Note that, none of the measurements from

the motion capture system are used in the proposed controller.

3.6.2 Experimental results
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Figure 3.20: Quadrotor’s trajectory and mode
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Figure 3.21: Quadrotor’s velocity
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Figure 3.22: Evolution of angular velocity
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Figure 3.23: Evolution of euler angel

The experiments were conducted with the same control gains as the simulations. Before

the proposed controller is triggered, the vehicle is hovering at position ξ = [0.15,1.79,−1.76] m,

which is outside the space containing the landing pad. As mentioned in Section 3.4.2, there are

four different modes during the full process of going through a window and landing on the

target due to the limitation of the field of view of the on-board cameras. Fig. 3.18 shows the

selected frames in a timed sequence from the forward-looking camera. These four frames are a

fixed time step apart and were taken during a mode 1 to mode 2 transition. In Fig. 3.18 (1), (2),

and (3), mode 1 is active, and we can see that the window frame is well detected. In Fig. 3.18 (1),

t = T1 and the controller Fw is triggered. In Fig. 3.18 (2) and (3), the vehicle is still in mode 1

and approaches the center of the window. As the vehicle approaches the window, the window

frame disappears from the field of view of the camera and at time t = T2 the mode commutes to

2, as shown in Fig. 3.18 (4). Note that during transition from mode 1 to 2, instead of losing the

window frame, the camera may detect rectangles other then the target window, as depicted in

Fig. 3.18 (4). In order to avoid this situation, themode changes from 1 to 2 if the pixel coordinates

change instantaneously in a way that is incompatible with smooth tracking of the same window

object. Fig. 3.19 shows the selected frames in a timed sequence from the downward-looking

camera. These four frames were taken at fixed time steps during a transition from mode 2 to 3 to

4. As shown in Fig. 3.19 (1), the vehicle has already crossed the window but the landing pad is

not fully detected thus the mode is still 2. At time instance t = T3, as shown in Fig. 3.19 (2), the
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downward-looking camera detects successfully the landing pad, the mode is switched to 3 and

Ft is applied as control input. Recall that the switching from mode 2 to mode 3 is only triggered

once in order to avoid inadequate behavior. In Fig. 3.19 (3), the vehicle approaches the target

and the mode is still 3. At the time instance t = T4, when the quadrotor has almost reached

the target position (see Fig. 3.19 (4)), the mode changes to 4 and it is safe to slowly shutdown

the motors. Figures 3.20 and 3.21 show the position and velocity coordinates of the vehicle
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Figure 3.24: Controller output F

provided by VICON, respectively. We can see that the vehicle goes through the center of the

window at the end of mode 2 and finally lands on the target. Fig. 3.22 shows the evolution of the
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Figure 3.25: Image features q̄w during mode 1. Solid line represents q̄w computed from the image
sequence. Dashed line represents q̄w provided by the VICON system.

angular velocity and Fig. 3.23 show the evolution of the Euler angles. From Fig. 3.23, we can see

that a good compromise in terms of time-scale separation between the outer-loop and inner-loop

controllers is attained, which indicates that the inner-loop controller is sufficiently fast to track

the outer-loop references, including during the transitions between different modes. Figure 3.25

shows the image feature q̄w used for going through the window. The solid line represents q̄w
computed from the image sequence and the dashed line represents q̄w provided by the VICON

system. There are slight differences between these two computations due to the fact that rotation

matrix R provided by the IMU is affected by the surrounding magnetic field generated by the

fast rotating motors. Figures 3.27 and 3.26 show the translational optical flow used for going

through the window and for landing respectively. The solid red lines represent the translational

optical flow computed from the image sequence and the dashed line represents the translational

optical flow derived from VICON measurements. The video of the experimental results can be

found in https://youtu.be/DbpeGfJMHk0.

3.7 Conclusion

This chapter considers the problem of controlling a quadrotor to go through a window and

land on planar target, using an Image-Based Visual Servo (IBVS) controller that relies on optical
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Figure 3.26: Translational optical flow using for going through the window during mode 1. Solid line
represents the translational optical flow computed from the image sequence. Dashed line represents the
translational optical flow provided by the VICON system.

flow measurements. For control purposes, the centroids vectors provided by the combination of

the corresponding spherical image measurements of landmarks (corners) for both the window

and the target are used as position feedback. The translational optical flow relative to the wall,

window edges, and target plane is used as velocity measurement. With the initial position

outside the room containing the target, the proposed control law guarantees that the quadrotor

aligns itself with the center line orthogonal to the window, crosses it with non-zero velocity

and finally lands on the planar target successfully without colliding the wall or the edges of

the window. Rigourous proofs of convergence and/or piratical stability of closed-loop system

are provided when the system is subjected to unknown bounded disturbances. Simulation and

experimental results show the effectiveness of the overall proposed control scheme.
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Figure 3.27: Translational optical flow using for landing during mode 3. Solid line represents the
translational optical flow computed from the image sequence. Dashed line represents the translational
optical flow provided by the VICON system.
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4
Bearing Leader-Follower
Formation Control under
Persistence of Excitation

4.1 Introduction

In this chapter, we consider the problem of controlling a leader-follower formation (i.e. a

formation under a directed acyclic graph that has a spanning tree, see Fig. 4.1) using only

bearing and relative velocity measurements. We particularly focus on the problem of stabilizing

the formation’s geometric pattern to a desired one by exploiting persistence of excitation (PE) of

the bearings of the desired formation. Note that this PE condition can be enforced a priori and

has no dependence on the initial conditions of system.

The concept of persistence of excitation (PE) is a well-known concept in adaptive control

and identification of linear systems. It has been recently exploited for position estimation from

bearing and biased velocity measures in [HS17], [LBHMS17]. The work in [HS17] exploit the

Continuous Riccati Equation (CRE) to calculate observer gains yielding global exponential

stability of zero estimation errors under PE conditions. In particular, the observation of a single

point source may be sufficient, provided that the body motion is PE. Based on these results, a

SLAM problem using the PE bearing measurement is also introduced in [LBHMS17].

Inspired by the work in [LBHMS17] and exploring the duality between the control and

estimation problems, we propose bearing formation control laws for leader-follower formation

with both single- and double-integrator dynamics and introduce of a generalised rigidity concept

: relaxed bearing rigidity, which makes the connection between bearing PE and bearing rigidity

theory specifically for leader-follower formation. The key contribution is to show that the

required classical conditions on the graph topology (bearing rigidity and constraint consistence)

used to guarantee stabilization of the formation to a desired shape up to a scale are relaxed

here in a natural manner by exploiting PE of the bearing information generated by the desired

formation. The proposed control approach draws inspiration from the work in [TZS+19], which
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Figure 4.1: Examples of leader-follower formations. The formations in (a) and (b) are not bearing rigid
and in (c) is bearing rigid but not constraint consistent. The asymptotic stability of these three formations
can not be guaranteed using bearing controllers relying only on bearing rigidity theory and constraint
consistence ([ZZ15a]). It is however guaranteed in this chapter under the proposed PE condition.

presents a first-order bearing formation control law, considering a LFF graph topology. A

distinctive feature of the present work is the shift of focus from static formations to time-

varying formations. The approach relies on the simplicity of controllers that guarantee (local)

exponential stability of the formation towards the desired one in terms of shape and scale when

the bearing PE conditions are fulfilled.

This chapter is organized as follows. Section 4.2 introduces the preliminaries about graph

theory on directed graphs and the concept of persistently exciting on bearings. Section 4.3

describes the concepts of bearing PE leader-follower formation and relaxed bearing rigidity.

Section 4.5 proposes bearing-based controllers and shows that exponential stabilization of the

formation is achieved under the bearing PE conditions. Section 4.6 illustrates the performance

of the proposed control strategy on a relaxed rigid formation. The chapter concludes with some

final comments in Section 4.7.

4.2 Preliminaries

4.2.1 Directed graph topologies

Consider a system of n (n ≥ 2) connected agents. The underlying interaction topology can be

modelled as a digraph (directed graph) G := (V ,E), where V = {1,2, . . . ,n} is the set of vertices

and E ⊆ V × V is the set of directed edges. In this work, the graph is interpreted as sensing

graph, meaning that if the ordered pair (i, j) ∈ E then agent i can access or sense information

about agent j, which is called a neighbor of agent i. Note that in a communication graph the

information flow would be in the opposite direction. The set of neighbors of agent i is denoted

byNi := {j ∈ V |(i, j) ∈ E}. Define mi = |Ni |, where |.| denotes the cardinality of a set. A directed

path is a finite sequence of distinct vertices ν1,ν2, . . . ,νk−1,νk, such that (νi−1,νi), 2 ≤ i ≤ k
belongs to E. A directed cycle is a directed path with the same start and end vertices, i.e. ν1 = νk .

A digraph G is called an acyclic digraph if it has no directed cycle. The digraph G is called
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a directed tree with a root vertex i, i ∈ V , if for any vertex j , i, j ∈ V , there exists only one

directed path connecting j to i. Note that a directed tree is acyclic. We say that G has a directed

spanning tree, if there exists a subgraph of G that is a directed tree and contains all the vertices

of G.

4.2.2 Persistence of Excitation on bearings

Definition 4.1. A positive semi-definite matrix Σ(t) ∈ Rn×n, is called persistently exciting (PE) if

there exists T > 0 and µ > 0 such that for all t > 0

1
T

∫ t+T
t

Σ(τ)dτ ≥ µIn. (4.1)

Definition 4.2. A direction y(t) ∈ Sd−1 (d ≥ 2) is called persistently exciting (PE) if the matrix πy(t)

satisfies the PE condition according to Definition 4.1 with 0 < µ < 1.

Lemma 4.1. Let Qπ :=
l∑
i=1
πyi . The matrix Qπ is persistently exciting, if one of the following

conditions is satisfied:

1. there is at least one PE direction yi ,

2. there are at least two uniformly non-collinear directions yi and yj , i, j ∈ {1, ..., l}, i , j. That is:

∃ε1 > 0, ∀t ≥ 0 such that |yi(t)>yj(t)| ≤ 1− ε1.

Proof. The proof is given in [LBHMS17, Lemma 3].

4.3 Bearing PE leader-follower formation and relaxed bearing rigid-
ity

Definition 4.3. A digraph G = (V ,E) has a leader-follower structure if it is acyclic and has a directed

spanning tree. It has a minimal leader-follower structure if each follower i (i ∈ V , i , 1) has only one

neighbor.

The leader-follower structure defined above is more general than the leader-first follower

structure (LFF) considered in [TZS+19], for which each follower has two neighbors except the

first follower which is only connected to the leader. In our setting, the leader is the root vertex

which has no neighbors and each of the other followers has at least one neighbor. Without loss

of generality, the agents are numbered (or can be renumbered) such that agent 1 is the leader, i.e.

N1 = ∅, agent 2 is the first follower withN2 = {1}, and for each agent i ≥ 3 the set of neighbors

satisfiesNi ⊆ {1, . . . , i −1}. An example of a possible 5-agent leader-follower graph is shown in

the Figure 4.2.
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Figure 4.2: Possible connections of a leader-follower structure when n = 5. The solid line represents the
unique neighbor of the first follower (agent 2) which is the leader (agent 1). The dashed lines represent
all possible connections of the followers 2, 3, and 4.

Given a digraph G, let ξi ∈ Rd(d ≥ 2) denote the position and vi ∈ Rd the velocity of each

agent i ∈ V , both expressed in an inertial frame common to all agents, such that ξ̇i = vi . The

stacked vector ξ = [ξ>1 , ...,ξ
>
n ]> ∈Rdn is called a configuration of G and the digraph G together

with the configuration ξ define a formation G(ξ) in the d-dimensional space. Defining the

relative position vectors

ξij := ξj − ξi , i, j ∈ V , i , j (4.2)

and as long as ‖ξij‖ , 0, the bearing of agent j relative to agent i is given by the unit vector

gij := ξij /‖ξij‖ ∈ S2. (4.3)

Similarly to ξij , define vij := vj − vi as the relative velocity between agent i and j.

Definition 4.4. A formation G(ξ(t)) is called bearing persistently exciting, if ∀i ∈ V , the matrices∑
j∈Ni

πgij (t) satisfy the PE condition.

The following Theorem shows that a leader-follower formation can be uniquely determined

if it is bearing PE.

Theorem 4.1. Consider a leader-follower formation. Assume that the leader’s position ξ1(t), its veloc-

ity v1(t), the bearing vectors {gij(t)}(i,j)∈E , and the corresponding relative velocity vectors {vij(t)}(i,j)∈E
(equivalently vi(t)) are well-defined, known, and bounded. Let ξ̂1 , ξ1 and ξ̂i denote the estimate of

ξi , for i = 2, . . . ,n with the following dynamics:

˙̂ξi = vi −K
∑
j∈Ni

πgij (ξ̂i − ξ̂j ), ∀i ≥ 2, (4.4)

with arbitrary initial conditions and K a positive definite matrix. Assume that the leader-follower

formation is bearing persistently exciting. Then ξ̂i converges uniformly globally exponentially (UGE)

to the unique ξi .
Proof. Consider the error variables ξ̃i := ξ̂i − ξi defined for i = 2, . . . ,n and the corresponding

dynamics obtained from (4.4). For i = 2, we haveN2 = {1} and it is straightforward to verify that

the dynamics of ξ̃2 is given by
˙̃ξ2 = −Kπg21

ξ̃2 (4.5)
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and that ξ̃2 = 0 is UGE stable under the PE condition (by direct application of [LBHMS17,

Lemma 4]). For i = 3 andN3 = {1}, the proof is exactly the same as for agent 2. ForN3 = {2} or

{1,2}, the dynamics of ξ̃3 can be written as

˙̃ξ3 = −K
∑
j∈N3

πg3j
ξ̃3 +Kπg32

ξ̃2 (4.6)

which together with (4.5) forms a cascaded system with ξ̃2 as input to (4.6). Using the fact that

ξ̃2 = 0 is UGE stable and system (4.6) is continuously differentiable and globally Lipschitz in

(ξ̃3, ξ̃2), it follows (by direct application of [LBHMS17, Proposition 1]) that ξ̃3 = 0 is also UGE

stable. In the general case, we can write

˙̃ξi = −K
∑
j∈Ni

πgij ξ̃i +K
∑

j∈Ni\{1}
πgij ξ̃j ,

for i = 2, . . . ,n and the proof of that ξ̃i = 0 is UGE stable can be obtained in a similar way.

Remark 4.1. For the static case where vij = 0, ∀(i, j) ∈ E, we obviously conclude that g21 is

not PE. In that case, if each agent i (i ≥ 3) has two neighbors 1 ≤ j , k < i with gij , ±gik, the

leader-follower formation becomes exactly the same as the bearing rigid desired LFF formation

described in [TZS+19] and uniqueness of the formation can still be guaranteed if, for instance,

the distance d21 = ‖ξ1 − ξ2‖ is provided. Under the proposed controller, which will be defined

in the next section, the formation will converge to the desired shape up to a scaling factor as

discussed in [TZS+19].

Note that under the condition of Theorem 4.1, the shape and the size of the bearing PE

leader-follower formation may be time-varying. This includes similarity transformations (a

combination of rigid transformation and scaling) involving a time-varying rotation. In this

case, it is straightforward to show that for any bearing formation the bearing measurements are

invariant to translation and scaling but change with rotation such that gij(t) = R(t)>gij(0),∀(i, j) ∈
E (with R(t) ∈ SO(d) the rotation part of the similarity transformation). This implies that there

exists similarity transformations in which R(t) is time-varying such that the leader-follower

formation G(ξ(t)) is bearing PE.

Definition 4.5. A leader-follower formation G(ξ(t)) is called relaxed bearing rigid if it is bearing PE

and subjected to a similarity transformation.

Corollary 4.1. If the formation is relaxed bearing rigid, then the result of Theorem 4.1 applies.

Proof. The proof is analogous to the proof of Theorem 4.1. It is omitted here for the sake of

brevity.
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4.4 Bearing-only formation control for single-integrator dynamics

4.4.1 Problem formulation

Consider the formation G(ξ), where each agent i ∈ V is modelled as a single integrator with the

following dynamics:

ξ̇i = vi (4.7)

recalling that ξi ∈Rd is the position and vi ∈Rd the velocity input, all expressed in a common

inertial frame. Let ξ∗i (t) ∈R
d and v∗i (t) ∈R

d denote the desired position and desired velocity of

agent i, respectively. For any agent i (i ≥ 2) and any agent j in its neighbor (j ∈ Ni), define the

desired relative position vector and desired bearing vector as ξ∗ij and g∗ij according to (4.2) and

(4.3). We assume that the n-agent system satisfies the following assumptions.

Assumption 4.1. The desired velocity v∗i (t) are bounded for all t. The desired positions ξ∗i (t) are such

that the resulting desired bearings g∗ij(t) are well-defined for all t and the resulting desired formation

satisfies the bearing PE condition.

Assumption 4.2. The sensing topology of the group is described by a digraph G(V ,E) that satisfies the

leader-follower structure defined in Definition 4.3. Each agent i ≥ 2 can measure the relative bearing

vectors gij to its neighbors j ∈ Ni .

Assumption 4.3. As the formation evolves in time, no inter-agent collisions and occlusions occur. In

particular, we assume that the bearing information gij(t), (i, j) ∈ E is all the time well-defined.

With all these ingredients, we can define the bearing formation control problem as follows.

Problem 1. Consider the system (4.7) and the underlying formation G(ξ). Under Assumptions 4.1-

4.3, design stabilizing distributed control laws based on only bearing measurements that guarantee

convergence to the desired formation.

4.4.2 Exponential stabilization of the formations

For any agent i (i ≥ 2) and any agent j in its neighbor (j ∈ Ni), define the relative position error

ξ̃ij := ξij − ξ∗ij . Then the error dynamics is:

˙̃ξij = vj − v∗j − (vi − v∗i ). (4.8)

The following control law is proposed for each agent i ∈ V

vi = −
∑
j∈Ni

kiπgijξ
∗
ij + v∗i , (4.9)

where ki is positive gains.
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4.4.2.1 Stability and convergence of the first follower

Lemma 4.2. Consider a n-agent (n ≥ 2) system with a leader-follower interaction topology as specified

in Definition 4.3. For the first follower (i = 2), consider the dynamics of the error (4.8) along with

the control law (4.9). If the Assumptions 4.1 - 4.3 are satisfied, then the equilibrium point ξ̃21 = 0 is

exponentially stable (ES).

Proof. The control law (4.9) for agent 1 is v1 = v∗1 and for agent 2 is v2 = −πg21
ξ̃21 + v∗2. Recalling

(4.8), the closed-loop system for the state ξ̃21 is expressed as

˙̃ξ21 = −k2πg21
ξ̃21.

Consider the following Lyapunov function candidate:

L21 =
1
2
‖ξ̃21‖2

Taking its time-derivative, it yields

˙L21 = −k2ξ̃
>
21πg21

ξ̃21,

which is negative-semidefinite, one concludes that the state ξ̃21 is bounded. Since g∗>21πg21
g∗21 =

g>21πg∗21
g21, it is straightforward to verify that

L̇21 =− k2ξ
∗>
21πg21

ξ∗21

=− k2
‖ξ∗21‖2

‖ξ21‖2
ξ>21πg∗21

ξ21 ≤ −k2γ2ξ̃
>
21πg∗21

ξ̃21

with γ2 = min‖ξ∗21(t)‖2

(‖ξ̃21(0)‖+max‖ξ∗21(t)‖)2 . Using the PE condition of g∗21 along with a direct application of

[LP02, Lemma 5] one can conclude that ξ̃21 = 0 is ES.

Remark 4.2. Note that in the above lemma, assumption 4.3 relies on the evolution of state

variables. This assumption serves here to show that if there is no collision or occlusion, the

bearings are well-defined and the proposed control design yields the desired convergence

properties (Lemma 4.2 and even in the following results: Lemma 4.3, 4.5 and Theorem 4.2,

4.3). Trying to more specifically characterize the set of initial conditions for which the system’s

solutions avoid collision and occlusion is out of the scope of the chapter.

4.4.2.2 Stability and convergence of the second follower

Lemma 4.3. Consider a n-agent (n ≥ 3) system with a leader-follower interaction topology as specified

in Definition 4.3. For the second follower (i = 3), consider the dynamics of the error (4.8) along

with the control law (4.9). If the Assumptions 4.1-4.3 are satisfied and Lemma 4.2 is valid, then the

equilibrium point ξ̃3j = 0, ∀j ∈ N3 is ES.
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Proof. According to the leader-follower structure described in subsection 4.3, the second fol-

lower (agent 3) can have three possible sets of neighbors: N3 = {1},N3 = {2} andN3 = {1,2}.
Case i): N3 = {1}, the proof is identical to the proof of Lemma 4.2.

Case ii): N3 = {2} orN3 = {1,2}. The closed-loop system for the state ξ̃3j , j ∈ N3 is expressed

as
˙̃ξ3j = −

∑
l∈N3

k3πg3l
ξ̃3l + vj − v∗j . (4.10)

Since v1 = v∗1, v2 is a function of variables ξ̃21 and ξ̃31 = ξ̃32 + ξ̃21, we can interpret (4.10) as a

cascaded system that has ξ̃21 as input to the unforced system

˙̃ξ3j = −k3

∑
l∈N3

πg3l
ξ̃3j . (4.11)

Now the proof becomes analogue to the proof of Lemma 4.2. Consider the following Lyapunov

function candidate:

L3j =
1
2
‖ξ̃3j‖2,

and its time-derivative is given by

L̇3j = −k3ξ̃
>
3j

∑
l∈N3

πg3l
ξ̃3j

which is negative-semidefinite. Thus state ξ̃3j is bounded. Due to the fact that ξ̃3j = ξ̃3k+ ξ̃kj , k ,

j, k, j ∈ {1,2} and ξ̃21 = 0 in the unforced system (4.11), one has ξ̃3j = ξ̃3k . It is straightforward

to verify that

L̇3j = −k3

∑
l∈N3

‖ξ∗3l‖
2

‖ξ3l‖2
ξ̃>3lπg∗3l ξ̃3l

≤ −k3γ3ξ̃
>
3j

∑
l∈N3

πg∗3l ξ̃3j ≤ 0,

with γ3 =
minl∈Nj ‖ξ

∗
3l‖

2

(‖ξ̃3j (0)+maxl∈Nj ‖ξ
∗
3l‖)2 . Using the PE condition along with direct application of [LP02,

Lemma 5], we can conclude that the equilibrium point ξ̃3j = 0, j ∈ N3 of the unforced system

(4.11) is ES. This in turn implies that the equilibrium point ξ̃3j = 0, j ∈ N3 is ES for the system

(4.10).

4.4.2.3 The n-agents system

Theorem 4.2. Consider a n-agent (n ≥ 2) system with a leader-follower interaction topology as

specified in Definition 4.3. For all agents i ∈ V\{1}, consider the system (4.8) in closed-loop with

the proposed control law (4.9). If the Assumptions 4.1-4.3 are satisfied, then the equilibrium point

ξ̃ij = 0, i = 2, . . . ,n, ∀j ∈ Ni is ES.
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Proof. We will prove the convergence of ξ̃ij = 0 by mathematical induction. Firstly, for i = 2 we

have ξ̃21 = 0 is ES based on Lemma 4.2. Thus Theorem 4.2 is true for i = 2. It is also true for

i = 3 from the conclusion of Lemma 4.3.

Secondly, we suppose Theorem 4.2 is true for 4 ≤ k ≤ i −1, that is ξ̃kj = 0, ∀j ∈ Nk is ES for

all 4 ≤ k ≤ i−1 and we will prove that it is also true for k = i. Recall (4.8), the closed-loop system

for the states ξ̃ij , j ∈ Ni is represented as

˙̃ξij = −kiπgij ξ̃ij −
∑

q∈Ni\{j}

kiπgiq ξ̃iq + vj − v∗j , (4.12)

where vj is a function of variables ξ̃jm, m ∈ Nj and ξ̃iq = ξ̃ij + ξ̃jq. Note that since the graph

is connected, ξ̃jq can be represented by the error variables ξ̃km, 2 ≤ k ≤ i − 1, m ∈ Nk. System

(4.12) can then be considered as a cascaded system with ξ̃km, 2 ≤ k ≤ i − 1, m ∈ Nk , being inputs

of the unforced system analogously to system (4.11). Using a similar argument as shown in

Lemma 4.3, one can conclude that the equilibrium point ξ̃ij = 0, ∀j ∈ Ni of the unforced system

is ES. Because Theorem 4.2 is true for 2 < k ≤ i − 1, we can conclude that the equilibrium point

ξ̃ij = 0, ∀j ∈ Ni for system (4.12) is also ES. This in turn implies that Theorem 4.2 is true for

k = i. Then, by mathematical induction, if follows that the claim is true for all k ∈ V\{1}.

It is worth to notice that the exponential stabilization of the equilibrium ξ̃>ij = 0, ∀(i, j) ∈ E
implies the exponential stabilization of the formation to the desired one in terms of shape

and scale only. This is inherent to the problem at hand since only relative measurements are

involved in the control design. However, by exploiting the cascade structure of the formation

dynamics, it is straightforward to verify that the exponential stabilization of the formation in

the configuration space (that is ξi → ξ∗i ) can be directly deduced if the leader has access to its

own position.

4.5 Bearing formation control for double-integrator dynamics

In this section we will extend the bearing formation control law for a multi-agent system with

double-integrator dynamics. Consider the formation G(ξ), where each agent i ∈ V is more

realistically modeled as double integrator with the following dynamics:ξ̇i = vi

v̇i = ui
(4.13)

where ui ∈ Rd is the acceleration control input expressed in the inertial frame. Let u∗i (t) ∈ R
d

denote the desired acceleration of agent i. Define the desired relative velocity vector as v∗ij =

v∗j − v
∗
i , i, j ∈ V , i , j.

We assume that the n-agent system satisfies the following assumptions.
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Assumption 4.4. The desired acceleration u∗i (t) and the desired relative velocity v∗ij(t) are bounded

for all t > 0, the resulting desired bearings g∗ij(t) are well-defined for all t > 0 and the desired formation

is bearing PE.

Assumption 4.5. The sensing topology of the group is described by a digraph G(V ,E) that satisfies the

leader-follower structure defined in Definition 4.3. Each agent i ≥ 2 can measure the relative velocity

vij and relative bearing vectors gij to its neighbors j ∈ Ni .

With all these ingredients, we can define the bearing formation control problem as follows.

Problem 2. Consider the system (4.13) and the formation G(ξ). Under Assumptions 4.3 - 4.5, design

stabilizing distributed control laws based on bearing and relative velocity measurements that guarantee

exponential stabilization of the formation in terms of shape and scale to the desired one.

For any agent i (i ≥ 2) and any agent j in its neighbor (j ∈ Ni), we define the relative position

error ξ̃ij := ξij − ξ∗ij and the relative velocity error ṽij := ˙̃ξij = (vj − vi)− (v∗j − v
∗
i ) along with the

following dynamics: 
˙̃ξij = ṽij

˙̃vij = uj −u∗j − (ui −u∗i ).
(4.14)

Consider the following control law for each agent i ∈ V

ui =
∑
j∈Ni

[−kpiπgijξ
∗
ij + kdi ṽij ] +u∗i , (4.15)

where kdi and kpi are positive gains that satisfy kdi >
1
mi

and kpi <
4
mi
− 4
k2
di
m3
i

(recall that mi = |Ni |).

For i ∈ V\{1}, define new variables x̃ij := (ξ̃>ij , ṽ
>
ij )
>, j ∈ Ni and the following matrices to be used

later in the stability analysis:

Ai(gi) =

 0 −Id
kpi

∑
l∈Ni

πgil kdimiId

 , Pi := 1
2

 Id
1

kdimi
Id

1
kdimi

Id Id

 > 0, Σi =


∑
j∈Ni

πg∗ij 0

0 Id

 ≥ 0 (4.16)

and

Qi(gi) =
∑
j∈Ni


kpi
kdimi

πgij
kpi
2 πgij

kpi
2 πgij (kdi −

1
kdim

2
i
)Id

 =
∑
j∈Ni

SijMijSij ≥ 0, with Sij =
[
πgij 0
0 Id

]
and Mij =


kpi
kdimi

Id
kpi
2 Id

kpi
2 Id (kdi −

1
kdim

2
i
)Id


(4.17)

where the matrices argument gi stands for the concatenation of all bearing vectors gij , ∀j ∈ Ni .

4.5.1 Stability and convergence of the first follower

Lemma 4.4. Consider a n-agent (n ≥ 2) system with a leader-follower interaction topology as

specified in Definition 4.3. For the first follower (i = 2), consider the error dynamics (4.14) along

with the control law (4.15). If Assumptions 4.3 - 4.5 are satisfied, then the equilibrium point

x̃21 = (ξ̃>21, ṽ
>
21)> = 0 is exponentially stable (ES).
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Proof. Recalling (4.14) and (4.15), the closed-loop system for the state x̃21 is expressed as

˙̃x21 = −A2(g2(t))x̃21.

Consider the following Lyapunov function candidate:

L21 = x̃>21P2x̃21.

Taking its time-derivative yields

L̇21 = −x̃>21Q2x̃21.

which is negative-semi definite since Q2 ≥ 0. Hence, we conclude that x̃21 is bounded. Recalling

(4.17) and using the fact g∗21
>πg21

g∗21 = g21
>πg∗21

g21, one concludes

L̇21 = −x̃>21S21M21S21x̃21 ≤ −γ2x̃
>
21Σ2x̃21 ≤ 0,

where

γ2 =
kp2 (kd2−kp2k

2
d2
/4−1)

kd2 (kp2 +kd2−1) minα2
2(t) > 0

with minα2
2(t) = min ‖ξ

∗
21(t)‖2
‖ξ21(t)‖2 . Now, since L21 is decreasing, one can verify that

minα2
2(t) ≥

1−

√
λmax(P2)
λmin(P2) ‖x̃21(0)‖

(
√

λmax(P2)
λmin(P2) ‖x̃21(0)‖+max‖ξ∗21(t)‖)


2

> 0.

From (4.17) along with the PE condition of g∗21, one ensures that condition (1) of Theorem B.1 in

the appendix is satisfied. By a direct application of Lemma B.3 (see appendix) one can conclude

that condition (2) of Theorem B.1 is also satisfied. This in turn implies that x̃21 = 0 is ES.

4.5.2 Stability and convergence of the second follower

Lemma 4.5. Consider a n-agent (n ≥ 3) system with a leader-follower interaction topology as specified

in Definition 4.3. For the second follower (i = 3), consider the error dynamics (4.14) along with

the control law (4.15). If the Assumptions 4.3 - 4.5 are satisfied and Lemma 4.4 is valid, then the

equilibrium point x̃3j = (ξ̃>3j , ṽ
>
3j )
> = 0, ∀j ∈ N3 is ES.

Proof. According to the leader-follower structure described in Definition 4.3, the second follower

(agent 3) can have three possible sets of neighbors: N3 = {1},N3 = {2} andN3 = {1,2}.
Case i): N3 = {1}, the proof is identical to the proof of Lemma 4.4.

Case ii): N3 = {2} or N3 = {1,2}. Since x̃31 = x̃32 + x̃21, the closed-loop system for the states

x̃3j , j ∈ N3 is expressed as

˙̃x3j = −A3(g3(t))x̃3j +B21(g3(t), g2(t))x̃21 (4.18)
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where A3 is defined in (4.16) and B21 is a bounded function. We can interpret (4.18) as a

cascaded system that has x̃21 as input to the unforced system

˙̃x3j = −A3(g3(t))x̃3j . (4.19)

Now the proof becomes analogous to the proof of Lemma 4.4. By direct application of Theorem

B.1, one concludes that the equilibrium x̃3j = 0, j ∈ N3 of the unforced system (4.19) is ES. Since

the matrix valued function B21 is bounded and x̃21 = 0 is ES, this implies that the equilibrium

point x̃3j = 0, j ∈ N3 is ES for the system (4.18).

4.5.3 The n-agent system

Theorem 4.3. Consider a n-agent (n ≥ 2) system with a leader-follower interaction topology as

specified in Definition 4.3. For all agents i ∈ V\{1}, consider the system (4.14) along with the

proposed control law (4.15). If Assumptions 4.3 - 4.5 are satisfied, then the equilibrium point

x̃ij = (ξ̃>ij , ṽ
>
ij )
> = 0 is ES, ∀i ∈ V\{1} and ∀j ∈ Ni .

Proof. We will prove the convergence of x̃ij = 0 by mathematical induction. Firstly, for i = 2 and

i = 3 the conclusion that x̃ij = 0 is ES ∀j ∈ Ni follows directly from Lemma 4.4 and Lemma 4.5,

respectively. Secondly, we suppose that x̃kj = 0 is ES, ∀j ∈ Nk and ∀4 ≤ k ≤ i −1 then, we show

that it is also true for k = i. Using the fact that ∀q ∈ Ni , one has x̃iq = x̃ij + x̃jq with j ∈ Ni , j , q
and x̃jq can be expressed in terms of the error variables x̃km, 2 ≤ k ≤ i − 1, m ∈ Nk because the

graph is connected, the closed-loop system for the states x̃ij , j ∈ Ni can be represented as

˙̃xij =−Ai(gi(t))x̃ij +
∑

2≤k≤i−1, m∈Nk

Bkm(gi(t), gk(t))x̃km (4.20)

where Ai is defined in (4.16) and Bkm is a bounded matrix valued function. Thus system (4.20)

can be considered as a cascaded system with x̃km, 2 ≤ k ≤ i − 1, m ∈ Nk perturbing the unforced

system ˙̃xij = −Ai(gi(t))x̃ij . From there and analogously to Lemma 4.4 and 4.5, one concludes

that x̃ij = 0 is ES for the unforced system and because the error variables x̃km = 0 are ES and Bkm
is bounded, x̃ij = 0 is also ES for system (22). Then, by mathematical induction, it follows that

the claim is true for all i ∈ V\{1}, which concludes the proof.

Proposition 4.1. Consider the cascaded system defined in Theorem 4.3. If Assumptions 4.3 - 4.5

are satisfied and the convergence rate of the unforced system ˙̃xij = −A(gi(t))x̃ij is greater than bi ,

for each agent i ∈ V\{1} and j ∈ Ni . Then the convergence rate for each agent i ∈ V\{1,2} of the

cascaded system is greater than ci = 1
2 min{ci−1,bi}, with c2 = b2, which is a lower bound obtained

when the leader-follower structure is minimal and has a single directed path. Additionally, if bi = b,

the convergence rate for each agent i ∈ V\{1,2} in the cascaded system is greater than b
2i−2 .

Proof. Using the same argument used in the proof of [Kha92, Theorem 4.9] and by mathematical

induction, the convergence rate for each agent i ∈ V\{1,2} in the cascaded form is greater than
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ci = 1
2 min{ci−1,bi}. When bi = b, the conclusion follows by iterative substitution of ci−1 in the

expression for ci .

4.6 Simulation Results

In this section, we consider a four-agent system with double-integrator dynamics defined in

R
3. The underlying graph topology is a minimal leader-follower graph formed by a single

directed path, that is, each follower has only one neighbor such that Ni = {i − 1}, i ∈ V\{1},
V = {1,2,3,4}. For the sake of simplicity, the leader (agent 1) is static at position ξ1 = [0 0 0]>.

According to Assumption 4.4, the desired trajectories for the followers are chosen such that

ξ∗i (t) = R(t)>ξ∗i (0), with R(t) =


cos( t

2.5 ) −sin( t
2.5 ) 0

sin( t
2.5 ) cos( t

2.5 ) 0
0 0 1

, ξ∗2(0) = [0 1 0]>,p∗3(0) = [
√

3
2

1
2 0]> and ξ∗4(0) =

[1
2

√
3

2 1]>, which form a pyramid in R
d that rotates about z-axis (see Fig. 4.3). Note that the

desired formation is not bearing rigid but relaxed bearing rigid. The initial conditions are

ξ2(0) = [−1 2 1]>, v2(0) = [0 1 0]>, ξ3(0) = [−2 − 1 − 1]>, v3(0) = [1 0 0]>,ξ4(0) = [−0.5 − 0.5 1]>

and v4(0) = [1 0 − 1]>. The controller gains are chosen as follows kpi = 3 and kdi = 10,∀i ∈ V\{1},
to ensure a fast convergence rate according to Theorem B.1 while ensuring that inequalities

kdi > 1 and kpi < 4− 4
k2
di

are satisfied. The left hand side of Fig. 4.3 shows the time evolution of

the error states ‖x̃21‖, ‖x̃32‖ and ‖x̃43‖, respectively. It also confirms the result of Proposition 4.1

that due to the cascade structure of the system the convergence of x̃21(t) is the fastest and of

x̃43(t) is the slowest one. The right hand side of Fig. 4.3 shows the 3-D time evolution of the

formation converging to the desired one. It also validates the fact that the proposed control law

stabilizes the formation without requiring bearing rigidity (additional simulation results with

animations can be found in https://youtu.be/fwv4Q_3xCWw).

4.7 Conclusion

This chapter studies bearing formation control problem of a leader-follower structure under

time-varying desired formation and introduces the new concept of relaxed bearing rigidity.

The proposed controller ensures, a (local) exponential stability of the formation as long as the

bearing PE conditions are met on the desired formation. Simulation results are provided to

validate the control strategy.
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Figure 4.3: Evolutions of error states (left hand side) and 3-D trajectories (right hand side) for a pyramid
formation under a minimal leader-follower structure: the colored solid lines represent the agents’
trajectories, the dashed red lines represent the desired trajectories and the black solid lines represent the
connections between agents.
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5
Relaxed bearing rigidity and bearing

formation control under persistence
of excitation

5.1 Introduction

In this chapter, we provide a coherent generalization of our previous solution presented in

Chapter 4 to formations under general undirected graph topologies. A general concept of

bearing persistently exciting (BPE) formation defined in d (d ≥ 2)-dimensional space, is fully

developed for the first time in this chapter. We extend the results by providing conditions on

BPE formation leading to the definition of the relaxed bearing rigidity theory which connects

bearing persistence of excitation (BPE) with bearing rigidity and guarantees the uniqueness

of a fixed geometric pattern without imposing bearing rigid conditions on the graph topology.

Based on the proposed BPE theory, we design control laws for a multi-agent system (with both

single- or double-integrator dynamics) to track a BPE desired formation using only bearing

measurements (also velocity measurements for double-integrator dynamics). In particular, we

show that under the BPE condition exponential stabilization of the formation up to a translation

is achieved for any undirected graph that has a spanning tree (not necessarily bearing rigid, as

shown in Fig. 5.1-(a1), (b1) and (b2) and Fig. 5.2-(a1), (b1), (b2), (c1) and (c2)). This implies the

scale ambiguity, which is a characteristic of bearing rigidity, can be removed and convergence

of the desired formation in terms of scale can be guaranteed, without the need to measure

the distance between any two agents. Finally we provide a safe set for the initial conditions

that guarantees collision avoidance for the multi-agent system under both single- and double-

integrator dynamics.

This chapter is organized as follows. Section 5.2 introduces the preliminaries about forma-

tion control under undirected graphs. Section 5.3 introduces the bearing persistent excitation

theory. Section 5.4 presents the bearing formation control law along with stability analysis.

Section 5.6 shows the performance of the proposed control strategy in two different scenarios.
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(a1) (a2)

(b1) (b2) (b3)

Figure 5.1: Examples of bearing persistently exciting formations in two-dimensional space. Red lines
represent edges for which the corresponding bearing vector are persistently exciting and blue lines
represent edges for which the corresponding bearing vectors are not necessarily persistently exciting.

(a1) (a2)

(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 5.2: Examples of bearing persistently exciting formations in three-dimensional space. Red lines
represent edges for which the corresponding bearing vector are persistently exciting and blue lines
represent edges for which the corresponding bearing vectors are not necessarily persistently exciting.

The chapter concludes with some final comments in Section 5.7.
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5.2 Preliminaries

5.2 Preliminaries

5.2.1 Undirected graph topologies

Consider a system of n connected agents. The underlying interaction topology can be modeled

as an undirected graph G := (V ,E), where V = {1, . . . ,n} (n ≥ 2) is the set of vertices and E ⊆ V ×V
is the set of undirected edges. Two vertices i and j are called adjacent (or neighbors) when

{i, j} ∈ E. The set of neighbors of agent i is denoted byNi := {j ∈ V |{i, j} ∈ E}. If j ∈ Ni , it follows

that i ∈ Nj , since the edge set in an undirected graph consists of unordered vertex pairs. Define

m̊ = |E|, where |.| denotes the cardinality of a set. A graph G is connected if there exists a path

between every pair of vertices in G and in that case m̊ ≥ n− 1. A graph G is said to be acyclic if it

has no circuits. A tree is a connected acyclic graph. A spanning tree of a graph G is a tree of

G involving all the vertices of G. An orientation of an undirected graph is the assignment of a

direction to each edge. An oriented graph is an undirected graph together with an orientation.

The incidence matrix H ∈ Rm̊×n of an oriented graph is the {0,±1}-matrix with rows indexed

by edges and columns by vertices: [H]ki = 1 if vertex i is the head of the edge k, [H]ki = −1

if it is the tail, and [H]ki = 0 otherwise. For a connected graph, one always has H1n = 0 and

rank(H) = n− 1.

5.2.2 Formation control

Consider a undirected graph G = (V ,E), let ξi ∈ Rd and vi ∈ Rd , (d ≥ 2) denote the position

and velocity, respectively, of each agent i ∈ V both expressed in a common inertial frame.

Recall that the stacked vector ξ = [ξ>1 , ...,ξ
>
n ]> ∈ R

dn (n ≥ 2) is a configuration of G. Let

v := ξ̇ = [v>1 , . . . , v
>
n ]> ∈Rdn. For a formation, define the relative position

ξij := ξj − ξi , {i, j} ∈ E , (5.1)

as long as ‖ξij‖ , 0, the bearing of agent j relative to agent i is given by the unit vector

gij := ξij /‖ξij‖ ∈ Sd−1. (5.2)

Consider an arbitrary orientation of the graph and denote

ξ̄k := ξij , k ∈ {1, . . . , m̊},

as the edge vector with assigned direction such that i and j are, respectively, the initial and the

terminal nodes of ξ̄k . Denote the corresponding bearing vector by

ḡk :=
ξ̄k
‖ξ̄k‖

∈ Sd−1, k ∈ {1, . . . , m̊}.

Define the stacked vector of edge vectors ξ̄ = [ξ̄>1 , ..., ξ̄
>
m̊]> = H̄ξ, where H̄ =H ⊗ Id .
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5.2.2.1 Formation control using relative position measurements

In this problem setup, the agents sense relative positions of their neighbors. The formation

control objective is to drive the configuration ξ to the desired one up to translation, i.e. [ME10,

OPA15]. The graph Laplacian matrix is introduced as

L = H̄>H̄ (5.3)

Note that if the graph is connected, or equivalently has a spanning tree, rank(L) = dn − d,

Null(L) = span{U }, where U = 1n ⊗ Id . Let λi denote the ith eigenvalue of L under a non-

increasing order and note that λdn−d is the smallest positive eigenvalue of L.

5.2.2.2 Formation control using bearing measurements

In this setting, the agents measure the relative directions to their neighbors (bearings) and the

objective of the formation control is to drive the configuration ξ to the desired configuration

up to a translational and a scaling factor, i.e. [ZZ16, ZLD19]. The bearing Laplacian matrix is

introduced as

LB(ξ(t)) = H̄>ΠH̄ (5.4)

where Π = diag
(
πḡk

)
. Since span{U,ξ} ⊂Null(LB) it follows that rank(LB) ≤ dn−d−1. According

to [ZZ16] (in which only constant bearing are considered), if the formation is infinitesimally

bearing rigid then rank(LB) = dn− d − 1 and Null(LB) = span{U,ξ}.

5.3 Bearing persistence of excitation in R
d

In this section, we derive conditions under which a formation G(ξ) (defined in Section 5.2.2)

can be uniquely determined up to a translational factor using only bearing and velocity mea-

surements. The main contributions with respect to the literature is to lift the scale ambiguity

introduced by bearings and also relax the constraints on graph topology required by bearing

rigidity theory [ZZ16]. Figures 5.1 and 5.2 illustrate this relaxation with formations (a1), (b1)

and (b2) in Fig. 5.1 and (a1), (b1), (b2), (c1) and (c2) in Fig. 5.2 that are not bearing rigid, but

can be uniquely determined up to a translation vector provided that specific bearing vectors are

persistently exciting. We will illustrate the results in the following subsections.

5.3.1 BPE formation and relaxed bearing rigidity

In this subsection, we define the BPE formation and introduce the new concept of relaxed bearing

rigidity. We first introduce a relaxed persistence of excitation condition specifically developed

for the bearing Laplacian matrix.
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5.3 Bearing persistence of excitation in R
d

Definition 5.1. Consider the Laplacian L and the bearing Laplacian LB defined in (5.3) and (5.4),

respectively. The bearing Laplacian matrix is called persistently exciting (PE) if for all t there exists

T > 0 and 0 < µ < 1 such that

1
T

∫ t+T

t
LB(ξ(τ))dτ ≥ µL. (5.5)

Remark 5.1. One can verify that the PE condition for the bearing Laplacian introduced in

Definition 5.1 is less restrictive than the PE condition on the bearing matrix Π in (5.4) from

Definition 4.1. In particular, having a matrix Π that is PE is a sufficient but not necessary

condition to ensure that LB = H̄>ΠH̄ is also PE.

Definition 5.2. A formation G(ξ(t)) is bearing persistently exciting (BPE) if G has a spanning tree

and its bearing Laplacian matrix is PE.

The following Theorem will show that a BPE formation can be uniquely determined up to a

translation using only bearing and velocity measurements.

Theorem 5.1. Consider a formation G(ξ(t)) defined in R
d along with bearing measurements {ḡk}k∈{1...m̊}

of an arbitrary orientation of the graph. Assume that the velocity measurements {vi}i∈{1...n} are bounded

and known. If G(ξ(t)) is BPE then the configuration ξ(t) can be recovered up to a translational vector

in R
d .

Proof. Consider the stacked velocity vector v(t) = [v>1 (t), ...,v>n (t)]> ∈ Rdn and let ξ̂ denote the

estimate of ξ with dynamics:

˙̂ξ = v −LB(ξ(t))ξ̂, (5.6)

with arbitrary initial conditions. Define the relative centroid c0(t) := 1
nU
>(ξ̂(t) − ξ(t)) ∈ R

d

and recall that U = 1n ⊗ Id , U>LB = 0, and LBU = 0. Since ċ0 ≡ 0, c0 is constant, that is,

c0(t) = 1
nU
>(ξ̂(0)−ξ(0)). Consider the error variable ζ(t) defined such that ξ̂(t)−ξ(t) = ζ(t)+Uc0

and ζ(t) and Uc0 are orthogonal. Then, the corresponding dynamics can be obtained from (5.6):

ζ̇ = −LB(ξ(t))ζ. (5.7)

Since the formation is BPE, ∀x ∈ Rdn−d satisfying U>x ≡ 0, there exists a T > 0 and 0 < µ < 1

such that, ∀t, 1
T x
>
∫ t+T
t

LB(ξ(τ))dτx ≥ µx>H̄>H̄x ≥ µλdn−d ‖x‖2, where λdn−d > 0 is the smallest

positive eigenvalue of H̄>H̄ (see Sect. 5.2.2.1). Using similar arguments as in the proof of [LP02,

Lemma 5], one can ensure that the equilibrium ζ = 0 is uniformly globally exponentially (UGE)

stable. Therefore, one concludes that ξ̂ converges UGE to the unique ξ up to a translational

vector Uc0.
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Remark 5.2. The concept of BPE formation implying time-varying dynamics is general. It

also includes similarity transformations (a combination of rigid transformation and scaling)

involving a time-varying rotation. That is, ∀t > 0,∀i ∈ V , ξi(t) = s(t)R(t)>ξi(0) + c(t), with s(t) ∈
R

+, c(t) ∈Rd and R(t) ∈ SO(d) a rotation matrix. In this case, it is straightforward to show that

for any bearing formation the bearing measurement gij is such that gij(t) = R(t)>gij(0), ∀(i, j) ∈ E
is invariant to translation and scaling and consequently provides naturally a relaxed bearing

rigid property for BPE formations.

Definition 5.3. A formation G(ξ(t)) is called relaxed bearing rigid, if it is BPE and subjected to a

similarity transformation.

Corollary 5.1. If the formation is relaxed bearing rigid, then the result of Theorem 5.1 applies.

Proof. The proof is analogous to the proof of Theorem 5.1. It is omitted here for the sake of

brevity.

5.3.2 Properties of BPE formations

To explore the properties of BPE formations, we describe relationship between a BPE formation

and the specific PE bearings and then we derive a methodology to construct a BPE formation.

Lemma 5.1. Consider a formation G(ξ(t)) defined in R
d . Assume G is acyclic and has a spanning

tree, then the formation is BPE if and only if all bearings are PE, i.e., ḡk(t) satisfies the PE condition

for all k ∈ {1, . . . , m̊}.

Proof. Since G := (V ,E) is acyclic and has a spanning tree, m̊ = n− 1, where m̊ = |E| and n = |V |.
According to Definition 5.2, the proof of the lemma is equivalent to showing that LB(ξ(t)) is PE

if and only if the corresponding bearing vectors ḡk(t), ∀k = {1, . . . ,n− 1} satisfy the PE condition.

If ḡk(t) satisfies the PE condition ∀k = {1, . . . , m̊}, this implies that the matrix Π(t) is PE and

hence it is obvious to conclude that LB(ξ(t)) is PE. Conversely, if LB(ξ(t)) is PE then there exist

T > 0 and 0 < µ < 1 such that, ∀t, 1
T

∫ t+T
t

LB(ξ(τ))dτ ≥ µL. Now, since the H̄ is a constant matrix

with rank(H̄) = d(n − 1) and Π(t) ∈ R
d(n−1)×d(n−1) it follows that Π(t) ∈ R

d(n−1)×d(n−1) should

satisfy the PE condition in equation (4.1). This in turn implies that each ḡk(t) satisfies the PE

condition in Definition 4.2, ∀k ∈ {1, . . . ,n− 1}.

Lemma 5.2. For a formation G(ξ(t)) defined in R
d , assume rank(LB(ξ(t))) = dn− d − 1, ∀t. Then

G(ξ(t)) is BPE if and only if at least one bearing ḡk , k ∈ {1, . . . , m̊} is PE.

Proof. Since rank(LB(ξ(t))) = dn−d −1, ∀t, G has a spanning tree and Null(Π(t)) = span{H̄,ξ(t)}
(from Lemma B.1 in the Appendix). In order to prove that the formation is BPE, it remains to

prove that its bearing Laplacian matrix is PE. Let S = {ξ̊ ∈ S |ξ̊ = [ξ̊>1 , . . . , ξ̊
>
n ] ∈Rdn} be the set of

all possible fixed configurations under the formation G(ξ̊) leading to rank(LB(ξ̊)) = dn− d − 1.
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This in turn implies that for any w = [w>1 , . . . ,w
>
k , . . . ,w

>
m̊]> = H̄ ξ̊, there exists a positive constant

ε such that ‖wk‖ = ‖ξ̊i − ξ̊j‖ ≥ ε, ∀k ∈ {1, . . . , m̊}. That is, the bearing information ˚̄gk = wk
‖wk‖

is well

defined ∀k ∈ {1, . . . , m̊}.

Now to prove the ’if’ part of the lemma we use the fact that there exists at least one bearing

vector ḡq, q ∈ {1, . . . , m̊} which is PE. This implies that there exist two constant T > 0, 0 < µq < 1

such that ∀t and for all fixed ξ̊ ∈ S leading to w = H̄ ξ̊, we have

1
T
w>

∫ t+T

t
Π(τ)dτw =

1
T

m̊∑
k=1

w>k

∫ t+T

t
πḡk(τ)dτwk

≥µq‖wq‖2.

Choose 0 < µ < µq
‖wq‖2

‖w‖2 , we can get

1
T
ξ̊
>
H̄>

∫ t+T

t
Π(τ)dτH̄ ξ̊ ≥ µξ̊>H̄>H̄ ξ̊

which implies that LB(ξ(t)) is PE.

To prove the ’only if’ part, we proceed hereafter by contradiction. Assume that none of

the bearing vector is PE which implies that for all 0 < µk < 1, ∀T > 0, ∃t and ∃w = H̄ ξ̊, such

that 1
T w
>
k

∫ t+T
t

πḡk(τ)dτwk < µk‖wk‖2, ∀k ∈ {1, . . . , m̊}. Since LB(ξ(t)) is PE, there exists T > 0 and

0 < µ < 1 such that, ∀t and ∀w = H̄ ξ̊, 1
T w
>
∫ t+T
t

Π(τ)dτw ≥ µ‖w‖2. Choose µk ≤
µ‖w‖2
m‖wk‖2

, one

concludes that, ∃t and ∃w = H̄ ξ̊

1
T w
>
∫ t+T
t

Π(τ)dτw = 1
T

∑m̊
k=1w

>
k

∫ t+T
t

πḡk(τ)dτwk < µ‖w‖2

which yields a contradiction.

The following Lemma is a generalisation of Theorem 4.1 of reference [TZS+19] for the case

of formations G(ξ(t)) ∈Rd that are BPE. It explores the relationship between a BPE formation

and the number of PE bearings inside the formation.

Lemma 5.3. Consider a formation G(ξ(t)) defined in R
d along with bearing measurements {ḡk}k∈{1...m̊}

associated to an arbitrary orientation of the graph. If the formation is BPE, then the number of PE

bearing vectors, m̄, satisfies the condition:

1. m̄ ≥ 1, when m̊ ≥ f (n,d),

2. m̄ ≥ (d − 1)j − (d − 1)f (n,d) + dn− d, when m̊ = f (n,d)− j (j ∈ {1, . . . , f (n,d)−n+ 1}),
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with

f (n,d) =


n, n ≤ d + 1

1 + x
n− 2
d − 1

y× d + mod(n− 2,d − 1)

+ sgn(mod(n− 2,d − 1)), n ≥ d + 1,

which is the minimal number of edges that guarantees rank(LB(ξ(t))) = dn−d−1 derived in [TVTA19].

Proof. The proof of item 1) is similar to the proof of the ’only if’ part in Lemma 5.2. It has been

omitted here for the sake of brevity. Now, in order to show that item 2) is valid, we have to

verify that if inequality (5.5) is satisfied, then m̄ ≥ (d − 1)j − (d − 1)f (n,d) + dn− d in the case of

m̊ = f (n,d)− j, (j ∈ {1, . . . , f (n,d)−n+ 1}). Inequality (5.5) implies that there exists 0 < µ < 1 and

T > 0, ∀t and ∀x ∈ Rdn such that H̄x , 0, we have 1
T x
>
∫ t+T
t

LB(ξ(τ))dτx ≥ µx>Lx or equivalently
1
T w
>
∫ t+T
t

Π(τ)dτw ≥ µ‖w‖2, with w = H̄x ∈Rdm̊.

We proceed by contradiction. Assume that m̄ ≤ (d − 1)j − (d − 1)f (n,d) + dn− d − 1. Since we

have m̊− m̄ non-PE bearings and for each non-PE bearing ḡk there is a λmin( 1
T

∫ t+T
t

πḡk(τ)dτ) < µ,

it is straightforward to verify that λdm̊−(m̊−m̄)+1( 1
T

∫ t+T
t

Π(τ)dτ) = λdn−d( 1
T

∫ t+T
t

Π(τ)dτ) < µ (λi(.)

represents the ith eigenvalue of a symmetric matrix under a non-increasing order).

Now, using the fact that rank(H̄) = dn − d, we can ensure that if x = (x>1 , . . . ,x
>
n ) has dn

independent entries (each xi ∈Rd), then there exists a w = H̄x with dn− d independent entries

such that 1
T w
>
∫ t+T
t

Π(τ)dτw < µ‖w‖2, which yields a contradiction.

Fig. 5.1 and 5.2 illustrate in the case of two- and three-dimensional space that when

m̊ ≤ f (n,d), in order to guarantee a BPE formation, the minimal number of PE bearing vectors

decreases as the edges number m̊ increase.

In order to construct a new BPE formation from the existing BPE formation, we propose

the following lemma that generalises the vertex addition method defined in the bearing-based

Henneberg construction, [Ere07], provided that the resulting formation is BPE.

Lemma 5.4. Given a BPE formation G(ξ(t)) ∈Rd , consider a new formation G′ (ξ
′
(t)) ∈Rd by adding

a new agent l to G(ξ(t)) such that the new vertex set, edge set and bearing Laplacian are V ′ = V ∪ {l},
E ′ (E ⊂ E ′ and |E ′ | =m′ ) and L

′

B(ξ
′
(t)) = H̄

′>diag
(
πḡk(t)

)
H̄
′
, k ∈ {1, . . . , m̊, . . .m′ }, respectively. Then

G′ (ξ
′
(t)) is also BPE if

∑m′
k=m̊+1πḡk is PE.

Proof. Since G(ξ(t)) is BPE, there exist 0 < µ < 1 and T > 0,∀t ≥ 0, tr
(

1
T

∫ t+T
t

LB(ξ(τ))dτ
)
≥

(dn − d)µ and rank(
∫ t+T
t

diag
(
πḡk(τ)

)
dτH̄) = dn − d. Due to the fact that the new formation is

obtained by adding a vertex l to V and (m′ − m̊) edge(s) (l, j) to E such that
∑m′
k=m̊+1πḡk is PE, it is
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straightforward to show that ∀t ≥ 0,

tr
(

1
T

∫ t+T

t
L
′

B(ξ
′
(τ))dτ

)
≥ tr

(
1
T

∫ t+T

t
LB(ξ(τ))dτ

)
+ tr

 1
T

∫ t+T

t

m′∑
k=m̊+1

πḡk(τ)dτ

 ≥ dnµ
and

rank(
∫ t+T
t

diag(π)ḡk(τ)dτH̄
′
) = rank(

∫ t+T
t

L
′

B(ξ
′
(τ))dτ) = dn,

which indicates that G′ (ξ
′
(t)) is also BPE.

5.4 Bearing-only formation control for single-integrator dynamics

In this section we propose a bearing-only formation control law for a multi-agent system with

single-integrator dynamics provided the desired formation is BPE.

Consider the formation G(ξ) defined in Section 5.2.2, where each agent i ∈ V is modeled as a

single integrator with the following dynamics:

ξ̇i = vi (5.8)

where ξi ∈ Rd is the position of the ith agent and vi ∈ Rd is its velocity input, as previously

defined, both expressed in a common fixed frame. Similarly, let ξ∗i (t) and v∗i (t) ∈ R
d denote

the desired position and velocity of the ith agent, respectively, and define the desired relative

position vectors ξ∗ij and bearings g∗ij , according to (5.1) and (5.2), respectively. Let ξ∗(t) =

[ξ∗>1 (t), ...,ξ∗>n (t)]> ∈ Rdn be the desired configuration. Let {ξ̄∗k(t)}k∈{1,...,m̊} and {ḡ∗k(t)}k∈{1,...,m̊} be

the set of all desired edge vectors and desired bearing vectors, respectively, under an arbitrary

orientation of the graph.

We assume that the n-agent system satisfies the following assumptions.

Assumption 5.1. The sensing topology of the group is described by a undirected graph G(V ,E) which

has a spanning tree. Each agent i ∈ V can measure the relative bearing vectors gij to its neighbors

j ∈ Ni .

Assumption 5.2. The desired velocities v∗i (t) and desired positions ξ∗i (t) (i ∈ V ) are chosen such that,

for all t ≥ 0, v∗i (t) are bounded, the resulting desired bearings g∗ij(t) are well-defined and the desired

formation G(ξ∗(t)) is BPE.

With all these ingredients, we can define the bearing-only formation control problem as

follows.

Problem 3. Consider the system dynamics (5.8) and the underlying formation G(ξ). Under As-

sumptions 5.1-5.2, design distributed control laws based on bearing measurements that guarantee

exponential stabilization of the actual formation to the desired one up to a translational vector.
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5.4.1 A bearing-only control law

For each agent i ∈ V , define the position error ξ̃i := ξi − ξ∗i along with the following kinematics:

˙̃ξi = vi − v∗i , (5.9)

and consider the following control law

vi = −kp
∑
j∈Ni

πgijξ
∗
ij + v∗i , (5.10)

where kp is a positive gain. Let ξ̃ := ξ − ξ∗ be the configuration error. Using the control law

(5.10) for i ∈ V , one gets:
˙̃ξ = −kpLB(ξ(t))ξ̃. (5.11)

5.4.2 Exponential stabilization of the formations

Theorem 5.2. Consider the error dynamics (5.9) along with the control law (5.10). If Assumptions

5.1-5.2 are satisfied, then, under any initial condition satisfying ‖ξ̃(0)‖ < 1
2 min(i,j)∈E ‖ξ∗i (t)− ξ

∗
j (t)‖,

the feedback control (5.10) is well defined for all t ≥ 0 and the following assertions hold

1. the relative centroid vector q0 := 1
nU
>ξ̃(t) ∈Rd is invariant, that is q0(t) = 1

nU
>ξ̃(0);

2. the equilibrium ξ̃(t)−Uq0 = 0 is exponentially stable (ES) .

Proof. We begin by assuming that the controller (5.10) is well defined and then (in proof of Item

2) we show that it is well defined for all the time.

Proof of Item 1): Since span{U } ⊂Null(LB(ξ(t))), it is straightforward to verify that:

d
dt
q0 =U> ˙̃ξ/n = −

kp
n
U>LB(ξ(t))ξ̃ ≡ 0,

and hence one concludes that the relative centroid q0 is constant (q0 = 1
nU
>ξ̃(0) = 1

n

∑
i∈V ξ̃i(0)).

Proof of Item 2): Define a new variable δ := ξ̃ −Uq0 and note that ξ̃ can be decomposed into

the following two orthogonal components

ξ̃ = (I − 1
n
UUT )ξ̃ +

1
n
UUT ξ̃ = δ+Uq0.

Since UT LB = 0 and LBU = 0, δ̇(t) = −LB(ξ(t))δ. Considering the storage function

L1 =
1
2
‖δ‖2,
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one can conclude that the time derivative of L1

L̇1 = −kpδ>LB(ξ(t))δ ≤ 0 (5.12)

is negative semi-definite and δ(t) is bounded and non-increasing for all t ≥ 0, due to the

fact that LB(ξ(t)) ≥ 0. Since δ(t) and Uq0 are orthogonal, it follows that ‖ξ̃(t)‖2 = ‖δ(t)‖2 +

‖U ( 1
nU
>ξ̃(0))‖2 ≤ ‖ξ̃(0)‖2 for all t ≥ 0.

In order to show that gij(t),∀(i, j) ∈ E are well defined ∀t ≥ 0 (and hence the feedback control

(5.10) is well defined) under the proposed initial condition we use the triangle inequality to

show that ∀t ≥ 0, (i, j) ∈ E

‖ξi(t)− ξj(t)‖ ≥ ‖ξ∗i (t)− ξ
∗
j (t)‖ − ‖ξi(t)− ξ

∗
i (t)‖ − ‖ξj(t)− ξ

∗
j (t)‖

≥ ‖ξ∗i (t)− ξ
∗
j (t)‖ − 2‖ξ̃(t)‖

≥ ‖ξ∗i (t)− ξ
∗
j (t)‖ − 2‖ξ̃(0)‖

which remains positive as long as

‖ξ̃(0)‖ < 1
2

min
(i,j)∈E

‖ξ∗i (t)− ξ
∗
j (t)‖.

As for the proof of the ES of the equilibrium point δ = 0 we recall that (5.12) can be rewritten

as

L̇1 = −kpξ̃
>
LB(ξ(t))ξ̃ = −kp

m̊∑
k=1

ξ̄∗>k πḡk ξ̄
∗
k

= −kp
m̊∑
k=1

‖ξ̄∗k‖
2

‖ξ̄k‖2
(ξ̄k − ξ̄∗k)

>πḡ∗k (ξ̄k − ξ̄
∗
k)

and note that ‖ξ̄k(t)‖ ≤ ‖ξ̄∗k(t)‖+ 2‖ξ̃(0)‖ to obtain

L̇1 ≤ −γδ>LB(ξ∗(t))δ,

with γ = kp
(
1− 2‖ξ̃(0)‖

2‖ξ̃(0)‖+mink=1,...,m̊ ‖ξ̄∗k(t)‖

)2
> 0. Using the fact that U>δ(t) ≡ 0 and since the desired

formation is BPE, one can ensure that

1
T
δ(t)>

∫ t+T

t
LB(ξ∗(τ))dτδ(t) ≥ µδ(t)>H̄>H̄δ(t)

≥ µλdn−d‖δ(t)‖2,

recall that λdn−d is the smallest positive eigenvalue of H̄>H̄ . Hence, condition (1) of Theorem

B.1 in the appendix is satisfied. Since LB(ξ(t)) is bounded and condition (2) of Theorem B.1 is

also satisfied, one concludes that δ = 0 is exponentially stable.
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Remark 5.3. Note that although the closed-loop dynamics (5.11) is similar to the observer error

dynamics (5.7), only local exponential stability can be ensured here while global exponential

stability of the origin of the observer error is guaranteed. For both cases the bearing Laplacian

is the same but the persistence of excitation conditions are not. For the observer design it is

assumed that the actual formation is BPE while for controller design the BPE is assumed for

the desired formation. The latter condition does not guarantee that the actual bearings, the

bearing Laplacian, and hence the control law are well-defined for all time, since collisions may

occur during the time evolution of the formation. This in turn implies that the actual state of

the formation will always admit an exception set of critical points that cannot be part of the

basin of attraction of the desired equilibrium. Theorem 5.2 provides a conservative estimate

for the basin of attraction, corroborating the idea that if the initial conditions are sufficiently

close to a desired formation that is well-defined for all time then no collisions will occur and

exponential convergence is guaranteed.

5.5 Bearing formation control for double-integrator dynamics in R
d

In this section we will extend the bearing formation control law for a multi-agent system with

double-integrator dynamics in R
d . Consider the formation G(ξ) defined in Section 5.2.2, where

each agent i ∈ V is modeled as a double integrator with the following dynamics:ξ̇i = vi

v̇i = ui ,
(5.13)

and acceleration input ui ∈Rd , all expressed in a common inertial frame. Let u∗i (t) ∈R
d denote

the desired acceleration of the ith agent and v∗(t) = [v∗>1 (t), ...,v∗>n (t)]> ∈ Rdn stacked velocity

vector of the desired configuration ξ∗(t).

We assume that the n-agent system satisfies the following assumptions.

Assumption 5.3. The sensing topology of the group is described by an undirected graph G(V ,E) which

has a spanning tree. Each agent i ∈ V can measure its velocity vi and the relative bearing vectors gij to

its neighbors j ∈ Ni .

Assumption 5.4. The desired acceleration u∗i (t), desired velocity v∗i (t), and desired position ξ∗i (t) (i ∈
V ) are chosen such that u∗i (t) and v∗i (t) are bounded, the resulting desired bearings g∗ij(t) are well-

defined and the desired formation G(ξ∗(t)) is BPE, for all t ≥ 0.

With all these ingredients, we can define the bearing formation control problem as follows.

Problem 4. Consider the system (5.13) and the underlying formation G(ξ). Under Assumptions 5.3

- 5.4, design distributed control laws based on bearing and velocity measurements that guarantee

exponential stabilization of the actual formation to the desired one up to a translational vector.
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5.5.1 A bearing control law

For each agents i ∈ V , define the velocity error ṽi := vi − v∗i . Then the error dynamics of error

states (ξ̃i , ṽi) can be represented as: 
˙̃ξi = ṽi

˙̃vi = ui −u∗i .
(5.14)

The following control law is proposed for each agent i ∈ V

ui = −kp
∑
j∈Ni

πgijξ
∗
ij − kd ṽi +u∗i (5.15)

where kp and kd are positive constant gains. Defining the new variable ṽ := v − v∗ and under the

control law (5.15), the dynamics of (ξ̃, ṽ) can be presented as
˙̃ξ = ṽ

˙̃v = −kpLB(ξ(t))ξ̃ − kd ṽ
(5.16)

5.5.2 Exponential stabilization of the formations

Theorem 5.3. Consider the error dynamics (5.14) along with the control law (5.15). If the Assump-

tions 5.3-5.4 are satisfied and the positive gains kd and kp are chosen such that kd >
kp
4 ‖H̄‖

2 + 1, then

for any initial condition such that

‖[ξ̃(0)>ṽ(0)>]‖ < 1
2b

min
(i,j)∈E

‖ξ∗i (t)− ξ
∗
j (t)‖, (5.17)

with b = max{
√
λmax(P )
λmin(P ) ,

√
2} and P = 1

2

[
kdIdn Idn
Idn Idn

]
> 0, the feedback control (5.15) is well defined

and the following two assertions hold ∀t ≥ 0:

1. the relative centroid and its velocity (q0(t), q̇0(t)) = (U
>ξ̃(t)
n , U

>ṽ(t)
n ) ∈ R2d converges exponen-

tially to (q̊0 = q0(0) + 1
kd
q̇0(0),0),

2. the equilibrium (ξ̃ −Uq̊0, ṽ) = (0,0) is ES.

Proof. Analogously to the proof of Theorem 5.2, we assume first that the controller (5.15) is

well defined and then we show that is it so in the proof of Item 2.

Proof of Item 1): From (5.16) and due to the fact that span{U } ⊂Null(LB(ξ(t))), one has:

q̈0(t) = −kd q̇0(t)

which implies that q̇0(t) = q̇0(0)exp(−kdt) and q0(t) = 1
kd

(1− exp(−kdt))q̇0(0) + q0(0) and hence

(q0(t), q̇0(t)) converges exponentially to (q̊0,0).
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Proof of Item 2): Similarly to the proof of Theorem B.1, we define x̃ := [(ξ̃−Uq0)>, (ṽ−Uq̇0)>]>

and note that [(Uq0)> (Uq̇0)>]x̃ = 0, meaning that [ξ̃(t)>, ṽ(t)>] = x̃(t)> + [(Uq0(t))> (Uq̇0(t))>]

and the two components are orthogonal. We will first show x̃ is bounded. Using (5.16), it is

straightforward to verify that:
˙̃x(t) = −A(t)x̃(t) (5.18)

with A =
[

0dn −Idn
kpLB kdIdn

]
. Considering the following positive definite storage function

L2 = x̃>P x̃,

one can verify that

L̇2 = −x̃>Q(t)x̃, (5.19)

with Q(t) =

kpLB(ξ(t))
kp
2 LB(ξ(t))

kp
2 LB(ξ(t)) (kd − 1)Idn

. The matrix Q can be decomposed as Q = S>MQS with S =[
ΠH̄ 0dm̊×dn
0dn Idn

]
and MQ =

kpIdm̊ kp
2 H̄

kp
2 H̄
> (kd − 1)Idn

, which shows that if kd >
kp
4 ‖H̄‖

2 then Q ≥ 0 and

L̇2 is negative definite. Therefore, one concludes that x̃(t) is bounded which in turn implies that

ξ̃ is bounded. Since x̃ and [(Uq0)> (Uq̇0)>]> are orthogonal, q0(t) = 1
kd

(1−exp(−kdt))q̇0(0) +q0(0)

and kd > 1, ξ̃(t) can be bounded by

‖ξ̃(t)‖2 = ‖ξ̃(t)−Uq0(t)‖2 + ‖Uq0(t)‖2

≤ ‖x̃(t)‖+ 2(
1

k2
d

‖Uq0(0)‖2 + ‖Uq̇0(0)‖2)

≤ λmax(P )
λmin(P )

‖x̃(0)‖2 + 2(‖Uq0(0)‖2 + ‖Uq̇0(0)‖2)

≤ b2‖[ξ̃(0)>ṽ(0)>]‖2

recalling that b = max{
√
λmax(P )
λmin(P ) ,

√
2}.

Analogously to the proof of Theorem 5.2, item 2, we use the triangle inequality to show that

∀t ≥ 0, (i, j) ∈ E
‖ξi(t)− ξj(t)‖ ≥ ‖ξ∗i (t)− ξ

∗
j (t)‖ − 2‖ξ̃(t)‖

≥ ‖ξ∗i (t)− ξ
∗
j (t)‖ − 2b‖[ξ̃(0)>ṽ(0)>]‖

which remains positive as long as ‖[ξ̃(0)>ṽ(0)>]‖ < 1
2b min(i,j)∈E ‖ξ∗i (t)−ξ

∗
j (t)‖. Thus gij(t),∀(i, j) ∈

E are well defined ∀t ≥ 0 (and hence the feedback control (5.15) is well defined) as long as the

initial conditions satisfy (5.17). Similarly, one can define an upper bound for ‖ξi(t)− ξj(t)‖ and

conclude that ‖ξ̄k(t)‖ is lower and upper bounded according to 0 < ‖ξ̄∗k(t)‖ − 2b‖[ξ̃(0)>ṽ(0)>]‖ ≤
‖ξ̄k(t)‖ ≤ ‖ξ̄∗k(t)‖+ 2b‖[ξ̃(0)>ṽ(0)>]‖.

Now, to prove that (ξ̃ −Uq̊0, ṽ(t)) = (0,0) is also ES, it suffices to prove that x̃ = 0 is ES. Since

Q = STMQS, kd >
kp
4 ‖H̄‖

2 + 1, and ξ̄∗>k πḡk ξ̄
∗
k = ‖ξ̄

∗
k‖

2

‖ξ̄k‖2
ξ̄>k πḡ∗k ξ̄k , one has

L̇2 = −x̃>S>MQSx̃ ≤ −λM x̃>S>Sx̃ ≤ −γ x̃>Σx̃ ≤ 0
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with λM =
kp(kd−1)−

k2
p
4 ‖H̄‖

2

kd−1+kp
> 0, Σ(t) =

[
LB(ξ∗(t)) 0dn

0dn Idn

]
and γ = λM min

k={1,..,m̊}
( ‖ξ̄

∗
k(t)‖
‖ξ̄k(t)‖

)2 > 0. Since L2 is

nonincreasing and ‖ξ̄k(t)‖ is upper bounded, one guarantees that:

γ ≥ λM

1− 2b‖[ξ̃(0)T ṽ(0)T ]‖
2b‖[ξ̃(0)T ṽ(0)T ]‖+ min

k={1,..,m̊}
‖ξ̄∗k(t)‖

2

.

Using the BPE condition of the desired formation and the fact that span{U } = Null(LB), one

concludes that condition (1) in Theorem B.1 is satisfied. By a direct application of Lemma B.2,

condition (2) in Theorem B.1 is also satisfied, and therefore x̃ = 0 is exponentially stable. This in

turn implies that (ξ̃ −Uq̊0, ṽ) = (0,0) is ES.

5.6 Simulation Results

In this section, simulation results are provided to validate the controllers for multi-agent system

under both single- and double- integrator dynamics.

For the single integrator dynamics system, we consider a 8-agent system in 3-D space. The

desired formation is chosen such that ξ∗i (t) = r(t)R(t)>ξ∗i (0)+[0 t/5 0]>, with r(t) = 0.5sin(π6 t)+1.5,

R(t) =


1 0 0
0 cos(π3 t) −sin(π3 t)
0 sin(π3 t) cos(π3 t)

, ξ∗1(0) = [
√

2 0 −1]>,ξ∗2(0) = [0
√

2 −1]>,ξ∗3(0) = [−
√

2 0 −1]>,ξ∗4(0) =

[0 −
√

2 − 1]>,ξ∗5(0) = [
√

2 0 1]>,ξ∗6(0) = [0
√

2 1]>,ξ∗7(0) = [−
√

2 0 1]>, and ξ∗8(0) = [0 −
√

2 1]>,

which form a cube in R
3 with time-varying scale that rotates about the x-axis and translates

along y-axis as show in Fig. 5.3. Note that the desired formation is not bearing rigid but relaxed

bearing rigid. The initial conditions are chosen such that q0 = 0 (the initial centroid coincides

with the initial centroid of the desired formation) : ξ1(0) = [1 0 0]>,ξ2(0) = [−1 2.5 1]>,ξ3(0) =

[−2 − 1 − 1]>,ξ4(0) = [−0.5 0.5 1]>,ξ5(0) = [1.5 0 1]>,ξ6(0) = [−1 0 1]>,ξ7(0) = [0 − 1 − 1]>, and

ξ8(0) = [2 0 − 2]>. The chosen gain is kp = 1. Fig. 5.3 shows the evolution of the formation in

three dimensional space and Fig. 5.4 depicts the evolution of the error variable ξ̃(t). As we

can see from the figures, the formation converges to the desired one after t = 20s and starts to

move along the desired trajectories. We can conclude that, under the proposed bearing-only

control laws, the formation achieves the desired geometric pattern in terms of shape and scale

without the need for bearing rigidity. What’s more, since the desired scale can be time-varying,

if one of the agents is assigned to be the leader, the formation is able to achieve the task of

collision avoidance such as passing through a narrow passage as depicted in [ZZ15b], in which

the position information is still needed in the controller design and at least two leaders are

required.
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Figure 5.3: The figure shows three snapshots of the 3-D evolution of a cubic formation: the initial
conditions (void circles) when t = 0; t = 24.5s, when agents have converged to the desired formation;
t = 50s, when agents move along the desired trajectories. The blue line represents the trajectory of the
dark blue agent and the black lines represent the connections between agents.
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Figure 5.4: Time evolution of the norm of the error (‖ξ̃‖).

For the multi-agent system under double-integrator dynamics, we consider a four-agent

system in both 2-D and 3-D space.

In the 2-D case, the desired formation is chosen to be relaxed bearing rigid such that

ξ∗i (t) = R(t)>ξ∗i (0), with R(t) =
[
cos(π3 t) −sin(π3 t)
sin(π3 t) cos(π3 t)

]
, ξ∗1(0) = [0.5 0.5]>,ξ∗2(0) = [0.5 − 0.5]>,ξ∗3(0) =

[−0.5 −0.5]> and ξ∗4(0) = [−0.5 0.5]>, which form a squared shape in R
2 that rotates about its

center. The graph topology is such that there is only one spanning tree. The initial conditions
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are chosen such that ξ1(0) = [−1 1.5]>, ξ2(0) = [−1 2]>, ξ3(0) = [−2 −1]>,ξ4(0) = [1 −1]>,v1(0) =

[0 0]>, v2(0) = [0 1]>, v3(0) = [1 0]> and v4(0) = [0 −1]>. The chosen gains are kp = 8 and kd = 11.

Fig. 5.5 depicts 2-D evolution of the formation and we can see that the four agents converge to

the desired formation. Fig. 5.6 shows the time evolution and the convergence of ‖ξ̃(t)−Uq0(t)‖
and ‖ṽ(t)‖ to 0. We can conclude that the convergence of the formation to the desired one can be

guarantee even if there is only one spanning tree in the graph topology.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

1.5

2

Figure 5.5: 2-D evolution of a square formation. The void and solid circles represents the initial and final
positions of the agents, respectively. The green line is the trajectory of one of the agents and the black
lines denote the connections between and the agents.

In the 3-D case, we consider a relaxed bearing rigid desired formation with the graph

topology that has only one spanning tree, in which the four agents form a pyramid shape in

R
3 that rotates about one of the agents (Fig. 5.7). The desired positions of the agents are such

that ξ∗i (t) = R(t)>ξ∗i (0), with R(t) =


cos(π4 t) −sin(π4 t) 0
sin(π4 t) cos(π4 t) 0

0 0 1

, ξ∗1(0) = [0 0 0]>,ξ∗2(0) = [1 0 0]>,ξ∗3(0) =

[0.5 −
√

3/2 0]> and ξ∗4(0) = [
√

3/2 − 0.5 1]>. The initial conditions are chosen such that ξ1(0) =

[−2 − 1 − 1]>, ξ2(0) = [−1 2 1]>, ξ3(0) = [−2 − 1 − 1]>, ξ4(0) = [−0.5 − 0.5 1]>,v1(0) = [0 0 − 1]>,

v2(0) = [0 1 0]>, v3(0) = [1 0 0]> and v4(0) = [1 0 − 1]>. The chosen gains are kp = 7 and kd = 10.

Fig. 5.7 shows the time evolution of the 3-D formation converging to the desired one and Fig. 5.8

shows the time evolution of error states ξ̃(t)−Uq0(t) and ṽ(t), respectively. It validates the fact
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Figure 5.6: Time evolution of the norm of the error (‖ξ̃(t)−Uq0(t)‖) and relative velocity error (‖ṽ‖).

that the proposed control laws stabilize the formation without requiring bearing rigidity.
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Figure 5.7: 3-D evolution of a pyramid formation. The void and solid circles represents the initial and
final positions of the agents, respectively. The colorful line are the trajectories of the agents and the black
lines denote the connections between and the agents.
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Figure 5.8: Time evolution of the norm of the error (‖ξ̃(t)−Uq0(t)‖) and relative velocity error (‖ṽ‖).

5.7 Conclusion

This chapter presents new results on formation control of both kinematic and dynamic systems

based on time-varying bearing measurements. The key contribution is to show that if the desired

formation is bearing persistently exciting, relaxed conditions on the interaction topology (which

do not require bearing rigidity) can be used to derive distributed control laws that guarantee

exponential stabilization of the desired formation only up to a translation vector. Simulations

results are provided to illustrate the performance of the proposed control method.
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6
Conclusions and Future Directions

This dissertation addressed problems of vision-based control for Unmanned aerial vehicles.

Both single and multiple vehicles configurations are considered, targeting applications in urban

or congested environments.

For the single vehicle case, different types of vehicles (fixed-wing and VTOL UAVs) are taken

into consideration. Spherical image centroid and optical flow are explored to develop novel

IBVS control methods that, despite being simple, overcome the disadvantages of classical IBVS

techniques and eliminate the need to measure or estimate image depth and state variables.

For fixed-wing UAV, a novel 2D image-based controller is proposed, which automatically

steers the vehicle during the first three stages of landing: alignment, glide-slope, and flare.

Geometric image features of the runway (used as a relative position cue), and optical flow

obtained from its textured ground (used as a velocity cue), are exploited to derive a feedback

controller for the automatic maneuver. Although the proposed solution exploits directly visual

features in the controller, it differs from the classical IBVS schemes by supporting the derivation

of the control law on the system dynamics instead of on the image features dynamics. The

proposed controller ensures the horizontal position alignment and a smooth touchdown of

the aircraft without estimating the height above the runway. In addition, the 2D image-based

control structure adopted also enforces wind disturbance rejection, without the need for an

explicit wind estimator. Simulation results are presented to illustrate the performance of the

controller.

For VTOL UAV, we solve the problem of controlling the aircraft to go through a window and

land on a planar target, using a novel Image-Based Visual Servo (IBVS) controller that relies on

optical flow measurements and spherical centroid of both window and landing pad. Under the

proposed control laws, the vehicle is able to go through the center of the window with non-zero

velocity along the direction orthogonal to the window, keeping at all times a safety distance
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with respect to the window edges, and then, to execute a smooth touchdown onto the landing

pad, keeping at all time a positive height above the target plane. To achieve the proposed

objective, no direct measurements nor explicit estimate of position or velocity are required.

Experimental results are presented where the controllers run on an on-board computer together

with the image processing algorithm for the targets detection and the translational optical flow

computation.

For multiple vehicles, vision-based formation control are considered. More specifically

bearing formation control methods are proposed for formations under both directed and undi-

rected graph topologies by exploring the persistently exciting bearing references. We propose a

general concept, relaxed bearing rigidity, which guarantees the uniqueness of a fixed geometric

pattern without imposing bearing rigid conditions on the graph topology. By defining a desired

formation that is bearing PE, the proposed distributed control laws guarantee exponential

stabilization of the desired formation in terms of shape and scale without the measurement

or estimation of any distance between two agents. The key contribution is that the (local)

exponential stabilization of the actual formation to the desired one is guaranteed as long as the

desired formation satisfies PE conditions that are adequately defined for the specific bearings.

The approach generalizes stability results provided in prior work which are based on bearing

rigidity and constraint consistence of the graph topology to ensure the exponential stabilization

of the actual formation to a desired geometric pattern up to a scale factor. Simulations results

are provided to illustrate the performance of the proposed control method.

6.1 Future directions

In theoretical terms, bearing formation control under PE should be extended to deal with

more general directed graphs. In addition, taking advantage once again of the properties of

PE, the generalization of the proposed bearing controllers from fixed to time-varying graph

topologies is also envisioned as promising improvement. Moreover, we believe that the bearing

controllers can also be applied to the problem of multi-agent attitude synchronization. Another

relevant venue of research is to explore optical flow in order to incorporate collision avoidance

capabilities in the bearing control laws and thereby ensure collision avoidance between different

agents in the initial formation transient and guarantee stability in a large domain. In a more

challenging scenario, the collision avoidance capabilities provided by the optical flow could

also be explored to drive the formation to avoid obstacles presented in the environment.

From the practical point of view, the next natural step is the implementation and experi-

mental demonstration of the proposed bearing formation control laws on UAVs equipped with

cameras and IMUs. To this end, several practical issues need to be considered including the

limited field of view of the cameras, non-persistent image feature occlusions, the computational
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burden and delays of image processing algorithms, and vehicle instrumentation and payload

restrictions, to name a few.
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A
Image features and

translational optical flow

In this section, we introduce the image features and the translational optical flow, which are

explored as position and velocity cues, respectively, in Chapter 2 and 3. Consider a vehicle

equipped with a camera and an IMU, with position vector ξ ∈ R3 and velocity vector v ∈ R3

both expressed in {I}, such that ξ̇ = v. Let R ∈ SO(3) denote the rotation matrix from {B} to {I}
and Ṙ = R[Ω]×, where Ω ∈ R3 is the angular velocity of the vehicle expressed in {B}. Now we

will introduce the following assumptions about the environment and the setup.

Assumption A.1. The camera is attached to the center of mass of the vehicle so that the camera

reference frame coincides with the body-fixed frame {B}.

Assumption A.2. The angular velocity Ω is measured and the orientation matrix R of {B} with

respect to {I} is obtained by external observer-based IMU measurements. This allows to represent all

image information and the system dynamics in the inertial frame.

Assumption A.3. There is a flat and textured surface, which defines the target plane. The direction

η ∈ S2 expressed in {I} is the vector normal to the target plane and is assumed to be known.

Assumption A.4. There are n (n ≥ 2) visible target points lying in the target plane with position

vector si ∈R3, i ∈ {1, . . . ,n} expressed in {I} such that the center 1
n

∑n
i=1 si = 0 coincides with origin of

the inertial frame {I} and η>si = 0.

Assumption A.5. There are at least two visible lines lying on the target plane which are parallel and

along the unknown direction u ∈ S2 expressed in {I}.
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{𝐼}
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𝑑𝜂𝜉
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Figure A.1: Geometry of feature of point

A.1 Spherical image points

The 3D coordinates of the point i with respect to the vehicle expressed in {I} is denoted as

Pi = si − ξ. (A.1)

The spherical image point of Pi is denoted as

pi =
Pi
||Pi ||

(A.2)

which can be obtained using the sequence of 2D pixel locations (Xi ,Yi) from the camera, such

that

pi = R
p̄i
||p̄i ||

, p̄i = Ā−1


Xi
Yi
1


with Ā−1 the matrix of the camera’s intrinsic parameters that transforms image pixel to perspec-

tive coordinates p̄i . The height of the vehicle above the target plane (see Fig. A.1) is denoted by

dη := η>Pi = −η>ξ.

A.2 Visual centroid vectors

In this subsection, we will define two different kinds of visual centroid vector using spherical

image points, which provide relative position cue of the vehicle with respect to the target.

The first visual centroid is simply the spherical image centroid:

q = −1
n

n∑
i=1

pi , (A.3)
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which is the simplest image feature that encodes all information about the position of the vehicle

with respect to the target. Its calculation is highly robust to pixel noise, since it considers several

image points. The following lemmas will clarify the relationship between the image centroid q

and the position vector of the vehicle ξ.

Lemma A.1. For dη > 0, image feature q is a bijective function of ξ.

Proof of Lemma A.1. From (A.1) and (A.3), it is clear that q is a function of ξ. We compute the

partial derivative of q with respect to ξ and denote it by Q

QB
∂q(ξ)
∂ξ

=
1
n

n∑
i=1

1
‖Pi‖

πpi , (A.4)

to conclude Q is positive definite provided that at least two target points pi and pj , 1 ≤ i , j ≤ n
on the target plane are non-collinear, and the distance to the ground dη is positive. Then, for

any pair of desired position and desired image centroid (ξ∗,q∗) such that η>ξ∗ < 0 and using the

generalization of the mean value theorem for vector valued functions [McL65], q can be written

as

q = q∗ + Q̄(ξ − ξ∗), (A.5)

where Q̄ =
∑3
k=1αkQ(ck), for αk ≥ 0,

∑3
k=1αk = 1, and ck belongs to the line segment between

the desired position ξ∗ and ξ. Since Q̄ > 0, the inverse function of A.5 can be readily obtained,

showing that q is a bijective function of ξ as long as dη > 0.

Lemma A.2. The function

L1(ξ̃) =
∫ ξ

ξ∗
(q(x)− q∗)>dx =

1
n

n∑
i=1

(‖Pi‖ − ‖P ∗i ‖)

is a positive definite function of ξ̃ := ξ − ξ∗.

Proof. We compute the first and second order partial derivatives of L1 with respect to ξ̃, obtain-

ing

∂L1

∂ξ̃
= (q − q∗)>

∂2L1

∂ξ̃2
=Q,

where Q is given in (A.4). Since Q is positive definite, provided that the distance to the ground

is positive, L1 is a convex function of ξ̃, with a global minimum at q − q∗ = 0 or equivalently at

ξ̃ = 0. To obtain an explicit expression for L1 in terms of ξ̃, we apply the mean value theorem to

obtain

L1(ξ̃) = (q(z)− q∗)>ξ̃,
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where z belongs to the line segment between ξ and ξ∗. As in (A.5) and applying once again the

mean value theorem, q(z) can be written as

q(z) = q∗ + Q̄(z − ξ∗),

recalling that

Q̄ =
3∑
k=1

αkQ(ck)

with αk ≥ 0,
∑3
k=1αk = 1, and ck belongs to the line segment between ξ∗ and z, for k ∈ {1,2,3}.

Since z = (1− a)ξ + aξ∗, 0 < a < 1, we obtain

L1(ξ̃) = (1− a)ξ̃>Q̄ξ̃.

The alternative visual centroid vector is defined as

qη = −1
n

n∑
i

pi
η>pi

(A.6)

substituting (A.2) and (A.1) into (A.6), we have

qη =
ξ
dη
.

We can conclude that qη can be represented directly as a position vector, scaled by the inverse of

the distance to the target plane, which provides a simple structure for controller design and

stability analysis.

Remark A.1. For both centroid vectors q and qη , it is not necessary to match observed image

points with desired features as required in classical image based visual servo control. Besides,

they are easily computed in real-time in the camera frame and then derotated, which ensures

that they are invariant to any orientation motion [HM02].

A.3 Image of lines

Each line (represented in Figure A.2 by a dashed line) together with the origin of the cam-

era/body frame {B} defines a plane (the dark gray triangles) and the image of the line also

belongs to that plane. The unit vector hi ∈ S2 normal to this plane can be directly obtained

from the image of the line[MH05][LBHM+14]. The image of the line can be identified using a

convenient line detection technique, such as the Hough transform. In addition, if at least two

lines are observed, then the direction u can be readily obtained from

u =
h2 × h1

‖h2 × h1‖
.
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{𝐵}

𝑢

Figure A.2: Geometry of image of lines

Remark A.2. The pair (Hi ,u) forms the so-called normalized Plücker coordinates, where the

vector Hi is given by Hi = P̊i ×u and P̊i is any vector going from the origin of {B} to the line i. As

opposed to (Hi ,u), which uniquely represents a straight line with respect to a reference frame

(in this case {B}), the pair (hi ,u) forms the binormalized Plücker coordinates that can represent

any line parallel to u and belonging to the plane normal to hi [MH05]. Note that Hi and hi are

collinear and hi is simply given by hi = Hi
‖Hi‖

. Although with just one pair (hi ,u), the position of

the camera is not uniquely defined. If we combine visual information from the two lines (this

procedure can be extended to accommodate for more than two lines), then the projection of the

camera position in the plane orthogonal to u becomes uniquely defined.

A.4 Image kinematics and translational optical Flow

The kinematics of any observed points on the target plane (including the target points) can be

written as:

Ṗ = v

where P expressed in {I} denotes any point on the textured target plane. So the kinematics of

the corresponding image point p = P
‖P ‖ , which defines optical-flow equations on the spherical

surface, can be written as

ṗ = −cosθηπp
v
dη
,

where cosθη = η>p =
dη
‖P ‖ .

109



Chapter A: Image Features and Translational Optical Flow

The visual measurement including translational velocity cue is the translational optical flow

W (t) =
v(t)
dη(t)

,

which can be obtained by integrating ṗ over a solid angle S2 of the sphere around the normal

direction η to the target plane. It can be shown that the average of the optical flow [HHMR12]:

W (t) = −(RtΛ
−1R>t )

∫ ∫
S2
ṗdp,

where the parameter θ0 and the constant diagonal matrix Λ depend on the geometry of the

solid angle S2 and Rt represents the orientation matrix of the target plane with respect to the

inertial frame. Since {I} is chosen coincident with the target frame one has Rt = I3.

In practice, the optical flow is first measured in the camera frame from the 2-D optical flow

obtained from a sequence of images using the Lucas-Kanade algorithm and then derotated (see

[HHMR12] for more detail).
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B
Technical Lemmas and Theorem

Lemma B.1. Consider a formation G(p(t)) defined in R
d , If ∀t, rank(LB(p(t))) = dn − d − 1, then

Null(LB(p(t))) = span{U, p(t)}.

Proof. The proof of the statement Null(LB(p(t))) = span{U, p(t)} is same as stated in [ZZ16,

Theorem 4] since [ZZ16, Theorem 4] is still valid for time-varying cases.

Lemma B.2. Let yi ∈ S2, i = 1, . . . ,m and define the matrix-valued functions

A =

 0 −I

c4

m∑
i=1
πyi c5I

 and Q =


c3

m∑
i=1
πyi c2

m∑
i=1
πyi

c2

m∑
i=1
πyi mc1I


where c1, c2, c3, c4 and c5 are positive constants, such that c3c5 > c

2
4. There exists c > 0 such that

cQ −A>A ≥ 0.
Proof. DefineHi =

[
πyi 0
0 I

]
, H =

m∑
i=1
Hi =


m∑
i=1
πyi 0

0 mI

 , lQ = λmin(
[
c3 c2
c2 c1

]
),and lA = λmax(

[
c2

4 c5c4
c5c4 c2

5 + 1

]
). Since

Q =
m∑
i=1
Hi

[
c3 c2
c2 c1

]
Hi ≥ lQ

m∑
i=1
H2
i = lQ

m∑
i=1
Hi = lQH and

A>A =H
[
c2

4 c5c4
c5c4 c2

5 + 1

]
H ≤ lAH2, we can conclude that cQ −A>A ≥ 0 if clQ − lAλmax(H) ≥ 0, which

holds if c ≥ lA
lQ
m.

Lemma B.3. Consider the matrix A andQ defined in equation (5.18) and equation (5.19) respectively.

Assume kd >
kp
4 ‖H̄‖

2 + 1. There exists c > 0 such that cQ −A>A ≥ 0.

Proof. Define S =
[
diag

(
πgk

)
H̄ 0dm×dn

0dn Idn

]
, ΛQ =

[
Idm

1
2H̄

1
2H̄
> (kd − 1)Idn

]
and

ΛA =
[
H̄H̄> kdH̄
kdH̄

> (Idn − UU
>

n )2 + k2
dIdnd

]
, then Q = S>ΛQS and A>A = S>ΛAS. We can conclude

that cQ −A>A ≥ 0, if cΛQ −ΛA ≥ 0 which holds if c is chosen such that (kpkd − kp −
k2
p

4 ‖H̄‖
2)c2 −

(kpk
2
d + kp − k2

p‖H̄‖2)c+ k2
p‖H̄‖2 ≥ 0 and c ≥max{kp‖H̄‖2,

k2
d+1
kd−1 }.
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Chapter B: Technical Lemmas and Theorem

Theorem B.1. Consider the following system

ẋ(t) = f (x(t), t), x ∈Rn (B.1)

with f (x(t), t) a piecewise continuous and locally Lipschitz function such that f (0, t) = 0. Assume

there exists a function Lx(t) = L(t,x(t)) ∈ R+, such that λ1‖x(t)‖2 ≤ Lx(t) ≤ λ2‖x(t)‖2 and L̇x(t) ≤
−γx(t)>Σ(t)x(t), where Σ(t) ∈Rn×n is an upper bounded positive semi-definite function (‖Σ(t)‖ ≤ λΣ),

with λ1, λ2, λΣ positive constants and γ(x(0)) a positive function of the initial state x(0). If

1) ∃T > 0, ∃µ > 0 such that ∀t > 0, 1
T x(t)>

∫ t+T
t

Σ(τ)dτx(t) ≥ µ‖x(t)‖2 and,

2) L̇x(t) ≤ −1
c ‖f (x, t)‖2 ≤ 0, c > 0,

then the origin of (B.1) is exponentially stable (ES), and verifies: x(t) ≤
√

λ2
λ1(1−σ )x(0)exp(− σ

2T t) with

σ = 1
1+ρ

1
1+ρcT 2γλΣ

and ρ = λ2
µT γ .

Proof. The proof follows the arguments used in [LP02, Lemma 5]. Taking integral of L̇x(t) ≤
−γx(t)>Σ(t)x(t), we get

Lx(t + T )−Lx(t) ≤ −γ
∫ t+T
t
‖Σ

1
2 (τ)x(τ)‖2dτ (B.2)

where, according to (B.1), x(τ) can be rewritten as

x(τ) = x(t) +
∫ τ
t
f (x(s), s)ds. (B.3)

To obtain a bound for the integral term in (B.2), we substitute (B.3) in ‖Σ
1
2 (τ)x(τ)‖2 and use

‖a+ b‖2 ≥ [ρ/(1 + ρ)]‖a‖2 − ρ‖b‖2 and Schwartz inequality to obtain

‖Σ
1
2 (τ)x(τ)‖2 ≥ ρ

1+ρ‖Σ
1
2 (τ)x(t)‖2 − ρλΣT

∫ τ
t
‖f (x(s), s)‖2ds. (B.4)

Substituting (B.4) into (B.2), we obtain

Lx(t + T )−Lx(t) ≤ −
γρ

1 + ρ

∫ t+T

t
‖Σ

1
2 (τ)x(t)‖2dτ

+ ργλΣT
∫ t+T

t

∫ τ

t
‖f (x(s), s)‖2dsdτ.

Using the condition (1) and (2), we have

Lx(t + T )−Lx(t) ≤ −
µT γρ

1 + ρ
‖x(t)‖2 − cργλΣT

∫ t+T

t

∫ τ

t
L̇(s)dsdτ. (B.5)

Changing the order of integration in equation (B.5), one can get

−
∫ t+T

t

∫ τ

t
L̇x(s)dsdτ ≤ −T

∫ t+T

t
L̇x(s)ds = T (Lx(t)−Lx(t + T )) (B.6)

Substituting inequality (B.6) into (B.5) we have

Lx(t + T ) ≤ (1− σ )Lx(t), σ :=
ρµT γ

(1 + ρ)(1 + ρcT 2γλΣ)λ2
.
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By choosing ρ = λ2
µT γ , one has σ = 1

1+ρ
1

1+ρcT 2γλΣ
< 1. For any t ≥ 0, let N be the smallest

positive integer such that t ≤ NT . Since Lx(t) ≤ Lx((N − 1)T ) ≤ (1− σ )Lx((N − 2)T ), Lx(t) can

be bounded by a staircase geometric series such that Lx(t) ≤ (1 − σ )N−1Lx(0) and hence the

exponential convergence follows from Lx(t) ≤ (1− σ )N−1Lx(0) = exp(−bNT )
1−σ Lx(0) ≤ exp(−bt)

1−σ Lx(0)

with b = 1
T ln( 1

1−σ ) > σ
T .
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