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Abstract

Résumé de la thèse

L’objectif de cette thèse est une étude théorique et expérimentale des propriétés du bruit
thermique hors d’équilibre, dans le but de comprendre si nous pouvons étendre les outils
de la physique statistiques aux systèmes hors équilibre. En particulier, nous montrons com-
ment étendre le Théoréme de Fluctuation-Dissipation (FDT) à des systèmes soumis à un
profil spatial de température, donc dans un état de non équilibre stationnaire (NESS). Étant
donné que les fluctuations thermiques ne peuvent pas être décrites par une seule tempéra-
ture grâce au théorème d’équipartition, nous montrons comment elles sont prescrites par le
profil de température pondéré par la dissipation mécanique locale.
Nous testons cette prédiction dans divers micro-leviers en silicium, en créant une forte dif-
férence de température (plusieurs centaines de degrés) entre la base et la pointe. Dans une
expérience en particulier, la base est maintenue à température cryogénique, plaçant ainsi
le cantilever aussi loin de l’équilibre que physiquement possible. Nous mesurons alors les
fluctuations thermiques de l’échantillon ainsi que leur dissipation, montrant comment ces
deux quantités sont parfaitement interprétées par notre cadre théorique. Le même résultat
est également vérifié pour un oscillateur macroscopique en aluminium . Une analyse minu-
tieuse des propriétés statistiques du bruit thermique démontre enfin que nos résultats sont
robustes, et un algorithme de tri des données expérimentales est proposé. Une méthode
simple pour estimer les incertitudes de mesures finalement proposée.

Thesis abstract

The goal of this thesis is a theoretical and experimental study of the non-equilibrium prop-
erties of thermal noise, with the purpose of understanding whether we can extend certain
statistical physics tools to non-equilibrium systems. In particular, we show how we can ex-
tend the Fluctuation-Dissipation Theorem (FDT) to systems subjected to a stationary spatial
temperature profile, thus in a Non-Equilibrium Steady State (NESS). Since thermal fluctua-
tions cannot be described by a single temperature through the Equipartition Theorem, we
show how they are then prescribed by the temperature profile weighted by the local me-
chanical dissipation.
We test this prediction in various silicon micro-cantilevers, creating a strong temperature
difference of hundreds of degrees between the base and the tip. In one experiment in par-
ticular, the base is held at cryogenic temperatures, thus placing the cantilever as far from
equilibrium as physically possible. We then measure the thermal fluctuations of the sample
alongside their dissipation, showing how these two quantities are perfectly construed by
our theoretical framework. The same is also verified for a macroscopic aluminum oscillator.
A careful analysis of the statistical properties of thermal noise finally demonstrates that our
results are robust, and a sorting algorithm of the experimental data is proposed. A simple
method to estimate the uncertainties of the measurements is finally given.



iv

Résumé substantiel

Le bruit thermique est un phénomène microscopique, causé par l’échange d’énergie entre
les systèmes physiques et leur environnement. Normalement indétectable en raison de la
faible amplitude intrinsèque des fluctuations, il devient saillant lorsque la taille du système
considéré atteint l’échelle micro et nanométrique, ou que la sensibilité requise augmente.
Dans ces cas-là en effet, les fluctuations, généralement négligeables, deviennent une source
majeure de bruit. Une caractérisation complète de ce phénomène devient donc primordiale.

L’un des principaux outils statistiques en notre possession pour décrire le bruit ther-
mique est le célèbre Théorème de Fluctuation-Dissipation (FDT), de H. Callen et T. Welton.
Cette relation relie l’amplitude des fluctuations thermiques d’une observable à la puissance
qu’il dissipe dans le bain thermique environnant et à la température de ce dernier. Ceci n’est
néanmoins valable que pour un système en équilibre thermique.

Lorsque nous considérons un objet dans un état de non-équilibre, le FDT ne parvient pas
à prédire les fluctuations thermiques de l’observable. La plupart des systèmes physiques
que nous rencontrons dans la vie quotidienne (nous y compris) sont hors équilibre. Certains
d’entre eux sont suffisamment proches de l’équilibre pour que nous puissions supposer que
le FDT est valable, mais ce n’est souvent pas le cas. Les cellules biologiques, les verres et
les systèmes soumis à un flux de chaleur constant, par exemple, nécessitent une description
adaptée afin de prévoir leurs fluctuations thermiques. Dans cette thèse, nous nous intéres-
sons en particulier aux systèmes en État Stationnaire Hors d’Équilibre (NESS), causé par un
profil de température sur leur longueur. Le but est de proposer une extension du FDT pour
les systèmes en NESS, et de la vérifier expérimentalement en étudiant le bruit thermique
d’un micro-levier en silicium et d’un oscillateur macroscopique en aluminium.

Nous proposons une extension minimale du FDT pour les systèmes soumis à une dif-
férence de température. Alors qu’en équilibre, le principe d’équipartition lie les fluctuations
thermiques à la température unique du bain thermique, notre FDT étendu montre que la
température de fluctuation du système est prescrite par le profil de température pondéré par
la dissipation d’énergie mécanique locale. Pour simplifier, nous prévoyons qu’un système
dans un NESS présente un bruit thermique proportionnel à l’endroit où la dissipation est
prépondérante. Nous montrons comment calculer la Densité Spectrale de Puissance (PSD)
des résonances du levier lorsqu’il est dans un NESS, à la fois pour ses modes de flexion
et de torsion. Nous associons ensuite à chaque mode une température de fluctuation, qui
représente la véritable température de non-équilibre de chaque résonance, à comparer avec
la température moyenne du système.

L’étape suivante consiste à tester le cadre théorique que nous développons en étudiant
les fluctuations d’un micro-levier. Nous le plaçons dans une chambre à vide avec sa base
thermalisée à température ambiante et son embout chauffé par un laser. Nous créons ainsi
une différence de température de plusieurs centaines de degrés sur sa longueur, et nous
mesurons les fluctuations thermiques de chaque mode de résonance. De plus, la quantifi-
cation des angles de perte de chaque mode donne une estimation de la dissipation dans le
système. Nous étudions trois échantillons dans ces conditions.

Nous montrons que le bruit thermique hors d’équilibre du premier échantillon est in-
dépendant du profil de température imposé au système. Alors que la température moyenne
du levier augmente, les fluctuations sont à peu près constantes à leur valeur à tempéra-
ture ambiante. Nous observons donc un fort déficit de fluctuations. Nous interprétons ce
phénomène grâce à notre FDT étendu, qui indique que le système est alors dominé par les
pertes à l’encastrement. En effet, dans ce cas, la seule température importante est celle à la
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base, qui est constante et donne donc des fluctuations constantes. Cette affirmation est véri-
fiée grâce aux angles de perte mesurés, qui sont également indépendants de la température.

Le deuxième échantillon présente un revêtement et une géométrie différente par rap-
port au premier. Son bruit thermique hors d’équilibre montre dans ce cas une dépendance
marquée de la température, les températures de fluctuation étant de l’ordre de la tempéra-
ture moyenne. La dissipation est également influencée, ce qui montre que dans ce cas
l’échantillon est dominé par un amortissement distribué. Grâce à un ajustement des an-
gles de perte, nous sommes alors en mesure de prédire théoriquement les températures de
fluctuation avec notre FDT étendu : le résultat correspond bien aux résultats expérimentaux,
ce qui montre la puissance de notre cadre théorique.

Le troisième échantillon a la même géométrie que le précédent mais est dépourvu de
revêtement. Le comportement observé est néanmoins très similaire : le bruit thermique et
la dissipation augmentent avec la température moyenne, simplement avec des angles de
perte environ 10 fois plus faibles que dans le cas précédent. Cela montre que cet échantillon
présente également une dissipation distribuée. En plus, nous démontrons que dans le cas
précédent le substrat contribue à l’amortissement total, bien que dans une moindre mesure
par rapport au revêtement. Avec cet échantillon également, une prédiction théorique de la
fluctuation représente bien les mesures.

Dans tous ces cas, la base du levier est placée à température ambiante, de sorte que la
différence de température maximale que nous pouvons atteindre se situe entre celle-ci et le
point de fusion. Le FDT hors d’équilibre est ainsi vérifié dans cette plage de température.
Afin de le tester pour toutes les températures, nous plaçons un levier dans un cryostat et
atteignons presque le point de fusion à son extrémité. Nous créons ainsi la plus grande dif-
férence de température qu’il peut supporter, et nous mesurons son bruit thermique. Grâce
à une estimation précise de la température moyenne du cantilever, nous démontrons que le
système présente une forte absence de fluctuations. En effet, les températures de fluctuation
sont des dizaines de fois inférieures à la température moyenne, bien qu’elles ne soient pas
exactement constantes. La dissipation mesurée est cohérente avec cette image, montrant
comment l’amortissement de ce levier est la combinaison de pertes à l’encastrement et de
pertes réparties, la première provoquant le déficit de bruit et la seconde la faible dépendance
à la température. Le FDT étendu est ainsi vérifié jusqu’à ses limites physiques.

La dernière expérience prend en considération un oscillateur macroscopique en alu-
minium dans l’expérience NETN, à Padoue. Dans ce cas également, l’objectif du groupe
dirigé par L. Conti est d’imposer un NESS dans le système et de mesurer le bruit hors
équilibre. Le but dans ce cas est de vérifier si notre description s’applique également à
un objet macroscopique, ce qui pousserait la validité du FDT étendu à des échelles plus
grandes. En effet, les résultats précédents de ce groupe ne peuvent pas être expliqués dans
notre cadre, et il y a donc une forte curiosité à tester si un comportement universel existe en
non-équilibre. J’ai passé un mois dans ce laboratoire, où j’ai assemblé un nouveau disposi-
tif de mesure expérimental et effectué quelques mesures de non-équilibre. Tout d’abord,
j’ai réussi à améliorer sensiblement la sensibilité de l’instrument autour des résonances de
l’oscillateur. Deuxièmement, les mesures de bruit thermique montrent un accord parfait
avec le FDT étendu : les températures de fluctuation sont en effet très proches de la tem-
pérature moyenne du système, ce qui s’explique par un amortissement distribué. Les angles
de perte mesurés confirment finalement cette image, montrant comment notre description
est en effet valable aussi pour un objet macroscopique.

Toute la discussion précédente est basée sur une supposition, à savoir que les signaux
mesurés sont en effet du bruit thermique, c’est-à-dire une force stochastique cédant de
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l’énergie au système. Nous la testons alors, en montrant d’abord les propriétés statistiques
des fluctuations thermiques et en les vérifiant ensuite dans les données expérimentales grâce
à une détection synchrone. Nous montrons initialement qu’il n’y a pas de différence qualita-
tive entre une distribution à l’équilibre et une distribution hors équilibre pour les coefficients
de Fourier dans les spectres. En plus, nous sommes capables de discerner si certains événe-
ments ne sont pas dus au bruit thermique en nous basant sur la fonction de densité de prob-
abilité (PDF) échantillonnée. Nous discutons ensuite de la PDF des spectres expérimentaux,
en démontrant comment une PSD est en général Γ-distribuée autour de la moyenne. En-
suite, un algorithme original de tri des spectres expérimentaux est proposé, où les mesures
en dehors d’un certain seuil de la PDF attendue sont exclues. Les techniques permettant
de contourner les éventuels problèmes liés à la définition d’une moyenne sont examinées.
Enfin, la PDF du bruit thermique est également récupérée, et une deuxième méthode de tri
possible est suggérée.

En raison de l’importance capitale de la mesure de la dissipation dans cette thèse, nous
utilisons une méthode d’ajustement non biaisée afin de définir une procédure d’ajustement.
À partir de là, nous discutons d’une manière innovante de vérifier la robustesse des ajuste-
ments et de calculer les incertitudes des paramètres d’ajustement.

Les autres contributions notables sont : un étude minutieux de la sensibilité d’une de-
tection du bruit technique grâce à une technique de levier optique ; l’estimation du point
de mesure et du rayon du faisceau laser sur un levier grâce à des mesures de bruit ; l’ajout
d’une correction du FDT pour la torsion d’un levier en tenant compte des contraintes longi-
tudinales.
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Chapter 1

General introduction

An unperturbed dissipative system in contact with a thermal bath for a long time is usually
considered to be in thermal equilibrium. In this situation, the Equipartition Principle (EP)
states that every microscopic degree of freedom possesses on average an energy kBT/2,
where kB is the Boltzmann constant and T the temperature of the bath. Let us consider the
simple case of a mass attached to a spring presenting some form of damping. The mass
oscillates around its mean value, dissipating energy in the environment, which in return
transfers on average the same amount to the mass, yielding a total balance of zero. This
concept was formalized by Callen and Welton in the Fluctuation-Dissipation Theorem (FDT)
[25], which creates a precise formulation of the link between the dissipation process, the
temperature of the system, and its thermal fluctuations (a.k.a. thermal noise).

The amplitude of these oscillations is generally tiny and usually goes unnoticed. Macro-
scopic systems are normally subject to many kinds of external and internal perturbations,
completely obscuring the action of the surrounding thermal bath. In many instances, how-
ever, this is not true. For example, microelectromechanical systems (MEMS) require a careful
study of thermal noise, since it is often the limiting factor in their sensitivity [78]. In biol-
ogy, cellular membranes show thermal fluctuations whose characterisation is paramount in
order to understand the bioelectro-magnetism [99] and survival of cells in vitro [58]. Nowa-
days, a relatively new field requires this kind of knowledge: Gravitational Waves (GWs)
detection. In these experiments, technology is pushed to its limits in order to gain the possi-
bility of measuring the extremely weak GWs signals. One of the factors prescribing further
advances in resolution is the thermal noise contribution of the test masses in the detectors
[53]. Numerous other technological applications or physical phenomena can be listed, as
thermal fluctuations become salient with the decreasing of the system size or the increasing
of the measurement sensitivity. Understanding it is thus fundamental.

Whilst the FDT constitutes an excellent framework for systems in thermal equilibrium,
there is no guarantee that it could be used for non-equilibrium systems. Non-equilibrium
is a state to which we refer to in many contexts in physics, but also in biology, cosmology
and economy, to name a few. In physics, examples range from living systems [48], aging
materials [22], and systems subject to a heat flux [79, 29]. As before, the research of possible
non-equilibrium effects in the thermal noise of the GWs collaboration has recently been a
prolific subject [29, 64].

We say that a system is considered in equilibrium when, after enough time from a previ-
ous potential perturbation, the macroscopic quantities we use to identify it are relaxed to a
specific value, which we call equilibrium value. In this work, the macroscopic quantity we
are interested in is the temperature, hence, restricting the previous definition, a system is
in thermal equilibrium when it reaches the temperature of the surrounding environment. A
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classification of non equilibrium arises when considering the time duration involved. A sys-
tem put in contact with a thermal reservoir will relax towards its equilibrium temperature.
On the other hand, a system which is placed in contact with two thermal baths at different
temperatures and left there will never be able to relax towards one equilibrium value, and it
is thus in a Non-Equilibrium Steady State (NESS), which is the main topic of this thesis. In
this case, the non-equilibrium system is in contact with two equilibrium ones (the baths). A
third state is when the baths are themselves out of equilibrium, which is the case of a balloon
in the atmosphere, or in the case of active matter, where there is no relaxation value to start
with.

In this thesis, we thus study a system which is placed in a NESS, with one end of it kept
at a reference constant temperature Tmin and the other end at a constant higher temperature
Tmax. In this case, a temperature profile T(x) is established along the longitudinal direction
x, hindering the definition of a global temperature of the system. In fact, the whole system
has not one temperature at which it can be considered, but rather a whole field of it. As an
approximation, a unidimensional system in a NESS can be considered as a collection of N
masses mi each at a certain temperature Ti. The mass at one end (x = 0) is at T = Tmin, and
the one at the other end (x = L) at Tmax. A classic example of this is the Fermi-Pasta-Ulam-
Tsingou chain [39], however many authors have studied out-of-equilibrium systems from a
theoretical and experimental point of view [11, 10, 61, 52, 42].

Since the systems we discuss in this thesis are mechanical ones, fluctuations of mechani-
cal observables are the key. As stated previously, for a generic degree of freedom, the equi-
librium T becomes T(x) in a NESS, and the EP hypotheses are not longer valid. Nonetheless,
thermal fluctuations are a macroscopic observable, and thus it is possible to associate a non-
equilibrium temperature to them. We generally refer to them as Tfluc: we simply apply the
EP ignoring the actual NESS of the system. Whilst we define Tfluc more precisely in the next
section, we stress here the fact that this quantity embodies the thermal noise of the system
in consideration regardless of its actual state. Its measurement is therefore one of the main
goals of this thesis.

In order to characterize an out-of-equilibrium Tfluc, it is important to compare it to the
meaningful temperatures of the system. In the case of this thesis, there are three obvious
ones: the minimal temperature Tmin, the maximal temperature Tmax, and the average tem-
perature Tavg. For simplicity’s sake, let us suppose T(x) is linear, so that Tavg is the tem-
perature at the center of the system, i.e. Tavg = T(L/2). Let us then imagine we mea-
sure Tavg and a fluctuation temperature Tfluc; we can then define three macro-behaviors:
if Tavg ≈ Tfluc, there is no quantitative difference between this system in a NESS and the
same in equilibrium at Tavg from the fluctuations’ point of view. In other words, placing
the sample in contact with the two reservoirs at Tmin and Tmax and thus with a temperature
profile along it, or in contact with one single bath at Tavg gives the same outcome. On the
other hand, if Tfluc

> Tavg, the fluctuations yield a higher temperature with respect to the
one dictated by the average temperature. In this case, we say the system shows an excess of
fluctuations with respect to equilibrium. The opposite is also possible: if Tfluc

< Tavg, we
have a lack of fluctuations.

The temperature of an object in an out-of-equilibrium state is a prolific topic of statistical
physics, as it seems that fluctuations, and thus fluctuation temperatures, of diverse systems
behave substantially differently [31]. In non-equilibrium experiments, higher fluctuations
are often the case [29, 30], which is supported by theoretical predictions [52], whilst some-
times the system is indistinguishable from one in equilibrium [79]. Weaker fluctuations have
also been observed in experiments such as the ones in this thesis [42, 41, 40].
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Whilst experimental bounds are weak (we can imagine that at least Tfluc ≥ Tmin), a
theoretical prediction of the fluctuations is needed to further construe the experimental out-
comes. One remarkable result [36] shows that for a hot brownian particle, the fluctuation
temperature is:

Tfluc =
∫

dx T(x)wdiss(x) (1.1)

with wdiss the normalised mechanical energy dissipation in the sample. The oscillation tem-
perature of the object is thus the temperature profile weighted by the spatial dependency
of the dissipation. This has also been the case shown in previous experiments in our group
[42, 79], as we believe it hints to a possible general trend of non-equilibrium systems. We
derive this formula and draw its consequences in our experiments in the next chapters.

Motivation

The goal of this thesis to measure and to characterise the non-equilibrium fluctuations of
various mechanical systems thanks to the extension of the FDT, which leads to eq. 1.1. In
order to do so, we proceed in two directions: experimental and theoretical.

We analyse the thermal noise of various micro-cantilevers in contact with a thermal bath
at room temperature, showing their fluctuations depend on their local dissipation function.
We then test our extended FDT at its temperature-wise limits, placing a cantilever at cryo-
genic temperatures and reaching the melting point at its tip. Next, we further scrutinise
the FDT with the characterisation of the non-equilibrium thermal noise of a macroscopic
oscillator.

In order to construe the results, we then develop the extended FDT for all the measurable
degrees of freedom of the system, and a simple model for the dissipation function in order to
theoretically predict Tfluc. Furthermore, we take great care in the characterisation of thermal
noise from a statistical point of view, which is then applied in order to sort the experimental
data.

Relevance for the GWs community

Due to the possible relevance of this thesis in the GWs detection realm, we believe it is worth
showing this in details. We therefore briefly introduce the current state of the GWs facilities
and then focus on our contributions on the subject.

There are currently three operative detectors in the world: the LIGO collaboration [2]
that has two facilities in the USA and the Virgo collaboration in Italy [3]. In both these
collaborations, important developments have been made, spanning from the geometry of
the suspension system [24, 9] to the study of the best materials for test masses and coatings
[46, 8]. The state-of-the-art setup for the last stage of suspension is represented by monolithic
fused silica fibers [32], which show excellent thermal noise properties. We can distinguish
three main sources of thermal noise: the coating of the test mass, its bulk, and the system
adopted to suspend it.

The non-equilibrium behavior of these systems can arise from the power deposited by the
very intense laser beams hitting the mirrors [63]. The most recent advances on the coatings
[4] target an absorption coefficient of 1 ppm, which combined with the 3 MW of incoming
power leads to ≈ 3 W of deposited heat. This energy needs to be transferred through the
system in order to avoid raising the temperature of the test mass, thus increasing thermal
noise and reducing sensitivity. If this is not the case, a temperature difference ∆T is present
along the suspension system, therefore prompting a NESS.
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In this context, our study is a perfect test bench for this possible phenomenon. Mea-
suring the non-equilibrium fluctuations of the cantilever leads to a study of the possible
non-equilibrium effects of a ∆T on the thermal noise, and thanks to our extended FDT its
theoretical prediction. Anticipating the results of Chapter 3 (also shown in [42, 40]), we show
that a ∆T does not necessarily represent a nuisance, depending on the local dissipation of
the system considered.

Next, a new generation of detectors has recently appeared: KAGRA, currently in the
testing phase in Japan [6]. This collaboration is focused on bringing the detectors to cryo-
genic temperatures. Indeed, since thermal noise is proportional to the temperature, cooling
down the detectors is bound to reduce the impact of this noise source on the measurements.
Inevitably, this requires a brand new characterization of materials for the aforementioned
components of the detectors. Researchers chose to use sapphire mirrors suspended by sap-
phire blades, due to this material’s superior properties at low temperatures with respect to
silica.

The Einstein Telescope (ET) [93], a new underground facility currently under study by
a European collaboration, also aims at lowering thermal noise thanks to cryogenics. The
research of the materials to be used in the suspension system involves sapphire and a third
material: silicon. At around 20 K, silicon has a zero in its thermal expansion, thus eliminat-
ing the thermoelastic contribution to the total noise.

The recent proposal of LIGO Voyager [4] consists of various upgrades to the LIGO facility,
including cooling down the detector at 123 K. In fact, at this temperature, a second minimum
of thermal expansion eliminates the thermoelastic noise. Silicon is preferred over sapphire
due to the possibility of keeping the detector at higher temperatures with respect to the
≈ 20 K needed to retrieve similar noise properties with sapphire.

The challenge with low temperatures is now not only the possible effects of a ∆T, but
also the fact that the thermal noise properties of the selected material need to be optimised
for the chosen temperature. In these conditions, the first effect can be even more dramatic
than at room temperature: in KAGRA, when the temperature of the mirror is raised from
20 to 23 K (15%), the sensitivity is predicted to decrease by 8 %[96]. KAGRA, ET, and the
LIGO Voyager proposal adopt two different strategies: the first two use a conductive circuit
to the heat sink, while the second suggests a radiative one. The advantage of the first one is
that the temperature can be lower; however, the suspension ribbons must be thick, therefore
potentially increasing noise. The opposite is true for the second: since the temperature
must be higher, thus increasing the thermal noise of the mirrors, nonetheless reducing the
contribution of the suspension. In both approaches, there is a common agreement that a
temperature gradient along the suspension blades, or ribbons, is again undesirable.

In this case, our previous studies [42, 40] regarding non-equilibrium noise do not con-
sider a system in a cryogenic environment, and their conclusions may not apply. For this
reason, the cryogenic experiment presented in this thesis can represent an interesting test
bench for the suspension systems for the aforementioned detectors. Indeed, we show that
the conclusions we reach at room temperature can be extended at low temperature, showing
how a ∆T may leave the thermal noise of the system roughly unchanged. Furthermore, our
sample being made of pure silicon, this experiment represents an important test in assessing
the cryogenic non-equilibrium properties of the material for the future ET facility.
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Outline

This thesis is divided into 5 main chapters : we first introduce the theoretical background,
then describe 3 sets of experiments (cantilevers at room temperature, cantilevers at cryo-
genic temperature, and macroscopic oscillator), and finally present a general study of the
statistical properties of thermal noise, in and out of equilibrium. Each chapter is followed
by its own appendices that contain further details on the matter but can safely be omitted
for a global reading of the document.

In Chapter 2, we formally introduce the concept of thermal fluctuations of a system, from
its early detection to the mathematical description embedded in the FDT. We then show
how we can express the action of the thermal bath on a silicon micro-cantilever, prompting
oscillations we can divide in two categories: deflection and torsion. The FDT for a cantilever
in thermal equilibrium is then retrieved. In the second part, we show a natural extension of
this description for a cantilever subjected to a temperature difference along its length [64, 40].
In particular, we show how even in a NESS, we can associate a fluctuation temperature with
the system, thanks to an extended EP. In the appendix, we finally discuss the dissipation of
a micro-cantilever, developing the necessary tools which will be used in the following parts.

In Chapter 3, we concentrate on the measurement and characterisation of the non-equilibrium
thermal noise of various micro-cantilevers using the optical lever technique [60]. We quan-
tify the fluctuations and the dissipation of three samples with different geometries and char-
acteristics, all in contact with a thermal reservoir at room temperature at their clamped end
and heated at several hundreds of degrees more at their free end. We then demonstrate how
it is possible to predict the observed noise based on simple assumptions about the observed
dissipation and our extension of the FDT. This description is proven extremely robust, since
it allows us to characterise all three samples which show very different behavior under a
heat flux. A global view of the different non-equilibrium behavior of the cantilevers is then
given in the conclusions. In the appendixes, we discuss a complete and innovative manner
to retrieve the sensitivity of the optical lever measurements. Moreover, we show how we
can retrieve the probing position and laser waist through the measured thermal noise.

In Chapter 4, we push the previous description to the physical extremes, placing a can-
tilever in contact with a cryogenic thermal bath on one side and almost reaching the melting
point on the other. In this experiment, the system is virtually as far from equilibrium as pos-
sible, with a temperature difference on the order of thousands of degrees along the length of
the cantilever. In this condition, the temperature field of the cantilever is arduous to charac-
terise; thus we develop a method based on numerical simulations. The thermal fluctuations
are retrieved thanks to interferometric detection [87], and we prove the validity of our non-
equilibrium FDT in these extreme conditions as well. In spite of difficult interpretation, we
also show the dissipation of the cantilever at increasing temperatures. Finally a discussion
concludes the chapter.

In Chapter 5, we focus on a macroscopic system, the Non-Equilibrium Thermal Noise
(NETN) project in the group of L. Conti [29]. Over a period of one month, I installed a new
interferometric detection system and performed some measurements on an aluminum oscil-
lator in a NESS. We start by discussing the oscillator and the new detection system installed,
then we show the results of the measurements. While the previous results of the group show
a drastic increase in fluctuations with respect to the average temperature of the oscillator, we
show that no such phenomenon is found in our measurements. Our data indicate a perfect
agreement with our extended FDT, showing how it can be thus applied to a macroscopic
object, hinting at its possible generality. Moreover, we show how the new detection system
has sensibly improved the Signal to Noise Ratio (SNR) of the detection. After a discussion
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and a comparison with the previous results of the group, in the appendixes we examine the
alignment of the interferometer and the open questions regarding the system.

In Chapter 6, we tackle a hypothesis underlying the whole thesis, which is the nature of
the measured signals we interpret as thermal noise. We show that the expected probabil-
ity distributions of the Fourier coefficients of the spectrum is a Gaussian, and we verify it
thanks to a lock-in amplifier technique. We then show that there is no measurable difference
between the statistical distribution of an equilibrium system and an out-of-equilibrium sys-
tem, which is paramount in defining concepts such as the average and the variance. Then,
we discuss the statistical properties of the spectra themselves, showing how they are Γ-
distributed around their average. Using this information, we propose an innovative sorting
algorithm to exclude polluted signals from an ensemble of spectra and show how we ap-
ply it to the measured signals. Next, we calculate the statistical distribution of the thermal
fluctuations, showing how it can be safely confounded with a Gaussian, and we propose a
second sorting algorithm. In the last section, we examine the fit procedure used throughout
the thesis in order to retrieve the dissipation, showing how thanks to an unbiased minimis-
ing algorithm and a simulation we can check that the retrieved values are unbiased and
associate them with an uncertainty. Finally, a discussion concludes this part.

Lastly, we summarise the results obtained in this thesis in some general conclusions.
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Chapter 2

Thermal noise

This chapter concentrates on the study of the nature of thermal noise, starting from its early
characterisation until the current state-of-the-art. We introduce the concept of thermal fluc-
tuations of an observable and how they are linked to the dissipation of the system thanks
to the Fluctuation Dissipation Theorem (FDT). We then expand the initial description of the
oscillations of a single degree of freedom in contact with a thermal bath into the motion
of a silicon micro-cantilever. We then show how we can expand this concept for out-of-
equilibrium systems, formally introducing the concepts of a fluctuation temperature Tfluc.

The first part briefly introduces the concept of thermal fluctuations from its first exper-
imental observations and the theoretical instruments dedicated to its characterization. In
particular, we introduce the FDT for a system in thermal equilibrium with its surroundings.

The second part concentrates on applying these concepts to the physical system we are
interested in throughout this thesis, a silicon micro-cantilever. We recover the equations of
motion of the two families of modes of the cantilever, deflection and torsion, and all the
meaningful quantities in order to compute the FDT in this case.

The last part is dedicated to the study of thermal noise in an out-of equilibrium situa-
tion. We briefly recall the concept of non-equilibrium and the definition of a fluctuation
temperature in this case. An out-of-equilibrium version of the FDT is finally developed.

2.1 Thermal fluctuations

Thermal noise is a property common to all objects having a non-zero temperature. In an
experiment, it manifests itself as tiny fluctuations around the mean value of an observable,
to which we are going to refer as ξ. Although it goes usually unnoticed, its importance
becomes salient when measurements made on the physical system under examination need
to be extremely precise, in particular when the size of the system becomes small.

In this section we briefly introduce the first experimental observations of thermal fluc-
tuations and their theoretical interpretation. We introduce the FDT and then apply these
concepts in an example, the Simple Harmonic Oscillator (SHO).

2.1.1 First observations

The first studies regarding thermal fluctuations date back to the 19th century, when R.
Brown first observed pollen immersed in water [20]. The botanist observed how organelles,
expelled by the pollen grains, would exhibit a continuous jittery motion, which appeared
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FIGURE 2.1: Brownian motion: some particles are subjected to a random force, which makes them
drift with jittery trajectories [77].

to be random. It would take roughly 80 years before A. Einstein would model the afore-
mentioned particles interacting with surrounding molecules, giving a first theoretical justi-
fication to what was later named called Brownian motion [34]. Let us suppose that some
particles are left in a certain position ξ0 in a fluid at a temperature T, which exerts a force
F on them. Supposing that the only relevant direction of the system is along the x axis, the
second law of thermodynamics imposes that for any shift dx of the fluid, the variation of
free energy needs to be zero in order for the fluid to be in equilibrium. This imposes that
the force F is balanced by the pressure of the fluid, and it allows us to calculate the diffusion
coefficient of the fluid D = µkBT, with µ the mobility of the fluid and kB the Boltzmann con-
stant. The author then demonstrates how the density of particles is normally distributed,
and thus also the displacements of the particle ξ(t) around its initial value ξ0. The variance
of this distribution is 2Dt, with t the time after the particles deposition, which means that
on average a particle travels a distance of

√
2Dt. Therefore, it is demonstrated that the mean

square displacement of a particle in contact with a fluid is proportional to the temperature
of the latter:

〈ξ2〉 = 2Dt = 2µkBTt (2.1)

where 〈〉 represents the ensemble average. The tools developed throughout the article are
then used to infer the value of the Avogadro number and the size of atoms. Macroscopic
quantities are then shown to be derived from the collective motion of a great number of
particles.

A few years later, J. Perrin experimentally demonstrated Einstein’s predictions [89], show-
ing with unparalleled precision the strength of the aforementioned analysis. Amongst the
various results of his career, the estimation of the Avogadro number represents a milestone
in the study of thermodynamics, which also lead to the consolidation of the Atomistic the-
ory.

As atomistic particles, macroscopic objects are subject to Brownian motion as the combi-
nation of the fluctuations of all the individual particles composing it. A particularly inter-
esting example is the Brownian motion of electrons in an electrical circuit, first observed by
J. B. Johnson [59] and interpreted by H. Nyquist [82]. In this thesis, the thermal fluctuations
of the charge carriers inside a resistance R yield a constant exchange of power between the
components of the circuit. Let the voltage be our observable ξ = V. If we divide the circuit
in N networks n, for each n we have a typical length and hence a typical time of vibration,
the inverse of which sets a resonance frequency fn. The authors demonstrate that for each
frequency:

〈V2
n 〉 = 4kBTRn∆ fn (2.2)

with ∆ fn the frequency bandwidth around fn. This formula relates the mean square voltage
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in the circuit with the temperature (as seen in eq. 2.1) and the value of the resistance, which
is the dissipative component of the circuit. In the last part of the article of Nyquist [82], it
is suggested that the analysis performed can be linked to the mean square displacement of
molecules in a gas, hinting at the possibility of this theory and Einstein’s being two versions
of a unique explanation of thermal fluctuations.

The key is represented by the acclaimed Fluctuation-Dissipation Theorem, demonstrated
by H. B. Callen and T. A. Welton [25]. This powerful theoretical framework assembles the
clues laid down by the previous works and shows that in general the fluctuations of an
observable ξ in equilibrium with the surrounding thermal bath at a temperature T have an
amplitude proportional to T and to the inverse of the response function of the system G to
a perturbation F. We discuss this in details in the next section.

2.1.2 Fluctuation-Dissipation Theorem

Let us imagine a system characterized by an Hamiltonian H, which can be divided in one
part that does not interact with the environment and another part which represents the
exchanges with the thermal bath Hint. If the latter is in the form:

Hint = F(t)ξ (2.3)

i.e. the perturbation is linear in the observable, we know from the linear response theory
that the value of ξ at a certain time t is influenced not only by the value of the force F at t,
but also from its past history. The expectation value of ξ at a t is thus:

〈ξ(t)〉 = ξ0 +
∫ t

−∞
dτ F(τ)χ(t − τ) (2.4)

where we suppose that the perturbation has been acting for a long time. The susceptibility
χ is defined as the inverse of the response function G = 1/χ ≡ F(ω)/ξ(ω) of the system
to the perturbation. We define ω = 2π f the natural angular frequency and ξ(ω), F(ω) the
Fourier transformations of ξ(t), F(t).

Next, let us imagine we record the signal ξ(t) for some time T . We can define the Power
Spectrum Density (PSD) of the observable as:

Sξ(ω) = lim
T →∞

1
T 〈ξ(ω)ξ∗(ω)〉 (2.5)

with the asterisk denoting the complex conjugate. This closely resembles an autocorrelation
function of the observable:

Cξξ(τ) = 〈ξ(t)ξ(t + τ)〉 (2.6)

as it is easy to see that they are Fourier pairs:

Sξ(ω) =
∫ +∞

−∞
eiτωCξξ(τ) = Cξξ(ω) (2.7)

The classical form of the FDT [25] then states that:

Sξ(ω) =
2kBT
πω

Im [χ(ω)] (2.8)

The strength of this relation is that it encompasses the aforementioned examples (Brown-
ian motion, Johnson-Nyquist noise) in one framework, showing how the knowledge of the
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FIGURE 2.2: Simple Harmonic Oscillator.

response function of the system and of the temperature prescribes the amplitude of the fluc-
tuations of an observable.

In this thesis, we are going to use a second form of eq. 2.8, proposed by the inspiring
work of Y. Levin [69], who approached the theorem from an experimental point of view. In
fact, let us imagine that we want to measure the fluctuations of an object, say a mechanical
one for simplicity, at a certain frequency ω. We then mentally apply an oscillating force F
linearly coupled to the displacement ξ through the Hamiltonian (eq. 2.3) at this frequency:
F = F0 cos ωt. This driving force, together with the system’s internal forces and its energy
dissipation mechanism, yields the evolution of the observable ξ(t). Now, the imaginary
part of the susceptibility in eq. 2.8 can be linked to the average dissipated power that this
oscillatory force feeds into the system Wdiss:

Im [χ(ω)] =
1
ω

Wdiss

|F(ω)|2 (2.9)

with |F(ω)|2 = F2
0 /2. Substituting this into eq. 2.8 gives Levin’s version of the FDT:

Sξ(ω) =
4kBT
πω2

Wdiss

F2
0

(2.10)

This form of the FDT is particularly advantageous because it explicitly shows that the fluctu-
ations of the observable are proportional to the power dissipated by the system when acted
on by the force F. We will show that eq. 2.10 is particularly convenient when we want to
describe a system with more than one degree of freedom (DOF), i.e. observable.

We now proceed to apply the FDT in a simple example, to show the equivalence of
the two definitions of the FDT, in order to then continue with the case of a silicon micro-
cantilever.

2.1.3 Simple Harmonic Oscillator

Since in this thesis we are interested in mechanical systems, we consider a Simple Harmonic
Oscillator (SHO) immersed in a thermal bath at temperature T, which is shown in fig. 2.2.
The physical system is a mass m attached to a spring of stiffness k which presents some form
of damping quantified by the quantity γ. Whilst we refer to Appendix 2.A to disclose the
possible nature of γ, it is sufficient to know that it allows the oscillator to transfer some of
its energy to the environment.

The first task is to define what we intend for this observable to be in thermal equilibrium
with the surrounding thermal bath. Via the zeroth law of thermodynamics, the oscillator is
in equilibrium with the environment if, on average, it has the same temperature T. The EP
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thus tells us:
k〈ξ2〉 = kBT (2.11)

Since our system has just one DOF, it also embeds all the energy of the oscillator in its
fluctuations 〈ξ2〉. Therefore, in order for the system to be in equilibrium it must oscillate
with this variance around its mean value ξ0 = 0. Doing so, the mass cedes energy to the
surrounding thermal bath. If no mechanism is there to invert this process, the oscillator
would stop its motion after losing all of its initial energy. The force F (the one acting on the
particles described by Einstein) is then the action of the environment transferring energy
back to the system, such that on average the total energy of the mass is conserved. We can
express this balance through the Langevin equation:

mξ̈(t) + kξ(t) + γξ̇(t) = F(t) (2.12)

where the dot represents one temporal derivative, and we express the dissipation as propor-
tional to the velocity of the mass m.

In order to illustrate the mechanical transfer function of the oscillator G(ω), and thus the
susceptibility χ(ω), we Fourier transform eq. 2.12:

[
−mω2 + k + iγω

]
ξ(ω) = F(ω) (2.13)

For an oscillatory force F = F0 cos ω0t, it comes naturally that the displacement can be mod-
eled by a similar function ξ(ω) = ξ0 cos (ω0t + ϕ), with a phase ϕ. It is then easy to derive
the dispersion relation and from this to display that the system is resonant at ω0 ≡

√
k/m.

It is then possible to define the quality factor Q ≡ mω0/γ of the oscillator.

In order to apply the FDT, we must show that the observable ξ is linearly coupled to
the force F through the Hamiltonian. Once F acts on the system, the infinitesimal work
δW the force makes on the system causes a displacement δξ, so it is: δW = Fδξ. For a
reversible transformation, the energy exchange is all contained in the work exchange so that
δH = δW = Fδξ. Hence:

∂H
∂ξ

= F (2.14)

which demonstrates how the displacement and the thermal force are linearly coupled by the
Hamiltonian. In this case, the FDT can be applied, and from eq. 2.8 we get:

Sξ(ω) =
2kBT
πω

Im [χ(ω)] =
4kBT
kω0

1/Q
(1 − u2)2 + (u/Q)2 (2.15)

where u ≡ ω/ω0.

The FDT allows us to predict the oscillations of an observable starting from the mechan-
ical model of the system. If we want to calculate the total energy of ξ, we can integrate
eq. 2.15 over all frequencies:

〈ξ2〉 ≡
∫ ∞

0
dω Sξ(ω) =

kBT
k

(2.16)

which yields the EP. As expected, one DOF on average possesses an energy kBT.

Let us then show that eq. 2.15 can be obtained from Levin’s version of the FDT. We apply
a force F = F0 cos ωt, so that the position is:

ξ(ω) = χ(ω)F(ω) = χ(ω)F0δD(ω) (2.17)
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FIGURE 2.3: Example of cantilever array [76]. SEM Image by V. Dolique.

with δD the Dirac’s delta function. Then:

ξ(t) = Re [χ(ω)] F0 cos ωt + Im [χ(ω)] F0 sin ωt (2.18)

The dissipated power then is:

Wdiss = 〈F(t)ξ̇(t)〉 = F2
0
2

ω Im [χ(ω)] =
F2

0
2

ω2

kω0

1/Q
(1 − u2)2 + (u/Q)2 (2.19)

Plugging this into eq. 2.10 leads again to eq. 2.15. As expected, for this example at least, the
two versions of the FDT yield the same result. Nevertheless, we believe the second to be
an extremely intuitive way to construe the theorem, directly showing the link between the
fluctuations of an observable and its dissipation. In this thesis, we henceforth refer to eq. 2.10
when applying the FDT, for two main reasons: as said, it is more intuitive and directly links
the energy of the system to its PSD, and in Sec. 2.3 we show that an out-of-equilibrium
extension is straightforward.

2.2 Equilibrium thermal fluctuations of a micro-cantilever

A micro-cantilever, such as the ones in fig. 2.3, is a thin silicon beam which in this thesis
is usually 500 µm long, between 30 − 100 µm large, and 1 − 3 µm thick. One end of the
cantilever is clamped to a macroscopic chip, whilst the other is free to vibrate.

In this section, we discuss the theoretical framework that describes the motion of a can-
tilever under the action of the surrounding thermal bath, in order to apply then the FDT
and predict its thermal noise spectrum. We consider the sample in thermal equilibrium, the
extension of which is given in the following section.



2.2. Equilibrium thermal fluctuations of a micro-cantilever 13

x

B

L

y

z

H
d

q

FIGURE 2.4: Motions of the cantilever: the second mode of deflection δ (blue) and torsion θ (orange)
is shown. We can see how δ is the movement of the sample in the vertical direction z, whilst θ occurs
in the y − z plane, at least in a first approximation.

There are two important deformations that characterize the motion of the cantilever - its
deflection and its torsion - which are further divided into eigenmodes of vibration. In fig. 2.4,
we show an example of a flexural and a torsional mode of one cantilever. Throughout this
document, we refer to the deflection as δ, each mode of which is labeled by an index n. In
the same way, the torsional angle θ is divided into modes which are labeled by the letter
m. We set x as the axis along the length of the cantilever, y the one across its width and z
the direction normal to its surface. The deflection then occurs in the z direction, whilst the
torsion occurs around the x-axis.

In the next sections we discuss the theoretical frameworks describing the deflection and
the torsion of a cantilever. As part of this information can be found in [15, 84], we refer to
these works for further details.

2.2.1 Deflection

In order to describe the vertical displacement of a cantilever, we model it as a clamped-free
beam in the Euler-Bernoulli framework [68].

Euler-Bernoulli model

The deflection is considered purely in the z-direction, and thus depends solely on the lon-
gitudinal coordinate and the time: δ(x, t). As we will see, this approach leads to a normal
modes description, which will result in each one closely approximated by a harmonic oscil-
lator as in the previous section. For a cantilever of length L, width B, and thickness H, the
Equation of Motion (EM) of the system is:

m
∂2δ(x, t)

∂t2 +
∂2

∂x2

(
L4

3
k(x, t)

∂2δ(x, t)
∂x2

)
= F(x, t) (2.20)

where m is the mass and k the static stiffness of the cantilever, defined as:

k =
3YI
L3 (2.21)
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with Y the Young modulus and I = BH3/12 the second moment of area of the sample. The
stiffness k contains the rigidity of the system and its dissipation process, the form of which
will later be discussed in Appendix 2.A. Finally, the generalized force F represents the usual
thermal force. We can express the same equation in the Fourier space:

[
−mω2 + L

]
δ(x, ω) = F(x, ω)

L ≡ ∂2

∂x2

(
L4

3
k

∂2

∂x2

) (2.22)

The solution of this EM is found imposing F = 0 and using the separation of variables:

δ(x, t) = φ(x)δ(t) (2.23)

which after reinsertion in eq. 2.20 yields the system:

−m
d2δ(t)

dt2 = α4δ(t)

Lφ(x) = α4φ(x)
(2.24)

Here α4 has the dimensions of a stiffness. We now impose the boundary conditions of a
clamped-free beam:

φ(x = 0) = 0
dφ(x)

dx

∣∣∣∣
x=0

= 0

d2φ(x)
d2x

∣∣∣∣
x=L

= 0
d3φ(x)

d3x

∣∣∣∣
x=L

= 0
(2.25)

in order to derive the solution for the spatial component of the displacement:

φn(x) =
(

cos
(

αn
x
L

)
− cosh

(
αn

x
L

))
− cos(αn) + cosh(αn)

sin(αn) + sinh(αn)

(
sin
(

αn
x
L

)
− sinh

(
αn

x
L

))

(2.26)
Whilst this is the usual solution of the Euler-Bernoulli formalism with a constant stiffness,
thus with L ∝ ∂4/∂x4, it is possible to show that it is valid also in the case where k depends
weakly on x and t [41]. In this thesis, this can be considered the case, since the stiffness
depends on x mostly through its Young modulus Y, which depends weakly on temperature
(∼ 10−6 K−1).

The normalised spatial wave numbers α1 = 1.875, α2 = 4.694,... αn = (2n − 1)π/2 are
the nth root of:

cos αn cosh αn = 1 (2.27)

The spatial eigenmodes φn form an orthonormal basis along the cantilever:

1
L

∫ L

0
dx φn(x)φn′(x) = δK

nn′ (2.28)

with δK the Kronecher’s delta. In fig. 2.4, we report the n = 2 mode of deflection, and in
fig. 2.5 we show the shape of these functions for higher mode numbers. The temporal part
of eq. 2.24 is swiftly solved:

δn(t) = δn cos (ωnt) (2.29)

with δn the amplitude of the oscillation and ωn the natural angular frequency of the reso-
nance. In order to close the system of eq. 2.24, αn and ωn are linked through the dispersion
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FIGURE 2.5: Flexural normal modes of a cantilever spanning from 1 to 6.

relation, which is the solution to the equation:
[
−mω2 + L

]
δn(ω)φn(x) = 0 (2.30)

which gives the dispersion relation:

mω2
n =

α4
n

3
k ≡ kn (2.31)

As said, the functions φn(x) and δn(t) are solutions of the EM (eq. 2.20) in absence of the
thermal force F(x, t). In order to find the solution for F 6= 0, we expand δ(x, ω) and F(x, ω)
on the orthogonal basis of the functions φn:

δ(x, ω) =
∞

∑
n=1

δn(ω)φn(x) δn(ω) =
1
L

∫ L

0
dx δ(x, ω)φn(x)

F(x, ω) =
∞

∑
n=1

Fn(ω)φn(x) Fn(ω) =
1
L

∫ L

0
dx F(x, ω)φn(x)

(2.32)

Projecting eq. 2.22 on this basis, we get:
[
−mω2 + kn

]
δn(ω) = Fn(ω) (2.33)

The cantilever can thus be conceived as an infinite sum of oscillators. As we remark in
Appendix 2.A, we can in addition consider them as independent if some conditions are met.
Firstly, the energy dissipation mechanism (and thus the coupling with the thermal bath)
cannot be too effective. This is translated in practice as a measurement of the quality factor
Qn of the resonance, which, being the inverse of the strength of the dissipation, needs to be
very high. In all the experiments presented in this thesis, Qn is on the order of thousands
or more. Secondly, we would like the resonances to be well separated in frequency. It is
then useful to compute the frequency repartition of the modes: from the dispersion relation
(eq. 2.31) we can see that the theoretical resonance frequency fn = ωn/2π of a mode n is
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thus related to the one of the first mode:

fn =
α2

n

α2
1

f1 (2.34)

For example, the second resonance mode is at a frequency roughly 6 times the frequency
of the first mode, the third at 17.5 times, and so on and so forth. Each resonance is then a
low-dissipation oscillator well separated in frequency from the others. Therefore, one mode
can be considered an independent oscillator, i.e. an observable for which we can predict the
spectrum through the FDT.

FDT

As shown in Sec. 2.1.2, in order to apply the FDT to the deflection of the cantilever we need
to show how δ is linearly coupled to F. The case is slightly different with respect to the
SHO case (see Sec. 2.1.3), since the system in question is spatially extended. To calculate the
infinitesimal work δW the force makes when displacing the cantilever, we need to integrate
its contribution along the sample:

δW =
∫ L

0
dx F(x, t)δ[δ(x, t)] =

∞

∑
n=1

Fn(ω)δ[δn(ω)] (2.35)

using eq.s 2.28 and 2.59. For a reversible transformation, δH = δW and:

δH
δ[δn]

= Fn (2.36)

We see that the amplitude of each mode n is linearly coupled to the Hamiltonian through
the amplitude of the correspondent component of the thermal force Fn. The FDT of each
mode then reads:

Sδn(ω) =
2kBT
πω2

1
L

∫ L

0
dx

Wdiss
n (x, ω)

|Fn(ω)|2 (2.37)

In order to proceed, we need to retrieve the dissipated power Wdiss
n occurring in the can-

tilever. As we discuss in Appendix 2.A, we believe that the meaningful description for the
dissipation in a micro-cantilever in the experiments we performed is related to the internal
dissipation of the material. We then assume a stiffness of shape:

k = kr + iki (2.38)

where ki = kr ϕ represents the internal damping of the material, and ϕ is the loss angle. As
we show in Appendix 2.A, we can thus calculate the dissipated power:

Wdiss
n (x, ω) = ωϕ(x, ω)Umax

n (x, ω)

Umax
n (x, ω) =

L4

3
kr(x, ω)

∣∣∣∣δn(ω)
∂2φn(x)

∂x2

∣∣∣∣
2 (2.39)

The FDT reads:

Sδn(ω) =
2kBT
πω

L4

3
1
L

∫ L

0
dx ki(x, ω)φ′′

n (x)2
∣∣∣∣
δn(ω)

Fn(ω)

∣∣∣∣
2

(2.40)

with ′ denoting the spatial derivative. In order to proceed, we can apply some simplifica-
tions. Whilst in general k depends on the frequency, its variations are slow compared to the
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resonance frequencies, so we can replace k(x, ω) with its value at ωn:

k(x, ω) ≈ k(x, ωn) (2.41)

The same concept can be applied to the loss angle ϕ, in this case also because each mode
is extremely peaked at the resonance frequency. Finally, we recognize the susceptibility of
mode n in the last quantity of eq. 2.40:

χ2
n =

∣∣∣∣
δn(ω)

Fn(ω)

∣∣∣∣
2

=
1

(kr(ωn)− mω2)2 + ki(ωn)2 (2.42)

with:

kr(ωn) =
L4

3
1
L

∫ L

0
dx kr(x, ωn)φ

′′
n (x)2

ki(ωn) =
L4

3
1
L

∫ L

0
dx ki(x, ωn)φ

′′
n (x)2

(2.43)

which arises from the dispersion relation (eq. 2.31). Eq. 2.40 then becomes:

Sδn(ω) =
2kBT
πω

ki(ωn)

(kr(ωn)− mω2)2 + ki(ωn)2 (2.44)

We can now appreciate the similarity of the spectrum of a normal mode of the cantilever
and the PSD of a simple oscillator (eq. 2.15):

Sδn(ω) =
2kBT
πωkn

1/Qn

(1 − u2)2 + (1/Qn)2 (2.45)

with Qn ≡ 1/ϕn and u ≡ ω/ωn. We would retrieve the same exact form if we defined
Qn ≡ ωn/ϕn instead. Finally, we can retrieve the EP. Integrating over all frequencies eq. 2.44
we find:

〈δ2
n〉 =

∫ ∞

0
dω Sδn(ω) =

kBT
kr(ωn)

(2.46)

As we show in the following chapters, the experimental spectrum Sδ is composed of a cer-
tain number of detectable modes, and in order to retrieve the mean square displacement of
each one, we restrict our integral to a certain frequency interval ∆ωn around each resonance
frequency ωn. As mentioned, the resonances are highly peaked around ωn, so we can write:

〈δ2
n〉 =

∫ ∞

0
dω Sδn(ω) ≈

∫

ωn±∆ωn

dω Sδ(ω) (2.47)

2.2.2 Torsion

The torsion of a cantilever beam is the rotation of the cantilever around its longitudinal axis
x. From a displacement point of view, it corresponds to a deflection in the z coordinate of
a quantity δ(x, t) = yθ(x, t), with θ the torsional angle and y the transverse direction. This
quantity can be modeled as a clamped-free beam in the Saint-Venant framework [33, 68].
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Saint-Venant’s model

The EM of the torsion of the cantilever is:

I
∂2θ(x, t)

∂t2 − ∂

∂x

(
Lκ(x, t)

∂θ(x, t)
∂x

)
= Γ(x, t) (2.48)

with I = mB2/12 the inertial moment of the beam and

κ =
SBH3

3
(2.49)

its torsional stiffness, with S the shear modulus. In this case, the thermal noise is represented
by a generalized torque Γ, which is defined with respect to the longitudinal axis. We can
express the EM in Fourier space:

[
−Iω2 −L

]
θ(x, ω) = Γ(x, ω)

L ≡ ∂

∂x

(
Lκ

∂

∂x

) (2.50)

The unperturbed solution is swiftly found imposing Γ = 0 and supposing the separation of
variables:

θ(x, t) = θ(t)φ(x) (2.51)

which results in the equations:

−I
d2θ(t)

dt2 = α2θ(t)

Lφ(x) = α2φ(x)
(2.52)

We then impose the boundary conditions of zero torsion at the clamped end and zero torque
at the free end:

φ(x = 0) = 0
dφ(x)

dx

∣∣∣∣
x=L

= 0 (2.53)

and we derive the solution for the mode shape:

φm(x) =
αm

L
sin
(

αm
x
L

)
(2.54)

Again, this solution is strictly valid if the torsional stiffness is independent of x, but since
we are dealing with a weak dependency this approximation holds. The wave numbers are
αm = (2m − 1)π/2 and the spatial eigenmodes φm form an orthonormal basis along the
cantilever:

1
L

∫ L

0
dx φm(x)φm′(x) = δK

mm′ (2.55)

In fig. 2.4, we report the m = 2 mode of torsion, and in fig. 2.6 we show the shape of these
functions for higher mode numbers. Similarly to the flexural case, the temporal solution is
then:

θm(t) = θm cos(ωmt) (2.56)

In the same fashion as the flexural case, we retrieve the dispersion relation as the solution
of: [

−Iω2 + L
]

φm(x) = 0 (2.57)
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FIGURE 2.6: Torsional normal mode of a cantilever spanning from 1 to 6.

yielding:
Iω2

m = κLα2
m ≡ κm (2.58)

In order to solve eq. 2.48 for the torque Γ 6= 0, we expand the angle θ(x, ω) and Γ(x, ω) on
the basis formed by the functions φm:

θ(x, ω) =
∞

∑
m=1

θm(ω)φm(x) θm(ω) =
1
L

∫ L

0
dx θ(x, ω)

Γ(x, ω) =
∞

∑
m=1

Γm(ω)φm(x) Γm(ω) =
1
L

∫ L

0
dx Γ(x, ω)

(2.59)

Projecting eq. 2.50 on this basis, we get:
[
−Iω2 + κm

]
θm(ω) = Γm(ω) (2.60)

As in the flexural case, the quality factors of the resonances are on the order of thousands at
least, and the frequency separation:

fm =
αm

α1
f1 (2.61)

reveals that the frequency of the second resonance is at 3 times the one of the first, the third
at 5 times, and so on and so forth. We can therefore also consider the torsional motion of the
cantilever as sum of infinite independent oscillators.

FDT

It is easy to show that the same reasoning of Sec. 2.2.1 can be repeated to demonstrate that
the torsional angle θ is linearly coupled to the twisting momentum Γ through the Hamilto-
nian, and we can thus apply the FDT to each mode m:

Sθm(ω) =
2kBT
πω2

1
L

∫ L

0
dx

Wdiss
m (x, ω)

Γ2
m

(2.62)



20 Chapter 2. Thermal noise

As for the flexural case, we describe the dissipation as a complex modulus of elasticity:

κ = κr + iκi (2.63)

with κi = κr ϕ and ϕ the corresponding torsional loss angle. Since the maximum energy, i.e.
the moment of maximum strain, corresponds to the potential energy of the cantilever, it is
easy to show that it is:

Wdiss
m (x, ω) = ωϕ(x, ω)Umax

m (x, ω)

Umax
m (x, ω) = Lκr(x, ω)

∣∣∣∣θm(ω)
∂φm(x)

∂x

∣∣∣∣
2 (2.64)

The FDT then reads:

Sθm(ω) =
2kBT
πω

1
L

∫ L

0
dx Lκi(x, ωm)φ

′
m(x)2

∣∣∣∣
θm(ω)

Γm(ω)

∣∣∣∣
2

(2.65)

In this case, the resonances are also extremely peaked in the resonance frequency, so that we
can drop the dependency on the frequency of the stiffnesses and consider only its value at
the resonance ωm. We then calculate the susceptibility:

χ2
m =

∣∣∣∣
θm(ω)

Γm(ω)

∣∣∣∣
2

=
1

(κr(ωm)− mω2)2 + κi(ωm)2 (2.66)

with:

κr(ωm) =
1
L

∫ L

0
dx Lκr(x, ωm)φ

′
m(x)2

κi(ωm) =
1
L

∫ L

0
dx Lκi(x, ωm)φ

′
m(x)2

(2.67)

as solutions of the dispersion equation. Inserting χ2
m into eq. 2.65 yields the torsional FDT:

Sθm(ω) =
2kBT
πω

κi(ωm)

(κr(ωm)− Iω2)2 + κi(ωm)2 (2.68)

We remark that the spectrum of a torsional mode has the same shape as the flexural mode,
and can be thus be rewritten in a similar way as the SHO, with the appropriate parameters:

Sθm(ω) =
2kBT
πω

1/Qm

(1 − u2)2 + (1/Qm)2 (2.69)

with Qm ≡ 1/ϕm. Finally, integrating over all frequencies we can therefore retrieve the EP:

〈θ2
m〉 =

∫ ∞

0
dω Sθm(ω) =

kBT
κr(ωm)

(2.70)

Similarly to the flexural modes, we retrieve the mean square torsional angle from the exper-
imental spectrum Sθ as:

〈θ2
m〉 =

∫ ∞

0
dω Sθm(ω) ≈

∫

ωm±∆ωm

dω Sθ(ω) (2.71)

with ∆ωm a small interval around the resonance frequency ωm.
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Barr’s model

The Saint-Venant model fails to correctly interpret the torsion of the cantilever for high mode
number [15]. This theory only takes into account only stresses in the plane of the cross
section of the cantilever, neglecting both longitudinal stresses and inertia that arise due to
warping. A refined theory, in which inertia corrections and longitudinal stresses are taken
into account, is proposed by Barr [13]. The EM is:

YB3H3L
36

∂4θ(x, t)
∂x4 −

(
1 +

Y
S

)
IH2

3
∂4θ(x, t)
∂t2∂x2 +

4HI2

B3LS
∂4θ(x, t)

∂t4 −

− κL
∂2θ(x, t)

∂x2 + I
∂2θ(x, t)

∂t2 = Γ(x, t)

(2.72)

where, for the sake of simplicity, we do not express the spatial and temporal dependency
of the quantities. Whilst in the second line, we recognize the Saint-Venant model (eq. 2.48),
the first contains the correction terms. The spatial fourth derivative of the torsional angle
term represents the longitudinal stress, whilst the mixed derivative terms symbolise the
longitudinal inertia, which also yields the fourth derivation in time term. This equation is
strictly valid for an isotropic material, but it has been shown that the results are valid for
an orthotropic crystal if a plan normal to the cantilever axis is also a symmetry plane of the
material [35], which is the case in our experiments.

This equation is still solved by eq. 2.54, yielding a corrected dispersion relation:

YB3H3L
36

α4
m −

(
1 +

Y
S

)
IH2

3
ω2

mα2
m +

4HI2

B3LS
ω4

m − κLα2
m + Iω2

m = 0 (2.73)

It is also possible to express a correction to the FDT seen before. In this case, since a potential
energy is not clearly identifiable, we proceed to calculate the power directly from its stress-
strain relation:

W = σǫ̇ (2.74)

with ǫ being the strain and σ the stress, linked through the modulus of the material M:
σ = Mǫ (see Appendix 2.A for details). W is expressed in the case that we can neglect the
longitudinal inertia terms. Whilst it is possible to perform the calculation in the general
case, the final result would be difficult to construe. Furthermore, as reported by Barr, for
most cantilevers longitudinal stress terms are much more important than the inertia ones.
The energy thus reads:

Umax
m (x, ω) = Lκr(x, ω)

(∣∣∣∣θm(ω)
∂φm(x)

∂x

∣∣∣∣
2

+
Y
S

B2

12

∣∣∣∣θm(ω)
∂2φm(x)

∂x2

∣∣∣∣
2
)

(2.75)

From eq.s 2.73 and 2.75 it is then possible to express a corrected version of the FDT of eq. 2.68
involving this new term. For typical values of geometry and moduli, this new term adds a
2 % to the energy for m = 1, 20 % for m = 2 and becomes more important than the first term
for m = 4, which demonstrates the importance of this term.

2.3 Non equilibrium thermal fluctuations

As mentioned, when the system cannot be considered in thermal equilibrium, there is no
guarantee that what is discussed in the previous section is valid. In our case, we are inter-
ested in systems with a temperature profile along their lengths T(x), thus where a single
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temperature T cannot be chosen. Nonetheless, since the systems we are interested in are
oscillating mechanical objects, fluctuations are the key. In the case of the cantilever, our ob-
servables are the flexural and torsional normal modes amplitudes. In equilibrium, these are
related to the temperature through the EP:

T =
kn〈δ2

n〉EQ

kB
=

κm〈θ2
m〉EQ

kB
(2.76)

Whereas T has no meaning in a NESS, thermal fluctuations are still measurable, and it is
possible to account for the small variations in the stiffnesses. Since the fluctuations are
a collective phenomenon, they are the expression of the processes going on in the whole
cantilever. Therefore, it should be possible to find an extended version of the EP in the form:

Tfluc
n =

kn〈δ2
n〉NESS

kB

Tfluc
m =

κm〈θ2
m〉NESS

kB

(2.77)

with Tfluc the temperature the system would have if its oscillations were measured in equi-
librium and if eq. 2.76 were used to estimate it. In other words, the measured non-equilibrium
fluctuations 〈δ2

n〉NESS, 〈θ2
m〉NESS are considered to be taken in equilibrium, and a temperature

is calculated through the equilibrium EP. In this case, we cannot expect every mode to yield
the same temperature: indeed, each resonance is a different thermometer, and we have as
many thermometers as the modes we record.

In order to characterize an out-of-equilibrium Tfluc, we compare it to the meaningful
temperatures of the system, which are: the temperature at the clamped end Tmin, the tem-
perature at the tip Tmax, and the average temperature Tavg. Often, we can estimate the latter
as:

Tavg = Tmin +
Tmax − Tmin

2
≡ Tmin +

∆T
2

(2.78)

i.e., if the temperature profile T(x) is linear. As mentioned in the introduction, depending on
whether Tfluc is equal, greater or lower to Tavg, we have an equivalent equilibrium system,
one showing an excess or a lack of fluctuations.

In the next section, we derive an expression for Tfluc, which will lead to eq. 1.1.

2.3.1 Non-equilibrium FDT

In the case of the cantilever, we need to begin our description from the equilibrium FDT
discussed in Sec. 2.2.1. Let us consider the flexural modes:

Sδn(ω) =
2kBT
πω2

1
L

∫ L

0
dx

Wdiss
n (x, ω)

|Fn(ω)|2 (2.79)

As previously stated, if the system is out of equilibrium, this relation is not necessarily valid,
as the temperature T is now dependent on x. As shown in [64], the natural extension of the
FDT for a system in a NESS is:

Sδn(ω) =
2kB

πω2
1
L

∫ L

0
dx T(x)

Wdiss
n (x, ω)

|Fn(ω)|2 (2.80)

In the aforementioned article the authors show how it is possible to consider a system pre-
senting a temperature gradient as a sum of oscillators: each one is at a specific temperature
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and has with its own dissipation. Levin’s form of the FDT [69] is then minimally extended,
summing (or, in the limit of continuous systems, integrating) the contributions of all the os-
cillators. We note that this form of the FDT is the one used in a previous study in our group
[42], where only the derivation is different.

From this, deriving the extended EP is straightforward: proceeding as in the equilibrium
case, we integrate eq. 2.80 over the frequencies:

〈δ2
n〉 =

∫ ∞

0
dω Sδn(ω)

kBTfluc
n

kr
n

=
∫ ∞

0
dω

2kB

πω2
1
L

∫ L

0
dx T(x)

Wdiss
n (x, ω)

|Fn(ω)|2

Tfluc
n =

1
L

∫ L

0
dx T(x)

∫ ∞

0
dω

2kr
n

πω2
Wdiss

n (x, ω)

|Fn(ω)|2

≡ 1
L

∫ L

0
dx T(x)wdiss

n (x)

(2.81)

where we used the definition of Tfluc of eq. 2.77 and finally express it as eq. 1.1. While it
is clear that the quantity wdiss is proportional to a dissipated energy, we need to show that
it is normalised. A simple argument is to imagine the system in equilibrium: in this case
Tfluc

n = T and T(x) = T, and thus:

1
L

∫ L

0
dx wdiss

n (x) = 1 (2.82)

When the system is out of equilibrium, this needs to be assessed. Let us first note that any
effect of the temperature gradient on wdiss

n (x) will be a second order effect for Tfluc
n , which

is already proportional to T(x). Moreover, the mechanical response of the cantilever is only
slightly modified by the temperature gradient, since the maximum frequency shift (and so
the stiffness) registered is in the percent range. To a very good approximation, wdiss

n (x) can
thus be considered as the normalised dissipation of mode n. We can express this function in
a more handy way, developing the terms inside it:

wdiss
n =

∫ ∞

0
dω

2kr
n

πω2
Wdiss

n (x, ω)

|Fn(ω)|2

=
L4

3

∫ ∞

0
dω

2kr
n

πω
ki(x, ω)φ′′

n (x)2
∣∣∣∣
δn(ω)

Fn(ω)

∣∣∣∣
2

= ki(x, ωn)φ
′′
n (x)2 L4

3

∫ ∞

0
dω

2kr
n

πω

∣∣∣∣
δn(ω)

Fn(ω)

∣∣∣∣
2

(2.83)

The last part of this integral is independent of x, and it could be evaluated using eq. 2.42.
However, since wdiss is normalised, we can simply make the normalisation explicit:

wdiss
n =

ki(x, ωn)φ′′
n (x)2

1
L

∫ L
0 dx ki(x, ωn)φ′′

n (x)2
(2.84)

where the dissipative nature of this quantity emerges from the presence of the loss angle
inside the imaginary stiffness ki

n = kr
n ϕn.
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The same procedure can be applied to the torsional modes: eq. 2.62 becomes:

Sθm(ω) =
2kB

πω2
1
L

∫ L

0
dx T(x)

Wdiss
m (x, ω)

Γ2
m

(2.85)

which yields:

Tfluc
m =

1
L

∫ L

0
dx T(x)

∫ ∞

0
dω

2κr
m

πω2
Wdiss

m (x, ω)

|Γm(ω)|2

=
1
L

∫ L

0
dx T(x)wdiss

m (x)

(2.86)

with:

wdiss
m =

κi(x, ωm)φ′
m(x)2

1
L

∫ L
0 dx κi(x, ωm)φ′

m(x)2
(2.87)

The definition of the fluctuation temperatures as the temperature profile weighed by a
normalised dissipation yields an important theoretical constraint on the fluctuations: Tfluc

should be bounded by the minimum temperature of the system Tmin and the maximum
Tmax. In this range, the local dissipation function prescribes the fluctuations. Throughout
this thesis, we construe the measured Tfluc with the theoretical predictions shown in this
section, trying to link the dissipation with the fluctuations, possibly independently by mea-
suring the loss angles ϕ. Whilst this quantity is experimentally accessible, what we measure
is a global quantity which reflects the state of the whole system. In order to predict the be-
havior of Tfluc following eq. 1.1, a spatial (and thus a temperature) dependency on ϕ would
be necessary. As we are going to show, sometimes it is possible to have a clear connec-
tion, mostly when the temperature profile is linear. We refer to the next chapters for further
details.

2.3.2 Fluctuation temperature measurement

As mentioned, the fluctuation temperatures defined in eq. 2.77 quantify the thermal content
of each mode of the cantilever through an extension of the equilibrium EP. In order for this
definition to be effective, though, it requires an accurate calibration of the thermal content
〈δ2

n〉 and 〈θ2
m〉. A more handy definition arises if we first measure the fluctuations in an

equilibrium state, for which we know eq. 2.76 is valid, and the fluctuations relate to the
equilibrium temperature TEQ. A comparison of the two gives:

Tfluc
n = β2

n
〈δ2

n〉NESS

〈δ2
n〉EQ

TEQ βn =
ωn,NESS

ωn,EQ

Tfluc
m = β2

m
〈θ2

m〉NESS

〈θ2
m〉EQ

TEQ βm =
ωm,NESS

ωm,EQ

(2.88)

where the β coefficients account for the small changes in stiffness between the two cases (on
the order of the percent). In doing so, the fluctuation temperatures are self-calibrated and
they are directly related to the equilibrium temperature. Nevertheless, the tradeoff in this
case is that one must make sure that the sensitivity of the measurement is constant between
the equilibrium and the NESS measurement. Since this depends of the experiment, it will
be discussed in each case separately in the following chapters.
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Appendix

2.A Energy dissipation in a cantilever

We discuss here the various models that can explain how a cantilever dissipates its energy,
focusing then on the ones we believe relevant in this thesis.

2.A.1 Viscous dissipation

A common kind of dissipation is linked to the interactions of the cantilever with the sur-
rounding fluid, hence a viscous dissipation [94, 98, 15]. As an example we can consider
Stokes’ law for a sphere of radius R immersed in a liquid of viscosity µ:

Fdiss = 6π µ R v ≡ γξ̇ (2.89)

with v the velocity of the sphere. Viscous dissipation is commonly referred to using the
symbol γ, and it is the kind of dissipation we used as an example in Sec. 2.1.3 discussing a
simple oscillator. In the cantilever case this corresponds to writing the complex stiffnesses
as:

k = kr + iωγ

κ = κr + iωγ
(2.90)

with kr, κr their real part and the second therm representing the dissipation, proportional to
the velocity. We remember the definition of the quality factor of each resonance:

Qn =
mωn

γ
(2.91)

We do not believe viscous dissipation to be pertinent in describing the damping in our
experiments. In fact, during all the measurements the sample is always placed in a vac-
uum chamber at very low pressure p ≤ 10−2 mbar, rendering the action of a viscous drag
negligible [71].

2.A.2 Internal dissipation

Another source of dissipation is what is usually referred to as the internal dissipation of the
material. A displacement of the cantilever generates internal stresses, which in turn induce
some dissipation in the material. In order to characterize this phenomenon we follow [81, 7]
in deriving the stress-strain relations for an anelastic solid. Note that we use the notation
of the aforementioned references, in particular in the definition of an elastic, anelastic and
viscoelastic material.
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FIGURE 2.A.1: Differences between elastic, anelastic and viscoelastic solid. In the fist case (cyan) a
stress σ(t) imposed at t = 0 yields an immediate response in the creep function J, and when this is
removed at t = t1 the system goes back to its original state. A anelastic solid (green) takes some time
to relax to a certain value JR, and when the stress is removed a certain time is similarly needed to
reach the initial value. The viscoelastic solid (red) never relaxes when a stress is imposed, but rather
its J shows a linear growth. When the stress is removed, J relaxes to a different value with respect to
its initial one.

Stress-strain relations

Let us first consider a perfectly elastic material which is subject to a stress σ a strain ǫ.
Hooke’s law states:

σ = Mǫ

ǫ = Jσ
(2.92)

where the modulus of elasticity M and the compliance J are inversely proportional: M =
1/J. We take the following as a definition of elasticity: one material for which one strain
corresponds to just one stress and vice-versa, plus when perturbed its response function is
linear and instantaneous.

Relaxing the last condition yields the concept of anelasticity. This means that once a
stress (or a strain) is applied the conjugate variable takes a non-zero time to relax towards
its designed value. Loosening the first condition instead defines a viscoelastic material: once
a stress (or a strain) is applied, and then removed, the system does not recover its state before
the perturbation. We show the differences of these processes in fig. 2.A.1.

Let us take a material which is subject to a time-dependent stress σ(t). Following Hooke’s
law, it experiences a strain ǫ(t). If the stress is not too great, we can describe ǫ(t) following
a linear theory:

ǫ(t) =
∫ t

−∞
dτ j(t − τ)σ(τ) (2.93)

Let us consider the simple case where we apply a constant stress at t = 0, σ(t) ≡ σ0θ(t) with
θ(t) the Heaviside function. We can therefore recall eq. 2.92 and find the compliance:

J(t) =
ǫ(t)
σ0

=
∫ t

−∞
dτ j(t − τ) (2.94)
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We define the initial value of J(t) as the unrelaxed compliance JU, correspondent to an elastic
system since no time for relaxation is allowed: J(0) ≡ JU. On the other side, as we can see in
fig. 2.A.1, an anelastic material experiences a creep, which is the reason J(t) is often referred
to as the creep function. After a certain time, the system relaxes towards an equilibrium
value, called the relaxed compliance and defined as its asymptotic value JR ≡ J(∞). The
difference δJ = JR − JU represents the difference between an elastic and an anelastic solid
under a constant stress. A different situation arises when a viscoelastic solid is considered:
the creep function increases linearly with time.

Let us imagine to remove the stress at a time t = t1. The elastic solid immediately relaxes
to its initial equilibrium value, whilst the anelastic reaches in no time the value σ0δJ and it
needs some time to eventually reach the initial value. A similar effect arises in the viscoelas-
tic case, where the final value of the compliance is not the initial one, since the contribution
to the strain during the steady-state phase cannot be reverted.

Whilst such an experiment imposes an external stress and measures the strain of the
system, a similar one can be performed the other way around. If we create a strain to a
solid, the internal forces would act to bring the system back into an equilibrium situation.
As in eq. 2.95 we can write:

σ(t) =
∫ t

−∞
dτ m(t − τ)ǫ(τ) (2.95)

if the perturbation is again small. For a constant strain applied at t = 0, ǫ(t) ≡ ǫ0θ(t) we
define the modulus function M(t):

M(t) =
σ(t)
ǫ0

=
∫ t

−∞
dτ m(t − τ) (2.96)

Again, we can define the unrelaxed modulus MU as the value of the modulus at t = 0 and
the relaxed modulus MR as its asymptotic value at t = ∞. Since there is a unique relation
between stress and strain, these moduli are related to the respective compliances:

MU = 1/JU MR = 1/JR (2.97)

and whilst we can similarly define the quantity δM = MR − MU, there is no inverse propor-
tionality between this quantity and δJ. In fact, it is easy to show that δM = δJ/(JU JR). From
this description we can see that the physical meaning of the modulus function is the same
of a spring: when this is extended, thus creating a strain, M prescribes how the system pulls
back the spring towards equilibrium.

Dynamics

The experiment described above runs on long times (seconds or more), and we might be
interested in the dynamics of the system. Hence, let us imagine that we apply a periodic
stress or strain on the sample, with period T = 2π/ω and with ω the frequency of the
cycle. Let us start with an externally imposed stress and the consequent strain:

σ(t) = σ0eiωt

ǫ(t) = ǫ0eiωt+ϕ
(2.98)

where ϕ is the phase retardation of the strain when the stress is applied (which is zero for
an elastic material). The compliance J = ǫ/σ is then a complex quantity:

J(ω) = |J|eiϕ(ω) (2.99)
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FIGURE 2.A.2: Complex creep function. The creep function J can be imagined as a vector of mag-
nitude |J| =

√
(Jr)2 + (Ji)2 aligned with the strain ǫ. There is an angle ϕ between ǫ and the strain

σ, representing the retardation of the first with respect to the latter. Since σ is applied at a frequency
f = ω/2π, we can depict this as if the two vectors rotated around the origin with an angular velocity
ω.

where we let ϕ depend on the frequency for sake of generality and |J| = ǫ0/σ0. A practical
notation is to rewrite the second of eq.s 2.98 as:

ǫ(t) = (ǫr + iǫi)eiωt (2.100)

where ǫr is the component in phase with the stress and ǫi the one in quadrature. The same
notation can be used then to express the compliance:

J(ω) = Jr + i Ji tan ϕ = Ji/Jr (2.101)

The quantities Jr and Ji are sometimes referred to as the storage and loss compliance, respec-
tively, the reason for which will be clear shortly. In fig. 2.A.2 we show the relations between
the quantities we discussed.

In a similar way we can do a stress relaxation experiment. We can impose an external
periodic strain on the system and let the internal forces dynamically relax towards equilib-
rium:

σ(t) = σ0eiωt+ϕ

ǫ(t) = ǫ0eiωt
(2.102)

In this case we can similarly define a complex modulus M = σ/ǫ:

M(ω) = Mr + iMi tan ϕ = Mi/Mr (2.103)

Comparing these quantities with the creep ones we can see that Mi/Mr = Ji/Jr and M(ω) =
1/J(ω), so that the complex modulus and the compliance result reciprocal. Nonetheless, this
is not necessarily true for their real and complex pairs. In fact, this is assured only if ϕ2 ≪ 1,
which would imply tan ϕ ≈ ϕ. As reported in [81], this is normally the case in crystals.
Thus, since Mi ≪ Mr and Ji ≪ Jr the magnitude of the compliance and the modulus can be
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confused with their real parts |J| = Jr, |M| = Mr, hence Jr = 1/Mr.

A complete description of the functions J(ω) and M(ω) is beyond of the scope of this
section. We briefly notice that a system satisfying the behavior of fig. 2.A.1 is the so-called
three-parameter Voigt-type spring, and writing its EM results in the renowned Debye equa-
tions for an anelastic solid [81].

Energy considerations

Let us consider a stress experiment, such as a periodic strain ǫ(t) (with period T = 2π/ω) is
imposed on the system and we let the stress forces σ(t) relax towards equilibrium. Thanks
to the Debye equations, it is possible to demonstrate that the dissipated power is:

Wdiss = σ(t)ǫ̇(t) (2.104)

where ǫ̇ is the time derivative of the strain. In a whole period T this is:

Ediss =
∫ T

0
dt ǫ̇σ (2.105)

Recalling eq.s 2.103 and 2.102:

ǫ = Re
[
ǫ0eiωt

]

σ = Re
[
σ0eiωt+ϕ

]

σ = (Mr + iMi)ǫ

(2.106)

we can calculate the dissipated energy:

Ediss = ǫ2
0ω

(
Mi
∫ T

0
dt sin2 ωt − Mr

∫ T

0
dt sin ωt cos ωt

)

= πǫ2
0 Mi

(2.107)

This equation means that the energy dissipation is proportional to the imaginary component
of the modulus and the square of the maximum displacement ǫ0. In a similar way, we can
estimate the maximum stored energy Umax. This is defined as an integral:

Umax =
∫ t2

t1

dt ǫ̇σ (2.108)

where t1 is chosen when the stress is zero σ(t) = 0, which corresponds to tan(ωt1) =
Mr/Mi = 1/ϕ. Since ϕ is very small, we can approximate ωt1 ≈ ±π/2. Conversely,
t2 represents the instant when the strain is maximum, which corresponds to a zero in its
derivative ǫ̇ = 0. This means sin ωt2 = 0 and thus t2 = kπ/ω with k ∈ Z. Thus, choosing
k = 0:

Umax = ǫ2
0ω

(
Mi
∫ 0

− π
2ω

dt sin2 ωt − Mr
∫ 0

− π
2ω

dt sin ωt cos ωt

)

=
1
2

ǫ2
0(Mr + Mi/2) ≈ 1

2
ǫ2

0 Mr

(2.109)
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since Mi ≪ Mr. We can thence relate the dissipated energy to the maximum one Umax per
cycle :

Ediss = 2πǫ2
0

Mi

Mr Umax

= 2πϕUmax
(2.110)

Finally, the dissipated power of the system is:

Wdiss(ω) = ωϕUmax (2.111)

Since the loss energy is proportional to the maximum available energy through the angle
ϕ, this is often referred to as loss angle, or internal friction of the material. Owning to the
generality of the last equation, we remark that the same expression would be found if we
applied a periodic stress letting the strain lag behind. We finally define the quality factor as:

Q =
1
ϕ

(2.112)

Examples

We want now to apply these equations to a familiar system before being able to show that
they can be used for the cantilever. Let imagine another SHO, with the position ξ of the
mass being prescribed by the elastic force Fe, defined:

Fe = c1σmax ξ = c2ǫmax (2.113)

If the system is perfectly elastic, the force the mass exerts on the spring is:

Fe =
c1

c2

σmax

ǫmax ξ =
c1

c2
Mξ ≡ kξ (2.114)

where c1M/c2 ≡ k, the stiffness of the spring. On the other side, if the spring is anelastic, this
relation becomes Fe = (kr + iki)ξ, with the imaginary part of the stiffness that is inherited
by the complex modulus M. Let us then recall the EM for an oscillator (eq. 2.13):

[
−mω2 + k

]
ξ(ω) = F(ω) (2.115)

where we imagine a force F = F0eiωt which modulates the displacement ξ = ξ0eiωt+ϕ. Again
finding ω0 =

√
kr/m as the resonance frequency of the system, we can calculate the energies:

Umax =
1
2

krξ2
0

Wdiss = ωϕUmax

=
1
2

ωϕkrξ2
0

(2.116)

This example shows that eq.s 2.109 and 2.111 apply to a resonant system with one degree
of freedom. We want to show now that the these results can be safely applied to a spatially
extended system, with the promintent example being a micro-cantilever. In this case, in
fact, the system has a distributed inertia and an infinite number of degrees of freedom, thus
resonance modes. The salient point in showing that these differences do not influence the
final result is a theorem we quote from [81]:
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So long as the internal friction is small, the vibration shape of a specimen is essentially unchanged
(to first order) by the presence of internal friction, or by a small departure of the vibration frequency
from the natural frequency of the system.

The meaning of this statement is that a small perturbation, such as a small internal dissi-
pation, on the elastic moduli, does not significantly change the normal mode shape φn,m(x).
Since the significancy of a normal mode function is that all the points of the cantilever oscil-
lating at the corresponding frequency are in phase, such that all are zero and all are max at
the same time, the theorem says that this is not changed by the internal dissipation. There-
fore, since close to a resonance the motion of one point prescribes all the others through the
mode shape, the cantilever can be considered an independent oscillator, or a system with
one degree of freedom. The most important result is that we can treat the internal dissipa-
tion of each mode independently, and eq.s 2.109 and 2.111 can be applied to each resonance.
We need solely the parameters kr and ϕ (in addition to m in case we want to calculate the
kinetic energy).

Let us show an example through the first flexural mode. We write the displacement:

δ(x, t) = δ1φ1(x) cos ω1t (2.117)

We thus calculate the maximal stored energy of the system, following eq. 2.105:

Umax
1 =

∫ L

0
dx
∫ t2

t1

dt ǫ̇σ

=
1
2

∫ L

0
dxMr(x)(ǫmax(x))2

(2.118)

where ǫmax is the maximum strain. It is possible to show that:

Umax
1 =

1
2

δ2
1

∫ L

0
dx kr(x)(φ′′

1 (x))2 (2.119)

with kr defined in eq. 2.31.

With this result we can therefore apply the equations for Umax and Wdiss for each res-
onance, proven we are able to express their maximal stored energy. Whilst this is easy to
compute when a potential energy can be clearly identified, it can be difficult otherwise (see
Sec. 2.2.2).

Local properties of internal dissipation

In order to conclude this section, let us discuss the possible causes of internal damping. In
fact, the loss angle reflects a global property of the cantilever, which is a spatially extended
object. In describing its mechanical loss function wdiss(x), though, we need to assess its local
properties.

In the literature, a main candidate is usually the thermoelastic effect. In this case, tem-
perature differences in the material causes strains, which leads to dissipation. Judging from
[18, 26, 72], the contribution of this effect in our experiments is to be discussed. Firstly, pure
torsional modes are not affected by thermoelastic losses [72] since they do not create local
volume changes in the material. Secondly, for flexural modes it is known [104] that the
first resonance mode accounts for almost all the contributions of this noise source. Since in
this thesis we cannot analyse this resonance (see Chapter 3), we cannot put this to a test.
Furthermore, the observed quality factors cannot be explained solely thanks to this internal
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damping, because depending on the specific case they should be hundreds of times higher
than the measured ones. We then exclude this as the main contributor to internal losses.

The main component is then possibly related to defects in the crystal. Albeit a model
able to theoretical predict the quality factors in this case is beyond the scope of this thesis,
it is common to explain the measured loss angles through a local distribution of defects in
the material [81]. This theory is particularly fit to describe our cantilevers [42], thus in the
next chapters of this thesis we will refer to a density of defects when describing the local
dependency of wdiss(x). An example where this function is localised is discussed in the next
section.

2.A.3 Clamping dissipation

Yet another source of dissipation is linked to the contact of the cantilever with the chip to
which it is monolithically attached. As discussed in ref. [51], dissipation at the clamped
end of micro-cantilevers might be an important factor prescribing the final quality factor
of the resonances. A vibrating shear force transmits energy from the sample to the chip,
and the corresponding elastic waves give raise to dissipation. In order to account for it, in
ref. [51] the authors derive a handy formula predicting the quality factor Qtheo of the flexural
resonances of the cantilever:

Qtheo
n = A(ν)

1
(αnbn)2

(
L
H

)3

(2.120)

with

A(ν) =
0.24(1 − ν)

(1 + ν)c
bn =

sin αn − sinh αn

cos αn + cosh αn
(2.121)

Here ν is the Poisson ratio of the material and c ≈ 0.336 for ν = 0.28. The dissipation due
to the shear forces interacting with the chip is thus proportional to the 3rd power of the ratio
between the length and the thickness of the cantilever.

As we show in the next chapter, this dissipation mechanism might explain some of our
experimental results. In particular, one sample with a ratio of L/H = 500 yields the quality
factors shown in Table 2.A.1.

Mode n 1 2 3 4 5 6 7 8
Quality factor Qtheo

n /105 260 22 8 4 2.5 1.7 1.2 0.9

TABLE 2.A.1: Clamping losses quality factors.

Whilst the first resonance is almost always undetectable in our experiment, we can com-
pare our results with this theoretical prediction for the higher modes. We will show in the
next chapter that a clamping dissipation is the conclusion for one of our samples, and a
vibrating shear force could be the cause of it.

A second source of losses at the clamped end of the cantilever might be the presence of
defects in this point. As discussed in the previous section, a local density of defects at x = 0
can yield a similar effect as a vibrating shear force. In fact, whilst most of the cantilevers
described in this thesis are fabricated from a single crystal silicon wafer, hence theoretically
devoid of internal defects, this cannot be avoided close to the monolithically clamped end.
Indeed, at this point, the chemical etching performed to create the cantilever left a transition
between the thin beam and the macroscopic chip, thus possibly a concentrated density of
defects.
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2.A.4 Discussion

The dissipation of a cantilever is a delicate yet lively subject, due its importance for example
in Atomic Force Microscopy (AFM) and MEMS [86]. As seen, many experiments and theo-
retical models contribute to the subject, a part of which we reported in the present section.
A physical system usually shows various concurring forms of dissipation, so that its final
quality factor reads:

1
Q

= ∑
i

1
Qi

(2.122)

thus a contribution from all the i forms of dissipation. It often happens that one phe-
nomenon dominates over the others, which simplifies the description. Throughout this
thesis we will show how, from the measured loss angles and their dependency on the tem-
perature, we can associate a certain dissipation process to a specific system. Thanks to this,
we can estimate the local mechanical energy dissipation wdiss(x), which in turn describes
the thermal fluctuations of the system. We discuss this separately for each cantilever in the
next chapters.
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Chapter 3

Thermal noise of a micro-cantilever

In the previous chapter, we showed the theoretical models used to describe the in and out-
of-equilibrium thermal noise of a micro-cantilever. In the present one, we apply these con-
cepts measuring the thermal fluctuations of three samples, two of which are also studied
in [42, 40]. Micro-cantilevers are particularly suited for the study of thermal noise for vari-
ous reasons. As we show in the next sections, they are small enough to display measurable
mechanical fluctuations, and they are large enough to have a strongly non-uniform tem-
perature profile along their lengths. In this way, we can create an important NESS (with
temperature difference of hundreds of degrees) and measure the thermal noise of several
resonance modes. In fact, it is also interesting that the micro-cantilevers show a wide range
of detectable resonances, with each corresponding to a potentially different thermometer.
We believe these to be then the perfect test bench for our extended FDT. The common ground
of the experiments presented in this chapter is the experimental setup used to retrieve the
fluctuations and the temperature of the clamping end of the cantilever, T = 300 K.

The first part focuses on the characterization of the experimental setup, describing the
various samples explored and the motivation behind this characterisation. The measuring
system used to retrieve thermal fluctuations is displayed.

The second part discusses the temperature of the cantilevers when they are heated at
their free end. A simple argument based on the redshift of the resonance frequencies is used
to extract the maximal and average temperatures of the samples.

The third part shows the results obtained in the different experiments and their theo-
retical interpretation. We show the fluctuation temperatures with respect to the average
temperature of the system, construing the findings with the help of the measured loss an-
gles.

The last part summarises this chapter and discusses the outcome of the experiments.
Perspectives for future work and applications are mentioned.

3.1 Experimental setup

The experimental setup is depicted in fig. 3.1.1. The physical system under study is a silicon
micro-cantilever, where thermal noise is measured close to its free end with the optical lever
technique [60, 75]. A red laser beam (633 nm) is focused with normal incidence on the can-
tilever, and its reflection is collected with a 4-Quadrant photodiode. A green laser (532 nm)
focused close to its free end acts instead as the heater, creating a temperature profile along
the sample. In fig. 3.1.2, we show a picture taken during one of the experiments. The can-
tilever, in vacuum at 5 × 10−6 mbar, is monolithically clamped to its macroscopic chip which
is thermalised at room temperature Tmin.
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FIGURE 3.1.1: Experimental setup: the deflection and torsion of a cantilever are captured thanks to
the optical lever technique. The red laser beam (1 mW at 633 nm), focused on the cantilever tip, is
reflected towards the 4-Quadrants photodiode (4Q-PHD). This sensor records the temporal signals
of deflection δ(t) and torsion θ(t). A motorised 2D translation platform (2D-TP) controlling the
position of 4Q-PHD in these directions is used in the calibration. A green laser beam (0 to 10 mW at
532 nm) focused close to the tip of the triangular end of the cantilever acts as the heater. A camera is
used to visualise the position of both lasers on the sample (see fig. 3.1.2). The cantilever, in vacuum
at 5 × 10−6 mbar, is monolithically clamped to its macroscopic chip, which is thermalised at room
temperature Tmin.
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Red sensing 

laser beam

Green heating 

laser beam

FIGURE 3.1.2: Picture taken during an experiment with a C100 sample. The cantilever is visible only
by reflection of light on its edges. The red laser probe is shined close to the triangular tip of the
cantilever, with a waist diameter roughly equal to the width of the sample, in order to maximise the
sensitivity. The heating green laser is focused even closer to the tip, to avoid an overlap of the two
beams and thus mutual interferences. The red spot in the center of the picture is a ghost reflection,
so it is actually not present on the cantilever.

3.1.1 Micro-cantilevers

The physical system consists of silicon micro-cantilevers of typical length L = 500 µm, with
width B and thickness H depending on the sample. In this chapter, we present the results
of three different cantilevers, each with its own specific geometry and features.

The first sample is a B = 100 µm wide and H = 1 µm thick silicon cantilever (Nanoworld
Arrow TL-8 [80]), with a triangular free end such as the one reported in fig. 3.1.1. This
sample is of particular interest because it is the same sample studied in the previous NESS
experiments in the group [41, 42]. In these works, in fact, only weak flexural fluctuations are
measured, with the cantilever being almost insensitive to the temperature profile alongside
it from the fluctuations point of view. The purpose of reexamining this system is twofold: to
check previous results in order to strengthen their claims, and to expand the analysis to the
torsional modes in order to examine a possible universal behavior. Part of the results related
to this sample are available in ref. [40]. We refer to this sample as C100.

The second sample is a B = 30 µm wide and H = 2.67 µm thick silicon cantilever (Bud-
getSensors AIOTL [21]) with a Tantala (TaO2) coating on its surface, also with a triangular
tip at its end. This sample is also the same one used in some past experiments of the group
[42], which shows how its behavior is substantially different with respect to C100. Indeed,
thermal fluctuation seem to be strongly influenced by the temperature profile in the system,
increasing with the non-equilibrium average temperature. In this chapter, we develop a
simple theoretical model which explains why these two samples show different results. We
refer to this sample as C30C.

The third sample has the same specifics of C30C, but it is without coating. The goal of
this measurement is to check whether the results of C30C are solely due to the coating, or
if the substrate plays a similar role in prescribing the thermal fluctuations. We refer to this
cantilever as C30.

All but the second sample are commercially fabricated. The sample C30C was obtained
adding a TaO2 coating to a C30 sample, which was performed in the Laboratoire des Matéri-
aux Avancés (LMA) in Lyon, France. The procedure of coating is carefully depicted for



38 Chapter 3. Thermal noise of a micro-cantilever

example in [87]. We hereby summarise the characteristics of the different samples in Ta-
ble 3.1.1.

Name Width [µm] Thickness [µm] Coating

C100 100 1 /
C30C 30 2.67 + coating TaO2

C30 30 2.67 /

TABLE 3.1.1: Experimental samples presented in this chapter and their characteristics. They share a
common length L = 500 µm.

3.1.2 Experimental setup

As illustrated in fig. 3.1.1, the red laser (1 mW at 633 nm) enters the system through a half-
wave plate (λ/2) which tunes its polarisation so that after passing through the polarising
beam splitter (PBS), all light is directed towards the cantilever. It then passes through a
quarter-wave plate (λ/4), a dichroic beam splitter (DBS), and a converging lens (CL, focal
length fCL = 30 mm) which focuses the beam on the cantilever tip. The waist diameter is
tuned to roughly 100 µm to maximize sensitivity [49]. The lens is also used as the light port
to the vacuum chamber. Light is reflected back on the same path from the cantilever. The
second passage through the λ/4 rotates the polarisation perpendicular to the initial one,
and therefore the return beam passes straight through the PBS. A final beam splitter (BS)
divides it towards an optical camera, used to position the lasers on the cantilever, and the 4-
Quadrants photodiode (4Q-PHD). A motorised 2D translation platform (2D-TP) controlling
the position of 4Q-PHD in these directions is used in the calibration step (see Appendix 3.A
for details).

The green laser beam (0 to 12 mW at 532 nm) focused close to the tip of the cantilever
acts as the heater. It is directed towards the cantilever by the DBS and through the lens.
Part of the intensity is absorbed and creates a heat flux, and another part is reflected and
runs through the same path out of the system. The two lasers spots do not overlap in order
to avoid mutual disturbances (see fig. 3.1.2). We discuss the temperature of the cantilever
under the action of the heater in Sec. 3.2.

3.1.3 Displacements

The photodetector captures four power signals, which combined give two contrasts Cx, Cy

(along the x and y axes respectively) which are proportional to the angle of the beam upon
reflection on the cantilever. The contrast Cx leads to the calibrated flexural angle ϑ (in rad),
which can be converted to the deflection δ (in meters), whilst the contrast Cy to the torsional
angle θ (in rad). We discuss this in detail in Appendix 3.A. Computing the PSD, we identify
the normal modes of the cantilever (see fig. 3.1.3 and 3.1.4). The spectra are shot noise
limited and the thermal noise-driven resonance peaks show a high signal to noise ratio.
Throughout this thesis, the PSD is calculated through the Welch method, with an overlap of
50 %. In general, the number of points in the Fourier transformation are chosen so that the
resulting PSD is averaged at least 8 times. We discuss this more in detail in Chapter 6.

Typical measurements allow us to explore a wide range of frequencies, where the observ-
able number of modes depends on the geometry of the sample. In the case of C100, this is
up to 11 flexural and 8 torsional modes, whilst for the C30 cantilever we can detect up to
5 flexural and 2 torsional modes. In order assure we correctly identify the resonances, we
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simulate the cantilever’s eigenmodes in COMSOL [28]. Indeed, due to the imperfect orienta-
tion of the photodetector, torsional signals are visible in the flexural PSD and vice versa (see
fig. 3.1.3-3.1.4), and the simulation helps us qualitatively distinguish the two motions, espe-
cially at high frequency where amplitudes are intrinsically small and vanish close to nodes.
Another important contribution of this test is to prove we can access all the resonances in
the available frequency range: this is indeed true except for one lateral mode (oscillations in
the x − y plane), undetectable with our setup.

Due to experimental constraints, in this chapter, some modes are excluded from the anal-
ysis. Flexural mode 1 is often discarded because of self-oscillations (see Appendix 3.C.3),
whilst some modes can be undetectable due to the probing point being close to a node of
sensitivity (see Appendix 3.A.2 for details).

3.2 Temperature of the cantilever

As mentioned in the previous chapter (see Sec. 2.3), in order to characterize the thermal
fluctuations of the cantilever, we quantify them with a fluctuation temperature Tfluc. This
needs then to be confronted to the meaningful temperatures of the system, which are the
temperature of the clamping Tmin, the temperature at the heating point Tmax and finally the
average temperature Tavg. In the experiments presented in this chapter, the temperature
of the clamping is the same as the environment Tmin ≈ 300 K due to the cantilever being
attached to a macroscopic chip thermalised at this temperature. We then suppose Tmin to be
constant. More delicate is the case of the maximal and average temperature, the latter being
defined in general as:

Tavg =
1
L

∫ L

0
dx T(x) = Tmin +

1
L

∫ L

0
dx ∆T(x) (3.1)

with ∆T the temperature difference between the tip and the clamped end. In our exper-
iments, neither Tmin nor Tavg are directly measurable. Nevertheless, as in [5, 42], we can
estimate the temperature of the cantilever through the resonance frequency shifts of its nor-
mal modes. In fact, when heated, the cantilever experiences a change in stiffness, becoming
softer, mostly due to the temperature dependence of the Young modulus Y and the thermal
expansion l.

Following [91], we develop the theoretical model that defines how we can map the fre-
quency shifts of the resonances to the temperature of the cantilever. We then focus on the
cases where there is a uniform temperature T, and subsequently we extend this description
for case where a temperature profile T(x) exists, i.e. a NESS.

3.2.1 Theoretical framework

Let us focus on the deflection of the cantilever δ, which is described by the Euler-Bernoulli
formalism. As seen, for mode n driven to a large amplitude δn, we can write:

δ(x, t) = δn cos(ωnt)φn(x) (3.2)
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FIGURE 3.1.3: PSDs of the thermal noise-induced deflection of the cantilever. In the upper plot, each
resonance mode is identified as a sharp peak with a quality factor in the range of tens of thousands.
The modes can safely be considered decoupled and each can be treated as a simple harmonic oscil-
lator. In the lower figure, a zoomed in section around the second flexural resonance shows how the
resonance is redshifted with the laser power increasing. This phenomenon is used to compute the
imposed ∆T. The shapes of the modes are simulated in COMSOL, yielding resonance frequencies
very close to the ones found in our experiment and in agreement with the Euler-Bernoulli descrip-
tion. The left axis of the plots corresponds to the measured flexural angles ϑ by the optical lever
detection (in rad2/Hz), while the right axis corresponds to its conversion for deflection δ (in m2/Hz,
using mode 2 sensitivity).
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FIGURE 3.1.4: PSDs of the thermal noise-induced torsion of the cantilever. In the upper plot, each
resonance mode is identified as a sharp peak with a quality factor in the range of tens of thousands.
In the lower figure, a zoomed in section around the second torsional resonance shows how the res-
onance is redshifted with the laser power increasing, comparatively more with respect to deflection
modes. With the model currently at hand, ∆T cannot be calculated with enough precision through
torsional frequency shift. The simulated frequencies of the resonances agree quite accurately with
the experiment, whereas for the higher modes the analytical Saint-Venant model deviates from the
observation.
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with ωn the resonance frequency and φn the mode shape (see eq. 2.26). As seen in Sec. 2.2.1,
we can define the total potential energy Up and kinetic energy Ek of the cantilever:

Up(t) =
1
L

∫ L

0
dx LYI

∣∣∣∣
∂2δ(x, t)

∂x2

∣∣∣∣
2

Ek(t) =
1
L

∫ L

0
dx mc

∣∣∣∣
∂δ(x, t)

∂t

∣∣∣∣
2

(3.3)

where again Y is the Young modulus, I the second moment of area, and mc the mass of the
cantilever, with all of them in principle dependent on the longitudinal coordinate x. As seen,
each resonance can be considered an independent oscillator, thus, since on average kinetic
and potential energy coincide (for the EP), for each mode we can write 〈Up

n 〉 = 〈Ek
n〉, or:

∫ L

0
dx LYIφ′′

n (x)2 = ω2
n

∫ L

0
dx mcφn(x)2 (3.4)

From this, the resonance frequency is deduced:

ω2
n =

∫ L
0 dx LYIφ′′

n (x)2

∫ L
0 dx mcφn(x)2

(3.5)

The next step is to retrieve, when the temperature varies, the change of this quantity ∆ωn ≡
ωn −ω0

n, with ω0
n the resonance frequency at a reference temperature. On the right hand side

of the previous equation, we can distinguish two different dependencies on the temperature:
the Young modulus changes because the cantilever gets softer, whilst the mass density and
the second moment of area vary because so do the dimensions of the sample. In order to
simplify the problem, let us show that the second contributions can be safely neglected. The
temperature dependences of Y(T) and thermal expansion l(T) are tabulated [50, 102], and
they are highly non-linear at low temperature. Nevertheless, if we restrict ourselves at T ≥
295 K, which is the case of the experiments presented in this chapter, a linear approximation
yields normalised slopes:

αY ≡ 1
Y0

∆Y
∆T

= −64.2 × 10−6 K−1 αl ≡
1
l0

∆l
∆T

= 2.6 × 10−6 K−1 (3.6)

where Y0, l0 are the respective values at the reference temperature. Therefore, the Young
modulus variation is roughly 25 times more important than thermal expansion at room
temperature. Since this is true at all temperatures, we assume αl = 0 from now on. It
is of course possible to relax this hypothesis with little if no difference on the final result.
Hence, we write:

2∆ωnω0
n =

IL
∫ L

0 dx ∆Yφ′′
n (x)2

mc
∫ L

0 dx φn(x)2
(3.7)

with ∆Y = Y(T)− Y0. This equation yields:

∆ωn

ω0
n

=
1
2

∫ L
0 dx ∆Y(T)

Y0
φ′′

n (x)2

∫ L
0 dx φ′′

n (x)2
≡ fn(T) (3.8)

after simplifications. The functions fn are controlled by the temperature dependence of the
Young modulus Y(T), where T depends in principle on x.
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3.2.2 Uniform temperature

Let us study the cantilever at a uniform temperature Tavg = T. In this case, eq. 3.8 further
simplifies, yielding:

∆ωn

ω0
n

=
1
2

∆Y
Y0

= f (T) (3.9)

where f is mode independent and dictated solely by Y(T). At the temperatures considered,
we can describe this function with the ansatz [100]:

f (T) ≡ c1Te−c2/T (3.10)

with the tabulated values [50]: c1 = 4.7 × 10−5 K−1 and c2 = 317 K.

It is important to note that this relation is valid solely for a silicon cantilever, therefore not
for the coated sample. For the C30C case, we have two Young moduli to consider: the one
of the substrate and the one of the coating. The result of the interaction of the two materials
with the temperature change being not trivial, it is therefore best to rely on a calibration of f .
Since C30C is the same sample shown in [41], we report here the linear calibration coefficient
found by the authors:

fC30C(T) ≈
1
2

αY,C30CT (3.11)

with αY,C30C = −113 × 10−6 K−1 representing the Young modulus linear dependency of the
substrate-coating system.

We can therefore use these functions to infer the temperature Tavg of the cantilever from
a frequency shift measured at equilibrium:

Tavg = f−1
(

∆ωn

ω0
n

)
(3.12)

3.2.3 Apparent temperature

When the system is out of equilibrium, a temperature profile T(x) is present along the can-
tilever. Since eq. 3.8 does not simplify, f−1 no longer yields Tavg from a measured non equi-
librium frequency shift. We can nevertheless interpret this as an apparent temperature, that
is the temperature we would associate to a system in thermal equilibrium if we measured
the same ∆ωn/ω0

n:

Tapp
n ≡ f−1

(
∆ωn

ω0
n

)
(3.13)

Tapp
n and Tavg tend to coincide when particular requirements are met: as shown in [5], for a

linear temperature profile T(x) = Tmin + x∆T, linear Young modulus temperature depen-
dence ∆Y/Y0 = 2 f (T) = αY∆T and sufficiently high mode number n ≥ 5, eq. 3.8 yields:

∆ωn

ω0
n

≈ αY

2

∫ 1

0
dx T(x) ⇔ Tapp

n ≈ Tavg (3.14)

Indeed, for sufficiently high modes n, the curvature φ′′
n is spread all over the cantilever, thus

becoming not influent on the frequency shift. The proximity of Tapp and Tavg depends on
the deviation from the aforementioned approximations.

In order to test the possible discrepancy between Tapp and Tavg, it is possible to simulate
the temperature profile of the cantilever solving Fourier’s law in the presence of a laser
power source. From this, we could get the average temperature Tavg (plugging T(x) into
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eq. 3.1) and the synthetic frequency shift, using eq.s 3.10 and 3.8. Nevertheless, as shown
in [91, 5] for the geometries and temperature ranges considered, Tapp

n ≈ Tavg is a good
approximation if n ≥ 5. This is not possible in the case considered in the following chapter,
though, where the base of the cantilever is thermalised at cryogenic temperatures. In this
extreme case, we will show how the apparent temperature is still a good approximation,
overestimating the average temperature of not more than 40 K.

From now on, in this chapter, we are going to consider equivalent the temperature re-
trieved through the resonance mode shifts Tapp and the average one Tavg, simply referring
to it as the latter.

3.3 Experimental procedure

Once the cantilever is placed in the vacuum chamber and the pressure is around 5 × 10−6

mbar, we align the experimental setup as in fig. 3.1.1. Through camera observations, we
place the two laser beams close to the tip of the cantilever and verify the signal collected
by the photodiode. Retrieving the contrasts Cx, Cy, we can then use the 2D-TP to center
the sensor with respect to the probing laser, simply finding the point where approximately
Cx, Cy = 0. This is done in order to avoid losing some signal due to the laser beam being
close to the outer edge of the device (see Appendix 3.A for details). Once this is assured, the
experiment procedure follows two main steps, which we call SEQ and SNESS. These depend
on the power of the heating laser P shined on the cantilever, whilst the probing laser is kept
constant at around 1 mW.

The first step SEQ corresponds to an equilibrium case, where the cantilever is irradiated
with a low power (P ≈ 1 mW) so that the temperature gradient is small. The second SNESS
is a non-equilibrium case, where we shine the sample with increasing power. Each step is
further divided into two steps; let us call them scal and smeas.

During scal, the photodiode is moved with an automated procedure thanks to the 2D-
TP, first along the x and then in the y-direction, in order to calibrate the sensor for the Cx

and Cy signals. In this way, for each step of laser power we retrieve the calibration curve
of the sensor, which we discuss in Appendix 3.A. The contrasts Cx and Cy are measured for
roughly 1 s, and their average is registered. Then the platform is moved again. With roughly
20 points per contrast, scal usually lasts less than one minute. At the end, the photodiode is
brought back to its initial position.

The following step smeas consists of measuring the displacements δ, θ through the con-
trasts Cx and Cy. With a sampling frequency of fs = 2.5 MHz and 5 × 106 points acquired,
the acquisition time per measured signal is ts = 2 s. Whilst the total number of signals per
power changes between the experiments, it is usually between 40 and 75. Taking into con-
sideration also the time to write the data to the disk, the usual duration of this step is thus
between 5 and 10 minutes.

The next step SNESS follows the same principles, with a larger laser power P in order to
create a NESS. This step is repeated at increasing power until the maximal power is reached,
which is usually around 10 mW. Then, P is gradually lowered in order to create a two-side
power ramp. This is done for two reasons: firstly, we look for possible modifications of the
material which would result in some hysteresis, for example in the resonance frequency of
the modes; secondly, we want to check whether the behavior of the thermal noise changes
when slowly increasing the temperature or vice-versa.
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FIGURE 3.3.1: Experimental procedure. In the upper figure, the heating laser power is first set at
a low power P ≤ 1 mW in order to measure the thermal fluctuations in equilibrium, which is the
step we call SEQ (black line). Next, the power is slowly increased in the SNESS phase (red line), until
reaching a maximum around 9 mW. Each step is divided inyo a first calibration step scal (yellow
shaded area) and a measurement step (green shaded area). In the lower figures, on the left we show
the recorded mean values of the contrasts Cx, Cy whilst moving the photodiode, which calibrates the
setup at each power. On the right, we show an example of result of the measurement phase, i.e. a
deflection temporal signal (after post-analysis calibration).

We summarize the procedure of the first two SEQ, SNESS steps in Table 3.3.1, and we
illustrate a typical measurement sequence in fig. 3.3.1, which is the one used in the C100
experiment.

Steps
SEQ SNESS

scal smeas scal smeas

Measured
Cx, Cy δ, θ Cx, Cy δ, θ

quantities
Power P [mW] ≤ 1 2-10

TABLE 3.3.1: Experimental procedure.

3.4 Results

In this section, we present the measured fluctuation temperatures of the three cantilevers
and the relative loss angles. Through these two quantities we then try to construe the exper-
imental outcome in light of the theoretical framework developed in the previous chapter.
We consider one cantilever at a time.

3.4.1 C100

As mentioned, the sample here considered is the one for which the results can also be found
in [40]. With respect to this reference, we add a study of the loss angle of the resonances.
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In this experiment, 10 laser powers between 0.8 − 9 mW on a double ramp are imposed
near the tip of the cantilever, thus allowing us to probe a maximum temperature Tmax going
from 330 K up to 1000 K and then back down. Each power step consists of 75 measurement,
which yields a total of 750 measured spectra. We record up to 11 flexural and torsional
modes, with n = 1 being plagued by self-oscillations (see Appendix 3.C.3) and thus dis-
carded. Furthermore, mode 5 is excluded in both motions due to the probing point being
on a node of sensitivity, and modes 9 − 11 are similarly not displayed due to their high
systematic uncertainty (see Appendix 3.A).

Thermal fluctuations

The fluctuation temperatures can be found in fig. 3.4.1. With Tavg increasing, the flexu-
ral fluctuation temperature Tfluc

n is roughly constant for the first resonances (2 to 4), and it
increases slightly for the higher ones. This apparently different behavior of the modes is
nevertheless within the error bars, and it should be considered with caution. Since all Tfluc

show lower values than Tavg, we experience a lack of fluctuation with respect to an equilib-
rium system with the same Tavg. These results thus confirm the findings in ref. [42], where
a strong lack of fluctuations in a similar sample is observed for the first four resonances. In
this section, we extend the previous study for higher modes, with the dearth of fluctuations
being a common characteristic of all the observed flexural modes.

The torsional fluctuation temperatures Tfluc
m further asseses this phenomenon: the ther-

mal noise is unaffected by the temperature rise in the system for these observables as well.
Looking at COMSOL simulations, we verify that we have probed all the existing modes (but
one) in the explored frequency range, showing that they all present lower fluctuations than
equilibrium. Therefore, this behavior appears to be a general feature for the C100 sample.

Dissipation

We report in fig.s 3.4.2 and 3.4.3 the measured loss angles ϕ of the resonances. The flexural
modes show a loss angle roughly independent of the non-equilibrium increase of the aver-
age temperature, a sign that the dissipation processes are almost unchanged between the
equilibrium measurements and the NESSes. Indeed, ϕn varies at most by 15 % throughout
the whole measurement. It is also remarkable that all but one mode show similar values,
ϕn ≈ 2 × 10−5. It is not clear why mode 6 exhibits a different value, roughly 2 times higher
than the rest of the analysed resonances; nevertheless the value is also roughly indepen-
dent of Tavg in this case. The loss angles are obtained through a fit around the resonance
frequency, and they always yield a χ2 ≤ 2 (see details of the fit procedure in Chapter 6).

The torsional resonances yield a similar outcome. The loss angles ϕm are roughly inde-
pendent of the average temperature, as they show similar values with respect to the flexural
ones. We note that modes 6 to 8 tend to show values around 20 % higher than the first res-
onances, which reflects the fact that the dissipation may be slightly more effective for these
modes. Also in this case, only fits with a χ2 ≤ 2 are taken into account.

Discussion

As we show, thermal noise appears not to be perturbed by the presence of an important tem-
perature gradient along the length of the cantilever. We have in fact that Tfluc ≈ Tmin, ∀Tmax

we impose on the system. In order to construe these findings, we express the theoretical
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FIGURE 3.4.1: Fluctuation temperature vs. average temperature. In figure (a), the flexural Tfluc
n is

shown with respect to Tavg. The black line represents the equilibrium temperature, i.e. the fluctua-
tions an object would show had it been in thermal equilibrium with a thermal bath at Tavg. All the
modes lie below this line, as if there was a dearth of thermal noise. Furthermore, we note how they
are also much lower than the maximal temperature of the system, represented by the black dashed
line. The modes shown span from 2 to 8, excluding mode 5 because of the laser probe being on a
node. In figure (b), the same scenario is shown for the torsional degrees of freedom (and mode 5 is
omitted for the same reason). The apparent crossover between mode 4 and 6 at the highest Tavg is
interpreted as a small drift in the laser position, see Appendix 5.C for details in computing Tfluc and
uncertainties.
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FIGURE 3.4.2: In (a) the flexural loss angles ϕn are shown with respect to the average temperature of
the system. With an equilibrium value around 2.3 × 10−5 for all but n = 6 (roughly 40 % higher), ϕn
changes at most of 15 % at increasing Tavg, which we interpret as the expression of the dissipation
being independent on the temperature difference ∆T. In (b) the resonance peaks in equilibrium and
in a NESS for n = 2 are shown, with the former being at higher frequency with respect to the latter.
We report also the fits of the data, visually showing how the dissipation does not seem to change
from one case to the other. In (c) the same is displayed for n = 6, showing that no apparent bias is
present in the fits to yield the higher value.
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FIGURE 3.4.3: In (a) the torsional loss angles ϕm are shown with respect to the average temperature
of the system. The equilibrium value is close to the flexural one at 2.3 × 10−5, with a tendency to
increase with the mode number m. In fact, we note that m = 6, 7, 8 are slightly above the first modes.
Also in this case, ϕm results roughly independent on the temperature of the system, with changes
at most of 15 %. As a side note, no fit yields a sufficiently low χ2 to after Tavg = 500 K for modes
m = 6, 8, so for them no values are available in this range. In (b) and (c) we report the in and
out-of-equilibrium spectra for modes m = 1 and m = 7, respectively.
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prediction for Tfluc (see eq. 2.81):

Tfluc =
1
L

∫ L

0
dx T(x)wdiss(x) (3.15)

Since in our case Tfluc ≈ T(0), it comes from this relation that wdiss(x) ≈ w(0), which means
that the mechanical dissipation must be localised at the clamped end of the cantilever, where
the only relevant temperature is Tmin.

This result is further assessed thanks to the measured loss angles ϕn: the dissipation is
shown to be roughly independent of the magnitude of the imposed NESS. Two hypotheses
can explain this result: either the dissipation can be distributed all along the cantilever, but
it is independent of the temperature, or be located at a point with a constant temperature.
The former is quite unlikely, thus a damping mainly due to clamping losses seems the right
description, since x = 0 is always at the temperature of the environment. Our dissipation
function then takes the form of a Dirac’s delta:

wdiss ∝ δD(0) (3.16)

This conclusion is the same result reached in [42, 40].

In Appendix 2.A, we discuss how a dissipation localised at the clamping can be due to
two phenomena: shear stress and defects therein localised. In the first case, in order to
assess this, we can compare the flexural loss angles (which are the inverse of the quality
factors Qn) to their theoretical prediction in Table 2.A.1, Qtheo

n . The measured quality factor
of the second mode Q2 = 4.5 × 104 is 50 times smaller than Qtheo

2 = 2.2 × 106, and whilst the
model forecast a diminishment of Qtheo

n for growing n, the highest measured mode n = 8
still shows a value half of the theoretical one, Qtheo

8 = 9 × 104 vs Q8 = 4.6 × 104. Albeit not
evident in the flexural modes, the lowering of Qtheo at increasing mode number seems to be
present in the torsional modes. In fact, in this case we can see that ϕm increases with m, as
modes m = 6, 7, 8 are roughly 40 % higher than the lower ones. Unfortunately, we do not
have a theoretical prediction for the dissipation due to the shear stresses on the torsional
modes. While the model represents an approximation, and refinements are possible, the
idea that transpires from our measurements is that a pure shear stress-dominated system
is not the only answer to explain our measurements. Indeed, the simple presence of this
phenomenon prescribes a lower damping in the system than observed, and hence we need
another dominant source of dissipation.

The second case described in Appendix 2.A, a preponderant presence of defects close to
the clamping, may then be the answer. As previously stated, the cantilever is etched from
a single crystal silicon wafer, i.e. in principle devoid of internal defects, and the vacuum
removes most of the hydrodynamical damping. The prominent part that can present some
defects is thus the clamped end, where the chemically-etched cantilever is attached at the
chip.

In conclusion, the simultaneous measurement of both the fluctuation temperatures and
the loss angles paints a complete picture of the C100 sample, showing how the fact that
Tfluc ≈ T(0) = Tmin can be explained by the measured ϕ ≈ ϕ(0) through our extension of
the FDT. It is then important to highlight that these conclusions apply to all the resonances
of the cantilever, and thus it is a common property of the sample.
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3.4.2 C30C

The coated cantilever C30C is the same sample examined in [42], showing how the thermal
noise of the flexural degrees of freedom in a NESS follows closely the average tempera-
ture of the system. In this case, the goal of a second measurement is at the same time to
strengthen the claims of the previous study for the thermal fluctuations, with the addition
of the torsional modes, and to probe the dissipation of the cantilever.

In this measurement, a ramp with 40 laser powers in the 1 − 6 mW range creates a NESS
along the length of the cantilever. Two particularities distinguish this measurement from
the other measurements presented in this section: firstly, a higher number of power steps
is performed instead of an inverse ramp; secondly, the procedure of calibration described
in Appendix 3.A is not carried out. Due to this last point, we do not know the evolution
of the sensitivity of the photodiode with the increasing power. Nevertheless, since in other
measurements this could prompt a bias in the fluctuation temperatures at most 20 %, we can
keep in mind that this can be added as an uncertainty. Due to the unknown value of this,
though, we decide not to add it to the systematic errors discussed in Appendix 3.A. In this
experiment, we can observe up to 4 flexural and 1 torsional resonances, with n = 1 being
excluded due to self-oscillations.

Thermal fluctuations

In fig. 3.4.4, we show how, with the average temperature Tavg of the system increasing, the
flexural fluctuation temperatures Tfluc

n show values close to Tavg, hence close to an equiva-
lent equilibrium system. We note an oscillatory behavior of the Tfluc

n at increasing tempera-
ture, whose magnitude diminishes with the increase of the mode number. We believe this
effect to be due to self-oscillations and self-cooling of the cantilever, which we discuss in
Appendix 3.C.3. Since this effect mostly pollutes the first resonances, its magnitude is al-
most invisible in modes 3 and 4. Indeed, it is for this reason that mode 1 is not significant
and not reported. Despite this polluting contribution, the measurement remains significant
for two reasons: primarily, de-trending the oscillatory behavior we can see that the most
affected resonance, n = 2, shows a tendency coherent with the higher modes, being slightly
higher than the average temperature of the system; and secondarily, this result is in perfect
agreement with the previous measurements performed on this sample [42]. We can there-
fore believe this to be a minor concern in construing the experimental observations. As a
final note, mode n = 4 can be observed if the cantilever is shined with a certain amount of
power, since before this threshold the shot noise hides the resonance.

The first torsional resonance yields a Tfluc
m slightly above the average temperature, show-

ing how its behavior is similar to the flexural modes. Whilst it is possible to retrieve the
second resonance mode from a certain laser power onwards, it is hard to assign to it a fluc-
tuation temperature due to the lack of equilibrium measurement with which to confront the
NESSes.

Dissipation

In fig. 3.4.5, we report the measured loss angles ϕ for the C30C sample. The flexural reso-
nances show an equilibrium value around 3.6 × 10−4, which increases roughly by 50 % at
the highest Tavg. The same behavior can be observed for the torsional mode. We can ap-
proximate the behavior of ϕ with a second order polynomial in the temperature difference
∆T:

ϕ(∆T) = a + b∆T + c∆T2 (3.17)
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FIGURE 3.4.4: Fluctuation temperature vs. average temperature. In figure (a), the flexural Tfluc
n is

shown with respect to Tavg. The black dashed line line represents the maximum temperature Tmax

and the solid one the average temperature Tavg. The fluctuation temperatures lie around this value,
if not slightly above it. We can notice that the second and third resonance show some oscillations
with respect to the average temperature, which we discuss in the text. In (b) the torsional resonance
shows a similar behavior, with Tfluc being slightly above Tavg.
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which reasonably fits the experimental data, apart from n = 4 for which the lack of points
around equilibrium biases the quadratic fit, and it is thus not reported in fig. 3.4.5. Typical fit
values (similar for all the analysed modes) range around a ≈ 3.6 × 10−4, b ≈ 6 × 10−8 K−1

and c ≈ 2 × 10−9 K−2. In this case, we believe that the system is not dominated by clamp-
ing dissipation, but rather that a distributed phenomenon takes place along the cantilever.
Indeed, as shown in the previous section, dissipation localised at the clamping end would
result in roughly constant loss angles, whilst in this case the damping mechanism is clearly
influenced by the temperature increase in the system. We discuss how to link a distributed
dissipation with the observed fluctuations in the next section.

Discussion

In order to connect the observed loss angles with the respective fluctuation temperatures,
we express Tfluc as from eq. 2.84, for example for the flexural modes:

Tfluc
n =

∫ L
0 dx T(x)kr(x, ωn)ϕ(x, ωn)φ′′

n (x)2

∫ L
0 dx kr(x, ωn)ϕ(x, ωn)φ′′

n (x)2

≈ Tmin +

∫ L
0 dx ∆T(x)ϕn(x)φ′′

n (x)2

∫ L
0 dx ϕn(x)φ′′

n (x)2

(3.18)

where we suppose that the real part of the stiffness is independent of x. Indeed, this is
simply the mass times the square of the resonance frequency, which changes range around
the percent. We then define ϕ(x, ωn) ≡ ϕn(x). The measured loss angle corresponds to the
quantity at the denominator:

ϕn(∆T) =
1
L

∫ L

0
dx ϕn(∆T(x))φ′′

n (x)2 (3.19)

As mentioned, we suppose that the dissipation is distributed along the cantilever, which
results in the loss angle being influenced by the increase in temperature. This is due to
the presence of the amorphous coating, which has significant internal friction [71, 70]. In
this case, we can express the local dissipation as a local loss angle ϕ(x), the form of which
is unknown. Since we observe a quadratic dependency of ϕn(∆T), and the temperature
profile can be considered linear, it comes naturally to suppose a quadratic dependency also
for ϕ(x):

ϕ(x) = ϕ0 + α∆T(x) + β∆T(x)2

= ϕ0 + α∆Tmaxx + β(∆Tmax)2x2 (3.20)

where ϕ0 is the equilibrium value of the loss angle at Tmin and the temperature difference
is ∆T(x) = ∆Tmaxx for a linear profile. In this case, thanks to eq. 3.19, we can retrieve the
coefficients ϕ0, α, β as a function of the experimental an, bn, cn of eq. 3.17:

an = ϕ0
1
L

∫ L

0
dx φ′′

n (x) bn = α
1
L

∫ L

0
dx xφ′′

n (x) cn = β
1
L

∫ L

0
dx x2φ′′

n (x) (3.21)
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FIGURE 3.4.5: In (a) we report the flexural loss angles ϕn with respect to the average temperature
of the system. In general, ϕn increases of about 50 % with Tavg rising less than 150 K from room
temperature. We note how a second-order polynomial smoothly fits the experimental data for n =
2, 3, with n = 4 not being considered due to the lack of points close to equilibrium. From these
fits, we extract the coefficients used in eq. 3.17. In the inset, we show an in and out-of-equilibrium
spectrum of the second mode, with the former at a higher frequency than the latter. From this, we
can visually evince how the dissipation process indeed changes with ∆T increasing. In (b), we show
the torsional mode loss angle ϕm, which appears to experience a similar 50 % increase. Also in this
case, we perform a quadratic fit of the data. Finally, in the inset, we show the equilibrium (higher
frequency) and a NESS (lower frequency) spectrum.
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In this case, we can express eq. 3.18 as:

Tfluc
n = Tmin + ∆Tmax

1
L

∫ L
0 dx x

(
ϕ0 + α∆Tmaxx + β(∆Tmax)2x2

)
φ′′

n (x)2

an + bn∆Tmax + cn(∆Tmax)2

= Tmin + ∆Tmax
an

∫ L
0 dx xφ′′

n (x)2

∫ L
0 dx φ′′

n (x)2
+ bn∆Tmax

∫ L
0 dx x2φ′′

n (x)2

∫ L
0 dx xφ′′

n (x)2
+ cn(∆Tmax)2

∫ L
0 dx x3φ′′

n (x)2

∫ L
0 dx x2φ′′

n (x)2

an + bn∆Tmax + cn(∆Tmax)2

(3.22)

and we define the theoretical prediction for the fluctuation temperature Ttheo:

Ttheo
n = Tmin + ιn(∆Tmax)∆Tmax (3.23)

The function ιn can be understood as follows: if, for certain parameters an, bn, cn and ∆Tmax,
ιn ≤ 0.5 the theoretical fluctuation temperature is comparable or lower than the average
one: Tavg = Tmin + ∆Tmax/2. Otherwise, the system experiences an excess of fluctuations.
It is clear that this procedure can be swiftly extended to the torsional modes, since the Tfluc

m
can also be expressed with a similar version of eq. 3.18.

We report the comparison between Ttheo and the measured Tfluc in fig. 3.4.6, where we
take into consideration only modes n = 2, 3 and m = 1. For n = 2, the theoretical prediction
yields a Ttheo

2 . Tavg, which Tfluc
2 follows for low Tavg ≤ 400 K but becomes less accurate

at higher values, also due to the pollution of the self-oscillations. Similarly, mode n = 3
shows a good agreement (within the error bars) with Ttheo until the same Tavg, then a sud-
den increase and decrease of the fluctuation temperature hinders a further verification of
the theoretical prediction. Finally, the torsional mode m = 1 shows different results with re-
spect to the theoretical prediction, which forecasts Ttheo

1 < Tavg. Nonetheless, the prediction
correctly describes an increase in the fluctuations with the average temperature.

Let us discuss the possible origins of the slight disagreements between the proposed
model and the results at Tavg ≥ 400 K. As mentioned, self-oscillations hinder a precise
verification of the model, due to the oscillations they prompt in the measured Tfluc. This
may not be the only cause, however. Indeed, at Tavg = 400 K, deviations may be due to the
loss of the validity of the hypothesis regarding the dependency of ϕ from the temperature
and the position of the cantilever. In fact, a second-order polynomial may not be sufficiently
accurate to account for the observed ϕ. Similarly, the temperature profile slowly departs
from linearity when Tavg increases. Another concern at high temperatures is finally the
absence of a run-time calibration. Indeed, as we show in Appendix 3.A, this effect leads
to an underestimation of the fluctuation temperatures up 20 % at around 9 mW for a pure
silicon sample, and the effect is unknown in a coated sample.

For typical fit parameters and ∆T, the function ιn yields values < 0.5 for mode 1, around
0.5 for mode 2, and slowly increasing values for higher mode numbers until around 0.65.
The reason for this is that since the dissipation is localised around the curvature of the can-
tilever (eq. 3.19), the temperature profile is more important in the region close to the origin
for mode 1, in the first half for mode 2, and more and more distributed for higher modes.
Since in our experiment mode 1 is corrupted, we can see this behavior in fig. 3 of ref. [42],
where the fluctuation temperatures of the first three resonances of C30C qualitatively follow
the behavior forecasted by our Ttheo.

The main result of this section is that, with two simple quadratic approximations, we
are able to satisfyingly construe the measured fluctuation temperatures of a cantilever with
distributed dissipation with the retrieved loss angles. The theoretical framework developed
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FIGURE 3.4.6: Fluctuation temperatures compared to the theoretical prediction of eq. 3.23. The sec-
ond flexural resonance shows comparable results between Tfluc

2 and Ttheo, with some deviations
occurring around Tavg = 400 K. It is interesting to note that Ttheo

2 is supposed to be lower than the
average temperature, so that ι2 < 0.5. The n = 3 mode is similarly in agreement with the theoretical
predictions, with the self-oscillations hindering a precise characterisation at high Tavg. In this case,
ι3 is lower than 0.5 for low Tavg as it surpasses this reference at Tavg ≈ 375 K. Finally, the torsional
fluctuations quite disagree with the forecasted Ttheo. Indeed, we expect Tfluc

1 < Tavg, yet the experi-
mental measurements show the opposite behavior. Nonetheless, the deviation is small and Ttheo still
predicts an increase in fluctuations with the temperature. In all the figures, we show an average of
the Tfluc in bins of 10 K, in order to increase the readability.
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here allows us to decouple the measurement of fluctuations and the dissipation to test the
validity of our extended version of the FDT, showing a remarkable agreement.

3.4.3 C30

In this section, we analyse the thermal noise measurements on a bare C30 cantilever. Our
goal is to see whether the behavior of C30C discussed before is due to the coating, whether
it is an intrinsic property of the substrate, or if both of these components contribute to the
final result.

In this measurement, 20 laser powers between 0.8− 9 mW in a double ramp are imposed
near the tip of the cantilever, with 40 measurements per power step, which yields a total of
800 measured spectra. Also in this case, a run-time calibration is unfortunately not available;
nevertheless, we use the one performed on the C100 as a reference. Two reasons lead us to
this choice: firstly, C30 is a pure silicon cantilever just as C100 (with the same crystalline
orientation), and secondly the experimental setup is unchanged between the two measure-
ment sessions. Hence, as a first approximation, we can suppose that the power-dependency
of the calibration coefficients of the photodiode are independent of any other factor. We
record 5 flexural and 1 torsional modes, with the first deflection mode being plagued by
self-oscillations and thus discarded.

Thermal fluctuations

The results of the thermal fluctuations are displayed in fig. 3.4.7. Most of the flexural modes
increase with the average temperature of the cantilever, with mode n = 3 representing an
exception. Indeed, this resonance seems less perturbed by the temperature difference than
the other modes, the reason for which is unknown. On the other side, mode n = 2 shows a
Tfluc

2 . Tavg as the higher modes are slightly above Tavg. Similarly, the torsional resonance
grows close to the average temperature of the system.

We can compare these results with the ones of C30C (fig. 3.4.4). In general, the flexural
and torsional resonances of C30 yield smaller values with respect to the ones of C30C for
similar Tavg. This effect may be further amplified by the corrections to the calibration coef-
ficients for C30C, which may increase the values of Tfluc. In order to better construe these
results, we discuss the measured loss angles.

Dissipation

The measured loss angles are reported in fig. 3.4.8. As we can notice, the flexural loss an-
gles ϕn significantly vary with respect to the mode number, with the equilibrium value
being around ϕ2 ≈ 10−5 for mode 2 and around 2.7 × 10−5 for the higher modes. The tem-
perature dependency is similar: all modes roughly triple their initial value at the highest
Tavg = 575 K. As for the thermal fluctuations, mode 3 represents an exception, with its
value increasing by more than 20 times. Since this mode shows bizarre behavior in both
the fluctuations and dissipation, we do not discuss it further, as we believe that an external
factor is influencing its behavior.

The torsional mode shows a novelty, which is that the loss angle diminishes with the
temperature of the system increasing. Whilst this effect is minor (the relative change is at
most of 30 %), it is interesting to notice how the dissipation process of this torsional mode is
slightly less effective with Tavg increasing.
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FIGURE 3.4.7: Fluctuation temperature vs. average temperature. In figure (a), the flexural Tfluc
n is

shown with respect to Tavg. The black dashed line line represents the maximum temperature Tmax,
and the dashed one the average temperature Tavg. The fluctuation temperatures are close to this
value for all but the third resonant mode. In this case, the fluctuations are in fact almost unchanged
with Tavg increasing. Modes 4 and 5 become more important than Tavg at around 450 K. In (b), the
first torsional resonance shows a similar behavior, overlapping Tavg.
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We can again compare these results with the ones of the C30C sample. Let us start with
the deflection. We note that the equilibrium values of ϕn for C30 are roughly 10 times less
than the ones of C30C, showing how the coating greatly contributes to the dissipation in the
system. Naturally, we cannot quantitatively compare these two results because it is not the
same sample before and after coating, but it is nevertheless interesting to see how, whilst
the coating is an extremely important source of damping, the bare cantilever still shows a
dependency on ∆T.

Regarding the torsional mode, the initial loss angle is roughly 100 times lower than the
loss angle of the coated sample, showing how the aforementioned effect of the coating is
even more extreme in the present case. Whilst the diminishment of ϕm with the temperature
is odd, it is clear that in this case the loss angle is also influenced by the temperature increase
of the system. We discuss this in the next section.

Discussion

As in the C30C case, we fit the data with second order polynomials and calculate the theo-
retical fluctuation temperatures Ttheo. The results are shown in fig. 3.4.9. Excluding a bump
below the theoretical curves around Tavg = 400 K for modes n = 2, 4, the flexural reso-
nances appear to be well explained by our model. In fact, the model correctly explains the
near-equilibrium behavior of mode 2 and the Tfluc

> Tavg for mode 4 and 5. Similarly, the
torsional mode is quite well represented by this description, where the diminishment of the
loss angle (fig. 3.4.5) with the temperature is captured in the Ttheo

1 < Tavg. Also in this case,
a bump at Tavg = 400 K yields a disagreement between the theoretical prediction and the
measurements around this value.

Our conclusion for C30 is then that we have a system with spatially-extended damping,
which can be well represented by our model. In addition, in fact, we can compare the fluc-
tuation temperatures against the measured fluctuations, thus further assessing our claims
on the theoretical shape of the non-equilibrium fluctuation temperatures. It is nevertheless
important to remember that, in order to fully interpret the findings, a reason for the odd
behavior of mode 3 and the torsional loss angle would be needed.

3.5 Conclusions

In this chapter, we have shown how we can measure the thermal fluctuations of a micro-
cantilever subjected to a heat flux along its longitudinal dimension, thus in a NESS. De-
pending on the sample under consideration, we can create a large temperature difference
between the tip and the clamped end ∆T, which represents the distance of our system from
an equilibrium situation. When ∆T = 0, we are in thermal equilibrium, and the EP pre-
scribes the magnitude of the fluctuations of each observable of the cantilever: the normal
modes. In this case, Tfluc = Tmin.

When ∆T increases, the EP needs to be replaced by the extended version of the FDT
presented in the previous chapter. In this version of the FDT, Tfluc is prescribed by the tem-
perature profile T(x) weighted by the local mechanical energy dissipation of the cantilever
wdiss:

Tfluc =
1
L

∫ L

0
dx T(x)wdiss(x) (3.24)

Thus, Tfluc depends on where the dissipation is more prominent. In order to prove the valid-
ity of our approach, we measure the thermal fluctuations of three different cantilevers, each
with its own geometry and characteristics. We summarise the results in fig. 3.5.1, where we



60 Chapter 3. Thermal noise of a micro-cantilever

FIGURE 3.4.8: In (a), we show the evolution of the flexural loss angles ϕn with the average tempera-
ture of the system. Mode 2 has an equilibrium value around 9 × 10−6, and it increases at about three
times this value at the maximum average temperature explored, Tavg = 575 K. Similarly, modes
4 and 5 increase about 3 − 4 times in the same temperature range. We fit these curves following
eq. 3.17. Mode 3 represents an exception, increasing more than 20 times from its initial value, the rea-
son for which is not yet understood. In (b), the torsional mode is shown decreasing with increasing
average temperature. Whilst the reason for this is still not totally understood, a parabolic fit still well
represents the behavior of ϕ.
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FIGURE 3.4.9: Measured fluctuation temperatures vs their theoretical prediction. In (a,b) we show
how for the modes n = 2, 4 the Ttheo appropriately overlaps with the experimental results, apart from
a bump around Tavg = 400 K. In the first case, we expect a fluctuation temperature slightly below
the average temperature, which is the case of the measured fluctuations; in the second, we anticipate
higher fluctuations than Tavg, and again this is well represented by the measurement. In (c), mode
n = 5 perfectly overlaps with the theoretical prediction, which dictates that Ttheo

> Tavg, also due to
the significant uncertainties. Finally in (d), the theoretical prediction for the torsional mode matches
quite well the experimental results after Tavg = 400 K.
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FIGURE 3.5.1: A plot summarising the fluctuations of the cantilevers explored in this chapter. The
fluctuation temperature is depicted vs. the temperature difference with both quantities normalised
by the average temperature, which is represented by the solid grey line. The grey-shaded area rep-
resents our theoretical model for Tfluc (eq. 2.81), which is between the minimal temperature of the
system Tmin (lower bound) and the maximal Tmax (upper bound). We average the fluctuations over
the modes not presenting issues (for example excluding mode n = 3 of C30) in order to show the
global behavior of the sample. We note how the fluctuations of C100 (dark blue and red) are close to
Tmin, those of C30C (cyan and orange) are close but a little above Tavg, and those of C30 (green and
yellow) show a more erratic behavior but stay close to Tavg as well.

show the fluctuation temperatures normalised by Tavg vs. the similarly normalised temper-
ature difference for the three cantilevers.

The measurements on C100 show that the fluctuation temperature Tfluc ≈ Tmin for all
the explored temperatures. Furthermore, this behavior is identical for all the higher-energy
resonances of the sample, showing how this is a universal feature. Our proposal for a non-
equilibrium FDT (eq. 3.24) tells us that in order to explain this, dissipation must be located
at the clamping end of the cantilever wdiss = δD(0), where T(0) = Tmin. For this reason,
we then expect the dissipation not to be modified by the increasing ∆T, which is the case of
the measured loss angles. Indeed, all the resonances are roughly constant throughout the
whole experiment. This confirms that we are able to correctly construe the experimental
observations of this and the measurement in ref. [42].

The measurements on C30C illustrate a completely different situation: whilst the ∆T in-
creases and the system is increasingly out of equilibrium, the Tfluc increase similarly to the
average temperature of the system. Thus, always following eq. 3.24, we expect the dissi-
pation to be spread along the cantilever, since the fluctuation temperature resembles the
average one. Indeed, the coating distributes the dissipation over the whole length of the
cantilever. The measured loss angles confirm this, showing a clear dependency on ∆T. In
order to be quantitative, we fit the loss angles and develop a simple model with which to
explain the observed fluctuations based on the measured dissipation. Albeit the uncertain-
ties regarding the validity of the hypothesis underlying the model and the self-oscillations
polluting the observed Tfluc, our description satisfyingly captures the observed behavior
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of the fluctuations. Therefore, we are able to verify our extension of the FDT in a system
dominated by an unlocalised dissipation, showing how we can not only prove Tfluc to be
bounded by the borders prescribed by the extension (Tmin and Tmax) but also that we can
quantitatively predict their value.

The measurements on C30 further assess the previously-developed description. In this
case, we ask ourselves whether the behavior of C30C is solely due to the presence of the
coating, or if its substrate plays an important role too. As shown, a pure silicon cantilever
can present fluctuations that depend on the ∆T, and thus a distributed dissipation. In this
case, we show that we are again able to interpret the observed Tfluc with the measured loss
angles through a parabolic approximation of the dissipation. Whilst the loss angles are much
lower with respect to the C30C case, they increase with the ∆T, showing how the geometry of
the sample can prescribe its fluctuations. Indeed, the C100 and C30 cases are only different
for the shape and the manufacturer, being both coatless silicon cantilevers. In this case, it is
natural to conclude that C30 presents more defects along its length than C100, the reason for
which is possibly that the fabrication techniques are different, and the manufacture of C30
prompts a higher concentration of defects along the cantilever, or a lower concentration at
the origin.

To summarise, we believe that we have successfully demonstrated that the extended FDT
for out-of-equilibrium systems appropriately explains the three samples presented in this
chapter. We then believe that our results have a broad range of applications, owing to the
generality of the underlying method. From a manufacturing point of view, we know that
normally thermal fluctuations depend on the temperature of the system and therefore, as
usual, in order to fabricate a low-noise instrument, it is best to place it at the lowest possible
temperature. Our study shows that in the case of a system with highly localised dissipation,
it is best to place the high-dissipative parts of it at the lowest available temperature, whereas
this constraint can be relaxed for the rest of the system. This possibly simplifies the design of
the system which does not need to be kept at a single low temperature. Conversely, a system
presenting a distributed dissipation may show higher or lower fluctuations with respect to
equilibrium depending on the resonance mode we are interested in and the temperature
difference. Indeed, in the case of the cantilever, the first (and the most energetic) mode is
less sensitive to the highest temperatures with respect to the higher ones. This may help
manufacturers forecast the noise of a non-equilibrium system based on measurements of its
dissipation.

From an experimental characterisation point of view, the tools developed in this chapter
can be useful in various contexts. For example, noise in nano-mechanical resonators [27]
can be predicted when a temperature gradient is present along their length; Johnson noise
in non equilibrium samples [10, 79] can be probed and interpreted; the quest for ultra-stable
oscillators with cryogenic quartz micro resonators [17] can be facilitated. One of the most
straightforward applications is naturally GWs detectors, with the suspension system of the
test masses being subjected to a temperature gradient. In this case, the characterisation
(and lowering) of thermal noise is paramount [53]. Thus, the non-equilibrium effects that
a ∆T may prompt need to be carefully studied. In this chapter, we show how, depending
on where the dissipation is located, we do not expect the thermal noise to be much higher
than the average temperature of the system, which shows that in the best case scenario
(clamping losses at the lowest temperature) the suspension system may be insensitive to
the ∆T. Finally, from a theoretical point of view, experiments such as the one described in
this chapter are necessary to test the validity of the latest theoretical predictions regarding
fluctuation theorems and the relative inequalities [55].
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Appendix

3.A Calibration

In this section, we discuss into details how to retrieve the deflection and the torsion of the
cantilever from the signals recorded by the photodiode.

Once the laser probe is shined on the surface of the cantilever, it is reflected back to the
system with an angle proportional to the slope of the cantilever. As mentioned, we divide
this angle in a flexural component ϑ and a torsional one θ. In the next section we show how
to retrieve these two quantities, whilst in the following one we present how to convert ϑ
into the vertical deflection δ, in meters. We report in fig. 3.A.1 a simplified version of the
experimental setup which depicts the quantities involved.

3.A.1 Photodetector

The incoming beam enters the vacuum chamber through a lens CL, which directs the probe
towards the cantilever placed at the focal point at distance fCL. Upon reflection, the beam is
deviated with an angle double than the slope of the cantilever at the probing point x0. The
beam, after passing through the lens, is shifted in the x − y plane of:

X = 2 fCLϑmeas Y = 2 fCLθmeas (3.25)

with X, Y corresponding to the distance from the center of the photodiode, supposing that
the beam is in average centered with the sensor. Each quadrant records an incoming power,
namely A, B, C, D (top left, top right, bottom left, and bottom right, respectively), from
which we evaluate two contrasts:

Cx =
(A + C)− (B + D)

A + B + C + D

Cy =
(A + B)− (C + D)

A + B + C + D

(3.26)

These quantities are dimensionless (due to the normalisation) and they are proportional to
the spot position (X, Y) on the photodiode for small displacements. Let us imagine that the
beam has an irradiance profile at the photodiode in the form:

I(X, Y) = I0e−2(X2/R2
x+Y2/R2

y) (3.27)
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FIGURE 3.A.1: Simplified experimental setup. The probing beam enters the system and it is fo-
cused towards the cantilever in the point x0 with a waist beam radius R0. The displacements of the
cantilever can be divided in the flexural angle ϑ (proportional to the vertical deflection δ) and the
torsional angle θ, such that the beam is reflected back to the focusing lens with the double of this
angle. The light then travels towards the photodiode, shining the sensor in the position X, Y, with
these quantities proportional to the displacement angles. The radii of this beam are Rx and Ry, in the
respective directions.

with Rx,y the 1/e2 radius of the beam in the respective direction. In this case it is easy to
show that:

Cx = erf

(√
2X

Rx

)
≈

√
2X

Rx

Cy = erf

(√
2Y

Ry

)
≈

√
2Y

Ry

(3.28)

where the approximation is valid for small displacements around the center of the photodi-
ode X, Y = 0, i.e. X, Y ≪ Rx, Ry. In order to retrieve Rx,y and thus being able to calibrate
the system, we use the 2D translation platform housing the photodetector: keeping fixed
the laser beam on the cantilever, we shift the sensor origin and record Cx for a few values
of X around 0, then perform a linear fit and directly extract ωx from the slope. The same is
then done in the Y direction, before the photodiode is displaced back to its origin position.
As mentioned, this procedure is repeated every time the conditions of the system change,
which is mostly due to the heating laser power being modified. Since the calibration coef-
ficients are then experimentally measured, this grants us that we are not introducing a bias
in quantifying the displacement of the cantilever. Furthermore, we can account for possible
deviations from a gaussian beam.

In fig. 3.A.2 we show an example of measuring the calibration coefficients in an in and
out of equilibrium case during the C100 experiment. In addition to this, we show the relative
difference of the calibration factors at different powers R/REQ. This represents how the radii
Rx,y change from a measurement with low injected power on the cantilever (P ≤ 1 mW) to
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FIGURE 3.A.2: Calibration of the photodiode. In the left panels we show the curves retrieved from
moving the sensor through the 2D-TP in the x direction of known steps and measuring the contrast
Cx, for an in and out-of-equilibrium case. A linear fit in the region close to X = 0 gives us the
calibration factor Rx. The same procedure is followed in the y direction, giving Ry. In the right panel,
we show the change of these with the laser power with respect to the initial value: at P = 9 mW,
Rx, Ry can be more than 12 % lower than their low power values.

the maximal power, in this case 9 mW. We can see that the radii vary up to 12 %, which
results in a 22 % when we consider the thermal fluctuations (which are proportional to the
square of the displacement). We can therefore see the importance of a run-time calibration,
which ensures that we do not introduce a bias in calibrating the displacements due to the
response of the photodiode. Finally, the uncertainty around RX,Y is less than 0.1 % for all the
experiments presented in this chapter.

Eventually, we can write:

ϑmeas =
RxCx

2
√

2 fCL

θmeas =
RyCy

2
√

2 fCL

(3.29)

which allows us to retrieve the angles from the measured contrasts Cx,y and the relative
calibration factors Rx,y.

3.A.2 Laser spot influence

The thus retrieved angles of the slopes of the cantilever depend on where the laser probes
the sample, i.e. the point x0, and the resonance mode considered . It is customary to quantify
the displacements at the free end of the cantilever x = L, thus we can write:

δn ≡ δn(x = L) θm ≡ θm(x = L) (3.30)
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with δn measured in meters and θm in radians. In order to convert the measured angles to
the desired displacement we define the sensitivities:

ϑmeas
n (x0) = σδ

n(x0)δn

θmeas
m (x0) = σθ

m(x0)θm
(3.31)

We can now distinguish two cases: if the spot size R0 on the cantilever is much smaller than
the typical spatial period of the resonance mode considered, we can suppose that it is point-
like and thus the beam probes a single point on the cantilever. In this case, the sensitivity is
simply linked to the mode shape:

σδ
n(x0) =

1
φn(L)

dφn

dx
(x0)

σθ
m(x0) =

1
φm(L)

φm(x0)

(3.32)

such that the calibrated displacements are:

δn =
Rx

2
√

2 fCLσδ
n(x0)

Cx

θn =
Ry

2
√

2 fCLσθ
n(x0)

Cy

(3.33)

Conversely, if the laser spot is comparable or larger than the aforementioned length, the
laser shines an area where the slope of the mode changes sensibly. We report an example
in fig. 3.A.3, where we show how a beam with radius R0 = L/10 probes a surface with a
roughly constant slope for mode 2, for which the previous approximation may be considered
valid. On the other side for mode 4 we get to the limits of this description, which definitely
fails for n = 8. Furthermore, it is evident that this classification depends on x0. In this cases,
we need a description which takes into account the radius of the probing beam, R0.

3.A.3 Large spot case

In the following calculation we follow Schäffer [95]. Referring to fig. 3.A.1, the contrasts Cx

and Cy are calculated as the difference of irradiance collected by the sectors of the photodi-
odes in the x and y directions, as reported in eq. 3.28. We start describing the beam before
being collimated on the cantilever by the lens CL. We define its irradiance profile:

I(x, y) = I0e
−2 x2+y2

R2
0 I0 =

2
πR2

0
P (3.34)

with P the power of the laser. The electric field associated to this is:

E(x, y) = E0e
− x2+y2

R2
0 E0 =

√
I0 (3.35)

Once the beam is focused on the cantilever on the point x0, y0 (respectively along the longi-
tudinal and transverse directions) and is reflected back to the sensor, it travels an additional
distance 2h(x, y) due to the displacement of the cantilever. If this is small, we can express
the electric field on the photodiode through the diffraction integral [95]:

Es(X, Y) =
k

2π fCL

∫ L

0
dx
∫ B

0
dy E(x − x0, y − y0)e

2ikh(x,y)e−ikxX/ fCL e−ikyY/ fCL (3.36)
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FIGURE 3.A.3: Three different situations for a sensing beam with a waist radius 10 times smaller
than the length of the cantilever. For n = 2, the beam probes a zone with roughly the same slope,
thus it could be considered as point-like and eq. 3.32 is valid in evaluating the sensitivity. For n = 4
we are in the limit case, where the beam covers a node of the mode, and for n = 8 the beam covers
almost a whole spatial period. In these cases, Schäffer’s description must be used.

with k = 2π/λ, λ the wavelength of the laser and X, Y the coordinates on the sensor. Taking
quadrant A as an example, the irradiance collected is:

A =
∫ 0

−a
dX

∫ a

0
dY |Es(X, Y)|2 (3.37)

with a the side of the photodiode. If the radii of the laser beam on the photodiode Rx, Ry ≪
a, we can suppose a ≈ ∞. Then, we can retrieve the contrasts Cx, Cy, as the difference and
sum of signals expressed as eq. 3.37. We start from Cx.

Deflection

Referring to fig. 3.A.1, Cx is the difference between the left and right quadrants, divided by
the sum of all four of them. Referring to this difference as Dx, this is:

Dx =

(
k

2π fCL

)2 ∫ L

0
dx
∫ L

0
dx′

∫ B

0
dy
∫ B

0
dy′ E(x, y)E(x′, y′)e2ik(h(x,y)−h(x′,y′))

×
(∫ +∞

0
−
∫ 0

−∞

)
dX e−ikX(x−x′)/ fCL

∫ +∞

−∞
dY e−ikY(y−y′)/ fCL

(3.38)

where to lighten the notation we drop the dependency of the electric fields on x0, y0. The
integral over X yields a Cauchy principal part (PP) and the one over Y is a Dirac’s delta:

(∫ +∞

0
−
∫ 0

−∞

)
dX e−ikX(x−x′)/ fCL = − fCL

k
PP

2i
x − x′

∫ +∞

−∞
dY e−ikY(y−y′)/ fCL =

fCL

k
2πδD(y − y′)

(3.39)
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Furthermore, for small displacements we can write:

e2ik(h(x,y)−h(x′,y′)) ≈ 1 + 2ik(h(x, y)− h(x′, y′)) (3.40)

In this case Dx reads:

Dx =
1

iπ
PP
∫ L

0
dx
∫ L

0
dx′

∫ B

0
dy
∫ B

0
dy′ E(x, y)E(x′, y′)

1 + 2ik(h(x, y)− h(x′, y′))
x − x′

δD(y − y′)

=
4
λ

∫ L

0
dx
∫ L

0
dx′

∫ B

0
dy E(x, y)E(x′, y)

h(x, y)− h(x′, y)
x − x′

(3.41)

since the 0th order is zero due to the integrand being antisymmetric with respect to x and
x′. Also, the principal part of the integral is dropped since the integrand is not singular in
x = x′. Now, the flexural displacement for the mode n is:

h(x, y) = δn
φn(x)
φn(L)

(3.42)

so that finally:

Dx = δn
4

λφn(L)

∫ L

0
dx
∫ L

0
dx′

∫ B

0
dy E(x, y)E(x′, y)

φn(x)− φn(x′)
x − x′

(3.43)

Similarly, the sum of all the photodiodes S can be deduced from eq. 3.38:

S =

(
k

2π fCL

)2 ∫ L

0
dx
∫ L

0
dx′

∫ B

0
dy
∫ B

0
dy′ E(x, y)E(x′, y′)e2ik(h(x,y)−h(x′,y′))

×
∫ +∞

−∞
dX e−ikX(x−x′)/ fCL

∫ +∞

−∞
dY e−ikY(y−y′)/ fCL

(3.44)

which, expressing the Delta functions, simplifies:

S =
∫ L

0
dx
∫ L

0
dx′

∫ B

0
dy
∫ B

0
dy′ E(x, y)E(x′, y′)(1 + 2ik(h(x, y)− h(x′, y′)))δD(y − y′)δD(x − x′)

=
∫ L

0
dx
∫ B

0
dy |E(x, y)|2

(3.45)

From eq.s 3.43 and 3.45 it is then possible to express the contrast Cx = Dx/S:

Cx = δn
1

φn(L)
4 fCLR0

πRx

∫ L
0 dx

∫ L
0 dx′

∫ B
0 dy E(x, y)E(x′, y) φn(x)−φn(x′)

x−x′∫ L
0 dx

∫ B
0 dy |E(x, y)|2

= δn
2
√

2 fCL

Rx
σδ

n(x0, R0)

(3.46)

expressing the spot size on the detector Rx = λ fCL/(πR0) and thus defining the flexural
sensitivity as:

σδ
n(x0, R0) ≡

R0√
2π

1
φn(L)

∫ L
0 dx

∫ L
0 dx′

∫ B
0 dy E(x, y)E(x′, y) φn(x)−φn(x′)

x−x′∫ L
0 dx

∫ B
0 dy |E(x, y)|2

(3.47)
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where the dependency on the spot position on the cantilever and the radius are embed-
ded in the electric field. Using this definition, we can express the calibrated amplitude of
fluctuations as:

δn =
Rx

2
√

2 fCLσδ
n(x0, R0)

Cx (3.48)

in the same form of eq. 3.33.

Torsion

In order to retrieve the torsional sensitivity we perform the same analysis exchanging X ⇔ Y
and considering the displacement h to be:

h(x, y) = θm
φm(x)y
φm(L)

(3.49)

The difference of the upper and lower photodiodes then yields:

Dy = θm
4

λφm(L)

∫ L

0
dx φm(x)

∣∣∣∣
∫ B

0
dy E(x, y)

∣∣∣∣
2

(3.50)

and the contrast Cy = Dy/S:

Cy = θm
2
√

2 fCL

Ry
σθ

m(x0, R0) (3.51)

In this case the torsional sensitivity is defined as:

σθ
m(x0, R0) ≡

R0√
2π

1
φm(L)

∫ L
0 dx φm(x)

∣∣∣
∫ B

0 dy E(x, y)
∣∣∣
2

∫ L
0 dx

∫ B
0 dy |E(x, y)|2

(3.52)

so that the amplitude of the fluctuations is:

θm =
Ry

2
√

2 fCLσθ
m(x0, R0)

Cy (3.53)

We note that in both flexural and torsional cases, the lateral position does not play a role
in the sensitivities. In fact, the deflection does not depend on y0 and the torsion is linearly
dependent on y, hence y0 (given that it is taken far from the boundaries of the cantilever) is
irrelevant on the final result.

In order to express the calibration factors we now need to estimate x0 and R0. These can
be often guessed from camera observations, nonetheless in the next section we show how to
retrieve these as a post-processing of the experimental data.
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3.A.4 Estimation of x0 and R0

Eq. 3.31 links the experimentally observed angles to the actual displacements of the can-
tilever δn, θn. When the system is in thermal equilibrium at temperature Tmin, the EP states:

〈(ϑmeas
n )2〉 = σδ

n(x0, R0)
2〈δ2

n〉 = σδ
n(x0, R0)

2 kBTmin

mω2
n

〈(θmeas
m )2〉 = σθ

m(x0, R0)
2〈θ2

m〉 = σθ
m(x0, R0)

2 kBTmin

Iω2
m

(3.54)

A single position and beam radius xEQ
0 , REQ

0 should exist where the quantities ηn, ηm:

ηn(x0, R0) ≡
ω2

n〈(ϑmeas
n )2〉

σδ
n(x0, R0)2 =

kBTmin

m

ηm(x0, R0) ≡
ω2

m〈(θmeas
m )2〉

σδ
n(x0, R0)2 =

kBTmin

I

(3.55)

are independent of n, m for all measurements: ηn = ηδ and ηm = ηθ . In figure fig. 3.A.4 we
show the functions ηn,m in the C100 experiment for various x0, displaying how these func-
tions overlap in a certain value of x0. Let us first consider the flexural modes, the extension
for the torsional ones being straightforward. We calculate the error estimator as:

ǫ(x0) =
std(ηn(x0))

ηn(x0)
, ∀x0 (3.56)

where the bar indicates the average over n. The minimum of ǫ indicates the probing point
with less dispersion between the modes, and thus the most probable value of x0 = xEQ

0 . We
can also calculate the effective mass of each mode meff:

meff
n =

kBTmin

〈(ϑmeas
n )2〉ω2

n
⇔ meff

n =
m

σδ
n(x0, R0)2 (3.57)

which represents the distance of the measured fluctuations times the square of the reso-
nance frequency from its "ideal" value set by the sensitivity. In order to better depict this, in
fig. 3.A.4 we show the effective masses divided by the one of mode 2, which being the low-
est mode available can be taken as a reference. We can see that whilst most of the flexural
modes show values close to 1, mode 5 (excluded from the computation of ǫ) yields a much
greater value: x0 is in fact close to one of the nodes of σδ

5 . Similarly, for the torsional modes
we can see how in addition to mode 5 yielding a high effective mass, also modes m = 4 and
6 are sensibly higher than 1, x0 being close to a node of the respective sensitivities.

Next, the minimum of std(ηn(xEQ
0 , R0)), ∀R0 indicates the experimental value of the beam

radius R0 = REQ
0 . We show this in fig. 3.A.5 for both the flexural and torsional modes.

As we can note, the results for deflection and torsion differ of about 5 % in evaluating x0,
and about 4.5 % in the case of R0. This is not surprising, since the estimations greatly depend
on the shape of the cantilever, and its deviations from a pure rectangular beam described by
the Euler-Bernoulli and Saint-Venant (or Barr’s) models. In fact, the presence of a triangular
tip requires an adjustment of the length of the cantilever following the mode, which can be
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FIGURE 3.A.4: In (a), the sensitivity of the flexural modes is displayed: the quantity ηn is indepen-
dent of n for a unique value of x0 close to the end of the cantilever. The black solid line represents the
square of the standard deviation over n of ηn divided by its mean, for each x0 (calculated excluding
mode 5). It presents a minimum at the actual measurement point x0 = 405 ± 2 µm. The effective
masses of the modes are given in the graph legends, normalised by the one of the second mode. All
the modes but one yield similar meff, with n = 5 being much higher than the others. In (b), we do the
same for the torsional modes, also excluding mode 5 from the calculations. In this case, the retrieved
probing point is x0 = 385 ± 1 µm, which shows a discrepancy of about 5 % with the flexural modes.
The effective masses hint at the sensitivity of the resonances to a shift in probing position: meff for
mode 5 is hundreds of times higher than the others, as modes 4 and 6 also show high values due to
x0 being close to one of their node in sensitivity.
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FIGURE 3.A.5: Waist radius evaluation: once a xEQ
0 is set, the radius R0 which yields the least dis-

persion of the modes is chosen as the representative of the measurement REQ
0 . We can see that the

minimum of the curves shows a 5 % difference amongst the flexural and torsional modes.

estimated by an effective length Leff. This can be derived from the dispersion relations:

Leff
n =

√
YH2

12ρ

αn√
ωn

Leff
m =

√
4SH2

B2ρ

αm

ωm

(3.58)

with ρ the density of silicon. It is clear that an incorrect estimation of the geometrical param-
eters leads to imprecisions in Leff, and thus the estimations of x0, R0. As a side note, since
that the Saint-Venant model is not adapted to torsion for modes higher than 2, we use the
corrected Barr’s equation to retrieve Leff

m which is not reported for the sake of simplicity (see
Sec. 2.2.2). For the particular case depicted in fig.s 3.A.4 and 3.A.5, we can partially circum-
vent the estimation of the geometric quantities using the tabulated values in [15], in which
measured values of Leff

m are given.

3.A.5 Calibrated spectra

Once these quantities are correctly estimated, we can use them to estimate the calibration
coefficient in eq. 3.31. This allows to finally retrieve the mean square displacements from
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the signals retrieved from the photodiodes Cx, Cy:

〈δ2
n〉 =

(
Rx

2
√

2 fCLσδ
n(x0, R0)

)2 ∫

fn±∆ fn

d f SCx( f ) ≡ Kδ〈C2
n〉

〈θ2
m〉 =

(
Ry

2
√

2 fCLσθ
m(x0, R0)

)2 ∫

fm±∆ fm

d f SCy( f ) ≡ Kθ〈C2
m〉

(3.59)

with fn,m the resonance frequencies of the modes and ∆ fn,m the relative frequency interval
of integration. This interval is often mode dependent, since it is optimised to encompass
the resonance without including any other feature in the spectrum, for example spurious
peaks or other modes. It usually spans between 2∆ f ≈ 2 − 6 kHz. The calibration factors
K depend on the radius of the leaser probe on the photodiode, which is calibrated in each
measurement, and on the spot size and position of the probe on the cantilever.

3.B Fluctuation temperatures and uncertainties

At each power step of the ramp (see Sec. 3.3) we retrieve the spectra of the signals collected
by the photodiode Cx and Cy. From this, we compute the fluctuations 〈C2

n,m〉, which are
averaged between the ones in the same power step (after selecting the data, see Chapter
6). This yields a series of values and the relative statistical uncertainties ǫstat, which are
simply the standard deviations around the mean. Finally, the fluctuation temperatures are
computed following eq. 2.88, which we recall for simplicity:

Tfluc
n = β2

n
〈δ2

n〉NESS

〈δ2
n〉EQ

TEQ = β2
n

Kδ
NESS

Kδ
EQ

〈C2
n〉NESS

〈C2
n〉EQ

TEQ

Tfluc
m = β2

m
〈θ2

m〉NESS

〈θ2
m〉EQ

TEQ = β2
m

Kθ
NESS

Kθ
EQ

〈C2
m〉NESS

〈C2
m〉EQ

TEQ

(3.60)

with the β = ωNESS/ωEQ coefficients representing the change in stiffness of the system when
heated, which are measured. In the experiments presented in this chapter, the equilibrium
temperature is taken TEQ = Tmin = 300 K, which is fixed by the contact of the cantilever
with the macroscopic chip. In order to assure Tfluc can be computed through eq. 3.60, great
care should be taken when estimating the quantities involved.

In the equilibrium step SEQ, in order to retrieve 〈C2
n,m〉EQ, the green laser is set at a low

power P ≤ 1 mW, whilst the red laser (also at a power P ≤ 1 mW, but on a greater area)
probes the displacements. Due to the small but still not negligible injected power, the sys-
tem cannot be strictly considered in thermal equilibrium. Another difficulty arises for the
resonances at high frequency, which sometimes are not visible until a certain heating power
is reached. In order to have a general method to correctly estimate 〈C2

n,m〉EQ we perform a
linear fit of the fluctuations for P ≤ 4 mW so that the ordinate at the origin is taken as the
normalisation factor.

Next, we need to make sure that K is unchanged between SEQ and SNESS measurements.
Since Rx, Ry are calibrated, this reduces to make sure x0 and R0 are constant. If we suppose
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that a drift dx0, dR0 occurs during the experiment, since Tfluc ∝ 1/σ(x0, R0)2, we find:

1
Tfluc

n

∂Tfluc
n

∂x0
= −2

1
σδ

n

∂σδ
n

∂x0

1
Tfluc

n

∂Tfluc
n

∂R0
= −2

1
σδ

n

∂σδ
n

∂R0

(3.61)

where we limited ourselves to the flexural case for simplicity. The origin of this drift is im-
portant: dx0 can be the result of thermal expansion of the material, which can be computed
and confirmed by camera observations. For example, in the C100 experiment we estimate a
maximum dx0 = 2 µm. Regarding dR0, the leading contribution may come from the thermal
expansion of the steel collimator of laser, which nevertheless influences very little the beam
radius. We can then suppose dR0 = 0 and thus define the systematic errors for a shift dx0 as:

ǫ
sys
n = 2

∣∣∣∣
Tfluc

n

σδ
n

dσδ
n

dx0
dx0

∣∣∣∣

ǫ
sys
m = 2

∣∣∣∣
Tfluc

m

σθ
m

dσθ
m

dx0
dx0

∣∣∣∣

(3.62)

In [40] we report the values of these uncertainties for the C100 case. In this particular case,
the higher ǫsys are given by the modes 4,5,6 for both deflection and torsion, which is due to
their higher sensitivity on a change of probing point. This is not surprising, since in fig. 3.A.4
we can see that x0 is close to a sensitivity node for these mode numbers.

In all the experiments shown in this chapter, ǫsys constitute a significant source of un-
certainty, and depending on the mode number, it can be more important than the statistical
one. The final error bar is calculated summing ǫstat and ǫsys in quadrature.

3.C Ruling out external noise contributions

Due to the ephemeral nature of thermal fluctuations, usually being unnoticeable due to
other sources of noise orders of magnitude higher, we need to take great care in assuring
that the measured thermal fluctuations are not biased by the presence of other phenomena.
In the experiment we are prudent in excluding any kind of external perturbations, isolating
the system from the noise of the environment with a air suspended optical table, removing
acoustic contributions and hydrodynamic interactions by placing the cantilever in vacuum.

In the present section, we discuss the action and the magnitude of possible noise sources,
and show how we can deal with them.

3.C.1 Background electronic noise contribution

Let us consider one contrast collected by the photodiode, for example Cx. This embeds the
actual thermal noise δ and a noise contribution N :

Cx =
δ√
Kδ

+N (3.63)

with K the calibration factor and N mainly due to the shot-noise of the photodiode. The
thermal noise is then evaluated as eq. 3.59:

〈δ2〉 = Kδ
n

(
〈C2

n〉 − 〈N 2〉
)

(3.64)
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As shown in fig. 3.1.3, N has a white behavior and it is usually many order of magnitude
lower than the resonances, thus it has a very low impact on the fluctuations. Nevertheless,
when integrating around a resonance frequency we take care of removing it. This procedure
is depicted in fig. 3.C.1. Once we have chosen a suitable frequency range ∆ fn around the
resonance fn, we consider a small frequency interval ∆N at the left and right sides of the
previous one. We then fit the PSD with a linear function of f in the two ∆N ranges in order
to retrieve the average background level of the resonance N . Finally, the contribution is
systematically subtracted from the integral under the resonance, which is performed in the
fn ± ∆ fn frequency interval. In formulas:

〈δ2
n〉 =

∫

fn±∆ fn

d f (Sδ( f )−N ) N = a + b f , f ∈ { fn ± ∆ fn} (3.65)

with a, b the results of the linear fit of the background in the aforementioned intervals ∆N .

Another technique in order to eliminate the background contribution is through a cross-
correlation method [92]. Two distinct flexural contrast are calculated as:

Cx1 =
A − B
A + B

Cx2 =
C − D
C + D

(3.66)

Supposing that the signal is the sum of thermal noise δ and shot-noise contribution N1,2, we
have Cx1,2 = δ/

√
Kδ +N1,2. Computing the cross correlation between Cx1 and Cx2 leads to:

〈Cx1Cx2〉 = Kδ〈δ2〉+
√

Kδ〈δN1〉+
√

Kδ〈δN2〉+ 〈N1N2〉
= Kδ〈δ2〉

(3.67)

where all but the first contribution are zero due to the noises being uncorrelated. Note that
the same strategy applies to torsion by changing the pairs of quadrant to compute Cy1 =
(A − C)/(A + C) and Cy2 = (B − D)/(B + D). In fig. 3.C.1 this method is used to compute
the flexural spectrum and compared to the one calculated through the usual procedure. We
can see that the differences close to the resonance are almost inexistent, as the two spectra
start to be distinguishable when the PSD is orders of magnitude lower than the maximum.
The thermal content obtained integrating the cross-correlated signal through eq. 3.59 and the
one retrieved from eq. 3.65 yields a difference ≤ 1 % for all the modes in all the experiments
presented in this chapter. Therefore, we can conclude that the electronic background noise
does not affect our results.

3.C.2 Laser power fluctuations

Due to radiation pressure and photo thermal effects, any fluctuation of the laser power can
translate into a force on the cantilever, thus a displacement. In order to estimate the mag-
nitude of this possible disturbance, we show here the study of the laser influence on the
measured thermal fluctuations. As usual, we take deflection as an example with the exten-
sion to the torsion being trivial.

The first step is the characterisation of the laser transfer function. We add a white noise
to the laser power thanks to the Acousto-Optic Modulator (AOM) [1] that is routinely used
as the power controller, and measure the laser power Pdriven and the deflection δdriven. We
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FIGURE 3.C.1: Two different strategies to eliminate the electronic background contribution on the
thermal fluctuations. The first consists in selecting a frequency interval for the resonance until the
background noise is reached (cyan); then, two small intervals at the sides of the previous one are
chosen (black) and a linear fit is performed (dashed black). We then remove the fit of the background
from the spectrum, following eq. 3.65. A second method is the cross-correlation technique (yellow):
following eq. 3.67, the background noise is automatically subtracted. We note that the two techniques
yield very similar results, with differences arising at orders of magnitudes lower than the resonance.

then define the gain of the laser transfer function χP
δ :

|χP
δ | =

Sdriven
δ

Sdriven
P

(3.68)

We show this function in fig. 3.C.2 for different laser powers for the C100 cantilever. As
we can see, χP

δ and χP
θ can be characterised roughly until 50 kHz, which is the limit of the

recording instrument. For this reason, we can probe the effect of the laser for the first two
flexural modes and the first torsional one.

Once this transfer function is available, a measurement without any additional noise is
performed and the new PSD of laser power is multiplied by the |χP

δ |. We show an example
of this function |χP

δ |SP in fig. 3.C.3, compared to the measured Sδ. The ratio between these
two quantities represents the amount of laser driven fluctuations, which is also shown in
fig. 3.C.3 for increasing laser power. We see that the laser oscillations contribute for less
than 0.5 % for all the considered modes and powers. We can thus affirm that our results are
robust against this kind of contribution. For higher order modes, the |χP

δ |SP is even weaker
and hard to characterize, so the same conclusions apply.

3.C.3 Self-oscillations

In this chapter we have often referred to the "self-oscillations" when excluding the first reso-
nance mode from the analysis. Indeed, we believe that an optomechanical coupling between
the cantilever and the laser heating the system may be the source of sudden (and strong) in-
creases and decreases of fluctuations in the system [72]. We show an example of this in
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FIGURE 3.C.2: Transfer function gains |χP
δ | and |χP

θ | for different laser powers. We limit our de-
scription to 50 kHz, since the transfer functions are difficult to characterise at high frequency. This
frequency band includes two flexural and one torsional resonances.

fig. 3.C.4, for the C100 example. We can see the PSD of the first flexural resonance in mea-
surements, taken in a time span of less than 1 min. During this time, the PSD changes of 5
orders of magnitude. The same three measurements for the second flexural mode show a
comparatively little change, with one PSD roughly two times the others. Taking n = 2 as
a reference, we know that the amplitude of this mode should yield a PSD roughly 40 times
lower than the first mode [23] (the ratio of the PSD goes as the ratio of the relative α4

n). We
can then see that the red curve cannot represent thermal noise. Similarly, we see that the
blue curve may represent the opposite behavior: a self-cooling, where the optomechanical
coupling in this case removes energy from the resonance. Indeed, the PSD is 10 times lower
than the expected value, looking at mode 2.

Whereas the origin and the characterisation of this phenomenon is not trivial, neither is
discarding the corrupted data. As in this thesis we often simply discard the modes affected
by this phenomenon, in Chapter 6 we discuss the statistical properties of thermal noise, and
how we can quantitatively distinguish it from the self-oscillations.

Even considering the aforementioned precautions, it is possible that some spectra are
polluted by external factors, with the self-oscillations being a major cause. In order to dis-
card these spectra, we resort to the statistical properties of thermal noise spectra (and the
relative quantities) to sort out the proper measurements from the ones which would bias
the outcome of the experiment. All the results presented in this chapter (and the follow-
ing ones) pass through this selection process, each with its particularities. Owning to the
generality of the method, we refer to Chapter 6 for the complete description of this process.
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FIGURE 3.C.3: In (a), the laser pollution spectrum, represented by |χP
δ |SP, is shown with respect to

the PSD of the deflection Sδ for different laser powers P. We note that the first quantity is much less
important than the second ones, which is exemplified by the two insets showing the first and second
resonances and the relative influence of the laser power fluctuations. In both cases, |χP

δ |SP is order of
magnitude lower than Sδ. In (b), we show this for all the powers, as less than 0.5 % of the amplitude
of fluctuations is due to the laser disturbance.
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FIGURE 3.C.4: In (a), we show three different regimes for the n = 1 resonance more of the C100
cantilever, measured in a 1 min span. The expected value for the PSD (green) is compared to a
self-oscillating state (red), where the fluctuations are four orders of magnitude higher. Conversely, a
self-cooling state is recognisable thanks to a drastic reduction of the signal, in this case 10 times lower
than the expected. As we show in Chapter 6, both these regimes cannot be statistically acceptable
as thermal noise. In (b), we show the same measurements for mode n = 2. As we can see, the self-
oscillating one would barely be identifiable as such, since the PSD is roughly 2.5 times higher than the
expected value. Similarly, the self-cooling one shows the same power as the reference. Therefore, in
this case, we can say that the self-oscillations pollute the first resonance and leave almost untouched
the higher modes.





83

Chapter 4

Thermal noise of a micro-cantilever in
cryogenic environment

In the previous chapter, we studied the thermal fluctuations of a micro-cantilever in contact
with a thermal bath at room temperature, showing how these can be linked to the mea-
sured mechanical dissipation through a non-equilibrium extension of the FDT. In particular,
we test the validity of our model reaching temperature differences about ∆Tmax = 800 K
between the thermostat and the free end of the sample, depending on the experiment.
In the present chapter, we push these concepts towards the limits of their applicability,
roughly doubling the aforementioned temperature difference. In this case, we thermalise
the cantilever in a cryostat at 10 − 20 K, whilst the tip is heated up to its melting point,
Tmelt ≈ 1700 K. We choose a cantilever similar to C100, since we believe this to be an inter-
esting test bench for the measurements shown in the previous chapter and in [42, 40], with
the goal of the present section to test whether our description holds up to the physical limits
of the system, temperature-wise.

Indeed, in the introduction, we claim that our results could be of particular use in the
prediction of noise behavior in the GWs detectors. Whilst we show that this could be the
case in the previous chapter, we know that a large effort in the GW community is directed at
cryogenics in order to lower the thermal noise of test masses and their suspension system.
Therefore, the aforementioned description may help the current instruments to conceive
new suspension systems (with silicon as a frontrunner for the possible material) but might
not be sufficient in future developments. As previously stated, facilities such as KAGRA
[6] and the future proposal of the ET [93] operate (or will operate) at very low tempera-
tures, where whilst the noise level diminishes, other issues arise. In this case, the present
study aims to tackle the question of cryogenic non-equilibrium noise, while at the same time
probing the behavior of silicon in these conditions.

The first part focuses on the characterization of the experimental setup, describing the
cantilever under study. A different detection system with respect to the one in the previous
chapter is also displayed.

The second part briefly discusses the temperature of the sample when heated in a cryo-
genic environment. We make use of a calibration to construe the measured frequency shift
of the resonances in order to associate a temperature with the system and to further assess
this through a simulation.

The central sections illustrate the experimental procedure and the results obtained in two
measurement sessions on the same cantilever. We display the fluctuation temperatures with
respect to the average temperature of the system, interpreting the findings with the help of
the measured loss angles.
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The last part summarises this chapter and discusses the outcome of the experiments.
Perspectives for future work and applications are mentioned.

4.1 Experimental setup

The experimental setup is depicted in fig. 4.1.1. The physical systems consists of a L =
1000 µm long, B = 90 µm wide and H = 1 µm thick silicon cantilever (OCTOSENSIS micro-
cantilevers arrays [76]) monolithically clamped to a macroscopic chip. We refer to this sam-
ple as C90, which is similar to C100, at least in the geometrical specifics.

Contrary to the previous chapter, we recover the displacements of the cantilever through
differential interferometry. The measuring system is the CryoQPDI [87], a Quadrature-
Phase Differential Interferometer (QPDI) combined with a cryostat assembled at the Lab-
oratoire des Matériaux Avancés (LMA) in Lyon, France. The cantilever is placed in the vac-
uum chamber at 10−7 mbar and Tmin ≤ 20 K, where two laser beams measure its thermal
fluctuations and act at the same time as the heater.

4.1.1 CryoQPDI

The principles of operation of a QPDI can be found in [85, 87]. We briefly summarize them
here, referring to fig. 4.1.1. As a side note, we report the full functioning of a QPDI in the
next chapter, since in that case we aided in its development.

A polarized laser beam is collimated towards the cantilever, which is placed into the
cryostat. Before hitting it, a birefringent element (an aberrations-corrected series of Savart
plates) divides the probe into two beams. The orientation of this element is 45 ◦ with re-
spect to the original axis of polarization, and thus the polarization of each beam is rotated
by this quantity, only with opposite signs. The optical path difference (proportional to the
vertical displacement of the cantilever along the z-direction) after reflection and recombina-
tion results in an optical phase shift ψ, present along both the initial polarization axis and
the perpendicular one. The reflected beam is split into the two arms of the QPDI: in the
first, the two polarizations are separated, and each yields a power signal A, B ∝ 1 ± cos(ψ);
in the second, a quarter-wave plate adds a phase shift of π/2, giving two intensity signals
C, D ∝ 1 ± sin(ψ) after the separation of the polarizations. The power signals are thus com-
bined:

C1 =
A − B
A + B

= cos(ψ)

C2 =
C − D
C + D

= sin(ψ)
(4.1)

We then define the complex contrast C ≡ C1 + iC2 = eiψ. The advantage of this setup is that
it permits a complete characterization of the phase (modulo 2π): a representation of C in
the complex plane completely identifies the phase on the unit circle. The displacement d′, is
then recovered through the phase:

d′ =
λ

4π
ψ (4.2)

where λ = 532 nm is the wavelength of the laser. This description is fit for an idealized case,
however. Optical misalignments and components’ imperfections yield a contrast less than
optimal, usually an ellipse smaller than the unit circle. Through a Heydemann’s correction
[54], it is possible to take imperfections into account: the cantilever is driven at resonance
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FIGURE 4.1.1: Experimental setup: the deflection and the torsion of a cantilever are captured thanks
to a quadrature phase differential interferometer (QPDI). A green laser beam (λ = 532 nm) probes
the deformation of the cantilever. The input beam is prepared with a polarization in the figure plane
thanks to a half-wave plate (λ/2), then it is directed towards the cryostat by a Beam Splitter (BS)
through a Converging Lens (CL) which focuses the beam on the cantilever. The cryostat is composed
of two temperature stages, each presenting a Window (W) on the path of the beam. Light then passes
through a Birefringent Element (BE), which is a combination of two Savart plates, the purpose of
which is to divide the beam into two, with a spatial separation of ∆x = 417 µm in the x-direction.
The setup being optimized for cantilevers half the length of the considered one, we set one beam B1
close to the tip of the cantilever at a position x1, whereas the second B2 is close to the middle at x2.
The difference in optical path of the two beams is shown in the right part, where the second spatial
eigenmode of deflection is depicted as an example. B1 probes a deformation d1 from a horizontal
reference; B2 measures d2. When the beams recombine after reflection, they carry the information
in the form of an optical phase: ψ = 4π(d1 − d2)/λ. The beam then enters the analysis area, where
a BS sends half of the light in each analysis area. In the left area, the signal is further divided by a
Polarizing BS (PBS), yielding two power signals proportional to 1 ± cos(ψ). In the upper branch, the
beam first passes through a quarter-wave plate (λ/4) that adds a phase π/2, leading to two power
signals proportional to 1 ± sin(ψ) after the PBS. The phase can then be extracted, and the relative
displacement (d1 − d2) calculated. The cantilever, in vacuum at 5 × 10−6 mbar, is monolithically
clamped to its macroscopic chip, which is thermalized at temperature Tmin. When the laser power is
low (P ≈ 1 mW), we consider the system to be in thermal equilibrium. When the power is raised (10
to 40 mW), a temperature gradient T(x) along the cantilever arises (see Appendix 4.B).
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such that d′ covers at least one interference fringe. Then, the output of the QPDI C draws
the actual contrast, which is fitted to extract the calibration parameters.

4.1.2 Displacements

In fig.s 4.1.1 and 4.1.2, we can see that the cantilever we have chosen is longer than the
spatial separation granted by the birefringent element ∆x = 417 µm. The real displacement
of the cantilever d, meant as the difference of the displacement at the tip and the one at the
base (x = 0), is therefore not directly accessible. The measured displacement d′ is instead
the difference between the displacements at x1 and x2: d′ = d1 − d2. We discuss how to
transform d′ in d in Appendix 4.A. The QPDI therefore gives access to the displacement
temporal signal d′(t), which yields a PSD where the resonances of the cantilever are visible
(see fig. 4.1.3).

From d, it is then possible to retrieve the deflection δ and the torsional angle θ of the
cantilever, which we again discuss in detail in Appendix 4.A. As discussed in the previous
chapter, δ is insensitive to the lateral position y on the cantilever, whilst θ in this case de-
pends on y. Since the torsional modes show no vertical displacement in the center of the
cantilever, a probing position y1, y2 close to the edge is chosen.

4.2 Temperature of the cantilever

4.2.1 Apparent temperature calibration

As shown in the previous chapter, we can usually link the frequency shift of the normal
modes of the cantilever to a temperature Tapp. If the conditions are favorable, the apparent
temperature is a good approximation of the average one, Tapp ≈ Tavg. In the present case,
though, we will show that a more careful analysis is required.

Let us start from eq. 3.9, which we report:

∆ωn

ω0
n

=
1
2

∆Y
Y0 = f (T) (4.3)

This equation describes the frequency shift of the flexural resonances if the whole system
was to be brought to a uniform temperature T, in equilibrium. The first key difference with
a cantilever thermalised at room temperature is that we can no longer rely on the tabulated
form of f , specified in eq. 3.10. In fact, since the tabulated values [50] are valid for temper-
atures T ≥ 295 K and highly dependent on the geometry and the crystalline orientation of
the sample, we cannot assume that f of eq. 3.10 is valid in this case. We thus proceed with a
calibration.

This procedure consists of placing the cantilever at the lowest available temperature,
Tmin = 10 K, and letting the temperature slowly increase. At the same, time we record
the frequency of the resonance modes using a low laser power, letting the cantilever be in
equilibrium at increasing temperatures. Knowing both T and ∆ωn/ω0

n, the function f (T) is
thus measured. Unfortunately, such a measurement of the cantilever used in this experiment
was not possible. We nevertheless use the calibration performed on a similar sample, with
the same specifics, but with the length L = 741 mm [87]. The experimental data are shown
in fig. 4.2.1.

In order to describe f (T), we choose the same ansatz as eq. 3.10 [100]:

f (T) ≡ c1Te−c2/T (4.4)
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FIGURE 4.1.2: Images of the cantilever during the experiment: an equilibrium measurement is de-
picted next to a non-equilibrium one. On top, we show a sketch of the cantilever with the two laser
beams B1 and B2 similar to the one in fig. 4.1.1. Below, two pictures show two superimposed can-
tilevers with one laser spot reflected on its surface. This is an effect due to the observation through
the birefringent element, which merges the two beams into one after reflection but doubles the unpo-
larized image of the cantilever. In the middle figure, the equilibrium thermal noise of the cantilever
is probed by a laser beam of low power P, thus leaving a uniform temperature Tmin. In the bottom
figure, a NESS case is shown: a higher injected power is visible from the more intense reflected beam,
and a temperature profile T(x) is established. We notice how another sample (used for tests) on the
top shows signs of surface modifications, most probably melting (see fig. 4.B.3).
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FIGURE 4.1.3: PSD of the displacement signal d′: the third flexural resonance mode is shown at
different laser powers P. When the temperature of the cantilever increases, its normal modes get
redshifted due to the sample becoming softer. Tracking the frequency shift, it is possible to infer its
average temperature Tavg, see Sec. 4.2.

with the coefficients now determined by the calibration: c1 = 3.6 × 10−5 K−1 and c2 =
196.7 K. The curve f (T) in fig. 4.2.1 (dark red) is in remarkable agreement with the ex-
perimental data, even if eq. 3.10 is not necessarily valid at low temperatures [50]. Finally,
in the same figure, we show how this curve roughly coincides with a linear approximation
for the Young modulus (αY) for T ≥ 295 K, which is on the other hand not true at lower
temperatures.

Now that the function f is calibrated, we can use it to infer the temperature Tapp of the
cantilever in a cryogenic environment from a measured frequency shift :

Tapp
n ≡ f−1

(
∆ωn

ω0
n

)
(4.5)

The key point is now to estimate the distance between this apparent temperature and the
average Tavg. We discuss this in the next section.

4.2.2 Average temperature from simulated temperature profile

In order to estimate the average temperature of the cantilever and the error we would make
using Tapp

n instead we proceed with a simulation of the temperature profile in this experi-
ment.

The laser acts as a heater on the cantilever: the beam is set to a position x1 such that B1
is focused close to the tip of the cantilever, with a waist radius R0 ≈ 5 µm. The base of the
cantilever is monolithically clamped to a macroscopic chip that serves as a thermostat at
temperature Tmin, set by the cryostat and measured very close to the chip. As in previous
experiments [40], we aim to create a temperature difference, and thus a NESS, gradually
increasing the laser power at the tip. For a similar cantilever (half the length of the one in
this experiment) and Tmin = 300 K, a ∆Tmax ≈ 1400 K is reached when a laser of P ≈ 12 mW
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FIGURE 4.2.1: Calibration of f (T): a cantilever similar to the one used in this experiment is used
to calibrate the temperature dependence of the frequency shift (eq. 3.9). The calibration points (◦,
×, +) are obtained by measuring the frequency shift ∆ωn/ω0

n at equilibrium (P ≤ 1 mW) of the
flexural modes when the temperature of the cryostat slowly increases, until room temperature is
attained. The reference frequencies ω0

n are taken at 10 K. The figure shows the ∆ωn/ω0
n for three

groups of modes from n = 2 to 9, showing no appreciable difference between them. Therefore, f
is experimentally mode-independent. We fit these data thanks to eq. 4.4, yielding the calibration
curve (dark red). When the average temperature is higher than room temperature, the slope of this
function is in remarkable agreement with a constant temperature dependence of Y (yellow dashed
line).
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FIGURE 4.2.2: (a) Temperature dependence of the thermal conductivity of silicon κs(T), tabulated
in ref. [102]. κs(T) is very high at cryogenic temperatures, requiring a strong heat flux to reach a
significant temperature difference. (b) A simulated temperature profile reaching Tmax = 950 K is
shown in three different situations: blue curve, the base of the cantilever is at room temperature;
red curve, the base is at a cryogenic temperature with one heating source; yellow curve, same but
with two heating sources. These are placed at typical values during the experiment: x1 = 960 µm
and x2 = x1 − ∆x, with the dimensions of the cantilever the same as the sample of this work. The
absorbed power AP = A1P1 + A2P2 is drastically different in the three cases to reach the same Tmax:
whilst a low power is needed at Tmin = 295 K, a higher power is required at Tmin = 10 K, furthermore
when AP is divided into two spots.

is shined close to the free end of the sample. When placed at Tmin = 10 K and irradiated
with the same power, though, the yielded ∆Tmax is less than 10 K. One difference lies in the
very high thermal conductivity of silicon κs at low temperatures [45, 102], whilst another
difference is due to the presence of two heating sources, after the Savart plates (fig. 4.1.1),
possibly with different power.

The thermal conductivity is shown in fig. 4.2.2 (a). Below 100 K, it is one order of magni-
tude larger than at room temperature. It thus takes a higher heat flux or a longer distance to
reach high Tmax. To illustrate this behavior, we compute T(x) from κs(T) in Appendix 4.B,
and we report a few examples in fig. 4.2.2 (b). The difference between a situation where Tmin

is around room temperature vs. a cryogenic situation is remarkable: the temperature profile
is significantly more peaked towards the free end of the cantilever, which is mitigated by
the presence of the second laser source. At the same total power P, shining all the power in
x1 yields a higher Tmax. Nevertheless, this is not experimentally convenient: the interferom-
eter yields the highest sensitivity when the laser power is equally divided between the two
beams [87].

We now introduce how to evaluate the temperature profile of the cantilever through a
simulation. We write the Heat Law as a Poisson equation:

∂

∂x

(
κs
(
T(x)

) ∂

∂x
T(x)

)
+

2ǫsσSB

H

((
T(x)

)4 − (Tmin)4
)
+ B1(x) + B2(x) = 0 (4.6)
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FIGURE 4.2.3: Comparison between Tapp
n and Tavg for the simulated temperature profiles: the ap-

parent temperature Tapp (dark red curve) is inferred from the frequency shift of high modes (n = 6
to 9) and the equilibrium calibration (eq.s 4.4 and 4.5). It is very close to the actual average temper-
ature Tavg (yellow curve) of the cantilever, which is represented as a yellow shaded area covering
all the results of the parametric sweep (see Appendix 4.B). The main source of dispersion is due to
the mode number n and is always ≤ 20 K. The temperatures of the NESSs (cyan and green squares)
are therefore calculated by projecting the measured ∆ωn/ω0

n onto the two temperature curves, in the
sense indicated by the dashed black lines. There is a small difference between Tapp

n and Tavg: Tapp
n

overestimates Tavg of about ≤ 35 K over the whole temperature range (over 500 K), as depicted in
the inset.

where ǫs is the emissivity of silicon and σSB is the Stefan-Boltzmann constant. We sup-
pose the temperature profile unidimensional, condition which is further discussed in Ap-
pendix 4.B. The first term represents the conduction, the second the radiation and the others
the sources, modeled as a power density:

Bi(x) =
AiPi√

πHBR0
e
−2 (x−xi)

2

R2
0 i = 1, 2 (4.7)

Here AiPi represents the absorbed powers at xi. Solving this equation yields the temper-
ature profiles shown in fig. 4.2.2 (b). During the experiment several parameters have a high
uncertainty or are unknown: the emissivity, the thickness, and the absorbed power at each
probing point. Therefore, we sweep the physical value of the most important parameters
to generate a family of temperature profiles {T(x)}, from which the average temperature
Tavg and a synthetic frequency shift can be calculated (eq. 3.8). Since we expect fn to be
less and less dependent on n with increasing n, we calculate ∆ωn/ω0

n for the highest modes
available in the experiment: n spans from 6 to 9. From these frequency shifts, we finally
compute the apparent temperature of the simulated profile using eq. 4.5. The results are
shown in fig. 4.2.3: the average temperature is depicted as a yellow curve, where the shaded
area represents the dispersion of the frequency shift between the selected mode numbers,
whilst the dark red curve represents the apparent temperature. Therefore, the experimen-
tally measured frequency shifts (cyan and green squares) can be linked to the simulated
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average temperature of the cantilever. In the inset, we can see how estimating Tavg through
Tapp

n yields an overestimation of the former for up to 35 K.

An interesting result of the simulations is that when P < 1 mW the maximum tempera-
ture Tmax differs at most of 8 K from the minimum temperature Tmin, so that the system in
this condition is close to thermal equilibrium.

4.3 Experimental procedure

When a NESS is established, we proceed by measuring the displacement of the cantilever
to retrieve its thermal fluctuations. As in the previous chapter, the experiment procedure
follows two main steps: SEQ and SNESS.

The first step SEQ corresponds to an equilibrium case, where the cantilever is irradiated
with a low power (P ≈ 1 mW) so that the temperature gradient is small. The second SNESS
is a non-equilibrium case, where we shine the sample with high power (up to 40 mW). Each
step is further divided into two steps, scal and smeas.

During scal, the cantilever is excited through a small hit on the cryostat, prompting relax-
ation oscillations (ring down) that explore the contrast ellipse C, which is optimized (see [87]
for details). The contrast is recorded for a few seconds, in order to properly fit the ellipse to
get the calibration coefficients in the post-analysis.

Once the external perturbation has dissipated, the next part smeas consists of measuring
the displacement d′ of the cantilever. This is repeated as long as the temperature of the cryo-
stat does not change significantly. Indeed, in order to measure the tiny thermal fluctuations
of the system, the cryostat has to be turned off. Due to its high thermal capacity, the tem-
perature Tmin increases slowly, at around 0.18 K/min in our experiment. We repeat the smeas

step whilst Tmin does not change more than 2 K from its value during scal. This condition is
enforced due to the nature of the experiment: we explore how thermal noise evolves with
the non-equilibrium average temperature of the cantilever, which can be dependent on Tmin.

The next step SNESS follows the same principles, with a larger laser power P in order to
create a NESS. Unlike in the procedure described in the previous chapter, we do not perform
a ramp of increasing and decreasing power, but rather after each SEQ follows one SNESS, and
this is repeated for all powers. This way, we have one equilibrium measurement for each
non-equilibrium one. Furthermore, the power ramp is randomized, i.e. we do not order the
laser powers in any particular way. This is done since Tmin increases with time, therefore we
periodically set it back to the minimum value by turning on the cryostat (always after one
complete procedure), such that Tmin ∈ 9 − 20 K. Thus, the randomization de-correlates the
results from a particular set of parameters {Tmin, P}.

Steps
SEQ SNESS

scal s⋆meas scal s⋆meas
Measured

Tmin
cal , C Tmin

meas, d′ Tmin
cal , C Tmin

meas, d′
quantities

Power P [mW] 1 10-40

TABLE 4.3.1: Experimental procedure. The ⋆ steps are repeated while Tmin
meas < Tmin

cal + 2 K.

We summarise the procedure to measure one NESS in Table 4.3.1, whilst fig. 4.3.1 illus-
trates a typical measurement sequence. Once the experiment is concluded, the contrast C
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FIGURE 4.3.1: Experimental procedure. In the lower figure, the temperature of the cryostat Tmin

slowly increases, and it is periodically taken back to its minimum value 10 K. In the upper figure, we
show how the equilibrium measurements SEQ (P = 1 mW, black) are followed by the non equilib-
rium ones SNESS (P = 10 − 40 mW, red). Each measurement is divided in a calibration scal (yellow
shaded area) and a measurement step smeas (green shade area). In general, scal lasts less than one
minute, whilst smeas lasts between 5 and 10 minutes. The non-colored areas represent the time when
no signal is recorded.

measured during scal is used to calibrate the displacement d′ recorded during s⋆meas, and the
amplitude of fluctuations during SEQ is used to calibrate Tfluc during SNESS.

We show a typical camera observation for both SEQ and SNESS in fig. 4.1.2. The upper im-
age depicts the equilibrium measurement, with an almost uniform temperature Tmin along
the cantilever. In the bottom image, a NESS arises due to a stronger power P injected into
the cantilever.

4.4 Results

We now present the experimental observations of two measurement sessions performed on
the same cantilever on different days, with different sets {Tmin, P}. We display the fluctu-
ation temperatures and the measured loss angles, then we try to construe these quantities
together.

4.4.1 Thermal fluctuations

The results are presented in fig.s 4.4.1 and 4.4.2, showing the output of the experiment in
two different runs. Both the flexural and torsional modes demonstrate the same feature: the
fluctuation temperatures are below the average temperature of the system, therefore showing
a lack of thermal noise. We therefore see how C90 presents results very similar to C100,
which hints at the possibility of the lack of fluctuation being not only a characteristic of one
system, but of a whole class of them. Nevertheless, we note that in both experiments, the
fluctuations are not exactly constant. They show an increase which looks small with respect
to the average temperature Tavg, but it is not with respect to Tmin. For example, in fig. 4.4.1,
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for Tavg = 350 K, Tfluc ≈ 100 K for both the flexural and torsional modes, which is roughly
10 times Tmin = 12 K.

It is interesting to discuss the robustness of the results. Firstly, we implement a random-
ization of the powers and the temperatures of the cryostat within the single experiment, and
secondly we repeat the experiment with a different set. The outcome is a similar behavior
in the two measurements, and thus we can hereby state that low fluctuations is an intrinsic
characteristic of this cantilever.

In Appendix 4.A, we mention the reasons for which some modes are excluded from the
results. The figures also show some measurements taken very close to, if not trespassing,
Tmelt: we see a large increase in fluctuations in most modes, as the error bars of the Tavg

also increase. We know we reach the melting point from camera observations, as well as a
smaller light power reflected towards the photodiodes of the QPDI when a hole appears at
the spot center. In addition to this, further investigations confirmed structural damage to
the material (see fig. 4.B.3). This proves that we are able to reach the ∆Tmax = Tmelt − Tmin.

4.4.2 Dissipation

We show the measured loss angles of the second measuring session in fig.s 4.4.3 and 4.4.4,
the first one yielding a similar results. Remembering the measured loss angles of fig.s 3.4.2
and 3.4.3 in the C100 case and judging from the behavior of the fluctuation temperature, we
would expect the loss angle to be relatively independent of the temperature increase of the
system. However, this is not the case. The retrieved loss angles show a marked increase from
the equilibrium case (where they are in the 3 − 6 × 10−6 range) and the highest temperature
where they are roughly 8-10 times this value. Although there is some mode dispersion,
mostly at high temperatures, all the resonances show the same behavior, in both the flexural
and torsional cases. It is clear that neither the expected Dirac’s delta behavior of C100, nor
the parabolic approximation of C30C discussed in the previous chapter can be considered
valid anymore, with the loss angles showing a linear increase for Tavg ≤ 100 K and almost
plateauing for higher temperatures. We believe this may be a situation where the loss angle
can be described as the sum of the two:

ϕ(x) = ϕ0δ(0) + ϕ1g(∆T(x)) (4.8)

with g an unknown function. In the present case, it is hard to imagine linking this function
to the shape of the measured loss angles ϕn(∆T) from the experiment as in the previous
chapter, due to few points and the non-trivial shape of ϕn(∆T). Furthermore, as we discuss
in Appendix 4.B, the temperature profile is highly non-linear, rendering a theoretical predic-
tion of Tfluc from the experimental data difficult. In the next section, we try to interpret the
observed loss angles with the fluctuation temperature in a qualitative manner.

4.4.3 Discussion

As previously shown, in this experiment, we see a drastic dearth of fluctuations for a system
as far from equilibrium as possible, with a ∆Tmax ≈ 1600 K. As usual, we interpret this result
through a measurement of the loss angle, which somehow unexpectedly shows a drastic
dependency on the temperature of the system.

The measurement of ϕ being extremely delicate, we therefore need caution when con-
struing the results. Firstly, the absorption of the cantilever is highly non-linear, and a small
change of laser power can drastically change the temperature of the sample, and thus the
position of the resonances. Due to the extremely quick diffusion, this change can happen
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FIGURE 4.4.1: Fluctuation temperature vs. average temperature. In (a), the flexural Tfluc
n is shown

with respect to Tavg. The black solid line represents the "equilibrium" temperature, i.e. the fluctua-
tions an object would show if it was in thermal equilibrium with a thermal bath at Tavg, whilst the
black dotted line shows the apparent temperature Tapp

n . All the modes lie below these lines, showing
a dearth of thermal noise. It is nevertheless important to note that the noise is not perfectly inde-
pendent from Tavg. For example, Tfluc is roughly 10 times the temperature of the clamped end at
Tavg = 350 K. This effect is even more marked at higher Tavg. The modes shown span from 2 to 7,
excluding mode 5 because of the laser probe resting on a node. In (b), the same scenario is shown for
the torsional degrees of freedom, with modes 1 to 4. Also in this case, the fluctuations are roughly
constant below 100 K and then increase, still remaining well below Tavg. Finally, the red-shaded area
covers measurements where observations suggest that at least a partial melting of the cantilever oc-
curred. It is remarkable that in this area the fluctuation temperature greatly increases for most modes
in both motions.
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FIGURE 4.4.2: Fluctuation temperature vs. average temperature. In figure (a), the flexural fluctu-
ations temperatures Tfluc

n show a behavior similar to the ones in fig. 4.4.1 (a). Indeed, the noise is
decidedly below the average temperature of the system, nevertheless showing an increase around
Tavg = 350 K. This is even more clear in (b) for the torsional resonances, where the dispersion of the
modes is smaller. The agreement between this experimental session and the precedent one is remark-
able, showing very compatible results. In this case, the flexural modes span from 2 to 9, excluding
mode 5 because of the laser probe being close to a node, and the torsional modes from 1 to 7 (where
mode 5 is omitted for the same reason).
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FIGURE 4.4.3: In (a), the flexural loss angles ϕn are shown with respect to the average temperature
of the system Tavg. We note how they all show a similar behavior, with some dispersion towards
the highest temperatures. With an equilibrium value around 3 − 6 × 10−6, ϕn increases up to 6 −
8 × 10−6 at 100 K, then it is almost unchanged between 150 − 500 K at around 1 − 2 × 10−5. We also
report the average of the accuracy of the fits at the given temperature, χ̄2, which is comfortably close
to 1. As a side note, mode 2 is not reported due to the poor sample size once the χ2 ≤ 2 sort is made.
In (b), the resonance peaks in equilibrium and in a NESS for n = 3 are shown, with the former being
at higher frequency with respect to the latter. We report also the fits of the data, visually showing
how the dissipation looks higher in the NESS, with the resonance peak being broader. In (c), the
same is displayed for n = 6.
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FIGURE 4.4.4: In (a), the torsional loss angles ϕm are reported at increasing Tavg. We can notice the
same behavior of the flexural loss angles, with roughly the same values at the same temperatures.
We can see that mode 1 shows an odd value at Tavg = 50 K. Also in this case, it looks like there
are two separate regions, until Tavg = 150 K with ϕm increasing steadily and a plateau after. In (b),
the first resonance mode is shown for an equilibrium (higher frequency) and a NESS case (higher
frequency), displaying a clear increase in dissipation. In (c), the same is done for m = 3.
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during the measurement which hinders a good fit. For this reason, many measurements
yield a χ2 ≥ 2 and are thus discarded. This way, the sample size is sometimes reduced,
which results in a higher difficulty to assign a precise value to ϕ. Secondly, the values of
the loss angles are extremely low, which would require small frequency bins in the spectra
in order to have a fair number of points around the resonance. Nevertheless, this needs to
be optimised with respect to the time duration of the displacement signal from which we
extract the spectrum (and the relative averages), since the frequency of the resonances is
changing with the absorbed power.

Despite these possible issues, we believe the measured damping to be representative
of an intrinsic property of the sample. Indeed, all the resonances show the same behav-
ior, which indicates that a phenomenon is indeed occurring in the cantilever when heated.
Moreover, the χ2 of the retained fits is excellent.

As noted, the description valid for C100 cannot be considered strictly valid here. Whilst
the fluctuations of C100 are roughly constant at the value of Tmin, in this case they increase at
more than 10 times this value, which is still considerably less than the average temperature
of the system Tavg. In this case, it is not odd that ϕ increases with the temperature. We
believe we have a system showing both clamping dissipation and longitudinally-spread
dissipation, with the first playing an important role in lowering the value of the fluctuations
below the average temperature.

4.5 Conclusions

In this chapter, we test the extended FDT at its physical limits. We impose almost the highest
possible temperature difference the system can sustain and measure the out-of-equilibrium
fluctuations Tfluc. In order to compare them with the temperature of the cantilever, we care-
ful analyse how to retrieve the average temperature Tavg through both an analytical method
and simulations. We then show that the cantilever displays a significant lack of fluctuations
however out of equilibrium it is. We summarise the results in fig. 4.5.1, where we show
the fluctuation temperatures normalised by Tavg vs. the similarly normalised temperature
difference ∆T.

Whereas in previous experiments Tmin ≈ 300 K, in this chapter we have shown that
our extension of the FDT applies when Tmin ≈ 10 K, thus extending the validity of the
precedent results and the experiments reported in [42, 40]. Through the measurement of the
dissipation, we show that the lack of fluctuations cannot be solely explained by a clamping
losses, but rather that the internal dissipation of the sample needs to be taken into account.
We thus extend the ensemble of the systems which show lack of fluctuations, until this
point represented by C100 and some modes of C30. We demonstrate that a cantilever with
distributed dissipation can oscillate less than its average temperature dictates, whatever the
temperature profile it is subjected to.

As a consequence, we believe that these results have a broad range of applications.
Alongside previously-described experiments, for example nano-mechanical resonators
strongly out of equilibrium [27], the GW community could greatly take advantage of our
study. Our samples, extremely thin and long silicon cantilevers, might be a testing bench for
studies around the suspension systems in cryogenic GW detectors [93, 6]. In these experi-
ments it is customary to assume that a temperature gradient is unwelcome, in order to avoid
increasing thermal noise both in the suspension itself and in the test mass. Whereas our re-
sults do not affect this statement for the test mass, they suggest that the thermal fluctuations
of the suspensions might be unaffected by the temperature gradient. Thus, optimisation
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FIGURE 4.5.1: Normalised fluctuation temperature vs. temperature gradient: the non-equilibrium
noise is shown in contrast with the meaningful temperatures of the system. The horizontal axis rep-
resent the temperature gradient for each NESS normalised by the respective average temperature.
The vertical axis displays the average of the flexural modes and the average of the torsional modes
for both the experiments, also normalised. We limit ourselves to measurements where no melting
occurred. The equilibrium is represented by the horizontal solid line, depicting the value the fluctua-
tions should have in order to mimic a system in thermal equilibrium at Tfluc = Tavg. The grey shaded
area represents the validity of eq. 2.81: the fluctuations can occur at temperatures between the min-
imal temperature Tmin (the lower bound) and the maximal Tmax (the upper bound). The measured
fluctuations are all below the equilibrium line and very close to the lowest available temperature,
showing values 10 − 50 times lower than the maximum temperature available.

of suspensions could be facilitated by relaxing the constraint of having no temperature dif-
ference along their length, albeit taking great care on the effect of a residual temperature
existing in the mirrors. Furthermore, the material used in the current experiment is silicon,
one of the main candidates for ET. We probe its thermal fluctuations up to its melting point,
showing a remarkable lack of fluctuations that could surely be appealing for the fabrication
of the suspension system.

In conclusion, few experiments take into consideration such physical extremes as the
ones presented here: cryogenic temperatures are just 1 mm apart from melting ones, probing
the very far out-of-equilibrium. This experiment shows how it is possible to have a system
oscillating hundreds of degrees less than its average temperature, when one of its end is
close to its melting point. We have probed an extension of the FDT to its furthest limits,
confirming previous results and improving their robustness. Future work might include
studying systems with a non-localised dissipation, or with dissipation localised at a specific
point different than the clamping.
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4.A Sensitivity of the QPDI

As depicted in fig. 4.1.1, the QPDI measures a displacement d′ = d1 − d2. This is propor-
tional to the real displacement d through the sensitivity of the instrument σ, as discussed in
the previous chapter. In this experiment we can neglect any contribution from the finite size
of the laser spot, since its waist is very small compared to the typical length of the highest
measured mode1. Since the interferometer directly reads the displacement perpendicular to
the probing beam, the flexural sensitivity is:

σδ
n(x1, x2) = φn(x1)− φn(x1 − ∆x) (4.9)

hence:
d(x1)− d(x2) = d(x1)− d(x1 − ∆x) = d′(x1) = σδ

n(x1)δn (4.10)

With this, we can estimate the probing point taken during SEQ, which we report in fig. 4.A.1
for the second set of measures (since they present more modes). We notice how all the curves
converge towards a single x1. Furthremore, the effective masses normalised to that of the
second resonance show that modes 5 (not used in the calculation of ǫ) and mode 4 yield high
values, due to the closeness of x1 to one of their nodes. Thanks to this, it is then possible
calibrate the deflection of the cantilever in a similar way as seen in Sec. 3.A.2, and associate
the systematic error to the Tfluc

n .

During the measurement, the probing point changes for various reasons. One is that
when we turn on and off the cryostat, x1 changes, and even if we place it back at its original
place thanks to the camera, this cannot be totally accurate. Another cause are the possible
drifts dx, which in this experiment are quantified around 2 µm to be conservative. In fact,
the two SEQ − SNESS steps are performed in a short time and drifts are less likely. Moreover,
the cantilever is two times as long as C100 and due to the extreme conditions it is subjected
at, we believe this to still be a meaningful value. A third reason is the melting. As shown
in fig. 4.B.3 in fact, this happened several times, so after we move the spot in order to avoid
probing the corrupted point. For these reasons, in fig. 4.A.1 we can see that x1 assumes
slightly different values from one measurement to the other.

With an interferometric reading, the torsional sensitivity depends on the transverse po-
sition y. The spatial shape of the torsional modes is:

Φm(x, y) = yφm(x) (4.11)

The sensitivity is thus:

σθ
m(x1, x2, y1, y2) = |Φm(x1, y1)− Φm(x2, y2)| = y1|φm(x1)− φm(x2)| (4.12)

1With a waist diameter ≈ 10 µm the laser beam is 10 times smaller than half the spatial period of the cantilever
for the highest available mode, 9: λ9/2 ≈ 100 µm.
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FIGURE 4.A.1: Sensitivity for flexural modes: the quantity ηn(x1) is independent of n for a unique
value of x1 close to the end of the cantilever. The black solid line represents the square of the standard
deviation over n of ηn divided by its mean, for each x1 (calculated excluding mode 5). It presents
a minimum at the actual measurement point. The effective masses of the modes are given in the
graph legends, normalised by the one of the second mode. We see how modes 4 and 5 have high
values, meaning that the respective ω2

n〈δ′n2〉, i.e. the thermal noise, presents a large uncertainty due
to the proximity of x1 to one node of these modes. Also modes from 7 to 9 show a high meff. We
can see that each Tavg corresponds to slightly different x1, the reasons for which are explained in the
text. The average between the actual measurement positions throughout the whole experiment is
x1 = 952 ± 1 µm.
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since y1 = y2 if the spatial separation of the laser spots is purely along x. In fig. 4.A.2 we
show the results. We note that the ηm converge towards a slightly different x1 with respect
to the ηn, with a difference around 1%. In this experiment the discordance of the flexural
and torsional modes is then lower than the C100 case. We believe this to be due to the shape
of C90 which is devoid of a triangular end, being closer to an ideal beam.

We note that this method does not let us estimate y1: since both the standard deviation
and the average of ηm along y1 have the same shape (due to the linearity of Φm in y), their ra-
tio is independent on y. Nevertheless, since x1 is precisely known, we can calibrate y1 thanks
to camera images. Finally, from these results, we can calibrate the torsional displacements
and calculate the ǫ

sys
m .

4.B Temperature estimations

In Sec. 4.2 we have shown how we extract the average temperature information from the
the frequency shift of the high frequency modes. Whilst the temperature at the base of the
cantilever Tmin is known, the temperature profile T(x) is unknown and should be estimated
through simulations. As mentioned, this is highly non linear due to the shape of the ther-
mal conductivity κs and the presence of two thermal sources (fig. 4.2.2). We have already
introduced the one-dimensional problem in eq. 4.6, nevertheless let us start considering the
problem two-dimensional. In fact, since the cantilever’s plane dimensions are much larger
than its thickness (L/H = 103, B/H = 90), the correct dimensionality of our cantilever is
two. We follow the work of [91] in the next discussion. We write the Heat Law for the 2D
temperature field T(x, y) in the shape of a Poisson equation:

∇
(

κs
(
T(x, y)

)
∇T(x, y)

)
+

2ǫsσSB

H

((
T(x, y)

)4 − (Tmin)4
)
+ B1(x, y) + B2(x, y) = 0 (4.13)

with the first term representing the conduction, the second the radiation and the last two
the sources, modeled as a power density:

Bi(x, y) =
AiPi

πHR2
0

e
−2 (x−xi)

2+(y−yi)
2

R2
0 (4.14)

with i = 1, 2. Here, AiPi represents the absorbed power in each spot (xi, yi), and R0 is the
waist of the focused laser. In the previous equation, ǫs is the emissivity of silicon and σSB is
the Stefan-Boltzmann constant.

The function κs(T) is tabulated [102] and depicted in fig. 4.2.2. The nominal thickness of
the cantilever is known, although with an important uncertainty (H = 1 ± 0.3 µm). Nev-
ertheless, we can deduce its value looking at the flexural resonance frequencies and con-
fronting these values with the Euler-Bernoulli prediction. This gives H = 1.1 ± 0.1 µm,
which is confirmed by Scanning Electron Microscope (SEM) images. The emissivity is un-
known and it varies greatly at high temperatures [57], where the radiation term is more
relevant. A first approximation is to consider ǫs as free parameter (independent of the coor-
dinates) to be adjusted. Finally, the absorbed power is also unknown: during the experiment
we measure the total injected power, with no control over the absorption.

Considering all these free parameters, we do not expect the temperature profile to per-
fectly match the one in the experiment, therefore the results of the simulation should be
taken as an order of magnitude estimation. We report the outcome in fig. 4.B.1. A tempera-
ture profile with a particular choice of parameters is presented, showing the bi-dimensional
nature of T(x, y), with the temperature peaked around the two laser spots. From it, the
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FIGURE 4.A.2: Sensitivity for torsional modes: the quantity ηm(x1) is independent of m for a unique
value of x1 close to the end of the cantilever. Mode 5 is not displayed due to the fact we do not
detect it during the experiment. The black solid line represents the square of the standard deviation
over m of ηm divided by its mean, for each x1. It presents a minimum at the actual measurement
point. The effective masses of the modes is given in the graph legends, normalised by the one of the
second mode. We see how mode 1 presents high values, which cannot be linked to it being close to a
mode. Instead, 〈δ′1

2〉 is relatively low compared to the value for mode two, yielding a huge meff. Also
mode 4 yields a high effective mass, this time since x1 is close to a node of sensitivity. The average
of the actual measurement positions throughout the whole experiment is x1 = 937 ± 2 µm, showing
a difference of around 1.5 % with respect to the flexural modes. This similarity of predictions in
estimating x1 is decisively better than in the C100 experiment.
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FIGURE 4.B.1: 2D vs 1D temperature profile: a two-dimensional estimation T(x, y) is compared with
a unidimensional T(x). In (a) we can see a temperature profile with two beams shining the cantilever
at x1 = 950 µm, x2 = x1 − ∆x, y1 = y2 = 36 µm, with equal absorbed power AiPi = 14.5 mW. We
consider ǫs = 0.5 and Tmin = 10 K. At x1 (the highest temperature point), we reach a temperature
difference of around 200 K along y, showing an important two-dimensional feature. Moreover, a
second bump is visible at x2. In (b), we see that a one-dimensional profile represents quite well the
2D-one: the dark red solid line represents the average temperature integrated along y, whilst the red
shaded area is the standard deviation of its values. The dark blue curve is an unidimensional profile
calculated for the same parameters: not only the red and blue curves have a very similar profile, but
also they predict similar average temperature Tavg. Even for higher power, the 1D Tavg differs from
the 2D one by 5 % at most.

simulated average temperature Tavg is calculated as:

Tavg =
1

LB

∫ L

0
dx
∫ B

2

− B
2

dy T(x, y) (4.15)

A simpler choice is to consider the problem unidimensional, thus integrating along the
transversal dimension y. Doing this greatly reduces the simulation time, and we can observe
the effect in fig. 4.B.1 (b). Albeit the two-dimensional profile integrated along y shows some
differences with respect to the one-dimensional one, this effect is relatively small: the calcu-
lated average temperatures differ at most of 5% in the whole parameter range. We believe
this uncertainty acceptable, therefore we proceed considering 1D profiles T(x).

We then continue with a parametric sweep of the aforementioned meaningful quantities,
in order to retrieve the family of temperature gradients {T(x)}. We report the selection of
parameters in Table 4.B.1.

As previously mentioned, equally dividing the light between x1 and x2 yields the max-
imum sensitivity. Nevertheless, the absorbed power of the two beams can differ, since ab-
sorption and reflectivity are functions of temperature. Since we cannot measure this, we
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ǫs H [µm] Tmin [K] a AP [mW] n
Parameter

0 - 1 1-1.2 10-20 0.3 - 0.7 1-35 6-9
range

Central
0.5 1.1 15 0.5 1-35 7

value

TABLE 4.B.1: Parameter range for the temperature profile simulations.

FIGURE 4.B.2: Estimation of Tavg and Tmax: from the parametric sweep reported in Table 4.B.1, we
estimate the possible values of the average (yellow curve) and maximum temperature (red curve) of
the cantilever, at the same time of the frequency shift for the mode numbers 6 to 9. Whereas for one
value of ∆ωn/ω0

n the dispersion of Tavg (yellow shaded area) is small, this is not true for Tmax (red
shaded area). No bijective relation is possible, thus we estimate Tmax as the average of a uniformly
distributed variable between the possible values (black dashed lines). The purple curve represent the
retained value of Tmax for each frequency shift, and the cyan and green squares are the experimental
values.

include in the simulation the possibility of the ratio:

a ≡ A1P1

A1P1 + A2P2
(4.16)

being different from 0.5. As it turns out, this is the most important parameter in prescribing
the shape of T(x), and thus Tavg. On the other side, smaller H and ǫs, and higher total
power AP = A1P1 + A2P2 yields a higher Tmax. For each T(x), the relative frequency shift
∆ωn/ω0

n is calculated for the mode numbers 6 to 9: we show the results of the sweep in
fig. 4.B.2. The solid curve represents the calculated temperature for the central value of the
parameters in Table 4.B.1 and the shaded area all its simulated values. Let us discuss Tavg

and Tmax separately.

In Sec. 4.2 we made use of this simulation to retrieve the average temperature of the
cantilever in the experiments (fig. 4.2.3) and it is the one used throughout this work. The
uncertainty is small, mainly given by the standard deviation of the simulated frequency
shift, which can be seen in fig.s 4.4.1 and 4.4.2.
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FIGURE 4.B.3: A photo of the cantilever used in the measurements of this chapter, by L. Bellon. As we
can see, the sample shows some holes, where the laser melted the material. During the experiment
it is easy to evince when this happens from camera observations and the retrieved reflected power.
When this happens, we move the probing point x1 before the next measurement.

On the other side, the maximum temperature varies greatly within the simulation. We
set an upper bound to its values at the melting temperature Tmelt, since we aim to retrieve
Tmax for the measurements where we did not melt the cantilever. In fact, from camera and
intensity observations we can discern when we damage the cantilever, hence for the mea-
surements where this is not the case it is reasonable to assume Tmax

< Tmelt. Since no other
constraint can be safely applied, a whole interval of values of Tmax can correspond to each
measured frequency shift. We therefore assume that the maximum temperature is uniformly
distributed, with as average the center of this interval and uncertainty the corresponding
standard deviation. It is clear that the upper bound biases the uncertainties for very high
values, since the interval is very small. As a side note, in fig. 4.B.3 we show a picture of the
cantilever after the whole experimental session, where we can notice the locations where we
melted the cantilever. When this happened, we simply moved the probing point.

Let us now briefly discuss the limits of our temperature model. Firstly, corrections on the
bulk thermal conductivity due to the low dimensionality of the sample might be necessary.
We nevertheless believe that if phonon confinement has some impact, it is small. In fact,
a rough estimation of the mean free phonon path λp in the cantilever yields λp ≈ 1 µm at
room temperature, the same order of magnitude of the thickness H. Thus, if some effects
of confinement arise, we do not expect them to be preponderant. Another uncertainty de-
rives from the approximation of constant emissivity, which is nevertheless important solely
at high temperatures, where the dispersion of the results is already wide. Finally, we have
shown how the influence of the 2D effects on the temperature profile yields an error, al-
though within reasonable limits. All in all, we believe that the results shown in this section
represent the physical system in a more than satisfying way.
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Chapter 5

Thermal noise of a macroscopic
oscillator

In the previous chapters of this thesis, we study the thermal oscillations of micro-cantilevers
in a NESS, showing how they are prescribed by the local mechanical energy dissipation
function following our extension of the FDT. We mention the importance of this kind of
studies in many contexts, spanning from purely theoretical statistical physics to fabrication
of mechanical devices. In particular, we discuss the possible uses of our results in one of the
most thriving topic of modern physics, GWs detection.

Up until know, we show that it is possible for a microscopic system such as a cantilever
to show a dearth of fluctuations with respect to its average temperature if its dissipation
is mostly localised where the minimal temperature Tmin is. This is true independently of
whether Tmin is the room temperature one or close to 10 K. Conversely, a distributed dis-
sipation prompts fluctuations on the order of the average temperature of the system. Our
formulation of the extended EP, which has proved correct so far, tells us that we can suc-
cessfully forecast the fluctuations of a microscopic object to be bounded by the minimal and
maximal temperature it is in contact with. As discussed, this may be interesting in designing
the suspension systems of future GWs detectors.

Nevertheless, these structures are macroscopic, and the conclusions we have reached so
far could not be applicable. An experiment directly tackling this question is the Non Equilib-
rium Thermal Noise (NETN) project, located in the Laboratori Nazionali di Legnaro (LNL)
in Padua. It is lead by Dr. L. Conti in the VIRGO collaboration, as a mean to investigate the
effects of a temperature difference in the thermal noise of test masses of GWs detectors. As
shown in [29, 30], an aluminium oscillator is brought in a NESS, and its thermal fluctuations
are measured. These depict a picture we cannot explain with our theoretical framework: the
non-equilibrium fluctuations not only exceed the average temperature of the system, but
also the maximal one. In this case, a simple question arises: is our extended FDT valid only
for small systems?

In this chapter, we discuss the latest outcomes of this experiment, for which I had the
occasion to contribute. I spent one month in the LNL under the supervision of L. Conti and
G. Ciani in order to accomplish two goals: first, to modify the existing detection system [90],
which finally resulted in a full-scale implementation of a QPDI as the one described in the
previous chapter; and second, to set the oscillator in a NESS and to test the aforementioned
results.

The first part of this chapter discusses in detail the experimental setup and the physical
system, showing how we can retrieve the displacement of the oscillator from the interfero-
metric signal. Further details are given in Appendix 5.A. We then discuss the nature of the
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FIGURE 5.1.1: The physical system considered is an aluminium cuboid monolithically clamped to
a rod of length L = 100 mm and square cross section H2 = (5.5 mm)2. The cuboid side is roughly
B = 50 cm. In the picture, we depict the two motions of the oscillator, a transverse mode (left) and a
longitudinal one (right).

two relevant resonances of the oscillator.

The second part briefly focuses on the temperatures of the system and how to retrieve
them, whilst the following one describes the experimental procedure.

The following section shows the results, depicting the improvements to the setup and
the thermal noise measurements, alongside the measured loss angles. Finally, a discussion
concludes this chapter.

5.1 Experimental setup

The physical system is an aluminum cuboid monolithically clamped to a square cross sec-
tion rod which is suspended at the top end. The mass-rod-suspension is constructed from
a single piece of Al5056. The length of the rod is L = 100 mm, and its cross section is
H2 = (5.5 mm)2[62]. The side of the cuboid is roughly 5 cm (see 5.1.1), where the lower
face is polished to be sufficiently reflective. The goal of the experiment is to create a steady
temperature difference ∆T between the top end and the mass through a thermal source,
hence a NESS. Therefore, the thermal fluctuations of the oscillator are measured following
the two motions depicted in fig. 5.1.1. In the past, these were retrieved thanks to a capacitive
readout, which is described in [62] (with more details about the oscillator).

Starting with the work of A. Pizzella [90], the experiment moved from the capacitive
readout to an interferometric one, which was further developed and completed during my
tenure in the laboratory. The choice to move towards interferometric measurements comes
from the will to avoid the systematic errors the capacitive readout is afflicted by. Indeed, due
to the thermal expansion of the material when the temperature is increased, the sensitivity
changes, prompting biases in the calibration.

The current readout is a QPDI, similar to the one used in the previous chapter and de-
scribed in [85, 87]. A simplified version of the current NETN setup is shown in fig. 5.1.2:
the oscillator is mounted in a vacuum chamber at ≤ 5 × 10−2 mbar, where one laser beam
(λ = 1064 nm) measures the displacement δx of the test mass with respect to a reference
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mirror. This displacement is embedded in an optical phase difference ψ retrieved by the
QPDI. The NESS is created thanks to a power source, which creates a temperature profile
T(x) along the suspension rod. The temperature difference ∆T ≡ Tmax − Tmin is calculated
as the difference between the temperature of the mass and the temperature at the top of the
rod, both measured by thermopiles.

In the next sections, we show how we can retrieve the displacement of the oscillator
starting from the incoming light beam. We divide this section as follows: the Jones calculus
is briefly introduced, as a practical way to show the transformations occurring to the electric
field of the laser beam, which are later characterized. Then, the power signals retrieved by
the photodiodes is transformed into the displacement signal δx after a calibration.

5.1.1 Jones calculus

The Jones calculus [43] is a useful mathematical formalism used to treat the transformations
of polarized light when it interacts with optical elements. A light beam propagating along
the x-direction can be described as an electric field:

E = Eyy + Ezz (5.1)

which oscillates in the y and z-directions with respective amplitudes Ez and Ez. These can
be written as:

Ey = E0y cos(ωt − kx + ψy)

Ez = E0z cos(ωt − kx + ψz)
(5.2)

where ω and k are the natural frequency and the spatial wavenumber of the light, and each
component possesses an amplitude E0y, E0z and a phase ψy, ψz. Eq. 5.1 can be expressed also
as:

E = Re(E0ei(ωt−kx)) (5.3)

with E0 the Jones vector defined by:

E0 =

(
E0yeiψy

E0zeiψz

)
≡
(

E0y

E0zei(ψz−ψy)

)
(5.4)

The phase at an arbitrary time is arbitrary, so we can always choose to multiply E0 by a
desired phase without altering the wave. Notice that with the phase convention used here,
a decrease in phase indicates retardation, or equivalently ψz < ψy means that Ez is retarded
with respect to Ey.

When the light interacts with an optical element, the Jones vector undergoes a change:

E′
0 = JE0 (5.5)

where J is the 2 × 2 Jones matrix associated with the optical element. The optical compo-
nents of the experiments are depicted in fig. 5.1.2. Three different areas are recognizable: i)
the input area, where the light is prepared in the desired polarization state, ii) the sensing
area, where the light interacts with the oscillator and the reference mirror, thus creating the
interferometric signal, and finally iii) the analysis area, where the signal is extracted and read.
A Jones matrix depends on the nature of the optical element and its orientation with respect
to the chosen coordinate system. It is natural to assume the beam as the reference frame. In
this case, referring to fig. 5.1.2, the light beam initially propagates in the x-direction, with the
components of the electromagnetic field in the y and z-directions (see eq. 5.2). The z-axis is
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FIGURE 5.1.2: Experimental setup: a QPDI is used to retrieve the displacement of an aluminum
oscillator. The laser beam (IIN = 10 mW at 1064 nm), focused on the oscillator, is reflected towards
the four photodiodes. The interferometer records the temporal signals of the displacements of the
oscillator, one transverse and one longitudinal mode depicted on the right. A heater placed close
to the cuboid raises the temperature of the mass thus creating the NESS. More details of the optical
setup are given in Sec. 5.1. The oscillator, in vacuum at ≤ 5 × 10−2 mbar, is monolithically clamped
to a suspension system which is thermalised at room temperature Tmin.
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fixed pointing out of the page, whilst the other coordinates follow the beam, with x always
indicating the propagation of the beam.

We report the Jones matrixes (at the optimal angle ζ with respect to the horizontal axis in
case for the wave plates) for the optical elements of the experiment in Table 5.1.1.

Optical component Symbol Jones Matrix J

Half-wave plate (ζ = π/8) λ/2 1√
2

(
1 1
1 −1

)

Beam splitter BS 1√
2

(
1 0
0 1

)

Polarizing beam splitter, y PBSy

(
1 0
0 0

)

Polarizing beam splitter, z PBSz

(
0 0
0 1

)

Mirror M
(

1 0
0 −1

)

Quarter-wave plate (ζ = π/4) λ/4 1
2

(
1 + i 1 − i
1 − i 1 + i

)

TABLE 5.1.1: Optical components and respective Jones matrix.

In the following sections, we describe how the light is transformed along the optical path.
We do not take into consideration the intrinsic imperfections of the optical element, such as
absorption or misalignment.

5.1.2 Input area

The beam can thus be initially described as:

EIN = EIN

(
1
0

)
(5.6)

The first element it encounters is a half-wave plate (λ/2), which is oriented with an angle
π/8 with respect to the y-axis, so that its Jones matrix is the one reported in Table 5.1.1. After
this, a beam splitter (BS) directs half of the intensity towards the sensing area. Applying
eq. 5.5, the light entering the sensing area is:

ESE = Jλ/2JBSEIN =
EIN

2

(
1
1

)
(5.7)

The role of the half-wave plate is thus to rotate the polarization of the beam in order to
equally divide it in both directions y and z, the first of which interacts with the oscillator
and the second with the reference mirror.

5.1.3 Sensing area

The beam goes through a converging lens (CL) and a window (W) before reaching a polariz-
ing beam splitter (PBS). This divides the two polarizations, so that the polarization parallel
to y is transmitted to the oscillator and the perpendicular one is deviated towards the refer-
ence mirror. The electric field which hits the oscillator and gets back to the PBS is described
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as:

EO = JPBSy JMESE =
EIN

2
ei2k(lO+δx)

(
1
0

)
(5.8)

where 2(lO + δx) is the distance covered by the light, also considering the displacement of
the oscillator δx. The beam reflected by the mirror is:

EM = JPBSz JMESE =
EIN

2
ei2klM

(
0
−1

)
(5.9)

with again 2lM the double of the distance between the PBS and M. We can thus refer to the
path difference as a phase ψ ≡ 2k(∆l − δx) = 2k(lM − lO − δx). After recombination in the
PBS, the beam which exits the sensing area and enters the analysis area is:

EAN = JBS (EO + EM) =
EIN√

8

(
1

−eiψ

)
(5.10)

5.1.4 Analysis area

The light is directed towards a second λ/2, which is oriented as the previous one and thus
mixes the polarizations, dividing the information of the optical phase in both directions. The
beam then goes through a BS, which divides it into the two analysis arms of the QPDI. For
the first one AB we can write:

EAB = JBSJλ/2EAN =
EIN√

32

(
1 − eiψ

1 + eiψ

)
(5.11)

A PBS finally separates the two polarizations, so that the two electric fields shine onto the
photodiodes A and B:

EA = JPBSy EAB =
EIN√

32

(
1 − eiψ

0

)

EB = JPBSz EAB =
EIN√

32

(
0

1 + eiψ

) (5.12)

In the second arm (CD) a quarter-wave plate (λ/4) adds a π/2 in both polarizations, yield-
ing:

ECD = Jλ/4JBSJλ/2EAN =
EIN√

32

(
1 − e(iψ+π/2)

1 + e(iψ+π/2)

)
(5.13)

and after the PBS, the photodiodes C and D receive:

EC = JPBSy ECD =
EIN√

32

(
1 − ei(ψ+π/2)

0

)

ED = JPBSz ECD =
EIN√

32

(
0

1 + ei(ψ+π/2)

) (5.14)

Now, the photodiodes capture the power I = |EE⋆|, with the ⋆ denoting the complex conju-
gated. The four retrieved signals are then:

IA =
IIN

16
(1 − cos ψ)

IB =
IIN

16
(1 + cos ψ)

IC =
IIN

16
(1 − sin ψ)

ID =
IIN

16
(1 + sin ψ)

(5.15)
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where IIN = |EINE⋆

IN| represents the input power. We note how the total retrieved power is
1/4 with respect to the initial one, with the remnant being lost in the two passages through
the first BS.

5.1.5 Phase and displacement

In order to retrieve the optical phase, we calculate the contrast of each arm:

Cx =
IA − IB

IA + IB
= cos ψ

Cy =
IC − ID

IC + ID
= sin ψ

(5.16)

We then define the complex contrast C:

C ≡ Cx + iCy = eiψ (5.17)

This formulation has one clear advantage: due to the quadrature, the optical phase is un-
ambiguously determined (modulo 2π). In fact, if we display the contrast C in the complex
plane, this is a point on the unit circle, and thus one measurement of the optical phase ψ
corresponds to a polar angle in this plane.

Let us interpret the optical phase. As mentioned, this is:

ψ = 2k∆l = 2k(lM − lO − δx) =
4π

λ
(∆l − δx) (5.18)

where we can distinguish two contributions: the intrinsic optical path difference between
the two arms of the interferometer ∆l, which may slowly vary with thermal drifts, and the
displacement of the oscillator δx, which can be seen as an oscillation around the mean value
of ∆l. The contributions being summed, the sensitivity of the contrast with respect to δx
does not depend on ∆l [87]: ∣∣∣∣

dC
d(δx)

∣∣∣∣ =
4π

λ
(5.19)

Thus, the working point (the position on the interference fringe) does not need to be opti-
mized, since the sensitivity is unaffected by this. Furthermore, if the working point experi-
ences some drifts during the measurement, for example due to the temperature changing,
the measured displacement keeps being calibrated. Finally, once the optical phase is deter-
mined the displacement of the oscillator is retrieved as:

δx =
λ

4π
ψ (5.20)

5.1.6 Real life implementation

As for example reported in [87], this description is not adapted to a realistic interferometer.
Imperfections and misalignments, yield a contrast less than optimal, therefore C resembles
more an ellipse than a circle (see fig 5.1.3). Through an Heydemann correction [54], though,
it is possible to take this into account. We can write a corrected version of eq. 5.15:

IA = αA − βA cos ψ

IB = αB + βB cos ψ

IC = αC − βC sin (ψ + ̺)

ID = αD − βD sin (ψ + ̺)
(5.21)
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FIGURE 5.1.3: Calibration ellipses. In (a), an equilibrium situation is displayed, where the calibration
contrast is generated in two methods: with a small hit (H) on the vacuum chamber (yellow data
and red fit) or with the drift (D) throughout the whole measurement (cyan data and blue fit). The
first method excites the oscillator through at least one interference fringe, and we notice how the
elliptical fit is well overlapped with the experimental points. It is remarkable that the contrast is very
close to the ideal unit circle, with fit parameters X0 = −2 %, Y0 = 3 %, X = 96 %, Y = 95 %, and
̺ = 10−4. We also notice how the experimental data do not overlap for displacements larger than
λ/2. Instead, they tend to form a spiral, which is due to the non-linearities of the system. On the other
hand, the drift is not significant enough to result in a good fit, yielding a smaller contrast (and hence
higher displacement signal). In this particular case, the H method seems to yield the most accurate
calibration. In (b), we show a non-equilibrium measurement for the same strategies. In this case,
the hit and the drift methods yield more similar results, nevertheless exciting the oscillator results
in a more pronounced spiral. The resulting fit is therefore slightly biased, and the best calibration
method appears to be the thermal drift. Also in this case, the contrast is close to optimal, with a small
degradation with respect to the equilibrium case.

where α is the mean power received by the correspondent photodiode, β is the amplitude
of the oscillating component, and ̺ stands for the deviation from a perfect quadrature. A
ideal response corresponds to ̺ = 0, equal powers on the same photodiode α = β and in
the same arm αA = αB, αC = αD. Using eq. 5.21, the contrasts Cx, Cy can be expressed as:

Cx = X0 + X cos ψ

Cy = Y0 + Y sin (ψ + ̺)
(5.22)

where the coefficients are related to the ellipse: X0, Y0 represent the center, X, Y the projec-
tion of the semi axes on the axes x, y, and ̺ its precession. If these five quantities are known,
eq. 5.22 can be inverted in order to retrieve the optical phase ψ and thus the displacement
δx.

The ellipse is also a handy tool to understand the sensitivity of the interferometer dur-
ing the alignment of the laser probe before a measurement. We give more details in Ap-
pendix 5.A.

5.1.7 Calibration

In order to retrieve the parameters of eq. 5.22, a calibration is required before each measure-
ment. As stated, depending on the position on the interferometric fringe, the optical phase
lies in one point of the ellipse (working point). If we record the working point whilst it
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sweeps at least one entire interferometric fringe, hence the whole ellipse, the optical phase
is calibrated and any measured phase can be retrieved as the corrected polar angle on this
curve. As seen, the optical phase is composed of two varying quantities: the thermal noise-
induced displacement of the oscillator δx and the slow drift in the length of the arms of the
interferometer ∆l. Modifying either of these quantities changes the working point and in
principle should lead to the same calibration. We discuss them separately and report the
results in fig. 5.1.3.

In the first case, we inject energy into the system in order to increase δx; therefore, the
ideal strategy would be to drive the oscillator with a piezoelectric device at the resonance
frequency and to record the contrast. Unfortunately, in the current setup this is not possible.
As such, we hit the suspension system with a plastic hammer, just enough to sweep one
interferometric fringe. Consequently, the contrast C is recorded for post-analysis, where
we fit the ellipse. Whereas this procedure is quick, and it grants a coverture of the whole
contrast, it has some setbacks: as we can see from fig. 5.1.3 (b), the ellipse may not overlap
when more than one turn is made, showing a spiraling feature. This effect being almost
inexistent when the system is in thermal equilibrium, it becomes preponderant when it is
in a NESS. As shown in fig. 5.1.4, the magnitudes of the resonance modes we are interested
in are much lower than the noise due to the suspension; therefore, any perturbation feeds
energy into all frequencies, and the ellipse may contain these spurious contributions. In
order for this method to yield an accurate calibration for the longitudinal mode, the hit
must be performed vertically at the center of the suspension system.

The second method consists on waiting for the working point to slowly drift, hence for
∆l to change. This method does not require any manipulation of the oscillator and acts as
a self-calibration, since the signal itself serves as a calibration. Since we are not injecting
energy into the system, we do not expect the ellipse to show non-linearities as strong as the
previous method, as we can see from fig. 5.1.3 (b). Nevertheless, the drawback lies in the
uncertainty that the drift is significant enough to cover a whole interferometric fringe, as in
fig. 5.1.3 (a). In order for this method to yield an accurate calibration, we must ensure the
drifts are then significant enough.

We refer to the contrasts calculated with the external perturbation as CH and the one with
the drift as CD. Due to the ambiguity of these methods, the choice is to use both methods
and choose a posteriori the more suitable one. Whilst the two strategies can produce different
results, for example in the equilibrium experiment in fig. 5.1.3 (a), they usually yield very
similar outcomes. In fig. 5.E.1, we show the results following both calibrations, in order to
highlight this effect.

5.1.8 Displacements

After calibration, the QPDI yields the temporal displacement signal δx(t), from which we
can compute the PSD. We show an example of a typical PSD highlighting the two resonance
modes we are interested in fig. 5.1.4: a vertical deformation δ of the rod (henceforth called
longitudinal mode), and a rotation θ of the end mass (henceforth called transverse mode). A
sketch of these motions is shown in fig. 5.1.2.

The interferometer directly gives access to the longitudinal mode: δ = δx. The transverse
mode is more complex. It is in fact associated to the first deflection mode of the rod, which,
due to the loading at its free end, closely resembles the second deflection mode of a clamped-
hinged cantilever [12]. We would expect to measure 2 transverse modes, one oscillating in
the x − y plane and the other in the x − z plane. Indeed, the cuboid lateral dimensions are
slightly different in order to lift the mode degeneracy. Nevertheless, as shown in fig. 5.1.4,
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FIGURE 5.1.4: PSD of the displacement signal δx: a typical signal retrieved by the QPDI shows a
huge noise bump at low frequencies, which relaxes around f ≈ 200 Hz. At around 300 Hz, we find
the transverse resonance mode (cyan), whilst at 1400 Hz stands the longitudinal one (yellow). Note
the extremely low noise floor achieved by the instrument, at 2 fm/

√
Hz.

the PSD yields one transverse peak. This oddity is not yet explained, as this is also the case in
the previous experiments of the group [29]. We then suppose that the measured transverse
mode corresponds to a motion in the x − y plane. In this case the transverse angle depends
on the position of the laser spot on the oscillator y0 through the mode shape of the oscillator,
which is not trivial [12]. Thus, deriving θ from δx is also not straightforward. Choosing the
probing point y0 before the measurement is also not possible, and any modification during it
is equally not measurable. Hence, we cannot safely express θ in radians, and thus we keep
it as a vertical displacement. We hence call θ ≡ δx the transverse angle expressed in meters.

5.2 Heating

As mentioned, in order to create a temperature difference ∆T between the cuboid and the
top end, a heater is placed close to the oscillator. The heating system is precisely described in
[62, 29]; we summarize its principle here. The thermal source is placed in front of one face of
the cuboid mass, and when it is turned on, some hours are necessary for ∆T to be stationary
(see Sec. 5.3.1). The temperatures of the cuboid Tmax is measured through a thermopile
and the one at the top end Tmin through a thermometer. Furthermore, the temperature of
the environment Tamb is also measured. The power of the thermal source is at most 5 W,
yielding ∆T ≤ 50 K along the suspension rod. Since the temperature different is relatively
small, we can consider the temperature profile linear: T(x) ∼ x, with x the longitudinal
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coordinate along the rod. Therefore, its average temperature is defined as:

Tavg = Tmin +
1
2
(Tmax − Tmin) = Tmin +

∆T
2

(5.23)

In fig. 5.3.1 we show an example of the temperature as a function of time during one mea-
surement run.

5.3 Experimental procedure

When a NESS is established, we proceed by measuring the displacement of the oscillator to
retrieve its thermal fluctuations. We hence present the experimental procedure, followed by
the methods used to retrieve the PDSs of the motions.

5.3.1 Experimental procedure

Let us begin the description of the experimental procedure when the oscillator is placed
in the vacuum chamber at a pressure p ∼ 10−5 mbar, sustained by a turbo pump. The
experiment then follows the usual two main steps, SEQ and SNESS.

The first step SEQ corresponds to an equilibrium case, where the oscillator is not heated
and its thermal noise is measured. We further divide this step into two steps, a calibration
step scal followed by a thermal noise measurement smeas. The second step SNESS is a non-
equilibrium case, where the test mass is heated at various heating powers: P = 3 − 4.5 W
(see also sec. 5.2). In this case, a heating step sheat precedes the other two scal, smeas. Let us
describe each step in detail, following the procedure of a non-equilibrium measurement and
keeping in mind that sheat is simply absent in the equilibrium case.

The first step sheat consists of waiting for the system to reach a steady temperature dif-
ference between the top end (Tmin) and the oscillator (Tmax) and at the same time creating
and maintaining a low pressure in the chamber (around 10−5 mbar). The oscillator being
macroscopic, it normally takes hours. This step usually begins one day before the following
step, in the evening. As we discuss in Appendix 5.B, the measurements are performed at
night, where environmental noise is lower. At the end of this step, when the temperature of
the top end Tmin and the temperature of the oscillator Tmax reach an equilibrium, we turn
off the turbo pump. The reason lies in the fact that we cannot leave the pump on in the
next steps, since the introduced noise would completely hide the desired signal. It is also
important to highlight that the heater is kept on throughout the whole process. As we wait
for the vibrations to die out, we see that the pressure rapidly raises (small leaks, degassing).

The next step scal consists of exciting the oscillator through small hits on the vacuum
chamber and retrieving the contrast C through the ellipse. This is optimized if needed (see
Appendix 5.A), and it is recorded for some seconds. As shown in Sec. 5.1.7, this allows us to
calibrate the displacement in the post analysis.

Once the external perturbations dissipate, the last part smeas consists of measuring the
displacement δx of the oscillator. This step lasts all night, around 10 hours of continuous
acquisition (see Sec. 5.3.2). Whilst the pressure reaches values up to 5 × 10−2 mbar, the tem-
perature difference ∆T ≡ Tmax − Tmin also varies. We test the influence of this phenomenon
on the results in Appendix 5.D.

Lastly, a second calibration step scal is performed in order to verify that the contrast did
not vary too much throughout smeas. In all the measurements presented in this chapter, the
difference between the calibrations performed before or after smeas is negligible.
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In this work, we present one equilibrium measurement and three non-equilibrium ones,
i.e. we perform one SEQ and three SNESS. We summarize the procedure in Table 5.3.1, whilst
in fig. 5.3.1 we show how one step SNESS is composed.

Steps
SEQ SNESS

scal smeas scal sheat scal smeas scal

Measured
C ∆T, δx C / C ∆T, δx C

quantities
Power P [W] 0 3-4.5

TABLE 5.3.1: Experimental procedure. Firstly we perform one equilibrium measurement SEQ, then
the non-equilibrium ones SNESS (just one showed), where the heating step sheat is added.

5.3.2 Analysis procedure

When the measurement is concluded, we proceed with the analysis. With steps scal (initial
and final), we extract from the fit of the ellipse CH the calibrated coefficients, which do not
vary more than 1 % during the 10 h acquisition. A second set of coefficients is extracted
from CD, which is obtained by decimating the Cx, Cy data drifting during the measurement.
Therefore, two continuous displacement signals δx(t) are calculated (eq. 5.20), one for each
method of calibration. Subsequently, since δx(t) is continuous, we can decide the desired
frequency resolution. We choose d fδ = 3 × 10−2 Hz and d fθ = 3.4 × 10−3 Hz. The choice
is made by balancing various factors: an adequate number of points around the resonance
frequency, a time length during which the temperature does not significantly vary and a
reasonable amount of final spectra from which to derive averages from.

We then calculate the available number of PSDs for each motion, for both calibration
methods. In fig. 5.E.1, we show that the two calibrations yield almost identical results but
for the equilibrium measurement, therefore we can choose the method that better suits us.
As shown in Sec. 5.1.7, for the equilibrium measurement, the external perturbation contrast
fit CH is to be preferred to the drift CD due to lack of calibration points in CD. On the other
side, for the NESSes, CD is to be preferred. From now on, we intend δx ≡ δxH for the
equilibrium measurement and δx ≡ δxD for the NESSes.

The spectra are then filtered in order to eliminate signals which show very different be-
havior with respect to the average (this procedure is carefully explained in the Chapter 6).
From the PSDs which pass the selection Sδ,Sθ , we then calculate the thermal noise as usual
(eq. 3.65):

〈δ2〉 =
∫

fδ±∆δ

d f (Sδ( f )−N ) 〈θ2〉 =
∫

fθ±∆θ

d f (Sθ( f )−N ) (5.24)

taking care to subtract the background noise contribution N . Here, fθ , fδ are the resonance
frequencies and ∆θ ≈ 2 Hz, ∆ fδ ≈ 10 Hz the intervals of integration.

The spectra are then averaged in groups of N in order to be fitted, with N = 25 chosen in
order to sufficiently smooth the PSDs whilst the temperature does not change significantly.
We show an example of the fit in fig. 5.4.3 for both motions in equilibrium and NESS situa-
tions. The accuracy of the fit is high, as shown by the reduced χ2 being always less than 2.
For details about the fit procedure, see Chapter 6.
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FIGURE 5.3.1: Experimental procedure for a non-equilibrium measurement SNESS. In the upper fig-
ure, we can see the time variation of the pressure in the vacuum chamber during the three steps sheat
(red shaded area), scal (yellow shaded area), and smeas (green shaded area). In the first step, the pres-
sure of the chamber is kept around 10−5 mbar for almost an entire day by a turbo pump, then it rises
quickly when this is turned off. In the non-colored area, the system is prepared for the measurement,
and due to a technical issue, the pump is briefly turned on and off. The system is therefore calibrated
(scal), where we exaggerated the width of the shaded area for it to be visible. Thereafter, the ther-
mal noise is recorded as the pressure raises to roughly 2 × 10−2 mbar. Finally, we perform a second
calibration in order to check that the contrast C is unchanged with respect to the first calibration. In
the lower figure, the temperature of the oscillator is increased by a heater, whilst the temperature of
the top end Tmin and the temperature of the environment Tamb are slightly modified. After an entire
day, the temperature difference ∆T is roughly constant, and so we proceed with the calibration and
the measurement. During this time, ∆T slowly varies because of the increasing pressure.
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5.4 Results

In this part, we discuss the experimental results. We first show the improvements of the de-
tection system, then we depict the thermal fluctuations retrieved in the four measurements,
represented as usual by the fluctuation temperatures Tfluc. We finally display the loss angles
of the resonances and interpret the outcome of the experiment.

5.4.1 Improvements of the detection

The NETN experiment as presented throughout this work is the latest advancement of the
setup to date. The first version of the experiment with an interferometric readout is de-
scribed in [90] (we will refer to it as I1), and the capacitive readout versions are shown in
[62]. The principal reason for the passage between the two different readouts is the possibil-
ity of reducing the uncertainties regarding the thermal expansion of the material [90].

Whilst the I1 readout showed the a good sensitivity, with the background noise reach-
ing 10−15 m/

√
Hz, with the present setup we aim at further increasing it. In fig. 5.4.1, we

show the comparison between the I1 results and the ones presented in this work. We note
how we obtain a reduction in the background noise of a factor a little less than 3 around
the transverse mode and roughly 1.7 in the longitudinal, depending on the heating power,
thus sensibly increasing the SNR. As a reference, we note that the improvements of the de-
tection system leads to a sensitivity close to the one of the capacitive readout, i.e. around
2 × 10−30 m2/Hz for the longitudinal mode [29].

It is worth noting that the improvements are the result of a rearrangement of the previous
experimental setup into the new QPDI, without upgrading the hardware such as the optical
components or detectors. We believe the increase in sensitivity with respect to I1 is due
to a combination of reasons, spanning from almost optimal interferometric contrast (see
fig. 5.1.3) to a different balancing of shot-noise and ADC noise contributions. Unfortunately,
due to the short tenure in the laboratory, not many tests regarding the noise sources are
available, and quantitative comparisons with I1 are not possible. We refer to [90] for further
details.

5.4.2 Thermal fluctuations

The results are shown in fig. 5.4.2, where we present the fluctuation temperatures calculated
numerically and through the fit of the averaged spectra (see Sec. 5.3.2) . These two methods
yield very similar results, with a difference at most of 3 %, present in just one experimen-
tal measurement. The main result is that transverse and longitudinal thermal fluctuations
are comparable to the average temperature of the system. The longitudinal mode shows
fluctuation temperatures Tfluc

δ between the minimal and maximal temperatures in the sys-
tem Tmin ≈ Tamb and Tmax. Since Tfluc

δ are very similar to Tavg, the thermal noise of this
resonance is comparable to the one the oscillator would show if it was heated uniformly at
Tavg.

The outcome for the transverse mode is more delicate: with more important uncertain-
ties, it is harder to assess how the fluctuations behave with respect to Tavg. Nevertheless, we
can observe that for all but one measurement, the Tfluc

θ is bounded by the aforementioned
limits. The measurement at the highest Tavg shows fluctuations below the lowest available
temperature in the system, although with high uncertainty. These are partly due to the
choice of a high frequency resolution d fθ′ (which decreases the number of total spectra) and
partly due to these being very noisy (see Appendix. 5.B). We believe that we can interpret the
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FIGURE 5.4.1: Comparison between some results of the previous setup I1 (solid lines) and the cur-
rent one (dashed lines). In (a), we show how the equilibrium resonance frequency of the transverse
mode is almost unchanged with respect to the I1 setup; moreover, for similar heating powers P the
resonances are shifted by comparable values. On the other hand, taking the equilibrium measure-
ment as an example, the background noise (in m/

√
Hz) is now roughly 3 times lower than the I1

measurements. In (b), we see how the longitudinal resonance is on average redshifted by 8 Hz for all
heating powers. At these frequencies, the background noise is around 1.7 times lower in the present
setup.
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FIGURE 5.4.2: Transverse and longitudinal fluctuation temperatures are depicted against the average
temperature of the oscillator for two different calculation methods: numerical integration of the PSD
and results of its fit (see Chapter 6 for details). There is a very good agreement between the two
methods, showing a difference at most of 3 %. Both longitudinal and transverse temperatures lie
between the minimal and maximal temperature of the system, Tmin and Tmax (grey shaded area),
with one exception likely due to a sensitivity change. While the shown values for Tfluc are normalised
to room temperature as per eq. 2.88, we show in fig. 5.E.1 how a direct measurement of Tfluc leads to
a temperature of around 180 K. This is discussed in Appendix 5.E.

odd behavior of Tfluc
θ through a change in sensitivity. Indeed, as shown in Appendix. 5.C, a

small shift of the probing point y0 would cause an apparent change in Tfluc
θ .

5.4.3 Dissipation

It is difficult to model the spatial and frequency dependence of the dissipation process in the
oscillator. We can nevertheless measure it, calculating the loss angle ϕ from the best fit of the
thermal noise spectra. We show the results in fig. 5.4.3. The transverse mode yields a ϕθ ≈
10−4, which seems to increase slightly with the average temperature. Due to the important
error bars, it is difficult to judge the temperature behavior of ϕθ . The longitudinal loss angles
shows an equilibrium value around 6 × 10−4, which is 5 times higher than the transverse
one. Values at higher Tavg are scattered, but point towards a smaller ϕδ, up to 20 %. It
is important to note that the pressure is not the same throughout the four measurements:
as shown in Appendix 5.D, the equilibrium measurement is taken at at least 10 times the
pressure of the NESSes. Nevertheless, no correlation between this phenomenon and the
measured ϕ is evident.

5.4.4 Discussion

As discussed, the fluctuation temperatures of the oscillator indicate that the system can be
safely compared to an equivalent system in thermal equilibrium at the correspondent av-
erage temperature. Albeit the difficulty of assessing this for the transverse mode, it is clear
that the longitudinal one supports our extended version of the FDT. Indeed, the retrieved
Tfluc are compatible to their expected values, between Tmin and Tmax. Unfortunately, the
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FIGURE 5.4.3: Loss angles of the resonances: the dissipation of the oscillator is estimated through
its loss angle in equilibrium and out-of-equilibrium. In (a), though with large uncertainties, we can
note how the loss angle ϕθ can be considered roughly constant with Tavg, with a difference of at
most 20 %. It is nevertheless important to note that the NESSes are measured at lower pressure,
possibly biasing the result. In (b), ϕδ first decreases and then increases, also with variations of at
most 20 %. In (c) and (d), we can see an example of the spectra and their respective fits. We note that
the shape of the transverse peak looks almost unchanged between the equilibrium measurement
(green dashed line) and the NESSes (cyan dashed lines), whilst the longitudinal mode looks broader
in the equilibrium measurement (orange dashed line) with respect to the first two non-equilibrium
measurements (yellow dashed lines).
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limited dataset of the loss angles and their difficult interpretation do not allow us to theoret-
ically predict the fluctuation temperatures of the oscillator. Nevertheless, we note that the
dissipation is constant within 20 %, so we do not expect the normalised dissipation function
wdiss(x, ω) to change drastically. For this reason, the results showing Tfluc ≈ Tavg are well
explained within our theoretical framework. In the next section, however, we show how
other measurements on the same oscillator are in contrast with the results presented here,
and we discuss a possible interpretation of the differences.

5.5 Conclusions

In this chapter, we show that we can create a NESS in a macroscopic system, and measure
the relative thermal fluctuations. The first important outcome of the experiment is the im-
plementation of the new version of the QPDI. Indeed, thanks to the rearrangement of the
interferometer and the use of the complex contrast C to maximise its visibility (described in
Appendix 5.A), we manage to reduce the background noise of a factor between 1.7-3 around
the resonances. Moreover, thanks to the sorting and fitting methods based on the statisti-
cal properties of thermal noise described in the next chapter, the results are robust against
external factors which may bias the distribution of the fluctuations.

The measured Tfluc are approximately what the average temperature of the system would
prescribe. Whilst the transverse mode bears some uncertainties regarding its unknown sen-
sitivity, the longitudinal Tfluc

δ is comfortably comparable enough to Tavg to affirm that the
oscillations of the system can be described by our extended version of the FDT:

Tfluc =
1
L

∫ L

0
T(x)wdiss(x) (5.25)

This outcome is extremely interesting, since it shows that our description can be extended
to a macroscopic system such as the oscillator.

Unfortunately, no decisive conclusion can be reached for the measured dissipation that
would allow us to theoretically predict Tfluc. Nevertheless, due to the small change of the
loss angles with the temperature (less than 20 %), we expect wdiss to similarly change little,
thus explaining why Tfluc ≈ Tavg. Therefore, we believe that these results are perfectly co-
herent with the rest of the experiments described in this thesis. It follows that our extended
version of the FDT is a description applying to both microscopic and macroscopic systems,
further expanding its possible applicability.

As mentioned, however, this is not the end of the story. The previous (and new) results of
the group [29, 90] on the same oscillator are extremely different with respect to the ones pre-
sented here. We display a comparison in fig. 5.5.1. In most of the measurements shown, not
only is a significant increase of fluctuations with respect to Tavg observed (up to 3 times), but
also Tfluc ≫ Tmax. This is of particular importance, since most of the measurements shown
in fig. 5.5.1 cannot be explained through our extended FDT, and other models need to be
taken into account [29]. It is nevertheless puzzling how the same system can show different
regimes depending on the measuring setup, and sometimes (as in the new measurements
with the QPDI) even using the same one. The reasons for these differences are various and
have been long debated; we give a possible insight in Appendix 5.E.

It is important to mention that, if some of the hypotheses explaining this difference and
other oddities of the experiment are found to be true, this would partially or completely
invalidate the previous conclusions. For the time being, though, we have enough evidence
to support the validity of the present results. Firstly, the resulting thermal noise is well
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FIGURE 5.5.1: Comparison between the results presented in this work and the other available ones
performed on the same oscillator, shown in chronological order. The first measurement set (cyan and
yellow stars) is obtained from a capacitive readout [29]: we can see a strong excess of fluctuations
with respect to the average temperature of the system, the ratio of which reaches almost 3. Further-
more, since Tfluc ≫ Tmax, we cannot interpret these results with our usual extension of the FDT. The
measurements performed with the I1 setup [90] (green squares) yield results similar to the previous
ones, with a marked increase in fluctuations with respect to Tavg. We then show our results (blue
and red circles), which reveal a clear difference of behavior with respect to the previous outcomes
of the experiment. Finally, we display a last set of measurements (orange diamond) taken with the
same experimental setup but after my tenure in the laboratory. Surprisingly, this experiment yields
mixed results: some measurements are in line with the capacitive and I1 outcomes, whilst one is in
agreement with our theoretical framework.

explained by our models, which in turn do not comprehend the previous results of the group
where a different description is needed [29]. Secondly, as we show in the next chapter, the
statistical properties of the measured fluctuations are coherent with what we expect from
thermal noise.

In conclusion, we show that the out-of-equilibrium fluctuations of a macroscopic oscilla-
tor can be explained through the same models describing the behavior of a micro-cantilever.
This result, if confirmed, yields important consequences. In general, the applications of
forecasting the fluctuations of a micro-resonator knowing the local distribution of the dissi-
pation can be extended to larger systems. Of course, in this case, the form of the dissipation
function can be much more complicated to describe, but a naïve extension of a system dom-
inated by clamping losses such as C100 can be conceived. A direct application is clearly in
the GW detectors, for which the NETN experiment is conceived. If the fluctuations were
similar to the average temperature of the system, no out-of-equilibrium effect should then
arise if there is a temperature difference ∆T in the suspension system of the mirrors. The
extension towards a cryogenic study such as the experiment of C90, but with a macroscopic
setup, is surely an interesting prospect. We finally believe this experiment to be of capi-
tal importance in the real-life application of the non-equilibrium tools we have developed,
as we encourage future developments in order to understand the open questions and to
explore new scenarios.
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Appendix

5.A Alignment and optimization of the interferometer

Once the optical path (fig. 5.1.2) is prepared and the bench with the reference mirror is placed
inside the vacuum chamber, we need to align the laser beam with respect to the interferom-
eter. At this point the chamber is open and manipulations can be made. In fig. 5.A.1, we
show a more detailed version of the input and sensing areas of the optical path. Whilst this
new sketch is optically equivalent to the one in fig. 5.1.2, it allows us to better illustrate the
alignment process. For this purpose, we impose a fixed set of coordinates (X, Y, Z), which
does not follows the beam as in Sec. 5.1 but instead is fixed at the beam when reflected on the
oscillator O. We refer to the caption of the figure to illustrate the optical components of the
design. The first step of the alignment is to roughly prepare the optical path as in fig. 5.A.1.
All the components but the ones in the vacuum chamber are mounted on the optical table,
thus we intend them oriented along the Y axis, exception made for M3 which has an angle
of π/4 with respect to it. The other mirrors M1 and M2 are turned at ±π/4 around X. Inside
the vacuum chamber, the reference mirror M is mounted with its reflecting face in the same
plane of one face of the PBS, which other face is parallel to the oscillator.

We divide the following description in two steps: we first align the laser beam with the
interferometer, then we maximise the interferometric signal.

5.A.1 Alignment of the interferometer

The first part is to check whether a signal can be sent and retrieved from the chamber. There
are three optical elements which are tunable: the steering mirrors M1, M2, and the reference
mirror M. M3 being fixed.

A preliminary test is to check whether it is possible to send the laser into the chamber
and measure a signal coming back at the entrance of the analysis area, regardless of its
polarization. We thus steer M1 and M2 in order to find a signal EAN after the BSIN and to try
to center this with respect to the Y axis. This can be done placing an optical shutter OS after
the BS: a combination of manipulations on M1 and M2 should lead to a rough centering of
the beam in the OS.

The inclination of the oscillator with respect to the chosen axes is not a degree of freedom,
therefore it serves as a reference. While we suppose the surface of the oscillator probed by
the laser roughly in the Y − Z plane, we adjust the optical path to its possible misalignments.
Changing the orientation of the λ/2IN we can turn the polarization of the beam entering
the sensing area, ESE. Since we do not precisely know the polarization of the laser after
the polarizer P, a simple technique is to cover M and measure the intensity of EAN. We
then rotate λ/2IN until |EAN|2 is maximal. This means that the λ/2IN is shutting off the
polarization which goes to M. At this point we can remove the cover on M. Let us call this
configuration (a). If now we turn the λ/2IN of π/4 we hide the signal of the oscillator: this is
configuration (b). Finally, when λ/2IN is turned of π/8, the optical element equally divides
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FIGURE 5.A.1: Experimental setup. We show a more detailed version with respect to fig. 5.1.2 of the
experimental setup, in order to explain the aligning process. The beam gets inside the system through
a polariser P, then it is steered towards the first half-wave plate λ/2IN by a mirror M1. Half of the
intensity is lost in the beam splitter BSIN (not depicted) whilst the other half is directed towards a
second and a third mirror, M2 and M3 respectively, which send the probe inside the vacuum chamber.
Here, the polarizations are separated by the PBS and one beam probes the reference mirror M whilst
the other the oscillator O. Upon recombination the beam follows the same path until it is redirected
towards the analysis area by the BSIN. Here the beam goes through an optical shutter OS and a
second λ/2AN, before being divided in the two analysis areas of the interferometer by a second beam
splitter BSAN. Finally, two PBSs separate the polarizations in both arms, whilst in one a quarter-wave
plate λ/4 adds a phase shift in order to create the quadrature of the signals. The converging lenses
and the window of the vacuum chamber are not depicted.
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the beam in the two polarizations. This configuration, called (c), is the one used during the
measurement.

In (a), we can more effectively orient M1 and M2 in order to center the returning beam
EAN = EO. There are two angles to consider: one is the inclination (X − Y plane) and one is
the azimuth (Y − Z plane). Since the longer the path the higher the leverage of a small angle,
we can check the orientation looking at the signal returning to the polarizer. The analysis
area begins at less than 10 cm with respect to the BS, whilst the polarizer is at roughly 1 m,
thus it is more efficient to consider the latter as a reference. Since there is a quarter of the
initial laser intensity tracing its way back towards the polarizer, and hence the fiber, it is
better to avoid a perfect alignement. We thus steer the mirrors in order to place the returning
beam just above the exit hole of P (in the X −Y plane), thus with a small inclination (roughly
half a mm above the hole). As mentioned, this misalignment is less influent in the analysis
area due to the reduced distance.

When this is done, it is important to test that some intensity reaches at the photodiodes.
If this does not happen it means that the analysis area is not aligned with the laser, and
we need to adjust the orientation of the elements. Referring to fig. 5.A.1, the most sensitive
element is the BSAN, which determines the Y − Z orientation of the EAB probe. The ECD on
the other side is independent on the orientation of BSAN. Once we have manipulated BSAN,
we can adjust the PBSs in order to center the signals on the photodiodes. Lastly, the position
of these can be easily adjusted too. At the end of this stage we ensure that the entering beam
EIN is successfully sent to the oscillator and retrieved in the analysis area.

5.A.2 Optimisation of the interferometric signal

We must now create and optimize the interferometric signal, which is retrieved when the
reference and the oscillator beams are overlapped. We turn now the λ/2IN in the configu-
ration (b). The goal is to steer the laser beam EAN = EM roughly at the center of the optical
shutter, and then test its position above the polarizer. In order to do so, we orient the refer-
ence mirror M until an acceptable position is reached.

In order for this to be precise, we switch to configuration (c). At this point the laser
probes both the oscillator and the reference mirror, therefore we have two beams going to
the optical shutter. In order to verify this, it is practical to cover and uncover quickly the
reference mirror to check the presence of EM on the surface of the shutter. If the spots are
separated, one should disappear, whilst if they are well overlapped there should be a lower-
ing in intensity. The next step is then to adjust the orientation of M to refine the overlapping,
first at the shutter and then at the polarizer. Whereas the second is more precise, it is also
more difficult to test due to the presence of the incoming beam just a millimeter below.

The recombined beams being roughly overlapped, there are two tools to fine tune this:
a beam profiler and the contrast C from the interferometer. The first strategy consists of
placing a beam profiler in place of the optical shutter, set the λ/2IN to the the configuration
(a), record the beam profile, switch to (b) and overlap the signals. Adjusting the mirror M
accordingly and repeating the procedure yields the desired fine-tuning.

The other method is to measure the interferometric signal and maximise the contrast C.
In order to do so, we need to prepare the system for a measurement, which is convenient
because when this step is completed the QPDI is ready to be used. We thus set the λ/2IN
in configuration (c), and proceed to find the ideal orientation of the second half-wave plate,
λ/2AN. In order to do so, we acquire the signals of the photodiodes and plot the ellipse C
whilst exciting the the oscillator with little hits on the vacuum chamber. Whilst prompting
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oscillations (the system is exposed to the air and energy is dissipated quickly) we turn the
λ/2AN in order to find the highest amplitude of contrast. In fact, whether or not an ellipse
is formed depends on the orientation of the λ/4: the farther it is from its ideal position
(added phase ψ = π/4), the more the contrast resembles to a line. This happens because
if ψ = 0, both arms of the interferometer yield the same function, and when plotted one
against the other it results in a line. Therefore, some rough adjustments are made between
these two optical elements until an acceptable C is visible. Note that if the overlap is not yet
good enough, a very small contrast is the probable outcome and it suffices. Subsequently,
we modify the orientation of M at very small steps and track the magnitude of the ellipse.
When a maximum is reached, the interferometer is aligned with the laser beam.

The last step regards the fine-tuning of the interferometer. The factor that prescribes the
sensitivity of the interferometer is how close the contrast C is to a unit circle. Therefore,
once the previous steps yield a visible ellipse, this may be improved by little changes in all
the degrees of freedom set until now. The mirrors M1, M2, M can be gently moved around
their position, as the optical elements λ/2IN, λ/2AN, λ/4 can be turned. The photodiodes
position is important too: if one of them yields a very low signal, the center of the laser beam
may be outside or at the border of the detector. This reflects itself in the ellipse’s shape or its
position in the complex plane.

Once an acceptable contrast is retrieved, the vacuum chamber can be sealed and the
interferometer is ready to measure. As a final note, the ellipses shown in fig. 5.1.3 are very
close to the unit circle, which shows that we are able to accomplish a quasi-perfect contrast1

5.B Noise sources

Both the QPDI and the oscillator are extremely sensitive to environmental influences, thus
in order to measure the displacement of the cuboid some precautions are necessary. The ex-
perimental setup is placed on an optical table, hence suspended from the ground. The only
links it has with the environment are the cables of the sensors and the photodiodes, and the
pipe of the turbo, which is removed during measurements. In fact, while air is pumped out
of the chamber for an entire day (see Sec. 5.3.1), the pump needs to be disconnected during
the measuring session due to its vibrations. Owning to a leak in the chamber, the pressure
thus increases during the measurement (see fig. 5.3.1), although we show in Sec. 5.D that
this does not play a role in the measured thermal noise. The installation of an ion pump was
not possible during my tenure at the laboratory due to the leak, which would have crippled
the device.

The laser probe used in the NETN experiment is also used in squeezing experiments [14],
for which High-Voltage (HV) frequency control is applied. While the power of the incom-
ing laser IIN is relatively stable, the frequency disturbances hinder any NETN measurement
during session of the other experiment. Furthermore, we have noticed disturbances in the
spectra even when the HV cable connects the laser to the control whilst the control is turned
off. In the spirit of limiting external noise sources, we always disconnect it before a mea-
surement.

As mentioned, the NETN sessions are made during the night. In fact, it is preferable to
avoid human presence in the laboratory and not hinder the squeezing experiment to work.

1If the superposition is less than optimal, the signals carrying the displacement information, in the form of
sinusoidal functions, never reach the maximum and the minimum in intensity. This happens because complete
destructive interference cannot happen, and a residual intensity signal is always retrieved by the photodiodes,
thus lowering the visibility of the interferences. The same occurs for the constructive interference, leading to a
less than maximum of the function.
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Furthermore, the environmental light raises issues: the QPDI optical components being ex-
posed, they capture parasitic light. The effect on the experimental PSDs is an increase of
the background noise, usually completely hiding the transverse mode. Since the laboratory
is not exposed to natural light, it is sufficient to turn off the artificial lights just before the
measurement.

As we can see from fig. 5.1.4, the experimental spectra are dominated by a huge noise
bump at low frequency ( f < 200 Hz). This is mainly due to environmental noise transmit-
ted through the suspension system [62], which is designed to impede this to pollute higher
frequencies, where the resonances we are interested in lie (300 − 1500 Hz). In fact, we note
that the PSD reaches a plateau around 300 Hz, which previous studies associate with ADC
noise [90]. Nevertheless, this part of the spectrum shows various and not completely under-
stood features, such as bumps and peaks, which are sometimes very close to the resonances.
This is depicted in fig. 5.B.1, for an equilibrium and an out-of-equilibrium case. We notice
how around the transverse resonance the background noise shows some wiggles, which
partly disappear in the NESS case. The longitudinal mode is less affected by these features,
even if we see the appearance of peaks close to the resonance in the non-equilibrium PSD.
We further discuss these characteristics of the spectrum in Appendix 5.E.

5.C Sensitivity and statistical uncertainties on Tfluc

As described in Sec. 5.1.8, the QPDI measures the vertical displacement of the oscillator, δx.
Whilst this directly gives the longitudinal mode displacement δ, it is not straightforward to
convert δx in the transverse angle θ without knowing the probing point y0 and the precise
mode shape of the oscillator. Due to our definition of the fluctuation temperatures Tfluc,
though, it is not necessary to perform this calibration, proven that we assure y0 to be constant
between the equilibrium and non-equilibrium measurements. Since y0 is not experimentally
accessible, we express the possibility of a shift of probing point dy0 6= 0 as a systematic error
ǫsys, as usual (see 3.62).

Let us discuss the sensitivities of the two motions to the presence of a dy0. As said,
the longitudinal mode is independent on the position y0 (and z0), therefore its sensitivity
σδ is constant. On the other side, the angle θ depends on y0 through the complex mode
shape of the oscillator, which can be considered a second deflection mode of the rod with an
important load at its end. A full treatment of the sensitivity σθ is beyond the scope of this
thesis (see for example [12]), nevertheless it is easy to make some qualitative considerations.

If we suppose that a shift dy0 occurred throughout the four experimental sessions, it
affected the measured fluctuation temperatures Tfluc

θ . This shift may be due to endogenous
causes, such as thermal expansion, which should nevertheless be small due to the small
coefficient αl = 24.1 × 10−6 K−1 and temperatures (∆Tmax ≤ 30 K). If a shift occurred, thus,
it is more probably due to exogenous reasons, such as small drifts of the optical components
directing the laser beam to the oscillator. The measurements spanning 10 days, it is not to be
excluded that the beam position moved of a few hundreds of µm. This would then result in a
systematic error, thus increasing the uncertainties of the transverse fluctuation temperature
in fig. 5.4.2.

5.D Dependency on pressure

Due to the pressure p increasing since the beginning of a measurement session, the system is
not strictly in a steady state. As seen in Sec. 5.3.1 in fact, probably due to a leak the pressure
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FIGURE 5.B.1: Spurious peaks in the resonance modes frequency range for an equilibrium (a) and
non-equilibrium measurement (b). The average of 25 experimental PSDs shows multiple features
in the 300 − 1500 Hz frequency band, some of which are extremely peaked and others broader. The
most affected resonance is the transverse mode (cyan), where the background around it shows some
wiggles. We can notice how the longitudinal mode (yellow) on the other side is relatively unaffected
around the resonance frequency. For the NESS example the frequency range around the transverse
resonance is less polluted, whilst the longitudinal mode has a spurious peak at its left. When we fit
the spectra we remove the frequency bins showing these peaks. As shown in Sec. 6.6, the goodness of
the fit is higher for the longitudinal mode, which can be partly understood by these considerations.
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increases from roughly 10−4 to 10−2 mbar, prompting temperature changes. In fig. 5.D.1 (a)
we show the average temperature vs. the pressure, displaying how the equilibrium mea-
surement is taken at relatively high pressure with respect to the others.

Since the results shown in Sec. 5.4 are depicted as an average of a whole measurement
session, the changes throughout one session are somehow invisible. In particular, we would
like to ensure that no dependency on pressure is present in the fluctuation temperatures,
which would probably hint at a bias in the measurement. Since our findings suggest that
the mass oscillates with the same magnitude of its average temperature, we expect the dif-
ference Tfluc − Tavg to be zero in average, as shown in fig. 5.4.2. In fig. 5.D.1 (b-c) we show
that this is the case, independently of the pressure the chamber is at. In (d-e) we show how
it is hard to find a connection between the pressure and the loss angle too, although it would
be expected that dissipation would be more effective at higher p. Due to the reduced dimen-
sion of the sample for the transverse mode, it is hard to affirm this for ϕθ , whereas for the
longitudinal mode the lack of correlation is more clear.

5.E Open questions and insights

Whilst the new setup shows improvements with respect to the previous version (I1 [90]),
some questions raised by the results of I1 remain unanswered. Furthermore, as previously
stated, there is a clear incompatibility between the measurements presented in this thesis
and other measurements of the oscillator. We comment here on these questions.

5.E.1 Open questions

The first question we examine is an issue shown by I1 and confirmed in this work: an un-
physical fluctuation temperature. We discuss only the longitudinal mode, since it is impos-
sible to calibrate the transverse one without knowing y0. Since the mass of the oscillator m
is well known and the resonance frequencies ωδ handy to measure experimentally, it should
be possible to calculate the temperature of the system through the EP:

Tδ =
mω2

δ〈δ2〉
kB

(5.26)

which can be extended out of equilibrium through eq. 2.77. With the mass being m =
0.24 kg, the outcome of measurements in I1 shows that Tδ ≈ 150 K, which is clearly un-
physical.

The results of the fluctuation temperatures of the current setup are shown in fig. 5.E.1.
We can see that the fluctuation temperatures calculated through eq. 5.26 are well below
to Tamb ≈ 295 K, which shows that the aforementioned issue remains. Furthermore, it is
perplexing how its value in equilibrium increases from the 150 K of I1 to the 180 K of the
current setup.

In fig. 5.E.1 we also depict the difference between the calibration through the hit and the
drift. Whereas it is not very important for the NESSes, the underestimation of the contrast
CD in the equilibrium measurement yields a difference of roughly 7 % between the two.
In both cases the fluctuation temperatures are well below Tamb, therefore the calibration
process does not explain this feature.

The second question is the difference of these results and the previous ones of the group,
which we already commented in Sec. 5.5. We believe these question to be possibly related,
so we try to interpret them in the next section.
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FIGURE 5.D.1: Effect of the pressure changes throughout the experiment. In (a), we show the av-
erage temperature of the oscillator Tavg with respect to the pressure p of the vacuum chamber. We
notice that the equilibrium measurement was taken at relatively high pressure with respect to the
non-equilibrium ones. In the latter the average temperature decreases with time. In (b-c) we show
the difference between the fluctuation temperature Tfluc and Tavg vs the pressure. Since our mea-
surements show that Tfluc ≈ Tavg, this difference should be centered in zero and not depend on the
pressure, which is indeed the case from the histograms. In (d-e) we show how the loss angle ϕ does
not have a clear dependency on the pressure either.
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FIGURE 5.E.1: Fluctuation temperatures calculated from eq. 5.26 for the two calibration methods.
The longitudinal temperature in equilibrium is lower than the temperature of the environment
(Tamb ≈ 295 K), which is unphysical. The NESS temperatures show the same issue. We cannot
expect this to be an issue related to the calibration method used, since with both of them the fluc-
tuation temperature is lower than Tamb. Due to the unknown transverse sensitivity σθ(y0), it is not
possible to calculate the fluctuation temperatures for this mode.

5.E.2 Insight on possible explanations

Various hypothesis are considered to interpret these issues. The most obvious observation is
that we do not understand completely the system, and we may be overlooking some inter-
actions between the oscillator and the measuring devices. For example, the bench where the
PBS and the reference mirror are attached (fig. 5.1.2), which is screwed close to the cuboid
inside the vacuum chamber, may exchange energy with the oscillator. In fact, when the
current setup was changed with respect to the previous one, a considerable weight was re-
moved from the bench, leading to different distribution of the spurious peaks in the PSDs.
We show an example of this effect in fig. 5.4.1. Furthermore, the resonance frequency of the
longitudinal peak is redshifted of about 8 Hz with respect to its value in the I1 experiments,
which shows that some changes occurred at the oscillator between the two versions of the
setup. Explaining this effect thanks to a mass change of the oscillator would yield a mass
loss of roughly 1 %, which causes would be unknown.

Due to the high complexity of the experimental setup, this is hard to assess, although
tentatives are ongoing. Recently, clues has been found in the displacement of some features
around the resonances when some weight was added in different positions of the bench.
This would mean that the suspension and detection system may interact with the oscillator,
thus perhaps reducing its thermal motion to the point shown in fig. 5.E.1. Furthermore, this
could affect the different non-equilibrium behavior of the oscillator presented in this work
with respect to previous results.
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Chapter 6

Statistical properties of thermal noise

Throughout this thesis, we have studied the evolution of the thermal noise of different can-
tilevers and a macroscopic oscillator when subjected to a temperature difference along their
lengths. We have shown the validity of the extended FDT for all these cases, proving that
statistical tools normally defined for systems in thermal equilibrium can be modified in or-
der to include NESS cases. As mentioned, thermal noise is an extremely ephemeral quantity
to measure, as it is often orders of magnitudes lower than other possible kinds of perturba-
tions to the considered system. In Appendix 3.C.3, we discuss how we can exclude some of
these contributions from polluting the observed signal, namely laser fluctuations and shot
noise. Once we rule out all the nuisances we can think of, the reasonable choice is to assume
we are measuring thermal noise.

In order to be rigorous, though, we can verify that this is the case. Indeed, we know
that the thermal fluctuations of a system are the expression of randomly-exchanged energy
between the system and the surrounding environment through a generalised force F(t).
Hence, this quantity is supposed to be a stochastic process for the Central Limit Theorem
(CLT). Knowing the Probability Distribution Function (PDF) of the force, it is possible to
calculate the expected distribution of the measured thermal fluctuations, and to compare it
with the measured one.

In the first part of this chapter, we discuss how the stochastic properties of the force F
are inherited by the displacement of the system under study, and how, thanks to a lock-in
amplifier technique, we can test whether the measured signals satisfy them. In particular, we
demonstrate how there is quantitatively no difference between the PDF of the fluctuations of
an equilibrium system and the PDF in a NESS. Furthermore, we shed some light on the self-
oscillations of the cantilever (already introduced in Appendix 3.C.3) and how to distinguish
them from thermal noise.

In the second and third parts, we discuss the statistical properties of the PSD, showing
how an ensemble of spectra are in general Γ-distributed around their average. Thanks to
this, we show a method of sorting data based on the expected PDF, demonstrating how
doing so can help removing corrupted signals. Since this method is based on an objective
principle, it grants us an unbiased tool to sort the experimental spectra. This has been used
in every measurement presented in this thesis.

In the next part, we discuss the statistical properties of the retrieved thermal fluctuations,
in particular the area under the resonance peak Tfluc. Based on the retrieved PDF, a second
selection method can be implemented.

Finally, the last section discusses the fitting method used on the thermal noise spectra
throughout this thesis. We discuss an unbiased estimator for the parameters of the fit, and
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we show a new method in order to associate an uncertainty to the parameters. A discussion
then concludes this chapter.

6.1 Statistical properties of noise

As mentioned, we usually refer to thermal noise as a thermal force F(t), through which the
environment interacts with the system we are considering. Let us consider the case of the
deflection of the cantilever (the extension for the torsion or the NETN oscillator is trivial).

In eq. 2.20, we define the generalised force F(x, t), which pours energy into the cantilever
and is converted in its deflection δ(x, t). We have shown how each mode n of the cantilever
can be considered as an independent oscillator, for which the deflection δn is coupled with
the corresponding Fn (eq. 2.59). In this case, we can simply proceed with our discussion
considering a mode n, dropping the index n from δ, F.

6.1.1 Random force F

The average and the variance of the stochastic force F(t) are:

〈F(t)〉 ≡
∫ +∞

−∞
dF FP(F; t)

〈F2(t)〉 ≡
∫ +∞

−∞
dF F2P(F; t)

(6.1)

where 〈·〉 represents the ensemble average, taken over identically prepared systems in dif-
ferent states, at a certain fixed time t. The value of F or F2 in this instant is weighed by the
PDF P(F; t)dF, which quantifies the probability that F(t) lies in the interval F ≤ F(t) ≤
F + dF at time t.

Since the environment is considered to be in a stationary state, i.e. with constant temper-
ature and pressure, F(t) is said to be stationary and P does not depend on time: P(F; t) =
P(F; t + τ) [66]. For a random process, the probability distribution is thus written:

P(F)dF =
dF

σF
√

2π
e
− F2

2σ2
F (6.2)

which is the normal distribution with variance σ2
F. A quick calculation shows that:

〈F(t)〉 = 0

〈F2(t)〉 = σ2
F

(6.3)

where the first condition means that the average of the thermal force should be zero.

Let us now observe the stochastic force F(t) in an interval 0 ≤ t ≤ T . This F̃(t) is a sample
of the stochastic process F(t). We expand it into its Fourier components:

F̃(t) =
∞

∑
k=0

Ãk cos(ωkt) + B̃k sin(ωkt) (6.4)

with ωk = 2πk/T . The stochastic process F(t) is now expanded as:

F(t) =
∞

∑
k=0

Ak cos(ωkt) + Bk sin(ωkt), for 0 ≤ t ≤ T (6.5)
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The Fourier coefficients Ãk, B̃k represent a sample of the random variables Ak, Bk, defined
by:

Ak =
1
T
∫ T

0
dt F(t) cos(ωkt)

Bk =
1
T
∫ T

0
dt F(t) sin(ωkt)

(6.6)

We can easily show that when a normally distributed signal F(t) is expressed as the count-
able sum of coefficients Ak, Bk, these are random variables themselves [19]. As a side note,
this is often thought to be the other way around. We can build a random signal supposing
that all the Fourier coefficients are randomly distributed, and we can show that this prop-
erty is inherited by their sum, i.e. the signal itself (see [101], sect. 9, (a)). In all cases, the
expectation value of Ak, Bk are then defined:

〈Ak〉 =
1
T
∫ T

0
dt 〈F(t)〉 cos(ωkt)

〈Bk〉 =
1
T
∫ T

0
dt 〈F(t)〉 sin(ωkt)

(6.7)

yielding for k 6= 0:
〈Ak 6=0〉, 〈Bk 6=0〉 = 0 (6.8)

due to stationarity (every fluctuating component in average is zero), and:

〈F〉 = 1
T
∫ T

0
〈F(t)〉dt = (〈A0〉+ 〈B0〉)/2 (6.9)

for the k = 0 term1. In our case, we know that this is zero after eq. 6.3.

Let us imagine we perform a measurement of the average of the sample F̃(t) in the labo-
ratory, which we call FT :

FT ≡ 1
T
∫ T

0
dt F̃(t) = (〈Ã0〉+ 〈B̃0〉)/2 (6.10)

This is a possible realisation of the expected value (〈A0〉+ 〈B0〉)/2. Since this is not known,
we usually confound FT with the ensemble average 〈F〉. In general, though, FT 6= 〈F〉. If,
however:

lim
T →∞

FT = 〈F〉 (6.11)

a process is called ergodic. When can a process be considered ergodic? A body of literature
exists on the subject [88, 47] from both a physical and a mathematical point of view, and it
can be very difficult (if not impossible) to prove a process is ergodic. Often, this is taken as
an assumption, since during the experiment we are forced to sample the stochastic process,
and in principle we cannot access the whole parameter space. It is common then to suppose
that for a sufficient sampling time tmeas, the system has the time to sample all the possible
states; hence, it is ergodic.

We are therefore supposing this to be true, so that we can interchange F(t) and F̃(t). Let
us next go back to the expansion in eq. 6.5. We now know that the random variables in
the set {Ak, Bk} are normally distributed with zero average (eq. 6.8). We can thus write the

1In the case of Johnson noise, we can refer to the k = 0 term as the DC component of the signal.
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probability of finding them in a certain range as [101]:

P(Ak, Bk) =
1

2πσF,k
e
− A2

k+B2
k

2σ2
F,k (6.12)

In this case, we intend that the sum of the variances is the thermal force variance:

∞

∑
k=0

σ2
F,k = σ2

F (6.13)

Eq. 6.12 can be integrated in order to demonstrate:

〈Ak〉 = 〈Bk〉 = 0

〈A2
k〉 = 〈B2

k〉 = σ2
F,k

(6.14)

and:

〈Ai Aj 6=i〉 = 〈BiBj 6=i〉 = 0

〈AiBj〉 = 〈Bi Aj〉 = 0
(6.15)

which shows how the Fourier coefficients are independent from one another and from them-
selves, unless we consider the same frequency bin k. Using the last property, squaring and
averaging eq. 6.5 we obtain:

〈F2(t)〉 =
∞

∑
k=1

〈A2
k〉〈cos2(ωkt)〉+ 〈B2

k〉〈sin2(ωkt)〉 (6.16)

where the average of sinusoidal functions yields 1/2, and the power of each of the Fourier
coefficients Ak, Bk at a certain frequency fk yields σ2

F,k. The sum at all frequencies is the total
power of the thermal force.

If we now consider a frequency range ∆n around the resonance frequency fn such that
∆n ≡ {k | fn − ∆ f ≤ fk ≤ fn + ∆ f }, we can define the PSD of the thermal force in this
interval as:

SF( fk)2∆ f = ∑
k∈∆n

〈A2
k〉+ 〈B2

k〉
2

= ∑
k∈∆n

σ2
F,k (6.17)

in the form in which we are accustomed to express it (eq. 2.47).

In this section, we thus show how the Fourier coefficients {Ak, Bk} are normally dis-
tributed with variance σ2

F,k, how they are independent from each other, and the sum of their
variances produces the PSD of the thermal force.

6.1.2 Deflection δ

In the experiment, we retrieve the displacement of the cantilever δ, which we can express in
a way similar to eq. 6.5:

δ(t) =
∞

∑
k=0

Xk cos(ωkt) + Yk sin(ωkt) (6.18)
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Inserting eq. 6.5 into the EM for the deflection (eq. 2.20), we can easily connect the force
coefficients {Ak, Bk} to the flexural ones {Xk, Yk}:

Xk =
(kr(ωn)− mω2

k)Ak − ki(ωn)Bk

(kr(ωn)2 − mω2
k)

2 + ki(ωn)2
≡ αAk + βBk

Yk =
(kr(ωn)− mω2

k)Ak + ki(ωn)Bk

(kr(ωn)2 − mω2
k)

2 + ki(ωn)2
≡ αAk − βBk

(6.19)

Since {Xk, Yk} are a linear combination of the random variables {Ak, Bk}, they too are ran-
dom variables too. Thus, a PDF P(Xk, Yk) similar to eq. 6.12 can be written. We first express:

Ak = (kr(ωn)− mω2
k)Xk + ki(ωn)Yk ≡ ξXk + ρYk

Bk = (kr(ωn)− mω2
k)Yk − ki(ωn)Xk ≡ ξXk − ρYk

(6.20)

The PDF then reads:

P(Xk, Yk) =
1

2πσδ,k
e
− X2

k+Y2
k

2σ2
δ,k (6.21)

with σ2
δ,k ≡ σ2

F,k/(ξ2 + ρ2). The properties in eq.s 6.14, 6.15 are inherited by {Xk, Yk}, there-
fore they are independent normal variables.

Let us now use the same reasoning of eq. 6.17: squaring and averaging eq. 6.18 in a
frequency interval 2∆ f we obtain the PSD of the deflection:

Sδ( f )2∆ f = ∑
k∈∆n

〈X2
k 〉+ 〈Y2

k 〉
2

= ∑
k∈∆n

σ2
δ,k (6.22)

It comes without surprise then that the PSD of the thermal force and the one of the displace-
ment are linked through the susceptibility χn (eq. 2.42):

Sδn( fk) = χ2
n(ωk)SF( fk) =

SF( fk)

(kr(ωn)2 − mω2
k)

2 + ki(ωn)2
(6.23)

In this section, we then demonstrate how the Fourier coefficients {Xk, Yk} are also nor-
mally distributed with variance σ2

δ,k and are independent random variables.

6.1.3 Lock-in amplifier

Since our goal is to verify whether the retrieved signals respect the aforementioned prop-
erties, we use a lock-in amplifier technique applied as a post-processing of the data. We
explain this method here.

Following the same principle of eq. 3.63, we can rewrite the deflection taking into con-
sideration a noise contribution N :

δ(t) =
∞

∑
k=0

(Xk + Mk) cos(ωkt) + (Yk + Nk) sin(ωkt) (6.24)

with {Mk, Nk} the set of Fourier coefficients for the external noise N .

Let us now consider in a certain frequency fn. In order to isolate the Fourier coefficients
around this frequency bin, a common technique is the lock-in amplifier. It is frequently
used in experiments where the SNR of the observed phenomenon is low, since its goal is to
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filter out the noise around the desired frequency. This is often done in real time, during the
experiment; we implement it here as a post-processing.

The procedure is as follows: we multiply the deflection δ(t) by two sinusoidal reference
signals at a frequency ωr, cos(ωrt) and sin(ωrt), with an amplitude

√
2 in order to have

an overall unity gain. Using a trigonometric identity, we obtain two sinusoids X(t), Y(t) at
ωk −ωr and ωk +ωr. We next impose ωr = ωn, the resonance frequency, in order to shift the
low-frequency sinusoidal to 0 Hz. We then low-pass filter these signals to discard the high-
frequency component, thereby selecting a certain filter interval 2∆ f . The locked-in signals
end up being:

X(t) =
1√
2

∑
k∈∆n

(Xk + Mk) cos((ωk − ωr)t)

Y(t) =
1√
2

∑
k∈∆n

(Yk + Nk) cos((ωk − ωr)t)
(6.25)

where we recall that ∆n ≡ {k | fn − ∆ f ≤ fk ≤ fn + ∆ f }.

Let us now continue in two steps: first, we proceed by supposing a perfect filter which
leaves just one frequency bin k = n, then we extend the result for a filter with a bandwidth
2∆ f .

Ideal case ∆ f = 0

In this case, ∆n = {k | fk = fn}. The two locked-in signals are simply:

X(t) =
1√
2
(Xn + Mn) ≈

1√
2

Xn

Y(t) =
1√
2
(Yn + Nn) ≈

1√
2

Yn

(6.26)

Only the Fourier coefficients at k = n survived. As we have seen in the previous chapters,
our SNR is usually ≥ 100, therefore we can suppose that no external noise is polluting this
frequency bin.

The signals X(t), Y(t) are random variables because they are a linear combination of
random variables Xn, Yn, after eq. 6.21. We hence proceed to build a statistical ensemble:
we sample one value of (Xn, Yn) every sampling time ts, the value of which depends on the
resonance mode we are interested in. It is in fact fundamental to assure that, after recording
one value (X(ts), Y(ts)), we wait for the system to forget its previous state before sampling
(X(2ts), Y(2ts)). Thus, we should ensure at least ts ≥ τn, the decay time of the resonance.
This is calculated as [81]:

τn =
Qn

π fn
(6.27)

with Qn = 1/ϕn. The set {Xn, Yn} = {X(ts), Y(ts); X(2ts), Y(2ts); . . . } is in this way a statis-
tical ensemble for the random variables Xn, Yn.
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General case ∆ f 6= 0

When a realistic filter is applied, a certain bandwidth 2∆ f around the resonance is chosen.
The selected frequencies are then ∆n ≡ {k | fn − ∆ f ≤ fk ≤ fn + ∆ f }. The signals read:

X(t) =
1√
2

∑
k∈∆n

Xk cos((ωk − ωn)t)

Y(t) =
1√
2

∑
k∈∆n

Yk cos((ωk − ωn)t)
(6.28)

Let’s consider X(t). We need to show that it is a random variable. Squaring and averaging
it, due to the independence of the Fourier coefficients we have:

〈X2(t)〉 = 1
2 ∑

k∈∆n

〈X2
k 〉〈cos2((ωk − ωn)t)〉+ 〈Y2

k 〉〈cos2((ωk − ωn)t)〉 = ∑
k∈∆n

〈X2
k 〉+ 〈Y2

k 〉
4

(6.29)
which are the same coefficients as eq. 6.22. Thus, X(t) is normally distributed with a vari-
ance Sδ( f )∆ f and the sum:

〈X2(t)〉+ 〈Y2(t)〉 = ∑
k∈∆n

〈X2
k 〉+ 〈Y2

k 〉
2

= Sδn( f )2∆ f (6.30)

shows how the variance of the distribution of the set {X(t), Y(t)} is the PSD of the reso-
nance n in the bandwidth 2∆ f , times this interval. This quantity is then the area under the
resonance peak that we calculate in order to retrieve Tfluc, following eq. 2.47.

In this section, we showed how {X(t), Y(t)} are normally distributed set, and each of the
two signals a have a theoretical variance of half the area under the resonance peak.

6.2 Experiment

In the present section, we want to use the lock-in amplifier technique in order to test whether
the measured signals satisfy the properties described above. Moreover, through this study,
our goal is to show that we can isolate the self-oscillating regime from the thermal noise.
While this test is not new in equilibrium [65], we will perform it for one non-equilibrium
dataset, thus probing whether the equilibrium properties can be extended to this case. We
take as an example the C100 measurement, since it is the one with the more pronounced non-
equilibrium features, and we consider both the flexural and torsional modes in the analysis.

As mentioned, in this experiment, we perform a double ramp with increasing and de-
creasing injected power. We thus consider the equilibrium step (the first depicted in fig. 3.3.1)
and the one at the highest power P = 9 mW. In order to apply the concepts developed
above, we need to calculate the sampling rate for {X(t), Y(t)} for each mode to create the
statistical ensemble. As mentioned, this corresponds to sample at least at each decaying
time τn,m. These are shown in Table 6.2.1, where the equilibrium values are given (the non-
equilibrium ones are very similar).

The values of τ are then compared to the typical durations of the experiment. In one
power step, 74 flexural and torsional signals are collected, each of which lasts ts = 2 s,
for a total of tmeas = 150 s, although non-continuous. Indeed, due to the time needed to
transfer the data to the disk, after each ts, a time at least equal to this is needed before
another signal is collected. We can then see that mode n = 1 shows a coherence time higher
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Deflection Torsion
Mode n, m fn [kHz] Qn/104 τn [s] fm [kHz] Qm/104 τm [s]

1 5.0 ≈ 4 ≈ 2.5 44.3 4.9 0.36
2 29.6 5.0 0.54 134.0 4.5 0.11
3 80.0 4.8 0.19 232.7 4.4 0.06
4 152.6 4.4 0.09 344.6 3.9 0.04
5 246.2 4.6 0.06 426.8 4.7 0.04
6 360.5 2.3 0.02 619.5 3.4 0.02
7 496.4 3.8 0.02 782.7 3.4 0.01
8 652.6 3.9 0.02 964.5 3.5 0.01

TABLE 6.2.1: Equilibrium decaying times τ for the flexural and torsional modes in the C100 experi-
ment.

than the measuring time ts, which leads to us to sample just one value of {X(t), Y(t)} per
ts. Conversely, all the other resonances grant us at least 3 samples per ts, which greatly
increases with the mode number.

The next step is to calculate the {X(t), Y(t)} ensemble for each mode. For the deflection,
we multiply the signal δ(t) for cos(ωnt), sin(ωnt), and then low-pass filter the signal with a
bandwidth ∆ f = 1 kHz. Doing this for all the available n, we get {Xn(t), Yn(t)}. The same
is done for the torsional modes, yielding {Xm(t), Ym(t)}.

In the next section, we want to check whether the measured {Xn(t), Yn(t)} are randomly
distributed around the mean value (0, 0), with Xn(t) independent from Yn(t). We begin
with the deflection case.

6.2.1 Self-oscillations

The first flexural mode is one of the key points of the present chapter. In Chapter 3, we do not
show the results for this mode, since we believe the retrieved signals are not the expression
of thermal noise, but rather the result of an optomechanical coupling of the cantilever with
the incoming light [74]. When the cantilever is heated, it bends, and bending increases its
effective thickness, to which the absorption is strongly proportional. Thus, the system heats
up and it becomes softer, bending again. We thus expect this phenomenon to leave traces in
the bivariate distributions of X1(t) and Y1(t). We show the results for n = 1 in fig. 6.2.1 (a-b).

While the majority of the points lie in the bin centered on the origin (0, 0), we note some
outliers scattered around this value. Due to the magnitude of the corresponding values
{X1(t), Y1(t)}, these points cannot be considered thermal noise. Indeed, converting these
into fluctuation temperatures Tfluc (as in fig. 6.2.1 (c)) would yield values up to the order
of 105 K, which is completely unphysical. In fact, as a reference, they greatly surpass the
melting temperature of silicon, Tmelt = 1684 K. We then associate this behavior with the
self-oscillations of the cantilever.

As we know, in order to calculate Tfluc, we normalise the retrieved noise by the equi-
librium temperature. In the n = 1 case, this is a difficult task due to some of the values
spanning 7 orders of magnitude. In calculating Tfluc for fig. 6.2.1 (c), we suppose that the
points below a certain value are not polluted, and thus we use their average as the equilib-
rium value, at T = 300 K. Nevertheless, this is a double-edged sword, since in the NESS case
it appears that most of the points lie below 300 K. This can either be due to self-cooling in the
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FIGURE 6.2.1: Self-oscillations of mode n = 1. In (a), we show the histogram of the locked-in sig-
nals X(t) and Y(t) in equilibrium. We can see that whilst the majority of points lie on the origin
(0, 0), the outliers are significantly far from this point. The same picture is present in (b), for the
non-equilibrium measurements. In (c), we convert these fluctuations in Tfluc, displaying how they
span 7 orders of magnitude. In the equilibrium measurement we can see that part of the points
lie around a certain value, which we use as a normalisation in calculating Tfluc. Unfortunately, the
non-equilibrium Tfluc is much below this value. Then, whether the system is self-oscillating in equi-
librium or self-cooling in a NESS is difficult to tell. As a side note, we note how there is a maximal
value in the self-oscillations amplitude.
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NESS case (the opposite of self-oscillations) or conversely to the equilibrium measurements
being affected by the self-oscillations.

It is clear that there is a fundamental difficulty in calculating the thermal fluctuations of
the first resonance, due to the impossibility of discerning between a purely thermal state and
one showing self-oscillating behavior. In fact, no matter where we set a threshold, we cannot
be sure whether it is the appropriate one. Furthermore, the statistical ensemble is then too
reduced to study the distribution once the outliers are discarded. Since this phenomenon is
present in almost all the measurements of this thesis, we believe it is simply best to discard
mode n = 1.

6.2.2 Equilibrium case

We now focus on the higher flexural modes and the torsional modes, which we believe
are not affected by this phenomenon, as reported in Chapter 3. We show the results for
deflection in fig. 6.2.2.

Albeit the small sample size, the bivariate histogram of {X2(t), Y2(t)} for n = 2 indi-
cates that these signals are normally distributed around the (0, 0) value, which is confirmed
looking at each signal singularly. Moreover, we can test whether any correlation between
{X2(t)} and {Y2(t)} exists by transforming them into polar coordinates:

X(t) = R(t) cos α(t)

Y(t) = R(t) sin α(t)
(6.31)

For random uncorrelated signals {X2(t), Y2(t)} we expect α(t) to be uniformly distributed,
which is the case shown in fig. 6.2.2. This means that all the expected statistical properties of
thermal noise are satisfied for this mode. Therefore, it is safe to conclude that this resonance
is not corrupted by self-oscillations and that the signal is thermal noise. The same can be
said for even higher modes, where the increased sample size allows us to further assess
this claim: n = 3, 4 already shows a better agreement between {Xn(t), Yn(t)} and a normal
distribution. In the end, there is no doubt that modes n = 6 confirm these results, and the
same is valid for modes 7 and 8 (not reported in the figures).

In fig. 6.2.3, we show the results for the torsional modes. In this case, we would need
a greater sample size in order for a normal distribution to fit well mode m = 1; nonethe-
less, the result is acceptable. Next, as before, the higher the mode the better the agreement
between the expected properties of noise and the measurement.

In conclusion, we can affirm that when the cantilever is in thermal equilibrium, the mea-
sured signals satisfy the properties we associate to thermal noise, showing Fourier coeffi-
cients that are normally distributed and independent from one another.

6.2.3 Non-equilibrium case

The conclusions reached in the previous section are the ones we hoped for, proving that the
measured signals are indeed thermal noise-driven oscillations, since they show the expected
statistical properties. When the cantilever is out of equilibrium, though, there is no guaran-
tee that the noise retains these properties. Indeed, out-of-equilibrium statistics might show
us a completely different picture, with the PDF departing from a normal law.

In [30], the authors of the NETN experiment (Chapter 5) investigated the statistical prop-
erties of the aluminium oscillator. In this work, they demonstrate that no appreciable dif-
ference can be detected between the system in equilibrium and in a NESS, using a similar
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FIGURE 6.2.2: Each row corresponds to a flexural mode n: in the left figure we display the bivariate
distribution of the locked-in signals X(t), Y(t), in the center figure the statistical distributions of each
signal separately, and in the left figure the polar angle retrieved thanks to eq. 6.31. Starting with
n = 2, we can see that the signals X(t), Y(t) look randomly distributed around the center (0, 0),
even though we would need a greater sample size to better test this. Moreover, there are no extreme
outliers that can indicate the presence of self-oscillations. Similarly, a normal law fit represents X(t)
and Y(t) well. Finally, the polar angle approaches a uniform distribution, hinting that X(t) is not
correlated with Y(t). This is even more clear for higher modes (with the sample size increasing),
with n = 6 showing a perfect agreement between the theoretical prediction and the measurements.
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FIGURE 6.2.3: The torsional modes show a behavior similar to the flexural ones. The X(t), Y(t)
for mode m = 1 can be well fitted by a normal distribution, albeit the sample size being subop-
timal. In addition, the distribution of the polar angle hints that X(t) is not correlated with Y(t).
The higher modes m = 2, 3, 4 are clearly random independent variables, also not showing traces of
self-oscillations.
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lock-in method as the one in this chapter. It is interesting to comment on this, following the
discussion of Chapter 5: as reported in [30], a strong increase of fluctuation is detected in the
oscillator (higher than Tmax), still the distribution remains a Gaussian. In this section, we are
curious to verify whether this is true also for an object showing a strong lack of fluctuations.

The results are shown in fig. 6.2.4, for the flexural modes and in fig. 6.2.5 for the torsional
modes. Again, we limit ourselves to the description of the first resonance modes. With the
same wariness as in the equilibrium case based on the sample size, we can see that the non-
equilibrium data can be well represented by a normal distribution. Indeed, all the shown
modes follow the aforementioned properties required by equilibrium thermal noise.

This result is interesting in various ways. Firstly, it confirms the results in [30], showing
that also in the case of a dearth of fluctuations, the noise is also still normally distributed.
Moreover, in our case the system is even more out of equilibrium, with ∆T = 700 K along
its length, thus possibly more prone to perturbations in the distribution. Secondly, it shows
that we can safely associate a variance with this distribution, which as seen corresponds
to the area under the resonance curve. In fact, the emergence of Lévy behavior [103] for
example, i.e. algebraic tails in the PDF, would result in an infinite variance [67]. Thus, it
would be mathematical difficult to define an energy content and a fluctuation-dissipation
relation itself. It is to be acknowledged that small deviations from a normal distribution are
only visible with a huge sample, surely bigger than the one at hand.

6.2.4 Comparison with the measured areas

Now that we made sure that, at least for this example, the noise is indeed normally dis-
tributed, we can check whether the variance of the {X(t), Y(t)} retrieved from the fits agrees
with the integral under the resonance peak, i.e. if eq. 6.30 is verified. We report the relative
difference between the area and the variance in Table 6.2.2.

Deflection Torsion
Mode n, m EQ (%) NESS (%) EQ (%) NESS (%)

1 / / 0.6 0.1
2 2.7 4.3 0.2 1.3
3 1.9 3.4 1.1 2.3
4 3.8 2.5 2.2 4.3
6 0.9 4.8 4.1 1.4
7 1.7 4.7 4.2 0.6
8 1.5 1.8 3.0 2.2

TABLE 6.2.2: Relative difference between the areas calculated as the integral of the PSD around each
resonance and by estimating the variance of {X(t), Y(t)}.

We see that the results yield very similar values, with differences ≤ 5 %, which shows the
validity of eq. 6.30. Regarding the small disagreement between the area and the variance,
we can find two reasons: the first can be traced back to the filter used: an IIR lowpass
filter of order 25 is used in the procedure, which can introduce some biases into the original
spectrum. In particular, the beginning and the end of each ts signal is discarded since the
filtering creates ripples in this parts. The second is the imperfect Gaussian fit, in particular
for the first resonances where the sample size is smaller than the higher modes.
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FIGURE 6.2.4: The locked-in signals X(t), Y(t) show no evident deviation from a Gaussian distribu-
tion when the cantilever is out of equilibrium. Based on the shape of the PDF, it would be impossible
to tell whether the system is in or out of equilibrium. The only thing that might change is the variance
of the PDF, since it is the thermal content of the mode.
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FIGURE 6.2.5: As for deflection, the PDF of the non-equilibrium torsional modes is well fitted
through a Gaussian, thus showing that we can safely affirm that the measured signal is caused by
thermal noise.



154 Chapter 6. Statistical properties of thermal noise

6.2.5 Discussion

In this section, we have tested the statistical distribution of the measured displacement of
the C100 cantilever, which we believe is one of the most intriguing experiments presented in
this thesis. Indeed, with a huge temperature difference along its length and a strong dearth
of fluctuations, it embodies perhaps the clearest example of non-equilibrium behavior.

As mentioned, in this experiment we first encountered the phenomenon we refer to as
self-oscillations, which completely hinders the thermal noise measurements for the first flex-
ural resonance. In the previous analysis, we supposed this circumstance to be circumscribed
to n = 1, leaving the other modes unperturbed. This hypothesis was supported by a rea-
sonable amplitude of the fluctuations, leading to physical Tfluc (at least less than the melting
temperature of silicon). Whilst a complete characterisation of this phenomenon is not yet
available (along with a strategy to counteract it), it is sufficient to verify that self-oscillations
do not disturb the higher resonances. For the C100 experiment, we can conclude that this is
the case, which means that the fluctuation temperatures are not the expression of this phe-
nomenon. When present, though, we can see that it is not possible to circumvent the manual
application of a threshold to distinguish the self-oscillating measurements from the thermal
ones. When the magnitude and the frequency of the effect is as extreme as in fig. 6.2.1, it is
simply best to discard the considered mode. In the next section, we will show a strategy in
case the corrupted signals are rare compared to the total number of available data.

Both the in and out-of-equilibrium measurements respect all the expected properties
of stochastic noise, which is paramount for the results of this thesis. In fact, if the non-
equilibrium noise were described by another kind of PDF, perhaps a Lévi one, all the con-
cepts of average and variance could be biased. In testing this, we ensure that they are well-
defined, with the variance of {X(t), Y(t)} being very close to the thermal contents of the
modes. Thus, there is no further doubt in regarding the measured fluctuations as thermal.

6.3 Statistical properties of the PSD

In the previous section, we discuss how we can make sure that a temporal signal, for exam-
ple δ(t), satisfies the properties required for a stochastic noise transferred to the cantilever.
With the lock-in amplifier technique we can sample the PDF of the Fourier coefficients of
the spectrum Sδ, which variance is the thermal content of the mode n.

Throughout this thesis, thermal noise is calculated in a different way, i.e. as the integral
of the PSD under the resonance peak. While in the C100 case the methods yield comparable
results, as we expect, we believe that the lock-in technique is a proof of concept regarding
the statistical properties of noise, rather than a way to determine the fluctuations. Indeed,
due to post-processing filtering and limited sample size, the fluctuations retrieved thanks to
the lock-in amplifier can be misleading. In particular, an error of 5 % may look small, but if
it is inserted into the formula for Tfluc (eq. 2.88), it can yield to an important bias.

The standard procedure is then to retrieve the signal of the displacement, in this case δ(t),
and calculate the PSD around the resonance n. This is usually the result of N averages (in
order to reduce the uncertainty) and it is repeated a certain number of times M in the same
experimental conditions (for C100 M = 74), in order to have a sufficiently large sample. In
this set of M measurements of the spectrum, we would then like to be able to distinguish the
signals that represent thermal noise from the eventual presence of external perturbations.
An example would be the self-oscillations described in the previous section.
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In order to be quantitative, we then proceed to study the statistical properties of the PSD
of the displacement. In doing so, we follow [87, 83] in some of the calculations.

6.3.1 Statistical distribution of the PSD

As before, we consider the deflection as an example, with the following results easily ex-
tended for the torsion. We recall the definition of the expected value of the PSD, given in
eq. 2.5:

〈Sδ(ω)〉 = lim
T →∞

1
T 〈δ(ω)δ∗(ω)〉 = 1

2∆ f
〈|δ(ω)|2〉 (6.32)

As usual, the 〈·〉 represents the expected value and 2∆ f is the frequency integral around
the resonance. In the experiment, we calculate one realisation at a time of the PSD, which is
simply:

Sδ(ω) =
1

2∆ f
|δ(ω)|2 (6.33)

In order to lighten the notation, in the following description we are going to consider a
unitary frequency band 2∆ f = 1. Given that we measure N spectra Sδ, we now want to
calculate their PDF. In order to do so, we first decompose the deflection δ in its Fourier coef-
ficients X, Y and second, thanks to eq. 6.22, express the spectrum as the quadratic sum of X
and Y in the frequency interval 2∆ f . As shown in Sec. 6.1.2, these are normally distributed,
so that Sδ is the quadratic sum of normally distributed variables:

P(X) =
1

σδ

√
2π

e
− X2

2σ2
δ P(Y) =

1

σδ

√
2π

e
− Y2

2σ2
δ (6.34)

Then, we can express eq. 6.22 as:

Sδ(ω) = X2 + Y2 ≡ R2 (6.35)

where the 1/2 factor disappears since we are not averaging. We then transform X and Y in
polar coordinates: X + iY = Reiα. Doing so, the PDF of R can be swiftly retrieved:

P(R)P(α)dRdα = P(X)P(Y)dXdY

P(R)
dRdα

2π
=

R

2πσ2
δ

e
− X2+Y2

2σ2
δ dRdα

P(R) =
R

σ2
δ

e
− X2+Y2

2σ2
δ

(6.36)

with dXdY = RdRdα. The PDF of the square of this quantity is then:

P(R2)d(R2) = P(R)dR

P(R2) =
1

2σ2
δ

e
− R2

2σ2
δ

(6.37)

with d(R2) = 2RdR. This is the PDF of the spectrum Sδ:

P(Sδ) =
1

2σ2
δ

e
− Sδ

2σ2
δ (6.38)

The PSD is then exponentially distributed.
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FIGURE 6.3.1: The PSD of the second mode of deflection (in the C100 experiment) is compared to the
average of all the M = 74 measurements in the same power step. The ratio between these quantities
is exponentially distributed, as predicted by eq. 6.41. In addition to this, we simulate a white noise
following the same PDF as a comparison. Note that the statistics of the ratio Sδ/Sδ is independent
of the frequency bin, so that the PDF is computed aggregating all frequencies.

Let us now consider the ensemble constituted by N measurements of Sδ, which we call
{Sδ}N . Its expectation value and square root of the variance are:

〈Sδ〉 =
∫ ∞

0
dSδ Sδ P(Sδ) = 2σ2

δ

σ(Sδ) =
∫ ∞

0
dSδ S2

δ P(Sδ) = 2σ2
δ

(6.39)

This shows that the probability distribution of the PSD is:

P(Sδ) =
1

〈Sδ〉
e
− Sδ

〈Sδ〉 (6.40)

We can thus see how the PDF of a single spectrum is the expectation spectrum times a
exponentially-distributed random number ν:

Sδ = ν〈Sδ〉 P(ν) = e−ν (6.41)

Each Fourier coefficient being independent from the others, eq. 6.41 is valid for all frequen-
cies fk.
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Since the expectation value 〈Sδ〉 is not known, in order to estimate it we calculate the
average spectrum Sδ out of the ensemble {Sδ}N :

Sδ =
1
N

N

∑
i=1

Sδ,i (6.42)

For the Central Limit Theorem (CLT), we expect that Sδ tends to 〈Sδ〉 for N → ∞.

In fig. 6.3.1, we show one example of spectra collected in the equilibrium step of the C100
measurement. In (a), we can see a single PSD (of the second flexural mode) compared to the
average performed at the same power step. In (b), we can see that the PDF of the ratio
between Sδ and S yields an exponential distribution.

Next, we could ask ourselves the nature of the PDF of the average spectrum Sδ. Let us
imagine a repeated measurement of ensembles {Sδ}N , such that we construct a collection
{Sδ} ≡ {{Sδ}N , {Sδ}N , ...} of M elements. In this case, the expectation value and the square
root of the variance of Sδ are:

〈Sδ〉 = 〈Sδ〉

σ(Sδ) =
〈Sδ〉√

N

(6.43)

As expected, the variance of the average spectrum is inversely dependent on N. In this case,
its statistical distribution is the Erlang distribution P(N, λ) [56]:

P(Sδ, λ) =
SN−1

δ

〈Sδ〉N

NN

Γ(N)
e−NSδ/〈Sδ〉 (6.44)

with rate parameter λ = 〈Sδ〉/N and Γ(N) = (N − 1)!. The Erlang distribution is a Gamma
distribution Γ(N, λ) with integer N, and it is known that this converges to a normal distri-
bution for large N.

As we are going to show in this chapter, this distribution recurs often in the quantities
we measure in the experiments. For example, the PSD is not usually the result of a Fourier
transformation of the whole ts = 2 s signal (which is the case reported in fig. 6.3.1), but rather
the average of parts of it (also through a 50 % overlap). We show an example in fig. 6.3.2, for
which N = 8. In this case, the PSD of the third resonance mode is in perfect agreement with
an Γ fit, which yields a number of averages N similar to the expected value.

As a final step, we might wonder which is the PDF of the average of M spectra which are
themselves averages of N spectra. Calling this quantity Sδ, this is:

Sδ =
1
M

M

∑
i=1

Sδ,i (6.45)

Thus, Sδ is the summation of M Γ-distributed variables, each with a PDF Γ(N, λ). The
resulting variable is also Γ-distributed, with a PDF Γ(N × M, λ), as expected.

In this section we have shown how to retrieve the PDF of a spectrum, be it the result of
one or more averages, and tested this against experimental signals. As in the previous parts
of this chapter, we can then use this information to sort the measurements, detecting spectra
that are statistical outliers of the PDF set by the average spectrum. We discuss this in the
following section.
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FIGURE 6.3.2: A single PSD which is the result of N = 8 averages is shown alongside the average
of M PSDs in the same power step (for the third flexural resonance of the C100 experiment). With
respect to fig. 6.3.1, since all the spectra are the result of N averages, the final average has a lower
variance. The ratio of these two quantities is Γ-distributed, with the fit yielding N = 7.8, similar to
the expected value.

6.4 Spectra selection

Once the PDF of an experimental spectrum is known, be it the result of N averages or a
single PSD, we can create a selection protocol based on the needs of the experiment. In
Sec. 6.2.1, we discussed the self-oscillations, which result in the spectrum being greatly en-
hanced (or reduced) with respect to its expected value. Furthermore, some external noise
sources can sometimes create wiggles and spurious peaks in the PSD, as seen for example
in the NETN experiment (see Chapter 5).

In order to discard the problematic spectra without being forced to check each one man-
ually, we can decide to exclude the outliers of the distribution of the experimental spectrum
Sδ, with the bar indicating that it is the result of N averages. As usual, we confound its
expectation value 〈Sδ〉 with the average spectrum amongst all the measurements {Sδ} in
the same experimental conditions. For all the experiments in this thesis, this ensemble cor-
responds to all the M measurements in the same heating power P, since the system is con-
sidered in a stationary state (refinements of this method based on possible heating power
changes are discussed later). Referring to the ratio ν ≡ Sδ/〈Sδ〉, we can then express eq. 6.44
in a more handy way:

P(ν) =
NN

Γ(N)
νN−1e−Nν (6.46)

Our goal is then to set a threshold µ(N) so that if one value of ν lies outside this limit it is
discarded. Since the PSD is composed of K frequency bins, this corresponds to compare all
the bins with µ.
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FIGURE 6.4.1: In order to sort the experimental data, we can set a threshold µ which excludes a
certain percentage of upper outliers. Choosing µ(1) = 12, this corresponds to e−12. We then derive
µ(N) from eq. 6.49, which for N = 8 yields µ(8) = 3.2.

6.4.1 Threshold

In the case N = 1, in [87] it is shown that setting µ(1) = 12 is a reasonable choice. This
means that if a spectrum is 12 times greater than the average is discarded. The percentage
of discarded bins is: ∫ ∞

µ(1)
dν e−ν = e−µ(1) = 6 × 10−6 (6.47)

This quantity needs to be then multiplied by K. In all the experiments presented in this
thesis K ∈ [1000 − 2000], so that the total number of a priori discarded PSDs is around 1 %.
As we show later, if a higher percentage of spectra are discarded we can conclude that they
are not part of the expected distribution, and they are thus rightfully rejected.

When N > 1, we can adapt µ(N) in order to conserve the same percentage of discarded
spectra, e−12. In this case, we write:

∫ ∞

µ(N)
dν

NN

Γ(N)
νN−1e−Nν =

N
Γ(N)

γ(µ(N), N) ≡ g(µ(N), N) (6.48)

with γ the incomplete gamma function. Imposing the right hand-side to be equal to e−12

and inverting the equation gives the threshold:

µ(N) = g−1(N, e−12) (6.49)

In fig. 6.4.1 we show the results for the threshold for various values of µ(N). As we can see,
the dependency on N is important for small N whilst the PDF quickly converges towards a
normal distribution for N → ∞.

In this section, we set a higher threshold but not a lower one. Nevertheless, it is clear that
this concept can be extended for these events too, at least for N > 1.



160 Chapter 6. Statistical properties of thermal noise

6.4.2 Analysis procedure

The sorting of the data following the expected PDF is applied systematically in all the
datasets shown in this thesis. We discuss here the procedure.

Once we have the statistical ensemble of interest {Sδ}, in order to retrieve the experimen-
tal PDF we first need to associate to this an expectation value 〈Sδ〉. As said, for a sufficient
number of spectra (M ≥ 40 in all the experiments presented), the average of these is the
main candidate. Depending on whether this is possible or not, various strategies are set in
place.

Representative average

If we believe that the average of {Sδ} is representative, it means that we suppose that the
eventual outliers are a strong minority of the total and their magnitude is not too different
from the rest. Indeed, we need the signals containing spurious effects not to bias the av-
erage, which is for example the case with the self-oscillations, since one PSD can be orders
of magnitude higher than the others. If the average is representative then, we proceed as
follows. For each spectrum, we test whether the power of each frequency bin is above the
threshold µ times the average: if in one frequency bin the PSD is above the threshold the
spectrum is discarded, if not it is retained. Next, we re-compute the average with the spec-
tra passing the first selection, and we repeat the procedure until no spectrum is discarded in
the last iteration.

We show an example for the C100 experiment in fig. 6.4.2, with the third flexural mode
from a NESS measurement. The whole M = 74 spectra at P = 9 mW are averaged to give
{Sδ} and a threshold µ(8) ≈ 3.2 is set, since each spectrum is the average of N = 8 spectra.
The PSDs lying above the average times µ are then discarded. When the sorting is done, the
spectra passing the selection are most of them, in this case 84 %. Whilst we attend a refusal
rate of roughly 1 %, due to the 2∆ f = 1.6 kHz, the actual value is much higher than this.
This proves that some of the PSDs are not part of the statistical distribution of thermal noise
spectra, thus to be discarded.

Non-representative average

In some cases, the average can be misleading. In this thesis, this is the case for two experi-
ments in particular: the self-oscillations of the n = 1 mode of the cantilever, which we have
discussed above, and the cryogenic measurements on C90. As also shown in [87], the ex-
perimental system experiences some "jumps" when the temperature increases, thus creating
odd features in the spectrum. Moreover, the self-oscillations are more severe than the ones at
room temperatures, with the harmonics of the first mode being visible in the higher modes
too. We show this example in fig. 6.4.3 for the second flexural resonance in a NESS. With a
sample size of M = 60, we can see that most of the spectra show odd features, such as spu-
rious peaks. Two of these (located at f2 ± 1.5 kHz) are the harmonics of the first resonance
mode.

In such situations, in order to sort the spectra we proceed in the opposite direction with
respect to the algorithm above. We first elect one spectrum as the representative one, choos-
ing it as the one showing the lowest mean background noise around the resonance. This
criterium comes from experimental evidence: since the spurious peaks tend to increase the
mean background noise, we select the one that a priori shows the less pollution. Then, we
find all the spectra within µ from this and we compute the average between them. We thus
find the signals within µ of the new average, therefore adding spectra to the ensemble {Sδ}.
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FIGURE 6.4.2: In (a), we show the PSDs of the third flexural mode in the C100 experiment with
their average spectrum. As we can see, 14 % of the spectra are do not pass the selection since they
are µ(N) times higher than the average, with N = 8. In (b), the experimental PDF for the selected
spectra follows the theoretical prediction (a Γ distribution), whilst the discarded ones show some
non-compatible values with the distribution. For this reason, we deem them as non-representative,
and discard them.

Once the last iteration does not increase the sample size, we have our sorted spectra. In the
example reported in fig. 6.4.3, the signals passing the selection are roughly 14 %, which is
very low compared to the expected value. Luckily, this represents an extreme case, with the
success rate increasing for the higher modes. Since the n = 1 mode is always excluded, in
this work we apply this procedure solely in the C90 experiment.

Frequency dependent average

A third scenario arises when the spectra are not polluted as in 6.4.3, but still an average
over all {Sδ} cannot be applied straightaway. This is the case of the laser power fluctuat-
ing during a power step, prompting changes in the temperature and thus in the resonance
frequencies of the modes. This effect is more and more important with the mode number
increasing. In this case, the average of the ensemble {Sδ} is biased towards the spectra rep-
resenting the average temperature. Therefore, spectra that could be accepted if the power
was constant are discarded.

In order to prevent this, we decide to divide the {Sδ} in a number J of a sub-ensembles,
based on the resonance frequency. This way, we get various averages each better represent-
ing the temperature of the system. We exemplify this in fig. 6.4.4 for mode n = 7 in the
C90 experiment. As we can see, although small, the laser fluctuations in the cryogenic en-
vironment prompt changes of the resonant frequency for more than 50 Hz. In this way, the
average of all the spectra would yield just 11 % of them to pass the selection. Conversely,
setting J = 2 already doubles this number. Albeit J can be further increased, with the sorting
giving higher and higher yield, it is important to conserve a meaningful amount of spectra
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FIGURE 6.4.3: In (a), we show a NESS measurement of the second flexural resonance in the C90
experiment. We notice various features in the spectrum, with two symmetric peaks around the
resonance frequency being identified as the higher harmonics of the first (self-oscillating) mode at
±1.5 kHz. Since the average of all the spectra would yield a biased average, we consider the PSD
with the lowest background noise as representative and construct the ensemble of selected spectra
from this. Only 16 % of the spectra are then accepted, which PDF is shown in (b). As this follows the
expected Γ distribution, the other spectra clearly do not.

per bin in order for the average to be representative. In the experiment this is usually set
between 4 and 6.

6.4.3 Discussion

In the last two sections we discuss the statistical properties of the experimentally measured
spectra. We first show how the PDF of a spectrum when it is not averaged is an exponen-
tial distribution, then that the average of N spectra follows a Γ distribution. We compare
our prediction with the experimental data, finding perfect agreement. This result further
assesses how our measurements satisfy the statistical properties of thermal noise.

In particular, this knowledge grants us a powerful tool to recognize whether a measured
PSD represents the thermal fluctuations of the system or it is corrupted by an external factor.
As seen, self-oscillations and other sources can create some features in the spectrum, which,
if not forsaken, might bias the final result. We then set an average number-dependent thresh-
old µ which eliminates roughly the 1 % of the signals with the higher amplitude. Next, we
show how to systematically sort the spectra based on the value of µ, first in the case the
spectra average is significative and then when it is not. We finally test the method against
experimental spectra, showing how it helps us discarding corrupted signals, and how the
selected PSDs satisfy the predicted distribution.

While in the first part of this chapter we have shown another strategy aimed at finding
irregularities in the distribution of the signals, it requires to act on the temporal signals
through filters and possibly subsampling. The tools developed in this section represent a
handy way to find spurious signals directly in the spectra and discard them. At the end of
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FIGURE 6.4.4: In (a) we depict mode n = 7 in a NESS measurement on the C90 cantilever. Due to
tiny fluctuations in the laser power, the temperature of the cantilever can change sensibly, prompting
important variation in the resonance frequency. Therefore, the average of all the spectra in the power
step leans towards the mean temperature, excluding normally acceptable signals. Indeed, just 11 %
of them are within µ from the average. In (b) we show that this technique can be refined simply
dividing the ensemble in J resonance frequency bins, and applying the sorting algorithm in each of
them. With J = 2 we roughly double the accepting rate.

the procedure, only spectra satisfying the expected distribution are selected, thus in theory
zeroing the possibility of the measured fluctuations to be biased.

Until now we have discussed two faces of the same coin, the PDF of the Fourier coeffi-
cients of the spectrum, first with a lock-in amplifier and then through the spectrum. In the
next sections we apply the concepts discussed in these sections for the derived quantities,
such as the area under the resonance peak which gives us the fluctuation temperature Tfluc

and the fit procedure that gives us the loss angle ϕ.

6.5 Statistical properties of the area

The step that follows the spectra selection is the calculation of the areas under the reso-
nances, which then leads to the fluctuation temperatures Tfluc. We will refer to the area as
A:

A =
2∆ f

K ∑
k∈∆n

Sδ,k (6.50)

with the frequency interval 2∆ f containing a total of K frequency bins fk. Let us be in the
most general case, where the PSD Sδ is the result of N averages. As in eq. 6.45, the area
is a summation of K independent Γ-distributed variables with parameters Γ(N, λ). The
resulting variable is then also a Γ-distributed variable, with parameters Γ(N × K, λ). The
PDF of A is then:

P(A) =
ANK−1

〈A〉NK

(NK)NK+1

Γ(NK)
e−NKA/〈A〉 (6.51)
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where we define the expectation value:

〈A〉 = 2∆ f
K ∑

k∈∆n

〈Sk,δ〉 (6.52)

Since in the experiment K ∈ [1000 − 2000], we expect the PDF (eq. 6.51) to be very close to a
Normal law.

Similarly, when we calculate the area we subtract the background noise N level from the
area, as seen in Appendix 3.C.3. In order to do so, we calculate the mean of the PSD in a
small interval ∆N at the sides of the resonance:

N =
1
K′ ∑

k∈∆N

Sk,δ (6.53)

with K′ the total number of bins in the interval. Also in this case then, it is easy to show
how N follows follows a Γ distribution Γ(N × K′, λ), and since K′ ∈ [50 − 100] we expect
the PDF to also closely resemble a Gaussian.

6.5.1 Area selection

Once we know that we expect the retrieved area and background noise to be normally dis-
tributed, we can then sort the retrieved values based on their PDF. It is in fact possible to
decide to discard values that are for example outside µ = 4σ from the average. In fig. 6.5.1,
we show an example taken from the NETN experiment, for a NESS measurement. We note
that the PDFs closely resembles a Normal law, with a Γ distribution following slightly better
the data. The average value of the area and the noise are also very close.

We then see that in this case not many values lie outside the threshold, with a discarding
rate of just 0.2 % for the areas and < 0.1 % for the background. The expected value for a
normal distribution for µ = 4σ corresponds to roughly 0.01 % of the total, which is 20 times
smaller than the case shown. Therefore, at least some of these spectra are statistically not
acceptable and are thus discarded as outliers. Conversely, the same concept applied to the
background noise yields a discarded rate within the expected value.

6.5.2 Distribution of Tfluc

As the final result of this part, we derive the PDF of the fluctuation temperature Tfluc. As
seen in Section 2.3.2, we calculate Tfluc as:

Tfluc =
A
〈A〉TEQ (6.54)

with TEQ = 300 K and forgetting the resonance frequency changes with the temperature. As
usual, we set 〈A〉 = A, the average of the M measurements. In addition to this, we know
that the background noise has little if no influence on our results, so we set N = 0. The two
variables in eq. 6.54 are both Γ-distributed, with:

P(A) = Γ

(
NK,

〈A〉
NK

)
P(A) = Γ

(
NKM,

〈A〉
NKM

)
(6.55)
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FIGURE 6.5.1: In (a), we show how the distribution of the area A closely approaches a Normal
law, although a Γ distribution (eq. 6.51) follows slightly better the data. The averages of the two
distribution fits are indeed very close, and the same goes for the variances. We can thus decide
to eliminate the spectra that lie outside 4σ from the average, which in this case corresponds to the
0.2 % of the total. In (b), the same analysis is performed on the background noise N , which follows
the same distribution. In this case the spectra lying outside the 4σ is only one, which is within the
expected value.

The ratio of two Γ-distributed variables with different scale factors is a Beta prime distribu-
tion β′:

P(Tfluc) = β′
(

NK, NKM, 1,
1
M

)
= M

(
MTfluc

)NK−1 (
1 + Tfluc

)−NK−NKM

β(NK, NKM)
(6.56)

with β the beta function. As usual, it is possible to show that for large values this distribution
approaches a gamma distribution, and thus a normal distribution. Since usually N ≥ 8,
M ≥ 50 (depending on the sorting) and K ∈ [1000 − 2000], we can safely approximate
the β′ distribution with a Gaussian. This can be seen in fig. 6.5.1 (a), since the fluctuation
temperature is simply the area normalised by its average.

6.6 Statistical properties of the fit

As shown in the previous chapters, in order to interpret the measured fluctuations of the
system under study, the estimation of the dissipation is paramount. This quantity is embod-
ied in the loss angle ϕ, which is retrieved thanks to a fit of the spectra. In this section, we
give the details of the fit procedure, showing how we can estimate the Goodness Of the Fit
(GOF) and associate an uncertainty to the fit parameters.

In order to prepare the experimental spectra for the fit, two different strategies are fol-
lowed (depending on the experiment). When we measure the thermal noise of the cantilever,
we fit singularly each spectrum. For example, in the C100 experiment our ensemble is con-
stituted of 74 (minus the discarded) fit results. Conversely, in the NETN experiment we
average N = 25 spectra and then perform the fit on it. Since we have seen that the number
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of averages does not change the nature of the PDF but only its parameters, the following
discussion can be applied in the two cases.

Let us call the spectrum we want to fit Sδ. As seen in eq. 2.44, the function that represents
Sδ for the mode number n can be written as:

Sδ( f ) =
2kBT
πkr

n f
ϕn

(1 − ( f / fn))2 + ϕ2
n

(6.57)

with kr
n the stiffness and ϕn the loss angle. While this description is valid for the n flexural

mode of the cantilever, it can be easily adapted to its torsional modes and to the motions of
the macroscopic oscillator. Rewriting the previous equation while adding the contribution
of the background noise N yields:

Sfit
δ ( f ) = p1

2
π f

p3

(1 − ( f /p2)2)2 + p2
3
+ p4 (6.58)

where the free parameters of the fit pi are the thermal content of the mode p1 = A = kBT/kr
n,

the resonance frequency p2 = fn, the loss angle p3 = ϕn and the background noise p4 = N .

According to [83], the unbiased method to estimate these parameters through a fit of the
experimental spectra Sδ( f ) is to minimise, with respect to pi, the expression:

∑
k∈∆n

Sδ( fk)

Sfit
δ ( fk)

+ log(Sfit
δ ( fk)) (6.59)

with ∆n the usual frequency interval around the resonance which contains a total of K fre-
quency bins fk. The initial values for p1 = A, p2 = fn and p4 = N are estimated from the
numerical integration of the spectrum, whilst the initial p3 = ϕn is usually set at a constant
10−4.

Let us now imagine to fit the spectrum Sδ and retrieve the parameters pi, which define the
best fit function Sfit

δ . In order to quantify how well this function describes the experimental
PSD, we estimate the GOF, to which we refer as χ2. Since we know the distribution of Sδ,
we can calculate χ2 as the distance between the experimental data and the fit:

χ2 =
1

∆n
∑

k∈∆n

(
Sδ( fk)− Sfit

δ ( fk)

σ(Sδ( fk))

)2

=
N
∆n

∑
k∈∆n

(
Sδ( fk)− Sfit

δ ( fk)

〈Sδ( fk)〉

)2

(6.60)

where in the second passage we insert eq. 6.43. As usual, the expectation value is unknown
and its evaluation depends on the N we consider. If N is small, we cannot expect the ex-
perimental spectrum to be representative of the expectation value, and its estimation is thus
difficult. This case, however, is not one we encounter often: we indeed wish the PSD to have
a small uncertainty, and thus we then usually consider at least N = 16 when calculating the
fit. We can thus approximate 〈Sδ〉 with Sδ [83]. We note that in the NETN experiment this
value is even higher, N = 25. Eq. 6.60 then simplifies:

χ2 =
N
∆n

∑
k∈∆n

(
1 − Sfit

δ ( fk)

Sδ( fk)

)2

(6.61)

If the fit is a perfect representation of the experimental measurement, the χ2 is be equal to
1, since the distance between the fit and the measurement is equal to the uncertainty of the
experimental spectrum. Usually a χ2 ≤ 2 represents a good result, with the higher value
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FIGURE 6.6.1: In (a) we show an example of fit for the transverse mode and in (b) for the longitudinal
modes in the NETN experiment. For the former the goodness of fit χ2 is slightly higher than for the
latter, which is due to the asymmetrical shape of the background noise.

possibly due to the model not perfectly representing the experiment. In this thesis, χ2 = 2
is the threshold we use in accepting the data. As an example, in fig. 6.6.1, we show a fit of
the two resonances in the NETN experiment.

6.6.1 Uncertainty of the fit parameters

The χ2 tells us the accuracy of the fit with respect to an experimental spectrum, hence the
reliability of the parameters pi. In order to be more rigorous, we now show how we can
estimate the uncertainties of the single parameters, σ(pi). The pi are drawn from a certain
statistical distribution of the ensemble {pi}, with expectation value and square root of the
variance:

pi = 〈pi〉

σ(pi) =
√
〈(pi − 〈pi〉)2〉

(6.62)

where the estimation of these is our objective. The PDF of pi depends on the nature of the
parameter i, the theoretical model used for the fit and the minimization method used in
order to estimate the best fit. Even if it is probably possible to reconstruct the PDF of the pi,
it is more handy to sample it.

In order to do so, we consider the best fit curve Sfit. Since, given an average number N,
we know that S is a Γ-distributed number ν (eq. 6.46), we can generate a synthetic noisy
spectrum Ssyn from Sfit simply as:

Ssyn( fk) = νkSfit( fk) (6.63)
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where νk are random numbers drawn from the distribution:

P(νk) =
NN

Γ(N)
νN−1

k e−Nνk (6.64)

The fit of this curve yields a new set of synthetic parameters psyn
i , which are samples of

the population {pi}. Repeating this procedure then builds the statistical ensemble of the

parameters, from which we can then deduce the average psyn
i and the variance

√
σ(psyn

i )

(eq. 6.62).

Next, we can then test whether the values drawn from the initial fit pi are statistically
correct, i.e. they do not differ from the average psyn

i more than the uncertainty σ(psyn
i ). This

study is of particular importance, since it allows us to make sure that the parameters pi we
estimate from the experimental spectrum are statistically unbiased. We show an example in
fig. 6.6.2, with the fit being performed on the longitudinal mode of the NETN experiment.
In this measurement, we can see that the initial value of pi and the average value of the
synthetic distribution of psyn

i are within the statistical uncertainty, thus demonstrating how
the fit is indeed unbiased.

Once the fit of one spectrum Sδ gives its values pi ± σ(pi), another spectrum is fitted
and the parameters with the respective uncertainties are calculated, and so on and so forth.
This way, we get as many estimations of the parameters {pi} as the available spectra, let
us say M. As always, in the experiments with the cantilever, M correspond to all the PSDs
(which passed the sorting) in the same power step. In order to extract one single value pi we
calculate the average:

pi =
1
M

M

∑
j=1

(pi)j (6.65)

Regarding the uncertainty σ(pi) to associate to this value, since the PDF of {pi} may not
be Gaussian, an error propagation of the single σ(pi) is not strictly possible. Therefore, the
meaningful uncertainty of pi is the dispersion of the {pi}:

σ(pi) =
M

∑
j=1

√
1
M

((pi)j − pi)
2 (6.66)

6.6.2 Discussion

In the last two sections we discussed the statistical properties of the quantities derived from
the experimental signals. In particular, we retrieve the PDF of the area under the resonance
curve A, which leads to our calculation of the fluctuation temperature Tfluc. We show how
A is Γ-distributed, and compare this prediction with the experiment, showing a remarkable
agreement. The same study is performed for the background noise N , with similar results.

Based on the PDF of A and N , we then define a second sorting of the experimental
data. Since the distribution is usually the result of a large number of samples, we can safely
approximate the PDF with a Gaussian, and thus decide that areas and noises lying outside
4σ from the average are discarded. As shown, it is possible to retrieve a higher discarded
rate than the forecasted one, showing that some of measurements do not belong to the same
distribution as the others and are rightfully rejected.

In the second part we discuss the fitting of the data. We retrieve the fit parameters pi from
the unbiased estimator described in [83], and calculate the GOF χ2 thanks to our knowledge
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FIGURE 6.6.2: For each experimental spectrum Sδ we extract the fit parameters, from which we
generate 500 synthetic noisy spectra. These are then fitted and the synthetic parameters (orange
circles) are retrieved. From these, the average (yellow line) and the the square root of the variance
(grey dotted lines) are obtained. We can see that the original value (green dashed line) is within the
uncertainties for all parameters, showing that the fit is not biased. The width of the distribution of the
synthetic fit parameters is used to estimate the uncertainty of the fit parameters of the experimental
spectrum.
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of the PDF of the spectra. This result is of particular importance for estimating the loss angle
of the resonance ϕ, used in the estimation of the dissipation.

Whilst χ2 is an objective way to estimate how well our parameters fit the experimental
data, we show that it is possible to directly associate an uncertainty to each pi. Indeed,
we demonstrate a method based on the PDF of the spectra that allows us to sample the
parameter distribution, with the double result of yielding the interval of confidence of pi

and test whether our fit results are statistically unbiased.

These two results allow us to sample the distribution of the area and the loss angle -
thus the Tfluc and the dissipation wdiss -, two central quantities of this thesis. Knowing the
statistical distribution of these two quantities, we can not only distinguish the corrupted
measurements from the statistically acceptable ones, but also associate the correct uncer-
tainty to Tfluc and ϕ. Regarding the fluctuation temperatures, due to the large number of
averaged spectra, the PDF resembles a Gaussian, so we can confidently assume the stan-
dard deviation to be correct uncertainty. For the loss angle, though, we cannot calculate the
PDF so a theoretical value for the uncertainty is not available. Nevertheless, thanks to a
simulation we can sample it and thus retrieve the desired quantity. Throughout this thesis,
the error bars for ϕ are calculated following the approach described in this section.

6.7 Conclusions

In this chapter we tackle the question related to the statistical properties of thermal noise
signals, thus the relative spectra and related quantities. The importance of the present de-
scription is paramount for two reasons: it allows us to assess that the measured signals are
thermal-noise driven, and it gives a method to eliminate the ones that are not expression of
this phenomenon. These are two sides of the same coin, since testing the PDF of the noise
naturally leads to the exclusion of the points not following the predicted behavior.

The first test we propose is a proof of concept: thanks to the lock-in technique, we directly
sample the statistical distribution of the Fourier coefficients of the resonances. This leads to
a first verification of the expected properties of the thermal noise-driven displacement of the
cantilever, which proves that it is the result of a stochastic force acting on the system. Thanks
to lock-in technique, we shed light to the self-oscillating state of the first resonance, showing
how it cannot be linked to thermal noise. More importantly, the other resonances are not
affected by this phenomenon, as they show the expected Gaussian behavior. It also is very
interesting how we cannot distinguish the NESS from an equilibrium state solely from a
statistical point of view. Confirming the results of [30], we believe this to be of fundamental
importance: it lets us suppose that the equilibrium properties of noise can be extended
for the non-equilibrium systems we analyse. We thus insist on the leitmotiv of this thesis:
testing whether we can extend equilibrium tools for out-of-equilibrium ones.

Since in the experiment we often retrieve directly the spectrum, it is then compelling to
discuss its statistical properties, in particular its PDF. We show that spectra are Γ-distributed,
and so is their average. We then propose a practical sorting algorithm, based on the PDF set
by the average spectrum, distinguishing between possible issues in calculating the latter.
Thanks to this strategy, we set a statistically independent threshold that allows us to assure
that the selected signals satisfy the properties we associate to thermal noise, and they do not
contain spurious exogenous signals.

Once this selection is done, we briefly show how to retrieve the PDF of the derived quan-
tities, the area and the dissipation. The first follows a Γ distribution, which in the experiment
closely approaches a Normal one. We can then set a second sorting algorithm, eliminating
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the outliers of the distribution. This allows us to further reduce the possibility of the final
results containing contrived values. Regarding the dissipation, thanks to an a priori unbi-
ased fit, we retrieve the loss angle from the experimental spectra. We then take advantage
of knowing the PDF of the spectra in order to estimate the uncertainty on the fit parameters
thanks to a simulation.

The tools we develop in this chapter are used throughout the whole thesis in all the
presented experiments. The two-step selection of the spectra and the area grants us the
confidence to claim that the results of the Tfluc shown in the previous chapters are valid
and unbiased. Furthermore, the fit procedure we apply allows us to be confident of the
estimations of the dissipation.

We believe these results could be useful in many applications. The sorting of spectra
can be applied in possibly every experiment aimed at measuring or characterising thermal
noise, spanning from micro-mechanical systems [44], RC circuits [10] or coatings for the GW
community [70]. We believe it could be an important part in the analysis of the thermal noise
in the NETN experiment, also in light of the still-standing issues in construing the results.
In a similar way, these experiments could take advantage of the fit procedure too. Firstly,
we believe that the excellent analysis of [83] in describing an unbiased fit procedure for
spectra is not yet as generally known at it should perhaps be. Applying this technique to our
experimental data and combining it with our innovative way to compute the uncertainties
of the fit parameters shows that the procedure is indeed unbiased. Therefore, experiments
where the estimation of the dissipation is important ([97, 38] for example) could make good
use of this technique, if a similar one is not already implemented.
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Chapter 7

General conclusions

The quest for a predictive non-equilibrium statistical physics has existed since the beginning
of the thermodynamics. Indeed, equilibrium systems represent but an exception in physics,
with most of our surroundings (and ourselves) being in a constant dance with the law of
thermodynamics around equilibrium. In many cases, thermal equilibrium can be consid-
ered a valid approximation, and centuries of studies have given us impressive statistical
tools in order to describe the reality in this situation. Nevertheless, sometimes non equilib-
rium is so preponderant that we need to find new theoretical frameworks in order to predict
the behavior of the systems in such a state.

Non-equilibrium is a topic as old as equilibrium, with K. Thompson first addressing the
subject in 1854. After him, many authors contributed to the subject, with non-equilibrium
statistical physics being nowadays an important branch of research. Applications span
physics, biology, finance, and much more, as we believe it is a rich field with much left
to discover. In particular, thermal fluctuations have become more and more important with
technology pushing its limits to the micro and nanoscale, where the interactions of the sys-
tems under study with the surrounding environment become salient. A salient example is
the GWs detectors, one of the most precise instruments built by human kind, whose devel-
opments require careful thermal noise considerations. Often, these systems are in a NESS,
and thus a non-equilibrium characterisation is paramount.

In this thesis, we try to add our piece of the puzzle in this vivid world that is non-
equilibrium. We embrace a project which has already yielded impressive results [42] and
push it forward, both from an experimental and a theoretical point of view.

The main protagonist of this thesis is the Fluctuation Dissipation Theorem. Its impor-
tance in physics is deservedly celebrated, as under this formalism the thermal fluctuation
of an observable in thermal equilibrium can be easily quantified through the temperature
of the thermal bath and the dissipation processes involved. Whereas the FDT validity is
normally limited to thermal equilibrium, we combine the approaches of [42, 64] in order to
show an elegant and simple way to extend it for systems presenting a temperature differ-
ence along their lengths, i.e. in a NESS. The outcome is that the fluctuations are prescribed
by the temperature profile weighted by the local mechanical energy dissipation function.
This leads to the definition of a non-equilibrium temperature Tfluc, which reflects where the
dissipation is more preponderant. We reiterate once again its shape:

Tfluc =
∫

dx T(x)wdiss(x)

We then proceed with the experiments, imposing a strong temperature difference along
some silicon micro-cantilevers and an aluminum macroscopic oscillator, and measure their
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thermal fluctuations. We thus construe the results with the extended FDT. We summarise
here the main results of this work:

• We carefully show how we can derive the equilibrium FDT for both the flexural and
torsional modes of a cantilever, and then extend this result for NESSes. In doing so,
we calculate the dissipated energies of the motions, including high-modes corrections
to the Saint-Venant model through Barr’s description. In order to do so, we derive
expressions for the internal dissipation of a crystal, which is later compared to other
sources of damping such as clamping losses.

• We test the validity of the extended FDT in the case of a thin silicon micro-cantilever
(C100) subjected to a strong heat flux. The measured fluctuations are insensitive to
the temperature difference, which is a strong evidence of non-equilibrium behavior.
Through our theoretical interpretation, we construe these findings with a clamped-
located dissipation, where the temperature of the cantilever is kept constant at room
temperature. This is confirmed through the measured loss angles, which are also
roughly independent from the temperature. Since we verify these properties for all
the measurable resonances, we conclude that this system shows a lack of fluctuations
as a general feature.

• The same study is performed on a coated cantilever (C30C), which conversely shows
an increase in the fluctuations at increasing temperature, on the order of the average
temperature. The measured loss angles similarly depend on the temperature, which
can be fitted with a second order polynomial. Thanks to this, we propose a theoretical
prediction for the fluctuations, which satisfyingly represents our measurements. Thus,
with the measurement of the dissipation, we are able to forecast the evolution of the
noise. Our conclusion is then that the dissipation is spread along the whole cantilever,
causing an increase in the fluctuations, and the extended FDT perfectly captures the
experimental results.

• A third sample (C30) is studied to verify whether the distributed dissipation is solely
due to the coating, or if the substrate plays a role. We show that the latter is the case,
with the non-equilibrium fluctuations being sensitive to the temperature profile. Also,
in this case the measured dissipation helps us explain the results, showing how we can
predict the thermal noise through the extended FDT. In addition to this, we demon-
strate how purely silicon cantilevers with different geometries and manufacturers can
be dominated by different kinds of dissipation (C100 at the clamping and C30 dis-
tributed).

• We carefully demonstrate how to convert signals retrieved with the optical lever tech-
nique to calibrated displacements. We take into consideration many factors: modifica-
tions of the beam’s waist on the detector through a run-time calibration; the different
methods needed to compute the sensitivity depending on the spot’s size on the can-
tilever, in particular showing the limit for large ones; the influence of modifications
of the spot’s size and position on the cantilever during a measurement, which leads
to a systematic uncertainty on the fluctuations. In order to compute the spot’s size
and position on the cantilever, we show a simple method based on the equilibrium EP,
which is more precise than camera observations. Through this, the sensitivity can then
be easily computed.

• We test the extended FDT to its physical limits, probing it at cryogenic temperatures.
We impose the highest temperature difference the cantilever (C90) can sustain, and
we and measure its thermal fluctuations. Through a robust experimental protocol, we
show how the noise is much lower than what the average temperature of the system
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would indicate. Since all the resonances show similar behavior, we can conclude that
similarly to C100, this sample displays a lack of fluctuations as a common trait. De-
spite the extreme experimental conditions do not allow a prediction of the fluctuations
as in the previous cases, the measured dissipation agrees with the thermal noise obser-
vations. The takeaway is then that the non-equilibrium FDT is valid up to its physical
limits.

• The next sample is an aluminum oscillator of the NETN experiment. In this case, the
experimental conditions and the physical system are radically different with respect to
the previous ones, as we aim at testing the extended FDT in the case of a macroscopic
object. Since the previous measurements of this group cannot be explained in our
framework, we aim at testing whether our approach is valid only for microscopic sys-
tems. During the time spent at the LNL, a new version of the detection interferometer
is installed, sensibly increasing the SNR around the resonances. Next, non-equilibrium
thermal noise measurements show that the fluctuations are compatible with the aver-
age temperature of the system, perfectly in line with our theoretical prediction. Also
in this case, the dissipation cannot allow us to quantitatively predict the fluctuations;
nonetheless it indicates a distributed dissipation which fits with the observed noise.
We then conclude how the extended FDT can be considered valid also in the case of a
macroscopic system.

• We study the statistical properties of thermal noise, from the statistical distribution
of the Fourier coefficients of a stochastic force to the PDF of the spectrum of the dis-
placement. We show how one resonance is polluted by self-oscillations, which bias the
distribution. However, this does not perturb the higher modes, which satisfy the pre-
dicted properties. We demonstrate how there is no difference between an equilibrium
and an out-of-equilibrium noise from the statistical point of view.

• Thanks to the retrieved statistical properties, we propose an innovative sorting algo-
rithm which excludes signals showing higher values than a certain threshold. We
show how this method can be applied in both low and high-polluted ensembles and
can adapted to the fluctuations of the laser power. This is then experimentally tested.
Furthermore, thanks to the PDF of the area being close to a Gaussian, we can set a
second threshold to exclude extreme outliers.

• We discuss an unbiased fitting method in order to estimate the loss angle, which then
is experimentally tested yielding in general a very good GOF χ2

< 2. We then show
a method to retrieve the uncertainty of the fit parameters and at the same time to test
the absence of biases in the procedure.

In this thesis, we discuss the results of various experiments, each with its particularities
and outcomes. In each chapter, we then suggest some possible applications, which span
from the fabrication of MEMS to GWs detection. One omnipresent application is neverthe-
less embedded in the common thread linking the experiments of this thesis: the quest for
a non-equilibrium characterisation of statistical physics. Micro-cantilevers truly represent a
perfect testing bench for non-equilibrium properties, the study of which we hope this thesis
will help encourage. Perspectives range from a deeper study of the statistical properties of
noise, with possible scaling properties [37], measurements of the entropy and the work of
the cantilevers [16], and second-order effects in the temperature profile [73], to give a few
examples.
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So far, we have proven that our theoretical models explain all the systems we have stud-
ied, hinting at the possible generality of the extended FDT. Additional experiments are nev-
ertheless possible to further strengthen its validity: we can imagine a system with dissipa-
tion localised at a specific point, say the last antinode of a given mode of the cantilever. In
this case, it would be interesting to check whether the fluctuations evolve following the high
temperature at this point, as the extended FDT predicts. Such a system can be fabricated for
example by adding a coating at this point. This kind of experiment would pave the way
for thermal engineering or for thermal noise operated systems. Indeed, the evolution of the
thermal noise would then be mode-dependent, and it would be the signature of the dis-
sipation processes at stake: the presence of target molecule increasing damping, radiation
increasing temperature or creating defects, etc.

Another application of this extended FDT is to use it as a tool to characterise dissipation:
since Tfluc is the convolution of the temperature with the dissipation field, scanning the
former could lead to a better knowledge of the latter. This has already been demonstrated
when we conclude from the out-of-equilibrium measurement of the fluctuations that the
dissipation is localised at the clamp. This method could be extended to other MEMS and
NEMS, such as nanowires, to better understand their mechanical dissipation and spatial
distribution.
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