Millions of people use the trains every day. Therefore, rail transport and infrastructure efficiency and safety is critical, for customers and companies. A major challenge nowadays is to climb automation levels for trains, from Grade of Automation (GoA) "0" which is basically on-sight train operation all the way to GoA "4" where train operations are unattended. GoA levels are defined by the International Association of Public Transport (UITP-French acronym), and aim to provide a roadmap for the development and the integration of the socalled automatic train operation (ATO) systems. ATO are operational safety enhancement devices that help the driver by automating some operations on the train, helping him/her to be more attentive and to focus on possible safety issues or unexpected situations. Currently, the level of automation that is reached for commercial rolling stock is GoA "2", semi-automatic train operation, when starting and stopping operations are automated. Most of the existing ATO systems are GoA 2.

.

All automatic systems rely on two main functions: perception and decision. The ATO device will rely heavily on the available information to ensure an accurate perception of its environment and of the operational situation, in order to carry out the right decisions. This information acquired by sensors of different technologies and made available through the communication network (bus) of the train. Obviously, sensors are limited by technology, the communication bandwidth is not infinite; and all technical systems can experience faults and failures. Those are major challenges to design efficient and robust ATO devices, because the usual way to deal with these issues is to use sensors of different technologies for each information of interest. This makes such a system more complex, possibly costly, and it increases the amount heavily of transmitted data and its supporting infrastructure.

There is a promising solution to this challenge, and it is called virtual sensors, or observers that are developed by automatic control researchers to supplement the sensors at a fraction of the cost, and embeds knowledge of the system in the automated device through analytical models of the environment. The design of a particular type of observer, and its practical exploitation for automatic train operations is the main contribution of this PhD work.

Résumé

Des millions de personnes utilisent le train chaque jour. Par conséquent, l'efficacité et la sécurité du transport ferroviaire et de l'infrastructure sont essentielles pour les clients et les entreprises. De nos jours, l'un des principaux défis est d'augmenter le niveau d'automatisation des trains, du niveau d'automatisation « 0 » (ou Goals of Automation GoA) qui consiste essentiellement à exploiter les trains à vue jusqu'au niveau « 4 », où les opérations ne sont pas surveillées. Les niveaux GoA sont définis par l'Union internationale des transports publics (UITP) et ont pour objectif de fournir une feuille de route pour le développement et l'intégration des systèmes dits « d'exploitation automatique des trains » ou ATO. Les ATO sont des dispositifs d'amélioration de la sécurité opérationnelle qui aident le conducteur en automatisant certaines opérations, lui permettant de se concentrer sur les problèmes de sécurité éventuels ou les situations imprévues. Actuellement, le niveau d'automatisation atteint pour le matériel roulant commercial est GoA « 2 », ou une exploitation semi-automatique des trains, les opérations de démarrage et d'arrêt étant automatisées. La plupart des systèmes ATO existants sont GoA 2.

Comme dans tout véhicule moderne, les systèmes embarqués sur un train sont liés et l'ATO collabore avec les organes de sécurité tels que la protection automatique des trains (ATP) et la surveillance automatique des trains (ATS). Il doit garantir le respect des limitations de vitesse et arrêter le train à la gare avec précision, tout en respectant une table horaire. La tâche d'arrêt est effectuée par le contrôle automatique de l'arrêt des trains (ATSC). L'ensemble de ces dispositifs forment le contrôle automatique des trains (ATC) [START_REF] Dong | Automatic Train Control System Development and Simulation for High-Speed Railways[END_REF].

Tous les systèmes automatiques reposent sur deux fonctions principales : la perception et la décision. Le dispositif ATO s'appuiera fortement sur les informations disponibles pour assurer une perception précise de son environnement et de la situation opérationnelle, afin de prendre les bonnes décisions. Ces informations sont acquises par des capteurs de différentes technologies et mises à disposition via le réseau de communication (bus) du train. De toute évidence, les capteurs sont limités par la technologie, la bande passante de communication n'étant pas infinie. De plus, tous les systèmes techniques peuvent rencontrer des défauts et des échecs. Il s'agit là d'un défi majeur pour la conception de dispositifs ATO robustes et efficaces, car la manière habituelle de traiter ces problèmes consiste à utiliser des capteurs de technologies différentes pour chaque information source d'intérêt. Cela rend ce système plus complexe, souvent plus coûteux, et augmente considérablement la quantité de données transmises et son infrastructure de support.

Il existe une solution prometteuse à ce défi. Il s'agit de capteurs virtuels, ou observateurs développés par des chercheurs en contrôle automatique pour compléter les capteurs à une fraction du coût, et intégrer la connaissance du système dans l'automate à l'aide de modèles analytiques de l'environnement. La conception d'un type particulier d'observateur et son utilisation pratique pour l'exploitation automatique des trains constituent l'apport principal de cette thèse.

CHAPTER 1. Introduction 1.1. Context of the thesis

Millions of people use the trains every day. Therefore, rail transport and infrastructure efficiency and safety is critical, for customers and companies. A major challenge nowadays is to climb automation levels for trains, from Grade of Automation (GoA) "0" which is basically on-sight train operation all the way to GoA "4" where train operations are unattended. GoA levels are defined by the International Association of Public Transport (UITP -French acronym), and aim to provide a roadmap for the development and the integration of the socalled automatic train operation (ATO) systems. ATO are operational safety enhancement devices that help the driver by automating some operations on the train, helping him/her to be more attentive and to focus on possible safety issues or unexpected situations. Currently, the level of automation that is reached for commercial rolling stock is GoA "2", semi-automatic train operation, when starting and stopping operations are automated. Most of the existing ATO systems are GoA 2.

As within any modern vehicle, onboard systems on a train are linked, and the ATO is working together with automatic train protection (ATP) and automatic train supervision (ATS), to ensure the respect of the speed restrictions and stop the train at the station with accuracy and within an acceptable tolerance of its timetable. The stopping task is carried out by automatic train stop control (ATSC), and all of the devices together form a package called automatic train control (ATC) [START_REF] Dong | Automatic Train Control System Development and Simulation for High-Speed Railways[END_REF].

All automatic systems rely on two main functions: perception and decision. The ATO device will rely heavily on the available information to ensure an accurate perception of its environment and of the operational situation, in order to carry out the right decisions. This information acquired by sensors of different technologies and made available through the communication network (bus) of the train. Obviously, sensors are limited by technology, the communication bandwidth is not infinite; and all technical systems can experience faults and failures. Those are major challenges to design efficient and robust ATO devices, because the usual way to deal with these issues is to use sensors of different technologies for each information of interest. This makes such system more complex, possibly costly, and it increases heavily the amount of transmitted data and its supporting infrastructure.

There is a promising solution to this challenge, and it is called virtual sensors, or observers that are developed by automatic control researchers to supplement the sensors at a fraction of the cost, and embeds knowledge of the system in the automated device through analytical models of the environment. The design of a particular type of observer, and its practical exploitation for automatic train operation is the main contribution of this PhD work.

Research scope

Observers are efficient numerical solutions that avoid adding new sensors, providing state reconstruction and disturbance estimation. Information provided by observers are used to improve "measurements" precision and to estimate and compensate the exogenous disturbances using observer-based compensation controllers. A class of observers called unknown input observers (UIO) (J. [START_REF] Chen | Design of Unknown Input Observers and Robust Fault Detection Filters[END_REF] is used for this matter, it belongs to the socalled observer-PI family. This technique is well-known and has been successfully applied to many problems such as [START_REF] Delrot | Fouling Detection in a Heat Exchanger by Observer of Takagi-Sugeno Type for Systems with Unknown Polynomial Inputs[END_REF][START_REF] Lendek | Adaptive Observers for TS Fuzzy Systems with Unknown Polynomial Inputs[END_REF]). The estimated perturbation can be efficiently taken into account with appropriate robust control techniques [START_REF] Faieghi | Robust Adaptive Cruise Control of High Speed Trains[END_REF][START_REF] Gao | Unknown Input Observer-Based Robust Fault Estimation for Systems Corrupted by Partially Decoupled Disturbances[END_REF]. However, if an unexpected event occurs, like a device fault or failure, the "usual" control compensation can be inadequate.

Unexpected events can be predicted through symptom detection, if the event dynamic is known and modelled. The analysis of discrepancy between estimations and measurements is the way to detect the symptoms of a possible problem. This analysis is based on the so-called modelbased or model-free techniques, and is known under the name of Fault Detection, Isolation and Estimation (FDIE) or (FDI) (Gao, Cecati, and Ding 2015). FDI techniques are used for trains, for example in [START_REF] Jesussek | Fault Detection and Isolation for a Nonlinear Railway Vehicle Suspension with a Hybrid Extended Kalman Filter[END_REF] to capture the nonlinear characteristic of a railway vehicle, or in [START_REF] Wei | A Comparative Study on Fault Detection Methods of Rail Vehicle Suspension Systems Based on Acceleration Measurements[END_REF] to compare acceleration measurements. FDIE was also used for high-speed railway traction devices in (Y. [START_REF] Wu | Incipient Fault Diagnosis for T-S Fuzzy Systems with Application to High-Speed Railway Traction Devices[END_REF] and to the analysis of train networks in [START_REF] Verbert | Fault Diagnosis Using Spatial and Temporal Information with Application to Railway Track Circuits[END_REF].

A fault that often occurs in train braking systems is the wheel jamming (blocking) [START_REF] Aguiar | A Robust and Fault Tolerant Approach for Automatic Train Stop Control System Design[END_REF]. This fault will hinder braking distance and position measurement, since the odometer, i.e. a frequently used sensor, is based on quantifying wheel rotation. Obviously, if the sensor is in the wheel, then when the wheel jams, the measurement will be corrupted. On another hand, if the sensor is placed on the rail, like a position beacon, then the position information is more accurate. Of course, installing the necessary beacons on all the tracks will quickly face a problem of cost and is therefore, unrealistic. Another important point is to derive fault tolerant traction and brake controls, thus, we need to detect accurately the faults, ideally missing none of them, and generating no false alarms. In view of this, H  attenuation techniques helps to improve fault detection robustness with respect to modeling uncertainty [START_REF] Edelmayer | An H Infin; Filtering Approach to Robust Detection of Failures in Dynamical Systems[END_REF][START_REF] Zhong | An LMI Approach to Design Robust Fault Detection Filter for Uncertain LTI Systems[END_REF], and H  index for fault detection sensitivity (J. L. [START_REF] Wang | An LMI Approach to H-Index and Mixed H-/H∞ Fault Detection Observer Design[END_REF]; Z. [START_REF] Wang | H-/L∞ Fault Detection Observer Design for Linear Parameter-Varying Systems[END_REF]M. Zhou et al. 2017).

Wheel jamming, and more generally speaking, adherence issues, will lead in practice to an overestimation of the train timetable, and it is made only through collected data. An interesting topic to explore is how to improve train scheduling, by estimation of the worst case performance of observer estimation, i.e. by computing a worst case bound of the observer error. An idea to develop is to use Gronwall-like bounds theory [START_REF] Dragomir | Some Gronwall Type Inequalities and Applications[END_REF]Fall 2015a) to compute such a bound.

Industrial Scope and Objectives

The research project has been made together with the LAMIH laboratory and the ALSTOM Company, which is a major actor in train industry. The request of the company was about efficient numerical algorithm that will supplement odometric speed sensors for ATSC driven accurate train stopping, without knowledge of wheel-track adherence conditions and with probable intermittent wheel jamming and wheel skidding anomalies.

The first part of this work is the modeling and simulation of wheel-rail contact and actions of WSP-skid control laws. Based on this simulation model, comparisons are made with ATP and ATO level measurements acquired through experiments. The aim is to place the following studies in the context of close experimental feedback.

The second part is the study about observation of the jamming phenomenon and the action of the anti-lock control device. Taking into account the discrepancy between the measurement updates and the reaction time of ATO level systems, a continuous-discrete behavior is to be considered.

Finally, a more accurate representation of kinematics can improve existing control algorithms in variable or degraded adherence situations. Robust control must ensure accurate train stopping in all situations. Furthermore, the robust control must ensure that no ATP emergency will be triggered because of position estimation bias. A supervision system can complement the robust control autopilot device.

Outline

The thesis is organized as follows:

Chapter 2 gives a background on railways systems and automatic train control. An analysis of the mathematical model and fault interpretation for train systems is presented. In addition, a brief state of the art on robust observation and estimation for fault detection is provided.

Chapter 3 is divided in two sections: First, an active fault tolerant braking control is presented, where the main contribution is the integrated approach using an unknown input observer, fault detection, and disturbance compensation control with a reference model for train stopping, with some assumptions on the system. The design of such system and a discussion on the convergence properties is provided. The second part relaxes most of the assumptions and deals with the design of robust position estimation algorithm, based on the unknown input observer with a quasi-LPV representation. Illustrations are provided for both contributions.

Chapter 4 explores a novel Gronwall-like bound for the observer error, in continuous-discrete dynamic. The unknown input observer is considered in a quasi-LPV framework with a piecewise constant input. Practical considerations on how to improve the bound with extra information from the system are discussed. Simulations are provided for all cases.

Chapter 5 presents the results of chapters 3 and 4 applied to data acquired during real time experiments provided by ALSTOM. We present many situations, considering different speeds and different adherence conditions. The performance of the developed observers is discussed, and strategies for observer parameters choice is proposed.

Chapter 6 concludes this work with some important remarks and future research.

CHAPTER 2. Background

This chapter presents a general knowledge about the train systems. Mathematical models used in the literature are depicted taking into account practical consideration. The behavior of sensors especially, under fault occurrences, are also described; faults due to jamming and skidding being the ones treated therein. A review of available solutions of the literature is also given.

Implementation issues are discussed, especially the different operation levels and their communication: Automatic Train Control system (ATC) and its internal processes: Automatic Train Protection (ATP), Automatic Train Operation (ATO), and Automatic Train Supervision (ATS). The solutions will concern robust control, observers and fault detection analysis of different kinds depending on the assumptions made. Therefore, various observers for fault diagnosis are presented, including unknown input observers and a particular continuousdiscrete time observer. A focus on jamming and skidding faults ends the chapter.

The train system

A train is composed by the locomotive and the wagons, as shown Fig. 2-1. The locomotive, among other systems, includes the motors for traction and the braking system. There are different types of railway traction, that can be divided into two groups: diesel and electric traction [START_REF] Iwnicki | Handbook of Railway Vehicle Dynamics[END_REF][START_REF] José | Railway Traction[END_REF][START_REF] Kaller | Traction Électrique[END_REF]. For diesel traction, several transmissions are available, mechanical, hydraulic and electrical. For electrical traction, there are DC (direct current) motors and AC (alternating current) motors. Nowadays, almost all the locomotives use electric traction, where the most used motors are basically [START_REF] José | Railway Traction[END_REF]: DC motors with in-series or independent excitation and AC motors. The use of electric traction is considered clean and efficient.

The braking system can be categorized, depending on its mechanisms, into three groups (Fig. 2-2): pneumatic brakes (or air brakes), electric brakes, and mechanical brakes (Izumi and Seigo 1999; The Railway Technical Website n.d.). The different systems are combined on a same train. Let's consider for example pneumatic brakes: they rely on air compressors mounted into the wagons to supply pressurized air to the brakes. This technology induces a delay between the braking command and effective braking, because pressure variations cannot be instantaneous. An improvement of this braking system is the use of electro-pneumatic brakes, using an electric signal to transmit the command. However, electro-pneumatic brakes are less reliable than a pure pneumatic system, and are used to complement the latter.

Fig. 2-1. The train system

The interaction of both systems follows some common principles as is explained in (The Railway Technical Website n.d.), for example:  The electro-pneumatic brake operates as the service brake while the air brake is retained for emergency use  The electro-pneumatic brake does not compromise the fail-safe or "vital" features of the air brake  The air brake normally remains in the "release" position, even while the electropneumatic brake is in "application" and the same brake cylinders are used.

 Electro-pneumatic brakes are invariably used on multiple unit passenger trains.

 Electro-pneumatic brakes use a number of train wires to control the electrically operated brake valves on each wagon.

 The train wires are connected to a brake "valve" or controller in the driver's cab.

Fig. 2-2. Braking mechanisms.

The same can be said about electric and mechanic brakes. This work will not focus on braking system details, the main point here is to explain that the required braking force is a result of a combined efforts of multiple braking systems, with different dynamics that interact in a way that is difficult to model efficiently. One of the main implications is that high level systems (ATO and such) that embed control algorithms, have a poor knowledge of the braking effort that is applied in real-time for a given reference braking force.

The conditions necessary to produce the motion of the train via the traction and brake systems depend on the forces applied in the train and the adherence to tracks (the so-called rail-wheel contact), which is explained later.

The mathematical train model

There are many models for the analysis of separate vehicles (i.e. locomotive and wagons) and train dynamics. In general, those models can be categorized into three main groups, Fig. 23, [START_REF] Vijay | Dynamics of Railway Vehicle Systems[END_REF]. [START_REF] Vijay | Dynamics of Railway Vehicle Systems[END_REF].

Fig. 2-3 Track-train dynamics model

The single-point train control model is the most commonly model applied for train operation problems in the literature [START_REF] Guzinski | Application of Speed and Load Torque Observers in High-Speed Train Drive for Diagnostic Purposes[END_REF][START_REF] Kaller | Traction Électrique[END_REF][START_REF] Liu | Energy-Efficient Operation of Rail Vehicles[END_REF][START_REF] Vijay | Dynamics of Railway Vehicle Systems[END_REF][START_REF] Yin | Research and Development of Automatic Train Operation for Railway Transportation Systems: A Survey[END_REF]. A train with multiple vehicles is considered as single point mass object and its longitudinal motion can be approximated by a Newton equation.

Therefore, the dynamic of the train can be described by the following differential equations [START_REF] Guzinski | Application of Speed and Load Torque Observers in High-Speed Train Drive for Diagnostic Purposes[END_REF][START_REF] Kaller | Traction Électrique[END_REF][START_REF] Liu | Energy-Efficient Operation of Rail Vehicles[END_REF][START_REF] Vijay | Dynamics of Railway Vehicle Systems[END_REF]: necessary to maintain a constant velocity at various speeds, in order to cover the working speed range. Of course, due to the experimental parameters (several speeds, different adherences) and the required conditions, these procedures are costly. Consequently, the railway transportation industry developed empirical equations that could be used to estimate the resistance to motion of a generic train. The equation is a polynomial approximation by a quadratic function that is well known, called the Davis equation. Davis equation has been applied and validated in many real time experiments, see for example [START_REF] Kaller | Traction Électrique[END_REF][START_REF] Rochard | A Review of Methods to Measure and Calculate Train Resistances[END_REF]Transport: Railways 2004;[START_REF] Douglas | Method for Validating the Train Motion Equations Used for Passenger Rail Vehicle Simulation[END_REF]Q. Wu, Spiryagin, and Cole 2016). The form of the equation is:
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Where the first term represents the aerodynamic resistance existing at the front and rear of the train and the second term is related to the aerodynamics resistance generated along the surface,
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 is the partial perimeter (m) of the rolling stock, l is the train length (m), 1   
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Nm is a parameter depending on the shape of the train, front and rear, and can vary from 

Wheel rail contact

To study the motion of the train we need to consider the wheel-track adhesion. Fig. 23456shows the forces that are applied to the wheel and to the track. We will discuss the adhesion force a F , since the other forces were defined previously.

The adhesion force a F satisfies the following expression [START_REF] Iwnicki | Handbook of Railway Vehicle Dynamics[END_REF][START_REF] José | Railway Traction[END_REF][START_REF] Kaller | Traction Électrique[END_REF]:

a F   ,
(2.6)
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Where  is the so-called adhesion coefficient and  is the vertical reaction of the track, which balances the vertical forces. This adhesion coefficient depends on temperature, humidity, dirt, speed, etc. A general expression for the approximation of  is

0 1 0.01v     , (2.7)
where 0

 is a real coefficient and velocity   v is expressed in Km/h. A low adhesion between the wheel and the rail is an important issue for braking and traction.

Poor adhesion in braking is a safety issue as it can extend the stopping distances. During traction, poor adhesion will interfere with acceleration of the locomotive, making it difficult to reach the desired speed. Mechanically, low adhesion phenomena will cause wheel jamming (when braking) and wheel skidding (when traction). Of course, this will also impact the onboard speed and position measurements of the train, because the odometers are located on the wheels.

These phenomena and issues are explained in the next section.
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Next section is interested in the measurements available to fill in the models.

Sensors and faults

This work focuses mainly on the braking part of the drive, therefore, two kind of measurements are necessary: speed of the train and position. The speed sensor is embedded on the train and to get reliable information of its position, the railway track is equipped of several fixed sensors that act as markers and are usually called beacons. As shows Fig. 234567, the velocity sensor is installed on a wheel of the train. This speed sensor uses a target wheel also called phonic wheel.

The sensor measures the rotation speed of the wheel by counting the teeth of the phonic wheel.

The resolution of the measurement depends on the number of teeth on the wheel; the higher the number of teeth, the better the resolution is. , where r is the wheel radius and  is the wheel angular speed, that can be calculated as
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, where N is the number of impulses per revolution, i c is the current sample, 1 i c  is the previous sample and t  is the sampling period [START_REF] Ridolfi | Train Position and Speed Estimation by Integration of Odometers and IMUs[END_REF]). The train position can be estimated with the odometer sensor, but it needs also periodically a precise and reliable positioning, in order to be able to readjust the estimation and avoid excessive bias. A classical solution is to use markers set in the rail also commonly called beacons (Sandidzadeh and can be very costly to equip all the tracks and a compromise has to be found between number of beacons (precision of the train position) and distance between two beacons (cost). Some research works deal with this topic : for example, in [START_REF] Sandidzadeh | Optimization of Balise Placement in a Railway Track Using a Vehicle, an Odometer and Genetic Algorithm[END_REF], a solution for optimization of beacons placement in a railway track using genetic algorithm and Kalman filter was proposed .

What are the jamming and the skidding faults?

The jamming and skidding faults are phenomena that may occur depending on the train control and adherence conditions between the wheel and the track. In traction mode skidding can appear; in braking phase jamming can occur. Fig. 2-8 shows the skidding and jamming behaviors in detail (green arrows indicate the wheel rotation, the upper red arrows the movement of the train). The jamming case occurs when the brake is applied and it locks the wheel (Fig. 2-8 upper part positions 2, 4 and 5), so the wheel is sliding on the track. This happens because the braking torque is more important than adhesion torque. Similarly, skidding happens when the traction torque is more important than adhesion torque: the wheel will spin but without moving the vehicle (Fig. 2-8 lower part positions 2, 4 and 5). In real-world conditions, these faults can occur depending on rail line conditions and any changes in conditions of adherence, i.e. for example weather conditions (rain, snow…). Another important phase where the wheel jamming occurs is during "hard" braking such as emergency braking.

In this case also, the braking torque is bigger than the traction torque generated, due to adhesive force, and it results in sliding. The skidding and jamming phenomena have been studied in several articles: [START_REF] Allotta | Distance and Speed Evaluation from Odometric Measurements[END_REF][START_REF] Allotta | Train Position and Speed Estimation Using Wheel Velocity Measurements[END_REF][START_REF] Colla | Estimation of Train Speed via Neuro-Fuzzy Techniques[END_REF][START_REF] Colla | Comparison of Traditional and Neural Systems for Train Speed Estimation[END_REF][START_REF] Garcia-Rivera | An Antislipping Fuzzy Logic Controller for a Railway Traction System[END_REF]Malvezzi et al. n.d.;[START_REF] Saab | Compensation of Axle-Generator Errors Due to Wheel Slip and Slide[END_REF][START_REF] Watanabe | Optimization of Readhesion Control of Shinkansen Trains with Wheel-Rail Adhesion Prediction[END_REF]). These phenomena will damage both the wheel by creating flat spots and wearing the track. Of course, damaging wheel or rail surfaces directly impacts on maintenance costs, especially if it induces the replacement of the material [START_REF] Makhortova | Rail Vehicle Wheels Common Faults Characteristic[END_REF]. Excepted these extreme effects, the main issue of these jamming and skidding faults is that they impact directly on the measurements; thus on the estimation of both position and speed; since the sensors are based on quantifying the wheel rotation.

Fig. 2345678. The physical effects of the skidding and the jamming faults.

How is the sensor affected by the fault?

The effect of the wheel jamming and the wheel skidding is that the measurement from the sensor will be impacted by a bias: measured position lower than real position for the jamming case, In these experiments, we do have the fault free velocity measurement (m/s) using a radar-base speed sensor (solid black line), whereas this measurement is not available in principle. Of course, it is used in order to validate properly the estimation results. The estimations, corresponding to the faulty signal, are based on the odometer, which is the available sensor (red dashed line). Fig. 2-10 shows the velocity difference due to jamming, i.e. when the wheel stops rotating while the train is moving, the odometer loses a percentage of the real velocity that depends on the wheel jamming duration. To understand more precisely the effect on the sensor, Fig. 2-13 shows the braking phase for both the fault free case (signal from sensor named 1 s ) and for the faulty case (signal from sensor named 2 s ). From 1 s , the pulses coming from the fault free case are decreasing every period ending with a correct velocity calculation 1 v . For the faulty case, when the jamming occurs (Fig. 2-13 4 th curve), there are less pulses than expected from sensor 2 s ; that produces a false velocity calculation 2 v .

Fig.2-13 Sensor behavior with and without jamming fault.

The same effect is presented for the skidding phase, Fig. 2-14. Sensor 1 s pulses are increasing every period, producing a correct velocity calculation 1 v . Whereas, when the fault occurs, the number of pulses measured by 2 s is greater than the real value during the fault, and produces a false velocity calculation 2 v .

Fig.2-14

Sensor behavior with and without skidding fault.

Automatic Train Control (ATC)

The safe operation of the train during a travel is the goal to achieve through automatization.

Some improvements have been obtained helping the train driver via the automatic train operation (ATO). The ATO system working together with the Automatic Train Protection Automatic Train Supervision (ATS): Supervision level system that insures compliance with the expected schedule and traffic patterns. Depending on the trains, the companies and the regulations, ATS is used for: supervision of train status, schedule creation and changes, routing selection, automatic system monitoring and statistics…

Automatic Train Operation (ATO):

The system that assists the driver to operate the train efficiently and safely. The system deals with speed control, comfort issues (smooth acceleration and braking) and assisted train stopping. A highest level includes energy saving-based driving assistance strategies. ATO needs ATP and ATS to be operational. For speed control between 2 stations, two strategies are possible for the ATO system [START_REF] Yin | Research and Development of Automatic Train Operation for Railway Transportation Systems: A Survey[END_REF]): first is manual driving supported by a driver advisory system (DAS); second is a semiautomated mode or a fully-automated driving mode. For train stopping, ATO switches to the train station-stopping mode and adjusts the train braking rates dynamically, based on speed of the train and distance-to-stop.

When relying on automatic train stopping control (ATSC), the stopping accuracy could be affected by many disturbances, as is mentioned in (D. [START_REF] Chen | Online Learning Algorithms for Train Automatic Stop Control Using Precise Location Data of Balises[END_REF]):

 The braking system delay (BST) is due to a varying response time of the braking system (sensor delays, actuators response, different sampling times…);

 The braking performance and velocity variance (BPV) is due to the effects of temperature, humidity, abrasion, etc. on the efficiency of the braking system;

 The basic resistance change (BRCs) includes all resistance to motion effects, i.e.

bearing, rolling, slip and air resistances.

In this work, dealing with Basic Resistance Change (BRC) is the principal issue, but the Braking System Delay (BST) will be also considered.

How the jamming and skidding faults are dealt with?

In order to reduce the impact of the jamming and skidding fault, the so-called wheel slide protection system (WSP) is used, that is analogous to the anti-lock brake systems (ABS) for cars. The WSP system adjusts the controller-issued braking torque using the dump valves, based on speed sensor readings. Each brake cylinder is filled with air or vented in order to increase or decrease the braking torque, mitigating the jamming and skidding problems when those are detected [START_REF] Barna | Theoretical Analysis of Wheel Slide Protection Controllers for Rail Vehicles[END_REF]. Of course, no adjustment is made in the fault free case. Following the same idea, some practical solutions have been developed and patented [START_REF] Callahan | Slip-Slide Detector System for Railway Car Wheels[END_REF][START_REF] Hiscox | Wheel Slide Protection System[END_REF][START_REF] Rath | Wheel Slide Protection System[END_REF][START_REF] Sheppard | Combined Anti-Slip and Anti-Spin Control for Vehicle Wheels[END_REF][START_REF] Sutton | Vehicle Wheel Slide Protection Systems[END_REF][START_REF] Wood | Electronic Adhesion Adaptive Wheel Slide Protection Arrangement Function[END_REF]).

The WSP system is a low level system and is not meant to interact with ATO level systems.

Considering that the ATO do not know actions made by the WSP, and relies solely on measurements, different approaches were proposed to improve the robustness, one of them being the multi-sensor architectures and data-fusion. For instance, the integration of odometers, accelerometers, and gyroscopes to get a better position measurement is studied in [START_REF] Ridolfi | Train Position and Speed Estimation by Integration of Odometers and IMUs[END_REF]. Another multi-sensor approach making use of odometer, radar, accelerometer, and beacons is proposed in (Y. W. [START_REF] Zhou | Research of Multi-Sensor Integration System for Train Speed and Position Measurement[END_REF], where the data fusion is made via a Kalman filter algorithm.

The main issues of a multisensory architecture are feasibility and costs, which makes the single sensor approach, with appropriate post-processing, also popular. Using a single sensor Therefore, invoking Input-to-State like properties (ISS) and/or Lipchitz conditions, we can prove that the convergence of the error in a ball containing the origin is possible, for a ball which radius has to be defined and will depend on the maximum sampling time interval M  .

In the literature, an approach using a continuous-time observer associated with a predictor, i.e.

giving the prediction between two samples, is proposed in [START_REF] Nadri | Observer Design for Continuous-Discrete Time State Affine Systems up to Output Injection[END_REF][START_REF] Nadri | Observer Design for Uniformly Observable Systems With Sampled Measurements[END_REF] and when the measurement is available, the predictor is updated. A continuous-discrete time observer for a multivariable nonlinear system is proposed in (M. Farza et al. 2014a;[START_REF] Farza | Continuous-Discrete-Time Observers for a Class of Uniformly Observable Systems[END_REF], where the convergence analysis provides an upper bound of the sampling as well as the rate of the observation error exponential convergence. A robust continuous-discrete time observer for internal disturbances in an electro-hydraulic actuator system is proposed in (S. A. [START_REF] Ali | Continuous-Discrete Time-Observer Design for State and Disturbance Estimation of Electro-Hydraulic Actuator Systems[END_REF], where the principal characteristic is the use of an inter-sample output predictor to increase the acquisition frequency of the piston position sensor without affecting the convergence performance.

Fault detection and diagnosis

What is considered a fault? A usual definition is: "a fault is something that changes the behavior of a system such that the system does no longer satisfy its purpose" [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF]. Since system representation describes nominal (fault-free) system behavior, faults will cause a divergence between fault-free system observer trajectories and real system state and output trajectories. The analysis of the discrepancy between estimations and measurements using the The fault diagnosis methods can be categorized as:

-Model-based methods.

-Signal-based methods.

-Knowledge-based methods.

-Combined methods.

In this work, the model-based method is preferred, because a model is available and as we are working also on security issues (braking is one of them), some guarantees have to be settled.

For more details about the other methods, the reader can refer to [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF] L space, H  index approach can be proposed:

      2 2 c s ft rt ft      .
(2.25)

Several solutions were proposed in the literature: for deterministic models, the most studied are sensor faults and actuator faults. For linear systems, to cite some of them, results can be found with actuator fault detection in (Q. [START_REF] Zhang | Adaptive Observer for Multiple-Input-Multiple-Output (MIMO) Linear Time-Varying Systems[END_REF], for both sensor and actuator faults in (J. L.

Wang, Yang, and Liu 2007), and using an UI observer for actuator fault estimation under disturbance for a wind turbine in [START_REF] Witczak | A Robust ℋ∞observer Design for Unknown Input Nonlinear Systems: Application to Fault Diagnosis of a Wind Turbine[END_REF].

Extensions of the works on linear models to LPV and/or Takagi-Sugeno (T-S) models are also common. We are interested in the so-called LMI-based fault diagnosis family, i.e. the methodology ends up with LMI constraints problems. For T-S models approaches, simultaneous state and process faults estimation for uncertain dynamics system can be found in [START_REF] Pazera | Towards Robust Process Fault Estimation for Uncertain Dynamic Systems[END_REF]; robust techniques for sensor and actuator fault detection in [START_REF] Chibani | Fuzzy Fault Detection Filter Design for T-S Fuzzy Systems in the Finite-Frequency Domain[END_REF][START_REF] Jee | Sensor Fault Detection Observer Design for Nonlinear Systems in Takagi-Sugeno's Form[END_REF][START_REF] Li | Diagnostic Observer Design for T-S Fuzzy Systems: Application to Real-Time-Weighted Fault-Detection Approach[END_REF]. For linear parameter varying (LPV) system results using a bank of observers for sensor fault detection and isolation are presented in [START_REF] Theilliol | Design of LPV Observers with Immeasurable Gain Scheduling Variable under Sensor Faults[END_REF], and actuator fault detection using a generalized output for LPV in (M. [START_REF] Zhou | H -/H ∞ Fault Detection Observer Design Based on Generalized Output for Polytopic LPV System[END_REF]). Some works focus on residual evaluation, and the determination of a static or dynamic threshold detection, like in (Z. [START_REF] Wang | H-/L∞ Fault Detection Observer Design for Linear Parameter-Varying Systems[END_REF].

Jamming and the skidding faults modelling for FDD.

To represent the faults in the mathematical model of train proposed in the previous section, we have different options to consider: actuator, system or sensor faults. As we can see from the previous sections, the principal difference of the jamming and the skidding faults is the effect on measured velocity: positive bias for skidding and negative bias for jamming. Moreover, the jamming fault occurs only during the braking phase (when that the fault will result in degraded control of the train speed during the "faulty" period. This hypothesis is based on the supposition that degraded adherence conditions that impact the wheel with the speed sensor (making the wheel jam or slip), will be more or less similar on the other actuated wheels on the same cart, and to some extent to other carts as well. This hypothesis is realistic for traction (acceleration) phase, i.e. for skidding faults, but less realistic for braking (deceleration) phase and jamming faults. This is due to the fact that only the locomotive is providing the traction effort, while the braking effort is provided by all vehicles. In the particular scope of this study, we consider the train as a material point, and the experiments were made on a single locomotive, which strengthens the proposed hypothesis. When dealing with a multivehicle train model, this assumption is to be made on a per vehicle basis, and this is an expected development of this PhD results in the future.

Returning to this chapter scope, we deal specifically with jamming faults: obviously train stopping occurs after the braking phase, which is only impacted by jamming faults.

Nevertheless, the results are easily transposed for the skidding fault detection, since fault models differs mostly by the sign of the fault signal, and of course, the driving scenario will be different, which will change some assumptions.

For the first case (actuator fault formulation), we model the physical effects of the wheel jamming by an "all-or-nothing" behavior that alternates randomly through fault duration. The severity of the fault will depend on the jam/no-jam ratio during the considered period. This behavior can also be reproduced by a variable amplitude and continuous-time fault signal, but we believe that this is less accurate. The second case, based on the sensor fault formulation, considers that the fault will corrupt sensor measurements without direct impact on the control, with a variable amplitude and a variable duration of the fault, which is more challenging than the first case. In both cases, the fault detection filter is based on an unknown input observer in continuous-time, where the unknown input includes mechanical and aerodynamic resistive to motion forces, that are unmeasured and usually approximated by empirical equations (as explained in section 2.1.1, along with perturbations and noise.

Based on the previous discussion, this chapter is divided in two sections, each section being dedicated to a problem formulation, and the contributions are developed separately, along with illustrations. This reflects the chronology of the work, and the evolution from actuator centered to sensor centered representation of the fault that we believe to be more accurate considering the available experimental data, and the possible implementations of this work in the short term, having only access to acquisition modules without to inject controls in experiments.

Active Fault Tolerant Control for accurate train stopping.

In this section, we propose a solution to deal with actuator faults under the assumption that the control signals are available. The proposition is based on an integrated fault tolerant control approach, based on perturbation estimation and compensation, and on a fault detection module.

If a fault is detected, then the controller will be switched into a "safe mode", effectively reducing the fault duration. Then the system will wait for fault disappearance and the return to a fault free-situation, to switch the controller to the "nominal" mode. As a result, the fault duration is minimized, and the train will improve its ability to stop at the expected position.

The proposed approach is developed for automatic train stop control (ATSC) module, and includes an unknown input observer for disturbance estimation and for fault detection, and a robust PI controller with an active fault tolerant mechanism. More specifically, we design the control law based on a reference tracking objective [START_REF] Miyatake | Optimization of Train Speed Profile for Minimum Energy Consumption[END_REF][START_REF] Yang | Speed Tracking Control Using an ANFIS Model for High-Speed Electric Multiple Unit[END_REF].

Using the estimation from the UI-observer, we estimate the perturbation and compute a fault sensitive residual, i.e. a fault indicator.

The fault detection relies on the comparison of the residual with a threshold, and will follow a cyclic behavior, based on fault occurrence and system recovery:

 In the nominal (fault-free) case, the reference system matches the fault-free real system, and the residual converges to zero.

 If a fault happens, the nominal reference systems will no longer match the reality, and the residual diverges. When the residual will be higher than the threshold, then a fault will be detected.

 Consequently, the reference system will then switch to a "faulty" reference system, matching the real system, and the control will go into the "safe" configuration. The residual will then converge to zero until the fault disappears, then increase again because the "faulty" reference system will no longer match the real system which has recovered from the fault.

and the dynamic friction. A controller is thus designed to track the reference with a friction compensation using the unknown input estimation obtained from the UIO.

Fig. 3-1 Controller and observer scheme.

To detect the jamming fault, a residual is computed based on the measurement velocity of the train and the estimated velocity of the observer. This residual signal is filtered and used to detect fault occurrence and recovery instants, via threshold triggering conditions. At the end, a fault tolerant control (FTC) is obtained, integrating all the discussed modules.

Wheel jamming effect

In order to clarify our idea for the reader, we reproduce a similar figure as 

            * 1 0 * * * * 0 0 0 * * * 1 1 1 1 1 w t t b u b u p t v t e t t p t w w w               (3.7) Noting that       * 1 0 * * * * 0 * * 1 1 w t t f b u b u v t e v t w w           
and the final position being known, we

obtain from (3.7)           ** 0 0 0 * * 1 1 f f f v t v t bu p t t t p t w w      
or equivalently:

            * * * 0 1 0 0 f f f b u t t w p t p t v t v t       (3.8)
And finally:

              * * * 10 * * * 1 0 0 * * * * 1 1 1 ln ff f w v t b u b u w p t p t v t v t w w v t b u            (3.9)
Of course, for the special case of stopping   0 f vt  and therefore (3.9) can be written as:

          * ** 10 * 0 1 0 * * * 1 ln 1 f w v t bu v t w p t p t w b u           (3.10)
Notice that there is always a solution to (3.10). Effectively, let us denote

* 1 * * 0 w x bu    and       * 1 0 0 f w p t p t     
, therefore finding a solution to (3.10) is equivalent to find a solution to   f0 x  with:

      00 f =ln 1 x xv x v     (3.11)

Fault detection

Since only one type of fault is considered, the wheel jamming, the isolation is not required and the Fault Detection Isolation (FDI) module is reduced to FD functionality. Adding more faults, such as skidding for example will require an isolation mechanism. Now, with the estimation of the velocity from the observer   vt and the velocity measurement from the train system   vt,

the following residual   rt is considered       r t v t v t , (3.18) 
As usual, fault detection thresholds will be used to detect the fault occurrence and fault recovery instants. Their tuning is done in such a way that discrepancy in measurements on a real system with uncertainties would not trigger false detections, and will not miss the detection of any fault. In order to reduce the measurement noise, a low pass filter is also added. The main idea of the algorithm is presented Fig. 34, with two main parts, detection of a fault with a delay Of course, the choice of such thresholds

i f  , 1, 2,3 i  is a multi-constrained problem,
minimizing false alarms and missed detection and maximizing good detections. For real-time applications, maximizing good detection consists in detecting the faults with unacceptable effects and ignoring low amplitude faults. Indeed, with different magnitudes of the residual, in our case, it is possible to infer the magnitude of the fault and to decide when it is convenient to disable the brake control.

Fault tolerant mechanism

Considering that the compensation is not always possible to perform (because of the wheel jamming), we need to disable the brake control on positive fault detection by releasing the brake, since it will unjam the wheel mechanically. Therefore, the control is deactivated,   0 ut  , as soon as a fault is detected. This action will release the wheel after a short delay, stopping the fault with a time delay of ft t  , reducing the fault duration to a maximum of jam ds ft t t t      , Fig. 345. However, the control will not resume, and a new reference control will not be computed until the FD mechanism acknowledged full system recovery (the second blue vertical line in Fig. 345) Fig. 345. Wheel release mechanism triggered by FTC action.

Convergence issues

In view of what has been explained, we can identify a cycle of four states, starting before fault occurrence and ending with system's recovery. Effectively, the system and the observer have two modes, faulty and fault-free, therefore, there are four cases to study, with transitions between cases as shown in the oriented graph of Fig. 3456. For the vertices ij v , the first index   0,1 i  corresponds to the system, the second   0,1 j  to the observer. " 0 " means fault-free, and "1" means a fault and in this case   0 ut  for the corresponding block (system or observer).

For example 10 v is the vertex with a fault on the system that is not detected by the observer; the system will lose control of the wheel, but the observer still uses the reference control. The arrows on the arcs indicate the possible paths.

Remember that the control * u is considered as piecewise constant, and will be recomputed every time k t such that both the observer and system are considered fault-free (see the algorithm given after equation (3.10)). This will happen at the time of the transition between 01 v and 00 v as indicated Fig. 
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That can be rewritten as: 
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Simulations

This part just presents a preliminary study using a linear model in an ideal situation where the control input is known. It allows both giving a step-by-step procedure and pointing out the different issues that can occur, as well as showing that the proposed ideas are promising.

Fault-free tests

In this case, we are considering that all the parameters are known and the fault does not appear to test the part of the friction force estimated by the observer in ideal conditions. Therefore, the parameters for the train system and the reference system are: 

Faulty case and "classical" control (without compensation)

To show the effect of faulty situations, if not considered beforehand in the design of the control, we consider the same problem as the fault-free case, with the same simulation parameters, but including faults in the simulation. According to the previous notations, the fault duration is set to 200 jam t ms  . Then, we trigger four faults at 1s, 1.6s, 3s and 4s, Fig. 3-11.

Faulty case with Fault Tolerant Control

This simulation presents the application of the methodology. First of all, we apply the piecewise constant reference . A comment must be made on the interpretation of the achieved improvement.

    ** k u t
While a single jamming without FTC remediation might lead in a small inaccuracy in the final position, in real conditions, they might be hundreds of random jamming during the braking phase, and the errors will accumulate. The FTC action will be especially beneficial in inhibiting the jamming as soon as possible, and consequently, in limiting its duration and its impact on stopping position. This is why the relative improvement obtained by FTC will grow with increased jamming duration, as shown in the table. 

Taking the case shown in

Section discussion

This preliminary study showed that the proposed fault tolerant control with perturbation compensation can be efficiently used to improve accuracy of train's stopping when the braking wheel jams. The jamming faults were represented as actuator faults. As stated in the beginning of this section, the model taken into account (linear dynamic of the system, linear PI-observer, straight flat path during deceleration) and the assumptions (control input known) made this case as an "ideal" case, with the advantage to show the step-by-step procedure that was used to achieve our goals.

The assumptions made in this part, will now be removed in order to get close to real-time train operation. These assumptions were: knowledge of the effective braking control and accurate approximation of friction parameters.

Robust train position estimation under perturbation and sensor faults

In this section, we represent the wheel jamming as a sensor fault, motivated by the strong effect of the wheel jamming on speed measurements, which can lead to a temporary inaccessible velocity data, and the problem that might occur for real trains: if the on-board estimated position diverges significantly from the real position, an emergency brake might be issued by the ATP system for safety considerations. Indeed, if the estimated position is corrupted for some reason, it might indicate a malfunction in the train electronics, which can lead to the inability to stop the train in time at the right place. Then it is safer to stop the train immediately to investigate the malfunction. However, if the discrepancy between estimation and real positions is due bad wheel-rail contact that causes wheel's jamming, it is not a sensor malfunction but an intermittent fault that might lead to a big hit on the rolling stock and the infrastructure due to the emergency braking. In order to avoid this situation, a safety margin is applied on position estimation, and on the safe braking distances, which in turn reduces train frequency on the line, slows down the schedules and the travelers. Thus the need of a position estimation algorithm for the ATP with an improved robustness to sensor faults is required.

The comparison between the real and the estimated positions uses beacon-based position measurements for reference. The beacons are installed on the railway, at constant intervals, and their exact position is known. The beacons transmit the good position to the train when nearby, to reset the position estimation error, since the estimation relies solely on the odometer for velocity measurements and the following integration to obtain the position estimate. In order to improve position estimation for the ATP, we need to follow the constraints on the existing estimator and the ATP level systems: we consider that we have only access to the velocity sensors at the same rate that the ATP accesses the data bus, and that we do not know accurately the control signal, contrary to the previous section. This absence of measurement is partly compensated via the additional time-to-time beacon information that are used to reset the error of the position estimation.

As stated before, several loops may be necessary to get a satisfactory result. Especially, the acceptable compromise between 0   that guarantees the robustness of residual   rt according to   t  and 0   that guarantees its sensitivity to the fault   ft.

Fault detection

After solving the HH  problem, we obtain the gain M using Algorithm 3-2 and we compute the residual from (3.45):

        r t M y t y t  (3.59)
Now, the fault detection algorithm uses the residual   rt, a constant threshold f  determined using HH  results, the speed estimation   vt, and the measurement from the sensor   k vt

, where k t is the measurement instant. Therefore, based on the behavior of the fault from section 2.1.2, the fault detection is divided into three parts:

Fault free   f N → increasing fault   f F → decreasing   f R → Fault free   f N .
This give us additional information to improve fault detection and to filter corrupted sensor data.

 Fault free   f N if the observer estimation matches the sensor.

 Increasing fault   f F if the observer estimation and measurement are diverging.

 Decreasing fault   f R if the observer estimation and measurement are converging.

The main idea of the algorithm is shown in Fig. 3-19. The steps of the algorithm are the following: 

Algorithm 3-3:  If   f rt   and     ˆk v t v t  then   11 fk Ft  and   10 fk Nt  Else     1 f k f k F t F t  and     1 f k f k N t N t   If   1 fk Ft and     1 kk v t v t  then   11 fk Rt  Else     1 f k f k R t R t   If   1 fk Rt and    

Simulations

The effectiveness of the proposed approach is demonstrated by simulation in two cases. The first case is fault free, to show the unknown input estimation R d under ideal conditions. The second case corresponds to a faulty case, to show the improvement in the position estimation with the proposed approach.

Fault-free case

Consider the quasi-LPV train model (3.42) 

Faulty case

The example proposed therein introduces a jamming fault, Fig. 3-27, producing 10% error in comparison with the real velocity, Fig. 3-26. The algorithm for fault detection with a threshold of 0.9 is able to detect the fault with a time delay of 0.4s, as shown in Fig. 3-27. Moreover, the estimation of the unknown input

      * 2 R B B d g p w Ff t z B u u    
converges to the real signal after fault occurrence, as shown in Fig. 3-29. Fig. 3-28 shows position error between two beacons (blue vertical lines). We can see that the position estimation error from the observer is 4 meters better (500%) than sensor-based estimation. 

Section Discussion

This section presented the interest of a robust position estimation algorithm for the ATP system.

Using only available noisy measurements at a low rate, with incomplete knowledge of parameters and control inputs, the quasi-LPV UI observer and the related fault detection module managed to successfully detect wheel jamming and to filter the corrupted measurements. We derived an algorithm and LMI conditions to design the observer with acceptable performance using HH  optimization, and at the same time, the obtained norms will help with the choice of the appropriate fault detection threshold that insures an acceptable compromise.

However, these promising results need to be validated on an experimental data set, with stronger faults, and that will be addressed in the validation chapter.

Also, while the position estimation is improved, there is no guaranteed estimation error, i.e. it is impossible to predict how much the position error improved in order to appropriately determine the safety margin, or to allocate the exact bandwidth that is needed to insure some worst case position error bound. This topic will be addressed in the next chapter.

Conclusion

In this chapter, we presented two different contributions to help with automatic train operations.

First of all, we addressed the problem of making the train stop accurately at the station, even if the brakes are intermittently unavailable because of faults. This application proposes a solution for ATSC algorithm. Secondly, we considered the problem of robust position estimation, with imperfect knowledge of the system, perturbations, corrupted measurements and noise. This application is appropriate to improve ATO based position estimator.

From the methodological point of view, we addressed fault detection and fault tolerant control of intermittent faults (faults that appear and disappear), with two different formulations for the same wheel jamming fault. FD and FTC were performed, with realistic assumptions, considering imperfect knowledge of the system and the controls, and slow measurement updates.

Finally, we contributed to the design of an unknown input observer in proportional-integral form, and derived LMI conditions to formulate design conditions. We also used quasi-LPV system model, and HH  optimization framework for that matter. Formal performance issues were discussed and solutions were proposed to ensure acceptable design performance.

Next chapter addresses possible worst case performance guarantees for the estimation error, considering the continuous-discrete dynamic nature of the system.

CHAPTER 4. Robust estimation for nonlinear continuousdiscrete systems with missing outputs

Introduction

This chapter is about guaranteed state estimation of discrete output systems. The main motivation of this research is to obtain formal worst performance indicators for a continuoustime observer dynamic with sampled-time updates, considering constant sampling period and to some extent, variable sampling. The challenge here is that the system is impacted with perturbations together with a partial knowledge of the control input. As presented in the previous chapters, we use unknown input observers (UIO) (J. [START_REF] Chen | Design of Unknown Input Observers and Robust Fault Detection Filters[END_REF] to solve that issue. This makes possible the estimation of exogenous perturbations, and implementation of appropriate robust control techniques, based on disturbance compensation [START_REF] Faieghi | Robust Adaptive Cruise Control of High Speed Trains[END_REF][START_REF] Gao | Unknown Input Observer-Based Robust Fault Estimation for Systems Corrupted by Partially Decoupled Disturbances[END_REF].

Therefore, this chapter addresses the performance of an observer of the continuous-discrete type with an UIO design, and how can we assess the worst-case error bound with respect to variable and partially unknown measurement sampling. A specific form of the so-called Gronwall inequality [START_REF] Dragomir | Some Gronwall Type Inequalities and Applications[END_REF]) is necessary to compute the error bound, inspired by the Input to State Stability (ISS) / BIBO context and research on stability of systems (Lazarević and Spasić 2009) [START_REF] Phat | Stability and Stabilization of Switched Linear Discrete-Time Systems with Interval Time-Varying Delay[END_REF]. Depending on the choice of the observer, i.e.

constant gain or time-varying observer gain, different bounds can be obtained. Since the derived bounds can be over-conservative due to the assumptions and inequalities taken into account, we consider practical ways to relax the conservativeness using available knowledge on the observed physical system. The results are applied to the transport application, using the train mathematical model for simulation and validated in the next chapter by data acquired during field tests on a benchmark locomotive.

Continuous-discrete observer literature overview

Research works on continuous-discrete dynamics are popular when dealing with slow process dynamics, where fast measurements are not required, for example in the chemical industry [START_REF] Astorga | Nonlinear Continuous-Discrete Observers: Application to Emulsion Polymerization Reactors[END_REF], [START_REF] Tatiraju | Multirate Nonlinear State Estimation with Application to a Polymerization Reactor[END_REF], [START_REF] Hernández | Robust Estimation of Continuous Nonlinear Plants with Discrete Measurements[END_REF].

For such cases, one will use the so-called continuous-discrete observers (CDO), with the objective to reconstruct the state between two samples. The study of CDO is also popular because in some situations, sensor measurements are available through a shared communication bus, and the allocated bandwidth is insufficient to transmit in real-time all the available measurements, which makes it difficult to implement observers that are fast enough to keep up with the system or controller rate.

Also, ideas to use CDO design to insure finite time performance of the estimation emerged recently [START_REF] Mazenc | Finite Time Estimation through a Continuous-Discrete Observer[END_REF]. The continuous-discrete design problem, along with the similar multi-sampling rate design problem, is formulated in the linear case using either predictors in between samples (Ling and Kravaris 2017a) and [START_REF] Mazenc | Construction of Interval Observers for Continuous-Time Systems with Discrete Measurements[END_REF] or classical sample and hold strategies [START_REF] Moarref | Stability and Stabilization of Linear Sampled-Data Systems with Multi-Rate Samplers and Time Driven Zero Order Holds[END_REF], with the objective to achieve exponential stability of the error dynamics, given a maximum sampling period, using LMI context and Lyapunov-Krassovskii-based conditions. This research is also extended to non-linear systems, like in (M. Farza et al. 2014b) and (Karafyllis and Kravaris 2009) using high gain observers and in (Ling and Kravaris 2017b), where the vector small-gain theorem was used [START_REF] Karafyllis | A Vector Small-Gain Theorem for General Non-Linear Control Systems[END_REF]. In [START_REF] Dinh | Continuous-Discrete Time Observer Design for Lipschitz Systems With Sampled Measurements[END_REF], authors design CDO for continuous time Lipschitz system with sampled measurements, where the estimation error is bounded, which is useful for applications. Literature also contains results on the use of CD Kalman filter for stochastic systems [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF].

Proof: Consider the expression: 
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From where:
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Therefore, passing at norms
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which corresponds to the definition of ŷ M , Theorem 4-2. In the same way, consider now that 
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  , 2 0
  such that the following LMI constraints problem is verified, for given scalars 0   and 0 Proof: Inequality (4.41) is related to the convergence rate with a quadratic Lyapunov function and can be represented in various forms as a LMI constraint problem. The more direct being to consider a polytope on the vertices of ŷ , giving a set of finite LMI constraints [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]). The bigger 0   , the faster the convergence is. In opposition, the faster the convergence the bigger is   K  . Thus we need a compromise to limit  
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and to the use of Schur's complement to (4.42). The smallest  will lead to the smallest norm   K  , if P is well conditioned. Thus, the conditioning of matrix P has also to be taken into account, especially by restricting the parameter  . To reduce the magnitude of  , consider: 
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Of course, for est e we stop the summation when the speed is under 1ms. Then, we will investigate the behavior of the estimation error bound. Based on Theorem 4-1, Theorem 4-2, Remark 4-4 and Remark 4-6, bound behavior will be shown for different speed profiles, for fault-free and faulty profiles.

A discussion on the strengths and weaknesses of the proposed solutions concludes the chapter.

Experimental setup

The data was obtained using a Coradia-type motor coach during tests to investigate the precision of the odometer-based measurement chain and to characterize particular behaviors of interest to determine the best configurations for the ATC system. ALSTOM Transport Company ran twelve ( 12) experiments that correspond to combinations of different speed and adherence conditions: nine (9) experiments used electric brakes and three (3) used pneumatic brakes.

The considered speed profiles are:

 HS: High Speed profile with the maximum speed allowed, around 45 (m/s),  AS: Average Speed profile around 66% of the allowed maximum speed, 30 (m/s),  LS: Low Speed profile around 33% of the allowed maximum speed, around 17 (m/s).

The different levels of adhesion are defined as:

 LoA: Low Adhesion corresponding to rainy conditions (water on the rail).

 BaA: Bad Adhesion corresponding to rainy conditions and falling leafs.

 EBA: Extremely Bad Adhesion corresponding to the extremal skidding/jamming possible conditions.

The real time adhesion conditions were "artificially" obtained by proper configuration of the train devices and additional equipment that will pour water and soap on the track. The tracks are cleaned after each test.

The motor coach is equipped with the following sensors:

 2 odometers (positioned on 2 different wheel axels)  1 radar (beneath the locomotive, oriented forward)

 1 accelerometer (in cabin)
The speed is measured in m/s and the acceleration in 2 / ms. The data is gathered using datalogger devices and CAN transmissions recording. The aggregated measurement data sampling time is 50ms (20Hz). The radar and accelerometer sensors are used only to give a "true measure" (the ground truth) in order to characterize odometer behavior. These sensors (radar and accelerometer) are not commonly used on commercial rolling stock for reasons that are out of the scope of this thesis. We need to point that, the measurements provided by the additional sensors are not used by TCU (Traction Control Unit), BCU (Braking Control Unit) and WSP (Wheel Sliding Protection) units of the motor coach. However, actions of the TCU, BCU and WSP obviously impact wheel behavior, causing (or masking) some effects of the wheel by integration (or double integration) of the sensor measurements. We can see that the impact can be important, with an error that can exceed 100 meters, for a motor coach length of 30m. Using this procedure, all friction parameters are estimated for the three adherence situations LoA, BaA and EBA, and results are shown Table 5.1. These estimates are obtained using reference data from radar and acceleration sensors, available in the data-set. 

Assumption 3 (A3) The TCU control signal

The TCU control signal would be helpful for outperforming the q-LPV UIO PI-observer performances, nevertheless, this information is never available, neither in the data set nor for the ATO in real conditions. Thus, the algorithm to construct the piecewise-constant control approximation   * . u proposed in chapter 3, is used again; where   * . u is updated at the times when a beacon is crossed or when the system has recovered from a fault. The procedure given from (3.5) wv is not significant. Therefore, for this set of parameters the q-LPV representation will not impact the results.

 The end-of-fault detection delay de t  , or system recovery delay: it is the delay between the real disappearance of the fault and the moment when the end of detection occurs from the fault detection system. Again, the shorter this delay, the best the result is.

This last indicator is related to fault duration estimation, and can be replaced by the error in fault duration estimation.

Considering fault detection performance, we chose in this thesis to consider the number of faults and fault detections, in order to compute the rates and not the total duration of faulty periods and the total duration of good fault detections.

The last column of the The exploration of the interval was done iteratively. 

Fault detection performance for each case

Thereafter, the best detection threshold is used for each case. We consider that the threshold depends of the speed range as shown by the results of tables Table 5.2 and Table 5.3. This result is compatible with real time application as in practice, the speed is both measured and estimated.

Considering a unique threshold speed independent would be more conservative, it will correspond to the smallest one, and obviously will have worse fault detection rates. The main reason is that its higher sensitivity to noise will increase the rate of false detections FAR, and consequently decrease the rate of good detections FDR.

We consider in the following tables the time delay to detect the start   ds t  , and the end   de t  of the fault on good detections; for the tables thereafter we present the average delay considering the whole deceleration phase. We also consider the false alarms FAR, and missed detections UFR. The FDR is omitted because it can be derived from the UFR value. The last two columns are dedicated to the relative position errors at the final position for both cases:

 without fault detection approach       . What we call final position, is the last position before beacon update, with contrast to stopping position which is the position when we want the train to stop.

High speed test case

Table 5.4 presents the results for the three HS tests using a threshold of 0.65 f   . It can be seen that all faults are correctly detected on the presented interval (Fig. 5-5) and that the position estimate is improved from 1% decrease for the less faulty case, to 8% for the worst case. This value exhibits a sensitivity which is incompatible with the studied case that can end with an estimation worse than the one given by the corrupted sensor. 

Average speed test case

An interval from the AS-test is studied thereafter and the results are shown Table 5.5: We see that the improvement is minor (2-3%) for the first two lines, and around 30% for the last line. The case presented improves only in a small way the positioning result. In view of the figures, this case can be seen as a slowly varying measurement error (due to the micro-jammings), that cannot be detected by the residual set up for detecting jamming. Therefore, with only one "detectable" jamming amongst a lot of micro-jammings only a small the improvement can be obtained. Choosing a lower threshold wouldn't improve the result, since the residual for this observer was designed without knowledge of the micro-jammings.

Low speed test case

For the LS-tests, a lower threshold has to be preferred. From Table 5.6, we can see that the improvement in position estimation is around 2-3%. 

Pneumatic brakes case

The last tests discussed here are those related to the use of pneumatic brakes. Table 5.7 shows, that the LS-test is where fault detection is successful even with one small fault no detected, reducing the position error by nearly 90%. 

T K w           .
Thereafter, we will consider four (4) different cases to study the upper bound behaviour:

nominal system (fault-free) case, and 3 other cases based on different fault types, small, medium and high severity.

The table 5.8 shows the average bounds computed based on the DMO (Theorem 4-1), CDO (Theorem 4-2) and improved DMO (i-DMO, corresponding to the Remark 4-4 from the previous chapter). Improved CDO-based estimation was omitted, since it gives the same result as the i-DMO.

The table shows, as expected, that the i-DMO is the least conservative, for all situations, and the CDO the most conservative. However, even the best estimation remains, in some cases, conservative as it will be shown thereafter. 

Fault-free case

For the fault-free situation the measurements are "exact", and updates of the observer are done as expected. Here also, no measurement is discarded, a slight decrease can be observed for the measurement with respect to the reference. The observer will not be able to detect the fault that fast, and with a quite small residual. The bound values are similar to the fault free case. 

Medium fault case

This case corresponds to a jamming duration between 3 and 6 samples. Some measurements are discarded from observer updates, which implies that the bound will continue to increase in an exponential way . The reference remains in the bound, as expected.

Notice that for the i-DMO, the first corrupted measurement is on the edge of the bound (Fig. 

Discussion

This short section aimed to show the bound estimation applied to real data, and to discuss its behavior. The exponential nature of the dynamic bounds renders them quickly inappropriate if too many measurements are discarded. In a sense, this is perfectly normal, it takes into account the worst possible case at each instant, therefore cumulating them can result in estimations far from reality. Improvements should come at hand, trying to reduce the gains of the exponential parts, introducing more knowledge in the design of these bounds, using different observer, for example based on a forgetting factor, i.e. the further from a measurement, the less credible the estimation.

Concluding Remarks

This chapter discusses practical applications of the unknown input observer and the associated fault detection system. First of all, the experimental setup was described, and a preliminary study to identify parameters based on the proposed assumptions was performed. Then, the data set was investigated to determine the adequate threshold for the best fault detection performance, considering the highest fault-detection and lowest undetected fault rates. Case per case discussion was then presented, to show the results and the limits of the proposed algorithms. The ending sections discussed the practical application of the estimated upper bound of observation error, focusing on cases ranging from fault free to various severity jamming faults, when some corrupted measurement updates were discarded.

As expected, when faults are successfully and timely detected, the proposed solution improves the position estimation, with some limitations, concerning mainly faults that do not match the expected model. The estimated bound is conservative, as expected, but is matching the measurements. However, to be useful, less conservativeness is needed, using more extrainformation or another form of observer design.

CHAPTER 6. Final words Conclusion

This thesis dealt with the development of advanced observation and control algorithms and their practical application for railway systems automatic operations, considering uncertain system parameters, limited communication bandwidth, and faults in the system. Two faulty situations were considered in particular: wheel jamming during braking and wheel skidding during traction.

The main result of this research was the design of an unknown input observer in proportionalintegral form, with a continuous-discrete update dynamic. This observer can be used for disturbance estimation and fault detection, and is a major component in the proposed fault tolerant control scheme.

There are four contributions in the thesis:

The first contribution was the design of an active fault tolerant braking control, where the main contribution is an integrated approach using an unknown input observer, fault detection, and disturbance compensation control with a reference model for train stopping, with some assumptions on the system. The design of such a system and a discussion on the convergence properties was provided.

The second contribution dealt with the design of a robust position estimation algorithm based on the unknown input observer with a quasi-LPV representation. The assumptions on the system were relaxed with respect to the previous case, as the observer assumed a nonlinear system model, and an unknown control.

The third contribution explored a novel Gronwall-like bound for the observer error, in continuous-discrete dynamic. The unknown input observer was designed in a quasi-LPV framework with a piecewise constant input. Practical considerations on how to improve the bound with extra information from the system were discussed.

The last contribution concerns experimental study: the designed observers were tested on data sets acquired during real time experiments provided by ALSTOM Transport Company. Several situations were studied, considering different speeds and different wheel-track adherence conditions. The performances of the developed observers were discussed for the presented scenarios, and strategies for observer parameters choice were proposed.

Overall, the proposed approach showed promising results, and needs to be embedded for realtime tests. The Gronwall-like bound formulation and use in such applications is a novel idea, that was proved to be feasible, but needs further investigations to obtain less "pessimistic" estimation for the upper bound of the error.

Perspectives

Both theoretical and applicative perspectives are to be considered:

The applicative perspectives are centered on the real-time exploitation of the algorithms, in a dedicated data acquisition environment, to validate real-time performance of the algorithms: robustness, speed, numerical issues, etc. A complete discretization is considered in order to facilitate the transition.

Another applicative development is the use of a more accurate representation of the train, with a proper dynamic of each vehicle and their interconnections. The model will consider wagons and locomotives separately, with distinct braking controls for each vehicle, and with the traction control remaining exclusive to locomotives.

The following application perspective is related to the exploitation of the existing wheel-track contact cartography and other models of wheel-track adherence to improve the model that is used to derive the observer.

Finally, the practical use of the estimated upper observer error bound for the optimization of the safety intervals and train timetable scheduling must be investigated, among other possibilities.

The theoretical developments are related again to the estimation of the upper observer error Another possible theoretical development is the transposition of the results to the multisampling rate framework, and consider dedicated discrete time observer design tools. For example, this could help to improve the design procedure for the robust position estimator discussed in the second section of the third chapter.
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 2 Fig. 2-5 Friction forces.
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 26 Fig. 2-6 Wheel rail contact.

  Many technologies are used, mechanical, optical or magnetic. For further details, the reader can refer to technical documentation (Incremental encoders -Lenord+Bauer n.d.; Speed sensors -Lenord+Bauer n.d.; Saab, Nasr, and Badr 2002).
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 2 Fig.2-7. The structure of the train measurement system.

  Fig. 2-10 that show real-time experiments. In these experiments, we do have the fault free
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 2 Fig. 2-9 shows the influence of the faulty measurement on the position estimation. The vertical lines at 90s, 98s and 107s represent positioning using the beacons and therefore the real position at these moments. The jamming, for this trial, is responsible of a measurement error of 5 meters for 200 meters spaced beacons (see zoomed part of Fig. 2-9).

Fig. 2

 2 Fig. 2-9. The position estimation with wheel jamming (in meters).
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 2 Fig. 2-11. The position estimation with wheel skidding (in meters).
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 2 Fig. 2-12. The velocity behavior with wheel skidding.

(

  ATP) and Automatic Train Supervision (ATS) systems help the driver to comply with the speed restrictions, following a desired speed trajectory, and to stop the train accurately. Also, the Automatic Train Stop Control (ATSC) system helps the driver to stop the train accurately and timely at the station. All these systems together form a package called Automatic Train Control (ATC), Fig.2-15[START_REF] Dong | Automatic Train Control System Development and Simulation for High-Speed Railways[END_REF]).
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 2 Fig.2-15. Diagram of the automatic train control system with its subsystems. In order to understand subsystems interaction, let's consider the functions in detail (Allan and Arias 2008; The Railway Technical Website n.d.; Yin et al. 2017):
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 2 Fig.2-16gives an example of configuration[START_REF] Allan | Multi-Objective Optimization Method for the ATO System Using Cellular Automata[END_REF][START_REF] Dong | Automatic Train Control System Development and Simulation for High-Speed Railways[END_REF][START_REF] Yin | Research and Development of Automatic Train Operation for Railway Transportation Systems: A Survey[END_REF] where the ATS gives train routing and scheduling adjustments to ATO according to the train current state and schedule. ATO will gather the relevant information, such as train speed, programmed stop and dwelling time, and computes braking or acceleration rates. Meanwhile,
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 2 Fig. 2-17. The speed restriction by ATO.

  so-called model-based or model-free techniques is known under the name of Fault Detection and Diagnosis (FDD), or Fault Detection Isolation and Estimation (FDIE or FDI) (Gao, , we can introduce them into the state space representation of a model; for example, if we consider the system (2.11) with the different types of fault, the expression becomes

  ; Cecati 2015; Gao, Cecati, and Ding 2015; Gao, Ding, and Cecati 2015; Isermann 2006; J. Zhang, Swain, and Nguang 2016). The model-based methods can be categorized depending on the type of the model used: deterministic or stochastic, time-based, event-based or hybrid, etc.
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 2 Fig. 2-20. The model-based fault diagnosis scheme(Gao, Cecati, and Ding 2015).Deterministic fault diagnosis applies in our case and we propose to solve model-based fault diagnosis using observers. Fig.2-20 presents a general scheme including several observers with fault detection, fault isolation and fault identification(Gao, Cecati, and Ding 2015). Note that the "residual" refers to a signal that is sensitive to the fault of interest, or to a set of signals

  . We consider that when fault happens, the wheel cannot transmit traction and braking forces anymore. Different based methods using an UIO in the form of a PI-observer, coupled with robust approaches such as H  attenuation, and H  for fault detection sensitivity.CHAPTER 3. Actuator and sensor fault detection with unknown input observer-based approach3.1. IntroductionThis chapter proposes different approaches for train speed and position estimation that are resilient to faults caused by wheel jamming or skidding. The proposed algorithms are meant to be used in high level modules (ATC/ATO level), and will improve the accuracy of the ATSC function, i.e. make the train stop at the expected position in the station. The proposed approaches are based on two representations, with respect to fault modeling: we consider actuator fault-based and sensor fault-based problem formulations. In the first case, we consider

  Fig. 2-10 of chapter 2 about the speed behavior with wheel jamming, left part of Fig. 3-2. The right part presents the absolute error    v t v t between the real speed   vt and the estimated one   delay on detection when the fault ends. 0 t is the initial instant, the time when ATSC is activated and   0 vt is the initial velocity at 0 t . Now it is possible to get the final position and the final time from the previous expression:



  Fig. 3-4. Fault detection mechanism. These detections need three thresholds named 1 f  (non-faulty-to-faulty), 2 f  (faulty-to-non-

  estimation of   dv in Fig.3-8 is enough to obtain a smooth signal control, as it is shown Fig.3-9. Then, for this case, the train stops in time at the targeted position with an acceptable error. Moreover, the FD block did not trigger any false fault detections. Fig.3-10. 
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 3 Fig. 3-7 Comparison of position without fault (zoom on stopping position).
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 33 Fig. 3-8 Estimation of   dv, without fault.
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 3 Fig.[3][4][5][6][7][8][9][10][11][12][13][14][15][16]. The reduction on the error is achieved by the control signal in

Fig. 3 -Fig. 3 -

 33 Fig.[3][4][5][6][7][8][9][10][11][12][13][14][15], where the fault tolerant mechanism acts adequately when the fault is detected by the FD block, reducing the fault duration to
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 33 Fig. 3-14 Fault detection behavior. Fig. 3-15 FTC behavior during a fault.

Fig. 3 -

 3 Fig. 3-19 Fault detection scheme: speed behavior (left), residual behavior (right).
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 3 Fig.3-20. Recall that the control   ut is unknown, and the only available information is about the train braking or not. We use each beacon (vertical blue lines on the figures) to compute a * u as the solution to the problem presented (3.10). Fig.3-23 presents the results of this procedure and shows that the computed control * u is a realistic guess of the real control signal.The unknown input estimation is presented Fig.3-22 and shows a very good capability to capture the dynamic of
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 33 Fig. 3-26 Jamming fault impact on velocity Fig. 3-27 Residual behavior for different fault amplitudes.

FigFig

  Fig. 4-1 Train speed (zoom) with error bound using DMO (

  focus on the observer design, the results in robust estimation of position and of the upper bound of error estimation. Control issues are not concerned because we do not have possibility to test it in a real time framework. Nevertheless, we had access to sensor data acquired during multiple experimental runs performed by ALSTOM Transport, using different kind of brakes to stop, electrical and pneumatic. Moreover, the tests also included different speeds and wheel-track adherence conditions thus generating different fault frequencies and durations. Therefore, the validation can cover an interesting set of situations.A sensor fault-based representation of the problem will be used together with a q-LPV UI-Observer presented in the previous chapters to design a fault detection strategy. We also formulate the problem of finding the best threshold for the collected data. Based on the  and  constants obtained through the mixed H H   optimization procedure, we reconstruct the amplitudes of the occurring fault and obtain insights on what type of faults are more susceptible to occur based on different speed profiles, and what is the influence of both type of brakes on the fault occurrence frequency.
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 51 Fig. 5-1 Overview of the three test phases Since the focus of the thesis is the jamming faults, we will analyze the data only during the braking phase. For illustration, Fig. 5-2 shows a braking sequence for both speed and position, where the ground truth is given by the radar (black line) and the accelerometer (pink line). We can see, left part of Fig. 5-2, that both odometers are heavily impacted by wheel-jamming faults, while the radar-based speed, and accelerometer-based speed, which is obtained by integration of the acceleration, are completely fault-free. The right figure shows position estimates obtained
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 5 Fig. 5-2 Speed measurement (left) and position calculation (right) from sensors.
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 53 Fig. 5-3 Overview of the acceleration/speed trajectories (LoA).
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 54 Fig. 5-4 Friction parameter estimation results.

  -to-time position sensors: on-track position beaconsAs explained section 2.1.2, time-to-time updates of the accurate train position are obtained via track-based position beacons. The beacon measurement updates are not available in the dataset, nevertheless as the reference sensor data are available, it is easy to construct and simulate "artificial" updates. We could even decide to test what would be an ideal positioning of beacons according to the observer design and bounds framework proposed. Therefore, we construct a set of a predetermined "artificial" beacons' positions   B p from the radar sensor-based position. Thus, at each time an artificial beacon is crossed, the approximate "true" position   B p is used to simulate the time-to-time position update.

  final position and final time are known from the data set, then the control   * u  can be recomputed after a beacon update (and detected fault recovery) using the steps from Algorithm 3-1. Using position updates from the beacons and velocity estimations from the observer, the piecewise-constant control beacon is crossed or when the system has recovered from a fault. Now, considering the assumptions A1, A2 and A3, the results issued from the experimental study are presented to validate the methodology proposed in section 3.3, and section 4.3.In this section, we present the fault detection methodology validation, section 3.3 that improves the position estimation under jamming faults, and consequently reduces the stopping position error. The measurement sampling time of the odometers is 200ms, to match real conditions. The time-to-time true position updates are made considering that the beacons are placed on the path with 200 meters intervals. At the beacon crossing time k t

Fig. 5

 5  shows the speed behavior for a situation with the worst adherence conditions EBA, which corresponds to the last line of Table5.4. We can see an important jamming occurrences, varying for 1 to 2 seconds. The speed estimation manages to filter jamming impact on the measurement, using fault detection where the residual is able to detect the fault with a relatively small delays: differences between vertical redreal faultand blue linesestimated faults and recovery).

Fig. 5

 5  shows the evolution of position estimation error during an interval of interest, i.e. 2 considered beacons. The blue lines correspond to the time-to-time beacon updates. The estimated error (dark blue line) is 3 meters better that the sensor measurement (black line), thus dividing by to the precision.

  Fig. 5-5 HS with EBA and

  Fig. 5-6 HS with EBA and

Fig. 5

 5  shows two phenomena: a jamming in the beginning, and many micro-jammings during the whole period. Micro-jammings are jammings with shorter durations than the data sampling, causing a small decrease in speed measurement with respect to the reference. The same phenomenon was also present for the High Speed test, but was masked by the more important jammings. Micro-jammings can be seen especially Fig.5-7 (b), where the residual

  Fig. 5-8 AS with EBA and

Fig. 5

 5 Fig. 5-9 (a) shows that 7 jammings have occurred. The residual was able to sense them with some delay, Fig. 5-9 (b). The position estimation is shown Fig. 5-9 (c); since the jammings were short, there is nearly no impact on the position estimation error Fig. 5-9 (c).

Fig. 5 -

 5 Fig. 5-10 shows that there are five important jammings that occur during the run, and the rate of success of the observer is able 4 on 5 (Fig. 5-10 (b)), thus, filtering their effects from the position estimation (Fig. 5-10 c)).

  Fig. 5-10 LS (pneumatic) with

  Fig. 5-11 HS (pneumatic) with

3 .

 3 Fig. 5-12 Fault free

  Fig. 5-13 Small fault

5

  Fig. 5-14 Medium fault

  Fig. 5-15 Big fault

  bound, and ways to make it less conservative. A promising idea to correct this overestimation is to follow the work of (Mondher Farza, M'Saad, and Busawon 2015; Fall 2015b), using the so-called impulse continuous-discrete observer. It would resume in replacing the gain will require a new like-Gronwall lemma, and probably a different approach in the observer design methodology.
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	2.1 shows typical
	values of 0  used in different regions.

  3-6. We also write the time spent in each vertex as ij When the fault disappears, the observer will remain in the "faulty" mode, therefore 01

																						  e t e o       00 00 cl A t t o t 00 t e t 	e	  At cl   d Bu t   * k 	(3.23)
	And directly:   o e t			e	 A t t 00 cl 	   00 o e t	 1  	e	 A t t cl 	00			  k A Bu t 1 * cl 	, from which it can be seen that
	even if the system stays in 10 v we have:	  e t lim o t 		  k A Bu t 1 * cl 	. The initial condition will be
	  00 e t o		e	00 At cl 	  o k e t	, with 00 t	k   t		t	00	, and (3.23) renders:
												  e t o		e	 A t t cl 	k	   o k e t	 1  	e	 A t t 00 cl 			  k A Bu t 1 * cl 	,	  00 10 , t t t 	(3.24)
	At time 10 t , when the residual is bigger than the threshold 1 f  , then the detection holds true and
	a transition to the vertex 11 v occurs with 10 10 00 t t t    . Its initial condition   10 o et from (3.24)
	is:   10 o e t		e	cl A		00 t  	10 t		    1 o k e t  	e	10 At cl 		  k A Bu t 1 * cl 	. Thus, after time 10 t :
								  e t o		e	 A t t cl 	k	   o k e t		e	 A t t 10 cl 		 1		e	 A t 10 cl		00 t			  k A Bu t 1 * cl 	,	  10 11 , t t t 	(3.25)
																									v is
	activated through (3.21), with the initial condition given for	11 t t 	in (3.25) and with
	11 t    . Then 11 10 t t				  11 e t o		e	cl A			00 t	10 t   	11 t	   o k e t		e	 1  11 cl A t cl A t 10 e 		  k A Bu t 1 * cl 	. Thus, after
	time 11 t , similarly to (3.24), we will obtain:
												  e t o		e	 A t t 11 cl 	   11 o e t	 1  	e	 A t t 11 cl 			  k A Bu t 1 * cl 	,	  11 01 , t t t 	(3.26)
	Or equivalently;													
		  e t o		e	 A t t cl 	k	   o k e t			e	 A t t 10 cl 			e	 A t t 00 cl 		1  	e	 A t t 11 cl 			  k A Bu t 1 * cl 	,	  11 01 , t t t 	(3.27)
	Finally, when the residual will detect that the system has recovered from the fault, the transition
	to 00 v ends the loop. Therefore, one cycle after we can write:   o e t e 	    01 01 A t t cl o e t 	,	t t 	01	or:
																									t  .

  The second row presents the detection time delay's average ds t  , i.e. detection time minus beginning of the fault (known as we are in simulation). The last row of the table represents the relative error of the final position

		u t	when	 t t t  1 , kk 		, i.e. recomputed via the algorithm
	presented previously, where the times k t correspond to the end of the detected jamming faults
	numbered 1,.., k . Secondly, the control law (3.12) is applied to compensate for the disturbances
	  dt estimated using the UIO PI-observer. The fault detection block uses a filtered residual
	      r t v t v t  with threshold values of 1 0.005 f  	, 2 0.005 f  	, and 3 0.001 f  	, in order
	to trigger the FTC mechanism and to inhibit the fault.		
	Results are presented in Table 3.1 using fault durations	jam  , from 20%, i.e. t	jam  t	20 ms	to
	100%.					

Table 3 .

 3 

		1. Train stopping accuracy for different fault durations jam t  .
	t 	jam	(ms)	40	80	120	160	200
	ds  (s) t	0.002	0.002	0.001	0.002	0.001
	Using FTC: % p e (%)					

  Next proposition summarizes a procedure to help to determine the parameters via a LMI performance constraints design. Only the second case (CDO) is presented, since the first one (DMO) can be deduced directly: it corresponds to a choice of a linear gain M (instead of

	  M y) in the conditions.											
	Proposition 4-1: Consider the system (4.1) and the observer (4.2) under Assumption 4-1 and a
	quadratic Lyapunov function. The convergence of the observer is guaranteed for a sampling
	time M  , under the smallest bound (4.11), with			P   P	and	m  	2	, if there exists
	matrices	0 P  ,	  M y and scalars 1 0			
			e t t	k			e	t t 	e t	k		y  	t 	e	m t s 	C e s		y M ds	(4.37)
	(4.37) is now in the form of (4.20), with	ŷ aC  	and	ˆŷ bM  	y	. Thus, from Lemma 4-1,
	an upper bound is obtained										
			  k e t t			e	    k m t t k e t 		yy y M mC   	 1		e	   m		  ,  y k C t t  (4.38)

Table 4 .

 4 1 summarizes the results; the empty entries correspond to situations where the LMI algorithm is unable to reach a solution. Two columns appear for v e , one is the result of the theorems without additional knowledge, the second is the result with the knowledge of the train braking. Due to the exponential nature of the bounds, the first case (

	pair    , m  	0.5;100		.

v e without knowledge) is over pessimistic; CDO being worse than DMO. As the structures of both observers are rather similar, the second case ( v e with knowledge) gives similar results. Now, considering the tradeoff between the dynamic of the observer and the upper bound, the best compromise is the

Table 4 .

 4 1 DMO and CDO results using various parameter settings. to track both the state and the unknown input. Illustrations were provided by simulation of realistic scenarios. In the following chapter, the presented approach will be tested using data-sets obtained through experiments on real trains provided by Alstom company.

				DMO			CDO	
	m  	v e Without	v e	est e	UI e	v e without Remark	v e	est e	UI e
			Remark 4-4				4-6		
		100 1.91	3.29	0.59 0.05 0.35	1.23	0.59 0.05 0.35
	0.1	10 1.9 4 1.91	1.7 1.37	0.44 0.04 0.90 0.38 0.04 2	0.51 0.46	0.44 0.04 0.90 0.38 0.04 2.02
		1 2.87	1.68	0.91 0.06	2	0.94	0.91 0.06	2
	0.5 100 2.80 10 3.52	5.32 3.24	0.86 0.05 0.27 0.82 0.04 0.6	7.61 1.32	0.86 0.05 0.28 0.82 0.04 0.61

Table 5 .

 5 1 Friction parameter estimations.

	Parameters	LoA	BaA	EBA
	* w	0	0.46	0.35	0.25
	1 * w	3 5.7 10  		

  Table 5.2 and Table 5.3 corresponding to the threshold f  gives the best threshold for each situation, that maximizes fault detection rate, and minimizes false alarms.

Table 5 .

 5 2. Thresholds for tests with electric brakes

		Adherence		Threshold		
	Speed profile	level	min	Max		f
		LoA	0.58	1.12		
	HS	BaA	0.59	1.8	0.65
		EBA	0.55	3.1		
		LoA	0.61	1.51		
	AS	BaA	0.51	2.3	0.62
		EBA	0.45	13		
		LoA	0.2	1		
	LS	BaA	0.3	1.8	0.4
		LoA	0.25	2		

Table 5

 5 

			.4. Fault detection in HS with	f  	0.65	.
		Detection					
	Adherence level	delays (s) ds t  t 	de	Rate of undetected faults	Rate of false alarms	e	p	ˆp e
	LoA	0.4	0.17	0		0		0.126 0.113
	BaA	0.19	0.41	0		0		0.123 0.106
	EBA	0.22	0.3	0		0		0.193 0.115

Table 5

 5 

					.5. Fault detection for AS with	f  	0.62	.	
		Detection delays					
	Adherence level	t 	ds	(s)	t 	de	Rate of undetected faults	Rate of false alarms	e	p	ˆp e
	LoA	0.1		0.2	0			0	0.14 0.11
	BaA	0.56		0.16	0			0	0.16 0.14
	EBA	0.2		0.2	0			0	0.58 0.19

Table 5

 5 

			.6. Fault detection in LS with	f  	0.4	.
	Adherence level	Faults detected ds t  de t 	Rate of undetected faults	Rate of false alarms	e	p	ˆp e
	LoA	No fault	No fault	No fault		No fault	0.06 0.03
	BaA	0.2	0.2	0			0	0.15 0.13
	EBA	0.14	0.2	0			0	0.18 0.13

Table 5

 5 

			.7. Fault detection with	f  	1.5	and pneumatic brake.
		Fault					
	Speed profile	detected ds t  t 	de	Rate of undetected faults	Rate of false alarm	e	p	ˆp e
	HS	0.4	0.2	0			0	0.53 0.35
	AS	0.2	0.2	0			0	0.66 0.15
	LS	0.2	0.2	0.2		0	0.96 0.13

Table 5 .

 5 9 CDO, DMO and i-DMO-based estimation of the observer error upper bound

	Fault type Duration (s) DMO CDO i-DMO
	Fault free	0	5.3	4.96	0.7
	Small	0.2	6	10	1.28
	Medium	1	26.11	6 2.2 10 	13.4
	Big	1.4	40.49	9 7 10 	33.3

Concluding remarks

An observer design approach for continuous-discrete time systems and the formal expression of the maximal bound of observer error have been investigated in this chapter. Two approaches to determine the bound are developed, based on a discrete measurement observer and a continuous discrete observer, using a special form of Gronwall inequality. A PI-observer design procedure is proposed in LMI form, with a tradeoff between the best guaranteed bound and jamming/skidding. For example, the WSP unit configuration is different depending on the configurations used for this experimental run: either all-or-nothing or progressive traction control behavior control to avoid skidding. The same applies for the BCU and braking in order to obtain the required jamming conditions for the test.

The tests were made only using the motor coach without additional vehicles, and only one cabin is used and active, the second cabin (for the reverse motion) is not used for the tests. The motor coach uses electric traction and two kind of brakes: † electric brakes and † † pneumatic brakes.

Control signals from the TCU unit were not available for the study, thus some assumptions were made prior to the validation. These assumptions are explained thereafter. The procedure for generating these tests are rigorous, and will be omitted therein because of confidentiality issues. The scenario is the following: Traction (Acceleration) phase: traction control is applied (maximum) until the required speed (HS, AS, or LS) is reached. The acceleration phase will be subject to degraded adhesion and skidding situations.

Maximum speed (Cruising) phase: stabilized maximal speed (for the test) is maintained using appropriate traction or braking actions during a short period (around 1 minute). This phase will benefit of normal adhesion conditions. Braking (Deceleration) phase: braking control is applied (maximum) until the train completely stops. This phase will be under degraded adhesion conditions, and jamming situations.

The general scheme showing the test sequence is shown in Fig. 5-1.

Determination of the best detection threshold

We split the tests into three groups based on the speed profiles: HS, AS, and LS. The different adherence levels are considered: LoA, BaA, and EBA. Now, we create two tables Table 5.2 andTable 5.3 with the fault detection information for each situation, in order to obtain maximum and minimum threshold values, with fault detection performance of 99% of non-detected faults for the maximum possible threshold and 100% detected faults with 50% false alarms for the minimum possible threshold. Obviously, these values are unacceptable, and we must reach a fault detection rate of 100% with no false alarms.

In this thesis, we will consider the three (3) markers to assess the performance of a fault detection algorithm. These markers are both popular and intuitive [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF][START_REF] Isermann | Fault-Diagnosis Systems An Introduction from Fault Detection to Fault Tolerance[END_REF]J. Zhang, Swain, and Nguang 2016), and are detailed below:

 Fault detection rate (FDR): It is the number of fault detections that correspond to real faults, divided by the number of total faults. This rate evaluates how close the results are to the objective of 100%.

 Undetected faults rate (UFR): Also referred to as non-detection rate, or missed faults rate.

It is the number of undetected faults divided by the number of total faults. This rate has to be as close as possible to 0%.

 False alarms rate (FAR): Also referred to as bad-detection rate. It is the number of faults detections that do not correspond to real faults divided by the number of total detections. This rate has to be as close as possible to 0%.

When the number of total faults is unknown, the rate is computed based on the number of total detections. This is the usual situation in practice.

When a "real" fault is detected, another parameter that might be important is:

 The fault detection delay ds t  , or the time-delay from real fault occurrence moment until the moment when a "fault detected" decision is made by the fault detection system. The shorter this delay, the best the result is.

If the fault is intermittent, which means that the fault can disappear even if it is left unattended, then another indicator is considered: