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Thesis summary

Thousands of acts of DNA damage happen in multicellular organisms every day. This makes the process of
DNA repair, particularly of double-strand breaks, extremely important to study. Evidence grows to
support the hypothesis that chromatin organization plays a notable role in repair pathway choice. It has
been shown by multiple groups that the local chromatin organization around the site of a double-strand
break (DSB) can influence the repair outcome. For example, transcriptionally active chromatin marks such
as trimethylation of the lysine 36 of histone H3 (H3K36me3) and acetylation of a lysine 16 of the histone
H4 (H4K16ac) has been observed to promote homologous recombination (HR). Moreover, it has recently
been demonstrated that in case of DSBs induced in transcrtiptionally active regions in G1, where HR is not
possible due to the absence of a sister chromatid that should serve as a template, repair can even be
postponed till G2 phase where HR is enabled. On the other hand, it has been shown that the presence of
repressive chromatin marks, such as mono- and dimethylation of the lysine 20 of histone H4 (H4K20mel
and H4K20me2) favours the choice of non-homologous end joining (NHEJ) as the main repair pathway.
Results obtained in our laboratory a few years ago showed that in lamina-associated domains (LADs) that
represent highly repressed chromatin type HR is absolutely prohibited and cells even use potentially
deleterious microhomology-mediated end-joining (MMEJ) instead. It has also been observed in the lab
that in pericentric heterochromatin, another case when HR can potentially be deleterious, there are
certain precautions cells take to prevent undesirable consequences of its use by translocating breaks to
the periphery of a chromocenter for repair. DSB repair in heterochromatin, especially constitutive, is
much better studied than in euchromatin or facultative heterochromatin. It has been shown that
euchromatin is more susceptible to DNA damage and generally promotes HR but overall it requires more

detailed studies.

One of the chromatin types, relatively abundant in stem cells, that has yet never been studied in the field
of DNA repair is so-called bivalent chromatin. Bivalent domains is a name for chromatin stretches marked
with both permissive and repressive histone modifications. At first, the combination of H3K4me3 and
H3K27me3 was observed, which is now also named ‘classic bivalent domains’; later on H3K4me3 and
H3K9me3 or H3K36me2/3 and H3K9me3 containing bivalent domains were found in human mesenchymal

stem cells and preadipocytes and HEK293 cells respectively. For some years after their discovery, they

13



were considered a cell culture artifact by many scientists. However, within several last years, they were
observed in vivo by several groups, both during normal development and in cancer. All in all, we consider

it an interesting phenomenon, worth thorough investigation.

In our laboratory we are working on various aspects of DSB repair regulation by the chromatin context,
using various chromatin types, experimental approaches, and model organisms. In my project, | used
mouse ESCs as a model to study stem cell-specific features of chromatin influence over the DNA repair

process and study the specific features of DNA repair in bivalent chromatin.

The main questions | wanted to answer are the following:

Do bivalently marked regions represent a distinct chromatin type in terms of DNA repair?

Does chromatin structure affect repair of the same loci in the same cell line during differentiation?

Are there ES-specific features of DNA repair in the chromatin context?

The goal of my project was to study the kinetics and mechanisms of DSB repair and its relation to the
chromatin context that the breaks are induced. To this end, | was using CRISPR-Cas9 to induce double-
strand breaks (DSBs) in various chromatin contexts in ESCs or differentiated cells. | have generated stable
mES cell lines expressing wtCas9 fused to GFP and to a destabilisation domain (DD) that leads to constant
degradation of the wtCas9. In the presence of the chemical molecule called Shield1, Cas9 is stabilized. |
have observed that 8-10h after shield addition, Cas9GFP reaches its max levels and 10h after shield

withdrawal it drops almost to the levels observed in the absence of Shield1.

To induce DSBs at the different chromatin contexts, | use plasmids or in vitro transcribed guide RNAs that
target genomic locations decorated by different chromatin modifications. As one of the chromatin types
of our interest is bivalent domains that have not been studied before in terms of DNA repair and are often
observed at developmental regulators and thought to enable fast differentiation, we chose to induce
breaks at several bivalently marked genes. These genes (Pax6, Zicl, and Ngn2) are reported to be
expressed at very low levels in ESCs and in high levels in some differentiated cell types and regulate

neuronal development. These loci were compared with genes that are considered to be markers of

14



pluripotency (Nanog, Pou5f1, Tfcp2l1, Zfp42) that are expressed highly in mESCs and are shut down
during differentiation and with housekeeping genes (Actb, Gapdh) that are expressed all the time, and
genes that are reported to be totally repressed by H3K27me3 in ES cells (Hoxb1, Tdrd1, Mc4r). We also

sought to include some genes that belong to LADs in ES cells (Sox6, Ptn, Nrp1) into the comparison.

To this end, we designed two guide RNAs per gene to introduce DSBs into their promoters. We used the
Cas9-expressing NIH 3T3 cell line previously established in the lab to get a comparison with a

differentiated cell type.

To measure NHEJ efficiently as well as repair fidelity of the breaks induced in the above-described
chromatin contexts in mESCs and NIH3T3 cells we have employed a method named TIDE (Tracking of
Indels by Decomposition). TIDE is a sequencing-based method allowing us to quantify a percentage of
incorrectly repaired sequences in the population, as well as a percentage of particular insertions or
deletions. Our results from TIDE showed that ESCs are using non-homologous end joining (NHEJ) or other
error-prone pathways more than expected from the literature. Interestingly, we also observed that the
relative frequency of erroneous repair varies depending on a type of gene where the break was
introduced. ESCs are using error-prone repair less than 3T3 cells for housekeeping genes and
developmental regulators but, surprisingly, not for pluripotency markers, suggesting that both the
chromatin structure as well as the levels of transcription influence TIDE efficiency. The possibility that
disrupting a promoter of a pluripotency regulator we interfere with the cell cycle and increase the
proportion of cell in G1 leading to increase of NHEJ use was discharged as we could show that there are

no changes at the ESCs cell cycle profiles in all conditions.

We also noticed although the overall TIDE efficiency depends on the cell type, the pattern of insertions
and deletions (indels) is quite similar between ESCs and 3T3 cells and depends on guide RNAs per se. As
deletions less than 10nt are considered products of NHEJ and more than 10nt alternative end-joining
(AItEJ), our results suggest that the NHEJ/AItEJ balance does not largely depend on chromatin structure or

cell type.

Unfortunately, the TIDE method did not allow us to distinguish between the DNA that was not cut or
repaired using HR. To measure HR efficiency, we needed to modify the method, taking advantage of the

TIDE sensitivity of measuring small insertion efficiency after a break induction. To this end, for each guide
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RNA, we designed a specific HR template that consists of 1000bp homology arms (500bp at each side of
the break) and a 9 bp unique DNA that is inserted by HR at the break site. ESCs and 3T3 cells that stably
express Cas9 were co-transfected with a guide RNA together with a template, and the locus was amplified
by PCR and subjected to TIDE. The frequency of 9 bp insertion at each genomic location indicated the HR
frequency. Using this modified TIDE method (which we called HR-TIDE) we were able to get a comparison
of HR efficiency between different chromatin types, as well as between 3T3 and ES cells. We could see
that HR frequency in 3T3 cells was generally low, and never exceeded 20%. ES cells demonstrated greater
variability, from as low as 3% in some inactive up to 40% in active genes. In general, using HR-TIDE we
could not confirm previous reports that 80% of DSBs are repaired using HR, although it was giving a

greater contribution than in differentiated cells, which goes in line with current ideas in the field.

Comparing HR efficiency between different chromatin contexts we could confirm the observation that
transcriptionally active chromatin is rather promotive for it, whereas facultative heterochromatin
represents a repressive environment. We also observed that bivalent domains show intermediate levels
of HR, supporting the idea that they represent an intermediate state between active and repressed
chromatin. As for genes located in LADs, we saw some variability, with some genes totally repressed and
some demonstrating higher HR proficiency, which might be explained by their location inside or at a

border of domains.

Seeing differences in HR frequency we bared in mind that the cell cycle differs between ES and 3T3 cells,
the former having a much shorter G1 and thus a larger percentage of cells capable of this way of repair.
To address this question, we first decided to block 3T3 cells in the G2 phase of the cell cycle using RO
inhibitor. In accordance with previous reports, we could see a considerable increase in the percentage of
HR. However, we required complementary proof that extending the G1 phase of ES cells would lead to an
HR efficiency drop. In order to model such a situation without driving cells into a commitment for
differentiation, we decided to use 2i medium. 2i medium for culturing ES cells is serum-free and includes a
cocktail of two inhibitors (MEK inhibitor and GSK-3 inhibitor, that block MEK/ERK and Wnt/p-Catenin
signalling pathways respectively). However, we could not observe a significant drop in HR efficiency in
active genes, which indicates that cell cycle differences between cell types cannot be on their own
accountable for differences in a repair pathway choice. At the same time, we have noticed a decrease in

HR usage in inactive genes, which goes in line with the fact that bivalency is lost in 2i conditions.
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All in all, we have established an inducible and degradable system to assess DNA double-strand break
repair and we have put forwards several assays to study DNA repair pathway choice. Our data shed light
on the role of bivalent chromatin and facultative heterochromatin in the process of DNA repair pathway
choice. At the same time, we have proposed and optimized an easy and quick method of accessing HR
proficiency of a particular locus in a cellular context, which can be of practical use in designing knock-ins

using the CRISPR-Cas9 system.

As future perspectives, several experiments can be planned. Taking advantage of the shield inducible and
degradable Cas9 system | described at the beginning it is possible to perform ChIP experiments
monitoring the kinetics of appearance and disappearance of several DDR factors (yH2AX and 53BP1) at
different times after shield addition and withdrawal. As above, these experiments should be performed in
ES cells and 3T3 cells. To correlate actual break induction and repair with DDR mounting and switch off at
these breaks, LM-PCR should be performed at the same time points after shield addition and withdrawal

in all breaks and cell types.

However, to get a broader picture of the chromatin influence over DNA repair pathway choice, it would
be advantageous to perform a larger-scale experiment. Having optimized template design and cloning
process on the one hand, and with the availability of data on genome-editing efficiencies of different
guides genome-wide on the other hand, it can be possible to combine these two approaches. For this, a
library containing guides and corresponding templates could be cloned into non-integrating viral vectors

and used for infection of ES or differentiated cells and subsequent analysis of a repair profile using NGS.
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Thesis summary in French

Des milliers de dommages a I'ADN se produisent chaque jour au sein des organismes multicellulaires.
C'est pourquoi il est important d'étudier le processus de réparation de I'ADN, en particulier les cassures
des doubles brins. De plus en plus de preuves appuient I'hypotheése selon laquelle I'organisation de la
chromatine joue un rdle notable dans le choix de la voie de réparation. Il a été démontré que
I'organisation locale de la chromatine autour du site d'une cassure double brin de ’ADN (Double Strand
Break soit DSB en anglais) peut influencer le résultat de la réparation. Par exemple, la présence des
marques d’histones telles que la triméthylation de la lysine 36 de I'histone H3 (H3K36me3) et I'acétylation
d'une lysine 16 de I'histone H4 (H4K16ac), signe d’une chromatine transcriptionnellement active, ont été
observées pour promouvoir une réparatoin par le mécanisme de recombinaison homologue (Homologous
Recombination soit HR en anglais). De plus, il a récemment été démontré que dans le cas de DSBs induites
dans des régions transcrtiptionnellement actives en G1, ou la HR n'est pas possible en raison de I'absence
d'une chromatide soeur, la réparation peut étre différée a la phase G2 ou la HR est activée. D'autre part, il
a été démontré que la présence de marques d’histones corrélées avec de la chromatine répressives, telles
gue la mono- et diméthylation de la lysine 20 de I'histone H4 (H4K20me1l et H4K20me?2), favorise le choix
de I'assemblage non homologue des extrémités (Non Homologous End Joining soit NHEJ en anglais)
comme voie de réparation principale. Au sein de notre laboratoires, il a été montrer que dans les
domaines associés aux lamines (Lamins Associated Domains soit LADs en anglais) ou la chromatine
fortement réprimées, la réparation par HR est inhibée favorisant I'utilisation du mécanisme alternatif de
jonction des extrémités (alternativ End Joining soit alt-EJ an anglais) potentiellement délétére. Il a
également été observé en laboratoire que dans I'hétérochromatine péricentrique, le mécanisme de HR
est inhibé car il est potentiellement délétére, lors de translocations de séquences pouvant conduire a des
ruptures de chromosomes. La réparation de la DSB dans I'hétérochromatine, surtout constitutive, est
beaucoup mieux étudiée que dans I'euchromatine ou I'hétérochromatine facultative. Il a été démontré
gue I'euchromatine est plus sensible aux dommages causés par I'ADN et qu'elle favorise généralement les

RH, mais dans I'ensemble, elle nécessite des études plus détaillées.

L'un des types de chromatine, relativement abondant dans les cellules souches, qui n'a encore jamais été

étudié dans le domaine de la réparation de I'ADN est la chromatine dite bivalente. Domaines bivalents est

18



un nom pour les trongons de chromatine marqués a la fois par des modifications d'histones permissives et
répressives. Les premieres observations de domaines bivalents concernent la combinaison des marques
d’histone H3K4me3 et H3K27me3. Par la suite, les marques H3K4me3 et H3K9me3 ou H3K36me2/3 et
H3K9me3 contenant des domaines bivalents furent trouvés respectivement dans des cellules souches
mésenchymateuses humaines et des cellules préadipocytes et HEK293. Pendant quelques années apres
leur découverte, ces marques ont été considérées comme un artefact de culture cellulaire par de
nombreux scientifiques. Cependant, au cours des dernieres années, ils ont été observés in vivo par

plusieurs groupes, a la fois pendant le développement normal et dans lors de cancer.

Dans notre laboratoire, nous étudions comment le contexte chromatinien affecte la régulation des
mécanismes de réparation des DSB. Dans mon projet, j'ai étudiée l'influence des caractéristiques
spécifiques de la chromatine bivalente au sein de cellules souches de souris (Embryonic Stem Cell soit ESC

en anglais) sur le processus de réparation de I'ADN.

Au cours de ma thése, j’ai essayé de répondre aux questions telles que : les régions bivalentes
représentent elles un type de chromatine distinct en termes de réparation de I'ADN ? Le role de la
structure de la chromatine lors de la réparation des mémes loci est-il important au cours de la
différenciation cellulaire ? Il y a-t-il des caractéristiques spécifiques aux ESC lors de la réparation de I'ADN

dans le contexte de la chromatine ?

Le but de mon projet était d'étudier la cinétique et les mécanismes de réparation du DSB et sa relation
avec le contexte chromatinien dans lequel des DSB sont induites. A cette fin, j'ai utilisé le systeme CRISPR-
Cas9 pour induire des DSB dans divers contextes chromatiniens dans des ESC ou des cellules différenciées.
J'ai généré des lignées cellulaires mES stables exprimant une protéine Cas9 fusionnées a une GFP et a un
domaine dégron (DD). En présence de la drogue appelée Shieldl, le domaine dégron est masqué,
stabilisant I'expression de la protéine Cas9 dans les cellules. J'ai observé que entre 8 et 10h apres de la
drogue shield, la protéine Cas9GFP atteint son niveau maximum d’expression. De plus, 10h apreés le retrait

de la drogue shieldl, le niveau d’expression de la protéine Cas9GFP retombe a un niveau basal.

Pour induire des DSB dans les différents contextes chromatiniens, j'utilise des plasmides ou des ARN
guides transcrits in vitro qui ciblent des sites génomiques comportant différentes modifications

chromatiniennes. Nous avons choisi d’étudier des domaines bivalents qui n'ont jamais été étudiés
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auparavant en termes de réparation de I'ADN. Ces derniers sont souvent observés au niveau des
régulateurs du développement et sont impliqués dans la différenciation rapide des cellules ESC. Ainsi,
nous avons choisi d'induire des DSB sur plusieurs genes bivalemment marqués. Ces genes (Pax6, Zicl et
Ngn2) sont exprimés a des niveaux trés faibles dans les ESCs a des niveaux élevés dans certains types de
cellules différenciées et régulent le développement neuronal. Ces loci ont été comparés a des genes
considérés comme des marqueurs de pluripotence (Nanog, Pou5f1, Tfcp2l1, Zfp42) qui s'expriment
fortement dans les mESCs et sont éteint pendant la différenciation. Nous avons également choisi des
genes domestiques (Actb, Gapdh) qui sont exprimés en permanence, et des genes que I'on rapporte
comme totalement réprimés en présence des marques d’histones H3K27me3 dans les cellules ES (Hoxb1,
Tdrd1, Mc4r). Nous avons également cherché a inclure dans la comparaison certains genes appartenant

aux LADs dans les cellules ES (Sox6, Ptn, Nrp1).

A cette fin, nous avons congu deux guides d'ARN par géne pour introduire les DSB dans leurs promoteurs.
Nous avons utilisé la lignée cellulaire « Cas9-expressing NIH 3T3 » précédemment établie en laboratoire

pour obtenir une comparaison avec un type cellulaire différencié.

Pour mesurer efficacement la NHEJ ainsi que la fidélité de réparation des cassures induites dans les
contextes chromatiniens décrits ci-dessus dans les cellules mESCs et NIH3T3, nous avons utilisé une
méthode appelée TIDE (Tracking of Indels by Decomposition). TIDE est une méthode basée sur le
séquengage qui nous permet de quantifier un pourcentage de séquences mal réparées dans la population,
ainsi qu'un pourcentage d'insertion ou de suppression de séquences particuliéres. Les résultats de I'étude
TIDE ont montré que les ESC utilisent la NHEJ ou d'autres voies sujettes aux erreurs plus que prévu dans la
littérature. Fait intéressant, nous avons également observé que la fréquence relative des réparations
erronées varie selon le type de génes ou la cassure a été introduite. Les ESC utilisent moins les voies de
réparation sujettes aux erreurs que les cellules 3T3 pour les génes de ménage et les régulateurs du
développement. Cependant, nous avons pu observer |'inverse pour les génes marqueurs de pluripotence,
suggerant que la structure chromatinienne ainsi que les niveaux de transcription influencent tous les deux
I'efficacité de TIDE. Ce résultat s’explique par la possibilité qu'en perturbant un promoteur d'un régulateur

de
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pluripotence, on interfére avec le cycle cellulaire, augmentant la proportion de cellules dans la phase G1.
Les conséquences de cette perturbation pourrait étre une augmentation de I'utilisation de la NHEJ,
Cependant nous avons pu écarter cette hypothése en démontrant qu'il n'y a aucun changement dans les

profils de cycle cellulaire des ESCs dans toutes les conditions.

Nous avons également remarqué que bien que I'efficacité globale de TIDE dépend du type de cellule, le
schéma des insertions et des suppressions (indels) est assez similaire entre les cellules ESC et 3T3 et
dépend des ARN guides utilisé pour cibler la protéine Cas9. Comme les délétions inférieures a 10nt sont
considérées comme des produits de NHEJ et de plus de 10nt de AltEJ, nos résultats suggérent que

I'équilibre NHEJ/AItEJ ne dépend pas directement de la structure chromatiniennes ou du type cellulaire.

Malheureusement, la méthode TIDE ne nous a pas permis de distinguer I'ADN non coupé par Cas9 ou
réparé a l'aide de HR. Pour mesurer |'efficacité des RH, nous avons di modifier la méthode en tirant parti
de la sensibilité de TIDE pour mesurer |'efficacité des petites insertions aprés une induction de DSB. A
cette fin, pour chaque ARN guide utilisés, nous avons congu une séquence donneuse pour la HR spécifique
au locus ciblé contenant une homologie de 1000bp entourant une séquence ADN unique de Sbp. Les ESC
et les cellules 3T3 qui expriment de fagon stable Cas9 ont été co-transfectées avec un guide ARN et la
séquence homologue donneuse. Ensuite, le locus a été amplifié par PCR et soumis a une analyse TIDE. La
fréquence d'insertion de 9 pb a chaque emplacement génomique indiquait la fréquence des HR. En
utilisant la méthode TIDE ainsi modifiée (que nous avons appelée HR-TIDE), nous avons pu obtenir une
comparaison de I'efficacité HR entre différents types de chromatine, ainsi qu'entre les cellules 3T3 et ES.
Nous avons pu constater que la fréquence HR dans les cellules 3T3 était généralement faible et ne
dépassait jamais 20 %. Nous avons pu observer une plus grande variabilité dans les cellules ES, allant
d'aussi peu que 3 % chez certains inactifs jusqu'a 40 % chez les genes actifs. En général, en utilisant HR-
TIDE, nous n'avons pas pu confirmer les rapports précédents selon lesquels 80 % des ORD sont réparés a
I'aide de HR, bien qu'ils apportent une plus grande contribution que dans les cellules différenciées, ce qui

correspond aux idées actuelles sur le terrain.

En comparant I'efficacité de la HR entre différents contextes chromatiniens, nous avons pu confirmer
I'observation que les régions de chromatine activent transcriptionnellement sont plutét promotrice du m,

alors que I'hétérochromatine facultative représente un environnement répressif. Nous avons également
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observé que les domaines bivalents présentent des niveaux intermédiaires de HR, soutenant I'idée qu'ils
représentent un état intermédiaire entre la chromatine active et la chromatine refoulée. En ce qui
concerne les génes situés dans les LAD, nous avons observé une certaine variabilité, certains génes étant
totalement réprimés et d'autres présentant une compétence plus élevée en matiére de ressources

humaines, ce qui pourrait s'expliquer par leur emplacement a l'intérieur ou a la limite de domaines.

Voyant des différences dans la fréquence des HR, nous avons réalisé que le cycle cellulaire differe entre
les cellules ES et 3T3, la premiéere ayant un G1 beaucoup plus court et donc un plus grand pourcentage de
cellules capables de ce mode de réparation. Pour répondre a cette question, nous avons d'abord décidé
de bloquer les cellules 3T3 en phase G2 du cycle cellulaire a l'aide d'un inhibiteur RO. Conformément aux
rapports précédents, nous avons pu constater une augmentation considérable du pourcentage des
ressources humaines. Cependant, nous avions besoin d'une preuve complémentaire que I'extension de la
phase G1 des cellules ES entrainerait une baisse de I'efficacité RH. Afin de modéliser une telle situation
sans engager les cellules dans une démarche de différenciation, nous avons décidé d'utiliser un milieu de
culture cellulaire appelé « 2i medium ». Le 2i pour la culture des cellules ES est exempt de sérum et
comprend un cocktail de deux inhibiteurs (inhibiteur MEK et inhibiteur GSK-3, qui bloquent
respectivement les voies de signalisation MEK/ERK et Wnt/-Catenin). Cependant, nous n'avons pas pu
observer une baisse significative de |'efficacité des ressources humaines dans les genes actifs, ce qui
indique que les différences de cycle cellulaire entre les types cellulaires ne peuvent étre a elles seules
responsables des différences dans le choix d'une voie de réparation. Dans le méme temps, nous avons
remarqué une diminution de I'utilisation du mécanisme de HR dans les génes inactifs, ce qui correspond

au fait que la bivalence est perdue dans les conditions 2i.

Dans I'ensemble, nous avons établi un systeme inductible et dégradable pour évaluer la réparation des
DSB et nous avons proposé plusieurs essais pour étudier le choix de la voie de réparation de I'ADN. Nos
données ont mis en lumiére le role de la chromatine bivalente et de I'hétérochromatine facultative dans
le processus de choix de la voie de réparation de I'ADN. En méme temps, nous avons proposé et optimisé
une méthode simple et rapide d'accés a la compétence HR d'un lieu particulier dans un contexte
cellulaire, qui peut étre d'une utilité pratique dans la conception de mutants knock-in utilisant le systeme

CRISPR-Cas9.
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Comme perspectives d'avenir, plusieurs expériences peuvent étre planifiées. En tirant parti du systeme
Cas9 inductible et dégradable (DD/shield1), il est possible d'effectuer des expériences ChlP pour surveiller
la cinétique d'apparition et de disparition de plusieurs facteurs de réparation de ’ADN et des voies de
signalisation appelées DDR (Damage Response Repair) (H2AX et 53BP1) a différents moments apres ajout
et retrait de shield1. Comme ci-dessus, ces expériences doivent étre effectuées dans des cellules ES et des
cellules 3T3. Pour corréler I'induction et la réparation des DSB réelles avec I'augmentation de la DDR et
I'arrét de I'induction de ces DSB, la technique de LM-PCR, permettant de quantifier précisément le
nombre de cassures ADN, doit étre effectuée en méme temps apreés I'ajout et le retrait du shield1 dans

toutes cassures et types de cellules.

Cependant, pour obtenir une image plus large de l'influence de la chromatine sur le choix de la voie de
réparation de I'ADN, il serait avantageux d'effectuer une expérience a plus grande échelle. L'optimisation
de la conception de séquences homologue pour le HR-TIDE, d'une part, et la disponibilité de données sur
I'efficacité de I'édition du génome de différents guides a I'échelle du génome, d'autre part, permettent de
combiner ces deux approches. Pour ce faire, une bibliothéque contenant des ARN guides et des
séquences homologues correspondantes pourrait étre clonée dans des vecteurs viraux non intégratifs et
utilisée pour l'infection de cellules ES ou cellules différenciées, suivit d’'une analyse des profils de

réparation a l'aide de techniques NGS.
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Introduction

DNA damage and repair
DNA is constantly assaulted by various endogenous and exogenous damaging agents. Timely and faultless

correction of acquired damage is necessary for the health and normal survival of an organism. Failure to
properly repair mutilated DNA can lead to severe consequences such as mutagenesis, ageing, and cancer.

A big variety of DNA damaging factors leads to different kinds of damage.

DNA damage
As | previously mentioned, DNA damage can be classified by its origin as endogenous and exogenous.

Endogenous DNA damage is the one that our organism faces the most frequently, and it cannot be avoided.
One of the major sources of endogenous damage is reactive oxygen species (ROS). They form as by-products
of normal cellular processes such as cellular respiration and at low levels are involved in cellular
homeostasis as messengers in redox signalling reactions (Friedberg et al., 2006). However, at higher
concentrations, they can react with DNA bases causing damage by reacting with double bonds, methyl
groups, or sugar residues (Chatterjee & Walker, 2017; Winterbourn, 2008). Influence of ROS species, such
as electrophilic —OH radicals, lead to residues chemical modification, such as thymine glycol residue
generation of formamidopyrimidine formation (Chatterjee & Walker, 2017; Friedberg et al., 2006) or 8-oxo-
guanine formation (Chatterjee & Walker, 2017; Kasai & Mishimura, 1983). ROS can also break the DNA
backbone and induce single-strand break (SSB) formation (Chatterjee & Walker, 2017; Henner et al., 1983).

Another common endogenous cause of DNA damage is DNA replication. It can lead to base mismatches due
to replicative polymerase errors (which happens at rates between 10 and 102 per cell per generation)
(Chatterjee & Walker, 2017; T.A. Kunkel, 2009; Thomas A. Kunkel, 2004), or replication fork stalling or
collapse (Chatterjee & Walker, 2017; Viguera et al., 2001), which can lead to double-strand break (DSB)
formation. DNA can also be mutilated by various topoisomerase enzymes that act to remove superhelical
tension or other inappropriate DNA structures by introducing nicks or DSBs (Chatterjee & Walker, 2017;
Pommier et al., 2006; J. C. Wang, 2002).

Finally, spontaneous base deamination and DNA methylation (or rather, removal of methylated DNA bases)
can threaten genome integrity and need mechanisms for correction (Chatterjee & Walker, 2017; T. Lindahl

& Barnes, 2000; Tomas Lindahl, 1993; Yonekura et al., 2009).
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Exogenous DNA damaging agents can be more or less commonly encountered, and it is not possible to
completely avoid their influence during the lifespan. Perhaps the most abundant exogenous cause of DNA
damage is ultraviolet (UV) radiation. UV radiation is capable of affecting biological molecules in two ways:
by direct absorption and by energy transfer. In the case of absorption, energy received by a molecule can
cause photochemical alterations. Otherwise, UV energy is absorbed by molecules called photosensitizers
and then transferred to nearby molecules. Both ways could lead to DNA damage (Chatterjee & Walker,
2017). One of the main outcomes is a covalent link formation between two adjacent pyrimidines (so-called
bulky dimers), primarily cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4) photoproducts
(Chatterjee & Walker, 2017; Davies, 1995). Another possible outcome of UV exposure is DNA-protein
crosslinks and SSBs (Chatterjee & Walker, 2017; Friedberg et al., 2006).

lonizing radiation of various kinds, alpha, beta, gamma, neutrons or X-rays, is also abundant in the
environment, and can both direct (SSB occurrence) and indirect (by ROS production such as water radiolysis)
DNA damage (Chatterjee & Walker, 2017; Desouky et al., 2015; Friedberg et al., 2006). SSBs caused by
ionizing radiation (IR) have are unique as they tend to have 3’ phosphate or 3’phosphoglycolate and not 3’-
OH ends. Also, fragmented sugar derivatives can accumulate around break sites, additionally complicating
the repair process. Such modified ends mutt be processed by endonucleases such as Apurinic-apirimidinic
(AP) endonucleases, Polynucleotide kinase 3’-phospate (PNKP) or Tyrosyl-DNA phosphodiestherase 1
(TDP1) prior to repair (Chatterjee & Walker, 2017; El-Khamisy et al., 2007; Friedberg et al., 2006; Jilani et
al.,, 1999; T. Zhou et al., 2005). IR can also cause DSBs by inducing multiple damage events close to each

other at a short interval (Chatterjee & Walker, 2017; Hutchinson, 1985).

Food, tobacco smoke, industrial pollution, and byproducts from burning fuel can contain exogenous agents
that are harmful to DNA while microorganisms and fungi can produce natural toxins. Together, these factors
can lead to various DNA mutilations (Chatterjee & Walker, 2017). Exemplarily, alkylating agents present as
by-products of tobacco smoke or organic material burning, as well as in food or medication, could result in
adducted DNA base formation (Chatterjee & Walker, 2017; Friedberg et al., 2006; Singer & Kusmierek,
1982) and aromatic amines present in tobacco, colourants, fuels, etc. lead to base substitution and
frameshift mutations (Chatterjee & Walker, 2017; Skipper et al., 2010). Additionally, environmental stress
factors such as oxidative stress, hypoxia, heat or cold could result in DNA damage (Chatterjee & Walker,

2017; Gafter-Guvili et al., 2013; Kantidze et al., 2016; Luoto et al., 2013; Neutelings et al., 2013).
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Oxidative damage

DNA Toxins Electrophiles Tonizing radiation
damaging Alkylating agents UV radiation
agents Base deamination Crosslinking agent
Replication errors Aromatic compoands
Heat Cold Hypoxia
3
T 1 Tf OH o
mw/
oy G G
Damaged : L.& \
DNA | .
Mismatches Lesions Bulky lesions
M:"*'“ Single strand break Imr:- z:llnlers(:;ui crosstink
sic sites Single strand break
Adducts Thwhle wtomert fscodk Double strand break
Nucleotide excision repair
Base exclsd :
DNA repair Mismatch repair ; exclsion repair ) Interstrand crosslink Repair
pathways Base excision repair Single strund break repair Single strand break repair

Double strand break repair Double strand break repair

Translesion synthesis

Fig. 1 Types of DNA lesions, their sources and repair pathways. Adapted from (Chatterjee & Walker, 2017)
DNA repair
Subsequently, multiple repair mechanisms are required to combat the variety and frequency of genomic

lesions.

Reversal of DNA damage in an error-free way is possible with UV photolesions by non-enzymatic light-
induced photoreversal and with alkylated bases by specialized enzymes. These enzymes belong to two
families: O%-alkylguanine-DNA alkyltransferase that repairs O-alkylated and AlkB-related a-ketoglutarate-
dependent dioxygenases that repair N-alkylated DNA lesions (Chatterjee & Walker, 2017; Friedberg et al.,
2006).

Base excision repair (BER) pathway is used to correct lesions that do not cause large distortion of DNA helix
such as abasic sites and some base modifications. It begins with removing a modified base by DNA
glycosylases to create an abasic site by cleaving N-glycosylic bond linking the base to a sugar phosphate
backbone and proceeds with the cleavage of this apurinic-apyrimidinic (AP) site by an AP nuclease that

generates an SSB by cleaving the phosphodiester bond 5’ to it. The created SSB is then repaired with either
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the short-patch or long-patch repair pathway. An abasic site gets removed and the gap is filled by DNA
polymerase beta (Polf3) and is followed by DNA ligase 1 (LIG1) -mediated ligation. BER is predominantly
used in the G1 phase of the cell cycle (Chatterjee & Walker, 2017; Dianov & Hiibscher, 2013).

Nucleotide excision repair (NER) acts to repair bulky lesions and is divided into two mechanisms: global
genome NER (GG-NER) and transcription-coupled NER (TC-NER). They differ in a recognition step: while in
GG-NER a complex of XPC (Xeroderma Pigmentosum, complementation group C), RAD23b and CETN2
(Centrin2) scans genome for the presence of transient ssDNA caused by DNA helix unwinding at the place
of damage (Chatterjee & Walker, 2017; Nishi et al., 2005), TC-NER is initiated by Polll and involves CSA and
CSB proteins (Cockayne Syndrome proteins A and B) (Chatterjee & Walker, 2017; Friedberg et al., 2006;
Marteijn et al., 2014). Following repair process is the same for both pathways and involves pre-incision
complex (consisting of TFIIH (Transcription factor Il H), XPA (Xeroderma Pigmentosum, complementation
group A), RPA (Replication protein A), and XPG (Xeroderma Pigmentosum, complementation group G))
formation, XPF (Excision repair cross-complementing rodent repair deficiency, complementation group 4)-
ERCC1 and XPC-induced cleavage, gap filling by Pold,¢ or k, and ligation by Ligl of XRCC1-Lig3 (Chatterjee
& Walker, 2017; Friedberg et al., 2006).

Mismatch repair (MMR) is a post-replicative repair mechanism active in S and G2 phases of the cell cycle. It
is used to correct replication errors and thus plays a role in replication fidelity and genome maintenance
through generations (Chatterjee & Walker, 2017; T.A. Kunkel, 2009). It acts to correct mismatches that
occur due to replication errors as well as insertion-deletion loops at repetitive regions(Chatterjee & Walker,
2017; Friedberg et al., 2006). Various MSH (MutS homolog) proteins act to recognise lesions and initiate
Exonuclease 1 (EXO1)-mediated excision. Resulting gaps are processed by Pold, RFC (Replication factor C),

HMGB1 (high mobility group box 1 protein), and Ligl (Chatterjee & Walker, 2017).

Interstrand crosslink (ICL) repair is required when a covalent bond is formed between bases of two
complementary strands. It is mediated by FA (Fanconi anemia) proteins. FA family contains 21 functional
complementation groups, which are involved in ICL resistance (Chatterjee & Walker, 2017; Clauson et al.,
2013). Damage sites are recognised by FANCM protein together with FAAP24 (FA associated protein of 24
kDA) and Forkhead box protein C2 (MFH) (Chatterjee & Walker, 2017; Ciccia et al., 2007; Clauson et al.,

2013). MFH stimulates fork remodelling and FANCM is responsible for Holliday junction migration and
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creation of ssDNA gaps (Chatterjee & Walker, 2017; Clauson et al., 2013; Gari et al., 2008; Huang et al.,
2010). Presence of ssDNA results in RPA recruitment and ATR (Ataxia telangiectasia and Rad3-related
protein) signalling activation. In the context of the FA pathway, it leads to FANCE, FANCD2, and FANCI
activation by ATR target checkpoint kinase 1 (CHK1) as well as Mre11-Rad50-Nbs1 (MRN) complex assembly
(discussed in details later) (Chatterjee & Walker, 2017; Clauson et al., 2013; Duquette et al., 2012;
Smogorzewska et al., 2007; X. Wang et al., 2007). Other FA pathway core components get recruited to the
lesion and stimulate the excision of the DNA strand of the lesion by structure-specific endonucleases
(Chatterjee & Walker, 2017; Clauson et al., 2013). In replicating cells following repair is carried out by
translesion synthesis polymerases Pol 1,k,v, and Revl-like terminal deoxycytidyl transferase (REV1). These
polymerases are capable of carrying synthesis through aberrant DNA fragments, although with lower
fidelity (Chatterjee & Walker, 2017; Clauson et al., 2013; Minko et al., 2008; Raschle et al., 2008; Yamanaka
etal., 2010). In non-replicating cells, it depends on both GG-NER and TC-NER pathways and TLS polymerases
(Chatterjee & Walker, 2017; Clauson et al., 2013).

Translesion synthesis (TLS) is performed by a highly-conserved Y-family of DNA polymerases (consisting of
Pol 1,x,v, and REV1) or some polymerases belonging to other families (B, X or A), such as Pol 6,u,A, or C.
These polymerases are capable of carrying replication through DNA lesions but have considerably lower
fidelity as damaged bases often provide a misleading template (Chatterjee & Walker, 2017; Sale, 2013). It
has been shown that despite in some cases it is possible for a single polymerase to bypass a lesion (Johnson
et al., 1999; Sale, 2013) the bypass might also involve cooperation of different polymerases (Sale, 2013;
Shachar et al., 2009). Two models have been proposed for this phenomenon. The first one, the polymerase
switch model, suggests that TLS polymerases come sequentially in a two-step process, where an inserter
enzyme (usually Pol ), 1, or k) incorporates a nucleotide at the place of the DNA lesion and then is replaced
by an extender enzyme (Pol §) (Chatterjee & Walker, 2017; Korzhnev & Hadden, 2016; Washington et al.,
2002). The second one, the gap-filling model, implies that ssDNA stretches are left by replicative
polymerases and are subsequently filled by TLS polymerases (Chatterjee & Walker, 2017; Quinet et al.,
2016; Sale et al., 2009). As translesion synthesis is a highly mutagenic process it must be tightly regulated.
In mammalian cells it is achieved by concentrating them in replication factories (Sabbioneda et al., 2008;

Sale, 2013). As previously mentioned, TLS polymerases are also known to play a role in other repair
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pathways including NER, BER, and FA pathway, which further emphasises the importance of this
phenomenon (Chatterjee & Walker, 2017).

SSBs are repaired via three different pathways. First is the long patch single strand break repair (SSBR)
pathway where SSBs are detected by poly (ADP-ribose) polymerase 1 (PARP1) which is poly(ADP)-
ribosylated and quickly dissociates (Chatterjee & Walker, 2017; D’Amours et al., 1999), and the ends are
further processed by APE1 (apurinic-apyrimidinic endonuclease 1), PNKP (polynucleotide kinase 3’-
phosphate) and APTX (aprataxin). Subsequently, Flap endonuclease 1 (FEN1) removes the mutilated 5’ end
and the resulting ssDNA gap is filled by Polf3 and Pold/e and ligated by Ligl. In the short patch SSBR
pathways, breaks are recognised by APE1, and following steps converge with the long patch SSB pathway.
Another particularity of this pathway is the fact that gap-filling is performed exclusively by Polf3 and ligation
by Lig3 (Chatterjee & Walker, 2017, McKinnon & Caldecott, 2007). And the third one, the DNA
topoisomerase 1 (TOP1)-SSB pathway is a modification of the long-patch SSB repair where end processing
is performed by the TDP1, which acts to remove TOP1 (Keith W. Caldecott, 2008; Chatterjee & Walker,
2017).

Double-strand breaks are considered to be among the most deleterious and toxic kinds of DNA lesions as
in that case the second strand is not available as a repair template. Failure to repair them might lead to
severe consequences such as cancer or ageing, and it is therefore absolutely essential for cells to mend
them efficiently (Chatterjee & Walker, 2017; Mladenov et al., 2016; Thompson, 2012). Despite they pose a
serious threat to a cell in particular and to an organism in general, DSBs are quite abundant. They could
result from exposure to IR, UV, or small molecules (for example chemotherapy drugs), from environmental
stresses such as hyperosmotic stress, hypoxia or heat shock, and from replication stress, or be created on
purpose during lymphocyte maturation (V(D)J recombination of class-switch recombination) (Fillingham et
al., 2006; Lamarche et al., 2010; Ohnishi et al., 2009). As my work was focusing on DSB repair, | will discuss

mechanisms of their recognition and repair in more details in the next section.
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DSB recognition and DNA damage response
The process of DSB repair can be conceptually divided into three sequential steps: DSB recognition and DNA

damage response (DDR) signalling activation, repair pathway choice, and repair itself. We shall consider all
of them one by one.

DSB sensing and DDR activation

Unlike other kinds of DNA lesions, DSB recognition is thought to be based on the altered chromatin
structure rather than on the recognition of mutilated DNA by sensor proteins. Chromatin relaxation, an
essential step for DSB repair, is promoted by certain covalent histone modifications, as well as by ATP-
dependent chromatin remodelling allowing repair factors to assess the damage site (Murr et al., 2006;
Thompson, 2012; van Attikum & Gasser, 2009). ATM (Ataxia telangiectasia mutated) activation seems to be
uniformly seen as the initial step of DDR. However, the exact mechanism of this event remains controversial
(Blackford & Jackson, 2017; Thompson, 2012). It has been proposed that it may result from changes in
chromatin structure due to relieving topological constraints caused by supercoiling (Bakkenist & Kastan,

2003; Thompson, 2012).

It has been observed that in eukaryotes DDR proteins often accumulate in conglomerates called ionizing
radiation-induced foci (IRIF) as they were first observed in cells treated with IR. IRIFs are considered to be
an indication of ongoing repair of one or more DSB (Bekker-Jensen et al., 2006; Carney et al., 1998;
Fernandez-Capetillo et al.,, 2003; van Attikum & Gasser, 2009; Vignard et al., 2013). Among others,
components of MRN (MRE11-RAD50-NBS1) complex appear to accumulate at IRIFs (Fernandez-Capetillo et
al., 2003; van Attikum & Gasser, 2009).

It is widely accepted that in higher eukaryotic cells DSBs are sensed by MRN complex (Ji Hoon Lee & Paull,
2005; Ohnishi et al., 2009; Thompson, 2012; van Attikum & Gasser, 2009). Despite influencing the repair
pathway choice at later stages by favouring one of the pathways, homologous recombination (HR), it has
been shown that MRN complex is involved at the earliest steps of DSB recognition and is essential for DDR
activation in all repair pathways. It binds to free DNA ends at the break site and promotes ATM activation
(Blackford & Jackson, 2017; Carney et al., 1998; Dupré et al., 2006; Ji Hoon Lee & Paull, 2004; Lou et al.,
2006; Stucki et al., 2005; van Attikum & Gasser, 2009). Along with two other phosphoinositide 3-kinase
(P13K)-related kinases (PIKKs), ATR (ATM and Rad3-related kinase), and DNA-PKcs (DNA-dependent protein

kinase catalytic subunit), ATM plays a major role in DSB repair (Blackford & Jackson, 2017).
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In an inactive form, ATM exists as a catalytically inactive homodimer (Bakkenist & Kastan, 2003). Its activity
is modulated by post-translational modifications. Autophosphorylation at S1981 and acetylation at K3016
acetylation by Tip60 (60 kDa Tat-interactive protein) have been shown to lead to its dissociation into active
monomers (Bakkenist & Kastan, 2003; Dupré et al., 2006; Sun et al., 2005, 2007; Thompson, 2012).
However, the role of ATM autophosphorylation is controversial, which will be discussed later. Ribosylation
of ATM is required for its further activation and is performed by PARP1 in response to DNA damage.
Impairing this process may lead to delays in phosphorylation of ATM targets and abolished ATM foci
formation (Aguilar-Quesada et al., 2007; Haince et al., 2007; Nufez et al., 1998; Thompson, 2012). Thus,
the whole range of reactions from DDR signal spreading and DSB repair to an induction of a cell cycle block

is triggered by a pioneering sensory complex binding and ATM activation (fig. 2).
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Fig. 2 Schematic representation of early steps of DDR activation. DSBs are sensed by MRN complex, which binds to
free DNA ends and promotes ATM activation. This leads to multiple DNA repair proteins activation, including Mdc1,
53BP, CtIP and BRCA1 and promotes DNA repair. Intra-S and G2-M checkpoints and a cell cycle arrest are activated
by phosphorylation of checkpoint kinases Chk1 and Chk2, and p53. Adapted from (Blackford & Jackson, 2017)

YH2AX and MDC1 foci formation
ATM, ATR, and DNA-PKcs phosphorylate and thus activate a number of repair and checkpoint proteins but

one of its most important targets is the serine residue 5139 of histone variant H2AX (Burma et al., 2001;

Fillingham et al., 2006; Hanasoge & Ljungman, 2007; Hongyan Wang et al., 2005; Ward & Chen, 2001). The
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roles of ATM and DNA-PKcs in phosphorylating H2AX are largely overlapping. However, there some aspects
specific for each kinase (to be discussed later) (Stiff et al., 2004; Thompson, 2012). This phosphorylated
form is called YH2AX and it is one of the main signalling hallmarks of a DSB, independently of the way of its
induction and on whether it was caused by a hostile environment or induced in a controlled manner as a
part of cell homeostasis (Fillingham et al., 2006; Hua Tang Chen et al., 2000; Nazarov et al., 2003; Petersen
et al., 2001; Rogakou et al., 1998, 1999; Tomilin et al., 2001). In mammalian cells, it forms large domains,
up to megabases size (Rogakou et al., 1998; van Attikum & Gasser, 2009). YH2AX foci arise quickly, within
minutes after DNA damaging event has taken place, but continue to expand further for one to several hours
according to different studies (Y. Lee et al., 2019; Lobrich et al., 2010; Sharma et al., 2012; Staszewski et al.,
2008). Although H2AX-deficient mice are viable, they show increased genome instability and phenotypical
abnormalities, underlining its importance for DNA repair (Celeste et al., 2002, 2003; Thompson, 2012;
Weyemi et al., 2018). Another histone that is phosphorylated in the course of DDR signalling activation is
H2B. H2B phosphorylation on S14 is induced by IR and progresses to form foci. They colocalise with those
of YH2AX, although accumulating slower (Fernandez-Capetillo et al., 2004; Thompson, 2012). It has recently

been shown that kinases responsible for this process are Mst1 and 2 (Bitra et al., 2017; Pefani et al., 2018).

As DDR progresses, YH2AX is bound by the Mediator of DNA damage checkpoint protein 1 (MDC1), which
serves as a platform for a repair machinery assembly (Thompson, 2012). It directly interacts with multiple
proteins involved in DSB repair, such as ATM, MRN complex, 53BP1, and Structural maintenance of
chromosomes protein 1 (Smc1) (Stewart et al., 2003; Thompson, 2012). H2AX phosphorylation, as well as
MDC1 recruitment, also acts as a signal for activation of intra-S and G2-M checkpoints and a cell cycle arrest,
notably for phosphorylation of checkpoint kinases Chkl and Chk2, KRAB-associated protein 1 (Kap1) and
Smcl (Celeste et al., 2003; Fernandez-Capetillo et al., 2002; Stewart et al., 2003; Thompson, 2012). It has
been shown that phosphorylation and foci formation of H2AX and MDC1 is interdependent (Stewart et al.,
2003; Thompson, 2012). Direct interaction of MDC1 and YH2AX has been proven by co-crystallization, and
the relevance of this interaction has been demonstrated by analysing MDC1 mutant or null cells, which
have impaired accumulation of other DDR factors including 53BP1, NBS1 (Nijmegen breakage syndrome
protein 1), and phosphorylated ATM (Lou et al., 2006; Stucki et al., 2005; van Attikum & Gasser, 2009).
Therefore, MDC1 can be considered an early DDR factor, important for both recruitment and retention of

other players (Thompson, 2012; van Attikum & Gasser, 2009).
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Role of parylation in DDR
Another important process involved in DDR is poly-ADP-ribosylation, or parylation, a post-translational

modification crucial for DSB recognition. This modification is catalysed by PARP (Poly-ADP-Ribosyl
Polymerase) enzymes that covalently link poly-ADP-ribosyl chains to protein substrates. PARP1 and PARP2
are involved in both SSB and DSB recognition, whereas PARP3 specifically responds to DSBs (Beck, Robert,
et al., 2014; Boehler et al., 2011; Boulton et al., 1999; K. W. Caldecott, 2014; Rulten et al., 2011). PARP
enzymes mediate DDR activation in several ways. First, some DDR factors have a PAR motif and are
therefore recruited to damage sites in a PAR-dependent manner. Second, parylation of DDR and
downstream repair factors might influence their catalytic activity or capability to bind to DNA or their
interaction factors. In particular, parylation facilitates the recruitment of MRN complex and ATM kinase to
a break site (Beck, Robert, et al., 2014; Bryant et al., 2009). Further on repair process, parylation plays a
role in a pathway choice by promoting end resection, and therefore favouring homologous recombination
and microhomology-mediated end joining (Beck, Boehler, et al., 2014; Langelier et al., 2014; Luijsterburg et
al., 2016). However, PARP3 is involved in non-homologous end-joining by limiting end-resection as well as
by promoting X-ray repair cross-complementing protein 1 (XRCC4)-Ligd mediated ligation (Beck, Boehler,
et al., 2014; K. W. Caldecott, 2014; Fenton et al., 2013; Rulten et al., 2011). Therefore, PARP enzymes play

an important and complex role in DSB repair from the first to the last steps of this process.

Signal transduction and amplification. DDR kinases
As | mentioned before, break recognition leads to an activation of ATM, ATR, and DNA-PKcs kinases that all

belong to the phosphatidylinositol-3-kinase family. These kinases mediate signal transduction and

amplification via YH2AX foci formation and play a role in downstream DNA repair proteins activation.

ATM is the central kinase involved in DDR. It was identified in 1995 a single mutated gene responsible for a
rare genetic disorder, ataxia telangiectasia occurrence (Blackford & Jackson, 2017; K. Savitsky et al., 1995).
Ataxia telangiectasia is characterised by dilated blood vessels, progressive neurodegeneration, and
immunodeficiency (Blackford & Jackson, 2017). The activation of ATM proceeds as dissociation of
catalytically inactive homodimers into active monomers (Bakkenist & Kastan, 2003; Blackford & Jackson,
2017; Thompson, 2012). Among post-translational modifications that lead to its activation
autophosphorylation at $1981 was the first to be discovered (Bakkenist & Kastan, 2003). However, its role

remains controversial as on the one hand it has been reported to be the process initiated as the very first
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step of DDR stimulated by chromatin changes upon the DSB occurrence, and on the other hand, it has been
shown dispensable for ATM functioning (Bakkenist & Kastan, 2003; Blackford & Jackson, 2017; Kozlov et al.,
2006; Pellegrini et al., 2006; Thompson, 2012). Another possible mechanism for early ATM activation is
acetylation by Tip60, which is attracted to the break site by exposed H3K9me3 nucleosomes, on K3016
(Blackford & Jackson, 2017; Sun et al., 2005, 2007). It is certain, however, that whatever causes its initial
activation, it is later enhanced by ATM direct interaction with the C-terminal domain of Nbs1, a component
of MRN complex. This interaction is stabilised in the presence of free DNA ends (Blackford & Jackson, 2017;
Falck et al., 2005). Nevertheless, MRN-independent mechanisms of ATM activation have also been shown
in multiple studies (Blackford & Jackson, 2017; Guo et al.,, 2010; Olcina et al., 2013). Activated ATM
phosphorylates a vast variety of targets, influencing the process of DSB repair at all levels: break recognition
and DDR activation, DDR enhancement, repair pathway choice and stimulation, cell cycle checkpoint
activation, and apoptosis. Its role in break recognition and DDR activation has already been discussed.
Further on ATM promotes DDR by phosphorylating H2AX into YH2AX and MDC1, the major YH2AX reader,
promoting its dimerization and stabilisation (Blackford & Jackson, 2017; Burma et al., 2001; Jungmichel et
al., 2012; lJinping Liu et al.,, 2012; Thompson, 2012). MDC1 further recruits the MRN complex, thus
promoting additional ATM accumulation and H2AX phosphorylation, thus providing a positive feedback
loop for repair foci formation (Blackford & Jackson, 2017). Moreover, ATM has also been shown to be
involved in chromatin relaxation and remodelling around the break (Goodarzi et al., 2008; Moyal et al.,
2011; Ziv et al., 2006). ATM also promotes recruitment downstream repair proteins to the break site. It was
shown to predominantly stimulate HR by phosphorylating CtBP-interacting protein (CtIP), a major MRN
interactor that promotes end-resection (Blackford & Jackson, 2017; Sartori et al., 2007; Shibata et al., 2011).
However, ATM is also able to stimulate DSB repair in G1 in a way that requires ATM, DNA-PK, MRN complex
and Artemis activity and by promoting NHEJ due to its redundant functions with XRCC4-like factor (XLF)
(Blackford & Jackson, 2017; Riballo et al., 2004; Zha et al., 2011). Additionally, it phosphorylates Chk2 and
p53 causing a cell cycle block at G2/M transition (Banin et al., 1998; Blackford & Jackson, 2017; Matsumura
et al., 2015; Siliciano et al., 1997).

The existence of DNA-PK was presupposed in 1985 when it was observed that the addition of double-
stranded DNA (dsDNA) into Xenopus and Arbacia egg extracts promoted phosphorylation of several

proteins and named DNA-dependent protein kinase (Blackford & Jackson, 2017; Walker et al., 1985). This
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kinase was purified five years later (Blackford & Jackson, 2017; Carter et al., 1990; Jackson et al., 1990; Lees-
Miller et al., 1990). DNA-PKcs is recruited to DNA damage sites by Ku70/Ku80 (Ku autoantigen protein p70/80
homolog) heterodimers and form DNA-PK complex that enhances the catalytic activity of the kinase
(Blackford & Jackson, 2017; Gell & Jackson, 1999; Singleton et al., 1999). DNA-PKcs acts cooperatively with
ATM to promote YH2AX signal spreading and DDR activation (Firsanov et al., 2011; Stiff et al., 2004; Hongyan
Wang et al., 2005). It also plays a crucial role in NHEJ, and multiple target proteins have been suggested
(Blackford & Jackson, 2017; Enriquez-Rios et al., 2017). Some prominent NHEJ players as Artemis, are
among the confirmed targets (Blackford & Jackson, 2017; W. Jiang et al., 2015; Malu et al., 2012). While
DNA-PKcs phosphorylation by ATM leads to end-processing by promoting Artemis recruitment, additional
autophosphorylation is necessary for it to act on other targets. The exact target proteins are unknown but
the importance of DNA-PKcs is affirmed by the fact that its knock-out is lethal in mice during embryonic
development by E16.5 and on the cellular level leads to an inability to multiple NHEJ defects similar to
XRCC4 and XLF deficient cells (Blackford & Jackson, 2017; W. Jiang et al., 2015). Particularly, it was shown
to play an important role in regulating end-ligation by promoting the transition between two synaptic
complexes (Blackford & Jackson, 2017; Graham et al., 2016; W. Jiang et al., 2015). At the same time, DNA-
PKcs phosphorylates RPA and activates the S-phase cell cycle checkpoint (Ashley et al., 2014). Activated RPA
mediates the recruitment of PALB2 (Partner and localizer of BRCA2), thus promoting DSB repair progression
(Murphy et al., 2014). On the other hand, it has also been shown that Chkl promotes DNA-PK activity in
order to stimulate fast repair by NHEJ and prevent cell cycle block (Goudelock et al., 2003; Shimura et al.,

2007).

ATR is an analogue of the yeast protein Mec1 (Mitosis entry checkpoint 1) that was first discovered as Rad3
in a radiosensitivity screen and later as being essential for cell cycle checkpoints (Blackford & Jackson, 2017;
Nasim & Smith, 1975; Weinert et al., 1994). A human ATR protein was cloned independently by two
different groups (Bentley et al., 1996; Blackford & Jackson, 2017; Cimprich et al., 1996). ATR kinase plays a
crucial role in replication stress response. It gets recruited ssDNA in response to various kinds of genotoxic
stress. Therefore, it accumulates at DSB sites after resection but also at stalled replication forks. Interaction
of ATR with RPA allows an ATRIP (ATR-interacting protein) cofactor recruitment and binding to ATR
(Blackford & Jackson, 2017; Zou & Elledge, 2003). ATR-ATRIP heterodimer formation is essential for ATR

activation. ATR recruitment alone is not sufficient for the optimal response and requires cofactors such as
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TopBP1 (DNA topoisomerase 2-binding protein 1) or ETAA1 (Ewing's tumor-associated antigen 1) (Bass et
al., 2016; Blackford & Jackson, 2017; S. Feng et al., 2016; Haahr et al., 2016; Kumagai et al., 2006; Mordes
et al., 2008). Activated ATR promotes YH2AX signal spreading and leads to Chkl phosphorylation and
activation, which also causes cell cycle block in the G2/M phase (Blackford & Jackson, 2017; Hui & Helen,
2001; Q. Liu et al., 2000). ATR has also some unique targets related to replication stress management,
including FANCI protein, which promotes dormant origin firing and FANCD2 mono-ubiquitylation and
therefore FA pathway progression (Andreassen et al., 2004; Blackford & Jackson, 2017; Y. H. Chen et al.,
2015; Ishiai et al., 2008).

In G1/S checkpoint is thought to be mainly regulated by ATM, whereas intra-S and G2/M are controlled by
both ATM and ATR cooperatively (Adams et al., 2006; Blackford & Jackson, 2017; Cuadrado et al., 2006;
Jazayeri et al., 2006; Myers & Cortez, 2006). All PIKKs are strictly regulated by cofactors required for DNA
binding: Nbs1, ATRIP, and Ku80 for ATM, ATR, and DNA-PKcs respectively. Therefore their appropriate
involvement is achieved throughout the cell cycle and three DNA repair PIKKs are acting cooperatively in

the process of DSB repair (fig. 3).
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Fig. 3 Roles of PI3KKs in the maintenance of genome stability. Adapted from (Blackford & Jackson, 2017)

Role of ubiquitylation and SUMOylation in DSB repair
Histone ubiquitylation and SUMOylation (Small ubiquitin-like modifier) play a prominent role in DRR and

repair progression. As it was mentioned before, YH2AX recruits MDC1, which plays a role in both signal

spreading by creating a positive feedback loop with ATM and DNA repair progression by serving as a
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platform for downstream repair complexes assembly. Multiple ubiquitylation steps are performed to
ensure this process. As a first step, H2AX acetylation enabled by Tip60 facilitated H2AX monoubiquitylation
at K118/119. Not all players involved in this process are known to date but Ubc13 (ubiquitin-conjugating
enzyme 13) E2 ligase have been shown to play a role in it (Ikura et al., 2007; X. Jiang et al., 2010; Thompson,
2012; G. Y. Zhao et al., 2007).

Also, PRC1 (Polycomp repressive complex 1) gets recruited to DSBs and its subunits, Rnf2 (RING finger
protein 2) and Bmil (B cell-specific Moloney murine leukemia virus integration site 1), have been shown to
mediate the monoubiquitylation of H2A and H2AX on K119 (Ismail et al., 2010; Thompson, 2012). This
modification plays a role in the recruitment of DDR proteins and IRIFs formation. RNF2/BMI1 complex
controls DDR in an ATM-dependent manner and their knockdown leads to increased sensitivity to IR and

compromised DSB repair (Facchino et al., 2010; Pan et al., 2011; Thompson, 2012).

The best-established E3 ligases involved in DSB repair are RNF8 (RING finger protein 8), CHFR (checkpoint
protein with FHA and RING domain), and RNF168 (RING finger protein 168). All three of them use Ubc13 an
E2 ligase (Panier & Durocher, 2009; Thompson, 2012). RNF8 recruitment is facilitated by MDC1 (Huen et
al., 2007; Mailand et al., 2007; Thompson, 2012). RNF8 ubiquitylates histones H1 and H2A, H2AX, and H2B
to promote binding of repair factors such as 53BP1 (TP53-binding proteinl), RAP80 (Receptor-associated
protein 80) and BRCA1 (Breast cancer type 1 susceptibility protein) (Huen et al., 2007; Mandemaker et al.,
2017; Sobhian et al., 2007; Thompson, 2012).

Another E3-ligase, RNF168, is recruited in an RNF8-dependent manner to enhance the signal by
ubiquitylation of H1 and H2A histones (Mandemaker et al., 2017; Thompson, 2012). Upon irradiation,
RNF168 gets stabilized by HERC2 (HECT domain and RCC1-like domain-containing protein 2) (Bekker-Jensen
& Mailand, 2010; Thompson, 2012). It colocalizes with YH2AX at damage sites and promotes amplification
of the ubiquitylation established by RNF8 and PRC1 complex (Doil et al., 2009; Thompson, 2012).

Finally, CHFR (checkpoint protein with FHA and RING domain) E3 ligase, which has considerable structural
similarity to RNF8, has been shown to act synergistically with it in promoting ATM activation and cell cycle

checkpoints activation (Bothos et al., 2003; Thompson, 2012; J. Wu et al., 2011).
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Fig. 3

Polyubiquitylation in the process of DSB repair. Adapted from (van Attikum & Gasser, 2009).

Ubiquitination-dependent DDR promotion is limited by deubiquitylation enzymes. One of the enzymes
involved in this process is BRCC36 (BRCA-containing complex 36), a member of the RAP80-ABRA1-BRCA1-
BARD1-BRCC36 complex (Ng et al., 2016; Thompson, 2012; B. Wang & Elledge, 2007), Other prominent
players such as USP3, USP11 and USP16 (ubiquitin-specific proteases 3, 11 and 16) help to regulate
ubiquitylation-mediated signalling and fine-tune the extent of DDR activation (Nicassio et al., 2007;

Thompson, 2012; Wiltshire et al., 2010; Z. Zhang et al., 2014).
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DDR activation consequences
The presence of mutilated DNA regions is unfavourable in the course of a cell cycle progression. Therefore,

cell cycle arrest mechanisms, known as cell cycle checkpoints have developed in cells. Such precautions
ensure that existing DNA damage is repaired before the transition to the next stage. However, if DNA

damage is too profound or impossible to fix, cells undergo senescence or apoptosis.

Cell cycle arrest is one of the main and immediate DDR activation consequences. In the course of a cell
cycle that constitutes from post-mitotic gap (G1) DNA replication (S), post-growth (G2), and mitotic (M)
phases, all transitions are tightly orchestrated by cyclins and cyclin-dependent kinases (Cdks) (Schéfer,
1998). Cell cycle checkpoints are signaling pathways that are intended to sense DNA damage or other
mistakes such as erroneous chromosome segregation and delay cell cycle progression to facilitate the repair
or eliminate cells that are beyond it (Bartek & Lukas, 2003; B. S. Zhou & Elledge, 2000). There are three
checkpoints. G1/S checkpoint is activated after ATM-dependent Chk2 phosphorylation (Bartek & Lukas,
2003; Falck et al., 2001; Matsuoka et al., 1998). ATM and Chk2 in turn mediate Cdc25A (M-phase inducer
phosphatase 1) phosphorylation and sequential degradation which promotes p53 stabilisation followed by
p21 expression and leads to Cdk inhibition and cell cycle progression abrogation (Bartek & Lukas, 2003;
D’Adda Di Fagagna, 2008; Falck et al., 2001). Intra-S checkpoint is activated by ATR-dependent Chk1l
phosphorylation (Bartek & Lukas, 2003; Hui & Helen, 2001). It results in inhibition of origin firing and
therefore slowing down the replication process in unperturbed conditions to avoid replication stress (Ge &
Blow, 2010; Moiseeva et al., 2019; Sgrensen et al., 2003). Activation of G2/M checkpoint relies on ATM-
and ATR-dependent phosphorylation for Chk2 and Chk1 (Ahn et al., 2000; Bahassi et al., 2006; Bartek &
Lukas, 2003; Gatei et al., 2003; Z. Xiao et al., 2003). Activated Chk1 blocks Cdc2/CyclinB activation through

targeting Cdc25C to prevent mitosis (Stanford & Ruderman, 2005).

It has been shown that too prolonged checkpoint activation is perceived as unrepairable damage by a cell.
One of the proteins activated by ATM is p53, which has a dual role in balancing between repair and

apoptosis depending on the degree and continuance of activation (D’Adda Di Fagagna, 2008).
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Fig. 4 Consequences of DNA damage-induced Chkl and Chk2 mediated cell cycle checkpoint activation. Together,
they phosphorilate multiple targets, including Cdc25Aand Cdc25C, resulting in DNA repair activation, and finally cell
cycle arrest or apoptosis. Adapted from (Bartek & Lukas, 2003).

Double-strand break repair pathways
As discussed above, DNA damage and particularly DSBs can represent a considerable danger for a cell, and

therefore repair should be guaranteed, so several pathways have been developed in mammalian cells to
ensure it. After a break recognition and DDR activation one of either two major pathways, non-homologous
end joining (NHEJ), homologous recombination (HR), or two minor pathways, microhomology-mediated
end joining (MMEJ), also sometimes referred to as alternative end joining (Alt-EJ), or single-strand annealing

(SSA) can be employed (Sallmyr & Tomkinson, 2018; Scully et al., 2019).

Non-homologous end joining
Non-homologous end joining, which is also called classical non-homologous end-joining (cNHEJ) in contrast

to alternative end-joining (Alt-EJ), is considered to be a predominantly used pathway in higher eukaryotes
(Ferguson et al., 2000; Karanjawala et al., 1999; Scully et al., 2019). It has been reported that approximately
80% of DSBs are repaired using this mechanism (Tichy et al., 2010). NHEJ is initiated by Ku70/Ku80

heterodimer binding to free DNA ends (Britton et al., 2013; Scully et al., 2019). Ku proteins are abundant in
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the nucleus and have a high affinity to free DNA ends which allows them to bind to a break site within 5
seconds after its occurrence (Fell & Schild-Poulter, 2015; Mari et al., 2006). It serves a dual role of, on the
one hand, protecting DNA ends from degradation and keeping them together for further repair, and on the
other hand, preventing resection (Fell & Schild-Poulter, 2015; Mimitou & Keeney, 2018). It also serves as a
platform for DNA repair machinery assembly (Costantini et al., 2007; Fell & Schild-Poulter, 2015; Hsu et al.,
2002; Rivera-Calzada et al., 2007; Yano et al., 2008). Another important function of Ku70/80 heterodimer
is in DDR regulation by modulating ATM activity and in preventing apoptosis by binding and inhibiting a pro-
apoptotic factor Bax (Amsel et al., 2008; Fell & Schild-Poulter, 2015; Tomimatsu et al., 2007; X. Y. Zhou et
al., 2002). DNA-PKcs binds to Ku70/80 heterodimer to form an active DNA-PK complex. DNA-PKcs mediates
tethering of broken ends (Fell & Schild-Poulter, 2015; Hammel et al., 2010). DNA-PK autophosphorylates its
own subunits and phosphorylates several other target molecules including Artemis, PNKP, XRCC4, XLF, and
DNA ligase IV (Fell & Schild-Poulter, 2015; Goodarzi et al., 2006; Hammel et al., 2010; Y. G. Wang et al.,
2004; Y. Yu et al., 2003, 2008). In case end-processing is required before ligation it can be performed by
various enzymes including PNKP (polynucleotide kinase/phosphatase), Artemis, Exol, Tdp1, and others in
order to remove 3’ phosphate ends, 3’-phosphoglycolates, or 5'-hydroxyl groups and generate 5’ phosphate
ends required for further ligation (Fell & Schild-Poulter, 2015; Mahaney et al., 2009). The next step is
ligation, which is performed by a ligase complex of DNA Ligase IV with XRCC4 and XLF, co-factors required
for its stabilisation and stimulation (Ahnesorg et al., 2006; Fell & Schild-Poulter, 2015; Grawunder et al.,
1997; Nick McElhinny et al., 2000). However, it has recently been shown that a small subset of breaks
undergoes resection-dependent NHEJ repair enabled by Artemis and CtIP cooperation and resection
performed by MRE11 (Meiotic recombination 11 homolog 1) and EXO1 (Biehs et al., 2017; Shibata et al.,
2018). Finally, Ku dimers have to be removed from repaired DNA. The exact mechanism of how that
happens remains unclear. However, two mechanisms have been proposed: ubiquitylation-driven
degradation or DNA nicking that would allow Ku to escape (Fell & Schild-Poulter, 2015; Langerak et al.,
2011; Postow et al., 2008).
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Fig. 5 Schematic representation of cNHEJ pathway. It is initiated by Ku70/Ku80 binding to free DNA ends and a
subsequent DNAPKcs recruitment and an active DNA-PK complex formation. DNA-PK mediates tethering of broken
ends, autophosphorylates its own subunits and phosphorylates other targets including Artemis, PNKP, XRCC4, XLF,
and DNA ligase IV. If necessary, end-processing is performed by PNKP, Artemis, WRN, APLF, Pol u/A, and others. DNA
Ligase IV, XRCC4, and XLF perform ligation. Finally, Ku heterodimers are removed, presumably by proteasomal

degradation. Adapted from (Fell & Schild-Poulter, 2015).

Homologous recombination

The homologous recombination repair pathway uses a sister chromatid as a template for restoring
mutilated DNA. Therefore, this pathway is error-free but restricted to S and G2 phases of the cell cycle
(Scully et al., 2019; Takata et al., 1998). HR is promoted by MRN complex and resection is initiated by its
subunit MRE11(T. Liu & Huang, 2016; Shibata et al., 2014; Stracker & Petrini, 2011). MRN complex also
recruits CtIP (CTBP interacting protein) that further promotes end-resection (Escribano-Diaz et al., 2013;
Sartori et al., 2007; Stracker & Petrini, 2011). CtIP recruits BRCA1 to prevent binding of RIF1 (Rap1l-

interacting factor 1 homolog), a protein involved in NHEJ initiation (Escribano-Diaz et al., 2013; T. Liu &
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Huang, 2016). End-resection is then performed by EXO1 (Exonucleasel) by 5’ to 3’ digestion of DNA ends,
which leads to the formation of single-strand DNA (ssDNA) overhangs (Cannavo et al., 2013; Eid et al., 2010;
T. Liu & Huang, 2016). ssDNA is then bound by RPA (replication protein A) heterotrimer that protects it from
degradation (San Filippo et al., 2008; Van Komen et al., 2002). MRN complex promotes Bloom syndrome
helicase (BLM) recruitment, which together with DNA2 (DNA replication ATP-dependent helicase/nuclease
DNA2) promotes extended resection (Daley et al., 2017; Nimonkar et al., 2011; Scully et al., 2019). Rad51
recombinase must be recruited to a break site by interacting with RPA, and later replace it as to HR could
proceed (San Filippo et al., 2008; Scully et al., 2019). To that end, BRCA2 competes with RPA for binding
ssDNA and interacts with RAD51 monomers and BRCAL1 via its partner PALB2 to promote RAD51 filament
formation (Jensen et al., 2010, 2013; Prakash et al., 2015; Scully et al., 2019; Stark et al., 2004; Wright et
al., 2018; Xia et al., 2006; Yang et al., 2005; F. Zhang et al., 2009). RAD51 nucleoprotein filaments stabilized
by RAD54 are involved in the homology search process that is a key step of HR facilitated by BRCA1-BARD1
(BRCA1-associated RING domain protein 1) (Sanchez et al., 2013; Scully et al., 2019; Wright et al., 2018; W.
Zhao et al., 2017). RAD51 nucleofilaments invade a sister chromatid in a RAD54-dependent manner and
form a three-strand helix intermediate which is further resolved into a heteroduplex formed by an invading
strand and a complementary strand (Z. Chen et al., 2008; Mazina & Mazin, 2004; van der Heijden et al.,
2008; Wright et al., 2018). The dissociated DNA strand is displaced into a displacement-loop (D-loop) and
protected by RPA (Daley et al., 2014; Wright et al., 2018). At this step RAD51 filament is disassembled in an
ATP-dependent manner (Scully et al., 2019; van der Heijden et al., 2008). Invading strand extension is
performed by DNA polymerase 0, although translesion synthesis DNA polymerases could also be involved
in this process (McVey et al., 2016; Scully et al., 2019). PCNA (Proliferating cell nuclear antigen) and its
loader RFC1-5 has been shown to be required for the initiation of DNA synthesis by Pold during HR (X. Li et
al., 2009; Wright et al., 2018). The final steps of HR can be conducted in three different ways. Synthesis-
dependent strand annealing pathway (SDSA), where only one strand undergoes invasion. This results in the
annealing of the non-invading strand with the displaced strand once D-loop is unwound and promotes HR
termination. This is a non-crossover and therefore preferable pathway as it does not involve a Holliday
junction formation (Scully et al.,, 2019; Westmoreland & Resnick, 2013; Wright et al., 2018). Another

pathway is double Holliday junction formation which happens due to the second strand invasion and can
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be resolved with or without crossover (Osman et al., 2003; Scully et al., 2019; Wright et al., 2018; Wyatt et
al., 2017).
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Fig. 6 Schematic representation of HR pathway. DSB is sensed by MRN complex, which recruits CtIP. Mrell initiates
resection, which is further conducted by EXO1, BLM, and DNA2, and Ku heterodimers are displaced from ssDNA.
Resected DNA is protected by RPA, which is further displaced by Rad51, resulting in RAD51 nucleofilament formation.
After RAD51-mediated strand invasion, facilitated by BRCA1 and BARD1, nascent strand is synthesised by either SDSA,
Holliday junction formation, or LTGC. Adapted from (Scully et al., 2019).
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Finally, during replication long-tract gene conversion (LTGC) and break-induced replication (BIR) might be
deployed, in which DNA synthesis induced by HR proceeds to a large distance from the break sites. Those
pathways are highly mutagenic and are therefore suppressed in mammals and could mostly be observed if

one of the key HR players is dysfunctional (Chandramouly et al., 2013; Scully et al., 2019; Willis et al., 2017).

Microhomology-mediated end joining
MMEJ (or Alt-EJ) pathway was for a long time considered as a backup for the major ones. It is initiated by

end resection and requires short (2-20 bp) 3’ ssDNA overhangs (Seol et al., 2018; Welcker et al., 2000;
Wright et al., 2018). It is Ku-independent and require proteins known to be a part of HR end resection
machinery and is more prominent if NHEJ or HR is impaired (e.g. in KU or BRCA1-deficient cells) and utilizes
microhomologies in close proximity to a break site (Boboila et al., 2010; Ceccaldi et al., 2015; Scully et al.,
2019; Wright et al., 2018). This pathway leads to small deletions so it was also assumed that other
mechanisms, which are error-free or cause minimal error would be preferable. Break recognition is thought
to be mediated by PARP1 that competes with Ku dimer (Badie et al., 2015; Mansour et al., 2010, 2013).
After break recognition, the initial steps of MMEJ are common with HR. It is also dependent on Mrel1l and
CtIP resection activity (Badie et al., 2015; Truong et al., 2013; Wright et al., 2018; Xie et al., 2009). However,
BLM/Exol complex that promotes long-range resection is inhibiting MMEJ (Daley et al., 2015; Wright et al.,
2018;Y. Wu et al., 2015). Mechanisms of microhomology search are not yet clear, but once it is found ssDNA
gaps are filled by Pol6 (Kent et al., 2015; Mateos-Gomez et al., 2017; Scully et al., 2019; Wright et al., 2018).
PolO contains a Rad51 domain that allows it to inhibit Rad51-mediated recombination as well as misplaces
RPA that is known to promote HR and negatively regulate MMEJ (Ahrabi et al., 2016; Ceccaldi et al., 2015;
S. K. Deng et al., 2014; Mateos-Gomez et al., 2015, 2017; Scully et al., 2019; Wright et al., 2018). The final
ligation step is performed by the XRCC1-Lig3 complex (Audebert et al., 2004; Okano et al., 2003, 2005;
Wright et al., 2018).
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Fig. 7 Schematic representation of MMEJ pathway. After PARP1-mediated break recognition, resection is performed
by Mrell, aided by CtIP. ssDNA is protected by RPA until gaps are filled by Pol0. Ligation is carried out by Lig Ill and
XRCC1. Adapted from (Wright et al., 2018).

Single-strand annealing

Finally, another pathway that could perform a repair of resected ends is single-strand annealing (SSA). This
pathway is carried out through annealing of homologous regions of 3’ ssDNA on the same chromosome (i.g.
within repetitive regions). Therefore SSA is considered to be a highly deleterious pathway (lliakis et al.,
2019; Scully et al., 2019). In the course of SSA resection could be carried to a considerable distance,
sometimes longer than during HR (lliakis et al., 2019; Ochs et al., 2016). Although the mechanisms are
poorly understood in mammals, it has been shown that SSA initiation requires PARP1 and resection that
precedes it relies on CtIP and RPA (Grimme et al., 2010; lliakis et al., 2019; Sullivan-Reed et al., 2018; Truong
et al., 2013; Wright et al., 2018; Xie et al., 2009). Annealing of ssDNA after resection is mediated by Rad52
(Grimme et al., 2010; lliakis et al., 2019; lyama & Wilson, 2013; Rothenberg et al., 2008; Wright et al., 2018).

It has been shown that non-homologous 3’ end is removed by a NER-associated nuclease complex
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ERCC1/XPF (Ahmad et al., 2008; Al-minawi et al., 2008; lyama & Wilson, 2013). However, downstream

polymerases and ligases remain unknown (lyama & Wilson, 2013).
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Fig. 8 Schematic representation of SSA pathway. After PARP1-mediated break recognition, initial resection is
performed by Mrell, aided by CtIP. It is further extended by EXO1 and DNA2. ssDNA is protected by RPA, and Rad52

mediates annealing. ERCC1/XPF complex removes 3’ overhangs. Adapted from (Wright et al., 2018)

Double-strand break repair pathway choice

The availability of multiple pathways for DSB repair leads to the necessity to choose between them,
preferably selecting the most appropriate one. This choice is very complex and it is regulated at multiple
levels. In most of the cases, NHEJ and HR are considered to be predominant pathways (exceptions to be
discussed later), and the backup pathways step in occasionally when two preferential pathways failed to

complete repair (Jachimowicz, Goergens, et al., 2019; Scully et al., 2019).

The crucial decision point is the decision for resection as Ku70/80 binding to ssDNA is weak, therefore
predisposing such breaks to be repaired by HR or backup pathways, and its binding to dsDNA is strong, so
they would be likely repaired by NHEJ (Mimori & Hardin, 1986; Scully et al., 2019). As previously mentioned,
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one of the key factors in the repair pathway choice is the cell cycle state. This arises from HR requiring a
sister chromatid and therefore is limited to S and G2 phases of the cell cycle. Therefore many of the
resection-initiating factors that are essential for commitment to HR are regulated by CDKs (Aylon et al.,
2004; Ira et al., 2004; Scully et al., 2019; Tomimatsu et al., 2014). The competition between Ku70/80 binding
and repair machinery is ensured by multiple proteins, the 53BP1 and CtIP being the major players. CtIP
phosphorylation is essential for MRE11 endonuclease activity initiation and BRCA1 binding, whereas 53BP1
suppresses resection and promotes NHEJ (Anand et al., 2016; Bunting et al., 2010; Jachimowicz, Goergens,
et al., 2019; Scully et al., 2019; Xie et al., 2007; X. Yu & Chen, 2004). UBQLN4 (Ubiquilin-4) promotes MRE11
proteasomal degradation and DYNLL1 (Dynein light chain 1) blocks its function via direct interaction,
therefore inhibiting HR activation (He et al.,, 2018; Jachimowicz, Beleggia, et al., 2019; Jachimowicz,
Goergens, et al., 2019). 53BP1 acts in cooperation with its interactor PTIP (PAX transactivation activation
domain-interacting protein) and effectors RIF1 and REV7 (Rev7-like terminal deoxycytidyl transferase)
(Bunting et al., 2010; Escribano-Diaz et al., 2013; L. Feng et al., 2013; Jachimowicz, Goergens, et al., 2019;
Munoz et al., 2007; J. Wang et al., 2014; G. Xu et al., 2015; Zimmermann et al., 2013). PTIP directly interacts
with Artemis and ensures its retention at the break site (Jachimowicz, Goergens, et al., 2019; J. Wang et al.,
2014). The mechanism by which the 53BP1-RIF1-REV7 pathway promotes NHEJ was recently identified to
be via the Shieldin complex, which consists of REV7, SHLD1, SHLD2, and SHLD3 (Shieldin complex subunit
1-3). This complex is recruited to break sites in 53BP1 and RIF1 dependent way and protects them from
extensive resection. The loss of its components leads to PARP inhibition resistance in cancers due to HR
reinstatement (Findlay et al., 2018; Ghezraoui et al., 2018; Gupta et al., 2018; Jachimowicz, Goergens, et
al., 2019; Noordermeer et al., 2018; Tomida et al., 2018). It has also been proposed that it fills in ssDNA
ends to enable them for NHEJ (Mirman et al., 2018; Scully et al., 2019). REV7 and SHLD3 have been shown
to inhibit CtIP-dependent resection and therefore represses HR (Gupta et al., 2018; Jachimowicz, Goergens,

et al., 2019; G. Xu et al., 2015).

Misregulation of the repair pathway choice leads to severe consequences, including various syndromes and

cancer (Jachimowicz, Goergens, et al., 2019; Stewart et al., 2009; Terabayashi & Hanada, 2018).
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Fig. 9 DSB repair pathway choice. Adapted from (Jachimowicz, Goergens, et al., 2019)

Chromatin
DNA organization in eukaryotic cells is organized in chromatin, which is an intricate nucleoprotein structure.

Studies on chromatin began as early as the 1880s when Flemming in his experiments on cellular division
discovered an easily-stainable structure that he named ‘chromatin’ and Miescher, Kossel, and Hoppe-
Seylercontinued found that this substance consists of nucleic acid and proteins that were termed ‘histones’
and continued in increasing intensity and details ever since (D. E. Olins & Olins, 2003; Paweletz, 2001). After
many years of elaborate exploration and major discoveries that included identification of DNA as a carrier
of inherited information and deciphering of its structure, chromatin research came to a new level in 1960s
when the chromosome structure, as well as the role of histone modifications, were defined (Allfrey et al.,
1964; Avery et al., 1944; Gall, 1963; D. E. Olins & Olins, 2003; Watson & Crick, 1953). Another key advance
was achieved in the 1970s by identifying and characterizing a nucleosome as a basic chromatin subunit (A.
L. Olins & Olins, 1974; D. E. Olins & Olins, 2003; Oudet et al., 1975). Since that time our understanding of

both the principles and the importance of chromatin organization has been steadily increasing.

49



Chromatin structure is extremely complex and includes several levels of organization. Each of these levels
represents an additional mean for modulating the use of inherited information as long as its structure is in
order. However, they also pose additional obstacles for maintaining it or modifying it in the desired way.
First, DNA is wrapped around histone octamers to form “beads on a string” structure, with H1 histone
bound to nucleosome-free parts (Allan et al.,, 1980; Baldi et al., 2020; Felsenfeld & Groudine, 2003;
Fyodorov et al., 2018; Kornberg, 1974; Woodcock et al., 1976). Each nucleosome represents a globular
structure with two copies of each histone, H2A, H2B, H3, and H4, and 174 base pair-long DNA is wrapped
around it (Arents & Moudrianakis, 1993; Fyodorov et al., 2018; Luger et al., 1997). However, first three of
the abovementioned histones, as well as a linker histone H1, have several known structural variances, and
each of the core histones can be chemically modified, so this structure represents a broad layer of
regulation (Biterge & Schneider, 2014; MarzIuff et al., 2002). The abovementioned H2AX variant is of the
utmost interest in relation to DNA repair, but other histone variants play an equally important role in other
aspects of cellular homeostasis. For instance, H3 variant CENPA is a hallmark of a centromere and is
essential for a kinetochore complex assembly, and H2A.Z and H3.3 are predominantly found in
transcriptionally active chromatin whereas macro H2A is linked to a repressed chromatin state (Biterge &
Schneider, 2014; Chakravarthy & Luger, 2006; Rogakou et al., 1998; Thakar et al., 2009; Yoda et al., 2000).
Posttranslational modification of histone tails has long been known to play an important role in chromatin
state regulation (Allfrey et al., 1964; Allis & Jenuwein, 2016; Hebbes et al., 1994; Jeppesen & Turner, 1993;
Kayne et al., 1988). It has been shown that interaction of histone octamer has an ionic nature and is
influenced by the charge, therefore those modifications that affect protein charge either by being charged
such as acetylation of lysine or by affecting a residue they bind to. This allows DNA accessibility modulation
simply at a level of physical interactions (Davey et al., 2002; Korolev et al., 2012; North et al., 2012; Shimko
et al., 2011; M. Simon et al., 2011; K. Zhou et al., 2019). To add more complexity, each modification can
promote or inhibit interaction with multiple proteins, which underlies multiple processes in the nucleus
such as the abovementioned H2AX phosphorylation that targets all downstream repair machinery or
heterochromatic domain formation with H3K9me3-mediated recruitment of HP1 (Heterochromatin protein
1) proteins. The principles of chromatin modifications influence on the biological outcome were formulated
as “histone code hypothesis” which was further expanded into the “epigenetic code” theory. It postulates

that epigenetic landscape features, which are created by specialized enzymes (“writers” that introduce
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modifications and “erasers” that remove them), are recognized by an array of dedicated proteins
(“readers”) in order to control biological functions (Allis & Jenuwein, 2016; Jenuwein & Allis, 2001; Strahl &

Allis, 2000).

For many years the consensus was that “beads on a string” structures further fold into 30 nm fibers
(Fyodorov et al., 2018; Ghirlando & Felsenfeld, 2008). However, recent studies using super-resolution
microscopy have shown that in vivo nucleosomes do not form a regular fiber but are arranged into
heterogeneous clusters of various sizes (Fyodorov et al., 2018; Ou et al., 2017; Ricci et al., 2015). This is in
accordance with another recent study where relaxed nucleosome zigzag chains rather than 30 nm fibers

were observed in vivo using electron microscopy (Fyodorov et al., 2018; Grigoryev et al., 2016).

Organized or not, chromatin fibers are further looped into topologically associated domains (TADs). TADs
represent chromatin regions with a high frequency of interactions as demonstrated by Hi-C experiments
(Bonev & Cavalli, 2016; Dixon et al., 2012; Nora et al., 2012; Sexton et al., 2012). It has been shown that
TADs are correlating with many genomic features such as transcription or chromatin marks, and that
promoter-enhancer interactions are mostly occurring within a TAD (Bonev & Cavalli, 2016; Dixon et al.,
2012; Shen et al., 2012). They are separated by boundaries established by architectural proteins, the most
prominent of which are CTCF (CCCTC-binding factor) and Cohesin (Bonev & Cavalli, 2016; Dixon et al., 2012;
Rao et al., 2014). In mammalian cells, TADs have a complex structure containing smaller domains called
subTADs (Bonev & Cavalli, 2016; Phillips-Cremins et al., 2013; Wijchers et al., 2016). Two chromatin
compartments have been specified based on inter-TAD interactions, active A compartment and inactive B
compartment (Bonev & Cavalli, 2016; Lieberman-Aiden et al., 2009). However, it has later been shown that
these compartments can be further divided into subtypes (Bonev & Cavalli, 2016; S. Wang et al., 2016;
Wijchers et al., 2016). TADs were shown to be predominantly conserved between cell types (Bonev &
Cavalli, 2016; Dixon et al., 2012; Rao et al., 2014). However, this is not the case regarding compartments,
which tend to switch in a cell type-specific manner (Bonev & Cavalli, 2016; Dixon et al., 2015; Lieberman-
Aiden et al., 2009). Other well-defined domains, such as lamina-associated domains (LADs), nucleolus-
associated domains, pericentromere-associated domains as well as the nucleolus itself and chromocenters
can be defined within the nucleus (Guelen et al., 2008; Németh et al., 2010; Solovei et al., 2016; Wijchers
et al., 2015). Finally, at larger scale chromatin is organized into chromosome territories (Bonev & Cavalli,

2016; Lieberman-Aiden et al., 2009; P et al., 1988; Pinkel et al., 1988).
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Fig. 9 Levels of chromatin organization. Adapted from (Fyodorov et al., 2018)

Such a complex structure obviously leads to a complicated hierarchy of interactions and interconnections
but in the simplest and the most intuitive classification would be discerning active and inactive parts,
accessible and not accessible. And this, with a huge simplification, is a division to euchromatin and

heterochromatin.

Euchromatin and heterochromatin
Euchromatin is gene-rich, transcriptionally active, and belongs to early replicating parts of a genome. As a

contrast, heterochromatin is transcriptionally inactive, gene-poor, and late-replicating (Dileep & Gilbert,
2018; Hildebrand & Dekker, 2020; Jing Liu et al., 2020; Passarge, 1979; Schultz & Dobzhansky, 1934; Solovei
et al., 2016; Wakimoto & Hearn, 1990). Nucleosomes within euchromatin carry post-translational histone
modifications (histone marks) characteristic for transcription (Hildebrand & Dekker, 2020; Lawrence et al.,
2016). Prominent among these marks are H4K16ac that enhances transcription, H3K4me3 that marks active
TSS (transcription start sites), H3K36me3 that is present throughout the hole actively transcribed region,
H3K27ac that is a part of active enhancers and directly opposes establishing a repressive H3K27me3
modification, H3K9ac that marks active promoters and many others (Akhtar et al., 2000; Bannister et al.,

2005; Bannister & Kouzarides, 2011; Creyghton et al., 2010; Karmodiya et al., 2012; Lawrence et al., 2016;
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Noma et al., 2001; Schneider et al., 2004; Stepanik & Harte, 2012; Tie et al., 2009). It is not compacted and
easily accessible, which is largely promoted by histone acetylation (Bassett et al., 2009; Gorisch et al., 2005;
Lawrence et al., 2016; Otterstrom et al., 2019; Shogren-Knaak et al., 2006). As long as euchromatin is in
focus, the matter seems to be relatively straightforward. But heterochromatin comes to the spotlight, no
simplicity is left. Heterochromatin is a very complex and complicated concept, as there is no such thing as
just heterochromatin. Heterochromatin is often claimed to be compacted but not all data support this
theory, and it is possible that heterochromatic regions are inaccessible, not due to physical compaction but
rather an environment created by associated proteins (Boettiger et al., 2016; Hildebrand & Dekker, 2020;
Jing Liu et al., 2020; Otterstrom et al., 2019; Ou et al., 2017; J. Xu et al., 2018). There are two distinct
heterochromatin types, constitutive and facultative, LADs are considered separately as they are distinct

from both of them (Brown, 1966; Fu et al., 2020; Hildebrand & Dekker, 2020; Nagano et al., 2013).

Constitutive heterochromatin, marked with H3K9me3, is predominantly formed around genomic regions
that have to be strictly inhibited, such as repetitive elements such as satellite DNA, ribosomal DNA, and
transposable elements, elements of viral origin or inactivated X chromosome (Litt et al., 2001; Jing Liu et
al., 2020; Nakayama et al., 2001; Noma et al., 2001; M. Savitsky et al., 2002; Whitehead & Moran, 1949).
H3K9me3 promotes recruitment of HP1, which silences transcription and ensures formation and
maintenance of heterochromatic domains (Bannister et al., 2001; Lachner et al., 2001; Lehnertz et al., 2003;
Peters et al., 2003; Schotta et al., 2004; Zeng et al., 2009). Constitutive heterochromatin plays an important
role in regulating genome stability by protecting telomeres and pericentromeres from inappropriate
treatment by DNA repair machinery, recombination, and chromosomal rearrangements and by preventing
transposable elements activation (Eberhart et al., 2013; Fu et al., 2020; Peng & Karpen, 2007, 2009; M.
Savitsky et al., 2002; Sentmanat & Elgin, 2012).

On the contrary, facultative heterochromatin is formed in those parts of a genome that might be
transcribed, but have to be inactivated in a particular cell type (HUbner et al., 2015; Lewis, 1978; Jing Liu et
al.,, 2020; Ou et al.,, 2017; Solovei et al., 2016; Jiang Zhu et al., 2013). A hallmark of facultative
heterochromatin is H3K27me3 histone modification, which is established and maintained by Polycomb
repressive complexes, PRC1 and PRC2 complexes (Boyer et al., 2006; Bracken et al., 2006; Czermin et al.,
2002; Kuzmichev et al., 2002; Jing Liu et al., 2020; Miiller et al., 2002; J. A. Simon & Kingston, 2013; Wiles &

Selker, 2017). The only methyltransferase that is capable of creating this mark is a PRC2 catalytic subunit
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EZH2 (Enhancer of zeste homolog 2) (Kuzmichev et al., 2002; J. A. Simon & Kingston, 2013). Once marked,
facultative heterochromatic regions are recognised and bound by PRC1 or PRC2 complex to maintain
transcriptional repression (Boyer et al., 2006; Bracken et al., 2006; Cao et al., 2002; T. I. Lee et al., 2006;
Hengbin Wang et al., 2004; Wiles & Selker, 2017). Polycomb complexes play a crucial role in establishing
and maintaining expression and silencing patterns in the course of development, and either their loss or
malfunction leads to developmental abnormalities or cancer (Akasaka et al., 1996; Ben-Porath et al., 2008;
Bracken et al., 2006; Conway et al., 2015; Nikoloski et al., 2010; Ohm & Baylin, 2007; Sneeringer et al.,
2010).

And finally, LADs are the most repressed part of a genome. They are known to be strictly repressive for
transcription, and were proven to be physically compacted (Dixon et al., 2012; Ou et al., 2017; Reddy et al.,
2008; Solovei et al., 2016). LADs are enriched for repressive chromatin marks like H3K9me2/3 and
H3K27me3 and directly interact with nuclear lamins (Guelen et al., 2008; Harr et al., 2015; Kind et al., 2013;
Lochs et al., 2019; Meuleman et al., 2013; Solovei et al., 2016; F. Wu & Yao, 2017).

All these levels of the organization are interconnected and influence all processes that take place in the
nucleus, including DNA repair.

DNA repair in the chromatin context

It has been shown multiple times by many researchers that chromatin context surrounding a break site has

a strong influence over the flow of repair.

Chromatin sensitively responds to DNA damage. DDR activation leads to immediate chromatin relaxation
that results from PARP1 activity and chromatin remodelers (Burgess et al., 2014; Clouaire & Legube, 2019;
Luijsterburg et al., 2016; Sellou et al., 2016; Smith et al., 2018). However, this relaxation is only transient, it
is followed by an ATM-dependent re-condensation, and this re-condensation is crucial for normal DDR
propagation (Burgess et al., 2014; Clouaire & Legube, 2019). Even the most prominent DNA damage marker,
YH2AX, is itself a chromatin modification, and therefore chromatin is an effector for DDR. Genome-wide
studies of chromatin response to double-strand break introduction revealed a plethora of induced
chromatin changes, some local and some ranging megabases (Clouaire et al., 2018; Clouaire & Legube,
2019). Large-scale modifications are common for all mechanisms of repair include YH2AX foci formation

(discussed above) linked with de novo H2AX deposition and the loss of H1 (Clouaire & Legube, 2019; Piquet
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et al., 2018; Sellou et al., 2016; Strickfaden et al., 2016). Conversely, local chromatin changes are repair
pathway specific (Clouaire & Legube, 2019). H3.3 histone variant deposition, were reported to contribute
to Ku and XRCC4 recruitment and thus promote NHEJ (Clouaire & Legube, 2019; Luijsterburg et al., 2016).
H2A.Z loading also plays a role in the Ku70 deposition albeit it has to be removed later in order for repair
the process to proceed (Clouaire & Legube, 2019; Gursoy-Yuzugullu et al., 2015; Y. Xu et al., 2012). Histone
modifications that promote NHEJ include H4Y51 phosphorylation and H2BK120 acetyl to monoubiquitin
transition and H3K36 dimethylation (Clouaire et al., 2018; Clouaire & Legube, 2019; Fnu et al., 2011; Hossain
et al., 2016). H2AK15 monoubiquitylation by RNF168 and H4K20me1/2 facilitate recruitment of resection
restraining factors including 53BP1 (Clouaire & Legube, 2019; Fradet-Turcotte et al., 2013; Wilson et al.,
2016). Histone variant loaded in order to promote HR is macroH2AX, and H2A.Z is depleted from the break
vicinity (Clouaire et al., 2018; Clouaire & Legube, 2019; Khurana et al., 2014; C. Xu et al., 2012). Changes in
histone modification include H2BK120ac and H2AK127/129ub establishment and H2BK120ub, H3K4me3,
H3K79me2, and H4K12ac decrease (Clouaire et al., 2018; Clouaire & Legube, 2019; Densham et al., 2016;
Uckelmann & Sixma, 2017). H2AK15 and H4K16 acetylation performed by TIP60 has been shown to promote
resection (Clouaire & Legube, 2019; Jacquet et al., 2016; Tang et al., 2013).

However, not only is the chromatin environment affected DNA damage, but it can also influence the way
this damage would be repaired. It has been proposed that euchromatic regions are more prone to HR
(Aymard et al., 2014; Mitrentsi et al., 2020). It is achieved by the affinity of HR promoting proteins, namely
BRCA1 and CtIP interactor LEDGF (Lens epithelium-derived growth factor), to active chromatin marks
(Daugaard et al., 2012; Mitrentsi et al., 2020; Tamburini & Tyler, 2005; Wilson & Durocher, 2017). It has also
been shown that proteins involved in R-loops resolution can recruit RAD51 and BRCA2 (Cohen et al., 2018;
D’Alessandro et al., 2018; Mitrentsi et al., 2020). It has even been suggested that if DSBs are acquired at
transcriptionally active regions during G1 when HR cannot be engaged they are held unrepaired until S or
G2 phase (Aymard et al., 2017; Mitrentsi et al., 2020). Another hypothesis implies the use of RNA as a
template for DSB repair (Meers et al., 2016; Mitrentsi et al., 2020). At the same time, heterochromatin has
been shown to be not a very HR-friendly environment and rather promotes NHEJ (Kalousi & Soutoglou,
2016; Pfister et al., 2014). Despite its compaction might represent a barrier to repair factor recruitment, it
is unclear whether heterochromatin proteins such as HP1 are dismissed or the repair process can proceed

without it (Kalousi et al., 2015; Mitrentsi et al., 2020; Noon et al., 2010; Tsouroula et al., 2016). Some studies
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even show an increase of H3K9me3 in close proximity to DSBs (Ayrapetov et al., 2014; Mitrentsi et al.,
2020). It was shown that LADs repress HR and a double-strand break that occurs there could be repaired by
other pathways, even though more mutagenic, because in this case MMEJ became an alternative for NHEJ,
but HR is inhibited in this nuclear compartment. At the same time, breaks around nuclear pores that also
reside at the nuclear periphery but are surrounded by transcriptionally active chromatin, are capable of
utilizing HR normally (Kalousi & Soutoglou, 2016; Lemaitre et al., 2014). It has also been shown that when
a break occurs in heterochromatinised chromocenters it can only be repaired by HR at the periphery of a
chromocenter, thus escaping a heterochromatic environment (Kalousi & Soutoglou, 2016; Tsouroula et al.,

2016).

However, facultative heterochromatin is relatively poorly investigated in the context of DNA repair.
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Fig. 10 Chromatin environment influence over DNA repair pathway choice. Adapted from (Kalousi & Soutoglou, 2016)
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Bivalency
Another type of chromatin that has never to my knowledge been investigated in the context of DNA repair

is bivalent chromatin. Generally, any kind of state that combines active and repressive chromatin marks is
bivalent chromatin. To date, these include a simultaneous presence of H3K4me3 and H3K27me3, H3K4me3
and H3K9me3, H3K36me2/3 and H3K9me3, or a combination of H3K9acK14ac, H3K4me3 and H3K27me3
(Azuara et al., 2006; Bernstein et al., 2006; Harikumar & Meshorer, 2015; Matsumura et al., 2015; Mauser
et al., 2017; Roh et al., 2006; Vakoc et al., 2005). But the first kind of such chromatin state that has been
observed (currently termed ‘classic’ bivalent domains) is a combination of H3K4me3 and H3K27 me3. They
were initially found in mouse embryonic stem (ES) cells in culture and for the first several years it was rather
common to consider them a culture artifact (Azuara et al., 2006; Bernstein et al., 2006; Harikumar &
Meshorer, 2015). However, later bivalent domains has been observed in other cell types, and even in vivo
during development and in cancer (Béguelin et al., 2016; Kampilafkos et al., 2015; Matsumura et al., 2015;
Minoux et al., 2017; Sachs et al., 2013; Sin et al., 2015). In the course of differentiation, one of the marks is
normally lost from bivalent promoters (Bernstein et al., 2006). Another question was addressed, whether
real bivalency exists, it is only resulted from a heterogeneity of cells in the population or from the close
proximity of two differentially marked genomic region. However, the existence of bivalency has later been
proven by genome-wide assessing individual bivalent nucleosomes. Sequential immunoprecipitation of
single nucleosomes confirmed that both marks can coexist on the same nucleosome, although on different

histone H3 tails (Sen et al., 2016).

A currently accepted explanation of this phenomenon is based on the observation that many of the
bivalently marked regions found in ES cells are promoters of developmental genes. The hypothesis is that
such a chromatin state is needed to enable rapid activation or complete inactivation of a respective gene
(Harikumar & Meshorer, 2015). However, RNA polymerase Il (RNAPII) pausing was not observed on these
promoters in accordance with RNAPII association with actively transcribed and not bivalent genes
(Mantsoki et al., 2018). Additionally, it has also been shown that bivalency is linked to the cell cycle. MLL2
(Myeloid/lymphoid or mixed-lineage leukemia protein 2), as a part HMT (Histone methyltransferases)
complex, establishes H3K4me3 at developmental genes and thus real bivalency, and during the rest of the

cell cycle genes are robustly repressed (Singh et al.,, 2015). According to other studies, exit from
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pluripotency accrues in a cell cycle-dependent manner, so these two studies go in line (Boward et al., 2016;

Pauklin & Vallier, 2013).

This chromatin type has not been studied extensively yet and the best model for it are embryonic stem cells

where this type of chromatin is rather abundant.

Embryonic stem cells
Stem cells are defined by the ability of both self-renewal and differentiation. There are three classes of stem

cells (although the last one is sometimes divided into two). The first one, totipotent stem cells, are capable
of differentiation into any type of adult, embryonic, or extraembryonic tissue. The second one, pluripotent
stem cells, keeps the potential and can give rise to any adult or embryonic cell type but not some of the
extraembryonic tissues. Finally, multipotent stem cells are tissue-specific and usually reside in mouse
embryonic stem cells. Unipotent stem cells, that are sometimes considered separately from multipotent
ones, can only differentiate on one cell type (Alison & Islam, 2009). Embryonic stem (ES) cells represent
pluripotent stem cells derived from a preimplantation blastocyst (Martello & Smith, 2014). Mouse ES cells
were first obtained by Evans and Kaufman in 1981 and until now stay a very attractive research model and

potentially powerful therapeutic tool as well as a fascinating research subject (Evans & Kaufman, 1981).

The pluripotent state is maintained by a regulatory network of transcription factors. The core factors are
Oct4 (Octamer-binding protein 4), Sox2 (SRY-box 2), and Nanog, and their key role has been proven many
times both by demonstrating their importance for stemness and viability and by their capacity to initiate
somatic cell reprogramming (Kehler et al., 2004; M. Li & Izpisua Belmonte, 2018; Mitsui et al., 2003; Nichols
et al., 1998; Takahashi & Yamanaka, 2006). Oct4 and Sox2 form heterodimers and induce numerous targets
including their own genes (Chew et al., 2005; M. Li & Izpisua Belmonte, 2018; Rodda et al., 2005). However,
change of expression levels or interaction partners of Oct4 and Sox2 drive mesendodermal or ectodermal
differentiation respectively (Avilion et al., 2003; Ferri et al., 2004; M. Li & Izpisua Belmonte, 2018; Niwa et
al., 2000; M. Thomson et al., 2011). Nanog is required for maintenance of pluripotency and appear to be
the key LIF/STAT3 (Leukemia inhibitory factor 1, Signal transducer and activator of transcription 3) pathway
as its overexpression makes LIF redundant (Chambers et al., 2003; M. Li & Izpisua Belmonte, 2018; Mitsui

et al., 2003). Together Oct4, Sox2, and Nanog binding cover the majority of pluripotency regulatory network
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transcription factors (X. Chen et al., 2008; M. Li & Izpisua Belmonte, 2018; Loh et al., 2006). Their synergistic
action plays a role in both propagating pluripotency by activating transcription of pluripotency-related
genes and preventing differentiation by counter-balancing each other and blocking transcription of

developmental regulators (Boyer et al., 2005; Loh et al., 2006; Young, 2011).

Another curious feature of ES cells should be mentioned. They have a distinct cell cycle profile with a very
short G1 phase, which is tightly controlled by the pluripotency regulatory network and, in turn, has been
shown to suppress differentiation (Coronado et al., 2013; Kareta et al., 2015; V. C. Li & Kirschner, 2014;
Savatier et al.,, 2002). One of the core network targets, Myc (Myc proto-oncogene protein), enhances
proliferation by activating transcription of cell-cycle related genes as well as directly represses
differentiation by inhibiting FGF/ERK (Fibroblast growth factor, Extracellular signal-regulated kinase)
signaling pathway (Cartwright et al., 2005; Chappell et al., 2013; Kareta et al., 2015; Kim et al., 2008; Loh et
al., 2006). A collective action of Myc and core pluripotency factors leads to a compromised G1/S cell cycle
checkpoint that contributes to G1 shortening (Kanai et al., 2015; Kareta et al., 2015; Kim et al., 2010;
Suvorova et al., 2016; F. Zhang et al., 2009).

Among multiple regulatory measures than ensure stem cell proficiency for pluripotency and differentiation

of them unique chromatin organization is a prominent one.

Chromatin in embryonic stem cells
As previously mentioned, one of the prominent features of stem cells is the enrichment for bivalent

domains. However, it is not the only unique feature of ES cell chromatin.

Pluripotent stem cells have less compacted chromatin and higher dynamics of interaction with chromatin-
associated proteins and increased turnover of a linker histone H1, which most likely results from
overexpression of chromatin remodelers. Even the distribution of chromatin in the nucleus is more even in
pluripotent than in somatic cells. These features have been observed both in vitro and in vivo (Ahmed et
al., 2010; Azuara et al., 2006; Bouwman & De Laat, 2015; Efroni et al., 2008; Fussner et al., 2011; Gaspar-
Maia et al., 2011; Meshorer et al., 2006; Meshorer & Misteli, 2006; Otterstrom et al., 2019; Ricci et al.,
2015; Schlesinger & Meshorer, 2019). As a result, basal transcription is also elevated in pluripotent cells
(Efroni et al., 2008; Kobayashi & Kikyo, 2015; Ramalho-Santos et al., 2002). This includes exonic, intronic,

and non-genic regions, causing a considerable profusion of nascent RNA as compared to differentiated cells
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(Bouwman & De Laat, 2015; Efroni et al., 2008). Reduced levels of heterochromatic histone marks and
increased levels of those associated with active transcription characteristic for ES cells fall in line with these
observations (Efroni et al., 2008; Kobayashi & Kikyo, 2015; Jeong Heon Lee et al., 2004; Meshorer et al.,
2006; Schlesinger & Meshorer, 2019; Wen et al., 2009). PRC2 complex plays an important role in
maintaining pluripotency as in ES cells it is predominantly bound to promoters of genes related to
differentiation (Boyer et al., 2006; Bracken et al., 2006; Denholtz et al., 2013; Kobayashi & Kikyo, 2015).
Lower levels of DNA methylation, which is largely associated with repressed chromatin state, were observed
in ES cells (Leitch et al., 2013; Marks et al., 2012; Schlesinger & Meshorer, 2019). Finally, one of the
prominent features observed both in early embryos and in ES cells is a reactivation of an imprinted X

chromosome (Mak et al., 2004; Okamoto et al., 2004; Surani et al., 2007; Wutz & Jaenisch, 2000).

Unraveling a great number of pluripotent stem cell-specific long-range interactions resulted from genome
architecture studies (Apostolou et al., 2013; De Wit et al., 2013; Dixon et al., 2012; Kobayashi & Kikyo, 2015;
Wei et al., 2013). Moreover, whereas the genome of differentiated cells is predominantly shaped in 3D
around repressed heterochromatic regions, in ES cells the main structure-forming entities are hubs of active
transcription dependent on core pluripotency factors (de Wit et al., 2013; Dixon et al., 2012; Kobayashi &
Kikyo, 2015). These changes are notable even on a whole-nucleus level. For example, chromocenters,
prominent in differentiated cells, show higher numbers and are less distinct in embryonic stem cells (Aoto
et al., 2006; Bouwman & De Laat, 2015; Mayer et al., 2005; Schlesinger & Meshorer, 2019; Wiblin et al.,
2005). Heterochromatin protein HP1P is almost diffused in ES cells but becomes accumulated at
heterochromatic foci in the course of differentiation (Mattout et al., 2015; Schlesinger & Meshorer, 2019).
Even interactions with nuclear lamina are massively reorganized between ES and differentiated cells
(Kobayashi & Kikyo, 2015; Peric-Hupkes et al., 2010). Nuclear lamina itself lacks Lamin A and is less

organized in pluripotent cells (Melcer et al., 2012; Pagliara et al., 2014; Schlesinger & Meshorer, 2019).

All in all, the evidence point that chromatin structure in pluripotent stem cells is distinct and is tightly

interconnected with their undifferentiated state.

DNA repair in embryonic stem cells
ES cells represent a fascinating model for us not only for having unique chromatin features but also for their

special mechanisms for maintaining genome integrity. Similar to other cell types, they are permanently
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exposed to DNA damaging agents of both exogenous and endogenous origin. However, due to their rapid
proliferation (as discussed above) they also undergo constant replication stress. These factors combined
lead to constant activation of DDR (Ahuja et al., 2016; Juan et al., 2016; Nagaria et al., 2013; Savatier et al.,
2002). However, ES cells are highly tolerant of this stress and show a lower level of spontaneously induced
mutations and karyotypic aberrations than somatic cells (Brimble et al., 2004; Y. Hong et al., 2007; Nagaria
etal., 2013;J. A. Thomson, 1998). Enhanced maintenance of genome integrity appears to be a characteristic
of pluripotent cells (Y. Hong et al., 2007; Nagaria et al., 2013). In order to protect the genome of the whole
pool stem cells readily sacrifice themselves by initiating apoptosis or differentiation (Aladjem et al., 1998;
Yiling Hong & Stambrook, 2004; Lin et al., 2005; Jinping Liu et al., 2012; Nagaria et al., 2013). Of note, p53
plays a less role in ES cells, particularly it does not activate G1/S or intra-S checkpoint, and processes related
DNA damage response and repair are regulated by a stem-cell specific protein Filia (Aladjem et al., 1998;
Chuykin et al., 2008; Nagaria et al., 2013; Suvorova et al., 2016; vanderLaan et al., 2013; Vitale et al., 2017;
B. Zhao et al., 2015). It has also been shown that some known pluripotency markers such as Sall4 (Sal-like
protein 4) are directly involved in the process of DNA repair. It gets recruited to DSBs and helps to stabilize
MRN complex and enhance ATM activation (Xiong et al., 2015). ES cells have enriched levels of DNA repair
proteins, including HR and NHEJ factors, and enhanced levels of pro-apoptotic factors that are lost upon
differentiation (Cooper et al., 2014). Together with constant activation of DDR, it is capable of sufficiently
safeguarding their genome (Ahuja et al., 2016). Mouse ES cells were shown to have a strong preference
towards HR and NHEJ pathway in DSB repair (Bafiuelos et al., 2008; Nagaria et al., 2013; Serrano et al., 2011;
Tichy et al., 2010). They have been shown to repair 80% of DSBs by HR and only 20% by NHEJ, whereas in
somatic cells the ratio is inverted. Alt-EJ was equally both cases, which means a shifted balance towards the
precise repair pathway choice (Nagaria et al., 2013; Serrano et al., 2011; Tichy et al., 2010). Therefore, it is
of no surprise that knockouts of key HR players usually result in embryonic lethality (Lim & Hasty, 1996;
Nagaria et al., 2013; Tsuzuki et al., 1996; Y. Xiao & Weaver, 1997; Jie Zhu et al., 2001).

Taken together, the presence of unique mechanisms of replications stress and DNA damage tolerance

makes ES cells a fascinating model for investigation.
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Genome editing
Artificial genome editing in a variety of species has long been an important task for both medical and

research purposes. Medical applications include perspectives of gene editing for correction of disease-
related mutations, disruption of disease-promoting genes or even introducing novel genes (e.g. for
sensitising the immune system to tumour cells). The research application range is even broader: it includes
creating knock-outs, knock-ins, and introducing mutations to study the role of particular proteins,

processes, create disease models, and more.

Given tempting perspectives of practical use, it is of no surprise that the development of methods that
would allow gene editing has been going on for a considerable time. At first, the strategy implied the use
of random recombination, either to change the sequence or to allow further use of nucleases (such as Cre)
(Carroll, 2017; ROTHSTEIN, 1989; Scherer & Davis, 1979; Smithies et al., 1985; Thomas et al., 1986). The
discovery of zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENS)
allowed a considerable advance if the field. However, the largest step has been done with the discovery of

CRISPR-Cas9.

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9)
are parts of bacterial mechanisms of antiviral defence (Carroll, 2014; Jansen et al., 2002; Sorek et al., 2013).
Shortly after their discovery, the system was adopted as a tool of genome editing in other organisms, such
as plants, fish, human, mice, and many more (Carroll, 2014; Cho et al., 2013; Hall et al., 2018; Hwang et al.,

2013; Jinek et al., 2012; Ma et al., 2015).

The editing system consists of Cas9 protein and a short non-coding RNA that contains two parts, a target-
specific CRISPR RNA (crRNA) and a helper trans-activating RNA (tracrRNA) (Karvelis et al., 2013; Memi et al.,
2018). In the guide RNA, tracrRNA component is responsible for binding Cas9 and crRNA acts in sequence
recognition by pairing to the target sequence (also called protospacer) (Memi et al., 2018; Pattanayak et
al., 2013). However, Cas9 protein only performs catalytic reaction if a protospacer-adjacent motif (PAM) is
present at the 5’ side of the protospacer (Memi et al., 2018; O’Connell et al., 2014). Later on single guide
RNAs containing both crRNA and tracRNA sequences were designed to simplify the practical use (Mali et

al., 2013; Memi et al., 2018).
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Fig. 11 Schematic representation of CRISPR-Cas0 system mechanism of action. Adapted from (Memi et al., 2018)

Promising as it is, this system still requires a thorough investigation, for the mechanism of action to be fully
understood. Cas9 applications lie beyond genome editing and also include modulation of transcription,
epigenetic modifications, genomic imaging, and lineage tracing (W. Deng et al., 2015; Gilbert et al., 2013;

Hilton et al., 2015; Spanjaard et al., 2018; Haifeng Wang et al., 2016).

Itis important for the procedures both in research and in clinical applications is that Cas9-mediated genome
editing is achieved by introducing a break in a selected location. All the following events leading to repair
of this break, either in a desired or in an undesired way, are carried out by the cellular mechanisms of DNA
repair. In order to predict a repair outcome, we need an excellent understanding how these mechanisms

work.
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Genome editing fidelity studies
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15 kay to deweloping this technology for therapautic uses. Hare, we discuss recent
studies that revaal how DNA sequenca and chromatine structure nfluences the differant
staps of ganome editing. These studies also demonstrate that a deap understanding
of the balance between eor prone and amor free DNA repair patfways i crucial for
makng genomsa aditing a safe ciirécal tool, which does not induce furiher mutations to
the genome.

Hoywords: cheomatin, doa edifing crispe, kmock in, DMA repaly, nuclaus

INTRODUCTION

Genome editing is very vahmble for both medical and research purposes. Future medical
applications inciude the comection of disease-related mastations, disruption of disease-promoting
genes o evell introducng novel genes (eg., for sensitising immune system o tumeoer cefls).
Research applications range from cresting knock-put/kneck in cell line or organisms, andfor
intmduecing mutations, 0 study the role of a particular protein, pathway or processes to crealing
humanized disesse models. Given the tempting scope of practical use, it is of no surprise
that there has been considerable effort in developing genome ediling methods. The traditional
way for introducing changes to the genome was by the use of spontancous recombination,
either to introduce DNA mulations or to insert sequences that woold allow further use of
recombinases (sach as Cre) to excise genes [reviewed in Saver (2002)). Subsequent discoveries of
minc finger nucleases (ZFNs) and transcription activator-like effector mucleases (TALENs) allowed
a considerable advance in the field by allowing the introduction of DMA breaks at desired, mther
than random, genomic locations [reviewed in Gaj of al. (20134, Nevertheless, the biggest advance in
genome editing has been the more recent discovery of clustered regularty interspaced palindromic
repeat (CRISPR) associsted (Cas) systems (Ishino ot al, 1967; Jansen et al, 2002 Ninck ef al.. 2013
Comg el 31, 2013; Mali et al, 2013}
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Shortly after its discovery, the CRISPR-Cas? system, a
hacterial defense mechanism, was repurposed &5 o poweriul tool
for genome editing in plant, animal and human cells due to
its specificity and its easier implementation. Current and future
podential uses cover 8 wide range of application in research and
clinical areas, by allowing substitution, insertion or deletion to
the DNA sequence in a targeted genomic Iocation [reviewed
in Hsu et gl (2014) and Wang and O (2014)]. The CRISPR-
Cas# system operates through the recruitment of the RNA-guided
Cas? nuclease at 8 specific genomic position. The targeting
relies on the complementarity between the guide ENA and
the targeted sequences and the presence of an adjacent DNA
protospacer motif (PAM)L The Cas? nuclease generates 3 DNA
double strand break (DSB) at the targeted sequence adjacent b
the PAM sequence (lizng and Dowdna, 2017), which then leads
o recruitment of DMA repair machinery to fix the break

Typically, DNA DSBs are repaired by (i) the error free
homobogmes recombination (HRE) pathway, which ooours in 5/1G2
phases of the cell cycle a5 it uses the homologous sequences of the
sister chromatids a5 3 repair temiplate, and (@) the ermor proone
non-homologous end joining (MHEN pathway, which ocours
throughout the cefl cycle and religates DNA ends without the
preserce of an undamaged templste (Ciccia amd Ellpdge, 20100
In addition, other alternative end joining pathways, which rely
on the presence of microhomobogies (MH mediated end joining,
MMET), have been described, these DSE repair pathways are exmor
promne and are often associzted with long deletions (Decottignies.
2013%; Chang e al, 2017}

DMA end resection is 3 major detenminant influencing DNA
repair pathway choice. Unresected DMNA ends, processed by
the WHEJ pathway, are bound io the Ku complex (Kuavo-
Kubo heterndimer] which recruits WHE] Goors indoding
DMNA-PEs (DNA dependent protein kinase catalytic subumit],
XRCC4 (X ray repair cross complementing 4) and LIG IV
(DMA Gigase TV) to catalyze DINA ends Tigation. In contrast,
the MME] pathway requires minimal DNA ends resection
(through the CIP-MEN complex) that reveals homologies on
opposite stramds that will be further mvolvwed in annealing.
DMA portion between homologies = removed, leading Lo
deletion scams. Other MME] Bctors are further recruited
to resobve the boeak, including DMA polymerase 8 (FPOL
), and the DNA Ggases 1 and I (Decottigmics, 20035
Chang et ak, 2017

DMA repair pathway choice is mgulated at different
levelz cell cpde stage, availability and post translational
modifications of DNA repair facioms, chromatin status and
the posiion within the nocdeus of the break [reviewed
in ¥alousi and Soutoglon (2016)]. The choice of pathway
can have critical comsequences for the cell, since the wse
of emor prone pathways can lead to unwanted deleterions
mutations. Despite the many efforis put info characierizing
repair pathways, Cass-induced DSB repair outcomes have
not been yel extensively investigated It is crucial, for both
research and clinical purposes, to precisely understand how
meftation profiles observed following Cas9-induced DSB are
generated, to be able to predict repair outcomes. In this review,
we will fooss on recent work highlighting the owtcome of

CRISPR-Cas9-induced DEBs in mammakian cells. Interestingly,
the CRISFR-Cas? muistional pattern appears o be non-
random, highly reproducible and mainly dependent on the
targeted DMA sequence.

CAS 0-MUTATIONAL PROFILES ARE
LARGELY DEPENDENT ON THE TARGET
DNA SEQUENCE

Several studies have revealed the prominent role of the target
DNA sequence in Cas9-dependent DMNA repair outcomes. In
these sudies, repair outcomes were profiled by dassifiving
the mutations generated at Cas9 target sites by the type of
insertion or deletion (indel) that oocurred (e.g., sive, position,
microhomology), and moniloring the frequency of each class
of indel. van Owerbeck e al (2006) were the first to conduct &
systematic study of DNA repair profiles following Cas? deavage
in human cell lines. They followed the repair outcomes after
guide RMAs delivery targeling 69 diferenl genomic sites and
demonsirated that indel patterns differed from one targeted site
i ancther and were very reproducible among replicates and
between cefl types. Mevertheless, the mutation frequencies of
a given indel class waried with cell type Taken together, this
suggests that the chamecteristic DNA repair profile associated
with a genomic location is influenced by the DNA sequence
amund the targeted area (van Owerbeck et zl, 2016). To
further confirm this conchesion, guide RNAs matching multiple
kecations in human genome (“multiple target single spacers”
MTS5) were designed and the associated indel profiles wene
assessed. In line with their previous observations, similarities
between repair profiles for each site targeted by the same
guide RMA are observed across replicates and coll type
{van Overbeck ef al, 2016).

Allen et sl (2008 ) confirmed such observations by specifically
interrogating the influence of the DSB-flanking DNA sequence
on mepair ouwtoomes. The authors designed and delivered
synthetic constructs contsining both a guide BMA and its
target sequence flanked by varisble DNA sequences, in human
K562 cells. Indel profile analysis revesled that imdels were
highly reproducible and sequence-specific. Moreover, shorter
defetions were more prominent compared to konger deletioms,
with nudeotide insertions (+ 1) 2and deletions (- 1) being the most
commen. 58% of all Cas9-genersbed deletions, however, werne
at least 3 bp long and abowt a half of them ocourred between
at least two nucleotide repeats, referred to as microhomology
(MH). The deletion frequency resulting from MH presence was
imversefy comelated with the distance between MH sequences.
Introducing point mulstionis) in MH regions led to a
remarkable drop in the associated repair outcome frequency
(Allem et al, 2018} Intriguingly, although the indel patterns
were similar across most cell types, stem cells had more
large deletions and MH mediated products, whereas single
nuclentide insertions (+1 insertions) were more frequent in
differentialed cells It was proposed that such ohservations
correlate with different activities for the DNA repair pathways in
different cell bypes.
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Furthermore, indel profling revealed that for almost half
(49%) of the guide RNAs with a T (thymidine} before the out
site, 2 + 1 insertion involving another T dominates the repair
outcome. A hiss was also observed regarding small deletions:
77% of -1 deletions are associsted with the removal of a repeated
nucleatide at the break site. For half of the dinucleotide deletions,
the removal of a two- base repeatl was also gquile common
{Allen &1 al, 2018). These results are in agreement with Lemos
ol al (20185, who demonsirated that single base inseriions
were shown to preferably repeat 3 PAM-distal nudeotide at the
break site in yeast

A recemt large-scale study shed further hght on the
influence of genetic and epigenetic factors in CRISPR-Cas9
repair ontcomes (Chikmbart ot al, 200%9). Anslysss of indel
patterns &t approximately 1,500 targeted locations in human
cells {Hep(e), revealed again that DNA editing precision differs
across sites in @ non-random and reproducible manner. The
majority of examined targeted sites showed a preference for
small indels (44% for 1 bp imsertion amd 26% for 1 bp
deletion). However, a preference for large deletions {up to
41 nucleotides) was also observed for some sites. As a
consequence of single nuclestide modifications, & considerable
bias toward frameshifting mutations was ohserved (average of
B0.1% compared o 66% of  endom oafoome).

Editing precision (recurrence of a specific indels) varied
considerably between  different fargets with some targets
mssociated with a large number (wp to 79) of distind, infrequent,
deletions. In contrast, olther targeis showed one dominant
matation (representing up to 94% of all repair events). Cwerall,
one fifth of all analvzed targets had at lessi a 50% chance
of leading to 2 specific indel Based on the distribution of
commonest indel frequencies, the targeted sites were categosized
into three growps: imprecise {commonest indel frequency below
25%), middle (commonest indel frequency below S0%), and
precise (commonest indel frequency above 50%) sites. The
vasl majority of recurrent indels in precise targets (68.4%)
are associated with & stromg preference for insertions with a
baas toward single mucleotide indels. In agreement with Allen
et al insertion, of a single nucleotide homologous o a PAM
distal nucleotide {at position -4) at the break site was very
comumon, especially when this nucleotide is T. These chservations
are copsistent with Taheri-Ghahfarokhi et ol (201E), who also
highlighted the importance of the 4th niclectide before the PAM
in the singhe nudleotide indel frequencies.

Strikingly. not only the indel pattern but also the editing
precision could be predicled from the target site DNA sequence.
Using a neural network Chakrabarti et al found 2 significant
correlation between the computational {estimated) and the
observed indel frequencies. Despite 3 moderate predictive power
of the model, it allowed the identification of key sequencing
features. This computational quest also led o the conclusion
thal the nucleotide at posiion -4 from the PAM strongly
influences the repair ouwicome in accondance with all previous
experimental ohservations.

All in all, both by experimental studies and computer
simulations, the Cas9-associated indel patierm and a presence
of 8 dominani pattern appear to be mostly dependent on

the DNA sequence around a break site, with the presence
of MH in the target DMNA sequence one of the main cuwes

fior predictahility.

CAS 9-MUTATIONAL PROFILES RELY
ON MMEJ

The types of indel observed upon CRISPR-Cas? deavage suggest
that Cas%-indoced breaks are mainly repaired by NHE] and
MMEF It is generally assumed that small indels <3 bp) ocour
via NHE] and longer deletions ocour via MME]. When analyzing
the imdel distribution following CRISPR-Cas? activity over for
& 48 h perind, van Owerbeek et al showed that larger deletions
are mose prevalent at later points. They also observed that upon
inhibition of MHEL +1 insertions and small indel (<3 bp)
frequencies were decreased and, in contras, lagge deletions
{=3 bp) frequencies were increased (van Crverbeck of al, 2016)
The fact that alteration of WHE] leads to increased MMET usage
puints to @ tight balance between WHE] and MME] pathways
in repairing these breaks. Similar studies were performed later
by Brinkman et al for a single locus in human K562 cells.
Targeting the LER locus, the indel pattern analysis revealed a +1
insertion in balance with a -7 bp deletion. Addstion of the NHET
inhihitor MU/7441 led to an increase of -7 deletions concomitant
o 8 decrease in +1 insertions. Addressing the kinetics of the
twn processes revealed that MME] is delayed and initiated after
NHE], znd the delay is not observed when NHES is inhibited
arguing for MME] predominantly being used as a back-up o
repair breaks that, for unknown reason, filed 1o engage NHE]
{Brinkman et &l 2018}

Aiming to characterize in detail the contribution of the
MMEF pathway in the repair outcomes fnllowing Cas9 activity,
Taheri et sl developed a computational platform called RIMA
(Rational Indel Meta Anslysis)h. Two datasets from the hterature
were reznafyzed using RIMA to validate their approach. They
confirmed MME] pathway involvement in DNA repair after Cas9
cleavage and MMET-associsted indels enrichment upon NU7441
(Bae et al, 2014; van Overbeek ot al, 2016 Taben-Ghahfarokhi
et al, 2018} They also confirmed that larger indels and other
MME]J events relied on the activity of the known MME] factor
POLQ (Taheri-Ghaohfamodhi et al, 2018).

Experiments to determing the costribution of MH to the
CRISPR-cas9 dependent DMA repair outcome by Chakrabarti
et al revealed that microhomologies of different sires were
responsible for @ majority of defetions (73.3%) Strikingly,
deletions associated with short microhomologies (1-4 bp),
typically noi considered as a substrate for MME]L were also
enriched indicating a role for homology regions of any length
MH, not restricled only o kong regions of MH as had previowshy
been believed (Chakmbarti o al, 2019) In line with these
observations, Bae et al. found that a large subset of all observed
sequences. Based on this observation, the suthors developed
2 computer program to predict MH-dependent deletions at a
given site in order to increase the frequency of gene disneption
{Bae etal. 2014}
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Despite how incomplete our understanding of the exact mle
of MH involvement in the repair process is, it has already been
flagged for its potential practical applications. In their recent
work, Kim et 2l demonstrated the possibifity of using this
genomic feature for obaining & desired genome editing effect.
They suggested an elegant two-step scheme for introdiscing point
muttations in human iP5 cells, associated with scar-less selection
marker excision. Initially the desired mustation is introduced into
the locus of interest a5 engineered MH sequences flanking a
selection marker wsed as a donor. Although positive selection
based on the presence of the selective marker represents an
eagy way to obiain clonal population, some applications require
the removal of the selective marker. Therefore afler positive
selectinn, the selection marker can be excised using CRISPH-Cas?
induced DEBs targeting the region adiacent to the MH sequences,
promting the use of MME] for the sedection marker excision
while preserving the point mustation {Fim of al., 2018}

Overall, based on both computational and experimental
studies, MH arises 25 a major facior infleencing the DNA
repair outcome 8t CRISP-Cas9 lesions. However, whether it
is indeed an underestimated role of the MME] pathway or a
lack of 8 deep understanding of NHE] pathway Rmctioning
Temains o be seen.

CAS 0-MEDIATED LARGE DELETIONS
AND COMPLEX REPAIR OUTCOMES

Most of the studies addressing repair of Cas9-induced breaks
were focused on deletions of 3 relstively small size, based
on the belief that NHE] and MME] are the main pathwavs
imvolved. However, large-scale indel pattern analysis highlights
the complexity of Casd-dependent repair outcomes. Such
complexity is well depicted in the Shin et al study where they
znalyzed the consequence of CRISPR-Case-mediated genome
editing in founder mice (Shin ot al, 2017} They showed that
the majority of detected deletions were asymmetric | L5-fold or
more difference between deletion up-and downstream of the
culting site). Prevalence of asymumetric indels was ohserved for
almost all targeted sites. Symmetric deletions were infrequent and
tended to be small (less than 10 bp)l. Moreover, the deletions
mostly ocourred at repetitive regions, which is consistent with the
conclusions of the above-mentioned studies relating to the rode of
MH in DSB repair.

Induction of DEBs with single guide RMAs in murine rygotes
also revealed a9 bp median debetion size, but larger deletions (up
to 600 bp) were also present (Kim ef 2], 2018)

Testing whether sequential or simultaneous gede AMNAs
delivery would have any effect on an indel patterm and
on a balance between small and large deletions, revealed
that sequentizl guide RMAs delivery is more rlishle than
simultaneous in precisely deleting juxtaposed sites. Moreover,
while no difference was observed for smaller deletions (less than
400 bp) between the two delivery strategies, delelions larger
than 400 bp (up o 24 kb) were only present after simultaneous
delivery. These large deletions didn't appear to rely on the
presence of MH {Fim et al, 2018k

In light of the potential therapewtic use of Cass, the findings of
Fassicha ot al, 2018 are espedially siriking. The authors explored
large genetic alterations observed after CRISPR-Cas9 activity,
focusing primariy on large deletions, which often are missing
from repair outcome analysis due to a strong foois on a region
proximal to the break (Kosickd ef al, 2018). They performed
imock-out experiments in mESC with single guside RNAs and
observed that more than 20% of resulting afledes carried large
(=250 bp and up to & kb) deletion. Bven more surprisingly, in
muore than 15% of cases they observed additional DNA alterations
(point mastations, large or small indels), distal to the cul site.
Large imversions and duplications were also observed. Using
mESCs obtzined from a cros bebween two muorine strains,
Kosickd et al also observed cases of loss of helerorygosity,
presumably caused by wsing a homologous chromosome as
o template. Despite differences in indel profile frequencies
observed between stem: cells and ditferentiated cells { Allen et al,
2018}, larger deletions are nmamqurfmnmtadmﬂ:
stem cells since they were observed in mouse
progenitors cells and human RPE-1 cells (Fosickd et 2, 2018}

Together, these data suggest, Cas?-mediated genome editing
appears to be more complex and involves larger genome regions
than was thought before. This, it is extremely imporiani to
understand the reasons for such an effect, and to take this into
acoourd while assessing using Cas? for amy medical purpose.

CHROMATIN STRUCTURE INFLUENCES
CAS 0 BINDING

The chromatin strscture around DMNA breaks influences DNA
repair pathway choice (Kalousi ond Sowloglow. 2016). However,
regarding the repair of Cas9-medisted breaks, the question
arises; which step of Cas9 editing (binding, cutling andfor
repair) is most influenced by chromatin state? To dissed this,
some in witro and in wive studies have been performed. First,
Isaac et al developed & biochemicsl amsay to determing how
nucleosomes and chromatin remodellers influence Cas% activity.
Using nuclecsome assembly associated with poor breathing (a
term that defines the dynamic binding of histomes to DINA), they
observed that Cas9 hinding activity and catting is inhibited. In
contrest, Cas9-induced deavage is achieved near o the entryfexit
of 3 nucleosome assembly sssociated with higher breathing.
Furthermore, the anthoms demonstrated that different dasses of
chromatin remodeflers enhanced Cas9 activity, with an increase
of Cas9-mediated cleavage in the presence of remodellers from
the I5WI family promoting nuceosome sbiding {SNF2h) or
histone octamer eviction {RSC) (Fsaac et al, 2056}

At the same time, 3 study comducted by Horlbeck et al
led to the same cbservations in o and in vitro. The
authors first overlaid data oblained from & CRISPR screen
(Gilbert et al. 2015) with MMNase-seq experiments publichy
available sl ENCODE (performed in K562 human cells) and
observed that high nucleosome occupancy is associated with
low CRISPR inferference activity (for CRISPR interference,
catalytically inactive Cas® is fused to 8 transcriptional repressor
and guided 1o the targeted site in order to interfere with
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gene transcrption) (Horlbeck et al, 20061 Along simikar limes,
i wifro experiments argued for 3 block of Cas% activity in the
presence of DMA assembled into nudeosomes (Hinz of al, 2015;
Horfbeck e al, 201&). Using an inducible system to control
chromatin state (open or close) in human cells at a specific
locus, Daer et al observed reduced editing efficiency associated
with heterochmomatin (dosed state) due 1o a reduction in Cas?
binding. for six over a total of nine guide RMAs used This
observation suggests thal the effect of dosed chromatin on
Cas? editing is guide RNA dependent or that in such inducible
system the closed chromatin spreading is not covering equally
all targeted sequemces. Nevertheless, the mutation signabure
was not affected by the diromatin state. Interestingly, editing
efficiency could be restored by antificial transcription activation
{Dacretal, 3017}

Cax® binding has also been studied in ChiP experiments in
mouse ESC in which catalytically inactive Cas9 (dead Cas9)
has been expressed. These shsdies also revealed that diromatin
accessihility (assessed by DNAse | hypersensitivity experimenis)
is an important determinant of Cas? binding in vive and the
vast majority of Cas9 off target sies are associated with active
genes (W et al, 20014}, Such findings were later confirmed by
Kuscw et al (2004] and O'Geen et al. (2015) that demonstrated a
correlation between open chromatin and Cas? off target binding
in humanr and mouse cell Enes, respectively.

Thus there is a8 gemeral agreement that Cas? activity is
influenced by chromatin stmecture both in vive and in witro, with
closed chromeatin associated with less Cas% binding and editing:

THE ROLE OF CHROMATIN IN CAS
9-MEDIATED GENOME EDITING

The degree of mfuence of chromatin state ower Cas%-induced
muitagenesis has been the subject of shadies by seversl research
teams over the last few years Chen et al interrogated how
chromatin stalus influences TALEN and CRISPR-Cas9 genome
editing activity. For this purpose, a cellular system carmying
& reporer in which dwomatin status can be swiltched fom
compacted {H3K9me3 marked) to relaxed was used. Lower
editing efficiency was observed when largeted sites were
associnted with heterochromatin for both TALEMs and Casd
nucleases, but the impact of chromatin state on editing was higher
for TALEMs. Interestingly, the efficiency of DSB formation was
quite comparatde (Chen et al. 2016): Subseguently, Chen et al.
assessad the mflvence of chromatin structure on Cas? editing in
whaole organisms. Zebrafish embryos were co-injected with guide
RMAs and Cas9 mANA. Editing eifficiency positively cormelated
with chromatin accessibility (determined by ATAC-seq), and
matation rates were igher in an open chromatin. However, there
was no correlation between nuclensome-ocoupancy and editing
efficiency (Chen et al, 2007} The latter can be explaimed by
high nucleosome dynamice in eardy zebrafish embryos, which
is in lipe with the observations of fsaac ot =l. 2016 that
pointed out that Cas¥ activity is mfeenced by nucleosome
beeathing {Isasc et al. 2016). A study conducted by Kallimasiot-
Pari et al induced Cas9 breaks at three diferent imprinted

genes in mESC and demonstrated a delayed accumulation
of mutations in heterochromatin compared to euchromating
particularly apparemt in the case of low Cas?® expression or
ghort Cas? expression perinds. In cefls in which imprinting
at the targeted locus hed been los, due to profonged culture,
there was a restoration of Cas editing efficency, which
again implies an heterochromatic environment impairs editing
(Kalimasioti-Pari et al, 2018). 1t does not appear to be the
DMA methylation siatus of heterochromatin that is responsible
for affecting cas9-mediated break editing, since Hsu et al
demonstrated that Cas9 mediated cleavage is not afected by
Cpls DMA methylation & supported by indel detection (around
&%) at the slent highly methylated SERPINBS targeted koous
(Hsn et al. 2013}

Kallimasioti-Fazi et al (2018) could detect by allele-specific
ChIF, that Cas? binding was kower in heterochromatin, which
correlated with the slowed mie of mutagenesis, thus confirming
conchesions of [sec of al (2016) amd Deer o al (20070
Imerestingly, despite distinct epigenetic saiuses, the same
mutatien pattern was observed on matemal or paternal alleles
arguing for an influence of heterochromatin on the kinetics but
nod on the owtcome of Cas® editing (Kallimasioti-Pazi et al,
201E). In line with such observations, wsing Hve cell single-
moleoale tracking in monsse cells, Knight e sl {2015} hawve
demonstrated that even if Cas® search efficiency is reduced in
heternchromatic regions, Cas® is still able to access successfully
such regions (Knight et al., 2015),

Chakrabarti et al have also come to similar concusions.
They ohserved that upon treatment with the histone deacetylase
inhibitor TSA, indel formation is increased suggesting that
chromatin decompaction sugments Cas? binding and editing
efficiency (Chakrabarti et al, 2009). These results are in line
with previous observations arguing for & lower editing efficiency
associated with heterochromatin status (Chen = al. 2006
Daer e al, 2017; Kallimasioti-Pari ot al, 2018). In combrast,
inhibition of the H3K27me3 methyitransferase EZH2, reduced
indel formation, bet with a8 less pronounced impact than
TSA trestment The fact that HDAC inhibition leads to the
loss of constitutive heterochromatin and EZH? inhibition, of
facultative helerochromatin, suggests that differemt types of
heternchromatin affoct Cas9 editing in distinct ways (Chakrabarti
et al, 2019). Mevertheless, these ditfferences might mot reflect
only direct chromatin changes but indirect alteralions on gene
expression of DMA repair or other relevant genes. In agreement
with this notion, even though both TSA and Exh?i had an
effect on indel formation, the authors were able to observe
changes only in chromatin acetylation and not in H3K27me3
methylation. The same study demonstrated differences in
ratios of different indels depending om 8 chromatin context.
However, this did not affect dominant indels, suggesting that
these changes are minor (Chakrsbarti ef al, 200%) Sach
resulls support the notiom that in addition o the sequence
around the bresk, certasin chromatin context can modulate

Therefore, based on multiple sbedies with diferent
experimental approaches and systems, we cam  concude
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thal chromatin state infleences Cas9-medialed genome editing
efficiency with heferochromatin being an obstade for this
process. However, indel patterns are mostly unatfected.

CAS 9 FOR KNOCK INS (KIS)

Utilization of the CRISPH-cas® system for genetic replacement
is particularly exciting as it can be implemented in the chmical
setting for the cure of genetic disesses. Genetic replacement or K1
is mediated by homology-directed repair (HDERL

Several recemt studies have investigated the best ways
to increase K1 potential wsing Cas9. The most etficient
way described s0 far & incorporation of 2 single stranded
oligenucleotide DNA (s0DN), via single-strand template repair
(SSTR). Farbowd et al performed a study i C sleguns o
determine an effident strategy to increase knock in efficiency.
Their initial goal was to introduce point muotations as i is
stranded oligonucleotides as a template for recombination
maiching with the proiospacer or with the spacer stmand
Interestingly, they found that single nucleotide polymorphism
{SNP) insertion was strongly biased toward 5 or 3 of the
PAM according to the wse of the pmofospacer or the spacer
strand {respectively) a5 a repair template (Farboud et &l, 2019).
Such polanity can be mainly explained by synthesis-dependent
strand annezling (SD8A} mechanism, an HDR pathway in which
resecled end is annealed to the repair template and extended.
After template dissociation the extended end anneals to the
other DSBE end followed by DNA smihesis o 6 the gap
(Farboud etal, 2015).

Hichardson ef of. (2016) alss discovered that the binding
kinetics of Cas? with the target DNA is asymmetric. Although
Cas9 has a slow release from the template, it releases first the
3 end of the cleaved DNA strand that is not complementary
to the sgRNA (or non-targel strand). They observed that
use of an ssymmetric donor DNA, complementary Lo
oon-target strand, with 90 ot and 30 nt overdapping
PAM proximal and distal siles respectively, is associated
mﬂ: a higher HDR mte (Richardsonm of al, 2006) Sudh
hugﬂighlzd the lmq:m't,m:\e for an optimal donor

mutation responsible for the sickle cefl disesse (5CD) in
human hematopoietic stem/progenitor cefls (DeWitt e al,
2016). Another recent shedy by Chamoto at al demonstrated

found that uﬂmh}fmmdmmg mrslations al the donor
sequences that resulied in blocking the re-ouiting or either by
expressing CasdfsgRMA transiently using Cas? protein/sgBMA
ribonudeoprotein complezes had 2 substantial incresse on the
kmock in efficiency (Ckamoto et al, 2009

The wse of short single-strand templates was more efficient
than a double-strand templates for knock m Farboud ef al
(2009}, It has recently been demonstrated that in human cells,

repair based on & shorl single-stranded template is Radsi-
independent and managed by the Fanconi anemia pathway
(Fichardson et al, 2018). Thas, differences in efficendes oould
be explained by the use of different pathways, and potentially
by differential requirements for the length of a template In
the case of a large DNA fragment inserfion, the wse of a
double-stranded lemplate becomes a mequirement. For large
fragments insertions, Farboud et al were sble to introdisce a
9.3 kb fragment by adding a second DSB 340 bp from the
initial DSB site. Interestingly, HR efficiency is influenced by
the orentation of PAMs. Eficency was much higher when
recognition stes were selecied om different strands rather than
a single strand. These results suggest that the sequence around
the break s imporiant for Cas?-mediated knock in efficency
using larger DNA sequences &5 donors {Farboud el al. 200%)
Insertion efficiency medisted by HE, for DNA fregment as
long as 800 bp is also mcreased after WHE] inhibition (using
5cr7 ligase [V inhibitor treatment) in @ bone mamow derived
dendritic cell Tine (DC2.4) (Maruyama of al, 2015} Similardy,
55TH was increased in several genes and cell types when cells
were baring a muiation into the human PREDC gene (encoding
for the DNA-FEcs protein) that suppress DMA-PECs kinase
activity (Riesenbery et al., 2015} Promoting homology directed
repair (HDR) was also achieved through 53BP1 (a pro-NHE]
factor) inhibition in both human and mouse cefls (Canmy
of oL, 2018}, This observation might be wseful for knock in
experimental design.

Since HR takes place duning replicative and post replicative
stages of the cell oyde, Guischner et al. developed a system fo
restrict Cas? expression fo 5/G2TM cell cycle phases. By fusing
the Cas? nuclease to geminin they were able to convert Cas® into
4 substrate for the APC/Cdhl complex, which promoles proteins
ubiquitination end therefore degradation during late M and G1
phases. In a reporter assay, they monitored HOR-mediated EGFP
expressien restoration and showed an increase in HDR rate (up to
LE7-fold compare fo wit Cas9). They abso ohserved an incresse of
HDE at a target endogenous locus in HEK293T cells { Gutschner
et al, 2016), Along the same lines, delivery of the Cas9/sgNA
ribonuckeoprotein complex in cells arrested with nocodazole and
aphidicolin and then relessed, increased S5TR (Lin et al, 2004}

Oithier groups developed sirategies to increase HDR efficiency,
allowing spatial proximity between the D5B site and the repair
template. By fusing Cas% to the BCV protein (porcine circovines
2 rep), forming robust covalent link &0 2 donor DINA, Aind
et al were able 0 increzse HDR eficiency in human cefl nes.
Using different assays, they showed that covalent tethering of
donor DMA template enhances (1) HDR medisted peptide-
tag insertion (up to 30-fold) and (i) HDE medisted mChermy
flunrescence restomtion (in reporter cells expressing & mustant
mCherry) (Aird of al, 2018). Savic et al came to the same
conchesion vsing snap-lag technology o link domor DXMA
template 0 Cas? and showed thal repair template linkage
enhances HDR efficency in a fluorescent reporier cell line and,
imiportantly, also at targeted endogenoas locd in K562 and mES
ceflls (Savic ot al, 2018)

Another gpproach to increzse HDR efficiency using the Cas?
nuclease fused o CiIP protein (an essential factor promoting
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DMA end resection) has been described by Charpentier et sl They
revealied that tethering CHP next to the DB site enhances GFF
transgens integration in human fibroblasts. HOR stimulation was
&lso observied in human ii*S cells and rat oocytes but depends on
the guide RMA (Charpentier ef al., 2018).

Chromatin strscture has a big influence on homobogoas
recombination  (Cloosire et al, 2008 Mimems e al,
2020) but weather i has any inflsence on Cas%-medialed
KI still remsins elusive. The oxpectation is thal B will
be largely affected by the pre-existing structere of the
chromatin  surmounding the bresk Kallimasiob-Pazi e al
however, found mno consistent influence of pre-existing
chromatin state on HDR efficiency across several imprinted
genes. Systematic analysis oo differemt  genomic  sites
comesponding to different chromatin states will shed more
light into the isnse

CONCLUSION

In concluwsion, genome editing wsing targeted nucleases,
inchsding Cas9, is a complex process, and ils success depends on
our understanding of specific mechanisms of D5E repair. It has
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Goals

In my project, | intended to investigate two different questions.

First, | wanted to elucidate the influence of the pluripotent state on the fidelity of DSB repair and a
pathway choice. It has been previously reported that HR is enhanced in ES cells, which provides the
necessary level of genome stability. However, current knowledge is mostly based on either a study of
indirect factors, such as proteins involved in certain DNA repair pathways, or studying single loci, which
cannot always be extrapolated to the whole genome. Therefore, we found it relevant to perform a study

tackling several targets and relying on repair outcomes rather than factors recruiting.

Second, | aimed to investigate the role of a local chromatin structure on a repair outcome and a balance
between different repair pathways. Bivalent chromatin was one of the types of particular interest for me
as its influence on the process of DNA repair has never been studied yet. Other chromatin types, like
euchromatin and facultative heterochromatin, appeared important to study as well. On the one hand,
they could serve as a reference to compare behaviour of bivalent chromatin to. On the other hand,
existing studies provided incomplete information, as they were based on indirect detection of a pathway

use rather than assessing a direct repair outcome.
Therefore, the goals of my work were as following:

1. Compare fidelity of double-strand break repair between different chromatin contexts, and
particularly in bivalent chromatin

2. Compare fidelity of double-strand break repair between pluripotent and differentiated cells.
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Results

Establishing an experimental system
In my project, | set a goal to follow the process of a single break repair, contrary to many previous studies

that were inducing DNA damage globally or at repetitive elements. Those experiments were leading to a
large number of simultaneous breaks, which models certain extreme situations cells might face during the
lifespan but not physiological conditions. The discovery of the CRISPR-Cas9 system provided an excellent
tool for creating DSBs at any selected single locus. Being particularly interested in DSB repair in mouse ES
cells I, therefore, needed to establish a mouse ES cell line stably expressing Cas9. As an original plan for the
project included an option of time-course experiments, we decided to use a degradable system. Therefore,
| cloned a construct that consisted of Cas9 fused to GFP and a mutated FKBP12-derived destabilization
domain (DD), and NeoR gene as a selective marker (fig. 12). Fusion to DD is often used for controlled protein
function perturbation, as it allows rapid proteasomal degradation in mammalian cells, unless bound by a

synthetic ligand Shield 1 (Banaszynski et al., 2006).

[ DD ] GFP_|-hEF 1o [NINEORIN—

Fig. 12 A scheme of the construct used to create stable cell lines

Clones obtained after antibiotics selection and single-cell FACS sorting were tested by FACS in the presence

and absence of Shield1, and two clones with robust induction and minimal leakiness were selected (fig. 13).

Two selected clones were additionally transfected with the suicidal cassette (kindly provided by Dr. Alexey
Tomilin). This cassette consists of PuroR and thymidine kinase (TK) genes under the control of the minimal
Oct4 promoter. Such cassette allows selective elimination of either pluripotent of differentiated cells by

applying ganciclovir or puromycine respectively (Liskovykh et al., 2011).
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Fig. 13 a) Typical FACS results for several analysed clones; b) FACS results for clones selected for analysis

The functionality of the system was proven by transfecting selected clones with the guide RNA for major

satellite repeats previously designed in the lab (Tsouroula et al., 2016). Bound to this guide RNA, Cas9 is

capable of causing hundreds of DSBs per cell, and the amount of DNA damage is enough to allow YH2AX

increase detection by Western Blotting (fig. 14).
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Fig. 14 Confirming Cas9 functionality by WB: yH2AX levels are increased after transfecting with a guide RNA for major

satellites.

After confirming that the system is functional | tested the kinetics of Cas9 activation and inactivation. The
test was performed by FACS analysis of GFP fluorescence, and it showed that both activation and
inactivation reach a plateau after 10 hours after Shield1 addition or withdrawal respectively (fig. 14 a, b)
Titration of Shieldl allowed me to find the working concentration necessary and sufficient for the full

activation (fig. 14 c).

Having the system set up and tested | was able to switch to experiments with single-cutting guide RNAs.
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Fig. 14 a) Cas9-GFP stabilisation after Shield1 addition for both selected clones; b) Cas9-GFP degradation after

washing out Shield1; c) Titration curve for Shield1 for both selected clones. All results are obtained by measuring GFP

fluorescence by FACS analysis
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Target choice and guide RNA design
The goal of my project was to compare DSB repair in different chromatin contexts. Therefore, targets were

selected so that they would represent different chromatin types. | chose several groups of genes depending

on their functionality and epigenetic status:

- housekeeping genes (Gapdh and Actin), further colourcoded as pink

- pluripotency regulators (Pou5f1, Nanog, and Tfcp2l1), further colourcoded as green

- developmental regulators that are bivalent in ES cells (Pax6, Ngn2, Zic1, DIx2, Zfpm2, Foxa), further
colourcoded as yellow

- facultative heterochromatic genes (Hoxb1, Tdrd1, and Mc4r), further colourcoded as red

- genes belonging to LADs (Sox6, Ptn, and Nrp1), further colourcoded as purple

Given that one of the chromatin types of interest was bivalent, and these domains are typically found at
promoter regions, most of the guide RNAs were designed within a proximal promoter of a corresponding
gene. The only exception was the group of genes located in LADs, as this part was connected to another
project running at the lab, and introducing breaks at the intrones was required. Proximal promoters were
defined as 1 kb up- and downstream of the TSS according to the BindDB web tool (Livyatan et al., 2015).
Guide RNAs were designed using the Benchling website (https://www.benchling.com/). guide RNA

sequences are provided in Table 1 in the Materials and methods section.

Chromatin status at targeted sites was confirmed by ChIP. | used H3K4me3 as a mark of active chromatin,
H3K27me3 as a mark of facultative heterochromatin, and H3K9me2 as a mark for LADs. | also tested
H3K9me3 as a marker of constitutive heterochromatin. | performed ChlIP in ES cells. 3T3 cells were used as
a differentiated control. | could observe an expected chromatin pattern in ES cells. In 3T3 cells only
housekeeping genes of all tested were active, and the rest represented facultative heterochromatin (fig.

15).
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bars represent s.d. from 3 technical replicates.

TIDE analysis. Indel pattern is sequence-specific and is not influenced by a cell type or a chromatin

context

To analyse repair fidelity after introducing a break | employed the Tracking indels by decomposition (TIDE)
method (Brinkman et al., 2014). This method is based on PCR and Sanger sequencing and allows calculating
the percentage of insertions or deletions (indels) of a particular length out of the total pool of DNA present
in the sample. In this method, a fragment around the expected cut is PCRed from gDNA extracted from cells
transfected with the guide RNA and from non-transfected (control) cells. PCR products are then sent for

Sanger sequencing. If a break was introduced by Cas9 and repaired with indels, a corresponding shift of the
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following sequence occurs. As a result of a merge of sequences with different repair outcomes, superposed
nucleotide picks appear on a chromatogram. The original sequence and height of individual peaks available
from the control sequence allow TIDE software to decompose the signal and return ratios of different indels
(fig. 16). This technique gave us an opportunity to estimate both total employment of error-prone repair

and an indel pattern for each condition.
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Fig. 16 A scheme of TIDE experiment. Adapted from (Brinkman et al., 2014)

The first observation | could make was the high reproducibility of the indel pattern for each guide RNA (fig.
17 a). Using a Hoxb1 guide RNA as a representative example, we can see that significant indels do not vary
between replicates. Variations between non-significant indels (and possibly even their presence) can be
explained by the sample processing or sequencing. This goes in line with observations of other teams
discussed in the introduction. It also became apparent that the indel pattern had only slight variations
between 3T3 and ES cells (fig 17 b). Using Actin and Hoxb1 guide RNAs as a representative example, the
comparison between 3T3 and ES cells clearly shows that although ratios might vary, the overall array of

significant indels remains largely unchanged.
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Fig. 17 Reproducibility of indel patterns. a) 3 biological replicates of transfecting the same guide RNA on the example
of a guide RNA targeting Hoxb1 in 3T3 cells; b) Indel pattern comparison between 3T3 (blue) and ES (orange) cells.

Actin and Hoxb1 guide RNAs are taken as representative example.

However, in some examples, notably pg418 guide targeting Pou5f1, pg450 guide targeting Hoxb1, and pgo3
guide targeting Nrp1, a considerable contribution of +1 insertion was observed in 3T3 but not ES cells (fig.
18 a). However, the number of guide RNAs manifesting such changes was low, so | think we can consider
them as an exception, which also fits the general idea in the field. At the same time, no link could be made
between indel patterns of two guide RNAs for the same gene even in the same cell type (fig. 18 b), despite
in some cases distance between their cutting sites was rather short. This observation also fits the hypothesis

of the indel pattern being mostly dictated by the surrounding sequence.
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Fig. 18 TIDE results: indel pattern. a) guide RNAs targeting Pou5fl and Nrpl. +1 insertion can be seen in 3T3 but not

in ES cells; b) Comparison of indel patterns of two guide RNAs targeting the same locus in the same cell type.

The size of deletions has been largely debated in the context of the balance between error-prone repair
pathways, NHEJ and MMEJ. While it remains under debate which of these pathways could be the source of
relatively small indels, there is no doubt that deletions larger than 10 b.p. are generated by MMEJ.
Therefore, | tried to estimate MMEJ recruitment in different cell types by analysing deletions larger than 10
b.p (fig. 19 a). It can be seen from comparison between 3T3 and ES cells for the same guide RNA that most
of the time large deletions either occur in both cell types or are absent in either. Moreover, sometimes

even two guide RNAs for the same gene (fig. 19 b) can demonstrate these two different patterns.
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Fig. 19. Indel size assessment. a) Large deletions are notable in both cell types on an example of Mc4r; b) large

insertions can be seen for one but not another guide RNA for the same locus on an example of Zic1.

Nevertheless, it was a general trend among most of the guide RNAs that the +1 insertion level was slightly
reduced in ES cells and a proportion of deletions was increased as compared to 3T3 cells (fig. 20). This may
result from a generally more open chromatin state allowing to shift a balance towards MMEJ rather than
NHEJ or from ES cells highly relying on resection-dependent methods. This hypothesis would require

additional experiments to prove this. However, these changes related to exact proportions of indels rather
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than overall pattern, which stayed constant between cell types.
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All in all, experiments | have performed using multiple guide RNAs to introduce breaks in a variety of loci in
3T3 and ES cells lead to the conclusion that indel pattern is predominantly defined by the sequence
surrounding the break site and the influence of a cell type and a chromatin context is minor. This fits the

concept currently accepted in the field and can be considered another evidence supporting it.
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Fig. 20 Indel size assessment. Larger insertions are more prominent in ES than in 3T3 cells

3T3 cells have a higher rate of error-prone repair in housekeeping genes but not in pluripotency
regulators
Assuming that the total percentage of mutated sequences gives us the means to estimate the overall

employment of error-prone repair, | compared this parameter in 3T3 and ES cells for some of the target
genes (fig. 21). Interestingly, we observed higher rates of error-prone repair than it was reported in the
literature. The proportion of mutated sequences was going over 20% in some cases, which would mean at
least 30% of breaks repaired by NHEJ of MMEJ, considering that neither induction nor transfection was

absolute, and efficiency of both processes can be considered close to 80% judging from previous tests.
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Fig. 21 TIDE results comparison between cell types. A rate of impaired sequences is significantly higher in analysed
housekeeping genes (Gapdh and Actin). No significant difference can be seen for analysed pluripotency regulators

(Pou5f1, Nanog, Tfcp2I1). Results for 3T3 ells are shown in blue, and for ES cells in orange. * p<-0.5, **p<0.01. n>3

Housekeeping genes demonstrated a result that could be expected from literature: levels of error-prone
repair were significantly higher in differentiated cells than in ES cells. Surprisingly, when | looked at
pluripotency regulators the picture changed dramatically, and no difference between cell types could be
observed. This observation was rather surprising, considering that pluripotency regulators are
transcriptionally inactivate and heterochromatinised in 3T3 cells, which should lead to reduced use of HR

and therefore increased mutagenesis according to literature.

One possible explanation for that discrepancy was the influence of transcriptional regulators on the cell
cycle. It is known that the cell cycle of mouse ES cells is dramatically different from the cell cycle of
differentiated cells, including 3T3 (fig. 22 a). ES cells are characterised by a short G1 phase and an absence
of G1-S checkpoint. As a consequence, a larger proportion of cells in a population is in S and G2 phases of
the cell cycle, hence HR-proficient. It was therefore important to rule out the possibility that mutations in
pluripotency regulators lead to changes in the cycle that would prevent ES cells from employing error-free
repair. | performed a cell cycle analysis after transfecting cells with guide RNAs targeting Gapdh as a
housekeeping gene or Nanog as a pluripotency regulator (fig. 22 b, c). The cell cycle was not affected after
targeting Nanog as compared to targeting Gapdh at the usual collection time (48h), as well as at an earlier
time point (24h). Moreover, cell cycle distribution in both cases matched those of non-treated cells.

Therefore, we could conclude that an observed effect was not an artifact caused by a cell cycle perturbation.
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Fig. 22 Quantification of a cell cycle distribution of a) non-transfected ES and 3T3 cells; b) ES cells transfected
withguide RNAs for Nanog or Gapdh 24 h or 48 h post transfection (error bars represent s.d., n=3) c) representative

FACS plots for ES cells transfected with Nanog and Gapdh 24 hours post transfection.

Another potential explanation could have been a collapse between transcriptional and repair machinery.
Pluripotency regulators are actively transcribed in ES cells, and it could have caused problems with the

repair, and a shift towards faster repair pathways such as NHEJ. To check whether this was the case |
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performed RT-gPCR in 3T3 and ES cells (fig. 23 a). | found that mRNA levels of housekeeping genes are

considerably higher than those of pluripotency regulators.
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Fig. 23 a) RT-gqPCR (enrichment shown in logarithmic scale) and b) RT-gPCR for nascent transcripts in ES cells.

As transcription levels can be different from mRNA rates, which depend not only on transcription but also
on mRNA degradation, | performed nascent transcript qPCR. However, transcription levels were not

necessarily higher for pluripotency regulators than for housekeeping genes as well (fig. 23 b)

A technical problem we were facing was our inability to detect HR repair outcomes using TIDE, as it is

indistinguishable from uncut alleles for methods that involve analysis of the sequence. Therefore we were
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not able to say whether differences we observed resulted from differential Cas9 binding, HR involvement,
or even transfection efficiency variability between different replicates. Therefore, we needed to modify our

experimental approach.

HR-TIDE: improving methodological procedures in order to detect HR
We decided to modify the TIDE method to allow the detection of HR outcomes (fig. 24). This modified TIDE

(HR-TIDE) implied an addition of templates for HR, that contended a 9 b.p. insert (to avoid a frameshift
when the cut was introduced in an exon) located at the place of a break and 500 b.p.-long homology arms

at both sides of it.
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gDNA {
| ll- T -JL J
I I I
Insert
(Sbp)
PCR
+
~ Sequencing 7
uncut
+
indels = NHEJ - -
+
+9 insert = HR oooC

Fig. 24 Scheme of HR-TIDE approach

Therefore, as an outcome of an experiment, we would now receive a mix of wild type sequences, which are
non-cut, different indels indicating error-prone repair pathways, and +9 insertion, which results from the
use of HR (fig. 25). After cloning templates for all guide RNAs, both 3T3 and ES cells were transfected with

both pairs of guide RNAs and templates.
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Fig. 25 A representative graph returned by TIDE software after co-transfecting guide RNA for Oct4 and a

corresponding HR template.

So as by using HR templates we were taking into account all repair pathways, we assumed that the
percentage of perturbed sequences represented total cutting efficiency. We could see that it was
sometimes varying between cell types (which could be explained both by differential Cas9 binding caused
by different chromatin context and by transfection efficiency fluctuations) and even between different

replicates (definitely resulting from transfection variations).

Overall cutting efficiency is slightly higher in 3T3 than in ES cells
However, it was interesting to evaluate whether there is an actual difference in Cas9-mediated cleavage

between cell types. To this end, | looked at the whole array of results to find out whether any trend could
be observed from a comparison between two cell types. In this analysis, | considered cutting efficiency for
each guide RNA, calculated as an average from all biological replicates, as a single measurement. This
allowed me to assess the break introduction as a parameter of interest, where cutting efficiencies for

genome locations recognised by different guide RNAs became single measurements of this parameter.

| observed that the median value in ES cells was close to 34%, whereas in 3T3 cells it was around 43% (fig.
26). The increase of the break introduction efficiency in 3T3 cells was statistically significant (p=0.0065, two-

tailed Mann-Whitney U-criteria).

In order to check whether this held true when we compare results in two cell types for the same guide RNA,

| found a ratio between cutting efficiency in 3T3 and ES cells and considered this as an experimental array.
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The median of this array was 1.24, which shows an increase at the level of individual guide RNAs. Therefore
Cas9-mediated DSB introduction is slightly efficient in 3T3 cells as compared to ES cells. Most likely, this

difference resulted from differential transfection efficiency.
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Fig. 26 Comparison of cutting efficiency in a) 3T3 and ES cells, b) euchromatin and H3K27me3-marked regions in ES

cells and c) euchromatin and facultative heterochromatin in ES cells.

The efficiency of Cas9-mediated break introduction in heterochromatin as compared to euchromatin is
broadly discussed. It has been previously shown that constitutive heterochromatin considerably reduces
break introduction by Cas9 (Kallimasioti-Pazi et al., 2018). There is also evidence that facultative
heterochromatin, and particularly the presence of H3K27me3 has a similar effect (Schep et al., 2020). Due

to the number of analysed guide RNAs, | could perform such a comparison only in ES but not 3T3 cells. |
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could not observe any reduction while considering either in cutting efficiency, and the difference was not
significant while comparing either all H3K27me3-marked targets (bivalent and facultative heterochromatin

combined, fig. 26 b) or facultative heterochromatin only (fig. 26 c)

HR rates are higherin ES than in 3T3 cells
In order to eliminate the abovementioned sources of variation, | chose to use the cutting efficiency as a

normalisation factor for HR and error-prone pathways (NHEJ and MMEJ) outcome values and a further look

at their proportions.

By analysing HR efficiency in the same way as the cutting efficiency, | observed that the median value in ES
cells was close to 11%, whereas in 3T3 cells it was around 2% (fig. 27). This increase was statistically
significant (p=0.0024, two-tailed Mann-Whitney U-criteria). Interestingly, taking advantage of an
opportunity to directly measure a proportion of HR in several different locations we could see again that
despite its higher levels in ES as compared to differentiated cells, it still does not match previous

evaluations, and the vast majority of breaks is repaired by error-prone methods.
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Fig. 27 Comparison between HR efficiencies in 3T3 and ES cells.

After assessing the ratio between HR level in ES and 3T3 cells | found that the median ratio was 5.3, which
shows an increase at the level of individual guide RNAs. Therefore ES cells demonstrate a five-fold increase

of HR employment as compared to cycling differentiated cells.
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Pairwise comparisons of HR employment after break induction with the same guide RNA between different
cell types showed a significant increase in ES cells compared to 3T3 cells for housekeeping genes and
pluripotency regulators (fig. 28) with one exception. Also, one guide for each target group showed

abnormally low HR in ES cells.
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Fig. 28 Comparison of HR use between cell types on exampl of single guide RNAs. HR utilisation is higher in ES than

in 3T3 cells for both housekeeping genes and pluripotency regulators.

This may have resulted from surrounding sequence or chromatin features. Using the same strategy as
before, | compared arrays of HR proportions from ES and 3T3 cells for each of these target groups (fig. 29).
In both groups the median of HR utilisation was higher in ES than in 3T3 cells (27% versus 9% for
housekeeping genes and 18% versus 1% for pluripotency). However, statistical analysis using Mann-
Whitney criteria showed the significance of the increase for pluripotency regulators (p=0.0214) but not

housekeeping genes. This could have been caused either by a lower number of guide RNAs analysed for
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housekeeping genes or by higher variability in this group. In any case, analysing more targets for this group

might solve this question.
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Fig. 29 Comparison of arrays of guide RNAs targeting housekeeping genes or pluripotency regulators between cell

lines.

Thus, we can claim with confidence that active genes in ES cells show considerably higher HR rates than

they do in differentiated cells, independently of their activation status in the latter case.

| also plotted all investigated groups on the same graph for each of analysed cell types. Despite the inability
to do statistical analysis due to the lower number of targets per group, | could notice as a trend that for
each cell type those groups of targets, which are active in this cell type, had elevated HR levels as compared
to groups of inactive genes (fig. 30). This goes in line with other published data demonstrating that
transcriptionally active chromatin is an HR-permissive environment. However, adding more targets to each

group to enable proper statistical analysis is needed to secure this conclusion.
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Fig. 30 Comparison betwee different target groups in the same cell type.
Bivalent and inactive genes
Looking at other chromatin types of interest (bivalent domains, facultative heterochromatin, and LADs) we

observed a completely different picture.

Pairwise comparison for each guide RNA would show a significant increase for half of target sites analysed
in both bivalent domains and facultative heterochromatin (fig. 31 a and b respectively) so no clear
conclusion could be drawn on whether HR is more actively employed by ES cells to repair these loci.
Moreover, one gene in each of these two arrays can potentially be exceptional. Hoxb1l demonstrated
surprisingly high HR rates in both target sites and both cell types analysed. This could potentially result from
differences of Hox locus organisation compared to other genomic regions. However, this assumption would

require to assess more Hox genes to confirm it.
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Fig. 31 Comparison of a) bivalent and b) heterochromatic targets between two cell lines on single guide RNAs and c)

on combined arrays. There is no significant difference in HR efficiency in different cell types.

Considering bivalent regions and facultative heterochromatic targets as independent arrays (fig. 31 c¢) we
found no significant difference between analysed cell types. Moreover, medians of an array of one cell type
lied within a confident interval of another cell type for both chromatin environment, and the increase of
HR utilisation in ES cells was approximately two-fold (close to 2 and 2.16 respectively). This led us to a
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conclusion that in terms of DNA repair bivalent chromatin predominantly behaves similarly to facultative

heterochromatin and that repressive chromatin marks tend to play a decisive role in a repair pathway
choice.

Exceptions

It can be noticed that in ES cells HR in bivalent targets seems to have high variability (fig 31 c). This may
result from one of the selected targets, Pax6, demonstrating very low HR levels. It is possible that this locus
is an exception due to its DNA sequence or another factor, but assessing more bivalent targets would be

necessary to check it.

The same problem can be observed for the group of facultative heterochromatic targets. HR level in this
group goes surprisingly high in ES cells (fig. 31 ¢) and demonstrate a rather prominent variability. It is caused
by results from two guide RNAs for the same gene, Hoxb1. However, the Hox cluster is known to have a
rather distinct chromatin structure and is sometimes even thought to represent a separate chromatin type
(Aaronson et al., 2016). Therefore, it would help to increase the number of heterochromatinised targets as

well as to add some more Hox genes into analysis to check whether it stands the same in the context of

DNA repair.

LADs

We could observe no significant increase in HR employment for any of analysed loci within LADs (fig. 32).
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Fig. 32 Comparison of targets located in LADs targets between two cell types on single guide RNAs. Different targets

behave in a different way, making it impossible to draw a conclusion based on such a small number of targets.

However, it was not completely blocked in any of the targets. This observation does not fit results previously

obtained in the lab. However, such a discrepancy could be explained if genes in question are located at the
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periphery of LADs. This assumption requires further experimental investigation. However, the fact that two

of the genes of interest were reported as bivalent in literature can be considered indirect proof for it.

The cell cycle is partially responsible for the low HR rate in 3T3. Cell cycle block causes an increase
in HR utilisation but cannot fully explain differences between cell types
As it was noted before, mouse ES cells are characterised by a specific cell cycle distribution, with a very

short G1 phase. As a consequence, only 20% of cells in a population are in this phase at any time point, and
the rest of the cells is in S/G2 phases, therefore 80% of cells are HR-proficient. In differentiated cells, these
ratios are different, as G1 is longer. 60% of cells in a population are in this state and therefore cannot
perform HR. This could potentially be the cause of different ratios of HR in 3T3 and ES cells. To test this
hypothesis we first decided to enrich a population of 3T3 cells for G2 cells. To this end, we blocked cells in
the G2 phase with RO inhibitor and analysed changes in HR utilisation. We could indeed detect an increase
of HR ratios comparable or even larger than those observed | ES cells (fig. 33). However, from previous
observations we knew that the degree of HR enhancement varies between different chromatin contexts,

and would the cell cycle be the only explanation, it would cause a similar shift in all cases.
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Fig. 33 HR proportion grows considerably after cell cycle block with RO inhibitor.

To further test the degree to which perturbed cell cycle is responsible for higher HR rates in ES cells, we
needed to bring it to the state close to those of differentiated cells. This can be achieved by culturing ES
cells in a serum-free medium with an addition of MEK and GSK3 inhibitors (so-called 2i medium) (Ying et
al., 2008). It has been demonstrated that in this medium a G1-S checkpoint is restored in ES cells and the
length of the G1 phase is increased, and 40% of a cell population is in this phase (ter Huurne et al., 2017).

We could also observe these changes (fig. 34).
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Fig. 34 Cell cycle distribution difference between cells cultured in the presence of serum or in serum-free 2i medium

We performed transfections of some selected guide RNAs in these culture conditions and analysed HR rates.
For most of the analysed target sites, we could detect no difference in HR rates between two culture
mediums (fig. 35), although in a few cases we could see a slight decrease or increase. When results from all
analysed target sites were combined for statistical analysis, no significant difference was observed. Also,
when a ratio between HR levels in serum-containing medium and 2i medium was calculated for each guide
RNA, the median ratio amounted to a 1.16-fold increase, which is lower than differences observed between

3T3 and ES cells.
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Fig. 35 Comparison of HR proportion in two culture mediums shows that it is not consistent between different targets

and no conclusion can be drawn.

All in all, our results point that altered cell cycle might be one of the mechanisms that contribute to the
ability of ES cells to maintain their genome stability. However, it does not entirely explain a present
difference and allows us to assume that other factors might be involved. One such mechanism could be a

decreased level of repressive chromatin marks that is observed in ES cells. Another potential mechanism is
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an increased level of proteins involved in DNA repair and particularly in HR that was previously reported.

However, a precise answer to this question would require further investigation.
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Discussion
In my project, | investigated the role of sequence and chromatin context in the process of DNA double-

strand break repair and the influence of the cell type on it. Cell types in the focus were mouse ES cells and
3T3 cells. ES cells were selected as a model because they were reported to have unique pluripotency-
specific features of DNA repair, and because of the abundance of bivalent chromatin. 3T3 cells were used
as a model of differentiated yet cycling cells as a line stably expressing Cas9 was previously acquired in the
team. Targets for a break induction were selected at euchromatic, bivalent regions, facultative
heterochromatin, and LADs. The first three target types were dictated by our wish to compare bivalent
regions to chromatin types a mix of which they represent. | performed TIDE and HR-TIDE experiments for
all selected targets in both cell types, in normal conditions or with cell cycle perturbations. | could confirm
existing hypothesis of error-prone repair outcome being greatly dependent on the sequence around the

break site, and having variations depending on a cell type.

The tendency seems to be in accordance with previous observations that euchromatin seems to shift the
balance between repair pathway towards HR, as compared to transcriptionally inactive regions such as
facultative heterochromatin and bivalent domains, although due to the small number of investigated
targets | cannot claim statistical significance. However, these observations come into contradiction with
the results of a study by Schep et al. that was recently published on BioRxiv (Schep et al., 2020). They
addressed the question of the role of the chromatin environment in repair pathway choice by inserting a
short barcoded reporter cassette with a well-characterised Cas9 target site into multiple genomic
locations in a human immortalised cancer cell line. Analysing thousands of target sites, they observed a
negative correlation between the presence of H3K27me3 chromatin mark and NHEJ employment and
could also see that the euchromatic environment promotes the use of NHEJ. In our investigation we could
see prominent recruitment of NHEJ in euchromatic targets in 3T3 but not in ES cells. However, somatic
3T3 cells seem to be a more proper line to compare to another differentiated cell line, such as K562
utilised by Schep et al. At the same time, we did not see the anticorrelation between H3K27
trimethylation and the use of NHEJ in either of the model cell types. However, a small number of targets

does not allow us to draw such broad conclusions.

In the same study, a template-dependent repair has been tackled. It was observed that the chromatin

environment influences it the same way as it does for NHEJ. However, the pathway chosen for that
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investigation was single-strand templated repair, so we could not directly compare it to our results as we
were interested in HR. We could see that HR utilization was influenced both by a chromatin type and a

cell type. Heterochromatic marks appeared to dominate over euchromatic in control of a repair pathway
choice and to be repressive for HR. | found that cell cycle characteristics are one of the factors leading to
the abovementioned differences between pluripotent and differentiated cells but they are unlikely to be

the only factor involved. Therefore, further experiments to dissect this issue might be necessary.

Altogether, despite certain similarities in the experimental setup, we mostly addressed different
qguestions from those of Schep et al. Our studies could therefore be considered as complementary for

clarification of the role of chromatin features in defining DSB repair strategy.

Sequence predominantly defines the DSB repair outcome. Chromatin and cell type might have no
more than moderate influence on the DSB repair outcome
After analysing indel patterns for all target sites (26 guide RNAs) designed to induce DSBs in different

chromatin contexts in two different cell types | could see no correlation with any of these factors. All
types of repair outcomes, including small insertions and deletions, thought to be resulting from NHEJ
employment, and larger deletions normally connected to MMEJ could be observed in all chromatin types.
Indel patterns between different cell types bore strong similarity for every guide RNA, whereas no
resemblance could be detected for two different guide RNAs even in a case of a short distance between
break sites. This goes in line with previously published data indicating that DNA sequence around the
break site, particularly a few nucleotides surrounding it, and a presence of microhomologies define

specific indels found after a break repair.

However, an overall proportion of larger deletions, presumably associated with MMEJ, appeared to be
higher in ES cells than in 3T3 cells. This is likely to indicate a shift in a balance between NHEJ and MMEJ.
One possible explanation for this effect could be a more open chromatin organisation in ES cells,
considering that such a state is generally reported to be prone to HR and at the same time MMEJ being
also resection-dependent. This shift of balance could also be a consequence of an increased level of some
proteins simultaneously involved in both HR and MMEJ repair pathways, such as CtIP. Nevertheless, this

would require additional experiments to prove.
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ES cells use HR more actively than differentiated cells
Focusing more on the balance between error-free and error-prone repair pathways | performed HR-TIDE

experiments and analyzed a proportion of sequences that incorporated a provided template for HR.
Despite numbers varying for individual guide RNAs, analysis on the whole array revealed that HR is
significantly higher used across the genome in ES cells as compared to 3T3 cells. This corresponds to the
current paradigm in the field. However, unlike some other cases, in my setup, | could still see a vast
contribution of error-prone pathways in the repair process. Therefore, my results support the hypothesis
of HR being more actively employed in ES cells but do not confirm the degree of its mobilization
previously claimed. This is likely to result from the difference between experimental setups. Studies
leading to conclusions that HR is utilised to repair up to 80% of breaks in ES cells were performed on one
single break on a transcriptionally active gene, and | checked several target sites across the genome, in
both active and inactive states. Another possible explanation could be the use of Cas9 to introduce breaks
in my experiments, as it has previously been suggested that the presence of Cas9 at the DNA after a break

was introduced might potentially influence the pathway choice.

HR is enhanced in transcriptionally active genes. It is more prominent in ES than in differentiated
cells
A comparison between transcriptionally active regions and other types of chromatin led me to the

conclusion that the euchromatic environment is promoting HR. Despite | cannot prove this observation
statistically due to a low number of loci explored for each group, it is supported by several other studies,
which makes it likely to be correct. Nevertheless, it would be preferable to increase the number of targets
to enable a solid conclusion. Therefore, finding that pluripotency regulators demonstrate significantly
higher levels of HR in ES than 3T3 cells is not surprising. However, | could also see a threefold increase for
housekeeping genes, which supports the previous conclusion that HR levels are generally elevated in

pluripotent cells.

Despite both conclusions fit within currently existing views, | think they add considerably to previously
developed theories as to my knowledge it is the first time when HR contribution is assessed directly at the
level of sequence and not based on the recruitment of different factors, which could also be involved into

some other processes. Moreover, it disconfirms a recent study by Janssen et al. that claimed no influence
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of the chromatin state on the process of HR and therefore sheds light on a still controversial topic

(Janssen et al., 2019).

HR levels are low in bivalent domains and facultative heterochromatin
Of different types of heterochromatin constitutive heterochromatin is the most studied and it has been

shown that DSBs in such an environment are less likely to be repaired by HR. However, facultative
heterochromatin has been less studied. We assessed several loci marked with H3K27me3 and found that
HR levels, in this case, were low, and more interestingly, they were not significantly increased in ES cells as
compared to 3T3 cells. Therefore, we can conclude that facultative heterochromatin represents an

environment predominantly repressive for HR.

As euchromatin represents an HR-promoting environment and heterochromatin is repressive to it, it was
especially interesting for us to see what results we might observe in the case of bivalent domains, where
marks of both are combined. Interestingly, we could see that HR levels stay low and there is no significant
difference between cell types. Therefore, the same outcome is observed for bivalent domains behave as
for facultative heterochromatin. In other words, in regulating the process of DSB repair repressive
chromatin marks appear to be a stronger driver than permissive ones. It is an interesting observation as to
our knowledge no one has yet studied the influence of this type of chromatin on the process of DNA
repair.

Influence of the cell cycle on the enhanced HR utilization in ES cells

As a cell cycle is known to strongly influence the process and it is also changed in ES cells as compared to
differentiated cells, we decided to check to what extent it contributes to the difference in repair pathway
choice we see between cell types. For this we blocked 3T3 cells in the G2 phase to check if increasing a
proportion of HR-proficient cells in the population would change the balance between repair pathways. It
is hardly surprising that we found it to lead to an increase in the proportion of HR products. Therefore, in
consonance with existing knowledge, we could see that blocking cells in a cell cycle stage permissive for
HR would lead to increase utilisation of this pathway up to levels similar or even exceeding observed in ES

cells.

Another apparent question was whether modifying the cell cycle of ES cells to resemble one of the

differentiated cells would cause the opposite effect. Fortunately, we had a way to do it, as it has been
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reported that in 2i medium ES cells acquire a cell cycle that resembles one of the differentiated cells, and
what was of particular interest for us, in such culture conditions larger proportion of cells in a population
stays in G1 phase. After introducing DSBs using several selected guide RNAs we only found a moderate

drop in HR efficiency, which was not statistically significant. However, it has to be taken into account that

the share of cells in the G1 phase is smaller in ES cells even in 2i than in 3T3 cells.

All in all, we came to the conclusion that it is very likely that a distinct cell cycle that is known to be
characteristic for ES cells is likely to be one of the mechanisms to ensure higher genome stability.
Nevertheless, it is highly doubtful it is the only underlying mechanism, and further experiments would be
required to uncover other ways utilised by ES cells to ensure their genome is preserved through

generations.
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Perspectives
It has to be noted that | performed all experiments in my project on a relatively small number of targets,

which limits our ability to generalise conclusions. Therefore, my perspectives could be divided into short-
term, aiming to prove established results without the addition of a large number of other target sites or a
major change in the experimental setup, and long-term, aiming to broaden our observations to a genome-

wide level.

| would like to start discussing the suggested experiments with short-term perspectives. First, considering
the heterogeneity of results for bivalent domains and facultative heterochromatin target groups | think
adding several more targets for each group to ensure that none of the results for selected targets was
impaired by any factor other than chromatin structure (in other words, that we do not deal with any
target representing an exception from the general trend) and reduce the influence of outliers. Adding 3 or
4 more targets should be sufficient to complement already performed HR-TIDE-based experiments.
Considering the fact that most of the time using two guide RNAs designed for the same region leads to
very similar results, it might be profitable to design one guide RNA per each selected target. Choosing
some additional targets within the Hox cluster would also allow evaluating the hypothesis of exceptional
DSB repair pathway preference (and therefore indirectly confirm an exceptional chromatin organisation in
this part of a genome). Considering the differences observed between publications it would be more

tenable to perform ChIP-qPCR for all newly selected targets to confirm their chromatin status.

Second, adding several more guide RNAs for housekeeping genes would enable us to perform a proper
statistical analysis to compare different target groups within the same cell type. It ought to be remarked
that the target group of LADs was excluded from all comparisons with other chromatin types due to a
small size of the group. Therefore, it also requires enlargement. However, considering highly heterogenic
results observed for this target group it is also necessary to perform FISH to prove that all of the targeted

regions indeed belong to LADs in the utilised cell line.

In my analysis, | have set the NHEJ/MMEJ border voluntary. To stratify this question as well as to prove
that +9 incorporation is indeed facilitated by HR, it would be necessary to perform TIDE or HR-TIDE

experiments while knocking down or chemically inhibiting key players of investigated pathways, such as
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DNA-PKcs, DNA Ligase IV, or XRCC4 for NHEJ, Pol©, DNA Ligase Ill, or XRCC1 for MMEJ, and Rad51 or
BRCA1 for HR.

According to the obtained results, we could formulate a hypothesis that in case of bivalency, i.e.
coexistence between euchromatic and heterochromatic marks DSB pathway balance is kept similar to
those of facultative heterochromatin. However, this assumption requires direct confirmation. In order to
achieve it, we plan to remove H3K27me3 from bivalent genes by recruitment of histone demethylases
such as JMJD3 or UTX to target sites by fusing them to dCas9 (a catalytically inactive form of Cas9) prior to
performing HR-TIDE experiments. Demethylases recruitment can alternatively be substituted by chemical
inhibition or knock-down of PRC2 complex subunits. However, it would cause genome-wide
perturbations, therefore, targeted demethylation is preferable. On the other hand, targeting PRC2
complex to transcriptionally active targets to form bivalent domains de novo would complement
proposed experiments in order to prove a proposed theory. However, if this strategy is chosen, it would
be important to confirm that bivalent domain formation and not replacement of euchromatic marks by

heterochromatic follows such a recruitment. Therefore, a confirmation by ChIP-qPCR would be required.

We could conclude from our results that HR rates are higher in actively transcribed regions marked by
H3K4me3. However, we cannot draw a line between roles transcriptional activity and chromatin status.
Performing HR-TIDE experiments after chemical transcription inhibition would allow us to dissect
between these two factors. Triptolide use would be preferable compared to other commonly used
compounds, such as a-amanitin, actinomycin D, DRB, or flavopiridol, due to the fact that it inhibits
transcription initiation, while other inhibitors block elongation. Considering that selected targets lie within
proximal promoter regions, an attitude that blocks transcription inhibition should preferentially be used.
Potential downsides of such an approach are massive perturbation caused in a cell by a prolonged
transcription block. One cannot exclude that effects caused by such a block might mask analyzed

influence on DNA repair.

Regarding long-term perspectives, | would like to mention a potential practical application of the
developed approach. In my opinion, it could be used for predicting knock-in efficiency. Analysing obtained
results | have noticed that in some cases HR efficiency differs from what can be expected from the

chromatin environment surrounding the introduced break. Knocking-in large fragments, such as
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fluorescent reporters, is often necessary for research. However, the introduction of large fragments often
results in reduced efficiency compared to smaller ones. Therefore, | think that prior testing of designed
homology arms with smaller insert might be a good strategy to predict their efficiency before engaging in
a large experiment to enable the optimal setup. To allow this, homology arms should be cloned with a
small insert containing digestion sites that would enable further replacement by a larger insert of interest.
This way, knock-in efficiency could be tested by HR-TIDE prior to the real experiment. To verify that HR-
TIDE results are a good predictor for a larger fragment, it would be good to replace an insert in several of
previously used templates with mCherry and evaluate knock-in efficiency by FACS to test whether it

correlates with HR proportion observed in HR-TIDE experiments.

Finally, all experiments performed in the course of my doctoral project can be used as a basis to design a
genome-wide test of HR utilization. Selecting one or two hundreds of well-cutting guide RNAs targeting
different genome regions based on available data and cloning them together with corresponding HR
templates into a viral library based on an integration-deficient lentiviral vector could be a solution for
such a goal. This library should be used for infecting cells of interest and further submitted to NGS
analysis. Such an experiment would provide a map of HR utilisation efficiency and allow assessment of its
dependence on a chromatin state as well as other factors. It would also help to select a group of targets

for further dissection of mechanisms underlying observed correlations.
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Materials and methods

Cell culture
Mouse ES cells were cultured on a feeder layer of mitotically inactive MEFs, growing conditions were set

to 37°C, 5% CO,. Cells were passaged every 2-3 days and kept in culture for no more than 10 passages.

Passaging involved trypsinisation for 5 minutes at 37°C, trypsin inactivation with at least equal volume of
medium, achieving a state of single-cell suspension, separation from feeders by gravity (after 10 minutes
incubation in a 15 ml Falcon tube, top fraction was used for plating) and plating on a fresh dish at 1:10 to

1:20 rate depending on the desired final confluency.
Standard ES cell medium composition:

High glucose DMEM

15% ES-grade FCS

1mM NEAA

1 mM Sodium Pyruvate

40ug/ml Gentamycin

100 uM B-mercaptoethanol

2x recombinant LIF

For creating stable cell lines, antibiotics selection begun 24 h post transfection and continued for 2 days

with Puromycin (at a final concentration of 2uM) or for 10 days with G418 (at a final concentration of 400

uM).

Suicidal cassette: for all following experiments cells were treated with puromycine for 2 days starting 24h

after thawing.

For experiments in serum-free conditions 2i medium was used.
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2i medium composition:
DMEM/F12 + Neurobasal mixed 1:1
1x N2

1x B27

25 ug/ml BSA

100 uM B-mercaptoethanol

2x recombinant LIF

1 uM PD 98059

3 uM SB 216763

For a plasmid transfection, reverse transfection protocol using Lipofectamine 2000 was applied. Cells
were pre-treated with Shield1 (at a final concentration of 1:2000) overnight prior transfection. For the
transfection, cells were trypsinised and separated from feeders by gravity in 15 ml Falcon tubes for 15
minutes. ES cell containing supernatant was separated from a pellet of feeders and transferred into fresh
Falcon tubes. 0.5*10° cells per sample were taken if transfecting cells cultured in the standard ES cell
medium. In the time of incubation, transfection mixes were prepared. Transfection mix 1 contained total
of 5 ug of DNA (when transfecting for HR-TIDE experiments, HR template and a guide RNA were co-
transfected at a 3:2 ratio, for template only or guide samples a corresponding plasmid was replaced by
the same amount of the empty vector), 10 pl of Lipofectamine 2000, and 250 pl of OptiMEM medium.
Transfection mix 2 contained 12,5 pl of Lipofectamine 2000, and 250 pl of OptiMEM medium.
Transfection mixes 1 and 2 were incubated for 5 min at room temperature, then mixed and incubated for
10 more min at room temperature. For transfection, cells were centrifuged for 3 min at 1200 rpm, and the
supernatant removed. Resulting pellets were carefully disloged, and then gently resuspended in
corresponding transfection mixes. Transfection was performed with 15 minutes of incubation in

suspension at 37°C. In order to prevent a pellet formation, tubes were gently shaken every 5 min. Cells
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were plated on 6-well plates pre-coated with gelatine with addition of 0,5 ml of OptiMEM per well for 4

hours, than medium was replaced by standard ES cell culture medium supplemented with Shield1.

For transfections of cells cultured in 2i medium 1*1076 cells was taken per sample and transfected with
total of 2 ug of DNA. Reverse transfection was performed with reducing incubation time to 7 minutes.

Cells were plated in 2i medium supplemented with 2% serum.

Growing conditions for 3T3 cells were set to 37°C, 5% CO,. Cells were passaged every 3-4 days and kept in

culture for no more than 8 passages.
3T3 cell medium composition:

High glucose DMEM

10% NCS

40ug/ml Gentamycin

Transfection of 3T3 cells was performed using Lipofectamine 2000. Cells were plated at a confluency of
1*10° cells per sample on a well of a 6-well plate 18 h prior transfection. On the day of transfection,
medium in each well was replaced by 1 ml of a fresh 3T3 cell medium and transfection mixes were
prepared. Transfection mix 1 contained total of 2 ug of DNA (when transfecting for HR-TIDE experiments,
HR template and a guide RNA were co-transfected at a 3:2 ratio, for template only or guide samples a
corresponding plasmid was replaced by the same amount of the empty vector) and 150 ul of OptiMEM
medium. Transfection mix 2 contained 10 pl of Lipofectamine 2000 and 150 ul of OptiMEM medium.
Transfection mixes 1 and 2 were incubated for 5 min at room temperature, then mixed and incubated for

10 more min. Next, each transfection mix was added to a corresponding well.
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Cell cycle analysis
Cell cycle analysis was performed using Click-iT EAU incorporation kit (Invitrogen) according to a slightly

modified manufacturer’s protocol. Cell culture medium was changed to fresh medium pre-warmed to
37°C and supplemented with EdU at a final concentration of 50 uM. After 30 min, cells were harvested by
trypsinisation, achieving a state of single-cell suspension, washed with 1% BSA in PBS, and fixed with a 100
ul of a provided fixative solution (Component D) for 15 min at room temperature. Then cells were washed
with 1% BSA in PBS and incubated with a 100 pl of a provided permeabilization and wash reagent
(prepared according to manufacturer’s protocol) for 15 min at room temperature. Next, cells were
washed with 1% BSA in PBS and a total 200 pl a reaction cocktail was added per sample, followed by a 30
min incubation. Then samples were washed with 1,2 ml per sample of a permeabilization and wash
reagent and pelleted, and supernatant was removed. Resulting pellets were resuspended in 200 pl of a
permeabilization and wash reagent, supplemented by RNaseA at a final concentration of 4 ug/ml, and Pl

at a final concentration of 4 ug/ml. Samples were further analysed by FACS.
Reaction cocktail composition (per sample):

175,2 pl of PBS

4 ul of CuSO4 (Component F)

2 ul of Fluorescent dye azide (prepared according to manufacturer’s protocol)

20 pl of Reaction Buffer Additive (prepared according to manufacturer’s protocol)

Western blotting
Cells were harvested by trypsinisation and lysed in RIPA buffer containing HEPES pH7.6 50mM, Sodium

dexicholate 0.5%, NP40 1%, EDTA 1mM, LiCl 0.5M. Quantification was performed with Bradford assay
according to manufacturer’s protocol. Samples were mixed with NUPAGE lysing buffer and pre-heated for
20 minutes. Samples were loaded on pre-cast 4-12% gradient gels for migration. Wet transfer was
performed on nitrocellulose membrane at 400 mA for 90 minute. Membrane was blocked in 5% non-fat
dry milk in PBS for 1 hour at room temperature. Primary antibodies were diluted in 3% non-fat dry milk in

PBS-0.1% Tween20 and incubated at 4°C overnight. Primary antibodies used were YH2AX (Abcam
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ab2893) diluted 1:1000, tubulin (Sigma T9026) diluted 1:10000 and GFP (Santa Cruz sc-9,996 (clone B-2))
diluted 1:500. Membranes were washed with PBS-0.1% Tween20 and incubated with secondary
antibodies for 1 hour at room temperature. After incubations were washed with PBS-0.1% Tween20 and

developed using ECL reagent.
RIPA buffer composition:
50mM HEPES pH7.6

0,5% Sodium dexicholate

1% NP40

1mM EDTA

0.5M LicCl

Chromatin Immunoprecipitation (ChIP)
Cells were rinsed with PNS and fixed with 1% PFA in PBS for 15 minutes at 37°C. Cells were washed twice

with ice-cold PBS and collected by scraping on ice in PBS with PIC and PhoSTOP. Scraped cells were pulled
down at 4°C for 5 minutes at 1200 rpm. Starting from scraping, all samples and buffers were kept on ice,
except for SDS-containing sonication buffer. After removing supernatant cells were incubated for 10
minutes of ice in Lysis buffer 1 and centrifuged at 4°C for 2 minutes at 6000 rpm. After removing
supernatant cells were incubated for 10 minutes in Lysis buffer 2 and centrifuged at 4°C for 2 minutes at
6000 rpm. Supernatant was removed and after addition of Sonication buffer cells were transferred into
Covaris sonication tubes and sonicated for 15 minutes. 50 pl of Protein G Dynabeads was used for each
sample. Beads were washed 3 times with 5 mg/ml BSA in PBS, blocked in 5 mg/ml BSA in PBS for 30
minutes at 4°C on a rotating wheel and coated with antibodies for 4 hours. Immunoprecipitation was
performed with 20 ug of sonication materiel. Samples were diluted with ChIP dilution buffer and
immunoprecipitated overnight at 4°C. Samples were washed twice with SDS wash buffer, once in high salt
buffer and once in TE buffer. Samples were eluted with Elution buffer and decrosslinked overnight at 65°C

with vigorous shaking.
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Lysis buffer 1 composition:
10 mM Tris-HCl pH 8.0
0.25% TritonX100

100 mM EDTA

Lysis buffer 2 composition:
10 mM Tris-HCl pH 8.0
200 mM Nacl

20 mM EDTA

Sonication buffer composition:
10 mM Tris-HCl pH 8.0

100 mM NacCl

1 mM EDTA

1% SDS

SDS wash buffer composition:

2% SDS in water

High salt buffer composition:
50 mM HEPES pH 7.5

500 mM NacCl
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1 mM EDTA
1% TritonX100

0.1% Sodium deoxycholate

TE buffer composition:
10 mM Tris-HCl pH 7.5
1 mM EDTA

Elution buffer:

50 mM Tris-HCI pH 8.0
10 mM EDTA

1% SDS

TIDE
Cells for analysis were collected 48h post transfection.

gDNA extraction was performed by Machry-Nagel NucleoSpin tissue kit according to manufacturer’s

protocol.

PCR amplification was performed using Invitrogen Taq Polymerase.

PCR cycle:

Stage 1 (repeated once): 95°C, 5 min

Stage 2 (repeated 35 cycles): 95°C, 30 sec; 60°C, 30 sec; 72°C, 1 min 30 sec
Stage 3 (repeated once): 72°C, 10 min; 10°C, indefinitely

PCR cleanup was performed using Beckman AMPure XP kit according to manufacturer’s protocol.
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Tablel. Guide RNAs used

Gene Guide RNA number Guide RNA sequence
Actin Pg255 GAACGGCGGGCGCTGAT
PouSfl Pg261 ACGTCCCCAACCTCCGTC
Gapdh Pg313 TCACCCACTGTAGCCCCA
Ngn2 Pg316 ACAATCAGATCTGCCCCG
Tfcp2l1 Pg360
CTTAGCTACTGACCCTG
Hoxb1l Pg361
ATCCATCTGAGAGCGACA
PouSfl Pg418 AACCTCCGTCTGGAAGACAC
Actin Pg438
TTTTATAGGACGCCACAG
Gapdh Pg439
CACTACCGAAGAACAACG
Nanog Pg442
AGAACTAGGCAAACTGTG
Nanog Pg443
CTGAGATGCTCTGCACAG
Pax6 Pg445
GCTGGAGGATGATGACAG
Pax6
pG446 GCGCGAGCCACAACAGCG
Zicl
pG447 CGGCGTCCAGGAGCATCG
Zicl
pG448 CGTGGCCGAGAGAGACGT
Ngn2
g pG449 CATGCACACTTACCTACG
Hoxb1
pG450 GAAAGAAACATGGAATGG
Tdrd1
pgll AACCTCAGTGACTCTCAGCG
Tdrd1
pgl2 TCTCTAGAAAGGTGTCCCGG
Mcdr
pgl3 CAGAGTCACAAACACCTCGG
Mcar
pgld GAGGTTGGATCAGTTCAAGG
Sox6 ogol TCAAACCCATGTGTGCAGAG
2}
tn 0g02 AGTATGGAAATCTCACACCG
Nrpl Pgo3 catatgtactctcagtacag

Table 2. Primers used for HR-TIDE

114




Gene Guide RNA Forward primer Reverse primer
number
Actin Pg255 CGTAGCGTCTGGTTCCCAAT | AGGTGCGTGTCCTTCTAAGC
PouSfl Pg266 CCCTCCTCCTAATCCCGTCT | TTCTAGTCCACACTGCGTCG
Gapdh Pg313 GAGGAGTCCTTGGAGTGTGC | TGCTGAGTCACTTGGAGCAG
Ngn2 Pg316 CTCTCTCACAACGTGCCTCC | GGTGAGCGCCCAGATGTAAT
Tfep2I1 Pg360 ATGTCACACGAGCCCAGTTT | GCTAGCGAAATCCCCACAGA
Hoxb1 Pg361 AGACAGTGTCACACGTAGGC | GATGCAAAGGTTGCGGTCTG
PouSfl Pg418 CCCTCCTCCTAATCCCGTCT | TTCTAGTCCACACTGCGTCG
Actin Pg438 CGTAGCGTCTGGTTCCCAAT | AGGTGCGTGTCCTTCTAAGC
Gapdh Pg439 TGGAACTCACCCGTTCACAC GCAGGGCATCCTGACCTATG
Nanog Pg442 TTGCGTTAAAAAGCCGCACT | GAGCTTCAGACCTTGGCTCC
Nanog Pg443 TTGCGTTAAAAAGCCGCACT | GAGCTTCAGACCTTGGCTCC
Pax6 Pg445 AAGCAGCCGCACTTAGTCAA | TAGTGGCTTCTTTCACCGCC
Pax6 G446 AGGGAGAGGGAGCATCCAAT | GGGAACACACCAACTTTCGC
Zicl pG447 GCACGACTTTTTGGGGTTGG | TGGCAGCCCTGTTAGTCAAA
Zicl pG448 GCACGACTTTTTGGGGTTGG | TGGCAGCCCTGTTAGTCAAA
Ngn2 EG449 CTCTCTCACAACGTGCCTCC GGTGAGCGCCCAGATGTAAT
Hoxb1 6450 CTCTTGCCCTCCTGGACTTG TCCATGTAGAGGCCGAAGGA
Tdrd1 . 1 GAGGTGGGGCATAACGACTT | CAGGAGGGGTTGCACGTTTA
Tdrd1 pglz GAGGTGGGGCATAACGACTT | CAGGAGGGGTTGCACGTTTA
Mcar pg|3 TCGATGACGGCGTTACACAT TGAGCCTTCCGTCATTCAGG
Mcar ng TCGATGACGGCGTTACACAT TGAGCCTTCCGTCATTCAGG
Sox6 pg01 CGTACTGCACCTCAGTGTGA CTATAGTGTGCGTGAGGCGA
Ptn pgoz CACCACACCACTTAGCCCAT CAGGGAGGTGACAGAAACCC
Nrp1l :203 GCCTGCTGGGCAAATTGAAA | AGGGAGGAATGGGGCATACT

Table3. Primers used for sequencing
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Gene Guide RNA number Sequencing primer
Actin Pg255 CGTAGCGTCTGGTTCCCAAT
Pou5f1 Pg266 GGGGACATATCTGGTTGGGG
Gapdn Pg313 GATCTCACCCTGTGTCCACG
Ngn2 Pg316 CCCGAGTCTCGTGTGTTGTC
Tfcp2ll Pg360 GTCAGTGTTCAGAGCGAGGA
Hoxb1l Pg361 TGCCATCGTTTTCCCTCCTC
Pou5fl Pg418 GGGGACATATCTGGTTGGGG
Actin Pg438 CGTAGCGTCTGGTTCCCAAT
Gapdh Pg439 AGCTACGTGCACCCGTAAAG
Nanog Pg442 AGCCGTTGGCCTTCAGATAG
Nanog Pg443 AGCCGTTGGCCTTCAGATAG
Pax6 Pg445 GGCAGAGCCGAAAACAAGTG
Pax6 GGAGCCTTGACAACGACGA
pG446
Zicl CGGGTAGAATTGAAAGCAGCG
pG447
Zicl CGGGTAGAATTGAAAGCAGCG
pG448
Ngn2 GCACGAGAACGACAACACAC
pG449
Hoxb1 GCCATCGTTTTCCCTCCTCT
pG450
Tdrd1 | TCTCTGAGTTCACGGCCAAC
pgll
Tdrd1 | TCTCTGAGTTCACGGCCAAC
pgl2
Mcar I TGGTACTGGAGCGCGTAAAA
pgl3
Mcar ATGACGATGGTTTCCGACCC
pgld
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destasbourd il organization in DNA double SEPETITY
strand break repair in mouse

embryonic stem cells

Résumé

De plusier facteurs influencent la réparation de I'ADN, y compris I'organisation locale de la chromatine,
I'état de différenciation et du cycle cellulaire. En développant un systéme CRISPR/Cas9 dans des
cellules souches de souris pour induire des cassures des doubles brins dans divers contextes
chromatiniens, et HR-TIDE, une méthode pour détecter le résultat de la réparation, nous avons pu
montrer que la fréquence de 'utilisation du recombinaison homologue est plus élevée chez les cellules
souches que dans les cellules différenciées. Nous avons pu voir qu'il est partiellement causé par des
différences de cycle cellulaire. Nous pourrions également confirmer que la chromatine active favorise
plutot la recombinaison homologue, alors que I'hétérochromatine facultative et les domaines bivalents
la répriment. Dans I'ensemble, nos données ont mis en lumiere le réle de la chromatine bivalente et de
I'hétérochromatine facultative dans le processus de choix de la voie de réparation de I'ADN.

Mots clés : cellules souches de souris, I'hétérochromatine facultative, domaines bivalents, HR, NHE],
MME], fidélité de réparation, CRISPR/Cas9

Résumé en anglais

Multiple parameters can influence DNA repair, including local chromatin organization around the
damage site, cell differentiation status, and a cell cycle state. Developing a CRISPR/Cas9 system in
mouse embryonic stem cells for specific targeting chromatin types of interest, and HR-TIDE, a method
to detect repair outcome, we were able to show that homologuos recombination frequency, despite
often being low, is higher in embryonic stem cells than in differentiated cells. However, we could see
that it is at least partially caused by cell cycle differences. We could also confirm that transcriptionally
active chromatin is rather promoting homologous recombination, whereas facultative
heterochromatin and bivalent domains represent a repressive environment. All in all, our data shed
light on the role of bivalent chromatin and facultative heterochromatin in the process of DNA repair
pathway choice.

Keywords : mouse ES cells, facultative heterochromatin, bivalent domains, HR, NHE], MME], repair
fidelity, CRISPR/Cas9
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