. Furthermore, we study in detail the underlying algebraic structure, and show how the structure induced by product modifiers fits into the structure induced by friendly modifiers. Finally, we compute the maximal state complexity of friendly operations, depending on their arity.

Chapter 1 Introduction

In the middle of the twentieth century, with the advent of the first computers, mathematicians became increasingly interested in classifying the different ways with which a machine computes. Automata are one of the simplest and most useful models that arose. Since then, a large theory was constructed around this concept. This theory found many practical applications like text processing, lexical analysis, or hardware engineering. In addition, many connections have been built between automata and other areas of mathematical research, like logic or algebra.

Many different kinds of automata have been defined and used in computer science. However, in this thesis, we are only interested in complete, deterministic and finite automata. We explain in the following the idea behind each of these terms. Intuitively, finite automata can be seen as machines that are able to enter a finite number of states. One may go from one state to the other by "reading" a certain letter chosen in a finite set, called an alphabet. We represent an automaton by drawing a circle for each state, with its name inside, and by drawing arrows going from state to state, labelled by letters. For example, in the automaton of Figure 1.1, we can go from state 0 to state 1 by reading either a or b, we can go from state 2 to state 1 by reading either a, b, or c, we can go from state 2 to state 2 by reading b, etc. Thus, we may go from one state to another by "reading" a sequence of letters, called a word. For example, in the automaton of Figure 1.1, we may go from the state 0 to the state 2 by reading the word acb: we go to state 1 by reading a, then we go to state 2 by reading c, and then we stay in state 2 by reading b. Finite automata are designed to accept or reject words, using this mechanism. Indeed, notice that some states of the automaton of Figure 1.1 bear some markings. The states at the end of an arrow that does not come from any other states (i.e., the states 0 and 1) are called the initial states. The states with two circles around them (i.e., states 1 and 2) are called the final states. A word is accepted by an automaton if we can go from an initial state to a final state by reading this word. For example, the word bca is accepted by the automaton of Figure 1.1, because we can go from 0 to 1 by reading b, then from 1 to 2 by reading c, and finally from 2 to 1 by reading a. However, the word ab, for example, is not accepted by the automaton, because there is no way to go from either 0 or 1 to either 1 or 2 by reading ab. Indeed, in order to read a, the only initial state we can begin with is the state 0. Furthermore, reading a from state 0 leads us to state 1, and then reading b from state 1 leads us to state 0, which is not final. A language is a set of words, and the set of all the words accepted by a finite automaton A is called the language recognized by A. A language L recognized by an automaton is called regular.

To be deterministic, a finite automaton must satisfy two conditions. The first one is to have exactly one initial state. The second one is that, by reading a letter from any state, there should be at most one state to which we can go. In other words, for every state q and for every letter a, there should be at most one arrow labelled by a starting from state q. For example, the automaton of Figure 1.1 is not deterministic because, by reading c from the state 1, we can go either to state 0 or to state 2. Another reason would be that it has two initial states, 0 and 1. However, for example, the automaton of Figure 1.2 is deterministic. A deterministic and finite automaton is complete if it is possible to read any letter of its alphabet from any state. In other words, for every letter a of its alphabet, and for every of its states q, there is an arrow labelled by a and starting at q. For example, the automaton of Figure 1.2 is not complete, because we cannot read the letter c from the state 0. To summarize, a finite automaton is complete and deterministic if there is exactly one possible state to go to by reading any letter from any state. For example, the automaton represented in Figure 1.3 is complete, deterministic, and finite. A language is recognized by a complete, deterministic, and finite automata (DFAs) if and only if it is regular. The reason why DFAs are so interesting is that checking if a word is recognized by one of them is easy. Indeed, we only need to read the word from its initial state, and to check whether the state in which we end up is final. Since there is only one way to read the word from the initial state, we do not need to worry whether there is another way to read it that would lead to a final state, as is the case with non-deterministic automata.

It is often interesting to work directly on regular languages to design algorithms. However, the space used to run algorithms is limited, and we are often concerned with the space we need to encode the objects we use. This raises the question of the space needed to code a regular language. Since every regular language is recognized by an infinity of DFAs, can we find the smallest DFA needed to recognize a regular language? And what does "smallest" mean exactly, for DFAs? In other words, what is the "size" of a DFA?

Intuitively, the size of a DFA should roughly depend on the size of its alphabet, and on how many states it has. However, by convention, we define the size of a DFA as the number of its states. Given a regular language L, the size of the smallest DFA (with respect to its size) that recognizes L is called the state complexity of L. Computing the state complexity of a regular language L is usually not obvious to do. In the rest of this thesis, we compute the state complexities of many regular languages, each time in a different way.

Nonetheless, the main questions we address in this thesis do not concern the state complexity of regular languages directly, but rather an extension of this notion to regular operations. A regular operation is an operation acting over regular languages and returning a regular language. The state complexity of a regular operation is the maximal state complexity of its outputs, given the state complexity of its inputs. In other words, the state complexity of a regular operation is a measure of how much more complex its output can be compared to its inputs.

The state complexity of operations has been extensively studied in the past years. To our knowledge, the first paper stating results about the state complexity of operations is [START_REF] Maslov | Estimates of the number of states of finite automata[END_REF]. In this paper, Maslov computed the state complexity of union, Kleene star, square root, catenation, among others, without rigorous proofs. Furthermore, the state complexities computed for the Kleene star and the square root were not accurate. Some time passed before other computer scientists decided to explore more deeply the state complexity of operations. Nonetheless, many papers computing the state complexity of different operations were eventually published. These include the Kleene star, reversal, powers, proportional removals, catenation, binary boolean operations, among others [START_REF] Yu | The state complexities of some basic operations on regular languages[END_REF][START_REF] Salomaa | On the state complexity of reversals of regular languages[END_REF][START_REF] Domaratzki | State complexity of power[END_REF][START_REF] Jirásková | Kleene closure on regular and prefix-free languages[END_REF][START_REF] Domaratzki | State complexity of proportional removals[END_REF][START_REF] Jirásek | State complexity of concatenation and complementation[END_REF][START_REF] Jirásková | State complexity of some operations on binary regular languages[END_REF][START_REF] Jirásková | Concatenation of regular languages and descriptional complexity[END_REF][START_REF] Janusz | In search of most complex regular languages[END_REF]. A survey on the state complexity of operations has been published in 2017 [START_REF] Gao | A survey on operational state complexity[END_REF]. Furthermore, the state complexities of some compositions of two or more wellknown operations have been computed, like the star of union, the star of intersection, starcomplement-star, multiple compositions of boolean operations and multiple compositions of catenation, among others [START_REF] Jirásková | On the state complexity of star of union and star of intersection[END_REF][START_REF] Gao | The state complexity of two combined operations: Star of catenation and star of reversal[END_REF][START_REF] Liu | State complexity of basic language operations combined with reversal[END_REF][START_REF] Cui | State complexity of two combined operations: Catenation-union and catenation-intersection[END_REF][START_REF] Ésik | Estimation of state complexity of combined operations[END_REF][START_REF] Jirásková | The state complexity of star-complement-star[END_REF][START_REF] Jirásek | The exact complexity of star-complement-star[END_REF][START_REF] Caron | State complexity of catenation combined with a boolean operation: A unified approach[END_REF][START_REF] Caron | State complexity of multiple catenations[END_REF][START_REF] Caron | State complexity of combined operations involving catenation and binary boolean operations: Beyond the Brzozowski conjectures[END_REF].

Even though the state complexity of many different operations are known, there are very little general results that can be applied to help us compute the state complexity of a new operation. This is mainly due to the fact that we do not understand well enough how to compute the state complexity of the composition of two operations, even when these operations are simple. Moreover, the monoid structure underlying the transitions of a DFA is well-known, but rarely used to formalize their results. Nonetheless, some similarities can still be observed between computations of state complexity for most operations. Two steps are usually needed when computing the state complexity of a regular operation. The first one is to compute an upper bound using some ingenious tricks. The second is to provide a family of languages, called a witness, whose image by the operation matches this upper bound. Brzozowski [START_REF] Janusz | In search of most complex regular languages[END_REF] pointed out that some particular witnesses could be used for several well-known operations. One of the explanations given by Brzozowski is that they are "complex" in a certain sense: their syntactic monoid is as large as possible. In this thesis, we take a step back and explain why this heuristic method works by adopting an algebraic point of view on witnesses and regular operations.

To that aim, in Chapter 4, we build an algebraic framework, so that the new notions we introduce may be more easily handled and deeply understood. To begin with, the operations that fall into the scope of our results, which we call 1-uniform, are the regular operations that commute with the inverse of every length-preserving morphism. This class contains many well-known regular operations, like the (set-theoretic) complement, the Kleene star, the Kleene positive closure, the cyclic shift, the mirror, all the boolean operations, the catenation, the shuffle, etc. Furthermore, this class of operations is stable by composition. Throughout our research, it appeared that this property of stability by composition played an important role, and gave an interesting algebraic structure to regular operations. Therefore, to formalize the results that come from this property, we decided to use operads, an algebraic tool that comes from the study of different types of algebras [START_REF] Loday | Algebraic Operads[END_REF]. We introduce operads in Chapter 3. Operads are algebraic structures made to mimic operations of higher arity. Their definition captures the way operations of higher arity are composed with one another, in the same way that monoids captures the way by which some objects can be added or multiplied with one another. For example, language operations, regular operations, and 1-uniform operations alike form an operad.

In order to prove some results about the state complexity of 1-uniform operations, we define modifiers, a counterpart to 1-uniform operations in the space of operations over DFAs. Modifiers that are naturally associated with 1-uniform operations are called coherent. We use modifiers to work directly over DFAs, which makes state complexity computations easier. Furthermore, modifiers behave well with respect to composition. To be more precise, modifiers form an operad, and the association between coherent modifiers and 1-uniform operations, is described by a morphism of operads. The study of modifiers leads to the main result of Chapter 4, which states that every 1-uniform operation admits a certain type of DFA, called monster, as witness.

As their name suggests, monsters are DFAs with a very large alphabet. In fact, their alphabet is composed of every possible transition function. Because of the size of their alphabets, monsters are not usually given as witnesses when computing state complexities. It is usually considered better to provide witnesses with small bounded alphabets (less than 5 or 6 letters). However, strictly speaking, if our goal is solely to compute the state complexity of a regular operation, we do not need to worry about the size of our witnesses' alphabets. Therefore, to reach that goal, monsters are good candidates for witnesses, since they give us as much leeway as possible for reachability and distinguishability proofs. Moreover, one can reduce the size of their alphabets later, once a first proof is done. Presenting certain state complexity computations this way may even be clearer, and easier to understand.

Using the framework built in Chapter 4, we devise a method to compute the state complexity of 1-uniform operations, and show that it works on simple examples in Chapter 5. Similar techniques have been used in numerous papers, the oldest of which would be a paper published in 1978 by Sakoda and Sipser [START_REF] Sakoda | Nondeterminism and the size of two way finite automata[END_REF]. The authors created languages composed of graphs, that "contain" in some way all the other languages recognized by the automata they study. This idea led to some state complexity results about conversions between different kinds of automata. Ravikumar [START_REF] Ravikumar | Some applications of a technique of Sakoda and Sipser[END_REF] recognized the possible generality of this technique and applied it to several problems. Despite two of them being about the state complexity of operations (specifically about the Kleene star and the intersection), Ravikumar did not give a general class of regular operations for which this technique can be applied. Later on, many papers using this idea to prove results about the state complexity of operations were published [START_REF] Yan | Lower bounds for complementation of omega-automata via the full automata technique[END_REF][START_REF] Jirásková | State complexity of cyclic shift[END_REF][START_REF] Domaratzki | State complexity of power[END_REF][START_REF] Janusz | On the state complexity of the shuffle of regular languages[END_REF][START_REF] Caron | State complexity of catenation combined with a boolean operation: A unified approach[END_REF]. However, none of them described a general framework that helps us knowing when we can apply such a technique, and the method itself was never formalized.

In addition, it is well worth noting that a very similar framework to the one we built, conveying similar ideas and using similar results, is described in the thesis of Sylvie Davies, albeit with a different point of view [START_REF] Davies | Algebraic Approaches to State Complexity of Regular Operations[END_REF]. Sylvie Davies found these results concurrently and independently, and published them in [START_REF] Davies | A general approach to state complexity of operations: Formalization and limitations[END_REF]. This is not so surprising, as these ideas formalize a heuristic commonly used to compute state complexities. Coincidentally, this stresses the importance and fruitfulness of these ideas.

We put the method we devised to good use in Chapter 6, where we try to compute the state complexity of the star of a boolean operation. This problem is of course harder than computing the state complexity of either one of these operations, as there is no reason for state complexity of their composition to be equal to the composition of their state complexity. We manage to compute the exact state complexity of the star of symmetric difference [START_REF] Caron | Algebraic and combinatorial tools for state complexity: Application to the star-xor problem[END_REF], using some combinatorial results of [START_REF] Caron | State complexity of catenation combined with a boolean operation: A unified approach[END_REF]. This is an entirely new result. Combined with other results [START_REF] Ésik | Estimation of state complexity of combined operations[END_REF][START_REF] Jirásková | On the state complexity of star of union and star of intersection[END_REF], this gives us the state complexity of the star of every binary boolean operation. However, computing the state complexity of the star of every boolean operation is still out of our reach. We explain how our reasoning in the particular case of the symmetric difference may be generalized in Section 6. [START_REF] Caron | New tools for state complexity[END_REF].

As we see in Chapter 6, it can be difficult to compute the state complexity of the composition of two operations, even when these operations are well understood. As for the composition of three or more well-known regular operations, the problem becomes Chapter 2 Preliminaries

Notations and conventions

Standard notations and conventions

• The cardinality of a finite set E, denoted by #E, is the number of elements of E.

• A set G is a subset of a set E if, for all g ∈ G, we have g ∈ E. In that case, we write G ⊆ E. The set of all subsets of E is denoted by 2 E .

• A mapping f from a set E to a set G associates every element of E with an element of G. We let f (e) denote the element of G associated with an element e of E. We say that f (e) is the image of e by f .

• The set of all mappings of a set E to a set F is denoted by F E . If f is a mapping from E to E, we say that it is a mapping over E.

• The identity over E, denoted by Id E , is the mapping such that, for all e ∈ E, we have Id E (e) = e. When E is clear from the context, to avoid cumbersome notations, we let Id E denote Id.

• Let f be a mapping from a set E to a set F. For every subset G of E, we let f (G) denote the set of all elements y of F such that there exists x ∈ G with y = f (x). We say that f (G) is the image of G by f .

• A partial function from a set E to a set F is a mapping f from a subset G ⊆ E to F. We say that G is the domain of f .

• Let E, F, and G be three sets, let f be a mapping from E to F, and g be a mapping from F to G. We let f • g denote the mapping from E to G such that, for all e ∈ E, we have ( f • g)(e) = f (g(e)). We call • the composition of functions.

• The set of all non-negative integers is denoted by N, and the set of all positive integers is denoted by N \ 0.

• Let E be a set. A sequence with values in E is a mapping u from N to E. We usually let (u j ) j∈N denote u, where u j = u( j) for all j ∈ N.

• A sequence (u j ) j∈N with values in a set E is eventually periodic if and only if there exist two non-negative integers p and N, such that for all n ≥ N, we have u n+p = u n .

• For all non-negative integers k, a k-tuple of elements u of E, or a finite sequence with values in E, is a mapping from {1, . . . , k} to E, or equivalently an element of E k . When the terminology of k-tuple is employed, we usually let (u 1 , . . . , u k ) denote u, where u j = u( j) for all j ∈ {1, . . . , k}. Furthermore, when the terminology of finite sequence is employed, similarly to the general case of sequences, we usually let (u j ) j∈{1,...,k} denote u, where u j = u( j) for all j ∈ {1, . . . , k}.

• For all non-negative integers k, we let E k denote the set of all k-tuples of elements of E. The set E 1 is identified with E.

• A mapping f from a set E to a set F is surjective if and only if, for all y ∈ F, there exists

x ∈ E such that y = f (x). A mapping f from a set E to a set F is injective if and only if, for any two distinct elements x and x of E, we have f (x) f (x ). A mapping is bijective if it is surjective and injective.

• Let f be a bijective mapping from E to F. We let f -1 denote the mapping from F to E such that, for all y ∈ F, f -1 (y) is equal to the only element x of E that satisfies f (x) = y.

• Let E be a set, and G be a subset of E. The complement of G in E, denoted by E \ G, is the set of all elements e of E such that e is not in G.

• The union of two sets E and G, denoted by E ∪ G, is the set of all elements that are either in E or in G.

• The intersection of two sets E and G, denoted by E ∩ G, is the set of all elements that are in both E and G.

• The symmetric difference of two sets E and G, denoted by E∆G, is the set of all elements that are either in E or in G, but not both. Notice that we have E∆G = (E ∪ G)\(E ∩ G).

• A monoid is a set M equipped with an associative operation • such that there exists an element e ∈ M that satisfies e • x = x • e = x, for all x ∈ M.

• A group is a monoid (G, •) such that, for all element x ∈ G, there exists an element y in G such that x • y = y • x = e G . This element is called the inverse of x is denoted by x -1 .

• Let (M, •) be a monoid, and H be a subset of M. We say that M is generated by H if, for all x ∈ M, there exists a finite sequence (h j ) j∈{1,...,m} of elements of H such that

x = h 1 • h 2 • • • • • h m .
• Let (G, •) be a group, and H be a subset of G. We let H -1 denote the set of all the elements x of G such that there exists h ∈ H that satisfies x = h -1 . We say that G is generated by H if, for all x ∈ G, there exists a finite sequence (h j ) j∈{1,...,m} of elements of

H ∪ H -1 such that x = h 1 • h 2 • • • • • h m .

Non-standard notations and conventions

• For every set E and every element g of some set, we let [g ∈ E] denote the number equal to 1 if g ∈ E, and 0 otherwise.

• A graded set is a sequence of sets (E n ) n∈N such that, for any two distinct non-negative integers i and j, we have E i ∩ E j = ∅. We almost always identify a graded set (E n ) n∈N with the set E = j∈N E j .

• Let E and F be two graded sets. A graded mapping f from E to F is a mapping from E to F such that, for any non-negative integer n, for any e ∈ E n , we have f (e) ∈ F n .

• Let E 1 , . . . , E k be k sets, and let (

f 1 , . . . , f k ) ∈ E E 1 1 × • • • × E E k k . For any (e 1 , . . . , e k ) in E 1 × • • • × E k , we let ( f 1 , . . . , f k )(e 1 , . . . , e k ) denote the element ( f 1 (e 1 ), . . . , f k (e k )) of E 1 × • • •×E k . In other words ( f 1 , . . . , f k ) denotes at the same time an element of E E 1 1 ו • •×E E k k and an element of (E 1 × • • • × E k ) E 1 ו••×E k .
The reader should always be able to infer, from the context, which one we are referring to. Notice that, as a consequence, for any (g 1 , . . . ,

g k ) ∈ E E 1 1 × • • • × E E k k , we let ( f 1 , . . . , f k ) • (g 1 , . . . , g k ) denote the element ( f 1 • g 1 , . . . , f k • g k ) of E E 1 1 × • • • × E E k k . Furthermore, if (G 1 , . . . , G k ) ∈ 2 E 1 × • • • × 2 E k , we let ( f 1 , . . . , f k )(G 1 , . . . , G k ) denote the element ( f 1 (G 1 ), . . . , f k (G k )) of 2 E 1 × • • • × 2 E k . We say that ( f 1 (G 1 ), . . . , f k (G k )) is the image of (G 1 , . . . , G k ) by ( f 1 , . . . , f k ).
• Let X be a set, k be a non-negative integer. A k-ary operation over X is a pair (k, f ) where f is a partial function from X k to X.

We put the arity k of an operation explicitly in the above definition, instead of relying only on the domain of f , because the domain of f could be empty. This trick lets us distinguish between two operations of different arity whose domains are empty. Nevertheless, a k-ary operation (k, f ) is almost always denoted only by the function f , when the arity of the operation is clear from the context. We say that an operation is unary when it is 1-ary, and that it is binary when it is 2-ary.

• For all positive integers n, we let n denote the finite set {0, . . . , n -1}.

Mappings over n

Let n be a positive integer. For all finite sequences of (i j ) j∈{1,...,m} of pairwise distinct elements of n , we let (i 1 , . . . , i m ) denote the mapping such that

         for all j ∈ {1, . . . , m}, (i 1 , . . . , i m )(i j ) = i j+1 if 1 ≤ j ≤ m -1 i 1 if j = m for all {i 1 , . . . , i m }, (i 1 , . . . , i m )( ) =
The mapping (i 1 , . . . , i m ) is called an m-cycle. A 2-cycle is called a transposition. Furthermore, for all i, j ∈ n , we let π i j denote the mapping such that, for all ∈ n , we have

π i j ( ) = j if = i otherwise.
A permutation is a bijective mapping over n , for some positive integer n. The set of all permutations over n is denoted by S n . It is well-known that, for all positive integers n, ( n n , •) is a monoid, and that (S n , •) is a group. It is well-known that, for all integers n with n ≥ 2, the monoid (S n , •) is generated by {(0, 1), (0, 1, . . . , n -1)}. For all positive integers n, we let Γ n denote the subset of n n equal to {Id} if n = 1, and to {(0, 1), (0, 1, . . . , n -1), π n-1 0 } otherwise. It is well-known that for all positive integers n, the monoid ( n n , •) is generated by the set Γ n .

For all k-tuples of positive integers (n 1 , . . . , n k ), we let Γ n 1 ,...,n k denote the set {t j , c j , p j } otherwise.

n 1 n 1 × • • • × n k n k .
Proposition 1. For all k-tuples of positive integers (n 1 , . . . , n k ), the monoid

(Γ n 1 ,...,n k , •) is generated by Γ n 1 ,...,n k . Proof. Let (n 1 , . . . , n k ) be a k-tuple of integers. For all (φ 1 , . . . , φ k ) ∈ Γ n 1 ,...,n k , we have (φ 1 , . . . , φ k ) = (φ 1 , Id, . . . , Id) • • • • • (Id, . . . , Id j-1 elements , φ j , Id, . . . , Id) • • • • • (Id, . . . , Id, φ k ).
However, for all j ∈ {1, . . . , k}, there exists an integer m j and a finite sequence (φ j, ) ∈{1,...,m j } of elements of Γ n j such that (Id, . . . , Id j-1 elements , φ j , Id, . . . , Id) = (Id, . . . , Id

j-1 elements , φ j,1 , Id, . . . , Id) • • • • • (Id, . . . , Id j-1 elements
, φ j,m j , Id, . . . , Id).

However, by Definition 1, ψ j, = (Id, . . . , Id

j-1 elements , φ j,l , Id, . . . , Id) is an element of Γ n 1 ,...,n k ∪ {(Id, . . . , Id)}. Furthermore, we have (φ 1 , . . . , φ k ) = ψ 1,1 • • • • • ψ 1,m 1 • ψ 2,1 • • • • • ψ 2,m 2 • • • • • ψ k,1 • • • • • ψ k,m k .
Notice that the element (Id, . . . , [START_REF] Birget | Intersection and union of regular languages and state complexity[END_REF], and is otherwise equal to (Id, . . . , Id j-1 elements , (0, 1), Id, . . . , Id) • (Id, . . . , Id j-1 elements , (0, 1), Id, . . . , Id), for all j such that n j ≥ 2. In any case, we can always write (Id, . . . , Id) as a composition of elements of Γ n 1 ,...,n k .

Id) of Γ n 1 ,...,n k is an element of Γ n 1 ,...,n k , if (n 1 , . . . , n k ) = (1, . . . ,
As a consequence, (Γ n 1 ,...,n k , •) is generated by Γ n 1 ,...,n k .

Equivalence relations

A relation over a set E is a mapping from E × E to {0, 1}. For any two elements q, q of E, if r is a relation over E, we let q r q denote the fact that r(q, q ) = 1.

Let r be a relation over a set E. The reflexive closure of r is the relation v such that, for all q, q ∈ E, q v q if and only if q = q or q r q . The symmetric closure of r is the relation s such that, for all q, q ∈ E, q s q if and only if q r q or q r q. The transitive closure of r is the relation t such that, for all q, q ∈ E, q t q if and only if there exists a finite sequence (q j ) j∈{1,...,m} of elements of E that satisfies the following properties:

• q 1 = q, • q m = q ,
• for all j ∈ {1, . . . , m -1}, we have q j r q j+1 . The reflexive,symmetric, and transitive closure of r is the transitive closure of the symmetric closure of the reflexive closure of r.

An equivalence relation ∼ over a set E is a relation that is equal to its reflexive, symmetric and transitive closure. In other words, a relation ∼ over a set E is an equivalence relation if and only if

• for all q ∈ E, we have q ∼ q,

• for all q, q ∈ E, if q ∼ q , then q ∼ q • for all q 1 , q 2 , q 3 ∈ E, if q 1 ∼ q 2 and q 2 ∼ q 3 , then q 1 ∼ q 3 . For all equivalence relations ∼ over a set E, for all q ∈ E, the equivalence class of q for ∼, denoted by ∼ q, is the set of all q ∈ E such that q ∼ q . Furthermore, the set of all equivalence classes of E for ∼, denoted by E/ ∼ , is the set of all q with q ∈ E. Notice that, for all q, q ∈ E, if q ∼ q , then ∼ q = ∼ q . We say that an equivalence relation ∼ over a graded set E is graded for E if, for all integers m and n, for all q ∈ E m , and for all q ∈ E n such that q ∼ q , we have m = n. Equivalently, ∼ is graded if, for all non-negative integers n, (E/ ∼ ) ∩ 2 E n = E n / ∼ . Therefore, if ∼ is graded, the set E/ ∼ is naturally graded as follows: for all non-negative integers n, (E/ ∼ ) n is equal to the set E n / ∼ .

Operations over languages and DFAs

Alphabets, words and languages

An alphabet is a finite set, whose elements are called letters. A word w over Σ is a finite sequence (a j ) j∈{1,..., } with values in Σ. A word w = (a j ) j∈{1,..., } is usually denoted by a 1 • • • a . When = 0, we call w the empty word, and it is denotes by ε. The catenation of two words

u = a 1 • • • a n and v = b 1 • • • b m , denoted by u • v or uv, is the word a 1 • • • a n b 1 • • • b m ,
that is the finite sequence with values in Σ obtained by putting the finite sequence (b j ) j∈{1,...,m} at the end of the finite sequence (a j ) j∈{1,...,n} . For all words w over an alphabet Σ, we define w n inductively as w • w n-1 with w 0 = ε.

The set of all words over Σ is denoted by Σ . A language over an alphabet Σ is a pair (L, Σ), where L is a subset of Σ . To avoid cumbersome notations, we identify a language (L, Σ) with the first element L of the pair, when the alphabet Σ is clear from the context.

By convention, the complement of a language L over an alphabet Σ is the complement of L in Σ .

The catenation of two languages L and L over the same alphabet Σ, denoted by L • L , is the language (over Σ) of all the words ww over Σ such that w ∈ L and w ∈ L .

For every non-negative integer k and every language L over an alphabet Σ, the k-th power of L, denoted by L k , is the language (over Σ) of all the words w 1 • • • w k over Σ such that w j ∈ L, for all j ∈ {1, . . . , k}. In other words, for every non-negative integer k,

L k = L • L k-1 with L 0 = {ε}.
For any language L over an alphabet Σ, the Kleene star of L, denoted by L , is the language (over Σ) of all the words w 1 • • • w k over Σ, such that k is a non-negative integer, and w j ∈ L for all j ∈ {1, . . . , k}. In other words, L = +∞ k=0 L k .

For every non-negative integer n, the n-th root of a language L over an alphabet Σ, denoted by n

√

L is the language (over Σ) of all the words w such that w n ∈ L. Notice that 0 √ L = Σ if ε ∈ L and ∅ otherwise, and

1 √ L = L. By convention, we let √ L denote 2 √ L.

Deterministic, finite and complete automata

A complete and deterministic finite automaton (DFA) is a 5-tuple A = (Σ, Q, i, F, δ) where Σ is an alphabet, Q is a finite non-empty set, i is an element of Q, F is a subset of Q, and δ is a mapping from Q×Σ to Q. The set Q is called the set of states of A, i is called its initial state, F is called its set of final states, and δ is called its transition function. The size of A, denoted by #A, is the cardinality of Q. As an example, let us consider the DFA A = ({a, b}, {0, 1, 2}, 0, {0, 2}, δ), of size 3, where for all j ∈ {0, 1, 2}, we have δ( j, a) = (j + 1) mod 3, and δ( j, b) = (2j) mod 3. This DFA is represented in Figure 2.1. As you can see in Figure 2.1, we represent the states of a DFA as circles with their name inside. We put on the initial state an arrow that does not come from any other state, and we put around the final states another circle. Finally, we put an arrow labelled by a letter a ∈ Σ between two states q and q , if and only if we have δ(q, a) = q .

For any DFA A = (Σ, Q, i, F, δ), any state q ∈ Q and any letter a ∈ Σ, we let δ a (q) denote δ(q, a). Notice that, for all letters a ∈ Σ, δ a is mapping over Q. Furthermore, we extend the transition function δ to a mapping from Q × Σ to Q in the following way: for all states q ∈ Q, and for all words w = a 1 • • • a over Σ, we let δ(q, w) denote the state δ a • • • • • δ a 1 (q) (with δ(q, ε) = q). We also let δ w (q) denote δ(q, w).

We can associate a language with every DFA. Intuitively, we associate with a DFA every word such that, after beginning at the initial state and following the arrows by "reading" the letters one by one, we end up in a final state. More formally, the language recognized by a DFA A = (Σ, Q, i, F, δ), denoted by L(A), is the set of all words w such that δ w (i) ∈ F. A language is called regular if it is recognized by a DFA. Furthermore, the language L(A) is always over the alphabet of A. Two DFAs are equivalent if they recognize the same language.

For example, the language recognized by the DFA B of Figure 2.2 is the set of all words over the alphabet {a} of odd length, i.e., the set {a 2k+1 | k ∈ N}. We say that two DFAs are isomorphic if one is the same as the other up to a renaming of states. More formally, a DFA A = (Σ, Q, i, F, δ) is isomorphic to a DFA A = (Σ , Q , i , F , δ ) if Σ = Σ , and if there exists a bijection φ from Q to Q such that φ(i) = i , φ(F) = F , and, for all states q ∈ Q and all letters a ∈ Σ, we have φ(δ a (q)) = δ a (φ(q)).

Let A = (Σ, Q, i, F, δ) be a DFA, and let ∼ be an equivalence relation over Q. We say that ∼ is compatible with A if

• for all states q, q ∈ Q with q ∼ q , if q ∈ F, then q ∈ F • for all states q, q ∈ Q and all letters a ∈ Σ, if q ∼ q , then δ a (q) ∼ δ a (q ). Let ∼ be an equivalence relation compatible with A. We let A/ ∼ denote the DFA

(Σ, Q/ ∼ , ∼ i, F/ ∼ , ζ),
where, for all ∼ q ∈ Q/ ∼ , we have ζ a ( ∼ q) = ∼ δ a (q). Since δ a (q) ∼ δ a (q ) when q ∼ q , the DFA A/ ∼ is well-defined. We show by induction that, for all states q ∈ Q and all words w over Σ, we have ζ w ( ∼ q) = ∼ δ w (q). Therefore, we have δ w (i) ∈ F if and only if ζ w ( ∼ i) ∈ F/ ∼ . Hence, the DFA A/ ∼ recognizes the same language as A.

Accessible states, the Nerode equivalence and minimal DFAs

Let A = (Σ, Q, i, F, δ) be a DFA. A state q ∈ Q is accessible in A if there exists a word w over Σ such that q = δ w (i). The accessible part of A is the DFA obtained when restricting A to its accessible states, i.e., the DFA B = (Σ, Q , i, F , δ ), where Q is the set of all accessible states of A, F is the set of all final states of A that are accessible, and δ is the restriction of δ to Q × Σ. The non-accessible states are not relevant for computing the language recognized by A. In other words, the accessible part of A recognizes the same language as A.

Let A = (Σ, Q, i, F, δ) be a DFA. We say that two states q, q ∈ Q are distinguishable in A if and only if there exists a word w over Σ such that the states δ w (q) and δ w (q ) do not have the same finality, i.e., such that either δ w (q) F and δ w (q ) ∈ F, or δ w (q) ∈ F and δ w (q ) F. In other words, two states q, q are distinguishable if we can find a word w such that the two states obtained by "reading" w from q and q do not have the same finality. Two states that are not distinguishable in A are said to be indistinguishable in A.

The Nerode equivalence induced by A is a relation ∼ over Q such that, for all states q, q ∈ Q, we have q ∼ q if and only if q and q are indistinguishable in A. The Nerode equivalence ∼ induced by A is an equivalence relation, and is compatible with A. Therefore, if ∼ is the Nerode equivalence induced by A, the DFA A/ ∼ recognizes the same language as A.

Let L be a language over an alphabet Σ, and let A be a DFA that recognizes L. A minimal DFA that recognizes L, or a minimal DFA equivalent to A, is a DFA B such that B recognizes L, and such that the size of B is minimal out of all DFAs that recognize L, i.e., such that L(B) = L and #B = min{#C | L(C) = L}. It is well-known [START_REF] Sakarovitch | Elements of Automata Theory[END_REF] that any two minimal DFAs that recognize the same language L are isomorphic. Furthermore, given a DFA A, we can compute a minimal DFA equivalent to A.

Let A be a DFA, let B be the accessible part of A, let ∼ A be the Nerode equivalence induced by A, and let ∼ B be the Nerode equivalence induced by B. Then the DFA B/ ∼ B is a minimal DFA equivalent to A, and so is the accessible part of A/ ∼ A [START_REF] Sakarovitch | Elements of Automata Theory[END_REF]. We make use of this result repeatedly in Chapters 5 and 7.

As an example, consider the DFA C of Figure 2.3. The only state that is not accessible in C is 5. Therefore, the DFA C of Figure 2.4 is the accessible part of C. The states 1 and 2 are indistinguishable in C , as are the states 3 and 4. Furthermore, the states 1 and 3 are distinguishable in C by reading the empty word. In addition, 0 is distinguishable from every other state. Therefore, the set of all equivalence classes of C , for the Nerode equivalence ∼ C induced by C , is equal to {{0}, {1, 2}, {3, 4}}. As a consequence, the DFA D of Figure 2.5 is equal to C / ∼ C . Hence, D is a minimal DFA equivalent to C. Furthermore, the DFA D recognizes the language {a}. Therefore, D is a minimal DFA that recognizes {a}. 

Language operations and regular operations

What are languages operations and regular operations?

In computer science, and specifically in the research area of formal languages, a regular operation is usually an operation that acts on k regular languages and returns a single regular language, for some integer k. However, we have to clarify what we mean by that, because two main different point of views are used, with slightly different definitions that lead to different results. To this aim, we introduce some new notations. We let L denote the set of all languages, and by L the set of all regular languages. Furthermore, for any alphabet Σ, we let P(Σ ) denote the set of all languages over the alphabet Σ, and by Rat(Σ ) the set of all regular languages over the alphabet Σ. In addition, we let L Σ k denote the set (P(Σ )) k , and by L Σ k the set (Rat(Σ )) k . Finally, we let L k denote the union of all the sets (P(Σ )) k , for all alphabets Σ, and by L k the union of all the sets (Rat(Σ )) k , for all alphabets Σ.

From the unrestricted point of view, we see a k-ary language operation as an operation over L whose domain is L k , i.e., a mapping from L k to L. Similarly, we see a regular operation as an operation over L whose domain is L k , i.e., a mapping from L k to L. From the restricted point of view, we see a k-ary language operation as an operation that acts on k languages over the same alphabet Σ, and returns a language over Σ. Similarly, we see a regular operation as an operation over L that acts on k regular languages over the same alphabet Σ, and returns a regular language over Σ. More formally, from the restricted point of view, a k-ary language operation ⊗ is an k-ary operation over L whose domain is L k (i.e., a mapping from L k to L), and that satisfies ⊗((P(Σ )) k ) ⊆ P(Σ ), for any alphabet Σ. Similarly, a k-ary regular operation ⊗ is a k-ary operation over L whose domain is L k (i.e., a mapping from L k to L), and that satisfies ⊗((Rat(Σ )) k ) ⊆ Rat(Σ ), for any alphabet Σ.

Even though the unrestricted point of view may seem simpler, it is probably easier, for technical reasons, to study the concepts we introduce from the restricted point of view. Therefore, it is the point of view that we adopt throughout this thesis. We stress here that throughout the rest of this thesis, a k-ary language operation refers to a mapping ⊗ from L k to L such that ⊗((P(Σ )) k ) ⊆ P(Σ ), for all alphabets Σ and all non-negative integers k. Furthermore, a k-ary regular language operation refers to a mapping ⊗ from L k to L such that ⊗((Rat(Σ )) k ) ⊆ Rat(Σ ), for all alphabets Σ and all non-negative integers k.

You may have noticed that we purposefully defined regular operations so that their domain was restricted to k-tuples of regular languages of L k . This decision is not without consequences throughout this thesis. In particular, two distinct language operations may have the same restriction to L k , and thus may be equal if considered as regular operations. Therefore, before using an operation over languages, it may be important to ascertain its domain. To avoid this inconvenience, we state now that the domain of every k-ary operation over languages considered in Chapters 4, 5, 6, and 7 is L k . Even though every operation we consider in these chapters is actually a regular operation, it is not obvious for some of them. Therefore, making the statement here that every operations considered are regular operations would require some of the proofs presented later on.

Boolean functions and boolean operations

An important class of language operations is the class of boolean operations. Boolean operations are language operations that generalize the complement, the union, and the intersection of languages. They are routinely used in computer science, and we use them extensively throughout this thesis. They provide good examples, as their properties are not trivial, but not overly complicated either when compared to other well-known operations. In order to define boolean operations over languages, we first need to define boolean functions. In other words, a boolean function acts on k elements of {0, 1} and returns an element of {0, 1}. From every boolean function, we define a corresponding operation over languages. Definition 3. Let b be a k-ary boolean function. We let ⊗ b denote the k-ary language operation such that, for all k-tuples of languages (L 1 , . . . , L k ) over Σ, we have

⊗ b (L 1 , . . . , L k ) = {w ∈ Σ * | b([w ∈ L 1 ], . . . , [w ∈ L k ]) = 1}.
A regular operation is boolean if it is equal to ⊗ b , for some boolean function b.

Example 1. The most usual boolean operations over languages can be defined as follows:

• Let c be the unary boolean function such that c(0) = 1 and c(1) = 0. The complement over languages is equal to ⊗ c . Indeed, we have

{w ∈ Σ * | c([w ∈ L]) = 1} = {w ∈ Σ * | [w ∈ L] = 0} = {w ∈ Σ * | w L} = L c .
• For any two languages L 1 and L 2 over the same alphabet, we have 

⊗ union (L 1 , L 2 ) = L 1 ∪ L 2 , ⊗ inter (L 1 , L 2 ) = L 1 ∩ L 2 , ⊗ xor (L 1 , L 2 ) = L 1 ∆L 2 ,

State complexity

There are as many types of state complexities as there are types of automata. However, in this thesis, we only study what is sometimes called deterministic state complexity, i.e., the notion of state complexity that comes from DFAs.

The state complexity of a language L over an alphabet Σ, denoted by sc(L), is the size of a minimal DFA that recognizes L. For example, from Section 2.4.3, the state complexity of the language {a} over the alphabet {a} is 3 (the size of DFA D in Figure 2.5). We extend this notion to regular operations. The state complexity of a regular operation is a measure of how much it can increase the state complexity of its input languages. In other words, it is the maximal state complexity of the output, given that the state complexity of the inputs is less than or equal to a certain upper bound. More formally, the state complexity of a k-ary regular operation ⊗, denoted by sc ⊗ , is a map from (N \ 0) k to N \ 0 such that, for all k-tuples of positive integers (n 1 , . . . , n k ), we have

sc ⊗ (n 1 , . . . , n k ) = max{sc(⊗(L 1 , . . . , L k )) | (L 1 , . . . , L k ) ∈ L k ∧ sc(L j ) ≤ n j , ∀ j ∈ {1, . . . , k}}
In this thesis, we develop a method for computing the state complexity of some regular operations. In Chapters 5 and 7, we will see several examples of these kind of computations. However, there already are in the literature numerous examples ( see for example [START_REF] Yu | The state complexities of some basic operations on regular languages[END_REF][START_REF] Domaratzki | State complexity of power[END_REF][START_REF] Domaratzki | State complexity of proportional removals[END_REF][START_REF] Jirásek | State complexity of concatenation and complementation[END_REF][START_REF] Jirásek | The exact complexity of star-complement-star[END_REF][START_REF] Jirásková | On the state complexity of star of union and star of intersection[END_REF]). The usual way to compute the state complexity of a regular operation, is first, to find an upper bound, and then, to show that the upper bound is met by providing a witness. A witness for a k-ary regular operation ⊗ is a k-tuple of DFAs (A 1 , . . . , A k ) (whose alphabets are all equal), such that sc ⊗ (n 1 , . . . , n k ) = sc(⊗(L(A 1 ), . . . , L(A k ))), where n j is the size of A j , for all j ∈ {1, . . . , k}. In other words, the usual way to compute the state complexity of an operation ⊗ is to prove that there is an upper bound b such that sc ⊗ (n 1 , . . . , n k ) ≤ b, and then to find a k-tuple of DFAs (A 1 , . . . , A k ) such that each A j is of size n j , and such that sc(⊗(L(A 1 ), . . . , L(A k ))) = b.

Morphisms

Let Σ and Γ be two alphabets. A morphism is a function φ from Σ * to Γ * , such that, for all w, v ∈ Σ * , φ(wv) = φ(w)φ(v). Notice that φ is completely defined by its value on letters, since φ(ε) = ε. We say that a morphism φ from Σ * to Γ * is 1-uniform if, for all a ∈ Σ, φ(a) ∈ Γ. Proposition 2. Let L be a regular language over alphabet Σ recognized by the DFA A = (Σ, Q, i, F, δ) and let φ be a 1-uniform morphism from Γ * to Σ * . Then, φ -1 (L) is the regular language recognized by the DFA B = (Γ, Q, i, F, δ ) where, for all a ∈ Γ and q ∈ Q, δ (q, a) = δ(q, φ(a)).

Proof. A word w is recognized by B if and only if δ w (i) ∈ F. However, an easy induction shows that δ w (q) = δ(q, φ(w)). Therefore, a word w is recognized by B if and only if δ φ(w) (i) ∈ F. However, for any word v, δ v (i) ∈ F if and only if v is recognized by A. Therefore, w is recognized by B if and only if φ(w) is recognized by A. Hence, L(B) = φ -1 (L(A)).

The next proposition is a direct consequence of Proposition 2. Proposition 3. Let L be a regular language and φ be a 1-uniform morphism. We have sc(φ -1 (L)) ≤ sc(L).

Chapter 3 Operads

What is an operad?

An operad is a structure designed to mimic the composition of k-ary functions. To our knowledge, the word operad first appeared in a book of May about iterated loop spaces [START_REF] May | The Geometry of Iterated Loop Spaces[END_REF]. This notion was also connected to the works of G.M. Kelly on coherence in categories, and the definitions used in [START_REF] May | The Geometry of Iterated Loop Spaces[END_REF] arose from discussions between the two mathematicians. In the 1990's, the interest in operads was renewed by the works of Ginzburg and Kapranov, who connected a duality phenomena in rational homotopy theory to the Koszul duality for operads [START_REF] Ginzburg | Koszul duality for operads[END_REF]. Since then, operads were widely used to encode different types of algebras, like Poisson algebras, Lie and pre-Lie algebras, or Jordan algebras, to name a few. Using operads to study these kinds of algebras allows us to simplify results and generalize them. Nowadays, operads appear in many different areas of research, like algebraic topology, differential geometry, combinatorial algebra, or computer science. One can find more information on operads in [START_REF] Loday | Algebraic Operads[END_REF]. The results of this chapter are well-known results from the theory of operads that can be found in e.g. [START_REF] Giraudo | Operads in algebraic combinatorics[END_REF]. Nonetheless, a proof is given here for everyone of them, in order to familiarize the reader with the notion of operads.

An operad is composed of a graded set O and some binary operations j . The idea is that the binary operations j behave like a composition, and that an element in the set O n behaves like an n-ary operation. To explain intuitively the rules defining an operad, we represent their elements as trees. An element of O n is represented by a tree whose root has n children (Figure 3 23 Furthermore, we represent the composition of two elements p • j q by replacing the j-th child of the root of p with q (Figure 3.2).

p • • • 1 2 i • • • m • q 1 2 • • • n Figure 3.2: A representation of p • i q with p ∈ O m and q ∈ O n .
For • j to "behave like" a composition, we set three rules that an operad must satisfy. The first one states that there must exists an element 1 of O 1 that behaves like the identity. It is represented in Figure 3

.3 below. p • • • 1 2 i • • • n 1 • = p • • • 1 2 n 1 • = p • • • 1 2 n Figure 3.3:
The "identity" rule.

The second rule is an associativity rule. It gives two different ways of composing three elements of O, that correspond intuitively to arranging these elements in the shape of a "line" (right part of Figure 3.4). That rule is represented in Figure 3.4 below.

p • • • 1 2 i • • • m • q • • • 1 2 j • • • n • r • • • 1 2 s = p • • • 1 2 i • • • m • q • • • 1 2 j • • • n r • • • 1 2 s • • • 1 2 i -1 + j • • • • m -1 + n = p • • • 1 2 i • • • m • q • • • 1 2 j • • • n • r • • • 1 2 s Figure 3.4:
The "aligned" associativity rule.

Notice that, in the middle part of Figure 3.4, the element corresponding to the rectangle is the element p • i q. As it is an element of O m+n-1 , it is represented as a tree with m + n -1 children, and then composed with r.

We can also compose three elements of O in the shape of a "triangle" (like in the right part of Figure 3.5). Therefore, another associativity rule is needed (Figure 3.5).

p • • • 1 2 • • • i j • • • m • q • • • 1 2 n r • • • 1 2 s • • • 1 2 i • • • • m -1 + n = p • • • 1 2 i • • • j • • • m • r • • • 1 2 s q • • • 1 2 n • • • 1 2 s -1 + j • • • • m -1 + s = p • • • 1 2 i j • • • m r • • • s 1 • q • • • 1 n • b Figure 3.5:
The "triangular" associativity rule.

The "identity" rule, the "aligned" associativity rule, and the "triangular" associativity rule, are the three rules that an operad must satisfy. We formalize this idea in the following definition. Definition 4. An operad is a graded set O equipped with a sequence ( j ) j∈N\0 of binary operations over O = n∈N O n . For all j ∈ N \ 0, j is defined for every pair of functions in O m × O n , with m ≥ j and n ∈ N, and returns an element of O m+n-1 . Furthermore, the sequence of binary operations ( j ) j∈N\0 , must satisfy the following conditions:

• the "identity" rule (Figure 3.3): there exists an element Id ∈ O 1 such that, for all positive integers n and i ≤ n, and all elements p of O n , we have Id 1 p = p i Id = p,

• the "aligned" associativity rule (Figure 3.4): we have p i (q j r) = (p i q) i+j-1 r, for all positive integers m, n, s, i ≤ m, j ≤ n, and all p, q, r, elements of O m , O n , O s respectively,

• the "triangular" associativity rule (Figure 3.5): we have (p j q) i r = (p i r) j+s-1 q, for all positive integers m, n, s, i, and j such that i < j ≤ m, and all p, q, r, elements of O m , O n , O s respectively.

Notice that, for every operad, the element satisfying the "identity" rule is unique. It is called the identity of (O, ).

We end this section by giving an example of an operad. In order to illustrate the above definition, we show here that the graded set B equipped with is an operad, by checking that the three "rules" of Definition 4 hold. However, even though the example seems simple, the direct proof given here is rather heavy. A faster proof is given in Example 6, using the tools we develop in the next section.

• The element {1} of B 1 satisfies the "identity" rule of Definition 4. In other words, for all positive integers n and i ≤ n, and for all elements E of B n , we have

{1} 1 E = E i {1} = E.
• For all positive integers m, n, s, i ≤ m, j ≤ n, and all E 1 , E Thus, since i+n ≥ i+ j, by removing the in the above characterization of (

E 1 i E 2 ) i+j-1 E 3 ,
similarly to what we did in the case of E 1 i (E 2 j E 3 ), we get that

E 1 i (E 2 j E 3 ) = (E 1 i E 2 ) i+j-1 E 3 .
• For all positive integers m, n, s, i, and j such that i < j ≤ m, and all E 1 , E As a consequence, by removing the in the above characterization of (E

1 i E 3 ) j+s-1 E 2 ,
similarly to what we did in the case of (E 1 j E 2 ) i E 3 , we get that

(E 1 i E 3 ) j+s-1 E 2 = (E 1 j E 2 ) i E 3 .
We have thus proved that the graded set B equipped with is an operad.

Operations over a set

Operations are extensively used throughout mathematics and computer science, the simplest and most well-known example being the addition on integers, which is a binary operation. In order to give to operations over a set a structure of operad, we need to define a composition. This composition is a generalization of the composition of partial functions, that we recall below.

Definition 5. Let X be a set, Y and Z be two subsets of X, f be a mapping from Y to X and g be a mapping from Z to X. Let D be the set of all elements z of Z such that g(z) is in Y. We let f • g denote the function from D to X such that

( f • g)(x) = f (g(x)).
Notice that, in the above definition, the domain of f • g is not X nor is it the domain of g, but rather the elements x in the domain of g such that g(x) is in the domain of f . We generalize this idea to k-ary operations, and define the domain of p • j q similarly, based the domains of p and q, but also on the operation q. We illustrate this in Figure 3.6, where q is a unary operation over X of domain Z, p is a binary operation over X of domain Y, and D is the domain of p • 1 q. As you can see, D is the set of all pairs (x, y) in X 2 such that x ∈ Z and (q(x), y)

∈ Y. X X X X X 2 X 2 Z Y g(Z) D q q
(q, Id) As for the output of the composition p • j q in the general case where p is m-ary and q is n-ary, we only need to follow Figure 3.2. Definition 6. Let X be a set, let m, n and j be three integers with 1 ≤ j ≤ m, let p be a m-ary operation over X of domain Y, and let q be a n-ary operation over X of domain Z. Let D be the set of all m + n -1-tuples (e 1 , . . . , e m+n-1 )of elements of X such that (e j , . . . , e n+j-1 ) ∈ Z (e 1 , . . . , e j-1 , q(e j , . . . , e n+j-1 ), e n+j , . . . , e n+m-1 ) ∈ Y We let p • j q denote the m + n -1-ary operation r from D into X such that, for any element e = (e 1 , . . . , e m+n-1 ) of D, r = p(e 1 , . . . , e j-1 , q(e j , . . . , e n+j-1 ), e n+j , . . . , e m+n-1 ).

We call the sequence of binary operations (• j ) j∈N\{0} the composition of operations.

Example 3. Let o + be the binary operation over Z of domain Z 2 such that, for any two integers (i, j), o + (i, j) = i + j. Furthermore, let o / be the binary operation over Z of domain Z × (Z \ {0}) such that, for any two integers (i, j) with j 0, o / (i, j) = i j . From Definition 6, the domain D of o / • 2 o + is the set of all elements (x, y, z) of Z 3 such that o + (y, z) 0 (and equivalently such that y + z 0). Furthermore, for any element (x, y, z) of D,

(o / • 2 o + )(x, y, z) = o / (x, o + (y, z)) = x
y+z . We can see that the domain D that comes from Definition 6 indeed corresponds to the elements (x, y, z) for which x y+z is well-defined.

When p is a unary operation over X, and q is any operation over X, for simplicity, we let p • q denote the operation p • 1 q. We now prove that operations over a set indeed form an operad. Proposition 4. Let X be any set, and let O be a graded set such that, for any integer n ∈ N, O n is the set of all n-ary operations over X. The graded set O equipped with the composition of operations is an operad. We let (Map X , •) denote this operad.

Proof. Notice that, by Definition 6, • j is indeed defined for every element of O m × O n with j ≤ m, and returns an element of O m+n-1 . We now prove successively that (Map X , •) satisfies the three conditions of Definition 4.

• The identity over X satisfies the first condition of Definition 4.

• By Definition 6, we have p i (q j r)(e 1 , . . . , e m+n+s-1 ) = ((p i q) i+j-1 r)(e 1 , . . . , e m+n+s-1 ) = p(e 1 , . . . , e i-1 , q(e i , . . . , e i+j-2 , r(e i+j-1 , . . . , e i+j+s-2 ), e i+j+s-1 , . . . , e i+n+s-2 ), e i+n+s-1 , . . . , e m+n+s-2 )

Furthermore, the domain of p i (q j r) and of (p i q) i+j-1 r is the set of all (e 1 , . . . , e m+n+s-1 ) with

             (e i+j-1 , . . . , e i+j+s-2 ) ∈ D r (e i , .
. . , e i+j-2 , r(e i+j-1 , . . . , e i+j+s-2 ), e i+j+s-1 , . . . , e i+n+s-2 ) ∈ D q (e 1 , . . . , e i-1 , q(e i , . . . , e i+j-2 , r(e i+j-1 , . . . , e i+j+s-2 ), e i+j+s-1 , . . . , e i+n+s-2 ), e i+n+s-1 , . . . , e m+n+s-2 ) ∈ D p where D r , D q , and D p are the domains of r, q and p respectively.

• By Definition 6, we have ((p j q) i r)(e 1 , . . . , e m+n+s-1 ) = ((p i r) j+s-1 q)(e 1 , . . . , e m+n+s-1 ) = p(e 1 , . . . , e i-1 , r(e i , . . . , e i+s-1 ), e i+s , . . . , e j+s-2 , q(e j+s-1 , . . . , e n+s-2 ), e n+s-1 , . . . , e m+n+s-2 )

Furthermore, the domain of (p j q) i r and of (p i r) j+s-1 q is the set of all (e 1 , . . . , e m+n+s-1 ) with

            
(e i , . . . , e i+s-1 ) ∈ D r (e j+s-1 , . . . , e n+s-2 ) ∈ D q (e 1 , . . . , e i-1 , r(e i , . . . , e i+s-1 ), e i+s , . . . , e j+s-2 , q(e j+s-1 , . . . , e n+s-2 ), e n+s-1 , . . . , e m+n+s-2 ) ∈ D p where D r , D q , and D p are the domains of r, q and p respectively.

As a consequence of the above proposition, the set of operations over languages, the set of operations operations over DFAs, and the set boolean functions are operads, when equipped with •.

We now define a generalization of the commutativity of two functions to two operations, when one of them is unary. Definition 7. Let X be a set, let n be an integer, and let p and r be two operations over X, respectively n-ary and unary. We say that p commutes with r if, for any n elements e 1 , . . . , e n of X, we have p(r(e 1 ), . . . , r(e n )) = r(p(e 1 , . . . , e n )).

We illustrate this definition with Figure 3.7 below. We next prove that, if two operations commute with a unary operation, then their composition also commutes with this unary operation. Lemma 1. Let E be any set, let n, m, and j be three positive integers such that j ≤ m, and let p, q, and r be three operations over E, respectively n-ary, m-ary, and unary. If p and q commute with r, then p • j q commutes with r.

Proof. For any n + m -1 elements e 1 , . . . , e n+m-1 of E, we have p • j q(r(e 1 ), . . . , r(e m+n-1 )) = p(r(e 1 ), . . . , r(e j-1 ), q(r(e j ), . . . , r(e j+m-1) )), r(e j+m ), . . . , r(e n+m-1 )) = p(r(e 1 ), . . . , r(e j-1 ), r(q(e j , . . . , e j+m-1 )), r(e j+m ), . . . , r(e n+m-1 ))

= r(p(e 1 , . . . , e j-1 , q(e j , . . . , e j+m-1 ), e j+m , . . . , e n+m-1 ))

Morphisms, quotient operads, and suboperads

Similarly to subgroups or subrings, we define the notion of suboperad.

Definition 8. An operad (O , ) is a suboperad of another operad (O, ) if and only if

• O n is a subset of O n , for all n ∈ N,
• the identity of O is the identity of O.

The next proposition is straightforward from Definition 8, and is very similar to the cases of monoids, groups or rings. It states that, to prove that a subset of an operad is a suboperad, we only need to examine the stability by composition of this subset, and to check that the identity of the operad is in the subset. Therefore, we first need to define what "stability by composition" means in the case of operads, even though it is extremely intuitive. Definition 9. Let (O, ) be an operad. We say that a subset E of O is stable by if, for any two integers n and j ≤ n, for any p ∈ (O n ∩ E) and any q ∈ E, we have p j q ∈ E. Proposition 5. Let (O, j ) be an operad, and let E be a subset of O stable by j such that the identity of O is in E. Let E be the graded set such that

E n = O n ∩ E, for any n ∈ N. We have (E, j ) is a suboperad of (O, j ).
As a consequence of the above proposition, the set of language operations (graded by their arity), and the set of regular operations (graded by their arity), are operads when equipped with the composition of operations •. These are important examples that we use throughout the rest of this thesis. We also develop below the example of boolean operations. We define now the notion of morphism between operads, in a similar way to the notions of morphisms between monoids, groups, or rings. As expected, similar properties arise. Definition 10. Let (O, ) and (O , ) be two operads, and φ be a graded mapping from O to O . We say that φ is a morphism of operads if and only if

• the image by φ of the identity of O is the identity of O ,

• for any three integers m, n and j with 1 ≤ j ≤ m, for any element p of O m , and for any element q of O n , we have φ(p) j φ(q) = φ(p j q). Furthermore, we say that φ is an isomorphism of operads if it is bijective.

We mentioned in Example 4 that, for any positive integers m and j with j ≤ m, for any m-ary boolean function b, and any boolean function b , we have

⊗ b• j b = ⊗ b • j ⊗ b . Furthermore, ⊗ Id {0,1}
is the identity over languages. Therefore, the mapping from the set of boolean functions to O b , that maps a boolean function function b to the boolean operation ⊗ b , is a morphism of operads. Another example is given below. Hence, φ(b • j b ) is the set of all (e 1 , . . . , e k+k -1 ) ∈ {0, 1} k+k -1 such that,

• either b(e 1 , . . . , e j-1 , 1, e j+n , . . . , e m+n-1 ) = 1 and b (e j , . . . , e j+n-1 ) = 1,

• or b(e 1 , . . . , e j-1 , 0, e j+n , . . . , e m+n-1 ) = 1 and b (e j , . . . , e j+n-1 ) = 0 It follows from the Definition of B and that φ(b

• j b ) = φ(b) j φ(b ). Furthermore, φ(Id {0,1} ) = {1}.
As a consequence, the mapping φ is an isomorphism of operads.

As expected, several properties of group or monoid morphisms have a counterpart for morphisms of operads. For example, the image of an operad by a morphism of operads is an operad. Proposition 6. Let (O, ) and (O , ) be two operads, and let φ be a morphism of operads from (O, ) to (O , ). We let φ(O) denote the graded set such that (φ(O)

) n = φ(O n ) = φ(O) ∩ O n ,
for any integer n. We have (φ(O), ) is an operad, and φ is a morphism of operads from (O, ) to (φ(O), ).

Proof. Let m, j and n be three non-negative integers with 1 ≤ j ≤ m, and let

o 1 ∈ (φ(O)) m and any o 2 ∈ (φ(O)) n . There exists o 1 , o 2 ∈ O such that φ(o 1 ) = o 1 and φ(o 2 ) = o 2 . Furthermore, by Definition 10, as o 1 ∈ O m and o 2 ∈ O n , we have o 1 ∈ O m and o 2 ∈ O n . Therefore, we have o 1 j o 2 = φ(o 1 ) j φ(o 2 ) = φ(o 1 j o 2 ). Hence, o 1 j o 2 ∈ O m+n-1 , and we have o 1 j o 2 ∈ φ(O m+n-1 )
. Furthermore, the image by φ of the identity of O is the identity of O . As a consequence, from Proposition 5, (φ(O), ) is an operad. The fact that φ is a morphism of operads from (O, ) to (φ(O), ) is straightforward from Definition 10. Furthermore, as expected, the composition of two morphisms of operads is a morphism of operads. 

(φ(o 1 ) j φ(o 2 )) = ψ(φ(o 1 )) j ψ(φ(o 2 )), and thus (ψ • φ)(o 1 j o 2 ) = (ψ • φ)(o 1 ) j (ψ • φ)(o 2 ). As consequence, ψ • φ is a morphism of operads.
Another expected property is that the inverse of an isomorphism of operads is also an isomorphism of operads. Proposition 8. Let φ be an isomorphism of operads. Then its inverse φ -1 is an isomorphism of operads.

Proof. Let (O, ) and (O , ) be two operads, and φ be an isomorphism of operads from O into O . The fact that φ -1 is a graded mapping comes directly from the fact that φ is a graded mapping. We check that φ -1 satisfies the two conditions of Definition 10.

• The image of the identity of (O, ) by φ is the identity of (O , ), and thus the image by φ -1 of the identity of (O , ) is the identity of (O, ).

• For any two integers m and n, for any element p of O m and any element q of O n , for any j ∈ {1, . . . , m}, we have

φ -1 (p) • j φ -1 (q) = φ -1 (φ(φ -1 (p) • j φ -1 (q)))
Therefore, by Definition 10,

φ -1 (p) • j φ -1 (q) = φ -1 (φ(φ -1 (p)) • j φ(φ -1 (q))) = φ -1 (p • j q)
The next proposition shows that a bijection from an operad into any set induces a structure of operad on its image. Proposition 9. Let (O, ) be an operad, let O be a graded set, and let φ be a graded bijection from O to O . Let ( ) j∈N\0 be the sequence of binary operations defined by φ(p) j φ(q) = φ(p j q), for any integers m, j with 1 ≤ j ≤ m, any p ∈ O m , and any q ∈ O. The graded set O equipped with is an operad.

Proof. We check that (O , ) satisfies the three conditions of Definition 4.

• Let Id be the identity of (O, ). For any two positive integers n and i ≤ n, and any element p of O n , there exists p ∈ O n such that φ(p) = p , and we have

φ(Id) 1 p = φ(Id) 1 φ(p) = φ(Id 1 p) = φ(p i Id) = p i φ(Id).
Furthermore, we similarly have

φ(Id) 1 p = φ(Id) 1 φ(p) = φ(Id 1 p) = φ(p) = p .
Therefore, φ(Id) satisfies the "identity" rule for O .

• For any positive integers m, n, s, i ≤ m, j ≤ n, and any p , q , r , elements of O m , O n , O s respectively, there exists p ∈ O m , q ∈ O n , and r ∈ O s such that φ(p) = p , φ(q) = q , φ(r) = r , and we have

p i (q j r ) = φ(p) i (φ(q) j φ(r)) = φ(p i (q j r)) = φ((p i q) i+j-1 r) = (p i q ) i+j-1 r .
• For any positive integers m, n, s, i, and j such that i < j ≤ m, and any p , q , r , elements of O m , O n , O s respectively, there exists p ∈ O m , q ∈ O n , and r ∈ O s such that φ(p) = p , φ(q) = q , φ(r) = r , and we have

(p j q ) i r = (φ(p) j φ(q)) i φ(r) = φ((p j q) i r) = (p i r ) j+s-1 q .
Example 6. Let φ be the bijection defined in Example 5, i.e., the mapping from the set of boolean functions to B such that, for any k-ary boolean function b, we have

φ(b) = {(e 1 , . . . , e k ) ∈ {0, 1} k | b(e 1 , . . . , e k ) = 1}.
Without knowing that φ is an isomorphism of operads, or even that (B, ) is an operad, we could follow the reasoning of Example 5 to prove that for any positive integers m and j with 1 ≤ j ≤ m, for any m-ary boolean function b, and any boolean function b , we have φ(b

) j φ(b ) = φ(b • j b).
With this statement, Proposition 9 immediately gives us a new proof that (B, ) is an operad.

We now introduce quotient operads. To this aim, we characterize equivalence relations that preserve the operadic structure, so that the quotient of an operad remains an operad. Definition 11. Let (O, ) be an operad, and let ∼ be a graded equivalence relation on O. We say that ∼ respects if, for any positive integers m and j with 1 ≤ j ≤ m, for any p, p ∈ O m such that p ∼ p , and any q, q ∈ O such that q ∼ q , we have p j q ∼ p j q . Furthermore, we let / ∼ denote the sequence of binary operations over O/ ∼ such that, for any integers j and m with

1 ≤ j ≤ m, for any p ∈ O m and q ∈ O, we have ∼ p ( / ∼ ) j ∼ q = ∼ p j q.
Proposition 10. Let (O, ) be an operad, and let ∼ be a graded equivalence relation on O that respects . The set O/ ∼ equipped with / ∼ is an operad. It is called the quotient of (O, ) by ∼.

Proof. We check that (O/ ∼ , / ∼ ) satisfies the three conditions of Definition 4.

• Let Id be the identity of (O, ). For any positive two integers n and j ≤ n, and any element p of O n , we have

∼ p( / ∼ ) j ∼ Id = ∼ p j Id = ∼ p,
and similarly:

∼ Id( / ∼ ) 1 ∼ p = ∼ Id 1 p = ∼ p.
Therefore, ∼ Id satisfies the "identity" rule for (O/ ∼ , / ∼ ).

• For any positive integers m, n, s, i ≤ m, j ≤ n, and any p, q, r, elements of O m , O n , O s respectively, we have

∼ p( / ∼ ) i ( ∼ q( / ∼ ) j ∼ r) = ∼ p( / ∼ ) i ∼ (q j r) = ∼ p i (q j r) = ∼ (p i q) i+j-1 r = ∼ (p i q)( / ∼ ) i+j-1 ∼ r = ( ∼ p( / ∼ ) i ∼ q)( / ∼ ) i+j-1 ∼ r.
• For any positive integers m, n, s, i, and j such that i < j ≤ m, and any p, q, r, elements of O m , O n , O s respectively, we have

( ∼ p( / ∼ ) j ∼ q)( / ∼ ) i ∼ r = ( ∼ p j q)( / ∼ ) i ∼ r = ∼ (p j q) i r = ∼ (p i r) j+s-1 q = ( ∼ p i r)( / ∼ ) j+s-1 ∼ q = ( ∼ p( / ∼ ) i ∼ r)( / ∼ ) j+s-1 ∼ q.
Finally, we show how a morphisms of operad φ from (O, ) to (O , ), induces an equivalence relation ∼ φ on O, by which (O, ) can be divided. Furthermore, we show that there is a injective morphism φ that makes the diagram of Figure 3.8 commutative. 

(O/ ∼ φ , •/ ∼ φ ) (O, •) (O , ) / ∼ φ φ φ
∼ φ o ) = φ( ∼ φ o ).
o 2 , o 2 ∈ O such that o 1 ∼ φ o 1 and o 2 ∼ φ o 2 , we have φ(o 1 j o 2 ) = φ(o 1 ) j φ(o 2 ) = φ(o 1 ) j φ(o 2 ) = φ(o 1 j o 2 ), and therefore (o 1 j o 2 ) ∼ φ (o 1 j o 2 ). As a consequence, by Proposition 10, (O/ ∼ φ , / ∼ φ ) is an operad. Furthermore, for any o 1 , o 2 ∈ O/ ∼ φ , we have φ( ∼ φ o 1 ( / ∼ φ ) j ∼ φ o 2 ) = φ( ∼ φ o 1 j o 2 ) = φ(o 1 j o 2 ) = φ(o 1 ) j φ(o 2 ) = φ( ∼ φ o 1 ) j φ( ∼ φ o 2 ).
Therefore, φ is a morphism of operads, and the fact that it φ is injective comes directly from its definition.

We now have all the tools required to handle operads for the remainder of this thesis.

Chapter 4

Modifiers and 1-uniform operations

In this chapter, we build a framework to compute the state complexity of a certain kind of regular operations, that we call 1-uniform. For this purpose, we define modifiers, a counterpart to 1-uniform operations in the space of operations over DFAs. By studying modifiers themselves and the link between modifiers and 1-uniform operations, we prove that every 1-uniform operation admits a certain kind of DFA as witness, called monster.

Monsters are k-tuples of DFAs built to have alphabets as large as possible, while not having two letters with the same transition functions. Furthermore, throughout this chapter, we pay a close attention to the algebraic structure behind the notions we introduce, and we summarize this structure in Figure 4.19. In fact, this is the main difference between our approach and the work of Sylvie Davies in [START_REF] Davies | Algebraic Approaches to State Complexity of Regular Operations[END_REF]. Indeed, even though Theorem 1 and Theorem 2 (which are the main results of this chapter) are also proved in [START_REF] Davies | Algebraic Approaches to State Complexity of Regular Operations[END_REF], we introduce them Theorems with the point of view of operads. This allows us to cleanly capture how the composition of operations is carried from modifiers to 1-uniform operations. Furthermore, we introduce some new notations in Section 4.2.3 that are different from the ones used in [START_REF] Davies | Algebraic Approaches to State Complexity of Regular Operations[END_REF], and show that their use is correct (Proposition 17). We use these notations extensively throughout the rest of the thesis, and we believe in particular that they make Chapter 7 much easier to read.

About 1-uniform operations

In this section, we define 1-uniform operations and give some examples of well-known 1-uniform operations. We also give an example of regular operation that is not 1-uniform, and prove that 1-uniform operations are stable by composition.

Definition 13. A k-ary operation ⊗ is 1-uniform if it is regular, and if it commutes with every inverse 1-uniform morphism, i.e., for any k-tuple of regular languages (L 1 , . . . , L k ), for any 1-

uniform morphism φ, ⊗(φ -1 (L 1 ), . . . , φ -1 (L k )) = φ -1 (⊗(L 1 , . . . , L k )).
In the rest of this thesis, the operations for which we give state complexity results are all 1-uniform. Many well-known operations are 1-uniform. Let us illustrate this concept by proving that the Kleene star is 1-uniform.

Proposition 12. The Kleene star is 1-uniform.

Proof. Let Σ and Γ be two alphabets. Let L be a regular language over Σ, and let φ be a 1-uniform morphism from Γ * to Σ * . We first prove φ -1 (L) ⊆ φ -1 (L ). Indeed, if v is a word in φ -1 (L) , then there exists an integer n and n words u 1 , . . . ,

u n such that v = u 1 • • • u n .
Therefore, there exists n words of L t 1 , . . . , t n such that φ(u i ) = t i for all i ∈ {1, . . . , n}. We thus have φ

(v) = w with w = t 1 • • • t n and v ∈ φ -1 (L ).
Conversely, let v be a word of φ -1 (L ). There exists an integer n and t 1 , . . . ,

t n n words of L such that φ(v) = w, with w = t 1 • • • t n . As φ is 1-uniform, φ(v) = φ(v 1 ) • • • φ(v |v| )
, and each φ(v j ) are letters of Σ. Therefore, v and w have the same length, and φ(v j ) = w j , for all j ∈ {1, . . . , |v|}. As a consequence, for all i ∈ {1, . . . , n}, if

u i = v |t 1 |+|t 2 |+•••+|t i-1 |+1 • • • v |t 1 |+|t 2 |+•••+|t i | , we have φ(u i ) = t i and v = u 1 • • • u n . We thus have v ∈ φ -1 (L) , and φ -1 (L ) ⊆ φ -1 (L) .
Another example of a 1-uniform operation is given by the union of two languages (i.e., the operation ⊗ defined by

⊗(L 1 , L 2 ) = L 1 ∪ L 2 )
, which is a binary operation. This follows from the following remark:

Remark 1. For any function φ from a set E to a set F, φ -1 (X ∪ Y) = φ -1 (X) ∪ φ -1 (Y), for all X, Y ⊆ F.
Indeed, to prove that the union of languages is a 1-uniform operation, we only have to apply the above remark to the particular case of E = Γ * and F = Σ * where Σ and Γ are any two alphabets, and φ is any 1-uniform morphism from Γ * to Σ * .

We see many other examples of 1-uniform operations throughout this chapter. We refrain from mentioning them all in this section, as we develop in the following sections tools that make proving the 1-uniformity of regular operations very easy. However, even though many well-known regular operations are 1-uniform, some of them are not. The right quotient is an example of a regular operation that is not 1-uniform.

Example 7. The right quotient of two languages is defined by L

1 • L -1 2 = {u | uv ∈ L 1 for some v ∈ L 2 }. We show that the operation ⊗(L 1 , L 2 ) = L 1 • L -1
2 is regular but not 1-uniform. Let Γ = Σ = {a, b}, and let φ be the 1-uniform morphism from Γ * to Σ * such that φ(a) = φ(b) = a. Furthermore, let L 1 = {ab} and L 2 = {b}. We have φ -1 (L 1 ) = φ -1 (L 2 ) = ∅, and therefore,

φ -1 (L 1 ) • (φ -1 (L 2 )) -1 = ∅. However, L 1 • L -1 2 = {a}, and therefore φ -1 (L 1 • L -1 2 ) = {a, b}. We thus have φ -1 (L 1 ) • φ -1 (L 2 ) -1 φ -1 (L 1 • L -1
2 ). As a consequence, the right quotient operation ⊗ is not 1-uniform.

Let O u be the set of all 1-uniform operations. From Lemma 1 and Definition 13, O u is stable by the composition of operations •. Therefore, by Proposition 5, (O u , •) is a suboperad of the operad of regular operations. Proposition 13. The set of 1-uniform operations equipped with the composition of operations • is an operad.

The above proposition is quite important, as it means that the main result of this chapter (Theorem 2) can be applied to a large number of interesting operations, some already studied (for example the star of union [START_REF] Jirásková | On the state complexity of star of union and star of intersection[END_REF], or star-complement-star [START_REF] Jirásek | The exact complexity of star-complement-star[END_REF][START_REF] Jirásková | The state complexity of star-complement-star[END_REF]), and some that we have yet to study (for example the star of symmetric difference studied later in Chapter 5).

Modifiers

Definition

The definition of operational state complexity involves directly the state complexity of languages. The definition of the state complexity of languages, in turn, directly involves the notion of minimal DFA. The easiest way to compute the minimal DFA associated with a language relies on first giving a DFA that recognizes this language, and then on minimizing this DFA. Therefore, the most convenient way to compute the state complexity of regular operations involves doing computations directly on DFAs. Hence, in order to prove state complexity results for 1-uniform operations, it is convenient to link these operations over languages with operations acting directly over DFAs. To this aim, we define a counterpart of 1-uniform operations, constituted of operations over DFAs called modifiers. To give more details, we first define the notions of state configuration and transition configuration.

Definition 14. A state configuration is a 3-tuple (Q, i, F) such that Q is a finite set, i ∈ Q and F ⊆ Q. The state configuration of a DFA A = (Σ, Q, i, F, δ) is the triplet (Q, i, F). A transition configuration is a 4-tuple (Q, i, F, δ) such that (Q, i, F) is a state configuration and δ ∈ Q Q . If A = (Σ, Q, i, F, δ) is a DFA, the transition configuration of a letter a ∈ Σ in a A is the 4-tuple (Q, i, F, δ a ).
In the graphical representation of a DFA, the state configuration corresponds to keeping the states and removing the arrows, with the initial state and final states marked. A transition configuration corresponds to state configuration equipped with a transition function over its states.

We let A Σ k denote the set of all k-tuples of DFAs (A 1 , . . . , A k ) such that, for any j ∈ {1, . . . , k}, the alphabet of A j is Σ. We also let A k denote the union over all alphabets Σ of A Σ k , i.e., the set of all k-tuples of DFAs having the same alphabet.

A k-modifier is a k-ary operation over DFAs, that associates a k-tuple in A Σ k with a DFA whose alphabet is also Σ. However, intuitively, modifiers do not directly associate multiple DFAs with a DFA, but instead use intermediate steps. Indeed, they first associate tuples of state configurations with a state configuration, and then associate tuples of transition configurations with a transition function. Finally, they naturally construct a DFA from multiple DFAs using the previous steps. In other words, a modifier m is an operation over DFAs that must satisfy the following conditions:

• the state configuration of the output of m only depends on the state configuration of its inputs,

• the transition function of a letter a in the output of m only depends on the transition configurations of the letter a in the inputs of m.

Furthermore, in order for the conditions above to make sense, we set that all the inputs of a modifier must have the same alphabet as its output. More formally, Definition 15. A k-modifier is a k-ary operation m of domain A k that satisfies the following conditions:

• for any (A 1 , . . . , A k ) ∈ A Σ k , the alphabet of m(A 1 , . . . , A k ) is Σ, • for any (A 1 , . . . , A k ) ∈ A Σ
k and any (B 1 , . . . , B k ) ∈ A Γ k , such that A j has the same state configuration as B j for any j ∈ {1, . . . , k}, we have In order to familiarize ourselves with this notion, we give many examples in the next section.

-

Examples

At first sight, the definition of modifiers seem very broad, and may even seem to include all operations over DFAs. However, this is not the case. First, it is straightforward that a unary operation over DFAs that maps two DFAs with the same state configuration to two DFAs with different state configurations is not a modifier. Furthermore, the third condition of Definition 15 cannot be removed. Indeed, a unary operation o over DFAs that maps the DFA A of Several well-known constructions over DFAs can be seen as modifiers. The simplest is probably the (set-theoretic) complement.

Example 8. For any DFA A = (Σ, Q, i, F, δ), we define

Comp(A) = (Σ, Q, i, Q \ F, δ).
This modifier follows the classical construction for the complement of a DFA [START_REF] Sakarovitch | Elements of Automata Theory[END_REF]. We use this construction to compute the complement Comp(A) (Figure 4.3) of the DFA A (Figure 4.2). Example 9. For any DFA A = (Σ, Q, i, F, δ), we define

Sqrt k (A) = (Σ, Q Q , Id Q , {φ ∈ Q Q |φ k (i) ∈ F}, δ ),
where for any a ∈ Σ, δ a (φ) = δ a • φ. Furthermore, we let Sqrt denote the modifier Sqrt [01] [START_REF] Caron | State complexity of combined operations involving catenation and binary boolean operations: Beyond the Brzozowski conjectures[END_REF] [00] The above modifier Sqrt follows the classical construction on DFAs for the square root operation on regular languages. This remains true in the general case of the k-th root.

Proposition 14. For any DFA A, we have

k L(A) = L(Sqrt k (A)). Proof. Let A = (Σ, Q, i, F, δ) be a DFA, let Sqrt k (A) = (Σ, Q , i , F , δ
), and let w be any word of Σ * . The word w k is accepted by A if and only if δ w k (i) ∈ F. However, we have

δ w k = δ w • . . . • δ w k times = (δ w ) k . Therefore, w k ∈ L(A) if and only if δ w ∈ F . But δ w (i ) = δ w • Id Q = δ w . We thus have w k ∈ L(A) if and only if δ w (i ) ∈ F . Hence, we have k L(A) = L(Sqrt k (A)).
Example 10. We generalize the case of the complement to boolean operations. We define a modifier from a boolean function by using the classical "product automaton" construction, and we show that these modifiers correspond to boolean operations. Definition 16. Let b be a k-ary boolean function. We let m b denote the modifier such that, for any k-tuple of DFAs (A 1 , . . . , A k ) with A j = (Σ, Q j , i j , F j , δ j ), 

m b (A 1 , . . . , A k ) = (Σ, Q 1 × Q 2 × • • • × Q k , (i 1 , i 2 , . . . , i k ), F , (δ 1 , δ 2 , . . . , δ k )), where (q 1 , . . . , q k ) ∈ F if and only if b([q 1 ∈ F 1 ], . . . , [q k ∈ F k ]) = 1.
L(m b (A 1 , . . . , A k )) = ⊗ b (L(A 1 ), . . . , L(A k )).
Proof. Let b be a boolean function, and let A 1 , . . . , A k be k DFAs with A j = (Σ, Q j , i j , F j , δ j ) for all j ∈ {1, . . . , k}, let w = a 1 • • • a n be a word in Σ * , and let m

b (A 1 , . . . , A k ) = (Σ, Q, i, F, δ). From Definition 3, the word w is in ⊗ b (L(A 1 ), . . . , L(A k )) if and only if b([δ w 1 (i 1 ) ∈ F 1 ], . . . , [δ w k (i k ) ∈ F k ]) = 1.
However, using Definition 16, an easy induction shows that we have δ w (i 1 , . . . , i k ) = (δ w 1 (i 1 ), . . . , δ w k (i k )). Therefore, from Definition 16, w is in ⊗ b (L(A 1 ), . . . , L(A k )) if and only if

δ w (i 1 , . . . , i k ) ∈ F. Consequently, as (i 1 , . . . , i k ) = i, w is in ⊗ b (L(A 1 ), . . . , L(A k )) if and only if w is in L(m b (A 1 , . . . , A k )).

Alternative notations

We let M denote the set of all modifiers. Before giving more examples, we clarify and formalize the algebraic structure behind modifiers. First notice that modifiers naturally form an operad. Proposition 16. The set of modifiers equipped with the composition of operations is an operad.

Proof. We show that M is stable by the composition of operations •. Let k, k and j be three positive integers with j ≤ k, and let m and m be two modifiers, respectively k-ary and k -ary. By Definition 6, as the domains of m and m are respectively A k and A k , the domain of the k + k -1-ary operation m • j m is A k+k -1 . Furthermore, recall that, by Definition 6, for any (A 1 , . . . , A k+k -1 ) ∈ A k+k -1 , we have

m • j m (A 1 , . . . , A k+k -1 ) = m(A 1 , . . . , A j-1 , m (A j , . . . , A k +j-1 ), A k +j , . . . , A k+k -1 ). ( 4.1) 
This equality helps us check that m • j m satisfies the three points of Definition 15.

• For any alphabet Σ, and any (A 1 , . . . , A k+k -1 ) ∈ A Σ k+k -1 , we have (A j , . . . , A k +j-1 ) ∈ A Σ k , and therefore the alphabet of m (A 1 , . . . , A k+k -1 ) is Σ. As a consequence,

(A 1 , . . . , A j-1 , m (A j , . . . , A k +j-1 ), A k +j , . . . , A k+k -1 ) ∈ A Σ k ,
and by (4.1), the alphabet of m • j m (A 1 , . . . , A k+k -1 ) is Σ.

• For any two elements (A 1 , . . . , A k+k -1 ) of A Σ k+k -1 and (B 1 , . . . , B k+k -1 ) of A Γ k+k -1 , such that, for any j ∈ {1, . . . , k + k -1}, A j and B j have the same state configuration, we have the state configurations of m (A j , . . . , A k+j-1 ) and of m (B j , . . . , B k+j-1 ) are the same, and therefore, by Therefore, M is stable by •. Furthermore, it is easy to check that the identity over DFAs is a modifier. In addition, by Proposition 4, the operations over DFAs equipped with the composition of operations is an operad. As a consequence, by Proposition 5, (M, •) is an operad.

Even though modifiers behave well with respect to the composition of operations, they are not easy to handle in an algebraic context. One of the reasons is that they naturally contain more information than necessary.

We let T C denote the set of all transition configurations. We seek to extract the essential information contained in a modifier. To this aim, we associate with every modifier an operation over T C, by examining the way it maps transition configurations to transition configurations.

Definition 17.

Let m be a k-ary modifier. We let m denote the k-ary operation over T C that satisfies the following property: for any k-tuple of transition configurations

((Q 1 , i 1 , F 1 , φ 1 ), . . . , (Q k , i k , F k , φ k )),
if, for any j ∈ {1, . . . , k}, we let δ j denote the mapping such that δ j (q j , a) = φ j (q j ) for any q j ∈ Q j , and by

({a}, Q, i, F, δ) the DFA m(({a}, Q 1 , i 1 , F 1 , δ 1 ), . . . , ({a}, Q k , i k , F k , δ k )), then we have m((Q 1 , i 1 , F 1 , φ 1 ), . . . , (Q k , i k , F k , φ k )) = (Q, i, F, δ a ).
It is interesting to take another look at Definition 15 to understand the above definition. Indeed, in the above definition, if we let Σ denote any non-empty alphabet, b denote any letter of Σ, (A 1 , . . . , A k ) denote any k-tuple of DFAs such that A j = (Σ, Q j , i j , F j , δ j ) with δ b j = φ j , and (Σ,

Q , i , F , δ ) denote the DFA m((Σ, Q 1 , i 1 , F 1 , δ 1 ), . . . , (Σ, Q k , i k , F k , δ k )), then we have m((Q 1 , i 1 , F 1 , φ 1 ), . . . , (Q k , i k , F k , φ k )) = (Q , i , F , δ b ) = (Q, i, F, δ a ).
In other words, for every transition configurations t 1 , . . . , t k , we can get m(t 1 , . . . , t k ) by first applying m to any k-tuple of DFAs (A 1 , . . . , A k ) such that the transition configuration of a certain letter b in A j is equal t j , and then by looking at the transition configuration of b in the resulting DFA. We now formalize the idea that m and m contain the same information. To this aim, we prove that the application m → m is injective, and that it behaves well with respect to the composition of operations. Recall that Map T C is the set of all operations over T C.

Lemma 2. The application m → m is an injective morphism from the operad (M, •) to (Map T C , •).
Proof. We first prove that the application m → m is injective. Let m and m be two different modifiers. If m and m do not have the same arity, then m and m do not have the same arity either, and are, therefore, different. If m and m have the same arity k, there exists a k-tuple of DFAs (A 1 , . . . , A k ), where all A j have the same alphabet Σ, such that m(A 1 , . . . , A k ) m (A 1 , . . . , A k ). As m(A 1 , . . . , A k ) and m (A 1 , . . . , A k ) have the same alphabet Σ, there exists a letter a ∈ Σ such that the transition configuration of a in m(A 1 , . . . , A k ) is different from the transition configuration of a in m (A 1 , . . . , A k ). Therefore, if, for any j ∈ {1, . . . , k}, t a j is the transition configuration of a in A j , we have m(t a 1 , . . . , t a k ) m (t a 1 , . . . , t a k ). As a consequence, the application m → m is injective.

We now prove that m → m is a morphism of operads from (M, •) to (Map T C , •). Let m and m be two modifiers, respectively k-ary and k -ary. We show that m

• j m = m • j m .
First notice that, by Definition 17, the domains of m and m are respectively

T C k (i.e., T C × • • • × T C k times ) and T C k . Therefore, by Definition 6, the domain of m • m is T C k+k -1 .
Furthermore, by Proposition 16, m • j m is a k + k -1 modifier, by Definition 17, the domain of m • j m is also T C k+k -1 . Therefore, the domains of m • j m and m • j m are the same.

Let (t 1 , . . . , t k+k -1 ) be any (k + k -1)-tuple of transition configurations, with t j = (Q j , i j , F j , φ j ) for any j ∈ {1, . . . , k + k -1}, and let (A 1 , . . . , A k+k -1 ) be a k + k -1-tuple of DFAs such that, for any j ∈ {1, . . . , k + k -1}, A j = ({a}, Q j , i j , F j , δ j ), with δ a j = φ j . By Definition 17, the transition configuration of a in m (A j , . . . , A k +j-1 ) is m (t j , . . . , t k +j-1 ). Thus, similarly, by Definition 17, the transition configuration of a in

m(A 1 , . . . , A j-1 , m (A j , . . . , A k +j-1 ), A k +j , . . . , A k+k -1 )
is m(t 1 , . . . , t j-1 , m (t j , . . . , t k +j-1 ), t k +j , . . . , t k+k -1 ). Hence, we have m • j m (A 1 , . . . , A k+k -1 ) = m • j m (A 1 , . . . , A k+k -1 ). In addition, m → m maps the identity of M to the identity of Map T C , and it is a graded mapping. Hence, by Definition 10, m → m is a morphism of operads.

However, m → m is not an isomorphism of operads from (M, •) to (Map T C , •). In order to make it an isomorphism, we exhibit its image and its inverse on this image. We let FT denote the set of all operations over T C whose first three coordinates depend only on the first three coordinate of their input. In other words, Definition 18. We let FT denote the set of all operations tc over T C that satisfy the following property: if (t 1 , . . . , t k ) and (t 1 , . . . , t k ) are two k-tuples of transitions configurations (where k is the arity of tc) such that, for any j ∈ {1, . . . , k}, the state configurations of t j and t j are equal, then the state configuration of tc(t 1 , . . . , t k ) is equal to the state configuration of tc(t 1 , . . . , t k ).

Example 12. As we can see in Figure 4.12, any unary operation o over T C, such that o(t) = s and o(t ) = s , is not in FT, since the state configurations of t and t are equal, but the state configurations of s and s are not. An operation over T C associated with a modifier is always in FT.

Lemma 3.

For any modifier m, we have m ∈ FT.

Proof. Let m be a k-ary modifier, let (t 1 , . . . , t k ) and (s 1 , . . . , s k ) be two k-tuples of transitions configurations such that the state configurations of t j and s j are the same for any j ∈ {1, . . . , k}. Furthermore, let (A 1 , . . . , A k ) and (B 1 , . . . , B k ) be two k-tuples of DFAs such that, for any j ∈ {1, . . . , k}, the alphabet of A j and B j is {a}, and the transition configurations of a in A j and B j are respectively t j and s j . Notice that, as the state configurations of t j and s j are the same for any j ∈ {1, . . . , k}, the state configurations of A j and B j are also the same. Conversely, we can naturally associate an operation over DFAs with an operation in FT. We show that such an operation over DFAs is always a modifier. Definition 19. Let k be an integer, and let tc be an element of FT. For any k-tuple of DFAs (A 1 , . . . , A k ) with A j = (Σ, Q j , i j , F j , δ j ). We let [tc](A 1 , . . . , A k ) denote the DFA A such that

• the alphabet of A is Σ,
• the state configuration of A is the state configuration of

tc((Q 1 , i 1 , F 1 , Id Q 1 ), . . . , (Q k , i k , F k , Id Q k )),
• for any letter a of Σ, the transition configuration of a in A is equal to

tc((Q 1 , i 1 , F 1 , δ a 1 ), . . . , (Q k , i k , F k , δ a k )).
Notice that the third condition of the definition above does not imply the second condition in the case where Σ is the empty alphabet. Proof. Let tc be a k-ary operation of FT. We first show that [tc] ∈ M by checking that it satisfies the last two points of Definition 22, since the first one stems directly from Definition 19. Let (A 1 , . . . , A k ) and (B 1 , . . . , B k ) be two elements of A k , such that A j = (Σ, Q j , i j , F j , δ j ) and B j = (Γ, Q j , i j , F j , ζ j ) for any j ∈ {1, . . . , k}.

• By Definition 19, the state configurations of [tc](A 1 , . . . , A k ) and of [tc](B 1 , . . . , B k ) are equal to the state configuration of tc((Q

1 , i 1 , F 1 , Id Q 1 ), . . . , (Q k , i k , F k , Id Q k )).
• Suppose that a and b are two letters of Σ and Γ respectively, such that, for any j ∈ {1, . . . , k}, δ a j = ζ b j = φ j . By Definition 19, the transition configurations of a and b in m(A 1 , . . . , A k ) are equal to tc((Q

1 , i 1 , F 1 , φ 1 ), . . . , (Q k , i k , F k , φ k )).
Therefore, we have [tc] ∈ M. We now show that [tc] = tc. Let (t 1 , . . . , t k ) be any k-tuple of transition configurations, and let (A 1 , . . . , A k ) ∈ A {a} k such that the transition configuration of a in A j is t j . By Definition 19, the transition configuration of a in [tc](A 1 , . . . , A k ) is equal to tc(A 1 , . . . , A k ). However, by Definition 17,[tc] is the transition configuration of a in [tc](A 1 , . . . , A k ). Thus, we have [tc](t 1 , . . . , t k ) = tc(t 1 , . . . , t k ).

As a consequence of Lemma 3 and Lemma 4, the image of m → m is FT, and therefore, by Lemma 2, m → m is an isomorphism of operads between M and FT. As a consequence, by Proposition 8, its inverse tc → [tc] is also an isomorphism. To summarize, Proposition 17. The application tc → [tc] is a isomorphism of operads from (FT, •) to (M, •), and its inverse is m → m.

We can now define any modifier by defining the application of FT it is associated with. In addition to providing alternative definitions of Comp, Sqrt k and m b (where b is a boolean function) with this new formalism, we provide a definition of modifiers Conc and Star that respectively follow the classical constructions of the catenation and the Kleene Star [START_REF] Sakarovitch | Elements of Automata Theory[END_REF].

For simplicity, in the following examples, an application tc of FT is denoted directly by the 4-tuple (Q, i, f, d) such that tc(t 1 , . . . , t k ) = (Q(t 1 , . . . , t k ), i(t 1 , . . . , t k ), f(t 1 , . . . , t k ), d(t 1 , . . . , t k )). Furthermore, we do not write the dependency of Q, i, and f over the fourth coordinates of their input k-tuples, i.e., we do not write

Q((Q 1 , i 1 , F 1 , δ 1 ), . . . , (Q k , i k , F k , δ k )), but we write Q((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )).
We do not write either the dependency of d on Q 1 , . . . , Q k , as this information is already contained in (δ 1 , . . . , δ k ), i.e., we do not write

d((Q 1 , i 1 , F 1 , δ 1 ), . . . , (Q k , i k , F k , δ k )), but we write d((i 1 , F 1 , δ 1 ), . . . , (i k , F k , δ k )). Example 14. The modifier Comp of Example 8 corresponding to the (set-theoretic) complement is equal to [Q, i, f, d],
where, for any transition configuration (Q, i, F, δ) , 

Q(Q, i, F) = Q, i(Q, i, F) = i, f(Q, i, F) = Q \ F, d(i, F, δ) = δ.
∈ Q Q , Q(Q, i, F) = 2 Q , i(Q, i, F) = ∅, f(Q, i, F) = {E ⊆ Q | E ∩ F ∅} ∪ {∅}, and, for all E ⊆ Q, d(i, F, δ)(E) =              {δ(i)} if E = ∅ and δ(i) F {δ(i), i} if E = ∅ and δ(i) ∈ F δ(E) if E ∅ and δ(E) ∩ F = ∅ δ(E) ∪ {i} if E ∅ and δ(E) ∩ F ∅
The modifier Star follows the classical construction for DFAs of the Kleene star operation [START_REF] Sakarovitch | Elements of Automata Theory[END_REF], i.e., for any DFA A, L(Star(A)) = (L(A)) . 

∈ Q Q , Q(Q, i, F) = Q Q , i(Q, i, F) = Id Q , f k (Q, i, F) = {φ ∈ Q Q |φ k (i) ∈ F}, and, for any ψ ∈ Q Q , d(i, F, φ)(ψ) = φ • ψ. Example 17. For any k-ary boolean function b, m b is equal to [Q, i, f, d],
where, for any k-tuple

((Q 1 , i 1 , F 1 , δ 1 ), . . . , (Q k , i k , F k , δ k )) of elements of T C, • Q((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )) = Q 1 × • • • × Q k , • i((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )) = (i 1 , . . . , i k ), • f((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )) = {(q 1 , . . . , q k ) ∈ Q 1 × • • • × Q k | b([q 1 ∈ F 1 ], . . . , [q k ∈ F k ]) = 1},
• and, for any (q 1 , . . . ,

q k ) ∈ Q 1 × • • • × Q k , d((i 1 , F 1 , δ 1 ), . . . , (i k , F k , δ k ))(q 1 , . . . , q k ) = (δ 1 (q 1 ), . . . , δ k (q k )).

Example 18. We define the modifier

Conc = [Q, i, f, d],
where, for any two elements of T C

(Q 1 , i 1 , F 1 , δ 1 ) and (Q 2 , i 2 , F 2 , δ 2 ), • Q((Q 1 , i 1 , F 1 ), (Q 2 , i 2 , F 2 )) = Q 1 × 2 Q 2 • i((Q 1 , i 1 , F 1 ), (Q 2 , i 2 , F 2 )) = (i 1 , ∅) if i 1 F 1 (i 1 , {i 2 }) if i 1 ∈ F 1 • f((Q 1 , i 1 , F 1 ), (Q 2 , i 2 , F 2 )) = {(q 1 , E) ∈ Q 1 × 2 Q 2 | E ∩ F 2 ∅}
• and, for any

(q 1 , E) ∈ Q 1 × 2 Q 2 , d((i 1 , F 1 , δ 1 ), (i 2 , F 2 , δ 2 ))(q 1 , E) = (δ 1 (q 1 ), δ 2 (E)) δ 1 (q 1 ) F 1 (δ 1 (q 1 ), δ 2 (E) ∪ {i 2 }) otherwise.
This modifier follows the classical construction on DFAs corresponding to the catenation operation on languages [START_REF] Sakarovitch | Elements of Automata Theory[END_REF]. In other words, for any two DFAs A 1 and A 2 , L(Conc(A 1 , A 2 )) = L(A 1 ) • L(A 2 ). (0, ∅) 

(0, {0}) (0, {1}) (0, {0, 1}) (1, ∅) (1, {0}) (1, {1}) (1, {0, 1})

From modifiers to regular operations

We now explain how we associate a regular operation with a modifier. This association follows a very natural intuition. We say that a modifier is coherent if it can naturally be associated with a regular operation. Definition 20. A k-modifier m is coherent if, for every pair of k-tuples of DFAs (A 1 , . . . , A k ) and (B 1 , . . . , B k ) such that L(A j ) = L(B j ) for all j ∈ {1, . . . , k}, we have L(m(A 1 , . . . ,

A k )) = L(m(B 1 , . . . , B k )).
We let M c denote the set of coherent modifiers. Definition 21. For any coherent modifier m, the operation ⊗ such that, for all k-tuples of DFAs (A 1 , . . . , A k ), ⊗(L(A 1 ), . . . , L(A k )) = L(m(A 1 , . . . , A k )), is well-defined. We say that m describes the operation ⊗, and we let desc denote the mapping from M c into the set of operations over languages such that desc(m) = ⊗.

Every modifier given in an example above is coherent. Furthermore, by construction, desc(m b ) is equal to ⊗ b for any boolean function b, desc(Conc) is the catenation of two languages, desc(Star) is the Kleene star, and desc(Sqrt) is the square root.

Remark 2. Some modifiers are not coherent. For instance, consider the 1-modifier Fto1 = [Q, i, f, d] such that, for any transition configuration (Q, i, F, δ), we have

Q(Q) = Q, i(Q, i, F) = i, f(Q, i, F) = F, and d(i, F, δ)(q) =          δ(q) if q F 1 if 1 ∈ Q and q ∈ F δ(q)
otherwise.

In other words, this modifier changes the transition functions of its input DFA such that the image of a final state by a transition function of the output DFA is 1 if possible. If A 1 and A 1 are two deterministic automata recognizing the same language then we have in general L(Fto1(A 1 )) L(Fto1(A 1 )) because the recognized language depends on the labels of the states of A 1 and A 1 . For instance, the two following automata recognize the same language a 2 a * . 

m 1 • j m 2 (A 1 , . . . , A k 1 +k 2 -1 ) = m 1 (A 1 , . . . , A j-1 , m 2 (A j , . . . , A j+k 2 -1 ), A j+k 2 , . . . , A k 1 +k 2 -1 ).
As a consequence, if m 1 and m 2 are coherent, then m 1 • j m 2 is coherent as well. Furthermore:

⊗ • j ⊕(L 1 , . . . , L k 1 +k 2 -1 ) = ⊗(L 1 , . . . , L j-1 , ⊕(L j , . . . , L j+k 2 -1 ), L j+k 2 , . . . , L k 1 +k 2 -1 ) = L(m 1 (A 1 , . . . A j-1 , m 2 (A j , . . . , A j+k 2 -1 ), A j+k 2 , . . . , A k 1 +k 2 -1 )) = L(m 1 • j m 2 (A 1 , . . . , A k 1 +k 2 -1 )).
Thus, desc(m 1 • j m 2 ) = desc(m 1 ) • j desc(m 2 ). Therefore, from Definition 20, m 1 • j m 2 is coherent. Furthermore, the identity over M, denoted by Id, is coherent, and that desc(Id) is the identity over the set of regular languages L. Thus, by Proposition 5 and Proposition 16, (M c , •) is an operad. In addition, by Definition 10, desc is a morphism of operads.

The link with operational state complexity

In this section, we first define some specific DFAs with large alphabets called monsters. Then, we use this tool to show that the regular operations described by coherent modifiers are exactly all 1-uniform operations. Finally, we show that a 1-uniform operation always has a witness that is also a monster.

Monsters

We first define the DFAs we use to find witnesses for 1-uniform operations, called monsters. As we also want to deal with k-ary operations, and not only unary ones, monsters will not necessarily be DFAs, but, in all generality, k-tuples of DFAs. The idea is to define k-tuples of DFAs over the same alphabet, so that this alphabet is as large as possible, while not having two letters with the same transition functions. In other words, every possible k-tuple of transition functions of a monster should correspond to a single letter of its alphabet. This will give us as much leeway as possible to prove reachability and distinguishability results when minimizing the output DFA of 1-uniform operations. To use simple and intuitive notations, the alphabet of a k-monster are k-tuples of functions. Furthermore, the k-tuple constituted of the transition functions of a letter in the DFAs of the k-monster is the letter itself. More formally, we have the next definition. Definition 22. Let (n 1 , . . . , n k ) be a k-tuple of positive integers, and let (F 1 , . . . , F k ) be a k-tuple of sets such that F j ⊆ n j , for any j ∈ {1, . . . , k}. We let Mon F 1 ,...,F k n 1 ,...,n k denote the k-tuple of DFAs (M 1 , . . . , M k ) such that, for any j ∈ {1, . . . , k}, we have M j = (Γ n 1 ,...,n k , n j , 0, F j , δ j ), where

• Γ n 1 ,...,n k = n 1 n 1 × • • • × n k n k ,
• for any (a 1 , . . . , a k ) ∈ Σ and for any q j ∈ n j , we have δ j (q j , (a 1 , . . . , a k )) = a j (q j ).

We say that a k-tuple of DFAs is a k-monster if and only if it is equal to Mon F 1 ,...,F k n 1 ,...,n k , for some k-tuple of positive integers (n 1 , . . . , n k ), and some k-tuple of sets (F 1 , . . . , F k ) with F j ⊆ n j for any j ∈ {1, . . . , k}. Remark 3. When F j is different from ∅ and Q j , M j is minimal.

Example 19. The 1-monster Mon {1}

2 is 0 1

[01], [00] [START_REF] Cui | State complexity of two combined operations: Catenation-union and catenation-intersection[END_REF], [START_REF] Caron | State complexity of combined operations involving catenation and binary boolean operations: Beyond the Brzozowski conjectures[END_REF] [01], [START_REF] Cui | State complexity of two combined operations: Catenation-union and catenation-intersection[END_REF] [00], [START_REF] Caron | State complexity of combined operations involving catenation and binary boolean operations: Beyond the Brzozowski conjectures[END_REF] where, for all i, j ∈ {0, 1}, the label [ij] denotes the mapping that maps 0 to i and 1 to j, which is also a letter in the DFA above.

Example 20. The 2-monster Mon ({1},{1})

(2,2)

is given by the following pair of automata on an alphabet with 2 2 × 2 2 = 16 symbols where a i,_ (respectively a _, j ) denotes the set of transitions a i,x (respectively a x, j ) for x ∈ {1, . . . , 4}:

0 1 0 1 a 1,_ , a 3,_ a 2,_ , a 4,_ a 1,_ , a 2,_ a 3,_ , a 4,_ a _,1 , a _,3 a _,2 , a _,4 a _,3 , a _,4 a _,1 , a _,2
Each symbol codes a pair of functions, denoted by the word of their image. For instance, a 1,2 = [01, 11] means that the symbol a 1,2 labels a transition from 0 to 0 and a transition from 1 to 1 in the first automaton and a transition from 0 to 1 and a transition from 1 to 1 in the second automaton.

Notice that monsters only differ from one another only by the size and final states of their DFAs. Therefore, when using them as witnesses, we will only need to discuss their final states.

Monsters convey the key idea of our general approach in the sense that every k-tuple of languages is in some way contained in a k-monster. This universality-like property is formalized in the following lemma: Lemma 5. Let (L 1 , . . . , L k ) be any k-tuple of regular languages over the same alphabet, and let (A 1 , . . . , A k ) be any k-tuple of DFAs over the same alphabet, such that A j satisfies the following properties for any j ∈ {1, . . . , k}:

• A j recognizes the language L j ,

• the states of A j is n j for some integer n j ,

• the initial state of A j is 0.

We let (Σ, n j , 0, F j , δ j ) denote A j , and we let (M 1 , . . . , M k ) denote Mon F 1 ,...,F k n 1 ,...,n k . Furthermore, we let φ denote the 1-uniform morphism from Σ to Γ n 1 ,...,n k such that, for all a ∈ Σ, we have φ(a) = (δ a 1 , δ a 2 , . . . , δ a k ). For any j ∈ {1, . . . , k}, the language L j is the preimage of M j by the 1-uniform morphism φ, i.e., we have

(L 1 , . . . , L k ) = (φ -1 (L(M 1 )), . . . , φ -1 (L(M k ))). (4.2)
Proof. Let j be an integer of {1, . . . , k}. By Definition 22, the transition function ξ j of M j satisfies ξ (δ a 1 ,...,δ a k ) j = δ a j . Therefore, by Proposition 2, a word is in φ -1 (L(M j )) if and only if it is recognized by the DFA B j = (Σ, n j , 0, F j , ζ j ), with, for any l ∈ n j and any a ∈ Σ, we have

ζ a j = ξ φ(a) j = ξ (δ a 1 ,...,δ a k ) j = δ a j .
To conclude, A j = B j and L j = φ -1 (L(M j )), for all j ∈ {1, . . . , k}.

Modifiers and 1-uniform operations

The next proposition shows that a coherent modifier always describes a 1-uniform operation, and that every 1-uniform operation is described by a coherent modifier. It is the beginning of our algebraic analysis. This algebraic landscape is furthered in Chapter 7. We let O u denote the set of 1-uniform operations.

Theorem 1. desc(M

c ) = O u .
Proof. Let ⊗ be a k-ary 1-uniform operation. We define a k-modifier m as follows.

Let (A 1 , . . . , A k ) be a k-tuple of DFAs with A j = (Σ, Q A j , i A j , F A j , δ A, j ), for any j ∈ {1, . . . , k}. We can rename the states of each DFA in this k-tuple so that each

A j becomes D j = (Σ, n j , 0, F j , δ j ). If Mon F 1 ,...,F k n 1 ,...,n k = (M 1 , . . . , M k ), we let B = (Γ n 1 ,...,n k , Q , i , F , δ ) denote the minimal DFA of ⊗(L(M 1 ), . . . , L(M k )). We set m(A 1 , . . . , A k ) = (Σ, Q , i , F , δ ), with δ (q, a) = δ (q, (δ a 1 , . . . , δ a k ))
. Notice that m is indeed a coherent modifier. First, (Q , i , F ) depends only on every (Q A j , i A j , F A j ) for j ∈ {1, . . . , k}. Second, δ depends only on (δ a 1 , . . . , δ a k ) and on δ , which in turn depend only on (Q A j , i A j , F A j ) for j ∈ {1, . . . , k}, and on (δ a A,1 , . . . , δ a A,k ). Furthermore, by Proposition 2, L(m(A 1 , . . . , A k )) = φ -1 (L(B)), where φ is the 1-uniform morphism such that φ(a) = (δ a 1 , . . . , δ a k ) for all a ∈ Σ. Therefore, we have

L(m(A 1 , . . . , A k )) = φ -1 (⊗(L(M 1 ), . . . , L(M k ))).
And, since ⊗ is 1-uniform, we obtain from Lemma 5 and Definition 13

L(m(A 1 , . . . , A k )) = ⊗(φ -1 (L(M 1 )), . . . , φ -1 (L(M k ))) = ⊗(L 1 , . . . , L k ).
We thus have desc(m) = ⊗.

Conversely, let m be a coherent k-modifier, and let ⊗ = desc(m). We must prove that ⊗ is 1-uniform. Let Γ and Σ be two alphabets. Consider a 1-uniform morphism φ from Γ * to Σ * and a k-tuple of languages (L 1 , . . . , L k ) over Σ. Let (A 1 , . . . , A k ) be a k-tuple of DFAs such that A j = (Σ, Q j , i j , F j , δ j ) and A j recognizes L j for any j ∈ {1, . . . , k}, and let (B 1 , . . . , B k ) be the k-tuple of DFAs such that, for any j ∈ {1, . . . , k}, B j = (Γ, Q j , i j , F j , δj ), with δa j = δ φ(a) j for any letter a ∈ Γ. We have L(B j ) = φ -1 (L(A j )) for j ∈ {1, . . . , k}.

Let m(A 1 , . . . , A k ) = (Σ, Q, i, F, δ) and m(B 1 , . . . , B k ) = (Γ, Q , i , F , δ ). Since the state configuration of each A j is the same as the state configuration of each B j , we have (Q, i, F) = (Q , i , F ). Furthermore, because the transition configuration of any letter a ∈ Γ in B is equal to the transition configuration of φ(a) in A, we have δ a = δ φ(a) . Hence, L(m(B 1 , . . . , B k )) = φ -1 (L(m(A 1 , . . . , A k ))), which implies that ⊗(L(B 1 ), . . . , L(B k )) = φ -1 (⊗(L(A 1 ), . . . , L(A k ))). Therefore, ⊗(φ -1 (L(A 1 )), . . . , φ -1 (L(A k ))) = φ -1 (⊗(L(A 1 ), . . . , L(A k ))), as expected.

To end this section, we give in Figure 4.19 a summary diagram of some propositions above. Every set represented in this figure is an operad equipped with the composition of operations •. Furthermore, every represented mapping is a morphism of operads. Mappings represented with a two-headed arrow (i.e., ) are surjections, and mappings represented with a double-ended arrow (i.e., ↔) are bijections. 

Computing the state complexity of 1-uniform operations

The following theorem is the main result of this section. It is used later on to design a method for computing the state complexity of 1-uniform operations.

Theorem 2. Every k-ary 1-uniform operation admits a family of monster k-languages as witness.

Proof. Suppose now that ⊗ is a k-ary 1-uniform operation. Let (L 1 , . . . , L k ) be any k-tuple of regular languages over Σ, and let (A 1 , . . . , A k ) be the k-tuple of DFAs such that each A j = (Σ, n j , 0, F j , δ j ) is a minimal DFA that recognizes L j . Let φ the 1-uniform morphism such that, for all a ∈ Σ, φ(a) = (δ a 1 , . . . , δ a k ), and let Mon F 1 ,...,F k n 1 ,...,n k = (M 1 , . . . , M k ). We have ⊗(L 1 , . . . , L k ) = ⊗(φ -1 (L(M 1 )), . . . , φ -1 (L(M k ))) by Lemma 5, and so ⊗(L 1 , . . . , L k ) = φ -1 (⊗(L(M 1 ), . . . , L(M k ))) by Definition 13. It follows that sc(⊗(L 1 , . . . , L k )) = sc(φ -1 (⊗(L(M 1 ), . . . , L(M k )))) ≤ sc(⊗(L(M 1 ), . . . , L(M k ))) by Proposition 3. In addition, each L(M j ) has the same state complexity as L j .

We show, in the next section, how the above theorem may be used to compute the state complexity of a 1-uniform operation, by giving some simple examples.

Chapter 5 Examples

In the last section, we showed that 1-uniform operations are described by coherent modifiers (Theorem 1). By combining this result with Theorem 2, we design a method for computing the state complexity of a 1-uniform operation ⊗.

1. Construct a modifier m that describes ⊗, and consider the DFAs obtained by applying it to monsters;

2. Find an upper bound, using Theorem 2;

3. Give a monster that allows us to reach this upper bound, by choosing its final states appropriately.

One should not view this method as a hard and fast rule, but rather as a starting point of research. Steps 2 and 3 can be intertwined for legibility purposes, like in Chapter 6. The approach of many papers computing the state complexity of some 1-uniform operation can be tied to this method [START_REF] Jirásková | State complexity of cyclic shift[END_REF][START_REF] Domaratzki | State complexity of power[END_REF][START_REF] Janusz | On the state complexity of the shuffle of regular languages[END_REF][START_REF] Caron | State complexity of catenation combined with a boolean operation: A unified approach[END_REF].

The state complexity of Kleene star and catenation were among the first to be computed [START_REF] Maslov | Estimates of the number of states of finite automata[END_REF][START_REF] Yu | The state complexities of some basic operations on regular languages[END_REF]. The state complexity of union and intersection have been computed in [START_REF] Birget | Intersection and union of regular languages and state complexity[END_REF], and the state complexity of symmetric difference has been computed in [START_REF] Janusz | In search of most complex regular languages[END_REF], for example. These three operations give us the state complexity of all binary boolean operations. As for the state complexity of boolean operations of higher arity, a large part of the answer is provided by [START_REF] Ésik | Estimation of state complexity of combined operations[END_REF]. In that paper, the authors compute the state complexity of every boolean operation that "depends on each of its operands" [START_REF] Ésik | Estimation of state complexity of combined operations[END_REF]. We show that the method we designed can be used to easily find all these results again. Furthermore, we use it in Section 5.2 to compute the state complexity of boolean operations in the general case. In [START_REF] Davies | Algebraic Approaches to State Complexity of Regular Operations[END_REF], Sylvie Davies gives these examples and proves them in a very similar manner, using the approach she developed (which is also very similar to ours). Nonetheless, we still found it important to give them here using our formalism. 57

Star

Applying the star modifier to monsters

Let n ≥ 2 be an integer, and G be a subset of n , and let A = (Σ, Q, i, F, δ) = Star(Mon G n ). By the definition of Star (Example 15), we have

Σ = Γ n = n n , Q = 2 n , i = ∅, F = {E ∈ Q | E ∩ G ∅} ∪ {∅} and, for any E ∈ Q and any φ ∈ Σ, δ φ (E) =              {φ(0)} if E = ∅ and φ(0) G {φ(0), 0} if E = ∅ and φ(0) ∈ G φ(E) if E ∅ and φ(E) ∩ G = ∅ φ(E) ∪ {0} if E ∅ and φ(E) ∩ G ∅
We can represent a subset E of n as a "line" of squares, that may be empty or filled with a cross. An empty square at position i represents that i E, and a square filled with a cross at position i represents that i ∈ E. All squares representing a position that is in G are in red. For example, if n = 5, and G = {1, 2}, the subset {1, 3} of 5 is represented with the following line:

× ×
With this representation, we can alternatively display Figures 4.14 This representation gives us an interpretation of the transition function of A. Indeed, in A, to go with the letter φ from the representation of a subset E, to the representation of a subset E (in the case where E ∅), one can change the positions of the crosses of E by applying the function φ to them, and then put a cross at the beginning of the line if and only if there is a cross in a red square. For example, if n = 4, G = {1, 2}, φ(1) = 2, φ(2) = 3, we have δ φ ({1, 2}) = {0, 2, 3}, which is represented by Figure 5.3. 

An upper bound

We first establish an upper bound on the state complexity of the Kleene star. Our reasoning is based on the following remark: 

Remark
(n) ≤ 2 n-1 + 2 n-2 .
Proof. We distinguish several cases. First suppose that G = ∅. Then A has no final states, and the size of the minimal DFA associated with A is 1. We next show that, in every other case, the number of accessible states of A is less than or equal to 2 n-1 + 2 n-2 . Second, suppose that G = {0}. Let E be a state of A that is a singleton { j}. If φ(j) = 0, φ(E) ∩ G ∅, and δ φ (E) = {0} ∪ {0} = {0}. If φ(j) = l 0, then φ(E) ∩ G = ∅ and δ φ (E) = {φ( j)}. In both cases, δ φ (E) is a singleton. This can be seen by relying on our representation. Indeed, in this case, adding a cross to a line with only one cross via a transition is impossible. From this, an easy induction shows that every accessible state of A is a singleton. Therefore, the number of accessible states of A is at most n+1 ≤ 2 n-1 +2 n-2 .

Finally, suppose that G {∅, {0}}. From Remark 4, we deduce an upper bound on the number of accessible states of A. We distinguish two cases:

• Suppose 0 G. The number of states E of A such that E ∩ G ∅ and 0 E is 2 n-1 -2 n-1-#G . Therefore, since #G ≥ 1, the number of accessible states of A is at most 2 n -2 n-1 -2 n-1-#G = 2 n-1 + 2 n-1-#G ≤ 2 n-1 + 2 n-2 . • Suppose 0 ∈ G. The number of states E of A such that E∩G ∅ and 0 E is 2 n-1 -2 n-#G .
Therefore, the number of accessible states of

A is at most 2 n -2 n-1 -2 n-#G = 2 n-1 +2 n-#G .
However, as G {∅, {0}}, we have #G ≥ 2. As a consequence, the number of accessible states of A is at most 2 n-1 + 2 n-2 .

Therefore, we have proven, in every case, that the size of the minimal DFA associated with A is less or equal than 2 n-1 + 2 n-2 . Therefore, by Theorem 2, sc Star (n) ≤ 2 n-1 + 2 n-2 .

A lower bound

We now prove that the language recognized by Mon {n-1} n is a witness of the Kleene star, and the above upper bound is met.

Lemma 7.

Le n be an integer greater than or equal to 2. If G = {n -1}, then the size of the minimal DFA associated with A is 2 n-1 + 2 n-2 .

Proof. Let G = {n -1}, so that A = Star(Mon {n-1} n ). Let S be the set of all states E of A such that, if n -1 ∈ E, then 0 ∈ E. We show that every state E of S is accessible in A, by induction on the number of elements of E. We follow the intuition provided by Figure 5.4.

The empty set is initial in A. Every singleton of elements of n is in S, except for the singleton {n -1}. However, if j ∈ n -1 , {j} is accessible from the empty set by reading any letter φ such that φ(0) = j. Therefore, any element E of S such that #E ≤ 1 is accessible in A. Now let j ∈ {1, . . . , n -1}, and suppose that any element E of S such that #E ≤ j is accessible in A. Let E be any element of S such that #E = j + 1. If E = {0, n -1}, then it is accessible from {0} by reading the letter (0, n -1). Otherwise, let l and l be two distinct elements of E such that l n -1, and let E = (0, l) • (l , n -1)(E ). We have 0 ∈ E, n -1 ∈ E, and #E = #E . Furthermore, E is accessible from the set E = E \ {n -1} by reading the letter (0, n -1). Therefore, E is accessible from E , by reading the letter (0, l) followed by the letter (l , n -1). Furthermore, #E = j, and n -1 E , which implies that E ∈ S. As a consequence, E is accessible in A. Thus, we have shown that every element of S is accessible in A. As a consequence, by Remark 4, the accessible states of A are exactly the states in S. Now we show that the states of S are pairwise distinguishable in A. We follow the intuition of Figure 5.5.

× × × × × × × × × × (0, 3) (2, 3) (0, 3) (1, 3) 
Let E and E be any two different non-empty elements of S. There exists an integer j such that, either j ∈ E and j E , or j E and j ∈ E . As both cases are symmetrical, we suppose that j is an integer such that j ∈ E and j E . Let φ be the letter of Γ n such that φ( j) = n -1, and such that, for any l ∈ n that is not equal to j, φ(l) = 0. Reading the letter φ from the state E leads to the state {0, n -1}. Furthermore, reading the letter φ from the state E leads to the state {0}. However, both {n -1} and {0, n -1} are final in A, while {0} is not final in A. Therefore, E and E are distinguishable in A. Furthermore, reading the empty word ε from the state ∅ in A leads to ∅, which is final, but reading the empty word from the state {0} in A leads to {0}, which is not final. As a consequence, ∅ and {0} are distinguishable in A. Hence, any two distinct states of A are distinguishable. 

Boolean Operations

Applying the modifiers describing boolean operations to monsters

Let b be a k-ary boolean function, let (n 1 , . . . , n k ) be a k-tuple of positive integers, let (F 1 , . . . , F k ) be a k-tuple of finite sets such that

F j ⊆ n j , let Mon F 1 ,...,F k n 1 ,...,n k = (M 1 , . . . , M k ) and let A = (Γ n 1 ,...,n k , Q, i, F, δ) = m b (M 1 , . . . , M k ). Notice that every DFA that is equal to m b (Mon F 1 ,...,F k n 1 ,.
..,n k ), for some (F 1 , . . . , F k ) with F j ⊆ n j , has the same set of states, the same initial state, and the same transition function. It is only its set of final states that depends on F 1 , . . . , F k . Remark 5. By Definition 22, if φ = (φ 1 , . . . , φ k ) is a letter of Γ n 1 ,...,n k , for any j ∈ {1, . . . , k}, the transition function of φ in M j is φ j . Therefore, by Definition 16, for any element (q 1 , . . . , q k ) of Q, δ φ (q 1 , . . . , q k ) = (φ 1 (q 1 ), . . . , φ k (q k )). In other words, the transition function of (φ 1 , . . . , φ k ) in A is itself, (φ 1 , . . . , φ k ). This implies that, if w = a 1 • • • a n is a word over Γ n 1 ,...,n k with a l = (ζ l,1 , . . . , ζ l,k ), we have δ w = δ b , where b

= (ζ k,1 • • • • • ζ 1,1 , . . . , ζ k,k • • • • • ζ 1,k ).
As a consequence, if there is a run from a state q to a state q in A, then there exists a letter b of Γ n 1 ,...,n k such that δ b (q) = q . Therefore, all accessible states in A are accessible with one letter only, and if, in addition, F j {∅, n j } for any j ∈ {1, . . . , k}, any two distinguishable states of A are distinguishable with one letter only.

A consequence of the above remark is that any state (q 1 , . . . , q k ) of A is accessible from its initial state (0, . . . , 0) by reading a letter (φ 1 , . . . , φ k ) such that φ j (0) = q j , for all j ∈ {1, . . . , k}. Therefore, to minimize the DFA A, we only need to compute the induced Nerode equivalence.

An upper bound

Definition 23. For any positive integer k and ∈ {1, . . . , k}, we say that a k-ary boolean function b depends on its -th coordinate if there exist two k-tuples (u 1 , . . . , u k ) and (v 1 , . . . , v k ) of elements of {0, 1}, such that u j = v j for any j , and b(u 1 , . . . , u k ) b(v 1 , . . . , v k ).

Lemma 8. For any ∈ {1, . . . , k}, if b does not depend on its -th coordinate, then any two states s 1 = (q 1 , . . . , q k ) and s 2 = (q 1 , . . . , q k ) of Q with q j = q j for all j are not distinguishable in A.

Proof. For any letter φ = (φ 1 , . . . , φ k ) of Γ n 1 ,...,n k and any two states s 1 = (q 1 , . . . , q k ) and s 2 = (q 1 , . . . , q k ) of Q with q j = q j for all j l, we have, for any j l, φ j (q j ) = φ j (q j ) and [φ j (q j ) ∈ F j ] = [φ j (q j ) ∈ F j ]. Therefore, as b does not depend on its l-th coordinate, we have

b([φ 1 (q 1 ) ∈ F 1 ], . . . , [φ k (q k ) ∈ F k ]) = b([φ 1 (q 1 ) ∈ F 1 ], . . . , [φ k (q k ) ∈ F k ]), and b([q 1 ∈ F 1 ], . . . , [q k ∈ F k ]) = b([q 1 ∈ F 1 ], . . . , [q k ∈ F k ]).
Thus, by Definition 16, s 1 ∈ F if and only if s 2 ∈ F, and δ φ (s 1 ) is in F if and only if δ φ (s 2 ) is in F. Hence, s 1 and s 2 cannot be distinguished in A by reading the empty word. As a consequence, by Remark 5, s 1 and s 2 are not distinguishable in A.

Let E b be the set of all integers j in {1, . . . , k} such that b depends on its j-th coordinate. As a consequence of the above lemma, any state (q 1 , . . . , q k ) of A is equivalent (in the sense of the Nerode equivalence) to the state (q 1 , . . . , q k ), where q j = q j , for all j ∈ E b q j = 0 otherwise However, there are exactly j∈E b n j elements (q 1 , . . . , q k ) of Q, such that q j = 0 for all j E b .

It follows that this number is an upper bound for the number of states of a minimal DFA equivalent to A, and therefore an upper bound for the state complexity of ⊗ b :

Corollary 1. Let E b be the set of all integers j in {1, . . . , k} such that b depends on its j-th coordinate.

We have sc ⊗ b (n 1 , . . . , n k ) ≤ j∈E b n j .

A lower bound

We now prove that this upper bound is tight. Furthermore, we prove that Mon F 1 ,...,F k n 1 ,...,n k is a witness for ⊗ b , if F j {∅, n j } for all j ∈ {1, . . . , k}.

Lemma 9.

If, for all j ∈ {1, . . . , k}, F j { n j , ∅}, then the size of the minimal DFA equivalent to A is j∈E b n j .

Proof. We prove that any two distinct states of the set of all elements (q 1 , . . . , q k ) of Q such that q j = 1 for all j E b , are distinguishable. Let (q 1 , . . . , q k ) and (q 1 , . . . , q k ) be two states of Q such that there exists j ∈ E b with q j q j . As b depends on j, there exists two k-tuples of elements of {0, 1}, (u 1 , . . . , u k ) and (u 1 , . . . , u k ) such that b(u 1 , . . . , u k ) = 1, b(u 1 , . . . , u k ) = 0 and such that u l = v l for all l j. Let φ = (φ 1 , . . . , φ k ) be a letter Γ n 1 ,...,n k such that • For all l j, φ l (q l ) and φ l (q l ) are equal to an element of Q l that is in F l if and only if

u l = u l = 1,
• φ j (q j ) is equal to an element of Q j that is in F j if and only if u j = 1,

• φ j (q j ) is equal to an element of Q j that is in F j if and only if u j = 1.

We have ([φ 1 (q 1 ) ∈

F 1 ], . . . , [φ k (q k ) ∈ F k ]) = (u 1 , . . . , u k ) and ([φ 1 (q 1 ) ∈ F 1 ], . . . , [φ k (q k ) ∈ F k ]) = (u 1 , . . . , u k ). Therefore, b([φ 1 (q 1 ) ∈ F 1 ], . . . , [φ k (q k ) ∈ F k ]) = 1 and b([φ 1 (q 1 ) ∈ F 1 ], . . . , [φ k (q k ) ∈ F k ]) = 0,
which implies, by Definition 16, that (φ 1 (q 1 ), . . . , φ k (q k )) ∈ F and (φ 1 (q 1 ), . . . , φ k (q k )) F. As a consequence, (q 1 , . . . , q k ) and (q 1 , . . . , q k ) are distinguishable in A.

The state complexity computed in the above lemma coincides with the upper bound of Corollary 1. As a consequence, Mon F 1 ,...,F k n 1 ,...,n k is a witness for every boolean operation, if F j { n j , ∅} for all j ∈ {1, . . . , k}. We have thus computed the exact state complexity of every boolean operation. 

Catenation

Applying the catenation modifier to monsters

Let (n 1 , n 2 ) be a pair of integers greater than or equal to 2, let (F 1 , F 2 ) be a pair of finite sets such that F 1 ⊆ n 1 and

F 2 ⊆ n 2 , let Mon F 1 ,F 2 n 1 ,n 2 = (M 1 , M 2 ) and let A = (Σ, Q, i, F, δ) = Conc(M 1 , M 2 )
. From Example 18 and Definition 22, we have

• Σ = Γ n 1 ,n 2 = n 1 n 1 × n 2 n 2 , • Q = n 1 × 2 n 2 , • i = (0, ∅) if 0 F 1 (0, {0}) if 0 ∈ F 1 , • F = {(q 1 , E) ∈ n 1 × 2 n 2 | E ∩ F 2 ∅},
• and, for any (q 1 , E) ∈ n 1 × 2 n 2 and any (φ 1 , φ 2 ) ∈ Γ n 1 ,n 2 , δ (φ 1 ,φ 2 ) (q 1 , E) = (φ 1 (q 1 ), φ 2 (E)) if φ 1 (q 1 ) F 1 (φ 1 (q 1 ), φ 2 (E) ∪ {0}) otherwise.

To represent states of A, we use a representation very similar to the case of the Kleene star (Figures 5.1, 5.2 and 5.3). However, this time, a state (q, E) of A is represented by two "lines" of squares. The first one represents q, and thus has always exactly one cross. The second one represents E, and thus has as many crosses as the size of E. For example, if n 1 = 4, n 2 = 5, F 1 = 1 and F 2 = {2, 3}, the state (2, {1, 3}) of A is represented with the following pair of lines:

× × ×
This representation gives us an interpretation of the transition function of A. Indeed, in A, to go from a state (q, E) to a state (q , E ) by reading a letter (φ 1 , φ 2 ) (in the case where E ∅), one can change the positions of the crosses on the two lines representing (q, E) by applying φ 1 to the cross of the first one, and φ 2 to the crosses of the second one, and then by putting a cross at the beginning of the second line if and only if the cross of the first line is in a red square. For example, if 3,4 ).

n 1 = 3, n 2 = 4, F 1 = {2} ,F 2 = {1}, φ 1 (1) = 2, φ 2 (1) = 2,

An upper bound

We first establish an upper bound on the state complexity of Catenation. Our reasoning is based on the following remark: Remark 6. If reading a letter from any state in A leads to a state whose cross on the first line is in a red square, then this state's second line has a cross in the leftmost square. More formally, if (q, E) is an element of Q, if (φ 1 , φ 2 ) is any letter of Γ n 1 ,n 2 , and if φ 1 (q) ∈ F 1 , then, denoting by (q , E ) the state δ (φ 1 ,φ 2 ) (q, E), we have 0 ∈ E . Therefore, an easy induction shows that any state (q, E) of A such that q ∈ F 1 and 0 E is not accessible in A.

Lemma 10. The state complexity sc Conc of Catenation satisfies sc Conc (n 1 , n 2 ) ≤ (n 1 -1)2 n 2 + 2 n 2 -1 .

Proof. If F 1 = ∅, any state (q, E) of A such that E ∅ is not accessible. Therefore, the number of accessible states of A is less or equal to n 1 . Suppose that F 1 ∅. The number of all states (q, E)

of A such that, if q ∈ F 1 then 0 ∈ E is (n 1 -#F 1 ) × 2 n 2 + #F 1 × 2 n 2 -1
. Therefore, by Remark 6, the number of accessible states of A is less or equal to (n

1 -#F 1 ) × 2 n 2 + #F 1 × 2 n 2 -1 ≤ (n 1 -1) × 2 n 2 + 2 n 2 -1
. In all cases, the number of accessible states of A is less or equal to (n 1 -1) × 2 n 2 + 2 n 2 -1 . Therefore, by Theorem 2, we have sc

Conc (n 1 , n 2 ) ≤ (n 1 -1)2 n 2 + 2 n 2 -1 .

A lower bound

We now prove that Mon {n 1 -1},{n 2 -1} n 1 ,n 2 is a witness for Catenation, and the above upper bound is met.

Lemma 11.

If F 1 = {n 1 -1} and F 2 = {n 2 -1}, then the size of the minimal DFA associated with A is

(n 1 -1)2 n 2 + 2 n 2 -1 .
Proof. Recall that n 1 and n 2 are both greater than or equal to 2. Let F 1 = {n 1 -1} and

F 2 = {n 2 -1}, so that A = Conc(Mon {n 1 -1},{n 2 -1} n 1 ,n 2
). Let S be the set of all states ( j, E) of A such that, if j = n 1 -1, then 0 ∈ E. We show that every state ( j, E) of S is accessible in A, by induction on the number of elements of E. We follow the intuition provided by Figure 5.7.

The state (0, ∅) is initial in A. A state (j, ∅) is in S if and only if j ∈ n 1 -1 . However, if j ∈ n 1 -1 , ( j, ∅) is accessible from (0, ∅) by reading the letter ((0, j), Id). Therefore, any element (j, ∅) of S is accessible in A.

The state (n 1 -1, {0}) is accessible in A from (0, ∅) by reading the letter ((0, n 1 -1), Id). Furthermore, any state ( j, {m}) of S, where j ∈ n 1 -1 and m ∈ n 2 is reached from the state (n 1 -1, {0}) by reading the letter ((n 1 -1, j), (0, m)). Thus, any state (j, E) of S with #E ≤ 1 is accessible in A. Now let l ∈ {1, . . . , n 2 -1}, and suppose that every element ( j, E) of S such that #E ≤ l is accessible in A. Let ( j , E ) be any element of S such that #E = l + 1. Let r be any element of E , let r be any non-zero element of (0, r)(E ), and let E = (0, r)(E ) \ {r }. The state ( j , E ) is reached in A from the state (n 1 -1, E) by reading the letter (Id n 1 -1 , (0, r )) and then the letter ((n 1 -1, j ), (0, r)). Furthermore, 0 ∈ E, which implies that (n 1 -1, E) is in S, and #E = l. As a consequence, (j , E ) is accessible in A. Thus, we have shown by induction that every element of S is accessible in A. As a consequence, by Remark 6, the accessible states of A are exactly the states in S. Now we show that the states of S are pairwise distinguishable in A.

Let (j, E) and (j , E ) be any two different elements of S. We distinguish two cases, and we follow the intuition given by Figures 5.8 and 5.9.

• First suppose that j j . Let φ 1 be any function of n 1 n 1 such that φ 1 (j) = 0 and φ 1 (j ) = n 1 -1, and let φ 2 be the function of n 2 n 2 such that φ 2 (l) = n 2 -1, for any l ∈ n 2 . Reading the letter (φ 1 , φ 2 ) from the state ( j, E) leads to the state (0, {n 2 -1}). Furthermore, reading the letter (φ 1 , φ 2 ) from the state ( j , E ) leads to the state (n 1 -1, {0, n 2 -1}). Therefore, if φ 3 = Id n 1 and φ 4 = (0, n 2 -1), we have δ (φ 1 ,φ 2 )(φ 3 ,φ 4 ) (j, E) = (0, {0}) and δ (φ 1 ,φ 2 )(φ 3 ,φ 4 ) (j , E ) = (n 1 -1, {0, n 2 -1}). However, (n 1 -1, {0, n 2 -1}) is final in A, while (0, {0}) is not, since n 2 ≥ 2. As a consequence, ( j, E) and ( j , E ) are distinguishable in A.

× × × × × × × × × × × × × × × × (φ 1 , φ 2 ) (Id 4 , (0, 3)) (φ 1 , φ 2 ) (Id 4 , (0, 3))
Figure 5.8: How to distinguish between two states (1, {1, 3}) and (2, {1, 3}) of Conc(Mon {3},{3} 4,4 ) when j j , with φ 1 (2) = 3, φ 1 (1) = 0, and φ 2 (1) = φ 2 (3) = 3.

• Suppose now that E E . There exists an integer j such that, either j ∈ E and j E , or j E and j ∈ E . As both cases are symmetrical, we suppose that j is an integer such that j ∈ E and j E . Let φ 1 be the function of n 1 n 1 such that φ 1 (l) = 0, for any l ∈ n 1 . Let φ 2 be the function of n 2 n 2 such that φ 2 (j) = n 2 -1, and such that, for any l ∈ n 2 that is not equal to j, φ 2 (l) = 0. Reading the letter (φ 1 , φ 2 ) from the state ( j, E) leads to the state (0, {n 2 -1}) or to the state (0, {0, n 2 -1}). Furthermore, reading the letter (φ 1 , φ 2 ) from the state ( j , E ) leads to the state (0, {0}). However, (0, {n 2 -1}) and (0, {0, n 2 -1}) are final in A, while (0, {0}) is not final in A. Therefore, ( j, E) and (j , E ) are distinguishable in A.

× × × × × × × × × × × (φ 1 , φ 2 ) (φ 1 , φ 2 )
Figure 5.9: How to distinguish between two states ( j, E) and ( j , E ) of Conc(Mon {3},{3} 4,4 ) when E E , with φ 1 (1) = φ 1 (2) = 0, φ 2 (1) = φ 2 (0) = 0, and φ 2 (2) = 3. Thus, we have shown that the states of S are pairwise distinguishable in A. Therefore, the size of the minimal DFA associated with A is the size of S, which is (n 1 -1)

2 n 2 + 2 n 2 -1 .
Therefore, by Lemma 10 and Lemma 11, Mon {n 1 -1},{n 

(n 1 , n 2 ) = (n 1 -1)2 n 2 + 2 n 2 -1 .

Chapter 6

On the star of boolean operations

We have computed in Section 5.2 the state complexity of boolean operations. A natural question arises: what happens when we take the Kleene star of a boolean operation? Although these combined operations do not seem much more complicated, their state complexities are actually much harder to compute. In [START_REF] Ésik | Estimation of state complexity of combined operations[END_REF], the authors compute the state complexity of the star of union and make some advances towards computing the state complexity of the star of intersection. This state complexity was later computed in [START_REF] Jirásková | On the state complexity of star of union and star of intersection[END_REF]. However, in both cases, the methods used seem to be very specific to both of these operations. Furthermore, in [START_REF] Gao | State complexity of star and square of union of k regular languages[END_REF], the authors compute the state complexity of the star of multiple unions, generalizing the method used in [START_REF] Ésik | Estimation of state complexity of combined operations[END_REF].

The results discussed above are not sufficient to compute the state complexity of the star of every binary boolean operation. We completely answer this problem by computing the state complexity of the star of symmetric difference, in a way that is inspired by [START_REF] Caron | State complexity of catenation combined with a boolean operation: A unified approach[END_REF]. This computation requires some work, because it involves more complicated combinatorial objects than in the case of the star of union or the star of intersection. Furthermore, we give a witness for the star of symmetric difference with an alphabet of size 16. Finally, we give some ideas to generalize our reasoning to the star of boolean operations in Section 6.7.

The star of the symmetric difference: a first analysis

We let denote the composition of Star and ⊗ xor . In other words, is the binary regular operation such that, for any pair of languages (L 1 , L 2 ) over the same alphabet, we have Let (A 1 , A 2 ) be a pair of DFAs with

(L 1 , L 2 ) = (L 1 ∆L 2
A 1 = (Σ, Q 1 , i 1 , F 1 , δ 1 ) and A 2 = (Σ, Q 2 , i 2 , F 2 , δ 2 )
. We have

StX(A 1 , A 2 ) = (Σ, 2 Q 1 ×Q 2 , ∅, {E ⊆ Q 1 × Q 2 | E ∩ F ∅} ∪ {∅}, δ), 69 where F = (F 1 × Q 2 )∆(Q 1 × F 2 )
and where, for any letter a of Σ,

δ a (∅) = {(δ a 1 (i 1 ), δ a 2 (i 2 ))} if (δ a 1 (i 1 ), δ a 2 (i 2 )) F {(δ a 1 (i 1 ), δ a 2 (i 2 )), (i 1 , i 2 )} otherwise and, for all E ∅, δ a (E) = (δ a 1 , δ a 2 )(E) if (δ a 1 , δ a 2 )(E) ∩ F = ∅ (δ a 1 , δ a 2 )(E) ∪ {(i 1 , i 2 )} otherwise. Notice first that if n 1 = 1 or n 2 = 1,
we can compute sc (n 1 , n 2 ) with the results of Section 5.1. Suppose n 1 = 1 and n 2 ≥ 2, for example, and let L 1 be a language over an alphabet Σ of state complexity equal to 1. We have either L 1 = ∅ or L 2 = Σ * . Thus, for any language L 2 over Σ, if

L 1 = ∅, then we have (L 1 , L 2 ) = L 2 . Furthermore, if L 1 = Σ , then we have (L 1 , L 2 ) = (L c
2 ) . However, for any positive integer n 2 and any language L 2 of state complexity inferior or equal to n 2 , we know, from Example 8, that the state complexity of L c 2 is at most n 2 . Hence, from Proposition 19, we have sc

((L c 2 ) ) ≤ 2 n 2 -1 + 2 n 2 -2 and sc(L 2 ) ≤ 2 n 2 -1 + 2 n 2 -2 .
To summarize, we have sc( (L 1 , L 2 )) ≤ 2 n 2 -1 + 2 n 2 -2 for any positive integer n 2 and any language L 2 of state complexity inferior or equal to n 2 . However, from Lemma 7, we also have sc( (∅, L(Mon

{n 2 -1} n 2 ))) = 2 n 2 -1 + 2 n 2 -2 , for any integer n 2 ≥ 2. As a consequence, we have sc (n 1 , n 2 ) = 2 n 2 -1 + 2 n 2 -2 , if n 1 = 1 and n 2 ≥ 2. Similarly, if n 2 = 1 and n 1 ≥ 2, we have sc (n 1 , n 2 ) = 2 n 1 -1 + 2 n 1 -2 .
Therefore, for the remainder of this section, we only concern ourselves with computing sc (n 1 , n 2 ) when n 1 and n 2 are superior or equal to 2.

Since is a binary 1-uniform operation admits a family of 2-monsters as witness. Let (n 1 , n 2 ) be two integers greater than or equal to 2, and let (M 1 , M 2 ) = Mon {n 1 -1},{0} n 1 ,n 2 . We are going to show that (L(M 1 )), L(M 2 )) is indeed a witness for . This allows us to compute its state complexity. To be more precise, here is the outline of our proof. For any F 1 ⊆ n 1 and any F 2 ⊆ n 2 , we let M F 1 ,F 2 denote the DFA StX(Mon F 1 ,F 2 n 1 ,n 2 ). We are going to minimize the DFA M {n 1 -1},{0} by first computing its Nerode equivalence, and then by computing its accessible part. We will therefore have computed the minimal DFA equivalent to M {n 1 -1},{0} , and computing its size allows us to compute the state complexity of L(M {n 1 -1},{0} ). We then show that the state complexity of L(M {n 1 -1},{0} ) is the greatest out of all the state complexities of L(M F 1 ,F 2 ), with (F 1 , F 2 ) ⊆ n 1 × n 2 . Theorem 2 allows us to conclude that the state complexity of L(M {n 1 -1},{0} ) is indeed sc (n 1 , n 2 ).

Computing the Nerode equivalence of M {n 1 -1},{0}

In order to give a visual representation of the next proofs, we associate elements of 2 n 1 × n 2 with boolean matrices of size n 1 × n 2 . Such a matrix is called a tableau of size n 1 × n 2 when crosses are put in place of 1s, and 0s are erased. The same symbol denotes the element of 2 n 1 × n 2 , the associated boolean matrix, and the associated tableau. If T is an element of 2 n 1 × n 2 , we let T x,y denote the value of the boolean matrix T at row x and column y. Therefore, the three following assertions mean the same thing: a cross is at the coordinates (x, y) in T, T x,y = 1, (x, y) ∈ T.

We say that a cross at coordinates (x, y) of a tableau, is in the final zone of

M F 1 ,F 2 , if (x, y) ∈ (F 1 × n 2 )∆( n 1 × F 2 ). We notice that a tableau T of size n 1 × n 2 is final in M F 1 ,F 2 if
and only if T has a cross in the final zone of M F 1 ,F 2 , or T is empty. We fix for the remainder of this chapter two integers n 1 and n 2 greater than or equal to 2. Definition 24. A tableau T of size n 1 × n 2 is right-triangle free if ∀x, x ∈ n 1 such that x x and ∀y, y ∈ n 2 , such that y y , we have #({(x, y), (x, y ), (x , y), (x , y )} ∩ T) 3. Definition 25. We let → denote the relation over tableaux of size n 1 × n 2 that satisfies the following property: for any two tableaux T and T of size n 1 × n 2 , we have T → T if and only if there exist two pairs of integers (i, j) and (i , j ) in n 1 × n 2 , such that T = T ∪ {(i , j )} and {(i, j), (i , j), (i, j )} ⊆ T. We let * ↔ denote the reflexive, symmetric and transitive closure of →.

Example 21.

For any tableau T, we define Sat(T) as the smallest tableau (relatively to inclusion) with no right triangle containing T. The existence of Sat(T) comes from the fact that T ⊆ 2 n 1 × n 2 , which is a right-triangle free tableau, and the uniqueness of Sat(T) comes from the fact that the intersection of two right-triangle free tableaux is right-triangle free. Two tableaux T and T are therefore equivalent if Sat(T) = Sat(T ). Lemma 12. A tableau T of size n 1 × n 2 is right-triangle free if and only if, for all i, i ∈ n 1 , the lines i and i are either the same (i.e., for all j ∈ n 2 , we have T i,j = T i ,j ), or disjoint (i.e., for all j ∈ n 2 , we have T i, j = 0 ∨ T i , j = 0).

Proof. If T has a right triangle, that is there exists i, i ∈ n 1 and j, j ∈ n 2 such that {(i, j), (i , j), (i, j )} ⊆ T but (i , j ) T , then the lines i and i are neither the same nor disjoint.

Conversely, if there are two lines i and i that are neither the same nor disjoint, then i i . Since the two lines are not disjoint, there exists j ∈ n 2 such that T i, j = T i , j = 1. Furthermore, since they are not the same either, there exists j ∈ n 2 such that T i,j T i ,j . As a consequence, T has a right triangle and is not right-triangle free.

Lemma 13. Let F 1 ⊆ n 1 with F 1 {∅, n 1 }, let F 2 ⊆ n 2 with F 2 {∅, n 2 },
and let T and T be any two non-empty states of M F 1 ,F 2 such that T → T . Then T is final if and only if T is final.

Proof. As T ⊆ T , if T is final, T is also final. Now let us suppose T is final and let i, j, i , j be the integers of Definition 25. If another cross of T than (i , j ) is in the final zone, then T is also final. Let us now prove that (i , j ) is in the final zone implies T is final. Thus, let us suppose, for example that i ∈ F 1 , and j F 2 . Then, either j F 2 and (i , j) is in the final zone of T, either j ∈ F 2 and i F 1 and (i, j) is in the final zone of T, or either j ∈ F 2 and i ∈ F 1 and (i, j ) is in the final zone of T. In every case, T is final.

Let us recall that the alphabet of M

F 1 ,F 2 is Γ n 1 ,n 2 = n 1 n 1 × n 2 n 2 .
M {n 1 -1},{0} , and δ (π n 1 -1 0 ,(0,j)) (T ) is not final in M {n 1 -1},{0} since T is not empty, which implies that T and T are distinguishable in M {n 1 -1},{0} .

We now suppose that there exists x ∈ n 1 such that T x,j = 1. Let {i 1 , . . . , i } = {α | T α, j = 1} and let { j 1 , . . . , j p } = {β | T i 1 ,β = 1}. The two next properties are illustrated by Figure 6.2. We designate them by Property 1 and Property 2 in the rest of the proof.

1. By Lemma 12, lines i 1 , . . . , i are the same, as they all have a cross on the column j.

Columns {j 1 , . . . , j p } are also the same, as they all have a cross on line i 1 . It follows that, if

(i , j ) ∈ {i 1 , . . . , i } × {0, . . . , n 2 -1} \ { j 1 , . . . , j p } ∪ ({0, . . . , n 1 -1} \ {i 1 , . . . , i }) × { j 1 , . . . , j p } ,
then we have T i , j = 0.

2. We have j ∈ {j 1 , . . . , j p } and i {i 1 , . . . , i }. We let ( f, g) denote the pair of mappings such that, for any (i , j ) ∈ n 1 × n 2 , we have

× × × ⊗ × × j i × • × × × × × × × × × × × × × j 1 j 2 j 3 i 1 i 2 i 3 j
f (i ) = n 1 -1 if i ∈ {i 1 , . . . , i } 0 otherwise and g(j ) = 0 if j ∈ {j 1 , . . . , j p } n 2 -1 otherwise. If ( f (i ), g(j )) is in the final zone of M {n 1 -1},{0} , then (i , j ) ∈ {i 1 , . . . , i } × {0, . . . , n 2 -1} \ { j 1 , . . . , j p } ∪ ({0, . . . , n 1 -1} \ {i 1 , . . . , i }) × { j 1 , . . . , j p } .
Hence, by Property 1, we have T i , j = 0. As a consequence, ( f, g)(T ) has at most two crosses, one at (n 1 -1, 0) and one at (0, n 2 -1). Neither (n 1 -1, 0) nor (0, n 2 -1) is in the final zone of M {n 1 -1},{0} . As a consequence, ( f, g)(T ) = δ ( f,g) (T ) is not final in M {n 1 -1},{0} . However, by Property 2, since T i, j = 1, we have (( f, g)(T)) 0,0 = 1. Therefore, ( f, g)(T) = δ ( f,g) (T) is final in M {n 1 -1},{0} . Thus, T and T are distinguishable in M {n 1 -1},{0} .

In both cases, T and T are distinguishable in M {n 1 -1},{0} . Therefore, * ↔ T and * ↔ T are distinguishable in M {n 1 -1},{0} / * ↔ . To conclude, since the representative of any state of M {n 1 -1},{0} / * ↔ is a right-triangle free tableau, any two distinct states of M {n 1 -1},{0} / * ↔ are distinguishable.

In particular, from the above lemma, we know that {(0, 0)} is distinguishable from any other state of M {n 1 -1},{0} (except for ∅). Hence, the equivalence class of ∅ for the Nerode equivalence induced by M {n 1 -1},{0} is {∅, {(0, 0)}}. As a consequence, the following corollary is straightforward from Lemma 15 and of Lemma 22.

Corollary 2. The Nerode equivalence induced by M {n 1 -1},{0} is equal to ∼.

Computing the accessible states of M {n 1 -1},{0}

Lemma 16. The set of accessible states of M {n 1 -1},{0} is the set of all tableaux T of size n 1 × n 2 such that, if T has a cross in the final zone of M {n 1 -1},{0} , then T has cross at (0, 0).

Proof. Recall first that the final zone of M {n 1 -1},{0} is the set of all (i, j) ∈ n 1 × n 2 such that either i = n 1 -1 or j = 0, but not both. We use this repeatedly in the rest of the proof. We let E denote the set of all tableau T of size n 1 × n 2 such that, if T has a cross in the final zone of M {n 1 -1},{0} , then T 0,0 = 1. It follows from the definition of the transition function of StX that every accessible tableau T of M {n 1 -1},{0} is in E. We now prove that every tableau in E is accessible.

Let δ be the transition function of M {n 1 -1},{0} . For any tableau T of size n 1 × n 2 , let # nf T be the number of crosses of T which are not in the final zone of M {n 1 -1},{0} . Let < be the strict partial order on tableaux such that T < T if and only if, either #T < #T , or #T = #T and # nf T < # nf T ). We prove that every tableau in E is accessible, by induction on non-empty tableaux for the strict partial order < (the empty tableau is the initial state of M {n 1 -1},{0} , and so it is accessible). The only minimal element for the strict partial order < is the empty tableau. Therefore, for any non-empty tableau T ∈ E, we define a tableau T such that T < T , and T is accessible from T. We distinguish the following cases :

• Suppose that T has no cross in the final zone of M {n 1 -1},{0} . In particular, we have T 0,0 = 0. Let (i, j) be any cross of T , let ( f, g) = ((0, i), (0, j)), and let T = ( f, g)(T ). We have T 0,0 = 1 and ( f, g)(T) = ( f, g)(( f, g)(T )) = T . Therefore, since T ∈ E, #T = #T , and # nf T < # nf T , and since T is not final, we have T = δ ( f,g) (T) and T < T .

• Suppose now that T has at least one cross in the final zone of M {n 1 -1},{0} .

-Suppose there exists (i, j) in the final zone of M {n 1 -1},{0} , such that (i, j) (0, 0) and T i,j = 1. Notice that this implies that T 0,0 = 1. Let ( f, g) = ((0, i), (0, j)), let T be the cross matrix obtained from T by deleting the cross at (0, 0), and let T = ( f, g)(T ). Since (( f, g)(T )) 0,0 = T i,j = 1, we have T 0,0 = 1, and therefore T ∈ E. Furthermore, ( f, g)(T) = ( f, g)(( f, g)(T )) = T . In addition, T has a cross at coordinates (i, j), which is in the final zone. Therefore, δ ( f,g) (T) = T ∪{(0, 0)} = T . To summarize, since #T < #T , we have δ ( f,g) (T) = T , T ∈ E, and T < T .

-Suppose now that (0, 0) is the only cross of T in the final zone of M {n 1 -1},{0} .

* If T = {(0, 0)}, then it is accessible from the initial state T = ∅ by reading (Id, Id). We obviously have #T < #T , and thus T < T .

* If T = {(0, 0), (n 1 -1, 0)}, then T is reached from the state T = {(0, 0)} by reading, for example, the letter, ((0, n 1 -1), Id), then the letter (Id, (0, n 2 -1)), and finally the letter (Id, π n 2 -1 0

). Indeed, δ ((0,n 1 -1),Id) ({(0, 0)}) = {(n 1 -1, 0)}, δ (Id,(0,n 2 -1)) ({(n 1 -1, 0)}) = {(0, 0), (n 1 -1, n 2 -1)}, and δ (Id,π n 2 -1 0 ) ({(0, 0), (n 1 -1, n 2 -1)}) = {(0, 0), (n 1 -1, 0)}. We obviously have #T < #T , and thus T < T . * If T n 1 -1,0 = 1, T {(0, 0)}, and T {(0, 0), (n 1 -1, 0)}, then T has a cross at (i, j), where i ∈ n 1 -1 and j ∈ {1, . . . , n 2 -1}. Let ( f, g) = ((i, n 1 -1), Id), and let T = ( f, g)(T ). Since T n 1 -1,j = 1, T has a cross in the final zone distinct from (0, 0), and therefore # nf T < # nf T . Furthermore, ( f, g)(T) = T , which implies, since (0, 0) ∈ ( f, g)(T) = T , that we have δ ( f,g) (T) = T . In addition, (0, 0) is equal to either ( f, g)(n 1 -1, 0) if i = 0, or ( f, g)(0, 0) if i 0. In both cases, we have T 0,0 = 1, which implies that T ∈ E. To summarize, since #T = #T , we have T ∈ E, T = δ ( f,g) (T) and T < T . We illustrate this case with Figure 6 * Suppose now that T n 1 -1,0 = 0 and T {(0, 0)} (this naturally implies that T {(0, 0), (n 1 -1, 0)}). Then there exists (i, j), with i ∈ n 1 -1 and j ∈ {1, . . . , n 2 -1}, such that T i, j = 1. Let ( f, g) = (π n 1 -1 i , Id), and let T be the tableau of size n 1 × n 2 such that, for any (i , j ) ∈ n 1 × n 2 , we have

T i , j =          T i, j if i = n 1 -1 0 if i = i T i , j otherwise
For any i ∈ n 1 \ {0}, and any j ∈ n 2 , we have ( f, g)(T) i, j = T i,j = T i,j . We also have ( f, g)(T) n 1 -1,j = 0 = T n 1 -1, j , and ( f, g)(T) 0,j = T n 1 -1, j = T 0,j , for any j ∈ n 2 . Hence, since T 0,0 = 1, we have T 0,0 = 1, ( f, g)(T) = T , #T = #T , and

# nf T < # nf T . Therefore, since (0, 0) ∈ δ ( f,g) (T), we have T ∈ E, T = δ ( f,g) (T)
and T < T . We illustrate this case with Figure 6.4. For all (F 1 , F 2 ) ⊆ n 1 × n 2 , we let M F 1 ,F 2 denote the restriction of the DFA M F 1 ,F 2 to all the states T that satisfy: if T has a cross in the final zone of M F 1 ,F 2 , then T has cross at (0, 0). The following corollary is straightforward from Corollary 2 and Lemma 16.

× × × × ×

Corollary 3. M {n 1 -1},{0} / ∼ is a minimal DFA equivalent to M {n 1 -1},{0} .
Before moving on, we state the following remark that stems from the formula given for StX.

Remark 7. The accessible part of

M F 1 ,F 2 is included in M F 1 ,F 2 .
This remark is useful later on to get an upper bound on the state complexity of M F 1 ,F 2 .

Computing the state complexity of the language recognized by M {n 1 -1},{0}

Let R n 1 ,n 2 be the set of non-empty right-triangle free tableaux of size n 1 × n 2 . For any

(F 1 , F 2 ) ⊆ n 1 × n 2 , we let T F 1 ,F 2 denote the set of all T ∈ R n 1 ,n 2 such that, if T has a cross in the final zone of M F 1 ,F 2 , then T 0,0 = 1. The state {(0, 0)} is final in M {n 1 -1},{0}
, and therefore is not distinguishable from {∅} in M {n 1 -1},{0} . As a consequence, the size of M {n 1 -1},{0} / ∼ is the cardinality of T {n 1 -1},{0} . However, for any non-empty tableaux T of size n 1 × n 2 , T has no cross in the final zone of M {n 1 -1},{0} if and only if T does not have any cross on line n 1 -1 or on column 0, except maybe for a cross at (n 1 -1, 0). Therefore the set of all tableaux T of size n 1 × n 2 such that T has no cross in the final zone of M {n-1},{0} , is equal to E ∪ E , where

E = {T ∈ R n 1 ,n 2 | ∀i ∈ n 1 , ∀ j ∈ n 2 , T i,0 = 0 ∧ T n 1 -1, j = 0} and E = {T ∈ R n 1 ,n 2 | T n 1 -1,0 = 1 and ∀i ∈ n 1 -1 , ∀j ∈ {1, . . . , n 2 -1}, T i,0 = 0 ∧ T n 1 -1, j = 0}. However, #E = α n 1 -1,n 2 -1 -1, and #E = α n 1 -1,n 2 -1
, where α x,y is the number of right-triangle free tableaux of size x × y, for any positive integers x and y. Furthermore, since (0, 0) is in the final zone of M {n-1},{0} , T {n 1 -1},{0} is equal to the disjoint union of the two following sets: the set of all right-triangle tableaux that do not have any cross in the final zone of M {n-1},{0} , and the set of all right-triangle free tableaux that have a cross at (0, 0). Therefore, we have

#T {n 1 -1},{0} = 2α n 1 -1,n 2 -1 + α n 1 ,n 2 -1,
where α x,y the number of right-triangle free tableaux of size x × y having a cross at (0, 0), for any positive integers x and y. Therefore, Corollary 3 gives us the state complexity of L(M {n 1 -1},{0} ).

Lemma 17. The state complexity of L(M {n

1 -1},{0} ) is 2α n 1 -1,n 2 -1 + α n 1 ,n 2 -1.
Closed formulas for α(x, y) and α (x, y) are given in Corollary 20 and Proposition 22 of [START_REF] Caron | State complexity of catenation combined with a boolean operation: A unified approach[END_REF].

In the next section, we prove that ({n 1 -1}, {0}) is a pair of final states (F 1 , F 2 ) that maximizes the size of any minimal DFA equivalent to any DFA M F 1 ,F 2 , with (F 1 , F 2 ) ⊆ n 1 × n 2 .

Discussing the monsters' final states

Definition 26. Let T be a right-triangle free tableau of size n 1 × n 2 , let 1 , 2 be two elements of n 1 , and let c 1 , c 2 be two elements of n 2 . We let mergel(T, 1 , 2 ) and mergec(T, c 1 , c 2 ) denote the two tableaux such that, for any (i, j) ∈ n 1 × n 2 , we have

mergel(T, 1 , 2 ) i, j =                  max(T 1 ,j , T 2 ,j ) if              i = 1 , i = 2 , ∃c | T i,c = T 1 ,c = 1, or ∃c | T i,c = T 2 ,c = 1, T i,j otherwise,
and

mergec(T, c 1 , c 2 ) i, j =                  max(T i,c 1 , T i,c 2 ) if              j = c 1 , j = c 2 , ∃ | T , j = T ,c 1 = 1, or ∃l | T , j = T ,c 2 = 1, T i, j
otherwise.

The idea behind this definition is that mergel(T, 1 , 2 ) (resp. mergec(T, c 1 , c 2 )) merges the lines 1 and 2 (respectively the columns c 1 and c 2 ) of T. In other words, in light of Lemma 12, the function mergel applied to (T, 1 , 2 ) replaces all lines that are the same as line 1 or line 2 , by a line containing all the crosses of 1 and 2 . Similarly, the function mergec applied to (T, c 1 , c 2 ) replaces all columns that are the same as column c 1 or column c 2 , by a column containing all the crosses of c 1 and c 2 . Notice that by Lemma 12, mergel(T, 1 , 2 ) and mergec(T, c 1 , c 2 ) are right-triangle free tableaux. If S is a set of pairs of integers then we let min(S) denote the minimal element using the lexicographic order. The next lemma seems weirdly obvious, but we have not found any trivial proof.

Lemma 18. Let F 1 ⊆ n 1 and F 2 ⊆ n 2 such that F 1 , F 2 ∅, F 1 n 1 , and F 2 n 2 , and let F = (F 1 × n 2 )∆( n 1 × F 2 ) (F is the final zone of M F 1 ,F 2 ). We have • if (0, 0) ∈ F, then T F 1 ,F 2 ≤ T {n 1 -1},{0} , • and otherwise if (0, 0) F, then T F 1 ,F 2 ≤ T {n 1 -1},{0} -1. Proof. Let F 1 ⊆ n 1 , F 2 ⊆ n 2 , such that F 1 , F 2 ∅, F 1 n 1 and F 2 n 2 . We let F denote the final zone of M F 1 ,F 2 , i.e., the set (F 1 × n 2 )∆( n 1 × F 2 ). We have #T F 1 ,F 2 = #{T ∈ R n 1 ,n 2 | (∀(i, j) ∈ F, T i,j = 0) ∨ T 0,0 = 1} = #{T ∈ R n 1 ,n 2 | (∀(i, j) ∈ F, T i, j = 0 ∧ T 0,0 = 0) ∨ T 0,0 = 1} = #{T ∈ R n 1 ,n 2 | T 0,0 = 1} + #{T ∈ R n 1 ,n 2 | T 0,0 = 0 ∧ ∀(i, j) ∈ F, T i, j = 0}. (6.1)
In particular, we have

#T {n 1 -1},{0} = #{T ∈ R n 1 ,n 2 | T 0,0 = 1}+ #{T ∈ R n 1 ,n 2 | ∀(i, j) (n 1 -1, 0), (i = n 1 -1 ∨ j = 0) =⇒ T i,j = 0}. ( 6.2) 
However, if (0, 0) F, then

#{T ∈ R n 1 ,n 2 | T 0,0 = 0 ∧ ∀(i, j) ∈ F, T i,j = 0} = #{T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F, T i,j = 0} -#{T ∈ R n 1 ,n 2 | T 0,0 = 1 ∧ ∀(i, j) ∈ F, T i, j = 0} ≤ #{T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F, T i,j = 0} -1. (6.3) 
Therefore, to prove the lemma, it suffices to prove that

#{T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F, T i,j = 0} ≤ #{T ∈ R n 1 ,n 2 | ∀(i, j) (n 1 -1, 0), (i = n 1 -1 ∨ j = 0) =⇒ T i, j = 0}. ( 6.4) 
We notice first that, in the case where

n 1 = 2, since F 1 , F 2 ∅, F 1 n 1 , and F 2 n 2 , we have #{T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F, T i,j = 0} = 2 n 2 -1.
Therefore, in this case, #{T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F, T i, j = 0} does not depend on F 1 and F 2 , and (6.4) holds. Inequation (6.4) similarly holds if n 2 = 2. We now suppose that n 1 and n 2 are greater or equal to 3. Notice that we have

#{T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F, T i,j = 0} = #{T ∈ R n 1 ,n 2 | ∀(i, j) ∈ H 1 , T i,j = 0}, (6.5) 
where

H 1 = (( n 1 \ F 1 ) × n 2 )∆( n 1 × ( n 2 \ F 2 )). Indeed, the set {T ∈ R n 1 ,n 2 | ∀(i, j) ∈ H 1 , T i, j = 0} corresponds to a rotation of 180 degrees of every tableau T in the set {T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F, T i,j = 0}
. Furthermore, we also have

#{T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F, T i,j = 0} = #{T ∈ R n 2 ,n 1 | ∀( j, i) ∈ H 2 , T j,i = 0}, (6.6) 
where

H 2 = (( n 2 \ F 2 ) × n 1 )∆( n 2 × ( n 1 \ F 1 )
). Indeed, the set {T ∈ R n 2 ,n 1 | ∀( j, i) ∈ H 2 , T j,i = 0} corresponds roughly to an axial symmetry of every tableau T in the set {T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F, T i,j = 0}, with respect to a straight line going through the coordinates (0, 0) and (min(n 1 , n 2 ), min(n 1 , n 2 )) of the tableau T. From the two above remarks, we claim that, to prove the lemma, it suffices to prove (6.4) for all F 1 and F 2 such that

1. either #F 1 ≤ n 1 -2 and #F 2 ≤ n 2 -2, 2. or #F 1 = 1 and #F 2 = n 2 -1 Indeed, suppose that #F 1 = n 1 -1 or #F 2 = n 2 -1. If #F 1 = n 1 -1,
we use (6.5) and "exchange" F 1 and F 2 for n 1 \ F 1 and n 2 \ F 2 respectively, and we fall into the scope of the first case above if #F 2 1, and of the second case if #F 2 = 1. If #F 2 = n 2 -1, we use (6.5) and "exchange" F 1 and F 2 for n 2 \ F 2 and n 1 \ F 1 respectively, and we fall into the scope of the first case above if #F 1 1, and of the second case if #F 1 = 1.

In addition, for any F 1 ⊆ n 1 such that #F 1 = #F 1 , and any

F 2 ⊆ n 2 such that #F 2 = #F 2 , we have #{T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F, T i,j = 0} = #{T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F , T i,j = 0}, where F = (F 1 × n 2 )∆( n 1 × F 2 ).
To summarize, to prove the lemma, since F 1 , F 2 ∅, F 1 n 1 , and F 2 n 2 , it suffices to prove (6.4) when

• F 1 = { 1 , . . . , n 1 -1} for some 1 with 1 ≤ 1 ≤ n 1 -1.
• F 2 = {0, . . . , 2 }, for some 2 with 0 ≤ 2 ≤ n 2 -2.

• either #F 1 ≤ n 1 -2 and #F 2 ≤ n 2 -2, or #F 1 = 1 and #F 2 = n 2 -1.
Hence, in the rest of the proof, we suppose that F 1 and F 2 satisfy the three conditions above.

In the following, we define a mapping φ from the set

{T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F, T i,j = 0} into the set {T ∈ R n 1 ,n 2 | ∀(i, j) (n 1 -1, 0), (i = n 1 -1 ∨ j = 0) =⇒ T i, j = 0}.
Furthermore, we also define a partial function ψ from the set

{T ∈ R n 1 ,n 2 | ∀(i, j) (n 1 -1, 0), (i = n 1 -1 ∨ j = 0) =⇒ T i,j = 0} to the set {T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F, T i,j = 0}, such that ψ • φ is the identity over {T ∈ R n 1 ,n 2 | ∀(i, j) ∈ F, T i, j = 0}.
We have thus proven that φ is an injection. The inequation (6.4) follows.

We consider the following cases:

• If #F 1 = #F 2 = 1, then F 1 = {n 1 -1} and F 2 = {0}
, and we set φ as the identity, which is obviously an injection.

• If #F 1 = 1 and #F 2 = n 2 -1, then F 1 = {n 1 -1} and F 2 = n 2 -1 , and we set

φ(T) i, j =          0 if (i, j) ∈ n 1 -1 × {0}, 0 if (i, j) ∈ {n 1 -1} × ( n 2 \ {0}), mergel(T, n 1 -1, 0) i, j otherwise. × × × × × φ × × × × × × × Figure 6.5: An example for (n 1 , n 2 ) = (5, 5).
In this case, we define ψ by

ψ(T) i, j =                  0 if (i, j) ∈ n 1 -1 × n 2 -1 , 0 if (i, j) = (n 1 -1, n 2 -1), T i,j if (i, j) ∈ n 1 -1 × {n 2 -1}, T 0, j if (i, j) ∈ {n 1 -1} × ( n 2 -1 \ {0}), T i,j if (i, j) = (n 1 -1, 0). We have (ψ • φ)(T) i,j =                  0 if (i, j) ∈ n 1 -1 × n 2 -1 , 0 if (i, j) = (n 1 -1, n 2 -1), φ(T) i, j if (i, j) ∈ n 1 -1 × {n 2 -1}, φ(T) 0,j if (i, j) ∈ {n 1 -1} × ( n 2 -1 \ {0}), φ(T) i, j if (i, j) = (n 1 -1, 0).
We check that ψ • φ is the identity by considering the following cases.

-

If (i, j) ∈ n 1 -1 × n 2 -1 , or if (i, j) = (n 1 -1, n 2 -1), we have ψ(φ(T)) i, j = 0 = T i,j . -If (i, j) ∈ n 1 -1 × {n 2 -1}, for all c < n 2 -1, we have T i,c = 0. Recall also that T n 1 -1,n 2 -1 = 0. Therefore, since i ∈ n 1 -1 , we have mergel(T, n 1 -1, 0) i,j =          max(T n 1 -1, j , T 0,j ) if i = 0, T i,n 2 -1 = T 0,n 2 -1 = 1, T i, j
otherwise.

Furthermore, since j = n 2 -1, we have

ψ(φ(T)) i,j = mergel(T, n 1 -1, 0) i,j =          T 0,j if i = 0, T i,j = T 0, j = 1, T i, j otherwise.
Hence, we have ψ(φ(T)) i,j = T i,j .

-If (i, j) ∈ {n 1 -1} × ( n 2 -1 \ {0}), we have T 0,j = 0. Therefore, ψ(φ(T)) i, j = mergel(T, n 1 -1, 0) 0, j = max(T n 1 -1,j , T 0,j ) = T n 1 -1,j = T i,j .

-If (i, j) = (n 1 -1, 0), we have ψ(φ(T)) i, j = φ(T) i,j = T i,j .

• We can now suppose that #F 1 ≤ n 1 -1 and #F 2 ≤ n 2 -1. We distinguish several cases for the definitions of both φ and ψ. We first define the function φ, and later the function ψ. The function ψ is only defined on the image of φ. For each case, φ(T) falls into the case of the same number in the definition of ψ. From there, in each case, we can prove that ψ • φ is the identity function, in a similar way than what we did for the case of #F 1 = 1 and #F 2 = n 2 -1, by considering several cases for i and j based on the definition of φ and ψ.

1. If T i,j = 0 for all (i, j)

(n 1 -1, 0) such that i = n 1 -1 ∨ j = 0, then φ(T) = T.
In all of the following cases, we suppose that there exists (i, j)

(n 1 -1, 0) such that i = n 1 -1 ∨ j = 0 with T i,j = 1.
2. If T n 1 -1,0 = 0, and

(a) If there exists ( , c) ∈ ( n 1 \ F 1 ) × ( n 2 \ F 2 ) such that T ,c = 0, then φ(T) i,j =          0 if (i, j) ∈ n 1 -1 × {0}, 0 if (i, j) ∈ {n 1 -1} × ( n 2 \ {0}), mergel(mergec(T, 0, j 1 ), n 1 -1, i 1 ) i,j otherwise, with (i 1 , j 1 ) = min{( , c) ∈ ( n 1 \ F 1 ) × ( n 2 \ F 2 ) | T ,c = 0} × × × × × × φ × × × × × × × × Figure 6.6: A first 5 × 5 example with F 1 = {3, 4} and F 2 = {0, 1, 2}. (b) Otherwise φ(T) i, j =                      0 if (i, j) ∈ ( n 1 \ F 1 ) × ( n 2 \ F 2 ), T i,0 if (i, j) ∈ (F 1 \ {n 1 -1}) × {n 2 -1}, T n 1 -1, j if (i, j) ∈ { 1 -1} × (F 2 \ {0}), 0 if (i, j) ∈ ( n 1 \ {n 1 -1}) × {0}, 0 if (i, j) ∈ {n 1 -1} × ( n 2 \ {0}), T i,j otherwise,
where 1 is the minimal element of -Suppose that the only cross of T in the final zone of M {n 1 -1},{0} is at (0, 0). According to the remark made just before the beginning of the induction, in addition to the case where T = {(0, 0)}, we only have to consider the case where T {(0, 0), (n 1 -1, 0)}, and for all j ∈ {1, . . . , n 2 -1}, T 0, j = 0.

F 1 . × × × × × × × × × φ × × × Figure 6.7: A second 5 × 5 example with F 1 = {3, 4} and F 2 = {0, 1, 2}. 3. If T n 1 -1,0 = 1, and (a) if there exists ( , c) ∈ ( n 1 \ F 1 ) × ( n 2 \ F 2 ) such that T ,c = 1, then φ(T) i, j =          0 if (i, j) ∈ n 1 -1 × {0}, 0 if (i, j) ∈ {n 1 -1} × ( n 2 \ {0}), mergel(mergec(T, 0, j 1 ), n 1 -1, i 1 ) i, j otherwise, with (i 1 , j 1 ) = min{( , c) ∈ ( n 1 \ F 1 ) × ( n 2 \ F 2 ) | T ,c = 1}. × × × × × × × φ × × × × × × × ×
* If T = {(0, 0)}, then it is accessible from ∅ by reading the word ((0, n 1 -1), Id)((0, n 1 -1), Id).

* Suppose that T {(0, 0), (n 1 -1, 0)}, and for all j ∈ {1, . . . , n 2 -1}, T 0, j = 0. It follows that there exists (i, j)

(n 1 -1, 0) such that i 0 and T i,j = 1. Let w = ((1, . . . , n 1 -1), Id) i and let T = w -1 (T ). By Lemma 19, since (w[1, k](T)) 0,0 = 1 for any k ∈ {0, . . . , |w|}, we have T ∈ E and δ w (T) = T . Furthermore, as #T = #T and # nf T < # nf T , we have T < T .

We now show that any two distinct states of A are distinguishable in A, by proving that any two distinct right-triangle free states of B are distinguishable in B. This result is a refinement of Lemma 15, and unsurprisingly, its proof is also a refinement of the proof of Lemma 15. The idea of the proof below is to replace the letters used in Lemma 15 with words over Σ . In order to make the proof easier, we first state the following lemma, which is proven by a straightforward induction on the length of w.

Lemma 22.

Let w be a word over Σ , and T be a non-empty tableau of size n 1 × n 2 . Let (i, j) ∈ n 1 × n 2 be a pair of integers such that T i, j = 1, and let (i , j ) = w(i, j). We have δ w (T) i , j = 1.

Lemma 23. Any two distinct states of A are distinguishable in A.

Proof. It is sufficient to prove that any two distinct non-empty right-triangle free tableaux of B are distinguishable in B. Recall that a tableau T is final in B if and only if T ∩F ∅. We use this statement repeatedly in the rest of the proof. Let T and T be two distinct non-empty right-triangle free tableaux of size n 1 × n 2 . We show that T and T are distinguishable in B. Let (i, j) be such that T i,j T i, j . We suppose that T i, j = 1 (the case T i,j = 1 is symmetrical). We distinguish the same cases as in the proof of Lemma 15. Suppose now that for all i ∈ n 1 , we have T i , j = 0.

• If j = 0, then T is not final, as T does not have any cross on column 0 or on line n 1 -1. The same thing can be said of (π

n 1 -1 0 , Id)(T ). As a consequence, δ (π n 1 -1 0 ,Id) (T ) is not final in B. Furthermore, (π n 1 -1 0 , Id)(i, j) is equal to (i, 0) if i < n 1 -1, and to (0, 0) if i = n 1 -1. Therefore, by Lemma 22, δ (π n 1 -1 0 ,Id) (T) is final in B.
As a consequence, T and

T are distinguishable in B. • If j 0, then let w = (π n 1 -1 0 , Id)(Id, (1, . . . , n 2 -1)) n 2 -j (Id, (0, 1)). Let T = (π n 1 -1 0 , Id)(T ). If T 0,0 = 1 or T n 1 -1,0 = 1,
then T 0,0 = 1. Furthermore, if T 0,0 = 0 and T n 1 -1,0 = 0, then T does not have any cross on line n 1 -1 or on column 0. Therefore, T does not have any cross on line n 1 -1 or on column 0 either. In both cases, we thus have

T = δ (π n 1 -1 0 ,Id) (T ).
zone of M {n 1 -1},{0} . As a consequence, ( f, g)(T ) = δ ( f,g) (T ) is not final in M {n 1 -1},{0} . However, by Property 2, since T i, j = 1, we have (( f, g)(T)) 0,0 = 1. Therefore, ( f, g)(T) = δ ( f,g) (T) is final in M {n 1 -1},{0} . We now simulate the letter ( f, g) with letters in Σ . More precisely, we show that there exists a word w over Σ such that δ w (T ) = ( f, g)(T ), and such that

a m • • • • • a 1 = ( f, g), where a 1 • • • a m = w.
If w is such a word, from Lemma 22, we have (δ w (T)) 0,0 = 1, which implies that δ w (T) is final in B. Proving the existence of such a word w is therefore sufficient to conclude our proof.

We consider two main cases. In the first case, the word used to simulate ( f, g) is w 1 w 2 w 3 w 4 w 5 . In the second case, we read a word w 0 from the two tableaux T and T , so that the two resulting tableaux fall into the scope of the first case.

Let {k 1 , . . . ,

k s } = {i 1 , . . . , i l } \ {0, n 1 -1}, {k 1 , . . . , k n 1 -2-s } = n 1 \ {0, n 1 -1, k 1 , . . . , k s }, {c 1 , . . . , c d } = { j 1 , . . . , j p } \ {0, n 2 -1}, and {c 1 , . . . , c n 2 -2-d } = n 2 \ {0, n 2 -1, c 1 , . . . , c d }. Re- call that [x ∈ {i 1 , . . . , i l }] is equal to 1 if x ∈ {i 1 , .
. . , i l }, and 0 otherwise. 1. (0, 0) ∈ T . In this case, we define a five words w 1 , w 2 , w 3 , w 4 , w 5 , and we let w denote the word w 1 w 2 w 3 w 4 w 5 .

(a) 0 ∈ {i 1 , . . . , i l } and 0 ∈ {j 1 , . . . , j p }

w 1 = s v=1 ((1, . . . , n 1 -2), Id) n 1 -k v -1 (π 1 0 , Id)((1, . . . , n 1 -2), Id) k v -1 (π n 1 -1 0 , Id) [(n 1 -1)∈{i 1 ,...,i l }] .
The word w 1 does cyclic permutations on the lines so that the lines {k 1 , . . . , k s } which are the same as line 0 are permuted one after the other on line 1 and then merged with line 0. The last line is merged with line 0 if it is in {i 1 , . . . , i l }.

w 2 = d v=1 (Id, (1, . . . , n 2 -2)) n 2 -c v -1 (Id, π 1 0 )(Id, (1, . . . , n 2 -2)) c v -1 (Id, π n 2 -1 0 ) [(n 2 -1)∈{j 1 ,..., j p }] .
The word w 2 does the same with columns {c 1 , . . . , c d }, and with the last column.

w 3 = n 1 -2-s v=1 ((1, . . . , n 1 -2), Id) n 1 -k v -2 (π n 1 -2 n 1 -1 , Id)((1, . . . , n 1 -2), Id) k v .
The word w 3 merges the lines {k 1 , . . . , k n 1 -2-s } with line n 1 -1, but they are not necessarily the same.

w 4 = n 2 -2-d v=1 (Id, (1, . . . , n 2 -2)) n 2 -c v -2 (Id, π n 2 -2 n 2 -1 )(Id, (1, . . . , n 2 -2)) c v .
The word w 4 merges the columns {c 1 , . . . , c n 2 -2-d } with column n 2 -1.

w 5 = ((0, n 1 -1), Id).

(b) 0 {i 1 , . . . , i l } and 0 { j 1 , . . . , j p }.

w 1 = n 1 -2-s v=1 ((1, . . . , n 1 -2), Id) n 1 -k v -1 (π 1 0 , Id)(1, . . . , n 1 -2), Id) k v -1 (π n 1 -1 0 , Id) [(n 1 -1) {i 1 ,...,i l }] . w 2 = n 2 -2-d v=1 (Id, (1, . . . , n 2 -2)) n 2 -c v -1 (Id, π 1 0 )(Id, (1, . . . , n 2 -2)) c v -1 (Id, π n 2 -1 0 ) [(n 2 -1) {j 1 ,..., j p }]
.

w 3 = s v=1 ((1, . . . , n 1 -2), Id) n 1 -k v -2 (π n 1 -2 n 1 -1 , Id)(1, . . . , n 1 -2), Id) k v . w 4 = d v=1 (Id, (1, . . . , n 2 -2)) n 2 -c v -2 (Id, π n 2 -2 n 2 -1 )(Id, (1, . . . , n 2 -2)) c v .
w 5 = (Id, (0, n 2 -1)).

2. (0, 0) T . In every case except for case 2(a), we find a word w 0 such that the two tableaux δ w 0 (T) and δ w 0 (T ) fall into the scope of case 1.

(a) {i 1 , . . . , i l } = {n 1 -1}. This implies that j = 0, 0 ≤ i ≤ n 1 -2, and { j 1 , . . . , j p } = {0}. Let w 0 = ((0, n 1 -1), Id), T 1 = δ w 0 (T), and T 1 = δ w 0 (T ). Since (0, 0) ∈ w 0 (T ), we have T 1 = w 0 (T ). Hence, by Lemma 22, T 1 has a cross at the coordinates w 0 (i, j), while T 1 does not. Therefore, the tableaux T 1 and T 1 fall into the scope of case 1(a).

(b) {i 1 , . . . , i l } {n 1 -1}. This implies that there exists x ∈ {i 1 , . . . , i l } such that x ∈ {0, . . . , n 1 -2}. Furthermore, since (0, 0) T , we have 1 ≤ j 1 .

• If x = 0, let w 0 = (Id, (1, . . . , n 2 -1)) n 1 -j 1 -1 (Id, (1, 0)). The tableau T has no crosses in F since (0, 0) T . Furthermore, the letter (Id, (1, . . . , n 2 -1)) does not change the column 0 or line n 1 -1 if they are empty. In addition, w 0 (i 1 , j 1 ) = (0, 0), which implies, by Lemma 22, that w 0 (T) 0,0 = 1. Thus, by Lemma 19, we have δ w 0 (T ) = w 0 (T ). Let T 1 = δ w 0 (T) and T 1 = δ w 0 (T ) = w 0 (T ). Furthermore, by Lemma 22, T 1 has a cross at the coordinates w 0 (i, j) (0, 0), while T 1 = w 0 (T ) does not, since (i, j) T . Therefore, the tableaux T 1 and T 1 fall into the scope of case 1.

• If x 0, then n 1 ≥ 3. Let w 0 = ((1, . . . , n 1 -2), Id) n 1 -x-1 ((1, 0), Id)(Id, (1, . . . , n 2 -1)) n 1 -j 1 -1 (Id, (1, 0)).
The tableau T has no crosses in F since (0, 0)

T . Furthermore, the letters ((1, . . . , n 1 -2), Id), ((1, 0), Id, and (Id, (1, . . . , n 2 -1)) do not change the column 0 or line n 1 -1 if they are empty. In addition, w 0 (i 1 , j 1 ) = (0, 0), which implies, by Lemma 22, that w 0 (T) 0,0 = 1. Thus, by Lemma 19, we have

F k ]) = 1,
and where, for any letter a of Σ, we have

δ a (∅) =        {(δ a 1 (i 1 ), . . . , δ a k (i k ))}, if (δ a 1 (i 1 ), . . . , δ a k (i k )) F; {(δ a
1 (i 1 ), . . . , δ a k (i k )), (i 1 , . . . , i k )}, otherwise ;

and for any

E ∈ 2 Q 1 ו••×Q k \ {∅}, we have δ a (E) =        (δ a 1 , . . . , δ a k )(E), if (δ a 1 , . . . , δ a k )(E) ∩ F = ∅; (δ a 1 , . . . , δ a k )(E) ∪ {(i 1 , . . . , i k )}, otherwise.
Notice that, if b is a binary boolean operation, the states of Star(m b (Mon F 1 ,...,F k n 1 ,...,n k )) are still labelled by tableaux. What essentially changes between two binary boolean operations in the above formula is what we called the "final zone" in previous sections, i.e., the set F of all elements (q 1 , . . . , q k ) of

Q 1 × • • • × Q k such that b([q 1 ∈ F 1 ], . . . , [q k ∈ F k ]) = 1 (in the case of the symmetric difference, we had F = (F 1 × Q 2 )∆(Q 1 × F 2 )
). In that sense, the general case where b is any k-ary boolean operation is similar to the binary case, albeit with a generalization of tableaux to higher dimensions: a tableaux of size

n 1 × • • • × n k is a subset of n 1 × • • • × n k .
In the remainder of this section, b is a boolean function, (n 1 , . . . , n k ) is a k-tuple of integers greater than or equal to 2, and (F 1 , . . . , F k ) is a k-tuple of sets such that F j ⊆ n j and F j {∅, n j }, for any j ∈ {1, . . . , k}. Our idea is to link the Nerode equivalence of A = Star(m b (Mon F 1 ,...,F k n 1 ,...,n k )) to the Nerode equivalence of the DFA B = Star(m b (Mon G 1 ,...,G k 2,...,2 )), where, for any j ∈ {1, . . . , k}, we have

G j =
{0} if 0 ∈ F j and F j n j {1} if 0 F j and F j {∅, n j }.

We defined the DFA B so that it would "mimic" the DFA A, but with a much smaller size. We speculate that the Nerode equivalence of B has enough information, so that we may build upon it the Nerode equivalence of A. Using this idea, we begin to generalize the reasoning presented in the previous sections of this chapter. This leads to Claim 1, a generalization of Proposition 22.

We do not want the ideas introduced in this section to be sunk in an ocean of cumbersome proofs and notations. Therefore, we state Claim 1 without proof. The proof of Claim 1 is not conceptually difficult and highly resembles the proof of Proposition 22; it will be published in further work. It is worth noting that in all of the known cases (star of intersection, star of symmetric difference, star of multiple unions), the upper bound that can be naturally derived from Claim 1 is the actual state complexity of the operation considered. Even though there is no reason to expect this to hold true in the general case, Claim 1 could be used to compute non-trivial upper-bounds for the state complexity of b , for some boolean functions b.

The first step to generalize Proposition 22 is to generalize the equivalence relation * ↔ defined in Definition 25. We do not generalize ↔ directly, but we define another equivalence relation such that its reflexive, symmetric and transitive closure * coincides with * ↔. To that aim, we introduce a way to link tableaux of size • for all C, we have ∈ T if and only if ∈ T .

n 1 × • • • × n k to tableaux of size 2 × • • • × 2.
Notice that, in the case where b is the symmetric difference, we have T T if and only if there exists a cube C such that T C and T C are either equal, or both of size at least 3. Therefore, if T → T , then T T . Furthermore, if #T C = #T C = 4, then T C = T C . Therefore, if T T , then we have It is also worth noting here that, when b is the union of k languages, A/ * provides the construction used in [START_REF] Gao | State complexity of star and square of union of k regular languages[END_REF] to describe b , and later on to compute its state complexity. Furthermore, when b is the intersection of two languages, we have T * T if and only if T = T . As a consequence, A/ * also provides the construction used to compute the state complexity of b [START_REF] Jirásková | On the state complexity of star of union and star of intersection[END_REF]. Therefore, studying A/ * may be a good starting point to study the state complexity of b , for any boolean operation b.

             T = T if #T C = #T C = 4 T → T if #T C = 3 and #T C = 4 T → T if #T C =
Now we state without proof a generalization of Proposition 22.

Claim 1. For any two non-empty tableaux T and T of size n 1 × • • • × n k , if T * T , then T and T are indistinguishable in A.

The above claim is a generalization of Proposition 22. Claim 1 could be used to compute non-trivial upper bounds for the state complexities of the star of other boolean operations. For example, we believe it is possible to obtain Theorem 3.1 of [START_REF] Gao | State complexity of star and square of union of k regular languages[END_REF] (the upper bound part of the state complexity) by using this proposition.

We do not yet have a complete proof that would allow us to compute the state complexity of the star of every boolean operation. We suspect that Lemma 16 cannot be easily generalized as is. Furthermore, if we want to carry on our reasoning, we have to understand better why Lemma 18 holds true, because our proof seems too technical to be generalized. Finally, if we want to push our reasoning to the end, we have to find a way to generalize Corollary 20 and Proposition 22 of [START_REF] Caron | State complexity of catenation combined with a boolean operation: A unified approach[END_REF], which seems to be a difficult problem of combinatorics. We do believe, nonetheless, that it would not be very difficult to compute the state complexity of the star of union [START_REF] Ésik | Estimation of state complexity of combined operations[END_REF] and the state complexity of the star of intersection [START_REF] Jirásková | On the state complexity of star of union and star of intersection[END_REF], by beginning from Proposition 1, and by following the steps taken from Section 6.3 onwards. However, the proofs brought about by these reasonings would be of little interest, as they would be very similar to those already existing.

We end this section with a table of the state complexity of the star of every binary boolean operation, Table 6.1, which is made possible by combining the values of the state complexity of the star of union [START_REF] Ésik | Estimation of state complexity of combined operations[END_REF], the state complexity of the star of intersection [START_REF] Jirásková | On the state complexity of star of union and star of intersection[END_REF], and the state complexity of the star of symmetric difference. Lemma 24. The set of friendly modifiers is stable by the composition of operations •.

Proof. Let m 1 = [Q 1 , i 1 , f 1 , d 1 ] and m 2 = [Q 2 , i 2 , f 2 , d 2 ]
be two friendly modifiers, respectively k-ary and k -ary, let j ≤ k be a positive integer, and let m 1 • j m 2 = [Q, i, f, d]. For any k + k -1-tuple of transition configurations (t 1 , . . . , t k+k -1 ) with t j = (Q j , i j , F j , δ j ) for any j ∈ {1, . . . , k + k -1}, we have d(t 1 , . . . , t k+k -1 ) = d 1 (t 1 , . . . , t j-1 , (Q 2 (t j , . . . , t k +j-1 ), i 2 (t j , . . . , t k +j-1 ), f 2 (t j , . . . , t k +j-1 ), d 2 (t j , . . . , t k +j-1 )), t k +j , . . . , t k+k -1 ). (7.1)

However, for any two k + k -1-tuples of transition configurations (t 1 , . . . , t k+k -1 ) and (t 1 , . . . , t k+k -1 ), with t j = (Q j , i j , F j , φ j ) and t j = (Q j , i j , F j , φ j ) for any j ∈ {1, . . . , k + k -1}, we have, since m 2 is friendly,

d 2 (t j , . . . , t k +j-1 ) = d 2 (t j , . . . , t k +j-1 ) • d 2 (t j , . . . , t k +j-1 ), (7.2) 
where t = (Q , i , F , φ •φ ). Therefore, we get that m 1 • j m 2 is friendly from (7.1), replacing δ l by φ l • ψ l , for any l ∈ {1, . . . , k + k -1}, and using (7.2) and the fact that m 1 is friendly.

We let M f denote the set of friendly modifiers (graded by their arity). Since the identity over DFAs is friendly, from Proposition 5 and Lemma 24, (M f , •) is a suboperad of the operad of modifiers (M, •). Proposition 23. The set of friendly modifiers equipped with the composition of operations • is a suboperad of (M, •).

Standard friendly modifiers

Our first goal is to get a grasp on the operations friendly modifiers describe. To reach this goal, we prove that we can always change a friendly modifier into a form that is easier work with, a standard friendly modifier, without changing the operation it describes. Furthermore, notice that Theorem 5, proven later in Section 7.1.4, shows that every operation described by a friendly modifier is described by a unique standard friendly modifier. In other words, a standard friendly modifier is a canonical form for every coherent friendly modifier describing the same operation. Definition 31. We say that a k-modifier m = [Q, i, f, d] is standard friendly modifier if, for any ktuple of transition configurations

((Q 1 , i 1 , F 1 , φ 1 ), . . . , (Q k , i k , F k , φ k )) and any element (ψ 1 , . . . , ψ k ) of Q Q 1 1 × • • • × Q Q k k , we have • Q((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )) = Q Q 1 1 × • • • × Q Q k k • i((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )) = (Id Q 1 , . . . , Id Q k ) • d((i 1 , F 1 , φ 1 ), . . . , (i k , F k , φ k ))(ψ 1 , . . . , ψ k ) = (φ 1 • ψ 1 , . . . , φ k • ψ k )
It follows from the above definition that a standard friendly modifier is indeed friendly. Notice that a standard friendly k-modifier m = [Q, i, f, d] is entirely defined by its third coordinate f. We can naturally associate a standard modifier with any friendly modifier. Definition 32. Let m = [Q, i, f, d] be a friendly k-modifier. We let m sf denote the standard friendly k-modifier [Q sf , i sf , f sf , d sf ] such that , for any k-tuple of state configurations (s 1 , . . . , s k ) with s j = (Q j , i j , F j ) for any j ∈ {1, . . . , k}, we have [01] [START_REF] Caron | State complexity of combined operations involving catenation and binary boolean operations: Beyond the Brzozowski conjectures[END_REF] [00] Proof. Let m = [Q, i, f, d] be a coherent friendly k-modifier. We show that m and m sf describe the same operation, which proves that m sf is coherent. Let (A 1 , . . . , A k ) be a k-tuple of DFAs with A j = (Σ, Q j , i j , F j , δ j ) for any j ∈ {1, . . . , k}, and let s j be the state configuration (Q j , i j , F j ).

f sf (s 1 , . . . , s k ) = {(φ 1 , . . . , φ k ) ∈ Q Q 1 1 × • • • × Q Q k k | d((i 1 , F 1 , φ 1 ), . . . , (i k , F k , φ k ))(i(
A word

a 1 a 2 • • • a l is in L(m(A 1 , . . . , A k )) if and only if d((i 1 , F 1 , δ a 1 a 2 •••a l 1 ), . . . , (i k , F k , δ a 1 a 2 •••a l k ))(i(s 1 , . . . , s k )) = d((i 1 , F 1 , δ a l 1 ), . . . , (i k , F k , δ a l k )) • d((i 1 , F 1 , δ a l-1 1 ), . . . , (i k , F k , δ a l-1 k )) • . . . •d((i 1 , F 1 , δ a 1 1 ), . . . , (i k , F k , δ a 1 k ))(i(s 1 , . . . , s k )) ∈ f(s 1 , . . . , s k ). Equivalently, d sf ((i 1 , F 1 , δ a l 1 ), . . . , (i k , F k , δ a l k )) • d sf ((i 1 , F 1 , δ a l-1 1 ), . . . , (i k , F k , δ a l-1 k )) • . . . •d sf ((i 1 , F 1 , δ a 1 1 ), . . . , (i k , F k , δ a 1 k ))(Id Q 1 , . . . , Id Q k ) = (δ a 1 a 2 •••a l 1 , . . . , δ a 1 a 2 •••a l k ) is an element of f sf ((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )).
But this last statement is equivalent to a 1 a 2 . . . a l ∈ L(m sf (A 1 , . . . , A k )). Therefore, L(m sf (A 1 , . . . , A k )) = L(m(A 1 , . . . , A k )).

Therefore, in order to characterize the operations described by coherent friendly modifiers, we only need to look at the operations described by coherent standard friendly modifiers. Thus, we now examine in detail coherent standard friendly modifiers.

Characteristic sequences

As a standard friendly modifier [Q, i, f, d] is entirely defined by the map f, which governs the final states of the output DFA. We first show a regularity property on these final states when the modifier is coherent. To that aim, we associate a characteristic sequence with every state of the output DFA, in such a way that any two states associated with the same characteristic sequence have the same finality. These characteristic sequences are represented by k-tuples of eventually periodic sequences with values in {0, 1}.

We let U k denote the set of all k-tuples (u 1 , . . . , u k ) where each u j is an eventually periodic sequence with values in {0, 1}. Furthermore, we let U denote the set k∈N U k . To simplify notations, for all (j, p) ∈ {1, . . . , k} × N, we let u j,p denote (u j ) p . Definition 33. Let (t 1 , . . . , t k ) be a k-tuple of transition configurations with t j = (Q j , i j , F j , φ j ) for any j ∈ {1, . . . , k}, and let φ p j be the function

φ j • • • • • φ j p times
. We let χ(t 1 , . . . , t k ) denote the k-tuple of sequences (u 1 , . . . , u k ) ∈ U k where, for any p ∈ N and any j ∈ {1, . . . , k}, u j,p = [φ p j (i j ) ∈ F j ]. We say that χ(t 1 , . . . , t k ) is the charateristic sequence of the transition configuration (t 1 , . . . , t k ).

Notice that, in the above definition, we indeed have (u 1 , . . . , u k ) ∈ U k because φ p j (i j ) is eventually periodic, since φ j is a function from a finite set into a finite set.

Example 24. As represented in Figures 7.4, 7.5, let t 1 = ({0, 1}, 0, {1}, φ) and t 2 = ({0, 1}, 0, {0}, φ) where φ 1 (0) = 1 and φ 1 (1) = 0, and let (u 1 , u 2 ) = χ(t 1 , t 2 ). We have, for all (j, p) ∈ {1, 2} × N, u j,p = 1 if and only if p + j is even. Recall that, if m is a standard friendly modifier and (A 1 , . . . , A k ) is any k-tuple of DFA such that the set of states of A j is Q j , then the set of the states of m(A 1 , . . . ,

A k ) is Q Q 1 1 ו • •×Q Q k k .
The next proposition explains the link between characteristic sequences and finality in standard friendly modifiers.

Proposition 24. Let m = [Q, i, f, d] be a coherent standard friendly k-modifier. Let (t 1 , . . . , t k ) and (t 1 , . . . , t k ) be two k-tuples of transition configurations, with t j = (Q j , i j , F j , φ j ) and t j = (Q j , i j , F j , φ j ) for any j ∈ {1, . . . , k}, such that χ(t 1 , . . . , t k ) = χ(t 1 , . . . , t k ). Then we have

(φ 1 , . . . , φ k ) ∈ f((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )) if and only if (φ 1 , . . . , φ k ) ∈ f((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )).
Proof. For any k-tuple of transition configurations (t 1 , . . . , t k ), with t j = (Q j , i j , F j , φ j ) for any j ∈ {1, . . . , k}, if χ(t 1 , . . . , t k ) ∈ E, we have, by Proposition 24,

(φ 1 , . . . , φ k ) ∈ f((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )).
The converse is obvious, and we have

f((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )) = {(φ 1 , . . . , φ k ) ∈ Q Q 1 1 × • • • × Q Q k k | χ((Q 1 , i 1 , F 1 , φ 1 ), . . . , (Q k , i k , F k , φ k )) ∈ E}.
Therefore, m = mod(E).

Friendly operations

Examples 16 and 17 show that roots and boolean operations are described by friendly modifiers. Therefore, by Proposition 23, and Proposition 18, any composition of a boolean operation and some roots of languages is described by a friendly modifier, and therefore, from Lemma 25, by a standard friendly modifier. These operations are not the only ones to fall in the scope of our study. For instance, the operation Root [START_REF] Krawetz | State complexity and the monoid of transformations of a finite set[END_REF], defined by We now have the tools to define friendly operations as the composition of a boolean operation and some roots of languages, and we show in Proposition 25 that there is a oneto-one correspondence between friendly operations, coherent standard friendly modifiers and PU. Recall that, for any language L, 0 √ L = Σ if ε ∈ L, and ∅ otherwise.

Definition 36. A k-ary operation over regular languages ⊗ is friendly if there exists an N-ary boolean operation such that, for any k-tuples of regular languages (L 1 , . . . , L k ) over the same alphabet,

⊗(L 1 , . . . , L k ) = ( 0 L 1 , 0 L 2 , . . . , 0 L k , 1 L 1 , 1 L 2 , . . . , 1 L k , . . . , p L 1 , p L 2 . . . , p L k , . . .).
Proof. We first show that op is surjective. Let V k = ({0, 1} N ) k , i.e., the set of all k-tuples of sequences with values in {0, 1}. Let ⊗ be a friendly k-ary operation and b be a N-ary boolean function such that, for any k-tuples of regular languages (L 1 , . . . , L k ),

⊗ = b ( 0 L 1 , . . . , 0 L k , 1 L 1 , . . . , 1 L k , . . . , p L k , . . . , p L k , . . .). Let E = {(u 1 , . . . , u k ) ∈ U k | b(u 1,0 , . . . , u k,0 , u 1,1 , . . . , u k,1 , . . . , u 1,p , . . . , u k,p , . . . ) = 1},
and let

E = {(v 1 , . . . , v k ) ∈ V k | b(v 1,0 , . . . , v k,0 , v 1,1 , . . . , v k,1 , . . . , v 1,p , . . . , v k,p , . . . ) = 1}.
We show that ⊗ = op(E). For any k-tuple of regular languages (L 1 , . . . , L k ), we have

⊗(L 1 , . . . , L k ) = (v 1 ,...,v k )∈E w ∈ Σ | ∀( j, p) ∈ {1, . . . , k} × N, v j,p = w ∈ p L j = (v 1 ,...,v k )∈E (v 1 , . . . , v k ), (L 1 , . . . , L k )
Notice that the union above is over a set which may involve sequences that are not eventually periodic; However, from Lemma 26, we can remove from this union the k-tuple of sequences that are not in U k . Hence, we have

⊗(L 1 , . . . , L k ) = (u 1 ,...,u k )∈E (u 1 , . . . , u k ), (L 1 , . . . , L k ) = (op(E))(L 1 , . . . , L k ).
We now prove that op is injective. Let E and E be two distinct subsets of U k . We suppose that there exists (u 1 , . . . , u k ) ∈ U k such that (u 1 , . . . , u k ) ∈ E and (u 1 , . . . , u k ) E (the other case is symmetrical). Since, for any j ∈ {1, . . . , k}, (u j,l ) l∈N is eventually periodic, the languages L j = {a p | p ∈ N∧u j,p = 1} are regular. We have a ∈ p L j = u j,p . Therefore, from Definition 37, for any (u 1 , . . . ,

u k ) ∈ U k , we have a ∈ (u 1 , . . . , u k ), (L 1 , . . . , L k ) if and only if (u 1 , . . . , u k ) = (u 1 , . . . , u k ). It follows that if ⊗ = op(E) and ⊗ = op(E ), then a ∈ ⊗(L 1 , . . . , L k ) and a ⊗ (L 1 , . . . , L k ), since (u 1 , . . . , u k ) ∈ E \ E .
As a consequence, ⊗ ⊗ and op is injective.

Example 27. For any regular language L, we have

Root(L) = op({u ∈ U 1 | there exists i > 0 such that u i = 1})(L) = i≥1 i √ L.
We now show that any operation described by a friendly modifier is friendly.

Lemma 28.

For any E ∈ PU, mod(E) is coherent and describes op(E), i.e., desc • mod = op.

Proof. Let E be a subset of U k , let m = mod(E), let [Q, i, f, d] = m and let ⊗ = desc(m). Let (A 1 , . . . , A k ) be any k-tuple of DFAs with A j = (Σ, Q j , i j , F j , δ j ), for any j ∈ {1, . . . , k}, and let w = a 1 • • • a n be a word of Σ . Recall that, since m is friendly, we have

(δ w 1 , . . . , δ w k ) = (d((i 1 , F 1 , δ a n 1 ), . . . , (i k , F k , δ a n 1 )) • (d((i 1 , F 1 , δ a n-1 1 ), . . . , (i k , F k , δ a n-1 k )) • • • • •(d((i 1 , F 1 , δ a 1 1 ), . . . , (i k , F k , δ a 1 1 ))(Id Q 1 , . . . , Id Q k ).
Therefore, w is in L(m(A 1 , . . . , A k )) if and only if

(δ w 1 , . . . , δ w k ) ∈ f((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )).
As a consequence, by Definition 34, w is in L(m(A 1 , . . . , A k )) if and only if

χ((Q 1 , i 1 , F 1 , δ w 1 ), . . . , (Q k , i k , F k , δ w k )) ∈ E.
As a consequence, since m = mod(E), w is in L(m(A 1 , . . . , A k )) if and only if there exists (u 1 , . . . , u k ) ∈ E such that, for any (j, p) ∈ {1, . . . , k} × N, we have [(δ w j ) p (i j ) ∈ F j ] = u j,p . However, for any (j, p) ∈ {1, . . . , k} × N, (δ w j ) p (i j ) ∈ F j if and only if w ∈ p L(A j ), and thus we have [(δ w j ) p (i j ) ∈ F j ] = u j,p if and only if w ∈ p L(A j ) = u j,p . Therefore, by Definition 37, w ∈ L(m(A 1 , . . . , A k )) if and only if there exists (u 1 , . . . , u k ) in E such that w ∈ (u 1 , . . . , u k ), (L(A 1 ), . . . , L(A k )) . We thus have ⊗(L(A 1 ), . . . , L(A k )) = u∈E (u 1 , . . . , u k ), (L(A 1 ), . . . , L(A k )) , and ⊗ = op(E).

We let desc f denote the restriction of desc to M s c , i.e., the set of coherent standard friendly modifiers. The next proposition states that all applications of Figure 7.6 are bijections and that the diagram is commutative. Proof. By Lemma 28, we have desc f • mod = op. However, by Lemma 28, we have mod(PU) ⊆ M s c , and thus by Corollary 4, we have mod(PU) = M s c . As a consequence, mod is a surjection from PU to M s c . Furthermore, by Lemma 27, op is a bijection, and, therefore, so is desc f • mod. Hence, mod is injective and thus a bijection from PU to M s c , which in turn implies that desc f = op • mod -1 is also bijective.

As an obvious consequence of Proposition 25 and Lemma 25, we have : Theorem 5. Every friendly k-ary operation is described by a unique coherent standard friendly k-modifier. Conversely, any coherent friendly k-modifier describes a friendly k-ary operation.

On the algebraic structure of friendly modifiers

We now have all the tools to state the main result of this Section, concerning the link between the algebraic structures of friendly modifiers and friendly operations. We first define a sequence of binary operations that makes an operad out of PU. Then, we define a quotient operad of coherent modifiers, using standard friendly modifiers. Finally, we rewrite Proposition 25 in terms of operads and isomorphisms of operads.

Let be the sequence of binary operations over PU such that, for any positive integers j and k with j ≤ k, for any E ∈ PU k , and for any E ∈ PU, we have

E j E = op -1 (op(E) • j op(E )).
By Proposition 9 used with op -1 , (PU, ) is an operad, and op is an isomorphism of operads from (PU, ) to (O f , •). We let M f c denote the set of all coherent friendly modifiers, and by ∼ s the equivalence relation over M f c such that, for any two modifiers m, m ∈ M f c , m ∼ s m if and only if m sf = m sf . Recall that, from Definition 12, for any two friendly coherent modifiers m and m , we have m ∼ desc f m if and only if desc f (m) = desc f (m ). Therefore, since, for any friendly modifier, there is a unique standard friendly modifier that describes the same operation, we have ∼ 

desc f (mod(E)) = desc f ( ∼ s mod(E) ) = desc f ( ∼ desc f mod(E) ) = desc(mod(E)) = op(E).
However, desc f is an isomorphism, and therefore mod = desc f -1

• op. Furthermore, by Proposition 7, since op is an isomorphisms of operads, mod is also an isomorphism of operads. We can now state a counterpart of Proposition 25 using operads, illustrated with Figure 7.7. Theorem 6. We have

• the function mod is an isomorphism of operads from (PU, ) to (M f c / ∼ s , •/ ∼ s ),
• the function op is an isomorphism of operads from (PU, ) to (O f , •),

• the function desc f is an isomorphism of operads from 

(M f c / ∼ s , •/ ∼ s ) to (O f , •). Furthermore, desc f • mod = op. M f c / ∼ s , •/ ∼ s (O f , •) (PU, ) op 

Product modifiers

In this section, we study a kind of simple friendly modifier, called product modifier. Product modifiers are defined so that their output is a product DFA of the input DFAs, without putting any restrictions on their initial state or their final states. We show that the operations they describe are compositions involving boolean operations of finite arity, and the 0-th root. Furthermore, we study the underlying algebraic structure, and show that it is very similar to the algebraic structure given in Theorem 6.

Product modifiers: an operad

We first show that product modifiers can also be equipped with a structure of operad. Definition 39. A k-modifier m = [Q, i, f, d] is a product modifier if, for any k-tuple of transition configurations (t 1 , . . . , t k ), with t j = (Q j , i j , F j , φ j ) for any j ∈ {1, . . . , k}, we have

1. Q((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )) = Q 1 × • • • × Q k ,

and, for any

(q 1 , . . . , q k ) ∈ Q 1 × • • • × Q k , we have d((i 1 , F 1 , φ 1 ) . . . , (i k , F k , φ k ))(q 1 , . . . , q k ) = (φ 1 (q 1 ), . . . , φ k (q k )).
In other words, if m is a product modifier, then m(A 1 , . . . , A k ) is a product DFA of the DFAs A 1 , . . . , A k , but with final states f

((Q 1 , i 1 , F 1 ) . . . , (Q k , i k , F k )) and initial state i((Q 1 , i 1 , F 1 ) . . . , (Q k , i k , F k ))
. We let M p denote the set of all product modifiers. We check that the set of product modifiers is stable by the composition of operations, thus making it an operad. Proposition 26. The set M p equipped with • is an operad.

Proof. Let m

1 = [Q 1 , i 1 , f 1 , d 1 ] and m 2 = [Q 2 , i 2 , f 2 , d 2 ]
be two product modifiers, respectively k-ary and k -ary, let j ≤ k be a positive integer, and let m 1 • j m 2 = [Q, i, f, d]. By Proposition 5, to show that (M p , •) is an operad, it is enough to show that m 1 • j m 2 is a product modifier. For any (k + k -1)-tuple of transition configurations (t 1 , . . . , t k+k -1 ) with t j = (Q j , i j , F j , δ j ) for any j ∈ {1, . . . , k + k -1}, we have, from Definition 39,

Q 2 (t j , . . . , t j+k -1 ) = Q j × • • • × Q j+k -1 , (7.3) 
and therefore, by Definition 6 and 39, 

Q(t 1 , . . . , t k+k -1 ) = Q 1 (
) = Q 1 × • • • × Q k+k -1 (7.4) 
Similarly, for any (q 1 , . . . ,

q k+k -1 ) ∈ Q 1 × • • • × Q k+k -1 , we have d 2 (t j , .
. . , t j+k -1 )(q j , . . . , q j+k -1 ) = (φ j (q j ), . . . , φ j+k -1 (q j+k -1 )), and therefore d(t 1 , . . . , t k+k -1 )(q 1 , . . . , q k+k -1 ) = d 1 (t 1 , . . . , t j-1 , (Q 2 (t j , . . . , t k +j-1 ), i 2 (t j , . . . , t k +j-1 ), f 2 (t j , . . . , t k +j-1 ), d 2 (t j , . . . , t k +j-1 )), t k +j , . . . , t k+k -1 )(q 1 , . . . , q j-1 , (q j . . . , q j+k -1 ), q j+k , . . . , q k+k -1 ) = (φ 1 (q 1 ), . . . , φ k+k -1 (q k+k -1 )). (7.5) As a consequence, m 1 • j m 2 is a product modifier.

From product modifiers to standard modifiers

In order to characterize the operations recognized by product modifiers, we take a path similar to the one taken for friendly modifiers. However, in this case, instead of looking at the whole characteristic sequences in U k , we look only at the first two terms of every sequences in the k-tuple. In other words, intuitively, we replace characteristic sequences, which are originally k-tuples of sequences with values in {0, 1}, with k-tuples of pairs in {0, 1} 2 . These pairs represent the same thing as did the first two values of the complete characteristic sequence. We begin to formalize this idea by proving a proposition similar to Proposition 24, for product modifiers.

Proposition 27. Let m = [Q, i, f, d] be a coherent product k-modifier, and let m sf = [Q sf , i sf , f sf , d sf ].
Let (t 1 , . . . , t k ) and (t 1 , . . . , t k ) be two k-tuples of transition configurations with t j = (Q j , i j , F j , φ j ) and t j = (Q j , i j , F j , φ j ), for any j ∈ {1, . . . , k}. If, for any j ∈ {1, . . . , k},

[i j ∈ F j ] = [i j ∈ F j ] and [φ(i j ) ∈ F j ] = [φ(i j ) ∈ F j ], then we have (φ 1 , . . . , φ k ) ∈ f sf ((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )) if and only if (φ 1 , . . . , φ k ) ∈ f sf ((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )). if and only if d((i 1 , F 1 , α 1 a ), . . . , (i k , F k , α k a ))(h 1 , . . . , h k ) ∈ G .
In other words, since m is a product modifier, we have

(ψ 1 (h 1 ), . . . , ψ k (h k )) ∈ G if and only if (ψ 1 (h 1 ), . . . , ψ k (h k )) ∈ G .
However, it follows from the definition of ψ and ψ that, for any ∈ {1, . . . , k}, we have ψ (h ) = φ (h ) and ψ (h ) = φ (h ). Therefore, we have

(φ 1 (h 1 ), . . . , φ k (h k )) ∈ G if and only if (φ 1 (h 1 ), . . . , φ k (h k )) ∈ G .
As a consequence of the definitions of friendly and standard modifiers, we have

(φ 1 , . . . , φ k ) ∈ f sf ((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )) if and only if (φ 1 , . . . , φ k ) ∈ f sf ((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )).
We let PC k denote the set of all subsets E of U k that verify the following property: for every (u 1 , . . . , u k ) ∈ U k such that there exists (v 1 , . . . , v k ) ∈ E, with v j,0 = u j,0 and v j,1 = u j,1 for any j ∈ {1, . . . , k}, we have (u 1 , . . . , u k ) ∈ E. Furthermore, we let PC denote the set k∈N PC k . We know that any standard modifier can be associated with an element of PU by the isomorphism of operads mod -1 . From Lemma 27, we prove that, if m is a product modifier, then mod -1 (m sf ) is in PC. This intuitively comes from the fact that only the first two elements of every u i matter, when (u 1 , . . . , u k ) ∈ PC.

Corollary 5. Let m be a product modifier. We have mod -1 (m sf ) ∈ PC

Proof. Let m = [Q, i, f, d] be a product k-modifier, and let m sf = [Q sf , i sf , f sf , d sf ]. Let E be the set of all k-tuples of sequences χ(t 1 , . . . , t k ), such that (t 1 , . . . , t k ) is a k-tuple of transition configurations with (φ 1 , . . . , φ k ) ∈ f sf ((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k ))
. Let E be the set of all ktuples of sequences (u 1 , . . . , u k ) ∈ U k such that there exists (v 1 , . . . , v k ) ∈ E with v j,0 = u j,0 and v j,1 = u j,1 , for any j ∈ {1, . . . , k}. It follows from the definition of PC k that E ∈ PC k . We now show that m sf = mod(E). To that aim we first prove that, for any k-tuple of transition configurations (t 1 , . . . , t k ), with t j = (Q j , i j , F j , φ j ) for any j ∈ {1, . . . , k}, we have

(φ 1 , . . . , φ k ) ∈ f sf ((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )) if and only if χ(t 1 , . . . , t k ) ∈ E.
Let (t 1 , . . . , t k ) be a k-tuple of transition configurations, with t j = (Q j , i j , F j , φ j ) for any j ∈ {1, . . . , k}, such that (φ 1 , . .

. , φ k ) ∈ f sf ((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k ))
. From the definition of E , we have χ(φ 1 , . . . , φ k ) ∈ E , and thus χ(t 1 , . . . , t k ) ∈ E.

Conversely, let (t 1 , . . . , t k ) be a k-tuple of transition configurations, with t j = (Q j , i j , F j , φ j ) for any j ∈ {1, . . . , k}, such that χ(t 1 , . . . , t k ) ∈ E. Let (u 1 , . . . , u k ) = χ(t 1 , . . . , t k ). From the definition of E, there exists a k-tuple of sequences (v 1 , . . . , v k ) = χ(t 1 , . . . , t k ) in E , where (t 1 , . . . , t k ) is a k-tuple of transition configurations, with t j = (Q j , i j , F j , φ j ) for any j ∈ {1, . . . , k}, such that v j,0 = u j,0 and v j,1 = u j,1 . However, it follows from the definition of characteristic sequences that we have

[i j ∈ F j ] = [i j ∈ F j ], and [φ j (i j ) ∈ F j ] = [φ j (i j ) ∈ F j ].
Furthermore, from the definition of E , we have (φ

1 , . . . , φ k ) ∈ f sf ((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )). Therefore, by Proposition 27, we have (φ 1 , . . . , φ k ) ∈ f sf ((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )).
As a consequence, for any k-tuple of transition configurations (t 1 , . . . , t k ), with t j = (Q j , i j , F j , φ j ) for any j ∈ {1, . . . , k}, we have (φ 1 , . . . , φ k ) ∈ f sf ((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )) if and only if χ(t 1 , . . . , t k ) ∈ E. Thus, we have

f sf ((Q 1 , i 1 , F 1 ), . . . , (Q k , i k , F k )) = (φ 1 , . . . , φ k ) ∈ Q Q 1 1 × • • • × Q Q k k | χ((Q 1 , i 1 , F 1 , φ 1 ), . . . , (Q k , i k , F k , φ k )) ∈ E .
Therefore, from the definition of mod, we conclude that m sf = mod(E).

In the following section, we formalize the idea that the operations in the image of PC by op should only involve the composition of a boolean operation with 0-th roots and identities.

Product modifiers and quasi-boolean operations

Definition 40. A k-ary operation over regular languages ⊗ is quasi-boolean if there exists a 2k-ary boolean operation ⊕ such that, for any k-tuples of regular languages (L 1 , . . . , L k ),

⊕(L 1 , . . . , L k ) = ⊗( 0 L 1 , 0 L 2 , . . . , 0 L k , L 1 , L 2 , . . . , L k ).
We let O p denote the set of all quasi-boolean operations.

Proposition 28. The image of an element of PC by op is a quasi-boolean operation, i.e., op(PC) ⊆ O p .

Proof. Let E ∈ PC k , and, for any j ∈ {1, . . . , k}, let G j = {(u j,0 , u j,1 ) | (u 1 , . . . , u k ) ∈ E}. We have

E = (u 1 , . . . , u k ) ∈ U k | (u j,0 , u j,1
) ∈ G j , for any j ∈ {1, . . . , k} .

Therefore, from Definition 38, we have

op(E) = (u 1 ,...,u k )∈E (u 1 , . . . , u k ), • = (u 1 ,...,u k )∈U k |(u j,0 ,u j,1 )∈G j ,∀j∈{1,...,k} (u 1 , . . . , u k ), • .
However, from Lemma 26, we have (u 1 ,...,u k )∈U k |(u j,0 ,u j,1 )∈G j ,∀j∈{1,...,k}

(u 1 , . . . , u k ), • = (v 1 ,...,v k )∈V k |(v j,0 ,v j,1 )∈G j ,∀j∈{1,...,k} (v 1 , . . . , v k ), • ,
where we let V k denote the set of all k-tuples of sequences with values in {0, 1}. Therefore, for any k-tuple of languages (L 1 , . . . , L k ), we have

op(E)(L 1 , . . . , L k ) = ((a 1 ,b 1 ),...,(a k ,b k ))|(a j ,b j )∈G j ,∀j∈{1,...,k}         j∈{1,...,k} a j , 0 L j ∩ b j , L j        
, where for any language L, 0, L = L and 1, L = L c . To conclude, we have

op(E) = ⊗( 0 L 1 , 0 L 2 , . . . , 0 L k , L 1 , L 2 , . . . , L k ),
where ⊗ is the 2k-ary boolean operation such that, for any 2k-tuple of regular languages

(L 1 , L 2 , . . . , L k , L 1 , L 2 , . . . , L k ), ⊗(L 1 , L 2 , . . . , L k , L 1 , L 2 , . . . , L k ) = ((a 1 ,b 1 ),...,(a k ,b k ))|(a j ,b j )∈G j ,∀j∈{1,...,k}         j∈{1,...,k} a j , L j ∩ b j , L j        
Now we prove the last tool we need to connect quasi-boolean operations, product modifiers, and PC, which is that every quasi-boolean operation is described by a product modifier.

Lemma 29. Let ⊗ be a quasi-boolean operation. There exists a product modifier m such that desc(m) = ⊗.

Proof. Let ⊗ be a k-ary quasi-boolean operations, and let ⊗ be a 2k-ary boolean operations such that, for any k-tuple of regular languages (L 1 , . . . , L k ), we have Therefore, desc(m) = ⊗.

⊗(L 1 , . . . , L k ) = ⊗ ( 0 L 1 , 0 L 2 , . . . , 0 L k , 1 L 1 , 1 L 2 , . . . , 1 L k ).

On the algebraic structure of product modifiers

We now state the main theorem of this section, concerning the algebraic structure of product modifiers, using the algebraic structure of friendly modifiers described in Section 7.1.5, and the notations introduced for that purpose. Furthermore, we let M fp c denote the set of all friendly modifiers m such that there exists a product modifier m with m sf = m sf . Theorem 7. We have • the mapping mod is an isomorphism of operads from (PC, ) to (M fp c / ∼ s , •/ ∼ s ),

• the mapping op is an isomorphism of operads from (PC, ) to (O p , •),

• the mapping desc f is an isomorphism of operads from (M fp c / ∼ s , •/ ∼ s ) to (O p , •). Furthermore, the operations described by coherent product modifiers are exactly all quasi-boolean operations.

Proof. From Corollary 5, we have mod • the mapping op is an isomorphism of operads from (PC, ) to (O p , •),

• the mapping desc f is an isomorphism of operads from (M fp c / ∼ s , •/ ∼ s ) to (O p , •).

We summarize our results for coherent friendly modifiers, coherent product modifiers, and the operations they describe, in to it by saying that G is stable by external composition. We show that sc(L(m(A))) is at most n nn + 1, by studying the Nerode equivalence relation induced by A. We distinguish two main cases, i ∈ F and i F.

We first suppose that i F. Notice that we have

• if t ∈ F, then
if s ∈ F, then we have χ(Q, i, F, g s,t ) = 0 1 , -otherwise if s F, then we have χ(Q, i, F, g s,t ) = odd

• otherwise if t F, then χ(Q, i, F, g s,t ) = 0.

Let E 1 = {0, 0 1 , odd} ∩ E and E 2 = {0, 0 1 , odd} \ E 1 . We distinguish the following cases:

• If #E 1 = 0 (respectively #E 1 = 3), then for any s, t ∈ Q, since χ(Q, i, F, g s,t ) E (respectively χ(Q, i, F, g s,t ) ∈ E) , the state g s,t is not final in m(A) (respectively final in m(A)).

Since G is stable by external composition, all the states in G are in the same Nerode equivalence class. Therefore, sc(L(m(A))) ≤ n nn 2 + 1 ≤ n nn + 1.

• Otherwise if #E 1 = 1 (respectively #E 1 = 2), then we let u denote the unique element of #E 1 (respectively #E 2 ).

-Suppose that u = odd. For any positive integer p and any state q ∈ Q, g p s,s (q) = g s,s (q). Thus, for any s ∈ Q, we have χ(Q, i, F, g s,s ) ∈ {0, 0 1 }. Therefore, the stability of G by external composition implies that two states g s,s and g s ,s , with s, s ∈ Q, are not distinguishable in m(A), for any s, s ∈ Q. As a consequence, sc(L(m(A))) ≤ n nn + 1.

-Suppose that u = 0 1 , and let s, t be two elements of Q. If χ(Q, i, F, g s,t ) = 0 1 , then t, s ∈ F, which implies that χ(Q, i, F, g t,s ) = 0 1 . Furthermore, similarly, if χ(Q, i, F, g t,s ) = 0 1 , then χ(Q, i, F, g s,t ) = 0 1 . As a consequence, χ(Q, i, F, g s,t ) = 0 1 if and only if χ(Q, i, F, g t,s ) = 0 1 . Therefore, the stability of G by external composition implies that the two states g s,t and g t,s are not distinguishable, for any s, t ∈ Q. As a consequence, we have sc(L(m(A))) ≤ n n -1 2 n(n -1) ≤ n nn + 1. -Finally, suppose that u = 0, and let s, s , t be three elements of Q. If χ(Q, i, F, g s,t ) = 0, then t F, which implies that χ(Q, i, F, g s ,t ) = 0. Furthermore, similarly, χ(Q, i, F, g s ,t ) = 0 implies that χ(Q, i, F, g s,t ) = 0. As a consequence, χ(Q, i, F, g s,t ) = 0 if and only if χ(Q, i, F, g s ,t ) = 0. Therefore, the stability of G by external composition implies that the two states g s,t and g s ,t are not distinguishable in m(A), for any s, s ∈ Q. As a consequence, we have sc(L(m(A))) ≤ n nn(n -1) ≤ n nn + 1.

The case i ∈ F is symmetrical to the case i F in the following way: we replace in the proof all the occurrences of s ∈ F by t F, of s F by t ∈ F, of t ∈ F by s F, of t F by s ∈ F, of 0 by (1, 1, . . .), of 0 1 by (1, 0, 0, . . . , 0, . . .), and of odd by (1, 0, 1, 0, . . . , (n + 1) mod 2, . . .). Furthermore, in the case of u = (1, 1, . . .), it is the finality of g s,t and g s,t that is the same.

On the size of the witnesses' alphabets

Witnesses usually given for regular operations have a finitely bounded alphabet. However, the witnesses given in Theorem 9 and in Theorem 8 are monsters, and thus have exponential alphabet size. We show that every k-ary friendly operation actually has a witness with an alphabet of size 3k. This is not hard to prove, and comes directly from the definition of friendly modifiers. Recall that the definition of Γ n 1 ,...,n k is given in Definition 1.

Definition 41. Let k be a non-negative integer, (n 1 , . . . , n k ) be a k-tuple of positive integers, (F 1 , . . . , F k ) be a k-tuple of sets with F j ⊆ n j , for any j ∈ {1, . . . , k}, and let (M 1 , . . . , M k ) = Mon F 1 ,...,F k n 1 ,...,n k . We let B F 1 ,...,F k n 1 ,...,n k denote the k-tuple of automata (B 1 , . . . , B k ), where, for any j ∈ {1, . . . , k}, the DFA B j is equal to the DFA M j restricted to the alphabet Γ n 1 ,...,n k .

Theorem 10. Let k be a non-negative integer, ⊗ be a friendly operation, (n 1 , . . . , n k ) be a k-tuple of positive integers, and let m be a friendly modifier that describes ⊗. There exists a k-tuple of sets (F 1 , . . . , F k ), with F j ⊆ n j for any j ∈ {1, . . . , k}, such that sc(L(m(B F 1 ,...,F k n 1 ,...,n k ))) = sc ⊗ (n 1 , . . . , n k ), i.e., such that B F 1 ,...,F k n 1 ,...,n k is a witness for ⊗.

Proof. Let k be a non-negative integer, ⊗ be a friendly operation, (n 1 , . . . , n k ) be a k-tuple of positive integers, and let m be a friendly modifier that describes ⊗. Recall that, by Proposition 1, the monoid (Γ n 1 ,...,n k , •) is generated by the subset Γ n 1 ,...,n k of size 3k. From Theorem 2, there exists (F 1 , . . . , F k ), with F j ⊆ n j for any j ∈ {1, . . . , k}, such that sc(L(m(M F 1 ,...,F k n 1 ,...,n k ))) = sc ⊗ (n 1 , . . . , n k ). We let A = (Σ, Q, i, F, δ) denote the DFA m(Mon F 1 ,...,F k n 1 ,...,n k ). Recall that from Definition 22, the alphabet of all DFAs of the k-tuple Mon F 1 ,...,F k n 1 ,...,n k , and therefore the alphabet Σ of A, is equal to Γ n 1 ,...,n k = n 1 n 1 × • • • × n k n k . From Proposition 1, for each ψ in Γ n 1 ,...,n k , there exists a non-negative integer m and a finite sequence (φ ) ∈{1,...,m} of elements of Γ n 1 ,...,n k , such that ψ = φ 1 •• • ••φ m . Therefore, since m is a friendly modifier, we have δ ψ = δ φ 1 • • • • • δ φ m . As a consequence, any reachable state of A is reachable only by reading the letters of Γ n 1 ,...,n k , and any two distinguishable states of A are distinguishable only by reading the letters of Γ n 1 ,...,n k . Hence, sc(L(A)) = sc(L(B F 1 ,...,F k n 1 ,...,n k )), and therefore sc(L(m(B F 1 ,...,F k n 1 ,...,n k ))) = sc ⊗ (n 1 , . . . , n k ).

Chapter 8 Conclusion

To this day, computing the state complexity of an operation remains a messy, ad-hoc business. Even though the state complexity of many well-known operations has been computed, we seem to start all over again every time we switch to a new operation. This still holds true for combinations of two or more operations, even when every one of their state complexities is already known. As the operations we study become more complicated, so do our computations, proofs, and results. To keep them from becoming too long and heavy, we need a new framework and some new general results. Even though the road ahead is still long, we have taken the first steps towards that goal. We began our efforts by bringing in a tool used to classify algebras, operads. Operads are useful structures to formalize results around the composition of operations. In particular, any set of operations stable by composition is an operad. Furthermore, other kind of operads can be defined to understand the structure of such a set of operations. Using this notion, we introduced a new framework to help compute the state complexity of operations. The regular operations that fall into the scope of our framework are called 1-uniform, and form an operad (O u , •). This operad has a counterpart in the space of operations over DFAs, the operad of modifiers (M, •). However, modifiers themselves are not so easy to handle. Therefore, we extracted the essential information contained in modifiers by defining a set of operations over transition configurations, denoted by FT. We used this results to compute the state complexity of 1-uniform operations. To that aim, we defined large DFAs called monsters. Every 1-uniform operation admits a monster as witness. Therefore, when searching for the state complexity of a 1-uniform operation, we need only concern ourselves with giving a modifier that describes that 1-uniform operation, and applying it to monsters.

Using this framework, we designed a method to compute the state complexities of 1-uniform operations, and showed that it works on simple examples like the Kleene star, catenation, and boolean operations. Furthermore, we used this method to compute the state complexity of a new operation, the Kleene star composed with symmetric difference. Combined with previous results [START_REF] Ésik | Estimation of state complexity of combined operations[END_REF][START_REF] Jirásková | On the state complexity of star of union and star of intersection[END_REF], this allowed us to compute the state complexity of every binary boolean operation. We then tried to tackle the more general problem consisting in computing the state complexity of the star composed with any boolean operation. We explained how our approach in the particular case of the star composed with symmetric difference may be generalized. We firmly believe that, with some more work, it would be possible to devise a close link between the state complexity of the star of boolean operations and combinatorial objects involving tableaux and cubes in higher dimension. Counting these objects, however, is another problem entirely, that we have yet to explore.

Finally, we studied two suboperads of (O u , •) defined with simple algebraic properties, the operad of friendly operations, and the operad of quasi-boolean operations. We showed that their simple definition is reflected by their clear structure. Friendly modifiers describe exactly all compositions of boolean operations of infinite arity and roots, and product modifiers describe a weak generalization of boolean operations. We studied in detail the algebraic structure underlying these two operads. Using these results, we found the maximum state complexity of k-ary friendly operations, for any positive integer k. To get this bound, it is possible to use witnesses with only 3k letters.

Our work on friendly modifiers and product modifiers is an example of a more general technique that could be used to study the state complexity of operations. This technique consists in putting a particular operation into a larger family of operations, and then to get some information about the state complexity of that particular operation by studying the entire family. For example, we are now certain that the state complexity of any unary friendly operation is at most n nn + 1; however, this result would not necessarily be obvious to prove for a particular unary friendly operation. Claim 1 is another example of application of this technique. This claim could give non-trivial upper bounds for the state complexity of the star of any boolean operation, without the need to invent a new method for every single one of these operations. To summarize, we should not be afraid to study large families of operations, as this may yield better results than studying only some particular and isolated operations.

One of the most interesting things about friendly operations is that their algebraic structure is simple enough that we have some hope of answering general questions on their state complexity. For example, can their state complexity attain a growth somewhere between exponential and linear? If so, what ranges of growth for their state complexities can we obtain? We could also try to compute their maximal state complexity over a unary or binary alphabet, thereby carrying on the work done in [START_REF] Krawetz | State complexity and the monoid of transformations of a finite set[END_REF]. Giving witnesses for these operations with a smaller alphabet is also another possible line of research. There are probably some k-ary friendly operations whose witnesses always have an alphabet of size greater than k. But do they all have a witness of size 2k, or even maybe of size k plus a constant?

It is worth noting that the Kleene star, catenation, boolean operations, roots, and all of their compositions are not the only well-known operations that are 1-uniform. It is also the case, for example, of the shuffle, the cyclic shift, and powers. As a consequence, the framework we developed could also be used to study these operations and all of their compositions. However, several well-known operations do not fall into the scope of our framework. This is the case, for example, of the right quotient or of the proportional removals. Another limitation of our framework is that there is no systematic way of reducing the alphabets of the witnesses we use, which are of exponential size. Even though, for some operations like the shuffle [START_REF] Janusz | On the state complexity of the shuffle of regular languages[END_REF], witnesses have an alphabet of at least linear size, we do not know of any operation that would require an alphabet of exponential size. Does there exist any? From this question arises a notion that one may call "alphabetic complex-ity". The alphabetic complexity of a 1-uniform operation would be the minimal size of the alphabets of all the witnesses of that operation. Numerous other simple questions about alphabetic complexity are left unanswered. For example, can we characterize 1-uniform operations that have a finitely bounded alphabetic complexity? What is the maximal alphabetic complexity of all 1-uniform operations? How does alphabetic complexity behave with respect to composition?

We have sought recently to obtain some results about alphabetic complexity for some well-defined classes of operations. This line of research could also be considered another extension of our work on friendly and product modifiers, as its main goal is to study other operads, similarly defined by simple algebraic properties. To be more precise, for any modifier m = [Q, f, i, d], the goal would be to study what some well-chosen algebraic properties of the application d entail on the operation that m describes. When d is a morphism for its third coordinate, we have seen that m describes a friendly operation. But what happens when d only behaves like a morphism when its inputs satisfy some restrictive property? This is the case for several well-known regular operations, like the Kleene star and catenation. For example, for the Kleene star, we have

d(Q, i, F, φ • ψ) = d(Q, i, F, φ) • d(Q, i, F, ψ),
when ψ(i) = i and ψ(Q \ F) ⊆ Q \ F. We are currently exploring whether operations satisfying some similar properties always have witnesses with alphabets of linear size, or even maybe of finitely bounded size, i.e., whether their alphabetic complexity is linear, or even maybe finitely bounded. We have made some encouraging progress towards showing that their alphabetic complexity is indeed at most linear, but we cannot state this result with certainty yet. That result would be quite general as it would also encompass, for example, all compositions of Kleene star, catenation, union and intersection.

Another interesting line of research would be to adapt our framework to other types of automata, like non-deterministic finite automata, or alternating finite automata. We could even try to extend our results to infinite automata. In fact, the main idea of the method we developed does not seem to be specific to a certain type of automata, and it would be interesting to have a more general theory encompassing many types of automata.

To summarize, the in-depth study of the state complexity of operations in recent years consisted in trying to compute the state complexity of some specific regular operations, well-known for other purposes in automata theory. However, we believe that looking at the wider picture with an algebraic point of view would be fruitful. In other words, instead of trying to compute the state complexity of increasingly complex particular and isolated operations, we could try to define new classes of operations, tailor-made to comprise operations close enough to some operations already well-known, but simple enough for us to compute their state complexity. This would help us start a more general theory, that may eventually lead to computing the state complexity of more complex operations. For example, a simple question that remains to be answered is the following: can we define a large class of operations, stable by composition, and that contains an interesting operation that is not boolean (or quasi-boolean), so that we are able to compute the state complexity of every one of its operations?

Figure 1 . 1 :

 11 Figure 1.1: A finite automaton.

Figure 1 . 2 :

 12 Figure 1.2: A deterministic and finite automaton.

Figure 1 . 3 :

 13 Figure 1.3: A complete, deterministic and finite automaton.

Figure 2 . 1 :

 21 Figure 2.1: A DFA A.

Figure 2 . 2 :

 22 Figure 2.2: A DFA B.

Figure 2 . 4 :Figure 2 . 5 :

 2425 Figure 2.3: A DFA C

Definition 2 .
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 4 For any positive integers m and j with j ≤ m, for any m-ary boolean function b, and any boolean function b , we have, from Definition 3, ⊗ b• j b = ⊗ b • j ⊗ b . Furthermore, the identity over languages is equal to ⊗ b , where b is the identity over {0, 1}. Therefore, the set of boolean operations O b equipped with • is an suboperad of the set of operations over languages equipped with •. Thus, (O b , •) is an operad.
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 5 Let φ be the mapping from the set of boolean functions to B (defined in Example 2) such that, for any k-ary boolean function b, we have φ(b) = {(e 1 , . . . , e k ) ∈ {0, 1} k | b(e 1 , . . . , e k ) = 1}. For any non-negative integers k, k , j with 1 ≤ j ≤ k, and any boolean functions b and b , respectively k-ary and k -ary, we have φ(b • j b ) = {(e 1 , . . . , e k+k -1 ) ∈ {0, 1} k+k -1 | b(e 1 , . . . , e j-1 , b (e j , . . . , e j+k -1 ), e j+k , . . . , e k+k +1 ) = 1}.
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 7 Let (O, ), (O , ) and (O , ) be three operads, let φ be a morphism of operads from O to O , and let ψ be a morphism of operads from (O , ) to (O , ). The application ψ • φ is a morphism of operads from (O, ) to (O , ). Proof. The fact that the image by ψ • φ of the identity of O is the identity of O is straightforward from Definition 10. For any integer m, for any o ∈ O m , we have φ(o) ∈ O m , and therefore (ψ • φ)(o) ∈ O m . Hence, ψ • φ is a graded mapping. Furthermore, for any integers m, j with 1 ≤ j ≤ m, for any o 1 ∈ O m and any o 2 ∈ O, by Definition 10, we have φ(o 1 j o 2 ) = φ(o 1 ) j φ(o 2 ). Therefore, again by Definition 10, we have ψ
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 3812 Figure 3.8: Commutative diagram for φ, / ∼ φ , and φ.
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 11 Let (O, ) and (O , ) be two operads, and let φ be a morphism of operads from (O, ) to (O , ). The set O/ ∼ φ equipped with / ∼ φ is an operad, and φ is an injective morphism of operads from (O/ ∼ φ , / ∼ φ ) to (O , ). Proof. For any two integers m and n, any o ∈ O m and any o ∈ O n , if o ∼ φ o , then φ(o) = φ(o ), and therefore m = n. The equivalence relation ∼ φ is therefore graded for O. Furthermore, for any integers m and j with 1 ≤ j ≤ m, for any o 1 , o 1 ∈ O m and for any
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 444 Figure 4.6: DFA A 1 .

-

  (4.1), the state configurations of m • j m (A 1 , . . . , A k+k -1 ) and m • j m (B 1 , . . . , B k+k -1 ) are the same. If there exist two letters a ∈ Σ and b ∈ Γ such that, for any j ∈ {1, . . . , k +k -1}, the transition function of a in A j is the same as the transition function of b in B j , then the transition function of a in m (A 1 , . . . , A k ) is equal to the transition function of b in m (B 1 , . . . , B k ), and therefore, by (4.1), the transition function of a in m • j m (A 1 , . . . , A k+k -1 ) is equal to the transition function of b in m• j m (B 1 , . . . , B k+k -1 ).
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 11 Using the notations of Figure 4.11, if m is a unary modifier such that m(A) = B, then m(t) = s.
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 411 Figure 4.11: An illustration of Definition 17.
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 412 Figure 4.12: An operation in Map T C but not in FT.

Example 13 .

 13 Using the notations of Figure4.13, if tc is a unary operation in FT such that tc(t 1 ) = s 1 and tc(t 2 ) = s 2 , then [tc](A) = B.
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 413 Figure 4.13: An illustration of Definition 19.
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 4 For any operation tc of FT, we have [tc] ∈ M, and [tc] = tc.
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 15 We define the modifier Star byStar = [Q, i, f, d],where, for any state configuration (Q, i, F) and any δ
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 4 15 represents the image of the DFA A of Figure 4.14 by the modifier Star.
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 415 Figure 4.15: The DFA Star(A).
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 4 [START_REF] Gao | A survey on operational state complexity[END_REF] shows the DFA Conc(A 1 , A 2 ), where A 1 and A 2 are the DFAs ofFigures 4.16 and 4.17
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 18 (aa) + while Fto1 lets the second automaton unchanged. The set of all coherent modifiers equipped with the composition of operations • is an operad. Furthermore, the mapping desc is a morphism of operads.Proof. Let m 1 and m 2 be two coherent modifiers, respectively k 1 -ary and k 2 -ary, and let ⊗ = desc(m 1 ) and ⊕ = desc(m 2 ). Let L 1 , . . . , L k 1 +k 2 -1 be regular languages recognized respectively by DFAs A 1 , . . . , A k 1 +k 2 -1 . We have

a 1 , 1 =

 11 [01, 01] a 1,2 = [01, 11] a 1,3 = [01, 00] a 1,4 = [01, 10] a 2,1 = [11, 01] a 2,2 = [11, 11] a 2,3 = [11, 00] a 2,4 = [11, 10] a 3,1 = [00, 01] a 3,2 = [00, 11] a 3,3 = [00, 00] a 3,4 = [00, 10] a 4,1 = [10, 01] a 4,2 = [10, 11] a 4,3 = [10, 00] a 4,4 = [10, 10].
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 419 Figure 4.19: The algebraic structure linking operations over transitions configurations, operations over DFAs and regular operations.
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 52 Figure 5.2: The DFA Star(A).
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 54 Figure 5.4: A run in Star(Mon {3} 4 ) from the initial state ∅ to the state {0, 1, 2}.

Figure 5 . 5 :Proposition 19 .

 5519 Figure 5.5: How to distinguish between two states of Star(Mon {3} 4 ), with the letter φ such that φ(1) = 3, and φ(0) = φ(2) = φ(3) = 0.
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 20 We have sc ⊗ b (n 1 , . . . , n k ) = j∈E b n j .
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 2256 Figure 5.6: A transition in Conc(Mon {2},{1}3,4 ).
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 57 Figure 5.7: A run in Star(Mon {3},{3} 4,4 ) from the initial state (0, ∅) to the state (2, {1, 2}); where Id = Id 4 .
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 63 Figure 6.3: How to go from T to T.
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 68 Figure 6.8: A third 5 × 5 example with F 1 = {3, 4} and F 2 = {0, 1, 2}.
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 272822661129 Figure 6.10: A tableau T of size 5 × 5.

  4 and #T C = 3 T → (T ∪ C) and T → (T ∪ C) if #T C = 3 and #T C = 3 However, we have T ∪ C = T ∪ C. Thus, if T T , then T * ↔ T . Hence, * is indeed equal to * ↔ when b is the symmetric difference.
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 7172 Figure 7.1: The DFA A.
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 7325 Figure 7.3: The DFA C sf (A).
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 174175 Figure 7.4: Transition configuration t 1 .
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 3525 may also be described by a friendly modifier. To capture this kind of operations, we extend the notion of boolean operations (Definition 3) to countable arity. We say that a boolean function is N-ary if it is a function from {0, 1} N to {0, 1}. For any N-ary boolean function b, we let b denote the operation producing a language when acting over a sequence of languages in the following way: for any sequence of languages (L p ) p∈N , a word w is in b ((L p ) p∈N ) if and only if b([w ∈ L 1 ], [w ∈ L 2 ], . . . , [w ∈ L p ], . . .) = 1. We call these operations N-ary boolean operations. Consider the N-ary boolean function b such that, for any sequence v in {0, 1} N , b(v) = 1 if and only if, either for all p ∈ N, v p = 1, or for all p ∈ N, v p = 0. We have, for any sequence of regular languages (L p ) p∈N , w ∈ b ((L p ) p∈N ) if and only if either, for all p ∈ N, w ∈ L p , or for all p ∈ N, w L p . In other words, we have b ((L p ) p∈N )
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 7625 Figure 7.6: Commutative diagram for op,mod and desc f .
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 77 Figure 7.7: Commutative diagram for op,mod and desc f .

For

  any k-tuple of regular languages L = (L 1 , . . . , L k ), we let ⊗ L denote the k-ary regular operation such that, for any k-tuple of languages (L 1 , . . . , L k ), we have⊗ L (L 1 , . . . , L k ) = ⊗ 0 L 1 , 0 L 2 , . . . , 0 L k , L 1 , L 2 , . . . , L k .Notice that, for any language L over an alphabet Σ,0 √L is either ∅ or Σ * . Therefore, for any ktuple of regular languages L = (L 1 , . . . , L k ), ⊗ L (L 1 , . . . , L k ) is a boolean operation. We let b L denote a boolean function such that ⊗ L = ⊗ b L . Furthermore, we let m denote the k-modifier such that, for any k-tuple of DFAs (A 1 , . . . , A k ), we have m(A 1 , . . . ,A k ) = m b L (A 1 , . . . , A k ), with L = (L 1 , . . . , L k ) = (L(A 1 ), . . . , L(A k )). By Proposition 15, we have L(m b L (A 1 , . . . , A k )) = ⊗ b L (L 1 , . . . , L k ) = ⊗ L (L 1 , . . . , L k ) = ⊗ ( 0 L 1 , 0 L 2 , . . . , 0 L k , L 1 , L 2 , . . . , L k ) = ⊗(L 1 , . . . , L k ).

1 ( 1 ( desc f - 1 (

 111 ∼ s ) ⊆ PC. Furthermore, from Proposition 28, we have op(PC) ⊆ O p . We also have, from Lemma 29, desc f-O p ) ⊆ M fp c / ∼ s . Therefore, mod s ) ⊆ PC. Thus, O p = op( mod -O p ))) ⊆op(PC). Hence, we have op(PC) = O p . Similarly, we have M fp c / ∼ s = mod (PC) and O p = desc f (M fp c / ∼ s ). As a consequence, by Lemma 25, O p is the image by desc f of M set of all coherent product modifiers. From Proposition 26 and Proposition 18, (M p c , •) is an operad. Therefore, from Proposition 6, (O p , •) is an operad. Furthermore, using Proposition 6 again, used with desc f -1 and op -1 , we have that (M fp c / ∼ s , •/ ∼ s ) and (PC, ) are also operads. Therefore, as op, desc f , and mod are morphisms of operads, we have • the mapping mod is an isomorphism of operads from (PC, ) to (M fp c / ∼ s , •/ ∼ s ),
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 78 Figure 7.8: The algebraic structure behind friendly modifiers, product modifiers and the operations they describe.

Definition 1 .

 1 Let (n 1 , . . . , n k ) be a k-tuple of positive integers, and for all j ∈ {1, . . . , k} with n j ≥ 2, let t j = (Id, . . . , Id

	n j -1 , π 0
	j-1 elements

j-1 elements , (0, 1), Id, . . . , Id), c j = (Id, . . . , Id j-1 elements , (0, 1, . . . , n j -1), Id, . . . , Id), and p j = (Id, . . . , Id , Id, . . . , Id). We let Γ n 1 ,...,n k denote the set {(Id, . . . , Id)} if (n 1 , . . . , n k ) = (1, . . . , 1), and the set j∈{1,...,k}|n j ≥2

where union, inter and xor are

  the boolean functions respectively defined by Table 2.6, Table 2.7 and Table 2.8.

	union 0 1	inter 0 1	xor 0 1
	0	0 1	0	0 0	0 0 1
	1	1 1	1	0 1	1 1 0
	Figure 2.6	Figure 2.7	Figure 2.8
	Truth table	Truth table	Truth table
	for union.	for inter.	for xor.

  , . . . , e j-1 , 1, e j+n , . . . , e m+n-1 ) ∈ E and (e j , . . . , e j+n-1 ) ∈ E• or (e 1 , . . . , e j-1 , 0, e j+n , . . . , e m+n-1 ) ∈ E and (e j , . . . , e j+n-1 ) E .

	Example 2. For all integers n, we let B n denote the set of all subsets of {0, 1} n . Furthermore, +∞
	we let B denote the set	B k , naturally graded with the sequence (B k ) k∈N . For all non-negative
	j=0	
	integers m, n and j with 1 ≤ j ≤ m, for all E ∈ B m and E ∈ B n , we let E j E denote the set of all
	(e 1 , . . . , e m+n-1 ) ∈ B m+n-1 such that
	• either (e 1	

  2 , E 3 , elements of B m , B n , B s respectively, we have (e 1 , . . . , e m+n+s-2 ) ∈ E 1 i (E 2 j E 3 ) if and only if either (e 1 , . . . , e i-1 , 1, e i+n+s-1 , . . . , e m+n+s-2 ) ∈ E 1 and (e i , . . . , e i+n+s-2 ) ∈ E 2 j E 3 -or (e 1 , . . . , e i-1 , 0, e i+n+s-1 , . . . , e m+n+s-2 ) ∈ E 1 and (e i , . . . , e i+n+s-2 ) E 2 j E 3 . , . . . , e z-1 , 0, e z+y , . . . , e x+y-1 ) E and (e j , . . . , e z+y-1 ) E or (e 1 , . . . , e z-1 , 1, e z+y , . . . , e x+y-1 ) E and (e j , . . . , e z+y-1 ) ∈ E . Therefore, (e 1 , . . . , e m+n+s-2 ) ∈ E 1 i (E 2 j E 3 ) if and only if either (e 1 , . . . , e i-1 , 1, e i+n+s-1 , . . . , e m+n+s-2 ) ∈ E 1 and (e i , . . . , e i+j-2 , 1, e i+j+n-1 , . . . , e i+n+s-2 ) ∈ E 2 and (e i+j-1 , . . . , e i+j+s-2 ) ∈ E 3 -or (e 1 , . . . , e i-1 , 1, e i+n+s-1 , . . . , e m+n+s-2 ) ∈ E 1 and (e i , . . . , e i+j-2 , 0, e i+j+s-1 , . . . , e i+n+s-2 ) ∈ E 2 and (e i+j-1 , . . . , e i+j+s-2 ) E 3 -or (e 1 , . . . , e i-1 , 0, e i+n+s-1 , . . . , e m+n+s-2 ) ∈ E 1 and (e i , . . . , e i+j-2 , 0, e i+j+s-1 , . . . , e i+n+s-2 ) E 2 and (e i+j-1 , . . . , e i+j+s-2 ) E 3 -or (e 1 , . . . , e i-1 , 0, e i+n+s-1 , . . . , e m+n+s-2 ) ∈ E 1 and (e i , . . . , e i+j-2 , 1, e i+j+s-1 , . . . , e i+n+s-2 ) E 2 and (e i+j-1 , . . . , e i+j+s-2 ) ∈ E 3 Furthermore, (e 1 , . . . , e m+n+s-2 ) ∈ (E 1 i E 2 ) i+j-1 E 3 if and only if either (e 1 , . . . , e i+j-2 , 1, e i+j+s-1 , . . . , e m+n+s-2 ) ∈ E 1 i E 2 and (e i+j-1 , . . . , e i+j+s-2 ) ∈ E 3 -or (e 1 , . . . , e i+j-2 , 0, e i+j+s-1 , . . . , e m+n+s-2 ) ∈ E 1 i E 2 and (e i+j-1 , . . . , e i+j+s-2 ) E 3 .

	However, for all non-negative integers x, y and z with 1 ≤ z ≤ x, for all E ∈ B x , for
	all E ∈ B y , and for all (e 1 , . . . , e x+y-1 ) ∈ B x+y-1 , we have either (e j , . . . , e z+y-1 ) ∈ E or
	(e j , . . . , e z+y-1 ) E . If (e j , . . . , e z+y-1 ) ∈ E , then (e 1 , . . . , e x+y-1 ) E j E if and only if
	(e 1 , . . . , e z-1 , 1, e z+y , . . . , e x+y-1 ) E,
	and if (e j , . . . , e z+y-1 ) E , then (e 1 , . . . , e x+y-1 ) E j E if and only if
	(e 1 , . . . , e z-1 , 0, e z+y , . . . , e x+y-1 ) E.
	Therefore, we have (e 1 , . . . , e x+y-1 ) E j E if and only if
	-either (e 1

  2 , E 3 , elements of B m , B n , B s respectively, we have (e 1 , . . . , e m+n+s-2 ) ∈ (E 1 j E 2 ) i E 3 if and only if either (e 1 , . . . , e i-1 , 1, e i+s , . . . , e m+n+s-2 ) ∈ E 1 j E 2 and (e i , . . . , e i+s-1 ) ∈ E 3 -or (e 1 , . . . , e i-1 , 0, e i+s , . . . , e m+n+s-2 ) ∈ E 1 j E 2 and (e i , . . . , e i+s-1 ) E 3 . , . . . , e i-1 , 1, e i+s , . . . , e j+s-2 , 1, e j+s+n-1 , . . . , e m+n+s-2 ) ∈ E 1 and (e j+s-1 , . . . , e j+s+n-2 ) ∈ E 2 and (e i , . . . , e i+s-1 ) ∈ E 3 -or (e 1 , . . . , e i-1 , 1, e i+s , . . . , e j+s-2 , 0, e j+s+n-1 , . . . , e m+n+s-2 ) ∈ E 1 and (e j+s-1 , . . . , e j+s+n-2 ) E 2 and (e i , . . . , e i+s-1 ) ∈ E 3 -or (e 1 , . . . , e i-1 , 0, e i+s , . . . , e j+s-2 , 1, e j+s+n-1 , . . . , e m+n+s-2 ) ∈ E 1 and (e j+s-1 , . . . , e j+s+n-2 ) ∈ E 2 and (e i , . . . , e i+s-1 ) E 3 -or (e 1 , . . . , e i-1 , 0, e i+s , . . . , e j+s-2 , 0, e j+s+n-1 , . . . , e m+n+s-2 ) ∈ E 1 and (e j+s-1 , . . . , e j+s+n-2 ) E 2 and (e i , . . . , e i+s-1 ) E 3 .

	Therefore, (e 1 , . . . , e m+n+s-2 ) ∈ (E 1 j E 2 ) i E 3 if and only if
	-either (e 1 Furthermore, (e 1 , . . . , e m+n+s-2 ) ∈ (E 1 i E 3 ) j+s-1 E 2 if and only if
	-either (e 1 , . . . , e j+s-2 , 1, e j+n+s-1 , . . . , e m+n+s-1 ) ∈ E 1 i E 3 and (e j+s-1 , . . . , e j+n+s-2 ) ∈ E 2
	-or (e 1 , . . . , e j+s-2 , 0, e j+n+s-1 , . . . , e m+n+s-1 ) ∈ E 1 i E 3 and (e j+s-1 , . . . , e j+n+s-2 ) E 2 .

  For any pair of positive integers (n 1 , n 2 ) with n 2 ≥ 2, the state complexity sc Conc of Catenation satisfies sc Conc

	n 1 ,n 2	2 -1}	is a witness for Catenation, and
	the upper bound of Lemma 10 is reached.		
	Proposition 21.		

  ) . By Example 15, Example 10, and Proposition 13, is a 1-uniform operation. Furthermore, by Proposition 18, desc(Star • 1 m xor ) = , i.e., the modifier Star • 1 m xor describes . Therefore, to prove state complexity results about , we first give a formula that describes the application of StX = Star • 1 m xor to a pair of DFAs. This formula is obtained directly from Example 15, Example 17, and Definition 6.

  desc f =∼ s . As a consequence, by Proposition 11 and Proposition 18, (M f c / ∼ s , •/ ∼ s ) is an operad, and desc f is an isomorphism of operads from (M f

c / ∼ s , •/ ∼ s ) to (O f , •). Let mod be the function from PU to M f c / ∼ s such that, for any E ∈ PU, we have mod(E) = ∼ s mod(E) . Since op = desc • mod, we have, for any E ∈ PU, from Definition 12,

  t 1 , . . . , t j-1 , (Q 2 (t j , . . . , t j+k -1 ), i 2 (t j , . . . , t j+k -1 ), f 2 (t j , . . . , t j+k -1 ), d 2 (t j , . . . , t j+k -1 )), t j+k , . . . , t k+k -1

Lemma 14. Let F 1 ⊆ n 1 with F 1 {∅, n 1 }, let F 2 ⊆ n 2 with F 2 {∅, n 2 }, and let T and T be two non-empty states of M F 1 ,F 2 such that T → T . Then, for any a ∈ Γ n 1 ,n 2 , we have δ a (T) → δ a (T ) or δ a (T) = δ a (T ), where δ is the transition function of M F 1 ,F 2 .

Proof. Let i, j, i , j be the integers of Definition 25. Let a = ( f, g) ∈ Γ n 1 ,n 2 . We have, either ( f, g)(T) → ( f, g)(T ) or ( f, g)(T) = ( f, g)(T ). If ( f, g)(T) = ( f, g)(T ), then obviously have δ a (T) = δ a (T ). Therefore, we suppose now that ( f, g)(T) → ( f, g)(T ).

Suppose ( f, g)(T) is not final. Then ( f, g)(T ) is not final and δ a (T) = ( f, g)(T) → ( f, g)(T ) = δ a (T ). Otherwise, if ( f, g)(T) is final, then ( f, g)(T ) is also final and δ a (T ) = ( f, g)(T ) ∪ {(0, 0)} = ( f, g)(T) ∪ {( f (i ), g( j )), (0, 0)} = δ a (T) ∪ {( f (i ), g( j ))}. Hence, the lemma follows from the fact that {( f (i), g( j)), ( f (i), g( j )), ( f (i ), g(j))} ⊆ δ a (T). Proposition 22. Let F 1 ⊆ n 1 with F 1 {∅, n 1 }, let F 2 ⊆ n 2 with F 2 {∅, n 2 }, and let T, T be two non-empty states of M F 1 ,F 2 . If T * ↔ T , then T and T are indistinguishable in M F 1 ,F 2 .

Proof. Let δ be the transition function of M F 1 ,F 2 . From Lemma 14, we show by a straightforward induction that, for any word w, if T → T , then δ w (T) → δ w (T ) or δ w (T) = δ w (T ). From Lemma 13, if T → T , then T and T are indistinguishable. However, * ↔ is the reflexive, symmetric and transitive closure of →. Hence, if T * ↔ T , then T and T are not distinguishable in M F 1 ,F 2 .

We let ∼ denote the equivalence relation over tableaux of size n 1 × n 2 such that we have T ∼ T if and only if, either T, T ∈ {∅, {(0, 0)}} or T * ↔ T . Notice that, since {(0, 0)} is final in M {n 1 -1},{0} , ∅ and {(0, 0)} are not distinguishable in M {n 1 -1},{0} . Therefore, ∼ is compatible with M {n 1 -1},{0} (see Section 2.4.2 for a definition of compatible), and it makes sense to consider M {n 1 -1},{0} / ∼ .

Recall here that we let (i, j) denote the transposition exchanging i and j, by (i 1 , . . . , i m ) the permutation such that (i 1 , . . . , i m )(i j ) = i (j+1) mod m , and by π j i the application that sends j to i, and does not change any other elements (for more details, see Section 2.2). Lemma 15. Any two distinct non-empty states of M {n 1 -1},{0} / ∼ are distinguishable in M {n 1 -1},{0} / ∼ .

Proof. Let us first recall that the final zone of M {n 1 -1},{0} is the set of all (i, j) ∈ n 1 × n 2 such that either i = n 1 -1 or j = 0, but not both. We use this fact statement in the rest of the proof. Let δ be the transition function of M {n 1 -1},{0} . Let T and T be two right-triangle free non-empty tableaux of size n 1 × n 2 , such that T T . Let (i, j) be such that T i,j T i,j . We prove that T and T are distinguishable in M {n 1 -1},{0} . We suppose that T i, j = 1 (the case T i, j = 1 is symmetrical), and we consider two cases.

Suppose that for all i ∈ n 1 , T i , j = 0. Then, since T is not empty, (π n 1 -1 0 , (0, j))(T ) does not have any cross on line n 1 -1 nor on column 0. However, (π n 1 -1 0 , (0, j))(i, j) = (π n 1 -1 0 (i), 0). Therefore, (π n 1 -1 0 , (0, j))(T) does have a cross on column 0, but not on line n 1 -1 (the cross that comes from the coordinates (i, j) in T). As a consequence, δ (π n 1 -1 0 ,(0,j)) (T) is final in (b) Otherwise,

where 1 is the minimal element of F 1 and 2 is the maximal element of F 2 .

The application ψ is defined as follows :

We suppose in all the following cases that there exists (i, j)

2. If T n 1 -1,0 = 0, then there exists (i, j)

otherwise, where 1 is the minimal element of F 1 .

If

where 1 is the minimal element of F 1 .

We know, from Proposition 22, that for any F 1 ⊆ n 1 with F 1 {∅, n 1 }, and any

and thus ∼ is compatible with M F 1 ,F 2 . Hence, in this case, we have

However, by Corollary 3, we have

Notice also that if

Hence, it is easy to check that, in both cases, we also have sc(

To summarize, for any F 1 ⊆ n 1 and any

)). Hence, Theorem 2 gives us the state complexity of . Theorem 3. For any integer n 1 and n 2 greater than or equal to 2, we have sc

) is a witness for , i.e., for any integers n 1 and n 2 greater or equal to 2, we have sc (n 1 , n 2 ) = sc( (L(M 1 ), L(M 2 ))), where

Witnesses with a finitely bounded alphabet size

We now prove that admits a witness with a finitely bounded alphabet. Let n 1 , n 2 be two positive integers greater than or equal to 2, and let (M 1 , M 2 ) = Mon {n 1 -1},{0} n 1 ,n 2 . Let B 1 and B 2 be the DFAs obtained by restricting the letters of respectively M 1 and M 2 to the alphabet Σ = ((0, . . . , n 1 -2), Id), ((1, . . . , n 1 -2), Id), (Id, (1, . . . , n 2 -2)), ((1, . . . , n 1 -1), Id), a b (Id, (1, . . . , n 2 -1)), ((0, n 1 -1), Id), (Id, (0, n 2 -1)), ((0, 1), (0, 1)), ((0, 1), Id), (Id, (0, 1)), (π 1 0 , Id), (Id,

We let F denote the final zone of M Recall first that every letter of Σ can be seen as a mapping over the set of all tableaux of size n 1 × n 2 . Every word w of Σ can also be seen as such a mapping: if w = a 1 • • • a m , for any tableau T of size n 1 × n 2 , we let w(T) denote the tableau a m • • • • • a 1 (T). Therefore, every word w of Σ also designates a mapping over the set of all tableaux of size n 1 × n 2 . When it exists, we let w -1 denote the inverse of the mapping w. For any word w = a 1 • • • a m , and any i, j ∈ {1, . . . , m} with i ≤ j, we let w[i, j] denote the subword a i • • • a j . By convention, if j = 0 or j < i, w[i, j] = ε. The two following lemmas are proven by a straightforward induction on the length of w.

Lemma 19.

Let w be a word over Σ , and T be a non-empty state of B. Suppose that, for any integer 1 ≤ k ≤ |w|, we have either (w[1, k](T)) 0,0 = 1, or w[1, k](T) has no cross in F. Then we have δ w (T) = w(T). Lemma 20. For any word w over Σ , for any non-empty tableau T of size n 1 × n 2 , for any (i, j) ∈ n 1 × n 2 , if (w(T)) i,j = 1, then we have (δ w (T)) i,j = 1, where δ is the transition function of B.

We now show that the accessible part of B is equal to B. Proof. This proof follows the same steps as the proof of Lemma 16. However, we now have to make sure that all the letters we use are in Σ . We let E denote the set of all tableaux T of size n 1 × n 2 such that, if T has a cross in the final zone of M {n 1 -1},{0} , then T 0,0 = 1. The fact that every accessible tableau T of B is in E comes directly from the formula given for StX in Section 6.1. We now prove that every tableau of E is accessible in B.

Let δ be the transition function of B. For any tableau T of size n 1 × n 2 , let # nf T be the number of crosses of T which are not in the final zone of M {n 1 -1},{0} . Let < be the strict partial order on tableaux such that T < T if and only if, either #T < #T , or #T = #T and # nf T < # nf T . We prove that every tableau in E is accessible, by induction on non-empty tableaux for the partial order < (the empty tableau is the initial state of M {n 1 -1},{0} , and so it is accessible). The only minimal element for the strict partial order < is the empty tableau. Therefore, for any non-empty tableau T ∈ E, we define a tableau T such that T < T , and T is accessible from T. We distinguish the same cases as in the proof of Lemma 16. In order not to repeat ourselves too much, we focus here only on the cases of the proof of Lemma 16 where the letters used are not in Σ .

• If T has no cross in the final zone, according the previous remark, we have only to examine the case where T n 1 -1,0 = 0. Otherwise, we used the letters ((0, n 1 -1), Id), (Id, (0, n 2 -1)), and (Id,

), which are in Σ . Let (i, j) be the index of a cross of T . Let w = (Id, (0, 1))((0, . . . , n 1 -2), Id) i (Id, (1, . . . , n 2 -1)) j-1 and let T = w -1 (T ). We have (i, 1) ∈ (Id, (1, . . . , n 2 -1)) j-1 (T ), (1, 1) ∈ ((0, . . . , n 1 -2), Id) i (Id, (1, . . . , n 2 -1)) j-1 (T ), and therefore {0, 0} ∈ T. Furthermore, for all k ∈ {1, . . . , |w|}, for all (i, j)

Thus, by Lemma 19, we have δ w (T) = T . We also have T < T , since #T = #T and # nf T < # nf T .

• Suppose now that T has at least one cross in the final zone of M {n 1 -1},{0} . Recall then that T 0,0 = 1. We consider the following cases.

-Suppose that T has a cross in the final zone other than (0, 0). Let (i, j) be such a cross. We consider two cases.

Let T be the tableau obtained from w -1 1 (T ) by removing the cross at (0, 0) (i.e., T = w -1 1 (T ) \ {(0, 0)}), let w 2 = ((0, 1), Id), and let T = w 2 (T ). We have (0, 0), (1, 0) ∈ w -1 1 (T). As a consequence, T = ((0, 1), Id)(T ) \ {(0, 1)}, and (0, 0) ∈ T. We thus have T = ((0, 1), Id)(T) ∪ {(0, 0)}. Furthermore, (0, 1) ∈ ((0, 1), Id)(T), which implies that ((0, 1), Id)(T) is final. Therefore, T = δ ((0,1),Id) (T ). In addition, every symbol of w 1 fixes (0, 0). Hence, (0, 0) ∈ w 1 [1, k](T ), for any k ∈ {1, . . . , i -1}. Since T = w 1 (T ), by Lemma 19, we have

, and let T be the tableau obtained from w -1 1 (T ) by removing the cross at (0, 0), i.e., T = w -1 1 (T ) \ {(0, 0)}. Let w 2 = ((0, 1), (0, 1)), and let T = w 2 (T ). Notice first that T 0,0 = 1, which implies that T ∈ E. Furthermore, since (w 2 w 1 (T)) 0,0 = T 0,0 = 1, by Lemma 20, we have (δ w 2 w 1 (T)) 0,0 = 1. Let k be the minimal integer in {0, . . . , |w 1 |} such that (δ w 1 [1,k] (T )) 0,0 = 1. Notice that, for any integers ∈ {0, . . . , k -1}, the tableau δ w 1 [1, ] (T ) has no cross in the final zone. Therefore, by Lemma 19, we have w 2 (w 1 [1, l]

Notice that, since T does not have any cross on line n 1 -1, for any k ∈ N, (Id, (1, . . . , n 2 -1)) k (T ) does not have any cross on line n 1 -1 either. Furthermore, (Id, (1, . . . , n 2 -1)) does not change column 0. Therefore, either T has a cross at (0, 0) and (Id, (1, . . . , n 2 -1)) k (T ) is final in B for any k ∈ N, or T does not have any cross either on column 0 or on line n 1 -1, and (Id, (1, . . . , n 2 -1)) k (T ) is not final in B for any k ∈ N. In both cases, by Lemma 19, we have (Id, (1, . . . , n 2 -1)) n 2 -j (T ) = δ (Id,(1,...,n 2 -1)) n 2 -j (T ). Furthermore, T does not have any cross on column j, and recall that it does not have any cross on line n 1 -1 either. As a consequence, δ (Id,(1,...,n 2 -1)) n 2 -j (T ) does not have any cross on column 1 or on line n 1 -1. Therefore, (Id, (0, 1))((δ (Id,(1,...,n 2 -1)) n 2 -j (T )) does not have any cross either on column 0 or on line n 1 -1. Hence, (Id, (0, 1))((δ (Id,(1,...,n 2 -1)) n 2 -j (T )) = δ (Id,(0,1))(Id,(1,...,n 2 -1)) n 2 -j (T ). To summarize, δ w (T ) = w(T ), and δ w (T ) is not final in B. However, Lemma 22, we have (δ w (T)) 0,0 = 1, and δ w (T) is final in B. The tableaux T and T are thus distinguishable in B.

We now suppose that there exists x ∈ n 1 such that T x,j = 1. Let {i 1 , . . . , i } = {α | T α, j = 1} and let { j 1 , . . . , j p } = {β | T i 1 ,β = 1}. We state the same two properties that we noticed in the proof of Lemma 15. We designate them by Property 1 and Property 2 in the rest of the proof.

1. By Lemma 12, lines i 1 , . . . , i are the same, as they all have a cross on the column j.

Columns j 1 , . . . , j p are also the same, as they all have a cross on line i 1 . It follows that, if

then we have T i , j = 0.

2. We have j ∈ {j 1 , . . . , j p } and i {i 1 , . . . , i }.

The same reasoning as in Lemma 15 can be made. We let ( f, g) denote the pair of mappings such that, for any (i , j ) ∈ n 1 × n 2 , we have

Hence, by Property 1, we have T i , j = 0. As a consequence, ( f, g)(T ) has at most two crosses, one at (n 1 -1, 0) and one at (0, n 2 -1). Neither (n 1 -1, 0) nor (0, n 2 -1) is in the final δ w 0 (T ) = w 0 (T ). Let T 1 = δ w 0 (T) and T 1 = δ w 0 (T ) = w 0 (T ). Furthermore, by Lemma 22, T 1 has a cross at the coordinates w 0 (i, j) (0, 0), while T 1 = w 0 (T ) does not, since (i, j) T . Therefore, the tableaux T 1 and T 1 fall into the scope of case 1.

From a direct computation, we get

Furthermore, since T i,j = 0, we have i {i 1 , . . . , i l }, and j ∈ {j 1 , . . . , j p }, which implies that w(i, j) = (0, 0). Therefore, from Lemma 22, we have (δ w (T)) 0,0 = 1, which implies that δ w (T) is final in B. Therefore, in case 1, T and T are distinguishable in B. Furthermore, in case 2, we have shown that the two tableaux δ w 0 (T) and δ w 0 (T ) fall into the scope of case 1. Therefore, in these cases, δ w 0 (T) and δ w 0 (T ) are distinguishable in B. As a consequence, in all cases, T and T are distinguishable in B. To conclude, any two distinct states of A are distinguishable.

Lemma 21 and Lemma 23 imply that A is minimal. However, A has the same size as M {n 1 -1},{0} / * ↔ . Hence, by Theorem 3 A is witness for .

Theorem 4. The operation has a witness with sixteen letters. More precisely, for any integers n 1 and n 2 greater than or equal to 2, we have sc (n 1 , n 2 ) = sc( (L(B 1 ), L(B 2 ))).

Towards the general case

Our guess is that the method we use to compute the state complexity of the star of the symmetric difference can be generalized to compute the state complexity of the star of every boolean operations. However, the aim of this section is not to describe precisely how to generalize it, but just to give a few thoughts. Let b be a k-ary boolean function, and let (A 1 , . . . , A k ) be a k-tuple of DFAs with A j = (Σ, Q j , i j , F j , δ j ). Recall that, if a is a letter of Σ and E a subset of

where F is the set of all elements (q 1 , . . . , q k ) of

The binary boolean operation b

The state complexity of b , i.e., sc b (n 1 , n 2 )

Table 6.1: The state complexities of the star of the 16 binary boolean operations.

Chapter 7

Friendly and product modifiers

In this chapter, we examine two suboperads of modifiers defined by simple algebraic properties: product modifiers and friendly modifiers. We first characterize the operations described by friendly modifiers, and we explore their algebraic structure. We then show that we can fit into this structure the algebraic structure of product modifiers. Finally, we show some state complexity results for friendly and product modifiers.

Friendly modifiers

In this section, we study the structure of the operad of coherent friendly modifiers (M f c , •). We prove that we can change every friendly modifier into a "standard" form, without changing the operation it describes. Furthermore, we define friendly operations as the composition of a generalized version of boolean operations and some roots. We prove that the set of friendly operations O f is exactly the set of all the operations described by friendly modifiers. Furthermore, we study the algebraic structure behind coherent friendly modifiers, with respect to the composition of operations, in detail. We define a quotient operad of (M f c , •) that is isomorphic to (O f , •). We also prove both of these operads are isomorphic to an operad equal to the set of all k-tuples of eventually periodic sequences with values in {0, 1}, equipped with some binary operation .

Friendly modifiers: an operad Definition 30. We say that a k-modifier

The idea of the above definition is that d is a morphism of monoids with respect to its third coordinate. For instance, it is easy to see that the modifier Sqrt is friendly, and that any modifier m b , where b is a boolean function, is friendly.

Proof. Let (t 1 , . . . , t k ) and (t 1 , . . . , t k ) be two k-tuples of transition configurations, with t j = (Q j , i j , F j , φ j ) and t j = (Q j , i j , F j , φ j ) for any j ∈ {1, . . . , k}, such that χ(t 1 , . . . , t k ) = χ(t 1 , . . . , t k ). Let (A 1 , . . . , A k ) and (A 1 , . . . , A k ) be k-tuples of DFAs with A = ({a}, Q , i , F , α ) and A = ({a}, Q , i , F , α ) such that, for any ∈ {1, . . . , k}, we have α a l = φ l and α l a = φ l . Since χ(t 1 , . . . , t k ) = χ(t 1 , . . . , t k ), we have, for any ∈ {1, . . . , k} and any integer p, [φ

Therefore, for any ∈ {1, . . . , k} and any integer p, we have [α a p (i )

As a consequence, for any ∈ {1, . . . , k}, we have L(A ) = L(A ). Thus, since m is coherent, we have a ∈ L(m(A 1 , . . . , A k )) if and only if a ∈ L(m(A 1 , . . . , A k )). In other words, as α a l = φ l and α l a = φ l for any ∈ {1, . . . , k}, we have

if and only if

Therefore, from Definition 31, we have

The above result invites us to represent the third coordinate f of a standard friendly modifier by a set of characteristic functions. In fact, Proposition 25, proven in Section 7.1.4, shows that there is a one-to-one correspondence between standard friendly modifiers and subsets of U. Therefore, we now define an application mod that allows us to compute a standard friendly k-modifier from any subset of U k . Definition 34. For any integer k, for any E ⊆ U k , we let mod(E) denote the standard friendly modifier [Q, i, f, d] such that, for any k-tuple of state configurations

We let M s c denote the set of coherent standard friendly modifiers (graded by their arity). Furthermore, we let PU denote the set k∈N 2 U k , graded so that, for any k ∈ N, (PU) k = 2 U k . As a corollary of Proposition 24, every coherent standard friendly k-modifier can be constructed from some subset of U k , using Definition 34, i.e., M s c ⊆ mod(PU). More precisely, Corollary 4. Let m = [Q, i, f, d] be a coherent standard friendly k-modifier, and let E be the set of all k-tuples of sequences χ(t 1 , . . . , t k ), such that (t 1 , . . . ,

We have m = mod(E). Definition 37. Let (u 1 , . . . , u k ) be a k-tuple of sequences with values in {0, 1}. For any k-tuple of regular languages (L 1 , . . . , L k ), we let (u 1 , . . . , u k ), (L 1 , . . . , L k ) denote the language (j,p)∈{1,...,k}×N E j,p , where E j,p = p L j if u j,p = 1, and E j,p = p L j c otherwise.

Furthermore, we let (u 1 , . . . , u k ), • denote the k-ary operation over regular languages such that, for any k-tuple of regular languages (L 1 , . . . , L k ), we have

Example 26. Let (u 1 , u 2 ) ∈ U 2 be such that u j,p = 1 if and only if p + j is even. Then, for any two regular languages L 1 and L 2 , (u 1 , u 2 ), (L 1 , L 2 ) is equal to The next lemma proves that, (u 1 , . . . , u k ), • is the constant operation with the empty set as output if (u 1 , . . . , u k ) is not in U k . Lemma 26. For any integer k, if (L 1 , . . . , L k ) is a k-tuple of regular languages, and if (u 1 , . . . , u k ) is a k-tuple of sequences with values in {0, 1} such that (u 1 , . . . , u k ), (L 1 , . . . , L k )

∅, then we have u ∈ U k .

Proof. Let (A 1 , . . . , A k ) be a k-tuple of DFA with A j = (Σ, Q j , i j , F j , δ j ) such that, for all j ∈ {1, . . . , k}, L(A j ) = L j . We have w p ∈ L j if and only if (δ w j ) p (i j ) ∈ F j . Therefore, if there exists a word w and a k-tuple of sequences (v 1 , . . . , v k ) with values in {0, 1} such that, for all ( j, p) ∈ {1, . . . , k} × N, we have [w p ∈ L j ] = v j,p , then [(δ w j ) p (i j ) ∈ F j ] = v j,p , which implies that (v j,p ) p∈N is eventually periodic. To summarize, if

We let O f denote the set of friendly operations (graded by their arity). The next lemma proves that there is a one-to-one correspondence between PU and O f , which is given by the following application.

Definition 38.

Let op be the application such that, for any E ⊆ U k , op(E) denotes the friendly k-ary operation

The following lemma proves that there is a one-to-one correspondence between subsets of U k and k-ary friendly operations.

Lemma 27. The application op is a bijection from

. Let (t 1 , . . . , t k ) and (t 1 , . . . , t k ) be two k-tuples of transition configurations with t = (Q , i , F , φ ) and t = (Q , i , F , φ ), for any ∈ {1, . . . , k}. Suppose that, for any ∈ {1, . . . , k},

, and we let (h 1 , . . . , h k ) denote

The idea of this proof is the same as the proof of Proposition 24. We define two k-tuples (A 1 , . . . , A k ) and (A 1 , . . . , A k ) of well-chosen DFAs such that L(A ) = L(A ), and conclude from the coherence of m. However, this time, we do not define the transition functions of a in A and A as φ and φ , but rather as a modified version of them. To that aim, for any ∈ {1, . . . , k}, we let ψ and ψ denote the two functions of Q Q and Q Q respectively such that 1. if h i and h i , then

i ) and h = i , then ψ and ψ are defined in a symmetrical way with respect to the cases 2 and 3.

Notice that, if i = φ (i ), cases 2 and 3(a) may overlap. However, they lead to the same definition of ψ and ψ . We let (A 1 , . . . , A k ) and (A 1 , . . . , A k ) denote the two k-tuples of DFAs such that A = ({a}, Q , i , F , α ) and A = ({a}, Q , i , F , α ), with α a = ψ and α a = ψ , for any ∈ {1, . . . , k}.

Notice that, if p = 0, we have ψ p (i ) = i and ψ p (i ) = i for any ∈ {1, . . . , k}. However, recall that we supposed

for any ∈ {1, . . . , k}. Therefore, if p = 0, since α a p = ψ p and α a p = ψ p , we have [α a p (i ) ∈ F ] = [α a p (i ) ∈ F ] for any ∈ {1, . . . , k}. We prove that [α a p (i ) ∈ F ] = [α a p (i ) ∈ F ] still holds true for any ∈ {1, . . . , k} and any positive integer p, in a similar way, by computing ψ p (i ) and ψ p (i ) in every one of the above cases. Thus, for any positive integer p and any ∈ {1, . . . , k}, we have

and h = i , then ψ p and ψ p are symmetrical with respect to the case 3.

We check by a direct computation that, in all of the above cases, we have [ψ

for any ∈ {1, . . . , k} and any integer p. However, α a p = ψ p and α a p = ψ p , for any ∈ {1, . . . , k} and any integer p. Therefore, for any ∈ {1, . . . , k}, we have L(A ) = L(A ). Thus, since m is coherent, we have a ∈ L(m(A 1 , . . . , A k )) if and only if a ∈ m(A 1 , . . . , A k ). Hence, denoting f((Q

On the state complexity of friendly operations

We have shown that every k-ary quasi-boolean operation is described by a product k-modifier. Therefore sc ⊗ (n1, ..., nk) ≤ k j=1 n j . This upper bound is met, for example, for the intersection of k languages by the k-monster Mon {n 1 -1},...,{n k -1} n 1 ,...,n k , as shown in Proposition 20. However, the case of friendly modifiers is not as easy.

We know that the state complexity of the square root operation [START_REF] Caron | New tools for state complexity[END_REF] is sc √ (n) = n nn 2 , and that it is equal to the state complexity of the operation Root [START_REF] Krawetz | State complexity and the monoid of transformations of a finite set[END_REF]. However, our construction of standard modifiers (Definition 31) gives us at first sight an upper bound of sc ⊗ (n) ≤ n n , for any unary friendly operation ⊗. This raises the question of whether the state complexity of some unary friendly operation reaches this bound and, if not, whether we can give an explicit tight bound. Similar questions arise for the general case of k-ary friendly operations with the obvious upper bound sc ⊗ (n 1 , . . . , n k ) ≤ k j=1 n n j j deduced from Definition 31.

The unary case

We show that the bound n n is not tight for the state complexity of unary friendly operations, and we give an explicit tight bound. We first show that the state complexity of L is at most n nn + 1. Proposition 29. For any positive integer n and any friendly unary operation ⊗, we have sc ⊗ (n) ≤ n nn + 1.

Proof. Consider any subset E ⊆ U 1 . Let ⊗ = op(E) and m = mod(E). Let A = (Σ, Q, i, F, α) be a DFA with size n ∈ N \ 0. For all s, t ∈ Q, we let g s,t denote the function of Q Q such that g s,t ( j) = s if j ∈ F t otherwise, and by G the set of all functions g s,t , for s, t ∈ Q. Furthermore, we let 0 denote the sequence (0, 0, . . .) of U 1 , we let 0 1 denote the sequence (0, 1, 1, . . . , 1, . . .), we let odd denote the sequence (0, 1, 0, 1, . . . , n mod 2, . . .), and we let even denote the sequence (1, 0, 1, 0, . . . , (n + 1) mod 2, . . .).

It follows from the definition of g s,t that, for any ζ ∈ Q Q and for any g s,t ∈ G, we have ζ • g s,t = g ζ(s),ζ(t) . We use this property extensively in the rest of the proof, and we will refer To summarize, in all the cases, we have sc(L(m(A))) ≤ n n -n+1. Hence, sc ⊗ (n) ≤ n n -n+1, for any friendly unary operation ⊗.

We now show that this bound is tight for ž 1 = op({0, 0 1 }), where 0 = (0, 0, . . .) and 0 1 = (0, 1, 1, . . . , 1, . . .). Notice that, for any regular language L over alphabet Σ, if ε L, then we have

and if ε ∈ L, then we have ž 1 (L) = ∅. Let w 1 = mod({0, 0 1 }). We let A n denote the DFA w 1 (Mon {n-1} n ), for any integer n. We determine a lower bound for the state complexity of ž 1 by computing the minimal DFA equivalent to A n . Recall, by Definition 22, Definition 31 and Definition 34, that the alphabet of A n is Γ n = n n , that its set of states is also n n , and that every state φ of A n is accessible from its initial state Id n by reading the letter φ. For any function φ ∈ n n , we let κ(φ) denote the characteristic sequence χ( n , 0, {n -1}, φ). To compute the Nerode equivalence induced by A n , we show the following result.

Lemma 30. For any positive integer n, and every two distinct functions φ, ψ ∈ n n such that ψ is non-constant, there exists

Proof. We consider two main cases, φ(0) ψ(0) and φ(0

Symmetrically, if φ(0) φ(n -1) then we obtain the same result by permuting the role of ψ and φ in the previous case. Now suppose that φ(0) = φ(n -1) and ψ(0) = ψ(n -1). As ψ is not constant, there exists i ≥ 1 such that ψ(n -1) ψ(i). We set ζ(φ(0)) = ζ(ψ(i)) = n -1 and ζ(ψ(0)) = i, which implies that κ(ζ • φ) = 0 1 and κ(ζ • ψ) = (0, 0, 1, . . .) {0, 0 1 }. Now suppose that φ(0) = ψ(0). Then there exists j > 0 such that φ( j) ψ(j). We have φ(j) φ(0) or ψ(j) ψ(0). Suppose that φ( j) φ(0) (the other case can be treated symmetrically). If 1 . This concludes the proof. By Definition 34, the above lemma implies that any two distinct states of A n such that at least one of them is non-constant are distinguishable. Therefore, any non-constant state is distinguishable from every other state and the size of the minimal DFA equivalent to A n is at least equal to the cardinality of the set of all mappings over n that are not constant. Thus, for every n ∈ N \ 0, the size of the minimal DFA equivalent to A n is at least n nn + 1. Hence, we have sc ž 1 (n) ≥ n nn + 1, for any positive integer n. As a consequence, from Proposition 29, we have sc ž 1 (n) = n nn + 1, for any positive integer n. We have thus proved the following theorem. Theorem 8. For any positive integer n and any friendly operation ⊗, sc ⊗ (n) ≤ n nn + 1, and the bound is tight for ž 1 , i.e., we have sc ž

The general case

Surprisingly, unlike the unary case, we show that there are friendly operations which state complexity meets the upper bound k j=1 n n j j . We assume that k ≥ 2, and we let ž k denote the k-ary operation op(E k ), where E k = {0, 0 1 } k \ {(0, . . . , 0)}. For any k-tuple of positive integers (n 1 , . . . , n k ), we let A n 1 ,...,n k denote the DFA ž k (Mon {n 1 -1},...,{n k -1} n 1 ,...,n k ). Furthermore, for any ktuple of functions (φ 1 , . . . , φ k ), with φ j ∈ n j n j for any j ∈ {1, . . . , k}, we let κ(φ 1 , . . . , φ k ) denote the characteristic sequence χ(( n 1 , 0, {n 1 -1}, φ 1 ), . . . , ( n k , 0, {n k -1}, φ k )).

Theorem 9. For any integer k ≥ 2 and for any k-tuple of positive integers (n 1 , . . . , n k ), we have

Proof. Our proof is inspired by the unary case. Let k be an integer with k ≥ 2, and let (n 1 , . . . , n k ) be a k-tuple of positive integers. Furthermore, let (φ 1 , . . . , φ k ) and (ψ 1 , . . . , ψ k ) be two k-tuple of mappings, with φ j , ψ j ∈ n j n j for any j ∈ {1, . . . , k}, such that (φ 1 , . . . , φ k ) (ψ 1 , . . . , ψ k ). We show that there exists (ζ 1 , . . . , ζ k ), with ζ j ∈ n j n j for any j ∈ {1, . . . , k},

Let such that φ ψ . We consider two cases. • If one of the functions φ and ψ is not constant, then we can suppose that ψ is not constant (the other case is symmetrical). Therefore, by Lemma 30, there exists a mapping ζ over n such that κ(ζ • φ ) ∈ {0, 0 1 } if and only if κ(ζ • ψ ) {0, 0 1 }. We assume that κ(ζ • φ ) ∈ {0, 0 1 } (the other case is symmetrical). Furthermore, for any j ∈ {1, . . . , k} with j , we let ζ j denote the constant function sending any element to n j -1. We have 

List of Notations and Symbols

This is a list of the most frequently used notations and symbols.

• n : The set {0, . . . , n -1}

The set of all q ∈ E such that q ∼ q , where ∼ is an equivalence relation over E

• E/ ∼ : The set of all ∼ q, when q ∈ E • •: See Definition 6

• / ∼ : See Definition 11

• ∼ φ when φ is a morphism of operads: See Definition 12 • PC k : The set of all E in 2 U k such that, if (u 1 , . . . , u k ) is in E, then any k-tuple of sequences (v 1 , . . . , v k ) ∈ U k , with v j,0 = u j,0 and v j,1 = v j,0 for any j, is also in E

• PC: The set k∈N PC k

• mod: See Definition 34

• op: See Definition 38

• desc: See Definition 21

• desc f : The restriction of desc to friendly modifiers (Definitions 21 and 30)

• ∼ s : The equivalence relation over friendly modifiers such that m ∼ s m if and only if m sf = m sf

• mod: The application such that, for any E ∈ PU, we have mod(E) = ∼ s mod(E)