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Abstract 
 

Millions of people use the trains every day. Therefore, rail transport and infrastructure 

efficiency and safety is critical, for customers and companies. A major challenge nowadays is 

to climb automation levels for trains, from Grade of Automation (GoA) “0” which is basically 

on-sight train operation all the way to GoA “4” where train operations are unattended. GoA 

levels are defined by the International Association of Public Transport (UITP—French 

acronym), and aim to provide a roadmap for the development and the integration of the so-

called automatic train operation (ATO) systems. ATO are operational safety enhancement 

devices that help the driver by automating some operations on the train, helping him/her to be 

more attentive and to focus on possible safety issues or unexpected situations. Currently, the 

level of automation that is reached for commercial rolling stock is GoA “2”, semi-automatic 

train operation, when starting and stopping operations are automated. Most of the existing ATO 

systems are GoA 2. 

As within any modern vehicle, on-board systems on a train are linked, and the ATO is working 

together with automatic train protection (ATP) and automatic train supervision (ATS), to ensure 

the respect of the speed restrictions and stop the train at the station with accuracy and within an 

acceptable tolerance of its timetable. The stopping task is carried out by automatic train stop 

control (ATSC), and all of the devices together form a package called automatic train control 

(ATC) (Dong et al. 2010).  

All automatic systems rely on two main functions: perception and decision. The ATO device 

will rely heavily on the available information to ensure an accurate perception of its 

environment and of the operational situation, in order to carry out the right decisions. This 

information acquired by sensors of different technologies and made available through the 

communication network (bus) of the train. Obviously, sensors are limited by technology, the 

communication bandwidth is not infinite; and all technical systems can experience faults and 

failures. Those are major challenges to design efficient and robust ATO devices, because the 

usual way to deal with these issues is to use sensors of different technologies for each 

information of interest. This makes such a system more complex, possibly costly, and it 

increases the amount heavily of transmitted data and its supporting infrastructure. 
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There is a promising solution to this challenge, and it is called virtual sensors, or observers that 

are developed by automatic control researchers to supplement the sensors at a fraction of the 

cost, and embeds knowledge of the system in the automated device through analytical models 

of the environment. The design of a particular type of observer, and its practical exploitation 

for automatic train operations is the main contribution of this PhD work. 
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Résumé 

Des millions de personnes utilisent le train chaque jour. Par conséquent, l’efficacité et la 

sécurité du transport ferroviaire et de l’infrastructure sont essentielles pour les clients et les 

entreprises. De nos jours, l’un des principaux défis est d’augmenter le niveau d’automatisation 

des trains, du niveau d’automatisation « 0 » (ou Goals of Automation GoA) qui consiste 

essentiellement à exploiter les trains à vue jusqu’au niveau « 4 », où les opérations ne sont pas 

surveillées. Les niveaux GoA sont définis par l’Union internationale des transports publics 

(UITP) et ont pour objectif de fournir une feuille de route pour le développement et l’intégration 

des systèmes dits « d’exploitation automatique des trains » ou ATO. Les ATO sont des 

dispositifs d’amélioration de la sécurité opérationnelle qui aident le conducteur en automatisant 

certaines opérations, lui permettant de se concentrer sur les problèmes de sécurité éventuels ou 

les situations imprévues. Actuellement, le niveau d’automatisation atteint pour le matériel 

roulant commercial est GoA « 2 », ou une exploitation semi-automatique des trains, les 

opérations de démarrage et d’arrêt étant automatisées. La plupart des systèmes ATO existants 

sont GoA 2. 

 

Comme dans tout véhicule moderne, les systèmes embarqués sur un train sont liés et l’ATO 

collabore avec les organes de sécurité tels que la protection automatique des trains (ATP) et la 

surveillance automatique des trains (ATS). Il doit garantir le respect des limitations de vitesse 

et arrêter le train à la gare avec précision, tout en respectant une table horaire. La tâche d’arrêt 

est effectuée par le contrôle automatique de l’arrêt des trains (ATSC). L’ensemble de ces 

dispositifs forment le contrôle automatique des trains (ATC) (Dong et al. 2010). 

 

Tous les systèmes automatiques reposent sur deux fonctions principales : la perception et la 

décision. Le dispositif ATO s’appuiera fortement sur les informations disponibles pour assurer 

une perception précise de son environnement et de la situation opérationnelle, afin de prendre 

les bonnes décisions. Ces informations sont acquises par des capteurs de différentes 

technologies et mises à disposition via le réseau de communication (bus) du train. De toute 

évidence, les capteurs sont limités par la technologie, la bande passante de communication 
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n’étant pas infinie. De plus, tous les systèmes techniques peuvent rencontrer des défauts et des 

échecs. Il s’agit là d’un défi majeur pour la conception de dispositifs ATO robustes et efficaces, 

car la manière habituelle de traiter ces problèmes consiste à utiliser des capteurs de technologies 

différentes pour chaque information source d’intérêt. Cela rend ce système plus complexe, 

souvent plus coûteux, et augmente considérablement la quantité de données transmises et son 

infrastructure de support. 

 

Il existe une solution prometteuse à ce défi. Il s’agit de capteurs virtuels, ou observateurs 

développés par des chercheurs en contrôle automatique pour compléter les capteurs à une 

fraction du coût, et intégrer la connaissance du système dans l’automate à l’aide de modèles 

analytiques de l’environnement. La conception d’un type particulier d’observateur et son 

utilisation pratique pour l’exploitation automatique des trains constituent l’apport principal de 

cette thèse. 
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CHAPTER 1. Introduction  

 

1.1. Context of the thesis 

Millions of people use the trains every day. Therefore, rail transport and infrastructure 

efficiency and safety is critical, for customers and companies. A major challenge nowadays is 

to climb automation levels for trains, from Grade of Automation (GoA) “0” which is basically 

on-sight train operation all the way to GoA “4” where train operations are unattended. GoA 

levels are defined by the International Association of Public Transport (UITP – French 

acronym), and aim to provide a roadmap for the development and the integration of the so-

called automatic train operation (ATO) systems. ATO are operational safety enhancement 

devices that help the driver by automating some operations on the train, helping him/her to be 

more attentive and to focus on possible safety issues or unexpected situations. Currently, the 

level of automation that is reached for commercial rolling stock is GoA “2”, semi-automatic 

train operation, when starting and stopping operations are automated. Most of the existing ATO 

systems are GoA 2. 

As within any modern vehicle, onboard systems on a train are linked, and the ATO is working 

together with automatic train protection (ATP) and automatic train supervision (ATS), to ensure 

the respect of the speed restrictions and stop the train at the station with accuracy and within an 

acceptable tolerance of its timetable. The stopping task is carried out by automatic train stop 

control (ATSC), and all of the devices together form a package called automatic train control 

(ATC) (Dong et al. 2010).  

All automatic systems rely on two main functions: perception and decision. The ATO device 

will rely heavily on the available information to ensure an accurate perception of its 

environment and of the operational situation, in order to carry out the right decisions. This 

information acquired by sensors of different technologies and made available through the 

communication network (bus) of the train. Obviously, sensors are limited by technology, the 

communication bandwidth is not infinite; and all technical systems can experience faults and 

failures. Those are major challenges to design efficient and robust ATO devices, because the 

usual way to deal with these issues is to use sensors of different technologies for each 
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information of interest. This makes such system more complex, possibly costly, and it increases 

heavily the amount of transmitted data and its supporting infrastructure. 

There is a promising solution to this challenge, and it is called virtual sensors, or observers that 

are developed by automatic control researchers to supplement the sensors at a fraction of the 

cost, and embeds knowledge of the system in the automated device through analytical models 

of the environment. The design of a particular type of observer, and its practical exploitation 

for automatic train operation is the main contribution of this PhD work. 

 

1.2. Research scope 

Observers are efficient numerical solutions that avoid adding new sensors, providing state 

reconstruction and disturbance estimation. Information provided by observers are used to 

improve “measurements” precision and to estimate and compensate the exogenous disturbances 

using observer-based compensation controllers. A class of observers called unknown input 

observers (UIO) (J. Chen, Patton, and Zhang 1996) is used for this matter, it belongs to the so-

called observer-PI family. This technique is well-known and has been successfully applied to 

many problems such as (Delrot et al. 2012; Lendek et al. 2010). The estimated perturbation can 

be efficiently taken into account with appropriate robust control techniques (Faieghi, Jalali, and 

Mashhadi 2014; Gao, Liu, and Chen 2016). However, if an unexpected event occurs, like a 

device fault or failure, the “usual” control compensation can be inadequate.  

Unexpected events can be predicted through symptom detection, if the event dynamic is known 

and modelled. The analysis of discrepancy between estimations and measurements is the way 

to detect the symptoms of a possible problem. This analysis is based on the so-called model-

based or model-free techniques, and is known under the name of Fault Detection, Isolation and 

Estimation (FDIE) or (FDI) (Gao, Cecati, and Ding 2015). FDI techniques are used for trains, 

for example in (Jesussek and Ellermann 2013) to capture the nonlinear characteristic of a 

railway vehicle, or in (Wei, Jia, and Liu 2013) to compare acceleration measurements. FDIE 

was also used for high-speed railway traction devices in (Y. Wu, Jiang, and Shi 2016) and to 

the analysis of train networks in (Verbert, De Schutter, and Babuška 2016).  
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A fault that often occurs in train braking systems is the wheel jamming (blocking) (Aguiar et 

al. 2017). This fault will hinder braking distance and position measurement, since the odometer, 

i.e. a frequently used sensor, is based on quantifying wheel rotation. Obviously, if the sensor is 

in the wheel, then when the wheel jams, the measurement will be corrupted. On another hand, 

if the sensor is placed on the rail, like a position beacon, then the position information is more 

accurate. Of course, installing the necessary beacons on all the tracks will quickly face a 

problem of cost and is therefore, unrealistic. Another important point is to derive fault tolerant 

traction and brake controls, thus, we need to detect accurately the faults, ideally missing none 

of them, and generating no false alarms. In view of this, H  attenuation techniques helps to 

improve fault detection robustness with respect to modeling uncertainty (Edelmayer, Bokor, 

and Keviczky 1994; Zhong et al. 2003), and H  index for fault detection sensitivity (J. L. Wang, 

Yang, and Liu 2007; Z. Wang et al. 2017; M. Zhou et al. 2017).  

Wheel jamming, and more generally speaking, adherence issues, will lead in practice to an 

overestimation of the train timetable, and it is made only through collected data. An interesting 

topic to explore is how to improve train scheduling, by estimation of the worst case performance 

of observer estimation, i.e. by computing a worst case bound of the observer error. An idea to 

develop is to use Gronwall-like bounds theory (Dragomir 2003; Fall 2015a) to compute such a 

bound.  

 

1.3. Industrial Scope and Objectives 

The research project has been made together with the LAMIH laboratory and the ALSTOM 

Company, which is a major actor in train industry. The request of the company was about 

efficient numerical algorithm that will supplement odometric speed sensors for ATSC driven 

accurate train stopping, without knowledge of wheel-track adherence conditions and with 

probable intermittent wheel jamming and wheel skidding anomalies. 

The first part of this work is the modeling and simulation of wheel-rail contact and actions of 

WSP-skid control laws. Based on this simulation model, comparisons are made with ATP and 

ATO level measurements acquired through experiments. The aim is to place the following 

studies in the context of close experimental feedback. 
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The second part is the study about observation of the jamming phenomenon and the action of 

the anti-lock control device. Taking into account the discrepancy between the measurement 

updates and the reaction time of ATO level systems, a continuous-discrete behavior is to be 

considered. 

Finally, a more accurate representation of kinematics can improve existing control algorithms 

in variable or degraded adherence situations. Robust control must ensure accurate train stopping 

in all situations. Furthermore, the robust control must ensure that no ATP emergency will be 

triggered because of position estimation bias. A supervision system can complement the robust 

control autopilot device. 

1.4. Outline 

The thesis is organized as follows: 

Chapter 2 gives a background on railways systems and automatic train control. An analysis of 

the mathematical model and fault interpretation for train systems is presented. In addition, a 

brief state of the art on robust observation and estimation for fault detection is provided.    

Chapter 3 is divided in two sections: First, an active fault tolerant braking control is presented, 

where the main contribution is the integrated approach using an unknown input observer, fault 

detection, and disturbance compensation control with a reference model for train stopping, with 

some assumptions on the system. The design of such system and a discussion on the 

convergence properties is provided. The second part relaxes most of the assumptions and deals 

with the design of robust position estimation algorithm, based on the unknown input observer 

with a quasi-LPV representation. Illustrations are provided for both contributions. 

Chapter 4 explores a novel Gronwall-like bound for the observer error, in continuous-discrete 

dynamic. The unknown input observer is considered in a quasi-LPV framework with a 

piecewise constant input. Practical considerations on how to improve the bound with extra 

information from the system are discussed. Simulations are provided for all cases. 

Chapter 5 presents the results of chapters 3 and 4 applied to data acquired during real time 

experiments provided by ALSTOM. We present many situations, considering different speeds 
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and different adherence conditions. The performance of the developed observers is discussed, 

and strategies for observer parameters choice is proposed.  

Chapter 6 concludes this work with some important remarks and future research.  
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CHAPTER 2. Background 

 

This chapter presents a general knowledge about the train systems. Mathematical models used 

in the literature are depicted taking into account practical consideration. The behavior of sensors 

especially, under fault occurrences, are also described; faults due to jamming and skidding 

being the ones treated therein. A review of available solutions of the literature is also given. 

Implementation issues are discussed, especially the different operation levels and their 

communication: Automatic Train Control system (ATC) and its internal processes: Automatic 

Train Protection (ATP), Automatic Train Operation (ATO), and Automatic Train Supervision 

(ATS). The solutions will concern robust control, observers and fault detection analysis of 

different kinds depending on the assumptions made. Therefore, various observers for fault 

diagnosis are presented, including unknown input observers and a particular continuous-

discrete time observer. A focus on jamming and skidding faults ends the chapter. 

2.1. The train system 

A train is composed by the locomotive and the wagons, as shown Fig. 2-1. The locomotive, 

among other systems, includes the motors for traction and the braking system. There are 

different types of railway traction, that can be divided into two groups: diesel and electric 

traction (Iwnicki 2006; José A. Lozano 2012; Kaller and Allenbach 1995). For diesel traction, 

several transmissions are available, mechanical, hydraulic and electrical. For electrical traction, 

there are DC (direct current) motors and AC (alternating current) motors. Nowadays, almost all 

the locomotives use electric traction, where the most used motors are basically (José A. Lozano 

2012): DC motors with in-series or  independent excitation and AC motors. The use of electric 

traction is considered clean and efficient.  

The braking system can be categorized, depending on its mechanisms, into three groups (Fig. 

2-2): pneumatic brakes (or air brakes), electric brakes, and mechanical brakes (Izumi and Seigo 

1999; The Railway Technical Website n.d.). The different systems are combined on a same 

train. Let’s consider for example pneumatic brakes: they rely on air compressors mounted into 

the wagons to supply pressurized air to the brakes. This technology induces a delay between 

the braking command and effective braking, because pressure variations cannot be 
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instantaneous. An improvement of this braking system is the use of electro-pneumatic brakes, 

using an electric signal to transmit the command. However, electro-pneumatic brakes are less 

reliable than a pure pneumatic system, and are used to complement the latter. 

 

Fig. 2-1. The train system 

The interaction of both systems follows some common principles as is explained in (The 

Railway Technical Website n.d.), for example: 

 The electro-pneumatic brake operates as the service brake while the air brake is retained 

for emergency use 

 The electro-pneumatic brake does not compromise the fail-safe or "vital" features of the 

air brake 

 The air brake normally remains in the "release" position, even while the electro-

pneumatic brake is in "application" and the same brake cylinders are used. 

 Electro-pneumatic brakes are invariably used on multiple unit passenger trains. 

 Electro-pneumatic brakes use a number of train wires to control the electrically operated 

brake valves on each wagon. 

 The train wires are connected to a brake "valve" or controller in the driver's cab. 

 

Fig. 2-2. Braking mechanisms. 
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The same can be said about electric and mechanic brakes. This work will not focus on braking 

system details, the main point here is to explain that the required braking force is a result of a 

combined efforts of multiple braking systems, with different dynamics that interact in a way 

that is difficult to model efficiently. One of the main implications is that high level systems 

(ATO and such) that embed control algorithms, have a poor knowledge of the braking effort 

that is applied in real-time for a given reference braking force. 

The conditions necessary to produce the motion of the train via the traction and brake systems 

depend on the forces applied in the train and the adherence to tracks (the so-called rail-wheel 

contact), which is explained later. 

 

2.1.1. The mathematical train model  

There are many models for the analysis of separate vehicles (i.e. locomotive and wagons) and 

train dynamics. In general, those models can be categorized into three main groups, Fig. 2-3, 

(Vijay 1984). 

 

Fig. 2-3 Track-train dynamics model (Vijay 1984). 

The single-point train control model is the most commonly model applied for train operation 

problems in the literature (Guzinski et al. 2009; Kaller and Allenbach 1995; Liu and 

Golovitcher 2003; Vijay 1984; Yin et al. 2017). A train with multiple vehicles is considered as 

single point mass object and its longitudinal motion can be approximated by a Newton equation. 

Therefore, the dynamic of the train can be described by the following differential equations 

(Guzinski et al. 2009; Kaller and Allenbach 1995; Liu and Golovitcher 2003; Vijay 1984):  
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necessary to maintain a constant velocity at various speeds, in order to cover the working speed 

range. Of course, due to the experimental parameters (several speeds, different adherences) and 

the required conditions, these procedures are costly. Consequently, the railway transportation 

industry developed empirical equations that could be used to estimate the resistance to motion 

of a generic train. The equation is a polynomial approximation by a quadratic function that is 

well known, called the Davis equation. Davis equation has been applied and validated in many 

real time experiments, see for example (Kaller and Allenbach 1995; Rochard and Schmid 2000; 

Transport: Railways 2004; Douglas et al. 2017; Q. Wu, Spiryagin, and Cole 2016). The form 

of the equation is: 

   2
0 1 2w v w w v w v     (2.2) 

where 0w   N , 1w   Ns m  and 2w   2 2Ns m  are real coefficients depending on train and 

track characteristics. Equation (2.2) shows that the most impact at lower speed is due to 

coefficients 0w  and 1w , representing the rolling resistance to mechanical friction, while 2w  

has the major role at high speed, that is related to aerodynamic resistance. Based on the review 

in (Rochard and Schmid 2000), the French national railways company, SNCF (Société 

Nationale des Chemins de Fer français), evaluates the terms 0w , 1w v  and 2
2w v  as function of 

the rolling stock characteristics, using the following expressions: 

 5 2
0

10
10 10t

l

w m
m


  

       
,  (2.3) 

  7
1 3.6 10 tw v m v  ,  (2.4) 

Where tm  is the total train mass (kg), lm  is the mass per axle (kg) and   is a dimensionless 

parameter with values depending on the rolling stock type, e.g. for SNCF vehicles it is 

0.9 1.5  , the lower value being applicable to modern rolling stock, the higher value to 

nonhomogeneous freight trains. The last term is: 

  2 2
2 1 3 2 40.1296w v l v     ,  (2.5) 
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Where the first term represents the aerodynamic resistance existing at the front and rear of the 

train and the second term is related to the aerodynamics resistance generated along the surface, 

4l   2m ,  4  is the partial perimeter (m) of the rolling stock, l  is the train length (m), 1  

 2N m  is a parameter depending on the shape of the train, front and rear, and can vary from 

420 10  for conventional rolling stock to 49 10  for TGV (French High Speed Train), 3  is 

the front surface cross-sectional area  2m , commonly around 210 m  and 2   2N m  is a 

parameter depending on the condition of the surface, 4l , and can vary from 630 10  for 

conventional rolling stock to 620 10  for TGV.  

 

Fig. 2-5 Friction forces. 

Wheel rail contact 

To study the motion of the train we need to consider the wheel-track adhesion. Fig. 2-6 shows 

the forces that are applied to the wheel and to the track. We will discuss the adhesion force aF

, since the other forces were defined previously.  

The adhesion force aF  satisfies the following expression (Iwnicki 2006; José A. Lozano 2012; 

Kaller and Allenbach 1995): 

 aF   ,  (2.6) 
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Where   is the so-called adhesion coefficient and   is the vertical reaction of the track, which 

balances the vertical forces. This adhesion coefficient depends on temperature, humidity, dirt, 

speed, etc. A general expression for the approximation of   is  

 0

1 0.01v

 


,   (2.7) 

where 0  is a real coefficient and velocity  v  is expressed in Km/h. Table. 2.1 shows typical 

values of 0  used in different regions. 

 

Fig. 2-6 Wheel rail contact. 

 

A low adhesion between the wheel and the rail is an important issue for braking and traction. 

Poor adhesion in braking is a safety issue as it can extend the stopping distances. During 

traction, poor adhesion will interfere with acceleration of the locomotive, making it difficult to 

reach the desired speed. Mechanically, low adhesion phenomena will cause wheel jamming 

(when braking) and wheel skidding (when traction). Of course, this will also impact the onboard 

speed and position measurements of the train, because the odometers are located on the wheels. 

These phenomena and issues are explained in the next section.  

 

 

 





22 

 

 

 

 

 

 
              

   
1 t t B B t T T tx k A x k I x k B u k B u k G x k

y k Cx k

       



.  (2.10) 

Next section is interested in the measurements available to fill in the models. 

 

2.1.2. Sensors and faults 

This work focuses mainly on the braking part of the drive, therefore, two kind of measurements 

are necessary: speed of the train and position. The speed sensor is embedded on the train and to 

get reliable information of its position, the railway track is equipped of several fixed sensors 

that act as markers and are usually called beacons. As shows Fig.2-7, the velocity sensor is 

installed on a wheel of the train. This speed sensor uses a target wheel also called phonic wheel. 

The sensor measures the rotation speed of the wheel by counting the teeth of the phonic wheel. 

The resolution of the measurement depends on the number of teeth on the wheel; the higher the 

number of teeth, the better the resolution is. Many technologies are used, mechanical, optical 

or magnetic. For further details, the reader can refer to technical documentation (Incremental 

encoders - Lenord+Bauer n.d.; Speed sensors - Lenord+Bauer n.d.; Saab, Nasr, and Badr 

2002). 

 

Fig.2-7. The structure of the train measurement system. 

The measured velocity  is obtained using  wheel peripheral speed  v r , where r  is the wheel 

radius and   is the wheel angular speed, that can be calculated as 12 i i

t

c c

N

 
 


, where N  
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is the number of impulses per revolution, ic  is the current sample, 1ic   is the previous sample 

and t  is the sampling period (Ridolfi et al. 2011). The train position can be estimated with the 

odometer sensor, but it needs also periodically a precise and reliable positioning, in order to be 

able to readjust the estimation and avoid excessive bias. A classical solution is to use markers 

set in the rail also commonly called beacons (Sandidzadeh and Khodadadi 2011; Y. W. Zhou 

2012). These beacons are also commonly used for air and sea navigations (Sandidzadeh and 

Khodadadi 2011; Y. W. Zhou 2012). These sensors are fixed point devices, capable to transmit 

and receive radio signals. When the train passes over beacons, it transfers data stored inside of 

the beacon via data links. The data can include different information: line topography, speed 

restriction, distance to the next station, and beacon position. The last one corresponds to a time-

to-time precise train position on the rail line that can be seen as a discrete reliable reference 

used to reinforce odometer-based real time estimations. Basically, there are two kinds of 

beacons, passive and active (The Railway Technical Website n.d.): the passive is waiting to be 

activated by a low frequency signal and receives its energy from a train passing over to send 

information; the active is powered from the railway line supply and sends continuously 

information to passing trains. Nevertheless, even if beacons allow precise train positioning, it 

can be very costly to equip all the tracks and a compromise has to be found between number of 

beacons (precision of the train position) and distance between two beacons (cost). Some 

research works deal with this topic : for example, in (Sandidzadeh and Khodadadi 2011), a 

solution for optimization of beacons placement in a railway track using genetic algorithm and 

Kalman filter was proposed .  

What are the jamming and the skidding faults?  

The jamming and skidding faults are phenomena that may occur depending on the train control 

and adherence conditions between the wheel and the track. In traction mode skidding can 

appear; in braking phase jamming can occur. Fig. 2-8 shows the skidding and jamming 

behaviors in detail (green arrows indicate the wheel rotation, the upper red arrows the 

movement of the train). The jamming case occurs when the brake is applied and it locks the 

wheel (Fig. 2-8 upper part positions 2, 4 and 5), so the wheel is sliding on the track. This 

happens because the braking torque is more important than adhesion torque. Similarly, skidding 

happens when the traction torque is more important than adhesion torque: the wheel will spin 
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but without moving the vehicle (Fig. 2-8 lower part positions 2, 4 and 5). In real-world 

conditions, these faults can occur depending on rail line conditions and any changes in 

conditions of adherence, i.e. for example weather conditions (rain, snow…). Another important 

phase where the wheel jamming occurs is during “hard” braking such as emergency braking. 

In this case also, the braking torque is bigger than the traction torque generated, due to adhesive 

force, and it results in sliding. The skidding and jamming phenomena have been studied in 

several articles: (Allotta et al. 2001; Allotta, Colla, and Malvezzi 2002; V. Colla et al. 2003; 

Valentina Colla et al. 2003; Garcia-Rivera, Sanz, and Perez-Rodriguez 1997; Malvezzi et al. 

n.d.; Saab, Nasr, and Badr 2002; Watanabe et al. 1997). These phenomena will damage both 

the wheel by creating flat spots and wearing the track. Of course, damaging wheel or rail 

surfaces directly impacts on maintenance costs, especially if it induces the replacement of the 

material (Makhortova and Vivdenko 2012). Excepted these extreme effects, the main issue of 

these jamming and skidding faults is that they impact directly on the measurements; thus on the 

estimation of both position and speed; since the sensors are based on quantifying the wheel 

rotation. 

 

Fig. 2-8. The physical effects of the skidding and the jamming faults. 

How is the sensor affected by the fault?  

The effect of the wheel jamming and the wheel skidding is that the measurement from the sensor 

will be impacted by a bias: measured position lower than real position for the jamming case, 

and measured position bigger than real position for the skidding case. As result, we lose the 

track of the real position of the train until the next position beacon. The position error increases 
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proportionally with the fault duration. To exhibit the general problem, consider Fig. 2-9 and 

Fig. 2-10 that show real-time experiments. In these experiments, we do have the fault free 

velocity measurement (m/s) using a radar-base speed sensor (solid black line), whereas this 

measurement is not available in principle. Of course, it is used in order to validate properly the 

estimation results. The estimations, corresponding to the faulty signal, are based on the 

odometer, which is the available sensor (red dashed line). Fig. 2-10 shows the velocity 

difference due to jamming, i.e. when the wheel stops rotating while the train is moving, the 

odometer loses a percentage of the real velocity that depends on the wheel jamming duration. 

Fig. 2-9 shows the influence of the faulty measurement on the position estimation. The vertical 

lines at 90s, 98s and 107s represent positioning using the beacons and therefore the real position 

at these moments. The jamming, for this trial, is responsible of a measurement error of 5 meters 

for 200 meters spaced beacons (see zoomed part of Fig. 2-9).  

 

Fig. 2-9. The position estimation with wheel jamming (in meters). 
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Fig. 2-10. The velocity behavior with wheel jamming. 

Following the same idea, the skidding effect is presented Fig. 2-11 and Fig. 2-12; black line is 

the fault free signal, the red dashed is the faulty one and the blue vertical lines indicate the 

instants of train passing over the beacons. Fig. 2-11 shows the positive bias produced on the 

position with a measured velocity bigger than the real one, as shown in Fig. 2-12. For this trial 

the skidding represent an error around 15 meters (zoomed part in Fig. 2-11).  

 

Fig. 2-11. The position estimation with wheel skidding (in meters). 
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Fig. 2-12. The velocity behavior with wheel skidding. 

To understand more precisely the effect on the sensor, Fig.2-13 shows the braking phase for 

both the fault free case (signal from sensor named 1s ) and for the faulty case (signal from sensor 

named 2s ). From 1s , the pulses coming from the fault free case are decreasing every period 

ending with a correct velocity calculation 1v . For the faulty case, when the jamming occurs 

(Fig.2-13 4th curve), there are less pulses than expected from sensor 2s ; that produces a false 

velocity calculation 2v .  

 

Fig.2-13 Sensor behavior with and without jamming fault. 



28 

 

 

 

 

 

The same effect is presented for the skidding phase, Fig.2-14. Sensor 1s  pulses are increasing 

every period, producing a correct velocity calculation 1v . Whereas, when the fault occurs, the 

number of pulses measured by 2s  is greater than the real value during the fault, and produces a 

false velocity calculation 2v . 

 

Fig.2-14 Sensor behavior with and without skidding fault.  

 

2.1.3. Automatic Train Control (ATC)   

The safe operation of the train during a travel is the goal to achieve through automatization. 

Some improvements have been obtained helping the train driver via the automatic train 

operation (ATO). The ATO system working together with the Automatic Train Protection 

(ATP) and Automatic Train Supervision (ATS) systems help the driver to comply with the 

speed restrictions, following a desired speed trajectory, and to stop the train accurately. Also, 

the Automatic Train Stop Control (ATSC) system helps the driver to stop the train accurately 

and timely at the station. All these systems together form a package called Automatic Train 

Control (ATC), Fig.2-15 (Dong et al. 2010).  
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Fig.2-15. Diagram of the automatic train control system with its subsystems. 

In order to understand subsystems interaction, let’s consider the functions in detail (Allan and 

Arias 2008; The Railway Technical Website n.d.; Yin et al. 2017): 

Automatic Train Protection (ATP): Safety level system, it guarantees mainly the safe 

stopping distance to avoid collision with the train ahead. It also insures safety limitation for 

speed; if a speed overrun is detected, the ATP will issue a braking (or emergency braking) 

order. 

Automatic Train Supervision (ATS): Supervision level system that insures compliance with 

the expected schedule and traffic patterns. Depending on the trains, the companies and the 

regulations, ATS is used for: supervision of train status, schedule creation and changes, routing 

selection, automatic system monitoring and statistics… 

Automatic Train Operation (ATO): The system that assists the driver to operate the train 

efficiently and safely. The system deals with speed control, comfort issues (smooth acceleration 

and braking) and assisted train stopping. A highest level includes energy saving-based driving 

assistance strategies. ATO needs ATP and ATS to be operational.  

Fig. 2-16 gives an example of configuration (Allan and Arias 2008; Dong et al. 2010; Yin et al. 

2017) where the ATS gives train routing and scheduling  adjustments to ATO according to the 

train current state and schedule. ATO will gather the relevant information, such as train speed, 

programmed stop and dwelling time, and computes braking or acceleration rates. Meanwhile, 



30 

 

 

 

 

 

ATP keeps monitoring the real-time train running status, including speed limits compliance 

(Fig. 2-17) and corrects the train operation commands or triggers emergency brake if necessary. 

 

Fig. 2-16. Example of ATC structure with ATS, ATP and ATO relationships. 

 

Fig. 2-17. The speed restriction by ATO.  

For speed control between 2 stations, two strategies are possible for the ATO system (Yin et al. 

2017): first is manual driving supported by a driver advisory system (DAS); second is a semi-

automated mode or a fully-automated driving mode. For train stopping, ATO switches to the 

train station-stopping mode and adjusts the train braking rates dynamically, based on speed of 

the train and distance-to-stop.  

When relying on automatic train stopping control (ATSC), the stopping accuracy could be 

affected by many disturbances, as is mentioned in (D. Chen et al. 2013):  
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 The braking system delay (BST) is due to a varying response time of the braking system 

(sensor delays, actuators response, different sampling times…);  

 The braking performance and velocity variance (BPV) is due to the effects of 

temperature, humidity, abrasion, etc. on the efficiency of the braking system;  

 The basic resistance change (BRCs) includes all resistance to motion effects, i.e. 

bearing, rolling, slip and air resistances.  

In this work, dealing with Basic Resistance Change (BRC) is the principal issue, but the Braking 

System Delay (BST) will be also considered.  

 

How the jamming and skidding faults are dealt with? 

In order to reduce the impact of the jamming and skidding fault, the so-called wheel slide 

protection system (WSP) is used, that is analogous to the anti-lock brake systems (ABS) for 

cars. The WSP system adjusts the controller-issued braking torque using the dump valves, based 

on speed sensor readings. Each brake cylinder is filled with air or vented in order to  increase 

or decrease the braking torque, mitigating the jamming and skidding problems when those are 

detected (Barna 2011). Of course, no adjustment is made in the fault free case. Following the 

same idea, some practical solutions have been developed and patented (Callahan and 

Christianson 1978; Hiscox 1976; Rath 1984; Sheppard 1969; Sutton 1977; Wood and Mazur 

1990).  

The WSP system is a low level system and is not meant to interact with ATO level systems. 

Considering that the ATO do not know actions made by the WSP, and relies solely on 

measurements, different approaches were proposed to improve the robustness, one of them 

being the multi-sensor architectures and data-fusion. For instance, the integration of odometers, 

accelerometers, and gyroscopes to get a better position measurement is studied in (Ridolfi et al. 

2011). Another multi-sensor approach making use of odometer, radar, accelerometer, and 

beacons is proposed in (Y. W. Zhou 2012), where the data fusion is made via a Kalman filter 

algorithm.  

The main issues of a multisensory architecture are feasibility and costs, which makes the single 

sensor approach, with appropriate post-processing, also popular. Using a single sensor 
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Therefore, invoking Input-to-State like properties (ISS) and/or Lipchitz conditions, we can 

prove that the convergence of the error in a ball containing the origin is possible, for a ball 

which radius has to be defined and will depend on the maximum sampling time interval M .  

In the literature, an approach using a continuous-time observer associated with a predictor, i.e. 

giving the prediction between two samples, is proposed in (Nadri, Hammouri, and Astorga 

2004; Nadri, Hammouri, and Grajales 2013) and when the measurement is available, the 

predictor is updated. A continuous-discrete time observer for a multivariable nonlinear system 

is proposed in (M. Farza et al. 2014a; Mondher Farza, M’Saad, and Busawon 2015), where the 

convergence analysis provides an upper bound of the sampling as well as the rate of the 

observation error exponential convergence. A robust continuous-discrete time observer for 

internal disturbances in an electro-hydraulic actuator system is proposed in (S. A. Ali et al. 

2016), where the principal characteristic is the use of an inter-sample output predictor to 

increase the acquisition frequency of the piston position sensor without affecting the 

convergence performance. 

 

2.3. Fault detection and diagnosis 

What is considered a fault? A usual definition is: “a fault is something that changes the behavior 

of a system such that the system does no longer satisfy its purpose” (Blanke et al. 2006). Since 

system representation describes nominal (fault-free) system behavior, faults will cause a 

divergence between fault-free system observer trajectories and real system state and output 

trajectories. The analysis of the discrepancy between estimations and measurements using the 

so-called model-based or model-free techniques is known under the name of Fault Detection 

and Diagnosis (FDD), or  Fault Detection Isolation and Estimation (FDIE or FDI) (Gao, Cecati, 

and Ding 2015). 

Generally, a fault is classified as sensor fault  sf , actuator fault  af , and plant or 

component/parameter fault  cf .   Therefore, we can introduce them into the state space 

representation of a model; for example, if we consider the system (2.11) with the different types 

of fault, the expression becomes 
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The fault diagnosis methods can be categorized as:  

- Model-based methods. 

- Signal-based methods. 

- Knowledge-based methods. 

- Combined methods. 

In this work, the model-based method is preferred, because a model is available and as we are 

working also on security issues (braking is one of them), some guarantees have to be settled. 

For more details about the other methods, the reader can refer to (Blanke et al. 2006; Cecati 

2015; Gao, Cecati, and Ding 2015; Gao, Ding, and Cecati 2015; Isermann 2006; J. Zhang, 

Swain, and Nguang 2016). The model-based methods can be categorized depending on the type 

of the model used: deterministic or stochastic, time-based, event-based or hybrid, etc.  

 

Fig. 2-20. The model-based fault diagnosis scheme (Gao, Cecati, and Ding 2015). 

Deterministic fault diagnosis applies in our case and we propose to solve model-based fault 

diagnosis using observers. Fig. 2-20 presents a general scheme including several observers with 

fault detection, fault isolation and fault identification (Gao, Cecati, and Ding 2015). Note that 

the “residual” refers to a signal that is sensitive to the fault of interest, or to a set of signals 
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c) The residual  r t  from (2.23) is sensitive to the faults  sf t  and  cf t . Therefore, if 

the signals belong to 2L  space, H  index approach can be proposed: 

    
 2

2

c

s

f t
r t

f t


 
  

 
.  (2.25) 

Several solutions were proposed in the literature: for deterministic models, the most studied are 

sensor faults and actuator faults. For linear systems, to cite some of them, results can be found 

with actuator fault detection in (Q. Zhang 2002), for both sensor and actuator faults in (J. L. 

Wang, Yang, and Liu 2007), and using an UI observer for actuator fault estimation under 

disturbance for a wind turbine in (Witczak et al. 2015).  

Extensions of the works on linear models to LPV and/or Takagi-Sugeno (T-S) models are also 

common. We are interested in the so-called LMI-based fault diagnosis family, i.e. the 

methodology ends up with LMI constraints problems. For T-S models approaches, 

simultaneous state and process faults estimation for uncertain dynamics system can be found in 

(Pazera and Witczak 2016); robust techniques for sensor and actuator fault detection in (Chibani 

et al. 2017; Jee, Lee, and Joo 2012; Li et al. 2018). For linear parameter varying (LPV) system 

results using a bank of observers for sensor fault detection and isolation are presented in 

(Theilliol and Aberkane 2011), and actuator fault detection using a generalized output for LPV 

in (M. Zhou et al. 2017). Some works focus on residual evaluation, and the determination of a 

static or dynamic threshold detection, like in  (Z. Wang et al. 2017).  

 

Jamming and the skidding faults modelling for FDD. 

To represent the faults in the mathematical model of train proposed in the previous section, we 

have different options to consider: actuator, system or sensor faults. As we can see from the 

previous sections, the principal difference of the jamming and the skidding faults is the effect 

on measured velocity: positive bias for skidding and negative bias for jamming. Moreover, the 

jamming fault occurs only during the braking phase (when 0Bu   and 0Tu  ), whereas the 

skidding occurs during the traction phase (when 0Bu  and 0Tu  ). We consider that when 

fault happens, the wheel cannot transmit traction and braking forces anymore. Different 
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based methods using an UIO in the form of a PI-observer, coupled with robust approaches such 

as H  attenuation, and H  for fault detection sensitivity.  
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CHAPTER 3. Actuator and sensor fault detection with unknown 

input observer-based approach 

 

3.1. Introduction 

This chapter proposes different approaches for train speed and position estimation that are 

resilient to faults caused by wheel jamming or skidding. The proposed algorithms are meant to 

be used in high level modules (ATC/ATO level), and will improve the accuracy of the ATSC 

function, i.e. make the train stop at the expected position in the station. The proposed 

approaches are based on two representations, with respect to fault modeling: we consider 

actuator fault-based and sensor fault-based problem formulations. In the first case, we consider 

that the fault will result in degraded control of the train speed during the “faulty” period. This 

hypothesis is based on the supposition that degraded adherence conditions that impact the wheel 

with the speed sensor (making the wheel jam or slip), will be more or less similar on the other 

actuated wheels on the same cart, and to some extent to other carts as well. This hypothesis is 

realistic for traction (acceleration) phase, i.e. for skidding faults, but less realistic for braking 

(deceleration) phase and jamming faults. This is due to the fact that only the locomotive is 

providing the traction effort, while the braking effort is provided by all vehicles. In the particular 

scope of this study, we consider the train as a material point, and the experiments were made 

on a single locomotive, which strengthens the proposed hypothesis. When dealing with a multi-

vehicle train model, this assumption is to be made on a per vehicle basis, and this is an expected 

development of this PhD results in the future. 

Returning to this chapter scope, we deal specifically with jamming faults: obviously train 

stopping occurs after the braking phase, which is only impacted by jamming faults. 

Nevertheless, the results are easily transposed for the skidding fault detection, since fault 

models differs mostly by the sign of the fault signal, and of course, the driving scenario will be 

different, which will change some assumptions. 

For the first case (actuator fault formulation), we model the physical effects of the wheel 

jamming by an “all-or-nothing” behavior that alternates randomly through fault duration. The 
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severity of the fault will depend on the jam/no-jam ratio during the considered period. This 

behavior can also be reproduced by a variable amplitude and continuous-time fault signal, but 

we believe that this is less accurate. The second case, based on the sensor fault formulation, 

considers that the fault will corrupt sensor measurements without direct impact on the control, 

with a variable amplitude and a variable duration of the fault, which is more challenging than 

the first case. In both cases, the fault detection filter is based on an unknown input observer in 

continuous-time, where the unknown input includes mechanical and aerodynamic resistive to 

motion forces, that are unmeasured and usually approximated by empirical equations (as 

explained in section 2.1.1, along with perturbations and noise.  

Based on the previous discussion, this chapter is divided in two sections, each section being 

dedicated to a problem formulation, and the contributions are developed separately, along with 

illustrations. This reflects the chronology of the work, and the evolution from actuator centered 

to sensor centered representation of the fault that we believe to be more accurate considering 

the available experimental data, and the possible implementations of this work in the short term, 

having only access to acquisition modules without to inject controls in experiments. 
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3.2. Active Fault Tolerant Control for accurate train stopping. 

In this section, we propose a solution to deal with actuator faults under the assumption that the 

control signals are available. The proposition is based on an integrated fault tolerant control 

approach, based on perturbation estimation and compensation, and on a fault detection module. 

If a fault is detected, then the controller will be switched into a “safe mode”, effectively 

reducing the fault duration. Then the system will wait for fault disappearance and the return to 

a fault free-situation, to switch the controller to the “nominal” mode. As a result, the fault 

duration is minimized, and the train will improve its ability to stop at the expected position.  

The proposed approach is developed for automatic train stop control (ATSC) module, and 

includes an unknown input observer for disturbance estimation and for fault detection, and a 

robust PI controller with an active fault tolerant mechanism. More specifically, we design the 

control law based on a reference tracking objective (Miyatake and Ko 2010; Yang et al. 2014). 

Using the estimation from the UI-observer, we estimate the perturbation and compute a fault 

sensitive residual, i.e. a fault indicator.  

The fault detection relies on the comparison of the residual with a threshold, and will follow a 

cyclic behavior, based on fault occurrence and system recovery: 

 In the nominal (fault-free) case, the reference system matches the fault-free real system, 

and the residual converges to zero. 

 If a fault happens, the nominal reference systems will no longer match the reality, and 

the residual diverges. When the residual will be higher than the threshold, then a fault 

will be detected.  

 Consequently, the reference system will then switch to a “faulty” reference system, 

matching the real system, and the control will go into the “safe” configuration. The 

residual will then converge to zero until the fault disappears, then increase again because 

the “faulty” reference system will no longer match the real system which has recovered 

from the fault.  
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and the dynamic friction. A controller is thus designed to track the reference with a friction 

compensation using the unknown input estimation obtained from the UIO.  

 

 

Fig. 3-1 Controller and observer scheme. 

To detect the jamming fault, a residual is computed based on the measurement velocity of the 

train and the estimated velocity of the observer. This residual signal is filtered and used to detect 

fault occurrence and recovery instants, via threshold triggering conditions. At the end, a fault 

tolerant control (FTC) is obtained, integrating all the discussed modules. 

 

3.2.1.2. Wheel jamming effect  

In order to clarify our idea for the reader, we reproduce a similar figure as Fig. 2-10 of chapter 

2 about the speed behavior with wheel jamming, left part of  Fig. 3-2. The right part presents 

the absolute error    ˆv t v t  between the real speed  v t  and the estimated one  v̂ t , and 

we define the following variables:  

 jamt  is the fault duration (red arrow); 

 dst  is the delay on detection when the fault starts;  

 det  is the delay on detection when the fault ends.  
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0t  is the initial instant, the time when ATSC is activated and  0v t  is the initial velocity at 0t . 

Now it is possible to get the final position and the final time from the previous expression: 
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 (3.6) 

Integrating (3.5) gives directly with  0p t  is the initial position at 0t : 
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 and the final position being known, we 

obtain from (3.7)          
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And finally: 

 
 
          

* * *
1 0* * *

1 0 0* * * *
1 1

1
ln f f

f

w v t b u
b u w p t p t v t v t

w w v t b u

 
     
  

 (3.9) 

Of course, for the special case of stopping   0fv t   and therefore (3.9) can be written as: 

 
        

** *
1 0 *

0 1 0* * *
1

ln 1 f

w v tb u
v t w p t p t

w b u

 
    

 
 (3.10) 

Notice that there is always a solution to (3.10). Effectively, let us denote 
*
1

* *
0

w
x

b u
    and

    *
1 0 0fw p t p t     , therefore finding a solution to (3.10) is equivalent to find a 

solution to  f 0x   with: 

      0 0f =ln 1x xv x v     (3.11) 
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3.2.2.3. Fault detection 
 

Since only one type of fault is considered, the wheel jamming, the isolation is not required and 

the Fault Detection Isolation (FDI) module is reduced to FD functionality. Adding more faults, 

such as skidding for example will require an isolation mechanism. Now, with the estimation of 

the velocity from the observer  v̂ t  and the velocity measurement from the train system  v t , 

the following residual  r t  is considered 

      ˆr t v t v t  ,  (3.18) 

As usual, fault detection thresholds will be used to detect the fault occurrence and fault recovery 

instants. Their tuning is done in such a way that discrepancy in measurements on a real system 

with uncertainties would not trigger false detections, and will not miss the detection of any 

fault. In order to reduce the measurement noise, a low pass filter is also added. The main idea 

of the algorithm is presented Fig. 3-4, with two main parts, detection of a fault with a delay 

dst  and detection of the end of a fault with a delay 
det .  

 

Fig. 3-4. Fault detection mechanism. 

These detections need three thresholds named 
1f

  (non-faulty-to-faulty), 
2f

  (faulty-to-non-

faulty), and 
3f

  (faulty-to-faulty, for residual settling before new detection). The first one, when 

 
1f

r t   a non-faulty-to-faulty case is detected, inducing a delay in the detection: dst . The 
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second one, when  
2f

r t   a faulty-to-non-faulty case is detected inducing a delay det . To 

reduce the possible false alarms between each fault a faulty-to-faulty flag is used that is 

activated if  
3f

r t  . The conditionals of the algorithm are: 

 If  
1f

r t   and flag=1 and FD=0    Then FD=1 and flag=0 

 If  
3f

r t              Then flag=1 

 If  
2f

r t   and flag=1 and FD 1   Then FD=0 and flag=0 

Of course, the choice of such thresholds 
if

 , 1,2,3i   is a multi-constrained problem, 

minimizing false alarms and missed detection and maximizing good detections. For real-time 

applications, maximizing good detection consists in detecting the faults with unacceptable 

effects and ignoring low amplitude faults. Indeed, with different magnitudes of the residual, in 

our case, it is possible to infer the magnitude of the fault and to decide when it is convenient to 

disable the brake control.  

 

3.2.2.4. Fault tolerant mechanism 
 

Considering that the compensation is not always possible to perform (because of the wheel 

jamming), we need to disable the brake control on positive fault detection by releasing the 

brake, since it will unjam the wheel mechanically. Therefore, the control is deactivated, 

  0u t  , as soon as a fault is detected. This action will release the wheel after a short delay, 

stopping the fault with a time delay of ftt , reducing the fault duration to a maximum of  

jam ds ftt t t    , Fig. 3-5. However, the control will not resume, and a new reference control 

will not be computed until the FD mechanism acknowledged full system recovery (the second 

blue vertical line in Fig. 3-5)  
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Fig. 3-5. Wheel release mechanism triggered by FTC action. 

 

3.2.2.5. Convergence issues 
 

In view of what has been explained, we can identify a cycle of four states, starting before fault 

occurrence and ending with system’s recovery. Effectively, the system and the observer have 

two modes, faulty and fault-free, therefore, there are four cases to study, with transitions 

between cases as shown in the oriented graph of Fig. 3-6. For the vertices ijv , the first index 

 0,1i  corresponds to the system, the second  0,1j  to the observer. “ 0 “ means fault-free,  

and “1” means a fault and in this case   0u t  for the corresponding block (system or observer). 

For example 
10v  is the vertex with a fault on the system that is not detected by the observer; the 

system will lose control of the wheel, but the observer still uses the reference control. The 

arrows on the arcs indicate the possible paths. 

Remember that the control *u  is considered as piecewise constant, and will be recomputed 

every time 
kt  such that both the observer and system are considered fault-free (see the algorithm 

given after equation (3.10)). This will happen at the time of the transition between 
01v  and 

00v  

as indicated Fig. 3-6. We also write the time spent in each vertex as ijt . 
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          00

00

*
00

cl cl
tA t t A t

o o kt
e t e e t e d Bu t      (3.23) 

And directly:           00 00 1 *
00 1cl clA t t A t t

o o cl ke t e e t e A Bu t     , from which it can be seen that 

even if the system stays in 
10v  we have:    1 *lim o cl kt

e t A Bu t


 . The initial condition will be  

   00
00

clA t
o o ke t e e t , with 

00 00kt t t  , and (3.23) renders: 

           00 1 *1cl k clA t t A t t
o o k cl ke t e e t e A Bu t     ,  00 10,t t t  (3.24) 

At time 
10t , when the residual is bigger than the threshold 

1f
 , then the detection holds true and 

a transition to the vertex 
11v  occurs with 

10 10 00t t t   . Its initial condition  10oe t  from (3.24) 

is:          00 10 10 1 *
10 1cl clA t t A t

o o k cl ke t e e t e A Bu t      . Thus, after time 
10t : 

             10 10 00 1 *1cl k cl clA t t A t t A t t
o o k cl ke t e e t e e A Bu t      ,  10 11,t t t  (3.25) 

When the fault disappears, the observer will remain in the “faulty” mode, therefore 
01v  is 

activated through (3.21), with the initial condition given for 
11t t  in (3.25) and with 

11 11 10t t t   . Then          00 10 11 11 10 1 *
11 1cl cl clA t t t A t A t

o o k cl ke t e e t e e A Bu t         . Thus, after 

time 
11t , similarly to (3.24),  we will obtain: 

           11 11 1 *
11 1cl clA t t A t t

o o cl ke t e e t e A Bu t     ,  11 01,t t t  (3.26) 

Or equivalently;  

               10 00 11 1 *1cl k cl cl clA t t A t t A t t A t t
o o k cl ke t e e t e e e A Bu t         ,  11 01,t t t  (3.27) 

Finally, when the residual will detect that the system has recovered from the fault, the transition 

to 
00v  ends the loop. Therefore, one cycle after we can write:      01

01
clA t t

o oe t e e t , 
01t t  or: 

                 10 00 01 11 1 *cl k cl cl cl clA t t A t t A t t A t t A t t
o o k cl ke t e e t e e e e A Bu t           (3.28) 

That can be rewritten as: 

                 10 00 01 11 1 *cl k cl k cl k cl k cl kA t t A t t A t t A t t A t t
o o k cl ke t e e t e e e e A Bu t             (3.29) 
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Therefore, we can estimate a minimum time necessary to stay again in 
00v  that guarantees

   mino o ke t e t . Let us note           10 00 01 11 1cl k cl k cl k cl kA t t A t t A t t A t t
k clt e e e e A B          to 

simplify the equation (3.29): 

           *cl kA t t
o o k k ke t e e t t u t   (3.30) 

clA  being a stable Hurwitz matrix, it exists constants 0   and 0m   such that: 

   cl k kA t t m t te e    (see section 4.3.2 for developments). Therefore    mino o ke t e t  

corresponds to: 

            min *
min

km t t
o o k k k o ke t e e t t u t e t      (3.31) 

As 0m  , we obtain 
       

 
min

*

k o k k km t t

o k

e t t u t
e

e t


 

 , and the minimum time to spend in 
00v  

after a fault detection to ensure a decreasing error is: 

 
     

 

*

min

1
ln

o k k k

k
o k

e t t u t
t t

m e t



 
  
 
 

 (3.32) 

Now, if we consider the next fault, we can write a discrete-like model between the fault instants, 

with 
1kt 
 the instant of the new fault: 

               00 10 11 01 11 01 10 01 1 *
1 1 1cl cl cl clA t t t t A t t A t A t

o k o k cl ke t e e t e e e A Bu t           
       (3.33) 

If 
1 minkt t   we ensure a decreasing error for  1,k kt t t  . Notice also that if the fault detection 

is perfect, i.e. 
10 01 0t t   , then the estimation follows a simple stable exponential 

     00 11

1
clA t t

o k o ke t e e t 
   whatever is  *

ku t . Since all times are finite, and combined with 

decreasing exponentials and bounded input, then ISS property holds.  

3.2.3. Simulations 
 

This part just presents a preliminary study using a linear model in an ideal situation where the 

control input is known. It allows both giving a step-by-step procedure and pointing out the 

different issues that can occur, as well as showing that the proposed ideas are promising. 
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3.2.3.1. Fault-free tests  
 

In this case, we are considering that all the parameters are known and the fault does not appear 

to test the part of the friction force estimated by the observer in ideal conditions. Therefore, the 

parameters for the train system and the reference system are: 
*

0 0 0.01w w  , 
*

1 1 0.1w w  , 

*
2 2 0.001w w  , * 0.1b b  . The ideal braking control that is injected to the reference model 

is in this case * 26.22u   , to brake from  0 30v t   (m/s), to 
min 0v   (m/s) in 100( )m , i.e.   

from position  0 0p t   (m),  
0 0t s , to a  final position   100fp t   (m), with an estimated 

arrival time 7.62ft   (s). The initial conditions for the observer are 

   0
ˆ 30 0.91 0.13

T
x t   , and the gain matrix obtained by pole placement for the observer 

is  101.4 2650 3750
T

K  , with the poles  50, 50, 1.5   . The time derivative order used 

for the unknown input estimation is 2  . The gains obtained by pole placement for the 

controller are 
1 1.4L   and 

2 0.5L  , with the poles  1, 0.5  .  

After simulation, the resulting final position error is   0.004f fx t x   meters as shown Fig. 

3-7. The estimation of  d v  in Fig. 3-8 is enough to obtain a smooth signal control, as it is 

shown Fig. 3-9. Then, for this case, the train stops in time at the targeted position with an 

acceptable error. Moreover, the FD block did not trigger any false fault detections. Fig. 3-10.   
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Fig. 3-7 Comparison of position without 

fault (zoom on stopping position). 
Fig. 3-8 Estimation of  d v , without fault. 

 

Fig. 3-9 Control signal without fault. Fig. 3-10 Residual  r t  without fault. 

 

3.2.3.2. Faulty case and “classical” control (without compensation)  
 

To show the effect of faulty situations, if not considered beforehand in the design of the control, 

we consider the same problem as the fault-free case, with the same simulation parameters, but 

including faults in the simulation. According to the previous notations, the fault duration is set 

to 200jamt ms  . Then, we trigger four faults at 1s, 1.6s, 3s and 4s, Fig. 3-11. 
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3.2.3.3. Faulty case with Fault Tolerant Control 
 

This simulation presents the application of the methodology. First of all, we apply the piecewise 

constant reference    * *
ku t u t  when  1,k kt t t  , i.e. recomputed via the algorithm 

presented previously, where the times kt  correspond to the end of the detected jamming faults 

numbered 1,..,k . Secondly, the control law (3.12) is applied to compensate for the disturbances 

 d̂ t  estimated using the UIO PI-observer. The fault detection block uses a filtered residual 

     ˆr t v t v t   with threshold values of 
1

0.005f  , 
2

0.005f  , and 
3

0.001f  , in order 

to trigger the FTC mechanism and to inhibit the fault. 

Results are presented in Table 3.1 using fault durations jamt , from 20%, i.e. 20jamt ms   to 

100%. The second row presents the detection time delay’s average dst , i.e. detection time 

minus beginning of the fault (known as we are in simulation). The last row of the table 

represents the relative error of the final position 
 

%
t

p
n

f

r

f

ai

p t p
e

l


 , assuming a train length of 

100train ml  . A comment must be made on the interpretation of the achieved improvement. 

While a single jamming without FTC remediation might lead in a small inaccuracy in the final 

position, in real conditions, they might be hundreds of random jamming during the braking 

phase, and the errors will accumulate. The FTC action will be especially beneficial in inhibiting 

the jamming as soon as possible, and consequently, in limiting its duration and its impact on 

stopping position. This is why the relative improvement obtained by FTC will grow with 

increased jamming duration, as shown in the table.  

Taking the case shown in Fig. 3-11, with 200jamt ms   (100%) to be compared with the 

“classical” control, we have a final position error of 0.05 meters in 

 Fig. 3-16. The reduction on the error is achieved by the control signal in  

Fig. 3-15, where the fault tolerant mechanism acts adequately when the fault is detected by the 

FD block, reducing the fault duration to 150jamt ms   with 4dst ms  ,  



65 

 

 

 

 

 

Fig. 3-14. 

Fig. 3-17 shows the train system following the reference with  *
ku t  recomputed at the instants 

kt .  

Table 3.1. Train stopping accuracy for different fault durations jamt . 

jamt  (ms) 40 80 120 160 200 

dst  (s) 0.002 0.002 0.001 0.002 0.001 

Using FTC: %pe  (%) 55.7 10  41.8 10  42.9 10  43.3 10  45.6 10  

Classical control: %pe  (%) 31.7 10  31 10  43.5 10  44.2 10  31.2 10  

 

 

Fig. 3-14 Fault detection behavior. 

 

Fig. 3-15 FTC behavior during a fault. 
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 Fig. 3-16 Final position with FTC Fig. 3-17 velocity behavior. 

 

3.2.4. Section discussion 
 

This preliminary study showed that the proposed fault tolerant control with perturbation 

compensation can be efficiently used to improve accuracy of train’s stopping when the braking 

wheel jams. The jamming faults were represented as actuator faults. As stated in the beginning 

of this section, the model taken into account (linear dynamic of the system, linear PI-observer, 

straight flat path during deceleration) and the assumptions (control input known) made this case 

as an “ideal” case, with the advantage to show the step-by-step procedure that was used to 

achieve our goals. 

 

The assumptions made in this part, will now be removed in order to get close to real-time train 

operation. These assumptions were: knowledge of the effective braking control and accurate 

approximation of friction parameters. 
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3.3. Robust train position estimation under perturbation and sensor 

faults  

In this section, we represent the wheel jamming as a sensor fault, motivated by the strong effect  

of the wheel jamming on speed measurements, which can lead to a temporary inaccessible  

velocity data, and the problem that might occur for real trains: if the on-board estimated position 

diverges significantly from the real position, an emergency brake might be issued by the ATP 

system for safety considerations. Indeed, if the estimated position is corrupted for some reason, 

it might indicate a malfunction in the train electronics, which can lead to the inability to stop 

the train in time at the right place. Then it is safer to stop the train immediately to investigate 

the malfunction. However, if the discrepancy between estimation and real positions is due bad 

wheel-rail contact that causes wheel’s jamming, it is not a sensor malfunction but an 

intermittent fault that might lead to a big hit on the rolling stock and the infrastructure due to 

the emergency braking. In order to avoid this situation, a safety margin is applied on position 

estimation, and on the safe braking distances, which in turn reduces train frequency on the line, 

slows down the schedules and the travelers. Thus the need of a position estimation algorithm 

for the ATP with an improved robustness to sensor faults is required. 

The comparison between the real and the estimated positions uses beacon-based position 

measurements for reference. The beacons are installed on the railway, at constant intervals, and 

their exact position is known. The beacons transmit the good position to the train when nearby, 

to reset the position estimation error, since the estimation relies solely on the odometer for 

velocity measurements and the following integration to obtain the position estimate. In order to 

improve position estimation for the ATP, we need to follow the constraints on the existing 

estimator and the ATP level systems: we consider that we have only access to the velocity 

sensors at the same rate that the ATP accesses the data bus, and that we do not know accurately 

the control signal, contrary to the previous section. This absence of measurement is partly 

compensated via the additional time-to-time beacon information that are used to reset the error 

of the position estimation. 
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As stated before, several loops may be necessary to get a satisfactory result. Especially, the 

acceptable compromise between 0   that guarantees the robustness of residual  r t  

according to  t  and 0   that guarantees its sensitivity to the fault  f t . 

 

3.3.3.2. Fault detection 

After solving the H H   problem, we obtain the gain M  using Algorithm 3-2 and we 

compute the residual from (3.45): 

       ˆr t M y t y t   (3.59) 

Now, the fault detection algorithm uses the residual  r t , a constant threshold f  determined 

using H H   results, the speed estimation  v̂ t , and the measurement from the sensor  kv t

, where kt  is the measurement instant. Therefore, based on the behavior of the fault from section   

2.1.2, the fault detection is divided into three parts: 

Fault free  fN  → increasing fault  fF  → decreasing  fR  → Fault free  fN . 

This give us additional information to improve fault detection and to filter corrupted sensor 

data. 

 Fault free  fN  if the observer estimation matches the sensor. 

 Increasing fault  fF  if the observer estimation and measurement are diverging. 

 Decreasing fault  fR  if the observer estimation and measurement are converging. 

The main idea of the algorithm is shown in Fig. 3-19. 
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Fig. 3-19 Fault detection scheme: speed behavior (left), residual behavior (right). 

The steps of the algorithm are the following: 

Algorithm 3-3: 

 If   fr t   and    ˆ kv t v t  then  1 1f kF t    and  1 0f kN t    

Else    1f k f kF t F t   and    1f k f kN t N t   

 If   1f kF t   and    1k kv t v t   then  1 1f kR t    

Else    1f k f kR t R t   

 If   1f kR t   and    1k kv t v t   then  1 0f kR t   ,  1 0f kF t   , and  1 1f kN t    

 If   1f kN t   and    1k kv t v t   then  1 1f kR t   ,  1 1f kF t   , and  1 0f kN t    

 If   0f kN t   and   0kv t   then  1 1f kF t    and  1 0f kN t    

 

 

3.3.4. Simulations 

The effectiveness of the proposed approach is demonstrated by simulation in two cases. The 

first case is fault free, to show the unknown input estimation Rd  under ideal conditions. The 
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second case corresponds to a faulty case, to show the improvement in the position estimation 

with the proposed approach.  

 

3.3.4.1. Fault-free case 

Consider the quasi-LPV train model (3.42) with parameters 0 0.02w  , 1 0.003w  , 

2 0.00024w   , 1B Tb b  ,    0.05sin 0.1g p t . We assume that the speed is bounded: 

 0,50y (m/s). The observer (3.44) parameters are supposed with a 20% of error in the friction 

parameters: 0 0.016w  , 1 0.0024w  , 2 0.000192w   . The measurement update periodicity 

is 200ms. The position estimation error is reset with respect to the real position from the beacons 

each 200 meters. 

Now, solving conditions (3.56), (3.57) and (3.58) via Algorithm 3-2 with  0.01 0 0
T

D  , 

1  , 1F  , and minimizing   , gives a result with 2.3M  , 1.58  , 0.031  , and with 

the gains  1 1.15 1.216 0.405
T

L     and  2 1.16 1.215 0.404
T

L    .  

The simulation results, with initial conditions    0 45 0.22 0
T

x   and 

   ˆ 0 44.1 0 0
T

x  , shows that the observer follows the measurements, when there are no 

faults, as shown in  

Fig. 3-20. Recall that the control  u t  is unknown, and the only available information is about 

the train braking or not. We use each beacon (vertical blue lines on the figures) to compute a  
*u  as the solution to the problem presented (3.10). Fig. 3-23 presents the results of this 

procedure and shows that the computed control *u  is a realistic guess of the real control signal. 

The unknown input estimation is presented Fig. 3-22 and shows a very good capability to 

capture the dynamic of    *
R B Bd g p B u u   . The position error, Fig. 3-24, is small even 

considering the noise signal,  
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Fig. 3-21 , benefiting from the accurate estimation of the disturbances. Finally, Fig. 3-25 shows 

the residual signal and, with a threshold of 0.9, as expected, there are no false alarm. 

 

Fig. 3-20. Velocity comparison (fault-free). 

 

Fig. 3-21 Noise signal. 

  Fig. 3-22. Unknown input estimation (fault 
free) 

Fig. 3-23 Control signal. 
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Fig. 3-24. Position error behavior (fault-
free)  

Fig. 3-25 Residual behavior (fault-free). 

 

3.3.4.2. Faulty case 

The example proposed therein introduces a jamming fault, Fig. 3-27, producing 10% error in 

comparison with the real velocity, Fig. 3-26. The algorithm for fault detection with a threshold 

of 0.9 is able to detect the fault with a time delay of 0.4s, as shown in Fig. 3-27. Moreover, the 

estimation of the unknown input      *
2R B Bd g p w Ff t z B u u     converges to the real 

signal after fault occurrence, as shown in Fig. 3-29. Fig. 3-28 shows position error between two 

beacons (blue vertical lines). We can see that the position estimation error from the observer is 

4 meters better (500%) than sensor-based estimation.  

Fig. 3-26 Jamming fault impact on velocity 

  

Fig. 3-27 Residual behavior for different 

fault amplitudes. 
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Fig. 3-28 Position error with fault. Fig. 3-29 UI estimation whit fault. 

 

3.3.5. Section Discussion 

This section presented the interest of a robust position estimation algorithm for the ATP system. 

Using only available noisy measurements at a low rate, with incomplete knowledge of 

parameters and control inputs, the quasi-LPV UI observer and the related fault detection module 

managed to successfully detect wheel jamming and to filter the corrupted measurements. We 

derived an algorithm and LMI conditions to design the observer with acceptable performance 

using  H H   optimization, and at the same time, the obtained norms will help with the choice 

of the appropriate fault detection threshold that insures an acceptable compromise. 

However, these promising results need to be validated on an experimental data set, with stronger 

faults, and that will be addressed in the validation chapter. 

Also, while the position estimation is improved, there is no guaranteed estimation error, i.e. it 

is impossible to predict how much the position error improved in order to appropriately 

determine the safety margin, or to allocate the exact bandwidth that is needed to insure some 

worst case position error bound. This topic will be addressed in the next chapter. 

3.4. Conclusion 

In this chapter, we presented two different contributions to help with automatic train operations. 

First of all, we addressed the problem of making the train stop accurately at the station, even if 

the brakes are intermittently unavailable because of faults. This application proposes a solution 
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for ATSC algorithm. Secondly, we considered the problem of robust position estimation, with 

imperfect knowledge of the system, perturbations, corrupted measurements and noise. This 

application is appropriate to improve ATO based position estimator. 

From the methodological point of view, we addressed fault detection and fault tolerant control 

of intermittent faults (faults that appear and disappear), with two different formulations for the 

same wheel jamming fault. FD and FTC were performed, with realistic assumptions, 

considering imperfect knowledge of the system and the controls, and slow measurement 

updates.  

Finally, we contributed to the design of an unknown input observer in proportional-integral 

form, and derived LMI conditions to formulate design conditions. We also used quasi-LPV 

system model, and H H   optimization framework for that matter. Formal performance 

issues were discussed and solutions were proposed to ensure acceptable design performance. 

Next chapter addresses possible worst case performance guarantees for the estimation error, 

considering the continuous-discrete dynamic nature of the system. 
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CHAPTER 4. Robust estimation for nonlinear continuous-

discrete systems with missing outputs 

 

 

4.1. Introduction 

This chapter is about guaranteed state estimation of discrete output systems. The main 

motivation of this research is to obtain formal worst performance indicators for a continuous-

time observer dynamic with sampled-time updates, considering constant sampling period and 

to some extent, variable sampling. The challenge here is that the system is impacted with 

perturbations together with a partial knowledge of the control input. As presented in the 

previous chapters, we use unknown input observers (UIO) (J. Chen, Patton, and Zhang 1996) 

to solve that issue. This makes possible the estimation of exogenous perturbations, and 

implementation of appropriate robust control techniques, based on disturbance compensation 

(Faieghi, Jalali, and Mashhadi 2014; Gao, Liu, and Chen 2016).  

Therefore, this chapter addresses the performance of an observer of the continuous-discrete 

type with an UIO design, and how can we assess the worst-case error bound with respect to 

variable and partially unknown measurement sampling. A specific form of the so-called 

Gronwall inequality (Dragomir 2003) is necessary to compute the error bound, inspired by the 

Input to State Stability (ISS) / BIBO context and research on stability of systems (Lazarević 

and Spasić 2009) (Phat and Ratchagit 2011). Depending on the choice of the observer, i.e. 

constant gain or time-varying observer gain, different bounds can be obtained. Since the derived 

bounds can be over-conservative due to the assumptions and inequalities taken into account, 

we consider practical ways to relax the conservativeness using available knowledge on the 

observed physical system. The results are applied to the transport application, using the train 

mathematical model for simulation and validated in the next chapter by data acquired during 

field tests on a benchmark locomotive.  
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4.2. Continuous-discrete observer literature overview  

Research works on continuous-discrete dynamics are popular when dealing with slow process 

dynamics, where fast measurements are not required, for example in the chemical industry 

(Astorga et al. 2002), (Tatiraju, Soroush, and Ogunnaike 1999), (Hernández and Alvarez 2003). 

For such cases, one will use the so-called continuous-discrete observers (CDO), with the 

objective to reconstruct the state between two samples. The study of CDO is also popular 

because in some situations, sensor measurements are available through a shared communication 

bus, and the allocated bandwidth is insufficient to transmit in real-time all the available 

measurements, which makes it difficult to implement observers that are fast enough to keep up 

with the system or controller rate.  

Also, ideas to use CDO design to insure finite time performance of the estimation emerged 

recently (Mazenc, Ahmed, and Malisoff 2018). The continuous-discrete design problem, along 

with the similar multi-sampling rate design problem, is formulated in the linear case using either 

predictors in between samples (Ling and Kravaris 2017a) and (Mazenc and Dinh 2014) or 

classical sample and hold strategies (Moarref and Rodrigues 2014), with the objective to 

achieve exponential stability of the error dynamics, given a maximum sampling period, using 

LMI context and Lyapunov-Krassovskii-based conditions. This research is also extended to 

non-linear systems, like in (M. Farza et al. 2014b) and (Karafyllis and Kravaris 2009) using 

high gain observers and in (Ling and Kravaris 2017b), where the vector small-gain theorem 

was used (Karafyllis and Jiang 2011). In (Dinh et al. 2015), authors design CDO for continuous 

time Lipschitz system with sampled measurements, where the estimation error is bounded, 

which is useful for applications. Literature also contains results on the use of CD Kalman filter 

for stochastic systems (Jazwinski 2007). 

  

















92 

 

 

 

 

 

Proof: Consider the expression: 

                ˆ, , ,
k

t

k k k kt
e t t t t e t t s K y s y s y t ds      (4.30) 

Passing (4.30) at norms and using (4.7), an upper bound for (4.30) can be expressed as 

                ˆ, k

k

tm t t m t s
k k kt

e t t e e t e K y s y s y t ds         (4.31) 

In order to use Lemma 4-1, the equation (4.31) is rewritten according to (4.20). First, consider 

that 

 
           

     
ˆ ˆ

ˆ
k k

k

y s y t y s y s y s y t

Ce s y s y t

    

  
  (4.32) 

From where: 

                     ˆ ˆ ˆ ˆk kK y s y s y t K y s Ce s K y s y s y t      (4.33) 

Therefore, passing at norms 

                    ˆ ˆ ˆ ˆ
k kK y s y s y t K y s C e s K y s y s y t      (4.34) 

According to the fact that    min maxˆ ˆ ˆ,y s y y , thus        min maxˆ ˆ ˆk k ky y t y s y t y y t     , 

resulting in 

         min maxˆ ˆ ˆmax ,k k ky s y t y y t y y t      (4.35) 

which corresponds to the definition of ŷM , Theorem 4-2. In the same way, consider now that 

   ˆˆ yK y s  , thus  

           ˆ ˆˆ k y yK y s y s y t C e s M   .  (4.36) 

and, 

           ˆ ˆ, k

k

tm t t m t s
k k y yt

e t t e e t e C e s M ds          (4.37) 

(4.37) is now in the form of (4.20), with ŷa C  and ˆ ˆy yb M . Thus, from Lemma 4-1, 

an upper bound is obtained 

          ˆˆ ˆ

ˆ

, 1 y kk
m C t tm t t y y

k k
y

M
e t t e e t e

m C





     


  (4.38) 
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Next proposition summarizes a procedure to help to determine the parameters via a LMI 

performance constraints design. Only the second case (CDO) is presented, since the first one 

(DMO) can be deduced directly: it corresponds to a choice of a linear gain M  (instead of 

 ˆM y ) in the conditions. 

 Proposition 4-1: Consider the system (4.1) and the observer (4.2) under Assumption 4-1 and a 

quadratic Lyapunov function. The convergence of the observer is guaranteed for a sampling 

time 
M , under the smallest bound (4.11), with P P    and 2m  , if there exists 

matrices 0P  ,  ˆM y  and scalars 
1 0  , 

2 0   such that the following LMI constraints 

problem is verified, for given scalars 0   and 0  : 

Minimize
2 1   such that: 

        ˆ ˆ ˆ ˆ 0
T TTPA y M y C A y P C M y P     ,  (4.41) 

 
 

ˆ
0

ˆ

T
P M y

M y I

 
 

  
 (4.42) 

2 0nI P     (4.43) 

1 0nP I    (4.44) 

2 1 0     (4.45) 

Proof: Inequality (4.41) is related to the convergence rate with a quadratic Lyapunov function 

and can be represented in various forms as a LMI constraint problem. The more direct being to 

consider a polytope on the vertices of ŷ , giving a set of finite LMI constraints (Boyd et al. 

1994). The bigger 0  , the faster the convergence is. In opposition, the faster the convergence 

the bigger is  K  . Thus we need a compromise to limit  K  : considering 0   such that 

   T
K PK I    is one possibility, which is equivalent to      1 1ˆ ˆ

T
P M y P P M y I    

and to the  use of Schur’s complement to (4.42). The smallest   will lead to the smallest norm 

 K  , if P  is well conditioned. Thus, the conditioning of matrix P  has also to be taken into 

account, especially by restricting the parameter  . To reduce the magnitude of  , consider: 
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 
0

1
, 0.387

N

v M k k
k

e e t t
N




    for Theorem 4-1  and  
0

1
, 0.386

N

v M k k
k

e e t t
N




    for 

Theorem 4-2. Fig. 4-1 and Fig. 4-2 show the evolution of the error bounds  , ke t t , 

 1,k kt t t   (red lines) respectively inequalities (4.19) and (4.40). Fig. 4-3 shows the behaviour 

of the bounds  
0

1
,

N

M k k
k

e t t
N




  varying the sampling time M ; we can see that CDO-based 

bound and DMO-based bound considering Remark 4-4 and Remark 4-6 are almost equivalent. 

Fig. 4-1  Train speed (zoom) with error 

bound using DMO ( 0.2M  ) 

Fig. 4-2  Train speed (zoom) with error 

bound using CDO ( 0.2M  ) 

 

 

Fig. 4-3 DMO and CDO error bound ve  for different update times 
M  
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Design trade-offs for the observer 

Several tests were performed to study trade-offs between observer performance and favourable 

error bound. Two parameters are considered,  0,1 0,5 1m  and  1 4 10 100 , to  

design the observer and the bounds, according to Theorem 4-1 and Theorem 4-2. The different 

errors are computed as:      
1

1 ˆ
N

UI i i i
i

e d t d t d t
N 

   and      
1

1 ˆ
N

est i i i
i

e y t y t y t
N 

  . 

Of course, for este  we stop the summation when the speed is under 1m s . 

Table 4.1 summarizes the results; the empty entries correspond to situations where the LMI 

algorithm is unable to reach a solution. Two columns appear for ve , one is the result of the 

theorems without additional knowledge, the second is the result with the knowledge of the train 

braking. Due to the exponential nature of the bounds, the first case ( ve  without knowledge) is 

over pessimistic; CDO being worse than DMO. As the structures of both observers are rather 

similar, the second case ( ve  with knowledge) gives similar results. Now, considering the 

tradeoff between the dynamic of the observer and the upper bound, the best compromise is the 

pair    , 0.5;100m   . 

 

Table 4.1 DMO and CDO results using various parameter settings. 

m      

DMO CDO 

ve  

Without 

Remark 4-4 

ve  este  
UIe  

ve  

without Remark 

4-6 

ve  este  
UIe  

0.1 

100 1.91 3.29 0.59 0.05 0.35 1.23 0.59 0.05 0.35 
10 1.9 1.7 0.44 0.04 0.90 0.51 0.44 0.04 0.90 
4 1.91 1.37 0.38 0.04 2 0.46 0.38 0.04 2.02 

1 2.87 1.68 0.91 0.06 2 0.94 0.91 0.06 2 

0.5 100 2.80 5.32 0.86 0.05 0.27 7.61 0.86 0.05 0.28 

10 3.52 3.24 0.82 0.04 0.6 1.32 0.82 0.04 0.61 
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4 - - - - - - - - - 

1 - - - - - - - - - 

1 

100 7.1 14.7 2.2 0.05 0.33 52.2 10  2.2 0.05 0.34 

10 - - - - - - - - - 

4 - - - - - - - - - 

1 - - - - - - - - - 

 

Fig. 4-4 presents the best case    , 0.5;100m    and Fig. 4-5  for sake of comparison shows 

   , 1;100m   . The red lines represent the bound  , ke t t ,  1,k kt t t  . We can see that the 

increase of m  introduced an important increase in   resulting in a worse upper bound ve , 

Fig. 4-5.  

 

Fig. 4-4 Bound behavior for

   , 0.5;100m    

Fig. 4-5  Bound behavior for 

   , 1;100m    

 

4.3.5. Concluding remarks 

An observer design approach for continuous-discrete time systems and the formal expression 

of the maximal bound of observer error have been investigated in this chapter. Two approaches 

to determine the bound are developed, based on a discrete measurement observer and a 

continuous discrete observer, using a special form of Gronwall inequality. A PI-observer design 

procedure is proposed in LMI form, with a tradeoff between the best guaranteed bound and 
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observer performance, to track both the state and the unknown input. Illustrations were provided 

by simulation of realistic scenarios. In the following chapter, the presented approach will be 

tested using data-sets obtained through experiments on real trains provided by Alstom 

company. 
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CHAPTER 5.  Data validation 

 

 

5.1.  Introduction 

This chapter will focus on the observer design, the results in robust estimation of position and 

of the upper bound of error estimation. Control issues are not concerned because we do not 

have possibility to test it in a real time framework. Nevertheless, we had access to sensor data 

acquired during multiple experimental runs performed by ALSTOM Transport, using different 

kind of brakes to stop, electrical and pneumatic. Moreover, the tests also included different 

speeds and wheel-track adherence conditions thus generating different fault frequencies and 

durations. Therefore, the validation can cover an interesting set of situations. 

A sensor fault-based representation of the problem will be used together with a q-LPV UI-

Observer presented in the previous chapters to design a fault detection strategy. We also 

formulate the problem of finding the best threshold for the collected data. Based on the   and 

  constants obtained through the mixed H H  optimization procedure, we reconstruct the 

amplitudes of the occurring fault and obtain insights on what type of faults are more susceptible 

to occur based on different speed profiles, and what is the influence of both type of brakes on 

the fault occurrence frequency. 

Then, we will investigate the behavior of the estimation error bound. Based on Theorem 4-1, 

Theorem 4-2, Remark 4-4 and Remark 4-6, bound behavior will be shown for different speed 

profiles, for fault-free and faulty profiles.  

A discussion on the strengths and weaknesses of the proposed solutions concludes the chapter. 

 

5.2.  Experimental setup  

The data was obtained using a Coradia-type motor coach during tests to investigate the precision 

of the odometer-based measurement chain and to characterize particular behaviors of interest 

to determine the best configurations for the ATC system. ALSTOM Transport Company ran 
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twelve (12) experiments that correspond to combinations of different speed and adherence 

conditions: nine (9) experiments used electric brakes and three (3) used pneumatic brakes. 

The considered speed profiles are: 

 HS: High Speed profile with the maximum speed allowed, around 45 (m/s), 

 AS: Average Speed profile around 66% of the allowed maximum speed, 30 (m/s), 

 LS: Low Speed profile around 33% of the allowed maximum speed, around 17 (m/s).  

The different levels of adhesion are defined as: 

 LoA: Low Adhesion corresponding to rainy conditions (water on the rail). 

 BaA: Bad Adhesion corresponding to rainy conditions and falling leafs. 

 EBA: Extremely Bad Adhesion corresponding to the extremal skidding/jamming 

possible conditions.  

The real time adhesion conditions were “artificially” obtained by proper configuration of the 

train devices and additional equipment that will pour water and soap on the track. The tracks 

are cleaned after each test. 

The motor coach is equipped with the following sensors:  

 2 odometers (positioned on 2 different wheel axels) 

 1 radar (beneath the locomotive, oriented forward) 

 1 accelerometer (in cabin) 

The speed is measured in m/s and the acceleration in 2/m s . The data is gathered using data-

logger devices and CAN transmissions recording. The aggregated measurement data sampling 

time is 50ms (20Hz). The radar and accelerometer sensors are used only to give a “true measure” 

(the ground truth) in order to characterize odometer behavior. These sensors (radar and 

accelerometer) are not commonly used on commercial rolling stock for reasons that are out of 

the scope of this thesis. We need to point that, the measurements provided by the additional 

sensors are not used by TCU (Traction Control Unit), BCU (Braking Control Unit) and WSP 

(Wheel Sliding Protection) units of the motor coach. However, actions of the TCU, BCU and 

WSP obviously impact wheel behavior, causing (or masking) some effects of the wheel 
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jamming/skidding. For example, the WSP unit configuration is different depending on the 

configurations used for this experimental run: either all-or-nothing or progressive traction 

control behavior control to avoid skidding. The same applies for the BCU and braking in order 

to obtain the required jamming conditions for the test. 

The tests were made only using the motor coach without additional vehicles, and only one cabin 

is used and active, the second cabin (for the reverse motion) is not used for the tests. The motor 

coach uses electric traction and two kind of brakes: † electric brakes and †† pneumatic brakes. 

Control signals from the TCU unit were not available for the study, thus some assumptions 

were made prior to the validation. These assumptions are explained thereafter. The procedure 

for generating these tests are rigorous, and will be omitted therein because of confidentiality 

issues. The scenario is the following:  

Traction (Acceleration) phase: traction control is applied (maximum) until the required speed 

(HS, AS, or LS) is reached. The acceleration phase will be subject to degraded adhesion and 

skidding situations.  

Maximum speed (Cruising) phase: stabilized maximal speed (for the test) is maintained using 

appropriate traction or braking actions during a short period (around 1 minute). This phase will 

benefit of normal adhesion conditions. 

Braking (Deceleration) phase: braking control is applied (maximum) until the train 

completely stops. This phase will be under degraded adhesion conditions, and jamming 

situations.  

The general scheme showing the test sequence is shown in Fig. 5-1.  
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Fig. 5-1 Overview of the three test phases 

Since the focus of the thesis is the jamming faults, we will analyze the data only during the 

braking phase. For illustration, Fig. 5-2 shows a braking sequence for both speed and position, 

where the ground truth is given by the radar (black line) and the accelerometer (pink line). We 

can see, left part of Fig. 5-2, that both odometers are heavily impacted by wheel-jamming faults, 

while the radar-based speed, and accelerometer-based speed, which is obtained by integration 

of the acceleration, are completely fault-free. The right figure shows position estimates obtained 

by integration (or double integration) of the sensor measurements. We can see that the impact 

can be important, with an error that can exceed 100 meters, for a motor coach length of 30m. 

 

 

Fig. 5-2 Speed measurement (left) and position calculation (right) from sensors. 
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conditions: Low Speed (in green), Average Speed (in blue) and High Speed (black). The 

approximation with the polynomial from equation (5.2) will be made from 5v m s  to the 

maximum speed, on the traction phase (top part of the graphic). 

 

Fig. 5-3 Overview of the acceleration/speed trajectories (LoA). 

In this case, we obtain *
0 0.46w  , 3

1
* 5.7 10w    and 4*

2 2.4 10w    . The final 

approximation (in red) is shown Fig. 5-4 superposed with the HS profile (left) and with all 

profiles (right).    

 

Fig. 5-4 Friction parameter estimation results.  

Using this procedure, all friction parameters are estimated for the three adherence situations 

LoA, BaA and EBA, and results are shown Table 5.1. These estimates are obtained using 

reference data from radar and acceleration sensors, available in the data-set. 

 



108 

 

 

 

 

 

Table 5.1 Friction parameter estimations. 

Parameters LoA BaA EBA 

0
*w  0.46  0.35 0.25 

1
*w  35.7 10  33 10  35 10  

2
*w  42.4 10   41 10   42 10   

 

Assumption 2 (A2) Time-to-time position sensors: on-track position beacons 

As explained section 2.1.2, time-to-time updates of the accurate train position are obtained via 

track-based position beacons. The beacon measurement updates are not available in the data-

set, nevertheless as the reference sensor data are available, it is easy to construct and simulate 

“artificial” updates. We could even decide to test what would be an ideal positioning of beacons 

according to the observer design and bounds framework proposed. Therefore, we construct a 

set of a predetermined “artificial” beacons’ positions  Bp  from the radar sensor-based 

position. Thus, at each time an artificial beacon is crossed, the approximate “true” position 

 Bp  is used to simulate the time-to-time position update.   

 

Assumption 3 (A3) The TCU control signal 

The TCU control signal would be helpful for outperforming the q-LPV UIO PI-observer 

performances, nevertheless, this information is never available, neither in the data set nor for 

the ATO in real conditions. Thus, the algorithm to construct the piecewise-constant control 

approximation  * .u  proposed in chapter 3, is used again; where  * .u is updated at the times 

when a beacon is crossed or when the system has recovered from a fault. The procedure given 

from (3.5) to (3.10) will compute  *
0u t  from any initial position     0 0 0, ,t p t v t  to reach the 

final position   , ,0f ft p t . Since the final position and final time are known from the data set, 

then the control  *u   can be recomputed after a beacon update (and detected fault recovery) 

using the steps from Algorithm 3-1. Using position updates from the beacons and velocity 
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estimations from the observer, the piecewise-constant control  * .u  is updated at the time 

instants kt , based on     ˆ, ,k B k kt p t v t , where the instants kt ,  1,2,3,...,k j  are the instants 

either when a beacon is crossed or when the system has recovered from a fault. 

Now, considering the assumptions A1, A2 and A3, the results issued from the experimental 

study are presented to validate the methodology proposed in section 3.3, and section 4.3. 

 

5.3.  Quasi-LPV UIO-based robust position estimation 

 

5.3.1. Preliminary discussion 

In this section, we present the fault detection methodology validation, section 3.3 that improves 

the position estimation under jamming faults, and consequently reduces the stopping position 

error. The measurement sampling time of the odometers is 200ms, to match real conditions. 

The time-to-time true position updates are made considering that the beacons are placed on the 

path with 200 meters intervals. At the beacon crossing time kt ,  we update  *
ku t , 

 1,2,3,...,k j  based on the correct data.  

The two-steps Algorithm 3-2  based on the resolution of 2 LMI constraints problems based on 

conditions (3.56), (3.57) and (3.58), is performed, using 0.2  , 1F  ,  1 0 0
T

D  , and 

the friction parameters 0
* 0.46w  , 3*

1 5.7 10w   , and 4*
2 2.4 10w    . The results obtained 

are: for the fault detection, a gain 3.36M  , for H H   parameters 2.32  , 0.1   and 

the observer gains  1 2.41 1.34 0.22
T

L    and  2 2.41 1.33 0.22
T

L    , which 

actually means that the parameter variation induced by 1
*w v  is not significant. Therefore, for 

this set of parameters the q-LPV representation will not impact the results. 
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5.3.2. Determination of the best detection threshold 

We split the tests into three groups based on the speed profiles: HS, AS, and LS. The different 

adherence levels are considered: LoA, BaA, and EBA. Now, we create two tables Table 5.2 and 

Table 5.3  with the fault detection information for each situation, in order to obtain maximum 

and minimum threshold values, with fault detection performance of 99% of non-detected faults 

for the maximum possible threshold and 100% detected faults with 50% false alarms for the 

minimum possible threshold. Obviously, these values are unacceptable, and we must reach a 

fault detection rate of 100% with no false alarms.  

In this thesis, we will consider the three (3) markers to assess the performance of a fault 

detection algorithm. These markers are both popular and intuitive (Blanke et al. 2006; Isermann 

2006; J. Zhang, Swain, and Nguang 2016), and are detailed below:  

 Fault detection rate (FDR): It is the number of fault detections that correspond to real 

faults, divided by the number of total faults. This rate evaluates how close the results are to 

the objective of 100%. 

 Undetected faults rate (UFR): Also referred to as non-detection rate, or missed faults rate. 

It is the number of undetected faults divided by the number of total faults. This rate has to 

be as close as possible to 0%. 

 False alarms rate (FAR): Also referred to as bad-detection rate. It is the number of faults 

detections that do not correspond to real faults divided by the number of total detections. 

This rate has to be as close as possible to 0%. 

When the number of total faults is unknown, the rate is computed based on the number of total 

detections. This is the usual situation in practice.  

When a “real” fault is detected, another parameter that might be important is:  

 The fault detection delay dst , or the time-delay from real fault occurrence moment until 

the moment when a “fault detected” decision is made by the fault detection system. The 

shorter this delay, the best the result is. 

If the fault is intermittent, which means that the fault can disappear even if it is left unattended, 

then another indicator is considered:  



111 

 

 

 

 

 

 The end-of-fault detection delay det  , or system recovery delay: it is the delay between 

the real disappearance of the fault and the moment when the end of detection occurs from 

the fault detection system. Again, the shorter this delay, the best the result is.  

This last indicator is related to fault duration estimation, and can be replaced by the error in 

fault duration estimation. 

Considering fault detection performance, we chose in this thesis to consider the number of faults 

and fault detections, in order to compute the rates and not the total duration of faulty periods 

and the total duration of good fault detections.  

The last column of the Table 5.2 and Table 5.3 corresponding to the threshold f  gives the best 

threshold for each situation, that maximizes fault detection rate, and minimizes false alarms. 

The exploration of the interval was done iteratively. 

 

Table 5.2. Thresholds for tests with electric brakes 

Speed profile 

Adherence 

level 

Threshold 

min Max f  

HS 

LoA 0.58 1.12 

0.65 BaA 0.59 1.8 

EBA 0.55 3.1 

AS 

LoA 0.61 1.51 

0.62 BaA 0.51 2.3 

EBA 0.45 13 

LS 

LoA 0.2 1 

0.4 BaA 0.3 1.8 

LoA 0.25 2 
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Table 5.3. Thresholds for tests with pneumatic brakes 

Speed profile 

Adherence 

level 

Threshold 

min Max f  

HS BaA 1 14 

1.5 AS BaA 1.2 18 

LS BaA 1.2 20 

 

5.3.3. Fault detection performance for each case 

Thereafter, the best detection threshold is used for each case. We consider that the threshold 

depends of the speed range as shown by the results of tables Table 5.2 and Table 5.3. This result 

is compatible with real time application as in practice, the speed is both measured and estimated. 

Considering a unique threshold speed independent would be more conservative, it will 

correspond to the smallest one, and obviously will have worse fault detection rates. The main 

reason is that its higher sensitivity to noise will increase the rate of false detections FAR, and 

consequently decrease the rate of good detections FDR. 

We consider in the following tables the time delay to detect the start  dst , and the end  det  

of the fault on good detections; for the tables thereafter we present the average delay considering 

the whole deceleration phase. We also consider the false alarms FAR, and missed detections 

UFR. The FDR is omitted because it can be derived from the UFR value. The last two columns 

are dedicated to the relative position errors at the final position for both cases:  

 without fault detection approach       1

p ref sensor traine p t p t l
    

 with the proposed approach       1ˆ ˆp sensor traine p t p t l
  .  

The relative errors are computed with respect to the coach length, which is fixed for the 

experiments to 30trainl m . What we call final position, is the last position before beacon 

update, with contrast to stopping position which is the position when we want the train to stop. 
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5.3.3.1. High speed test case 

Table 5.4 presents the results for the three HS tests using a threshold of 0.65f  . It can be 

seen that all faults are correctly detected on the presented interval (Fig. 5-5) and that the position 

estimate is improved from 1% decrease for the less faulty case, to 8% for the worst case.  

Table 5.4. Fault detection in HS with 0.65f   . 

Adherence 

level 

Detection 

delays (s) 
Rate of undetected 

faults 

Rate of false 

alarms 
pe  ˆ

pe  

dst  det  

LoA 0.4 0.17 0 0 0.126 0.113 

BaA 0.19 0.41 0 0 0.123 0.106 

EBA 0.22 0.3 0 0 0.193 0.115 

 

 Fig. 5-5 (a) shows the speed behavior for a situation with the worst adherence conditions EBA, 

which corresponds to the last line of Table 5.4. We can see an important jamming occurrences, 

varying for 1 to 2 seconds. The speed estimation manages to filter jamming impact on the 

measurement, using fault detection where the residual is able to detect the fault with a relatively 

small delays (Fig. 5-5 (b): differences between vertical red – real fault – and blue lines – 

estimated faults and recovery). 

Fig. 5-5 (c) shows the evolution of position estimation error during an interval of interest, i.e. 

2 considered beacons. The blue lines correspond to the time-to-time beacon updates. The 

estimated error (dark blue line) is 3 meters better that the sensor measurement (black line), thus 

dividing by to the precision. 
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(a) Speed   (b) Residual  

 

(c) Position error 

Fig. 5-5 HS with EBA and 0.65f   

 

In order to show the importance and the impact of the compromise that ends with the thresholds, 

next figure Fig. 5-6 presents the same case conditions as Fig. 5-5 with a threshold 1.5f  . 

This value exhibits a sensitivity which is incompatible with the studied case that can end with 

an estimation worse than the one given by the corrupted sensor.  
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(a) Speed (b) Position error 

Fig. 5-6 HS with EBA and 1.5f  . 

5.3.3.2. Average speed test case 

An interval from the AS-test is studied thereafter and the results are shown Table 5.5: We see 

that the improvement is minor (2-3%) for the first two lines, and around 30% for the last line. 

 

Table 5.5. Fault detection for AS with 0.62f   . 

Adherence 

level 

Detection delays 

(s) 
Rate of undetected 

faults 

Rate of false 

alarms 
pe  ˆ

pe  

dst  det  

LoA 0.1 0.2 0 0 0.14 0.11 

BaA 0.56 0.16 0 0 0.16 0.14 

EBA 0.2 0.2 0 0 0.58 0.19 

 

Fig. 5-7 (a) shows two phenomena: a jamming in the beginning, and many micro-jammings 

during the whole period. Micro-jammings are jammings with shorter durations than the data 

sampling, causing a small decrease in speed measurement with respect to the reference. The 

same phenomenon was also present for the High Speed test, but was masked by the more 

important jammings. Micro-jammings can be seen especially Fig. 5-7 (b), where the residual 
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shows multiple detections, but that will (a part from the first jamming) not correspond 

accurately to the behaviour of the fault. Fig. 5-7 (c)   shows the position estimation errors. 

 

(a) Speed (b) Residual for 

 

(c) Position error 

Fig. 5-7 AS with BaA and 0.62f  . 

       

Changing the threshold will not solve the problem. For example, choosing a lower threshold 

0.34f   will make it sensitive to noise and will trigger false detections, Fig. 5-8).  
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(a) Speed (b) Residual 

Fig. 5-8 AS with EBA and 0.34f  . 

The case presented improves only in a small way the positioning result. In view of the figures, 

this case can be seen as a slowly varying measurement error (due to the micro-jammings), that 

cannot be detected by the residual set up for detecting jamming. Therefore, with only one 

“detectable” jamming amongst a lot of micro-jammings only a small the improvement can be 

obtained. Choosing a lower threshold wouldn’t improve the result, since the residual for this 

observer was designed without knowledge of the micro-jammings. 

 

5.3.3.3. Low speed test case 

For the LS-tests, a lower threshold has to be preferred. From Table 5.6, we can see that the 

improvement in position estimation is around 2-3%. 

Table 5.6. Fault detection in LS with 0.4f   . 

Adherence 

level 

Faults detected Rate of undetected 

faults 

Rate of false 

alarms 
pe  ˆ

pe  

dst  det  

LoA 
No 

fault 

No 

fault 
No fault No fault 0.06 0.03 

BaA 0.2 0.2 0 0 0.15 0.13 

EBA 0.14 0.2 0 0 0.18 0.13 
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 Fig. 5-9 (a) shows that 7 jammings have occurred. The residual was able to sense them with 

some delay, Fig. 5-9 (b). The position estimation is shown Fig. 5-9 (c); since the jammings 

were short, there is nearly no impact on the position estimation error Fig. 5-9 (c).  

 

(a) Speed 
(b) Residual  

 

 

(c) Position error  

Fig. 5-9 LS with EBA and 0.4f   
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5.3.3.4.  Pneumatic brakes case  

The last tests discussed here are those related to the use of pneumatic brakes. Table 5.7 shows, 

that the LS-test is where fault detection is successful even with one small fault no detected, 

reducing the position error by nearly 90%.  

Table 5.7. Fault detection with 1.5f   and pneumatic brake. 

Speed 

profile 

Fault 

detected 
Rate of undetected 

faults 

Rate of false 

alarm 
pe  ˆ

pe  

dst  det  

HS 0.4 0.2 0 0 0.53 0.35 

AS 0.2 0.2 0 0 0.66 0.15 

LS 0.2 0.2 0.2 0 0.96 0.13 

 

Fig. 5-10 shows that there are five important jammings that occur during the run, and the rate 

of success of the observer is able 4 on 5 (Fig. 5-10 (b)), thus, filtering their effects from the 

position estimation (Fig. 5-10 c)). 

 

(a) Speed (b) Residual  
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(c)Position error  

Fig. 5-10  LS (pneumatic) with 1.5f   

Fig. 5-11 shows a difficult case where two faults are occurring at the same time, and have their 

effects superposed. We can see in figure (a) that there is a characteristic jamming that is 

successfully detected and a slowly varying bias in the measured speed, caused probably by 

micro-jammings, which cannot be detected using this particular observer. The estimated speed 

is still closer to the reference. 

(a) Speed (b) Residual  

Fig. 5-11 HS (pneumatic) with 1.5f   
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5.4. Continuous-discrete observer error bound estimation 

 

5.4.1. Preliminary discussion 

In this section, we will estimate the upper bound of the observation error on the same 

experimental data set as in the previous section. To achieve this goal, we will use the DMO and 

CDO observers and the methodology proposed in section 4.3. Therefore, considering the 

friction parameters ( 0
* 0.46w  , 3*

1 5.7 10w   , and 4*
2 2.4 10w    ) identified previously, 

and using the  LMI constraints of  Proposition 4-1, a good compromise was found using the 

parameters 0.2   for the observer decay rate estimation error and 80   to limit the norm 

of the gains. The result ends with 1.9   (ratio of the maximum and minimum eigenvalues, 

for Lyapunov matrix P ), 0.5m   and the observer gain    13.4 3.4 1.5
T

K w        .  

Thereafter, we will consider four (4) different cases to study the upper bound behaviour: 

nominal system (fault-free) case, and 3 other cases based on different fault types, small, medium 

and high severity. 

The table 5.8 shows the average bounds computed based on the DMO (Theorem 4-1), CDO 

(Theorem 4-2) and improved DMO (i-DMO, corresponding to the Remark 4-4 from the 

previous chapter). Improved CDO-based estimation was omitted, since it gives the same result 

as the i-DMO. 

The table shows, as expected, that the i-DMO is the least conservative, for all situations, and 

the CDO the most conservative.  However, even the best estimation remains, in some cases, 

conservative as it will be shown thereafter. 

Table 5.9 CDO, DMO and i-DMO-based estimation of the observer error upper bound 

Fault type Duration (s)  DMO CDO i-DMO 

Fault free 0 5.3 4.96 0.7 

Small  0.2 6 10 1.28 

Medium 1 26.11 62.2 10  13.4 

Big 1.4 40.49 97 10  33.3 
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5.4.2. Fault-free case 

For the fault-free situation the measurements are “exact”, and updates of the observer are done 

as expected. Fig. 5-12 shows the behavior of the different bounds:  i-DMO (Fig. 5-12 (a)), 

DMO (Fig. 5-12 (b)) and CDO (Fig. 5-12 (c)). The dynamic bounds are represented by the red 

lines. Their exponential nature has been presented equations (4.11), (4.29), and both (4.19) and 

(4.40). We can see that the reference is contained in the range of the estimation.  

 (a) i-DMO bound  (b) DMO bound 

 

(c) CDO bound 

Fig. 5-12 Fault free  
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5.4.3. Small fault case 

Small jamming faults are considered in this case (Fig. 5-13 again with the 3 cases i-DMO (a), 

DMO (b) and CDO (c)), which means that their duration is less than a measurement sample. 

Here also, no measurement is discarded, a slight decrease can be observed for the measurement 

with respect to the reference. The observer will not be able to detect the fault that fast, and with 

a quite small residual. The bound values are similar to the fault free case. 

 

 (a) i-DMO bound  (b) DMO bound 

 

(c) CDO bound 

Fig. 5-13 Small fault 
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5.4.4. Medium fault case 

This case corresponds to a jamming duration between 3 and 6 samples. Some measurements 

are discarded from observer updates, which implies that the bound will continue to increase in 

an exponential way (Fig. 5-14). The reference remains in the bound, as expected. 

Notice that for the i-DMO, the first corrupted measurement is on the edge of the bound (Fig. 

5-14 (a) zoom top left), which makes sense: an unexpected external signal impacting the system 

will change its behavior, potentially invalidating the bound.  

 

(a) i-DMO bound (b) DMO bound 

 

(c) CDO bound 

Fig. 5-14  Medium fault 
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5.4.5. Big fault case 

Big faults are those which duration is more than 6 samples. More measurements are discarded, 

and the exponential nature of the dynamic bounds (Fig. 5-15) will quickly render them 

inadequate, especially for the CDO case.  

 

(a) i-DMO bound (b) DMO bound 

 

(c) CDO bound 

Fig. 5-15 Big fault 
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5.4.6. Discussion 

This short section aimed to show the bound estimation applied to real data, and to discuss its 

behavior. The exponential nature of the dynamic bounds renders them quickly inappropriate if 

too many measurements are discarded. In a sense, this is perfectly normal, it takes into account 

the worst possible case at each instant, therefore cumulating them can result in estimations far 

from reality. Improvements should come at hand, trying to reduce the gains of the exponential 

parts, introducing more knowledge in the design of these bounds, using different observer, for 

example based on a forgetting factor, i.e. the further from a measurement, the less credible the 

estimation.  

 

5.5.  Concluding Remarks 

This chapter discusses practical applications of the unknown input observer and the associated 

fault detection system. First of all, the experimental setup was described, and a preliminary 

study to identify parameters based on the proposed assumptions was performed. Then, the data 

set was investigated to determine the adequate threshold for the best fault detection 

performance, considering the highest fault-detection and lowest undetected fault rates. Case per 

case discussion was then presented, to show the results and the limits of the proposed 

algorithms. The ending sections discussed the practical application of the estimated upper 

bound of observation error, focusing on cases ranging from fault free to various severity 

jamming faults, when some corrupted measurement updates were discarded.  

As expected, when faults are successfully and timely detected, the proposed solution improves 

the position estimation, with some limitations, concerning mainly faults that do not match the 

expected model. The estimated bound is conservative, as expected, but is matching the 

measurements. However, to be useful, less conservativeness is needed, using more extra-

information or another form of observer design. 
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CHAPTER 6. Final words 

Conclusion 

This thesis dealt with the development of advanced observation and control algorithms and their 

practical application for railway systems automatic operations, considering uncertain system 

parameters, limited communication bandwidth, and faults in the system. Two faulty situations 

were considered in particular: wheel jamming during braking and wheel skidding during 

traction.  

The main result of this research was the design of an unknown input observer in proportional-

integral form, with a continuous-discrete update dynamic. This observer can be used for 

disturbance estimation and fault detection, and is a major component in the proposed fault 

tolerant control scheme. 

There are four contributions in the thesis: 

The first contribution was the design of an active fault tolerant braking control, where the main 

contribution is an integrated approach using an unknown input observer, fault detection, and 

disturbance compensation control with a reference model for train stopping, with some 

assumptions on the system. The design of such a system and a discussion on the convergence 

properties was provided.  

The second contribution dealt with the design of a robust position estimation algorithm based 

on the unknown input observer with a quasi-LPV representation. The assumptions on the 

system were relaxed with respect to the previous case, as the observer assumed a nonlinear 

system model, and an unknown control. 

The third contribution explored a novel Gronwall-like bound for the observer error, in 

continuous-discrete dynamic. The unknown input observer was designed in a quasi-LPV 

framework with a piecewise constant input. Practical considerations on how to improve the 

bound with extra information from the system were discussed.  

The last contribution concerns experimental study: the designed observers were tested on data 

sets acquired during real time experiments provided by ALSTOM Transport Company. Several 

situations were studied, considering different speeds and different wheel-track adherence 
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conditions. The performances of the developed observers were discussed for the presented 

scenarios, and strategies for observer parameters choice were proposed. 

Overall, the proposed approach showed promising results, and needs to be embedded for real-

time tests. The Gronwall-like bound formulation and use in such applications is a novel idea, 

that was proved to be feasible, but needs further investigations to obtain less “pessimistic” 

estimation for the upper bound of the error. 

Perspectives 

Both theoretical and applicative perspectives are to be considered: 

The applicative perspectives are centered on the real-time exploitation of the algorithms, in a 

dedicated data acquisition environment, to validate real-time performance of the algorithms: 

robustness, speed, numerical issues, etc. A complete discretization is considered in order to 

facilitate the transition. 

Another applicative development is the use of a more accurate representation of the train, with 

a proper dynamic of each vehicle and their interconnections. The model will consider wagons 

and locomotives separately, with distinct braking controls for each vehicle, and with the traction 

control remaining exclusive to locomotives. 

The following application perspective is related to the exploitation of the existing wheel-track 

contact cartography and other models of wheel-track adherence to improve the model that is 

used to derive the observer. 

Finally, the practical use of the estimated upper observer error bound for the optimization of 

the safety intervals and train timetable scheduling must be investigated, among other 

possibilities.  

The theoretical developments are related again to the estimation of the upper observer error 

bound, and ways to make it less conservative. A promising idea to correct this overestimation 

is to follow the work of (Mondher Farza, M’Saad, and Busawon 2015; Fall 2015b), using the 

so-called impulse continuous-discrete observer. It would resume in replacing the gain   ˆK y t   
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in the observer by     ˆ kt tK y t e   . It will require a new like-Gronwall lemma, and probably a 

different approach in the observer design methodology. 

Another possible theoretical development is the transposition of the results to the multi-

sampling rate framework, and consider dedicated discrete time observer design tools. For 

example, this could help to improve the design procedure for the robust position estimator 

discussed in the second section of the third chapter. 
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