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Abstract

Millions of people use the trains every day. Therefore, rail transport and infrastructure
efficiency and safety is critical, for customers and companies. A major challenge nowadays is
to climb automation levels for trains, from Grade of Automation (GoA) “0” which is basically
on-sight train operation all the way to GoA “4” where train operations are unattended. GoA
levels are defined by the International Association of Public Transport (UITP—French
acronym), and aim to provide a roadmap for the development and the integration of the so-
called automatic train operation (ATO) systems. ATO are operational safety enhancement
devices that help the driver by automating some operations on the train, helping him/her to be
more attentive and to focus on possible safety issues or unexpected situations. Currently, the
level of automation that is reached for commercial rolling stock is GoA “2”, semi-automatic
train operation, when starting and stopping operations are automated. Most of the existing ATO

systems are GoA 2.

As within any modern vehicle, on-board systems on a train are linked, and the ATO is working
together with automatic train protection (ATP) and automatic train supervision (ATS), to ensure
the respect of the speed restrictions and stop the train at the station with accuracy and within an
acceptable tolerance of its timetable. The stopping task is carried out by automatic train stop
control (ATSC), and all of the devices together form a package called automatic train control

(ATC) (Dong et al. 2010).

All automatic systems rely on two main functions: perception and decision. The ATO device
will rely heavily on the available information to ensure an accurate perception of its
environment and of the operational situation, in order to carry out the right decisions. This
information acquired by sensors of different technologies and made available through the
communication network (bus) of the train. Obviously, sensors are limited by technology, the
communication bandwidth is not infinite; and all technical systems can experience faults and
failures. Those are major challenges to design efficient and robust ATO devices, because the
usual way to deal with these issues is to use sensors of different technologies for each
information of interest. This makes such a system more complex, possibly costly, and it

increases the amount heavily of transmitted data and its supporting infrastructure.



There is a promising solution to this challenge, and it is called virtual sensors, or observers that
are developed by automatic control researchers to supplement the sensors at a fraction of the
cost, and embeds knowledge of the system in the automated device through analytical models
of the environment. The design of a particular type of observer, and its practical exploitation

for automatic train operations is the main contribution of this PhD work.



Résumé

Des millions de personnes utilisent le train chaque jour. Par conséquent, 1’efficacité et la
sécurité du transport ferroviaire et de 1’infrastructure sont essentielles pour les clients et les
entreprises. De nos jours, I’un des principaux défis est d’augmenter le niveau d’automatisation
des trains, du niveau d’automatisation «0» (ou Goals of Automation GoA) qui consiste
essentiellement a exploiter les trains a vue jusqu’au niveau « 4 », ou les opérations ne sont pas
surveillées. Les niveaux GoA sont définis par 1I’Union internationale des transports publics
(UITP) et ont pour objectif de fournir une feuille de route pour le développement et 1’intégration
des systemes dits «d’exploitation automatique des trains » ou ATO. Les ATO sont des
dispositifs d’amélioration de la sécurité opérationnelle qui aident le conducteur en automatisant
certaines opérations, lui permettant de se concentrer sur les problemes de sécurité éventuels ou
les situations imprévues. Actuellement, le niveau d’automatisation atteint pour le matériel
roulant commercial est GoA «2», ou une exploitation semi-automatique des trains, les
opérations de démarrage et d’arrét étant automatisées. La plupart des systemes ATO existants

sont GoA 2.

Comme dans tout véhicule moderne, les systéemes embarqués sur un train sont liés et I’ATO
collabore avec les organes de sécurité tels que la protection automatique des trains (ATP) et la
surveillance automatique des trains (ATS). Il doit garantir le respect des limitations de vitesse
et arréter le train a la gare avec précision, tout en respectant une table horaire. La tiche d’arrét
est effectuée par le contrdle automatique de 1’arrét des trains (ATSC). L’ensemble de ces

dispositifs forment le controle automatique des trains (ATC) (Dong et al. 2010).

Tous les systemes automatiques reposent sur deux fonctions principales : la perception et la
décision. Le dispositif ATO s’appuiera fortement sur les informations disponibles pour assurer
une perception précise de son environnement et de la situation opérationnelle, afin de prendre
les bonnes décisions. Ces informations sont acquises par des capteurs de différentes
technologies et mises a disposition via le réseau de communication (bus) du train. De toute

évidence, les capteurs sont limités par la technologie, la bande passante de communication
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n’étant pas infinie. De plus, tous les systemes techniques peuvent rencontrer des défauts et des
échecs. Il s’agit 1a d’un défi majeur pour la conception de dispositifs ATO robustes et efficaces,
car la maniere habituelle de traiter ces problemes consiste a utiliser des capteurs de technologies
différentes pour chaque information source d’intérét. Cela rend ce systeéme plus complexe,
souvent plus coliteux, et augmente considérablement la quantité de données transmises et son

infrastructure de support.

Il existe une solution prometteuse a ce défi. Il s’agit de capteurs virtuels, ou observateurs
développés par des chercheurs en controle automatique pour compléter les capteurs a une
fraction du coft, et intégrer la connaissance du systeme dans 1’automate a 1’aide de modeles
analytiques de 1’environnement. La conception d’un type particulier d’observateur et son
utilisation pratique pour I’exploitation automatique des trains constituent 1’apport principal de

cette these.
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CHAPTER 1. Introduction

1.1. Context of the thesis

Millions of people use the trains every day. Therefore, rail transport and infrastructure
efficiency and safety is critical, for customers and companies. A major challenge nowadays is
to climb automation levels for trains, from Grade of Automation (GoA) “0” which is basically
on-sight train operation all the way to GoA “4” where train operations are unattended. GoA
levels are defined by the International Association of Public Transport (UITP — French
acronym), and aim to provide a roadmap for the development and the integration of the so-
called automatic train operation (ATO) systems. ATO are operational safety enhancement
devices that help the driver by automating some operations on the train, helping him/her to be
more attentive and to focus on possible safety issues or unexpected situations. Currently, the
level of automation that is reached for commercial rolling stock is GoA “2”, semi-automatic
train operation, when starting and stopping operations are automated. Most of the existing ATO

systems are GoA 2.

As within any modern vehicle, onboard systems on a train are linked, and the ATO is working
together with automatic train protection (ATP) and automatic train supervision (ATS), to ensure
the respect of the speed restrictions and stop the train at the station with accuracy and within an
acceptable tolerance of its timetable. The stopping task is carried out by automatic train stop
control (ATSC), and all of the devices together form a package called automatic train control

(ATC) (Dong et al. 2010).

All automatic systems rely on two main functions: perception and decision. The ATO device
will rely heavily on the available information to ensure an accurate perception of its
environment and of the operational situation, in order to carry out the right decisions. This
information acquired by sensors of different technologies and made available through the
communication network (bus) of the train. Obviously, sensors are limited by technology, the
communication bandwidth is not infinite; and all technical systems can experience faults and
failures. Those are major challenges to design efficient and robust ATO devices, because the

usual way to deal with these issues is to use sensors of different technologies for each
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information of interest. This makes such system more complex, possibly costly, and it increases

heavily the amount of transmitted data and its supporting infrastructure.

There is a promising solution to this challenge, and it is called virtual sensors, or observers that
are developed by automatic control researchers to supplement the sensors at a fraction of the
cost, and embeds knowledge of the system in the automated device through analytical models
of the environment. The design of a particular type of observer, and its practical exploitation

for automatic train operation is the main contribution of this PhD work.

1.2. Research scope

Observers are efficient numerical solutions that avoid adding new sensors, providing state
reconstruction and disturbance estimation. Information provided by observers are used to
improve “measurements” precision and to estimate and compensate the exogenous disturbances
using observer-based compensation controllers. A class of observers called unknown input
observers (UIO) (J. Chen, Patton, and Zhang 1996) is used for this matter, it belongs to the so-
called observer-PI family. This technique is well-known and has been successfully applied to
many problems such as (Delrot et al. 2012; Lendek et al. 2010). The estimated perturbation can
be efficiently taken into account with appropriate robust control techniques (Faieghi, Jalali, and
Mashhadi 2014; Gao, Liu, and Chen 2016). However, if an unexpected event occurs, like a

device fault or failure, the “usual” control compensation can be inadequate.

Unexpected events can be predicted through symptom detection, if the event dynamic is known
and modelled. The analysis of discrepancy between estimations and measurements is the way
to detect the symptoms of a possible problem. This analysis is based on the so-called model-
based or model-free techniques, and is known under the name of Fault Detection, Isolation and
Estimation (FDIE) or (FDI) (Gao, Cecati, and Ding 2015). FDI techniques are used for trains,
for example in (Jesussek and Ellermann 2013) to capture the nonlinear characteristic of a
railway vehicle, or in (Wei, Jia, and Liu 2013) to compare acceleration measurements. FDIE
was also used for high-speed railway traction devices in (Y. Wu, Jiang, and Shi 2016) and to

the analysis of train networks in (Verbert, De Schutter, and Babuska 2016).
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A fault that often occurs in train braking systems is the wheel jamming (blocking) (Aguiar et
al. 2017). This fault will hinder braking distance and position measurement, since the odometer,
i.e. a frequently used sensor, is based on quantifying wheel rotation. Obviously, if the sensor is
in the wheel, then when the wheel jams, the measurement will be corrupted. On another hand,
if the sensor is placed on the rail, like a position beacon, then the position information is more
accurate. Of course, installing the necessary beacons on all the tracks will quickly face a
problem of cost and is therefore, unrealistic. Another important point is to derive fault tolerant
traction and brake controls, thus, we need to detect accurately the faults, ideally missing none

of them, and generating no false alarms. In view of this, H  attenuation techniques helps to

improve fault detection robustness with respect to modeling uncertainty (Edelmayer, Bokor,

and Keviczky 1994; Zhong et al. 2003), and H_ index for fault detection sensitivity (J. L. Wang,
Yang, and Liu 2007; Z. Wang et al. 2017; M. Zhou et al. 2017).

Wheel jamming, and more generally speaking, adherence issues, will lead in practice to an
overestimation of the train timetable, and it is made only through collected data. An interesting
topic to explore is how to improve train scheduling, by estimation of the worst case performance
of observer estimation, i.e. by computing a worst case bound of the observer error. An idea to
develop is to use Gronwall-like bounds theory (Dragomir 2003; Fall 2015a) to compute such a
bound.

1.3. Industrial Scope and Objectives

The research project has been made together with the LAMIH laboratory and the ALSTOM
Company, which is a major actor in train industry. The request of the company was about
efficient numerical algorithm that will supplement odometric speed sensors for ATSC driven
accurate train stopping, without knowledge of wheel-track adherence conditions and with

probable intermittent wheel jamming and wheel skidding anomalies.

The first part of this work is the modeling and simulation of wheel-rail contact and actions of
WSP-skid control laws. Based on this simulation model, comparisons are made with ATP and
ATO level measurements acquired through experiments. The aim is to place the following

studies in the context of close experimental feedback.
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The second part is the study about observation of the jamming phenomenon and the action of
the anti-lock control device. Taking into account the discrepancy between the measurement
updates and the reaction time of ATO level systems, a continuous-discrete behavior is to be

considered.

Finally, a more accurate representation of kinematics can improve existing control algorithms
in variable or degraded adherence situations. Robust control must ensure accurate train stopping
in all situations. Furthermore, the robust control must ensure that no ATP emergency will be
triggered because of position estimation bias. A supervision system can complement the robust

control autopilot device.
1.4. Outline

The thesis is organized as follows:

Chapter 2 gives a background on railways systems and automatic train control. An analysis of
the mathematical model and fault interpretation for train systems is presented. In addition, a

brief state of the art on robust observation and estimation for fault detection is provided.

Chapter 3 is divided in two sections: First, an active fault tolerant braking control is presented,
where the main contribution is the integrated approach using an unknown input observer, fault
detection, and disturbance compensation control with a reference model for train stopping, with
some assumptions on the system. The design of such system and a discussion on the
convergence properties is provided. The second part relaxes most of the assumptions and deals
with the design of robust position estimation algorithm, based on the unknown input observer

with a quasi-LPV representation. Illustrations are provided for both contributions.

Chapter 4 explores a novel Gronwall-like bound for the observer error, in continuous-discrete
dynamic. The unknown input observer is considered in a quasi-LPV framework with a
piecewise constant input. Practical considerations on how to improve the bound with extra

information from the system are discussed. Simulations are provided for all cases.

Chapter 5 presents the results of chapters 3 and 4 applied to data acquired during real time

experiments provided by ALSTOM. We present many situations, considering different speeds

12



and different adherence conditions. The performance of the developed observers is discussed,

and strategies for observer parameters choice is proposed.

Chapter 6 concludes this work with some important remarks and future research.
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CHAPTER 2. Background

This chapter presents a general knowledge about the train systems. Mathematical models used
in the literature are depicted taking into account practical consideration. The behavior of sensors
especially, under fault occurrences, are also described; faults due to jamming and skidding
being the ones treated therein. A review of available solutions of the literature is also given.
Implementation issues are discussed, especially the different operation levels and their
communication: Automatic Train Control system (ATC) and its internal processes: Automatic
Train Protection (ATP), Automatic Train Operation (ATO), and Automatic Train Supervision
(ATS). The solutions will concern robust control, observers and fault detection analysis of
different kinds depending on the assumptions made. Therefore, various observers for fault
diagnosis are presented, including unknown input observers and a particular continuous-

discrete time observer. A focus on jamming and skidding faults ends the chapter.
2.1. The train system

A train is composed by the locomotive and the wagons, as shown Fig. 2-1. The locomotive,
among other systems, includes the motors for traction and the braking system. There are
different types of railway traction, that can be divided into two groups: diesel and electric
traction (Iwnicki 2006; José A. Lozano 2012; Kaller and Allenbach 1995). For diesel traction,
several transmissions are available, mechanical, hydraulic and electrical. For electrical traction,
there are DC (direct current) motors and AC (alternating current) motors. Nowadays, almost all
the locomotives use electric traction, where the most used motors are basically (José A. Lozano
2012): DC motors with in-series or independent excitation and AC motors. The use of electric

traction is considered clean and efficient.

The braking system can be categorized, depending on its mechanisms, into three groups (Fig.
2-2): pneumatic brakes (or air brakes), electric brakes, and mechanical brakes (Izumi and Seigo
1999; The Railway Technical Website n.d.). The different systems are combined on a same
train. Let’s consider for example pneumatic brakes: they rely on air compressors mounted into
the wagons to supply pressurized air to the brakes. This technology induces a delay between

the braking command and effective braking, because pressure variations cannot be
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instantaneous. An improvement of this braking system is the use of electro-pneumatic brakes,
using an electric signal to transmit the command. However, electro-pneumatic brakes are less

reliable than a pure pneumatic system, and are used to complement the latter.

Driver

Emergency
Brake Brake

Wagon Locomotive

Fig. 2-1. The train system

The interaction of both systems follows some common principles as is explained in (The

Railway Technical Website n.d.), for example:

e The electro-pneumatic brake operates as the service brake while the air brake is retained
for emergency use

e The electro-pneumatic brake does not compromise the fail-safe or "vital" features of the
air brake

e The air brake normally remains in the "release" position, even while the electro-
pneumatic brake is in "application" and the same brake cylinders are used.

e FElectro-pneumatic brakes are invariably used on multiple unit passenger trains.

e FElectro-pneumatic brakes use a number of train wires to control the electrically operated

brake valves on each wagon.

e The train wires are connected to a brake "valve" or controller in the driver's cab.

Air - Pneumatic brake
brake - Electro-pneumatic brake

Braking Electric - Dynamic brake

— 5
mechanisms brake Regenerative brake

- Tread brake
Axle-mounted disc brake
Wheel-mounted disc brake

Mechanical
brake

—

Fig. 2-2. Braking mechanisms.
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The same can be said about electric and mechanic brakes. This work will not focus on braking
system details, the main point here is to explain that the required braking force is a result of a
combined efforts of multiple braking systems, with different dynamics that interact in a way
that is difficult to model efficiently. One of the main implications is that high level systems
(ATO and such) that embed control algorithms, have a poor knowledge of the braking effort

that is applied in real-time for a given reference braking force.

The conditions necessary to produce the motion of the train via the traction and brake systems
depend on the forces applied in the train and the adherence to tracks (the so-called rail-wheel

contact), which is explained later.

2.1.1. The mathematical train model

There are many models for the analysis of separate vehicles (i.e. locomotive and wagons) and

train dynamics. In general, those models can be categorized into three main groups, Fig. 2-3,

(Vijay 1984).

B : - Vertical/lateral dynamics
Vehicle - ¥
: - Lateral stability
dynamics .
- Curving

) ) Train - Longitudinal train action
; Traclk-tramd — e - Lateral stability
ynamies model 4 - Vertical stability

Freight - Freight impact
dynamics - Freight damage

Fig. 2-3 Track-train dynamics model (Vijay 1984).

The single-point train control model is the most commonly model applied for train operation
problems in the literature (Guzinski et al. 2009; Kaller and Allenbach 1995; Liu and
Golovitcher 2003; Vijay 1984; Yin et al. 2017). A train with multiple vehicles is considered as
single point mass object and its longitudinal motion can be approximated by a Newton equation.
Therefore, the dynamic of the train can be described by the following differential equations

(Guzinski et al. 2009; Kaller and Allenbach 1995; Liu and Golovitcher 2003; Vijay 1984):
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{m\'):bT (v)ur —by (v)uy —w(v)— g (p) @.1)
p=v

Where v is the velocity of the train (m/s), p is position of the train (m), b, (v) is the coefficient
of the braking force, u, is the relative braking force and b, (v) is the coefficient of the traction
force, u, is the relative traction force, g ( p) is the tangential force to the path or the force of

the declivity, w(v) is the resistance to motion, and m is the mass of the train (kg). As shown

in Fig. 2-4, the train dynamic along a railway slope of angle & depends on the traction, the

brake and the declivity forces, and also on the drag. Declivity force in practical cases is
considered as g( p) = gsin(@( p)), where 9( p) is the slope angle at distance p along the

railway line, and g is the gravity (Howlett, Milroy, and Pudney 1994; Tan et al. 2018;
Transport: Railways 2004; Vijay 1984).

Reaction of the track
Traction force

Brake force
and drag

{

Weight of the train

Fig. 2-4 Train dynamics

The drag or resistance to motion is assumed as a set of forces where the most important is the
friction force. This force is calculated as the sum of Stribeck, Coulomb, and viscous
components, Fig. 2-5. Even if the resistance to motion cannot be precisely measured by sensors,
solutions using run-down tests are possible. In (Rochard and Schmid 2000) a review of the
various methods applied to measurement and estimation of train resistance to motion is
presented and especially the run-down tests. In these tests, the resistance is estimated either by

the measurement of the deceleration versus time or by the measurement of the traction force
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necessary to maintain a constant velocity at various speeds, in order to cover the working speed
range. Of course, due to the experimental parameters (several speeds, different adherences) and
the required conditions, these procedures are costly. Consequently, the railway transportation
industry developed empirical equations that could be used to estimate the resistance to motion
of a generic train. The equation is a polynomial approximation by a quadratic function that is
well known, called the Davis equation. Davis equation has been applied and validated in many
real time experiments, see for example (Kaller and Allenbach 1995; Rochard and Schmid 2000;
Transport: Railways 2004; Douglas et al. 2017; Q. Wu, Spiryagin, and Cole 2016). The form

of the equation is:

w(v)= Wy + Wy +wyv’ (2.2)

where w, (N), w, (Ns/ m) and w, (st/ mz) are real coefficients depending on train and

track characteristics. Equation (2.2) shows that the most impact at lower speed is due to

coefficients w, and w,, representing the rolling resistance to mechanical friction, while w,

has the major role at high speed, that is related to aerodynamic resistance. Based on the review

in (Rochard and Schmid 2000), the French national railways company, SNCF (Société
Nationale des Chemins de Fer francais), evaluates the terms w,, w,v and W2v2 as function of

the rolling stock characteristics, using the following expressions:

W, :105(% [102 \/EB 2.3)
m,

wy=(3.6x107 )mv, (2.4)

Where m, is the total train mass (kg), m, is the mass per axle (kg) and & is a dimensionless

parameter with values depending on the rolling stock type, e.g. for SNCF vehicles it is
0.9<@ <1.5, the lower value being applicable to modern rolling stock, the higher value to

nonhomogeneous freight trains. The last term is:

wyv? =0.1296( Kk, + Kk, L) v (2.5)
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Where the first term represents the aerodynamic resistance existing at the front and rear of the

train and the second term is related to the aerodynamics resistance generated along the surface,

Kl (mz), i, 1s the partial perimeter (m) of the rolling stock, [ is the train length (m), «

4
(N/ mz) is a parameter depending on the shape of the train, front and rear, and can vary from
20x10™* for conventional rolling stock to 9x10™* for TGV (French High Speed Train), «, is
the front surface cross-sectional area (mz), commonly around 10 m*> and K, (N/ mz) is a

parameter depending on the condition of the surface, «,/, and can vary from 30x10°° for

conventional rolling stock to 20x107° for TGV.

Friction force
* Stribeck

: Viscous
| firiction
Coulomb |
[friction

»

0 : Velocity

Fig. 2-5 Friction forces.
Wheel rail contact

To study the motion of the train we need to consider the wheel-track adhesion. Fig. 2-6 shows
the forces that are applied to the wheel and to the track. We will discuss the adhesion force F

a

, since the other forces were defined previously.

The adhesion force F, satisfies the following expression (Iwnicki 2006; Jos€ A. Lozano 2012;

Kaller and Allenbach 1995):

B!
Il

No&, (2.6)
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Where ¢ is the so-called adhesion coefficient and N is the vertical reaction of the track, which
balances the vertical forces. This adhesion coefficient depends on temperature, humidity, dirt,

speed, etc. A general expression for the approximation of J is

%

=—0 2.7
1+0.01v 2.7)

where 6§, is a real coefficient and velocity (v) is expressed in Km/h. Table. 2.1 shows typical

values of &, used in different regions.

Gravity
force
- Traction
Brake force .
orce
and drag
—l
Velocity
" P Reaction of Rail
Adhesion force the track

Fig. 2-6 Wheel rail contact.

A low adhesion between the wheel and the rail is an important issue for braking and traction.
Poor adhesion in braking is a safety issue as it can extend the stopping distances. During
traction, poor adhesion will interfere with acceleration of the locomotive, making it difficult to
reach the desired speed. Mechanically, low adhesion phenomena will cause wheel jamming
(when braking) and wheel skidding (when traction). Of course, this will also impact the onboard
speed and position measurements of the train, because the odometers are located on the wheels.

These phenomena and issues are explained in the next section.
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Table. 2.1. Adhesion coefficient values for d, (José A. Lozano 2012).

Adbhesion coefficient values for J,
Electric monophasic locomotive, multi-motor bogies 0.33
SNCF (France)

Electric monophasic locomotive, mono-motor bogies 0.35

Diesel locomotives 0.30

DB (Germany) Electric monophasic locomotives 0.33
Diesel locomotives 0.22-0.29

RENFE (Spain) Classic electric locomotives 0.27

Modern electric locomotives 0.31

USA SD75MAC diesel and electric locomotives 0.45

Therefore, under the previous assumptions, a nonlinear continuous-time state space

representation of the train system can be written as:

{x(zM(x(r))x(z)—BB (6(0))1ts 1)+ B, (x(0) s ()G (1)
y(t) = Cx(t)

with x(¢)=[x (1) x, (t)]T the state vector, x,(¢)=v(r) the train speed and x,(t)=p(t) its

(2.8)

1 0

. By :{bg(xl (f))}, B, :{bT (% (t))] G(x(t)){_wo ~¢(nl ))} and C=[10].

0 0 0

position and y (t) is the output of the system. The matrices are: A(x(t)) = {_(Wl e (t)) O}

The nonlinear system (2.8) is the basic model considered in this work for continuous time.
When a representation in discrete time will be used, it is obtained using the classical Euler

transformation (Kowalczuk 1993):

x(t)~ , (2.9)

where k e R" is the sampled instant from the sensor, and A, is the sampling period. Therefore,

a discrete-time nonlinear train system is:
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x(k+1)=(A(x(k))A, +1)x(k)=A By, (k)+A By (k) +AG(x(k))
y(k)=Cx(k)

Next section is interested in the measurements available to fill in the models.

(2.10)

2.1.2. Sensors and faults

This work focuses mainly on the braking part of the drive, therefore, two kind of measurements
are necessary: speed of the train and position. The speed sensor is embedded on the train and to
get reliable information of its position, the railway track is equipped of several fixed sensors
that act as markers and are usually called beacons. As shows Fig.2-7, the velocity sensor is
installed on a wheel of the train. This speed sensor uses a target wheel also called phonic wheel.
The sensor measures the rotation speed of the wheel by counting the teeth of the phonic wheel.
The resolution of the measurement depends on the number of teeth on the wheel; the higher the
number of teeth, the better the resolution is. Many technologies are used, mechanical, optical
or magnetic. For further details, the reader can refer to technical documentation (Incremental
encoders - Lenord+Bauer n.d.; Speed sensors - Lenord+Bauer n.d.; Saab, Nasr, and Badr

2002).

Velocity sensor

! 1

! 1

I I

I = |

| ‘ \i o ae Leriod :

A ) i

/’: Phonique B] § |
o (@2 el
X, | Time [
I

- o = m wm wm w

—_—
Position sensor

Fig.2-7. The structure of the train measurement system.

The measured velocity is obtained using wheel peripheral speed v = wr, Where T is the wheel

2r ¢, —c
radius and o is the wheel angular speed, that can be calculated as @ = F X~ A =

, where N
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is the number of impulses per revolution, ¢, is the current sample, ¢, , is the previous sample
and A, is the sampling period (Ridolfi et al. 2011). The train position can be estimated with the

odometer sensor, but it needs also periodically a precise and reliable positioning, in order to be
able to readjust the estimation and avoid excessive bias. A classical solution is to use markers
set in the rail also commonly called beacons (Sandidzadeh and Khodadadi 2011; Y. W. Zhou
2012). These beacons are also commonly used for air and sea navigations (Sandidzadeh and
Khodadadi 2011; Y. W. Zhou 2012). These sensors are fixed point devices, capable to transmit
and receive radio signals. When the train passes over beacons, it transfers data stored inside of
the beacon via data links. The data can include different information: line topography, speed
restriction, distance to the next station, and beacon position. The last one corresponds to a time-
to-time precise train position on the rail line that can be seen as a discrete reliable reference
used to reinforce odometer-based real time estimations. Basically, there are two kinds of
beacons, passive and active (The Railway Technical Website n.d.): the passive is waiting to be
activated by a low frequency signal and receives its energy from a train passing over to send
information; the active is powered from the railway line supply and sends continuously
information to passing trains. Nevertheless, even if beacons allow precise train positioning, it
can be very costly to equip all the tracks and a compromise has to be found between number of
beacons (precision of the train position) and distance between two beacons (cost). Some
research works deal with this topic : for example, in (Sandidzadeh and Khodadadi 2011), a
solution for optimization of beacons placement in a railway track using genetic algorithm and

Kalman filter was proposed .
What are the jamming and the skidding faults?

The jamming and skidding faults are phenomena that may occur depending on the train control
and adherence conditions between the wheel and the track. In traction mode skidding can
appear; in braking phase jamming can occur. Fig. 2-8 shows the skidding and jamming
behaviors in detail (green arrows indicate the wheel rotation, the upper red arrows the
movement of the train). The jamming case occurs when the brake is applied and it locks the
wheel (Fig. 2-8 upper part positions 2, 4 and 5), so the wheel is sliding on the track. This
happens because the braking torque is more important than adhesion torque. Similarly, skidding
happens when the traction torque is more important than adhesion torque: the wheel will spin

23



but without moving the vehicle (Fig. 2-8 lower part positions 2, 4 and 5). In real-world
conditions, these faults can occur depending on rail line conditions and any changes in
conditions of adherence, i.e. for example weather conditions (rain, snow...). Another important
phase where the wheel jamming occurs is during “hard” braking such as emergency braking.
In this case also, the braking torque is bigger than the traction torque generated, due to adhesive
force, and it results in sliding. The skidding and jamming phenomena have been studied in
several articles: (Allotta et al. 2001; Allotta, Colla, and Malvezzi 2002; V. Colla et al. 2003;
Valentina Colla et al. 2003; Garcia-Rivera, Sanz, and Perez-Rodriguez 1997; Malvezzi et al.
n.d.; Saab, Nasr, and Badr 2002; Watanabe et al. 1997). These phenomena will damage both
the wheel by creating flat spots and wearing the track. Of course, damaging wheel or rail
surfaces directly impacts on maintenance costs, especially if it induces the replacement of the
material (Makhortova and Vivdenko 2012). Excepted these extreme effects, the main issue of
these jamming and skidding faults is that they impact directly on the measurements; thus on the
estimation of both position and speed; since the sensors are based on quantifying the wheel
rotation.
The jamming fault

Velocity
sensor
.

1 | 1
Fault | 1 Fault 1 Fault .
L ! ! Position
sensor

1
Fault : : Fault : Fault
1

Fig. 2-8. The physical effects of the skidding and the jamming faults.
How is the sensor affected by the fault?

The effect of the wheel jamming and the wheel skidding is that the measurement from the sensor
will be impacted by a bias: measured position lower than real position for the jamming case,
and measured position bigger than real position for the skidding case. As result, we lose the

track of the real position of the train until the next position beacon. The position error increases
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proportionally with the fault duration. To exhibit the general problem, consider Fig. 2-9 and
Fig. 2-10 that show real-time experiments. In these experiments, we do have the fault free
velocity measurement (m/s) using a radar-base speed sensor (solid black line), whereas this
measurement is not available in principle. Of course, it is used in order to validate properly the
estimation results. The estimations, corresponding to the faulty signal, are based on the
odometer, which is the available sensor (red dashed line). Fig. 2-10 shows the velocity
difference due to jamming, i.e. when the wheel stops rotating while the train is moving, the
odometer loses a percentage of the real velocity that depends on the wheel jamming duration.
Fig. 2-9 shows the influence of the faulty measurement on the position estimation. The vertical
lines at 90s, 98s and 107s represent positioning using the beacons and therefore the real position
at these moments. The jamming, for this trial, is responsible of a measurement error of 5 meters

for 200 meters spaced beacons (see zoomed part of Fig. 2-9).
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Fig. 2-9. The position estimation with wheel jamming (in meters).
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Fig. 2-10. The velocity behavior with wheel jamming.

Following the same idea, the skidding effect is presented Fig. 2-11 and Fig. 2-12; black line is

the fault free signal, the red dashed is the faulty one and the blue vertical lines indicate the

instants of train passing over the beacons. Fig. 2-11 shows the positive bias produced on the

position with a measured velocity bigger than the real one, as shown in Fig. 2-12. For this trial

the skidding represent an error around 15 meters (zoomed part in Fig. 2-11).
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Fig. 2-11. The position estimation with wheel skidding (in meters).

500

400 ¢

300 ¢

——Real

—

————— Measure
Beacon |/

70 75 80 85
Time (s)

26



——Real

18T

————— Measure| |

Beacon |.

— |

w16 “

"-\-\._\_:_H I
g
—
—
-
3
i

= 127

60 65 70 75 80 85
Time (s)

Fig. 2-12. The velocity behavior with wheel skidding.

To understand more precisely the effect on the sensor, Fig.2-13 shows the braking phase for
both the fault free case (signal from sensor named s, ) and for the faulty case (signal from sensor
named s,). From s, the pulses coming from the fault free case are decreasing every period
ending with a correct velocity calculation v,. For the faulty case, when the jamming occurs

(Fig.2-13 4 curve), there are less pulses than expected from sensor s,; that produces a false

velocity calculation v, .

o L
o
0 T T R O
|l f
(0 t

Fig.2-13 Sensor behavior with and without jamming fault.
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The same effect is presented for the skidding phase, Fig.2-14. Sensor s pulses are increasing
every period, producing a correct velocity calculation v,. Whereas, when the fault occurs, the

number of pulses measured by s, is greater than the real value during the fault, and produces a

false velocity calculation v,.
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Fig.2-14 Sensor behavior with and without skidding fault.

2.1.3. Automatic Train Control (ATC)

The safe operation of the train during a travel is the goal to achieve through automatization.
Some improvements have been obtained helping the train driver via the automatic train
operation (ATO). The ATO system working together with the Automatic Train Protection
(ATP) and Automatic Train Supervision (ATS) systems help the driver to comply with the
speed restrictions, following a desired speed trajectory, and to stop the train accurately. Also,
the Automatic Train Stop Control (ATSC) system helps the driver to stop the train accurately
and timely at the station. All these systems together form a package called Automatic Train

Control (ATC), Fig.2-15 (Dong et al. 2010).
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Fig.2-15. Diagram of the automatic train control system with its subsystems.

In order to understand subsystems interaction, let’s consider the functions in detail (Allan and

Arias 2008; The Railway Technical Website n.d.; Yin et al. 2017):

Automatic Train Protection (ATP): Safety level system, it guarantees mainly the safe
stopping distance to avoid collision with the train ahead. It also insures safety limitation for
speed; if a speed overrun is detected, the ATP will issue a braking (or emergency braking)

order.

Automatic Train Supervision (ATS): Supervision level system that insures compliance with
the expected schedule and traffic patterns. Depending on the trains, the companies and the
regulations, ATS is used for: supervision of train status, schedule creation and changes, routing

selection, automatic system monitoring and statistics...

Automatic Train Operation (ATO): The system that assists the driver to operate the train
efficiently and safely. The system deals with speed control, comfort issues (smooth acceleration
and braking) and assisted train stopping. A highest level includes energy saving-based driving

assistance strategies. ATO needs ATP and ATS to be operational.

Fig. 2-16 gives an example of configuration (Allan and Arias 2008; Dong et al. 2010; Yin et al.
2017) where the ATS gives train routing and scheduling adjustments to ATO according to the
train current state and schedule. ATO will gather the relevant information, such as train speed,

programmed stop and dwelling time, and computes braking or acceleration rates. Meanwhile,
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ATP keeps monitoring the real-time train running status, including speed limits compliance

(Fig. 2-17) and corrects the train operation commands or triggers emergency brake if necessary.

v vy
\[ATP | [AIO ¥ Emergency || Service
Brake

| [ATP | [ATO ] »[ATS |

o e i Ground Control

Fig. 2-16. Example of ATC structure with ATS, ATP and ATO relationships.

ATP limiting

Distance

Fig. 2-17. The speed restriction by ATO.

For speed control between 2 stations, two strategies are possible for the ATO system (Yin et al.
2017): first is manual driving supported by a driver advisory system (DAS); second is a semi-
automated mode or a fully-automated driving mode. For train stopping, ATO switches to the
train station-stopping mode and adjusts the train braking rates dynamically, based on speed of

the train and distance-to-stop.

When relying on automatic train stopping control (ATSC), the stopping accuracy could be

affected by many disturbances, as is mentioned in (D. Chen et al. 2013):
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e The braking system delay (BST) is due to a varying response time of the braking system
(sensor delays, actuators response, different sampling times...);

e The braking performance and velocity variance (BPV) is due to the effects of
temperature, humidity, abrasion, etc. on the efficiency of the braking system;

e The basic resistance change (BRCs) includes all resistance to motion effects, i.e.

bearing, rolling, slip and air resistances.

In this work, dealing with Basic Resistance Change (BRC) is the principal issue, but the Braking
System Delay (BST) will be also considered.

How the jamming and skidding faults are dealt with?

In order to reduce the impact of the jamming and skidding fault, the so-called wheel slide
protection system (WSP) is used, that is analogous to the anti-lock brake systems (ABS) for
cars. The WSP system adjusts the controller-issued braking torque using the dump valves, based
on speed sensor readings. Each brake cylinder is filled with air or vented in order to increase
or decrease the braking torque, mitigating the jamming and skidding problems when those are
detected (Barna 2011). Of course, no adjustment is made in the fault free case. Following the
same idea, some practical solutions have been developed and patented (Callahan and
Christianson 1978; Hiscox 1976; Rath 1984; Sheppard 1969; Sutton 1977; Wood and Mazur
1990).

The WSP system is a low level system and is not meant to interact with ATO level systems.
Considering that the ATO do not know actions made by the WSP, and relies solely on
measurements, different approaches were proposed to improve the robustness, one of them
being the multi-sensor architectures and data-fusion. For instance, the integration of odometers,
accelerometers, and gyroscopes to get a better position measurement is studied in (Ridolfi et al.
2011). Another multi-sensor approach making use of odometer, radar, accelerometer, and
beacons is proposed in (Y. W. Zhou 2012), where the data fusion is made via a Kalman filter

algorithm.

The main issues of a multisensory architecture are feasibility and costs, which makes the single

sensor approach, with appropriate post-processing, also popular. Using a single sensor
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(odometer), authors of (Saab, Nasr, and Badr 2002) used a Kalman filter to detect wheel slip
and/or slide using the variation of acceleration. When the fault is identified, the vehicle speed
during the fault interval is then adjusted with a linear interpolation. Different algorithms based
on neural networks, fuzzy logic, and crisp logic are proposed in (Allotta, Colla, and Malvezzi
2002; V. Colla et al. 2003; Valentina Colla et al. 2003; Garcia-Rivera, Sanz, and Perez-

Rodriguez 1997), at the price of a high computational cost.
2.2. Virtual sensors : Observers for disturbance estimation

Under the real-world conditions, sensor measurements are noisy and induce different levels of
uncertainty in the control loop as explained in previous sections. Also, a sensor will not be able
to isolate the effects of a disturbance on the system. A solution that can come at hand to solve
this problem is to design a disturbance observer-based control. Classically, for measurable
disturbance feedforward strategies apply that allows attenuating or eliminating the influence of
the disturbance on the system. For the case where the disturbance is not measured, whatever
the reason is, i.e. no available sensor, sensor not adapted due to cost, size, etc., a solution is to

use disturbance estimation via observers, under some rank conditions to be satisfied.

n
" + iy +
Reference—>@-—» Controller Ll > & System 2

Observer [«
m ‘

Fig. 2-18 Disturbance-observed-based control structure.

Consider the diagram Fig. 2-18 in a linear framework, i.e. with the model:

x(t)=Ax(t)+Bu(t)+Hn(r)

y(t)=Cx(t)+ No (1) 2.11)

where xeR” is the state vector, u(I)R"" , y(t) eR?, n(t) eR", and O'(t) eR"™ are

respectively the control input, the measurement output, the external disturbance, and the

32



measurement noise. A€ R"™, BeR"™, CeR”", HeR"™ and N € R”" are real matrices.

In the case without disturbance and noise (7=0 and o =0), classical tools can be used to

design the controller for the system (2.11) to follow the reference signal and guarantee

performances (decay rate, D-stability, H,, H_ attenuation...). When dealing with unmeasured
disturbances and/or noise (70 or o #0), the solution adopted throughout this work is to

estimate the disturbance 77 by a signal 7 while trying to minimize the error 77 . A lot of work

treats this problem using the so-called family of Unknown Input Observer (UIO) (Darouach,

Zasadzinski, and Xu 1994) where the observer takes the form:

{Z(I) = Nz(t)+Gu (t)+Ly(t)
fc(t) = z(t)—My(t)

Where the matrices N, G, L and M are of appropriate dimension. Rank conditions such as

(2.12)

a solution exists are given by rank (CH ) = rank (H ) . Extension for quasi-LPV has also been

done in (Marx, Koenig, and Ragot 2007). Another family under UIO that do not decouple the
disturbance is the so-called PI-observer family (C. Johnson 1968, 1970; J. Chen, Patton, and
Zhang 1996) and has been adopted in our work. This technique is well-known and has been
successfully applied to many problems; for example, fouling detection in a heat exchanger
(Delrot et al. 2012; Lendek et al. 2010), or internal torques to explain sitting control of people
living with a spinal cord injury (Blandeau et al. 2018a). The application of this technique to
quasi-LPV (or so-called Takagi-Sugeno models) can be found in (Lendek et al. 2010). One of
the benefits of UIO is the estimation of exogenous perturbations, that can be efficiently taken
into account with appropriate robust control techniques (Faieghi, Jalali, and Mashhadi 2014;

Gao, Liu, and Chen 2016).
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2.2.1 Unknown Input Observer (UIO) — PI-observer form
In practice, this class of observer is relevant if the disturbance has the property to be captured
by a polynomial-like input, i.e. it exists p €N such that a® (t) =0, where p is the time
derivative order (Delrot et al. 2012; Lendek et al. 2010). Therefore, we denote:

a()
(0=

: , (2.13)
PGy (t)

and create an extended vector of appropriate dimension:

%(g={x0)}, (2.14)

For example, applying the procedure to the linear system (2.11) with d (t) = n(t) and without

sensor noise (0 = 0) , (2.11) can be rewritten as:

x (1)=A t)+Bul(t
{xx )= A )+ B (1) s
Y, (t) =C,x, (t)
Where
A H 0 0]
0 0 I 0 0
A = 0 0f,B,=|.|.and C,=[C 0O - 0]. (2.16)
: I '
0
10 0 0]
Therefore, the UIO from (2.15) (PI-observer form) is chosen as:
x (1)=Ax (t)+Bu(t)+L t)—y (1
{xx )= AL+ B0} L{s.()-5.00) o1
Yy, (t) =C,x, (t)

with X, (t) being the estimated vector, 3, (t) the observer output, and L the observer gain

matrix to derive. Defining as observer error e(t) =X, (l‘) - X, (t) , the state dynamic error writes
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€= (Ae —LCe)e. Usual tools to get the gain L apply; for example pole placement, quadratic
Lyapunov approach, i.e. considering V(e)zeTPe with P=P" >0(Duan and Yu 2013),

introducing performances such as decay rate, H_ attenuation if o (t) #0, etc.

2.2.2 Continuous-discrete time observer
As previously shown on the train signals, the measurements coming from the beacons, or the
speed measurements available for the ATO correspond to discrete-time measurements with a
time-varying sampling. Thus, taking into account this measurements makes the model belong
to the class of continuous-discrete time models, i.e. the state is continuous and the measurement

is discrete, as for example:

(2.18)

{ %(t) = Ax(t)+Bu(r)
y(tk) = Cx(tk)
Where the output is measured at each 7,, k€ N" instant, with 0<7,<...<t, <f,,, <... and

lim#, =0. We make the assumption that there is a maximum sampling interval 7,,
k—>

(0<t,, —t, <7 <+00).
Therefore, the goal of the observer will be to reconstruct the continuous state, knowing only the
discrete-time measurements at times 7, k € N". Several observer designs are possible, for

example, we can consider:

{fc(t)_Ax(t)+3u(t)+L(y(tk)- 3 (1))
y(1)=Cx(r)

Where fc(t) is the estimated vector, L is the observer gain matrix, and f)(t) is the observer

(2.19)

output. Defining e(t)zx(t)—fc(t) as the state error, its dynamic between two samples

te [tk , tk+1[ writes:

é(t.t,)=Ae(t)-LC(x(¢)-x(1,))=(A-LC)e(t)-LC(%(r)-x(1,)).  (2.20)
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Therefore, invoking Input-to-State like properties (ISS) and/or Lipchitz conditions, we can
prove that the convergence of the error in a ball containing the origin is possible, for a ball

which radius has to be defined and will depend on the maximum sampling time interval z,, .

In the literature, an approach using a continuous-time observer associated with a predictor, i.e.
giving the prediction between two samples, is proposed in (Nadri, Hammouri, and Astorga
2004; Nadri, Hammouri, and Grajales 2013) and when the measurement is available, the
predictor is updated. A continuous-discrete time observer for a multivariable nonlinear system
is proposed in (M. Farza et al. 2014a; Mondher Farza, M’Saad, and Busawon 2015), where the
convergence analysis provides an upper bound of the sampling as well as the rate of the
observation error exponential convergence. A robust continuous-discrete time observer for
internal disturbances in an electro-hydraulic actuator system is proposed in (S. A. Ali et al.
2016), where the principal characteristic is the use of an inter-sample output predictor to
increase the acquisition frequency of the piston position sensor without affecting the

convergence per formance.

2.3. Fault detection and diagnosis

What is considered a fault? A usual definition is: “a fault is something that changes the behavior
of a system such that the system does no longer satisfy its purpose” (Blanke et al. 2006). Since
system representation describes nominal (fault-free) system behavior, faults will cause a
divergence between fault-free system observer trajectories and real system state and output
trajectories. The analysis of the discrepancy between estimations and measurements using the
so-called model-based or model-free techniques is known under the name of Fault Detection
and Diagnosis (FDD), or Fault Detection Isolation and Estimation (FDIE or FDI) (Gao, Cecati,
and Ding 2015).

Generally, a fault is classified as sensor fault ( ﬁ), actuator fault ( fa), and plant or

component/parameter fault ( fc). Therefore, we can introduce them into the state space

representation of a model; for example, if we consider the system (2.11) with the different types

of fault, the expression becomes
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{x(;)) =(A+AA)x(r)+(B+AB)u(t)+B,f, (t)+B.f. (t)+ Hn () 221)
(1) =

(1)=(C+AC)x(1)+No(1)+C.,f, (1)
where B,, B_,and C_ are known constant matrices of appropriate size, and AA, AB, and AC

are unknown parameter matrices. Faults, disturbances and model uncertainties will alter the
plant behaviour. In order to quantify this alteration, we follow the approach from (Blanke et al.
2006) for the system (2.21): faults are usually represented as additional external signals or as
parameter deviations. In the first case, the faults are called additive faults, in the second case,
the faults are called multiplicative faults because the system parameters depending on the fault
size are multiplied with the input or system state. Moreover, faults have to be detected and
removed by corrective actions, since a fault can lead to a system failure, whereas disturbances
and uncertainties will not harm the system directly, and are only attenuated, compensated or

decoupled from the control loop by a filter or a robust design ( H, attenuation, decoupling

observer...) (Blanke et al. 2006).

The fault diagnosis approach includes fault detection (FD), fault isolation (FI), and fault
estimation. The fault detection aims to determine the moment when the fault occurs, the fault
isolation aims to identify the fault type and location and the fault estimation aims to determine
the severity of the fault (amplitude or duration). Based on the information obtained from the
fault diagnosis, a supervision system can take fault-tolerant actions to make sure that the
objectives are fulfilled even with faults or to reconfigure the objectives with respect to the
current “health” of the system, and relies on actuator complete or partial redundancy. The whole

approach is called fault-tolerant control Fig. 2-19 (Gao, Cecati, and Ding 2015).

e . Y N
oy —t == e e R
-0 u: > Actuator —*{ Process Sensor [T
A = i
: System ; |

» Fault Diagnosis |«
7 i

1 Supervision system [«

i
_____ L o i s i i S s
1
i
1
i
i
i

A 4
Controller

Fig. 2-19. The fault tolerant control scheme (Gao, Cecati, and Ding 2015).
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The fault diagnosis methods can be categorized as:

- Model-based methods.
- Signal-based methods.
- Knowledge-based methods.

- Combined methods.

In this work, the model-based method is preferred, because a model is available and as we are
working also on security issues (braking is one of them), some guarantees have to be settled.
For more details about the other methods, the reader can refer to (Blanke et al. 2006; Cecati
2015; Gao, Cecati, and Ding 2015; Gao, Ding, and Cecati 2015; Isermann 2006; J. Zhang,
Swain, and Nguang 2016). The model-based methods can be categorized depending on the type

of the model used: deterministic or stochastic, time-based, event-based or hybrid, etc.

> Observer -
‘ Residual for FD .y

A 4

Observers bank <

Residual set for FI

v

A

Advanced observers

l

Fault estimation/reconstruction

Fig. 2-20. The model-based fault diagnosis scheme (Gao, Cecati, and Ding 2015).

Deterministic fault diagnosis applies in our case and we propose to solve model-based fault
diagnosis using observers. Fig. 2-20 presents a general scheme including several observers with
fault detection, fault isolation and fault identification (Gao, Cecati, and Ding 2015). Note that

the “residual” refers to a signal that is sensitive to the fault of interest, or to a set of signals
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related to different faults. An observer-based fault detection for system (2.21), has the following

form

=

(t)=A%(t)+Bu(t)+L,(y(r)- (1))

y(1)=Cx(r) (2.22)
r(1)=L.(()=5())

Where )%(t) is the estimated state vector, L, is the observer gain matrix, &(t) is the observer

<

output, r(t) is the residual, and L is the residual gain. Defining the state error e = x—X, its

dynamic writes:

é(t)=(A-L,C)e(t)+B,f,(t)+B.f.(t)+Hn(t)+AAx(r)+ABu(r)
~L,(AC+No(1)+C.,f.(1)) (2.23)
r(t)=L, (Ce(t)+ No(t)+C,f,(t)+ACx(t))
From (2.23), we can see that the error dynamics appears to be sensitive to disturbances, to
unknown parameters matrices, and to faults, and the same applies to the residual expression as
well. Therefore, another important point is to be able to design conditions to ensure robustness

of the residual to everything but the faults. In view of this, H_ attenuation can be added for

fault detection observer to filter faults in uncertain dynamical systems (Edelmayer, Bokor, and

Keviczky 1994; Zhong et al. 2003), mixed with H_ index to improve fault sensitivity (J. L.
Wang, Yang, and Liu 2007; Z. Wang et al. 2017; M. Zhou et al. 2017).

Following (J. L. Wang, Yang, and Liu 2007; M. Zhou et al. 2017), the synthesis of observer
(2.22)is called H /H,, if the following conditions hold:

a) The state estimation error from (2.23) is asymptotically stable.

b) The residual r(t) from (2.23) is robust to the disturbances and measurement noise,

n(t) and O'(t), respectively. Therefore, if the signals belong to L, space, an H,

i

attenuation can be proposed:

()], <7

(2.24)

2
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¢) The residual r(t) from (2.23) is sensitive to the faults f, (t) and f, (Z) Therefore, if

the signals belong to L, space, H_index approach can be proposed:

B4

Several solutions were proposed in the literature: for deterministic models, the most studied are

) (2.25)

2

urmuzw\

sensor faults and actuator faults. For linear systems, to cite some of them, results can be found
with actuator fault detection in (Q. Zhang 2002), for both sensor and actuator faults in (J. L.
Wang, Yang, and Liu 2007), and using an UI observer for actuator fault estimation under

disturbance for a wind turbine in (Witczak et al. 2015).

Extensions of the works on linear models to LPV and/or Takagi-Sugeno (T-S) models are also
common. We are interested in the so-called LMI-based fault diagnosis family, i.e. the
methodology ends up with LMI constraints problems. For T-S models approaches,
simultaneous state and process faults estimation for uncertain dynamics system can be found in
(Pazera and Witczak 2016); robust techniques for sensor and actuator fault detection in (Chibani
et al. 2017; Jee, Lee, and Joo 2012; Li et al. 2018). For linear parameter varying (LPV) system
results using a bank of observers for sensor fault detection and isolation are presented in
(Theilliol and Aberkane 2011), and actuator fault detection using a generalized output for LPV
in (M. Zhou et al. 2017). Some works focus on residual evaluation, and the determination of a

static or dynamic threshold detection, like in (Z. Wang et al. 2017).

Jamming and the skidding faults modelling for FDD.

To represent the faults in the mathematical model of train proposed in the previous section, we
have different options to consider: actuator, system or sensor faults. As we can see from the
previous sections, the principal difference of the jamming and the skidding faults is the effect
on measured velocity: positive bias for skidding and negative bias for jamming. Moreover, the
jamming fault occurs only during the braking phase (when u, >0 and u, =0), whereas the

skidding occurs during the traction phase (when u, =0and u, >0). We consider that when

fault happens, the wheel cannot transmit traction and braking forces anymore. Different
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approaches to represent the faults and to complete the model of the train system (2.8) are

presented below.

Case 1: hybrid system with fault induced switches: the system without fault is:

[LO-AO0 1= 0-510) 026
y(1)=Cx(1)
and with fault occurrence, the system will be
{x(f) = A(x(1))x(1)+ G (x(1))+ Ff (1) (2.27)
y(1)=Cx(r)

Where F represents fault related coefficients and f (t) e[1,—1] is the fault occurrence, being

positive or negative based on the fault type.

Case 2: exogenous input: in this case, the complete model includes an extra term driven by

fault occurrence:

{x(t) = A(x())x(2)+ Byuy (1) = Buy (1) + G (x(2))+ F (u.1) £ (1)
y(t) = Cx(t)

with F(u)=—(Bu, (1) = Byu, (1)) +&@), £()eRand f(r)e[0,1]. When f()=1 the fault

(2.28)

is total, and the control is completely inhibited. The term &(¢) is related to the “residual”

resistive force and is practically unknown.

Remark 2-1: it is also possible to model the fault as a multiplicative term of the input, and in
this case, the fault is an actuator fault. Moreover, it is important to take into account that when
the fault occurs, for the cases 1 and 2, the train will practically lose control of the jammed or

the slipping wheel if the fault.

Case 3: Sensor fault: the model will include the fault term in the output

{x(t)=A(x(t))x(,)+BTuT ()= By (1) +G (1)) 229)
y(1)=Cx(t)+ Ff (1) |
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Where F e R™ is the fault matrix and f () e[-&,+¢&,] 5 f(1) >0 when skidding and
f () <0 in jamming situation. Coefficients & ,&, € R relate the severity of the fault, with

& <max (x()) and a finite &,.

Conclusion

The first section presented the description of the train system and its mathematical model, as
well as the analysis of the jamming and skidding faults. Their physical effects on the sensors
and their possible representation included in the mathematical have been shown. The principal

issues to be kept in mind are:

e The friction force coefficients cannot be precisely measured by a sensor or precisely
calculated in practice.

e The locomotive velocity is measured via a sensor on the wheel (odometer) and its position
via time-to-time sensors fixed in the railway line, called beacons.

e The main effect of wheel skidding/jamming is to corrupt the sensor measurement and,
therefore to lose the train position (between two beacons); the fault consists in an
overestimation in the case of skidding, an underestimation for jamming.

e The sampling measurements from the sensors have to be at sufficiently high frequency to
detect the fault occurrences accurately.

e The data transmission between the internal process of ATO and lower level devices (like
sensors) works at a different sampling time and it has to be considered in the controller

design.

Section 2.2 summarized the disturbance-observed-based control approach. This methodology
allows the attenuation or the decoupling of the influence of disturbance with respect to the
system. We recalled the unknown input observer (UIO) technique and especially the well-

known Pl-observer form.

Last part, section 2.3, presented fault detection and diagnosis techniques. Based on the behavior
of the jamming and skidding faults, we propose models to categorize them as a sensor or

actuator faults. The basis of the proposed approaches in this thesis is the application of model-
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based methods using an UIO in the form of a PI-observer, coupled with robust approaches such

as H_ attenuation, and H_ for fault detection sensitivity.
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CHAPTER 3. Actuator and sensor fault detection with unknown

input observer-based approach

3.1. Introduction

This chapter proposes different approaches for train speed and position estimation that are
resilient to faults caused by wheel jamming or skidding. The proposed algorithms are meant to
be used in high level modules (ATC/ATO level), and will improve the accuracy of the ATSC
function, i.e. make the train stop at the expected position in the station. The proposed
approaches are based on two representations, with respect to fault modeling: we consider
actuator fault-based and sensor fault-based problem formulations. In the first case, we consider
that the fault will result in degraded control of the train speed during the “faulty” period. This
hypothesis is based on the supposition that degraded adherence conditions that impact the wheel
with the speed sensor (making the wheel jam or slip), will be more or less similar on the other
actuated wheels on the same cart, and to some extent to other carts as well. This hypothesis is
realistic for traction (acceleration) phase, i.e. for skidding faults, but less realistic for braking
(deceleration) phase and jamming faults. This is due to the fact that only the locomotive is
providing the traction effort, while the braking effort is provided by all vehicles. In the particular
scope of this study, we consider the train as a material point, and the experiments were made
on a single locomotive, which strengthens the proposed hypothesis. When dealing with a multi-
vehicle train model, this assumption is to be made on a per vehicle basis, and this is an expected

development of this PhD results in the future.

Returning to this chapter scope, we deal specifically with jamming faults: obviously train
stopping occurs after the braking phase, which is only impacted by jamming faults.
Nevertheless, the results are easily transposed for the skidding fault detection, since fault
models differs mostly by the sign of the fault signal, and of course, the driving scenario will be

different, which will change some assumptions.

For the first case (actuator fault formulation), we model the physical effects of the wheel

jamming by an “all-or-nothing” behavior that alternates randomly through fault duration. The
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severity of the fault will depend on the jam/no-jam ratio during the considered period. This
behavior can also be reproduced by a variable amplitude and continuous-time fault signal, but
we believe that this is less accurate. The second case, based on the sensor fault formulation,
considers that the fault will corrupt sensor measurements without direct impact on the control,
with a variable amplitude and a variable duration of the fault, which is more challenging than
the first case. In both cases, the fault detection filter is based on an unknown input observer in
continuous-time, where the unknown input includes mechanical and aerodynamic resistive to
motion forces, that are unmeasured and usually approximated by empirical equations (as

explained in section 2.1.1, along with perturbations and noise.

Based on the previous discussion, this chapter is divided in two sections, each section being
dedicated to a problem formulation, and the contributions are developed separately, along with
illustrations. This reflects the chronology of the work, and the evolution from actuator centered
to sensor centered representation of the fault that we believe to be more accurate considering
the available experimental data, and the possible implementations of this work in the short term,

having only access to acquisition modules without to inject controls in experiments.
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3.2. Active Fault Tolerant Control for accurate train stopping.

In this section, we propose a solution to deal with actuator faults under the assumption that the
control signals are available. The proposition is based on an integrated fault tolerant control
approach, based on perturbation estimation and compensation, and on a fault detection module.
If a fault is detected, then the controller will be switched into a “safe mode”, effectively
reducing the fault duration. Then the system will wait for fault disappearance and the return to
a fault free-situation, to switch the controller to the “nominal” mode. As a result, the fault

duration is minimized, and the train will improve its ability to stop at the expected position.

The proposed approach is developed for automatic train stop control (ATSC) module, and
includes an unknown input observer for disturbance estimation and for fault detection, and a
robust PI controller with an active fault tolerant mechanism. More specifically, we design the
control law based on a reference tracking objective (Miyatake and Ko 2010; Yang et al. 2014).
Using the estimation from the Ul-observer, we estimate the perturbation and compute a fault

sensitive residual, i.e. a fault indicator.

The fault detection relies on the comparison of the residual with a threshold, and will follow a

cyclic behavior, based on fault occurrence and system recovery:

e In the nominal (fault-free) case, the reference system matches the fault-free real system,
and the residual converges to zero.

e If a fault happens, the nominal reference systems will no longer match the reality, and
the residual diverges. When the residual will be higher than the threshold, then a fault
will be detected.

e Consequently, the reference system will then switch to a “faulty” reference system,
matching the real system, and the control will go into the “safe” configuration. The
residual will then converge to zero until the fault disappears, then increase again because
the “faulty” reference system will no longer match the real system which has recovered

from the fault.
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e  When the threshold is crossed again by the residual, the reference system switches back
to nominal, matching the reality, and the residual converges again. The cycle resumes

then with a new reference control and speed adjusted with respect to the fault duration.

The design procedure for observers and controllers, is expressed in terms of linear matrix
inequalities (LMI), which are efficiently solved using convex optimization techniques (Boyd et
al. 1994). This solution is tested only in simulation as control signals are not available from the

available real-time data collected during experiments.

3.2.1. Problem statement and methodology

Based on the train dynamic analysis in in section 2.1.1, we consider the following train motion
model (Guzinski et al. 2009; Kaller and Allenbach 1995; Liu and Golovitcher 2003; Vijay
1984)

v=-w(v)=b, (v)u, +b, (v)u, — g(p)
. (3.1)
p=v

where v is the velocity (m/s), p is the position of the vehicle (in meters), b, (v) is the braking

force coefficient, u, is the braking force, b, (v) is the traction force coefficient, u, is the

traction force, g(p) is the tangential force to the path (the force due to the declivity), and w(v)
is the resistance to motion. Some assumptions on the model are made prior to the design: as
stated in section 2.1.1, the resistance to motion can be approximated via a second order speed-

dependent polynomial w(v)=w,+wyv+w,’; we also consider the maximum braking and

traction forces via a single constant value b, such that « will be the unique control signal,
where u <0 and u >0 correspond to u, and u, respectively. The specific external force is
neglected in this study, because we are concerned with train stopping at parking stations, and
usually stations are on flat ground and on a straight path to maximize visibility and other safety-
based considerations. Therefore, the train model without fault is written in the following state

space model:

(3.2)

);c=A)_c+Bu+D(v)
y=Cx
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— T -W,
where X =[v p] is the state vector, A= L 0

b
}, B =L):| and C=[1 0] are constant

. d(v)| . ) o L
matrices, D(v) = with d (v) =—w, —w,Vv", is the part of the dynamic friction which is
0
not included in A, and Y is the output of the system.

In this section, the additive fault form is used for the controller design that corresponds, in
section 2.3, to the second case 2 where fault is considered as an exogenous input. Therefore,

the model with the fault included has the following form:

{j:A)_c+Bu+D(v)+F(u,l)f(f) (3.3)

y=Cx
Where F(u,t)=—Bu(t)+&(r), with £(r) being the residual resistive force. The fault
f(z) €[0.1] is jamming related only, and we consider that f () =0 for all traction phase, i.e.

for u > 0. Skidding faults are not considered for brevity, since in that case the model changes

slightly. As discussed before, when f (t) =1, then the fault is total and the control on the wheel

is lost. We consider that during the fault duration, f (r)will be varying randomly. For the

dynamic friction part d(v), neither it cannot be precisely measured by sensors, nor the
parameters w,, w, and w, are known precisely. Thus, its dynamic will be captured using the

unknown input observer technique. Another issue in (3.3), is when the fault occurs and the
system loses the ability to brake, thus not allowing dynamic friction compensation by the
control law. Therefore, we want to detect the fault occurrence as fast as possible, to trigger the

control action that will inhibit the fault.

3.2.1.1. Methodology

Considering that the principal part of the train model is estimated, an ideal system is used as a
reference system. The reference system will produce a speed reference trajectory to be followed
by the real train to ensure safety requirements. This architecture and behavior replicates the way
the ATP works (see section 2.1.3), monitoring that the speed remains in some safety interval
around a reference set point. The general structure of the integrated design is shown Fig. 3-1:

the Unknown Input Observer (UIO) in a PI form is designed to estimate the speed, the position
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and the dynamic friction. A controller is thus designed to track the reference with a friction

compensation using the unknown input estimation obtained from the UIO.

Perturbations m

L
, .| Unknown Input | = Residual
Train system » Obsshes » (FDI)
-
3
Reference | |  Controller
(ideal train) (FTO) <

Objectives:
- stopping time
- stopping position

Fig. 3-1 Controller and observer scheme.

To detect the jamming fault, a residual is computed based on the measurement velocity of the
train and the estimated velocity of the observer. This residual signal is filtered and used to detect
fault occurrence and recovery instants, via threshold triggering conditions. At the end, a fault

tolerant control (FTC) is obtained, integrating all the discussed modules.

3.2.1.2. Wheel jamming effect
In order to clarify our idea for the reader, we reproduce a similar figure as Fig. 2-10 of chapter

2 about the speed behavior with wheel jamming, left part of Fig. 3-2. The right part presents
the absolute error ‘v(t)—ﬁ(t)‘ between the real speed v(t) and the estimated one ﬁ(t) , and

we define the following variables:

e Ar. is the fault duration (red arrow);

Jjam

e Af, isthe delay on detection when the fault starts;

e Af, is the delay on detection when the fault ends.
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Fig. 3-2 gives one example, recalling that the sampling period is A, =0.2s, and as explained in

chapter 2, the fault can take place in “jam/no jam” periods ratio of this sampling period, i.e. a
20% fault means a jamming occurring during 40ms , a 40% fault corresponds to a jamming

during 80ms ...

T T T T

T T T
' —— Measure 0.02 7 : —— Residual
o Estimated 1 - = =Fault detection
Nt ---FD N Fault
—_ N 0.015
‘:‘-\ 24.5 / [jum ————— Fault .
\;E/ . : E - ’jum
£ : ! 7 001}
Q 1 1 é
= | 1A / N
é 24 “:/ ds h,\’zl«: —
<> et 0.005 | At
1 1
1 I
1 1
23.5 ! : : : ! : 0 : :
1 1.05 1.1 1.15 1.2 1.25 1 1.05 1.1 1.15
Time (s) Time (s)

Fig. 3-2. The jamming effect: on the speed (left), on the residual (right).

3.2.2. Contribution

3.2.2.1. Controller design

For the controller design, let us first introduce a reference model based on an ideal train system,
i.e. parameters perfectly known and no faults. We also set objectives for the final stopping
position and the recommended braking amplitude. The proposed reference system has the

following structure:
AL TOu (3.4)
y,=Cx,

where X = [v D, ]T is the state vector with the reference velocity v, and the reference

position p,, the matrices A", B and C are constants, u is an ideal control and y, is the
output. The notation * stands for ideal constant values. In ideal conditions, from (3.4) it is

possible to find the stopping position of the train, i.e. considering as a constant the input u :

v, (r)=(v(to)+b—{je‘wf""°) b (3.5)
W,

I Wi
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f, is the initial instant, the time when ATSC is activated and v(to) is the initial velocity at .

Now it is possible to get the final position and the final time from the previous expression:

wv(ty)+bu’

t, =—In| ——=—— [+1, 3.6
4 w, [W]v(tf)+bu] 0 (3-6)

Integrating (3.5) gives directly with p(to) is the initial position at f;:

p<r)=§[v<r0>+%j(l—e-wf“-'°>)—b:jf (1-1)+ p (1) 37

1

Jew;(mo) zv(t f)+b_'ﬁ and the final position being known, we
W]

Noting that [v(t0)+

bu
;
Wl

it )=vit,) pu
obtain from (3.7) P(ff): - ( ! )w* ( 0) - WL: (ff —to)‘l' P(fo) or equivalently:
1 1

~b'u’ (tf —to) =w (p(tf)—p(t0 ))+v(tf )—v(to) (3.8)

And finally:

b 1n(—wfv(t°)+b L) J= wi (p(1,)=p (1)) +(e,)=v(1) (3.9)

w, w]*v(tf)+b*u*

Of course, for the special case of stopping v(tf ) =0 and therefore (3.9) can be written as:

180 ) o))

W, u

%

Notice that there is always a solution to (3.10). Effectively, let us denote y=__""1_ < o and
b

a=-w ( p(t f)— p(1, ))2(), therefore finding a solution to (3.10) is equivalent to find a

solution to f (x) =0 with:

f(x)=ln(1—xv0)+x(v0+a) (3.11)
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Fig. 3-3: example of function f (x) =In (1 — xvo) + )c(v0 + 0()

With this notation the domain of definition of f(x) is xe }O,L[, and lirlnif(x)=—oo,

Vo ol
.

Yo

f(0)=0. An example of such a function is given Fig. 3-3. The derivative writes

f’(x):

xv, (v, +a)—a

which is null if x, =

—— . Notice that X, € 0,i , and that
xv, —1 v (a+v,)

Vo

f ( X, ) - _1n [ﬁ + 1] > 0. Therefore ,using the Rolle’s theorem, we know that (x) Crosses

Vo Vo

a 1
0 once and only once on the interval |0, i ; the solution will be such that X € |————,—
v, vy (0{ + vo) v,

. . . * Wl VO VO
and equivalently the solution satisfies: u € b X |-1-—,-1] .
a

Thus the procedure from (3.5) to (3.10) can give from any initial position (to, p(to),v(to )) the
constant control (to) to apply to reach the final position (z‘ ‘s p(z‘ ; )0) . Nevertheless, if any
disturbance arrives or a fault occurs, this ideal u (to) is no more true; and the larger the fault,

the bigger the error is. Therefore, u () must be recomputed after the faulty instants and the

procedure is:

Algorithm 3-1 to design the reference trajectory:
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Repeat
e Follow u (t . ) reference control, while monitoring fault occurrence.
e A fault is detected, fault tolerant action is made, and then the system has recovered.

e Afterrecovery at time f, , compute u (tk+1) solving the nonlinear equation (3.10) with

(to’p(tO)’V(tO)) :(l‘k,p(l‘k),v(tk ))

. . 1
e Recalculate the final time as: 7, = — ln[
"W

wﬁ(%)+waﬁhol+t
0

wfv (tf ) +bu ([k+l )

Until p(t f) is reached

Thus, system (3.4) produces a reference signal «" that will be piecewise constant, i.e.

u (t) =u (tk) when 7 € [tk - [, then produces a smooth reference trajectory y via (3.4) to

be followed by the train system (3.3). The controller then writes with a state p,(r)

corresponding to its integral part:

1

()= (1 (0 0) v, (0) L () 1))+
b () =¥(0) 5, (1)

where L, and L, are the controller gains to be designed. For the controller input, the error is

(3.12)

the speed difference e(t) = v(t) -V, (t) . Then, taking the assumption that W, = W1 , the dynamic
of this error writes
e(t)=-we(r)+b (u (t)—u*)+d(v(t))+F(u (t))f . (3.13)

Introducing the control law (3.12) in the previous expression without the fault, we obtain

HEa A s

- ~L, -L,

As W;k >0, it is easy to design a controller such that [
1 0

} is Hurwitz stable. Input

to State Stability (ISS) property is direct, as d (v) —d (v) is bounded. Moreover, without faults,
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the unknown input error d (v) —d (v) will converge towards 0 and reference tracking will be

ensured.

3.2.2.2. Observer design

As explained previously, for the estimation of the dynamic friction, we consider Unknown Input

Observer (UIO) in the PI form. Therefore, the train system (3.2) is extended, considering that a
polynomial approximation d (o) (v) ~(0 is enough to capture the dynamic of the friction.

Therefore, it can be rewritten as:

{);c, =AX +Bu (3.15)

Y, =Cx,

where X =[v d(v) d (v) - d"” (V)T is the extended state vector, A :[;W‘ (_I)f’} and
pxl Tp

t

B = {Ob } are constant matrices, and y is the output with C, = [1 0, p} . An UIO PI-observer
pxl

can be defined as:

=
Il

AX+Bu+ K(y, - y) a6

=D

=C

o

<>

where %:[& c}(v) j(v) j(”)(v)T is the estimation vector, 4 =4 and B =p are
constant matrices, K € R”*" is the observer gain, and 3 1is the output observer with ¢ =c,.
Therefore, in this ideal case, the time derivative of the error ¢, =X, — X is

¢,=(A,—-KC,)e,. (3.17)
And the convergence of the error is guaranteed lim, ,_ e, (Z) =0 if the gain K is designed such

that A — xc, is Hurwitz stable; pole placement, quadratic synthesis, with or without

additional performance criteria, any technique can come at hand.
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3.2.2.3. Fault detection

Since only one type of fault is considered, the wheel jamming, the isolation is not required and
the Fault Detection Isolation (FDI) module is reduced to FD functionality. Adding more faults,

such as skidding for example will require an isolation mechanism. Now, with the estimation of

the velocity from the observer ﬁ(t ) and the velocity measurement from the train system v(t) ,

the following residual r(t) is considered

, (3.18)

r(t) :‘v(t)—\?(t)

As usual, fault detection thresholds will be used to detect the fault occurrence and fault recovery

instants. Their tuning is done in such a way that discrepancy in measurements on a real system
with uncertainties would not trigger false detections, and will not miss the detection of any
fault. In order to reduce the measurement noise, a low pass filter is also added. The main idea
of the algorithm is presented Fig. 3-4, with two main parts, detection of a fault with a delay

Ar,, and detection of the end of a fault with a delay Af,, .

At

1

1

Jam »
Al

I

[ === Fault
I |—— FD
I

Residual

Time (s)

Fig. 3-4. Fault detection mechanism.
These detections need three thresholds named ¢; (non-faulty-to-faulty), ¢, (faulty-to-non-
faulty), and ¢, (faulty-to-faulty, for residual settling before new detection). The first one, when

r(t) > &, anon-faulty-to-faulty case is detected, inducing a delay in the detection: Af, . The
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second one, when r(t ) > &, a faulty-to-non-faulty case is detected inducing a delay Af,,. To
reduce the possible false alarms between each fault a faulty-to-faulty flag is used that is

activated if r(t) <&, . The conditionals of the algorithm are:

3

o If r(t)>¢, and flag=1 and FD=0 Then FD=1 and flag=0

o Ifr(r)<g

3

Then flag=1

o If r(t)>¢, and flag=1 and FD=1 Then FD=0 and flag=0

Of course, the choice of such thresholds €, 1=1,2,3 is a multi-constrained problem,

minimizing false alarms and missed detection and maximizing good detections. For real-time
applications, maximizing good detection consists in detecting the faults with unacceptable
effects and ignoring low amplitude faults. Indeed, with different magnitudes of the residual, in
our case, it is possible to infer the magnitude of the fault and to decide when it is convenient to

disable the brake control.

3.2.2.4. Fault tolerant mechanism

Considering that the compensation is not always possible to perform (because of the wheel
jamming), we need to disable the brake control on positive fault detection by releasing the

brake, since it will unjam the wheel mechanically. Therefore, the control is deactivated,

u (t) =0, as soon as a fault is detected. This action will release the wheel after a short delay,
stopping the fault with a time delay of Af #» reducing the fault duration to a maximum of

At. =At st At 1 Fig. 3-5. However, the control will not resume, and a new reference control

jam
will not be computed until the FD mechanism acknowledged full system recovery (the second

blue vertical line in Fig. 3-5)
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Fig. 3-5. Wheel release mechanism triggered by FTC action.

3.2.2.5. Convergence issues

In view of what has been explained, we can identify a cycle of four states, starting before fault
occurrence and ending with system’s recovery. Effectively, the system and the observer have

two modes, faulty and fault-free, therefore, there are four cases to study, with transitions

between cases as shown in the oriented graph of Fig. 3-6. For the vertices V;;, the first index

ij
i€ {O, 1} corresponds to the system, the second j € {0, 1} to the observer. “0 “ means fault-free,
and “1” means a fault and in this case u (t ) = O for the corresponding block (system or observer).

For example  , is the vertex with a fault on the system that is not detected by the observer; the

system will lose control of the wheel, but the observer still uses the reference control. The

arrows on the arcs indicate the possible paths.

Remember that the control «* is considered as piecewise constant, and will be recomputed

every time ;, such that both the observer and system are considered fault-free (see the algorithm

given after equation (3.10)). This will happen at the time of the transition between v and v,

01

as indicated Fig. 3-6. We also write the time spent in each vertex as 5tij.
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Fig. 3-6. The oriented graph of the fault occurrence and recovery for system and observer
states

A

Let us write for each vertex the observer error dynamic. From (3.16), X = AX+ K(y’ - y)

A

corresponds to the faulty case and ¥ = AX+Bu+ K(y, - y) to the non-faulty one. For the

system (3.15), X, = AX, is the faulty case. From these cases, we can infer how the error dynamic

writes for the 4 vertices:

v, and v, = 6, =(A,—KC,)e,, t e[ty 1, and 1€[t,,.1,,[ (3.19)
vo: €, =(A,—KC,)e,—Bu', t €[ty 1] (3.20)
vt €, =(A —KC,))e, +Bu , te[,.t,] (3.21)

The basic idea is that as each vertex of the graph is stable, as it is driven by the poles of

A, — KC, , thus the stability issue can be solved, whatever the transitions are. To simplify the

notations, we will denote 4 — kC, = A, . Let us begin with the constant input to reach the final

position being u (t) =u (t . ) , so that the error in y writes:

A‘ —
e, ()=e"""e (1,) (3.22)
Suppose an error occurring at time ¢, and of course, the observer will not be able to detect it

immediately and is activated with e, (too) = e&"(t""_t")eo (tk). A solution to the observation

error dynamic, (3.20), as u (t) =u (tk) is:
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M arBu’ (1) (3.23)

e (t) = eA"’(H‘”)eO (to )—J‘r

Too

And directly: e, (1) = e*”’("’“")eo (200 )+ (1 ) ) A}'Bu’ (t, ), from which it can be seen that

even if the system stays in ,, ~ we have: lime, (1) = A;'Bu’(z, ). The initial condition will be

t—w

e, (too) = eA"‘s’“Oeo (l‘ . ) ,with ¢ =¢, + 51, and (3.23) renders:

e{) ([) — eA{[(lffk)eo (tk ) +<1 _eA{.l(l‘ftno))ACfllBu* (l’k ) , te [too,tlo[ (3.24)
At time ¢, , when the residual is bigger than the threshold ¢ i then the detection holds true and

a transition to the vertex ,, occurs with sz, =¢,, —z,, - Its initial condition e, (tlo) from (3.24)

10

is: e, (1,,) =™ (1.)+ (1 — e )AC‘,'Bu* (z,). Thus, after time ¢, :

10 °

e, (t) _ eAl,(z—t;\)eO (tk ) + eAu(l—tlo) (l_eApz(tlo*loo) )AC—IIBM* (tk) R te I:tl()’tll[ (325)
When the fault disappears, the observer will remain in the “faulty” mode, therefore ,,, is

activated through (3.21), with the initial condition given for -, in (3.25) and with
Sty =1, —1,,- Then e, (1,,)=e™ 00 e (1)1 o (1—eA""5"“)AC_ZlBu* (7). Thus, after

time ¢, , similarly to (3.24), we will obtain:

e,(1)=e"""e, (1)~ (1=e™"") A Bu (1) 1 € 11100 (3.26)

Or equivalently;
e, (1) =™ e (1,)+ (eAff“*’m) —eM(m) _qy galon) ) A Bu (1), tE[tyty[  (327)
Finally, when the residual will detect that the system has recovered from the fault, the transition

to y,, ends the loop. Therefore, one cycle after we can write: e, (t) = eA"’(t_l‘“)eo (tm), t>1t, OI

e (t) _ eA(.,(rfrk)en (tk ) 4 (eA,[(l‘fflo) _pMiliin) _ A=)y ,Aa(-n) )A:[lBu* (tk) (3.28)

That can be rewritten as:

e, (I) _ eAc/(t—tk) |:eo (tk ) +(eArl(tk_[10) _eAcI(tk_t[J()) _eArz(tk—tol) + eAc/(fk—tn))AC—l]Bu* (tk ):| (3.29)
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Therefore, we can estimate a minimum time necessary to stay again in ,  that guarantees

6, (| <[l (1) Lt us mote (5, ) = (06 i) Ml A 40510

simplify the equation (3.29):

e,(t)=e"" (e, (t,)+ (1, )u’ (1,)) (3.30)

A, being a stable Hurwitz matrix, it exists constants g>0 and m>0 such that:

e, (tmin ) <le, (tk )”

Ay (t—
e ot (11

< e ™) (see section 4.3.2 for developments). Therefore

corresponds to:

< ﬂe_m(tmin 1)

eo (tmm )

e, (1) +o(t ) (1)<

e,(.)+o(r)u’ (1, )H
e, (1)

after a fault detection to ensure a decreasing error is:

e, (1) + ot ) (¢,
e, (tk )H

Now, if we consider the next fault, we can write a discrete-like model between the fault instants,

e, (4. (3.31)

. fin =1, .. . .
As m >0, we obtain em( ) > [ , and the minimum time to spend in

(3.32)

mi

toin Ztk+lln B
m

with ;_ the instant of the new fault:

e, (tk+1) _ eAL.,(6z00+§tm+5rl,+5t01)eo (l_k ) 4 (eAu(‘an*d’m) (1 . eAL_,étm ) . (1 _eAd&m )) AC_IIBM* (tk ) (333)

If; >

k+1 — tmin

we ensure a decreasing error for f € [tk . . [ . Notice also that if the fault detection

is perfect, i.e. &7, =&,

o, =0, then the estimation follows a simple stable exponential

e, (fk+1) = eA“’(5"“’+5t“)eo (tk) whatever is u*(tk). Since all times are finite, and combined with

decreasing exponentials and bounded input, then ISS property holds.

3.2.3. Simulations

This part just presents a preliminary study using a linear model in an ideal situation where the
control input is known. It allows both giving a step-by-step procedure and pointing out the

different issues that can occur, as well as showing that the proposed ideas are promising.
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3.2.3.1. Fault-free tests

In this case, we are considering that all the parameters are known and the fault does not appear

to test the part of the friction force estimated by the observer in ideal conditions. Therefore, the

parameters for the train system and the reference system are: W, = W0 = 0.01, w = Wl* = O.l,
W, = W; =0.001, »=p" =0.1. The ideal braking control that is injected to the reference model
is in this case " = —26.22, to brake from v(to) =30 (m/s), to v =0 (m/s)in 100(m), i.e.
from position p(l‘o) =0 (m), t, = 0s, to a final position p(t £ ) =100 (m), with an estimated
arrival  time [ I 7.62  (s). The initial conditions for the observer are
x(1,)=[30 -0.91 0.13]T, and the gain matrix obtained by pole placement for the observer
is K=[101.4 2650 3750]T , with the poles (—50,—50,—1.5). The time derivative order used
for the unknown input estimation is p=2. The gains obtained by pole placement for the
controller are 7, =1.4 and z, =0.5, with the poles (—1, —0.5),

After simulation, the resulting final position error is ‘ x(z f)— X f‘ =0.004 meters as shown Fig.

3-7. The estimation of d (V) in Fig. 3-8 is enough to obtain a smooth signal control, as it is

shown Fig. 3-9. Then, for this case, the train stops in time at the targeted position with an

acceptable error. Moreover, the FD block did not trigger any false fault detections. Fig. 3-10.
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Fig. 3-10 Residual r(t) without fault.

3.2.3.2. Faulty case and “classical” control (without compensation)

To show the effect of faulty situations, if not considered beforehand in the design of the control,

we consider the same problem as the fault-free case, with the same simulation parameters, but

including faults in the simulation. According to the previous notations, the fault duration is set

to At

jam

=200ms . Then, we trigger four faults at 1s, 1.6s, 3s and 4s, Fig. 3-11.
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Fig. 3-11 Fault occurrence and duration during the braking phase.

Keeping the same control without compensation d, i.e.:

1 .
u=b* (L1 (V_Vr)+L2pi)+” (3.34)

pi=v—v,
presents, of course, a wrong behavior. Fig. 3-13 shows the position of the train and a stopping
final position error of 0.12 meters. The first fault occurrence is shown Fig. 3-12. For illustration
only, we provide the residual behavior during the fault, but in the “classical” control case we

do not use any FD or FTC remediation of the fault’s effect.

" 100.2
0.02 —?csil(tiual |
_____ au 100.1 | ﬁ
0.015 , | =
'.E ’jum NP 100 - S
Z 001} £ 999f .
F= z
A —— Measure
0.005 1 99.8 1 - = =Reference
----- Estimated
997+ /0 e p(ts) =100 m|{
0 A . "
1 1.1 1.2 1.3 7.4 7.6
Time (s) Time (s)
Fig. 3-12 Residual behavior during a fault Fig. 3-13 Fault’s impact on the final

position using a classical controller.

63



3.2.3.3. Faulty case with Fault Tolerant Control

This simulation presents the application of the methodology. First of all, we apply the piecewise

constant reference u*(t):u* (tk) when te[tk,tkﬂ[, i.e. recomputed via the algorithm

presented previously, where the times ; correspond to the end of the detected jamming faults

numbered 1,.., k£ . Secondly, the control law (3.12) is applied to compensate for the disturbances

d(t) estimated using the UIO PI-observer. The fault detection block uses a filtered residual

r(t)= |v(t) —ﬁ(t)| with threshold values of &; =0.005, &, = 0.005, and & = 0.001, in order

to trigger the FTC mechanism and to inhibit the fault.

Results are presented in Table 3.1 using fault durations Af,, from 20%, i.e. At jam = 20ms to

Jjam >

100%. The second row presents the detection time delay’s average Af, . i.e. detection time

minus beginning of the fault (known as we are in simulation). The last row of the table

| o plt)-p)
represents the relative error of the final position €, =——————, assuming a train length of

train

L,y =100m . A comment must be made on the interpretation of the achieved improvement.
While a single jamming without FTC remediation might lead in a small inaccuracy in the final
position, in real conditions, they might be hundreds of random jamming during the braking
phase, and the errors will accumulate. The FTC action will be especially beneficial in inhibiting
the jamming as soon as possible, and consequently, in limiting its duration and its impact on
stopping position. This is why the relative improvement obtained by FTC will grow with

increased jamming duration, as shown in the table.

Taking the case shown in Fig. 3-11, with Af,, =200ms (100%) to be compared with the

“classical” control, we have a final position error of 0.05 meters in
Fig. 3-16. The reduction on the error is achieved by the control signal in

Fig. 3-15, where the fault tolerant mechanism acts adequately when the fault is detected by the

FD block, reducing the fault duration to At =150ms with At, =4ms,

Jjam

64



Fig. 3-14.

Fig. 3-17 shows the train system following the reference with i (tk) recomputed at the instants

I, -

Table 3.1. Train stopping accuracy for different fault durations At jam »

At (ms) 40 80 120 160 200
At, (s) 0.002 0.002 0.001 0.002 0.001
Using FTC: €4 (%) |5.7x107 |1.8x107" | 2.9x107™ | 3.3x107™* | 5.6x10™
Classical control: €5, (%)|1.7x107 | 1x107° | 3.5x107" | 4.2x107 | 1.2x107°
-3
Y — . : . b
I € ! |—— Residual 3 > —u(t)
s o /) - - -FD st ,f“f -------- u*(t;)
€ / ————— Fault -==FD
4t E “lotyy N e Fault
= =
'._é 3 {j:rm *E 15+ 1< =4
kA =} Duration of
= S : = 2 fault tolerant
A | 3 I : mechanism i e omputed
| ket : . 25+ b a3
: V‘N \"\.m.gw—' \/‘/ \L’\'\f‘«/\ 30[ 8 : |
() n 1 1 n n n
l 1.05 I.1 1.15 1.2 1.25 l 1.05 [.1 1.15 1.2 1.25
Time (s) Time (s)

Fig. 3-14 Fault detection behavior.

Fig. 3-15 FTC behavior during a fault.
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Fig. 3-17 velocity behavior.

This preliminary study showed that the proposed fault tolerant control with perturbation

compensation can be efficiently used to improve accuracy of train’s stopping when the braking

wheel jams. The jamming faults were represented as actuator faults. As stated in the beginning

of this section, the model taken into account (linear dynamic of the system, linear PI-observer,

straight flat path during deceleration) and the assumptions (control input known) made this case

as an “ideal” case, with the advantage to show the step-by-step procedure that was used to

achieve our goals.

The assumptions made in this part, will now be removed in order to get close to real-time train

operation. These assumptions were: knowledge of the effective braking control and accurate

approximation of friction parameters.
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3.3. Robust train position estimation under perturbation and sensor

faults

In this section, we represent the wheel jamming as a sensor fault, motivated by the strong effect
of the wheel jamming on speed measurements, which can lead to a temporary inaccessible
velocity data, and the problem that might occur for real trains: if the on-board estimated position
diverges significantly from the real position, an emergency brake might be issued by the ATP
system for safety considerations. Indeed, if the estimated position is corrupted for some reason,
it might indicate a malfunction in the train electronics, which can lead to the inability to stop
the train in time at the right place. Then it is safer to stop the train immediately to investigate
the malfunction. However, if the discrepancy between estimation and real positions is due bad
wheel-rail contact that causes wheel’s jamming, it is not a sensor malfunction but an
intermittent fault that might lead to a big hit on the rolling stock and the infrastructure due to
the emergency braking. In order to avoid this situation, a safety margin is applied on position
estimation, and on the safe braking distances, which in turn reduces train frequency on the line,
slows down the schedules and the travelers. Thus the need of a position estimation algorithm
for the ATP with an improved robustness to sensor faults is required.

The comparison between the real and the estimated positions uses beacon-based position
measurements for reference. The beacons are installed on the railway, at constant intervals, and
their exact position is known. The beacons transmit the good position to the train when nearby,
to reset the position estimation error, since the estimation relies solely on the odometer for
velocity measurements and the following integration to obtain the position estimate. In order to
improve position estimation for the ATP, we need to follow the constraints on the existing
estimator and the ATP level systems: we consider that we have only access to the velocity
sensors at the same rate that the ATP accesses the data bus, and that we do not know accurately
the control signal, contrary to the previous section. This absence of measurement is partly
compensated via the additional time-to-time beacon information that are used to reset the error

of the position estimation.
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The proposed approach is based on a sensor fault detection mechanism to identify and discard
the corrupted measurements, and uses an UIO PI-observer. We consider also a more accurate

train model based on a linear parameter varying (LPV) representation. Finally, robustness is

considered with mixed H, / H_ approach for observer design. More specifically, mixed

H, / H _ optimization is made, with H  criteria for perturbation attenuation and H _ criteria

for fault sensitivity. The design procedure is again expressed in terms of linear matrix
inequalities (LMI), which are efficiently solved using convex optimization techniques (Boyd et

al. 1994).

3.3.1. Problem statement and methodology

As explained in section 2.1.2 two types of sensors are used: the odometer located on the wheel,
and the beacons fixed on the track. Wheel jamming occurs during braking phase and corrupts
odometer measurements. The interest of beacons, that of course deliver a measurement
independent of the jamming, is to give a time-to-time true measurement of the train position,
i.e. each time the train crosses one of the beacon position, it corrects the odometer’s corrupted

measurements.

Based on the train dynamic taken from (Guzinski et al. 2009; Kaller and Allenbach 1995; Liu
and Golovitcher 2003; Vijay 1984) analysed in section 2.1.1. We consider the following train

model:

{V:—W(V)-i-bTuT—bBMB—g(P)"‘ﬂ(t) (3.35)

p=v
where V is the velocity (m/s), p is the position of the vehicle (meters), Uy is the braking force,
U is the traction force, , g ( p) is the tangential force to the path or the force due to the declivity,

W(V) is the specific resistance to motion, bB and bT are constant coefficients and n(t)
represents the modelling errors. The dynamic friction has the same form as previously, i.e.
w(v) =W, +wy+ w2v2 . Usually, we consider the declivity force g ( p) = gsin (9( p)) , where
49( p) is the slope of the railway, and g is the gravity coefficient.
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Similar to the section 0, an UIO from the PI-observer family is designed. As the speed coming
from W(v) is embedded into the system using a quasi-LPV framework, the unknown input will
reconstruct the parts due to the modelling errors and to the force of the declivity. A second

order, ie. d R (t) ~ (0 is also chosen to capture the unknown input, leading to the extended

model:
x=A(z)x—Gw, —Byu, +Bou, +Dn (1)
, (3.36)
z=Cx
-w,-w,z -1 0 b,
where x=[v d, dR]T is the state vector, and: A(z)= 0 0 1|, B,.=|0],
0 0 0 0

b, !
B,=| 0|, G=|0|, D=[1 0 0] and C=[l 0 O0]. Notice that A(z) depends on the
0 0

measured variable Z=V. A description of (3.36) can be done using a quasi-LPV (or the so-

called Takagi-Sugeno) framework using a sector nonlinearity approach (Tanaka and Wang

2001); effectively as z € [ Z, E] , a polytopic description can be written using the functions:

B (z)=<"% and I(z)=1-h(z). (3.37)

z—-z

that holds the convex sum property

> h(z)=1,0<h(z)<L. (3.38)

Therefore, a quasi-LPV model of (3.36) has the following form:

2
)'c:iz_llhi(z)Aix—Gwo—BBuB+BTuT +D77(t)' 539
7=Cx

Considering first that the fault occurs only during braking phases, i.e. when U; >0 and, second

that it impacts the sensor; the jamming fault can be represented via the output equation as
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y=z-Ff (1) (3.40)
where F € [O,l] and f (t) € R, with z = Cx corresponding to the fault-free output. Remember
also that we consider only the braking phase, i.e. thereinafter we will consider Uy = 0, and as

specified, the control Uy is not measured. An important remark has to be done therein.

Remark 3-1: as the speed signal is corrupted, we do not have the real output signal available
anymore, i.e. the measured output is y=z—Ff (t) whereas the parameter used in the quasi-

LPV model is z= Cx. Therefore, if an observer has to be designed, it will enter in class of the
so-called non-measurable parameters observer (Bergsten, Palm, and Driankov 2001; Yoneyama

et al. 2001), which still is a challenging, theoretically unsolved problem.

A way to circumvent this issue is to transform A(Z) in A(y), ie. as wz=w, (y+Ff (t)),
therefore we can introduce A(y) in (3.39) and consider that the part w,Ff (t) can be
reconstructed via the unknown input dp.

V:—(wl+w2y)v—bBuB—wO+dR+77(t) (3.41)
It leads to the following model, being understood that the variable d z (future unknown input

for the observer) represents d, = g (p) +w,Ff (t) Z:

£= 3 () Ax—Gwy — By, + Drp (1)
z=Cx (3.42)
y=z—Ff(t)

With the extended state vector x = [v d, dR ]T . At last, as we do not know the amplitude of

Ug, we will use the same procedure as depicted section 0 (see Algorithm 3-1) , i.e. we will

compute a piecewise control ﬁB =u . Therefore, again we will consider that the difference
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Uy —U can be captured via the unknown input. These various issues will be discussed further

on. Thus, the model used is:

2
X= Zh,. (y)Ax—Gw,—Bu +Dn(r)

i=1
z=Cx (3.43)
y=z-Ff ()

With the extended state vector x = [V d, d, ]T and the unknown input corresponding to:

dy=8(p)+w,Ff (t)z+B, (uB—u*).

3.3.2. Overview of the proposed sensor fault detection system

Recall that the force due to the declivity g( p) and the control Uz are unknown, so the UI-

Observer is designed to reconstruct it through the unknown input d r- To reduce the effects of

uncertainties, faults, and noise in the system, H » attenuation criterion is applied with H_

index to make the residual sensitive to the fault and robust to the remaining disturbances. Fault
detection module will trigger fault detection and system recovery signals, since jamming faults
are intermittent. Therefore, the UIO will filter the jamming fault from the odometer
measurements, based on estimated times of fault detection and recovery, and the correct

trajectory will be reconstructed. Position estimation error is reset using the true position

information that is received whenever a beacon is crossed. At the same time, Uy =U 1is

computed following the algorithm proposed in section 3.1, using the exact position from the

beacon and the velocity estimation of the observer. Therefore, if a beacon is crossed, then the
constant control (to) is computed solving the nonlinear equation (3.10) from section 3.2.2.1,
with (to,p(to),v(to)) :(t_k,p(fk),\;(t_k)) , where 7, ke {1,2,3,...,j} is the instant when a

beacon is crossed. In between two beacons, the measurement from the sensor and the estimation

from the observer are used to compute a fault sensitive residual signal. This residual signal is
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used with a fault detection algorithm explained after. The general structure of the integrated

design is shown Fig. 3-18.

___________________________
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3.3.3.1. Observer design

Position update
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Fig. 3-18 General scheme.

The quasi-LPV-UIO for the system (3.43) has the following form:

A 2 * — A
x=) hl.(y)(A,.fc—GwO—BBu +P lLl.(y—y))
i=1

§=ci
r=M(y—

Observer
update

(3.44)

I F S . . . . . 3
where x = [\3 d, dR} is the state vector estimation, j is the output, r is the residual, L, eR

,i=12and M €R are the observer gains and the residual gain, respectively. Defining the state

estimation error as e = x— X, the estimation dynamic error is:

6= gh,. ( y)((A,. ~P'LC)e+ P 'LFf (t))+D77 (1)

r=MCe—MFf (1)

(3.45)

The goal is to design the gains 7, and M of the observer (3.44) to guarantee that the residual

r(t) is robust to 77(1‘) and sensitive to the fault f (t) . The design is made in two steps.
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First consider f (l‘ ) =0. The robustness of the residual r(t) to the noise I](t ) can be formulated
as a classical g7_ attenuation problem (Edelmayer, Bokor, and Keviczky 1994; Zhong et al.
2003), i.e. find a positive constant 4 such that:
[}, <2 @), (3.46)
To ensure (3.46), a sufficient condition is:
V(e(t))+ r(t)T r(t)—ﬂzn(t)T n(1)<0, (3.47)
Integrating (3.47) gives:
V(e())-V(e(0) < A*f, (n(t) n(r)=r () r(1))ar. (3.48)
Since the model is globally asymptotically stable V (6(00)) =0, and considering initial
conditions null, i.e. V(e(())) =0, (3.48) becomes J':r(t)T r(t)dr < gzjown(;)r n(z)dr which
corresponds to (3.46). Therefore, using a quadratic Lyapunov function V(t) =¢'Pe, P>0,
and using r(t) = MCe (3.47) writes:
2¢" Pé+e(r) C"M"MCe(r)-2n(1) n(r)<0. (3.49)

Using the expression (3.45), (3.49) will hold if:

e TR L

with (¥} is the transpose quantity. Finally, recalling that A(y):z;hi(y)A,.,

L(y)=>"" ()L asufficient condition to have r(t) robust to 7(r) is:

i=1 1

T T
PA —LC+(*)+C"M"MC PD}O (3.50)

2
2ot (y){ D'P 2 |®
Second, consider n(t) =0, we want to ensure that the residual r(t) is sensitive to the fault

f (l‘ ) . This goal can be achieved using H  conditions from (J. L. Wang, Yang, and Liu 2007),

i.e. finding a constant » >0 such that:

QO RSIMOR (3.51)
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Let us consider a function V (e(t)) =e(t) P.e(t), with P, = P[ asymmetric (non-necessary

positive) matrix. Suppose that the following inequality is satisfied:
[ (@) r(©) =717 ()£ (£) =V (e(0)) it +V (e(0)) > 0. (3.52)
Knowing from the Hao part, that the error dynamic is GAS, i.e. V(e(OO))ZO, (3.52) is

equivalent to J:(r(t)r r(t) —fr (t) f (t))dt >0 which corresponds to condition (3.51).

Therefore, a sufficient condition to ensure (3.51) holds true is:
() r(6)=7f7 (1) f(1)=V (e(r)) 20 (3.53)

And with V(e(t)) = e(t)T P.e(r):

~2e(t)" Pre(t)—r(z) r(t)+ 72 f" (t) £ (r) <0 (3.54)
The residual writes: r(t) = [MC _MF][fth , from which (3.54) writes:
T
N [|RAO)HL(CH() LOF| Temme —cmmr]| e ]
o FL (o) 2 lEre e ) 7))
Or equivalently:
—P,(A(y)-L,(y)C)+(¥)-M>C"C -M’C"F+P,L,(y)F <0 (355)
~FM*C+FL," (y)P, Y —F’M’ - '

with P; being symmetric and L, = Z; h(y)L, being the gain matrix.

Remark 3-2: unlike the z7_ attenuation conditions, Pf is not necessarily sign definite (J. L.
Wang, Yang, and Liu 2007), this point is important for finding a solution to the general
H_ /H _problem. Effectively, it appears that searching for the same matrix, i.e. Pf =P>0

(even if giving a strict LMI constraint problem) such in some works (Theilliol and Aberkane
2011) is extremely conservative. To give the example of the train, it results in a “no feasible”

solution, whatever are the scalars » >0 and 4>0.
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Note that M € R and F € R are scalar, therefore if Pf is fixed, we will get LMI conditions

using the convex sum property from (3.50) and (3.55); find P >0, Li ,y>0,A>0and M >0

such that:
2 ~T
PA —LC+(*)+M>C"C PD <0 (3.56)
D'P -A?
~P, (A ~L,C)+(¥)-M>C"C ~M’C"F+P,LF . (3.57)
—FM*C+FL, P, y’—F’M*

with i =1,2. In order to reduce the magnitude of possible observer gains, a norm constraint
( LhP‘l)T P( P! Lh) <o is added, where . is a positive constant value. Using Schur’s

complement and the convex sum property, the constraint is expressed as the following

additional LMI condition:

T
{_“ L }so, i=1,2. (3.58)
L. —-P

1

Following Remark 3-2, the problem is not LMI. Therefore, there are several ways (suboptimal)

to get solutions, based on two steps algorithm like in (J. L. Wang, Yang, and Liu 2007). For

example, first fix the part that renders BMI the problem, for example Pf and then solve the

LMI constraints problem, i.e. (3.56) and (3.58). Once a solution is obtained, fix Lf; and solve

the problem (3.56) and (3.57). Several loops can be used, and there is no proof of convergence
to any optimal solution. In our case, after several trials-and-errors, a “good” option (that

presented interesting results) was to run the following algorithm.
Algorithm 3-2:

Step 1: solve (3.56) and (3.58), i.e. find P >0 and the observer gains Li, i =1,2, minimizing

A >0, while tuning o >0.

Step 2: let Lf,- =L, and solve (3.56) and (3.57), i.e. find P = PfT and the residual gain M >0

, maximizing y >0.
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As stated before, several loops may be necessary to get a satisfactory result. Especially, the

acceptable compromise between A>(0 that guarantees the robustness of residual r(t)

according to 77 (Z ) and » >0 that guarantees its sensitivity to the fault f (t ) .

3.3.3.2. Fault detection

After solving the H_ / H_ problem, we obtain the gain M using Algorithm 3-2 and we

compute the residual from (3.45):

r(t)=M(y(1)-3(1)) (3.59)
Now, the fault detection algorithm uses the residual r(t ) , a constant threshold & ¢ determined
using H / H _ results, the speed estimation 17(t ) , and the measurement from the sensor v(tk)

, where [, is the measurement instant. Therefore, based on the behavior of the fault from section

2.1.2, the fault detection is divided into three parts:

Fault free (N f) — increasing fault (F f) — decreasing (R f) — Fault free (N f).

This give us additional information to improve fault detection and to filter corrupted sensor

data.

e Fault free ( N f) if the observer estimation matches the sensor.
e Increasing fault (F P ) if the observer estimation and measurement are diverging.

e Decreasing fault ( R, ) if the observer estimation and measurement are converging.

The main idea of the algorithm is shown in Fig. 3-19.
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Fig. 3-19 Fault detection scheme: speed behavior (left), residual behavior (right).

The steps of the algorithm are the following:

Algorithm 3-3:

If r(t)>&; and v(t)>v(t,) then F,(t,+1)=1 and N, (£, +1)=0

Else F (1, + ) (k) and N (tk+1)=Nf(tk)

(
If F, tk):1 and V( 1)<v(tk) then R, (tk+1):1
Else R, (1, +1)=R,(1,)

)

If R, (1,)=1and v(1, =1)>v(z,) then R, (1, +1)=0, F, (£, +1)=0, and N, (1, +1)=1

If N,(1,)=1and v(r, —1)<v(t,) then R, (1, +1)=1, F, (1, +1)=1,and N, (1, +1)=0
(

If N,(#,)=0 and v(1,)=0 then F, (7, +1)=1and N, (7, +1)=0

3.3.4. Simulations

The effectiveness of the proposed approach is demonstrated by simulation in two cases. The

first case is fault free, to show the unknown input estimation d z under ideal conditions. The
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second case corresponds to a faulty case, to show the improvement in the position estimation

with the proposed approach.

3.3.4.1. Fault-free case

Consider the quasi-LPV train model (3.42) with parameters W, =0.02, w, =0.003,
w, =-0.00024, b, =b, =1, g(p)=0.05sin(0.1r). We assume that the speed is bounded:
ye [0,50] (m/s). The observer (3.44) parameters are supposed with a 20% of error in the friction

parameters: W, =0.016, w, =0.0024 | w, =-0.000192. The measurement update periodicity

is 200ms. The position estimation error is reset with respect to the real position from the beacons

each 200 meters.
Now, solving conditions (3.56), (3.57) and (3.58) via Algorithm 3-2 with D = [0.01 0 O]T ,
a =1, F =1, and minimizing 1 , gives a result with M =2.3, » =1.58, 4 =0.031, and with

the gains L, =[1.15 —1.216 -0.405] and L, =[1.16 —1.215 -0.404]" .

The simulation results, with initial conditions x(0)=[45 0.22 O]T and

x(0)=[44.1 0 O]T , shows that the observer follows the measurements, when there are no

faults, as shown in

Fig. 3-20. Recall that the control u (t ) is unknown, and the only available information is about

the train braking or not. We use each beacon (vertical blue lines on the figures) to compute a
u" as the solution to the problem presented (3.10). Fig. 3-23 presents the results of this
procedure and shows that the computed control «" is a realistic guess of the real control signal.

The unknown input estimation is presented Fig. 3-22 and shows a very good capability to
capture the dynamic of d, = g(p)+B, (uB —u*). The position error, Fig. 3-24, is small even

considering the noise signal,
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Fig. 3-21 , benefiting from the accurate estimation of the disturbances. Finally, Fig. 3-25 shows

the residual signal and, with a threshold of 0.9, as expected, there are no false alarm.
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free)

3.3.4.2. Faulty case
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Fig. 3-25 Residual behavior (fault-free).

The example proposed therein introduces a jamming fault, Fig. 3-27, producing 10% error in

comparison with the real velocity, Fig. 3-26. The algorithm for fault detection with a threshold

of 0.9 is able to detect the fault with a time delay of 0.4s, as shown in Fig. 3-27. Moreover, the

estimation of the unknown input d, = g(p)+w,Ff (r)z+B, (uB —u*) converges to the real

signal after fault occurrence, as shown in Fig. 3-29. Fig. 3-28 shows position error between two

beacons (blue vertical lines). We can see that the position estimation error from the observer is

4 meters better (500%) than sensor-based estimation.
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3.3.5. Section Discussion

This section presented the interest of a robust position estimation algorithm for the ATP system.
Using only available noisy measurements at a low rate, with incomplete knowledge of
parameters and control inputs, the quasi-LPV Ul observer and the related fault detection module
managed to successfully detect wheel jamming and to filter the corrupted measurements. We

derived an algorithm and LMI conditions to design the observer with acceptable performance

using H / H _ optimization, and at the same time, the obtained norms will help with the choice

of the appropriate fault detection threshold that insures an acceptable compromise.

However, these promising results need to be validated on an experimental data set, with stronger

faults, and that will be addressed in the validation chapter.

Also, while the position estimation is improved, there is no guaranteed estimation error, i.e. it
is impossible to predict how much the position error improved in order to appropriately
determine the safety margin, or to allocate the exact bandwidth that is needed to insure some

worst case position error bound. This topic will be addressed in the next chapter.
3.4.Conclusion

In this chapter, we presented two different contributions to help with automatic train operations.
First of all, we addressed the problem of making the train stop accurately at the station, even if

the brakes are intermittently unavailable because of faults. This application proposes a solution
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for ATSC algorithm. Secondly, we considered the problem of robust position estimation, with
imperfect knowledge of the system, perturbations, corrupted measurements and noise. This
application is appropriate to improve ATO based position estimator.

From the methodological point of view, we addressed fault detection and fault tolerant control
of intermittent faults (faults that appear and disappear), with two different formulations for the
same wheel jamming fault. FD and FTC were performed, with realistic assumptions,
considering imperfect knowledge of the system and the controls, and slow measurement
updates.

Finally, we contributed to the design of an unknown input observer in proportional-integral

form, and derived LMI conditions to formulate design conditions. We also used quasi-LPV

system model, and H / H_ optimization framework for that matter. Formal performance

issues were discussed and solutions were proposed to ensure acceptable design performance.
Next chapter addresses possible worst case performance guarantees for the estimation error,

considering the continuous-discrete dynamic nature of the system.
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CHAPTER 4. Robust estimation for nonlinear continuous-

discrete systems with missing outputs

4.1.Introduction

This chapter is about guaranteed state estimation of discrete output systems. The main
motivation of this research is to obtain formal worst performance indicators for a continuous-
time observer dynamic with sampled-time updates, considering constant sampling period and
to some extent, variable sampling. The challenge here is that the system is impacted with
perturbations together with a partial knowledge of the control input. As presented in the
previous chapters, we use unknown input observers (UIO) (J. Chen, Patton, and Zhang 1996)
to solve that issue. This makes possible the estimation of exogenous perturbations, and
implementation of appropriate robust control techniques, based on disturbance compensation

(Faieghi, Jalali, and Mashhadi 2014; Gao, Liu, and Chen 2016).

Therefore, this chapter addresses the performance of an observer of the continuous-discrete
type with an UIO design, and how can we assess the worst-case error bound with respect to
variable and partially unknown measurement sampling. A specific form of the so-called
Gronwall inequality (Dragomir 2003) is necessary to compute the error bound, inspired by the
Input to State Stability (ISS) / BIBO context and research on stability of systems (Lazarevi¢
and Spasi¢ 2009) (Phat and Ratchagit 2011). Depending on the choice of the observer, i.e.
constant gain or time-varying observer gain, different bounds can be obtained. Since the derived
bounds can be over-conservative due to the assumptions and inequalities taken into account,
we consider practical ways to relax the conservativeness using available knowledge on the
observed physical system. The results are applied to the transport application, using the train
mathematical model for simulation and validated in the next chapter by data acquired during

field tests on a benchmark locomotive.
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4.2.Continuous-discrete observer literature overview

Research works on continuous-discrete dynamics are popular when dealing with slow process
dynamics, where fast measurements are not required, for example in the chemical industry
(Astorga et al. 2002), (Tatiraju, Soroush, and Ogunnaike 1999), (Herndndez and Alvarez 2003).
For such cases, one will use the so-called continuous-discrete observers (CDO), with the
objective to reconstruct the state between two samples. The study of CDO is also popular
because in some situations, sensor measurements are available through a shared communication
bus, and the allocated bandwidth is insufficient to transmit in real-time all the available
measurements, which makes it difficult to implement observers that are fast enough to keep up

with the system or controller rate.

Also, ideas to use CDO design to insure finite time performance of the estimation emerged
recently (Mazenc, Ahmed, and Malisoff 2018). The continuous-discrete design problem, along
with the similar multi-sampling rate design problem, is formulated in the linear case using either
predictors in between samples (Ling and Kravaris 2017a) and (Mazenc and Dinh 2014) or
classical sample and hold strategies (Moarref and Rodrigues 2014), with the objective to
achieve exponential stability of the error dynamics, given a maximum sampling period, using
LMI context and Lyapunov-Krassovskii-based conditions. This research is also extended to
non-linear systems, like in (M. Farza et al. 2014b) and (Karafyllis and Kravaris 2009) using
high gain observers and in (Ling and Kravaris 2017b), where the vector small-gain theorem
was used (Karafyllis and Jiang 2011). In (Dinh et al. 2015), authors design CDO for continuous
time Lipschitz system with sampled measurements, where the estimation error is bounded,
which is useful for applications. Literature also contains results on the use of CD Kalman filter

for stochastic systems (Jazwinski 2007).
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4.3. Continuous discrete time observer design

4.3.1. Problem statement and preliminaries

Consider the following continuous-discrete nonlinear system

{ £(1) = A(y(0) ¥(0)+ B (1)

.1

y(1,)=Cx(t,)
where x(t)€R" is the state vector, A(y(f))€R"™", BeR"™", and CeR”"; the output
y(2,) € R” and the input u(z, ) € R™ are measured every ,, sampling time with k  N*, and
we consider a possibly varying sampling time 7, (0 <t , 4 <71, < +00) .
The proposed nonlinear observer in continuous-discrete time has the following form:
{a*c(r) = A3)E(0)+ Bu()+ K (O)(5(1)5()

y(r)=Cx(r) 4.2)

where %(1)€R" is the state vector estimation, y(f)€R” is the output estimation, and

K () € R™” is a matrix to be determined which form will be defined later on.

Remark 4-1: The problem written therein covers the case of the train where the measurements

are done when it crosses the beacons, inducing a varying sampling time. Therefore, in (4.2) the

choice of K () is twofold: whether it depends on the output at sampling instant ¢_, i.e.

K ( y (tk )) or on the observer—based output reconstruction K ( y (l‘))

Considering the state observation error e(t)=x(r)—x(t), we obtain the following error
dynamic:

é(m)=(A(&)—K(->c>e<r>+(A(y>—A<9>>x<r>+K<-><Cx<r>—y<rk>)- @3)
From (4.3) we can see that the term K (+)(Cx(r)—y(t,)) appears and it needs to be bounded

depending on the structure of K () The term ( ( ) ( )) (t) will be handled using
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robustness considerations for the case of the train, see section 4.3.3. Therefore, we consider the

following bound on the error:

le(t.z.)|< m(e.1,)- (4.4)
If the value of (t, l‘k) is determined, equation (4.4) guarantees a worst case performance for
a Continuous-Discrete Observer design at time [, given that the last measurement update
occurred at time ¢, . Thus it is important to determine the most accurate estimation of £ (t 1 )

, 1.e. the smallest one, and the possible practical application of this bound. The studied cases
are the following:

a) Design the Continuous Discrete PI-Observer that ensures the most favorable worst case

estimation [e(z,t, ).

b) Determine what is impact of missing measurements (delayed or corrupted due to sensor

faults) on ”e(t’tk )”

Another practical use of the bound ,u() is to determine the appropriate maximal measurement

sampling time 7, =

.., —1, thatensures a given guaranteed worst-case performance. This case

is a different formulation of case b), and will not be detailed.

4.3.2. Main result

First, an asymptotic convergence condition of the estimation error in the ideal case is required.

This one is given by the following assumption, and holds in every case.

Assumption 4-1: For the homogeneous system

e(r.1,)=(A(3) =K ()C)e(r.1,). (4.5)
it exists a matrix K () such that the convergence of the dynamical system e(t,tk) is
exponentially guaranteed whatever the initial conditions are. For example, considering a

quadratic Lyapunov function V(e) =e¢'Pe, P=P" >0 together with a gain observer written
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as K(-)=P"'M(-), with M (-) € R™ amatrix to be defined. Exponential convergence of the
estimation error holds if:

PA(3)-M()C+A($) P-C"M(-) <O0. (4.6)
Therefore, Assumption 4-1 ensures that it exists constants >0 and m>0 such that the

fundamental matrix solution e(t,tk) = ¢(t,tk )e(tk) satisfies the condition:
le(e.e)|<Be ™™, 1=, 4.7)

The classical exponential decay rate for a quadratic Lyapunov function V(e):eTPe,

P=P" >0 will be used in the sequel and is recalled thereafter. Consider a positive constant

decay rate &£ >0 (Duan and Yu 2013), thus for ; >, :

V(e(t)) <V (e(r,))e ™. (4.8)

Recall that A,|le|” < e’ Pe< 7, ||’

, where 2, and 7, are respectively the minimum and

maximum eigenvalue of P . Then (4.8) can be lower and upper bounded as:

Zelle(@)[ =V (e(0)) =V (e(r.))e ™™ < Z|le (1, ) e (4.9)

giving
O <220 e .10

Therefore, considering (4.7) gives directly the estimations: S = ,/ZP /A, and m=¢g/2.

As already stated before (Remark 4-1), we consider the estimation of the bounds for the
convergence of the error in two different cases, based on the matrix K () dependence. The
first case corresponds to a matrix K ( y(t . )) , 1.e. taking into account only the discrete variable
y(tk) measured at each sampling ;, and is called Discrete Measurements Observer (DMO).
The second corresponds to a matrix K ()A)(t )), i.e. the matrix depends on the continuous-time

estimated output 9(t ), and is called Continuous Discrete Observer (CDO).
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Discrete measurements observer-based design (DMO)

As first result, we are using the system (4.1) and the observer (4.2) with K () depending on

measured variables, i.e. K ( y (tk )) . Considering Assumption 4-1, the following theorem can be

stated.

Theorem 4-1: Consider the system (4.1) and the observer (4.2). Under Assumption 4-1, it exists

a matrix K (y(tk )) such that the convergence of the dynamical system (4.5) is exponentially

guaranteed whatever the initial conditions are; the convergence of the observer error e(t, tk) is

guaranteed with a bounded error defined as:

le(r.ell= pe " e+ 2 (), (1= ) (4.11)

where s and ,, are positive constant values, and M, = max ||y, = 3 (£ )]s | Ve = ¥ (2)]) -

Proof: Considering the error dynamic (4.3) with K () =K ( y(tk )) :

2(01) = (A(5) K (3(:)))e () + K (+(1)) ()~ ¥(1,)) @.12)

From Assumption 4-1, the homogeneous system (4.12) is exponentially convergent and

condition (4.7) holds with 2 constants g>0 and m>0. Introducing the second term

K(y(tk))(y(t)—y(tk)), te [l‘k,tk+1), the solution of (4.12) writes:

e(t,tk):¢(t,tk)e(tk)+¢(t,tk)j;¢(tk,s)K(y(tk))(y(t)—y(tk))ds (4.13)

with ¢(t, tk)¢(tk,s)=¢(t, S), after passing at norms expression (4.13) and using (4.7), the

following bound can be obtained:

”e(t, t, )” < Be "

e(tk )” + Pe™ ,[,: e

K(y)lyG)-y@)ds @14y

According to the fact that y(s) € [ymin, ym], thus ¥, — y(tk ) < y(s) - y(tk) S Voax — y(tk) it
is easy to see that:
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|y (s)= ¥ (1 )] < max (

That corresponds to the definition of s . Therefore, the expression (4.14) becomes:

Yain =Y [V =7 (@] (4.15)

B

||e(t,tk )” < ,Be_m(’_t*)

e(1, )H + ﬂ”K (y (1, ))” M, f " ds

k

Or equivalently:

”e(t,tk )” < ﬂeim(r*t")

e+ 2k (v, (1-7) @.16)

Which concludes the proof. o

Remark 4-2: The DMO design problem is a tradeoff between the quality of the solution in terms
of convergence speed, parameters S and ,., and guaranteeing the largest possible time
interval 7, i.e. minimizing K ( y(tk )) The way to take into account this tradeoff will be

discussed latter on.

Remark 4-3: As stated previously, the error bound in (4.11) can also be used:

e To estimate the bound on ||e(t,tk )|| atatime >, ,and for some value of 5y which can
help the practitioner to know the worst case performance if some measurements are missing
(corrupted or delayed).

e To determine the latest possible instant to request measurement updates for the observer,
i.e. the time -, =7, —¢ that will avoid the bound ||e(t,tk )” to grow beyond a defined

maximum value, in the case of limited bandwidth or energy saving strategy for the sensor
(on-demand measurements).

Remark 4-4: Approximation of j; in (4.15) corresponds to the worst case, without extended

knowledge of the system, like its set-points, state and inputs range, etc. Of course, refinements
on this bound are encouraged when possible and can be made if extra information are available.
For example, in the case of the train application, in some operation mode (braking phase) the

output will decrease at least with a known given rate &> 0. In this case, obviously, we can

refine p using:
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y(0)=y(t)<=E(t-1,), 1=, 4.17)

From which:

J.; e y(s)— y(tk )“ds < fj: e™ (s —tk)ds . (4.18)
1 1

¢ —m\f—
Therefore, considering that efth " (s—1,)ds=— (f —t, — —(1 —et )) , the bound (4.11)
k m m

can be replaced with:

1— e*"’("’k)
||e<mk)||<ﬂem“’”|e<rk>||+%wf<<y(rk>)ﬂ[fa%}- (4.19)
Continuous-Discrete Observer (CDO)

In this case, the observation matrix K ( j)(t )) depends on the observer output estimation fl(t )

The following lemma corresponds to one of the Gronwall-like type inequality (it is a modified

version of theorem 7 in (Dragomir 2003)), and it will be used to derive the bound.

Lemma 4-1: consider a continuous signal x(t) defined on [tk,t] that satisfies:

|x(t)| < ,Be_m(t_’k) x(tk )| + j: e ") (a |x(s)| + b) ds, (4.20)
where @, b and M are positive constants. Then the following inequality holds
~(m-a)(i-1,) b ~(m-a)(i1.)
|x(1)| < pe x(tk)|+m_a(1—e ). (4.21)

Proof: The proof follows the classical Gronwall-like theorems. From (4.20) consider the

quantity

l//(t) =e™ f e™ (a|x(s)| +b) ds (4.22)
Note that (tk) =0. Derivative of (4.22) writes
yr (1) =—my (t)+a|x(2)|+b (4.23)

90



Using the inequality (4.20) gives

v/ (1) +(m—a)y (1) <ape”™ ™

Multiplying by &) > 0 (4.24) is equivalent to:

x(t,)|+b (4.24)

4

W m=a)(i=t) | < —alt—t
dt[ (1)e! a)(rr)]<aﬂe a(i-1;)

x( f )| + el ) (4.25)

Now, integrating (4.25) on [tk,t] with (l‘k) =0 results in

p (1)) < (e 1)+ Blx(r )| (1) (4.26)

m-—a

We obtain then

(1 — g tm )ik ) + B |x(tk )| e i) (e"(H*') — 1) (4.27)

b
<
w(r)= m—a

Now, considering that | x(t)| < Be ")

x(1, )| +y/(¢) and replacing in (4.27) results in

() = (e ) £ L (1t re) (4.28)

m-—a

That corresponds to (4.21) and ends the proof. o

The following theorem gives a bound for the CDO case using Lemma 4-1.

Theorem 4-2: Consider the system (4.1) and the observer (4.2). Under Assumption 4-1, it exists

a matrix K ()A)(t )) such that the convergence of the dynamical system (4.5) is exponentially

guaranteed whatever the initial conditions are. The convergence of the observer error e(l, l‘k)

is guaranteed for a sampling time 7, , with a bounded error defined as:

(i PAM ~(m-piscl)e-,)
e(t,t. )| < Be ) Nl (1 +’—)(1—e ’ ! ) (4.29)
where g and /M are positive constant values, M = max (” Foin = Y EN P = ¥ (2 )| ) , and

A; =max (”K(j;(t))”) for r>¢, .
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Proof: Consider the expression:

e(t,1,) :¢(t,tk)e(tk)+J-; ¢(t,s)K()3(s))(y(s)—y(tk ))ds (4.30)

Passing (4.30) at norms and using (4.7), an upper bound for (4.30) can be expressed as

He(t,tk )H < Pe ™ (i)

B[ e KGO () -y )as  @3n

In order to use Lemma 4-1, the equation (4.31) is rewritten according to (4.20). First, consider

that

(4.32)

From where:

K(EE)() (1) =K (GE)Ce(s) s KEEO)F() () @39

Therefore, passing at norms
[KG ()= N [K G )l +[K G M () -3 @.34)

According to the fact that )A)(S) € [j}min,jimax], thus y,. —y(tk ) < )AJ(S)— y(tk)S Vo — y(tk ) ,

resulting in
”57(‘9)_ y(tk )” < max (”j}mm - y(tk) || Vmax — y(tk

which corresponds to the definition of M 5> Theorem 4-2. In the same way, consider now that

)||) (4.35)

K (5(5))] < 4. thus

[ (3() (3 ()= v ()= A (ICl e (5)]+ M) (4.36)

and,

He(t,tk )H < Be™” m(t=t)

\M/}j (e ()| + M )as (4.37)

(4.37) is now in the form of (4.20), with a = 84, ||C|| and b= BAM ;. Thus, from Lemma 4-1,

an upper bound is obtained

He(t,tk )H < Be ")

_BAM; (L esalel)in)
e(tk )H+m—ﬂﬂy ”C”(l € ) (4.38)
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That concludes the proof. o

Remark 4-5: The idea of obtaining a form such as (4.20) through the bound (4.32) seems
interesting. Nevertheless, we will see thereinafter that it can overestimate the bound. It is mainly

due to the fact that the compromise between , (convergence rate) and the conditioning of matrix
P (via the parameter ), while limiting ;_, i.e. the norm ”K(j;(s))”, ends with ill-

conditioned problems; see the Proposition 4-1 and the examples in section 4.3.4. A way to
correct this overestimation is to follow the work of (Mondher Farza, M’Saad, and Busawon

2015; Fall 2015b), using the so-called impulse continuous-discrete observer. It would resume
in replacing K ( y (s)) in the observer by K ( )A)(s)) ¢ ™) Tt necessitates a new like-Gronwall

lemma and new developments that are out of the scope of this work.

Remark 4-6: Following Remark 4-4, if some extra knowledge is available, a different bound

can be obtained. Again, if the train is in a braking phase, we can consider (4.17):

y(t) - y(tk ) << (t —t k) and obtain through the same procedure via (4.31) the inequality

||e(t,tk )” < ﬂe_m(t_t")

()]

K(5(s))|(e=2)ds. (4.39)

Considering ”K ( jz(s))” < 4; asimilar result to (4.19) is derived

-
e per, I-e
et < pe ™ e+ =+ t—tk—(—m) . (4.40)

Performance design
As stated Remark 4-2, the goal is to find the largest possible interval ,  together with

guaranteed performances for the estimation error. The goal of this section is to propose a Linear
Matrix Inequality (LMI) constraint problem writing. To introduce the decay rate in the
conditions, for example in the linear case (4.6), we need to add the part ¢P, £>0 in the

derivative of the quadratic Lyapunov function.
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Next proposition summarizes a procedure to help to determine the parameters via a LMI
performance constraints design. Only the second case (CDO) is presented, since the first one

(DMO) can be deduced directly: it corresponds to a choice of a linear gain M (instead of

M (9)) in the conditions.

Proposition 4-1: Consider the system (4.1) and the observer (4.2) under Assumption 4-1 and a

quadratic Lyapunov function. The convergence of the observer is guaranteed for a sampling

time 7, under the smallest bound (4.11), with g =,MP / A, and m=g/2, if there exists

matrices P>0, M ()7) and scalars 2 >0, 4, >0 such that the following LMI constraints

problem is verified, for given scalars ¢ >0 and £ >0:

Minimize 4, — 4, such that:
PA(3)-M ($)C+A(3) P-C"M () +&P<0, (4.41)

P M(3)
M(3) ol

} >0 (4.42)

AL —P>0 (4.43)

P—AI,>0 (4.44)

2, -4 20 (4.45)
Proof: Inequality (4.41) is related to the convergence rate with a quadratic Lyapunov function
and can be represented in various forms as a LMI constraint problem. The more direct being to

consider a polytope on the vertices of 3, giving a set of finite LMI constraints (Boyd et al.

1994). The bigger ¢ > 0, the faster the convergence is. In opposition, the faster the convergence

the bigger is K () Thus we need a compromise to limit ||K ()" considering « >0 such that
K())' PK(-)<al is one possibility, which is equivalent to (P'M (j)))T P(P'M(3))<al

and to the use of Schur’s complement to (4.42). The smallest & will lead to the smallest norm
& ()

account, especially by restricting the parameter . To reduce the magnitude of /3, consider:

,if P is well conditioned. Thus, the conditioning of matrix P has also to be taken into
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A, >4 >0 and A7 =P=Aa1I, =0, corresponding to inequalities (4.43) and (4.44), thus

minimizing the difference 4, — 4, , which will act directly on the conditioning of matrix P . o

Thus, tuning the scalars >0 and & >0 allows to set a procedure to obtain the “best” result

for 7, according to the problem.

4.3.3. Particular case of the train (A( y)-A( jz))x(t)

Recall that in (4.3) not only appears the extra term K (-)(Cx(t)— y(tk )), but also the term:

A= (A( y)—A( )A)))X(t ) This last term will be considered only for the case of the train; the

general case is out of the scope of this work. It follows the idea proposed in (Blandeau et al.

-w+w,y -1 0

2018b). Considering that: A( y) = 0 0 1], itis direct to see that A will consist in
0 0 0
(y=3)»(1) v(1)e (7)
only one entry at position (l, 1) , that writes: A=w, 0 =w, 0 . Therefore,
0 0

it follows that:

-w+w,(y+3) -1 0
A(D)e(t)+A=A(y.9)= 0 0 1. (4.46)
0 0 0

Therefore (4.3), in the specific case of the train, is equivalent to
é(t.1,)=(A(3.9)-K()C)e(t)+ K (-)(Cx(t)- y(t,))- (4.47)

Thus, all presented results hold by replacing A(j}) with A ( v, )7) )

4.3.4. Simulations

The effectiveness of the proposed method is shown with the practical case of a locomotive

robust position estimation, to be used at the ATC subsystems level, specifically for Automatic
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Train Stop Control subsystem, which is a kind of autopilot for train station accurate parking.
The complete description of the train has been presented in section 2.1; we recall therein that
high level subsystems receive speed measurements at a lower rate than the effective acquisition

rate, due to bandwidth allocation restrictions.
Therefore, consider again the dynamic of the train:

(1) = by (v(0)) (1), (v(0))1, (1)~ w(v () + 1) @48)
where v(t ) is the velocity of the train (m/s), by (v(t )) is the coefficient of the braking force,
Uy (t) is the relative braking force, b, (v(r)) is the coefficient of the traction force, U, (t) is the

relative traction force, W(v(l‘ )) 1s the resistance to motion and I](t) represents the noise and

the errors in modelling and control reconstruction.

We consider hereafter specifically the braking phase, during train final stage of coasting the
station. If the ATSC receives corrupted sensor data, or misses measurement updates (because
of discarded samples for example), then the train might stop before or after the targeted parking

position, creating safety issues, and this situation should be avoided.

To begin with, several assumptions due to the real-time operating mode are to be carefully

taken into account:

Al. As we consider the braking phase, the maximum traction and relative traction forces are

null.

A2. The braking force coefficient b, (v(t )) is considered constant. It is not a strong assumption

as we neither have the breaking force measurement u, (t) .
A3. The relative braking force has a discrete nature and is partially unknown
u (tk) =u, +Au (4.49)

where U; is piecewise constant and Au is the unknown control part to be estimated.
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A4. In (4.48), we consider the resistance to motion as a second order approximation of the
dynamic friction W(V(t)) =W, +W1V(l‘)+W2V2 (t), where W,, W, and W, are coefficients that
vary depending on the type of the train and the condition of the tracks (shape, wetness, etc.).

Recall that W, and W, are related to mechanical friction (impactful at low speed) and W, is

related to aerodynamic resistance (impactful at high speed).

To deal with the robust estimation problem, an unknown input observer (PI-form) is designed
to reconstruct a part of the dynamic friction d (v (t)) =W, +W2V2 (t)+Au and other possible

uncertainties. The PI-form is a second order integrator:

e[ )

Now, (4.48) can be written in the form of (4.1) with an extended vector

x(1)=[x(t) x(1) x(:)] . where x(f)=v(r). x(r)=d(r). and x,(r)=d(r). The

matrices are:

-w -1 0 b,
A= 0 0 1|,B=|0|,and C=[l 0 0].
0

b

0 0 0

For simulations we set the control input bounds to u (tk ) € [0, -1 .7] , the parameters of the train
model: W, = 0.0852 s w, =0.04, w, =—5x10~° and bB =1 (for simplicity).

Under LMI constraints of Proposition 4-1, a good compromise was found using £ =0.2 and

a=4, to obtain p=19, m=0.1, and the gain K(-)= [2.9+ w () 5.5 —3.5]T . For
simulations, the initial conditions are v(O) =14 for the system and )%(0) = [14.1 0 O]T for the

observer. Taking as sampling time 7, = 0.25 and a maximal possible braking force of &=1.7

(see Remark 4-4 and Remark 4-6); we obtain an average error bound of
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N
e, =%ZH€(TM +1,,t, )HSO.387 for Theorem 4-1 and e,
k=0

Theorem 4-2. Fig. 4-1 and Fig. 4-2 show the evolution of the error bounds ||e(t,tk)

_L
N

i”e(%f +1,,1, ) £0.386 for
k=0

b

re [tk W1 +1[ (red lines) respectively inequalities (4.19) and (4.40). Fig. 4-3 shows the behaviour

1 N
of the bounds NZHe(T v Thol )H varying the sampling time 7, ; we can see that CDO-based
k=0

bound and DMO-based bound considering Remark 4-4 and Remark 4-6 are almost equivalent.
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Fig. 4-3 DMO and CDO error bound €, for different update times ¢,
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Design trade-offs for the observer

Several tests were performed to study trade-offs between observer performance and favourable
error bound. Two parameters are considered, m e {(),1 0,5 1} and o € {1 4 10 IOO} , to

design the observer and the bounds, according to Theorem 4-1 and Theorem 4-2. The different

d(’i)_&(ti )Md(ti )‘ and ¢, :%i‘j’(ti)_y(ti )V‘y(ti )‘

1 N
errors are computed as: € :NZ
i=1

Of course, for ¢,;, we stop the summation when the speed is under 1m/s .

Table 4.1 summarizes the results; the empty entries correspond to situations where the LMI
algorithm is unable to reach a solution. Two columns appear for €,, one is the result of the
theorems without additional knowledge, the second is the result with the knowledge of the train
braking. Due to the exponential nature of the bounds, the first case (€, without knowledge) is
over pessimistic; CDO being worse than DMO. As the structures of both observers are rather
similar, the second case (€, with knowledge) gives similar results. Now, considering the

tradeoff between the dynamic of the observer and the upper bound, the best compromise is the

pair (m,a)=(0.5;100).

Table 4.1 DMO and CDO results using various parameter settings.

DMO CDO
eV eV
m|oa| B

Without €, Cost € | without Remark | €v Cost Cur

Remark 4-4 4-6
100 | 1.91 3.29 0.59 1 0.05 | 0.35 1.23 0.59 1 0.05 1] 0.35
0.1 10 | 1.9 1.7 0.44 | 0.04 | 0.90 0.51 0.44 1 0.04 | 0.90
4 | 191 1.37 038004 | 2 0.46 0.38 | 0.04 | 2.02
1 2.87 1.68 0.91 | 0.06 2 0.94 0.91 | 0.06 2
0.5 100 | 2.80 5.32 0.86 | 0.05 | 0.27 7.61 0.86 | 0.05 | 0.28
10 | 3.52 3.24 0.8210.04 | 0.6 1.32 0.82 10.04 | 0.61
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100 | 7.1 14.7 2.2 10.05|0.33 2.2x10° 22 10.05]0.34
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Fig. 4-4 presents the best case (m,a) = (0.5;100) and Fig. 4-5 for sake of comparison shows

,te [tk -~ [ . We can see that the

(m,a)=(1;100). The red lines represent the bound le(z.2,)

increase of M introduced an important increase in g resulting in a worse upper bound €, ,

Fig. 4-5.
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4.3.5. Concluding remarks

An observer design approach for continuous-discrete time systems and the formal expression
of the maximal bound of observer error have been investigated in this chapter. Two approaches
to determine the bound are developed, based on a discrete measurement observer and a
continuous discrete observer, using a special form of Gronwall inequality. A PI-observer design

procedure is proposed in LMI form, with a tradeoff between the best guaranteed bound and
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observer performance, to track both the state and the unknown input. Illustrations were provided
by simulation of realistic scenarios. In the following chapter, the presented approach will be
tested using data-sets obtained through experiments on real trains provided by Alstom

company.
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CHAPTER 5. Data validation

5.1. Introduction

This chapter will focus on the observer design, the results in robust estimation of position and
of the upper bound of error estimation. Control issues are not concerned because we do not
have possibility to test it in a real time framework. Nevertheless, we had access to sensor data
acquired during multiple experimental runs performed by ALSTOM Transport, using different
kind of brakes to stop, electrical and pneumatic. Moreover, the tests also included different
speeds and wheel-track adherence conditions thus generating different fault frequencies and

durations. Therefore, the validation can cover an interesting set of situations.

A sensor fault-based representation of the problem will be used together with a q-LPV UI-
Observer presented in the previous chapters to design a fault detection strategy. We also

formulate the problem of finding the best threshold for the collected data. Based on the y and
A constants obtained through the mixed H__/H_optimization procedure, we reconstruct the
amplitudes of the occurring fault and obtain insights on what type of faults are more susceptible

to occur based on different speed profiles, and what is the influence of both type of brakes on

the fault occurrence frequency.

Then, we will investigate the behavior of the estimation error bound. Based on Theorem 4-1,
Theorem 4-2, Remark 4-4 and Remark 4-6, bound behavior will be shown for different speed

profiles, for fault-free and faulty profiles.

A discussion on the strengths and weaknesses of the proposed solutions concludes the chapter.

5.2. Experimental setup

The data was obtained using a Coradia-type motor coach during tests to investigate the precision
of the odometer-based measurement chain and to characterize particular behaviors of interest

to determine the best configurations for the ATC system. ALSTOM Transport Company ran
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twelve (12) experiments that correspond to combinations of different speed and adherence

conditions: nine (9) experiments used electric brakes and three (3) used pneumatic brakes.
The considered speed profiles are:

e HS: High Speed profile with the maximum speed allowed, around 45 (m/s),
e AS: Average Speed profile around 66% of the allowed maximum speed, 30 (m/s),
e LS: Low Speed profile around 33% of the allowed maximum speed, around 17 (m/s).

The different levels of adhesion are defined as:

e LoA: Low Adhesion corresponding to rainy conditions (water on the rail).
e BaA: Bad Adhesion corresponding to rainy conditions and falling leafs.
e EBA: Extremely Bad Adhesion corresponding to the extremal skidding/jamming

possible conditions.

The real time adhesion conditions were “artificially” obtained by proper configuration of the
train devices and additional equipment that will pour water and soap on the track. The tracks

are cleaned after each test.
The motor coach is equipped with the following sensors:

e 2 odometers (positioned on 2 different wheel axels)
e 1 radar (beneath the locomotive, oriented forward)

e | accelerometer (in cabin)

The speed is measured in m/s and the acceleration in m/ s*>. The data is gathered using data-
logger devices and CAN transmissions recording. The aggregated measurement data sampling
time is 50ms (20Hz). The radar and accelerometer sensors are used only to give a “true measure”
(the ground truth) in order to characterize odometer behavior. These sensors (radar and
accelerometer) are not commonly used on commercial rolling stock for reasons that are out of
the scope of this thesis. We need to point that, the measurements provided by the additional
sensors are not used by TCU (Traction Control Unit), BCU (Braking Control Unit) and WSP
(Wheel Sliding Protection) units of the motor coach. However, actions of the TCU, BCU and

WSP obviously impact wheel behavior, causing (or masking) some effects of the wheel
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jamming/skidding. For example, the WSP unit configuration is different depending on the
configurations used for this experimental run: either all-or-nothing or progressive traction
control behavior control to avoid skidding. The same applies for the BCU and braking in order

to obtain the required jamming conditions for the test.

The tests were made only using the motor coach without additional vehicles, and only one cabin

is used and active, the second cabin (for the reverse motion) is not used for the tests. The motor

coach uses electric traction and two kind of brakes: 'electric brakes and " pneumatic brakes.
Control signals from the TCU unit were not available for the study, thus some assumptions
were made prior to the validation. These assumptions are explained thereafter. The procedure
for generating these tests are rigorous, and will be omitted therein because of confidentiality

issues. The scenario is the following:

Traction (Acceleration) phase: traction control is applied (maximum) until the required speed
(HS, AS, or LS) is reached. The acceleration phase will be subject to degraded adhesion and

skidding situations.

Maximum speed (Cruising) phase: stabilized maximal speed (for the test) is maintained using
appropriate traction or braking actions during a short period (around 1 minute). This phase will

benefit of normal adhesion conditions.

Braking (Deceleration) phase: braking control is applied (maximum) until the train
completely stops. This phase will be under degraded adhesion conditions, and jamming

situations.

The general scheme showing the test sequence is shown in Fig. 5-1.
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Since the focus of the thesis is the jamming faults, we will analyze the data only during the

braking phase. For illustration, Fig. 5-2 shows a braking sequence for both speed and position,

where the ground truth is given by the radar (black line) and the accelerometer (pink line). We

can see, left part of Fig. 5-2, that both odometers are heavily impacted by wheel-jamming faults,

while the radar-based speed, and accelerometer-based speed, which is obtained by integration

of the acceleration, are completely fault-free. The right figure shows position estimates obtained

by integration (or double integration) of the sensor measurements. We can see that the impact

can be important, with an error that can exceed 100 meters, for a motor coach length of 30m.
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Fig.

5-2 Speed measurement (left) and position calculation (right) from sensors.
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Thereafter, we introduce the assumptions made:
Assumption 1 (Al) Friction parameters

First of all, we need to determine the friction parameters w,, w,, and w, according to each

adherence condition (LoA, BaA and EBA) that are unknown usually, and were not available in
the data-set. The methods developed in the previous chapters rely on the approximate
knowledge of these parameters. We will make the assumption that, an estimation algorithm will

estimate the friction parameters w,", w,", and w,", that are approximations of w;, w,, and w,,

during traction phase, using appropriate estimation techniques, for example (Hubbard et al.
2013; Onat, Voltr, and Lata 2017). Traction phase data is needed for the preliminary friction
parameter estimation, because of the usual “persistence of excitation” assumption necessary for
real-time parameter estimation algorithms. Of course, the data used for the estimation need to
be filtered from faults. Therefore, to estimate the friction parameters, filtered measurements
obtained during the traction phase are used, and acceleration is used as a reference to reconstruct

the TCU control output. Considering the mechanical equality (Kaller and Allenbach 1995):
F, —-F, =mv 5.1
with F, the train internal force (control), F; the friction force, m the mass of the train (kg),

and v the acceleration. Then, using the friction approximation relation F, =w, + WY+,

where w,, i e {O, 1, 2} stands for the “true” coefficients of friction, we rewrite (5.1) as follows

ﬁ:—(w0+wlv+w2v2)+b_t (5.2)

where w, =w,/m, i€{0,1,2} and & = F, /m.

Therefore, the values of w, , w, , and w, , that are approximations of w,, w,, and w,, are

estimated from the data-set following the next steps — for a given adherence condition.

Under the assumption that the control # should be constant (since the traction is at maximum),
then u,, —v=w,+wv+w,v’. This can help us to obtain an approximation of w,,w, andw,,

with the assumption of & =u__ . The figure (Fig. 5-3) shows the graphic of the acceleration

max

measurements with respect to the reference speed for a LoA adherence condition in 3
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conditions: Low Speed (in green), Average Speed (in blue) and High Speed (black). The

approximation with the polynomial from equation (5.2) will be made from v >5m/s to the

maximum speed, on the traction phase (top part of the graphic).

Acceleration

0 10 20 30 40 50
Velocity from radar

Fig. 5-3 Overview of the acceleration/speed trajectories (LoA).

In this case, we obtain w, =046, w =57x10" and w,=-24x10". The final
approximation (in red) is shown Fig. 5-4 superposed with the HS profile (left) and with all

profiles (right).
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Fig. 5-4 Friction parameter estimation results.

Using this procedure, all friction parameters are estimated for the three adherence situations
LoA, BaA and EBA, and results are shown Table 5.1. These estimates are obtained using

reference data from radar and acceleration sensors, available in the data-set.
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Table 5.1 Friction parameter estimations.

Parameters LoA BaA EBA
w, 0.46 0.35 0.25
w 5.7x107° | 3x10° | 5x107°
w, —24x10™* | =1x10™* | —2x107*

Assumption 2 (A2) Time-to-time position sensors: on-track position beacons

As explained section 2.1.2, time-to-time updates of the accurate train position are obtained via
track-based position beacons. The beacon measurement updates are not available in the data-
set, nevertheless as the reference sensor data are available, it is easy to construct and simulate
“artificial” updates. We could even decide to test what would be an ideal positioning of beacons

according to the observer design and bounds framework proposed. Therefore, we construct a
set of a predetermined “artificial” beacons’ positions ( pB) from the radar sensor-based
position. Thus, at each time an artificial beacon is crossed, the approximate “true” position

( pB) is used to simulate the time-to-time position update.

Assumption 3 (A3) The TCU control signal

The TCU control signal would be helpful for outperforming the q-LPV UIO PI-observer
performances, nevertheless, this information is never available, neither in the data set nor for

the ATO in real conditions. Thus, the algorithm to construct the piecewise-constant control
approximation u () proposed in chapter 3, is used again; where u () is updated at the times
when a beacon is crossed or when the system has recovered from a fault. The procedure given
from (3.5) to (3.10) will compute u~ (to) from any initial position (to, p(to),v(to )) to reach the

final position (t D (tf ) 0) . Since the final position and final time are known from the data set,

then the control u” () can be recomputed after a beacon update (and detected fault recovery)

using the steps from Algorithm 3-1. Using position updates from the beacons and velocity
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estimations from the observer, the piecewise-constant control u() is updated at the time
instants 7, , based on (7, p, (7 ).9(7)), where the instants 7, , k €{1,2,3,..., j| are the instants
either when a beacon is crossed or when the system has recovered from a fault.

Now, considering the assumptions Al, A2 and A3, the results issued from the experimental

study are presented to validate the methodology proposed in section 3.3, and section 4.3.

5.3. Quasi-LPV UlO-based robust position estimation

5.3.1. Preliminary discussion

In this section, we present the fault detection methodology validation, section 3.3 that improves
the position estimation under jamming faults, and consequently reduces the stopping position
error. The measurement sampling time of the odometers is 200ms, to match real conditions.

The time-to-time true position updates are made considering that the beacons are placed on the

path with 200 meters intervals. At the beacon crossing time 7, we update u (7,),
ke {1, 2,3,..., j} based on the correct data.

The two-steps Algorithm 3-2 based on the resolution of 2 LMI constraints problems based on
conditions (3.56), (3.57) and (3.58), is performed, using =02, F=1, D=[1 0 O]T, and

the friction parameters w', =0.46, w,=5.7x10", and w', =—2.4x10™*. The results obtained

are: for the fault detection, a gain M =3.36, for H _/H_ parameters y =2.32, A=0.1 and
the observer gains L =[241 -1.34 -022]'and L,=[241 -1.33 -0.22]', which

actually means that the parameter variation induced by w',v is not significant. Therefore, for

this set of parameters the g-LPV representation will not impact the results.
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5.3.2. Determination of the best detection threshold

We split the tests into three groups based on the speed profiles: HS, AS, and LS. The different
adherence levels are considered: LoA, BaA, and EBA. Now, we create two tables Table 5.2 and
Table 5.3 with the fault detection information for each situation, in order to obtain maximum
and minimum threshold values, with fault detection performance of 99% of non-detected faults
for the maximum possible threshold and /00% detected faults with 50% false alarms for the
minimum possible threshold. Obviously, these values are unacceptable, and we must reach a

fault detection rate of /00% with no false alarms.

In this thesis, we will consider the three (3) markers to assess the performance of a fault
detection algorithm. These markers are both popular and intuitive (Blanke et al. 2006; Isermann

2006; J. Zhang, Swain, and Nguang 2016), and are detailed below:

o Fault detection rate (FDR): It is the number of fault detections that correspond to real
faults, divided by the number of total faults. This rate evaluates how close the results are to

the objective of 100%.

e Undetected faults rate (UFR): Also referred to as non-detection rate, or missed faults rate.
It is the number of undetected faults divided by the number of total faults. This rate has to

be as close as possible to 0%.

e False alarms rate (FAR): Also referred to as bad-detection rate. It is the number of faults
detections that do not correspond to real faults divided by the number of total detections.

This rate has to be as close as possible to 0%.

When the number of total faults is unknown, the rate is computed based on the number of total

detections. This is the usual situation in practice.

When a “real” fault is detected, another parameter that might be important is:

o The fault detection delay Az, , or the time-delay from real fault occurrence moment until

the moment when a “fault detected” decision is made by the fault detection system. The

shorter this delay, the best the result is.

If the fault is intermittent, which means that the fault can disappear even if it is left unattended,

then another indicator is considered:
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e The end-of-fault detection delay At , , or system recovery delay: it is the delay between
the real disappearance of the fault and the moment when the end of detection occurs from

the fault detection system. Again, the shorter this delay, the best the result is.

This last indicator is related to fault duration estimation, and can be replaced by the error in

fault duration estimation.

Considering fault detection performance, we chose in this thesis to consider the number of faults
and fault detections, in order to compute the rates and not the total duration of faulty periods
and the total duration of good fault detections.

The last column of the Table 5.2 and Table 5.3 corresponding to the threshold &, gives the best

threshold for each situation, that maximizes fault detection rate, and minimizes false alarms.

The exploration of the interval was done iteratively.

Table 5.2. Thresholds for tests with electric brakes

Adherence Threshold
Speed profile level - Max :,

LoA 0.58 1.12

HS BaA 0.59 1.8 0.65
EBA 0.55 3.1
LoA 0.61 1.51

AS BaA 0.51 2.3 0.62
EBA 0.45 13
LoA 0.2 1

LS BaA 0.3 1.8 0.4
LoA 0.25 2
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Table 5.3. Thresholds for tests with pneumatic brakes

Adherence Threshold
Speed profile level e Max :,
HS BaA 1 14
AS BaA 1.2 18 1.5
LS BaA 1.2 20

5.3.3. Fault detection performance for each case

Thereafter, the best detection threshold is used for each case. We consider that the threshold
depends of the speed range as shown by the results of tables Table 5.2 and Table 5.3. This result
is compatible with real time application as in practice, the speed is both measured and estimated.
Considering a unique threshold speed independent would be more conservative, it will
correspond to the smallest one, and obviously will have worse fault detection rates. The main
reason is that its higher sensitivity to noise will increase the rate of false detections FAR, and

consequently decrease the rate of good detections FDR.

We consider in the following tables the time delay to detect the start (Atds) , and the end (At de)

of the fault on good detections; for the tables thereafter we present the average delay considering
the whole deceleration phase. We also consider the false alarms FAR, and missed detections
UFR. The FDR is omitted because it can be derived from the UFR value. The last two columns

are dedicated to the relative position errors at the final position for both cases:

(ltmin )71
(ltmin )71 *

The relative errors are computed with respect to the coach length, which is fixed for the

e without fault detection approach e, =

pref (t) - psensor (t)

e with the proposed approach e, =

psensor (t) - ﬁ (t)

experiments to [/, =30m. What we call final position, is the last position before beacon

update, with contrast to stopping position which is the position when we want the train to stop.
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5.3.3.1. High speed test case

Table 5.4 presents the results for the three HS tests using a threshold of &, =0.65. It can be

seen that all faults are correctly detected on the presented interval (Fig. 5-5) and that the position

estimate is improved from 1% decrease for the less faulty case, to 8% for the worst case.

Table 5.4. Fault detection in HS with &, = 0.65 .

Detection
Adherence Rate of undetected Rate of false

delays (s) e, é,

level faults alarms
At At,

LoA 0.4 0.17 0 0 0.126 | 0.113
BaA 0.19 0.41 0 0 0.123 | 0.106
EBA 0.22 0.3 0 0 0.193 | 0.115

Fig. 5-5 (a) shows the speed behavior for a situation with the worst adherence conditions EBA,
which corresponds to the last line of Table 5.4. We can see an important jamming occurrences,
varying for 1 to 2 seconds. The speed estimation manages to filter jamming impact on the
measurement, using fault detection where the residual is able to detect the fault with a relatively
small delays (Fig. 5-5 (b): differences between vertical red — real fault — and blue lines —

estimated faults and recovery).

Fig. 5-5 (c) shows the evolution of position estimation error during an interval of interest, i.e.
2 considered beacons. The blue lines correspond to the time-to-time beacon updates. The
estimated error (dark blue line) is 3 meters better that the sensor measurement (black line), thus

dividing by to the precision.

113



i 1 T T T T T
22.5 —— Reference : —— Residual
S Sensor [ Fault
T e . g ! ] ;
22 - - - - Estimation y il= = =Fault detection
) i T 1 Threshold=0.65
o215 X F —_ ! 7 )
& L o N 1 '
— , S = S 1 v !
B 2 2 =t S I i !
" 1
5 4 1 1 1 1 I |
= i = . fa'st [ 1 1 1 X
3 205 L iy g i
1 1
201 T4 v L
L ] - ! i
19.5+ i L'I) M i
. . . . . 0 L L Jad L I
104 106 108 110 112 114 104 106 108 110 112 114
Time (s) Time (s)
(a) Speed (b) Residual

6

\

B

58]

—— Sensor

Position error (meters)
)

> - - = Estimation
Beacon

-

0 8 g :
104 106 108 110 112 114

Time (s)
(c) Position error

Fig. 5-5 HS with EBA and &, = 0.65

In order to show the importance and the impact of the compromise that ends with the thresholds,
next figure Fig. 5-6 presents the same case conditions as Fig. 5-5 with a threshold &, = L.5.

This value exhibits a sensitivity which is incompatible with the studied case that can end with

an estimation worse than the one given by the corrupted sensor.
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Fig. 5-6 HS with EBA and &, =1.5.

5.3.3.2. Average speed test case

An interval from the AS-test is studied thereafter and the results are shown Table 5.5: We see

that the improvement is minor (2-3%) for the first two lines, and around 30% for the last line.

Table 5.5. Fault detection for AS with &, =0.62 .

Detection delays
Adherence s) Rate of undetected Rate of false .
e, e,
level faults alarms
At At,,
LoA 0.1 0.2 0 0 0.14 | 0.11
BaA 0.56 0.16 0 0 0.16 | 0.14
EBA 0.2 0.2 0 0 0.58 | 0.19

Fig. 5-7 (a) shows two phenomena: a jamming in the beginning, and many micro-jammings
during the whole period. Micro-jammings are jammings with shorter durations than the data
sampling, causing a small decrease in speed measurement with respect to the reference. The
same phenomenon was also present for the High Speed test, but was masked by the more

important jammings. Micro-jammings can be seen especially Fig. 5-7 (b), where the residual
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shows multiple detections, but that will (a part from the first jamming) not correspond

accurately to the behaviour of the fault. Fig. 5-7 (c) shows the position estimation errors.
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Fig. 5-7 AS with BaA and &, =0.62.

Changing the threshold will not solve the problem. For example, choosing a lower threshold

&= 0.34 will make it sensitive to noise and will trigger false detections, Fig. 5-8).

116



2
(=
T

Velocity (m/s)

————— Sensor
- - - Estimation

—— Reference 40 H— Residual
————— Fault
- - =Fault detection

30 F|- Threshold=0.34

Residual

-

0 10

20
Time (s)

30

(a) Speed

10 . 20 30
Time (s)
(b) Residual

Fig. 5-8 AS with EBA and &, =0.34.
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The case presented improves only in a small way the positioning result. In view of the figures,

this case can be seen as a slowly varying measurement error (due to the micro-jammings), that

cannot be detected by the residual set up for detecting jamming. Therefore, with only one

“detectable” jamming amongst a lot of micro-jammings only a small the improvement can be

obtained. Choosing a lower threshold wouldn’t improve the result, since the residual for this

observer was designed without knowledge of the micro-jammings.

5.3.3.3. Low speed test case

For the LS-tests, a lower threshold has to be preferred. From Table 5.6, we can see that the

improvement in position estimation is around 2-3%.

Table 5.6. Fault detection in LS with €, = 04 .

Adherence | Faults detected | Rate of undetected Rate of false .
e e
level At At faults alarms
No No
LoA No fault No fault 0.06 | 0.03
fault fault
BaA 0.2 0.2 0 0 0.15|0.13
EBA 0.14 0.2 0 0 0.18 | 0.13
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Fig. 5-9 (a) shows that 7 jammings have occurred. The residual was able to sense them with
some delay, Fig. 5-9 (b). The position estimation is shown Fig. 5-9 (c); since the jammings

were short, there is nearly no impact on the position estimation error Fig. 5-9 (c).
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Fig. 5-9 LS with EBA and &, =0.4
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5.3.34.

Pneumatic brakes case

The last tests discussed here are those related to the use of pneumatic brakes. Table 5.7 shows,

that the LS-test is where fault detection is successful even with one small fault no detected,

reducing the position error by nearly 90%.

Table 5.7. Fault detection with &, = 1.5 and pneumatic brake.

Fault
Speed detected Rate of undetected Rate of false . .
profile faults alarm
At A,
HS 0.4 0.2 0 0 0.53 | 0.35
AS 0.2 0.2 0 0 0.66 | 0.15
LS 0.2 0.2 0.2 0 0.96 | 0.13

Fig. 5-10 shows that there are five important jammings that occur during the run, and the rate

of success of the observer is able 4 on 5 (Fig. 5-10 (b)), thus, filtering their effects from the

position estimation (Fig. 5-10 c)).
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Fig. 5-10 LS (pneumatic) with &, = 1.5

Fig. 5-11 shows a difficult case where two faults are occurring at the same time, and have their
effects superposed. We can see in figure (a) that there is a characteristic jamming that is
successfully detected and a slowly varying bias in the measured speed, caused probably by
micro-jammings, which cannot be detected using this particular observer. The estimated speed

is still closer to the reference.
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5.3.4. Discussion

The previous results show that the observer-based position estimation is at least as good as the
measurement-based estimated position. When detectable faults occur, and on successful

detection, the observer is able to greatly improve the accuracy of the position estimate.

The proposed approach has also its limits, since it is difficult to obtain a detection threshold that
works on all speed ranges and for all configurations. Additionally, since the designs of both the
observer and the fault detection are optimized for jamming detection, then the faults that are
different will hardly be detected, and if successfully detected will be ill-interpreted. This

actually shows that the fault detection is able to isolate jamming faults from other anomalies.

Another remark concerns the correlation between the speed and the jamming faults. It can be
seen from the results that some jamming “types” are characteristic for specific speed ranges,

which means that the residual should be chosen based on the speed of the train.

At the end we can turn back to the interpretation of the residual considering the 7/
parameters y =2.32, and A =0.1. Since, on fault detection the relation ¢, < 2.32” f (t)” is

true, it means that the system is able theoretically for a threshold e, =0.65 tO detect faults such

as: ” f (t)” > (.28 for the specific case of HS range and electric braking. For pneumatic brakes,

and e, =1.5, the minimum fault “amplitude” that is possible to detect, considering the same

parameters, is | f (z)” > 15 _ ).64. This remark is consistent with the “poor” performance of

2.32

the detection in some conditions. Also, if we want to detect jammings that are represented by a
specific f (t ) value, it will imply a specific threshold or a specific 7 to be considered at the

design step. The same can be said about A and the expected noise.
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5.4.Continuous-discrete observer error bound estimation

5.4.1. Preliminary discussion

In this section, we will estimate the upper bound of the observation error on the same
experimental data set as in the previous section. To achieve this goal, we will use the DMO and
CDO observers and the methodology proposed in section 4.3. Therefore, considering the
friction parameters (w, =0.46, w,=5.7x10", and w’, =-2.4x107") identified previously,
and using the LMI constraints of Proposition 4-1, a good compromise was found using the
parameters & =0.2 for the observer decay rate estimation error and « =80 to limit the norm

of the gains. The result ends with £ =1.9 (ratio of the maximum and minimum eigenvalues,

for Lyapunov matrix P ), m=0.5¢ and the observer gain K (-)= [3.4+ w () 34 -1 .SJT :

Thereafter, we will consider four (4) different cases to study the upper bound behaviour:
nominal system (fault-free) case, and 3 other cases based on different fault types, small, medium

and high severity.

The table 5.8 shows the average bounds computed based on the DMO (Theorem 4-1), CDO
(Theorem 4-2) and improved DMO (i-DMO, corresponding to the Remark 4-4 from the
previous chapter). Improved CDO-based estimation was omitted, since it gives the same result

as the 1-DMO.

The table shows, as expected, that the i-DMO is the least conservative, for all situations, and
the CDO the most conservative. However, even the best estimation remains, in some cases,

conservative as it will be shown thereafter.

Table 5.9 CDO, DMO and i-DMO-based estimation of the observer error upper bound

Fault type | pyration (s) | DMO | CDO | i-DMO
Fault free 0 53 | 4.96 0.7
Small 0.2 6 10 1.28
Medium 1 26.11 | 22x10° | 13.4
Big 1.4 40.49 | 7x10° | 33.3
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5.4.2. Fault-free case

For the fault-free situation the measurements are “exact”, and updates of the observer are done

as expected. Fig. 5-12 shows the behavior of the different bounds: i-DMO (Fig. 5-12 (a)),
DMO (Fig. 5-12 (b)) and CDO (Fig. 5-12 (c)). The dynamic bounds are represented by the red

lines. Their exponential nature has been presented equations (4.11), (4.29), and both (4.19) and

(4.40). We can see that the reference is contained in the range of the estimation.
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5.4.3. Small fault case

Small jamming faults are considered in this case (Fig. 5-13 again with the 3 cases i-DMO (a),

DMO (b) and CDO (c)), which means that their duration is less than a measurement sample.

Here also, no measurement is discarded, a slight decrease can be observed for the measurement

with respect to the reference. The observer will not be able to detect the fault that fast, and with

a quite small residual. The bound values are similar to the fault free case.
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5.4.4. Medium fault case

This case corresponds to a jamming duration between 3 and 6 samples. Some measurements

are discarded from observer updates, which implies that the bound will continue to increase in

an exponential way (Fig. 5-14). The reference remains in the bound, as expected.

Notice that for the i-DMO, the first corrupted measurement is on the edge of the bound (Fig.

5-14 (a) zoom top left), which makes sense: an unexpected external signal impacting the system

will change its behavior, potentially invalidating the bound.
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5.4.5. Big fault case

Big faults are those which duration is more than 6 samples. More measurements are discarded,

and the exponential nature of the dynamic bounds (Fig. 5-15) will quickly render them

inadequate, especially for the CDO case.
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5.4.6. Discussion

This short section aimed to show the bound estimation applied to real data, and to discuss its
behavior. The exponential nature of the dynamic bounds renders them quickly inappropriate if
too many measurements are discarded. In a sense, this is perfectly normal, it takes into account
the worst possible case at each instant, therefore cumulating them can result in estimations far
from reality. Improvements should come at hand, trying to reduce the gains of the exponential
parts, introducing more knowledge in the design of these bounds, using different observer, for
example based on a forgetting factor, i.e. the further from a measurement, the less credible the

estimation.

5.5. Concluding Remarks

This chapter discusses practical applications of the unknown input observer and the associated
fault detection system. First of all, the experimental setup was described, and a preliminary
study to identify parameters based on the proposed assumptions was performed. Then, the data
set was investigated to determine the adequate threshold for the best fault detection
performance, considering the highest fault-detection and lowest undetected fault rates. Case per
case discussion was then presented, to show the results and the limits of the proposed
algorithms. The ending sections discussed the practical application of the estimated upper
bound of observation error, focusing on cases ranging from fault free to various severity

jamming faults, when some corrupted measurement updates were discarded.

As expected, when faults are successfully and timely detected, the proposed solution improves
the position estimation, with some limitations, concerning mainly faults that do not match the
expected model. The estimated bound is conservative, as expected, but is matching the
measurements. However, to be useful, less conservativeness is needed, using more extra-

information or another form of observer design.
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CHAPTER 6. Final words

Conclusion

This thesis dealt with the development of advanced observation and control algorithms and their
practical application for railway systems automatic operations, considering uncertain system
parameters, limited communication bandwidth, and faults in the system. Two faulty situations
were considered in particular: wheel jamming during braking and wheel skidding during

traction.

The main result of this research was the design of an unknown input observer in proportional-
integral form, with a continuous-discrete update dynamic. This observer can be used for
disturbance estimation and fault detection, and is a major component in the proposed fault

tolerant control scheme.
There are four contributions in the thesis:

The first contribution was the design of an active fault tolerant braking control, where the main
contribution is an integrated approach using an unknown input observer, fault detection, and
disturbance compensation control with a reference model for train stopping, with some
assumptions on the system. The design of such a system and a discussion on the convergence

properties was provided.

The second contribution dealt with the design of a robust position estimation algorithm based
on the unknown input observer with a quasi-LPV representation. The assumptions on the
system were relaxed with respect to the previous case, as the observer assumed a nonlinear

system model, and an unknown control.

The third contribution explored a novel Gronwall-like bound for the observer error, in
continuous-discrete dynamic. The unknown input observer was designed in a quasi-LPV
framework with a piecewise constant input. Practical considerations on how to improve the

bound with extra information from the system were discussed.

The last contribution concerns experimental study: the designed observers were tested on data
sets acquired during real time experiments provided by ALSTOM Transport Company. Several

situations were studied, considering different speeds and different wheel-track adherence
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conditions. The performances of the developed observers were discussed for the presented

scenarios, and strategies for observer parameters choice were proposed.

Overall, the proposed approach showed promising results, and needs to be embedded for real-
time tests. The Gronwall-like bound formulation and use in such applications is a novel idea,
that was proved to be feasible, but needs further investigations to obtain less “pessimistic”

estimation for the upper bound of the error.
Perspectives
Both theoretical and applicative perspectives are to be considered:

The applicative perspectives are centered on the real-time exploitation of the algorithms, in a
dedicated data acquisition environment, to validate real-time performance of the algorithms:
robustness, speed, numerical issues, etc. A complete discretization is considered in order to

facilitate the transition.

Another applicative development is the use of a more accurate representation of the train, with
a proper dynamic of each vehicle and their interconnections. The model will consider wagons
and locomotives separately, with distinct braking controls for each vehicle, and with the traction

control remaining exclusive to locomotives.

The following application perspective is related to the exploitation of the existing wheel-track
contact cartography and other models of wheel-track adherence to improve the model that is

used to derive the observer.

Finally, the practical use of the estimated upper observer error bound for the optimization of
the safety intervals and train timetable scheduling must be investigated, among other

possibilities.

The theoretical developments are related again to the estimation of the upper observer error
bound, and ways to make it less conservative. A promising idea to correct this overestimation

is to follow the work of (Mondher Farza, M’Saad, and Busawon 2015; Fall 2015b), using the

so-called impulse continuous-discrete observer. It would resume in replacing the gain K ( y (t))
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in the observer by K ( &(t))e_"('_"’) . It will require a new like-Gronwall lemma, and probably a
different approach in the observer design methodology.

Another possible theoretical development is the transposition of the results to the multi-
sampling rate framework, and consider dedicated discrete time observer design tools. For

example, this could help to improve the design procedure for the robust position estimator

discussed in the second section of the third chapter.
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