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ENGLISH SUMMARY 

 

 
 Alternative splicing is one of the major mechanisms leading to a diversity in the 

proteome. It has become very clear that this mechanism is playing a role in many 

genetic diseases including cancer. During oncogenesis, the cellular content of RNA 

isoforms is highly altered and this phenomenon seems to be context specific. Even in 

the same tissue, the pool of transcripts can display specific rearrangements 

corresponding to different subtypes of the disease.  

As we know now, the majority of deaths from solid tumors are caused by 

metastases. This metastatic cascade might involve the Epithelial-to-Mesenchymal 

Transition (EMT) which is a complex biological trans-differentiation process that allows 

epithelial cells to transiently obtain mesenchymal features. During this process, an 

alternative splicing program is differentially regulated, and increasing number of 

studies have started to suggest that a simple isoform switching is sufficient to induce 

or impair an EMT. Stopping the spreading of cancer cells in the human body represents 

an important challenge in the fight against cancer. In this context, I believe that 

alternative splicing represents a novel regulatory layer worth exploring to improve 

cancer diagnosis and identify potential new targets for therapy, which will impact 

patient’s survival and care.  

As we are in the era of genomics and transcriptomics, I have taken advantage 

of the most extensive transcriptomics datasets in breast cancer cell lines (CCLE) and 

breast cancer patients (TCGA) to identify novel splicing biomarkers of poor prognosis. 

I identified a 25-gene based splicing signature specific of a subtype of basal-like tumors 

capable of classifying patients with the worst survival rate. Using several public EMT-

induced RNA sequencing projects, I identified this basal-specific splicing signature as 

a signature characteristic of EMT-induced cells with classical hallmarks of pluripotent 

stem cells and cell invasion, which are essential for tumor spreading and metastasis. 

 

As a side project, I also got involved in the development of methods of classification 

using k-mers. I first was involved in a project that tested the ability of k-mer to classify 

breast cancer subtypes. Secondly, I was focused in the discovery of biological 

knowledge that k-mers are bringing in the breast cancer stratification. 
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The results show that alternative splicing or k-mers can be the source of new 

valuable information to help in the thinner definition of oncogenic subtypes or 

identification of biological processes in cancer. In a breast cancer subtype that does 

not benefit from targeted therapy, I demonstrate that alternative splicing relative to an 

EMT could be used as potential biomarkers to isolate patients where the tumor 

progresses faster. This work could help to develop new treatments for precision 

oncology.  
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FRENCH SUMMARY 

  

 L’épissage alternatif est l’un des mécanismes majeurs conduisant à la diversité 

du protéome. Il est devenu très clair que ce mécanisme jour un rôle dans de 

nombreuses maladies génétiques, y compris le cancer. Au cours de l’oncogenèse le 

contenu cellulaire en isoformes d’ARN est fortement altéré et ce phénomène semble 

être spécifique au contexte. Dans un même tissu, la composition en transcrits peut 

être différente selon les sous-types de la maladie. 

Comme nous le savons maintenant, la majorité des décès dus à des tumeurs solides 

est causée par des métastases. Cette cascade métastatique pourrait impliquer la 

transition épithélio-mésenchymateuse (EMT) qui est un processus biologique 

complexe de trans-différenciation qui permet aux cellules épithéliales d’obtenir de 

manière transitoire des caractéristiques mésenchymateuses. Au cours de ce 

processus, un programme d’épissage alternatif est régulé de manière différentielle, et 

un nombre croissant d’études commence à suggérer qu’un simple changement 

d’isoforme pourrait s’avérer suffisant pour amorcer une EMT. Stopper la propagation 

des cellules cancéreuses dans le corps humain représente un défi important dans la 

lutte contre le cancer. Dans ce contexte, je pense que l’exploration de l’épissage 

alternatif pourrait apporter une couche de régulation plus fine pour classer les patients 

plus précisément, aider à découvrir de nouvelles cibles potentielles pour la thérapie et 

de ce fait, améliorer la survie et les soins des patients. 

Comme nous sommes à l’ère de la génomique et de la transcriptomique, j’ai profité 

d’un jeu de données exhaustif de lignées cellulaires de cancer du sein (CCLE) et de 

tumeurs de patients (TCGA) pour identifier de nouveaux biomarqueurs d’épissage 

alternatif associés à un mauvais pronostic. J’ai identifié une signature d’épissage 

basée sur 25 gènes spécifiques d’un sous-type de tumeurs basales capable de classer 

les patients avec le plus mauvais taux de survie. En utilisant plusieurs projets publics 

de séquençage induisant une EMT dans différents modèles cellulaires, j’ai identifié 

cette signature basal-spécifique comme une signature caractéristique de l’EMT et de 

cellules présentant des caractéristiques classiques de cellules souches pluripotentes 

et invasives, qui sont essentielles pour la propagation de la tumeur et la métastase.  

En parallèle, je me suis  également impliqué dans le développement de méthodes de 

classification et d’annotation d’événements utilisant des k-mers. J’ai d’abord été 
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impliqué dans un projet qui teste la capacité des k-mers à classer les sous-types du 

cancer du sein. Dans un second temps, je me suis focalisé sur la découverte des 

connaissances biologiques que les k-mers apportent dans la stratification du cancer 

du sein.  

 Enfin nos résultats montrent que l’épissage alternatif ou les k-mers peuvent être 

la source de nouvelles informations précieuses pour aider à la définition plus fine des 

sous-types oncogènes ou pour permettre l’identification de processus biologiques 

impliqués dans le cancer. Dans un sous type de cancer du sein qui ne bénéficie pas 

d’une thérapie ciblée, nous démontrons que l’épissage alternatif en lien avec l’EMT 

pourrait être utilisé comme biomarqueur potentiel pour isoler les patients ou la tumeur 

progresse plus rapidement. Ces travaux pourraient aider à développer de nouveaux 

traitements dans le cadre de l’oncologie de précision. 
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1. INTRODUCTION 

  

 In this work, various clinical and biological aspects of cancer are treated. 

Computational biology facets are described too. This introduction is not intended to be 

exhaustive. It aims to present the notions and concepts that I will develop in the 

manuscript. This thesis occurs at the interface of many fields. I hope that this 

introduction will allow to understand the challenges that fall on each discipline and to 

exchange with the same vocabulary. 

 

 My PhD work was dedicated to the study of alternative splicing in a large cohort 

of patients harboring a certain type of breast cancer, which is known to be a very 

heterogenous disease. I explored the idea that alternative splicing signature, related 

to an Epithelial-to-Mesenchymal Transition (EMT), a crucial process in tumor 

progression, could help to better classify patients with different survival outcome and 

therefore, improve their medical care.  

 

 I will first introduce the topic of cancer, with a focus on breast cancer. I will then 

move to the definition of Epithelial Mesenchymal Transition and its link with tumor 

progression. As alternative splicing is an important mechanism regulated during EMT, 

I will recall some definitions and develop several ideas around this subject in the 

context of cancer. 

 

Next, I will describe current high-throughput technologies and counterpart techniques 

that are used to analyze the molecular profiles of each tumor sample. I will discuss 

also the statistical, machine learning and bioinformatics tools that have been used to 

tackle our initial problematic. 

 

Finally, before reporting our results, I will focus on the basal-like subtype of breast 

cancer keeping in mind all the concepts that were previously mentioned. I will detail 

the characteristics of this disease and will explain why the basal-like subtype is a major 

issue. 
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1.1. BIOLOGY OF CANCER  : AN OVERVIEW 

1.1.1. EPIDEMIOLOGY 

 

 In 2018, the American Cancer Society estimated the number of new cancer 

cases at 17 million, and 9 million deaths from cancer worldwide the same year. After 

cardiovascular diseases, it is the second leading cause of death in developed 

countries. In males, lung and prostate cancers are the more prevalent disease whereas 

in women, breast and colon cancer are the most common  (American Cancer Society 

2018). 

  

 By 2040, it’s expected to grow to 27.5 million new cancer cases and 16.3 cancer 

deaths simply due to the growth and aging of the population. Actually, these numbers 

don’t consider the adoption of lifestyles that are known to increase cancer risk 

(smoking, unhealthy diet, physical inactivity), which could largely underestimate these 

predictions (American Cancer Society 2018). 

 

1.1.2. WHAT IS CANCER? 

  

 According to Centers for Disease Control and Prevention (CDCP) definition, 

cancer is a disease in which a subset of cells in the breast grow out of control. It can 

start any place in the body. Cancer cells usually form a tumor growth that can often be 

seen on an x-ray or felt as a lump. These cells ignore the normal rules of cell division 

and thus will have pathological consequences on the human body. 

 

 In 2000, Hanahan and Weinberg first summarized how tumors cells differ from 

normal cells in several aspects (Hanahan and Weinberg 2000). In order to rationalize 

the complexities of neoplastic diseases, they described six hallmarks of cancer: 

 

· Sustaining proliferative signaling 

· Evading growth suppressors 

· Resisting cell death 

· Enabling Replicative Immortality 
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· Inducing angiogenesis 

· Activating invasion and metastasis. 

 

Acquisition of this functional features arise at various times during the course of 

tumorigenesis allowing cancer cells to survive, proliferate and disseminate. 

 

Almost ten years after, two emerging hallmarks were added (Hanahan and Weinberg 

2011) : 

· Reprogramming of energy metabolism  

· Evading of immune destruction.  

 

 Acquisition of these core and new hallmarks was proposed to be the 

consequence of two other phenomena: (1) genome instability and mutation which 

generates the genetic diversity that play a role in their acquisition, and (2) inflammation 

which fosters these multiple functional features. Notably, it has been proposed that 

aberrant alternative splicing should be added to the growing list of these cancer 

hallmarks (Ladomery 2013). 

1.1.3. CANCER IS A GENETIC DISEASE 

 

 During cellular division, the DNA sequence is copied. Errors can be introduced. 

It can be single nucleotide exchange (mutation) or small insertion and deletion of 

several bases (indels). Also, modifications of the number of copies of DNA segments 

can occurs (CNA, copy number alterations).  

 

 Normal cells use DNA repair to correct these errors, or apoptosis when repair 

fails. These processes stop the propagation of the errors in the genetic code that can 

be responsible for an abnormal cell behavior. Tumor cells are able to bypass these 

mechanisms, giving them immortality. 

 

 Genetic changes can be inherited from our parents, arise after specific 

environmental exposure, or being the result of spontaneous errors during the cell 

division. 
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 These modifications can have an impact at the protein level, but it’s not 

mandatory. Gene harboring changes in its sequence, is transcribed into pre-

messenger RNAs. Before being translated into a protein, the transcript needs to be 

spliced to remove the non-coding intronic sequences. Frequently, pre-mRNAs are also 

alternatively spliced into different mature RNAs with different subset of exons, including 

or not the modifications. At the end, the protein produced might not be functional and 

have an impact on cellular behavior.  

 

 Genes have different effects on the cellular phenotype and are not necessarily 

needed for cancer progression. Some of them have been associated to oncogenesis 

and several definitions have been settled based on their behavior. Oncogene defines 

a category of genes which expression promotes tumor progression whereas tumor 

suppressors are genes that are losing their function during cancer.  

 

 Following this same idea, not all mutations contribute equally to cancer 

progression. Mutations that promotes the occurrence of cancers, are called driver 

mutations while passenger mutations describe modifications in the sequence that do 

not have functional impact on the cell. These mutations will occur in different cells from 

the tumors (Figure 1-1), leading to a patchwork of cellular clones with distinct 

phenotypes (Hinohara and Polyak 2019). 

 

 
 

 
 
 
 
 

 

Figure 1-1 Evolutionary Trajectories and Transcriptomic Heterogeneity. 
 
Tumors cells follow different evolutionary trajectories forming genetically distinct sub-clones, 
some of whom can have advantage during cancer progression due to driver mutations. Each 

distinct clone can exhibit substantial phenotypic variation due to cellular transcriptomic 
heterogeneity. (adapted from Hinohara and Polyak 2019) 
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Recently, it was also suggested that some alternative splicing events could 

potentially be considered alternative splicing drivers (AS-drivers) leading oncogenic 

processes by themselves (Climente-González et al. 2017). Also, splicing factors, 

proteins involved in the RNA splicing, can also act as proto-oncoproteins and tumors 

suppressors (Dvinge et al. 2016). I will discuss all of these aspects in more depth later 

in the text. 

1.1.4. INTRATUMOR HETEROGENEITY 

  

 Intratumor heterogeneity describes the observation that different tumor cells can 

show distinct morphological and phenotypic profiles as previously illustrated (Figure 

1-1). This is one of the greatest challenges in precision cancer therapy (Levitin, Yuan, 

and Sims 2018). Genomic instability can give a selective advantage to certain cells and 

promotes their growth. Tumor cells are not homogenous and are represented by 

several clones (Marusyk and Polyak 2010). Ancestral mutations are acquired at the 

beginning of the oncogenic process and can be shared by all the tumors cells whereas 

new events can give new traits with potential benefits to tumor progression (Visvader 

2011). For example, a set of somatic mutations can empower cancer cells to 

disseminate and thereafter proliferate in a distant organ. For example, these mutations 

can enhance/repress the tumorigenic activity of tumour-initiating cells (TICs) also 

known as cancer stem cells (CSCs). Interestingly, alternative splicing aberrations could 

have a similar effect. Nevertheless, the origin of the TICs could have implications for 

the therapeutic strategies that is used to target them (B. B. S. Zhou et al. 2009). Indeed, 

there is a huge need to better characterize this heterogeneity to define phenotypic 

subclasses sharing common features, to better understand resistance to treatment and 

adapt therapies consecutively. 

1.1.5. EMT AND METASTATIC CASCADE 

 

 When breast cancer spreads to other parts of the body, through blood vessels 

and lymph vessels, it is said to have metastasized. Notably, the majority of deaths from 

solid tumors are caused by metastases (Dillekås, Rogers, and Straume 2019).  The 

model of the metastatic cascade as proposed by Thierry (Figure 1-2) starts with the 

fact that future metastatic cells have to free themselves from the primary tumor mass 
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(Thiery 2002). They enter the blood system and migrate within the whole organism until 

they find a place to grow again. However, the site of metastasis is dependent on the 

affinity of the tumor for the given microenvironment, which elegantly explains why 

some organs (lung, liver, bone marrow) are particularly prone to host metastases while 

others are not (intestine, skeletal muscle, skin) (Samatov, Tonevitsky, and Schumacher 

2013).  

 

 

 

 

 

 

 

 

Epithelial-to-Mesenchymal Transition (EMT) is a process that probably plays a role in 

the migration of cancer cells (Nieto et al. 2016; Pastushenko and Blanpain 2019; T. 

Brabletz et al. 2018; Lambert, Pattabiraman, and Weinberg 2016). To acquire an 

invasive phenotype for metastatic progression in cancer, carcinoma cells exploit EMT 

to facilitate its dissociation from primary tumor and dissemination into blood circulation 

(W. Lu and Kang 2019; Ye and Weinberg 2015). Of note, a reverse process called 

Figure 1-2 Sites of EMT & MET in the emergence and progression of carcinoma. 
 

Multiple genetic alterations leads to a carcinoma in situ and can induce local dissemination of 
carcinoma cells, possibly through an epithelial—mesenchymal transition (EMT).The basement 

membrane becomes fragmented. The cells can intravasate into lymph or blood vessels, 
allowing their passive transport to distant organs. At secondary sites, solitary carcinoma cells 
can form a new carcinoma through a mesenchymal—epithelial transition (MET) (adapted from 

J.P Thierry 2002) 
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Mesenchymal-to-Epithelial Transition (MET) is thought to play a role in the formation 

of the new carcinoma and colonization of the new tissue.  

 

 Thus, a better understanding of the mechanisms underlying the dissemination 

of tumors cells into the whole body is necessary to stop the spreading of the disease 

and is a promising strategy to reduce cancer mortality. In the next section, I will deeply 

explore the concepts of EMT. 

1.2. EPITHELIAL-MESENCHYMAL TRANSITION (EMT) 

  

 Epithelial-Mesenchymal Transition (EMT) is a cellular process during which 

epithelial cells acquire a mesenchymal phenotype and behavior following the 

downregulation of epithelial features (Derynck and Weinberg 2019; Nieto et al. 2016; 

Dongre and Weinberg 2018). This is a reversible process. The initial epithelial state of 

the cell is characterized by stable epithelial cell-cell junctions, apical-basal polarity and 

interactions with basement membrane. The process of EMT leads to profound 

phenotypic changes on cells (Figure 1-3). Cytoskeleton and cell-matrix adhesion are 

remodeled, apical-basal cell polarity is loss and cell-cell adhesion are weakened. An 

individualization of the cells is observed and in addition, cells gain motility. The 

modification of the adhesion molecules expressed by the cell allows them to adopt a 

migratory and invasive behavior. This phenomenon has been observed during the 

course of development, wound healing, and propagation in cell culture. It’s also thought 

to be an important mechanism driving malignant progression (Craene and Berx 2013). 

As I mentioned before, this mechanism is reversible and the reciprocal changes in 

cellular phenotype that reverse EMT-induced phenotypes are called Mesenchymal-

Epithelial Transition (MET) which occurs during cancer and embryonic development 

(J. Yang and Weinberg 2008). 
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 EMT has long been viewed as a binary process with two distinct cell 

populations, epithelial and mesenchymal and is often defined by the loss of the 

epithelial marker E-cadherin and the gain of the expression of the mesenchymal 

marker vimentin. However, recent studies indicate that EMT occurs in a gradual 

manner characterized by several cellular states expressing different levels of epithelial 

and mesenchymal markers and exhibiting intermediate morphological, transcriptional, 

and epigenetic features, between epithelial and mesenchymal cells. The intermediate 

states between epithelial and fully mesenchymal states have been referred to as 

partial, or hybrid EMT states (Nieto et al. 2016; J. Yang et al. 2020; Pastushenko and 

Blanpain 2019). Moreover, this intermediate state has often been associated with 

stemness capacities (Mani et al. 2008; Wilson et al. 2020) and has a highly tumorigenic 

potential (Kröger et al. 2019; Saitoh 2018; Aiello et al. 2018; Jolly 2015; Simeonov et al. 

2020). 

 

Figure 1-3 Outline of a typical EMT program. 
 

Epithelial cells displaying apical–basal polarity are held together by tight junctions, adherens 
junctions and desmosomes and attached to the underlying basement membrane by 

hemidesmosomes. They follow a progressive loss of epithelial features, accompanied by 
acquisition of a partial set of mesenchymal features with retention of certain epithelial 

features.  During EMT, cells become motile and acquire invasive capacities. Mesenchymal cells 
display front- to-back polarity and an extensively reorganized cytoskeleton. EMT is a reversible 
process, and mesenchymal cells can revert to the epithelial state by undergoing mesenchymal–

epithelial transition (MET). (Adapted from Dongre and Weinberg 2018) 
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 This research topic has been active for a long time, as testified by the Figure 1-

4. In the late 1970s, it was Elizabeth Hay who first described an “epithelial 

transformation” using a model of chick primitive streak formation. The term Epithelial-

mesenchymal transition became the term of use later in 2003. Then in 2007, EMT was 

proposed to be classified between three different subtypes based on the biological 

context that I will use to further comment EMT in the following text. 

 

 
 
 
 
 
 
 

1.2.1. THREE DIFFERENT SUBTYPES BASED ON THE BIOLOGICAL 

CONTEXT   

1.2.1.1. DURING IMPLANTATION, EMBRYOGENIS AND ORGAN 

DEVELOPMENT 

 

 Just before the first stages of embryogenesis, the implantation of the embryo 

and the initiation of placenta formation are both associated with an EMT in order to 

Figure 1-4 Growth of the primary literature in EMT. 
 

The graph indicates primary papers published each year, identified by a search of the Web of 
Science database. The total numbers of publications in 2019 is 5,700 articles. 

Growth in the field has been logarithmic since 2003 (Adapted from EMT International 
Association 2020).  
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facilitate mechanism of invasion of a specific layer of cells and the proper anchoring of 

the placenta (Vicovac and Aplin 1996).  After fertilization, the egg undergoes 

gastrulation, which is a universal process by which the body plan is established, 

generating three germ layers. A primitive streak generates an intermediate layer of 

cells, which subsequently separates to form mesoderm and endoderm via an EMT 

(Nakaya and Sheng 2008). Then, during embryonic development, neural crest cells 

undergo EMT (Kalcheim 2015) and individual cells migrate before giving rise to different 

derivatives as for example, the melanocytes that provide pigment to the skin. Another 

example is during somite formation where a mesenchyme layer undergo MET to form 

epithelial somites, which then undergo EMT to give rise to the sclerotome (Acloque et 

al. 2009). EMT is also observed during heart valve formation (Nakajima et al. 2000) and 

Mullerian duct regression (Klattig and Englert 2007). 

 

1.2.1.2. ASSOCIATED WITH TISSUE REGENERATION AND ORGAN 

FIBROSIS 

 

 EMT does not only occur during embryonic development. A similar process to 

EMT also occurs as a physiological response to injury (Stone et al. 2016). During wound 

healing, keratinocytes at the border of the wound, release a mix of inflammatory 

compounds that recapitulate part of the EMT process. In fibrotic tissues, inflammatory 

cells and fibroblasts release a variety of inflammatory signals as well as components 

of a complex extracellular matrix. Myofibroblasts accumulate and secrete an excessive 

amount of collagen that is deposited as fibers, thereby compromising organ function 

and leading to its failure. The origin of fibrosis had been thought to come from the 

pathological activation of interstitial fibroblasts that convert to myofibroblasts to form 

the fibrotic collagen network. An important part of these myofibroblasts might arise 

from the conversion of epithelial cells through an EMT process (Iwano et al. 2002). That 

said, the origin of myofibroblasts is still an active source of debate since recent linear 

tracing studies seems to indicate that few of those epithelial cells contribute to their 

formation (Humphreys et al. 2010; Lebleu et al. 2013). Nevertheless, the hypothesis of 

acquisition of partial EMT program seems to agree all points of view (Nieto et al. 2016). 

1.2.1.3. RELATED TO CANCER PROGRESSION  
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 EMT is thought to be activated in cancer cells, linked to their dissociation from 

the primary tumor and their intravasation into blood vessels (Dongre and Weinberg 

2018; Craene and Berx 2013). During the multistep progression of carcinomas that are 

initially benign, epithelial cells acquire a few distinctly mesenchymal traits that confer 

them the ability to invade adjacent tissues and then to disseminate to distant tissues.  

 

 Before going into the explanation of the underlying molecular mechanism, it 

seems important to report aside that if EMT has been so extensively studied in cancer, 

it is because cells following an EMT appear to be more resistant to treatment. Knowing 

that recurrent cancer might come back in the host even after chemotherapy, it was 

pertinent to ask if EMT was not involved in patients where the recurrence was 

observed. 

1.2.2. RESISTANCE TO TREATMENT AND SURVIVAL 

 

 In a recent review about EMT, the authors state that EMT confers resistance to 

chemotherapy and immunotherapy (Nieto et al. 2016). This statement should be taken 

with caution. There is an increasing number of evidence that supports this idea but the 

mechanisms of resistance might be context and drug dependent. For example, in a 

very specific manner, EMT has been previously found associated with Doxorubicin 

resistance in breast cancer (Jin et al. 2019; Q. Q. Li et al. 2009). Interestingly, Dutertre 

& al, have reported recently that an EMT-related splicing switch is linked to, but does 

not directly explain, drug resistance (Tanaka et al. 2020). EMT has also been 

associated with platinum-based chemotherapy in epithelial ovarian cancer (Marchini 

et al. 2013). Broader spectrum studies have failed to demonstrate that all cancer with 

mesenchymal features are more resistant to all kind of therapies or have a worse 

outcome when compared to epithelial carcinomas (Tan et al. 2014). On the other hand, 

they highlighted some specifics associations. Using an EMT signature based on gene 

expression, mesenchymal pancreatic cancer, malignant melanoma, renal cancer and 

liver cancer cell lines were more sensitive to compounds targeting microtubule 

dynamics, such as Vinblastine and Docetaxel. Mesenchymal breast, lung and uterine 

cancer cell lines were more resistant to Afatinib and Gefinitib. Association of EMT with 

resistance to gefitinib (EGFR inhibitor) was also showed elsewhere in non-small cell 
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lung cancer (Byers et al. 2013). Studies that find a limited contribution of EMT to the 

establishment of metastases, argue that on the contrary EMT is associated to 

resistance to treatment, which further supports a functional link between EMT and drug 

resistance (Fischer et al. 2015; X. Zheng et al. 2015) . Nevertheless, since the EMT is 

not more seen as a binary process (Figure 1-5), several studies started to show an 

association between partial EMT gene signature and a bad outcome (George et al. 

2017; Grosse-Wilde et al. 2015).  Finally, even if the link between EMT and resistance 

to treatment still need to be better understood, underlying molecular mechanisms of 

EMT have been extensively documented. 

 

 

 

 

 

 

1.2.3. EMT REGULATORY PROGRAMS 

1.2.3.1. TRANSCRIPTIONAL REGULATION 

 

 The EMT is executed in response to pleiotropic signaling factors that induce the 

expression of specific transcription factors (TFs) (Lamouille, Xu, and Derynck 2014; 

Puisieux, Brabletz, and Caramel 2014). This core is referred as EMT-TFs (Figure 1-6) 

and has been found to control cell–cell adhesion, cell migration and ECM degradation, 

and to play evolutionarily conserved central roles in the execution of EMT in various 

Figure 1-5 Summary of the physiological outcomes of EMT in carcinoma. 
 
 This figure shows the extent of invasiveness, the tumour-initiating ability, and degree of drug 

resistance of carcinoma cells that are thought to change across the spectrum of EMT-
programme. (Adapted from Shibue & Weinberg 2017) 
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biological settings and organisms. Among them, we retrieve transcription factors 

belonging to the Snail, Twist and Zeb families (Stemmler et al. 2019). 

 

  

 

 

 

 

Snail1 (Snail) and Snail2 (Slug), zinc-finger transcription factors, are composed of a 

highly conserved carboxy-terminal region containing four to six C2H2-type zinc fingers 

organized in one cluster, which mediate sequence-specific interactions with DNA 

promoters containing an E-box sequence (CAGGTG) (Stemmler et al. 2019). In all 

Figure 1-6 Overview of EMT-TF protein structures. 
 

Schematic representation of the protein structures of the core EMT-TFs with depiction of the 
comparative size of all EMT-TFs at the bottom of the figure.  

(Adapted from Brabletz 2019)  
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vertebrates, we observe also evolutionarily conserved domain (SNAG) in the N-

terminal part of the protein which is necessary for the binding of co-repressor 

complexes of transcription (Y. Wang et al. 2014). Snail represses E-cadherin 

expression (Batlle et al. 2000), a key marker of epithelial state which is thought to be a 

metastatic suppressor during tumor progression. It also mediates downregulation of 

cell adhesion molecules, such as occludins and claudins, and upregulation of matrix 

metalloproteinases.  

 

 Members of the zinc finger-homeodomain transcription factor family, ZEB1 and 

its paralog ZEB2 are genes which activation occurs frequently upon Snail activation.  

Both of them also contain C2H2-type zinc fingers, essential for the binding of E-box-like 

elements in the promoters of their target genes (Stemmler et al. 2019). The two zinc-

finger clusters in the ZEB proteins are separated by several hundred amino acids; thus, 

they have the ability to bind to two, relatively closely spaced E-boxes that are very 

often present as tandem repeats. Of note, ZEB1/2 is active in some tumors that lack 

SNAIL1/2 expression and thus the regulation of ZEB1/2 expression should be 

analyzed independently because the contribution of different EMT inducers is 

dependent on the cellular context (Vandewalle, Van Roy, and Berx 2009). For instance, 

ZEB1 expression is important during colon cancer progression (Guo et al. 2017) or 

pancreatic cancer (Krebs et al. 2017) , whereas ZEB2 has been studied in ovarian, 

gastric, and pancreatic tumors, where it is associated with invasiveness and 

aggressive behavior (W. Lu and Kang 2019). ZEB1 has also been reported as a well-

established transcriptional suppressor of E-cadherin (Eger et al. 2005). It also 

contributes to the formation of the tumor microenvironment by regulating the levels of 

various inflammatory cytokines, such as interleukin 6/8 (IL-6/8), which resulted in 

increased tumor growth in basal-like breast cancer cells (Wu et al. 2020). 

 

 TWIST1, a basic helix-loop-helix (bHLH) transcription factor, is a short stretch 

of basic amino acids that are followed by two amphipathic α-helices separated by a 

loop of varied length (Stemmler et al. 2019). It binds as dimers and recognize also E-

boxes to play its role of transcription factor.  In human mammary epithelial cells, 

TWIST1 upregulated macrophage chemoattractant (CCL2) (Low-Marchelli et al. 2013) 

and platelet-derived growth factor receptor A (PDGFRA) (Eckert et al. 2011) which 
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stimulates cell signaling pathways that elicit responses such as cellular growth and 

differentiation.  

 

 These EMT-factors can act differently and cooperate in different manner 

depending on the tumor context. For example, TWIST1 is upregulated in lung 

adenocarcinoma, whereas no effect on its regulation is observed in Ewing Sarcoma 

(Stemmler et al. 2019). ZEB2 loss in melanoma is associated with reduced patient 

survival and inhibits tumor initiation and metastatic progression in mice (Caramel et al. 

2013; Denecker et al. 2014) . While ZEB1 expression in melanoma is associated with 

poor clinical outcome and can instead drive melanoma initiation and malignant 

progression (Richard et al. 2016; Y. Chen et al. 2017). Finally, it is important to keep in 

mind that their expression alone is not sufficient to point to an EMT. Several other 

layers of regulation, described below, are involved in this complex mechanism. 

1.2.3.2. POST-TRANSCRIPTIONAL REGULATION 

 

 
 

 

 

 

 

Figure 1-7 Multilayer of regulation during EMT  
 
Although multiple non-coding RNAs control EMT, two regulatory networks have been described 

that can be considered as the core regulatory machinery: the miR34-SNAI1 and miR200-ZEB1 
They not only contributes to the epigenetic control of EMT, but are also targets for epigenetic 

modifications. Downstream of these axes, regulation of transcript processing would shape the 
landscape of epithelial and mesenchymal effectors through alternative splicing (Adapted 

from Nieto  & al. 2016) 
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1.2.3.2.1. REGULATORY NETWORK OF MICRO-RNA 

  

 MicroRNA (miRNA) are small non-coding molecule (containing about 22 

nucleotides) that act as post-transcriptional regulation of gene expression via base-

pairing with complementary sequences of the targeted mRNA molecule. Multiple 

miRNAs are thought to govern EMT (Abba et al. 2016), but two regulatory networks 

involving miR-200 (Hill, Browne, and Tulchinsky 2012; S. Brabletz and Brabletz 2010) 

and miR-34 (Imani et al. 2017; Siemens et al. 2011), together with ZEB1 and SNAI1, 

have been described (Figure 1-7). These two miR-transcription factor (TF) axes 

employ a double-negative feedback mechanism in which miR34-SNAI1 and miR200-

ZEB1 repress each other (Nieto et al. 2016). Several micro-rnas within the miR-200 

family, miR-200a/ b/c, miR-141, and miR-429 were identified to target and inhibit ZEB1 

translation to a different extent (S. Brabletz et al. 2011).  

1.2.3.2.2. AT THE PROTEIN LEVEL 

  

 EMT is also regulated by post-translational modifications as phosphorylation 

which is known to control Snail1. Phosphorylation is catalyzed by enzymes called 

Protein Kinases (PK) that catalyze the transfer of γ-phosphate of ATP to serine, 

threonine or tyrosine residues on target proteins. GSK-3β phosphorylates SNAIL at 

two consecutive motifs that control its ubiquitination (B. P. Zhou et al. 2004). First, GSK-

3β binds to SNAIL and phosphorylates SNAIL at one motif, which induces the nuclear 

export of SNAIL. Then, the phosphorylation on a second motif promotes the ubiquitin-

mediated proteasome degradation of SNAIL by β-Trcp. The inhibition of GSK-3β 

results in the upregulation of Snail1 and downregulation of E-cadherin that results in 

the activation of the EMT program. Phosphorylation also affects Snail1 subcellular 

localization (Domínguez et al. 2003) . Of note, Twist1 has also been described as 

phosphorylated by MAP kinases (J. Hong et al. 2011) and more recently, Fattet et al. 

reveal a pathway in which extracellular matrix stiffness promotes EPHA2/LYN complex 

activation, leading to phosphorylation of TWIST1 and its nuclear localization, triggering 

EMT in breast cancer (Fattet et al. 2020). 

 

 SUMOylation is another post-translational modification characterized by the 

reversible binding of Small Ubiquitin-like MOdifier (SUMO) to the target protein. FoxM1 
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can promote EMT through its direct binding at the SLUG promoter. FoxM1 is subject 

to SUMOylation at lysine 463 and this posttranslational modification is required for the 

full repression of miR-200b/c in breast cancer cells that is another layer of regulation 

of the EMT process (C. M. Wang et al. 2014). 

1.2.3.2.3. EMERGING LAYERS OF REGULATION 

 

 Epigenetic control (Histone modifications, methylation) is certainly also an 

important part of the regulation of EMT (Bedi et al. 2014). For example, the miR-200 

family is subjected to epigenetic modifications which is regulated by a histone 

demethylase, KDM5B (Enkhbaatar et al. 2013). Regarding transcriptions factors 

involved in EMT, SNAI1 , responsible for the E-Cadherin repression is regulated by the 

recruitment to specific DNA sequences of several proteins (Peinado et al. 2004) as 

chromatin modifiers, (HDAC1, HDAC2) that will determine the acetylation status of 

histones. Polycomb repressive complex 2 (PRC2) has also been identified in the 

repression of E-cadherin (Herranz et al. 2008) as well as several histone 

methyltransferase (Dong et al. 2013; Y. Lin, Dong, and Zhou 2014). In a model of human 

mammary epithelial cells where snail was induced, transient and long-lasting 

chromatin changes that sustains EMT were globally described (Javaid et al. 

2013).  Millanes-Romero & al , shows also that SNAI1 could also regulate 

heterochromatin transcription (Millanes-Romero et al. 2013). Finally, the histone 

deacetylases HDAC1 and HDAC2 are also recruited by ZEB1 to downregulate E-

cadherin expression in pancreatic cancer (Aghdassi et al. 2012).  

 

 All these layers of regulation illustrate how complex the regulation of EMT can 

be. During my PhD work, I focused on alternative splicing layer. As we will see, 

alternative splicing is also an important layer of regulation during EMT. In the next 

section, I will define the usual splicing mechanism and the process of alternative 

splicing. I will illustrate the fact that splicing is an important mechanism for the definition 

of the cell phenotype in the context of EMT and tumor progression. 
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1.3. ALTERNATIVE SPLICING AND TUMOR PROGRESSIO 

  

The central dogma of molecular biology is that the genetic information encoded in DNA 

is transcribed into RNA and then translated into protein. RNA splicing is a form of RNA 

processing in which a newly made precursor messenger RNA (pre-mRNA) transcript 

is transformed into a mature messenger RNA (mRNA). Many eukaryotic genes are 

interrupted by non-coding intervening sequences, or introns, that will be removed from 

these precursor gene transcripts before being translated into proteins. The remaining 

flanking sequences are called exons, and are pasted together giving birth to the 

mRNA. It is only after this processing that the mRNA will be translocated into the 

cytoplasm for its translation and protein synthesis. 

 Alternative splicing (AS) (Figure 1-8) allows for the production of various protein 

isoforms from one single coding gene. When AS involves the use of alternative donor 

and acceptor sites, we speak about alternative splicing events that lead to the 

production of several transcript isoforms with distinct sequence content and potentially 

different biological functions. Therefore, alternative splicing represents a critical step 

of gene expression. 

 

 

 

1.3.1. SPLICING REACTION 

  

Figure 1-8 Constitutive splicing and alternative splicing. 
 
Constitute exons involves the excision of all exons to form a mature mRNA containing only the 
exons. This gene will give one protein. In the case of alternative splicing, exons can be included 

or excluded. A gene can thus form different mature mRNA and therefore different proteins 
(adapted from Clara Benoit Pilven 2016)  
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In order to produce short functional RNA messengers, splicing must be specific 

and reproducible. Short conserved sequences at the ends of introns — splice sites — 

are crucial for intron recognition and for the accuracy of the splicing reactions (Mount 

1982). Most commonly, introns are flanked by conserved GU dinucleotide at its 5′ end 

and AG at its 3′ end (Figure 1-9). Upstream the 3’ splice site, there is a region rich in 

pyrimidines (C and U), the polypyrimidine tract, and the branch point, located anywhere 

around 30 nucleotides upstream from the 3′ end of an intron. The branch point always 

contains an adenine but its closest adjacent nucleotides are loosely conserved. A 

typical sequence is YNYYRAY, where Y indicates a pyrimidine, N denotes any 

nucleotide, R denotes any purine, and A denotes the conserved adenine. 

 

 

 

 

 

 

 

 

 Splicing effectors form the spliceosome (Figure 1-10), a ribonucleoprotein 

(RNP) complex comprised of five snRNPs (small nuclear ribonucleoprotein particles) 

and numerous proteins (Hegele et al. 2012). Each of the snRNPs that makes up the 

spliceosome contains a small nuclear RNA (snRNA) named U1, U2, U4/U6 et U5. Of 

note, U1 to U5 snRNAs are transcribed by RNA polymerase II and are processed the 

same way while U6 snRNA is transcribed by RNA polymerase III and has its own 

processing pathway.  At the beginning of the splicing reaction, the branch site is initially 

recognized by the branchpoint-binding protein (BBP) and small nuclear 

ribonucleoproteins (snRNPs) with auxiliary factors, including U2AF65 and U2AF35, will 

recognize the consensus sequences in the pre-mRNA. However, from a biochemical 

Figure 1-9 Exons and introns in pre-mRNA with their consensus sequences. 
 

Within introns, a donor site (5' end of the intron), a branch site (near the 3' end of the intron) 
and an acceptor site (3' end of the intron) are required for splicing. The GU dinucleotide and the 
AG nucleotide, respectively donor and acceptor sites, are highly conserved. The polypyrimidine 

tract lies between the branch site and 3′ intron–exon junction. Further upstream from the 
polypyrimidine tract is the branchpoint, which includes an adenine nucleotide involved in lariat 

formation (adapted from Srebrow and Kornblihtt, 2006). 
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point of view, the RNA splicing reaction is a relatively simple process that consists of 

two transesterification reactions (Saldanha et al. 1993).  

 

 

 

 

 

 

 

 

 

Figure 1-10 The spliceosome mediates a two-step splicing reaction. 
 
Both steps involve transesterification reactions that occur between RNA nucleotides. This two-

step biochemical process is driven by the spliceosome. he first transesterification step 
consists of the nucleophilic attack by the 2’OH group of a key adenosine in the branch 

consensus site on the 5ʹ splice site, resulting in the formation of a branched RNA intermediate 
known as the intron lariat. In the second transesterification step, the 3’OH group of the 

upstream exon attacks the 3ʹ splice site, and this produces the spliced mRNA and the excised 
intron lariat, which is subsequently degraded. (adapted from Kornblihtt, 2013). 
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 First, the pre-mRNA is cleaved at the 5′ end of the intron following the 

attachment of a snRNP called U1 to its complementary sequence within the intron. The 

hydroxyl (OH) group of a specific adenosine at the branch site near the 3′ end of the 

intron attacks the 5′ splice site. This reaction releases the 5′ exon and leaves the 5′ 

end of the intron joined by a phosphodiester bond to the branch site adenosine. This 

first reaction of transesterification forms a looped structure known as a lariat.  

 Then, the snRNPs U2 and U4/U6 appear to contribute to positioning of the 5′ 

end and the branch point in proximity. With the participation of U5, the 3′ end of the 

intron is brought into proximity, cut, and joined to the 5′ end. The second 

transesterification occurs when another hydroxyl (OH) group of the 5′ exon 

intermediate attacks the 3′ splice site, producing the released spliced mRNA and lariat-

shaped intron product that will be degraded by cellular nucleases (Montemayor et al. 

2014). 

 

1.3.2. ASPECTS OF ITS REGULATION 

 

 Spliceosomal recognition of these core elements is modulated by a myriad of 

additional sequence elements in both exons and introns that either activate (exonic 

splicing enhancer, ESE; intronic splicing enhancer, ISE) or repress (exonic splicing 

silencer, ESS; intronic splicing silencer, ISS) spliceosome recruitment (Figure 1-11) 

(Z. Wang and Burge 2008; Blencowe 2006). This cis-regulatory layer is driven by short 

sequences (~10 nucleotides). A trans-regulation layer is added by the interaction of 

these regulatory sequences with a variety of splicing factors (SF) (Yoshida, Kenichi 

Ogawa 2014), including serine-arginine-rich (SR) proteins and heterogeneous nuclear 

ribonucleoproteins (hnRNPs). SF can be divided into two types depending on their 

downstream effects on alternative splicing. For example, SR proteins tend to enhance 

the inclusion of alternative spliced exon, these SF are called activators. When the SF 

are more subject to play an inhibitory role, as hnRNPs , leading to exon skipping, these 

SFs are called repressors (E. Park et al. 2018; E. Wang and Aifantis 2020).  
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 The splicing machinery therefore has to select between multiple splice sites in 

a context-dependent manner, relying on sequence features in cis and trans-acting 

splicing regulators that either promote or repress splice site recognition and 

spliceosome assembly. Regulation by SFs can be the playground of complex 

interaction between them (Koedoot et al. 2019). Until now, thousand splicing factors 

have been described grouped into different families with high degenerated binding 

motifs (Ray et al. 2013; Dominguez et al. 2018). Figure 1-12 shows the landscape of 

domain structure of major splicing factors altered in solid tumors. 

 

Figure 1-11 Cis and Trans regulation of alternative splicing. 
 

Alternative splicing is regulated by an extensive protein-RNA interaction network 
involving CIS elements within the pre-mRNA and TRANS-acting factors that bind to 

these CIS elements. Exonic splicing enhancers (ESEs), exonic splicing silencers (ESSs), 
intronic splicing enhancers (ISEs), and intronic splicing silencers (ISSs) are pre-mRNA cis 

regulatory motifs that recruit various RNA-binding proteins (e.g., SR and hnRNP proteins) to 
regulate alternative splicing (adapted from Park, 2018). 
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 Interestingly, novel regulatory layers have recently emerged. Coupling with the 

transcriptional machinery, chromatin conformation and histone modifications, post-

transcriptional RNA modifications and non-coding RNAs have all been shown to play 

a role in the final splicing outcome (Romero-Barrios et al. 2018; L.-Y. Zhu et al. 2018). 

For example, enrichment of H3K79m2 have been observed in specific AS events 

Figure 1-12 Domain structure of splicing factors altered in solid tumors. 
 

For each RNA-binding protein (RBP) representative of the indicated families, the annotated 
protein domains or regions are shown in the diagrams (see legend for details), along with the 

size (in amino acids) of the human protein. (adapted from Anczukow & Krainer, 2016) 
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across normal and cancer cell types (T. Li et al. 2018) ; H3K36me3 was associated 

with fate determination in hESC (human embryonic stem cell) (Yungang Xu 2017) ; 

NCAM alternative splicing was shown to be influenced by H3K9 hyper-acetylation 

restricted to a region surrounding the alternative exon ; a mechanism of chromatin-

mediated splicing was shown to involve a long noncoding RNA (lncRNA) within the 

human FGFR2 locus (I. Gonzalez et al. 2015) ; intragenic looping mediated by CTCF 

was suggested to regulate alternative exon usage (Ruiz-Velasco et al. 2017).  

 To conclude, there are therefore many mechanisms which influence the 

regulation of AS. In the next sections, I will introduce the core definition of AS events 

and discuss further the importance of AS in cancer.  

 

1.3.3. DEFINITION OF ALTERNATIVE (AS) SPLICING EVENTS  

 

 Alternative splicing ensures the biodiversity of proteins that can be encoded by 

the genome. Modern analyses of human transcriptome have revealed that >95% of 

our genes undergo alternative splicing, which permits a limited genome to encode a 

vast proteomic repertoire (Pan et al. 2008; Black 2003; Barash et al. 2010). The 

expressed isoforms will depend on the cell type, the differentiation state, the 

physiological state or the developmental stage. These isoforms are the result of 

splicing events where a portion of a gene can be kept or removed in the final mature 

RNA. Five majors splicing events are defined (Figure 1-13) (E. Wang and Aifantis 

2020). 
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 Exon skipping (cassette exons) is thought to be the predominant one. The 

complete exon sequence can be included in the mature RNA or totally spliced out. We 

speak about mutually exclusive exons when inclusion of one exon lead to the exclusion 

of the next one (and vice versa). In this particular case, the two alternative exons are 

never present at the same time in the mature RNA. When only a part of the exon is 

present in the final RNA, it is called alternative 5’/3’ splice site depending on which site 

is chosen to be included or not. Finally, far from being the least interesting, introns can 

be retained in the final transcript. This kind of event is called Intron Retention but in 

most of the cases transcripts produced are thought to be quickly degraded via 

nonsense-mediated decay (NMD), a surveillance mechanism that eliminates aberrant 

mRNAs. Sometimes Alternative First/Last Exon is also listed as an alternative splicing 

phenomenon, but it is not strictly an alternative splice variant. It’s important to note that 

Figure 1-13 Constitutive splicing versus alternative splicing events. 
 

Schematic depicting constitutive splicing, as well as the five common modes of alternative 
splicing: exon skipping/inclusion, alternative donor, alternative acceptor, intron retention and 
mutually exclusive exons. Shown on the right are the mature mRNA transcripts derived from 

each event (adapted from Franki, 2019). 
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several of these events can occur together in the same gene, leading to a complex 

recombination of the sequences which make the splicing analysis even more difficult. 

 

 Interestingly, the idea that alternative splicing leads to protein diversity has also 

been recently questioned by large-scale mass-spectrometry experiments where it was 

proposed that only a minor fraction of the splice variants detected by transcriptomics 

profiling were actually translated (Tress, Abascal, and Valencia 2017). This started a 

great debate where advocates of protein diversity related to alternative splicing 

responded that numerous studies have shown the link between AS and proteomic 

complexity, and the poor overlap was due to a technical limitation of the proteomics 

studies (Blencowe 2017). Moreover, it was recently demonstrated in an elegant manner 

that at least 75% of human exon-skipping events detected in transcripts using RNA-

seq data were also detected in ribosome profiling data, thus indicating a role for AS in 

modulating translational output (Weatheritt, Sterne-Weiler, and Blencowe 2016). 

 

1.3.4. ALTERNATIVE SPLICING AND CANCER 

 

 Nowadays, it is well established that AS is highly associated with numerous 

genetic diseases (Scotti and Swanson 2016). AS changes are frequently observed in 

cancer and are starting to be recognized as important signatures for tumor progression 

and survival. AS has the capacity to radically alter the composition and function of the 

encoded protein, this is why it represents an interesting research path in order to 

develop new therapies. 

 

1.3.4.1. AFFECTING HALLMARKS OF CANCER 

 

 AS is involved in several characteristics of cancer cells described by Hanahan 

and Weinberg, such as resistance to cell death, angiogenesis, activation of invasion 

or the formation of metastases (Hanahan and Weinberg 2011). For instance, FAS gene, 

which encodes for a cell receptor, can produce one isoform with a pro-aptotic function 

while another isoform has  the opposite function (Miura, Fujibuchi, and Unno 2012) . 

When exon 6 of FAS is excluded, the protein stays soluble and the signal of apoptosis 
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is not transmitted anymore (Izquierdo et al. 2005).  BCL-X isoforms, which are the 

result  of alternative 5’ splice sites at exon 2, are also a famous case of antagonist 

isoforms (Boise et al. 1993). BCL-XS has pro-apoptotic functions while BCL-XL has anti- 

apoptotic functions. In colorectal cancer (CRC), overexpression of the long isoform of 

SYK significantly suppresses the proliferation and metastasis of CRC cells, while 

overexpression of the short isoform does not (Ni et al. 2016). The vascular endothelial 

growth factor A (VEGF-A) gene encode for proteins involved in angiogenesis, and this 

gene gives rise also to two transcripts with opposite functions (Guyot and Pagès 2015; 

Bates et al. 2002). Exon 8 is the key determinant of isoform switching between a pro-

angio-genic and anti-angiogenic isoform. When exon8a is included, exon 8b is 

excluded and the corresponding protein is pro-angiogenic. In contrast, when exon 8b 

is included, exon 8a is excluded and the protein is anti-angiogenic. Human cyclin D1 

(CCND1) is expressed as two isoforms derived by alternate RNA splicing, termed D1a 

and D1b, which differ for the inclusion of intron 4 in the D1b mRNA. Cyclin D1b displays 

relatively higher oncogenic potential and was involved in the formation of metastases 

(Augello et al. 2015). An exon inclusion change in NUMB has been shown to promote 

cell proliferation (Bechara et al. 2013). Similarly, an exon-skipping event in MST1R 

(RON) has been related to the acquisition of cell motility during cancer cell invasion 

(Ghigna et al. 2005). Although I have mentioned a lot of examples, this is not an 

exhaustive list of all AS that are playing a role in oncogenesis. 

 

 In 2008, Thorsen & al mark the start of large-scale studies for alternative splicing 

in cancer (Thorsen et al. 2008). Using 102 normal and cancer tissue samples, from 

colon, bladder and prostate, they identified several AS cancer specific events in these 

tissues. The following year, Venables & al followed this path and found 288 AS in 

ovarian breast cancer and 232 AS in breast cancer compared to normal tissue using 

high-throughput RT- PCR (Julian P. Venables et al. 2009).  One year later, using cancer 

cell lines, a transcriptome wide study based on Junction Arrays discovered 181 splice 

events occurring during breast cancer, amongst which some are specific to breast 

cancer subtype (Lapuk et al. 2010). This was also demonstrated later elsewhere 

using  RNA-SEQ data from The Cancer Genome Atlas (TCGA)  (Bjørklund et al. 2017). 

More recently, different AS patterns in tumors have been demonstrated again using 

TCGA dataset (Sebestyén, Zawisza, and Eyras 2015; Tsai et al. 2015; Y. Li et al. 2017).  

Trincado  & al highlighted the fact that transcript isoform signatures appear especially 



 39 

relevant to determine lymph node invasion and metastasis (Trincado, Sebestyén, et al. 

2016). In another study, it was showed that AS deregulation in cancer often impacted 

functional protein domains that are frequently mutated in tumors and potentially 

affected protein-protein interaction in cancer pathways. They introduced the concept 

of cancer alternative splicing changes (CASCs) and proposed that these particular 

events could be oncogenic drivers on their own (Climente-González et al. 2017). In 2018, 

a comprehensive analysis of alternative splicing across tumors from 8705 patients 

confirmed tumors have up to 30% more alternative splicing events than normal 

samples (Kahles et al. 2018). They also concluded that AS in tumors leads to cancer-

specific RNA transcripts that are translated into tumor-specific proteins with the 

potential for Major Histocompatibility Complex (MHC) presentation and, hence, could 

be a promising target for new immunotherapy treatments.  

 

 For the past 10 years, thanks to transcriptome wide study, several abnormal 

altered transcripts have been discovered in a plethora of cancer. Mutations in splicing 

factors or direct mutations in splicing site or regulatory elements may be the reason for 

these changes at the transcriptomic level. However, there is still work to be done in 

order to characterize their functional impact and relevance to tumorigenesis. Below 

there is a table (Table 1-1) summarizing some of the known oncogenic AS isoforms 

and their function in cancer biology.  
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1.3.4.2. DURING EMT 

 
 

 As I mentioned before, EMT is important process in the tumor progression. EMT 

program relies not only on transcriptional modifications but also extensive changes in 

alternative splicing are observed (Grosso, Martins, and Carmo-Fonseca 2008; Shapiro 

et al. 2011). For example, the value of considering AS as a marker for the formation of 

metastases has been showed by Durtertre & al (Dutertre, Vagner, and Auboeuf 2010). 

They identified expression of alternative splicing exons associated to tumors with 

different metastatic capabilities. They highlight the fact that some exons were 

associated with dissemination of primary tumor cells to sites of pulmonary metastasis. 

Finally, differentially spliced variant transcripts identified in their mouse 4T1 primary 

mammary tumor model was associated with poor prognosis in a large clinical cohort 

of patients with breast cancer. Moreover, AS were also associate with EMT elsewhere 

in large cohort of tumors (Danan-Gotthold et al. 2015) or in large panel of cancer cells 

Table 1.1 Tumor-associated isoforms representative of the cancer hallmarks. 
 

Splicing event type, isoform structure, tumor expression, and experimental evidence for 
selected alternative splicing isoforms detected in human tumors (adapted from Urbanski, 2018). 
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lines with different invasive properties (Lapuk et al. 2010; Neve et al. 2006; Kao et al. 

2009).  

 

 Recent studies started to suggest that the switch of an exon can drive a more 

mesenchymal state and/or leads to cancer progression (Ji Li et al. 2018; Ranieri et al. 

2016; Brown et al. 2011). The fact that some AS are sufficient to trigger or impair EMT 

by themselves, suggest that alternative splicing is a key regulatory mechanism during 

EMT. Shapiro & al were among the first to identify an EMT-Driven alternative splicing 

program that occurs in human breast cancer and modulates cellular phenotype 

(Shapiro et al. 2011). This complex network of interaction occurring during EMT was 

further described by Yang & al (Y. Yang et al. 2016a).  Gradually, a landscape of 

alternately modified exons began to appear and studies on the specific functions of 

these isoforms have started to emerge. Several functions of AS have been well 

described (Table 1-2) as FGFR2, CTNND1, CD44 that will be detailed further. 

 

 FGFR2 is a transmembrane receptor tyrosine kinase of the fibroblast growth 

factor receptor family. The ligands of the fibroblast growth factor family (FGFs) are 

responsible of its activation (Turner and Grose 2010). Two mutually exclusive 

alternative exons control this behavior. Exons, IIIb and IIIc, encodes for a part of the 

third extra-cellular immunoglobulin-like domain of FGFR2. Exon IIIb is known to be 

predominantly included in epithelial cells, whereas exon IIIc is limited to mesenchymal 

cells (Warzecha et al. 2010; Carstens et al. 1997; Carstens, Wagner, and Garcia-Blanco 

2000). The mesenchymal splicing variant of the transmembrane receptor FGFR2 can 

recognize FGF-2 as a ligand whereas the epithelial isoform has less affinity for it, which 

will affect differentiation, growth and capacity to invade of cells (X. Zhang et al. 2006) . 

During EMT, we can observe a switch between FGFR2-IIIb and FGFR2-IIIc isoforms 

(Gil-Diez De Medina et al. 1999; Savagner et al. 1994). Newly, the specific expression of 

the FGFR2-IIIc variant was shown to be sufficient to promote cell migration, 

invasiveness and proliferation in response to FGF-2 (Sanidas et al. 2014). 

 

 CTNND1 encodes the p120-catenin (p120) protein which regulates 

transmembrane cell-cell adhesion receptors called cadherins. For instance, it is known 

to stabilize E-Cadherin (a well-known marker of epithelial state). Besides cell-cell 

interactions, p120 regulates the activity of Rho family GTPases and downstream 
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cytoskeletal dynamics (Davis, Ireton, and Reynolds 2003). Yanagisawa showed that is 

was able to promote invasion and cell motility (Yanagisawa et al. 2008). 

During EMT, there is a switch between two isoforms from a short to long isoform (Y. 

Zhang et al. 2014). Alternative exons, that are skipped in epithelial cells, are included 

in the mesenchymal cells. The lack of these exons is responsible to the absence of a 

coiled-coil domain in the epithelial variant, domain that stabilizes RhoA binding and 

inhibits RhoA activity, resulting in an increase of migration and cell invasiveness 

(Epifano, Megias, and Perez-Moreno 2014; Keirsebilck et al. 1998). Interestingly, 

CTNND1 isoform has recently been involved in a specific signature  for basal-like 

breast cancer, one of the most aggressive and deadly breast cancer subtype with 

mesenchymal features (Sebestyén, Zawisza, and Eyras 2015). 

 

 CD44 gene encodes for a transmembrane glycoprotein involved in many cellular 

processes such as cell survival, migration and proliferation (Zöller 2011; Prochazka, 

Tesarik, and Turanek 2014). CD44 has a high structural heterogeneity associated to 

the presence of ten alternatively spliced exons in its coding sequence, giving rise to a 

plethora of isoforms. The CD44 transcript is composed of 20 exons in human, including 

10 variable exons (v1-v10) and 14 constitutive exons (exons 1-5 and 16-20). The 

inclusion of the variable exons leads to an increase of the size of the extracellular 

region of CD44, providing new interaction sites for additional molecules (Bennett et al. 

1995) Overexpression of CD44 v6 variant is associated with poor patient prognosis in 

gastric cancer progression (Fang et al. 2016) whereas expression of CD44 v10 isoform 

correlates with anti-metastatic properties in pancreatic cancer (Navaglia et al. 2003) 

During EMT, a switch occurs from an isoform (including v8-v10 exons) to a shortened 

isoform. It has even been reported that this switch is required to trigger EMT, 

showing how strong the link between alternative splicing and EMT is (Brown et al. 

2011). Initially, the mesenchymal splice variant was associated to the formation of 

invadopodia, increasing cell migration (C. Chen et al. 2018). Recently, Müller & al 

describe a new function where the mesenchymal isoform mediates the endocytosis of 

iron bound hyaluronates in tumors. In this way, iron operates as a metal catalyst to 

demethylate repressive histone marks that govern the expression of mesenchymal 

genes and show this mechanism is enhanced during EMT(Müller et al. 2020). 
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 Other alternative splicing have been shown to play an important role in 

EMT/tumor progression (H. Lu et al. 2013; Tripathi et al. 2019; Itoh et al. 2017; 

Braeutigam et al. 2014), as ENAH, EXO70, TAK1, ARHGEF11, SEC13A, SLK  (among 

them, some are cited in Table 1-2) but it remains to see if they can drive an EMT, be 

considered as EMT alternative splicing drivers or Cancer-Associated Splicing Changes 

(CASCs) as previously defined by Climente-Gonzalez & al.(Climente-González et al. 

2017). This idea has already emerged among some.  For instance, in 2018,  Li & al , 

showed that an AS splicing switch in FLNB, an actin-binding protein, promotes the 

mesenchymal cell in human breast cancer (Ji Li et al. 2018).  

 

 

 

 

 

 

Table 1.2 Examples of genes affected by alternative splicing during EMT. 
 
Genes are presented with their function, the type of alternative splicing event that occurs, and 

the domain/function that will be affected (adapted from Carstens & Warzecha, 2012). 
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 Importantly, more and more therapeutic strategies aim to restore normal splicing 

patterns in cells harboring genetic disorders (Liang et al. 2020; L. M. Urbanski, Leclair, 

and Anczuków 2018).  The first approval from the US Food and Drug Administration for 

a therapy based on RNA interference (RNAi), with patisiran (a drug targeting a rare 

condition that can impair heart and nerve function) was only released very recently in 

2018. Antisense oligonucleotides (ASOs) represent a compelling therapeutic approach 

to target exon leading to a pathologic state. Notably, application of antisense oligos 

(ASOs) are currently in clinical trials for Duchenne muscular dystrophy and spinal 

muscular atrophy (Havens and Hastings 2016; Pires et al. 2017). Recently, an in vitro 

cancer cell model, Hong & al identified the effect of an ASO (AZD9150), reducing signal 

transducer and activator of transcription 3 (STAT3) in lung cancer and lymphomas (D. 

Hong et al. 2015). ASO (AZD4785) targets the KRAS gene and was showed to diminish 

its proliferative activity in some cancers (J. C. Lin 2018). ASO-mediated exclusion 

of MDM4 exon 6 leads to a decrease in MDM4 abundance through the AS-NMD 

pathway, which enhances the drug sensitivity and apoptosis of melanoma cells 

(Dewaele et al. 2016). While RNA interference approaches are still in its premise, new 

successes for splice-switching oligonucleotides (SSO) are emerging. SSO approaches 

were used to target ERG oncogene (L. Li et al. 2020) or modulates MKNK2 alternative 

splicing, in prostate cancer and glioblastoma (Mogilevsky et al. 2018), respectively. 

Identifying and characterizing the function of ASE involved in EMT, and therefore tumor 

progression, can thus offer new opportunities for modern therapeutic strategies based 

on RNA.  
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1.3.4.3. ACROSS CANCER TYPES 

 
 Splicing factors are important modulators of RNA processing. Alternative 

splicing is frequently regulated by these trans-acting splicing factors, which bind to 

sequence motifs that are associated with the promotion (enhancers) or repression 

(silencers) of splicing. For instance, SR proteins, hnRNPs can act as both oncoproteins 

and tumor suppressors (Dvinge et al. 2016). Tumor progression can be boosted by 

Figure 1-14 Therapeutic strategies to target-splicing alterations in tumors.  
 

(A) Isoform specific inhibition can be achieved by using splice-switching antisense 
oligonucleotides (ASOs) that bind in a sequence specific manner and modulate the outcome of 
a specific splicing isoform. ASOs can promote exon skipping or inclusion by blocking the 5'SS, 

an exonic silencer (ESS), or enhancer element (ESE) or by preventing the usage of a mutant 
(MUT)/cryptic splice site. (B) List of cancer-associated human isoforms targeted by splice-

switching ASO. (adaptated by Urbanski, 2018) 

 



 47 

different regulation of their expression (L. Urbanski and Leclair 2019) or mutations in 

their sequences (Yoshida, Kenichi Ogawa 2014) (Figure 1-14) resulting in a drastic 

change of the underlying transcriptomic programs. Seiler et al. report that 119 splicing 

factor genes (over 400 SF) carry putative driver mutations over 33 tumor types in 

TCGA (Seiler et al. 2018). Among all the tumor types analyses, bladder carcinoma and 

uveal melanoma had significantly higher rates of splicing factor driver mutations than 

would be expected by chance, suggesting that splicing deregulation is an important 

hallmark for these tumors. These mutations were associated with deregulation 

of immune response, cell cycle checkpoint, DNA damage response (DDR), and 

metabolism. 

 

 

 

 

 

 

 

 

 

Figure 1-15 Recurrent splicing factor alterations detected in cancer. 
 

Genomic alterations include expression changes and recurrent somatic mutations. Splicing-
factor upregulation are depicted in red, downregulation in blue, and somatic mutations in 

green. Several splicing factors can be found both upregulated and downregulated in tumors of 
the same tissue, suggesting that distinct splicing-factor genomic alterations are associated 

with distinct tumor subtypes within the same tissue. (adapted from Urbanski, 2018) 
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In another study, co-regulated SFs were associated with aggressive breast cancer 

phenotypes and enhanced metastasis formation (Koedoot et al. 2019). Table 1-3 gives 

a more complete overview of SFs that are functionally linked to cancer. 

 

 

 

 

 

 

  

Table 1.3 Unmutated SFs that function as proto-oncogenes or tumor suppressors. 
 

This table describes unmutated splicing factors with the downstream effect of their 
dysregulated isoforms highlighting their functional link with cancer. (adapted from Divinge, 

2016).  
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When we look Individually to these SFs, SR splicing factor 1 (SRSF1; also known as 

ASF and SF2) is upregulated in several cancers, including lung, colon and breast 

cancer (Anczuków et al. 2012; Karni et al. 2007; Anczuków et al. 2015).   SRSF1 acts 

synergistically with MYC, and their co-expression correlates with higher tumor grade 

and decreased survival in breast and lung cancer patients (Anczuków et al. 

2015).  Several alternative isoforms regulated by SRSF1 are implicated in cancer-

relevant processes as apoptosis (e.g., BCL2L1, BCL2L11, BIN1), cell growth 

(RPS6KB1), cell survival (MKNK2), or motility (RON) (L. M. Urbanski, Leclair, and 

Anczuków 2018). Interestingly, the overexpression of one such isoform, exon-9-

included CASC4, increased acinar size and proliferation, and decreased apoptosis, 

highlighting the strong impact a single isoform can have on the phenotype (Anczuków 

et al. 2015) Another example is QKI, that is thought to play a role of tumor suppressor 

in lung cancer, in which it is commonly downregulated, in part by regulating the 

alternative splicing of NUMB (Zong et al. 2014).  

 

 In breast, SRSF4, SRSF6 or TRA2b promotes mammary cell proliferation and 

invasion and it seems that TRA2b, regulated by MYC, plays a role in the formation of 

metastasis (S. H. Park et al. 2019). Numerous SFs (hnRNPK hnRNPA2/B1, SRSF6, 

SRSF3) are frequently overexpressed in breast and other tumors (L. M. Urbanski, 

Leclair, and Anczuków 2018). Notably,  hnRNPM promotes breast cancer metastasis 

by activating the switch of alternative splicing that occurs during epithelial–

mesenchymal (Yilin Xu et al. 2014) and has been shown to cooperate with ESRP 

proteins (S. E. Harvey et al. 2018). In addition, RBFOX2 was shown to be repressed in 

breast and ovarian cancers and associated with many abnormal alternative splicing 

events (Julian P. Venables et al. 2009; J. P. Venables et al. 2013). Among others, which I 

will detail below, the splicing factor RBFOX2 has also been linked with EMT (Danan-

Gotthold et al. 2015; Lapuk et al. 2010; Shapiro et al. 2011; Julian P. Venables et al. 2013).  

  

In summary, alternative splicing regulation in tumor progression should not be 

seen like a mechanism led by a single major actor, but as a complex network of 

interactions between different players. 

 

 

 



 50 

1.3.4.4. RELATED TO EMT 

 

 As mentioned just earlier, the splicing factor RBFOX2 regulates EMT, and have 

many splicing targets in breast, pancreatic, and colon tumors (J. P. Venables et al. 2013; 

Braeutigam et al. 2014; Lapuk et al. 2010; Danan-Gotthold et al. 2015). The loss of 

RBFOX2 in mesenchymal cells leads to a partial reversion of the epithelial phenotype 

(Shapiro et al. 2011). Notably, it was involved in alternative splicing of FGFR2 discussed 

earlier (Hovhannisyan and Carstens 2005) and was implicated in the survival of human 

embryonic stem cells (Yeo et al. 2009). In the clinical field, ESRP1/RBFOX2 ratio value 

was linked to a higher risk of metastasis in early breast cancer patients (Fici et al. 2016). 

 

 However, the major EMT splicing regulators are the epithelial specific regulatory 

proteins 1 and 2 (ESRP1/2). These regulators are the most downregulated in multiple 

models of EMT whereas RBFOX2 is slightly increase (Warzecha et al. 2010). ESRP-

targeted transcripts undergo a switch from epithelial to mesenchymal isoforms 

(Warzecha and Carstens 2012). They affect splicing of target genes involved in EMT, 

including CD44, ENAH, FGFR2, and RAC1, playing role in cell-cell junction adhesion, 

cytoskeleton, actin dynamics and extracellular matrix (ECM) (Dittmar et al. 2012; 

Shapiro et al. 2011; C. Chen et al. 2018; Warzecha et al. 2010; Y. Yang et al. 2016a). They 

are also very low expressed in claudin low tumors and basal B cells lines, both 

harboring mesenchymal features, with high invasive properties (Lapuk et al. 2010; Neve 

et al. 2006; Kao et al. 2009). ESRP1/2 were shown to be upregulated in normal 

epithelium but downregulated in invasive fronts (Ishii et al. 2014). Interestingly, using 

single-cell transcriptomics, it was also shown that cells expressing a partial EMT 

program were spatially localized at the leading edge of primary tumors in head and 

neck cancer (Puram et al. 2017). More surprisingly, higher expression of ESRP1, which 

is downregulated during EMT,  correlated with a worse prognosis for ER+ breast 

cancer (Gökmen-Polar et al. 2019) or ovarian cancer (Jeong et al. 2017). 

 

 Other splicing factors were suggested to cooperated with ESRP proteins as 

hnRNPM whose splicing levels of coregulated exons were associated with breast 

cancer patient survival (S. Harvey et al. 2018). Another example of cooperation, is the 

RNA binding motif protein 47 (RBM47), which is downregulated during EMT (Y. Yang 

et al. 2016a). In breast cancer cells, RBM47, via its ability to modulate splicing, has 
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been demonstrated as a potential metastasis formation inducer (Vanharanta et al. 

2014). Its down regulation was also observed during colorectal cancer progression 

(Rokavec et al. 2017). In a model of lung adenocarcinoma, it was also proposed as a 

tumor-suppressor (Sakurai et al. 2016). Based on TCGA data, RBM47 appears to be 

lowly expressed in Claudin-Low and basal-like breast tumors, which are the most 

aggressive tumors (Vanharanta et al. 2014). Recently, the A-Kinase Anchor Protein 

(AKAP8) was reported as a splicing regulatory factor that inhibits EMT and breast 

cancer metastasis (X. Hu et al. 2020). MBNL and CELF proteins have also been 

implicated in EMT (Shapiro et al. 2011) highlighting the complexity of cancer-associated 

splicing dysregulation. Figure 1-15 displays a resume of major SFs regulated during 

EMT, and examples of splicing switches. 

 

 

, 

 

 

 

 

 

Figure 1-16 Splicing Factors changes and AS events during EMT. 
 

 Transition of cells between epithelial (blue) and mesenchymal (red) states is associated with 
shifts in abundance and/or activity of splicing factors. These modifications have an impact on 
the regulation of an alternative splicing program during EMT. Some alternative splicing events 
impacted are given as examples (CD44, FGFR2, MENA, RON, RAC1) (adapted from Neumann, 

2017). 
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1.4. HIGH-THROUGHPUT TECHNOLOGY, ANALYSIS, MODELS AND 

RESSOURCES FOR CANCER RESEARCH 

 

 At the end of the 20th century, molecular biology knew an unprecedented 

revolution. In the early 1980s, Kary Mullis invented the polymerase chain reaction 

(PCR) technology for amplifying DNA which was first published in the journal Science 

in 1985 (Kaunitz 2015). Then, the 1990s were the witnesses of a wave of applications 

based on discoveries in the previous decades and the arrival of huge volumes of 

genomic/transcriptomic data from automated sequencing and DNA microarray 

technologies that biologists couldn’t treat alone. It was from there that computer 

science began to enter laboratories in order to help researchers to store and process 

this incredible amount of data being produced. Two new disciplines, genomics and 

bioinformatics, were born. In parallel, an initial rough draft of the human genome was 

released in 2000. Now, technologies are mature enough to ask several questions 

about changes in DNA sequences, modification of gene expression, epigenetic and 

proteins variations in different tissues or contexts (normal or tumor cells) at an 

affordable price and a shortened period of time. 

 

1.4.1. HIGH-THROUGHPUT TECHNOLOGY 

1.4.1.1. MICROARRAYS 

 

 The microarrays emerged in the late 1990s. This system consists in a simple 

surface of glass or plastic where a collection of microscopic DNA spots (probes) are 

attached. The single-strand oligonucleotides probes are chosen to be specific to a DNA 

region or transcript. They can be used to detect DNA (as in comparative genomic 

hybridization CGH) or detect RNA (as in cDNA after reverse transcription). The RNA 

is extracted from a sample, amplified and labeled with a fluorochrome before being 

hybridized on the chip. After the fluorochrome has been stimulated at the appropriate 

wave length, the signal intensity of the fluorescence light allows quantifying the 

expression levels of targets which are attached to the probe.  

Hybridization-based approaches are relatively inexpensive, but several limitations 

exist. Their design relies of the knowledge we have of the genome making them 
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impossible to discover novel transcripts. Due to cross hybridization (hybridization 

between sequences that are not strictly complementary) background levels of the 

signal are high. Thus, genes that are lowly expressed in a sample could not be 

distinguished from background chip level, and overexpressed genes may lead to signal 

saturation limiting their exact quantification. Moreover, comparing expression levels 

across different experiments is often difficult and can require complicated 

normalization methods. 

 

 Affymetrix, leader in the market, proposed three kinds of chip to study 

transcriptome. Classical microarray, with probes targeting only the 3’ region of a gene 

in order to study their expression. This technology (mostly used in large-scale 

sequencing project of a population) is inappropriate to study alternative splicing since 

it is not detecting splice junctions. In contrast, their two other products can do gene 

expression and AS analysis. Exon arrays are designed with probes matching exons, 

but the number of probes by exon is low and the results depend very strongly on the 

quality of the hybridization and the fluorescent labeling. The last technology, named 

Junction arrays, has the advantage of having probes at exon-exon junctions making 

the AS analysis more reliable.  

Yet, with the apparition of high-throughput sequencing (RNA-seq), these type of 

hybridization approaches have become obsolete (see definition in the next section). 

1.4.1.2. HIGH-THROUGHPUT SEQUENCING: FOCUS ON RNA-SEQ 

 

 Historically, the sequencing method of reference was Sanger sequencing, a 

method of DNA sequencing based on the selective incorporation of chain-terminating 

dideoxynucleotides by DNA polymerase during in vitro DNA replication. Then the 

emergence of technologies called High-Throughput Sequencing (HTS) or Next 

generation sequencing (NGS) allowed researchers to sequence DNA and RNA much 

faster and cheaper. Since the TCGA RNA-SEQ data analyzed in this thesis was 

produced from an Illumina HiSeq platform, I will present only this technology, but it is 

worth mentioning that other technologies exist with different chemistry (Roche 454, 

SOLiD, IonTorrent).  
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 The Illumina next-generation sequencing (NGS) method is based on 

sequencing-by-synthesis (SBS), and reversible dye-terminators that enable the 

identification of single bases as they are introduced into DNA strands. First, the RNA 

extracted from a sample is broken into small fragments that are converted to DNA 

through reverse transcription. Once turned into cDNA, the molecules can be 

sequenced as regular DNA. Short sequences of nucleotides, called adaptors, are 

attached to both fragments ends. These adaptors will be used to anchor the fragment 

on one end of the flow cell (Figure 1-17 A). The second step consists in the formation 

of a cluster of sequences (Figure 1-17 B). The DNA fragments in the sequencing 

library are fixed to adapters attached to the surface of the flow cell when they pass 

through it. This fixation is possible only if one of the adapters added at the ends of the 

DNA fragment of the library match the complementary sequence of the ones attached 

on the surface of the flow cell. Then, the other end of each fragment is folded over and 

binds to another adapter on the flow cell surface.  The adapters on flow cell are used 

as a template to initiate synthesis of the complementary strand in a process called 

Bridge PCR. Multiple rounds of amplification are performed to obtain clusters 

containing approximately 1000 copies of the original single-stranded DNA molecule. 

The purpose of this process is to amplify the signal intensity of the base to meet the 

signal requirements for sequencing. The last step is the actual sequencing based on 

sequencing-by-synthesis (SBS). DNA polymerase and 4 dNTP with base-specific 

fluorescent markers are added to the reaction system (Figure 1-17 C). The 3′-OH of 

these dNTP are protected by chemical methods, which ensures that only one base will 

be added at a time during the sequencing process. Several cycles are performed 

during which the 4 fluorescently tagged nucleotides compete for addition to the growing 

nucleotides chain. After the addition of each nucleotide, unused reactants are washed 

away and clusters are excited by a laser. Fluorescence signal is recorded by optical 

equipment and recorded on a computer as a sequence of nucleotide bases. When the 

fluorescence signal is recorded, a chemical reagent is added to quench the 

fluorescence signal and remove the dNTP 3′-OH protective group, so that the next 

round of sequencing reaction can be performed. 
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 Finally, the sequences obtained are small fragments of the genome (reads) that 

need to be aligned along a reference genome to be analyzed. Several types of 

sequencing library can be realized. For example, to have a better depth of sequencing, 

ribosomal RNA, that are the majority of RNA inside a cell, can be removed. This 

protocol is called Ribo-zero. Another famous protocol is the polyA+ protocol where only 

Figure 1-17 Principle and Workflow of Illumina Next-generation Sequencing. 
 

 (A) Library preparation: Through ultrasonic fragmentation, the genomic DNA becomes DNA 
fragment. Then fragments are ligated to adapters. (B) Cluster generation: Library is loaded on a 

flow cell and the fragments are hybridized to the flow cell surface. Each bound fragment is 
amplified into a clonal cluster thought bridge amplification. (C) Sequencing: Sequencing 

reagents, including fluorescently labeled nucleotides, are added and the first base is 
incorporated. The flow cell is imaged and the emission from each cluster is recorded. The 

emission wavelength and intensity are used to identify the base. This cycle is repeated N times 
to create a read length o N bases. 
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RNA with PolyA tail are retained, removing majority of non-coding RNA and non-

mature RNA. 

 

 In RNA Sequencing, the number of reads that fall into a given gene or exon, 

quantifies its level of expression. Compared to microarrays, RNA sequencing does not 

need to design any probes since transcripts are directly sequenced. The gene 

expression level is estimated by counting data rather than fluorescent signals. The 

estimation is then much more precise without saturation. RNA-Seq enables scientists 

to perform several kinds of unbiased analyses at the gene, transcript and exon level. 

 

 Even if DNA sequencing is widely used in the field of cancer, I will not detail this 

technology because it was not performed in this work, but the principle of sequencing 

is the same. I will just mention some of these applications and the global principle of 

algorithms used. DNA sequencing can be used to discover polymorphisms, mutations 

and copy number variations (CNV - amplifications, deletions, rearrangements and copy-

neutral loss of heterozygosity). After the reads have been mapped along the genome, 

a software dedicated to CNV detection can identify the reads that are over/under 

represented on a large portion of the genome or, in the case of short variations, inspect 

if the content of nucleotides from the reads sequenced differs from the reference 

sequence where they have been mapped.  

 

1.4.2. BIOINFORMATIC ANALYSIS 

  

 Several bioinformatic analysis can be performed based on RNA Sequencing 

(Conesa et al. 2016). In this section, I will discuss the main investigations which have 

been carried out during this thesis work and I will not describe exhaustively all 

procedures that can be done (Figure 1-18). 
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Figure 1-18 RNA-seq computational analyses. 
 

 The graphic is divided into three parts: pre-analysis, core analysis and advanced analysis of 
RNA-seq. With differential expression analyze, alternative splicing analyze are central 

components of the core analysis of RNA-seq but other advanced analyzes can be performed as 
Gene Fusion discovery for example (adapted from Conesa & Madrigal 2016). 
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1.4.2.1. DIFFERENTIAL GENE EXPRESSION  

 

 In the field of transcriptomic, the most common application of RNA-seq is to 

estimate gene and transcript expression. The first level of analysis consists in the 

mapping of the reads over the genome. This approach will make possible to quantify 

raw counts of mapped reads. Using a file containing mapped reads, some programs 

as (HTSEQ-count (Anders, Pyl, and Huber 2015), or featureCounts (L. Yang, Smyth 

Gordon K, and Wei 2014)  are dedicated to this purpose, but modern mapper as STAR 

(Dobin et al. 2013) have also now directly integrated this functionality in their algorithm. 

Raw read counts alone are not sufficient to compare expression levels among 

samples, a normalization process is always necessary. 

 

 Historically, simple approaches were first developed to normalize away the 

sequencing depth which is the most important factor for comparing samples. The 

measure RPKM (reads per kilobase of exon model per million reads) is a within-sample 

normalization method that will remove the feature-length and library-size effects 

(Mortazavi et al. 2008).  Correcting for gene length is not necessary when comparing 

changes in gene expression within the same gene across samples, but it is necessary 

for correctly ranking gene expression levels within the sample to account for the fact 

that longer genes accumulate more reads. TPMs (transcripts per million), which 

effectively normalize for the differences in composition of the transcripts in the 

denominator rather than simply dividing by the number of reads in the library, are 

considered more comparable between samples of different origins (Conesa et al. 2016). 

TPM established itself as a reference and this metric is now the most frequently 

reported RNA-seq gene expression value.  

 

 Differential gene expression (DGE) analysis can be done using this metric with 

classical statistical test to determine whether the gene expression is statically different 

between groups. More advanced methods have been developed for DGE (TMM 

(Robinson and Oshlack 2010), DESeq (Anders and Huber 2010), PoissonSeq (Jun Li et 

al. 2012) and UpperQuartile (Bullard et al. 2010) which ignore highly variable and/or 

highly expressed features. Algorithm as voom implemented in Limma package (Ritchie 

et al. 2015) proposed to apply a linear model to log transformed data and a locally 

weighted regression (LOWESS) to weight the standard linear model. Two methods 
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(DESeq2 (Love, Huber, and Anders 2014) & edgeR (Robinson, McCarthy, and Smyth 

2009)) have become very popular and use the negative binomial as the reference 

distribution and  likelihood ratio test to assess the significance of the genes. However, 

several comparison studies point out that no single method is likely to perform 

favorably for all datasets. 

 

 Several methods based on k-mer counting in reads were also born recently 

(Sailfish (Patro, Mount, and Kingsford 2014), Kallisto (Bray et al. 2016), Salmon (Patro 

et al. 2017)). It turns out to be faster methods because they ignore the read alignment 

step. They were quickly accepted by the community due to their speed and the fact 

that they directly compute TPM values, a measure which is now used as a standard. 

  

 Differential gene expression analysis highlights genes differentially expressed 

between conditions. Nevertheless, it does not inform whether different transcripts are 

expressed or not. This is where the analysis of alternative splicing comes into play to 

provide a finer layer of information. 

1.4.2.2. DIFFERENTIAL ALTERNATIVE SPLICING 

 

 Two major methodologies appear when it comes to detection of alternative 

splicing (Figure 1-19 a). The first approach, which I will not discuss in details, is based 

on quantification of the expression of transcript isoforms from the same gene and their 

comparison. An example that illustrates this case is the Cufflinks/CuffDiff2 algorithm 

(Trapnell et al. 2012) that estimates isoform expression first and then compares their 

differences. This kind of method suffers from the difficulty to accurately identify 

expression at the isoform level due to the intrinsic limitations of short-read sequencing. 

  

 The second approach (Figure 1-19 b) is based on specific algorithms focused 

on specific alternative splicing events. The so-called ‘exon-based’ approach skips the 

estimation of isoform expression and detects signals of alternative splicing by 

comparing the distributions of reads on exons and junctions of the genes between the 

compared samples. The advantage of exon or junction methods is their greater 

accuracy in identifying individual alternative splicing events.  
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 These methods provide as output PSI (Percent Spliced In) values explained 

Figure 1-19 b. This index, ranging from 0% to 100%, is an estimation of the fraction of 

isoforms that include the exon. It indicates the efficiency of splicing for a specific exon 

into the transcript population of a gene. The dPSI (delta Percentage Spliced In), which 

is a difference in PSI, is then generally computed to see if there is a change in the level 

of inclusion of an exon between two conditions. The last ten year, several tools have 

been developed to measure AS. Their approach can vary based on how to calculate 

PSI values, the way they take reads into account, depending on whether it counts the 

Figure 1-19 Methods to determine differential RNA splicing using RNA-seq data. 
 

(a) Approaches for the study of alternative splicing: Two major approaches can be 
distinguished. The first one consists in the reconstruction of the transcripts followed by 
comparison of their expression levels. The second approach focus on a single event, for 

instance, the inclusion or excision of an exon, in the case of exon skipping. (b)General concept 
of PSI calculation: Reads that support inclusion of exon are in green. Reads that support 

exclusion are in purple. For each sample, a ratio called Percentage Spliced-In (PSI) is 
computed.  Then, the difference (delta-psi) is calculated between the two samples and gives an 

idea of the change in the level of inclusion of an exon between two samples (adapted from 
Divinge 2016). 
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reads spanning the junctions or/and mapping the exon, and especially by the statistical 

method to estimate the robustness of the dPSI prediction. I provide a short summary 

of the latest tools (Sterne-Weiler et al. 2018; Trincado, Entizne, et al. 2016; Vaquero-

Garcia et al. 2016; Kahles et al. 2016; Y. Hu et al. 2013; Katz et al. 2010; Anders, Reyes, 

and Huber 2012; Brooks et al. 2011; Shen et al. 2014; Tapial et al. 2017; Tiberi and 

Robinson 2020)  developed recently but which is not intended to be an exhaustive 

review (Table 1-4) . This has been done elsewhere by Alamancos & al, who made a 

catalogue of all methods, appeared before 2015, to study splicing from high-throughput 

RNA sequencing data (Alamancos, Agirre, and Eyras 2014).  

 

Year Name Method / Models 

2020 Bandits 
DTU (differential transcript usage) - Bayesian hierarchical model, with a 

Dirichlet-multinomial structure 

2018 Whippet 
Junction-Kmer based – Splice Graph + likelihood function  

iteratively optimized by EM algorithm 

2018 Suppa2 
ΔPSI values as a function of the expression (TPM) of transcripts involved in the 

event 

2016 MajiQ 
Junction - Bayesian Psi modeling, and bootstrapping to report posterior psi and 

psi distributions for Local Spliced Variation (LSV) 

2016 SpiAdder Junction - Negative Binomial distribution + Generalized Linear Model (GLM) 

2014 Rmats 

Exon/Junction – (unpaired replicates) Binomial distribution for the estimation 

uncertainty in individual replicates + Normal distribution the variability among 

replicates + likelihood-ratio test 

2014 
Vast-

Tools 

Junction - Bayesian inference followed by differential analysis of posterior 

distributions 

2013 Diffsplice Exon/Junction – Graph-based, Jensen–Shannon divergence (JSD) 

2012 DexSeq 
Exon/Junction - Negative binomial distribution + Generalized Linear Model 

(GLM) 

2011 Juncbase Junction - Fisher exact test 

2010 Miso Exon/Junction - Bayes Factor (BF) 

 

 

Table 1.4 Overview of AS software since 2010. 
 

Description of softwares published for the study of alternative splicing since 2010.The table 
displays year of publication, name of the tool and methods/models used. This table is not an 

exhaustive review but demonstrate the strong activity of the field. 
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 A drawback of these tools is that it can be greedy in memory and time 

consuming in order to be executed. This is why the latest tools often highlight in the 

title of their publications the fact that they are fast or can be operated on a simple 

computer. This is not a negligible point because the medical community does not 

always have a computer infrastructure for intensive computing and if we want to 

integrate AS algorithms in the clinical field, they must be as efficient as possible to give 

as soon as possible a diagnosis to the patient.  

 

 During my thesis work, I had to analyze a very large number of patients for 

splicing, I looked for a fast and precise AS detection algorithm. Several tools were 

tested and I found that Whippet (Sterne-Weiler et al. 2018) performed faster and was 

convenient to use. It also gave us the more reliable results based on a tested dataset 

with published results on alternative splicing. Whippet accurately and rapidly quantifies 

simple and complex AS events (Figure 1-20). It works in four main steps: (1) Based 

on annotation (and as an option, with already mapped reads file), it will collapse gene 

structure into non-overlapping exon intervals (nodes). It builds a Contiguous Splice 

Graph (CSG), where each nodes node has two boundaries. All 5’ splice site and 3’ 

splice site boundaries have k-mer indices (colored lines) that are used latter for spliced 

read alignment in step (3). (2) A single transcriptome full-text index in minute space 

(FM-Index) is built from concatenated CSG sequences. It will be used to efficiently find 

the number of occurrences of a pattern (k-mer) within the compressed text, as well as 

locate the position of each occurrence. (3) Raw reads of RNA-SEQ will be mapped 

directly to a CSG using previously indexed structure. K-mers from a simple read will 

map and join different nodes (GeneX, Node5 and GeneX, Node7). (4) For each node, 

a repertory of all AS event associated to a node will be built thanks to an AS event 

graph and each node will be associated to several paths based on this structure. Paths 

can include, or on the contrary, exclude the node. (5) All paths through the AS event 

are enumerated and quantified. Finally, Whippet will give a ratio of inclusion paths over 

all paths for the AS event, the Percentage Splice In (PSI) value. 
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1.4.2.3. K-MER CONTENT 

 

Figure 1-20 Focus on Whippet: global methodology. 
 

Whippet was used all along the thesis work to profile alternative splicing and compute PSI 
values. Its algorithm can be divided into five steps that are further explained in the text of the 

manuscript. (adapted from Sterne-Weiler 2018). 
 



 64 

 k-mers are defined as short subsequences of length k contained within a 

biological sequence. In DNA/RNA sequencing, the biological sequence considered is 

a read. As I mentioned before, whether it is the expression or alternative splicing, new 

k-mer-based methods have appeared in different layers of analysis (Bray et al. 2016; 

Sterne-Weiler et al. 2018). K-mer counting (Manekar and Sathe 2018) has spread widely 

in applications for genome and transcriptome assembly, quality control, error 

correction, multiple sequence alignment, and repeat detection (Pickett, Miller, and 

Ridge 2017; Mapleson et al. 2017; Durai and Schulz 2016). The big advantage of k-mer-

based methods compared to alignment-based methods is the shorter computation 

times. Bypassing the mapping to a reference genome, make them a great solution to 

explore huge amount of data in order to classify them and discover new biological 

events. Recently a published software (Audoux et al. 2017), was able to detect 

numerous transcription and RNA processing events from RNA-SEQ using a k-mer 

approach. Another advantage of these approach is that they are not data-specific, and 

can be apply to a wide range of sequencing experiments as bisulfite sequencing, ChIP-

Seq or whole-exome/genome sequencing.  

There is therefore an emerging opportunity in terms of computational research and 

development to extract biological knowledge with these newly designed algorithms. 

 

1.4.3. COMPUTATIONAL TECHNIQUES 

 

 The use of sequencing technologies brings a huge amount of data. Raw data 

can usually be pre-processed by bioinformatic tool of the field, but further investigations 

can be necessary to get out added value from these first analyzes, traduced by big 

matrices of expression or alternative splicing values for example. 

I will describe some machine learning (ML) methods I applied during this thesis work. 

I will start with a simple case – hierarchical clustering – (Gentle, Kaufman, and 

Rousseuw 1991) followed by a description of a more advanced algorithm called Random 

Forest (Ho 1995) , that can be used to classify individual in groups with common 

characteristics. Finally, I will present techniques that are commonly used to relate 

genomic data to survival in different groups of a population. 

1.4.3.1. HIERACHICAL CLUSTERING  
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 Hierarchical clustering analysis (HCA), is an unsupervised technique, meaning 

that it can infer patterns from a dataset without known reference, labels or outcomes. 

HCA groups similar features into clusters. The final result is a set of clusters, where 

each cluster is distinct from each other, and the features within each cluster are 

broadly similar to each other.  It allows to build tree structures from data similarities in 

order to observe different classes.  

In order to decide which clusters should be combined or split, a measure of dissimilarity 

between sets of observations is required. This is achieved by use of an appropriate 

metric (a measure of distance between pairs of observations) that can be for example, 

Euclidian distance or 1-Pearson Correlation. Then, the linkage criterion specifies the 

dissimilarity of sets as a function of the pairwise distances of observations in the sets. 

Several methods are available to achieve this goal: 

· Complete-linkage: the distance between two clusters is defined as the longest 

distance between two points in each cluster. 

· Single-linkage: the distance between two clusters is defined as the shortest distance 

between two points in each cluster. This linkage may be used to detect high values 

in your dataset which may be outliers as they will be merged at the end. 

· Average-linkage: the distance between two clusters is defined as the average 

distance between each point in one cluster to every point in the other cluster. 

· Centroid-linkage: finds the centroid of cluster 1 and centroid of cluster 2, and then 

calculates the distance between the two before merging. 

 

 Results can be quickly visualized using a dendrogram which is a tree-like 

diagram that records the sequences of merges or splits. One limitation of HCA is that 

is cannot handle a huge amount of data. For this reason, it’s worth filtering your data 

before applying this technique. Another drawback here, is that you cannot reuse 

knowledge we could have gained from previous datasets. This is where another type 

of model, called supervised model, can be useful because it will learn from pre-existing 

labeled data to classify new unlabeled data. This is the case of random forest 

discussed below. 

 

1.4.3.2. THE RANDOM FOREST ALGORITHM 
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 Random Forest (RF) is a recent algorithm which principles were first proposed 

by Ho in 1995 (Ho 1995).  These last years, the use of such algorithms based on 

information theory has been made possible by the development of machine learning 

library (as Keras, SkicitLearn or Pytorch) that make these high-level algorithms 

accessible to a wider community (Paszke et al. 2017; Pedregosa et al. 2011; Chollet 2015). 

Nowadays, with explosion of biological data, ML techniques are becoming more and 

more popular in life sciences, including biology and medicine. I will explain the main 

idea being the algorithm and I will introduce some concepts used in ML. 

 

 Random Forest is based on decision trees. Decision trees are used to make 

prediction following several branches of “if… then…” decision splits - similar to the 

branches of a tree. At each branch, the feature thresholds that best split the (remaining) 

samples locally is found. The most common metrics for defining the “best split” are Gini 

impurity and information gain for classification tasks. As this is the metric used by default 

in RF, I will just say a few words about the Gini impurity to better understand how RF 

works. 

 Gini impurity measures the degree or probability of a particular variable being 

wrongly classified when it is randomly chosen and it’s used to determine how to split 

the data into smaller group. While building the decision tree, feature with the least 

Gini Impurity relative to the root node will be chosen. Of note, Gini Impurity, unlike 

information gain, isn’t computationally intensive as it doesn’t involve the logarithm 

function used to calculate entropy in information gain, which is why Gini Impurity 

is preferred over information gain.  

 Single decision trees are very easy to visualize and understand because they follow 

a method of decision-making that is very similar to how humans make decisions: with a 

chain of simple rules. However, there are not very robust, it’s here RF come into play. 

 

 RF makes predictions by combining the results from many individual decision trees. 

Because it uses multiple learning algorithms to obtain better predictive performance, 

RF falls into the category of Ensemble learning. One major way for combining the 

multiple decision trees in a random forest is Bagging, which is also called Bootstrap 

aggregation, where decision trees are trained on randomly sampled subsets of the data. 
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A big advantage of bagging over individual trees is that it decreases the variance of the 

model. Individual trees are very prone to overfitting and are very sensitive to noise in the 

data. Combining them with bagging will make them more robust. 

 In addition to randomly sampling instances from our data, RF also uses feature 

bagging. With feature bagging, at each split in the decision tree, only a random subset of 

features is considered. This technique helps reducing the impact of very strong predictor 

variables (i.e. features that have a very strong influence on predicting the target or 

response variable). 

 

 Finally, in the context of our analyzes, I end with a model able to predict the 

probability of a patient to be classified in a group or other. Important characteristics will 

also emerge from this model, leaving the researcher the possibility of carrying out in-

depth studies on the biological meaning of these characteristics. Also, these newly 

detected features could then be tested for a link with patient outcome as discussed 

below. 

 

1.4.3.3. SURVIVAL ANALYSIS 

  

 When clinical outcome is available, it becomes possible to assess difference in 

survival between groups of patients with distinct clinical or genomic features. For 

instance, in 2018, TCGA released a standardized dataset named the TCGA Pan-

Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical 

outcome endpoints and usage recommendations for each cancer type (Liu et al. 

2018). This provide an unprecedented opportunity for investigating cancer biology and 

differences in survival for large cohort of patients with cancer. 

 

 To apply survival analyzes and in order to distinguish individuals, the values of 

one specific genomic feature can be divided in two groups using median or quartiles. 

Otherwise, based on other approach of clustering, we can separate groups sharing 

several genomic characteristics. Then, the survival or time-to-event analysis can be 

performed to test difference in survival. It encompasses several methods that are used 

routinely in the clinical field. I will describe succinctly the purpose of each one without 
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diving into the mathematics behind so as not to lose the untrained reader. Table 1-5 

gives the definition given by TCGA for different endpoints that can be explored by 

survival analyzes in cancer. 

 

Endpoint Definition 

OS 

(overall survival) 

It is the period from the date of diagnosis until the date of death from 

any cause. 

DSS 

(disease-

specific survival) 

Event is death from the disease, and the event time is from the date 

of initial diagnosis until the date of death from the disease. 

PFI 

(progression-

free interval) 

It’s the period from the date of diagnosis until the date of the first 

occurrence of a new tumor event. 

DFI 

(disease-free 

interval) 

It’s defined as the period from the date of diagnosis until the date 

of the first new tumor progression event subsequent to the 

determination of a patient’s disease-free status after their initial 

diagnosis and treatment. For DFI the time interval should start 

from the time when the patient was first determined to be disease-

free, but such information was not available in the TCGA clinical 

data. 

 

 

 

 

 

  

 First, the Kaplan-Meier (KM) estimator (Kaplan and Meier 1958) is a non-

parametric method used to estimate the survival probability from observed survival 

times . The survival probability during the follow up time can be graphically presented 

by KM curves which are an easy way to interpret the outcome of patients. An example 

of KM curve is shown later in the manuscript (Figure 1-22). 

 Then, to test the statistical significance of the difference in survival probability, 

the log rank test can be used to assess the null hypothesis of no difference in survival 

Table 1.5 Definition of endpoints in clinical trials. 
 
An endpoint is the primary outcome that is being measured by a clinical trial. However, there is 
different types of endpoint that can be measured. In this table, we report the distinct endpoints 

and their definitions as given by TCGA.  (adapted from Liu, 2018) 
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between two or more independent groups. The test compares the entire survival 

experience between groups and can be thought of as a test of whether the survival 

curves are identical (overlapping) or not. Usually, a log rank test cut-off of 0.05 is 

considered as reliable. 

 Finally, Cox regression (or proportional hazards regression) is the method for 

investigating the effect of one or several variables upon the time a specified event 

takes to happen by making comparisons between the number of survivors in each 

group at multiple points in time (Cox 1972). This approach is used to compute the 

hazard ratio (HR) which is an estimate of the ratio of the hazard rate in one tested 

group versus the control group. It gives a prognostic value for a specific feature 

between groups. For instance, HR>1 means the tested group is associated with bad 

prognosis for the specific feature considered. (Conversely, HR<1 means the tested 

group is associated with good prognosis for the specific feature considered). 

 

To resume, the survival analysis results can be graphically presented by the Kaplan-

Meier (KM) plot with hazard ratio (HR) and log-rank p value. 

 

1.4.4. PRE-CLINICAL MODELS FOR CANCER 

 

 The previous techniques and analysis can be applied on different organic 

systems where sequencing has been done. I discuss earlier computational aspects, 

but it’s important to keep in mind that sequencing data can come from distinct contexts 

(in vivo or in vitro models) that bring its advantages and drawbacks.  

 

A biological hypothesis cannot be always tested on living human beings. To 

solve this problem, two kind of in vivo models are used to investigate different facets 

of cancer biology. 

 

 In vivo models use intensively mouse as an alternative organism of study due 

to its relative phylogenetic closeness and physiological similarity to our specie. When 

the function of a cancer gene is modified to cause the development of a specific cancer, 
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we speak about Genetically Modified Mice (GEMs). These models are well suited for 

studying tumor initiation and progression (Cheon and Orsulic 2011). 

 

Another in vivo system, can be the direct transplantation of tumors cells into 

immunodeficient mice called xenograft tumor model (Marangoni et al. 2007). This 

model conserves morphology architecture, vasculature, peripheral growth and 

molecular features of the original tumor from the patient. In this particular setting, this 

system represents an exciting opportunity to study response to treatment.  New 

technologies are also arising. Organoids are  3D multicellular in vitro tissue construct 

that mimics its corresponding in vivo organ, such that it can be used to study aspects 

of that organ in the tissue culture dish (Weeber et al. 2017; H. Xu et al. 2018). This recent 

technology is a breakthrough that will facilitate drug testing and guides personalized 

therapy (Kim, Koo, and Knoblich 2020). 

 

 Another alternative when a whole living organism is not available is in vitro 

models, when tumor cells are cultured on a bench in a synthetic environment 

composed of nutrients.  It’s a more convenient way to study the behavior of cancer 

cells compare to mouse xenograft which are time consuming and engraftment is not 

guaranteed to be successful. This is the most widely used in oncology because of its 

ease of use. The only limitation of this system is that it does not provide the context of 

a true tumor and so the interactions that can occurs with the microenvironment are 

lost. 

 

 The Cancer Cell Line Encyclopedia (CCLE) project is an effort to conduct a 

detailed genetic characterization of a large panel of human cancer cell lines (Ghandi 

et al. 2019; Barretina et al. 2012). It actually contains 1457 different cell lines which has 

been characterized at the level of the genome and transcriptome using high throughput 

sequencing technologies. Then, these cells are used as the ground of large drug 

screening initiatives (Tsherniak et al. 2017; Basu et al. 2013; Corsello et al. 2017). These 

initiatives are using genome-wide RNAi and CRISPR loss-of-function screens to 

systematically identify essential genes across hundreds of human cancers. In parallel, 

they are progressively establishing a comprehensive resource for drug sensitivity that 

are then freely available for the research community. 
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 In vitro models are well suited to induce an EMT in epithelial cells and study 

features that are impacted during this process. Our lab uses an inducible cell 

reprogramming system based on normal human mammary epithelial cells (MCF10a). 

This system stably expresses a tamoxifen inducible form of the EMT transcriptional 

regulator Snail (MCF10a-Snail-ER). Upon tamoxifen treatment, Snail enters in the 

nucleus and this event will silence key epithelial markers and leads to a rapid 

reprogramming into mesenchymal cells. However, several settings have been utilized 

to study EMT, using different cell types and inducers. To give a quick overview I will 

mention a few examples. In Human non-small cell lung cancer cell lines (H358), the 

induction of EMT has also be done by doxycycline which will induce Zeb1 another 

master transcriptional regulator of EMT. TGF-Beta as also been used to active EMT in 

immortalized human mammary epithelial cells (HMLE). Finally, under certain 

conditions, such as low cell confluence or hipoxia, cells can undergo a spontaneous 

EMT without a given inducer. In this case, the new cells freshly obtained with 

mesenchymal traits will be sorted, harvested and cultured in order to be studied. 

 

1.4.5. CANCER POPULATION GENOMIC RESSOURCES  

 

 In the previous section, I discussed how to study fundamental cancer biology 

aspects using cell lines or alternative model organism. Due to the increasing feasibility 

of sequencing genomes, huge number of primary tumors can be sequenced thanks to 

vast cohort of patients. Large-scale initiatives have emerged to explore the underlying 

biology of cancer, based on genomics and basic clinical information at the same time. 

The first goal of these projects was to catalog and discover major genomic alterations 

causing cancer, for a better understanding of the disease and in order to improve 

patient care. The datasets produced turned out to be useful resources to dive into the 

genetics of cancer and are widely used by researchers to test scientific hypothesis and 

develop new therapeutic strategies.   

 

 In the early 2000s, METABRIC (Molecular Taxonomy of Breast Cancer 

International Consortium) released a collection of over 2000 clinically annotated 

primary fresh-frozen breast cancer specimens from tumor banks in the UK and Canada 

(Curtis et al. 2012). Integrated genomic/transcriptomic analysis of breast cancers with 
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long-term clinical outcomes were made available for researchers. mRNA for 

expression was measured with the Illumina HT-12v3 platform. CNA (copy number 

aberrations) and SNPs were detected with the Affymetrix SNP 6.0 array. And so, for 

now, due to the technical platforms used, it was not yet possible to study alternative 

splicing on a large scale. 

 

 In 2006, The Cancer Genome Atlas (TCGA), started to deliver a huge amount 

of sequencing data from human tumors (Hutter and Zenklusen 2018). Over the next 

dozen years, TCGA generated over 2.5 petabytes of genomic, epigenomic, 

transcriptomic, and proteomic data. The aim of this project was to molecularly 

characterized over 20,000 primary cancers and matched normal samples spanning 33 

cancer types. Thanks to the use of Illumina HiSeq platform, changes in alternative 

splicing between tumor samples and patients can be analyzed. 

 

 In the next part, I will discuss all the aspects I introduced earlier related to cancer 

biology, EMT and alternative splicing, in the context of a breast cancer cohort with 

high-throughput sequencing data available from the TCGA. I will introduce the 

research I pursued during my PhD work focused on the basal-like breast cancer 

subtype.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 73 

1.5. A CONCRETE APPLICATION TO BREAST CANCER 

1.5.1. EPIDEMIOLOGY 

 

 In women, breast cancer is the most frequent malignancy worldwide with 2.1 

new cases and 0.6 million deaths in 2018. In France,  it is the most frequent cancer in 

women followed by colorectal and lung cancer. Like most cancer, aging of the 

population and other factors as physical inactivity, smoking and alcohol consumption, 

increase the cancer risk. Postmenopausal hormone use, long menstrual history, family 

history of breast or ovarian cancer are also specific risk factors for breast cancer in 

women (American Cancer Society 2018) .  In about 5 to 10% of cases there is a genetic 

predisposition to breast cancer due to two breast cancer genes (Tao et al. 2015) . These 

are BRCA1/2 genes that produce tumor suppressor proteins which help repairing 

damaged DNA.  It was estimated that about 72% of women who inherit a 

harmful BRCA1 mutation and about 69% of women who inherit a 

harmful BRCA2 mutation will develop breast cancer by the age of 80 (Kotsopoulos 

2018). 

 This disease is curable in ~70–80% of patients with early-stage, non-metastatic 

disease. However, advanced breast cancer with distant organ metastases is still 

considered incurable with currently available therapies (Harbeck et al. 2019). It is a real 

public health issue and better ways of diagnosis and treatment are needed. 

 

1.5.2. BREAST ANATOMY 

 

 The breast is an exocrine gland composed of a mass, an areola and a nipple. 

The nipple is located in the middle of the areola, which is the darker area surrounding 

the nipple (Figure 1-21). The mammary gland consists of an epithelial bilayer made of 

cuboidal cells surrounded by myoepithelial cells contained within adipose (fatty) tissue 

supported by a dense fibrous connective tissue. Embedded in the breast’s fatty and 

fibrous tissue are 15 to 20 glands called lobes, each of which has many smaller lobules, 

or sacs, that produce milk (Pandya and Moore 2011). Ducts are thin tubes that carry 

milk to the nipple. Breast development and function depend on hormones produced by 

the ovaries, namely estrogen and progesterone.  Each breast also contains blood 
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vessels and lymph vessels that transport a fluid that travels through a network of 

channels called the lymphatic system and carries cells that help the body to fight 

infections. The lymph vessels lead to the lymph nodes which are small glands part of 

the lymphatic system that plays an integral role in the immune functions of the body. 

Breast cancers can form in the ducts and the lobes. If a cancer has reached these 

lymph nodes, it may mean that cancer cells have spread to other parts of the body. 

 

 

 

 

 

 

 

 

 

1.5.3. CLINICAL CHARACTERISTICS  

  

 To ensure the best possible care for the patient, breast tumors are classified 

by health professionals according to certain clinical items. This gives an idea of the 

type of disease and its progress. Three major items are given: the stage, the grade 

and the histological type. I will give a quick overview to explain what they stand for.  

 

Figure 1-21 Breast anatomy and histology. 
 

On the left, schematic illustration of a breast section.  All breast cancers arise in the terminal 
duct lobular units of the collecting duct. 

  On the right, the lobule section let us see two layers of cells. Inner layer of myoepithelial cells 
provides structural support to the lobules and assist milk ejection during lactation. Outer layer 

of luminal epithelial cells produces milk during lactation. (adapted from Harbeck, 2019) 
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 The first classification of breast cancer is based on histological type. Most breast 

cancers are invasive, meaning that they spread around the surrounding breast tissues 

but there are different types of invasive breast cancer. The two most common 

are invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). IDC 

represents 80% of the invasive breast cancer and starts in the cells that line a milk duct 

in the breast. About 1 in 10 invasive breast cancers is an invasive lobular carcinoma 

(ILC). ILC starts in the milk-producing glands (lobules). Other invasive cases exist and 

are histological variants, each of which accounts for no more than 5% of all invasive 

cases (Philipps and Li 2010).  

 

 The stage of a cancer is a measurement of the extent of the tumor and its 

spread. The standard staging system for breast cancer uses a system known as TNM. 

The T category (T0, T1, T2, T3, or T4) is based on the size of the tumor and higher T 

numbers mean a larger tumor. The N category (N0, N1, N2, or N3) indicates whether 

the cancer has spread to lymph nodes near the breast and, if so, how many lymph 

nodes are affected. Higher numbers after the N indicate more lymph node involvement 

by cancer.  The M category (M0, M1) details if the cancer has spread to distant sites. 

These categories are combined to give the cancer an overall stage. Stages are 

expressed in Roman numerals from stage I (the least advanced stage) to stage IV (the 

most advanced stage).  

 

 The grade is based on how much the cancer cells look like normal cells. It is 

based on the appearance of cancer cells, the shape of the nucleus and the number of 

cells in division. For each of this feature, a score is given. Then they are added, which 

gives a number between 3 and 9 that is used to get a grade of 1, 2, or 3. For example, 

Grade 1 (score 3, 4, or 5) means cancer cells look more like normal breast tissue 

whereas in Grade 3 (score 8, 9) cancer cells look very different from normal cells and 

will probably grow and spread faster. 

 

1.5.4. MOLECULAR SUBTYPES OF BREAST CANCER 

 

 As I said before, breast cancer is not a single disease. In early 2000, molecular 

portraits of human breast tumors started to be defined by Perou and Sorlie (Perou, 
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Sùrlie, et al. 2000; Sorlie et al. 2001). They were based on a 50-gene expression 

signature named PAM50. Since, several classifications has been proposed (Ali et al. 

2014) but this classification stays the reference in the clinical field. Using Pam50, four 

clinically relevant molecular subtypes were described (luminal A, luminal B, HER2-

enriched and basal-like) mostly corresponding to hormone receptor and HER2 

status. These intrinsic group are distinct in terms of clinical presentation (lymph nodes 

invasion, local and regional recurrence, localization of metastases). An additional 

intrinsic subtype of breast cancer, known as claudin-low, has recently been identified, 

showing several common features with basal-like tumors and reflecting the diversity of 

tumors with a low luminal differentiation. Claudin-low are highly enriched in 

mesenchymal traits and stem cell features and are therefore considered as the most 

primitive breast cancers (Pommier et al. 2020; Prat et al. 2010). Of note, a normal breast-

like group was also initially defined but is thought to be an artefact due to low tumor 

cellularity so this is why I am not going to detail it. 

 

 Luminal A breast cancers are hormone-receptor positive, low-grade, tend to 

grow slowly and have the best prognosis. This category is the most frequent breast 

cancer with 60- 70% incidence rate.  Luminal B breast cancers are hormone-receptor 

positive and generally grow slightly faster than luminal A cancers and their prognosis 

is slightly worse.  HER2-enriched breast cancer is hormone-receptor negative 

(estrogen-receptor and progesterone-receptor negative) and HER2 (Human Epidermal 

Growth Factor Receptor-2) positive; They are characterized by an amplification and 

overexpression of HER2 tyrosine kinase receptor gene.  HER2-enriched cancers tend 

to grow faster than luminal cancers and can have a worse prognosis.  Triple-

negative/basal-like breast cancer is hormone-receptor negative (estrogen-receptor 

and progesterone-receptor negative) and HER2 negative.  They display a high rate of 

recurrence, and have a poor prognosis. They are most commonly high-grade at 

diagnosis. With HER2+, they are the most aggressive breast tumors (Figure 1-22). 
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 The incidence of each intrinsic subtype is different with the highest incidence 

related to the luminals (70- 80%), followed by the basal-like (10-15%) and the HER2+ 

(<15%) (Harbeck et al. 2019). Both luminal subtypes are particularly sensitive to 

targeted hormonal therapy and are associated with a good prognosis. Patients with 

Her2 enriched subtype, appear receptive to neoadjuvant chemotherapy together with 

anti-HER2 therapy (trastuzumab and pertuzumab) which has become the standard of 

care for this subtype. Further, new molecules like T-DM1, dramatically help to have a 

better outcome.   

 

 Nowadays, Triple-negative/basal-like breast cancer is the only cancer subtype 

that remains without hormonal therapy nor targeted therapy. Thus, there is an urgent 

medical need to identify therapeutic targets and develop more effective stratified 

medicine for the treatment of this subtype. 

  

1.5.5. FOCUS ON BASAL-LIKE BREAST CANCER 

Figure 1-22 Breast cancer survival by molecular subtype. 
 

Kaplan-Meier plot of overall breast cancer survival by molecular subtype, Ontario, 2010-2012. 
The poorest survival was observed among patients with the triple-negative subtype 

(adapted from Fallahpour, 2017). 
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Being one of the most aggressive breast cancer subtypes, basal-like tumors are 

known for their great heterogeneity (biological, histological and clinical features) and 

their pattern of relapse that is characterized by frequent and early relapses with poor 

prognosis. Triple-negative and basal-like breast cancer are terminologies that are 

often used interchangeably although a small distinction remains (Alluri and Newman 

2014). Triple-negative is  an immunohistochemical definition who considers the fact 

that these tumors lack expression of hormone (estrogen and progesterone) receptors 

and are also characterized by the absence of HER2 receptor. From a histological point 

of view, most of these tumors are classified as invasive ductal carcinomas. Several 

rare histologic groups have also been characterized (Figure 1-23) and represent less 

than 1% of all cases of TNBCs (secretory carcinoma, typical medullary carcinoma, 

atypical medullary carcinoma, apocrine carcinoma, adenoid cystic carcinoma, spindle-

cell metaplastic carcinomas and adenosquamous carcinoma) (Geyer et al. 2017). 

 

 

 

 

 

  

  

 Basal-like term was given by Perou & al because these tumors show some 

characteristics of myoepithelial cells from the outer layer of duct breast as the 

expression of cytokeratin CK5/6, CK14, CK17 and EGFR (Epidermal Growth Factor 

Receptor) (Perou, Sørile, et al. 2000). Basal-like represents the most frequent subtype 

of TNBC (70-80%) (Prat et al. 2013).  

 They are also associated with an additional intrinsic subtype of breast cancer 

known as claudin-low that extends through all the intrinsic subtype but is mostly 

observed in basal-like subtype. Claudin-low are distinguished by low genomic 

Figure 1-23 Histological heterogeneity of Triple Negative Breast cancer 
 

Examples of distinct histologic types of triple-negative breast carcinomas. From left to right: 
Invasive Ductal, Apocrine, Adenoid cystic, Metaplastic breast carcinomas. Of note, Invasive 

ductal carcinoma represents 95% of cases. (Adapted from Geyer, Pajer,Weigelt, 2017) 
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instability, mutational burden and proliferation levels, and high levels of immune and 

stromal cell infiltration. They expressed a low level of critical cell–cell adhesion 

molecules, including claudins 3, 4, and 7, occludin, and E-cadherin. They were 

characterized by a low expression of luminal markers and a high expression of 

mesenchymal marker. Claudin-low tumors displayed the least differentiated phenotype 

along the mammary epithelial differentiation hierarchy showing enrichment for gene 

expression signatures derived from human tumor-initiating cells (TICs) and mammary 

stem cells (Fougner et al. 2020). They have been associated with poor prognosis but 

not in all cases. This claudin-low phenotype is a further example of the genetic 

heterogeneity that can be found within the basal-like subtype. 

 

 There have been several attempts in the clinical field to better classify TNBCs 

(Jézéquel et al. 2019; D. Y. Wang et al. 2019; Ignatiadis et al. 2018; Jiang et al. 2019). 

Lehmann et al were among the first to publish a study trying to better dissect the TNBC 

specific heterogeneity (Lehmann et al. 2011). Their study proposed 6 molecular 

subtypes of TNBC: two basal-like-related subgroups (basal-like 1 (BL1) and 2 (BL2)), 

two mesenchymal-related subgroups (mesenchymal (M) and mesenchymal stem-like 

(MSL)), one immunomodulatory subgroup (IM) and one luminal androgen receptor 

group (LAR). Each of these subtypes has specific molecular abnormalities. The BL1 

and BL2 subgroups are both enriched in proliferation genes. BL1s also express genes 

involved in DNA repair whereas the BL2 subgroup expresses genes involved in growth 

signaling pathways. The M subgroup is enriched with genes involved in cell mobility 

and the epithelial-mesenchymal transition. The MSL subgroup has an expression 

profile close to the M subgroup and is enriched in genes involved in angiogenesis and 

in some immune response signaling pathways. The IM subgroup is enriched with 

genes involved in the immune response and lymphocyte infiltration. Finally, the LAR 

subgroup that represents about 10% of the TNBCs, expresses the androgen receptor 

(AR) in the presence of a luminal- like expression signature and thus, might be treated 

with agents that target AR.  Recently, the clinical relevance of this classification was 

evaluated in a retrospective analysis of 125 patients with TNBC treated with 

chemotherapy before surgery (Santonja et al. 2018). The authors show that different 

responses can be observed according to their TNBCs subtypes. Patients with BL1 

tumors achieve the highest pathological complete response rate and patients with 

tumors classified as BL2, LAR and MSL have the lowest response rates.  A more 
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recent and partially overlapping classification segregated TNBC into (Burstein et al. 

2015) into 4 main groups: LAR, mesenchymal (MES), Basal-like immune-suppressed 

(BLIS) and Basal-like immune-activated (BLIA). They show that BLIS and BLIA tumors 

have the worst and best prognoses, respectively, compared to the other subtypes. In 

2017, Milioli & al, proposed a signature that supports the existence of at least two 

subgroups of basal-like breast cancers with distinct disease outcome (Milioli et al. 

2017). Later, in 2019 Jezequel & al identified three molecular cluster in TNBCs : one 

molecular apocrine (C1) and two basal-like- enriched (C2 and C3). C2 presented pro-

tumorigenic immune response (immune suppressive), high neurogenesis (nerve 

infiltration), and high biological aggressiveness. In contrast, C3 exhibited adaptive 

immune response associated with complete B cell differentiation that occurs in tertiary 

lymphoid structures, and immune checkpoint upregulation (Jézéquel et al. 2019). The 

same year a  genomic and transcriptomic analysis of a cohort of 465 Chinese primary 

triple-negative breast cancer (TNBC) defines a luminal androgen receptor (LAR) 

subtype (23%) characterized by androgen receptor signaling; (2) an 

immunomodulatory (IM) subtype (comprising 24% of tumors) with high immune cell 

signaling and cytokine signaling gene expression; (3) a basal-like and immune-

suppressed (BLIS) (39%) subtype characterized by upregulation of cell cycle, 

activation of DNA repair, and downregulation of immune response genes; and (4) a 

mesenchymal-like (MES) subtype (15%) enriched in mammary stem cell pathways 

(Jiang et al. 2019). 

 This catalog of the various researches carried out with the aim of deciphering 

the complexity of these aggressive tumors aims to illustrate the importance that 

requires a better classification inside this tumor subtype in order to improve the care 

of patients by doctors. 

1.5.6. THESIS OBJECTIVES 

1.5.6.1. IDENTIFICATION OF AS EVENTS ASSOCIATED WITH POOR 
PROGNOSIS IN BREAST CANCER. 

 

 The main goal of my PhD work was to explore alternative splicing events that 

could potentially have an impact on patient survival in a specific, aggressive and deadly 

subtype amongst all breast cancers, the Basal-like breast cancer subtype. A growing 

body of evidence suggests a central role of EMT in metastasis and tumor progression. 
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This clinical relevance in combination with increasing evidence for the importance of 

alternative splicing in EMT was the core of my initial hypothesis. I used the idea that 

Basal B cell lines, according to literature, were described as the most invasive cell 

lines, displaying a high number of mesenchymal features. I looked if basal B specific 

signature could be used to classify basal-like tumors. Using basal-like breast cancer 

cell lines, I developed a custom random forest method to transfer knowledge from cell 

lines to tumors from patients where I had clinical follow-up. Once I had isolated this 

signature in patients, I characterized it and identified an association with an EMT 

signature by using GSEA analysis and by looking into RNA-seq of EMT-induced public 

projects. Then, I looked further for potential splicing factors (SFs) in basal cell lines 

that could drive this AS program. Taking advantage of RNA-seq data upon modulation 

of expression levels of the candidate SFs ESRP1 and RBM47, I explored to what 

extent the newly identified basal B-specific signature is regulated by common SFs. 

Finally, I investigated the association of the expression of these SFs with survival in 

TCGA patients. 

1.5.6.2. NEW INSIGHT FROM K-MERS ANALYSIS IN BREAST CANCER 
 

 To a lesser extent, I was also involved in the development of k-mer based 

approach to classify patients and extract the biological knowledge hidden by k-mers of 

importance. I was involved in two publications related to k-mers during my PhD. The 

first article demonstrates that kmers are a powerful tool to classify labeled biological 

samples compared to classical methods. I was mainly taking part to help in having 

access to resources annotation of breast cancer subtype, specific publications related 

to the field, computation of gene expression and alternative splicing, and finally 

discussion around the use of the random forest classifier. The second paper delivers 

a software solution to study k-mers in several samples, and highlight the fact that k-

mers can lead to detection of novel biological events to better understand mechanisms 

involved in a specific cellular phenotype, or in order to detect new targets for therapy. 

Notably, during the benchmark of iMOKA software, we showed that amongst the best 

k-mers that lead to an accurate classification of breast cancer subtypes, 4 splicing 

isoforms (MYO6, TPD52, IQCG and ACOX2) were found and already reported as to 

be amongst the 5 most important isoforms differentially expressed between 

ER+HER2- and ER-HER2 primary breast tumors. This helped to validate the 
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consistency of the method. These two publications are in the annexes section at the 

end of this manuscript. 
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2. RESULTS 
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ABSTRACT:  12 

Background: 13 

Breast cancer is amongst the 10 first causes of death in women worldwide. Around 14 

20% of patients are misdiagnosed leading to early metastasis, resistance to treatment 15 

and relapse. Many clinical and gene expression profiles have been successfully used 16 

to classify breast tumours into 5 major types with different prognosis and sensitivity to 17 

specific treatments. Unfortunately, these profiles have failed to subclassify breast 18 

tumours into more subtypes to improve diagnostics and survival rate. Alternative 19 

splicing is emerging as a new source of highly specific biomarkers to classify tumours 20 

in different grades. Taking advantage of extensive public transcriptomics datasets in 21 

breast cancer cell lines (CCLE) and breast cancer tumours (TCGA), we have 22 

addressed the capacity of alternative splice variants to subclassify highly aggressive 23 

breast cancers. 24 

Results: 25 



 2 

Transcriptomics analysis of alternative splicing events between luminal, basal A and 26 

basal B breast cancer cell lines identified a unique splicing signature for a subtype of 27 

tumours, the basal B, whose classification is not in use in the clinic yet. Basal B cell 28 

lines, in contrast with luminal and basal A, are highly metastatic and express epithelial-29 

to-mesenchymal (EMT) markers, which are hallmarks of cell invasion and resistance 30 

to drugs. By developing a semi-supervised machine learning approach, we transferred 31 

the molecular knowledge gained from these cell lines into patients to subclassify basal-32 

like triple negative tumours into basal A- and basal B-like categories. Changes in 33 

splicing of 25 alternative exons, intimately related to EMT and cell invasion such as 34 

ENAH, CD44 and CTNND1, were sufficient to identify the basal-like patients with the 35 

worst prognosis. Moreover, patients expressing this basal B-specific splicing signature 36 

also expressed newly identified biomarkers of metastasis-initiating cells, like CD36, 37 

supporting a more invasive phenotype for this basal B-like breast cancer subtype. 38 

Conclusions: 39 

Using a novel machine learning approach, we have identified an EMT-related splicing 40 

signature capable of subclassifying the most aggressive type of breast cancer, which 41 

are basal-like triple negative tumours. This proof-of-concept demonstrates that the 42 

biological knowledge acquired from cell lines can be transferred to patients data for 43 

further clinical investigation. More studies, particularly in 3D culture and organoids, will 44 

increase the accuracy of this transfer of knowledge, which will open new perspectives 45 

into the development of novel therapeutic strategies and the further identification of 46 

specific biomarkers for drug resistance and cancer relapse. 47 

 48 

KEYWORDS Alternative Splicing, Breast Cancer, Survival, Basal-like, Epithelial-to-49 

Mesenchymal Transition, Machine Learning Classification.  50 
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BACKGROUND:  51 

Breast cancer is a heterogenous disease with multiple molecular drivers and 52 

disrupted regulatory pathways [1, 2]. The development of large-scale genomics and 53 

transcriptomics methods has increased the capacity to identify clinically-relevant 54 

tumour subtypes with distinct molecular signatures. These can be used for a better 55 

choice of treatment and/or prediction of potential metastasis which can improve 56 

survival outcome [3, 4]. However, patients are still facing a high percentage of 57 

misdiagnosis in which undetected early metastasis and/or inappropriate choice of 58 

treatment can lead to deadly complications with the use of unnecessary severe 59 

chemotherapies or the apparition of drug resistance and subsequent tumour relapse 60 

[5]. Currently, breast cancer is classified into five major categories (normal-like, luminal 61 

A, luminal B, Her2-positive and basal-like) based on expression of three receptors: 62 

oestrogen and progesterone hormonal receptors (ER and PR) and the epidermal 63 

growth factor receptor ERBB2 (Her2). Basal-like are the most aggressive, and difficult 64 

to treat, type of breast cancer tumour. They are usually negative for the three receptors, 65 

and thus called triple negative breast cancer (TNBC), which represents 10-20% of all 66 

breast cancers. These tumours are usually found in younger patients with a larger size 67 

and higher probability of lymph node infiltration and metastasis [2, 6]. Furthermore, the 68 

absence of all three receptors reduces the number of targeted therapeutic strategies 69 

to be used, leaving nonspecific chemotherapy as the standard treatment of choice, 70 

which soon leads to dose-limiting side-effects, resistance to treatment and finally 71 

clinical relapse in less than 5 years [6]. A better understanding of the molecular 72 

differences in between these tumour categories will improve the choice of treatment 73 

and detection of early metastasis, which will significantly impact patient's outcome. 74 

There have been many attempts to identify novel therapeutic targets and/or prognostic 75 
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biomarkers to better subclassify breast cancer tumours [7]. Over 170 independent 76 

breast cancer susceptibility genomic variants have been identified. Many of which have 77 

been associated with a specific tumour category, such as ER positiveness or Her2 78 

amplification. However no clear subcategories exist despite tumour heterogeneity and 79 

differences in clinical response to treatment and tumour relapse within the same 80 

category [8–10]. Interestingly, alternative splicing is an emerging source of new 81 

biomarkers and therapeutic targets in cancer [11–15].  82 

The alternative processing of mRNA precursors enables one gene to produce 83 

multiple protein isoforms with different functions, increasing protein diversity and the 84 

capacity of a cell to adapt to new environments. An increasing number of splice 85 

variants, and their respective splicing regulators, have been shown to confer a 86 

selective advantage to tumour cells. For instance, the splicing regulators RBM5, 6 and 87 

10 favour tumour cell proliferation and colony formation by regulating the alternative 88 

splicing of the membrane-bound protein NUMB [16]. Post-translational activation of the 89 

splicing factor SRSF1 (also known as ASF/SF2) confers resistance to apoptosis by 90 

inducing inclusion of the anti-apoptotic splice variant in a network of functionally related 91 

genes, such as Bcl-X and Mcl1 [17]. Regulation of VEGF splicing is detrimental for 92 

stimulation of angiogenesis [18]. A change in the alternative splicing of the pyruvate 93 

kinase pre-mRNA can switch tumour cells metabolism to adapt to the increased 94 

proliferation [19, 20]. Finally, a list of well-known alternatively spliced variants related 95 

to cell adhesion (CTNND1, CD44) and cytoskeleton organisation (ENAH, FLNB) are 96 

responsible for the acquisition of migratory and invasive phenotypes necessary for 97 

distal metastasis [13, 21–24]. The existence of functionally relevant cancer specific 98 

isoforms is therefore a promising new source of highly specific and less toxic 99 
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therapeutic targets for the development of isoform-specific antibodies and/or splice-100 

switching antisense oligonucleotides [25, 26]. 101 

By taking advantage of an extensive transcriptomics and anti-tumour compound 102 

screening information publicly available in cancer cell lines from the Cancer Cell Line 103 

Encyclopedia (CCLE) [27], we identified a splicing signature that can stratify basal 104 

breast cancer cell lines into two well-known subtypes, basal A and basal B. In contrast 105 

to basal-like breast cancer patients, basal breast cancer cell lines are divided into two 106 

subgroups, basal A and basal B, depending on the expression profile of a subset of 107 

basal (cytokeratins, integrins), stem cell (CD44, CD24) and mesenchymal markers 108 

(Vimentin, fibronectin, MSN, TGFBR2, collagens, proteases) [28–30]. Basal B cell lines 109 

are mostly triple negative breast cancer cells that express classical mesenchymal and 110 

stem cell markers characteristic of the epithelial-to-mesenchymal transition (EMT), a 111 

biological process in which epithelial cells acquire mesenchymal features that are 112 

advantageous for the cancer cell, such as increased cell motility to invade distal organs 113 

in metastasis, resistance to apoptosis, refractory responses to chemotherapy and 114 

immunotherapy, and acquisition of stem cell-like properties like in cancer stem cells 115 

[31, 32]. In concordance, basal B cells are morphologically less differentiated, with a 116 

mesenchymal-like shape, and a more invasive phenotype in culture assays than basal 117 

A and luminal cells [28, 33, 34]. We aimed to transfer this basal A/basal B splicing 118 

classification into the clinic by using a semi-supervised machine learning approach. 119 

We successfully classified 40% of basal-like breast cancer patients (75/188) from the 120 

Cancer Genome Atlas (TCGA) [35] as basal B-like based on a unique 25 spliced gene 121 

signature characteristic of cells undergoing EMT. In this signature, we found well-122 

known markers of malignancy, such as ENAH EMT splice variant that promotes lung 123 

metastasis [36] or CSF1 variant which promotes macrophage infiltration and distal 124 
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metastasis [37], together with new promising splicing candidates of tumour progression 125 

and invasiveness (PLOD2, CTNND1, SPAG9). Finally, expression of this basal B 126 

signature was sufficient to identify triple negative breast cancer tumours with poor 127 

survival, highlighting the prognostic value of the newly identified splicing biomarkers to 128 

subclassify one of the most heterogenous and difficult to treat type of breast cancer. 129 

More studies in cell lines, particularly regarding resistance to treatment and cell 130 

invasion will be essential to refine this splicing signature in view of orienting treatment 131 

or predicting metastasis sites.  132 

In conclusion, by adapting a machine learning approach, we were able to 133 

transfer the molecular knowledge obtained in experimental cell lines to identify novel 134 

biomarkers of poor prognosis and metastasis amongst triple negative breast cancers 135 

in patients. Furthermore, the study of the regulatory pathway involved in this specific 136 

splicing signature pointed to RBM47 as one of the splicing regulators responsible for 137 

the basal B-specific splicing signature, and for which differential expression levels also 138 

correlate with distinct prognostic values, turning this splicing factor a promising novel 139 

therapeutic target. Further clinical and functional validation of the 25 splicing events 140 

proposed in our basal B-specific splicing signature will open new perspectives in the 141 

understanding of triple negative breast cancers and the improvement of currently 142 

available therapeutic strategies and survival outcome. 143 

 144 

RESULTS: 145 

A distinctive Basal B-like breast cancer splicing signature. 146 

Data mining of large-scale genomics and transcriptomics datasets in breast cancer cell 147 

lines are a promising source of novel biomarker and therapeutic targets [23, 38, 39]. 148 
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We sought to leverage the wealth of transcriptomics and functional data available in 149 

cancer cell lines to better understand different profiles of breast cancer. Hierarchical 150 

clustering of changes in alternative splicing of cassette exons and gene expression 151 

profile of 80 breast cancer cell lines from two extensive and complementary projects 152 

(Additional File 2: Table S1) revealed basal B cell lines as a distinctive group of cells 153 

with an expression and splicing profile significantly different from basal A and luminal 154 

cancer cells (Additional File 1: Fig.S1). To identify the transcriptional signature 155 

characteristic of basal B cells, we repeated the hierarchical clustering in just basal A 156 

and basal B cell lines to merge all the differentially expressed and spliced transcripts 157 

responsible for the segregation of basal B cell lines (Fig.1). We found 635 genes and 158 

217 spliced isoforms with significantly different  levels between basal A and basal B 159 

cells (Fig.1a,b). In line with published tissue-specific and EMT transcriptomics 160 

analyses [40–42], most of the genes differentially spliced were not affected at the 161 

expression level, suggesting that two different subsets of genes, and thus regulatory 162 

layers, are responsible for the basal B phenotype (Fig.1c). Gene set enrichment 163 

analysis (GSEA) [43] between basal B and basal A cells confirmed the EMT and stem 164 

cell-like phenotype characteristic of basal B cell lines (Fig.2a,b), which was supported 165 

with a higher CD44+/CD24- stem cell score (Fig.2e) [28–30]. DAVID gene ontology 166 

analysis of differentially expressed and spliced genes also underlined biological terms 167 

that are hallmarks of EMT and cell invasiveness, such as cell-cell junction (Fig.2d) [44]. 168 

However differentially expressed genes were also enriched in their own unique terms, 169 

related to extracellular vesicles/plasma membrane organization. While differentially 170 

spliced genes were specifically enriched in terms related to GTPase activity, 171 

cytoskeletal protein and cadherin binding, which reinforces the existence of two 172 

complementary regulatory pathways (Fig.2d). Finally, another malignant characteristic 173 
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acquired by cancer cells undergoing EMT is resistance to chemotherapy, which often 174 

leads to clinical relapse. Gene set enrichment analysis found upregulation of genes 175 

resistant to the Epidermal Growth Factor Receptor (EGFR) inhibitor Gefitinib (Fig.2c), 176 

which is an alternative to hormonal therapy in Her2+ breast cancer tumours, but is not 177 

efficient in triple negative tumours [45]. Available drug assays from the Genome Drug 178 

Sensitivity in Cancer portal (GDSC) [46] confirmed the need of a higher concentration 179 

(IC50) of Gefitinib, and other EGFR inhibitors (Erlotinib, Sapitinib), to have the same 180 

deleterious effect on basal B compared to basal A cancer cells (Fig.2f). Basal B cell 181 

lines also showed a significant resistance to well-known inhibitors of the cell cycle 182 

(Irinotecan, Taselisib, 5-Fluorouracil), drug inducers of cell death (AZD5582, 183 

AZD5991) and other receptor tyrosine kinase inhibitors, such as Savolitinib which 184 

inhibits c-MET to reduce tumour persistence and metastasis [47].  185 

 In summary, we have identified two distinct transcriptional and splicing 186 

signatures, specific of basal B cell lines, that underline an EMT phenotype with 187 

molecular characteristics related to cell invasion, stemness and resistance to 188 

chemotherapy. We next sought to investigate whether this basal B-specific splicing 189 

signature could also be used to subclassify basal-like/triple negative breast cancer 190 

patients. 191 

 192 

A semi-supervised machine learning approach to subclassify basal-like breast 193 

cancer patients. 194 

 As a first and simple approach, we performed a hierarchical clustering followed 195 

by a k-means clustering (k=2 for “A-like” and “B-like”) of the 188 patients, annotated 196 

as basal-like in The Cancer Genome Atlas Program (TCGA), using the 635 197 

differentially expressed or 217 differentially spliced cassette exons characteristic of 198 
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basal B cell lines (Additional File 1: Fig. S2a,b). Using such method, patients were 199 

forced to classify in one of the two groups based on differences in gene expression or 200 

splicing patterns. Since basal B cell lines show more invasive, cancer stem cell-like 201 

phenotypes, we assessed whether these aggressive characteristics were translated to 202 

the “B-like” patient group through differences in disease specific survival (DSS) rates. 203 

Kaplan-Meier analysis of DSS did not show significant differences between the two 204 

subgroups of basal-like patients (Additional File 1: Fig. S2c,d). However, we did 205 

observe a tendency for “B-like” patients to have a poor survival compared to “A-like” 206 

when just looking at differences in splicing, contrary to expression levels (p-value=0.09 207 

vs 0.57, respectively – Additional File 1: Fig. S2c,d).  208 

 In fact, it was not surprising that the transcript-level and splicing signatures did 209 

not translate directly from simplistic cell culture models to much more complex tumour 210 

patients with specific cell micro-environments and differences in cell heterogeneity. 211 

However, because the patients showed clear “A-like” and “B-like” signatures, we 212 

sought to develop a machine learning approach that would allow us to transfer part of 213 

the molecular and phenotypic observations found in cell-lines to patient data. Transfer 214 

learning is a recent research methodology that focuses on storing the knowledge 215 

gained when solving a problem, to apply it to a different, but related, one. Because we 216 

wanted to ensure that the newly developed cell-to-patient transfer learning algorithm 217 

could create interpretable models,  we used a decision tree-based approach called 218 

Random Forest. In this cell-to-patient random forest classification method, we started 219 

by classifying basal A or basal B cell-lines based on their splicing and/or expression 220 

profile (Fig. 3a and Additional File 1: Fig.S3-S4). Then, once the model was trained on 221 

cell-lines, we would start integrating patient data gradually into the model. This was 222 

done iteratively by integrating at each round of classification the patients best predicted 223 
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to be basal A-like and basal B-like, so their added informative value could be used 224 

back to train the system and improve the next round of classification (Fig.3a). With this 225 

semi-supervised approach, the probability of assigning a patient to a specific subgroup 226 

evolves and improves at each round based on the updated information obtained from 227 

the best predicted patients, reaching at the end a stable population with the labels 228 

‘basal A-like’, ‘basal B-like’ or ‘unclassified’ determined by the algorithm after 10-12 229 

rounds (Fig. 3b,c and Additional File 1: Fig.S3b,c-S4b,c). Thanks to the gradual 230 

addition of patients at each round of training, there is a progressive increase, or 231 

decrease, in the feature importance of the splicing variants used to classify patients 232 

(Fig.3d and Additional File 1: Fig.S3d-S4d).  Out of the 188 basal-like patients, 75 were 233 

classified as basal B-like, 88 as basal A-like and 25 could not be classified based on 234 

their splicing signature. Using only expression levels, there was a slight biased towards 235 

the basal A-like phenotype, with 56 patients classified as basal B-like, 122 as basal A-236 

like and 10 unclassified (Additional File 1: Fig.S3b-c). Combining differentially spliced 237 

and expressed features seemed to be the most performant classifier with 84 patients 238 

as basal B-like, 100 as basal A-like and just 4 unclassified (Additional File 1: Fig.S4b-239 

c). Taken together, depending on the features used (splicing patterns, expression 240 

levels or both), patients were differently classified in basal A-like or basal B-like.  241 

 242 

An EMT-related basal B-specific splicing signature that marks poor prognosis. 243 

To address which classifier translates the best to patients the invasive, EMT-244 

like and drug resistant basal B phenotype found in cancer cells, we calculated the 5-245 

year survival rate for each group of basal A-like and basal B-like issued from the three 246 

types of classification. Only basal B-like patients classified based on splicing levels had 247 

a poor prognosis compared to basal A-like patients (log-rank test p = 0.0067, HR = 248 



 11 

4.87; IC95%: [1.37-17.28] in Kaplan-Meier analysis and univariate Cox regression) 249 

(Fig.3e). Basal B-like patients subclassified based on gene expression levels, or gene 250 

expression and splicing features, did not show significant differences in disease 251 

survival rate (Additional File 1: Fig.S3e-4e), suggesting that splicing biomarkers might 252 

be more informative to further subclassify basal-like patients based on prognosis. We 253 

thus decided to focus on the role of alternative splicing in identify triple negative basal-254 

like breast cancer with poor prognosis. 255 

To extract the most informative splicing features from the cell-to-patient transfer 256 

learning classifier, we used the Boruta feature selection method [49]. This allowed us 257 

to select the key splicing events responsible for the basal A/B classification without the 258 

need to predefine arbitrary thresholds (Fig.4a). Out of the 217 differentially spliced 259 

exons between basal A/B cell lines, just 25 were needed to subclassify breast cancer 260 

patients in basal A or basal B-like tumours (Fig.4a and Additional File 2: Table S2).  261 

Sashimi plots representing the splicing patterns of some of these basal B-specific 262 

splicing events, such as the well-known splicing biomarker of cancer metastasis ENAH 263 

[26] and the newly identified splicing biomarkers PLOD2, SPAG9 and KIF13a, 264 

validated the observed changes in splicing between basal A and basal B-like patients 265 

(Fig.4b-c and Additional File 1: Fig. S5a-b). Moreover, the changes in percentage of 266 

spliced-in (PSI) of the 25 basal B-specific splicing events between the two subtypes of 267 

basal-like patients correlated with the observed splicing changes between basal A/B 268 

cell lines (Additional File 1: Fig.S5c-d), further supporting the transfer of knowledge 269 

from the laboratory to the clinic. Finally, in the absence of publicly available RNA-seq 270 

data on a second cohort of basal-like breast cancer patients, we took advantage of 271 

three independent sequencing projects on breast cancer cell lines, different from the 272 

ones used for the training of the semi-supervised classifier (Additional File 2: Table 273 
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S1). Distribution of 52 independent breast cancer cell lines showed a 93% accuracy in 274 

the spatial segregation (t-SNE) of basal A from basal B cells based on the splicing 275 

pattern of the 25 newly identified splicing events (Fig.4d). Just three cell lines were 276 

misclassified as basal A (HCC38, SUM102 and MDA-MB-157). It is worth noting that 277 

one of these, HCC38, was also labelled as basal A in the DepMap portal 278 

(www.depmap.org), which validated our methodology and the specificity of the splicing 279 

signature towards a basal B-like phenotype. 280 

Consistent with basal B cell lines being more mesenchymal, differences in the 281 

alternative splicing of these 25 basal B-specific splicing events in four different cellular 282 

models of EMT, coming from different cell types and methods of EMT induction [50–283 

53], successfully clustered epithelial cells from mesenchymal with a pattern of splicing 284 

equivalent to basal A and basal B-like patients, respectively (Fig.4e). Of note, another 285 

25 gene-based EMT-like splicing signature characteristic of luminal breast cancer 286 

tumours has also been identified capable of subclassifying mesenchymal-like breast 287 

cancer tumours with poor prognosis [38]. Consistent with a more luminal-specific 288 

signature, despite both marking EMT phenotypes, not more than six splicing events 289 

were found in common between the two splicing signatures (ATP5C1, CTNND1, 290 

KIF13a, PLOD2, SEC31a and SPAG9), which further supports the specificity of our 291 

newly identified splicing signature for basal-like triple negative breast cancer. Finally, 292 

using one of the first established molecular subtypes of triple negative breast cancer 293 

tumours based on gene expression, which is the Lehman classification [54], we found 294 

that basal B-like patients are mostly found in the categories associated with 295 

Mesenchymal stem-like (MSL) and Immunomodulatory (IM) subtypes (Fig.5a), which 296 

goes in line with a gene set enrichment of terms related to inflammatory responses and 297 

hallmark of EMT (Fig.5b).  298 
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When looking at the expression of well-known basal and EMT biomarkers in the 299 

two subpopulations of basal A/B-like patients, we found that basal A-like patients 300 

express classical basal/epithelial markers, such as E-cadherin, EPCAM and 301 

cytokeratin KRT5/KRT6/KRT14, together with ERBB3 and TOB1 which are markers of 302 

more differentiated, non-invasive cells [2]. On the other hand, basal B-like patients 303 

express classical EMT/mesenchymal markers such as Fibronectin, the EMT inducers 304 

Twist and Slug, and the Zinc-finger transcriptional regulators Zeb1 and Zeb2 which 305 

have recently been shown to confer stemness properties that can increase the 306 

plasticity and invasive capacity of the tumour cells [55] (Fig.5c-d). In line with a more 307 

aggressive, invasive phenotype, basal B-like patients express cytoskeletal (MSN, FN1) 308 

and extracellular matrix signalling proteins (TGFB1, TGFBR2, FBN1, AXL), collagens 309 

(COL3A1, COL6A3) and proteases (MMP2, TIMP1, CTSC, PLAU, SERPINE1/2, 310 

PLAT), which are necessary for cell’s migration and dissemination to distal organs 311 

during metastasis [2]. Finally, basal B-like patients overexpress a recently identified 312 

new marker of metastasis-initiating cells, the fatty acid receptor CD36 [20]. Clinically, 313 

the presence of CD36 positive cells has been correlated with a lower survival rate in 314 

many carcinomas, including breast cancer, and inhibition of CD36 impairs metastasis 315 

in breast cancer-derived tumours, turning this receptor into an important biomarker of 316 

tumour cell dissemination and a potential new target to reduce cell invasion. The fact 317 

that basal B-like tumour cells co-express this metastasis-initiating marker further 318 

strengthens the aggressive nature of this tumour subclass and the clinical relevance 319 

of the basal B-specific splicing signature in tumour progression and relapse. 320 

 Overall, we have identified a novel splicing signature, specific of triple negative 321 

breast cancer tumours, that marks patients with the poorest prognosis. This basal B-322 

like splicing signature is responsible of a stem-like, EMT phenotype that favours tumour 323 
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growth, invasion of distal organs and increased drug resistance, which eventually leads 324 

to tumour relapse and metastasis. Interestingly, some of the genes differentially 325 

expressed in this basal B-like patients are well-known markers of metastasis-initiating 326 

cells, such as the alternatively spliced CTNND1 and PLOD2 genes or the fatty acid 327 

receptor CD36, turning these biomarkers into promising new targets for innovative 328 

therapies, such as the use of splicing specific antibodies [6, 26].  329 

 330 

A metastasis-related common regulatory pathway for the basal B-specific 331 

splicing signature. 332 

Hierarchical clustering of basal A and B cell lines based on the differential 333 

expression of RNA-binding proteins highlighted six RNA regulators, ESRP1, ESRP2, 334 

RBM47, TMEM63A, KRR1 and RBMS3 (Fig.6a) (Kruskal-Wallis p < 10-9). Interestingly, 335 

ESRP1/2 and RBM47 are significantly less expressed in basal B-like than basal A-like 336 

patients (Fig.6b), consistently with the known inhibitory effect of these three splicing 337 

regulators in EMT progression and metastasis [53, 56, 57]. Available transcriptomics 338 

data in ESRP1/2 and RBM47 lung carcinoma NCI-H358-depleted cells [53] and 339 

RBM47 overexpressing breast cancer metastatic MDA-MB-231 cells [58] showed that 340 

19 of the 25 splicing events responsible for the newly identified basal B-specific splicing 341 

signature could potentially be regulated by ESRP1/2 and/or RBM47 in breast cancer 342 

cells (Fig.6c-d). Importantly, in the cell types analysed, ESRP1/2 and RBM47 induce 343 

the epithelial, basal A-like splicing phenotype, suggesting a potential tumour 344 

suppressor effect for these splicing regulators  (Fig.6e-g, 4e and Additional File 1: S5c-345 

d). Consistently with this observation, low expression of RBM47 in basal-like breast 346 

cancer patients was associated with poor overall survival (log rank test p=0.031, 347 

HR=3.36, IC95%:[1.05 - 10.79] - Fig.6h-i), which supports previous experimental 348 
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evidence of a role for RBM47 in supressing breast cancer metastasis and progression 349 

[57]. In fact, RBM47-dependent basal B-specific splicing events were found to be 350 

functionally interconnected by physical and/or genetic interactions, which points to the 351 

existence of a common basal B-specific regulatory network associated with tumour 352 

malignancy (Additional File 1: Fig. S6a). In support, most of RBM47-dependent basal 353 

B-specific splicing events play well-known roles in cell-cell adhesion (CTNND1) [59], 354 

cytoskeleton organization (ENAH, SLK, FNBP1) [60, 61], endocytosis (KIF13A, DNM2) 355 

[62] and association with the extracellular matrix (PLOD2) [63], which are all key 356 

processes for gaining the cell motility and invasiveness necessary in tumour 357 

metastasis (54-58). Of note, expression of just one of these basal B-specific splice 358 

variants, which are CTNND1, ENAH and PLOD2, is sufficient to lower the disease-359 

specific survival rate of basal B-like breast cancer patients compared to basal A-like 360 

(Additional File 1: Fig.S6b-g). These splicing events could turn into promising new 361 

therapeutic strategies aiming at specific key regulatory genes instead of a pleiotropic 362 

splicing regulator that could have unsuspected secondary effects.  363 

In summary, by taking advantage of extensive large-scale transcriptomics data 364 

from breast cancer cell lines and patients, we identified the first splicing signature 365 

capable of subclassifying basal-like tumours based on their aggressiveness and drug 366 

resistance. Importantly, novel splicing biomarkers of poor prognosis were identified 367 

that should be further studied in more functional assays to test their capacity to inhibit 368 

tumour invasion and metastasis. Results from these assays will open new perspectives 369 

in the development of improved target therapies and more accurate diagnostic profiles 370 

to identify the basal-like triple negative breast cancer patients with a higher chance of 371 

relapse.   372 

 373 
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DISCUSSION: 374 

Cancer-specific dysregulation of alternative splicing is a promising source of 375 

cancer biomarkers and therapeutic targets to improve diagnostics and thus overall 376 

survival rate [64]. An increasing number of mutations at core spliceosome components, 377 

such as S3FB1 and U2AF1, or upregulation of specific splicing factors, such as SRSF1 378 

and other members of the SR protein family, which are now considered oncogenes, 379 

have been intimately linked to tumour progression and malignancy [65]. Furthermore, 380 

an increasing number of alternatively spliced events, like CD44, ENAH, CTNND1 and 381 

FLNB, have been shown to impact cell invasion and metastasis on their own, making 382 

them promising new targets for more specific therapeutic strategies compared to the 383 

inhibition of splicing regulators [22, 23, 66, 67]. Effectively, splicing regulators are not 384 

only responsible for the regulation of splicing of a subset of genes, but they are also 385 

responsible for other RNA related functions such as translation, mRNA export and 386 

nonsense-mediated mRNA decay [57, 65], which can have numerous downstream 387 

deleterious effects when inhibited in a targeted therapy. By specifically targeting a key 388 

downstream splicing event, as in splicing-specific immunotherapy, a more cancer-389 

specific and direct impact on the cell phenotype might be achieved (134, 135). 390 

Large scale public molecular data sets on genomics (copy number and 391 

mutation), epigenomics, transcriptomics, proteomics, in vitro and in vivo cell 392 

invasiveness and response to anti-tumour compounds in a large number of patients 393 

(11,000 patients across 33 different tumour types from the Genome Cancer Atlas) and 394 

human-derived cell lines (1000 cancer cell lines across 36 tumour types from the Broad 395 

Institute’s Cancer Cell Line Encyclopaedia) has become an extraordinary toolbox to 396 

identify novel prognostic markers of early metastasis and/or resistance to specific 397 

drugs, which are the two major reasons for clinical relapse and low survival rate [68–398 
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70]. Unfortunately, the translatability of these pre-clinical findings is often limited since 399 

culture cells are not representative of the variety of individuals nor the biological reality 400 

of the tumour’s multicellular environment. Yet, culture procedures are improving with 401 

the creation of organoids, and machine learning approaches combined with large-scale 402 

data mining are bypassing some of these important caveats. This is the case of our 403 

cell-to-patient random forest classifier approach, in which the addition at each round of 404 

selection of novel informative features, based on the patients classified in previous 405 

rounds, allows an algorithm to make use of the information learned from cell lines. 406 

Thanks to this approach, we were able to identify the first splicing signature, composed 407 

of 25 alternatively spliced exons, capable of subclassifying basal-like breast cancer 408 

patients into two subtypes with different prognoses: basal A- and basal B-like.  409 

Actually, this newly identified basal B-like splicing signature underlined a stem-410 

cell like EMT signature, with hallmarks of cell invasiveness and drug resistance. Five 411 

of these 25 alternatively spliced genes are well-known to play a role in cancer 412 

(ARHGEF11, CD44, CTNND1, ENAH, MBNL1) [74–76]. Six have been indirectly 413 

linked to tumour malignancy and are thus new splicing targets to study (CAST, CSF1, 414 

PLOD2, SLK, SPAG9, TSC2) [61, 63, 77–80]. The rest are completely unknown for 415 

their splicing role in cancer, even though changes in expression of some of them have 416 

been shown to play a role in tumour progression, chemosensitivity and metastasis 417 

without specifically addressing which splice variant (ATP5C1, BNIP2, FAT1, FNBP1, 418 

SEC31A, ANXA6, DNM1, DNM2) [62, 81]. Of special interest are ARHGEF11 and 419 

CTNND1 splice variants. Both proteins are involved in cell-cell adhesion and the basal 420 

B-specific splice variants promote cell migration and invasiveness in several cancer 421 

types, such as breast cancer (13,54,74,67). Moreover, depletion of ARHGEF11 in 422 

basal breast cancer cells is sufficient to alter cell morphology, which suppresses the 423 
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cancer cell growth and survival in vitro and in vivo [75]. On the other hand, the 424 

existence of an isoform-specific antibody for CTNND1 pro-invasive splice variants 425 

turns this splicing candidate as a valuable new target to reduce tumour metastasis [82]. 426 

ENAH and CD44 are amongst the most studied splicing events impacting cancer and 427 

are well-known biomarkers of poor prognosis. ENAH’s inhibition decreases metastasis 428 

by slowing down tumour progression and reducing cell invasion and intravasation [83–429 

85]. While the change to basal B splicing signature of CD44, a transmembrane protein 430 

that maintains tissue structure, is sufficient to drive an EMT and to increase cell 431 

invasion and plasticity by promoting stem cell characteristics [22, 86]. Interestingly, 432 

MBNL1 splicing regulation has also been involved in pluripotent stem cell 433 

differentiation [87] and cell viability via inhibition of DNA damage response [88]. 434 

Promising new splice variants with a potential link with cancer are CSF1, PLOD2, SLK, 435 

SPAG9 and TSC2. CSF1 is a macrophage marker which splice variant could correlate 436 

with infiltration of tumour-promoting macrophages [77, 89]. Changes in the alternative 437 

splicing of the procollagen-lysine PLOD2, which catalyses the deposition and cross-438 

link of collagens in the extracellular matrix, have been intimately linked to EMT 439 

progression and cervical, breast, lung, colon and rectal cancer prognosis [40, 90]. Its 440 

inhibition reduced proliferation, migration and invasion of cancer cells, while its 441 

overexpression promoted cancer stem cell properties and resistance to drugs [63, 91]. 442 

SLK was identified as a prognostic biomarker in several cancers and is necessary for 443 

the induction of cell migration and invasion during EMT [61, 76, 92]. SPAG9 is a 444 

scaffold protein that organizes mitogen-activated protein kinases and has been 445 

associated with invasion in several types of tumours and prognosis [79, 93, 94]. Finally 446 

TSC2 basal B-specific splicing isoform cannot be phosphorylated by AKT, which leads 447 

to a continuously activated mTOR pathway and oncogenic autophagy [78]. More 448 
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functional studies on the impact of each of these cassette exons splice variants in 449 

cancer will increase our knowledge on tumour progression and metastasis with the 450 

long term goal of improving diagnostics and treatment. Of note, other types of splicing 451 

events, different from the studied cassette exons, have also been shown to play 452 

important roles in tumorigenesis, such as alternative splice sites and intron retention 453 

[71–73]. It is necessary to extend this type of approaches to all types of splicing events 454 

and validate them using independent cohorts of patients. The increase of accessible 455 

sequencing data in primary tumours will thus be essential to continue with this type of 456 

approaches. 457 

Finally, it is interesting to note that these 25 alternatively spliced exons are 458 

basically dependent on three well-known splicing regulators, ESRP1/2 and RBM47, 459 

which are intimately linked to EMT and metastasis. ESRP1 is the major regulator of a 460 

newly identified epithelial-specific splicing signature [53]. Its expression in cancer cells 461 

promotes tumour growth and a mesenchymal-to-epithelial transition which are 462 

essential for the formation of new tumours at distal organs during metastasis [95, 96]. 463 

RBM47 is a newly identified splicing regulator of EMT that has also been associated 464 

with metastasis [57, 97, 98] . Through integrative analysis of clinical breast cancer 465 

gene expression datasets, cell line models and mutation data from cancer genome 466 

resequencing studies, RBM47 was identified as a suppressor of breast cancer 467 

progression and metastasis. It was found mutated in patients with brain metastasis and 468 

its expression was necessary to inhibit brain and lung metastatic progression in vivo 469 

[57]. Interestingly, despite regulating just 9/25 splicing events of the basal B-specific 470 

splicing signature, low expression of RBM47, and not ESRP1, correlated with a poor 471 

prognosis and lower survival rate in basal-like breast cancer patients, which increases 472 

the interest to design new therapies targeting this splicing regulator.  473 
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In fact, this basal B-specific splicing signature has highlighted a subpopulation 474 

of basal-like triple negative breast cancer patients differentially expressing several 475 

hallmarks of invasive, EMT-like aggressive cancer, such as the newly identified 476 

biomarker of metastasis CD36 [20]. CD36 is a fatty receptor expressed in metastasis-477 

initiating cells. Neutralizing antibodies that block CD36 completely inhibited the 478 

formation of metastasis in orthotopic mouse models of human oral cancer, and CD36 479 

inhibition impaired metastasis in human melanoma and breast cancer-derived 480 

tumours. Interestingly, the fatty acid-binding protein 7 (FABP7) correlates with a higher 481 

incidence of brain metastasis and lower survival rate in breast cancer patients, which 482 

all together points to a potential connection between fatty acid metabolism and 483 

metastasis in our subclass of basal-like breast cancer patients [99]. Furthermore, cells 484 

expressing our newly identified basal B-specific splicing signature also showed 485 

resistance to several EGFR inhibiting drugs. Therapies targeting EGFR have variable 486 

and unpredictable responses in breast cancer [100]. By better subclassifying sensitive 487 

from resistant tumour cells, diagnoses could be improved, which will impact the choice 488 

of treatment and thus the chances of tumour relapse. Extensive drug screening of cells 489 

derived from basal B-like patients combined with machine learning strategies to 490 

transfer the splicing knowledge obtained will certainly improve the identification of 491 

much more suitable treatments for triple-negative breast cancer cells and reduce 492 

tumour relapse, thus improving the survival rate.  493 

 494 

 495 

CONCLUSION:  496 

Taking advantage of extensive available experimental data in breast cancer cell 497 

lines, we performed a knowledge transfer to clinical data to identify the first splicing 498 
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signature capable of subcategorizing the most aggressive and difficult to treat type of 499 

breast cancer, which is basal-like triple negative breast cancer. Based on the pattern 500 

of splicing of 25 splicing biomarkers, we could identify two new subclasses of clinically 501 

relevant basal-like tumours, basal A and basal B-like, with different sensitivity to drugs 502 

and capacity to invade distal organs, which has a direct impact on prognosis. We 503 

propose that by testing all basal-like patients with this novel signature, patients with 504 

increased chances of creating early metastasis or tumour relapse could be closely 505 

monitored to improve their chances of survival. Similarly, by correlating alternative 506 

splicing patterns with drug resistance in cancer cell lines, or even cancer cells isolated 507 

from patients, more specific splicing biomarkers could be identified for the most 508 

adequate and personalized choice of treatment, which is one of the major challenges 509 

in triple negative breast cancer. Finally, the newly identified basal B-specific splice 510 

variants underline a stem cell-like, highly invasive EMT phenotype, with increased drug 511 

resistance, that could be used as novel therapeutic targets to reduce cancer metastasis 512 

and relapse, opening new perspectives into the development of improved and more 513 

specific treatments for triple negative breast cancer tumours. 514 

 515 

 516 

METHODS 517 

RNA-seq transcriptomics analysis: gene expression and alternative splicing   518 

RNA-seq reads were aligned to the human genome (GRCh38, primary assembly) 519 

using STAR [101] version 2.5.2b with standard parameters. Gencode v25 (derivated 520 

from Ensembl v85) was used for all analysis requiring annotation.  521 
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TPMCalculator [102] (v0.0.1) was used to compute Transcripts Per Million (TPM) 522 

values and obtain read counts. Q parameter was set to 255 to keep only unique 523 

mapped reads and ExonTPM value was used to consider only reads mapped to exons. 524 

Whippet-quant from Whippet software (v10.4) was used to compute Percentage 525 

Spliced-In (PSI) values for splicing analysis. Conjointly to Kruskal-Wallis testing, the 526 

output from Whippet-quant was further filtered to include only events for which the sum 527 

of inclusion counts (IC) and skipping counts (SC) was greater or equal to 10 for both 528 

sets of samples. Whippet-delta was used to compute differential splicing (deltaPsi) and 529 

probability that there is some change in splicing between conditions. Two heuristic 530 

filters were applied on splicing events as advised in whippet documentation; |deltaPsi| 531 

> 0.1 and P(|deltaPsi| > 0.0) >= 95 % were considered reliable parameters to filter 532 

biologically relevant AS events. 533 

When necessary, Biobambam2 [103] (v 2.0.87) was used to transform bam files into 534 

fastq in order to be processed by Whippet. 535 

 536 

Gene ontology (GO) analysis was done using the DAVID (v 6.8) [104] functional 537 

annotation tool (https://david.ncifcrf.gov/home.jsp) using Benjamini-Hochberg adjusted 538 

P-value cutoff of 0.05 to define a term as enriched. Go terms enrichment was restricted 539 

to GOTERM BP-FAT, GOTERM MF-FAT, and GOTERM CC-FAT, KEGG_PATHWAY 540 

and REACTOME_PATHWAY. 541 

 542 

Gene Set Enrichment Analysis (GSEA v20.0.5) was carried out on the GenePattern 543 

[105] web platform using phenotype for permutation type and 1000 for number of 544 

permutations to execute. FDR cutoff of 25% for potential true positive finding was used 545 
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as documented in the GSEA user guide. Read counts were previously normalized 546 

using DESeq2 [106] (v 1.10.1) on the same Platform. 547 

R version 3.6.2 was used all along this study excepted for GSEA. 548 

 549 

All heatmaps were done online using Morpheus 550 

https://software.broadinstitute.org/morpheus/. Values were adjusted by Z-score. 551 

(subtract mean and divide by standard deviation). Hierarchical clustering was done in 552 

Morpheus. We selected "Metric One minus pearson correlation" as a measure of 553 

distance between pairs of observation and "Average" as the linkage method. The 554 

clusters were done using rows and columns together. Columns were grouped by 555 

cancer subtypes. 556 

 557 

Sashimi plots to look cassette exons events were done using ggsashimi tool [107]. 558 

 559 

Machine Learning and feature selection:  560 

First, we construct a classifier to distinguish basal B / A cell lines using a Random 561 

Forest with 1000 trees. After, we applied this model to the TCGA patients. Based on 562 

Gini impurity, we computed the class probability to predict patient labelled as B-like or 563 

A-like. Then, mixing initial cell lines with a subset of patients classified with the more 564 

reliability (the ones picked up with higher class probability not passing below a 565 

threshold of P=0.6), we create a new model. Each addition of patients is called a round, 566 

during which a new model is created, giving new predictions (probabilities) for the 567 

remaining patients. By limiting the number of new patients added at each round (10 x 568 

n_current_round) (Fig.3c and Additional File 1: Fig.S3c-4c), the model can gradually 569 

learn from the patient data and avoid overfitting. With such conditions, we can observe 570 
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a gradual shifting in feature importance from the ones informative to classify cell lines 571 

to the ones informative to classify patients and cell lines (Fig.3d and Additional File 1: 572 

Fig.S3d-4d). The algorithm stops when it can no longer incorporate the patients into 573 

one or the other group given the cut-off of P=0.6. ML analyse was done with Python 574 

3.7.3 based on scikit-learn version 0.21.2.  575 

To select the more efficient features that were able to separate B-like from A-like 576 

patients, we used Boruta package (0.3) implemented in python. We ran it 10 times with 577 

different random states, on the 217 features related to splicing and kept the ones that 578 

were present at least 7 times on 10. We ended with 25 AS features. Considering only 579 

these 25 AS features, we applied TSNE function from manifold package (with 580 

perplexity=20) to 3 other datasets of basal cell lines (n=56) to check the features were 581 

sufficient to distinguish spatially these cell lines according to their labels.  582 

For the classification using only differentially expressed genes (Additional File 1: 583 

Fig.S3) or a mix of differentially spliced and expressed features (Additional File 1: 584 

Fig.S4), we applied the same strategy using the information from the 635 differentially 585 

expressed genes and the 217 differentially spliced exons scaling independently the 586 

values from the cell lines and patients with sklearn’s StandardScaler. We also had to 587 

reduce the probability threshold to 0.55 in the mixed model.   588 

 589 

Breast Cancer Annotation 590 

Basal B & A cells were labelled according to literature: Neve & al [28], Kao & al [33], 591 

Marcotte & al [108], Dai & al [109]. PAM50 intrinsic subtype were retrieved from  592 

https://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30119-3 [48]. 593 

Claudin Low status was defined with script downloaded from 594 

https://github.com/clfougner/ClaudinLow/blob/master/Code/TCGA.r [110] using 595 
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dataset from http://download.cbioportal.org/brca_tcga_pan_can_atlas_2018.tar.gz 596 

[111, 112]. 597 

 598 

Survival Analysis  599 

Log-rank tests were performed using the functions surv and survfit from R package 600 

(survival v3.1.8). A different survival was considered significative if log rank test p-value 601 

was <0.05. Coxph function was also used for univariate Cox regression analysis in 602 

order to compute Hazard Ratio and 95% Interval of confidence. Kaplan–Meier curve 603 

were plotted using function ggsurvplot from R package survminer (0.4.6) Plots were 604 

truncated at 5 years, but the analyses were conducted using all of the data. All 605 

endpoints used for survival analysis in this study were retrieved from this study [113]. 606 

 607 

Statistics 608 

Wilcoxon Rank Sum Test were used to assess statistical significance within boxplots 609 

They were noted. P<0.05 (!), P<0.01 (!!), and P< 0.001 (!!!), P< 0.0001 (!!!!). 610 

Kruskal-Wallis Test was used to keep differential features for expression (TPM values) 611 

or splicing (PSI values) when Luminal, Basal A & B cell lines were compared and 612 

displayed in heatmap figures. A threshold of p-value <10-5 was used to filter out 613 

potential false positive and reduce the number of features in order to apply hierarchical 614 

clustering. This threshold was adapted depending on the number of samples in the 615 

comparison. For RNA binding proteins, a higher cut off of p< 10-9 was used because 616 

5 projects were pulled together. 617 

 618 

Code  619 

Code and annotation files are available here.  620 
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https://github.com/LucoLab/Villemin_2020. 621 
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 684 

Additional File 2: Table S1-S2 685 

Table S1 – GEO accession numbers for all the datasets analysed. 686 

Table S2 – Name, coordinates (Hg38) and PSI mean value and standard error for the 687 

25 exons of the basal B-specific signature in Basal A and Basal B cancer cells and 688 

patients. The difference in splicing levels between basal B and basal A is shown as 689 

deltaPSI. 690 

 691 

Figure Legends 692 

Figure 1. Basal cell lines are divided in two subgroups based on gene expression 693 

and splicing patterns. a. Heatmap of the Transcripts per Million (TPM) values of the 694 

635 genes which differential expression can cluster breast cancer cell lines into basal 695 
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A and basal B  (P-value < 10-3 by Kruskal-Wallis Test). b. Heatmap of the Percentage 696 

Spliced-In (PSI) values of the 217 exons which differential splicing can cluster breast 697 

cancer cell lines into basal A and basal B (P-value <10-3 by Kruskal-Wallis Test). c. 698 

Venn Diagram of the genes differentially expressed and/or spliced between basal A 699 

and basal B cancer cell lines. The overlap is not higher than expected by Fisher’s exact 700 

test, two tail (p=0.098) 701 

 702 

Figure 2. Basal B cell lines show mesenchymal, stem-like and resistance to 703 

treatment characteristics. a,b,c. Gene Set Enrichment Analysis (GSEA) of 704 

differentially expressed genes between basal A and B cell lines for three different 705 

signatures: Mammary Stem Cell, EMT and Resistance to Gefitinib. Up-regulated genes 706 

in all signatures are enriched in basal B cell lines (FDR<0.25). d. Gene ontology 707 

analysis bar graphs for differentially expressed (left) and differentially spliced (right) 708 

genes between basal A and B cell lines. Gene ontology terms related to Cellular 709 

Component (GO_CC_FAT), Molecular Function (GO_MF_FAT) and Biological 710 

Process (GO_BP_FA) are shown in the y axis in blue, yellow and red, respectively. 711 

Benjamini false discovery rate (FDR, -log10) is shown on the x axis. Vertical lines mark 712 

an FDR threshold of FDR=0.05 (-log10(0.05)=1.3) for differentially expressed and 713 

spliced genes, respectively. e. Box plots of the median and 25th percentile of the 714 

CD44/CD24 log2 expression ratio for basal A and B cell lines. P-value is calculated 715 

using the Wilcoxon rank-sum test. f. Boxplots comparing IC50 values in basal A and B 716 

cell lines upon treatment with different drugs from the Genomics of Drug Sensitivity in 717 

Cancer 2 (GDS2) dataset. P-values are calculated using the Wilcoxon rank-sum test. 718 

 719 

Figure 3.  A Random Forest Classifier using knowledge transfer from cell lines 720 
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to patients. a. Workflow scheme: a random forest (RF) model is built using cell lines 721 

labelled as Basal B (red) or Basal A (blue). It is then run iteratively, integrating at each 722 

round patients whose probability to be classified in one group or the other is amongst 723 

the ten highest. The classifier stops when no more patients can be classified. b. 724 

Probability of a basal-like patient to be classified as basal B-like, basal A-like or 725 

unclassified over each round. Yellow lines indicate thresholds used to classify a patient 726 

as basal B-like (>0.6) or basal A-like (<0.4). c. Bar plot of the number of patients added 727 

at each round. Patients with the highest probability to be classified are sequentially 728 

incorporated to the input cell lines in order to create a new classifier for the next round 729 

of integration. d. Evolution of the feature importance at each round of iterative training. 730 

In red are the 10 splicing variants (features) most informative at the beginning of the 731 

transfer learning process. In blue are the 10 splicing variants most informative at the 732 

end. Only two exons remained informative from the beginning to the end (in blue and 733 

red). The name of the top 10 final most informative spliced genes are written in blue 734 

and in sequential order. e. Kaplan-Meier plots of disease specific survival in basal A-735 

like (blue) and basal B-like patients (red). Hazard ratio (HR) and logrank p-value (P) 736 

discriminating the two groups are shown. 737 

 738 

Figure 4. The basal B-specific splicing signature is associated to EMT features. 739 

a. Heatmap of the Percentage Spliced-In (PSI) values of the 25 cassette exons most 740 

informative to classify TCGA basal-like patients into basal B-like (red) or basal A-like 741 

(blue). Claudin low tumors are highlighted in green. b,c. Sashimi plots displaying ENAH 742 

and PLOD2 splicing patterns in randomly selected patients classified as basal A-like 743 

and basal B-like. d. Changes in alternative splicing of these 25 basal B-specific splicing 744 

events is sufficient to properly cluster 55 basal breast cancer cell lines from 3 unrelated 745 
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sequencing projects into basal B and basal A using t-SNE. Of note, three basal B cell 746 

lines, HCC38, MDA-MB-157 and SUM102 were misclassified as Basal A cell lines (red 747 

dots). Although HCC38 has also been classified as Basal A in the DepMap portal 748 

(www.depmap.org). e. Heatmap of the PSI values of the 25 basal B-specific splicing 749 

signature in public RNA-seq datasets from four different EMT projects. Basal B-like 750 

events have the same splicing patterns as EMT-induced cells.  751 

 752 

Figure 5. Basal B-like patients express hallmarks of EMT and metastasis that 753 

leads to a poor prognosis. a. Lehman classification for basal A- and B-like patients. 754 

**p<0.01 in Fisher’s exact test, two tail, comparing basal B to basal A. b. Gene Set 755 

Enrichment Analysis (GSEA) of the genes differentially expressed between basal A- 756 

and B-like patients. Hallmark EMT and inflammatory response signatures are enriched 757 

in basal B-like patients. c. Box plots of the median and 25th percentile of the expression 758 

levels (in TPM) of major epithelial and mesenchymal-like EMT markers in basal A-like 759 

(blue) and basal B-like (red) patients. d. Box plot of of the mean and 25th percentile of 760 

the expression levels (in TPM) of Basal-like non-invasive and mesenchymal-like 761 

invasive markers in basal A-like (blue) and basal B-like (red) patients. ** P <0.01, *** 762 

P <0.001, **** P <0.0001 in Wilcoxon rank-sum test comparing basal A-like to basal B-763 

like.  764 

 765 

Figure 6. The basal B-specific splicing signature is co-regulated by ESRP1 and 766 

RBM47. a. Heatmap of Transcripts per Million values for RNA Binding Proteins (RBP) 767 

differentially expressed in basal A and basal B cell lines (P-value <10-9 by Kruskal-768 

Wallis Test). b. Box plots of the mean and 25th percentile of the expression levels (in 769 

TPM) of the same RBP as in a, but in basal A-like and basal B-like patients. c,d. Venn 770 
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diagrams of the number of splicing events from the basal B-specific splicing signature 771 

dependent on the splicing factors (SF) ESRP1/2 and RBM47 using a cutoff of 772 

|DeltaPsi| > 0.1 and a higher probability >= 0.95. e,f,g. Heatmaps of the PSI values of 773 

the ESRP and RBM47-dependent exons from c and d in ESRP1/2 knock downed H358 774 

cells, RBM47 overexpressed MDA-MB-231 cells and RBM47 knock downed H358 775 

cells. h,i. Kaplan Meier plots for overall survival in basal-like TCGA patients expressing 776 

the highest tercile (blue) or the lowest tercile (red) of ESRP1 and RBM47 expression 777 

levels. HR (Hazard Ratio) and Logrank p-values (P) discriminating between groups are 778 

shown. 779 
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T
a
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1 

 

 
 

USED IN MODEL FOR VALIDATION LUMINAL
PRJNA523380 (1) PRJNA523380 (1) PRJNA297219 (2) PRJNA297219 (2) PRJNA210428(3) PRJNA210428(3) PRJNA251383 (4) PRJNA251383 (4) PRJEB30617(5) PRJEB30617(5) PRJNA523380 (1)PRJNA297219 (2)
BT20 BASALA BT20 BASALA SUM225 BASALA BT20 BASALA BT20 BASALA AU565 600MPE
CAL851 BASALA CAL851 BASALA HCC1143 BASALA HCC1143 BASALA HCC1187 BASALA BT474 AU565
HCC1143 BASALA HCC1143 BASALA MX1 BASALA HCC1187 BASALA HCC1569 BASALA BT483 BT474
HCC1187 BASALA HCC1187 BASALA HCC70 BASALA HCC1569 BASALA HCC1806 BASALA CAL148 BT483
HCC1500 BASALA HCC1569 BASALA HCC1569 BASALA HCC1599 BASALA HCC1937 BASALA CAMA1 CAL148
HCC1569 BASALA HCC1599 BASALA HCC1954 BASALA HCC1937 BASALA HCC1954 BASALA EFM19 CAMA1
HCC1599 BASALA HCC1806 BASALA HCC3153 BASALA HCC1954 BASALA HCC70 BASALA EFM192A EFM19
HCC1806 BASALA HCC1937 BASALA SUM149 BASALA HCC70 BASALA MDAMB468 BASALA HCC1419 EFM192A
HCC1937 BASALA HCC1954 BASALA HCC1937 BASALA MDAMB468 BASALA HCC1500 BASALA HCC1428 EVSAT
HCC1954 BASALA HCC3153 BASALA HCC1806 BASALA SUM149 BASALA BT549 BASALB HCC202 HCC1008
HCC2157 BASALA HCC70 BASALA HCC1599 BASALA BT549 BASALB CAL120 BASALB HCC2218 HCC1419
HCC70 BASALA HDQP1 BASALA JIMT1 BASALA MDAMB157 BASALB CAL51 BASALB KPL1 HCC1428
HDQP1 BASALA JIMT1 BASALA SUM229 BASALA MDAMB231 BASALB HCC1395 BASALB MCF7 HCC202
JIMT1 BASALA MACLS2 BASALA BT549 BASALB MDAMB436 BASALB HS578T BASALB MDAMB134VI HCC2185
MDAMB468 BASALA MDAMB468 BASALA MDAMB231 BASALB SUM102 BASALB MDAMB157 BASALB MDAMB175VII HCC2218
BT549 BASALB MX1 BASALA HCC38 BASALB SUM159 BASALB MDAMB231 BASALB MDAMB361 HCC2688
CAL120 BASALB SUM149 BASALA HS578T BASALB HCC38 BASALB MDAMB436 BASALB MDAMB415 HCC712
CAL51 BASALB SUM229 BASALA MB157 BASALB SKBR7 BASALB MDAMB453 KPL1
DU4475 BASALB MB157 BASALB HCC1395 BASALB HCC38 BASALB SKBR3 LY2
HCC1395 BASALB BT549 BASALB SUM1315 BASALB T47D MCF7
HCC38 BASALB CAL120 BASALB UACC812 MDAMB134VI
HMC18 BASALB CAL51 BASALB UACC893 MDAMB175VII
HS578T BASALB DU4475 BASALB ZR751 MDAMB330
MDAMB157 BASALB HBL100 BASALB ZR7530 MDAMB361
MDAMB231 BASALB HCC1395 BASALB MDAMB415
MDAMB436 BASALB HCC38 BASALB MDAMB453

HS578T BASALB MFM223
MDAMB157 BASALB OCUBM
MDAMB231 BASALB SKBR3
MDAMB436 BASALB SKBR5
SKBR7 BASALB SUM185
SUM102 BASALB SUM190
SUM1315 BASALB SUM225
SUM159 BASALB SUM44
SW527 BASALB SUM52
UACC3199 BASALB T47D

UACC812
UACC893
ZR751
ZR7530
ZR75B
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Table S2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ID Coords
PLOD2 chr3:146077861-146077924
DNM2_a chr19:10796060-10796199
CTNND1_b chr11:57791493-57791673
SPAG9 chr17:50975862-50975901
RUBCN chr3:197691073-197691148
CTNND1_a chr11:57789036-57789155
EVI5L chr19:7857091-7857124
DNM2_b chr19:10808568-10808580
CAST chr5:96726793-96726859
FAT1 chr4:186590367-186590403
TSC2 chr16:2077597-2077726
FNBP1 chr9:129915965-129915980
BNIP2 chr15:59668102-59668138
CSF1 chr1:109923165-109923711
ANXA6 chr5:151110626-151110644
ARHGEF11 chr1:156938417-156938513
ENAH chr1:225504990-225505053
AP1B1 chr22:29329711-29329720
ATP5C1 chr10:7806973-7807010
DNM1 chr9:128247923-128247935
CD44 chr11:35209964-35210054
MBNL1 chr3:152446703-152446757
SEC31A chr4:82842184-82842481
KIF13A chr6:17771113-17771218
SLK chr10:104010815-104010908
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3. GENERAL DISCUSSION AND PERSPECTIVE  

 

  

 Alternative splicing plays a key role in protein diversity in healthy organisms. 

When the oncogenesis process is activated, this regulatory layer is disrupted, leading 

to a modification of the isoforms content of the cell and more widely of the tissue. It’s 

a key mechanism whose impact on tumor progression no longer needs to be 

demonstrated. Still the individual functions of these isoforms need to be elucidated, but 

also it is necessary to understand the extent to which biological processes are 

deregulated. The expression of a single gene can have drastic effects depending on 

its context, and depending on the isoform it expresses. When we refer to the 

transcriptome, we first think of the expression of genes. Due to its greater ease of 

interpretation, gene expression has been widely studied, but now with the arrival of 

new technologies and the development of machine learning methods, I hope that it will 

become possible to focus on splicing isoforms to decipher more subtle mechanisms.  

 

Here, I will discuss the added value of AS in the EMT, a process that is renewed even 

several decades after its first description. I will comment our main results and discuss 

further analysis that could be performed. Finally, we will highlight how the field is 

evolving rapidly and I am going to underline some recent advances in, machine 

learning, cancer and medicine. 

 

Interesting contribution of AS in the evolving field of EMT 

 

 During metastatic cascade, it’s obvious that specific mechanisms are 

deregulated in different proportions depending on the tissue, the microenvironment, 

and the cell-of-origin that led to the cancer. Mutations, large rearrangements of the 

genome play an important part in the establishment of the primary tumor. Genetic 

events in genes driving AS programs, or genes affected by AS is not a mandatory 

feature to associate AS with cancer and can be the result of a dysregulated biological 

process (Grosso, Martins, and Carmo-Fonseca 2008). It was suggested a long time ago 

that one of these deregulated processes might be the EMT.  
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EMT has long been viewed as a binary process with two cell populations, 

epithelial and mesenchymal, and is often defined by the loss of the epithelial marker 

E-cadherin and the gain of the expression of the mesenchymal marker vimentin 

(Pastushenko and Blanpain 2019). Now, this oversimplified definition has been 

redesigned, it leaves the door open to a different vision on what is has been established 

about this process in cell lines or even tumors. At the same time, a growing body of 

evidence suggest that an important alternative splicing program occurs during EMT 

and modulates cellular phenotype (Shapiro et al. 2011). From this observation, many 

studies report that the switch of one isoform can trigger an EMT (Brown et al. 2011; 

Ranieri et al. 2016; Tripathi et al. 2019). So, if only an isoform switch can have such an 

effect, taking part in a larger program, it must be possible to identify several markers 

that are regulated in a coordinated manner.  Recently, a consensus statement 

published recently argue that EMT status cannot be assessed on the basis of one or 

a small number of molecular markers  (J. Yang et al. 2020). Thus, identifying several 

isoforms that are part of a larger program makes sense. After all these facts, I 

considered that it seemed interesting to study if changes of isoforms could be observed 

and related to this EMT continuum (Figure 3-1), with the purpose of discovering new 

biomarkers to fight cancer progression. 

 

 

 

 

 

   

 

Figure 3-1 Transition states occurring during EMT 
 

Immunostaining for keratin 14 (K14) and vimentin (Vim) showing changes in their expression 
and in the morphology of skin tumor cells during EMT. Epithelial tumor cells have round shape 

and remain closely attached one to another, express K14, and are negative for Vim. Cells in 
early hybrid EMT state co-express K14 and Vim, are more elongated, but still cohesive. Cells in 

late hybrid EMT co-express K14 and Vim and are further elongated, acquiring fibroblast-like 
appearance. Mesenchymal tumor cells lost the expression of K14 while are uniformly 

expressing Vim, have fibroblast-like shape, and do not form cell–cell junctions (adapted 
from Pastushenko , 2018) 
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Of note, in a freshly published study, Qiu & al (Qiu et al. 2020) presents a twenty-five 

events signature of AS that were sufficient to classify epithelial and mesenchymal 

states of the tumors.  Unlike our study, they isolated directly splicing events from breast 

cancer, stratifying by an EMT scoring function based on gene expression, and 

validated their prediction amongst cell lines. They analyzed the whole set of breast 

tumors without distinction between subtypes. A drawback of this study is that they use 

two genes (VIM and CDH1) to define epithelial and mesenchymal groups. As 

mentioned in Guidelines and definitions for research on epithelial–mesenchymal 

transition (J. Yang et al. 2020), the complex phenotype of EMT cannot only require a 

few molecular markers such as E-cadherin and Vimentin to be characterized. Another 

argument against this, is that VIM is expressed in MCF10A basal normal cells whereas 

these cells display an epithelial phenotype. On the other hand, what was really 

interesting is that they try to identify global signature unlike other studies which end up 

presenting a single candidate as a major contributor to the EMT (Ji Li et al. 2018). 

These references highlight the fact that AS in the EMT is an active field of research, 

paving the way to deeper research.  

 

 Our main achievements  

 

 During this PhD work, I explored the idea that an aggressive and deadly breast 

cancer can hide an EMT program that can lead to a faster extension of the disease. I 

focused on alternative splicing because its importance in EMT is not longer to be 

demonstrated, and it could open the road to new therapeutic strategies to fight cancer.  

Glioblastoma is not treated the same way melanoma is treated. This concept is also 

true in cancer from the same tissue. Different subtypes with specific morphological, 

transcriptional and epigenetic features exist within the same cancer type. This is why I 

have chosen to have a rational approach by focusing on a very particular subtype 

which heterogeneity, even with its own subtype, has been demonstrated (Lehmann et 

al. 2016, 2011). Based on the bibliography of breast cancer lines, I have chosen to use 

the observations made on a group of cell lines presenting mesenchymal and invasive 

characteristics. I wondered if I could transfer this to tumors of patients. By hacking 

random forest methodology, I transferred knowledge from cancer cell lines to human 

breast cancer tumors. I found that splicing events related to an EMT can distinguish 

two populations in the same subtype of breast cancer. I found that these two 
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populations have different outcome, where mesenchymal features seem to lead a 

shortened survival. It is questionable in what proportion this process is completed but 

the real interest lies in the fact that the AS brings a new layer of data to observe these 

changes and to refine what can be observed only with the change of expression. To a 

lesser extent, I also participated in the analysis of k-mer in breast cancer, letting the 

door open to the discovery of other biological events that need to be further 

investigated. So potentially, thanks to this work, new therapeutic targets can be 

explored to improve patient care.  

 

Application in the clinical field  

 

 The method I developped let us discover a signature composed of a few genes 

that can easily be tested on a biopsy by RT-PCR at an affordable price, in a short 

period of time that could fit in a clinical environment. This signature could serve to 

monitor the evolution of a patient tumor toward a potential metastasis and that means 

clinicians could adapt treatments accordingly. Thanks to RNA-Seq from tumors of 

TCGA, I could test my classification technique but it must be mentioned that these raw 

data have restricted accessed and need to be access under specific request 

guidelines. Now, it’s not difficult to deliver a pre-trained model that can be easily port 

to production and reused. Some steps have already been taken in fundamental 

research where predictive models for genomics are shared among community via a 

centralized public repository (Avsec et al. 2019). 

 Also, it’s worth asking what would happen if clinical institutions had to apply and 

share the same approach based on knowledge from cell lines, on their own data from 

patients, in different type of cancers. Still when it comes to patients, privacy and 

security concerns always arise. Training data cannot be shared easily. Nevertheless, 

some federated learning approaches, where model-learning leverages all available 

data without sharing data between institutions, are emerging (Sheller et al. 2020; Rieke 

et al. 2020). This solution will make it possible to apply models trained on datasets of 

unprecedented size, to reach a better reliability and accuracy. Finally, this kind of 

initiative must emerge from a joint decision taken by clinicians, statisticians, IT 

(Information Technology), and bioinformatics teams to lead this digital health 

transformation. Nowadays, due to the fast evolution of data infrastructure, teams and 

organizations, it really seems possible. 
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Perspectives 

 

 One of the first things to test is the actual impact of these splicing events in EMT. 

Using CRISPR/dCas13 methods, the lab is now capable of inducing a splicing switch 

at a specific exon. I would thus test the effect in epithelial cells of inducing a switch 

towards the mesenchymal isoform. Priority will be given to the splicing events shown 

to have a prognostic value on breast cancer. Surprisingly, not all the newly identified 

basal-specific splicing targets are significantly associated with survival, raising the 

hypothesis that some of them must have a stronger impact on tumor progression and 

thus outcome. In particular, mesenchymal PLOD2 (Procollagen-Lysine,2-Oxoglutarate 

5-Dioxygenase 2) isoform, had a strong link with a bad survival. High PLOD2 

expression was associated with poor prognosis in glioblastoma (Yangyang Xu et al. 

2017) and contributes to drug resistance in laryngeal cancer by promoting cancer stem 

cell-like characteristics (Sheng et al. 2019). Previous studies revealed that 2-

oxoglutarate and the iron-dependent dioxygenases superfamily function as a 

hydroxylase/demethylase and that they hydroxylate or demethylate molecules such as 

transcription factor, histones, and DNA as substrates. Indeed, it has been reported that 

these enzymes play various roles in cell cycle and gene expression and control of 

invasion/metastasis of cancer cells in multiple cell lines via modified molecules 

(Markolovic, Wilkins, and Schofield 2015). Moreover, PLOD2 was described as an 

enzyme catalyzing collagen cross-linking and thus playing a role in migration and 

invasion (Du et al. 2017). CD44 mesenchymal isoform was not associated with survival 

when I looked at it individually but its role with tumor progression and poor prognosis 

has been widely described elsewhere (Gotoda et al. 1998; Fang et al. 2016; Pereira et 

al. 2020; C. Chen et al. 2018). Interestingly, a recent study revealed that CD44 takes 

part in an alternative iron-uptake mechanism that prevails in the mesenchymal state of 

cells (Müller et al. 2020). This mechanism is enhanced during EMT transition, in which 

iron operates as a metal catalyst to demethylate repressive histone marks that govern 

the expression of mesenchymal genes. All taken together, PLOD2 seems an 

interesting candidate to study its implication in the role of iron in cancer development 

and EMT. 

 

 A downside of our work is that I was unable to test our result in a different cohort 

of patients other than TCGA. Importantly, our methodology could be applied to other 
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cell lines of a different type but this statement should be taken with caution as not all 

tissues have a large number of cell lines available, and especially the classification in 

distinct groups has not been as documented as in the case of breast cancer. 

Nonetheless, it’s worth mentioning that there are techniques based on gene 

expression that can calculate the mesenchymal nature of a cell line (Foroutan et al. 

2018; Tan et al. 2014). Another idea could be to use induced EMT RNA-seq projects, 

specific to the tissue I want to explore, to extract a signature of splicing. Then, this 

signature could be applied to cancer cell lines in order to stratify them, before exploring 

the real tumor of the corresponding tissue as I did. Finally, I could attribute a score 

based on alternative splicing and I think both splicing and expression should be 

considered together to give a more accurate EMT scoring. 

 

 During this work, I was surprised to find that few tools exist to study the impact 

of expressing different splicing events in survival, while there are plenty of web 

applications to explore the prognostic value of gene expression, such as Kaplan-Meieir 

Plotter (H. Zheng et al. 2020). Even the well known BioPortal for Cancer Genomics 

(Cerami et al. 2012), that provide access to multiple types of genomic and survival data, 

does not offer this function. For example, Saraiva-Agostinho developed recently 

Psichomics (Saraiva-Agostinho and Barbosa-Morais 2019), a tool to interactively 

performs survival, dimensionality reduction and median- and variance-based 

differential splicing and gene expression analyses that benefit from the incorporation 

of clinical and molecular sample-associated features (such as tumor stage or survival). 

It's currently packaged in R so it can hardly be used by someone with no informatic 

background. Even if many survival analyses of alternative splicing events emerge (J. 

Zhu, Chen, and Yong 2017; D. Zhang et al. 2019; X. Chen et al. 2019), there is no user 

friendly web based interface to make fast queries on a centralized resource. So, there 

is a niche to develop web applications for users who want to quickly explore the link 

between their AS of interest and prognosis in cancer. 

 

 Also, during this work, it’s worth mentioning that I tried to tackle our problem 

using semi-supervised approach where I took benefit from the knowledge we had from 

cancer cell lines. But we could also have explored models that directly classify patients 

based on survival as some new tools do. Cox-nnet is an artificial neural network 

method for prognosis prediction of high-throughput omics data. It was developed using 
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gene expression but certainly can be extended to splicing (Ching, Zhu, and Garmire 

2018). Reboot is another approach to identify genes and splicing isoforms associated 

with cancer patient prognosis (Santos, Guardia, and Santos 2020). It uses a multivariate 

strategy with penalized Cox regression (LASSO method) combined with a bootstrap 

approach, to find gene or transcript signatures (not PSI) relevant to patient prognosis. 

One advantage of our approach is that the model was designed using knowledge from 

cell lines. So, it is easier to go back to the bench and study the function of these splicing 

events in cancer. 

 

 As I mentioned in the introduction, several attempts were performed to divide 

basal-like breast cancer subtype into smaller subgroups based on gene expression 

(Burstein et al. 2015; Jiang et al. 2019; Lehmann et al. 2016). First, I would like to explore 

the k-mer content of each of these subgroups to see if singular events could be found. 

More interestingly, I would like to apply our k-mer classification and annotation 

methods, over the groups I found with different prognosis using our custom random 

forest approach based on AS. That way I could potentially discover more therapeutic 

targets.  

 

For now, a drawback of k-mer is that you always need to go back to something 

biologically meaningful as gene expression or alternative splicing, in order to describe 

a biological event. So, there is need to develop large resources of k-mer, in different 

tissue, cell lines, conditions and diseases. In this way, it will be possible to test directly 

if a k-mer list is enriched in a disease or specific conditions like GSEA do with gene 

expression for biological pathways. The same problem is true for lists of alternative 

splicing exons when one wants to know if a specific set of exons is enriched in a 

signature of stem cells or apoptosis. Signatures are mostly described with gene 

expression and, to our knowledge, majority of existing tools for pathways enrichment, 

are gene expression based. To overcome this, Tranchevent & al, proposed an 

approach based on exon-ontology focusing on exon-encoded protein features, instead 

of gene level functional annotations, to discover protein features enriched by list of AS 

(Tranchevent et al. 2017).  Also, for the study of splicing, some resources started to 

propose large repositories of data from tissues that can be manually annotated by all 

the users to retrieve AS functionality (Tapial et al. 2017).  
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 Thanks to high performance computing and new computational techniques, we 

could imagine to process an incredible amount of data in order to construct a large 

repository of k-mer. Then it would become possible to interrogate directly in which 

condition or pathology a k-mer is enriched. Still taking isoforms as a parallel example, 

other study have aligned 21,504 Illumina-sequenced human RNA-seq samples from 

the Sequence Read Archive (SRA) to the human genome and compared the detected 

exon-exon junctions with known junctions (Nellore et al. 2016) to further study 

transcriptome complexity. This illustrates perfectly the fact that intensive computation 

on big data in bioinformatic can be real and applied to create a large resource of k-mer 

annotated. 

 

Challenges and concluding remarks 

 

 Even if the occurrence of EMT during in vitro models is well documented, the 

role of EMT in patient outcomes remains controversial due to the complex content of 

a tumor (Iwatsuki et al. 2010; Jolly et al. 2017). Multiple groups have linked gene 

expression of EMT-associated gene signatures to increased inflammatory immune 

response in multiple cancer types (Mak et al. 2016; Y. et al. 2016; Romeo et al. 2019).  It 

is often unclear whether clinical EMT signatures originate from mesenchymal 

malignant cells as opposed to tumor stromal cells (e.g., fibroblasts), which express 

EMT canonical markers (McCorry et al. 2018; Williams et al. 2019). For example, 

claudin low breast tumors, which show enrichment for EMT markers also overexpress 

genes associated with immune response and stroma (Sabatier et al. 2014; Prat et al. 

2010). However, novel studies demonstrated recently their true existence (Pommier et 

al. 2020; Fougner et al. 2020), without neglecting the fact that non-tumor cell infiltration 

is undoubtedly an important feature of the claudin-low tumor microenvironment, and 

may even be the feature that induces EMT in this subtype. Anyway, the precise 

mechanisms by which microenvironment influence cell fate decision during EMT are 

still unknown.  

 

 However, researchers seems to agree on the fact that the display of mixed 

epithelial and mesenchymal traits by individual cells appears to be the norm rather 

than exception (Derynck and Weinberg 2019; J. Yang et al. 2020). For example, single-

cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and 
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neck reveals a partial EMT program  regulated by the microenvironment occurring at 

the leading edge of primary tumors (Puram et al. 2017). By contrast to some lineage-

tracing experiments that failed to identify cells in the metastatic site that have 

undergone EMT (Fischer et al. 2015; X. Zheng et al. 2015) , dynamic changes in 

epithelial and mesenchymal composition of circulating breast tumor cells have been 

described (Yu et al. 2013). In parallel, it was found in another model, that most tumors 

lose their epithelial phenotype through an alternative program involving protein 

internalization rather than transcriptional repression. It results in a partial EMT 

phenotype, used by carcinoma cells to migrate as clusters (Aiello et al. 2018). Recent 

studies have attempted to better define EMT states using single-cell approaches; 

Pastushenko & al demonstrated the existence of partial EMT states in mammary and 

skin cancer by examining a large number of surface markers with flow cytometry and 

single-cell RNA-sequencing (Pastushenko et al. 2018). Partial EMT states were 

identified also in ovarian cancer specimens with mass cytometry (V. D. Gonzalez et al. 

2018). In the context of these observations, there are still many questions unanswered 

that I hope will be able to answer in a near future due to evolving (wet and dry) 

techniques of analyze.  

 

 The combination of computational approaches (Goecks et al. 2020; Eraslan et al. 

2019) and novel technologies such as single-cell sequencing (Jackson et al. 2020), 

chromatin profiling, or in vivo intravital microscopy (Zhao et al. 2016), should help to 

better understand the dynamics and the molecular mechanisms controlling EMT 

related cancer heterogeneity. Nowadays, the fields of single-cell, long-read 

sequencing, and spatial transcriptomics, are evolving at an incredible rate. Tilgner & 

al, recently produced an analyze of brain-regions specific splicing at an incredible 

resolution (Joglekar et al. 2020) using all the technologies mentioned above. They 

provide a robust means of quantifying isoform expression with cell-type and spatial 

resolution that could benefit to the study of isoforms in tumor and its microenvironment. 

Following the initiative of TCGA, the Human Tumor Atlas Network (HTAN), part of the 

National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, 

experimental, computational, and organizational framework to generate informative 

and accessible three-dimensional atlases of cancer transitions for a diverse set of 

tumor types (Rozenblatt-Rosen et al. 2020).  
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The European counterpart, so called Lifetime project (Bertero et al. 2020), will track 

human cells during the onset and progression of complex diseases, not only cancers. 

This huge project aims to integrate single-cell multi-omics and imaging, artificial 

intelligence and patient-derived experimental disease models during progression from 

health to disease. The way we do science is going to be completely transformed with 

profound changes in the way data is handled and the techniques used to interpret it.  

As Goecks & al discuss in their “perspective” article, machine learning will have a 

central role to play in solving problems related to genetic heterogeneity and cellular 

mechanisms underlying diseases (Goecks et al. 2020). The predicted deluge of 

biological data will certainly give birth to unprecedented discoveries in the field of 

cancer, and alternative splicing will certainly not be left at the doorstep. 

 

Figure 3-2 The Human Tumor Atlas Network (HTAN) 
 

HTAN centers will take measures at multiple scales of resolution (molecular, 
ultrastructural, cellular, histological, anatomical and clinical.  Most centers will use 
both molecular and spatial profiling methods to  interrogate cell-type composition, 
cell-cell interactions, and spatial structures. It’s a massive effort to facilitate clinical 

and structural predictions. (Adapted from Rozenblatt-Rosen, 2020) 
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Figure 3-3 LifeTime European Project 
 

Key technologies envisioned by the LifeTime initiative. Integration and analyze of 
large, longitudinal multi-omics and imaging datasets will require the development of 

new pipelines and machine learning tools. (Adapted from Bertero, 2020) 
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Comparative analysis of high throughput sequencing data between multiple conditions often

involves mapping of sequencing reads to a reference and downstream bioinformatics ana-

lyses. Both of these steps may introduce heavy bias and potential data loss. This is especially

true in studies where patient transcriptomes or genomes may vary from their references,

such as in cancer. Here we describe a novel approach and associated software that makes

use of advances in genetic algorithms and feature selection to comprehensively explore

massive volumes of sequencing data to classify and discover new sequences of interest

without a mapping step and without intensive use of specialized bioinformatics pipelines.

We demonstrate that our approach called GECKO for GEnetic Classification using k-mer

Optimization is effective at classifying and extracting meaningful sequences from multiple

types of sequencing approaches including mRNA, microRNA, and DNA methylome data.
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S
tudies of variation in gene expression, initially through
probe-based technology and more recently high throughput
sequencing (HTS), have considerably advanced knowledge

of disease etiology and classification1–3. The recent promotion
of HTS across a wide spectrum of diseases has generated a
wealth of data that measure gene expression and transcript
diversity but also explore its putative genetic and epigenetic
regulators. Still, despite more than a decade of development,
computational analysis and integration of these data presents
a major challenge. Each type of HTS experiment is compart-
mentalized to a set of computational pipelines and statistical
approaches that often require a full-time bioinformatics
specialist. In addition, most of these pipelines rely on a reference
genome or transcriptome and thus cannot inherently account for
the diversity in non-reference transcripts or individual varia-
tions4. To remove the requirement of a reference, recent meth-
odologies use k-mer representation; they directly compare the
counts of nucleotide sequences of length k between samples5.
These approaches have been successful at detecting novel tran-
scripts but only on a very small subset of RNA sequencing
data4 and would be impossible to implement for the classification
of large patient cohorts using the entire transcriptome. In the
field of metagenomics, numerous algorithms have been developed
to discover unique k-mers or k-mer signatures to classify
organisms6,7. However, these were developed for organisms with
smaller genomes that do not have billions of different k-mers.
In addition, they were designed for inter-species studies where
unique k-mers can be attributed to the genomes of different
taxonomic identities.

Exploring a large set of k-mers to classify samples can be
framed as a global optimization problem for which many
recent approaches have been published and compared8. Amongst
these is a class of nature-inspired algorithms termed Genetic
Algorithm which are based on the processes of mutation,
crossing over and natural selection. These have appealing
properties that could apply to the exploration of a large set of
k-mers. They have low memory requirements because they
explore only part of the data at each stage and they can
produce multiple solutions that fit well with biological inter-
pretation of data. However, despite these properties, genetic
algorithms are rarely used to optimize problems with relatively
small sample sizes and such a large number of parameters, in
this case billions of k-mers.

We have created a novel approach and associated software
called GECKO for genetic classification using k-mer optimization
that is especially designed for HTS data. GECKO is based
on k-mer decomposition coupled with an adaptive genetic algo-
rithm that explores HTS data from two or more input conditions.
This algorithm searches for groups of k-mers that, combined
together are highly informative; they are able to classify the
input categories with high accuracy. Because GECKO uses k-mer
counts, it can theoretically be applied to any type of HTS
experiment and does not rely on a reference genome or tran-
scriptome. Here, we successfully apply GECKO to a variety
of biological problems and sequencing data. These include
microRNA (miRNA) sequencing to classify normal blood cells,
mRNA sequencing to classify subtypes of breast cancer and
to predict response to chemotherapy, and bisulfite sequencing
(BS-seq) on normal versus chronic lymphocytic leukemia (CLL)
samples. Regardless of the type of data, GECKO finds small,
accurate signatures that classify these samples and could thus
be used as diagnostic and prognostic markers. In addition,
by visualizing how the genetic algorithm evolves to find solutions,
GECKO can be used to explore novel sequences or groups of
functionally related sequences associated with normal biology
and disease.

Results
GECKO is designed around two main steps; these are a k-mer
matrix preparation step and an adaptive genetic algorithm
(Fig. 1).

The k-mer matrix preparation, uses an input sequencing file
(.bam or .fastq) to create a matrix of k-mer counts; that is
the number of times a sequence of length k appears in each
sample (k= 30 by default). This matrix is filtered for k-mers
with low counts and non-informative or redundant k-mers (see
the section “Methods”). Then, during the second step an adaptive
genetic algorithm will explore the matrix to discover combina-
tions of k-mers that can accurately classify input samples. The
adaptive genetic algorithm starts by creating thousands of digital
individuals; these are groups of randomly selected k-mers. The set
of individuals is called a population. This population will then
go through phases of mutation, where individuals replace one
of their k-mers with another randomly selected k-mer; a phase
of crossing-over where individuals exchange a portion of their
k-mers with each other and selection, where individuals that do
not classify the input samples well enough will be removed from
the population and replaced. Mutation allows GECKO to explore
local solutions similar to the individual to be mutated; crossing-
over, allows GECKO to explore a broader set of solutions and
reduces the chances of getting stuck in a local minimum (see the
section “Methods”). Each cycle of mutation, crossing-over, and
selection is called a generation. By default, GECKO will iterate
through 20,000 generations or stop when the number of new
solutions discovered throughout generations slows down (see
stopping criteria in the section “Methods”). This algorithm is
called adaptive because the mutation and crossing-over rates
depend on how well individuals in the population perform.
Individuals that perform well have lower rates to prevent them
from changing drastically and thus enabling them to converge

Input data (fastq or bam)

k
-m

e
rs

k-mer count matrix

Adaptive

genetic

algorithm

Winning individuals

classify

Mutation

Crossing-over

Selection
Individual

versus

Fig. 1 Overview of the GECKO algorithm. Input fastq or bam files from two

or more conditions are transformed into a matrix of k-mer counts across all

samples. The k-mers for which the counts are below a noise threshold or

that do not vary across samples are removed (red dots on the right of the k-

mer matrix). The adaptive genetic algorithm randomly selects groups of k-

mers from the k-mer matrix to form individuals. These individuals will go

through rounds of mutation, crossing-over and selection to discover

individuals capable of classifying the input samples with high accuracy
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faster to a solution; individuals that do not perform well will
have higher rates to enable wider exploration of solutions.

In the analyses presented in this study and by default in the
software, GECKO’s performance is systematically tested on 1/6th
of the data that is randomly selected and set aside before running
the algorithm (see the section “Methods”). This test set allows us
to evaluate the accuracy and overfitting for each run; it measures
whether the algorithm fits too closely to the training set and thus
will not correctly predict future input samples. GECKO is thus
run on the remaining 5/6th of the data with cross-validation at
each generation of the algorithm.

Classifying miRNA sequencing data of blood cells. We first
tested GECKO’s performance on a miRNA expression data of
seven types of blood cells sorted from 43 healthy patients for a
total of 413 samples9. We ran GECKO on this dataset using 20-
mers (k-mer size of 20; miRNAs generally vary in size from 20 to
23) to find a set of k-mers that could correctly classify the seven
blood-cell types.

After 6000 generations (15 h on 15 cores; see Supplementary
Table 1 for parameters and Supplementary Fig. 1 for runtimes
and memory usage) GECKO discovered an individual composed
of only three k-mers (ACCCGTAGAACCGACCTTGC, CCCCA
GGTGTGATTCTGATA, AGTGCATGACAGAACTTGGG) that
could distinguish the groups with 0.96 accuracy (Fig. 2a, b and
Supplementary Data 1 and 2).

In the initial study, the authors described a signature of 136
cell-type-specific miRNAs. These 136 miRNAs could classify
the groups with 0.97 accuracy. Thus, we found a much smaller
signature that could classify the seven blood-cell types with
similar accuracy without the use of a miRNA-dedicated
bioinformatics pipeline.

We then aligned the three k-mers discovered by GECKO to a
database of known miRNAs10. Two of these mapped perfectly
to miRNAs 152-3p and 99b-5p, which were annotated in the

original study as specific to NK cells and T helper cells,
respectively. The third mapped to miRNA 361-3p which was
not found to be specific to any of the seven cell types and was
thus ignored in the initial study. Separately, the first two k-mers
could classify one cell-type each and the third would have been
overlooked. Together these three k-mers classify all seven groups
with high accuracy because of their contrasting expression
between each cell types (Fig. 2c).

Classifying breast cancer subtypes using mRNA sequencing
data. Breast cancer is a heterogeneous disease in regards to
response to treatment and its transcriptional background.
Defining the subtypes luminal A (LumA), luminal B (LumB),
HER2-enriched (HER2) and basal-like are crucial for prognosis
and predicting outcome of breast cancer. These subtypes were
initially defined through unsupervised clustering of gene expres-
sion and are currently identified using a standard qPCR assay
of 50 genes called the PAM5011,12. To assess whether GECKO
could identify k-mers that classify breast cancer subtypes, we used
a dataset of 1087 mRNA-Seq breast cancer samples from the
Cancer Genome Atlas Pan-Gyn cohort13 (patients per class: Basal
175, Her2 73, LumA 513, LumB 185). We ran GECKO for 20,000
generations (75 h on 15 cores; see Supplementary Table 1 for
parameters and Supplementary Fig. 1 for runtimes and memory
usage) and extracted the highest scoring individual at its term
(Supplementary Table 2). We then tested how well these k-mers
classified the four cancer subtypes compared to PAM50 expres-
sion values calculated as transcript per million (TPM). Both the k-
mer counts and PAM50 TPMs were trained using a linear support
vector machine (see the section “Methods”) with identical
training data and evaluated on the same test set. The 10 k-mers
had higher accuracy rates compared to the PAM50 on all four
classes (Fig. 3 and Table 1).

We then further inspected the 10 k-mers discovered by
GECKO by mapping them to the human genome. We found
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Fig. 2 GECKO can accurately classify miRNA data from seven types of blood cells using three k-mers. a GECKO output showing the separation of the seven

blood-cell types at each generation (G) of GECKO analysis using t-SNE visualization applied to k-mer counts. b GECKO output showing the accuracy of

separation for the training and test set across 6000 generations. c variance stabilized counts of the three miRNAs that correspond to the three k-mers

discovered by GECKO across the seven blood-cell types (n= 43 biologically independent donors)

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0456-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:222 | https://doi.org/10.1038/s42003-019-0456-9 | www.nature.com/commsbio 3



that four of the k-mers mapped to genes from the PAM50 list
(FOXC1, ESR1, KRT14, KRT17). Three others mapped to genes
NISCH, TPX2, and ATF3, the first of which is linked to breast
cancer aggressiveness13 and the two latter both affect cell viability
in breast cancer cells14,15. The three last k-mers mapped to three
genes KLHL6, KANSL2, and PHF10 shown to be involved in
tumorigenesis but not in breast cancer16–18. Of the 10 k-mers,
3 map to coding regions and 7 map to 3′ untranslated regions for
which multiple isoforms exist. k-mer counting can thus integrate
alternative transcription to classify mRNA-Seq samples.

Classifying response to chemotherapy of triple negative breast
cancer on small sample sizes of mRNA-Seq. We then tested
GECKO on a dataset with more heterogeneous cell populations
and smaller sample sizes. We used a cohort of triple-negative
breast cancer patients, an aggressive, heterogeneous subtype of
breast cancer with poor outcomes. This cohort taken from the
Breast Cancer Genome Guided Therapy (BEAUTY) study19,20

was divided into 19 patients that had a complete response to
chemotherapy and 20 patients that did not. In such cases of small
sample size and high heterogeneity, we recommend using
GECKO’s voting mode (Fig. 4a).

This mode compensates for bias that may be introduced when
splitting a small number of samples between training and test
datasets and may thus accentuate batch effects. The voting
mode will run 10 instances of the genetic algorithm for 10,000
generations. At their term, it will select k-mers from the top
individuals across the 10 instances and run a final genetic
algorithm on this subset of k-mers for another 10,000 generations.
Running multiple genetic algorithms and aggregating their results
prevents overfitting on a specific split of the data between the
training and test set. In addition, the voting mode introduces
Gaussian noise by default into the data to further prevent
overfitting. This option is recommended for experiments with
<30 samples per condition.

Using the voting mode (83 h using 15 cores; see Supplementary
Table 1 for parameters and Supplementary Fig. 1 for runtimes
and memory usage), we found an individual that was able to
classify patients with 0.93 accuracy (Fig. 4b) with only five k-mers
of length 30 (Supplementary Table 3). As expected three of these
k-mers mapped to genes that had clear roles in resistance to
chemotherapy; JAK3 is involved in chemotherapy resistance in
triple-negative breast cancer8, BOP1 reduces chemotherapy
resistance21 and VTCN1 is associated with poor clinical outcomes
in numerous cancers including breast cancer22.

Classifying BS-seq data. We then wanted to see if GECKO could
accurately classify samples using epigenetic sequencing data, such
as BS-seq generated to investigate DNA methylation. BS-seq
requires extensive bioinformatics processing to discover changes

Table 1 Confusion matrices of breast cancer subtype classification using the frequency of k-mers discovered by GECKO and the

transcript per million values of the PAM50 gene set

Classification with GECKO k-mers Classification with PAM50 TPM values

Predicted class Basal 97.7 2.2 0 0 Predicted class Basal 86 5.2 5.5 3.3

Her2 2 87.5 6.2 4.2 Her2 15.3 60.6 3.6 20.6

LumA 1.5 1.5 92.3 4.6 LumA 15.3 2.2 88.1 8.6

LumB 0 3.4 18.8 77.8 LumB 5.9 15.4 36.5 42.2

Basal Her2 LumA LumB Basal Her2 LumA LumB

True class True class

Adaptive

genetic

algorithm
10 X

Adaptive

genetic

algorithm

a b

Complete response test

Non-complete response test

Complete response 

Non-complete response 

Fig. 4 GECKO voting mode for small sample sizes. a GECKO’s voting mode will run 10 separate genetic algorithms with added Gaussian noise. The best

solutions of these runs will be fed into a final genetic algorithm to produce a final solution. b GECKO output showing the t-SNE separation of patients with

complete response to chemotherapy from those that did not using five k-mers from the winning individual. Triangles correspond to the test dataset that

was excluded from GECKO training can thus be used to estimate overfitting

Basal

LumA

LumB

Her2

PAM5010 K-mers

Fig. 3 GECKO discovers 10 30-mers that classify breast cancer subtypes.

Comparison of breast cancer subtype classification using the frequency of

k-mers discovered by GECKO and the transcript per million values of the

PAM50 gene. Panels show the t-SNE separation of the four classes
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in methylation and thus, a method that could directly classify BS-
seq samples could be of great interest. To test GECKO on BS-seq
we downloaded raw sequencing files from a study on methylome
diversity in 104 primary CLLs samples compared with 26 normal
B cell samples23. Although global hypomethylation has been well
described in cancer, these alterations are highly variable between
CLL samples23 and thus present a challenge for classification.

We ran GECKO for 20,000 generations (39 h; see Supplemen-
tary Table 1 for parameters and Supplementary Fig. 1 for
runtimes and memory usage) and found a winning individual
that was able to classify normal from CLL samples with an
accuracy of 1 using 20 k-mers (Fig. 5a; Supplementary Table 4).
In addition to this final classification, GECKO plots the evolution
of winning organisms across the 20,000 generations (Fig. 5b).
This graph can be used to identify individual k-mers that are
essential for classification and thus worth investigating. Here we
found three k-mers that were most frequently used by winning
individuals for classification (Supplementary Table 5).

We verified the methylation status of the loci where these k-
mer sequences were mapped using the Bismark software24 and
found that all three of them displayed dramatic changes in DNA
methylation between normal and CLL samples (Fig. 5c). Inter-
estingly the two k-mers that were finally selected after 20,000
generations, K107977 and K90528 overlapped binding sites for
CTCF and GATA3, both of which are affected by DNA
methylation status25,26. K107977 overlaps a CTCF-binding site
for the ATP6V1G1 gene27, which codes for a proton pump
responsible for acidification of the cell, a hallmark of cancer
promotion. K90528 overlaps a GATA3-binding site for the
SULF2 gene that has already been identified as a diagnostic and
prognostic marker in multiple cancers28–30.

Discussion
HTS data analysis often requires extensive data transformations
through tailored bioinformatics pipelines to organize the
sequences in a manner that is coherent with our understanding of
biology. Mapping to a reference, using ad hoc statistical thresh-
olds and grouping sequences by functional elements, such as
transcripts are common steps in most bioinformatics pipelines.

We designed GECKO with the aim of creating a classifier that
could explore HTS data without a reference genome or tran-
scriptome and without the need of bioinformatics pipelines
dedicated to a specific library preparation or technology. The
approach we describe here can in theory explore any type of
sequencing data. Because GECKO considers groups of k-mers for
classification, it can make use of co-dependencies between
sequences to find smaller and more accurate classifiers. Thus,
GECKO is capable of better classification than the commonly
used approach that consists of selecting genes for which the
expression is statistically significant between conditions to build a
classifier (Supplementary Fig. 2). In the miRNA analysis of blood
cells for example, one of the k-mers that participated in making
an excellent classifier was not statistically significant by itself and
would have been overlooked.

Using k-mer counts removes the requirement of a mapping step
and makes GECKO applicable to numerous types of sequencing
experiments. In addition, we found that using k-mers instead of
other metrics, such as fragments per kilobase million (FPKM) or
read counts resulted in higher predictive power even when run
with the same genetic algorithm (Supplementary Fig. 3). This can
be explained by the fact that k-mers can measure changes in
transcription, isoform abundance, and sequence simultaneously.
When applied to bisulfite converted data, each epigenetic change
can potentially lead to the appearance of a novel k-mer in samples
where the modification is present. These sample-specific k-mers
allow GECKO to make very efficient classifications and to pin-
point the exact location of the modification.

Unlike regression analysis our approach provides multiple
solutions (Supplementary Fig. 4). For research purposes this
allows us to investigate why different groups of solutions work
well together, explore co-dependencies between sequences and
functional pathways that allow a good separation of input sam-
ples. In a clinical setting, providing multiple good solutions allows
more flexibility for selecting diagnostic or prognostic targets.
Importantly, the k-mers used for classification are not biased
towards higher expressed genes (Supplementary Fig. 5) and
mostly map to unique locations in the genome or transcriptome
(Supplementary Fig. 6). Thus, GECKO can make use of unique
transcriptional elements across a large spectrum of expression.
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GECKO’s ability to work across multiple types of data without
the need of dedicated bioinformatics tools could make it
invaluable for cross-platform large-scale analyses but also for
individual researchers and clinicians who would be able to
compare HTS data between cohorts of patients with no bioin-
formatics training. It is worth noting that the longest and com-
putationally intensive part of our procedure is obtaining the k-
mer matrix. This step need be performed only once per dataset
however and providing a k-mer matrix for online datasets along
with sequencing files could result in widespread use of non-biased
approaches such as GECKO. In addition, k-mer-based approa-
ches, such as GECKO have the advantage of being portable; k-mer
sequences will not change with new versions of the genome.

Methods
Data preparation. The k-mer decomposition into a matrix of k-mer counts is
performed using Jellyfish 231. This step can be preceded by a filtering of sequencing
adaptors by Trim Galore (bioinformatics.babraham.ac.uk/projects/trim_galore/) if
the user selects this option in GECKO. GECKO will then eliminate k-mers for
which the count is below a noise threshold, k-mers that are uninformative for the
given study and k-mers that are redundant (i.e. that share the same information as
another k-mer).

The noise threshold is determined empirically from the input samples and is
calculated for each separate run of GECKO. To do this, we count the number of
times a k-mer count appears in one sample with null values in all other
samples from the same group for the same k-mer. Starting at a k-mer count of 1, we
search how many times the value 1 appears for a k-mer in one sample with 0 in
every other sample for the same k-mer. We then iterate this process for k-mer
counts 2, 3, etc. When this frequency drops dramatically as determined by the
slope of frequency counts (determined by calculating the derivative at each point),
we consider that we are above background and set the threshold as the k-mer
count just before the greatest inflection of the slope (Supplementary Fig. 7).

To determine uninformative k-mers, that is k-mers that do not vary across
input samples, we first discretize the k-mer counts using a chi-square statistic
that determines the minimum number of discrete intervals with minimum loss
of class attribute interdependence32. This algorithm is unsupervised and
determines the existence and number of separate levels in continuous data. If
there are no clear categories, the discretization will output a vector of 1’s.
Following this discretization, if there is not a minimum of 10% of samples with a
different level, then this k-mer is considered uninformative. By default, this
minimum number is set at 10% of the size of the input condition with the least
replicates. For example, if the condition with the least replicates has 30 samples,
then at least three samples must have a different discretized level to the other
samples.

To eliminate redundant k-mers we use symmetric uncertainty (SU) between
pairs of k-mers. Instead of comparing each k-mer to all other k-mers, we first split
the k-mers into buckets of equal size and perform pairwise comparisons within a
bucket. To determine which k-mers will be bucketed together, we calculate the sum
of their counts across samples. k-mers with a similar sum across samples are put
together; k-mers within a bucket have a higher chance of being redundant than if
they were randomly bucketed. When all k-mers within buckets have been
compared and redundant k-mers filtered, this process of bucketing by sum and
filtering is repeated. This process of bucketing the k-mers by sum lead to 10 times
faster filtering process on smaller samples and larger gains with larger matrices.

The SU between two k-mers A and B is given by the formula:

SU A; Bð Þ ¼ 2 ´ H Að Þ þ H Bð Þ % H A; Bð Þð Þ & H Að Þ þ H Bð Þð Þð '

where H(A) and H(B) are the entropies of the two k- mers along the samples and H
(A, B) is the entropy of the combined k-mer counts A and B along the samples.

The Entropy is given by the formula:

H Að Þ ¼ %
X

G

i

Mi=N(log2ðMi=NÞ

where G is the total number of k-mer frequencies given by the discretization step,
Mi is the number of samples at the given discretization level N is the total number
of samples. In our analysis, we empirically set the limit of SU at 0.7, above which
two k-mers were considered as redundant.

GECKO keeps a record of all k-mers eliminated due to redundancy along with
the ID of the k-mer that caused it to be eliminated. Thus, when the genetic
algorithm finds a solution, GECKO can provide all the redundant k-mers that
would have provided a similar solution.

All code for the data preparation was implemented in C++.

The adaptive genetic algorithm. The algorithm begins by splitting the input data
into a training and test set. The test set is created by randomly selecting a number
of samples from each input category. By default the number of samples selected is

1/6th of the category with the smallest amount of samples. The test set is
used to establish a final test score that will have no impact on the genetic algo-
rithm’s evolution but allows us to estimate how well GECKO performs on a
given dataset.

Training: At each generation of the AG, all individuals are scored based on their
ability to classify the input samples using a machine learning algorithm. In this
study, the algorithm used was a Linear Support Vector Classification (LinSVC).
This method combines excellent results on smalls datasets and unbalanced groups
with a good generalization potential, for a small computational resource cost.
LinSVC is implemented in GECKO via the Scikit-learn package33. GECKO can also
be used with a random forest model or neural networks, however these have higher
computational costs and require dedicated hardware to be implemented within
reasonable time-frames.

To calculate the fitness score of an individual at each generation we
randomly split up the training set into two. 2/3 of the training set becomes the
inner training set and the remaining 1/3 becomes the inner test set. We contrast
the inner test set, which is used to score individuals at each generation of the
adaptive genetic algorithm with the test set which is not used to train the adaptive
genetic algorithm but instead is used to estimate the performance of our model.
The inner split on the training data is random and is performed five times. The
score of each individual is an average of these five iterations trained on the inner
training sets and tested on the inner test sets. This rotation of the training data
avoids sample batch effect biases at each generation.

Natural selection: After testing the fitness of each individual of our population
we delete individuals with lower fitness scores. By default, this is 30% of the
population. We call this process natural selection.

We sort the individuals by ascending rank and then apply the following
probabilistic rule:

P % value ¼ αX þ β

where X is the individual rank and the following conditions are satisfied:

X

N

n

P % value ¼ 1

N

P % value
¼

N=2

P % value

2

N

P % value

where α, β are scalar values, N is the size of the population, and
N

P % value
and

N=2
P % value

are, respectively, the probability for the individual rank N

and rank N/2 to be deleted.
Mutation and crossing over rates: GECKO makes use of three different types of

Genetic Algorithm. These adapt the mutation and cross-over probabilities
depending on the homogeneity and the performances of the population in order to
converge faster and more accurately.

The three algorithms are:

A simple adaptative genetic algorithm34. This algorithm has a fixed factor for
individuals for which the fitness is inferior to the average and a decreasing
linear function for the better performing half of individuals.
Another improved adaptive genetic algorithm35 that, similar to the simple
adaptive genetic algorithm, has a crossover probability fixed above the average
fitness, but uses exponential instead of the linear function for fitness values
below the average.
An improved adaptive genetic algorithm36 that models the probabilities with
two linear functions, with a breakpoint for the individuals that have a fitness
equal to the average fitness.

We recommend using the last model as it shows better exploration and higher
convergence rates for the kind of data used for GECKO. This approach aims to
maintain the population’s diversity while protecting good individuals from
modifications. The mutation and cross-over probabilities are decreased when the
individual’s fitness is high compared to the average and increased if it is low.
Similarly, the probabilities are decreased when the population is heterogeneous and
increased when the population is homogeneous to favor exploration of novel
solutions. These probabilities are modeled by two linear functions depending on
whether the individual is above the average fitness of the population or below it and
is given by the formula below.

Pm ¼

k1 favg%fð Þþk2 f%fminð Þ

favg%fmin
; f < favg

k2 fmax%fð Þþk3 f%favgð Þ
fmax%favg

; f ) favg

8

>

<

>

:

Here f is the individual’s fitness, fmin is the fitness of the population’s worst
individual, favg is the population’s average fitness and fmax is the fitness of the
population’s best individual. k1 is the rate applied when f= fmin, k2 when f= favg,
and k3 when f= fmax.

Stopping criteria: By default, GECKO will run for an input number of
generations. The user may however choose to make use of a stopping criteria that
will stop the algorithm prematurely. The stopping criteria is checked after at least
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5000 generations of the genetic algorithm. At this moment, the number of
occurrences of each k-mer in the population is calculated across bins of 500
generations from the start of the algorithm to the current generation. The top 1% of
most frequent k-mers in each bin are selected. We then estimate the difference in k-
mer composition between the current bin and all previous ones using a Hamming
distance. This distance measures the quantity of highest scoring k-mers that are
changing across generations. When the slope of Hamming distance across
generations drops below 1%, the stopping criteria is triggered.

Adding Gaussian noise: The user may add Gaussian noise to the model to
prevent overfitting. The characteristics of this noise are determined for each k-mer
separately. They are a mean of 0 and a standard deviation equal to the standard
deviation of the k-mer in the training set. The user can modify the level of noise by
changing noisefactor which multiplies the standard deviation by the input value.
This noise is generated at each training of machine-learning model and for each
individual.

tSNE visualization: t-SNE plots are generated using scikit-learn with the default
parameters but initialization with PCA. This initialization option allows for better
reproducibility of t-SNE graphs. Below is the corresponding command-line:
manifold.TSNE (n_components= 2, init= ‘pca’, random_state= 0, perplexity=
30.0, early_exaggeration= 12.0, learning_rate= 200.0, n_iter= 1000,
n_iter_without_progress= 300).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from NCBI Gene Expression

Omnibus under the accession numbers GSE100467 and GSE58889; the Cancer Genome

Atlas under the Pan-Gyn cohort name; the database of Genotypes and Phenotypes under

the accession numbers phs000435.v2.p1 and phs001050.v1.p1 but restrictions apply to

the availability of these data, which were used under license for the current study, and so

are not publicly available. Data are however available by submitting a request to these

repositories.

Code availability
GECKO is available at https://github.com/RitchieLabIGH/GECKO under the CeCILL

license.
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Abstract

iMOKA (interactive multi-objective k-mer analysis) is a software that enables comprehensive

analysis of sequencing data from large cohorts to generate robust classification models or

explore specific genetic elements associated with disease etiology. iMOKA uses a fast and

accurate feature reduction step that combines a Naïve Bayes classifier augmented by an

adaptive entropy filter and a graph-based filter to rapidly reduce the search space. By using

a flexible file format and distributed indexing, iMOKA can easily integrate data from multiple

experiments and also reduces disk space requirements and identifies changes in transcript

levels and single nucleotide variants. iMOKA is available at https://github.com/

RitchieLabIGH/iMOKA and Zenodo https://doi.org/10.5281/zenodo.4008947.

Keywords: k-mer, NGS analysis, Personalized medicine, Bioinformatics software, Data

reduction, Machine learning

Background

Studies of variation in gene expression have considerably advanced knowledge of dis-

ease etiology and classification [1–3]. To capitalize on genomic data generated from

numerous clinical studies, recent initiatives have aggregated high-throughput sequen-

cing (HTS) experiments from multiple cohorts that measure gene expression, RNA

isoform usage, and genome variation. For example, the Genomic Data Commons pro-

gram controls access to over 84,000 cases [4]. Still, despite these efforts to aggregate

and provide data from multiple studies, their computational analysis and integration

presents a major challenge; each type of HTS data requires specific bioinformatics

pipelines that need to be implemented by a bioinformatics specialist. In addition, most

of these approaches require reference genomes or transcriptomes and thus cannot in-

herently account for the diversity in non-reference transcripts or individual variations

[5]. To alleviate the requirement of a reference, recent methodologies use k-mer repre-

sentation; they directly compare the counts of nucleotide sequences of length k be-

tween samples [6]. These k-mer based approaches have been core to the field of

metagenomics, where they are used to discover unique k-mers or k-mer signatures to

classify organisms [7, 8]. However, when translated to mammalian genomes, k-mer
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representation results in a k-mer count matrix with as many columns as there are sam-

ples and as many rows as there are k-mers, generally billions. Exploring such large

matrices to find biologically relevant k-mers is intractable unless the analysis focuses

only on a very small subset of the sequencing data [5] or by using metaheuristics that

provide partial solutions [9].

Here we present iMOKA (interactive multi-objective k-mer analysis), a novel ap-

proach and software that allows non-specialists to make use of k-mers to explore large

amounts of mammalian sequencing data. This approach is agnostic of the type of se-

quencing data used, is not biased towards annotated genetic elements, and can analyze

transcript levels and single nucleotide variations in one pass. Importantly, iMOKA is

interactive; it allows the user to import and merge samples from different studies and

tailor their exploration of k-mers to specific genomic elements of interest such as spli-

cing events, mutations, or global gene expression. We tested iMOKA on four clinical

datasets: the classification of breast cancer subtypes and response to chemotherapy of

breast, ovarian cancer, and diffuse large B cell lymphoma (DLBCL). We find that

iMOKA found features that are more accurate than classical bioinformatics approaches,

takes up less space, uses less memory, has faster runtimes, and can be run on a com-

puter cluster or on a laptop.

Results

iMOKA design

iMOKA imports sequencing files in FASTQ, FASTA, BAM format, or SRR identifiers

via its user interface. It then counts the occurrences of all sequences of given length k

(default 31) [9] using the KMC3 software [10] in each sample (Fig. 1). It then extracts

labels from the sequencing metadata so that the user can define groups they wish to

compare. Importantly, each sample is stored as a sorted vector of k-mer counts in a

dedicated binary file using a custom prefix-suffix structure that drastically reduces the

disk space requirements (“Methods” section). For each sample, a JSON file is created

that contains metadata and a rescaling factor for k-mer count normalization that allows

the user to remove or add samples without having to recalculate an entire k-mer

matrix. It then uses our feature reduction step that combines a Bayes classifier aug-

mented by an adaptive entropy filter to rapidly remove non-relevant k-mers (Fig. S1).

The aim of this filter is to evaluate each k-mer individually by combining the accuracy

of the Bayes classifier with the speed of calculating Shannon’s entropy. This evaluation

is performed using a Monte Carlo cross validation with a high number of iterations

and an early break (“Methods” section) that efficiently reduces overfitting and generates

predictions that overcome batch effects. In order to reduce the number of features eval-

uated, the entropy filter works simultaneously and, learning from the entropies of the

k-mers that successfully passed the accuracy filter, discards k-mers with low entropy.

Following this filtering, k-mers for which the sequences overlap are assembled into

graph structures. These are used to aggregate the k-mers that are likely to have been

generated from the same biological sequence and are used to eliminate false positive k-

mers that are mainly singletons (1 k-mer) or very short branches in the graph structure.

Bifurcations or bubbles in these graphs generally arise from the existence of multiple

sequence isoforms that differ by point mutations or alternative splicing events [11]. By
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combining this graph assembly with the relatively permissive Bayesian filter, we are able

to generate a list of informative k-mers in a manner that is fast and accurate.

iMOKA allows the user to align the k-mer graphs to a reference genome to annotate

them with known genomic features such as known RNA transcripts, point mutations,

or mRNA splicing events. iMOKA provides a random forest classifier that uses filtered

k-mer graphs as features (Supplementary methods) and provides the user with a

Fig. 1 Overview of the iMOKA algorithm. The software accepts sequencing reads in FASTQ, FASTA, BAM formats, or

SRR identifiers. The k-mer count in each file is calculated and stored using a dedicated file format. k-mers are then

filtered using an Entropy boosted Bayes filter with Monte Carlo cross validation to obtain the k-mers that are able to

classify the input samples. These are combined into graphs and annotated using GMAP or another user-defined

aligner. The final list of highly informative k-mers can be explored using the graphical interface to create classification

models, inspect individual k-mers, and detect sample outliers using self-organizing maps
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classification model and a sorted list of k-mer graphs that were most used in the tree

models and that are thus of higher interest (Fig. 1). The user may even build classifica-

tion models based solely on specific genomic features such as point mutations or gene

expression for example. Finally, iMOKA uses self-organizing map clustering on the k-

mer graphs to enable users to identify subgroups or outliers amongst their input

samples.

Benchmarking datasets and algorithms

iMOKA uses a k-mer based analysis to detect sequence features and create classifi-

cation models from large cohorts of mammalian RNA sequencing data. To test its

performance, we selected four studies that were distinct in their data structures,

classification objectives, and sizes. The first was a non-binary classification of 1038

patients aiming to define 4 subtypes of breast cancer which were luminal A

(LumA), luminal B (LumB), HER2-enriched (HER2), and basal-like. The second

was a cohort of 240 ovarian cancer patients where the objective was to predict re-

sponse to chemotherapy. The third was a smaller cohort of 118 breast cancer pa-

tients where the objective was also to predict response to chemotherapy. The last

was an even smaller cohort of 17 DLBCL patients divided according to their re-

sponsiveness to the chemotherapy.

In our benchmark, we included methods based on four different types of features

which were k-mer counts, percentage-spliced-in (PSI), transcripts per kilobase million

(TPM), and sequencing counts. The two latter were measured and tested across anno-

tated genes and transcripts separately. The algorithms we benchmarked were DESeq2

[12], edgeR [13], and limmaVoom [14] for TPM and sequencing counts; iMOKA for k-

mer counts; and Whippet [15] for alternative splice site usage. We excluded four other

k-mer based methods HAWK [16], KOVER [17], Kissplice [11], and GECKO [9] be-

cause they were respectively impossible to run on such big datasets due to segmenta-

tion fault errors, were unable to find k-mers that could classify the input samples or,

for the last two methods, were killed after 2 weeks of runtime on our computer cluster.

In our benchmark, we compared the list of features output by each algorithm by

using them in a random forest classifier and determining their out of bag scores (OOB

score). The out of bag score tests how well each classifier performs without having to

set aside a portion of the data specifically as a test set. It is as reliable as using a test set

[18, 19] without having to set aside part of the data. We chose the random forest classi-

fier because it is a non-parametric approach and because the importance of each input

feature is easy to evaluate.

Finally, for the largest dataset, the molecular classification of breast cancer, we per-

formed a 5-fold cross validation of the entire iMOKA procedure and all other bench-

marked algorithms, using 4/5 of the dataset for data reduction and creation of a

random forest model and 1/5 of the dataset as the test set.

Classification of breast cancer subtypes

Breast cancer is a transcriptionally heterogeneous disease with multiple subtypes that

determine prognosis, treatment, and patient outcome. Although breast cancer classifi-

cation is constantly being updated, a broadly accepted stratification defines four groups
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which are luminal A (LumA), luminal B (LumB), HER2-enriched (HER2), and basal-

like [20]. We benchmarked iMOKA on a dataset of 1038 mRNA-Seq breast cancer

samples from the Cancer Genome Atlas (TCGA) Pan-Gyn cohort [21] (patients per

class: basal 190, Her2 82, LumA 559, LumB 207) and tested how well the outputs of

each approach could accurately predict the four classes. We found that the list of k-

mers output by iMOKA (Additional file 1, Fig. S5) was above all other methods in their

ability to classify the four types of breast cancer (Fig. 2a). The worst performing fea-

tures were the splice site usage statistics given by Whippet. This could be expected be-

cause the breast cancer stratifications were originally created using gene expression

profiles, not splicing events.

Fig. 2 iMOKA accurately predicts breast cancer subtypes. a The features output by all benchmarked

approaches are evaluated for their capacity to classify breast cancer subtypes using Random forest’s oob

score plotted as a function of the number of the best features output by each approach. b Screenshot of

the iMOKA output with each k-mer sequence, their rank in the classification of breast cancer subtypes, and

where these sequences map to on the genome. c Screenshot of the iMOKA display showing k-mer counts

of the 3 highest ranking k-mers across the 4 subtypes. d Gene ontology of the genes overlapping the k-

mers selected by iMOKA
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We additionally performed a 5-fold cross validation of the entire iMOKA procedure

and all other benchmarked algorithms including feature reduction and model gener-

ation. The accuracies of the final models (Fig. S2) show a consistent behavior to the

oob scores in Fig. 2a.

iMOKA identified 3002 k-mers overlapping different types of events (Table S1 and

Additional file 1). Using iMOKA’s interface, we were able to explore the genes to which

these k-mers mapped (Fig. 2b). As expected, within the best ranking k-mers, iMOKA

found overlaps with genes that have been extensively linked to breast cancer subtypes

and are already used in the clinic such as estrogen receptor 1 (ESR1) [22], Forkhead

Box A1 (FOXA1) [23], Forkhead Box C1 (FOXC1) [24], xenopus kinesin-like protein 2

(TPX2) [25], and Melanophilin (MLPH) [26]. By clicking on the k-mer sequence in the

iMOKA interface, we can visualize the representation of each k-mer in the 4 classes

(Fig. 2c). The top three k-mers, whose gene expression is shown in Fig. S3, have repre-

sentation profiles that clearly explain iMOKA’s high classification accuracy with a small

number of k-mers.

It is worth noting that iMOKA picked up 120 potential alternative splicing events.

Amongst these were 4 extensively studied splicing isoforms (MYO6, TPD52, IQCG,

and ACOX2) [27] identified to be amongst the 5 most important isoforms differentially

expressed between ER+HER2− and ER-HER2 primary breast tumors (Fig. S4).

Finally, we used DAVID [28] to perform a functional annotation of the genes overlap-

ping the k-mer selected by iMOKA. The gene list is strongly enriched for breast

cancer-associated genes and of genes associated with the function commonly dysregu-

lated in cancer cells, such as cell cycle, cell division, and motility (Fig. 2d and

Additional file 4).

iMOKA identifies events associated with the response to treatment in ovarian cancer

patients

Our second benchmark was performed on a dataset of high-grade serous ovarian

cancers taken from the TCGA_OV cohort [29]. We included patients having an

annotated [30] response to a first-line treatment to the combination platinum and

taxane chemotherapy (patients per class: 174 responsive, 66 non-responsive).

iMOKA identified 138 k-mers with individual accuracy between 65 and 75% (Table

S1 and Additional file 2). Again, the k-mers found by iMOKA gave the most ac-

curate oob scores for response to chemotherapy (Fig. 3a). The gain compared to

other methods is much higher than for the previous breast cancer classification.

This can be explained by the fact that most of the methods we benchmark against

only make use of gene or transcript expression or splicing sites. Breast cancer

stratification is mainly based on gene expression, and therefore, these methods

compare well with iMOKA. However, in the case of response to chemotherapy in

ovarian cancer, iMOKA is able to also make use of single nucleotide variants

(SNVs) and splice site usage to make its predictions (Fig. 3b). Via the iMOKA

interface, we can visualize the SNVs with the highest feature importance. Thus, we

can observe that iMOKA detected a known nonsense mutation (SNP id:

rs10794537) in the alpha-L-iduronidase (IDUA) gene. IDUA is responsible for the

degradation of the mucopolysaccharides, heparan sulfate, and dermatan sulfate
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which modulate angiogenesis, cell invasion, metastasis, and inflammation [26] and

importantly are ligand receptors for polynuclear platinum anticancer agents [27]. In

agreement with this, the gene ontology (Fig. 3d) analysis shows a functional enrich-

ment of small molecule binding proteins.

iMOKA identifies events associated with the response to neoadjuvant chemotherapy in

breast cancer patients

The third test dataset was taken from the Breast Cancer Genome Guided Therapy

(BEAUTY) study [31] and consisted of patients with all 4 types of breast cancer for

which we tested the response to neoadjuvant chemotherapy with paclitaxel and anthra-

cycline. This allowed us to test the binary classification of more heterogeneous cell

populations on smaller sample sizes: 36 patients that had a complete response to

chemotherapy and 82 that did not. It is worth noting that this dataset presented a

Fig. 3 iMOKA accurately predicts response to chemotherapy in ovarian cancer. a The features output by all

benchmarked approaches are evaluated for their capacity to classify response to chemotherapy. Classification

oob score is plotted as a function of the number of features output by each approach. b Screenshot of the

iMOKA output showing each k-mer sequence that maps to a SNV, their importance in the classification, where

these sequences map to on the genome, and what genomic feature they correspond to. c Screenshot of the

IDUA SNV detected by iMOKA. d Gene ontology of the genes overlapped by the k-mers found by iMOKA

Lorenzi et al. Genome Biology          (2020) 21:261 Page 7 of 19



significant batch effect, detected using the R package DASC [32], associated with the

load date of the samples (Fig. S5). Despite this, iMOKA identified 1248 k-mers with an

individual accuracy between 70 and 83.8% (Table S1 and Additional file 3). Again, the

k-mers discovered by iMOKA give the highest oob scores for the response to chemo-

therapy (Fig. 4a).

Our method can identify multiple events on the same gene that are useful for classifi-

cation. For example, as shown in Fig. 4b for the highest scored k-mers overlapping the

gene TBC1D9, iMOKA discovers that the gene as a whole is differentially expressed be-

tween conditions but also discovers alternatively expressed introns (Fig. 4c) that were

confirmed as being a retained intron using a dedicated algorithm, IRFinder [33].

Fig. 4 iMOKA identifies novel events that predict response to neoadjuvant chemotherapy in breast cancer. a The

features output by all benchmarked approaches are evaluated for their capacity to classify response to chemotherapy.

OOB scores are plotted as a function of the number of features output by each approach. b The k-mers abundance

of four k-mers mapping respectively on the 5′UTR and in the last three introns. c Four k-mers overlap the gene

TBC1D9 in different positions capturing a change in overall gene expression and an intron retention event. d Gene

ontology of the genes overlapped by the k-mers found by iMOKA
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The gene ontology analysis of the genes overlapping the k-mers selected by iMOKA

reveals a strong relationship with microtubules and cilia, components influenced by

paclitaxel [34, 35], an anti-microtubule agent of the taxane family used as part of the

therapy on all the patients in the study. Although the study included heterogeneous

cancer types and an unbalanced dataset, iMOKA was able to detect features useful for

classification.

iMOKA identify DE genes associated with DLBCL chemoresistance

In the last dataset, we tested iMOKA in a frequent scenario where differential represen-

tation of transcripts is assessed in a very small cohort. To this end, we considered 17

DLBCL patients [36], 10 responsive to an anthracycline-based regimen R-CHOP (ritux-

imab, cyclophosphamide, doxorubicin, vincristine, and prednisone) and 7 non-

responsive. The RNA-seq used for this dataset is targeted, making it impossible to

evaluate the PSI values, so only the abundance of the genes and transcripts were con-

sidered in the benchmark (Fig. 5 and Fig. S7). iMOKA identified 1928 k-mers having an

individual accuracy over 80% and five with 100% accuracy. They corresponded to the

genes AKT1, BTBD9, ZBTB45, ZBTB17, and BHLHE40. Amongst those, AKT1 is

known to play a role in DLBCL chemosensitivity [37] but was not detected as differen-

tially expressed in the original publication [36].

This study highlights another advantage of using k-mers; they are agnostic to tran-

script annotation. For example, the k-mer overlapping ZBTB17, a gene involved in B

cell development and differentiation [38], is located on the splicing site at position

chr1:15,947,123-15,948,295 and is part of Refseq transcript NM_001242884. However,

this transcript was not annotated in the GENCODE annotation (Fig. 5b) and thus not

detected by salmon.

iMOKA runtimes and disk space

iMOKA was designed to be scalable; the user can control the number of threads

used and the dedicated RAM, allowing the software to run not only on HPC clus-

ters, but also on a laptop. In Fig. 6, we report the times to analyze three experi-

ments described in the previous sections on a computer with 8-cores and 32 GiB

of RAM. Importantly, the higher the number of samples in the cohort, the bigger

iMOKA’s gains are.

iMOKA’s most intensive task is the generation of informative k-mers, where a large

amount of data is filtered and aggregated, while the other benchmarked approaches

handle data that are already filtered (reads are already mapped to annotated regions).

Finally, most methods that calculate differential expression are designed for relatively

small cohorts and do not scale well in memory with large cohorts: DESeq2 and edgeR

for example required additional RAM in order to analyze the differential expressed

transcripts in the TCGA BRCA (TCGA_BC) analysis (61 GiB and 46 GiB, respectively)

(Fig. 6).

Discussion

Recent efforts to aggregate and annotate patient HTS data should facilitate our under-

standing of health trajectories through multiple molecular mechanisms. In theory,
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combining gene expression, isoform usage and single nucleotide variation should allow

for more nuanced stratification and prediction of disease etiology. However, HTS data

analysis often requires extensive data transformations that are often performed with lit-

tle transverse coherence; each type of analysis produces lists of features that pass a

Fig. 5 iMOKA identifies DE genes and transcripts between chemorefractory and chemosensitive DLBCL patients.

a The features output by all benchmarked approaches are evaluated for their capacity to classify response to

chemotherapy. RF’s oob scores are plotted as a function of the number of the best features output by each

approach. iMOKA reach the highest score thanks to the five k-mers with 100% of individual accuracy. b iMOKA

GUI screenshot showing the detail of the splicing site of the gene ZBTB17, where the isoform NM_001242884 is

detected as an event of interest by iMOKA, present in the RefSeq but not in GENCODE. c Five k-mers able to

separate the responsive patients from the chemorefractory ones. k-mer normalized counts and the respective

gene counts available in Fig. S6

Fig. 6 iMOKA is faster and scales better with large cohorts. Comparison of the running times between the

benchmarked methods. Solid bars represent the time dedicated to the generation of the features (transcript

abundance, PSI evaluation, and k-mer count), and the lighter bars represent the time dedicated to the

analysis of the features (differential expression, differential splicing, and the machine learning-based filters)
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given test and these are then analyzed separately. Mapping to a reference, using ad hoc

statistical thresholds for each type of analysis, and grouping sequences by functional el-

ements are common steps in bioinformatics pipelines that may not reflect the complex

interaction between each of the processes that make up an individual’s transcriptome.

We designed iMOKA with the aim of analyzing HTS data in the reverse manner;

we wished to first discover all sequences that were informative, group them ac-

cording to how well they could classify the input samples, and then break them

down into the different components of gene expression, isoform representation,

and SNV presence. In doing so, we created a classifier that could explore HTS data

without a reference genome or transcriptome and without the need of dedicated

bioinformatics pipelines for each type of transcriptional event.

Using k-mer counts removes the requirement of a mapping step and allows

iMOKA to explore and combine multiple transcriptional events to make more ac-

curate predictions and to explore all these events simultaneously without having to

apply multiple pipelines. k-mers can measure changes in transcription, isoform

abundance, and sequence simultaneously and were thus able to create better pre-

dictive models than other metrics such as transcripts per million (TPM), read

counts, or splice site usage.

By creating a reliable, cross-platform user interface, iMOKA allows non-specialists to

leverage the predictive power of our approach in a manner that is fast and accurate. In

addition, iMOKA uses a flexible data structure that allows the easy integration of new

samples and uses only a fraction of the disk space required for stocking compressed se-

quencing files. In addition, k-mer based approaches such as iMOKA have the advantage

of being portable; k-mer sequences will not change with new versions of the genome.

This is crucial for the integration of omics data with other clinical data such as imaging

or patient file records.

Methods

Preprocessing

The input data can be given as SRR identifier, BAM, FASTA, or FASTQ files. In the

first and second cases, the corresponding FASTQ files are automatically generated

using sra-tools’ fastq-dump [39] and SAMtools [40], respectively. If the data is stranded

paired end sequencing, the user can reverse complement one or both the files using

SeqKit [41]. In order to assert the quality of the FASTQ files, the user can use FAST

QC [42] by adding the flag “-q”.

For each sample, KMC3 [9] is used to count the k-mers of the length chosen by the

user (default k = 31). Its output is converted into a sorted binary file optimized for the

following steps of iMOKA and a JSON file containing the metadata information.

The binary file is divided into two parts: a suffix portion, containing the nucleotidic

sequence and the relative count, and a prefix portion, which contains the prefixes and

the positions of the respective suffixes.

The length of the prefix is defined using the following formula, an adaptation from

[43]:

p ¼ 0:5� log2ðtÞ − 0:5� log2ðlog2ðtÞÞ
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where p is the prefix size and t is the total number of different k-mers for the current

sample.

Matrix generation

The input to the feature reduction step is a JSON file containing the name, group, and

localization of the sorted binary k-mer count file of each sample in the analysis. The

JSON file also stores the sum of all the k-mer counts that will be used as a

normalization factor:

N ij ¼ Cij �
RF

T j

where

Nij is the normalized count of the ith k-mer of the sample j

Cij is the raw count of the ith k-mer of the sample j

Tj is the sum of the counts of all the k-mers of the sample j

RF is a rescaling factor, used to increase the value of all the normalized values and

avoid computational problems related to precision. By default, RF = 1e9

Each thread starts the creation of the matrix and the reduction step in parallel, using

an OpenMP [44] implementation, at a different point of the matrix according to the

number of threads available using the following formula:

K t ¼
4k − 1

T
� t

where

T is the total number of threads available

Kt is the first k-mer analyzed by the thread t (from 0 to T excluded) considering all

the possible ordered combination from 0 to 4k

k is the length of the k-mers (default 31)

The last k-mer analyzed by each thread is Kt + 1 – 1. For example, with 2 threads

(T = 2) and k = 31, the first k-mers for each threads will be:

K0 ¼
431 − 1

2
� 0 ¼ 0 ¼ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

K1 ¼
431 − 1

2
� 1 ¼ 2305843009213693952

¼ GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Finally, the buffer size reserved for each sample is dependent on the number of paral-

lel processes, the number of total samples, and the available memory reserved:

buff ¼
RAMavail

α� N � T

where

Buff is the length of the buffer

RAMavail is the available RAM in GiB, defined by the user using the environmental

variable “IMOKA_MAX_MEM_GB”

N is the number of samples in the matrix
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T is the total number of threads available

α is a factor representing the GiB occupied by 1000 k-mers, approximated to 0.011

Bayesian classifier k-mer accuracy assessment

The accuracy of each k-mer is calculated using the NaiveBayesClassifier method imple-

mented in the library mlpack [45]. For each k-mer, the samples are randomly divided

into test and training sets, with an equal number of samples for each group scaled to

the smallest one:

ntest ¼ round nmin�ptestð Þ

ntrain ¼ nmin − ntest

where:

nmin is the dimension of the smallest group

ntest and ntrain are respectively the dimension of the test and training sets

ptest is the test fraction, 0.25 by default

Using one feature (k-mer count) xk at a time, the NaiveBayesClassifier class computes

for each label yj:

P X ¼ xk∨Y ¼ y j

� �

P Y ¼ yið Þ

Given that we use a pairwise comparison with a constant number of training samples

amongst the labels, all the Nlabels have the same probability

P Y ¼ yið Þ ¼ P Y ¼ y jþ1

� �

¼
1

N labels

The label prediction of a sample i based on the k-mer count xk is then given by:

yi ¼ argmax P Y ¼ yð Þð Þ

The accuracy of the k-mer k is computed considering only the samples part of the

test set:

acck ¼
T

ntest
� 100

where

acck is the accuracy of the k-mer k

T is the number of correct labels assigned in the test set

Because the accuracies depend on the random division of the training and test sets,

we use a Monte Carlo cross validation [46] with a given number of iterations ( -c argu-

ment, default 100). This cross validation can be ended by a conditional break that is

triggered when the standard error across iterations drops beneath a given threshold ( -s

argument, default 0.5).

The k-mers that achieve an accuracy higher than the accuracy threshold (-a argu-

ment, default 65) in at least one of the pairwise comparisons are saved in a text file,

along with the accuracy values.
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Entropy filter booster

In order to speed up the process of accuracy estimation, we introduced an additional

filter based on the Shannon entropy [47] of the counts of each k-mer that runs in paral-

lel to the Bayesian filter (BF).

For a given k-mer k and its counts in the different samples Ck = (ck0, ck1, ... ckn), we

compute its entropy value Hk as follows:

Hk ¼ −

Xn

i¼0
f ki � log2 f ki

� �

f ki ¼
ckiPn
j¼0ckj

The filter uses an adaptive threshold, Hthr, tuned according to the lowest en-

tropy detected in the previous batch of k-mers that passed the accuracy filter

(Hmin).

Initially Hthr = 0, so all the k-mers in the first batch are evaluated by the BF and the

lowest entropy is saved as Hmin. During the analysis, Hthr is updated when more than

Eup (initially equal to 30) passes the BF. The first assignment is always:

H thr ¼ Hmin − Hmin � a1 � 2ð Þ

Subsequently:

IFðH thr > Hmin − ðHmin � a1ÞÞ :

H thr ¼ Hmin − Hmin � a1ð Þ

ELSE :

H thr ¼ Hmin þ Hmin � a2ð Þ

The adjustment parameters a1» a2 ensure that the new threshold is not set too close

to the minimum Hmin.

The number of k-mers required to update the threshold (Eup) increases by 30 at

each update in order to reduce the number of computations and reduce the fluctu-

ations of the threshold. Figure S1 shows the entropy in function of the BF esti-

mated accuracy of a sample of k-mers from the previously defined datasets

showing that the number of k-mer would have been rejected by the entropy filter

but would have had an accuracy higher than 60% are rare and that the adaptive

threshold is able to find a mild cutoff that can save more than 50% of the compu-

tation, like in TCGA BC, or can let the BF evaluate most of the k-mers in case of

difficult datasets, like in BEAUTY.

k-mer graph generation

The k-mers that successfully passed the reduction are used as nodes in a graph. A

link between two nodes is created if they overlap by a minimum number of nucle-

otides defined by parameter w (default = 1). This parameter can be increased if the

user notices multiple small sequences in the final result, caused usually by k-mers

with accuracy close to the given threshold arguments -T and -t, respectively the

minimum accuracy required to consider a k-mer in the graph construction and the

minimum accuracy required to generate a sequence from a graph.
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iMOKA then prunes short bifurcations in the graph where there is only one node fol-

lowing the bifurcation. If there are multiple sequential bifurcations, then the branch

with the lowest accuracy is removed.

The accuracy values are then rescaled from 0 to 100 for each pairwise compari-

son in order to normalize the accuracy values and favor the features that are able

to classify pairs of classes that are more difficult to separate.

Since each bifurcation could correspond to a biological event such as a point

mutation or splicing isoform, each separate path that results from a bifurcation will

be kept as a separate sequence for downstream analysis using a depth-first graph

traversal approach. When the traversal meets a bifurcation, the branch having the

most similar accuracies values to the bifurcating node is kept in the current se-

quence and others will generate new sequences. Furthermore, to maintain the con-

text of the bifurcations, three k-mers preceding the bifurcation are added to each

of those new sequences.

Graph mapping and annotation

The sequences generated from the graphs can be aligned to a reference genome.

Currently, iMOKA supports any aligner that provides an output in SAM or pslx

format and uses the information given in the JSON configuration file “mapper-con-

fig” (-m argument) to align and to retrieve the annotation file, in GTF format. In

this manuscript, we used gmap v. 2019-05-12 with the human genome GRCh38

and the GENCODE annotation v29, excluding from the file the entries with the

transcript type “retained_intron”.

Once the k-mer graphs are aligned, iMOKA identifies the following “alignment derived fea-

tures” (ADF):

– Mutations, insertions, deletions, and clipping are identified by the letters “M”, “I”,

“D” and “S,” respectively, in the alignment’s CIGAR string.

– Alternative splice sites are identified when a k-mer graph is split across exons.

– Differential expression (DE) is identified if 50% (set by parameter d) of an

annotated transcript is covered by the k-mer graphs. Since regions with

sequence variations not associated with the classes generate holes in the graphs

reducing the portion of the transcripts that generate useful k-mers, a higher

threshold might result in classifying DE event as general “gene” event, that is,

the best k-mer in a gene.

– Alternative intronic events are identified if 50% (set by parameter d) of an

annotated intron is covered by the k-mer graphs.

– Intergenic events are identified if the k-mer graph maps to the genome but not to

any annotated transcript.

– Unmapped or multimapped events are created for those k-mer graphs that have no

mapping or map to multiple sites.

iMOKA will preserve one k-mer per event, the one with the highest accuracy score.

Table S2 contains the list of events with a detailed description.
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iMOKA implementation

The feature reduction component of iMOKA is implemented in C++ using the follow-

ing libraries: MLpack [45], armadillo [48], cephes [49], cxxopts [50], and nlohmann/

json [51]. The self-organizing map and the random forest are implemented in python 3

using the following libraries: numpy [52], pandas [53], sklearn [54], and SimpSOM [55].

The whole software is included in a ready-to-use Docker and Singularity [56] image

and is released under the Open Source CeCILL license.

Benchmark

Transcript abundance was computed using Salmon [57] version 1.1.0 using the index built

on the reference transcriptome GENCODE v29 (hg38). The PSI values were computed

using Whippet [15] version v0.10.4. We processed the samples in parallel in 4 processes

allowing 2 threads and a maximum of 8 GiB of RAM each. The differential expression

analysis was performed between each pair of classes in R v3.6.3 using the parameters and

functions described in a recent benchmark [58] for the methods DESeq2 [12], edgeR [13],

and limmaVoom [14]. Significantly different PSI values between two subsets were de-

tected using whippet-delta.jl, included in the Whippet package.

Random Forest classifier feature selection and oob score comparison

In order to compare the same number of features extracted by each pipeline, we used the

sklearn method SelectFromModel to select 20 features using a decision tree classifier

(DTC) trained with all the samples and all the features in order to identify twenty features

that, in combination, can be good classifiers. Using an increasing number of features, from

2 to 20, we trained multiple RandomForestClassifier to retrieve the out of the box scores.

We also performed a 5-fold cross validation of the largest and better characterized

dataset, TCGA BRCA, to evaluate the accuracy of a model on unseen data. For each

fold, we performed the feature reduction using only the training in each method. The

final list of features is reduced similarly as for the oob score determination and the bal-

anced accuracy score is estimated for the test set.
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