
HAL Id: tel-03329819
https://theses.hal.science/tel-03329819

Submitted on 31 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An algebraic theory for state complexity
Edwin Hamel-de Le Court

To cite this version:
Edwin Hamel-de Le Court. An algebraic theory for state complexity. Logic in Computer Science
[cs.LO]. Normandie Université, 2020. English. �NNT : 2020NORMR083�. �tel-03329819�

https://theses.hal.science/tel-03329819
https://hal.archives-ouvertes.fr

Thèse
Pour obtenir le diplôme de doctorat

Spécialité Informatique
Préparée au sein de l’Université de Rouen

An Algebraic Theory for State Complexity
Une Théorie Algébrique pour la Complexité en États

Présentée et soutenue par:
Edwin HAMEL-DE LE COURT

Composition du jury

Pascal Caron Professeur des Universités Directeur de ThèseUniversité de Rouen

Jean-Gabriel Luque Professeur des Universités Co-directeur de ThèseUniversité de Rouen

Galina Jirásková Professor, RapporteurSlovak Academy of Sciences

Sylvain Lombardy Professeur des Universités RapporteurInstitut Polytechnique de Bordeaux

Jeffrey O. Shallit Professor RapporteurUniversity of Waterloo

Émilie Charlier
Chargée de cours ExaminateurUniversité de Liège

Anca Muscholl Professeur des Universités ExaminateurUniversité de Bordeaux

Samuele Giraudo Maître de conférences ExaminateurUniversité Gustave Eiffel

2

Contents

1 Introduction 5

2 Preliminaries 11
2.1 Notations and conventions . 11

2.1.1 Standard notations and conventions 11
2.1.2 Non-standard notations and conventions 13

2.2 Mappings over ~n� . 13
2.3 Equivalence relations . 15
2.4 Operations over languages and DFAs . 15

2.4.1 Alphabets, words and languages . 15
2.4.2 Deterministic, finite and complete automata 16
2.4.3 Accessible states, the Nerode equivalence and minimal DFAs 18
2.4.4 Language operations and regular operations 19
2.4.5 State complexity . 21
2.4.6 Morphisms . 22

3 Operads 23
3.1 What is an operad? . 23
3.2 Operations over a set . 28
3.3 Morphisms, quotient operads, and suboperads 31

4 Modifiers and 1-uniform operations 37
4.1 About 1-uniform operations . 37
4.2 Modifiers . 39

4.2.1 Definition . 39
4.2.2 Examples . 40
4.2.3 Alternative notations . 43
4.2.4 From modifiers to regular operations 50

4.3 The link with operational state complexity 52
4.3.1 Monsters . 52
4.3.2 Modifiers and 1-uniform operations 54
4.3.3 Computing the state complexity of 1-uniform operations 55

3

4 CONTENTS

5 Examples 57
5.1 Star . 58

5.1.1 Applying the star modifier to monsters 58
5.1.2 An upper bound . 59
5.1.3 A lower bound . 60

5.2 Boolean Operations . 61
5.2.1 Applying the modifiers describing boolean operations to monsters . 61
5.2.2 An upper bound . 62
5.2.3 A lower bound . 63

5.3 Catenation . 63
5.3.1 Applying the catenation modifier to monsters 63
5.3.2 An upper bound . 64
5.3.3 A lower bound . 65

6 On the star of boolean operations 69
6.1 The star of the symmetric difference: a first analysis 69
6.2 Computing the Nerode equivalence of M{n1−1},{0} 70
6.3 Computing the accessible states of M{n1−1},{0} 74
6.4 Computing the state complexity of the language recognized by M{n1−1},{0} . . 76
6.5 Discussing the monsters’ final states . 77
6.6 Witnesses with a finitely bounded alphabet size 84
6.7 Towards the general case . 90

7 Friendly and product modifiers 95
7.1 Friendly modifiers . 95

7.1.1 Friendly modifiers: an operad . 95
7.1.2 Standard friendly modifiers . 96
7.1.3 Characteristic sequences . 98
7.1.4 Friendly operations . 100
7.1.5 On the algebraic structure of friendly modifiers 104

7.2 Product modifiers . 105
7.2.1 Product modifiers: an operad . 105
7.2.2 From product modifiers to standard modifiers 106
7.2.3 Product modifiers and quasi-boolean operations 110
7.2.4 On the algebraic structure of product modifiers 111

7.3 On the state complexity of friendly operations 114
7.3.1 The unary case . 114
7.3.2 The general case . 117
7.3.3 On the size of the witnesses’ alphabets 118

8 Conclusion 119

List of Notations and Symbols 121

Bibliography 124

Chapter 1

Introduction

In the middle of the twentieth century, with the advent of the first computers, mathe-
maticians became increasingly interested in classifying the different ways with which a
machine computes. Automata are one of the simplest and most useful models that arose.
Since then, a large theory was constructed around this concept. This theory found many
practical applications like text processing, lexical analysis, or hardware engineering. In
addition, many connections have been built between automata and other areas of mathe-
matical research, like logic or algebra.

Many different kinds of automata have been defined and used in computer science.
However, in this thesis, we are only interested in complete, deterministic and finite au-
tomata. We explain in the following the idea behind each of these terms. Intuitively, finite
automata can be seen as machines that are able to enter a finite number of states. One
may go from one state to the other by "reading" a certain letter chosen in a finite set, called
an alphabet. We represent an automaton by drawing a circle for each state, with its name
inside, and by drawing arrows going from state to state, labelled by letters. For example,
in the automaton of Figure 1.1, we can go from state 0 to state 1 by reading either a or b,
we can go from state 2 to state 1 by reading either a, b, or c, we can go from state 2 to state
2 by reading b, etc.

0 1 2

a, b

b

b, c

c

a, c, b

Figure 1.1: A finite automaton.

Thus, we may go from one state to another by "reading" a sequence of letters, called
a word. For example, in the automaton of Figure 1.1, we may go from the state 0 to the
state 2 by reading the word acb: we go to state 1 by reading a, then we go to state 2 by
reading c, and then we stay in state 2 by reading b. Finite automata are designed to accept

5

6 CHAPTER 1. INTRODUCTION

or reject words, using this mechanism. Indeed, notice that some states of the automaton
of Figure 1.1 bear some markings. The states at the end of an arrow that does not come
from any other states (i.e., the states 0 and 1) are called the initial states. The states with
two circles around them (i.e., states 1 and 2) are called the final states. A word is accepted
by an automaton if we can go from an initial state to a final state by reading this word.
For example, the word bca is accepted by the automaton of Figure 1.1, because we can go
from 0 to 1 by reading b, then from 1 to 2 by reading c, and finally from 2 to 1 by reading
a. However, the word ab, for example, is not accepted by the automaton, because there is
no way to go from either 0 or 1 to either 1 or 2 by reading ab. Indeed, in order to read a,
the only initial state we can begin with is the state 0. Furthermore, reading a from state 0
leads us to state 1, and then reading b from state 1 leads us to state 0, which is not final. A
language is a set of words, and the set of all the words accepted by a finite automaton A is
called the language recognized by A. A language L recognized by an automaton is called
regular.

To be deterministic, a finite automaton must satisfy two conditions. The first one is to
have exactly one initial state. The second one is that, by reading a letter from any state,
there should be at most one state to which we can go. In other words, for every state q and
for every letter a, there should be at most one arrow labelled by a starting from state q. For
example, the automaton of Figure 1.1 is not deterministic because, by reading c from the
state 1, we can go either to state 0 or to state 2. Another reason would be that it has two
initial states, 0 and 1. However, for example, the automaton of Figure 1.2 is deterministic.

0 1 2

a, b

b

b

c

a, c

Figure 1.2: A deterministic and finite automaton.

A deterministic and finite automaton is complete if it is possible to read any letter
of its alphabet from any state. In other words, for every letter a of its alphabet, and for
every of its states q, there is an arrow labelled by a and starting at q. For example, the
automaton of Figure 1.2 is not complete, because we cannot read the letter c from the state
0. To summarize, a finite automaton is complete and deterministic if there is exactly one
possible state to go to by reading any letter from any state. For example, the automaton
represented in Figure 1.3 is complete, deterministic, and finite.

7

0 1 2

a, b

c b

b, a

c

a, c

Figure 1.3: A complete, deterministic and finite automaton.

A language is recognized by a complete, deterministic, and finite automata (DFAs) if
and only if it is regular. The reason why DFAs are so interesting is that checking if a word
is recognized by one of them is easy. Indeed, we only need to read the word from its
initial state, and to check whether the state in which we end up is final. Since there is only
one way to read the word from the initial state, we do not need to worry whether there is
another way to read it that would lead to a final state, as is the case with non-deterministic
automata.

It is often interesting to work directly on regular languages to design algorithms.
However, the space used to run algorithms is limited, and we are often concerned with the
space we need to encode the objects we use. This raises the question of the space needed
to code a regular language. Since every regular language is recognized by an infinity of
DFAs, can we find the smallest DFA needed to recognize a regular language? And what
does "smallest" mean exactly, for DFAs? In other words, what is the "size" of a DFA?

Intuitively, the size of a DFA should roughly depend on the size of its alphabet, and
on how many states it has. However, by convention, we define the size of a DFA as
the number of its states. Given a regular language L, the size of the smallest DFA (with
respect to its size) that recognizes L is called the state complexity of L. Computing the state
complexity of a regular language L is usually not obvious to do. In the rest of this thesis,
we compute the state complexities of many regular languages, each time in a different
way.

Nonetheless, the main questions we address in this thesis do not concern the state
complexity of regular languages directly, but rather an extension of this notion to regular
operations. A regular operation is an operation acting over regular languages and return-
ing a regular language. The state complexity of a regular operation is the maximal state
complexity of its outputs, given the state complexity of its inputs. In other words, the state
complexity of a regular operation is a measure of how much more complex its output can
be compared to its inputs.

The state complexity of operations has been extensively studied in the past years. To our
knowledge, the first paper stating results about the state complexity of operations is [33].
In this paper, Maslov computed the state complexity of union, Kleene star, square root,
catenation, among others, without rigorous proofs. Furthermore, the state complexities
computed for the Kleene star and the square root were not accurate. Some time passed
before other computer scientists decided to explore more deeply the state complexity
of operations. Nonetheless, many papers computing the state complexity of different
operations were eventually published. These include the Kleene star, reversal, powers,

8 CHAPTER 1. INTRODUCTION

proportional removals, catenation, binary boolean operations, among others [40, 38, 15,
28, 14, 23, 24, 25, 2]. A survey on the state complexity of operations has been published in
2017 [18]. Furthermore, the state complexities of some compositions of two or more well-
known operations have been computed, like the star of union, the star of intersection, star-
complement-star, multiple compositions of boolean operations and multiple compositions
of catenation, among others [27, 19, 31, 11, 16, 29, 22, 8, 9, 10].

Even though the state complexity of many different operations are known, there are
very little general results that can be applied to help us compute the state complexity of a
new operation. This is mainly due to the fact that we do not understand well enough how
to compute the state complexity of the composition of two operations, even when these
operations are simple. Moreover, the monoid structure underlying the transitions of a DFA
is well-known, but rarely used to formalize their results. Nonetheless, some similarities
can still be observed between computations of state complexity for most operations. Two
steps are usually needed when computing the state complexity of a regular operation.
The first one is to compute an upper bound using some ingenious tricks. The second is
to provide a family of languages, called a witness, whose image by the operation matches
this upper bound. Brzozowski [2] pointed out that some particular witnesses could be
used for several well-known operations. One of the explanations given by Brzozowski is
that they are "complex" in a certain sense: their syntactic monoid is as large as possible. In
this thesis, we take a step back and explain why this heuristic method works by adopting
an algebraic point of view on witnesses and regular operations.

To that aim, in Chapter 4, we build an algebraic framework, so that the new notions
we introduce may be more easily handled and deeply understood. To begin with, the
operations that fall into the scope of our results, which we call 1-uniform, are the regular
operations that commute with the inverse of every length-preserving morphism. This
class contains many well-known regular operations, like the (set-theoretic) complement,
the Kleene star, the Kleene positive closure, the cyclic shift, the mirror, all the boolean
operations, the catenation, the shuffle, etc. Furthermore, this class of operations is stable
by composition. Throughout our research, it appeared that this property of stability
by composition played an important role, and gave an interesting algebraic structure to
regular operations. Therefore, to formalize the results that come from this property, we
decided to use operads, an algebraic tool that comes from the study of different types of
algebras [32]. We introduce operads in Chapter 3. Operads are algebraic structures made
to mimic operations of higher arity. Their definition captures the way operations of higher
arity are composed with one another, in the same way that monoids captures the way by
which some objects can be added or multiplied with one another. For example, language
operations, regular operations, and 1-uniform operations alike form an operad.

In order to prove some results about the state complexity of 1-uniform operations,
we define modifiers, a counterpart to 1-uniform operations in the space of operations
over DFAs. Modifiers that are naturally associated with 1-uniform operations are called
coherent. We use modifiers to work directly over DFAs, which makes state complexity
computations easier. Furthermore, modifiers behave well with respect to composition. To
be more precise, modifiers form an operad, and the association between coherent modifiers
and 1-uniform operations, is described by a morphism of operads. The study of modifiers
leads to the main result of Chapter 4, which states that every 1-uniform operation admits

9

a certain type of DFA, called monster, as witness.
As their name suggests, monsters are DFAs with a very large alphabet. In fact, their

alphabet is composed of every possible transition function. Because of the size of their
alphabets, monsters are not usually given as witnesses when computing state complexities.
It is usually considered better to provide witnesses with small bounded alphabets (less
than 5 or 6 letters). However, strictly speaking, if our goal is solely to compute the state
complexity of a regular operation, we do not need to worry about the size of our witnesses’
alphabets. Therefore, to reach that goal, monsters are good candidates for witnesses, since
they give us as much leeway as possible for reachability and distinguishability proofs.
Moreover, one can reduce the size of their alphabets later, once a first proof is done.
Presenting certain state complexity computations this way may even be clearer, and easier
to understand.

Using the framework built in Chapter 4, we devise a method to compute the state
complexity of 1-uniform operations, and show that it works on simple examples in Chapter
5. Similar techniques have been used in numerous papers, the oldest of which would be
a paper published in 1978 by Sakoda and Sipser [37]. The authors created languages
composed of graphs, that "contain" in some way all the other languages recognized by
the automata they study. This idea led to some state complexity results about conversions
between different kinds of automata. Ravikumar [35] recognized the possible generality
of this technique and applied it to several problems. Despite two of them being about
the state complexity of operations (specifically about the Kleene star and the intersection),
Ravikumar did not give a general class of regular operations for which this technique can be
applied. Later on, many papers using this idea to prove results about the state complexity
of operations were published [39, 26, 15, 3, 8]. However, none of them described a general
framework that helps us knowing when we can apply such a technique, and the method
itself was never formalized.

In addition, it is well worth noting that a very similar framework to the one we built,
conveying similar ideas and using similar results, is described in the thesis of Sylvie Davies,
albeit with a different point of view [13]. Sylvie Davies found these results concurrently
and independently, and published them in [12]. This is not so surprising, as these ideas
formalize a heuristic commonly used to compute state complexities. Coincidentally, this
stresses the importance and fruitfulness of these ideas.

We put the method we devised to good use in Chapter 6, where we try to compute
the state complexity of the star of a boolean operation. This problem is of course harder
than computing the state complexity of either one of these operations, as there is no reason
for state complexity of their composition to be equal to the composition of their state
complexity. We manage to compute the exact state complexity of the star of symmetric
difference [4], using some combinatorial results of [8]. This is an entirely new result.
Combined with other results [16, 27], this gives us the state complexity of the star of every
binary boolean operation. However, computing the state complexity of the star of every
boolean operation is still out of our reach. We explain how our reasoning in the particular
case of the symmetric difference may be generalized in Section 6.7.

As we see in Chapter 6, it can be difficult to compute the state complexity of the
composition of two operations, even when these operations are well understood. As for
the composition of three or more well-known regular operations, the problem becomes

10 CHAPTER 1. INTRODUCTION

highly complex, so much so that the most simple cases are already complicated [29, 22].
Therefore, in Chapter 7, we look for classes of operations that are non-trivial, but that have
a simple structure with respect to composition. We examine how the algebraic structure of
DFAs can be used to understand the algebraic structure of regular operations, in the hope
of proving some state complexity results about large classes of operations. To that aim, we
define two classes of modifiers, friendly modifiers and product modifiers, by simple algebraic
properties pertaining to the algebraic structures of their input and output DFAs. The
results of this chapter concerning friendly and product modifiers, are, to our knowledge,
entirely new. These two classes are stable by composition, and thus form an operad. We
show that friendly modifiers describe every composition of a boolean operation and some
roots, and that the operation described by product modifiers are a slight generalization
of boolean operations [6, 5] . Furthermore, we study in detail the underlying algebraic
structure, and show how the structure induced by product modifiers fits into the structure
induced by friendly modifiers. Finally, we compute the maximal state complexity of
friendly operations, depending on their arity.

Chapter 2

Preliminaries

2.1 Notations and conventions

2.1.1 Standard notations and conventions

• The cardinality of a finite set E, denoted by #E, is the number of elements of E.

• A set G is a subset of a set E if, for all g ∈ G, we have g ∈ E. In that case, we write
G ⊆ E. The set of all subsets of E is denoted by 2E.

• A mapping f from a set E to a set G associates every element of E with an element of
G. We let f (e) denote the element of G associated with an element e of E. We say that
f (e) is the image of e by f .

• The set of all mappings of a set E to a set F is denoted by FE. If f is a mapping from E
to E, we say that it is a mapping over E.

• The identity over E, denoted by IdE, is the mapping such that, for all e ∈ E, we have
IdE(e) = e. When E is clear from the context, to avoid cumbersome notations, we let
IdE denote Id.

• Let f be a mapping from a set E to a set F. For every subset G of E, we let f (G) denote
the set of all elements y of F such that there exists x ∈ G with y = f (x). We say that
f (G) is the image of G by f .

• A partial function from a set E to a set F is a mapping f from a subset G ⊆ E to F. We
say that G is the domain of f .

• Let E, F, and G be three sets, let f be a mapping from E to F, and g be a mapping
from F to G. We let f ◦ g denote the mapping from E to G such that, for all e ∈ E, we
have (f ◦ g)(e) = f (g(e)). We call ◦ the composition of functions.

• The set of all non-negative integers is denoted by N, and the set of all positive
integers is denoted byN \ 0.

11

12 CHAPTER 2. PRELIMINARIES

• Let E be a set. A sequence with values in E is a mapping u fromN to E. We usually let
(u j) j∈N denote u, where u j = u(j) for all j ∈N.

• A sequence (u j) j∈N with values in a set E is eventually periodic if and only if there exist
two non-negative integers p and N, such that for all n ≥ N, we have un+p = un.

• For all non-negative integers k, a k-tuple of elements u of E, or a finite sequence with
values in E, is a mapping from {1, . . . , k} to E, or equivalently an element of Ek. When
the terminology of k-tuple is employed, we usually let (u1, . . . ,uk) denote u, where
u j = u(j) for all j ∈ {1, . . . , k}. Furthermore, when the terminology of finite sequence is
employed, similarly to the general case of sequences, we usually let (u j) j∈{1,...,k} denote
u, where u j = u(j) for all j ∈ {1, . . . , k}.

• For all non-negative integers k, we let Ek denote the set of all k-tuples of elements of
E. The set E1 is identified with E.

• A mapping f from a set E to a set F is surjective if and only if, for all y ∈ F, there exists
x ∈ E such that y = f (x). A mapping f from a set E to a set F is injective if and only
if, for any two distinct elements x and x′ of E, we have f (x) , f (x′). A mapping is
bijective if it is surjective and injective.

• Let f be a bijective mapping from E to F. We let f −1 denote the mapping from F to E
such that, for all y ∈ F, f −1(y) is equal to the only element x of E that satisfies f (x) = y.

• Let E be a set, and G be a subset of E. The complement of G in E, denoted by E \ G, is
the set of all elements e of E such that e is not in G.

• The union of two sets E and G, denoted by E ∪ G, is the set of all elements that are
either in E or in G.

• The intersection of two sets E and G, denoted by E ∩ G, is the set of all elements that
are in both E and G.

• The symmetric difference of two sets E and G, denoted by E∆G, is the set of all elements
that are either in E or in G, but not both. Notice that we have E∆G = (E∪G)\(E∩G).

• A monoid is a set M equipped with an associative operation • such that there exists
an element e ∈M that satisfies e • x = x • e = x, for all x ∈M.

• A group is a monoid (G, •) such that, for all element x ∈ G, there exists an element y
in G such that x • y = y • x = eG. This element is called the inverse of x is denoted by
x−1.

• Let (M, •) be a monoid, and H be a subset of M. We say that M is generated by H
if, for all x ∈ M, there exists a finite sequence (h j) j∈{1,...,m} of elements of H such that
x = h1 • h2 • · · · • hm.

• Let (G, •) be a group, and H be a subset of G. We let H−1 denote the set of all the
elements x of G such that there exists h ∈ H that satisfies x = h−1. We say that G is
generated by H if, for all x ∈ G, there exists a finite sequence (h j) j∈{1,...,m} of elements of
H ∪H−1 such that x = h1 • h2 • · · · • hm.

2.2. MAPPINGS OVER ~N� 13

2.1.2 Non-standard notations and conventions

• For every set E and every element g of some set, we let [g ∈ E] denote the number
equal to 1 if g ∈ E, and 0 otherwise.

• A graded set is a sequence of sets (En)n∈N such that, for any two distinct non-negative
integers i and j, we have Ei ∩ E j = ∅. We almost always identify a graded set (En)n∈N

with the set E =
⋃

j∈N E j.

• Let E and F be two graded sets. A graded mapping f from E to F is a mapping from E
to F such that, for any non-negative integer n, for any e ∈ En, we have f (e) ∈ Fn.

• Let E1, . . . ,Ek be k sets, and let (f1, . . . , fk) ∈ EE1
1 × · · · × EEk

k . For any (e1, . . . , ek) in
E1 × · · · × Ek, we let (f1, . . . , fk)(e1, . . . , ek) denote the element (f1(e1), . . . , fk(ek)) of E1 ×

· · ·×Ek. In other words (f1, . . . , fk) denotes at the same time an element of EE1
1 ×· · ·×EEk

k
and an element of (E1 × · · · × Ek)E1×···×Ek . The reader should always be able to infer,
from the context, which one we are referring to. Notice that, as a consequence, for
any (g1, . . . , gk) ∈ EE1

1 × · · · × EEk
k , we let (f1, . . . , fk) ◦ (g1, . . . , gk) denote the element

(f1 ◦ g1, . . . , fk ◦ gk) of EE1
1 × · · · × EEk

k . Furthermore, if (G1, . . . ,Gk) ∈ 2E1 × · · · × 2Ek , we
let (f1, . . . , fk)(G1, . . . ,Gk) denote the element (f1(G1), . . . , fk(Gk)) of 2E1 × · · · × 2Ek . We
say that (f1(G1), . . . , fk(Gk)) is the image of (G1, . . . ,Gk) by (f1, . . . , fk).

• Let X be a set, k be a non-negative integer. A k-ary operation over X is a pair (k, f)
where f is a partial function from Xk to X.

We put the arity k of an operation explicitly in the above definition, instead of relying
only on the domain of f , because the domain of f could be empty. This trick lets
us distinguish between two operations of different arity whose domains are empty.
Nevertheless, a k-ary operation (k, f) is almost always denoted only by the function
f , when the arity of the operation is clear from the context. We say that an operation
is unary when it is 1-ary, and that it is binary when it is 2-ary.

• For all positive integers n, we let ~n� denote the finite set {0, . . . ,n − 1}.

2.2 Mappings over ~n�

Let n be a positive integer. For all finite sequences of (i j) j∈{1,...,m} of pairwise distinct elements
of ~n�, we let (i1, . . . , im) denote the mapping such that for all j ∈ {1, . . . ,m}, (i1, . . . , im)(i j) =

{
i j+1 if 1 ≤ j ≤ m − 1
i1 if j = m

for all ` < {i1, . . . , im}, (i1, . . . , im)(`) = `

The mapping (i1, . . . , im) is called an m-cycle. A 2-cycle is called a transposition. Fur-
thermore, for all i, j ∈ ~n�, we let πi

j denote the mapping such that, for all ` ∈ ~n�, we
have

πi
j(`) =

{
j if ` = i
` otherwise.

14 CHAPTER 2. PRELIMINARIES

A permutation is a bijective mapping over ~n�, for some positive integer n. The set
of all permutations over ~n� is denoted by Sn. It is well-known that, for all positive
integers n, (~n�~n�, ◦) is a monoid, and that (Sn, ◦) is a group. It is well-known that, for
all integers n with n ≥ 2, the monoid (Sn, ◦) is generated by {(0, 1), (0, 1, . . . ,n − 1)}. For
all positive integers n, we let Γ′n denote the subset of ~n�~n� equal to {Id} if n = 1, and to
{(0, 1), (0, 1, . . . ,n − 1), πn−1

0 } otherwise. It is well-known that for all positive integers n, the
monoid (~n�~n�, ◦) is generated by the set Γ′n.

For all k-tuples of positive integers (n1, . . . ,nk), we let Γn1,...,nk denote the set

~n1�
~n1� × · · · × ~nk�

~nk�.

Definition 1. Let (n1, . . . ,nk) be a k-tuple of positive integers, and for all j ∈ {1, . . . , k} with
n j ≥ 2, let t j = (Id, . . . , Id︸ ︷︷ ︸

j−1 elements

, (0, 1), Id, . . . , Id), c j = (Id, . . . , Id︸ ︷︷ ︸
j−1 elements

, (0, 1, . . . ,n j − 1), Id, . . . , Id), and

p j = (Id, . . . , Id︸ ︷︷ ︸
j−1 elements

, π
n j−1
0 , Id, . . . , Id). We let Γ′n1,...,nk

denote the set {(Id, . . . , Id)} if (n1, . . . ,nk) =

(1, . . . , 1), and the set
⋃

j∈{1,...,k}|n j≥2
{t j, c j, p j} otherwise.

Proposition 1. For all k-tuples of positive integers (n1, . . . ,nk), the monoid (Γn1,...,nk , ◦) is generated
by Γ′n1,...,nk

.

Proof. Let (n1, . . . ,nk) be a k-tuple of integers.
For all (φ1, . . . , φk) ∈ Γn1,...,nk , we have

(φ1, . . . , φk) = (φ1, Id, . . . , Id) ◦ · · · ◦ (Id, . . . , Id︸ ︷︷ ︸
j−1 elements

, φ j, Id, . . . , Id) ◦ · · · ◦ (Id, . . . , Id, φk).

However, for all j ∈ {1, . . . , k}, there exists an integer m j and a finite sequence (φ j,`)`∈{1,...,m j}

of elements of Γ′n j
such that

(Id, . . . , Id︸ ︷︷ ︸
j−1 elements

, φ j, Id, . . . , Id) = (Id, . . . , Id︸ ︷︷ ︸
j−1 elements

, φ j,1, Id, . . . , Id) ◦ · · · ◦ (Id, . . . , Id︸ ︷︷ ︸
j−1 elements

, φ j,m j , Id, . . . , Id).

However, by Definition 1, ψ j,` = (Id, . . . , Id︸ ︷︷ ︸
j−1 elements

, φ j,l, Id, . . . , Id) is an element of Γ′n1,...,nk
∪

{(Id, . . . , Id)}. Furthermore, we have

(φ1, . . . , φk) = ψ1,1 ◦ · · · ◦ ψ1,m1 ◦ ψ2,1 ◦ · · · ◦ ψ2,m2 ◦ · · · ◦ ψk,1 ◦ · · · ◦ ψk,mk .

Notice that the element (Id, . . . , Id) of Γn1,...,nk is an element of Γ′n1,...,nk
, if (n1, . . . ,nk) =

(1, . . . , 1), and is otherwise equal to

(Id, . . . , Id︸ ︷︷ ︸
j−1 elements

, (0, 1), Id, . . . , Id) ◦ (Id, . . . , Id︸ ︷︷ ︸
j−1 elements

, (0, 1), Id, . . . , Id),

for all j such that n j ≥ 2. In any case, we can always write (Id, . . . , Id) as a composition of
elements of Γ′n1,...,nk

.
As a consequence, (Γn1,...,nk , ◦) is generated by Γ′n1,...,nk

. �

2.3. EQUIVALENCE RELATIONS 15

2.3 Equivalence relations

A relation over a set E is a mapping from E × E to {0, 1}. For any two elements q, q′ of E, if
r is a relation over E, we let q r q′ denote the fact that r(q, q′) = 1.

Let r be a relation over a set E. The reflexive closure of r is the relation v such that, for
all q, q′ ∈ E, q v q′ if and only if q = q′ or q r q′. The symmetric closure of r is the relation
s such that, for all q, q′ ∈ E, q s q′ if and only if q r q′ or q′ r q. The transitive closure of r is
the relation t such that, for all q, q′ ∈ E, q t q′ if and only if there exists a finite sequence
(q j) j∈{1,...,m} of elements of E that satisfies the following properties:

• q1 = q,

• qm = q′,

• for all j ∈ {1, . . . ,m − 1}, we have q j r q j+1.

The reflexive,symmetric, and transitive closure of r is the transitive closure of the symmetric
closure of the reflexive closure of r.

An equivalence relation∼over a set E is a relation that is equal to its reflexive, symmetric
and transitive closure. In other words, a relation ∼ over a set E is an equivalence relation
if and only if

• for all q ∈ E, we have q ∼ q,

• for all q, q′ ∈ E, if q ∼ q′, then q′ ∼ q

• for all q1, q2, q3 ∈ E, if q1 ∼ q2 and q2 ∼ q3, then q1 ∼ q3.

For all equivalence relations ∼ over a set E, for all q ∈ E, the equivalence class of q for ∼,

denoted by
∼
q, is the set of all q′ ∈ E such that q ∼ q′. Furthermore, the set of all equivalence

classes of E for ∼, denoted by E/∼, is the set of all q̃ with q ∈ E. Notice that, for all q, q′ ∈ E,

if q ∼ q′, then
∼
q =
∼
q′.

We say that an equivalence relation∼ over a graded set E is graded for E if, for all integers
m and n, for all q ∈ Em, and for all q′ ∈ En such that q ∼ q′, we have m = n. Equivalently, ∼
is graded if, for all non-negative integers n, (E/∼) ∩ 2En = En/∼. Therefore, if ∼ is graded,
the set E/∼ is naturally graded as follows: for all non-negative integers n, (E/∼)n is equal
to the set En/∼.

2.4 Operations over languages and DFAs

2.4.1 Alphabets, words and languages

An alphabet is a finite set, whose elements are called letters. A word w over Σ is a finite
sequence (a j) j∈{1,...,`} with values in Σ. A word w = (a j) j∈{1,...,`} is usually denoted by a1 · · · a`.
When ` = 0, we call w the empty word, and it is denotes by ε. The catenation of two words
u = a1 · · · an and v = b1 · · · bm, denoted by u · v or uv, is the word a1 · · · anb1 · · · bm, that is the

16 CHAPTER 2. PRELIMINARIES

finite sequence with values in Σ obtained by putting the finite sequence (b j) j∈{1,...,m} at the
end of the finite sequence (a j) j∈{1,...,n}. For all words w over an alphabet Σ, we define wn

inductively as w · wn−1 with w0 = ε.
The set of all words over Σ is denoted by Σ?. A language over an alphabet Σ is a pair

(L,Σ), where L is a subset of Σ?. To avoid cumbersome notations, we identify a language
(L,Σ) with the first element L of the pair, when the alphabet Σ is clear from the context.

By convention, the complement of a language L over an alphabet Σ is the complement
of L in Σ?.

The catenation of two languages L and L′ over the same alphabet Σ, denoted by L · L′, is
the language (over Σ) of all the words ww′ over Σ such that w ∈ L and w′ ∈ L′.

For every non-negative integer k and every language L over an alphabet Σ, the k-th
power of L, denoted by Lk, is the language (over Σ) of all the words w1 · · ·wk over Σ such that
w j ∈ L, for all j ∈ {1, . . . , k}. In other words, for every non-negative integer k, Lk = L · Lk−1

with L0 = {ε}.
For any language L over an alphabet Σ, the Kleene star of L, denoted by L?, is the

language (over Σ) of all the words w1 · · ·wk over Σ, such that k is a non-negative integer,

and w j ∈ L for all j ∈ {1, . . . , k}. In other words, L? =
+∞⋃
k=0

Lk.

For every non-negative integer n, the n-th root of a language L over an alphabet Σ,
denoted by n√L is the language (over Σ) of all the words w such that wn

∈ L. Notice that
0√L = Σ? if ε ∈ L and ∅ otherwise, and 1√L = L. By convention, we let

√
L denote 2√L.

2.4.2 Deterministic, finite and complete automata

A complete and deterministic finite automaton (DFA) is a 5-tuple A = (Σ,Q, i,F, δ) where Σ is
an alphabet, Q is a finite non-empty set, i is an element of Q, F is a subset of Q, and δ is a
mapping from Q×Σ to Q. The set Q is called the set of states of A, i is called its initial state, F is
called its set of final states, and δ is called its transition function. The size of A, denoted by #A,
is the cardinality of Q. As an example, let us consider the DFA A = ({a, b}, {0, 1, 2}, 0, {0, 2}, δ),
of size 3, where for all j ∈ {0, 1, 2}, we have δ(j, a) = (j + 1) mod 3, and δ(j, b) = (2 j) mod 3.
This DFA is represented in Figure 2.1.

0 1

2

a

b a, b

a
b

Figure 2.1: A DFA A.

As you can see in Figure 2.1, we represent the states of a DFA as circles with their name
inside. We put on the initial state an arrow that does not come from any other state, and

2.4. OPERATIONS OVER LANGUAGES AND DFAS 17

we put around the final states another circle. Finally, we put an arrow labelled by a letter
a ∈ Σ between two states q and q′, if and only if we have δ(q, a) = q′.

For any DFA A = (Σ,Q, i,F, δ), any state q ∈ Q and any letter a ∈ Σ, we let δa(q) denote
δ(q, a). Notice that, for all letters a ∈ Σ, δa is mapping over Q. Furthermore, we extend the
transition function δ to a mapping from Q × Σ? to Q in the following way: for all states
q ∈ Q, and for all words w = a1 · · · a` over Σ, we let δ(q,w) denote the state δa` ◦ · · · ◦ δa1(q)
(with δ(q, ε) = q). We also let δw(q) denote δ(q,w).

We can associate a language with every DFA. Intuitively, we associate with a DFA every
word such that, after beginning at the initial state and following the arrows by "reading"
the letters one by one, we end up in a final state. More formally, the language recognized
by a DFA A = (Σ,Q, i,F, δ), denoted by L(A), is the set of all words w such that δw(i) ∈ F.
A language is called regular if it is recognized by a DFA. Furthermore, the language L(A)
is always over the alphabet of A. Two DFAs are equivalent if they recognize the same
language.

For example, the language recognized by the DFA B of Figure 2.2 is the set of all words
over the alphabet {a} of odd length, i.e., the set {a2k+1

| k ∈N}.

0 1

a

a

Figure 2.2: A DFA B.

We say that two DFAs are isomorphic if one is the same as the other up to a renaming
of states. More formally, a DFA A = (Σ,Q, i,F, δ) is isomorphic to a DFA A′ = (Σ′,Q′, i′,F′, δ′)
if Σ = Σ′, and if there exists a bijection φ from Q to Q′ such that φ(i) = i′, φ(F) = F′, and,
for all states q ∈ Q and all letters a ∈ Σ, we have φ(δa(q)) = δ′a(φ(q)).

Let A = (Σ,Q, i,F, δ) be a DFA, and let ∼ be an equivalence relation over Q. We say that
∼ is compatible with A if

• for all states q, q′ ∈ Q with q ∼ q′, if q ∈ F, then q′ ∈ F

• for all states q, q′ ∈ Q and all letters a ∈ Σ, if q ∼ q′, then δa(q) ∼ δa(q′).

Let ∼ be an equivalence relation compatible with A. We let A/∼ denote the DFA

(Σ,Q/∼,
∼
i,F/∼, ζ),

where, for all
∼
q ∈ Q/∼, we have ζa(

∼
q) =
∼
δa(q). Since δa(q) ∼ δa(q′) when q ∼ q′, the DFA A/∼

is well-defined. We show by induction that, for all states q ∈ Q and all words w over Σ, we

have ζw(
∼
q) =
∼
δw(q). Therefore, we have δw(i) ∈ F if and only if ζw(

∼
i) ∈ F/∼. Hence, the DFA

A/∼ recognizes the same language as A.

18 CHAPTER 2. PRELIMINARIES

2.4.3 Accessible states, the Nerode equivalence and minimal DFAs

Let A = (Σ,Q, i,F, δ) be a DFA. A state q ∈ Q is accessible in A if there exists a word w over
Σ such that q = δw(i). The accessible part of A is the DFA obtained when restricting A to its
accessible states, i.e., the DFA B = (Σ,Q′, i,F′, δ′), where Q′ is the set of all accessible states
of A, F′ is the set of all final states of A that are accessible, and δ′ is the restriction of δ to
Q′ × Σ. The non-accessible states are not relevant for computing the language recognized
by A. In other words, the accessible part of A recognizes the same language as A.

Let A = (Σ,Q, i,F, δ) be a DFA. We say that two states q, q′ ∈ Q are distinguishable in A if
and only if there exists a word w over Σ such that the states δw(q) and δw(q′) do not have
the same finality, i.e., such that either δw(q) < F and δw(q′) ∈ F, or δw(q) ∈ F and δw(q′) < F.
In other words, two states q, q′are distinguishable if we can find a word w such that the
two states obtained by "reading" w from q and q′ do not have the same finality. Two states
that are not distinguishable in A are said to be indistinguishable in A.

The Nerode equivalence induced by A is a relation ∼ over Q such that, for all states
q, q′ ∈ Q, we have q ∼ q′ if and only if q and q′ are indistinguishable in A. The Nerode
equivalence∼ induced by A is an equivalence relation, and is compatible with A. Therefore,
if ∼ is the Nerode equivalence induced by A, the DFA A/∼ recognizes the same language
as A.

Let L be a language over an alphabet Σ, and let A be a DFA that recognizes L. A minimal
DFA that recognizes L, or a minimal DFA equivalent to A, is a DFA B such that B recognizes
L, and such that the size of B is minimal out of all DFAs that recognize L, i.e., such that
L(B) = L and #B = min{#C | L(C) = L}. It is well-known [36] that any two minimal DFAs
that recognize the same language L are isomorphic. Furthermore, given a DFA A, we can
compute a minimal DFA equivalent to A.

Let A be a DFA, let B be the accessible part of A, let ∼A be the Nerode equivalence
induced by A, and let ∼B be the Nerode equivalence induced by B. Then the DFA B/∼B is
a minimal DFA equivalent to A, and so is the accessible part of A/∼A [36]. We make use of
this result repeatedly in Chapters 5 and 7.

As an example, consider the DFA C of Figure 2.3. The only state that is not accessible
in C is 5. Therefore, the DFA C′ of Figure 2.4 is the accessible part of C. The states 1
and 2 are indistinguishable in C′, as are the states 3 and 4. Furthermore, the states 1 and
3 are distinguishable in C′ by reading the empty word. In addition, 0 is distinguishable
from every other state. Therefore, the set of all equivalence classes of C′, for the Nerode
equivalence ∼C′ induced by C′, is equal to {{0}, {1, 2}, {3, 4}}. As a consequence, the DFA D
of Figure 2.5 is equal to C′/∼C′ . Hence, D is a minimal DFA equivalent to C. Furthermore,
the DFA D recognizes the language {a}. Therefore, D is a minimal DFA that recognizes {a}.

2.4. OPERATIONS OVER LANGUAGES AND DFAS 19

0

1

2

3

4

5

a

a

a

a

aa

a

Figure 2.3: A DFA C

0

1

2

3

4

a

a

a

a

aa

Figure 2.4: The DFA C′: the accessible part of C

{0} {1, 2} {3, 4}
a a

a

Figure 2.5: The DFA D: a minimal DFA equivalent to C.

2.4.4 Language operations and regular operations

What are languages operations and regular operations?

In computer science, and specifically in the research area of formal languages, a regular
operation is usually an operation that acts on k regular languages and returns a single
regular language, for some integer k. However, we have to clarify what we mean by that,
because two main different point of views are used, with slightly different definitions that
lead to different results. To this aim, we introduce some new notations. We let L denote
the set of all languages, and by L the set of all regular languages. Furthermore, for any
alphabet Σ, we letP(Σ?) denote the set of all languages over the alphabet Σ, and by Rat(Σ?)
the set of all regular languages over the alphabet Σ. In addition, we let LΣ

k denote the set
(P(Σ?))k, and by LΣ

k the set (Rat(Σ?))k. Finally, we let Lk denote the union of all the sets
(P(Σ?))k, for all alphabets Σ, and byLk the union of all the sets (Rat(Σ?))k, for all alphabets
Σ.

From the unrestricted point of view, we see a k-ary language operation as an operation
over L whose domain is Lk, i.e., a mapping from Lk to L. Similarly, we see a regular
operation as an operation over Lwhose domain is Lk, i.e., a mapping from Lk to L. From
the restricted point of view, we see a k-ary language operation as an operation that acts on

20 CHAPTER 2. PRELIMINARIES

k languages over the same alphabet Σ, and returns a language over Σ. Similarly, we see a
regular operation as an operation over L that acts on k regular languages over the same
alphabet Σ, and returns a regular language over Σ. More formally, from the restricted
point of view, a k-ary language operation ⊗ is an k-ary operation over Lwhose domain is
Lk (i.e., a mapping from Lk to L), and that satisfies ⊗((P(Σ?))k) ⊆ P(Σ?), for any alphabet
Σ. Similarly, a k-ary regular operation ⊗ is a k-ary operation over L whose domain is Lk

(i.e., a mapping from Lk to L), and that satisfies ⊗((Rat(Σ?))k) ⊆ Rat(Σ?), for any alphabet
Σ.

Even though the unrestricted point of view may seem simpler, it is probably easier, for
technical reasons, to study the concepts we introduce from the restricted point of view.
Therefore, it is the point of view that we adopt throughout this thesis. We stress here that
throughout the rest of this thesis, a k-ary language operation refers to a mapping ⊗ from
Lk to L such that ⊗((P(Σ?))k) ⊆ P(Σ?), for all alphabets Σ and all non-negative integers
k. Furthermore, a k-ary regular language operation refers to a mapping ⊗ from Lk to L
such that ⊗((Rat(Σ?))k) ⊆ Rat(Σ?), for all alphabets Σ and all non-negative integers k.

You may have noticed that we purposefully defined regular operations so that their
domain was restricted to k-tuples of regular languages of Lk. This decision is not without
consequences throughout this thesis. In particular, two distinct language operations may
have the same restriction toLk, and thus may be equal if considered as regular operations.
Therefore, before using an operation over languages, it may be important to ascertain
its domain. To avoid this inconvenience, we state now that the domain of every k-ary
operation over languages considered in Chapters 4, 5, 6, and 7 is Lk. Even though every
operation we consider in these chapters is actually a regular operation, it is not obvious
for some of them. Therefore, making the statement here that every operations considered
are regular operations would require some of the proofs presented later on.

Boolean functions and boolean operations

An important class of language operations is the class of boolean operations. Boolean
operations are language operations that generalize the complement, the union, and the
intersection of languages. They are routinely used in computer science, and we use
them extensively throughout this thesis. They provide good examples, as their properties
are not trivial, but not overly complicated either when compared to other well-known
operations. In order to define boolean operations over languages, we first need to define
boolean functions.

Definition 2. A k-ary boolean function b is a k-ary operation over {0, 1}.

In other words, a boolean function acts on k elements of {0, 1} and returns an element of
{0, 1}. From every boolean function, we define a corresponding operation over languages.

Definition 3. Let b be a k-ary boolean function. We let ⊗b denote the k-ary language operation
such that, for all k-tuples of languages (L1, . . . ,Lk) over Σ, we have

⊗b(L1, . . . ,Lk) = {w ∈ Σ∗ | b([w ∈ L1], . . . , [w ∈ Lk]) = 1}.

A regular operation is boolean if it is equal to ⊗b, for some boolean function b.

2.4. OPERATIONS OVER LANGUAGES AND DFAS 21

Example 1. The most usual boolean operations over languages can be defined as follows:

• Let c be the unary boolean function such that c(0) = 1 and c(1) = 0. The complement over
languages is equal to ⊗c. Indeed, we have

{w ∈ Σ∗ | c([w ∈ L]) = 1} = {w ∈ Σ∗ | [w ∈ L] = 0} = {w ∈ Σ∗ | w < L} = Lc.

• For any two languages L1 and L2 over the same alphabet, we have ⊗union(L1,L2) = L1 ∪ L2,
⊗inter(L1,L2) = L1 ∩ L2, ⊗xor(L1,L2) = L1∆L2, where union, inter and xor are the boolean
functions respectively defined by Table 2.6, Table 2.7 and Table 2.8.

union 0 1
0 0 1
1 1 1

Figure 2.6
Truth table
for union.

inter 0 1
0 0 0
1 0 1

Figure 2.7
Truth table
for inter.

xor 0 1
0 0 1
1 1 0

Figure 2.8
Truth table

for xor.

2.4.5 State complexity

There are as many types of state complexities as there are types of automata. However, in
this thesis, we only study what is sometimes called deterministic state complexity, i.e., the
notion of state complexity that comes from DFAs.

The state complexity of a language L over an alphabet Σ, denoted by sc(L), is the size of
a minimal DFA that recognizes L. For example, from Section 2.4.3, the state complexity of
the language {a} over the alphabet {a} is 3 (the size of DFA D in Figure 2.5). We extend this
notion to regular operations. The state complexity of a regular operation is a measure of
how much it can increase the state complexity of its input languages. In other words, it is
the maximal state complexity of the output, given that the state complexity of the inputs
is less than or equal to a certain upper bound. More formally, the state complexity of a
k-ary regular operation ⊗, denoted by sc⊗, is a map from (N \ 0)k toN \ 0 such that, for all
k-tuples of positive integers (n1, . . . ,nk), we have

sc⊗(n1, . . . ,nk) = max{sc(⊗(L1, . . . ,Lk)) | (L1, . . . ,Lk) ∈ Lk ∧ sc(L j) ≤ n j, ∀ j ∈ {1, . . . , k}}

In this thesis, we develop a method for computing the state complexity of some regular
operations. In Chapters 5 and 7, we will see several examples of these kind of computa-
tions. However, there already are in the literature numerous examples (see for example
[40, 15, 14, 23, 22, 27]). The usual way to compute the state complexity of a regular op-
eration, is first, to find an upper bound, and then, to show that the upper bound is met
by providing a witness. A witness for a k-ary regular operation ⊗ is a k-tuple of DFAs
(A1, . . . ,Ak) (whose alphabets are all equal), such that

sc⊗(n1, . . . ,nk) = sc(⊗(L(A1), . . . ,L(Ak))),

22 CHAPTER 2. PRELIMINARIES

where n j is the size of A j, for all j ∈ {1, . . . , k}. In other words, the usual way to compute
the state complexity of an operation ⊗ is to prove that there is an upper bound b such that
sc⊗(n1, . . . ,nk) ≤ b, and then to find a k-tuple of DFAs (A1, . . . ,Ak) such that each A j is of
size n j, and such that sc(⊗(L(A1), . . . ,L(Ak))) = b.

2.4.6 Morphisms

Let Σ and Γ be two alphabets. A morphism is a function φ from Σ∗ to Γ∗, such that, for all
w, v ∈ Σ∗, φ(wv) = φ(w)φ(v). Notice that φ is completely defined by its value on letters,
since φ(ε) = ε. We say that a morphism φ from Σ∗ to Γ∗ is 1-uniform if, for all a ∈ Σ, φ(a) ∈ Γ.

Proposition 2. Let L be a regular language over alphabet Σ recognized by the DFA A =
(Σ,Q, i,F, δ) and letφ be a 1-uniform morphism from Γ∗ to Σ∗. Then, φ−1(L) is the regular language
recognized by the DFA B = (Γ,Q, i,F, δ′) where, for all a ∈ Γ and q ∈ Q, δ′(q, a) = δ(q, φ(a)).

Proof. A word w is recognized by B if and only if δ′w(i) ∈ F. However, an easy induction
shows that δ′w(q) = δ(q, φ(w)). Therefore, a word w is recognized by B if and only if
δφ(w)(i) ∈ F. However, for any word v, δv(i) ∈ F if and only if v is recognized by A. Therefore,
w is recognized by B if and only if φ(w) is recognized by A. Hence, L(B) = φ−1(L(A)). �

The next proposition is a direct consequence of Proposition 2.

Proposition 3. Let L be a regular language andφ be a 1-uniform morphism. We have sc(φ−1(L)) ≤
sc(L).

Chapter 3

Operads

3.1 What is an operad?

An operad is a structure designed to mimic the composition of k-ary functions. To our
knowledge, the word operad first appeared in a book of May about iterated loop spaces
[34]. This notion was also connected to the works of G.M. Kelly on coherence in categories,
and the definitions used in [34] arose from discussions between the two mathematicians.
In the 1990’s, the interest in operads was renewed by the works of Ginzburg and Kapranov,
who connected a duality phenomena in rational homotopy theory to the Koszul duality for
operads [20]. Since then, operads were widely used to encode different types of algebras,
like Poisson algebras, Lie and pre-Lie algebras, or Jordan algebras, to name a few. Using
operads to study these kinds of algebras allows us to simplify results and generalize them.
Nowadays, operads appear in many different areas of research, like algebraic topology,
differential geometry, combinatorial algebra, or computer science. One can find more
information on operads in [32]. The results of this chapter are well-known results from
the theory of operads that can be found in e.g. [21]. Nonetheless, a proof is given here for
everyone of them, in order to familiarize the reader with the notion of operads.

An operad is composed of a graded set O and some binary operations � j. The idea is
that the binary operations � j behave like a composition, and that an element in the set On

behaves like an n-ary operation. To explain intuitively the rules defining an operad, we
represent their elements as trees. An element ofOn is represented by a tree whose root has
n children (Figure 3.1).

p

· · ·

1 2 n

Figure 3.1: A representation of an element p of On.

23

24 CHAPTER 3. OPERADS

Furthermore, we represent the composition of two elements p ◦ j q by replacing the j-th
child of the root of pwith q (Figure 3.2).

p

· · ·

1 2 i

· · ·

m
◦

q

1 2

· · ·

n

Figure 3.2: A representation of p ◦i qwith p ∈ Om and q ∈ On.

For ◦ j to "behave like" a composition, we set three rules that an operad must satisfy.
The first one states that there must exists an element 1 of O1 that behaves like the identity.
It is represented in Figure 3.3 below.

p

· · ·

1 2 i
· · ·

n

1
◦

=

p

· · ·

1 2 n

1

◦

=

p

· · ·

1 2 n

Figure 3.3: The "identity" rule.

The second rule is an associativity rule. It gives two different ways of composing three
elements of O, that correspond intuitively to arranging these elements in the shape of a
"line" (right part of Figure 3.4). That rule is represented in Figure 3.4 below.

3.1. WHAT IS AN OPERAD? 25

p

· · ·

1 2 i
· · ·

m◦

q

· · ·

1 2 j
· · ·

n◦

r

· · ·

1 2 s

=

p

· · ·

1 2 i
· · ·

m◦

q

· · ·

1 2 j
· · ·

n

r

· · ·
1 2 s

· · ·

1 2 i − 1 + j
· · ·

◦ m − 1 + n

=

p

· · ·

1 2 i
· · ·

m◦

q

· · ·

1 2 j
· · ·

n◦

r

· · ·

1 2 s

Figure 3.4: The "aligned" associativity rule.

Notice that, in the middle part of Figure 3.4, the element corresponding to the rectangle
is the element p ◦i q. As it is an element of Om+n−1, it is represented as a tree with m + n − 1
children, and then composed with r.

We can also compose three elements of O in the shape of a "triangle" (like in the right
part of Figure 3.5). Therefore, another associativity rule is needed (Figure 3.5).

p

· · ·

1 2

· · ·

i j
· · ·

m◦

q

· · ·

1 2 n

r

· · ·
1 2 s

· · ·

1 2 i
· · ·

◦ m − 1 + n

=

p

· · ·

1 2 i
· · ·

j

· · ·

m◦

r

· · ·

1 2 s

q
· · ·

1 2 n

· · ·

1 2 s − 1 + j
· · ·

◦ m − 1 + s

=
p

· · ·

1 2 i j
· · ·

m

r

· · ·

s1

◦

q

· · ·

1 n

◦

b

Figure 3.5: The "triangular" associativity rule.

The "identity" rule, the "aligned" associativity rule, and the "triangular" associativity
rule, are the three rules that an operad must satisfy. We formalize this idea in the following
definition.

Definition 4. An operad is a graded setO equipped with a sequence (� j) j∈N\0 of binary operations
over O =

⋃
n∈N
On. For all j ∈N \ 0, � j is defined for every pair of functions inOm ×On, with m ≥ j

and n ∈ N, and returns an element of Om+n−1. Furthermore, the sequence of binary operations
(� j) j∈N\0, must satisfy the following conditions:

• the "identity" rule (Figure 3.3): there exists an element Id ∈ O1 such that, for all positive
integers n and i ≤ n, and all elements p of On, we have Id �1 p = p �i Id = p,

26 CHAPTER 3. OPERADS

• the "aligned" associativity rule (Figure 3.4): we have p �i (q � j r) = (p �i q) �i+ j−1 r, for all
positive integers m, n, s, i ≤ m, j ≤ n, and all p, q, r, elements of Om, On, Os respectively,

• the "triangular" associativity rule (Figure 3.5): we have (p � j q) �i r = (p �i r) � j+s−1 q, for
all positive integers m, n, s, i, and j such that i < j ≤ m, and all p, q, r, elements of Om, On,
Os respectively.

Notice that, for every operad, the element satisfying the "identity" rule is unique. It is
called the identity of (O,�).

We end this section by giving an example of an operad.

Example 2. For all integers n, we let Bn denote the set of all subsets of {0, 1}n. Furthermore,

we let B denote the set
+∞⋃
j=0
Bk, naturally graded with the sequence (Bk)k∈N. For all non-negative

integers m, n and j with 1 ≤ j ≤ m, for all E ∈ Bm and E′ ∈ Bn, we let E } j E′ denote the set of all
(e1, . . . , em+n−1) ∈ Bm+n−1 such that

• either (e1, . . . , e j−1, 1, e j+n, . . . , em+n−1) ∈ E and (e j, . . . , e j+n−1) ∈ E′

• or (e1, . . . , e j−1, 0, e j+n, . . . , em+n−1) ∈ E and (e j, . . . , e j+n−1) < E′.

In order to illustrate the above definition, we show here that the graded set B equipped with } is an
operad, by checking that the three "rules" of Definition 4 hold. However, even though the example
seems simple, the direct proof given here is rather heavy. A faster proof is given in Example 6, using
the tools we develop in the next section.

• The element {1} of B1 satisfies the "identity" rule of Definition 4. In other words, for all
positive integers n and i ≤ n, and for all elements E of Bn, we have {1} }1 E = E }i {1} = E.

• For all positive integers m, n, s, i ≤ m, j ≤ n, and all E1, E2, E3, elements of Bm, Bn, Bs

respectively, we have (e1, . . . , em+n+s−2) ∈ E1 }i (E2 } j E3) if and only if

– either (e1, . . . , ei−1, 1, ei+n+s−1, . . . , em+n+s−2) ∈ E1 and (ei, . . . , ei+n+s−2) ∈ E2 } j E3

– or (e1, . . . , ei−1, 0, ei+n+s−1, . . . , em+n+s−2) ∈ E1 and (ei, . . . , ei+n+s−2) < E2 } j E3.

However, for all non-negative integers x, y and z with 1 ≤ z ≤ x, for all E ∈ Bx, for
all E′ ∈ By, and for all (e1, . . . , ex+y−1) ∈ Bx+y−1, we have either (e j, . . . , ez+y−1) ∈ E′ or
(e j, . . . , ez+y−1) < E′. If (e j, . . . , ez+y−1) ∈ E′, then (e1, . . . , ex+y−1) < E } j E′ if and only if

(e1, . . . , ez−1, 1, ez+y, . . . , ex+y−1) < E,

and if (e j, . . . , ez+y−1) < E′, then (e1, . . . , ex+y−1) < E } j E′ if and only if

(e1, . . . , ez−1, 0, ez+y, . . . , ex+y−1) < E.

Therefore, we have (e1, . . . , ex+y−1) < E } j E′ if and only if

– either (e1, . . . , ez−1, 0, ez+y, . . . , ex+y−1) < E and (e j, . . . , ez+y−1) < E′

– or (e1, . . . , ez−1, 1, ez+y, . . . , ex+y−1) < E and (e j, . . . , ez+y−1) ∈ E′.

3.1. WHAT IS AN OPERAD? 27

Therefore, (e1, . . . , em+n+s−2) ∈ E1 }i (E2 } j E3) if and only if

– either (e1, . . . , ei−1, 1, ei+n+s−1, . . . , em+n+s−2) ∈ E1 and
(ei, . . . , ei+ j−2, 1, ei+ j+n−1, . . . , ei+n+s−2) ∈ E2 and (ei+ j−1, . . . , ei+ j+s−2) ∈ E3

– or (e1, . . . , ei−1, 1, ei+n+s−1, . . . , em+n+s−2) ∈ E1 and
(ei, . . . , ei+ j−2, 0, ei+ j+s−1, . . . , ei+n+s−2) ∈ E2 and (ei+ j−1, . . . , ei+ j+s−2) < E3

– or (e1, . . . , ei−1, 0, ei+n+s−1, . . . , em+n+s−2) ∈ E1 and
(ei, . . . , ei+ j−2, 0, ei+ j+s−1, . . . , ei+n+s−2) < E2 and (ei+ j−1, . . . , ei+ j+s−2) < E3

– or (e1, . . . , ei−1, 0, ei+n+s−1, . . . , em+n+s−2) ∈ E1 and
(ei, . . . , ei+ j−2, 1, ei+ j+s−1, . . . , ei+n+s−2) < E2 and (ei+ j−1, . . . , ei+ j+s−2) ∈ E3

Furthermore, (e1, . . . , em+n+s−2) ∈ (E1 }i E2) }i+ j−1 E3 if and only if

– either (e1, . . . , ei+ j−2, 1, ei+ j+s−1, . . . , em+n+s−2) ∈ E1 }i E2 and (ei+ j−1, . . . , ei+ j+s−2) ∈ E3

– or (e1, . . . , ei+ j−2, 0, ei+ j+s−1, . . . , em+n+s−2) ∈ E1 }i E2 and (ei+ j−1, . . . , ei+ j+s−2) < E3.

Thus, since i+n ≥ i+ j, by removing the} in the above characterization of (E1}i E2)}i+ j−1 E3,
similarly to what we did in the case of E1 }i (E2 } j E3), we get that E1 }i (E2 } j E3) =
(E1 }i E2) }i+ j−1 E3.

• For all positive integers m, n, s, i, and j such that i < j ≤ m, and all E1, E2, E3, elements of
Bm, Bn, Bs respectively, we have (e1, . . . , em+n+s−2) ∈ (E1 } j E2) }i E3 if and only if

– either (e1, . . . , ei−1, 1, ei+s, . . . , em+n+s−2) ∈ E1 } j E2 and (ei, . . . , ei+s−1) ∈ E3

– or (e1, . . . , ei−1, 0, ei+s, . . . , em+n+s−2) ∈ E1 } j E2 and (ei, . . . , ei+s−1) < E3.

Therefore, (e1, . . . , em+n+s−2) ∈ (E1 } j E2) }i E3 if and only if

– either (e1, . . . , ei−1, 1, ei+s, . . . , e j+s−2, 1, e j+s+n−1, . . . , em+n+s−2) ∈ E1

and (e j+s−1, . . . , e j+s+n−2) ∈ E2 and (ei, . . . , ei+s−1) ∈ E3

– or (e1, . . . , ei−1, 1, ei+s, . . . , e j+s−2, 0, e j+s+n−1, . . . , em+n+s−2) ∈ E1

and (e j+s−1, . . . , e j+s+n−2) < E2 and (ei, . . . , ei+s−1) ∈ E3

– or (e1, . . . , ei−1, 0, ei+s, . . . , e j+s−2, 1, e j+s+n−1, . . . , em+n+s−2) ∈ E1 and
(e j+s−1, . . . , e j+s+n−2) ∈ E2 and (ei, . . . , ei+s−1) < E3

– or (e1, . . . , ei−1, 0, ei+s, . . . , e j+s−2, 0, e j+s+n−1, . . . , em+n+s−2) ∈ E1 and
(e j+s−1, . . . , e j+s+n−2) < E2 and (ei, . . . , ei+s−1) < E3.

Furthermore, (e1, . . . , em+n+s−2) ∈ (E1 }i E3) } j+s−1 E2 if and only if

– either (e1, . . . , e j+s−2, 1, e j+n+s−1, . . . , em+n+s−1) ∈ E1 }i E3 and (e j+s−1, . . . , e j+n+s−2) ∈ E2

– or (e1, . . . , e j+s−2, 0, e j+n+s−1, . . . , em+n+s−1) ∈ E1 }i E3 and (e j+s−1, . . . , e j+n+s−2) < E2.

As a consequence, by removing the } in the above characterization of (E1 }i E3) } j+s−1 E2,
similarly to what we did in the case of (E1 } j E2) }i E3, we get that (E1 }i E3) } j+s−1 E2 =
(E1 } j E2) }i E3.

We have thus proved that the graded set B equipped with } is an operad.

28 CHAPTER 3. OPERADS

3.2 Operations over a set

Operations are extensively used throughout mathematics and computer science, the sim-
plest and most well-known example being the addition on integers, which is a binary
operation. In order to give to operations over a set a structure of operad, we need to
define a composition. This composition is a generalization of the composition of partial
functions, that we recall below.

Definition 5. Let X be a set, Y and Z be two subsets of X, f be a mapping from Y to X and g be
a mapping from Z to X. Let D be the set of all elements z of Z such that g(z) is in Y. We let f ◦ g
denote the function from D to X such that (f ◦ g)(x) = f (g(x)).

Notice that, in the above definition, the domain of f ◦ g is not X nor is it the domain
of g, but rather the elements x in the domain of g such that g(x) is in the domain of f . We
generalize this idea to k-ary operations, and define the domain of p◦ j q similarly, based the
domains of p and q, but also on the operation q. We illustrate this in Figure 3.6, where q is
a unary operation over X of domain Z, p is a binary operation over X of domain Y, and D
is the domain of p ◦1 q. As you can see, D is the set of all pairs (x, y) in X2 such that x ∈ Z
and (q(x), y) ∈ Y.

X X

X X

X2 X2

Z

Y

g(Z)

D

q

q

(q, Id)

Figure 3.6: The domain D of p ◦1 q.

As for the output of the composition p ◦ j q in the general case where p is m-ary and q is
n-ary, we only need to follow Figure 3.2.

Definition 6. Let X be a set, let m, n and j be three integers with 1 ≤ j ≤ m, let p be a m-ary
operation over X of domain Y, and let q be a n-ary operation over X of domain Z. Let D be the set
of all m + n − 1-tuples (e1, . . . , em+n−1)of elements of X such that{

(e j, . . . , en+ j−1) ∈ Z
(e1, . . . , e j−1, q(e j, . . . , en+ j−1), en+ j, . . . , en+m−1) ∈ Y

We let p ◦ j q denote the m + n − 1-ary operation r from D into X such that, for any element
e = (e1, . . . , em+n−1) of D,

r = p(e1, . . . , e j−1, q(e j, . . . , en+ j−1), en+ j, . . . , em+n−1).

3.2. OPERATIONS OVER A SET 29

We call the sequence of binary operations (◦ j) j∈N\{0} the composition of operations.

Example 3. Let o+ be the binary operation over Z of domain Z2 such that, for any two integers
(i, j), o+(i, j) = i + j. Furthermore, let o/ be the binary operation over Z of domain Z × (Z \ {0})
such that, for any two integers (i, j) with j , 0, o/(i, j) = i

j . From Definition 6, the domain D of
o/ ◦2 o+ is the set of all elements (x, y, z) of Z3 such that o+(y, z) , 0 (and equivalently such that
y + z , 0). Furthermore, for any element (x, y, z) of D, (o/ ◦2 o+)(x, y, z) = o/(x, o+(y, z)) = x

y+z .
We can see that the domain D that comes from Definition 6 indeed corresponds to the elements
(x, y, z) for which x

y+z is well-defined.

When p is a unary operation over X, and q is any operation over X, for simplicity, we
let p ◦ q denote the operation p ◦1 q. We now prove that operations over a set indeed form
an operad.

Proposition 4. Let X be any set, and let O be a graded set such that, for any integer n ∈N, On is
the set of all n-ary operations over X. The graded setO equipped with the composition of operations
is an operad. We let (MapX, ◦) denote this operad.

Proof. Notice that, by Definition 6, ◦ j is indeed defined for every element of Om × On with
j ≤ m, and returns an element of Om+n−1. We now prove successively that (MapX, ◦) satisfies
the three conditions of Definition 4.

• The identity over X satisfies the first condition of Definition 4.

• By Definition 6, we have

p �i (q � j r)(e1, . . . , em+n+s−1) =

((p �i q) �i+ j−1 r)(e1, . . . , em+n+s−1) =

p(e1, . . . , ei−1, q(ei, . . . , ei+ j−2, r(ei+ j−1, . . . , ei+ j+s−2), ei+ j+s−1, . . . , ei+n+s−2),
ei+n+s−1, . . . , em+n+s−2)

Furthermore, the domain of p �i (q � j r) and of (p �i q) �i+ j−1 r is the set of all
(e1, . . . , em+n+s−1) with

(ei+ j−1, . . . , ei+ j+s−2) ∈ Dr
(ei, . . . , ei+ j−2, r(ei+ j−1, . . . , ei+ j+s−2), ei+ j+s−1, . . . , ei+n+s−2) ∈ Dq

(e1, . . . , ei−1, q(ei, . . . , ei+ j−2, r(ei+ j−1, . . . , ei+ j+s−2), ei+ j+s−1, . . . , ei+n+s−2),
ei+n+s−1, . . . , em+n+s−2) ∈ Dp

where Dr, Dq, and Dp are the domains of r, q and p respectively.

• By Definition 6, we have

((p � j q) �i r)(e1, . . . , em+n+s−1) =

((p �i r) � j+s−1 q)(e1, . . . , em+n+s−1) =

p(e1, . . . , ei−1, r(ei, . . . , ei+s−1), ei+s, . . . , e j+s−2, q(e j+s−1, . . . , en+s−2),
en+s−1, . . . , em+n+s−2)

30 CHAPTER 3. OPERADS

Furthermore, the domain of (p � j q) �i r and of (p �i r) � j+s−1 q is the set of all
(e1, . . . , em+n+s−1) with

(ei, . . . , ei+s−1) ∈ Dr
(e j+s−1, . . . , en+s−2) ∈ Dq

(e1, . . . , ei−1, r(ei, . . . , ei+s−1), ei+s, . . . , e j+s−2, q(e j+s−1, . . . , en+s−2),
en+s−1, . . . , em+n+s−2) ∈ Dp

where Dr, Dq, and Dp are the domains of r, q and p respectively.

�

As a consequence of the above proposition, the set of operations over languages, the
set of operations operations over DFAs, and the set boolean functions are operads, when
equipped with ◦.

We now define a generalization of the commutativity of two functions to two opera-
tions, when one of them is unary.

Definition 7. Let X be a set, let n be an integer, and let p and r be two operations over X,
respectively n-ary and unary. We say that p commutes with r if, for any n elements e1, . . . , en of
X, we have p(r(e1), . . . , r(en)) = r(p(e1, . . . , en)).

We illustrate this definition with Figure 3.7 below.

Ek

Ek E

E

(r, . . . , r)

p

r

p

Figure 3.7: An illustration of Definition 7.

We next prove that, if two operations commute with a unary operation, then their
composition also commutes with this unary operation.

Lemma 1. Let E be any set, let n, m, and j be three positive integers such that j ≤ m, and let p, q,
and r be three operations over E, respectively n-ary, m-ary, and unary. If p and q commute with r,
then p ◦ j q commutes with r.

Proof. For any n + m − 1 elements e1, . . . , en+m−1 of E, we have

p ◦ j q(r(e1), . . . , r(em+n−1))
= p(r(e1), . . . , r(e j−1), q(r(e j), . . . , r(e j+m−1))), r(e j+m), . . . , r(en+m−1))

= p(r(e1), . . . , r(e j−1), r(q(e j, . . . , e j+m−1)), r(e j+m), . . . , r(en+m−1))
= r(p(e1, . . . , e j−1, q(e j, . . . , e j+m−1), e j+m, . . . , en+m−1))

�

3.3. MORPHISMS, QUOTIENT OPERADS, AND SUBOPERADS 31

3.3 Morphisms, quotient operads, and suboperads

Similarly to subgroups or subrings, we define the notion of suboperad.

Definition 8. An operad (O′,�′) is a suboperad of another operad (O,�) if and only if

• O′n is a subset of On, for all n ∈N,

• the identity of O′ is the identity of O.

The next proposition is straightforward from Definition 8, and is very similar to the
cases of monoids, groups or rings. It states that, to prove that a subset of an operad is a
suboperad, we only need to examine the stability by composition of this subset, and to
check that the identity of the operad is in the subset. Therefore, we first need to define
what "stability by composition" means in the case of operads, even though it is extremely
intuitive.

Definition 9. Let (O,�) be an operad. We say that a subset E of O is stable by � if, for any two
integers n and j ≤ n, for any p ∈ (On ∩ E) and any q ∈ E, we have p � j q ∈ E.

Proposition 5. Let (O,� j) be an operad, and let E be a subset of O stable by � j such that the
identity of O is in E. Let E be the graded set such that En = On ∩ E, for any n ∈ N. We have
(E,� j) is a suboperad of (O,� j).

As a consequence of the above proposition, the set of language operations (graded by
their arity), and the set of regular operations (graded by their arity), are operads when
equipped with the composition of operations ◦. These are important examples that we
use throughout the rest of this thesis. We also develop below the example of boolean
operations.

Example 4. For any positive integers m and j with j ≤ m, for any m-ary boolean function b, and
any boolean function b′, we have, from Definition 3, ⊗b◦ jb′ = ⊗b ◦ j ⊗b′ . Furthermore, the identity
over languages is equal to ⊗b, where b is the identity over {0, 1}. Therefore, the set of boolean
operations Ob equipped with ◦ is an suboperad of the set of operations over languages equipped
with ◦. Thus, (Ob, ◦) is an operad.

We define now the notion of morphism between operads, in a similar way to the notions
of morphisms between monoids, groups, or rings. As expected, similar properties arise.

Definition 10. Let (O,�) and (O′,�′) be two operads, and φ be a graded mapping from O to O′.
We say that φ is a morphism of operads if and only if

• the image by φ of the identity of O is the identity of O′,

• for any three integers m, n and j with 1 ≤ j ≤ m, for any element p of Om, and for any
element q of On, we have φ(p) �′j φ(q) = φ(p � j q).

Furthermore, we say that φ is an isomorphism of operads if it is bijective.

32 CHAPTER 3. OPERADS

We mentioned in Example 4 that, for any positive integers m and j with j ≤ m, for
any m-ary boolean function b, and any boolean function b′, we have ⊗b◦ jb′ = ⊗b ◦ j ⊗b′ .
Furthermore, ⊗Id{0,1} is the identity over languages. Therefore, the mapping from the set of
boolean functions toOb, that maps a boolean function function b to the boolean operation
⊗b, is a morphism of operads. Another example is given below.

Example 5. Let φ be the mapping from the set of boolean functions to B (defined in Example 2)
such that, for any k-ary boolean function b, we have

φ(b) = {(e1, . . . , ek) ∈ {0, 1}k | b(e1, . . . , ek) = 1}.

For any non-negative integers k, k′, j with 1 ≤ j ≤ k, and any boolean functions b and b′,
respectively k-ary and k′-ary, we have

φ(b ◦ j b′) =

{(e1, . . . , ek+k′−1) ∈ {0, 1}k+k′−1
| b(e1, . . . , e j−1,b′(e j, . . . , e j+k′−1), e j+k′ , . . . , ek+k′+1) = 1}.

Hence, φ(b ◦ j b′) is the set of all (e1, . . . , ek+k′−1) ∈ {0, 1}k+k′−1 such that,

• either b(e1, . . . , e j−1, 1, e j+n, . . . , em+n−1) = 1 and b′(e j, . . . , e j+n−1) = 1,

• or b(e1, . . . , e j−1, 0, e j+n, . . . , em+n−1) = 1 and b′(e j, . . . , e j+n−1) = 0

It follows from the Definition ofB and } that φ(b◦ j b′) = φ(b)} jφ(b′). Furthermore, φ(Id{0,1}) =
{1}. As a consequence, the mapping φ is an isomorphism of operads.

As expected, several properties of group or monoid morphisms have a counterpart for
morphisms of operads. For example, the image of an operad by a morphism of operads is
an operad.

Proposition 6. Let (O,�) and (O′,�′) be two operads, and let φ be a morphism of operads from
(O,�) to (O′,�). We let φ(O) denote the graded set such that (φ(O))n = φ(On) = φ(O) ∩ O′n, for
any integer n. We have (φ(O),�′) is an operad, and φ is a morphism of operads from (O,�) to
(φ(O),�′).

Proof. Let m, j and n be three non-negative integers with 1 ≤ j ≤ m, and let o′1 ∈ (φ(O))m and
any o′2 ∈ (φ(O))n. There exists o1, o2 ∈ O such that φ(o1) = o′1 and φ(o2) = o′2. Furthermore,
by Definition 10, as o′1 ∈ O

′

m and o′2 ∈ O
′

n, we have o1 ∈ Om and o2 ∈ On. Therefore,
we have o′1 �

′

j o
′

2 = φ(o1) �′j φ(o2) = φ(o1 � j o2). Hence, o1 � j o2 ∈ Om+n−1, and we have
o′1 �

′

j o
′

2 ∈ φ(Om+n−1). Furthermore, the image by φ of the identity of O is the identity of
O
′. As a consequence, from Proposition 5, (φ(O),�′) is an operad. The fact that φ is a

morphism of operads from (O,�) to (φ(O),�′) is straightforward from Definition 10. �

Furthermore, as expected, the composition of two morphisms of operads is a morphism
of operads.

Proposition 7. Let (O,�), (O′,�′) and (O′′,�′′) be three operads, let φ be a morphism of operads
from O to O′, and let ψ be a morphism of operads from (O′,�) to (O′′,�′′). The application ψ ◦ φ
is a morphism of operads from (O,�) to (O′′,�′′).

3.3. MORPHISMS, QUOTIENT OPERADS, AND SUBOPERADS 33

Proof. The fact that the image by ψ ◦ φ of the identity of O is the identity of O′′ is straight-
forward from Definition 10.

For any integer m, for any o ∈ Om, we have φ(o) ∈ O′m, and therefore (ψ ◦ φ)(o) ∈ O′′m.
Hence, ψ ◦ φ is a graded mapping.

Furthermore, for any integers m, j with 1 ≤ j ≤ m, for any o1 ∈ Om and any o2 ∈ O, by
Definition 10, we haveφ(o1� jo2) = φ(o1)�′jφ(o2). Therefore, again by Definition 10, we have
ψ(φ(o1)�′jφ(o2)) = ψ(φ(o1))�′′j ψ(φ(o2)), and thus (ψ◦φ)(o1� j o2) = (ψ◦φ)(o1)�′′j (ψ◦φ)(o2).
As consequence, ψ ◦ φ is a morphism of operads. �

Another expected property is that the inverse of an isomorphism of operads is also an
isomorphism of operads.

Proposition 8. Let φ be an isomorphism of operads. Then its inverse φ−1 is an isomorphism of
operads.

Proof. Let (O,�) and (O′,�′) be two operads, and φ be an isomorphism of operads from
O into O′. The fact that φ−1 is a graded mapping comes directly from the fact that φ is a
graded mapping. We check that φ−1 satisfies the two conditions of Definition 10.

• The image of the identity of (O,�) by φ is the identity of (O′,�′), and thus the image
by φ−1 of the identity of (O′,�′) is the identity of (O,�).

• For any two integers m and n, for any element p of Om and any element q of On, for
any j ∈ {1, . . . ,m}, we have

φ−1(p) ◦ j φ
−1(q) = φ−1(φ(φ−1(p) ◦ j φ

−1(q)))

Therefore, by Definition 10,

φ−1(p) ◦ j φ
−1(q) = φ−1(φ(φ−1(p)) ◦ j φ(φ−1(q))) = φ−1(p ◦ j q)

�

The next proposition shows that a bijection from an operad into any set induces a
structure of operad on its image.

Proposition 9. Let (O,�) be an operad, let O′ be a graded set, and let φ be a graded bijection from
O to O′. Let (�′) j∈N\0 be the sequence of binary operations defined by φ(p)�′j φ(q) = φ(p� j q), for
any integers m, j with 1 ≤ j ≤ m, any p ∈ Om, and any q ∈ O. The graded set O′ equipped with
�
′ is an operad.

Proof. We check that (O′,�′) satisfies the three conditions of Definition 4.

• Let Id be the identity of (O,�). For any two positive integers n and i ≤ n, and any
element p′ of O′n, there exists p ∈ On such that φ(p) = p′, and we have

φ(Id) �′1 p
′ = φ(Id) �′1 φ(p) = φ(Id �′1 p) = φ(p �i Id) = p′ �′i φ(Id).

Furthermore, we similarly have

φ(Id) �′1 p
′ = φ(Id) �′1 φ(p) = φ(Id �′1 p) = φ(p) = p′.

Therefore, φ(Id) satisfies the "identity" rule for O′.

34 CHAPTER 3. OPERADS

• For any positive integers m, n, s, i ≤ m, j ≤ n, and any p′, q′, r′, elements of O′m, O′n,
O
′

s respectively, there exists p ∈ Om, q ∈ On, and r ∈ Os such that φ(p) = p′, φ(q) = q′,
φ(r) = r′, and we have

p′�i(q′� jr
′) = φ(p)�i(φ(q)� jφ(r)) = φ(p�i(q� jr)) = φ((p�iq)�i+ j−1r) = (p′�iq

′)�i+ j−1r
′.

• For any positive integers m, n, s, i, and j such that i < j ≤ m, and any p′, q′, r′, elements
of O′m, O′n, O′s respectively, there exists p ∈ Om, q ∈ On, and r ∈ Os such that φ(p) = p′,
φ(q) = q′, φ(r) = r′, and we have

(p′ � j q
′) �i r

′ = (φ(p) � j φ(q)) �i φ(r) = φ((p � j q) �i r) = (p′ �i r
′) � j+s−1 q

′.

�

Example 6. Let φ be the bijection defined in Example 5, i.e., the mapping from the set of boolean
functions to B such that, for any k-ary boolean function b, we have

φ(b) = {(e1, . . . , ek) ∈ {0, 1}k | b(e1, . . . , ek) = 1}.

Without knowing that φ is an isomorphism of operads, or even that (B,}) is an operad, we could
follow the reasoning of Example 5 to prove that for any positive integers m and j with 1 ≤ j ≤ m,
for any m-ary boolean function b, and any boolean function b′, we have φ(b)} jφ(b′) = φ(b◦ j b).
With this statement, Proposition 9 immediately gives us a new proof that (B,}) is an operad.

We now introduce quotient operads. To this aim, we characterize equivalence relations
that preserve the operadic structure, so that the quotient of an operad remains an operad.

Definition 11. Let (O,�) be an operad, and let ∼ be a graded equivalence relation on O. We say
that ∼ respects � if, for any positive integers m and j with 1 ≤ j ≤ m, for any p, p′ ∈ Om such
that p ∼ p′, and any q, q′ ∈ O such that q ∼ q′, we have p � j q ∼ p

′
� j q

′. Furthermore, we let
�/∼ denote the sequence of binary operations over O/∼ such that, for any integers j and m with

1 ≤ j ≤ m, for any p ∈ Om and q ∈ O, we have
∼
p (�/∼) j

∼
q =
∼
p � j q.

Proposition 10. Let (O,�) be an operad, and let ∼ be a graded equivalence relation on O that
respects �. The set O/∼ equipped with �/∼ is an operad. It is called the quotient of (O,�) by ∼.

Proof. We check that (O/∼,�/∼) satisfies the three conditions of Definition 4.

• Let Id be the identity of (O,�). For any positive two integers n and j ≤ n, and any
element p of On, we have

∼
p(�/∼) j
∼
Id =
∼
p � j Id =

∼
p,

and similarly:
∼
Id(�/∼)1

∼
p =
∼
Id �1 p =

∼
p.

Therefore,
∼
Id satisfies the "identity" rule for (O/∼,�/∼).

3.3. MORPHISMS, QUOTIENT OPERADS, AND SUBOPERADS 35

• For any positive integers m, n, s, i ≤ m, j ≤ n, and any p, q, r, elements of Om, On, Os

respectively, we have

∼
p(�/∼)i(

∼
q(�/∼) j

∼
r) =
∼
p(�/∼)i
∼
(q � j r) =
∼
p �i (q � j r) =
∼

(p �i q) �i+ j−1 r

=
∼
(p �i q)(�/∼)i+ j−1

∼
r = (
∼
p(�/∼)i

∼
q)(�/∼)i+ j−1

∼
r.

• For any positive integers m, n, s, i, and j such that i < j ≤ m, and any p, q, r, elements
of Om, On, Os respectively, we have

(
∼
p(�/∼) j

∼
q)(�/∼)i

∼
r = (
∼
p � j q)(�/∼)i

∼
r =
∼

(p � j q) �i r =
∼

(p �i r) � j+s−1 q

= (
∼
p �i r)(�/∼) j+s−1

∼
q = (

∼
p(�/∼)i

∼
r)(�/∼) j+s−1

∼
q.

�

Finally, we show how a morphisms of operad φ from (O,�) to (O′,�′), induces an
equivalence relation ∼φ on O, by which (O,�) can be divided. Furthermore, we show that
there is a injective morphism φ̂ that makes the diagram of Figure 3.8 commutative.

(O/
∼φ , ◦/∼φ)

(O, ◦) (O′,�)

/
∼φ

φ

φ̂

Figure 3.8: Commutative diagram for φ, /∼φ , and φ̂.

Definition 12. Let (O,�) and (O′,�′) be two operads, and let φ be a morphism of operads from
(O,�) to (O′,�′). We let ∼φ denote the equivalence relation over O such that, for any o, o′ ∈ O,
o ∼φ o′ if and only if φ(o) = φ(o′). Furthermore, we let φ̂ denote the function from O/∼φ to O′

such that, for any o ∈ O, we have φ̂(
∼φ
o) = φ(o).

Notice that, in the above definition, φ̂ is indeed well-defined, since for any o, o′ ∈ O

such that
∼
o =
∼
o′, we have φ(o) = φ(o′), and therefore φ̂(

∼φ
o) = φ̂(

∼φ

o′).

36 CHAPTER 3. OPERADS

Proposition 11. Let (O,�) and (O′,�′) be two operads, and let φ be a morphism of operads from
(O,�) to (O′,�′). The set O/∼φ equipped with �/∼φ is an operad, and φ̂ is an injective morphism
of operads from (O/∼φ ,�/∼φ) to (O′,�′).

Proof. For any two integers m and n, any o ∈ Om and any o′ ∈ On, if o ∼φ o′, thenφ(o) = φ(o′),
and therefore m = n. The equivalence relation ∼φ is therefore graded for O.

Furthermore, for any integers m and j with 1 ≤ j ≤ m, for any o1, o′1 ∈ Om and for any
o2, o′2 ∈ O such that o1 ∼

φ o′1 and o2 ∼
φ o′2, we have

φ(o1 � j o2) = φ(o1) �′j φ(o2) = φ(o′1) �′j φ(o′2) = φ(o′1 � j o
′

2),

and therefore (o1 � j o2) ∼φ (o′1 � j o
′

2). As a consequence, by Proposition 10, (O/∼φ ,�/∼φ) is
an operad. Furthermore, for any o1, o2 ∈ O/∼φ , we have

φ̂(
∼φ

o1 (�/∼φ) j
∼φ

o2) = φ̂(
∼φ

o1 � j o2) = φ(o1 � j o2) = φ(o1) �′j φ(o2) = φ̂(
∼φ

o1) �′j φ̂(
∼φ

o2).

Therefore, φ̂ is a morphism of operads, and the fact that it φ̂ is injective comes directly
from its definition. �

We now have all the tools required to handle operads for the remainder of this thesis.

Chapter 4

Modifiers and 1-uniform operations

In this chapter, we build a framework to compute the state complexity of a certain kind
of regular operations, that we call 1-uniform. For this purpose, we define modifiers, a
counterpart to 1-uniform operations in the space of operations over DFAs. By studying
modifiers themselves and the link between modifiers and 1-uniform operations, we prove
that every 1-uniform operation admits a certain kind of DFA as witness, called monster.
Monsters are k-tuples of DFAs built to have alphabets as large as possible, while not having
two letters with the same transition functions. Furthermore, throughout this chapter, we
pay a close attention to the algebraic structure behind the notions we introduce, and
we summarize this structure in Figure 4.19. In fact, this is the main difference between
our approach and the work of Sylvie Davies in [13]. Indeed, even though Theorem 1 and
Theorem 2 (which are the main results of this chapter) are also proved in [13], we introduce
them Theorems with the point of view of operads. This allows us to cleanly capture how the
composition of operations is carried from modifiers to 1-uniform operations. Furthermore,
we introduce some new notations in Section 4.2.3 that are different from the ones used in
[13], and show that their use is correct (Proposition 17). We use these notations extensively
throughout the rest of the thesis, and we believe in particular that they make Chapter 7
much easier to read.

4.1 About 1-uniform operations

In this section, we define 1-uniform operations and give some examples of well-known
1-uniform operations. We also give an example of regular operation that is not 1-uniform,
and prove that 1-uniform operations are stable by composition.

Definition 13. A k-ary operation ⊗ is 1-uniform if it is regular, and if it commutes with every
inverse 1-uniform morphism, i.e., for any k-tuple of regular languages (L1, . . . ,Lk), for any 1-
uniform morphism φ, ⊗(φ−1(L1), . . . , φ−1(Lk)) = φ−1(⊗(L1, . . . ,Lk)).

In the rest of this thesis, the operations for which we give state complexity results are
all 1-uniform. Many well-known operations are 1-uniform. Let us illustrate this concept
by proving that the Kleene star is 1-uniform.

Proposition 12. The Kleene star is 1-uniform.

37

38 CHAPTER 4. MODIFIERS AND 1-UNIFORM OPERATIONS

Proof. Let Σ and Γ be two alphabets. Let L be a regular language over Σ, and let φ be
a 1-uniform morphism from Γ∗ to Σ∗. We first prove φ−1(L)? ⊆ φ−1(L?). Indeed, if v is a
word in φ−1(L)?, then there exists an integer n and n words u1, . . . ,un such that v = u1 · · · un.
Therefore, there exists n words of L t1, . . . , tn such that φ(ui) = ti for all i ∈ {1, . . . ,n}. We
thus have φ(v) = w with w = t1 · · · tn and v ∈ φ−1(L?).

Conversely, let v be a word of φ−1(L?). There exists an integer n and t1, . . . , tn n words
of L such that φ(v) = w, with w = t1 · · · tn. As φ is 1-uniform, φ(v) = φ(v1) · · ·φ(v|v|), and
each φ(v j) are letters of Σ. Therefore, v and w have the same length, and φ(v j) = w j, for all
j ∈ {1, . . . , |v|}. As a consequence, for all i ∈ {1, . . . ,n}, if ui = v|t1|+|t2|+···+|ti−1|+1 · · · v|t1|+|t2|+···+|ti|,
we have φ(ui) = ti and v = u1 · · · un. We thus have v ∈ φ−1(L)?, and φ−1(L?) ⊆ φ−1(L)?. �

Another example of a 1-uniform operation is given by the union of two languages
(i.e., the operation ⊗ defined by ⊗(L1,L2) = L1 ∪ L2), which is a binary operation. This
follows from the following remark:

Remark 1. For any function φ from a set E to a set F, φ−1(X ∪ Y) = φ−1(X) ∪ φ−1(Y), for all
X,Y ⊆ F.

Indeed, to prove that the union of languages is a 1-uniform operation, we only have to
apply the above remark to the particular case of E = Γ∗ and F = Σ∗ where Σ and Γ are any
two alphabets, and φ is any 1-uniform morphism from Γ∗ to Σ∗.

We see many other examples of 1-uniform operations throughout this chapter. We
refrain from mentioning them all in this section, as we develop in the following sections
tools that make proving the 1-uniformity of regular operations very easy. However, even
though many well-known regular operations are 1-uniform, some of them are not. The
right quotient is an example of a regular operation that is not 1-uniform.

Example 7. The right quotient of two languages is defined by L1 · L−1
2 = {u | uv ∈ L1 for some v ∈

L2}. We show that the operation ⊗(L1,L2) = L1 · L−1
2 is regular but not 1-uniform.

Let Γ = Σ = {a, b}, and letφ be the 1-uniform morphism from Γ∗ to Σ∗ such thatφ(a) = φ(b) = a.
Furthermore, let L1 = {ab} and L2 = {b}. We have φ−1(L1) = φ−1(L2) = ∅, and therefore,
φ−1(L1) · (φ−1(L2))−1 = ∅. However, L1 · L−1

2 = {a}, and therefore φ−1(L1 · L−1
2) = {a, b}. We thus

have φ−1(L1) · φ−1(L2)−1 , φ−1(L1 · L−1
2). As a consequence, the right quotient operation ⊗ is not

1-uniform.

Let Ou be the set of all 1-uniform operations. From Lemma 1 and Definition 13, Ou

is stable by the composition of operations ◦. Therefore, by Proposition 5, (Ou, ◦) is a
suboperad of the operad of regular operations.

Proposition 13. The set of 1-uniform operations equipped with the composition of operations ◦ is
an operad.

The above proposition is quite important, as it means that the main result of this
chapter (Theorem 2) can be applied to a large number of interesting operations, some
already studied (for example the star of union [27], or star-complement-star [22, 29]), and
some that we have yet to study (for example the star of symmetric difference studied later
in Chapter 5).

4.2. MODIFIERS 39

4.2 Modifiers

4.2.1 Definition

The definition of operational state complexity involves directly the state complexity of
languages. The definition of the state complexity of languages, in turn, directly involves
the notion of minimal DFA. The easiest way to compute the minimal DFA associated with a
language relies on first giving a DFA that recognizes this language, and then on minimizing
this DFA. Therefore, the most convenient way to compute the state complexity of regular
operations involves doing computations directly on DFAs. Hence, in order to prove state
complexity results for 1-uniform operations, it is convenient to link these operations over
languages with operations acting directly over DFAs. To this aim, we define a counterpart
of 1-uniform operations, constituted of operations over DFAs called modifiers. To give
more details, we first define the notions of state configuration and transition configuration.

Definition 14. A state configuration is a 3-tuple (Q, i,F) such that Q is a finite set, i ∈ Q and
F ⊆ Q. The state configuration of a DFA A = (Σ,Q, i,F, δ) is the triplet (Q, i,F). A transition
configuration is a 4-tuple (Q, i,F, δ) such that (Q, i,F) is a state configuration and δ ∈ QQ. If
A = (Σ,Q, i,F, δ) is a DFA, the transition configuration of a letter a ∈ Σ in a A is the 4-tuple
(Q, i,F, δa).

In the graphical representation of a DFA, the state configuration corresponds to keeping
the states and removing the arrows, with the initial state and final states marked. A
transition configuration corresponds to state configuration equipped with a transition
function over its states.

We let AΣ
k denote the set of all k-tuples of DFAs (A1, . . . ,Ak) such that, for any j ∈

{1, . . . , k}, the alphabet of A j is Σ. We also let Ak denote the union over all alphabets Σ of
A

Σ
k , i.e., the set of all k-tuples of DFAs having the same alphabet.

A k-modifier is a k-ary operation over DFAs, that associates a k-tuple in AΣ
k with a DFA

whose alphabet is also Σ. However, intuitively, modifiers do not directly associate multiple
DFAs with a DFA, but instead use intermediate steps. Indeed, they first associate tuples
of state configurations with a state configuration, and then associate tuples of transition
configurations with a transition function. Finally, they naturally construct a DFA from
multiple DFAs using the previous steps. In other words, a modifierm is an operation over
DFAs that must satisfy the following conditions:

• the state configuration of the output ofm only depends on the state configuration of
its inputs,

• the transition function of a letter a in the output of m only depends on the transition
configurations of the letter a in the inputs of m.

Furthermore, in order for the conditions above to make sense, we set that all the inputs of
a modifier must have the same alphabet as its output. More formally,

Definition 15. A k-modifier is a k-ary operation m of domain Ak that satisfies the following
conditions:

40 CHAPTER 4. MODIFIERS AND 1-UNIFORM OPERATIONS

• for any (A1, . . . ,Ak) ∈ AΣ
k , the alphabet of m(A1, . . . ,Ak) is Σ,

• for any (A1, . . . ,Ak) ∈ AΣ
k and any (B1, . . . ,Bk) ∈ AΓ

k , such that A j has the same state
configuration as B j for any j ∈ {1, . . . , k}, we have

– the state configurations of m(A1, . . . ,Ak) and of m(B1, . . . ,Bk) are the same,

– if there exist two letters a ∈ Σ and b ∈ Γ, such that, for any j ∈ {1, . . . , k}, the transition
function of a in A j is equal to the transition function of b in B j, then the transition
function of a in m(A1, . . . ,Ak) is equal to the transition function of b in m(B1, . . . ,Bk).

In order to familiarize ourselves with this notion, we give many examples in the next
section.

4.2.2 Examples

At first sight, the definition of modifiers seem very broad, and may even seem to include
all operations over DFAs. However, this is not the case. First, it is straightforward that a
unary operation over DFAs that maps two DFAs with the same state configuration to two
DFAs with different state configurations is not a modifier. Furthermore, the third condition
of Definition 15 cannot be removed. Indeed, a unary operation o over DFAs that maps the
DFA A of Figure 4.1 to the DFA B, and the DFA C to the DFA D, is not a modifier, even
though it satisfies so far the first and second conditions of Definition 15. That is because
the transition configurations of the letter a in DFA A and DFA C are the same, while the
transition configurations of the letter a in DFA B and DFA D are not the same.

0 1

a, b

a

b

DFA A

o
0 1a, b a b

DFA B

0 1b

a

a

b

DFA C

o
0 1

a, b

a

b

DFA D

Figure 4.1: An operation over DFAs that is not a modifier.

Several well-known constructions over DFAs can be seen as modifiers. The simplest is
probably the (set-theoretic) complement.

Example 8. For any DFA A = (Σ,Q, i,F, δ), we define

Comp(A) = (Σ,Q, i,Q \ F, δ).

4.2. MODIFIERS 41

This modifier follows the classical construction for the complement of a DFA [36]. We use this
construction to compute the complement Comp(A) (Figure 4.3) of the DFA A (Figure 4.2).

0 1

2

b

a
b

a

a, b

Figure 4.2: A DFA A.

0 1

2

b

a
b

a

a, b

Figure 4.3: Comp(A).

Example 9. For any DFA A = (Σ,Q, i,F, δ), we define

Sqrtk(A) = (Σ,QQ, IdQ, {φ ∈ QQ
|φk(i) ∈ F}, δ′),

where for any a ∈ Σ, δ′a(φ) = δa
◦ φ. Furthermore, we let Sqrt denote the modifier Sqrt2. The

DFA of Figure 4.5, where [i j] represents the function φ such that φ(0) = i and φ(1) = j, is the
image of the DFA B (Figure 4.4) by the modifier Sqrt.

0 1

a, b

a

b

Figure 4.4: A DFA B.

[01] [10]

[00]

[11]

a

a

a, ba

b b

b

Figure 4.5: The DFA Sqrt(B).

The above modifierSqrt follows the classical construction on DFAs for the square root operation
on regular languages. This remains true in the general case of the k-th root.

Proposition 14. For any DFA A, we have k
√

L(A) = L(Sqrtk(A)).

Proof. Let A = (Σ,Q, i,F, δ) be a DFA, let Sqrtk(A) = (Σ,Q′, i′,F′, δ′), and let w be any word
of Σ∗. The word wk is accepted by A if and only if δwk(i) ∈ F. However, we have

δwk
= δw

◦ . . . ◦ δw︸ ︷︷ ︸
k times

= (δw)k.

Therefore, wk
∈ L(A) if and only if δw

∈ F′. But δ′w(i′) = δw
◦ IdQ = δw. We thus have

wk
∈ L(A) if and only if δ′w(i′) ∈ F′. Hence, we have k

√
L(A) = L(Sqrtk(A)). �

42 CHAPTER 4. MODIFIERS AND 1-UNIFORM OPERATIONS

Example 10. We generalize the case of the complement to boolean operations. We define a modifier
from a boolean function by using the classical "product automaton" construction, and we show
that these modifiers correspond to boolean operations.

Definition 16. Let b be a k-ary boolean function. We letmb denote the modifier such that, for any
k-tuple of DFAs (A1, . . . ,Ak) with A j = (Σ,Q j, i j,F j, δ j),

mb(A1, . . . ,Ak) = (Σ,Q1 ×Q2 × · · · ×Qk, (i1, i2, . . . , ik),F′, (δ1, δ2, . . . , δk)),

where (q1, . . . , qk) ∈ F′ if and only if b([q1 ∈ F1], . . . , [qk ∈ Fk]) = 1.

Figures 4.8, 4.9, and 4.9, display the image of the pair of DFAs (A1,A2) defined in Figures 4.6
and 4.7 by the modifiers munion, minter, and mxor.

0 1

a, b

a

b

Figure 4.6: DFA A1.

0 1b

a

b

a

Figure 4.7: DFA A2.

(0, 0) (1, 0)

(0, 1)(1, 1)

a

b

a

b

a

b

a

b

Figure 4.8
The DFA munion(A1,A2).

(0, 0) (1, 0)

(0, 1)(1, 1)

a

b

a

b

a

b

a

b

Figure 4.9
The DFA minter(A1,A2).

(0, 0) (1, 0)

(0, 1)(1, 1)

a

b

a

b

a

b

a

b

Figure 4.10
The DFA mxor(A1,A2).

The modifier mb corresponds to the operation ⊗b. In other words,

Proposition 15. For any boolean function b, and for any k-tuple of DFAs (A1, . . . ,Ak), we have

L(mb(A1, . . . ,Ak)) = ⊗b(L(A1), . . . ,L(Ak)).

4.2. MODIFIERS 43

Proof. Let b be a boolean function, and let A1, . . . ,Ak be k DFAs with A j = (Σ,Q j, i j,F j, δ j) for
all j ∈ {1, . . . , k}, let w = a1 · · · an be a word in Σ∗, and letmb(A1, . . . ,Ak) = (Σ,Q, i,F, δ). From
Definition 3, the word w is in ⊗b(L(A1), . . . ,L(Ak)) if and only if b([δw

1 (i1) ∈ F1], . . . , [δw
k (ik) ∈

Fk]) = 1. However, using Definition 16, an easy induction shows that we have δw(i1, . . . , ik) =
(δw

1 (i1), . . . , δw
k (ik)). Therefore, from Definition 16, w is in ⊗b(L(A1), . . . ,L(Ak)) if and only if

δw(i1, . . . , ik) ∈ F. Consequently, as (i1, . . . , ik) = i, w is in ⊗b(L(A1), . . . ,L(Ak)) if and only if w
is in L(mb(A1, . . . ,Ak)). �

4.2.3 Alternative notations

We let M denote the set of all modifiers. Before giving more examples, we clarify and
formalize the algebraic structure behind modifiers. First notice that modifiers naturally
form an operad.

Proposition 16. The set of modifiers equipped with the composition of operations is an operad.

Proof. We show thatM is stable by the composition of operations ◦. Let k, k′ and j be three
positive integers with j ≤ k, and let m and m′ be two modifiers, respectively k-ary and
k′-ary. By Definition 6, as the domains ofm andm′ are respectivelyAk andAk′ , the domain
of the k + k′ − 1-ary operation m ◦ j m

′ isAk+k′−1. Furthermore, recall that, by Definition 6,
for any (A1, . . . ,Ak+k′−1) ∈ Ak+k′−1, we have

m ◦ j m
′(A1, . . . ,Ak+k′−1) = m(A1, . . . ,A j−1,m

′(A j, . . . ,Ak′+ j−1),Ak′+ j, . . . ,Ak+k′−1). (4.1)

This equality helps us check that m ◦ j m
′ satisfies the three points of Definition 15.

• For any alphabet Σ, and any (A1, . . . ,Ak+k′−1) ∈ AΣ
k+k′−1, we have (A j, . . . ,Ak′+ j−1) ∈ AΣ

k′ ,
and therefore the alphabet of m′(A1, . . . ,Ak+k′−1) is Σ. As a consequence,

(A1, . . . ,A j−1,m
′(A j, . . . ,Ak′+ j−1),Ak′+ j, . . . ,Ak+k′−1) ∈ AΣ

k ,

and by (4.1), the alphabet of m ◦ j m
′(A1, . . . ,Ak+k′−1) is Σ.

• For any two elements (A1, . . . ,Ak+k′−1) of AΣ
k+k′−1 and (B1, . . . ,Bk+k′−1) of AΓ

k+k′−1, such
that, for any j ∈ {1, . . . , k + k′ − 1}, A j and B j have the same state configuration, we
have

– the state configurations ofm′(A j, . . . ,Ak+ j−1) and ofm′(B j, . . . ,Bk+ j−1) are the same,
and therefore, by (4.1), the state configurations of m ◦ j m

′(A1, . . . ,Ak+k′−1) and
m ◦ j m

′(B1, . . . ,Bk+k′−1) are the same.

– If there exist two letters a ∈ Σ and b ∈ Γ such that, for any j ∈ {1, . . . , k+k′−1}, the
transition function of a in A j is the same as the transition function of b in B j, then
the transition function of a in m′(A1, . . . ,Ak) is equal to the transition function
of b in m′(B1, . . . ,Bk), and therefore, by (4.1), the transition function of a in m ◦ j

m′(A1, . . . ,Ak+k′−1) is equal to the transition function of b inm◦ jm
′(B1, . . . ,Bk+k′−1).

44 CHAPTER 4. MODIFIERS AND 1-UNIFORM OPERATIONS

Therefore, M is stable by ◦. Furthermore, it is easy to check that the identity over DFAs
is a modifier. In addition, by Proposition 4, the operations over DFAs equipped with the
composition of operations is an operad. As a consequence, by Proposition 5, (M, ◦) is an
operad. �

Even though modifiers behave well with respect to the composition of operations, they
are not easy to handle in an algebraic context. One of the reasons is that they naturally
contain more information than necessary.

We letTC denote the set of all transition configurations. We seek to extract the essential
information contained in a modifier. To this aim, we associate with every modifier an
operation over TC, by examining the way it maps transition configurations to transition
configurations.

Definition 17. Let m be a k-ary modifier. We let m denote the k-ary operation over TC that
satisfies the following property: for any k-tuple of transition configurations

((Q1, i1,F1, φ1), . . . , (Qk, ik,Fk, φk)),

if, for any j ∈ {1, . . . , k}, we let δ j denote the mapping such that δ j(q j, a) = φ j(q j) for any q j ∈ Q j,
and by ({a},Q, i,F, δ) the DFA

m(({a},Q1, i1,F1, δ1), . . . , ({a},Qk, ik,Fk, δk)),

then we have
m((Q1, i1,F1, φ1), . . . , (Qk, ik,Fk, φk)) = (Q, i,F, δa).

It is interesting to take another look at Definition 15 to understand the above definition.
Indeed, in the above definition, if we let Σ denote any non-empty alphabet, b denote any
letter of Σ, (A1, . . . ,Ak) denote any k-tuple of DFAs such that A j = (Σ,Q j, i j,F j, δ j) with
δb

j = φ j, and (Σ,Q′, i′,F′, δ′) denote the DFA

m((Σ,Q1, i1,F1, δ1), . . . , (Σ,Qk, ik,Fk, δk)),

then we have

m((Q1, i1,F1, φ1), . . . , (Qk, ik,Fk, φk)) = (Q′, i′,F′, δ′b) = (Q, i,F, δa).

In other words, for every transition configurations t1, . . . , tk, we can getm(t1, . . . , tk) by first
applying m to any k-tuple of DFAs (A1, . . . ,Ak) such that the transition configuration of a
certain letter b in A j is equal t j, and then by looking at the transition configuration of b in
the resulting DFA.

Example 11. Using the notations of Figure 4.11, if m is a unary modifier such that m(A) = B,
then m(t) = s.

4.2. MODIFIERS 45

0 1 0 1

DFA A DFA B

a, b

a

b a

a, b

b
m

0 1 0 1

Transition configuration t Transition configuration s

m

Figure 4.11: An illustration of Definition 17.

We now formalize the idea thatm andm contain the same information. To this aim, we
prove that the application m 7→ m is injective, and that it behaves well with respect to the
composition of operations. Recall thatMapTC is the set of all operations over TC.

Lemma 2. The applicationm 7→ m is an injective morphism from the operad (M, ◦) to (MapTC, ◦).

Proof. We first prove that the applicationm 7→ m is injective. Letm andm′ be two different
modifiers. If m and m′ do not have the same arity, then m and m′ do not have the
same arity either, and are, therefore, different. If m and m′ have the same arity k, there
exists a k-tuple of DFAs (A1, . . . ,Ak), where all A j have the same alphabet Σ, such that
m(A1, . . . ,Ak) , m′(A1, . . . ,Ak). Asm(A1, . . . ,Ak) andm′(A1, . . . ,Ak) have the same alphabet
Σ, there exists a letter a ∈ Σ such that the transition configuration of a in m(A1, . . . ,Ak)
is different from the transition configuration of a in m′(A1, . . . ,Ak). Therefore, if, for any
j ∈ {1, . . . , k}, ta

j is the transition configuration of a in A j, we havem(ta
1, . . . , t

a
k) , m

′(ta
1, . . . , t

a
k).

As a consequence, the application m 7→ m is injective.
We now prove that m 7→ m is a morphism of operads from (M, ◦) to (MapTC, ◦). Let m

and m′ be two modifiers, respectively k-ary and k′-ary. We show that m ◦ j m
′ = m ◦ j m

′.
First notice that, by Definition 17, the domains of m and m′ are respectively TCk

(i.e., TC × · · · × TC︸ ︷︷ ︸
k times

) andTCk′ . Therefore, by Definition 6, the domain ofm◦m′ isTCk+k′−1.

Furthermore, by Proposition 16,m◦ jm
′ is a k+k′−1 modifier, by Definition 17, the domain

of m ◦ j m
′ is also TCk+k′−1. Therefore, the domains of m ◦ j m

′ and m ◦ j m
′ are the same.

Let (t1, . . . , tk+k′−1) be any (k + k′ − 1)-tuple of transition configurations, with t j =
(Q j, i j,F j, φ j) for any j ∈ {1, . . . , k + k′ − 1}, and let (A1, . . . ,Ak+k′−1) be a k + k′ − 1-tuple
of DFAs such that, for any j ∈ {1, . . . , k + k′ − 1}, A j = ({a},Q j, i j,F j, δ j), with δa

j = φ j. By Def-
inition 17, the transition configuration of a in m′(A j, . . . ,Ak′+ j−1) is m′(t j, . . . , tk′+ j−1). Thus,
similarly, by Definition 17, the transition configuration of a in

m(A1, . . . ,A j−1,m
′(A j, . . . ,Ak′+ j−1),Ak′+ j, . . . ,Ak+k′−1)

46 CHAPTER 4. MODIFIERS AND 1-UNIFORM OPERATIONS

is m(t1, . . . , t j−1,m′(t j, . . . , tk′+ j−1), tk′+ j, . . . , tk+k′−1). Hence, we have m ◦ j m
′(A1, . . . ,Ak+k′−1) =

m ◦ j m
′(A1, . . . ,Ak+k′−1). In addition, m 7→ m maps the identity of M to the identity of

MapTC, and it is a graded mapping. Hence, by Definition 10, m 7→ m is a morphism of
operads. �

However,m 7→ m is not an isomorphism of operads from (M, ◦) to (MapTC, ◦). In order
to make it an isomorphism, we exhibit its image and its inverse on this image. We let FT
denote the set of all operations over TCwhose first three coordinates depend only on the
first three coordinate of their input. In other words,

Definition 18. We let FT denote the set of all operations tc over TC that satisfy the following
property: if (t1, . . . , tk) and (t′1, . . . , t

′

k) are two k-tuples of transitions configurations (where k is the
arity of tc) such that, for any j ∈ {1, . . . , k}, the state configurations of t j and t′j are equal, then the
state configuration of tc(t1, . . . , tk) is equal to the state configuration of tc(t′1, . . . , t

′

k).

Example 12. As we can see in Figure 4.12, any unary operation o over TC, such that o(t) = s
and o(t′) = s′, is not in FT, since the state configurations of t and t′ are equal, but the state
configurations of s and s′ are not.

0 1 0 1

t s

o

0 1 0 1

t′ s′

o

Figure 4.12: An operation inMapTC but not in FT.

An operation over TC associated with a modifier is always in FT.

Lemma 3. For any modifier m, we have m ∈ FT.

Proof. Let m be a k-ary modifier, let (t1, . . . , tk) and (s1, . . . , sk) be two k-tuples of transitions
configurations such that the state configurations of t j and s j are the same for any j ∈
{1, . . . , k}. Furthermore, let (A1, . . . ,Ak) and (B1, . . . ,Bk) be two k-tuples of DFAs such that,
for any j ∈ {1, . . . , k}, the alphabet of A j and B j is {a}, and the transition configurations of a
in A j and B j are respectively t j and s j. Notice that, as the state configurations of t j and s j

are the same for any j ∈ {1, . . . , k}, the state configurations of A j and B j are also the same.
Therefore, by Definition 15, the state configurations of m(A1, . . . ,Ak) and m(B1, . . . ,Bk) are
equal. As a consequence, by Definition 17, the state configuration of m(t1, . . . , tk) is equal
to the state configuration of m(s1, . . . , sk). In conclusion, by Definition 18, m is in FT. �

4.2. MODIFIERS 47

Conversely, we can naturally associate an operation over DFAs with an operation in
FT. We show that such an operation over DFAs is always a modifier.

Definition 19. Let k be an integer, and let tc be an element of FT. For any k-tuple of DFAs
(A1, . . . ,Ak) with A j = (Σ,Q j, i j,F j, δ j). We let [tc](A1, . . . ,Ak) denote the DFA A such that

• the alphabet of A is Σ,

• the state configuration of A is the state configuration of

tc((Q1, i1,F1, IdQ1), . . . , (Qk, ik,Fk, IdQk)),

• for any letter a of Σ, the transition configuration of a in A is equal to

tc((Q1, i1,F1, δ
a
1), . . . , (Qk, ik,Fk, δ

a
k)).

Notice that the third condition of the definition above does not imply the second
condition in the case where Σ is the empty alphabet.

Example 13. Using the notations of Figure 4.13, if tc is a unary operation in FT such that
tc(t1) = s1 and tc(t2) = s2, then [tc](A) = B.

0 1 0 1

Transition configuration t1 Transition configuration s1

tc

0 1 0 1

Transition configuration t2 Transition configuration s2

tc

0 1 0 1

DFA A DFA B

a, b

a

b a

a, b

b
[tc]

Figure 4.13: An illustration of Definition 19.

Lemma 4. For any operation tc of FT, we have [tc] ∈M, and [tc] = tc.

Proof. Let tc be a k-ary operation of FT. We first show that [tc] ∈ M by checking that it
satisfies the last two points of Definition 22, since the first one stems directly from Definition
19. Let (A1, . . . ,Ak) and (B1, . . . ,Bk) be two elements of Ak, such that A j = (Σ,Q j, i j,F j, δ j)
and B j = (Γ,Q j, i j,F j, ζ j) for any j ∈ {1, . . . , k}.

48 CHAPTER 4. MODIFIERS AND 1-UNIFORM OPERATIONS

• By Definition 19, the state configurations of [tc](A1, . . . ,Ak) and of [tc](B1, . . . ,Bk) are
equal to the state configuration of tc((Q1, i1,F1, IdQ1), . . . , (Qk, ik,Fk, IdQk)).

• Suppose that a and b are two letters of Σ and Γ respectively, such that, for any
j ∈ {1, . . . , k}, δa

j = ζb
j = φ j. By Definition 19, the transition configurations of a and b

in m(A1, . . . ,Ak) are equal to tc((Q1, i1,F1, φ1), . . . , (Qk, ik,Fk, φk)).

Therefore, we have [tc] ∈ M. We now show that [tc] = tc. Let (t1, . . . , tk) be any k-tuple of
transition configurations, and let (A1, . . . ,Ak) ∈ A

{a}
k such that the transition configuration

of a in A j is t j. By Definition 19, the transition configuration of a in [tc](A1, . . . ,Ak) is equal
to tc(A1, . . . ,Ak). However, by Definition 17, [tc] is the transition configuration of a in
[tc](A1, . . . ,Ak). Thus, we have [tc](t1, . . . , tk) = tc(t1, . . . , tk). �

As a consequence of Lemma 3 and Lemma 4, the image ofm 7→ m is FT, and therefore,
by Lemma 2,m 7→ m is an isomorphism of operads betweenM andFT. As a consequence,
by Proposition 8, its inverse tc 7→ [tc] is also an isomorphism. To summarize,

Proposition 17. The application tc 7→ [tc] is a isomorphism of operads from (FT, ◦) to (M, ◦), and
its inverse is m 7→ m.

We can now define any modifier by defining the application of FT it is associated
with. In addition to providing alternative definitions of Comp, Sqrtk and mb (where b is a
boolean function) with this new formalism, we provide a definition of modifiers Conc and
Star that respectively follow the classical constructions of the catenation and the Kleene
Star [36].

For simplicity, in the following examples, an application tc of FT is denoted directly
by the 4-tuple (Q, i, f, d) such that

tc(t1, . . . , tk) = (Q(t1, . . . , tk), i(t1, . . . , tk), f(t1, . . . , tk), d(t1, . . . , tk)).

Furthermore, we do not write the dependency of Q, i, and f over the fourth coordi-
nates of their input k-tuples, i.e., we do not write Q((Q1, i1,F1, δ1), . . . , (Qk, ik,Fk, δk)), but
we write Q((Q1, i1,F1), . . . , (Qk, ik,Fk)). We do not write either the dependency of d on
Q1, . . . ,Qk, as this information is already contained in (δ1, . . . , δk), i.e., we do not write
d((Q1, i1,F1, δ1), . . . , (Qk, ik,Fk, δk)), but we write d((i1,F1, δ1), . . . , (ik,Fk, δk)).

Example 14. The modifier Comp of Example 8 corresponding to the (set-theoretic) complement is
equal to [Q, i, f, d], where, for any transition configuration (Q, i,F, δ) ,

Q(Q, i,F) = Q, i(Q, i,F) = i, f(Q, i,F) = Q \ F, d(i,F, δ) = δ.

Example 15. We define the modifierStar byStar = [Q, i, f, d], where, for any state configuration
(Q, i,F) and any δ ∈ QQ, Q(Q, i,F) = 2Q, i(Q, i,F) = ∅, f(Q, i,F) = {E ⊆ Q | E ∩ F , ∅} ∪ {∅},
and, for all E ⊆ Q,

d(i,F, δ)(E) =


{δ(i)} if E = ∅ and δ(i) < F
{δ(i), i} if E = ∅ and δ(i) ∈ F
δ(E) if E , ∅ and δ(E) ∩ F = ∅
δ(E) ∪ {i} if E , ∅ and δ(E) ∩ F , ∅

4.2. MODIFIERS 49

The modifier Star follows the classical construction for DFAs of the Kleene star operation [36],
i.e., for any DFA A, L(Star(A)) = (L(A))?. Figure 4.15 represents the image of the DFA A of
Figure 4.14 by the modifier Star.

0 1b

a

a

b

Figure 4.14: A DFA A.

∅ {0}

{1}{0, 1}

a

b

a

b

a

b
a, b

Figure 4.15: The DFA Star(A).

Example 16. The modifier Sqrtk defined in Example 9 is equal to [Q, i, fk, d], where, for any state
configuration (Q, i,F) and any φ ∈ QQ, Q(Q, i,F) = QQ, i(Q, i,F) = IdQ, fk(Q, i,F) = {φ ∈
QQ
|φk(i) ∈ F}, and, for any ψ ∈ QQ, d(i,F, φ)(ψ) = φ ◦ ψ.

Example 17. For any k-ary boolean function b, mb is equal to [Q, i, f, d], where, for any k-tuple
((Q1, i1,F1, δ1), . . . , (Qk, ik,Fk, δk)) of elements of TC,

• Q((Q1, i1,F1), . . . , (Qk, ik,Fk)) = Q1 × · · · ×Qk,

• i((Q1, i1,F1), . . . , (Qk, ik,Fk)) = (i1, . . . , ik),

•
f((Q1, i1,F1), . . . , (Qk, ik,Fk)) =

{(q1, . . . , qk) ∈ Q1 × · · · ×Qk | b([q1 ∈ F1], . . . , [qk ∈ Fk]) = 1},

• and, for any (q1, . . . , qk) ∈ Q1 × · · · ×Qk,

d((i1,F1, δ1), . . . , (ik,Fk, δk))(q1, . . . , qk) = (δ1(q1), . . . , δk(qk)).

Example 18. We define the modifier Conc = [Q, i, f, d], where, for any two elements of TC
(Q1, i1,F1, δ1) and (Q2, i2,F2, δ2),

• Q((Q1, i1,F1), (Q2, i2,F2)) = Q1 × 2Q2

• i((Q1, i1,F1), (Q2, i2,F2)) =

{
(i1, ∅) if i1 < F1

(i1, {i2}) if i1 ∈ F1

• f((Q1, i1,F1), (Q2, i2,F2)) = {(q1,E) ∈ Q1 × 2Q2 | E ∩ F2 , ∅}

• and, for any (q1,E) ∈ Q1 × 2Q2 ,

d((i1,F1, δ1), (i2,F2, δ2))(q1,E) =

{
(δ1(q1), δ2(E)) δ1(q1) < F1

(δ1(q1), δ2(E) ∪ {i2}) otherwise.

50 CHAPTER 4. MODIFIERS AND 1-UNIFORM OPERATIONS

This modifier follows the classical construction on DFAs corresponding to the catenation operation
on languages [36]. In other words, for any two DFAs A1 and A2, L(Conc(A1,A2)) = L(A1) ·L(A2).
Figure 4.18 shows the DFA Conc(A1,A2), where A1 and A2 are the DFAs of Figures 4.16 and 4.17.

0 1

a, b

a

b

Figure 4.16: DFA A1.

0 1b

a

b

a

Figure 4.17: DFA A2.

(0, ∅)

(0, {0})

(0, {1})

(0, {0, 1})

(1, ∅)

(1, {0})

(1, {1})

(1, {0, 1})

a, b

a

b

a

b

a

b

a
b

a

b ab

ab

Figure 4.18: The DFA Conc(A1,A2).

4.2.4 From modifiers to regular operations

We now explain how we associate a regular operation with a modifier. This association
follows a very natural intuition. We say that a modifier is coherent if it can naturally be
associated with a regular operation.

Definition 20. A k-modifier m is coherent if, for every pair of k-tuples of DFAs (A1, . . . ,Ak)
and (B1, . . . ,Bk) such that L(A j) = L(B j) for all j ∈ {1, . . . , k}, we have L(m(A1, . . . ,Ak)) =
L(m(B1, . . . ,Bk)).

We letMc denote the set of coherent modifiers.

4.2. MODIFIERS 51

Definition 21. For any coherent modifier m, the operation ⊗ such that, for all k-tuples of DFAs
(A1, . . . ,Ak), ⊗(L(A1), . . . ,L(Ak)) = L(m(A1, . . . ,Ak)), is well-defined. We say that m describes
the operation ⊗, and we let desc denote the mapping from Mc into the set of operations over
languages such that desc(m) = ⊗.

Every modifier given in an example above is coherent. Furthermore, by construction,
desc(mb) is equal to ⊗b for any boolean function b, desc(Conc) is the catenation of two
languages, desc(Star) is the Kleene star, and desc(Sqrt) is the square root.

Remark 2. Some modifiers are not coherent. For instance, consider the 1-modifierFto1 = [Q, i, f, d]
such that, for any transition configuration (Q, i,F, δ), we have

Q(Q) = Q, i(Q, i,F) = i, f(Q, i,F) = F, and d(i,F, δ)(q) =


δ(q) if q < F

1 if 1 ∈ Q and q ∈ F
δ(q) otherwise.

In other words, this modifier changes the transition functions of its input DFA such that
the image of a final state by a transition function of the output DFA is 1 if possible. If A1

and A′1 are two deterministic automata recognizing the same language then we have in general
L(Fto1(A1)) , L(Fto1(A′1)) because the recognized language depends on the labels of the states of
A1 and A′1. For instance, the two following automata recognize the same language a2a∗.

0 1 2
a a

a

0 2 1
a a

a

But applying Fto1 on the first one gives

0 1 2
a

a

a

which recognizes (aa)+ while Fto1 lets the second automaton unchanged.

Proposition 18. The set of all coherent modifiers equipped with the composition of operations ◦ is
an operad. Furthermore, the mapping desc is a morphism of operads.

Proof. Let m1 and m2 be two coherent modifiers, respectively k1-ary and k2-ary, and let
⊗ = desc(m1) and ⊕ = desc(m2). Let L1, . . . ,Lk1+k2−1 be regular languages recognized
respectively by DFAs A1, . . . ,Ak1+k2−1. We have

m1 ◦ j m2(A1, . . . ,Ak1+k2−1)
= m1(A1, . . . ,A j−1,m2(A j, . . . ,A j+k2−1),A j+k2 , . . . ,Ak1+k2−1).

As a consequence, ifm1 andm2 are coherent, thenm1◦ jm2 is coherent as well. Furthermore:

⊗ ◦ j ⊕(L1, . . . ,Lk1+k2−1)
= ⊗(L1, . . . ,L j−1,⊕(L j, . . . ,L j+k2−1),L j+k2 , . . . ,Lk1+k2−1)
= L(m1(A1, . . .A j−1,m2(A j, . . . ,A j+k2−1),A j+k2 , . . . ,Ak1+k2−1))
= L(m1 ◦ j m2(A1, . . . ,Ak1+k2−1)).

52 CHAPTER 4. MODIFIERS AND 1-UNIFORM OPERATIONS

Thus, desc(m1 ◦ j m2) = desc(m1) ◦ j desc(m2). Therefore, from Definition 20, m1 ◦ j m2 is
coherent. Furthermore, the identity overM, denoted by Id, is coherent, and that desc(Id)
is the identity over the set of regular languagesL. Thus, by Proposition 5 and Proposition
16, (Mc, ◦) is an operad. In addition, by Definition 10, desc is a morphism of operads. �

4.3 The link with operational state complexity

In this section, we first define some specific DFAs with large alphabets called monsters.
Then, we use this tool to show that the regular operations described by coherent modifiers
are exactly all 1-uniform operations. Finally, we show that a 1-uniform operation always
has a witness that is also a monster.

4.3.1 Monsters

We first define the DFAs we use to find witnesses for 1-uniform operations, called monsters.
As we also want to deal with k-ary operations, and not only unary ones, monsters will not
necessarily be DFAs, but, in all generality, k-tuples of DFAs. The idea is to define k-tuples of
DFAs over the same alphabet, so that this alphabet is as large as possible, while not having
two letters with the same transition functions. In other words, every possible k-tuple of
transition functions of a monster should correspond to a single letter of its alphabet. This
will give us as much leeway as possible to prove reachability and distinguishability results
when minimizing the output DFA of 1-uniform operations. To use simple and intuitive
notations, the alphabet of a k-monster are k-tuples of functions. Furthermore, the k-tuple
constituted of the transition functions of a letter in the DFAs of the k-monster is the letter
itself. More formally, we have the next definition.

Definition 22. Let (n1, . . . ,nk) be a k-tuple of positive integers, and let (F1, . . . ,Fk) be a k-tuple
of sets such that F j ⊆ ~n j�, for any j ∈ {1, . . . , k}. We let MonF1,...,Fk

n1,...,nk
denote the k-tuple of DFAs

(M1, . . . ,Mk) such that, for any j ∈ {1, . . . , k}, we have M j = (Γn1,...,nk , ~n j�, 0,F j, δ j), where
• Γn1,...,nk = ~n1�~n1� × · · · × ~nk�~nk�,

• for any (a1, . . . , ak) ∈ Σ and for any q j ∈ ~n j�, we have δ j(q j, (a1, . . . , ak)) = a j(q j).

We say that a k-tuple of DFAs is a k-monster if and only if it is equal to MonF1,...,Fk
n1,...,nk

, for some
k-tuple of positive integers (n1, . . . ,nk), and some k-tuple of sets (F1, . . . ,Fk) with F j ⊆ ~n j� for any
j ∈ {1, . . . , k}.
Remark 3. When F j is different from ∅ and Q j, M j is minimal.

Example 19. The 1-monster Mon{1}2 is

0 1

[01], [00] [11], [10] [01], [11]

[00], [10]

4.3. THE LINK WITH OPERATIONAL STATE COMPLEXITY 53

where, for all i, j ∈ {0, 1}, the label [i j] denotes the mapping that maps 0 to i and 1 to j, which is
also a letter in the DFA above.

Example 20. The 2-monster Mon({1},{1})
(2,2) is given by the following pair of automata on an alphabet

with 22
×22 = 16 symbols where ai,_ (respectively a_, j) denotes the set of transitions ai,x (respectively

ax, j) for x ∈ {1, . . . , 4}:

0 1 0 1

a1,_, a3,_ a2,_, a4,_ a1,_, a2,_

a3,_, a4,_

a_,1, a_,3 a_,2, a_,4

a_,3, a_,4

a_,1, a_,2

Each symbol codes a pair of functions, denoted by the word of their image.

a1,1 = [01, 01] a1,2 = [01, 11] a1,3 = [01, 00] a1,4 = [01, 10]
a2,1 = [11, 01] a2,2 = [11, 11] a2,3 = [11, 00] a2,4 = [11, 10]
a3,1 = [00, 01] a3,2 = [00, 11] a3,3 = [00, 00] a3,4 = [00, 10]
a4,1 = [10, 01] a4,2 = [10, 11] a4,3 = [10, 00] a4,4 = [10, 10].

For instance, a1,2 = [01, 11] means that the symbol a1,2 labels a transition from 0 to 0 and a
transition from 1 to 1 in the first automaton and a transition from 0 to 1 and a transition from 1 to
1 in the second automaton.

Notice that monsters only differ from one another only by the size and final states of
their DFAs. Therefore, when using them as witnesses, we will only need to discuss their
final states.

Monsters convey the key idea of our general approach in the sense that every k-tuple
of languages is in some way contained in a k-monster. This universality-like property is
formalized in the following lemma:

Lemma 5. Let (L1, . . . ,Lk) be any k-tuple of regular languages over the same alphabet, and let
(A1, . . . ,Ak) be any k-tuple of DFAs over the same alphabet, such that A j satisfies the following
properties for any j ∈ {1, . . . , k}:

• A j recognizes the language L j,

• the states of A j is ~n j� for some integer n j,

• the initial state of A j is 0.

We let (Σ, ~n j�, 0,F j, δ j) denote A j, and we let (M1, . . . ,Mk) denote MonF1,...,Fk
n1,...,nk

. Furthermore,
we let φ denote the 1-uniform morphism from Σ to Γn1,...,nk such that, for all a ∈ Σ, we have
φ(a) = (δa

1, δ
a
2, . . . , δ

a
k). For any j ∈ {1, . . . , k}, the language L j is the preimage of M j by the

1-uniform morphism φ, i.e., we have

(L1, . . . ,Lk) = (φ−1(L(M1)), . . . , φ−1(L(Mk))). (4.2)

54 CHAPTER 4. MODIFIERS AND 1-UNIFORM OPERATIONS

Proof. Let j be an integer of {1, . . . , k}. By Definition 22, the transition function ξ j of M j

satisfies ξ
(δa

1,...,δ
a
k)

j = δa
j . Therefore, by Proposition 2, a word is in φ−1(L(M j)) if and only if it

is recognized by the DFA B j = (Σ, ~n j�, 0,F j, ζ j), with, for any l ∈ ~n j� and any a ∈ Σ, we
have

ζa
j = ξφ(a)

j = ξ
(δa

1,...,δ
a
k)

j = δa
j .

To conclude, A j = B j and L j = φ−1(L(M j)), for all j ∈ {1, . . . , k}. �

4.3.2 Modifiers and 1-uniform operations

The next proposition shows that a coherent modifier always describes a 1-uniform oper-
ation, and that every 1-uniform operation is described by a coherent modifier. It is the
beginning of our algebraic analysis. This algebraic landscape is furthered in Chapter 7.
We let Ou denote the set of 1-uniform operations.

Theorem 1. desc(Mc) = Ou.

Proof. Let ⊗ be a k-ary 1-uniform operation. We define a k-modifier m as follows.
Let (A1, . . . ,Ak) be a k-tuple of DFAs with A j = (Σ,QA

j , i
A
j ,F

A
j , δA, j), for any j ∈ {1, . . . , k}.

We can rename the states of each DFA in this k-tuple so that each A j becomes D j =

(Σ, ~n j�, 0,F j, δ j). If MonF1,...,Fk
n1,...,nk

= (M1, . . . ,Mk), we let B = (Γn1,...,nk ,Q
′, i′,F′, δ′) denote the

minimal DFA of ⊗(L(M1), . . . ,L(Mk)). We setm(A1, . . . ,Ak) = (Σ,Q′, i′,F′, δ̃′), with δ̃′(q, a) =
δ′(q, (δa

1, . . . , δ
a
k)).

Notice that m is indeed a coherent modifier. First, (Q′, i′,F′) depends only on every
(QA

j , i
A
j ,F

A
j) for j ∈ {1, . . . , k}. Second, δ̃′ depends only on (δa

1, . . . , δ
a
k) and on δ′, which in

turn depend only on (QA
j , i

A
j ,F

A
j) for j ∈ {1, . . . , k}, and on (δa

A,1, . . . , δ
a
A,k).

Furthermore, by Proposition 2, L(m(A1, . . . ,Ak)) = φ−1(L(B)), where φ is the 1-uniform
morphism such that φ(a) = (δa

1, . . . , δ
a
k) for all a ∈ Σ. Therefore, we have

L(m(A1, . . . ,Ak)) = φ−1(⊗(L(M1), . . . ,L(Mk))).

And, since ⊗ is 1-uniform, we obtain from Lemma 5 and Definition 13

L(m(A1, . . . ,Ak)) = ⊗(φ−1(L(M1)), . . . , φ−1(L(Mk))) = ⊗(L1, . . . ,Lk).

We thus have desc(m) = ⊗.
Conversely, let m be a coherent k-modifier, and let ⊗ = desc(m). We must prove that ⊗

is 1-uniform. Let Γ and Σ be two alphabets. Consider a 1-uniform morphism φ from Γ∗ to
Σ∗ and a k-tuple of languages (L1, . . . ,Lk) over Σ. Let (A1, . . . ,Ak) be a k-tuple of DFAs such
that A j = (Σ,Q j, i j,F j, δ j) and A j recognizes L j for any j ∈ {1, . . . , k}, and let (B1, . . . ,Bk) be
the k-tuple of DFAs such that, for any j ∈ {1, . . . , k}, B j = (Γ,Q j, i j,F j, δ̃ j), with δ̃a

j = δφ(a)
j for

any letter a ∈ Γ. We have L(B j) = φ−1(L(A j)) for j ∈ {1, . . . , k}.
Let m(A1, . . . ,Ak) = (Σ,Q, i,F, δ) and m(B1, . . . ,Bk) = (Γ,Q′, i′,F′, δ′). Since the state con-

figuration of each A j is the same as the state configuration of each B j, we have (Q, i,F) =
(Q′, i′,F′). Furthermore, because the transition configuration of any letter a ∈ Γ in B is equal

4.3. THE LINK WITH OPERATIONAL STATE COMPLEXITY 55

to the transition configuration of φ(a) in A, we have δ′a = δφ(a). Hence, L(m(B1, . . . ,Bk)) =
φ−1(L(m(A1, . . . ,Ak))), which implies that ⊗(L(B1), . . . ,L(Bk)) = φ−1(⊗(L(A1), . . . ,L(Ak))).
Therefore, ⊗(φ−1(L(A1)), . . . , φ−1(L(Ak))) = φ−1(⊗(L(A1), . . . ,L(Ak))), as expected. �

To end this section, we give in Figure 4.19 a summary diagram of some propositions
above. Every set represented in this figure is an operad equipped with the composition
of operations ◦. Furthermore, every represented mapping is a morphism of operads.
Mappings represented with a two-headed arrow (i.e.,�) are surjections, and mappings
represented with a double-ended arrow (i.e.,↔) are bijections.

FT

Operations over TC

Mc

M

Operations over DFAs

Ou

Operations over regular languages

tc 7→ [tc]

m 7→ m

desc

Figure 4.19: The algebraic structure linking operations over transitions configurations,
operations over DFAs and regular operations.

4.3.3 Computing the state complexity of 1-uniform operations

The following theorem is the main result of this section. It is used later on to design a
method for computing the state complexity of 1-uniform operations.

Theorem 2. Every k-ary 1-uniform operation admits a family of monster k-languages as witness.

Proof. Suppose now that ⊗ is a k-ary 1-uniform operation. Let (L1, . . . ,Lk) be any k-tuple
of regular languages over Σ, and let (A1, . . . ,Ak) be the k-tuple of DFAs such that each
A j = (Σ, ~n j�, 0,F j, δ j) is a minimal DFA that recognizes L j. Let φ the 1-uniform mor-
phism such that, for all a ∈ Σ, φ(a) = (δa

1, . . . , δ
a
k), and let MonF1,...,Fk

n1,...,nk
= (M1, . . . ,Mk). We

have ⊗(L1, . . . ,Lk) = ⊗(φ−1(L(M1)), . . . , φ−1(L(Mk))) by Lemma 5, and so ⊗(L1, . . . ,Lk) =
φ−1(⊗(L(M1), . . . ,L(Mk))) by Definition 13. It follows that

sc(⊗(L1, . . . ,Lk)) = sc(φ−1(⊗(L(M1), . . . ,L(Mk)))) ≤ sc(⊗(L(M1), . . . ,L(Mk)))

by Proposition 3. In addition, each L(M j) has the same state complexity as L j. �

56 CHAPTER 4. MODIFIERS AND 1-UNIFORM OPERATIONS

We show, in the next section, how the above theorem may be used to compute the state
complexity of a 1-uniform operation, by giving some simple examples.

Chapter 5

Examples

In the last section, we showed that 1-uniform operations are described by coherent mod-
ifiers (Theorem 1). By combining this result with Theorem 2, we design a method for
computing the state complexity of a 1-uniform operation ⊗.

1. Construct a modifierm that describes⊗, and consider the DFAs obtained by applying
it to monsters;

2. Find an upper bound, using Theorem 2;

3. Give a monster that allows us to reach this upper bound, by choosing its final states
appropriately.

One should not view this method as a hard and fast rule, but rather as a starting point
of research. Steps 2 and 3 can be intertwined for legibility purposes, like in Chapter 6. The
approach of many papers computing the state complexity of some 1-uniform operation
can be tied to this method [26, 15, 3, 8].

The state complexity of Kleene star and catenation were among the first to be computed
[33, 40]. The state complexity of union and intersection have been computed in [1], and
the state complexity of symmetric difference has been computed in [2], for example. These
three operations give us the state complexity of all binary boolean operations. As for
the state complexity of boolean operations of higher arity, a large part of the answer is
provided by [16]. In that paper, the authors compute the state complexity of every boolean
operation that "depends on each of its operands" [16]. We show that the method we
designed can be used to easily find all these results again. Furthermore, we use it in
Section 5.2 to compute the state complexity of boolean operations in the general case. In
[13], Sylvie Davies gives these examples and proves them in a very similar manner, using
the approach she developed (which is also very similar to ours). Nonetheless, we still
found it important to give them here using our formalism.

57

58 CHAPTER 5. EXAMPLES

5.1 Star

5.1.1 Applying the star modifier to monsters

Let n ≥ 2 be an integer, and G be a subset of ~n�, and let A = (Σ,Q, i,F, δ) = Star(MonG
n).

By the definition of Star (Example 15), we have Σ = Γn = ~n�~n�, Q = 2~n�, i = ∅, F = {E ∈
Q | E ∩ G , ∅} ∪ {∅} and, for any E ∈ Q and any φ ∈ Σ,

δφ(E) =


{φ(0)} if E = ∅ and φ(0) < G
{φ(0), 0} if E = ∅ and φ(0) ∈ G
φ(E) if E , ∅ and φ(E) ∩ G = ∅
φ(E) ∪ {0} if E , ∅ and φ(E) ∩ G , ∅

We can represent a subset E of ~n� as a "line" of squares, that may be empty or filled with a
cross. An empty square at position i represents that i < E, and a square filled with a cross
at position i represents that i ∈ E. All squares representing a position that is in G are in
red. For example, if n = 5, and G = {1, 2}, the subset {1, 3} of ~5� is represented with the
following line:

× ×

With this representation, we can alternatively display Figures 4.14 and 4.15 as Figures 5.1
and 5.2. In Figure 5.1, we identify the states 0 and 1 with the subsets {0} and {1} of {0, 1}.

× ×b

a

a

b

Figure 5.1: A DFA A.

×

×× ×

a

b

a

b

a

b
a, b

Figure 5.2: The DFA Star(A).

This representation gives us an interpretation of the transition function of A. Indeed,
in A, to go with the letter φ from the representation of a subset E, to the representation of
a subset E′ (in the case where E , ∅), one can change the positions of the crosses of E by
applying the function φ to them, and then put a cross at the beginning of the line if and
only if there is a cross in a red square. For example, if n = 4, G = {1, 2}, φ(1) = 2, φ(2) = 3,
we have δφ({1, 2}) = {0, 2, 3}, which is represented by Figure 5.3.

5.1. STAR 59

×× × ××

φ

Figure 5.3: A transition in Star(Mon{1,2}4).

5.1.2 An upper bound

We first establish an upper bound on the state complexity of the Kleene star. Our reasoning
is based on the following remark:

Remark 4. If reading a letter φ from any state of A leads to a state with a cross in a red square,
then this state also has cross in the leftmost square. More formally, if E is any element of Q and φ
any letter of Γn, if G∩φ(E) , ∅, then 0 ∈ δφ(E). Therefore, an easy induction shows that any state
E of A such that E ∩ G , ∅ and 0 < E is not accessible in A. For example, the state at the left of
Figure 5.3 is not accessible in the DFA Star(Mon{2,3}4).

Lemma 6. For any integer n ≥ 2, the state complexity scStar of the Kleene star satisfies scStar(n) ≤
2n−1 + 2n−2.

Proof. We distinguish several cases. First suppose that G = ∅. Then A has no final states,
and the size of the minimal DFA associated with A is 1. We next show that, in every other
case, the number of accessible states of A is less than or equal to 2n−1 + 2n−2.

Second, suppose that G = {0}. Let E be a state of A that is a singleton { j}. If φ(j) = 0,
φ(E) ∩ G , ∅, and δφ(E) = {0} ∪ {0} = {0}. If φ(j) = l , 0, then φ(E) ∩ G = ∅ and
δφ(E) = {φ(j)}. In both cases, δφ(E) is a singleton. This can be seen by relying on our
representation. Indeed, in this case, adding a cross to a line with only one cross via a
transition is impossible. From this, an easy induction shows that every accessible state of
A is a singleton. Therefore, the number of accessible states of A is at most n+1 ≤ 2n−1 +2n−2.

Finally, suppose that G < {∅, {0}}. From Remark 4, we deduce an upper bound on the
number of accessible states of A. We distinguish two cases:

• Suppose 0 < G. The number of states E of A such that E ∩ G , ∅ and 0 < E is
2n−1
− 2n−1−#G. Therefore, since #G ≥ 1, the number of accessible states of A is at most

2n
− 2n−1

− 2n−1−#G = 2n−1 + 2n−1−#G
≤ 2n−1 + 2n−2.

• Suppose 0 ∈ G. The number of states E of A such that E∩G , ∅ and 0 < E is 2n−1
−2n−#G.

Therefore, the number of accessible states of A is at most 2n
−2n−1

−2n−#G = 2n−1+2n−#G.
However, as G < {∅, {0}}, we have #G ≥ 2. As a consequence, the number of accessible
states of A is at most 2n−1 + 2n−2.

Therefore, we have proven, in every case, that the size of the minimal DFA associated with
A is less or equal than 2n−1 + 2n−2. Therefore, by Theorem 2, scStar(n) ≤ 2n−1 + 2n−2. �

60 CHAPTER 5. EXAMPLES

5.1.3 A lower bound

We now prove that the language recognized by Mon{n−1}
n is a witness of the Kleene star,

and the above upper bound is met.

Lemma 7. Le n be an integer greater than or equal to 2. If G = {n−1}, then the size of the minimal
DFA associated with A is 2n−1 + 2n−2.

Proof. Let G = {n − 1}, so that A = Star(Mon{n−1}
n). Let S be the set of all states E of A such

that, if n−1 ∈ E, then 0 ∈ E. We show that every state E of S is accessible in A, by induction
on the number of elements of E. We follow the intuition provided by Figure 5.4.

The empty set is initial in A. Every singleton of elements of ~n� is in S, except for the
singleton {n − 1}. However, if j ∈ ~n − 1�, { j} is accessible from the empty set by reading
any letter φ such that φ(0) = j. Therefore, any element E of S such that #E ≤ 1 is accessible
in A.

Now let j ∈ {1, . . . ,n − 1}, and suppose that any element E of S such that #E ≤ j is
accessible in A. Let E′ be any element of S such that #E′ = j + 1. If E′ = {0,n − 1}, then it
is accessible from {0} by reading the letter (0,n − 1). Otherwise, let l and l′ be two distinct
elements of E′ such that l , n− 1, and let E = (0, l) ◦ (l′,n− 1)(E′). We have 0 ∈ E, n− 1 ∈ E,
and #E = #E′. Furthermore, E is accessible from the set E′′ = E \ {n − 1} by reading the
letter (0,n − 1). Therefore, E′ is accessible from E′′, by reading the letter (0, l) followed by
the letter (l′,n − 1). Furthermore, #E′′ = j, and n − 1 < E′′, which implies that E′′ ∈ S.
As a consequence, E′ is accessible in A. Thus, we have shown that every element of S is
accessible in A.

× × × × × ×× ×× ×
(0, 3) (2, 3) (0, 3) (1, 3)

Figure 5.4: A run in Star(Mon{3}4) from the initial state ∅ to the state {0, 1, 2}.

As a consequence, by Remark 4, the accessible states of A are exactly the states in S.
Now we show that the states of S are pairwise distinguishable in A. We follow the intuition
of Figure 5.5.

Let E and E′ be any two different non-empty elements of S. There exists an integer j
such that, either j ∈ E and j < E′, or j < E and j ∈ E′. As both cases are symmetrical, we
suppose that j is an integer such that j ∈ E and j < E′. Let φ be the letter of Γn such that
φ(j) = n − 1, and such that, for any l ∈ ~n� that is not equal to j, φ(l) = 0. Reading the
letter φ from the state E leads to the state {0,n− 1}. Furthermore, reading the letter φ from
the state E′ leads to the state {0}. However, both {n − 1} and {0,n − 1} are final in A, while
{0} is not final in A. Therefore, E and E′ are distinguishable in A. Furthermore, reading
the empty word ε from the state ∅ in A leads to ∅, which is final, but reading the empty

5.2. BOOLEAN OPERATIONS 61

word from the state {0} in A leads to {0}, which is not final. As a consequence, ∅ and {0} are
distinguishable in A. Hence, any two distinct states of A are distinguishable.

× × × × ×

× × ×

φ

φ

Figure 5.5: How to distinguish between two states of Star(Mon{3}4), with the letter φ such
that φ(1) = 3, and φ(0) = φ(2) = φ(3) = 0.

Thus, the size of the minimal DFA associated with A is the size of S, which is 2n−1 +
2n−2. �

Therefore, by Lemma 6 and Lemma 7, Mon{n−1}
n is a witness for the Kleene star, and the

upper bound of Lemma 6 is reached.

Proposition 19. For any integer n ≥ 2, the state complexity scStar of the Kleene star satisfies
scStar(n) = 2n−1 + 2n−2.

5.2 Boolean Operations

5.2.1 Applying the modifiers describing boolean operations to monsters

Let b be a k-ary boolean function, let (n1, . . . ,nk) be a k-tuple of positive integers, let
(F1, . . . ,Fk) be a k-tuple of finite sets such that F j ⊆ ~n j�, let MonF1,...,Fk

n1,...,nk
= (M1, . . . ,Mk)

and let A = (Γn1,...,nk ,Q, i,F, δ) = mb(M1, . . . ,Mk). Notice that every DFA that is equal to
mb(Mon

F′1,...,F
′

k
n1,...,nk

), for some (F′1, . . . ,F
′

k) with F′j ⊆ ~n j�, has the same set of states, the same
initial state, and the same transition function. It is only its set of final states that depends
on F′1, . . . ,F

′

k.

Remark 5. By Definition 22, if φ = (φ1, . . . , φk) is a letter of Γn1,...,nk , for any j ∈ {1, . . . , k}, the
transition function of φ in M j is φ j. Therefore, by Definition 16, for any element (q1, . . . , qk) of Q,
δφ(q1, . . . , qk) = (φ1(q1), . . . , φk(qk)). In other words, the transition function of (φ1, . . . , φk) in A is
itself, (φ1, . . . , φk). This implies that, if w = a1 · · · an is a word over Γn1,...,nk with al = (ζl,1, . . . , ζl,k),
we have δw = δb, where

b = (ζk,1 ◦ · · · ◦ ζ1,1, . . . , ζk,k ◦ · · · ◦ ζ1,k).

62 CHAPTER 5. EXAMPLES

As a consequence, if there is a run from a state q to a state q′ in A, then there exists a letter b of
Γn1,...,nk such that δb(q) = q′. Therefore, all accessible states in A are accessible with one letter only,
and if, in addition, F j < {∅, ~n j�} for any j ∈ {1, . . . , k}, any two distinguishable states of A are
distinguishable with one letter only.

A consequence of the above remark is that any state (q1, . . . , qk) of A is accessible
from its initial state (0, . . . , 0) by reading a letter (φ1, . . . , φk) such that φ j(0) = q j, for all
j ∈ {1, . . . , k}. Therefore, to minimize the DFA A, we only need to compute the induced
Nerode equivalence.

5.2.2 An upper bound

Definition 23. For any positive integer k and ` ∈ {1, . . . , k}, we say that a k-ary boolean function
b depends on its `-th coordinate if there exist two k-tuples (u1, . . . ,uk) and (v1, . . . , vk) of elements
of {0, 1}, such that u j = v j for any j , `, and b(u1, . . . ,uk) , b(v1, . . . , vk).

Lemma 8. For any ` ∈ {1, . . . , k}, if b does not depend on its `-th coordinate, then any two states
s1 = (q1, . . . , qk) and s2 = (q′1, . . . , q

′

k) of Q with q j = q′j for all j , ` are not distinguishable in A.

Proof. For any letter φ = (φ1, . . . , φk) of Γn1,...,nk and any two states s1 = (q1, . . . , qk) and
s2 = (q′1, . . . , q

′

k) of Q with q j = q′j for all j , l, we have, for any j , l, φ j(q j) = φ j(q′j) and
[φ j(q j) ∈ F j] = [φ j(q′j) ∈ F j]. Therefore, as b does not depend on its l-th coordinate, we have

b([φ1(q1) ∈ F1], . . . , [φk(qk) ∈ Fk]) = b([φ1(q′1) ∈ F1], . . . , [φk(q′k) ∈ Fk]),

and
b([q1 ∈ F1], . . . , [qk ∈ Fk]) = b([q′1 ∈ F1], . . . , [q′k ∈ Fk]).

Thus, by Definition 16, s1 ∈ F if and only if s2 ∈ F, and δφ(s1) is in F if and only if δφ(s2)
is in F. Hence, s1 and s2 cannot be distinguished in A by reading the empty word. As a
consequence, by Remark 5, s1 and s2 are not distinguishable in A. �

Let Eb be the set of all integers j in {1, . . . , k} such that b depends on its j-th coordinate.
As a consequence of the above lemma, any state (q1, . . . , qk) of A is equivalent (in the sense
of the Nerode equivalence) to the state (q′1, . . . , q

′

k), where{
q′j = q j, for all j ∈ Eb

q′j = 0 otherwise

However, there are exactly
∏
j∈Eb

n j elements (q1, . . . , qk) of Q, such that q j = 0 for all j < Eb.

It follows that this number is an upper bound for the number of states of a minimal DFA
equivalent to A, and therefore an upper bound for the state complexity of ⊗b:

Corollary 1. Let Eb be the set of all integers j in {1, . . . , k} such that b depends on its j-th coordinate.
We have sc⊗b(n1, . . . ,nk) ≤

∏
j∈Eb

n j.

5.3. CATENATION 63

5.2.3 A lower bound

We now prove that this upper bound is tight. Furthermore, we prove that MonF1,...,Fk
n1,...,nk

is a
witness for ⊗b, if F j < {∅, ~n j�} for all j ∈ {1, . . . , k}.

Lemma 9. If, for all j ∈ {1, . . . , k}, F j < {~n j�, ∅}, then the size of the minimal DFA equivalent to
A is

∏
j∈Eb

n j.

Proof. We prove that any two distinct states of the set of all elements (q1, . . . , qk) of Q such
that q j = 1 for all j < Eb, are distinguishable. Let (q1, . . . , qk) and (q′1, . . . , q

′

k) be two states of
Q such that there exists j ∈ Eb with q j , q′j. As b depends on j, there exists two k-tuples
of elements of {0, 1}, (u1, . . . ,uk) and (u′1, . . . ,u

′

k) such that b(u1, . . . ,uk) = 1, b(u′1, . . . ,u
′

k) = 0
and such that ul = vl for all l , j. Let φ = (φ1, . . . , φk) be a letter Γn1,...,nk such that

• For all l , j, φl(ql) and φl(q′l) are equal to an element of Ql that is in Fl if and only if
ul = u′l = 1,

• φ j(q j) is equal to an element of Q j that is in F j if and only if u j = 1,

• φ j(q′j) is equal to an element of Q j that is in F j if and only if u′j = 1.

We have ([φ1(q1) ∈ F1], . . . , [φk(qk) ∈ Fk]) = (u1, . . . ,uk) and ([φ1(q′1) ∈ F1], . . . , [φk(q′k) ∈
Fk]) = (u′1, . . . ,u

′

k). Therefore, b([φ1(q1) ∈ F1], . . . , [φk(qk) ∈ Fk]) = 1 and b([φ1(q′1) ∈
F1], . . . , [φk(q′k) ∈ Fk]) = 0, which implies, by Definition 16, that (φ1(q1), . . . , φk(qk)) ∈ F and
(φ1(q′1), . . . , φk(q′k)) < F. As a consequence, (q1, . . . , qk) and (q′1, . . . , q

′

k) are distinguishable in
A. �

The state complexity computed in the above lemma coincides with the upper bound
of Corollary 1. As a consequence, MonF1,...,Fk

n1,...,nk
is a witness for every boolean operation, if

F j < {~n j�, ∅} for all j ∈ {1, . . . , k}. We have thus computed the exact state complexity of
every boolean operation.

Proposition 20. We have sc⊗b(n1, . . . ,nk) =
∏
j∈Eb

n j.

5.3 Catenation

5.3.1 Applying the catenation modifier to monsters

Let (n1,n2) be a pair of integers greater than or equal to 2, let (F1,F2) be a pair of finite
sets such that F1 ⊆ ~n1� and F2 ⊆ ~n2�, let MonF1,F2

n1,n2
= (M1,M2) and let A = (Σ,Q, i,F, δ) =

Conc(M1,M2). From Example 18 and Definition 22, we have

• Σ = Γn1,n2 = ~n1�~n1� × ~n2�~n2�,

• Q = ~n1� × 2~n2�,

• i =

{
(0, ∅) if 0 < F1

(0, {0}) if 0 ∈ F1
,

64 CHAPTER 5. EXAMPLES

• F = {(q1,E) ∈ ~n1� × 2~n2� | E ∩ F2 , ∅},

• and, for any (q1,E) ∈ ~n1� × 2~n2� and any (φ1, φ2) ∈ Γn1,n2 ,

δ(φ1,φ2)(q1,E) =

{
(φ1(q1), φ2(E)) if φ1(q1) < F1

(φ1(q1), φ2(E) ∪ {0}) otherwise.

To represent states of A, we use a representation very similar to the case of the Kleene
star (Figures 5.1, 5.2 and 5.3). However, this time, a state (q,E) of A is represented by
two "lines" of squares. The first one represents q, and thus has always exactly one cross.
The second one represents E, and thus has as many crosses as the size of E. For example,
if n1 = 4, n2 = 5, F1 = 1 and F2 = {2, 3}, the state (2, {1, 3}) of A is represented with the
following pair of lines:

×

× ×

This representation gives us an interpretation of the transition function of A. Indeed,
in A, to go from a state (q,E) to a state (q′,E′) by reading a letter (φ1, φ2) (in the case where
E , ∅), one can change the positions of the crosses on the two lines representing (q,E) by
applying φ1 to the cross of the first one, and φ2 to the crosses of the second one, and then
by putting a cross at the beginning of the second line if and only if the cross of the first
line is in a red square. For example, if n1 = 3, n2 = 4, F1 = {2} ,F2 = {1}, φ1(1) = 2, φ2(1) = 2,
φ2(2) = 3, we have δφ((1, {1, 2})) = (2, {0, 2, 3}), which is represented by Figure 5.6.

×

××

×

× ××

φ

Figure 5.6: A transition in Conc(Mon{2},{1}3,4).

5.3.2 An upper bound

We first establish an upper bound on the state complexity of Catenation. Our reasoning is
based on the following remark:

Remark 6. If reading a letter from any state in A leads to a state whose cross on the first line is in
a red square, then this state’s second line has a cross in the leftmost square. More formally, if (q,E)
is an element of Q, if (φ1, φ2) is any letter of Γn1,n2 , and if φ1(q) ∈ F1, then, denoting by (q′,E′) the

5.3. CATENATION 65

state δ(φ1,φ2)(q,E), we have 0 ∈ E′. Therefore, an easy induction shows that any state (q,E) of A
such that q ∈ F1 and 0 < E is not accessible in A.

Lemma 10. The state complexity scConc of Catenation satisfies scConc(n1,n2) ≤ (n1−1)2n2 + 2n2−1.

Proof. If F1 = ∅, any state (q,E) of A such that E , ∅ is not accessible. Therefore, the number
of accessible states of A is less or equal to n1. Suppose that F1 , ∅. The number of all states
(q,E) of A such that, if q ∈ F1 then 0 ∈ E is (n1−#F1)×2n2 +#F1×2n2−1. Therefore, by Remark
6, the number of accessible states of A is less or equal to (n1 − #F1) × 2n2 + #F1 × 2n2−1

≤

(n1 − 1) × 2n2 + 2n2−1. In all cases, the number of accessible states of A is less or equal to
(n1−1)×2n2 +2n2−1. Therefore, by Theorem 2, we have scConc(n1,n2) ≤ (n1−1)2n2 +2n2−1. �

5.3.3 A lower bound

We now prove that Mon{n1−1},{n2−1}
n1,n2

is a witness for Catenation, and the above upper bound
is met.

Lemma 11. If F1 = {n1 − 1} and F2 = {n2 − 1}, then the size of the minimal DFA associated with
A is (n1 − 1)2n2 + 2n2−1.

Proof. Recall that n1 and n2 are both greater than or equal to 2. Let F1 = {n1 − 1} and
F2 = {n2 − 1}, so that A = Conc(Mon{n1−1},{n2−1}

n1,n2
). Let S be the set of all states (j,E) of A such

that, if j = n1 − 1, then 0 ∈ E. We show that every state (j,E) of S is accessible in A, by
induction on the number of elements of E. We follow the intuition provided by Figure 5.7.

The state (0, ∅) is initial in A. A state (j, ∅) is in S if and only if j ∈ ~n1 − 1�. However,
if j ∈ ~n1 − 1�, (j, ∅) is accessible from (0, ∅) by reading the letter ((0, j), Id). Therefore, any
element (j, ∅) of S is accessible in A.

The state (n1 − 1, {0}) is accessible in A from (0, ∅) by reading the letter ((0,n1 − 1), Id).
Furthermore, any state (j, {m}) of S, where j ∈ ~n1 − 1� and m ∈ ~n2� is reached from the
state (n1 − 1, {0}) by reading the letter ((n1 − 1, j), (0,m)). Thus, any state (j,E) of S with
#E ≤ 1 is accessible in A.

Now let l ∈ {1, . . . ,n2 − 1}, and suppose that every element (j,E) of S such that #E ≤ l is
accessible in A. Let (j′,E′) be any element of S such that #E′ = l + 1. Let r be any element
of E′, let r′ be any non-zero element of (0, r)(E′), and let E = (0, r)(E′) \ {r′}. The state (j′,E′)
is reached in A from the state (n1 − 1,E) by reading the letter (Id~n1−1�, (0, r′)) and then the
letter ((n1−1, j′), (0, r)). Furthermore, 0 ∈ E, which implies that (n1−1,E) is in S, and #E = l.
As a consequence, (j′,E′) is accessible in A. Thus, we have shown by induction that every
element of S is accessible in A.

66 CHAPTER 5. EXAMPLES

× ×

×

×

× ×

×

× ×

((0, 3), Id) (Id, (0, 2)) ((2, 3), (0, 1))

Figure 5.7: A run in Star(Mon{3},{3}4,4) from the initial state (0, ∅) to the state (2, {1, 2}); where
Id = Id~4�.

As a consequence, by Remark 6, the accessible states of A are exactly the states in S.
Now we show that the states of S are pairwise distinguishable in A.

Let (j,E) and (j′,E′) be any two different elements of S. We distinguish two cases, and
we follow the intuition given by Figures 5.8 and 5.9.

• First suppose that j , j′. Let φ1 be any function of ~n1�~n1� such that φ1(j) = 0
and φ1(j′) = n1 − 1, and let φ2 be the function of ~n2�~n2� such that φ2(l) = n2 − 1,
for any l ∈ ~n2�. Reading the letter (φ1, φ2) from the state (j,E) leads to the state
(0, {n2 − 1}). Furthermore, reading the letter (φ1, φ2) from the state (j′,E′) leads
to the state (n1 − 1, {0,n2 − 1}). Therefore, if φ3 = Id~n1� and φ4 = (0,n2 − 1), we
have δ(φ1,φ2)(φ3,φ4)(j,E) = (0, {0}) and δ(φ1,φ2)(φ3,φ4)(j′,E′) = (n1 − 1, {0,n2 − 1}). However,
(n1 − 1, {0,n2 − 1}) is final in A, while (0, {0}) is not, since n2 ≥ 2. As a consequence,
(j,E) and (j′,E′) are distinguishable in A.

×

× ×

×

×

×

× ×

×

× ×

×

×

×

× ×

(φ1, φ2) (Id~4�, (0, 3))

(φ1, φ2) (Id~4�, (0, 3))

Figure 5.8: How to distinguish between two states (1, {1, 3}) and (2, {1, 3}) of Conc(Mon{3},{3}4,4)
when j , j′, with φ1(2) = 3, φ1(1) = 0, and φ2(1) = φ2(3) = 3.

• Suppose now that E , E′. There exists an integer j such that, either j ∈ E and j < E′,
or j < E and j ∈ E′. As both cases are symmetrical, we suppose that j is an integer
such that j ∈ E and j < E′. Let φ1 be the function of ~n1�~n1� such that φ1(l) = 0, for

5.3. CATENATION 67

any l ∈ ~n1�. Let φ2 be the function of ~n2�~n2� such that φ2(j) = n2 − 1, and such that,
for any l ∈ ~n2� that is not equal to j, φ2(l) = 0. Reading the letter (φ1, φ2) from the
state (j,E) leads to the state (0, {n2 − 1}) or to the state (0, {0,n2 − 1}). Furthermore,
reading the letter (φ1, φ2) from the state (j′,E′) leads to the state (0, {0}). However,
(0, {n2 − 1}) and (0, {0,n2 − 1}) are final in A, while (0, {0}) is not final in A. Therefore,
(j,E) and (j′,E′) are distinguishable in A.

×

××

×

×

×

× ×

×

× ×

(φ1, φ2)

(φ1, φ2)

Figure 5.9: How to distinguish between two states (j,E) and (j′,E′) of Conc(Mon{3},{3}4,4) when
E , E′, with φ1(1) = φ1(2) = 0, φ2(1) = φ2(0) = 0, and φ2(2) = 3.

Thus, we have shown that the states of S are pairwise distinguishable in A. Therefore, the
size of the minimal DFA associated with A is the size of S, which is (n1 − 1)2n2 + 2n2−1. �

Therefore, by Lemma 10 and Lemma 11, Mon{n1−1},{n2−1}
n1,n2

is a witness for Catenation, and
the upper bound of Lemma 10 is reached.

Proposition 21. For any pair of positive integers (n1,n2) with n2 ≥ 2, the state complexity scConc

of Catenation satisfies scConc(n1,n2) = (n1 − 1)2n2 + 2n2−1.

68 CHAPTER 5. EXAMPLES

Chapter 6

On the star of boolean operations

We have computed in Section 5.2 the state complexity of boolean operations. A natural
question arises: what happens when we take the Kleene star of a boolean operation?
Although these combined operations do not seem much more complicated, their state
complexities are actually much harder to compute. In [16], the authors compute the
state complexity of the star of union and make some advances towards computing the
state complexity of the star of intersection. This state complexity was later computed in
[27]. However, in both cases, the methods used seem to be very specific to both of these
operations. Furthermore, in [17], the authors compute the state complexity of the star of
multiple unions, generalizing the method used in [16].

The results discussed above are not sufficient to compute the state complexity of the star
of every binary boolean operation. We completely answer this problem by computing the
state complexity of the star of symmetric difference, in a way that is inspired by [8]. This
computation requires some work, because it involves more complicated combinatorial
objects than in the case of the star of union or the star of intersection. Furthermore, we
give a witness for the star of symmetric difference with an alphabet of size 16. Finally, we
give some ideas to generalize our reasoning to the star of boolean operations in Section
6.7.

6.1 The star of the symmetric difference: a first analysis

We let ?O denote the composition of Star and ⊗xor. In other words, ?O is the binary regular
operation such that, for any pair of languages (L1,L2) over the same alphabet, we have
?O(L1,L2) = (L1∆L2)?. By Example 15, Example 10, and Proposition 13, ?O is a 1-uniform
operation. Furthermore, by Proposition 18, desc(Star ◦1 mxor) = ?O, i.e., the modifier
Star ◦1 mxor describes ?O. Therefore, to prove state complexity results about ?O, we first
give a formula that describes the application of StX = Star ◦1 mxor to a pair of DFAs. This
formula is obtained directly from Example 15, Example 17, and Definition 6.

Let (A1,A2) be a pair of DFAs with A1 = (Σ,Q1, i1,F1, δ1) and A2 = (Σ,Q2, i2,F2, δ2). We
have

StX(A1,A2) = (Σ, 2Q1×Q2 , ∅, {E ⊆ Q1 ×Q2 | E ∩ F , ∅} ∪ {∅}, δ),

69

70 CHAPTER 6. ON THE STAR OF BOOLEAN OPERATIONS

where F = (F1 ×Q2)∆(Q1 × F2) and where, for any letter a of Σ,

δa(∅) =

{
{(δa

1(i1), δa
2(i2))} if (δa

1(i1), δa
2(i2)) < F

{(δa
1(i1), δa

2(i2)), (i1, i2)} otherwise

and, for all E , ∅, δa(E) =

{
(δa

1, δ
a
2)(E) if (δa

1, δ
a
2)(E) ∩ F = ∅

(δa
1, δ

a
2)(E) ∪ {(i1, i2)} otherwise.

Notice first that if n1 = 1 or n2 = 1, we can compute sc?O(n1,n2) with the results of
Section 5.1. Suppose n1 = 1 and n2 ≥ 2, for example, and let L1 be a language over an
alphabet Σ of state complexity equal to 1. We have either L1 = ∅ or L2 = Σ∗. Thus, for any
language L2 over Σ, if L1 = ∅, then we have ?O(L1,L2) = L?2 . Furthermore, if L1 = Σ?, then we
have ?O(L1,L2) = (Lc

2)?. However, for any positive integer n2 and any language L2 of state
complexity inferior or equal to n2, we know, from Example 8, that the state complexity
of Lc

2 is at most n2. Hence, from Proposition 19, we have sc((Lc
2)?) ≤ 2n2−1 + 2n2−2 and

sc(L?2) ≤ 2n2−1 + 2n2−2. To summarize, we have sc(?O(L1,L2)) ≤ 2n2−1 + 2n2−2 for any positive
integer n2 and any language L2 of state complexity inferior or equal to n2. However, from
Lemma 7, we also have sc(?O(∅,L(Mon{n2−1}

n2
))) = 2n2−1 + 2n2−2, for any integer n2 ≥ 2. As a

consequence, we have sc?O(n1,n2) = 2n2−1 + 2n2−2, if n1 = 1 and n2 ≥ 2. Similarly, if n2 = 1
and n1 ≥ 2, we have sc?O(n1,n2) = 2n1−1 + 2n1−2. Therefore, for the remainder of this section,
we only concern ourselves with computing sc?O(n1,n2) when n1 and n2 are superior or
equal to 2.

Since ?O is a binary 1-uniform operation admits a family of 2-monsters as witness. Let
(n1,n2) be two integers greater than or equal to 2, and let (M1,M2) = Mon{n1−1},{0}

n1,n2
. We are

going to show that (L(M1)),L(M2)) is indeed a witness for ?O. This allows us to compute
its state complexity. To be more precise, here is the outline of our proof. For any F1 ⊆ ~n1�
and any F2 ⊆ ~n2�, we let MF1,F2 denote the DFA StX(MonF1,F2

n1,n2
). We are going to minimize

the DFA M{n1−1},{0} by first computing its Nerode equivalence, and then by computing its
accessible part. We will therefore have computed the minimal DFA equivalent to M{n1−1},{0},
and computing its size allows us to compute the state complexity of L(M{n1−1},{0}). We then
show that the state complexity of L(M{n1−1},{0}) is the greatest out of all the state complexities
of L(MF1,F2), with (F1,F2) ⊆ ~n1� × ~n2�. Theorem 2 allows us to conclude that the state
complexity of L(M{n1−1},{0}) is indeed sc?O(n1,n2).

6.2 Computing the Nerode equivalence of M{n1−1},{0}

In order to give a visual representation of the next proofs, we associate elements of 2~n1�×~n2�

with boolean matrices of size n1 × n2. Such a matrix is called a tableau of size n1 × n2 when
crosses are put in place of 1s, and 0s are erased. The same symbol denotes the element
of 2~n1�×~n2�, the associated boolean matrix, and the associated tableau. If T is an element
of 2~n1�×~n2�, we let Tx,y denote the value of the boolean matrix T at row x and column y.
Therefore, the three following assertions mean the same thing: a cross is at the coordinates
(x, y) in T, Tx,y = 1, (x, y) ∈ T.

We say that a cross at coordinates (x, y) of a tableau, is in the final zone of MF1,F2 , if
(x, y) ∈ (F1 × ~n2�)∆(~n1� × F2). We notice that a tableau T of size n1 × n2 is final in MF1,F2 if

6.2. COMPUTING THE NERODE EQUIVALENCE OF M{N1−1},{0} 71

and only if T has a cross in the final zone of MF1,F2 , or T is empty. We fix for the remainder
of this chapter two integers n1 and n2 greater than or equal to 2.

Definition 24. A tableau T of size n1 × n2 is right-triangle free if ∀x, x′ ∈ ~n1� such that x , x′

and ∀y, y′ ∈ ~n2�, such that y , y′, we have #({(x, y), (x, y′), (x′, y), (x′, y′)} ∩ T) , 3.

Example 21. Figure 6.1 is an example of a right triangle.

×
××

Figure 6.1: A tableau with a right triangle.

Definition 25. We let → denote the relation over tableaux of size n1 × n2 that satisfies the
following property: for any two tableaux T and T′ of size n1 × n2, we have T → T′ if and only if
there exist two pairs of integers (i, j) and (i′, j′) in ~n1� × ~n2�, such that T′ = T ∪ {(i′, j′)} and
{(i, j), (i′, j), (i, j′)} ⊆ T. We let ∗

↔ denote the reflexive, symmetric and transitive closure of→.

For any tableau T, we define Sat(T) as the smallest tableau (relatively to inclusion)
with no right triangle containing T. The existence of Sat(T) comes from the fact that
T ⊆ 2~n1�×~n2�, which is a right-triangle free tableau, and the uniqueness of Sat(T) comes
from the fact that the intersection of two right-triangle free tableaux is right-triangle free.
Two tableaux T and T′ are therefore equivalent if Sat(T) = Sat(T′).

Lemma 12. A tableau T of size n1 × n2 is right-triangle free if and only if, for all i, i′ ∈ ~n1�, the
lines i and i′ are either the same (i.e., for all j ∈ ~n2�, we have Ti, j = Ti′, j), or disjoint (i.e., for all
j ∈ ~n2�, we have Ti, j = 0 ∨ Ti′, j = 0).

Proof. If T has a right triangle, that is there exists i, i′ ∈ ~n1� and j, j′ ∈ ~n2� such that
{(i, j), (i′, j), (i, j′)} ⊆ T but (i′, j′) < T′, then the lines i and i′ are neither the same nor disjoint.

Conversely, if there are two lines i and i′ that are neither the same nor disjoint, then
i , i′. Since the two lines are not disjoint, there exists j ∈ ~n2� such that Ti, j = Ti′, j = 1.
Furthermore, since they are not the same either, there exists j′ ∈ ~n2� such that Ti, j′ , Ti′, j′ .
As a consequence, T has a right triangle and is not right-triangle free. �

Lemma 13. Let F1 ⊆ ~n1� with F1 < {∅, ~n1�}, let F2 ⊆ ~n2� with F2 < {∅, ~n2�}, and let T and T′

be any two non-empty states of MF1,F2 such that T→ T′. Then T is final if and only if T′ is final.

Proof. As T ⊆ T′, if T is final, T′ is also final. Now let us suppose T′ is final and let i, j, i′, j′

be the integers of Definition 25. If another cross of T′ than (i′, j′) is in the final zone, then
T is also final. Let us now prove that (i′, j′) is in the final zone implies T is final. Thus, let
us suppose, for example that i′ ∈ F1, and j′ < F2. Then, either j < F2 and (i′, j) is in the final
zone of T, either j ∈ F2 and i < F1 and (i, j) is in the final zone of T, or either j ∈ F2 and
i ∈ F1 and (i, j′) is in the final zone of T. In every case, T is final. �

Let us recall that the alphabet of MF1,F2 is Γn1,n2 = ~n1�~n1� × ~n2�~n2�.

72 CHAPTER 6. ON THE STAR OF BOOLEAN OPERATIONS

Lemma 14. Let F1 ⊆ ~n1� with F1 < {∅, ~n1�}, let F2 ⊆ ~n2� with F2 < {∅, ~n2�}, and let T
and T′ be two non-empty states of MF1,F2 such that T → T′. Then, for any a ∈ Γn1,n2 , we have
δa(T)→ δa(T′) or δa(T) = δa(T′), where δ is the transition function of MF1,F2 .

Proof. Let i, j, i′, j′ be the integers of Definition 25. Let a = (f , g) ∈ Γn1,n2 . We have, either
(f , g)(T) → (f , g)(T′) or (f , g)(T) = (f , g)(T′). If (f , g)(T) = (f , g)(T′), then obviously have
δa(T) = δa(T′). Therefore, we suppose now that (f , g)(T)→ (f , g)(T′).

Suppose (f , g)(T) is not final. Then (f , g)(T′) is not final and δa(T) = (f , g)(T) →
(f , g)(T′) = δa(T′). Otherwise, if (f , g)(T) is final, then (f , g)(T′) is also final and δa(T′) =
(f , g)(T′)∪{(0, 0)} = (f , g)(T)∪{(f (i′), g(j′)), (0, 0)} = δa(T)∪{(f (i′), g(j′))}. Hence, the lemma
follows from the fact that

{(f (i), g(j)), (f (i), g(j′)), (f (i′), g(j))} ⊆ δa(T).

�

Proposition 22. Let F1 ⊆ ~n1�with F1 < {∅, ~n1�}, let F2 ⊆ ~n2�with F2 < {∅, ~n2�}, and let T,T′

be two non-empty states of MF1,F2 . If T ∗

↔ T′, then T and T′ are indistinguishable in MF1,F2 .

Proof. Let δ be the transition function of MF1,F2 . From Lemma 14, we show by a straight-
forward induction that, for any word w, if T → T′, then δw(T) → δw(T′) or δw(T) = δw(T′).
From Lemma 13, if T → T′, then T and T′ are indistinguishable. However, ∗

↔ is the
reflexive, symmetric and transitive closure of→. Hence, if T ∗

↔ T′, then T and T′ are not
distinguishable in MF1,F2 . �

We let ∼ denote the equivalence relation over tableaux of size n1×n2 such that we have
T ∼ T′ if and only if, either T,T′ ∈ {∅, {(0, 0)}} or T ∗

↔ T′. Notice that, since {(0, 0)} is final in
M{n1−1},{0}, ∅ and {(0, 0)} are not distinguishable in M{n1−1},{0}. Therefore, ∼ is compatible with
M{n1−1},{0} (see Section 2.4.2 for a definition of compatible), and it makes sense to consider
M{n1−1},{0}/∼.

Recall here that we let (i, j) denote the transposition exchanging i and j, by (i1, . . . , im)
the permutation such that (i1, . . . , im)(i j) = i(j+1) mod m, and by π j

i the application that sends j
to i, and does not change any other elements (for more details, see Section 2.2).

Lemma 15. Any two distinct non-empty states of M{n1−1},{0}/∼ are distinguishable in M{n1−1},{0}/∼.

Proof. Let us first recall that the final zone of M{n1−1},{0} is the set of all (i, j) ∈ ~n1� × ~n2�
such that either i = n1 − 1 or j = 0, but not both. We use this fact statement in the rest of
the proof. Let δ be the transition function of M{n1−1},{0}. Let T and T′ be two right-triangle
free non-empty tableaux of size n1 × n2, such that T , T′. Let (i, j) be such that Ti, j , T′i, j.
We prove that T and T′ are distinguishable in M{n1−1},{0}. We suppose that Ti, j = 1 (the case
T′i, j = 1 is symmetrical), and we consider two cases.

Suppose that for all i′ ∈ ~n1�, T′i′, j = 0. Then, since T′ is not empty, (πn1−1
0 , (0, j))(T′) does

not have any cross on line n1−1 nor on column 0. However, (πn1−1
0 , (0, j))(i, j) = (πn1−1

0 (i), 0).
Therefore, (πn1−1

0 , (0, j))(T) does have a cross on column 0, but not on line n1 − 1 (the cross

that comes from the coordinates (i, j) in T). As a consequence, δ(π
n1−1
0 ,(0, j))(T) is final in

6.2. COMPUTING THE NERODE EQUIVALENCE OF M{N1−1},{0} 73

M{n1−1},{0}, and δ(π
n1−1
0 ,(0, j))(T′) is not final in M{n1−1},{0} since T′ is not empty, which implies that

T and T′ are distinguishable in M{n1−1},{0}.
We now suppose that there exists x ∈ ~n1� such that T′x, j = 1. Let {i1, . . . , i`} = {α | T′α, j = 1}

and let { j1, . . . , jp} = {β | T′i1,β = 1}. The two next properties are illustrated by Figure 6.2. We
designate them by Property 1 and Property 2 in the rest of the proof.

1. By Lemma 12, lines i1, . . . , i` are the same, as they all have a cross on the column j.
Columns { j1, . . . , jp} are also the same, as they all have a cross on line i1. It follows
that, if

(i′, j′) ∈
(
{i1, . . . , i`} ×

(
{0, . . . ,n2 − 1} \ { j1, . . . , jp}

))
∪(

({0, . . . ,n1 − 1} \ {i1, . . . , i`}) × { j1, . . . , jp}
)
,

then we have T′i′, j′ = 0.

2. We have j ∈ { j1, . . . , jp} and i < {i1, . . . , i`}.

×

××

⊗×
×

j

i

×

◦
×

×

×

×

×

×

×

×

×

×

×××

j1 j2 j3

i1

i2

i3

j

Figure 6.2: An example of two tableaux T and T′.

We let (f , g) denote the pair of mappings such that, for any (i′, j′) ∈ ~n1� × ~n2�, we have

f (i′) =

{
n1 − 1 if i′ ∈ {i1, . . . , i`}
0 otherwise and g(j′) =

{
0 if j′ ∈ { j1, . . . , jp}

n2 − 1 otherwise.

If (f (i′), g(j′)) is in the final zone of M{n1−1},{0}, then

(i′, j′) ∈
(
{i1, . . . , i`} ×

(
{0, . . . ,n2 − 1} \ { j1, . . . , jp}

))
∪(

({0, . . . ,n1 − 1} \ {i1, . . . , i`}) × { j1, . . . , jp}
)
.

Hence, by Property 1, we have T′i′, j′ = 0. As a consequence, (f , g)(T′) has at most two
crosses, one at (n1−1, 0) and one at (0,n2−1). Neither (n1−1, 0) nor (0,n2−1) is in the final
zone of M{n1−1},{0}. As a consequence, (f , g)(T′) = δ(f ,g)(T′) is not final in M{n1−1},{0}. However,
by Property 2, since Ti, j = 1, we have ((f , g)(T))0,0 = 1. Therefore, (f , g)(T) = δ(f ,g)(T) is final
in M{n1−1},{0}. Thus, T and T′ are distinguishable in M{n1−1},{0}.

In both cases, T and T′ are distinguishable in M{n1−1},{0}. Therefore,
∗
↔

T and
∗
↔

T′ are distin-
guishable in M{n1−1},{0}/ ∗↔. To conclude, since the representative of any state of M{n1−1},{0}/ ∗↔ is
a right-triangle free tableau, any two distinct states of M{n1−1},{0}/ ∗↔ are distinguishable. �

74 CHAPTER 6. ON THE STAR OF BOOLEAN OPERATIONS

In particular, from the above lemma, we know that {(0, 0)} is distinguishable from any
other state of M{n1−1},{0} (except for ∅). Hence, the equivalence class of ∅ for the Nerode
equivalence induced by M{n1−1},{0} is {∅, {(0, 0)}}. As a consequence, the following corollary
is straightforward from Lemma 15 and of Lemma 22.

Corollary 2. The Nerode equivalence induced by M{n1−1},{0} is equal to ∼.

6.3 Computing the accessible states of M{n1−1},{0}

Lemma 16. The set of accessible states of M{n1−1},{0} is the set of all tableaux T of size n1 × n2 such
that, if T has a cross in the final zone of M{n1−1},{0}, then T has cross at (0, 0).

Proof. Recall first that the final zone of M{n1−1},{0} is the set of all (i, j) ∈ ~n1�× ~n2� such that
either i = n1 − 1 or j = 0, but not both. We use this repeatedly in the rest of the proof. We
let E denote the set of all tableau T of size n1×n2 such that, if T has a cross in the final zone
of M{n1−1},{0}, then T0,0 = 1. It follows from the definition of the transition function of StX
that every accessible tableau T of M{n1−1},{0} is in E. We now prove that every tableau in E
is accessible.

Let δ be the transition function of M{n1−1},{0}. For any tableau T of size n1 × n2, let #nfT be
the number of crosses of T which are not in the final zone of M{n1−1},{0}. Let < be the strict
partial order on tableaux such that T < T′ if and only if, either #T < #T′, or #T = #T′ and
#nfT < #nfT′). We prove that every tableau in E is accessible, by induction on non-empty
tableaux for the strict partial order < (the empty tableau is the initial state of M{n1−1},{0}, and
so it is accessible). The only minimal element for the strict partial order < is the empty
tableau. Therefore, for any non-empty tableau T′ ∈ E, we define a tableau T such that
T < T′, and T′ is accessible from T. We distinguish the following cases :

• Suppose that T′ has no cross in the final zone of M{n1−1},{0}. In particular, we have
T′0,0 = 0. Let (i, j) be any cross of T′, let (f , g) = ((0, i), (0, j)), and let T = (f , g)(T′). We
have T0,0 = 1 and (f , g)(T) = (f , g)((f , g)(T′)) = T′. Therefore, since T ∈ E, #T = #T′,
and #nfT < #nfT′, and since T′ is not final, we have T′ = δ(f ,g)(T) and T < T′.

• Suppose now that T′ has at least one cross in the final zone of M{n1−1},{0}.

– Suppose there exists (i, j) in the final zone of M{n1−1},{0}, such that (i, j) , (0, 0)
and T′i, j = 1. Notice that this implies that T′0,0 = 1. Let (f , g) = ((0, i), (0, j)), let
T′′ be the cross matrix obtained from T′ by deleting the cross at (0, 0), and let
T = (f , g)(T′′). Since ((f , g)(T′′))0,0 = T′′i, j = 1, we have T0,0 = 1, and therefore
T ∈ E. Furthermore, (f , g)(T) = (f , g)((f , g)(T′′)) = T′′. In addition, T′′ has a cross
at coordinates (i, j), which is in the final zone. Therefore, δ(f ,g)(T) = T′′∪{(0, 0)} =
T′. To summarize, since #T < #T′, we have δ(f ,g)(T) = T′, T ∈ E, and T < T′.

– Suppose now that (0, 0) is the only cross of T′ in the final zone of M{n1−1},{0}.

* If T′ = {(0, 0)}, then it is accessible from the initial state T = ∅ by reading
(Id, Id). We obviously have #T < #T′, and thus T < T′.

6.3. COMPUTING THE ACCESSIBLE STATES OF M{N1−1},{0} 75

* If T′ = {(0, 0), (n1 − 1, 0)}, then T′ is reached from the state T = {(0, 0)} by
reading, for example, the letter, ((0,n1−1), Id), then the letter (Id, (0,n2−1)),
and finally the letter (Id, πn2−1

0). Indeed, δ((0,n1−1),Id)({(0, 0)}) = {(n1 − 1, 0)},

δ(Id,(0,n2−1))({(n1 − 1, 0)}) = {(0, 0), (n1 − 1,n2 − 1)}, and δ(Id,πn2−1
0)({(0, 0), (n1 −

1,n2−1)}) = {(0, 0), (n1−1, 0)}. We obviously have #T < #T′, and thus T < T′.

* If T′n1−1,0 = 1, T′ , {(0, 0)}, and T′ , {(0, 0), (n1 − 1, 0)}, then T′ has a cross at
(i, j), where i ∈ ~n1 − 1� and j ∈ {1, . . . ,n2 − 1}. Let (f , g) = ((i,n1 − 1), Id),
and let T = (f , g)(T′). Since Tn1−1, j = 1, T has a cross in the final zone distinct
from (0, 0), and therefore #nfT < #nfT′. Furthermore, (f , g)(T) = T′, which
implies, since (0, 0) ∈ (f , g)(T) = T′, that we have δ(f ,g)(T) = T′. In addition,
(0, 0) is equal to either (f , g)(n1 − 1, 0) if i = 0, or (f , g)(0, 0) if i , 0. In both
cases, we have T0,0 = 1, which implies that T ∈ E. To summarize, since
#T = #T′, we have T ∈ E, T′ = δ(f ,g)(T) and T < T′. We illustrate this case
with Figure 6.3.

×

×

×
×

×
((0, 4), Id)

×

×

×
×
×

Figure 6.3: How to go from T′ to T.

* Suppose now that T′n1−1,0 = 0 and T′ , {(0, 0)} (this naturally implies that
T′ , {(0, 0), (n1 − 1, 0)}). Then there exists (i, j), with i ∈ ~n1 − 1� and j ∈
{1, . . . ,n2 − 1}, such that T′i, j = 1. Let (f , g) = (πn1−1

i , Id), and let T be the
tableau of size n1 × n2 such that, for any (i′, j′) ∈ ~n1� × ~n2�, we have

Ti′, j′ =


T′i, j′ if i′ = n1 − 1
0 if i′ = i

T′i′, j′ otherwise

For any i ∈ ~n1� \ {0}, and any j ∈ ~n2�, we have (f , g)(T)i, j = Ti, j = T′i, j. We
also have (f , g)(T)n1−1, j = 0 = T′n1−1, j, and (f , g)(T)0, j = Tn1−1, j = T′0, j, for any
j ∈ ~n2�. Hence, since T′0,0 = 1, we have T0,0 = 1, (f , g)(T) = T′, #T = #T′, and
#nfT < #nfT′. Therefore, since (0, 0) ∈ δ(f ,g)(T), we have T ∈ E, T′ = δ(f ,g)(T)
and T < T′. We illustrate this case with Figure 6.4.

×

×
×
×
× (π4

0 , Id)

×

×
×

×

×

Figure 6.4: How to go from T′ to T.

76 CHAPTER 6. ON THE STAR OF BOOLEAN OPERATIONS

�

For all (F1,F2) ⊆ ~n1� × ~n2�, we let M̂F1,F2 denote the restriction of the DFA MF1,F2 to all
the states T that satisfy: if T has a cross in the final zone of MF1,F2 , then T has cross at (0, 0).
The following corollary is straightforward from Corollary 2 and Lemma 16.

Corollary 3. M̂{n1−1},{0}/∼ is a minimal DFA equivalent to M{n1−1},{0}.

Before moving on, we state the following remark that stems from the formula given
for StX.

Remark 7. The accessible part of MF1,F2 is included in M̂F1,F2 .

This remark is useful later on to get an upper bound on the state complexity of MF1,F2 .

6.4 Computing the state complexity of the language recog-
nized by M{n1−1},{0}

Let Rn1,n2 be the set of non-empty right-triangle free tableaux of size n1 × n2. For any
(F1,F2) ⊆ ~n1� × ~n2�, we let TF1,F2 denote the set of all T ∈ Rn1,n2 such that, if T has a cross
in the final zone of MF1,F2 , then T0,0 = 1. The state {(0, 0)} is final in M{n1−1},{0}, and therefore
is not distinguishable from {∅} in M{n1−1},{0}. As a consequence, the size of M̂{n1−1},{0}/∼ is the
cardinality of T{n1−1},{0}.

However, for any non-empty tableaux T of size n1 × n2, T has no cross in the final zone
of M{n1−1},{0} if and only if T does not have any cross on line n1 − 1 or on column 0, except
maybe for a cross at (n1 − 1, 0). Therefore the set of all tableaux T of size n1 × n2 such that
T has no cross in the final zone of M{n−1},{0}, is equal to E ∪ E′, where

E = {T ∈ Rn1,n2 | ∀i ∈ ~n1�,∀ j ∈ ~n2�,Ti,0 = 0 ∧ Tn1−1, j = 0} and
E′ = {T ∈ Rn1,n2 | Tn1−1,0 = 1 and ∀i ∈ ~n1 − 1�,∀ j ∈ {1, . . . ,n2 − 1},Ti,0 = 0 ∧ Tn1−1, j = 0}.

However, #E = αn1−1,n2−1 − 1, and #E′ = αn1−1,n2−1, where αx,y is the number of right-triangle
free tableaux of size x × y, for any positive integers x and y. Furthermore, since (0, 0) is in
the final zone of M{n−1},{0}, T{n1−1},{0} is equal to the disjoint union of the two following sets:
the set of all right-triangle tableaux that do not have any cross in the final zone of M{n−1},{0},
and the set of all right-triangle free tableaux that have a cross at (0, 0). Therefore, we have
#T{n1−1},{0} = 2αn1−1,n2−1 + α′n1,n2

− 1, where α′x,y the number of right-triangle free tableaux of
size x × y having a cross at (0, 0), for any positive integers x and y. Therefore, Corollary 3
gives us the state complexity of L(M{n1−1},{0}).

Lemma 17. The state complexity of L(M{n1−1},{0}) is 2αn1−1,n2−1 + α′n1,n2
− 1.

Closed formulas for α(x, y) and α′(x, y) are given in Corollary 20 and Proposition 22 of
[8].

In the next section, we prove that ({n1 − 1}, {0}) is a pair of final states (F1,F2) that
maximizes the size of any minimal DFA equivalent to any DFA MF1,F2 , with (F1,F2) ⊆
~n1� × ~n2�.

6.5. DISCUSSING THE MONSTERS’ FINAL STATES 77

6.5 Discussing the monsters’ final states

Definition 26. Let T be a right-triangle free tableau of size n1 × n2, let `1, `2 be two elements of
~n1�, and let c1, c2 be two elements of ~n2�. We let mergel(T, `1, `2) and mergec(T, c1, c2) denote
the two tableaux such that, for any (i, j) ∈ ~n1� × ~n2�, we have

mergel(T, `1, `2)i, j =


max(T`1, j,T`2, j) if


i = `1,
i = `2,

∃c | Ti,c = T`1,c = 1,
or ∃c | Ti,c = T`2,c = 1,

Ti, j otherwise,

and

mergec(T, c1, c2)i, j =


max(Ti,c1 ,Ti,c2) if


j = c1,
j = c2,

∃` | T`, j = T`,c1 = 1,
or ∃l | T`, j = T`,c2 = 1,

Ti, j otherwise.

The idea behind this definition is that mergel(T, `1, `2) (resp. mergec(T, c1, c2)) merges
the lines `1 and `2 (respectively the columns c1 and c2) of T. In other words, in light of
Lemma 12, the function mergel applied to (T, `1, `2) replaces all lines that are the same as line
`1 or line `2, by a line containing all the crosses of `1 and `2. Similarly, the function mergec
applied to (T, c1, c2) replaces all columns that are the same as column c1 or column c2, by a
column containing all the crosses of c1 and c2. Notice that by Lemma 12, mergel(T, `1, `2)
and mergec(T, c1, c2) are right-triangle free tableaux. If S is a set of pairs of integers then
we let min(S) denote the minimal element using the lexicographic order. The next lemma
seems weirdly obvious, but we have not found any trivial proof.

Lemma 18. Let F1 ⊆ ~n1� and F2 ⊆ ~n2� such that F1,F2 , ∅, F1 , ~n1�, and F2 , ~n2�, and let
F = (F1 × ~n2�)∆(~n1� × F2) (F is the final zone of MF1,F2). We have

• if (0, 0) ∈ F, then TF1,F2 ≤ T{n1−1},{0},

• and otherwise if (0, 0) < F, then TF1,F2 ≤ T{n1−1},{0} − 1.

Proof. Let F1 ⊆ ~n1�, F2 ⊆ ~n2�, such that F1,F2 , ∅, F1 , ~n1� and F2 , ~n2�. We let F
denote the final zone of MF1,F2 , i.e., the set (F1 × ~n2�)∆(~n1� × F2). We have

#TF1,F2 = #{T ∈ Rn1,n2 | (∀(i, j) ∈ F,Ti, j = 0) ∨ T0,0 = 1}
= #{T ∈ Rn1,n2 | (∀(i, j) ∈ F,Ti, j = 0 ∧ T0,0 = 0) ∨ T0,0 = 1}

= #{T ∈ Rn1,n2 | T0,0 = 1} + #{T ∈ Rn1,n2 | T0,0 = 0 ∧ ∀(i, j) ∈ F,Ti, j = 0}.
(6.1)

In particular, we have

#T{n1−1},{0} = #{T ∈ Rn1,n2 | T0,0 = 1}+
#{T ∈ Rn1,n2 | ∀(i, j) , (n1 − 1, 0), (i = n1 − 1 ∨ j = 0) =⇒ Ti, j = 0}.

(6.2)

78 CHAPTER 6. ON THE STAR OF BOOLEAN OPERATIONS

However, if (0, 0) < F, then

#{T ∈ Rn1,n2 | T0,0 = 0 ∧ ∀(i, j) ∈ F,Ti, j = 0}
= #{T ∈ Rn1,n2 | ∀(i, j) ∈ F,Ti, j = 0} − #{T ∈ Rn1,n2 | T0,0 = 1 ∧ ∀(i, j) ∈ F,Ti, j = 0}

≤ #{T ∈ Rn1,n2 | ∀(i, j) ∈ F,Ti, j = 0} − 1.
(6.3)

Therefore, to prove the lemma, it suffices to prove that

#{T ∈ Rn1,n2 | ∀(i, j) ∈ F,Ti, j = 0} ≤
#{T ∈ Rn1,n2 | ∀(i, j) , (n1 − 1, 0), (i = n1 − 1 ∨ j = 0) =⇒ Ti, j = 0}.

(6.4)

We notice first that, in the case where n1 = 2, since F1,F2 , ∅, F1 , ~n1�, and F2 , ~n2�, we
have

#{T ∈ Rn1,n2 | ∀(i, j) ∈ F,Ti, j = 0} = 2n2 − 1.

Therefore, in this case, #{T ∈ Rn1,n2 | ∀(i, j) ∈ F,Ti, j = 0} does not depend on F1 and F2, and
(6.4) holds. Inequation (6.4) similarly holds if n2 = 2.

We now suppose that n1 and n2 are greater or equal to 3. Notice that we have

#{T ∈ Rn1,n2 | ∀(i, j) ∈ F,Ti, j = 0} = #{T ∈ Rn1,n2 | ∀(i, j) ∈ H1,Ti, j = 0}, (6.5)

where H1 = ((~n1� \ F1) × ~n2�)∆(~n1� × (~n2� \ F2)). Indeed, the set {T ∈ Rn1,n2 | ∀(i, j) ∈
H1,Ti, j = 0} corresponds to a rotation of 180 degrees of every tableau T in the set {T ∈
Rn1,n2 | ∀(i, j) ∈ F,Ti, j = 0}. Furthermore, we also have

#{T ∈ Rn1,n2 | ∀(i, j) ∈ F,Ti, j = 0} = #{T ∈ Rn2,n1 | ∀(j, i) ∈ H2,T j,i = 0}, (6.6)

where H2 = ((~n2� \ F2) × ~n1�)∆(~n2� × (~n1� \ F1)). Indeed, the set {T ∈ Rn2,n1 | ∀(j, i) ∈
H2,T j,i = 0} corresponds roughly to an axial symmetry of every tableau T in the set
{T ∈ Rn1,n2 | ∀(i, j) ∈ F,Ti, j = 0}, with respect to a straight line going through the coordinates
(0, 0) and (min(n1,n2),min(n1,n2)) of the tableau T. From the two above remarks, we claim
that, to prove the lemma, it suffices to prove (6.4) for all F1 and F2 such that

1. either #F1 ≤ n1 − 2 and #F2 ≤ n2 − 2,

2. or #F1 = 1 and #F2 = n2 − 1

Indeed, suppose that #F1 = n1−1 or #F2 = n2−1. If #F1 = n1−1, we use (6.5) and "exchange"
F1 and F2 for ~n1� \ F1 and ~n2� \ F2 respectively, and we fall into the scope of the first
case above if #F2 , 1, and of the second case if #F2 = 1. If #F2 = n2 − 1, we use (6.5) and
"exchange" F1 and F2 for ~n2� \ F2 and ~n1� \ F1 respectively, and we fall into the scope of
the first case above if #F1 , 1, and of the second case if #F1 = 1.

In addition, for any F′1 ⊆ ~n1� such that #F′1 = #F1, and any F′2 ⊆ ~n2� such that #F′2 = #F2,
we have

#{T ∈ Rn1,n2 | ∀(i, j) ∈ F,Ti, j = 0} = #{T ∈ Rn1,n2 | ∀(i, j) ∈ F′,Ti, j = 0},

where F′ = (F′1 × ~n2�)∆(~n1� × F′2). To summarize, to prove the lemma, since F1,F2 , ∅,
F1 , ~n1�, and F2 , ~n2�, it suffices to prove (6.4) when

6.5. DISCUSSING THE MONSTERS’ FINAL STATES 79

• F1 = {`1, . . . ,n1 − 1} for some `1 with 1 ≤ `1 ≤ n1 − 1.

• F2 = {0, . . . , `2}, for some `2 with 0 ≤ `2 ≤ n2 − 2.

• either #F1 ≤ n1 − 2 and #F2 ≤ n2 − 2, or #F1 = 1 and #F2 = n2 − 1.

Hence, in the rest of the proof, we suppose that F1 and F2 satisfy the three conditions above.
In the following, we define a mapping φ from the set {T ∈ Rn1,n2 | ∀(i, j) ∈ F,Ti, j = 0}

into the set

{T ∈ Rn1,n2 | ∀(i, j) , (n1 − 1, 0), (i = n1 − 1 ∨ j = 0) =⇒ Ti, j = 0}.

Furthermore, we also define a partial function ψ from the set

{T ∈ Rn1,n2 | ∀(i, j) , (n1 − 1, 0), (i = n1 − 1 ∨ j = 0) =⇒ Ti, j = 0}

to the set {T ∈ Rn1,n2 | ∀(i, j) ∈ F,Ti, j = 0}, such that ψ ◦ φ is the identity over {T ∈ Rn1,n2 |

∀(i, j) ∈ F,Ti, j = 0}. We have thus proven thatφ is an injection. The inequation (6.4) follows.
We consider the following cases:

• If #F1 = #F2 = 1, then F1 = {n1 − 1} and F2 = {0}, and we set φ as the identity, which is
obviously an injection.

• If #F1 = 1 and #F2 = n2 − 1, then F1 = {n1 − 1} and F2 = ~n2 − 1�, and we set

φ(T)i, j =


0 if (i, j) ∈ ~n1 − 1� × {0},
0 if (i, j) ∈ {n1 − 1} × (~n2� \ {0}),
mergel(T,n1 − 1, 0)i, j otherwise.

× ××

×

×

φ

×

××

××

×

×

Figure 6.5: An example for (n1,n2) = (5, 5).

In this case, we define ψ by

ψ(T)i, j =


0 if (i, j) ∈ ~n1 − 1� × ~n2 − 1�,
0 if (i, j) = (n1 − 1,n2 − 1),
Ti, j if (i, j) ∈ ~n1 − 1� × {n2 − 1},
T0, j if (i, j) ∈ {n1 − 1} × (~n2 − 1� \ {0}),
Ti, j if (i, j) = (n1 − 1, 0).

80 CHAPTER 6. ON THE STAR OF BOOLEAN OPERATIONS

We have

(ψ ◦ φ)(T)i, j =


0 if (i, j) ∈ ~n1 − 1� × ~n2 − 1�,
0 if (i, j) = (n1 − 1,n2 − 1),
φ(T)i, j if (i, j) ∈ ~n1 − 1� × {n2 − 1},
φ(T)0, j if (i, j) ∈ {n1 − 1} × (~n2 − 1� \ {0}),
φ(T)i, j if (i, j) = (n1 − 1, 0).

We check that ψ ◦ φ is the identity by considering the following cases.

– If (i, j) ∈ ~n1−1�×~n2−1�, or if (i, j) = (n1−1,n2−1), we haveψ(φ(T))i, j = 0 = Ti, j.

– If (i, j) ∈ ~n1 − 1� × {n2 − 1}, for all c < n2 − 1, we have Ti,c = 0. Recall also that
Tn1−1,n2−1 = 0. Therefore, since i ∈ ~n1 − 1�, we have

mergel(T,n1 − 1, 0)i, j =

 max(Tn1−1, j,T0, j) if
{

i = 0,
Ti,n2−1 = T0,n2−1 = 1,

Ti, j otherwise.

Furthermore, since j = n2 − 1, we have

ψ(φ(T))i, j = mergel(T,n1 − 1, 0)i, j =

 T0, j if
{

i = 0,
Ti, j = T0, j = 1,

Ti, j otherwise.

Hence, we have ψ(φ(T))i, j = Ti, j.

– If (i, j) ∈ {n1 − 1} × (~n2 − 1� \ {0}), we have T0, j = 0. Therefore, ψ(φ(T))i, j =
mergel(T,n1 − 1, 0)0, j = max(Tn1−1, j,T0, j) = Tn1−1, j = Ti, j.

– If (i, j) = (n1 − 1, 0), we have ψ(φ(T))i, j = φ(T)i, j = Ti, j.

• We can now suppose that #F1 ≤ n1 − 1 and #F2 ≤ n2 − 1. We distinguish several
cases for the definitions of both φ and ψ. We first define the function φ, and later the
function ψ. The function ψ is only defined on the image of φ. For each case, φ(T)
falls into the case of the same number in the definition of ψ. From there, in each case,
we can prove that ψ ◦ φ is the identity function, in a similar way than what we did
for the case of #F1 = 1 and #F2 = n2 − 1, by considering several cases for i and j based
on the definition of φ and ψ.

1. If Ti, j = 0 for all (i, j) , (n1 − 1, 0) such that i = n1 − 1∨ j = 0, then φ(T) = T. In all
of the following cases, we suppose that there exists (i, j) , (n1 − 1, 0) such that
i = n1 − 1 ∨ j = 0 with Ti, j = 1.

2. If Tn1−1,0 = 0, and

(a) If there exists (`, c) ∈ (~n1� \ F1) × (~n2� \ F2) such that T`,c = 0, then

φ(T)i, j =


0 if (i, j) ∈ ~n1 − 1� × {0},
0 if (i, j) ∈ {n1 − 1} × (~n2� \ {0}),
mergel(mergec(T, 0, j1),n1 − 1, i1)i, j otherwise,

6.5. DISCUSSING THE MONSTERS’ FINAL STATES 81

with (i1, j1) = min{(`, c) ∈ (~n1� \ F1) × (~n2� \ F2) | T`,c = 0}

×
××

×
×

×

φ
×
××

×
×

×

×
×

Figure 6.6: A first 5 × 5 example with F1 = {3, 4} and F2 = {0, 1, 2}.

(b) Otherwise

φ(T)i, j =



0 if (i, j) ∈ (~n1� \ F1) × (~n2� \ F2),
Ti,0 if (i, j) ∈ (F1 \ {n1 − 1}) × {n2 − 1},
Tn1−1, j if (i, j) ∈ {`1 − 1} × (F2 \ {0}),
0 if (i, j) ∈ (~n1� \ {n1 − 1}) × {0},
0 if (i, j) ∈ {n1 − 1} × (~n2� \ {0}),
Ti, j otherwise,

where `1 is the minimal element of F1.

×
××
×
××
×

×

×
φ

×
× ×

Figure 6.7: A second 5 × 5 example with F1 = {3, 4} and F2 = {0, 1, 2}.

3. If Tn1−1,0 = 1, and

(a) if there exists (`, c) ∈ (~n1� \ F1) × (~n2� \ F2) such that T`,c = 1, then

φ(T)i, j =


0 if (i, j) ∈ ~n1 − 1� × {0},
0 if (i, j) ∈ {n1 − 1} × (~n2� \ {0}),
mergel(mergec(T, 0, j1),n1 − 1, i1)i, j otherwise,

with (i1, j1) = min{(`, c) ∈ (~n1� \ F1) × (~n2� \ F2) | T`,c = 1}.

××
××

×
×

×

φ

×

×
× ×

×
×

×

×

Figure 6.8: A third 5 × 5 example with F1 = {3, 4} and F2 = {0, 1, 2}.

82 CHAPTER 6. ON THE STAR OF BOOLEAN OPERATIONS

(b) Otherwise,

φ(T)i, j =



0 if (i, j) ∈ ~n1 − 1� × {0},
0 if (i, j) ∈ {n1 − 1} × (~n2� \ {0}),
1 if (i, j) = (`1 − 1,n2 − 1),
1 if (i, j) = (0, `2 + 1),
Ti,0 if j = n2 − 1 ∧ i ∈ F1 \ {n1 − 1},
Tn1−1, j if i = `1 − 1 ∧ j ∈ F2 \ {0},
Ti, j otherwise,

where `1 is the minimal element of F1 and `2 is the maximal element of F2.

××
××

φ

×
× ×

×

××

Figure 6.9: An example for (n1,n2) = (5, 5), F1 = {3, 4} and F2 = {0, 1, 2}.

The application ψ is defined as follows :

1. If Ti, j = 0 for all (i, j) ∈ (F1 × ~n2�)∆(~n1� × F2), then ψ(T) = T. We suppose in all the
following cases that there exists (i, j) ∈ (F1 × ~n2�)∆(~n1� × F2) with Ti, j = 1.

2. If Tn1−1,0 = 0, then there exists (i, j) ∈ (~n1� \ F1) × (~n2� \ F2) with Ti, j = 0. Let
(i1, j1) = min{(i, j) ∈ (~n1� \ F1) × (~n2� \ F2) | Ti, j = 0}.

(a) If there exists (i, j) ∈ {i1} × (F2 \ {0}) ∪ (F1 \ {n1 − 1}) × { j1} such that Ti, j = 1, then

ψ(T)i, j =


0 if (i, j) ∈ F1 × ~n2� \ F2,
0 if (i, j) ∈ ~n1� \ F1 × F2,
Ti1, j if i = n1 − 1 ∧ j ∈ F2 \ {0},
Ti, j1 if j = 0 ∧ i ∈ F1 \ {n1 − 1},
Ti, j otherwise.

(b) Otherwise

ψ(T)i, j =



0 if (i, j) ∈ F1 × ~n2� \ F2,
0 if (i, j) ∈ ~n1� \ F1 × F2,
1 if (i, j) ∈ (~n1� \ F1) × (~n2� \ F2)
T`1−1, j if i = n1 − 1 ∧ j ∈ F2 \ {0},
Ti,n2−1 if j = 0 ∧ i ∈ F1 \ {n1 − 1},
Ti, j otherwise,

where `1 is the minimal element of F1.

6.5. DISCUSSING THE MONSTERS’ FINAL STATES 83

3. If Tn1−1,0 = 1, then there exists (i, j) ∈ (~n1� \ F1) × (~n2� \ F2) with Ti, j = 1. Let
(i1, j1) = min{(i, j) ∈ (~n1� \ F1) × (~n2� \ F2) | Ti, j = 1}.

(a) If there exists (i, j) ∈ {i1} × (F2 \ {0}) ∪ (F1 \ {n1 − 1}) × { j1} such that Ti, j = 1, then

ψ(T)i, j =


0 if (i, j) ∈ F1 × ~n2� \ F2,
0 if (i, j) ∈ ~n1� \ F1 × F2,
Ti1, j if i = n1 − 1 ∧ j ∈ F2 \ {0},
Ti, j1 if j = 0 ∧ i ∈ F1 \ {n1 − 1},
Ti, j otherwise.

(b) Otherwise,

ψ(T)i, j =



0 if (i, j) ∈ F1 × ~n2� \ F2,
0 if (i, j) ∈ ~n1� \ F1 × F2,
0 if (i, j) ∈ (~n1� \ F1) × (~n2� \ F2)
T`1−1, j if i = n1 − 1 ∧ j ∈ F2 \ {0},
Ti,n2−1 if j = 0 ∧ i ∈ F1,
Ti, j otherwise,

where `1 is the minimal element of F1.

�

We know, from Proposition 22, that for any F1 ⊆ ~n1� with F1 < {∅, ~n1�}, and any
F2 ⊆ ~n2� with F2 < {∅, ~n2�}, the equivalence relation ∗

↔ is compatible with MF1,F2 . As a
consequence, by Remark 7, if (0, 0) is not in the final zone of MF1,F2 , we have

sc(L(MF1,F2)) ≤ #M̂F1,F2/ ∗↔ ≤ TF1,F2 + 1 ≤ T{n1−1},{0}.

Furthermore, if (0, 0) is in the final zone of MF1,F2 , then ∅ is not distinguishable from {(0, 0)}
in MF1,F2 , and thus ∼ is compatible with MF1,F2 . Hence, in this case, we have

sc(L(MF1,F2)) ≤ #M̂F1,F2/∼ ≤ TF1,F2 ≤ T{n1−1},{0}.

However, by Corollary 3, we have

T{n1−1},{0} = #M̂{n1−1},{0}/∼ = sc(L(M{n1−1},{0}))

Thus, in both case, we have sc(L(MF1,F2)) ≤ sc(L(M{n1−1},{0})).
Notice also that if F1 = ∅ or if F1 = ~n1�, then sc(L(MF1,F2)) ≤ sc?O(1,n2) ≤ 2n2−1 + 2n2−2.

Furthermore, if F2 = ∅ or if F2 = ~n2�, then sc(L(MF1,F2)) ≤ sc?O(n1, 1) ≤ 2n1−1 + 2n1−2. Hence,
it is easy to check that, in both cases, we also have sc(L(MF1,F2)) ≤ sc(L(M{n1−1},{0})).

To summarize, for any F1 ⊆ ~n1� and any F2 ⊆ ~n2�, sc(L(MF1,F2)) ≤ sc(L(M{n1−1},{0})).
Hence, Theorem 2 gives us the state complexity of ?O.

Theorem 3. For any integer n1 and n2 greater than or equal to 2, we have sc?O(n1,n2) =

2αn1−1,n2−1 + α′n1,n2
− 1. Furthermore, L(Mon{n1−1},{0}

n1,n2
) is a witness for ?O, i.e., for any inte-

gers n1 and n2 greater or equal to 2, we have sc?O(n1,n2) = sc(?O(L(M1),L(M2))), where
(M1,M2) = Mon{n1−1},{0}

n1,n2
.

84 CHAPTER 6. ON THE STAR OF BOOLEAN OPERATIONS

6.6 Witnesses with a finitely bounded alphabet size

We now prove that ?O admits a witness with a finitely bounded alphabet. Let n1,n2 be two
positive integers greater than or equal to 2, and let (M1,M2) = Mon{n1−1},{0}

n1,n2
. Let B1 and B2

be the DFAs obtained by restricting the letters of respectively M1 and M2 to the alphabet

Σ′ =
{
((0, . . . ,n1 − 2), Id), ((1, . . . ,n1 − 2), Id), (Id, (1, . . . ,n2 − 2)), ((1, . . . ,n1 − 1), Id),

(a
b

)
(Id, (1, . . . ,n2 − 1)), ((0,n1 − 1), Id), (Id, (0,n2 − 1)), ((0, 1), (0, 1)), ((0, 1), Id),
(Id, (0, 1)), (π1

0, Id), (Id, π1
0), (πn1−2

n1−1, Id), (Id, πn2−2
n2−1), (πn1−1

0 , Id), (Id, πn2−1
0)

}
.

We let F denote the final zone of M{n1−1},{0}, by B the DFA StX(B1,B2), by δ the transition
function of B, and by B̂ the DFA obtained by restricting B to the accessible states of M{n1−1},{0},
i.e., the states T such that, if T has a cross in F, then T has cross at (0, 0). We can obtain B
by restricting the letters of M{n1−1},{0} to the alphabet Σ′. Therefore, since the equivalence
relation ∼ is compatible with M{n1−1},{0}, it is also compatible with B (see Section 2.4.2 for
a definition of compatible). Furthermore, the DFA A = B̂/∼ is obtained by restricting the
letters of M̂{n1−1},{0}/∼ to the alphabet Σ′. We show that A is a minimal DFA equivalent to B.

Recall first that every letter of Σ′ can be seen as a mapping over the set of all tableaux
of size n1 × n2. Every word w of Σ′ can also be seen as such a mapping: if w = a1 · · · am,
for any tableau T of size n1 × n2, we let w(T) denote the tableau am ◦ · · · ◦ a1(T). Therefore,
every word w of Σ′ also designates a mapping over the set of all tableaux of size n1 × n2.
When it exists, we let w−1 denote the inverse of the mapping w. For any word w = a1 · · · am,
and any i, j ∈ {1, . . . ,m}with i ≤ j, we let w[i, j] denote the subword ai · · · a j. By convention,
if j = 0 or j < i, w[i, j] = ε. The two following lemmas are proven by a straightforward
induction on the length of w.

Lemma 19. Let w be a word over Σ′, and T be a non-empty state of B. Suppose that, for any
integer 1 ≤ k ≤ |w|, we have either (w[1, k](T))0,0 = 1, or w[1, k](T) has no cross in F. Then we
have δw(T) = w(T).

Lemma 20. For any word w over Σ′, for any non-empty tableau T of size n1 × n2, for any
(i, j) ∈ ~n1� × ~n2�, if (w(T))i, j = 1, then we have (δw(T))i, j = 1, where δ is the transition function
of B.

We now show that the accessible part of B is equal to B̂.

Lemma 21. All the states of B̂ are accessible.

Proof. This proof follows the same steps as the proof of Lemma 16. However, we now
have to make sure that all the letters we use are in Σ′. We let E denote the set of all tableaux
T of size n1 × n2 such that, if T has a cross in the final zone of M{n1−1},{0}, then T0,0 = 1. The
fact that every accessible tableau T of B is in E comes directly from the formula given for
StX in Section 6.1. We now prove that every tableau of E is accessible in B.

Let δ be the transition function of B. For any tableau T of size n1 × n2, let #nfT be the
number of crosses of T which are not in the final zone of M{n1−1},{0}. Let < be the strict
partial order on tableaux such that T < T′ if and only if, either #T < #T′, or #T = #T′ and

6.6. WITNESSES WITH A FINITELY BOUNDED ALPHABET SIZE 85

#nfT < #nfT′ .
We prove that every tableau in E is accessible, by induction on non-empty tableaux for the
partial order < (the empty tableau is the initial state of M{n1−1},{0}, and so it is accessible).
The only minimal element for the strict partial order < is the empty tableau. Therefore, for
any non-empty tableau T′ ∈ E, we define a tableau T such that T < T′, and T′ is accessible
from T. We distinguish the same cases as in the proof of Lemma 16. In order not to repeat
ourselves too much, we focus here only on the cases of the proof of Lemma 16 where the
letters used are not in Σ′.

• If T′ has no cross in the final zone, according the previous remark, we have only to
examine the case where T′n1−1,0 = 0. Otherwise, we used the letters ((0,n1 − 1), Id),
(Id, (0,n2 − 1)), and (Id, πn2−1

0), which are in Σ′. Let (i, j) be the index of a cross of T′.
Let w = (Id, (0, 1))((0, . . . ,n1−2), Id)i(Id, (1, . . . ,n2−1)) j−1 and let T = w−1(T′). We have
(i, 1) ∈ (Id, (1, . . . ,n2 − 1)) j−1(T′), (1, 1) ∈ ((0, . . . ,n1 − 2), Id)i(Id, (1, . . . ,n2 − 1)) j−1(T′),
and therefore {0, 0} ∈ T. Furthermore, for all k ∈ {1, . . . , |w|}, for all (i, j) , (n1 − 1, 0)
such that i = n1−1 or j = 0, we have (w[1, k](T))i, j = (w[k+1, |w|]−1(T′))i, j = 0. Thus, by
Lemma 19, we have δw(T) = T′. We also have T < T′, since #T = #T′ and #nfT < #nfT′.

• Suppose now that T′ has at least one cross in the final zone of M{n1−1},{0}. Recall then
that T′0,0 = 1. We consider the following cases.

– Suppose that T′ has a cross in the final zone other than (0, 0). Let (i, j) be such a
cross. We consider two cases.

* If j = 0, then 1 ≤ i ≤ n1−2. We consider the word w1 = ((1, . . . ,n1−2), Id)i−1.
Let T′′ be the tableau obtained from w−1

1 (T′) by removing the cross at (0, 0)
(i.e., T′′ = w−1

1 (T′) \ {(0, 0)}), let w2 = ((0, 1), Id), and let T = w2(T′′). We
have (0, 0), (1, 0) ∈ w−1

1 (T). As a consequence, T = ((0, 1), Id)(T′′) \ {(0, 1)},
and (0, 0) ∈ T. We thus have T′′ = ((0, 1), Id)(T) ∪ {(0, 0)}. Furthermore,
(0, 1) ∈ ((0, 1), Id)(T), which implies that ((0, 1), Id)(T) is final. Therefore,
T′′ = δ((0,1),Id)(T′). In addition, every symbol of w1 fixes (0, 0). Hence,
(0, 0) ∈ w1[1, k](T′′), for any k ∈ {1, . . . , i − 1}. Since T′ = w1(T′′), by Lemma
19, we have T′ = δw1(T′′) = δw2w1(T). Furthermore, T < T′ as #T < #T′.

* Otherwise, let w1 = ((1, . . . ,n1 − 1), Id)i−1(Id, (1, . . . ,n2 − 1)) j−1, and let T′′ be
the tableau obtained from w−1

1 (T′) by removing the cross at (0, 0), i.e., T′′ =
w−1

1 (T′) \ {(0, 0)}. Let w2 = ((0, 1), (0, 1)), and let T = w2(T′′).
Notice first that T0,0 = 1, which implies that T ∈ E. Furthermore, since
(w2w1(T))0,0 = T′0,0 = 1, by Lemma 20, we have (δw2w1(T))0,0 = 1. Let k be the
minimal integer in {0, . . . , |w1|} such that (δw1[1,k](T′′))0,0 = 1. Notice that, for
any integers ` ∈ {0, . . . , k− 1}, the tableau δw1[1,`](T′′) has no cross in the final
zone. Therefore, by Lemma 19, we have w2(w1[1, l](T)) = δw2·w1[1,l](T), where
w2 · w1[1, l] is the catenation of w2 and w1[1, l]. Furthermore δw2·w1[1,k](T) =
w1[1, k](δw2(T))∪ {(0, 0)}. Hence, since letters of w1[k + 1, |w1|] do not change
line 0 or column 0, for any ` ∈ {k, . . . , |w1|}, we have (δw1[k+1,`](δw2·w1[1,k](T)))0,0 =
1. Hence, from Lemma 19, we have δw2w1(T) = w1[k+1, |w1|](w1[1, k](δw2(T))∪
{(0, 0)}) = w1(δw2(T))∪{(0, 0)} = w1(T′′)∪{(0, 0)} = T′. Moreover, as #T < #T′,
we have T < T′.

86 CHAPTER 6. ON THE STAR OF BOOLEAN OPERATIONS

– Suppose that the only cross of T′ in the final zone of M{n1−1},{0} is at (0, 0). Ac-
cording to the remark made just before the beginning of the induction, in ad-
dition to the case where T′ = {(0, 0)}, we only have to consider the case where
T′ , {(0, 0), (n1 − 1, 0)}, and for all j ∈ {1, . . . ,n2 − 1}, T′0, j = 0.

* If T′ = {(0, 0)}, then it is accessible from ∅ by reading the word ((0,n1 −

1), Id)((0,n1 − 1), Id).

* Suppose that T′ , {(0, 0), (n1 − 1, 0)}, and for all j ∈ {1, . . . ,n2 − 1}, T′0, j = 0.
It follows that there exists (i, j) , (n1 − 1, 0) such that i , 0 and T′i, j = 1.
Let w = ((1, . . . ,n1 − 1), Id)i and let T = w−1(T′). By Lemma 19, since
(w[1, k](T))0,0 = 1 for any k ∈ {0, . . . , |w|}, we have T ∈ E and δw(T) = T′.
Furthermore, as #T = #T′ and #nfT < #nfT′, we have T < T′.

�

We now show that any two distinct states of A are distinguishable in A, by proving
that any two distinct right-triangle free states of B̂ are distinguishable in B̂. This result is
a refinement of Lemma 15, and unsurprisingly, its proof is also a refinement of the proof
of Lemma 15. The idea of the proof below is to replace the letters used in Lemma 15 with
words over Σ′. In order to make the proof easier, we first state the following lemma, which
is proven by a straightforward induction on the length of w.

Lemma 22. Let w be a word over Σ′, and T be a non-empty tableau of size n1 × n2. Let (i, j) ∈
~n1� × ~n2� be a pair of integers such that Ti, j = 1, and let (i′, j′) = w(i, j). We have δw(T)i′, j′ = 1.

Lemma 23. Any two distinct states of A are distinguishable in A.

Proof. It is sufficient to prove that any two distinct non-empty right-triangle free tableaux of
B̂ are distinguishable in B̂. Recall that a tableau T is final in B̂ if and only if T∩F , ∅. We use
this statement repeatedly in the rest of the proof. Let T and T′ be two distinct non-empty
right-triangle free tableaux of size n1 × n2. We show that T and T′ are distinguishable in B̂.
Let (i, j) be such that Ti, j , T′i, j. We suppose that Ti, j = 1 (the case T′i, j = 1 is symmetrical).
We distinguish the same cases as in the proof of Lemma 15.

Suppose now that for all i′ ∈ ~n1�, we have T′i′, j = 0.

• If j = 0, then T′ is not final, as T′ does not have any cross on column 0 or on line
n1 − 1. The same thing can be said of (πn1−1

0 , Id)(T′). As a consequence, δ(π
n1−1
0 ,Id)(T′) is

not final in B̂. Furthermore, (πn1−1
0 , Id)(i, j) is equal to (i, 0) if i < n1 − 1, and to (0, 0) if

i = n1 − 1. Therefore, by Lemma 22, δ(π
n1−1
0 ,Id)(T) is final in B̂. As a consequence, T and

T′ are distinguishable in B̂.

• If j , 0, then let w = (πn1−1
0 , Id)(Id, (1, . . . ,n2−1))n2− j(Id, (0, 1)). Let T′′ = (πn1−1

0 , Id)(T′).
If T′0,0 = 1 or T′n1−1,0 = 1, then T′′0,0 = 1. Furthermore, if T′0,0 = 0 and T′n1−1,0 = 0, then
T′ does not have any cross on line n1 − 1 or on column 0. Therefore, T′′ does not
have any cross on line n1 − 1 or on column 0 either. In both cases, we thus have
T′′ = δ(π

n1−1
0 ,Id)(T′).

6.6. WITNESSES WITH A FINITELY BOUNDED ALPHABET SIZE 87

Notice that, since T′′ does not have any cross on line n1 − 1, for any k ∈ N,
(Id, (1, . . . ,n2 − 1))k(T′′) does not have any cross on line n1 − 1 either. Furthermore,
(Id, (1, . . . ,n2 − 1)) does not change column 0. Therefore, either T′′ has a cross at
(0, 0) and (Id, (1, . . . ,n2 − 1))k(T′′) is final in B̂ for any k ∈ N, or T′′ does not have any
cross either on column 0 or on line n1 − 1, and (Id, (1, . . . ,n2 − 1))k(T′′) is not final in
B̂ for any k ∈ N. In both cases, by Lemma 19, we have (Id, (1, . . . ,n2 − 1))n2− j(T′′) =

δ(Id,(1,...,n2−1))n2− j(T′′). Furthermore, T′′ does not have any cross on column j, and
recall that it does not have any cross on line n1 − 1 either. As a consequence,
δ(Id,(1,...,n2−1))n2− j(T′′) does not have any cross on column 1 or on line n1 − 1. There-
fore, (Id, (0, 1))((δ(Id,(1,...,n2−1))n2− j(T′′)) does not have any cross either on column 0 or on
line n1 − 1. Hence, (Id, (0, 1))((δ(Id,(1,...,n2−1))n2− j(T′′)) = δ(Id,(0,1))(Id,(1,...,n2−1))n2− j(T′′). To sum-
marize, δw(T′) = w(T′), and δw(T′) is not final in B̂. However, Ti, j = 1, w(i, j) = (0, 0)
if i = n1 − 1, and w(i, j) = (i, 0) if 1 ≤ i ≤ n1 − 1. Therefore, by Lemma 22, we have
(δw(T))0,0 = 1, and δw(T) is final in B̂. The tableaux T and T′ are thus distinguishable
in B̂.

We now suppose that there exists x ∈ ~n1� such that T′x, j = 1. Let {i1, . . . , i`} = {α | T′α, j = 1}
and let { j1, . . . , jp} = {β | T′i1,β = 1}. We state the same two properties that we noticed in the
proof of Lemma 15. We designate them by Property 1 and Property 2 in the rest of the
proof.

1. By Lemma 12, lines i1, . . . , i` are the same, as they all have a cross on the column j.
Columns j1, . . . , jp are also the same, as they all have a cross on line i1. It follows that,
if

(i′, j′) ∈
(
{i1, . . . , i`} ×

(
{0, . . . ,n2 − 1} \ { j1, . . . , jp}

))
∪(

({0, . . . ,n1 − 1} \ {i1, . . . , i`}) × { j1, . . . , jp}
)
,

then we have T′i′, j′ = 0.

2. We have j ∈ { j1, . . . , jp} and i < {i1, . . . , i`}.

The same reasoning as in Lemma 15 can be made. We let (f , g) denote the pair of mappings
such that, for any (i′, j′) ∈ ~n1� × ~n2�, we have

f (i′) =

{
n1 − 1 if i′ ∈ {i1, . . . , i`}
0 otherwise and g(j′) =

{
0 if j′ ∈ { j1, . . . , jp}

n2 − 1 otherwise.

If (f (i′), g(j′)) is in F, then

(i′, j′) ∈
(
{i1, . . . , i`} ×

(
{0, . . . ,n2 − 1} \ { j1, . . . , jp}

))
∪(

({0, . . . ,n1 − 1} \ {i1, . . . , i`}) × { j1, . . . , jp}
)
.

Hence, by Property 1, we have T′i′, j′ = 0. As a consequence, (f , g)(T′) has at most two
crosses, one at (n1−1, 0) and one at (0,n2−1). Neither (n1−1, 0) nor (0,n2−1) is in the final

88 CHAPTER 6. ON THE STAR OF BOOLEAN OPERATIONS

zone of M{n1−1},{0}. As a consequence, (f , g)(T′) = δ(f ,g)(T′) is not final in M{n1−1},{0}. However,
by Property 2, since Ti, j = 1, we have ((f , g)(T))0,0 = 1. Therefore, (f , g)(T) = δ(f ,g)(T) is
final in M{n1−1},{0}. We now simulate the letter (f , g) with letters in Σ′. More precisely,
we show that there exists a word w over Σ′ such that δw(T′) = (f , g)(T′), and such that
am ◦ · · · ◦ a1 = (f , g), where a1 · · · am = w. If w is such a word, from Lemma 22, we have
(δw(T))0,0 = 1, which implies that δw(T) is final in B̂. Proving the existence of such a word
w is therefore sufficient to conclude our proof.

We consider two main cases. In the first case, the word used to simulate (f , g) is
w1w2w3w4w5. In the second case, we read a word w0 from the two tableaux T and T′, so
that the two resulting tableaux fall into the scope of the first case.

Let {k1, . . . , ks} = {i1, . . . , il} \ {0,n1 − 1}, {k′1, . . . , k
′

n1−2−s} = ~n1� \ {0,n1 − 1, k1, . . . , ks},
{c1, . . . , cd} = { j1, . . . , jp} \ {0,n2 − 1}, and {c′1, . . . , c

′

n2−2−d} = ~n2� \ {0,n2 − 1, c1, . . . , cd}. Re-
call that [x ∈ {i1, . . . , il}] is equal to 1 if x ∈ {i1, . . . , il}, and 0 otherwise.

1. (0, 0) ∈ T′. In this case, we define a five words w1, w2, w3, w4, w5, and we let w denote
the word w1w2w3w4w5.

(a) 0 ∈ {i1, . . . , il} and 0 ∈ { j1, . . . , jp}

w1 =

s∏
v=1

[
((1, . . . ,n1 − 2), Id)n1−kv−1(π1

0, Id)((1, . . . ,n1 − 2), Id)kv−1
]

(πn1−1
0 , Id)[(n1−1)∈{i1,...,il}].

The word w1 does cyclic permutations on the lines so that the lines {k1, . . . , ks}

which are the same as line 0 are permuted one after the other on line 1 and then
merged with line 0. The last line is merged with line 0 if it is in {i1, . . . , il}.

w2 =

d∏
v=1

[
(Id, (1, . . . ,n2 − 2))n2−cv−1(Id, π1

0)(Id, (1, . . . ,n2 − 2))cv−1
]

(Id, πn2−1
0)[(n2−1)∈{ j1,..., jp}].

The word w2 does the same with columns {c1, . . . , cd}, and with the last column.

w3 =

n1−2−s∏
v=1

((1, . . . ,n1 − 2), Id)n1−k′v−2(πn1−2
n1−1, Id)((1, . . . ,n1 − 2), Id)k′v .

The word w3 merges the lines {k′1, . . . , k
′

n1−2−s} with line n1 − 1, but they are not
necessarily the same.

w4 =

n2−2−d∏
v=1

(Id, (1, . . . ,n2 − 2))n2−c′v−2(Id, πn2−2
n2−1)(Id, (1, . . . ,n2 − 2))c′v .

The word w4 merges the columns {c′1, . . . , c
′

n2−2−d}with column n2 − 1.

w5 = ((0,n1 − 1), Id).

6.6. WITNESSES WITH A FINITELY BOUNDED ALPHABET SIZE 89

(b) 0 < {i1, . . . , il} and 0 < { j1, . . . , jp}.

w1 =

n1−2−s∏
v=1

[
((1, . . . ,n1 − 2), Id)n1−k′v−1(π1

0, Id)(1, . . . ,n1 − 2), Id)k′v−1
]

(πn1−1
0 , Id)[(n1−1)<{i1,...,il}].

w2 =

n2−2−d∏
v=1

[
(Id, (1, . . . ,n2 − 2))n2−c′v−1(Id, π1

0)(Id, (1, . . . ,n2 − 2))c′v−1
]

(Id, πn2−1
0)[(n2−1)<{ j1,..., jp}].

w3 =

s∏
v=1

((1, . . . ,n1 − 2), Id)n1−kv−2(πn1−2
n1−1, Id)(1, . . . ,n1 − 2), Id)kv .

w4 =

d∏
v=1

(Id, (1, . . . ,n2 − 2))n2−cv−2(Id, πn2−2
n2−1)(Id, (1, . . . ,n2 − 2))cv .

w5 = (Id, (0,n2 − 1)).

2. (0, 0) < T′. In every case except for case 2(a), we find a word w0 such that the two
tableaux δw0(T) and δw0(T′) fall into the scope of case 1.

(a) {i1, . . . , il} = {n1 − 1}.
This implies that j = 0, 0 ≤ i ≤ n1−2, and { j1, . . . , jp} = {0}. Let w0 = ((0,n1−1), Id),
T1 = δw0(T), and T′1 = δw0(T′). Since (0, 0) ∈ w0(T′), we have T′1 = w0(T′). Hence,
by Lemma 22, T1 has a cross at the coordinates w0(i, j), while T′1 does not.
Therefore, the tableaux T1 and T′1 fall into the scope of case 1(a).

(b) {i1, . . . , il} , {n1 − 1}.
This implies that there exists x ∈ {i1, . . . , il} such that x ∈ {0, . . . ,n1 − 2}. Further-
more, since (0, 0) < T′, we have 1 ≤ j1.

• If x = 0, let w0 = (Id, (1, . . . ,n2 − 1))n1− j1−1(Id, (1, 0)). The tableau T′ has
no crosses in F since (0, 0) < T′. Furthermore, the letter (Id, (1, . . . ,n2 − 1))
does not change the column 0 or line n1 − 1 if they are empty. In addition,
w0(i1, j1) = (0, 0), which implies, by Lemma 22, that w0(T)0,0 = 1. Thus, by
Lemma 19, we have δw0(T′) = w0(T′). Let T1 = δw0(T) and T′1 = δw0(T′) =
w0(T′). Furthermore, by Lemma 22, T1 has a cross at the coordinates w0(i, j) ,
(0, 0), while T′1 = w0(T′) does not, since (i, j) < T′. Therefore, the tableaux T1

and T′1 fall into the scope of case 1.
• If x , 0, then n1 ≥ 3. Let

w0 = ((1, . . . ,n1 − 2), Id)n1−x−1((1, 0), Id)(Id, (1, . . . ,n2 − 1))n1− j1−1(Id, (1, 0)).

The tableau T′ has no crosses in F since (0, 0) < T′. Furthermore, the
letters ((1, . . . ,n1 − 2), Id), ((1, 0), Id, and (Id, (1, . . . ,n2 − 1)) do not change
the column 0 or line n1 − 1 if they are empty. In addition, w0(i1, j1) = (0, 0),
which implies, by Lemma 22, that w0(T)0,0 = 1. Thus, by Lemma 19, we have

90 CHAPTER 6. ON THE STAR OF BOOLEAN OPERATIONS

δw0(T′) = w0(T′). Let T1 = δw0(T) and T′1 = δw0(T′) = w0(T′). Furthermore, by
Lemma 22, T1 has a cross at the coordinates w0(i, j) , (0, 0), while T′1 = w0(T′)
does not, since (i, j) < T′. Therefore, the tableaux T1 and T′1 fall into the scope
of case 1.

From a direct computation, we get am ◦ · · · ◦ a1 = (f , g), where a1 · · · am = w1w2w3w4w5.
Furthermore, in case 1, for all k ∈ {0, . . . , |w| − 1}, we have w[1, k](T′)0,0 = 1. Furthermore,
w[1, |w| − 1](T′) ⊆ {(0, 0), (n1 − 1,n2 − 1)}. As a consequence, w(T′) ∩ F = ∅. Therefore,
from Lemma 19, in case 1, we have δw(T′) = (f , g)(T′). Hence, δw(T′) is not final in B̂.
Furthermore, since T′i, j = 0, we have i < {i1, . . . , il}, and j ∈ { j1, . . . , jp}, which implies that
w(i, j) = (0, 0). Therefore, from Lemma 22, we have (δw(T))0,0 = 1, which implies that δw(T)
is final in B̂. Therefore, in case 1, T and T′ are distinguishable in B̂. Furthermore, in case
2, we have shown that the two tableaux δw0(T) and δw0(T′) fall into the scope of case 1.
Therefore, in these cases, δw0(T) and δw0(T′) are distinguishable in B̂. As a consequence, in
all cases, T and T′ are distinguishable in B̂. To conclude, any two distinct states of A are
distinguishable. �

Lemma 21 and Lemma 23 imply that A is minimal. However, A has the same size as
M̂{n1−1},{0}/ ∗↔. Hence, by Theorem 3 A is witness for ?O.

Theorem 4. The operation ?O has a witness with sixteen letters. More precisely, for any integers
n1 and n2 greater than or equal to 2, we have sc?O(n1,n2) = sc(?O(L(B1),L(B2))).

6.7 Towards the general case

Our guess is that the method we use to compute the state complexity of the star of the
symmetric difference can be generalized to compute the state complexity of the star of
every boolean operations. However, the aim of this section is not to describe precisely
how to generalize it, but just to give a few thoughts.

First notice that, since the Kleene star and boolean operations are 1-uniform (see Exam-
ple 15 and Example 10), and since 1-uniform operations are closed under composition by
Proposition 13, for any boolean function b, the regular operation ?Ob = (⊗b(L1, . . . ,Lk))? is
1-uniform. Therefore, all these operations fall into the scope of our framework. A formula
for the modifier Star ◦ mb can be obtained directly from Example 15, Example 17, and
Definition 6, and is remarkably similar to the case of the symmetric difference (Section
6.1).

Let b be a k-ary boolean function, and let (A1, . . . ,Ak) be a k-tuple of DFAs with A j =
(Σ,Q j, i j,F j, δ j). Recall that, if a is a letter of Σ and E a subset of Q1 × · · · × Qk, we let
(δa

1, . . . , δ
a
k)(E) denote the set {(δa

1(q1), . . . , δa
k(qk)) | (q1, . . . , qk) ∈ E}. We have

Star ◦mb(A1, . . . ,Ak) = (Σ, 2Q1×···×Qk , ∅, {E ⊆ Q1 × · · · ×Qk | E ∩ F , ∅} ∪ {∅}, δ)

where F is the set of all elements (q1, . . . , qk) of Q1 × · · · ×Qk that satisfy b([q1 ∈ F1], . . . , [qk ∈

6.7. TOWARDS THE GENERAL CASE 91

Fk]) = 1, and where, for any letter a of Σ, we have

δa(∅) =

{(δa
1(i1), . . . , δa

k(ik))}, if (δa
1(i1), . . . , δa

k(ik)) < F;
{(δa

1(i1), . . . , δa
k(ik)), (i1, . . . , ik)}, otherwise ;

and for any E ∈ 2Q1×···×Qk \ {∅}, we have

δa(E) =

(δa
1, . . . , δ

a
k)(E), if (δa

1, . . . , δ
a
k)(E) ∩ F = ∅;

(δa
1, . . . , δ

a
k)(E) ∪ {(i1, . . . , ik)}, otherwise.

Notice that, if b is a binary boolean operation, the states ofStar(mb(MonF1,...,Fk
n1,...,nk

)) are still
labelled by tableaux. What essentially changes between two binary boolean operations in
the above formula is what we called the "final zone" in previous sections, i.e., the set F of
all elements (q1, . . . , qk) of Q1 × · · · × Qk such that b([q1 ∈ F1], . . . , [qk ∈ Fk]) = 1 (in the case
of the symmetric difference, we had F = (F1 × Q2)∆(Q1 × F2)). In that sense, the general
case where b is any k-ary boolean operation is similar to the binary case, albeit with a
generalization of tableaux to higher dimensions: a tableaux of size n1 × · · · × nk is a subset
of ~n1� × · · · × ~nk�.

In the remainder of this section, b is a boolean function, (n1, . . . ,nk) is a k-tuple of
integers greater than or equal to 2, and (F1, . . . ,Fk) is a k-tuple of sets such that F j ⊆ ~n j�
and F j < {∅, ~n j�}, for any j ∈ {1, . . . , k}. Our idea is to link the Nerode equivalence of
A = Star(mb(MonF1,...,Fk

n1,...,nk
)) to the Nerode equivalence of the DFA B = Star(mb(MonG1,...,Gk

2,...,2)),
where, for any j ∈ {1, . . . , k}, we have

G j =

{
{0} if 0 ∈ F j and F j , ~n j�
{1} if 0 < F j and F j < {∅, ~n j�}.

We defined the DFA B so that it would "mimic" the DFA A, but with a much smaller
size. We speculate that the Nerode equivalence of B has enough information, so that we
may build upon it the Nerode equivalence of A. Using this idea, we begin to generalize
the reasoning presented in the previous sections of this chapter. This leads to Claim 1, a
generalization of Proposition 22.

We do not want the ideas introduced in this section to be sunk in an ocean of cum-
bersome proofs and notations. Therefore, we state Claim 1 without proof. The proof of
Claim 1 is not conceptually difficult and highly resembles the proof of Proposition 22; it
will be published in further work. It is worth noting that in all of the known cases (star
of intersection, star of symmetric difference, star of multiple unions), the upper bound
that can be naturally derived from Claim 1 is the actual state complexity of the operation
considered. Even though there is no reason to expect this to hold true in the general case,
Claim 1 could be used to compute non-trivial upper-bounds for the state complexity of
?Ob, for some boolean functions b.

The first step to generalize Proposition 22 is to generalize the equivalence relation
∗

↔ defined in Definition 25. We do not generalize ↔ directly, but we define another
equivalence relation ./ such that its reflexive, symmetric and transitive closure

∗

./ coincides
with ∗

↔. To that aim, we introduce a way to link tableaux of size n1 × · · · × nk to tableaux
of size 2 × · · · × 2.

92 CHAPTER 6. ON THE STAR OF BOOLEAN OPERATIONS

Definition 27. A cube is a subset C of ~n1� × · · · × ~nk� such that there exists two k-tuples
(a1, . . . , ak) and (b1, . . . , bk) in ~n1� × · · · × ~nk�, with a j < b j for any j ∈ {1, . . . , k}, that satisfy
C = {a1, b1} × · · · × {ak, bk}.

For any cube C = {a1, b1} × · · · × {ak, bk}, with a j < b j for any j ∈ {1, . . . , k}, we let by
ξC denote the k-tuple (ξC

1 , . . . , ξ
C
k), where ξC

j is the mapping from {a j, b j} to {0, 1} such that
ξC

j (b j) = 1 and ξC
j (a j) = 0.

Definition 28. For any cube C = {a1, b1} × · · · × {ak, bk}, with a j < b j for any j ∈ {1, . . . , k},
and any tableau T of size n1 × · · · × nk, we let TC denote the tableau of size 2 × · · · × 2 such that
TC = ξC(T ∩ C).

Example 22. We represent TC in Figure 6.10, where T is the tableau of size 5 × 5 represented in
Figure 6.10, and C is the cube represented by the red squares of Figure 6.10.

×
××

× ×

Figure 6.10: A tableau T of size 5 × 5.

×
×
×

Figure 6.11: The tableau TC, where
C = {(0, 0), (0, 2), (2, 0), (2, 2)};

Definition 29. We let ./ denote the relation over the set of non-empty tableaux of size n1× · · · ×nk

such that, for any two non-empty tableaux T and T′ of size n1 × · · · × nk, we have T ./ T′ if and
only if there exists a cube C that satisfies

• the tableaux TC and T′C are indistinguishable in B,

• for all ` < C, we have ` ∈ T if and only if ` ∈ T′.

Notice that, in the case where b is the symmetric difference, we have T ./ T′ if and
only if there exists a cube C such that TC and T′C are either equal, or both of size at least
3. Therefore, if T → T′, then T ./ T′. Furthermore, if #TC = #T′C = 4, then TC = T′C.
Therefore, if T ./ T′, then we have

T′ = T if #TC = #T′C = 4
T′ → T if #T′C = 3 and #TC = 4
T→ T′ if #T′C = 4 and #TC = 3

T→ (T ∪ C) and T′ → (T′ ∪ C) if #TC = 3 and #T′C = 3

However, we have T ∪ C = T′ ∪ C. Thus, if T ./ T′, then T ∗

↔ T′. Hence,
∗

./ is indeed equal
to ∗

↔when b is the symmetric difference.
It is also worth noting here that, when b is the union of k languages, A/ ∗

./
provides

the construction used in [17] to describe ?Ob, and later on to compute its state complexity.
Furthermore, when b is the intersection of two languages, we have T

∗

./ T′ if and only if

6.7. TOWARDS THE GENERAL CASE 93

T = T′. As a consequence, A/ ∗
./

also provides the construction used to compute the state
complexity of ?Ob [27]. Therefore, studying A/ ∗

./
may be a good starting point to study the

state complexity of ?Ob, for any boolean operation b.

Now we state without proof a generalization of Proposition 22.

Claim 1. For any two non-empty tableaux T and T′ of size n1 × · · · × nk, if T
∗

./ T′, then T and T′

are indistinguishable in A.

The above claim is a generalization of Proposition 22. Claim 1 could be used to compute
non-trivial upper bounds for the state complexities of the star of other boolean operations.
For example, we believe it is possible to obtain Theorem 3.1 of [17] (the upper bound part
of the state complexity) by using this proposition.

We do not yet have a complete proof that would allow us to compute the state com-
plexity of the star of every boolean operation. We suspect that Lemma 16 cannot be
easily generalized as is. Furthermore, if we want to carry on our reasoning, we have to
understand better why Lemma 18 holds true, because our proof seems too technical to
be generalized. Finally, if we want to push our reasoning to the end, we have to find a
way to generalize Corollary 20 and Proposition 22 of [8], which seems to be a difficult
problem of combinatorics. We do believe, nonetheless, that it would not be very difficult
to compute the state complexity of the star of union [16] and the state complexity of the
star of intersection [27], by beginning from Proposition 1, and by following the steps taken
from Section 6.3 onwards. However, the proofs brought about by these reasonings would
be of little interest, as they would be very similar to those already existing.

We end this section with a table of the state complexity of the star of every binary
boolean operation, Table 6.1, which is made possible by combining the values of the state
complexity of the star of union [16], the state complexity of the star of intersection [27],
and the state complexity of the star of symmetric difference.

94 CHAPTER 6. ON THE STAR OF BOOLEAN OPERATIONS

The binary boolean operation b The state complexity of ?Ob, i.e., sc?Ob
(n1,n2)

n1 = 1,n2 ≥ 2 n1 ≥ 2,n2 = 1 n1 ≥ 2,n2 ≥ 2
∅ 2 2 2

L?1 2 2n1−1 + 2n1−2 2n1−1 + 2n1−2

L?2 2n2−1 + 2n2−2 2 2n2−1 + 2n2−2

(L1 ∩ L2)?

2n1n2−1 + 2n1n2−2(L1 ∩ Lc
2)?

(Lc
1 ∩ L2)?

(Lc
1 ∩ Lc

2)?

(L1 ∪ L2)?

2n2−1 + 2n2−2 2n1−1 + 2n1−2

2n1+n2−1
− 2n1−1

− 2n2−1 + 1(Lc
1 ∪ L2)?

(L1 ∪ Lc
2)?

(Lc
1 ∪ Lc

2)?

(L1∆L2)?

2αn1−1,n2−1 + α′n1,n2
− 1(Lc

1∆L2)?

(L1∆Lc
2)?

(Lc
1∆Lc

2)?

Σ? 1 1 1

Table 6.1: The state complexities of the star of the 16 binary boolean operations.

Chapter 7

Friendly and product modifiers

In this chapter, we examine two suboperads of modifiers defined by simple algebraic
properties: product modifiers and friendly modifiers. We first characterize the operations
described by friendly modifiers, and we explore their algebraic structure. We then show
that we can fit into this structure the algebraic structure of product modifiers. Finally, we
show some state complexity results for friendly and product modifiers.

7.1 Friendly modifiers

In this section, we study the structure of the operad of coherent friendly modifiers (Mf
c, ◦).

We prove that we can change every friendly modifier into a "standard" form, without
changing the operation it describes. Furthermore, we define friendly operations as the
composition of a generalized version of boolean operations and some roots. We prove
that the set of friendly operations Of is exactly the set of all the operations described
by friendly modifiers. Furthermore, we study the algebraic structure behind coherent
friendly modifiers, with respect to the composition of operations, in detail. We define a
quotient operad of (Mf

c, ◦) that is isomorphic to (Of, ◦). We also prove both of these operads
are isomorphic to an operad equal to the set of all k-tuples of eventually periodic sequences
with values in {0, 1}, equipped with some binary operation �.

7.1.1 Friendly modifiers: an operad

Definition 30. We say that a k-modifier m = [Q, i, f, d] is friendly if, for any two k-tuples of
transition configurations (Q1, i1,F1, φ1), . . . , (Qk, ik,Fk, φk) and (Q1, i1,F1, ψ1), . . . , (Qk, ik,Fk, ψk),
we have

d((i1,F1, φ1 ◦ ψ1), . . . , (ik,Fk, φk ◦ ψk)) =

d((i1,F1, φ1), . . . , (ik,Fk, φk)) ◦ d((i1,F1, ψ1), . . . , (ik,Fk, ψk))

The idea of the above definition is that d is a morphism of monoids with respect to its
third coordinate. For instance, it is easy to see that the modifier Sqrt is friendly, and that
any modifier mb, where b is a boolean function, is friendly.

95

96 CHAPTER 7. FRIENDLY AND PRODUCT MODIFIERS

Lemma 24. The set of friendly modifiers is stable by the composition of operations ◦.

Proof. Letm1 = [Q1, i1, f1, d1] andm2 = [Q2, i2, f2, d2] be two friendly modifiers, respectively
k-ary and k′-ary, let j ≤ k be a positive integer, and let m1 ◦ j m2 = [Q, i, f, d]. For any
k + k′ − 1-tuple of transition configurations (t1, . . . , tk+k′−1) with t j = (Q j, i j,F j, δ j) for any
j ∈ {1, . . . , k + k′ − 1}, we have

d(t1, . . . , tk+k′−1) = d1(t1, . . . , t j−1, (Q2(t j, . . . , tk′+ j−1), i2(t j, . . . , tk′+ j−1),
f2(t j, . . . , tk′+ j−1), d2(t j, . . . , tk′+ j−1)), tk′+ j, . . . , tk+k′−1).

(7.1)

However, for any two k + k′ − 1-tuples of transition configurations (t1, . . . , tk+k′−1) and
(t′1, . . . , t

′

k+k′−1), with t j = (Q j, i j,F j, φ j) and t′j = (Q j, i j,F j, φ′j) for any j ∈ {1, . . . , k + k′ − 1}, we
have, since m2 is friendly,

d2(t′′j , . . . , t
′′

k′+ j−1) =

d2(t j, . . . , tk′+ j−1) ◦ d2(t′j, . . . , t
′

k′+ j−1),
(7.2)

where t′′` = (Q`, i`,F`, φ`◦φ′`). Therefore, we get thatm1◦ jm2 is friendly from (7.1), replacing
δl by φl ◦ψl, for any l ∈ {1, . . . , k + k′ − 1}, and using (7.2) and the fact thatm1 is friendly. �

We letMf denote the set of friendly modifiers (graded by their arity). Since the identity
over DFAs is friendly, from Proposition 5 and Lemma 24, (Mf, ◦) is a suboperad of the
operad of modifiers (M, ◦).

Proposition 23. The set of friendly modifiers equipped with the composition of operations ◦ is a
suboperad of (M, ◦).

7.1.2 Standard friendly modifiers

Our first goal is to get a grasp on the operations friendly modifiers describe. To reach this
goal, we prove that we can always change a friendly modifier into a form that is easier work
with, a standard friendly modifier, without changing the operation it describes. Furthermore,
notice that Theorem 5, proven later in Section 7.1.4, shows that every operation described
by a friendly modifier is described by a unique standard friendly modifier. In other words,
a standard friendly modifier is a canonical form for every coherent friendly modifier
describing the same operation.

Definition 31. We say that a k-modifierm = [Q, i, f, d] is standard friendly modifier if, for any k-
tuple of transition configurations ((Q1, i1,F1, φ1), . . . , (Qk, ik,Fk, φk)) and any element (ψ1, . . . , ψk)
of QQ1

1 × · · · ×QQk
k , we have

• Q((Q1, i1,F1), . . . , (Qk, ik,Fk)) = QQ1
1 × · · · ×QQk

k

• i((Q1, i1,F1), . . . , (Qk, ik,Fk)) = (IdQ1 , . . . , IdQk)

• d((i1,F1, φ1), . . . , (ik,Fk, φk))(ψ1, . . . , ψk) = (φ1 ◦ ψ1, . . . , φk ◦ ψk)

7.1. FRIENDLY MODIFIERS 97

It follows from the above definition that a standard friendly modifier is indeed friendly.
Notice that a standard friendly k-modifier m = [Q, i, f, d] is entirely defined by its third
coordinate f. We can naturally associate a standard modifier with any friendly modifier.

Definition 32. Let m = [Q, i, f, d] be a friendly k-modifier. We let msf denote the standard
friendly k-modifier [Qsf, isf, fsf, dsf] such that , for any k-tuple of state configurations (s1, . . . , sk)
with s j = (Q j, i j,F j) for any j ∈ {1, . . . , k}, we have

fsf(s1, . . . , sk) =

{(φ1, . . . , φk) ∈ QQ1
1 × · · · ×QQk

k | d((i1,F1, φ1), . . . , (ik,Fk, φk))(i(s1, . . . , sk)) ∈ f(s1, . . . , sk)}.

Example 23. Figures 7.1,7.2 and 7.3 describe the effect of Comp (defined in Example 14) and of
Compsf on a DFA A. In Figure 7.3, [i j] represents the function φ such that φ(0) = i and φ(1) = j.

0 1

a, b

a

b

Figure 7.1: The DFA A.

0 1

a, b

a

b

Figure 7.2: The DFA C(A).

[01] [10]

[00]

[11]

a

a

a, ba

b b

b

Figure 7.3: The DFA Csf(A).

Lemma 25. For any coherent friendly modifier m, the standard modifier msf is coherent and
describes the same operation as m.

Proof. Letm = [Q, i, f, d] be a coherent friendly k-modifier. We show thatm andmsf describe
the same operation, which proves thatmsf is coherent. Let (A1, . . . ,Ak) be a k-tuple of DFAs
with A j = (Σ,Q j, i j,F j, δ j) for any j ∈ {1, . . . , k}, and let s j be the state configuration (Q j, i j,F j).
A word a1a2 · · · al is in L(m(A1, . . . ,Ak)) if and only if

d((i1,F1, δ
a1a2···al
1), . . . , (ik,Fk, δ

a1a2···al
k))(i(s1, . . . , sk)) =

d((i1,F1, δ
al
1), . . . , (ik,Fk, δ

al
k)) ◦ d((i1,F1, δ

al−1
1), . . . , (ik,Fk, δ

al−1
k)) ◦ . . .

◦d((i1,F1, δ
a1
1), . . . , (ik,Fk, δ

a1
k))(i(s1, . . . , sk)) ∈ f(s1, . . . , sk).

Equivalently,

dsf((i1,F1, δ
al
1), . . . , (ik,Fk, δ

al
k)) ◦ dsf((i1,F1, δ

al−1
1), . . . , (ik,Fk, δ

al−1
k)) ◦ . . .

◦dsf((i1,F1, δ
a1
1), . . . , (ik,Fk, δ

a1
k))(IdQ1 , . . . , IdQk) = (δa1a2···al

1 , . . . , δa1a2···al
k)

is an element of fsf((Q1, i1,F1), . . . , (Qk, ik,Fk)). But this last statement is equivalent to
a1a2 . . . al ∈ L(msf(A1, . . . ,Ak)). Therefore, L(msf(A1, . . . ,Ak)) = L(m(A1, . . . ,Ak)). �

Therefore, in order to characterize the operations described by coherent friendly mod-
ifiers, we only need to look at the operations described by coherent standard friendly
modifiers. Thus, we now examine in detail coherent standard friendly modifiers.

98 CHAPTER 7. FRIENDLY AND PRODUCT MODIFIERS

7.1.3 Characteristic sequences

As a standard friendly modifier [Q, i, f, d] is entirely defined by the map f, which governs
the final states of the output DFA. We first show a regularity property on these final states
when the modifier is coherent. To that aim, we associate a characteristic sequence with
every state of the output DFA, in such a way that any two states associated with the
same characteristic sequence have the same finality. These characteristic sequences are
represented by k-tuples of eventually periodic sequences with values in {0, 1}.

We letUk denote the set of all k-tuples (u1, . . . ,uk) where each u j is an eventually periodic
sequence with values in {0, 1}. Furthermore, we let U denote the set

⋃
k∈N
Uk. To simplify

notations, for all (j, p) ∈ {1, . . . , k} ×N, we let u j,p denote (u j)p.

Definition 33. Let (t1, . . . , tk) be a k-tuple of transition configurations with t j = (Q j, i j,F j, φ j) for
any j ∈ {1, . . . , k}, and let φp

j be the function φ j ◦ · · · ◦ φ j︸ ︷︷ ︸
p times

. We let χ(t1, . . . , tk) denote the k-tuple of

sequences (u1, . . . ,uk) ∈ Uk where, for any p ∈ N and any j ∈ {1, . . . , k}, u j,p = [φp
j (i j) ∈ F j]. We

say that χ(t1, . . . , tk) is the charateristic sequence of the transition configuration (t1, . . . , tk).

Notice that, in the above definition, we indeed have (u1, . . . ,uk) ∈ Uk because φp
j (i j) is

eventually periodic, since φ j is a function from a finite set into a finite set.

Example 24. As represented in Figures 7.4, 7.5, let t1 = ({0, 1}, 0, {1}, φ) and t2 = ({0, 1}, 0, {0}, φ)
where φ1(0) = 1 and φ1(1) = 0, and let (u1,u2) = χ(t1, t2). We have, for all (j, p) ∈ {1, 2} ×N,
u j,p = 1 if and only if p + j is even.

0 1

Figure 7.4: Transition configuration t1.

0 1

Figure 7.5: Transition configuration t2.

Recall that, if m is a standard friendly modifier and (A1, . . . ,Ak) is any k-tuple of DFA
such that the set of states of A j is Q j, then the set of the states ofm(A1, . . . ,Ak) is QQ1

1 ×· · ·×QQk
k .

The next proposition explains the link between characteristic sequences and finality in
standard friendly modifiers.

Proposition 24. Let m = [Q, i, f, d] be a coherent standard friendly k-modifier. Let (t1, . . . , tk)
and (t′1, . . . , t

′

k) be two k-tuples of transition configurations, with t j = (Q j, i j,F j, φ j) and t′j =

(Q′j, i
′

j,F
′

j, φ
′

j) for any j ∈ {1, . . . , k}, such that χ(t1, . . . , tk) = χ(t′1, . . . , t
′

k). Then we have

(φ1, . . . , φk) ∈ f((Q1, i1,F1), . . . , (Qk, ik,Fk))

if and only if
(φ′1, . . . , φ

′

k) ∈ f((Q
′

1, i
′

1,F
′

1), . . . , (Q′k, i
′

k,F
′

k)).

7.1. FRIENDLY MODIFIERS 99

Proof. Let (t1, . . . , tk) and (t′1, . . . , t
′

k) be two k-tuples of transition configurations, with t j =
(Q j, i j,F j, φ j) and t′j = (Q′j, i

′

j,F
′

j, φ
′

j) for any j ∈ {1, . . . , k}, such that χ(t1, . . . , tk) = χ(t′1, . . . , t
′

k).
Let (A1, . . . ,Ak) and (A′1, . . . ,A

′

k) be k-tuples of DFAs with A` = ({a},Q`, i`,F`, α`) and A′` =
({a},Q′`, i

′

`,F
′

`, α
′

`) such that, for any ` ∈ {1, . . . , k}, we have αa
l = φl and α′l

a = φ′l . Since
χ(t1, . . . , tk) = χ(t′1, . . . , t

′

k), we have, for any ` ∈ {1, . . . , k} and any integer p, [φp
`(i`) ∈ F`] =

[φ′`
p(i′`) ∈ F′l]. Therefore, for any ` ∈ {1, . . . , k} and any integer p, we have [α`ap(i`) ∈ F`] =

[α′`
ap

(i′`) ∈ F′l]. As a consequence, for any ` ∈ {1, . . . , k}, we have L(A`) = L(A′`). Thus, since
m is coherent, we have a ∈ L(m(A1, . . . ,Ak)) if and only if a ∈ L(m(A′1, . . . ,A

′

k)). In other
words, as αa

l = φl and α′l
a = φ′l for any ` ∈ {1, . . . , k}, we have

d((i1,F1, φ1), . . . , (ik,Fk, φk))(IdQ1 , . . . , IdQk) ∈ f((Q1, i1,F1), . . . , (Qk, ik,Fk))

if and only if

d((i′1,F
′

1, φ
′

1), . . . , (i′k,F
′

k, φ
′

k))(IdQ′1
, . . . , IdQ′k

) ∈ f((Q′1, i
′

1,F
′

1), . . . , (Q′k, i
′

k,F
′

k))

Therefore, from Definition 31, we have

(φ1, . . . , φk) ∈ f((Q1, i1,F1), . . . , (Qk, ik,Fk))

if and only if
(φ′1, . . . , φ

′

k) ∈ f((Q
′

1, i
′

1,F
′

1), . . . , (Q′k, i
′

k,F
′

k)).

�

The above result invites us to represent the third coordinate f of a standard friendly
modifier by a set of characteristic functions. In fact, Proposition 25, proven in Section 7.1.4,
shows that there is a one-to-one correspondence between standard friendly modifiers and
subsets ofU. Therefore, we now define an application mod that allows us to compute a
standard friendly k-modifier from any subset ofUk.

Definition 34. For any integer k, for any E ⊆ Uk, we let mod(E) denote the standard friendly
modifier [Q, i, f, d] such that, for any k-tuple of state configurations ((Q1, i1,F1), . . . , (Qk, ik,Fk)),
we have

f((Q1, i1,F1), . . . , (Qk, ik,Fk)) ={
(φ1, . . . , φk) ∈ QQ1

1 × · · · ×QQk
k | χ((Q1, i1,F1, φ1), . . . , (Qk, ik,Fk, φk)) ∈ E

}
.

We let Ms
c denote the set of coherent standard friendly modifiers (graded by their

arity). Furthermore, we let PU denote the set
⋃

k∈N
2Uk , graded so that, for any k ∈ N,

(PU)k = 2Uk . As a corollary of Proposition 24, every coherent standard friendly k-modifier
can be constructed from some subset of Uk, using Definition 34, i.e., Ms

c ⊆ mod(PU).
More precisely,

Corollary 4. Let m = [Q, i, f, d] be a coherent standard friendly k-modifier, and let E be the set of
all k-tuples of sequences χ(t1, . . . , tk), such that (t1, . . . , tk) = ((Q1, i1,F1, φ1), . . . , (Qk, ik,Fk, φk)) is
a k-tuple of transition configurations with (φ1, . . . , φk) ∈ f((Q1, i1,F1), . . . , (Qk, ik,Fk)). We have
m = mod(E).

100 CHAPTER 7. FRIENDLY AND PRODUCT MODIFIERS

Proof. For any k-tuple of transition configurations (t1, . . . , tk), with t j = (Q j, i j,F j, φ j) for any
j ∈ {1, . . . , k}, if χ(t1, . . . , tk) ∈ E, we have, by Proposition 24,

(φ1, . . . , φk) ∈ f((Q1, i1,F1), . . . , (Qk, ik,Fk)).

The converse is obvious, and we have

f((Q1, i1,F1), . . . , (Qk, ik,Fk)) =

{(φ1, . . . , φk) ∈ QQ1
1 × · · · ×QQk

k | χ((Q1, i1,F1, φ1), . . . , (Qk, ik,Fk, φk)) ∈ E}.

Therefore, m = mod(E). �

7.1.4 Friendly operations

Examples 16 and 17 show that roots and boolean operations are described by friendly
modifiers. Therefore, by Proposition 23, and Proposition 18, any composition of a boolean
operation and some roots of languages is described by a friendly modifier, and therefore,
from Lemma 25, by a standard friendly modifier. These operations are not the only
ones to fall in the scope of our study. For instance, the operation Root [30], defined by

Root(L) =
+∞⋃
p=1

p√L, may also be described by a friendly modifier. To capture this kind of

operations, we extend the notion of boolean operations (Definition 3) to countable arity.

Definition 35. We say that a boolean function is N-ary if it is a function from {0, 1}N to {0, 1}.
For any N-ary boolean function b, we let �b denote the operation producing a language when
acting over a sequence of languages in the following way: for any sequence of languages (Lp)p∈N, a
word w is in �b((Lp)p∈N) if and only if b([w ∈ L1], [w ∈ L2], . . . , [w ∈ Lp], . . .) = 1. We call these
operationsN-ary boolean operations.

Example 25. Consider the N-ary boolean function b such that, for any sequence v in {0, 1}N ,
b(v) = 1 if and only if, either for all p ∈ N, vp = 1, or for all p ∈ N, vp = 0. We have, for any
sequence of regular languages (Lp)p∈N, w ∈ �b((Lp)p∈N) if and only if either, for all p ∈N, w ∈ Lp,

or for all p ∈N, w < Lp. In other words, we have �b((Lp)p∈N) =
+∞⋂
p=0

Lp ∪
+∞⋂
p=0

Lc
p.

We now have the tools to define friendly operations as the composition of a boolean
operation and some roots of languages, and we show in Proposition 25 that there is a one-
to-one correspondence between friendly operations, coherent standard friendly modifiers
and PU. Recall that, for any language L, 0√L = Σ? if ε ∈ L, and ∅ otherwise.

Definition 36. A k-ary operation over regular languages ⊗ is friendly if there exists an N-ary
boolean operation � such that, for any k-tuples of regular languages (L1, . . . ,Lk) over the same
alphabet,

⊗(L1, . . . ,Lk) = �(0
√

L1,
0
√

L2, . . . ,
0
√

Lk,
1
√

L1,
1
√

L2, . . . ,
1
√

Lk, . . . ,
p
√

L1,
p
√

L2 . . . ,
p
√

Lk, . . .).

7.1. FRIENDLY MODIFIERS 101

Definition 37. Let (u1, . . . ,uk) be a k-tuple of sequences with values in {0, 1}. For any k-tuple of reg-
ular languages (L1, . . . ,Lk), we let 〈(u1, . . . ,uk), (L1, . . . ,Lk)〉 denote the language

⋂
(j,p)∈{1,...,k}×N

E j,p,

where E j,p = p
√

L j if u j,p = 1, and E j,p = p
√

L j
c

otherwise.
Furthermore, we let 〈(u1, . . . ,uk), ·〉 denote the k-ary operation over regular languages such that,
for any k-tuple of regular languages (L1, . . . ,Lk), we have

〈(u1, . . . ,uk), ·〉(L1, . . . ,Lk) = 〈(u1, . . . ,uk), (L1, . . . ,Lk)〉.

Example 26. Let (u1,u2) ∈ U2 be such that u j,p = 1 if and only if p + j is even. Then, for any two
regular languages L1 and L2, 〈(u1,u2), (L1,L2)〉 is equal to

(0
√

L1
c
∩

1
√

L1 ∩
2
√

L1
c
∩

3
√

L1 ∩
4
√

L1
c
∩ . . .)

⋂
(0
√

L2 ∩
1
√

L2
c
∩

2
√

L2 ∩
3
√

L2
c
∩

4
√

L2 ∩ . . .)

Remark 8. We can rephrase Definition 37 in the following way: for any integer k, for any k-tuple
of languages (L1, . . . ,Lk), and any k-tuple of sequences (u1, . . . ,uk) with values in {0, 1}, a word w
is 〈(u1, . . . ,uk), (L1, . . . ,Lk)〉 if and only if, for any (j, p) ∈ {1, . . . , k} ×N, [wp

∈ L j] = u j,p.

The next lemma proves that, 〈(u1, . . . ,uk), ·〉 is the constant operation with the empty
set as output if (u1, . . . ,uk) is not inUk.

Lemma 26. For any integer k, if (L1, . . . ,Lk) is a k-tuple of regular languages, and if (u1, . . . ,uk) is
a k-tuple of sequences with values in {0, 1} such that 〈(u1, . . . ,uk), (L1, . . . ,Lk)〉 , ∅, then we have
u ∈ Uk.

Proof. Let (A1, . . . ,Ak) be a k-tuple of DFA with A j = (Σ,Q j, i j,F j, δ j) such that, for all
j ∈ {1, . . . , k}, L(A j) = L j. We have wp

∈ L j if and only if (δw
j)p(i j) ∈ F j. Therefore, if there

exists a word w and a k-tuple of sequences (v1, . . . , vk) with values in {0, 1} such that, for all
(j, p) ∈ {1, . . . , k} ×N, we have [wp

∈ L j] = v j,p, then [(δw
j)p(i j) ∈ F j] = v j,p, which implies that

(v j,p)p∈N is eventually periodic. To summarize, if{
w ∈ Σ∗ | ∀(j, p) ∈ {1, . . . , k} ×N, [wp

∈ L j] = v j,p

}
, ∅,

then (v1, . . . , vk) ∈ Uk. We conclude from Remark 8. �

We letOf denote the set of friendly operations (graded by their arity). The next lemma
proves that there is a one-to-one correspondence between PU and Of, which is given by
the following application.

Definition 38. Let op be the application such that, for any E ⊆ Uk, op(E) denotes the friendly
k-ary operation

⋃
(u1,...,uk)∈E

〈(u1, . . . ,uk), ·〉.

The following lemma proves that there is a one-to-one correspondence between subsets
ofUk and k-ary friendly operations.

Lemma 27. The application op is a bijection from PU to Of.

102 CHAPTER 7. FRIENDLY AND PRODUCT MODIFIERS

Proof. We first show that op is surjective. Let Vk = ({0, 1}N)k, i.e., the set of all k-tuples
of sequences with values in {0, 1}. Let ⊗ be a friendly k-ary operation and b be a N-ary
boolean function such that, for any k-tuples of regular languages (L1, . . . ,Lk),

⊗ = �b(0
√

L1, . . . ,
0
√

Lk,
1
√

L1, . . . ,
1
√

Lk, . . . ,
p
√

Lk, . . . ,
p
√

Lk, . . .).

Let

E = {(u1, . . . ,uk) ∈ Uk | b(u1,0, . . . ,uk,0,u1,1, . . . ,uk,1, . . . ,u1,p, . . . ,uk,p, . . .) = 1},

and let

E′ = {(v1, . . . , vk) ∈ Vk | b(v1,0, . . . , vk,0, v1,1, . . . , vk,1, . . . , v1,p, . . . , vk,p, . . .) = 1}.

We show that ⊗ = op(E). For any k-tuple of regular languages (L1, . . . ,Lk), we have

⊗(L1, . . . ,Lk) =
⋃

(v1,...,vk)∈E′

{
w ∈ Σ?

| ∀(j, p) ∈ {1, . . . , k} ×N, v j,p =
[
w ∈ p

√
L j

]}
=⋃

(v1,...,vk)∈E′
〈(v1, . . . , vk), (L1, . . . ,Lk)〉

Notice that the union above is over a set which may involve sequences that are not
eventually periodic; However, from Lemma 26, we can remove from this union the k-tuple
of sequences that are not inUk. Hence, we have

⊗(L1, . . . ,Lk) =
⋃

(u1,...,uk)∈E

〈(u1, . . . ,uk), (L1, . . . ,Lk)〉 = (op(E))(L1, . . . ,Lk).

We now prove that op is injective. Let E and E′ be two distinct subsets of Uk. We
suppose that there exists (u1, . . . ,uk) ∈ Uk such that (u1, . . . ,uk) ∈ E and (u1, . . . ,uk) < E′ (the
other case is symmetrical). Since, for any j ∈ {1, . . . , k}, (u j,l)l∈N is eventually periodic, the
languages L j = {ap

| p ∈N∧u j,p = 1} are regular. We have
[
a ∈ p

√
L j

]
= u j,p. Therefore, from

Definition 37, for any (u′1, . . . ,u
′

k) ∈ Uk, we have a ∈ 〈(u′1, . . . ,u
′

k), (L1, . . . ,Lk)〉 if and only if
(u′1, . . . ,u

′

k) = (u1, . . . ,uk). It follows that if ⊗ = op(E) and ⊗′ = op(E′), then a ∈ ⊗(L1, . . . ,Lk)
and a < ⊗′(L1, . . . ,Lk), since (u1, . . . ,uk) ∈ E \ E′. As a consequence, ⊗ , ⊗′ and op is
injective. �

Example 27. For any regular language L, we have

Root(L) = op({u ∈ U1 | there exists i > 0 such that ui = 1})(L) =
⋃
i≥1

i√

L.

We now show that any operation described by a friendly modifier is friendly.

Lemma 28. For any E ∈ PU, mod(E) is coherent and describes op(E), i.e., desc ◦mod = op.

7.1. FRIENDLY MODIFIERS 103

Proof. Let E be a subset ofUk, let m = mod(E), let [Q, i, f, d] = m and let ⊗ = desc(m). Let
(A1, . . . ,Ak) be any k-tuple of DFAs with A j = (Σ,Q j, i j,F j, δ j), for any j ∈ {1, . . . , k}, and let
w = a1 · · · an be a word of Σ?. Recall that, since m is friendly, we have

(δw
1 , . . . , δ

w
k) =

(d((i1,F1, δ
an
1), . . . , (ik,Fk, δ

an
1)) ◦ (d((i1,F1, δ

an−1
1), . . . , (ik,Fk, δ

an−1
k)) ◦ · · ·

◦(d((i1,F1, δ
a1
1), . . . , (ik,Fk, δ

a1
1))(IdQ1 , . . . , IdQk).

Therefore, w is in L(m(A1, . . . ,Ak)) if and only if

(δw
1 , . . . , δ

w
k) ∈ f((Q1, i1,F1), . . . , (Qk, ik,Fk)).

As a consequence, by Definition 34, w is in L(m(A1, . . . ,Ak)) if and only if

χ((Q1, i1,F1, δ
w
1), . . . , (Qk, ik,Fk, δ

w
k)) ∈ E.

As a consequence, since m = mod(E), w is in L(m(A1, . . . ,Ak)) if and only if there ex-
ists (u1, . . . ,uk) ∈ E such that, for any (j, p) ∈ {1, . . . , k} × N, we have [(δw

j)p(i j) ∈ F j] =

u j,p. However, for any (j, p) ∈ {1, . . . , k} × N, (δw
j)p(i j) ∈ F j if and only if w ∈ p

√
L(A j),

and thus we have [(δw
j)p(i j) ∈ F j] = u j,p if and only if

[
w ∈ p

√
L(A j)

]
= u j,p. There-

fore, by Definition 37, w ∈ L(m(A1, . . . ,Ak)) if and only if there exists (u1, . . . ,uk) in
E such that w ∈ 〈(u1, . . . ,uk), (L(A1), . . . ,L(Ak))〉. We thus have ⊗(L(A1), . . . ,L(Ak)) =⋃
u∈E
〈(u1, . . . ,uk), (L(A1), . . . ,L(Ak))〉, and ⊗ = op(E). �

We let descf denote the restriction of desc toMs
c, i.e., the set of coherent standard friendly

modifiers. The next proposition states that all applications of Figure 7.6 are bijections and
that the diagram is commutative.

Ms
c Of

PU

opmod

descf

Figure 7.6: Commutative diagram for op,mod and descf.

Proposition 25. The application mod is a bijection from PU into Ms
c, and op and descf are

bijective. Furthermore, descf ◦mod = op.

Proof. By Lemma 28, we have descf ◦ mod = op. However, by Lemma 28, we have
mod(PU) ⊆ Ms

c, and thus by Corollary 4, we have mod(PU) = Ms
c. As a consequence,

mod is a surjection from PU to Ms
c. Furthermore, by Lemma 27, op is a bijection, and,

therefore, so is descf ◦mod. Hence, mod is injective and thus a bijection from PU toMs
c,

which in turn implies that descf = op ◦mod−1 is also bijective. �

104 CHAPTER 7. FRIENDLY AND PRODUCT MODIFIERS

As an obvious consequence of Proposition 25 and Lemma 25, we have :

Theorem 5. Every friendly k-ary operation is described by a unique coherent standard friendly
k-modifier. Conversely, any coherent friendly k-modifier describes a friendly k-ary operation.

7.1.5 On the algebraic structure of friendly modifiers

We now have all the tools to state the main result of this Section, concerning the link
between the algebraic structures of friendly modifiers and friendly operations. We first
define a sequence of binary operations� that makes an operad out ofPU. Then, we define
a quotient operad of coherent modifiers, using standard friendly modifiers. Finally, we
rewrite Proposition 25 in terms of operads and isomorphisms of operads.

Let � be the sequence of binary operations overPU such that, for any positive integers
j and k with j ≤ k, for any E ∈ PUk, and for any E′ ∈ PU, we have

E � j E′ = op−1(op(E) ◦ j op(E′)).

By Proposition 9 used with op−1, (PU,�) is an operad, and op is an isomorphism of
operads from (PU,�) to (Of, ◦). We letMf

c denote the set of all coherent friendly modifiers,
and by ∼s the equivalence relation over Mf

c such that, for any two modifiers m,m′ ∈ Mf
c,

m ∼s m
′ if and only if msf = m′sf. Recall that, from Definition 12, for any two friendly

coherent modifiers m and m′, we have m ∼descf m′ if and only if descf(m) = descf(m′).
Therefore, since, for any friendly modifier, there is a unique standard friendly modifier
that describes the same operation, we have ∼descf=∼s. As a consequence, by Proposition
11 and Proposition 18, (Mf

c/∼s , ◦/∼s) is an operad, and d̂escf is an isomorphism of operads
from (Mf

c/∼s , ◦/∼s) to (Of, ◦). Let mod be the function from PU toMf
c/∼s such that, for any

E ∈ PU, we have mod(E) =
∼s

mod(E) . Since op = desc ◦mod, we have, for any E ∈ PU,
from Definition 12,

d̂escf(mod(E)) = d̂escf(
∼s

mod(E)) = d̂escf(
∼descf
mod(E)) = desc(mod(E)) = op(E).

However, d̂escf is an isomorphism, and therefore mod = d̂escf
−1
◦ op. Furthermore, by

Proposition 7, since op is an isomorphisms of operads, mod is also an isomorphism of
operads. We can now state a counterpart of Proposition 25 using operads, illustrated with
Figure 7.7.

Theorem 6. We have

• the function mod is an isomorphism of operads from (PU,�) to (Mf
c/∼s , ◦/∼s),

• the function op is an isomorphism of operads from (PU,�) to (Of, ◦),

• the function d̂escf is an isomorphism of operads from (Mf
c/∼s , ◦/∼s) to (Of, ◦).

Furthermore, d̂escf ◦mod = op.

7.2. PRODUCT MODIFIERS 105

(
Mf

c/∼s , ◦/∼s

)
(Of, ◦)

(PU,�)

opmod

d̂escf

Figure 7.7: Commutative diagram for op,mod and d̂escf.

7.2 Product modifiers

In this section, we study a kind of simple friendly modifier, called product modifier. Product
modifiers are defined so that their output is a product DFA of the input DFAs, without
putting any restrictions on their initial state or their final states. We show that the opera-
tions they describe are compositions involving boolean operations of finite arity, and the
0-th root. Furthermore, we study the underlying algebraic structure, and show that it is
very similar to the algebraic structure given in Theorem 6.

7.2.1 Product modifiers: an operad

We first show that product modifiers can also be equipped with a structure of operad.

Definition 39. A k-modifierm = [Q, i, f, d] is a product modifier if, for any k-tuple of transition
configurations (t1, . . . , tk), with t j = (Q j, i j,F j, φ j) for any j ∈ {1, . . . , k}, we have

1. Q((Q1, i1,F1), . . . , (Qk, ik,Fk)) = Q1 × · · · ×Qk,

2. and, for any (q1, . . . , qk) ∈ Q1 × · · · ×Qk, we have

d((i1,F1, φ1) . . . , (ik,Fk, φk))(q1, . . . , qk) = (φ1(q1), . . . , φk(qk)).

In other words, if m is a product modifier, then m(A1, . . . ,Ak) is a product DFA
of the DFAs A1, . . . ,Ak, but with final states f((Q1, i1,F1) . . . , (Qk, ik,Fk)) and initial state
i((Q1, i1,F1) . . . , (Qk, ik,Fk)). We let Mp denote the set of all product modifiers. We check
that the set of product modifiers is stable by the composition of operations, thus making
it an operad.

Proposition 26. The setMp equipped with ◦ is an operad.

106 CHAPTER 7. FRIENDLY AND PRODUCT MODIFIERS

Proof. Letm1 = [Q1, i1, f1, d1] andm2 = [Q2, i2, f2, d2] be two product modifiers, respectively
k-ary and k′-ary, let j ≤ k be a positive integer, and let m1 ◦ j m2 = [Q, i, f, d]. By Proposition
5, to show that (Mp, ◦) is an operad, it is enough to show thatm1◦ jm2 is a product modifier.
For any (k + k′ − 1)-tuple of transition configurations (t1, . . . , tk+k′−1) with t j = (Q j, i j,F j, δ j)
for any j ∈ {1, . . . , k + k′ − 1}, we have, from Definition 39,

Q2(t j, . . . , t j+k′−1) = Q j × · · · ×Q j+k′−1, (7.3)

and therefore, by Definition 6 and 39,

Q(t1, . . . , tk+k′−1) = Q1(t1, . . . , t j−1, (Q2(t j, . . . , t j+k′−1), i2(t j, . . . , t j+k′−1), f2(t j, . . . , t j+k′−1),
d2(t j, . . . , t j+k′−1)), t j+k′ , . . . , tk+k′−1) = Q1 × · · · ×Qk+k′−1

(7.4)

Similarly, for any (q1, . . . , qk+k′−1) ∈ Q1 × · · · ×Qk+k′−1, we have

d2(t j, . . . , t j+k′−1)(q j, . . . , q j+k′−1) = (φ j(q j), . . . , φ j+k′−1(q j+k′−1)),

and therefore

d(t1, . . . , tk+k′−1)(q1, . . . , qk+k′−1) = d1(t1, . . . , t j−1, (Q2(t j, . . . , tk′+ j−1), i2(t j, . . . , tk′+ j−1),
f2(t j, . . . , tk′+ j−1), d2(t j, . . . , tk′+ j−1)), tk′+ j, . . . , tk+k′−1)(q1, . . . , q j−1, (q j . . . , q j+k′−1), q j+k′ , . . . , qk+k′−1)

= (φ1(q1), . . . , φk+k′−1(qk+k′−1)).
(7.5)

As a consequence, m1 ◦ j m2 is a product modifier. �

7.2.2 From product modifiers to standard modifiers

In order to characterize the operations recognized by product modifiers, we take a path
similar to the one taken for friendly modifiers. However, in this case, instead of looking
at the whole characteristic sequences in Uk, we look only at the first two terms of every
sequences in the k-tuple. In other words, intuitively, we replace characteristic sequences,
which are originally k-tuples of sequences with values in {0, 1}, with k-tuples of pairs in
{0, 1}2. These pairs represent the same thing as did the first two values of the complete
characteristic sequence. We begin to formalize this idea by proving a proposition similar
to Proposition 24, for product modifiers.

Proposition 27. Letm = [Q, i, f, d] be a coherent product k-modifier, and letmsf = [Qsf, isf, fsf, dsf].
Let (t1, . . . , tk) and (t′1, . . . , t

′

k) be two k-tuples of transition configurations with t j = (Q j, i j,F j, φ j)
and t′j = (Q′j, i

′

j,F
′

j, φ
′

j), for any j ∈ {1, . . . , k}. If, for any j ∈ {1, . . . , k}, [i j ∈ F j] = [i′j ∈ F′j] and
[φ(i j) ∈ F j] = [φ(i′j) ∈ F′j], then we have

(φ1, . . . , φk) ∈ fsf((Q1, i1,F1), . . . , (Qk, ik,Fk))

if and only if
(φ′1, . . . , φ

′

k) ∈ f
sf((Q′1, i

′

1,F
′

1), . . . , (Q′k, i
′

k,F
′

k)).

7.2. PRODUCT MODIFIERS 107

Proof. Let m = [Q, i, f, d] be a coherent product k-modifier, and let msf = [Qsf, isf, fsf, dsf]. Let
(t1, . . . , tk) and (t′1, . . . , t

′

k) be two k-tuples of transition configurations with t` = (Q`, i`,F`, φ`)
and t′` = (Q′`, i

′

`,F
′

`, φ
′

`), for any ` ∈ {1, . . . , k}. Suppose that, for any ` ∈ {1, . . . , k}, [i` ∈ F`] =
[i′` ∈ F′`] and [φ(i`) ∈ F`] = [φ(i′`) ∈ F′`].

We let (h1, . . . , hk) denote i((Q1, i1,F1), . . . , (Qk, ik,Fk)), and we let (h′1, . . . , h
′

k) denote

i((Q′1, i
′

1,F
′

1), . . . , (Q′k, i
′

k,F
′

k)).

The idea of this proof is the same as the proof of Proposition 24. We define two k-tuples
(A1, . . . ,Ak) and (A′1, . . . ,A

′

k) of well-chosen DFAs such that L(A`) = L(A′`), and conclude
from the coherence of m. However, this time, we do not define the transition functions of
a in A` and A′` as φ` and φ′`, but rather as a modified version of them. To that aim, for any
` ∈ {1, . . . , k}, we let ψ` and ψ′` denote the two functions of QQ`

` and Q′`
Q′` respectively such

that

1. if h` , i` and h′` , i′`, then

ψ`(q`) =

{
i` if q` = i`

φ`(q`) otherwise and ψ′`(q
′

`) =

{
i′` if q′` = i′`

φ′`(q
′

`) otherwise

2. if h` = i` and h′` = i′`, or if h` = i` and h′` < {i
′

`, φ
′

`(i
′

`)}, then

ψ`(q`) =

{
φ`(i`) if q` = φ`(i`)
φ`(q`) otherwise and ψ′`(q

′

`) =

{
φ′`(i

′

`) if q′` = φ′`(i
′

`)
φ′`(q

′

`) otherwise.

3. if h` = i` and h′` = φ′`(i
′

`), then

(a) if [i′` ∈ F′`] = [φ′`(i
′

`) ∈ F′`], then

ψ`(q`) =

{
φ`(i`) if q` = φ`(i`)
φ`(q`) otherwise and ψ′`(q

′

`) =

{
i′` if q′` = i′`

φ′`(q
′

`) otherwise

(b) if [i′` ∈ F′`] , [φ′`(i
′

`) ∈ F′`], then one of them is equal to [φ′`(h
′

`) ∈ F′`], and

i. if [i′` ∈ F′`] = [φ′`(h
′

`) ∈ F′`], then

ψ`(q`) =

{
i` if q` = φ`(i`)

φ`(q`) otherwise and ψ′`(q
′

`) =

{
φ′`(i

′

`) if q′` = φ′`(h
′

`)
φ′`(q

′

`) otherwise

ii. if [φ′`(i
′

`) ∈ F′`] = [φ′`(h
′

`) ∈ F′`], then

ψ`(q`) =

{
φ`(i`) if q` = φ`(i`)
φ`(q`) otherwise and ψ′`(q

′

`) =

{
φ′`(i

′

`) if q′` = φ′`(h
′

`)
φ′`(q

′

`) otherwise

4. if h` , φ`(i`) and h′` = i′`, thenψ` andψ′` are defined in a symmetrical way with respect
to the cases 2 and 3.

108 CHAPTER 7. FRIENDLY AND PRODUCT MODIFIERS

Notice that, if i′` = φ′`(i
′

`), cases 2 and 3(a) may overlap. However, they lead to the same
definition ofψ` andψ′`. We let (A1, . . . ,Ak) and (A′1, . . . ,A

′

k) denote the two k-tuples of DFAs
such that A` = ({a},Q`, i`,F`, α`) and A′` = ({a},Q′`, i

′

`,F
′

`, α
′

`), with αa
` = ψ and α′`

a = ψ′, for
any ` ∈ {1, . . . , k}.

Notice that, if p = 0, we have ψ`p(i`) = i` and ψ′`
p(i′`) = i′` for any ` ∈ {1, . . . , k}. However,

recall that we supposed [i` ∈ F`] = [i′` ∈ F′`] and [φ`(i`) ∈ F`] = [φ`(i′`) ∈ F′`], for any
` ∈ {1, . . . , k}. Therefore, if p = 0, since α`ap

= ψp
` and α′`

ap
= ψ′`

p, we have [α`ap(i`) ∈ F`] =

[α′`
ap

(i′`) ∈ F′`] for any ` ∈ {1, . . . , k}. We prove that [α`ap(i`) ∈ F`] = [α′`
ap

(i′`) ∈ F′`] still holds
true for any ` ∈ {1, . . . , k} and any positive integer p, in a similar way, by computing ψ`p(i`)
and ψ′`

p(i′`) in every one of the above cases. Thus, for any positive integer p and any
` ∈ {1, . . . , k}, we have

1. if h` , i` and h′` , i′`, then
ψp
`(i`) = i` and ψ′`

p(i′`) = i′`

2. if h` = i` and h′` = i′`, or if h` = i` and h′` < {i
′

`, φ
′

`(i
′

`)}, then

ψp
`(i`) = φ`(i`) and ψ′`

p(i′`) = φ′`(i
′

`)

3. if h` = i` and h′` = φ′`(i
′

`), then

(a) if [i′` ∈ F′`] = [φ′`(i
′

`) ∈ F′`], then

ψp
`(i`) = φ`(i`) and ψ′`

p(i′`) = i′`

(b) if [i′` ∈ F′`] , [φ′`(i
′

`) ∈ F′`], then

i. if [i′` ∈ F′`] = [φ′`(h
′

`) ∈ F′`], then

ψp
`(i`) =

{
i` if p is even

φ`(i`) if p is odd and ψ′`
p(i′`) =

{
φ′`(h

′

`) if p is even
φ′`(i

′

`) if p is odd

ii. if [φ′`(i
′

`) ∈ F′`] = [φ′`(h
′

`) ∈ F′`], then

ψp
`(i`) = φ`(i`) and ψ′`

p(i′`) =

{
φ′`(h

′

`) if p is even
φ′`(i

′

`) if p is odd

4. if h` = φ`(i`) and h′` = i′`, then ψp
` and ψ′`

p are symmetrical with respect to the case 3.

We check by a direct computation that, in all of the above cases, we have [ψp
`(i`) ∈ F`] =

[ψ′`
p(i′`) ∈ F′`] for any ` ∈ {1, . . . , k} and any integer p. However, α`ap

= ψp
` and α′`

ap
= ψ′`

p, for
any ` ∈ {1, . . . , k} and any integer p. Therefore, for any ` ∈ {1, . . . , k}, we have L(A`) = L(A′`).
Thus, since m is coherent, we have a ∈ L(m(A1, . . . ,Ak)) if and only if a ∈ m(A′1, . . . ,A

′

k).
Hence, denoting f((Q1, i1,F1), . . . , (Qk, ik,Fk)) by G and f((Q′1, i

′

1,F
′

1), . . . , (Q′k, i
′

k,F
′

k)) by G′, we
have

d((i1,F1, α
a
1), . . . , (ik,Fk, α

a
k))(h1, . . . , hk) ∈ G

7.2. PRODUCT MODIFIERS 109

if and only if
d((i′1,F

′

1, α
′

1
a), . . . , (i′k,F

′

k, α
′

k
a))(h′1, . . . , h

′

k) ∈ G′.

In other words, since m is a product modifier, we have

(ψ1(h1), . . . , ψk(hk)) ∈ G if and only if (ψ′1(h′1), . . . , ψ′k(h
′

k)) ∈ G′.

However, it follows from the definition of ψ` and ψ′` that, for any ` ∈ {1, . . . , k}, we have
ψ`(h`) = φ`(h`) and ψ′`(h

′

`) = φ′`(h
′

`). Therefore, we have

(φ1(h1), . . . , φk(hk)) ∈ G if and only if (φ′1(h′1), . . . , φ′k(h
′

k)) ∈ G′.

As a consequence of the definitions of friendly and standard modifiers, we have

(φ1, . . . , φk) ∈ fsf((Q1, i1,F1), . . . , (Qk, ik,Fk))

if and only if
(φ′1, . . . , φ

′

k) ∈ f
sf((Q′1, i

′

1,F
′

1), . . . , (Q′k, i
′

k,F
′

k)).

�

We let PCk denote the set of all subsets E ofUk that verify the following property: for
every (u1, . . . ,uk) ∈ Uk such that there exists (v1, . . . , vk) ∈ E, with v j,0 = u j,0 and v j,1 = u j,1

for any j ∈ {1, . . . , k}, we have (u1, . . . ,uk) ∈ E. Furthermore, we let PC denote the set⋃
k∈N
PCk. We know that any standard modifier can be associated with an element of PU

by the isomorphism of operads mod−1. From Lemma 27, we prove that, if m is a product
modifier, then mod−1(msf) is in PC. This intuitively comes from the fact that only the first
two elements of every ui matter, when (u1, . . . ,uk) ∈ PC.

Corollary 5. Let m be a product modifier. We have mod−1(msf) ∈ PC

Proof. Let m = [Q, i, f, d] be a product k-modifier, and let msf = [Qsf, isf, fsf, dsf]. Let E′ be
the set of all k-tuples of sequences χ(t1, . . . , tk), such that (t1, . . . , tk) is a k-tuple of transition
configurations with (φ1, . . . , φk) ∈ fsf((Q1, i1,F1), . . . , (Qk, ik,Fk)). Let E be the set of all k-
tuples of sequences (u1, . . . ,uk) ∈ Uk such that there exists (v1, . . . , vk) ∈ E′ with v j,0 = u j,0

and v j,1 = u j,1, for any j ∈ {1, . . . , k}. It follows from the definition of PCk that E ∈ PCk.
We now show that msf = mod(E). To that aim we first prove that, for any k-tuple of
transition configurations (t1, . . . , tk), with t j = (Q j, i j,F j, φ j) for any j ∈ {1, . . . , k}, we have
(φ1, . . . , φk) ∈ fsf((Q1, i1,F1), . . . , (Qk, ik,Fk)) if and only if χ(t1, . . . , tk) ∈ E.

Let (t1, . . . , tk) be a k-tuple of transition configurations, with t j = (Q j, i j,F j, φ j) for any
j ∈ {1, . . . , k}, such that (φ1, . . . , φk) ∈ fsf((Q1, i1,F1), . . . , (Qk, ik,Fk)). From the definition of E′,
we have χ(φ1, . . . , φk) ∈ E′, and thus χ(t1, . . . , tk) ∈ E.

Conversely, let (t1, . . . , tk) be a k-tuple of transition configurations, with t j = (Q j, i j,F j, φ j)
for any j ∈ {1, . . . , k}, such that χ(t1, . . . , tk) ∈ E. Let (u1, . . . ,uk) = χ(t1, . . . , tk). From
the definition of E, there exists a k-tuple of sequences (v1, . . . , vk) = χ(t′1, . . . , t

′

k) in E′,
where (t′1, . . . , t

′

k) is a k-tuple of transition configurations, with t′j = (Q′j, i
′

j,F
′

j, φ
′

j) for any
j ∈ {1, . . . , k}, such that v j,0 = u j,0 and v j,1 = u j,1. However, it follows from the definition of
characteristic sequences that we have [i j ∈ F j] = [i′j ∈ F′j], and [φ j(i j) ∈ F j] = [φ′j(i

′

j) ∈ F′j].

110 CHAPTER 7. FRIENDLY AND PRODUCT MODIFIERS

Furthermore, from the definition of E′, we have (φ′1, . . . , φ
′

k) ∈ f
sf((Q′1, i

′

1,F
′

1), . . . , (Q′k, i
′

k,F
′

k)).
Therefore, by Proposition 27, we have (φ1, . . . , φk) ∈ fsf((Q1, i1,F1), . . . , (Qk, ik,Fk)).

As a consequence, for any k-tuple of transition configurations (t1, . . . , tk), with t j =
(Q j, i j,F j, φ j) for any j ∈ {1, . . . , k}, we have (φ1, . . . , φk) ∈ fsf((Q1, i1,F1), . . . , (Qk, ik,Fk)) if and
only if χ(t1, . . . , tk) ∈ E. Thus, we have

fsf((Q1, i1,F1), . . . , (Qk, ik,Fk)) ={
(φ1, . . . , φk) ∈ QQ1

1 × · · · ×QQk
k | χ((Q1, i1,F1, φ1), . . . , (Qk, ik,Fk, φk)) ∈ E

}
.

Therefore, from the definition of mod, we conclude that msf = mod(E).
�

In the following section, we formalize the idea that the operations in the image of PC
by op should only involve the composition of a boolean operation with 0-th roots and
identities.

7.2.3 Product modifiers and quasi-boolean operations

Definition 40. A k-ary operation over regular languages ⊗ is quasi-boolean if there exists a
2k-ary boolean operation ⊕ such that, for any k-tuples of regular languages (L1, . . . ,Lk),

⊕(L1, . . . ,Lk) = ⊗(0
√

L1,
0
√

L2, . . . ,
0
√

Lk,L1,L2, . . . ,Lk).

We let Op denote the set of all quasi-boolean operations.

Proposition 28. The image of an element ofPC by op is a quasi-boolean operation, i.e., op(PC) ⊆
Op.

Proof. Let E ∈ PCk, and, for any j ∈ {1, . . . , k}, let G j = {(u j,0,u j,1) | (u1, . . . ,uk) ∈ E}. We have

E =
{
(u1, . . . ,uk) ∈ Uk | (u j,0,u j,1) ∈ G j, for any j ∈ {1, . . . , k}

}
.

Therefore, from Definition 38, we have

op(E) =
⋃

(u1,...,uk)∈E

〈(u1, . . . ,uk), ·〉 =
⋃

(u1,...,uk)∈Uk |(u j,0,u j,1)∈G j,∀ j∈{1,...,k}

〈(u1, . . . ,uk), ·〉.

However, from Lemma 26, we have⋃
(u1,...,uk)∈Uk |(u j,0,u j,1)∈G j,∀ j∈{1,...,k}

〈(u1, . . . ,uk), ·〉 =
⋃

(v1,...,vk)∈Vk |(v j,0,v j,1)∈G j,∀ j∈{1,...,k}

〈(v1, . . . , vk), ·〉,

where we letVk denote the set of all k-tuples of sequences with values in {0, 1}. Therefore,
for any k-tuple of languages (L1, . . . ,Lk), we have

op(E)(L1, . . . ,Lk) =
⋃

((a1,b1),...,(ak,bk))|(a j,b j)∈G j,∀ j∈{1,...,k}

 ⋂
j∈{1,...,k}

(〈
a j,

0
√

L j

〉
∩ 〈b j,L j〉

) ,

7.2. PRODUCT MODIFIERS 111

where for any language L, 〈0,L〉 = L and 〈1,L〉 = Lc. To conclude, we have

op(E) = ⊗(0
√

L1,
0
√

L2, . . . ,
0
√

Lk,L1,L2, . . . ,Lk),

where ⊗ is the 2k-ary boolean operation such that, for any 2k-tuple of regular languages
(L1,L2, . . . ,Lk,L′1,L

′

2, . . . ,L
′

k),

⊗(L1,L2, . . . ,Lk,L′1,L
′

2, . . . ,L
′

k) =
⋃

((a1,b1),...,(ak,bk))|(a j,b j)∈G j,∀ j∈{1,...,k}

 ⋂
j∈{1,...,k}

(
〈a j,L j〉 ∩ 〈b j,L′j〉

)
�

Now we prove the last tool we need to connect quasi-boolean operations, product
modifiers, and PC, which is that every quasi-boolean operation is described by a product
modifier.

Lemma 29. Let ⊗ be a quasi-boolean operation. There exists a product modifier m such that
desc(m) = ⊗.

Proof. Let ⊗ be a k-ary quasi-boolean operations, and let ⊗′ be a 2k-ary boolean operations
such that, for any k-tuple of regular languages (L1, . . . ,Lk), we have

⊗(L1, . . . ,Lk) = ⊗′(0
√

L1,
0
√

L2, . . . ,
0
√

Lk,
1
√

L1,
1
√

L2, . . . ,
1
√

Lk).

For any k-tuple of regular languages L′ = (L′1, . . . ,L
′

k), we let ⊗L′ denote the k-ary regular
operation such that, for any k-tuple of languages (L1, . . . ,Lk), we have

⊗L′(L1, . . . ,Lk) = ⊗′
(

0
√

L′1,
0
√

L′2, . . . ,
0
√

L′k,L1,L2, . . . ,Lk

)
.

Notice that, for any language L over an alphabet Σ, 0√L is either ∅ or Σ∗. Therefore, for any k-
tuple of regular languages L′ = (L′1, . . . ,L

′

k), ⊗L′(L1, . . . ,Lk) is a boolean operation. We let bL′

denote a boolean function such that⊗L′ = ⊗bL′ . Furthermore, we letmdenote the k-modifier
such that, for any k-tuple of DFAs (A1, . . . ,Ak), we have m(A1, . . . ,Ak) = mbL(A1, . . . ,Ak),
with L = (L1, . . . ,Lk) = (L(A1), . . . ,L(Ak)). By Proposition 15, we have

L(mbL(A1, . . . ,Ak)) = ⊗bL(L1, . . . ,Lk) = ⊗L(L1, . . . ,Lk) =

⊗
′(0
√

L1,
0
√

L2, . . . ,
0
√

Lk,L1,L2, . . . ,Lk) = ⊗(L1, . . . ,Lk).

Therefore, desc(m) = ⊗. �

7.2.4 On the algebraic structure of product modifiers

We now state the main theorem of this section, concerning the algebraic structure of
product modifiers, using the algebraic structure of friendly modifiers described in Section
7.1.5, and the notations introduced for that purpose. Furthermore, we letMfp

c denote the
set of all friendly modifiers m such that there exists a product modifier m′ with m′sf = msf.

112 CHAPTER 7. FRIENDLY AND PRODUCT MODIFIERS

Theorem 7. We have

• the mapping mod is an isomorphism of operads from (PC,�) to (Mfp
c /∼s , ◦/∼s),

• the mapping op is an isomorphism of operads from (PC,�) to (Op, ◦),

• the mapping d̂escf is an isomorphism of operads from (Mfp
c /∼s , ◦/∼s) to (Op, ◦).

Furthermore, the operations described by coherent product modifiers are exactly all quasi-boolean
operations.

Proof. From Corollary 5, we have
(
mod

)−1
(Mfp

c /∼s) ⊆ PC. Furthermore, from Proposition

28, we have op(PC) ⊆ Op. We also have, from Lemma 29, d̂escf
−1

(Op) ⊆Mfp
c /∼s . Therefore,(

mod
)−1

(d̂escf
−1

(Op)) ⊆
(
mod

)−1
(Mfp

c /∼s) ⊆ PC. Thus, Op = op(
(
mod

)−1
(d̂escf

−1
(Op))) ⊆

op(PC). Hence, we have op(PC) = Op. Similarly, we have Mfp
c /∼s =

(
mod

)
(PC) and

Op = d̂escf(M
fp
c /∼s). As a consequence, by Lemma 25, Op is the image by descf of Mp

c ,
whereMp

c is the set of all coherent product modifiers.
From Proposition 26 and Proposition 18, (Mp

c , ◦) is an operad. Therefore, from Propo-

sition 6, (Op, ◦) is an operad. Furthermore, using Proposition 6 again, used with d̂escf
−1

and op−1, we have that (Mfp
c /∼s , ◦/∼s) and (PC,�) are also operads. Therefore, as op, d̂escf,

and mod are morphisms of operads, we have

• the mapping mod is an isomorphism of operads from (PC,�) to (Mfp
c /∼s , ◦/∼s),

• the mapping op is an isomorphism of operads from (PC,�) to (Op, ◦),

• the mapping d̂escf is an isomorphism of operads from (Mfp
c /∼s , ◦/∼s) to (Op, ◦).

�

We summarize our results for coherent friendly modifiers, coherent product modifiers,
and the operations they describe, in Figure 7.8.

7.2. PRODUCT MODIFIERS 113

(Mp
c , ◦)

(Mfp
c , ◦)

(Mf
c, ◦)

(Mc, ◦)

(Op, ◦)

(Of, ◦)

(Ou, ◦)

(Mfp
c /∼s ,◦/∼s)

(Mf
c/∼s ,◦/∼s)

(PC,�)

(PU,�)

desc

desc

desc

desc

/∼s /∼s

mod

mod

d̂escf

d̂escf

op op

Figure 7.8: The algebraic structure behind friendly modifiers, product modifiers and the
operations they describe.

114 CHAPTER 7. FRIENDLY AND PRODUCT MODIFIERS

7.3 On the state complexity of friendly operations

We have shown that every k-ary quasi-boolean operation ?O is described by a product

k-modifier. Therefore sc⊗(n1, ...,nk) ≤
k∏

j=1
n j. This upper bound is met, for example, for the

intersection of k languages by the k-monster Mon{n1−1},...,{nk−1}
n1,...,nk

, as shown in Proposition 20.
However, the case of friendly modifiers is not as easy.

We know that the state complexity of the square root operation [7] is sc√(n) = nn
−

(n
2

)
,

and that it is equal to the state complexity of the operation Root [30]. However, our
construction of standard modifiers (Definition 31) gives us at first sight an upper bound
of sc⊗(n) ≤ nn, for any unary friendly operation ⊗. This raises the question of whether the
state complexity of some unary friendly operation reaches this bound and, if not, whether
we can give an explicit tight bound. Similar questions arise for the general case of k-ary

friendly operations with the obvious upper bound sc⊗(n1, . . . ,nk) ≤
k∏

j=1
nn j

j deduced from

Definition 31.

7.3.1 The unary case

We show that the bound nn is not tight for the state complexity of unary friendly operations,
and we give an explicit tight bound. We first show that the state complexity of L is at most
nn
− n + 1.

Proposition 29. For any positive integer n and any friendly unary operation ⊗, we have sc⊗(n) ≤
nn
− n + 1.

Proof. Consider any subset E ⊆ U1. Let ⊗ = op(E) and m = mod(E). Let A = (Σ,Q, i,F, α)
be a DFA with size n ∈N \ 0. For all s, t ∈ Q, we let gs,t denote the function of QQ such that

gs,t(j) =

{
s if j ∈ F
t otherwise,

and by G the set of all functions gs,t, for s, t ∈ Q. Furthermore, we let 0 denote the sequence
(0, 0, . . .) ofU1, we let 01 denote the sequence

(0, 1, 1, . . . , 1, . . .),

we let odd denote the sequence

(0, 1, 0, 1, . . . ,n mod 2, . . .),

and we let even denote the sequence

(1, 0, 1, 0, . . . , (n + 1) mod 2, . . .).

It follows from the definition of gs,t that, for any ζ ∈ QQ and for any gs,t ∈ G, we have
ζ ◦ gs,t = gζ(s),ζ(t). We use this property extensively in the rest of the proof, and we will refer

7.3. ON THE STATE COMPLEXITY OF FRIENDLY OPERATIONS 115

to it by saying that G is stable by external composition. We show that sc(L(m(A))) is at most
nn
− n + 1, by studying the Nerode equivalence relation induced by A. We distinguish two

main cases, i ∈ F and i < F.
We first suppose that i < F. Notice that we have

• if t ∈ F, then

– if s ∈ F, then we have χ(Q, i,F, gs,t) = 01,

– otherwise if s < F, then we have χ(Q, i,F, gs,t) = odd

• otherwise if t < F, then χ(Q, i,F, gs,t) = 0.

Let E1 = {0, 01,odd} ∩ E and E2 = {0, 01,odd} \ E1. We distinguish the following cases:

• If #E1 = 0 (respectively #E1 = 3), then for any s, t ∈ Q, since χ(Q, i,F, gs,t) < E (respec-
tively χ(Q, i,F, gs,t) ∈ E) , the state gs,t is not final in m(A) (respectively final in m(A)).
Since G is stable by external composition, all the states in G are in the same Nerode
equivalence class. Therefore, sc(L(m(A))) ≤ nn

− n2 + 1 ≤ nn
− n + 1.

• Otherwise if #E1 = 1 (respectively #E1 = 2), then we let u denote the unique element
of #E1 (respectively #E2).

– Suppose that u = odd. For any positive integer p and any state q ∈ Q, gp
s,s(q) =

gs,s(q). Thus, for any s ∈ Q, we have χ(Q, i,F, gs,s) ∈ {0, 01
}. Therefore, the

stability of G by external composition implies that two states gs,s and gs′,s′ , with
s, s′ ∈ Q, are not distinguishable in m(A), for any s, s′ ∈ Q. As a consequence,
sc(L(m(A))) ≤ nn

− n + 1.

– Suppose that u = 01, and let s, t be two elements of Q. If χ(Q, i,F, gs,t) = 01,
then t, s ∈ F, which implies that χ(Q, i,F, gt,s) = 01. Furthermore, similarly, if
χ(Q, i,F, gt,s) = 01, then χ(Q, i,F, gs,t) = 01. As a consequence, χ(Q, i,F, gs,t) =
01 if and only if χ(Q, i,F, gt,s) = 01. Therefore, the stability of G by external
composition implies that the two states gs,t and gt,s are not distinguishable, for
any s, t ∈ Q. As a consequence, we have sc(L(m(A))) ≤ nn

−
1
2n(n−1) ≤ nn

−n+1.

– Finally, suppose that u = 0, and let s, s′, t be three elements of Q. If χ(Q, i,F, gs,t) =
0, then t < F, which implies that χ(Q, i,F, gs′,t) = 0. Furthermore, similarly,
χ(Q, i,F, gs′,t) = 0 implies that χ(Q, i,F, gs,t) = 0. As a consequence, χ(Q, i,F, gs,t) =
0 if and only if χ(Q, i,F, gs′,t) = 0. Therefore, the stability of G by external
composition implies that the two states gs,t and gs′,t are not distinguishable in
m(A), for any s, s′ ∈ Q. As a consequence, we have sc(L(m(A))) ≤ nn

− n(n− 1) ≤
nn
− n + 1.

The case i ∈ F is symmetrical to the case i < F in the following way: we replace in the proof
all the occurrences of s ∈ F by t < F, of s < F by t ∈ F, of t ∈ F by s < F, of t < F by s ∈ F,
of 0 by (1, 1, . . .), of 01 by (1, 0, 0, . . . , 0, . . .), and of odd by (1, 0, 1, 0, . . . , (n + 1) mod 2, . . .).
Furthermore, in the case of u = (1, 1, . . .), it is the finality of gs,t and gs,t′ that is the same.

116 CHAPTER 7. FRIENDLY AND PRODUCT MODIFIERS

To summarize, in all the cases, we have sc(L(m(A))) ≤ nn
−n+1. Hence, sc⊗(n) ≤ nn

−n+1,
for any friendly unary operation ⊗.

�

We now show that this bound is tight for ž1 = op({0, 01
}), where 0 = (0, 0, . . .) and

01 = (0, 1, 1, . . . , 1, . . .). Notice that, for any regular language L over alphabet Σ, if ε < L,
then we have

ž1(L) = {w ∈ Σ?
| w ∈

k√

L, for any k > 0} ∪ {w ∈ Σ?
| w <

k√

L for any k > 0},

and if ε ∈ L, then we have ž1(L) = ∅. Let w1 = mod({0, 01
}). We let An denote the DFA

w1(Mon{n−1}
n), for any integer n. We determine a lower bound for the state complexity of

ž1 by computing the minimal DFA equivalent to An. Recall, by Definition 22, Definition
31 and Definition 34, that the alphabet of An is Γn = ~n�~n�, that its set of states is also
~n�~n�, and that every state φ of An is accessible from its initial state Id~n� by reading
the letter φ. For any function φ ∈ ~n�~n�, we let κ(φ) denote the characteristic sequence
χ(~n�, 0, {n − 1}, φ). To compute the Nerode equivalence induced by An, we show the
following result.

Lemma 30. For any positive integer n, and every two distinct functions φ,ψ ∈ ~n�~n� such that ψ
is non-constant, there exists ζ ∈ ~n�~n� such that κ(ζ ◦φ) ∈ {0, 01

} if and only if κ(ζ ◦ψ) < {0, 01
}.

Proof. We consider two main cases, φ(0) , ψ(0) and φ(0) = ψ(0).
Suppose that φ(0) , ψ(0). If ψ(0) , ψ(n − 1), then we set ζ(φ(0)) = ζ(ψ(n − 1)) = 0

and ζ(ψ(0)) = n − 1, and this implies that κ(ζ ◦ φ) = 0 and κ(ζ ◦ ψ) = (0, 1, 0, . . .) < {0, 01
}.

Symmetrically, if φ(0) , φ(n − 1) then we obtain the same result by permuting the role of
ψ and φ in the previous case. Now suppose that φ(0) = φ(n− 1) and ψ(0) = ψ(n− 1). As ψ
is not constant, there exists i ≥ 1 such that ψ(n − 1) , ψ(i). We set ζ(φ(0)) = ζ(ψ(i)) = n − 1
and ζ(ψ(0)) = i, which implies that κ(ζ ◦ φ) = 01 and κ(ζ ◦ ψ) = (0, 0, 1, . . .) < {0, 01

}.
Now suppose that φ(0) = ψ(0). Then there exists j > 0 such that φ(j) , ψ(j). We

have φ(j) , φ(0) or ψ(j) , ψ(0). Suppose that φ(j) , φ(0) (the other case can be treated
symmetrically). If j < n − 1, then we set ζ(φ(0)) = ζ(ψ(j)) = j and ζ(φ(j)) = n − 1.
In that case, we have κ(ζ ◦ φ) = (0, 0, 1, . . .) < {0, 01

} and κ(ζ ◦ ψ) = 0. Otherwise if
j = n − 1, then we set ζ(φ(0)) = ζ(ψ(n − 1)) = n − 1 and ζ(φ(n − 1)) = 0, which implies that
κ(ζ ◦ φ) = (0, 1, 0, . . .) < {0, 01

} and κ(ζ ◦ ψ) = 01. This concludes the proof. �

By Definition 34, the above lemma implies that any two distinct states of An such that
at least one of them is non-constant are distinguishable. Therefore, any non-constant state
is distinguishable from every other state and the size of the minimal DFA equivalent to An

is at least equal to the cardinality of the set of all mappings over ~n� that are not constant.
Thus, for every n ∈N \0, the size of the minimal DFA equivalent to An is at least nn

−n + 1.
Hence, we have scž1

(n) ≥ nn
− n + 1, for any positive integer n. As a consequence, from

Proposition 29, we have scž1
(n) = nn

− n + 1, for any positive integer n. We have thus
proved the following theorem.

Theorem 8. For any positive integer n and any friendly operation ⊗, sc⊗(n) ≤ nn
− n + 1, and the

bound is tight forž1, i.e., we have scž1
(n) = nn

− n + 1. Furthermore, L(Mon{n−1}
n) is a witness

forž1.

7.3. ON THE STATE COMPLEXITY OF FRIENDLY OPERATIONS 117

7.3.2 The general case

Surprisingly, unlike the unary case, we show that there are friendly operations which state

complexity meets the upper bound
k∏

j=1
nn j

j . We assume that k ≥ 2, and we letžk denote the

k-ary operation op(Ek), where Ek = {0, 01
}
k
\ {(0, . . . , 0)}. For any k-tuple of positive integers

(n1, . . . ,nk), we let An1,...,nk denote the DFA žk(Mon{n1−1},...,{nk−1}
n1,...,nk

). Furthermore, for any k-
tuple of functions (φ1, . . . , φk), with φ j ∈ ~n j�~n j� for any j ∈ {1, . . . , k}, we let κ(φ1, . . . , φk)
denote the characteristic sequence

χ((~n1�, 0, {n1 − 1}, φ1), . . . , (~nk�, 0, {nk − 1}, φk)).

Theorem 9. For any integer k ≥ 2 and for any k-tuple of positive integers (n1, . . . ,nk), we have

scžk
(n1, . . . ,nk) =

k∏
j=1

nn j

j . Furthermore, scžk
(L(An1,...,nk)) =

k∏
j=1

nn j

j , i.e., (L(M1), . . . ,L(Mk)) is a

witness foržk, where (M1, . . . ,Mk) = Mon{n1−1},...,{nk−1}
n1,...,nk

.

Proof. Our proof is inspired by the unary case. Let k be an integer with k ≥ 2, and let
(n1, . . . ,nk) be a k-tuple of positive integers. Furthermore, let (φ1, . . . , φk) and (ψ1, . . . , ψk) be
two k-tuple of mappings, with φ j, ψ j ∈ ~n j�~n j� for any j ∈ {1, . . . , k}, such that (φ1, . . . , φk) ,
(ψ1, . . . , ψk). We show that there exists (ζ1, . . . , ζk), with ζ j ∈ ~n j�~n j� for any j ∈ {1, . . . , k},
such that κ(ζ1 ◦ φ1, . . . , ζk ◦ φk) ∈ Ek if and only if κ(ζ1 ◦ ψ1, . . . , ζk ◦ ψk) < Ek.

Let ` such that φ` , ψ`. We consider two cases.

• If both φ` and ψ` are constant functions, then we let ζ` denote any mapping over
~n`� such that ζ`(φ(0)) = 0 and ζ`(ψ(0)) = n` − 1. Furthermore, for any j , `, we let
ζ j denote the constant function sending any element to 0. We have

κ(ζ1 ◦ φ1, . . . , ζk ◦ φk) = (0, . . . , 0) < Ek,

and

κ(ζ1 ◦ ψ1, . . . , ζk ◦ ψk) = (u1, . . . ,uk) ∈ Ek, where u j =

{
0 if j , `
01 if j = `

• If one of the functions φ` and ψ` is not constant, then we can suppose that ψ` is
not constant (the other case is symmetrical). Therefore, by Lemma 30, there exists a
mapping ζ` over ~n`� such that κ(ζ` ◦φ`) ∈ {0, 01

} if and only if κ(ζ` ◦ψ`) < {0, 01
}. We

assume that κ(ζ` ◦ φ`) ∈ {0, 01
} (the other case is symmetrical). Furthermore, for any

j ∈ {1, . . . , k} with j , `, we let ζ j denote the constant function sending any element
to n j − 1. We have

κ(ζ1 ◦ ψ1, . . . , ζk ◦ ψk) = (01, . . . , 01, κ(ζ` ◦ ψ`), 01, . . . , 01) < Ek,

since κ(ζ` ◦ ψ`) < {0, 01
}. Furthermore, we have

κ(ζ1 ◦ φ1, . . . , ζk ◦ φk) = (01, . . . , 01, κ(ζ` ◦ φ`), 01, . . . , 01) ∈ Ek,

because κ(ζ` ◦ φ`) ∈ {0, 01
}.

Therefore, in both cases, there exists (ζ1, . . . , ζk), with ζ j ∈ ~n j�~n j� for any j ∈ {1, . . . , k}, such
that κ(ζ1 ◦ φ1, . . . , ζk ◦ φk) ∈ Ek if and only if κ(ζ1 ◦ ψ1, . . . , ζk ◦ ψk) < Ek. We conclude with
Definition 22, Definition 31, and Definition 34. �

118 CHAPTER 7. FRIENDLY AND PRODUCT MODIFIERS

7.3.3 On the size of the witnesses’ alphabets

Witnesses usually given for regular operations have a finitely bounded alphabet. How-
ever, the witnesses given in Theorem 9 and in Theorem 8 are monsters, and thus have
exponential alphabet size. We show that every k-ary friendly operation actually has a
witness with an alphabet of size 3k. This is not hard to prove, and comes directly from the
definition of friendly modifiers. Recall that the definition of Γ′n1,...,nk

is given in Definition
1.

Definition 41. Let k be a non-negative integer, (n1, . . . ,nk) be a k-tuple of positive integers,
(F1, . . . ,Fk) be a k-tuple of sets with F j ⊆ ~n j�, for any j ∈ {1, . . . , k}, and let (M1, . . . ,Mk) =

MonF1,...,Fk
n1,...,nk

. We let BF1,...,Fk
n1,...,nk

denote the k-tuple of automata (B1, . . . ,Bk), where, for any j ∈ {1, . . . , k},
the DFA B j is equal to the DFA M j restricted to the alphabet Γ′n1,...,nk

.

Theorem 10. Let k be a non-negative integer, ⊗ be a friendly operation, (n1, . . . ,nk) be a k-tuple
of positive integers, and let m be a friendly modifier that describes ⊗. There exists a k-tuple of sets
(F1, . . . ,Fk), with F j ⊆ ~n j� for any j ∈ {1, . . . , k}, such that sc(L(m(BF1,...,Fk

n1,...,nk
))) = sc⊗(n1, . . . ,nk),

i.e., such that BF1,...,Fk
n1,...,nk

is a witness for ⊗.

Proof. Let k be a non-negative integer, ⊗ be a friendly operation, (n1, . . . ,nk) be a k-tuple
of positive integers, and let m be a friendly modifier that describes ⊗. Recall that, by
Proposition 1, the monoid (Γn1,...,nk , ◦) is generated by the subset Γ′n1,...,nk

of size 3k.
From Theorem 2, there exists (F1, . . . ,Fk), with F j ⊆ ~n j� for any j ∈ {1, . . . , k}, such that

sc(L(m(MF1,...,Fk
n1,...,nk

))) = sc⊗(n1, . . . ,nk). We let A = (Σ,Q, i,F, δ) denote the DFA m(MonF1,...,Fk
n1,...,nk

).
Recall that from Definition 22, the alphabet of all DFAs of the k-tuple MonF1,...,Fk

n1,...,nk
, and

therefore the alphabet Σ of A, is equal to Γn1,...,nk = ~n1�~n1� × · · · × ~nk�~nk�.
From Proposition 1, for each ψ in Γn1,...,nk , there exists a non-negative integer m and a

finite sequence (φ`)`∈{1,...,m} of elements of Γ′n1,...,nk
, such thatψ = φ1◦· · ·◦φm. Therefore, since

m is a friendly modifier, we have δψ = δφ1 ◦ · · · ◦ δφm . As a consequence, any reachable state
of A is reachable only by reading the letters of Γ′n1,...,nk

, and any two distinguishable states of
A are distinguishable only by reading the letters of Γ′n1,...,nk

. Hence, sc(L(A)) = sc(L(BF1,...,Fk
n1,...,nk

)),
and therefore sc(L(m(BF1,...,Fk

n1,...,nk
))) = sc⊗(n1, . . . ,nk). �

Chapter 8

Conclusion

To this day, computing the state complexity of an operation remains a messy, ad-hoc
business. Even though the state complexity of many well-known operations has been
computed, we seem to start all over again every time we switch to a new operation.
This still holds true for combinations of two or more operations, even when every one
of their state complexities is already known. As the operations we study become more
complicated, so do our computations, proofs, and results. To keep them from becoming
too long and heavy, we need a new framework and some new general results. Even though
the road ahead is still long, we have taken the first steps towards that goal.

We began our efforts by bringing in a tool used to classify algebras, operads. Oper-
ads are useful structures to formalize results around the composition of operations. In
particular, any set of operations stable by composition is an operad. Furthermore, other
kind of operads can be defined to understand the structure of such a set of operations.
Using this notion, we introduced a new framework to help compute the state complexity
of operations. The regular operations that fall into the scope of our framework are called
1-uniform, and form an operad (Ou, ◦). This operad has a counterpart in the space of
operations over DFAs, the operad of modifiers (M, ◦). However, modifiers themselves
are not so easy to handle. Therefore, we extracted the essential information contained in
modifiers by defining a set of operations over transition configurations, denoted by FT.
We used this results to compute the state complexity of 1-uniform operations. To that
aim, we defined large DFAs called monsters. Every 1-uniform operation admits a monster
as witness. Therefore, when searching for the state complexity of a 1-uniform operation,
we need only concern ourselves with giving a modifier that describes that 1-uniform
operation, and applying it to monsters.

Using this framework, we designed a method to compute the state complexities of
1-uniform operations, and showed that it works on simple examples like the Kleene star,
catenation, and boolean operations. Furthermore, we used this method to compute the
state complexity of a new operation, the Kleene star composed with symmetric difference.
Combined with previous results [16, 27], this allowed us to compute the state complexity
of every binary boolean operation. We then tried to tackle the more general problem
consisting in computing the state complexity of the star composed with any boolean
operation. We explained how our approach in the particular case of the star composed
with symmetric difference may be generalized. We firmly believe that, with some more

119

120 CHAPTER 8. CONCLUSION

work, it would be possible to devise a close link between the state complexity of the star
of boolean operations and combinatorial objects involving tableaux and cubes in higher
dimension. Counting these objects, however, is another problem entirely, that we have yet
to explore.

Finally, we studied two suboperads of (Ou, ◦) defined with simple algebraic properties,
the operad of friendly operations, and the operad of quasi-boolean operations. We showed
that their simple definition is reflected by their clear structure. Friendly modifiers describe
exactly all compositions of boolean operations of infinite arity and roots, and product
modifiers describe a weak generalization of boolean operations. We studied in detail
the algebraic structure underlying these two operads. Using these results, we found the
maximum state complexity of k-ary friendly operations, for any positive integer k. To get
this bound, it is possible to use witnesses with only 3k letters.

Our work on friendly modifiers and product modifiers is an example of a more general
technique that could be used to study the state complexity of operations. This technique
consists in putting a particular operation into a larger family of operations, and then to
get some information about the state complexity of that particular operation by studying
the entire family. For example, we are now certain that the state complexity of any unary
friendly operation is at most nn

− n + 1; however, this result would not necessarily be
obvious to prove for a particular unary friendly operation. Claim 1 is another example
of application of this technique. This claim could give non-trivial upper bounds for the
state complexity of the star of any boolean operation, without the need to invent a new
method for every single one of these operations. To summarize, we should not be afraid
to study large families of operations, as this may yield better results than studying only
some particular and isolated operations.

One of the most interesting things about friendly operations is that their algebraic
structure is simple enough that we have some hope of answering general questions on
their state complexity. For example, can their state complexity attain a growth somewhere
between exponential and linear? If so, what ranges of growth for their state complexities
can we obtain? We could also try to compute their maximal state complexity over a unary
or binary alphabet, thereby carrying on the work done in [30]. Giving witnesses for these
operations with a smaller alphabet is also another possible line of research. There are
probably some k-ary friendly operations whose witnesses always have an alphabet of size
greater than k. But do they all have a witness of size 2k, or even maybe of size k plus a
constant?

It is worth noting that the Kleene star, catenation, boolean operations, roots, and all of
their compositions are not the only well-known operations that are 1-uniform. It is also
the case, for example, of the shuffle, the cyclic shift, and powers. As a consequence, the
framework we developed could also be used to study these operations and all of their
compositions. However, several well-known operations do not fall into the scope of our
framework. This is the case, for example, of the right quotient or of the proportional
removals. Another limitation of our framework is that there is no systematic way of re-
ducing the alphabets of the witnesses we use, which are of exponential size. Even though,
for some operations like the shuffle [3], witnesses have an alphabet of at least linear size,
we do not know of any operation that would require an alphabet of exponential size. Does
there exist any? From this question arises a notion that one may call "alphabetic complex-

121

ity". The alphabetic complexity of a 1-uniform operation would be the minimal size of the
alphabets of all the witnesses of that operation. Numerous other simple questions about
alphabetic complexity are left unanswered. For example, can we characterize 1-uniform
operations that have a finitely bounded alphabetic complexity? What is the maximal al-
phabetic complexity of all 1-uniform operations? How does alphabetic complexity behave
with respect to composition?

We have sought recently to obtain some results about alphabetic complexity for some
well-defined classes of operations. This line of research could also be considered another
extension of our work on friendly and product modifiers, as its main goal is to study
other operads, similarly defined by simple algebraic properties. To be more precise, for
any modifier m = [Q, f, i, d], the goal would be to study what some well-chosen algebraic
properties of the application d entail on the operation that m describes. When d is a
morphism for its third coordinate, we have seen that m describes a friendly operation.
But what happens when d only behaves like a morphism when its inputs satisfy some
restrictive property? This is the case for several well-known regular operations, like the
Kleene star and catenation. For example, for the Kleene star, we have

d(Q, i,F, φ ◦ ψ) = d(Q, i,F, φ) ◦ d(Q, i,F, ψ),

when ψ(i) = i and ψ(Q \ F) ⊆ Q \ F. We are currently exploring whether operations
satisfying some similar properties always have witnesses with alphabets of linear size,
or even maybe of finitely bounded size, i.e., whether their alphabetic complexity is linear,
or even maybe finitely bounded. We have made some encouraging progress towards
showing that their alphabetic complexity is indeed at most linear, but we cannot state this
result with certainty yet. That result would be quite general as it would also encompass,
for example, all compositions of Kleene star, catenation, union and intersection.

Another interesting line of research would be to adapt our framework to other types of
automata, like non-deterministic finite automata, or alternating finite automata. We could
even try to extend our results to infinite automata. In fact, the main idea of the method
we developed does not seem to be specific to a certain type of automata, and it would be
interesting to have a more general theory encompassing many types of automata.

To summarize, the in-depth study of the state complexity of operations in recent years
consisted in trying to compute the state complexity of some specific regular operations,
well-known for other purposes in automata theory. However, we believe that looking at
the wider picture with an algebraic point of view would be fruitful. In other words, instead
of trying to compute the state complexity of increasingly complex particular and isolated
operations, we could try to define new classes of operations, tailor-made to comprise
operations close enough to some operations already well-known, but simple enough for
us to compute their state complexity. This would help us start a more general theory, that
may eventually lead to computing the state complexity of more complex operations. For
example, a simple question that remains to be answered is the following: can we define a
large class of operations, stable by composition, and that contains an interesting operation
that is not boolean (or quasi-boolean), so that we are able to compute the state complexity
of every one of its operations?

122 CHAPTER 8. CONCLUSION

List of Notations and Symbols

This is a list of the most frequently used notations and symbols.

• ~n�: The set {0, . . . ,n − 1}

• Γn1,...,nk : The set ~n1�~n1� × · · · × ~nk�~nk�

•
∼
q: The set of all q′ ∈ E such that q ∼ q′, where ∼ is an equivalence relation over E

• E/∼: The set of all
∼
q, when q ∈ E

• ◦: See Definition 6

• �/∼: See Definition 11

• ∼φ when φ is a morphism of operads: See Definition 12

• φ̂: See Definition 12

• [Q, i, f, d]: See Definition 19

• Mc: The set of all coherent modifiers (Definition 20)

• Ou: The set of all 1-uniform operations

• Mf; The set of all friendly modifiers (Definition 30)

• Mf
c: The set of all coherent friendly modifiers (Definitions 20 and 30)

• Of: The set of all friendly operations (Definition 36)

• MonF1,...,Fk
n1,...,nk

: A monster, see Definition 22

• msf: See Definition 32

• Ms
c: The set of all coherent standard friendly modifiers (Definitions 20 and 31)

• χ(t1, . . . , tk): See Definition 33

• Vk: The set of all k-tuples of sequences with values in {0, 1}

• Uk: The set of all (u1, . . . ,uk) inVk such that every u j is eventually periodic

123

124 CHAPTER 8. CONCLUSION

• PU: The set
⋃

k∈N
2Uk (Definition 39)

• Mp: The set of all product modifiers (Definition 39)

• Mp
c : The set of all coherent product modifiers (Definitions 20 and 39)

• Mfp
c : The set of all friendly modifiers m such that there exists a coherent product

modifier m′ with msf = m′sf (Definitions 20, 39 and 32)

• Op: The set of all quasi-boolean operations (Definition 40)

• PCk: The set of all E in 2Uk such that, if (u1, . . . ,uk) is in E, then any k-tuple of sequences
(v1, . . . , vk) ∈ Uk, with v j,0 = u j,0 and v j,1 = v j,0 for any j, is also in E

• PC: The set
⋃

k∈N
PCk

• mod: See Definition 34

• op: See Definition 38

• desc: See Definition 21

• descf: The restriction of desc to friendly modifiers (Definitions 21 and 30)

• ∼s: The equivalence relation over friendly modifiers such that m ∼s m′ if and only if
msf = m′sf

• mod: The application such that, for any E ∈ PU, we have mod(E) =
∼s

mod(E)

Bibliography

[1] Jean-Camille Birget. Intersection and union of regular languages and state complexity.
Inf. Process. Lett., 43(4):185–190, 1992.

[2] Janusz A. Brzozowski. In search of most complex regular languages. Int. J. Found.
Comput. Sci., 24(6):691–708, 2013.

[3] Janusz A. Brzozowski, Galina Jirásková, Bo Liu, Aayush Rajasekaran, and Marek
Szykula. On the state complexity of the shuffle of regular languages. In Cezar
Câmpeanu, Florin Manea, and Jeffrey O. Shallit, editors, Descriptional Complexity
of Formal Systems - 18th IFIP WG 1.2 International Conference, DCFS 2016, Bucharest,
Romania, July 5-8, 2016. Proceedings, volume 9777 of Lecture Notes in Computer Science,
pages 73–86. Springer, 2016.

[4] Pascal Caron, Edwin Hamel-De le Court, and Jean-Gabriel Luque. Algebraic and
combinatorial tools for state complexity: Application to the star-xor problem. In
Jérôme Leroux and Jean-François Raskin, editors, Proceedings Tenth International Sym-
posium on Games, Automata, Logics, and Formal Verification, GandALF 2019, Bordeaux,
France, 2-3rd September 2019, volume 305 of EPTCS, pages 154–168, 2019.

[5] Pascal Caron, Edwin Hamel-De le Court, and Jean-Gabriel Luque. The state com-
plexity of a class of operations involving roots and boolean operations. CoRR,
abs/2004.12958, 2020.

[6] Pascal Caron, Edwin Hamel-De le Court, and Jean-Gabriel Luque. A study of a simple
class of modifiers: Product modifiers. In Natasa Jonoska and Dmytro Savchuk, edi-
tors, Developments in Language Theory - 24th International Conference, DLT 2020, Tampa,
FL, USA, May 11-15, 2020, Proceedings, volume 12086 of Lecture Notes in Computer
Science, pages 110–121. Springer, 2020.

[7] Pascal Caron, Edwin Hamel-De le Court, Jean-Gabriel Luque, and Bruno Patrou.
New tools for state complexity. Discret. Math. Theor. Comput. Sci., 22(1), 2020.

[8] Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou. State com-
plexity of catenation combined with a boolean operation: A unified approach. Int. J.
Found. Comput. Sci., 27(6):675–704, 2016.

[9] Pascal Caron, Jean-Gabriel Luque, and Bruno Patrou. State complexity of multiple
catenations. Fundam. Inform., 160(3):255–279, 2018.

125

126 BIBLIOGRAPHY

[10] Pascal Caron, Jean-Gabriel Luque, and Bruno Patrou. State complexity of combined
operations involving catenation and binary boolean operations: Beyond the Brzo-
zowski conjectures. Theor. Comput. Sci., 800:15–30, 2019.

[11] Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu. State complexity of two combined
operations: Catenation-union and catenation-intersection. Int. J. Found. Comput. Sci.,
22(8):1797–1812, 2011.

[12] Sylvie Davies. A general approach to state complexity of operations: Formalization
and limitations. In Mizuho Hoshi and Shinnosuke Seki, editors, Developments in
Language Theory - 22nd International Conference, DLT 2018, Tokyo, Japan, September 10-
14, 2018, Proceedings, volume 11088 of Lecture Notes in Computer Science, pages 256–268.
Springer, 2018.

[13] Sylvie Davies. Algebraic Approaches to State Complexity of Regular Operations. PhD
thesis, University of Waterloo, Ontario, Canada, 2019.

[14] Michael Domaratzki. State complexity of proportional removals. Journal of Automata,
Languages and Combinatorics, 7(4):455–468, 2002.

[15] Michael Domaratzki and Alexander Okhotin. State complexity of power. Theor.
Comput. Sci., 410(24-25):2377–2392, 2009.

[16] Zoltán Ésik, Yuan Gao, Guangwu Liu, and Sheng Yu. Estimation of state complexity
of combined operations. Theor. Comput. Sci., 410(35):3272–3280, 2009.

[17] Yuan Gao and Lila Kari. State complexity of star and square of union of k regular
languages. In Martin Kutrib, Nelma Moreira, and Rogério Reis, editors, Descriptional
Complexity of Formal Systems - 14th International Workshop, DCFS 2012, Braga, Portugal,
July 23-25, 2012. Proceedings, volume 7386 of Lecture Notes in Computer Science, pages
155–168. Springer, 2012.

[18] Yuan Gao, Nelma Moreira, Rogério Reis, and Sheng Yu. A survey on operational state
complexity. Journal of Automata, Languages and Combinatorics, 21(4):251–310, 2017.

[19] Yuan Gao, Kai Salomaa, and Sheng Yu. The state complexity of two combined
operations: Star of catenation and star of reversal. Fundam. Inform., 83(1-2):75–89,
2008.

[20] Victor Ginzburg and Mikhail Kapranov. Koszul duality for operads. Duke Math. J.,
76(1):203–272, 1994.

[21] Samuele Giraudo. Operads in algebraic combinatorics. CoRR, abs/1712.03782, 2017.

[22] Jozef Jirásek and Galina Jirásková. The exact complexity of star-complement-star. In
Cezar Câmpeanu, editor, Implementation and Application of Automata - 23rd International
Conference, CIAA 2018, Charlottetown, PE, Canada, July 30 - August 2, 2018, Proceedings,
volume 10977 of Lecture Notes in Computer Science, pages 223–235. Springer, 2018.

BIBLIOGRAPHY 127

[23] Jozef Jirásek, Galina Jirásková, and Alexander Szabari. State complexity of concate-
nation and complementation. Int. J. Found. Comput. Sci., 16(3):511–529, 2005.

[24] Galina Jirásková. State complexity of some operations on binary regular languages.
Theor. Comput. Sci., 330(2):287–298, 2005.

[25] Galina Jirásková. Concatenation of regular languages and descriptional complexity.
Theory Comput. Syst., 49(2):306–318, 2011.

[26] Galina Jirásková and Alexander Okhotin. State complexity of cyclic shift. ITA,
42(2):335–360, 2008.

[27] Galina Jirásková and Alexander Okhotin. On the state complexity of star of union
and star of intersection. Fundam. Inform., 109(2):161–178, 2011.

[28] Galina Jirásková, Matúš Palmovský, and Juraj Šebej. Kleene closure on regular and
prefix-free languages. In Markus Holzer and Martin Kutrib, editors, Implementation
and Application of Automata - 19th International Conference, CIAA 2014, Giessen, Germany,
July 30 - August 2, 2014. Proceedings, volume 8587 of Lecture Notes in Computer Science,
pages 226–237. Springer, 2014.

[29] Galina Jirásková and Jeffrey O. Shallit. The state complexity of star-complement-star.
In Hsu-Chun Yen and Oscar H. Ibarra, editors, Developments in Language Theory -
16th International Conference, DLT 2012, Taipei, Taiwan, August 14-17, 2012. Proceedings,
volume 7410 of Lecture Notes in Computer Science, pages 380–391. Springer, 2012.

[30] Bryan Krawetz, John Lawrence, and Jeffrey Shallit. State complexity and the monoid
of transformations of a finite set. Int. J. Found. Comput. Sci., 16(3):547–563, 2005.

[31] Guangwu Liu, Carlos Martín-Vide, Arto Salomaa, and Sheng Yu. State complexity of
basic language operations combined with reversal. Inf. Comput., 206(9-10):1178–1186,
2008.

[32] Jean-Louis Loday and Bruno Vallette. Algebraic Operads. Springer-Verlag Berlin Hei-
delberg, 2012.

[33] A. N. Maslov. Estimates of the number of states of finite automata. Soviet Math. Dokl.,
11:1373–1375, 1970.

[34] J.P. May. The Geometry of Iterated Loop Spaces. Springer-Verlag Berlin Heidelberg, 1972.

[35] B. Ravikumar. Some applications of a technique of Sakoda and Sipser. SIGACT News,
21(4):73–77, 1990.

[36] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

[37] William J. Sakoda and Michael Sipser. Nondeterminism and the size of two way
finite automata. In Richard J. Lipton, Walter A. Burkhard, Walter J. Savitch, Emily P.
Friedman, and Alfred V. Aho, editors, Proceedings of the 10th Annual ACM Symposium
on Theory of Computing, May 1-3, 1978, San Diego, California, USA, pages 275–286.
ACM, 1978.

128 BIBLIOGRAPHY

[38] Arto Salomaa, Derick Wood, and Sheng Yu. On the state complexity of reversals of
regular languages. Theor. Comput. Sci., 320(2-3):315–329, 2004.

[39] Qiqi Yan. Lower bounds for complementation of omega-automata via the full au-
tomata technique. Log. Methods Comput. Sci., 4(1), 2008.

[40] Sheng Yu, Qingyu Zhuang, and Kai Salomaa. The state complexities of some basic
operations on regular languages. Theor. Comput. Sci., 125(2):315–328, 1994.

	Introduction
	Preliminaries
	Notations and conventions
	Standard notations and conventions
	Non-standard notations and conventions

	Mappings over n
	Equivalence relations
	Operations over languages and DFAs
	Alphabets, words and languages
	Deterministic, finite and complete automata
	Accessible states, the Nerode equivalence and minimal DFAs
	Language operations and regular operations
	State complexity
	Morphisms

	Operads
	What is an operad?
	Operations over a set
	Morphisms, quotient operads, and suboperads

	Modifiers and 1-uniform operations
	About 1-uniform operations
	Modifiers
	Definition
	Examples
	Alternative notations
	From modifiers to regular operations

	The link with operational state complexity
	Monsters
	Modifiers and 1-uniform operations
	Computing the state complexity of 1-uniform operations

	Examples
	Star
	Applying the star modifier to monsters
	An upper bound
	A lower bound

	Boolean Operations
	Applying the modifiers describing boolean operations to monsters
	An upper bound
	A lower bound

	Catenation
	Applying the catenation modifier to monsters
	An upper bound
	A lower bound

	On the star of boolean operations
	The star of the symmetric difference: a first analysis
	Computing the Nerode equivalence of M{n1-1},{0}
	Computing the accessible states of M{n1-1},{0}
	Computing the state complexity of the language recognized by M{n1-1},{0}
	Discussing the monsters' final states
	Witnesses with a finitely bounded alphabet size
	Towards the general case

	Friendly and product modifiers
	Friendly modifiers
	Friendly modifiers: an operad
	Standard friendly modifiers
	Characteristic sequences
	Friendly operations
	On the algebraic structure of friendly modifiers

	Product modifiers
	Product modifiers: an operad
	From product modifiers to standard modifiers
	Product modifiers and quasi-boolean operations
	On the algebraic structure of product modifiers

	On the state complexity of friendly operations
	The unary case
	The general case
	On the size of the witnesses' alphabets

	Conclusion
	List of Notations and Symbols
	Bibliography

