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Abstract. We study the fundamental group of certain partial compactifi-
cations of the complement of an arrangement of lines in the complex projective
plane.

First, by modifying a method of Randell, we give a presentation for the
fundamental group when the arrangement is defined by real linear forms. We
use this to give a negative answer to a question posed by Eyssidieux to the
effect that the first integral homology group of such surfaces is finite if and
only if the fundamental group is finite.

After that, in order to study certain partial compactifications related to
isotrivial fibrations to curves, a generalization of a structure theorem for the
fundamental group of quotients of products of curves of Bauer-Catanese-Gru-
newald-Pignatelli is given.

Finally, we extend the presentation obtained in the case of a real arrange-
ment to the case of a complex arrangement and to a more general type of
partial compactifications. For one such surface, we compare this presentation
with that of its fundamental group at infinity and we show that the first can
be obtained from the latter by adding some relations. We obtain as a conse-
quence a presentation for the fundamental group of certain homology planes
constructed from arrangements of lines.

Résumé. Dans cette these, on étudie le groupe fondamental de certains
compactifications partielles du complément d’un arrangement de droites dans
le plan projectif complexe.

D’abord, on modifie une méthode utilisée par Randell pour obtenir une
présentation du groupe fondamental de telles compactifications partielles quand
I’arrangement est définie par des formes linéaires réels. On utilise cette présentation
pour donner une réponse négative a une question posée par P. Eyssidieux de-
mandant si le premier groupe d’homologie d'une telle surface est fini si et
seulement si son groupe fondamental 1’est.

Apres, motivé par ’étude de certains compactifications partielles reliées a
des fibrations isotriviales, on généralise un théoreme de structure du groupe
fondamental d’un quotient d’un produit de courbes du a Bauer-Catanese-
Grunewald-Pignatelli.

Finalement, on généralise la présentation obtenue dans le cas d’'un arrange-
ment réel au cas d'un arrangement complexe et a un type plus général de com-
pactifications partielles. Pour une telle surface, on compare cette présentation
avec celle du groupe fondamental a l'infini et on montre qu’on peut obtenir
la premiere en ajoutant certains relations a la deuxieme. On obtient comme
conséquence une présentation pour le groupe fondamental de certains plans
d’homologie provenant d’un arrangement de droites.
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Introduction

A Context

A.1 Some results about fundamental groups in alge-
braic geometry

Around 1930, Zariski [Zar29|, influenced by the ideas of S. Lefschetz, related
the fundamental group of the complement of a planar curve C' to the existence
of coverings of the complex projective plane P? branched at C'. Some conse-
quences of this were obtained in subsequent work [Zar31],[Zar32] relating the
structure of the fundamental group and the position of cusps in the plane in
the former, and studying the role of the fundamental group in the classification
of singularities of curves in the latter.

Thirty years later, Mumford studied the local fundamental group, the fun-
damental group of a pointed neighborhood B* around an isolated singular
point p in a normal complex surface S. He obtained a partial presentation for
m1(B*) and derived the following Theorem.

Theorem A.1 ([Mum6l]). If S is a manifold at p then m(B*) = 1, if
m1(B*) = 1 then p is a simple point of S.

A more systematic study of the fundamental group of smooth complex al-
gebraic varieties was started with the so-called Serre problem: determining
which finitely presentable groups can arise as fundamental groups of smooth
complex algebraic varieties or more generally (in the compact case) the study
of fundamental group of compact Kéhler manifolds. With the development of
Hodge theory [Hod52|,[Del71],[Del74], new perspectives were opened to carry-
out this study: for some restrictions on the algebraic case see [Mor78],[JR87],
for a survey of the Kéhler case see [ABCT96| or [Burll]. For this work, it is
important to remark that already in [ABCT96, p.8] it is noted that a very few
methods to study the Serre problem do not make any use of linear represen-
tations. A topic that is not included in op. cit., that also depends heavily
on linear representations, and that is indirectly related to the present work
is the so-called Shafarevich conjecture to the effect that the universal cover
of a smooth projective algebraic variety may be holomorphically convex. The
following Theorem sets the conjecture in the affirmative case under certain
hypothesis over the existence of linear resentations of the fundamental group.
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Theorem A.2 ([EKPRI2]). Let X be a smooth complex projective variety.
The Shafarevich conjecture for X holds whenever m(X) has a faithful finite-
dimensional complex linear representation.

Note that there are some few examples of fundamental groups of projective
varieties which are non-residually finite [Tol93],[BCC92|, in particular non-
linear by a result of Mal’cev, they both admit a non-faithful representation
with infinite image and satisfy the Shafarevich conjecture.

A.2 DMotivation and main object of study

As mentioned above, much of the study of the Serre problem is made through
representations of the fundamental group. However, in some cases it can be
tracked purely by presentations of this fundamental group, and in fewer cases
some information about the group itself can be deduced from this presentation.

Here, we will be interested in questions related to the fundamental group of
branched coverings of the complex projective plane P? along an arrangement
of lines 7.

Hirzebruch, motivated by the extremal case in the Miyaoka-Yau inequality
¢ < 3y, studied in [Hir83] abelian branched coverings of P? ramified over an
arrangement of lines &/ C P? giving some examples where the equality hold.
He needed very little information about the complement P?\ .7 for his purposes
(only the euler number). Later, E. Hironaka in [Hir93|, uses in a crucial way
a presentation of the fundamental group m(P? \ &) in order to compute the
first Betti number of these coverings.

There is a good amount of information around these surfaces (see [BHHS7],
[Trel6] ), however, as remarked in [Eys17], it seems to be no systematic study
of their fundamental group. There, some sufficient conditions for the cover to
be simply connected are given. Let us review the strategy followed there:

For N € N* the homomorphism H,(P?\«,Z) — H,(P?\«/,Z/NZ) induces
an abelian covering Y — P? with Galois group G = (Z/NZ)|=1. The surface
Y is singular above the singular points of .27 of multiplicity 3 or higher. Denote
by P the set of these points and by 7 : Blp P2 — P2 the blow-up of P? at P.
The pull-back 7*Y" is the minimal desingularization of Y [Hir83| p. 122]. We
can consider the orbifold X () := [7*Y/G], as a Deligne-Mumford stack and
take its fundamental group (See [Noo05]). The main result of [Eys17] with
respect to the fundamental group of the Hirzerbruch surfaces is the following.

Theorem A.3 ([Eysl7]). Let &7 be an arrangement with only double and triple
points, then 7 (Xy()) = (Z/27Z)171-1.

The surface 7Y can be identified with the covering of stacks given by the
map 7 : T (X () = (Z/NZ)1=1, and therefore we can identify ker n with
m(7Y).

It is worthwhile to mention one of the main Theorems of op. cit.
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Theorem A.4 (|[Eysl7]). The Hirzerbruch covering surfaces corresponding to
kern satisfy the Shafarevich conjecture.

By an appropriate version of the Seifert-van Kampen Theorem we can see
that 7 (Xy(«)) can be computed by taking the quotient of 7 (Blp P? \ &)
by the normal subgroup generated by certain powers of the meridians around
the irreducible components of D = 7*&7, with the powers depending on the
isotropy at the generic point of these irreducible componentes. Therefore, once
we have a presentation for 7 (P?\ /) a presentation for m (Xy(&)) is obtained
once we have the answer to the following question:

Question 1. How does one obtain explicit expression of the meridians around
the exceptional divisors coming from P in terms of certain meridians around
the lines in </ ?

In fact, the answer to this question will give a presentation of the funda-
mental group of an orbifold X (X, D,r = (ry,...,7s)) with non-trivial isotropy
groups over the generic point of the irreducible components D; of a divisor
D =3 D,; C X and arbitrary weights r; € N* (See[1.1.2).

Already Hirzebruch, with all weights r; being equal, remarked that his con-
struction was related to some surfaces constructed by Deligne-Mostow [DMS86]
as quotients of the two ball by an uniform lattice in PU(2,1) (to questions
related to the arithmeticity of this constructions see [Hol86], [Derl9]). By
allowing unequal weights more surfaces of Deligne-Mostow were constructed
starting from an arrangement of lines o7, see [BHHS8T],[Trel6].

This was one motivation to introduce the following surfaces whose funda-
mental group is the main subject of study in this work: Let &/ C P? be an
arrangement of lines, let us denote by Sing &7 its set of singular points. Con-
sider the blow-up 7 : Blging s P? — P2, the divisor D = &/ = Zle D; with
s = || + |Sing .</|, and let I C {1,...,s}.

Definition A.1. We call the surface Blgiyg.s P? \ Ziﬂ D; a Linear Arrange-
ment (Partial) Compactification of P? \ &/ or a LAC surface.

Another reason to study these surfaces is the research of possible instances
of the following question. See [Eys1§| for further motivation related to the
Shafarevich conjecture.

Question 2. Does there exists a smooth algebraic variety X with infinite fun-
damental group such that every linear representation m(X) — GLN(C) has
finite itmage?

No example seems to be known (c.f. with the last paragraph of [A.1]).
My advisor, P. Eyssidieux, didn’t know what was the answer to the following
question:

Question 3. For a LAC surface X, if its first integral homology group Hq(X,Z)
is finite, does it follows that m (X) is as well finite?

3



B Results

B.1 Arrangement of lines defined over the reals
Context

The theory of hyperplanes arrangements is a very wide area of mathematics
by itself. For a classical introduction we refer to [OT92], and for a more recent
treatement see [Dim17].

Definition B.1. Let «/*® = {H,,... H,} C C! be a finite collection of affine
hyperplanes. We call .&7*T an (affine) arrangement of hyperplanes.

By homogenizing the hyperplanes Hy, ..., H,, and considering the hyper-
plane at infinite H,,;, we can construct a hyperplane arrangement </ C P!
such that P!\ & = C!\ &1, The following theorem of Zariski of Lefschetz
type reduce the study of the fundamental group of P!\ & to the study of the
complement of an arrangement of lines in the projective plane.

Theorem B.1 (Zariski). Let Y be a hypersurface of P! and let H be a generic
hyperplane with respect to Y. If 1 > 2 then m(P'\Y) =2 m(H\ HNY).

It was first stated in [Zar37], for a precise definition of the word generic,
and more far-reaching generalizations see [HTL73], [Dim92].

When the lines of an arrangement <7*! C C? are defined by linear forms
with real coefficients we say that o7 is a (complexified) real arrangement. Let
us write Sing.@®® for the set of singular points of &7, In [Ran85], Randell
constructed from &/ a planar oriented graph 7*!(R) C R2. Besides this, he
also used implicitly the following construction: around every singular point
p € Sing & let B, be a sufficiently small neighborhood and consider the link
0B, N «*% inside OB,, he used the presentation of 7 (9B, \ 9B, N &*%) to
relate the meridians around the segments of &7*1(R) \ Sing &7 .

Theorem B.2 (Randell). The Wirtinger presentation of the spatial graph
A U(R) and a presentation 71(0B, \ 0B, N V) for every p € Sing & give
a presentation for w (C?\ o/ ).

Real arrangements

The first chapter [1] of this thesis is devoted to the following results and were
published in the article [AA20a].

Let & = {Ly,..., Ly} C P? be a (complexified) real arrangement of lines.
Let m : X = Blgingr P2 — P2 be the blow-up at the points Sing &7 in P2, the
divisor D = 7*e/ = 7 | D; and r = (rq,...,75) € N*. We can consider the
orbifold 71 (X (X, D,7)) as in[A.2]

Theorem B.3. A presentation for 71 (X (X, D,r)) can be obtained by modi-
fying the method of Randell and adding to his presentation powers of explicit
words in its generators.



Indeed, the method of Randell can be seen as sweeping a vertical line from
right to left in R? € C? = P2\ L, this is part of a pencil of lines based at
a point lying in the line at infinity L, as we keep track of the relations and
conjugations arising when crossing a singular point in Sing .27

This method takes care of the singular ponts in C? but not of these lying
in the line at infinity L. Thus it is sufficient to apply the same method for a
pencil based at a well-chosen point in C?\ &*T together with an appropriate
choose of meridians.

In order to reduce the number of surfaces obtained as partial compactifica-
tions to be studied we prove in[1.3.2]that it suffices to partially compactify with
respect to exceptional divisors up to having studied first all the arrangement
of less lines.

Then, we present an answer to question [3]

Theorem B.4. There exists a LAC surface Y with infinite fundamental group
and finite first (integral) homology group.

The fundamental group obtained is isomorphic to Z/27Z * Z/27. and there-
fore has a faithful linear representation in GLy(C) and so it sheds no light to
the more subtle question [2|

Theorem is obtained from a partial compactification of a very interesting-
by-its-own arrangement called the complete quadrilateral B or Ceva(2) which
can be seen as the union of the six lines passing by 4 points in general position
in P? and the application of Theorem [B.3]

The arrangement B induces a fibration Bly_peints P? — P having 3 singular
fibers, and it is therefore a multinet (c.f. [B.2). This map can be extended
toamap Y — X (P!, D', 7) from the LAC surface Y to the orbifold over P*
with divisor D’ = 0 + 1 + oo and weights " = (2,2, 00), which induces an
isomorphism in the fundamental groups.

Theorem also gives a presentation for the fundamental groups of the
orbifolds & (Bly_points P2 7*B,r) which for certain weights r can be seen as
quotients of the ball B2 by an uniform lattice as in [A.2]

B.2 Structure theorems for the fundamental group of a
quotient of a product

Context

There exist a class of arrangements of lines .27 C P? which are called nets, or
more generally multinets (see [Yuz04],[FY07],[MB09]) that naturally gives a
fibration from a blow-up of the projective plane 7 : X = BlpP? — P? with
P C Sing & to the projective line p : X — P! with the property that there
exists a partition of & = U_| .o in subarrangements <7 such that the map p
has the strict transform of the subarrangements o7 in X as singular fibers.
For every n € N* define the arrangement Ceva(n) to be the zero locus
of the homogeneous polynomial f(z1, 29, 23) = (2] — 25) (2] — 2§) (25 — 2%) in

5



P? with homogeneous coordinates (21 : 23 : 23). Every Ceva(n) is a multinet
and it seems natural to try to study its partial compactifications in order to
generalize the results of [B.1] We have two inconvenients: already Ceva(3) is
not a real arrangement and the complexity of the computations increase with
the number of lines. For these reasons another method other than the use of
presentations had to be found.

It is easy to see that the fibration given by Ceva(n) is isotrivial, and there-
fore we can hope for an structure theorem for the fundamental group of its
partial compactifications in the lines of [BCGP12] to exists.

We recall here some results of [BCGP12].

Definition B.2. Let C be a smooth projective curve of genus g. The group
II, = m(C) is called a surface group.

Let C4,...,Cy be smooth projective curves and let G be a finite group
acting on each curve C; and freely in the product Cy x --- x C} with the
diagonal action. Then we have an exact sequence

C1X"'X0k

1—>7r1(C’1)><...><7r1(C’k)—>7r1< e

)—>G—>1 (1)

If we assume that G acts faithfully on each factor C; and remove the hy-
pothesis of the action being free in the product, there is a priori, no reason for
a sequence similar to to hold. However, the following theorem was proved
in [BCGP12].

Theorem B.5 ([BCGP12]). Let Cy,...,Cy be smooth projective curves of
genus greater or equal than two and let G be a finite group acting faithfully on
each of the factors and diagonally in the product. Then the fundamental group
m((Cy1x...xCy)/G) admits a normal finite index subgroup N = I, x. . .xII;,
for some hy,... . hy € N and 11, ... 1, surface groups.

The hypothesis of the action being faithful was later removed in [DP12].

Note that the quotient (Cy X ... x Cy)/G may be singular. In the case of
only two curves C, Cy, if it happens that the divisors obtained by resolving
the singularities of (C} x Cy)/G are strict transforms of lines of an arrangement
o/ C P? some partial compactifications of the type (C \ {k1 — points} x Cy '\
{ks — points})/G could be studied by extending Theorem to the case of
open surfaces.

We mention briefly the methods of proof of Theorem as in [BCGP12]
with a slight change of terms by using the notations of stacks. The proof
can be divided in two parts. To explain the first we can consider the orbifold
fundamental group of the curve C;/G, this is m([C;/G]). There is an exact
sequence

1— Wl(Ci) — Wl([cl/G]) -G — 1,
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and therefore we can construct the fiber product H := 7 ([C1/G]) X¢ ... Xg
m([Ck/G]). Let TorsH denote the normal subgroup of H generated by the
elements of torsion. The first main step was to show that

m((Cy x ... x Cy)/G) = H/ Tors H. (2)
To explain the second part we need the following definition.

Definition B.3. An (abstract) orbifold surface group is a group admitting a
presentation of the form

g
T, =(a1,b1,...,a4,bg,01,....cp | ' =...=¢F =1,H[ai,bi]01---0k=1>
i=1

with n; € N and [a,b] = aba~'b! the commutator of a and b.

Then the second step relies in the following Proposition whose proof is of
group theoretic nature.

Proposition B.6 ([BCGP12,[DP12]). There exists an exact sequence of groups
l1—-E—H/TorsH—-T —1

where E is a finite group and T is a finite-index subgroup of a product of
: k
orbifold surfaces group [[;_; Th,.

From this and (Z2)) it is easy to show Theorem[B.5 once the residual finiteness
of H/ Tors H is proven using methods of [GJZZ0§].

Generalizing the structure theorem for quotient of product of curves

The second chapter of this thesis[2|is devoted to the following results appearing
in the pre-publication [AA20Db].

The Proposition can be generalized as follows: let X, ..., X} be topo-
logical spaces admitting an universal cover; they are connected, locally path-
connected, and semi-locally simply connected. Denote the product of them
by X = X7 x ... x Xj, and let G be a finite group acting on each X; for
1 =1,...,k, and consider the diagonal action on X. Let I < G be the sub-
group generated by the elements fixing a point in every X; for ¢ = 1,...,k.
Note that I is normal. Denote by X7 the subset of points of X; that are fixed
by g € G.

Theorem B.7. Let X, X4,..., Xy, G, and I as above. Suppose that the set
o X! of path connected components of X! is finite for everyi=1,...,k, and
every g € G. Then there exists a homomorphism

m(X/G) = [ [m((X:/D)/(G/D)])

i=1

whose image has finite index and whose kernel is finite.
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The action of G/I over X;/I is that induced by the one of G over X;.

It is worthwhile to mention the case of taking the product of the same
topological space, this is, X; = X7 for i = 2,..., k. Note that in this case the
action of G/I in X;/I is free and therefore the fundamental group of the stack
[Xi/1/G/1] coincides with the topological fundamental group of X;/G/G/I.
Moreover, it can be seen that in this case, as topological spaces, we have
X;/1/G/I = X;/G. We obtain therefore the following corollary.

Corollary B.8. Let X = X¥, G, and I as above. Then the map m (X/G) —
71(X1/G)* has finite kernel and its image has finite index in 7 (X, /G)*.

For the proof of Theorem [B.7] we extend the arguments of [BCGP12] to the
stacky context. We consider the action of 71 ([X/G]) over the universal cover of
X, and compare it with the action of 71 ([X1/G]) x ... xm([X%/G]). Under the
hypothesis made over my X7, we can construct subgroups C; < m([X;/G]) that
lift to subgroups of 7 ([X/G]), and whose product C} x .. .. x Cy has finite index
in the subgroup of N < m1([X/G]) generated by the elements having a fixed
point in the universal cover of X. We conclude by a Theorem of Noohi [Noo0§]
to the effect that m ([X/G])/N = 7 (X/G) and by interpreting geometrically
the projection of N over each 7 ([X;/G]).

An important instance of Theorem and Corollary lies in the study
of fundamental group of smooth complex algebraic varieties, indeed, the fun-
damental group of a singular algebraic variety with only quotient singularities
is the fundamental group of a smooth algebraic variety [Kol93].

There is also a generalization of Theorem [B.5]

Theorem B.9. Suppose that the hypothesis of Theorem[B.7] are satisfied, and
moreover that m(X/Q) is residually finite. Then there exists a subgroup N° <
m(X/G) isomorphic to a product Hy X ... x Hy of normal subgroups H; <.
m1(X;/I) of finite index.

Following closely the arguments of [BCGP12], which use the group theoretic
results of [GJZZ08§]|, we can prove that 7 (C X ... x Ck/G) is residually finite
for a finite group G, and smooth algebraic curves (7, ..., Cy not necessarily
compact.

In order to apply the Theorem to the family Ceva(n) we prove the
following proposition. Denote the group H(n) = Z/nZ, it acts over the Fermat
curve of degree n defined by F(n) = 2 + 2! + z&. Denote by f the fibration
induced by the multinet Ceva(n).

Proposition B.10. Consider the diagonal action of H(n) in F(n) x F(n).
Denote by S the minimal resolution of F\(n) x F(n)/H(n).

1. The fibration S — (F(n) x F(n))/H(n) — F(n)/H(n) = P! is isomor-
phic to f.

2. Every singular point in F'(n) x F\(n)/H(n) corresponds to the contraction
of the strict transform D; of some line L; € Ceva(n).
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3. The contraction of the n lines corresponding to <7; lie in the line E; which
15 the exceptional divisor corresponding to the unique singular point in
.

4. E; maps to a point via F(n) x F(n)/H(n) — P'.

We give the proof in [2.3.3] This proof was not included in [AA20D).

By using proposition and Theorem we are able to study two
families of partial compactifications of P? \ Ceva(n). In the first family we
obtain that the fundamental group is at most finite, and in the second it has
a subgroup isomorphic to Z as a finite-index normal subgroup. See examples

2.3 and 2.3.2

B.3 Partial compactifications of the complement of a
complex arrangement and boundary manifolds

In Theorem we have developed a method to obtain a presentation for
the fundamental group of certain partial compactifications of the complement
P?\ & of an arrangement of lines &/ C P? under the hypothesis that the lines
in of are defined by real linear forms.

Chapter [3] of this thesis is devoted to a generalization of this in two direc-
tions:

e to admit a general arrangement o7 C P? defined by complex linear forms
and

e to admit a more general class M (<7, I, P) of partial compactifications of
P2\ . See for a precise definition.

We can proceed in two different ways: firstly, following [Arv92] and [CS97],
whose work generalize [Ran85| to complex arrangements, we define a braided
wiring diagram )V that encodes some over or under-crossing of the lines in
&/ arising by the complex nature of the forms defining them. The graph W
encodes enough information to obtain a presentation of m (M (<7, I, P)).

Theorem B.11. A presentation for m (M (<7, I, P)) can be obtained from W.
The set of generators are in correspondence with the set of lines in </ and the
set of relations has two types of them:

e those relations R, coming from a singular point p of </. These relations
already appeared in a presentation of m (M (<)) and

e for each element v either in I or in P, a relation R, which is a product
of conjugates of some generators depending on t.

As in the proof of Theorem [B.3] a main step in the proof of Theorem
consists in the explicit computation of an expression for the meridians around
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certain exceptional divisors, obtained by blowing-up 7 in some singular points,
in terms of the generators.

Secondly, let U denote a closed regular tubular neighborhood of .27 in P2
We call OU the boundary manifold of «7. In [FGBMBI15|, a presentation for
m (M (7)) is obtained from a presentation of 7 (0U) by studying the map
m(0U) — m (M (<)) induced by the inclusion OU < M (%7). For the homo-
logical version see [GB13].

It turns out that their methods can also be applied to determine a presenta-
tion for the fundamental group of some partial compactifications M (<7, I, P).
However, in order to study the boundary manifolds OUp of strict transforms
D of &/ in some birational model of P?, we start from a different presentation
for the boundary manifold OU of o7

Indeed, when D = )" D; is a connected, simple normal crossing divisor such
that (D) is trivial, Mumford gave a presentation for m (0Up) in [Mum61].
This, together with the graph-manifold structure in the sense of Waldhausen
[Wal67], permitted Westlund to give a presentation of m (0U) in [Wes67] (see
also [CS08]). Here, by a choice of a surface birational to P? where the strict
transform of o satisfies the hypothesis for the presentation of Mumford, we
obtain the same presentation of Westlund. See Theorem [3.3.1] Following this
construction, we are able to give a presentation for the fundamental group of
a boundary manifold OUp of a divisor D lying in a surface X obtained by
successive blows-up of P? such that M(</,I, P) = X \ D.

We obtain in Theorem a presentation for m (M (7)) by studying the
map i, : m(0U) — m(M(«/)). Moreover, as the construction for m;(0U)
depends of several choices, we can make them in such a way that the image
under 7 of the meridians of the lines in &7 lying in OU, whose homotopy class
are part of the generators of m(9U), lie in the same homotopy class as the
meridians constructed for Theorem [B.11} From this, we do not only obtain
that the presentation of Theorem [3.3.3| and [B.11] are equivalent, but that the
image of the set of relation in the presentation of 7 (M (<)) coincides with
the relations as in Theorem [B.I1] From this, we can obtain a presentation for
partial compactifications 7y (M (<7, I, P), see Theorem

Finally, inspired by [tDP93], we present an example of a partial compactifi-
cation M (<7, I, P) = X\ D that comes from an arrangement of 5 lines with two
triples points and four double points such that M (<7, I, P) is a Q-homology
plane.
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Introduction (version francaise)

A Contexte

A.1 Quelques résultats sur le groupe fondamental en
géométrie algébrique

Environ 1930, Zariski [Zar29], influencé par les idées de S. Lefschetz, a relié
le groupe fondamental du complément d’une courbe plane C, a I'existence de
revétements du plan projectif P? ramifié sur C. Quelques conséquences de
ce travail ont étés obtenu par la suite [Zar3l],[Zar32] reliant la structure du
groupe fondamental et la position des cuspides dans le plan projectif dans le
premier et étudiant le role du groupe fondamental dans la classification de
singularités des courbes dans le deuxieme.

Trente ans plus tard, Mumford a étudié le groupe fondamental local, le
groupe fondamental d’un voisinage épointé B* autour d’une singularité isolée
p dans une surface normale S. Il a obtenu une présentation partielle pour
m1(B*) et comme conséquence il a obtenu le Théoréeme suivante.

Theorem A.1 ([Mum6l]). Sim(B*) =1 alors p est un point simple de S.

Une étude plus systématique du groupe fondamental de variétés algébriques
complexes lisses a commencé avec le probleme de Serre: déterminer quels
groupes peuvent apparaitre comme groupe fondamental d'une variété algébrique
complexe lisse ou plus généralement (dans le cas compacte) I'étude de variétés
de Kéhler compactes. Avec les développements de la théorie de Hodge [Hod52],
[Del71], [Del74], de perspectives nouvelles ont été ouvertes pour réaliser cette
étude: pour certaines restrictions dans le cas algébrique voir [Mor78],[JR87],
pour un survey du cas Kéhlerienne voir [ABCT96] or [Burli].

Pour ce travail, il est important de mentionner que déja dans [ABCT96,
p.8] il est remarqué que tres peu de méthodes pour étudier le probleme de Serre
n’utilisent aucune représentation linéaire. Un sujet qui n’est pas traité dans
op. cit., qui dépend aussi fortement des représentations linéaires et qui est
indirectement relié au travail actuel est la conjecture de Shafarevich, a savoir
que le revétement universel d'une variété algébrique complexe lisse pourrait
étre holomorphiquement convexe. Le Théoreme suivant répond cette conjec-
ture sur certains hypotheses sur l'existence d’une représentation linéaire du
groupe fondamental.
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Theorem A.2 ([EKPRI2]). Soit X une variété projective complexe lisse. La
conjecture de Shafarevich pour X est vraie si m(X) admet une représentation
linéaire fidéle de dimension finie.

On peut remarquer qu’il y a quelques exemples de groupes fondamentaux
des variétés projectives lisses qui ne sont résiduellement finis [Tol93],[BCC92],
en particuliere non linéaires par un résultat de Mal’cev. Ces exemples admet-
tent représentations linéaires avec image infinie et satisfont la conjecture de
Shafarevich.

A.2 Motivation et surfaces a étudier

Comme mentionné plus haut, une grande partie de 1’étude du probleme de
Serre se fait en utilisant les représentations linéaires du groupe fondamental.
Cependant, dans certains cas ce probleme peut étre traité seulement avec une
présentation du groupe fondamental et dans certains cas encore plus partic-
uliers, on peut obtenir directement de cette présentation des propriétés sur le
groupe.

Ici, on va s’intéresse aux certaines questions liées au groupe fondamental
de revétements du plan projectif P? ramifiés au-dessus d'un arrangement de
droites .o/

Hirzebruch, motivé par le cas extrémal de I'inégalité de Miyaoka-Yau ¢? <
3¢, a étudié dans [Hir83| les revétements abéliens de P? ramifiés au-dessus
d'un arrangement de droites .27 C P2. Il a donné des exemples oi1 I’égalité est
obtenue. Il a eu besoin de tres peu d’information sur le complément P2\ &7 pour
ces propos (seulement le nombre d’Euler). Apres, E. Hironaka dans [Hir93], a
utilisé dans d’'une maniere essentielle une présentation du groupe fondamental
71 (P?\ &) afin de calculer le premier nombre de Betti de ces revétements.

Il y a une bonne quantité d’information autour de ces surfaces (voir [BHH8T],
[Trel6] ), néanmoins, comme indiqué dans [Eys17], il ne semble pas y avoir
une étude systématique de leur groupe fondamental. On y trouve des condi-
tions suffisantes pour que le revétement soit simplement connexe. Expliquons
la stratégie suivie:

Pour N € N* I'homomorphisme H,(P?\ o7, Z) — H,(P*\ &, Z/NZ) induit
un revétement abélien Y — P? avec groupe de Galois G = (Z/NZ)1-1. La
surface Y est singuliere au-dessus des points singuliers de </ de multiplicité 3
ou plus. Notons par P ’ensemble de ces points et par 7 : Blp P2 — P? ’éclaté
de P2 sur P. Le tire-en arriere 7*Y est la désingularisation minimale de YV
[Hir83, p. 122]. On peut considérer l'orbifold Xy (<) := [7*Y/G], comme un
champ de Deligne-Mumford et on peut prendre son groupe fondamental (voir
[Noo05]). Le résultat principal de [Eysl17] par rapport au groupe fondamental
de surfaces de Hirzebruch est le suivant.

Theorem A.3 ([Eysl7]). Soit o/ un arrangement qui a seulement de points
singuliers doubles et triples, alors m (Xo( ) = (Z.)27)/ 171
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La surface 7Y peut étre identifié avec le revétement de champs donné par
I’homomorphisme 7 : 71 (Xy(27)) = (Z/NZ)I=1, et alors on peut identifier
kern avec 71 (7*Y).

Il est intéressant de mentionner I’'un des principaux Théoremes de ’op. cit.

Theorem A.4 ([Eysl7]). Les surfaces de Hirzerbruch correspondant d kern
satisfont la conjecture de Shafarevich.

Par une version appropriée du Théoreme de Seifert-van Kampen Theo-
rem on peut voir que m(Xy(2)) peut étre calculé en prenant le quotient
de m(BlpP? \ &) par le sous-groupe engendré par certaines puissances de
méridiens autour des composants irréductibles de D = 7*.47, avec les puis-
sances qui dépend de l'isotropie sur le point générique de ces composantes
irréductibles. Ainsi, si on a une présentation pour m;(P?\ &), on peut obtenir
une présentation pour 7 (Xy (7)) si on connait la réponse a la question suiv-
ante:

Question 4. Comme on obtient une expression explicite des méridiens autour

des diviseurs exceptionnels provenant de P en termes de ces méridiens autour
des droites dans o/ ?

En fait, la réponse a cette question donnera une présentation pour le groupe
fondamental d'un orbifold X (X, D,r = (ry,...,r,)) avec groupe d’isotropie
non trivial au-dessus du point générique des composantes irréductibles D; d’un
diviseur D = 3" D; C X et poids arbitraires r; € N* (Voir [L.1.2).

Hirzebruch a déja remarqué que si on met les poids r; tous égaux, sa con-
struction était reliée a d’autres surfaces construit par Deligne-Mostow [DMS86]
comme quotients de la boule par une réseau uniforme PU(2, 1) (pour des ques-
tions relies a la arithméticité de cette construction voir [Hol86], [Derl9]). En
admettant des poids inégaux, plus des surfaces de Deligne-Mostow ont était
obtenus en commengant par un arrangement de droites <7, voir [BHHS7],[Tre16].

Ceci, c¢’était I'une des motivations pour introduire les surfaces suivantes
dont le groupe fondamental est I'objet principal d’étude dans ce travail: soit
&/ C P? un arrangement des droites, notons par Sing .« I'ensemble de ces
points singuliers. Considérons 1'éclaté 7 : Blgiyg s P? — P2, le diviseur D =
o/ =" | D; avec s = |o/| + |Sing &/, et soit [ C {1,...,s}.

Definition A.1. On appelle la surface Blging s P2\ Ziﬂ D; une Linear Ar-
rangement (Partial) Compactification de P? \ &/ ou une surface LAC.

Une autre motivation pour 1’étude de ces surfaces et la recherche de possi-
bles exemples de la question suivante. Voir [Eys18] pour motivation supplémentaire
lié a la conjecture de Shafarevich.

Question 5. FEuxiste-t-il une variété algébrique lisse X avec un groupe fonda-
mental infini tel que toute représentation linéaire m(X) — GLy(C) a une
image finie?
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Aucun exemple ne semble étre connu (c.f. le dernier paragraphe de [A.1]).
Mon directeur de these, P. Eyssidieux, ne savait pas quelle était la réponse a
la question suivante:

Question 6. Pour une surface LAC' X, si son premier groupe d’homologie
entiere Hy(X,Z) est fini, s’ensuit-il que m (X) est également fini?

B Reésultats

B.1 Arrangements de droites définit sur les réels
Contexte

La théorie d’arrangements d’hyperplans est un domaine tres large en soi. Pour
une introduction classique on renvoie a [OT92], pour un traitement plus récent
voir [Dim17].

Definition B.1. Soit @*" = {H,,..., H,} C C! une collection finie des hy-
perplans affines. On appelle &% un arrangement (affine) des hyperplans.

Si on homogénéise les hyperplans Hi, ..., H, et on considere I'hyperplan
a l'infinie H,,, on peut construire un arrangement d’hyperplans o/ C P tel
que P!\ o7 = C'\ &7*". Le Théoreme suivante de Zariski du type de Lefschetz
réduit I’étude du groupe fondamental de P!\ & & 1’étude du complément d’un
arrangement de droites dans le plan projectif.

Theorem B.1 (Zariski). Soit Y une hypersurface de P! et soit H un hyperplan
générique par rapport a Y. Sil>2 alors m(P'\Y) 2 m(H\HNY).

Ce Théoréme a été énoncé en premiere dans [Zar37|, pour une définition
précise du mot générique, un énoncé plus général et une preuve, voir [HTL73],
[Dim92].

Quand les droites de l'arrangement «/*® C C? sont définit par formes
linéaires avec coefficients réels on dit que o7 est une arrangement réel (com-
plexifié). Notons Sing.&/*T pour I’ensemble des points singuliers de .o7?f.
Dans [Ran85], Randell a construit a partir de & une graphe plaine orientée
A*(R) C R2. De plus, il a utilisé implicitement la construction suivante:
autour de chaque point singulier p € Sing &7 soit B, un voisinage suffisam-
ment petit et considérons le entrelacs 9B, N &*1 dedans 0B,, il a utilisé la
présentation de 71 (9B, \ 0B, N /) pour relier les méridiens autour des seg-
ments de &7*(R) \ Sing &7 .

Theorem B.2 (Randell). La présentation de Wirtinger du graphe o/ “¥(R) et
une présentation de w1 (0B, \ 0B, N ) pour chaque p € Sing & donne
une présentation pour m (C%\ o/ ),
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Arrangements réels

Le premier chapitre|[l| de cette these est consacré aux résultats suivants qui ont
apparu dans [AA20a].

Soit & = {Ly,..., Ly} C P? un arrangement de droites réel (complexifi¢).
Soit 7 : X = Blging.s P? — P? I'éclaté aux points Sing .o/ dans P2, le diviseur
D=no =%, Dietr=(r,...,rs) € N°. On peut considérer 1'orbifold

m(X(X,D,r)) as in[A.2

Theorem B.3. Une présentation pour m (X (X, D,r)) peut étre obtenu en
modifiant la méthode de Randell et en rajoutant a cette présentation puissances
des mots explicites en ses générateurs.

En effet, la méthode de Randell peut se voir comme une ligne verticale qui
se balaye de droite & gauche dans R? C C? = P2\ L, elle est partie d’'un
pinceau de droites basé sur un point appartenant a la droite a I'infini Ly, tout
en prenant en compte les relations et conjugaisons obtenus quand on croise un
point singuliere dans Sing 7.

Cette méthode prend en compte les points singuliers dans C? mais pas ceux
qui se trouvent dans la ligne a l'infini L. Il suffit donc d’appliquer la méme
méthode pour un pinceau basé sur un point bien choisi dans C? \ &7?% ainsi
comme un choix approprié de méridiens.

Afin de réduire le nombre de surfaces obtenues comme compactifications
partielles & étudier, on prouve dans[I.3.2]qu’il suffit de compactifier par rapport
a des diviseurs exceptionnels quitte a avoir étudié déja les compactifications
partielles pour un arrangement de moins droites.

Ensuite, nous présentons une réponse a la question [0

Theorem B.4. [ existe une surface LAC'Y avec groupe fondamental infini
et premier groupe d’homologie (entier) fini.

Le groupe fondamental obtenu est isomorphe a Z/27Z x 7. /27 et donc, il
admet une représentation linéaire fidele dans G L2(C) et il n’éclaire pas donc
la question plus subtile [3]

Le Théoreme[B.4]est obtenu & partir d’une compactification partielle provenant
d’un arrangement treés intéressant par lui-méme appelé Ceva(2) qui peut étre
vu comme 'union des six droites passant par quatre points en position générale
dans P? et 'application du Théoréme .

L’arrangement Ceva(2) induit une fibration Bly_points P? — P! ayant 3 fibres
singuliéres, il est donc une multinet (c.f. . Cette application peut étre
prolongé & une application Y — X (P!, D', ') de la surface LAC Y & I'orbifold
définit sur P! avec diviseur D' = 0+ 1 + oo et poids 1’ = (2,2, 00), qui induit
un isomorphisme dans les groupes fondamentaux.

Le Théoreme donne également une présentation pour les groupes fonda-
mentaux des orbifolds X (Bly_points P2, 7* B, r) qui pour certains poids r peuvent
étre considérés comme quotients de la boule B? par un réseau uniforme comme

dans[A2]
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B.2 Théoremes de structure pour le groupe fondamen-
tal d’un quotient d’un produit

Contexte

Il existe une classe d’arrangements de droites &Z C P? qui s’appellent nets, ou
plus généralement multinets (see [Yuz04],[FY07],]MB09]). Cette classe donne
naturellement une fibration p : X — P! d'un éclate du plan projectif 7 :
X = BlpP? — P? avec P C Sing .« vers la droite projective P! avec la
propriété qu’il existe une partition de &/ = U¥_ .o/ en sous-arrangements .7
tel que application p a la transformé stricte des sous-arrangements .7 dans
X comme fibres singulieres.

Pour chaque n € N* définissons ’arrangement Ceva(n) comme l'ensemble
de zéros du polynome homogene f(z1, 22, z3) = (2] —25) (27 — 25) (24 — 2}) dans
P? avec coordonnées homogenes (27 : 2 : 23). Chaque Ceva(n) est une multinet
et il semble naturel d’essayer d’étudier ses compactifications partielles afin de
généraliser les résultats de [B.1] On a deux inconvénients: déja Ceva(3) n'est
pas un arrangement réel et la complexité des calculs augmente avec le nombre
de droites. Pour ces raisons une autre méthode différent des présentations a
du étre utilisé.

Il est facile a voir que la fibration donnée par Ceva(n) est isotriviale, et
donc elle peut étre lié a un produit de courbes. Ainsi, on peut espérer qu’il
existe un théoreme de structure pour le groupe fondamental de certains com-
pactifications partielles comme dans [BCGP12].

Rappelons quelques résultats de [BCGP12].

Definition B.2. Soit C' une courbe projective lisse de genre g. Le groupe
II, = m1(C) est appelé un groupe de surface.

Soient (', ..., C} courbes projectives lisses et soit G un groupe fini qui agit
sur chaque courbe C; et agit librement sur le produit C x - - - X C}, avec ’action
diagonal. Alors on a une suite exacte exact:

Cy x - xC

1—>7T1(01)X...X7T1(Ck>—>71'1< G

)—>G—>1 (3)

Si on suppose que G agit seulement de fagon effective dans chaque facteur
C; et on enleve 'hypothese que 'action est libre dans le produit, il n’y pas
de raison, a priori, pour qu’'une suite similaire a existe. Néanmoins, le
Théoreme suivante a été prouvé dans [BCGP12).

Theorem B.5 ([BCGP12]). Soient Cy,...,Cy courbes projectives lisses de
genre supérieur ou égal a deuz et soit G un groupe fini qui agit effectivement sur
chaque facteur et diagonalement sur le produit. Alors le groupe fondamental
m((Cy X ... x Cy)/G) admet un sous-groupe distingué d’indice fini N =TI, X
... x Iy, pour certains hy, ..., hy € N et 1l,,... 1, groupes de surfaces.
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L’hypothese d’effectivité sur I'action a été enlevé apres dans [DP12].

Notons que le quotient (C; x ... x C)/G peut étre singuliere. Dans
le cas ou on a seulement deux courbes C4,C5, si les diviseurs obtenus en
résolvant les singularités de (C; x C3)/G sont transformées strictes de droites
d’un arrangement o/ C P? certaines compactifications partielles de la forme
(Cy\ {k1 —points} x Cy \ {k2 — points})/G pourront étre étudié en généralisant
le Théoreme pour le cas de surfaces ouvertes.

On mentionne brievement les méthodes de preuve du Théoreme comme
dans [BCGP12] avec un léger changement de langage en utilisant la notation
des champs. La preuve peut étre divisé en deux parties. Pour la premiere on
peut considérer le groupe fondamental orbifolde de la courbe C; /G, c’est-a-dire
m([Ci/G]). On a une suite exacte

1— 7T1(Ci> — 71'1([01/(;]) — G — 1,
et donc, on peut construire le produit fibré H := 1 ([C} /G]) Xg. . . X a1 ([Ck/G]).

Notons par Tors H le sous-groupe distingué de H engendré par ces éléments de
torsion. Le premier pas consiste a montrer que

m((Cy x ... x Cy)/G) = H/ Tors H. (4)
On a besoin de la définition suivante pour la deuxieme partie de la preuve.

Definition B.3. Un groupe de surface orbifolde (abstraite) est un groupe qui
admet une présentation de la forme

g
T, =(a1,b1,...,a5,b5,c1,....cp | ]t =...=¢F =1,H[ai,bi]01---0k=1>
i=1

avec n; € N et [a,b] = aba™'b™! le commutateur de a et b.

La deuxieme partie de la preuve repose sur la proposition suivante dont la
preuve est de nature de théorie de groupes.

Proposition B.6 ([BCGP12, [DP12]). II existe une suite exacte de groupes
1> F—>H/TorsH—-T—1

avec E un groupe fini et T un sous-groupe d’indice fini dans un produit de
groupes de surfaces orbifoldes Hle T,

A partir de cette proposition et de on peut montrer facilement le

Théoreme des qu’on sait que H/ Tors H est résiduellement fini. On preuve
la derniere assertion en utilisant les méthodes de[GJZZ08].
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Généralisation du Théoreme de structure pour les quotients d’un
produit des courbes

Le seconde chapitre de cette travail [2] porte sur les résultats qui apparaissent
dans la prépublication [AA20D].

La proposition peut etre généralisé ainsi: soient Xi,..., X espaces
topologiques admettent un revetement universel; ils sont connexes, localement
connexes par arcs, et délagables. Notons par X = X; x ... x X} le produit
d’eux, soit G un groupe fini qui agisse sur chaque X; pour ¢ = 1,...,k, et
considere l'action diagonal de G sur X. Soit I < G le sous-groupe engendré
par les éléments qui fixent un point dans chaque X; pour ¢ = 1,..., k. On
remarque que [ est distingué. Notons par X! le sous-ensemble de points de
X; qui sont fixés par g € G.

Theorem B.7. Soient X, Xy,..., Xy, G, et I comme ci-dessus. Supposons
que 'ensemble moX? des composantes connexes par arcs de X] est fini pour
chaque 1 =1,...,k, et chaque g € G. Alors il existe un morphisme

m(X/G) = [ [ m((X:/1)/(G/D)])

i=1
dont l'image a indice fini et le noyau est fini.

L’action de G/I sur X;/I est celle induite par G dans X;.

Il est intéressant de mentionner le cas ou on prenne le produit d'un méme
espace topologique X; = X; pour ¢+ = 2,...,k. Notons que dans ce cas
l'action de G/I dans X;/I est libre et donc le groupe fondamental du champ
[Xi/1/G/1] coincide avec le groupe fondamental topologique de X;/G/G/I.
De plus, on peut voir que dans ce cas, comme espaces topologiques, on a
X;/1/G/I = X;/G. On obtient ainsi le corollaire suivante.

Corollary B.8. Soient X = XF, G, et I comme ci-dessus. Alors le morphisme
1 (X/G) — m(X1/G)* a noyau fini et son image a indice fini dans m (X, /G)*.

Pour prouver le Théoreme on ramene les arguments de [BCGP12] au
contexte des champs. On considere I’action de 71 ([X/G]) dans le revétement
universel de X, et on le compare avec I'action de 7 ([X;/G]) x.. . xm ([ Xk /G]).
D’apres les hypotheses faites sur mo X!, on peut construire sous-groupes C; <
m([Xi/G]) qui se relevent a sous-groupes de m1([X/G]), et dont le produit
C} X ... x Cy aindice fini dans le sous-groupe N < 71 ([X/G]) engendré par les
éléments qui ont un point fixe dans le revétement universel de X. On fini par
un Théoreme de Noohi [Noo08| qui montre que m ([X/G])/N = m(X/G) et
en donnant une interprétation géométrique de la projection de N sur chaque
m ([Xi/G]).

Une application intéressant du Théoreme et Corollaire [B.§ se trouve
dans 1’étude du groupe fondamental de variétés algébriques lisses, en effet,
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le groupe fondamental d’une variété algébrique singulier avec seulement sin-
gularités quotients est le groupe fondamental d’une variété algébrique lisse
[Kol93].

Il y a aussi une généralisation du Théoreme [B.5]

Theorem B.9. Supposons que les hypothéses du Théoréme [B.7 sont satis-
faites, et de plus que w1 (X/G) est résiduellement fini. Alors, il existe un sous-
groupe N < m(X/QG) isomorphe d un produit Hy X ... x Hy, de sous-groupes
distingués H; <y; m(X;/1I) d’indice fini.

En suivant de pres les arguments de [BCGP12], qui utilisent les résultats de
la théorie de groupes de [GJZZ0§|, on peut montrer que m;(Cy X ... x Cy/Q)
est résiduellement fini pour un groupe fini G, et courbes algébriques lisses
C1,...,C% qui ne sont pas nécessairement compactes.

Pour appliquer le Théoreme a la famille Ceva(n) on montre la proposi-
tion suivante. Notons H(n) = Z/nZ, il agit sur la courbe de Fermat de dégrée
n définit par F(n) = 27 + 2 + z2. Notons par f la fibration induite par le
multinet Ceva(n).

Proposition B.10. Considérons l'action diagonal de H(n) sur F(n) x F(n).
Notons par S la résolution minimale de F(n) x F(n)/H(n). Alors

1. La fibration S — (F(n) x F(n))/H(n) — F(n)/H(n) = P" es isomorphe
o f.

2. Chaque fibre singuliere de F'(n)x F(n)/H (n) corresponds a la contraction
de la transformé stricte D; d’une certaine droite L; € Ceva(n).

3. La contraction de n droites correspondant a <7; sont dans une droite E;

qui est un diviseur exceptionnel qui correspond a l’'unique point singulier
en ;.

4. E; s’envoie vers un point via F(n) x F(n)/H(n) — P

La preuve est donnée en . Cette preuve n’a pas apparu dans [AA20b].
En utilisant la proposition[B.10]et le Théoreme[B.9on a étudié deux familles
de compactifications partielles de P? \ Ceva(n). Dans la premiere famille on
obtient que le groupe fondamental est au plus fini, et dans le deuxieme il a un
sous-groupe isomorphe a Z comme un sous-groupe distingué d’indice fini. Voir

les exemples [2.3.1| and [2.3.2

B.3 Compactifications partielles du complément d’un
arrangement de droites et variétés de frontiere

Dans [B.3] on a développé une méthode pour obtenir une présentation pour le
groupe fondamental de certaines compactifications partielles du complément
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P?\ & d’'un arrangement de droites &/ C P? sous I'hypothese que les droites
dans &7 sont définies par formes linéaires réelles.

Le chapitre |3| de cette these est dédié¢ a la généralisation de ce Théoreme
dans deux directions:

e on consideére un arrangement général o/ C P? défini par formes linéaires
complexes et

e on considere une classe plus général M (<7, I, P) des compactifications

partielles de P? \ . Voir pour une définition précise.

Nous pouvons procéder de deux manieres différentes: tout d’abord, en
suivant [Arv92] et [CSI7], dont les travaux généralisent [Ran85] pour les ar-
rangements complexes, nous définissons un “braided wiring diagram” W qui
encode certains sur ou sous-croisements de lignes en &7 provenant de la nature
complexe des formes qui le définissent. Le diagramme W encode information
suffisante pour obtenir une présentation de m (M (<7, I, P)).

Theorem B.11. Une présentation de m (M (<, I, P)) peut étre obtenu de W.
L’ensemble de générateurs est en correspondance avec l’ensemble de droites
dans < et I’ensemble de relations consiste de deux types:

e ces relations R, venant d’un point singulier p de </. Ces relations figu-
raient déja dans une présentation de m (M (<)) et

e pour chaque élément v soit dans I ou P, une relation R, qui est un produit
de conjuguées de certains générateurs qui dépend en t.

Comme dans la preuve du Théoreme [B.3] un pas principal pour la preuve
du Théoreme [B.11| consiste en calculer explicitement une expression pour
un meéridien autour de certains diviseurs exceptionnels, qui sont obtenus en
éclatant . en certains points singuliers, en termes de générateurs.

Pour la deuxieme partie du chapitre trois, notons par U une voisinage
tubulaire réguliere fermé de .7 dans P2. On appelle U la variété de frontiere
de o/. Dans [FGBMBI15], une présentation pour m (M (<)) a été obtenu en
utilisant une présentation de m(0U) en étudiant le morphisme m(0U) —
m (M (<)) induit par I'inclusion OU — M (/). Pour la version homologique
voir [GB13].

Il s’avere que leurs méthodes peuvent étre appliqué aussi pour déterminer
une présentation du groupe fondamental de certains compactifications par-
tielles M (7, I, P). Néanmoins, pour étudier la variété de frontiere OUp de la
transformé stricte D de .7 dans un modele birationnel de P2, on travaille avec
une présentation différente de la variété de frontiere QU de 7.

En effet, quand D = Y D; est connexe, un diviseur simple & croisements
normaux tel que m (D) est trivial, Mumford a donné une présentation pour
m(0Up) dans [Mum61]. Cette présentation, avec la structure de variété graphé
dans le sens de Waldhausen [Wal67], a été utilisé par Westlund pour donner
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une présentation de 71 (0U) dans [Wes67| (voir aussi [CS0§]). Ici, en choisis-
sant une surface birationnelle & P? ol la transformé stricte de .27 satisfait les
hypotheses pour la présentation de Mumford, on donne une nouvelle preuve
de la présentation de Westlund. Voir le Théoreme [3.3.11 En suivant cette
construction, on peut donner une présentation pour le groupe fondamental de
la variété de frontiere 9Up d’un diviseur D dans une surface X obtenu en
éclatant successivement P2 de tel fagon que M (<7, I, P) = X \ D.

On obtient dans le Théoreme une présentation pour mi(M (<)) en
étudiant aussi le morphisme i, : m(OU) — m(M(</)). De plus, comme la
présentation de 7 (OU) dépend de plusieurs choix, on peut les faire d’une tel
facon que l'image des méridiens des droites de & par ¢ qui sont dans OU,
dont leurs classes d’homotopie sont une partie des générateurs de m(0U),
se trouvent dans la méme classe d’homotopie que les méridiens utilisés dans
le Théoreme B.11} Ainsi, on ne obtient pas seulement que les présentations
du Théoreme et sont équivalents, mais que l'image de I’ensemble
de relations dans la présentation de 71 (M (27)) coincide avec les relations du
Théoreme . A partir de ces résultats, on peut obtenir une présentation
pour les compactifications partielles (M (<7, I, P), voir Théoréme [3.3.14]

Finalement, inspiré par [tDP93], on présent un exemple d’une compacti-
fication partielle M (7,1, P) = X \ D qui provient d'un arrangement avec 5
droites, deux points triples et quatre points doubles tels que M (<7, I, P) est
une Q-plan d’homologie.
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Chapter 1

Fundamental groups of partial
compactifications of the
complement of a real
arrangement

By modifying a method used by Randell [Ran85] to get a presentation of the
complement of a (complexified) real arrangement of lines .7 in the complex
projective plane P?, we get expressions for the meridians around exceptional
divisors obtained by blowing up points in the singular set of the arrangement
</ in terms of meridians around the lines in «. This gives a presentation for
the fundamental group of certain partial compactifications of P\ .«7. Some ex-
amples and applications of this presentation are given. These results appeared
in [AA20a].

1.1 Preliminaries

We review the definitions and some properties of meridians and orbifolds. For
the latter we follow [Eys17].

1.1.1 Meridians

Let M be a connected complex manifold, H C M a hypersurface, D an irre-
ducible component of H and ¢ € M \ H. Denote by U = {z € C | |z| < 2}
and let f : U — M be a holomorphic function such that:

L f7H(H) = {0},
2. f(0) = p is an smooth point of H and p € D,

3. f(0) € T,H where T,H is the tangent space of H at p.
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Then f |gi: S — M\ H defines a free-homotopy class independent of f where
St C U is the unit circle. A loop 7y € 7 (M \ H, q) freely homotopic to f|g: is
called a meridian of D around p.

If D is smooth, any other meridian of D around a smooth point of H is a
conjugate of 7. Denoting by H' = H\ D, we have that the inclusion i : M\ H <
M \ H' induces a morphism i, : m (M \ H,q) — m (M \ H',q) whose kernel
is the normal subgroup of (M \ H,q) generated by . By Van Kampen’s
theorem the normal subgroup generated by the set of meridians around each
irreducible component of H is the kernel of the map 7 (M \ H, q) — m (M, q)
induced by the natural inclusion.

Suppose H = D is smooth and let vp be a meridian. Denote by 7 : M — M
the blow up of M at some p € D and let E, be the exceptional divisor. Then
7 1(yp) is a meridian of E, in M.

1.1.2 Orbifolds

Let M be a complex manifold and D a smooth effective divisor. Let r € N*
and consider P — M the principal C*-bundle attached to &;(—D). The tau-
tological section op € H°(M, Oy(D)) can be lifted to a holomorphic function
fp : P — C satisfying fp(p- ) = Afp(p). Let Y C P x C be the complex
analytic space defined by the equation 2" = fp(p) where z is a coordinate for
C. Since D is smooth Y is smooth too. The action of C* can be extended to
Y in the following way: (p,2)- A = (p- A", Az). Then the complex analytic
stack

M(¥/D) = [Yp/CH]

is an orbifold. The non-trivial isotropy groups lie over the points in D and are
isomorphic to the group u, of r-roots of unity.
We allow also the weight +o00 by considering the manifold M \ D as a stack
[M \ D] and write
M( /D) :=[M\ DJ.

Let X be a complex manifold and D = 22:1 D; be a simple normal crossing
divisor, where D; is an irreducible component of D. For any choice of weights
r:=(ry,...,m) € (N*U{+oo})! we can define the orbifold

X(X,D,?“) ::X(T{/D_l) Xx e XXX(VE)

Denoting by X = X \ D, we can view X (X, D,r) as an orbifold (partial if
some r; = +00) compactification of X. Let j, : X < X (X, D,r) denote the
natural open immersion. By fixing ¢ € X, it turns out that we can define
71 (X(X,D,r),q) and moreover it is the quotient of 7;(X,¢q) by the normal
subgroup generated by all 4", where ~; is a meridian around D; and r; # +oc.
We obtain that j,, : 71(X, q) — m(X (X, D,r),q) is surjective. As a particular
case we have that if 7 = (1,...,1) then X(X,D,r) = X.
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Let Do := > D; the sum of all irreducible component of D such that
r; = +oo. We can regard X(X,D,r) as X(X \ Do, D — Dy, 7’) where 1’
consists of the same finite values that r. In particular, if r; = 1 for all i we
have that X (X, D,r) = [X \ Dy and we write simply X \ Dq.

Definition 1.1.1. Let X be a smooth algebraic variety, Y a projective curve,
D= Zizl y; a divisor on Y and r € (N*)!. Consider the orbifold X (Y, D, r).
A dominant algebraic morphism f : X — Y is said to be an orbifold morphism
if for all y; € D the multiplicity of the fiber f*(y;) is divisible by r;.

1.2 Fundamental group

1.2.1 Modification of the method of Randell

Elementary geometric bases

Consider n real points {1, xs,...,2,} C R C C such that x; < 25 < ... < z,.
Fix ¢ € R\{z1,...,z,}. Any oriented simple closed curve C' C C\{z1,...,x,}
is freely homotopic to a loop based at g. Moreover, if it contains at least one
x; in the bounded component that C' determines, there exists a simple path
connecting ¢ and C' satisfying:

I(0(t)) < 0 for t € (0,1).

If CN{S(z) < 0} is connected we call C, := 6 -C -0~ an elementary loop.
Here & denotes the imaginary part of a complex number. (We suppose the
curve C' starts at a point with &(z) <0).

Remark 1.2.1. We have made all the choices in order to have Cj, unique in

m(C\ {x1,..., 20}, ).

C

Figure 1.1: Elementary loop C,.

The following definition is inspired from [MT&§|, [ABCRCAO03].

Definition 1.2.1. An (ordered) geometric base I' = (71, ...,7y,) for the group
m(C\ {x1,...,2,},q) is an n-tuple such that 7; is a meridian of z; based at ¢
and satisfying:

Vo Vo1 1 = 0B(0, M),

in m(C\ {z1,...,2,},q), with M > |z;| for all i = 1,...,n. The curve
0B(0, M) is a circle centered at 0 with radius M and oriented counterclockwise.
We consider the product of loops from left to right.
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Remark 1.2.2. The loop 0B(0, M), can be seen as the inverse of a meridian
loop around the point at infinity.

By abuse of notation we will write I' C C.

Definition 1.2.2. An elementary geometric base I' = (v1,...,7,) is a geo-
metric base such that every ~; is an elementary loop.

2

Figure 1.2: An elementary geometric base.

Lemma 1.2.3. Given n real points and a base point as above, there is a unique
elementary geometric base I'.

Proof. Is immediate by the ordering of I' and the uniqueness of the elementary
loops. O]

Remark 1.2.4. The notion of geometric base for m((L ® C) \ P;q) depends
only on the real oriented line L and P = {zy,...,x,} € L(R),q € L(R).
Randell’s pencil

Definition 1.2.3. A complex arrangement of lines is an algebraic set o/ C P?
whose irreducible components are complex lines. The arrangement .o/ is said
to be real or to be defined over the reals if the coefficients of all linear forms
defining each line can be taken to be real.

Denote by M (&) :=P?\ o/. We are going to review and adapt a method
to compute a presentation for m (M (47)) when 7 is real as in [Ran85].

Associate to each (projective) arrangement o/ an affine one, defined as
follows: fix a line L, € & and consider it as a line at infinity, then

= o7 N (P?*\ L) = o/ NC?,

where we have chosen an homeomorphism h : C* — P?\ L,,. If we denote
M (o) .= C? \ &*, we have the identification:

M(a?) = M(a7™).
Fixing ¢ € M («7*1) and denoting also by ¢ = h(q), we have:
1 (M(ﬂ), q) = WI(M(’Q{aH)a q)

Moreover if the arrangement <7 is real, we can associate it a planar graph (al-
lowing rays) in R2. Suppose 71 is the associated affine arrangement, then all
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multiple points lie in a real plane. Namely, if we consider C? with coordinates
(z,w) = (x1 + iy1, T2 + 1y2), the real plane is given by {(z,w) € C | y; = yo =
0} & R?%. Set & (R) := &/*T N R? to be the set of real points of the arrange-
ment /*% denote by M(«/(R)) := R?\ &/(R). Suppose there is no vertical
line in &/(R). Denote by Sing.«/*® the multiple points of the corresponding
arrangement &/ = o, /1 o/ (R).

Consider R? with coordinates (z,x2). We orient the non vertical lines in
R? taking the positive direction to be that of decreasing ;.

Fix a base point ¢ = (¢1, ¢2) in the lower right part of M (<7 (R)) further and
lower than any point in Sing .o/ (R) and lower than any line. For a complex
line ¥ C C? defined by an equation with real coefficients, denote by Y (R)
its restriction to R? and orient it as before if it is non-vertical. Set L(0) :=
{(z,w) | z = @1}, note that X(O(R) is the vertical line passing through ¢, we
orient it by taking as positive direction that of increasing zs. For any triple
P C 3(R) C X, where P is a finite set of points, ¥(R) a real oriented line
and X a complex line as before, we can consider an elementary geometric base
['C ¥ of m (X \ P,q) by fixing g € X(R).

As X(O(R) intersects all the lines of .27 (R), we can number P = X((R) N
2/ (R) from bottom to top (given by the orientation chosen for () (R)) and
denote I'© = {9 501 « £ the associated elementary geometric base
with base point q.

The idea to obtain a presentation for the fundamental group is to study how
the elementary geometric base change when we rotate the line ¥ counter-
clockwise while fixing the base point ¢ and keep track of the relations arising.

Figure 1.3: Base point

The set of lines passing through ¢, can be seen as RP', which we parame-
trised by the angle with respect to the line x5 = 0 (oriented in the positive
sense), this is, a value in [7/2,37/2[. To every real line ¥(R) passing through
q we can associate its angle, which we denote by:

0(S(R)) € [r/2,37/2].

For t € [r/2,3m/2], the line being parametrised by ¢ will be denoted by ¥;.

In particular, §(X() = 7/2. The elementary geometric base I'®) varies in
a continuous way as we vary t. There exists two types of directions where it
changes:
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S.1 Those t € [r/2,37/2] such that the associated ¥; contains a point in
Sing <7 (R),

S.2 Those t € [r/2,37/2[ such that ¥; is parallel to a line in &/ (R), which
correspond to the points in Sing .o/ N L.

By a slight change of ¢, we can consider that no line passing through it
contains two points of Sing.e#. Given p € Sing .o/, denote by 6(p) the angle
of the unique line passing through p and ¢. Given p,p’ € Sing <7, we define a
total order by

p<p i 6(p) <O
Let us write Sing & = {p1, ..., ps} with this order.

Remark 1.2.5. Note that the original method in [Ran85|] correspond to choose
the base point ¢ at the line at infinity an therefore, the lines passing through
it are all parallel in C?. This method takes care of the singular point lying in
Sing 7?1 but not of those in Sing .« \ Sing .7, they do not intervene in the
presentation of M ().

However, these singular points lying on the line at infinity are indispensable
for the presentation of the surfaces to be introduced in Section [I.3 which are
our main object of study in this note. This is why we have chosen a base point
at finite distance.

Elementary geometric transition of regular fibers in Randell’s pencil

Fix a point p; € Sing «7. Denote by ¢; = 6(p;). Choose € > 0 sufficiently small
such that no t € [t; —e,t; +¢] \ {t;} is of type or[S.2] Let:

V.=, . 20.=%, .
This is, X0~Y lies to the right and X to the left of p;. Recall that L0~D(R)

is an oriented real line and by intersecting with o/ (R) we can consider the
elementary geometric base:

F(iil) = (Pygiil)af}éiil) ey (i71)> C E(iil)a

? n

similarly
[0 = (40 40 49 € 50

A priori, we should take such geometric bases for every point p; but as
there is no direction between ¢; and t;,, in which the geometric base changes,
by continuity we will still write [(C+D-1) = (),

Remark 1.2.6. In fact, as remarked above, only the points of type play a
role in the presentation of 71 (M (<7)). The points of type do not modify
the meridians who are about to cross a point in Sing <7 (R), they only change
their numeration in the geometric base. These points are studied in section
and they are needed for the explicit form of the exceptional meridians

given in Section [1.2.3]
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The description of the change in the geometric basis is given in the fo-
llowing Proposition when the meridians surround a point of type [S.1] Let
pi € Sing &7 (R), T~ and T'¥ as above.

Proposition 1.2.7. Let j be the first index for which the meridian 7](;'71) Su-

rrounds a line which passes through p; and let k be the last such index. Then
we have:

i i—1 i-1) (i D) (-1 i
F() = (,}é )7"'77]('71 )773(')7'"7,YIE)’71(€+1)7“'777(1 1))7
where:
i i—1
0=
i -1l (i-1)_(i-1
7]&31 = /7(' : 7]('+1 )'7](‘ )7

i i—-1)~1 -1~1 i—1)~1 (i—1) (i-1 i—1) (i—1
%(-):%(- ) 7]('+1) "'%ifl) 715 )7( VoAl )7(- ),

And a set of relations in (M (), q)]]

i—1) _(i—1 i—1 1), -l o
Rpi:{%i ey ):’Yz(r(m)%(r(k—)l)“'%(r(j)):"'} (1)

where o runs over the set of cyclic permutations of k — j + 1 elements.

(%) $(—1)
”Y;Ei) %8'71)
71821 :
Di f‘)/J(.Z;ll)
/Y](Z) /yj(j—l)

Figure 1.4: Conjugates

Proof. Let B,, . be a 4-real ball of radius ¢ sufficiently small around p; and
consider the fundamental group G of 0By, . \ (0B, N <) with base point ¢/,
where 0B5,, . denotes the boundary of B, ..

The group G is equivalent to the fundamental group of a k— j+1 Hopf link
in a torus and by the Wirtinger presentation we obtain the relations stated
above (See [OT92, Lemma 5.75]) for local meridians in 0B, ..

The local base point ¢’ can be chosen in such a way that there exists a path
71 joining q and ¢’ such that the base point change of the local meridians
in 9B, . to R via v~ coincide with the 7§Z_1). O

!These relations are stated as in [Fal93] p.142, where in a footnote he points to an error
of [Ran&5].
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Expressing every meridian in terms of the geometric base I'®© by means of

Proposition and replacing in (|1.1)) we obtain:

Theorem 1.2.8 ([Ran85]). The fundamental group of M(<7) admits a pre-
sentation:

m(M(),q) = <7§0), O 70

U R,,i>.

pi€Sing(«/ (R))

Proof. By choosing suitable open sets M; of M (.47) in such a way that m (M;N
M;.1) is the free group in n = }JZ% aff| generators and M; contains only the
singular point p; we can apply Van-Kampen and Proposition |1.2.7]

Note that by the choice of the base point ¢, all the points in Sing(</(R))
lie to the left of X and therefore when a meridian v of a line L crosses a
point at infinity of type [S.2] it will not cross another singular point, hence it
will give no further relations to the presentation of the group. O

Remark 1.2.9. An equivalent presentation can be obtained by studying the
monodromy in the Randell pencil by a slight modification of the methods in
[CS97].

Indeed by blowing up the base point R, we obtain a fibration with base
P! that restricted to P? \ & has singular fibers whenever a point p; € Sing &/
lies at such fiber. The conjugations arising when a geometric basis crosses a
singular point p; is given by a permutation braid p; called a half twist [CS97,
p. 14] (c.f. with Proposition and the local monodromy is given by pu?
(c.f. [Hir93L p. 41] up to a different order). Finally, by keeping track of the
global conjugations by means of a wiring diagram (see [CS97] for definitions)
a presentation is obtained.

Adapting in an appropriate way the definitions of [CS97] or those of [Arv92],
a presentation of M (), for &/ an arrangement not necessarily real, adapted
to our purposes is possible.

We have preferred here to adapt the description of Randell because it
seemed to us to be simpler and quicker for the heuristic methods of treat-
ing the question of Dimca-Eyssidieux case by case for arrangements of few
lines.

1.2.2 Meridians crossing a point at infinity

Let us describe the change in the geometric base when it traverses a singular
point at infinity. Let p; € Sing.&/ N Lo and I'6~Y ¢ £6-Y and I'® ¢ £ be
given as in section [1.2.1| This is:

i— i—1 i—1 i—
F( 2 = (’}é )7'~->77(1_k_)§_17~--771(1 1))7

and

T@ = (v, 4248 L 40).
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Proposition 1.2.10. Assume that there are exactly k parallel lines in <7 (R)
whose corresponding lines in <7 intersect at p;. Then these lines are associated

to the last k meridians %(j__kl}rh o AUTD TG,

Proof. Let t; = 0(p;) and 3, be the line passing by ¢ and p;. Using the order
of the real lines write X0~ (R)N.o/(R) = {y1, ...,y } and as no other point of
Sing o7 different from p; lies in ¥;, we have that ¥, N/ (R) = {xy,...,Tp_x}.
In fact, it must be the case that z; and y; are in the same line of &/ (R)
otherwise a point of type or would lie between X~V and ¥, which

can not happen. O
Corollary 1.2.11. We have the following identifications in X®:
i i—1 i i1
71(9—&)-1 :75 )7 771(1) = 7(1—19)‘ (1.2)

Proof. As we are turning counter-clockwise, by the orientation given to £ (R)
it will intersect first the k parallel lines associated to p; and then, by the
same argument as in Proposition [I.2.10] the point in the position k + j of
YO(R) N o7 (R) lies in the same line as x; . O

Proposition 1.2.12. The last k meridians in T0~Y invert their order to fit
in the first k places of TW. By doing so a conjugation for all the precedent
meridians is needed (see figure . More precisely we have:

(@ _ @-1~t (i-)~t (-1 _(i-1) (i-1)

T TN Yk Yn—k+1 Yn—k "1
i i—1)~1 i-1) —1 (-1 i—1 i—1
W= n T T W Y,
i i—1)~1 T o i—1 i—1
1 =TT A A (1.3)

Proof. By writing the l-element v € I' = (vq,...,7) as v = 60, - C; - 91_1 as
in , it follows that the element 7 = ~; ' -- '%_,11%%—1 .-+~ described in
the statement of the Proposition can be written as v, = 6 - C,0,"" with 6}
homotopic to a loop such that $(6;(t)) > 0 for ¢ € (0,1), see Figure[1.5] These
loops can then be moved to the firs k£ positions. The result follows by unicity
of the elementary geometric base. O

1.2.3 Loops around singular points

Consider an arrangement .« defined over the reals as in the precedent section.
We have a canonical way of associating an elementary geometric base for every
line 3, passing though ¢ with ¢ € [7/2,37/2] as in We will write the
elementary geometric base over the directions of the points and in
terms of the elements of T'®.

This can be seen as finding elementary loops for the points in Sing .7,
which can be divided into finite distance points Sing &7 = Sing .o/ (R) and
infinite distance Sing .o/ N L.
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Figure 1.5: Loops crossing a point .

Lemma 1.2.13. The inverse of a meridian loop around the line at infinity L.
at the point Lo NXW is given by the product of the elements of the elementary
base T'W | this is :

(V)T =040l
Proof. This is a simple consequence on the definition of geometric base and
the choice of the base point. O

This meridian can be seen as an elementary loop, as it is product of loops
of this type.
Recall that t; = 0(p;) denotes the angle of the line ¥, containing p; and g.

Definition 1.2.4. A meridian +,, around a singular point p; € Sing .o/ (R), is
a meridian of p; € ¥;, (based at g).

We can consider the elementary meridian ,, as the elementary loop of p;
in ¥, (based at ¢). With the notation of Proposition we have:

Lemma 1.2.14. The elementary meridian vy, can be obtained as a product of
the elements of DU~V which surround the lines passing through p;. Namely
_ =1 (i-1) (i—1) , (i—1)
Voo =V V-1 Vi1 V5
Proof. An elementary geometric base I' is constructed in such a way that the
product of k—j+1 consecutive elements (7, ..., 7;) of I' equals an elementary
loop €y, where C'is an oriented counter-clockwise simple closed curve that in
the bounded part that it determines contains exactly {z;,..., zx}. ]

Next we determine the meridians around multiple points lying in the line at
infinity.

Let p; € Singe/ N L. Consider the line ¥;, passing through ¢ and p;.
Suppose there are exactly k lines in o7 different from L., passing through p;
then their real points are parallel lines to X, (R) in &/ (R). As is Section [I.2.2)
we have:

Y RN (R) =A{x,...,Tn s},

with £ > 1 depending on ¢. The order of the points z; given by the orienta-
tion of ¥, (R). Hence we can take the elementary geometric base I';, C %,

32



associated with P = {xy,...,2z,_x} and the base point ¢. Suppose I';, =
(Y155 Vi)

Definition 1.2.5. For a point at infinity p; € Sing.«/ N L., we say that a
meridian v, at infinity of ¥, is a meridian around the singular point p;.

Lemma 1.2.15. Let T0~Y = (%i_l), ce ,(f_l)) be as in Section |1.2.1 For
every point p; € Sing &/ N Lo, the elementary meridian v, is given by any of
the equivalent expressions

i— i— i—1
Yoo = A A A (1.4)

o7
— 1—1 i—1

Remark 1.2.16. In (1.4 a similitude with the formula of Lemma can
be observed. Namely the product of the meridians of the lines crossing the
point p; give the meridian. In we simply compute the meridian around
the point at infinity in the line ¥;,, so it is closer to Lemma [1.2.13]

Proof. As no other point of Sing &7 lies in ¥, by continuity, Proposition [1.2.10
and the uniqueness of the elementary geometric base we have that

i—1 i—1
sz’ :(’7{ )a"'7’7£7k))7

by applying Lemma [1.2.13| we obtain ([1.5]).

In 201 we have

(1) = ()1

o =M v

Tn
therefore for the right hand side of (1.4))

(i-1) (i—1) (i-1) (i-1) (i-1)

o T e T = ) T ()T
which equals v,, by (L.5]. ]

Remark 1.2.17. By the results of this Section, we have obtained meridians
around every point p € Sing.«/ (in the sense of definitions |1.2.4] and [1.2.5))
with &7 defined over the reals. In |Gar(03] Garber generalize a formula of
Fujita [Fuj82] expressing locally the meridians around singular points as the
product of the meridians of the irreducible components in the singular point.
He then uses this result globally when the lines intersect transversally, this
is, when there is no additional conjugation. Our method can be seen as a
generalization of this by allowing multiple points of higher order.
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1.3 LAC Surfaces

1.3.1 Construction

We will construct surfaces generalizing the complement of a hyperplane ar-
rangement and obtain presentations of the fundamental group of these sur-
faces.

Fix & = {Li, ..., Ly} an arrangement of lines in P2. Let X be the blow up
of P? at Sing.« = {p1,...,ps} and 7 : X —=P? the projection map. Denote by
D1, ..., Dy the strict transform of the lines Ly, ..., Ly and by Dyi1,..., Dy
the exceptional divisors associated to the points pq, ..., ps.

Given a subset I C {1,...,k + s} we can define the orbifold X (X, D, ;)
associated to the divisor D = > D; and the weights r; = (r1,...,754+s) where
r;=1ifi €I and r; = oo if i ¢ I. Then X (X, D,r;) = X \ (D) Where
we have written D; for D to emphasize the dependence on I.

Definition 1.3.1. We call X \ (D;) a (partial) Linear Arrangement Com-
pactification or LAC surface.

Remark 1.3.1. If [ = @, (D)o = D and 7 restricted to X \ D is a biholomor-
phism with M (<), from which it follows that

m (X \ D) = m(M(«)), (1.6)

showing that these surfaces are indeed generalizations of the complement of
an arrangement.

1.3.2 Reduced LAC Surfaces

In [Eys17] a comment before Proposition 1.3 mentions that the log pair (X, D)
has to be rigid if one wants the fundamental group to be very different from
X\ D. We prove here that we can reduce the study of LAC surfaces to partially
compactify only with respect to exceptional divisors, this is, the subset of
irreducible components of D with weight 1 are exceptional divisors.

We do so by showing that if a strict transform of a line L; has weight 1,
then we can find an arrangement of less lines whose associated LAC surface
has the same fundamental group. In this process the double points lying in the
line that we have removed create isolated points and we must allow to blow
them up as well in order to cover the case when this exceptional divisor had
weight 1 in /. With this is mind we have the following definition.

Definition 1.3.2. A LAC datum, is a triple
(2,8, 1):= (o ={Ly,...,Ly} CP* S ={py,...,p;} CP* . T C{l,... k+s})

where &/ is an arrangement of lines in P2, S a finite set of points and I an
index set.
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Given a LAC datum (7, S,I) we can construct a surface X \ (Dj)s as
in . Consider X the blow up of P? in the points S, call D;,..., D; the
strict transform of the lines in @/, Dyyq,..., Dyys the exceptional divisors
and (Dr)os = > _jc; Dy where J = {1,...,k + s} \ I. As we can change
the arrangement and the set of points to blow up, we prefer the notation

M (<, S, I) for this surface.

Definition 1.3.3. Two LAC datum (<7, S, I), (&7, S, I') are said to be equiv-
alent if and only if

Wl(M(JZ{, S, ])) = Wl(M(%/,S,7I/)).
In such a case we write (<7, S, 1) ~ (&', S",I").

Definition 1.3.4. A LAC datum (<7, S, I) such that S C Sing.« and [ = S
is called reduced. In this case we write (<7, I).

Theorem 1.3.2. For every LAC datum (<7, S, I) there is a canonical equiva-
lent reduced LAC (&', 1").

We will need to prove first three reduction Lemmas.

Lemma 1.3.3. Let (<7, S,I) be a LAC datum. Suppose there exists L; € of
such that 1 € I, then

(,8.1) ~ (/ \ LS, T\ {i}).
Proof. Denote by X = BlgP2. As M(</,S,1) = X \ (D;)s and

{1, s+kI\T={1,....4,...,s+k}\ (I\{i})

denoting by (D, () the divisor to be removed given by (& \ L, S, I\ {i})
we have that
(D)oo = (D (iy)oo
that implies
M(o/,S,I)=M(o/ \ L,S, I\ {i}).

]

So we can suppose I C {1,...,s}. The next step is to consider points lying
outside 7.

Lemma 1.3.4. Let (<, S,1) be a LAC datum such that there is p; € S that
lies in no line of <.

1. If j € I then
(JZ%,S,]) ~ (%,S\{p]},]\{j})

2. If j & I then
(”Q{?S%[) ~ (JZ%,S\{]%},I)
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Proof. 1. Thesurface M (<7, S, I) is the blowing up of M (<7, S\{p,}, I\{j})
at the point p;, as the fundamental group is invariant under blow ups we
obtain the stated.

2. We have a biholomorphism given by restricting the blowing up map of
M(o/, S\ {p;},I) at p;, to the complement of the exceptional divisor

M(JZ%,S,I) %M(%,S\{pj},f)\{pj}
but as

(M (2, S\A{p;}, 1) \{p;}) = m(M(«, S\ {p;}, 1))

the result follows.
O

The last reduction Lemma, can be divided into two parts. In the first case we
show that it is only interesting when we blow up a point and do not remove
the exceptional divisor. In the second part, a point of p; € S that is a smooth
point of o/ does not affect the fundamental group in either case 7 € I or
j € I. By the last Lemma we can assume that every point in S lies in the
arrangement o7

Lemma 1.3.5. Letp; € S C 7.

1. If j & I then
(%’S’])N(%’S\{pjhl)‘

2. Suppose p; € L for some line L € o/. If j € I and p; & Sing </, then
(o, S, 1) ~ (& \{L}, S\ A{p;}, 1\ {j})

Proof. 1. Let X = Bls\(p,} P? and Y = Bl,, X. In X we have

(D1)oo = ZDT with r € S\ (1 U{p;})

InY
(D/I)oo = (Dl)oo + D;‘

Where we have denote also by (Dr)e the strict transform of the divisor
with same notation in X. Therefore we have a biholomorphism

Y\(D))oo = M(#,8,1) = M(Z, S\{pi}, )\ {p;} = X\((D1)U{p;})

and the result follows.

36



2. If 7p, is a meridian at p; of L, as p; is a smooth point then it is also a
meridian of the exceptional divisor Dy, in M (27,5, 1\ {j}). As Dy,
is smooth, 7, generates the kernel of

Wl(M(%v‘Svl\{]})) — Wl(M(”Q{WS’I))

hence

m(M(, S, I\ A{j})/ ({,)) = m(M (o, S, 1)) (1.7)
By the point 1 above we have that (o7, S, I\{j}) ~ (&7, S\{p;}, I\ {j}).
Replacing in we obtain

m(M( S\ A INATH)/ ((,)) = m(M(/, 8,1)) (1.8)

But 7, also generates the kernel of the map of fundamental group in-
duced by the inclusion

M(, S\ A{p;}, I\{j}) = M(/\ L, S\ {p;}, 1\ {j})

therefore

m (M, S\{p; 1 TNATH)/ () = M (M N{LE S\ {ps 1 T\ {51)

which together with (1.8]) prove the statement.
0

Proof of Theorem . Given an arbitrary LAC datum (<7, S, I) by Lemma
[1.3.3| we can suppose that I C {1,...,s}. By Lemma all those points in
S not lying over &7 can be also discarded without changing the fundamental
group.

By Proposition 1, we remove from S all points p; such that j & I so
S = I, we will denote the LAC datum by (A4, 5) .

If there is a smooth point p; € S such that p; € L for some L € &/ by
Proposition 2, (,9) ~ (o \ {L},S\ {p;}). This new LAC datum
could have as well smooth points lying in S\ {p;}, either coming from S or
from double points in &7 lying in L. We repeatedly apply Proposition 2,
until I C Sing .7 or & = (). As there are only a number finite of points and
lines this process must end and we obtain an equivalent reduced LAC datum
(&', I') as wanted.

O

1.3.3 A presentation for the orbifold fundamental group

Definition 1.3.5. Let &/ = {L,,..., L.}, X the blow up of P? at Sing.«/ =
{p1,...,ps} and D; as in section[L.3.1] The divisor D = " D; is simple normal
crossing and for 7 € (N*U{oc})¥** the orbifold X (X, D, r) is called a weighted
LAC Surface.
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Theorem 1.3.6. Let & = {Ly,..., L} be a real arrangement, X (X, D,r)
a weighted LAC surface. Suppose we consider Ly as a line at infinity and
/Y has no vertical line. Choose a base point ¢ and a canonical elementary
geometric base T'© = (vy1,...,7._1) based at q and to the right of any verter as
in Section . Let Sing & = {p1,...,ps} and 7y, be the elementary meridian
around p;. Then the vy, can be expressed in terms of r® asin Lemmas

and a presentation for m (X (X, D,r),q) is given by

i r . izl,...,k,
<717.“’7k_1 | U Rpl”Y’L 77p;+]7 ]: ].7'.-78 > (1‘9)

pi€Sing(/ (R))
where we omit the relation v =1 if r,,, = 00.

Proof. We find first a presentation for 71 (X \ D, ¢) and express the meridians
around the D, in terms of 7;. As X \ D = M (<) by remark we obtain
that 7; is a meridian of D; in X and by Theorem we have the following
presentation for 71 (X \ D, q):

ﬂ-l(X\D7Q):<717727"'77k1| U Rp>
)

pEeSing(«/ (R

The elementary meridian 7y, around Dy, is given by Lemma [1.2.13|as v =
(Yk—1-+-71)"". The meridians around the exceptional divisor Dy ; are given
by the Lemmas|[T.2.14]and [T.2.15]in the following way: ~,, is a meridian around
p; lying completely in the line 3J;, so after the blow up this meridian lies in the
strict transform of X; giving a meridian of Dy, ;. Moreover, 7, is expressed in

terms of I'®). By [Eys17] p.3 dividing by the normal subgroup generated by

Y it we obtain the presentation. u

Corollary 1.3.7. Let (<7, 1) be a reduced LAC surface with </ real. A pre-
sentation for m (X \ (Dj)wo) is given by

71(X \ (Df)so) = <’yl, ey V-1 | U Ry Vs JE I> . (1.10)

prESing (< (R))

1.4 Applications

1.4.1 LAC Surface with infinite fundamental group and
finite abelianization

Consider a set S of 4 points in general position in P?. The arrangement
B ={Ly,...,Lg} of 6 lines connecting each pair of these is called the complete
quadrilateral or Ceva(2). It has 4 triple points and 3 double points: Sing B =
{p1,...,pr} numbered as in Figure . It has the following equation (2% —
23)(22 — 22)(23 — 22) = 0 for projective coordinates (z; : 23 : 23).
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r® r® (1) )
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e

re —— T
Figure 1.6: Complete quadrilateral.
If we consider Lg as the line at infinity, after a small rotation in order to

have no vertical lines, we obtain the real picture as in Fig.
By the subsections|[1.2.2| and [1.2.3| we have that the elementary geometrlc base

(up to homotopy in 7 (P?\ B, q), replacing % by x; and writing z¥ := y~tay)
are
ro = (951 152,%3,5547335)
F(l) = ($ 'T47$3 71‘2,1’5)
ré® = (w1, x4, 5%, 5, T2)
F(3) = (ZL‘ ZL’1,CL’3 ,.175,I2> (1.11)
TW = (24, 25, 257, 21, 1)
r® — (QS 3T2T1T5T4 $T32$1$5z4 JI4,[E5,:E§2$1)
® — (x aszma ATRTITSTe xﬂlc32w1ar5:v4 %4, 5)
where
a = (wox1) " w51y
By Theorem [1.2.8 we obtain the following presentation:
G = Wl(P2 \ B, Q) = <$17 <oy Xy | [$47l’1], [I5, $2]; [9047 I3, xz], [9657 I§279€1]>
(1.12)

which can be easily seen to be a semidirect product Fy X F3 where Fy =
(x4, 25) and Fg := (21, 29, 73).

Let X denote the blow up of P? at Sing B, to simplify denote Ej, = Dg_,
the exceptional divisor coming from p;. Consider the reduced LAC surface
M (B, I) where I consists of three triple points and two double ones. The

simplest case is I = {p1, pa, P3, P4, Ps }-

Theorem 1.4.1. The reduced LAC surface M (B, I) has infinite fundamental
group and finite first (integral) homology group.
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Proof. Consider the meridians 7, around p; for j = 1,...,5, which by Lemmas
[L.2.14] and [1.2.15] are given by

— _ __x2m
’ypl = TyT3T2, P)/pg = T4, 7p5 = T3 T5dy,

— _ T2
Vp2 = T5T2, Tps = T5T3"X1.

(1.13)

By the corollary a presentation of w1 (M (B, 1)) can be obtained by

H = 7Tl<M(B; [>> = 71-1(]13)2 \ B;Q)/<<’Yp177p2>7p3;'Yp477p5>>-

By making 7,, = 1 and 7,, = 1 we obtain x5 = z," and x4, = 7", replacing
them in (1.12)) and (|1.13)), we obtain the following presentation for H

<.T1, l’g,.fg”xl_l, xs, .7:2], [x2_17 $§27 xl]; X1 = T3T2, X2 = $§2x1, x§211 - x1x2>

By replacing z; by 3z, the relation [z; 3", 23, 75] becomes trivial. So we
are left with:
ToT3T2

H = (x5, 3 | [x;l,I§2,$3$2], Ty = T3°T3To, T = X3T9T9)

By writing down the relations:

Ty 2 (2322)? = Ty ' W3ToT3 = T3T, T3y (1.14)
13 = (1329)* (1.15)
(2372)% = To(w329)° 12 (1.16)

By replacing (1.15)) in (1.16)) we obtain that z3 = 1, hence (r313)* = 1.
Note that these two relations include all the precedent. Therefore we obtain
the presentation

H = (x5, 3 | x% =1, (x3x2)2 =1)

which can be seen either as Z/2Z x Z/2Z or as Z/2Z x Z, by this we see that
H is infinite and its abelianization is finite. O

We can clarify this example geometrically by means of the following propo-
sition.

Proposition 1.4.2. There is an orbifold morphism from M (B, I) to X (P, D,r)
where D =[0: 1]+ [1: —=1]+[1:0] and r = (2,400,2). The morphism comes
from a pencil of conics and induces an isomorphism between orbifold funda-
mental groups.

Proof. Consider a pencil & having 4 fixed points in general position, which we
may assume to be S = {p1, pa, ps, pr}. If we let Q1 = (2§ — 22), Qs = (2} — 22)
and Q3 = (23 — 23) we have that the complete quadrilateral & is given by
Q = Q1Q2Q3 = 0.
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The pencil & can be written as & = a()q — b()> with a,b € C not both
zero. Note that Q3 € & as Q3 = Q2 — Q1. This pencil defines a rational map

f{@ : ]P)Q — Pl, (21 12y 23) — (Q1<Zl 129 Zg),QQ(Zl 12y 23))

whose indeterminacy locus is S. By blowing it up, we obtain a regular map
f : BlgPP?2 — P! with fiber over (a : b) the strict transform of aQ; — bQs.

As any point lying in two elements of the pencil is a fixed point of it, for
any z € P?\ S there is a unique curve C' € & passing through it. In particular
for the double points py € {21 — 22 = 0} N {z1 + 20 = 0} and p3 € {21 — 23 =
0} N {z1 + z3 = 0} the curves are @); and Qs respectively. This allows us to
extend f to the blow up of BlsP? at pa,ps as f : Blsugp, ps} — P! We have
that f(F2) = (1:0) and f(E5) = (0:1). Let X = Blgu(psps} \{@ U E7}. Note
that flx : X =P\ {(1:1)} as f(Q3) = (1,1).

Moreover f|x has double fibers at (0 : 1) and (1 : 0). For any other (a :
b) € P\ {(1: 1)} the fiber is the strict transform of a@Q; —b@Q, minus one point
(corresponding to the intersection with E;). The former assertion can be seen
by local computations: Consider P? and P! with coordinates (2 : 29 : 2z3) and
(u,v) respectively. Restricting to the standard open sets W3 = {23 = 1} C P?
and V5 = {v =1} C P! we have that

2 2
Flws = 22 -1

with 22 — 1 # 0. Blowing up at p, = (0,0) and working in coordinates (z;, Z)
(where Z, is the coordinate in U; C P') we have that

1— 72

2 2

flwsro, = Eyeay
Analogous computations for the other open sets and for ps show that the fibers
are indeed double. The last part of the statement is then clear. O

There is a modification of Dimca’s suggestion that may still hold.

Question 7. Let X be a reduced LAC surface with finite first (integral) homol-
ogy group Hi(X) whose universal abelian cover has also finite first homology
group. Is m(X) finite?

Remark 1.4.3. The complete quadrilateral belongs to a certain class of ar-
rangements .o/ called nets (more generally the arrangement is a multinet, see
[EY07], [MBQ9]). Every net </ can be seen as the union of the closure of
singular fibers <7 := f~1(x;) for a rational map f : P? --» P! with z; € P! and
such that the irreducible components of 7 are lines.

The LAC surface obtained in Theorem |[1.4.1| suggests that this class of
arrangements could provide further examples of LAC surfaces with infinite
fundamental group and finite first homology group. However, as the number
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of lines increase, the computations become more involved and other methods
are to be used. Indeed, in [AA20Db] the fundamental group of some partial
compactifications of an infinite family of nets called Ceva(n) defined by equa-
tions (2] — 25) (27 — 28)(2h — 2§) = 0 with n € N is treated. The complete
quadrilateral then corresponds to n = 2, this is, to Ceva(2).

Remark 1.4.4. Let X be a quasi-projective surface. The space of characters
Hom(m (X),C*) = Hom(H;(X),C*) and a class of subvarieties V}, called char-
acteristic varieties are object of much recent study, see for example [Dim10],
[ABCAM13| and reference there-in for definitions and applications. The notion
of orbifold morphism is used in [ABCAM13] to give a more precise description
of the irreducible components of Vj, in particular of the isolated points.

By Proposition the fundamental group of M (B, 1) (with the nota-
tion used there) is isomorphic to that of (X (,P*, D,r)) and therefore their
characteristic varieties are isomorphic. By [ABCAMI3|, Prop. 2.10] the first
characteristic variety »; has an unique isolated torsion point v and therefore
it correspond to that of point (1) in [ABCAMI13, Thm. 1].

By construction, the LAC surfaces provide a potential class of quasi-projec-
tive surfaces where examples of isolated components of characteristic varieties
could arise. Some further investigation on these lines could be pursued.

1.4.2 Presentation for a weighted complete quadrilat-
eral

By considering weighted LAC surfaces X' (X, D,r) we can study the ramified
covers of X over D. In the case where all the lines of D have the same weight
Hirzebruch constructed a finite abelian cover in [Hir83]. If moreover we ask
the cover to be a quotient of the ball, Deligne-Mostow have given weights (not
necessarily equal) for this to hold [DMS&6].

Consider again the complete quadrilateral B = {Ly,..., Lg} with the same
notation as in EI, suppose Lg is the line at infinity. Let X = BlgP?> — P? be
the blow up of P? at the four triple points S = {p, ps, ps, pr} and E\, E,, Es5, E;
be the respective exceptional divisors.

Consider the elementary geometric base I'©) = (x1,...,25). A meridian xg
for the line at infinity around the point X(®) N Lg (recall that X is the line

where T'(©) lies) is given by Lemma [1.2.13

Tg = (1’5374563%2;31)71. (117)

Denote by ,, the meridian around F;. By Lemma [1.2.14] using respectively
1.11)

the elementary geometric bases I'© and T'® of ( , we obtain:

Y1 = Vpy = T4T3X2

— — 2
Y2 1= Vpy, = T5T3" X1

(1.18)
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Finally, the meridians around the triple points lying in Lg are given by

Lemma [1.2.15] and bases I'® and T'©®) of (1.11).

P _ 2271
Y3 1= Yps = 57" 524
1

(1.19)

_ _ -1
Yg 1= VYp, = vy wg tary T

where a = (xomq)*3"2" x51y.

Proposition 1.4.5. Let B be the complete quadrilateral, X, T(© = (x1,...,T5)
and y; as above. For any r = (my,...,mg,nq,...,n6) € (N* U +00) as in
[Trel6] p.110, D = Ey + Ey+ Es + E7 + Z?:l L; we have a presentation for
the fundamental group of the ball quotient X (X, D,r) given by

7Tl(‘/’v(jéa D7 T)) - <l’1, s 7$5|[$47 $1]7 ["L‘57$2]7 [1’4, :L‘37x2]a [xf)a m§27 $1]7I’?i, ylnz>
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Chapter 2

The fundamental group of
quotients of products of some
topological spaces by a finite
groups

In view of the previous chapter, we can try to study a certain class of arrange-
ments closely related with fibrations over curves, and more specifically, with
fibrations birationally equivalent to a quotient of product of curves.

In doing so, we noted that the results of [BCGP12] were valid in a more
general setting. We present here the details of this generalizations as well as
some applications. These results appeared in [AA20D].

2.1 Preliminaries

2.1.1 Properties of fundamental group of topological
stacks

Let X be a connected, semi-locally simply connected and locally path-connected
topological space and G a finite group acting continuously on it.
Fiber homotopy exact sequence

There exists a homotopy theory for stacks and the existence of the long exact
sequence of homotopy, see [Nool4], is more general than what follows, however
we only need the following case: consider the topological stack X = [X/G],
a point x € X and denote by z € X the image of x. We have an associated
fibration G — X — X and a long exact sequence of homotopy groups,

oo = T (X, 7) = (G Id) = 1 (X, 2) = (X, Z) = 11 (GL1d) L

the map 7,(G, Id) — m,(X, ) is induced by the orbit G -z — X.
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Action on the universal cover

The hypothesis made on X ensures that there exists an universal cover X and
moreover, if we let X' = [X/G] as in[2.1.1} we have an action of 7, (X, T) over
X (sce2.2.2). We will use several times the following lemma in what follows:

Lemma 2.1.1. Consider the action of 7 (X, %) in X, let y € X and denote
by I, the isotropy group of the action. Then there exists a monomorphism
I, — G.

Proof. By we obtain a short exact sequence
1 ->m(X,z) > m(X,2) > G —1,

as the action of m1(X,z) over X is free, we obtain that the restriction of
m(X,Z) = G to I, is injective. O

2.1.2 Product of topological spaces
Fundamental group of the quotient of a product

Fori=1,...,klet X; asin be a connected, semi-locally simply connected
and locally path-connected topological space and G a finite group acting on
each of them.

By we have k exact sequences

1— 7T1<XZ',ZL‘Z‘) — Wl(;k;,[fi) ﬁ (G,Id) — 1 (21)
where &; = [X;/G], z; € X; and its image in X is denoted by Zz;.

Denote by H := 7 (X1, 21) X ... Xg (X, ). The exact sequences in
(2.1) can be assembled as follows

l->mXix...xXgz) > H—-G—1 (2.2)

with © = (z1,...,2x). The geometric nature of H is shown in the following
Lemma.

Lemma 2.1.2. Let G act diagonally over X = X1 X ... X Xy. Consider the
stack X = [X/G] then m (X, z) = H.

Proof. We have natural projection maps X — AX; for ¢« = 1,...,k, which
together with the morphisms ¢; : m(X;,Z;) — G and the universal property
of the fiber product give us a morphism m (X, z) — H. By the exact sequence
of a fibration applied to the action of G to X; x ... x X and by

we obtain

1 — m(Xy x ... X X, x) — m(X,T) > G > 1
1 —— m(Xy x ... X Xy, x) > H > G > 1
which implies the result. O
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Lemma 2.1.3. Let X, X; and G be as above. Then
m(X/G,[z]) = m (X, z)/N = m (X, z)/1

where N is the normal subgroup generated by the image of the inertia groups
I, and 1 is the subgroup generated by the elements of w(X) having fized points
in the universal cover of X1 X ... x Xj.

Proof. By [Noo08, Thm 8.3 i)] we have that m(X/G, [z]) = m(X,Z)/N.

The group (X, Z) acts over X = X; X ... x X}, the universal cover of
X1 X ... x X in such a way that [(X; x ... x X3)/m(X,7)] 2 X. As G
is finite, by Lemma any stabilizer I, for the action of m(X) over X is
finite, therefore it has the slice property and by [NooO8, Thm 9.1] we obtain
that m (X/G, [z]) 2 m(X,7)/I .

[

2.2 The fundamental group of the product of
topological spaces

2.2.1 Constructing the homomorphism
Finite index of the group in the product

Let I, denote the isotropy at the point y in X for the action of m (X, Z). By
Lemma the map m (X, Z) — G restricted to I, is injective, therefore we
can identify 7, with a subgroup of G. When we do such identification we will
denote it by I, < G.

Now as m(X,Z) = m (X1, 71) Xg ... Xg m( Xk, zx), if vy = (y1,-.-,Yx)
we define I; < m(AX;,7;) as the image of I, via the morphism m(X,z) —
T (XZ, j}z)

Lemma 2.2.1. We have that I, = I; for alli =1,...k and I, = I Xp ... X
1.

Proof. For v = (y1,...,7) € I, note that v; € m(&;,7;) fixes y; € X,
otherwise 7 can not fix a point in X. As above, the restriction of 1 (&X;, z;) — G
to I,, is injective and as I; C I, we have that 7, # 3; for 7,8 € I, C
1 (X1, Z1) Xg ... Xg m (X, Ty) with v # [. Therefore we can construct an
inverse to the projection. The result follows. O

Note that we obtain that I; < I,,, but in general I,, can be bigger.

Define a homomorphism I, — [] I,, given by decomposing an element in
its components. By Lemma it is injective. Denote by N the subgroup in
m (X, T) generated by all the I, and by N/ the subgroup in 7 (&, Z;) generated
by I;.

Lemma 2.2.2. The subgroup N is normal in w1 (X;, T;).
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Proof. Let ~; € N/ and t; € m(X;, ;). We can write 7; = 74, - - -i; with each
Y, € I, coming from v, = (v, ..., i, -+, W) € Iy, C (X, T) and the point
U= Y1, Yy Ur) € X for 1 =1,...,5. As every m(X;,z;) = G is
surjective, for j = 1,...,4 — 1,9+ 1,...,k, there exists t; € m (X}, 7;) such
that t = (tl, ce ,tk) S Wl(X,Zf').
Ast-vy -t te I, it follows that t;7;, Z-_l € N/ and therefore
ity = (Lt ') it (Lt ) € N
H

Proposition 2.2.3. There is an homomorphism m,(X /G, [x]) — [\, 71 (X, T;)/N!
such that the image has finite index.

Proof. By Lemma/2.1.2|we have that m (X, Z) = m (X1, Z1) Xg. . . X o™ (X, T,).-
Therefore there is an injective homomorphism 71 (X, Z) — [[ m1 (A&}, Z;).
By Lemma we obtain the exact sequence

L= [N = [[m(X2) = [[m(X,2)/N] — 1, (2.3)

together with Lemma [2.1.3| we obtain a commutative diagram

1 1
1 > N > [T N/
1 —— m(X,7) —— [[m(X, 7)) (2.4)

This diagram provides a homomorphism 7 (X/G, [z]) — [[ m (X}, Z;)/N] and
shows that it is well defined.

We can not complete to a commutative diagram of groups with
short exact sequence in the rows because usually 7 (X, Z) is not normal in
[[71(&X;, z;). It will be normal, for example, if G is abelian.

As G is finite we obtain that 7 (X, z) has finite index in [[ (X}, Z;). In
fact [[]mi (X, z;) : m(X, )] < |G| for each surjection o; : m (X, ;) —
G consider a lift G; C m(&X;,Z;) of G with |G;| = |G|. In []G; consider
the equivalence relation (g1,...,gx) ~ (g1,---,9:) < (o1(g1), -, ou(gr)) =
(9p1(dh), - -+, 9¢k(g,)) with g € G. 1t is easily seen that [[ G,/ ~= (G x ... X
G)/A¢ is a set of representatives of left cosets ([[m1(X;:), Zi)/m1 (X, ).
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By considering as coset representatives in [[m (A&}, Z;)/N/ the image of
[1G: and using the diagram (2.4]) we have that 71 (X/G, [z]) has finite index
in HT‘—l(szfz)/N@/

U

2.2.2 The homomorphism has finite kernel
N is finitely normally generated

Let X be a connected, semi-locally simply connected and locally path con-
nected topological space. Let G be a discrete finite group acting on X, x € X
and denote by 7 € X = [X/G] the image of the point  and by p : X — [X/G]
the quotient map.

Let us briefly recall the description of 71 (X, Z) as given in [Che01]. It can
be defined as 7y(2(X, z)) where Q(X, Z) denote the space loop of X’ pointed
at the constant loop of value z. Every loop is given locally as a map from
an open subset of S! to a given uniformization of an open subset of Xj,, and
plus some gluing conditions. In our case of a global quotient, a more explicit
description of Q(X,Z) can be given as follows:

Let P(X,z) consist of paths in X starting at z. As subspace of A(X),
the free loop space of X, it inherits a structure of a topological space. By
considering the constant loop = of value z € X, we obtain (P(X,z),z) a
pointed topological space. Define P(X, G, x) as the subspace of P(X,z) x G
consisting of the elements (v, g) satisfying v(1) = g-7(0) = g-x. As a
topological space it is pointed at (x, [dg)

Lemma 2.2.4. [Che01, Lemma 3.4.2] There exists a natural homeomorphism
between the pointed topological spaces (UX,Z),x) and (P(X,G,z), (z,Idg)).

Remark 2.2.5. When (X, Z) is a pointed topological stack there exists a pointed
topological space (B[R = X|, z'), where B[R = X] is the classifying space of
the topological grupoid [R = X], such that we can take m (X, Z) := m (B[R =
X1, 2’). In the case of a global quotient X = [X/G] it happens that B[R = X]|
equals the Borel construction X X EG, see [Nool2].

Now, the construction of Chen also gives a natural isomorphism of 7 (X, Z)
and m (X X¢g EG,2') [Che0l, Theorem 3.4.1] linking the two definitions.

There exists a canonical projection (P(X, G, ), (z,Idg)) — (G, Idg) given
by sending (v,g) to g. This map can be seen to be a fibration [Che(l,
Lemma 3.4.3] having as fiber at Id the space loop Q(X, z) via the embedding
Q(X,x) — P(X,G,x) where v maps to (v, [dg).

With this description at hand, suppose there is y € X such that it is fixed
by an element g, this is, y € X9. Denote by v, a path starting at x and
finishing at y, then v,(gv,"') € P(X,G, ), where gy, denotes the action of
g applied to each point of the path.
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Lemma 2.2.6. Let I, < G denote the inertia (stabilizer) of the action of G at
y € X. Every homotopy class of a path [y,] € m (X, x,y) induces an injective
morphism I, — m (X, x).

Proof. As G is discrete g — ’yg(gfyg_l) is continuous, with ¢ € I,. Then by
taking the functor my we got a morphism of groups m(1,) = (P (X, G, x)) =
m(X,z). Finally, by composing with the projection (mo(P(X,G,z),z)) —
7o((G, Idg)) we obtain that different points under my(1,) = m (X, Z) = mo(G)
have different images, thus the morphism in injective. ]

Lemma 2.2.7. Let Y € my(XY), y1,y2 € Y and let v,,,7,, be paths starting
at x € X and finishing at y, and y, respectively, then 7, (9%;11) 1S a conjugate
of Yy (97,,7) i (X, T) by elements of m (X, x).

Proof. There exists a path 5 C Y connecting y; and y», therefore v,, 3(g8~ 17;11) €
P(X,G,x) but as g8 = f passing to mo(P(X, G, x), ) it equals [y, (97,,")]-

Now consider the path v,,. Note that 6 := ,, B”y‘l € Q(X,z). There exists
a continuous map # : P(X,G,x) x P(X,G,z) — P(X,G’,x) which induces
the multiplication in the fundamental group (see [Che0ll, Section 3.1]). The
element 64 (7,,(g7,,")#0~") can be seen to be 0(v,,-(9(0-7,,) ")) € P(X, G, ).
By passing to 71 (X, Z) = mo(P(X, G, x), z) we have that [0][v,,(g7,,)][07'] =
s (o) =

Recall that given (X, x) as above, we have a pointed universal cover map
p: (X,%) — (X,z) where & represents the constant loop of value x. Every
element in v € 7 (X) correspond to a point in p~*(z). So given a pointed map

(X,7) = (X, ) it induces a deck transformation of X in the following
Way given y € X take a path oy C X starting at v and finishing at y.
Consider the unique lift pw(ay) C X starting at z and assign to y the point
pv(Nozy)(l). It can be seen to be a well-defined map (See [Hat00]).

Now, by the description given above of m (X, Z), any v € m(X,x) such
that ¢(y) = g (recall that ¢ : m(X,z) — G) have as a representative an
element in P(X, G, z) which we still denote by 7. So =y starts at = and finishes
at gz. Denote by 7 : (X, #) — (X,Z) the universal cover morphism, note that
7,0 (X,7) — (&, ) is also a cover morphism. By [Che0I, Thm 4.1.6] we
obtain a deck transformation in the following way: given y € X take a path
a, C X starting at ~v and ending at y. Using the notation of the precedent
paragraph, the path pﬂ,(ay) starts at gz. Then the path ¢~ 'p,(a,) starts at
x so we can lift it to g—lpv(ay) in (X, %), the end point of this lift is then
defined as the image of y. It is shown that it is a well defined map and does
not depend on the path chosen.

Lemma 2.2.8. Let y € X be fizred by g € G, consider a path vy, connecting
z and y. Consider the action of m(X,Z) on X given by deck transforma-
tions Deck(X,X), then the element v,(gv,"') € m (X, ) fizes a point in X.

Moreover, any element of m (X, Z) fizing a point in X s of this form.
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Proof. As the endpoint of ,(g7, ) is gz we have a pointed covering mor-
phism 7@ -1 (X,vy(g%;l)) — (X,Z), we can consider gy, as a path in X
connecting 7,(g7, ") and v, as follows: define f(t) = v(gv,") - (97yle) where
9Vyle(t') == g7, (t'/t) denote the path starting at gz and finishing at gv,(¢) in
time 1 for ¢t # 0 and being the constant path with value gz if t = 0. We project
then f(¢) to X and obtain gy, which starts at gz and finishes at y. By the
discussion before the lemma, we obtain that it lifts to v, in (f( ,T), as g fixes y
we obtain that the point v, € X is fixed by the induced deck transformation.
Consider the exact sequence

1= m(X,z2) = m(X,7) 5 G =1,

let v € m(X,Z) and z € X such that ~ fixes z. Let p : (X,%) — (X, 2) be
the projection, as it is g-invariant we have that ¢(v)p(z) = p(z). Then by
considering the path in X corresponding to z, we can construct an element
2¢(y)z~t, which fixes z € X. As in the isotropy ¢ is injective by Lemma ,
we have that zp(y)z7! = 7.

0

Proposition 2.2.9. Suppose that there are only a finite number of elements
in mo(X9) for each g € G, then there ezists a finite set L C m (X, Z) consisting
of elements having fized points in X such that if v € m (X, T) fizes a point in
X then it is conjugate to an element of L by elements in T (X, 7).

Proof. By Lemma for every element in Y € my(X9) it suffices to fix an
element ,(gv, ") with y € Y. For every g € G and every element in mo(X?)
we pick such an element. We define L the set consisting of such elements.
By Lemma n every such element fixes a point in X and any other fixing
a point will be conjugate of the element in L corresponding to its connected
component. ]

Proof that the homomorphism has finite kernel

Let us return to the case of k-topological spaces Xi,..., X} and let G be a
finite group acting on each one of them on the left as in The Proposition
2.2.9| gives us k subsets L(&;) C w1 (&}, T;) whose elements correspond to the
element of mo(X7) with g € G. Now consider the subsets L; C L(X;) consisting
of elements corresponding to 7o (X!) where g fixes a point in X; fori =1,... k.

Recall that N < m (X, z) (with X = [(X; x ... x X})/G]) is the subgroup
generated by the inertia subgroups I, given by the action of 71 (X, %) in X and
N! < m(X;,%;) is the image of the i-projection of N. The following Lemma is
immediate from Proposition [2.2.9

Lemma 2.2.10. We have that Nz, = <’}/le’}/;1 | ll € Lz,’)/l € 7T1(XZ',.Z'Z')> m Wl(Xi,fi)
fori=1,... k.
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Definition 2.2.1. Let us define

C; = Ci(m(X,), Li) == <<%’lﬁfll[1 | vi € m(Xs,2:),l; € Lz>>

w1 (X3, Zs) )

to be the normal subgroup generated by the commutators of elements in
m1(X;, x;) and in L;. Denote by T; := m(X;,7;)/C; and by L; the image
of Lz in Tz

Lemma 2.2.11. It happens that C; < N/ and moreover we can consider C; as
a subgroup of N wia {e} x ... x C; x ... x{e} and C; x ... x Cp < N.

Proof. Let [; € L; and ~; € 7T1(X~Z',ZEZ'), the elements of L; were chosen such
that there exists [; € L; and y € X such that [ = (l4,...,0,..., ;) € [, < N.
We have that v, = (e,...,%,...,e) € m(X,z) and as N is normal in m (X, )
we have that 7/lv/™' € N, so
fyz{l’yz{illil = (67 s 771li7;1l;17 ce 76) eN

This element projects to [v;,l;] € C;. Finally given §; € m(X;, Z;), as every
@; is surjective, there exists f; € m (X}, Z;) such that ¢;(5;) = ¢;(5;), so
B = (P1,--.,0k) € m(X,Z) and every conjugate of [y;,[;] can be seen as an
element of V.

Finally, by considering the product of the identification of the elements in
C; we have that €y x ... x Cp < N. O

Before stating the next lemma recall that N < N{ X¢ ... xXg N;.

Lemma 2.2.12. The subgroup C; has finite index in N/, in particular Cy X
... X Cy has finite index in Ny X ... x N hence also in N.

Proof. First note that by Lemma [2.2.10] and by definition of T; we have that
g{/C’Z = <<Li>>7r1(X,x) /Cz = <<Lz>>R1 = <Lz>, with Rz the image of 7T1(Xl‘, I’Z) in

Moreover as ¢(C;) = {e} we have that C; < kerp = m(X;,x;). As
(X, z;) has finite index in m g%,fi), it follows that R; has finite index
in T;, which implies that R; N (L;) has finite index in (L;). Note that (L;)
is generated by a finite number of torsion elements and that by construction
R; N (L;) is a central group in (L;). As any group generated by a finite num-
ber of torsion elements and such that the center has finite index is finite (see
[BCGP12, Lem. 4.6]) the result follows.

]

Theorem 2.2.13. The homomorphism m(X/G, [z]) — [[m(X;, Z;)/N} has
finite kernel.

Proof. By composing the quotient map [[m(X;, z;) — [[m (X, Z;)/N] with
the inclusion m (X, z) — [[m (X, ;) we obtain m (X, 2) — [[m1(&X;, Z;)/N]
with kernel N| x ... x N, Nm(X,Z) = N| X¢ ... Xg N, by the description of
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m (X, %) as fiber product. We put this as a row in the following commutative
diagram together with a vertical column given by Lemma [2.1.3] and complete
to

~ v

1 —— N xg...xg Nl —— m(X,7) —— [[m1(X,3)/N!

, I

1 —— N| Xg...xg N, /N — m(X/G,[z]) —— [[m(X;,z;)/ N}

2

~ ~

1 1
(2.5)
By Lemmaboth N{ Xg...xg N/ /Cy x ... x Cy and N/Cy x ... x Cy
are finite hence

N{ xG...xGN,Q/Clx...ka
N/Cy x ... x Cy

gN{ XG”.XgNl;/N

is finite.

Geometric interpretation of the groups m (X}, z;)/N/

Let us denote by I, the subgroup of G generated by the elements having a
fixed point in every X; for : = 1,..., k. Note that I is a normal subgroup.
Let 2} denote the class of x; in X/I and 2/; the image of 2, in [(X;/1)/(G/I)].

Proposition 2.2.14. There is an isomorphism
™ (&, ) /N = m((Xi/1) /(G/T)), ;).

Proof. Observe that the action of G on X; descends to an action of G/I on
X;/I and therefore we can define [(X;/I) /(G/I)]. Recall by the previous sub-
section that (X}, Z;) can be identified with the set of path-components
of P(X;,G,x). Therefore an element [y] € m (X}, Z;) can be represented by a
path v in X; starting at x; and finishing at gx; for some g € GG. Denote by
pi : X; = X;/I the quotient map. By considering p;(y), we obtain a morphism
between m(X;, 7;) and m ([(X;/I/G /)], 2';).

It is immediate to see that the paths coming from the inertia of I in Xj,
this is, the elements of the form ’yy(gfyy_l) with g € I and y € X7, are sent to
the trivial element in m(X;/I,x}).
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Now consider v € ker (7(X;,7;) — m([(X:/I)/ (G/I)],2;)). Then 7 is
represented by a path in X;, which we still denote by 7, starting at z; and
finishing at gx; with ¢ € G. Note that moreover g € I, otherwise by the
projection 71 ([X;/I /G/I],2';) — G the element would be sent to a non-zero
element. Hence the image of 7 lies in m(X;/I,2}) and it is trivial. By the
exact sequence

1— N[XI/I] — ﬂ-l([Xz/]sz) — Wl(X/I,.I;) —1

and noticing that Nix,,j = N/ we have that v € N] which proves the result. [

2.3 Applications

2.3.1 Product of the same topological space

Now let us describe a case where N/ equals the whole subgroup N; generated
by the elements having a fixed point in the universal cover.

Corollary 2.3.1. Let X; = X, fori = 2,...,k and G finite acting on X;.
Then the morphism m (X1 % ... x X1)/G, [z]) = [[m1(X1/G, [z]) has finite
kernel.

Proof. We only have to show that N{ = Ny and then we obtain the result by
applying Theorem [2.2.13] By construction we have that N{ C N;. Let us show
the inverse inclusion. Take v; € Ny, then we can write 4 = 7y, - - - 71, such that
there exists y;, € X, satisfying M, € ]ylj forj=1,...,1. As X = X;x...x X},
by taking y; = (y1,,...,41,) € X we have that 4/ = (7,5--->m,) € I, and
therefore v = ' --- 4! € N and the image of v in N; equals ;. O

Another proof using Proposition [2.2.14]is as follows: The action of G/I is
free in Xl/] and Xl/G = XI/I/G/I SO Wl([Xl/I/G/I] = 7T1(X1/G>.

2.3.2 Second Main Theorem

Theorem 2.3.2. Let Xy, ..., Xy admit a universal cover and let G be a finite
group acting on each of them such that |mo(X?)| < +oo for every g € G and
1 =1,...,k. Denote X = X1 x ... x X and consider the diagonal action
of G on it. Suppose m(X/G,[z]) is residually finite, then m (X/G,|x]) has a
normal finite-index subgroup N = H, x ... x H}, isomorphic to a product of
normal finite index subgroups subgroups H; < m(X;/I, [x;]).

Proof. By Theorem[B.7we get a morphism © : m(X/G, [z]) — [[m([X;/I/G/I])
having finite kernel E. As m(X/G, [z]) is residually finite we can construct a
finite-index normal subgroup I' <t w1 (X/G, [z]) such that T'N E = {e}.

The morphism O|p : I' — [[m([X;/I /G/I],2';) is therefore injective and
moreover as O(m (X/G)) < [[m([X;/I /G/I],2';) has finite index it follows
that ©(T) < [[mi([X:/I /G/I],2';) has finite index.
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For every i = 1...,k, we have m(X;/I,[z;]) < m([X;/I/G/I],2';) as a
normal finite-index subgroup. Define the subgroup

o), =0)N{{e1} x ... xm(X;/I,[z;]) x ... x {ex}}

where e, € m(X;/I,[z;]) is the identity element. As O(I'); has finite in-
dex in m(X;/I,[z;]), there exists a normal subgroup of finite index H; of
m([X;/1 /G/I]) contained in ©(T");. Set H := Hy X ... x H, then H < O(T)
and it is a finite-index normal subgroup of []m ([X;/I /G/I],2’;). The sub-
group N := ©O7}(H) NT satisfies the stated properties. O

Case of smooth curves

Corollary 2.3.3. Let C',...,Cy be smooth algebraic curves and let G be a
finite group acting on each C;. Denote C' = Cy x...x Cy. Consider C = [C/G]
with G acting diagonally on C. Then m(C/G) has a normal subgroup N of
finite index 1somorphic to 11y x ... x Iy where I1; is either a surface group or
a finitely generated free group fori=1,... k.

By Theorem we have a morphism m (C/G) — [[m([Ci/I/G/I])
with finite kernel, however if the action of G/I is not faithful on C;/I then
m([Ci/1 /G/I] is not necessarily an orbifold surface group. This can be over-
come as follows: let K; := ker(G/I — AutC;/I) and H; := (G/I)/K;. Denote
by C; := [(C;/I)/G/I] and by C! := [(C;/I)/H;], we have a canonical morphism

Lemma 2.3.4. The induced homomorphism q; : m(C;) — m1(C}) is surjective
and has finite kernel.

Proof. By choosing a point z; € C; and denoting by z; its image in both C;
and C; we obtain a fibration [pt/K,pt] — (C;,%;) — (C!,Z;). By taking the
long homotopy exact sequence

e WQ(C;,@) — Wl(pt/K,pt) — ﬂl(ci,fi) — 7T1<Cg7lf'i) — 1,

as there is an isomorphism between m(pt/K,pt) and mo(K, Id), the result
follows. m

So by composing, we obtain a morphism © : m(C/G) — [[m(C;) —
[[71(Cl), this allows us to prove the following Lemma, which together with
Theorem will imply Corollary [2.3.3]

Lemma 2.3.5. The group m (C/G) is residually finite.

Proof. First note that as m;(C!) is an orbifold surface group. In particular it
is residually finite.

Now, it follows that ©(m (C/G)) is residually finite as it is a finite-index
subgroup of a direct product of residually finite groups.
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We need another property of these groups to continue. Let H be a group
and let H be its profinite completion. A group H is called good if for each
k > 0 and for each finite H-module M the natural homomorphism

H*(H, M) — H*(H, M)

is an isomorphism. In |[GJZZ08, Lem. 3.2, 3.4, Prop. 3.6] it is shown that
a finite-index subgroup of a good group is good, the product of good groups
is good and that m1(C) for C an algebraic orbifold curve is good. We obtain
therefore that O(m (C/G)) is good.

Finally, |[GJZZ08, Proposition 6.1] asserts that if 7" is a residually finite
good group and ¢ : H — T is a surjective homomorphism with finite kernel
then H is residually finite. Applying this to ©" : 7 (C'/G) — O(m(C/G)) we
obtain the result.

]

2.3.3 Ceva(n) as a product-quotient surface

Isotriviality of the family

Let (21 : 23 : 23) be coordinates for P? and (X : 3) for P'. For Ceva(n), the
fiber over (A, ) of f are isomorphic to

=2l —23) + Bz — 25) = 0

having singular fibers only at the values 0,1 and oo in P!. Recall that a
fibration is called isotrivial if its non-singular fibers are all isomorphic.

Lemma 2.3.6. Let S be the base locus associated to the rational map f of the
net Ceva(n). Then the fibration f : Blg(P?) — P\ {0,1, 00} is isotrivial.

Proof. This follows from the fact that every smooth curve in the pencil —\(z}'—

28) + B(28 — 28) = 0 is isomorphic to 27" + 25 + 28 = 0.
By working in the standard open subset U; C P! where 8 = 1 we obtain
the equation:

(=A+ 1)z + A2y — 25 =0
for the fiber over the point (X : 1).
If A\ # 0,1 let €,n such that € = —A 4+ 1 and ™ = A. Then the linear
biholomorphism of P? given by

(211 201 23) > (€21 i Mz s e 23)

takes 21 + 23 + 25 = 0 to fy.
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Birationality to a quotient of a product of curves

Any smooth proper family A : X — T of curves of genus g > 1 over an
algebraic curve T' can be rigidified in the following sense: there exists an étale
cover 7" — T such that b/ : X’ := X x¢T" — T’ can be seen as a pullback
of the universal curve in the moduli space of n-level structures Ug(n) — Mé").
When h is isotrivial this implies that X’ is isomorphic to a product 77 x C' for
some curve C.

Let us describe the curve 7" and its galois group G.

The Fermat curve and its automorphisms

We call the curve F(n) = {2 + 25 + 28 = 0} C P? the Fermat curve of degree
n. Denote by G(n) the group of algebraic automorphisms of F(n). Let S3 be
the group of permutations of 3 elements and let it act over P? by interchanging
coordinates. Then it also acts over F'(n).

Let (n) be the group of roots of unity of degree n. Then H(n) := ui(n) @

pia(n) @ pz(n)/(papops = 1) with p; € p;(n), acts on F(n) by (u1, p2, p3)(21 :
2ot 2z3) = (121 © 22z : puz3). The following Theorem is due to Pavlos Tzermias

in [Tze9]

Theorem 2.3.7 ([Tze95)). Let n > 4, F(n) and G(n) be as above. Then H(n)
is normal in G(n) and

0— H(n) - G(n) — S3 — 0.

F(n) as a cyclic and abelian cover of the projective line

We recall two basic lemmas that will be used in the structure of the quotient
C x F(n)/G.

Lemma 2.3.8. Let F'(n) be the Fermat curve of degree n. Then F(n) can be
seen as the n-cyclic covering of P! ramified over the n-roots of unity.

Proof. The n-cyclic covering of P! ramified over the n-roots of unity has equa-
tion in C2

n
zy = H(z1 — &) =20 1.
i=1
By homogenizing we obtain the equation 2z} = 2] — z%. O

Lemma 2.3.9. Let H(n) and F(n) as above. Then F(n) is an abelian cover
of P* ramified over three points with H(n) as deck transformation group. It
has ramification index equal to n over each point above the branching locus.

Proof. We can realize the covering map via the morphism of P (z; : 2z :
z3) > (2} : 25 : 28') which sends the curve F'(n) to the line {2z + 2o + 23 = 0}
and ramifies over the three points (0:1:—1),(1:0:—=1),(1:—1:0). O
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By a version of the Riemann’s existence Theorem (c.f. [BCGP12]), the
covers above are completely determined by surjective group homomorphisms
T (X(P :nyn,...,n)) = p(n) and ¢ : 7 (X (P! : n,n,n)) — H(n) and the
ramification index is given by a Hurwitz’s type formula.

Structure of the quotient
This subsection is devoted to prove the following proposition

Proposition 2.3.10. Let ' : X' — (F(n) x F(n))/H(n) be the minimal
desingularization. Then the fibration f : Blging(ceva(n)) — P! is isomorphic to
X" — F(n)/H(n) = P!,

Let us first prove:

Lemma 2.3.11. Consider the family of projective curves
V={(\(21:20:23) EAXP?| A} = 20+ 25} = A

with A denoting the unit disc with coordinate X. Then the stable reduction
W" — A of V.— A is isomorphic to A x F(n) — A with projection in the
first factor with coordinate t and t™ = \.

Proof. The central fiber Vy = Y " | L; consists of n lines L;. Blow up the
point p = (0,(1 : 0 : 0)) and denote the total transform of V4 in Bl, V' by
Vo =", L; + nE; where we have used the same notation L, for the strict
transform of L;.

Take a cover of degree n of the unit disc A — A given by ¢t — t" and
consider the fiber product W := A x Bl, V. Let W’ be the normalization of
W. We have the following commutative diagram:

T

w’ s W s B,V
| O
A= A" A

In the central fiber, every w € W is the center of local coordinates (z,y)
with t" = 2% being a local equation for W in C3. As Vj =" | L; +nE; we
have three different pairs of values for a and b:

e ¢ = 1,b = 0: This happens if the image of w lies in a smooth point of
Vy- As every point of " = x is smooth we have W’ = W.

e a = n,b = 0: The image of w lies in F; and it is different from its
intersections points with L;. Let € be a n-th root of unity, then t" — 2" =
[T, (t —e'z) = 0 and W’ decomposes into n pieces with local equations
t=ux,...,t ="'z which make W’ an unramified cyclic cover of degree
n of Bl, V locally around the image of w.
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e a = n,b = 1. The image of w lies in F; N L; for some i. The study of
the normalization of W amounts to study the existence domain of the
function /x"y. Consider

U:={(u,z1,11) € C* | u =z},

for points sufficiently close to the origin, we have a map U — W given
by (u,z1,y1) +— (u,z1,y}). Note that the restriction of the map to
U\ {z1yn = 0} — W\ {zy = 0} is injective and locally surjective. As
U is smooth, by the universal property of normalization we obtain a
morphism U — W', the restiction of /2™y to W \ {zy = 0} gives a
global inverse and we obtain that U = W’. The morphism W' — BL, V'
obtained by composing, realizes W’ as a n cyclic cover ramified over L;.

The action of pu(n) over A induces an action over W hence on W’ which
respects the fibrations. We have then that W’/u(n) — A/u(n) is isomorphic
to BL,V — A.

This expresses 7 : W' — Bl, V' as a cyclic covering of degree n branched at
D =3%"" L,  As E; intersects the branch divisor D in the n-th roots of unity
and 7 has degree n, by Lemma we have that 771(FE;) & F(n). Therefore

we can write as divisors
n
!
TV = E nL; +nF(n).
i=1

For the central fiber of W’ we have W/ = 7V} /n, so we have now a reduced
fiber. In order to make it stable we show that the L; are in fact (—1)-curves.
Any irreducible component of W has zero intersection number with the whole
W, this is: L;W} = 0 for all i. As L; intersects only F(n) it follows that L? =
—1. Denote by W” the surface obtained from W’ by blowing down the (—1)-
curves. The family W” — A has all its fibers isomorphic to F(n) and by the
local-triviality Theorem of Grauert-Fischer we have that W” = A x F(n). O

The action of p(n) over W’ descends to an action of W’ respecting the
fibers and by taking the quotient we obtain the following diagram

PN
I
I
I
v ~

W"=Ax F(n) —— (A x F(n))/u(n)

| !

A » A/ p(n)

W' —— W'/u(n) 2 BLV

For n > 3 the action of u(n) over A x F'(n) is diagonal. If n > 3 it is easy to
show it: let £ € p(n) and (z,y) € A x F(n), as the action is induced from that
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of p(n) in A we have that € - (z,y) = ({x, ¢e(x)y), where ¢¢(z) € Aut(F(n))
which is finite by n > 3, as it must vary continuously on x it follows that it is
constant. For n = 3 see [Beau, Lemma VI.10].

Note that W' — W” is a morphism, this induces a morphism BL,V —
(Ax F(n))/p(n) which does not contract any (—1)-curves. As Bl, V' is smooth,
by unicity of the minimal resolution of singularities it will follow that Bl, V' —
(A x F(n))/u(n) is such resolution. Indeed, (A x F'(n))/u(n) has n singular
points in the central fiber. More generally we have:

Lemma 2.3.12. Let H(n) act diagonally in F(n) x F(n). Consider the mor-
phism g : (F(n) x F(n))/H(n) — F(n)/H(n) = P'. Then:

1. The composition go ' : X' — P! has three singular fibers isomorphic to
each other.

2. Each singular fiber F' of g o’ has a central component Y isomorphic to
P! with multiplicity n.

3. The closure of F'\'Y has n irreducible disjoint components each one
intersecting Y in one point and transversely. They are rational curves
with self intersection —n (the simplest Hirzerbruch-Jung strings) coming
from the resolution of singularities of type A, 1 over (F(n)x F(n))/H(n)
lying over '(Y').

4. The reduced curve Yyeq is a (—1)-curve.

Proof. The first three points are the application of [Ser96, Theorem 2.1] and
Lemmas [2.3.9/ and [2.3.8l

Indeed, let b € F(n)/H(n) and H, the stabilizer of any element in b €
F(n) in the preimage of b. Then the fibers of g : (F(n) x F(n))/H(n) —
F(n)/H(n) are isomorphic to F(n)/H,. By considering the projection to the
other component F(n ) We can count the multiplicity of the fiber.

By Lemma- n) has only three branching points and the stabi-
lizers are pu(n). By Lemma- n) has n branching points. The cyclic
quotient is given by the unwelghted actlon and therefore we obtain singulari-
ties A,, 1. The resolution of each of them is a rational curve of self intersection
—n.

By Zariski’s Lemma [BPVdVH04, Lemma II1.8.2] we conclude that Y2, =
—1 in the following way:

0=F?= ZE +Y)( ZE—{—Y ) = —m?®+m®+m®+m?Y2,

[]

Proof of Proposition (] By Lemma we can take h : F(n) — P! to
be an abelian covering of ]P’1 ramified over 0,1 and oo, the three points of
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the ramification locus of f. By Lemma and as h looks locally around
a branching point as ¢ — ", f attains stable reduction over F (n). Denote
by W' the normalization of F(n) Xpi Blsing(Ceva(n)) P? and by W” the surface
obtained by contracting all (—1)-curves, we have

W' —— BlSing(Ceva(n)) P?

|

W ; (2.6)
F(n) ——— p!

Let us show that W” = F(n) x F(n) respecting the fibration.

Locally, around any point in the ramification locus, the fibration has mon-
odromy p(n) by Lemma Over P!\ {0, 1, 0o} the fibration f is a proper
smooth family. We have that 7 (P'\{0,1,00}) = (71,72, 73 | 717273 = 1) where
every -; represents a loop going around 0, 1 or oo in the positive direction for
i = 1,2, 3 respectively. The covering F(n) — P! is given by the surjective ho-
momorphism 71 (P'\ {0,1,00}) = H(n) = m(n) & pa(n) & ps(n)/ < &66 =
1 > with & € p;(n), where v; is sent to a generator of p;(n) for i = 1,2,3,
So the fibration W” — F(n) has trivial monodromy and it can be rigidi-
fied, by sending it to Mé”) as in we obtain that W” is isomorphic to

By Lemma we can complete the diagram [2.6] as follows

V[\[v > BlSing(Ceva(n)) ]P2
W" = F(n) x F(n) —— (F(n) x F(n))/H(n) f
F(n) h > P! = > P!
and by unicity of the minimal desingularization we obtain the result. O]

Recall that for S — S” be a resolution of singularities of S’ if S” has only
quotient singularities, by [Kol93, Thm 7.8.1] we have that m(S) — m1(5’) is
an isomorphism.

Example 2.3.1. Consider the surface Sy := (F(n)xF(n)\{X1,..., X,})/H(n).
The subgroup I generated by the elements of H(n) having fixed points both
in F(n) and in F(n) \ {X1,...,X,}) equals H(n). As F(n)/H(n) = P!,
Fn)\{X1,...,X,})/H(n) = C and by Theorem the morphism

m1(S1) — m(P') x 7, (C)
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has finite kernel, it follows that m1(S;) is finite.
The minimal resolution of singularities S| — S; can be identified with the
following partial compactification of Ceva(n). Consider

J={1,...,n,3n+n*+1} Cc {1,...,3n+n*+3}
then following the construction given in [1.3| we have that
BlSingCeva(n) PQ \ {UjEJDj} = Si

This is from the surface Blging cevan) P? we remove only the strict transform of
</ and the exceptional divisor coming from the singular point of <. This can
be identified with a singular fiber or f.

Example 2.3.2. Consider now Sy := (F(n) x F(n) \ {X;,Y;})/H(n). In this
case the subgroup I, defined as in the previous paragraph, is isomorphic to
pu(n). As F(n)/u(n) = P, F(n)\ {X;,Y:})/u(n) = C* and by Theorem [B.7
the morphism

1 (S2) = m([P!/p(n)]) x mi([C*/u(n)])

has finite kernel and the image is a finite-index subgroup.

By Theorem and Corollary , we have that Z <1p; m(S52). As in
the minimal resolution of singularities S5 — S, can be identified with
Blging Ceva(n) P? minus two singular fibers of f.

Example 2.3.3. If we consider S; := (F(n) x F(n)\{X;,Y;, Z;})/H(n) it can
be identified with Blgiyg oo P? minus the three singular fibers of f. AsH (n) acts
freely in F'(n) x F(n) \ {X;,Y;, Z;}. By the long exact sequence of homotopy
associated to the covering map F(n) x F(n)\ {X;,Y;, Z;} — S3 we have

1 = m(F(n) x m(Fn) \ {X,,Y;, Z:}) — m(S2) — H(n) — 1.

Remark 2.3.13. We can remove points also in the first component F'(n) of the
product. However, we can not get more partial compactifications of Ceva(n)
in this way. This can be shown by drawing the dual graph of the divisor
7* Ceva(n) and noticing that the lines obtained by removing points does not
satisfy the intersection pattern of the graph.
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Chapter 3

Partial compactifications of the
complement of a complex
arrangement and boundary
manifolds

In this chapter we generalize the presentation obtained in Chapter [1| for a
more general type of partial compactifications of the complement of a complex
arrangement of lines &/ C P2. We do so by using a diagram encoding the extra
crossing of the lines in & that can arise when the arrangement is not longer
real.

This diagram also permits to study the relations between the fundamental
group of the boundary manifold of &/ and that of the P?\ .«#. We continue in
this lines in order to study similar relations between the fundamental group of
the boundary manifold of certain partial compactifications of P? \ & and its
fundamental group. Some detailed computations and applications to homology
planes are given.

3.1 Preliminaries

3.1.1 Notations

We will denote by P? the complex projective plane.

Let @ = {Li,...,L,y1} be an arrangement of n + 1 lines in P2. The
complement of the arrangement is denoted by M (<) := P?\ &/. Once a line
L € & is fixed, usually L = L, 1, and after an identification of P? \ L with
C? we let &7 .= o7 N C2.

Let X be a complex manifold, for p € X we denote by 7 : Bl, X — X the
blow up of X at p. If D C X is a divisor, we denote by |D| the reduced divisor
with the same support as D and by Sing D the set of singular points of D.
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We will denote by a® = b~tab if a,b € G with G a group. If a € G and
b € Z, we denote as well by a’ the b-power of a.

3.1.2 Meridians

Let X be a complex manifold and H C X a hypersurface. Let p € H be a
smooth point and A a disc cutting transversaly H at p. A loop 7 in (X \ H)
freely homotopic to the boundary of A with the natural orientation is called
a meridian.

The following Proposition is well-known, for a proof see [Shi07].

Proposition 3.1.1. Let X be a complex manifold and D = > D; a divisor
such that each irreducible reduced component |D;| of D is smooth. Let ~y; be
a meridian of |D;|, then every other meridian of |D;| is a conjugate of ~; in
m (X \D) and the kernel of the map m (X \ D) — m(X) is the normal subgroup
generated by the meridians of its irreducible components.

3.1.3 Dual graph of a divisor and partial compactifica-
tions of its complement

Let X be a projective smooth surface and let D = Zfil D; € X be a reduced
simple normal crossing divisor with the D; being the irreducible smooth com-
ponents of D and denote by w; = D; - D; the self-intersection number of D;.
Let A be the unoriented graph where the vertices V(A) := {vy,...,vny} are in
correspondence with the irreducible components D; of D and the edges £(A)
correspond with the intersection of the irreducible components of D, this is,
there is an unoriented edge joining v; and v; for each point in D; N D,. Denote
by X := X\ D.

In what follows, we will define some partial compactifications of X. The
idea goes as follows: we choose a subset of irreducible components of D indexed
by I which are not to be removed from X, we then select a subset P of points
in Sing Zigg D; to be blown-up and remove the strict transform of Zigg D; in
Blp X

More precisely, let I C {1,..., N}, P ={p1,...,ps;} C Sing(>_,z; D;) and
denote by 7 : Blp X — X the composite of the blow-ups at the points in P.

Denote by 7*D = SN D! the total transform of the divisor D in Blp X,

suppose that for ¢ = 1,..., N, we have that D) is a strict transform of D; and
for j=1,... s, the DY +; are exceptional divisors. Define the divisor
D'(I,P)=n"D-Y Dj-> Dj
iel N<j

Note that Blp X \ 7*D — X'(I, P) := Blp X \ D'(I, P). By restricting 7, we
obtain an isomorphism Blp X \ 7D = X. We call X'(I, P) a partial com-
pactification of X = X \ D. By Proposition , the induced homomorphism
m(X) — m(X'(P, 1)) is surjective.
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We comment on the effects of this construction in the dual graph. Denote
by A'(I, P) the dual graph of D'(I, P). It is obtained from A by deleting the
following vertices and edges: for the set I, we have a subset V(1) C V(A) of
vertices corresponding to the lines D; for ¢ € I, remove these vertices from A,
together with all edges in £(A) having an endpoint in V(7). We also remove
the edges corresponding to P: let p; € P, there exists ji, ja € {1,..., N} such
that p; = D;, N Dj,. In the dual graph of 7*D the edge corresponding to p;
in A has been divided in two, with a vertex in between corresponding to the
exceptional divisor coming from p;.

Partial compactifications for an arrangement of lines

We can carry the above construction for a divisor D C X coming from an
arrangement of lines & = {Ly,..., L1} C P2. In fact, this will be the only
case we will be interested in.

Let & C P? be an arrangement of lines. Denote by Py := {pi,...,ps,} C
Sing .2/ the points with multiplicity strictly bigger that 2. Define 7 : X =
Blp, P> — P? and denote by D = |7*&/| = .77 D; the reduced total
transform of &7 in X. Note that D is simple normal crossing. For a divisor D
where the irreducible components are smooth rational curves, the set of edges
E(A) of the dual graph A can be described as E(A) = {(i,j) € {1,...,n+ 1+
so}? | DiND; # @,i < j} once the irreducible components of D are numbered.
We assume that D; is the strict transform of L;.

Let I C{l,...,N =n+1+sp}and P = {py,...,p, } C Sing>_,,; Di.
Consider 7' : Blp X — X and let D' = n™(D) —>_,c; Di — > _n_; D} as above.
We write M (o, I, P) := X'(I, P) = Blp X \ D’ for a partial compactification
of the complement of an arrangement M (&) = P? \ .

We can iterate this construction in the following way; consider a sequence
of blow-ups:

rlk=1) 20

— (k) — () — (1) -
X = Blp_ ..pX .S Blp XS XS P

77777

with P, C Sing((7@orWo. - .oxl=V)*e7) forl = 1,... kand 7" : Blp__ p X —
Blp,_,...p, X denoting the blow-up of Blp,_, . p X at P. We can suppose that
the irreducible components of the reduced divisor

|| ||+ Pol ||+ | Pol+-+| Py
D’::}(W(O)o---OW(k))*ﬂ‘:ZDg—i- Z Di+...+ Z Dy,
1 || ||+ Pol+...4| Py —1]

where |P| denotes the cardinality of the set P, are ordered in such a way
that 7 o ... o 7®) contracts the curves D} with i > |&/| + ... + |P_,| for
l=1,...,k. Let I C {1,...,||+...+|Pk|} and define M (e, I, Py,..., Py) :=
Blp,,..p X \ D' = > .c; Di as an iterated partial compactification of M (7).

Lemma 3.1.2. Let (X', D) be a smooth projective surface such that
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1. the divisor D' is a simple normal crossing divisor,

2. there is a birational morphism X' LA X,
3. we have that Y*D D D’

then there exists an iterated partial compactification (X", D") and a proper

~

birational morphism X' Y X" such that (Y")7ID" > D' and 7 (X" \ D") <
m (X' \ D) is an isomorphism.

Here we will restrict the study to M (<7, I, P) unless otherwise stated. The
results are easily generalized to the above more general setting of iterated
partial compactifications.

Remark 3.1.3. We have that (X’ \ D’) is a quotient group of m (M (<)) by
proposition [3.1.1]

3.1.4 Boundary manifolds

Let X be a projective smooth surface and D = Zle D; C X be a connected
divisor. We can construct a regular tubular neighborhood U of D in X which
comes with a surjective continuous retraction ¢ : U — D such that ¢|p =
idp. The boundary OU of U is an oriented, connected, closed 3-manifold (see
[Mum61]). We call the 3-manifold OU the boundary manifold of D and denote
by ¢ : OU — D the restriction of ¢ to U.

Suppose now that (X, D) is simple normal crossing and assume that:

e the divisor D is connected,
e the irreducible components D; of D are rational curves ,

e the dual graph of D has no cycles, in particular #D,ND; = 0 or 1 if 7 #
j. This dual graph is a tree that we denote by 7.

For such a pair, a presentation of 7 (0U) is given in [Mum61, p. 235] (See also
[Hir64]). As we shall need the notations, let us describe it.

Fix a base point Q; € D; \ Uizn Dy, in every rational curve i = 1,... k.
Denote by P! the unique point in D; N D,,. Select a simple contractible
oriented curve [; C D; containing (); and passing through every point P, € D;
as in figure and denote by [ = Ul; C D. We can construct a continuous
map h : [ — OU such that ¢ o h|;, = id;, and h(l;) N h(l,) # @ if P =
D;ND,, =N, #a.

It is easy to see that [ is a homeomorphic image of a tree and deformation
retracts to a point.

Label the points P}, € D; by the order they intersect l; as Py, ..., Py,
see Figure [3.1a] Denote by ¢; : 9U; — D; the boundary manifold of D;. Let
Df = D; \ Ufi_ A(P,,) with A(P,,) a small open disk around P, in D;.
Define OU; := ;' (D;). We may suppose that U N oU; = U}
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(a) Mumford generators (b) Paths in D}

Figure 3.1: Generators

We may also assume that ); € D}. Define another contractible path
Il C D as follows: join every two connected components of ;N D] touching the
boundary of a disk OA(P;,), by the segment of 0A(P;,) that connects these
two points when traveled in the natural orientation, see figure[3.1b] We assume
l; and OA(P,,) intersect transversally at two points for all m =1,... k; — 1.

Consider the circle 0A(P;,,) traveled in the natural orientation and connect
it to @; via a segment of [.. We obtain a path g, € m (D}, Q;), for m =
1,..., k;, see figure . Note that 3;; - -- 8, = 1 in m1(Dy).

We can construct continuous maps h; : U%_ 3/ — QU such that 1); o
hilg ~=idg foreveryi=1,... k. Let h;(Q;) be a base point in U}, denote
by Vi = hi(B.,) and let 4/ be a fiber S* at Q; of OU} traveled in the natural
orientation.

By using the long homotopy sequence of a fiber bundle, Mumford obtained
the following presentation in [Mum61]. See also [Hir64].

Lemma 3.1.4 ([Mum61, p. 236-237]). The fundamental group of OU} is given
by the following presentation

I—w;

it - Vi Wi | Do I M= 1,k =) (31)
with w; = D; - D; the self-intersection number of D;.

Remark 3.1.5. Note that QU is non canonically homeomorphic to the trivial
bundle S* x D}, but the image of the paths 7/, are not longer identified with a
path freely homotopic to one of the form {point} x 0A(P; ). In fact, we need
to twist this image by a multiple of 4/ for it to be of such form. See [Mum61,
p. 235].

Now, to globalize this construction to oU, we can use h(l) C OU as a
skeleton to define paths generating m;(0U). Let 7; be the loop based at h(Q1)
constructed as follows. Join h(Q1) to h(Q;) by a segment A of h(1), follow 7, and
come back by A™!. Then it is homotopic to the canonical representative of 7/ in
m(OUF U (1), h(Q1)) using the natural isomorphism 7 (OU;} U h(l), h(Q1)) —
m(0U}, Q;) thus obtained. Define similarly ~;,, for 1 < m < k;. Then ~;, =
Yjr(i,m) for some injective map m — jr(i,m) from {1,...,k;} to {1,...,k}.
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By gluing the OU; together and by using van Kampen theorem, he obtained
the following presentation for m (OU).

Theorem 3.1.6 ([Mum61]). With the notations and assumptions as above, a
presentation for m(OU) is given by:

k;
Wl(aU) = <’}/1,. - Yk | I:ry’iJ’ij(’i,m)]J m = 1, - .,]{Ji,’)/i_wi == H ,ij(ivm)7 1 S 1 S k?> .

m=1

where w; = D; - Dy, [a,b] = aba™'b~!, a® = 1, the identity of the group.

3.2 Wiring diagrams and a first presentation
of the fundamental group of a partial com-
pactification

We will describe the construction of a diagram permitting to express some
meridians around the lines in &/ lying in a pencil of lines passing through a
base point R € P2\ ., in terms of a fixed set of meridians lying in a special
fiber of this pencil.

As an application we obtain a first presentation for the fundamental group
of a partial compactification M (<7, I, P). To do that we will use a modification
of the presentation of the fundamental group of M (<) given in [Arv92] and
[CS97].

This diagram will also carry the information to compute the image of the
cycles in the boundary manifolds of . into M (7). This will be done in section
5.3

3.2.1 Wiring diagram associated to a complex arrange-
ment

Consider an arrangement of lines & in P2. Let us fix a base point R € P?\ &/
and denote by 7 : Blg P2 — P? the blow-up at R. Let f : Bl P? — P! be the
morphism defined by the pencil of lines passing through R. In what follows,
we assume that we have chosen R in such a way that f |Singr : Sing &7 — P*
is injective.

Let x € P!, consider a simple piece-wise linear path 3 : ([0,1],0) — (P!, )
starting at * and passing through every point f(p) for all p € Sing <7, being
locally linear around these points.

By abuse of notation let us denote by .27 the union of the lines of arrange-
ment in P2. As R € P?\ &7, the blow-up being an isomorphism outside 7' (R),
we identify &/ and 7}/
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Definition 3.2.1. The wiring diagram of &/ with respect to Sis W = Ute[o,l] (N
f~Y(B(t))) C BlgP% The i-wire W; is L; N W. Here, we view <7, L; as subva-
rieties of Blr P? since R ¢ o7 .

By the choice of 3, as it passes through the points f(p) for p € Sing &7, we
have that Sing .o/ C W.

Lemma 3.2.1. Fvery wire is a piece-wise linear simple curve.

Proof. As no line in & passes through R, every L; € </ induces a section of
BlgP? — P! which is in fact an isomorphism. By the choice of 3 the result
follows. m

Planar representation of the wiring diagram

By considering the pullback 3*(W) and a trivialization 3* Blg P? = [0, 1] x P!,
we can view *(W) as a closed graph embedded in [0, 1] x P'. Sometimes we
will continuing writing W for §*(W). Moreover we can remove the exceptional
divisor 75" (R) from [0, 1] x P! and we can view W as a closed graph embedded
in [0, 1] x C via a piece-wise linear isomorphism.

There exists a complex coordinate z in C such that the projection (p :
[0,1] x C — [0,1] xR, (¢, 2) — (t,R(2))) is generic, in the sense that the extra
crossings in p(W) arise as transversal intersection of only two wires p(W;) and
p(W},) for certain ¢ € [0, 1] and wires W;, W), that do not intersect in f~1(3(¢)).
We call these crossings virtual vertices. We obtain a planar diagram which can
be represented as in the figure [3.2]

We assume that the order of the lines Ly, ..., L, is such that, at the very
right of the planar representation of W, the wire W; is at the bottom of W,
above it is the wire W5 and then W3, continuing in this way until W,.

Definition 3.2.2. Consider coordinates (¢, z,y) in R3. We say that a wire W;
passes above W}, at a point ¢ € [0,1] if (¢, z,y;) € W;, (t',z,y,) € W and
Yi < Yk-

In order to distinguish the virtual vertices arising in the projection we mark
the projection p(W;) N p(Wy) to indicate if the wires over or under crossed in
B*W as in Figure We call the first a positive braiding (or positive virtual
vertex) and the second a negative braiding (or negative virtual vertex).

Remark 3.2.2. As in the [CS97], we read the wiring diagram from right to left.

Example 3.2.1. Let (21 : 22 : 23) be homogeneous coordinates of P2. Consider
the arrangement consisting of two transverse pairs of parallel lines in C? = P?\
{z3 = 0}, defined by the equation (20— 21)(20—21+23)(22+21)(22+ 21 — 23) 23 =
0. The wiring diagram associated to this arrangement is shown in Figure |3.2
There are no virtual vertices since the arrangement is real and [ is a real
segment.
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W W,
: X Voo

W
W3 W W3
Wy A Wy

Figure 3.2: Wiring Diagram

Remark 3.2.3. When no under or overcrossing is marked in a wiring diagram
W, it coincides with the notion of wiring diagram in [BLVST99|. They are in
correspondence with arrangement of " pseudo-lines”, in particular there exists a
wiring diagram of 9 wires that does not comes from an arrangement of lines (the
so called non-Pappus arrangement, see [BLVS™99, Proposition 8.3.1]), however
for 8-wires or less they are in correspondence with the real arrangement of lines
[BLVST99, Thm 6.3.1].

3.2.2 Using the diagram to obtain presentations

Algorithm for computing a presentation of the fundamental group
of M(<)

We will use the following well-known Lemma.

Lemma 3.2.4. Let Z C X be an algebraic subvariety of an algebraic smooth
surface X. Fiz a point R € X \ Z. Denote by g : Blg X — X, then
m(X\Z2)=2mBlg X \ 7,2).

This allow us to compute 71 (M (7)) in the total space of the fiber bundle
f : Bl P? — P'. We will find suitable subspaces of the total space of this fiber
bundle to apply the van-Kampen Theorem.

Let W C BlgP? be a wiring diagram. Let 8*(W) C [0,1] x P! be as in
B.2.1] Every vertical line £ x P! in [0, 1] x P! corresponds to the fiber f~1(5(t)).
Recall that if p € f~1(8(¢,)) for p € Sing .« and t,, € [0, 1], then no other point
in Sing &/ lies in the same fiber. Suppose that there are s points ¢,,,...,t,,
corresponding to pq,...,ps in Sing 7.

By fixing a planar representation p(8*(W)) of 5*(W) as in [3.2.1] some
under or over-crossing can arise. As the projection is generic, they correspond
to a finite number ¢}, ..., ¢, of elements of [0, 1] distinct from the ¢, .

Order the set {t,,,...,t,,,t,...,t,} by increasing order and relabel them
by t, for k =1,...,v+s. Let B, C P! be a neighborhood of 3(t,) homeomor-
phic to a disk in C such that B,NB; = @ if |k — j| > 1 and B, N B, is home-
omorphic to a disk. Consider M, := f~*(B,) C Blg(P?) for k = 1,...,v + s
and denote by M, (<) := M, \ M, N7} .
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Lemma 3.2.5. We have that
m(Mo ()N M1 () = F, fork=1,...,v+s—1
with F}, the free group in n generators.

Proof. First note that as B, N B,y C P\ {f(p) | p € Sing @/} we have that
M ()N M1 () = f~H(B. N Byy1) is the restriction of a fiber bundle to a
contractible base. The fundamental group of any fiber in B,, N B,y is a free
group in n generators. O

Proposition 3.2.6. We have that

m(M()) = m (M (& * * (M, ().
1(M(7)) 1(Mi( ))m(Ml(,Qi)ﬂMz(,;z{)) 71 (Mo o1 (7)Mo s (7)) 1(My4s(<7))

Proof. By Lemmal3.2.4] we have that the morphism Blp P?\ 75/ — M (/) =
P?\ ./ induces an isomorphism in the fundamental groups.

Denote the restriction of f to BlgP? \ mha! by f: BlgP?\ e — PL
Let oo € P! \ UYts B, and note that f~!(P!\ {cco}) is the complement in
BlgP? \ 754 of a smooth irreducible divisor D, that is the restriction to
BlgP? \ 75 of the strict transform of a line in P? passing through R .

By Proposition we have that

m(BlpP*\ mhe/) = m (1 (P \ {o0})) /{{7D..))

where vp_ is a meridian around D,

Note that, as R € P?\ &, we have that 7' (R) C BlpP? \ 75/ and its
restriction to (P! \ {oo}) is isomorphic to C. The meridian vp_ can be
chosen to lie inside this restriction and therefore vp = 1. We obtain that

w1 (f 1P {o0})) = m (M ().

Observe that U”Z; M, (/) has the same homotopy as (Bl P?\ )\ f~!(00).
We conclude by successive applications of the van-Kampen Theorem: by con-
struction By N B,,, = @, we obtain that 7 (U/L5 M, (<)) is isomorphic to

(M (< * * (M, (A
1M >)m(le)mMz<m> 71 (My 41 (/)1 My 45 () 1(Myrs(7))

[]

We want to compute now (M, (<)) for k = 1,...,v 4+ s and the mor-
phisms of amalgamation my (M, (%)) < m (M (/)M 11(7)) — 11 (Myi1(27)).
In fact, if no point of Sing <7 lies in M, (/) we will have that m (M, (%)) = F),.
However, some conjugations may arise in the meridians due to braiding of the
wires in W.

We have to distinguish 3 cases depending in the nature of M,.: M, contains
a point of Sing o7, it contains a positive braiding of YV or it contains a negative
braiding.
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WrOn ey T G

Figure 3.3: Geometric generating set in different fibers

Let 0, < t, be sufficiently close so that 5(6,) € B, N B,_1 and denote by

xgn), . ,xﬁl the set of points in the planar representation p(8*(W)) of the

wiring diagram W labeled from bottom to top corresponding to the points in

FHB0:) N

Definition 3.2.3. A geometric generating set T'®) = {)\1 ,...,)\211} of the
group 1 (f 1 (B(0:)) \ (f ' (B(0:)) N ), gi) with q. = 7" (R) N f1(B(6y)) s
the datum of A, ... A% meridians around 2", ... z\") respectively, all

of them based at ¢, such that )\211 : /\§K) is nullhomotopic in f~1(B(6,)) \
{igﬁ)a e ,ﬁﬁl} ~ P\ {(n+ 1) — points}.

Remark 3.2.7. A geometric generating set ") = {)\gn), e ,/\fﬂl induces a

geometric base ™ = {A\™ A of m(C\ {:Egﬁ), . (”)} i) as in m
We consider here the geometric generating set I'® {)\1 ey /\,(1'1)1} as in

figure 3.3al m As 1y (7' (R)) is trivial, we can fix a pomt q€ 7TR1(R) as a global
base point for all the geometric generatlng set ") with k = 1,...,v+ s by
joining g, to ¢ by a simple path in 7' (R).

We describe how the meridians change when we move the generators of
I'® to the fiber f~'(3(f..1)) and express them in the generators I'"+1) see
figure We record as well the relations arising in between.

Suppose that p € Sing.oZ N MH, and let I'® be as above. Denote by j
the first index of the meridians of I'* Corresponding to a line passing through
p, and by m the last. We have that )\ (1) )\ “ for k < § and k > m as

we can deform continuously /\(“) to A} 1) having the same homotopy type in
m (M ().

Let R, = [)\T;f),)\nf Ly )\gﬁ] denote the set of equations of the form

AR A =\ A T

. o(m)”g(m—1) o(4)
permutations in m — j + 1 elements.

where ¢ varies in the set of cyclic

Lemma 3.2.8. Let p € Sing. o/ N M. Then m(My(<7),q.) is generated by
the elements of T and T+ together with the relations R, )\,E:”H) = )\,(:)
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a d
b 5
cbe ! p ‘b

dcba : L
[(s+1) ()

fork <j orm <k, )\gﬂl---/\gn)zl and

ALHD =\,

k+1 K X (%)
A

(%) 3, ()

k41 K +1
A A
AEFD (s ) A AS

] m

(see figures 3.3 and [3.4])

Proof. The proof follows closely that of Proposition [1.2.7]

Let V,, be a neighborhood around p homeomorphic to a product B, x D
with D a disk not intersecting L, € & with k& < 7 or k > m. The local
fundamental 71(V}, \ &) equals the fundamental group of the link associated
to the singularity p which is a Hopf link of m —j+1 circles (see [OT92, Lemma
5.75]).

For the complement M, (%) \ V, we have 7 (M, (/) \ V,) = F,—(m—j) and
if V' is a small neighborhood of V,, we have that as V), \ & retracts to 0V, \ </
then m ((Mu(2/) \ V,) NV') = 7T1(V \ «7). By Van—Kampen we obtain the
relation >‘n+1 -Aﬁ“) =1. O]

Lemma 3.2.9. Suppose that there is a positive braiding of the wires j and
j+1in M(o/). Then the group m (M (<), q.) admits the presentation

K K k+1 (k+1) (k+1) K
<)‘§ )7"-7)‘24217)‘(' )7 J—f—l |)\]+1 :)‘g )7)‘

J

(See fig. )

Proof. As in lemma , we have that we can deform )\Sf"ﬂ) to )\,(:) for k < j
or j + 1 < k without changing the homotopy type.

The result follows from the Wirtinger presentamon of a braid mterchangmg
the j and the j + 1 wire: consider the meridians )\ )\(+1 in f71(B(0es1)) as
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(a) Positive braiding (b) Negative braiding

Figure 3.5: Braiding in W

in figure [3.3b] Note that in 71 (f~'(3(0x11)), ¢es1) these meridians satisfy the
relations:

(k+1) (%)
(k+1) _ (%) (k1) _ () NFL () N
)‘j+1 )‘ >\] )\]+1 o )‘J+1
This can be seen directly from Figure (C.f. [OT92, Lemmas 5.73, 5.74].)

O

Lemma 3.2.10. Suppose that there is a negative braiding in M, (<), then
the group m (M, (<), q.) admits the presentation

P NG+l j+1 jt+l

A
<)\§n)’ o /\55217)\@—%1) )\ (k+1) | /\ (k+1) _ /\gn) 1 7)\(m—i-l) —\ (k) >

(See fig. [3.54,)

We can summarize the information carried by a wiring diagram ¥V and the
changes in the geometric sets I'®) as they cross a vertex in W as follows.

For every t, € {t1,...,t,4s} there exists a crossing p, in the planar rep-
resentation of W, let TI®) = {¢()(1) < ... < ¢®(n + 1)} be an ordered set,
with o) a permutation of {1,...,n + 1} such that the k-th element o*)(k)
records the position of the wire W in the fiber =B ,.i)), when W is
read from bottom to top, with 6, as in Definition |3.2.3| This is, xk Jew (%) (k)
for k=1,...,n+ 1. Note that o™ = id.

The order in II*) records the local position of the wires of W in f~1(5(6,)),
while the order {1,...,n + 1} induced from the order of the lines in & is a
global order. For a wire W), of W, we write a(”)_l(k‘) to indicate that the wire
Wy is in the a(”)fl(k:) position in the fiber f(3(6,)).

Consider the free group - +)1 generated by the meridians in I'®) and let
7™ {1, n+ 1} = F +1 defined as follows:

Suppose that the crossing p,; corresponding to ¢, satisfies p, = W, ;) N
Wo(">(j+1) n...N Wg(n)(m), then

{e fork=1,...,5,m+1,...,n+1,

M2 A for j < k< m,
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if ¢,. is an actual vertex,

T(»e)(k):{e fork=1,...,5,j+2,....n+1,

(%) _
Aj for k =j+1,

if ¢, is a positive virtual vertex, and

e fork=1,....,5—1,7+1,...,n+1,
()\g'i)l)_l fOI‘/{:j,

if ¢, is a negative virtual vertex.

The Lemmas [3.2.8], and [3.2.10] imply the following proposition.

Proposition 3.2.11. Let ™ = (A" . ,)\ﬁl}, D) = A n'fll)}

be geometric generating set as in and suppose that p, € M,. Then we
have that in m (M (), qx):

K+l K)\ (%)
Aff(:ﬂ))—l(gw)(k)) = (Aé )) *) f07“ k= 1,...,n+1,

or equivalently,

B . 75) ()~ (D)
/\l(chl):(/\() ) ( ( +1(k))> fork=1,...,

e 7o) (k) n+l.
Note that if p, = Wota gy (Ve e N Wt 1y We have that
(s4+1)=1 /(%) _ k fork=1,....7—1,m+1,....n+1,
4 (o (k) {m—e fork=j+cand t=0,....,m —j.

As the fundamental group of M (&) is generated by the meridians around

each line, we fix the geometric generating set I'") = {)\(1) : )\ﬂl} ={A\,.. .., g1} C
M, ().

Theorem 3.2. 12 Let of = {L,...,Lns1} be a complex arrangement of lines

in P? and let T be a geometric genemtmg set as above. A presentation for
the fundamental group of M (<) is given by

m(M(e),q) = <)\1,...,)\n+1 | URN>)\n+1"')\1>

with R, as Lemma and each k corresponding to a point p, € Sing <.

Remark 3.2. 13 The relations R, are expressed in terms of the geometric gen-
erating set I'™ by substituting )\( ©) by a conjugate of /\( by elements of

'™ by repeated applications of Proposition [3.2.11]
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Proof. From Proposition we know that m (M («)) = m(M(&)) *p,
kg M (Myis(2)). Now, the groups m (M, (<)) are presented in generators
I'®) and T'"+1)  and relations which are words in these letters (see Lemmas
13.2.8] 13.2.9} [3.2.10)). The geometric generating set '™ is chosen in such a way
that it lies in a fiber over a point of B,_; N By, and therefore, we can assume
that the amalgamation 7 (M,_1(#)) x5, 71 (M.(<7)) permits to see I'*) in
M, (&) and M,_(«7) simultaneously.

Note that Al - - )\E-KH) =AW )\g-”), hence AU AHD — 30 o\
forevery k=1,...,v4+s— 1.

The relations in 71 (M,(<7)) when there is a positive or virtual vertex in
M, (&), can be omitted in the presentation of 71(M (7)) by writing every

meridian of T**1 in terms of '™ as in Lemmas [3.2.9] [3.2.10]

When there is an actual vertex in M, (<), the relation R,, = [)\Sfi), )\f,:”)_l, ce )\y”)]
will appear in the presentation of 71 (M (<7)). This relation can be expressed
in terms of I'M in a recursive way, by expressing I'™® in terms of I'*~1) by
using the amalgamation of w1 (M,_(</)) and m (M, (</)) over B,_1 N B, and
the presentation of M, (<) given by proposition More precisely, we

have that

ey (gw) (k)).Tu) ((,(2) *1(00@)(@) g (B=1) (C,(n—l)*l((,(n) (k)))

() _
/\k - /\g(~>(k)

fork=1,...,n+1,

and every 7(") <a(7’)71(0(”) (k))) can be expressed in terms of I'") in a recursive
way forr=1,...,7— 1. O

Algorithm for determining the presentation for a partial compacti-
fication M (<, 1, P)

Let W be a wiring diagram and (A1, ..., Apt1 | UpRi, Ant1 -+ - A1) a presenta-
tion of 7 (M (&/)) as in Theorem [3.2.12]

Consider a partial compactification M (7,1, P) of P?\ & as in [3.1.3
Here, we let Py = {p1,...,ps,} C Sing.e/ denote the points of multiplic-
ity strictly bigger than two, consider 7 : X = Blp,P? — P? and denote
by D = MDD, = 7o/, Select T C {1,....,n + 1+ s} and P =
{p},. ... P} € Sing) .. D;. Consider another blow-up 7' : Blp X — X and
write 7D = S0P DL Define D' = 7%(D) — Y, D — ) D!
and M(</,1,P)=Blp, X\ D'

From Proposition [3.1.1, we have that a presentation for the fundamental
group m (M (&7, 1, P)) can be obtained from (A1, ..., Aps1 | Up Ry, A1 -+ A1)
by adding as relations certain words A(D)) representing some meridians around
the irreducible components D) with either i € I or n + sy + 1 < 4. In order to

do so, we have to distinguish four cases for these irreducible components D) of
" D:

i>n+1+s0

1. D; is the strict transform of a line in 7. In this case i < n + 1.
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2. D} is the strict transform of an exceptional divisor D; in X. In this case
n+1<i<n+1+4 s,

3. D, is an exceptional divisor coming from a double point p in Sing &

4. D]’D is an exceptional divisor obtained by blowing-up a point p = D, N Dy,
withr<n+landn+1l<k<n+1+sq.

For the lines as in ([I|) we let A(D}) = \;.

For the lines as in suppose that D; C X is an exceptional divisor coming
from a point p € Sing .o/ and suppose that p € M,,, this is, t, is the x-element
in the ordered set of vertices ¢y,...,%,,s of a planar representation of WV as in
. In other words t, = t,, € [0, 1] satisfies 3(t,) = f(p) and consider I'*) =
PR /\,(Zzl} the geometric generating set of f~1(8(6,))\ (z\", ... ,mfﬁgl) C
M, (&) and suppose that p = W, ) ;) "W G41) - - <N W)y With the local
index I = {o™ (1) < ... < 0™ (n + 1)} as in . Associate to D; and to
its strict transform D/, the word A(D;) = A(D}) = A% - )\55)71 e /\g-'_?l : /\E-F”).

Lemma 3.2.14. Let D, be a line as in (@) Then \(D}) = AL -)\i,'f)_l e )‘5'?1 .

Agﬁ) represents a meridian around D;, and by pull-back, also around D..

Proof. Let v : U — D and v; : U; — D; be the boundary manifolds of D
and D; in X respectively. Note that we can use the meridians )\(»”), e )\7(5”) to
give a presentation of m (0U*), with OU} = oU N 9U; as in as follows:
the projection 7(9U;) to P? can be seen as the boundary of a 4-real ball B,
centered at p. There exists R, € 0B, such that for each j < k < m the loop

ap = )\,(:) is homotopic to a product oc:fQ with

e The loop oy, starting at R,, lying completely in 0B, and surrounding
the line LU(K)(,C).

e The loop ay, is a simple path connecting R, and the point R € P?\ &.

By pulling-back the meridians «j,,...,a,, to X we can see them as lying
in OU. By construction of the geometric generating set I'®)| the product
Qm, ++ - @, 1s homotopic to a path encircling the lines L)y - - - s Lots) ) and

therefore the projection v;,(am, - -~ ;) = e in m (D}, ¢;(R,)). We can con-
struct a continuous map h; @ UL vi(ag,) — Uil ag, such that h;(¥(ag,)) =
ay, and therefore the loops vy, ..., oy, together with a fiber o, of OU; gener-
ate the group m (0OU}) as in Lemma . Moreover, as D; - D; = —1, we have
the relation o; = oy, - - - oy, in m (OU}, R,).

By construction of I'®)| we have that every two oy, and ay, with j <
k, k" < m are homotopic. Therefore, by connecting a; to R via «;,, we obtain

the relation oy > = AW )\g,.;) in m (P?\ &).

By pulling-back a?jQ to Blp, we obtain that it is homotopic to a meridian
around D). O

7



For the lines D} as in , suppose that p = D, N Dy, with r,k < n + 1.
Consider the unique index 1 < kK < v + s such that p € M, and let ) =
{Aﬁ“), . ,)\221} be a geometric generating set of m (M, (2)). We denote

D) = A A -
Recall that 0(“)71(7’) and o™~ (k) record the local position of the wires W,., W,
respectively, in the local order of the wires of W in f~1(5(6,)) given by I1*%) =
{oW (1) <...<o®W(n+1)}

Finally, let D) be as in (4) with p € P. We have that p = D, N D, with
r <n+ 1 and Dy an exceptional divisor coming from a point p(k) € P,. Let
us suppose that p(k) € M,. Denote by I'®) = {Ag“), ce )\221} C M, (&) the
geometric generating set as above. We can suppose that p(k) = W, ;) N
MWy Asn+1 <k <n+1+ sy, we can consider the word M Dy) =

AS;") e )\Sﬂ) as in Lemma |3.2.14] above.

Lemma 3.2.15. A meridian of D), is given by \(D,)) = )‘:2>‘1(r)/\<Dk)' More-
(%)

o9~ r) commutes with \(Dy,).

over, A

Proof. Recall that by construction, A is the meridian of L, lying in the

o (r)
geometric generating set T'%). B
Let ¢p, : OUp, — Dy be the boundary manifold of Dy in X. For k' =

Jy-..,m, let us decompose the loops ay = )\,(:) in two parts ag;, ag, as in the

proof of the Lemma [3.2.14} such that a4 is homotopic to a:,f 2 The proof of
the same Lemma and |3.1.4] give us that

T(OUD, s Ri) = (s Qg | [y ] Qo = iy - ).

for a point Ry € OUp, and oy a fiber of OUp, . We can globalize the relations

[e7N)
in this presentation by considering ozk,k2 and obtain that A(Dy) commutes with
1

(%)

A;’f) for ¥ = j,...,m, in particular as D, intersect D;, we have that A 1)
(o T

commutes with A\(Dy).

Furthermore, the point Rj can be chosen to lie in the boundary 0B, of
a ball B, C X around p. Let ¢p, : ou D, = D; be the boundary manifold
of D}, in Blp X and A, Ay a pair of disks about the points D), N D, and
D}, N D, respectively. Denote UL, = zbgi(D; \ (A1 U Ay)). By working in
local coordinates, it can be seen that o, @, (-1, and a fiber oy, of OUp, at
Ry, generate the group m(OU *;)) and that

Oép = O Oéo'(“)il(’r)l

* [ak? ap]’ I:Oég-(’<>_l r)q’ aP]’
Wl(aUD;) = <Oék,C¥U(K)—1(T)1,Oép (r)1

by Lemma and because D, - D, = —1. ]
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Theorem 3.2.16. Let &/ C P? be an arrangement of lines, W a wiring dia-
gram and M (<7, I, P) a partial compactification. Then

771<M(%7[>p)>Q) = <)\17-~'7)\n+1 ‘ URk7)\n+1”.)\17U)\(D7I;)7 U )‘(D;;)>>
k

i€l peEP
1s a presentation for the fundamental group of the partial compactification.

Proof. We only have to justify the expression for those meridians around lines
as in and . For the meridians of lines as in and , the expression
A(D;) and A(D,) is explained by Lemmas [3.2.14] and [3.2.15 respectively. We
will conclude by Proposition |3.1.1]

For the meridians around lines as in , it is immediate by the biholomor-
phism property of the blow-up outside the exceptional divisor.

Consider a line D; as in and suppose that it comes from a point p =
D, N Dy with v,k < n + 1. Note that there is essentially no difference with
a line as in besides the change of local indexation to a global one, and

therefore, we can proceed as in the proof of Lemma [3.2.14] to obtain that

fy’?lfl(r))\(f’z)*l(k) is homotopic to a fiber of OU; connected to the global base
point R.

]

As D = Zf\il D; is a simple normal crossing divisor with N = n+14sq, we
can consider an orbifold structure in (Blp, P?, D) (see [Eysi7] for the notation)
by choosing weights r = (r1,...,7y) € (N* U {+o0})V.

Theorem 3.2.17. Let o/ be a complex arrangement of lines, W a wiring

diagram and consider the weights r of D as above. The fundamental group
(X (Blp, P2, D, 1)) of the orbifold X (Blp, P2, D,r) admits the following pre-

sentation:
N
</\1,...,)\n+1 | URk,)\nJrl "')‘17U>\<Di>”>
k 1=1

where the relation \(D;)" is omitted if r; = +00.

3.3 Boundary Manifolds methods

In this Section we use the results of Mumford as stated in 3.1.4] in order to
study the fundamental group of the boundary manifold OU of an arrangement
of lines .

The notion of wiring diagram defined in the previous section will play an
important role, a presentation of w1 (M (7, I, P)) will be obtained as a quotient
of the presentation of 71(0U) and compared with Theorem [3.2.16]
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3.3.1 Boundary manifold of an arrangement of lines

Fundamental group of the boundary manifold of an arrangement of
lines

Let @ = {Ly,...,L,y1} C P? be an arrangement of lines and denote by
7 X — P? the blow-up of the projective plane at the s, points of Sing .o/
of multiplicity equal or higher than 3 as in [3.1.3] Recall that D = |7*D| =
Z?IISOH D; is the reduced total transform of .7 in X and let v : U — D be
its boundary manifold.

Using the description of Mumford (Theorem and that of a weighted
graph, Westlund gave a presentation of the fundamental group m (0U) of OU
[Wes67] (see also [CS08]). Let us describe this presentation.

Denote by A the dual graph of D and by £ the set of edges of A as in
above. Associate to each vertex v; a weight w; corresponding with the
self-intersection number of the associated line D; in X.

Let 7 be a maximal tree of A (a subgraph of A containing no cycles and
all the vertices of A) and denote by C = A\ 7. Note that g = |C| = bi(A)
equals the number of independent cycles in A.

The edges in C correspond to g points {pi, ..., p,} in Sing D. Let us denote
by 71 Bl,, pg)_( — X the blow-up at these points. Denote by D’ =

-----

St D7 the strict transform of D in B, p, X and let ¢/ : 9U’ — D’ be
the boundary manifold of D’. Note that the dual graph of D’ is a tree that
can be identified with 7 by removing from A the edges in C. In particular, D’
and QU are connected. Let 7V"(D) = D'+ 3>7_, Fj, be the total transform
of D with Ey,..., E; exceptional divisors.

Now, if (i,7) € C corresponds to the point py for some 1 < k < g, there
of irreducible components D;, D; of D respectively such that £, N D, # @,
ExND; # @ and D; N D; = pi. Denote its boundary manifold by ¢g, :
OUg, — By, v} : OU] — D, : 0U} — Dy,

Select a base point Q; € D; \ (U D JUj_ Ey) as in and a simple
curve l; C D} containing ); and every intersection of the form:

1. D;N Dj, with (i,j) an edge in T,

2. DN Ey, with Ej coming from a point p; corresponding to an edge (i, j)
in C.

Let us label these points by the order they intersect l; as Py, ..., Py. Note that
for every P, there corresponds a unique edge (i, ja(i,m)) in A. This defines
an injective function m — ja(i,m) from {1,... kl} to {1,...,n+ s + 1}.

We also label only the points as in by the order they intersect [; as
P}, ..., P and define a function m ~ jr(i,m) from {1,... ki} to{1,...,n+
so+ 1} asin3.1.4

Let I = Ul, € D' and b/ : | — OU’ be a continuous function such that
Y o ' = id;. For an exceptional divisor Fj corresponding to an edge (i, 7)
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in C, we let g, C Ej be a simple path connecting Fj, N D; to Ey N D} and
h lEk — (?UEk such that wEk o hEk = idlEk, hEk(lEk) N h,<ll> 7£ @ and
hEk (lEk) N R'(l;) # @. This create a cycle ¢ = ¢;; in the boundary manifold
of #W*(D), which we orient passing first by &'(l;), following hg, (I, ) and
coming back by A'(l;). We denote by 71, ..., Vnt1+s, the meridians around

Dy, ..., Dy, obtained as in using h/(1).

Theorem 3.3.1 (Westlund). A presentation for w1 (0U) is given by

Y155 Intso+l [717 ’ij]? (Z,j) €&
7T1(8U) ==

k; Sija (iym) .
Cly ey Cy =Iln=1YjuGimy 1Si<n+s+1

where
¢, if (i,j) equals the k-th element in C,

Sij =1 ¢ if (J,1) equals the k-th element in C,
1 if (i,7) is an edge of T.

Proof. From Theorem [3.1.6| we know that

ki
h/% VjT(i,m)] m = 17 LI ki? ’)/z_wz = H 7jT(i,m)>
m=1

where w] is the intersection number of the strict transform D} of D; in Bl
Note that (,1) is an edge of T if and only if [ = jr(i,m) for some m €
{1,...,k;} and therefore the set of relations A = {[v;, Vj, im)] | m =1,... ki,i =
1,...,n+ sg+ 1} is the same as B = {[v;, ] | (4,1) an edge of T}.

Let E be an exceptional divisor corresponding to an edge (7,j) in C as
above. We can remove two disks A} C Dj, Ay C Dj in D" around the points
EyND; and Ej, N Dj respectively, and obtam a pair of torus T}, T} as boundary
from 8U’° (o 1(D’ \ATUAY). Let v(Ey);, vi and y(Ey)’, v; be generators of
m(T}) and m(T}) with V(Ek);, v(Ey)) constructed from 9A7, 0A) as in
We obtain the following presentation for m (0U"):

A [%’7 (Ek');L hj"Y(Ek);']

m(0U") = <71, o Tntso+l

—w! K ..
vt =1 Viram for L #14, 7,
Voo Ynrsorts VER)H V(B —wr
< ’ v = Vjra) V(ER); Vi (ki)
w]

Vi = VG Y ER)G VirGiky)

where the products in the lowest row of the relations are taken in such a
way that 1 = (1) - - - i(y(ER);) - - - ¥i(7y,,) holds in 7y (D;* \ A;) and sim-
llarly 1 = v;(vj1) -~ ¥ (v(ER)}) - ¥5(Vje,) in m(D5" \ Ag) for generators
Yoy Vr1s - - - Vow, gemerators of i (OU]") for r =14, j as in m

Let Ej} denote the submanifold of Ej obtained by removing another pair
of disks Ay, Ay of Ej, about the points Ej N Dj and E N Dj as in Write
oUy, for ¢! (Ey). Note that the boundary of OUj, consists also of a pair
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of torus T;,T; corresponding to A; and A, respectively. Let ~/, v(E)) and
vj,7(Ey) be generators of 7 (T;) and m(7}) respectively. By , we have
that m1 (U, ) = (Y(Ek), 76 75 | [V(Ek), vl [V(Ek), 5], v(Ew) = 7750 = (1575 |
[, %]) = Z7 because Ey - By = —1.

We can glue U™ to U}, by first gluing T; to T} by a longitude-to-meridian
orientation-preserving attaching map f, and similarly 7} to T]’ by a map g.

First, by the van Kampen Theorem we obtain that v; = v, and v(Ey) =
Y(Ep);. Then, from HNN extension we get v; = ¢ 'vjer and y(Ep); =
e 'Y (Er)cx.

We obtain the following presentation of m (0U" Uy, OUE, ) by replacing

-1 —1 —1
V=7 =" v (Ek) =%y s v(Ee); = 7", (Ek); = 73" in terms of
Yis Vi Ck

! . .
[%,f/yj’“ |, [vi, vi] with (i,1) € T
fVl_wl = f)i:l Yir(,m) for [ 7é (R
Vs Vntso+1: Ck| —w] et
= YirGn Vi Virg

Vi = Virgw Y Y Yiray
Note that the row of the relations corresponding to ¢ can be simplified to
’ —1
%ﬂwiﬂ) = Vi1 Yz (3.2)
as 7; commutes with every ;. (im). A similar simplification can be made for
the relation corresponding to j.
We repeat the above process for every Ey with £ = 1,...,g. After this,
the order for the product as in , is given by the function m — ja (i, m)
and the conjugations szj as in the statement of the Theorem. We get that

v (i (ki =) Hm 1Y Mjﬁ :nm) Note that k} — k; equals the number of points
in {p1,...,p,} N D;, and therefore w; + (kf — k) = w;.
This gives a presentation for the fundamental group of the boundary man-

ifold of the total transform of D, which is homeomorphic to OU. n

A central computation in our work is the expression of the meridians around

. .. . 1 .
the exceptional divisors Dy i9,..., Dpyso1 iIn D = Z?Ilsﬁ D; in terms of
meridians of the lines in 7. As a partial result we obtain an expression in the

following corollary. The cycles ¢, will be expressed in terms of meridians of

the lines in B3.3.2
Corollary 3.3.2. Forr=n+2,...,n+ so+ 1, we have that in m (0U),

k. ‘ ¢, if (r,j) equals the k-th element in C,
Yy = H 7;;]@,(;;”) with s,; = ¢ ¢, if (j,r) equals the k-th element in C,
m=1 1 if (r,7) is an edge in T .
Proof. 1t follows from the relation " = H:; 1 /VJZ(? i;;n) in the presentation of

m1(0U) in Theorem [3.3.1] the fact that w, = —1 because D, is an exceptional
divisor and hence ja(r,m) € {1,...,n+ 1}. O
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Choice of a maximal tree

In what follows, we will define a maximal tree 7" of the dual graph A of D as
defined in [CSO8, Section 3.3].

In the arrangement o = {L;,...,L,1}, we will fix the line L, as the
line at infinity, recall that we denote by D; the strict transform by L; for
i<n+1inD=> D;CX.

Consider the following subset of edges £ C £ which defines a maximal tree
T' C A of the dual graph A of D:

L. Let (j,n+1),(n+1,5) € & if D11 N D; # @. This is, all the edges
having as an endpoint the vertex corresponding to D, 1.

2. Let (i,j) € & if n+1 < j (D, is an exceptional divisor) with either

e D;ND,1 =@ andi=min{l | D,ND; # @}. Note that D; comes
from a point in Sing &7 \ L, 1.

e or DN D,y # @ and D;N D; # &. The line D; corresponds then
to a line L; touching L, in a point of multiplicity > 2.

Note that £ \ £ consists either:
e of edges corresponding to double points L; N L; with i,7 <n +1,

eor,ifp="L; N...NL; with¢; <... <4, <n+1,2 <, and £} denotes
the exceptional divisor obtained by blowing up at p, of edges of the form
(4r,7) with r =2,... L.

Let us consider the presentation of 7 (0U) as in Theorem [3.3.1] If (i, j) equals
the k-th element in A\ 7" as in the first point above, we denote the cycle ¢; by
¢; ;. Recall that if ¢ < j, we pass first through //(l;) and then through A'(l;).

For the cycles created by the edges in the second point, let us suppose that
the irreducible component of D are ordered in such a way that D, 1N D; # &
forj=n+2,...,8 and D,;,1 N D, =@ for k > ¢'.

For ¢ <1+ < n+ 1+ sy, we have that, as D, is an exceptional divisor,
1 < jalt,m) < nfor 1 <m <k}, and v, " = Hfrézl ’yjié%w holds as in
Theorem [3.3.1] Note that if (ja(:,m),¢) equals the k-th element in A\ 77,
we have that s,;,(,m) = c,. In this case, we denote ¢, by ¢j,(,m),. As T is
a maximal tree, the edges corresponding to (ja(c,m),t) for 1 < m < kI, give
rise to k; — 1 independent cycles ¢;j, (,,m), in A.

Using the tree 7’ and corollary we can express the meridian around
an exceptional divisor in terms of the meridians of the lines and the cycles

Cs;’,s’/:
_ CiaGD)e Cia(n2).e EINCLAN? '
rYL o lyjAA(Lvl) r)/jAA(LVQ) T /y]AA(ka"Z) for s < L S n + 1 + SO (33)
with ¢j, (), = 1if 7 = min{ja(e,m) |m =1,... k}}.
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3.3.2 From a presentation for the boundary manifold of
an arrangement of lines to a presentation of its
complement

Let &/ C P? be an arrangement of lines and QU its boundary manifold. We
identify OU with the boundary manifold of the total transform D of < in
7 : X — P2, the blow-up of P? at the points of Sing .« of multiplicity higher
than two. Denote by i : OU — P?\ & the inclusion map and by i, : 7 (0U) —
71 (P?\ &) the induced homomorphism.

Consider the presentations (yi,...,Vn41,¢1,...,¢, | R') of m(0U) with R’
the set of relations as in Theorem and (Ap, ..., Apg1 | URg, Adpg1 -+ - Ap) of
m(P?\ /) as in Theorem [3.2.12]

Recall that the construction of the meridian ~,; around the irreducible
component Dy of D = ZZSHO D), depends on a choice of a maximal tree
T of the dual graph A of D, contractible paths [, C Dy, and a section
h:l = Ul — 90U, see[3.1.4 We choose the maximal tree 7" constructed
at[3.3.1] Forp= L, N...NL,, €Singa \ L1, we have a unique cycle ¢, ,,
if r =2 and r — 1 cycles if » > 2, in this case let us denote by D, the corre-
sponding exceptional divisor in X, therefore we have the cycles Choyis -5 Copte
See B.3.11

Consider a wiring diagram W of & as in [3.2.1 There exists x € N* such
that p € M,. Consider the geometric generating set I'®) = {)\g'{), e )\,(1'21}.
Recall that, as in remark |3.2.13| there exists a word 53(»”) in Agl), o ,/\&)1 (see

also [3.3.2)), such that

(%)

/\Ejifl(j) = )\y)fj forj=1,...,n+1.

The main objective of this subsection is to prove the following Theorem.

Theorem 3.3.3. The paths ly,. .., lyt14s,, the map h: 1 — OU and the wiring
diagram W of &/ can be chosen in such a way that

1. The generator ~y, of m(OU) lies in the same homotopy class as A in
P2\ fork=1,....n+1.

2. Ifp=L,N...NL, €Singe/ \ L,11 and p € M, as above, then

o if r =2, the cycle ¢, », is homotopic in P*\ & to gﬁ,’f)( ,(7';))_1 and

~1
o ifr > 2, the cycle c,,, is homotopic to &(,f) ,(7';) L fora=2,...,r.
By the point (1)), we can also consider each &,," as a word in vy, ..., Vpt1-

3. ffp = L771 n.. .ﬂLm < Sing le\Ln_H; denote by R/(p) the set Of relations:
° {C;llmz 7(7);)(57(7[2{))_1} ifr=2, or
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o (el EEN T Ta=2 . r) if > 2

We have that (y1, ..., Ynt1,C1, - -5 Cq | R, UpeSing o\ Lo B (D)) and (Aq, ...

URL, Any1 - A1) are Tietze-equivalent presentations of m (P?\ ).

By using a different presentation of 71 (OU) and different techniques, the im-
age of the generators of 71 (0U) under the map i, was computed in [FGBMB15]
(See Proposition 2.13 and Theorem 4.5 of loc. cit.). The proof of Theorem
[3.3.3)is inspired by the ideas of [FGBMBIH].

Constructing equivalent generators

Let us choose the point R € P?\ & close to L,,1, consider the blow-up
7 : BlgP? — P? and denote by f : BlzgP? — P! the associated pencil as in
B2

Let 8 : [0,1] — P! be as in such that it passes first through the
projection of the points Sing ./ N L, to P* via f. Take its associated wiring
diagram W corresponding to the arrangement o/ and fix a planar representa-

tion p(f*W) as in 3.2.1]

’ >\n+1 ’

Let us order the representation of all the singular points Sing .«# = {py,...,ps}

in p(8*W) together with the virtual vertices {p},...,p.,} € p(B*W), by the
order they are crossed by the fiber p(8*W)|, with t increasing in [0, 1], and
let tq,...,ts1, € (0,1) be such that either an actual or a virtual vertex lies in
p(B*W)|s,., for all k = 1,..., s+ v. By abuse of notation we will also denote
by t,. the crossings in p(5*WV) at the fiber p(5*(W))|;. and we will write W for
p(BW). Let I'®) = {Aﬁ”), . ,)\ﬁl} be the geometric generating set defined
inB22 fore=1,...,s+v.

Recall that we have assumed that the order of the lines L1, ..., L, is such
that, at the very right of the planar representation of W, the wire W is at
the bottom of W, above it is the wire W5 and then W3, continuing in this way
until W,.

For an irreducible component D;, of D C X, denote its boundary manifold
by ¢y : OU,, — Dy, and recall that we can consider ¢k’aU; : Uy = 0U,NoU —
Dy (see B.1.4). A set of generators for m(9U}) was constructed by fixing a
base point Qi € Dj, simple paths I, C Dy, from which we obtain paths [}, C D;
(see figure and h : Ul — 0U as in m The generators 71, ..., Vnt1ts
were constructed by joining the different generators of m (9U}) to a common
base point @) via the contractible path h(Uly) in OU.

Recall that the first n 4+ 1 irreducible components D, ..., D, 1 of D cor-
respond to the lines Ly, ..., L, respectively and that, as in the end of [3.3.1]
there exists s’ such that for j =n+2,..., s, we have that D,y N D, # & and
for j > ', we have D,,1 N D; = @.

Lemma 3.3.4. For k =n+1,...,s, we can choose l;, C D;, a continuous
map hy, : lj, = OU}; and a base point Q € hyi1(l),,,) for the fundamental group
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m(OU) in such a way that i,(,.) lies in the same homotopy class as A for
r=1,...,n+ 1.

Proof. We begin by defining those I} for k = n +2,...,s". Essentially, we
arrange the choices in an appropriate way to obtain the stated in the lemma.

More precisely, let D, be an exceptional divisor corresponding to a point
p = p(k) € Sing &/ N L,1 with multiplicity higher or equal to three. Suppose
that p = L; N Ljx1 N ... N Lyy—1 N Ly, N Lyyy (which can be written in this
way by the order of the lines chosen above). Consider the boundary manifold
Yy, : OUy — Dy in X. We will also write OU, for the image 7(0Uy) C P? under
the map 7 : X — P?2. For r = j,...,m, each meridian /\7(}) (see figure is
homotopic to a meridian XT(I) (see figure that can be decomposed in the
following way: X.( = A\, At with A, € 0U, a meridian of L, based at a
point g, € OU, and )\, a path connecting R and g,.

We can further decompose each A, as the boundary of a disk A around a
point in L, and a path \,, connecting the point ¢, to dA. Define the path [} in
Dy, as the projection ¢y (UJL;Ar,). We define hfy such that hly o ¥klum »,, =

idln .

Figure 3.6: Decomposing a meridian

Note that, up to a slight change in R, the paths )\, are homotopic to paths
)\; lying in OU}; ;.

Now, let p = L; N L,+1 be a double point in Sing.2# N L,;,. The meridian
)\5-1) can be decomposed as A;-@Aj-)\;_l, with dA; a fiber of U and N} C 90U,
a path starting at R and finishing at point ¢; € OU; N oU, ;.

Finally, for £ = n + 1 we define [, € Dy, as the image of 5([0, 1]) under the
section of the pencil f : Blp P? — P! with range D;. By construction l; passes
over all the points in Sing./ N L,41. We let hf;,,, be a continuous function
such that Ynr1ln,, | (tar1) © Plinys = @i,y Rliyi (lns1) is & simple path passing
through each ¢; with L; N L1 a double point, touching each Ap,41y,(p) for
each point p € Sing .« N L, 1 of multiplicity greater or equal to two, and such
that each A, - \j, is homotopic to a segment of h|;, ., (ln41)-

By the construction of the maximal tree 7', these paths are sufficient to
construct «; for j = 1,...,n + 1 and by construction, they lie in the same
homotopy class as )\5-1). O]
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Corollary 3.3.5. The morphism i, : 7 (U) — m(P?\ &) is surjective.

Proof. The group 71 (P?\.7) is generated by the elements V) = {)\1 s )\7(1111},
as 1. (k) = )\k for k=1,...,n+ 1 the result follows. O

Suppose that p € M, N (Sing <7 \ L,,41) is of multiplicity higher or equal to
three and that p = Loty N Lty 41y N+ - -N L) (1) - Demote by ¢, : 0U, = E,
the boundary manifold of the exceptlonal divisor £, C X obtained by blowing-
up p. We select [, C E} in a similar way as in the proof of the precedent
Lemma for a point of multiplicity higher than two lying in L,,1: decompose
ecach ’y](-”), 7 into a path A connecting R C P? and a point qp € 0U,, and
A, %) with 7 € {4,...,m} based at ¢, and generating m1(0U,) as in figure .
Decompose further A, () mto a boundary of a disk JA, around a point of the
line L, and a path )\TQ connecting ¢, and 9A,. We take I, = 1,(UA,, (”))
and deﬁne hly, such that hfy o wp|u)\r2(n) zd|U/\T2<n)

For every k = 1,...,n, we define [, C Dy as the image of ([0, 1]) under
the section of f : BlgP? — P! that has as range D). We define h|;, such
that it is continuous, wk‘h\zk(lk) o hy, = idy,, hy (Ix) intersects U)\ff;) in a point
if p € M, N (Sing.«/ N L) with the notations as in the paragraph above,
by, (Ix) N by, () # @ if Ly N Ly # @ is a double point and Ay, () is not
homotopic to a multiple of a fiber S! of OU.

Expressing the cycles in terms of the meridians

Let t,, € W be an actual vertex and suppose that ¢, =W, NW,, n...NW,,
with the global order of the wires of W such that n; <, < ... <n, <n+1.
By definition of the maximal tree 7, to each 7,, with a > 1, corresponds a
cycle ¢, , which is a generator of 7 (9U), see m This cycle is constructed
by connecting hly, (ly,) - B, (1) - hly (L) to R if r > 2 and by connecting
Al (Ly,) - Dol (ly,) to Rif r = 2.

For every r < 7, consider the geometric generating set I'*) = {)\ ey n +1
as in “ and recall the construction of the functions 7% : {1,... ,n +1} —
F ny1 as defined before Proposition . For 1 < a < r, denote by

& =W (,) - (“(2)71(%)) Ty (“(E_l)il("“o - B

Proposition 3.3.6. Let 1 < a < r. The image of the cycle ¢, ,, under the
map i, equals & (&) if r =2 or &P(EP) T if r > 2.
We consider the points 6, < ¢, very close to t, as before Definition [3.2.3]

Lemma 3.3.7. Let T*®) = (Agn), ce Ale) be a generating set as above. Then,

-1
forv =1,...,n+1 we have that ()\L ))5% is homotopic to a meridian of
Loy at the point z1™ = F1(B(6,)) N L,y constructed by:
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—1
(@)D (a)

Figure 3.7: A meridian follows another boundary manifold

1. following hl,, (1,,) until f~1(8(6,)),
2. then joining it to a circle in f1(3(6,)) about z\*) and,

3. coming back via hl,,(l,,).

See figure [3.7.

Proof. Note that if ) () = 71, and as A = )\g%’?, by successive applications
of Proposiition 3.2.11, we can choose a meridian in the homotopy class of
()\EK))QZ) = \,, that satisfies the properties stated in the Lemma (see figure
3.3b)).

Now, if o) (1) # n,, we proceed by induction. Let t; = W;NW;,1N...NW,,
and consider

1 ) . .
€@ — 0y ) :{ AW if g € {j+1,...,m},
1 iftn, €{j+1,...,m}.

Na
By construction, for k € {j +1,...,m} the product )\,(S) e >\§1) is freely ho-

(1) (1)

motopic to a circle containing the points x N

i
~ Now, note that the paths in '™ are homotopic to paths in the fiber
f7Y(B(62)) as in Figure [3.3b, Such representative of the homotopy class of

AP can be seen as lying in the boundary manifold OU".
—1
By considering ()\52))&(7? we obtain a path as in figure if 7 (n,) # 1.
This meridian can be decomposed as stated.

For a general ")) note that as 57(7':+1) = 57(7':) 7™ (6™ (,)) and by

repeating the above procedure, we can decompose ()\E'{H))T(H)il("<H)71(77“)) as

a meridian of L, that follows I, between f~'(3(6)) and f~'(B(6xr1))

K+1 -1
(see figure . By applying induction, we obtain that ()\E'ﬁl))gﬁm+ " can be
decomposed as stated in the lemma. O

Proof of Proposition[3.53.6. Note that we have that
€ = 7MYy 7D (=D T )

(n-1)~1 @1
Na

_ _1\—1 Na —1
_ ;(-1) <U(77 ) (m)) @ (0(2> (m)) 7O ().
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by using 5,(7';) = ,(7';_1) (=) (0(“_1)71(7]&))> for k =2,...,n.
Now, if T(“)(a(”)_l(na)) # 1, it is homotopic to a path in f~1(5(6,)) en-

circling the points xgﬁ)? e :L’((:i),l(n ) and by applying Lemma [3.3.7| to each
factor of T(“)(U(“)_l(na)) = )\22),1(%) . )\;H) we obtain that T(”)(a(”)_l(na))

can be decomposed in three parts as in Lemma [3.3.7]

Recall that we have constructed the I,, C D, from a section of the map
f. By the choice of h|,, we can suppose that h,, C f~1(8[0,1]) N oU,,.

By considering Y = f~1(3([0, 1])) \ 75" (R) C Blg P2, we can see the cycles
Ctoma C Y C R3. Moreover, we can choose coordinates in R® and define
that hl,, (I,,) passes above hl;, (I) (or hl;,(Iy) passes below hl;, (I,)) in some
fiber f=1(3(0")) with 6’ € [t, — ¢,t, + €] with ¢ > 0 sufficiently small, if the
wires W,, N W), # () in a planar representation of the fiber f~*(5(t,)) and
7™ () < 007 (k).

We can see then (T(”)(a(”)(m)))ééﬁ) " asa path encircling the lines Ly cor-
responding to those hy, (Ix) passing below h;, (l,,) in some fiber f~1(5'(¢"))

with 6" € [t, —¢,t,+¢|. By construction, &(72) is homotopic to a path encircling
all the lines Ly such that h|;, () lies below Ay, (I,,) at some point in 3([0, ¢,]).

Therefore, we can decompose & (Z) in three parts:

1. The first path starting at @ € h(l,+1) and following h(L,,) until f~1(3(6,)).
Then,

2. asimple path startlng at h(l,,)N f L(B(6,)), lying completely in f=2(5(6,))
and finishing at f~1(8(6,)) N 7' (R), and

3. a path connecting 75" (R) N f~1(8(6,)) to Q C 75" (R).

By decomposing in a similar fashion fm , it follows that the cycle ¢, 5, is
homotopic in P? \ & to €M =1 if p = 2 and to &) ( Y )_1 if r > 2. O

Expressing the relations in terms of the generators

For every r = n+2,...,n+s9+1, we let R be the subset of the set of relations
R’ of the presentation of 71 (0U) as in Theorem such that

Rl = {[yg, y¥r], 7, = 7 ”ﬁi;m (k,r) € &}
]A

with
¢! if (k,r) equals the (-th element in C,

Spr =<4 C, if (r, k) equals the (-th element in C,
1 if (k,r) is an edge of T".
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Proposition 3.3.8. Consider an exceptional divisor E, = D, C X coming
from a singular point t, € Sing.o/ N M, of multiplicity higher or equal to 3.
The image of the set of relations R.. as above, under the map 1., equals the set
of relations R, = [)\gﬁ), . )\(.F”)] as in Lemma |3.2.8,

77
Proof. Let t, =W, (%) () N W ) (j+1) .NWw (%) (m) with the local order given
by 11 = {o")(1) < ... < o™ (n + 1)} As w, = —1 and by the local order of

the wires we have that v, =~ ‘(’i 2("3) L ’yo_}’i)z“)) “*that [v,, ’yj‘gs)’t“] and that

_ -1
Colw) (k) te — ct,ﬁ,a(@(k)'

Let us omit the superscript A\, = A,gl) for the elements in I'".

By considering the image under i, of the elements in R,., we have by Lemma

and by Proposition that

(r) <n>*1 (r) ORI (M~ 1 (r) Ok 1
; ) o\ (m) o(®) (j+1)~" (B () . g(n)(k)
(1) = A0 o Aoy A O A !

with ¢ = min{a(”)(j), oW +1),...,0%(m)}.

( )
(r)

The commutators can also be written as [i (%) )\ ‘?i’;i%)] But as i, ()%

£ £ £ . . e €0
AT (( )) A (;’:11)/\0(“) (J)) we have that the relations [i,(v,)% , A 7, (E:))] can
€0 €0, 60 .
be condensed as [ 7, (fn)), A (;ﬁ; )\U(K) ;?)]. Now, if R,, = [)\55 e )‘5‘?17 )\5-
denotes the relation given in Theorem 2| for the point ¢, as in Lemma
3.2.8, recall that we have the equality )\l(C = A ?S)E:)) By replacing it in the
commutators above, the result follows. O

Proposition 3.3.9. Forr=1,...,n+ 1, we have the equality

r]A(rm) o
H VJA(Tm =Tn+1 N

in w1 (P?\ &) with s,; as above.

Proof. Fix L, € o. Let {p1,...,p} C Sing & N L, be the singular points of
the arrangement lying in L,. Note that b = k. Indeed, we can find a partition
AUB = {1,...,k.}, with A a set indexing the double points of Sing &7 NL,, and
B indexing the points of multiplicity strictly bigger than two. Let 7 : X — P2
be the blow-up of P? at the points of Sing.«/ of multiplicity strictly bigger
than two and let D, denote the strict transform of L, in X. We have that
A also indexes all the strict transforms of lines in &7 which have no empty
intersection with D,, and B the exceptional divisors of X crossing D,. It is
clear then that b = k.

It follows that 7;, (m) is a meridian of an irreducible component D, (;m)

NA(?“ m)

of D =7*D for m = 1,...,kl. Recall that 7, commutes with Vi (rim) and
note that the self-intersection number w, of D, is 1 — |B].
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Let us study the geometric meaning of the product v, ’y];](ﬁ(;’)”) with m €
B. Let us write ¢ = ja(r,m), denote by D, = Dj, (,m) the exceptional divisor
that 7, (rm) surrounds, and let D, , ..., D, be the irreducibles components of
D = 7*.o/ that intersect D, ordered in such a way that, if we denote by 7., the
meridians around D,; used for the presentation of m (OU), v, = =
holds. As D, is an exceptional divisor, we have that w, = —1. By Theorem
3.3.1, we have that [,Y“,ij“j] for j=1,...,k=k().

Replacing the expression v, as above in [v,, vfj“j |, we can show that these
commutators relations are equivalent to

Suiq 8LL2 Sup  Swo(ey) SLU(LQ) . Suo(ey,)

v Ye2 Ve = Vo) Vo) Vo)
where o runs over the cyclic permutations of the elements {¢1, ..., ¢, }. Hence
there exists some cyclic permutation ¢’ such that ¢’(11) = r because D, in-

tersects D, (m) = D,. Note that s,, = s;! = s} , and hence ;- Lysre =

Lr Lol (1
( 23‘6;2) - -727(7::)’“))5“ represents a loop which surrounds the lines Ly (,,), - . ., Lo,y
following I/ by construction of the cycle s,.,.

Now, the product ~," Hk/ A9 can be written as 7, H . T, with

m=1 1ja(r,m)

r 7];]@(7;;1) if me A,
" 7*175”4““ ™ ifm e B.

ja(r,m)

by commuting ~y, with ~ Z(ﬁ%"). Note that, for T,, with m € A, the path
T,, is a meridian around the other line that intersects D, in the double point
corresponding to m € A. Hence, by the precedent paragraph, . Hﬁi:l T, isa
product of the meridians of all the lines in ./ ordered in the way they intersect
L,.

Now, by choosing a line L sufficiently close to L, we have that the product
Y Hf,; L 'yjz(ﬁ(;;)n) is a path encircling L\ (LN47) and therefore it is equivalent

to )\n—i-l /\1 m 7T1(P2 \ ,Q{) ]

End of proof of the Theorem [3.3.3]

The point (1) of the Theorem is obtained by Lemma |3.3.4}

The point (2) follows from Proposition [3.3.8|

For the point (3), recall that R’ denotes the set of relations for the pre-
sentation of m (9U) as in Theorem [3.3.1] Using the notation of we have
that

R'\UR}, = H ’yj”“”" Vi, Y] | r=1,...,n+1, DyND, € Sing &\ Py}

A(r,m)

this is, Dy N D, is a_double point.

By Proposition [3.3.9) we have that i, (y*" Hn; L 7];]@(;1;”)) = Apt1 .- Aq
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By proceeding as in Proposition [3.3.8] it can be seen that for a double
point p, = Dy N D,., the relation [yg,v5 ] correspond to the relation R, as in
Theorem B.2.121

Hence, in (v1,...,Yn41,€C15 -+, | R, Upesing o\ L, B (D)) the set of rela-
tions R’ is equivalent to the set of relations UR, U {A,41 -+ A1}

This concludes the proof of Theorem [3.3.3]

Independence of the maximal tree

Let D = Zzgﬂo Dy, the total transform of the arrangement 7 in X and
denote by A the dual graph of D as above.

Let T C A be an arbitrary maximal tree and denote by G(T) = {7.(T), ...,
Yrtits0(T)sc1(T), -+ ,¢cg(T)}, the set of generators of m;(0U) as in Theorem
B-3.1 Recall that these are constructed using 7. Denote by R(T) the set of
relations given in the same Theorem.

Consider also the maximal tree 7' defined as inand denote by 71, . . ., Ynt14s05
¢, ...,c, the generators of m;(0U) as in Theorem and by R the set of
relations.

Consider the inclusion i : OU < P?\« and fix i, (71) = A1, -+, (Vs 14s0) =
Antirso @s a set of generators for 7 (P? \ @) with T = {)\;,..., \,41} as in
Theorem [3.3.3] For ¢ = 1,...,n+ 1+ s, we have that i,(7,(7)) and X, are
meridians of the same smooth curve D,, therefore, we can express i.(7,(T))
as a conjugate of A\, by elements in A\y,..., A\,11. We let 9, denote the word in
71 (P?\ ) representing i.(c,) in the letters A1, ..., \yi144, and by 8 the same
word in the letters 71, ..., Vnt1+s, as in Theorem [3.3.3]

Reciprocally, by fixing .(71(T)), - . -, ix(Yns145,(T)) as generators of my (P?\
/), we can express A, as a conjugate of i.(7,(7)) by elements in i,(y1(7)), .. .,
Gx(Vnt14so(T)) for e = 1,...,n+ 1. The image i.(c,(T)) of the cycle ¢,(T) can
be expressed in terms of i, (y1(T)), - -, b (Ynr14so(T)) for e =1,...,g. We let
5,(T) be this expression when it is written in terms of v1(7), ..., Vnt11s(T)
such that 6,(7) € (G(T) | R(T)).

Proposition 3.3.10. A presentation of w1 (P*\ &) can be obtained as follows
m(P?\ ) = (G(T) | R(T),cr(T) - 6u(T) ™+ eg(T) - 85(T) ™),

Proof. The presentations (G(7T) | R(T)) and (1, .., Ynt14s0,Cls---+Cq | R)
of m1(0U) as in Theorem can also be obtained as graphs of groups (see
[Hir00]). These graphs of groups are constructed over A as follows: the vertices
groups are given as in Lemma , the edges groups are Z2. To each tree of A
there correspond a presentation and the presentations are Tietze-equivalent.
Let us fix v,11, the vertex corresponding to D, 1 as a base point for 7 (A)
and ¢, ..., ¢, a generating set. Every cycle ¢,(T) € m(A,v,41) can be ex-
pressed as ¢,(T) = ¢,1 -+ - ¢y, Where ¢, € {C1,...,¢,} Withm =1,... 7, and
t=1,...,g9. Therefore i,(c,(T)) = is(ca) - is(c,) = 01 -+ 0. Let us show

92



that
CL(T) ’ 5L(T)_1 =Cqcce CLTL(SZTL_I e (511_1 c <<Cl . 521—1’ e 5;_1>>‘
Note that

y —1 7 —1\671 r —1¢ —1
(Ctléﬂ )(CL?CSLZ ) = CLlCL25L2 5L1

7 —1 ; —1\¢/ “l.o.g 1 ; —1 ;7 —1
(Clel,]_ ) e (C 5 ) Ly L1 — Cl,l e CLLra P 5L].

wryYr, r,

In a similar way we can prove that ¢, - 8" € ({c\(T) - 6:(T)7", ..., ¢o(T) -
6,(T)~1)). This proves that the presentations (G(T) | R(T),ci(T)01(T) ™1, -+, cg(T)d,(T)) 1),

and (Y1,..., Ynti4ses C1y---+Cq | R, a7t ,cgég_1> are equivalent. We con-
clude by Theorem [3.3.3] m

3.3.3 Boundary manifold of a partial compactification

Here we will present another presentation for the fundamental group of certain
partial compactifications M (<, I, P), where M(«/,I, P) is as in [3.1.3] but
the lines of D indexed by I correspond only to exceptional divisors, this is,
Ic{n+2,....n+1+s0}

Inclusion of the boundary of a partial compactification

Let us recall the notation of section B.1.3

Let &/ C P? be an arrangement of lines and X the blow-up at the points
Py ={p1,...,ps,} of Sing .o/ with multiplicity strictly higher than two and let
D = 37140 Dy be the reduced total transform of o7 in X.

Here, we suppose that I C {n+2,...,n+1+sp} andlet P = {p|,...,p} } C
Sing Zkgl Dy.. Denote by 7' : Blp X — X the blow-up map and the dual graph
of [7” D] by A. Note that in the previous section A denoted instead the dual
graph of D. Consider the divisor D’ C Blp X as in and denote by A’
the dual graph of D’. Recall that A’ is obtained from A by removing some
vertices and the corresponding adjacent edges.

In we defined the partial compactification M (7, I, P) of M (<) as
Blp X \ D'

Let us assume that D’ is connected, which is equivalent to A’ being con-
nected. Therefore, there exists a maximal tree Tar C A’. Note that every cycle
in A’ can be seen as a cycle in A.

Lemma 3.3.11. Any mazimal tree Tar can be completed to a mazimal tree

71/7A in A.

Proof. Let {vy,...,v;} be the vertices of A which are to be removed along
with its adjacent edges in order to obtain A'.
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AsIC{n+2,...,n+1+so} and P C Sing)_ ., D,, we have that all the
vertices in {vy,..., v} correspond to exceptional divisors in Blp X, therefore
there is no edge connecting v, and v; for ¢+ # j and to complete Ta: to a
maximal tree of A it suffices to take no matter what edge connecting a vertex
in Tas and v, for « = 1,..., k because no cycle will be created in this way. [

Corollary 3.3.12. Let g denote the number of independent cycles in . Let
c1(Tar), - cq(Tar) be independent cycles in A" each one formed by adjoining
one edge in A" to the mazimal tree Tar. There exists cyi1(Tara)s .-, co(Tara)
cycles in A that together with ¢i(Tarn) = c1(Tar), .- cg(Tara) = cg(Tar)
complete a generating set of w1 (A, Vyi1)-

Let us denote by OU the boundary manifold of the total transform of D
in Blp X. By proceeding as in the proof of Theorem [3.3.1, we have that
a presentation for m(OU), by using the maximal tree Tasa, has generators

M = Vl(ﬂ/,A)a <oy Yndldsg+st — Vn+ldso+st (,TA/,A)? L = O (7-A’,A)7 s Cg =
cy(Tar,a) and a set of relations

R:{[%m?] UMW)OM)EHA) } (3.5)

_Hm 1%Arm) 1<r<n+1+syg+ s

where w,. = D). - D!, for an irreducible component D, of 7D, we denoted by
k! the number of points in Sing 7"* D N D!, (see the proof of Proposition :
and
¢! if (r,j) equals the k-th element in A\ Tas a,
Spj =14 ¢ if (j,7) equals the k-th element in A\ Tasa,
1 if (r,j) is an edge of Tasa

Moreover, let U’ denote the boundary manifold of D’ C Blp X. Here,
if r & I let us denote by k;' the number of points in (D N> ., D,) \ P or
equivalently, in D; N D’. By using the maximal tree Tas of A" and proceeding
as in the proof of Theorem |3.3.1 we obtain the following Proposition.

Proposition 3.3.13. A presentation for m (0U’) is given by

<%,L€J [y 7], mﬂ€5@3>

—w o kY Srj s (rym)
Cly...,Cqy Hml jA/Tm) reJ

where J ={1,...,n+1+ s} \ I, E(A") denotes the set of edges of A', wy the
self-intersection number of the strict transform D.. of D, in Blp X and

0;21 if (r,j) equals the k-th element in A"\ Tas,
S0 =14 cn if (j,r) equals the k-th element in A"\ Tas,
1 if (r,7) is an edge of Tar.
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For every ¢ € I, we have that, as D! is an exceptional divisor, the following
relation is in R:

k;
. SLjA/’A(Lvm)
T = H ﬁyjA/,A(bvm) ’ (36)
m=1

Analogously, if p = p, € P, by abuse of notation we will write p =
n+ 14 sp +¢. We have that if p= D, N D;:

Yo =N (3.7)
By using the map i : OU — M (/) = P? \ & as in[3.3.2] we can express
the image of the cycles i.(c,) as a word in the letters i.(y1), ..., % (Yny1), for

r=1,...,9. Let us denote by 9, the word obtained by replacing the letters

1e(71), -+ -y 0 (Yne1) DY 71, - -+, Va1 in this precedent word associated to i.(c;).
By using 6y, . .., 0, and replacing i.(71), . - ., tx(Ynt1) By 71, - - -, Y1, We can

express the words i,(J]%_, j:,ié(m?)) and i,(7"" ;") with . € I and p € P

as words (1), v(p) € m1(U") respectively.

Let us denote by R’ the set of relations in the presentation given by Propo-

sition 3.3.13]

Theorem 3.3.14. A presentation of mi (M (<, I, P)) is given by
(c1,. . veg,m e J| R, edrt . cgd,  Uery(1), Upepy(p))

with J ={1,...,n+ 1+ s} \ I.

Proof. Consider the following diagram:

m(OU) —— m (M (<)) — 7T1(3U)/<(015f1,...7095_1>>

| |

m(OU) —— m(M(, 1, P)) —=— m(M())/((ix(1), 04 (1))

Where the isomorphism in the right of the first row comes from Theorem
and Proposition [3.3.10
From the rightest column we obtain that

m(0U)/{(c10r -, eg0y v (1), v(p) = mi(M (o, 1, P)). (3.8)

We will see that this presentation is equivalent to

T (QU) /{{y(0)sv(p), ex - 01, egdy))) (3.9)
Indeed, by the choice of the maximal tree 7Tas a, the are only four types of
relations in R of the presentation of 7 (0U) involving the cycles ¢y, ..., ¢4

e commutators [v,,7."] with r’ = ¢, p,
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e those relations as in (3.6)),
e those relations as in (3.7)), and

TJA/ (r,m)

e relations v, "7 = = [I* with (r,¢) or (r,p) an edge in A.

m=1"1 Jar,alrm)

By adding the relations ¢; = 6i1,...,¢4 = 04, we can see these relations as
expressed in terms of 71, ..., Ynti1ts,-

Note that the commutator-relation as in the first point above becomes
trivial in m (OU) /({107 ¢g05 ", 7(2), 7(p)))-

The relations in the points two and three above, are by construction, equiv-
alent to the words v(¢),v(p).

For the relations as in the fourth point, note that k' = k. —|P N D,|—{. €
I'|D,ND, # @}

m

An example

The following example of a partial compactification M (<7, I, P) of the com-
plement M (&) of an arrangement of lines & in P? is such that M (I, P) is
a Q-homology plane. In fact, it is the arrangement <7 with the fewest number
of lines such that the fundamental group 7 (M (7)) is non-abelian and M (<)
has partial compactifications that are Q-homology planes, see [tDP93]. |I|

Let & = {Li,...,Ls} C P? be an arrangement of 5 lines with 2 triple points
and 4 double points. Projective equations are obtained by homogenizing the
equation of example and adding the line at infinity 23 = 0.

A2 )
P @@

? (o) '

Edges to be removed
—to obtain Tar —to obtain T~

(a) Dual Graph (b) Dual Tree Ta-
Figure 3.8: Dual graphs
Let Py = {p1,p2} C Sing.«/ be the triple points in the arrangement .7,

7 : X := Blp,P? — P? be the blow up at P, of the projective plane and
D=r"e = ZZ:1 D; the reduced total transform of the arrangement .o/ seen

'We plan to investigate the fundamental group of the Q-homology planes arising as
partial compactifications of such arrangements in future work.
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as divisor, we obtain a dual graph A of D as in figure with the labeling
of the edges as indicated on it.

We will delete the edges labeled as [4,5,6,7] to obtain a tree as in Fig
3.8b] we let P := {p},ph,ph,p}} C Sing D be the points in D corresponding
to the required edges, with the numeration as in figure Consider 7’ :
Blp, X — X and let D' = /*(D) — >, _, Di. If we set I = &, we have defined
M(e/,@,P)) =Blp X\ D' in3.1.3

Denote by A’ the dual graph of D’, note that A’ = T it is already a tree.
Let (v,...,7% | R") be the presentation of 7 (9U’) of the boundary manifold
OU’ of the divisor D’ as in Theorem using the tree A'.

The following Lemma follows the computations as in [Wag71].

Lemma 3.3.15. The group (71, ..., | R') is infinite solvable.

Proof. Recall that Dy,..., D5 are strict transform of the lines L, for k =
1,...,5 and that Dg, D; are exceptional divisors. The lines Dj,..., D} are
strict transforms of these lines in Blp X.

Denote by OU;, the boundary manifold of Dj, in Blp X, by U’ the boundary
manifold of D', and by oU;* = 0U,NAU’. By abuse of notation, we will denote
also by 7, the fiber S! in the group m(9U}¥).

As Dj- D = —3 in Blp X we obtain by Lemma that m (QUf") =
(v | 6 = %, [, 4]). Note that D - D} = —1 in Blp, X and therefore
m(OUT") = (7774 | v = %674 1,76 [v1.74])- By replacing the relation
M = Y4 inside [y, 7], 41, 74l and ¢ = 41 in 7f = 2§74, we obtain that
T (OU) = (i | 76" = as [, 74]). We obtain that 7, (0U’) is isomorphic
to the boundary manifold of a divisor such that its dual graph is as in Figure
0.9l

Figure 3.9: Dual tree with weights

We will prove that the subgroup N := (7},7%) is in fact normal in m; (OU").
By Theorem [3.1.6, and using the reduction above of 7 (OU;"), we have the
following presentation for m(0U")

12 02 12 2 Il 1ol

<7, At | Y =T = =00 = %, 174> ¥l [V Y4 >
20 13T SO T A T = ey, Y = YEvass [ val [ ) [0 V)

(3.10)

Note that N is abelian and that m (0U')/N = (Z/27) x (Z/2Z). The

element 74 commutes with v}, 74, and ~%, we will show that %Wé,%”‘g € N. To

97



emphasize the symmetry let us write n = —1, therefore v, = 75> = ~4v},.
This implies 74 = 7%~ '74>" " by using [v4%,7%] , then we use 74> = ~} to obtain

—1_y2n—1y/1—1_s2n—1 2 ca —1_s—1_,—1_;4n—3
(e )7 e ) = = 7, which implies 57 5y T = 1,
and therefore 2 '4" ™ = 4440457 Finally 427 '~*"® = 47> . The rest
are obtained in a similar way by symmetry (see figure and therefore N is
normal. O

Proposition 3.3.16. The group m (M (<, D, Py)) is finite, cyclic of order
four.

Proof. The maximal tree T’ defined in is obtained from A by deleting
the edges [1,2,5,6] in figure [3.8a] Let us denote by ~1,...,7; the meridians
around the lines Df, ..., D} constructed using the tree 7 as in Theorem [3.3.3|
We will denote by ¢, ; the cycle created following 7' by joining the vertex D,
to D;, we have: ¢;3,¢14,C23,c24. By removing redundant relations, we obtain

the following presentation of the fundamental group of the boundary manifold
oU of &7 from Theorem m (see also the wiring diagram of Figure :

0 Tt el 0 gt el
7= 1=y ine, = 1= 3t
V3 =1 =23 iy, 49 = 1 = 24y Liny,

< Y1, 72,73, V4
-1 —1 —1 -1
[v1, ¥a04], (2, 13123, (2, 7424, [v2, 13723

C1,3,C1,4,C23,Co4

(3.11)

We have that 76 = V57271, 77 = 57473 and 5 = Y7776 hence 5 = V57173757201

and therefore we have that ~v; = (7473)_1(7271)_1.

We will use the wiring diagram in figure of the arrangement ./ to
express i,(c,;) in terms of 7y,...,7 in M(</). Using Proposition we
obtain that

i*(cM) = 73_17 i*(01,3) =1, i*(02,4) = 71(7371)_1 = 73_1, i*(0273) = 7171_1 =1.
(3.12)
The non-commutator relations of (3.11]) are already trivial in 71 (M (<)) by

Proposition [3.3.9] In order to see this concretely, let us compute for example:

: el - -
G (73139414 6) = Y37 V521 = Yays(Vays) 1(7271) 17271 =1,

by (3.12)) and using the expressions for v and 5 given after (3.11).
From (3.11)), (3.12)), and Theorem we obtain the following presenta-

tion for the fundamental group of M (<7):

T (M () = (71,72, 735 Ya | [v1, 727, [, 93] [v2s 74725 [92, 3]) (3.13)

By using the commutators [y1,v3], [12,73], we can see that the conjugations
inside the other commutators are redundant. We found that m (M («)) =
[Fy x [Fy, which can be seen directly by noticing that M (<) = C\ {2 —points} x
C\ {2 — points}.
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Let us come back to the tree Tar = A’ obtained from A by removing
[4,5,6,7], denote the meridians around Dy, ..., D}, constructed following 7Tas
by 71, -+, 711, and the cycles by ks 6 = ¢56(Tar), k1,3 = c13(Tar), ko3 = ca3(Tar), ko =
c2,6(7Tas) obtained by joining the vertex D, to Dj. From figures and
it is easy to see that in m(OU) they satisfy the following relations:

-1 —1 -1
kse = ci4, k13 = €1,4C1,35 ko = C9 4C2,3, ko = C,4C1,4- (3.14)

To every point p/ € P = {p),...,p}} corresponds an irreducible component
Dz, of #*(D) which is an exceptional divisor. Using the relations as in ({3.5]),
we have that

kg k1,3 1 tka3 1 tka6 1

’78 Ve 56’75a ’Yg T V3 ’710 =% V3 ’Y11 =7 Ve (3-15)

we have that 7, is a meridian around Dy, for ¢ = 1,2,3,4.
The following meridians lie in the same homotopy class in the boundary
manifold OU when constructed either with the tree Ta, or T':

Vs =5 V7 =1 Vs =V Va = V4
the others satisfy the relations:

C1,4 C1,4 C2,4

76 76,'71 "1 a’72 Y2

Finally, as in the proof of Theorem [3.3.14] by using proposition and the
presentation in (3.13)), we found that

m(M(e/, @, P1)) = m(M()) [ {(ic(), - (i) = (33 | 75 = 1)

Indeed, this follows from

iu(78) = (7473) 2 (v2m) i(79) = M35
. . —1 _ -1
ix(V10) = 12735 (1) =7 ((ays) ™)™,

and 7y (M (7)) /({i.(75), 0 (710))) = Z*, where we have used (3.12] - and
(B.13)) to express 4,(y4,,) in terms of , for t =1,...,4.

Remark 3.3.17. In the last part of the proof of Proposition [3.3.16] we could
have used directly Theorem [3.3.14]to obtain a presentation of m (M (<7, &, P;))

by using the presentation of 71 (0U’) as (3.10) in Lemma |3.3.15] and adding

the relations {1 = fygyéfyé, 1= (vvy) 34,1 = 727375, 1 = 4y} corresponding

respectively to the relations y(p}),...,y@}) in Theorem .

Indeed, we can express the images i.(k, ;) of the cycles associated to Tas
in terms of 71, ...,7; by using (3.12), and the correspondence between
v and 7. as above. We then substitute this in obtaining the words
Y(P1), -, v (P)-

It can be shown that the presentation obtained for (M (<, &, Py)) is the
same as that of Proposition [3.3.16, However, the computations are longer so
we have preferred to avoid them.
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