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Résumé

Cette thèse se divise en deux parties. D’une part, elle a pour but l’étude d’espaces de modules
de faisceaux cohérents sur une 3-variété de Fano X complexe et une surface K3 S ⊂ X. Plus
précisément, on considère une 3-variété de Fano primitive d’indice 1 et de genre 9. On montre
que la restriction des faisceaux sur X à une surface K3 S ⊂ X de genre 9 obtenue comme
section hyperplane donne un morphisme

res :MX(2, 1, 7)→MS(2, 1, 7)

entre les espaces de modules de faisceaux sur X et S, qui identifie l’image de MX(2, 1, 7) à
une sous-variété lagrangienne de MS(2, 1, 7) singulière en un nombre fini de point. De plus,
lorsque l’on fait varier X dans le système linéaire W ⊂ P3 des Fano lisses qui contiennent S,
les morphismes de restriction se recollent et on obtient une fibration lagrangienne rationnelle

MS(2, 1, 7) 99K P3

définie par l’assignation d’un faisceaux F ∈MS(2, 1, 7) globalement engendré provenant d’une
Fano X à sa classe [X] ∈ W . En outre, il existe un modèle birationnelM 99KMS(2, 1, 7) qui
étend la fibration rationnelle en une fibration lagrangienne

M→ P3.

Dans un second temps, cette thèse se penche sur l’étude de système dynamique dans un
contexte catégorique. Dans ce manuscrit, on se concentre sur le cas d’une surface projective lisse
complexe S et de sa catégorie dérivée Db(S). Étant donné une autoéquivalence ϕ : Db(S) →
Db(S), on s’intéresse à deux quantités :

• l’entropie catégorique hcat(ϕ), qui calcule la complexité du système dynamique (Db(S), ϕ),
et

• l’entropie topologique généralisée log ρ(ϕH), qui mesure l’action de ϕ sur la cohomologie
H∗(S,C) de S.

D’une part, on explicite un nouvel exemple où entropie catégorique et topologique ne coïn-
cident pas : on considère la composé ϕ = TOC ◦ (− ⊗ L) du twist sphérique le long d’une
(−2)-courbe rationnelle lisse C ⊂ S et d’un fibré en droites bien choisi, et on montre que
hcat(ϕ) > 0 = log ρ(ϕH). D’autre part, on étudie les valeurs que peut prendre l’entropie topo-
logique généralisée log ρ(ϕH) lorsque ϕ parcourt Aut(Db(S)), et on montre que sous certaines
conditions ces valeurs sont uniquement déterminées par Aut(S). Couplé au célèbre résultat de
Cantat sur la dynamique des automorphismes des surfaces, on en déduit un premier résultat
de classification des surfaces admettant une autoéquivalence d’entropie topologique généralisée
strictement positive.



Abstract

This thesis splits in two parts. First, it aims to study moduli spaces of coherent sheaves on a
complex Fano threefold X and a K3 surface S ⊂ X. More precisely, we consider a primitive
Fano threefold of index 1 and genus 9. We show that the restriction of sheaves on X to a K3
surface S ⊂ X of genus 9 obtained as a hyperplane section of X gives a morphism

res :MX(2, 1, 7)→MS(2, 1, 7)

between the moduli spaces of sheaves on S and X, which identifies the image of MX(2, 1, 7)
with a Lagrangian subvariety of MS(2, 1, 7) singular along finitely many points. Moreover,
when we vary X in the linear system W ⊂ P3 of smooth Fanos containing S, the restriction
morphisms glue and we obtain a rational Lagrangian fibration

MS(2, 1, 7) 99K P3

defined by mapping a sheaf F ∈ MS(2, 1, 7) globally generated coming from a Fano X to its
class [X] ∈ W . Furthermore, there exists a birational modelM 99KMS(2, 1, 7) extending the
rational fibration to a Lagrangian fibration

M→ P3.

In a second part, this thesis adresses the study of dynamical systems in a categorical point
of view. In this text, we focus on the case of a smooth projective surface S and its derived
category Db(S). Given an autoequivalence ϕ : Db(S)→ Db(S), we take a look at two quantities:

• the categorical entropy hcat(ϕ), which computes the complexity of the dynamical system
(Db(S), ϕ), and

• the generalized topological entropy log ρ(ϕH), which measures the action of ϕ on the
cohomology H∗(S,C) of S.

One one hand, we exhibit a new example for which categorical and topological entropy do
not coincide: we consider the composition ϕ = TOC ◦ (− ⊗ L) of the spherical twist along a
smooth rational (−2)-curve C ⊂ S and a specific line bundle, and we show that hcat(ϕ) > 0 =
log ρ(ϕH). On the other hand, we study the values that can take the generalized topological
entropy log ρ(ϕH) when ϕ ranges in Aut(Db(S)), and we show that under mild assumptions
these values are uniquely determined by Aut(S). Combined with the celebrated Cantat result
concerning dynamics of surfaces automorphisms, we deduce a first result of classification of
surfaces admitting an autoequivalence with positive generalized topological entropy.
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Introduction

Le coeur de cette thèse se découpe en deux parties. Le deuxième chapitre concerne l’étude
d’espaces de modules de faisceaux sur des surfaces K3 et des variétés de Fano de dimension 3
complexes. Le troisième chapitre concerne l’étude de systèmes dynamiques d’un point de vue
catégorique. Bien que les études menées dans ces deux parties soient différentes, elles utilisent
de manière centrale les catégories dérivées.

Catégories dérivées

Considérons une variété lisse et projective X sur un corps K. Afin d’étudier la géométrie de X,
il est naturel de s’intéresser sa catégorie abélienne de faisceaux cohérents Coh(X). Cependant,
les foncteurs les plus fréquemment utilisés en géométrie algébrique, tels que le produit tensoriel
de faisceaux ou le tiré en arrière par un morphisme, ne préservent pas la structure abélienne.
L’exemple fondateur est le foncteur Γ des sections globales. Si

0→ E → F → G→ 0 (1)

est une suite exacte de faisceaux cohérents, on obtient une suite exacte longue

0→ Γ(E)→ Γ(F )→ Γ(G)→ H1(X,E)→ H1(X,F )→ H1(X,G)→ H2(X,F )→ · · ·

d’espaces vectoriels. Les espaces H i(X,F ) contiennent de nombreuses informations sur F . Un
moyen de les construire est de remplacer F par une résolution F → I• de faisceaux injectifs,
et de définir H i(X,F ) comme le i-ème espace de cohomologie du complexe Γ(I•).

Dans la catégorie Db(X) := Db(Coh(X)), dont les objets sont les complexes de faisceaux
cohérents, le faisceau F et le complexe I• sont isomorphes, et ainsi on peut définir un foncteur
dérivé RΓ(F ) := Γ(I•). L’avantage de cette construction est, d’une part, que le complexe
RΓ(F ) contient toute l’information cohomologique de F , et d’autre part que le foncteur RΓ
préserve la structure triangulée de Db(X). En particulier, la suite exacte (1) induit un triangle

RΓ(E)→ RΓ(F )→ RΓ(G)

dans la catégorie dérivées des espaces vectoriels Db(K). Ainsi, les catégories dérivées forment le
bon environnement pour l’étude cohomologique des faisceaux cohérents. Elles donnent un cadre
plus général et naturel pour de nombreux résultats (dualité de Serre, formule de projection,
adjonction tiré en arrière - poussé en avant...).

Inventées dans les années soixante par Grothendieck, puis développées en grande partie par
Verdier [Del77], [Ver96], le succès des catégories dérivées en géométrie complexe est d’abord
apparu dans les années quatre-vingt suite aux travaux de Mukai [Muk81] dans lesquels il étudie
des équivalences dérivées de variétés abéliennes. Depuis lors, l’utilisation des catégories dérivées
s’est répandu dans de nombreux domaines. On peut citer par exemple les travaux de Kontsevich
[Kon95] qui utilisent les catégories dérivées comme cadre mathématique pour la description de
phénomènes de symétrie miroir en physique (voir [KO04] pour une exposition sur le sujet).
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La catégorie dérivée Db(X) d’une variété X n’est pas un invariant complet de X en général.
Cependant, lorsque le fibré (anti)-canonique ±ωX de X est ample, Bondal et Orlov [BO01]
ont montré que la catégorie Db(X) caractérise complètement X. Ce résultat est faux lorsque
ωX ' OX , par exemple lorsque X est une surface K3 ou un variété abélienne ([Orl03]).

Plus récement se sont développé des travaux en direction des variétés noncommutatives, c’est
à dire des catégories triangulées qui partagent de nombreuses propriétés similaires aux catégories
dérivées de variétés algébriques. Un exemple typique d’apparition de variétés noncommutatives
sont les composantes de décompositions semiorthogonales (section 1.2.1). Dans de nombreux
cas, ces composantes détiennent des informations géométriques sur la variété de base (voir par
exemple [LNSZ20], [BLMS17]).

Espaces de modules de faisceaux

Les espaces de modules (dont le nom est principalement due à Riemann [Rie57]) sont par
définition des espaces qui classifient des objets mathématiques. Dans les années soixante,
Mumford [Mum63] étudia les fibrés vectoriels à première classe de Chern prescrite sur les
courbes, ce qui aboutit à la première notion de stabilité de fibré. Par la suite, cette notion a été
généralisée pour les faisceaux cohérents et en dimensions supérieures par de nombreux auteurs
(Bogomolov, Gieseker, Maruyama, Simpson).

Le cas d’une surface K3 S a été, dans un premier temps, étudié par Mukai [Muk84], [Muk87].
Les espaces de modules de faisceauxMS[v] de vecteur de Mukai v fixé fournissent des exemples
de variétés à la géométrie très riche : des variétés hyperkähler (HK), voir exemples 1.1.19. Si
l’on choisit v primitif de telle sorte que 〈v, v〉 = 0, alors l’espace de moduleMS[v] est lui-même
une surface K3, pas forcément isomorphe à S mais dont la catégorie dérivée Db(MS[v]) est
(quitte à considérer des faisceaux tordus par une classe de Brauer) équivalente à celle de S. En
fait, une surface K3 S ′ qui satisfait Db(S ′) ' Db(S) est toujours de la forme S ′ 'MS[v] pour
un bon choix de v.

Les espaces de modules sur les variétés de Fanos sont plus complexes à étudier. La section
1.1.4 à pour but de citer certains des résultats à ce sujet. D’une autre part, les variétés de Fano
sont fortement liées aux variétés HK. Par exemple, la variété des droites [BD85] ou la variété
construite à partir de courbes rationnelles de degré 3 [LLSvS17] [AL17] dans une cubique lisse
de P5 est une variété HK de type K3[n].

Le lien entre les variété de Fano de dimension 3 et les variétés HK reste mystérieux. D’une
part, Laza, Saccà and Voisin [LSV17] ont construit une fibration lagrangienne sur une variété
HK de dimension 10 (de type OG10) comme compactification d’une fibration sur un ouvert de
P5 dont les fibres sont des les jacobiennes intermédiaires de cubiques de P4 (obtenues comme
sections hyperplanes d’une cubique de P5 fixée). D’autre part, en se basant sur une remarque
de Tyurin, Beauville [Bea19] montre que si X est une 3-variété de Fano et que S ⊂ X est une
surface anticanonique (K3), alors la restriction res :MX →MS de faisceaux stables sur X à S,
sous certaines hypothèses, est une immersion et l’image deMX dansMS est une sous-variété
lagrangienne. Il est alors naturel de se demander :

Question. L’image deMX dansMS est-elle la fibre d’une fibration Lagrangienne p :MS → B
?

Le but du chapitre 2 de cette thèse est d’expliciter un exemple de réponse positive à cette
question. Plus précisément, nous considérons une famille X sur un ouvertW ⊂ P3 de 3-variétés
de Fano d’indice 1 et de genre 9 qui contiennent toutes une même surface K3 S comme section
hyperplane. Les restrictions fibre à fibre de faisceaux stables des Fanos sur la surface S se
recollent en une restrictionMX/W →MS, qui induit un isomorphisme de l’ouvertMo

X/W des
faisceaux globalement engendré vers un ouvertMo

S deMS.
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Théorème (voir Corollaire 2.3.8 et Théorème 2.3.9). Le morphisme Mo
S → W qui envoie un

faisceau de la forme res(F ) ∈ MS, avec X ⊂ X une Fano et F ∈ MX globalement engendré,
sur [X] ∈ W donne une fibration lagrangienne rationnelle

MS 99K P3,

où la fibre au dessus d’un point [X] ∈ W est l’ouvert Mo
X ⊂ MX des faisceaux globalement

engendrés.
De plus, il existe une surface K3 S

′ et une application birationnelle entre un espace de
modules de faisceaux tordusMS′ sur S

′ etMS au dessus deW, qui étend la fibration rationnelle
en une fibration lagrangienne

MS′ → P3.

L’application birationnelleMS′ 99KMS est un flop le long d’un fibré en P2 sur S.

Pour prouver ce théorème, on utilise les constructions suivantes (section 2.1). On associe à
la surface S (resp. à une Fano X ∈ W) une surface K3 duale S ′ (resp. une courbe quartique
plane Γ ⊂ S

′). De plus, les catégories dérivées de S et S ′ (resp. X et Γ) sont reliés par dualité
projective homologique, et on obtient un diagramme commutatif

Db(Γ) Db(X)

Db(S ′ , α) Db(S),

φ11

(iΓS′ )∗ i∗SX

φ10

où iSX : S ↪→ X et iΓS′ : Γ ↪→ S
′ sont des immersions fermées. Brambilla et Faenzi [BF13]

ont montré que l’adjoint à droite φ!
11 : Db(X) → Db(Γ) de φ11 se restreint en un éclatement

MX → Pic2(Γ).
Enfin, le foncteur φ10 permet de définir une application birationnelle (au dessus deW) entre

un espace de modules de faisceaux tordusMS′ sur S
′ etMS, qui étend la fibration rationnelle

surMS en une fibration lagrangienne

MS′ → P3

dont la fibre au dessus d’un point w ∈ W représentant une courbe Γ est isomorphe à Pic2(Γ).
En étudiant section 2.4 les conditions de stabilités de Bridgeland sur S et en utilisant les ré-
sultats de Bayer et Macrì [BM14a], on montre queMS′ est lié àMS par un flop le long d’un
fibré en P2 au dessus de S.

On peut alors se demander si toute 3-variété de Fano (sous certaines hypothèses) est reliée à
une variété abélienne qui apparait comme fibre d’une fibration lagrangienne sur une variété HK,
comme dans les exemples cités ci-dessus. Les pistes pour construire ces liens sont multiples, on
peut penser à la Jacobienne intermédiare de la Fano (comme dans [LSV17]), la construction de
Serre (comme dans [Bea19]) ou encore la dualité projective homologique (section 1.2.2) comme
utilisé dans le Chapitre 2.

Dynamique des autoéquivalences de catégories triangulées

L’étude des systèmes dynamiques est omniprésente en mathématique. La notion d’entropie to-
pologique htop(f) a été developpé pour quantifier la complexité d’un système dynamique (X, f),
où X est un espace topologique et f : X → X est une application continue. Lorsque l’espace
X est une variété complexe et que f est en endomorphisme, de nombreux résultats ont mis en
exergue le lien entre l’entropie topologique et la géométrie de X. On peut par exemple citer
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les travaux de Gromov [Gro87] [Gro03] et Yomdin [Yom87] qui montrent que l’entropie htop(f)
est égale au logarithme du rayon spectral de l’action de f sur la cohomologie H∗(X,C) de X.
Des liens entre l’entropie et les degrés dynamiques pour le cas où f est seulement rationnelle
ont été établi par Dinh et Sibony [DS05a], [DS05b].

D’une autre part, Cantat a étudié l’entropie dans le cas d’une surface S. Son célèbre résultat
[Can99] assure qu’une surface admettant un automorphisme d’entropie strictement positive est
birationnellement équivalente à P2, une surface K3, une surface d’Enriques ou un tore de di-
mension 2. Nous renvoyons au papier d’Oguiso [Ogu14] qui expose de nombreux exemples de
phénomènes apparaissant sur les variétés de dimension supérieures.

Remplaçons désormais le système dynamique classique par son analogue catégorique : on
considère une catégorie T et un foncteur F : T → T . Puisque l’on veut étudier des variétés
algébriques, il est naturel d’imposer une structure triangulée sur T , de supposer qu’elle admet
un générateur G et de supposer que F préserve la structure triangulée. Dans ce contexte,
Dimitrov, Haiden, Katzarkov et Kontsevich [DHKK14] proposent une définition de complexité
du système (T , F ) : cette fonction calcule combien d’étapes sont nécessaires pour construire
F ◦n(G) (à une somme directe près) à partir de G à l’aide d’extensions dans T . L’entropie
catégorique hcat(F ) de F mesure la croissance exponentielle de cette complexité en fonction de
n.

Lorsque T = Db(X) pour une variété projective X, on peut comparer l’entropie catégorique
hcat(F ) avec l’action FH de F sur la cohomologie H∗(X,C) de X. Un résultat similaire au
théorème de Gromov-Yomdin (voir Conjecture 3.1.10) est vérifié pour certains types de variétés
(abélienne, Fano...) ou de foncteur (tirés en arrières, twists sphériques...) mais n’est pas vrai
en général. Dans le chapitre 3, nous constuisons un nouveau contre-exemple pour n’importe
quelle surface S contenant une courbe rationnelle lisse C ⊂ S d’autointersection C2 = −2.

Théorème (voir Théorème 3.4.1). Soit S une surface projective lisse et C ⊂ S une (−2)-courbe.
Soit L ∈ Pic(S) un fibré en droite satisfaisant degC(L|C) < 0 et considérons l’autoéquivalence
ϕ = TOC ◦ (−⊗ L) de Db(S). On a

h0(ϕ) > 0 = log ρ(ϕH).

Puisqu’une telle (−2)-courbe peut être produite en éclatant deux points lisses infiniment
proches dans S, ce contre-exemple montre que l’existence d’un foncteur d’entropie catégorique
positive n’est pas un invariant birationnel.

On définit alors l’entropie topologique généralisée d’un endofoncteur F : Db(X) → Db(X)
comme le rayon spectral de l’action en cohomologie FH : H∗(X,C)→ H∗(X,C) de F . Puisque
tout automorphisme de X induit une autoéquivalence de Db(X), cette notion étend celle
d’entropie topologique classique. Il serait intéressant de comprendre quelles propriétés bira-
tionnelles de X, où catégoriques de Db(X), peuvent être déduites de cette notion d’entropie.
Un premier résultat similaire au théorème de Cantat dans le cadre catégorique est développé
en section 3.2.

Théorème (voir Corollaire 3.2.7). Soit S une surface lisse projective avec KS 6≡num 0 qui
n’admet pas de fibration elliptique minimale. Supposons que l’ensemble des (−2)-courbes de S
forment une union disjointe de configuration de type Dynkin A. Alors, s’il existe une autoéqui-
valence ϕ ∈ Aut(Db(S)) avec ρ(ϕH) > 1, S est rationnelle.

Ce résultats se base sur une classification des surface par rapport à leur groupe d’autoéquivalences
proposée par Uehara [Ueh19]. Dans le cas traité par ce théorème, le groupe des autoéquival-
ences de Db(S) est engendré par les équivalences standarts Z[1]×(Pic(S)oAut(S)) et les twists
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sphériques TOC(a) le long des (−2)-courbes C ⊂ S. L’étude de l’action en cohomologie de ces
foncteurs (section 1.3.3) permet de réduire l’action de l’itération (ϕH)◦n à l’action (f ∗)◦n d’un
automorphisme f ∈ Aut(S). On est alors ramené aux cas explicités par le théorème de Cantat.
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Introduction

The core of this thesis splits in two parts. The second chapter studies moduli spaces of sheaves
on complex K3 surfaces and Fano threefolds. The third chapter studies dynamical systems with
a categorical point of view. While these two parts are different, they both relies on derived
categories.

Derived categories

Consider a smooth projective variety X over a field K. In order to study the geometry of
X, it is natural to look at the abelian category Coh(X) of coherent sheaves on X. However,
the most common functors used in algebraic geometry, as the pullback along a morphism or
the tensor product of sheaves, do not preserve the abelian structure. The most foundational
example is the global section functor Γ. If

0→ E → F → G→ 0 (2)

is a short exact sequence of coherent sheaves, we obtain a long exact sequence

0→ Γ(E)→ Γ(F )→ Γ(G)→ H1(X,E)→ H1(X,F )→ H1(X,G)→ H2(X,E)→ · · ·

of vector spaces. The spaces H i(X,F ) contain a lot of informations on F . A way to construct
them is to replace F with an injective resolution F → I• of injective sheaves, and to define
H i(X,F ) as the i-th cohomology space of the complex Γ(I•).

In the category Db(X) := Db(Coh(X)), whose objects are complexes of coherent sheaves,
the sheaf F and the complex I• are isomorphic, therefore we can define a derived functor
RΓ(F ) := Γ(I•). The advantage of this construction, on one hand, is that the complex RΓ(F )
contains all the cohomological information of F , and on the other hand the functor RΓ preserves
the triangulated structure of Db(X). In particular, the exact sequence (2) induces a triangle

RΓ(E)→ RΓ(F )→ RΓ(G)

in the derived category Db(K) of K-vector spaces. As a consequence, derived categories form
the correct environment for the cohomological study of coherent sheaves. They give a most
general and natural framework for many results (Serre duality, projection formula, adjunction
pullback-pushforward...).

Invented by Grothendieck during the sixties, then mostly developed by Verdier [Del77],
[Ver96], the succes of derived categories in complex geometry first appeared in the eighties
after the works of Mukai [Muk81] in which he studies derived equivalences of abelian varieties.
Since then, application of derived categories have spread in numerous fields. For instance, we
can cite the works of Kontsevich [Kon95] in which he uses derived categories as a mathematical
framework for the description of mirror symmetry phenomenons in physics (see [KO04] for a
survey on the subject).

The derived category Db(X) of a variety X is not a complete invariant of X in general.
Though, when the (anti)-canonical bundle ±ωX of X is ample, Bondal and Orlov [BO01]
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proved that Db(X) completely caracterizes X. This result is false when ωX ' OX , for instance
when X is a K3 surface or an abelian variety ([Orl03]).

Most recently have been developed works in direction of noncommutative varieties, that is
triangulated categories sharing a lot of properties with the derived categories of varieties. A
typical example of apparition of noncommutative varieties are components of semiorthogonal
decompositions (section 1.2.1). In many cases, a lot of geometric information about the ground
variety lie in these components (see for instance [LNSZ20], [BLMS17]).

Moduli spaces of sheaves

Moduli spaces of sheaves (whose name is mostly due to Riemann [Rie57]) are by definition
spaces classifying mathematical objects. During the sixties, Mumford [Mum63] studied vector
bundles with prescribed first Chern class on curves, which led to the first notion of stability
of bundles. Afterwards, this notion have been generalized for coherent sheaves and higher
dimensions by many authors (Bogomolov, Gieseker, Maruyama, Simpson).

The case of a K3 surfaces S have been first studied by Mukai [Muk84], [Muk87]. The
moduli spaces of sheavesMS[v] with fixed Mukai vector v provides examples of varieties rich
in geometry: hyperKähler varieties (HK), see examples 1.1.19. If v is primitive and chosen such
that 〈v, v〉 = 0, then the moduli spaceMS[v] is itself a K3 surface, not necessarily isomorphic
to S, but whose derived category Db(MS[v]) is (up to consider sheaves twisted by a Brauer
class) equivalent to the one of S. In fact, any K3 surface S ′ satisfying Db(S ′) ' Db(S) is of the
form S

′ 'MS[v] for a good choice of v.
Moduli spaces on Fano varieties are more difficult to study. Section 1.1.4 aims to gather

some results on this subject. Moreover, Fano varieties are closely related to HK varieties. For
instance, the variety of lines [BD85] or the variety constructed from rational curves of degree 3
[LLSvS17], [AL17] in a smooth cubic of P5 is a HK variety of K3[n]-type.

The link between Fano threefolds and HK varieties remains mysterious. On one hand,
Laza, Saccà and Voisin [LSV17] have constructed a Lagrangian fibration on a HK variety of
dimension 10 (of type OG10) as a compactification of a fibration over an open subset of P5

whose fibres are the intermediate Jacobians of cubics of P4 (obtained as hyperplane sections of
a fixed cubic of P5). On the other hand, following a remark of Tyurin, Beauville [Bea19] shows
that if X is a Fano threefold and S ⊂ X is a anticanonical K3 surface, then the restriction map
res : MX → MS of stable sheaves on X to S, under mild assumptions, is an immersion and
the image ofMX inMS is a Lagrangian subvariety. Therefore it is natural to ask:

Question. Is the image ofMX insideMS the fibre of a Lagrangian fibration p :MS → B ?

The goal of chapter 2 of this thesis is to provide an example of positive answer to this
question. More precisely, we consider a family X over an open W ⊂ P3 of Fano threefolds of
index 1 and genus 9 all containing a fixed K3 surface S as hyperplane section. The fibrewise
restrictions of stable sheaves from the Fanos to S glue into a restriction map MX/W → MS,
which induces an isomorphism from the openMo

X/W of globally generated sheaves to an open
Mo

S ⊂MS.

Theorem (see Corollary 2.3.8 and Theorem 2.3.9). The morphismMo
S →W sending a sheaf

of the form res(F ) ∈ MS, with X ⊂ X a Fano and F ∈ MX globally generated, to [X] ∈ W
gives a rational Lagrangian fibration

MS 99K P3,

where the fibre over a point [X] ∈ W is the openMo
X ⊂MX of globally generated sheaves.

Furthermore, there exists a K3 surface S ′ and a birational map between a moduli space of
twisted sheavesMS′ over S

′ andMS over W, which extends the rational fibration to an actual

7



Lagrangian fibration
MS′ → P3.

The birational mapMS′ →MS is a flop along a P2-bundle over S.

To prove this theorem, we use the following constructions (see 2.1). We associate to the
surface S (resp. to a Fano X ∈ W) a dual K3 surface S ′ (resp. a quartic plane curve Γ ⊂ S

′).
Moreover, the derived categories of S and S

′ (resp. X and Γ) are related by homological
projective duality, and we obtain a commutative diagram

Db(Γ) Db(X)

Db(S ′ , α) Db(S),

φ11

(iΓS′ )∗ i∗SX

φ10

where iSX : S ↪→ X and iΓS′ : Γ ↪→ S
′ are closed immersion. Brambilla and Faenzi

[BF13] have shown that the right adjoint φ!
11 : Db(X) → Db(Γ) of φ11 restricts to a blowup

MX → Pic2(Γ).
Finally, the functor φ10 permits to define a birational map (overW) between a moduli space

of twisted sheaves MS′ over S
′ to MS, which extends the rational fibration over MS to an

actual Lagrangian fibration
MS′ → P3

whose fibre over a point w ∈ W representing a curve Γ is isomorphic to Pic2(Γ). Studying,
section 2.4, Bridgeland stability condition on S and using results of Bayer and Macrí [BM14a],
we show thatMS′ andMS are related by a flop along a P2-bundle along S.

Therefore, we can ask if any Fano threefold (under mild hypotheses) is related to an abelian
variety which appears as the fibre of a Lagrangian fibration over a HK variety, as in the examples
above. Clues to construct such links are multiple, we can think to the intermediate Jacobian of
the Fano (as in [LSV17]), Serre construction (as in [Bea19]), or even to homological projective
duality (section 1.2.2) as used in Chapter 2.

Dynamics of autoequivalences of triangulated categories

The study of dynamical systems is ubiquitous in mathematics. The notion of topological entropy
htop have been developed to quantify the complexity of a dynamical system (X, f), where X is
a topological space and f : X → X is a continuous map. When X is a complex manifold and f
is an endomorphism, a lot of results highlighted relations between the topological entropy and
the geometry of X. For instance, we can cite the works of Gromov [Gro87] [Gro03] and Yomdin
[Yom87] in which they show that the topological entropy htop(f) is equal to the logarithm of the
spectral radius of the action of f on the cohomology H∗(X,C) of X. Links between entropy and
dynamical degrees when f is only rational have been etablished by Dinh and Sibony [DS05b]
[DS05a].

Furthermore, Cantat studied entropy when the manifold is a surface S. His celebrated
result [Can99] assures that a surface admitting an automorphism with positive entropy is bira-
tionally equivalent to P2, a K3 surface, an Enriques surface or a 2-dimensional torus. We
refer to Oguiso’s paper [Ogu14] in which he presents many phenomenons appearing on higher
dimensional varieties.

Now, we replace the classical dynamical system by its categorical analogue: we consider a
category T and a functor T → T . As we want to study varieties, it is natural to ask for a
triangulated structure on T , to assume that it admits a generatorG and that F preserves the tri-
angulated structure. In this settings, Dimitrov, Haiden, Katzarkov and Kontsevich [DHKK14]
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propose a definition of complexity of the system (T , F ): this function computes how many steps
are necessary to construct F ◦n(G) (up to take a direct summand) from G by extensions. The
categorical entropy hcat(F ) of F measures the exponential growth of this complexity function
with respect to n.

When T = Db(X) for a projective variety X, we can compare categorical entropy hcat(F )
with the action FH of F on the cohomology H∗(X,C) of X. A Gromov-Yomdin type theorem
(see Conjecture 3.1.10) hold for certain kind of varieties (abelian, Fano...) or functors (pullbacks,
spherical twists...), but do not hold in general. In Chapter 3, we construct a new counter-
example for any surface S containing a smooth rational curve C ⊂ S of auto-intersection
C2 = −2.

Theorem (see Theorem 3.4.1). Let S be a smooth projective surface and C ⊂ S a (−2)-curve.
Let L ∈ Pic(S) be a line bundle satisfying degC(L|C) < 0 and consider the autoequivalence
ϕ = TOC ◦ (−⊗ L) of Db(S). We have

h0(ϕ) > 0 = log ρ(ϕH).

Such a (−2)-curve can always be produced by blowing up two infinitely near smooth points
in S, thus this counter-example shows that the existence of a functor with positive categorical
entropy is not a birational invariant.

Therefore we define the generalized topological entropy of an endofunctor F : Db(X) →
Db(X) as the spectral radius of the action FH : H∗(X,C) → H∗(X,C) of F . As any auto-
morphism of X induces an autoequivalence of Db(X), this notion extends the one of classical
topological entropy. It would be interesting to understand which birational (resp. categorical)
properties of X (resp. Db(X)) can be deduced from this notion of entropy. A first result similar
to Cantat theorem is developed section 3.2.

Theorem (see Corollary 3.2.7). Let S be a smooth projective surface with KS 6≡num 0 which
admits no minimal elliptic fibration. Assume that the union of all (−2)-curves on S form a
disjoint union of configuration of Dynkin type A. Then, if there exists an equivalence ϕ ∈
Aut(Db(S)) with ρ(ϕH) > 1, then S is rational.

This result is based on a classification of surfaces with respect to their group of auto-
equivalences proposed by Uehara [Ueh19]. In the case treated by this theorem, the group of
autoequivalences of Db(X) is generated by standard equivalences Z[1]× (Pic(S)oAut(S)) and
spherical twists TOC(a) along (−2)-curves C ⊂ S. The study of the action on cohomology of
these functors (section 1.3.3) permits to restrict the action of the iteration (ϕH)◦n to the action
(f ∗)◦n of an automorphism f ∈ Aut(S). Hence we are reduce to the cases decribed by Cantat’s
theorem.

Notations and terminology
Throughout this thesis, a scheme will mean a Noetherian separated scheme of finite type over
a field, and a variety means a integral scheme. A sheaf on a scheme X will always mean a
coherent sheaf of OX-modules. We denote iXY : X ↪→ Y for a closed immersion between two
schemes X, Y .

The equality between divisor on a variety X always mean equality up to linear equivalence.
The notation ≡ is used for numerical equivalence.

For a scheme X over a field K, we denote Coh(X) the abelian category of coherent sheaves
on X, and Db(X) := Db(Coh(X)) its bounded derived category. Given a complex F • ∈ Db(X),
we denote Hi(F •) for the i-th cohomological sheaf of F . Moreover, for sheaves F,G we denote
hi(F ) = dimK H

i(X,F ) and exti(F,G) = dimK Exti(F,G).
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In sections 1.2, 1.3 and chapter 3, derived functors are written with their underived notations
(e.g. ⊗ instead of ⊗L), with only exception the functor RHom(−,−) to distinguish with
morphisms in the category. Recall that closed immersions have no higher direct image, flat
pullback is exact, and that tensor products and the pullbacks do not need to be derived when
applied to locally free sheaves.

The classical dual of a sheaf F is denoted F ∗ := Hom(F,OX) and the derived dual is denoted
F∨. Note that F ∗ = F∨ for locally free sheaves (in particular, for vector spaces), and we will
often use the derived notation in this case.
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Chapter 1

Surfaces, threefolds and their derived
categories of coherent sheaves

This first chapter aims to recall the materials that will be used in the next chapters.
Section 1.1 is mainly devoted to the classical theory of moduli spaces of sheaves. We first

recall some general definitions and results concerning the theory of moduli spaces of sheaves
(1.1.1), and we inspect the cases of K3 surfaces (1.1.3) and prime Fano threefolds (1.1.4) with
more details. We also recall the celebrated Enriques-Kodaira classification of algebraic surfaces
(1.1.2) and study the existence of smooth rational curves of self-intersection (−2) with respect
to this classification. In a last part (1.1.5), we recall the definitions of hyperKähler varieties,
central objects when it comes to classify varieties with trivial first Chern class. Examples of
such varieties are often related to moduli spaces of sheaves on K3 and abelian surfaces. We
finish by inspecting the existence of Lagrangian fibrations on hyperKähler varieties.

The next sections focus on constructions related to the derived category Db(X) of a smooth
projective variety X. In section 1.2, we recall the notion of homological projective duality and
its application to computations of semiorthogonal decompositions. In section 1.3, we expose
some examples of autoequivalences of Db(X) and describe their action on the cohomology of
X. We finish by recalling, section 1.4, the definition of Bridgeland stability conditions on a
triangulated category, with a particular attention to the case of the derived category of a K3
surface.

1.1 Algebraic varieties and moduli spaces of sheaves
Throughout this section, we assume that all schemes are defined over C, even if most of the
general results about moduli spaces of sheaves hold for any algebraically closed field of charac-
teristic 0.

1.1.1 Moduli spaces of sheaves
Let X be a smooth projective variety. We fix HX an ample divisor of X.

We define the Hilbert polynomial P (E,m) of a sheaf E as

P (E,m) := χ(E(mHX)) =
d∑
i=0

αi(E)m
i

i!

where d := dimE := dim Supp(E) and α0(E), . . . , αd(E) ∈ Q.
Similarly, we define the reduced Hilbert polynomial of E to be

p(E,m) := P (E,m)
αd(E) .

11



We will say that a sheaf E is pure if any non-trivial subsheaf F ⊂ E satisfies dimE = dimF .
In particular, if dimE = dimX, the sheaf E is pure if and only if it is torsion-free.

Definition 1.1.1. A sheaf E on X is called (Gieseker)-semistable if it is pure and p(F,m) ≤
p(E,m), m � 0, for all proper non-trivial subsheaves F ⊂ E. It is called (Gieseker)-stable if
the inequality is strict for all F .

Another definition of stability is also useful when E is torsion-free. We define the slope of
a torsion-free sheaf E as

µ(E) = c1(E) ·Hdim(X)−1
X

rkE ,

and we call degree of E the number c1(E) ·Hdim(X)−1
X .

In the particular case Pic(X) = Z · HX , we get c1(E) = αH, α ∈ Z for all E. For this
reason we sometimes rescale the definition of µ by dividing it by HdimX as our most interest
consists in comparing slopes.

Definition 1.1.2. A torsion-free sheaf E is called slope-semistable or µ-semistable if for all
F ⊂ E with 0 < rkF < rkE one has

µ(F ) ≤ µ(E).

The sheaf E is called slope-stable or µ-stable if the inequality is strict for all such F .

We can state a very useful criterion for stability in the case of vector bundles.

Theorem 1.1.3 (Hoppe’s criterion, [Hop84]). Let X be smooth projective variety over an
algebraically closed field K of characteristic 0 with Picard group generated by an ample line
bundle OX(1). For any vector bundle E of rank r on X, we have

• If H0(X, (ΛqE)norm(−1)) = 0 for 0 < q < r, then E is µ-semistable.

• If H0(X, (ΛqE)norm) = 0 for 0 < q < r, then E is µ-stable, and the converse is true when
r = 2.

Here Enorm := E(−kE) with kE ∈ Z unique so that −r + 1 ≤ c1(Enorm) ≤ 0.

There exists generalization of this theorem in positive characteristic, see for instance [KK12].
Any semistable sheaf E admits a Jordan-Hölder filtration

0 ⊂ E0 ⊂ · · · ⊂ En = E

of subsheaves such that all quotients Ei+1/Ei are stable with reduced Hilbert polynomial
p(E,m). The isomorphism type of the graded object JH(E) = ⊕

iEi+1/Ei is independant
of the filtration.

We say that two semistable sheaves E and F are S-equivalent if JH(E) ' JH(F ) as graded
objects.

Theorem 1.1.4. For a fixed Hilbert polynomial P there exist a projective coarse moduli space
MX(P ) for the moduli problem

MX(P ) : (Sch/C)o → Sets

S 7→ {E ∈ Coh(S ×X) | E is S-flat , P (Es) = P,Es is semistable}/ ∼

where the equivalence relation is the S-equivalence. Moreover, there is an open subscheme
Ms

X(P ) ⊂MX(P ) which parametrizes stable sheaves.
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Recall that a coarse moduli space for MX(P ) is a scheme MX(P ) over C with a natural
transformation MX(P )→ h(MX(P )) (functor of points, namely h(MX(P ))(X) = Hom(X,MX(P )))
which induces a bijection MX(P )(C) 1:1−→MX(P )(C) and which is universal among such trans-
formation: any other transformation MX(P )→ h(N) for N a scheme over C factorizes over a
uniquely determined map M → N , i.e.

MX(P ) h(M)

h(N).

∃!

In particular, the set of S-equivalent class of semistable sheaves on X is in one-to-one corres-
pondance with the closed points ofMX(P ).

Proof of Theorem 1.1.4. A complete proof can be found in [HL10]. We briefly sketch the con-
struction.

Let m ∈ Z be a positive integer such that any semistable sheaf F with P (F ) = P is globally
generated and P (m) = h0(F (m)) (such an integer always exists). Define V := C⊕P (m) and
H := V ⊗X OX(−m). For any semistable sheaf F there exists a surjective map ρ : H → F ,
which gives a point of the Quot scheme Quot(H, P ). This point [ρ] lies in the subscheme
R ⊂ Quot(H, P ) of surjections [H → F ] for which F is semistable and the induced map

H0(X,H) ' V → H0(X,F )
is an isomorphism. But for the same semistable sheaf F , the choice of a basis of H0(X,F ) gives
different point of R. To obtain the moduli spaceMX(P ) one needs to use Geometric Invariant
Theory to take the quotient with respect to the action of GL(V ). It turns out that the action
factorizes through SL(V ), and we get

MS := R // SL(V ).
The subschemeMs

X(P ) of stable sheaves is obtain in a similar fashion by considering the
subscheme Rs ⊂ R parametrizing stable sheaves.

The moduli spaceMX(P ) is called fine if we have an isomorphism of functors MX(P ) ∼−→
h(MX(P )). In this case, we obtain a universal family of sheaves E onMX(P )×X. This family
E is the image of IdMX(P ) via the isomorphism

Hom(MX(P ),MX(P )) = h(MX(P ))(MX(P )) 'MX(P )(MX(P ))
and it is universal in the sense that any family F of semistable sheaves with Hilbert polynomial
P over a base T (that is, F ∈MX(P )(T )) is the pullback for E along a unique map T →MX(P )
up to a twist by a line bundle on T .

Any semistable sheaf F on X corresponding to the point [F ] = m ∈MX(P ) is obtained as
F ' Em, where Em := p∗(E) for p : X ' X × {m} ↪→ X ×MX(P ) is the fibre of E .

Often, instead of fixing a Hilbert polynomial, it is more natural to fix a rank r ∈ Z≥0 and
Chern classes ci ∈ H2i(X,Z). Let P the Hilbert polynomial associated to r, ci, i = 0, . . . , dimX
via the Hirzebruch-Riemann-Roch theorem. We introduce the moduli spaces

MX(r, c1, . . . , cdimX) ⊂MP

of semistable sheaves on X with rank r and Chern classes ci. These moduli spaces are
open and closed inMX(P ), hence projective. Once again, we denoteMs

X(r, c1, . . . , cdimX) ⊂
MX(r, c1, . . . , cdimX) the open subscheme parametrizing the stable sheaves.

We state now a theorem describing local properties ofMX(P ), which is very useful when
it comes to compute dimension and smoothness of moduli spaces.

13



Theorem 1.1.5. Let F be a semistable sheaf on X with Hilbert polynomial P . There is a
natural isomorphism T[F ]MX(P ) ' Ext1(F, F ). Moreover, if Ext2(F, F ) = 0, then MX(P ) is
smooth at [F ].

When MX(P ) is fine, the isomorphism of functors h(MX(P )) ' MX(P ) applied to the
space of dual numbers D = SpecC[ε]/(ε2) gives an isomorphism t : Hom(D,MX(P )) ∼−→
MX(P )(D). If we restrict the former space to the morphisms f : D →MX(P ) with f|SpecC(SpecC) =
[F ], we obtain the tangent space T[F ]MX(P ), and the image of these morphisms by t describes
exactly the space of first order deformations of [F ], which is naturally isomorphic to Ext1(F, F ).

Finally, sometimes one needs to study families of moduli spaces (see for instance section
2.3.1). The following theorem is a relative version of Theorem 1.1.4.

Theorem 1.1.6. Let S be a C-scheme (not necessarily smooth nor proper), let f : X → S be a
projective morphism with connected fibres. Let OX(1) be a line bundle on X very ample relative
to S. Then for a fixed Hilbert polynomial P there exist a coarse moduli spaceMX/S(P ) and a
projective morphismMX/S(P )→ S for the moduli problem

MX/S(P ) : (Sch/S)o → Sets

T 7→ {E ∈ Coh(T ×S X) | Et is T -flat , P (Et) = P,Et is semistable}/ ∼,

where Et denotes the fibre of E over the map T ×S X → T .
In particular, for any closed point s ∈ S we have MX/S(P )s ' MXs(P ). Moreover, there

is an open subschemeMs
X/S(P ) ⊂MX/S(P ) which parametrizes stable sheaves.

The construction is really close to the absolute case, we refer to [HL10] Theorem 4.3.7 for
a proof.

1.1.2 Algebraic surfaces and (−2)-curves
In this short section, let us first recall the so-called Enriques-Kodaira classification of surfaces
(see [BPV84] for more details).

Theorem 1.1.7. Let S0 be a smooth projective surface. Then S0 admits a minimal model S
which lies in exactly one of the following case.

• If κ(S) = −∞:

– Rational surface: S is birational to P2. In fact, S is either P2 or a Hirzebruch
surface Σr, r ≥ 0, r 6= 1.

– Ruled surface of genus g ≥ 1 : S is birational to C × P1 for some smooth curve
C with g(C) = g ≥ 1.

• If κ(S) = 0:

– K3 surface: S satisfies KS = 0 and H1(S,OS) = 0.
– Enriques surface: S satisfies KS 6= 0, 2KS = 0 and H1(S,OS) = 0. In fact, S is

the quotient of a K3 surface by a fixed-point-free involution.
– Bielliptic: S ' (E × F )/G, where E,F are elliptic curves and G is a finite group

of translations of E acting on F such that F/G ' P1.
– Abelian surface: S is an abelian variety (connected projective algebraic group).

The complex points S(C) form a 2-dimensional complex torus.
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• If κ(S) = 1: Properly elliptic surface. S is elliptic, that is there exists a morphism
f : S → C with C a smooth curve such that the general fibre Sc, c ∈ C, is a smooth curve
of genus 1, and S has Kodaira dimension 1. Beware that there exists elliptic surface with
Kodaira dimension 0 and −∞.

• If κ(S) = 2: General type.

In view of sections 3.2, 3.3, the categorical dynamics of a surface S is closely related (at
least of κ(S) 6= 0) to the existence and properties of spherical twists (see section 1.3.2) along
(−2)-curves on S. By (−2)-curves, we mean smooth rational curves P1 ' C ⊂ S such that
C2 = −2.

The case κ(S) = 0 is wild. Abelian varieties contain no rational curves at all. On K3
surfaces, rational curves do no come in family. Though, if S is a K3 surface with infinite
automorphism group, and if there exist a (−2)-curve on S, then there exist infinitely many of
them (see [Huy16], Corollary 8.4.7).

From adjunction formula, it is easy to see that there exist no (−2)-curve on P2. For other
minimal surfaces with κ(S) = −∞, we have the following result.

Proposition 1.1.8. Let π : S ' P(E) → C be a minimal ruled surface, with C a smooth
surface of genus g, E a vector bundle of rank 2, with invariant e = − deg(E). Then there exists
at most one (−2)-curve on S.
Proof. We know that Num(S) = Zσ + Zf for σ the image of a section of π and f a fibre of π,
with σ2 = −e, f 2 = 0 and f · σ = 1. Consider D an irreducible curve in S, D 6= σ, f , and let
D = aσ + bf be its class in Num(S). We get D2 = 2ab− a2e.

First assume e ≥ 0. From [Har77] Proposition 2.20 we must have a > 0 and b > ae. The
latter implies D2 = 2ab− a2e > a2e > 0 so we cannot have D2 = −2.

If e < 0, either a = 1 and b ≥ 0 or a ≥ 2 and b > 1
2ae. In the former case we get D2 = 2b−e

which is positive, and in the latter case we get D2 = 2ab − a2e > 0. In both cases we cannot
have D2 = −2.

Hence, the only possible (−2)-curve in S is σ with σ2 = −2 (that is e = 2). We obtain
C ' P1 and E ' OC ⊕OC(−2). We compute

H0(S,OS(σ)) = H0(S,OP(E)(1)) ' H0(C, π∗OS(1)) = H0(C, E) ' C

and we conclude that the only integral curve in |σ| is σ itself.

For minimal general type surfaces, we can bound the number of (−2)-curves.

Proposition 1.1.9 ([BPV84] VII. Proposition 2.5). If S be a smooth minimal surface of general
type. Then the number of (−2)-curves on X is at most ρ(X)− 1.
Proof. Let C1, . . . , CN be distinct (−2)-curves on S for some N ≥ 0. It is enough to prove
that their images in NS(S)Q, denote again C1, . . . , CN , are independant over Q: since an ample
divisor H satisfies H ·KS > 0, H cannot be cohomologous to the (−2)-curves and we obtain
the result. Consider a trivial linear combinations of the Ci’s, i = 1, . . . , N . Reordering the
indices we can assume that we have

k∑
i=1

λiCi =
N∑

j=k+1
λjCj

with λi, λj > 0 for all i, j. Note that K2
S > 0 and KS · C = 0 for any (−2)-curve C, we can

apply the algebraic index theorem [BPV84], IV Corollary 2.16, to conclude that

(
k∑
i=1

λiCi)2 ≤ 0.
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But in the other hand, since the intersection number of distinct curves is positive, we have

(
k∑
i=1

λiCi)2 = (
k∑
i=1

λiCi)(
N∑

j=k+1
λjCj) ≥ 0.

Hence from the algebraic index theorem again we obtain that the Ci, Cj are independant over
Q.

Typical examples of general type surfaces with (−2)-curves are minimal resolution of du
Val singularities.

Finally, consider an elliptic surface f : S → B, where B is a smooth curve, f is surjective,
such that the general fibre is a smooth curve of genus 1.

Proposition 1.1.10. If f : S → B is an minimal elliptic surface and κ(S) = 1, then the
only (−2)-curves lying in S are component of singular fibres. In particular, they are in finite
number.

Proof. Assume C ⊂ S is a (−2)-curve which does not lie in a fibre of f . Then the restricted
morphism f : C → B is surjective, and by Hurwitz formula we obtain that B ' P1. By [Fri98],
Chapter 7 exercice 7, KX ≡ rF , for F the numerical class of a fibre and r ∈ Q. In particular,
by adjunction formula C2 = −2 gives C · KX = rC · F = 0. Since C is effective and is not
contained in a fibre, C · F ≥ 0. Hence we obtain r = 0, that is KX is numerically trivial. But
this contradicts κ(S) = 1.

Finally, there is finitely many singular fibres by genericity of smoothness of f .

1.1.3 Moduli space of sheaves on K3 surfaces and Mukai lattice
In this text a K3 surface S is a smooth projective surface with ωS ' OS and H1(S,OS) = 0.
The alternating pairing

Ω1
S × Ω1

S → ωS ' OS
gives S a structure of hyperKähler variety (see section 1.1.5). In the following, we will consider
polarized K3 surfaces (S,H), that is S is a K3 surface and H is an ample class in Pic(S).

For classification of polarized K3 surfaces, we have the following theorem

Theorem 1.1.11. For any integer d > 0, there exists a 19-dimensional quasi-projective coarse
moduli space Md parametrizing polarized K3 surfaces (S,H) of degree H2 = 2d.

Proof. We only sketch the construction. Given (S,H) a polarized K3 surface with H2 = 2d, it
can be shown that 3H is very ample, in particular we obtain an embedding

S ↪→ PH0(S,O(3H))∨ ' P9d+1.

Let P be the Hilbert polynomial of S in P9d+1. Consider the Hilbert scheme HilbPP9d+1 . It is
projective. The K3 surfaces obtained as above forms an open subscheme H ⊂ HilbPP9d+1 . finally,
we obtain Md as the GIT quotient

Md := H // PGL9d+2(C).

Another way to classify K3 surfaces is to study the Hodge structure on their second cohomo-
logy group H2(S,Z). In fact, K3 surfaces are completely determined by the Hodge structure.
For a proof of the next theorem, we refer to [Huy16], Theorem 5.3.

Theorem 1.1.12 (Global Torelli Theorem). Two K3 surface S and S ′ are isomorphic if and
only if there exists a Hodge isometry H2(S,Z) ' H2(S ′ ,Z).
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Moduli spaces of sheaves on K3 surfaces

Let S be a projective K3 surface. We fix an ample class H. We endow H∗(X,Z) with a weight
2 Hodge structure, which we denote H̃(S,Z) and call Mukai lattice, which is induced by the
usual Hodge structure on H2(S,Z) and by setting

H̃1,1(S) := (H0 ⊕H1,1 ⊕H4)(S) and H̃2,0(S) := H2,0(S).

We define a Mukai pairing on H̃(S,Z) as follows. For v = (v0, v1, v2) and w = (w0, w1, w2) in
H̃(S,Z) we set

〈v, w〉 := v1w1 − v0w2 − v2w0 (1.1)

Denote NS(S) the Néron-Severi group of S. It is well known that NS(S) = Pic(S) =
H1,1(S) ∩H2(S,Z). We consider the sublattice

Λ := (H0 ⊕ NS⊕H4)(S) ⊂ H̃(S,Z).

Given a sheaf F ∈ Coh(S) we consider its Mukai vector v(F ) = (rk(F ), c1(F ), ch2(F ) +
rk(F )) ∈ Λ. In view of Theorem 1.1.4, we consider the projective moduli spaces MS[v] of
stable sheaves F with Mukai vector v(F ) = v.

Theorem 1.1.13. Let v ∈ Λ be a primitive vector. Then, with respect to a generic choice of H,
any semistable sheaf F with v(F ) = v is stable and MS[v] is a smooth projective hyperKähler
manifold of dimension 〈v, v〉 + 2 if not empty. Moreover, if 〈v, v〉 ≥ −2 with v0 > 0 or v0 = 0
and v1 ample, thenMS[v] is not empty.

Proof. For all the statement of this proof, we refer to [Huy16], Chapter 10 section 2.
Note that for any sheaf E ∈ Coh(S), P (E,m) = −〈v(F ), v(O(mH))〉. Hence for any

subsheaf E ⊂ F with p(F,m) ≡ p(E,m), it is easy to see that we obtain v(F ) = rv(E) for
some integer r > 1. This contradicts the fact that v is primitive.

By Serre duality, if F is stable then Hom(F, F ) = Ext2(F, F ) ' C. Since 〈v(F ), v(F )〉 =
χ(F, F ) we obtain ext1(F, F ) = 〈v, v〉 + 2. Hence, if MS[v] is smooth at [F ], by 1.1.5 we get
dimT[F ]MS[v] = ext1(F, F ) = 〈v, v〉+ 2. In fact, the trace map Ext2(F, F )→ H2(S,OS) is an
isomorphism, and by mean of local deformation one can prove thatMS[v] is smooth.

Consider the composition

Ext1(F, F )× Ext1(F, F )→ Ext2(F, F ) tr−→ H2(S,OS) ' C.

It gives a natural non-degenerate pairing, and we obtain a everywhere non-degenerate regular
2-form σ ∈ H0(MS[v],Ω2

MS [v]).
The most difficult part is the non-emptyness ofMS[v] whenever 〈v, v〉 ≥ −2, and we omit

the proof in this text.

Finally, we introduce the twisted Mukai lattice associated to a K3 surface S. The idea is
that the obstruction of the existence of a universal family over some moduli space of sheaves
MS[v] on S is contained in a Brauer class α ∈ Br(S), and there exists an α-twisted universal
family.

Hence, let S be a K3 surface, and define Br(S) := H2(S,OS)∨tors. We will call a rational
cohomology class B ∈ H2(S,Q) a B-field lift of α if its (0, 2)-part B0,2 is sent to α via the
exceptional sequence. A B-field lift of α is unique up to NS(S)Q and H2(S,Z).

Definition 1.1.14. Given B a B-field lift of a Brauer class α ∈ Br(S), we define a Hodge
structure of weight 2, denoted H̃(S, α,Z), on H∗(S,Z) as the Mukai lattice H̃(S,Z) with (p, q)-
part given by

H̃p,q(S, α) := exp(B) · H̃p,q(S).
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We see that H̃2,0(S, α) is spanned by σ+B∧σ ∈ H2,0(S)⊕H4(S,Z) for σ 6= 0 ∈ H2,0(S,Z).
Moreover, if B ∈ H2(S,Z) then multiplication by exp(B) gives an isometry of Hodge structure
H̃(S,Z) ' H̃(S, α,Z).

1.1.4 Moduli spaces of sheaves on prime Fano threefolds
A smooth projective threefold X with −KX ample is called Fano, and if Pic(X) = Z ·KX it is
called prime. In particular, such a Fano X has Picard rank ρ(X) = 1 and index iX = 1. These
varieties have been extensively studied by Iskovskikh and Prokhorov [IP99]. They are classified
in 10 classes of deformations, each class is caracterized by the genus

g(X) := 1
2(−K3

X + 2).

The value of the genus g := g(X) ranges in {2, 3, . . . , 9, 10, 12}. If −KX is very ample, we say
that X is non-hyperelliptic. In this case we have g ≥ 3.

The cohomology groups Hk,k(X) of a prime Fano threefold X are generated by

• the fundamental class [X] for k = 0,

• the class HX = −KX of a hyperplane section of X for k = 1,

• the class LX of a line contained in X for k = 2.

• the class PX of a point contained in X for k = 3.

For this reason, we will denote
MX(r, c1, c2, c3),

r, c1, c2, c3 ∈ Z, the moduli space of sheaves F on X with rank rk(F ) = r and chern classes
c1(F ) = c1HX , c2(F ) = c2LX , c3(F ) = c3PX . When c3 = 0, we simply writeMX(r, c1, c2).

The moduli spaces MX(2, 1, c2, c3) have been studied by many authors: we can cite Ar-
rondo, Brambilla, Faenzi, Iliev, Manivel, Markushevich and Ranestad in [IM00a] for g = 3,
[IM04],[IM07b], [BF14] for g = 7, [IM00b], [IM07a] for g = 8, [IR05], [BF13] for g = 9, [AF06]
for g = 12.

A first observation is a criterion for non-emptyness.

Proposition 1.1.15. Let X be a smooth non-hyperelliptic Fano threefold of genus g. Let F be
a rank 2 stable sheaf on X with c1(F ) = 1. Then

c2(F ) ≥ g + 2
2

Proof. A very general member of |HX | is a K3 surface S with Picard group Pic(S) = Z ·HS,
where HS is the restriction of HX to S. By generality of S and by Maruyama’s theorem
[Mar80], the restricted sheaf FS is semistable with Mukai vector v(FS) = (2, 1, g − c2(F ) + 1).
Computing the dimension of the latter space (Theorem 1.1.13), we find that it is not empty for
c2(F ) ≥ g

2 + 1.

We denote mg :=
⌈
g+2

2

⌉
this lower bound. The moduli spaceMX(2, 1,mg) is never empty

(explicit examples have been constructed for each value of g(X)). Brambilla and Faenzi give
in [BF11] a description ofMX(2, 1,mg).

Theorem 1.1.16 ([BF11], Theorem 3.2). Let X be a smooth non-hyperelliptic prime Fano
threefold of genus g. ThenMX(2, 1,mg) can be described as follows:
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(g = 3) the curve H0
1(X) of lines contained in X,

(g = 4) a scheme of length two, smooth if and only if X is contained in a smooth quadric,

(g = 5) the double cover of the discriminant septic curve of the net of 6-dimensional quadrics
defining X,

(g = 6, 8, 10, 12) a single smooth point,

(g = 7) a smooth non-tetragonal curve of genus 7,

(g = 9) a smooth plane quartic curve.

Moreover, the authors describe recursively in [BF14] a "good" component of MX(2, 1, c2)
for c2 ≥ mg.

Theorem 1.1.17 ([BF14], Theorem 3.7). Let X be a smooth non-hyperelliptic prime Fano
threefold of genus g. If g = 4, we assume that X is contained in a smooth quadric in P5. Then
for any c2 ≥ mg, there exists a non-empty generically smooth irreducible component

M(c2) ⊂MX(2, 1, c2)

of dimension 2d− g − 2. Its very general element F is locally free and satisfies

Ext2(F, F ) = 0,
H1(X,F (−1)) = 0.

The case g = 9 will be described with more details in section 2.1.

1.1.5 HyperKähler manifolds and Lagrangian fibrations
In this thesis, a hyperKähler manifold (HK manifold for short), also called irreducible symplectic
manifold, is defined as a compact Kähler simply-connected manifold X such that H0(X,Ω2

X) is
spanned by an everywhere non-degenerate holomorphic two-form σ. A projective HK manifold
is called HK variety. The study of HK manifolds is motivated by the following theorem.

Theorem 1.1.18 (Beauville-Bogomolov decomposition, [Bea83]). Let Y be a compact Kähler
manifold with c1(Y ) = 0. There exists an étale finite covering

d∏
i=1

Mi → Y

where each of the factors Mi is either a compact complex torus, a Calabi-Yau variety or a HK
manifold.

Hence HK varieties are building blocks for smooth projective varieties with trivial first
Chern class. However, not some many families of HK varieties are known. We list them here.
In Example 1.1.19, the families 2 and 3 have been constructed by Beauville [Bea83] and the
two sporadic examples 4 and 5 have been discovered by O’Grady [O’G99], [O’G03].

Example 1.1.19. 1. The only 2-dimensional HK varieties are K3 surfaces.

2. Let S be a K3 surface, and let X = S[n] be the Hilbert scheme of zero-dimensional
subscheme of S of length n ≥ 2. Then X is a HK variety of dimension 2n with b2(X) = 23.
HK varieties deformation equivalent to S[n] for some K3 surface S are called HK varieties of
K3[n]-type.
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3. Let A be an abelian surface. The Hilbert scheme A[n] carries a symplectic form but is
not HK. Though, there exists a morphism

s : A[n+1] −→ A
Z 7−→ ∑

p∈A l(OZ,p)p

and the variety
X = K [n](A) := s−1(0)

is a HK variety of dimension 2n with b2(X) = 7. HK varieties deformation equivalent toK [n](A)
for some abelian variety A and some integer n are called HK varieties of Kummer type.

4. Let S be a K3 surface. Consider a Mukai vector v = (v0, v1, v2) ∈ H̃1,1(S)Z primitive,
with either v0 6= 0 or v1 effective, and v2 = 2. Then the moduli space MS[2v] of semistable
sheaves with Mukai vector v is non-empty, irreducible of dimension 2 + v2. Moreover, there
exists a symplectic desingularization

f : X = M̃S[2v]→MS[2v]

so that X is a 10-dimensional HK variety with b2(X) = 24. HK varieties deformation equivalent
to X for some K3 surface S are called HK varieties of OG10-type.

5. We can perform the same construction as the previous example 4 replacing the K3 surface
S by an abelian surface T . In this case, one can consider the subvariety

Y = f−1(MT [2v]0) ⊂ M̃T [2v]

whereMT [2v]0 ⊂MT [2v] is defined as the subspace of sheaves F with fixed c := cCH1 (F ) (where
cCHi (−) is the i-th Chern class with values in the Chow group of T ) and with ∑ cCH2 (F ) = 0
(where the sum is taken on T via the map CH2(T ) → T ). Then Y is a 6-dimensional HK
variety with b2(Y ) = 8. HK varieties deformation equivalent to Y for some abelian surface T
are called HK varieties of OG6-type.

Remark 1.1.20. Unfortunately, Kaledin, Lehn and Sorger [KLS06] proved that O’Grady’s
examples 1.1.19, 4 and 5 cannot be generalized for m ≥ 2, v2

0 > 2 or m > 2: the moduli spaces
MS(mv), resp. MT (mv), do not admit symplectic resolutions.

Consider X a HK variety of dimension 2n. A subvariety L ⊂ X of dimension n is called
Lagrangian if the holomorphic symplectic form σ ∈ H0(X,Ω2

X) restricts to the trivial 2-form
on the smooth locus of L.

Definition 1.1.21. Let X be a HK variety. A Lagrangian fibration on X is a morphism
f : X → B with connected fibre to a normal variety B such that every irreducible component
of the reduction of every fibre of f is a Lagrangian subvariety of X.

From the work of Matsushita [Mat99], [Mat00], it turns out that any morphism f : X → B
with connected fibre onto a normal variety B with 0 < dimB < dimX is a Lagrangian fibration.
In particular, f is equidimensional and dimB = n. By Liouville’s theorem, the generic fibre is
a complex torus.

It is conjecture that the base B of any Lagrangian fibration f : X → B is the projective
space Pn. Hwang [Hwa08] proved that this is true when B is smooth, and Huybrechts and Xu
[HX19] proved that the conjecture is true for any normal variety B when dimX = 4. Let us
introduce a weakened notion of Lagrangian fibration.
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Definition 1.1.22. Let X be a HK variety. A rational Lagrangian fibration on X is a rational
map f : X → B such that there exists another HK variety Y and a birational map g : Y 99K X
such that f ◦ g is a Lagrangian fibration.

Example 1.1.23. 1. A K3 surface which admits a Lagrangian fibration is called elliptic.
There exists a lot of example of elliptic K3 surfaces. For instance, if you consider the Kummer
surface X associated to the abelian surface A = E1×E2, where E1, E2 are elliptic curves, then
the projections X → Ei/± ' P1, i = 1, 2, give elliptic fibrations.

2. Consider X = S[n] for f : S → P1 an elliptic surface. Consider the Hilbert-Chow
morphism

γ : X −→ S(n)

Z 7−→ ∑
p∈S l(OZ,p)p,

.

Then the composition
S[n] → S(n) f×···×f−−−−→ (P1)(n) ' Pn

is a Lagrangian fibration, where S(n) and (P1)(n) denote the symmetric powers.

3. If X ' K [n](A) for some principally polarized abelian surface A of Picard number 1,
Gulbrandsen [Gul07] proved that X admits a rational Lagrangian fibration over Pn if and only
if n is a perfect square.

4. Let Y ⊂ P5 be a general cubic fourfold. There is a universal family Y → B := (P5)∨ of
cubic threefolds obtained as hyperplane sections of Y . Denoting U ⊂ B the locus of smooth
hyperplane sections, taking the intermediate Jacobian of the cubic threefolds leads to a relative
intermediate Jacobian fibration

J → U .

In [LSV17], Laza, Saccà and Voisin construct a compactification p : J → B of J → U such
that J is a HK variety of OG10-type, and for which p is a Lagrangian fibration.

The goal of Chapter 2 of this thesis is to construct a rational Lagrangian fibration over some
moduli spaces of sheaves on a K3 surface of Picard rank 1 and genus 9 (see Corollary 2.3.8 and
Theorem 2.3.9).

1.2 Decompositions of the derived category of a smooth
projective variety

We start by gathering some useful construction that will be used in Chapter 2. For a general
background about triangulated categories and derived categories of coherent sheaves, we refer
to [Huy06].

1.2.1 Semi-orthogonal decompositions
Let T be a triangulated category linear over a field K. Recall that a thick triangulated sub-
category A ⊂ T is called admissible if the embedding functor i : A ↪→ T admits left and right
adjoints i∗, i!.

Definition 1.2.1. A semi-orthogonal decomposition (SOD for short) for T is a family of ad-
missible triangulated subcategories A1, . . . ,An ⊂ T such that

1. For any Aj ∈ Aj, Ai ∈ Ai with j > i we have HomT (Aj, Ai) = 0.
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2. The smallest triangulated subcategory of T containing A1, . . . ,An is T itself.
We denote T = 〈A1, . . . ,An〉. A way to construct semiorthogonal decomposition is to find a

collection of exceptional objects E1, . . . , Em, that is for all i = 1, . . . , n we have Hom(E,E) = K
and Hom(E,E[t]) = 0 for t 6= 0. Denoting the subcategory generated by Ei as Ei again, we
obtain

T = 〈A, E1, . . . , En〉
where A = 〈E1, . . . , En〉⊥ := {T ∈ T | Hom(Ei[t],A) = 0 ∀t ∈ Z, i = 1, . . . , n}.
Example 1.2.2. 1. Beilinson decomposition [Bei79], [Bei84]:

Db(Pn) = 〈OPn ,OPn(1), . . . ,OPn(n)〉. (1.2)

It easy to see that {OPn , . . . ,OPn(n)} is exceptional as Hom(OPn(j),OPn(i)[t]) = H t(Pn,O(j−
i). The most difficult fact is to show that Db(Pn) is indeed generated by the exceptional
objects.

2. Orlov projective bundle formula [Orl92]: Let S be a K-scheme and E be a vector bundle
of rank r + 1 on it. Let f : PS(E) → S be the projectivization of E over S and let
O(1) := OPS(E)/S(1) be the Grothendieck line bundle on PS(E). Then we have

Db(PS(E)) = 〈f ∗(Db(S))⊗O, f ∗(Db(S))⊗O(1), . . . , f ∗(Db(S))⊗O(r)〉 (1.3)

3. Let X be a Fano variety of index i, and fix an ample divisor OX(1) such that that
−KX = OX(i). By Kodaira vanishing and using Serre duality, we see that the family
{OX , . . . ,OX(i− 1)} is exceptional in Db(X), and we get a SOD

Db(X) = 〈AX ,OX ,OX(1), . . . ,OX(i− 1)〉.

If X ' Pn, we get AX = 0 (example 1). We will see in section 2.1.1 the example of a
prime Fano threefold X of index 1 and degree 16, for which AX ' 〈Db(Γ),U〉 for Γ a
plane quartic curve. See [Kuz16] for Fano threefolds and [Kuz10] for cubic fourfolds.

1.2.2 Homological projective duality
Let X be a smooth projective variety over an algebraically closed field K of characteristic 0
with a morphism

f : X → PV
for V a finite dimensional K-vector space. Set OX(1) := f ∗OPV (1).

Assume X is endowed with a right Lefschetz decomposition

Db(X) = 〈A0,A1(1), . . . ,Am(m)〉, (1.4)

that is a SOD such that Am ⊂ Am−1 ⊂ · · · ⊂ A1 ⊂ A0 (note that 1.2.2 example 1, with
A0 = · · · = Am = 〈OPn〉, is an example of such).

From [Kuz11], the product X × PV ∨ inherits a semiorthogonal decomposition

Db(X × PV ∨) = 〈A0 �Db(PV ∨),A1(1)�Db(PV ∨), . . . ,Am(m)�Db(PV ∨)〉. (1.5)

Now define Q ⊂ PV ×PV ∨ the incidence quadric of point (Kv,H) ∈ PV ×PV ∨ with v ∈ H.
We consider the universal hyperplane section of X as the fibre product

X1 := X ×PV Q.

There is a natural embedding X1 ↪→ X × PV ∨ and hence a map p : X1 → PV ∨. The fibre of
p over H ∈ PV ∨ is the hyperplane section X ∩ H. Thus, X1 can be thought as the family of
hyperplane sections of X over PV ∨.
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Proposition 1.2.3 ([Kuz07] Lemma 5.3). The pullback by the closed immersion X1 ⊂ X×PV ∨
is fully faithful on each component Ai(i) � Db(PV ∨) of (1.5) and induces a semiorthogonal
decomposition

Db(X1) = 〈C,A0 �Db(PV ∨),A1(1)�Db(PV ∨), . . . ,Am(m)�Db(PV ∨)〉 (1.6)

The orthogonal complement C is called the HP dual category. When it is the derived
category of a variety, we call the latter the HP dual variety of X.

Definition 1.2.4. A variety Y equipped with a morphism g : Y → PV ∨ is called homologically
projective dual to f : X → PV with respect to a Lefschetz decomposition (1.4) if there is an
object E ∈ Db(Q(X, Y )) such that the Fourier-Mukai functor

φE : Db(Y )→ Db(X1)

is an equivalence onto the subcategory C ⊂ Db(X1) of (1.6).

Here, Q(X, Y ) := X1 ×PV ∨ Y = (X × Y )×PV×PV ∨ Q.

Theorem 1.2.5 ([Kuz07]). Let g : Y → PV ∨ be an HP dual variety for f : X → PV with
respect to 1.4.

1. Y is smooth and there is a subcategory B0 ' A0 and a Lefschetz decomposition

Db(Y ) = 〈Bn(−n), . . . ,B1(−1),B0〉, Bn ⊂ · · · ⊂ B1 ⊂ B0 (1.7)

2. (X, f) is HP dual to (Y, g) with respect to (1.7).

3. The set of critical values of g is the classical projective dual of X.

4. For any linear subspace L ⊂ V ∨, if XL = X ×PV PL⊥ and YL = Y ×PV ∨ L have expected
dimensions, then there are semiorthogonal decompositions

Db(XL) = 〈CL,AdimL(dimL), . . . ,Am(m)〉 (1.8)
Db(YL) = 〈Bn(−n), . . . ,BdimV−dimL(dimL− dim V ), CL〉. (1.9)

Example 1.2.6 ([Kuz07]). Let V be a K-vector space of dimension N . Let E ⊂ V be a linear
subspace of dimension i+ 1 and let X := PE ↪→ PV be the natural embedding. We will prove
that g : Y := PE⊥ ↪→ PV ∨ is the HP dual variety for X.

Note that Q(X, Y ) = Y ×PV ∨ X1 = Y ×X. Consider the diagram induced by the natural
projections from Y ×PV ∨ X1 ' Y ×X:

Y ×X X1

Y PV ∨.

p

φ f

g

Using the projection formula, it is easy to see that φO(Y×X) ' p∗φ
∗. Let F ∈ Db(PV ∨) and

E ∈ Db(Y ). We have

Hom(f ∗F ⊗OX(k), p∗φ∗G) = Hom(f ∗F, p∗φ∗G⊗OX(−k))
= Hom(f ∗F, p∗(φ∗G⊗OX×Y (−k)))
= Hom(F, f∗p∗(φ∗G⊗OX×Y (−k)))
= Hom(F, g∗φ∗(φ∗G⊗OX×Y (−k)))
= Hom(F, g∗(G⊗ φ∗OX×Y (−k)))
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and φ∗OX×Y (−k) ' OY (−k) = 0 for all k > 0. Hence we have

Db(X1) ⊃ 〈φOX×Y (Db(Y )),OX �Db(PV ∨), . . . ,OX(i)�Db(PV ∨)〉. (1.10)

To conclude, it suffices to prove that the latter inclusion is an equality. Pick G in the left
orthogonal to the RHS of (1.10). For any F ∈ Db(Y ) we have

Hom(G, p∗φ∗F ⊗OX(k)) = Hom(p∗G, φ∗F ⊗OX×Y (k)) = 0

and hence p∗G = 0 since the subcategories φ∗Db(Y ) ⊗ OX×Y (k) generates Db(X × Y ) (1.2.2
Example 2). Hence we obtain that G is supported on X1rX×Y (note that, by definition of Y ,
the projection p is an embedding). But the fibre of X1 over a point H ∈ PV ∨\Y is a hyperplane
of X, so that X1rX×Y is a Pi−1-bundle over PV ∨rY . Once again using 1.2.2 Example 2, we
conclude by pulling back the orthogonality of G with 〈OX � Db(PV ∨), . . . ,OX(r)� Db(PV ∨)〉
to X1 rX × Y that G = 0.

In general, the HP dual category C in (1.6) is not equivalent to the derived category of a
variety. Let us point out two possible phenomenons:

• Sometimes there is a variety Y with a map g : Y → PV ∨, a sheaf of finite OY -algebras A
on Y , and an object E ∈ Db(Q(X, Y ),A) which induces an equivalence

φE : Db(Y,A) ∼−→ C,

where Db(Y,A) denotes the bounded derived category of of coherent A-modules. We call
such a variety Y as a noncommutative HP dual of X.

• Moreover, sometimes the (noncommutative) variety Y is a HP dual of X only over an
open dense subset U ⊂ PV ∨. Denote CU the base change of C with respect to the open
immersion U ↪→ PV ∨. When there exists an object E ∈ Db(Q(X, Y )U ,A) which gives an
equivalence

φE : Db(YU ,A) ∼−→ CU ,
we say that YU is an incomplete (noncommutative) HP dual of X over U .

Proposition 1.2.7 ([Kuz14], Proposition 4.6). In both cases described above, the semiortho-
gonal decompositions (1.8) and (1.9) hold true for any subspace L ⊂ V ∨ such that PL ⊂ U and
XL, YL have expected dimensions.

Of course, one have to replace Db(YL) by Db(YL,A) and possibly apply base change along
U ↪→ PV ∨. En explicit example of such an incomplete HP duality will be stated in section
2.1.1.

Remark 1.2.8. In fact, there exists a stronger statement that Theorem 1.2.5. One can gener-
alize the construction of X1 to higher codimensional linear sections: for each r ∈ {1, . . . , dim V }
there is a universal family of linear sections

Xr ⊂ X ×G(r, V ∗)

such that the fibre over a linear subspace L ∈ G(r, V ∗) is XL := X ∩ L⊥. It turns out that
Xr → G(r, V ∗) is projective and Xr → X is smooth, in particular Xr is smooth.

In [Kuz07], the author proves that the decompositions (1.8) and (1.9) hold true in the
universal context. Denote Yr the universal families of linear sections of Y . The object E ∈
Db(Q(X, Y )) pullbacks to Er ∈ Db(Xr ×G(r,V ∨) Yr), which as a kernel provides a functor φEr :
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Db(Yr) → Db(Xr) (and left and right adjoint φ∗Er , φ!
Er : Db(Xr) → Db(Yr). Kuznetsov proves

that these functors give the decompositions

Db(Xr) = 〈Cr,AdimL(dimL)�Db(G(r, V ∨)), . . . ,Am(m)�Db(G(r, V ∨))〉 (1.11)
Db(Yr) = 〈Bn(−n)�Db(G(r, V ∨)), . . . ,

BdimV−dimL(dimL− dim V )�Db(G(r, V ∨)), Cr〉. (1.12)

The decompositions (1.8) and (1.9) are obtained from (1.11) and (1.12) by base change
SpecC→ G(r, V ∨), ∗ 7→ L.

Finally, the same statement hold true when Y is noncommutative or for incomplete HPD,
replacing Db(Yr) by Db(Yr,A) and pulling back to an open of G(r, V ∨) when needed.

1.3 Autoequivalences of derived categories
We consider in this section a smooth projective variety X over an arbitrary field K.

1.3.1 Standard autoequivalences and the Bondal-Orlov theorem
To understand Db(X), one wants to compute the group of autoequivalences Aut(Db(X)). Here,
by autoequivalence we mean exact K-linear equivalence Db(X) → Db(X), and Aut(Db(X))
is defined as the group of isomorphism classes of autoequivalences. The easiest examples of
autoequivalences are the following ones:

1. The shift functor [1] : Db(X)→ Db(X).

2. Let f : X → X be an automorphism. Then the derived pushforward Rf∗ : Db(X) →
Db(X) is an autoequivalence, whose inverse is given as the derived pullback Lf ∗.

3. Let L ∈ Pic(X) be a line bundle. The derived tensor product (−⊗LL) : Db(X)→ Db(X)
is another example of autoequivalence, whose inverse is (−⊗L L∨)

Remark 1.3.1. One can check that two automorphisms f, g induce the same autoequivalence
if and only if f = g. Similarly, the autoequivalence (− ⊗L L) is isomorphic to the identity if
and only if L is trivial. In particular, examples (2) and (3) give subgroups of autoequivalences

Aut(X) ↪→ Aut(Db(X)), Pic(X) ↪→ Aut(Db(X)).

Note that the shift functor commutes with any autoequivalence. Moreover, given F ∈
Db(X), L ∈ Pic(X) and f ∈ Aut(X), we have Lf ∗(F ⊗L L) ' Lf ∗F ⊗L Lf ∗L, so that
Pic(X) o Aut(X) is a normal subgroup of Aut(Db(X)).

Definition 1.3.2. The equivalences lying in the subgroup

Z · [1]× (Pic(X) o Aut(X)) ⊂ Aut(Db(X)) (1.13)

are called standard autoequivalences.

Proposition 1.3.3 ([BO01], Theorem 3.1). Assume ωX or ω∗X is ample. Then

Aut(Db(X)) ' Z · [1]× (Pic(X) o Aut(X)).
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A particularly interesting example of autoequivalence of Db(X) is the Serre functor

S : Db(X) −→ Db(X)
F 7−→ F ⊗ ωX [dimX]. (1.14)

The name come from the categorical version of Serre duality: for any F,G ∈ Db(X) there exists
a functorial isomorphism

Hom(F,G) ' Hom(G,S(F ))∨. (1.15)

On a triangulated category T over K, an autoequivalence S inducing a functorial isomorphism
of the form (1.15) for any F,G ∈ T is called a Serre functor.

1.3.2 Spherical twists
Spherical twists, introduced by Seidel and Thomas [ST01], are a really important example of
autoequivalence of Db(X).

Definition 1.3.4. An object E ∈ Db(X) is called spherical if

1. E ⊗ ωX ' E

2. RHom(E , E) ' K ⊕K[− dimX].

The name spherical comes from the remark that the second condition is equivalent to ask
Hom(E , E) ' H∗(SdimX , K), where SdimX is the real sphere of dimension dimX.

Remark 1.3.5. If E is spherical, then for any autoequivalence φ ∈ Aut(Db(X)) the object
φ(E) is also spherical. This is a consequence of the general fact that the Serre functors of
triangulated categories commute with equivalences ([Huy06], Lemma 1.30).

Example 1.3.6. • On a K3 surface (over any field), every line bundle is spherical.

• Assume K = C and let X = S be a surface, and C i
↪−→ S a (−2)-curve, that is, a curve

C ' P1 with self-intersection−2. Then any line bundleOC(a), a ∈ Z, is a spherical object.
Indeed, KS ·C = 0 by adjunction formula and thus i∗(OC(a))⊗ωS ' i∗(OC(a)⊗ i∗ωS) '
i∗OC(a) by projection formula. Now, using [Huy06], section 11:

RHomS(i∗OC(a), i∗OC(a)) = RHomC(i∗i∗OC(a),OC(a))
= RHomC(OC(a)⊕OC(a+ 2)[1],OC(a))
= RHomC(OC ,OC ⊕OC(−2)[1]),

and the result comes from direct computation of these Ext-groups since C ' P1.

Given any object E ∈ Db(X), consider the object PE ∈ Db(X ×X) constructed as follow.
We denote p, q : X ×X → X the first, resp. second, projection. Set ι : X ∼−→ ∆ ⊂ X ×X the
diagonal embedding. Consider the composition of the restriction

q∗E∨ ⊗ p∗E → ι∗ι
∗((q∗E∨ ⊗ p∗E)) ' ι∗(E∨ ⊗ E)

and the pushforward of the trace map E∨ ⊗ E → OX through ι. We obtain a map

q∗E∨ ⊗ p∗E → O∆.

Now we set
PE := C(q∗E∨ ⊗ p∗E → O∆).
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Definition 1.3.7. The spherical twist TE with respect to a spherical object E ∈ Db(X) is the
Fourier-Mukai transform with kernel PE .

On the level of objects it is given by

A 7→ TE(A) := C(RHom(E , A)⊗ E ev−→ A),

i.e. TE(A) is given by the cone of the natural evaluation map.
Remark 1.3.8. Quick computations give TE(E) = E [1 − dimX] and TE(F ) ' F for all F ∈
Db(X) with Hom(E , F [i]) = 0 ∀i ∈ Z (i.e. F ∈ E⊥).
Proposition 1.3.9 ([ST01]). The spherical twist TE is an equivalence.
Proof. We only sketch the proof. First, one can check that Ω = {E} ∪ E⊥ is a spanning class
of Db(X). In view of [Huy06], Corollary 1.56, to prove that TE is fully faithful it is enough to
prove that

TE : Hom(F,G[i])→ Hom(TE(F ), TE(G)[i])
is an isomorphism for all i ∈ Z and F,G ∈ Ω. The ingredients to prove the latter are the
descriptions TE(E) ' E [1−dimX] and TE(F ) ' F for all F ∈ E⊥ (Remark 1.3.8), Serre duality
and the properties of spherical objects.

To conclude, since TE admits left and right adjoints (as it is a FM transform) it suffices
to prove that for any G ∈ Ω, we have TE(G ⊗ ωX [n]) ' TE(G) ⊗ ωX [n]. This is once again a
consequence of the fact that E ⊗ ωX ' E and Remark 1.3.8.

Spherical twists form a normal subgroup of the group of autoequivalences Aut(Db(X)). We
have the following formula, really useful when it comes to computations.
Proposition 1.3.10. Let φ : Db(X) ∼−→ Db(X) be an autoequivalence. Let E ∈ Db(X) be a
spherical object. Then we have

φ ◦ TE ' Tφ(E) ◦ φ.

Proof. This is easy to see on the level of objects. Indeed, by definition of spherical twists we
have

Tφ(E)(φ(F )) = C (RHom(φ(E), φ(F ))⊗ φ(E)→ φ(F ))
and on the other hand

φ(TE(F )) = φ (C (RHom(E , F )⊗ E → F )) .

Note that RHom(φ(E), φ(F )) ' RHom(E , F ) and that the cone of the image of φ is the image
of the cone. The identification of both maps RHom(E , F )⊗φ(E)→ φ(F ) permits to obtain an
isomorphism Tφ(E)(φ(F )) ' φ(TE(F )). The functoriality of this isomorphism is more difficult
to prove, we refer to [Huy06], Lemma 8.21.

Later on, we will study a subgroup of Aut(Db(X)), for X a surface, which is generated
by spherical twists along the structural sheaves of curves in X. We give now a more general
statement.

Assume you are given a finite family V = {E1, . . . , Em}, m ≥ 1, of spherical objects in
Db(X). Assume that for any i, j ∈ {1, . . . ,m} with i 6= j, we have

Ei · Ej :=
∑
k

dim Extk(Ei, Ej) = 0 or 1.

Consider the graph ΓV which set of vertices is V = {E1, . . . , Em} and two vertices Ei, Ej,
i 6= j, are linked by an edge if and only if Ei · Ej = 1. We say that V is an Am (resp. Dm, Em,
Ām, D̄m, Ēm) configuration of spherical objects if the graph ΓV is the Dynkin diagram of the
corresponding type.
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Proposition 1.3.11. Assume V = {E1, . . . , Em} is a configuration of spherical objects of one
of the ADE (or ĀD̄Ē) type. Denote Ti := TEi. Then we have

Ti ◦ Tj = Tj ◦ Ti if Ei · Ej = 0, (1.16)
Ti ◦ Tj ◦ Ti = Tj ◦ Ti ◦ Tj if Ei · Ej = 1. (1.17)

Proof. The proof of [Huy06], Proposition 8.22 works for this more general case.

We will see in the next section 1.3.3 that the relation T 2
i = 1 for all i ∈ {1, . . . ,m} can be

added when we descend to cohomology, so that we end up with a Coxeter system {T1, . . . , Tm}.
We will use this fact sections 3.2 and 3.3.

1.3.3 Action on cohomology
For this section we assume K = C. In this part we will work with the cohomology of X with
coefficients in C for convenience, but most of the theory can be made with rational cohomology.

Definition 1.3.12. We define the Grothendieck group of X, denoted K0(X), as the free group
generated by coherent sheaves F ∈ Coh(X) subject to the relation

[F ] = [E] + [G]

whenever there exists an exact sequence of coherent sheaves

0→ E → F → G→ 0.

In particular, we have [E] + [G] = [E⊕G] for any coherent sheaves E,G. Since we assumed
X smooth, every coherent sheaf admits a finite locally free resolution, so that any element
E ∈ K0(X) can be written as E = ∑

k ak[Ek] with Ek a locally free sheaf.
Moreover, K0(X) admits a ring structure by setting

[E] · [F ] = [E ⊗ F ],

with neutral element [OX ].
We consider the map

[−] : Db(X) −→ K(X)
F • 7−→ ∑(−1)i[F i] = ∑(−1)i[Hi(F •)]. (1.18)

Note that [F •[k]] = (−1)k[F •], and F • ' G• in Db(X) implies that [F •] = [G•].

Some notations:
We can extend the characteristic classes of coherent sheaves to objects in Db(X) using 1.18.

For instance, for F • ∈ Db(X) we can define ch(F •) := ch([F •]). As such, we will omit the
bracket [−] to simplify the notations.

In order to obtain a well-behaved map from the derived category to the Betti cohomology
of X, we need to twist its Chern character by the Todd class, in order to take Grothendieck-
Riemann-Roch formula in account.

Definition 1.3.13. We define theMukai vector v(F ) of an object F ∈ Db(X) as the cohomology
class

v(F ) := ch(F ) ·
√

td(X).
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Now let Y be another smooth projective variety over C. Let P ∈ Db(X × Y ) be an object
and consider φP the associated FM transform.

Definition 1.3.14. The cohomological Fourier-Mukai transform φHP associated to φP is the
C-linear morphism

φHP : H∗(X,C) −→ H∗(Y,C)
α 7−→ p∗(q∗(α) · v(P))

Any equivalence φ : Db(X)→ Db(Y ) is a FM transform. In particular, it induces a cohomo-
logical morphism which we denote φH . The cohomological FM transform need not respect the
grading nor the ring structure of the cohomology spaces, though it is well behaved for many
reasons that we gather here.

1. The diagram

Db(X) Db(Y )

H∗(X,C) H∗(Y,C)

φP

v v

φHP

commutes.

2. The morphism φHP respect the parity of classes, that is φHP (Heven(X,C)) ⊂ Heven(Y,C)
and φHP (Hodd(X,C)) ⊂ Hodd(Y,C).

3. If Z is a third smooth projective variety and φQ : Db(Y ) → Db(Z) is a FM transform,
then

(φQ ◦ φP)H ' φHQ ◦ φHP . (1.19)

4. If φ : Db(X) ∼−→ Db(Y ) is an equivalence, then φH : H∗(X,C) ∼−→ H∗(Y,C) is a C-linear
isomorphism.

5. If φ : Db(X) ∼−→ Db(Y ) is an equivalence, then φH induces an isomorphism⊕
p−q=k

Hp,q(X) '
⊕
p−q=k

Hp,q(Y ) (1.20)

for all k ∈ {− dimX, · · · , dimX}.

Remark 1.3.15. From 1.19 we deduce that (IdDb(X))H = IdH∗(X,C), and for an equivalence
φ : Db(X)→ Db(Y ) we have (φH)−1 = (φ−1)H . Thus we obtain a group morphism

Aut(Db(X))→ GL(H∗(X,C))

This morphism is never injective (see Example 1.3.19, 1) and need not be surjective (see for
instance Remark 1.3.22).

Finally, we would like to define a pairing on H∗(X,C) and H∗(Y,C) such that any equival-
ence φ : Db(X) ∼−→ Db(Y ) would lead to an isometry φH : H∗(X,C) ∼−→ H∗(Y,C). To do so, we
introduce the following notation. For v ∈ H∗(X,C) with homogeneous components v = ∑

j vj,
we set

v∨ :=
∑
j

√
−1jvj.

29



Definition 1.3.16. Let v, w ∈ H∗(X,C). We define the Mukai pairing on H∗(X,C) as the
quadratic form

〈v, w〉 :=
∫
X

exp(c1(X)/2) · v∨ · w. (1.21)

For F,G ∈ Db(X), we obtain

χ(F,G) = 〈v(F ), v(G)〉.

Proposition 1.3.17. Let φ : Db(X) ∼−→ Db(Y ) be an equivalence. Then the induced cohomo-
logical morphism φH : H∗(X,C) ∼−→ H∗(Y,C) is an isometry with respect to the Mukai pairing
on X and Y , that is

〈v, w〉X = 〈φH(v), φH(w)〉Y .

Remark 1.3.18. Note that this Mukai pairing is the opposite of the Mukai pairing used on
K3 surface section 1.1.3.

Some examples

We can illustrates the previous section by computing the action on cohomology induced by the
standard autoequivalences and spherical twists defined before.

Example 1.3.19. 1. The shift functor [1] : Db(X)→ Db(X) acts by multiplication by (−1)
on H∗(X,C) (in fact, this fact is already a consequence of the passage through the Grothendieck
group K(X) between the derived category and the cohomology space). From (1.19) we obtain
that [k], k ∈ Z, acts by multiplication by (−1)k on H∗(X,C). In particular, [2k] is an example
of nontrivial autoequivalence (for k 6= 0) which acts trivially in cohomology.

2. If L ∈ Pic(X) is a line bundle, then (−⊗ L) acts on H∗(X,C) by

v 7→ v · exp(c1(L)).

3. If f : X → Y is a morphism, then (f∗)H coincide with the cohomological pushforward
f∗ : H∗(X,C)→ H∗(Y,C), and similarly for f ∗.

4. Let E ∈ Db(X) be a spherical object and consider the spherical twist TE . Then the
cohomological action on H∗(X,C) is given by

v 7→ v − 〈v(E), v〉v(E).

In particular, THE (v(E)) =
−v(E) if dimX ≡2 0
v(E) if dimX ≡2 1

. Moreover, when dimX is even (THE )2 =

IdH∗(X,C), hence T 2
E gives another example of nontrivial autoequivalence which acts trivially in

cohomology.

Remark 1.3.20. For computations, it is useful to have a description of the matrices of the
cohomological FM morphisms with respect to some fixed basis.

Endow H∗(X,C) with a basis BX which is the concatenation of basis of each Hk(X,C) for
k = 0, . . . , 2 dimX (and similarly for H∗(Y,C)). In other words, the elements of the basis are
homogeneous with increasing degrees.

• The matrix of (− ⊗ L)H with respect to BX is lower triangular. The restricted map
Hk(X,C)→ Hk(X,C) is the multiplication by rk(L) = 1, hence the corresponding block is the
identity matrix:
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Id 0
. . .

∗ Id

• The matrix of f ∗ with respect to BX and BY is diagonal by block, each block corres-
ponding to the restricted map Hk(X,C)→ Hk(Y,C):

f ∗0 0
. . .

0 f ∗2 dimX

• For a spherical object E ∈ Db(X), it is conveniant to change the basis: fill the set {v(E)}
into a basis {e1, . . . , em, v(E)} of H∗(X,C). Then the matrix of THE with respect to this basis
is the identity matrix except for its last line:

Id 0

−〈v(E), e1〉, . . . , −〈v(E), em〉 1− 〈v(E), v(E)〉

For K3 surfaces

For K3 surfaces, the Todd class is integral, which allows to work over Z. Let us explain here
how it works in this case.

Let S be a projective K3 surface. Recall the definition of the Hodge structure on the Mukai
lattice H̃(S,Z) in section 1.1.3.

Proposition 1.3.21 (Mukai). If φ : Db(S) ∼−→ Db(S ′) is an equivalence between the derived
categories of two K3 surfaces, then the cohomological map induces a Hodge isometry

φH : H̃(S,Z) ∼−→ H̃(S ′ ,Z).

Remark 1.3.22. There exists, under some assumptions, converses of this statement.

1. First, Db(S) and Db(S ′) are equivalent if and only if there exists a Hodge isometry
H̃(S,Z) ' H̃(S ′ ,Z). In fact, two cases can appear in this situation. Given an isometry

ϕ : H̃(S,Z) ∼−→ H̃(S ′ ,Z),

either ϕ induces an isometry H2(S,Z) ' H2(S ′ ,Z) and in this case S ' S
′ by Global Torelli

Theorem 1.1.12, or one can prove that S is isomorphic to a fine moduli space of sheaves M
on S

′ (in fact, it is a moduli space of µ-stable vector bundles on S
′). In the latter case, the

universal family E on S × S ′ (identifying M and S), as a kernel, induces a derived equivalence

Db(S) ∼−→ Db(S ′).

2. Moreover, any Hodge isometry ϕ : H̃(S,Z) ∼−→ H̃(S ′ ,Z) which preserves the natural
orientation of the positive directions is induced by an equivalence, that is there is an equivalence
φ : Db(S) ∼−→ Db(S ′) such that φH = ϕ. The natural orientation of the positive directions is
given by the arbitrary choice of the orientation for the two-dimensional subspace of H̃1,1(S,Z)
defined by the basis {(1, 0,−H2/2), (0, H, 0)}, for H ∈ NS(S) an ample class. See [Huy06],
Corollary 10.3.
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Remark 1.3.23 ([HS05]). Proposition 1.3.21 also holds in the twisted case. Namely, given two
K3 surfaces S, S ′ and α ∈ Br(S), β ∈ Br(S ′), any equivalence

φ : Db(S, α) ∼−→ Db(S ′ , β)

between the derived categories of twisted sheaves on S and S ′ induces an isometry

φH : H̃(S, α,Z) ∼−→ H̃(S ′ , β,Z)

with respect to their twisted Mukai lattice, see Definition 1.1.14.

1.4 Bridgeland stability conditions
This last section aims to recall the general definition of stability conditions and to gather results
for the particular case of K3 surface. The theory is originally due to Bridgeland [Bri07] [Bri08],
and we refer to [MS17] for a survey on the topic.

1.4.1 Stability conditions on a triangulated category
General definitions and properties

We first start with the general definition of stability conditions. Let D be a triangulated
category, and denote [1] : D → D its shift functor. Let K(D) be the Grothendieck group of D,
i.e. the group generated by all objects of D subject to the relation

[F ] = [E] + [G]

whenever a distinguished triangle E → F → G → E[1] exists. When D = Db(X) for X
a smooth projective variety over K, we have K(Db(X)) = K0(X) (see section 1.3.3). In
particular, [F ] = ∑

i(−1)iHi(F ). We will omit the bracket [−] to simplify the notations.

Definition 1.4.1. A Bridgeland stability condition on D is a pair σ = (P , Z) where:

• P is a slicing of D, that is P is a collection of subcategories P(φ) ⊂ D for all φ ∈ R such
that

1. P(φ)[1] = P(φ+ 1),
2. for φ1 > φ2 and A1 ∈ P(φ1), A2 ∈ P(φ2) we have Hom(A1, A2) = 0,
3. for all E ∈ D there exist real numbers φ1 > · · · > φm, objects Ei ∈ D for i = 1, . . . ,m

and a collection of triangles
0 = E0 E1 · · · Em−1 Em = E

A1 Am−1 Am

with Ai ∈ P(φi).

• Z : Λ→ C is an additive morphism, called central charge, such that for all nonzero object
E ∈ D, we have

Z(E) ∈ R>0e
iπφ,
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The collection of triangles in condition 3 is called the Harder-Narasimhan filtration (HN
filtration for short) of E. The objects Ai,i = 1, . . . ,m are called the HN factors of E.

We call objects in P(φ) semistable of phase φ. The simple objects in P(φ) are called
stable. Often we will write P([φa, φb]) for the extension closure in D of the categories P(φ) for
φ ∈ [φa, φb].

When D is linear over a field K, we can consider the numerical Grothendieck group N (D)
defined as

N (D) = K(D)/K(D)⊥

where the orthogonal is taken with respect to the bilinear form χ on K(D) given by

χ : (E,F ) 7→
∑
i

(−1)i dimK Hom(E,F [i]).

We say that D is numerically finite if N (D) has finite rank. A stability condition σ = (P , Z)
for which the central charge Z factors through N (D) is called numerical.

Definition 1.4.2. A numerical stability condition σ = (P , Z) is said to be full if it satisfies
the support property:

• For any given norm ‖ · ‖ on N (D)R, there exists a constant C > 0 such that for all
semistable object F ∈ D,

C|Z(F )| ≥ ‖F‖.

The set of full numerical stability conditions is denoted Stab(D).

For now one, we will always assume that the stability conditions we consider are numerical
and full.

The set Stab(D) can be endowed with a natural topology. It is the coarsest topology such,
that for any F ∈ D, the maps (P , Z) 7→ Z ∈ HomZ(K(D),C), (P , Z) 7→ φm, (P , Z) 7→ φ1
are continuous (with the linear topology on HomZ(K(D),C)), where we denote φ1 and φm the
extremal phases of the HN factors of F (see Definition 1.4.1).

More precisely, the topology is induced by the generalized metric

d(P ,Q) = inf{ε ∈ Z≥0 ‖ Q(φ) ⊂ P([φ− ε, φ+ ε]) for all φ ∈ R},

for P ,Q slicings ofD, and we consider the product topology on {Slicings of D}×HomZ(K(D),C).

Theorem 1.4.3 ([Bri07]). Let D be a numerically finite triangulated category. The map

(P , Z) 7→ Z

gives a local isomorphism between Stab(D) and HomZ(K(D),C). In particular, Stab(D) is a
complex manifold of finite dimension rkN (D).

Nice proofs of this result can also be found in [Bay11] and[Bay19].

Wall and chamber decomposition

A natural question to ask is how vary the set of semistable objects when one changes continu-
ously the stability condition in Stab(D). The following theorem gives a precise answer, see for
instance [BM11], Proposition 3.3.

Theorem 1.4.4. Let v ∈ N (D) be a fixed primitive vector and consider an arbitrary set S ⊂ D
of objects of class v. Consider Stab∗ ⊂ Stab(D) a connected component of stability conditions.
Then Stab∗ admits a wall and chamber structure, that is there exists a locally finite family Ww,
w ∈ N (D), of real codimension 1 submanifolds with boundaries , called walls, with the following
properties.

33



1. For every stability condition (P , Z) ∈ Ww there exists a phase φ and a non trivial inclusion
Ew ↪→ Fv with [Ew] = w and [Fv] = v in P(φ), for some Fv ∈ S.

2. If C ⊂ Stab∗ is a connected component of the complement of ⋃w∈N (D) Ww and σ, τ ∈ C
are two stability conditions, then an object Fv ∈ S is σ-stable if and only if it is τ -stable.

A component C ⊂ Stab∗ as in property 2 is called a chamber.

Define Vw as the subset of stability conditions for which it exists an inclusion as in property
1. Then the walls Wv are defined as the codimension one components of Vw.

We call a stability condition v-generic if it does not lie on a wall with respect to v.

Stability functions and geometric stability conditions

Let D be a numerically finite triangulated category over a field K. The next definitions and
results give tools to construct explicit stability conditions, see section 1.4.2.

Consider A ⊂ D the heart of a bounded t-structure. In otherword, A is an full abelian
subcategory of D such that

1. for all integers i < j and A,B ∈ A, we have Hom(A[j], B[i]) = 0,

2. for any E ∈ D there exist integers k1 > · · · > km and objects Ei ∈ D, Ai ∈ A for
i = 1, . . . ,m and a collection of triangles
0 = E0 E1 · · · Em−1 Em = E

A1[k1] Am−1[km−1] Am[km].

In view of the condition 2 we can identify K(D) = K(A).

Definition 1.4.5. A group morphism Z : K(A) → C is called stability function if for any
non-zero object A ∈ A we have

=Z(A) ≥ 0, and =Z(A) = 0⇒ <Z(A) < 0. (1.22)

In particular, for any object A ∈ A, there is a well defined notion of phase

φ(A) = (1/π) argZ(A) ∈ (0, 1].

We see that =Z(−) and <Z(−) are additive on exact sequence in A, and condition 1.22
tells us that =Z(−) and −<Z(−) act exactly as the rank and degree of sheaves.

We will say that an object F ∈ A is (semi)stable if for all proper non-zero subobject E ⊂ F
the inequality

µZ(E) := −<Z(E)
=Z(E) < (≤)−<Z(F )

=Z(F ) = µZ(F )

holds. This is equivalent to φ(E) < (≤)φ(F ). The value µZ(F ) is called the (Z)-slope of F ,
and we set µZ(F ) = +∞ whenever =Z(F ) = 0.

Proposition 1.4.6. The data of a stability condition σ = (P , Z) is equivalent to the data
(A, Z) of the heart of a bounded t-structure A ⊂ D and a stability function Z : K(A)→ C on
K(A) such that any object F ∈ A admits a Harder-Narasimhan filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm−1 ⊂ Fm = F

whose factors Ai = Fi/Fi−1 are semistable for i = 1, . . . ,m and µZ(Am) < · · · < µZ(A1).
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Via this identification, µZ-(semi)stable objects are exactly the ones which lie in P(φ), with
φ ∈ (0, 1]. Hence can extend the notion of µZ-stability for any object F ∈ D: F is µZ-
(semi)stable if there is an integer k ∈ Z such that F [k] ∈ A and F [k] is µZ-(semi)stable.

Proof of Proposition 1.4.6. If (P , Z) is a stability condition, then define A := P(0, 1]. One can
check that A is the heart of a bounded t-structure, and the central charge Z gives a stability
function.

On the other hand, if (A, Z) is as in the proposition, for each φ ∈ (0, 1] define P(φ) as the
full additive subcategory of D consisting of µZ-semistable objects of phase φ together with the
zero object of D. Then set P(φ+ 1) := P(φ)[1] to obtain a slicing of D.

Example 1.4.7. Let C be a smooth projective curve over C and set A = Coh(C). Then the
stability function

Z : K0(C)→ C, Z(F ) = − deg(F ) +
√
−1 rk(F )

permits to define a stability condition σ on Db(C). The σ-(semi)stable objects are exactly the
shifts of slope-(semi)stable sheaves on C.

1.4.2 Stability conditions on K3 surfaces
Geometric stability conditions

Let S be a K3 surface. In this case, we can identify the numerical Grothendieck group N (S) =
N (Db(S)) with the extended Néron-Severi lattice Λ := ÑS(S) = (H0 ⊕ NS⊕H4)(S) via the
Mukai vector

v : F 7→ ch(F )
√

td(S)
(see section 1.1.3). We denote 〈−,−〉 the Mukai pairing on Λ and ΛC := Λ ⊗Z C. We fix an
ample divisor H on S.

Fix α, β ∈ R two real numbers, assume α ≥ 0. For an object F ∈ Db(S), consider the group
morphism

Zα,β : Λ −→ C
v 7−→ 〈exp(

√
−1αH + βH, v〉 .

Explicitely, we have

Zα,β(v0, v1, v2) =
√
−1αH · (v1 −Hβv0)− v2 + βH · v1 + H2

2 (α2 − β2)v0. (1.23)

Let us now construct a heart of a bounded t-structure on Db(S) as follow. For any sheaf
F ∈ Coh(S), consider its β-slope as

µβ(F ) := H · c1F

H2 rkF − β,

with µβ(F ) =∞ if rk(F ) = 0. Consider the abelian full subcategory

Cohβ(S) := 〈Tβ,Fβ[1]〉 ⊂ Coh(S),

where

Tβ := {F ∈ Coh(S) : all Harder-Narasimhan factors of F satisfy µβ(_) > 0}
Fβ := {F ∈ Coh(S) : all Harder-Narasimhan factors of F satisfy µβ(_) ≤ 0}.

Hence, any element F ∈ Cohβ(S) is such that Hi(F ) = 0 for i 6= 0,−1, H0(F ) ∈ Tβ and
H−1(F ) ∈ Fβ.

One can check that =Z(−) and <Z(−) are additive on exact sequence in Cohβ(S).
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Proposition 1.4.8. The subcategory Cohβ(S) is the heart of a bounded t-structure. Moreover,
the data σα,β = (Cohβ(S), Zα,β) defines a stability condition on Db(S) if <Zα,β(δ) > 0 for all
δ ∈ Λ with δ2 = −2, rk(δ) > 0 and µβ(δ) = 0. In particular, the conditions hold for α2H2 ≥ 2.

Proof. In view of Proposition 1.4.6, we first need to prove that Z := Zα,β is a stability function.
Let E ∈ Cohβ(S). It is clear by definition of Z and Cohβ(S) that =Z(v(E)) ≥ 0. Assume
=Z(v(E)) = 0. In particular we get =Z(v(H−1E)) = 0 = =Z(v(H0E))). Since v(E) =
v(H0E)− v(H−1), it is enough to prove

1. <Z(v(H0E))) < 0 whenever H0E 6= 0,

2. <Z(v(H−1E))) > 0.

Note that if H0E 6= 0, then =Z(v(H0E)) = 0 and H0E ∈ Tβ implies rk(H0E) = c1(H0E) =
0, so that H0E is a sheaf with zero-dimensional support. Hence <Z(v(H0E))) = − ch2(H0E) <
0.

On the other hand, set v = (v0, v1, v2) := v(H−1E). By definition of Tβ, the condition
=Z(v(H−1E)) = 0 implies that H−1E is a torsionfree semistable sheaf with H · v1 = H2βv0.
In particular, we get v2 ≥ −2. If v2 = −2 then the hypotheses of the proposition permit to
conclude. Assume otherwise v2 ≥ 0. We obtain

v2 ≥ 0
⇐⇒ v2

1 − 2v0v2 ≥ 0
⇐⇒ H2β2v2

0 ≥ 2v0v2

⇐⇒ H2

2 β2v0 ≥ v2

This gives <Z(v(H−1E))) > 0.
To conclude, it remains to show that any object in Cohβ(S) admits a Harder-Narashiman

filtration with semistable factors. We refer to [Bri08], sections 7 and 11, for a proof of this fact.

It can be proved that σα,β depends continuously on (α, β) ∈ R>0 ×R. In fact, it is possible
to extend the previous constructions on all surfaces and to replace αH, βH by divisors class
ω,B ∈ NS(X)R with ω ample. In this case, the map

Amp(S)× NS(S)→ Stab(S), (ω,B) 7→ (Cohω,B(S), Zω,B)

is a continuous embedding (see [MS17], Theorem 6.10).
There are two groups acting naturally on the space of stability conditions:

• The universal cover G := G̃L
+
2 (R) of GL+

2 (R) acts on the right of Stab(S). Any element
of G can be represented by a couple (M, f) where M ∈ GL+

2 (R) and f : R → R is an
increasing function satisfying f(φ + 1) = f(φ) + 1 and such that f|R/2Z = M|(R2\{0})/R>0.
The action is given by (M, f) · (P , Z) = (Pf , T−1 ◦ Z) whith Pf (φ) = P(f(φ)). In
particular, given g ∈ G and σ ∈ Stab(S), the sets of semistable objects of with respect to
σ and σ · g are the same but the phases have been relabelled

• The set Aut(Db(S)) acts on the left by isometries on Stab(S) by defining, for ϕ ∈
Aut(Db(S)) and σ = (P , Z) ∈ Stab(S), the stability condition ϕ(σ) = (ϕ(P), Z ◦ ϕ−1)
where ϕ(P)(φ) = ϕ(P(φ)).
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Definition 1.4.9. A stability condition σ ∈ Stab(S) is called geometric if, up to the action of
G̃L+

2 (R), it is of the form (Cohβ(S), Zα,β) (in the notation of Proposition 1.4.8).
The subset of geometric stability condition is denoted U(S) ⊂ Stab(S).
The subset U(S) turns out to be open and connected. Moreover, the boundary ∂U(S) =

U(S) \ U(S) is a union of walls and can be described thanks to the following theorem.
Theorem 1.4.10 ([Bri08], Theorem 12.1). Let σ = (P , Z) ∈ ∂U(S) be a stability condition
lying on the boundary of U(S). Then exactly one of the following possibilities hold:

(A+) There is a spherical vector bundle A such that the Jordan-Hölder filtration of any sheaf
Ox, x ∈ S, is of the form

0→ A⊕ rkA → Ox → TA(Ox)→ 0,

where TA is the spherical twist associated to A.

(A−) There is a spherical vector bundle A (see Definition 1.3.4) such that the Jordan-Hölder
filtration of any sheaf Ox, x ∈ S, is of the form

0→ T−1
A (Ox)→ Ox → A⊕ rkA[2]→ 0,

where TA is the spherical twist associated to A.

(Ck) There is a non-singular rational curve C ⊂ S and an integer k such that Ox is stable with
respect to σ for x 6∈ C and such that the Jordan-Hölder filtration of Ox for x ∈ C is

0→ OC(k + 1)→ Ox → OC(k)[1]→ 0.

Recall that for any stability condition σ ∈ Stab(S), any semistable object F ∈ Db(S) admits
a Jordan-Hölder filtration, that is a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fl−1 ⊂ Fl = F

whose factors Ai = Fi/Fi−1, i = 1, . . . , l, are stable with same phase φ(Ai) = φ(F ). This is a
consequence of the support property (see Definition 1.4.2). While the Jordan-Hölder filtration
is non-unique, they all have the same lenght and the factors Ai, i = 1, . . . , l are unique up to
reordering (Jordan-Hölder theorem).

In the following we denote
Stab+(S) ⊂ Stab(S)

the connected component of Stab(S) containing U(S).
Proposition 1.4.11. Let σ ∈ Stab+(S) be a stability condition. Then, there exist ϕ ∈
Aut(Db(S)) such that ϕ(σ) lies in U(S). In particular, if σ is generic, then there exists
M ∈ G̃L

+
2 (R) such that ϕ(σ) ·M is of the form σα,β for some α, β ∈ R, α > 0.

Proof. Let σ ∈ Stab+(S) be a stability condition, pick σ0 ∈ U(S) and consider a path γ :
[0, 1] → Stab+(S) such that γ(0) = σ0 and γ(1) = σ. We can assume that γ hits only a finite
number of walls, so that there is numbers 0 ≤ t1 < · · · < tn ≤ 1 such that γ(ti) lies on a wall
and γ((ti, ti+1)) lies in a chamber for all i. We can assume γ(t1) ∈ ∂U(S).

Now we follow the proof of [Bri08] Proposition 13.2: there is an autoequivalence Φ ∈
Aut(Db(S)) such that Φ(γ(t1)) still lies in ∂U(S), but the orientation of ∂U(S) is reversed: for
any t > t1 close to t1, Φ(γ(t)) ∈ U(S). Depending on the situations listed in Theorem 1.4.10,
the autoequivalence Φ is either of the form T 2

A for A a spherical vector bundle in case (A±), or
of the form TC for C a non-singular rational curve in case (Ck).

By induction, we obtain an autoequivalence ϕ such that ϕ(σ0) ∈ U(S). Moreover the
autoequivalences send walls to walls, hence if σ is generic so is ϕ(σ).
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Moduli spaces of semistable objects

The question of existence of moduli spaces (rather than stacks) of semistable objects with
fixed numerical class with respect to a stability condition on a variety X is very complicated.
Though, for K3 surfaces, we have the following results, see [BM14a], Theorem 2.15.

Theorem 1.4.12 (Bayer, Macrì, Toda, Yoshioka). Let v ∈ Λ be a primitive Mukai vector, and
σ ∈ Stab+(S) be a generic stability condition on S. Then there exists a coarse moduli space
Mσ[v] parametrizing S-equivalent classes of σ-semistable objects of class v. It is a smooth
projective hyperKähler variety.

Moreover, eitherMσ[v] is empty or v2 ≥ −2 and dimMσ[v] = v2 + 2.

Remark 1.4.13. In fact by definition of walls (see [BM11] Proposition 3.3) and by formula
1.23, one can prove, for v generic, that a stability condition σ ∈ Stab+(S) lies on a wall if and
only if there exist a strictly σ-semistable object. In particular the moduli spacesMσ[v] with σ
generic parametrizes the classes of σ-stable objects.

We know from Theorem 1.4.4 that the space of stable objects is invariant when one changes
the stability condition within a chamber. The behaviour of wallcrossing is first described by
the following theorem. Further studies will be recalled section 2.4.1.

Theorem 1.4.14 ([BM14a], Theorem 1.1). Let v ∈ Λ be a primitive Mukai vector, and σ, τ ∈
Stab+(S) be generic stability conditions on S. Then Mσ[v] and Mτ [v] are birational to each
other, and coincide (up to an autoequivalence of Db(S)) on an open subset of codimension at
least 2.

A corollary of Proposition 1.4.11 is that if we work on the distinguished component Stab+(S)
it is enough to compute moduli spaces with respect to stability conditions of the form σα,β,
with α, β ∈ R, α > 0.

Corollary 1.4.15. Let v ∈ Λ be a primitive Mukai vector. Let σ ∈ Stab+(S) be a generic
stability condition. Then there exists ϕ ∈ Aut(Db(S)) such that

Mσ[v] 'Mσα,β [ϕH(v)].

We finish with the important fact that there always exists a Gieseker chamber.

Theorem 1.4.16. Let v = (v0, v1, v2) ∈ Λ be a primite Mukai vector. Assume v0 > 0 or v0 = 0
and v1 is effective. Then there exists α0 > 0 such that for any α ≥ α0 and all β < Hv1

H2v0
(or β

arbitrary in case v0 = 0), the moduli space Mσα,β [v] is isomorphic to the moduli space MS[v]
of Gieseker-stable sheaves on S of class v. More precisely, an object F ∈ Db(S) with v(F ) = v
is σα,β-stable if and only if it is the shift of a Gieseker-stable sheaf.

For the following proof, note that from Remark 1.4.13 and as a consequence of Proposition
1.4.18, for α� 0 the stability condition σα,β is generic with respect to v. Hence the notions of
σα,β-stability and σα,β-semistability coincide.

Proof of Theorem 2.4.14. Fix β < H·v1
H2v0

(or beta arbritrary in case v0 = 0). We will write
Z := Zα,β and σ = σα,β for simplicity. Given a class w = (w0, w1, w2) with =Z(w) 6= 0. We see
from equation (1.23) that

µZ(w) −−−−→
α→+∞


−α

2µβ(w) if w0 6= 0

0 if w0 = 0
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Let F ∈ Mσ[v]. There is some integer k ∈ Z such that F [k] ∈ Cohβ(S), but we assumed
β <

H · v1

v0
so k must be even. Hence we can assume that F ∈ Cohβ(S) with v(F ) = v. Then

we have µZ(v) either goes to 0 of −∞ as α grows. On the other hand, consider the exact
sequence (in Cohβ(S))

H−1F [1] ↪→ F � H0F.

IfH−1F [1] is not trivial, then it is a torsion-free sheaf concentrated in degree−1 with µβ(H−1F [1]) <
0, so in particular we have µZ(H−1F [1]) −−−−→

α→+∞
+∞, so that F cannot be σ-stable. Hence for

α� 0, any σ-stable object with class v is (up to a shift) a sheaf. Moreover, it is easy to see that
this sheaf is Gieseker-semistable. If not, let 0→ E → F → T → 0 be a Gieseker-destabilizing
sequence in Coh(S). Hence µβ(E) ≥ µβ(F ) > 0 so E ∈ Tβ. Finally using the existence of
HN filtration for both E and T (and since Hom(A,B) = 0 for any Gieseker-stable sheaves with
µβ(A) > µβ(B)) one can prove that T ∈ Tβ. We conclude that E would σ-destabilizes F in
Cohβ(S), which is a contradiction.

Similarly, any Gieseker-stable sheaf F with v(F ) = v satisfies µβ(F ) > 0 by assumptions
and hence F ∈ Tβ. If this sheaf is not σ-semistable, then there is an exact sequence

E ↪→ F � T

in Cohβ(S). We deduce that E ' H0E and we obtain the exact sequences (in Coh(S))

0 → H−1T → E → I → 0 (1.24)
0 → I → F → H0T → 0 (1.25)

with I the image of E in F . But µZ(E) > µZ(F ) implies, for α � 0, µβ(E) > µβ(F )
(or µβ(E) < 0 if v0 = 0, but this is absurd as E ∈ Tβ). But since µβ(I) < µβ(F ) as F
is Gieseker-stable, we obtain µβ(E) > µβ(I) and thus µβ(H−1T ) > µβ(E), which is absurd
because H−1T ∈ Fβ.

Description of walls

Denote H = {(β, α) ∈ R2 | α > 0} the open upper halfplane in R2. Fix v ∈ Λ a primitive
Mukai vector. In view of Corollary 1.4.15 and from the wall-and-chamber decomposition of
Theorem 1.4.4, we must compute the walls lying in H. To do so, we will use the very useful
computations made by Maciocia in [Mac14].

In this thesis, we will focus our attention to a polarized K3 surface (S,H) with Picard rank
1 and the Mukai vector (2, H, 3). For this reason, we assume for simplicity that NS(S) ' Z ·H.

We write Zα,β for the central charge of a stability condition of the form σα,β. We drop (α, β)
and simply write Z := Zα,β when the context is clear.

Let v = (v0, v1, v2) ∈ Λ be a primitive Mukai vector, and let w := w(E) = (w0, w1, w2) ∈ Λ
be another Mukai vector. In view of Remark 1.4.13, we want to solve the equation

µZα,β(v) = µZα,β(w) (1.26)

with respect to (β, α) ∈ H.

Definition 1.4.17. Given a class 0 6= w ∈ Λ, we define the numerical wall generated by w as
the nonempty subset of Stab(X) given by

W (w) = {σ = (P , Z) ∈ Stab(X)| <Z(v) · =Z(w) = <Z(w) · =Z(v)}
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In particular, any actual wall of Theorem 1.4.4 for which there exists an inclusion Ew ↪→ F
with v(Ew) = w lies in the numerical wall W (w). We say that a point σ ∈ W (w) is an actual
point if it lies in an actual wall.

Let us focus on the case of stability condition of the form σα,β. If a numerical wallW (w) ⊂ H
is actual at a point, then it remains actual on the connected component ofW (w), in other words
an actual wall is a subset of a numerical wall cut out by two holes (correponding to the existence
of spherical objects, as in Proposition 1.4.8), see [MS17], section 6.4.

We make some additional assumptions: we assume v0 6= 0 and gcd(v0, v1) = 1 which is
enough for the purpose of this thesis.

Proposition 1.4.18. Let w = (w0, w1H,w2) ∈ Λ, w 6= 0, and consider the associated numerical
wall W (w) ⊂ H. Assume W (w) is not 0-dimensional. Let (β, α) ∈ W (w).

1. Either β = v1

v0
, α > 0, or β 6= v1

v0
and (β, α) lies in a semicircle of center (C, 0) and

radius R, where

C = v0w2 − v2w0

H2(v0w1 − v1w0) and R =
√(

C − v1

v0

)2
−Q,

with Q = 〈v, v〉
H2v2

0
.

In the first case, we call Wv(w) := {β = v1
v0
} the vertical wall, the semicircle in the second

case is called a semicircular wall.

2. Assume Q ≥ 0. If W (w) is a semicircular wall, then the center C satisfies either

C <
v1

v0
−
√
Q or v1

v0
+
√
Q < C.

Moreover, W (w) must intersect either the ray {β = v1

v0
−
√
Q} or the ray {β = v1

v0
+
√
Q}

depending on its position relative to the vertical wall.

Proof. We will simply gives the main steps, for a complete proof (in a more general setting)
see [Mac14], section 2.

1. If =Z(w) = 0 (i.e. w1 = βw0), we must have either =Z(v) = 0 or <Z(w) = 0. If w0 = 0,
then necessarily w1 = 0, which leads to <Z(w) 6= 0. We get =Z(v) = 0, that is β = v1

v0
. If

w0 6= 0, then β = w1

w0
. In this case, <(w) 6= 0 (otherwise we obtain thatW (w) is 0-dimensional),

so =Z(v) = 0, that is β = v1

v0
.

Now assume =Z(w) 6= 0. Then β 6= v1

v0
(otherwise Z(v) = 0 and W (v) is 0-dimensional).

Developing the equality µZ(w) = µZ(v) gives

(v1w2 − w1v2)− β(v0w2 − w0v2) +H2β2(v0w1 − w0v1) + H2

2 (β2 − α2)(v1w0 − w1v0)
αH2(v1 − βv0)(w1 − βw0) = 0.

If µβ(v) = µβ(w), simplifying and isolating β gives

v1w2 − w1v2

v0w2 − w0v2
= β.
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Using w1v0 = w0v1, we get β = v1

v0
.

If µβ(v) 6= µβ(w), we can divide by (v0w1 − v1w0) and regrouping the terms we obtain

(C − β)2 + α2 −R2 = 0

which is what we wanted.

2. We see from the definition of the radius R that R > 0 exactly when |C − v1

v0
| >
√
Q.

Let us prove the last statement for the case C <
v1

v0
, the other case is similar. Note that

R ∼−∞
v1

v0
− C, hence limC→−∞(C +R) = v1

v0
. Moreover,

d

dC
(C +R) = 1−

v1

v0
− C√

(v1

v0
− C)2 −Q

≤ 0.

Finally, we have limC→ v1
v0
−
√
Q(C +R) = v1

v0
−
√
Q, hence

v1

v0
−
√
Q < C +R <

v1

v0
.

Combined with the bound C <
v1

v0
−
√
Q, we obtain the desired result.

Remark 1.4.19. Note that a semicircular wall might cross the ray {β = v1
v0
−
√
Q} at a

point (β, α) for which Zα,β does not satisfy the hypotheses of Proposition 1.4.8. Though, for
arithmetical reasons, it is sometimes possible to prove that for specific choices of (β, α) there is
no root δ ∈ Λ with the properties appearing in Proposition 1.4.8, see for instance section 2.4.2.
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Chapter 2

Study of moduli spaces of sheaves on
Fano threefolds and K3 surfaces of
genus 9

This chapter, we assume that all varieties and schemes are defined over C. We start with a
smooth prime Fano threefold X of genus 9 and index 1 embedded in a projective space P13,
and a K3 surface S ⊂ X obtained as a hyperplane section of X. The pullback by the closed
immersion iSX : S ↪→ X gives a map

res :MX(2, 1, 7)→MS(2, 1, 7) (2.1)

between the moduli spaces of sheaves on X and S. After recalling section 2.1 some aspect of
the geometry of X and a description ofMX(2, 1, 7) following [BF13], we study the restriction
map (2.1) and prove that the image of MX(2, 1, 7) in MS(2, 1, 7) is a Lagrangian subvariety
with finitely many double points (Theorem 2.2.10).

Section 2.3, we fix S and we vary the Fano X containing it. We consider the relative moduli
spaceMX/W(2, 1, 7) of sheaves over the family X of Fano containing S parametrized by an open
W ⊂ P3. The fibrewise restriction maps (2.1) glue to give a birational map

MX/W(2, 1, 7) 99KMS(2, 1, 7).

Sending a sheaf of the form i∗SXF ∈MS(2, 1, 7), with F ∈MS(2, 1, 7), to the class of the Fano
[X] ∈ W describes a rational Lagrangian fibration

MS(2, 1, 7) 99K P3 (2.2)

with general fibre birational to MX(2, 1, 7) (Corollary 2.3.8). Moreover, we construct a bira-
tional model M 99K MS(2, 1, 7) such that the rational map (2.2) extends to a Lagrangian
fibration

M→ P3

with general fibre over [X] ∈ W an abelian variety obtained as a blow-down of MX(2, 1, 7)
(Theorem 2.3.9).

Finally, we study in section 2.4 the possible birational models ofMS(2, 1, 7). To do so, we
compute the walls-and-chambers decomposition of the space Stab(S) of Bridgeland stability
conditions on S, and identify the chambers corresponding toMS(2, 1, 7) andM. It turns out
that these are the only smooth K-trivial birational models ofMS(2, 1, 7), and they are related
by a flop (Theorem 2.4.1).
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2.1 The prime Fano threefold X of genus 9 and the mod-
uli space MX(2, 1, 7)

2.1.1 Geometry of the Fano threefold of genus 9
From the work works of Mukai ([Muk89], [Muk88]) any smooth prime Fano threefold of genus
g, for 7 ≤ g ≤ 10, can be embedded in Pn+g−2 as the complete intersection of an homogeneous
space Xn

2g−2 of dimension n and a linear subspace of codimension n − 3. Let us present with
more details the the case g = 9, following [IR05].

First, we consider Σ = LG(3, 6), the Lagrangian Grassmannian of 3-dimensional subspaces
of a 6-dimensional vector space V which are isotropic with respect to a symplectic 2-form ω.
The manifold Σ embeds in P13 = PV14 as follows. The Plücker embedding

G(3, 6) 3 〈u, v, w〉 7→ u ∧ v ∧ w ∈ P(Λ3V )

induces an embedding Σ ↪→ P(Λ3V ). The image is contained in the 14-dimensional subspace

V14 := ker(cω : Λ3V → V ) ⊂ Λ3V

where cω denotes the contraction by ω. In fact, Σ = G(3, 6) ∩ PV14 ⊂ PΛ3V .
Now we define X as a general 3-codimensional linear section of Σ, that is

X := Σ ∩ PV11

for V11 ⊂ V14 a general 11-dimensional subvector space.
The variety X is a smooth Fano threefold of genus 9, with Picard group generated by a

hyperplane section, that is Pic(X) = 〈HX〉. Moreover −KX = HX .
A very general hyperplane section S of X is a smooth K3 surface of genus 9 polarized by

the restriction HS of HX to S, with Pic(S) = 〈HS〉 thanks to the Moishezon theorem [Moi68]
(see also [BN20]).

The manifold Σ is equipped with a tautological homogeneous rank 3 subbundle U ⊂ V ⊗OΣ.
The isomorphism V 7→ V ∨, v 7→ ω(−, v) gives an isomorphism between U and the quotient
bundle (V ⊗ OΣ)/U . As we will principally study X, we denote U again its restriction to X,
and US its restriction to S. Hence the bundle U lies in the exact sequence

0→ U → V ⊗OX → U∨ → 0 (2.3)

and its Chern classes are c1(U) = −1, c2(U) = 8, c3(U) = −2. A way to obtain these values
of Chern classes is to note that ω gives a global section of Λ2U∨G(3,6) on G(3, 6), and LG(3, 6) is
the zero locus of this section. Hence, the degree of ci(UX) is ci(UG(3,6)) · c3(Λ2U∨G(3,6)) ·H6−i. For
computations of Chern classes on Grassmannians, we refer to [EH16]. Explicit computations
can also be made using the package Schubert2 of Macaulay2 ([GS]).

HPD for X

In this section we will only consider a special case of Homological Projective Duality (HPD for
short) introduced section 1.2.2. We follow [Kuz06]: Kuznetsov considers the embedding

f : Σ ↪→ PV14 = P13

and the embedding
Y ↪→ PV ∨14
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where Y ' Σ∨ \ Z, and Σ∨ is the (classical) projective dual variety of Σ which is a quartic
hypersurface singular along a subvariety Z ⊂ PV ∨14 of codimension 3.

Then he proves (incomplete) HPD for Σ and Y over PV ∨14 \ Z, see section 1.2.2. By Pro-
position 1.2.7, we obtain the following semiorthogonal decompositions, denoting Σj := Σ ∩ L,
resp. Yj = Y ∩ L⊥, for an admissible linear subspace L ⊂ V of dimension j:

• Db(Σ) = 〈OΣ(1),U∗Σ(1),OΣ(2),U∗Σ(2),OΣ(3),U∗Σ(3),OΣ(4),U∗Σ(4)〉

• Db(Σ11) = 〈Db(Y11),OΣ11(1),U∗Σ11(1)〉

• Db(Σ10) = Db(Y10,AY ).

In these cases, Σ11 is the Fano threefold X of genus 9 defined above, Y11 is a plane quartic
curve, and Σ10 and Y10 are K3 surfaces of degree 16 and 4 respectively.

Beware that Db(Y10,AY ) is the derived category of AY -module with respect to a sheaf of
Azumaya algebra AY over Y . For more details about Azumaya varieties, we refer to [Kuz06],
Appendix D. Equivalently, we can use the equivalence Db(Y10,AY ) ' Db(Y10, α) with the derived
category of coherent sheaves twisted by a Brauer class α ∈ Br(Y10) provided by [C0̆0].

Notations for the HPD

We introduce some notation for the next parts.

• We denote X = Σ11 the Fano threefold, Γ := Y11 the plane quartic curve, S := Σ10 and
S
′ := Y10 the K3 surfaces. Note that S, resp. Γ, is a hyperplane section of X, resp. S ′ .

• We denote E the object in Db(Q(Σ, Y ),A) which gives the HP-duality and by E11, resp.
E10 its restriction to X × Γ, resp. S × S ′ .

• We denote by

φ11 : Db(Γ)→ Db(X)
φ10 : Db(S ′ , α) ∼−→ Db(S).

the Fourier-Mukai functors with kernel E11 and E10 respectively obtained by HP-duality.
Note that φ11 is fully faithful and φ10 is an equivalence.

We need the following lemma which relates the different "paths" between the derived cat-
egories Db(X) and Db(S), as it reads on diagram

Db(Γ) Db(X)

Db(S ′ ,A) Db(S)

φ11

(RiΓS′ )∗ Li∗SX

φ10

Lemma 2.1.1. We have an isomorphism of functors

Li∗SX ◦ φ11 ' φ10 ◦ (RiΓS′ )∗

from Db(Γ) to Db(S).

Proof. It is a consequence of the adaptation of the next lemma ([Huy06], Exercise 5.12) to the
case of twisted sheaves. Let us make a proof in the untwisted case. The reader can verify that
each step of the proof lift to the twisted case: the key point for this is that all equivalence
between twisted derived categories are of Fourier-Mukai type ([CS07]).
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Lemma 2.1.2. Let W,X, Y, Z be smooth projective variety, let g : W → X, f : Z → Y be
morphisms and E ∈ Db(X × Y ) be an object. Denote all derived functors with the underived
notation. Then

1. φE ◦ g∗ ' φF where F ' (g × IdY )∗E ∈ Db(W × Y )

2. f ∗ ◦ φE ' φG where G ' (IdX ×f)∗E ∈ Db(X × Z).

Proof. We only prove (1), the proof for (2) is similar. Recall that g∗ ' φOΓg
. Denote i : W '

Γg → W ×X the inclusion of the graph of g. From [Huy06], Proposition 5.10, using the same
notation, the kernel of φE ◦ g∗ is

F = (πWY )∗ (π∗WXi∗OW ⊗ π∗XY E)
= (πWY )∗ ((i× IdY )∗OW×Y ⊗ π∗XY E)
= (πWY )∗(i× IdY )∗(i× IdY )∗π∗XY E)
= (g × IdY )∗E

where πXY , πWX , πXY are the projection from W ×X × Y to X × Y , W ×X and W × Y
respectively. The equalities follow from projection formula and base change with respect to the
commutative diagram

W × Y W ×X × Y

W W ×X

pW

i×IdY

πWX

i

In our case, we get Li∗SX ◦ φ11 ' φF with F ' L(IdΓ×LiSX)∗E11 and φ10 ◦ (RiΓS′ )∗ ' φG
with G ' L(iΓS′ × IdS)∗(E10). But by definition of E10 and E11, F and G are both isomorphic
to Lj∗E with j : Γ× S → Q(Y,Σ).

2.1.2 Description of the moduli spaces MX(2, 1, c2)
We use the notation of section 2.1.1. From 1.1.15, we have

MX(2, 1, d) = ∅ for c2 < 6.

In this section we summarize the results of Brambilla and Faenzi in [BF11], [BF13].

1. The moduli spaceMX(2, 1, 6) is fine and isomorphic to the HP-dual curve Γ of X (see
section 2.1.1). The universal sheaf is locally free and isomorphic, up to a twist by a line bundle
on Γ, to the sheaf E11 given by HP-duality.

2. Recall we have a (fully faithful) functor

φ11 : Db(Γ)→ Db(X),

and we denote φ!
11 : Db(X) → Db(Γ) its right adjoint. When F ∈ MX(2, 1, 7) is a stable

sheaf, the object φ!
11 turns out to be a vector bundle on Γ of rank 1 and degree 2, that

is φ!
11(F ) ∈ Pic2(Γ). Moreover, when F is not globally generated, its locus of non global

generation is a line LF ⊂ X, and in this case φ!
11(F ) lies in the Brill-Noether locus W = {L ∈

Pic2(Γ) | h0(Γ,V ⊗ L) ≥ 2}, where V is a specific rank 2 vector bundle on Γ.
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In fact, we have φ!
11(F ) = φ!

11(OL(−1)) and the map
ψ : L 7→ φ!

11(OL(−1))
gives an isomorphism

H0
1(X) ∼−→ W,

where H0
1(X) denotes the Hilbert scheme of lines in X, which is a reduced curve.

We have a biregular description ofMX(2, 1, 7).
Theorem 2.1.3 ([BF13], Theorem 5.1). The mapping

ϕ : MX(2, 1, 7) −→ Pic2(Γ)
F 7−→ φ!

11(F )

gives an isomorphism of the moduli space MX(2, 1, 7) to the blow-up of Pic2(Γ) along the
subvariety W ⊂ Pic2(Γ). The exceptional divisor consists of the sheaves in MX(2, 1, 7) which
are not globally generated.

For X general, the curve H0
1(X) is smooth, and hence so isMX(2, 1, 7).

Finally, we will use this additional description of sheaves inMX(2, 1, 7).
Proposition 2.1.4 ([BF13], Lemma 5.2). Let F ∈MX(2, 1, 7) be a sheaf. Then we have

Hk(X,F ) = 0 for k = 1, 2, (2.4)
Hk(X,F (−1)) = 0 for k = 0, 1, 2, 3 (2.5)
H1(X,F (−t)) = 0 for t ≥ 1 (2.6)

Moreover, either F is locally free or F ∗∗ ∈MX(2, 1, 6) is a stable vector bundle, and there is a
line MF ⊂ X and an exact sequence

0→ F → F ∗∗ → OMF
→ 0.

Furthermore, the following statements are equivalent:

(a) the sheaf F is not globally generated,
(b) the vector space Hom(U∨, F ) is non-zero,
(c) Denote I ↪→ F the image of the natural evalutation map I = Im(ev : H0(X,F )⊗OX → F ).

Then I ∈MX(2, 1, 8, 2) and we have
0→ I ↪→ F → OLF (−1)→ 0,

moreover the sheaf I admits a locally free resolution
0→ OX → U∨ → I → 0.

In particular, we see that when a sheaf F ∈MX is not locally free (resp. globally generated),
it fails to be so on a line.

3. For c2 = d ≥ 8, recall (Theorem 1.1.17) that there is a "good" component M(c2) ⊂
MX(2, 1, c2) generically smooth of dimension 2c2 − 11.
Theorem 2.1.5 ([BF13], Theorem 4.1). For any d ≥ 8, the mapping

ϕ : F 7→ φ!
11(F )

gives a birational map from M(d) to a generically smooth (2d− 11)-dimensional component of
the locus

{F ∈MΓ(d− 6, d− 5) | h0(Γ,V ⊗ F ) ≥ d− 6}.

For now on, we will focus our attention toMX(2, 1, 7).
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2.2 Restriction of sheaves from the Fano threefold of
genus 9 to a K3 surface

For this section, we will need the following technical lemmas.

Lemma 2.2.1. Let X be a smooth integral projective variety, S ⊂ X a smooth integral hyper-
surface. Let F ∈ Coh(X) be a coherent pure sheaf with Supp(F ) 6⊂ S. Let i : S ↪→ X be the
closed immersion. Then Lki∗F = Tork(F,OS) = 0 for all k > 0.

Proof. Note that Lki∗F = 0 if and only if Li∗F is a sheaf. Since i is a closed immersion,
Ri∗ = i∗ do not need to be derived, therefore Li∗F is a sheaf if and only if i∗Li∗F is a sheaf.
By the projection formula, we have i∗Li∗F ' F ⊗L OS. Tensoring the exact sequence

0→ OX(−S)→ OX → OS → 0

by F , to prove both statements of the lemma we are reduced to show that m : F (−S) → F
is injective. Recall that a sheaf is pure if and only if all its associated points have the same
dimension, in particular we can work locally and assume that OX(−S) is generated by a global
function f vanishing on S. Hence the kernel of

F
×f−→ F

is a subsheaf whose support Z is stricly contained in Supp(F )∩S, which have dimension smaller
than the dimension of Supp(F ) by assumptions. By purity of F , Z must be empty, so m is
injective.

Now we focus our attention on the constructions of section 2.1.1.
We fix X = Σ∩PV11 the Fano threefold, and we fix S = X∩H a general hyperplane section.

We assume that S does not contain a line. We denoteMX :=MX(2, 1, 7),MS :=MS(2, 1, 7),
φ := φ11 : Db(Γ)→ Db(X) and φ! := φ!

11 its right adjoint.
We prove that the pullback by iSX : S ↪→ X gives a restriction morphism

res :MX →MS.

From Maruyama’s theorem [Mar80], the restriction FS of a sheaf F ∈ MX to S is stable
for S general enough, but in our case the assumption that S does not contain a line suffices.

Proposition 2.2.2. Let F ∈ MX be a sheaf. Then F is µ-stable, and its restriction FS to S
is also µ-stable.

Proof. We know that F is (Gieseker)-semistable. Let G ⊂ F be a subsheaf of rank 1 and with
first chern class c1(G) = aH such that µ(F ) = µ(G). Then aH3 = H3/2 which is impossible
for a ∈ Z. Hence F is µ-stable.

Consider the exact (by Lemma 2.2.1) sequence

0→ F (−2)→ F (−1)→ FS(−1)→ 0.

If F is locally free, by Hoppe’s criterion 1.1.3 we haveH0(X,F (−1)) = 0, and by Proposition
2.1.4, H1(X,F (−2)) = 0. Hence H0(S, FS(−1)) = 0 so FS is µ-stable.

If F is not locally free, then by Proposition 2.1.4 F lies in an exact sequence

0→ F → E → OL → 0
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with E ∈ MX(2, 1, 6) stable vector bundle and L ⊂ X a line. Restricting this sequence to S
(using Lemma 2.2.1) we get

0→ FS → ES → OZ → 0
with Z a 0-dimensional subscheme. In particular, FS is torsion free. One more time by Hoppe’s
criterion and since E is ACM ([BF14], Proposition 3.4), i.e. Hk(X,E(t)) = 0 for all t and all
0 < k < 3, the sheaf ES is µ-stable. Hence any destabilizing subsheaf of FS also destabilizes
ES, which is not possible, so FS is stable.

2.2.1 Globally generated sheaves
Consider a sheaf F ∈MX . By [BF13], Lemma 4.3, there is an exact sequence

0→ U∨ → φφ!F → F → 0.

As F is torsion-free, in view of Lemma 2.2.1 the restriction to S gives the exact sequence

0→ U∨S → i∗SXφφ
!F → FS → 0. (2.7)

Proposition 2.2.3. For F globally generated (in particular, general) we have

dim Ext1(FS,U∨S ) = 1.

Proof. We need to consider two exact sequences, namely

0 → U → V ⊗OX → U∨ → 0 (2.8)
0 → U∨(−1)→ U∨ → U∨S → 0, (2.9)

where V is the C-vector space of dimension 6 defining LG(3, 6).
From Hirzebruch-Riemann-Roch, we can compute χ(FS,U∨S ) = χ(S, FS ⊗ US). We have

ch(FS) = (2, HS, 1) and ch(US) = (3,−HS, 0), and td(S) = (1, 0, 2) as S is a K3 surface. We
obtain

χ(S, FS ⊗ US) =
∫

(2, HS, 1)(3,−HS, 0)(1, 0, 2) = −1.

To obtain the result we want, we will prove Ext2(FS,U∨S ) = 0 = Hom(FS,U∨S ).

First, we have µ(FS) = 1/2 and µ(U∨S ) = 1/3. By stability, we get Hom(FS,U∨S ) = 0.
Lemma 2.2.4. For any F ∈MX , we have

HomS(U∨S , FS) ' HomX(U∨, F )

Proof. By Serre duality onX and S, the statement is equivalent to Ext2(FS,U∨S ) ' Ext3(F,U∨(−1)).
Apply RHom(F,−) to (2.9) to get

Ext2(F,U∨)→ Ext2(FS,U∨S )→ Ext3(F,U∨(−1))→ Ext3(F,U∨).

Now applying RHom(F,−) to (2.8) and since Hk(X,F (−1)) = 0 ∀k (Proposition 2.1.4), we
have

Extk(F,U∨) ' Extk+1(F,U) ∀k.
We have Ext2(F,U∨) ' Ext3(F,U) = Hom(U , F (−1)) = 0 by stability since µ(F (−1)) =

−1/2 and µ(U) = −1/3. Moreover Ext3(F,U∨) ' Ext4(F,U) = 0. Hence we obtain Ext2(FS,U∨S ) '
Ext3(F,U∨(−1)).
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Now, for F globally generated we have Ext3(F,U∨(−1)) ' Hom(U∨, F ) = 0 (Proposition
2.1.4), and hence by Lemma 2.2.4 we conclude the proof.

From the exact sequence (2.7) we obtain the following corollary.
Corollary 2.2.5. Let X̃ = Σ ∩ PṼ11, Ṽ11 ⊂ V14 be another Fano threefold constructed as in
section 2.1.1. Let Γ̃ be its associated quartic plane curve, and let φ̃11 : Db(Γ̃) → Db(X̃) be the
functor obtained by HPD. For F ∈MX and F̃ ∈M

X̃
globally generated, we have

FS ' F̃S ⇒ i∗SXφφ
!F ' i∗

SX̃
φ̃φ̃!F̃ .

Theorem 2.2.6. The morphism res is injective on the set of globally generated sheaves (in
particular, it is generically injective). Moreover, in the notation of Corollary 2.2.5, for any two
globally generated sheaves F ∈MX , F̃ ∈MX̃

, we have

FS ' F̃S ⇔
(
X = X̃ and F ' F̃

)
.

Proof. Let F ∈MX , F̃ ∈MX̃
be globally generated sheaves over X and X̃ such that FS ' F̃S.

By Corollary 2.2.5 and Proposition 2.1.1, we obtain

FS ' F̃S ⇔ i∗SXφφ
!F ' i∗

SX̃
φ̃φ̃!F̃

⇔ φ10(iΓS′ )∗ ◦ φ!F ' φ10(iΓ̃S′ )∗ ◦ φ̃
!F̃ by Lemma 2.1.1

⇔ (iΓS′ )∗ ◦ φ!F ' (iΓ̃S′ )∗ ◦ φ̃
!F̃ since φ10 is an equivalence. (2.10)

We know that φ!F and φ̃!F̃ are line bundles on Γ and Γ̃ respectively (see 2.1.3). But
then (iΓS′ )∗φ!F and (iΓ̃S′ )∗φ̃

!F̃ are isomorphic torsion sheaves of rank one over a curve, hence
Γ = Γ̃, that is X = X̃. Finally (2.10) implies that φ!F = φ!F̃ because the pushforward by
closed immersion is fully faithful. Hence F ' F̃ as φ! :MX → Pic2(Γ) is injective on globally
generated sheaves: these are exactly the sheaves which are not in the exceptional divisor of the
blow-upMX → Pic2 Γ.

2.2.2 The non-injectivity locus
Let F,G ∈ MX such that FS ' GS. Assume F 6' G. Note that neither F nor G is
globally generated: indeed assume F is globally generated, from Proposition 2.1.4 we have
HomX(U∨, F ) = 0, hence Lemma 2.2.4 implies that G is also globally generated, and by The-
orem 2.2.6 we obtain F ' G.

For the next lemmas, we will use the following exact sequences from Proposition 2.1.4.

0 → OX → U∨ → I → 0 (2.11)
0 → I → F → OLF (−1)→ 0. (2.12)

Recall that the exact sequence (2.12) is induced by the evaluation map ev : H0(F )⊗OX → F ,
that is OLF (−1) = coker(ev).
Proposition 2.2.7. Both F and G are not locally free.
Proof. Apply Hom(F,−) to 0→ G(−1)→ G→ GS → 0 to get

0→ Hom(F,G)→ Hom(FS, GS)→ Ext1(F,G(−1)). (2.13)

We get Ext1(F,G(−1)) ' Ext2(G,F ) 6= 0, otherwise an isomorphism FS ' GS would lift
to an isomorphism F ' G by exactness of (2.13).

Apply Hom(G,−) to (2.12) to obtain

Ext2(G, I)→ Ext2(G,F )→ Ext2(G,OL(−1))→ Ext3(G, I)
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• First we prove Ext2(G, I) = 0. Indeed, apply Hom(G,−) to 0→ OX → U∨ → I → 0 to
get

Ext2(G,U∨)→ Ext2(G, I)→ Ext3(G,OX).
But Ext3(G,OX) = 0 as Hk(X,G(−1)) = 0 ∀k (Proposition 2.1.4), and from (2.8)
Ext2(G,U∨) ' Ext3(G,U) ' Hom(U , G(−1)) = 0 by stability and comparing slopes.
Hence Ext2(G, I) = 0.

• Ext3(G, I) ' Hom(I,G(−1)) = 0 comparing slope and by stability.

So we obtain Ext2(G,F ) ' Ext2(G,OL(−1)). Hence for F 6= G with FS ' GS, we have
Ext2(G,OLF (−1)) ' Ext1(OLF , G)∨ 6= 0. Assume we have a non-trivial exact sequence

0→ G→ G → OLF → 0. (2.14)

In particular, we have a (not surjective) inclusion G ↪→ G, with c1(G) = c1(G) and rk(G) =
rk(G). If G is not torsion free, we can replace it with Gf := G/Gtors. The induce map G π−→ Gf
is still injective as G is torsion free. If coker(π) = 0, then G → Gf ' G splits the sequence
(2.14) which is absurd. Otherwise, quick computations lead to c1(Gf ) = c1(G) = 1.
Lemma 2.2.8. Let E be a locally free sheaf on X and E a torsion-free sheaf with rk(E) = rk(E)
and c1(E) = c1(E). Then any injective map E → E is an isomorphism.

Proof. Consider the exact sequence

0→ E → E → T → 0. (2.15)

Then c1(T ) = 0, hence T is supported in codimension 2. Hence

Extk(T,E) ' Extk(T,OX)⊗ E = 0

for k = 0, 1 ([HL10], Proposition 1.1.6). Consider the spectral sequence

Ep,q
2 = Hp(X, Extq(T,E))⇒ Ep+q = Extp+q(T,E).

We have Ep,1−p
2 = 0 for all p, hence we get E1 = Ext1(T,E) = 0. In particular the extension

2.15 must be trivial, that is E = E ⊕ T , which is absurd as E is torsion-free.

From 2.2.8, G cannot be locally free.
Finally, we know from Proposition 2.1.4 that there is an exact sequence

0→ G→ G∗∗ → OMG
→ 0

for some line MG ⊂ X, and G∗∗ is locally free. Restricting this sequence to S gives

0→ GS → G∗∗S → Oy → 0

with y = MG ∩ S (recall we assumed that S does not contain a line). Note that G∗∗S ' (G∗∗)S
because Extq(Oy,OS) = 0 for q = 0, 1. So GS is not locally free and FS ' GS implies that F
is not locally free neither.

Now, denote LF , resp. LG, the loci where F , resp. G, are not globally generated, and MF ,
resp. MG, the loci where F , resp. G, are not locally free. Recall that F ∗∗ and G∗∗ are locally
free from Proposition 2.1.4.
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Lemma 2.2.9. We have LF = MG and LG = MF .

Proof. By symmetry, we only prove LF = MG.
Recall from the proof of Proposition 2.2.7 that Ext2(F,G) 6= 0 and hence Ext1(OLF , G) 6= 0.

Hence there exists a non-trivial extension

0→ G→ G → OLF → 0 (2.16)

and computations of chern classes gives

G G OLF
rk 2 2 0
c1 1 1 0
c2 7 6 −1
c3 0 0 1.

If G is not torsion free, consider its torsion subsheaf Gt and the exact sequence

0→ Gt → G → Gf → 0.

Note that the composite G ↪→ G → Gf is still injective as G is torsion free. Quick computations
give c1(Gt) = 0. Moreover, Gf is stable. Indeed, if K ⊆ Gf with rank 1 and c1(K) = c ≥ 1,
denote K ′′ the image of K in T . We can consider 0 → K

′ → K → K
′′ → 0 and computing

Chern classes we obtain c1(K ′) = c ≥ 1, but K ′ ⊆ G as it is the kernel of K → K
′′ , so K ′

destabilizes G which is absurd.
Another computation gives c2(Gt) = −1 or 0, hence c2(Gf ) = 6 or 7. We distinguish these

two cases. Set d = c3(Gt).

1. If c2(Gf ) = 7, we obtain c3(Gf ) = 1 − d. The quotient of the injective map G ↪→ Gf is
a zero dimensional torsion sheaf T with c3(T ) = 1 − d, hence 1 − d ≥ 0. Now, from [BF14]
Proposition 3.4, either Gf is locally free or there is an exact sequence

0→ Gf → E → OL → 0

with E rank 2 vector bundle with c1(E) = 1, c2(E) = 6. In the latter case, computation of
Chern classes gives 1 − d = 0, hence Gf ' G. But the map G → Gf ' G splits the exact
sequence (2.16) which is absurd. In the former case (Gf locally free), the inclusion G ↪→ Gf
implies that G is locally free on an open subset of codimension 3, which is absurd as the locus
of non locally freeness of G is the line MG. We conclude that c2(Gt) 6= −1.

2. If c2(Gf ) = 6, consider the exact sequence

0→ Gf → G∗∗f → T → 0.

We know that G∗∗f is stable (from the same proof as for Gf ) and satisfies c1(G∗∗f ) = 1. From
[BF14] Lemma 3.1 , we must have c2(G∗∗f ) ≥ 6, hence c2(G∗∗f ) = 6. Moreover, since this sheaf is
reflexive it also satisfies c3(G∗∗f ) ≥ 0 (generalization of [Har80], Proposition 2.6). From [BF14]
Lemma 3.4 again, G∗∗f must be locally free. We deduce that Gf is locally free on an open subset
U ⊂ X of codimension 3.

The cokernel of the injective map G ↪→ G∗f is a torsion sheaf T with c2(T ) = −1, so it is
supported on a line L. In particular, we obtain that G is locally free on U r L, so L = MG.
The composition G � Gf � T factors through OLF as shown on the commutative diagram
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0 G G OLF 0

0 G Gf T 0.

We obtain a surjective map OLF � T , which gives LF = MG.

To conclude, we remark that we cannot have LF = MF . Indeed, from [BF13] (arXiv
version), Lemma 5.6, each sheaf E in the fibre of φ! :MX → Pic2(Γ) over the point φ!F is not
globally generated with LE = LF , and if moreover it is not locally free then E is associated
to the reducible conic C = LE + ME. In particular, F must correspond to the conic LF + MF

which must be reducible.

Theorem 2.2.10. For X general, the image of MX in MS via the restriction map is a Lag-
rangian subvariety with finitely many double points.

Proof. The assumption X general ensures that MX is smooth (recall that MX is the blow-
up of Pic2(Γ) along a subscheme isomorphic to the Fano of lines H0

1(X) which is smooth
for X general). Moreover we know that there exist a sheaf F ∈ MX with Ext2(F, F ) = 0
(Theorem 1.1.17), so ifMX is smooth the dimension of Ext2(F, F ) is constant onMX , hence
Ext2(F, F ) = 0 for all F ∈MX .
Lemma 2.2.11. The restriction res :MX →MS induces an immersion (that is, a morphism
with injective differential) ofMX onto a Lagrangian subvariety ofMS.

Proof. Consider the exact sequence 0→ KX → OX → OS → 0 and tensor it with End(F ). We
obtain the exact sequence

0→ End(F )⊗KX → End(F )→ End(FS)→ 0.

Computing the cohomology groups and since we assumed Ext2(F, F ) = H2(X, End(F )) = 0,
we get the exact sequence

0→ H1(X, End(F ))→ H1(S, End(FS))→ H2(X, End(F )⊗KX)→ 0.

Now, we have H1(X, End(F )) ' T[F ](MX) and H1(S, End(FS)) ' T[FS ](MS) (Theorem 1.1.5),
so we obtain that res is an immersion.

Recall from section 1.1.3 that the symplectic form on T[FS ](MS) is given by the composition

Ext1(FS, FS)⊗ Ext1(FS, FS)→ Ext2(FS, FS) tr−→ H2(S,OS) ' C.

Hence, the theorem follows from the commutativity of the diagram:

T[F ](MX)⊗ T[F ](MX) T[F ](MX)⊗ T[F ](MX)

0 = Ext2(F, F ) Ext2(FS, FS)

0 = H2(X,Ox) H2(S,OS) ' C.

tr tr
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From the study we made in this section, we know that res is injective on the set of sheaves
which are either locally free or globally generated.

Now, consider a singular point of res(MX), it corresponds to the image of a sheaf F ∈MX

which is neither globally generated nor locally free. But from the results of this section, the
set of sheaves E with ES ' FS consists exactly in {F,G} with G the sheaf for which MG = LF
and LG = MF . So this singular point is a double point.

Finally, these two lines LF and MF intersects on S: as FS ' GS, we must have MF ∩ S =
MG∩S andMG = LF . From [IP99], section 4.2, each line inX intersects a finite number of lines.
In particular, the scheme parametrizing couples of intersecting lines in X has dimension 1, and
the image of the intersection points of such couples of lines forms a 1-dimensional subscheme
of X. This subscheme intersects the general divisor S in a finite number of points. Therefore,
there are finitely many double points on res(MS).

2.3 Rational Lagrangian fibrations on MS

In this section, we adress the question of globalizing the restrictionMX →MS to the family of
moduli spaces of such Fano threefolds. We prove that it gives a rational Lagrangian fibration.
We find a birational model of MS which extend the fibration, and we study this birational
model.

2.3.1 Relative moduli spaces and relative HPD
We keep the constructions and notations of section 2.1.1. Let us fix S and vary X. The
Fanos X containing S are parametrized by the 11-dimensional vector subspaces W verifying
V10 ⊂ W ⊂ V14, so they are parametrized by P3 = P(V14/V10). Hence, the corresponding plane
curves in (P13)∨ (see section 2.1.1) are parametrized by the 3-dimensional vector subspaces
W⊥ ⊂ V ⊥10 , hence parametrized by the same space P3.

Consider the open subset W ⊂ P3 corresponding to smooth Fanos. Up to shrinking W a
little bit, we can assume that for all X ∈ W , the spaceMX and the corresponding curve Γ are
both smooth (see proof of Theorem 2.2.10).

Denote X→W this family of Fanos, and G→W the corresponding family of plane curves.
We also have relative moduli spaces (Theorem 1.1.6)

MX/W → W
Pic2(G/W) → W

such that for w ∈ W with Xw ' X and Gw ' Γ we have (MX/W)w 'MX and (Pic2(G/W))w '
Pic2(Γ). By generic nature of flatness, up to shrinkingW once again, we can assume that both
MX/W and Pic2(G/W) are flat, in particular smooth of relative dimension 3, over W .

We omit the proof of the next very useful criterion for flatness.

Proposition 2.3.1 (Critère de platitude par fibres, [Sta18], Tag 039A). Let S be a scheme, let
f : R→ T be a morphism of scheme over S. Assume that

• R is flat over S,

• fs : Rs → Ts is flat for every s ∈ S.

Then f is flat.
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First, fix w = [X] ∈ W and Γ = Gw the corresponding curve.
Recall the definition of the functors φ := φ11, φ

! := φ!
11 in section 2.1.1. Consider the

mutation functor
φφ! : Db(X)→ φDb(Γ) ⊂ Db(X).

Lemma 2.3.2. Let F ∈ MX be a sheaf. Then the sheaves (φφ!F ) and (φφ!F )S are µ-stable
sheaves.

Proof. Since the restriction to S of any µ-destabilizing subsheaf of φφ!F would destabilize
(φφ!F )S, it is enough to prove that (φφ!F )S is µ-stable. This is done in [Yos99], Lemma 2.1.

The next step to study the global restriction between the relative moduli spaces is to consider
the HPD functors in family.

Proposition 2.3.3. The functors studied in section 2.1.1 glue and induce morphisms

Φ! : MX/W → Pic2(G/W)
Φ : Pic2(G/W)→MX/W(5, 2, 31, 7).

Proof. We only prove the existence of Φ, the existence of Φ! is similar. Denote

S3 → G(3, V ∨14), Y3 → G(3, V ∨14)

the universal families of linear section of Σ = LG(3, 6) and Y . As the HPD between Σ and Y
holds only on PV ∨14 \ Z (see section 2.1.1), we denote P3 ⊂ G(3, V ∨) the open subset of linear
sections L with L ∩ Z = ∅. By abuse of notation, we denote again S3 and Y3 the universal
families of linear section over P3.

From Remark 1.2.8, we know that there is object Ẽ3 ∈ Db(S3 ×P3 Y3) which gives a functor

Φ3 : Db(Y3)→ Db(S3).

Pick a point w ∈ W and denote X = Xw, Γ = Gw and φ11 : Db(Γ) → Db(X). We obtain the
diagrams

X X S3 Γ G Y3

SpecC W Pr SpecC W Pr
w w

In the terminology of [Kuz06], the diagrams are exact cartesian using Corollaries 2.23 and
2.27. In particular, we can apply [Kuz06] Lemma 2.42: if L ∈ Pic2(Γ) ⊂ Pic2(G/W) ⊂ Db(Y3),
we have

φẼ11
((iΓY3)∗L) ' (iXS3)∗φ11(L).

But we know from Lemma 2.3.2 that φ11(L) ∈ MX(5, 2, 31, 7) ⊂ MX/W(5, 2, 31, 7). This
finishes the proof.

For now on, we will denote Φw,Φ!
w the morphisms restricted toMXw and Pic2(Gw).

Given w ∈ W , sinceMXw is irreducible, there is an irreducible componentMw ⊂MXw(5, 2, 31, 7)
with ΦwΦ!

wMXw ⊂Mw.

Proposition 2.3.4. For any w ∈ W, there is an isomorphism Pic2(Gw) ' Mw. Moreover,
these isomorphisms glue to give an isomorphism of Pic2(G/W) onto an irreducible component
MX ofMX/W(5, 2, 31, 7).
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Proof. First, fix w ∈ W and denote X = Xw and Γ = Gw. Denote φ = Φw, φ
! = Φ!

w and
M = Mw.
Lemma 2.3.5. For any F ∈MX , the spaceM is smooth at [φφ!F ] and T[φφ!F ]M has dimension
3.

Proof. From Theorem 1.1.5, we have

T[φφ!F ]M ' Ext1
X(φφ!F, φφ!F )

' Ext1
Γ(φ!F, φ!F )

' Cg(Γ) = C3

because φ is fully faithful, and φ!F is a line bundle on Γ which is a curve of genus 3.
Similarly, from Theorem 1.1.5 again, Ext2

X(φφ!F, φφ!F ) ' Ext2
Γ(φ!F, φ!F ) = 0 so the ob-

struction space vanishes and M is smooth at [φφ!F ].

Since φ is fully faithful, the morphism L ∈ Pic2 Γ 7→ φL ∈ M is both injective and an
immersion as the induced linear map Ext1(L,L)→ Ext1(φL, φL) is an isomorphism. Moreover
Pic2 Γ and M are irreducible with same dimension so the morphism is also surjective. This
proves the first statement of the proposition.

Now we prove that the isomorphisms glue into a global isomorphism. Consider the morphism
Φ : Pic2(G/W)→MX/W(5, 2, 31, 7) over W . Recall we assumed that both spaces are flat over
W . On each fibre over a closed point w ∈ W , the morphism Φw is an isomorphism. By
Proposition 2.3.1, we obtain that Φ is flat. Since Pic2(G/W) is smooth, Φ is smooth of relative
dimension 0, therefore étale, and since it is injective it must be an open immersion.

Moreover Pic2(G/W) → W is projective, hence the image Im(Φ) ⊂ MX/W(5, 2, 31, 7) is
projective over W . In particular, Im(Φ) is universally closed, so the map

Im(Φ)×WMX/W(5, 2, 31, 7) ' Im(Φ)→MX/W(5, 2, 31, 7)

is closed, and we obtain that Im(Φ) is a closed subset, and thus an irreducible component, of
MX/W(5, 2, 31, 7).

2.3.2 Global restriction to S and birational models
Proposition 2.3.6. The morphismsMX →MS and Pic2 Γ→MS(5, 2, 31) glue to morphisms

t : MX/W →MS, p : Pic2(G/W)→MS(5, 2, 31).

Moreover, there is open subsetsMo
X/W ⊂MX/W and Pic2(G/W)o ⊂ Pic2(G/W) which induce

open immersions

to : Mo
X/W ↪→MS, po : Pic2(G/W)o ↪→MS(5, 2, 31).

Proof. We split the proof in several steps.

1. The restriction morphisms glue.
Recall from 2.1.1 that S is constructed as a linear section Σ ∩ PV10 for Σ = LG(3, 6) ⊂ PV14
the Lagrangian Grassmanian. Moreover, recall that W is an open subset of the set of linear
subspace V11 ⊂ V14 such that V10 ⊂ V11.
The embedding S ×W ↪→ Σ×Gr(11, V14) factors through X, that is we have an embedding

S ×W j
↪−→ X
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which is a morphism over W .
We use notation of section 1.1.1. Consider the moduli functors MX/W := MX/W(2, 1, 7) and
MS×W/W := MS×W/W(2, 1, 7) for the corresponding moduli problems. The pullback by j gives
a natural transformation

j∗ : MX/W →MS×W/W .

Both functors admit coarse moduli spacesMX/W andMS×W/W , hence we obtain a morphism

j∗ :MX/W →MS×W/W .

Finally, we use the natural projectionMS×W/W 'MS×W →MS (in other words, we "forget"
from which Fano X a sheaf on S comes from), and we obtain the desired morphism

t :MX/W →MS.

The same argument gives a morphism MX/W(5, 2, 31, 7) → MS×W/W(5, 2, 31), and we can
restrict it to a morphism

p : MX ' Pic2(G/W)→MS(5, 2, 31).

2. Defining the open subsets.
Let us denote

• Mo
X/W ⊂MX/W the subset of globally generated sheaves,

• Pic2(G/W)o = Φ!(Mo
X/W).

Lemma 2.3.7. The subspaceMo
X/W ⊂MX/W is open.

Proof. Let us recall some facts about the construction of moduli spaces of sheaves (see Theorem
1.1.4 or directly [HL10], chapter I section 4). Here we use that semistable sheaves are stable in
our case (Proposition 2.2.2). There is an open subscheme

R ⊂ QuotX/W(H)

over W , where QuotX/W(H) is a Quot scheme, parametrizing quotients Hw → Fw with Fw ∈
MXw , w ∈ W . Here, H = OX(−m)⊕N for some integers m,N ≥ 0. Moreover, the relative
moduli space of sheaves is constructed as a SLN(C)-GIT quotient of R, in particular the map
(over W)

π : R�MX/W

is an open map, so we are reduced to prove that π−1(Mo
X/W) is open.

Note that QuotX/W(H) is a fine moduli space, in particular it carries a universal quotient family.
Restricting it to R, we obtain a universal quotient family

ρ : OR �H → F

on R×W X. Note that F is R-flat by definition of the Quot-scheme and since open immersions
are flat morphisms. Any sheaf Fw ∈ MXw with a given surjective map ρw : Hw � Fw is the
pullback of ρ by the base change SpecC→ R, ∗ 7→ [ρw].
Denote pR, pX the natural projection from R ×W X. Consider the bundle UX obtained by
pullback of UΣ by the composition

X ↪→ Σ×G(11,C)� Σ.
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It is easy to see that (UX)w = UXw for any w ∈ W . We can thus consider

F̃ := F ⊗ p∗XUX.

For any [ρw : Hw → Fw] ∈ Rw, the sheaf Fw on Xw is globally generated if and only if
H0(Xw, Fw ⊗ UXw) = 0 (Proposition 2.1.4). But this is equivalent to

H0(Xw, F̃[ρw]) = 0. (2.17)

The subsetR0 ⊂ R where (2.17) holds is open inR by the semicontinuity theorem (see [Har77],
III, 12.8). Since R0 = π−1(MX/W)o, we conclude.

Finally, the map
Φ!o :Mo

X/W → Pic2(G/W)
is fibrewise an open immersion (Theorem 2.1.3). Using again 2.3.1 with a similar argument as
in Proposition 2.3.4 we obtain that Φ!o is an open immersion. In particular, Pic2(G/W)o is
open. This subset consists only in elements in Pic2(Γ), [Γ] ∈ W , which are not in the locus
blown up by φ!.

3. The restriction morphisms are open immersions.
Up to replaceMo

X/W with a smaller open subset, we can assume that t|Mo
X/W

is smooth of relative
dimension 0 ([Har77], Lemma 10.5), hence étale, and since t|Mo

X/W
is injective (Theorem 2.2.6)

it must be an open immersion. In fact, it suffices to shrink W : for any [Fw] ∈ Mo
X/W , the

tangent map Tφ!o,[Fw] splits into the direct sum

bw ⊕ Tres,[Fw] : T[Fw]Mo
X/W ' TwW ⊕ T[Fw]MXw → T[Fw|S ]MS.

But Tres,[Fw] is injective for all [Fw], hence the locus where Tφ!o is not an isomorphism lies in
the fibre over a closed subset of W .
In the same vein, we see that po : Pic2(G/W)o →MS(5, 2, 31) is dominant since its codomain
is irreducible, so we can apply the very same argument to conclude that, up to replacing W
with a smaller open subset, the map po : Pic2(G/W)o →MS(5, 2, 31) is an open immersion.

Corollary 2.3.8. The morphism Mo
S → W which sends a sheaf of the form FS ∈ MS with

F ∈MX globally generated to [X] ∈ W gives a rational Lagrangian fibration

MS 99K P3,

where the fibre over a point [X] ∈ W is the open subset Mo
X ⊂ MX of globally generated

sheaves.

Proof. From Proposition 2.3.6, the sheaves of the form FS ∈ MS with F ∈ MX for some
X ∈ W and F globally generated form an open subset ofMS, and from Theorem 2.2.6 such a
sheaf cannot belong toMY with [X] 6= [Y ] ∈ W , hence the mapMS ⊃Mo

S = t(Mo
X/W)→W

is well defined.

This rational fibration cannot extend to an actual morphismMS → P3 with fibre res(MX)
over [X] ∈ P3 directly. Indeed, the image ofMX inMS is singular (Theorem 2.2.10).

To conclude this section, we show thatMS admits a birational model for which there is an
actual Lagrangian fibration over P3 with generic fibre Pic2(Γ), which can be thought as "filling
up" the rational fibration in Corollary 2.3.8.
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Theorem 2.3.9. The mapMX/W → Pic2(G/W) induces a birational mapMS 99KMS(5, 2, 31).
Moreover, the functor φ10 induces a birational map

MS′ (0, H
′
, 2) 99KMS(5, 2, 31),

and MS′ (0, H
′
, 2) → P3 = |H ′| is a Lagrangian fibration with fibre over a point w = [Γ] ∈ W

isomorphic to Pic2 Γ.

Proof. We have seen in the proof of Proposition 2.3.6 thatMo
X/W ' Pic2(G/W)o. Hence from

Proposition 2.3.6 we obtain a birational map

MS 99KMS(5, 2, 31)

which proves the first statement of the theorem.
The functor φ10 sends a sheaf of the form (iΓS′ )∗L ∈ MS′ (0, H

′
, 2), L ∈ Pic2 Γ to i∗SXφL ∈

MS (Proposition 2.1.1). In a similar fashion as in the proof of Proposition 2.3.6, one can prove
that the composition

φ−1
10 ◦ po : Pic2(G/W)o ↪→MS′ (0, H

′
, 2)

is an open immersion. In particular, we obtain a birational map

MS 99KMS′ (0, H
′
, 2).

To conclude, consider the morphism MS′ (0, H
′
, 2) → P3 = |H ′ | defined in [Bea91], called

Beauville integrable system, which sends a sheaf to its support. Over a point w = [Γ] ∈ W ⊂ P3,
the fibre is given by Pic2 Γ. Indeed, we claim that a sheaf E ∈ MS′ (0, H

′
, 2) with smooth

support Γ is of the form i∗L with L ∈ Pic2 Γ and i = iΓS′ : Γ ⊆ S
′ . To prove the claim, it

suffices to prove that OS′ (−H) ·E = 0 ([Sta18], Tag 01QY). Apply E⊗− to 0→ OS′ (−H)→
OS′ → OΓ → 0 to obtain the exact sequence

0→ K → E → EΓ → 0

with K = ker(E → EΓ) = Im(E ⊗OS′ (−H)→ E) = OS′ (−H) · E. But since c1(E) = H
′ and

EΓ := i∗i
∗E is supported on Γ, we get c1(K) = 0. Hence K must be 0 otherwise it is supported

in dimension 0, which contradicts the purity of E. By Grothendieck-Riemann-Roch, the degree
of L must be 2.

2.4 The birational models of MS

The goal of this section is to study the different birational models of MS, in particular
MS(5, 2, 31) andMS′ (0, H

′
, 2). For now on, we use the notations of sections 1.1.3 and 1.4.2. In

particular, MS = MS(2, 1, 7) = MS[2, 1, 3], MS(5, 2, 31) = MS[5, 2, 6] and MS′ (0, H
′
, 2) =

MS′ [0, H
′
, 0].

Theorem 2.4.1. The moduli spaces MS and MS[5, 2, 6] are not isomorphic and are related
by a flop along a P2-bundle over S which extends the construction of Theorem 2.3.9. They are
the only two smooth K-trivial birational models ofMS. Moreover,MS[5, 2, 6] 'MS′ [0, H

′
, 0].

The proof of this theorem splits into the descriptions of section 2.4.3 and Propsitions 2.4.17
and 2.4.18.
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2.4.1 Lattice-theoretic description of birational models
Divisors on HK varieties

In this short section we recall some facts, and we refer to Debarre’s survey [Deb18] for all the
statements.

Let M be a hyperKähler variety. A divisor D on M is called nef (for numerically effective)
if its intersection with all curves C ⊂ M satisfies D · C ≥ 0. A divisor D is called movable
if its base locus has codimension at least 2. We denote Nef(M), resp. Mov(M) for the cones
generated by nef divisors, resp. the closure of the cone generated by movable divisors.

The cohomology spaceH2(M,Z) can be equipped with a natural quadratic form q : H2(M,Z)→
Z, called Beauville-Bogomolov form, and q induces a bilinear form on NS(M)R. The cone of
divisors D ∈ NS(M)R satisfying q(D,D) > 0 has 2 connected component, and we define the
strictly positive cone Pos(M) as the component which contains an ample class (its closure is
called positive cone).

In NS(M)R, the nef cone Nef(M) is closed and identifies with the closure of the ample
(open) cone Amp(M). Moreover, we have the inclusions

Nef(M) ⊂ Mov(M) ⊂ Pos(M).

For the next theorem, see [Deb18], Proposition 3.5.

Theorem 2.4.2. LetM,M
′ be HK varieties. Any birational map s : M M

′∼ induces a Hodge
isometry s∗ : H2(M ′

,Z) ∼−→ H2(M,Z) with respect to the Beauville-Bogomolov form on M and
M
′. Moreover, we have

s∗(Mov(M ′)) = Mov(M),
and if s∗(Nef(M ′)) meets Amp(M), then s extends to an isomorphism and s∗(Nef(M ′)) =
Nef(M).

Moreover, from [HT09], we obtain that Mov(M) admits a locally polyhedral chambers
decomposition

Mov(M) =
⋃

s:M99KM ′
s∗(Nef(M ′))

where the sum is taken over all birational models M M
′∼ , and the various s∗(Nef(M ′)) are

either equal or have disjoint interiors.
Now we focus on the case of moduli spaces of sheaves on K3 surfaces, that is M =MS[v]

for some K3 surface S and a primitive Mukai vector v ∈ H̃(S,Z) with v2 > −2.
The next theorem is well-known and due to many authors. We refer to Yoshioka [Yos01]

for a proof. See also [Yos06] for its generalization to twisted sheaves.

Proposition 2.4.3. Assume v2 > 0, then there exists an isomorphism

θv : v⊥ ∼−→ NS(MS[v]).

Under this isomorphism, the Beauville-Bogomolov form of NS(MS[v]) coincide with the Mukai
pairing on v⊥.

If v2 = 0, the same holds true relacing v⊥ by v⊥/v.
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Birational models as moduli spaces of stable objects

Let us first recall some of the methods, developed by Bayer and Macrì in [BM14b] and [BM14a].
Let S be a K3 surface and v be a primitive Mukai vector with v2 ≥ −2. Set MS := MS[v].
Consider the following maps.

1. Z : Stab+(S) → H̃(S,Z) ⊗ C sends a stability condition (Z,P) to ΩZ , where Z(−) =
〈−,ΩZ〉. See [Bri08], section 8. In particular, in view of section 1.4.2, Z(σα,β) =
exp ((iα + β)H).

2. I : H̃(S,Z)⊗ C→ v⊥ is defined by I(Ω) = = Ω
−〈Ω, v〉 .

3. θv : v⊥ → NS(MS), which comes from Proposition 2.4.3 (we assume v2 > 0 for simplicity).

The composition l0 = θv ◦ I ◦ Z gives a map Stab+(S) → NS(MS). It turns out that the
image of l0 is contained in the strictly positive cone Pos(MS).

An irreducible divisor E ⊂MS is called exceptional if there is a birational map M 99KM ′

contracting E. For each such divisor E, define the exceptional reflection at E, denoted ρE ∈
Aut(NS(MS)Q), as the reflection along the hyperplane orthogonal to E (that is, the involution
fixing E⊥ and such that ρE(E) = −E). Set Wexc ⊂ Aut(NS(MS)Q) the subgroup generated
by exceptional reflections.

By [Mar13], exceptional reflections are integral involutions of NS(MS). Moreover, the cone
Mov(MS)∩Pos(MS) is a fundamental chamber of the action ofWexc on NS(MS). In particular,
for any class D ∈ Pos(MS), there is a unique class Rexc(D) lying in Mov(MS) in the orbit of
D by the action of Wexc.

Hence, we can compose l0 with Rexc to obtain a map

l : Stab+(S)→ Mov(MS). (2.18)

Theorem 2.4.4 ([BM14a], Theorem 1.2). 1. The image of l is the cone of big movable di-
visor Mov(MS) ∩ Pos(MS).

2. For any generic stability condition σ ∈ Stab+(S), the image l(σ) lies in the chamber
of Mov(MS) which correspond to the birational model Mσ[v] of MS. In particular,
all smooth K-trivial birational model of MS appears as MC[v] for some chamber C ⊂
Stab+(S).

3. For any chamber C ⊂ Stab+(S), we have l(C) = Amp(MC[v]).

Note that for all generic σ ∈ Stab+(S), by Theorem 1.4.14 we can identify NS(Mσ[v]) with
NS(MS). Theorem 2.4.4 says that the wall and chamber decomposition of Mov(MS) is, up to
a quotient by the action of Wexc, given by the chamber decomposition of Stab+(MS).

It remains to understand what happens on the walls of Stab+(S). To do so, consider a wall
W ⊂ Stab+(S), consider a stability conditions σ ∈ W generic on the wall (i.e. not contained
in any other wall), and let σ+, resp. σ− be two generic stability conditions on each side of W
near σ0. In particular, l(σ0) induces nef divisors l+, resp. l−, inMσ+ [v], resp. Mσ− [v].

Theorem 2.4.5 ([BM14b], Theorem 1.4(a)). The divisors l± are big and nef onMσ± [v]. They
induce birational contractions

π± :Mσ± [v]→M±

where M̄± are normal irreducible projective varieties. The curves contracted by π± are the
curves of objects that are S-equivalent with respect to σ0.
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The walls are classified with respect to the type of contraction they produce.

Definition 2.4.6. The wall W is called:

1. a fake wall if there are no curves onMσ± [v] of S-equivalent objects with respect to σ0,

2. a totally semistable wall if there is no stable object with Mukai vector w,

3. a flopping wall if we can identify M+ = M− and the induced map Mσ+ [v] 99KMσ− [v]
induces a flopping contraction,

4. a divisorial wall if both morphismMσ± [v]→M± are divisorial contractions.

For some background on flops and the Minimal Model Program, we refer to [HM10].
The wall W can in fact be studied in a lattice-theoretic manner. Assume v2 > 0, and

associate to W the set

HW := {w ∈ H̃(S,Z) | =Z(w)
Z(v) = 0 for all σ = (Z,P) ∈ W}. (2.19)

This subset is rank 2 primitive sublattice of H̃(S,Z). It turns out that the type of W with
respect to Definition 2.4.6 is completely described by the associated hyperbolic lattice HW . A
class w ∈ H̃(S,Z) is called isotropic (resp. spherical) if w2 = 0 (resp. w2 = −2).

Theorem 2.4.7 ([BM14a], Theorem 5.7). The wall W is a totally semistable wall if and
only if there exists either an isotropic class w ∈ HW with 〈v, w〉 = 1, or an effective spherical
class s (i.e. s2 = −2 and <Z(s)

Z(v) > 0) with 〈s, v〉 < 0. In addition:

1. The wall W is a divisorial wall if one of the three conditions hold:

(a) (Brill-Noether): there exists a spherical class s ∈ HW with 〈s, v〉 = 0, or
(b) (Hilbert-Chow): there exists an isotropic class w ∈ HW with 〈w, v〉 = 1, or
(c) (Li-Gieseker-Uhlenbeck): there exists an isotropic class w ∈ HW with 〈w, v〉 = 2.

2. Otherwise, if v can be written as the sum v = a + b with a, b positive (i.e. a2 ≥ 0
and 〈a, v〉 > 0, and similarly for b), or if there exists a spherical class s ∈ HW with
0 < 〈s, v〉 ≤ v2

2 , then W is a flopping wall.

3. In all other cases, W is a fake wall.

For divisorial walls, the names are explained by the nature of the contraction morphism
π± :Mσ± → M± of Theorem 2.4.5. The only one that will appear in the next sections is the
LGU case (1c), for which the space M± is the Uhlenbeck compactification space (see [Li93]).
In particular, the object of MS[v] which become strictly semistable on the wall are given by
sheaves which are either not locally free or not slope-stable.

Remark 2.4.8. By straight computations, it is easy to see that the image of a numerical wall
W (w) generated by a class w ∈ H̃(S,Z) is contained in the subset (w⊥ ∩ v⊥) ⊂ v⊥.
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2.4.2 Computing the walls
Consider the K3 surface we studied in section 2.3.1. Recall that S is a K3 surface of genus 9,
with Pic(S) = Z〈H〉 where H is an ample divisor of square H2 = 16. We want to study

MS :=MS(2, 1, 7) =MS[2, 1, 3].

First, we show that it is sufficient to consider stability conditions of the form σα,β as con-
structed section 1.4.2.

Proposition 2.4.9. Let σ ∈ Stab+(S) be a generic stability condition. Then there is an
autoequivalence φ ∈ Aut(Db(S)) with φH(v) = v such that φ(σ) lies in U(S). Moreover, the
moduli spaceMσ[v] is isomorphic toMσα,β [v] for some α, β.
Proof. In view of Corollary 1.4.15, the only thing to prove is that the autoequivalence involved
satisfies φH(v) = v. The equivalence φ is described in the proof of Proposition 1.4.11: it is a
composition of of autoequivalences either of the form T 2

A, the square of a spherical twist along
a spherical vector bundle A on S, or of the form TOC(k), the spherical twist along the structure
sheaf of a nonsingular rational curve C ⊂ S. But the latter case cannot occur as Pic(S) = ZH,
H2 = 16, and any smooth rational curve satisfies C2 = −2 by adjunction formula. Now the fact
φ(v) = v follows from the remark that T 2

A acts trivially in cohomology (see section 1.3.3).

Remark 2.4.10. Note that the only wall we are interested in are actual walls W remaining
actual all along the numerical wall Wnum, except on the holes in Wnum arising from spherical
classes (see Proposition 1.4.8). Indeed, assume Wnum = W (w) for some class w ∈ H̃(S,Z),
and let σ := σα,β ∈ W \ W (w) be a stability condition. Then σ lies in some chamber C ⊂
Stab+(S), and its image l(σ) lies in the open ample cone Amp(MC[v]). Since Amp(MC[v])
is a cone, the whole ray R>0 · l(σ) lies in Amp(MC[v]). But this halfline contains W (w)
(Remark 2.4.8), in particular for any point σ0 ∈ W , given two stability condition σ± near σ0
in each adjacent chamber, the corresponding image l(σ±) both lie in Amp(MC[v]), and hence
Mσ+ [v] =Mσ− [v] =MC[v].

Therefore, we can compute the wall and chamber decomposition with respect to v = (2, 1, 3)
thanks to the description of Proposition 1.4.18.

Let α, β ∈ H. Assume F̃ ∈ Mσα,β [2, 1, 3]. By definition, there is an integer k ∈ Z with
F̃ [k] ∈ Cohβ(S). If k is even, we have v(F̃ [k]) = (2, 1, 3), and if k is odd we have v(F̃ [k]) =
(−2,−1,−3).

Vertical wall

By 1.4.18, there is (at least numerically) a vertical wall

Wv = {β = 1/2}

in H, given by the class (2, 1, 4) ∈ Λ. In fact, this wall is an actual wall. Indeed, following
Proposition 2.1.4, pick F ∈ MS[2, 1, 3] not locally free, the sheaf E := F ∗∗ is a stable vector
bundle such that E ∈MS[2, 1, 4]. We have the exact sequence

0→ F → E → Ox → 0

for some point x ∈ S. This induces the exact triangle

Ox → F [1]→ E[1]. (2.20)

We claim that (2.20) induces an exact sequence in Coh1/2(S). Indeed E[1], F [1] ∈ F1/2[1] and
Ox ∈ T1/2, so that (2.20) lies in Coh1/2(S).
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Left side of the halfplane

Consider a wall left to the vertical wall Wv, given by an exact sequence

E ↪→ F → T (2.21)

in Cohβ(S), with F := F̃ [k] ∈ Cohβ(S), v(F̃ ) = (2, 1, 3). From β < 1/2 we must have k even,
that is v(F ) = (2, 1, 3). Denote v(E) = w = (w0, w1, w2) and v(T ) = t = (t0, t1, t2). Note that
E and T will play a symmetric role in the following, so as 2 = v0 = w0 + t0 we can assume that
w0 > 0.

Using Proposition 1.4.18 in our case, the wall is a semicircular wall with center C and radius
R. We get

C <
1
4 (2.22)

Moreover, any semicircular wall must intersect the ray {β = 1
4}. Note that for β = 1

4 , there is
no class δ = (δ0, δ1, δ2) ∈ Λ with δ0 > 0, δ2 = −2 and µ1/4(δ) = 0. Indeed, these conditions on
δ give

8δ2
1 = δ0δ2 − 1
δ0 = 4δ1,

which is impossible because δ0, δ1, δ2 ∈ Z. In view of Proposition 1.4.8, we see that Z := Zα, 14defines a stability condition.
In view of Remark 2.4.10, we can assume that the exact sequence (2.21) hold at β = 1

4 .
Recall that the imaginary and real part of Z(−) are additive on exact sequence in Cohβ(S),
and since µZ(F ) <∞ we get 0 < =(Zw) < =(Zv) and 0 < =(Zt) < =(Zv). For β = 1

4 , it gives

0 < w1 −
w0

4 <
1
2

⇐⇒ w0

4 < w1 <
w0

4 + 1
2

Since w1 and w0 are integers, we obtain w0 = 4n+ 3, w1 = n+ 1 for some n ∈ Z. Moreover we
assumed w0 > 0, so n ≥ 0 and in particular 2w1 − w0 = −2n− 1 < 0.

The inequality C < 1
4 gives

2w2 − 3w0

16(2w1 − w0) <
1
4

⇐⇒ 2w2 − 3w0 > 4(2w1 − w0)

⇐⇒ w2 > 4w1 −
1
2w0 = 2n+ 5

2 (2.23)

To obtain more bounds, we need to study E with more details.

Lemma 2.4.11. The object E is a σα,1/4-stable object, in particular it satisfies

v(E)2 = 16w2
1 − 2w0w2 ≥ −2. (2.24)

Proof. If E is stable, then HomCohβ(S)(E,E) = HomDb(S)(E,E) = C because any stable object
is simple. Hence by Serre duality we get v(E)2 = −χ(E,E) = −(2− Ext1(E,E)) ≥ −2.
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Moreover, note that for β = 1
4 , any object of class a = (a0, a1, a2) satisfies

=Z(a) = αH2 1
4(4a1 − a0) ≥ 1

4αH
2. (2.25)

But we have =Z(v(E)) = αH2(w1 − βw0) = 1
4αH

2, so E cannot be semistable, otherwise
any of its proper Jordan-Hölder factor A would satisfy =Z(v(A)) < 1

4H
2α which contradicts

(2.25).

Using (2.24) we get

16w2
1 − 2w0w2 ≥ −2

⇐⇒ w2 ≤ 8w
2
1

w0
+ 1
w0

By straightforward computations, we have

8w
2
1

w0
= 8(n+ 1)2

4n+ 3 = 2n+ 5
2 + 1

2(4n+ 3) .

Combined with (2.23) we get

2n+ 5
2 < w2 ≤ 2n+ 5

2 + 3
2(4n+ 3) .

Hence the only possibility is n = 0, which gives w0 = 3,w1 = 1 and w2 = 3. We get C = 3
16 .

Proposition 2.4.12. The circular numerical wallWl(3, 1, 3) with center (C = 3
16 , 0) and radius

R = 3
16 is an actual wall Wl. It is induced by the following exact sequences

U∨S ↪→ FS � I∨x [1] if β <
1
3 (2.26)

(φφ!F )S ↪→ FS � U∨S [1] if 1
3 < β (2.27)

in Cohβ(S), where F ∈ MX is a non globally generated sheaf, for [X] ∈ W a Fano threefold
containing S, and I∨x is the derived dual of the ideal sheaf of the point x ∈ S (for the definition
of φφ!, see section 2.3.1).

Note that for 1
3 < β and any G ∈MS, any extension

0→ U∨S → R→ G→ 0

is slope-stable by [Yos99], Lemma 2.1. Though, if G = FS comes from a globally generated
sheaf F ∈ MX , then Ext1(G,U∨S ) = 1 and two such sheaves do not become S-equivalent on
the wall.

Proof. Recall from Proposition 2.1.4 that for any non globally generated sheaf F ∈MX , there
is a map f : U∨S → FS which induces an exact sequence

0→ OS → U∨S
f−→ F → Ox → 0. (2.28)

Consider the cone C(f). It lies in Cohβ(S) for any β > 0, and moreover an object of class
t = (−1, 0, 0) satisfies =Z(t) = 16αβ, so it cannot be destabilized for 0 < β < 1 (a similar
argument as for Lemma 2.4.11 proves this claim). Hence C(f) is µZ-stable for any 0 < β < 1.
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Lemma 2.4.13. We haveMσα,β [−1, 0, 0] = {I∨x [1] | x ∈ S} ' S for any β > 0.

Proof. Once again, it is easy to prove that for any 0 < β < 1 and x ∈ S, the object I∨x [1] is
µZ-stable. By Theorem 1.4.12,Mσ[−1, 0, 0] is a K3 surface, and since it contains S it must be
isomorphic to S.

Hence C(f) = I∨x [1] for the point x ∈ S appearing in (2.28). We obtain the desired exact
sequence (2.26) in Cohβ(S) for all 0 < β < 1

3 .
At the point σ0 = (1

3 , α) ∈ Wl(3, 1, 3), U∨S is a spherical object with Z(v(U∨S )) = 0, so σ0 is
not a stability condition (in other words, σ0 is a hole of Wl).

Finally, for 1
3 < β the extension (2.7) give the exact sequence (2.27) in Cohβ(S), and it is

easily seen to remain valid all along this part of the numerical wall Wl(3, 1, 3).

Right side of the halfplane

In a similar way as in section (2.4.2), consider a wall given by an exact sequence

E ↪→ F � T (2.29)

in Cohβ(S), with β > 1/2. Hence we have F := F̃ [k] with k odd, so that v(F ) = (−2,−1,−3).
Denote again v(E) = w = (w0, w1, w2) and v(T ) = t = (t0, t1, t2). In this case, we have
w0 + t0 = −2. In particular, either w0 or t0 is negative. Moreover, either t0 = w0 = −1, or
−2 ∈ {t0, w0}, or at least one of these two integers is positive.

Using Proposition 1.4.18 in this case, the wall must intersect the vertical ray {β = 3/4}.
Once again, there is no class δ = (δ0, δ1, δ2) ∈ Λ with δ0 > 0, δ2 = −2 and µ3/4(δ) = 0. Indeed,
these conditions on δ give

8δ2
1 = δ0δ2 − 1

3δ0 = 4δ1,

which is impossible because δ0, δ1, δ2 ∈ Z. Therefore we fix β = 3/4 for now on.
Assume by symmetry that t0 is negative. From 0 < =(Zt) < =(Zv) = −1 + 2× 3

4 = 1
2 , we

get
3t0
4 < t1 <

3t0
4 + 1

2 .

We see that the case t0 = −1 and t0 = −2 are not possible. Hence we can assume that w0 > 0.
In view of Remark 2.4.10, we can assume that the exact sequence (2.29) holds at β = 3

4 .
Hence we have 0 < =(Zw) < =(Zv) which gives

3w0

4 < w1 <
3w0

4 + 1
2 ,

hence we have w0 = 4n + 1 and w1 = 3n + 1 for some n ∈ Z≥0. Now we use again the
computations in (2.4.2), which gives in these settings

3
4 < C.

We have 2w1 − w0 = 2n+ 1 > 0, hence the lower bound gives

−(2w2 − 3w0)
−16(2w1 − w0) >

3
4

⇐⇒ 2w2 − 3w0 > 24w1 − 12w0

⇐⇒ w2 > 12w1 −
9
2w0 = 18n+ 15

2 . (2.30)
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Lemma 2.4.11, and hence equality (2.24) also holds in this case (one can perform the same
proof), so we obtain

−2 ≤ 16w2
1 − 2w0w2

⇐⇒ w0w2 ≤ 8w2
1 + 1.

Replacing w0, w1 by 4n+ 1, 3n+ 1 respectively, and since w0 > 0 we obtain

w2 ≤ 18n+ 15
2 + 3

2(4n+ 1) .

Combined with (2.30), the only possibility is n = 0, that is w0 = w1 = 1 and w2 = 8 or 9.
Equality w2 = 8 gives C8 = 13

16 , R8 = 3
16 and w2 = 9 gives C9 = 15

16 , R9 =
√

33
16 .

Proposition 2.4.14. The numerical wall of center (C9 = 15
16 , 0) and radius R9 =

√
33

16 is not an
actual wall.

Proof. Note that the circle of center C9 and radius R9 cross the ray {β = 2/3} at α2 =
R2

9 − (2
3 − C)2 = 1

18 .
Lemma 2.4.15. Any vector δ = (δ0, δ1, δ2) ∈ Λ with δ0 > 0, δ2 = −2 and µ2/3(δ) = 0 satisfies
<Zα,2/3(δ) > 0 whenever α2 > 1/72.

Proof. Rewriting the equations on δ give

8δ2
1 = δ0δ2 − 1

2δ0 = 3δ1.

In particular, we get δ1, δ2 > 0 and δ2

δ1
= 16

3 + 2
3δ2

1
. We get

<Z(δ) > 0 ⇐⇒ δ1(16
3 + 12α2) > δ2 (2.31)

⇐⇒ 16
3 + 12α2 >

δ2

δ1
= 16

3 + 2
3δ2

1
(2.32)

⇐⇒ α2 >
1

18δ2
1

(2.33)

Since δ0 = 3
2δ1, we have δ1 ≥ 2. In particular α2 > 1/72 works for all δ’s.

Consider the exact sequence (2.29) in Coh3/4(S), let (3
4 , α0) be the intersection of the

numerical wall W (1, 1, 9) with the ray {β = 3
4}. We can assume that F is σα0+ε, 34

-stable,
and since W (1, 1, 9) is the largest circular wall crossing {β = 3

4} (on the right side of the
vertical wall Wv), we can assume that F is σα, 34 -stable for all α � 0. By a similar argument
as for Theorem 1.4.16 (see [MS17], Lemma 6.18), one can prove that H0(F ) is a torsion sheaf
supported in dimension 0 and H−1F is a slope-semistable torsion-free sheaf. Consider the long
exact sequence (in Coh(S))

0→ H−1E → H−1F → H−1T → H0E → H0F → H0T → 0.

We have rk(H0T ) = 0 = deg(H0T ), hence rk(H−1T ) = 3 and deg(H−1T ) = 2. In particular,
any subsheaf G ⊂ H−1T satisfying µH(G) < 3

4 also satisfies µH(G) < 2
3 , thus H

−1T ∈ F2/3.
Moreover, either H−1E = 0 or µH(H−1E) ≤ µH(H0F ) = 1

2 , thus H
−1E ∈ F2/3. From this

observation, we deduce that the exact (in Coh3/4(S)) sequence (2.29) still holds in Coh2/3(S).
But then at β = 2/3 we have Z(t) = 0 which is absurd.
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We will see next section (see Proposition 2.4.16) that Wr is an actual wall which is the
reflection of Wl by the vertical wall Wv. In particular, Wl and Wr induce the same wall in
Mov(S).

2.4.3 Crossing the walls
In this section we study the walls Wv (vertical wall), Wl (circular wall on the left side of Wv)
and Wr (circular wall on the right side of Wv). To do so, we study the hyperbolic lattice (2.19)
associated to each wall. In view of the proof of Proposition 2.4.9, we see that for any wall W
intersecting U(S), a class w ∈ Λ lies in HW if and only if =Z(w)

Z(v) = 0 for any σ ∈ W ∩ H. In
otherwords, we can focus our attention to stability conditions of the form σα,β only.

Let us denoteMα,β :=Mσα,β [v].

The vertical wall Wv

Set W = Wv, then

HW = SpanZ((2, 1, 4), (0, 0, 1)) = {(2a, a, b) ∈ Λ | a, b ∈ Z}.

In particular, for any w ∈ HW , we have w2 = 4a(4a− b) so w cannot be spherical, and 〈v, w〉 is
even. Moreover, the class (2, 1, 4) is an isotropic class lying in HW . By Theorem 2.4.7, the wall
W is of type Li-Gieseker-Uhlenbeck. By [BM14a], Lemma 10.1, the wall W is bouncing wall, in
the sense that the image of the chambers on both side of the wall in Stab+(S) are sent to the
same chamber in Mov(MS). In particular, for β− < 1

2 < β+ close enough to 1
2 and admissible

α’s, both moduli spacesMα,β± are isomorphic.
Note that by Theorem 1.4.16,Mα,β− 'MS, and the birational transformation when hitting

the wall contracts the non-locally free sheaves F ∈MS, as we see by (2.20).

The circular wall Wl

Set W = Wl, then

HW = SpanZ((0, 1, 3), (1, 0, 0)) = {(a, b, 3b) ∈ Λ | a, b ∈ Z}.

Note that there is a whole in Wl at β = 1
3 . For β <

1
3 , U

∨
S is a stable object (see Lemma 2.4.11),

so this side of Wv is not totally semistable. But for β > 1
3 , −w = −(3, 1, 3) is an effective

spherical class with 〈−(3, 1, 3), v〉 = −1 < 0, so this portion of Wl is totally semistable. Note
that −(3, 1, 3) corresponds to the σ-semistable object U∨[1].

For any w = (a, b, 3b) ∈ HW , w2 = 16b2 − 6ab and 〈w, v〉 = 10b− 3a. Condition 〈w, v〉 = 1
gives a = 10k + 3, b = 3k + 1 with k ∈ Z. For such a, b, we cannot have w2 = 0. In particular,
there is no isotropic class w satisfying 〈w, v〉 = 1. The same argument show that there is no
isotropic class w with 〈w, v〉 = 2 nor spherical class s with 〈s, v〉 = 0.

On the otherhand, v(U∨S ) = (3, 1, 3) is a spherical class such that 0 < 〈(3, 1, 3), v〉 = 1 ≤
2 = v2

2 . Hence Wl is a flopping wall. Pick σ± on each side of the wall near a stability condition
σα,β ∈ Wl with β < 1

3 . Recall that on the wall Wl, any stable object of class (−1, 0, 0) is of the
for I∨x [1] for some x ∈ S. Similarly, by Theorem 1.4.12 the only stable object of class (3, 1, 3)
on Wl is U∨S . Indeed, pick a stability condition σα,β on Wl and a stable object E, if σα,β is
not generic with respect to (3, 1, 3) then take a nearby generic stability condition σα,β+ε. By
openness stability, E is still σα,β+ε-stable, hence isomorphic to U∨S .

67



In the proof of [BM14a], Proposition 9.1, we see that the wallcrossing give a birational
transformation f : Mσ+ [v] 99KMσ− [v] which contracts the objects E obtained as extensions
(in Cohβ(S))

U∨ ↪→ E � Ix[1],
for x ∈ S. We have ext1(Ix[1]∨,U∨) = hom(I∨x ,U∨) = hom(U , Ix) = 3. Hence the birational
transformation f is a flop along the P2-bundle obtained this way.

Note that for β > 1
3 , the same phenomenon occurs. In view of Proposition 2.4.12 the objects

which are S-equivalent to each other on the wall are the sheaves F for which ext1(F,U∨S ) > 1,
or equivalently Hom(U∨S , F ) 6= 0. These sheaves are exactly the one described on the other part
of Wl.

The circular wall Wr

It turns out that the potential wall Wr on the right side of Wv is the same as the circular wall
Wl up to a reflection.
Proposition 2.4.16. The wall Wr is the image of Wl by the reflection in the vertical wall Wv.
In particular, Wr and Wl have the same image in Mov(S) via the map l : Stab+(S)→ Mov(S)
(see (2.18)).
Proof. Note that a wall W associated to a destabilizing class w is sent by l0 to θv(w⊥ ∩ v⊥)
(see section 2.4.1). We get

l0(Wr) = v⊥ ∩ (3, 1, 3)⊥ = R(16, 13, 80)
l0(Wl) = v⊥ ∩ (1, 1, 8)⊥ = R(16, 3, 0).

In the proof of [BM14a], Lemma 10.1, we see that the reflection ρD which identifies the
chambers in both side of Wv is a multiple of (2, 1, 5). Direct computations give ρD(16, 13, 80) =
(16, 3, 0).

Identifying the birational models

Thanks to the description of the wallcrossings, we can complete the proof of Theorem 2.4.1 and
identify the birational models ofMS appearing in section 2.3.
Proposition 2.4.17. Let σ be a stability condition in the interior chamber cut out by Wl. Then

MS[5, 2, 6] 'Mσ[2, 1, 3].

Proof. By computations of walls,MS[5, 2, 6] is either isomorphic toMσ[2, 1, 3] or isomorphic
to MS. By [Yos99], Theorem 2.5 (with v = (5, 2, 6), w = (2, 1, 3) and v1 = (3, 1, 3) in the
author’s notations), we see thatMS[5, 2, 6] andMS are not isomorphic and related by a flop.
Moreover, this flopMS 99KMS[5, 2, 6] is exactly the one given by wallcrossing Wl.
Proposition 2.4.18. The functor φ10 induces an isomorphism φ10 :MS′ [0, H

′
, 0] ∼−→MS[5, 2, 6].

Proof. The equivalence φ10 gives an isomorphismMS′
∼−→Mσ[5, 2, 6] for some stability condi-

tion σ ∈ Stab(S). By [BM14a], Theorem 2.12, we can assume σ ∈ Stab+(S), and once again by
Corollary 1.4.15 we can assume that σ is of the form σ = σα,β. In particular, sinceMS′ [0, H

′
, 0]

is a smooth K-trivial birational model ofMS, thenMσ[5, 2, 6] is either isomorphic toMS or
MS[5, 2, 6]. We conclude by the following remark. Let [X] ∈ W be a Fano threefold, let
[Γ] ∈ W be the corresponding quartic curve and let F 6= G ∈ MX be stable sheaves such
that φ!

11F ' φ!
11G. Then FS and GS define two different points ofMS, though (φ11φ

!
11F )S =

(φ11φ
!
11G)S ∈ MS[5, 2, 6]. In particular we have φ10(iΓS′ )∗(φ!

11F ) ' φ10(iΓS′ )∗(φ!
11G). In view

of Lemma 2.1.1, since φ10 is an equivalence, we necessarily haveMσ[5, 2, 6] 'MS[5, 2, 6].
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2.4.4 Movable and nef cones of MS

In this last section, we want to give a precise description of Pos(MS) ⊂ NS(MS). Recall we
have v = (2, 1, 3). Sraight computations give an orthogonal basis B := {e1 = (0,−1,−8), e2 =
(2, 1, 5)} of v⊥.

For the next proposition, we identify NS(MS) = v⊥ by Proposition 2.4.3.

Proposition 2.4.19. The positive cone Pos(MS) is generated by e1 + 2e2 and e1 − 2e2. The
big movable cone Mov(MS)∩Pos(MS) is cut out in Pos(MS) by the line Re1, and it identifies
with the chamber which contains 21e1 + 8e2.

Moreover, Mov(MS) decomposes into two chambers cut out by the line R(8e2 + 5e1). The
chamber adjacent to the line Re1 is Nef(MS) and correspond to the birational modelMS, and
the other chamber is the image of Nef(MS[5, 2, 6]) via the birational map given by crossing the
wall Wl. See Figure 2.1.

Proof. First, note that w = ae1 +be2, for a, b ∈ Z, satisfies w2 = 0 if and only if 16a2 = 4b2 = 0.
Hence the cone Pos(MS) is the cone generated, up to a sign, by {e1 +2e2, e1−2e2} and contains
either e1 or its inverse. Pick α = 1, β = 0. It gives a well-defined generic stability condition
σ := σ1,0, and its image A := l(σ) is an ample class (Theorem 2.4.4). By computations, we find

A = θv(
1

425(16,−13, 128)) = θv(
1

425(21e1 + 8e2)).

We deduce that Pos(MS) is generated by {e1 + e2, e1 − 2e2}. Now the image of the vertical
wall Wv is given by v⊥∩ (2, 1, 4)⊥ = Re1. Hence Mov(MS) is the upper half-cone of Pos(MS))
cut out by Re1.

Finally, the image of the circular wall Wl is given by v⊥ ∩ (3, 1, 3)⊥ = R(16, 3, 0), and we
obtain two chambers in Mov(MS). The chamber containing the ample class A is Nef(MS),
and the other chamber correspond to the unique other birational modelMS[5, 2, 6].

Figure 2.1 represents the cone Pos(MS) (between the green lines), and Figure 2.2 rep-
resents the corresponding walls and chambers in Stab+(S). The cone Mov(MS) decomposes
in two chambers: the (a) part is the nef cone Nef(MS) and the (b) part is the image of
Nef(MS[5, 2, 6]). The wall separating (a) and (b) (resp. (a’) and (b’)), represented by a blue
doted line, is Wl (resp. Wr). The wall separating (a) and (a’) (red doted line) is Wv.
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Figure 2.1: The positive cone Pos(MS) inside NS(MS).

Figure 2.2: The (β, α)-plane in Stab+(S).

70



Chapter 3

Dynamical systems and derived
categories

This chapter aims to study dynamical systems in a categorical point of view. The category we
are interested in is the derived category Db(X) of a smooth projective variety X, that we will
always assume to be defined over C if not stated otherwise. To an endofonctor F : Db(X) →
Db(X) are associated two quantities:

• the categorical entropy hcat(F ) (defined section 3.1.1), which computes the categorical
complexity of the dynamical system (Db(S), F ), and

• the generalized topological entropy log ρ(FH), where ρ(FH) is the spectral radius of the
action of F on the Betti cohomology H∗(X,C) of X.

These two quantities coincide in specific cases, but do not in general. We provide section 3.4
a new example of an autoequivalence ϕ ∈ Aut(Db(S)), where S is a smooth projective surface
containing a (−2)-curve C ⊂ S, for which the categorical entropy hcat(ϕ) is positive and the
generalized topological entropy log ρ(ϕH) is zero.

In sections 3.2 and 3.3, we study more generally the possible values of log ρ(ϕH) when ϕ
ranges in Aut(Db(S)) for a smooth projective surface S with mild assumptions. We prove
(Theorem 3.2.2 and Proposition 3.3.3) that

{log ρ(ϕH) | ϕ ∈ K ⊂ Aut(Db(S))} = {log ρ(f ∗) | f ∈ Aut(S)}

where K is a subgroup generated by standard autoequivalences and spherical twists along (−2)-
curves in S that we assume to form a disjoint union of configuration of Dynkin type A or Ā.
We deduce that if moreover S satisfies KS 6≡ 0 and admits no minimal elliptic fibration, then
the existence of an autoequivalence ϕ ∈ Aut(Db(S)) with log ρ(ϕH) > 0 forces S to be rational
(Corollary 3.2.7). This is based on a celebrated result of Cantat (Theorem 3.1.12) and Uehara’s
trichotomy for surfaces according to their group of autoequivalences (see section 3.1.2).

3.1 Categorical entropy and autoequivalences of surfaces

3.1.1 Categorical entropy
Let K be a field and T be a K-linear triangulated category of finite type, that is for any two
objects A,B ∈ T we have Hom(A,B[i]) = 0 for |i| � 0.

Let A,B ∈ T be non-zero objects. We denote 〈A〉 ⊂ Db(X) the smallest triangulated
subcategory closed under taking direct summand and isomorphisms. If B ∈ 〈A〉, where 〈−〉
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denotes the split closure, we can construct a tower of triangles

0 // B1

}}

// B2

}}

· · · Bk−1 // B ⊕B′

zz
A[n1]

``

A[n2]

aa

· · · A[nk]

cc
(3.1)

for some B′ ∈ T , with k ≥ 0 and ni ∈ Z.

Definition 3.1.1 ([DHKK14], Definition 2.1). We define the complexity of A relative to B as
the following function: for all t ∈ R,

δt(A,B) := inf


k∑
j=1

enjt

 ∈ R ∪ {+∞}

where the infimum is taken over all possible towers as in (3.1).
Note that δt(A,B) = +∞ for all t if and only if B /∈ 〈A〉.

We omit the proof of the next technical proposition.

Proposition 3.1.2 ([DHKK14], Proposition 2.2). For any non-trivial A,B,C ∈ T we have
the following:

• δt(A,B) depends on A and B only up to isomorphisms,

• δt(A,C) ≤ δt(A,B)δt(B,C),

• If T ′ is a triangulated category of finite type and F : T → T ′ is an exact functor, then
δt(FA, FB) ≤ δt(A,B).

Definition 3.1.3 ([DHKK14], Definition 2.4). Let G be a split generator of T (i.e. T = 〈G〉)
and φ : T → T an exact endofunctor such that φn 6= 0 for all n ≥ 0. The categorical entropy
of φ is defined to be the function

ht(φ) := lim
n→∞

1
n

log δt(G, φnG).

In most cases, we are interested in the value at t = 0. The following lemma is very useful
for computations, as one can adapt the generator depending on the autoequivalence studied.

Lemma 3.1.4 ([DHKK14], Lemma 2.5). The limit limn→∞
1
n

log δt(G, φnG) exists in [−∞,+∞)
for every t ∈ R and is independant of the choice of the split-generator G. Moreover, if G′ is
another split-generator, then

ht(φ) = lim
n→∞

1
n

log δt(G, φnG
′).

Proof. It follows from Proposition 3.1.2 that

δt(G, φn+mG) ≤ δt(G, φnG)δt(φnG, φn+mG) ≤ δt(G, φnG)δt(G, φmG).

Recall Fekete’s Lemma: for any subadditive sequence (an)n≥1 we have limn→∞ an/n = inf{an/n | n ≥
1}. We obtain that ht(φ) < +∞. The rest of the claim is an easy consequence of Proposition
3.1.2.

In the case of the derived category of a smooth projective variety X, it turns out that the
entropy can be computed as Poincaré polynomials in Ext groups.
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Proposition 3.1.5 ([DHKK14], Theorem 2.6). For any autoequivalence φ : Db(X) → Db(X)
and for any split-generators G,G′ we have

ht(φ) = lim
n→∞

1
n

log
∑
j∈Z

dim Extj(G, φnG′)ejt
 .

Proof. First we prove the following lemma.
Lemma 3.1.6. For any complex of K-vector spaces V ∈ Db(K), we have

δt(K,V ) =
∑
n

dimHn(V )e−nt.

Proof. The complex V decomposes as V = ⊕
nHn(V )[−n] = ⊕

nK
⊕hn [−n], where hn :=

dimHn(V ). Denote M = max{n | hn 6= 0} and m = min{n | hn 6= 0}. We have a tower of
triangles

0 K[−m] K[−m]⊕2 · · · K[−m]⊕hm K[−m]⊕hm ⊕K[−m− 1] · · ·

K[−m− 1] K[−m] K[−m] K[−m− 1]

· · · K[−m]⊕hm ⊕K[−m− 1]⊕hm+1 · · · ∑
nK

⊕hn [−n]

K[−m− 1] K[−M ].

Hence we have δt(K,V ) ≤ ∑
n hne

−nt. Note that for any triangle A → B → C in Db(K) we
have ∑

n

dimHnB ≤
∑
n

dimHnA+ dimHn(C).

Apply this recursively to any tower

0 // B1

||

// B2

||

· · · Bk−1 // V ⊕ V ′

zz
K[n1]

aa

K[n2]

bb

· · · K[nk]

cc

to obtain ∑hne
−nt ≤ δt(K,V ).

Now pick a generator G ∈ Db(X), and set Gn := φn(G′). From Lemma 3.1.6 we have

δt(K,RHom(G,Gn)) ≤ δt(K,RHom(G,G))δt(RHom(G,G), RHom(G,Gn))
≤ δt(K,RHom(G,G))δt(G,Gn).

On the otherhand, we have

δt(G,Gn) ≤ δt(G,G⊗RHom(G,G))δt(G⊗RHom(G,Gn), Gn)
≤ δt(K,RHom(G,G))δt(G⊗RHom(G,−), IdDb(X)(−)).

Here, we use Proposition 3.1.2 for the functor −⊗G : Db(K)→ Db(X) and
Φ 7→ Φ(Gn), Fun(Db(X),Db(X)) → Db(X). For the latter, we use that Db(X) admits a dg-
enhancement and that it is smooth as a dg-category. See [DHKK14], Theorem 2.6 and [Hai15],
Lecture 10.
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Remark 3.1.7 ([Orl09]). We can point out that if X is a smooth projective variety, then for
any very (anti)-ample line bundleM on X, the vector bundleM⊕M⊗2 ⊕ · · · ⊕MdimX+1 is
a generator of Db(X). This is very useful for computations of categorical entropy.
Example 3.1.8. For X a smooth projective variety, entropy of some functors are easily com-
puted. For instance, given L ∈ Pic(X) we have ht(−⊗ L) = ht([k]) = 0 for all t ([DHKK14]).
Also, the Serre functor S (see (1.14)) satisfies ht(S) = dim(X)t. In [Ouc20], the author shows
that the categorical entropy of a spherical twist TE satisfies ht(TE) = (1 − dimX)t for t ≤ 0.
However, the entropy of the composition of functors is much harder to compute in general, and
it can have positive entropy even if the individual functors have not, see for instance Corollary
3.4.6.

In the classical settings, Gromov and Yomdin showed a link between topological entropy
and cohomology on compact Käkler manifolds.
Theorem 3.1.9 ([Gro87],[Gro03],[Yom87]). Let X be a compact Kähler manifold and let f :
X → X be a surjective holomorphic map. Then

htop(f) = log ρ(f ∗)

where f ∗ : H∗(X,C) → H∗(X,C) is the induced map on cohomology, and ρ(f ∗) is its spectral
radius, that is the largest modulus of eigenvalues.

It is therefore natural to wonder if a similar statement hold in the realm of derived categories.
In [KT19], Kikuta and Takahashi proposed the following Gromov-Yomdin type conjecture:
Conjecture 3.1.10. Let X be a smooth projective variety over C. For any autoequivalence
φ ∈ Aut(Db(X)), we have

h0(φ) = log ρ(φH)
where h0 is the categorical entropy (valued in 0), φH is the C-linear isomorphism induced by φ
on the cohomology group H∗(X,C) and ρ denotes the spectral radius.

The lower bound log ρ(φH) ≤ h0(φ) is always true ([KST18]). This conjecture is not true
in full generality. Indeed, here are the first two known counterexamples:

1. In [Fan18], Fan considers X a strict Calabi-Yau manifold of dimension d ≥ 3, that is a
smooth projective variety X with ωX ' OX and H i(X,OX) = 0 for all 0 < i < dimX.
In this case, OX is a spherical object, and the autoequivalence

φ := TOX ◦ (−⊗OX(−1)),

for OX(1) a very ample line bundle on X, satisfies h0(φ) > 0. On the other hand, in
the particular cases where X is a hypersurface in Pd+1 of degree (d+ 2), with d ≥ 4, the
autoequivalence φ satisfies

log(ρ(φH)) = 0.

2. In [Ouc20], based on the proof of Fan, Ouchi considers X a K3 surface, and pick the same
autoequivalence

φ = TOX ◦ (−⊗OX(1))
for OX(1) a very ample line bundle on X. Set 2d = H2. Then he proves

h0(φ) ≥ log(d+ 2)

while on the other hand

ρ(φH) =
 1 if d = 1, 2, 3, 4

d−2+
√
d2−4d

2 if d ≥ 5.
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However, Conjecture 3.1.10 is known to be true when X is a curve [Kik17], an abelian
surface [Yos20], a variety with ample (anti)-canonical bundle [KT19].

In section 3.4, we construct a new counterexample of Conjecture 3.1.10 on any surface S
containing a (−2)-curve C ⊂ S.

3.1.2 Generalized topological entropy
Definition 3.1.11. Let X be a smooth projective variety and φ : Db(X) → Db(X) be an
autoequivalence. Then the value log ρ(φH) is called the (generalized) topological entropy of φ.

Theorem 3.1.9 assures that the definitions of topological entropy coincide for φ = f ∗, with
f ∈ Aut(X).

The generalized topological entropy have interesting properties in itself. We will focus
ourselves on the case of surfaces, so for now on we let S be a smooth projective surface.

In [Can99], Cantat prove the following.

Theorem 3.1.12. Assume that S admits an automorphism f ∈ Aut(S) of positive topological
entropy. Then S is birational to either (i) P2, (ii) a K3 surface, (iii) a 2-dimensional complex
torus or (iv) an Enriques surface. In the case (i), S is a blow up of P2 at 10 or more points.

We aim to find an analogue of this theorem relying the birational nature of the surface
S with the action on cohomology of its group of autoequivalences Aut(Db(S)). One point to
adress is the description of the group Aut(Db(S)). In [Ueh19], Uehara proposes a trichotomy
for surfaces. He conjectures an explicit description of the group of autoequivalences in each
cases. Here we summarize his paper.

Define an integer NS ∈ Z, called the Fourier-Mukai support dimension of S, as follow.
For any Fourier-Mukai autoequivalence φP : Db(S) → Db(S), consider dimS(P) the maximal
dimension of irreducible components of Supp(P) which dominate S by the first projection (that
is, the projection to the S for which Db(S) is the domain of φP). Then we set

NS := max{dimS(P) | φP ∈ Aut(Db(S))}. (3.2)

It turns out that NS is either 2, 3 or 4.

1. NS = 2 if and only if KS 6≡ 0 and S has no a minimal elliptic fibration. We develop this
case in section 3.2.

2. NS = 3 if and only if KS 6≡ 0 and S has a minimal elliptic fibration. We develop this
case in section 3.3.

3. NS = 4 if and only if KS ≡ 0. In this case, S is either a K3, abelian, bielliptic or Enriques
surface. Here are the known studies of Aut(Db(S)) in this case.

• If A is an abelian variety over an algebraically closed field K, Orlov proved in [Orl02] that
there exist an exact sequence

0→ Z⊕ (A× Â)K → Aut(Db(A))→ U(A× Â)→ 0,

where U(A× Â) is the group of isometric automorphism of A× Â, and any point (a, α) ∈
(A × Â)K defines the autoequivalence Ta∗(−) ⊗ Pα where Ta∗ is induced by the shift
automorphism m(−, a) : A→ A and P is the Poincaré bundle on A× Â.
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• When S is bielliptic, Potter gives in [Pot17] a description of Aut(Db(S)). Moreover, if
S is of odd type (in the sense of [BPV84], §V.5) the group Aut(Db(S)) is generated by
standard autoequivalences and relative Fourier-Mukai transforms along the two elliptic
fibrations (see section 3.3).

• The case of a K3 surface S with Picard rank ρ(S) = 1 have been worked out by Bayer
and Bridgeland in [BB17]. Namely, they prove that the group Aut(Db(S)) fits in an exact
sequence

0→ Aut0(Db(S))→ Aut(Db(S))→ Aut+(Heven(S,C))→ 0,
where Aut+(Heven(S,C)) denotes the index 2 subgroup of Hodge isometry preserving the
orientation of positive definite 4-planes (see Remark 1.3.22). The kernel Aut0(Db(S)) is in
this case generated by the even shift [2] and spherical twist TE along all spherical objects
E ∈ Db(S).

• Up to the author knowledge, no precise description of the group of autoequivalences of
Enriques surfaces exist yet. They seem closely related to autoequivalences of K3 surfaces.
Bridgeland and Maciocia have studied equivalences between Enriques surfaces in [BM17]
and [BM01]. First, two Enriques surfaces are derived equivalent if and only if they are
isomorphic. On the other hand, let S be an Enriques surface and consider ι : S̃ → S
the canonical cover of S, that is S̃ is a K3 surface and ι is an involution. Then any
autoequivalence φ ∈ Aut(Db(S)) lift to an equivariant autoequivalence φ̃ ∈ Aut(Db(S̃))
such that the diagram

Db(S̃) Db(S̃)

Db(S) Db(S)

φ̃

ι∗ ι∗

φ

commute. Conversely, any equivariant autoequivalence φ̃ ∈ Aut(Db(S̃)) descends to an
autoequivalence φ ∈ Aut(Db(S)).

In view of Cantat Theorem 3.1.12, NS = 4 covers all non-rational cases where automorph-
isms of S can have positive topological entropy.

3.2 Case NS = 2
Assume NS = 2 (see (3.2)). Denote Z the union of all (−2)-curves on S, and set

BZ(S) = 〈TE | E ∈ Db(S) spherical object, Supp(E) ⊂ Z〉.

Uehara poses the following conjectural description of autoequivalences of S.

Conjecture 3.2.1 ([Ueh19]).

Aut(Db(S)) = 〈BZ(S),Pic(S)〉o Aut(S)× Z[1].

In the same paper, he proves it when Z is a disjoint union of configuration of (−2)-curves
of type A, in the sense of Dynkin diagrams.

Recall that on these diagrams, a vertex represents (−2)-curves and two vertices are linked
by an edge if the two corresponding curves intersect.

Consider the subset B := 〈TOC(a)| C (−2)-curve, a ∈ Z〉 ⊂ BZ(S). The main result of this
section is the following.
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Theorem 3.2.2. Let S be a smooth surface for which its union Z of (−2)-curves is a disjoint
union of finite configurations of type A-D-E. Let ϕ ∈ 〈B,Pic(S)〉 o Aut(S) × Z · [1] be an
autoequivalence, so that, up to a shift, we have a decomposition

ϕ = b ◦ (−⊗ L) ◦ f ∗

with b ∈ B,L ∈ Pic(S), f ∈ Aut(S).
Then

ρ(ϕH) = ρ(f ∗).

Remark 3.2.3. In [IU05] Corollary 6.10, Ishii and Uehara prove

BZ = B

when all configurations are of type A only. This relies on a generalization of Grothendieck the-
orem: a pure 1-dimensional sheaf supported on a chain Z0 of (−2)-curves in Am configuration,
m ∈ Z≥1, is a direct sum of line bundles on subtrees of Z0. For any spherical object E ∈ Db(S),
the authors construct inductively an autoequivalence ψ ∈ BZ(S) such that

l(ψ(E)) < l(E)

where l(−) := ∑
i,p lenghtOX ,ηiH

p(−)ηi , where ηi ranges within the generic points of all (−2)-
curves on S. Eventually, the equality l(α) = 1 implies α ' OC(a)[b] for some integer a, b ∈ Z
and C a (−2)-curve, and Proposition 1.3.10 permits to conclude.

Proof of Theorem 3.2.2. Denote

G := 〈B,Pic(S) o Aut(S)〉 × Z[1].

Pick ϕ ∈ G. First, we show that ϕ admits a decomposition as stated.
When φ is an autoequivalence belonging to Pic(S)oAut(S) and C is a (−2)-curve, in view

of Proposition 1.3.10 we shall consider, for a ∈ Z, the image φ(OC(a)).
First, for any L ∈ Pic(S), we have L⊗OC(a) = OC(a+ l) with l := degC(L|C).
Secondly, consider an isomorphism f : S → S. It induces an isomorphism f̄ : C → C ′

for some (−2)-curve C ′ as the image of a (−2)-curve must be a (−2)-curve, and it’s easy to
check, writing i and j the natural inclusion of C and C ′ respectively, that f ∗(j∗OC′(a)) '
i∗(f̄ ∗(OC′(a))) ' i∗(OC(a)).

We conclude from this that B is normal in G. In fact, we also have B ∩ Aut(S) = {0}
([IU05], Remark 4.17). Hence, up to a shift, ϕ decomposes as

ϕ = b ◦ (−⊗ L) ◦ f ∗,

with b ∈ B, L ∈ Pic(S), f ∈ Aut(S) and such f does not depend on the decomposition.

Note that ρ((ϕH)◦m) = ρ(ϕH)m, i.e. the spectral radius of the morphism is totally de-
termined by the spectral radius of its powers. Hence, we can assume that f preserves each
(−2)-curve: f acts by permutation on the set of (−2)-curves which is finite, thus some power
of f fixes each of them.

We set
b = TOC1 (a1) ◦ · · · ◦ TOCk (ak)

with a1, . . . , ak ∈ Z and C1, . . . , Ck (−2)-curves.
Now, we use Proposition 1.3.10. Since B is normal in G, for any m ≥ 1 there is a line

bundle Lm ∈ Pic(S) and equivalences bj ∈ B, j = 2, . . . ,m such that

ϕ◦m = b ◦ b2 ◦ · · · ◦ bm ◦ (−⊗ Lm) ◦ (f ∗)◦m,
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where each bj is given by
bj = TOC1 (a′1) ◦ · · · ◦ TOCk (a′

k
)

for some integers a′1, . . . , a
′
k ∈ Z (depending on j). In other words, each bj, j = 2, . . . ,m is

a composition of spherical twists along line bundles over the same curves but with different
degrees.

We introduce the following notation: for a morphism g : H∗(S,Q) → H∗(S,Q), we denote
by g2 : H2(S,Q)→ H2(S,Q) the restriction to H2(S,Q) of its composition with the projection
p : H∗(S,Q)→ H2(S,Q).
Proposition 3.2.4. We have

ρ((ϕH)◦m) = max
(
ρ((ϕH)◦m2 ), ρ(f ∗)m

)
.

Proof. We write 1 ∈ H0(S,Q) the natural generator, [x] ∈ H4(S,Q) its dual. We fix a graded
basis (1, e1, . . . , ek, [x]) of H2∗(X,Q) composed by homogeneous elements.

From Remark 1.3.20 we conclude that the matrix of (−⊗Lm)H ◦(f ∗◦m)H is lower-triangular
by blocks, each block corresponding to a graded component of H∗(S,Q).

Fix an integer a ∈ Z. We shall compute THOC(a). By Grothendieck-Riemann-Roch, we have
v(OC(a)) = [C] + (a+ 1)[x], where [C] denotes the cohomology class of the cycle C.

Now, by section 1.3.3, TOC(a) acts as the identity on Hodd(S,Q), and for any w ∈ H2∗(S,Q)
we have

THOC(a)(w) = w − 〈v(OC(a)), w〉v(OC(a)). (3.3)

Denote w = (w0, w2, w4) ∈ Q⊕H2(S,Q)⊕Q. As c1(S) · [C] = −KS · C = 0, we get

〈v(OC(a)), w〉 =
∫
S
(0,−[C], a+ 1) · (w0, w2, w4) · exp(c1(S)/2)

=
∫
S

(
0,−w0[C],−[C] · w2 + (a+ 1)w0

)
·
(

1, c1(S)
2 ,

c1(S)2

8

)
= (a+ 1)w0 − [C] · w2. (3.4)

This scalar only depends on w0 and w2, and v(OC(a)) has components only in degree 2 and
4 so by (3.3) we conclude that THOC(a) acts as identity on H4(S,Q), and by (3.3) and (3.4) we
see that THOC(a)(1) = 1 +R with R ∈ H≥2(S,Q).

Hence the matrix of (ϕ◦m)H is triangular by blocks, and both spherical twists and tensors
by line bundles have spectral radius 1 on Hj(S,Q), j 6= 2. We obtain the result.

Lemma 3.2.5. For any (−2)-curve C and any a ∈ Z, the map

(THOC(a))2 : H2(S,Q)→ H2(S,Q)

does not depend on a.

Proof. By (3.4), we see that for all w2 ∈ H2(S,Q), we have (THOC(a))2(w2) = w2+([C]·w2)[C].

Hence, all the morphisms bH , bHj , j = 2, . . . ,m, restrict to the same morphism (bH)2 :
H2(S,Q)→ H2(S,Q), so we obtain

(ϕH)◦m2 = (bH)◦m2 ◦ (−⊗ Lm)H2 ◦ (f ∗)◦m2 .
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From Proposition 1.3.11, the spherical twists along (−2)-curves satisfy the relations.

TOC1
◦ TOC2

◦ TOC1
' TOC2

◦ TOC1
◦ TOC2

if C1 · C2 = 1,
TOC1

◦ TOC2
' TOC2

◦ TOC1
if C1 · C2 = 0.

We combine these relations with the fact that (THOC )◦2 = Id by (3.3) to conclude that the
group 〈(THOC )2 | C a (−2)-curve〉 ⊆ Aut(H2(S,Q)) is a quotient of a finite direct product of
Coxeter groups of type A,D and E. In particular, it is finite, thus (bH)◦m2 = Id for some m� 0.
We obtain

(ϕH)◦m2 = (−⊗ Lm)H2 ◦ (f ∗)◦m2 .

To conclude the proof, note that we can choose a basis for which both (−⊗ Lm)H2 and (f ∗)◦m2
are lower-triangular, with (−⊗ Lm)H2 having only 1′s on the diagonal.

From this proof, we remark the following fact, that will be used in section 3.4.

Corollary 3.2.6. Let S be any smooth projective surface, C ↪→ S a (−2)-curve. Let L ∈ Pic(S)
be a line bundle. Then

ρ(THOC ◦ (−⊗ L)H) = 1.

We obtain a first step toward a Cantat-like result in the case of generalized topological
entropy on surfaces.

Corollary 3.2.7. Let S be a smooth surface with finitely many (−2)-curve in disjoint A-
configurations. Assume KS 6≡ 0 and that S admits no minimal elliptic fibration. Then, if there
is an autoequivalence ϕ ∈ Aut(Db(S)) with ρ(ϕH) > 1, S is rational.

In view of section 1.1.2, a minimal surface satisfying NS = 2 is either isomorphic to P2,
ruled or of general type. By Propositions 1.1.8 and 1.1.9, the number of (−2)-curves on this
surface is necessarily finite.

3.3 Case NS = 3
Assume NS = 3 (see (3.2)). In this case, KS 6≡ 0 and S admits a minimal elliptic fibration,
that is there exists a morphism π : S → C onto a smooth projective curve such that the general
fibre is an elliptic curve, and reducible fibres do not contain any (−1)-curve.

Set λS the highest common factor of fibre degrees of sheaves on X, equivalently λS is the
smallest positive integer such that there is a divisor σ on X with σ · F = λS for F the class
of a fibre (such a σ is called a λS multisection of π). For integers a > 0, b with aλS coprime
to b, there exists a fine moduli space JS(a, b) of pure 1-dimensional stable sheaves on S whose
general point represents a rank a, degree b stable vector bundle supported on a smooth fibre of
π.

The surface JS(a, b) comes equipped with a map π̃ : JS(a, b) → C which sends a sheaf
supported on π−1(c), c ∈ C, to c. It turns out that π̃ is also an elliptic surface.

Once again, set
B = 〈TOG | G ⊂ S is a (−2)-curve〉.

Moreover, consider the subgroup of autoequivalences

K := 〈B, (−⊗OS(D)) | D · F = 0, F is a fibre〉o Aut(S)× Z · [2].

Uehara proposes the following conjecture.
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Conjecture 3.3.1 ([Ueh16], Conjecture 1.1). There is a short exact sequence

0→ K → Aut(Db(S)) Θ−→
{(

c a
d b

)
∈ SL2(Z) | d ∈ λSZ, JS(b) ' S

}
→ 1. (3.5)

The map Θ is induced by the action of Aut Db(S) on the even integral cohomology (H0 ⊕
H2)(F,Z) ' Z2 of a smooth fibre.

Let us be more precise with the definition of Θ. For any autoequivalence φ ∈ Aut(Db(S))
and any smooth fibre F of S, φ induces an equivalence φf : Db(F ) → Db(F ′) for F ′ another
smooth fibre. Moreover, two derived equivalent elliptic curves are isomorphic. Indeed, elliptic
curves are determined by their Hodge structure which are preserved by equivalences (a similar
result as Remark 1.3.21 hold for elliptic curves).

Hence up to fixing F and an isomorphism F
∼−→ F

′ , we can assume that φf is an autoequi-
valence of Db(F ) and hence it induces an automorphism of Heven(F,Z).

Remark 3.3.2. The map Θ is always surjective. Pick a matrix M =
(
c a
d b

)
which satisfies

the assumptions. We can assume a > 0. Consider the FM equivalence

φP : Db(JS(a, b)) ∼−→ Db(S)

with kernel P a universal sheaf associated to the fine moduli space JS(a, b). Bridgeland studied
this equivalence in[Bri98] and proves that, up to twisting P by a line bundle, the action Θ(φP)
on the even cohomology of a smooth fibre acts as the matrix M .

Uehara proves in [Ueh16] that the conjecture is true when each reducible fibre is of type In
in Kodaira’s classification of singular fibres (see [BPV84] §V.7). It means that each reducible
fibre is a cycle of (−2)-curves (in Ān configuration) with no multiplicities.

Where to go from here

In view of Conjecture 3.3.1, a way to investigate generalized topological entropy of autoequi-
valences of Db(S) is to control the subgroup K and to study how varies the entropy through Θ.
A first step is the following proposition. Since Conjecture 3.3.1 is proved for a fibration with
In-type of singular fibres only, we restrict ourselves to this case.

Proposition 3.3.3. Assume that the (−2)-curves on S are in Ā configuration. Any autoequi-
valence ϕ ∈ K admits, up to a shift, a decomposition

ϕ = b ◦ (−⊗ L) ◦ f ∗

with b ∈ B, L ∈ Pic(S) and f ∈ Aut(S). Moreover

ρ(ϕH) = ρ(f ∗).

Proof. We mimic the proof of Theorem 3.2.2 and we keep the notation of its proof. The same
arguments give a decomposition

ϕ = b ◦ (−⊗ L) ◦ f ∗,
where f ∈ Aut(S), L ∈ Pic(S) and

b = TOC1 (a1) ◦ · · · ◦ TOCk (ak)
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for some (−2)-curves C1, . . . , Ck and integers a1, . . . , ak. Moreover, the element (bH)2 lies in the
group B2 := 〈(THOG)2 |G a (−2)-curve〉 ⊆ Aut(H2(S,Q)), the restriction of B to Aut(H2(S,Q)),
which is direct sum of quotients of Coxeter groups of type A.

Denote si := (THOCi )2. We can assume that B2 is a Coxeter group of type An for some
n ≥ 1, with generators s1, . . . , sn with {[Ci], i = 1, . . . , n} linearly independant in H2(S,Q).
By [Jus04], we have a decomposition

B2 = Zn−1 oGf

where Gf is a finite Coxeter subgroup of type An−1. More precisely, Gf is (up to reordering)
the subgroup generated by s2, . . . , sn, and Zn−1 is the free subgroup generated by r1, . . . , rn−1
where

r1 = s1s2 . . . sn−1snsn−1 . . . s3s2 (3.6)
r2 = s2r1s2 (3.7)

. . . (3.8)
rn−1 = sn−1rn−2sn−1 (3.9)

Now (bH)2 decomposes as bH2 = rs with r ∈ Zn−1 and s ∈ Gf . In particular, there is integer
m� 0 such that (bH)m2 = rms

m = rm for some rm ∈ Zn−1 as Gf is finite. As Zn−1 is free, it is
enough to study the matrix form of the generators r1, . . . , rn−1. Let d = dimH2(S,Q). Choose
the following free family of H2(S,Z):

v1 = [C1] + 2[Cn] (3.10)
v2 = [Cn−1] (3.11)

. . . (3.12)
vn−2 = [C3] (3.13)
vn−1 =

∑
i

[Ci] (3.14)

vn = [C1] + [C2]. (3.15)

Fill this family into a basis B of H2(S,Q). One can check that the matrix of r1 with respect
to this basis B has the form (

Jn ∗
0 Idd−n

)
where Jn is the Jordan matrix with 1 on the diagonal, 1 in position (n−1, n) and 0 elsewhere. In
particular the only eigenvalue of the matrix of r1 is 1. We deduce the same for ri, i = 2, . . . , n−1.
In particular, we obtain that the only eigenvalue of (bH)m2 is 1. Note that f ∗ sends Q〈[Ci]〉 to
Q〈[Ci]〉, in particular we conclude that there exists a basis of H2(S,Q), whose n first vectors
lie in 〈[C1], . . . , [Cn]〉, such that (bH)m2 and (f ∗)◦m2 have respectively the shapes

(bH)m2 =
(
T 1
n 0
∗ Idd−n

)
, (f ∗)◦m2 =

(
Dn 0
∗ Td−n

)

where T 1
n is a n × n lower-triangular matrix with 1’s on the diagonal, Dn is a n × n diagonal

matrix and Td−n is a (d− n)× (d− n) lower-triangular matrix.
Since the matrix of (−⊗ L)H2 is the identity matrix, we conclude by Proposition 3.2.4.

Combining Proposition 3.3.3 and Remark 3.3.2, it seems that the understanding of the
dynamical behaviour of Aut(Db(S)) lies in the study of the Fourier-Mukai transforms with
kernels universal sheaves associated to relative Jacobians on the fibres of the fibration.
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3.4 A counter example of the Kikuta-Takahashi conjec-
ture

The goal of this section is to construct an example of autoequivalence on a surface S which
contradicts Conjecture 3.1.10. We prove the following theorem.

Theorem 3.4.1 ([Mat19]). Let S be a smooth projective surface and C ⊆ S a (−2)-curve.
Let L ∈ Pic(S) be a line bundle satisfying degC(L|C) < 0 and consider the autoequivalence
ϕ = TOC ◦ (−⊗ L). Then we have

h0(ϕ) > 0 = log ρ(ϕH).

In other words, Theorem 3.4.1 tells that ϕ is an autoequivalence with positive categorical
entropy but zero topological entropy.

Note that, if the surface S contains a (−2)-curve C, then L := OS(C) fits the hypothesis.
As a consequence, this gives a counterexample of Conjecture 3.1.10 in any birational class of
surfaces.

We prove h0(ϕ) > 0 this section. The equality log ρ(φH) = 0 is a consequence of Theorem
3.2.2 (see Corollary 3.2.6).

Let S be a smooth complex projective surface, C i
↪−→ S a (−2)-curve. Let L ∈ Pic(S) be a

line bundle verifying degC(L|C) = l < 0. For instance, L = OS(C) satisfies this assumptions.
Consider the autoequivalence

ϕ = TOC ◦ L.

The goal of this section is to show the following:

Theorem 3.4.2. The categorical entropy of ϕ verifies

h0(ϕ) > 0.

First, we make some constructions. For anyM∈ Pic(S) we have the distinguished triangle

RHom(i∗OC , ϕn−1(M)⊗ L)⊗ i∗OC → ϕn−1(M)⊗ L → ϕn(M).

Now pick P ∈ Pic(S) and apply (−⊗P) and RHom(i∗OC ,−) to this triangle. We obtain:

RHom(i∗OC ,ϕn−1(M)⊗ L)⊗RHom(i∗OC , i∗OC ⊗ P) (3.16)
→ RHom(i∗OC , ϕn−1(M)⊗ L⊗ P)
→ RHom(i∗OC , ϕn(M)⊗ P).

Fix degC(M|C) = m < 0. We consider the triangle (3.16) depending on the parameter
p := degC(P|C). For more clarity, we introduce the following notations.

Ãn := RHom(i∗OC , ϕn−1(M)⊗ L),
D(p) := RHom(i∗OC , i∗OC ⊗ P),
An(p) := Ãn ⊗D(p),
Bn(p) := RHom(i∗OC , ϕn−1(M)⊗ L⊗ P),
Cn(p) := RHom(i∗OC , ϕn(M)⊗ P).

Thus the triangle (3.16) can be written as:

An(p)→ Bn(p)→ Cn(p). (3.17)
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Proposition 3.4.3. For all n ≥ 1 and any P with p < 0, we have

Hj(Cn(p)) = 0 for j > n+ 2

and moreover
Hn+2(Cn(p)) ' Hn+1(Cn−1(l))⊗H2(D(p)) 6= 0.

Proof. Let’s start with computations for n = 1.
By adjunction formula, degC(i∗ωS) = 0 since KS · C = 0. Now we use the adjunction

i∗ a i∗(−)⊗ωC [−1] (see [Huy06], Proposition 3.35) and compute i∗i∗OC using [Huy06], section
11 again. We obtain:

ExtkS(i∗OC ,M⊗L⊗P) = ExtkC(OC ,OC(m+ l + p− 2)[−1])
= Hk−1(C,OC(m+ l + p− 2)).

ExtkS(i∗OC , i∗OC ⊗ P) = ExtkC(OC , i∗i∗(OC)⊗OC(p− 2)[−1])
= ExtkC(OC , (OC ⊕OC(2)[1])⊗OC(p− 2)[−1])
= Hk−1(C,OC(p− 2))⊕Hk(C,OC(p)).

Since we fixed m < 0, l < 0, p < 0, these Ext groups are non-zero only for k = 2 (and
possibly k = 1 if p < −1). Hence we have:

• Hj(Ã1) 6= 0 only for j = 2,

• Hj(D(p)) 6= 0 only for j = 2 (and j = 1 if p < −1) and thus Hj(A1(p)) 6= 0 only for
j = 4 (and j = 3 if p < −1),

• Hj(B1(p)) 6= 0 only for j = 2.

Using the long exact sequence in cohomology induced by (3.17) we have

Hj(C1(p)) 6= 0 only for j = 2, 3 and H3(C1(p)) ' H4(A1(p)),

as it can be read on the following table:

H2 H3 H4

A1 0 ∗
B1 ∗ 0 0
C1 ∗ ∗ 0

where ∗ means that the space does not vanish, and the empty slots are irrelevant to our
calculations.

For any n ≥ 1 we have the identities

Ãn ' Cn−1(l) and Bn(p) ' Cn−1(l + p). (3.18)

For n = 1, by (3.18) we get

H4(A1(p)) ' H2(Ã1)⊗H2(D(p))
' H2(C0(l))⊗H2(D(p))
6= 0.

Assume that the lemma is true for all p < 0 on rank n− 1. Since l and p are negative, by
induction hypothesis and (3.18) we have
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• Hj(An(p)) = 0 for j > n+ 3,

• Hj(Bn(p)) = 0 for j > n+ 1,

• Hn+3(An(p)) ' Hn+1(Ãn)⊗H2(D(p)) 6= 0.

Thus using the long exact sequence in cohomology induced by (3.17) we obtain

Hn+2(Cn(p)) ' Hn+3(An(p)).

Once again this can be read on the table:
Hn+1 Hn+2 Hn+3

An ∗
Bn ∗ 0 0
Cn ∗ 0

Finally by the identities (3.18), we obtain

Hn+2(Cn(p)) ' Hn+1(Cn−1(l))⊗H2(D(p)).

Corollary 3.4.4. For anyM,P with m, p < 0 and n ∈ Z≥1, we have

Extn+2
S (i∗OC ,P ⊗ ϕn(M)) ' H1(C,OC(m+ l − 2))⊗H1(C,OC(p− 2))

⊗H1(C,OC(l − 2))⊗n−1.

In particular, dim Extn+2
S (i∗OC ,P ⊗ ϕn(M)) > (1− l)n−1.

Proof. By induction on Proposition 3.4.3, we have

Extn+2
S (i∗OC ,P ⊗ ϕn(M)) ' Hn+2(Cn(p)),

' Hn+1(Cn−1(l))⊗H2(D(p),
' H2(C0(l))⊗H2(D(p))⊗H2(D(l))⊗n−1,

' H1(C,OC(m+ l − 2))⊗H1(C,OC(l − 2))⊗n−1

⊗H1(C,OC(p− 2)).

Proof of theorem 3.4.2. Wemake use of Remark 3.1.7. We fix a generatorG =M⊕M⊗2⊕M⊗3

of Db(S) withM ∈ Pic(S) so thatM∨ is very ample on S. Thus m := degC(M|C) < 0. Now
choose a line bundle P ∈ Pic(S) so that P∨ is very ample. Up to taking powers of P∨, we
can assume that P∨0 := P∨ ⊗ OS(−C) is also very ample (see [Har77], II, ex. 7.5). Then
G1 := P∨ ⊕ (P∨)⊗2 ⊕ (P∨)⊗3 and G2 := P∨0 ⊕ (P∨0 )⊗2 ⊕ (P∨0 )⊗3 are also generator of Db(S).

By Corollary 3.4.4, for any n ≥ 1 we have

(1− l)n−1 ≤ dim Extn+2(i∗OC ,P ⊗ ϕn(M)) ≤ dim Extn+2(i∗OC ,P ⊗ ϕn(G)).

Write δ′0(F,G) := ∑
j∈Z dim Extj(F,G). Considering the exact sequence

0→ OS(−C)→ OS → i∗OC → 0,

we obtain
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(1− l)n−1 ≤ δ
′

0(i∗OC ,P ⊗ ϕn(G)) ≤ δ
′

0(OS,P ⊗ ϕn(G)) + δ
′

0(OS(−C),P ⊗ ϕn(G)),
≤ δ

′

0(P∨, ϕn(G)) + δ
′

0(P∨0 , ϕn(G)),
≤ δ

′

0(G1, ϕ
n(G)) + δ

′

0(G2, ϕ
n(G)).

Thus, either δ′0(G1, ϕ
n(G)) or δ′0(G2, ϕ

n(G)) has exponential growth. By Lemma 3.1.4 both
terms can be used to compute the categorical entropy h0(ϕ), hence

h0(ϕ) > 0.

Remark 3.4.5. The same result is also true with TOC(a) ◦L, for a a non-zero integer: one may
perform the same proof with the care of choosing a line bundle P verifying degC(P|C) = p� 0.

Remark 3.4.6. It is interesting to remark that the functor (−⊗L) can be realized as compos-
ition of spherical twists TOC(a1) ◦ · · · ◦ TOC(an) with a nice choice of a1, . . . , an ∈ Z. See [IU05]
Lemma 4.15 for the claim. In particular, compositions of spherical twists might have positive
categorical entropy.

To finish the proof of Theorem 3.4.1, it remains to show that the action of ϕ on the cohomo-
logy of S has spectral radius 1. This has been treated in the previous sections, see Corollary
3.2.6.
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