N

N

Understanding and improving HPC performance using
Machine Learning and Statistical analysis
Salah Zrigui

» To cite this version:

Salah Zrigui. Understanding and improving HPC performance using Machine Learning and Statistical
analysis. Symbolic Computation [cs.SC]. Université Grenoble Alpes [2020-..], 2021. English. NNT:
2021GRALMO012 . tel-03327540

HAL Id: tel-03327540
https://theses.hal.science/tel-03327540
Submitted on 27 Aug 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03327540
https://hal.archives-ouvertes.fr

UGA

R Université
THESE Grenoble Alpes

Pour obtenir le grade de

DOCTEUR DE LUNIVERSITE DE GRENOBLE

Spécialité : Informatique

Arrété ministériel : 25 mai 2016

Présentée par

Salah Zrigui

These dirigée par Denis TRYSTRAM
et codirigée par Arnaud LEGRAND

préparée au sein du Laboratoire d’Informatique de Grenoble
et de I'Ecole Doctorale MSTII

Understanding and improving HPC
performance using Machine Learn-
ing and Statistical analysis

Thése soutenue publiguement le 25-03-2021
devant le jury composé de :

Denis TRYSTRAM

Professeur des universités, LIG, Grenoble INP, France, Directeur de these
Arnaud LEGRAND

Directeur de recherche CNRS, LIG, France, Directeur de thése
Jean-Marc Pierson

Professeur, Université Paul Sabatier, Toulouse, France, Rapporteur
Rizos Sakellariou

Professeur, University of Manchester,England, Rapporteur
Massih-Reza Amini

Professeur,Université Grenoble Alpes,France, Examinateur

Maria S. Perez Hernandez

Professeur, Universidad Politecnica de Madrid,Spain, Examinatrice
Frédéric Desprez

Directeur de recherche, INRIA, France, Président

Patricia Stolf

Maitre de conference, Université de Toulouse Jean-Jaurés, Examinatrice

Abstract

The infrastructure of High Performance Computing (HPC) systems is rapidly increas-
ing in complexity and scale. New components and innovations are added at a fast
pace. This instigates the need for more efforts towards understanding such systems
and designing new, more adapted optimization schemes. This thesis is a series of
data-driven analytical and experimental campaigns with two goals in mind. (i) To
improve the performance of HPC systems with a focus on scheduler performance. (ii)
To better understand the inner workings of HPC systems, which includes scheduling
evaluation methods and energy behavior of submitted jobs.

We start by performing a comparative study. We focus on the evaluation methods
of schedulers. We study two well-established metrics (waiting time and slowdown)
and one less popular metric (per-processor-slowdown). We also evaluate other
effects, such as the relationship between job size and the slowdown, the distribution
of slowdown values, and the number of backfilled jobs. We focus on the popular
First-Come-First-Served (FCFS) and compare it to other simple scheduling policies.
We show that relinquishing FCFS is not as risky as it is perceived to be. We argue that
using other ordering policies in combination with a simple thresholding mechanism
can offer similar guarantees with significantly better performance.

Then, we proceed to show the limits of simple scheduling policies and we design and
test two machine learning-based paradigms to improve performance beyond what
these basic policies can offer. First, we propose a method to dynamically generate
new scheduling policies that adapt to the changing nature of data in any given
platform. Also, we study the possibility of applying online learning on scheduling
data, and we detail the difficulties that one might encounter in such an endeavor.
For the second approach, we improve the performance of already established schedul-
ing policies by reducing the inherent uncertainty in the scheduling data. More pre-
cisely, the inaccuracy of user runtimes estimates. We propose a simple classification
of jobs into small and large. We show that this classification is sufficient to harness
most of the improvement that can be gained from accurate runtimes estimates. We
use machine learning to predict the classes and improve performance across all
studied platforms.

iv

Finally, we analyze the energy consumption of HPC platforms. We study the energy
profiles of individual jobs. We Observe the similarities and differences between
energy profiles and we propose a series of statistical tests through which we classify
the jobs into periodic, constant, and non-stationary. We believe that this classification
can be used to predict the energy consumption of future jobs and build energy-aware
schedulers.

Abstract (French)

Les infrastructures de systemes de calcul haute performance (HPC) augmentent
rapidement en complexité et en échelle. De nouveaux composants et innovations
sont ajoutés a un rythme rapide. Cela incite a redoubler d’efforts pour comprendre
ces systemes et concevoir de nouveaux schémas d’optimisation plus adaptés. Cette
these regroupe une collection de travaux analytiques et expérimentaux avec deux
objectifs. (i) Améliorer les performances des systémes HPC en mettant I'accent
sur les performances des gestionnaires de ressources. (ii) Mieux comprendre le
fonctionnement interne des systemes HPC, qui comprend les méthodes d’évaluation
des ordonnanceurs et le comportement énergétique des jobs.

Nous commencons par présenter une étude comparative. Nous nous concentrons sur
les méthodes d’évaluation des ordonnanceurs en étudiant deux métriques classiques
(temps d’attente et ralentissement) et une métrique moins étudiée (ralentissement
par processeur). Nous évaluons également d’autres effets, tels que la relation entre
la taille des jobs et le ralentissement, la distribution des valeurs de ralentissement
et le nombre de jobs remplacés. Nous nous concentrons sur la politique populaire
First-Come-First-Served (FCFS) et la comparons a d’autres heuristiques de planifi-
cation simples. Nous montrons que ’'abandon du FCFS n’est pas aussi risqué qu’on
le percoit. Nous soutenons que l'utilisation d’autres politiques combinées avec un
simple mécanisme de seuillage peut offrir des garanties similaires avec des perfor-
mances nettement meilleures. Ensuite, nous montrons les limites des heuristiques
d’ordonnancement simples et nous concevons et testons deux paradigmes basés sur
I'apprentissage automatique pour améliorer les performances au-dela de ce que ces
heuristiques de base peuvent offrir. Tout d’abord, nous proposons une méthode
pour générer de maniére dynamique de nouvelles politiques d’ordonnancement qui
s’adaptent a la nature changeante des données sur une plateforme donnée. Nous
étudions également la possibilité d’appliquer 'apprentissage en ligne sur ce type des

données, et nous détaillons les difficultés que 'on pourrait rencontrer dans une telle

entreprise.

Pour la deuxiéme approche, nous améliorons les performances des politiques
d’ordonnancement déja établies en réduisant I'incertitude dans les jobs. Plus précisé-
ment, 'inexactitude des estimations des temps d’exécution des utilisateurs. Nous
proposons une classification simple des jobs en petits et grands selon leur taille.
Nous montrons que cette classification est suffisante pour exploiter la plupart des
améliorations qui peuvent étre obtenues a partir d’estimations précises des délais
d’exécution. Nous utilisons 'apprentissage automatique pour prédire les classes et
améliorer les performances sur toutes les plateformes étudiées.

Enfin, nous analysons la consommation énergétique des plateformes HPC. Nous étu-
dions les profils énergétiques des jobs individuels et nous observons les similitudes et
les différences entre les profils énergétiques. Puis, nous proposons une série de tests
statistiques a travers lesquels nous classons les jobs en périodiques, constants et non
stationnaires. Nous pensons que cette classification peut étre utilisée pour prédire
la consommation d’énergie des futurs jobs et pour construire des ordonnanceurs
sensibles a I'énergie.

Acknowledgement

This work was not the result of a single person’s effort, it is the fruit of multiple years
of labor by the author and many others before him. I dedicated this section to show
my appreciation to all those who contributed to the realization of this thesis.

I would like to start by thanking the members of the jury, especially the two reviewers
Rizos Sakellariou and Jean-Marc Pierson for accepting to evaluate my work and
providing me with insightful comments on my dissertation.

I would like to thank my first Ph.D. advisor Denis Trystram for all his support and
contribution during the thesis and the occasional philosophical talk I had the pleasure
to exchange with him. I would also like to thank my second Ph.D. advisor Arnaud
Legrand to whom I owe the better part of my skills as a researcher. His advice,
guidance, and relentless pursuit of better research quality had such a great impact
on my work.

I thank the members of the teams DataMove and Polaris for all the help they provided.
I am grateful to my dear friends and colleague Danilo Carastan-Santos with whom I
had the pleasure to collaborate. I would also like to thank Valentin Reis, the person
that I started my research journey with during my master’s. I thank all the friends
and colleagues that I had the pleasure to meet at LIG and Grenoble. You guys helped
in ways that cannot easily be translated into words.

Last but not least, I would like to thank my parents, especially my father for providing
me with the emotional and moral support that enabled me to carry through the
hardships I encountered throughout this journey.

Vii

Contents

Introduction 1
1.1 High-performance-computing

1.2 Energy Consumptiono v v v i v it 2
1.3 HPCmanagement. v v v v v v i v e e e e 2
1.4 Problemoverview 3
1.4.1 Solutions of HPC performance optimization 3
1.4.2 Machine Learning to improve HPC systems 5
1.5 Content and Contributions 5
Background and Related work 7
2.1 SchedulingIn HPCs. i i i ittt e e 7
2.2 Machine learning for HPC scheduling 8
2.2.1 Reducing the uncertainty in the scheduling data 8
2.2.2 Machine learning to build schedulers 10
23 Energy e 11
2.3.1 Estimating energy consumption via models 12
2.3.2 Estimating energy consumption via Measurements 13
Problem Setting 15
3.1 Preliminary Definitions 15
3.1.1 Jobs . ..o 15
3.1.2 Backfilling 16
3.1.3 EASY-Backfilling, 17
3.1.4 Scheduling policies, 17
3.1.5 Starvation e e 19
3.2 Objective functions it i i 20
3.3 Experimental framework 21
3.3.1 Simulations 22
3.32 Data e e e 23

An in-depth study of simple scheduling policies: Performance and eval-

uation metrics 25
4.1 IntroduCtion v v v v v e e e e e e e e e e e e 25
4.2 Experimental protocol oo 26

4.3 ExperimentalResults 27

4.3.1 Overall Scheduling Performance 27
4.3.2 Is SAF the ultimate simple policy? 29
4.3.3 Accounting the Maximum: one should care with caution . . . 30
4.3.4 Backfilling Influence 32
4.4 Conclusion 34

Adapting batch scheduling to workload characteristics: what can we

expect from Online Learning ? 39
5.1 Introduction v it i it e e e 39
5.2 Experimental setting 40
5.3 Performance evaluation of pure policies 40
5.4 Mixedpolicies 43
5.5 Scheduling using mixed policies 43
5.5.1 Comparing pure and mixed policies 44
5.5.2 Learning: scheduling using best combination learned from a
previous partof thetrace. 45
5.5.3 Exploring the searchspace 47
5.6 Increasing the size of the search space: using more jobs characteristics 47
5.6.1 Black-box optimizers: a quick way to find the optimal 48
5.7 Using other traces: v v v v v v i i e et e e 50
5.7.1 SDSC-BLUE i 51
5.7.2 CTC-SP2. e 52
5.7.3 KTH-SP2 e 53
5.8 Starvation/thresholding 54
5.9 changing the granularity: Usingmonths 54
5.10 Conclusion e 56
Improving Online jobs scheduling via Classification 59
6.1 Introduction e 59
6.2 Preliminary Observations 60
6.3 Job Size Classification 62
6.3.1 Classification Features 62
6.3.2 Classifier Training and Update 64
6.3.3 Online Learning Quality 66
6.3.4 Feature importance analysis 69
6.4 Proposal e e e 71
6.4.1 Scheduling Policies 71
6.4.2 Learning and Scheduling Algorithms 72
6.4.3 Dealing with Classification Errors 73
6.5 ExperimentalResults 74

6.5.1 Overall Impact on Scheduling Performance. 74

6.5.2
6.5.3
6.5.4
6.5.5

Impacts on Individual Months
Impact of Small Job Prioritization over Large Jobs
Impact of the Safeguard Mechanism
Comparison with Clairvoyant Schedulers

6.6 Conclusions and DiSCusSion v v v vttt e e e

7 Energy profiling and classification

7.1 Introduction v v v i i e e e e e e e e e e e

7.2 DatasSOUICES . . . v v v v v e e e e e e e e e e e e e e e e e

7.2.1
7.2.2
7.2.3
7.2.4

Machines
OAR . . . e e
Colmet. e e
RAPL. e e

7.3 Combining the different data sources

7.4 Preprocessing and job distribution

7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6

Sample
Energy Data preprocessing
Classification Tree

Test for stationarity,
Test of variability
Test of periodicity o

7.5 Conclusion e e e e

8 Conclusion

Bibliography

83
83
84
84
84
84
85
86
87
87
89
90
92
94
95
98

99

103

Xi

Introduction

1.1 High-performance-computing

High-performance-computing (HPC) has become an essential tool for science and
industry to make breakthroughs and generate new discoveries. A few decades ago,
only the largest institutions (e.g, military) and the biggest multinational corporations
had access to supercomputers. But the continuous progress in technology and
production techniques caused the cost of computing power to drop significantly over
the last few years, opening new, more diverse, markets and making supercomputing
accessible to new fields in the academic, commercial, and institutional worlds.
Nowadays, almost every field relies on high-performance computing in one form or
another. Supercomputers are no longer a luxury that only a few entities can afford,
it’s a necessary tool one must have to maintain a competitive edge in both research
and industry. We refer to this phenomenon as the democratization of HPC.

Supercomputing, as the name entails, is the use of powerful, massively parallel com-
puters to solve complex computational problems that would take normal computers
years if not decades to solve. The presence of supercomputing can be sensed in
almost every aspect of our daily lives. From weather prediction and automotive
designs to biomedical applications.

Weather applications include forecasts (possibly the most known application of
supercomputers), aircraft flight simulations, and natural disaster prediction. In the
biomedical field, HPC is almost ubiquitous, genomic sequencing, drug designs via
simulations of chemical reactions, and molecular modeling are but a few of the
applications that rely on supercomputers. In Automotive designs, HPC plays an
important role in accelerating the production and test cycle while simultaneously
reducing its cost, enabling high fidelity crash simulations, new materials behavior
simulation, and topological optimization (vehicle shape).

Performing such feats requires massive computational power. To give an idea of the
scale of such machines, we refer the reader to the Top500 [1] site that maintains a
ranking of the most powerful supercomputers. At the time of writing this thesis, 4
supercomputers managed to achieve a performance that exceeds the 100 PeraFlop/s
mark that is 100 x 10'2? flops (floating-point operations). The current top of the

2

list is the Fugaku supercomputer, boosting over 7,630,500 cores and capable of
performing around 537 PFlop/s. Such great computational power always comes at
an equally great cost that takes two forms. The cost of designing and building said
supercomputers and the cost of maintaining and operating them.

1.2 Energy Consumption

Top Supercomputers consume between 10 and 20 megawatts. With such an ex-
orbitant cost, it is becoming more and more clear that efficient management of
supercomputers is a must and the “performance at any cost” approach can no longer
be maintained. Especially as we are pushing toward the exascale age.

In the past, the cost of operating supercomputers was relatively manageable and
optimizations (beyond what basic scheduling policies can afford) were desirable
but not mandatory. Possible gains (in performance and cost of operating) were
always sacrificed for the use of straightforward algorithms that offer simplicity and
"perceived" fairness. Now with current Petascale machines and the coming of the
exascale, the cost of operating such machines is increasing to impossible levels and
better management and usage of supercomputers is no longer just desirable but
mandatory. At the same time, clarity in decision making and fairness between users
is still a top priority. Thus, future management techniques and algorithms should
aim for optimal performance and efficient energy consumption, and interpretability
at equal levels.

1.3 HPC management

Supercomputers are usually shared machines. Multiple users submit their appli-
cations, also known as jobs, programs that usually require high computational
power. These jobs are then sorted into one or several queues and allocated to the
proper resources available in the machine. To perform the aforementioned tasks,
Supercomputers rely on Resources and Job Management Systems (RJMS) such as
OAR [20], SLURM [60] for motoring and control. RJMSs are responsible for the
orchestration between the jobs waiting to be executed and the available resources.
They manage user’s access to the machines, by setting priority and ordering their
job requests in waiting queues. Also, RJMS are usually responsible for resource
allocation which includes designating and reserving which parts of the machine each
job will be executed on. Such a task is not trivial, as it involves balancing multiple
layers and objectives; Making sure that users are satisfied, allocating the proper
resources, and maintaining several cost metrics under control (e.g waiting time,

Chapter 1 Introduction

energy consumption,...).

1.4 Problem overview

1.4.1 Solutions of HPC performance optimization

Numerous solutions and paradigms have been proposed throughout the literature,
each is unique in its methods and objectives. A solution is heavily tied with the as-
sumptions, objectives, and context. These elements are influenced by the researcher’s
view of the problem and how it must be tackled. Assumption can be implicit and are
not always made clear. An assumption generally includes a certain understanding
of the problem and an objective (or multiple) the author is trying to achieve. To
better understand these assumptions and their entailing solutions, we propose the
following ’classification’ of the HPC scheduler optimization’s body of work.

A solution is based on one of two assumptions. (i) All the platforms are unique and
different from one another and the proposed method must be equally unique. (ii) All
the platforms share common traits and the proposed method must focus on these
common traits.

* (i) The first assumption is that supercomputers and their workloads are differ-
ent from one another and a specific solution must be tailored for each situation.
They study and detect patterns and anomalies within the same platform (cer-
tain bottlenecks, differences between periods, ...). After clarifying the problem,
those works usually proceed to propose a solution that is specifically tailored
to the problem.

They could be divided into two subtypes:

— The first subtype includes the detection and solving of a specific problem
in HPC scheduling like GPU bottlenecks (for a certain platform), network
congestion... The study is usually done using very specific data (that is
sometimes characteristic of the platform) and the verification and testing
are done on data that comes from the same platform. This does not
mean that they are useless outside the scope of the platform they were
conducted on. They can are meant to be transferable provided that proper
conditions are met (similar data and/or similar problem).

— The second subtype argues that HPC platform input is not static and
evolves through time. It claims that these evolutions must be studied and

1.4 Problem overview

4

quantified and that scheduling algorithms should also evolve through the
life of the supercomputer and adapt to the workload [42, 68].

* (ii) The second approach relies on the similarity aspect between platforms.
This similarity is generally proven by performing a statistical study on various
different platforms. Then a solution is proposed. The latter relies either on
common sense and simplicity or a scheduling technique that is derived from
the statistical study [41, 21, 65].

The main selling point of this approach is its simplicity of implementation and
that a certain level of improvement is "guaranteed" regardless of the platform.
Also for most cases, it does not require any platform-specific knowledge.

This assumption does not negate the previous. Although Supercomputers are
different, certain traits are common across all the platforms. Some of these
traits include job size distribution, the response of the platform to scheduling
policies. This view offers many advantages when developing a scheduling
scheme. It is transferable from one platform to another, and it tends to be
simpler and less convoluted than the first type.

Similarity-based solutions come in two major forms.

— Generic scheduling policies. This subtype is the most popular in pro-
duction systems because of the simplicity and the clarity it offers. EASY-
FCFS [79] is particularly popular because it also adds the perception of
fairness to the scheduler and prevents starvation (EASY-FCFS is discussed
in detail in Section 3.1.3). But the inner workings of generic scheduling
policies are not properly understood.

— Machine learning-based solutions [21, 78, 68, 69, 46]. They include
works that rely on machine learning to find an approach that can fit all
the possible scenarios. The final outcome of the learning is usually a static
scheduling scheme that is not very different from the generic scheduling
policies.

Finally, it’s worth noting that solutions don’t always subscribe to one end of the
spectrum or the other and there are also studies that are in between.

Our work falls under the first category. We detected and analyze common behavior
between HPCs and propose solutions that are applicable across multiple platforms

Chapter 1 Introduction

1.4.2 Machine Learning to improve HPC systems

Understanding the goals we want to achieve and the context we are in is one of two
pillars to build a proper solution. The second pillar is identifying the tools that will
best help achieve these goals.

With the ever-increasing complexity of HPCs and the growth of the number of appli-
cations and users. Devising scheduling schemes that go beyond basic dispatching
and allocation rules is no longer a trivial task. As HPC platforms evolve so should the
methods and tools used to manage and improve them. Devising scheduling schemes
that go beyond basic dispatching and allocation rules is no longer a trivial task. As
HPC platforms evolve so should the methods and tools used to manage and improve
them. This instigates the need to use tools that can analyze and extract knowledge
from large complex structures.

Machine learning has been receiving great interest as a vehicle to detect and predict
complex patterns. This interest is due to its remarkable success in various fields such
as computer vision and natural language processing.

This interest is also shared within the scheduling community but the progress has
been a little shy due to various reasons. Chiefs among them are the lack of sufficient
and/or proper scheduling data in the past (generally due to the sensitive nature of
data generated by HPC applications), a limited understanding of the inner-working
of real-life schedulers, and the discrete nature of the scheduling problem which
fundamentally differs from the continues optimization scheme that characterizes
most ML algorithms. But in recent years the HPC community started to take more
interest in ML-based solutions and logging data and techniques have been improving
steadily.

In this work, we use a data-driven machine learning approach to extract actionable
information from logs of real-world systems. We explore the benefit of a careful
study of HPC generated data.

1.5 Content and Contributions

This thesis is a series of data-driven analytical and experimental campaigns with
two goals in mind. To improve the performance of HPC systems with a focus on
improving scheduler performance and better understand the inner workings of HPC
systems.

The remainder of this thesis is organized as follows. Chapter 2 presents the state of
the art of scheduling and Machine learning for HPC. It gives an overview of Online
scheduling and Machine learning and the interaction between the two. Chapter 3

1.5 Content and Contributions

details the experimental framework we adopted throughout this thesis. It introduced
the algorithms, the objective functions, and simulation tools used.
Chapters 4, 5, 6, and 7 detail our contributions:

* In Chapter 4, we perform a rudimentary study of classical scheduling schemes
and practices. We take a deep look at the EASY-backfilling heuristics (see
Section 2), and the FCFS index policy. We conduct a comparative experimental
campaign during which we use several orthodox evaluation metrics like the
waiting time and the slowdown. But we don’t limit our study to basic metrics,
we also explore more detailed methods and statistics. Throughout this study,
we Compare EASY-FCFS with other scheduling algorithms that offer the same
guarantees.

* In Chapter 5, we propose a new method to dynamically generate scheduling
policies that adapt to the nature of the workload. We combined several
characteristics extracted from the jobs in a linear expression. We use historical
data to tune the resulting policies. We conclude that using historical data to
predict good scheduling policies for future jobs is not a straightforward task as
we observe the drastically changing nature of the workload itself from one time
period to the next. We also show that generic scheduling policies are far from
optimal and that there is considerable room for performance improvement.

* In Chapter 6, we investigate one of the most known inaccuracies in the schedul-
ing data, the user-provided runtimes estimates. We propose a simple scheme
to reduce this inaccuracy. We classify the jobs into jobs with short runtimes and
jobs with long runtimes and we slightly modify the scheduling heuristic to take
our classification into account. This method shows impressive improvements
in performance.

* In Chapter 7, we analyze the energy consumption of HPC platforms. We study
the energy profiles of individual jobs. Although every job has a unique energy
profile, some similarities between jobs can be identified. From this observation,
we propose a series of statistical tests through which we classify the jobs into
periodic, constant, and non-stationary. We observe that the percentage of jobs
with a predictable energy profile (periodic and constant) is significant enough
to be exploited by scheduling methods.

Finally, in chapter 8, we conclude our dissertation and give some perspectives for
future investigations.

Chapter 1 Introduction

Background and Related work

2.1 Scheduling In HPCs

In the literature, the parallel job scheduling problem, in its majority has been studied
under the view of a more general and closely related problem called multiple-strip
packing problem [40]. Strip packing is a family of optimization problems that deal
with finding a good arrangement of multiple items in a containing region like the
resources of a machine. Scheduling and strip packing are not limited to the HPC
world however, in fact, the field has one of the largest possible applications in areas
of business and industry. Material properties manipulation, cutting process and
bending process are but few examples of applications [55].

The multi-strip packing problem, as well as its multi-resource scheduling analog, is
NP-complete [14]. A problem is NP-complete if all the currently known algorithm for
finding an optimal solution requires a number of computational steps that grows ex-
ponentially with the problem size. Thus alternative approaches have been proposed
instead, such as linear programming [38, 26], genetic algorithms [75, 56], and
neural networks [6]. Xhafa and Abraham [96] present an overall review of schedul-
ing algorithms, mainly focused on HPC platforms. These alternative approaches
however do not guarantee to find the optimal solution, thus sacrificing solution
quality to computational efficiency.

Scheduling in HPC environments is inherently Online which adds several layers of
complexity. In an Online setting, scheduling decisions are taken without complete
information about the tasks to schedule. This lack of knowledge comes in two major
forms: the arrival time and the running (processing time) of the jobs. (i) Arrival
times: jobs arrive at any time and scheduling decisions must be made "on the fly"
without knowledge of any future job. (ii) Processing times: The exact runtime of
any given job is not known in advance and its exact value can only be known at the
end of the execution. Exact runtimes are often replaced by user provide estimates
that are not accurate.

8

2.2 Machine learning for HPC scheduling

The evolving architecture of HPC platforms and the ever-changing nature of its users
over time coupled with inaccurate runtime estimates makes attempting to determine
a good scheduling scheme an elusive goal. To understand such uncertainties or
at least try to circumvent them, many researchers have started evaluating the
use of machine learning techniques. Throughout the literature, a wide range of
learning-based solutions have been proposed. We distinguish two main approaches:
(i) reducing the uncertainty in the scheduling data by adjusting job runtime estimates,
and (ii) directly designing a scheduling scheme that improves specific objectives.

2.2.1 Reducing the uncertainty in the scheduling data

One of the main sources of the complexity of the online scheduling problem is the
lack of information. Other than some essential dimensions like the number and
possibly types of machines and the upper bound for the runtimes, nothing is known
about the job. Important but absent pieces of information include the runtime
(possibly the most important piece of information), memory requirements, I/0
bottlenecks. Obtaining such knowledge a priori is very hard and even impossible. It
requires users to have a very "intimate" knowledge about their jobs and the system.

Numerous approaches have been proposed to reduce inaccuracy and predict the
missing information HPC jobs. Such works rely on feature engineering and machine
learning to build a prediction framework. Generally, the features extracted in these
works—including the contribution of this thesis— share certain similarities The history
of the user and basic job characteristics: arrival time, requested processing time, and
requested resources. (Section 3)

The exact runtime of jobs has received the greatest attention. It is well known
that user-provided runtime estimations are far from accurate [9, 34]. Feitelson et
al. introduced EASY+ +, a variation of the classical EASY strategy, which replaces
user-provided runtime estimates by the average runtime of the two previous jobs
submitted by the same user [90]. Despite its simplicity, it allowed for an improvement
of around 25% over the classical EASY algorithm. In [80], the authors leveraged
historical data by going through the platform logs to find the most similar jobs. They
use features such as userID, date of submission, requested time, and resources. These
fundamental features are still used in the following works. Gaussier et al. improved
upon [90] by using used historical data from different traces and linear regression
to predict runtimes with improved accuracy [42]. They also showed that predictions
could be used more effectively if coupled with a more aggressive backfilling heuristic

Chapter 2 Background and Related work

(namely SPF). Yet, they only focus on manipulating the backfilling policy (replacing
FCFS with SPF) and do not explore the effects of changing the main index policy
(FCFS). Later works [65] showed that the main ordering policy has a more significant
impact on general scheduling performance.

A problem all the aforementioned prediction-based approaches frequently suffer from
is the underestimation of running times. Guo et al. proposed a specific framework
that can be used to detect runtime underestimates [49], allowing to adjust job
runtimes accordingly. They compared their approach with classical prediction
schemes such as SVMs and Random Forests and showed that it also enhanced system
utilization.

An interesting phenomenon is that, increasing the inaccuracy (e.g., doubling the
user-provided estimates) sometimes improves performance [99]. Such surprising
behavior is related to Graham’s scheduling anomalies and stems from the fact
that index policies generally produce suboptimal scheduling. The policy used for
scheduling has a major impact on the effectiveness of accurate predictions, with
policies that favor shorter jobs benefiting more. Gaussier et al. [42] show that,
in some cases, predictions (which always have some inaccuracy) outperform their
clairvoyant counterparts despite the latter’s perfect knowledge of runtimes. During
our experiments, we also often encountered similar situations but this remained an
overall statistically insignificant effect.

In a recent study [64], the authors explored the effectiveness and limitations of
using machine learning to improve the performance of computing clusters. They
show that the workload is highly variable among periods, with large user churn and
changes in machine utilization levels, and that a few users generate most of the
workload. Consequently, model performance can vary strongly on a day-to-day basis.
Moreover, more accurate runtimes do not systematically lead to better scheduling
performance, and with the few datasets available today, it is difficult to assess the
model’s performance. Finally, they argue that training can take many months (or
years) before it reaches a stable level when using a few features, which would
prevent practical deployments. We also observed strong day-to-day performance
variability and the potential inefficiency of static policies learned from long past
periods. These observations motivate the need for a reactive online learning policy
that can quickly adapt to rapid load variations.

Runtimes prediction is sometimes coupled with predicting the value of other "sec-
ondary" elements that are not necessary for all systems. These efforts include
prediction I/0 such as [95] where the authors built a neural network-based tool
to predict both runtimes of jobs and their I/O requirement. Memory consumption
has also received some attention In [85], focus on improving The Slurm RJMS
[60] performance by increasing the accuracy of runtimes and memory consump-

2.2 Machine learning for HPC scheduling

10

tions.They compared multiple supervised machine learning algorithms including
several variations of the linear regression algorithm and decision Trees.

Machine learning has been used for anomaly detection in HPC centers. This gener-
ally includes mass-collecting of data from multiple sources in the platform. Then,
performing some feature selection followed by learning or a classification algorithm
to pinpoint the root cause of the anomaly [91, 92, 24]. In [91] and in [92] the
authors built automated frameworks that leverage data collected from fine-grained
monitoring tools and time series clustering techniques to produce an accurate diag-
nosis.In [13] Bodik et al. proposed using collected data to generate signatures(or
fingerprints) at different time epochs and logistic regression [52] to eliminate fea-
tures that are irrelevant to the anomaly at hand. [24] presents an interference-aware
scheduler for efficient co-execution of applications on GPU-based clusters and cloud
servers. They use learning-based analytical models to characterize incoming applica-
tions then detect interference between them. And they use the results to guide the
scheduler to minimize the interference and improve system throughput.

Another use of machine learning is application fault modeling [79]. It is done by
identifying a fault signature (a set of attributes comprising of system and application
state) Then machine learning is used to determine its nature and distinct character-
istics.

2.2.2 Machine learning to build schedulers

In the previous approach, machine learning is used to reduce uncertainly or provide
additional information that the existing scheduling scheme could use to better
performance. The second approach gives machine learning more control as it aims
to design scheduling schemes that directly act on the ordering and allocation of
jobs. This approach is theorized to grant greater improvement of performance as it
enables explore patterns and combinations that are very hard to detect via classical
methods.

Carastan-Santos and Camargo [21] used synthetic workloads and simulations to
create index policy functions that improve the slowdown metric using non-linear
regression. Interestingly, the generated functions resemble the Smallest Area First
(SAF) policy. Chung et al. [23] expanded this approach to include heterogeneous
systems. Sant’Ana et al. [78] addressed the evolving nature of the workload by using
machine learning techniques to select, in real-time, the best scheduling policy to
apply for the next day on a given cluster, based on the current cluster and queue
states. These attempts generated promising results but are rarely adopted by system

Chapter 2 Background and Related work

administrators as they require deploying significant changes to existing scheduling
policies. Also, some strategies rely on black-box scheduling algorithms.

Reinforcement learning (RL) [61] have been receiving attention in the last few
years as a holistic solution for the complete batch scheduling problem replacing
both expert knowledge and established scheduling heuristics. This intuition stems
from the compatibility of the RL framework to the batch scheduling problem and its
success in other fields [15].

DeepRM [68] is one of the first attempts. The authors perform scheduling using
the RL policy gradient algorithm and a loose adaptation of CCN [66] architec-
ture. DeepRM was tested using synthetic data and its authors presented it not as a
complete solution for the scheduling problem but as a ’good’ start for performing
resources management with reinforcement learning.

In [69] the authors propose Decima, an RL based framework to schedule jobs that
take the form of a DAG (Directed Acyclic Graph) in addition to basic single task jobs.
The framework also handles unbounded stochastic job arrival sequences. Decima
was tested on a simulation of a real spark cluster using a production workload from
Alibaba. The authors showed that it outperforms classical scheduling algorithms
such as Shortest processing time First (SPF), Tetris [47].

RRL [76] is a reinforcement learning-based framework specifically tailored to dy-
namically adjust the parallelism configuration of machine learning serving systems.
In more recent work, [97], the authors propose RLScheduler, a framework that
derives adaptive policies for batch scheduling. The framework uses a kernel-based
deep neural network [46] and a trajectory filtering mechanism. RLScheduler is a
completely automated batch job scheduler and according to the authors, it negates
the need for human expertise. It uses kernel-based neural networks and trajectory
filtering. It was tested on real-world traces from the parallel workload archive [74].
It offers performance guarantees that are on par with state of the art scheduling
heuristics.

RL approaches, although promising, are still in the early stages. Most of the proposed
works in the literature rely on synthetic data and over-simplified assumptions for
implementation and testing. To the extent of our knowledge, [46] is the closest so
far to an applicable RL-based scheduler.

2.3 Energy

In recent years, power efficiency in HPC centers has attracted a great deal of
attention from both the industrial and research communities. This is evident by the
large number of studies that have been and are being conducted and the numerous
techniques aiming to quantify and reduce the energy consumption of HPC systems.

2.3 Energy

11

12

Energy optimization has always been viewed as one of the more complex tasks in the
HPC optimization Eco-system. This perception can be attributed to several reasons.
(i) New hardware components appearing [88] and older components being upgraded
every few years [89]. Such components although promise great improvement on
both energy and performance do not have a properly defined energy profiles. Their
interactions and impact on the general workload cannot be fully understood from
the beginning. Thus, a period of study and analysis is always required. (ii) Energy
optimization metrics are relatively new compared to more established metrics such
as user sanctification and waiting time. This is shown by the lack of consensus about
the metrics to use and the core components to monitor [25].

The growing interest in the energy question combined with general high activity
in the HPC field resulted in a large number of works whose goal is the study and
improvement of energy consumptions. Keeping track of all these works and their
current standing is not a trivial task, Thus many researchers performed surveys to
organize and structure energy works by proposing new taxonomies and classifications
or to extend and include more recent advancements in the field [25, 8, 48, 84].

In [8], the authors propose a survey about energy monitoring in large-scale systems.
They focus on solutions that are used for online power measurement. They point out
and discuss several of the flows and weaknesses of current monitoring methodologies.
They argue the need for high quality -high precision measurement of large systems.
They also invoke several older extrapolation studies and conclude that such studies
tend to be inaccurate. This point of view is not unique to them as many observers
advise taking caution when using extrapolation studies. Prediction about future
energy behavior have a notorious reputation of being widely different from reality
[@57]. A recent survey [25] discusses state of the art APIs to control energy and
power management. Their main conclusion (among other conclusions) is that
there is a need for unification in the energy monitoring and evaluation processes.
They advocate focusing efforts on determining what they refer to as a cardinal
common subset of universal parameters related to power and energy. They also
suggest building performance-energy models for a wider range of CPUs and GPUs
architectures for various classes of applications.

2.3.1 Estimating energy consumption via models

A sizable portion of the studies focuses on building energy estimation models rather
than direct energy measurement. This is mainly because the latter requires tools
such as watt meters or power sensors which requires a significant software and
hardware investment to put in place [45].

Performance monitoring counters (PMC) [73] are one of the cornerstones of building
energy models. Such model estimates power consumptions of architectural units

Chapter 2 Background and Related work

based on their activity factors such as integer operations, floating-point operations,
memory requests due to cache misses, etc [10]. [59] and [94] propose system-wide
power prediction models for HPC servers based on PMCs. applications into groups
and create specialized power models for them.

For more detailed information about energy models, we refer the interested reader to
the following surveys: (i) [73] studies several models and extract common features
between them, and proposes a classification based on the dominant components.
(i) [39] A survey that focuses on modeling energy consumption of machine learning
algorithms.

2.3.2 Estimating energy consumption via Measurements

Measurement-based studies are generally shown to be more accurate and reliable.
However, they require a certain level of instrumentation and involvement (hardware
and software) to use.

Power meters are a popular tool to measure power consumption. However, they
only provide the total power consumption of the whole system. Most devices are
not instrumented for component-level power measurement and adding the instru-
ment and the suitable interfaces to provide such reading usually involves intrusive
modifications to the system that are not trivial to put in place and they often cause a
power distribution network.

The PowerPack framework [43] proposes a combination of instrumentation and
models. It couples power with PMC models [73]. PowerPack is a power profiling
tool that uses power meters for general machine consumption and DC power data
devices to gather component-level power consumptions. The main drawback of such
too is that it requires a large number of power measurement instruments, making it
difficult to collect data and conduct large, multi-cluster scale comparative studies.

Another option that has been gaining popularity in the last few years is Intel’s
Running Average Power Limit (RAPL) interface [58]. RAPL was introduced in Intel’s
Sandy Bridge architecture and has been included in later versions, evolving and
improving with every iteration. RAPL is a model-based interface that doubles as an
energy control and monitoring tool. It provides power limiting features and accurate
energy readings for CPUs and DRAM which are easily accessible [98].

The growing popularity of RAPL can be attributed to several reasons. RAPL causes
minimal interference to the regular operations of data centers, it is easily executable
because it does not require any external sensors or energy meters to be mounted
with the system. Also, RAPL seamlessly expose the energy reading and power states
to the OS. And the measurement it provides can be gathered by a wide variety of
tools, including the Linux perf event interface [28]. This allows for unprecedented

2.3 Energy

13

14

easy access to energy information when designing and optimizing energy-aware
code.

Many studies have been conducted to test and validate the accuracy of the reading
provided by RAPL. Most of the research conducted on RAPL’s quality of measurement
reported that its readings are sufficiently accurate (highly correlated with plug
power). Dongarra et al. [30] studied energy consumptions of high-performance
dense linear algebra libraries LAPACK and PLASMA using power pack and Intel
Running Average Power Limit (RAPL) API. They concluded that RAPL API is a good
alternative to the more intrusive and expensive power meters based on near-identical
power measurements observed between PowerPack and RAPL. In [50], the authors
provide an overview of different power measuring techniques including RAPL and
APM (AMD’s energy measurement interface). They concluded that although RAPL’s
energy measurements are fairly accurate, its potential is severely hundred by the fact
that RAPL provides energy (and not power) consumption data without timestamps
associated with each counter update. For the aforementioned reasons, we decided
to rely on RAPL for energy measurement in this thesis.

Chapter 2 Background and Related work

Problem Setting

In this chapter, we introduce the various elements we used throughout this work.
In Section 3.1., We explain the backfilling algorithm and one of its most popular
variants (EASY), the ordering policies, and the phenomenon of starvation. The
objective functions are defined in Section 3.2. Finally, We present the experimental
setup in Section 3.3; we detail the data used, the simulations used, and the general
workflow.

Chapters 5, 4, and 6 all share the elements that will be introduced in this chapter.
Any difference or specificity will be detailed in its respective chapter.

3.1 Preliminary Definitions

3.1.1 Jobs

A job in the scheduling world, depending on the goal and the available information,
can have many definitions.

This work is based on real HPC logs. Mainly extracted from the parallel workload
archives [74]. Our goal is to propose general methods to improve the performance
of any given HPC platform. Thus we take the most general definition of a job. We
limit the used information to include only the elements that are common between
the jobs in all HPC platforms.

We consider an online scheduling model, where the jobs arrive at different times
unknown in advance. Figure 3.1 depicts the shape of a job. The information available
upon arrival are:

* p: The runtimes of the job, also called the processing time. It represents the
exact execution time of the job. It is only known after the job finishes its
execution. Thus when making a scheduling decision it is replaced by p

* p: The requested processing time, also called the estimated processing time.

An estimation/upper limit of the processing time given by the user.

* ¢: The requested resources, also called number of requested processors , the
requested, set by the user.

15

16

Number of requested resources

T Running time T T

Requested running time

Fig. 3.1: A job is defined by three elements. the requested number of resources, and the
requested running time, and the actual running time of the job.

* submission_time: the arrival time of the job.

The scheduler chooses one or more of the waiting jobs to execute at each time-step.
Jobs cannot be preempted and Internal Information such as intra-job communica-
tion, level of parallelism are not taken into consideration. Jobs are considered as
independent from each other and no precedence constraint are taken into account.

3.1.2 Backfilling

At its core, the task of scheduling is simply the selection of the order in which jobs
will be executed. One of the most popular techniques used to perform this task is the
Backfilling algorithm. Backfilling works by finding "holes” in the scheduling table
and moving smaller jobs forward to fill these holes. Backfilling has the benefit of
reducing fragmentation and improving throughput.

Two particularly known backfilling heuristics for HPC platforms are EASY [79]
and conservative [70]. In conservative backfilling, each job is given a reservation
upon its arrival. Jobs can move ahead of the queue via the backfilling mechanism
as long as they don’t delay any of the reservations. When a new job arrives, all
the reservations are revised and modified if necessary. With EASY backfilling, the
reservation is only made for the job at the head of the queue. While conservative
offers many advantages, it introduces significant overhead and limits opportunities
for backfilling [81]. That could explain why EASY is still the most popular of the two
as many machines in TOP500 [1] rely on some variation of it. In [82], the authors
offer a detailed comparison between EASY and Conservative backfilling.

Since most of the works we will present in the subsequent chapters are based on the

Chapter 3 Problem Setting

EASY algorithm, we provide a detailed description of how it works in the following
Section.

3.1.3 EASY-Backfilling

EASY-backfilling or EASY [79] is a scheduling algorithm that uses a queue to select
and backfill jobs. The jobs are usually ordered and backfilled using an index policy
which is an an ordering rule based on a certain job characteristic. e.g FCFS as it
name entail used the arrival time to sort the jobs. Index polices are explained in
detail in Section 3.1.4.

Algorithm 1 recalls how EASY works. At any time a scheduling decision is required
(i.e. job submission or termination), the scheduler goes through the job queue in
a primary order and starts them until it encounters a job that cannot be started
immediately. At this point, the scheduler makes a reservation for this particular
job which ensures that it will not be delayed from its initial position. Then, it goes
through the rest of the job queue in a backfilling order and execute any jobs as long
as it does not delay the unique reservation mentioned earlier. This is known as
backfilling. One of the most popular variations of the EASY algorithm is EASY-FCFS-
FCFS where the jobs are ordered and backfilled by their arrival time.

Algorithm 1: EASY Algorithm

Data: Queue Q of waiting jobs sorted by increasing submission times.
Order primary queue according to an index policy

1 for jobjin Q do

2 if j can be started then
3 Start j

4 Remove j from Q

5 else

6

Reserve j at the earliest possbile time according to the estimated
running times of of the currently running jobs
7 break
Backfill according to the selected policy
8 L — Q -[reserved jobs]
9 Order L according to selected policy
10 while L not empty do
11 Start all the jobs that can be backfilled without delying the reservation
from Q

3.1.4 Scheduling policies

In Section 3.1.1 we stated that a job has 4 characteristics. The arrival time, the
number of requested resources, the running time and the requested running time.

3.1 Preliminary Definitions

18

The

running time can only be known after the job finishes the execution. Thus

it cannot be used to help schedule jobs in the waiting queue. Thus, we rely on

the three remaining pieces of information. A job characteristic can be one of the

aforementioned three. We can also combine them in various ways to generate new

characteristics that express different, more elaborate types of information. We use

the following job characteristics during the experimental campaign:

g;: (requested resources) the number of processors the user requested.

pj: (requested/estimated processing time) the estimated processing time
provided by the user, it also serves as an upper limit to the time the job is
allowed to run. The actual processing time p; can only be obtained after the
execution of the job.

waitj: (waiting time) How long a job j spent in the waiting queue:

wait; = current_time — submission_time;
pj: (estimated ratio) %.
J
a;: (estimated area j) p;q;. The total processing power a job is estimated to
use during the execution

. . t . S .
exp;: (estimated expansion Factor) %ﬁpﬂ:

the ratio of the total time a job
is expected to stay in the system (waiting time plus estimated processing
time) normalized by its estimated processing time. This characteristic is rather
special since it reflects the estimated value of the objective function. Note
that the BSLD could have been used instead of the expansion Factor but it
makes very little to no difference in term of ordering since only the smaller
jobs (which usually have the least impact on performance) are marginally
concerned.

Scheduling using exp; is expected to be a good or at least an important strategy.
But it is unknown how it will perform at this point since it does not account
for g;.

With each of the six aforementioned job characteristics, we construct two scheduling

policies: one that prioritizes the lowest score given by the characteristic and another

the highest. So we have the following 12 pure policies:

FCFS: First Come First Served

LCFS: Last Come First Served

SPF: Smallest estimated Processing time First
LPF: Longest estimated Processing time First
SQF: Smallest Resource Requirement First

LQF: Largest Resource Requirement First

Chapter 3 Problem Setting

* SAF: Smallest estimated Area First

* LAF: Largest estimated Area First

» LEXP: Largest estimated Expansion Factor First
* SEXP: Smallest estimated Expansion Factor First
* LRF: Largest estimated Ratio First

e SRF: Smallest estimated Ratio First

3.1.5 Starvation

Among all the scheduling policies presented in Section 3.1.4, FCFS is the most

popular. A major reason for that is EASY-FCFS’s natural ability to prevent starvation.

Starvation occurs when a job is denied the resources necessary for its execution for
an unbounded period of time. In the FCFS case, the job will wait for a maximum
equal to the time necessary to finish all the jobs that arrived before it.

The definition of starvation can be extended to include long periods of waiting. The
exact time a job wait before it is considered a starving job is subjective as it depends
on the size of jobs and the tolerance of the user (how much they are willing to wait)
and the amount of the workload and many other factors.

Starvation is a concern for any policy that does not take the waiting time of the job
into consideration. For example, under the SPF order, a job will wait until all the
smaller jobs are executed, including the ones that arrived after it.

In this work, we mitigate the starvation problem by deploying a simple but effective
thresholding mechanism. A threshold can be defined as the maximum time a job
can wait before it is considered a starving job. The jobs that exceed the threshold
value are moved to the head of the queue regardless of the ordering policy in play
and are executed in FCFS order.

This mechanism can be seen as a re-introduction to the FCFS principle to other
scheduling policies. By coupling non FCFS scheduling policies (e.g, SPF) with the
thresholding mechanism, The scheduler guarantees that no job will wait beyond a
certain amount of time. Moreover, by manipulating the value of the threshold the
system administrator has the ability to flexibly create hybrid algorithms that are
a compromise between any scheduling policy he chooses and FCFS. In [65], the
authors perform a detailed study of the thresholding mechanism and the impact of
different values. Thresholding offers the option of using more greedy or aggressive
ordering policies while limiting the risk of starvation.

3.1 Preliminary Definitions

19

20

3.2 Objective functions

There is a large number of objective functions (also know as scheduling metrics or
cost metrics) [36] — which focus on different performance aspects of the scheduling
— that can be used by HPC platform administrators. In this regard, we focus on three
platform-wise, job-oriented metrics. The first metric is the waiting time (Equation 3.1)
which, measures the time that the job waited for execution, and it can be defined for
a job j as:

wait; = start; —r; (3.1

where start; is the time that j started its execution. The second metric is the
slowdown(sld) or stretch which, measures the ratio between the time that a job j
spent on the platform wait;, and the actual processing time p;of j. It was designed
to be a metric that "remedies the waiting time’s favoritism toward longer jobs" [36].

Formally, the slowdown can be defined as follows for a job j:

sld; = max (wazt;—i—pj’ 1) (3.2)
)

The reasoning behind slowdown is based on the expectation that the waiting time of
a job should be proportional to its processing time, thus giving a balanced waiting
time distribution among jobs with different characteristics, notably the processing
time p;. One major shortcoming of the slowdown is that it heavily punishes very
short jobs with a reasonable waiting time. For that reason, the slowdown is almost
never used in its basic form, instead, most systems use the bounded slowdown
(Equation 3.3):

max(p;, T)

.
bsld; — ma (wﬂ’ 1) (3.3)

where 7 is a constant to prevent smaller jobs from reaching very high bsld values,
and it is often set to 10 seconds. In the remainder of this thesis, we use the term
slowdown and bounded slowdown the refer to the bounded slowdown

Finally, the fourth metric is the per-processor bounded slowdown [100] (pp-bsld or
pp-slowdown, Equation 3.4), which is defined for a job j as:

Chapter 3 Problem Setting

pp-bsld; = max <w‘”tﬂ' P) 1) (3.4

¢; - max(pj, T ’

where w; and 7 are the same as for bsld. The reasoning behind the per-processor
bounded slowdown is to normalize the slowdown results for jobs that perform the
same amount of work, though with different degrees of parallelism (number of
processors). The pp-slowdown can be seen as a more appropriate objective for the
parallel batch scheduling problem, as it tries to balance the waiting time of the jobs
in function of the number of processors ¢;, which is not taken into account by the
waiting time and the slowdown.

Fairness and user satisfaction: There are arguments for and against all the afore-
mentioned metrics (and every other metric for that matter). In fact, there is no
single metric or number that can objectively determine the superiority of a schedul-
ing policy compared to others. Thus we should identify the optimization goal we
want to achieve and choose the objective function accordingly. For slowdown and
pp-slowdown, the expectation of a good scheduling performance is that the waiting
time of the jobs should be proportional to its running time, that is, a job that must
perform a larger amount of work (and thus requires many resources and/or for a
longer period) could “afford” a longer waiting time. Indeed, it is arguable that the
slowdown metric can be a good performance metric for a job-centric fairness, in
comparison to other metrics such as waiting time. One could envision, however,
that a better performance metric could be a user-centric metric, that captures the
overall satisfaction among users. Although this could be indeed the case, one can not
simply simulate user behavior by reproducing a workload trace due to the fact that
the workload would change (in an on-line manner) in function of the scheduler’s
performance (e.g. a more efficient scheduler would stimulate users to submit more
jobs and vice versa). Although some effort has been performed to propose solutions
in this regard [35], at the time of writing of this paper, there is no consensus in the
community about accurate and/or meaningful ways to simulate user behavior, which
leads us to choose a job-centric approach rather than a user-centric one.

3.3 Experimental framework

3.3 Experimental framework 21

22

3.3.1 Simulations

The most reliable method to study the behavior of a scheduling policy is to apply
it directly to a real-world system. However, this method is rarely used. (i) It takes
a long time to observe the full effects and the tested algorithms or techniques.
(i) HPC management is usually a subject to many constraints like maintaining user
satisfaction, maximizing machine utilization, and controlling energy consumption
and any change other than the established practices are considered very risky. Thus
most people opt for simulations.

Performing a realistic simulation is not a trivial task. One must take into account
the numerous components in play like the type and the state of the CPU, memory;,
and network, the current load of the machine, and its impact on the performance to
name a few. Any of these factors can have a decisive impact on the performance of
the platform which in turn directly impacts the time it takes to execute the jobs. For
that reason, a lot of effort has been directed toward simulating an HPC environment
or at least a specific aspect of it [63, 72, 32, 54, 7].

In the context of our work choosing a simulator is a question of a trade-off between
accuracy and speed. The experiments presented in chapter 5 focus on generating
and testing various scheduling combinations with the EASY-backfilling algorithm. It
is a series of machine learning tasks that require a substantial number of simulations.
For this reason, we decided to fully favor performance over precision. We discard
all topological information related to the platforms that generated the traces. We
consider all processors to be indistinguishable from each other and the cost of
communication non-existent. We use a lightweight simulator that can replay the
EASY-backfilling scheduling process at very high speeds. Thus, we replace the RIMS
with a EASY-backfilling lightweight simulator!. The experiments in chapters 4 and
6 are not as computationally demanding as in Chapter 5. Instead, they require
real-time modification and manipulation of EASY. So we opted for using Batsim [31],
an HPC simulator based on SimGrid [22]. Bastim allows us to accurately simulate
the platform and the scheduling process of many workloads within a reasonable
amount of time.

"https://gitlab.inria.fr/szrigui/mixed-policies

Chapter 3 Problem Setting

https://gitlab.inria.fr/szrigui/mixed-policies

3.3.2 Data

3.3.2.1 User scheduling data

One of the main objectives of this thesis is to propose practical, grounded approaches

to understand and improve the quality of RIMS schedulers. We build our solutions

from observations of actual scheduling events. For this reason, we choose real-world

traces (from the parallel workload archives [74]) instead of artificially generated

data. Table 3.1 outlines the workload used throughout the experimental campaign.

These particular traces were chosen for the following reasons. (i) They come from

different environments. (ii) They have a high resources utilization, which is required

to properly test scheduling algorithms in as many settings as possible. (iii) They

have been used in previous works [90, 21, 42], which provides a valuable reference

point and allows us to compare our approach with similar approaches from the

literature.
#CPU . Average job

Trace (#nodes*node_size) #Duration #Jobs duration
KTH-SP2 100 (100*1) 11 Months 27670 8579 (s)
CTC-Sp2 338 (338*1) 11 Months 68687 9807 (s)
SDSC-SP2 128 (128*1) 24 Months 49809 6318 (s)
SDSC-BLUE 1,152 (144*8) 32 Months 208716 3184 (s)
HPC2N 240 (240%1) 42 months 2020,871 ??(s)
Metacentrum-zegox 576(576%2) 24 months 79,546 ?2?(s)

Tab. 3.1: Workloads

3.3 Experimental framework

23

An in-depth study of simple
scheduling policies: Performance
and evaluation metrics '

4.1 Introduction

Throughout the history of HPC optimization, a vast number of queue ordering
policies have been conceived, from hand-engineered [87] to tuned or machine-
learned [42, 21, 65, 41] policies.

Despite this impressive number of works, it is well known [37] that most RIMSs
still deploy the First-Come-First-Served (FCFS) policy with some backfilling mecha-
nism [70] (EASY-FCFS), and optionally with an arbitrary job prioritization, repre-
sented by multi-queue priorities [77].

Many reasons can be devised to justify the choice of EASY-FCFS: it is established
that EASY-FCFS increases the overall utilization of the platform, while keeping a
relative simplicity and job starvation guarantees. Furthermore, although it is also
established that there is room for improvement in the scheduling, replacing EASY
Backfilling with another algorithm might be seen as a risky change: one can see this
change as a “jump into the dark”, with the changes in performance only noticeable
after a long period of time, and potentially after many strong-worded emails from
many (important) users. This work goes towards bringing light to this jump. We
selected a class of scheduling algorithms that keep the same simplicity and starvation
guarantees of EASY Backfilling and we used a fast and reliable HPC simulation
software to provide sound evidence on what could be gained — considering many
relevant performance metrics — if one replaces EASY Backfilling. More specifically, in
this chapter:

* We present an experimental study that addresses the expectations and potential
gains that come from replacing the EASY-FCFS scheduling policy in typical
high-performance computing platforms;

!The text of this chapter is adapted from the following published paper:Danilo Carastan-Santos,
Raphael de Camargo, Denis Trystram, Salah Zrigui. One can only gain by replacing EASY Backfilling:
A simple scheduling policies case study. CCGrid 2019 - International Symposium in Cluster, Cloud, and
Grid Computing, May 2019,

25

26

* We highlight the Shortest Area First (SAF) scheduling policy, which, we argue,
has the best-observed overall performance among the tested policies. In fact,
we propose SAF as a new benchmark for future batch scheduling studies;

* We highlight an aspect that is often overlooked when evaluating the per-
formance of a scheduling policy, which is the link between the number of
resources used by jobs and the fairness of a given scheduling policy;

* We address the influence of the aggressive backfilling mechanism on the
transparency and predictability of scheduling algorithms.

The remainder of this chapter is organized as follows. Section 4.2 details the
experimental protocol we adopted for this chapter. In Section 4.3 we present
and discuss the obtained experimental results. Finally, we summarize the main
conclusions of the paper and present future works in Section 4.4.

4.2 Experimental protocol

The experimental campaign we present in this chapter relies on the elements in-
troduced in Chapter 3. We use 5 of the of traces presented in 3.1; KTH-SP2,
SDSC-SP2,CTS-SP2, SDSC-BLUE, and HPC2N.

We focus our analysis on the policies representing one of the fundamental aspects of
any job: The arrival time, the running time, the number of resources, and the total
area. We also select the policies that prioritize shorter/smaller jobs since they tend
to largely outperform their longer/larger counter parts [41]. We use FCFS, SPF, SQF,
and SAF (Section 3.1.4).

We make use of BatSim [31] (Section 3.3.1), which allows us to rapidly and accu-
rately simulate the scheduling of many workload traces with using only a single
workstation and in only a matter of days, which would not be feasible without
simulation.

In order to provide statistically meaningful results with the scheduling of the traces,
we adopted a sampling technique based on [35]. Algorithm 2 presents the pseudo-
code. The idea is to generate new data using existing user profiles. A profile can be
defined as the activity of a single user throughout the trace, split into many weekly
time periods. To generate a new trace we combine several random permutations of
each user’s profiles. One can observe that this sampling technique is not capable
of reflecting the workload changes in function of the scheduler’s performance (as
discussed in Section 3.2). However, it allows to generate as many logs as needed
while preserving the jobs’ properties of each user.

Chapter 4 An in-depth study of simple scheduling policies: Performance and evaluation

Algorithm 2: Workload trace resampling algorithm.

Data: List of user profiles P extracted from the original workload trace.
Number of weeks in the resampled trace 7,,.

Result: Resampled trace W,

1 Wres < @

2 fori =1 to n, do

3 Wres < @

4 foreach user profile p in P do

5 Di,.. < random weekly split from p

6 add p;,... tO Wyes

7 append wyes in W

8 return W,

For each trace, we generate 10 samples using the aforementioned procedure. The
size of each sample is proportional to the size of the original trace. Each sample is
then simulated following the EASY scheduling algorithm, taking into consideration
each of the four chosen scheduling policies . The results for each scheduling policy
and workload trace presented in the next Section are statistical summaries of the
ten samples of each trace.

4.3 Experimental Results

In this section we present the main results obtained by the experimental procedure
described in Section 4.2. We perform several analysis in order to provide a better
understanding of the behavior of the scheduling policies and what gains could be
expected if a certain scheduling policy is chosen.

4.3.1 Overall Scheduling Performance

Figure 4.1 shows the overall performance results for the average slowdown, waiting

time, and pp-slowdown. Each subplot refers to a workload trace from Table 3.1.

To avoid outlier interference in the results, for each trace and scheduling policy
we discarded the best performing and the worst performing workload sample (see
Section 4.2) from the 10 initial workload samples. In other words, we present only
the scheduling results of the samples whose performance belongs to the 10-90%
percentile range. Each subplot contains statistics of the scheduling simulation of
these remaining samples. The solid lines in the subplots represent the cumulative
mean of the objective metric (average slowdown, waiting time, or pp-slowdown) of
the finished jobs at each week of simulation, from the beginning to the end of the
workload, and the dashed lines represent the cumulative maximum and minimum
average values of the respective metric at each week.

4.3 Experimental Results

27

28

CTC-SP2 CTC-SP2 CTC-SP2

150000

100000

200
50000

HPC2N HPC2N HPC2N

1500000

30000- T 6000

1000000

20000 4000

500000

10000 20004

o o] a=B=BA of o
0 15 30 45 60 75 90 105 120 135 150 165 180 0 15 30 45 60 75 90 105 120 135 150 165 180 0 15 30 45 60 75 90 105 120 135 150 165 180
KTH-SP2 KTH-SP2 KTH-SP2

8000 1000f

o
4
&

2
8
5
8

»
¢
&

Policy

S
8
8
8

®
i
2

2000

Cumulative Average Slowdown

o
o
2

&
8

Cumulative Average pp—Slowdown
Cumulative Average Waiting time

SDSC-BLUE R SDSC-BLUE SDSC-BLUE
2000 i

1500
2e+05

1000

1e+05

° 0e+00| B

6 15 30 45 60 75 90 105 120 135 6 15 30 45 60 75 90 105 120 135 0 15 30 45 60 75 90 105 120 135

SDSC-SP2 SDSC-SP2 SDSC-SP2
1000] .

6000

1500000

4000

1000000

2000
500000

45 60
Week

45 60 45 60
Week Week

Fig. 4.1: Cumulative weekly average slowdown, pp-slowdown and waiting time: For each
trace, the middle solid line represents the mean and the two dashed lines represent
the lower and upper 10-90 percentiles.

Looking at the scheduling performance in Figure 4.1, we can cluster the tested
policies in two classes: the ones that are oblivious of the processing time estimate
p (FCFS and SQF), and the ones that are not oblivious (SPF and SAF). From the
aforementioned Figure, we can observe a strong correlation between the scheduling
performance of these clusters, with the former cluster consistently presenting worst
performances than the latter. This result is expected: for the slowdown and pp-
slowdown, jobs with a lower p — and thus lower p, since p is an upper bound of p —
have a higher risk of inflating the metrics if they wait too much (see Equations 3.3
and 3.4). By favoring jobs with a lower p (SPF and SAF), we assure that these
high risk jobs are executed quickly, and thus the average for both slowdown and

Chapter 4 An in-depth study of simple scheduling policies: Performance and evaluation

pp-slowdown are kept under control. The waiting time is also favored by prioritizing
jobs with lower p, since for all traces these jobs are more frequent [74].

One point that is worth noticing is how much can be gained in quantitative values if a
policy other than FCFS (notably SPF or SAF) is chosen and kept during a long period.
In our experiments we achieve performance gains up to 83.4% (SPF), 61.4% (SAF),
and 85.1% (SAF) for the slowdown, waiting time, and pp-slowdown respectively, in
comparison with FCFS. It is important to note here that the scheduling simulation is
performed with a starvation prevention mechanism. Therefore, these gains can be
obtained while guaranteeing that no job will starve.

Another important observation is how SAF — which in contrast with SPF, is less
known in the literature — performs consistently well in all objectives considered. We
further address this phenomenon in the next Section.

4.3.2 Is SAF the ultimate simple policy?

As highlighted in the previous section, the scheduling policies that are not oblivious
to the processing time estimate p (notably SPF and SAF) are the ones who achieved
the most consistent good performances in the experiments that we performed. In
this Section we make a further analysis on which are the characteristics of the jobs
that make them prioritized/delayed by these two policies, with an emphasis on the
delayed jobs.

For the processing time estimate p this analysis can be easily devised: SPF delays jobs
with a larger p and SAF is similar, with the distinction that it considers the number
of processors ¢ as well. This raises the importance of our thresholding mechanism,
which specifically concerns jobs with a large p.

In its turn, for the number of processors ¢, Figure 4.2 shows the number of processors
q of the top 100 jobs — of each sample of each trace — who got delayed the most
(here defined as the jobs with the highest slowdown) for each scheduling policy. An
interesting observation here is that SPF is oblivious to the number of processors ¢
and thus no correlation should be expected for the delayed jobs in function of q.
Therefore, SPF had a high risks of delaying jobs with smaller ¢ which, in principle,
should be easier to be scheduled in an HPC platform.

Indeed, we recall a known observation [36] that the slowdown and the waiting
time metrics (arguably the most popular ones) do not take into consideration one
important dimension of the scheduling problem: the number of requested processors
g. Jobs that perform the same amount of work though with different shapes are

4.3 Experimental Results

29

30

CTC-SP2

200

100

: :
! —
. ‘
FCFS SAF SPF SQF
HPC2N

s0 ‘ ‘ |
SAF SPF SQF

FCFS

KTH-SP2
100 ' ‘ ' ‘

== = |

FCFS SAF SPF SQF
SDSC-BLUE

Number of requested processors
3 @
8 g

600 ‘

FCFS SAF S
SDSC-SP2

PF
i
100 ‘ i
50
. '
SAF SPF SQF

T
FCFS

SOF

Policy

Fig. 4.2: Number of processors of the top 100 jobs with highest slowdown values.

treated indifferently by these metrics. The pp-slowdown generalizes the standard
slowdown by including the number of processors ¢ in the metric.

At this light SAF shows up as a solid policy among the simple ones we evaluated.
It achieved close to best observed performances for the slowdown and waiting
time objectives, and systematically outperformed all other simple policies for the
pp-slowdown objective (Figure 4.1) . This complies with the results of our previous
work [21], where the machine learned policies converged to functions that contain
a SAF-like component. Although one can claim that SAF could be biased towards
pp-slowdown, since with pp-slowdown we would seek to minimize an objective
function that is related to the area of the jobs, we argue that the pp-slowdown is a
more appropriate objective for the parallel batch scheduling problem, in comparison
with waiting time or slowdown.

4.3.3 Accounting the Maximum: one should care with
caution

One can notice that in this work we only seek to find good scheduling algorithms
aiming at the average of the objective functions and not the maximum. Although
one can argue that the maximum of the objective functions are important as well, in

Chapter 4 An in-depth study of simple scheduling policies: Performance and evaluation

this Section we present some observations found by our study that show that aiming
only for the maximum can be potentially problematic.

The first point is that the maximum metric is centered at the performance of only
one job, meaning that the value of the maximum can be unstable and subject to
unpredictable factors, such as unavoidable bursts of jobs submissions and/or jobs
that have some characteristic that can potentially mistakenly inflate the metric.
To illustrate this potential, we clustered the jobs into two classes: the premature
jobs, in which the difference between the processing time estimate p and the actual
processing time p is at least 100 times higher, and the standard jobs, which are the
remaining jobs. Table 4.1 shows the percentage of premature jobs found for each
workload trace. What is interesting to observe is that the number of premature jobs
is not negligible, up to one third of all of the jobs of the trace. Furthermore, the
difference between p and p can be sometimes quite extreme: jobs that are marked
as successful jobs (i.e. job that did not crash) and require the maximum processing
time allowed p, though actually execute for around one minute happen in every
trace. Since these jobs are marked as successful, we can not discard them from the
analysis.

As a consequence, any scheduling policy that prioritizes jobs in function of the
processing time estimate p risks delaying these premature jobs and, when evaluating
the objective function of these jobs, they will obtain poor results which will harm the
maximum of the objective function. To illustrate this effect, Table 4.2 shows the ratio
between the average slowdown of the premature jobs and the average slowdown
of the standard ones, for all traces and scheduling policies. We can notice that the
difference in scheduling performance of these two classes of jobs is large, up to 17
times larger for all policies in the HPC2N trace, and this difference in the maximum
slowdown between these two classes (result not shown in Table 4.2) is even larger.
We can also notice that this difference is often amplified by policies that takes p into
account (SPF and SAF).

Agreeing whether or not these performance gaps are due to the scheduler is always
up to argument. However, Figure 4.3 shows a more holistic view of the scheduling
performance: we grouped the jobs in many categories that are in function of the jobs’
scheduling performance, from the jobs that were executed immediately (slowdown
of 1), to the jobs that were poorly scheduled (slowdown of at least 100). We can
observe that choosing another policy than FCFS shows performance improvements
in all categories: the number of jobs who got executed immediately increases and
the number of jobs in all other categories (the jobs who had to wait) decreases,
with an exception of the SPF policy at the 1-10 slowdown range. These results are
even more impressive for the category of jobs with poorer scheduling performances

(100+ slowdown). For instance, by choosing SAF, the number of jobs who got badly

4.3 Experimental Results

31

32

scheduled can be lowered by more than half, up to 2.8x less poorly scheduled jobs
in comparison with FCFS.

All of these points elucidate the importance of analyzing the scheduling performance
in a holistic view, and the caution that must be taken into account when evaluating
the scheduling performance with maximum values. We would certainly overlook
these good properties of the studied scheduling policies if we had considered only
the maximum of the objective functions.

Tab. 4.1: Percentage of premature jobs for each workload trace

Trace % of premature jobs
HPC2N 17.4
SDSC Blue 30.2
SDSC-SP2 16.1
CTC-SP2 9.5
KTH-SP2 12.4

4.3.4 Backfilling Influence

One important question that rises when the queue ordering policy is changed; is how
the backfilling mechanism behaves in function of the queue ordering policy. Although
it is well known that backfilling increases the platform’s utilization and is unlikely
to harm the original (without backfilling) schedule, its relevance to performance is
not clear. This question is also worth of importance to bring a clearer notion about
the predictability of the scheduling policies, that is, given one policy, how much it is
likely that the jobs will actually follow such an order.

In order to clarify this point, for all samples of each trace and each scheduling
policy we kept track on how many jobs got scheduled to execution by the backfilling
mechanism. Figure 4.4 shows the distribution of the number of backfilled jobs
over all samples, for each workload trace and scheduling policy. One interesting
observation is the absence of backfilled jobs for the SQF policy for every trace and
sample. This result is expected and we formalize it with the following proposition:

Proposition 1. If the aggressive backfilling algorithm uses a queue of jobs sorted by
SQF and there is no threshold mechanism added to the scheduling, no job is backfilled.

Proof. Scheduling decisions are performed in two cases:
1. When a job arrives in the queue: in this case, let ¢;, be the job with the highest

priority in the queue. Job ¢, is in the queue, therefore there is not enough
resources to process t;,. Since the queue is sorted by SQF order, there is no

Chapter 4 An in-depth study of simple scheduling policies: Performance and evaluation

75

50

25

80

60

(9]
o

N
o

Number onobs (%)

75

50

25

60

40

20

CTC-SP2

83.27%
06%

17.49%

16.08%
12.58% 10.98%

(1,10]

6.59% 41400 4.69% 431%

(10,100]

2.76% 0969 1.17% 1.45%
—_——

100+

HPC2N

79.96% 78.77%

79.83%

74.99%
16.62% 15.249% 15.96% 14.09%
352% 229 239% 245% 87 2500 288% 3.63%
(1,10] (10,100] 100+
KTH-SP2
20.14% 72.09%
polic
HEFCES
B SAF
21.88% 22.12% .ggll::
18.35% 15.51%
- 836% 5oy 679 65206 O02% oo a3 5.88%
(1,10] (10,100] 100+
SDSC-BLUE

86.91% g5 1205

86.89%

10.98% 9 479% 10.72% g 7504

=
-

S5.75% 5 go00 3.26% 3.24% 2.37% 08% 091% 1.12%
(1,10] (10.100] -
69929 (0 70.73%
61.38%
18.99% 17,669 19-74% 16.23%
10.16% -9'47%
8.1% 8.54% o
- _ b -
i (1,10] (10.100] o

Bounded slowdown

Fig. 4.3: Distribution of the bounded slowdown values for all jobs

job in the queue that requires less resources than ¢, so none of them can
be backfilled. If a new job ¢ arrives in the queue and its number of required
processors is lower than the number of processors required by ¢, SQF will

4.3 Experimental Results

33

34

Tab. 4.2: Ratio of the average slowdown between the premature the standard jobs

Policy | HPC2N | SDSC Blue | SDSC SP2 | CTC SP2 | KTH SP2
FCES | 17.84 3.59 3.94 5.58 8.69
SPF 17.29 7.17 4.36 5.04 12.09
SQF 14.02 2.96 2.04 1.67 9.31
SAF 17.88 7.41 3.79 2.61 11.41

assign t with the highest priority and thus backfilling will no longer be applied
for t. Conversely, where t requires more processors than ¢;, ¢t cannot be
backfilled as aforementioned.

2. When a job is finished and its allocated resources are released: in this case, the
jobs will be scheduled for execution following SQF order until it is no longer
possible to schedule jobs with the current available resources. At this point,
there are not enough resources to schedule the job with the highest priority
in the queue and, since the queue is sorted in SQF order, no other job in the
queue can be backfilled as aforementioned.

Since in both of the above cases it is impossible to backfill jobs, no jobs are backfilled.
O

Yet, some backfilling may happen when using SQF with jobs that exceeded the
threshold in the waiting queue (since they break the SQF order). However, such jobs
are expected to be very few. This explains some results found by Lelong et al. [65],
in which they state that the SQF policy did not lead to many backfilling decisions in
their experiments.

Interestingly, using SAF and SPF resulted in 78% and 56% less backfilled jobs on
average, respectively, when compared to FCFS. Although it is unlikely that backfilling
would harm the scheduling, as mentioned above, SPF and SAF are more consistent
and predictable policies, since jobs are more likely to be scheduled for execution
following the policy order, as oppose to being scheduled by “jumping ahead” in the
waiting queue in unpredictable moments.

4.4 Conclusion

In this chapter, we move towards providing more knowledge and experience on
what are the expectations if one decides to change the First-Come-First-Served

Chapter 4 An in-depth study of simple scheduling policies: Performance and evaluation

CTC-SP2
20%

15%

10% —_—

5% —————

0%

FCFS SAF SPF SQF
KTH-SP2

3%

20%

10% .
< -
S
w0
-8 0%
s FCFS SAF SPF SQF
©
) SDSC-BLUE
=12.5%
=
AV ﬁ
8
10.0%
m 0
7.5%
5.0% .
2.5%
0.0%
FCFS SAF SPF SQF
SDSC-SP2

20%

15%

10%

0%

FCFS SAF . SPF SQF
Policy

Fig. 4.4: Distribution of backfilled jobs between resamplings.

(FCFS) scheduling policy with aggressive backfilling — the popular EASY Backfilling
— scheduling algorithm. We selected a class of simple scheduling algorithms that
differs from EASY Backfilling by changing the scheduling policy (other than FCFES)

4.4 Conclusion

36

and adding a thresholding mechanism (to provide the same no starvation guarantees
as FCFS). We used a flexible and reliable simulation software and exploited the
rich information presented in HPC platform workload traces to find what could be
observed and gained by using these other simple scheduling algorithms rather than
EASY Backfilling.

Our results indicate that one can only gain by replacing EASY Backfilling with simple
policies that consider the estimated processing time and the required resources,
notably the Shortest Processing time First (SPF) and Shortest Area First (SAF).
By adding a simple thresholding mechanism, it is possible to obtain significant
performance improvements for the long run, using three relevant performance
objectives, while also guaranteeing that every job in the waiting queue will eventually
be executed. We show that these simple policies not only present better performance
in average values, but they also significantly increase the number of jobs executed
instantly (without waiting) and lower the number of jobs that wait for a long time.
The performance gains over EASY Backfilling is distributed among all waiting jobs.

These simple policies also show that they can perform well with less interference
from backfilling: the scheduler is more likely to follow the original order as set by
the chosen scheduling policy, and not by the rules of backfilling, thus providing more
predictability and transparency, two properties that are sought by HPC platform
administrators.

We also highlight a less known scheduling policy in the literature, the Shortest Area
First (SAF). In our experimental campaign, we found that this policy managed to
consistently provide close to the best (if not the best) observed performance in all
scenarios and performance objectives we evaluated. For instance, considering the
slowdown objective, SAF not only provided an average overall performance increase
up to 83.4%, but as well increased the number of jobs that run immediately by
up to 9% and lowered the number of jobs who waited for a long time (very long
slowdown) by up to 2.8 times, in comparison with FCFS. This result reinforces the
relevance of the jobs’ area property, which was seen in our previous work [21], and
raises the question about possible analytical properties of SAF. Nevertheless, we
reinforce that SAF must be considered as a baseline of comparison in future parallel
batch scheduling research.

Last but not least, we present some cautions that must be considered if one wants
to provide a scheduling algorithm that minimizes the maximum of an objective
function. Taking the slowdown objective function as an example, we observed a
class of jobs whose presence in the workload is not negligible and can mistakenly
lead to inflated maximum slowdown values. If one only looks at the maximum of an

Chapter 4 An in-depth study of simple scheduling policies: Performance and evaluation

objective function to evaluate the scheduling performance, some good scheduling
policies (as the aforementioned ones) can be overlooked.

One interesting questions can be derived from this study. If we are prepared to
relinquish the simplicity of basic index policies, can we achieve greater improvement?
And under what conditions?. We attempt to answer this question in the following
chapter.

4.4 Conclusion

37

Adapting batch scheduling to
workload characteristics: what
can we expect from Online
Learning ? '

5.1 Introduction

Taking the right scheduling decision is a complex problem that requires considering
a large number of factors. Some of which are clear and visible but most are not. In
the face of such growing complexity, many system administrators opt for the simple
answer: use simple dispatching rules that are based on intuition and that offer
certain guarantees, e.g. First Come First Served (FCFS) to prevent starvation, or
Shortest processing time First (SPF) because it favors interactivity, or Smallest area
First (SAF) as we argued in the previous Chapter. However, they are far from optimal

and many studies [90, 65, 42] show that there is still room for software optimization.

A common practice for RJMS is to keep execution logs that detail the history of
the platform: the characteristics of the submitted jobs, their arrival times and other
important information (Section 3.1.1). In this work, we explore the possibility
of employing this historical data to adapt to future workload using more flexible
scheduling policies. We base our experiments on EASY [70], which is one of the most
popular backfilling schemes, and we propose a data-driven experimental campaign
through which we exploit real execution traces in the form of logs extracted from the

parallel workload archives [74]. First, we show the limits of simple, index policies.

Then, we propose a new class of policies, which we call Mixed policies. Using this
class we prove that simple policies are far from optimal and that under the correct
conditions, we can obtain significant gains.

* We prove that it is possible to generate policies that significantly outperform
any pure policy by mixing job features such as the estimate processing time,

!The text of this chapter is adapted from the following published paper: Arnaud Legrand, Denis
Trystram, Salah Zrigui. Adapting Batch Scheduling to Workload Characteristics: What can we expect
From Online Learning?. IPDPS 2019 - 33rd IEEE International Parallel & Distributed Processing
Symposium, May 2019,

39

40

the required resources, and the waiting time in a simple weighted linear
combination.

* We present a mapping of the space of possible policies through which we show
that the evolution of the workload through time is very chaotic, which prevents
online learning algorithms from being effective.

The remainder of this chapter is organized as follows. Section 5.2 details the
specific experimental setting used in this work. In Section 5.3, we provide a quick
comparison of the pure policies presented in Section 3.1.4 and provide the incentive
for this work. In Section 5.5, we present and test the proposed method to obtain
mixed scheduling policies.

5.2 Experimental setting

We use 4 of the real-world traces from the parallel workload archives presented in
Table 3.1; CTC-SP2, KTH-SP2, SDSC-SP2, SDSC-BLUE.

For every trace, we ignore the first period since it generally corresponds to a bench-
marking/testing phase and is not representative of the true workload of the system.
Then, we split the trace on a weekly basis and remove the jobs that start in one week
and finish in another. We consider 45 consecutive weeks from CTC-SP2 and KTH-SP2
and 100 consecutive weeks from SDSC-SP2 and SDSC-BLUE, and we simulate the
execution of all the policies for each week and measure the weekly average BSLD
given in Equation (3.3).

We tried to be as transparent as possible and to make our work reproducible [83].
We provide a snapshot of the workflow we used throughout this work as a link to
a git repository?, which includes a nix [29] file that describes all the dependencies
and four R notebooks that allow regenerating all the figures.

In this work, we replace the RJMS with a EASY-backfilling lightweight simulator 2

written in OCaml. It supports tuning the Primary, Backfilling queues and it discard
all topological information of the machine.

5.3 Performance evaluation of pure policies

We decided to expand the policy set from Chapter 4 to include other pure policies
presented in Section 3.1.4.

https://gitlab.inria.fr/szrigui/mixed-policies

Chapter 5 Adapting batch scheduling to workload characteristics: what can we expect from

https://gitlab.inria.fr/szrigui/mixed-policies

N
I}
3
a
=)

H

@

S
=
S

average bounded slowdown
5
8
average bounded slowdown
@
8

)
S

@
S

P

1)

Oéaaﬁﬁkﬁkﬁké bbb b

SAF SPF LCFS LEXP SQF LRF SRF SEXP FCFS LPF LQF LAF SAF SPF LEXP LCFS SQF SRF SEXP FCFS LQF LRF LPF LAF
policy policy

(a) SDSC-SP2 (b) SDSC-BLUE
gmo gloo
g 75 g 75
b bm b bbb | ﬁi-ﬁ%ﬁﬁ**ﬁ‘ﬁﬁ
SAF SQF SPF LEXP LCFS SRF SEXP LQF FCFS LRF LPF LAF SAF LEXP SPE S°F ICFs SOF OF OFS S5¢ I TAF FF
policy policy
(c) CTC-SP2 (d) KTH-SP2

Fig. 5.1: Tukey box-plot of the weekly average bounded slowdown of pure policies for the 4
traces. The policies are sorted in an increasing order by the mean of the weekly
average bounded slowdown for all the weeks. The three most efficient policies are
highlighted.

Figure (5.1) illustrates the results. The order of the policies with regard to perfor-
mance changes between the traces. In general, the policies that prioritize shorter
jobs, namely SAF and SPF and LEXP, are better for the average BSLD. SAF comes on
top for all the tested traces followed by SPF and LEXP.

As expected, FCFS is not a good policy for minimizing the average BSLD. Although
its exact position changes between traces, it always ranks among the worst policies.
Interestingly, LEXP, the policy that represents the estimate of the very metric we
are trying to optimize, is not the top policy, which indicates the importance of
considering the amount of required resources when taking a scheduling decision.

The good performance of SAF, SPF, and LEXP can be explained by the fact that the
slowdown of a job is proportional to its length. Longer jobs can wait for a longer
time without having their slowdown grow drastically. The slowdown of shorter jobs,
however, increases very fast the longer they wait.

The one size fits all policy?

From the previous comparison and the results of chapter 4, we observe that SAF is
overall better than all the other tested policies to optimize the average BLSD. It gives
the lowest mean on an aggregation of weeks and its outliers are not as extreme as
other policies.

5.3 Performance evaluation of pure policies

41

42

©
3

@
3

SAF

average bounded slowdown
8

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
week

Fig. 5.2: Comparing SAF, the best pure policy on average, with the best pure policy for
every week for the SDSC-SP2 trace.

Figure 5.2 illustrates a more detailed comparison between SAF and the other policies
on a given workload. We compare the average BSLD of SAF with the average BSLD
of the best pure policy for every week individually. As expected, SAF performs well
for most weeks. It is either the best policy or very close to the best. However, we can
spot many weeks where another pure policy performs better than SAF by a significant
margin (e.g. 38, 44, 56, and 85). Regardless of which policy outperformed SAF,
the observation is the same for the four studied traces; SAF is good overall but it
remains far from the optimal in many cases.

Finally, it is worth noting that traces where SAF fails can be found. For example, for
the ANL-Intrepid trace from the Parallel Workload Archive [74], SPF is the best pure
policy with an average slowdown of 35.92 while SAF ranks at 7 over 12 with 39.78.
Likewise, with the Sandia trace, LAF is the best with an average slowdown of 7.353
while SAF ranks again at 7 over 12 with 10.396. We pick the traces in Table 3.1 to
study due to their popularity in the literature [42, 21]. Moreover, the focus of this
work is not to show that a single pure policy is dominant but to study the possibility
of improving the performance of schedulers using historical data.In this section, we
give a quick comparison of pure policies as part of the reason we decide to expand
the possible polices space. Chapter 4 include a full study of pure policies

To make the reading and the analysis easier and to avoid redundancy, all the
experiments in the following sections are done using a single trace: SDSC-SP2. The
same behavior is observed in the rest of the traces. We show their results at the end
of this Chapter (Section 5.7).

Chapter 5 Adapting batch scheduling to workload characteristics: what can we expect from

5.4 Mixed policies

We consider a job j to be characterized by a feature vector
Ty = (qjaﬁﬁ walt]v Pj, €XP;, a])
At each scheduling decision, we define the score of any job j using Equation (5.1).

score(w,z;) =wlz; wecR" (5.1)

where w is the weight vector of the mixed policy: each feature x; has a corresponding
weight w;. These weights are what determine how the mixed policy behaves. The
absolute value of a weight |w;| indicates the importance of the corresponding
characteristic x; when ordering the jobs. While the sign determines the ordering
itself, a positive value means that shorter/smaller jobs are prioritized, while a
negative value means that longer/larger jobs are prioritized.

The scoring function is scale-invariant; the order given by score(Aw, z;) is the same
as the order given by score(w, z;) for all A > 0. Hence, we normalize w and impose
that ||w||; = 1. This constraint reduces the size of the search space and stabilizes
the learning process (which will be explained in detail in Section 5.6.1). Every pure
policy corresponds to a vertex of the polytope ||w||; = 1. E.g. FCES corresponds to
(0,0,1,0,0,0) and LCFS corresponds to (0,0,-1,0,0,0).

Mixed policies are an alternative method to model the scheduling problem. We move
from a discrete optimization to a continuous optimization problem. We construct
a search space that is small in size and instead of finding the best ordering of n
independent jobs we intend to find the best weight for i features where 7 is much
smaller than n.

5.5 Scheduling using mixed policies

In the previous Section, we showed that among all the pure evaluated policies
there is no single policy that is dominant across all weeks. SAF offers a reasonable
compromise but it fails in many cases. This motivates the need for developing a
scheduling approach that adapts to the state of the system and the workload.

In this section, for the sake clarity, we limit the mixed policies vector to only three
elements: z; = (g;, p;, wait;). Further results involving all the six features will be
presented in Section 5.6.

5.4 Mixed policies

43

44

150

=
o
S

average bounded slowdown
@
g

Training : Testing

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

Fig. 5.3: Comparing the performance of various policies on the SDSC-SP2 trace. w* rep-

resents the best policy in hindsight for every week. w*,, is the policy obtained
from learning on the Training weeks, and wgy.q, gives the results of testing the
best policy of one week on the next.

5.5.1 Comparing pure and mixed policies

We consider a set of 100 weeks from SDSC-SP2 and we separate them in the same
way as in Section 5.3. Then, for each week we perform the following:

* Simulate using the two pure policies: (1)FCFS because of its popularity (al-

though it is not very effective for the Average BSLD), and (2)SAF because, as

observed in Section 5.3, it is the best policy overall.

Generate a large number of weight by performing a uniform discretization
of the search space. We take a sequence of 100 points from each dimension
which can take a negative or a positive value. Thus, for three features we have
1003.23 = 8.10% points. Then we simulate each point and we pick the best
vector i.e. the one that gives the lowest scores for this week, and which we

denote w*.

The results are shown in Figure 5.3. w* represents the average BLSD of the best
weekly linear combination. The gain of w* compared to the pure policies varies
significantly. We can classify the weeks into two types.

* Weeks where there is no or a very small difference in performance between

both pure and mixed policies. The average BSLD of such weeks tends to be
very close to 0. Weeks 43, 92 and 94 are good examples of this type. Their
workload is so relaxed that no optimization is required. According to Figure
5.3, around half of the weeks of SDSC-SP2 belong to this type.

Chapter 5 Adapting batch scheduling to workload characteristics: what can we expect from

Policy Training Testing

w* 376.67 357.51
Wokirgin 682.11 778.44
SAF 691.10 721.54
SPF 706.24 787.92

Woreeay 81871 902.55
LEXP 820.94 934.21
SQF 970.49 869.41
SEXP 1016.52 1204.73
LRF 1041.18 1134.92
SRF 1147.96 1114.46
FCFS 1180.24 1398.13
LPF 1239.79 1483.35
LQF 1702.14 2191.97
LAF 2109.84 2355.16

Tab. 5.1: Comparing the sum of the average BSLD for SDSC-SP2 for weeks: 65 to 100. The
highlighted values are obtained in hindsight.

* Weeks where there is a difference in performance between the policies. For
weeks such as 64, 73, 79, and 100, we observe significant variation in per-
formance and a much higher BLSD. For this type, we also notice that w* is
significantly better than all other policies. In week 73, for example, w* reduces
the average BLSD by a substantial margin, approximately 2.5 times less than
SAF, the best pure policy for that week, and 3 times less than FCFS.

Pure policies are thus far from the optimal and a carefully selected combination of
features can give substantial improvement. However, the value for the best weight
for each week can be quite different from the others (w*; # w*; Vi # j € 1..100).
This shows the changing nature of the workload through time and will be discussed
in detail in Section 5.5.3.

5.5.2 Learning: scheduling using best combination learned
from a previous part of the trace.

In this section, we evaluate the generalization capacity of our approach. We investi-
gate how the best combination w* for a part of the trace performs on another part.
We evaluate this ability by using two different strategies.

5.5.2.1 Learning over a long period of time

The idea is to divide the trace into two equal parts and see how the best policy on
the first half performs on the second.

5.5 Scheduling using mixed policies

45

46

For this particular trace, we decided to ignore the first 28 weeks because the workload
at the beginning of the trace is rather light, hence all the tested policies perform
similarly. So we consider the first 28 weeks as non-representative of the actual
workload. Then divide the 72 remaining weeks into two parts of equal sizes. We call
the first part Training and the second part Testing.

64
W¥yqin = argmin Z average_BSLD yecr (W) (5.2)
w week=28

Weeks 28 to 64 (Training): We aggregate using equation 5.2 and we find the weights
W¥qin that minimizes the sum of the weekly average BSLD over all weeks.
Weeks 65 to 100 (Testing): we evaluate w*;4;, on the new Testing weeks.

The aggregated results are illustrated in Table 5.1 and the details for each week are
given in Figure 5.3.

Training: wW*uqin, the learned policy, slightly outperforms SAF in general. But if we
look at individual weeks we see that SAF still has a lower BSLD sometimes over the
training period (e.g. 34 and 52).

Testing: Table 5.1 show that w*,.4;, performs quite well compared to other policies.
But it is still surprisingly equivalent and even outperformed by SAF.

Figure 5.3 shows the performance of both individual weeks. SAF is better for some
weeks (namely 68, 81, and 82) but w*,;, is better for others like (e.g 73,79, 85).
Sometimes both policies give similar results.

Although Training and Testing do not particularly appear as different, The best
weights for Training are not the best for Testing: there is no one size fits all strategy.
By comparing w* (see Section 5.5.1) and w*q;, in Figure 5.3, we observe that
W*qin 1S far from the best possible vector even for the weeks used for Training.

5.5.2.2 Learning over a short period of time

We investigate if the policy learned from one week can be effective on the next by
evaluating the vector learned from week ¢ (w*;) on the next week ¢ + 1.

In Figure 5.3, the policy wy..q, represents the results of simulating the workload of
one week using the top policy from the previous week. There are unfortunately no
patterns to distinguish. The vectors learned from the previous week seem to evolve
and perform in a chaotic manner. Sometimes they perform better than SAF (weeks
56, 83, and 89), sometimes worse (weeks 20 and 55), and sometimes on par with
SAF.

Chapter 5 Adapting batch scheduling to workload characteristics: what can we expect from

Using the policy learned from the previous week does not lead to good performance
at all. We hypothesize that the structure of the workload (the jobs submitted)
changes substantially from one week to the next. Thus, online-learning the optimal
weights may be very difficult.

5.5.3 Exploring the search space

In this section, we explain why there is no single vector of weights that is optimal
for all cases. We visualize the search space and observe the position of the optimum
for different weeks.

Figure 5.4 is a 2D representation of the search space for 4 consecutive weeks of the
SDSC-SP2 trace. Each week is represented by two figures: the left figure displays
the weekly average BLSD where ¢ < 0 and the right figure, where ¢ > 0. The ~_and
" axes respectively represent the weights of p and wait. The optimal combination
always lies in the lightest area and is represented by a red dot.

The coordinates of the optimal point change drastically from one week to another.
Using the optimal point of week 72 to schedule week 73 give poor results because
the optimal point in 72 lies in an area that has a very high slowdown in week 73.
This explains why the short period learning failed.

Furthermore, with the exception of general similarities like the half where ¢ > 0
have a lower BSLD than ¢ < 0, we also observe that the position, shape, and even the
size of the optimal area changes radically from one week to the next. This explains
why online learning seems compromised without further information.

5.6 Increasing the size of the search space: using
more jobs characteristics

In this section, we investigate the impact of using all six job characteristics on
performance. Indeed, the experiments in all the previous sections were done with
only the three basic job characteristics: p,q, and wait. In this Section we extend the
search space to include the three other characteristics introduced in Section 3.1.4
which are a,r,exp.

5.6 Increasing the size of the search space: using more jobs characteristics

47

48

Average BLSD 2%

(a) week 70: (b) week 71:
w*(g = 0.30,p = 0.37, wait = —0.33) w*(g = 0.27, 5 = 0.35, wait = 0.38)

Average BLSD %58 Average BLSD.

(c) week 72: (d) week 73:
w*(q = 0.32, p = 0.62, wait = 0.06) w*(q = 0.47, p = 0.05, wait = 0.48)

Fig. 5.4: Visualization of the search space for 4 consecutive weeks 70, 71,72, and 73. The
two diagonal axis represent p and wait. The lighter the area is, the better the
performance (lower average BSLD). The optimal area change from one week to
the next. The red dot (in the lightest area) represents wx* and the blue triangle
represents Wy qin -

5.6.1 Black-box optimizers: a quick way to find the optimal

Algorithm

In the previous Section, finding the weekly best mixed policy was done using a
uniformly exhaustive search. We made a fine discretization of the whole search
space and we selected the weight vector w* that provides the lowest average
BLSD(equation (5.3)). Performing an exhaustive space search becomes costly
very fast because the size of the search space grows exponentially with the number
of job characteristics we include in the linear combination. Thus another method to
find the minimum is required.

1 n
averagegsp = - Z F(x;,w), (5.3)
j=1

Chapter 5 Adapting batch scheduling to workload characteristics: what can we expect from

IS =
3 3

average bounded slowdown
]

Fig. 5.5: Comparing average BSLD of the vectors of the 3 original features (xnes3) with
the extended vector of 6 features (xnes6) and the minimum we obtain from space
coverage (wW*3)

Our goal is to find a combination of weights w* that minimize average BLSD
while enforcing the constraint ||w||; = 1. This can easily be done by optimizing the
following objective function:
" 1

F(score(w,z;)) + A <||w|1 +) (5.4)
- W[l

j=1

Function F' has a priori no particular properties. Furthermore, we have seen in
Section 5.5.3 that the search space is not convex and it may exhibit several local
minima. Therefore, gradient-based methods cannot be used and we have to rely
on stochastic derivative-free methods. We initially tried the standard simulated
annealing method [62] but it got frequently stuck in local optimums. A study of the
existing literature [12] led us to the evolutionary algorithms family that considers an
ensemble of candidates. We tested several algorithms, Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [51] and eXponential Natural Evolutionary Strategy
(XNES) [44] provided the best results. Since XNES is faster than CMA-ES, we chose
the former.

Performance

For each week we apply the XNES algorithm to obtain a solution of Equation (5.4)
for a vector of dimension 3 (xnes3) and a vector of dimension 6 (xnes6) and we
compare the results with the minimum obtained from the space coverage which we
call w*3 (corresponds to the w* used in Section 5.5.1). Figure 5.5 illustrates the
results.

For most weeks xnes3 and w*3 give the same result. For few other weeks, xnes3
managed to slightly outperform w*3. This is due to the method used to cover the

5.6 Increasing the size of the search space: using more jobs characteristics

49

50

search space: Each dimension of the vector gets 200 points distributed uniformly
over [-1,1]. XNES does not have that constraint, hence it can produce policies that
are more refined. The differences in performance are minor which indicate that XNES
managed to find a vector that is the actual or at least very close to the optimum every
time. Thus XNES can be considered as a viable option to find an optimal vector.

The BSLD of xnes3 and xnes6 are not very different from each other. For most of the
weeks, both vectors perform equally. In some rare cases (weeks 86 for example),
xnes3 gives a slightly better performance than xnes6 but the difference is marginal
(XNES converged to a local optimum instead of the global optimum in the case of 6).
On average xnes6 is better than xnes3 but not by a larger margin.

Increasing the size of the search space by adding job characteristics improves the
results by a small very margin.

5.7 Using other traces:

We reproduce all the Figures in the previous sections of this chapter for the other
three traces: SDSC-BLUE, CTC-SP2, KTH-SP2. We use the same experimental setting
as the main article (same threshold, same granularity, same parameters of the
optimization algorithm).

Here we give general observations that are shared by all the traces. For each trace,
we dedicate a notebook that contains all the details.

observations:

* Pure Policies: The scale of the platform and the workload both change greatly
between traces but we can observe that the general order of the pure policies
is the same. As observed SAF is still the dominant followed by SPF and LEXP.

* Mixed policies: The optimal value w* that can be achieved by the Mixed
policies is still far better than any of the pure policies.

* Learning the optimal combination for one part of the trace (aggregation of half
of the used weeks in this case) gives a good policy that is comparable to SAF
in terms of performance. We can see this in the various notebook by looking at
the performance of w_train. For the testing half, w_train is either the best or
the second best for all the traces.

Chapter 5 Adapting batch scheduling to workload characteristics: what can we expect from

5.7.1 SDSC-BLUE

125

5
@ ~ S
o o °

average bounded slowdown

N
o

36

40

44

48 52
week

56

60

72 76 80 84 88 92 96 100

Fig. 5.6: SDSC-BLUE: Comparing SAF, the best pure policy on average, with the best pure

policy for every week.

30

N
S

average bounded slowdown
=
5

Training

Testing

44 48 52

week

56

60

72 76 80 84 88 92 96 100

Fig. 5.7: SDSC-BLUE: Comparing the performance of various policies. w* present the
optimal policy for every week. w_train* is the optimal policy obtained from
learning on the training weeks, and w_greedy is the results of testing the optimal
policies of one week on the next.

15

N
S

average bounded slowdown
@

18

20

22 24
week

26

28

30

32 34 36 38 40 42 44 46

Fig. 5.8: SDSC-BLUE:Comparing average BSLD of the vectors of the 3 original features
(xnes3) with the extended vector of 6 features (xnes6)

5.7 Using other traces:

51

5.7.2 CTC-SP2

15

i
S

average bounded slowdown
o

Fig

N w
S]

average bounded slowdown
8

Fig

15

W
S

average bounded slowdown
o

Fig

52

SAF

18 20 22 24

week

26 28 30 32 34 36 38 40 42 44 46

. 5.9: CTC-SP2: comparing SAF, the best pure policy on average, with the best pure
policy for every week.

Training Testing

20 24 26 28 30 32 34 36 38 40

22
week

. 5.10: CTC-SP2: comparing the performance of various policies on the CTC-SP2 trace.
w* present the optimal policy for every week. w_train* is the optimal policy
obtained from learning on the training weeks, and w_greedy is the results of
testing the optimal policies of one week on the next.

18 20 22 24

week

26 28 30 32 34 36 38 40 42 a4 46

. 5.11: CTC-SP2: comparing average BSLD of the vectors of the 3 original features
(xnes3) with the extended vector of 6 features (xnes6)

Chapter 5 Adapting batch scheduling to workload characteristics: what can we expect from

5.7.3 KTH-SP2

40

w
s

average bounded slowdown
]

S

Y
5 2 0

average bounded slowdown
3

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
week

. 5.12: KTH-SP2: comparing SAF, the best pure policy on average, with the best pure
policy for every week.

Training Testing

Fig

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
week

. 5.13: KTH-SP2: comparing the performance of various policies. w* present the optimal
policy for every week. w_train* is the optimal policy obtained from learning on
the training weeks, and w_greedy is the results of testing the optimal policies
of one week on the next.

30

N
S

average bounded slowdown
=
5

Fig

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
week

. 5.14: KTH-SP2: comparing average BSLD of the vectors of the 3 original features
(xnes3) with the extended vector of 6 features (xnes6)

5.7 Using other traces:

53

54

5.8 Starvation/thresholding

We test three thresholding configurations. First, we consider the case where there is
no threshold. The jobs wait as much as the selected index policy demands. Second,
we consider a low thresholding value (20 hours) and finally, we test the value that is
used for the rest of our research (2.31 days). Tables 5.2, 5.3, 5.4 and 5.5 show the
aggregated results.

Removing the threshold

When we remove the threshold altogether the tested policies become more effective.
The ordering set by the policies is not perturbed by the thresholding mechanism. For
that reason, we notice a bigger difference in the performance of various policies.

Choosing a tighter threshold: 20 hours

When we select a low threshold, we notice all that the values of the average BSLD get
closer to FCFS. This is because the waiting time of a high number of jobs surpassed
the threshold. The thresholded jobs are scheduled using the FCFS rule.

Table 5.6. Show the longest jobs in the SDSC-SP2 trace. their runtime is clear much
longer than 20h = 72000s. Where using a policy that prioritizes shorter/smaller
jobs the waiting time of such jobs are almost guaranteed to surpass the threshold.

In this work, we treat thresholding as a contingency mechanism and it should only
be used in extreme cases. So we set it to be 2,31 days (200000 seconds).
Choosing the right thresholding value is important. It is a compromise between
giving the scheduling policy the freedom to order the jobs as it wills, and preventing
the waiting time of low priority jobs from becoming too long.

We do not go into too much detail on how to fix a thresholding value but deeper and
a more elaborate study on how to choose the proper thresholding value is available
in [65].

5.9 changing the granularity: Using months

Instead of using weeks we use months. We find the best achievable value for each
month w*, and we train on the first 10 months to get W*;,4;,, then we test it on the

Chapter 5 Adapting batch scheduling to workload characteristics: what can we expect from

policy No threshold 2.31 days 20 hours
SAF 1461.39 1585.53 2395.29
SPF 1467.70 1689.55 2447.58
LCFS 1739.24 1940.71 2471.02
LEXP 1936.93 1955.04 2496.97
SQF 1988.62 2082.25 2579.47
SRF 2426.40 247590 2818.35
SEXP 2519.32 2484.96 2864.63
LRF 2726.74 2517.65 2875.95
FCFS 2864.63 2864.63 2879.22
LPF 3277.66 3020.96 3064.14
LQF 4188.31 4159.97 3346.24
LAF 5322.73 4811.85 3525.13
Tab. 5.2: Comparing thresholding values for SDSC-SP2
policy No threshold 2.31 days 20 hours
SAF 302.73 311.83 344.51
SPF 329.95 328.88 350.36
LEXP 384.27 383.99 396.27
LCFS 388.40 392.03 407.91
SQF 395.27 401.76 416.65
SRF 409.12 418.78 431.64
SEXP 468.82 473.94 465.08
FCFS 487.37 487.37 487.37
LQF 494.14 493.77 508.77
LRF 522.95 526.12 514.99
LPF 566.17 554.11 563.42
LAF 582.87 578.66 563.43
Tab. 5.3: Comparing thresholding values for SDSC-BLUE
policy No threshold 2.31 days 20 hours
SAF 501.16 507.76 632.93
SPF 554.63 571.57 638.55
LEXP 568.07 573.80 651.27
SRF 600.80 590.25 651.45
LCFS 679.75 692.97 768.40
SQF 772.55 775.86 784.52
LQF 797.87 796.77 786.36
FCFS 850.16 850.16 850.16
SEXP 882.39 886.61 889.64
LRF 1001.39 961.17 917.95
LPF 1066.83 1023.84 963.46
LAF 1076.52 1026.10 976.46

Tab. 5.4: Comparing thresholding values for KTH-SP2

5.9 changing the granularity: Using months

55

56

policy No threshold 2.31 days 20 hours

SAF 190.95 191.24 219.51
SQF 238.50 235.10 248.85
SPF 254.26 251.65 251.64
LEXP 273.20 273.20 252.27
LCFS 276.91 277.79 273.96
SRF 281.82 280.94 283.89
SEXP 330.40 325.02 292.36
LQF 346.15 346.27 292.84
LPF 356.77 357.75 313.92
FCFS 357.75 358.56 341.83
LRF 366.45 370.98 357.75
LAF 466.47 466.42 386.57

Tab. 5.5: Comparing thresholding values for CTC-SP2

job ID submit time run_time number processors

28663 14837924 510209 9
28664 14837963 508420 16
8040 7660725 474510 6
25891 13785409 452520 60
9036 8427638 227033 64
31620 17005431 162564 4
31623 17005453 162536 32
17 577685 118561 5
14408 12186754 114369 8
34441 19458401 112013 64
Tab. 5.6: The jobs in SDSC-SP2 with the highest run_time that make the 20h threshold
unreasonable

second half.

Figure 5.15 illustrates the results. w*, optimal mixed policies, still outperform all
other policies by a large margin. w*;,..;,, and SAF are still comparable to each other.
As far as we can observe changing the granularity does not change the results.

5.10 Conclusion

Scheduling parallel jobs in a real HPC platform is a complex task plagued with many
uncertainties. Determining an efficient scheduling strategy is difficult due to the
volatile nature of the workload. The main result of this work was to optimize the
EASY-Backfilling algorithm by reordering the primary queue using policies learned
from historical data.

We looked at the scheduling problem from a new perspective by studying a larger
class of heuristics obtained from mixed policies that enable us to move from a

Chapter 5 Adapting batch scheduling to workload characteristics: what can we expect from

discrete to a continuous search space. We combined several characteristics extracted
from the jobs in a linear expression and we determined the best weight for each
characteristic.

We showed that pure policies are far from the optimal and that important gains can
be obtained by using mixed policies. For some weeks in the simulation, we obtained
results that are up to 3 times better than the best pure policy. Unfortunately, we
observed that the structure of the workload changes too much over time and that
whenever a policy performs well on a part of a trace, it does not mean necessarily
that it will be efficient on another part of the trace.

Using historical data to predict good scheduling policies for future jobs is not a
straightforward task. We observed that the workload itself changes drastically from
one time period to the next. We have yet to identify any meaningful pattern to
these changes, which raises the question of whether it is possible to apply machine
learning on real execution logs or not.

5.10 Conclusion

57

58

a0l Training Testing
<
2
1]
°
3 60
o
] FCFS
°
3 N
EN A /\
8 SAF 72\ / N\
@ . / /
=} N _ Z __
© 501 \ N~
o N = w*_train
© s ~—_\ -
ol
3 7 3 3 i 5 7 3 0 11 2 18 14 5 16 17 18 9 20 2
month
(a) SDSC-SP2
8
Training Testing
< \
H \
) \
& \
- \ policy
@ \ FCFS
'g 4 \ w_train
/ SAF
2 7\ / w
\ /7 N\ N
© \ / /
> 2 \. / \ y
® / /
o2 v A~/
E S
0
0 i 3 3 i 5 6 7 11 12 13 14 15 16 17 18 19 20
month
201
Training Testing
c
% 154
°
3
o
&
3 N\ -
O 10 % \\ i
5 \ ’ b
s} e . PN "
Q / N
o AN N
> ~
® N\
o 5 =
5] .. | A
o
7 3 3 i 7 8 3 0
month
(c) CTC-SP2
40! Training Testing
c
2
1<)
E
B
&
3 .
°
2 o o
g 204 /” - s
o S
S Z o
© ~ h N
o N
101
& B
ol
7 3 3 i 7 3 3 0
month

(d) KTH-SP2

Fig. 5.15: Comparing the performance on mixed and pure policies on the scale of month

Chapter 5 Adapting batch scheduling to workload characteristics: what can we expect from

Improving Online jobs scheduling
via Classification

6.1 Introduction

In online scheduling, exact runtimes of jobs are never known in advance. Thus,
in the majority of online scheduling scenarios, users are required to provide an
estimation for the runtimes of their jobs. The scheduler uses these estimations as an
upper-bounds to how long a job is allowed to run on the platform. To avoid having
their jobs prematurely killed users tend to give highly overestimated values [90].
However, such overestimations negatively impact the performance of schedulers [9,
34]. Consequently, obtaining reasonable runtime estimates would be very valuable
when designing HPC system schedulers.

Machine-learning techniques have emerged as a suitable tool to predict job exe-
cution times [90, 42, 49, 21]. However, it is difficult to estimate the execution
times from historical data present in workload logs using regression-based tech-
niques [64]. Such difficulty arises from the fact that crucial information, such as job
dependencies, parameters, and even names, are often missing. Moreover, runtime
information such as job placement and machine utilization are available only a
posteriori. Consequently, although regression may allow better implementations of
heuristics and tighter backfilling choices, obtaining reliable execution time estimates
is rarely possible.

One insight one can have is that the key factor of heuristics that favor shorter jobs,
such as SPF, is that executing small jobs first improves the metrics, such as the job
flow time and the slowdown. In this work, we follow this insight and we propose
to apply a simple two-class classification instead of regression. We classify the jobs
into two general classes, namely small and large, and prioritize the execution of
small jobs. Since performing two-task classification is easier than full regression,
we expect to obtain better classification performance with less training data. We
perform a thorough evaluation using six workload traces from actual HPC platforms
and four scheduling policies, comparing the results of schedulers that use our job
class classification with (i) standard schedulers, which rely only on user-provided

59

60

information, and (ii) clairvoyant schedulers, which have perfect knowledge of actual
job execution times. We show that:

* The a priori knowledge of whether the job is small or large is sufficient to gen-
erate scheduling improvements close to those obtainable using fully clairvoyant

schedulers;

* Our online classification algorithm achieves a precision ratio between 78%
and 89% in all workload traces, which is sufficient to improve scheduling
performance in all scenarios;

* Adding a safeguard mechanism that kills the jobs that are missclassified as
small results in improvements similar to those obtainable using fully clairvoyant

schedulers.

The remainder of this chpter is organized as follows. Sections 6.2 and 6.3 describe the
method used for the classification. Section 6.4 describes the experimental protocol,
followed by the experimental evaluation (Section 6.5). Finally, in Section 6.6, we
give some concluding remarks.

6.2 Preliminary Observations

We use a data-driven approach, which relies on the characterization and identifica-
tion of workload patterns from execution logs of HPC platforms. To ensure that our
approach can be generalized and is not specific to a particular cluster or machine,
we used datasets from six HPC platforms available from Table 3.1.

Job runtime distributions change from one system to another, and building a unified
runtime distribution model has proven to be a challenging task [67]. Nevertheless,
the density of requested runtimes for all six traces shows one or two peaks at small
values, showing that most jobs have relatively small processing time requirements
(Figure 6.1, upper row). Other peaks also appear in some traces, with some contain-
ing a peak near the maximum allowed processing time. However, when comparing
to the actual runtimes (Figure 6.1, bottom row), we can easily see the well-known
mismatch between the requested and actual runtimes. We also notice that the six
traces share an interesting similarity, with all actual runtime distributions having
a sharp peak at the small values and a large tail towards longer execution times.
These distributions indicate that we can always divide jobs into two classes: (i) small,
encompassing the jobs at the peaks of the distributions, and (ii) large, comprising
jobs at the tails of the distribution.

Chapter 6 Improving Online jobs scheduling via Classification

ETC=ERR HPC2N KTH-SP2 METACENTRUM SDSC-BLUE SDSC-SP2

L Lk L

6 20 40 60 O 2500 5000 7500 O 50 100 150 200 O 2000 4000 6 200 460 600 0 50 100 150
Requested runtime (10° s)

density

ETC=ERR HPC2N KTH-SP2 METACENTRUM SDSC-BLUE SDSC-SP2

density

il
I {
I N ' L
S — -
©o 5 1 15 200 5 10 15 200 5 1 15 200 5 10 15 20
Runtime (10° s)

Fig. 6.1: Distribution of requested (upper row) and actual (bottom row) execution times of
jobs for the six workload traces. (1) Note the scale/range difference on the X-axis,
which indicates how the distribution of both variables are very different and shows
that the requested runtime is a quite unreliable information. (2) The distribution
of the actual runtime exhibits a sharp spike toward short jobs for all workloads.
The green vertical line and the dashed black vertical line respectively represent the
median value of the runtimes and the result of a clustering algorithm (Section 6.2)
and allow to easily discriminate between “small” and “large” jobs.

Trace Divider (s) Small non premature (%) Small premature (%)
CTC-SP2 1,114 17.11 32.89
HPC2N 2,287 27.63 22.38
KTH-SP2 847 15.37 34.63
MetaCentrum 915 3.94 46.07
SDSC-BLUE 229 0.36 49.70
SDSC-SP2 359 12.02 38.01

Tab. 6.1: Percentage of premature and non premature jobs: 22 to 49% of all jobs (Small
premature jobs) requested their time allocation to be larger than the divider (5 to
20 minutes) but actually executed less than this

Characterizing Small and Large Jobs

From now on, we consider a job as small if its runtime is smaller than the median
of the runtimes (green line on Figure 6.1), which we call the (divider), and we
consider the job as large otherwise. For the sake of comparison, we also applied
two clustering algorithms, DBSN [33] and EM [27], to divide the classes into two

groups, which generated comparable divisions (dashed black line in Figure 6.1).

Although divisions achieved by the median and clustering algorithms are not the
same, they are relatively similar. As we generally aim for simplicity, we considered
that the rolling median is sufficient to separate the initial peak from the rest of
the distribution. Furthermore, having two classes with similar sizes simplifies the
comparison in terms of fairness.

We further divide the small job class into two subclasses: (i) premature small jobs:
short jobs that had requested runtimes larger than divider and which therefore
terminate prematurely, and (ii) non-premature small jobs: those that also requested
runtimes smaller than divider but managed to execute within this time bound. When

6.2 Preliminary Observations

61

62

Tab. 6.2: Contribution of job size classes to platform resource usage: half of the jobs (Large)
consume more than 98% of resources. Small jobs incur an unsignificant workload
and running them first (provided they can properly be identified) should thus be
harmless to large jobs

Trace Large (%) Small non premature (%) Small premature (%)
CTC-SP2 98.37 1.34 0.29
HPC2N 99.35 0.50 0.15
KTH-SP2 99.59 0.36 0.05
MetaCentrum 99.33 0.20 0.47
SDSC-BLUE 99.32 0.57 0.11
SDSC-SP2 98.33 1.45 0.22

analyzing the traces from the six evaluated platforms, we notice that there is always
a large fraction (22% to 50%) of premature jobs (Table 6.1). Premature small
jobs have a wildly over-estimated processing time, causing them to wait longer
for execution, which results in large slowdown values. This is problematic as it
artificially inflates the overall slowdown. Moreover, we note that the total area! of
these premature jobs represents a negligible fraction (less than 0.5%) of the total
area (Table 6.2). If one could correctly detect these premature small jobs, we would
obtain a significant reduction in the overall average slowdown in the platform. In
the next section, we propose a method for performing this classification.

6.3 Job Size Classification

6.3.1 Classification Features

In this section, we detail the features we used for the classification and the reasoning
behind our choices. A job is characterized by a set of features, which are pieces
of information that can be used to predict the class of the jobs (Small or Large in
our context). When a job is submitted, the scheduler has accesss to the following
information: the id of its user, the dimensions of the jobs (requested number of
processors, requested runtime), and the exact date of submission. We start by making
two observations about the scheduling data: (i) it has been empirically observed that
the runtime of a job is highly correlated with the user’s submission history [64]; (ii)
although there are clear regularities, the user identity is not sufficient to characterize
job duration because the users often submit more than one category of job. For
example, user 2 of the SDSC-SP2 submitted 796 jobs with 8 different requested node
numbers and 11 different requested runtime values?. For a given user, the requested

!The area a; of a job j is defined as its runtime multiplied by the number of resources it requested:
aj = pj *qj-

2Although € R may be arbitrary, in most HPC environments users tend to restrict themselves to
a finite and small set of round values (e.g., 1 hour). This value can thus be treated as a factor.

Chapter 6 Improving Online jobs scheduling via Classification

1.0

0.5

0.0F - e e mmm oo ‘.,lz—:_—:_\\:k _——o.

-0.5

Autocorrelation

-1.0
7 8 9 10 11 12 13 14 15 16 17 18 19

Lag

=
N
w
o
w
(2]

Requested Number of Processors ~ 5 ~ ¢ = 8 =~ 2

Fig. 6.2: Each category c allows to extract a series (ordered by submission dates) of actual
runtimes p(©) for which we can estimate the autocorrelation coefficient for each

1 n—=l((c) (c)
T i (pi - Mp<c>) . (pm - up@)
2
T
My and o) are respectively the sample average and sample standard deviation

lag value [as follows: p, (1) = , where

of p(®). This autocorrelation coefficient lies in [—1, 1] and indicates how strongly

pz(-c) is correlated with pgj_)l. The graph illustrates how the distribution of the

autocorrelation coefficient evolves with the lag between the jobs that belong to
the same category (u, ¢) of a specific user.

runtime of jobs, their size and the day when they are submitted are however a
good indicator of the similarity of their actual runtime. We therefore introduce a
category for each pair of factor (u, q), (u,p), and (u, d) and consider that two jobs
from the same user u belong to category (u, q) (resp. (u,p), or (u,d)) if they have
the same number of requested resources ¢ (resp. same requested runtime p, or same
submission day d).

To illustrate how useful such categories could be, let us come back to the user 2
of SDSC-SP2. Figure 6.2 illustrates how the autocorrelation coefficient decreases
with the lag I: jobs that are very close in time have a relatively strong correlation
and the first few lags have significantly higher correlation values than the rest. The
notion of category therefore structures the job flow and can be used to perform
online prediction of the jobs actual duration.

For each job, we extract all previous jobs that belong to the same categories and we
derive the following features (Table 6.3):

Job features : The requested execution time and requested number of resources
of the job.

6.3 Job Size Classification

63

Type Feature Description

Job features Di user supplied runtime estimate
q; user supplied number of resources

Temporal features h hour of the day
Dyeek: day of the week
dmonth day of the month
m Month
w Week
Q Quarter

Lag features C;?i,l, Cpi_o, Class. of t1.1e previous, second to previous, third to N
Cpi—3 previous jobs that belong to the same category (u, p)
Cq;—1,Cq;—2, Class of the previous, second to previous, third to
Cqi—3 previous jobs that belong to the same category (u, q)
Cd;_1,Cd;_o, Class of the previous, second to previous, third to
Cdi_3 previous jobs that belong to the same category (u, d)

percentage of jobs that belong to the same category
(u,p) and are classified as small

percentage of jobs that belong to the same
category (u, q) and are classified as small
percentage of jobs that that belong to the same
category (u,d) and are classified as small

Tab. 6.3: Features used for job classification

Aggregation features mean;,
meanis

mean;q

Temporal features : The hour of the day, the day of the week, the month and the
quarter in which a job was submitted;

Lag features : contains the class (Small/Large) of the previous three jobs of the
same category;

Aggregation feature : contains the percentage of jobs that belong to the same
category and are classified as small. The goal of these features is to include
the rest of the category’s history. Although older jobs are less indicative of the
class of the current job, they still contain information that is valuable to the
learning process.

6.3.2 Classifier Training and Update

In an online scheduling context, the full information about the jobs is only known
after their execution. Thus, the classical learning scheme, which consists in dividing
the full dataset into a training and a testing set is not possible in this context. The
learning process should adapt to the increasing amount of available data. We adopt
a weekly training process illustrated in Figure 6.3:

* Training is performed at the end of every week.

* All the data gathered during the week is cleaned and processed to create the
features presented in Table 6.3.1.

64 Chapter 6 Improving Online jobs scheduling via Classification

Classifier Classifier

week_0 week_1 week_2 | ... week_i
jobs_week _| jobs_week_1 jobs_week_2 jobs_week_2

Add to log Add to log Add to log Add to log

Prepare data Prepare data Prepare data Prepare data
Extract features Extract features Extract features Extract features
Perform training Perform training Perform training Perform training

Fig. 6.3: Learning process: At the end of each week the new jobs are added to the dataset
and a new training process is performed

* A new classifier is then trained and will be used during the next week.

We chose the period of one week because it seemed adequate. Indeed, retraining
every day would be wasteful because in most cases a single day is not sufficient to
generate enough new data to significantly change the output of the training. And
retraining when the size of the new data reaches a certain threshold (e.g., training
every 5000 new jobs) would cause the classifier to be updated at "unpredictable
time", possibly in the middle of a workload spike, which is quite undesirable.

The data of the current week jobs are thus not added to the training data since
we perform a weekly training. Note that, to simplify the implementation of our
simulations and the tuning of the learning algorithms, we have decoupled the
batch scheduling simulation from the learning and prediction mechanism. As a
consequence, when performing predictions, the lag and the aggregation feature are
also solely extracted from the jobs of previous weeks, which slightly decreases the
reactivity of our predictions as they are built on information that is not the most
up-to-date.

We use the Random Forest algorithm [17] to perform the classifications as it allows
to easily combine numerical and categorical features. Random forests create multiple
decision trees on randomly selected data samples, getting a prediction from each
tree, and select the best solution by majority voting, which makes them particularly
resilient to “outliers”.

6.3 Job Size Classification

65

66

6.3.3 Online Learning Quality

In this section we investigate the quality of the proposed online classification scheme
and we explore some of the strengths and weaknesses while applying learning on
scheduling data.

6.3.3.1 Accuracy, Precision and Recall
We measure the quality of our classifications using the three following indicators®:

* Accuracy is the ratio of correctly predicted observation over the total number of

observations:
TL+TS

Y = L+ TS+ FL + FS

(6.1)

* Precision is the ratio of correctly predicted small jobs to the total number of jobs
that are predicted to be small:

TS
TS+ FS

precision =

(6.2)

* Recall is the ratio of correctly predicted small jobs to all observations in the small
class:
TS

Tecall = m (63)

As explained in section 6.3.2 the learning process is repeated at the end of every
week and every week may thus have a different classification performance. Some
week may suddenly behave very differently from the previous ones and thus, it is
interesting to study the process in more detail. Figure 6.4 depicts the weekly quality
of the learning through time for each platform, and from which several observations
can be made.

Although the quality of the learning process varies between traces, which is expected
because every trace has its own specific characteristics (number of jobs, number of
users, frequency of job arrival, etc.) and may be more or less variable, for CTC-SP2,
KTH-SP2, SDSC-SP2, and SDSC-BLUE all the weekly evaluation metrics maintain
high values from the beginning to the end (with a few exceptions). For the other
two traces; MetaCentrum and HPC2N, the results are not as stable as the others over
time. For several weeks of MetaCentrum, the learning even seems to be very poor as

3T L -True Large— (resp. T'S) represents the number of jobs correctly predicted as Large (resp.
Small), while F'L -False Large— (resp. F'S) represents the number of jobs incorrectly classified.

Chapter 6 Improving Online jobs scheduling via Classification

10 CTC-SP2
: \ S - e
\//~ \/\V/'—‘ A \
0.5
0.0
0 10 20 30 40
10 HPC2N
: A) A N
I\ v \/\J\f Mgl N \"\j‘\/‘f’\/\[' VIANYY
0.5
0.0
0 10 20 30 40 50 60 70 80 90 100
KTH-SP2
1.0
’/WWV\\
0.5
0.0
0 10 20 30
10 METACENTRUM
: | NV Wasy
YA : AA /\/\J'\ /N A A
0.5 \ \: \/ |
\ ‘
0.0 L !
0 10 20 30 40 50 60
SDSC-BLUE
1.0 -vN« — w""”"\/"“'\/"" e e s e)
0.5
0.0
0 10 20 30 40 50 60 70 80 90 100 110 12
10 SDSC-SP2
U YT PRSI,
0.5
0.0

0 10 20 30 40 50 60 70 80 90 100
week

accuracy - precision - recall

Fig. 6.4: Evolution of the quality of the learning for individual weeks

the precision and recall values are extremely low and even drop to O for some cases.

A closer look at these weeks allows to understand why such low values occur.

Week 58 (identified by the rightmost red dashed line in the MetaCentrum trace of
Figure 6.4) comprises 48 jobs, only 1 of which is a small job. The classifier in this
instance made a single error and misclassified this single small job as large. This
leads to a significant reduction in the accuracy value; 85% (due to the small number
of jobs in that week), a 0% recall, and an undefined value for the precision (7'S = 0
and F'S =0)

Week 12 (identified by the leftmost red dashed line in the MetaCentrum trace of
Figure 6.4) comprises only 78 jobs but 0 small jobs and all the jobs are properly
classified, which results in an accuracy of 100% but the values of the precision and
recall (Equations (6.2) and (6.3)) cannot be computed because 7'S = 0 and F'S =0
and F'L =0.

The misclassification of a single job may thus significantly impact the learning metrics
for a week comprising few jobs but it has a relatively low impact on a trace of more
than 79,000 jobs (Table 3.1). These absolute fine grain weekly learning performance

6.3 Job Size Classification

67

68

Tab. 6.4: General classification performance: For each trace, we count the values of
TS,FS,TL and FL for all the weeks then, we compute the general value of the

accuracy, precision and recall

Trace Accuracy(%) Precision (%) Recall (%)

TL+TS/Total TS/(TS+ FS) TS/(TS+ FL)
CTC-SP2 85 82 86
HPC2N 90 87 89
KTH-SP2 86 79 90
SDSC-BLUE 80 78 83
SDSC-SP2 87 89 91
MetaCentrum 85 83 87

Tab. 6.5: Classification error per trace: 7-11% of Large jobs are misclassified while 4-8%

of Small jobs are misclassified

Trace False Large(%) False Small(%)

FL/(FL+TL) FS/(FS+TS)
CTC-SP2 8.16 6.29
HPC2N 7.59 5.05
KTH-SP2 9.27 4.03
MetaCentrum 8.43 6.36
SDSC_BLUE 11.29 8.52
SDSC-SP2 7.20 5.85

indicators should be interpreted with care, especially because some weeks with a
relatively low workload or missing classes (e.g., week 30 of MetaCentrum) often
make the learning look artificially inefficient.

Fortunately, the overall (i.e., when the ratios of Equations (6.1) to (6.3) are not
broken down per week) performance of the classifier is particularly good. Table 6.4
shows the performance of all the jobs regardless of the week. The overall recall,
precision and accuracy are always above 78% and even generally around 90%.

6.3.3.2 Classification Errors

During the training phase, the goal is to reduce prediction errors as much as possible.
However, incorrect predictions and errors are an unavoidable part of any learning
process. The two types of prediction errors are related to the number of false large
(FL) and false small (FS) jobs. Table 6.5 shows the percentage of classification errors
of each type. Although the values vary from one trace to another, the percentage
of FS tends to be smaller than that of FL. We note that the percentages of FS jobs
we obtained are comparable to the values presented in [49] where the authors
use a method to specifically manage the problem of underestimation in runtimes
predictions and reported an FS rate of ~ 5-8%. We do not aim at designing a perfect

Chapter 6 Improving Online jobs scheduling via Classification

classifier nor at fine-tuning the learning algorithm parameters so we argue that such
classification error is representative of what can be achieved with a reasonable effort.
Although the predicted class is a precious qualitative information, a scheduler should
thus be aware of potential prediction errors and manage them accordingly.

6.3.4 Feature importance analysis

In this section, we provide insight on the importance and the stability of each of
the features during the learning process. We use the Gini impurity measure [71],
which estimates the probability of miss-classifying an observation, to evaluate the
importance of the constructed features. Note that it is also the measure used during
the training phase of our classification. For an in-depth review of feature importance
analysis, we refer the reader to [93]. This measure provides us for each week with a
weight representing the importance of each feature in the classification.

Figure 6.5 represents the distribution (summarized with a box-plot) of the weekly
weights of each feature for each trace. These box-plots reveal several useful informa-
tion on the learning process.

e First, we observe similarities between the results of various traces. (i) The
requested execution time appears to be the most important feature for the
majority of the traces (expect METACENTRUM). This is expected since a sizable
portion of the jobs belong to the class Small because the users themselves
requested a processing time that is smaller than the divider (see table 6.1).
(ii) For the lag features, the first lag always holds most of the weight followed
by the second and the third lag respectively. (iii) Aggregation features are
about as important as the first lag features. (iv) Temporal features generally
hold the lowest weights for all the traces.

* This supports the idea that performing a single unified learning process for
all traces like the ones presented in [41] and [21] is reasonable and can yield
good results. However, there are also clear differences between the traces.
For example, the requested time, the feature with the highest weight, holds
different importance scores from one trace to another and it is outweighed
by the lag features for in the case of the METACENTRUM trace. Also, For
some traces (CTC-SP2 and KTH-SP2), we observe a very small difference
between the weeks. For others (METACENTRUM and HPC2N), there is a
noticeable difference between the weeks, which can be explained that this
workload seems harder to predict than the others and supports the importance
of constantly updating the learning process.

6.3 Job Size Classification

69

70

CTC_SP2

0.4
0.3
0.2{E3
—]
% '$$$4%$+_$$*_++$ -
' HPC2N
0.4
0.3
o.2¢
0.1 -
KTH_SP2
0.4
0.3
ool
[
gg.é $$$$$$$*+$$__++$ ——
S METACENTRUM
£04
=03
Qo2 | '
0.1 ég Eé : %ﬂ U E? .
SDSC_BLUE
0.4
0.3 %ﬂ
0.2] i
0.1 — L=
SDSC_SP2
0.4
0.3
0.2 éﬂggg
01 i s] H . H
T gsd g To5 g 88 5 2 ¥ 85 ¥ S5 5 8%
gu O O §|o J O §|LJ U 3 §E % 5 §
1o Ocr L‘s: T € SJD|
Feature

Fig. 6.5: Importance of individual features during the weekly learning process. The larger
the weights, the more important the feature in the classification. Weights are
normalized such that their sum equals 1.

Chapter 6

Improving Online jobs scheduling via Classification

6.4 Proposal

As indicated by the previous trace analysis, small jobs represent a negligible fraction
of the total load of the platform (Table 6.2) but are quite numerous (Table 6.1)
and often wildly over-estimate the runtime they request. Scheduling them using a
policy based on this estimation leads to particularly poor slowdown and to an overall
poor performance of the system. Fortunately, the learning algorithm presented
in Section 6.3 allows to efficiently distinguish between small and large jobs. To
improve the mean bounded slowdown, we propose that any job classified as small is
executed with a higher priority than those classified as large. Specific care must be
taken though to avoid starvation and to deal with classification errors. This section
describes how this was done and how we evaluated our proposal.

We aimed our work to be as transparent and reproducible as possible [83]. We
provide a snapshot of the workflow used throughout this work*, which includes a
nix [29] file that describes all the software dependencies and an R notebook that
allows reproducing all the figures.

We consider HPC platforms as a collection of homogeneous resources, with jobs
stored in a centralized waiting queue, following the submission described in the
workload logs. We implemented all simulations using Batsim [31], a simulator based
on SimGrid [22] that allows us to observe the behavior of scheduling algorithms
under different conditions. We evaluate our method using the six traces presented
in Table 3.1 and four scheduling policies presented in the following section.

6.4.1 Scheduling Policies

We considered three of the basic scheduling policies introduced in Section 3.1.4;
FCFS, SPF, and SAF. And one extra popular policy known as WFP.

WFP: is a scheduling policy adopted by the Argonne National Labs [86] and is given
by: WFP; = (wgtj)3 % ¢j. This policy attempts to strike a balance between the

number requested resources, the requested runtime and the waiting time of jobs. It
puts emphasis on the number of requested resources while preventing small jobs
from waiting too long in the queue.

We chose FCFS and WFP because several existing HPC systems use them. SAF and
SPF are less common, mostly because they are perceived as too risky since they could
potentially induce job starvation. Starvation occurs when a job waits for an indefinite
or a very long time in the queue. However, some studies [21] show that SAF and

“https://gitlab.inria.fr/szrigui/job_classification/

6.4 Proposal

71

https://gitlab.inria.fr/szrigui/job_classification/

72

SPF provide better results on performance metrics in almost all cases. Furthermore,
one can prevent starvation by putting a threshold on the waiting time [65]. When
the waiting time of a job surpasses the threshold, the scheduler transfers the job
to the head of the queue. In [65] the authors perform a detailed analysis of the
thresholding mechanism and of its impact.

We implemented the four aforementioned policies in conjunction with the EASY
backfilling heuristic and the thresholding/starvation prevention mechanism. The
scheduler orders and executes the jobs following the order set by the chosen policy.
When it reaches a job that cannot start immediately, it makes a reservation for that
job. The scheduler then allows the next tasks to skip the queue if they do not delay
the initial reservation.

6.4.2 Learning and Scheduling Algorithms

When a user submits a job for execution, the classifier uses the job features to assign
it to the small or large classes, represented by queues Q4. and @, respectively. In
the first week of the trace, since the classifier does not have prior data to learn the
classification task, it classifies all jobs as large and does not behave differently from
a classical policy. After that, we update the classifier at the beginning of every week,
with data from all previous weeks as explained in Section 6.3.

The resource manager calls the scheduler whenever a job finishes its execution,
and computational resources become available. The scheduler then sorts the two
queues, @ and Qg,q1, independently, according to a chosen policy (FCFS, SAF, SPF,
or SQF), and merge them in a single queue Q;.4;, With the jobs belonging to the
small class first. Finally, resource allocation is done using the EASY heuristic, as
shown in Algorithm 1.

Algorithm 3: Perform scheduling
Input :Queue of large jobs Q)
Queue of small jobs Qnai
Scheduling policy Policy (FCES|WFP]...)
1 Order according to Policy
2 Order Qgnqu according to Policy
3 Qtotar = concat(Qsmai, Q) # small jobs are always put in the head of the final
queue
4 EASY(Q;otq1) # Schedule the jobs in the final queue using the EASY heuristic

The only additional relevant overhead compared to the basic EASY scheduling
heuristic is the cost of updating the classifier. The update includes finding the
median execution time over the workload log of the previous week and training

Chapter 6 Improving Online jobs scheduling via Classification

Algorithm 4: Kill False Small jobs

1 Q = {} # queue of large jobs

2 Qsman = {} # queue of small jobs

3 job_counter = 0 # number of submitted jobs
4 while Running do

5 # go through all jobs currently running

6 if job;.class == “small” & job;.runtime > divider then
7 kill(job,)
8 Qsmau-remove(job;) Q.add(job;)

the classifier using the pairs (features, jobclass). The full execution of this procedure
takes only a few seconds and occurs only at the end of every week. Moreover, it runs
independently from the scheduler, without blocking it.

6.4.3 Dealing with Classification Errors

As explained in Section 6.3.3.2, no classifier is perfect and some jobs will inevitably
be wrongly classified. False Small jobs are large jobs that were wrongly classified
as small. This is similar to runtime underestimation in the case of exact runtimes
prediction. Although the resource manager may allow these jobs to execute until
completion, it can significantly impact performance in some cases, e.g, when there
are many True Small jobs following the misclassified large job. This type of misclas-
sification is arguably more dangerous than False Large: if a small job is classified as
large it will be delayed but it will not impact the waiting time of other jobs.

One way to correct this problem is to kill false small jobs. When the execution time
of a job classified as small exceeds the divider value, it is killed and put back to the
waiting queue as a large job. To ensure that the killing and restart process happen
without problems, we consider that jobs are idempotent. Formally an idempotent
operation is defined as an operation that can be applied multiple times without
changing the result from the initial application. In this context, we consider a job to
be idempotent if it can be killed and restarted without changing the final execution
outcome.

The scheduler periodically goes through the list of running jobs (Algorithm 4). If it
detects a job classified as small and has been executing for a period longer than the
divider value, it kills the job and classifies it as large.

6.4 Proposal

73

74

CTC-SP2 HPC2N KTH-SP2

s : ¢ _—a - i * £ " 4 hs 1 .
== === S ——— - —3 T . . 3 .

3 = T B == — — — ’
SAF SAF SPF SPF WFP WFP SAF SAF SPF SPF WFP WFP SAF SAF SPF SPF WFP WFP
MetaCentrum-zegox ‘ SDSC-BLUE SDSC-SP2

Average Bounded Slowdown

L
/
P
7)
“)/

: .] ") . 9
1 : ' : —— . S
t s . \ o] 8 + ' ; I\ e — :
— . H ’ = = &r— = % t e } — : 3
4 1 =] — .] i i s 1
SAF SAF SPF WEP 7P SAF SAF E FF WP 133 SAF SAF SPF 3 WEP

PF s
Policy

method « Base - Classification-idempotent

Fig. 6.6: Monthly average bounded slowdown. Each line links the values from the same
month when using the base and classification-idempotent schedulers.

6.5 Experimental Results

In Section 6.3, we presented the job size classifier and showed its accuracy from a
pure learning perspective. However, achieving a high-quality classification is not our
final goal. In the scheduling context, the effectiveness of an approach is measured
by how much it improves the end-to-end performance metrics, such as the average
bounded slowdown.

6.5.1 Overall Impact on Scheduling Performance

We evaluate the impact of the cumulative bounded slowdown when applying the
EASY-backfilling with the four scheduling policies (FCFS, WFP, SAF, and SPF).
Figure 6.7 shows the results for the scenarios with the job size classification and
job-killing mechanism (in cyan) and without them (in black).

Comparing the curves for the four basic scheduling policies, we note that SPF and
SAF generate the lowest cumulative slowdown in all platforms. WFP has cumulative
values close to SPF and SAF, while FCFS has the worst values by a large margin in all
cases. These results are consistent with previous comparisons of scheduling policies
(Chapter 5).

Applying the job size classification reduced the cumulative slowdown values in all
scenarios, with the improvement depending on the trace and scheduling policy.
For FCFS, we observed substantial improvements for all the six traces, ranging
between 33% to 79%. For the other policies, we observed smaller, albeit consistent,
improvements in performance, ranging from 3% to 32% for SPF and 10% to 51%
for SAF. We explore these results further in Section 6.5.5.

Chapter 6 Improving Online jobs scheduling via Classification

CICFSP2) HPC2N

0 4 8 12 4 8 12 16 20 24
KTH-SP2 MetaCentrum-zegox

jumps are reduced

Cumulative Bounded Slowdown

0 4 8
SDSC-BLUE

jumps are flattened

0 4 8 12 16 20 24 28

method — Base — Classification-idempotent

Fig. 6.7: Evolution of the Cumulative Bounded Slowdown for the six platforms, using the
base policies (black) and the same policies augmented with job size classification
and idempotence (cyan). The cumulative bounded slowdown is always such that
SAF~SPF<WFP<FCFS, which is expected as prioritizing small jobs is known to
optimize the average slowdown whereas FCFS rather bounds the largest waiting
time. Since these heuristics solely rely on the requested runtime, they cannot be
very efficient. Activating our classification-based prioritization systematically and
significantly improves the performance of all heuristics at any point in time and
not simply at the end of the evaluation period. In steady state (see SDSC-SP2), it
is clear that the cumulative bounded slowdown increases more slowly when our
classification-based mechanism is activated. It may happen that burst of jobs are
submitted and incur sudden and large jumps in the cumulative bounded slowdown.
These jumps are always significantly reduced (see Megacentrum-zegox) with our
mechanism and even sometimes completely avoided (see SDSC-BLUE).

The cumulative slowdown increases most of the time smoothly, with some sharp rises.

The slower increments occur during lightly or moderately loaded periods, in which
we see steady increments in the gap between the scenarios with and without job size
classification. The jumps are the result of high load periods and seem unavoidable,
as they occur with all policies. However, regardless of the policy and the trace used,
our method always results in smaller cumulative slowdowns.

Since FCFS performed poorly compared to other policies, we decided to exclude it
from the subsequent analysis. However, we note that the observations in the next
sections also apply to FCFS.

6.5 Experimental Results

75

76

cTC-sP2 HPC2N KTH-SP2

6 20
4
10
2
— U- - - u_ —

Small Small Small Small Smal Smal Smal Small

—
&

& SPF by WFP SAF & el e b AF & PF [WFP

MetaCentrum-zegox SDSC-BLUE SDSC-SP2

15 40

4 30
.

w
2 5

Average Bounded Slowdown

Small Small

S
SAF SPF ey WFP iy e [y Wrp

method [l Base Ml Classification-idempotent

Fig. 6.8: Average bounded slowdown for small and large jobs, using the four base policies
and the corresponding classification-idempotent schedulers. Breaking down the
average bounded slowdown between small and large jobs allows to evaluate how
both classes benefit from the classification and whether one is unfairly treated
compared to the other. The benefit for the Small job class is huge and can go
up to 55% while the loss for the Large job class never exceeds 15% (the higher
losses always occur in trace/policies with extremely small base slowdown). The
difference for Large jobs is therefore negligible and would be barely noticeable
by users. Last, note that, although there are visible differences between the
base policies (SAF, SPF, WFP, in black), they tend to vanish whenever using our
classification (in green).

6.5.2 Impacts on Individual Months

The evolution of the cumulative bounded slowdown over long periods, although
informative, can mask important details about the behavior of a scheduler at a
smaller time scale, such as individual weeks or months. Ideally, a good scheduler
should provide improvements that are somewhat equitably distributed throughout
the evaluation period.

We investigate the effects of our approach on individual months in Figure 6.6. Each
pair of connected points represents the average bounded slowdown of a single month
from the full workload execution, for the base and classification-idempotent cases.
We note a reduction in the slowdown in most cases, with a decrease proportional
to the base value. There are a few months where our approach seems to degrade
performance substantially, such as in MetaCentrum/WFP. These are artifacts that
emerge from splitting the results into one month periods, where workloads “spills”
from one month to the other during periods of very high load. Overall, the results
show that improvements are fairly distributed between months, even for the clusters
that have large jumps in the cumulative slowdown, such as MetaCentrum and
HPC2N.

Chapter 6 Improving Online jobs scheduling via Classification

CcTC-sP2 HPC2N KTH-SP2
40405~ D ot
4e+05 ~F + N

°cto £ 3e+05- o <

3e+05 A x T A

2e+05-

1e+06 -

2e+05

g
&

1e+05 1e+05-

0e+00 0e+00-,
SAF SPF WFP SAF SPF WFP SAF SPF WFP

o
g

7
s
8

MetaCentrum-zegox SDSC-BLUE SDSC-5P2

30405 2.0e+06 . o 15406+

Total bounded slowdown

" 3 1.5+06 + " 1064064 +ox by

»
B
S

2 a 1.0e+06 A, S

+ 5.0e+05+
1e+05 x x x 500105

0e+00 - - : 0.0e+00 - - - 0.0e+00+ : : :
SAF SPF WFP SAF SPF WFP SAF SPF WFP
policy

Method ¢ Base + Cl o P a ¢l

Fig. 6.9: Total accumulated bounded slowdown for the base schedulers (base), schedulers
with perfect classification (class-clairvoyant), schedulers with classification and
job-killing mechanism (classification-idempotent), and schedulers with perfect
execution time information (runtimes-clairvoyant). Regardless the heuristic, it
is interesting to note that, in general, Base g Classification > Classification-
Idempotant 2, Class-clairvoyant > Runtime-clairvoyant, which is consistant with
the fact that more accurate information allow to produce better schedules

6.5.3 Impact of Small Job Prioritization over Large Jobs

Our algorithm reduces the overall bounded slowdown by prioritizing small jobs. This
mechanism naturally raises one crucial question: What is the impact of favoring
small jobs over the jobs classified as large?

We compute the average bounded slowdown of the jobs for each of the two classes
(Figure 6.8). As expected, the small jobs have the most substantial reductions in
the average slowdowns. The extent of the reduction depends on the platform and
policy and is mostly proportional to the improvements in the cumulative bounded
slowdown, shown in Figure 6.7. More importantly, there is only a small increase in
the average slowdown of large jobs.

The use of the job size classifier results in substantial improvements for small jobs,
with little or no impact on large jobs. Consequently, we argue that there are no
perceivable hidden costs for large jobs when prioritizing small jobs.

6.5.4 Impact of the Safeguard Mechanism

Assigning a large job to the small class can cause an overall increase in the average

bounded slowdown of other jobs since it occupies resources for an extended period.
We prevent this problem by killing the job when it reaches the job size divider value.

But we cannot apply it for non-idempotent jobs. A subsequent question that arises
is: can we still improve the performance if we allow miss-classified jobs to run until
completion?

6.5 Experimental Results

77

78

We compared the cumulative bounded slowdown values at the end of the full
workload trace simulations, for the six platforms, for three scenarios: (i) base,
(i) classification-idempotent, where we Kkill false small jobs, and (iii) classification,
where we use classification without job-killing.

Preventing job-killing reduces the effectiveness of the classification in almost all
scenarios (Figure 6.9). We note, however, that classification without job-killing
still managed to improve the total slowdown for most cases, but to a worse extent
than classification-idempotent. The exceptions are the combinations where the
classification-idempotent only managed to improve results by a small margin. In these
cases, the classification without job-killing did not improve or caused a negligible
degradation in performance. Removing the safeguard mechanism reduces the
effectiveness of our method without rendering it completely useless. Note that only
False Small jobs are restarted, which corresponds to 2-4% of all jobs at most (See
Table 6.5).

6.5.5 Comparison with Clairvoyant Schedulers

Finally, we evaluate the hypothetical optimum obtainable by a clairvoyant scheduler
that knows the actual execution times of each job in advance. We compare three
strategies that build the base policies (SPF, SAF, and WFP): (i) runtimes-clairvoyant,
where the scheduling heuristic is provided with the actual p;, instead of the requested
processing times p;, (ii) class-clairvoyant, where the scheduler is indicated which
class the jobs belong to (i.e., as if a perfect job class classification was achieved), and
(iii) classification-idempotent, the method we propose and which only uses estimated
execution times. Although the clairvoyant versions cannot occur in practice, they
provide us with a useful benchmark on the achievable improvements.

Using the classification-idempotent results in improvements comparable to the class-
clairvoyant (Figure 6.9), except for MetaCentrum. This result indicates that the
job-killing mechanism is effective in counteracting the misclassifications and that
the overhead of job-killing has a small impact on performance. Moreover, it shows
that our strategy of combining classification with job-killing is already very efficient
and has little room for further improvements.

The two clairvoyant strategies, class-clairvoyant and runtimes-clairvoyant, also have
comparable performance, with slightly better results when using runtimes-clairvoyant.
This result shows that a simple classification in two categories is, in most cases,
sufficient to obtain important improvements for the bounded slowdown metric.
It indicates that trying to predict job execution time accurately with elaborate

Chapter 6 Improving Online jobs scheduling via Classification

regression techniques will not bring large improvements over the use of a simpler
binary job size classification.

The most notable exception to the conclusions above is the MetaCentrum trace. We
observe consistent improvements when moving from base to classification-idempotent,
class-clairvoyant, and runtimes-clairvoyant. For this particular trace, there were sev-
eral jumps in the cumulative bounded slowdown (Figure 6.7), caused by abnormally
high loads. In these situations, a perfect knowledge of execution times appears to
have a larger impact on scheduling performance.

Finally, we look at the cases were class-clairvoyant provided minor improvement:
SDSC-SP2/SPF and KTH-SP2/SPF. In Figure 6.9, we can see that even with full
knowledge, there were no significant improvements. class-clairvoyant only improved
over base SPF by 10% and 13% for SDSC-SP2 and KTH-SP2 respectively indicating
that, for these two traces, SPF was already a very good policy.

6.6 Conclusions and Discussion

In this work, we showed that a coarse classification of jobs into small and large is
sufficient to improve scheduling performance. A simple safeguard mechanism that
kills large jobs misclassified as small is important to prevent these jobs from unduly
delaying others. Since the misclassification is detected very early, when the job
execution time reaches the divider value between classes, which is never more than
a few minutes, it results in a small overhead over the average slowdown metrics.
We obtained improvements in scheduling performance for all combinations of six
workload traces and four scheduling policies evaluated (see Figure 6.7). Moreover,
in most scenarios, we managed to obtain improvements in scheduling performance
comparable to that of clairvoyant schedulers with perfect knowledge of job execution
times. Finally, we showed that our performance not unfair (Figure 6.8) in the sense
that although the performance gain mostly targets small jobs (which are prioritized),
it is not detrimental to large jobs.

We claim that in this context, using a classification approach is more effective than us-
ing regression for improving scheduling performance. Compared to regression-based
techniques, our approach has two major advantages: (i) a two-class classification
task is easier to learn than regression, requiring less training data, and (ii) misclas-
sification of large jobs as small is detected very quickly during execution, opposed
to regression, where underestimates are evident only after the job executed for the
entire actual period. To substantiate this claim, we can compare the improvements
obtained by our approach with two regression-based approaches: the relatively

6.6 Conclusions and Discussion

79

80

Tab. 6.6: Improvement (in %) over EASY-FCFS using regression ([90] and [42]) and classi-
fication (SPF-CI and FCFS-CI). Values between brackets correspond to the evalu-
ation performed by the original authors whose methodology may slightly differ
from ours. Our classification based approach systematically and significantly
improves upon the previous strategies, regardless of the the base scheduling
heuristic (FCES or SPF)

Classification-Idempotent

EASY++ [90] Gaussier et. al. [42] FCFS-CI SPE-CI
KTH-SP2 23 [36] [44] 50 59
CTC-SP2 1 [37] [59] 79 85
SDSC-BLUE 38 [47] [05] 63 74
SDSC-SP2 32 [29] [15] 66 75

simple EASY+ + [90], which replaces user-provided runtimes estimates by the av-
erage runtime of the two previous jobs from the same user, and the one proposed
by Gaussier et al. [42], which relies on more elaborate regression technique using
an asymmetrical loss function. Both works used the workload traces from SDSC-
BLUE, SDSC-SP2, KTH-SP2, and CTC-SP2 and reported improvements over the
base EASY-backfilling with FCFS ordering policy (see Table 6.6). Although there
are a few methodological differences (simulation technique, trace cleanups, etc.)
between our evaluations, our classification approach combined with FCFS reduced
the cumulative bounded slowdown by 50-79%, compared to 29-47% from EASY ++,
and 5-59% from Gaussier et al.. Relying on SPF instead of FCFS allows decreasing
the cumulative bounded slowdown even further (59-85%), with most of the gain
provided by the classification mechanism. Finally, our mechanism greatly reduces
the performance difference between heuristics (without classification, FCFS is signif-
icantly worse than SPF or SAF) without loosing most of the fundamental properties
that make FCFS an appealing option: its simplicity in terms of explainability to
users and its predictable behavior. Consequently, we believe that using the proposed
scheme of job size classification is more appropriate for deployment in real HPC
platforms than regression-based approaches.

Since the gains we report are particularly substantial, one may wonder whether
further gain can still be expected or not. For most of the traces we studied, not
only the learning is very good (Table 6.4) but there is almost no difference between
the performance of our classification-based scheme and the one a fully informed
(clairvoyant) approach would give (Figure 6.9), which means that very little gain
may be expected from the learning perspective.

Note that a potential improvement perspective can be foreseen by closely inspecting
the only trace (METACENTRUM) where the weekly performance of the learning did
not seem stable (Figure 6.4). This trace exhibits particularly irregular job submissions
with burst of jobs that lead to sudden jumps in the cumulative bounded slowdown

Chapter 6 Improving Online jobs scheduling via Classification

(Figure 6.7). We suspect that our batched (weekly) learning strategy may not be
able to adapt well to such rapidly changing situations. Online monitoring of the
classification error may then be a good indication that the situation has evolved and
that the learning should quickly be updated.

6.6 Conclusions and Discussion

81

Energy profiling and classification

7.1 Introduction

With the ever-increasing size and complexity of data centers, power consumption
has become a dominating factor in the total cost of ownership of supercomputers.
Exorbitant power consumption does not only impact the budge of supercomputer
operations, but it also translates to a high carbon footprint which has a detrimental
impact on the environment. All these factors make efficient power management a
necessity, especially with the anticipated rise in the operating coast that will come
with exascale machines.

In this chapter, we focus on energy consumption. More precisely the energy consump-
tion of individual applications. We use RAPL to collect the energy measurements
and we couple them with basic jobs information similar to the ones used in all the
previous chapters (job resources, runtimes, allocations ...). We observe that the
energy profile of HPC application is not as chaotic and unpredictable as initially
perceived and that certain patterns are common between the jobs. Such can be
observed quantified and even predicted. In this chapter, we offer:

* A detailed characterization of the energy behavior of an HPC complete work-
load using "simple" non-intrusive tools such as RAPL and built-in performance
counters.

* An insight into the energy behavior of HPC jobs. We observe that such be-
havior is, for the most part, predictable. More precisely we classify the jobs
into constant (energy consumption remain constant thought the execution),
periodic (alternating phases of low and high consumption), and non-stationary
(no particular pattern can be discerned)

* A classification tree based on a series of statistical tests that automatically
detects the energy profile of any job.

Such knowledge can play a major role in optimizing energy consumptions. It will
not only allow us to predict the general energy consumed by the workload but
also to detect the different consumption phases of an application and implement
energy-aware scheduling and allocation policies.

83

84

7.2 Data sources

7.2.1 Machines

For this work, we use the GRIDCAD Infrastructure [2]. We chose to focus on a single
cluster to prepare the pipeline for the data processing step. We use Dahu Cluster,
more precisely we extract all of our data from 40 machines (Dahu_33 to Dahu_72).
The 40 machines are homogeneous and have the following characteristics: Dell
C6420 bi-xeon SKL Gold 6130 (16 cores, 2.1Ghz).

The Dahu cluster is managed by the OAR Resource and job Manager (RJMS) and
monitored by Colmet. We introduce the two tools in the following sections.

7.2.2 OAR

OAR [3] is an RJMS for HPC clusters and distributed platforms. Its main tasks
include job scheduling, reservation management, resource allocations, resources
visualization ...

OAR give the user the option to submit their jobs as one of the following types:

* parallel jobs: are traditional HPC jobs that request several cores
* serial: jobs that request and execute on a single core

* interactive: jobs where the user can interact with his allocated machines, via a
shell interface. generally used for debugging purposes.

* best-effort: jobs with the lowest constraint and lowest priority, can be pre-
empted, can allocate any number of cores, generally CPU intensive.

OAR logs the execution history of all the submitted jobs within its attached database.
In this work, we use this functionality to extract job-related information such as the
request as submitted by the users, job dimensions, the resources that were allocated
to the job,...

7.2.3 Colmet

Colmet is a resource monitoring and collection tool used by the Ciment-Dahu cluster.
Its major task is to monitor the resources used by OAR jobs and identify job profiles
in relation to resources.

Colmet relies on the Linux taskstats [4] accounting feature coupled with the
cgroup [5] kernel isolation mechanism to retrieve consumption counters at low-cost.

Chapter 7 Energy profiling and classification

PACKAGEO PACKAGE1

PPO PPO
OO0 OO0
OOO00000 OO000000]
DRAM . DRAM
PP1 PP1

Fig. 7.1: Overview of the Intel RAPL architecture of a dual-socket system

Collected data is then stored on a dedicated node in a file structured in Hierarchical
Data Format v5 (HDF5). Among the various counters Colmet monitors, we focus on
the RAPL counter.

7.2.4 RAPL

RAPL was introduced in Section 2.3.2. In this section we give more details On its
packages and architecture.

All the machines we used have a dual-socket system, So we limit this section to
detailing RAPL for the dual-socket architecture. Figure 7.1 depicts the various
component.

* RAPL has a hierarchical architecture. It supports an independent package for

each processor.

* A package measures the energy consumption of the whole processor. In Figure
7.1 We identify two packages; PACKAGEO, PACKAGE].

* Each package contains two power plane (PP) and has an attached memory
(DRAM).

* The power Plan O (PPO) domain monitors the collective Energy consumptions
for the processing cores (16 cores in this care).

* The power Plane 1 (PP1) domain monitors the energy consumption of inte-
grated graphical processors (GPU). It is only active if the monitored machines
include GPUs (not used in this work).

* The DRAM domain measures the energy consumption to the attached memory.

* The measurement used throughout this work includes the PPO and The DRAM
of both processors of every machine.

7.2 Data sources

85

86

host: 70 package:1

3
38711 3877

3

34

AR e

juil. 01 juil. 08
date

30

25

resources

20

60

40

20

engergy/le+07

DRAM/packagel — ppO/packagel

Fig. 7.2: Execution history of a single processor

7.3 Combining the different data sources

Basic job descriptions are stored in the database of the OAR RJMS, and RAPL energy
measurements are logged via the Colmet monitoring tool (within the HDF5 format).
By Combining and synchronizing data from the two sources, we can visualize the
execution history of any monitored machine. Figure 7.2 presents the execution log of
processor 1 of the Dahu 70 machine. The upper figure is the Gantt chart of the jobs
that were executed during a certain period and the lower figure shows the energy
consumption as logged by RAPL for the corresponding period.

Several Remarque can be made:

* There is a clear correlation between the jobs and the changes in the energy
patterns.

* jobs have different energy profiles.

* Just because a job uses a full processor, it does not mean that it uses the
maximum amount of energy allowed.

* the length of the jobs varies greatly. from few seconds to multiple weeks
* the consumption of the ppO and DRAM are heavily correlated.

* the pp0 consumption is approximately one order of magnitude larger than the
DRAM consumption.

* Energy Profile: An energy profile of a job corresponds to all the RAPL mea-
surements that were taken during the job executions. Jobs that use a full

Chapter 7 Energy profiling and classification

processor have an individual profile. Jobs that share a processor have a shared
profile that corresponds to the total energy used by the processor for the
duration of the execution. In this work, we also refer to the energy profile of a
job by the term signal or series (a more detailed explanation of the reason will
be given in Section 7.4.2)

* Since RAPL gives measurements for one full processor, jobs that don’t use a full
processor do not have a specific energy profile. They share the same profile
with other jobs that are running at the same time.

7.4 Preprocessing and job distribution

As we are working with real word logs, We are bound to encounters anomalies and
inconsistencies in the data we collect. In this section, we perform several filtering
steps to extract clean profiles which will be used letter in this work.

7.4.1 Sample

For this work, we use only a sample of the available data; about 16 days, from June
25, 2019, to July 11, 2019. In this period, 21,885 unique jobs we submitted and
executed on the Dahu platform.

First, we remove jobs with no usable energy profile. They include jobs that are too
short (less than 1 minute) and jobs with messing energy measurements. Figure 7.3
show the percentage of discarded jobs.

* Very short jobs (less than one minute of execution time): The number of RAPL
observations is too small to make any use of. We cannot extract any meaningful
pattern (even if we can the number of observation is too small to be of any use
in this study). Also, they have no impact on scheduling performance. Thus, we
discard them. Figure 7.3a reveals that those jobs account for 41.8% of total
number of jobs. But ~ 0% of the total processing time. Also, They account for
~ 0% of the total recorded energy consumption.

* Jobs with missing energy measurements. This could be due to a kernel error,
specific administrator configuration, ... This is a study of energy consumption.
Jobs with missing data are of little interest to us. Thus, we discard them as
well. In Figure 7.3a, we observe that jobs with missing energy measurement
account for 18% (19%) of the total number of jobs (total execution time).

7.4 Preprocessing and job distribution

87

88

Job number Job area

8% 9.1%
S
%

(a) Selcting jobs with a usable energy profile

Job number Job area

4% r
r .9%

(b) Selecting jobs that use a full processor.

Fig. 7.3: Job filtering process; The jobs number and the jobs area represents respectively

the total number of unique jobs and the total execution time.

The next filter concerns the number of nodes a job uses.

* The reservations in OAR can be core-based. Jobs of type serial, use a single

core, and other jobs can also allocate any number of nodes that may not
cover an integer number of processors. At the same time, RAPL measure the
energy consumption of a full processor. Although it is one of the finest energy
measurement tools, it does not reach the level of individual cores. Extracting
the energy profiles of jobs that share a processor is a very complicated task
and requires a full study which is beyond the scope of this work. We focus
on jobs that reserve and use one or more full processors (a processor has 16
cores) for the full duration of their execution.

Figure 7.3b shows that jobs that use full processor account for 36,6% of the
total number of jobs and 63.9% of the total execution area.

Although the jobs that use less than a full processor represent a sizable portion
of the total jobs, we are obliged to discard them.

Chapter 7 Energy profiling and classification

[RN)
S 3

engergy/1e+07
8

M0 T T

1561500000 1562000000 1562500000
timestamp

0

DRAM/package1 — ppO/packagel

i i

1561500000 1562000000 1562500000
timestamp

<3

[N)
S

engergy/1e+07
3

o

Fig. 7.4: Energy measurement aggregations; The upper figure represents the measurements
as taken from Colmet. The bottom figure represents the results of the aggregation
process.

The goal of this work is the analysis of the energy profile of jobs for the goal of
using them in a meaningful way. In order to detect a meaningful pattern, the energy
profile must sufficiently long. We use jobs that are longer than 30 minutes.

7.4.2 Energy Data preprocessing

For the remainder of this works, we will use the terms signal or series to refer to an
energy profile. They come respectively from the worlds of signal analysis and time
series analysis. We use these terms because most of the techniques we rely on in the
following sections are derived from these fields.

7.4.2.1 Signal aggregation

Energy measurements are reported once every 5 seconds. Measurements on such a
narrow timeframe are very prone to random noise and fluctuations that are more
related to the external state of the machine (such as ambient temperature, system
interruptions, ...) than job patterns themselves.

To reduce the noise, we decide to perform a minute based aggregation. We take all
the RAPL measurements of any given minute and we average them. We compute
the average of every 12 observations.

Figure 7.4 shows an example of the aggregation process.The upper figure represents
the original signal, and the lower figure represents the aggregated signal. The
aggregated signal has less fluctuation than the original. Also, we note that the
general patterns (Constance, periodicity) of the signal become more visible thanks
to the aggregation. Also, the aggregation reduces the data set size by a factor of 12.
Thus, making subsequent computations faster.

7.4 Preprocessing and job distribution

89

90

T T T T T

time(hours)

used 1-yes © 2-no

Fig. 7.5: Outliers detection

7.4.2.2 outliers removal

The beginning and the end of a job typically correspond to the initialization and
finishing phases. They include actions that are unique and don’t repeat through the
life of the application such as initializing kernels, loading libraries, saving results.
These phases are usually short (a few minutes in the beginning and the end), and
they are not representative of the general behavior of the signal. Thus we decided to
cut them.

Also, we observed points in the middle of the signal that are very different values
from the rest. They are larger (or smaller) and are several orders of magnitude
compared to the average variance of the rest of the points, which causes heavy
statistical interference. Thus we decided to remove them as well.

Figure 7.5 shows an example of the filtering process. the blue points correspond to
the points we have filtered. We observe that the values at the beginning and the end
are different from the rest of the signal. Also, in the middle of the signal, there are
outliers which we filter using the z-score [16] with a threshold of 3, which allows us
the filter out the points that are outside the 3rd standard deviation. Those points
correspond to all the blue points in figure 7.5 other than the one at the beginning
and end.

7.4.3 Classification Tree

After performing the preprocessing steps, we obtain energy profiles that are complete
and long enough to study. To the extent of our knowledge , this is the first work of its
kind. We have little idea about the types of signals we will encounter. Thus, we start
by performing some observational work. We visualize the energy profiles and make

Chapter 7 Energy profiling and classification

energy

012345678 0101112131415161718192021222324252627282930313233 0123456786 0101112131415161718192021222324252627282930313233 0 12345676610111213141516171819202122232425
time(hours) time(hours) time(hours)

energy

1 2 3 H 5 0123456 7 6 9101112131415 1617 18 19 20 0 1 2 3 4 5 6 7 & 9 1011 12 13 14 15 18
time(hours) time(hours) time(hours)

. .
B4 .
g
H
H
’ M :
" e

energy

12345676610123438 7 z 3 012345676610123438
time(hours) time(hours) time(hours)

Fig. 7.6: Energy profiles

some hypothesizes. In Figure 7.6 ,we show some examples of energy profiles. The
x-axis represents the running time of the job (in hours), and the y-axis represents
the energy value.

There are different types of signals with few commonalities. The variations,
patterns, amplitudes, and durations are all changing from one profile to
another.

Through this variability, There major classes can be identified; periodic signals
(upper left, upper center, middle right), constant signals (middle center), and
chaotic signal with no particular characteristics (lower center and lower left.)

Also, we note that these classes are not mutually exclusive. An energy profile
can have a mix of two or more forms (upper right (periodic+ chaotic)), or it
can start with one form and finish with another (middle left (periodic then
constant)).

Direct observation is the most reliable method. But it is not practical in large
production systems that receive hundreds or even thousands of jobs daily.
Thus, an automated procedure to analyze and classify energy profiles must be
put in place.

Throughout this work, many of the values we chose to perform the classification
are hand chosen. The choices are directly related to the platform and the
"tolerance level" of the user of the classification. In the subsequent sections,
we give detailed justifications for our choices.

Finally, we note that there is no such thing as a perfectly constant signal. All the
signals exhibit variability. Sometimes this variability is too minor that it is not
visible in the figures. The scale is what makes the distinctions. It falls on us (and
subsequently the user of this classification) to decide from which Threshold value
the variability is sufficiently large to be taken into consideration.

7.4 Preprocessing and job distribution

91

92

jobs

non_stationary ‘ @E - -

- Test for stationarity*
SD>0.1 SD<=0.1
variable constant

periodic Non_periodic
|H_igh pass filter + Discrete fourier transform**

Fig. 7.7: Energy profile Tree

We perform three tests. To build what we will refer to as a classification tree. The
tree is presented in Figure 7.7. The first test allows users to isolate stationary energy
profiles (test of stationarity). The second test checks if a stationary signal is constant
or not (test of variability). The last test checks whether the stationary-non-constant
signals are periodic or not (test of periodicity).

The classification tree is built with the idea of utility in mind. This study aims to
identify and isolate jobs that can be exploited to optimize energy consumption. This
is done by identifying and predicting instances that have low energy consumption.
These instances include jobs with constantly low energy usage thought all of their
execution. and periodic jobs that have low energy consumption periods that are
"long" enough to be exploited properly.

(i) The first step is to detect whether a job is stable through time or not. Stability
means predictability which translates to the possibility of exploitation. (ii)In the
second level, we isolate constant jobs. the third and the final level we determine the
periodic jobs.

In the following sub-sections, we detail the tests we used for this classification

7.4.4 Test for stationarity

Stationarity is a term often used in the field of time series analysis [19]. A time series
is said to be stationary if its statistical properties such as the mean, the variance, the
standard deviation (SD), autocorrelation, etc. are all constant through time.

Throughout the literature, many tests have been devised to check if a series is

Chapter 7 Energy profiling and classification

stationary or not. The most popular are parametric tests like the Dicky-fuller
test [53], and the KPSS [11] test. However, parametric tests are limited and they
cover only a narrow sub-class of possible cases encountered in real data. They
are meant to detect specific types of stationarity, namely those brought about by
simple parametric models of a generating stochastic process Plus, they do not take
into consideration the relative differences between the signals (the scale). In this
work, we are dealing with a very wide spectrum of signal types. Many of them have
no common proprieties. Thus, we adopt a basic, more general approach to detect
stationarity:

* Divide the series into n (6 in this work) parts, we call windows and compute
the mean of each window

* Check if there are significant changes between the windows.

— Compute the SD of the means.
— Ifitis above a certain threshold then we consider the series non-stationary
and we stop there.

— If not, we consider the series stationary and we move to the next test.

* The threshold value is chosen based on the maximum and the minimum energy
that a job can consume. We decided to take threshold = 0.1 since it appears
to be a good value to separate minor variations from significant variations that
significantly impact the form of the signal

Based on our observations, the presented approach seem to the most effective for
detecting stationarity but it sill had shortcomings.

When it comes to stationarity testing, however, the reality is more complex than any
model. At the moment of writing this text and to the extent of our knowledge there
exist no widely-applicable tests that encompass all real-life scenarios.

Figure 7.8 provides examples of stationary and non-stationary signals. For the
non-stationary profiles. Two forms emerge. The first (Figure 7.8a are profiles that
appear stationary for the most part but with a sudden change in the regime that
comes at a random time. The second (Figure 7.8c are profiles that exhibit chaotic
variations with no observable pattern. For the stationary profiles, We also observed
two shapes . Periodic signals (Figure 7.8b) and constant (or near constant) signals
(Figure 7.8d).

As far as non-stationary signals go, There is very little that can be done about them.

So we stop the analysis for this class. In the next levels of the tree, we focus our
attention on the stationary signals.

7.4 Preprocessing and job distribution

93

94

energy

6 6
B4 4
©
2
3

2 2

0 0

0.0

[10 20 30 40 50
time(hours) time(hours)

(a) Non stationary (b) Stationary

0.00 0.25 0.50 0.75 1.00 0 5 10 15 20
time(hours) time(hours)

(c) Non stationary (d) Stationary

Fig. 7.8: Results of the stationarity test

7.4.5 Test of variability

This test includes stationary signals only, which corresponds to the right branch of
the tree in Figure 7.7. We measure the amount of variation a signal exhibits.

We define a signal to be constant if its variation through time is too minor to have
any significant impact or to be exploited. These variations could be periodic in
nature, noise, or a mix of both. Regardless of their nature we still label the signal
as simply constant or variable. We use The same threshold value of this test as
well (threshold = 0.1). The test is simple. We compute the value of the standard
deviation. the standard deviation (o) is defined as follows:

1 N

where N is the number of observations, x; is the value of observation 7, and 7 is the

signal mean

e If o < 0.1 — signal is constant

e If o >= 0.1 — signal is non-constant

Figure 7.9 gives examples of the constant and non constant signals. The constant
profiles generally include jobs with no visible changes in the energy consumptions
throughout the execution (Figure 7.9c) and jobs that exhibit minor fluctuation
(Figure 7.9a). The non constant job mostly includes jobs that are periodic (Figures
7.9b and 7.9d).

Chapter 7 Energy profiling and classification

6 6
34 B4
3 3
2 2
5 5

2 2

0 0

o

0 5 10 15 20 0 25 5.0 75 100 125
time(hours) time(hours)

(a) Constant (b) variable

energy

2 2

0 2 4 6 5 10 15
time(hours) time(hours)

(c) Constant (d) variable

B¢ B¢
g g
g g
5 5

L] 10 20 30 40 o 10 20
time(hours) time(hours)

(e) Constant (f) variable

Fig. 7.9: Results of the variability test

Figures 7.9e and 7.9f exhibit interesting patterns. We can see that they are neither
constant nor periodic (in the strict sense of the words).

* Profile 7.9e: is mostly constant with some small spikes now and then and three
distinct distortions of the signal. However, such distortion is too small (below
the o threshold).

* Profile 7.9f is a mix of all the classes. It has some traces of periodicity, fluctua-
tions that are too small and short to be labeled as non-stationary and is not
constant. We argue the class that this job should belong to is very subjective.

7.4.6 Test of periodicity

This test corresponds to the final branch of the tree in Figure 7.7. The profiles we
have in this part of the tree are stationary and exhibit significant variations. The
goal of this test is to check whether these variations are periodic or not.

To detect the periodicity of a signal, we use Discrete Fourier Transformation(DFT) [18].

The Fourier transform in general, and DFT in particular, are at the heart of many
signal treatment methods. DFT reveals periodicities in input data as well as the

7.4 Preprocessing and job distribution

95

96

engergy
o N B (2]

0 1 2 3 4 5 6 7 8 9 10 11 12
time(hours)
31 -
22
0 01— T T r T T : T r T T . .
0 1 2 3 4 5 6 7 8 9 10 11 12
time(hours)
used 1-yes ¢ 2-no
)
'a 15
[
3 10
IS
-‘6 5
a
o 01 = . - . :
0.0 0.1 0.2 0.3 0.4 0.5
frequency

Fig. 7.10: Discrete Fourier Transform

relative strength of any periodic components. Plus, the computational overhead is
low because it uses the Fast Fourier transform.
We perform the following step:

* For each signal, we apply a DFT: which allows us to determine the frequencies
that appear particularly strong or important.

* From that, we obtain a periodogram that quantifies the contributions of the
individual frequencies to the signal.

* We extract the frequency of with the highest contribution: max_freq

* If max_freq > threshold (1 in the examples), then the signal exhibit strong
cyclic/periodic behavior.

* If not, then the signal is stationary and variable but with no clear periods.

Figure 7.10 gives an example of the DFT of an energy profile. The x-axis denotes
the frequency (relative to the length of the signal). And the y-axis (spectral density)
shows the power or contribution of each frequency relative to the rest of the signal.
For this particular signal, we can observe a single dominant peak and a few small
peaks. The dominant peak corresponds to the distinct periodic behavior we observe
in the signal.

Figure 7.11 is an example of a signal that is not stationary and non-constant but not
periodic either. It corresponds to a constant signal with distortions in some parts.

Chapter 7 Energy profiling and classification

- 6
%4 [""“TT""," Yrryvy T v JY"
2
o 2
0 T T T T T T T T T
0 1 2 3 4 5 6 7 8

time(hours)

36 — - -
E 4 e ° ° °
(o)) 2 o .
c
o0 T T T T T T T T T
0 1 2 3 4 5 6 7 8
time(hours)
used °* 1-yes © 2-no
>
£ 0.3
@
Bo2
©
3 0.1
(0]
@001 : : ; : .
0.0 0.1 0.2 0.3 0.4 0.5
frequency

Fig. 7.11: Discrete Fourier Transform

This is reflected in its DFT, where the spectral density of all the frequencies is very
low (0.3 being the highest value).

In this section, we classified the profiles into three major families; periodic, constant,
and non-stationary. We note that this classification is subjective as it relies on our
definitions of the different classed on the choice of the threshold values.

Figure 7.12 shows the distribution of jobs after applying the classification tree.
Unlike Figures 7.3a and 7.3b, the job number and the area distributions are similar.
Around half of the jobs belong to the constant class and a quarter of the jobs belong
to the periodic class.

Job number Job area

stationary) .
stationary/

ttionary/ve

Fig. 7.12: Job distribution after applying Tree 7.7 classification

7.4 Preprocessing and job distribution

97

98

For the studied sample Around 75% of the total jobs (and respectively total execution
area) are predictable.

7.5 Conclusion

In this chapter, we studied the energy consumption of HPC jobs. More precisely,
we focused on the different patterns an energy profile can have. We observed that
energy profiles although unique to each job share certain common traits that allow
us to classify them into specific classes. We Relied on the RAPL energy monitoring
tools to collect energy measurements. Then, we proceeded to build a classification
tree that sorts jobs into periodic, constant, and non-stationary. We observed that
constant and periodic jobs make up around 75% of the total execution time. This
indicates that the majority of the trace have predictable energy patterns. This shows
great promise since predictability could potentially lead to exploitability.

In this work, we limited our analysis to include only the jobs that execute on a
full processor. We note that reserving and running an entire processor does not
necessarily mean that it is used to its fullest potential. This could be due to various
reasons like a job going through multiple phases of execution, bottlenecks, or simply
sub-optimal code that lead to unused (but reserved) cores. We take another look at
Figure 7.6. The bottom left sub-figure is an example of a job that reserved the full
processor but its energy consumption is almost none. The upper-middle figure is an
example of periodic jobs that have phases of low energy consumption.

Two steps might follow. Predicting future energy consumption from user history and
coupling low consumption jobs together.

Predicting future energy consumption: In previous works we have shown that we
can predict job runtimes via user history. The same can be done for energy profiles.
More specifically for the jobs with a predictable pattern.

couple low consumption jobs together: This approach will specifically target
constant jobs with low energy consumption and periodic jobs with sufficiently long
low phases.

Chapter 7 Energy profiling and classification

Conclusion

Scheduling, even its most basic form, is an NP-hard problem, and finding the optimal
solution requires an exponential computation time. Online scheduling is even harder.
It adds several layers of uncertainty to an already complex problem. Faced with such
complexity, system administrators opted for the safest and the simplest solution,
using basic ordering heuristics.

Simple ordering heuristics have been, for the longest time, the go-to method to sort
jobs in HPCs. However, with the increase in size and complexity of supercomputers,
such elementary methods are no longer able to satisfy the numerous constraints
a scheduler must contend with. Thus, alternative, more promising methods have
been gaining popularity. Machine learning is one such method. ML studies focus on
investigating and analyzing patterns and anomalies in data and building solutions
based on these investigations. ML has been applied with various degrees of success
on the scheduling problem, from building fully automated schedulers to reducing
the inherent uncertainly in some parameters.

In this thesis, we study the interactions between Online scheduling and machine
learning. We unravel some of the gains, pitfalls, and promising directions that come
with the application of data analysis and machine learning techniques to the field of
HPC online scheduling.

We start our experimental campaign with a comparative study. We evaluate schedul-
ing policies by going beyond what we learn from basic metrics and popular per-
ceptions of fairness. We study some of the principal weaknesses of the evaluation
process. The first weakness is using a single metric or a similar set of metrics (like the
waiting time and the slowdown). The second is reducing a metric to a single number
(the average or the max). We show that such simplified assessments of scheduler
performance tend to be misleading as they showcase a very narrow view of the
performance. We also argue about the importance of area property when scheduling
and we show the robustness of this properly under different circumstances.

Then we proceed to propose two methods to explore logs and machine learning
to improve performance. First, we conceive and test a method to generate more
expressive policies. We build mixed policies, a larger family of policies that are a
combination of several job characteristics. We tune them using historical logs and

99

100

black-box optimizers.

We observe that for any set of jobs of any given period, there exists a mixed policy
that offers performance improvements that are far superior to anything simple poli-
cies can offer. On the other hand, such policies tend to be very specialized to a single
set of jobs as their performance significantly degrades when tested on another job
set.

This excellent performance is attributed mainly to overfitting. By overfitting, mixed
policies managed to circumvent several problems caused by the lack of knowledge
about incoming jobs such as unknown runtimes problem.

Second, we address the problem of unknown runtimes. Although sound approx-
imations can be found throughout the literature, the exact value of job runtimes
remains near-impossible to predict. Extreme factors, such as the machine state and
the machine location in the rack can have subtle and cumulative effects on the
runtime. Such factors are too complex and volatile to account for. We show that a
simple classification coupled with a contingency mechanism offers improvements in
performance that are on par with what scheduling with exact runtimes offers. This
type of simplification is not particularly new. Other fields adopted similar approaches
long before this work. For instance, in stock market analysis, Predicting the exact
value of a stock is an impossible task due to the large number of external factors that
cannot be measured or quantified. Thus, it is common to predict if the stock is going
up or down instead. This simple classification has proven to be quite helpful.

Finally, we focus on the energy consumption of individual HPC applications. We
show that most jobs follow certain energy consumption patterns. These patterns
could be either constant or periodic. Then we build a classification tree using several
statistical tests to automatically identify the energy patterns of a job. This knowledge
can be used in several ways. (i) To predict the energy profiles of waiting jobs using
techniques and features that are similar to the ones presented in Chapter 6. (ii) Or
To use the knowledge about instantaneous consumption of waiting jobs to build and
energy aware scheduler.

We briefly discuss three directions for future research:

* Mixed policies: In Chapter 6 we chose to limit our search to linear expressions.
We made THIS design decision for several reasons. It is simpler to reason about,
and the resulting expressions are interpretable. Also, it gave us the possibility
to visualize the search space (Figure 5.4), which allowed us to gain valuable
insights. However, it is possible to expand the search space to including non-
linear combinations of the job characteristics (quadratic, polynomial, ...). We
believe this expansion will allow us to generate policies that perform better, at
least for the offline case. We are also interested in the pattern that will emerge
and weight distribution when non-basic characteristics are involved.

Chapter 8 Conclusion

* Combining machine learning and energy profiling. In section 7, we have
shown that most jobs follow an identifiable energy consumption pattern. This
pattern could be either constant or periodic. We can use this knowledge in
conjunction with the runtimes prediction techniques presented in Chapter 6 to
estimate the energy consumption of incoming jobs. We can take this research
direction even further by building an energy-aware scheduler.

* Using Deep Reinforcement learning:. Deep learning in general and deep
RL represent the pinnacle of automatic scheduling policies. Full control is
given to the RL algorithm to take whatever ordering decision it deems fit.
A plausible research direction is to build an RL model (possibly with policy
gradient methods). And try to study its behavior in detail. It is interesting
for two reasons. First, there is the promise of greater improvements. By
having access to larger search space, we believe that RL has a great potential
to achieve unprecedented performance improvements. The second reason is
that we believe that analyzing the behavior of a fully automated model can
give us insights into scheduling practices that were unknown before.

101

Bibliography

[1]https://www.top500.0rg/ (cit. on pp. 1, 16).
[2]https://gricad.univ-grenoble-alpes.fr/ (cit. on p. 84).

[3]1https://oar.imag.fr/ (cit. on p. 84).
[4]https://www.kernel.org/doc/Documentation/accounting/taskstats.txt (cit. on p. 84).
[5]https://man?7.org/linux/man-pages/man7/cgroups.7.html (cit. on p. 84).

[6]Anurag Agarwal, Selcuk Colak, Varghese S. Jacob, and Hasan Pirkul. , Heuristics and
augmented neural networks for task scheduling with non-identical machines®. In:
European Journal of Operational Research 175.1 (2006), pp. 296-317 (cit. on p. 7).

[71D. H. Ahn, J. Garlick, M. Grondona, et al. ,Flux: A Next-Generation Resource Man-
agement Framework for Large HPC Centers“. In: 2014 43rd International Conference
on Parallel Processing Workshops. 2014, pp. 9-17 (cit. on p. 22).

[8]Francisco Almeida, Marcos Dias de Assuncao, Jorge Barbosa, et al. ,Energy Moni-
toring as an Essential Building Block Towards Sustainable Ultrascale Systems*“. In:
Sustainable Computing : Informatics and Systems 17 (Mar. 2018), pp. 27-42 (cit. on
p. 12).

[9]Cynthia Bailey Lee, Yael Schwartzman, Jennifer Hardy, and Allan Snavely. ,,Are User
Runtime Estimates Inherently Inaccurate?“ In: Job Scheduling Strategies for Parallel
Processing. Ed. by Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 253-263 (cit. on pp. 8, 59).

[10]Frank Bellosa. ,,The Benefits of Event: Driven Energy Accounting in Power-Sensitive
Systems*“. In: Proceedings of the 9th Workshop on ACM SIGOPS European Workshop:
Beyond the PC: New Challenges for the Operating System. EW 9. Kolding, Denmark:
Association for Computing Machinery, 2000, pp. 37-42 (cit. on p. 13).

[11]Alok Bhargava. ,,On the Theory of Testing for Unit Roots in Observed Time Series“.
In: The Review of Economic Studies 53.3 (July 1986), pp. 369-384 (cit. on p. 93).

[12]Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter J. Gutjahr. ,,A
survey on metaheuristics for stochastic combinatorial optimization®“. In: vol. 8. 2.
June 2009, pp. 239-287 (cit. on p. 49).

103

https://www.top500.org/

104

[13]Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B. Woodard, and Hans An-
dersen. ,Fingerprinting the Datacenter: Automated Classification of Performance
Crises"“. In: Proceedings of the 5th European Conference on Computer Systems. EuroSys
’10. Paris, France: Association for Computing Machinery, 2010, pp. 111-124 (cit. on
p- 10).

[14]Marin Bougeret, Pierre-Francois Dutot, Klaus Jansen, Christina Otte, and Denis Trys-
tram. ,,Approximation Algorithms for Multiple Strip Packing®. In: Approximation and
Online Algorithms, 7th International Workshop, WAOA 2009, Copenhagen, Denmark,
September 10-11, 2009. Revised Papers. 2009, pp. 37-48 (cit. on p. 7).

[15]Raouf Boutaba, Mohammad A. Salahuddin, Noura Limam, et al. ,A comprehensive
survey on machine learning for networking: evolution, applications and research
opportunities“. In: Journal of Internet Services and Applications 9.1 (June 2018), p. 16
(cit. on p. 11).

[16]C.H. Brase and C.P. Brase. Understanding Basic Statistics. Cengage Learning, 2015
(cit. on p. 90).

[17]Leo Breiman. ,Random Forests“. In: vol. 45. 1. Hingham, MA, USA: Kluwer Academic
Publishers, Oct. 2001, pp. 5-32 (cit. on p. 65).

[18]William L. Briggs and van Emden Henson. The DFT: an Owner’s Manual for the Discrete
Fourier Transform. Philadelphia: Society for Industrial and Applied Mathematics, 1995
(cit. on p. 95).

[19]P.J. Brockwell and R.A. Davis. Introduction to Time Series and Forecasting. Springer
Texts in Statistics. Springer International Publishing, 2016 (cit. on p. 92).

[20]Nicolas Capit, Georges Da Costa, Yiannis Georgiou, et al. , A batch scheduler with
high level components“. In: Cluster computing and Grid 2005 (CCGrid05). Cardiff,
United Kingdom: IEEE, 2005 (cit. on p. 2).

[21]Danilo Carastan-Santos and Raphael Y. de Camargo. ,,Obtaining Dynamic Scheduling
Policies with Simulation and Machine Learning®. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis. SC’17.
Denver, Colorado: ACM, 2017, 32:1-32:13 (cit. on pp. 4, 10, 23, 25, 30, 36, 42, 59,
69, 71).

[22]Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric
Suter. ,Versatile, Scalable, and Accurate Simulation of Distributed Applications and
Platforms“. In: Journal of Parallel and Distributed Computing 74.10 (June 2014),
pP- 2899-2917 (cit. on pp. 22, 71).

[23]Minh Thanh Chung, Kien Pham, Nam Thoai, and Dieter Kranzlmueller. , A New
Approach for Scheduling Job with the Heterogeneity-Aware Resource in HPC Sys-
tems“. In: 2019 IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart City; IEEE 5th
International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE.
2019, pp. 1900-1907 (cit. on p. 10).

[24]Ira Cohen, Steve Zhang, Moises Goldszmidt, et al. ,,Capturing, Indexing, Clustering,
and Retrieving System History“. In: Proceedings of the Twentieth ACM Symposium on
Operating Systems Principles. SOSP ’05. Brighton, United Kingdom: Association for
Computing Machinery, 2005, pp. 105-118 (cit. on p. 10).

Bibliography

[25]Pawel Czarnul, Jerzy Proficz, and Adam Krzywaniak. ,,Energy-Aware High-Performance
Computing: Survey of State-of-the-Art Tools, Techniques, and Environments“. In:
Scientific Programming 2019 (Apr. 2019), p. 8348791 (cit. on p. 12).

[26]H. Al-Daoud, I. Al-Azzoni, and D. G. Down. ,,Power-Aware Linear Programming based
Scheduling for heterogeneous computer clusters“. In: International Conference on
Green Computing. Aug. 2010, pp. 325-332 (cit. on p. 7).

[27]A. P. Dempster, N. M. Laird, and D. B. Rubin. ,Maximum likelihood from incomplete
data via the EM algorithm*. In: vol. 39. 1. 1977, pp. 1-38 (cit. on p. 61).

[28]Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. , A Validation of DRAM
RAPL Power Measurements®. In: Proceedings of the Second International Symposium
on Memory Systems. MEMSYS ’16. Alexandria, VA, USA: Association for Computing
Machinery, 2016, pp. 455-470 (cit. on p. 13).

[29]Eelco Dolstra, Eelco Visser, and Merijn de Jonge. ,,Imposing a Memory Management
Discipline on Software Deployment“. In: Proceedings of the 26th International Con-
ference on Software Engineering. ICSE '04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 583-592 (cit. on pp. 40, 71).

[30]Jack Dongarra, Hatem Ltaief, Piotr Luszczek, and Vincent M. Weaver. , Energy Foot-
print of Advanced Dense Numerical Linear Algebra Using Tile Algorithms on Multicore
Architectures®. In: Proceedings of the 2012 Second International Conference on Cloud
and Green Computing. CGC ’12. USA: IEEE Computer Society, 2012, pp. 274-281
(cit. on p. 14).

[31]Pierre-Francois Dutot, Michael Mercier, Millian Poquet, and Olivier Richard. Batsim:
A Realistic Language-Independent Resources and Jobs Management Systems Simulator.
Ed. by Narayan Desai and Walfredo Cirne. Cham, 2017 (cit. on pp. 22, 26, 71).

[32]Daniel Ellsworth, Tapasya Patki, Martin Schulz, Barry Rountree, and Allen Malony.
»,2Simulating Power Scheduling at Scale“. In: Proceedings of the 5th International
Workshop on Energy Efficient Supercomputing. E2SC’17. Denver, CO, USA: Association
for Computing Machinery, 2017 (cit. on p. 22).

[33]Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. ,,A Density-based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise“. In: Pro-
ceedings of the Second International Conference on Knowledge Discovery and Data
Mining. KDD’96. Portland, Oregon: AAAI Press, 1996, pp. 226-231 (cit. on p. 61).

[34]Y. Fan, P. Rich, W. E. Allcock, M. E. Papka, and Z. Lan. ,, Trade-Off Between Prediction
Accuracy and Underestimation Rate in Job Runtime Estimates®. In: 2017 IEEE Inter-
national Conference on Cluster Computing (CLUSTER). 2017, pp. 530-540 (cit. on
pp- 8, 59).

[35]Dror G Feitelson. ,,Resampling with feedback — a new paradigm of using workload
data for performance evaluation“. In: European Conference on Parallel Processing.
Springer. 2016, pp. 3-21 (cit. on pp. 21, 26).

[36]Dror G Feitelson and Larry Rudolph. ,Metrics and benchmarking for parallel job
scheduling®. In: Workshop on Job Scheduling Strategies for Parallel Processing. Springer.
1998, pp. 1-24 (cit. on pp. 20, 29).

Bibliography

105

106

[37]1Dror G Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C Sevcik, and Park-
son Wong. ,,Theory and practice in parallel job scheduling®. In: Workshop on Job
Scheduling Strategies for Parallel Processing. Springer. 1997, pp. 1-34 (cit. on p. 25).

[38]Christodoulos A. Floudas and Xiaoxia Lin. ,,Mixed Integer Linear Programming in
Process Scheduling: Modeling, Algorithms, and Applications®. In: Annals of Operations
Research 139.1 (Oct. 2005), pp. 131-162 (cit. on p. 7).

[39]Eva Garcia-Martin, Crefeda Faviola Rodrigues, Graham Riley, and Hakan Grahn.
»Estimation of energy consumption in machine learning®. In: Journal of Parallel and
Distributed Computing 134 (2019), pp. 75-88 (cit. on p. 13).

[40]Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. USA: W.H.Freeman & Co., 1990 (cit. on p. 7).

[41]E. Gaussier, J. Lelong, V. Reis, and D. Trystram. ,,Online Tuning of EASY-Backfilling
using Queue Reordering Policies®. In: IEEE Transactions on Parallel and Distributed
Systems 29.10 (Oct. 2018), pp. 2304-2316 (cit. on pp. 4, 25, 26, 69).

[42]Eric Gaussier, David Glesser, Valentin Reis, and Denis Trystram. ,Improving Back-
filling by Using Machine Learning to Predict Running Times". In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis. SC’15. Austin, Texas: ACM, 2015, 64:1-64:10 (cit. on pp. 4, 8, 9, 23, 25,
39, 42, 59, 80).

[43]R. Ge, X. Feng, S. Song, et al. ,PowerPack: Energy Profiling and Analysis of High-
Performance Systems and Applications“. In: IEEE Transactions on Parallel and Dis-
tributed Systems 21.5 (2010), pp. 658-671 (cit. on p. 13).

[44]Tobias Glasmachers, Tom Schaul, Sun Yi, Daan Wierstra, and Jiirgen Schmidhuber.
»Exponential Natural Evolution Strategies®. In: Proceedings of the 12th Annual Confer-
ence on Genetic and Evolutionary Computation. GECCO ’10. Portland, Oregon, USA:
ACM, 2010, pp. 393-400 (cit. on p. 49).

[45]Bhavishya Goel, Sally A. McKee, and Magnus Sjilander. ,,Chapter two - Techniques to
Measure, Model, and Manage Power“. In: ed. by Ali Hurson and Atif Memon. Vol. 87.
Advances in Computers. Elsevier, 2012, pp. 7-54 (cit. on p. 12).

[46]Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press,
2016 (cit. on pp. 4, 11).

[47]1Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya
Akella. ,Multi-Resource Packing for Cluster Schedulers®. In: SIGCOMM Comput.
Commun. Rev. 44.4 (Aug. 2014), pp. 455-466 (cit. on p. 11).

[48]R. E. Grant, S. L. Olivier, J. H. Laros, R. Brightwell, and A. K. Porterfield. ,Metrics
for Evaluating Energy Saving Techniques for Resilient HPC Systems“. In: 2014 IEEE
International Parallel Distributed Processing Symposium Workshops. 2014, pp. 790-797
(cit. on p. 12).

[49]Jian Guo, Akihiro Nomura, Ryan Barton, Haoyu Zhang, and Satoshi Matsuoka.
»,Machine Learning Predictions for Underestimation of Job Runtime on HPC System“.
In: Supercomputing Frontiers. Ed. by Rio Yokota and Weigang Wu. Cham: Springer
International Publishing, 2018, pp. 179-198 (cit. on pp. 9, 59, 68).

Bibliography

[50]Daniel Hackenberg, Thomas Ilsche, Robert Schone, et al. ,Power measurement
techniques on standard compute nodes: A quantitative comparison®. In: 2013 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE. 2013, pp. 194-204 (cit. on p. 14).

[51]N. Hansen. ,,The CMA evolution strategy: a comparing review". In: Towards a new
evolutionary computation. Advances on estimation of distribution algorithms. Ed. by
J.A. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea. Springer, 2006, pp. 75-102
(cit. on p. 49).

[52]James W. Hardin and Joseph Hilbe. Generalized Linear Models and Extensions. College
Station, Texas: Stata Press, 2001, p. 245 (cit. on p. 10).

[53]Michio Hatanaka. Time-Series-Based Econometrics: Unit Roots and Co-integrations.
Oxford University Press, 1996 (cit. on p. 93).

[54]Benjamin Hindman, Andy Konwinski, Matei Zaharia, et al. ,,Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center“. In: NSDI'11. Boston, MA: USENIX
Association, 2011, pp. 295-308 (cit. on p. 22).

[55]E. Hopper and B. C. H. Turton. ,,A Review of the Application of Meta-Heuristic
Algorithms to 2D Strip Packing Problems®. In: vol. 16. 4. Dec. 2001, pp. 257-300
(cit. on p. 7).

[56]E. S. H. Hou, N. Ansari, and Hong Ren. ,A genetic algorithm for multiprocessor
scheduling”. In: IEEE Transactions on Parallel and Distributed Systems 5.2 (Feb. 1994),
pp. 113-120 (cit. on p. 7).

[58]Intel. ,Intel Architecture Software Developer’s Manual, Volume 3: System Program-
ming Guide®. In: 3 (2009) (cit. on p. 13).

[59]Mateusz Jarus, Ariel Oleksiak, Tomasz Piontek, and Jan Weglarz. ,,Runtime power
usage estimation of HPC servers for various classes of real-life applications®. In:
Future Generation Computer Systems 36 (July 2014), pp. 299-310 (cit. on p. 13).

[60]Morris A. Jette, Andy B. Yoo, and Mark Grondona. ,,SLURM: Simple Linux Utility
for Resource Management®. In: In Lecture Notes in Computer Science: Proceedings of
Job Scheduling Strategies for Parallel Processing (JSSPP) 2003. Springer-Verlag, 2002,
pp. 44-60 (cit. on pp. 2, 9).

[61]Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. ,,Reinforcement
Learning: A Survey“. In: J. Artif Int. Res. 4.1 (May 1996), pp. 237-285 (cit. on p. 11).

[62]S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. , Optimization by simulated annealing”.
In: vol. 220. 4598. 1983, pp. 671-680 (cit. on p. 49).

[63]Dalibor Klusacek, Ludék Matyska, and Hana Rudova. ,Alea — Grid Scheduling Simu-
lation Environment*“. In: Parallel Processing and Applied Mathematics. Ed. by Roman
Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy Wasniewski. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1029-1038 (cit. on p. 22).

[64]Michael Kuchnik, Jun Woo Park, Chuck Cranor, et al. This is why ML-driven cluster
scheduling remains widely impractical. Tech. rep. CMU-PDL-19-103. Carnegie Mellon
University, Parallel Data Laboratory, 2019 (cit. on pp. 9, 59, 62).

Bibliography

107

108

[65]Jérdme Lelong, Valentin Reis, and Denis Trystram. ,,Tuning EASY-Backfilling Queues”.
In: 21st Workshop on Job Scheduling Strategies for Parallel Processing. 31st IEEE
International Parallel & Distributed Processing Symposium. Orlando, United States,
May 2017 (cit. on pp. 4, 9, 19, 25, 34, 39, 54, 72).

[66]Zewen Li, Wenjie Yang, Shouheng Peng, and Fan Liu. A Survey of Convolutional Neural
Networks: Analysis, Applications, and Prospects. 2020. arXiv: 2004 .02806 [cs.CV]
(cit. on p. 11).

[67]Uri Lublin and Dror G. Feitelson. ,,The Workload on Parallel Supercomputers: Mod-
eling the Characteristics of Rigid Jobs“. In: J. Parallel Distrib. Comput. 63.11 (Nov.
2003), pp. 1105-1122 (cit. on p. 60).

[68]Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. ,,Resource
Management with Deep Reinforcement Learning®“. In: Proceedings of the 15th ACM
Workshop on Hot Topics in Networks. HotNets ’16. Atlanta, GA, USA: ACM, 2016,
pp- 50-56 (cit. on pp. 4, 11).

[69]Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and
Mohammad Alizadeh. ,Learning Scheduling Algorithms for Data Processing Clusters®.
In: Proceedings of the ACM Special Interest Group on Data Communication. SIGCOMM
’19. Beijing, China: Association for Computing Machinery, 2019, pp. 270-288 (cit. on
pp. 4, 11).

[70]Ahuva W. Mu’alem and Dror G. Feitelson. , Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling“. In: IEEE
Transactions on Parallel and Distributed Systems 12.6 (2001), pp. 529-543 (cit. on
pp- 16, 25, 39).

[71]Stefano Nembrini, Inke R Konig, and Marvin N Wright. , The revival of the Gini
importance?“ In: Bioinformatics 34.21 (May 2018), pp. 3711-3718. eprint: https:
//academic.oup.com/bioinformatics/article-pdf/34/21/3711/26146978/
bty373.pdf (cit. on p. 69).

[72]Y. Ngoko, D. Trystram, V. Reis, and C. Cérin. ,An Automatic Tuning System for Solving
NP-Hard Problems in Clouds“. In: 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 2016, pp. 1443-1452 (cit. on p. 22).

[73]1Kenneth O’brien, Ilia Pietri, Ravi Reddy, Alexey Lastovetsky, and Rizos Sakellariou.
,»A Survey of Power and Energy Predictive Models in HPC Systems and Applications®.
In: ACM Comput. Surv. 50.3 (June 2017) (cit. on pp. 12, 13).

[74]1Parallel Workloads Archive: Logs. http://www.cs.huji.ac.il/labs/parallel/
workload/logs.html. 2018 (cit. on pp. 11, 15, 23, 29, 39, 42).

[75]Johnatan E Pecero, Denis Trystram, and Albert Y Zomaya. ,,A new genetic algorithm
for scheduling for large communication delays®. In: European Conference on Parallel
Processing. Springer. 2009, pp. 241-252 (cit. on p. 7).

[76]Heyang Qin, Syed Zawad, Yanqi Zhou, et al. ,,Swift Machine Learning Model Serving
Scheduling: A Region Based Reinforcement Learning Approach®. In: SC’19. Denvet,
Colorado: Association for Computing Machinery, 2019 (cit. on p. 11).

[77]1Gonzalo P Rodrigo, P-O Ostberg, Erik Elmroth, et al. ,Towards understanding HPC
users and systems: a NERSC case study“. In: Journal of Parallel and Distributed
Computing 111 (2018), pp. 206-221 (cit. on p. 25).

Bibliography

http://arxiv.org/abs/2004.02806
https://academic.oup.com/bioinformatics/article-pdf/34/21/3711/26146978/bty373.pdf
https://academic.oup.com/bioinformatics/article-pdf/34/21/3711/26146978/bty373.pdf
https://academic.oup.com/bioinformatics/article-pdf/34/21/3711/26146978/bty373.pdf
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

[78]L. Sant’ana, D. Carastan-Santos, D. Cordeiro, and R. De Camargo. ,,Real-Time Schedul-
ing Policy Selection from Queue and Machine States“. In: 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID). 2019,
pp- 381-390 (cit. on pp. 4, 10).

[79]1Joseph Skovira, Waiman Chan, Honbo Zhou, and David Lifka. ,,The EASY — LoadLeveler

API project”. In: Job Scheduling Strategies for Parallel Processing. Ed. by Dror G. Fei-
telson and Larry Rudolph. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996,
pp. 41-47 (cit. on pp. 4, 10, 16, 17).

[80]Warren Smith, Ian T. Foster, and Valerie E. Taylor. ,,Predicting Application Run Times
Using Historical Information®. In: Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing. IPPS/SPDP "98. Berlin, Heidelberg: Springer-Verlag,
1998, pp. 122-142 (cit. on p. 8).

[81]Srividya Srinivasan, Rajkumar Kettimuthu, Vijay Subramani, and P Sadayappan.
,Characterization of backfilling strategies for parallel job scheduling”. In: Parallel
Processing Workshops, 2002. Proceedings. International Conference on. IEEE. 2002,
pp. 514-519 (cit. on p. 16).

[82]Srividya Srinivasan, Rajkumar Kettimuthu, Vijay Subramani, and Ponnuswamy Sa-
dayappan. ,Selective Reservation Strategies for Backfill Job Scheduling®. In: Job
Scheduling Strategies for Parallel Processing. Ed. by Dror G. Feitelson, Larry Rudolph,
and Uwe Schwiegelshohn. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 55-71 (cit. on p. 16).

[83]Victoria C. Stodden, Friedrich Leisch, and Roger D. Peng. Implementing Reproducible
Research. Ed. by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. CRC Press,
2014, p. 448 (cit. on pp. 40, 71).

[84]AR Surve, AR Khomane, and S Cheke. ,Energy awareness in hpc: a survey“. In:
International Journal of Computer Science and Mobile Computing 2.3 (2013), pp. 46—
51 (cit. on p. 12).

[85]Mohammed Tanash, Brandon Dunn, Daniel Andresen, et al. ,Improving HPC system
performance by predicting job resources via supervised machine learning®. In: Pro-
ceedings of the Practice and Experience in Advanced Research Computing on Rise of the
Machines (learning). 2019, pp. 1-8 (cit. on p. 9).

[86]Wei Tang, Narayan Desai, Daniel Buettner, and Zhiling Lan. ,Analyzing and adjusting
user runtime estimates to improve job scheduling on the Blue Gene/P“. In: Proceedings
of the 24th IEEE International Parallel and Distributed Processing Symposium. Apr.
2010, pp. 1-11 (cit. on p. 71).

[87]1Wei Tang, Zhiling Lan, Narayan Desai, and Daniel Buettner. ,Fault-aware, utility-
based job scheduling on BlueGene/P systems“. In: Cluster Computing and Workshops,
2009. CLUSTER’09. IEEE International Conference on. IEEE. 2009, pp. 1-10 (cit. on
p. 25).

[88]Josep Torrellas. ,,Architectures for Extreme-Scale Computing®“. In: Computer 42 (Dec.
2009), pp. 28-35 (cit. on p. 12).

[89]Josep Torrellas. , Extreme-scale computer architecture®. In: National Science Review
3.1 (Jan. 2016), pp. 19-23. eprint: https://academic.oup.com/nsr/article-
pdf/3/1/19/31565756/nwv085.pdf (cit. on p. 12).

Bibliography

109

https://academic.oup.com/nsr/article-pdf/3/1/19/31565756/nwv085.pdf
https://academic.oup.com/nsr/article-pdf/3/1/19/31565756/nwv085.pdf

[90]Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson. ,Backfilling Using System-Generated
Predictions Rather Than User Runtime Estimates®“. In: vol. 18. 6. Piscataway, NJ, USA:
IEEE Press, June 2007, pp. 789-803 (cit. on pp. 8, 23, 39, 59, 80).

[91]0zan Tuncer, Emre Ates, Yijia Zhang, et al. ,Diagnosing Performance Variations in
HPC Applications Using Machine Learning®. In: ISC. 2017 (cit. on p. 10).

[92]Y. Ukidave, X. Li, and D. Kaeli. ,,Mystic: Predictive Scheduling for GPU Based Cloud
Servers Using Machine Learning”“. In: 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 2016, pp. 353-362 (cit. on p. 10).

[93]Pengfei Wei, Zhenzhou Lu, and Jingwen Song. ,Variable importance analysis: A
comprehensive review". In: Reliability Engineering and System Safety 142.C (2015),
pp- 399-432 (cit. on p. 69).

[94]M. Witkowski, A. Oleksiak, T. Piontek, and J. Wundefinedglarz. ,Practical Power
Consumption Estimation for Real Life HPC Applications“. In: 29.1 (Jan. 2013),
pp. 208-217 (cit. on p. 13).

[95]Michael R. Wyatt, Stephen Herbein, Todd Gamblin, et al. ,PRIONN: Predicting
Runtime and IO Using Neural Networks“. In: Proceedings of the 47th International
Conference on Parallel Processing. ICPP 2018. Eugene, OR, USA: Association for
Computing Machinery, 2018 (cit. on p. 9).

[96]Fatos Xhafa and Ajith Abraham. ,,Computational models and heuristic methods for
Grid scheduling problems“. In: Future Generation Computer Systems 26.4 (2010),
pp. 608-621 (cit. on p. 7).

[97]Di Zhang, Dong Dai, Youbiao He, Forrest Sheng Bao, and Bing Xie. RLScheduler:
An Automated HPC Batch Job Scheduler Using Reinforcement Learning. 2020. arXiv:
1910.08925 [cs.DC] (cit. on p. 11).

[98]Huazhe Zhang and H Hoffman. ,,A quantitative evaluation of the RAPL power control
system“. In: Feedback Computing (2015) (cit. on p. 13).

[99]1Dmitry Zotkin and Peter J. Keleher. ,Job-Length Estimation and Performance in
Backfilling Schedulers®. In: Proceedings of the 8th IEEE International Symposium on
High Performance Distributed Computing. HPDC ’99. Washington, DC, USA: IEEE
Computer Society, 1999 (cit. on p. 9).

[100]Dmitry Zotkin and Peter J Keleher. ,Job-length estimation and performance in
backfilling schedulers®. In: High Performance Distributed Computing, 1999. Proceedings.
The Eighth International Symposium on. IEEE. 1999, pp. 236-243 (cit. on p. 20).

Webseiten

[@57]How much energy do data centers use. 2020. URL: https://davidmytton.blog/how-
much-energy-do-data-centers-use/ (visited on Feb. 10, 2020) (cit. on p. 12).

110 Bibliography

http://arxiv.org/abs/1910.08925
https://davidmytton.blog/how-much-energy-do-data-centers-use/
https://davidmytton.blog/how-much-energy-do-data-centers-use/

List of Figures

3.1

4.1

4.2
4.3
4.4

5.1

5.2

5.3

5.4

5.5

5.6

5.7

A job is defined by three elements. the requested number of resources,
and the requested running time, and the actual running time of the job. 16

Cumulative weekly average slowdown, pp-slowdown and waiting time:
For each trace, the middle solid line represents the mean and the two
dashed lines represent the lower and upper 10-90 percentiles. 28
Number of processors of the top 100 jobs with highest slowdown values. 30
Distribution of the bounded slowdown values for all jobs 33

Distribution of backfilled jobs between resamplings. 35

Tukey box-plot of the weekly average bounded slowdown of pure poli-
cies for the 4 traces. The policies are sorted in an increasing order by
the mean of the weekly average bounded slowdown for all the weeks.
The three most efficient policies are highlighted. 41
Comparing SAF, the best pure policy on average, with the best pure
policy for every week for the SDSC-SP2 trace. 42
Comparing the performance of various policies on the SDSC-SP2 trace.
w* represents the best policy in hindsight for every week. w* .4, is the
policy obtained from learning on the Training weeks, and w4, gives
the results of testing the best policy of one week on the next. 44
Visualization of the search space for 4 consecutive weeks 70, 71,72, and
73. The two diagonal axis represent p and wait. The lighter the area
is, the better the performance (lower average BSLD). The optimal area
change from one week to the next. The red dot (in the lightest area)
represents wx and the blue triangle represents Wxgrqin. « « - « « 48
Comparing average BSLD of the vectors of the 3 original features (xnes3)
with the extended vector of 6 features (xnes6) and the minimum we
obtain from space coverage (W*3)o 49
SDSC-BLUE: Comparing SAF, the best pure policy on average, with the
best pure policy foreveryweek. L. 51
SDSC-BLUE: Comparing the performance of various policies. w* present
the optimal policy for every week. w_train* is the optimal policy ob-
tained from learning on the training weeks, and w_greedy is the
results of testing the optimal policies of one week on the next. 51

111

112

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

6.1

6.2

SDSC-BLUE:Comparing average BSLD of the vectors of the 3 original
features (xnes3) with the extended vector of 6 features (xnes6)
CTC-SP2: comparing SAF, the best pure policy on average, with the
best pure policy foreveryweek.
CTC-SP2: comparing the performance of various policies on the CTC-
SP2 trace. w* present the optimal policy for every week. w_train* is
the optimal policy obtained from learning on the training weeks, and
w_greedy is the results of testing the optimal policies of one week on
themext. e
CTC-SP2: comparing average BSLD of the vectors of the 3 original
features (xnes3) with the extended vector of 6 features (xnes6)
KTH-SP2: comparing SAF, the best pure policy on average, with the
best pure policy foreveryweek. L.
KTH-SP2: comparing the performance of various policies. w* present
the optimal policy for every week. w_train* is the optimal policy
obtained from learning on the training weeks, and w_greedy is the
results of testing the optimal policies of one week on the next.
KTH-SP2: comparing average BSLD of the vectors of the 3 original
features (xnes3) with the extended vector of 6 features (xnes6)
Comparing the performance on mixed and pure policies on the scale of
month e e

Distribution of requested (upper row) and actual (bottom row) execu-
tion times of jobs for the six workload traces. (1) Note the scale/range
difference on the X-axis, which indicates how the distribution of both
variables are very different and shows that the requested runtime is a
quite unreliable information. (2) The distribution of the actual runtime
exhibits a sharp spike toward short jobs for all workloads. The green
vertical line and the dashed black vertical line respectively represent the
median value of the runtimes and the result of a clustering algorithm
(Section 6.2) and allow to easily discriminate between “small” and
“large” jobs. e e e e e e
Each category c allows to extract a series (ordered by submission dates)
of actual runtimes p(¢) for which we can estimate the autocorrelation co-

Loy (ngc) - Mp<c)>

g

61

(c)
+1 - /’Lp(c)

)

efficient for each lag value [as follows: p,) (1) = p
p©
where fi,) and o, are respectively the sample average and sample
standard deviation of p(®). This autocorrelation coefficient lies in [—1, 1]
(c) (c)
i i+l
trates how the distribution of the autocorrelation coefficient evolves

and indicates how strongly p:~ is correlated with p;’,. The graph illus-
with the lag between the jobs that belong to the same category (u, ¢) of

aspecificuser. e e

List of Figures

>

6.3

6.4

6.5

6.6

6.7

6.8

Learning process: At the end of each week the new jobs are added to
the dataset and a new training process is performed

Evolution of the quality of the learning for individual weeks

Importance of individual features during the weekly learning process.
The larger the weights, the more important the feature in the classifica-
tion. Weights are normalized such that their sum equals 1.

Monthly average bounded slowdown. Each line links the values from
the same month when using the base and classification-idempotent
schedulers.

Evolution of the Cumulative Bounded Slowdown for the six platforms,
using the base policies (black) and the same policies augmented with
job size classification and idempotence (cyan). The cumulative bounded
slowdown is always such that SAFA~SPF<WFP<FCFS, which is expected
as prioritizing small jobs is known to optimize the average slowdown
whereas FCFS rather bounds the largest waiting time. Since these
heuristics solely rely on the requested runtime, they cannot be very
efficient. Activating our classification-based prioritization systematically
and significantly improves the performance of all heuristics at any point
in time and not simply at the end of the evaluation period. In steady
state (see SDSC-SP2), it is clear that the cumulative bounded slowdown
increases more slowly when our classification-based mechanism is acti-
vated. It may happen that burst of jobs are submitted and incur sudden
and large jumps in the cumulative bounded slowdown. These jumps
are always significantly reduced (see Megacentrum-zegox) with our
mechanism and even sometimes completely avoided (see SDSC-BLUE).

Average bounded slowdown for small and large jobs, using the four base
policies and the corresponding classification-idempotent schedulers.
Breaking down the average bounded slowdown between small and large
jobs allows to evaluate how both classes benefit from the classification
and whether one is unfairly treated compared to the other. The benefit
for the Small job class is huge and can go up to 55% while the loss for
the Large job class never exceeds 15% (the higher losses always occur
in trace/policies with extremely small base slowdown). The difference
for Large jobs is therefore negligible and would be barely noticeable by
users. Last, note that, although there are visible differences between the
base policies (SAF, SPF, WFP, in black), they tend to vanish whenever
using our classification (in green).

List of Figures

75

113

114

6.9

7.1
7.2
7.3

7.4

7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

Total accumulated bounded slowdown for the base schedulers (base),
schedulers with perfect classification (class-clairvoyant), schedulers
with classification and job-killing mechanism (classification-idempotent),
and schedulers with perfect execution time information (runtimes-
clairvoyant). Regardless the heuristic, it is interesting to note that,
in general, Base Z Classification > Classification-Idempotant 2 Class-
clairvoyant > Runtime-clairvoyant, which is consistant with the fact

that more accurate information allow to produce better schedules . . 77
Overview of the Intel RAPL architecture of a dual-socket system 85
Execution history of a single processor 86

Job filtering process; The jobs number and the jobs area represents
respectively the total number of unique jobs and the total execution time. 88
Energy measurement aggregations; The upper figure represents the
measurements as taken from Colmet. The bottom figure represents the

results of the aggregation process. 89
Outliersdetection e 90
Energy profiles e 91
Energy profile Tree e 92
Results of the stationarity test 94
Results of the variability test 95
Discrete Fourier Transform 96
Discrete Fourier Transform 97
Job distribution after applying Tree 7.7 classification 97

List of Figures

List of Tables

3.1

4.1
4.2

5.1
5.2
5.3
5.4

5.5
5.6

6.1

6.2

6.3
6.4

6.5

6.6

Workloads e e e 23

Percentage of premature jobs for each workload trace 32
Ratio of the average slowdown between the premature the standard jobs 34

Comparing the sum of the average BSLD for SDSC-SP2 for weeks: 65

to 100. The highlighted values are obtained in hindsight. 45
Comparing thresholding values for SDSC-SP2 55
Comparing thresholding values for SDSC-BLUE 55
Comparing thresholding values for KTH-SP2 55
Comparing thresholding values for CTC-SP2 56
The jobs in SDSC-SP2 with the highest run_time that make the 20h

threshold unreasonable 56

Percentage of premature and non premature jobs: 22 to 49% of all jobs
(Small premature jobs) requested their time allocation to be larger than
the divider (5 to 20 minutes) but actually executed less than this . .. 61
Contribution of job size classes to platform resource usage: half of the
jobs (Large) consume more than 98% of resources. Small jobs incur
an unsignificant workload and running them first (provided they can
properly be identified) should thus be harmless to large jobs 62
Features used for job classification 64
General classification performance: For each trace, we count the values
of TS,FS,TL and FL for all the weeks then, we compute the general
value of the accuracy, precision and recall 68
Classification error per trace: 7-11% of Large jobs are misclassified
while 4-8% of Small jobs are misclassified 68
Improvement (in %) over EASY-FCFS using regression ([90] and [42])
and classification (SPF-CI and FCFS-CI). Values between brackets cor-
respond to the evaluation performed by the original authors whose
methodology may slightly differ from ours. Our classification based
approach systematically and significantly improves upon the previous
strategies, regardless of the the base scheduling heuristic (FCFS or SPF) 80

115

List of Tables 117

	Cover
	Abstract
	Acknowledgement
	1 Introduction
	1.1 High-performance-computing
	1.2 Energy Consumption
	1.3 HPC management
	1.4 Problem overview
	1.4.1 Solutions of HPC performance optimization
	1.4.2 Machine Learning to improve HPC systems

	1.5 Content and Contributions

	2 Background and Related work
	2.1 Scheduling In HPCs
	2.2 Machine learning for HPC scheduling
	2.2.1 Reducing the uncertainty in the scheduling data
	2.2.2 Machine learning to build schedulers

	2.3 Energy
	2.3.1 Estimating energy consumption via models
	2.3.2 Estimating energy consumption via Measurements

	3 Problem Setting
	3.1 Preliminary Definitions
	3.1.1 Jobs
	3.1.2 Backfilling
	3.1.3 EASY-Backfilling
	3.1.4 Scheduling policies
	3.1.5 Starvation

	3.2 Objective functions
	3.3 Experimental framework
	3.3.1 Simulations
	3.3.2 Data

	4 An in-depth study of simple scheduling policies: Performance and evaluation metrics The text of this chapter is adapted from the following published paper:Danilo Carastan-Santos, Raphael de Camargo, Denis Trystram, Salah Zrigui. One can only gain by replacing EASY Backfilling: A simple scheduling policies case study. CCGrid 2019 - International Symposium in Cluster, Cloud, and Grid Computing, May 2019,
	4.1 Introduction
	4.2 Experimental protocol
	4.3 Experimental Results
	4.3.1 Overall Scheduling Performance
	4.3.2 Is SAF the ultimate simple policy?
	4.3.3 Accounting the Maximum: one should care with caution
	4.3.4 Backfilling Influence

	4.4 Conclusion

	5 Adapting batch scheduling to workload characteristics: what can we expect from Online Learning ? The text of this chapter is adapted from the following published paper: Arnaud Legrand, Denis Trystram, Salah Zrigui. Adapting Batch Scheduling to Workload Characteristics: What can we expect From Online Learning?. IPDPS 2019 - 33rd IEEE International Parallel & Distributed Processing Symposium, May 2019,
	5.1 Introduction
	5.2 Experimental setting
	5.3 Performance evaluation of pure policies
	5.4 Mixed policies
	5.5 Scheduling using mixed policies
	5.5.1 Comparing pure and mixed policies
	5.5.2 Learning: scheduling using best combination learned from a previous part of the trace.
	5.5.3 Exploring the search space

	5.6 Increasing the size of the search space: using more jobs characteristics
	5.6.1 Black-box optimizers: a quick way to find the optimal

	5.7 Using other traces:
	5.7.1 SDSC-BLUE
	5.7.2 CTC-SP2
	5.7.3 KTH-SP2

	5.8 Starvation/thresholding
	5.9 changing the granularity: Using months
	5.10 Conclusion

	6 Improving Online jobs scheduling via Classification
	6.1 Introduction
	6.2 Preliminary Observations
	6.3 Job Size Classification
	6.3.1 Classification Features
	6.3.2 Classifier Training and Update
	6.3.3 Online Learning Quality
	6.3.4 Feature importance analysis

	6.4 Proposal
	6.4.1 Scheduling Policies
	6.4.2 Learning and Scheduling Algorithms
	6.4.3 Dealing with Classification Errors

	6.5 Experimental Results
	6.5.1 Overall Impact on Scheduling Performance
	6.5.2 Impacts on Individual Months
	6.5.3 Impact of Small Job Prioritization over Large Jobs
	6.5.4 Impact of the Safeguard Mechanism
	6.5.5 Comparison with Clairvoyant Schedulers

	6.6 Conclusions and Discussion

	7 Energy profiling and classification
	7.1 Introduction
	7.2 Data sources
	7.2.1 Machines
	7.2.2 OAR
	7.2.3 Colmet
	7.2.4 RAPL

	7.3 Combining the different data sources
	7.4 Preprocessing and job distribution
	7.4.1 Sample
	7.4.2 Energy Data preprocessing
	7.4.3 Classification Tree
	7.4.4 Test for stationarity
	7.4.5 Test of variability
	7.4.6 Test of periodicity

	7.5 Conclusion

	8 Conclusion
	Bibliography

