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Summary

Seismic waves are our primary tools to see the Earth’s interior and draw inferences
on its structural, thermal and chemical properties. Seismic tomography, similar to
medical tomography, is a powerful technique to obtain 3D computed tomography
scan (CT scan) images of the Earth’s interior using seismic waves generated by seis-
mic sources such as earthquakes, ambient noise or controlled explosions. It is crucial
to improve the resolution of tomographic images to better understand the internal
dynamics of our planet driven by the mantle convection, that directly control surface
processes, such as plate tectonics. To this end, at the current resolution of seismic to-
mography, full physics of (an)elastic wave propagation must be taken into account.

The adjoint method is an efficient full-waveform inversion (FWI) technique to
take 3D seismic wave propagation into account in tomography to construct high-
resolution seismic images. In this thesis, I develop and demonstrate new mea-
surements for global-scale adjoint inversions such as the implementation of double-
difference traveltime and waveform misfits. Furthermore, I investigate different pa-
rameterizations to better capture Earth’s physics in the inverse problem, such as
addressing the azimuthal anisotropy and anelasticity in the Earth’s mantle.

My results suggest that double-difference misfits applied to dense seismic net-
works speed up the convergence of FWI and help increase the resolution underneath
station clusters. I further observe that double-difference measurements can also help
reduce the bias in data coverage towards the cluster of stations.

Earth’s lithosphere and upper mantle show significant evidence of anisotropy
as a result of its composition and deformation. Starting from the recent global ad-
joint tomography model GLAD-M25, which is the successor of GLAD-M15 and
transversely isotropic in the upper mantle, my goal is to construct an azimuthally
anisotropic global model of the upper mantle. I performed 10 iterations using the
multitaper traveltimes combined with double difference measurements made on
paired stations of minor- and major-arc surface waves. The results after 10 itera-
tions, in general, show the global anisotropic pattern consistent with plate motions
and achieve higher resolution in areas with dense seismic coverage such as in North
America and Europe.

Attenuation is also another key parameter for determining the partial melt, water
content and thermal variations in the mantle. In the last chapter, I investigate anelas-
tic adjoint inversions to ultimately construct a global attenuation mantle model by
the simultaneous inversion of elastic and anelastic parameters assimilating both the
phase and amplitude information, which will lead to exact FWI at the global scale. I
investigate the trade-off between elastic and anelastic parameters based on 2D syn-
thetic tests to define a strategy for 3D global FWIs. I also explore the effect of differ-
ent measurements for simultaneously and sequentially inverted elastic and anelastic
parameters. The 2D test results suggest that the envelope misfit performs best at ear-
lier iterations by reducing the nonlinearity of the FWI. After analyzing the effect of
different radially-symmetric attenuation models on seismic waveforms by perform-
ing forward simulations in various 1D and 3D elastic/anelastic models, the results
suggest the necessity of simultaneous elastic/anelastic inversions to also improve
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the elastic structure as attenuation cause not only amplitude anomalies but also sig-
nificant physical dispersion, particularly on surface waves. I performed one global
simultaneous iteration of elastic and anelastic parameters using GLAD-M25 and its
1D anelastic model QRF12 as the starting models with a dataset of 253 earthquakes.
The preliminary results are promising depicting, for instance, the high and low at-
tenuation in the West and East coasts of North America.

Keywords: Inverse theory, Computational seismology, Seismic tomography, Wave
propagation
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Résumé

Les ondes sismiques constituent le principal outil pour scanner l’intérieur de la Terre
et en déduire des informations sur sa structure, son état thermique et ses propriétés
chimiques. La tomographie sismique, de manière analogue à la tomographie médi-
cale, construit des images en trois dimensions de l’intérieur de la Terre à partir des
ondes sismiques déclenchées par des sources naturelles (tremblements de terre, bruit
ambiant) ou contrôlées (explosions, ...).

La méthode de l’état adjoint permet une implémentation efficace de l’inversion
des formes d’ondes complètes (FWI : Full Waveform Inversion), une méthode
d’imagerie qui exploite potentiellement toute la complexité du champ d’onde en
trois dimensions pour construire des images haute résolution de l’intérieur de la
Terre.

Dans cette thèse, je propose de nouveaux observables fondés sur des doubles dif-
férences des temps de trajet et des formes d’ondes pour appliquer la FWI à l’échelle
globale. Par ailleurs, je teste différentes paramétrisations du problème inverse pour
extraire les propriétés physiques de la Terre comme l’anisotropie azimuthale et
l’atténuation dans le manteau.

Mes résultats suggèrent que les doubles différences utilisés avec des disposi-
tifs denses de stations accélèrent la convergence de la FWI, améliore la résolution
de l’imagerie sous le dispositif et réduisent les artefacts générés par la couverture
hétérogène de la Terre par les données sismologiques.

Il est connu que la composition et la déformation de la lithosphère et du man-
teau supérieur génèrent de l’anisotropie lors de la propagation des ondes. En par-
tant du modèle de Terre globale GLAD-M25 développé par tomographie adjointe,
le successeur du modèle GLAD-M15 et en) et en paramétrant l’inversion avec une
anisotropie transverse, j’ai construit un premier modèle global du manteau supérieur
anisotrope. J’ai effectué 10 itérations de la FWI adjointe en sélectionnant par fenê-
trage les temps de trajet des ondes de surface combinés avec des doubles différences
formés par des paires de stations. Les résultats révèlent l’empreinte au premier or-
dre de l’anisotropie et une résolution accrue dans les régions bénéficiant d’une forte
couverture comme en Amérique du Nord et en Europe.

L’atténuation est un autre paramètre physique clef pour identifier de la fusion
partielle, la présence d’eau et cartographier des variations thermiques dans le man-
teau. Dans le dernier chapitre, j’effectue une première évaluation de la tomographie
adjointe anélastique dans la perspective de construire un modèle d’atténuation du
manteau par inversion conjointe des paramètres élastiques et anélastiques à partir
de la phase et de l’amplitude des signaux. J’étudie les couplages entre les différentes
classes de paramètres avec des tests synthétiques 2D afin de définir la meilleure
stratégie pour la FWI anélastique à l’échelle globale. J’évalue également différents
observables pour la reconstruction simultanée ou alternée des paramètres élastiques
/ anélastiques. Les tests 2D suggèrent qu’une fonction coût fondée sur l’enveloppe
des signaux fournit les meilleurs résultats lors des premières itérations en réduisant
la non linéarité de la FWI. Après avoir évalué l’empreinte de différents modèles
d’atténuation sur les formes d’onde avec des simulations numériques dans différents
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modèles élastiques/anélastiques 1D/3D, j’ai conclu que la reconstruction conjointe
des paramètres élastiques et anélastiques était nécessaire car l’atténuation affecte
non seulement l’amplitude mais génère aussi une dispersion significative, notam-
ment des ondes de surface. J’ai effectué une itération de la tomographie adjointe
élastique/anélastique à l’échelle globale en partant du modèle élastique GLAD-M25
et du modèle anélastique 1D QRF12 et en utilisant 253 tremblements de terre. Les
résultats préliminaires sont prometteurs et révèlent par exemple des zones de forte
et faible atténuation sur les côtes ouest et est de l’Amérique du Nord.

Mots clés: Théorie inverse, Sismologie Computationnelle, Sismique Tomographie,
Propagation des Ondes
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Chapter 1

Introduction

Most of our knowledge about Earth’s deep interior is based on seismic waves gener-
ated by earthquakes that propagate through the Earth. Seismologists systematically
analyze these waves to interpret Earth’s dynamic processes and the thermochemi-
cal structure which are needed to explain surface processes such as plate tectonics,
earthquakes and volcanic activities. Based on measurements made on observed and
synthetic seismograms, seismologists also construct 3D computed tomography scan
(CT scan) images of the Earth using a technique called “seismic tomography", simi-
lar to medical tomography to investigate human body. These images are constructed
in terms of seismic parameters, such as compressional (P) and shear (S) wavespeeds,
density, anisotropy and anelasticity. Classically, this process has been based on ray
theory, where seismic waves are assumed to propagate along a ray path as in optics.
However, finite-frequency effects can be important because of the band-limited data
I use during the construction of tomographic images. Recent advances in numerical
methods and high-performance computing (HPC) allow seismologists to increase
the resolution of seismic images by taking the full complexity of wave propaga-
tion into account in seismic tomography by using 3D numerical wave simulations,
which requires careful measurements and strategies for successful convergence of
tomographic problems. In this thesis, I demonstrate new measurements and param-
eterizations for global-scale full-waveform inversion based on the adjoint methods
and 3D seismic wave simulations, following the first-generation global adjoint to-
mography models GLAD-M15 (Bozdağ et al., 2016) and GLAD-M25 (Lei et al., 2020)
models. Although the focus is on global-scale tomography to investigate the Earth’s
deep mantle, results can may also be extended to other scales (i.e., exploration to
regional) and domains (i.e., medical imaging). To this end, I first demonstrate and
implement double-difference measurements which were first introduced in adjoint
tomography by Yuan et al. (2016), into global-scale full-waveform inversions after
appropriate adjustments. I then use double-difference measurements for surface
waves to construct an azimuthally anisotropic global upper-mantle model based on
adjoint tomography. Following that, I show 2D numerical experiments to see how
well one can retrieve the anelastic structure simultaneously with the elastic one by
demonstrating different misfit functions and strategies. Lastly, I demonstrate elastic
& anelastic simultaneous adjoint inversions at the global scale including amplitude
information from seismic waveforms to perform full-waveform inversion in more
exact sense which includes both phase and amplitude information. Finally I sum-
marize the results and observations discussing the potential challenges and future
directions.
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1.1 Seismic tomography

1.1.1 Earth’s interior from seismic observations

Studies for investigation of Earth’s inner structure based on seismic observations
began in early 20th century with the availability of data from global seismic in-
struments worldwide. The first-order discontinuities of Earth’s interior, such as the
core (Oldham, 1906), the Moho discontinuity (Mohorovicic, 1909), and the inner core
(Lehmann, 1936), were identified using the traveltime information of body waves.
Following the first discoveries of the Earth’s interior, Jeffreys and Bullen (1940) com-
piled travel-time catalogs which allowed for the construction of wavespeed profiles
as a function of radius. Such profiles allowed for constructing “radially symmetric"
Earth models which represent the mean average of Earth’s P- and S-wavespeed, and
density structures.

First seismic tomographic models to image lateral variations in Earth’s mantle
came out in late 70s (e.g., Aki et al., 1977; Sengupta and Toksöz, 1977; Dziewon-
ski et al., 1977). Since then seismic tomography has been a powerful tool to im-
age the multi-scale structure of Earth’s interior from reservoir-scale for hydrocarbon
exploration with active sources (i.e., explosions) (e.g., Jarchow et al., 1994; Operto
et al., 2006) to crustal to global scales to investigate the deep Earth’s interior com-
monly with passive sources such as earthquakes and seismic ambient noise (e.g.,
Shapiro et al., 2005; Sager et al., 2020). It was clear from the early observations
that the radially symmetric models were not fully able to explain the complexity of
waveforms or traveltime & amplitude anomalies, where lateral variations in struc-
ture must be taken into account. However, radially-symmetric models of Earth’s
interior have been used as reference earth models up to now. For instance, PREM
(Preliminary Reference Earth Model, Dziewonski and Anderson (1981)) was con-
structed using body-wave traveltimes and normal-mode data, IASP91 of Kennett
and Engdahl (1991) and ak135 (Kennett et al., 1995) which were constructed based on
body-wave traveltimes only, which explain specifically the teleseismic body-wave
arrivals reasonably well. Either global or regional radially symmetric models are
also still commonly being used in, for instance, earthquake location studies (e.g.,
Engdahl et al., 1998). However, recently developed algorithms use path corrections
to incorporate the complexity of wave propagation due to lateral variations (e.g.,
Schweitzer, 2001; Ekström et al., 2012). Radially-symmetric models are also used
to define 3D models as perturbations around them since the classical tomographic
models are constructed based on the perturbation theory. However, recent advances
in global seismic tomographic models (e.g., French and Romanowicz, 2014; Bozdağ
et al., 2016), which will be discussed below, indicate the necessity to go beyond the
classical methods where the models can be constructed iteratively taking the full
complexity of wave propagation into account (e.g., Kustowski et al., 2008; Ritsema
et al., 2011; Simmons et al., 2012).

1.1.2 Seismic data

Seismic data can be seismic waveforms or some secondary observables such as am-
plitudes, traveltimes of body waves, group and phase velocities of surface waves or
normal-mode splitting functions. Depending on the objective of tomographic stud-
ies measurements of body waves, surface waves or normal mode splitting functions
can be used separately or combined to improve the data coverage. For instance,
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Woodhouse and Dziewonski (1984) attempted to map lateral variations of the up-
per mantle using Rayleigh and Love waves with periods longer than 135 s, whereas
Montagner (1986) also used such long-period surface waves to investigate the 3D
structure beneath the Indian Ocean, and Hilst and Spakman (1989) used P-wave de-
lay times to image subduction below the Caribbean Plate.

Several recent global tomography studies have capitalized on the wealth of data
over the past few decades, using a broad range of body and surface waves, and
normal-mode observations to image either shear-wave (Vs) (e.g., Houser et al., 2008;
Ritsema et al., 2011; Schaeffer and Lebedev, 2013; Chang et al., 2014), compressional-
wave (Vp) (e.g., Boschi and Dziewonski, 2000; Li et al., 2008) or both bulk-sound
(Vc) and Vs variations (e.g., Masters et al., 2000; Antolik et al., 2003). Most of our
knowledge of density variations in the mantle relies on long-wavelength normal-
mode studies (e.g., Ishii and Tromp, 1999, 2001; Trampert et al., 2004; Mosca et al.,
2012; Koelemeijer et al., 2017).

1.1.3 Ray theory vs finite-frequency theory

Classically, tomographic studies are based on the ray theoretical approximation which
assumes that seismic waves propagate along ray paths as in optics. However, the ray
theory is a high-frequency approximation that whenever the scale-length of hetero-
geneities become smaller than the width of the first Fresnel zone it breaks down
(Wang and Dahlen, 1995). Most of our understanding of Earth’s interior is based
on ray theory and it is still being preferred because of its ease of implementation
to tomography. However, the finite-frequency effects have become important at the
current resolution of seismic tomographic models that they have to be addressed
properly in tomographic studies. After Woodhouse and Girnius (1982) showed the
finite-frequency effects on surface waves, Marquering et al. (1999) showed that finite
frequency body-wave sensitivities are counter-intuitively zero along the ray paths,
which are also known as “banana-doughnut" kernels because of the shape of well-
isolated P- and S-wave sensitivity kernels. Finite-frequency kernels are frequency
dependent, thus in the high-frequency limit they converge to ray paths. Dahlen et
al. (2000) and Hung et al. (2000) built upon and extended this theory.

To take finite-frequency effects into account in seismic tomography, Li and Ro-
manowicz (1995) introduced the non-linear asymptotic coupling theory (NACT) to
invert surface and shallow-turning body wave which led to more robust 3D struc-
ture while having similar computational time to path average approximation method.
Using P-wave traveltimes, Montelli et al. (2004) showed the effect of finite-frequency
theory compared to the ray theory in global seismic tomography which led to bet-
ter identification of mantle plumes in tomographic models. Following that Hung et
al. (2004) used a similar finite-frequency approach to image the Iceland hotspot. In
all these studies finite-frequency effects were calculated using a radially-symmetric
Earth models.

The potential bias might be introduced into modeling body and surface waves
using ray theory may already be understood by looking at finite-frequency kernels
which becomes more prominent gradually at longer periods. However, there are
some contradictory observations in the literature if taking finite-frequency effects
into account also improves the resolution of tomographic images (e.g., Ritzwoller et
al., 2002; Zhou et al., 2004; Sieminski et al., 2004). Godfrey et al. (2019) reported that
exact ray tracing, where a ray-tracing algorithm is used to define exact ray paths
in 3D structures avoiding great-circle approximation, give better estimation of the
phase than 2D finite-frequency kernels. Similar observations were also reported
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by Bozdağ and Trampert (2008). These observations likely to indicate the neces-
sity to compute finite-frequency kernels in fully 3D background models with lateral
variations which requires the computation of finite-frequency kernels numerically
(Tromp et al., 2005; Fichtner et al., 2006). A major consequence of full 3D kernels is
that tomographic models then can be updated iteratively. On the other hand, an-
other important factor hindering the advantage of finite-frequency kernels could be
the uneven data coverage due to the distribution of seismic sources and stations on
the globe which was also reported by Trampert and Spetzler (2006).

1.2 Full-Waveform Inversion

Synthetic seismograms can be computed either using semi-analytic methods such as
normal-mode summation (e.g., Gilbert, 1970; Dahlen and Tromp, 1998), reflectivity
methods (e.g., Fuchs, 1968), asymptotic techniques such as ray theory (e.g., Cer-
veny, 2001) or asymptotic coupling theory (e.g., Li and Tanimoto, 1993) or numerical
methods such as finite difference (e.g., Igel and Weber, 1996) or finite elements (e.g.,
Toshinawa and Ohmachi, 1992; Bao et al., 1998). Semi-analytic methods are used
commonly to simulate wave propagation in radially-symmetric models. To take
lateral variations into account, normal-mode coupling (e.g., Park, 1986; Lognonné
and Romanowicz, 1990; Capdeville et al., 2000) is used which becomes inefficient in
case of large variations in lateral heterogeneities. Ray theory is commonly used for
its ease of implementation and reasonable computational requirements, however,
has limitations when the scale-length of heterogeneities becomes comparable to the
wavelength of seismic signals. Numerical methods allow for modelling full wave
propagation.

There are several methods for solving the wave equation numerically. Finite dif-
ference (e.g., Olsen, 1995; Igel and Weber, 1995, 1996; Thomas et al., 2000), pseudo-
spectral (e.g., Tessmer et al., 1992; Carcione and Wang, 1993; Furumura et al., 1998a;
Igel, 1999), finite-element (e.g., Toshinawa and Ohmachi, 1992; Bao et al., 1998) and
spectral-element (Patera, 1984; Priolo et al., 1994) methods are the most commonly
used in seismology. Finite-difference is preferred for its fast and easy implemen-
tation to seismic problems which is commonly used in exploration seismology or
seismic-hazard studies (e.g. Saenger and Bohlen, 2004; Ren et al., 2014; Maeda et al.,
2016). Pseudo-spectral elements have high accuracy, however, may have problems
with periodic boundary conditions. Finite-elements have flexibility to mesh complex
structures. To solve the wave equation at the global scale numerically, the biggest
challenge is the cost of simulations. In addition, one has to take the rapid surface and
internal topographic variations into account which is easier with finite-element type
of methods. To this end, spectral-element method stands out for global seismic wave
simulations in terms of combining the accuracy with the choice of basis functions
and flexibility of finite-element methods (Komatitsch and Vilotte, 1998). The chosen
Gauss-Lobatto-Legendre polynomials lead to a diagonal mass matrix which speed
up spectral-element solution of the wave equation and makes global wave simula-
tions feasible. Spectral-element simulations to seismic wave propagation started in
2D (e.g., Priolo et al., 1994) and extended to 3D regional (e.g., Komatitsch and Vilotte,
1998; Seriani, 1998; Komatitsch and Tromp, 1999; Komatitsch et al., 2004) and global
(e.g., Komatitsch and Tromp, 2002a,b; Komatitsch et al., 2002; Capdeville et al., 2003;
Chaljub et al., 2003) scales.

The ultimate goal in seismology has been to use 3D seismic waveforms in seis-
mic imaging since the beginning of seismic tomographic studies. Tarantola (1984)
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introduced the adjoint methods based on numerical simulations to seismic prob-
lems. Adjoint tomography, a full-waveform inversion technique, has the following
advantages: 1) synthetic seismograms and data sensitivity kernels (Fréchet kernels)
are computed in 3D background models, 2) any wiggle in seismograms can be used
which increases the amount of information that goes into inversions, 3) any approx-
imation is avoided other than the chosen numerical method to simulate wave prop-
agation, 4) commonly used “crustal corrections" are avoided, which can potentially
bias specifically the anisotropic mantle models, 5) seismic models can be iteratively
updated until convergence. In the adjoint method, Fréchet derivatives of the model
parameters are computed by the correlation between forward wavefield due to a
regular seismic source and a reversed-time wavefield that is generated by the data
residual at the receiver location (Chen et al., 2007). Secondary wavefield (due to
data residuals) is often referred as the “adjoint wavefield" and the fictious source
based on data residuals is called the “adjoint source" (Tromp et al., 2005). The ad-
joint method is also used outside of seismology (Gauthier et al., 1986; Plessix, 2006;
Virieux and Operto, 2009), for instance, in medical imaging (e.g., Pratt et al., 2007;
Bernard et al., 2017; Sandhu et al., 2017; Boehm et al., 2018; Bachmann and Tromp,
2020) and in fluid dynamics (e.g., Talagrand and Courtier, 1987; Kim et al., 2001;
McNamara et al., 2004).

First examples of using spectral-element seismograms in global tomography are
based on coupling with 2D asymptotic kernels (Lekić and Romanowicz, 2011; French
and Romanowicz, 2014). After successful applications at regional (Tape et al., 2009)
and continental scales (Fichtner et al., 2009; Zhu et al., 2015), first global adjoint
tomography models (Bozdağ et al., 2016; Lei et al., 2020) finally came out more than
30 years after the theory was introduced to seismology by Tarantola (1984).

1.2.1 Measurements in Full Waveform Inversion

Misfit, or objective, functions are defined to measure distance between observed
data and synthetics, which are seismic waveforms or their secondary observables in
this case, computed for a chosen source and structural model. Seismic tomography
is an optimization technique that aims to minimize the chosen misfit function. Ide-
ally, one would like to have synthetics that explain observed data perfectly yielding
zero misfit. However, in practice, this is not possible due to noisy data and insuf-
ficient data coverage as well as other challenges coming from the nature of chosen
inverse method to tackle a nonlinear problem, such as linearized or nonlinear inver-
sion techniques, etc. As mentioned above, the adjoint method provides an efficient
way to incorporate 3D wave simulations in full-waveform inversions where misfit
between observed and synthetic data is minimized iteratively.

Misfit functions play an important role in success of the inversions (Modrak et
al., 2016) because of the nonlinear nature of seismic problems. In exploration geo-
physics, the term FWI addresses making use of full waveforms which is performed
by using an L2-norm waveform misfit between observed and synthetic data (Taran-
tola, 1984; Virieux and Operto, 2009). In general L2 norm misfit functionals are used
in seismological problems which are based on standard least squares approach. L1-
norm misfit functions are discussed in the context of exploration studies by Brossier
et al. (2010) which shown to good alternative especially for decimated data sets and
there are also studies that uses other distance such as optimal transport which is
more resilient to time shift and noise (Engquist et al., 2016; Métivier et al., 2018).
The waveform misfit has also been used in global seismology (Nolet et al., 1986; Li
and Romanowicz, 1996; French and Romanowicz, 2014). The waveform misfit can
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be applied to any wave train or complete data. However, one of the issues is that
in case of using seismograms involving seismic phases with significantly different
amplitudes, such as body and surface waves which can be the case specifically in
earthquake seismology, the measurements can be dominated by the high-amplitude
signals. To overcome this problem, it is common to window data where each wave
package or train is normalized by its own energy (e.g., Li and Romanowicz, 1996).
Although, it is straightforward to compute the waveform misfit to incorporate full
waveforms in inversions it is prone to behave nonlinearly especially when the start-
ing model is not close enough to the actual model (Prieux et al., 2013a). To mitigate
the nonlinearity of the inverse problem, one can start the inversion using long period
data and decrease the period content gradually (Ekström et al., 1997; Zhu et al., 2015;
Pageot et al., 2013). This approach requires to have access to low-frequency or long-
period data which is easier for earthquake-seismology studies with the availability
of broadband data. There are several studies that uses this multiscale inversion ap-
proach (Bunks et al., 1995; Sirgue and Pratt, 2004; Fichtner et al., 2013b; Yuan et al.,
2015).

To reduce nonlinearities, it is also common to separate the phase and amplitudes
of waveforms and tackle the phase information first which is more linearly related
to Earth’s parameters (Woodhouse and Wong, 1986). Cross-correlation traveltime
measurements are commonly used to obtain (Luo and Schuster, 1991; Marquering
et al., 1999) Fréchet derivatives of the model parameters which provide robust mea-
surements, however, require to use multiple measurement windows to highlight
low-amplitude phases by normalizing each window by its own energy.

The counterpart measurement of amplitudes can also be computed based on
cross-correlations (Ritsema et al., 2002). However, due to higher non-linearity of
the amplitude measurements, they are harder incorporate in the inversions.

To capture the dispersive behaviour of seismic waves, frequency dependent trav-
eltime and amplitude measurements, also known as multitaper measurements, are
proposed by Laske and Masters (1996). Multitaper traveltime measurements were
used by Tape et al. (2010) in a regional adjoint tomography study in Southern Cali-
fornia, and by Bozdağ et al. (2016) and Lei et al. (2020) in global adjoint tomography.
Some other earlier examples of adjoint tomography in earthquake seismology by, for
instance, Fichtner et al. (2009) used time-frequency analysis which allowed for tak-
ing wavetrains into account without the loss of small amplitudes with an intrinsic
weighting term introduced into the adjoint source. Bozdağ et al. (2011) proposed a
similar misfit function based on instantaneous phase (IP) measurements which min-
imizes the number of windows to maximize the information from a single seismic
trace. Rickers et al. (2012) used the IP misfit in a synthetic experiment to image man-
tle plumes, then applied for imaging the Icelandic plume (Rickers et al., 2013), since
IP measurements highlight the scattered waves better which are generally ignored
in cross-correlation measurements. Although instantaneous phase measurements
are useful, they are also prone to cycle skip problems like any other phase measure-
ment. Yuan et al. (2020) introduced a variation of the method called exponentiated
phase to alleviate this problem, where the misfit is defined between the exponential
terms of the phase rather than computing the difference directly between observed
and synthetic instantaneous phases. Similarly, the misfit function can also be de-
fined based on instantaneous amplitude difference (Bozdağ et al., 2011) which is also
known as “envelope misfit" (Kristeková et al., 2006; Fichtner et al., 2008). Envelope
measurements used by (Romanowicz, 1994b; Karaoğlu and Romanowicz, 2018a) to
construct anelastic global mantle models in waveform inversions whereas Zhu et al.
(2013) used multitaper traveltime and amplitude measurements to invert elastic and
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anelastic models of Europe simultaneously.
Generally, measurements are made on observed and synthetic data recorded at a

single station. Another way to perform traveltime measurements to minimize poten-
tial source uncertainities, such as origin times, differential measurements between
different phases are also commonly used (Hung et al., 2000; Tromp et al., 2005). On
the other hand, the Double-Difference (DD) technique, utilizes measurements on sta-
tion or source pairs. It was first introduced by Waldhauser and Ellsworth (2000) to
improve earthquake locations. Since then, a similar approach has been used in body
wave tomographic studies (Zhang and Thurber, 2003; Zhang et al., 2004; Monteiller
et al., 2005). Yuan et al. (2016) introduced the DD traveltime measurements into
adjoint tomography which are shown to be less sensitive to uncertainties in source
origin time and source time function. There are also variations of this concept which
use a reference trace instead of receiver/source pairs (Choi and Alkhalifah, 2011;
Zhang et al., 2016). Örsvuran et al. (2020) extended the DD measurements to global
adjoint tomography by introducing a weighting term to the misfit function that bal-
ances dense station arrays. It was also shown that DD measurements speed up the
convergence at densely sampled areas.

1.2.2 Parametrization in Full Waveform Inversion

3D numerical wave propagation solvers allow for taking the full complexity of wave
propagation into account in the forward and adjoint simulations. However, for the
success of the FWI the physics of the medium and the source must also be incorpo-
rated in the inverse problem through appropriate parametrization of model param-
eters (Prieux et al., 2013b,c). For instance, specifically in global seismology, isotropic
representation of the upper-mantle may not be enough since Earth’s upper mantle
shows significant anisotropy. In case of performing global FWI including amplitude
information, one has to address anelasticity in the inverse problem as well to reduce
the well-known source-structure trade off.

Earth’s mantle, specifically the upper mantle, shows significant anisotropy. In
anisotropic media, wavespeeds change based on the direction of the propagation.
Mineral structure and orientation can cause the discrepancy between body and sur-
face wavespeeds for different orientations (Forsyth, 1975; Nicolas and Christensen,
1987). Anisotropy has been showed to have significant effects on the phase velocities
and converted waves (Crampin, 1981). The elastic tensor has 21 independent param-
eters due to symmetries. It is desirable to invert for all 21 parameters, however, some
simplifications have to be made as it is not possible to invert them uniquely simul-
taneously (Beller and Chevrot, 2020). In an isotropic medium, elastic tensor can be
represented by two Lamé parameters (λ and µ). For a layered medium, there is a
one distinct direction and other two are equivalent to each other (Thomsen, 1986).
The symmetry axis for this type of medium can be in the vertical direction which is
defined as vertical transversely isotropic medium (VTI) which is called transverse
isotropy or radial anisotropy in global seismology. A transversely isotropic model
is represented by five Love parameters (A, C, L, N, F) (Love, 1911). If the symmetry
axis is different than the vertical direction, two additional parameters are required
to define the symmetry axis. This type of parameterization is called tilted transverse
isotropy (TTI) which is the general case of the VTI medium (Tsvankin et al., 2010).
There can also be the azimuthal dependency of wavespeeds which occurs in the
plane of two identical directions of transversely isotropic media (Forsyth, 1975).

In the crust, it has been shown that cracks can induce anisotropy (Crampin and
Booth, 1985). In the upper mantle, anisotropy is attributed to the strain which causes
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lattice preferred orientation (Nicolas and Christensen, 2013). The discrepancy be-
tween Rayleigh and Love waves can be modeled using transversely isotropic models
(Dziewonski and Anderson, 1981). However, it has been shown that azimuthal vari-
ations also play an important role in Earth’s mantle (Montagner, 1985). Both body
waves and surface waves exhibit transverse isotropy and azimuthal anisotropy. Body-
wave anisotropy has generally been studied using shear-wave splitting measure-
ments for seismic phases like S, SKS, SKKS, etc. (Silver and Chan, 1991; Vinnik et
al., 1992) and in laboratory environments (Babuška, 1984). Surface waves are pre-
ferred to map the anisotropy in the upper mantle because they provide better data
coverage (Nataf et al., 1984; Montagner and Tanimoto, 1991). There have been sev-
eral regional and global anisotropic models that take either the transverse isotropy
(Kustowski et al., 2008; French and Romanowicz, 2014; Bozdağ et al., 2016; Lei et al.,
2020) or azimuthal anisotropy (Montagner, 1985; Montagner and Tanimoto, 1991;
Trampert and Heijst, 2002; Schaeffer et al., 2016; Zhu et al., 2020) into account. First-
generation global adjoint tomography models (Bozdağ et al., 2016; Lei et al., 2020)
have transverse isotropy confined to the upper mantle.

Attenuation is a measure of energy loss as the wave propagates. It is particularly
sensitive to thermal variations, partial melt and water content which can provide ad-
ditional constraints of the physical and chemical content of Earth’s interior together
with wavespeeds. Since attenuation affects both the phase and amplitude of seis-
mic waveforms (Zhou, 2009; Ruan and Zhou, 2010, 2012), elastic focusing effects,
source uncertainties have to be properly addressed in inversions using full wave-
forms. Amplitudes can be more sensitive to the uncertainties in source radiation
pattern and instrument response. However, if amplitudes are measured properly to
be used in inversions, they also provide excellent constrains not only on the anelastic
structure but also on elastic heterogeneities (e.g., Laske and Masters, 1996). There-
fore, the attenuation tomography is a harder problem which is the main reason of
fewer attenuation studies compared to elastic models. There are several radially
symmetric attenuation models which do not show consensus especially in the crust
and upper mantle (Durek and Ekström, 1996; Resovsky et al., 2005). The lateral
variations in mantle attenuation were mapped using surface wave amplitudes (Ro-
manowicz, 1995; Selby and Woodhouse, 2002; Gung and Romanowicz, 2004; Dalton
and Ekström, 2006; Karaoğlu and Romanowicz, 2018b) and to a lesser extent by
body waveforms (e.g., Bhattacharyya et al., 1996; Reid et al., 2001; Warren & Shearer,
2002). It is an important parameter for investigating the properties of the Earth’s
mantle which can provide additional constraints (Dalton and Faul, 2010; Cobden
et al., 2018; Debayle et al., 2020). Karaoğlu and Romanowicz (2018a) constructed a
global attenuation mantle model by inverting elastic shear wavespeed and anelastic
models sequentially using 3D numerical wave simulations coupled with 2D asymp-
totic kernels. Anelastic adjoint inversions in earthquake seismology so far have been
performed only at the European scale by Zhu et al. (2015). Attenuation is also used
in exploration geophysics due to being sensitive to fluid content which can help pro-
cesses like monitoring gas storage (Carcione et al., 2006; Métivier et al., 2015).

On the other hand, source effects can be comparable to path effects in global
seismology (Ferreira and Woodhouse, 2007). Ideally source and structure should be
updated simultaneously (Valentine and Woodhouse, 2010a). Kim et al. (2011) pre-
sented the adjoint source inversions and demonstrated the cost of such inversions
compared to inversions based on computation of Green’s functions of source param-
eters (i.e., moment tensor, origin time, depth, latitude, longitude) in full 3D Earth
models. Nevertheless, it is not straightforward to simultaneously invert source and
structure simultaneously because of the parameter trade-offs.
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1.2.3 Potential Challenges

Seismic data has grown exponentially in recent years (e.g., IRIS DMC Data Statistics,
2020). However, the global data coverage is sparse because of the uneven source and
station distribution. Earthquakes occur mostly on the plate boundaries and stations
are mostly located on lands. We do not have enough sampling of the structure be-
neath the oceans which cover more than 70% of the surface area. Additionally, al-
though dense networks like USArray in North America and Hi-Net in Japan provide
great opportunities to have high-resolution lithospheric and upper mantle structure
underneath continents, they disturb the balance of the measurement distribution
further. The ultimate solution would be to cover the oceans with ocean-bottom seis-
mometers (OBS). Meanwhile emerging datasets such as those from acoustic floating
robots MERMAIDs (Nolet et al., 2019) could help better sample oceans. Further-
more, underwater fiber-optic cables might help improve global data coverage in fu-
ture (Marra et al., 2018).

One possible solution to balance the global data coverage is to reduce the number
of stations used from dense seismic networks avoiding redundant data. However,
in this way potentially useful information might be missed. In order to mitigate un-
even data coverage, some applications used summary rays which are defined as one
average ray from a cluster to a station (Morelli and Dziewonski, 1987). Another tech-
nique has been to use a composite ray approach which uses the weighted average of
single rays (Spakman, 1991; Bijwaard et al., 1998). Li and Romanowicz (1996), on the
other hand, used error characterization and redundancy information to introduce a
weighting term to the measurements. Ruan et al. (2019) used geographical distribu-
tions of source and stations to determine weighting terms introduced into a chosen
misfit function to balance the data coverage.

Using ambient noise as seismic data in inversions is another promising tech-
nique to improve data coverage which potentially overcomes the global earthquake
distribution problem (Shapiro et al., 2005; Lu et al., 2018). To this end, noise FWI
is promising to specifically improve the data coverage in the lithosphere and upper
mantle (Tromp et al., 2010a; Sager et al., 2020). There are also exciting results to ex-
tract body waves (including core phases) from ambient noise data (Gerstoft et al.,
2008; Landès et al., 2010; Poli et al., 2012) which may in future can be used to sample
the lower mantle.

Uncertainty quantification and resolution analysis have been the major problems
for seismic tomography in general, which becomes more challenging for FWI be-
cause of the computational requirements. Resolution and uncertainty quantification
are critical for the interpretation of the robustness of the tomographic models and
potential bias and error introduced. Generally, checkerboard tests are used in classi-
cal tomographic studies to assess the resolution power of data coverage. However
there are also concerns on the robustness of checkerboard tests which are shown
to be susceptible to misleading results (Lévêque et al., 1993). One should ideally
perform Bayesian type probabilistic inversions. However, they are not possible in
FWI due their computational cost. Therefore, resolution analyses mostly done using
approximations of the Hessian kernel (Fichtner and Trampert, 2011b; Fichtner and
van Leeuwen, 2015) based on Point-Spread Function (PSF) tests. There are also op-
timization techniques which allow for approximating the Hessian kernel (Liu and
Peter, 2019). Fichtner et al. (2019) also introduced a probabilistic Hamiltonian Monte
Carlo solutions for the adjoint tomography.

FWI is a computationally intensive technique. Numerical simulations are gen-
erally performed for each source independent from number of stations. To reduce
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the computational cost, van Herwaarden et al. (2020) uses a quasi-random subset of
the sources in each iteration. Another approach is to use source stacking (Capdev-
ille et al., 2005; Romanowicz et al., 2020). Source encoding method, which uses
combination of sources to so-called supersources, is another method to reduce the
computational cost (Krebs et al., 2009; Ben-Hadj-Ali et al., 2011; Castellanos et al.,
2015; Tromp and Bachmann, 2019). Recent improvements reduce the downsides of
this method which can lead to more adoption in the field. For example, crosstalk
caused by the combination of the sources, and requirement for the all of sources to
be recorded at all stations have been overcome by the recent studies (Dai et al., 2013;
Krebs et al., 2018; Huang and Schuster, 2018; Zhang et al., 2018).

Numerical solvers like SPECFEM3D_GLOBE (Komatitsch and Tromp, 2002b),
are able to capture full complexity of wave propagation accurately and efficiently
for a given 3D global Earth model including anisotropy, anelasticity, tomography,
bathymetry, gravity, rotation and the ellipticity of the planet. Most expensive part of
wave simulations is coming from the crust. To speed up specifically the global simu-
lations, homogenization (Capdeville et al., 2010a,b) is preferred by some researchers,
where the crust is replaced by its smoothly varying anisotropic long-wavelength
equivalent (Lekić and Romanowicz, 2011; French and Romanowicz, 2014). Homoge-
nization is also used to aid multi-scale approach where a region of the model is finely
meshed and upscaled for the coarsely meshed whole model decreasing the overall
computational cost (Fichtner et al., 2013a). The AxiSEM3D package deals with this
problem considering wave propagation on 2D axi-symmetric planes and analytically
computing the azimuthal third dimension which significantly decreases the com-
putational cost (Nissen-Meyer et al., 2014). Successful benchmarks of AxiSEM3D
against SPECFEM3D_GLOBE simulations can be found in Leng et al. (2019). An-
other approach is to adapt meshes to the expected complexity of the wavefield (van
Driel et al., 2020; Thrastarson et al., 2020).

1.3 Thesis Outline

In this thesis, I define strategies for global FWI by revising and demonstrating new
misfit misfits, such as the implementation of double-difference measurements, and
work towards constructing next-generation global adjoint tomography models in-
cluding azimuthal anisotropy and anelasticity.

In Chapter 2, I give a brief overview of 2D and 3D spectral-element wave sim-
ulations and the adjoint method and the adjoint tomography workflow I used in
this thesis. In Chapter 3, I present adaptation of of double-difference (DD) mea-
surements to global adjoint tomography by defining misfit functions with appropri-
ate weigthing terms to balance uneven data coverage. In Chapter 4 I use double-
difference multitaper traveltime measurements for minor- and major-arc surface
waves to construct a global azimuthally anisotropic upper-mantle model. In Chap-
ter 5 I demonstrate anelastic adjoint inversions based on 2D examples to define a
strategy for global-scale adjoint inversions. I test the effect of chosen misfit func-
tions and simultaneous and sequential inversion of elastic and anelastic models. I
also present a test iteration of simultaneous elastic and anelastic global adjoint to-
mography in 3D. Finally, I discuss the results in Chapter 6.
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Chapter 2

3D wave simulations and
full-waveform inversion

The inverse problem relies on the accuracy of the forward modeling. In this the-
sis, the ultimate goal is to improve the images of the Earth’s mantle to gain more
insight into the dynamics of our planet using 3D numerical waveform modeling
of seismic waves by capturing the full complexity of wave propagation in realistic
3D media. Using 3D wave simulations in seismic imaging has the following major
consequences: 1) we can avoid approximations commonly used for seismic wave
propagation, such as ray theory, to take the full complexity of wave propagation
into account which has become prominent at the current resolution of seismic im-
ages, 2) we can avoid commonly used crustal corrections that may potentially bias
our inference of the upper mantle structure and anisotropy, 3) we can make use of
any wiggles in seismograms with appropriately designed measurement techniques.

In this chapter I give brief background information on 3D numerical wave sim-
ulations, the adjoint method and measurements for full-waveform inversions. All
the numerical simulations in this thesis were performed with the SPECFEM2D and
SPECFEM3D_GLOBE (Komatitsch and Tromp, 2002a; Komatitsch et al., 2002) pack-
ages which are freely available from the CIG (Computational Infrastructure for Geo-
dynamics) website.

2.1 Seismological background

The wave equation governs the behavior of seismic waves emanating due to an ac-
tive (i.e., explosions) or passive (i.e., earthquakes, ambient noise) seismic source. The
equation of motion can be expressed in terms of the source and medium properties
as

ρδ2
t s = ∇ · T + f , (2.1)

where ρ denotes the density of the medium, s is the displacement vector, T is the
stress tensor and f is the source term. The stress tensor T is related to the gradient of
the displacement, which is the strain tensor, by Hooke’s law

T = c : ∇s , (2.2)

where c is the fourth-order elasticity tensor. Due to the internal symmetries any
anisotropic medium can be described by 21 unique parameters. For instance, an
isotropic medium can be represented by only two Lamé parameters: Lamé constant
λ and shear modulus µ. A transversely isotropic medium can be represented by 5
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Love parameters, A, C, F, L, N (Love, 1911). Depending on the medium’s character-
istics, different parameterizations may also be considered such as the azimuthal de-
pendence of surface wave velocities (Tanimoto and Anderson, 1985), or tilted trans-
versely isotropy (TTI), where the symmetry axis is changed from the vertical, com-
monly used in exploration geophysics (Tsvankin et al., 2010). Recently, Beller and
Chevrot (2020) used a projection to estimate the elastic coefficients instead of explic-
itly defining the symmetry axes. All these simplifications are done mainly because
21 anisotropic parameters cannot be uniquely inverted.

The source term is an earthquake for the purpose of this thesis, which can be
given by

f = M · ∇S(t)δ(x− xs) , (2.3)

where M and S(t) are the moment tensor and the source time function as a function
of time t for an earthquake located at xs. To solve the partial differential equation the
surface boundary condition is defined as

n̂ · T = 0 (2.4)

where the traction goes to zero at the free surface and the initial conditions are set to

s(x, 0) = 0 , (2.5)

and
∂ts(x, 0) = 0 . (2.6)

The wave equation can be solved analytically for the simplest media like homo-
geneous whole space and half space models or the Lamb’s problem. However, for
full-waveform modeling only numerical solutions are available for any arbitrary 3D
medium with lateral variations.

2.2 Numerical Solution to the Wave Equation

The finite difference is one of the most commonly used methods in seismology which
incorporates the finite-difference approximation of derivatives, which is also known
as the strong formulation (e.g. Olsen, 1995; Igel and Weber, 1996). Because of its ease
of implementation and computational efficiency it is specifically preferred in seismic
exploration problems (Saenger and Bohlen, 2004; Virieux and Operto, 2009; Chaljub
et al., 2010; Ren et al., 2014). As the complexity of the medium increases, the run
time of computations may also significantly increase because of the challenges re-
lated to the mesh. In addition, specifically surface waves may suffer from numerical
dispersion. First applications of the finite-difference method used layered 2D medi-
ums (Alterman and Karal, 1968; Boore et al., 1971). Virieux and Madariaga (1982)
studied the dynamic shear cracks using more efficient staggered schemes both in
space and time. The velocity-stress formulation is also studied in 2D both for SH and
P-SV wave propagation (Virieux, 1984, 1986). Frankel and Vidale (1992) and Graves
(1996) used 3D finite-difference modeling to generate synthetic seismograms which
showed great promise for the future work. Igel et al. (1995) introduced anisotropy
to finite difference schemes. Attenuation can also be incorporated to the finite dif-
ference via viscoacoustic and viscoelastic parametrization (Day and Minster, 1984;
Robertsson et al., 1994; Bohlen, 2002; Yang et al., 2016).
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Pseudo-spectral methods (e.g., Tessmer et al., 1992; Furumura et al., 1998b; Igel,
1999) have high accuracy to solve the wave equation which is desirable to accu-
rately simulate seismic wave propagation. However, it is specifically challenging to
deal with boundary conditions with reasonable run times. Another commonly used
method in geophysical problems is the finite-element method (FEM) (e.g., Toshi-
nawa and Ohmachi, 1992; Bao et al., 1998) which has the flexibility to mesh com-
plex domains with finite elements. FEM was developed for engineering problems
such as structural analysis. A large problem is subdivided into smaller finite el-
ements. The solution for each element is assembled into a complete solution via
common points between elements. Finite-element methods rely on the weak for-
mulation of the partial differential equations. For the wave equation, displacement
field is defined in terms of selected basis functions which leads to an approxima-
tion but a continuous solution where the displacement values are exact at the grid
points. The weak formulation is implemented by multiplying the partial differen-
tial equation by a test function (with the same basis) and integrating over the whole
spatial domain. The solution requires solving for the mass and stiffness matrices
and the mass matrix should be inverted which can be computationally costly. One
of the distinct advantages of FEM is that there is no additional step needed for the
free surface boundary condition. It also allows for the use of hexahedral and tetra-
hedral meshes which are efficient to capture lateral heterogeneities. There are also
examples of hybrid modeling with the finite-difference method to capture bound-
ary conditions and complex topography (Moczo et al., 1997; Ma et al., 2004; Galis
et al., 2008; Tarrass et al., 2011; de la Puente et al., 2014). However, increasing
the polynomial degree to increase the accuracy may also significantly increase the
computation time which still makes FEM unfeasible for simulating the global wave
propagation. The spectral-element method, on the other hand, combines the accu-
racy of the pseudo-spectral method (Patera, 1984; Priolo et al., 1994; Komatitsch and
Vilotte, 1998) and the meshing flexibility of the finite-element method (Komatitsch
and Tromp, 1999). The Gauss-Lobatto-Legendre quadrature is used as the interpo-
lation scheme which leads to a diagonal mass matrix. This property of the spectral-
element method makes large-scale simulations, such as the global wave propaga-
tion, feasible. It also shares the free surface boundary advantage of FEM. There are
several publicly available tools that uses the spectral-element method (Komatitsch
and Tromp, 2002b,a; Fichtner and Igel, 2008). Nissen-Meyer et al. (2014) introduced
AxiSEM3D which compute 3D wavefields in 2D axisymmetric global Earth’s mod-
els while the azimuthal dimension is accounted for analytically, which reduces com-
putational cost. Due to the efficiency of the spectral-element method, it has been
extensively used in seismological applications (Komatitsch et al., 2004; Capdeville
et al., 2005; Chaljub et al., 2007; Fichtner and Igel, 2008; Tape et al., 2010; Fichtner
et al., 2013b; French and Romanowicz, 2014; Bozdağ et al., 2016; Lei et al., 2020).

There are also other numerical methods, like the Discontinuous Galerkin method,
which is proven to be more efficient than spectral elements for certain applications (Igel,
2017). It has been used for modeling complex structures such as fluid-solid in-
terfaces, faults and surface and internal topographies (Käser and Dumbser, 2008;
Gallovič et al., 2010). It has been also used to study earthquake dynamics (e.g. dy-
namic rupture) (Käser et al., 2007; Puente et al., 2009; Pelties et al., 2012; Tago et al.,
2012). In this thesis, 2D and 3D spectral-element methods are used for the numerical
simulations.
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2.2.1 The Spectral Element Method for global wave simulations

The spectral element method is based on Legendre polynomials and Gauss-Lobatto-
Legendre quadrature (Komatitsch and Vilotte, 1998). This factorization results in the
diagonal mass-matrix which increases the computational efficiency and paralleliza-
tion capabilities. With the advances in computational resources, the method made
large-scale simulations feasible and was eventually extended to global-scale seismic
wave simulations (Komatitsch and Tromp, 2002b,a). In this thesis, I use the 2D and
3D global spectral element solvers SPECFEM2D (Komatitsch and Vilotte, 1998) and
SPECFEM3D_GLOBE (Komatitsch and Tromp, 2002a; Komatitsch et al., 2002) for
numerical wave simulations.

The spectral element method uses the integral or the weak formulation of the
wave equation, ∫

V
ρw · δ2

t sd3r = −
∫

V
∇w : Td3r + M : ∇w(rs)S(t) , (2.7)

where w is a test function, M is the moment tensor and S(t) is the source time func-
tion defined over the volume V. The Hooke’s law in an attenuating medium requires
a modification to include the entire strain history:

T(t) =
∫ t

−∞
δtc(t− t′) : ∇s(t′)dt′ . (2.8)

Assuming that attenuation is constant over the seismic frequency band (Liu et al.,
1976) it is represented by three standard linear solids (Carcione et al., 1988) in
SPECFEM3D_GLOBE.

For global Earth simulations with the SPECFEM3D_GLOBE package, crust &
mantle, outer core and inner core regions are solved separately and then combined
using the boundary terms. This allows for decoupling the solid and fluid regions.
The formulation of the crustal and mantle region is

∫
M

ρw · δ2
t sd3r = −

∫
M
∇w : Td3r + M : ∇w(rs)S(t) +

∫
CMB

pn̂ ·wd2r , (2.9)

where p is the fluid pressure and last term is the integral traction of −pn̂ in the fluid
(n̂ is the unit outward normal on the core-mantle boundary). For the fluid outer
core, the wave equation is solved as follows:

∫
OC

κ−1wδ2
t χd3r = −

∫
OC

ρ−1∇w · ∇χd3r +
∫

CMB
wn̂ · δtsd2r−

∫
ICB

wn̂ · δtsd2r ,

(2.10)
where w is the scalar test function, κ is the adiabatic bulk modulus, and χ is the
scalar potential. For the solid inner core equation becomes∫

IC
ρw · δ2

t sd3r = −
∫

IC
∇w : Td3r−

∫
ICB

pn̂ ·wd2r . (2.11)

2.3 The Adjoint Method

Using the reciprocity and the time reversible nature of the wave propagation, Taran-
tola (1984) introduced the adjoint method, a full-waveform inversion technique, into
seismic inversions to invert for the structural and source parameters of the Earth
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based on full waveform simulations. Full-waveform inversions has been widely
used in exploration geophysics (Virieux and Operto, 2009), generally based on an
acoustic wave approximation to reduce the computational cost. With the advances
in computational facilities and the 3D wave propagation solvers adjoint inversions
both in elastic and anelastic media have become a routine tool, also in earthquake
seismology.

Following Tromp et al. (2005), finite frequency kernels and the adjoint method
may be formulated using the Born approximation. Let’s assume Θ(xr, t, m) is a cho-
sen metric defined to measure the difference between observed and synthetic data
recorded at a receiver location xr, where synthetic data is calculated for model pa-
rameters m and t denotes time:

χ(m) = ∑
s

∑
r

∫ T

0
Θ(xr, t, m) dt . (2.12)

The misfit function is simply summed over a group of sources, s, and receivers, r.
The gradient of the misfit function χ(m) may be written as:

δχ(m) = ∑
s

∑
r

∫ T

0
∂sΘ(xr, t, m)δs(t, m) dt , (2.13)

where s denotes synthetic displacement seismograms, δs is the perturbations in syn-
thetic displacement due to a change in model parameters m. Following Tromp et al.
(2005), δs may be written using the Born approximation (Hudson, 1977; Wu and Aki,
1985):

δχ(m) = ∑
s

∑
r

∫ T

0
∂si Θ(xr, t, m)

∫ T

0

∫
V
[δρ(x′)Gij(xr, x′; t− t′)∂2

t′sj(x′, t′)]

+[δcjklm(x′)∂
′
kGij(xr, x′; t− t′)∂

′
lsm(x′, t′)]d3x′dt′dt .

(2.14)

Using the reciprocity of the Green’s function, a time-reversed displacement wave-
field, called the "adjoint wavefield", s†, may be defined,

s†
k(x
′, t′) =

∫ t′

0

∫
V

Gki(x′, xr; t′ − t) f †
i (x, t)d3xdt , (2.15)

which is initiated by an "adjoint source" based on the misfit between observed and
synthetic data defined for every station component i and injected at the location of
the receiver

f †
i (x, t) =

M

∑
s=1

N

∑
r=1

∂si Θ(xr, T − t, m)δ(x− xr) . (2.16)

The gradient of a misfit function can also be expressed in terms of perturbations in
model parameters depending on the chosen parameterization in the inverse prob-
lem. For an isotropic model, the gradient may be written in terms of perturbations
of P and S wavespeeds (α and β, respectively), and density (ρ)

δχ(m) =
∫

V
[K
′
ρ(x)δlnρ + K

′
α(x)δlnα + K

′
β(x)δlnβ] d3x (2.17)

where the volume integral reduces to the surface integral in 2D experiments and the
kernels for density, P and S wavespeeds (K

′
ρ, Kα and Kβ, respectively) are given as
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K
′
ρ(x) = Kρ + Kκ + Kµ , (2.18)

Kα(x) = 2
(

κ + 4/3µ

κ

)
Kκ , (2.19)

Kβ(x) = 2
(

Kµ −
4µ

3κ
Kκ

)
, (2.20)

where κ and µ are the bulk and shear moduli, respectively, and Kµ, Kκ are the as-
sociated Fréchet kernels. Depending on the parameterization source, attenuation
and anisotropic parameters can be added to the gradient as well. The kernels for
isotropic parameters denoted by K(x) can be computed as (Tromp et al., 2005)

Kρ(x) = −
∫ T

0
ρ(x)s†(x, T − t) · s(x, t) dt , (2.21)

Kκ(x) = −
∫ T

0
κ(x)[∇ · s†(x, T − t)][∇ · s(x, t)] dt , (2.22)

Kβ(x) = −
∫ T

0
2µ(x)D†(x, T − t) : D(x, T − t) dt , (2.23)

where D is the deviatoric strain and † denotes the adjoint counterpart of the devi-
atoric strain and displacement. As clearly seen from the equations, the data sensi-
tivity (Fréchet) kernels can be computed by performing two numerical simulations
for the forward and adjoint displacement wavefields and the deviatoric strain. Since
the Green’s functions in both forward and adjoint wavefields are the same (only the
source terms differ), adjoint simulations can readily be performed by the numeri-
cal solver used for forward simulations. The kernels will strictly be dependent on
the chosen misfit function and any normalization or weighting applied to the misfit
function will be reflected in the adjoint source.

Similarly the transverse isotropy can be taken into account in the inverse problem
by the following five parameters: density ρ, bulk sound speed c, vertically polarized
S-wave speed βv, horizontally polarized S-wave speed βh and the dimensionless
parameter η:

δχ(m) =
∫

V
[Kc(x)δlnc + Kβv(x)δlnβv + Kβh(x)δlnβh + Kη(x)δlnη] d3x , (2.24)

where the Kc, Kβv , Kβh and Kη are the Fréchet derivaties of the transversely isotropic
model parameters. Instead of the bulk-sound speed one may prefer to use vertically
and horizontally polarized P wavespeeds. In this thesis, following Zhu et al. (2012)
and Bozdağ et al. (2016) the bulk-sound speed is preferred to reduce the trade-off
between P and S wavespeeds (Kennett et al., 1998) where it is more challenging to
determine the P-wave anisotropy.

For the azimuthally anisotropic global inversions, vertically polarized S-wavespeed
βv, horizontally polarized S-wavespeed βh and the azimuthally anisotropic param-
eters G′c and G′s, which are the normalized Gc and Gs by the shear modulus of the
reference background model are used (Sieminski et al., 2007a; Zhu et al., 2015):

δχ(m) =
∫

V
[Kβv(x)δlnβv + Kβh(x)δlnβh + KG′c(x)δG′c + KG′s(x)δG′s] d3x . (2.25)
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In theory, one may also use the full elastic tensor (21 independent parameters)in
the parameterization. However, practically, it is not possible to solve 21 parameters
independently. Thus, it is common to focus on inverting the dominant parameters
in a medium (Beller and Chevrot, 2020).

Attenuation is also another key parameter to constrain thermochemical varia-
tions and the water content inside the Earth (Romanowicz, 1995; Bhattacharyya et
al., 1996; Reid et al., 2001; Dalton and Ekström, 2006; Dalton et al., 2008). In Chap-
ter 5, attenuation is included in the parameterization to simultaneously invert for
elastic and anelastic parameters. Following (Tromp et al., 2005), the gradient of a
misfit function in terms of perturbations in attenuation Q−1, where Q is the quality
factor (inverse of attenuation), is given by

δχ(m) =
∫

V
Kµ(x)δQ−1

µ (x)dx . (2.26)

µ denotes the shear attenuation where Q−1
κ is ignored since the intrinsic attenuation

is dominated by Q−1
µ . Following Liu et al. (1976), it is assumed that the shear at-

tenuation is constant over the seismic frequency band and the relation between the
frequency dependent shear modulus µ(ω) and Q−1

µ may be given as

µ(ω) = µ(ω0)[1 + (2/π)Q−1
µ ln(|ω|/ω0)− isgn(ω)Q−1

µ ] , (2.27)

where ω0 is the reference frequency. The change in shear modulus due to a change
in shear attenuation would then be

δµ(ω) = µ(ω0)[(2/π)ln(|ω|/ω0)− isgn(ω)]δQ−1
µ , (2.28)

where the first term (2/π)ln(|ω|/ω0) captures the physical dispersion around a ref-
erence angular frequency ω0. Then the anelastic adjoint wavefield may be computed
by the anelastic adjoint source

f̃ †(x, t, m) =
1

2π

∫ ∞

−∞
[(2/π)ln(|ω|/ω0)− isgn(ω)]∗ f †(x, ω, m)ln(iωt)dω , (2.29)

where f †(x, ω, m) is the Fourier transform of the elastic adjoint source. As can be
seen anelastic kernels can be computed by an anelastic adjoint source which is ob-
tained by the Hilbert transform of the elastic adjoint source without modifying the
3D solver (Tromp et al., 2005; Bozdağ et al., 2011). However, with this approach one
needs to perform two sets of numerical simulations to compute elastic and anelastic
gradients.

Waveform discrepancies can also be caused by source parameters. Ideally, source
and structural inversions need to be performed simultaneously (Valentine and Wood-
house, 2010b). However, in practice, it is challenging because of the potential trade-
offs between seismic parameters. Source parameters (i.e., location, depth, moment
tensor, origin times) may be updated by computing source Green’s functions in 3D
background models numerically (Liu et al., 2004). Alternatively, source parameters
can also be incorporated into the adjoint tomography. For instance, Kim et al. (2011)
explored centroid-moment tensor inversions using the adjoint method. One way
to reduce the trade-off between source and structural parameters may be to apply
source corrections, such as based on a grid search to adjust the origin time and the
scalar moment at every iteration (e.g., Zhu et al., 2015; Lei et al., 2020). In this thesis,
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I preferred the latter in global inversions where the inversion of source parameters
needs further investigation.

2.3.1 Measurements in adjoint tomography

The choice of the misfit function closely affects the success of the inversion (Gee and
Jordan, 1992; Brossier et al., 2010; Bozdağ et al., 2011). In this section, I summarize
commonly used misfit functions in adjoint inversions which are also used in the rest
of the thesis.

Waveform misfit

The waveform misfit based on the L2 norm between synthetic and observed data
may be given as (Tarantola, 1984)

χw f =
1
2

N

∑
r=1

∫ T

0
||dr(x, t)− sr(x, t, m)||2dt , (2.30)

where the associated adjoint source may be obtained as (Tromp et al., 2005),

f †
w fi

(x, t) = −
N

∑
r=1

[dr(xr, T − t)− sr(x, T − t, m)] δ(x− xr) . (2.31)

The waveform misfit is commonly used in exploration geophysics (Virieux and Op-
erto, 2009) and in some global tomographic studies as well (e.g., Li and Romanowicz,
1996). However, one needs to have a starting model close enough to the actual one
to avoid nonlinearities.

Cross-correlation traveltime misfit

The cross-correaltion traveltime misfit is defined as

χtt =
1
2

N

∑
r=1
||Tobsd

r − Tr(m)||2dt . (2.32)

The associated adjoint source then given as

f †
cci
(x, t) = −

N

∑
r=1

∆Tr
1

Nr
wr(T − t)δtsi(xr, T − t, m)δ(x− xr) , (2.33)

where wr is the measurement window, ∆Tr the traveltime difference between ob-
served and synthetic data, Nr is the normalization factor (Nr =

∫ T
0 wr(t)si(xr, T −

t, m)δ2
t si(xr, T − t, m)dt), and δtsi is the time derivative of the synthetic data (e.g.,

Luo and Schuster, 1991; Marquering et al., 1999; Dahlen et al., 2000). The short-
coming of this misfit is that one needs to use multiple measurement windows to
maximize the information extracted from each time series. Because of the cross-
correlation measurements naturally favor the main arrival where scattered waves
may be suppressed. To capture the wave dispersion the frequency-dependent travel-
time measurements are also preferred which are known as multitaper misfits (Laske
and Masters, 1996; Tape et al., 2010).
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Amplitude misfit

The cross-correlation amplitude misfit may be defined as the ratio between the ob-
served and synthetic amplitudes (Ritsema et al., 2002)

χamp =
1
2

N

∑
r=1

[
ln

Aobsd
r

Ar(m)

]2

dt . (2.34)

The adjoint source then becomes

f †
ampi

(x, t) = −
N

∑
r=1

ln (∆Ar)
1

Nr
wr(T − t)si(xr, T − t, m)δ(x− xr) , (2.35)

where w is the time window and the Nr is the normalization factor (Nr =
∫ T

0 wr(t)s2
i (xr, T−

t, m)dt). Similar to the cross-correlation traveltimes the amplitude misfit also re-
quires multiple time windows to maximize the information from each seismic trace.
Its multitaper version may help capture dispersive waves better (Tape, 2009).

Envelope and instantaneous phase misfits

Working in the Hilbert domain is efficient to separate the phase and amplitude mea-
surements from each other which is desirable to better linearize the seismic inverse
problem (e.g., Bozdağ et al., 2011). The Hilbert transform of an analytic signal f is
defined as

H{ f (t)} = − 1
π

P
∫ ∞

−∞

f (τ)
t− τ

dτ , (2.36)

where P is the Cauchy principal value. The analytical signal f̃ (t) can then be written
as

f̃ (t) = f (t)−H{ f (t)} , (2.37)

where H denotes the Hilbert transform which can be computed using the Fourier
transform by setting the negative frequencies to zero:

H{ f (t)} = F−1{F{ f (t))(−isgn(ω)}} , (2.38)

where F is the forward, F−1 is the backward Fourier transforms and sgn denotes
the signum function. The analytic signal can be written in terms of an amplitude
and a phase term,

f̃ (t) = E(t) exp(iφ(t)) , (2.39)

where E(t) is the instantaneous amplitude (envelope) which can be defined based
on the real and imaginary parts of the analytic signal

E(t) =
√
R{ f̃ (t)}2 + I{ f̃ (t)}2 , (2.40)

and φ(t) is the instantaneous phase given as

φ(t) = arctan
I{ f̃ (t)}
R{ f̃ (t)}

. (2.41)
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One can then define an envelope misfit based on the difference between the
envelopes of observed and synthetic waveforms (Bozdağ et al., 2011)

χenv =
1
2

N

∑
r=1

∫ T

0
ln

(
Eobs

i (t)
Ei(m, t)

)
dt . (2.42)

The associated adjoint source for the envelope misfit can be obtained as

f †
envi

(x, t) =−
N

∑
r=1

[
ln
[

Eobs
r (xr, t)

Er(xr, m, t)

]
wr(t)si(xr, T − t, m)

Ei(xr, m, T − t)2

−H
{

ln
[

Eobs
r (xr, t)

Er(xr, m, t)

]
wr(t)H{si(xr, T − t, m)}

Ei(xr, m, T − t)2

}]
δ(x− xr) .

(2.43)

The advantage of the envelope misfit is that it can be applied to any wave train and,
in the ideal case to entire seismic trace without cutting seismograms into small win-
dows because of the intrinsic normalization term by the square of envelopes (Boz-
dağ et al., 2011). A similar misfit was also proposed in the time-frequency domain
by Kristeková et al. (2006) and Fichtner et al. (2009). Envelope misfits can be useful
to increase the linear regime of the full waveform inversion especially when there
is a lack of good starting models (Yuan et al., 2015). It has also been reported that
envelope misfits may be a better choice in attenuation inversions (Karaoğlu and Ro-
manowicz, 2018b) which is also discussed in the last chapter.

Similarly the instantaneous phase misfit may be defined as the difference be-
tween the instantaneous phase of observed and synthetic waveforms as

χip =
1
2

N

∑
r=1

∫ T

0

[
φobs

r (t)− φr(m, t)
]2

dt . (2.44)

Then the associated instantaneous phase adjoint can be written as (Bozdağ et al.,
2011)

f †
ipi
(x, t) =−

N

∑
r=1

[[
φobs

i (xr, T − t)− φi(xr, m, T − t)
] wr(T − t)H{si(xr, T − t, m)}

Ei(xr, m, T − t)2

−H
{[

φobs
i (xr, T − t)− φi(xr, m, T − t)

] wr(T − t)si(xr, T − t, m)

Ei(xr, m, T − t)2

}]
δ(x− xr) .

(2.45)

Similar to the envelope misfit the instantaneous misfit can also be applied to any
wave train successfully highlighting low amplitude signals. It has been shown that
instantaneous phase measurements improve the resolution of mantle plumes com-
pared to cross-correlation traveltime measurements by capturing more information
from diffracted waves (Rickers et al., 2012). The instantaneous phase misfit may suf-
fer from cycle skips similar to any other phase measurement which may make its
implementation to adjoint inversions challenging.

Exponentiated phase misfit

The exponentiated phase misfit (Yuan et al., 2020) was introduced as an extension
to the instantaneous phase misfit to alleviate cycle skip problems. To this end, the
instantaneous misfit is revised by defining the misfit based on normalized analytic



21

signals which leads to difference between the exponential terms of observed and
syntethic waveforms:

χep =
1
2 ∑

i

∫ T

0
||d̃i(x, t, m)− s̃i(x, t)||2dt , (2.46)

where d̃i = eiφ(t) and s̃i = eiφs(t,m) are the normalized analytical signals for observed
and synthetic data, respectively, where φ and φs are the instantaneous phase of ob-
served and syntehtic data, respectively. The associated adjoint source for the expo-
nentiated misfit then becomes

f †
epi
(x, t) =−

N

∑
r=1

[
∆I(t)

wr(t)si(xr, t, m)H{si(xr, t, m)}
Ei(xr, m, t)3 − ∆R(t)

wr(t)H{si(xr, t, m)}2

Ei(xr, m, t)3

+H
{

∆I(t)
wr(t)si(xr, t, m)2

Ei(xr, m, t)3 − ∆R(t)
wr(t)si(xr, t, m)H{si(xr, t, m)}

Ei(xr, m, t)3

}]
δ(x− xr) ,

(2.47)

where ∆R(t) stands for differences in real part and ∆I(t) stands for the difference in
the imaginary part of the analytic signal (Yuan et al., 2020).

Choice of the misfit function

Figure 2.1 shows adjoint kernels for a first arrival S wave on the transverse compo-
nent computed for different misfit functions described above. The traveltime kernel
shows a typical ‘banana-doughnut’ sensitivity (Marquering et al., 1999). The expo-
nentiated phase misfit gives a similar sensitivity as it is also based on the phase infor-
mation and there are not much observed scattered waves within the measurement
window. The amplitude and envelope misfits show similar sensitivities whereas the
waveform misfit looks more similar to traveltime kernels in this case. Each mis-
fit function has advantages and disadvantages which are briefly discussed above.
Therefore, they must be chosen carefully depending on the target problem. In full-
waveform inversions, the goal is to use full phase and amplitude information to
better constrain the structural and source parameters. However, to reduce the trade-
off, specifically in earthquake seismology, it is common to use the phase information
only when the elastic structure is targeted. Therefore, it is desirable to separate phase
and amplitude information rather than directly start using the waveform misfit. This
is the main motivation of the first-generation adjoint models in earthquake seismol-
ogy which are based on traveltime or phase measurements (Tape et al., 2009; Fichtner
et al., 2009; Zhu et al., 2012; Bozdağ et al., 2016; Lei et al., 2020). Amplitudes must
be taken into account while constraining anelastic and source parameters (Karaoğlu
and Romanowicz, 2018a,b; Kim et al., 2011). If amplitudes can be properly used,
they can also provide invaluable constraints to locate elastic heterogeneities (Wood-
house and Wong, 1986; Laske and Masters, 1996).

2.3.2 Adjoint tomography workflow

The adjoint tomography is an iterative full-waveform inversion scheme. Figure 2.2
shows a typical adjoint tomography workflow used in this thesis. The adjoint to-
mography workflow has three basic stages: 1) Numerical simulations of forward
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FIGURE 2.1: First arrival S-wave sensitivity kernels computed for the 1994 Bolivia Earth-
quake (Mw = 8.2) at a station witha n epicentral distance of 60◦. (a) The selected time
window showing S waveforms, (b) cross-correlation traveltime misfit sensitivity, (c) cross-
correlation amplitude misfit sensitivity, (d) envelope misfit sensitivity, (e) exponentiated
phase misfit sensitivity, (f) waveform misfit sensitivity.
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and adjoint simulations, 2) the pre-processing stage (i.e., data processing, selecting
measurement windows, computing adjoint sources), 3) the post-processing stage
(i.e., summation of event kernels, smoothing and pre-conditioning the gradient, de-
termining the search direction and the step length for model updates).

Pre-processing stage

Observed seismic data are obtained using public repositories such as IRIS, ORFEUS
or local seismic networks. After the computation of synthetic data by a numerical
solver, measurements are made between observed data and synthetic data based on
a chosen misfit function.

I use the automated window selection algorithm developed by Maggi et al. (2009)
to select the usable parts of seismic waveforms to compute adjoint sources. The se-
lection criteria are defined according to the target problem. Figure 2.3 shows sam-
ple waveforms and selected windows for the minor- and major-arc Rayleigh waves
used in the azimuthally anisotropic inversions in Chapter 4. In addition the effect of
oceanic and continental crust on waveforms can be clearly seen on surface waves.

Adjoint sources can be computed using the measurement windows for the de-
sired misfit function. If measurements have different categories, such as different
period bands, different type of wave selection (body and surface wave) and different
components, category weighting should be considered to obtain a balanced repre-
sentation across categories. Also other weighting terms can be introduced for spe-
cific measurements (see Chapter 3) or to balance the geographical distribution (e.g.,
Ruan et al., 2019). Final adjoint sources can be computed by summing each individ-
ual category with their respective weights.

Numerical simulations

The iterations start by performing forward simulations to compute synthetic seis-
mograms, which then used to make measurements compared to observed data to
construct adjoint sources. Then, sensitivity kernels for model parameters are com-
puted using adjoint sources performing adjoint simulations. These simulations are
performed for each event (e.g., earthquake) in the database.

Post-processing stage

Figure 2.4 shows a sample event kernel for vertically polarized shear wavespeed. It
is observed that raw kernels may have significant small scale fluctuations which can
partly be due to the numerical noise which is generally eliminated by smoothing
the gradient. The gradient is the summation of all event kernels. Kernels are then
smoothed and preconditioned to speed up the convergence. Figure 2.4b shows a
total gradient after the post processing steps.

Model updates are performed by updating old model based on a search direction
(di).

mi+1 = mi + αdi ,

where mi+1 is the new model, mi is the current model α is the step length and di is the
search direction. There are several optimization techniques for computing the search
direction. Simplest case is called steepest descent which can be written as di = −gi
where gi is the gradient. The iterations typically start with steepest descent but the
subsequent iterations generally involve more advanced techniques like Nonlinear
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Model Update
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Adjoint source &
Misfit calculation

Adjoint Simulation
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Optimization &
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Convergence?
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(using SPECFEM2D or SPECFEM3D_GLOBE)
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L-BFGS)      &    Linesearch

Start

FIGURE 2.2: The adjoint tomography workflow used in this thesis. Iterative iteration steps
are repeated until convergence.
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FIGURE 2.3: Sample seismic waveforms recorded on vertical components of two stations
for two period bands. The blue windows denote the measurement windows automatically
selected by FLEXWIN (Maggi et al., 2009). The seismic paths are as shown in the maps
where the sources and receivers are denoted by red stars and blue triangles, respectively. The
first rows of waveforms show the complete seismograms. The second rows of waveforms
highlight the minor- and major-arc surface wave windows. Differences between oceanic and
continental paths can be seen in minor arc windows especially for 40-110 s period range. It
can also be seen that waveform fits are much better in the longer periods. (a) February 23,
2004 Samoa Islands (Mw = 6.1) earthquake recorded at 90◦ distance with mostly oceanic
minor arc path. (b) August 12, 2009 Japan (Mw = 6.6) earthquake recorded at 81◦ distance
with continental minor arc path. Major arc window couldn’t be selected in 40-110 seconds
period range due to larger amplitude difference.
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FIGURE 2.4: Event and total gradients. (a) An example vertically polarized shear wave (βv)
event kernel for 2005 Lake Tanganyika Earthquake (Mw: 6.8) at 200 km depth (b) An ex-
ample vertically post-processed polarized shear wave (βv) total gradient for the azimuthally
anisotropic model GLAD-AZI M29 (see Chapter 4).

Conjugate Gradient (NLCG) or L-BFGS method (Fletcher and Reeves, 1964; Nocedal
and Wright, 2006). The step length α may be determined using a line search. For 3D
applications, a subset of the database might be used for this process to reduce the
computational cost.

In this thesis, in 2D experiments, forward and adjoint simulations are done using
the spectral-element based software package SPECFEM2D (Komatitsch and Vilotte,
1998). For synthetic examples, models are designed to perform in a specific fre-
quency range, and target and initial model seismic data is obtained using forward
simulations. Pre-processing steps are performed using python based tools like ob-
spy and pyadjoint (Beyreuther et al., 2010). Since these steps can be performed in an
embarrassingly parallel way, they are parallelized using Message Passing Interface
(MPI). In order to reduce the number of files, which is advised for High Perfor-
mance Computing (HPC) systems, Seismic Unix (SU) binary data format is used for
the seismic data. Unformatted Fortran binary data format is used for the model and
kernels for numerical simulations.

For 3D global simulations, I used Oak Ridge National Laboratory’s IBM AC922
Summit system. In 3D experiments, since data are much more sophisticated and
bigger, other formats that enable parallel input/output operation are used. HDF5
based Adaptaple Seismic Data Format (ASDF) is used for seismograms which holds
seismic data, instrument and event information as a single container (Krischer et
al., 2016). Models and kernels are stored in the Adaptable IO System (ADIOS)
file format (Liu et al., 2014). For the numerical simulations GPU version of the
SPECFEM3D_GLOBE is used which is faster than the CPU version because of the
more parallelizable hardware infrastructure. Since I/O still takes considerable amount
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of time during the simulations, there are also studies which explore the use of multi-
tier storage systems and using faster Non-volatile memory as a means to speed up
the I/O processes further 1.

1The content of this work was submitted: Mehta, K.; Wolf, M.; Podhorzki, N.; Örsvuran, R.; Logan,
J.; Wan, L.; Choi, J. Y.; Huck, K.; Yakushin, I.; Munson, T.; Foster, I.; Klasky, S. Co-Design Evaluation
of HPC I/O Middleware for Multi-Tier Storage Architectures. International Parallel & Distributed
Processing Symposium
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Chapter 3

Double-difference measurements
in global full-waveform
inversions12

Summary

We demonstrate double-difference (DD) tomography, a method involving differen-
tial measurements between stations, for 2-D and 3-D adjoint inversions based on re-
alistic source–receiver distributions, with a focus on the global scale. We first present
2-D synthetic inversion results using cross-correlation traveltime and L2 waveform
difference objective functions. Introducing a weighting term to DD objective func-
tions based on the number of measurement pairs per station speeds up convergence
and reduces bias in the final inverted model due to uneven data coverage. We next
demonstrate frequency-dependent multitaper DD measurements in a 3-D experi-
ment with real earthquake data by computing global-scale gradients. At the global
scale, careful selection of station pairs is required for differential measurements in
terms of geographical distance or geological context. In our technique, if no suitable
pairs are found for a particular station, the DD measurement reduces to a classical
misfit measurement. Furthermore, we compare 2-D and 3-D DD results with those
from corresponding conventional misfits. By exploiting previously unused informa-
tion in the recorded wavefield, DD tomography shows promise for balancing the
gradient and speeding up convergence, especially around dense regional seismic
networks.

3.1 Introduction

Dense seismic networks, such as USArray in North America or Hi-net in Japan, pro-
vide opportunities for detailed imaging of the lithosphere and upper mantle (e.g.,
Shapiro et al., 2005; Burdick et al., 2008; Zhao et al., 2012; Schaeffer and Lebedev,
2014; Lu et al., 2018). However, such networks also introduce significant data imbal-
ance challenges to global-scale adjoint inversions. Besides long-term efforts to im-
prove global data coverage through ocean bottom seismometers (e.g., Operto et al.,
2006; Thomas and Laske, 2015), floating acoustic robots (e.g., Nolet et al., 2019) and

1The content of this chapter was published in: Örsvuran, R., Bozdağ, E., Modrak, R., Lei, W., Ruan,
Y., 2020. Double-difference measurements in full-waveform inversion, Geophy. J. Int., 20(1), 661–680,
https://doi.org/10.1093/gji/ggz444.

2Geographical weighting based on source-receiver distribution was published in an accompanying
paper: Ruan, Y., Lei, W., Modrak, R., Örsvuran, R., Bozdağ, E., Tromp, J., 2019. Balancing Unevenly
Distributed Data in Seismic Tomography: A Global Adjoint Tomography Example Geophy. J. Int.,
219(2), 1225-1236, https://doi.org/10.1093/gji/ggz356.

https://doi.org/10.1093/gji/ggz444
https://doi.org/10.1093/gji/ggz356
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underwater fiber-optic cables (e.g., Sladen et al., 2019), data imbalance challenges
may be addressed through the measurement strategy and choice of misfit function.

The adjoint method (Tarantola, 1984; Tromp et al., 2005; Virieux and Operto,
2009) is an iterative full-waveform inversion technique that has become a routine
tool in exploration and earthquake tomography. After successful applications to
regional- to continental-scale studies (e.g., Fichtner et al., 2009; Tape et al., 2009;
Zhu et al., 2012), adjoint tomography has also become feasible at the global scale as
demonstrated by Bozdağ et al. (2016) and most recently by Lei et al. (2020).

The success of adjoint inversions is closely linked to the chosen misfit func-
tion (e.g., Modrak et al., 2016). It is an active research field in seismology to de-
sign suitable misfit functions for the problem at hand. L2 waveform misfit is com-
monly used for exploration (e.g., Tarantola, 1984) and global tomographic studies
(e.g., Nolet, 1987; Li and Romanowicz, 1996). Although amplitudes constrain the
elastic structure more effectively, their complex sensitivity to multiple parameters
makes their inversion more challenging. The nonlinear behavior of waveform mis-
fit is a well-known issue in full-waveform inversions which may cause global con-
vergence difficulties. Potential remedies that have been proposed include starting
iterations from longer periods (e.g., Ekström et al., 1997; Zhu et al., 2015; Pageot
et al., 2013) if there is enough low-frequency signal and linearizing measurements
by carefully chosen misfit functions, such as based on a phase measurement or en-
velopes, during the early iterations (e.g., Yuan et al., 2015; Bozdağ et al., 2016). The
cross-correlation traveltime misfit is widely used in seismic tomography (e.g., Luo
and Schuster, 1991) which highlights the traveltimes of the highest-amplitude phase
in a selected time window. It provides very robust measurements. However, one
needs to isolate waveforms to maximize the information extracted from each time
series, which is also the case for its counterpart the cross-correlation amplitude misfit
(e.g. Ritsema et al., 2002). Multitaper misfits (e.g., Laske and Masters, 1996), which
are frequency-dependent measurements, are preferred to better take advantage of
dispersive waves in inversions (e.g., Tape et al., 2009). Similar to any other phase
measurement, multitaper and classical cross-correlation travel time measurements
require a certain degree of correlation between observed and synthetic data to avoid
cycle-skipping problems. Fichtner et al. (2008) proposed using time-frequency anal-
ysis (Kristeková et al., 2006) in adjoint inversions to allow for measuring the phase
and amplitude of a wavetrain without losing information from lower-amplitude
phases. Similarly, Bozdağ et al. (2011) proposed instantaneous phase and ampli-
tude (envelope) misfits which can also be applied to wavetrains in the time domain.
Rickers et al. (2012) and Yuan et al. (2020) used variants of the instantaneous phase
misfit which better deal with the cycle-skipping problem.

Classically, seismologists make measurements on observed and synthetic data at
a given station independently of data from other stations. Double-Difference (DD)
methods, in contrast, involve measurements on station or source pairs, as intro-
duced by Waldhauser and Ellsworth (2000) to improve earthquake locations. This
approach was then used in body-wave tomography by Zhang and Thurber (2003)
and Monteiller et al. (2005). Choi and Alkhalifah (2011) and Zhang et al. (2016) intro-
duced a similar concept based on relative measurements with respect to a reference
trace rather than using pairs of receivers or sources while Hu and Menke (1992) used
differential measurements to obtain the polarization direction of seismic waves. In
the adjoint tomography context, Yuan et al. (2016) proposed a DD traveltime mis-
fit involving differences between cross-correlated observed and synthetic data over
groups of stations and showed that DD traveltime measurements speed up conver-
gence in iterative inversions while reducing bias due to source uncertainties (i.e.,
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origin time and source-time function).
In this study, our goal is to adapt DD measurements to realistic global-scale ad-

joint inversions. We take the work of Yuan et al. (2016) further and perform 2D
and 3D tests with global data coverage and measurement windows based on real
data. We revise the DD misfit of Yuan et al. (2016) by introducing a normalization
term based on the number of receiver (or measurement) pairs per station. In tomo-
graphic studies, it is common to apply a weighting scheme based on the distribution
of sources and receivers to balance data coverage (e.g., Li and Romanowicz, 1996;
Bijwaard et al., 1998; Lebedev and Van Der Hilst, 2008; Visser et al., 2008; Schaef-
fer and Lebedev, 2013; Ruan et al., 2019). To develop insight on the performance of
DD measurements, we compare DD results to classical results with and without the
receiver weighting (e.g., Bozdağ et al., 2016; Lei et al., 2020).

The paper is organized as follows. In Section 2 we define the DD traveltime and
waveform misfits and their associated adjoint sources. We then discuss strategies
for pairing stations, or measurement windows, for DD measurements to reduce the
computational cost and potential nonlinearity in measurements. We next introduce
the pair-wise weighting into DD misfits based on the number of measurement pairs.
For completeness, we briefly discuss the general weighting strategy, and the receiver
and source weightings based on their geographical distribution to balance gradients
and speed up the convergence given by Ruan et al. (2019). In Sections 3 & 4, we
perform 2D and 3D experiments with a realistic data coverage, using minor- and
major-arc surface waves only. We then compare the DD results to those from clas-
sical misfit functions with and without the receiver weighting. We further demon-
strate combining the misfit functions of DD and classical measurements to maximize
the information retrieved from waveforms. We finally discuss and summarize our
findings in Sections 5 & 6.

3.2 Methodology

In this section, we first give brief background information on classical cross-correlation
traveltime measurements and their DD variants described by Yuan et al. (2016), and
define the DD version of the classical L2-norm waveform misfit (Tarantola, 1984; No-
let, 1987) with its associated adjoint source. We then discuss how DD measurements
should be used in practice with an emphasis on global data coverage. Finally, we
introduce “pair-wise weighting" to DD misfits and compare them to classical ones
with and without the receiver weighting based on the geographical distribution of
stations presented in a counterpart paper by Ruan et al. (2019).

3.2.1 Double-difference traveltime misfit

In theory, DD measurements can be applied to any misfit function. In seismic tomog-
raphy, a major advantage of applying DD to traveltime measurements is to mitigate
source uncertainty (Yuan et al., 2016). In this study, another reason we focus on
DD traveltime measurements is to make direct comparisons with the types of phase
measurements used in global adjoint tomography models (e.g., Bozdağ et al., 2016;
Lei et al., 2020).
The classical traveltime misfit function (CC) is defined as

χcc =
1
2 ∑

i
[∆Ti]

2 , (3.1)
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where ∆Ti is the difference between the traveltimes of observed (Tobs
i ) and syn-

thetic (Tsyn
i (m)) waveforms recorded at a component of station i, i.e., ∆Ti = Tobs

i −
Tsyn

i (m). Model parameters are denoted by m and to avoid clutter, we drop the sum-
mation over sources. The associated adjoint source becomes (see Tromp et al. (2005)
for complete derivation)

f †
cci
(x, t) = −∑

i
∆Ti

1
Ni

wi(T − t)δtsi(x, T − t, m)δ(x− xi) , (3.2)

where δsi denotes perturbations in displacement synthetics due to change in model
parameters m within a selected time window w. The normalization term Ni is given
as

Ni =
∫ T

0
wisi(x, T − t, m)∂2

t si(x, T − t, m)dt . (3.3)

Following Yuan et al. (2016) the double-difference cross-correlation traveltime misfit
(CCDD) is defined as the differential traveltimes of observed and synthetic wave-
forms paired over a group of receivers, such that

χdd
cc =

1
2 ∑

i
∑
j>i

[∆∆Tij]
2 , (3.4)

where ∆∆Tij = ∆Tobs
ij − ∆Tsyn

ij , and ∆Tobs
ij and ∆Tsyn

ij are cross-correlations of ob-
served and synthetic traveltimes, respectively, computed over a group of station
pairs denoted by indices i and j. The adjoint source for the CCDD misfit made at a
set of paired stations becomes (Yuan et al., 2016)

f dd†

cci
(x, t) = −∑

j>i
∆∆Tij

1
Nij

δtsj(x, T − [t− ∆Tsyn
ij ], m) δ(x− xi) , (3.5)

f dd†

ccj
(x, t) = +∑

i<j
∆∆Tij

1
Nij

δtsi(x, T − [t + ∆Tsyn
ij ], m) δ(x− xj) , (3.6)

where si and sj are the synthetic displacements at station i and j, respectively, and
Nij is the normalization factor given as

Nij =
∫ T

0
δ2

t si(x, t + ∆tsyn
ij , m)sj(x, t, m) dt . (3.7)

3.2.2 Double-difference waveform misfit

The classical L2-norm waveform misfit (WF) (e.g., Tarantola, 1984) is defined as

χw f =
1
2 ∑

i

∫ T

0
||di(x, t, m)− si(x, t)||2dt , (3.8)

where di and si are observed and synthetic displacement data, respectively, recorded
at station i. Following Tromp et al. (2005) the corresponding adjoint source may be
written as

f †
w fi

(x, t) = −∑
i
[di(x, T − t)− si(x, T − t, m)] δ(x− xi) . (3.9)
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We define the double-difference waveform misfit (WFDD) as the difference between
differential observed and synthetic displacements between the ith and the jth sta-
tions

χdd
w f =

1
2 ∑

i
∑
j>i

∫ T

0
||
[
di(x, t)− dj(x, t)

]
−
[
si(x, t, m)− sj(x, t, m)

]
||2dt . (3.10)

The gradient then becomes

δχdd
w f = −∑

i
∑
j>i

∫ T

0
{
[
di(x, t)− dj(x, t)

]
−
[
si(x, t, m)− sj(x, t, m)

]
}[δsi(x, t, m)− δsj(x, t, m)]dt ,

(3.11)
where δsi and δsj are the perturbations of synthetic displacements at the ith and the
jth stations, respectively. We can rewrite the gradient by dividing it into two parts,

δχdd
w f = −∑

i
∑
j>i

∫ T

0
{
[
di(x, t)− dj(x, t)

]
−
[
si(x, t, m)− sj(x, t, m)

]
}δsi(x, t, m)dt

(3.12)

+∑
i

∑
i<j

∫ T

0
{
[
di(x, t)− dj(x, t)

]
−
[
si(x, t, m)− sj(x, t, m)

]
}δsj(x, t, m)dt .

(3.13)

Following Tromp et al. (2005) and Yuan et al. (2016), we may formulate the WFDD

adjoint source in two parts at the location of receivers i and j,

f †
i (x, t) = −∑

j>i

∫ T

0
{
[
di(x, T − t)− dj(x, T − t)

]
−
[
si(x, T − t, m)− sj(x, T − t, m)}

]
δ(x− xi)

(3.14)

f †
j (x, t) = +∑

i<j

∫ T

0
{
[
di(x, T − t)− dj(x, T − t)

]
−
[
si(x, T − t, m)− sj(x, T − t, m)

]
}δ(x− xj) .

(3.15)

3.2.3 Pairing measurements

It is well known that the seismic inversion is prone to cycle skipping and problems
with local minima. To mitigate these problems, it is essential to have good starting
models (Mulder and Plessix, 2008; Brossier et al., 2009; Prieux et al., 2013c, e.g., ) and
choose appropriate misfit functions (e.g., Gauthier et al., 1986; Luo and Schuster,
1991; Bozdağ et al., 2011; Modrak and Tromp, 2016) or start with longer-period data
and gradually involve shorter periods as the inversion proceeds (e.g., Sirgue and
Pratt, 2004; Bozdağ et al., 2016). Although in one sense it is desirable to have as
many station pairs as possible, in DD measurements one also has to make sure that
waveforms from paired stations are reasonably well correlated to minimize potential
nonlinearities. We suggest the following three selection criteria to pair stations based
on practical experience.
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1. Measurement window: In theory, it is possible to pair any signal in DD mea-
surements. However, to make robust, well-behaved measurements, it is sensi-
ble to consider similar seismic phases or time windows. For instance, minor-
arc surface waves should not be directly compared with major-arc surface
waves; both should be considered separately within their own categories.

2. Distance: Typically, it is useful to consider stations only within a certain dis-
tance from one another. Following Yuan et al. (2016), a selection radius may be
determined based on the scale length of heterogeneities and the width of the
first Fresnel zone, which depends on the wavelength and path length. If the
size of the problem is small enough (e.g., regional or reservoir scale), this cri-
terion may be skipped and poorly-behaved pairs may directly be eliminated
based on the waveform similarity criterion in the next item. However, the
search radius may also affect the convergence rate (see Appendix). On the
other hand in large-size problems, such as the global-scale tomography, it is
not practical to correlate data from all stations distributed worldwide with this
criterion, the search area can be narrowed down to check waveform similari-
ties.

3. Waveform similarity: It is desirable to have well-correlated waveforms to
mitigate nonlinearity in full-waveform inversions. As determined by cross-
correlation of paired waveforms, waveform similarity can be used to exclude
poorly-correlated station pairs.

In this study, we demonstrate DD measurements for global adjoint inversions based
on two sets of data: minor- and major-arc surface waves. For measurements, minor-
and major-arc surface waves are paired in their own categories, i.e., no pairing be-
tween minor- and major-arc waves. In Appendix A, we show how the selection
criteria to pair stations may affect the performance of the inversion based on 2D
checkerboard examples.

3.2.4 Balancing measurements

In earthquake seismology, data is typically recorded on three components. To max-
imize the information extracted from data and to reduce the nonlinearity of adjoint
inversions, it is common to make measurements on pre-selected time windows on
multiple period bands (e.g., Zhu et al., 2015; Bozdağ et al., 2016). Measurements
made on every component (typically vertical, radial and transverse) for every period
band form a measurement category. Different measurement categories may then be
balanced based on their number of measurements with a weighting term introduced
into the misfit function to give similar importance to all wave types in the inversion
(e.g., Bozdağ et al., 2016). At the global scale, the cluster of sources and stations may
further be weighted to reduce the bias in tomographic images due to uneven data
coverage or speed up convergence of iterative inversions (e.g., Li and Romanowicz,
1996; Lebedev and Van Der Hilst, 2008; Clouzet et al., 2018). To balance different
measurement categories by letting every wave type (i.e., body and surface waves)
have similar contributions in inversions, a general weighting may be defined (Ruan
et al., 2019; Lei et al., 2020) as

Φ =
S

∑
s

ωs

C

∑
c

ωc

Rsc

∑
r

ωscr

Nscr

∑
w

ωscrwχscrw , (3.16)
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where S, C, R, and N denote the number of sources, the number of categories (period
bands and components), the number of receivers and the number of measurement
windows, respectively. ωs, ωc, ωscr and ωscrw are the source, category, receiver and
measurement weights, respectively. Let the data misfit from source s, measurement
category c, receiver r, and measurement window w be

χsrcw =

(
∆dscrw

σscrw

)2

, (3.17)

where ∆dscrw is a measurement with an associated standard deviation σscrw. When
the model fits the data to within one standard deviation, we expect that

χscrw ∼ 1 . (3.18)

Pair-wise weighting for double-difference measurements

In DD measurements, each station, or measurement window, may have different
number of measurement pairs. As a result of the summation over paired receivers
in the adjoint source, the paths towards the cluster of receivers become more pro-
nounced in the gradient.
We introduce a pair-wise weighting term to the DD misfit function that weights
every measurement by the number of its pairs including itself such that when a
station does not have any other pairs, the measurement reduces to classical misfit.
The pair-wise weighting is applied to each measurement window.
Let us first suppose the measurement weight ωscrw and the receiver weight ωscr are
equal to one. Then for a given source s and the category c, the total weight becomes,

Rsc

∑
r

ωscr

Nscr

∑
w

ωscrw = Nsc . (3.19)

The pair-wise weighting should satisfy this equation. The weight of non-paired sta-
tions - where classical misfits are used - is set to one and the paired measurements
are down-weighted by their number of pairs, such that

ωdd
srcw =

1
pscrw

, (3.20)

where ωdd
scrw is the weight of the measurement w of source s, category c and receiver

r, and pscrw is the measurement’s number of pairs. To satisfy eq. (3.19), we need to
define the normalization parameter α

α
Rsc

∑
r

ωscr

Nscr

∑
i

ωdd
scrw = Nsc , (3.21)

where α becomes

α =
Nsc

∑Rsc
r ωscr ∑Nscr

i ωdd
scrw

. (3.22)

In Fig. 3.1, we show the effect of pair-wise weighting in a 2D experiment with a
small and a bigger array of receivers. The event kernels are computed for CCDD

with and without the pair-wise weighting and compared to those from the classical
cross-correlation traveltime misfit. The DD misfit gives higher resolution under-
neath receiver arrays compared to the CC misfit, consistent with the results of Yuan
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FIGURE 3.1: Sensitivity kernels computed for cross-correlation traveltime misfit (CC) (left)
and double-difference cross-correlation traveltime CCDD misfit without (middle) and with
(right) the pair-wise weighting. Stations are paired within their own arrays for DD measure-
ments.

et al. (2016). The pair-wise weighting, on the other hand, reduces the dominance of
the bigger array and highlights the structure underneath both station clusters.

Geographical weighting

We compare DD misfits with the pair-wise weighting to classical misfits with a “geo-
graphical weighting" proposed by Ruan et al. (2019) and used by Lei et al. (2020) in a
recent global adjoint tomography study. The geographical weighting can be applied
to weight both the source and receiver distribution and is defined by

ω−1
i =

N

∑
j=1

exp

[
−
(

∆ij

∆0

)2
]

, (3.23)

where ∆ij is the distance between stations i and j and ∆0 is the reference distance. We
use 21 earthquakes distributed worldwide in our 2D inversion tests and 3D gradient
simulations avoiding the cluster of sources. Therefore, the source weights are set
to one in all our experiments balancing measurements with the receiver weighting
only.

Combining Classical and Double-Difference Measurements

In a real experiment, there may be non-paired stations such as oceanic island sta-
tions in global inversions. DD misfits with the pair-wise weighting may deal with
such a scenario by applying classical misfits to non-paired stations and setting their
weights to one. On the other hand, DD measurements may also be combined with
classical measurements applied to all stations. For instance, two different misfits
may be applied to the same set of measurement windows as multiple misfits may
complement each other to extract more information from data. Alternatively, one
may prefer to use classical misfits for body-wave phases combined with DD mea-
surements of surface waves.
We formulate the combination of paired and non-paired (single) measurements us-
ing the general weighting (eq. 3.16). We may also introduce an additional weighting
to balance these two types of measurements if needed. We define the total weight of
measurements from single stations for source s and category c as
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ω
single
total =

Rsc

∑
r

ωscr

Nscr

∑
w

ωscrw , (3.24)

where ωscrw is the weight of classical measurements which is set to one due to the
pair-wise weighting. For DD measurements the total weight becomes

ωdd
total =

Rsc

∑
r

ωscr

Ndd
scr

∑
w

ωdd
scrw , (3.25)

where ωdd
scrw is the pair-wise weighting. Again, we need to satisfy eq. (3.19) and the

total weight must be equal to Nsc such that

α[ωsingleω
single
total + ωddωdd

total ] = Nsc , (3.26)

where ωsingle and ωdd are the relative weights for classical and DD measurements,
respectively. If these weights are the same, both measurement types will have equal
contribution to the total misfit. To satisfy the equation, we need to define α as

α =
Nsc

ωsingleω
single
total + ωddωdd

total

. (3.27)

Hereafter we will call this type of combination of classical and DD misfits for cross-
correlation traveltime and waveform measurements CCDD + CCsingle and WFDD +
WFsingle, respectively.
When classical misfits are applied to all stations and combined with DD misfits, DD
measurements may be introduced as a new category, i.e., every station has a clas-
sical measurement and DD measurements are made on paired stations only. Thus
for each period band and component two categories are defined, one for the conven-
tional misfit and one for the DD misfit where each category may have different num-
ber of measurements. From here on, we call this type of combination CCDD + CCall

and WFDD + WFall for traveltime and waveform measurements, respectively.

Relation between pair-wise weighting and geographical receiver weighting

If we do not take the waveform similarity into account and assume that each station
has only one measurement, the receiver and the pair-wise weighting behave simi-
larly. We illustrate such a case in Fig 3.2 how the receiver and pair-wise weightings
vary globally for a reference or pairing distance, respectively, of 10 and 30 degrees.
Both weighting strategies show similar results where the receiver weighting behave
like the smoother version of the pair-wise weighting.
Fig. 3.3 shows how the receiver and the pair-wise weightings change as a function of
the reference or pairing distance, respectively, depending on the location of a chosen
reference station on the globe. When the reference station is in a seismic network and
well-paired with neighboring stations, as can be the case for USArray stations, both
weightings give similar results (Fig. 3.3, top plots). The similarity decreases for fewer
pairs of stations. For a reference station in Asia, although both weighting schemes
have similar trends, the pair-wise weighting shows some steps as the number of
pairs does not gradually increase by the pairing distance (Fig. 3.3, middle plots).
When the reference station is located on an oceanic island, both weightings become
one as there is no other station nearby unless a significantly high reference distance
is set to search for neighboring stations (Fig. 3.3, bottom plots).
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FIGURE 3.2: Receiver and pair-wise weights as a function of reference and pairing distances,
respectively. a) Receiver weighting for reference distance of 10 degrees. b) Pair-wise weight-
ing for pairing distance of 10 degrees. c) Receiver weighting for reference distance of 30 de-
grees. d) Pair-wise weighting for pairing distance of 30 degrees.

In theory, the receiver weighting can be used for DD measurements instead of or
with the pair-wise weighting. However, the pair-wise weighting is a natural term
introduced into the DD misfit function and applied to each measurement window
rather than each station. Therefore it is more suitable to balance DD measurements
with the pair-wise weighting, especially in case of having multiple measurement
windows per station.

3.3 2D Experiments

In this section, we perform 2D experiments to test DD measurements with a realis-
tic global data coverage. We first invert for a global phase-speed model (Trampert
and Woodhouse, 1995). Then we use Picasso’s Guernica painting as a target model
which is independent of the global data coverage and has more smaller-scale het-
erogeneities. In addition to DD traveltime measurements we also use the classical
waveform misfit and its DD version for the Guernica example. To gain a better un-
derstanding of DD measurements with the newly introduced pair-wise weighting
scheme, we compare the results to those from classical misfits with and without the
geographical receiver weighting. Furthermore, we test combining classical and DD
measurements to maximize the information we can extract from seismograms. The
SPECFEM2D package (Komatitsch and Vilotte, 1998) is used for wave simulations in
SH mode such that membrane waves propagate in x-z plane while the particle mo-
tion is in y direction. Periodic boundary conditions are used in order to mimic global
ray paths in the 2D plane.

3.3.1 CASE I: Inverting for a global phase-speed model

In this example, our target model in inversions is the same phase-speed map used
in the experiments of Yuan et al. (2016). It is the 40 s Rayleigh wave phase-speed
map of Trampert and Woodhouse (1995) adapted to 2D numerical simulations and
used to generate synthetic seismograms to serve as observed data in our tests. The
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FIGURE 3.3: Receiver and pair-wise weights for three stations (red triangles) located in a
dense seismic network in North America (top), in a moderately sampled region in Talaya,
Russia (middle), and on the Easter Island in Pacific (bottom). Agreement between two weight-
ing schemes depends on the number of stations in the vicinity of the reference station.
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iterations start from a homogeneous model whose numerical seismograms are used
to mimic synthetic data. We selected 21 global CMT earthquakes and their associated
stations used in Bozdağ et al. (2016). We use the paths only where surface waves
would be selected in a real 3D global-scale inversion. To this end, we use the same
time windows selected by pyflex (the python version of the FLEXWIN algorithm by
Maggi et al. (2009)) for the GLAD-M15 model (Bozdağ et al., 2016). DD pairs are
selected based on the criteria described in Section 3.2.3. The measurement windows
are paired if the stations are within a 5-degree radius area and there is 90% similar-
ity between the waveforms. The selection parameters are chosen conservatively to
mimic a potential real 3D scenario.
As the number of paired stations is limited, we combine DD measurements made on
paired stations with classical traveltime measurements made on non-paired stations
with the appropriate weighting schemes. Five misfit functions used in our tests with
different weighting schemes are as given below:

1. CCall is the classical cross-correlation traveltime misfit applied to all stations
without the receiver weighting.

2. CCall
rec is the classical cross-correlation traveltime misfit applied to all stations

with the receiver weighting (rec) introduced by Ruan et al. (2019).

3. CCDD + CCsingle is the double-difference cross-correlation traveltime misfit on
paired stations with the classical cross-correlation traveltime misfit without the
receiver weighting on remaining non-paired (single) stations.

4. CCDD+CCall is the double-difference cross-correlation traveltime misfit on paired
stations combined with the classical traveltime misfit on all stations without
the receiver weighting.

5. CCDD+CCall
rec is the double-difference cross-correlation traveltime misfit on paired

stations combined with the classical traveltime misfit with the receiver weight-
ing on all stations.

Note that hereafter in all 2D and 3D experiments CCDD measurements are always
made on paired stations with the pair-wise weighting. Fig. 3.4 shows the final mod-
els obtained after 20 iterations using an L-BFGS optimization technique (e.g., No-
cedal, 1980; Liu and Nocedal, 1989). The model misfit reduction is computed us-
ing the root-mean-square metric between the target and the inverted models for all
measurement types (Fig. 3.5). Balancing the receiver distribution speeds up the con-
vergence for the CCall

rec measurements which is consistent with the results of Ruan
et al. (2019). CCDD + CCall has better results than CCall but cannot improve the
performance as good as other misfits since the CC measurements without the re-
ceiver weighting dominate the gradient. The primary goal of DD measurements is
to extract more information underneath densely covered regions which is clearly
observed, for instance, in North America due to nicely paired USArray stations.
However, it is promising to observe that the pair-wise weighting of DD measure-
ments, which weights every measurement window by its number of pairs, naturally
balances the data coverage by reducing the artifacts towards the cluster of stations.
As a result, the convergence rate becomes comparable to that of CCall

rec as seen by the
misfit reduction of CCDD + CCsingle. All measurements with the receiver weighting
(for CC) and/or pair-wise weighting (for DD) give similar misfit reductions after 20
iterations.
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FIGURE 3.4: Inversion results after 20 iterations for cross-correlation traveltimes (CCall),
cross-correlation traveltimes with the receiver weighting (CCall

rec), double-difference cross-
correlation traveltimes with classical measurements on non-paired stations (CCDD +
CCsingle), double-difference cross-correlation traveltimes with classical measurements on all
stations without (CCDD + CCall) and with (CCDD + CCall

rec) the receiver weighting. DD mea-
surements are always made on paired stations with the pair-wise weighting. The starting
model is homogeneous with the average wavespeed of the target model. The target model
is re-constructed from the 40 s Rayleigh phase-speed global model by Trampert and Wood-
house (1995)). The distribution of 21 earthquakes (red stars) and the stations (triangles) are
as shown on the top-left plot.
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FIGURE 3.5: RMS model misfits for 2D inversions after 20 iterations presented in Fig. 3.4.

FIGURE 3.6: Guernica by Pablo Picasso (© 2019 Estate of Pablo Picasso / Artists Rights
Society (ARS), New York).

3.3.2 CASE II: Guernica

We extend our tests to invert for Picasso’s Guernica painting (Figure 3.6) which is in-
dependent of the global source-station distribution and has more smaller-scale het-
erogeneities. Fig. 3.7 shows the power spectral densities of the global phase-speed
map used in the previous section and the Guernica model to compare their scale-
length of heterogeneities. Welch’s method (Welch, 1967) is used to compute the
power spectral densities. Spatial frequency contents, which are inversely propor-
tional to the scale-lengths of heterogeneities, show the richer spectrum of Guernica.

The same global source-receiver distribution used as in Section 3.3.1 and the initial
model is homogeneous with the average wavespeed of the target model. We per-
form 15 iterations with traveltime measurements where the smoothing is decreased
gradually every five iterations from a half-width of 5 degrees to 3 degrees to 1 de-
gree.
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FIGURE 3.7: Power spectral density plots of the 40 s Rayleigh phase-speed map and the
Guernica model used in 2D experiments. Axes of the plots denote spatial frequencies in x
and y directions where higher values correspond to smaller-scale heterogeneities.

Fig. 3.8 shows the results for five misfit functions described in Section 3.3.1. The re-
ceiver weighting is again essential for speeding up the convergence. CCDD measure-
ments are showing significant improvement visually on densely covered regions,
such as North America, compared to CC measurements (Fig. 3.9). CCDD combined
with a receiver-weighted CC misfit is promising to speed up the convergence and
extract more information from data, specifically underneath densely covered areas.
To further understand what each measurement exactly does we look at the regional
misfit variations. Fig. 3.10 shows the regional logarithmic model misfits of four mea-
surements computed with respect to those from CCall (i.e., ln(Model/ModelCCall))
at every 10× 10-degree cell. CCall

rec has worse model misfits in North America than
those of any measurement with CCDD because the receiver weighting down-weights
the cluster of stations to balance the total gradient. Indeed, CCDD measurements
may significantly speed up the convergence underneath dense seismic stations as
can be seen in regional experiments (see Appendix) which may not be fully observed
in total model misfits in global inversions due to the limited station clusters world-
wide.
After 15 iterations with traveltime-based misfits, we switch to L2 waveform mea-
surements using the result of CCDD + CCall

rec as the initial model (Fig. 3.11). Includ-
ing amplitude information in inversions significantly increases the resolution as ex-
pected. Overall, we observe similar results to those from traveltime measurements.
WFall

rec gives slightly better results than the others (Fig. 3.12). Fig. 3.13 shows that the
measurements with WFDD again better improve the regions with dense coverage.

3.4 3D global-scale experiments

3D wave propagation in laterally heterogeneous models can be more complex than
what we have presented in 2D so far. Because of the computational cost, it is not
feasible to perform 3D adjoint inversions for every misfit used in 2D experiments.
However, 3D gradients may give an idea of how each measurement would behave in
a real 3D set up. We specifically aim to observe if DD measurements combined with
classical misfits are robust enough to be used in a real global adjoint inversion con-
text. To this end, we compute sample 3D gradients with the same source-receiver
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FIGURE 3.8: Same as Fig. 3.4 but for the Guernica model.
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FIGURE 3.9: Same as Fig. 3.5 but for the Guernica model.
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FIGURE 3.10: Logarithmic model misfits for four misfit functions computed with respect to
CCall (i.e., ln(Model/ModelCCall)) showing the regional variations. The model misfits are
computed at every 10× 10-degree cell. Green and purple colors denote better (lower) and
worse (higher) misfits, respectively, than those from CCall measurements.

WFDDWFDD

FIGURE 3.11: Same as Fig. 3.4 but for the Guernica model based on classical and double-
difference waveform measurements. Initial model is the final model presented in Fig. 3.8
obtained from CCDD + CCall

rec measurements.
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FIGURE 3.12: Same as Fig. 3.5 but for the Guernica model based on classical and double-
difference waveform measurements.
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FIGURE 3.13: Same as Fig. 3.10 but for waveform measurements without WFDD + WFall.
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TABLE 3.1: Number of pairs for different regions and components. R, T and Z denote radial,
transverse and vertical components, respectively.

Asia Europe North America South America Oceania
R 107 201 24714 42 42
T 460 301 50871 531 63
Z 2683 747 384677 3284 190

distribution. We measure multitaper traveltime misfits for minor- and major-arc
Rayleigh and Love waves with the same misfit configurations for traveltime mea-
surements presented in Section 3.1. GLAD-M15 (Bozdağ et al., 2016) is used as
the background model. The forward and adjoint simulations are performed by
the SPECFEM3D_GLOBE software package (Komatitsch and Tromp, 2002b,a). Topog-
raphy, bathymetry, Earth’s rotation, self-gravity, the ocean load, and attenuation are
all taken into account during the simulations.

3.4.1 Computation of 3D adjoint sources and kernels

FLEXWIN (Maggi et al., 2009) is configured to select minor- and major-arc surface
waves only. Following Bozdağ et al. (2016), surface-wave measurements are done
in two period bands: 45–110 seconds and 90–250 seconds. The measurements are
based on frequency-dependent (multitaper) traveltimes. To linearize the problem
and avoid cycle skips in phase measurements the time shifts greater than half of
the minimum period and the measurements larger than 4-standard deviations are
rejected. The advantage of DD measurements increases parallel to the number of
selected pairs. We observe that 90% waveform similarity used in 2D synthetic exper-
iments degrades the number of paired stations significantly in 3D. As we can model
every wiggle in our selected windows with the help of 3D numerical wave simula-
tions, we set the waveform similarity to 80%. We pair stations within a diameter of
500 km distance where minor- and major-arc surface waves are paired in their own
categories. USArray stations results in the highest number of pairs (see Table 3.1).
The stations in Europe and Asia are also paired to a lesser extent (Fig. 3.14).

3.4.2 3D gradients

3D global gradients are computed using four traveltime misfit functions similar to
those used in 2D experiments but for multitaper misfits (Fig. 3.15). Although it is
not enough to perform global inversions, to reduce the computational cost we used
data only from the same evenly distributed 21 earthquakes in 2D experiments. We
observe that multitaper measurements with no receiver weighting (MTall) have the
most visible wave-path signature, especially across Pacific due to the USArray sta-
tions in North America. The receiver weighting (MTall

rec) significantly reduces these
path signatures while down-weighting the sensitivity underneath USArray. On the
contrary, the DD measurements emphasize the structure underneath North Amer-
ica, and the path-signature outside of the station clusters is also significantly re-
duced, even for the MTDD + MTsingle misfit. In case of MTDD + MTall

rec the gradi-
ent looks more balanced. However, the advantage of the DD measurements seems
slightly suppressed underneath USArray. Using MT measurements for only the non-
paired stations (MTDD + MTsingle) may display the advantage of DD better. This is
likely because of the interference of two misfit functions where classical measure-
ments may degrade the resolution power of DD.
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FIGURE 3.14: Number of pairs for double-difference measurements in period bands of 45-
110 s (top) and 90-250 s (bottom) for 2008 Andaman Islands, India earthquake (Mw = 6.1,
depth = 15 km).
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FIGURE 3.15: Horizontal cross-sections of 3D global gradients of vertically-polarized shear
wavespeeds at 74 km computed for a) multitaper traveltime measurements MTall on all sta-
tions, b) multitaper measurements on all stations with the receiver weighting (MTall

rec), c)
double-difference multitaper measurements combined with classical multitaper measure-
ments on non-paired stations (MTDD + MTsingle), d) double-difference multitaper measure-
ments combined with classical multitaper measurements on all stations with the receiver
weighting (MTDD + MTall

rec). All double-difference measurements are made on paired sta-
tions with the pair-wise weighting.
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3.5 Discussion

The above experiments show that it is easier to pair stations in 2D examples due to
their relatively simple waveforms. In 3D, however, mainly the crustal complexity
can significantly affect waveforms, especially those of surface waves. Therefore the
station pairs must be selected carefully depending on geological context. In partic-
ular, it is useful to separate stations based on whether they lie on oceanic or conti-
nental crust, and to employ geographical distance and correlation selection criteria,
which help mitigate nonlinearity. In addition, although the selected windows do not
necessarily have to isolate single phases, minor- and major-arc surface waves or any
body-wave window of interest should be paired separately in their own categories
to make measurements tractable and avoid the nonlinearity problem of adjoint in-
versions.
DD measurements applied to clusters of stations can very easily exacerbate bias
in tomographic images due to uneven station distribution. Introducing pair-wise
weighting to DD misfits not only alleviates this problem, but also helps to geograph-
ically balance gradients. In 2D experiments, the model misfit reduction is compara-
ble to those of classical misfits with the receiver weighting. We recommend using
DD misfits always with the pair-wise weighting to balance measurements by their
own number of pairs.
In 2D global experiments, we observe that DD measurements speed up the con-
vergence specifically underneath station clusters in iterative inversions. This re-
sult is mainly due to 1) the increased convergence rate underneath densely cov-
ered regions, 2) balanced measurements and gradients with the pair-wised weight-
ing, which is comparable to any weighting scheme based on station distribution.
Even though our 2D global results show that classical measurements with the re-
ceiver weighting may give slightly better model misfit reductions, DD model mis-
fits are comparable to those and give better resolution in areas with dense seismic
networks. 2D regional experiments confirm these results where DD measurements
can significantly increase the convergence rate compared to classical measurements
with and without the receiver weighting (see Appendix). DD gives slightly worse
model misfit reduction in global inversions likely because of the limited area on
the globe covered by dense networks. On the other hand, combining two or more
misfit functions, for instance DD for paired stations and classical misfits for all sta-
tions with the receiver weighting, may allow for extracting more information from
data, as suggested by 2D experiments. However, the combination of multiple mis-
fit functions may require additional weighting not to conceal the advantage of DD
measurements. Alternatively, one may also consider using classical and DD mea-
surements separately in subsequent iterations. Furthermore, it is common to smooth
gradients at the global scale to further regularize the imperfect coverage which may
also degrade the resolution power of DD measurements. In such a case a multi-
scale smoothing strategy (e.g., Bozdağ et al., 2016) may be a good choice, where the
smoothing operator may be defined as a function of data coverage such that densely
covered regions are smoothed less.
In this study, the experiments were performed using 21 well-distributed earthquakes.
Therefore, it was not crucial to balance the source distribution, and we set the weight
terms to one, giving the same importance to all earthquakes. In full-scale global to-
mographic applications, balancing the distribution of sources is also recommended
(e.g., Ruan et al., 2019) because earthquakes are generally distributed in a lopsided
way along plate boundaries.
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Given similar selection criteria, the number of selected pairs is generally less in 3D
compared to 2D due to the complexity of waveforms. As a result, the advantage of
DD measurements is less pronounced in 3D gradients, which may be improved by
relaxing the pairing criteria, but with a caution to avoid the nonlinearity problem in
full-waveform inversions. The DD version of the exponentiated-phase misfit, a vari-
ant of the instantaneous phase misfit (Bozdağ et al., 2011), may be a good alternative
which better deals with the cycle-skip problem (Yuan et al., 2020). The advantage
of DD measurements will naturally be more noticeable by increased number of sta-
tions, for instance, with the inclusion of PASSCAL arrays and regional networks
after careful data quality check.
We considered surface waves only in this study, using both minor- and major-arc
measurement windows. The result of applying DD measurements to surface waves
is very intuitive, with the paired measurements directly highlighting structure be-
neath station clusters. Both theoretically and in practice, DD measurements can be
applied to any measurement window, including body waves. However, use of body-
wave DD measurements requires further investigation to understand its practical
effects in real inversions. Meanwhile, a careful combination of DD surface-wave
measurements and classical body-wave measurements with receiver weighting may
be a good alternative to assimilate all wave types in inversions. While addition of
classical measurements to DD traveltime measurements removes some of the source
uncertainty advantages shown by Yuan et al. (2016), DD measurements remain use-
ful for reducing potential systematic time errors within individual station clusters.

3.6 Conclusions

DD measurements can easily be adapted to the adjoint tomography workflow. They
do not cost anything extra in wavefield simulations (forward and adjoint simula-
tions), since measurements from all selected windows and misfit functions are com-
bined during the construction of adjoint sources. Only the expense of computing ad-
joint sources increases, but this data processing expense remains insignificant com-
pared with the cost of numerical wavefield simulations.

We demonstrate DD measurements with a realistic global source-receiver distri-
bution with 2D synthetic adjoint inversions and 3D global gradients based on real
data. We introduce a pair-wise weighting to DD misfits based on the number of
pairs of each station, or measurement window. To develop insight on how DD mea-
surements should be used in practice, we compare the results to those from classical
inversions with and without receiver weighting. Having used DD measurements
with surface waves only, application to body wave windows remains a topic for
future investigation.

Our experiments show that pair-wise weighted DD measurements are useful for
assimilating data from station clusters and for faster convergence under densely-
covered regions. The pair-wise weighting term also helps balance global data cov-
erage by reducing the bias around dense station clusters. From the standpoint of
the model misfit reduction, the effect of the pair-wise weighting in DD inversions is
comparable to the effect of the receiver weighting in classical inversions at the global
scale. To draw on advantages of both techniques and maximize the information ex-
tracted from data, DD measurements may be combined with classical measurements
by including both types of terms in the misfit function.
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3.7 Appendix A: Regional checkerboard tests

In this appendix, we compare classical and double-difference cross-correlation trav-
eltime measurements with various weighting strategies on a regional example to
have better insight on the performance of each measurement and the effect of dis-
tance and waveform similarity criteria on inversions. Starting from a homogeneous
background model we invert for a target checkerboard model using a realistic data
coverage from Southern California (Tape et al., 2007) as shown in Figure 3.16 (top
first two figures).

In Figure 3.16, final models after 10 iterations with classical cross-correlation
traveltimes without (CCall) and with (CCall

rec) the receiver weighting for two differ-
ent reference distances (see Section 3.2.4), and double-difference traveltime mea-
surements (CCDD) of all stations and paired stations with various pairing criteria
(see Sections 3.2.3 & 3.2.4) are presented. The receiver weighting based on the ge-
ographical distribution of stations (Ruan et al., 2019) speeds up the convergence
compared to CCall with no receiver weighting. Increasing the reference distance for
computing the receiver weights gives slightly better results as the gradients are bet-
ter balanced. Unlike the 2D examples with global coverage, where the advantage
of double-difference measurements is not well pronounced due to limited cluster
of stations globally, CCDD measurements show better performance where the win-
ner is CCDD with pairing criteria 50% correlation between the waveforms within a
100-km search radius. This is mainly because the receiver weighting is suppressing
station clusters to balance the gradient whereas double-difference measurements are
taking their advantage into account. Figure 3.18 shows the receiver weight of each
station for each reference distance considered in the tests. The reference distances
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are selected based on the condition number (the ratio between the maximum and
minimum weights). The reference distance of 43 km is related to the maximum con-
dition number whereas 17.5 km is the value related to one third of the maximum
condition number which is recommended in practice (Ruan et al., 2019). Increasing
the reference distance more than 43 km decreases the condition number such that the
receiver weighting loses its importance (i.e., results become similar to measurements
with no receiver weighting).

Although in 3D experiments waveform similarity may play an important role
in mitigating nonlinearity, in 2D 50% and 95% waveform correlations give similar
results. On the other hand, increasing the search radius to 200 km clearly worsens
performance as it is more challenging to decrease misfit by correlating waveforms
which are significantly different from each other. Similarly, when all the stations
are paired we observe the worst performance within all CCDD measurements. Fig-
ure 3.19 shows the number of pairs of each station for each pairing criterion con-
sidered here. In a real 3D experiment we have no chance to demonstrate such ex-
periments to find optimum pairing criteria for double-difference measurements. A
100 km search radius is close to the width of the first Fresnel zone

√
λL suggested by

Yuan et al. (2016) (the mean path length and the dominant wavelength related to the
source frequency are 340 km and 42 km, respectively, give an average width of the
first Fresnel zone of about 120 km), which may be used as a starting point for search
radius in addition to geological information in 3D studies followed by the selection
criteria given in Section 3.2.3.
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FIGURE 3.16: Inversion results after 10 iterations. CCall: Cross-correlation traveltimes with-
out the receiver weighting. CCall

rec: Cross-correlation traveltimes with the receiver weighting
with two different reference distances (∆ = 17.5 km, ∆ = 43.0 km). CCDD (all): Double-
difference cross-correlation traveltimes where all stations are paired. CCDD (95%-100km):
DD measurements where stations within 100 km and with 95% waveform similarity are
paired. CCDD (50%-100km): DD measurements where stations within 100 km and with
50% waveform similarity are paired. CCDD (50%-200km): DD measurements where stations
within 200 km and with 50% waveform similarity are paired. Initial and target models are
as shown in the top first two figures.
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FIGURE 3.18: Receiver weights for the two reference distances used in cross-correlation trav-
eltime measurements in Fig. 3.16.
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FIGURE 3.19: Number of station pairs used as pair-wise weighting for various pairing crite-
ria used in double-difference traveltime measurements in Fig. 3.16.
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Chapter 4

Surface-wave azimuthally
anisotropic adjoint inversions
based on double-difference
measurements1

Summary

Earth’s lithosphere and upper mantle show significant evidence of anisotropy as a
result of its composition and deformation. Starting from the first-generation global
adjoint tomography model GLAD-M25 (Lei et al., 2020), which is the successor of
GLAD-M15 (Bozdağ et al., 2016) and transversely isotropic in the upper mantle, our
goal is to construct a global adjoint model of the upper mantle by taking azimuthal
anisotropy into account in the parameterization of the inverse problem. We focus
on four elastic parameters that surface waves are known to be most sensitive to,
namely, vertically and horizontally polarized shear waves and the shear modulus-
normalized anisotropic parameters Gc’ & Gs’. We performed 10 iterations using the
frequency-dependent traveltime (multitaper) measurements of minor- and major-
arc Rayleigh and Love waves on three components, where each waveform is nor-
malized by its number of pairs in the period ranges 40-110 s & 90-250 s. In addi-
tion, source and receiver weightings based on their geographical distribution are
applied to the measurements to balance the gradient of the misfit function. After
the third iteration, we started combining multitaper traveltime measurements with
double-difference multitaper measurements made on paired stations. New mea-
surements result in better balanced gradients with the expectation of extracting more
information underneath clusters of stations, such as USArray. Our initial results re-
veal multi-scale anisotorpic signals depending on data (kernel) coverage and get-
ting closer to the continental-scale resolution in areas with dense coverage, consis-
tent with previous studies. This is also the first time that we demonstrated double-
difference measurements in a global-scale adjoint inversions as outlined in Örsvu-
ran et al. (2020). The anisotropy signal is still not as strong as expected likely sug-
gesting that more iterations are needed to be performed. Furthermore, the tradeoff
between elastic and anelastic parameters shouuld be investigated by, for instance,
point-spread function tests. The global azimuthally anisotropic simulations have
been performed on the Oak Ridge National Laboratory’s IBM AC922 Summit system
using a dataset of 263 earthquakes where 253 of them were used in the construction
of GLAD-M15.

1The content of this chapter will be submitted for publication: Örsvuran, R., Bozdağ, E., & Peter,
D., 2021. Global azimuthally anisotropic adjoint tomography of surface waves, in prep.
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4.1 Introduction

Seismic anisotropy is a phenomenon where seismic wave velocities can be depen-
dent on the propagation direction. Anisotropy is caused by the structural prop-
erties of the medium. In the upper mantle, anisotropy is largely attributed to the
strain which causes lattice preferred orientation (LPO) of minerals (Nicolas and
Christensen, 1987). Seismic anisotropy can also caused by the spatial organization
(e.g. fine layering) of the materials in the medium which are defined by shape-
preferred orientation (SPO). In the crust, it has been shown that cracks can also
induce anisotropy (Crampin and Booth, 1985). Anisotropy has also been used for
monitoring stress build-up by observing shear-wave splitting changes with time in
the crust (Crampin et al., 1999), determining the deformation in the mantle due to
plate tectonics (Silver and Chan, 1991; Debayle et al., 2005) and the mantle convec-
tion (Montagner, 1994).

The anisotropic behavior of seismic waves is observed for both body and surface
waves. SKS and SKKS phases are used in shear wave splitting measurements to
determine the anisotropy in the mantle (Silver and Chan, 1991; Vinnik et al., 1992). P-
wave anisotropy have been observed both in laboratory (Babuška, 1984) and used to
determine the crack parameters in the crust (Crampin et al., 1980). Surface waves are
used for mapping the transverse isotropy and the azimuthal anisotropy in the upper
mantle from regional to global scales (Nataf et al., 1984; Montagner and Tanimoto,
1991; Montagner, 1985; Trampert and Heijst, 2002; Kustowski et al., 2008; Schaeffer
et al., 2016; Zhu et al., 2020).

Although they are constructed from different data sets, it has been shown that
shear wave splitting and surface wave anisotropy studies can be related to each other
which provides additional avenues to confirm and intrepret the models (Montagner
et al., 2000). Becker et al. (2012a) suggests that long-wavelength features are consis-
tent between surface wave tomography and SKS splitting measurements which are
useful for geodynamical interpretations. They also suggest the use of dense seismic
arrays for more detailed regional anisotropic tomography.

Ray based methods are commonly used in anisotropy studies since they are rela-
tively inexpensive (Debayle et al., 2005; Kustowski et al., 2008). However, it has been
shown that accurately accounting for crustal complexity is crucial for the success of
the inversions (Bozdağ and Trampert, 2008). Full waveform inversion techniques
are able to take the physics of wave propagation correctly thus avoiding the crustal
corrections.

GLAD-M15 (Bozdağ et al., 2016) and GLAD-M25 (Lei et al., 2020) used trans-
versely isotropic upper mantle. The goal of this study is to introduce the azimuthal
anisotropy into upper mantle models using the full waveform inversion method
(Tromp et al., 2005). Using global adjoint tomography model GLAD-M25 (Lei et al.,
2020), we performed 10 conjugate-gradient iterations including azimuthal anisotropy
in our parameterization. Minor and major arc surface waves are used for three com-
ponent seismograms. Double-difference measurements are used to increase reso-
lution underneath the dense station networks. Results show large scale agreement
with other models while being limited variance with the depth.
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4.2 3D numerical simulations and the adjoint inversion

4.2.1 Starting model

We started global azimuthally anisotropic adjoint inversions using the recent global
mantle model GLAD-M25 (Lei et al., 2020), which is the successor of the first-generation
global adjoint tomography model GLAD-M15 (Bozdağ et al., 2016). GLAD-M25
was constructed by performing 10 more L-BFGS iterations starting from GLAD-
M15 and increasing the data used in inversions by about 6 times compared to those
used during the construction of its starting model. GLAD-M15 was obtained after
15 conjugate gradient iterations starting from the ray-based global mantle model
S362ANI (Kustowski et al., 2008) together with 3D crustal model Crust2.0 (Bassin
et al., 2000). GLAD-M25 has the same parameterization of GLAD-M15 and its start-
ing model S362ANI with transverse isotropy confined to the upper mantle (between
Moho down to 670 km discontinuity). GLAD-M25 is the result of the simultaneous
inversion of the mantle and crust avoiding crustal corrections.

4.2.2 Numerical simulations

We use the GPU version of the 3D global wave propagation solver SPECFEM3D_GLOBE
package (Komatitsch and Tromp, 2002a; Komatitsch et al., 2002) to simulate syn-
thetic seismograms and to compute the gradient of the chosen misfit function (i.e.,
data sensitivity, Fréchet, kernels) using 3D global mantle and crustal models during
iterative inversions. The resolution of numerical simulations is NEX=256 (NEX de-
notes the number of spectral elements at the surface on one side of each of 6 chunks
that form the globe in spectral-element simulations) which resolves seismic wave-
forms down to about 17 s. Topography, bathymetry, attenuation, gravity (Cowling
approximation), ellipticity and the rotation of the Earth are all taken into account in
all forward and adjoint simulations.

We used Oak Ridge National Laboratory’s IBM AC922 Summit system to per-
form 10 iterations. For a single event, we used 384 GPUs. Forward simulations
took ∼ 3 minutes and adjoint simulations took ∼ 9 minutes in real time. The pre-
processing stage, that involves data processing, measurement window selection and
computation of adjoint sources, was performed on the Oak Ridge National Labora-
tory’s Rhea system. Using 16 CPU cores, processing of synthetic data took ∼ 6 min-
utes whereas that of observed data took ∼ 12 minutes which involved the removal
of instrument responses). The measurement window selection stage took ∼ 10 min-
utes whereas the adjoint source calculations took∼ 5 minutes per event with∼ 1000
stations in real time. Batch jobs were submitted to multiple nodes speed up the ef-
fective real time waiting period for the data processing and numerical simulations.

4.2.3 Data & measurements

In this study, our target is to image the azimuthal anisotropy in the upper man-
tle. Considering our parameterization (see next section) in the inverse problem, we
use minor- and major-arc surface waves only excluding body waves. Using surface
waves only also give us the opportunity to directly demonstrate double-difference
measurements in global adjoint tomography as described in the previous chapter.

We started iterations with the dataset of 253 earthquakes used in the construction
of GLAD-M15 (Bozdağ et al., 2016). After the fourth iteration, 10 more earthquakes
were added to the database. We also included additional data from the European
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< 50 km 50-300 km > 300 km

FIGURE 4.1: The distribution of 263 earthquakes (left) and seismic stations (right) that are
used to construct the azimuthally anisotropic global adjoint model. 253 of the events were
also used in the construction of the “first-generation” global adjoint tomography model
GLAD-M15 (Bozdağ et al., 2016). The events are selected within the moment magnitude
range 5.5–7.0. The colorbar of seismic stations denote how many times each station is used
for 263 earthquakes.

networks through the ORFEUS data center. Figure 4.1 shows the distribution of 263
earthquakes and seismic stations used in this study.

We combine minor- and major-arc surface waves in the period ranges 40–110 s
& 90–250 s. In Figure 4.2, we show sample seismic traces where surface waves are
selected using the Python version of the automated measurement window selec-
tion algorithm FLEXWIN (Maggi et al., 2009) by restricting the selection criteria
to select minor- and major-arc surface waves only. We used frequency-dependent
cross-correlation traveltime measurements (multitaper traveltime misfit (Laske and
Masters, 1996)) targeting the elastic structure only. We balanced the global data cov-
erage as much as possible using a weighting scheme based on the distribution of
seismic sources and stations as described in Ruan et al. (2019) and also in the pre-
vious chapter. After the third iteration, we started incorporating double-difference
measurements of multitaper traveltimes (Yuan et al., 2016) with the normalization
term of the number of measurement pairs used to balance the sensitivity of paired
stations (or measurements) (Örsvuran et al., 2020). In this case we defined our misfit
function as the summation of multitaper traveltimes weighted by the source and re-
ceiver distribution, and double-difference multitaper measurements made on paired
stations with the weighting term of number of measurement pairs. All measurement
categories (i.e., three-component data at different period bands) are also normalized
based on their number of measurements to make sure that each measurement cat-
egory is contributing to the model updates equally. The number of measurements
for each category are summarized in Table 4.1. Figure 4.3 shows the number of
measurement pairs for each measurement category used in double-difference mea-
surements. Minor- and major-arc Rayleigh and Love waves were paired separately
in their own measurement categories where we have the most measurement pairs
in North America due to the USArray stations. In addition, Love-wave pairs are, in
general, lower than those of Rayleigh waves, likely because of the stronger effect of
the crust on Love waveforms. Similarly, the number of major-arc pairs are much less
than those of minor-arc. The stations within a diameter of 250 km were paired and
the waveforms with less than 80% correlation were rejected. Each double-difference
measurement was then weighted by its number of pairs.
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FIGURE 4.2: Automated window selection (using FLEXWIN (Maggi et al., 2009) algorithm
and pyflex package) using M35 model. Traces are shown is for 3rd September 2010 New
Zealand Earthquake at station KBL at Kabul, Afghanistan. Both minor and major arc surface
selections are made possible with the iterative inversions.

TABLE 4.1: Number of measurements selected for two period bands and three components
(vertical (Z), radial (R) and transverse (T)) at three inversion stages. First selections are done
using the database with 253 events, second selections are done with the introduction of new
event and stations. Third selections are done with the same dataset but with improved
synthetics.

40-110 s Z 40-110 s R 40-110 s T 90-250 s Z 90-250 s R 90-250 s T
M25 126,127 61,106 101,596 139,946 20,963 34142
M28 128,360 62,555 104,171 142,029 21,742 35251
M35 131,876 64,713 107,798 142,411 21,740 35,556
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FIGURE 4.3: Minor arc, major arc and total number of pairs for vertical, radial and transverse
components. Pairs are shown in color logarithmically.
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4.2.4 Parameterization

Following Smith and Dahlen (1973) and Montagner and Nataf (1986) surface-wave
phase speed in a weakly anisotropic medium may be expressed by

c(ω, θ) = c0(ω) + c1(ω)cos(2θ) + c2(ω)sin(2θ) + c3(ω)cos(4θ) + c4(ω)sin(4θ) .
(4.1)

Surface-wave anisotropy may be represented by 13 parameters: c0 term denotes the
radial anisotropy (Love parameters A, C, L, N, F), 2θ terms c1 and c2 (Gc,s, Hc,s, Bc,s)
and 4θ terms c3 and c4 (Ec,s). Since it is not possible to solve all 13 parameters inde-
pendently, following previous azimuthally anisotropic surface wave tomographic
studies (Zhu et al., 2015; Schaeffer et al., 2016) we parameterized our inverse prob-
lem combining the radial anisotropy with the normalized azimuthally anisotropic
parameters G′c and G′s which are given as

G′c = Gc/(ρβ2
0) , (4.2)

G′s = Gs/(ρβ2
0) , (4.3)

where ρ and β0 are the density and isotropic shear wavespeed of the reference
model. Then we define the variation in the misfit as

δχ =
∫

δ ln βh Kβh + δ ln βv Kβv + δG′c KG′c + δG′s KG′s d3x , (4.4)

where βh and βv denote the horizontally and vertically polarized shear wavespeeds,
respectively, and G′c and G′s denote the normalized azimuthally anisotropic param-
eters Gc and Gs. Kernels for azimuthal anisotropy terms can be defined in terms of
the kernels of the elastic tensor coefficients (Sieminski et al., 2007a,b)

KGc = KC55 − KC44 , (4.5)
KGs = −KC45 , (4.6)

where the KCij kernel may be computed as described in Tromp et al. (2005). Note that
we keep the bulk-sound speed and the dimensionless transverse isotropy parameter
η fixed in these iterations while restricting transverse isotropy to the upper mantle.

4.2.5 Post-processing of gradients, model updates

We obtain the gradient of the misfit function by summing up event kernels (Fréchet
kernels of each earthquake) at each iteration. Before we update the model we smooth
and precondition the gradient to speed up the convergence.

We smooth the gradient using a Gaussian smoothing operator in horizontal and
vertical directions. We used a Gaussian function with a half width of 120 km (started
from 180 km in the first iteration) in the horizontal direction. We gradually increase
the smoothing in the radial direction from 5 km half width in the lithosphere to
75 km half width in the lower mantle. We then use the diagonal pseudo-Hessian
kernel as a preconditioner computed by the interaction of the forward and adjoint
acceleration wavefields (Luo et al., 2014):

P(x) =
∫

∂2
t s(x, t) · ∂2

t s†(x, T − t)dt , (4.7)
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where s and s† are the forward and adjoint displacement wavefields, respectively,
integrated over time.
We then update models using the conjugate gradient method (Fletcher and Reeves,
1964):

di = gi + βdi−1 , (4.8)

where d and g are the search direction and the gradient of the misfit function, re-
spectively, and the indices i and i− 1 denote the current and the previous iteration
numbers. β is given as

β =
gT

i .(gi − gi−1)

gT
i−1 · gi−1

. (4.9)

Following Tape et al. (2009) and Bozdağ et al. (2016) we determined the step length
for model updates by performing a line search using a subset of data of 24 earth-
quakes as representative of our entire database.

4.3 Results after 10 iterations

In Figure 4.4, horizontal cross-sections of model perturbations for βh, βv, G′c and
G′s for the first iteration at a depth of 150 km are presented. Since there is no az-
imuthal anisotropy in our starting model GLAD-M25 and the 1D reference model
1DREF (Kustowski et al., 2008) used to compute the perturbations, G′c and G′s per-
turbations are small and are the same as the conjugate gradient direction.

Figure 4.5 shows the total misfit together with the misfit reduction in each mea-
surement category after 10 conjugate gradient iterations. We observe that the misfit
curve has started flattening at the 9th iteration. We plan to continue iterations by
decreasing the smoothing further and adjusting the strategy for iterations such as
decreasing the period content of surface waves, implementing multi-scale smooth-
ing (Bozdağ et al., 2016) and the L-BFGS optimization technique.

In Figure 4.9 we present our results after 10 iterations by comparing them to a
global and continental models. We observe that after 10 iterations the magnitude of
azimuthal anisotropy in the upper mantle has not been captured well yet. However,
the overall global pattern is promising. Our adjoint models are sampled on the mesh
used in numerical simulations. To make them comparable to current global and
continental models we resampled them at every 5× 5 and 2× 2 degrees, respectively.
The comparison to a recent global anisotropic upper mantle model by Schaeffer et al.
(2016) show good agreement at 200 km. Our adjoint model does not show significant
change in the radial direction which may suggest that the depth resolution may be
limited. The comparison to the European model by Zhu et al. (2015) is promising to
achieve higher resolution underneath continents with good sampling which is also
partially the result of the double-difference measurements.

In Figure 4.10, we compare our results at 50 km underneath North America
to those from a collection of SKS splitting measurements by (Becker et al., 2012b).
Anisotropy determined from surface waves and shear wave splitting measurements
do not necessarily agree with each other as both wave types sample different parts
of the Earth. However, the similarity between the anisotropy signal especially on
the west coast likely suggest that the source of anisotropy in SKS splitting measure-
ments is related to the lithosphere and might be explained by the deformation and
flow motions related to subduction (Zhu et al., 2020).
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These results are preliminary and we plan to perform 5–10 more iterations to
finalize the first azimuthally anisotropic model and perform resolution tests before
publishing the model.

dlnVsh

dlnVsv

dGc’

dGs’

FIGURE 4.4: Perturbations in horizontally (δlnVsh) and vertically (δlnVsv) polarized shear
wavespeeds and azimuthally anisotropic parameters δG′c and δG′s. Note that the perturba-
tions of the parameters are different. Since there is no azimuthal anisotropy in the starting
model GLAD-M25, δG′c and δG′s are the same as the computed conjugate directions. δG′c
and δG′s are normalized versions of δGc and δGc to be consistent with the other parameters.
δlnVsh) and δlnVsv) lead to transverse isotropy in the upper mantle.
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FIGURE 4.5: Total misfit reduction for three components and two period bands. After the
second iteration regular multitaper measurements were combined with double-difference
measurements made on paired stations, and after the third iteration 10 more earthquakes
and ORFEUS stations were added to the database.
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FIGURE 4.6: Cross-sections of azimuthal anisotropy at 50 km and 100 km. Anisotropy is
sampled at every 5◦ × 5◦. Red triangles denote hotspots.
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FIGURE 4.7: Same as Figure 4.6 but for 200 km and 300 km.
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FIGURE 4.8: Same as Figure 4.6 but for 400 km and 500 km.
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FIGURE 4.9: Comparisons of azimuthally anisotropic global adjoint results after 10 itera-
tions (GLAD-M35-AZI) with recent azimuthally anisotropic models from classical surface-
wave inversions by Schaeffer et al. (2016) at 50 km, 100 km and 200 km. SL2016svA and
SL2016svAr are the same models by Schaeffer et al. (2016) but for the latter less damping
was applied during its inversion. GLAD-M35-AZI sections are sampled at every 5× 5 de-
grees to make them comparable to the resolution of global models.

FIGURE 4.10: Comparison of GLAD-M35-AZI underneath North America at
50 km (left) with a compilation of SKS splitting measurement results (right, red dashes) from
Thorsten Becker. Yellow dashes on the left figure are from geodynamical modeling.
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4.4 Discussions

There is strong evidence from seismic data that Earth’s upper mantle is anisotropic
mainly due to the lithospheric deformation and mantle flow controlled by plate tec-
tonics or mantle convection (e.g., Montagner and Tanimoto, 1991; Trampert and
Woodhouse, 2003; Schaeffer et al., 2016). We demonstrated taking azimuthal anisotropy
into account in global adjoint tomography based on 3D waveform simulations. To
reduce the trade-off between seismic parameters in this research we only focus on
surface wave anisotropy, and following previous azimuthally anisotropic tomogra-
phy studies we considered only the 2θ terms and attempted to invert for normalized
anisotropic parameters G′c and G′s (Montagner and Tanimoto, 1991; Schaeffer et al.,
2016) along with the vertically and horizontally polarized shear wavespeeds (Zhu et
al., 2015). Despite the great opportunity of taking full complexity of the wave prop-
agation into account to further improve the resolution of tomographic results the
effect of ignored 4θ azimuthal anisotropy terms needs to be investigated as particu-
larly Love wave azimuthal anisotropy may be dominated by them (Montagner and
Tanimoto, 1991; Trampert and Woodhouse, 2003; Ektröm, 2011; Adam and Lebedev,
2012). Adam and Lebedev (2012) also reported that 4θ terms may also be impor-
tant for shorter period Rayleigh waves because of their sensitivity to the continental
crust.

After 10 iterations our results show good agreement with plate tectonics and
overall global pattern reported in previous studies (Schaeffer et al., 2016). For in-
stance, the azimuthal anisotropy in the Pacific plate correlates well with the plate
motions where we also observe largest values of anisotropy within the plate. The
northeast motion of the Nazca plate and subduction underneath South America, the
mid-ocean ridges etc. are also well captured. The anisotropy in Africa shows signif-
icant spatial variations which can be related to the plumes and complex tectonics of
the region as well as sparse data coverage that may hinder the resolution. Where we
have dense seismic networks we are able to observe more details such as the circular
pattern in anisotropy in the east coast of North America which may be related to
the subduction related mantle flow (e.g., Zhu et al., 2020), or the counter-clockwise
rotation of the Anatolian plate (e.g., Endrun et al., 2008).

Although our results after 10 iterations show consistent results with the previ-
ous global- and continental-scale azimuthally anisotropic models there are also sig-
nificant differences. In fact, there are significant differences in details between all
azimuthally anisotropic models (see comparisons in Schaeffer et al., 2016) similar
to isotropic or transversely isotropic models which agree with each other at long
scales. This is indeed one of the main motivations of this study aiming to improve
the resolution by capturing full complexity of wave propagation. Furthermore, in
our inversions crust and mantle are inverted simultaneously avoiding commonly
used crustal corrections for which concerns have been reported that the accuracy
of determining the crustal phase with first-order approximations and the chosen
crustal model may have an impact specifically on the upper mantle structure and
anisotropy (e.g., Bozdağ and Trampert, 2008; Ferreira et al., 2010; Lekić and Ro-
manowicz, 2011). However, there are other prominent factors which may affect the
resolution. Our 10-iteration results can capture the direction of the fast direction at
larger scales which are, in general, consistent with the plate motions. However, the
magnitude of azimuthal anisotropy is still weaker compared to what has been re-
ported in previous studies. This is likely because we need to continue our iterations
as the inversion has not converged yet. Although the misfit reduction has started
to flatten after the 8th iteration (Figure 4.5) the total misfit reduction compared to
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the misfit of the starting model is slightly less than 25%. This is likely pointing out
that the bulk of the global misfit has decreased. However, the imperfect global data
coverage is making it difficult to decrease the misfit further. On the other hand
the smoothing we have been using to balance the gradient must be decreased (half
width of the Gaussian operator is 120 km in the horizontal direction) to explain 40 s
surface waves. Furthermore, consider applying a multi-scale smoothing by defining
the width of the Gaussian smoothing operator as a function of the Hessian kernel
which resembles the kernel coverage (Bozdağ et al., 2016).

Our current results show the maximum strength of azimuthal anisotropy around
100-250 km which start decreasing below 300 km. On the other hand the results do
not show significant difference in the fast direction of anisotropy in the radial di-
rection. The radial change in azimuthal anisotropy is mostly observed underneath
densely covered regions such as North America and Europe. This may be due to:
1) the model has not converged yet, 2) we need to readjust the smoothing in the
radial direction and perform more iterations, 3) we need better measurements to
increase the depth resolution. Although in our measurements we adjust the mea-
surement window lengths to capture both higher and fundamental mode minor-
and major-arc Love and Rayleigh waves the multitaper traveltime misfit we have
been using generally highlights the fundamental mode surface waves. To improve
the depth resolution, in addition to decrease and readjust the smoothing, we should
highlight the contribution of higher modes in our measurements. To this end, the
exponentiated phase misfit (Yuan et al., 2020), which is a variant of the instanta-
neous phase measurements (Bozdağ et al., 2011) that better deals with the phase
cycle skips, might be a better alternative to cross-correlation traveltimes. The expo-
nentiated misfit has the potential to highlight higher modes better in measurement
because of the intrinsic weighting introduced into associated adjoint sources that
balances amplitude differences between different seismic phases. Alternatively, the
contribution of higher modes in the total misfit may be increased by carefully select-
ing them and adjusting their weighting in the misfit function appropriately (i.e, van
Heijst and Woodhouse, 1997). We first plan to implement the exponentiated phase
into our adjoint tomography workflow which is straightforward. Meanwhile it is
worthwhile to further investigate better measurement techniques for higher modes
which is essential to extract optimum information from waveforms and improve the
depth resolution of surface waves, specifically for the transition zone.

4.5 Conclusions

We performed 10 azimuthally anisotropic global adjoint inversions using a multita-
per traveltime misfit of minor- and major-arc surface waves combined with double-
difference multitaper traveltime measurements made on paired measurement win-
dows. We observe that the double-difference measurements help increase the res-
olution underneath densely covered regions such as in the continental lithosphere
underneath North America and Europe. Our results show that after 10 iterations we
capture multi-scale anisotropic signal which correlate well with plate motions where
continental-scale resolution is achieved underneath densely covered regions. The
observed anisotropic strength is maximum around 1% which is an indication that the
model has not converged yet and more iterations are needed. To further increase the
depth resolution we consider reducing the smoothing and use a multi-scale smooth-
ing strategy to smooth densely covered regions less and vice versa. Furthermore
we will continue iterations using the exponentiated phase and its double-difference
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version to increase the contribution of higher modes to better image specifically the
transition zone.
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Chapter 5

Anelastic full-waveform inversion
in earthquake seismology1

Summary

Attenuation, a measure of the energy loss of seismic waves, is a crucial parameter
to detect partial melt, water content, and thermal variations in the mantle, which is
difficult to be constrained by seismic wavespeeds alone. Although there is almost
agreement on the long wavelength elastic structure of the mantle at the global scale,
there is no such consensus on the anelastic structure. First-generation global adjoint
tomography models GLAD-M15 (Bozdağ et al., 2016), and its successor GLAD-M25
(Lei et al., 2020), are elastic models with transverse isotropy confined to the up-
per mantle. They were constructed using the phase information of waveforms only.
Our ultimate goal is to construct an anelastic upper-mantle model by updating elas-
tic and anelastic parameters simultaneously in adjoint inversions based on 3D wave
simulations by assimilating both the phase and amplitude information in inversions
which will lead to exact2 full-waveform inversion (FWI). The trade-off between seis-
mic parameters are well known in seismic tomography. To this end, we first per-
form 2D tests to investigate the trade-off between wavespeeds and Q (quality fac-
tor, inverse of attenuation) parameters to define a strategy for 3D global inversions.
We also explore the effect of different measurements on anelastic inversions using
cross-correlation traveltimes and amplitudes, instantaneous phase and envelopes,
and classical waveform misfit functions, inverting elastic and anelastic parameters
simultaneously and sequentially. Our 2D test results suggest that the envelope misfit
performs best at earlier iterations by helping reduce the nonlinearity in FWI. In ad-
dition, we compared simultaneous inversions to the sequential ones, i.e., inverting
elastic or anelastic parameters consecutively, where simultaneous inversions behave
slightly better in our 2D experiments.

In the second part, we first analyzed the effect of different 1D Q models on
seismic waveforms by performing forward simulations of various 1D and 3D elas-
tic/anelastic models, which suggest the necessity of simultaneous elastic/anelastic
inversions also to construct the elastic structure, as attenuation cause not only am-
plitude anomalies but also significant physical dispersion, particularly on surface
waves. We then performed one simultaneous iteration of elastic and anelastic mod-
els using the starting models GLAD-M25 and 1D Q model QRF12, and the dataset
of 253 earthquakes used in the construction of GLAD-M15. The preliminary results
are promising, such as depicting the high and low attenuation in the West and East
coasts of North America. We will initially focus on the upper-mantle attenuation

1The content of this chapter will be submitted for publication: Örsvuran, R. & Bozdağ, E., 2021.
Strategies for anelastic adjoint waveform inversions, in prep.

2as opposed to only using phase information
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where we have the better coverage compared to the lower mantle and consider pro-
ceeding global iterations based on the experience we gain from 2D tests. We also
consider applying a correction to source parameters (scalar moment and origin time)
rather than inverting them simultaneously with the elastic and anelastic models to
reduce the trade-off between parameters. The global simulations have been per-
formed on Oak Ridge National Laboratory’s IBM AC922 Summit system.

5.1 Introduction

In an elastic medium, it is assumed that the seismic energy is conserved and at-
tenuation is observed only due to spatial propagation. In an anelastic medium, on
the other hand, seismic waves can lose their energy also due to the internal friction
which is the source of the anelastic attenuation. This effect is generally represented
by the dimensionless quantity “quality factor" Q (Aki and Richards, 2002), which is
the inverse of attenuation (Q−1). It is observed that anelastic attenuation can cause
both physical dispersion and amplitude anomalies in seismic waveforms (Ander-
son, 1967; Liu et al., 1976). Therefore, it is crucial to have accurate anelasticity models
while simulating the wave propagation.

Anelastic attenuation provides important information about the physical and
chemical properties of the Earth’s inner structure which enables the detection of par-
tial melt, water content and thermal variations with the elastic wavespeed (Karato,
1993; Faul and Jackson, 2005).

Anelastic models generally have lower resolution than elastic models. This is
partly due to challenges related to amplitude measurements. For the seismologi-
cal problems, it is common to construct elastic velocities using the phase of seismic
waveforms only since the seismic velocities are more linearly related to the phase
information. On the other hand, the anelastic information is generally derived us-
ing amplitudes which are more prone to nonlinearity due to their more complex
relation to elastic, anelastic and source parameters (Romanowicz, 1994a). Several
studies constructed radially symmetric anelastic models which showed an order of
magnitude variations of Q values, specifically in the upper mantle and crust, which
has led the discussions that highlights the importance of lateral variations in the
Earth’s anelastic structure (Durek and Ekström, 1996; Resovsky et al., 2005).

There have been several studies which attempted to construct laterally heteroge-
neous attenuation models. Romanowicz (1994a) used minor- and major-arc Rayleigh
waves to construct an upper mantle attenuation model which revealed upwellings
under Hawaii and northeastern Africa. Bhattacharyya et al. (1996) used S-SS differ-
ential waveforms to constrain a shear-wave attenuation model and showed some
correlation with models using surface wave analysis. Reid et al. (2001) also used dif-
ferential S waveforms and combined them with surface-wave measurements to en-
hance the depth resolution, while Warren and Shearer (2002) used P-PP differential
amplitudes. Selby and Woodhouse (2002) and Dalton et al. (2008) also used Rayleigh
wave amplitudes to image the lateral variations in the anelastic mantle. Gung and
Romanowicz (2004) used non-linear asymptotic coupling theory for anelastic inver-
sions using surface-wave amplitudes by aligning them in phase, while Karaoğlu
and Romanowicz (2018b) used envelope measurements without the need for phase
alignment. The model of Karaoğlu and Romanowicz (2018b) is the most advanced
model in terms of imaging techniques by simultaneously inverting shear wavespeeds
and Q using the waveforms from spectral-element simulations coupled with 2D
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asymptotic kernels. There are also studies that use ambient noise to construct at-
tenuation models (Prieto G. A. et al., 2009) which can be advantages to improve
the path coverage. These studies show that the attenuation variation can be corre-
lated with structures due to plate mechanics such as hotspots and ridges. However,
there is still no consensus on neither 1D nor 3D attenuation models of the Earth’s
mantle (Resovsky et al., 2005; Karaoğlu and Romanowicz, 2018a).

Since the fluid content may cause attenuation, anelasticity is also active research
field in exploration geophysics (Chapman et al., 2006; Kamei and Pratt, 2013; Kurz-
mann et al., 2013). It has been shown that attenuation is an important parameter for
monitoring gas storage and it can also provide constraints on determining soft sed-
iment structures (Carcione et al., 2006; Operto and Miniussi, 2018). For numerical
simulations, frequency-domain methods are generally used (Carcione et al., 1988;
Robertsson et al., 1994; Keating and Innanen, 2019) while there are also examples
with time-domain solvers (Bai et al., 2014; Yang et al., 2016; Fabien-Ouellet et al.,
2017).

With the advancement of computational resources, full-waveform inversion was
first demonstrated at the European scale in earthquake seismology by Zhu et al.
(2013). Full waveform inversion method has an advantage of using full physics of
the wave propagation which eliminates the need for doing corrections for elastic fo-
cusing effects, crustal structure etc. There are also discussions in the literature on the
use of full-waveform inversion in anelastic tomography (Cobden et al., 2018). One of
the important milestones towards anelastic full-waveform inversion was the imple-
mentation of attenuation in adjoint simulations based on check-pointing that uses
parsimonious storage to compute exact anelastic sensitivity kernels by Komatitsch
et al. (2016) which is specifically crucial in anelastic and global-scale elastic/anelastic
adjoint inversions.

As mentioned above, one of the main challenges to invert for the anelastic struc-
ture is coming from the measurement complexities. Both amplitudes and phases are
sensitive to multiple parameters (i.e., elastic parameters, anelasticity, source param-
eters, internal topographies, etc.) where amplitude measurements are more non-
linearly related to them. In the ideal case, all these parameters should be inverted
simultaneously, as, for instance, demonstrated by Valentine and Woodhouse (2010b)
for the simultaneous source and structural inversions. However, the trade-off be-
tween them makes it impossible to invert them uniquely (i.e., Beller and Chevrot,
2020). To mitigate the trade-off between source and structural parameters source
corrections are also considered to be applied such as to reduce the bias in origin
times and scalar moments (Zhu et al., 2015; Lei et al., 2020). On the other hand, most
of the 3D anelastic studies are performed by fixing a chosen elastic model to take
focusing and defocusing effects into account (e.g, Dalton et al., 2008). However, it is
clear that elastic and anelastic models should be updated iteratively to avoid or min-
imize the bias in both models. This is one of the main motivations of this research
to investigate the trade-off between seismic wavespeeds and attenuation. In addi-
tion, amplitudes may be more prone to the potential instrument response problems
as well as noise that the data selection for inversions requires more attention. Au-
tomated window selection algorithms are helpful to some extent (e.g., Maggi et al.,
2009; Lee and Chen, 2013). Recently, machine learning algorithms have started to
gain interest for this purpose, as well (e.g., Chen et al., 2017).

In this study, we explore inversion strategies for anelastic full-waveform inver-
sion. Our ultimate goal is to construct an anelastic upper-mantle model by updat-
ing elastic and anelastic parameters simultaneously in adjoint inversions based on
3D wave simulations by assimilating both the phase and amplitude information



78

in inversions which will lead to exact full-waveform inversion (FWI). To this end,
first, using 2D spectral-element simulations, we test various misfit functions such
as, cross-correlation traveltimes and amplitudes, instantaneous phase and envelope
misfits, and the L2-norm waveform misfit. In addition, we investigate simultaneous
and sequential elastic and anelastic inversions to see which strategy is favored by
the full-waveform inversion. In the second part, we present our preliminary results
of the first iteration simultaneous elastic and anelastic full-waveform inversion at
the global scale based on observed data following our observations based on global-
scale forward modeling with 1D/3D elastic and anelastic models.

5.2 Methodology

Seismic waveforms are affected by various factors, such as path and source effects
as well as the instrument response of receivers. If A(ω) and φ(ω) represent the
amplitude and phase of a seismic waveform as a function of the angular frequency
ω in the frequency domain, they may be written in terms of these factors (Dalton
et al., 2008),

φ(ω) = φS(ω) + φI(ω) + φF(ω) + φQ(ω) , (5.1)

A(ω) = As(ω)AI(ω)AF(ω)AQ(ω) (5.2)

where the subscripts S, I, F, Q denote the source, instrument response, elastic fo-
cusing effects and anelastic attenuation, respectively. It is common to use phase
information only to construct seismic tomographic models to linearize the inverse
problem focusing only on the elastic structure (Luo and Schuster, 1991), where a
radially symmetric Q model is used in the forward part of the problem. In many ex-
ploration or smaller-scale regional earthquake seismology studies, attenuation may
also be neglected in simulations. However, at the continental to global scale tomo-
graphic studies, the effect of low Q layer at 200 km cannot be excluded. Therefore,
generally all elastic models are constructed based on a chosen radially 1D Q model.
Nevertheless, there is no consensus on radially symmetric Q models that highlights
the importance of constructing 3D Q models which not only affects the amplitude
but also the phase of waveforms as can also be seen equations 5.1 & 5.2. This is also
the reason why in classical attenuation only tomographic inversions, it is assumed
that the elastic focusing effects are correctly predicted.

Quality factor Q, which is the inverse of attenuation, depends on the physical
and chemical conditions of the medium and it can modeled using (Anderson and
Archambeau, 1964):

Q(ω, T) = A exp
(

α(E∗ + PV∗)
RT

)
, (5.3)

where T is the temperature, A is a constant related to the properties of the medium,
E∗ is the activation energy, V∗ is the activation volume of anelastic relaxation, P is
the pressure, R is the gas constant. Thus, attenuation is sensitive to temperature and
pressure of the medium. Velocity is also dependent on these parameters and the
relation between the velocity and attenuation can be written as:

V(ω) = V(ω0)[1 + (1/π)Q−1ln(|ω|/ω0)− isgn(ω)Q−1] , (5.4)
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where ω0 is a chosen reference frequency. Hence, the physical nature of the attenua-
tion and seismic wave velocity also points out that there is a trade-off between these
parameters.

In this study, our goal is to ultimately construct a global upper-mantle Q model
without any approximation or correction to the wave propagation using full-waveform
inversion. We aim to invert elastic and anelastic model parameters simultaneously.
Assuming that the instrument response information we get from data repositories
is known, we need to address the source uncertainties which directly affect both
amplitudes (i.e., radiation pattern) and phase (i.e., depth and origin time uncer-
tainties). Ideally, source and structural parameters should also be inverted simul-
taneously (Valentine and Woodhouse, 2010b). However, due to potential trade-offs
between seismic parameters, to simplify and make the problem more tractable we
prefer to apply source corrections to waveforms by determining the origin time and
scalar moment of each earthquakes through grid search (e.g., Zhu et al., 2015; Lei
et al., 2020). In addition, we use more strict selection criteria to determine measure-
ment windows with the automated window selection algorithm, FLEXWIN (Maggi
et al., 2009), to use high-quality data from database providers.

We describe how we compute elastic and anelastic kernels using the adjoint
method in the following section. All 2D and 3D forward and adjoint simulations are
performed with the 2D and 3D numerical wave propagation solvers SPECFEM2D (Ko-
matitsch and Vilotte, 1998) and SPECFEM3D_GLOBE (Komatitsch and Tromp, 2002b)
packages, respectively.

5.2.1 Anelastic adjoint kernels

To further simplify the inverse problem we ignore the bulk attenuation as the anelas-
tic attenuation is dominated by the shear processes (Romanowicz, 1990). Assuming
that the shear Q (Qµ) is constant over the seismic-frequency band, the frequency-
dependent shear modulus µ(ω) may be written as (Liu et al., 1976),

µ(ω) = µ(ω0)[1 + (2/π)Q−1
µ ln(|ω|/ω0)− isgn(ω)Q−1

µ ] , (5.5)

where ω is the angular frequency, ω0 is a chosen reference angular frequency, Qµ is
the quality factor for the shear modulus. The gradient of the shear modulus may be
written as (Tromp et al., 2005),

δµ(ω) = µ(ω0)[(2/π)ln(|ω|/ω0)− isgn(ω)]δQ−1
µ , (5.6)

where the (2/π)ln(|ω|/ω0) captures the physical dispersion and isgn(ω) controls
the amplitude term.

In the adjoint method, the Fréchet kernels are computed numerically through the
interaction of forward and adjoint wavefields (Tarantola, 1984; Tromp et al., 2005).
Forward wavefieds are computed based on a regular seismic source recorded by a
station at a specific point. Adjoint wavefields are initiated by a fictitious source,
called adjoint source, based on the misfit between observed and synthetic data in-
serted at the location of the receiver where the wavefield simulations are performed
backward in time from receiver to the regular source.

Let f †
i (x, t) be the elastic adjoint source in the time domain for the ith compo-

nent at position x. Using the Born approximation in the frequency domain, which
is accurate for the Rayleigh wave scattering (Wu and Aki, 1985), the adjoint wave-
field may be rewritten by inserting the frequency dependent shear modulus δµ(ω)
perturbations,
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s†
k(x
′, t′) =

∫ t′

0

∫
V

Gki(x′, xr; t′ − t)
(

1
2π

∫ ∞

−∞
[(2/π) ln(|ω|/ω0)

−isgn(ω)]∗ f †
i (x, ω) exp (iωt)dω

)
d3xdt , (5.7)

where Gki is the Green’s function. The anelastic adjoint source may then be defined
as (Tromp et al., 2005; Bozdağ et al., 2011)

f̃ †
i (x, t) =

1
2π

∫ ∞

−∞
[(2/π) ln(|ω|/ω0)− isgn(ω)]∗ f †

i (x, ω) exp (iωt)dω (5.8)

which shows that one can compute anelastic kernels just by defining the anelastic
adjoint source based on the Hilbert transform of the elastic adjoint source without
modifying the numerical solver. The disadvantage is that this approach doubles the
simulations and the computation time as we need to perform two adjoint simula-
tions to compute elastic and anelastic gradients for their simultaneous inversions.
The gradient in terms of Q perturbations can be written as

δχ =
∫

V
Kµ(x)δQ−1

µ (x)dx . (5.9)

In Figure 5.1, sample waveforms are presented to illustrate the elastic and anelas-
tic effects on the waveforms. 2D spectral-element simulations were computed using
the SPECFEM2D package (Komatitsch and Vilotte, 1998) for homogeneous back-
ground models (Vs = 3.5 km/s, Qµ = 10) recorded by a receiver at 20 km distance.
First row shows, two seismograms computed for the background model (black) and
3% perturbed Vs model (Vs = 3.4 km/s) (red) with the same attenuation model. The
source is defined as an elastic force and its source time function is a Ricker wavelet
with 0.5 Hz dominant frequency. The wavespeed affects traveltimes, as expected,
producing a time delay between the fast and slow model waveforms while the am-
plitude change is small. The second row shows the difference between waveforms
computed for different Qµ models with a low (Qµ = 20) and high (Qµ = 15) attenua-
tion models. The amplitudes are larger for the low attenuation model. Due to physi-
cal dispersion, phase shifts can be observed where high attenuation slows down the
seismic phase. It should be noted, attenuation perturbations need to be much higher
compared to wavespeed perturbations to produce measurable waveform difference.
Since distances are generally much longer in global applications, smaller attenuation
differences can produce significant effects.

5.3 2D elastic-anelastic inversions

In this section, we explore inversion strategies for the joint inversion of elastic and
anelastic parameters using 2D test models. We test the effect of various misfit func-
tions (i.e., waveform misfit, cross-correlation traveltime and amplitude measure-
ments, exponentiated phase and envelopes) and compare the inversion results ob-
tained from each misfit function. In addition, we compare the results from simulta-
neous and sequential inversions of elastic and anelastic parameters.
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FIGURE 5.1: Synthetic waveforms computed for different homogeneous background mod-
els. First row shows two waveforms for fixed anelastic model (Qµ = 20) and different Vs
models. Second rows shows two waveforms for fixed wave velocity model (Vs = 3.5 km/s)
and varying attenuation models. Velocity changes effect the traveltime as expected and pro-
duce slight amplitude change. Changing attenuation model mainly effects amplitude where
high Q (low attenuation) waveform has bigger amplitude but also effects the traveltime due
to physical dispersion.

5.3.1 Numerical simulations

We compute synthetic seismograms and adjoint kernels with SPECFEM2D (Komatitsch
and Vilotte, 1998). SPECFEM2D is a 2D spectral-element solver for acoustic, elastic
and anelastic seismic wave propagation (Komatitsch and Vilotte, 1998). In this sec-
tion, viscoelastic models are used in the P-SV mode with the free surface boundary
at the top of the mesh. The Perfectly Matched Layer (PML) absorbing boundaries
are set to the other three sides of the model (Komatitsch and Tromp, 2003). Elastic
forces are used as seismic sources. The first derivative of the Gaussian is used as the
source time function with the dominant source frequency set to 0.1 Hz. The physical
dispersion due to attenuation is defined around the same frequency (i.e., the refer-
ence angular frequency ω0 is set to 0.628 radian Hz). The meshes for simulations
are designed to resolve a highest frequency of 0.2 Hz. Measurement windows are
selected to include the most of the direct, reflected and refracted waves. Misfits are
computed after low-pass filtering of seismic data considering the highest resolvable
frequency in simulations. For simultaneous inversions, the elastic and anelastic gra-
dients are computed based on two sets of simulations as described in the previous
section. For the sequential inversions, we start iterations by updating the elastic
model while fixing the anelastic one (odd iteration numbers) followed by an anelas-
tic model update while the elastic model is fixed (even iteration numbers). The elas-
tic and anelastic gradients, which are the summation of event kernels, are smoothed,
and then preconditioned using the pseudo-Hessian kernels. The L-BFGS (Nocedal,
1980) optimization technique is used to update models while keeping track of the
last 5 iterations (memory value). Taking the advantage of synthetic tests we com-
pute model misfits after each iteration in addition to data misfits. The iterations
stopped when the misfit could not be reduced by more than 0.1%.
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5.3.2 Misfit functions

One of the goals of this study is to experiment the effect of the chosen misfit func-
tion on anelastic inversions. Our ultimate goal is to choose the best measurements
for elastic/anelastic model updates at the global scale where any speed up in con-
vergence is valuable because of the cost of global-scale full-waveform inversion as
well as the robustness of iterations.

The L2 norm waveform misfit (WF) is the difference between observed and syn-
thetic waveforms, such that,

χw f =
1
2

N

∑
r=1

∫ T

0
||dr(x, t)− sr(x, t, m)||2dt , (5.10)

where d and s are the observed and synthetic waveforms, respectively, recorded at
station r as a function of position x and time t. m denotes model parameters. The
waveform misfit is commonly used in exploration geophysics (Virieux and Operto,
2009) and some global tomography studies (Li and Romanowicz, 1996; French and
Romanowicz, 2014) It may behave nonlinearly for complicated waveforms (i.e. sur-
face waves).

Traveltime measurements are widely used alternative to the waveform misfit in
seismology. Cross-correlation traveltime (TT) measurements can be used to deter-
mine the phase shift between waveforms where they can be defined as,

χTT =
1
2

N

∑
r=1
||Tobs

r − Tr(m)||2dt , (5.11)

where the Tr(m) and Tobs
r are the arrival times for synthetic and observed wave-

forms, respectively. Since cross-correlation cannot distinguish between different ar-
rivals, it is mainly used for simpler waveforms and separate measurement are made
for distinct arrivals. Frequency-dependent traveltime measurements like the multi-
taper misfit are better fit for complex waveforms such as dispersive surface waves.
(Laske and Masters, 1996).

The cross-correlation amplitude misfit (AMP) is a common measurement for am-
plitude anomalies. It is common to use the logarithmic ratio between the amplitudes
of observed (Aobsd

r ) and synthetic (Ar(m))waveforms (Dahlen and Baig, 2002), which
may be given by

χAMP =
1
2

N

∑
r=1

[
ln
(

Aobsd
r

Ar(m)

)]2

dt . (5.12)

Traveltime and amplitude (TT+AMP) measurements can be combined to recover
both phase and amplitude information which was previously used at the continental
scale anelastic full-waveform inversion (Zhu et al., 2015). This is also one of our main
strategies to check in this study.

The envelope misfit (ENV) (Bozdağ et al., 2011) uses the difference between the
envelopes of observed and synthetic waveforms, which may be defined as their log-
arithmic ratios,

χENV =
1
2

N

∑
r=1

∫ T

0
ln
(

Eobs
r (t)

Er(m, t)

)
dt , (5.13)

where envelope Eobs
r (t) and Er(m, t) denote the envelopes of observed and syn-

thetic waveforms computed by the Hilbert transform which turns a real signal into a
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complex-valued analytical signal. Envelopes are the amplitude of the analytical sig-
nal which can be computed by the square root of the square of real and imaginary
parts.

The Instantaneous phase (IP) (Bozdağ et al., 2011) can also be computed using the
Hilbert transform similar to the envelope misfit, and can be applied to wavetrains.
It is defined as the difference between the instantaneous phase of observed (φobs

r (t))
and synthetic (φr(m, t)) waveforms,

χIP =
1
2

N

∑
r=1

∫ T

0

[
φobs

r (t)− φr(m, t)
]2

dt . (5.14)

The instantaneous phase misfit (IP) has been shown to recover diffracted waves bet-
ter than cross-correlation traveltime measurements (Rickers et al., 2012). Like other
phase measurements, the instantaneous misfit may suffer from the cycle-skips where
the exponentiated phase misfit (Yuan et al., 2016) may help alleviate this problem.
The EP misfit is defined as the difference between the exponential terms of observed
and synthetic phases rather than directly computing the instantaneous phase shift,

χEP =
1
2 ∑

i

∫ T

0
||eiφobs

r (x,t) − eiφr(x,t,m)||2dt . (5.15)

Similar to TT+AMP measurements, one can also use the combination of EP+ENV
measurements to take both the phase and amplitude into account in inversions. A
similar separation of phase and amplitude measurements was proposed by Fichtner
et al. (2008) in the time-frequency domain.

The adjoint method can be used to compute Fréchet derivatives of a chosen mis-
fit function with respect to the model parameters via the interaction between the
forward wavefield, due to a regular seismic source, and a secondary time-reversed
adjoint wavefield, initiated by adjoint sources based on data residuals at the location
of receivers. Using these misfit functions and their combinations, we present our 2D
synthetic tests below. We test their effectiveness in anelastic inversion context.

5.3.3 Case study I: A layered model

In this 2D example, we adapted the upper-mantle of the radially symmetric elastic
and Q PREM model (Dziewonski and Anderson, 1981) to our experiment, which is
used as the initial model. We fixed the elastic part of the model during the simula-
tions and decreased the Qµ values by 50% (Figure 5.2) in the target model. In both the
initial and final models there is a low velocity and low Q layer in the middle. There-
fore, we only invert for the anelastic structure as we fix the elastic model avoiding
the trade-off between Vs and Qµ parameters. In our setup, we use 9 sources located
at the edges and in the center, and the stations are evenly distributed throughout
the medium as shown in Figure 5.2. It is an idealistic setup which is not possi-
ble in the real world. It is constructed to investigate the performance differences
between various measurement types. The measurement windows are selected to
include complete waveforms due to the simplistic nature of this example. We then
performed iterations with six different measurements (i.e., cross-correlation travel-
times (TT), cross-correlation traveltimes and amplitudes (TT+AMP), exponentiated
phase (EP), envelope (ENV), exponentiated phase and envelope (EP+ENV), wave-
form (WF) misfits) to observe the effect of the choice of misfit functions on anelastic
inversions.
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FIGURE 5.2: Initial and target Qµ models. Starting model is modeled after PREM and target
model is the 50% perturbation of the initial model. Elastic model is fixed. Nine sources (red
stars) and 100 stations (white downward triangles) are superimposed on the initial model.

We present our inversion results in Figure 5.3 and their data misfits in Figure 5.4.
From the visual inspection of final models iterated by the misfit functions mentioned
above it is observed that all misfits resolve the first layer reasonably well taking the
advantage of phases reflected from the free surface. ENV and EP+ENV seem to have
the best convergence in all layers followed by WF which is slightly worse in the
middle and the third layers. Indeed, the major discrepancy in the resolving power
of all misfits become more visible in the third layer where the illumination is more
sparse.

Figure 5.5 shows the model misfit reductions for each inverted model where we
observe that EP+ENV gives the best convergence rate by decreasing both phase and
amplitude misfits simultaneously. The worst result is obtained for TT measurements
which is understandable as cross-correlation TT measurements highlight the time-
shift information of the maximum amplitude signals. As both the phase and ampli-
tudes are sensitive to the variations in anelastic structure the results suggest invert-
ing them simultaneously. ENV gives better results compared to WF likely because
of the intrinsic weighting term in its adjoint source which better balances seismic
phases with different amplitudes in a wavetrain. On the other hand, WF tends to
be dominated by maximum-amplitude signals if windowing is not applied. How-
ever, ENV may have some limitations as it tries to fit the envelope of signals which
are not sensitive to polarity of waveforms (Yuan et al., 2020). WF can extract more
information from both phase and amplitudes compared to ENV. In Figure 5.5, the
model-misfit reduction for ENV after 40 iterations is shown where additionally the
iterations proceeded after 30th iteration with the WF misfit. Using WF after 30th
iterations speeds up the misfit reduction compared to ENV showing the higher sen-
sitivity of WF to waveform variations than ENV.
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FIGURE 5.3: Inversion results for CC traveltime (TT), CC traveltime and amplitude
(TT+AMP), exponentiated phase (EP), envelope (ENV), combined exponentiated phase and
envelope (EP+ENV) and waveform (WF) misfits. Including both phase and amplitude gives
better results.
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5.3.4 Case study II: Joint Inversion of elastic and anelastic models

In this section, we jointly invert elastic and anelastic parameters either simultane-
ously or sequentially (i.e., fixing either elastic or anelastic model at each iteration).
We again use a three-layer model simplified from the elastic and anelastic PREM
models with a low-velocity and low-Q layer in the middle, respectively (Figure 5.6).
In the target models, S wavespeeds and Qµ values are perturbed by 1% and 10%
, respectively, around the corresponding three-layer PREM models. In both elas-
tic and anelastic models the layer thicknesses are assumed to be known and fixed
throughout the iterations where we invert S wavespeeds and Qµ only.

Similar to the previous section, we again investigate the effect of different misfit
functions on the final models by performing elastic and anelastic inversions simul-
taneously or sequentially. In the sequential inversion strategy, one can alternate the
models at a chosen frequency of iterations. Here, we alternate the elastic and anelas-
tic models at each iteration.

Figure 5.8 shows the data misfit reduction for both simultaneous and sequen-
tial inversions using the ENV misfit. Both strategies are able to decrease the misfit
consistently although simultaneous inversions perform slightly better. More jagged
misfit reduction for the sequential inversions is the result of the alternated updates
of S-wavespeed and Qµ models However, when we compare the model misfit reduc-
tions for Qµ the sequential inversion strategy clearly outperforms the simultaneous
counterpart (Figure 5.9) where the iterations start with the elastic model update.
The first model update of the S wavespeeds seems to help decrease the Qµ model
misfit in the second iteration sharply. However, the model misfit reduction of S-
wavespeed model does not show the same result where simultaneous inversions
converge faster (Figure 5.10) It looks like it takes about 5 iterations for simultaneous
iterations to settle down with the elastic model updates whereas the sequential strat-
egy flattens from 5th to 12th iterations followed by a decrease in the model misfit.
This non-monotonic decrease in model misfits is likely due to the trade-off between
model parameters.

Figure 5.11 shows the inversion results after 19 iterations. S-wave models look
very similar to each other but the model misfit suggest that simultaneous inversion
results are slightly better. On the other hand, sequential inversion for the Qµ model
shows much better convergence than the simultaneous inversion. The close similar-
ity between seismic waveforms computed for initial and target models (Figure 5.12)
show that data misfits are saturated which may also be responsible for the oscillated
model-misfit reductions.
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FIGURE 5.6: Initial and target S-wave velocity models. Three layered models with low-
velocity layer in the middle. Target model is 1% perturbed version of the initial model. Nine
sources (red stars) and 100 stations (white downward triangles) are superimposed on the
initial model.
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FIGURE 5.7: Initial and target Qµ models. Target model is 10% perturbed version of the
initial model. Nine sources (red stars) and 100 stations (white downward triangles) are su-
perimposed on the initial model.
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FIGURE 5.11: Inversion results after 19 iterations for S-wave velocity (top) and Qµ (bottom)
using simultaneous and sequential inversions with envelope misfit.
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tom row shows the waveforms for envelope misfit inversion for sequential (red) and si-
multaneous (green) methods. Simultaneous inversion’s waveform shows better fit to target
waveform (black).
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FIGURE 5.13: Initial and target S-wave velocity models. Three layered models with low-
velocity layer in the middle. Target model is 5% perturbed version of the initial model. Nine
sources (red stars) and 100 stations (white downward triangles) are superimposed on the
initial model.

5.3.5 Case study III: Joint inversion of elastic and anelastic parameters
with higher perturbations

In this example, we again have a three-layer model adapted from PREM as used in
the previous section, with a low-velocity and a low-Q layer in the middle in elastic
and anelastic models, respectively. In the target model, S wavespeeds (Figure 5.13)
and Qµ values (Figure 5.14) are perturbed by 5% and 20% around the corresponding
PREM values. We aim to examine how iterations behave for larger model pertur-
bations. Figure 5.15 shows the data misfits for sequential and simultaneous inver-
sions performed with ENV. Both strategies are able to decrease the misfit consis-
tently while the simultaneous inversion of elastic and anelastic parameters gives
slightly better data misfit reduction. On the other hand, the sequential inversion
give slightly better Qµ model misfit reduction (Figure 5.16). On the contrary, the S-
wavespeed model misfit is better for the simultaneous inversion (Figure 5.17). The
inverted models after 21 iterations (Figure 5.18) show similar results to those in the
previous section. There are some fluctuations on model misfits which might likely
be due to the trade-off between parameters throughout the iterations. In Figure 5.19,
we show sample seismograms computed for target and initial models as well as fi-
nal models from simultaneous and sequential inversions where the waveform misfit
nicely reduced by both strategies.
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FIGURE 5.14: Initial and target Qµ models. Target model is 20% perturbed version of the
initial model. Nine sources (red stars) and 100 stations (white downward triangles) are su-
perimposed on the initial model.
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FIGURE 5.15: Data Misfits for the different inversion strategies. Sequential inversion method
was not able to decrease the misfit after 21 iterations.
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FIGURE 5.16: Qµ model misfits for sequential and simultaneous inversion. Simultaneous
inversion reduces the anelastic model misfit more slowly than sequential version. Sequential
version does not update the anelastic model on odd iterations which can be seen as the
constant model misfits.
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FIGURE 5.17: S-wave model misfits for sequential and simultaneous inversion. simultane-
ous inversion was able to decrease the elastic model misfit slightly better for this example.
Sequential version does not update the elastic model on even iterations which can be seen
as the constant model misfits.



95

0.0 96.0 192.0288.0384.0480.0
X (km)

480.0

384.0

288.0

192.0

96.0

0.0

De
pt

h 
(k

m
)

Target Model

0.0 96.0 192.0288.0384.0480.0
X (km)

480.0

384.0

288.0

192.0

96.0

0.0

De
pt

h 
(k

m
)

Envelope Simultaneous

0.0 96.0 192.0288.0384.0480.0
X (km)

480.0

384.0

288.0

192.0

96.0

0.0

De
pt

h 
(k

m
)

Envelope Sequential

2500

3000

3500

4000

4500

S-
W

av
e 

sp
ee

d 
(m

/s
)

2500

3000

3500

4000

4500

S-
W

av
e 

sp
ee

d 
(m

/s
)

2500

3000

3500

4000

4500

S-
W

av
e 

sp
ee

d 
(m

/s
)

0.0 96.0 192.0288.0384.0480.0
X (km)

480.0

384.0

288.0

192.0

96.0

0.0

De
pt

h 
(k

m
)

Target Model

0.0 96.0 192.0288.0384.0480.0
X (km)

480.0

384.0

288.0

192.0

96.0

0.0

De
pt

h 
(k

m
)

Envelope Simultaneous

0.0 96.0 192.0288.0384.0480.0
X (km)

480.0

384.0

288.0

192.0

96.0

0.0

De
pt

h 
(k

m
)

Envelope Sequential

20

40

60

80

100

120

140

Q

20

40

60

80

100

120

140

Q

20

40

60

80

100

120

140

Q

FIGURE 5.18: Inversion results after 21 iterations for S-wave velocity (top) and Qµ (bottom)
using simultaneous and sequential inversions with envelope misfit.
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FIGURE 5.19: Waveforms for different stations. Left column shows the target and initial
waveforms and right column shows the simultaneous inversion (green) and sequential in-
version (red) waveforms for Iteration 21. Difference between the inversion methods are not
easily visible but data misfits shows slightly better data misfits for simultaneous inversion
results.
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FIGURE 5.20: Initial and target S-wave velocity models. Three layered models with low-
velocity layer in the middle. Target model is 5% perturbed version of the initial model. Nine
sources (red stars) and 100 stations (white downward triangles) are superimposed on the
initial model.

5.3.6 Case study IV: Limitations of joint inversions

Using the same elastic and anelastic layered models we increase the perturbations
of S wavespeed and Qµ to 5% (Figure 5.20), and 50% (Figure 5.21), respectively. Fig-
ure 5.22 shows the data misfits where both simultaneous and sequential inversions
nicely improve the waveform fits. In Figure 5.24, the Qµ model misfit from the si-
multaneous inversion shows a smooth reduction whereas the sequential inversions
start being problematic after the 9th iteration although it starts decreasing again af-
ter the 19th iteration. The model misfit reduction for S wavespeeds (Figure 5.23)
is more challenging since both strategies show some oscillations at the beginning
with slightly better behaviour of the simultaneous inversion. Figure 5.26 shows the
inverted models. In this case Qµ model is inverted better using the simultaneous
inversion but S-wave model model misfit is slightly lower for sequential inversions.
These results suggest that 50% perturbation in Qµ we are likely running into nonlin-
earity problems where it becomes more challenging to solve the trade-off between
parameters. Sample waveforms before and after inversions are presented in Fig-
ure 5.26. This example confirms the need for a good starting model for the success
of the anelastic inversions where measurement strategies, such as starting iterations
with the ENV misfit, may help to decrease the nonlinear behaviour with caution.



97

0.0 96.0 192.0288.0384.0480.0
X (km)

480.0

384.0

288.0

192.0

96.0

0.0

De
pt

h 
(k

m
)

Initial Model

0.0 96.0 192.0288.0384.0480.0
X (km)

480.0

384.0

288.0

192.0

96.0

0.0

De
pt

h 
(k

m
)

Target Model

20

40

60

80

100

120

140

Q

20

40

60

80

100

120

140

Q

FIGURE 5.21: Initial and target Qµ models. Target model is 50% perturbed version of the
initial model. Nine sources (red stars) and 100 stations (white downward triangles) are su-
perimposed on the initial model.
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FIGURE 5.22: Data Misfits for the different inversion strategies. Sequential inversion method
gives slighlty worse results and was not able to decrease the misfit after 29 iterations.
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FIGURE 5.23: Qµ model misfits for sequential and simultaneous inversion. Simultaneous
inversion reduces was able to decrease the model misfit correctly however sequential inver-
sion was not able decrease the model misfit after 9th iteration and there is an increase of
model misfit after 17 iteration.
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FIGURE 5.24: S-wave model misfits for sequential and simultaneous inversion. Both inver-
sion methods show erratic behaviour for the velocity model misfit. This can be explained
by the effect of the high Qµ perturbation. High perturbation leads to increased non-linearity
and tradeoff between the elastic and anelastic parameters leads to unstable behavior.
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FIGURE 5.25: Inversion results after 29 iterations for S-wave velocity (top) and Qµ (bottom)
using simultaneous and sequential inversions with envelope misfit.
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FIGURE 5.26: Waveforms for different stations. Left column shows the target and initial
waveforms and right column shows the simultaneous inversion (green) and sequential in-
version (red) waveforms for Iteration 29. Although total data misfit is better for simulta-
neous inversion results, AA.A0087 station which is located in the low-velocity layer show
better data misfit for sequential inversion.
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5.4 Towards global anelastic adjoint inversions

Based on our experience and observations from the 2D experiements performed in
the previous section, our ultimate goal is to construct a global anelastic model of
the mantle using full-waveform inversion. Considering the global data coverage,
our initial focus will be on the upper mantle. To this end, in this section, we per-
formed one test iteration making cross-correlation multitaper traveltime and ampli-
tude measurements on observed and 3D synthetic data at the global scale. Since the
anelasticity affects both the phase and amplitudes of waveforms they both must be
considered in the inversion, which leads to the "full-waveform inversion" in the ex-
act sense. The challenge is that the phase and amplitudes are also sensitive to the
lateral variations in the elastic structure as well as source effects. Generally, global
elastic inversions are performed with a fixed anelastic model and anelastic inver-
sions are done with a fixed elastic model. Due to the “cross-talk” between seismic
parameters simultaneous inversions would be the better option.

Commonly, 3D elastic models are constructed as a perturbation from 1D Q mod-
els. The first-order discontinuities of the Earth are well captured in 1D reference
models (e.g., PREM (Dziewonski and Anderson, 1981)) and there is almost a con-
sensus on the global long-wavelength elastic structure (Ritzwoller et al., 2002; Lekic
et al., 2012). However, error bars on the radially symmetric Q structure is large,
specifically in the crust and upper mantle (Resovsky et al., 2005). Furthermore, de-
spite the progress in anelastic inversions, there is a limited agreement between the
current 3D Q models (Karaoğlu and Romanowicz, 2018a), which needs to be inves-
tigated further.

Amplitudes provide sharper elastic images compared to those from travel-time
measurements only. However, in 3D global experiments, upper-mantle attenuation
has a profound affect on seismic waveforms, specifically those of surface waves (Boz-
dağ and Trampert, 2010), that we have to invert for elastic and anelastic structures
simultaneously when amplitudes are used while more carefully treating the source
parameters, which make the inversions more challenging due to potential trade offs
between model parameters. In both GLAD-M15 (Bozdağ et al., 2016) and GLAD-
M25 (Lei et al., 2020), the same radially-symmetric Q model, QL6 (Durek and Ek-
ström, 1996), is used, which was fixed throughout the iterations. The reason for us-
ing QL6 was that it was also the Q model of S362ANI (Kustowski et al., 2008), which
was the starting model of GLAD-M15. It is crucial to update the anelastic struc-
ture also for the elastic model updates as attenuation can cause significant physical
dispersion, specifically for teleseismic surface waves.

Anelastic adjoint tomography previously demonstrated at the European scale (Zhu
et al., 2013) where potential water content and partial melting at subduction zones
were exhibited by high attenuation. The trade-off between parameters and the suc-
cess of the constructed models needs to be investigated further. At the global scale,
the most advanced technique so far was used by Karaoğlu and Romanowicz (2018a)
for surface-wave modeling to construct an upper-mantle anelastic model using a hy-
brid approach based on spectral-element simulations and asymptotic data sensitiv-
ity kernels where shear-wavespeeds and attenuation were inverted simultaneously.
In this study, our ultimate goal is to construct a mantle attenuation model based on
adjoint tomography. It is computationally expensive, however, in the current reso-
lution of tomographic images, such expenses are justified, even necessary to further
improve the resolution (Bozdağ et al., 2016; Komatitsch et al., 2016). Anelastic ad-
joint inversions have not been performed at the global scale yet through the simul-
taneous inversion of elastic (both Vp & Vs) and anelastic parameters, which would
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FIGURE 5.27: Minor and major arc Rayleigh waves for the fixed PREM elastic model
(Dziewonski and Anderson, 1981) and two different Qµ upper mantle models PREM & QM1
(Widmer et al., 1991) (left). Significant phase and amplitude changes can be seen, especially
in the major arc. Seismogram is bandpassed filtered between 45-110 s and located at 79 de-
grees.

lead to the first global full-waveform inversion model in the exact sense by assimilat-
ing both the phase and amplitude information in inversions. We initially target to re-
trieve a long-wavelength anelastic upper-mantle model with lateral variations using
the dataset of 253 events that were used in the construction of GLAD-M15 (Bozdağ
et al., 2016).

5.4.1 Effect of attenuation on waveforms

We computed two sets of synthetic seismograms for two different Q models. In the
first set, we used the PREM Q model and in the second set, we replaced the upper-
mantle Q values of PREM with those of QM1 (Widmer et al., 1991) (Figure 5.27). The
PREM Q model has a significantly high-attenuation layer above 200 km which is not
pronounced in QM1. When we look at the surface waveforms of Rayleigh waves, the
difference in the upper-mantle Q models creates about 6 s time shift for minor-arc
waves at a distance of 79◦ where PREM Q attenuates the amplitude slightly more. As
the propagation distance increases the impact of different Q models becomes more
visible. For major-arc surface waves, the phase shift becomes more than 20 s, which
is almost half of the minimum period of the waveforms (45 s), and amplitudes of the
PREM Q synthetics decrease almost by half of that of QM1. Thus, upper mantle Q
models can cause considerable difference on amplitudes but also large phase shifts
which can even lead to cycle-skipping issues in measurements.

We performed another test to further analyze the 3D Q effects on waveforms.
To this end, we selected 50 earthquakes which were not used in the construction of
model GLAD-M15 (Bozdağ et al., 2016). Following its starting model S362ANI (Kus-
towski et al., 2008), GLAD-M15 was also constructed based on the 1D Q model of
QL6 (Durek and Ekström, 1996). We computed two sets of seismograms with a reso-
lution down to 17 s. In the first set, we used GLAD-M15 with its Q model QL6 and in
the second set, we used GLAD-M15 with the 3D Q model of Dalton et al. (2008). We
made cross-correlation traveltime and amplitude measurements between the com-
puted synthetics and the associated observed data for the 45-110 s period band using
both minor- and major-arc body and surface waves. In Figure 5.28, the histograms
of cross-correlation amplitude measurements on three components (vertical, radial
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FIGURE 5.28: Body and surface wave amplitude measurements for GLAD-M15 elastic
model with 1D Q model QL6 (Durek and Ekström, 1996) which was used in the construc-
tion of the elastic model and 3D Q model QRFSI12 (Dalton et al., 2008) in 45 to 110 seconds
period range. Mean and standard deviation of the measurements are written at the top left
of the plots. Using 3D Q model slightly improves the results.

and transverse) for body and surface waves are presented. The amplitude mea-
surements of the 3D Q synthetics slightly work better by centering the histograms,
which specifically becomes more prominent for surface waves. However, the cross-
correlation traveltime measurements do not exhibit a similar pattern (Figure 5.29).
The effect of Q models on surface waves are more pronounced and the 3D Q model
increases the traveltime shifts compared to those from the 1D Q model. These results
illustrate that elastic models can not be combined with arbitrary Q models since they
are constructed based on a specific Q model where the wavespeeds are shifted ac-
cording to the physical dispersion at a specific reference frequency. This demonstra-
tion is also crucial for choosing a starting Q model for the adjoint inversions. The
results suggest that the starting model should be fixed to the reference Q model of
the starting elastic model, which is in our case QL6 (Durek and Ekström, 1996), to
continue iterations from GLAD-M15 (Bozdağ et al., 2016) or GLAD-M25 (Lei et al.,
2020), which is the successor of GLAD-M15 as a result of 10 more iterations with a
larger data set. The results also highlight that the full-waveform inversion is essen-
tial by simultaneously inverting elastic and anelastic parameters to further improve
also the elastic structure where shear velocities involve the physical dispersion due
to the reference Q model.

5.4.2 3D numerical forward & adjoint simulations

In this study, we use the global wave propagation solver the SPECFEM3D_GLOBE
package (Komatitsch and Tromp, 2002a; Komatitsch et al., 2002) to perform forward
and adjoint simulations to compute 3D seismic wave propagation and 3D data sen-
sitivities (Fréchet kernels), respectively. GLAD-M15 and its successor GLAD-M25
were constructed based on wave simulations with accuracy down to 17 s (NEX=256,
where NEX is the number of spectral elements along one side of each chunk at the
surface. Note that the globe consists of six chunks in the global spectral-element
simulations). The Moho variations, which directly significantly affect surface-wave
propagation, are honored in numerical simulations as described in Tromp et al.
(2010b) specifically for better sampling the thin oceanic crust (on average 7 km).
Topography, bathymetry, ellipticity, rotation, gravity (Cowling approx.), attenuation
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FIGURE 5.29: Body and Surface wave traveltime measurements for GLAD-M15 elastic
model with 1D Q model QL6 (Durek and Ekström, 1996) which was used in the construction
of the elastic model and 3D Q model QRFSI12 (Dalton et al., 2008) in 45 to 110 seconds pe-
riod range. Mean and standard deviation of the measurements are written at the top left of
the plots. Measurement distributions do not drastically change using 3D Q model. On the
other hand, for surface wave traveltimes mean values are bigger and standard deviations
are higher using the 3D Q model.

and the ocean load are all taken into account during forward and adjoint simula-
tions. Simulations are performed for each earthquake, the computational cost is
independent of the number of seismic stations.

In adjoint inversions, Fréchet derivatives can be computed based on two numer-
ical simulations: (1) a forward simulation initiated by a regular source, such as an
earthquake, and recorded at a receiver, and (2) an adjoint simulation initiated by
placing an adjoint source based on the data misfit at the location of the station and
recorded at the location of the regular source (Tarantola, 1984; Tromp et al., 2005).
However, two adjoint simulations are needed to compute elastic and anelastic gra-
dients for the current setup of the solver as we describe below.

In this set up, we choose GLAD-M25 (Lei et al., 2020) as the elastic starting model
and its radially-symmetric Q model QL6 (Durek and Ekström, 1996) as the anelastic
starting model for FWI. The total misfit function may be defined as the sum of the
phase and amplitude misfits (Zhu et al., 2015) or a direct waveform misfit may also
be used (Virieux and Operto, 2009; Li and Romanowicz, 1996). Our results based
on 2D inversions suggest that it might be a good strategy to start iterations with
an envelope misfit to linearize the problem, especially while starting form a 1D Q
model. Here, to be consistent with the previous global adjoint tomography studies
we performed a test iteration using multitaper traveltime and amplitude measure-
ments which have been demonstrated to be robust, and with appropriate window-
ing strategies (i.e., using an automated phase picking algorithm FLEXWIN (Maggi
et al., 2009)) the measurements can be linearized while information going into inver-
sions can be maximized (e.g., Bozdağ et al., 2011).

To perform anelastic-elastic simultaneous inversions, we need to calculate two
sets of gradients without the need of changing the numerical solver: one for elastic
and one for anelastic parameters. Assuming that attenuation is constant over the
seismic frequency band (Liu et al., 1976), the anelastic gradient can be computed
by the anelastic adjoint source modified from the elastic adjoint sources by taking
its Hilbert transform (e.g., Tromp et al., 2005; Bozdağ et al., 2011). In this study,
we ignore the bulk attenuation since intrinsic attenuation is dominated by shear
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attenuation. The models can then be iteratively updated using a gradient-based
optimization method, such as conjugate gradient or L-BFGS (Nocedal, 1980).

5.4.3 Measurements

For this experiment, we use three period bands 17-40 s, 45-110 s and 90-250 s, simi-
lar to the measurements of previous GLAD models. Measurement windows are se-
lected for each period band using the automated window selection algorithm (Maggi
et al., 2009). In the shortest period range, we only select body waves. For the 45-
110 seconds, we select both body and surface waves and for the longest period
band we select surface waves only. 253 events that were used in the construction
of the GLAD-M15 (Bozdağ et al., 2016) are used in this experiment. For each earth-
quake, 180-minute seismograms are computed to capture major-arc body and sur-
face waves. Frequency-dependent multitaper measurements (Laske and Masters,
1996) are used for measuring traveltimes and amplitudes. The 2D experiments favor
the envelope misfit (Bozdağ et al., 2011) which should be considered in the further
iterations, together with the exponentiated phase misfit (Yuan et al., 2020).

5.4.4 Parameterization, model updates

In the ideal case, we should also be inverting source parameters together with anelas-
tic and elastic parameters (Valentine and Woodhouse, 2010b). However, because of
the potential trade-offs between seismic parameters we prefer to apply source cor-
rections to the origin time and the scalar moment of each earthquake based on a grid
search (Zhu et al., 2015; Lei et al., 2020). We use both the phase and amplitude mea-
surements which moves our adjoint inversions to complete ‘full-waveform’ inver-
sions. To this end, we define our misfit function as the sum of phase and amplitude
misfits:

χ = χphase + χamplitude . (5.16)

One may also use a simple L2-norm waveform misfit or other combinations of
phase and amplitude measurements such as instantaneous phase and envelopes.
Our 2D tests with exponentiated phase and envelope misfits are promising that we
consider using them in future iterations. To perform elastic-anelastic simultaneous
inversions we need to calculate two sets of gradients: one for elastic parameters and
another for attenuation. To compute the anelastic gradient, we just modify the elastic
adjoint sources by taking their Hilbert transform (e.g., Tromp et al., 2005; Bozdağ et
al., 2011) such that,

f̃ †
i (x, t) =

1
2π

∫ ∞

−∞
[(2/π) ln(|ω|/ω0)− i sgn(ω)]∗ f †

i (x, ω) exp (iωt)dω , (5.17)

where f̃ † and f † are anelastic and elastic adjoint sources, respectively, and ω0 is the
reference angular frequency of the model. The (2/π) ln(|ω|/ω0) term captures the
physical dispersion around the reference frequency and i sgn(ω) is responsible for
amplitude variations. We can then write our total gradient as the sum of elastic and
anelastic gradients computed both for phase and amplitude measurements:

χtotal = χelastic
phase + χelastic

amp + χanelastic
phase + χanelastic

amp . (5.18)
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For simultaneous ealstic and anelastic inversions we use the following parameteri-
zation in inversions following Zhu et al. (2013):

δχ(m) =
∫

V
Kc(x)δlnc + Kβv(x)δlnβv + Kβh(x)δlnβh

+ Kη(x)δlnη + Kµ(x)δQ−1
µ (x) d3x ,

(5.19)

where we kept the original transversely isotropic parameterization of GLAD-M25.
c is the bulk sound speed, βv and βh are the vertically and horizontally polarized
shear wave speeds, respectively, η is the dimensionless parameter related to the in-
cidence angle and anisotropy (Anderson, 1961), and Q−1

µ is the shear attenuation.
Density of the model, (ρ), is not directly included in the parametrization to reduce
the trade-off and it is updated using the empirical scaling relation with isotropic
(Voight averaged) shear-wave perturbations (δ ln ρ = 0.33 δ ln β) (Montagner and
Anderson, 1989).

To remove the numerical noise and balance the imperfect data coverage we smooth
our gradients. In this case, since we start from a 1D Q model with potentially large
uncertainties, we used larger smoothing for the anelastic gradient. We smoothed the
anelastic gradient with a Gaussian operator with half widths of 450 km and 50 km in
the horizontal and vertical directions, respectively. For the elastic gradients we used
120 km and 50 km half widths of the Gaussian smoothing operator in the horizontal
and vertical directions, respectively, considering the resolution of GLAD-M25 (Lei et
al., 2020) as the elastic starting model. The gradients were then preconditioned with
the diagonal pseudo-Hessian kernel which is obtained by the interaction between
forward and adjoint acceleration fields and mimic the kernel coverage (Luo, 2012).
The elastic model is updated at the first iteration using the steepest descent:

mi+1 = mi exp (αdi) , (5.20)

where the next model mi+1 is constructed perturbing the current model mi by α
determined by the line search in the direction di using the exponential function.
We performed the line search using 25 earthquakes from our database distributed
worldwide to reduce the computational cost. The attenuation model, on the other
hand, is updated using the absolute values of the gradient direction rather than us-
ing the logarithmic ratio of the models

mi+1 = mi + αdi . (5.21)

5.4.5 Source corrections

To minimize the effect of source uncertainties, one can invert moment-tensor source
parameters using 3D wave simulations either by computing source Green’s function
in 3D background models (Liu et al., 2004) or solve them in the adjoint sense (Kim
et al., 2011). Here, we prefer to apply source corrections to the origin time and scalar
moment of earthquakes similar to Zhu et al. (2015) and Lei et al. (2020) to focus on
the inversion of elastic and anelastic parameters. The source correction terms for
origin times and scalar moments are determined for each earthquake by performing
a grid search that minimizes the total misfit. To reduce the potential bias due to
the uneven distribution of seismic stations a weighting scheme for measurements is
introduced as described in Liu et al. (2004), such as
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w = N−0.5
a (dist)−1N−c

c ,

where Na is the number of stations in each azimuthal bin (azimuthal bins are as-
signed for each degree), Nc is the number of traces in each component and the c
exponent is selected as 1, 2, 1 for vertical, radial and transverse components, respec-
tively, which introduce a relative weighting between components. Since vertical and
transverse component fits are typically better than radial components it is weighted
less than other components. The distance is also considered in the weighting which
is anti-correlated with the weight of the measurement. In each measurement win-
dow, cross-correlation traveltime and amplitude misfits are computed and they are
combined with the weights wtt = 0.143 and wamp = 0.857 to balance out the misfit
values which are selected based on the experimental setup.

Figure 5.30 shows an example of grid search for a selected earthquake in New
Zealand where nearly 20% reduction in total amplitude misfit is observed after source
corrections were applied. The positive and negative values of origin time shifts
mean the that origin time is delayed (synthetics were lagging behind the observed
data) and advanced (synthetics were faster than observed data), respectively. The
positive and negative scalar moment changes denote smaller and larger synthetic
amplitudes than observed ones, respectively. Figure 5.31 shows the distribution of
correction terms for 253 earthquakes where most of the time shift corrections are less
than 1 second and the total scalar moment is predominantly increasing. After the
source correction is applied, traveltime and amplitude measurements recomputed
to test the efficacy of the corrections. Figure 5.32 and 5.33 show the distribution of
the measurements before and after the source corrections. The traveltime histograms
center around zero, especially for the shorter period bands. Since it has been shown
that attenuation is more apparent in longer periods due to large variation in the low
Q zone at depth 80-200 km, better anelastic model might improve the long period
measurements further (Ruan and Zhou, 2010). On the other hand, effect of the cor-
rections on the amplitude measurements is much more apparent with the reduced
skewness of the amplitude histograms toward the positive side. Such source cor-
rections are expected to reduce the bias in source parameters as well as increase
the number of measurement windows at each iteration by reducing amplitude dif-
ferences between observed and synthetic waveforms. However, it should be noted
that to reduce the trade-off, source corrections are suggested to be performed before
each iteration (Zhu et al., 2015).

5.4.6 First iteration results

We demonstrated a simultaneous elastic and anelastic full-waveform inversion in
3D by performing a test iteration. We performed two adjoint simulations to ob-
tain the elastic and anelastic gradients as described above. We used the frequency-
dependent cross-correlation traveltime and amplitude measurements between ob-
served and synthetic waveforms of minor- and major-arc body and surface waves
using the dataset of 253 earthquakes used in the construction of GLAD-M15 (Boz-
dağ et al., 2016). The measurement categories were weighted to make sure that each
category has an equal contribution to the total misfit in addition to the applied ge-
ographical weighting based on the source-receiver distribution to balance the data
coverage as described in Ruan et al. (2019) and also in Chapter 3.
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FIGURE 5.32: Traveltime measurement histograms before and after source correction. Mean
values and standard deviations are written in the top-left. Measurement mean values gen-
erally gets closer to zero, especially for the shorter period body waves.
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FIGURE 5.33: Amplitude measurement histograms before and after source correction. Mean
values and standard deviations are written in the top-left. Correction effect is much more
visible in the amplitude measurements.
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After the first iteration model updates, we observe a modest decrease in data
misfits in all measurement categories at all period bands, components (vertical, ra-
dial and transverse) for traveltimes and amplitudes (Figure 5.34). Part of the modest
decrease in data misfits should be due to that the elastic and anelastic gradients were
smoothed differently, specifically the large smoothing applied to the anelastic gradi-
ent. In addition, it is challenging but required to make sure that all measurement cat-
egories improve at each iteration. However, a few more iterations are likely needed
to stabilize the simultaneous inversions by making the anelastic model comparable
to the elastic one in terms of resolution.

In Figures 5.35 and 5.36, we present the cross-sections of the vertically-polarized
shear wavespeed (Vsv) and shear Q models taken at 100 km and 300 km depths,
respectively. The models are perturbed by 0.5% around their starting models. The
anelastic model update is smoother due to the large smoothing applied to the as-
sociated gradient and the Vsv model update naturally resembles its starting model
GLAD-M25 (Lei et al., 2020). Overall there is a good correlation between the Vsv
and shear Q models. For instance, the slow and fast wavespeeds in the east and
west costs of North America are denoted by low and high shear Q values, or high
attenuation at some plume regions at 300 km such as Hawaii, etc. Similar correla-
tions were also reported, for instance, by Dalton et al. (2009) between shear-velocity
model S362ANI (Kustowski et al., 2008) and the attenuation model QRFSI12 (Dalton
et al., 2008). Although these observations are promising, it is early to draw a conclu-
sion as they are the results after only one iteration. To make reliable physical inter-
pretations as well as to comment on the success of the simultaneous inversions more
iterations must be performed showing successful decrease in misfit. In addition, the
trade-off between elastic and anelastic parameters must be carefully investigated by
performing, for instance, point-spread function (PSF) tests (Fichtner and Trampert,
2011a).

5.5 Discussion

In this study, we investigate strategies for anelastic adjoint inversions in 2D and
3D. We first demonstrated 2D adjoint waveform inversions to retrieve the anelastic
structure for synthetic models. Then we performed one elastic and anelastic global
adjoint inversion using observed data. The 2D experiments confirm that both the
elastic and anelastic starting models are crucial for successful inversions. Even the
simple 2D synthetic models of layered structures show strong trade-off between pa-
rameters. Potential remedies are carefully choosing appropriate measurements for
full-waveform inversions and introducing constraints to the full-waveform inver-
sion problem which might help reduce the trade-off (Aghamiry et al., 2020; Aragao
and Sava, 2020).

The global elastic models are constructed based on a chosen, generally, radially-
symmetric Q model. It is also common to use the phase information only to linearize
measurements assuming that the phase anomaly is due to only the elastic structure.
Since traveltime anomalies are also affected by physical dispersion (Kanamori and
Anderson, 1977; Romanowicz, 1990) it is now a requirement to simultaneously up-
date elastic and anelastic structures not only to construct anelastic Earth models but
also to further improve elastic models.

It is well-known that misfit functions play an important role in the success of
full-waveform inversions (e.g., Modrak et al., 2016). Our 2D experiments favor the
envelope misfit in anelastic adjoint tomography supporting the results of Karaoğlu
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FIGURE 5.35: First iteration Vsv and attenuation models at 100 km depth.
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FIGURE 5.36: First iteration Vsv and attenuation models at 300 km depth.

and Romanowicz (2018a) who reported that the envelope based misfit behaves bet-
ter than the classical waveform misfit for anelastic inversions. The advantage of
the envelope misfit has also been reported in other studies (e.g., Yuan et al., 2015)
where a multi-step approach can be a good strategy, such as starting with the enve-
lope misfit followed by the classical L2-norm waveform misfit to better model entire
waveforms. On the other hand, a combination of the envelope misfit with its coun-
terpart exponentiated phase misfit can be a good alternative to increase resolution,
specifically over the frequency-dependent (multitaper) cross-correlation traveltimes
and amplitudes where the measurements generally favor main phases (Bozdağ et
al., 2011).

We demonstrated to simultaneously invert for the elastic and anelastic structure.
However, it is well known that source uncertainties can also affect the accuracy of
measurements and source effects can be as large as path effects (e.g., Ferreira and
Woodhouse, 2007). Ideally the source and structural parameters should be inverted
simultaneously as well (Valentine and Woodhouse, 2010b). However, the strong
trade-off between seismic parameters makes it challenging to invert everything si-
multaneously. An alternative approach might be to invert source and structural pa-
rameters sequentially. For instance, source parameters can be updated by computing
source Green’s functions in 3D background models (Liu et al., 2004) or estimating
source parameters using the adjoint method similar to the structural inversions we
performed here (e.g., Kim et al., 2011). However, the challenge of using 3D sim-
ulations as well as the adjoint inversions for source parameters may increase the
computational cost significantly. Part of the source uncertainties, such as those in
origin times, may be addressed by using differential measurements (Romanowicz,
1994b; Bhattacharyya et al., 1996; Warren and Shearer, 2002; Yuan et al., 2016). In
our 3D application, to keep inversions tractable, we preferred to apply source cor-
rections to correct the origin times and scalar moments at every iteration instead of
performing source inversions to reduce the trade-off between source and structural
parameters and not to increase the computational cost of numerical simulations fur-
ther following (Lei et al., 2020).

Adjont inversions based on 3D wave simulations offer great opportunities to
further improve the resolution of both elastic and anelastic structural parameters.
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However, at the global scale, one of the main shortcomings to further improve the
resolution specifically in the lower mantle and D” region as well as the structure
underneath the oceans (i.e., oceanic mantle plumes) is still the data coverage due to
the uneven distribution of sources and stations on the globe. The coverage in the
upper-mantle is much better due to surface waves. Therefore the imperfect data
coverage will be a bigger concern to image the lower-mantle attenuation where the
body-wave coverage is sparse. A solution would be to combine body waves with
normal-modes, however, it is not a straightforward process since this requires set-
ting up a hybrid approach to involve normal modes because of the potential cost
and stability issues of simulating normal-modes numerically. The ultimate solution
would be to cover the oceans with three-component Ocean Bottom Seismometers
(OBS). Meanwhile, long-lived seismic floats called MERMAIDs (e.g., Simons et al.,
2009; Sukhovich et al., 2011) detect acoustic conversions from P-waves from regional
and teleseismic events are promising to sample the oceans. MERMAIDs have been
used in arrival-time inversions, most recently to image the Galapagos plume (Nolet
et al., 2019). An interesting question is if we could use them to constrain the P-
wavespeed elastic structure in adjoint inversions, which could eventually help con-
strain both the elastic and the anelastic structure. For now, a good strategy would be
to use as many data as possible from the catalogue (Lei et al., 2020). This approach
can also introduce redundant data as we cannot change the location of earthquakes
and broad-band stations significantly in the near future. Using appropriate measure-
ments to extract as much information as possible from each seismic trace could help
improve the data coverage (e.g, Fichtner et al., 2009; Bozdağ et al., 2011; Yuan et al.,
2016; Örsvuran et al., 2020). Furthermore, in global inversions, a multi-scale smooth-
ing strategy can be used to smooth gradients in regions with good and sparse data
coverage less and more, respectively, following Bozdağ et al. (2016). In addition,
regional inversions with half-Earth simulations can be considered to target regions
with good coverage in the lower mantle and the core-mantle boundary in adjoint
inversions.

The uncertainty quantification and resolution analysis are long-standing chal-
lenge in seismic tomography since Backus and Gilbert (1968) and Backus et al. (1970).
Checkerboard tests are commonly used in classical inversions for resolution anal-
ysis. However, they are not affordable in full-waveform inversions due to their
computational cost. They are not relevant to uncertainty quantification, and their
validity is also questionable for assessing the resolution (e.g., Lévêque et al., 1993).
Bayesian inference would be a preferred method of inversion, but this is not feasible
for 3D global adjoint inversions, even for classical 3D inversions. For resolution tests,
most commonly Point Spread Function (PSF) tests (Fichtner and Trampert, 2011b)
and random probing are used (Fichtner and van Leeuwen, 2015) to asses the reso-
lution. Uncertainty quantification (UQ) for a smaller number of model parameters
has been performed in non-linear inverse problems (e.g, Mosegaard and Tarantola,
1995; Sambridge, 1999; Meier et al., 2007), but the practicality of UQ is still an issue
for full-waveform inversion problems due to the size of model space. In addition to
assessing the quality of the constructed models with analyzing the misfit with data
from an independent set of earthquakes and PSF tests, performing low-dimensional
Monte-Carlo type of sampling might provide a better understanding of the resolu-
tion of certain features, for instance, oceanic mantle plumes whose 3D geometry and
size may potentially be biased due to uneven data coverage.
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5.6 Conclusions

Attenuation is a key parameter to constrain the thermochemical variations and the
water content in Earth’s mantle. It is more challenging to construct the anelastic
models compared to the elastic ones due to the more complex nature of measure-
ments involving the amplitudes of waveforms. However, attenuation not only af-
fects amplitudes but also the phase of waveforms where elastic models are con-
structed as perturbations around a chosen reference attenuation model. Therefore,
at the current resolution of global seismology it is now required to simultaneously
invert for the elastic and anelastic models not only to construct anelastic models, that
would provide invaluable constraints to interpret the composition and dynamics of
the mantle, but also to further improve the resolution of elastic models.

Performing simultaneous elastic and anelastic adjoint inversions is straightfor-
ward in the current adjoint tomography workflows, which requires only an addi-
tional adjoint simulation to construct the anelastic gradient by modifying the elastic
adjoint source taking its Hilbert transform. The potential trade-off between seismic
parameters may be reduced by choosing appropriate measurements where our 2D
experiements results suggest that it would be a good strategy to start such inversions
with an envelope-based misfit function.

Our first 3D global iteration attenuation model shows promising correlation with
the elastic shear wavespeed structure for the long-wavelength structure, which needs
further investigation by performing more iterations and resolution tests to track the
trade-off between parameters. In addition, a 3D synthetic global tomography based
on simultaneous inversion of elastic and anelastic parameters at longer periods can
be informative which should be possible with the current computational facilities.
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Chapter 6

Discussions & Conclusions

In this thesis, I investigated the effect of different measurements and parameteriza-
tions in global-scale adjoint waveform inversions. I first adapted double-difference
measurements to global adjoint tomography. Then, I used these measurements to
construct an azimuthally anisotropic global upper mantle model based on adjoint
tomography. In the last part, I demonstrated the effect of various misfit functions on
anleastic inversions and performed simultaneous and sequential elastic and anelas-
tic iterations in 2D to set up a strategy for global full-waveform inversion. Based
on the observations from 2D tests and using 3D global wave simulations and full-
waveform inversion, I performed one elastic and anelastic simultaneous global iter-
ation with real data.

In Chapter 3, I demonstrated double-difference measurements, introduced into
the adjoint tomography by Yuan et al. (2016), for real experiements. Double-difference
measurements have great advantages such as minimizing source uncertainties for
traveltime misfits, speeding up the convergence and increasing the resolution in
densely covered areas. Since double-difference measurements are defined on mea-
surement pairs from neighboring stations, they naturally increase the data sensitiv-
ity around and towards station clusters.

For global applications, some data, specifically from oceanic island stations, may
not be easily paired because of the lack of neighbouring stations or rapid varia-
tions in Earth structure. Therefore, combining double-difference measurements with
those from classical misfits can be useful to extract more information from seismo-
grams. In this thesis, I mainly focused on double-difference measurements of surface
waves which are intuitively highlight the structure underneath paired stations. The
extension of double-difference measurements to body waves is theoretically possible
and straightforward, however, needs further investigation for practical applications.

In the remaining of the thesis, I demonstrated double-difference measurements
in global full-waveform inversion and explored different parametrizations for imag-
ing Earth’s mantle. In Chapter 4, I demonstrated double-difference measurements
to construct a global azimuthally anisotropic upper-mantle model by performing 10
conjugate-gradient iterations using minor- and major-arc surface waves. Our pre-
liminary results are promising to capture global pattern of azimuthal anizotropy
consistent with plate motions and previous studies at the large scale (e.g., Schaeffer
et al., 2016) and achieve continental-scale resolution in global inversions underneath
densely covered regions (e.g., Becker et al., 2012b; Zhu et al., 2015). This is likely
because of our parameterization of the models on the mesh of numerical simula-
tions and taking the advantage of 3D wave simulations in imaging. Nevertheless,
the initial results suggest that the model has not converged yet as the magnitude
of azimuthal anisotropy is still weak compared to observations. We plan to perform
5–10 more iterations to finalize the inversions. However, the trade-off between shear
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wavespeeds and anisotropy needs to be explored, for instance, by point-spread func-
tion (PSF) tests (Fichtner and Trampert, 2011a). Furthermore, a multi-stage smooth-
ing (e.g., Bozdağ et al., 2016) may be a good strategy to highlight the resolution of
the structure underneath the station clusters. The depth resolution in our inversions
may also be increased by highlighting higher modes by appropriate measurements.
We plan to continue iterations with the exponentiated phase misfit (Yuan et al., 2020),
an instantaneous phase measurement (Bozdağ et al., 2011), which amplifies low-
amplitude signals naturally by the normalization term in its adjoint source coming
from the derivation. If need be, higher-modes may also be measured separately in-
creasing their contribution in inversions with appropriate weightings in the misfit
function (van Heijst and Woodhouse, 1997). In this thesis, we focused on surface-
wave anisotropy in the upper mantle (e.g., Montagner and Tanimoto, 1991). Future
studies should also address using body-wave anisotropy and how it can be incorpo-
rated in global-scale full-waveform inversions. Specifically to address the potential
anisotropy in the lower mantle and core-mantle boundary body waves (i.e., shear-
wave splitting) or normal modes must be used. The theory of body-wave anisotropy
has extensively been discussed in literature and used in full-waveform inversions
from exploration to earthquake seismology (e.g., Sieminski et al., 2007a). However,
the parameter trade-off and the data coverage are the main challenges to be exam-
ined carefully to constrain the lower-mantle anisotropy.

In Chapter 5, we investigated the trade-off between wavespeeds and attenuation
and different misfit functions for anelastic full-waveform inversion based on 2D nu-
merical experiments, with an ultimate goal to construct a global attenuation mantle
model through the simultaneous inversion of elastic and anelastic parameters. Since
anelasticity can cause significant physical dispersion specifically for teleseismic sur-
face waves, at the current resolution of tomographic images elastic and anelastic
models have to be updated simultaneously to also further improve elastic param-
eters. Our 2D tests suggest that the envelope misfit help reduce nonlinearities of
full-waveform inversion and together with the exponentiated phase can be a good
misfit for elastic and anelastic simultaneous inversions. We do not observe a very
significant difference between simultaneous and sequential inversions of elastic and
anelastic parameters where simultaneous inversions perform slightly better. Our
one simultaneous iteration of elastic and anelastic parameters at the global scale with
real data shows promising preliminary results consistent with large-scale attenua-
tion variations in 3D. However, the 2D experiements show strong trade-off between
shear wavespeeds and attenuation which is a good reminder for the global-scale
where inversions would be expected to be more challenging because of the uneven
data coverage and the effect of other seismic parameters, where the source is likely
to be the most prominent one.

Looking forward, to further improve the global images of the Earth’s mantle we
need to take better physics in the parameterization of the inverse problem which has
to be complemented by better inversion and measurement strategies (i.e, address-
ing the trade-off between elastic, anealstic and source parameters, extracting more
information from existing data) as well as data from sparsely covered regions (i.e.,
oceans). We cannot change the data coverage in the near future at the global scale
but there is scope for extracting more information from every time series with appro-
priate measurements targeted to the scientific problem of interest. A valid approach
might also be to focus on densely covered regions in the lower mantle and the core-
mantle boundary, or highlighting such regions in multi-scale inversions as have been
demonstrated in the literature (e.g., Afanasiev et al., 2016) mainly by incorporating
high-resolution lithospheric structures up to now. Global inversions have two major
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challenges that we need to tackle to further improve the resolution and reliability
of tomographic images: data coverage and resolution & uncertainty quantification.
While there are promising approaches for the resolution & uncertainty quantifica-
tion (e.g., Liu and Peter, 2019; Fichtner and Zunino, 2019) the cost is still prohibitive
to have a full assessment. One of the next biggest opportunities will likely be as-
similating new datasets in inversions together with classical broadband earthquake
seismograms, such as using ambient noise (e.g., Poli et al., 2012), data from emerg-
ing instruments MERMAIDs (e.g., Nolet et al., 2019) and distributed acoustic sen-
sors (e.g., Marra et al., 2018), which have the potential to close the gap in global data
coverage and help increase the resolution specifically underneath oceans.
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Zhu, Hejun, Ebru Bozdağ, Daniel Peter, and Jeroen Tromp (2012). “Structure of the
European Upper Mantle Revealed by Adjoint Tomography”. In: Nature Geoscience
5.7, pp. 493–498.
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