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Abstract. We study the fundamental group of certain partial compactifi-
cations of the complement of an arrangement of lines in the complex projective
plane.

First, by modifying a method of Randell, we give a presentation for the
fundamental group when the arrangement is defined by real linear forms. We
use this to give a negative answer to a question posed by Eyssidieux to the
effect that the first integral homology group of such surfaces is finite if and
only if the fundamental group is finite.

After that, in order to study certain partial compactifications related to
isotrivial fibrations to curves, a generalization of a structure theorem for the
fundamental group of quotients of products of curves of Bauer-Catanese-Gru-
newald-Pignatelli is given.

Finally, we extend the presentation obtained in the case of a real arrange-
ment to the case of a complex arrangement and to a more general type of
partial compactifications. For one such surface, we compare this presentation
with that of its fundamental group at infinity and we show that the first can
be obtained from the latter by adding some relations. We obtain as a conse-
quence a presentation for the fundamental group of certain homology planes
constructed from arrangements of lines.

Résumé. Dans cette thèse, on étudie le groupe fondamental de certains
compactifications partielles du complément d’un arrangement de droites dans
le plan projectif complexe.

D’abord, on modifie une méthode utilisée par Randell pour obtenir une
présentation du groupe fondamental de telles compactifications partielles quand
l’arrangement est définie par des formes linéaires réels. On utilise cette présentation
pour donner une réponse négative à une question posée par P. Eyssidieux de-
mandant si le premier groupe d’homologie d’une telle surface est fini si et
seulement si son groupe fondamental l’est.

Après, motivé par l’étude de certains compactifications partielles reliées à
des fibrations isotriviales, on généralise un théorème de structure du groupe
fondamental d’un quotient d’un produit de courbes dû à Bauer-Catanese-
Grunewald-Pignatelli.

Finalement, on généralise la présentation obtenue dans le cas d’un arrange-
ment réel au cas d’un arrangement complexe et à un type plus général de com-
pactifications partielles. Pour une telle surface, on compare cette présentation
avec celle du groupe fondamental à l’infini et on montre qu’on peut obtenir
la première en ajoutant certains relations à la deuxième. On obtient comme
conséquence une présentation pour le groupe fondamental de certains plans
d’homologie provenant d’un arrangement de droites.
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les innombrables occasionnes qu’il m’a aidé avec beaucoup de patience quand
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José Juan TELLEZ.
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Me gustaŕıa también agradecer infinitamente a mis padres y hermanos por
el amor y el apoyo brindado durante este tiempo que estuvimos lejos. Mi
trabajo siempre será dedicado a ustedes.

iv



Contents

Introduction 1

Introduction (version française) 11

1 Fundamental groups of partial compactifications of the com-
plement of a real arrangement 23

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.1 Meridians . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.2 Orbifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 Fundamental group . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.1 Modification of the method of Randell . . . . . . . . . . 25

1.2.2 Meridians crossing a point at infinity . . . . . . . . . . . 30

1.2.3 Loops around singular points . . . . . . . . . . . . . . . 31

1.3 LAC Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3.2 Reduced LAC Surfaces . . . . . . . . . . . . . . . . . . . 34

1.3.3 A presentation for the orbifold fundamental group . . . . 37

1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4.1 LAC Surface with infinite fundamental group and finite
abelianization . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4.2 Presentation for a weighted complete quadrilateral . . . . 42

2 The fundamental group of quotients of products of some topo-
logical spaces by a finite groups 45

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.1 Properties of fundamental group of topological stacks . . 45

2.1.2 Product of topological spaces . . . . . . . . . . . . . . . 46

2.2 The fundamental group of the product of topological spaces . . 47

2.2.1 Constructing the homomorphism . . . . . . . . . . . . . 47

2.2.2 The homomorphism has finite kernel . . . . . . . . . . . 49

2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.1 Product of the same topological space . . . . . . . . . . 54

2.3.2 Second Main Theorem . . . . . . . . . . . . . . . . . . . 54

2.3.3 Ceva(n) as a product-quotient surface . . . . . . . . . . . 56

v



3 Partial compactifications of the complement of a complex ar-
rangement and boundary manifolds 63
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.2 Meridians . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.3 Dual graph of a divisor and partial compactifications of

its complement . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.4 Boundary manifolds . . . . . . . . . . . . . . . . . . . . 66

3.2 Wiring diagrams and a first presentation of the fundamental
group of a partial compactification . . . . . . . . . . . . . . . . 68
3.2.1 Wiring diagram associated to a complex arrangement . . 68
3.2.2 Using the diagram to obtain presentations . . . . . . . . 70

3.3 Boundary Manifolds methods . . . . . . . . . . . . . . . . . . . 79
3.3.1 Boundary manifold of an arrangement of lines . . . . . . 80
3.3.2 From a presentation for the boundary manifold of an

arrangement of lines to a presentation of its complement 84
3.3.3 Boundary manifold of a partial compactification . . . . . 93

vi



Introduction

A Context

A.1 Some results about fundamental groups in alge-
braic geometry

Around 1930, Zariski [Zar29], influenced by the ideas of S. Lefschetz, related
the fundamental group of the complement of a planar curve C to the existence
of coverings of the complex projective plane P2 branched at C. Some conse-
quences of this were obtained in subsequent work [Zar31],[Zar32] relating the
structure of the fundamental group and the position of cusps in the plane in
the former, and studying the role of the fundamental group in the classification
of singularities of curves in the latter.

Thirty years later, Mumford studied the local fundamental group, the fun-
damental group of a pointed neighborhood B∗ around an isolated singular
point p in a normal complex surface S. He obtained a partial presentation for
π1(B∗) and derived the following Theorem.

Theorem A.1 ([Mum61]). If S is a manifold at p then π1(B∗) = 1, if
π1(B∗) = 1 then p is a simple point of S.

A more systematic study of the fundamental group of smooth complex al-
gebraic varieties was started with the so-called Serre problem: determining
which finitely presentable groups can arise as fundamental groups of smooth
complex algebraic varieties or more generally (in the compact case) the study
of fundamental group of compact Kähler manifolds. With the development of
Hodge theory [Hod52],[Del71],[Del74], new perspectives were opened to carry-
out this study: for some restrictions on the algebraic case see [Mor78],[JR87],
for a survey of the Kähler case see [ABC+96] or [Bur11]. For this work, it is
important to remark that already in [ABC+96, p.8] it is noted that a very few
methods to study the Serre problem do not make any use of linear represen-
tations. A topic that is not included in op. cit., that also depends heavily
on linear representations, and that is indirectly related to the present work
is the so-called Shafarevich conjecture to the effect that the universal cover
of a smooth projective algebraic variety may be holomorphically convex. The
following Theorem sets the conjecture in the affirmative case under certain
hypothesis over the existence of linear resentations of the fundamental group.

1



Theorem A.2 ([EKPR12]). Let X be a smooth complex projective variety.
The Shafarevich conjecture for X holds whenever π1(X) has a faithful finite-
dimensional complex linear representation.

Note that there are some few examples of fundamental groups of projective
varieties which are non-residually finite [Tol93],[BCC92], in particular non-
linear by a result of Mal’cev, they both admit a non-faithful representation
with infinite image and satisfy the Shafarevich conjecture.

A.2 Motivation and main object of study

As mentioned above, much of the study of the Serre problem is made through
representations of the fundamental group. However, in some cases it can be
tracked purely by presentations of this fundamental group, and in fewer cases
some information about the group itself can be deduced from this presentation.

Here, we will be interested in questions related to the fundamental group of
branched coverings of the complex projective plane P2 along an arrangement
of lines A .

Hirzebruch, motivated by the extremal case in the Miyaoka-Yau inequality
c2

1 ≤ 3c2, studied in [Hir83] abelian branched coverings of P2 ramified over an
arrangement of lines A ⊂ P2 giving some examples where the equality hold.
He needed very little information about the complement P2\A for his purposes
(only the euler number). Later, E. Hironaka in [Hir93], uses in a crucial way
a presentation of the fundamental group π1(P2 \A ) in order to compute the
first Betti number of these coverings.

There is a good amount of information around these surfaces (see [BHH87],
[Tre16] ), however, as remarked in [Eys17], it seems to be no systematic study
of their fundamental group. There, some sufficient conditions for the cover to
be simply connected are given. Let us review the strategy followed there:

ForN ∈ N∗ the homomorphismH1(P2\A ,Z)→ H1(P2\A ,Z/NZ) induces
an abelian covering Y → P2 with Galois group G = (Z/NZ)|A |−1. The surface
Y is singular above the singular points of A of multiplicity 3 or higher. Denote
by P the set of these points and by π : BlP P2 → P2 the blow-up of P2 at P .
The pull-back π∗Y is the minimal desingularization of Y [Hir83, p. 122]. We
can consider the orbifold XN(A ) := [π∗Y/G], as a Deligne-Mumford stack and
take its fundamental group (See [Noo05]). The main result of [Eys17] with
respect to the fundamental group of the Hirzerbruch surfaces is the following.

Theorem A.3 ([Eys17]). Let A be an arrangement with only double and triple
points, then π1(X2(A )) = (Z/2Z)|A |−1.

The surface π∗Y can be identified with the covering of stacks given by the
map η : π1(XN(A ))→ (Z/NZ)|A |−1, and therefore we can identify ker η with
π1(π∗Y ).

It is worthwhile to mention one of the main Theorems of op. cit.
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Theorem A.4 ([Eys17]). The Hirzerbruch covering surfaces corresponding to
ker η satisfy the Shafarevich conjecture.

By an appropriate version of the Seifert-van Kampen Theorem we can see
that π1(XN(A )) can be computed by taking the quotient of π1(BlP P2 \ A )
by the normal subgroup generated by certain powers of the meridians around
the irreducible components of D = π∗A , with the powers depending on the
isotropy at the generic point of these irreducible componentes. Therefore, once
we have a presentation for π1(P2\A ) a presentation for π1(XN(A )) is obtained
once we have the answer to the following question:

Question 1. How does one obtain explicit expression of the meridians around
the exceptional divisors coming from P in terms of certain meridians around
the lines in A ?

In fact, the answer to this question will give a presentation of the funda-
mental group of an orbifold X (X̄,D, r = (r1, . . . , rs)) with non-trivial isotropy
groups over the generic point of the irreducible components Di of a divisor
D =

∑
Di ⊂ X̄ and arbitrary weights ri ∈ N∗ (See 1.1.2).

Already Hirzebruch, with all weights ri being equal, remarked that his con-
struction was related to some surfaces constructed by Deligne-Mostow [DM86]
as quotients of the two ball by an uniform lattice in PU(2, 1) (to questions
related to the arithmeticity of this constructions see [Hol86], [Der19]). By
allowing unequal weights more surfaces of Deligne-Mostow were constructed
starting from an arrangement of lines A , see [BHH87],[Tre16].

This was one motivation to introduce the following surfaces whose funda-
mental group is the main subject of study in this work: Let A ⊂ P2 be an
arrangement of lines, let us denote by Sing A its set of singular points. Con-
sider the blow-up π : BlSing A P2 → P2, the divisor D = π∗A =

∑s
i=1 Di with

s = |A |+ |Sing A |, and let I ⊂ {1, . . . , s}.

Definition A.1. We call the surface BlSing A P2 \
∑

i 6∈I Di a Linear Arrange-

ment (Partial) Compactification of P2 \A or a LAC surface.

Another reason to study these surfaces is the research of possible instances
of the following question. See [Eys18] for further motivation related to the
Shafarevich conjecture.

Question 2. Does there exists a smooth algebraic variety X with infinite fun-
damental group such that every linear representation π1(X) → GLN(C) has
finite image?

No example seems to be known (c.f. with the last paragraph of A.1).
My advisor, P. Eyssidieux, didn’t know what was the answer to the following
question:

Question 3. For a LAC surface X, if its first integral homology group H1(X,Z)
is finite, does it follows that π1(X) is as well finite?

3



B Results

B.1 Arrangement of lines defined over the reals

Context

The theory of hyperplanes arrangements is a very wide area of mathematics
by itself. For a classical introduction we refer to [OT92], and for a more recent
treatement see [Dim17].

Definition B.1. Let A aff = {H1, . . . , Hn} ⊂ Cl be a finite collection of affine
hyperplanes. We call A aff an (affine) arrangement of hyperplanes.

By homogenizing the hyperplanes H1, . . . , Hn, and considering the hyper-
plane at infinite Hn+1, we can construct a hyperplane arrangement A ⊂ Pl
such that Pl \ A ∼= Cl \ A aff. The following theorem of Zariski of Lefschetz
type reduce the study of the fundamental group of Pl \A to the study of the
complement of an arrangement of lines in the projective plane.

Theorem B.1 (Zariski). Let Y be a hypersurface of Pl and let H be a generic
hyperplane with respect to Y . If l > 2 then π1(Pl \ Y ) ∼= π1(H \H ∩ Y ).

It was first stated in [Zar37], for a precise definition of the word generic,
and more far-reaching generalizations see [HTL73], [Dim92].

When the lines of an arrangement A aff ⊂ C2 are defined by linear forms
with real coefficients we say that A is a (complexified) real arrangement. Let
us write Sing A aff for the set of singular points of A aff. In [Ran85], Randell
constructed from A a planar oriented graph A aff(R) ⊂ R2. Besides this, he
also used implicitly the following construction: around every singular point
p ∈ Sing A aff let Bp be a sufficiently small neighborhood and consider the link
∂Bp ∩ A aff inside ∂Bp, he used the presentation of π1(∂Bp \ ∂Bp ∩ A aff) to
relate the meridians around the segments of A aff(R) \ Sing A aff .

Theorem B.2 (Randell). The Wirtinger presentation of the spatial graph
A aff(R) and a presentation π1(∂Bp \ ∂Bp ∩A aff) for every p ∈ Sing A aff give
a presentation for π1(C2 \A aff).

Real arrangements

The first chapter 1 of this thesis is devoted to the following results and were
published in the article [AA20a].

Let A = {L1, . . . , Lk} ⊂ P2 be a (complexified) real arrangement of lines.
Let π : X̄ = BlSing A P2 → P2 be the blow-up at the points Sing A in P2, the
divisor D = π∗A =

∑s
i=1Di and r = (r1, . . . , rs) ∈ Ns. We can consider the

orbifold π1(X (X̄,D, r)) as in A.2.

Theorem B.3. A presentation for π1(X (X̄,D, r)) can be obtained by modi-
fying the method of Randell and adding to his presentation powers of explicit
words in its generators.
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Indeed, the method of Randell can be seen as sweeping a vertical line from
right to left in R2 ⊂ C2 ∼= P2 \ Lk, this is part of a pencil of lines based at
a point lying in the line at infinity Lk, as we keep track of the relations and
conjugations arising when crossing a singular point in Sing A aff.

This method takes care of the singular ponts in C2 but not of these lying
in the line at infinity Lk. Thus it is sufficient to apply the same method for a
pencil based at a well-chosen point in C2 \A aff together with an appropriate
choose of meridians.

In order to reduce the number of surfaces obtained as partial compactifica-
tions to be studied we prove in 1.3.2 that it suffices to partially compactify with
respect to exceptional divisors up to having studied first all the arrangement
of less lines.

Then, we present an answer to question 3.

Theorem B.4. There exists a LAC surface Y with infinite fundamental group
and finite first (integral) homology group.

The fundamental group obtained is isomorphic to Z/2Z ∗Z/2Z and there-
fore has a faithful linear representation in GL2(C) and so it sheds no light to
the more subtle question 2.

Theorem B.4 is obtained from a partial compactification of a very interesting-
by-its-own arrangement called the complete quadrilateral B or Ceva(2) which
can be seen as the union of the six lines passing by 4 points in general position
in P2 and the application of Theorem B.3.

The arrangement B induces a fibration Bl4−points P2 → P1 having 3 singular
fibers, and it is therefore a multinet (c.f. B.2). This map can be extended
to a map Y → X (P1, D′, r′) from the LAC surface Y to the orbifold over P1

with divisor D′ = 0 + 1 +∞ and weights r′ = (2, 2,∞), which induces an
isomorphism in the fundamental groups.

Theorem B.3 also gives a presentation for the fundamental groups of the
orbifolds X (Bl4−points P2, π∗B, r) which for certain weights r can be seen as
quotients of the ball B2 by an uniform lattice as in A.2.

B.2 Structure theorems for the fundamental group of a
quotient of a product

Context

There exist a class of arrangements of lines A ⊂ P2 which are called nets, or
more generally multinets (see [Yuz04],[FY07],[MB09]) that naturally gives a
fibration from a blow-up of the projective plane π : X = BlP P2 → P2 with
P ⊂ Sing A to the projective line p : X → P1 with the property that there
exists a partition of A = ∪ki=1Ai in subarrangements Ai such that the map p
has the strict transform of the subarrangements Ai in X as singular fibers.

For every n ∈ N∗ define the arrangement Ceva(n) to be the zero locus
of the homogeneous polynomial f(z1, z2, z3) = (zn1 − zn2 )(zn1 − zn3 )(zn2 − zn3 ) in

5



P2 with homogeneous coordinates (z1 : z2 : z3). Every Ceva(n) is a multinet
and it seems natural to try to study its partial compactifications in order to
generalize the results of B.1. We have two inconvenients: already Ceva(3) is
not a real arrangement and the complexity of the computations increase with
the number of lines. For these reasons another method other than the use of
presentations had to be found.

It is easy to see that the fibration given by Ceva(n) is isotrivial, and there-
fore we can hope for an structure theorem for the fundamental group of its
partial compactifications in the lines of [BCGP12] to exists.

We recall here some results of [BCGP12].

Definition B.2. Let C be a smooth projective curve of genus g. The group
Πg = π1(C) is called a surface group.

Let C1, . . . , Ck be smooth projective curves and let G be a finite group
acting on each curve Ci and freely in the product C1 × · · · × Ck with the
diagonal action. Then we have an exact sequence

1→ π1(C1)× . . .× π1(Ck)→ π1

(
C1 × · · · × Ck

G

)
→ G→ 1 (1)

If we assume that G acts faithfully on each factor Ci and remove the hy-
pothesis of the action being free in the product, there is a priori, no reason for
a sequence similar to (1) to hold. However, the following theorem was proved
in [BCGP12].

Theorem B.5 ([BCGP12]). Let C1, . . . , Ck be smooth projective curves of
genus greater or equal than two and let G be a finite group acting faithfully on
each of the factors and diagonally in the product. Then the fundamental group
π1((C1×. . .×Ck)/G) admits a normal finite index subgroup N ∼= Πh1×. . .×Πhk

for some h1, . . . , hk ∈ N and Πh1 , . . . ,Πhk surface groups.

The hypothesis of the action being faithful was later removed in [DP12].

Note that the quotient (C1 × . . .× Ck)/G may be singular. In the case of
only two curves C1, C2, if it happens that the divisors obtained by resolving
the singularities of (C1×C2)/G are strict transforms of lines of an arrangement
A ⊂ P2 some partial compactifications of the type (C1 \ {k1 − points} × C2 \
{k2 − points})/G could be studied by extending Theorem B.5 to the case of
open surfaces.

We mention briefly the methods of proof of Theorem B.5 as in [BCGP12]
with a slight change of terms by using the notations of stacks. The proof
can be divided in two parts. To explain the first we can consider the orbifold
fundamental group of the curve Ci/G, this is π1([Ci/G]). There is an exact
sequence

1→ π1(Ci)→ π1([Ci/G])→ G→ 1,
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and therefore we can construct the fiber product H := π1([C1/G]) ×G . . . ×G
π1([Ck/G]). Let TorsH denote the normal subgroup of H generated by the
elements of torsion. The first main step was to show that

π1((C1 × . . .× Ck)/G) ∼= H/TorsH. (2)

To explain the second part we need the following definition.

Definition B.3. An (abstract) orbifold surface group is a group admitting a
presentation of the form

Tg = 〈a1, b1, . . . , ag, bg, c1, . . . , ck | cn1
1 = . . . = cnkk = 1,

g∏
i=1

[ai, bi]c1 . . . ck = 1〉

with ni ∈ N and [a, b] = aba−1b−1 the commutator of a and b.

Then the second step relies in the following Proposition whose proof is of
group theoretic nature.

Proposition B.6 ([BCGP12, DP12]). There exists an exact sequence of groups

1→ E → H/TorsH→ T → 1

where E is a finite group and T is a finite-index subgroup of a product of
orbifold surfaces group

∏k
i=1 Thi.

From this and (2) it is easy to show Theorem B.5 once the residual finiteness
of H/TorsH is proven using methods of [GJZZ08].

Generalizing the structure theorem for quotient of product of curves

The second chapter of this thesis 2 is devoted to the following results appearing
in the pre-publication [AA20b].

The Proposition B.6 can be generalized as follows: let X1, . . . , Xk be topo-
logical spaces admitting an universal cover; they are connected, locally path-
connected, and semi-locally simply connected. Denote the product of them
by X = X1 × . . . × Xk, and let G be a finite group acting on each Xi for
i = 1, . . . , k, and consider the diagonal action on X. Let I < G be the sub-
group generated by the elements fixing a point in every Xi for i = 1, . . . , k.
Note that I is normal. Denote by Xg

i the subset of points of Xi that are fixed
by g ∈ G.

Theorem B.7. Let X,X1, . . . , Xk, G, and I as above. Suppose that the set
π0X

g
i of path connected components of Xg

i is finite for every i = 1, . . . , k, and
every g ∈ G. Then there exists a homomorphism

π1(X/G)→
k∏
i=1

π1([(Xi/I)
/

(G/I)])

whose image has finite index and whose kernel is finite.
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The action of G/I over Xi/I is that induced by the one of G over Xi.
It is worthwhile to mention the case of taking the product of the same

topological space, this is, Xi = X1 for i = 2, . . . , k. Note that in this case the
action of G/I in Xi/I is free and therefore the fundamental group of the stack
[Xi/I

/
G/I] coincides with the topological fundamental group of Xi/G

/
G/I.

Moreover, it can be seen that in this case, as topological spaces, we have
Xi/I

/
G/I ∼= Xi/G. We obtain therefore the following corollary.

Corollary B.8. Let X = Xk
1 , G, and I as above. Then the map π1(X/G)→

π1(X1/G)k has finite kernel and its image has finite index in π1(X1/G)k.

For the proof of Theorem B.7 we extend the arguments of [BCGP12] to the
stacky context. We consider the action of π1([X/G]) over the universal cover of
X, and compare it with the action of π1([X1/G])× . . .×π1([Xk/G]). Under the
hypothesis made over π0X

g
i , we can construct subgroups Ci < π1([Xi/G]) that

lift to subgroups of π1([X/G]), and whose product C1×. . .×Ck has finite index
in the subgroup of N < π1([X/G]) generated by the elements having a fixed
point in the universal cover of X. We conclude by a Theorem of Noohi [Noo08]
to the effect that π1([X/G])/N ∼= π1(X/G) and by interpreting geometrically
the projection of N over each π1([Xi/G]).

An important instance of Theorem B.7 and Corollary B.8 lies in the study
of fundamental group of smooth complex algebraic varieties, indeed, the fun-
damental group of a singular algebraic variety with only quotient singularities
is the fundamental group of a smooth algebraic variety [Kol93].

There is also a generalization of Theorem B.5.

Theorem B.9. Suppose that the hypothesis of Theorem B.7 are satisfied, and
moreover that π1(X/G) is residually finite. Then there exists a subgroup N <
π1(X/G) isomorphic to a product H1 × . . .×Hk of normal subgroups Hi Cf.i.
π1(Xi/I) of finite index.

Following closely the arguments of [BCGP12], which use the group theoretic
results of [GJZZ08], we can prove that π1(C1× . . .×Ck/G) is residually finite
for a finite group G, and smooth algebraic curves C1, . . . , Ck not necessarily
compact.

In order to apply the Theorem B.9 to the family Ceva(n) we prove the
following proposition. Denote the group H(n) = Z/nZ, it acts over the Fermat
curve of degree n defined by F (n) = zn1 + zn2 + zn3 . Denote by f̄ the fibration
induced by the multinet Ceva(n).

Proposition B.10. Consider the diagonal action of H(n) in F (n) × F (n).
Denote by S the minimal resolution of F (n)× F (n)/H(n).

1. The fibration S → (F (n) × F (n))/H(n) → F (n)/H(n) ∼= P1 is isomor-
phic to f̃ .

2. Every singular point in F (n)×F (n)/H(n) corresponds to the contraction
of the strict transform Di of some line Li ∈ Ceva(n).
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3. The contraction of the n lines corresponding to Ai lie in the line Ei which
is the exceptional divisor corresponding to the unique singular point in
Ai.

4. Ei maps to a point via F (n)× F (n)/H(n)→ P1.

We give the proof in 2.3.3. This proof was not included in [AA20b].
By using proposition B.10 and Theorem B.9 we are able to study two

families of partial compactifications of P2 \ Ceva(n). In the first family we
obtain that the fundamental group is at most finite, and in the second it has
a subgroup isomorphic to Z as a finite-index normal subgroup. See examples
2.3.1 and 2.3.2.

B.3 Partial compactifications of the complement of a
complex arrangement and boundary manifolds

In Theorem B.3, we have developed a method to obtain a presentation for
the fundamental group of certain partial compactifications of the complement
P2 \A of an arrangement of lines A ⊂ P2 under the hypothesis that the lines
in A are defined by real linear forms.

Chapter 3 of this thesis is devoted to a generalization of this in two direc-
tions:

• to admit a general arrangement A ⊂ P2 defined by complex linear forms
and

• to admit a more general class M(A , I, P ) of partial compactifications of
P2 \A . See 3.1.3 for a precise definition.

We can proceed in two different ways: firstly, following [Arv92] and [CS97],
whose work generalize [Ran85] to complex arrangements, we define a braided
wiring diagram W that encodes some over or under-crossing of the lines in
A arising by the complex nature of the forms defining them. The graph W
encodes enough information to obtain a presentation of π1(M(A , I, P )).

Theorem B.11. A presentation for π1(M(A , I, P )) can be obtained from W.
The set of generators are in correspondence with the set of lines in A and the
set of relations has two types of them:

• those relations Rp coming from a singular point p of A . These relations
already appeared in a presentation of π1(M(A )) and

• for each element ι either in I or in P , a relation Rι which is a product
of conjugates of some generators depending on ι.

As in the proof of Theorem B.3, a main step in the proof of Theorem B.11
consists in the explicit computation of an expression for the meridians around
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certain exceptional divisors, obtained by blowing-up A in some singular points,
in terms of the generators.

Secondly, let U denote a closed regular tubular neighborhood of A in P2.
We call ∂U the boundary manifold of A . In [FGBMB15], a presentation for
π1(M(A )) is obtained from a presentation of π1(∂U) by studying the map
π1(∂U) → π1(M(A )) induced by the inclusion ∂U ↪→ M(A ). For the homo-
logical version see [GB13].

It turns out that their methods can also be applied to determine a presenta-
tion for the fundamental group of some partial compactifications M(A , I, P ).
However, in order to study the boundary manifolds ∂UD of strict transforms
D of A in some birational model of P2, we start from a different presentation
for the boundary manifold ∂U of A .

Indeed, when D =
∑
Di is a connected, simple normal crossing divisor such

that π1(D) is trivial, Mumford gave a presentation for π1(∂UD) in [Mum61].
This, together with the graph-manifold structure in the sense of Waldhausen
[Wal67], permitted Westlund to give a presentation of π1(∂U) in [Wes67] (see
also [CS08]). Here, by a choice of a surface birational to P2 where the strict
transform of A satisfies the hypothesis for the presentation of Mumford, we
obtain the same presentation of Westlund. See Theorem 3.3.1. Following this
construction, we are able to give a presentation for the fundamental group of
a boundary manifold ∂UD of a divisor D lying in a surface X̄ obtained by
successive blows-up of P2 such that M(A , I, P ) = X̄ \D.

We obtain in Theorem 3.3.3 a presentation for π1(M(A )) by studying the
map i∗ : π1(∂U) → π1(M(A )). Moreover, as the construction for π1(∂U)
depends of several choices, we can make them in such a way that the image
under i of the meridians of the lines in A lying in ∂U , whose homotopy class
are part of the generators of π1(∂U), lie in the same homotopy class as the
meridians constructed for Theorem B.11. From this, we do not only obtain
that the presentation of Theorem 3.3.3 and B.11 are equivalent, but that the
image of the set of relation in the presentation of π1(M(A )) coincides with
the relations as in Theorem B.11. From this, we can obtain a presentation for
partial compactifications π1(M(A , I, P ), see Theorem 3.3.14.

Finally, inspired by [tDP93], we present an example of a partial compactifi-
cation M(A , I, P ) = X̄\D that comes from an arrangement of 5 lines with two
triples points and four double points such that M(A , I, P ) is a Q-homology
plane.
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Introduction (version française)

A Contexte

A.1 Quelques résultats sur le groupe fondamental en
géométrie algébrique

Environ 1930, Zariski [Zar29], influencé par les idées de S. Lefschetz, a relié
le groupe fondamental du complément d’une courbe plane C, à l’existence de
revêtements du plan projectif P2 ramifié sur C. Quelques conséquences de
ce travail ont étés obtenu par la suite [Zar31],[Zar32] reliant la structure du
groupe fondamental et la position des cuspides dans le plan projectif dans le
premier et étudiant le rôle du groupe fondamental dans la classification de
singularités des courbes dans le deuxième.

Trente ans plus tard, Mumford a étudié le groupe fondamental local, le
groupe fondamental d’un voisinage épointé B∗ autour d’une singularité isolée
p dans une surface normale S. Il a obtenu une présentation partielle pour
π1(B∗) et comme conséquence il a obtenu le Théorème suivante.

Theorem A.1 ([Mum61]). Si π1(B∗) = 1 alors p est un point simple de S.

Une étude plus systématique du groupe fondamental de variétés algébriques
complexes lisses a commencé avec le problème de Serre: déterminer quels
groupes peuvent apparâıtre comme groupe fondamental d’une variété algébrique
complexe lisse ou plus généralement (dans le cas compacte) l’étude de variétés
de Kähler compactes. Avec les développements de la théorie de Hodge [Hod52],
[Del71], [Del74], de perspectives nouvelles ont été ouvertes pour réaliser cette
étude: pour certaines restrictions dans le cas algébrique voir [Mor78],[JR87],
pour un survey du cas Kählerienne voir [ABC+96] or [Bur11].

Pour ce travail, il est important de mentionner que déjà dans [ABC+96,
p.8] il est remarqué que très peu de méthodes pour étudier le problème de Serre
n’utilisent aucune représentation linéaire. Un sujet qui n’est pas traité dans
op. cit., qui dépend aussi fortement des représentations linéaires et qui est
indirectement relié au travail actuel est la conjecture de Shafarevich, à savoir
que le revêtement universel d’une variété algébrique complexe lisse pourrait
être holomorphiquement convexe. Le Théorème suivant répond cette conjec-
ture sur certains hypothèses sur l’existence d’une représentation linéaire du
groupe fondamental.
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Theorem A.2 ([EKPR12]). Soit X une variété projective complexe lisse. La
conjecture de Shafarevich pour X est vraie si π1(X) admet une représentation
linéaire fidèle de dimension finie.

On peut remarquer qu’il y a quelques exemples de groupes fondamentaux
des variétés projectives lisses qui ne sont résiduellement finis [Tol93],[BCC92],
en particulière non linéaires par un résultat de Mal’cev. Ces exemples admet-
tent représentations linéaires avec image infinie et satisfont la conjecture de
Shafarevich.

A.2 Motivation et surfaces à étudier

Comme mentionné plus haut, une grande partie de l’étude du problème de
Serre se fait en utilisant les représentations linéaires du groupe fondamental.
Cependant, dans certains cas ce problème peut être traité seulement avec une
présentation du groupe fondamental et dans certains cas encore plus partic-
uliers, on peut obtenir directement de cette présentation des propriétés sur le
groupe.

Ici, on va s’intéresse aux certaines questions liées au groupe fondamental
de revêtements du plan projectif P2 ramifiés au-dessus d’un arrangement de
droites A .

Hirzebruch, motivé par le cas extrémal de l’inégalité de Miyaoka-Yau c2
1 ≤

3c2, a étudié dans [Hir83] les revêtements abéliens de P2 ramifiés au-dessus
d’un arrangement de droites A ⊂ P2. Il a donné des exemples où l’égalité est
obtenue. Il a eu besoin de très peu d’information sur le complément P2\A pour
ces propos (seulement le nombre d’Euler). Après, E. Hironaka dans [Hir93], a
utilisé dans d’une manière essentielle une présentation du groupe fondamental
π1(P2 \A ) afin de calculer le premier nombre de Betti de ces revêtements.

Il y a une bonne quantité d’information autour de ces surfaces (voir [BHH87],
[Tre16] ), néanmoins, comme indiqué dans [Eys17], il ne semble pas y avoir
une étude systématique de leur groupe fondamental. On y trouve des condi-
tions suffisantes pour que le revêtement soit simplement connexe. Expliquons
la stratégie suivie:

Pour N ∈ N∗ l’homomorphisme H1(P2 \A ,Z)→ H1(P2 \A ,Z/NZ) induit
un revêtement abélien Y → P2 avec groupe de Galois G = (Z/NZ)|A |−1. La
surface Y est singulière au-dessus des points singuliers de A de multiplicité 3
ou plus. Notons par P l’ensemble de ces points et par π : BlP P2 → P2 l’éclaté
de P2 sur P . Le tire-en arrière π∗Y est la désingularisation minimale de Y
[Hir83, p. 122]. On peut considérer l’orbifold XN(A ) := [π∗Y/G], comme un
champ de Deligne-Mumford et on peut prendre son groupe fondamental (voir
[Noo05]). Le résultat principal de [Eys17] par rapport au groupe fondamental
de surfaces de Hirzebruch est le suivant.

Theorem A.3 ([Eys17]). Soit A un arrangement qui a seulement de points
singuliers doubles et triples, alors π1(X2(A )) = (Z/2Z)|A |−1.
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La surface π∗Y peut être identifié avec le revêtement de champs donné par
l’homomorphisme η : π1(XN(A )) → (Z/NZ)|A |−1, et alors on peut identifier
ker η avec π1(π∗Y ).

Il est intéressant de mentionner l’un des principaux Théorèmes de l’op. cit.

Theorem A.4 ([Eys17]). Les surfaces de Hirzerbruch correspondant à ker η
satisfont la conjecture de Shafarevich.

Par une version appropriée du Théorème de Seifert-van Kampen Theo-
rem on peut voir que π1(XN(A )) peut être calculé en prenant le quotient
de π1(BlP P2 \ A ) par le sous-groupe engendré par certaines puissances de
méridiens autour des composants irréductibles de D = π∗A , avec les puis-
sances qui dépend de l’isotropie sur le point générique de ces composantes
irréductibles. Ainsi, si on a une présentation pour π1(P2 \A ), on peut obtenir
une présentation pour π1(XN(A )) si on connait la réponse à la question suiv-
ante:

Question 4. Comme on obtient une expression explicite des méridiens autour
des diviseurs exceptionnels provenant de P en termes de ces méridiens autour
des droites dans A ?

En fait, la réponse à cette question donnera une présentation pour le groupe
fondamental d’un orbifold X (X̄,D, r = (r1, . . . , rs)) avec groupe d’isotropie
non trivial au-dessus du point générique des composantes irréductibles Di d’un
diviseur D =

∑
Di ⊂ X̄ et poids arbitraires ri ∈ N∗ (Voir 1.1.2).

Hirzebruch a déjà remarqué que si on met les poids ri tous égaux, sa con-
struction était reliée à d’autres surfaces construit par Deligne-Mostow [DM86]
comme quotients de la boule par une réseau uniforme PU(2, 1) (pour des ques-
tions relies à la arithméticité de cette construction voir [Hol86], [Der19]). En
admettant des poids inégaux, plus des surfaces de Deligne-Mostow ont était
obtenus en commençant par un arrangement de droites A , voir [BHH87],[Tre16].

Ceci, c’était l’une des motivations pour introduire les surfaces suivantes
dont le groupe fondamental est l’objet principal d’étude dans ce travail: soit
A ⊂ P2 un arrangement des droites, notons par Sing A l’ensemble de ces
points singuliers. Considérons l’éclaté π : BlSing A P2 → P2, le diviseur D =
π∗A =

∑s
i=1 Di avec s = |A |+ |Sing A |, et soit I ⊂ {1, . . . , s}.

Definition A.1. On appelle la surface BlSing A P2 \
∑

i 6∈I Di une Linear Ar-

rangement (Partial) Compactification de P2 \A ou une surface LAC.

Une autre motivation pour l’étude de ces surfaces et la recherche de possi-
bles exemples de la question suivante. Voir [Eys18] pour motivation supplémentaire
lié à la conjecture de Shafarevich.

Question 5. Existe-t-il une variété algébrique lisse X avec un groupe fonda-
mental infini tel que toute représentation linéaire π1(X) → GLN(C) a une
image finie?
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Aucun exemple ne semble être connu (c.f. le dernier paragraphe de A.1).
Mon directeur de thèse, P. Eyssidieux, ne savait pas quelle était la réponse à
la question suivante:

Question 6. Pour une surface LAC X, si son premier groupe d’homologie
entière H1(X,Z) est fini, s’ensuit-il que π1(X) est également fini?

B Résultats

B.1 Arrangements de droites définit sur les réels

Contexte

La théorie d’arrangements d’hyperplans est un domaine très large en soi. Pour
une introduction classique on renvoie à [OT92], pour un traitement plus récent
voir [Dim17].

Definition B.1. Soit A aff = {H1, . . . , Hn} ⊂ Cl une collection finie des hy-
perplans affines. On appelle A aff un arrangement (affine) des hyperplans.

Si on homogénéise les hyperplans H1, . . . , Hn et on considère l’hyperplan
à l’infinie Hn+1, on peut construire un arrangement d’hyperplans A ⊂ Pl tel
que Pl \A ∼= Cl \A aff. Le Théorème suivante de Zariski du type de Lefschetz
réduit l’étude du groupe fondamental de Pl \A à l’étude du complément d’un
arrangement de droites dans le plan projectif.

Theorem B.1 (Zariski). Soit Y une hypersurface de Pl et soit H un hyperplan
générique par rapport à Y . Si l > 2 alors π1(Pl \ Y ) ∼= π1(H \H ∩ Y ).

Ce Théorème a été énoncé en première dans [Zar37], pour une définition
précise du mot générique, un énoncé plus général et une preuve, voir [HTL73],
[Dim92].

Quand les droites de l’arrangement A aff ⊂ C2 sont définit par formes
linéaires avec coefficients réels on dit que A est une arrangement réel (com-
plexifié). Notons Sing A aff pour l’ensemble des points singuliers de A aff.
Dans [Ran85], Randell a construit à partir de A une graphe plaine orientée
A aff(R) ⊂ R2. De plus, il a utilisé implicitement la construction suivante:
autour de chaque point singulier p ∈ Sing A aff soit Bp un voisinage suffisam-
ment petit et considérons le entrelacs ∂Bp ∩ A aff dedans ∂Bp, il a utilisé la
présentation de π1(∂Bp \ ∂Bp ∩A aff) pour relier les méridiens autour des seg-
ments de A aff(R) \ Sing A aff .

Theorem B.2 (Randell). La présentation de Wirtinger du graphe A aff(R) et
une présentation de π1(∂Bp \ ∂Bp ∩ A aff) pour chaque p ∈ Sing A aff donne
une présentation pour π1(C2 \A aff).
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Arrangements réels

Le premier chapitre 1 de cette thèse est consacré aux résultats suivants qui ont
apparu dans [AA20a].

Soit A = {L1, . . . , Lk} ⊂ P2 un arrangement de droites réel (complexifié).
Soit π : X̄ = BlSing A P2 → P2 l’éclaté aux points Sing A dans P2, le diviseur
D = π∗A =

∑s
i=1Di et r = (r1, . . . , rs) ∈ Ns. On peut considérer l’orbifold

π1(X (X̄,D, r)) as in A.2.

Theorem B.3. Une présentation pour π1(X (X̄,D, r)) peut être obtenu en
modifiant la méthode de Randell et en rajoutant a cette présentation puissances
des mots explicites en ses générateurs.

En effet, la méthode de Randell peut se voir comme une ligne verticale qui
se balaye de droite à gauche dans R2 ⊂ C2 ∼= P2 \ Lk, elle est partie d’un
pinceau de droites basé sur un point appartenant à la droite à l’infini Lk, tout
en prenant en compte les relations et conjugaisons obtenus quand on croise un
point singulière dans Sing A aff.

Cette méthode prend en compte les points singuliers dans C2 mais pas ceux
qui se trouvent dans la ligne à l’infini Lk. Il suffit donc d’appliquer la même
méthode pour un pinceau basé sur un point bien choisi dans C2 \ A aff ainsi
comme un choix approprié de méridiens.

Afin de réduire le nombre de surfaces obtenues comme compactifications
partielles à étudier, on prouve dans 1.3.2 qu’il suffit de compactifier par rapport
à des diviseurs exceptionnels quitte à avoir étudié déjà les compactifications
partielles pour un arrangement de moins droites.

Ensuite, nous présentons une réponse à la question 6.

Theorem B.4. Il existe une surface LAC Y avec groupe fondamental infini
et premier groupe d’homologie (entier) fini.

Le groupe fondamental obtenu est isomorphe à Z/2Z ∗ Z/2Z et donc, il
admet une représentation linéaire fidèle dans GL2(C) et il n’éclaire pas donc
la question plus subtile 5.

Le Théorème B.4 est obtenu à partir d’une compactification partielle provenant
d’un arrangement très intéressant par lui-même appelé Ceva(2) qui peut être
vu comme l’union des six droites passant par quatre points en position générale
dans P2 et l’application du Théorème B.3.

L’arrangement Ceva(2) induit une fibration Bl4−points P2 → P1 ayant 3 fibres
singulières, il est donc une multinet (c.f. B.2). Cette application peut être
prolongé à une application Y → X (P1, D′, r′) de la surface LAC Y à l’orbifold
définit sur P1 avec diviseur D′ = 0 + 1 +∞ et poids r′ = (2, 2,∞), qui induit
un isomorphisme dans les groupes fondamentaux.

Le Théorème B.3 donne également une présentation pour les groupes fonda-
mentaux des orbifolds X (Bl4−points P2, π∗B, r) qui pour certains poids r peuvent
être considérés comme quotients de la boule B2 par un réseau uniforme comme
dans A.2.
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B.2 Théorèmes de structure pour le groupe fondamen-
tal d’un quotient d’un produit

Contexte

Il existe une classe d’arrangements de droites A ⊂ P2 qui s’appellent nets, ou
plus généralement multinets (see [Yuz04],[FY07],[MB09]). Cette classe donne
naturellement une fibration p : X → P1 d’un éclate du plan projectif π :
X = BlP P2 → P2 avec P ⊂ Sing A vers la droite projective P1 avec la
propriété qu’il existe une partition de A = ∪ki=1Ai en sous-arrangements Ai

tel que l’application p a la transformé stricte des sous-arrangements Ai dans
X comme fibres singulières.

Pour chaque n ∈ N∗ définissons l’arrangement Ceva(n) comme l’ensemble
de zéros du polynôme homogène f(z1, z2, z3) = (zn1 −zn2 )(zn1 −zn3 )(zn2 −zn3 ) dans
P2 avec coordonnées homogènes (z1 : z2 : z3). Chaque Ceva(n) est une multinet
et il semble naturel d’essayer d’étudier ses compactifications partielles afin de
généraliser les résultats de B.1. On a deux inconvénients: déjà Ceva(3) n’est
pas un arrangement réel et la complexité des calculs augmente avec le nombre
de droites. Pour ces raisons une autre méthode différent des présentations a
dû être utilisé.

Il est facile à voir que la fibration donnée par Ceva(n) est isotriviale, et
donc elle peut être lié à un produit de courbes. Ainsi, on peut espérer qu’il
existe un théorème de structure pour le groupe fondamental de certains com-
pactifications partielles comme dans [BCGP12].

Rappelons quelques résultats de [BCGP12].

Definition B.2. Soit C une courbe projective lisse de genre g. Le groupe
Πg = π1(C) est appelé un groupe de surface.

Soient C1, . . . , Ck courbes projectives lisses et soit G un groupe fini qui agit
sur chaque courbe Ci et agit librement sur le produit C1×· · ·×Ck avec l’action
diagonal. Alors on a une suite exacte exact:

1→ π1(C1)× . . .× π1(Ck)→ π1

(
C1 × · · · × Ck

G

)
→ G→ 1 (3)

Si on suppose que G agit seulement de façon effective dans chaque facteur
Ci et on enlève l’hypothèse que l’action est libre dans le produit, il n’y pas
de raison, a priori, pour qu’une suite similaire à (3) existe. Néanmoins, le
Théorème suivante à été prouvé dans [BCGP12].

Theorem B.5 ([BCGP12]). Soient C1, . . . , Ck courbes projectives lisses de
genre supérieur ou égal à deux et soit G un groupe fini qui agit effectivement sur
chaque facteur et diagonalement sur le produit. Alors le groupe fondamental
π1((C1× . . .×Ck)/G) admet un sous-groupe distingué d’indice fini N ∼= Πh1×
. . .× Πhk pour certains h1, . . . , hk ∈ N et Πh1 , . . . ,Πhk groupes de surfaces.
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L’hypothèse d’effectivité sur l’action a été enlevé après dans [DP12].

Notons que le quotient (C1 × . . . × Ck)/G peut être singulière. Dans
le cas où on a seulement deux courbes C1, C2, si les diviseurs obtenus en
résolvant les singularités de (C1 × C2)/G sont transformées strictes de droites
d’un arrangement A ⊂ P2 certaines compactifications partielles de la forme
(C1 \{k1−points}×C2 \{k2−points})/G pourront être étudié en généralisant
le Théorème B.5 pour le cas de surfaces ouvertes.

On mentionne brièvement les méthodes de preuve du Théorème B.5 comme
dans [BCGP12] avec un léger changement de langage en utilisant la notation
des champs. La preuve peut être divisé en deux parties. Pour la première on
peut considérer le groupe fondamental orbifolde de la courbe Ci/G, c’est-à-dire
π1([Ci/G]). On a une suite exacte

1→ π1(Ci)→ π1([Ci/G])→ G→ 1,

et donc, on peut construire le produit fibré H := π1([C1/G])×G. . .×Gπ1([Ck/G]).
Notons par TorsH le sous-groupe distingué de H engendré par ces éléments de
torsion. Le premier pas consiste à montrer que

π1((C1 × . . .× Ck)/G) ∼= H/TorsH. (4)

On a besoin de la définition suivante pour la deuxième partie de la preuve.

Definition B.3. Un groupe de surface orbifolde (abstraite) est un groupe qui
admet une présentation de la forme

Tg = 〈a1, b1, . . . , ag, bg, c1, . . . , ck | cn1
1 = . . . = cnkk = 1,

g∏
i=1

[ai, bi]c1 . . . ck = 1〉

avec ni ∈ N et [a, b] = aba−1b−1 le commutateur de a et b.

La deuxième partie de la preuve repose sur la proposition suivante dont la
preuve est de nature de théorie de groupes.

Proposition B.6 ([BCGP12, DP12]). Il existe une suite exacte de groupes

1→ E → H/TorsH→ T → 1

avec E un groupe fini et T un sous-groupe d’indice fini dans un produit de
groupes de surfaces orbifoldes

∏k
i=1 Thi.

A partir de cette proposition et de (4) on peut montrer facilement le
Théorème B.5 dès qu’on sait que H/TorsH est résiduellement fini. On preuve
la dernière assertion en utilisant les méthodes de[GJZZ08].
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Généralisation du Théorème de structure pour les quotients d’un
produit des courbes

Le seconde chapitre de cette travail 2 porte sur les résultats qui apparaissent
dans la prépublication [AA20b].

La proposition B.6 peut être généralisé ainsi: soient X1, . . . , Xk espaces
topologiques admettent un revêtement universel; ils sont connexes, localement
connexes par arcs, et délaçables. Notons par X = X1 × . . . × Xk le produit
d’eux, soit G un groupe fini qui agisse sur chaque Xi pour i = 1, . . . , k, et
considère l’action diagonal de G sur X. Soit I < G le sous-groupe engendré
par les éléments qui fixent un point dans chaque Xi pour i = 1, . . . , k. On
remarque que I est distingué. Notons par Xg

i le sous-ensemble de points de
Xi qui sont fixés par g ∈ G.

Theorem B.7. Soient X,X1, . . . , Xk, G, et I comme ci-dessus. Supposons
que l’ensemble π0X

g
i des composantes connexes par arcs de Xg

i est fini pour
chaque i = 1, . . . , k, et chaque g ∈ G. Alors il existe un morphisme

π1(X/G)→
k∏
i=1

π1([(Xi/I)
/

(G/I)])

dont l’image a indice fini et le noyau est fini.

L’action de G/I sur Xi/I est celle induite par G dans Xi.
Il est intéressant de mentionner le cas où on prenne le produit d’un même

espace topologique Xi = X1 pour i = 2, . . . , k. Notons que dans ce cas
l’action de G/I dans Xi/I est libre et donc le groupe fondamental du champ
[Xi/I

/
G/I] cöıncide avec le groupe fondamental topologique de Xi/G

/
G/I.

De plus, on peut voir que dans ce cas, comme espaces topologiques, on a
Xi/I

/
G/I ∼= Xi/G. On obtient ainsi le corollaire suivante.

Corollary B.8. Soient X = Xk
1 , G, et I comme ci-dessus. Alors le morphisme

π1(X/G)→ π1(X1/G)k a noyau fini et son image a indice fini dans π1(X1/G)k.

Pour prouver le Théorème B.7 on ramène les arguments de [BCGP12] au
contexte des champs. On considère l’action de π1([X/G]) dans le revêtement
universel de X, et on le compare avec l’action de π1([X1/G])×. . .×π1([Xk/G]).
D’après les hypothèses faites sur π0X

g
i , on peut construire sous-groupes Ci <

π1([Xi/G]) qui se relèvent à sous-groupes de π1([X/G]), et dont le produit
C1× . . .×Ck a indice fini dans le sous-groupe N < π1([X/G]) engendré par les
éléments qui ont un point fixe dans le revêtement universel de X. On fini par
un Théorème de Noohi [Noo08] qui montre que π1([X/G])/N ∼= π1(X/G) et
en donnant une interprétation géométrique de la projection de N sur chaque
π1([Xi/G]).

Une application intéressant du Théorème B.7 et Corollaire B.8 se trouve
dans l’étude du groupe fondamental de variétés algébriques lisses, en effet,
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le groupe fondamental d’une variété algébrique singulier avec seulement sin-
gularités quotients est le groupe fondamental d’une variété algébrique lisse
[Kol93].

Il y a aussi une généralisation du Théorème B.5.

Theorem B.9. Supposons que les hypothèses du Théorème B.7 sont satis-
faites, et de plus que π1(X/G) est résiduellement fini. Alors, il existe un sous-
groupe N < π1(X/G) isomorphe à un produit H1 × . . . ×Hk de sous-groupes
distingués Hi Cf.i. π1(Xi/I) d’indice fini.

En suivant de près les arguments de [BCGP12], qui utilisent les résultats de
la théorie de groupes de [GJZZ08], on peut montrer que π1(C1 × . . .× Ck/G)
est résiduellement fini pour un groupe fini G, et courbes algébriques lisses
C1, . . . , Ck qui ne sont pas nécessairement compactes.

Pour appliquer le Théorème B.9 à la famille Ceva(n) on montre la proposi-
tion suivante. Notons H(n) = Z/nZ, il agit sur la courbe de Fermat de dégrée
n définit par F (n) = zn1 + zn2 + zn3 . Notons par f̄ la fibration induite par le
multinet Ceva(n).

Proposition B.10. Considérons l’action diagonal de H(n) sur F (n)× F (n).
Notons par S la résolution minimale de F (n)× F (n)/H(n). Alors

1. La fibration S → (F (n)×F (n))/H(n)→ F (n)/H(n) ∼= P1 es isomorphe
à f̃ .

2. Chaque fibre singulière de F (n)×F (n)/H(n) corresponds à la contraction
de la transformé stricte Di d’une certaine droite Li ∈ Ceva(n).

3. La contraction de n droites correspondant à Ai sont dans une droite Ei
qui est un diviseur exceptionnel qui correspond à l’unique point singulier
en Ai.

4. Ei s’envoie vers un point via F (n)× F (n)/H(n)→ P1.

La preuve est donnée en 2.3.3. Cette preuve n’a pas apparu dans [AA20b].
En utilisant la proposition B.10 et le Théorème B.9 on a étudié deux familles

de compactifications partielles de P2 \ Ceva(n). Dans la première famille on
obtient que le groupe fondamental est au plus fini, et dans le deuxième il a un
sous-groupe isomorphe à Z comme un sous-groupe distingué d’indice fini. Voir
les exemples 2.3.1 and 2.3.2.

B.3 Compactifications partielles du complément d’un
arrangement de droites et variétés de frontière

Dans B.3, on a développé une méthode pour obtenir une présentation pour le
groupe fondamental de certaines compactifications partielles du complément
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P2 \A d’un arrangement de droites A ⊂ P2 sous l’hypothèse que les droites
dans A sont définies par formes linéaires réelles.

Le chapitre 3 de cette thèse est dédié à la généralisation de ce Théorème
dans deux directions:

• on considère un arrangement général A ⊂ P2 défini par formes linéaires
complexes et

• on considère une classe plus général M(A , I, P ) des compactifications
partielles de P2 \A . Voir 3.1.3 pour une définition précise.

Nous pouvons procéder de deux manières différentes: tout d’abord, en
suivant [Arv92] et [CS97], dont les travaux généralisent [Ran85] pour les ar-
rangements complexes, nous définissons un “braided wiring diagram” W qui
encode certains sur ou sous-croisements de lignes en A provenant de la nature
complexe des formes qui le définissent. Le diagramme W encode information
suffisante pour obtenir une présentation de π1(M(A , I, P )).

Theorem B.11. Une présentation de π1(M(A , I, P )) peut être obtenu de W.
L’ensemble de générateurs est en correspondance avec l’ensemble de droites
dans A et l’ensemble de relations consiste de deux types:

• ces relations Rp venant d’un point singulier p de A . Ces relations figu-
raient déjà dans une présentation de π1(M(A )) et

• pour chaque élément ι soit dans I ou P , une relation Rι qui est un produit
de conjuguées de certains générateurs qui dépend en ι.

Comme dans la preuve du Théorème B.3, un pas principal pour la preuve
du Théorème B.11 consiste en calculer explicitement une expression pour
un méridien autour de certains diviseurs exceptionnels, qui sont obtenus en
éclatant A en certains points singuliers, en termes de générateurs.

Pour la deuxième partie du chapitre trois, notons par U une voisinage
tubulaire régulière fermé de A dans P2. On appelle ∂U la variété de frontière
de A . Dans [FGBMB15], une présentation pour π1(M(A )) a été obtenu en
utilisant une présentation de π1(∂U) en étudiant le morphisme π1(∂U) →
π1(M(A )) induit par l’inclusion ∂U ↪→ M(A ). Pour la version homologique
voir [GB13].

Il s’avère que leurs méthodes peuvent être appliqué aussi pour déterminer
une présentation du groupe fondamental de certains compactifications par-
tielles M(A , I, P ). Néanmoins, pour étudier la variété de frontière ∂UD de la
transformé stricte D de A dans un modèle birationnel de P2, on travaille avec
une présentation différente de la variété de frontière ∂U de A .

En effet, quand D =
∑
Di est connexe, un diviseur simple à croisements

normaux tel que π1(D) est trivial, Mumford a donné une présentation pour
π1(∂UD) dans [Mum61]. Cette présentation, avec la structure de variété graphé
dans le sens de Waldhausen [Wal67], a été utilisé par Westlund pour donner
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une présentation de π1(∂U) dans [Wes67] (voir aussi [CS08]). Ici, en choisis-
sant une surface birationnelle à P2 où la transformé stricte de A satisfait les
hypothèses pour la présentation de Mumford, on donne une nouvelle preuve
de la présentation de Westlund. Voir le Théorème 3.3.1. En suivant cette
construction, on peut donner une présentation pour le groupe fondamental de
la variété de frontière ∂UD d’un diviseur D dans une surface X̄ obtenu en
éclatant successivement P2 de tel façon que M(A , I, P ) = X̄ \D.

On obtient dans le Théorème 3.3.3 une présentation pour π1(M(A )) en
étudiant aussi le morphisme i∗ : π1(∂U) → π1(M(A )). De plus, comme la
présentation de π1(∂U) dépend de plusieurs choix, on peut les faire d’une tel
façon que l’image des méridiens des droites de A par i qui sont dans ∂U ,
dont leurs classes d’homotopie sont une partie des générateurs de π1(∂U),
se trouvent dans la même classe d’homotopie que les méridiens utilisés dans
le Théorème B.11. Ainsi, on ne obtient pas seulement que les présentations
du Théorème 3.3.3 et B.11 sont équivalents, mais que l’image de l’ensemble
de relations dans la présentation de π1(M(A )) cöıncide avec les relations du
Théorème B.11. À partir de ces résultats, on peut obtenir une présentation
pour les compactifications partielles π1(M(A , I, P ), voir Théorème 3.3.14.

Finalement, inspiré par [tDP93], on présent un exemple d’une compacti-
fication partielle M(A , I, P ) = X̄ \ D qui provient d’un arrangement avec 5
droites, deux points triples et quatre points doubles tels que M(A , I, P ) est
une Q-plan d’homologie.
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Chapter 1

Fundamental groups of partial
compactifications of the
complement of a real
arrangement

By modifying a method used by Randell [Ran85] to get a presentation of the
complement of a (complexified) real arrangement of lines A in the complex
projective plane P2, we get expressions for the meridians around exceptional
divisors obtained by blowing up points in the singular set of the arrangement
A in terms of meridians around the lines in A . This gives a presentation for
the fundamental group of certain partial compactifications of P2\A . Some ex-
amples and applications of this presentation are given. These results appeared
in [AA20a].

1.1 Preliminaries

We review the definitions and some properties of meridians and orbifolds. For
the latter we follow [Eys17].

1.1.1 Meridians

Let M be a connected complex manifold, H ⊂ M a hypersurface, D an irre-
ducible component of H and q ∈ M \ H. Denote by U = {z ∈ C | |z| < 2}
and let f : U →M be a holomorphic function such that:

1. f−1(H) = {0},

2. f(0) = p is an smooth point of H and p ∈ D,

3. f ′(0) 6∈ TpH where TpH is the tangent space of H at p.
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Then f |S1 : S1 →M \H defines a free-homotopy class independent of f where
S1 ⊂ U is the unit circle. A loop γ ∈ π1(M \H, q) freely homotopic to f |S1 is
called a meridian of D around p.

If D is smooth, any other meridian of D around a smooth point of H is a
conjugate of γ. Denoting byH ′ = H\D, we have that the inclusion i : M\H ↪→
M \ H ′ induces a morphism i∗ : π1(M \ H, q) → π1(M \ H ′, q) whose kernel
is the normal subgroup of π1(M \ H, q) generated by γ. By Van Kampen’s
theorem the normal subgroup generated by the set of meridians around each
irreducible component of H is the kernel of the map π1(M \H, q)→ π1(M, q)
induced by the natural inclusion.

SupposeH = D is smooth and let γD be a meridian. Denote by π : M̄ →M
the blow up of M at some p ∈ D and let Ep be the exceptional divisor. Then
π−1(γD) is a meridian of Ep in M̄ .

1.1.2 Orbifolds

Let M be a complex manifold and D a smooth effective divisor. Let r ∈ N∗
and consider P →M the principal C∗-bundle attached to OM(−D). The tau-
tological section σD ∈ H0(M,OM(D)) can be lifted to a holomorphic function
fD : P → C satisfying fD(p · λ) = λfD(p). Let Y ⊂ P × C be the complex
analytic space defined by the equation zr = fD(p) where z is a coordinate for
C. Since D is smooth Y is smooth too. The action of C∗ can be extended to
Y in the following way: (p, z) · λ = (p · λr, λz). Then the complex analytic
stack

M(
r
√
D) := [YD/C∗]

is an orbifold. The non-trivial isotropy groups lie over the points in D and are
isomorphic to the group µr of r-roots of unity.

We allow also the weight +∞ by considering the manifold M \D as a stack
[M \D] and write

M(
+∞
√
D) := [M \D].

Let X̄ be a complex manifold and D =
∑l

i=1Di be a simple normal crossing
divisor, where Di is an irreducible component of D. For any choice of weights
r := (r1, . . . , rl) ∈ (N∗ ∪ {+∞})l we can define the orbifold

X (X̄,D, r) := X̄( r1
√
D1)×X̄ · · · ×X̄ X̄( rl

√
Dl)

Denoting by X = X̄ \ D, we can view X (X̄,D, r) as an orbifold (partial if
some ri = +∞) compactification of X. Let jr : X ↪→ X (X̄,D, r) denote the
natural open immersion. By fixing q ∈ X, it turns out that we can define
π1(X (X̄,D, r), q) and moreover it is the quotient of π1(X, q) by the normal
subgroup generated by all γrii , where γi is a meridian around Di and ri 6= +∞.
We obtain that jr∗ : π1(X, q)→ π1(X (X̄,D, r), q) is surjective. As a particular
case we have that if r = (1, . . . , 1) then X (X̄,D, r) = X̄.
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Let D∞ :=
∑
Dj the sum of all irreducible component of D such that

rj = +∞. We can regard X (X̄,D, r) as X (X̄ \ D∞, D − D∞, r
′) where r′

consists of the same finite values that r. In particular, if r′i = 1 for all i we
have that X (X̄,D, r) = [X̄ \D∞] and we write simply X̄ \D∞.

Definition 1.1.1. Let X be a smooth algebraic variety, Y a projective curve,
D =

∑l
i=1 yi a divisor on Y and r ∈ (N∗)l. Consider the orbifold X (Y,D, r).

A dominant algebraic morphism f : X → Y is said to be an orbifold morphism
if for all yi ∈ D the multiplicity of the fiber f ∗(yi) is divisible by ri.

1.2 Fundamental group

1.2.1 Modification of the method of Randell

Elementary geometric bases

Consider n real points {x1, x2, . . . , xn} ⊂ R ⊂ C such that x1 < x2 < . . . < xn.
Fix q ∈ R\{x1, . . . , xn}. Any oriented simple closed curve C ⊂ C\{x1, . . . , xn}
is freely homotopic to a loop based at q. Moreover, if it contains at least one
xi in the bounded component that C determines, there exists a simple path θ
connecting q and C satisfying:

=(θ(t)) < 0 for t ∈ (0, 1).

If C ∩ {=(z) < 0} is connected we call Cq := θ · C · θ−1 an elementary loop.
Here = denotes the imaginary part of a complex number. (We suppose the
curve C starts at a point with =(z) ≤ 0).

Remark 1.2.1. We have made all the choices in order to have Cq unique in
π1(C \ {x1, . . . , xn}, q).

q
x2x1

C

•• •

Figure 1.1: Elementary loop Cq.

The following definition is inspired from [MT88], [ABCRCA03].

Definition 1.2.1. An (ordered) geometric base Γ = (γ1, . . . , γn) for the group
π1(C \ {x1, . . . , xn}, q) is an n-tuple such that γi is a meridian of xi based at q
and satisfying:

γn · γn−1 · · · γ1 = ∂B(0,M)q

in π1(C \ {x1, . . . , xn}, q), with M > |xi| for all i = 1, . . . , n. The curve
∂B(0,M) is a circle centered at 0 with radius M and oriented counterclockwise.
We consider the product of loops from left to right.
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Remark 1.2.2. The loop ∂B(0,M)q can be seen as the inverse of a meridian
loop around the point at infinity.

By abuse of notation we will write Γ ⊂ C.

Definition 1.2.2. An elementary geometric base Γ = (γ1, . . . , γn) is a geo-
metric base such that every γi is an elementary loop.

q x1 x2γ1

γ2

• • •

Figure 1.2: An elementary geometric base.

Lemma 1.2.3. Given n real points and a base point as above, there is a unique
elementary geometric base Γ.

Proof. Is immediate by the ordering of Γ and the uniqueness of the elementary
loops.

Remark 1.2.4. The notion of geometric base for π1((L ⊗ C) \ P ; q) depends
only on the real oriented line L and P = {x1, . . . , xn} ∈ L(R), q ∈ L(R).

Randell’s pencil

Definition 1.2.3. A complex arrangement of lines is an algebraic set A ⊂ P2

whose irreducible components are complex lines. The arrangement A is said
to be real or to be defined over the reals if the coefficients of all linear forms
defining each line can be taken to be real.

Denote by M(A ) := P2 \A . We are going to review and adapt a method
to compute a presentation for π1(M(A )) when A is real as in [Ran85].

Associate to each (projective) arrangement A an affine one, defined as
follows: fix a line L∞ ∈ A and consider it as a line at infinity, then

A aff := A ∩ (P2 \ L∞) ∼= A ∩ C2,

where we have chosen an homeomorphism h : C2 → P2 \ L∞. If we denote
M(A aff) := C2 \A aff, we have the identification:

M(A ) = M(A aff).

Fixing q ∈M(A aff) and denoting also by q = h(q), we have:

π1(M(A ), q) ∼= π1(M(A aff), q).

Moreover if the arrangement A is real, we can associate it a planar graph (al-
lowing rays) in R2. Suppose A aff is the associated affine arrangement, then all
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multiple points lie in a real plane. Namely, if we consider C2 with coordinates
(z, w) = (x1 + iy1, x2 + iy2), the real plane is given by {(z, w) ∈ C | y1 = y2 =
0} ∼= R2. Set A (R) := A aff ∩ R2 to be the set of real points of the arrange-
ment A aff, denote by M(A (R)) := R2 \ A (R). Suppose there is no vertical
line in A (R). Denote by Sing A • the multiple points of the corresponding
arrangement A • = A ,A aff,A (R).

Consider R2 with coordinates (x1, x2). We orient the non vertical lines in
R2 taking the positive direction to be that of decreasing x1.

Fix a base point q = (q1, q2) in the lower right part of M(A (R)) further and
lower than any point in Sing A (R) and lower than any line. For a complex
line Σ ⊂ C2 defined by an equation with real coefficients, denote by Σ(R)
its restriction to R2 and orient it as before if it is non-vertical. Set Σ(0) :=
{(z, w) | z = q1}, note that Σ(0)(R) is the vertical line passing through q, we
orient it by taking as positive direction that of increasing x2. For any triple
P ⊂ Σ(R) ⊂ Σ, where P is a finite set of points, Σ(R) a real oriented line
and Σ a complex line as before, we can consider an elementary geometric base
Γ ⊂ Σ of π1(Σ \ P, q) by fixing q ∈ Σ(R).

As Σ(0)(R) intersects all the lines of A (R), we can number P = Σ(0)(R) ∩
A (R) from bottom to top (given by the orientation chosen for Σ(0)(R)) and

denote Γ(0) = {γ(0)
1 , . . . , γ

(0)
n } ⊂ Σ(0) the associated elementary geometric base

with base point q.
The idea to obtain a presentation for the fundamental group is to study how

the elementary geometric base change when we rotate the line Σ(0) counter-
clockwise while fixing the base point q and keep track of the relations arising.

q

p1
p2

p3

p4

3

2

1

4 Σ(0)

Σ(1)

Σ(2)

Σ(3)

·

··

·

Figure 1.3: Base point

The set of lines passing through q, can be seen as RP1, which we parame-
trised by the angle with respect to the line x2 = 0 (oriented in the positive
sense), this is, a value in [π/2, 3π/2[. To every real line Σ(R) passing through
q we can associate its angle, which we denote by:

θ(Σ(R)) ∈ [π/2, 3π/2[.

For t ∈ [π/2, 3π/2[, the line being parametrised by t will be denoted by Σt.
In particular, θ(Σ(0)) = π/2. The elementary geometric base Γ(0) varies in

a continuous way as we vary t. There exists two types of directions where it
changes:
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S.1 Those t ∈ [π/2, 3π/2[ such that the associated Σt contains a point in
Sing A (R),

S.2 Those t ∈ [π/2, 3π/2[ such that Σt is parallel to a line in A (R), which
correspond to the points in Sing A ∩ L∞.

By a slight change of q, we can consider that no line passing through it
contains two points of Sing A . Given p ∈ Sing A , denote by θ(p) the angle
of the unique line passing through p and q. Given p, p′ ∈ Sing A , we define a
total order by

p < p′ iff θ(p) < θ(p′).

Let us write Sing A = {p1, . . . , ps} with this order.

Remark 1.2.5. Note that the original method in [Ran85] correspond to choose
the base point q at the line at infinity an therefore, the lines passing through
it are all parallel in C2. This method takes care of the singular point lying in
Sing A aff but not of those in Sing A \ Sing A aff, they do not intervene in the
presentation of M(A ).

However, these singular points lying on the line at infinity are indispensable
for the presentation of the surfaces to be introduced in Section 1.3 which are
our main object of study in this note. This is why we have chosen a base point
at finite distance.

Elementary geometric transition of regular fibers in Randell’s pencil

Fix a point pi ∈ Sing A . Denote by ti = θ(pi). Choose ε > 0 sufficiently small
such that no t ∈ [ti − ε, ti + ε] \ {ti} is of type S.1 or S.2. Let:

Σ(i−1) := Σti−ε, Σ(i) := Σti+ε.

This is, Σ(i−1) lies to the right and Σ(i) to the left of pi. Recall that Σ(i−1)(R)
is an oriented real line and by intersecting with A (R) we can consider the
elementary geometric base:

Γ(i−1) = (γ
(i−1)
1 , γ

(i−1)
2 , . . . , γ(i−1)

n ) ⊂ Σ(i−1),

similarly
Γ(i) = (γ

(i)
1 , γ

(i)
2 , . . . , γ(i)

n ) ⊂ Σ(i).

A priori, we should take such geometric bases for every point pi but as
there is no direction between ti and ti+1 in which the geometric base changes,
by continuity we will still write Γ((i+1)−1) = Γ(i).

Remark 1.2.6. In fact, as remarked above, only the points of type S.1 play a
role in the presentation of π1(M(A )). The points of type S.2 do not modify
the meridians who are about to cross a point in Sing A (R), they only change
their numeration in the geometric base. These points are studied in section
1.2.2 and they are needed for the explicit form of the exceptional meridians
given in Section 1.2.3.
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The description of the change in the geometric basis is given in the fo-
llowing Proposition when the meridians surround a point of type S.1. Let
pi ∈ Sing A (R), Γ(i−1) and Γ(i) as above.

Proposition 1.2.7. Let j be the first index for which the meridian γ
(i−1)
j su-

rrounds a line which passes through pi and let k be the last such index. Then
we have:

Γ(i) = (γ
(i−1)
1 , . . . , γ

(i−1)
j−1 , γ

(i)
j , . . . , γ

(i)
k , γ

(i−1)
k+1 , . . . , γ(i−1)

n ),

where:

γ
(i)
k = γ

(i−1)
j ,

γ
(i)
k−1 = γ

(i−1)
j

−1
γ

(i−1)
j+1 γ

(i−1)
j ,

...

γ
(i)
j = γ

(i−1)
j

−1
γ

(i−1)
j+1

−1
· · · γ(i−1)

k−1

−1
γ

(i−1)
k γ

(i−1)
k−1 . . . γ

(i−1)
j γ

(i−1)
j .

And a set of relations in π1(M(A ), q):1

Rpi =
{
γ

(i−1)
k γ

(i−1)
k−1 · · · γ

(i−1)
j = γ

(i−1)
σ(k) γ

(i−1)
σ(k−1) · · · γ

(i−1)
σ(j) = . . .

}
(1.1)

where σ runs over the set of cyclic permutations of k − j + 1 elements.

pi

γ
(i)
k

γ
(i−1)
j

γ
(i)
k−1

γ
(i−1)
j+1

...

...

γ
(i)
j

γ
(i−1)
k

Σ(i) Σ(i−1)

Figure 1.4: Conjugates

Proof. Let Bpi,ε be a 4-real ball of radius ε sufficiently small around pi and
consider the fundamental group G of ∂Bpi,ε \ (∂Bpi,ε ∩A ) with base point q′,
where ∂Bpi,ε denotes the boundary of Bpi,ε.

The group G is equivalent to the fundamental group of a k−j+1 Hopf link
in a torus and by the Wirtinger presentation we obtain the relations stated
above (See [OT92, Lemma 5.75]) for local meridians in ∂Bpi,ε.

The local base point q′ can be chosen in such a way that there exists a path
γ(i−1) joining q and q′ such that the base point change of the local meridians
in ∂Bpi,ε to R via γ(i−1), coincide with the γ

(i−1)
j .

1These relations are stated as in [Fal93] p.142, where in a footnote he points to an error
of [Ran85].
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Expressing every meridian in terms of the geometric base Γ(0) by means of
Proposition 1.2.7 and replacing in (1.1) we obtain:

Theorem 1.2.8 ([Ran85]). The fundamental group of M(A ) admits a pre-
sentation:

π1(M(A ), q) ∼=

〈
γ

(0)
1 , γ

(0)
2 , . . . , γ(0)

n

∣∣∣∣ ⋃
pi∈Sing(A (R))

Rpi

〉
.

Proof. By choosing suitable open sets Mi of M(A ) in such a way that π1(Mi∩
Mi+1) is the free group in n =

∣∣A aff
∣∣ generators and Mi contains only the

singular point pi we can apply Van-Kampen and Proposition 1.2.7.
Note that by the choice of the base point q, all the points in Sing(A (R))

lie to the left of Σ(0) and therefore when a meridian γ of a line L crosses a
point at infinity of type S.2, it will not cross another singular point, hence it
will give no further relations to the presentation of the group.

Remark 1.2.9. An equivalent presentation can be obtained by studying the
monodromy in the Randell pencil by a slight modification of the methods in
[CS97].

Indeed by blowing up the base point R, we obtain a fibration with base
P1 that restricted to P2 \A has singular fibers whenever a point pi ∈ Sing A
lies at such fiber. The conjugations arising when a geometric basis crosses a
singular point pi is given by a permutation braid µi called a half twist [CS97,
p. 14] (c.f. with Proposition 1.2.7) and the local monodromy is given by µ2

i

(c.f. [Hir93, p. 41] up to a different order). Finally, by keeping track of the
global conjugations by means of a wiring diagram (see [CS97] for definitions)
a presentation is obtained.

Adapting in an appropriate way the definitions of [CS97] or those of [Arv92],
a presentation of M(A ), for A an arrangement not necessarily real, adapted
to our purposes is possible.

We have preferred here to adapt the description of Randell because it
seemed to us to be simpler and quicker for the heuristic methods of treat-
ing the question of Dimca-Eyssidieux case by case for arrangements of few
lines.

1.2.2 Meridians crossing a point at infinity

Let us describe the change in the geometric base when it traverses a singular
point at infinity. Let pi ∈ Sing A ∩ L∞ and Γ(i−1) ⊂ Σ(i−1) and Γ(i) ⊂ Σ(i) be
given as in section 1.2.1. This is:

Γ(i−1) = (γ
(i−1)
1 , . . . , γ

(i−1)
n−k+1, . . . , γ

(i−1)
n ),

and
Γ(i) = (γ

(i)
1 , . . . , γ

(i)
k , γ

(i)
k+1, . . . , γ

(i)
n ).
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Proposition 1.2.10. Assume that there are exactly k parallel lines in A (R)
whose corresponding lines in A intersect at pi. Then these lines are associated
to the last k meridians γ

(i−1)
n−k+1, . . . , γ

(i−1)
n of Γ(i−1).

Proof. Let ti = θ(pi) and Σti be the line passing by q and pi. Using the order
of the real lines write Σ(i−1)(R)∩A (R) = {y1, . . . , yn} and as no other point of
Sing A different from pi lies in Σti we have that Σti ∩A (R) = {x1, . . . , xn−k}.
In fact, it must be the case that xi and yi are in the same line of A (R)
otherwise a point of type S.1 or S.2 would lie between Σ(i−1) and Σti which
can not happen.

Corollary 1.2.11. We have the following identifications in Σ(i):

γ
(i)
k+1 = γ

(i−1)
1 , . . . , γ(i)

n = γ
(i−1)
n−k . (1.2)

Proof. As we are turning counter-clockwise, by the orientation given to Σ(i)(R)
it will intersect first the k parallel lines associated to pi and then, by the
same argument as in Proposition 1.2.10, the point in the position k + j of
Σ(i)(R) ∩A (R) lies in the same line as xj .

Proposition 1.2.12. The last k meridians in Γ(i−1) invert their order to fit
in the first k places of Γ(i). By doing so a conjugation for all the precedent
meridians is needed (see figure 1.5). More precisely we have:

γ
(i)
k = γ

(i−1)
1

−1
· · · γ(i−1)

n−k
−1

γ
(i−1)
n−k+1 γ

(i−1)
n−k · · · γ

(i−1)
1 ,

γ
(i)
k−1 = γ

(i−1)
1

−1
· · · γ(i−1)

n−k+1

−1
γ

(i−1)
n−k+2 γ

(i−1)
n−k+1 · · · γ

(i−1)
1 ,

...

γ
(i)
1 = γ

(i−1)
1

−1
· · · γ(i−1)

n−1

−1
γ(i−1)
n γ

(i−1)
n−1 · · · γ

(i−1)
1 . (1.3)

Proof. By writing the l-element γl ∈ Γ = (γ1, . . . , γn) as γl = θl · Cl · θ−1
l as

in 1.2.1, it follows that the element γ′l = γ−1
1 · · · γ−1

l−1γlγl−1 · · · γ1 described in

the statement of the Proposition can be written as γ′l = θ′l · Clθ′l
−1 with θ′l

homotopic to a loop such that =(θ′l(t)) > 0 for t ∈ (0, 1), see Figure 1.5. These
loops can then be moved to the firs k positions. The result follows by unicity
of the elementary geometric base.

1.2.3 Loops around singular points

Consider an arrangement A defined over the reals as in the precedent section.
We have a canonical way of associating an elementary geometric base for every
line Σt passing though q with t ∈ [π/2, 3π/2[ as in 1.2.1. We will write the
elementary geometric base over the directions of the points S.1 and S.2 in
terms of the elements of Γ(i).

This can be seen as finding elementary loops for the points in Sing A ,
which can be divided into finite distance points Sing A aff ∼= Sing A (R) and
infinite distance Sing A ∩ L∞.

31



γ
(i−1)
1q x1 x2 x3 x4

γ
(i−1)
2

γ
(i)
2

γ
(i)
1

• • • • •

Figure 1.5: Loops crossing a point S.2.

Lemma 1.2.13. The inverse of a meridian loop around the line at infinity L∞
at the point L∞∩Σ(i) is given by the product of the elements of the elementary
base Γ(i), this is :

(γ(i)
∞ )−1 = γ(i)

n · γ
(i)
n−1 · · · γ

(i)
1

Proof. This is a simple consequence on the definition of geometric base and
the choice of the base point.

This meridian can be seen as an elementary loop, as it is product of loops
of this type.

Recall that ti = θ(pi) denotes the angle of the line Σti containing pi and q.

Definition 1.2.4. A meridian γ′pi around a singular point pi ∈ Sing A (R), is
a meridian of pi ∈ Σti (based at q).

We can consider the elementary meridian γpi as the elementary loop of pi
in Σti (based at q). With the notation of Proposition 1.2.7 we have:

Lemma 1.2.14. The elementary meridian γpi can be obtained as a product of
the elements of Γ(i−1) which surround the lines passing through pi. Namely

γpi = γ
(i−1)
k γ

(i−1)
k−1 · · · γ

(i−1)
j+1 γ

(i−1)
j .

Proof. An elementary geometric base Γ is constructed in such a way that the
product of k−j+1 consecutive elements (γj, . . . , γk) of Γ equals an elementary
loop Cq, where C is an oriented counter-clockwise simple closed curve that in
the bounded part that it determines contains exactly {xj, . . . , xk}.

Next we determine the meridians around multiple points lying in the line at
infinity.

Let pi ∈ Sing A ∩ L∞. Consider the line Σti passing through q and pi.
Suppose there are exactly k lines in A different from L∞ passing through pi
then their real points are parallel lines to Σti(R) in A (R). As is Section 1.2.2
we have:

Σti(R) ∩A (R) = {x1, . . . , xn−k},
with k ≥ 1 depending on i. The order of the points xi given by the orienta-
tion of Σti(R). Hence we can take the elementary geometric base Γti ⊂ Σti
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associated with P = {x1, . . . , xn−k} and the base point q. Suppose Γti =
(γ1, . . . , γn−k).

Definition 1.2.5. For a point at infinity pi ∈ Sing A ∩ L∞, we say that a
meridian γpi at infinity of Σti is a meridian around the singular point pi.

Lemma 1.2.15. Let Γ(i−1) = (γ
(i−1)
1 , . . . , γ

(i−1)
n ) be as in Section 1.2.1. For

every point pi ∈ Sing A ∩ L∞ the elementary meridian γpi is given by any of
the equivalent expressions

γpi = γ(i−1)
∞ · γ(i−1)

n · · · γ(i−1)
n−k+1, (1.4)

or

γ−1
pi

= γ
(i−1)
n−k · · · γ

(i−1)
1 . (1.5)

Remark 1.2.16. In (1.4) a similitude with the formula of Lemma 1.2.14 can
be observed. Namely the product of the meridians of the lines crossing the
point pi give the meridian. In (1.5) we simply compute the meridian around
the point at infinity in the line Σti , so it is closer to Lemma 1.2.13.

Proof. As no other point of Sing A lies in Σti by continuity, Proposition 1.2.10
and the uniqueness of the elementary geometric base we have that

Γpi = (γ
(i−1)
1 , . . . , γ

(i−1)
n−k ),

by applying Lemma 1.2.13 we obtain (1.5).

In Σ(i−1) we have

γ(i−1)
∞ = (γ

(i−1)
1 )−1 · · · (γ(i−1)

n )−1,

therefore for the right hand side of (1.4)

γ(i−1)
∞ · γ(i−1)

n · · · γ(i−1)
n−k+1 = (γ

(i−1)
1 )−1 · · · (γ(i−1)

n−k )−1

which equals γpi by (1.5).

Remark 1.2.17. By the results of this Section, we have obtained meridians
around every point p ∈ Sing A (in the sense of definitions 1.2.4 and 1.2.5)
with A defined over the reals. In [Gar03] Garber generalize a formula of
Fujita [Fuj82] expressing locally the meridians around singular points as the
product of the meridians of the irreducible components in the singular point.
He then uses this result globally when the lines intersect transversally, this
is, when there is no additional conjugation. Our method can be seen as a
generalization of this by allowing multiple points of higher order.
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1.3 LAC Surfaces

1.3.1 Construction

We will construct surfaces generalizing the complement of a hyperplane ar-
rangement and obtain presentations of the fundamental group of these sur-
faces.

Fix A = {L1, . . . , Lk} an arrangement of lines in P2. Let X̄ be the blow up
of P2 at Sing A = {p1, . . . , ps} and π : X̄→P2 the projection map. Denote by
D1, . . . , Dk the strict transform of the lines L1, . . . , Lk and by Dk+1, . . . , Dk+s

the exceptional divisors associated to the points p1, . . . , ps.
Given a subset I ⊂ {1, . . . , k + s} we can define the orbifold X (X̄,D, rI)

associated to the divisor D =
∑
Di and the weights rI = (r1, . . . , rk+s) where

ri = 1 if i ∈ I and ri = +∞ if i 6∈ I. Then X (X̄,D, rI) = X̄ \ (DI)∞ where
we have written DI for D to emphasize the dependence on I.

Definition 1.3.1. We call X̄ \ (DI)∞ a (partial) Linear Arrangement Com-
pactification or LAC surface.

Remark 1.3.1. If I = ∅, (DI)∞ = D and π restricted to X̄ \D is a biholomor-
phism with M(A ), from which it follows that

π1(X̄ \D) ∼= π1(M(A )), (1.6)

showing that these surfaces are indeed generalizations of the complement of
an arrangement.

1.3.2 Reduced LAC Surfaces

In [Eys17] a comment before Proposition 1.3 mentions that the log pair (X̄,D)
has to be rigid if one wants the fundamental group to be very different from
X̄\D. We prove here that we can reduce the study of LAC surfaces to partially
compactify only with respect to exceptional divisors, this is, the subset of
irreducible components of D with weight 1 are exceptional divisors.

We do so by showing that if a strict transform of a line Li has weight 1,
then we can find an arrangement of less lines whose associated LAC surface
has the same fundamental group. In this process the double points lying in the
line that we have removed create isolated points and we must allow to blow
them up as well in order to cover the case when this exceptional divisor had
weight 1 in A . With this is mind we have the following definition.

Definition 1.3.2. A LAC datum, is a triple

(A , S, I) := (A = {L1, . . . , Lk} ⊂ P2, S = {p1, . . . , ps} ⊂ P2, I ⊂ {1, . . . , k+s})

where A is an arrangement of lines in P2, S a finite set of points and I an
index set.
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Given a LAC datum (A , S, I) we can construct a surface X̄ \ (DI)∞ as
in 1.3.1. Consider X̄ the blow up of P2 in the points S, call D1, . . . , Dk the
strict transform of the lines in A , Dk+1, . . . , Dk+s the exceptional divisors
and (DI)∞ =

∑
j∈J Dj where J := {1, . . . , k + s} \ I. As we can change

the arrangement and the set of points to blow up, we prefer the notation
M(A , S, I) for this surface.

Definition 1.3.3. Two LAC datum (A , S, I), (A ′, S ′, I ′) are said to be equiv-
alent if and only if

π1(M(A , S, I)) ∼= π1(M(A ′, S ′, I ′)).

In such a case we write (A , S, I) ∼ (A ′, S ′, I ′).

Definition 1.3.4. A LAC datum (A , S, I) such that S ⊂ Sing A and I = S
is called reduced. In this case we write (A , I).

Theorem 1.3.2. For every LAC datum (A , S, I) there is a canonical equiva-
lent reduced LAC (A ′, I ′).

We will need to prove first three reduction Lemmas.

Lemma 1.3.3. Let (A , S, I) be a LAC datum. Suppose there exists Li ∈ A
such that i ∈ I, then

(A , S, I) ∼ (A \ L, S, I \ {i}).

Proof. Denote by X̄ = BlS P2. As M(A , S, I) = X̄ \ (DI)∞ and

{1, . . . , s+ k} \ I = {1, . . . , î, . . . , s+ k} \ (I \ {i})

denoting by (D′I\{i})∞ the divisor to be removed given by (A \ L, S, I \ {i})
we have that

(DI)∞ = (D′I\{i})∞

that implies
M(A , S, I) = M(A \ L, S, I \ {i}).

So we can suppose I ⊂ {1, . . . , s}. The next step is to consider points lying
outside A .

Lemma 1.3.4. Let (A , S, I) be a LAC datum such that there is pj ∈ S that
lies in no line of A .

1. If j ∈ I then
(A , S, I) ∼ (A , S \ {pj}, I \ {j}).

2. If j 6∈ I then
(A , S, I) ∼ (A , S \ {pj}, I).
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Proof. 1. The surfaceM(A , S, I) is the blowing up ofM(A , S\{pj}, I\{j})
at the point pj, as the fundamental group is invariant under blow ups we
obtain the stated.

2. We have a biholomorphism given by restricting the blowing up map of
M(A , S \ {pj}, I) at pj, to the complement of the exceptional divisor

M(A , S, I)
∼→M(A , S \ {pj}, I) \ {pj}

but as

π1(M(A , S \ {pj}, I) \ {pj}) ∼= π1(M(A , S \ {pj}, I))

the result follows.

The last reduction Lemma, can be divided into two parts. In the first case we
show that it is only interesting when we blow up a point and do not remove
the exceptional divisor. In the second part, a point of pj ∈ S that is a smooth
point of A does not affect the fundamental group in either case j ∈ I or
j 6∈ I. By the last Lemma we can assume that every point in S lies in the
arrangement A .

Lemma 1.3.5. Let pj ∈ S ⊂ A .

1. If j 6∈ I then

(A , S, I) ∼ (A , S \ {pj}, I).

2. Suppose pj ∈ L for some line L ∈ A . If j ∈ I and pj 6∈ Sing A , then

(A , S, I) ∼ (A \ {L}, S \ {pj}, I \ {j}).

Proof. 1. Let X̄ = BlS\{pj} P2 and Ȳ = Blpj X̄. In X̄ we have

(DI)∞ =
∑

Dr with r ∈ S \ (I ∪ {pj})

In Ȳ

(D′I)∞ = (DI)∞ +D′j

Where we have denote also by (DI)∞ the strict transform of the divisor
with same notation in X̄. Therefore we have a biholomorphism

Ȳ \(D′I)∞ = M(A , S, I)
∼→M(A , S\{pi}, I)\{pj} = X̄ \((DI)∞∪{pj})

and the result follows.
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2. If γpj is a meridian at pj of L, as pj is a smooth point then it is also a
meridian of the exceptional divisor Dk+j in M(A , S, I \ {j}). As Dk+j

is smooth, γpj generates the kernel of

π1(M(A , S, I \ {j}))→ π1(M(A , S, I))

hence
π1(M(A , S, I \ {j}))/

〈〈
γpj
〉〉 ∼= π1(M(A , S, I)) (1.7)

By the point 1 above we have that (A , S, I \{j}) ∼ (A , S\{pj}, I \{j}).
Replacing in (1.7) we obtain

π1(M(A , S \ {pj}, I \ {j}))/
〈〈
γpj
〉〉 ∼= π1(M(A , S, I)) (1.8)

But γpj also generates the kernel of the map of fundamental group in-
duced by the inclusion

M(A , S \ {pj}, I \ {j}) ↪→M(A \ L, S \ {pj}, I \ {j})

therefore

π1(M(A , S \ {pj}, I \ {j}))/
〈〈
γpj
〉〉 ∼= π1(M(A \ {L}, S \ {pj}, I \ {j}))

which together with (1.8) prove the statement.

Proof of Theorem 1.3.2 . Given an arbitrary LAC datum (A , S, I) by Lemma
1.3.3 we can suppose that I ⊂ {1, . . . , s}. By Lemma 1.3.4 all those points in
S not lying over A can be also discarded without changing the fundamental
group.

By Proposition 1.3.5 1, we remove from S all points pj such that j 6∈ I so
S = I, we will denote the LAC datum by (A, S) .

If there is a smooth point pj ∈ S such that pj ∈ L for some L ∈ A by
Proposition 1.3.5 2, (A , S) ∼ (A \ {L}, S \ {pj}). This new LAC datum
could have as well smooth points lying in S \ {pj}, either coming from S or
from double points in A lying in L. We repeatedly apply Proposition 1.3.5 2,
until I ⊂ Sing A or A = ∅. As there are only a number finite of points and
lines this process must end and we obtain an equivalent reduced LAC datum
(A ′, I ′) as wanted.

1.3.3 A presentation for the orbifold fundamental group

Definition 1.3.5. Let A = {L1, . . . , Lk}, X̄ the blow up of P2 at Sing A =
{p1, . . . , ps} and Di as in section 1.3.1. The divisor D =

∑
Di is simple normal

crossing and for r ∈ (N∗∪{∞})k+s the orbifold X (X̄,D, r) is called a weighted
LAC Surface.
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Theorem 1.3.6. Let A = {L1, . . . , Lk} be a real arrangement, X (X̄,D, r)
a weighted LAC surface. Suppose we consider Lk as a line at infinity and
A aff has no vertical line. Choose a base point q and a canonical elementary
geometric base Γ(0) = (γ1, . . . , γk−1) based at q and to the right of any vertex as
in Section 1.2. Let Sing A = {p1, . . . , ps} and γpj be the elementary meridian

around pj. Then the γpj can be expressed in terms of Γ(0) as in Lemmas 1.2.14
and 1.2.15 a presentation for π1(X (X̄,D, r), q) is given by〈

γ1, . . . , γk−1 |
⋃

pl∈Sing(A (R))

Rpl , γ
ri
i , γ

rk+j
pj ,

i = 1, . . . , k,
j = 1, . . . , s

〉
(1.9)

where we omit the relation γrm = 1 if rm =∞.

Proof. We find first a presentation for π1(X̄ \D, q) and express the meridians
around the Dr in terms of γi. As X̄ \D ∼= M(A ) by remark 1.3.1, we obtain
that γi is a meridian of Di in X̄ and by Theorem 1.2.8 we have the following
presentation for π1(X̄ \D, q):

π1(X̄ \D, q) =

〈
γ1, γ2, . . . , γk−1 |

⋃
p∈Sing(A (R))

Rp

〉
.

The elementary meridian γk around Dk is given by Lemma 1.2.13 as γk =
(γk−1 · · · γ1)−1. The meridians around the exceptional divisor Dk+j are given
by the Lemmas 1.2.14 and 1.2.15 in the following way: γpj is a meridian around
pj lying completely in the line Σi, so after the blow up this meridian lies in the
strict transform of Σi giving a meridian of Dk+j. Moreover, γpj is expressed in

terms of Γ(0). By [Eys17] p.3 dividing by the normal subgroup generated by
γrii , γ

rk+j
pj we obtain the presentation.

Corollary 1.3.7. Let (A , I) be a reduced LAC surface with A real. A pre-
sentation for π1(X̄ \ (DI)∞) is given by

π1(X̄ \ (DI)∞) ∼=

〈
γ1, . . . , γk−1 |

⋃
pr∈Sing(A (R))

Rpr , γpj , j ∈ I

〉
. (1.10)

1.4 Applications

1.4.1 LAC Surface with infinite fundamental group and
finite abelianization

Consider a set S of 4 points in general position in P2. The arrangement
B = {L1, . . . , L6} of 6 lines connecting each pair of these is called the complete
quadrilateral or Ceva(2). It has 4 triple points and 3 double points: SingB =
{p1, . . . , p7} numbered as in Figure 1.6. It has the following equation (z2

1 −
z2

2)(z2
1 − z2

3)(z2
2 − z2

3) = 0 for projective coordinates (z1 : z2 : z3).
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q

p1

p2

p3

p4

p5

p6

p7

L3

L5

L4

L1

L2

Γ(0)Γ(1)Γ(2)Γ(3)

Γ(4)

Γ(5)

Γ(6)

··
·

·

Figure 1.6: Complete quadrilateral.

If we consider L6 as the line at infinity, after a small rotation in order to
have no vertical lines, we obtain the real picture as in Fig. 1.6.

By the subsections 1.2.2 and 1.2.3 we have that the elementary geometric base
(up to homotopy in π1(P2 \B, q), replacing γ

(0)
i by xi and writing xy := y−1xy)

are
Γ(0) = (x1, x2, x3, x4, x5)

Γ(1) = (x1, x4, x
x2
3 , x2, x5)

Γ(2) = (x1, x4, x
x2
3 , x5, x2)

Γ(3) = (x4, x1, x
x2
3 , x5, x2)

Γ(4) = (x4, x5, x
x2x1
3 , x1, x2)

Γ(5) = (xx3x2x1x5x4
2 , x

x
x2
3 x1x5x4

1 , x4, x5, x
x2x1
3 )

Γ(6) = (xa
−1x2x1a

3 , xx3x2x1x5x4
2 , x

x
x2
3 x1x5x4

1 , x4, x5)

(1.11)

where

a = (x2x1)x3x2x1x5x4

By Theorem 1.2.8 we obtain the following presentation:

G = π1(P2 \ B, q) ∼= 〈x1, . . . , x5 | [x4, x1], [x5, x2], [x4, x3, x2], [x5, x
x2
3 , x1]〉

(1.12)

which can be easily seen to be a semidirect product F2 n F3 where F2 =
〈x4, x5〉 and F3 := 〈x1, x2, x3〉.

Let X̄ denote the blow up of P2 at SingB, to simplify denote Ek = D6+k

the exceptional divisor coming from pk. Consider the reduced LAC surface
M(B, I) where I consists of three triple points and two double ones. The
simplest case is I = {p1, p2, p3, p4, p5}.

Theorem 1.4.1. The reduced LAC surface M(B, I) has infinite fundamental
group and finite first (integral) homology group.
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Proof. Consider the meridians γpj around pj for j = 1, . . . , 5, which by Lemmas
1.2.14 and 1.2.15 are given by

γp1 = x4x3x2, γp3 = x4x1, γp5 = xx2x1
3 x5x4,

γp2 = x5x2, γp4 = x5x
x2
3 x1.

(1.13)

By the corollary 1.3.7 a presentation of π1(M(B, I)) can be obtained by

H := π1(M(B, I)) = π1(P2 \ B, q)/〈〈γp1 , γp2 , γp3 , γp4 , γp5〉〉.

By making γp2 = 1 and γp3 = 1 we obtain x5 = x−1
2 and x4 = x−1

1 , replacing
them in (1.12) and (1.13), we obtain the following presentation for H

〈x1, x2, x3|[x−1
1 , x3, x2], [x−1

2 , xx2
3 , x1], x1 = x3x2, x2 = xx2

3 x1, x
x2x1
3 = x1x2〉

By replacing x1 by x3x2 the relation [x−1
2 x−1

3 , x3, x2] becomes trivial. So we
are left with:

H = 〈x2, x3 | [x−1
2 , xx2

3 , x3x2], x2 = xx2
3 x3x2, x

x2x3x2
3 = x3x2x2〉

By writing down the relations:

x−2
2 (x3x2)2 = x−1

2 x3x2x3 = x3x
−1
2 x3x2 (1.14)

x2
2 = (x3x2)2 (1.15)

(x3x2)2 = x2(x3x2)2x2 (1.16)

By replacing (1.15) in (1.16) we obtain that x2
2 = 1, hence (x3x2)2 = 1.

Note that these two relations include all the precedent. Therefore we obtain
the presentation

H = 〈x2, x3 | x2
2 = 1, (x3x2)2 = 1〉

which can be seen either as Z/2Z ∗ Z/2Z or as Z/2Z n Z, by this we see that
H is infinite and its abelianization is finite.

We can clarify this example geometrically by means of the following propo-
sition.

Proposition 1.4.2. There is an orbifold morphism from M(B, I) to X (P1, D, r)
where D = [0 : 1] + [1 : −1] + [1 : 0] and r = (2,+∞, 2). The morphism comes
from a pencil of conics and induces an isomorphism between orbifold funda-
mental groups.

Proof. Consider a pencil P having 4 fixed points in general position, which we
may assume to be S = {p1, p4, p5, p7}. If we let Q1 = (z2

1 − z2
2), Q2 = (z2

1 − z2
3)

and Q3 = (z2
2 − z2

3) we have that the complete quadrilateral A is given by
Q = Q1Q2Q3 = 0.
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The pencil P can be written as P = aQ1 − bQ2 with a, b ∈ C not both
zero. Note that Q3 ∈P as Q3 = Q2 −Q1. This pencil defines a rational map

fP : P2 → P1, (z1 : z2 : z3) 7→ (Q1(z1 : z2 : z3), Q2(z1 : z2 : z3))

whose indeterminacy locus is S. By blowing it up, we obtain a regular map
f̃ : BlS P2 → P1 with fiber over (a : b) the strict transform of aQ1 − bQ2.

As any point lying in two elements of the pencil is a fixed point of it, for
any x ∈ P2 \S there is a unique curve C ∈P passing through it. In particular
for the double points p2 ∈ {z1 − z2 = 0} ∩ {z1 + z2 = 0} and p3 ∈ {z1 − z3 =
0} ∩ {z1 + z3 = 0} the curves are Q1 and Q2 respectively. This allows us to
extend f̃ to the blow up of BlS P2 at p2, p3 as f : BlS∪{p2,p3} → P1. We have
that f(E2) = (1 : 0) and f(E3) = (0 : 1). Let X = BlS∪{p2,p3} \{Q∪E7}. Note
that f |X : X → P1 \ {(1 : 1)} as f(Q3) = (1, 1).

Moreover f |X has double fibers at (0 : 1) and (1 : 0). For any other (a :
b) ∈ P1\{(1 : 1)} the fiber is the strict transform of aQ1−bQ2 minus one point
(corresponding to the intersection with E7). The former assertion can be seen
by local computations: Consider P2 and P1 with coordinates (z1 : z2 : z3) and
(u, v) respectively. Restricting to the standard open sets W3 = {z3 = 1} ⊂ P2

and V2 = {v = 1} ⊂ P1 we have that

f̃ |W3 =
z2

1 − z2
2

z2
1 − 1

with z2
1 − 1 6= 0. Blowing up at p2 = (0, 0) and working in coordinates (z1, Z2)

(where Z2 is the coordinate in U1 ⊂ P1) we have that

f |W3∩U1 = z2
1

1− Z2
2

z2
1 − 1

.

Analogous computations for the other open sets and for p3 show that the fibers
are indeed double. The last part of the statement is then clear.

There is a modification of Dimca’s suggestion that may still hold.

Question 7. Let X be a reduced LAC surface with finite first (integral) homol-
ogy group H1(X) whose universal abelian cover has also finite first homology
group. Is π1(X) finite?

Remark 1.4.3. The complete quadrilateral belongs to a certain class of ar-
rangements A called nets (more generally the arrangement is a multinet, see
[FY07], [MB09]). Every net A can be seen as the union of the closure of
singular fibers Ai := f−1(xi) for a rational map f : P2 99K P1 with xi ∈ P1 and
such that the irreducible components of Ai are lines.

The LAC surface obtained in Theorem 1.4.1 suggests that this class of
arrangements could provide further examples of LAC surfaces with infinite
fundamental group and finite first homology group. However, as the number
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of lines increase, the computations become more involved and other methods
are to be used. Indeed, in [AA20b] the fundamental group of some partial
compactifications of an infinite family of nets called Ceva(n) defined by equa-
tions (zn1 − zn2 )(zn1 − zn3 )(zn2 − zn3 ) = 0 with n ∈ N is treated. The complete
quadrilateral then corresponds to n = 2, this is, to Ceva(2).

Remark 1.4.4. Let X be a quasi-projective surface. The space of characters
Hom(π1(X),C∗) ∼= Hom(H1(X),C∗) and a class of subvarieties Vk called char-
acteristic varieties are object of much recent study, see for example [Dim10],
[ABCAM13] and reference there-in for definitions and applications. The notion
of orbifold morphism is used in [ABCAM13] to give a more precise description
of the irreducible components of Vk, in particular of the isolated points.

By Proposition 1.4.2 the fundamental group of M(B, I) (with the nota-
tion used there) is isomorphic to that of π1(X (,P1, D, r)) and therefore their
characteristic varieties are isomorphic. By [ABCAM13, Prop. 2.10] the first
characteristic variety Σ1 has an unique isolated torsion point v and therefore
it correspond to that of point (1) in [ABCAM13, Thm. 1].

By construction, the LAC surfaces provide a potential class of quasi-projec-
tive surfaces where examples of isolated components of characteristic varieties
could arise. Some further investigation on these lines could be pursued.

1.4.2 Presentation for a weighted complete quadrilat-
eral

By considering weighted LAC surfaces X (X̄,D, r) we can study the ramified
covers of X̄ over D. In the case where all the lines of D have the same weight
Hirzebruch constructed a finite abelian cover in [Hir83]. If moreover we ask
the cover to be a quotient of the ball, Deligne-Mostow have given weights (not
necessarily equal) for this to hold [DM86].

Consider again the complete quadrilateral B = {L1, . . . , L6} with the same
notation as in 1.4.1, suppose L6 is the line at infinity. Let X̃ = BlS P2 → P2 be
the blow up of P2 at the four triple points S = {p1, p4, p5, p7} and E1, E4, E5, E7

be the respective exceptional divisors.

Consider the elementary geometric base Γ(0) = (x1, . . . , x5). A meridian x6

for the line at infinity around the point Σ(0) ∩ L6 (recall that Σ(0) is the line
where Γ(0) lies) is given by Lemma 1.2.13

x6 = (x5x4x3x2x1)−1. (1.17)

Denote by γpi the meridian around Ei. By Lemma 1.2.14, using respectively
the elementary geometric bases Γ(0) and Γ(3) of (1.11), we obtain:

y1 := γp1 = x4x3x2

y2 := γp4 = x5x
x2
3 x1

(1.18)
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Finally, the meridians around the triple points lying in L6 are given by
Lemma 1.2.15 and bases Γ(4) and Γ(6) of (1.11).

y3 := γp5 = xx2x1
3 x5x4

y4 := γp7 = x−1
4 x−1

5 axa
−1x2x1a

3

(1.19)

where a = (x2x1)x3x2x1x5x4.

Proposition 1.4.5. Let B be the complete quadrilateral, X̃, Γ(0) = (x1, . . . , x5)
and yi as above. For any r = (m1, . . . ,m4, n1, . . . , n6) ∈ (N∗ ∪ +∞)10 as in
[Tre16] p.110, D = E1 + E4 + E5 + E7 +

∑6
i=1 Li we have a presentation for

the fundamental group of the ball quotient X (X̃,D, r) given by

π1(X (X̃,D, r)) = 〈x1, . . . , x5|[x4, x1], [x5, x2], [x4, x3, x2], [x5, x
x2
3 , x1], xnii , y

mi
i 〉
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Chapter 2

The fundamental group of
quotients of products of some
topological spaces by a finite
groups

In view of the previous chapter, we can try to study a certain class of arrange-
ments closely related with fibrations over curves, and more specifically, with
fibrations birationally equivalent to a quotient of product of curves.

In doing so, we noted that the results of [BCGP12] were valid in a more
general setting. We present here the details of this generalizations as well as
some applications. These results appeared in [AA20b].

2.1 Preliminaries

2.1.1 Properties of fundamental group of topological
stacks

LetX be a connected, semi-locally simply connected and locally path-connected
topological space and G a finite group acting continuously on it.

Fiber homotopy exact sequence

There exists a homotopy theory for stacks and the existence of the long exact
sequence of homotopy, see [Noo14], is more general than what follows, however
we only need the following case: consider the topological stack X = [X/G],
a point x ∈ X and denote by x̄ ∈ X the image of x. We have an associated
fibration G→ X → X and a long exact sequence of homotopy groups,

. . .→ πn+1(X , x̄)→ πn(G, Id)→ πn(X, x)→ πn(X , x̄)→ πn−1(G, Id) . . .

the map πn(G, Id)→ πn(X, x) is induced by the orbit G · x ↪→ X.
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Action on the universal cover

The hypothesis made on X ensures that there exists an universal cover X̃ and
moreover, if we let X = [X/G] as in 2.1.1, we have an action of π1(X , x̄) over
X̃ (see 2.2.2). We will use several times the following lemma in what follows:

Lemma 2.1.1. Consider the action of π1(X , x̄) in X̃, let y ∈ X̃ and denote
by Iy the isotropy group of the action. Then there exists a monomorphism
Iy → G.

Proof. By 2.1.1 we obtain a short exact sequence

1→ π1(X, x)→ π1(X , x̄)→ G→ 1,

as the action of π1(X, x) over X̃ is free, we obtain that the restriction of
π1(X , x̄)→ G to Iy is injective.

2.1.2 Product of topological spaces

Fundamental group of the quotient of a product

For i = 1, . . . , k let Xi as in 2.1.1 be a connected, semi-locally simply connected
and locally path-connected topological space and G a finite group acting on
each of them.

By 2.1.1 we have k exact sequences

1→ π1(Xi, xi)→ π1(Xi, x̄i)
ϕi→ (G, Id)→ 1 (2.1)

where Xi = [Xi/G], xi ∈ Xi and its image in Xi is denoted by x̄i.
Denote by H := π1(X1, x1) ×G . . . ×G πk(Xk, xk). The exact sequences in

(2.1) can be assembled as follows

1→ π1(X1 × . . .×Xk, x)→ H→ G→ 1 (2.2)

with x = (x1, . . . , xk). The geometric nature of H is shown in the following
Lemma.

Lemma 2.1.2. Let G act diagonally over X = X1 × . . . ×Xk. Consider the
stack X = [X/G] then π1(X , x̄) ∼= H.

Proof. We have natural projection maps X → Xi for i = 1, . . . , k, which
together with the morphisms ϕi : π1(Xi, x̄i) → G and the universal property
of the fiber product give us a morphism π1(X , x̄)→ H. By the exact sequence
of a fibration 2.1.1 applied to the action of G to X1 × . . . × Xk and by (2.2)
we obtain

1 π1(X1 × . . .×Xk, x) π1(X , x̄) G 1

1 π1(X1 × . . .×Xk, x) H G 1

= =

which implies the result.
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Lemma 2.1.3. Let X,Xi and G be as above. Then

π1(X/G, [x]) ∼= π1(X , x̄)/N ∼= π1(X , x̄)/I

where N is the normal subgroup generated by the image of the inertia groups
Ix and I is the subgroup generated by the elements of π1(X ) having fixed points
in the universal cover of X1 × . . .×Xk.

Proof. By [Noo08, Thm 8.3 i)] we have that π1(X/G, [x]) ∼= π1(X , x̄)/N .
The group π1(X , x̄) acts over X̃ ∼= X̃1 × . . . × X̃k the universal cover of

X1 × . . . × Xk in such a way that [(X̃1 × . . . × X̃k)/π1(X , x̄)] ∼= X . As G
is finite, by Lemma 2.1.1 any stabilizer Ix for the action of π1(X ) over X̃ is
finite, therefore it has the slice property and by [Noo08, Thm 9.1] we obtain
that π1(X/G, [x]) ∼= π1(X , x̄)/I .

2.2 The fundamental group of the product of

topological spaces

2.2.1 Constructing the homomorphism

Finite index of the group in the product

Let Iy denote the isotropy at the point y in X̃ for the action of π1(X , x̄). By
Lemma 2.1.1 the map π1(X , x̄)→ G restricted to Iy is injective, therefore we
can identify Iy with a subgroup of G. When we do such identification we will
denote it by I ′y < G.

Now as π1(X , x̄) ∼= π1(X1, x̄1) ×G . . . ×G π1(Xk, x̄k), if y = (y1, . . . , yk)
we define Ii < π1(Xi, x̄i) as the image of Iy via the morphism π1(X , x̄) →
π1(Xi, x̄i).

Lemma 2.2.1. We have that Iy ∼= Ii for all i = 1, . . . , k and Iy = I1×I′y . . .×I′y
Ik.

Proof. For γ = (γ1, . . . , γk) ∈ Iy note that γi ∈ π1(Xi, x̄i) fixes yi ∈ X̃i,
otherwise γ can not fix a point in X̃. As above, the restriction of π1(Xi, x̄i)→ G
to Iyi is injective and as Ii ⊂ Iyi we have that γi 6= βi for γ, β ∈ Iy ⊂
π1(X1, x̄1) ×G . . . ×G π1(Xk, x̄k) with γ 6= β. Therefore we can construct an
inverse to the projection. The result follows.

Note that we obtain that Ii < Iyi , but in general Iyi can be bigger.
Define a homomorphism Iy →

∏
Iyi given by decomposing an element in

its components. By Lemma 2.2.1 it is injective. Denote by N the subgroup in
π1(X , x̄) generated by all the Iy and by N ′i the subgroup in π1(Xi, x̄i) generated
by Ii.

Lemma 2.2.2. The subgroup N ′i is normal in π1(Xi, x̄i).
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Proof. Let γi ∈ N ′i and ti ∈ π1(Xi, x̄i). We can write γi = γi1 · · · γij with each
γil ∈ Iil coming from γl = (γ1l , . . . , γil , . . . , γkl) ∈ Iyl ⊂ π1(X , x̄) and the point
yl = (y1l , . . . , yil , . . . , ykl) ∈ X̃ for l = 1, . . . , j. As every π1(Xj, x̄j) → G is
surjective, for j = 1, . . . , i − 1, i + 1, . . . , k, there exists tj ∈ π1(Xj, x̄j) such
that t = (t1, . . . , tk) ∈ π1(X , x̄).

As t · γl · t−1 ∈ Ityl it follows that tiγilt
−1
i ∈ N ′i and therefore

tiγit
−1
i = (tiγi1t

−1
i ) · ti · · · t−1

i · (tiγij t−1
i ) ∈ N ′i .

Proposition 2.2.3. There is an homomorphism π1(X/G, [x])→
∏k

i=1 π1(Xi, x̄i)/N ′i
such that the image has finite index.

Proof. By Lemma 2.1.2 we have that π1(X , x̄) ∼= π1(X1, x̄1)×G. . .×Gπ1(Xk, x̄k).
Therefore there is an injective homomorphism π1(X , x̄)→

∏
π1(Xi, x̄i).

By Lemma 2.2.2 we obtain the exact sequence

1→
∏

N ′i →
∏

π1(Xi, x̄i)→
∏

π1(Xi, x̄i)/N ′i → 1, (2.3)

together with Lemma 2.1.3 we obtain a commutative diagram

1 1

1 N
∏
N ′i

1 π1(X , x̄)
∏
π1(Xi, x̄i)

π1(X/G, [x])
∏
π1(Xi, x̄i)/N ′i

1 1

(2.4)

This diagram provides a homomorphism π1(X/G, [x])→
∏
π1(Xi, x̄i)/N ′i and

shows that it is well defined.
We can not complete (2.4) to a commutative diagram of groups with

short exact sequence in the rows because usually π1(X , x̄) is not normal in∏
π1(Xi, x̄i). It will be normal, for example, if G is abelian.
As G is finite we obtain that π1(X , x̄) has finite index in

∏
π1(Xi, x̄i). In

fact [
∏
π1(Xi, x̄i) : π1(X , x̄)] ≤ |G|k−1: for each surjection ϕi : π1(Xi, x̄i) →

G consider a lift Gi ⊂ π1(Xi, x̄i) of G with |Gi| = |G|. In
∏
Gi consider

the equivalence relation (g1, . . . , gk) ∼ (g′1, . . . , g
′
k) ⇔ (ϕ1(g1), . . . , ϕk(gk)) =

(gϕ1(g′1), . . . , gϕk(g
′
k)) with g ∈ G. It is easily seen that

∏
Gi/ ∼∼= (G× . . .×

G)/∆G is a set of representatives of left cosets (
∏
π1(Xi), x̄i)/π1(X , x̄).
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By considering as coset representatives in
∏
π1(Xi, x̄i)/N ′i the image of∏

Gi and using the diagram (2.4) we have that π1(X/G, [x]) has finite index
in
∏
π1(Xi, x̄i)/N ′i .

2.2.2 The homomorphism has finite kernel

N ′i is finitely normally generated

Let X be a connected, semi-locally simply connected and locally path con-
nected topological space. Let G be a discrete finite group acting on X, x ∈ X
and denote by x̄ ∈ X = [X/G] the image of the point x and by p : X → [X/G]
the quotient map.

Let us briefly recall the description of π1(X , x̄) as given in [Che01]. It can
be defined as π0(Ω(X , x̄)) where Ω(X , x̄) denote the space loop of X pointed
at the constant loop of value x̄. Every loop is given locally as a map from
an open subset of S1 to a given uniformization of an open subset of Xtop and
plus some gluing conditions. In our case of a global quotient, a more explicit
description of Ω(X , x̄) can be given as follows:

Let P (X, x) consist of paths in X starting at x. As subspace of Λ(X),
the free loop space of X, it inherits a structure of a topological space. By
considering the constant loop x of value x ∈ X, we obtain (P (X, x), x) a
pointed topological space. Define P (X,G, x) as the subspace of P (X, x) × G
consisting of the elements (γ, g) satisfying γ(1) = g · γ(0) = g · x. As a
topological space it is pointed at (x, IdG)

Lemma 2.2.4. [Che01, Lemma 3.4.2] There exists a natural homeomorphism
between the pointed topological spaces (Ω(X , x̄), x) and (P (X,G, x), (x, IdG)).

Remark 2.2.5. When (X , x̄) is a pointed topological stack there exists a pointed
topological space (B[R⇒ X], x′), where B[R⇒ X] is the classifying space of
the topological grupoid [R⇒ X], such that we can take π1(X , x̄) := π1(B[R⇒
X], x′). In the case of a global quotient X = [X/G] it happens that B[R⇒ X]
equals the Borel construction X ×G EG, see [Noo12].

Now, the construction of Chen also gives a natural isomorphism of π1(X , x̄)
and π1(X ×G EG, x′) [Che01, Theorem 3.4.1] linking the two definitions.

There exists a canonical projection (P (X,G, x), (x, IdG))→ (G, IdG) given
by sending (γ, g) to g. This map can be seen to be a fibration [Che01,
Lemma 3.4.3] having as fiber at IdG the space loop Ω(X, x) via the embedding
Ω(X, x) ↪→ P (X,G, x) where γ maps to (γ, IdG).

With this description at hand, suppose there is y ∈ X such that it is fixed
by an element g, this is, y ∈ Xg. Denote by γy a path starting at x and
finishing at y, then γy(gγ

−1
y ) ∈ P (X,G, x), where gγ−1

y denotes the action of
g applied to each point of the path.
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Lemma 2.2.6. Let Iy < G denote the inertia (stabilizer) of the action of G at
y ∈ X. Every homotopy class of a path [γy] ∈ π1(X, x, y) induces an injective
morphism Iy → π1(X , x).

Proof. As G is discrete g 7→ γg(gγ
−1
g ) is continuous, with g ∈ Iy. Then by

taking the functor π0 we got a morphism of groups π0(Iy)→ π0(P (X,G, x)) =
π1(X , x̄). Finally, by composing with the projection (π0(P (X,G, x), x)) →
π0((G, IdG)) we obtain that different points under π0(Iy)→ π1(X , x̄)→ π0(G)
have different images, thus the morphism in injective.

Lemma 2.2.7. Let Y ∈ π0(Xg), y1, y2 ∈ Y and let γy1 , γy2 be paths starting
at x ∈ X and finishing at y1 and y2 respectively, then γy1(gγ−1

y1
) is a conjugate

of γy2(gγ−1
y2

) in π1(X , x̄) by elements of π1(X, x).

Proof. There exists a path β ⊂ Y connecting y1 and y2, therefore γy1β(gβ−1γ−1
y1

) ∈
P (X,G, x) but as gβ = β passing to π0(P (X,G, x), x) it equals [γy1(gγ−1

y1
)].

Now consider the path γy2 . Note that θ := γy1βγ
−1
y2
∈ Ω(X, x). There exists

a continuous map # : P (X,G, x) × P (X,G, x) → P (X,G, x) which induces
the multiplication in the fundamental group (see [Che01, Section 3.1]). The
element θ#(γy2(gγ−1

y2
)#θ−1) can be seen to be θ(γy2 ·(g(θ·γy2)−1)) ∈ P (X,G, x).

By passing to π1(X , x̄) = π0(P (X,G, x), x) we have that [θ][γy2(gγ−1
y2

)][θ−1] =
[γy1(gγ−1

y1
)].

Recall that given (X, x) as above, we have a pointed universal cover map
p : (X̃, x̃) → (X, x) where x̃ represents the constant loop of value x. Every
element in γ ∈ π1(X) correspond to a point in p−1(x). So given a pointed map
pγ : (X̃, γ) → (X, x) it induces a deck transformation of X̃ in the following
way: given y ∈ X̃ take a path αy ⊂ X̃ starting at γ and finishing at y.

Consider the unique lift ˜pγ(αy) ⊂ X̃ starting at x and assign to y the point
˜pγ(αy)(1). It can be seen to be a well-defined map (See [Hat00]).
Now, by the description given above of π1(X , x̄), any γ ∈ π1(X , x̄) such

that ϕ(γ) = g (recall that ϕ : π1(X , x̄) → G) have as a representative an
element in P (X,G, x) which we still denote by γ. So γ starts at x and finishes
at gx. Denote by π̃ : (X̃, x̃)→ (X , x̄) the universal cover morphism, note that
π̃γ : (X̃, γ) → (X , x̄) is also a cover morphism. By [Che01, Thm 4.1.6] we
obtain a deck transformation in the following way: given y ∈ X̃ take a path
αy ⊂ X̃ starting at γ and ending at y. Using the notation of the precedent
paragraph, the path pγ(αy) starts at gx. Then the path g−1pγ(αy) starts at

x so we can lift it to ˜g−1pγ(αy) in (X̃, x̃), the end point of this lift is then
defined as the image of y. It is shown that it is a well defined map and does
not depend on the path chosen.

Lemma 2.2.8. Let y ∈ X be fixed by g ∈ G, consider a path γy connecting
x and y. Consider the action of π1(X , x̄) on X̃ given by deck transforma-
tions Deck(X̃,X ), then the element γy(gγ

−1
y ) ∈ π1(X , x̄) fixes a point in X̃.

Moreover, any element of π1(X , x̄) fixing a point in X̃ is of this form.

50



Proof. As the endpoint of γy(gγ
−1
y ) is gx we have a pointed covering mor-

phism π̃γy(gγ−1
y ) : (X̃, γy(gγ

−1
y )) → (X , x̄), we can consider gγy as a path in X̃

connecting γy(gγ
−1
y ) and γy as follows: define f(t) = γ(gγ−1

y ) · (gγy|t) where
gγy|t(t′) := gγy(t

′/t) denote the path starting at gx and finishing at gγy(t) in
time 1 for t 6= 0 and being the constant path with value gx if t = 0. We project
then f(t) to X and obtain gγy which starts at gx and finishes at ȳ. By the
discussion before the lemma, we obtain that it lifts to γy in (X̃, x̃), as g fixes y
we obtain that the point γy ∈ X̃ is fixed by the induced deck transformation.

Consider the exact sequence

1→ π1(X, x)→ π1(X , x̄)
ϕ→ G→ 1,

let γ ∈ π1(X , x̄) and z ∈ X̃ such that γ fixes z. Let p : (X̃, x̃) → (X, x) be
the projection, as it is ϕ-invariant we have that ϕ(γ)p(z) = p(z). Then by
considering the path in X corresponding to z, we can construct an element
zϕ(γ)z−1, which fixes z ∈ X̃. As in the isotropy ϕ is injective by Lemma 2.1.1,
we have that zϕ(γ)z−1 = γ.

Proposition 2.2.9. Suppose that there are only a finite number of elements
in π0(Xg) for each g ∈ G, then there exists a finite set L ⊂ π1(X , x̄) consisting
of elements having fixed points in X̃ such that if γ ∈ π1(X , x̄) fixes a point in
X̃ then it is conjugate to an element of L by elements in π1(X, x).

Proof. By Lemma 2.2.7 for every element in Y ∈ π0(Xg) it suffices to fix an
element γy(gγ

−1
y ) with y ∈ Y . For every g ∈ G and every element in π0(Xg)

we pick such an element. We define L the set consisting of such elements.
By Lemma 2.2.8 every such element fixes a point in X̃ and any other fixing
a point will be conjugate of the element in L corresponding to its connected
component.

Proof that the homomorphism has finite kernel

Let us return to the case of k-topological spaces X1, . . . , Xk and let G be a
finite group acting on each one of them on the left as in 2.1.2. The Proposition
2.2.9 gives us k subsets L(Xi) ⊂ π1(Xi, x̄i) whose elements correspond to the
element of π0(Xg

i ) with g ∈ G. Now consider the subsets Li ⊂ L(Xi) consisting
of elements corresponding to π0(Xg

i ) where g fixes a point in Xi for i = 1, . . . , k.
Recall that N < π1(X , x̄) (with X = [(X1 × . . .×Xk)/G]) is the subgroup

generated by the inertia subgroups Iy given by the action of π1(X , x̄) in X̃ and
N ′i < π1(Xi, x̄i) is the image of the i-projection of N . The following Lemma is
immediate from Proposition 2.2.9

Lemma 2.2.10. We have that N ′i =
〈
γiliγ

−1
i | li ∈ Li, γi ∈ π1(Xi, xi)

〉
in π1(Xi, x̄i)

for i = 1, . . . , k.
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Definition 2.2.1. Let us define

Ci = Ci(π1(Xi), Li) :=
〈〈
γiliγ

−1
i l−1

i | γi ∈ π1(Xi, xi), li ∈ Li
〉〉

π1(Xi,x̄i)
,

to be the normal subgroup generated by the commutators of elements in
π1(Xi, xi) and in Li. Denote by Ti := π1(Xi, x̄i)/Ci and by L̂i the image
of Li in Ti.

Lemma 2.2.11. It happens that Ci < N ′i and moreover we can consider Ci as
a subgroup of N via {e} × . . .× Ci × . . .× {e} and C1 × . . .× Ck < N .

Proof. Let li ∈ Li and γi ∈ π1(Xi, xi), the elements of Li were chosen such
that there exists lj ∈ Lj and y ∈ X̃ such that l = (l1, . . . , li, . . . , lk) ∈ Iy < N .
We have that γ′i = (e, . . . , γi, . . . , e) ∈ π1(X , x̄) and as N is normal in π1(X , x̄)
we have that γ′ilγ

′−1
i ∈ N , so

γ′ilγ
′−1
i l−1 = (e, . . . , γiliγ

−1
i l−1

i , . . . , e) ∈ N

This element projects to [γi, li] ∈ Ci. Finally given βi ∈ π1(Xi, x̄i), as every
ϕj is surjective, there exists βj ∈ π1(Xj, x̄j) such that ϕi(βi) = ϕj(βj), so
β = (β1, . . . , βk) ∈ π1(X , x̄) and every conjugate of [γi, li] can be seen as an
element of N .

Finally, by considering the product of the identification of the elements in
Cj we have that C1 × . . .× Ck < N .

Before stating the next lemma recall that N < N ′1 ×G . . .×G N ′k.

Lemma 2.2.12. The subgroup Ci has finite index in N ′i , in particular C1 ×
. . .× Ck has finite index in N ′1 × . . .×N ′k hence also in N .

Proof. First note that by Lemma 2.2.10 and by definition of Ti we have that
N ′i/Ci = 〈〈Li〉〉π1(X,x) /Ci

∼= 〈〈L̂i〉〉Ri = 〈L̂i〉, with Ri the image of π1(Xi, xi) in
Ti.

Moreover as ϕ(Ci) = {e} we have that Ci < kerϕ ∼= π1(Xi, xi). As
π1(Xi, xi) has finite index in π1(Xi, x̄i), it follows that Ri has finite index
in Ti, which implies that Ri ∩ 〈L̂i〉 has finite index in 〈L̂i〉. Note that 〈L̂i〉
is generated by a finite number of torsion elements and that by construction
Ri ∩ 〈L̂i〉 is a central group in 〈L̂i〉. As any group generated by a finite num-
ber of torsion elements and such that the center has finite index is finite (see
[BCGP12, Lem. 4.6]) the result follows.

Theorem 2.2.13. The homomorphism π1(X/G, [x]) →
∏
π1(Xi, x̄i)/N ′i has

finite kernel.

Proof. By composing the quotient map
∏
π1(Xi, x̄i) →

∏
π1(Xi, x̄i)/N ′i with

the inclusion π1(X , x̄) →
∏
π1(Xi, x̄i) we obtain π1(X , x̄) →

∏
π1(Xi, x̄i)/N ′i

with kernel N ′1 × . . .×N ′k ∩ π1(X , x̄) = N ′1 ×G . . .×G N ′k by the description of
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π1(X , x̄) as fiber product. We put this as a row in the following commutative
diagram together with a vertical column given by Lemma 2.1.3 and complete
to

1 1

N N

1 N ′1 ×G . . .×G N ′k π1(X , x̄)
∏
π1(Xi, x̄i)/N ′i

1 N ′1 ×G . . .×G N ′k/N π1(X/G, [x])
∏
π1(Xi, x̄i)/N ′i

1 1

=

=

(2.5)
By Lemma 2.2.12 both N ′1 ×G . . .×G N ′k/C1 × . . .× Ck and N/C1 × . . .× Ck
are finite hence

N ′1 ×G . . .×G N ′k/C1 × . . .× Ck
N/C1 × . . .× Ck

∼= N ′1 ×G . . .×G N ′k/N

is finite.

Geometric interpretation of the groups π1(Xi, x̄i)/N ′i
Let us denote by I, the subgroup of G generated by the elements having a
fixed point in every Xi for i = 1, . . . , k. Note that I is a normal subgroup.

Let x′i denote the class of xi inX/I and x̄′i the image of x′i in [(Xi/I)/(G/I)].

Proposition 2.2.14. There is an isomorphism

π1(Xi, x̄i)/N ′i
∼→ π1([(Xi/I) /(G/I) ], x̄′i).

Proof. Observe that the action of G on Xi descends to an action of G/I on
Xi/I and therefore we can define [(Xi/I) /(G/I) ]. Recall by the previous sub-
section 2.2.2 that π1(Xi, x̄i) can be identified with the set of path-components
of P (Xi, G, x). Therefore an element [γ] ∈ π1(Xi, x̄i) can be represented by a
path γ in Xi starting at xi and finishing at gxi for some g ∈ G. Denote by
pi : Xi → Xi/I the quotient map. By considering pi(γ), we obtain a morphism
between π1(Xi, x̄i) and π1([(Xi/I/G/I)], x̄′i).

It is immediate to see that the paths coming from the inertia of I in Xi,
this is, the elements of the form γy(gγ

−1
y ) with g ∈ I and y ∈ Xg

i , are sent to
the trivial element in π1(Xi/I, x

′
i).
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Now consider γ ∈ ker (π(Xi, x̄i)→ π1([(Xi/I) / (G/I)], x̄′i)). Then γ is
represented by a path in Xi, which we still denote by γ, starting at xi and
finishing at gxi with g ∈ G. Note that moreover g ∈ I, otherwise by the
projection π1([Xi/I /G/I ], x̄′i) → G the element would be sent to a non-zero
element. Hence the image of γ lies in π1(Xi/I, x

′
i) and it is trivial. By the

exact sequence

1→ N[Xi/I] → π1([Xi/I], x̄i)→ π1(X/I, x′i)→ 1

and noticing thatN[Xi/I] = N ′i we have that γ ∈ N ′i which proves the result.

2.3 Applications

2.3.1 Product of the same topological space

Now let us describe a case where N ′i equals the whole subgroup Ni generated
by the elements having a fixed point in the universal cover.

Corollary 2.3.1. Let Xi = X1 for i = 2, . . . , k and G finite acting on X1.
Then the morphism π1((X1 × . . . ×X1)/G, [x]) →

∏
π1(X1/G, [xi]) has finite

kernel.

Proof. We only have to show that N ′1 = N1 and then we obtain the result by
applying Theorem 2.2.13. By construction we have that N ′1 ⊂ N1. Let us show
the inverse inclusion. Take γ1 ∈ N1, then we can write γ1 = γ11 · · · γ1l such that
there exists y1j ∈ X̃1 satisfying γ1j ∈ Iy1j

for j = 1, . . . , l. As X̃ = X̃1×. . .×X̃k

by taking yj = (y1j , . . . , y1j) ∈ X̃ we have that γj = (γ1j , . . . , γ1j) ∈ Iyj and
therefore γ = γ1 · · · γl ∈ N and the image of γ in N1 equals γ1.

Another proof using Proposition 2.2.14 is as follows: The action of G/I is
free in X1/I and X1/G ∼= X1/I /G/I so π1([X1/I /G/I ] = π1(X1/G).

2.3.2 Second Main Theorem

Theorem 2.3.2. Let X1, . . . , Xk admit a universal cover and let G be a finite
group acting on each of them such that |π0(Xg

i )| < +∞ for every g ∈ G and
i = 1, . . . , k. Denote X = X1 × . . . × Xk and consider the diagonal action
of G on it. Suppose π1(X/G, [x]) is residually finite, then π1(X/G, [x]) has a
normal finite-index subgroup N ∼= H1 × . . . × Hk isomorphic to a product of
normal finite index subgroups subgroups Hi < π1(Xi/I, [xi]).

Proof. By Theorem B.7 we get a morphism Θ : π1(X/G, [x])→
∏
π1([Xi/I/G/I])

having finite kernel E. As π1(X/G, [x]) is residually finite we can construct a
finite-index normal subgroup ΓC π1(X/G, [x]) such that Γ ∩ E = {e}.

The morphism Θ|Γ : Γ →
∏
π1([Xi/I /G/I ], x̄′i) is therefore injective and

moreover as Θ(π1(X/G)) <
∏
π1([Xi/I /G/I ], x̄′i) has finite index it follows

that Θ(Γ) <
∏
π1([Xi/I /G/I ], x̄′i) has finite index.
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For every i = 1 . . . , k, we have π1(Xi/I, [xi]) < π1([Xi/I /G/I ], x̄′i) as a
normal finite-index subgroup. Define the subgroup

Θ(Γ)i := Θ(Γ) ∩ {{e1} × . . .× π1(Xi/I, [xi])× . . .× {ek}}

where ek ∈ π1(Xj/I, [xj]) is the identity element. As Θ(Γ)i has finite in-
dex in π1(Xi/I, [xi]), there exists a normal subgroup of finite index Hi of
π1([Xi/I /G/I ]) contained in Θ(Γ)i. Set H := H1 × . . .×Hk, then H CΘ(Γ)
and it is a finite-index normal subgroup of

∏
π1([Xi/I /G/I ], x̄′i). The sub-

group N := Θ−1(H) ∩ Γ satisfies the stated properties.

Case of smooth curves

Corollary 2.3.3. Let C1, . . . , Ck be smooth algebraic curves and let G be a
finite group acting on each Ci. Denote C = C1× . . .×Ck. Consider C = [C/G]
with G acting diagonally on C. Then π1(C/G) has a normal subgroup N of
finite index isomorphic to Π1 × . . .×Πk where Πi is either a surface group or
a finitely generated free group for i = 1, . . . , k.

By Theorem B.7 we have a morphism π1(C/G) →
∏
π1([Ci/I /G/I ])

with finite kernel, however if the action of G/I is not faithful on Ci/I then
π1([Ci/I /G/I ] is not necessarily an orbifold surface group. This can be over-
come as follows: let Ki := ker(G/I → AutCi/I) and Hi := (G/I)/Ki. Denote
by Ci := [(Ci/I)/G/I] and by C ′i := [(Ci/I)/Hi], we have a canonical morphism
Ci → C ′i.

Lemma 2.3.4. The induced homomorphism qi : π1(Ci) → π1(C ′i) is surjective
and has finite kernel.

Proof. By choosing a point xi ∈ Ci and denoting by x̄i its image in both Ci
and C ′i we obtain a fibration [pt/K, pt] ↪→ (Ci, x̄i) → (C ′i, x̄i). By taking the
long homotopy exact sequence

. . .→ π2(C ′i, x̄i)→ π1(pt/K, pt)→ π1(Ci, x̄i)→ π1(C ′i, x̄i)→ 1,

as there is an isomorphism between π1(pt/K, pt) and π0(K, Id), the result
follows.

So by composing, we obtain a morphism Θ : π1(C/G) →
∏
π1(Ci) →∏

π1(C ′i), this allows us to prove the following Lemma, which together with
Theorem 2.3.2 will imply Corollary 2.3.3.

Lemma 2.3.5. The group π1(C/G) is residually finite.

Proof. First note that as π1(C ′i) is an orbifold surface group. In particular it
is residually finite.

Now, it follows that Θ(π1(C/G)) is residually finite as it is a finite-index
subgroup of a direct product of residually finite groups.
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We need another property of these groups to continue. Let H be a group
and let Ĥ be its profinite completion. A group H is called good if for each
k ≥ 0 and for each finite H-module M the natural homomorphism

Hk(Ĥ,M)→ Hk(H,M)

is an isomorphism. In [GJZZ08, Lem. 3.2, 3.4, Prop. 3.6] it is shown that
a finite-index subgroup of a good group is good, the product of good groups
is good and that π1(C) for C an algebraic orbifold curve is good. We obtain
therefore that Θ(π1(C/G)) is good.

Finally, [GJZZ08, Proposition 6.1] asserts that if T is a residually finite
good group and ϕ : H → T is a surjective homomorphism with finite kernel
then H is residually finite. Applying this to Θ′ : π1(C/G) → Θ(π1(C/G)) we
obtain the result.

2.3.3 Ceva(n) as a product-quotient surface

Isotriviality of the family

Let (z1 : z2 : z3) be coordinates for P2 and (λ : β) for P1. For Ceva(n), the
fiber over (λ, β) of f̃ are isomorphic to

−λ(zn1 − zn2 ) + β(zn2 − zn3 ) = 0

having singular fibers only at the values 0, 1 and ∞ in P1. Recall that a
fibration is called isotrivial if its non-singular fibers are all isomorphic.

Lemma 2.3.6. Let S be the base locus associated to the rational map f of the
net Ceva(n). Then the fibration f̃ : BlS(P2)→ P1 \ {0, 1,∞} is isotrivial.

Proof. This follows from the fact that every smooth curve in the pencil−λ(zn1−
zn2 ) + β(zn2 − zn3 ) = 0 is isomorphic to zn1 + zn2 + zn3 = 0.

By working in the standard open subset U1 ⊂ P1 where β = 1 we obtain
the equation:

(−λ+ 1)zn1 + λzn2 − zn3 = 0

for the fiber over the point (λ : 1).

If λ 6= 0, 1 let ε, η such that εn = −λ + 1 and ηn = λ. Then the linear
biholomorphism of P2 given by

(z1 : z2 : z3) 7→ (εz1 : ηz2 : e
πi
n z3)

takes zn1 + zn2 + zn3 = 0 to fλ.
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Birationality to a quotient of a product of curves

Any smooth proper family h : X → T of curves of genus g ≥ 1 over an
algebraic curve T can be rigidified in the following sense: there exists an étale
cover T ′ → T such that h′ : X ′ := X ×T T ′ → T ′ can be seen as a pullback
of the universal curve in the moduli space of n-level structures U

(n)
g → M

(n)
g .

When h is isotrivial this implies that X ′ is isomorphic to a product T ′×C for
some curve C.

Let us describe the curve T ′ and its galois group G.

The Fermat curve and its automorphisms

We call the curve F (n) = {zn1 + zn2 + zn3 = 0} ⊂ P2 the Fermat curve of degree
n. Denote by G(n) the group of algebraic automorphisms of F (n). Let S3 be
the group of permutations of 3 elements and let it act over P2 by interchanging
coordinates. Then it also acts over F (n).

Let µ(n) be the group of roots of unity of degree n. Then H(n) := µ1(n)⊕
µ2(n)⊕ µ3(n)/(µ1µ2µ3 = 1) with µi ∈ µi(n), acts on F (n) by (µ1, µ2, µ3)(z1 :
z2 : z3) = (µ1z1 : µ2z2 : µz3). The following Theorem is due to Pavlos Tzermias
in [Tze95]

Theorem 2.3.7 ([Tze95]). Let n ≥ 4, F (n) and G(n) be as above. Then H(n)
is normal in G(n) and

0→ H(n)→ G(n)→ S3 → 0.

F(n) as a cyclic and abelian cover of the projective line

We recall two basic lemmas that will be used in the structure of the quotient
C × F (n)/G.

Lemma 2.3.8. Let F (n) be the Fermat curve of degree n. Then F (n) can be
seen as the n-cyclic covering of P1 ramified over the n-roots of unity.

Proof. The n-cyclic covering of P1 ramified over the n-roots of unity has equa-
tion in C2

zn2 =
n∏
i=1

(z1 − ξi) = zn1 − 1.

By homogenizing we obtain the equation zn2 = zn1 − zn3 .

Lemma 2.3.9. Let H(n) and F (n) as above. Then F (n) is an abelian cover
of P1 ramified over three points with H(n) as deck transformation group. It
has ramification index equal to n over each point above the branching locus.

Proof. We can realize the covering map via the morphism of P2: (z1 : z2 :
z3) 7→ (zn1 : zn2 : zn3 ) which sends the curve F (n) to the line {z1 + z2 + z3 = 0}
and ramifies over the three points (0 : 1 : −1), (1 : 0 : −1), (1 : −1 : 0).
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By a version of the Riemann’s existence Theorem (c.f. [BCGP12]), the
covers above are completely determined by surjective group homomorphisms
π1(X (P1 : n, n, . . . , n)) → µ(n) and ϕ : π1(X (P1 : n, n, n)) → H(n) and the
ramification index is given by a Hurwitz’s type formula.

Structure of the quotient

This subsection is devoted to prove the following proposition

Proposition 2.3.10. Let π′ : X ′ → (F (n) × F (n))/H(n) be the minimal
desingularization. Then the fibration f̃ : BlSing(Ceva(n)) → P1 is isomorphic to
X ′ → F (n)/H(n) ∼= P1.

Let us first prove:

Lemma 2.3.11. Consider the family of projective curves

V = {(λ, (z1 : z2 : z3) ∈ ∆× P2 | λzn1 = zn2 + zn3 } → ∆

with ∆ denoting the unit disc with coordinate λ. Then the stable reduction
W ′′ → ∆ of V → ∆ is isomorphic to ∆ × F (n) → ∆ with projection in the
first factor with coordinate t and tn = λ.

Proof. The central fiber V0 =
∑n

i=0 Li consists of n lines Li. Blow up the
point p = (0, (1 : 0 : 0)) and denote the total transform of V0 in Blp V by
V ′0 =

∑n
i=1 Li + nE1 where we have used the same notation Li for the strict

transform of Li.
Take a cover of degree n of the unit disc ∆ → ∆ given by t 7→ tn and

consider the fiber product W := ∆×∆ Blp V . Let W ′ be the normalization of
W . We have the following commutative diagram:

W ′ W Blp V

∆ ∆ ∆

τ

t λ

= tn

In the central fiber, every w ∈ W0 is the center of local coordinates (x, y)
with tn = xayb being a local equation for W in C3. As V ′0 =

∑n
i=1 Li +nE1 we

have three different pairs of values for a and b:

• a = 1, b = 0: This happens if the image of w lies in a smooth point of
V ′0 . As every point of tn = x is smooth we have W ′ = W .

• a = n, b = 0: The image of w lies in E1 and it is different from its
intersections points with Li. Let ε be a n-th root of unity, then tn−xn =∏n

i=1(t− εix) = 0 and W ′ decomposes into n pieces with local equations
t = x, . . . , t = εn−1x which make W ′ an unramified cyclic cover of degree
n of Blp V locally around the image of w.
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• a = n, b = 1: The image of w lies in E1 ∩ Li for some i. The study of
the normalization of W amounts to study the existence domain of the
function n

√
xny. Consider

U := {(u, x1, y1) ∈ C3 | u = x1y1},

for points sufficiently close to the origin, we have a map U → W given
by (u, x1, y1) 7→ (u, x1, y

n
1 ). Note that the restriction of the map to

U \ {x1y1 = 0} → W \ {xy = 0} is injective and locally surjective. As
U is smooth, by the universal property of normalization we obtain a
morphism U → W ′, the restiction of n

√
xny to W \ {xy = 0} gives a

global inverse and we obtain that U ∼= W ′. The morphism W ′ → Blp V
obtained by composing, realizes W ′ as a n cyclic cover ramified over Li.

The action of µ(n) over ∆ induces an action over W hence on W ′ which
respects the fibrations. We have then that W ′/µ(n) → ∆/µ(n) is isomorphic
to Blp V → ∆.

This expresses τ : W ′ → Blp V as a cyclic covering of degree n branched at
D =

∑n
i=1 Li. As E1 intersects the branch divisor D in the n-th roots of unity

and τ has degree n, by Lemma 2.3.8 we have that τ−1(E1) ∼= F (n). Therefore
we can write as divisors

τ ∗V ′0 =
n∑
i=1

nLi + nF (n).

For the central fiber of W ′ we have W ′
0 = τ ∗V ′0/n, so we have now a reduced

fiber. In order to make it stable we show that the Li are in fact (−1)-curves.
Any irreducible component of W ′

0 has zero intersection number with the whole
W ′

0, this is: LiW
′
0 = 0 for all i. As Li intersects only F (n) it follows that L2

i =
−1. Denote by W ′′ the surface obtained from W ′ by blowing down the (−1)-
curves. The family W ′′ → ∆ has all its fibers isomorphic to F (n) and by the
local-triviality Theorem of Grauert-Fischer we have that W ′′ ∼= ∆×F (n).

The action of µ(n) over W ′ descends to an action of W ′ respecting the
fibers and by taking the quotient we obtain the following diagram

W ′ W ′/µ(n) ∼= Blp V

W ′′ ∼= ∆× F (n) (∆× F (n))/µ(n)

∆ ∆/µ(n)

For n ≥ 3 the action of µ(n) over ∆×F (n) is diagonal. If n > 3 it is easy to
show it: let ξ ∈ µ(n) and (x, y) ∈ ∆×F (n), as the action is induced from that
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of µ(n) in ∆ we have that ξ · (x, y) = (ξx, φξ(x)y), where φξ(x) ∈ Aut(F (n))
which is finite by n > 3, as it must vary continuously on x it follows that it is
constant. For n = 3 see [Beau, Lemma VI.10].

Note that W ′ → W ′′ is a morphism, this induces a morphism Blp V →
(∆×F (n))/µ(n) which does not contract any (−1)-curves. As Blp V is smooth,
by unicity of the minimal resolution of singularities it will follow that Blp V →
(∆ × F (n))/µ(n) is such resolution. Indeed, (∆ × F (n))/µ(n) has n singular
points in the central fiber. More generally we have:

Lemma 2.3.12. Let H(n) act diagonally in F (n)×F (n). Consider the mor-
phism g : (F (n)× F (n))/H(n)→ F (n)/H(n) ∼= P1. Then:

1. The composition g ◦ π′ : X ′ → P1 has three singular fibers isomorphic to
each other.

2. Each singular fiber F of g ◦ π′ has a central component Y isomorphic to
P1 with multiplicity n.

3. The closure of F \ Y has n irreducible disjoint components each one
intersecting Y in one point and transversely. They are rational curves
with self intersection −n (the simplest Hirzerbruch-Jung strings) coming
from the resolution of singularities of type An,1 over (F (n)×F (n))/H(n)
lying over π′(Y ).

4. The reduced curve Yred is a (−1)-curve.

Proof. The first three points are the application of [Ser96, Theorem 2.1] and
Lemmas 2.3.9 and 2.3.8.

Indeed, let b̄ ∈ F (n)/H(n) and Hb the stabilizer of any element in b ∈
F (n) in the preimage of b̄. Then the fibers of g : (F (n) × F (n))/H(n) →
F (n)/H(n) are isomorphic to F (n)/Hb. By considering the projection to the
other component F (n) we can count the multiplicity of the fiber.

By Lemma 2.3.9 F (n)/H(n) has only three branching points and the stabi-
lizers are µ(n). By Lemma 2.3.8 F (n)/µ(n) has n branching points. The cyclic
quotient is given by the unweighted action and therefore we obtain singulari-
ties An,1. The resolution of each of them is a rational curve of self intersection
−n.

By Zariski’s Lemma [BPVdVH04, Lemma III.8.2] we conclude that Y 2
red =

−1 in the following way:

0 = F 2 = (
m∑
i=1

Ei + Y )(
m∑
i=1

Ei + Y ) = −m2 +m2 +m2 +m2Y 2
red

Proof of Proposition 2.3.10. By Lemma 2.3.9 we can take h : F (n) → P1 to
be an abelian covering of P1 ramified over 0, 1 and ∞, the three points of
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the ramification locus of f̃ . By Lemma 2.3.11 and as h looks locally around
a branching point as t → tn, f̃ attains stable reduction over F (n). Denote
by W ′ the normalization of F (n) ×P1 BlSing(Ceva(n)) P2 and by W ′′ the surface
obtained by contracting all (−1)-curves, we have

W ′ BlSing(Ceva(n)) P2

W ′′

F (n) P1

f̃

h

(2.6)

Let us show that W ′′ ∼= F (n)× F (n) respecting the fibration.
Locally, around any point in the ramification locus, the fibration has mon-

odromy µ(n) by Lemma 2.3.11. Over P1 \ {0, 1,∞} the fibration f̃ is a proper
smooth family. We have that π1(P1\{0, 1,∞}) = 〈γ1, γ2, γ3 | γ1γ2γ3 = 1〉 where
every γi represents a loop going around 0, 1 or ∞ in the positive direction for
i = 1, 2, 3 respectively. The covering F (n)→ P1 is given by the surjective ho-
momorphism π1(P1 \ {0, 1,∞})→ H(n) = µ1(n)⊕ µ2(n)⊕ µ3(n)/ < ξ1ξ2ξ3 =
1 > with ξi ∈ µi(n), where γi is sent to a generator of µi(n) for i = 1, 2, 3,
So the fibration W ′′ → F (n) has trivial monodromy and it can be rigidi-

fied, by sending it to M
(n)
g as in 2.3.3 we obtain that W ′′ is isomorphic to

F (n)× F (n)→ F (n).
By Lemma 2.3.12 we can complete the diagram 2.6 as follows

W ′ BlSing(Ceva(n)) P2

W ′′ ∼= F (n)× F (n) (F (n)× F (n))/H(n)

F (n) P1 P1

f̃

h =

and by unicity of the minimal desingularization we obtain the result.

Recall that for S → S ′ be a resolution of singularities of S ′, if S ′ has only
quotient singularities, by [Kol93, Thm 7.8.1] we have that π1(S) → π1(S ′) is
an isomorphism.

Example 2.3.1. Consider the surface S1 := (F (n)×F (n)\{X1, . . . , Xn})/H(n).
The subgroup I generated by the elements of H(n) having fixed points both
in F (n) and in F (n) \ {X1, . . . , Xn}) equals H(n). As F (n)/H(n) ∼= P1,
F (n) \ {X1, . . . , Xn})/H(n) ∼= C and by Theorem B.7 the morphism

π1(S1)→ π1(P1)× π1(C)
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has finite kernel, it follows that π1(S1) is finite.
The minimal resolution of singularities S ′1 → S1 can be identified with the

following partial compactification of Ceva(n). Consider

J := {1, . . . , n, 3n+ n3 + 1} ⊂ {1, . . . , 3n+ n2 + 3}

then following the construction given in 1.3 we have that

BlSing Ceva(n) P2 \ {∪j∈JDj} ∼= S ′1.

This is from the surface BlSing Ceva(n) P2 we remove only the strict transform of
A1 and the exceptional divisor coming from the singular point of A1. This can
be identified with a singular fiber or f̃ .

Example 2.3.2. Consider now S2 := (F (n)× F (n) \ {Xi, Yi})/H(n). In this
case the subgroup I, defined as in the previous paragraph, is isomorphic to
µ(n). As F (n)/µ(n) ∼= P1, F (n) \ {Xi, Yi})/µ(n) ∼= C∗ and by Theorem B.7
the morphism

π1(S2)→ π1([P1/µ(n)])× π1([C∗/µ(n)])

has finite kernel and the image is a finite-index subgroup.
By Theorem 2.3.2 and Corollary 2.3.3, we have that Z Cf.i. π1(S2). As in

2.3.1 the minimal resolution of singularities S ′2 → S2 can be identified with
BlSing Ceva(n) P2 minus two singular fibers of f̃ .

Example 2.3.3. If we consider S3 := (F (n)×F (n)\{Xi, Yi, Zi})/H(n) it can
be identified with BlSing A P2 minus the three singular fibers of f̃ . As H(n) acts
freely in F (n)× F (n) \ {Xi, Yi, Zi}. By the long exact sequence of homotopy
associated to the covering map F (n)× F (n) \ {Xi, Yi, Zi} → S3 we have

1→ π1(F (n))× π1(F (n) \ {Xi, Yi, Zi})→ π1(S2)→ H(n)→ 1.

Remark 2.3.13. We can remove points also in the first component F (n) of the
product. However, we can not get more partial compactifications of Ceva(n)
in this way. This can be shown by drawing the dual graph of the divisor
π∗Ceva(n) and noticing that the lines obtained by removing points does not
satisfy the intersection pattern of the graph.
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Chapter 3

Partial compactifications of the
complement of a complex
arrangement and boundary
manifolds

In this chapter we generalize the presentation obtained in Chapter 1 for a
more general type of partial compactifications of the complement of a complex
arrangement of lines A ⊂ P2. We do so by using a diagram encoding the extra
crossing of the lines in A that can arise when the arrangement is not longer
real.

This diagram also permits to study the relations between the fundamental
group of the boundary manifold of A and that of the P2 \A . We continue in
this lines in order to study similar relations between the fundamental group of
the boundary manifold of certain partial compactifications of P2 \ A and its
fundamental group. Some detailed computations and applications to homology
planes are given.

3.1 Preliminaries

3.1.1 Notations

We will denote by P2 the complex projective plane.

Let A = {L1, . . . , Ln+1} be an arrangement of n + 1 lines in P2. The
complement of the arrangement is denoted by M(A ) := P2 \A . Once a line
L ∈ A is fixed, usually L = Ln+1, and after an identification of P2 \ L with
C2 we let A aff := A ∩ C2.

Let X be a complex manifold, for p ∈ X we denote by π : BlpX → X the
blow up of X at p. If D ⊂ X is a divisor, we denote by |D| the reduced divisor
with the same support as D and by SingD the set of singular points of D.
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We will denote by ab = b−1ab if a, b ∈ G with G a group. If a ∈ G and
b ∈ Z, we denote as well by ab the b-power of a.

3.1.2 Meridians

Let X be a complex manifold and H ⊂ X a hypersurface. Let p ∈ H be a
smooth point and ∆ a disc cutting transversaly H at p. A loop γ in π1(X \H)
freely homotopic to the boundary of ∆ with the natural orientation is called
a meridian.

The following Proposition is well-known, for a proof see [Shi07].

Proposition 3.1.1. Let X be a complex manifold and D =
∑
Di a divisor

such that each irreducible reduced component |Di| of D is smooth. Let γi be
a meridian of |Di|, then every other meridian of |Di| is a conjugate of γi in
π1(X\D) and the kernel of the map π1(X\D)→ π1(X) is the normal subgroup
generated by the meridians of its irreducible components.

3.1.3 Dual graph of a divisor and partial compactifica-
tions of its complement

Let X̄ be a projective smooth surface and let D =
∑N

i=1Di ⊂ X̄ be a reduced
simple normal crossing divisor with the Di being the irreducible smooth com-
ponents of D and denote by wi = Di · Di the self-intersection number of Di.
Let ∆ be the unoriented graph where the vertices V (∆) := {v1, . . . , vN} are in
correspondence with the irreducible components Di of D and the edges E(∆)
correspond with the intersection of the irreducible components of D, this is,
there is an unoriented edge joining vi and vj for each point in Di∩Dj. Denote
by X := X̄ \D.

In what follows, we will define some partial compactifications of X. The
idea goes as follows: we choose a subset of irreducible components of D indexed
by I which are not to be removed from X̄, we then select a subset P of points
in Sing

∑
i 6∈I Di to be blown-up and remove the strict transform of

∑
i 6∈I Di in

BlP X̄.
More precisely, let I ⊂ {1, . . . , N}, P = {p1, . . . , ps1} ⊂ Sing(

∑
i 6∈I Di) and

denote by π : BlP X̄ → X̄ the composite of the blow-ups at the points in P .
Denote by π∗D =

∑N+s1
i=1 D′i the total transform of the divisor D in BlP X̄,

suppose that for i = 1, . . . , N , we have that D′i is a strict transform of Di and
for j = 1, . . . , s1, the D′N+j are exceptional divisors. Define the divisor

D′(I, P ) = π∗D −
∑
i∈I

D′i −
∑
N<j

D′j.

Note that BlP X̄ \ π∗D ↪→ X ′(I, P ) := BlP X̄ \D′(I, P ). By restricting π, we
obtain an isomorphism BlP X̄ \ π∗D

∼→ X. We call X ′(I, P ) a partial com-
pactification of X = X̄ \D. By Proposition 3.1.1, the induced homomorphism
π1(X)→ π1(X ′(P, I)) is surjective.
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We comment on the effects of this construction in the dual graph. Denote
by ∆′(I, P ) the dual graph of D′(I, P ). It is obtained from ∆ by deleting the
following vertices and edges: for the set I, we have a subset V (I) ⊂ V (∆) of
vertices corresponding to the lines Di for i ∈ I, remove these vertices from ∆,
together with all edges in E(∆) having an endpoint in V (I). We also remove
the edges corresponding to P : let pj ∈ P , there exists j1, j2 ∈ {1, . . . , N} such
that pj = Dj1 ∩ Dj2 . In the dual graph of π∗D the edge corresponding to pj
in ∆ has been divided in two, with a vertex in between corresponding to the
exceptional divisor coming from pj.

Partial compactifications for an arrangement of lines

We can carry the above construction for a divisor D ⊂ X̄ coming from an
arrangement of lines A = {L1, . . . , Ln+1} ⊂ P2. In fact, this will be the only
case we will be interested in.

Let A ⊂ P2 be an arrangement of lines. Denote by P0 := {p1, . . . , ps0} ⊂
Sing A the points with multiplicity strictly bigger that 2. Define π : X̄ :=
BlP0 P2 → P2 and denote by D = |π∗A | =

∑n+1+s0
i=1 Di the reduced total

transform of A in X̄. Note that D is simple normal crossing. For a divisor D
where the irreducible components are smooth rational curves, the set of edges
E(∆) of the dual graph ∆ can be described as E(∆) = {(i, j) ∈ {1, . . . , n+ 1 +
s0}2 | Di∩Dj 6= ∅, i < j} once the irreducible components of D are numbered.
We assume that Di is the strict transform of Li.

Let I ⊂ {1, . . . , N = n + 1 + s0} and P = {p′1, . . . , p′s1} ⊂ Sing
∑

i 6∈I Di.

Consider π′ : BlP X̄ → X̄ and let D′ = π′∗(D)−
∑

i∈I D
′
i−
∑

N<j D
′
j as above.

We write M(A , I, P ) := X ′(I, P ) = BlP X̄ \D′ for a partial compactification
of the complement of an arrangement M(A ) = P2 \A .

We can iterate this construction in the following way; consider a sequence
of blow-ups:

BlPk,...,P1 X̄
π(k)

→ BlPk−1,...,P1 X̄
π(k−1)

→ . . .
π(2)

→ BlP1 X̄
π(1)

→ X̄
π(0)

→ P2

with Pl ⊂ Sing((π(0)◦π(1)◦· · ·◦π(l−1))∗A ) for l = 1, . . . , k and π(l) : BlPl,...,P1 X̄ →
BlPl−1,...,P1 X̄ denoting the blow-up of BlPl−1,...,P1 X̄ at Pl. We can suppose that
the irreducible components of the reduced divisor

D′ :=
∣∣(π(0) ◦ · · · ◦ π(k))∗A

∣∣ =

|A |∑
1

D′i +

|A |+|P0|∑
|A |

D′j + . . .+

|A |+|P0|+...+|Pk|∑
|A |+|P0|+...+|Pk−1|

D′l,

where |P | denotes the cardinality of the set P , are ordered in such a way
that π(l) ◦ · · · ◦ π(k) contracts the curves D′i with i > |A | + . . . + |Pl−1| for
l = 1, . . . , k. Let I ⊂ {1, . . . , |A |+. . .+|Pk|} and defineM(A , I, P1, . . . , Pk) :=
BlPk,...,P1 X̄ \D′ −

∑
i∈I D

′
i as an iterated partial compactification of M(A ).

Lemma 3.1.2. Let (X̄ ′, D′) be a smooth projective surface such that
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1. the divisor D′ is a simple normal crossing divisor,

2. there is a birational morphism X̄ ′
ψ→ X̄,

3. we have that ψ∗D ⊃ D′

then there exists an iterated partial compactification (X̄ ′′, D′′) and a proper

birational morphism X̄ ′
ψ′′→ X̄ ′′ such that (ψ′′)−1D′′ ⊃ D′ and π1(X̄ ′′ \D′′) ∼←

π1(X̄ ′ \D′) is an isomorphism.

Here we will restrict the study to M(A , I, P ) unless otherwise stated. The
results are easily generalized to the above more general setting of iterated
partial compactifications.

Remark 3.1.3. We have that π1(X̄ ′ \D′) is a quotient group of π1(M(A )) by
proposition 3.1.1.

3.1.4 Boundary manifolds

Let X̄ be a projective smooth surface and D =
∑k

i=1 Di ⊂ X̄ be a connected
divisor. We can construct a regular tubular neighborhood U of D in X̄ which
comes with a surjective continuous retraction ϕ : U → D such that ϕ|D =
idD. The boundary ∂U of U is an oriented, connected, closed 3-manifold (see
[Mum61]). We call the 3-manifold ∂U the boundary manifold of D and denote
by ψ : ∂U → D the restriction of ϕ to ∂U .

Suppose now that (X,D) is simple normal crossing and assume that:

• the divisor D is connected,

• the irreducible components Di of D are rational curves ,

• the dual graph of D has no cycles, in particular #Di∩Dj = 0 or 1 if i 6=
j. This dual graph is a tree that we denote by T .

For such a pair, a presentation of π1(∂U) is given in [Mum61, p. 235] (See also
[Hir64]). As we shall need the notations, let us describe it.

Fix a base point Qi ∈ Di \ ∪i 6=mDm in every rational curve i = 1, . . . , k.
Denote by P ′im the unique point in Di ∩ Dm. Select a simple contractible
oriented curve li ⊂ Di containing Qi and passing through every point P ′im ∈ Di

as in figure 3.1a and denote by l = ∪li ⊂ D. We can construct a continuous
map h : l → ∂U such that ψ ◦ h|li = idli and h(li) ∩ h(lm) 6= ∅ if P ′im =
Di ∩Dm = li ∩ lm 6= ∅.

It is easy to see that l is a homeomorphic image of a tree and deformation
retracts to a point.

Label the points P ′im ∈ Di by the order they intersect li as Pi1, . . . , Piki ,
see Figure 3.1a. Denote by ψi : ∂Ui → Di the boundary manifold of Di. Let
D∗i = Di \ ∪kim=1∆(Pim) with ∆(Pim) a small open disk around Pim in Di.
Define ∂U∗i := ψ−1

i (D∗i ). We may suppose that ∂U ∩ ∂Ui = ∂U∗i .
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∂∆(Pi1)

∂∆(Pi2)

∂∆(Pik1)

Pi1

Pi2

Piki

Qi

li

Di

•

•

•

•

(a) Mumford generators

Pi1

Pi2

Pik1

Qi

l′i

β′i1

Di

•

•

•

•

(b) Paths in D∗i

Figure 3.1: Generators

We may also assume that Qi ∈ D∗i . Define another contractible path
l′i ⊂ D∗i as follows: join every two connected components of li∩D∗i touching the
boundary of a disk ∂∆(Pim), by the segment of ∂∆(Pim) that connects these
two points when traveled in the natural orientation, see figure 3.1b. We assume
li and ∂∆(Pim) intersect transversally at two points for all m = 1, . . . , ki − 1.

Consider the circle ∂∆(Pim) traveled in the natural orientation and connect
it to Qi via a segment of l′i. We obtain a path β′im ∈ π1(D∗i , Qi), for m =
1, . . . , ki, see figure 3.1b. Note that β′i1 · · · β′iki = 1 in π1(D∗i ).

We can construct continuous maps hi : ∪kim=1β
′
im → ∂U∗i such that ψi ◦

hi|β′im = idβ′im for every i = 1, . . . , k. Let hi(Qi) be a base point in ∂U∗i , denote
by γ′im = hi(β

′
im) and let γ′i be a fiber S1 at Qi of ∂U∗i traveled in the natural

orientation.
By using the long homotopy sequence of a fiber bundle, Mumford obtained

the following presentation in [Mum61]. See also [Hir64].

Lemma 3.1.4 ([Mum61, p. 236-237]). The fundamental group of ∂U∗i is given
by the following presentation〈

γ′i1, . . . , γ
′
iki
, γ′i | [γ′im, γ′i] m = 1, . . . , ki, γ

′−wi
i = γ′i1 · · · γ′iki

〉
(3.1)

with wi = Di ·Di the self-intersection number of Di.

Remark 3.1.5. Note that ∂U∗i is non canonically homeomorphic to the trivial
bundle S1×D∗i , but the image of the paths γ′im are not longer identified with a
path freely homotopic to one of the form {point}× ∂∆(Pim). In fact, we need
to twist this image by a multiple of γ′i for it to be of such form. See [Mum61,
p. 235].

Now, to globalize this construction to ∂U , we can use h(l) ⊂ ∂U as a
skeleton to define paths generating π1(∂U). Let γi be the loop based at h(Q1)
constructed as follows. Join h(Q1) to h(Qi) by a segment λ of h(l), follow γ′i and
come back by λ−1. Then it is homotopic to the canonical representative of γ′i in
π1(∂U∗i ∪ h(l), h(Q1)) using the natural isomorphism π1(∂U∗i ∪ h(l), h(Q1))→
π1(∂U∗i , Qi) thus obtained. Define similarly γim for 1 ≤ m ≤ ki. Then γim =
γjT (i,m) for some injective map m 7→ jT (i,m) from {1, . . . , ki} to {1, . . . , k}.
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By gluing the ∂U∗i together and by using van Kampen theorem, he obtained
the following presentation for π1(∂U).

Theorem 3.1.6 ([Mum61]). With the notations and assumptions as above, a
presentation for π1(∂U) is given by:

π1(∂U) =

〈
γ1, . . . , γk | [γi, γjT (i,m)], m = 1, . . . , ki, γ

−wi
i =

ki∏
m=1

γjT (i,m), 1 ≤ i ≤ k

〉
.

where wi = Di ·Di, [a, b] = aba−1b−1, a0 = 1, the identity of the group.

3.2 Wiring diagrams and a first presentation

of the fundamental group of a partial com-

pactification

We will describe the construction of a diagram permitting to express some
meridians around the lines in A lying in a pencil of lines passing through a
base point R ∈ P2 \A , in terms of a fixed set of meridians lying in a special
fiber of this pencil.

As an application we obtain a first presentation for the fundamental group
of a partial compactification M(A , I, P ). To do that we will use a modification
of the presentation of the fundamental group of M(A ) given in [Arv92] and
[CS97].

This diagram will also carry the information to compute the image of the
cycles in the boundary manifolds of A into M(A ). This will be done in section
3.3

3.2.1 Wiring diagram associated to a complex arrange-
ment

Consider an arrangement of lines A in P2. Let us fix a base point R ∈ P2 \A
and denote by πR : BlR P2 → P2 the blow-up at R. Let f̄ : BlR P2 → P1 be the
morphism defined by the pencil of lines passing through R. In what follows,
we assume that we have chosen R in such a way that f̄ |Sing A : Sing A → P1

is injective.
Let ∗ ∈ P1, consider a simple piece-wise linear path β : ([0, 1], 0)→ (P1, ∗)

starting at ∗ and passing through every point f̄(p) for all p ∈ Sing A , being
locally linear around these points.

By abuse of notation let us denote by A the union of the lines of arrange-
ment in P2. As R ∈ P2\A , the blow-up being an isomorphism outside π−1

R (R),
we identify A and π∗RA .
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Definition 3.2.1. The wiring diagram of A with respect to β isW =
⋃
t∈[0,1](A ∩

f̄−1(β(t))) ⊂ BlR P2. The i-wire Wi is Li ∩W . Here, we view A , Li as subva-
rieties of BlR P2 since R 6∈ A .

By the choice of β, as it passes through the points f̄(p) for p ∈ Sing A , we
have that Sing A ⊂ W .

Lemma 3.2.1. Every wire is a piece-wise linear simple curve.

Proof. As no line in A passes through R, every Li ∈ A induces a section of
BlR P2 → P1 which is in fact an isomorphism. By the choice of β the result
follows.

Planar representation of the wiring diagram

By considering the pullback β∗(W) and a trivialization β∗ BlR P2 ∼= [0, 1]×P1,
we can view β∗(W) as a closed graph embedded in [0, 1]× P1. Sometimes we
will continuing writingW for β∗(W). Moreover we can remove the exceptional
divisor π−1

R (R) from [0, 1]×P1 and we can viewW as a closed graph embedded
in [0, 1]× C via a piece-wise linear isomorphism.

There exists a complex coordinate z in C such that the projection (p :
[0, 1]×C→ [0, 1]×R, (t, z) 7→ (t,<(z))) is generic, in the sense that the extra
crossings in p(W) arise as transversal intersection of only two wires p(Wi) and
p(Wk) for certain t ∈ [0, 1] and wires Wi,Wk that do not intersect in f̄−1(β(t)).
We call these crossings virtual vertices. We obtain a planar diagram which can
be represented as in the figure 3.2.

We assume that the order of the lines L1, . . . , Ln is such that, at the very
right of the planar representation of W , the wire W1 is at the bottom of W ,
above it is the wire W2 and then W3, continuing in this way until Wn.

Definition 3.2.2. Consider coordinates (t, x, y) in R3. We say that a wire Wi

passes above Wk at a point t′ ∈ [0, 1] if (t′, x, yi) ∈ Wi, (t
′, x, yk) ∈ Wk and

yi < yk.

In order to distinguish the virtual vertices arising in the projection we mark
the projection p(Wi) ∩ p(Wk) to indicate if the wires over or under crossed in
β∗W as in Figure 3.5. We call the first a positive braiding (or positive virtual
vertex) and the second a negative braiding (or negative virtual vertex).

Remark 3.2.2. As in the [CS97], we read the wiring diagram from right to left.

Example 3.2.1. Let (z1 : z2 : z3) be homogeneous coordinates of P2. Consider
the arrangement consisting of two transverse pairs of parallel lines in C2 ∼= P2\
{z3 = 0}, defined by the equation (z2−z1)(z2−z1+z3)(z2+z1)(z2+z1−z3)z3 =
0. The wiring diagram associated to this arrangement is shown in Figure 3.2.
There are no virtual vertices since the arrangement is real and β is a real
segment.
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W1

W1

W2

W2

W3W3

W4

W4

W5

W5 ↓
1 0

Figure 3.2: Wiring Diagram

Remark 3.2.3. When no under or overcrossing is marked in a wiring diagram
W , it coincides with the notion of wiring diagram in [BLVS+99]. They are in
correspondence with arrangement of ”pseudo-lines”, in particular there exists a
wiring diagram of 9 wires that does not comes from an arrangement of lines (the
so called non-Pappus arrangement, see [BLVS+99, Proposition 8.3.1]), however
for 8-wires or less they are in correspondence with the real arrangement of lines
[BLVS+99, Thm 6.3.1].

3.2.2 Using the diagram to obtain presentations

Algorithm for computing a presentation of the fundamental group
of M(A )

We will use the following well-known Lemma.

Lemma 3.2.4. Let Z ⊂ X be an algebraic subvariety of an algebraic smooth
surface X. Fix a point R ∈ X \ Z. Denote by πR : BlRX → X, then
π1(X \ Z) ∼= π1(BlRX \ π∗RZ).

This allow us to compute π1(M(A )) in the total space of the fiber bundle
f̄ : BlR P2 → P1. We will find suitable subspaces of the total space of this fiber
bundle to apply the van-Kampen Theorem.

Let W ⊂ BlR P2 be a wiring diagram. Let β∗(W) ⊂ [0, 1] × P1 be as in
3.2.1. Every vertical line t×P1 in [0, 1]×P1 corresponds to the fiber f̄−1(β(t)).
Recall that if p ∈ f̄−1(β(tp)) for p ∈ Sing A and tp ∈ [0, 1], then no other point
in Sing A lies in the same fiber. Suppose that there are s points tp1 , . . . , tps
corresponding to p1, . . . , ps in Sing A .

By fixing a planar representation p(β∗(W)) of β∗(W) as in 3.2.1, some
under or over-crossing can arise. As the projection is generic, they correspond
to a finite number t′1, . . . , t

′
ν of elements of [0, 1] distinct from the tpr .

Order the set {tp1 , . . . , tps , t
′
1, . . . , t

′
ν} by increasing order and relabel them

by tκ for κ = 1, . . . , ν+ s. Let Bκ ⊂ P1 be a neighborhood of β(tκ) homeomor-
phic to a disk in C such that Bκ∩Bj = ∅ if |κ− j| > 1 and Bκ∩Bκ+1 is home-
omorphic to a disk. Consider Mκ := f̄−1(Bκ) ⊂ BlR(P2) for κ = 1, . . . , ν + s
and denote by Mκ(A ) := Mκ \Mκ ∩ π∗RA .
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Lemma 3.2.5. We have that

π1(Mκ(A ) ∩Mκ+1(A )) ∼= Fn for κ = 1, . . . , ν + s− 1

with Fn the free group in n generators.

Proof. First note that as Bκ ∩ Bκ+1 ⊂ P1 \ {f̄(p) | p ∈ Sing A } we have that
Mκ(A ) ∩Mκ+1(A ) = f̄−1(Bκ ∩Bκ+1) is the restriction of a fiber bundle to a
contractible base. The fundamental group of any fiber in Bκ ∩ Bκ+1 is a free
group in n generators.

Proposition 3.2.6. We have that

π1(M(A )) ∼= π1(M1(A )) ∗
π1(M1(A )∩M2(A ))

· · · ∗
π1(Mν+s−1(A )∩Mν+s(A ))

π1(Mν+s(A )).

Proof. By Lemma 3.2.4, we have that the morphism BlR P2\π∗RA →M(A ) =
P2 \A induces an isomorphism in the fundamental groups.

Denote the restriction of f̄ to BlR P2 \ π∗RA by f : BlR P2 \ π∗RA → P1.
Let ∞ ∈ P1 \ ∪ν+s

κ=1Bκ and note that f−1(P1 \ {∞}) is the complement in
BlR P2 \ π∗RA of a smooth irreducible divisor D∞ that is the restriction to
BlR P2 \ π∗RA of the strict transform of a line in P2 passing through R .

By Proposition 3.1.1, we have that

π1(BlR P2 \ π∗RA ) = π1

(
f−1(P1 \ {∞})

)
/〈〈γD∞〉〉

where γD∞ is a meridian around D∞.
Note that, as R ∈ P2 \ A , we have that π−1

R (R) ⊂ BlR P2 \ π∗RA and its
restriction to f−1(P1 \ {∞}) is isomorphic to C. The meridian γD∞ can be
chosen to lie inside this restriction and therefore γD∞ = 1. We obtain that
π1(f−1(P1 \ {∞})) ∼= π1(M(A )).

Observe that ∪ν+s
κ=1Mκ(A ) has the same homotopy as (BlR P2\A )\f−1(∞).

We conclude by successive applications of the van-Kampen Theorem: by con-
struction B1 ∩Bν+s = ∅, we obtain that π1(∪ν+s

κ=1Mκ(A )) is isomorphic to

π1(M1(A )) ∗
π1(M1(A )∩M2(A ))

· · · ∗
π1(Mν+s−1(A )∩Mν+s(A ))

π1(Mν+s(A ))

We want to compute now π1(Mκ(A )) for κ = 1, . . . , ν + s and the mor-
phisms of amalgamation π1(Mκ(A ))← π1(Mκ(A )∩Mκ+1(A ))→ π1(Mκ+1(A )).
In fact, if no point of Sing A lies in Mκ(A ) we will have that π1(Mκ(A )) ∼= Fn.
However, some conjugations may arise in the meridians due to braiding of the
wires in W .

We have to distinguish 3 cases depending in the nature of Mκ: Mκ contains
a point of Sing A , it contains a positive braiding ofW or it contains a negative
braiding.
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λ
(κ)
j

λ
(κ)
j+1

λ
(κ)
m

•

•

•

(a) Γ(κ) in f̄−1(β(θκ))

λ
(κ)
m

λ
(κ)
j+1

λ
(κ)
j

•

•

•

(b) Γ(κ) in f̄−1(β(θκ+1))
.

Figure 3.3: Geometric generating set in different fibers

Let θκ < tκ be sufficiently close so that β(θκ) ∈ Bκ ∩ Bκ−1 and denote by

x
(κ)
1 , . . . , x

(κ)
n+1 the set of points in the planar representation p(β∗(W)) of the

wiring diagram W labeled from bottom to top corresponding to the points in
f̄−1(β(θκ)) ∩A .

Definition 3.2.3. A geometric generating set Γ(κ) = {λ(κ)
1 , . . . , λ

(κ)
n+1} of the

group π1(f̄−1(β(θκ)) \ (f̄−1(β(θκ)) ∩A ), qκ) with qκ = π−1
R (R) ∩ f̄−1(β(θκ)) is

the datum of λ
(κ)
1 , . . . , λ

(κ)
n+1 meridians around x

(κ)
1 , . . . , x

(κ)
n+1 respectively, all

of them based at qκ such that λ
(κ)
n+1 · · ·λ

(κ)
1 is nullhomotopic in f̄−1(β(θκ)) \

{x(κ)
1 , . . . , x

(κ)
n+1} ∼= P1 \ {(n+ 1)− points}.

Remark 3.2.7. A geometric generating set Γ(κ) = {λ(κ)
1 , . . . , λ

(κ)
n+1} induces a

geometric base Γ(κ)′ = {λ(κ)
1 , . . . , λ

(κ)
n } of π1(C \ {x(κ)

1 , . . . , x
(κ)
n }, qκ) as in 1.2.1.

We consider here the geometric generating set Γ(κ) = {λ(κ)
1 , . . . , λ

(κ)
n+1} as in

figure 3.3a. As π1(π−1
R (R)) is trivial, we can fix a point q ∈ π−1

R (R) as a global
base point for all the geometric generating set Γ(κ) with κ = 1, . . . , ν + s by
joining qκ to q by a simple path in π−1

R (R).
We describe how the meridians change when we move the generators of

Γ(κ) to the fiber f̄−1(β(θκ+1)) and express them in the generators Γ(κ+1), see
figure 3.3b. We record as well the relations arising in between.

Suppose that p ∈ Sing A ∩ Mκ, and let Γ(κ) be as above. Denote by j
the first index of the meridians of Γ(κ) corresponding to a line passing through
p, and by m the last. We have that λ

(κ+1)
k = λ

(κ)
k for k < j and k > m as

we can deform continuously λ
(κ)
k to λ

(i+1)
k having the same homotopy type in

π1(Mκ(A )).

Let Rκ = [λ
(κ)
m , λ

(κ)
m−1, . . . , λ

(κ)
j ] denote the set of equations of the form

λ
(κ)
m · λ(κ)

m−1 · · ·λ
(κ)
j = λ

(κ)
σ(m)λ

(κ)
σ(m−1) · · ·λ

(κ)
σ(j) where σ varies in the set of cyclic

permutations in m− j + 1 elements.

Lemma 3.2.8. Let p ∈ Sing A ∩Mκ. Then π1(Mκ(A ), qκ) is generated by

the elements of Γ(κ) and Γ(κ+1) together with the relations Rκ, λ
(κ+1)
k = λ

(κ)
k
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p

a

a

ba

bcba
c

dcba

d

Γ(κ)Γ(κ+1)

Figure 3.4: Actual vertex

for k < j or m < k, λ
(κ)
n+1 · · ·λ

(κ)
1 = 1 and

λ(κ+1)
m = λ

(κ)
j ,

λ
(κ+1)
m−1 = λ

(κ)
j+1

λj
(κ)

,

λ
(κ+1)
m−2 = λ

(κ)
j+2

λj+1
(κ)λj

(κ)

,

...

λ
(κ+1)
j = λ(κ)

m

λ
(κ)
m−1···λ

(κ)
j .

(see figures 3.3 and 3.4.)

Proof. The proof follows closely that of Proposition 1.2.7.
Let Vp be a neighborhood around p homeomorphic to a product Bκ × D

with D a disk not intersecting Lk ∈ A with k < j or k > m. The local
fundamental π1(Vp \ A ) equals the fundamental group of the link associated
to the singularity p which is a Hopf link of m−j+1 circles (see [OT92, Lemma
5.75]).

For the complement Mκ(A ) \ Vp we have π1(Mκ(A ) \ Vp) ∼= Fn−(m−j) and
if V ′ is a small neighborhood of Vp we have that as Vp \A retracts to ∂Vp \A
then π1((Mκ(A ) \ Vp) ∩ V ′) ∼= π1(Vp \ A ). By van-Kampen we obtain the

relation λ
(κ)
n+1 · · ·λ

(κ)
1 = 1.

Lemma 3.2.9. Suppose that there is a positive braiding of the wires j and
j + 1 in Mκ(A ). Then the group π1(Mκ(A ), qκ) admits the presentation〈

λ
(κ)
1 , . . . , λ

(κ)
n+1, λ

(κ+1)
j , λ

(κ+1)
j+1 | λ(κ+1)

j+1 = λ
(κ)
j , λ

(κ+1)
j = λ

(κ)
j+1

λ
(κ)
j

〉
(See fig. 3.5a.)

Proof. As in lemma 3.2.8, we have that we can deform λ
(κ+1)
k to λ

(κ)
k for k < j

or j + 1 < k without changing the homotopy type.
The result follows from the Wirtinger presentation of a braid interchanging

the j and the j + 1 wire: consider the meridians λ
(κ)
j , λ

(κ)
j+1 in f̄−1(β(θκ+1)) as
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(a) Positive braiding
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(κ)
j

λ
(κ)
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−1

λ
(κ)
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(κ)
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λ
(κ)
j+1

(b) Negative braiding

Figure 3.5: Braiding in W

in figure 3.3b. Note that in π1(f̄−1(β(θκ+1)), qκ+1) these meridians satisfy the
relations:

λ
(κ+1)
j+1 = λ

(κ)
j , λ

(κ+1)
j = λ

(κ)
j+1

λ
(κ+1)
j+1

= λ
(κ)
j+1

λ
(κ)
j
.

This can be seen directly from Figure 3.3b. (C.f. [OT92, Lemmas 5.73, 5.74].)

Lemma 3.2.10. Suppose that there is a negative braiding in Mκ(A ), then
the group π1(Mκ(A ), qκ) admits the presentation〈

λ
(κ)
1 , . . . , λ

(κ)
n+1, λ

(κ+1)
j , λ

(κ+1)
j+1 | λ(κ+1)

j+1 = λ
(κ)
j

λ
(κ)
j+1

−1

, λ
(κ+1)
j = λ

(κ)
j+1

〉

(See fig. 3.5b.)

We can summarize the information carried by a wiring diagramW and the
changes in the geometric sets Γ(κ) as they cross a vertex in W as follows.

For every tκ ∈ {t1, . . . , tν+s} there exists a crossing pκ in the planar rep-
resentation of W , let Π(κ) = {σ(κ)(1) < . . . < σ(κ)(n + 1)} be an ordered set,
with σ(κ) a permutation of {1, . . . , n + 1} such that the k-th element σ(κ)(k)
records the position of the wire Wσ(κ)(k) in the fiber f̄−1(β(θκ)), when W is

read from bottom to top, with θκ as in Definition 3.2.3. This is, x
(κ)
k ∈ Wσ(κ)(k)

for k = 1, . . . , n+ 1. Note that σ(1) = id.
The order in Π(κ) records the local position of the wires ofW in f̄−1(β(θκ)),

while the order {1, . . . , n + 1} induced from the order of the lines in A is a

global order. For a wire Wk of W , we write σ(κ)−1
(k) to indicate that the wire

Wk is in the σ(κ)−1
(k) position in the fiber f̄(β(θκ)).

Consider the free group F
(κ)
n+1 generated by the meridians in Γ(κ) and let

τ (κ) : {1, . . . , n+ 1} → F
(κ)
n+1 defined as follows:

Suppose that the crossing pκ corresponding to tκ satisfies pκ = Wσ(κ)(j) ∩
Wσ(κ)(j+1) ∩ . . . ∩Wσ(κ)(m), then

τ (κ)(k) =

{
e for k = 1, . . . , j,m+ 1, . . . , n+ 1,

λ
(κ)
k−1 · · ·λ

(κ)
j for j < k ≤ m,
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if tκ is an actual vertex,

τ (κ)(k) =

{
e for k = 1, . . . , j, j + 2, . . . , n+ 1,

λ
(κ)
j for k = j + 1,

if tκ is a positive virtual vertex, and

τ (κ)(k) =

{
e for k = 1, . . . , j − 1, j + 1, . . . , n+ 1,

(λ
(κ)
j+1)−1 for k = j,

if tκ is a negative virtual vertex.

The Lemmas 3.2.8, 3.2.9 and 3.2.10 imply the following proposition.

Proposition 3.2.11. Let Γ(κ) = {λ(κ)
1 , . . . , λ

(κ)
n+1},Γ(κ+1) = {λ(κ+1)

1 , . . . , λ
(κ+1)
n+1 }

be geometric generating set as in 3.2.2 and suppose that pκ ∈ Mκ. Then we
have that in π1(Mκ(A ), qκ):

λ
(κ+1)

σ(κ+1)−1
(σ(κ)(k))

= (λ
(κ)
k )τ

(κ)(k) for k = 1, . . . , n+ 1,

or equivalently,

λ
(κ+1)
k = (λ

(κ)

σ(κ)−1
(σ(κ)(k))

)
τ (κ)

(
σ(κ)−1

(σ(κ+1)(k))
)

for k = 1, . . . , n+ 1.

Note that if pκ = Wσ(κ)(j) ∩ . . . ∩Wσ(κ)(m) we have that

σ(κ+1)−1
(σ(κ)(k)) =

{
k for k = 1, . . . , j − 1,m+ 1, . . . , n+ 1,
m− ι for k = j + ι and ι = 0, . . . ,m− j.

As the fundamental group of M(A ) is generated by the meridians around

each line, we fix the geometric generating set Γ(1) = {λ(1)
1 , . . . , λ

(1)
n+1} = {λ1, . . . , λn+1} ⊂

M1(A ).

Theorem 3.2.12. Let A = {L1, . . . , Ln+1} be a complex arrangement of lines
in P2 and let Γ(1) be a geometric generating set as above. A presentation for
the fundamental group of M(A ) is given by

π1(M(A ), q) =

〈
λ1, . . . , λn+1 |

⋃
κ

Rκ, λn+1 · · ·λ1

〉

with Rκ as Lemma 3.2.8 and each κ corresponding to a point pκ ∈ Sing A .

Remark 3.2.13. The relations Rκ are expressed in terms of the geometric gen-
erating set Γ(1) by substituting λ

(κ)
k by a conjugate of λ

(1)

σ(κ)(k)
by elements of

Γ(1) by repeated applications of Proposition 3.2.11.
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Proof. From Proposition 3.2.6 we know that π1(M(A )) = π1(M1(A )) ∗Fn
· · · ∗Fn π1(Mν+s(A )). Now, the groups π1(Mκ(A )) are presented in generators
Γ(κ) and Γ(κ+1), and relations which are words in these letters (see Lemmas
3.2.8, 3.2.9, 3.2.10). The geometric generating set Γ(κ) is chosen in such a way
that it lies in a fiber over a point of Bκ−1 ∩ Bκ, and therefore, we can assume
that the amalgamation π1(Mκ−1(A )) ∗Fn π1(Mκ(A )) permits to see Γ(κ) in
Mκ(A ) and Mκ−1(A ) simultaneously.

Note that λ
(κ+1)
m · · ·λ(κ+1)

j = λ
(κ)
m · · ·λ(κ)

j , hence λ
(κ+1)
n+1 . . . λ

(κ+1)
1 = λ

(κ)
n+1 · · ·λ

(κ)
1

for every κ = 1, . . . , ν + s− 1.
The relations in π1(Mκ(A )) when there is a positive or virtual vertex in

Mκ(A ), can be omitted in the presentation of π1(M(A )) by writing every
meridian of Γ(κ+1) in terms of Γ(κ) as in Lemmas 3.2.9, 3.2.10.

When there is an actual vertex inMκ(A ), the relationRκ = [λ
(κ)
m , λ

(κ)
m−1, . . . , λ

(κ)
j ]

will appear in the presentation of π1(M(A )). This relation can be expressed
in terms of Γ(1) in a recursive way, by expressing Γ(κ) in terms of Γ(κ−1) by
using the amalgamation of π1(Mκ−1(A )) and π1(Mκ(A )) over Bκ−1 ∩Bκ and
the presentation of Mκ−1(A ) given by proposition 3.2.11. More precisely, we
have that

λ
(κ)
k = λ

τ (1)(σ(κ)(k))·τ (2)
(
σ(2)−1

(σ(κ)(k)
)
···τ (κ−1)

(
σ(κ−1)−1

(σ(κ)(k))
)

σ(κ)(k)
for k = 1, . . . , n+ 1,

and every τ (r)
(
σ(r)−1

(σ(κ)(k))
)

can be expressed in terms of Γ(1) in a recursive

way for r = 1, . . . , i− 1.

Algorithm for determining the presentation for a partial compacti-
fication M(A , I, P )

Let W be a wiring diagram and 〈λ1, . . . , λn+1 | ∪kRk, λn+1 · · ·λ1〉 a presenta-
tion of π1(M(A )) as in Theorem 3.2.12.

Consider a partial compactification M(A , I, P ) of P2 \ A as in 3.1.3.
Here, we let P0 = {p1, . . . , ps0} ⊂ Sing A denote the points of multiplic-
ity strictly bigger than two, consider π : X̄ = BlP0 P2 → P2 and denote
by D =

∑n+1+s0
i=1 Di = π∗A . Select I ⊂ {1, . . . , n + 1 + s0} and P =

{p′1, . . . , p′s1} ⊂ Sing
∑

i 6∈I Di. Consider another blow-up π′ : BlP X̄ → X̄ and

write π′∗D =
∑n+1+s0+s1

i=1 D′i. Define D′ = π′∗(D) −
∑

i∈I D
′
i −
∑

i>n+1+s0
D′i

and M(A , I, P ) = BlP1 X̄ \D′.
From Proposition 3.1.1, we have that a presentation for the fundamental

group π1(M(A , I, P )) can be obtained from 〈λ1, . . . , λn+1 | ∪kRk, λn+1 · · ·λ1〉
by adding as relations certain words λ(D′i) representing some meridians around
the irreducible components D′i with either i ∈ I or n+ s0 + 1 < i. In order to
do so, we have to distinguish four cases for these irreducible components D′i of
π′∗D:

1. D′i is the strict transform of a line in A . In this case i ≤ n+ 1.
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2. D′i is the strict transform of an exceptional divisor Di in X̄. In this case
n+ 1 < i ≤ n+ 1 + s0,

3. D′p is an exceptional divisor coming from a double point p in Sing A .

4. D′p is an exceptional divisor obtained by blowing-up a point p = Dr∩Dk

with r ≤ n+ 1 and n+ 1 < k ≤ n+ 1 + s0.

For the lines as in (1) we let λ(D′i) = λi.
For the lines as in (2), suppose thatDi ⊂ X̄ is an exceptional divisor coming

from a point p ∈ Sing A and suppose that p ∈Mκ, this is, tp is the κ-element
in the ordered set of vertices t1, . . . , tν+s of a planar representation of W as in
3.2.2. In other words tp = tκ ∈ [0, 1] satisfies β(tκ) = f̄(p) and consider Γ(κ) =

{λ(κ)
1 , . . . , λ

(κ)
n+1} the geometric generating set of f̄−1(β(θκ))\ (x

(κ)
1 , . . . , x

(κ)
n+1) ⊂

Mκ(A ) and suppose that p = Wσ(κ)(j)∩Wσ(κ)(j+1)∩ . . .∩Wσ(κ)(m) with the local

index Π(κ) = {σ(κ)(1) < . . . < σ(κ)(n+ 1)} as in 3.2.2. Associate to Di and to

its strict transform D′i, the word λ(Di) = λ(D′i) = λ
(κ)
m · λ(κ)

m−1 · · ·λ
(κ)
j+1 · λ

(κ)
j .

Lemma 3.2.14. Let D′i be a line as in (2). Then λ(D′i) = λ
(κ)
m ·λ(κ)

m−1 · · ·λ
(κ)
j+1 ·

λ
(κ)
j represents a meridian around Di, and by pull-back, also around D′i.

Proof. Let ψ : U → D and ψi : Ui → Di be the boundary manifolds of D
and Di in X̄ respectively. Note that we can use the meridians λ

(κ)
j , . . . , λ

(κ)
m to

give a presentation of π1(∂U∗), with ∂U∗i = ∂U ∩ ∂Ui as in 3.1.4, as follows:
the projection π(∂Ui) to P2 can be seen as the boundary of a 4-real ball Bp

centered at p. There exists Rp ∈ ∂Bp such that for each j ≤ k ≤ m the loop

αk := λ
(κ)
k is homotopic to a product α

αk2
k1

with

• The loop αk1 starting at Rp, lying completely in ∂Bp and surrounding
the line Lσ(κ)(k).

• The loop αk2 is a simple path connecting Rp and the point R ∈ P2 \A .

By pulling-back the meridians αj1 , . . . , αm1 to X̄ we can see them as lying
in ∂U . By construction of the geometric generating set Γ(κ), the product
αm1 · · ·αj1 is homotopic to a path encircling the lines Lσ(κ)(j), . . . , Lσ(κ)(m) and
therefore the projection ψi∗(αm1 · · ·αj1) = e in π1(D∗i , ψi(Rp)). We can con-
struct a continuous map hi : ∪mk=jψi(αk1) → ∪mk=jαk1 such that hi(ψ(αk1)) =
αk1 and therefore the loops αj1 , . . . , αm1 together with a fiber αi of ∂Ui gener-
ate the group π1(∂U∗i ) as in Lemma 3.1.4. Moreover, as Di ·Di = −1, we have
the relation αi = αm1 · · ·αj1 in π1(∂U∗i , Rp).

By construction of Γ(κ), we have that every two αk2 and αk′2 with j ≤
k, k′ ≤ m are homotopic. Therefore, by connecting αi to R via αj2 , we obtain

the relation α
αj2
i = λ

(κ)
m · · ·λ(κ)

j in π1(P2 \A ).

By pulling-back α
αj2
i to BlP1 we obtain that it is homotopic to a meridian

around D′i.
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For the lines D′p as in (3), suppose that p = Dr ∩ Dk with r, k ≤ n + 1.

Consider the unique index 1 ≤ κ ≤ ν + s such that p ∈ Mκ and let Γ(κ) =
{λ(κ)

1 , . . . , λ
(κ)
n+1} be a geometric generating set of π1(Mκ(A )). We denote

λ(D′p) := λ
(κ)

σ(κ)−1
(r)
λ

(κ)

σ(κ)−1
(k)
.

Recall that σ(κ)−1
(r) and σ(κ)−1

(k) record the local position of the wires Wr,Wk

respectively, in the local order of the wires ofW in f̄−1(β(θκ)) given by Π(κ) =
{σ(κ)(1) < . . . < σ(κ)(n+ 1)}.

Finally, let D′p be as in (4) with p ∈ P . We have that p = Dr ∩ Dk with
r ≤ n + 1 and Dk an exceptional divisor coming from a point p(k) ∈ P0. Let

us suppose that p(k) ∈ Mκ. Denote by Γ(κ) = {λ(κ)
1 , . . . , λ

(κ)
n+1} ⊂ Mκ(A ) the

geometric generating set as above. We can suppose that p(k) = Wσ(κ)(j) ∩
. . . ∩Wσ(κ)(m). As n+ 1 ≤ k ≤ n+ 1 + s0, we can consider the word λ(Dk) =

λ
(κ)
m · · ·λ(κ)

j as in Lemma 3.2.14 above.

Lemma 3.2.15. A meridian of D′p is given by λ(D′p) = λ
(κ)

σ(κ)−1
(r)
λ(Dk). More-

over, λ
(κ)

σ(κ)−1
(r)

commutes with λ(Dk).

Proof. Recall that by construction, λ
(κ)

σ(κ)−1
(r)

is the meridian of Lr lying in the

geometric generating set Γ(κ).
Let ψDk : ∂UDk → Dk be the boundary manifold of Dk in X̄. For k′ =

j, . . . ,m, let us decompose the loops αk′ = λ
(κ)
k′ in two parts αk′1 , αk′2 , as in the

proof of the Lemma 3.2.14, such that αk′ is homotopic to α
αk′2
k′1

. The proof of

the same Lemma and 3.1.4 give us that

π1(∂U∗Dk , Rk) = 〈αj1 , . . . , αm1 , αk | [αk, αk′1 ], αk = αm1 · · ·αj1〉.

for a point Rk ∈ ∂U∗Dk and αk a fiber of ∂U∗Dk . We can globalize the relations

in this presentation by considering α
αk′2
k′1

and obtain that λ(Dk) commutes with

λ
(κ)
k′ for k′ = j, . . . ,m, in particular as Dr intersect Dk, we have that λ

(κ)

σ(κ)−1
(r)

commutes with λ(Dk).
Furthermore, the point Rk can be chosen to lie in the boundary ∂Bp of

a ball Bp ⊂ X̄ around p. Let ψD′p : ∂UD′p → D′p be the boundary manifold

of D′p in BlP X̄ and ∆1,∆2 a pair of disks about the points D′p ∩ D′r and

D′p ∩ D′k respectively. Denote ∂U∗D′p = ψ−1
D′p

(D′p \ (∆1 ∪ ∆2)). By working in

local coordinates, it can be seen that αk, ασ(κ)−1
(r)1

and a fiber αp of ∂UD′p at

Rk generate the group π1(∂U∗D′p) and that

π1(∂U∗D′p) =

〈
αk, ασ(κ)−1

(r)1
, αp

∣∣∣∣∣ [αk, αp], [α
σ(κ)−1

(r)1
, αp],

αp = αk · ασ(κ)−1
(r)1

〉
by Lemma 3.1.4 and because D′p ·D′p = −1.
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Theorem 3.2.16. Let A ⊂ P2 be an arrangement of lines, W a wiring dia-
gram and M(A , I, P ) a partial compactification. Then

π1(M(A , I, P ), q) =

〈
λ1, . . . , λn+1 |

⋃
k

Rk, λn+1 · · ·λ1,
⋃
i∈I

λ(D′i),
⋃
p∈P

λ(D′p),

〉

is a presentation for the fundamental group of the partial compactification.

Proof. We only have to justify the expression for those meridians around lines
as in (1) and (3). For the meridians of lines as in (2) and (4), the expression
λ(D′i) and λ(D′p) is explained by Lemmas 3.2.14 and 3.2.15 respectively. We
will conclude by Proposition 3.1.1.

For the meridians around lines as in (1), it is immediate by the biholomor-
phism property of the blow-up outside the exceptional divisor.

Consider a line Di as in (3) and suppose that it comes from a point p =
Dr ∩ Dk with r, k ≤ n + 1. Note that there is essentially no difference with
a line as in (2) besides the change of local indexation to a global one, and
therefore, we can proceed as in the proof of Lemma 3.2.14 to obtain that
λ

(κ)

σ(κ)−1
(r)
λ

(κ)

σ(κ)−1
(k)

is homotopic to a fiber of ∂U∗i connected to the global base

point R.

As D =
∑N

i=1Di is a simple normal crossing divisor with N = n+1+s0, we
can consider an orbifold structure in (BlP0 P2, D) (see [Eys17] for the notation)
by choosing weights r = (r1, . . . , rN) ∈ (N∗ ∪ {+∞})N .

Theorem 3.2.17. Let A be a complex arrangement of lines, W a wiring
diagram and consider the weights r of D as above. The fundamental group
π1(X (BlP0 P2, D, r)) of the orbifold X (BlP0 P2, D, r) admits the following pre-
sentation: 〈

λ1, . . . , λn+1 |
⋃
k

Rk, λn+1 · · ·λ1,
N⋃
i=1

λ(Di)
ri

〉
where the relation λ(Di)

ri is omitted if ri = +∞.

3.3 Boundary Manifolds methods

In this Section we use the results of Mumford as stated in 3.1.4 in order to
study the fundamental group of the boundary manifold ∂U of an arrangement
of lines A .

The notion of wiring diagram defined in the previous section will play an
important role, a presentation of π1(M(A , I, P )) will be obtained as a quotient
of the presentation of π1(∂U) and compared with Theorem 3.2.16.
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3.3.1 Boundary manifold of an arrangement of lines

Fundamental group of the boundary manifold of an arrangement of
lines

Let A = {L1, . . . , Ln+1} ⊂ P2 be an arrangement of lines and denote by
π : X̄ → P2 the blow-up of the projective plane at the s0 points of Sing A
of multiplicity equal or higher than 3 as in 3.1.3. Recall that D = |π∗D| =∑n+s0+1

i=1 Di is the reduced total transform of A in X̄ and let ψ : ∂U → D be
its boundary manifold.

Using the description of Mumford (Theorem 3.1.6) and that of a weighted
graph, Westlund gave a presentation of the fundamental group π1(∂U) of ∂U
[Wes67] (see also [CS08]). Let us describe this presentation.

Denote by ∆ the dual graph of D and by E the set of edges of ∆ as in
3.1.3 above. Associate to each vertex vi a weight wi corresponding with the
self-intersection number of the associated line Di in X̄.

Let T be a maximal tree of ∆ (a subgraph of ∆ containing no cycles and
all the vertices of ∆) and denote by C = ∆ \ T . Note that g = |C| = b1(∆)
equals the number of independent cycles in ∆.

The edges in C correspond to g points {p1, . . . , pg} in SingD. Let us denote
by π(1) : Blp1,...,pg X̄ → X̄ the blow-up at these points. Denote by D′ =∑n+s0+1

i=1 D′i the strict transform of D in Blp1,...,pg X̄ and let ψ′ : ∂U ′ → D′ be
the boundary manifold of D′. Note that the dual graph of D′ is a tree that
can be identified with T by removing from ∆ the edges in C. In particular, D′

and ∂U ′ are connected. Let π(1)∗(D) = D′ +
∑g

k=1Ek be the total transform
of D with E1, . . . , Ek exceptional divisors.

Now, if (i, j) ∈ C corresponds to the point pk for some 1 ≤ k ≤ g, there
exists an exceptional divisor Ek ∈ Blp1,...,pg X̄ and D′i, D

′
j strict transforms

of irreducible components Di, Dj of D respectively such that Ek ∩ D′i 6= ∅,
Ek ∩ D′j 6= ∅ and Di ∩ Dj = pk. Denote its boundary manifold by ψEk :
∂UEk → Ek, ψ

′
i : ∂U ′i → D′i, ψ

′
j : ∂U ′j → D′j.

Select a base point Qi ∈ D′i \ (∪j 6=iD′j
⋃
∪gk=1Ek) as in 3.1.4 and a simple

curve li ⊂ D′i containing Qi and every intersection of the form:

1. D′i ∩D′j, with (i, j) an edge in T ,

2. D′i ∩Ek, with Ek coming from a point pk corresponding to an edge (i, j)
in C.

Let us label these points by the order they intersect li as Pi1, . . . , Pik′i . Note that
for every Pim there corresponds a unique edge (i, j∆(i,m)) in ∆. This defines
an injective function m 7→ j∆(i,m) from {1, . . . , k′i} to {1, . . . , n+ s0 + 1}.

We also label only the points as in (1) by the order they intersect li as
P ′i1, . . . , P

′
iki

and define a function m 7→ jT (i,m) from {1, . . . , ki} to {1, . . . , n+
s0 + 1} as in 3.1.4.

Let l = ∪lk ⊂ D′ and h′ : l → ∂U ′ be a continuous function such that
ψ′ ◦ h′ = idl. For an exceptional divisor Ek corresponding to an edge (i, j)
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in C, we let lEk ⊂ Ek be a simple path connecting Ek ∩ D′i to Ek ∩ D′j and
hEk : lEk → ∂UEk such that ψEk ◦ hEk = idlEk , hEk(lEk) ∩ h′(li) 6= ∅ and
hEk(lEk) ∩ h′(lj) 6= ∅. This create a cycle ck = cij in the boundary manifold
of π(1)∗(D), which we orient passing first by h′(li), following hEk(lEk) and
coming back by h′(lj). We denote by γ1, . . . , γn+1+s0 the meridians around
D′1, . . . , D

′
n+1+s0

obtained as in 3.1.4 using h′(l).

Theorem 3.3.1 (Westlund). A presentation for π1(∂U) is given by

π1(∂U) =

〈 γ1, . . . , γn+s0+1

∣∣[γi, γsijj ], (i, j) ∈ E

c1, . . . , cg

∣∣∣∣γ−wii =
∏k′i

m=1 γ
sij∆(i,m)

j∆(i,m) 1 ≤ i ≤ n+ s0 + 1

〉

where

sij =


c−1
k if (i, j) equals the k-th element in C,
ck if (j, i) equals the k-th element in C,
1 if (i, j) is an edge of T .

Proof. From Theorem 3.1.6 we know that

π1(∂U ′) =

〈
γ1, . . . γn+s0+1

∣∣∣∣[γi, γjT (i,m)
] m = 1, . . . , ki, γ

−w′i
i =

ki∏
m=1

γjT (i,m)

〉

where w′i is the intersection number of the strict transformD′i ofDi in Blp1,...,pg X̄.
Note that (i, l) is an edge of T if and only if l = jT (i,m) for some m ∈
{1, . . . , ki} and therefore the set of relationsA = {[γi, γjT (i,m)] | m = 1, . . . , ki, i =
1, . . . , n+ s0 + 1} is the same as B = {[γi, γl] | (i, l) an edge of T }.

Let Ek be an exceptional divisor corresponding to an edge (i, j) in C as
above. We can remove two disks ∆′1 ⊂ D′i,∆

′
2 ⊂ D′j in D′ around the points

Ek∩D′i and Ek∩D′j respectively, and obtain a pair of torus T ′i , T
′
j as boundary

from ∂U ′◦ = ψ′−1(D′ \∆′1∪∆′2). Let γ(Ek)
′
i, γi and γ(Ek)

′
j, γj be generators of

π1(T ′i ) and π1(T ′j) with γ(Ek)
′
i, γ(Ek)

′
j constructed from ∂∆′1, ∂∆′2 as in 3.1.4.

We obtain the following presentation for π1(∂U ′◦):

〈
γ1, . . . γn+s0+1, γ(Ek)

′
i, γ(Ek)

′
j

∣∣∣∣∣
A, [γi, γ(Ek)

′
i], [γj, γ(Ek)

′
j]

γ
−w′l
l =

∏kl
m=1 γjT (l,m) for l 6= i, j,

γ
−w′i
i = γjT (i,1) · · · γ(Ek)

′
i · · · γjT (i,ki),

γ
−w′j
j = γjT (j,1) · · · γ(Ek)

′
j · · · γjT (i,kj)

〉

where the products in the lowest row of the relations are taken in such a
way that 1 = ψi(γ

′
i1) · · ·ψi(γ(Ek)

′
i) · · ·ψi(γ′iki) holds in π1(D′i

∗ \ ∆1) and sim-
ilarly 1 = ψj(γ

′
j1) · · ·ψj(γ(Ek)

′
j) · · ·ψj(γ′jkj) in π1(D′j

∗ \ ∆2) for generators

γr, γ
′
r1, . . . , γ

′
rkr

generators of π1(∂U ′r
∗) for r = i, j as in 3.1.4.

Let E∗k denote the submanifold of Ek obtained by removing another pair
of disks ∆1,∆2 of Ek about the points Ek ∩D′i and Ek ∩D′j as in 3.1.4. Write

∂U∗Ek for ψ−1
Ek

(E∗k). Note that the boundary of ∂U∗Ek consists also of a pair
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of torus Ti, Tj corresponding to ∆1 and ∆2 respectively. Let γ′i, γ(Ek) and
γ′j, γ(Ek) be generators of π1(Ti) and π1(Tj) respectively. By (3.1), we have
that π1(∂U∗Ek) = 〈γ(Ek), γ

′
i, γ
′
j | [γ(Ek), γ

′
i], [γ(Ek), γ

′
j], γ(Ek) = γ′iγ

′
j〉 ∼= 〈γ′i, γ′j |

[γ′i, γ
′
j]〉 ∼= Z2 because Ek · Ek = −1.

We can glue ∂U ′◦ to ∂U∗Ek by first gluing Ti to T ′i by a longitude-to-meridian
orientation-preserving attaching map f , and similarly Tj to T ′j by a map g.

First, by the van Kampen Theorem we obtain that γi = γ′i and γ(Ek) =
γ(Ek)

′
i. Then, from HNN extension we get γj = c−1

k γ′jck and γ(Ek)
′
j =

c−1
k γ(Ek)ck.

We obtain the following presentation of π1(∂U ′◦ ∪f,g ∂U∗Ek) by replacing

γ′i = γi, γ
′
j = γ

c−1
k
j , γ(Ek) = γiγ

c−1
k
j , γ(Ek)

′
i = γiγ

c−1
k
j , γ(Ek)

′
j = γcki γj in terms of

γi, γj, ck

〈
γ1, . . . γn+s0+1, ck

∣∣∣∣
[γi, γ

c−1
k
j ], [γi, γl] with (i, l) ∈ T

γ
−w′l
l =

∏kl
m=1 γjT (l,m) for l 6= i, j,

γ
−w′i
i = γjT (i,1) · · · γiγ

c−1
k
j · · · γjT (i,ki)

,

γ
−w′j
j = γjT (j,1)

· · · γcki γj · · · γjT (j,kj)

〉

Note that the row of the relations corresponding to i can be simplified to

γ
−(w′i+1)
i = γjT (i,1) · · · γ

c−1
k
j · · · γjT (i,ki)

, (3.2)

as γi commutes with every γjT (i,m). A similar simplification can be made for
the relation corresponding to j.

We repeat the above process for every Ek with k = 1, . . . , g. After this,
the order for the product as in (3.2), is given by the function m 7→ j∆(i,m)
and the conjugations sij as in the statement of the Theorem. We get that

γ
−(w′i+(k′i−ki))
i =

∏k′i
m=1 γ

sij∆(i,m)

j∆(i,m) . Note that k′i − ki equals the number of points

in {p1, . . . , pg} ∩Di, and therefore w′i + (k′i − ki) = wi.
This gives a presentation for the fundamental group of the boundary man-

ifold of the total transform of D, which is homeomorphic to ∂U .

A central computation in our work is the expression of the meridians around
the exceptional divisors Dn+2, . . . , Dn+s0+1 in D =

∑n+s0+1
i=1 Di in terms of

meridians of the lines in A . As a partial result we obtain an expression in the
following corollary. The cycles ck will be expressed in terms of meridians of
the lines in 3.3.2.

Corollary 3.3.2. For r = n+ 2, . . . , n+ s0 + 1, we have that in π1(∂U),

γr =

k′r∏
m=1

γ
srj∆(r,m)

j∆(r,m) with srj =


c−1
k if (r, j) equals the k-th element in C,
ck if (j, r) equals the k-th element in C,
1 if (r, j) is an edge in T .

Proof. It follows from the relation γ−wrr =
∏k′r

m=1 γ
srj∆(r,m)

j∆(i,m) in the presentation of

π1(∂U) in Theorem 3.3.1, the fact that wr = −1 because Dr is an exceptional
divisor and hence j∆(r,m) ∈ {1, . . . , n+ 1}.
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Choice of a maximal tree

In what follows, we will define a maximal tree T ′ of the dual graph ∆ of D as
defined in [CS08, Section 3.3].

In the arrangement A = {L1, . . . , Ln+1}, we will fix the line Ln+1 as the
line at infinity, recall that we denote by Di the strict transform by Li for
i ≤ n+ 1 in D =

∑
Di ⊂ X̄.

Consider the following subset of edges E ′ ⊂ E which defines a maximal tree
T ′ ⊂ ∆ of the dual graph ∆ of D:

1. Let (j, n + 1), (n + 1, j) ∈ E ′ if Dn+1 ∩ Dj 6= ∅. This is, all the edges
having as an endpoint the vertex corresponding to Dn+1.

2. Let (i, j) ∈ E ′ if n+ 1 < j (Dj is an exceptional divisor) with either

• Dj ∩Dn+1 = ∅ and i = min{l | Dl ∩Dj 6= ∅}. Note that Dj comes
from a point in Sing A \ Ln+1.

• or Dj ∩Dn+1 6= ∅ and Di ∩Dj 6= ∅. The line Di corresponds then
to a line Li touching Ln+1 in a point of multiplicity > 2.

Note that E \ E ′ consists either:

• of edges corresponding to double points Li ∩ Lj with i, j < n+ 1,

• or, if p = Li1 ∩ . . .∩Lil with i1 < . . . < il < n+ 1, 2 < l, and Ej denotes
the exceptional divisor obtained by blowing up at p, of edges of the form
(ir, j) with r = 2, . . . , l.

Let us consider the presentation of π1(∂U) as in Theorem 3.3.1. If (i, j) equals
the k-th element in ∆\T ′ as in the first point above, we denote the cycle ck by
ci,j. Recall that if i < j, we pass first through h′(li) and then through h′(lj).

For the cycles created by the edges in the second point, let us suppose that
the irreducible component of D are ordered in such a way that Dn+1∩Dj 6= ∅
for j = n+ 2, . . . , s′ and Dn+1 ∩Dk = ∅ for k > s′.

For s′ < ι ≤ n + 1 + s0, we have that, as Dι is an exceptional divisor,
1 ≤ j∆(ι,m) ≤ n for 1 ≤ m ≤ k′i, and γ−wιι =

∏k′ι
m=1 γ

sιj∆(ι,m)

j∆(ι,m) holds as in

Theorem 3.3.1. Note that if (j∆(ι,m), ι) equals the k-th element in ∆ \ T ′,
we have that sιj∆(ι,m) = ck. In this case, we denote ck by cj∆(ι,m),ι. As T ′ is
a maximal tree, the edges corresponding to (j∆(ι,m), ι) for 1 < m ≤ k′i, give
rise to k′i − 1 independent cycles cj∆(ι,m),ι in ∆.

Using the tree T ′ and corollary 3.3.2, we can express the meridian around
an exceptional divisor in terms of the meridians of the lines and the cycles
cs′′t ,s′′ :

γι = γ
cj∆(ι,1),ι

j∆(ι,1) γ
cj∆(ι,2),ι

j∆(ι,2) · · · γ
cj∆(ι,k′ι),ι
j∆(ι,k′ι)

for s′ < ι ≤ n+ 1 + s0 (3.3)

with cj∆(ι,r),ι = 1 if r = min{j∆(ι,m) | m = 1, . . . , k′i}.
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3.3.2 From a presentation for the boundary manifold of
an arrangement of lines to a presentation of its
complement

Let A ⊂ P2 be an arrangement of lines and ∂U its boundary manifold. We
identify ∂U with the boundary manifold of the total transform D of A in
π : X̄ → P2, the blow-up of P2 at the points of Sing A of multiplicity higher
than two. Denote by i : ∂U ↪→ P2 \A the inclusion map and by i∗ : π1(∂U)→
π1(P2 \A ) the induced homomorphism.

Consider the presentations 〈γ1, . . . , γn+1, c1, . . . , cg | R′〉 of π1(∂U) with R′

the set of relations as in Theorem 3.3.1 and 〈λ1, . . . , λn+1 | ∪Rk, λn+1 · · ·λ1〉 of
π1(P2 \A ) as in Theorem 3.2.12.

Recall that the construction of the meridian γk around the irreducible
component Dk of D =

∑n+1+s0
k=1 Dk depends on a choice of a maximal tree

T of the dual graph ∆ of D, contractible paths lk ⊂ Dk, and a section
h : l = ∪lk → ∂U , see 3.1.4. We choose the maximal tree T ′ constructed
at 3.3.1. For p = Lη1 ∩ . . .∩Lηr ∈ Sing A \Ln+1, we have a unique cycle cη1,η2

if r = 2 and r − 1 cycles if r > 2, in this case let us denote by Dι the corre-
sponding exceptional divisor in X̄, therefore we have the cycles cη2,ι, . . . , cηr,ι.
See 3.3.1.

Consider a wiring diagram W of A as in 3.2.1. There exists κ ∈ N∗ such
that p ∈ Mκ. Consider the geometric generating set Γ(κ) = {λ(κ)

1 , . . . , λ
(κ)
n+1}.

Recall that, as in remark 3.2.13, there exists a word ξ
(κ)
j in λ

(1)
1 , . . . , λ

(1)
n+1 (see

also 3.3.2), such that

λ
(κ)

σ(κ)−1
(j)

= λ
(1)
j

ξ
(κ)
j

for j = 1, . . . , n+ 1.

The main objective of this subsection is to prove the following Theorem.

Theorem 3.3.3. The paths l1, . . . , ln+1+s0, the map h : l→ ∂U and the wiring
diagram W of A can be chosen in such a way that

1. The generator γk of π1(∂U) lies in the same homotopy class as λk in
P2 \A for k = 1, . . . , n+ 1.

2. If p = Lη1 ∩ . . . ∩ Lηr ∈ Sing A \ Ln+1 and p ∈Mκ as above, then

• if r = 2, the cycle cη1,η2 is homotopic in P2 \A to ξ
(κ)
η1 (ξ

(κ)
η2 )−1 and

• if r > 2, the cycle cηa,ι is homotopic to ξ
(κ)
ηa ξ

(κ)
η1

−1
, for a = 2, . . . , r.

By the point (1), we can also consider each ξ
(κ)
ηa as a word in γ1, . . . , γn+1.

3. If p = Lη1∩. . .∩Lηr ∈ Sing A \Ln+1, denote by R′(p) the set of relations:

• {c−1
η1,η2

ξ
(κ)
η1 (ξ

(κ)
η2 )−1} if r = 2 , or
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• {c−1
ηa,ιξ

(κ)
ηa (ξ

(κ)
η1 )−1 | a = 2, . . . , r} if r > 2.

We have that 〈γ1, . . . , γn+1, c1, . . . , cg | R′,∪p∈Sing A \Ln+1R
′(p)〉 and 〈λ1, . . . , λn+1 |

∪Rk, λn+1 · · ·λ1〉 are Tietze-equivalent presentations of π1(P2 \A ).

By using a different presentation of π1(∂U) and different techniques, the im-
age of the generators of π1(∂U) under the map i∗ was computed in [FGBMB15]
(See Proposition 2.13 and Theorem 4.5 of loc. cit.). The proof of Theorem
3.3.3 is inspired by the ideas of [FGBMB15].

Constructing equivalent generators

Let us choose the point R ∈ P2 \ A close to Ln+1, consider the blow-up
πR : BlR P2 → P2 and denote by f̄ : BlRP2 → P1 the associated pencil as in
3.2.1.

Let β : [0, 1] → P1 be as in 3.2.1 such that it passes first through the
projection of the points Sing A ∩Ln+1 to P1 via f̄ . Take its associated wiring
diagram W corresponding to the arrangement A and fix a planar representa-
tion p(β∗W) as in 3.2.1.

Let us order the representation of all the singular points Sing A = {p1, . . . , ps}
in p(β∗W) together with the virtual vertices {p′1, . . . , p′ν} ∈ p(β∗W), by the
order they are crossed by the fiber p(β∗W)|t with t increasing in [0, 1], and
let t1, . . . , ts+ν ∈ (0, 1) be such that either an actual or a virtual vertex lies in
p(β∗(W))|tκ , for all κ = 1, . . . , s+ ν. By abuse of notation we will also denote
by tκ the crossings in p(β∗W) at the fiber p(β∗(W))|tκ and we will writeW for

p(β∗W). Let Γ(κ) = {λ(κ)
1 , . . . , λ

(κ)
n+1} be the geometric generating set defined

in 3.2.2, for κ = 1, . . . , s+ ν.
Recall that we have assumed that the order of the lines L1, . . . , Ln is such

that, at the very right of the planar representation of W , the wire W1 is at
the bottom ofW , above it is the wire W2 and then W3, continuing in this way
until Wn.

For an irreducible component Dk of D ⊂ X̄, denote its boundary manifold
by ψk : ∂Uk → Dk and recall that we can consider ψk|∂U∗k : ∂U∗k = ∂Uk∩∂U →
D∗k (see 3.1.4). A set of generators for π1(∂U∗k ) was constructed by fixing a
base point Qk ∈ D∗k, simple paths lk ⊂ Dk from which we obtain paths l′k ⊂ D∗k
(see figure 3.1) and h : ∪lk → ∂U as in 3.1.4. The generators γ1, . . . , γn+1+s

were constructed by joining the different generators of π1(∂U∗k ) to a common
base point Q via the contractible path h(∪lk) in ∂U .

Recall that the first n + 1 irreducible components D1, . . . , Dn+1 of D cor-
respond to the lines L1, . . . , Ln+1 respectively and that, as in the end of 3.3.1,
there exists s′ such that for j = n+ 2, . . . , s′, we have that Dn+1∩Dj 6= ∅ and
for j > s′, we have Dn+1 ∩Dj = ∅.

Lemma 3.3.4. For k = n + 1, . . . , s′, we can choose l′k ⊂ D∗k, a continuous
map h′k : l′k → ∂U∗k and a base point Q ∈ hn+1(l′n+1) for the fundamental group
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π1(∂U) in such a way that i∗(γr) lies in the same homotopy class as λ
(1)
r for

r = 1, . . . , n+ 1.

Proof. We begin by defining those l′k for k = n + 2, . . . , s′. Essentially, we
arrange the choices in an appropriate way to obtain the stated in the lemma.

More precisely, let Dk be an exceptional divisor corresponding to a point
p = p(k) ∈ Sing A ∩ Ln+1 with multiplicity higher or equal to three. Suppose
that p = Lj ∩ Lj+1 ∩ . . . ∩ Lm−1 ∩ Lm ∩ Ln+1 (which can be written in this
way by the order of the lines chosen above). Consider the boundary manifold
ψk : ∂Uk → Dk in X̄. We will also write ∂Up for the image π(∂Uk) ⊂ P2 under

the map π : X̄ → P2. For r = j, . . . ,m, each meridian λ
(1)
r (see figure 3.3a) is

homotopic to a meridian λ′r
(1) (see figure 3.6) that can be decomposed in the

following way: λ′r
(1) = λpλr1λ

−1
p with λr1 ⊂ ∂Up a meridian of Lr based at a

point qp ∈ ∂Up and λp a path connecting R and qp.

We can further decompose each λr1 as the boundary of a disk ∆ around a
point in Lr and a path λr2 connecting the point qp to ∂∆. Define the path l′k in
D∗k as the projection ψk(∪mr=jλr2). We define h|l′k such that h|l′k ◦ ψk|∪mr=jλr2 =

id|∪mr=jλr2 .

λ′j
(1)

λ′j+1
(1)

λ′m
(1)

∂∆

λm2

λj2

λp

R

qp

•

•

•

•

Figure 3.6: Decomposing a meridian

Note that, up to a slight change in R, the paths λp are homotopic to paths
λ′p lying in ∂U∗n+1.

Now, let p = Lj ∩Ln+1 be a double point in Sing A ∩Ln+1. The meridian

λ
(1)
j can be decomposed as λ′j ·∂∆j ·λ′−1

j , with ∂∆j a fiber of ∂U∗j and λ′j ⊂ ∂U∗n+1

a path starting at R and finishing at point qj ∈ ∂U∗j ∩ ∂U∗n+1.

Finally, for k = n+ 1 we define lk ∈ Dk as the image of β([0, 1]) under the
section of the pencil f̄ : BlR P2 → P1 with range Dk. By construction lk passes
over all the points in Sing A ∩ Ln+1. We let h|ln+1 be a continuous function
such that ψn+1|h|ln+1

(ln+1) ◦ h|ln+1 = idln+1 , h|ln+1(ln+1) is a simple path passing

through each qj with Lj ∩ Ln+1 a double point, touching each λ(n+1)2(p) for
each point p ∈ Sing A ∩Ln+1 of multiplicity greater or equal to two, and such
that each λp · λj2 is homotopic to a segment of h|ln+1(ln+1).

By the construction of the maximal tree T ′, these paths are sufficient to
construct γj for j = 1, . . . , n + 1 and by construction, they lie in the same

homotopy class as λ
(1)
j .
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Corollary 3.3.5. The morphism i∗ : π1(∂U)→ π1(P2 \A ) is surjective.

Proof. The group π1(P2\A ) is generated by the elements Γ(1) = {λ(1)
1 , . . . , λ

(1)
n+1},

as i∗(γk) = λ
(1)
k for k = 1, . . . , n+ 1 the result follows.

Suppose that p ∈Mκ∩ (Sing A \Ln+1) is of multiplicity higher or equal to
three and that p = Lσ(κ)(j)∩Lσ(κ)(j+1)∩ . . .∩Lσ(κ)(m). Denote by ψp : ∂Up → Ep
the boundary manifold of the exceptional divisor Ep ⊂ X̄ obtained by blowing-
up p. We select l′p ⊂ E∗p in a similar way as in the proof of the precedent
Lemma for a point of multiplicity higher than two lying in Ln+1: decompose

each γ
(κ)
j , . . . , γ

(κ)
m into a path λ

(κ)
p connecting R ⊂ P2 and a point qp ∈ ∂Up, and

λr1
(κ) with r ∈ {j, . . . ,m} based at qp and generating π1(∂U∗p ) as in figure 3.6.

Decompose further λr1
(κ) into a boundary of a disk ∂∆r around a point of the

line Lσ(κ)(r) and a path λr2
(κ) connecting qp and ∂∆r. We take l′p = ψp(∪λr2 (κ))

and define h|l′p such that h|l′p ◦ ψp|∪λr2 (κ) = id|∪λr2 (κ) .

For every k = 1, . . . , n, we define lk ⊂ Dk as the image of β([0, 1]) under
the section of f̄ : BlR P2 → P1 that has as range Dk. We define h|lk such

that it is continuous, ψk|h|lk (lk) ◦ hlk = idlk , hlk(lk) intersects ∪λ(κ)
r2 in a point

if p ∈ Mκ ∩ (Sing A ∩ Lk) with the notations as in the paragraph above,
hlk(lk) ∩ hlk′ (lk′) 6= ∅ if Lk ∩ Lk′ 6= ∅ is a double point and hlk(lk) is not
homotopic to a multiple of a fiber S1 of ∂Uk.

Expressing the cycles in terms of the meridians

Let tη ∈ W be an actual vertex and suppose that tη = Wη1 ∩Wη2 ∩ . . . ∩Wηr

with the global order of the wires of W such that η1 < η2 < . . . < ηr < n+ 1.
By definition of the maximal tree T ′, to each ηa, with a > 1, corresponds a
cycle cηa,tη which is a generator of π1(∂U), see 3.3.1. This cycle is constructed
by connecting h|ηa(lηa) · h|tη(l′tη) · h|η1(lη1) to R if r > 2 and by connecting
h|η1(lη1) · h|ηa(lηa) to R if r = 2.

For every κ ≤ η, consider the geometric generating set Γ(κ) = {λ(κ)
1 , . . . , λ

(κ)
n+1}

as in 3.2.2 and recall the construction of the functions τ (κ) : {1, . . . , n+ 1} →
F

(κ)
n+1 as defined before Proposition 3.2.11. For 1 ≤ a ≤ r, denote by

ξ(κ)
ηa = τ (1)(ηa) · τ (2)

(
σ(2)−1

(ηa)
)
. . . τ (κ−1)

(
σ(κ−1)−1

(ηa)
)
. (3.4)

Proposition 3.3.6. Let 1 < a ≤ r. The image of the cycle ctη ,ηa under the

map i∗ equals ξ
(η)
η1 (ξ

(η)
ηa )−1 if r = 2 or ξ

(η)
ηa (ξ

(η)
η1 )−1 if r > 2.

We consider the points θκ < tκ very close to tκ as before Definition 3.2.3.

Lemma 3.3.7. Let Γ(κ) = (λ
(κ)
1 , . . . , λ

(κ)
n+1) be a generating set as above. Then,

for ι = 1, . . . , n + 1 we have that (λ
(κ)
ι )ξ

(κ)
ηa

−1

is homotopic to a meridian of

Lσ(κ)(ι) at the point x
(κ)
ι = f̄−1(β(θκ)) ∩ Lσ(κ)(ι) constructed by:
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(γ
(2)
ι )τ

(1)(ηa)
−1

.

.

.

x
(2)

σ(2)
−1

(ηa)

x
(2)
ι

x
(2)
ι−1

•

•

•

Figure 3.7: A meridian follows another boundary manifold

1. following h|ηa(lηa) until f̄−1(β(θκ)),

2. then joining it to a circle in f̄−1(β(θκ)) about x
(κ)
ι and,

3. coming back via h|ηa(lηa).

See figure 3.7.

Proof. Note that if σ(κ)(ι) = ηa and as λ
(κ)
ι = λ

ξ
(κ)
ηa
ηa , by successive applications

of Proposition 3.2.11, we can choose a meridian in the homotopy class of

(λ
(κ)
ι )ξ

(κ)
ηa

−1

= ληa that satisfies the properties stated in the Lemma (see figure
3.3b).

Now, if σ(κ)(ι) 6= ηa, we proceed by induction. Let t1 = Wj∩Wj+1∩. . .∩Wm

and consider

ξ(2)
ηa = τ (1)(ηa) =

{
λ

(1)
ηa−1 · · ·λ

(1)
j if na ∈ {j + 1, . . . ,m},

1 if ηa 6∈ {j + 1, . . . ,m}.

By construction, for k ∈ {j + 1, . . . ,m} the product λ
(1)
k . . . λ

(1)
j is freely ho-

motopic to a circle containing the points x
(1)
j , . . . , x

(1)
k .

Now, note that the paths in Γ(1) are homotopic to paths in the fiber
f̄−1(β(θ2)) as in Figure 3.3b. Such representative of the homotopy class of

λ
(1)
ι can be seen as lying in the boundary manifold ∂U∗ι .

By considering (λ
(2)
ι )ξ

(2)
ηa

−1

we obtain a path as in figure 3.7 if τ (1)(ηa) 6= 1.
This meridian can be decomposed as stated.

For a general Γ(κ+1), note that as ξ
(κ+1)
ηa = ξ

(κ)
ηa · τ (κ)(σ(κ)−1

(ηa)) and by

repeating the above procedure, we can decompose (λ
(κ+1)
ι )τ

(κ)−1
(σ(κ)−1

(ηa)) as
a meridian of Lσ(κ+1)(ι) that follows l′ηa between f̄−1(β(θκ)) and f̄−1(β(θκ+1))

(see figure 3.7). By applying induction, we obtain that (λ
(κ+1)
ι )ξ

(κ+1)
ηa

−1

can be
decomposed as stated in the lemma.

Proof of Proposition 3.3.6. Note that we have that

ξ(η)
ηa = τ (1)(ηa) · · · τ (η−1)(σ(η−1)−1

(ηa))

= τ (η−1)
(
σ(η−1)−1

(ηa)
)ξ(η−1)

ηa

−1

· · · τ (2)
(
σ(2)−1

(ηa)
)ξ(2)

ηa

−1

τ (1)(ηa).
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by using ξ
(κ)
ηa = ξ

(κ−1)
ηa · τ (κ−1)

(
σ(κ−1)−1

(ηa))
)

for κ = 2, . . . , η.

Now, if τ (κ)(σ(κ)−1
(ηa)) 6= 1, it is homotopic to a path in f̄−1(β(θκ)) en-

circling the points x
(κ)
j , . . . , x

(κ)

σ(κ)−1
(ηa)

and by applying Lemma 3.3.7 to each

factor of τ (κ)(σ(κ)−1
(ηa)) = λ

(κ)

σ(κ)−1
(ηa)

. . . λ
(κ)
j we obtain that τ (κ)(σ(κ)−1

(ηa))

can be decomposed in three parts as in Lemma 3.3.7.

Recall that we have constructed the lηa ⊂ Dηa from a section of the map
f̄ . By the choice of h|ηa we can suppose that hηa ⊂ f̄−1(β[0, 1]) ∩ ∂Uηa .

By considering Y = f̄−1(β([0, 1])) \ π−1
R (R) ⊂ BlR P2, we can see the cycles

ctη ,ηa ⊂ Y ⊂ R3. Moreover, we can choose coordinates in R3 and define
that h|ηa(lηa) passes above h|lk(lk) (or h|lk(lk) passes below h|lηa (lηa)) in some
fiber f̄−1(β(θ′)) with θ′ ∈ [tκ − ε, tκ + ε] with ε > 0 sufficiently small, if the
wires Wηa ∩ Wk 6= ∅ in a planar representation of the fiber f̄−1(β(tκ)) and

σ(κ)−1
(ηa) < σ(κ)−1

(k).

We can see then (τ (κ)(σ(κ)(ηa)))
ξ
(κ)
ηa

−1

as a path encircling the lines Lk cor-
responding to those h|lk(lk) passing below h|lηa (lηa) in some fiber f̄−1(β′(θ′))

with θ′ ∈ [tκ−ε, tκ+ε]. By construction, ξ
(η)
ηa is homotopic to a path encircling

all the lines Lk such that h|lk(lk) lies below hlηa (lηa) at some point in β([0, tη]).

Therefore, we can decompose ξ
(η)
ηa in three parts:

1. The first path starting atQ ∈ h(ln+1) and following h(lηa) until f̄−1(β(θη)).
Then,

2. a simple path starting at h(lηa)∩f̄−1(β(θη)), lying completely in f̄−1(β(θη))
and finishing at f̄−1(β(θη)) ∩ π−1

R (R), and

3. a path connecting π−1
R (R) ∩ f̄−1(β(θη)) to Q ⊂ π−1

R (R).

By decomposing in a similar fashion ξ
(η)
η1 , it follows that the cycle ctη ,ηa is

homotopic in P2 \A to ξ
(η)
η1 (ξ

(η)
ηa )−1 if r = 2 and to ξ

(η)
ηa (ξ

(η)
η1 )−1 if r > 2.

Expressing the relations in terms of the generators

For every r = n+2, . . . , n+s0 +1, we let R′r be the subset of the set of relations
R′ of the presentation of π1(∂U) as in Theorem 3.3.1 such that

R′r = {[γk, γskrr ], γ−wrr =

k′r∏
m=1

γ
srj∆(r,m)

j∆(r,m) | (k, r) ∈ E}

with

skr =


c−1
ι if (k, r) equals the ι-th element in C,
cι if (r, k) equals the ι-th element in C,
1 if (k, r) is an edge of T ′.

89



Proposition 3.3.8. Consider an exceptional divisor Eκ = Dr ⊂ X̄ coming
from a singular point tκ ∈ Sing A ∩Mκ of multiplicity higher or equal to 3.
The image of the set of relations R′r as above, under the map i∗, equals the set

of relations Rκ = [λ
(κ)
m , . . . , λ

(κ)
j ] as in Lemma 3.2.8.

Proof. Let tκ = Wσ(κ)(j) ∩Wσ(κ)(j+1) ∩ . . .∩Wσ(κ)(m) with the local order given

by Π(κ) = {σ(κ)(1) < . . . < σ(κ)(n+ 1)}. As wr = −1 and by the local order of

the wires we have that γr = γ
c
σ(κ)(m),tκ

σ(κ)(m)
· · · γ

c
σ(κ)(j),tκ

σ(κ)(j)
, that [γr, γ

cσ(κ),tκ

σ(κ) ] and that

cσ(κ)(k),tκ = c−1
tκ,σ(κ)(k)

.

Let us omit the superscript λκ = λ
(1)
κ for the elements in Γ(1).

By considering the image under i∗ of the elements in R′r, we have by Lemma
3.3.4 and by Proposition 3.3.6 that

i∗(γr) = λ
ξ
(κ)

σ(κ)(m)
ξ
(κ)
ι

−1

σ(κ)(m)
· · ·λ

ξ
(κ)

σ(κ)(j+1)
ξ
(κ)
ι

−1

σ(κ)(j+1)
λ
ξ
(κ)

σ(κ)(j)
ξ
(κ)
ι

−1

σ(κ)(j)
, [i∗(γr), λ

ξ
(κ)

σ(κ)(k)
ξ
(κ)
ι

−1

σ(κ)(k)
].

with ι = min{σ(κ)(j), σ(κ)(j + 1), . . . , σ(κ)(m)}.

The commutators can also be written as [i∗(γr)
ξ
(κ)
ι , λ

ξ
(κ)

σ(κ)(k)

σ(κ)(k)
] . But as i∗(γr)

ξ
(κ)
ι =

λ
ξ
(κ)

σ(κ)(m)

σ(κ)(m)
· · ·λ

ξ
(κ)

σ(κ)(j+1)

σ(κ)(j+1)
λ
ξ
(κ)

σ(κ)(j)

σ(κ)(j)
, we have that the relations [i∗(γr)

ξ
(κ)
ι , λ

ξ
(κ)

σ(κ)(k)

σ(κ)(k)
] can

be condensed as [λ
ξ
(κ)

σ(κ)(m)

σ(κ)(m)
, · · · , λ

ξ
(κ)

σ(κ)(j+1)

σ(κ)(j+1)
, λ

ξ
(κ)

σ(κ)(j)

σ(κ)(j)
]. Now, ifRκ = [λ

(κ)
m , . . . , λ

(κ)
j+1, λ

(κ)
j ]

denotes the relation given in Theorem 3.2.12 for the point tκ as in Lemma

3.2.8, recall that we have the equality λ
(κ)
k = λ

ξ
σ(κ)(k)

σ(κ)(k)
. By replacing it in the

commutators above, the result follows.

Proposition 3.3.9. For r = 1, . . . , n+ 1, we have the equality

i∗(γ
wr
r

k′r∏
m=1

γ
srj∆(r,m)

j∆(r,m) ) = γn+1 · · · γ1

in π1(P2 \A ) with srj as above.

Proof. Fix Lr ∈ A . Let {p1, . . . , pb} ⊂ Sing A ∩ Lr be the singular points of
the arrangement lying in Lr. Note that b = k′r. Indeed, we can find a partition
A∪B = {1, . . . , k′r}, with A a set indexing the double points of Sing A ∩Lr, and
B indexing the points of multiplicity strictly bigger than two. Let π : X̄ → P2

be the blow-up of P2 at the points of Sing A of multiplicity strictly bigger
than two and let Dr denote the strict transform of Lr in X̄. We have that
A also indexes all the strict transforms of lines in A which have no empty
intersection with Dr, and B the exceptional divisors of X̄ crossing Dr. It is
clear then that b = k′r.

It follows that γj∆(r,m) is a meridian of an irreducible component Dj∆(r,m)

of D = π∗D for m = 1, . . . , k′r. Recall that γr commutes with γ
srj∆(r,m)

j∆(r,m) and

note that the self-intersection number wr of Dr is 1− |B|.

90



Let us study the geometric meaning of the product γ−1
r γ

srj∆(r,m)

j∆(r,m) with m ∈
B. Let us write ι = j∆(r,m), denote by Dι = Dj∆(r,m) the exceptional divisor
that γj∆(r,m) surrounds, and let Dι1 , . . . , Dιk be the irreducibles components of
D = π∗A that intersect Dι ordered in such a way that, if we denote by γιj the

meridians around Dιj used for the presentation of π1(∂U), γ−wιι = γ
sιι1
ι1 · · · γ

sιιk
ιk

holds. As Dι is an exceptional divisor, we have that wι = −1. By Theorem
3.3.1, we have that [γι, γ

sιιj
ιj ] for j = 1, . . . , k = k(ι).

Replacing the expression γι as above in [γι, γ
sιιj
ιj ], we can show that these

commutators relations are equivalent to

γ
sιι1
ι1 γ

sιι2
ι2 · · · γ

sιιk
ιk = γ

sισ(ι1)

σ(ι1) γ
sισ(ι2)

σ(ι2) · · · γ
sισ(ιk)

σ(ιk)

where σ runs over the cyclic permutations of the elements {ι1, . . . , ιk}. Hence
there exists some cyclic permutation σ′ such that σ′(ι1) = r because Dr in-
tersects Dj∆(r,m) = Dι. Note that srι = s−1

ιr = s−1
ισ′(ι1) and hence γ−1

r γsrιι =

(γ
sισ′(ι2)

σ′(ι2) · · · γ
sισ′(ιk)

σ′(ιk) )srι represents a loop which surrounds the lines Lσ′(ι2), . . . , Lσ′(ιk)

following l′r by construction of the cycle srι.

Now, the product γwrr
∏k′r

m=1 γ
srj∆(r,m)

j∆(r,m) can be written as γr
∏k′r

m=1 Υm with

Υm =

{
γ
srj∆(r,m)

j∆(r,m) if m ∈ A,
γ−1γ

srj∆(r,m)

j∆(r,m) if m ∈ B.

by commuting γr with γ
srj∆(r,m)

j∆(r,m) . Note that, for Υm with m ∈ A, the path
Υm is a meridian around the other line that intersects Dr in the double point
corresponding to m ∈ A. Hence, by the precedent paragraph, γr

∏k′r
m=1 Υm is a

product of the meridians of all the lines in A ordered in the way they intersect
Lr.

Now, by choosing a line L sufficiently close to Lr we have that the product
γwrr

∏k′r
m=1 γ

srj∆(r,m)

j∆(r,m) is a path encircling L\(L∩A ) and therefore it is equivalent

to λn+1 · · ·λ1 in π1(P2 \A ).

End of proof of the Theorem 3.3.3

The point (1) of the Theorem is obtained by Lemma 3.3.4.
The point (2) follows from Proposition 3.3.8.
For the point (3), recall that R′ denotes the set of relations for the pre-

sentation of π1(∂U) as in Theorem 3.3.1. Using the notation of 3.3.2 we have
that

R′\∪R′k = {γwrr
k′r∏
m=1

γ
srj∆(r,m)

j∆(r,m) , [γk, γ
skr
r ] | r = 1, . . . , n+1, Dk∩Dr ∈ Sing A \P0}

this is, Dk ∩Dr is a double point.
By Proposition 3.3.9, we have that i∗(γ

wr
r

∏k′r
m=1 γ

srj∆(r,m)

j∆(r,m) ) = λn+1 . . . λ1.
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By proceeding as in Proposition 3.3.8, it can be seen that for a double
point pκ = Dk ∩Dr, the relation [γk, γ

skr
r ] correspond to the relation Rκ as in

Theorem 3.2.12.
Hence, in 〈γ1, . . . , γn+1, c1, . . . , cg | R′,∪p∈Sing A \Ln+1R

′(p)〉 the set of rela-
tions R′ is equivalent to the set of relations ∪Rκ ∪ {λn+1 · · ·λ1}.

This concludes the proof of Theorem 3.3.3.

Independence of the maximal tree

Let D =
∑n+1+s0

k=1 Dk the total transform of the arrangement A in X̄ and
denote by ∆ the dual graph of D as above.

Let T ⊂ ∆ be an arbitrary maximal tree and denote byG(T ) = {γ1(T ), . . . ,
γn+1+s0(T ), c1(T ), · · · , cg(T )}, the set of generators of π1(∂U) as in Theorem
3.3.1. Recall that these are constructed using T . Denote by R(T ) the set of
relations given in the same Theorem.

Consider also the maximal tree T ′ defined as in 3.3.1 and denote by γ1, . . . , γn+1+s0 ,
c1, . . . , cg the generators of π1(∂U) as in Theorem 3.3.3 and by R the set of
relations.

Consider the inclusion i : ∂U ↪→ P2\A and fix i∗(γ1) = λ1, . . . , i∗(γn+1+s0) =
λn+1+s0 as a set of generators for π1(P2 \A ) with Γ(1) = {λ1, . . . , λn+1} as in
Theorem 3.3.3. For ι = 1, . . . , n + 1 + s0, we have that i∗(γι(T )) and λι are
meridians of the same smooth curve Dι, therefore, we can express i∗(γι(T ))
as a conjugate of λι by elements in λ1, . . . , λn+1. We let δι denote the word in
π1(P2 \A ) representing i∗(cι) in the letters λ1, . . . , λn+1+s0 and by δ′ι the same
word in the letters γ1, . . . , γn+1+s0 as in Theorem 3.3.3.

Reciprocally, by fixing i∗(γ1(T )), . . . , i∗(γn+1+s0(T )) as generators of π1(P2\
A ), we can express λι as a conjugate of i∗(γι(T )) by elements in i∗(γ1(T )), . . . ,
i∗(γn+1+s0(T )) for ι = 1, . . . , n+ 1. The image i∗(cι(T )) of the cycle cι(T ) can
be expressed in terms of i∗(γ1(T )), . . . , i∗(γn+1+s0(T )) for ι = 1, . . . , g. We let
δι(T ) be this expression when it is written in terms of γ1(T ), . . . , γn+1+s0(T )
such that δι(T ) ∈ 〈G(T ) | R(T )〉.

Proposition 3.3.10. A presentation of π1(P2 \A ) can be obtained as follows

π1(P2 \A ) ∼= 〈G(T ) | R(T ), c1(T ) · δ1(T )−1, · · · , cg(T ) · δg(T ))−1〉,

Proof. The presentations 〈G(T ) | R(T )〉 and 〈γ1, . . . , γn+1+s0 , c1, . . . , cg | R〉
of π1(∂U) as in Theorem 3.3.1 can also be obtained as graphs of groups (see
[Hir00]). These graphs of groups are constructed over ∆ as follows: the vertices
groups are given as in Lemma 3.1.4, the edges groups are Z2. To each tree of ∆
there correspond a presentation and the presentations are Tietze-equivalent.

Let us fix vn+1, the vertex corresponding to Dn+1 as a base point for π1(∆)
and c1, . . . , cg a generating set. Every cycle cι(T ) ∈ π1(∆, vn+1) can be ex-
pressed as cι(T ) = cι1 · · · cιrι where cιm ∈ {c1, . . . , cg} with m = 1, . . . , rι and
ι = 1, . . . , g. Therefore i∗(cι(T )) = i∗(cι1) · · · i∗(cιrι) = δι1 · · · διrι . Let us show
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that

cι(T ) · δι(T )−1 = cι1 · · · cιrιδ′ιrι
−1 · · · δ′ι1

−1 ∈ 〈〈c1 · δ′ι1
−1
, . . . , cg · δ′g

−1〉〉.

Note that

(cι1δ
′
ι1
−1

)(cι2δ
′
ι2
−1

)δ
−1
ι1 = cι1cι2δ

′
ι2
−1
δ′ι1
−1

...

(cι1δ
′
ι1
−1

) · · · (cιrιδ′ιrι
−1

)δ
′
ιrι
−1···δ′ι1

−1

= cι1 · · · cιιrδ′ιrι
−1 · · · δ′ι1

−1

In a similar way we can prove that cι · δ′ι
−1 ∈ 〈〈c1(T ) · δ1(T )−1, . . . , cg(T ) ·

δg(T )−1〉〉. This proves that the presentations 〈G(T ) | R(T ), c1(T )δ1(T )−1, · · · , cg(T )δg(T ))−1〉,
and 〈γ1, . . . , γn+1+s0 , c1, . . . , cg | R, c1δ

′
1
−1, . . . , cgδ

′
g
−1〉 are equivalent. We con-

clude by Theorem 3.3.3.

3.3.3 Boundary manifold of a partial compactification

Here we will present another presentation for the fundamental group of certain
partial compactifications M(A , I, P ), where M(A , I, P ) is as in 3.1.3, but
the lines of D indexed by I correspond only to exceptional divisors, this is,
I ⊂ {n+ 2, . . . , n+ 1 + s0}

Inclusion of the boundary of a partial compactification

Let us recall the notation of section 3.1.3.
Let A ⊂ P2 be an arrangement of lines and X̄ the blow-up at the points

P0 = {p1, . . . , ps0} of Sing A with multiplicity strictly higher than two and let
D =

∑n+1+s0
k=1 Dk be the reduced total transform of A in X̄.

Here, we suppose that I ⊂ {n+2, . . . , n+1+s0} and let P = {p′1, . . . , p′s1} ⊂
Sing

∑
k 6∈I Dk. Denote by π′ : BlP X̄ → X̄ the blow-up map and the dual graph

of |π′∗D| by ∆. Note that in the previous section ∆ denoted instead the dual
graph of D. Consider the divisor D′ ⊂ BlP X̄ as in 3.1.3 and denote by ∆′

the dual graph of D′. Recall that ∆′ is obtained from ∆ by removing some
vertices and the corresponding adjacent edges.

In 3.1.3 we defined the partial compactification M(A , I, P ) of M(A ) as
BlP X̄ \D′.

Let us assume that D′ is connected, which is equivalent to ∆′ being con-
nected. Therefore, there exists a maximal tree T∆′ ⊂ ∆′. Note that every cycle
in ∆′ can be seen as a cycle in ∆.

Lemma 3.3.11. Any maximal tree T∆′ can be completed to a maximal tree
T∆′,∆ in ∆.

Proof. Let {v1, . . . , vk} be the vertices of ∆ which are to be removed along
with its adjacent edges in order to obtain ∆′.
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As I ⊂ {n+ 2, . . . , n+ 1 + s0} and P ⊂ Sing
∑

ι6∈I Dι, we have that all the

vertices in {v1, . . . , vk} correspond to exceptional divisors in BlP X̄, therefore
there is no edge connecting vι and vj for ι 6= j and to complete T∆′ to a
maximal tree of ∆ it suffices to take no matter what edge connecting a vertex
in T∆′ and vι for ι = 1, . . . , k because no cycle will be created in this way.

Corollary 3.3.12. Let g denote the number of independent cycles in ∆. Let
c1(T∆′), . . . , cg′(T∆′) be independent cycles in ∆′ each one formed by adjoining
one edge in ∆′ to the maximal tree T∆′. There exists cg′+1(T∆′,∆), . . . , cg(T∆′,∆)
cycles in ∆ that together with c1(T∆′,∆) = c1(T∆′), . . . , cg′(T∆′,∆) = cg′(T∆′)
complete a generating set of π1(∆, vn+1).

Let us denote by ∂U the boundary manifold of the total transform of D
in BlP X̄. By proceeding as in the proof of Theorem 3.3.1, we have that
a presentation for π1(∂U), by using the maximal tree T∆′,∆, has generators
γ1 = γ1(T∆′,∆), . . . , γn+1+s0+s1 = γn+1+s0+s1(T∆′,∆), c1 = c1(T∆′,∆), . . . , cg =
cg(T∆′,∆) and a set of relations

R =

{
[γr, γ

srj
j ], (r, j) ∈ E(∆)

γ
−w′r
r =

∏k′r
m=1 γ

srj∆(i,m)

j∆(r,m) 1 ≤ r ≤ n+ 1 + s0 + s1

}
(3.5)

where w′r = D′r ·D′r, for an irreducible component D′r of π′∗D, we denoted by
k′r the number of points in Sing π′∗D∩D′r (see the proof of Proposition 3.3.9),
and

srj =


c−1
k if (r, j) equals the k-th element in ∆ \ T∆′,∆,
ck if (j, r) equals the k-th element in ∆ \ T∆′,∆,
1 if (r, j) is an edge of T∆′,∆.

Moreover, let ∂U ′ denote the boundary manifold of D′ ⊂ BlP X̄. Here,
if r 6∈ I let us denote by k′′r the number of points in (Dk ∩

∑
ι6∈I Dι) \ P or

equivalently, in D′k ∩D′. By using the maximal tree T∆′ of ∆′ and proceeding
as in the proof of Theorem 3.3.1, we obtain the following Proposition.

Proposition 3.3.13. A presentation for π1(∂U ′) is given by

〈 γι, ι ∈ J
∣∣[γr, γsrjj ], (r, j) ∈ E(∆′)

c1, . . . , cg′

∣∣∣∣γ−w′rr =
∏k′′r

m=1 γ
srj∆′ (r,m)

j∆′ (r,m) r ∈ J

〉

where J = {1, . . . , n+ 1 + s0} \ I, E(∆′) denotes the set of edges of ∆′, w′r the
self-intersection number of the strict transform D′r of Dr in BlP X̄ and

srj =


c−1
k if (r, j) equals the k-th element in ∆′ \ T∆′ ,
ck if (j, r) equals the k-th element in ∆′ \ T∆′ ,
1 if (r, j) is an edge of T∆′ .
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For every ι ∈ I, we have that, as D′ι is an exceptional divisor, the following
relation is in R:

γι =

k′ι∏
m=1

γ
sιj∆′,∆(ι,m)

j∆′,∆(ι,m) . (3.6)

Analogously, if p = pι ∈ P , by abuse of notation we will write p =
n+ 1 + s0 + ι. We have that if p = Dr ∩Dj:

γp = γsprr γ
spj
j (3.7)

By using the map i : ∂U → M(A ) = P2 \ A as in 3.3.2, we can express
the image of the cycles i∗(cr) as a word in the letters i∗(γ1), . . . , i∗(γn+1), for
r = 1, . . . , g. Let us denote by δr the word obtained by replacing the letters
i∗(γ1), . . . , i∗(γn+1) by γ1, . . . , γn+1 in this precedent word associated to i∗(cr).

By using δ1, . . . , δg and replacing i∗(γ1), . . . , i∗(γn+1) by γ1, . . . , γn+1, we can

express the words i∗(
∏k′ι

m=1 γ
sιj∆′,∆(ι,m)

j∆′,∆(ι,m) ) and i∗(γ
spr
r γ

spj
j ) with ι ∈ I and p ∈ P

as words γ(ι), γ(p) ∈ π1(∂U ′) respectively.
Let us denote by R′ the set of relations in the presentation given by Propo-

sition 3.3.13.

Theorem 3.3.14. A presentation of π1(M(A , I, P )) is given by

〈c1, . . . , cg′ , γι ι ∈ J | R′, c1δ
−1
1 , . . . , cg′δ

−1
g′ ,∪ι∈Iγ(ι),∪p∈Pγ(p)〉

with J = {1, . . . , n+ 1 + s0} \ I.

Proof. Consider the following diagram:

π1(∂U) π1(M(A )) π1(∂U)/〈〈c1δ
−1
l , . . . , cgδ

−1
g 〉〉

π1(∂U ′) π1(M(A , I, P )) π1(M(A ))/〈〈i∗(γι), i∗(γp)〉〉

∼=

∼=

Where the isomorphism in the right of the first row comes from Theorem
3.3.3 and Proposition 3.3.10.

From the rightest column we obtain that

π1(∂U)/〈〈c1δ
−1
1 , . . . , cgδ

−1
g , γ(ι), γ(p)〉〉 ∼= π1(M(A , I, P )). (3.8)

We will see that this presentation is equivalent to

π1(∂U ′)/〈〈γ(ι), γ(p), c1 · δ−1
1 , . . . , cg′δ

−1
g′ )〉〉 (3.9)

Indeed, by the choice of the maximal tree T∆′,∆, the are only four types of
relations in R of the presentation of π1(∂U) involving the cycles cg′ , . . . , cg:

• commutators [γr, γ
srr′
r′ ] with r′ = ι, p,

95



• those relations as in (3.6),

• those relations as in (3.7), and

• relations γ
−w′r
r =

∏k′r
m=1 γ

srj∆′,∆(r,m)

j∆′,∆(r,m) with (r, ι) or (r, p) an edge in ∆.

By adding the relations c1 = δ1, . . . , cg = δg, we can see these relations as
expressed in terms of γ1, . . . , γn+1+s0 .

Note that the commutator-relation as in the first point above becomes
trivial in π1(∂U)/〈〈c1δ

−1
1 , . . . , cgδ

−1
g , γ(ι), γ(p)〉〉.

The relations in the points two and three above, are by construction, equiv-
alent to the words γ(ι), γ(p).

For the relations as in the fourth point, note that k′′r = k′r−|P ∩Dr|−{ι ∈
I | Dι ∩Dr 6= ∅}.

An example

The following example of a partial compactification M(A , I, P ) of the com-
plement M(A ) of an arrangement of lines A in P2 is such that M(A , I, P ) is
a Q-homology plane. In fact, it is the arrangement A with the fewest number
of lines such that the fundamental group π1(M(A )) is non-abelian and M(A )
has partial compactifications that are Q-homology planes, see [tDP93]. 1

Let A = {L1, . . . , L5} ⊂ P2 be an arrangement of 5 lines with 2 triple points
and 4 double points. Projective equations are obtained by homogenizing the
equation of example 3.2.1 and adding the line at infinity z3 = 0.

D1

D6

D5

D7

D4

D2
D33

7

84

10

9

2

1

5

6

Edges to be removed
to obtain T∆′ to obtain T ′

(a) Dual Graph

D′1

D′6

D′5

D′7

D′4

D′2
D′3

(b) Dual Tree T∆′

Figure 3.8: Dual graphs

Let P0 = {p1, p2} ⊂ Sing A be the triple points in the arrangement A ,
π : X̄ := BlP0 P2 → P2 be the blow up at P0 of the projective plane and
D = π∗A =

∑7
i=1Di the reduced total transform of the arrangement A seen

1We plan to investigate the fundamental group of the Q-homology planes arising as
partial compactifications of such arrangements in future work.
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as divisor, we obtain a dual graph ∆ of D as in figure 3.8a with the labeling
of the edges as indicated on it.

We will delete the edges labeled as [4, 5, 6, 7] to obtain a tree as in Fig
3.8b, we let P1 := {p′1, p′2, p′3, p′4} ⊂ SingD be the points in D corresponding
to the required edges, with the numeration as in figure 3.8a. Consider π′ :
BlP1 X̄ → X̄ and let D′ = π′∗(D)−

∑
7<iD

′
i. If we set I = ∅, we have defined

M(A ,∅, P1) = BlP1 X̄ \D′ in 3.1.3.
Denote by ∆′ the dual graph of D′, note that ∆′ = T∆′ it is already a tree.

Let 〈γ′1, . . . , γ′7 | R′〉 be the presentation of π1(∂U ′) of the boundary manifold
∂U ′ of the divisor D′ as in Theorem 3.1.6 using the tree ∆′.

The following Lemma follows the computations as in [Wag71].

Lemma 3.3.15. The group 〈γ′1, . . . , γ′7 | R′〉 is infinite solvable.

Proof. Recall that D1, . . . , D5 are strict transform of the lines Lk for k =
1, . . . , 5 and that D6, D7 are exceptional divisors. The lines D′1, . . . , D

′
7 are

strict transforms of these lines in BlP X̄.
Denote by ∂U ′k the boundary manifold of D′k in BlP X̄, by ∂U ′ the boundary

manifold of D′, and by ∂U ′k
∗ = ∂U ′k∩∂U ′. By abuse of notation, we will denote

also by γ′k the fiber S1 in the group π1(∂U ′∗k ).
As D′6 · D′6 = −3 in BlP X̄ we obtain by Lemma 3.1.4 that π1(∂U ′6

∗) =
〈γ′6, γ′1 | γ′6

3 = γ′1, [γ
′
6, γ
′
1]〉. Note that D′1 · D′1 = −1 in BlP1 X̄ and therefore

π1(∂U ′1
∗) = 〈γ′1, γ′6, γ′4 | γ′1 = γ′6γ

′
4, [γ

′
1, γ
′
6], [γ′1, γ

′
4]〉. By replacing the relation

γ′1 = γ′6γ
′
4 inside [γ′1, γ

′
6], [γ′1, γ

′
4], and γ′6

3 = γ′1 in γ′1 = γ′6γ
′
4, we obtain that

π1(∂U ′1
∗) = 〈γ′6, γ′4 | γ′6

2 = γ′4, [γ
′
6, γ
′
4]〉. We obtain that π1(∂U ′) is isomorphic

to the boundary manifold of a divisor such that its dual graph is as in Figure
3.9.

−2
L′ D′4

1

D′2

−2

D′7
−1

D′3

−2

D′5
−2

Figure 3.9: Dual tree with weights

We will prove that the subgroup N := 〈γ′4, γ′7〉 is in fact normal in π1(∂U ′).
By Theorem 3.1.6, and using the reduction above of π1(∂U ′6

∗), we have the
following presentation for π1(∂U ′)〈
γ′2, γ

′
3, γ
′
4, γ
′
5, γ
′
6, γ
′
7

∣∣∣∣ γ′62 = γ′4, γ
′
2

2 = γ′4, γ
′
3

2 = γ′7, γ
′
5

2 = γ′7, [γ
′
4, γ
′
6], [γ′4, γ

′
2]

γ′4
−1 = γ′6γ

′
2γ
′
7, γ
′
7 = γ′5γ

′
4γ
′
3, [γ

′
7, γ
′
4], [γ′7, γ

′
3], [γ′7, γ

′
5]

〉
.

(3.10)
Note that N is abelian and that π1(∂U ′)/N ∼= (Z/2Z) ∗ (Z/2Z). The

element γ′7 commutes with γ′4, γ
′
3, and γ′5, we will show that γ′7

γ′2 , γ′7
γ′6 ∈ N . To
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emphasize the symmetry let us write n = −1, therefore γ′4
n = γ′2

2n = γ′6γ
′
2γ
′
7.

This implies γ′6 = γ′7
−1γ′2

2n−1 by using [γ′2
2, γ′7] , then we use γ′6

2 = γ′4 to obtain
(γ′7
−1γ′2

2n−1)(γ′7
−1γ′2

2n−1) = γ′4 = γ′2
2, which implies γ′7

−1γ′2
−1γ′7

−1γ′2
4n−3 = 1,

and therefore γ′7
−1γ′2

4n−4 = γ′2γ
′
7γ
′
2
−1. Finally γ′7

−1γ′4
2n−2 = γ′7

γ′2
−1

. The rest
are obtained in a similar way by symmetry (see figure 3.9) and therefore N is
normal.

Proposition 3.3.16. The group π1(M(A ,∅, P1)) is finite, cyclic of order
four.

Proof. The maximal tree T ′ defined in 3.3.1 is obtained from ∆ by deleting
the edges [1, 2, 5, 6] in figure 3.8a. Let us denote by γ1, . . . , γ7 the meridians
around the lines D′1, . . . , D

′
7 constructed using the tree T ′ as in Theorem 3.3.3.

We will denote by cr,j the cycle created following T ′ by joining the vertex D′r
to D′j, we have: c1,3, c1,4, c2,3, c2,4. By removing redundant relations, we obtain
the following presentation of the fundamental group of the boundary manifold
∂U of A from Theorem 3.3.1 (see also the wiring diagram of Figure 3.2):

〈
γ1, γ2, γ3, γ4

c1,3, c1,4, c2,3, c2,4

∣∣∣∣∣∣∣
γ0

1 = 1 = γ3
c−1
1,3γ4

c−1
1,4γ6, γ

0
2 = 1 = γ3

c−1
2,3γ4

c−1
2,4γ6,

γ0
3 = 1 = γ2

c2,3γ1
c1,3γ7, γ

0
4 = 1 = γ2

c2,4γ1
c1,4γ7,

[γ1, γ4
c−1
1,4 ], [γ1, γ3

c−1
1,3 ], [γ2, γ4

c−1
2,4 ], [γ2, γ3

c−1
2,3 ]

〉
(3.11)

We have that γ6 = γ5γ2γ1, γ7 = γ5γ4γ3 and γ5 = γ7γ6 hence γ5 = γ5γ4γ3γ5γ2γ1

and therefore we have that γ5 = (γ4γ3)−1(γ2γ1)−1.
We will use the wiring diagram in figure 3.2 of the arrangement A to

express i∗(cr,j) in terms of γ1, . . . , γ4 in M(A ). Using Proposition 3.3.6 we
obtain that

i∗(c1,4) = γ−1
3 , i∗(c1,3) = 1, i∗(c2,4) = γ1(γ3γ1)−1 = γ−1

3 , i∗(c2,3) = γ1γ
−1
1 = 1.

(3.12)
The non-commutator relations of (3.11) are already trivial in π1(M(A )) by

Proposition 3.3.9. In order to see this concretely, let us compute for example:

i∗(γ3
c−1
1,3γ4

c−1
1,4γ6) = γ3γ

γ3

4 γ5γ2γ1 = γ4γ3(γ4γ3)−1(γ2γ1)−1γ2γ1 = 1,

by (3.12) and using the expressions for γ6 and γ5 given after (3.11).
From (3.11), (3.12), and Theorem 3.3.3, we obtain the following presenta-

tion for the fundamental group of M(A ):

π1(M(A )) = 〈γ1, γ2, γ3, γ4 | [γ1, γ4
γ3 ], [γ1, γ3], [γ2, γ4

γ3 ], [γ2, γ3]〉 (3.13)

By using the commutators [γ1, γ3], [γ2, γ3], we can see that the conjugations
inside the other commutators are redundant. We found that π1(M(A )) ∼=
F2×F2, which can be seen directly by noticing that M(A ) ∼= C\{2−points}×
C \ {2− points}.
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Let us come back to the tree T∆′ = ∆′ obtained from ∆ by removing
[4, 5, 6, 7], denote the meridians around D′1, . . . , D

′
11 constructed following T∆′

by γ′1, . . . , γ
′
11, and the cycles by k5,6 = c5,6(T∆′), k1,3 = c1,3(T∆′), k2,3 = c2,3(T∆′), k2,6 =

c2,6(T∆′) obtained by joining the vertex D′r to D′j. From figures 3.8a and 3.8b
it is easy to see that in π1(∂U) they satisfy the following relations:

k5,6 = c1,4, k1,3 = c−1
1,4c1,3, k2,3 = c−1

2,4c2,3, k2,6 = c−1
2,4c1,4. (3.14)

To every point p′ι ∈ P = {p′1, . . . , p′4} corresponds an irreducible component
D′7+ι of π′∗(D) which is an exceptional divisor. Using the relations as in (3.5),
we have that

γ′8 = γ′6
k−1

5,6γ′5, γ
′
9 = γ

′k1,3

1 γ′3, γ
′
10 = γ

′k2,3

2 γ′3, γ
′
11 = γ

′k2,6

2 γ′6, (3.15)

we have that γ7+ι is a meridian around D′7+ι for i = 1, 2, 3, 4.
The following meridians lie in the same homotopy class in the boundary

manifold ∂U when constructed either with the tree T∆′ or T ′:

γ′5 = γ5, γ
′
7 = γ7, γ

′
3 = γ3, γ

′
4 = γ4,

the others satisfy the relations:

γ′6 = γ
c1,4
6 , γ′1 = γ

c1,4
1 , γ′2 = γ

c2,4
2 .

Finally, as in the proof of Theorem 3.3.14, by using proposition 3.1.1 and the
presentation in (3.13), we found that

π1(M(A ,∅, P1)) = π1(M(A ))/〈〈i∗(γ′8), . . . , i∗(γ
′
11)〉〉 = 〈γ3 | γ4

3 = 1〉.

Indeed, this follows from

i∗(γ
′
8) = (γ4γ3)−2(γ2γ1)−1, i∗(γ

′
9) = γ1γ3,

i∗(γ
′
10) = γ2γ3, i∗(γ

′
11) = γ

γ−1
3

2 ((γ4γ3)−1)γ
−1
3 ,

and π1(M(A ))/〈〈i∗(γ′9), i∗(γ
′
10)〉〉 ∼= Z2, where we have used (3.12), (3.14) and

(3.15) to express i∗(γ
′
7+ι) in terms of γι for ι = 1, . . . , 4.

Remark 3.3.17. In the last part of the proof of Proposition 3.3.16, we could
have used directly Theorem 3.3.14 to obtain a presentation of π1(M(A ,∅, P1))
by using the presentation of π1(∂U ′) as (3.10) in Lemma 3.3.15 and adding

the relations {1 = γ
′γ′3
6 γ′5, 1 = (γ′6γ

′
4)γ
′
3γ′3, 1 = γ

′γ′3
2 γ′3, 1 = γ′2γ6} corresponding

respectively to the relations γ(p′1), . . . , γ(p
′
4) in Theorem 3.3.14.

Indeed, we can express the images i∗(kr,j) of the cycles associated to T∆′

in terms of γ′1, . . . , γ
′
4 by using (3.12), (3.14) and the correspondence between

γr and γ′r as above. We then substitute this in (3.15) obtaining the words
γ(p′1), . . . , γ(p′4).

It can be shown that the presentation obtained for π1(M(A ,∅, P1)) is the
same as that of Proposition 3.3.16. However, the computations are longer so
we have preferred to avoid them.
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rationen und algebraische flächen, Aspects of mathematics: D,
Vieweg+Teubner Verlag, 1987.

[BLVS+99] A. Björner, M. Las Vergnas, B. Sturmfels, N. White
& G. M. Ziegler – Oriented matroids, 2 éd., Encyclopedia of
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Generalizations of Uludağ’s construction”, Algebr. Geom.
Topol. 3 (2003), no. 1, p. 593–622.
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