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Introduction

Motivation

Earth observation from space has come a long way since its beginnings in the 60's. The US Corona Program (JPL, [1]), with its 7.5m resolution and its physical film capsules that needed to be recovered, started the area of high-resolution observations. In France, the adventure began in 1986 with SPOT 1 (Satellite Pour l'Observation de la Terre), the first European optical push-broom satellite. SPOT 2, 3 & 4 kept the same 10m-resolution, which was brought down to 2.5m with SPOT 5 in 2002 (CNES, [2]). The later is the first generation to bring stereoscopic imagery, allowing for large-area digital elevation models of the Earth's surface. SPOT 6 & 7, launched in 2012 and 2014, completed the family and increased the resolution to 1.5m. Both of the satellites were entirely build from private funds, with the private sector being tasked with the marketing of data products. In addition to the SPOT program, two Pléiades satellites (70cm-resolution) were launched in 2011 and 2012 to further increase the revisit capabilities of the constellation over any point of the globe. See the Pléiades section for more information.

The last-born of the French high-resolution family is CSO (Composante Spatiale Optique), a series of three satellites (CNES, [3]) meant to replace the Helios II ones (launched in 2004 and 2009). They will be completed, starting in 2020, by the Pléiades Néo four-satellites constellation, bringing the resolution even lower. No longer solely a matter of technology but also of economics (see the Background chapter), Earth observation is today driving a new revolution. The trends goes towards smaller platforms, teamed with other satellites, that bring better resolutions while offering broader capabilities. In this context, preparing for the future generations of high-resolution imagers (even though some CSO satellites are still being manufactured at the time of writing) is crucial to keep up the pace of the technologies developments needed to get increasingly more detailed ground images. The improvements in resolution and swath between the Pléiades generation and its successor are illustrated in fig. 0 0.2. The concept : Towards higher resolutions 3 As of today, Earth and planetary high-resolution observations rely on linear focal plane arrays used in TDI mode (Time Delay Integration, the charges are transferred from line to line as the scene moves to improve the signal-to-noise ratio) to acquire the images delivered by the telescope. The need to increase the angular resolution while keeping a large field of view has led to prohibitive sizes of these arrays, especially in the infrared spectrum where the detector needs to be cooled. Spot and Pléiades satellites deliver sub-meter ground images while boarding focal plane arrays a few decimeters wide. This is achieved using folding mirrors inside the focal plane; while this size is acceptable, next generations can hardly rely on this exact technology to continue increasing their resolution.

The concept : Towards higher resolutions

The increasing complexity of focal planes needs to be addressed when defining the technologies that will shape tomorrow's space-borne telescopes. A solution brought by the LAM and Thales Alenia Space intends to optically reduce the linear size of the telescope's focal plane, by segmenting the linear FOV into smaller sub-fields that are stacked on a CMOS TDI sensor. It is therefore possible to drastically reduce the linear size of the array, at the expense however of the complexity of the optical system. This work is based on the Integral Filed Unit (IFU) principle, but in a reversed way. An IFU reorganizes a 2D field-of-view on a 1D spectroscopic slit entrance. IFUs have already been developed for groundbased (Laurent et al., 2006, [4]), (Tecza et al., 2006, [5]), (Eikenberry et al., 2004, [6]) and space-borne spectrometers (Ealet and Prieto, 2002, [7]), (Closs et al., 2008, [8]), such as NIRSpec for the JWST. Please refer to section 3.1 to dive deeper into the IFU principle. Starting from this idea, (Jahn et al., 2017, [9]) proposed an innovative optical system based on a reversed IFU technology : the linear field-of-view is subdivided with segmenting mirrors and re-imaged on a 2D array detector. This allows to design a wide-field and high-resolution imager in a smaller volume. The main difficulty for such a system mainly comes from the gap, in term of field-of-view, between classical IFU spectrometers (few arcsecs) and a large swath imaging system (1 or 2°). Figure 0.2.2: Optical principle of the reverse image-slicing telescope. Adapted from [9].

A preliminary feasibility study has been conducted by W. Jahn during his PhD thesis (Jahn, 2017, [10]), showing that reaching the diffraction limit is possible for a few sub-images, while at the same time allowing for a 17x reduction of the focal plane size. The work described hereon provides theoretical foundations to the study and extends the results to the whole field-of-view, while exploring a broader design space. The results have been patented.

To further illustrate the concept of focal plane segmentation, let's consider a hypothetical successor of Pléiades with the following parameters : GSD = 15cm (Ground Sampling Distance, i.e. the resolution), Swath = 20km, Pixel Pitch = 5.5µm, the size of the focal plane would be :

Focal plane size = Swath × P itch GSD = 0.73m
This gives a good estimation of the bulk of the detector : it cannot be much bigger without triggering a cascade of problems (mechanical stability at launch and in-flight, cost of the electronics, size of the mechanical structure, heat dissipation...). A possible solution is to cut the image into smaller sub-images (called modules) and to stack them on a smaller sensor. The concept is illustrated in figure 0.2.3 : The present work is supervised by the Laboratoire d'Astrophysique de Marseille (LAM) and Thales Alenia Space (TAS), which are both committed to acquiring the technical know-how and expertise in the field of focal plane arrangement and freeform surfaces manipulation.

The goals are as follows:

Develop a novel way of reducing the linear dimensions of focal plane arrays used in high-resolution Earth and planetary observations;

Extend these capabilities to the visible and infrared spectra;

Strengthen a technical know-how embracing freeform surface description, optimization, tolerancing and integration. 0.3. Dissertation outline

Dissertation outline

The manuscript is organized as follows :

The first Chapter, Background, gives the reader some insights about the French high-resolution program Pléiades and the Mars Reconnaissance Orbiter probe. This chapter is useful to grasp the context of Earth and planetary high-resolution observation and to have an idea about how such systems work.

The second chapter, Freeform Optics -Mathematical descriptions and design overview, reviews the recent developments in freeform optics design, from surface descriptions to optimization methods.

The third chapter, Segmented Ritchey-Chretien -The search for a starting point, describes the concept of segmentation of focal planes in the case of a two-mirror telescope. After a trade-off dedicated to choosing the base telescope, a geometrical set-up of the system leading to a paraxial segmented telescope is conducted.

Finally, the Optimization and tolerancing chapter presents the nominal and as-build performances of the optimized system, and proposes two alignment methods that both provide equivalent image qualities.

The References are listed at the end of each chapter.
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Chapter 1

Background

This chapter highlights the French high-resolution Earth-observation constellation Pléiades and the Mars Reconnaissance Orbiter probe, to give the reader some context about the landscape of high-resolution & wide-field space missions.

Pléiades

Pléiades is a constellation of two HR optical Earth-imaging satellites, named Pléiades 1A & 1B. They operate on the same orbit at 180°(along with the SPOT 6 & 7 satellites) and provide 70cm-resolution images on a daily-basis revisit over any point of the globe (ESA, [1]), (CNES, [2]). Along with the Spot 6 & 7 satellites, this constellation is for France a safeguard regarding its fundamental interests, independence and integrity relative to the other nations. Having access to high-resolution imagery from space gives precious insights for military operations (reconnaissance, monitoring), but it also allows for a fine management of the country's resources and projects. The goals are as follows : Roll & Pitch up to ± 60°in 25s. Altitude sensing 3 independent star-trackers, 8 Hz frequency

Image location accuracy -1 m (with ground control points) -20 m without GCP (99.7%), 10 m (90%)

The program started as early as September 2000, requiring more than ten years of development. The mission was planned for 5 years lifetime but as of 2020, the constellation is still flying and in good health. The main payload of Pléiades is a high-resolution imager, based on a Korsch-type telescope in TDI mode. It offers 0.7m-resolution ground images (0.5m after resampling) in the visible and near-infrared bands. The optical sequence is as follows :

An on-axis Cassegrain Telescope with an elliptical concave M1 and a hyperbolic convex M2

An elliptical concave off-axis M3

A folding flat mirror (MR), for purpose of overall volume limitations.

The four light-weighted Zerodur (class 0) mirrors, equipped with monolithic Invar mirror fixation devices, provide high performance optics. Carbon/carbon composite has been selected as a key material for camera structure. A thermal refocalization device included in the M2 structure offers the possibility of an in-flight optical re-alignment process.

Pléiades

Pléiades' focal plane is highly integrated (Pranyies et al, 2004, [4]). The panchromatic and multispectral bands are separated in the focal plane by folding and splitting mirrors. The spectral filters (space-qualified multi-layered coatings on a BaK50 glass substrate) are located very close to the CCDs in order to minimize the stray-light in the system. An absorbing material deposited between the XS filters isolates each band from the others to avoid inter-band stray-light. The overall box size is 46 x 24 x 25 cm. MTF in Pan band : 0.07 at Nyquist.

Finally, one cannot simply go through a Pléiades exposé without looking at one of its pictures : 1.2. Mars Reconnaissance Orbiter 11

Mars Reconnaissance Orbiter

This section briefly describes the Mars Reconnaissance Orbiter mission, along with the HiRISE (High Resolution Imaging Science Experiment) on-board instrument. More information can be found in the References listed at the end. In the context of my PhD thesis, the goal is to highlight the key points of the mission in order to extrapolate future features for the next generation of high-resolution planetary imagers (NASA, [5]) (JPL, [6]). In addition to the primary goal, the mission has other intentions (NASA, [7]): The program started in 2002 and the probe was launched in 2005. After a year of travel and a short commissioning phase, the science and mission phases began late 2006 and are still ongoing. MRO is using its onboard scientific equipment to study the Martian climate, weather, atmosphere, and geology, and to search for signs of liquid water in the polar caps and underground. In addition, MRO was tasked with looking for the remains of the previously lost Mars Polar Lander and Beagle 2 spacecraft (the later was found by the orbiter in early 2015). After its main science operations are completed, the probe's extended mission is to be the communication and navigation system for landers and rover probes.

On August 4, 2011, NASA announced that MRO had detected what appeared to be flowing salty water on the surface or subsurface of Mars. On September 28, 2015, this finding was confirmed at a special NASA news conference. The Mars Reconnaissance Orbiter mission met all its science goals in a two-year primary science phase. Two extensions have added to the bounty of science returns. The details of the science missions are as follows : 

3: MRO Mission Science Phases

To fulfill its duty, MRO carries 6 scientific instruments along with 2 experimental payloads being tested for future missions. The table 1.2.3 summarizes the three cameras, two spectrometers and radar characteristics (Graf & Zurek, 2003, [8]). 

CRISM

Extends the search for water-related minerals on Mars by providing spectral information.

Ritchey-Chretien telescope, 10cm aperture, 2.06°FOV. GSD = 20m, Swath = 11km, Spect. res = 7nm ∈ [0, 4; 4µm]

Context Camera CTX

Takes wider-swath pictures to provide a simultaneous visual context for observations by other instruments.

10.8 cm aperture, 5.8°FOV. GSD = 6m, Swath = 30km.

Mars Climate

Sounder [11] MCS Looks down and horizontally through the atmosphere to quantify the global atmosphere's vertical variations of water vapor, dust and temperature.

0 -80km vertical coverage, at 5km vertical resolution. Channels : 1 VNIR [0.3; 3µm] and 9 channels in 12-50µm.

Mars Color Imager MARCI

Tracks changes in Martian weather. 180°fish-eye wide-angle lens.

Uses ultra-violet filters to examine variations in ozone. 7 color bands ∈ [0, 28; 0, 8µm] .

Shallow Subsurface Radar SHARAD

Penetrates to ≈ half a kilometer below Mars' surface for information about underground layers of ice & rock. 10m vertical & 300m horizontal resolution in the subsurface.

The purpose of the additional payload is to conduct technology experiments to test and demonstrate their performances for future missions. 

Electra

Ultra-high-frequency radio for relaying commands from Earth to landers on the Mars surface, and for returning science and engineering data back to Earth.

Optical Navigation Camera

Compares the predicted positions of Mars' two moons, Phobos and Deimos, with the camera's observations as the spacecraft approaches Mars.

Of all the onboard instruments, the high-resolution imager HiRISE is most interesting to our case. It features an all-reflective TMA telescope equipped with a 50cm primary mirror, that produces 30cmresolution ground images of the surface of Mars (NASA Space Science Data Coordinated Archive, [12]) (Lunar and Planetary Laboratory, [13]) (Bergstrom, 2004, [14]) (Delamere et al, [15]). Its specifications are summarized in table 1.2.5. MRO is a perfect example of a high-resolution and wide field planetary observation mission, and a nice case study. 

Mars Reconnaissance Orbiter

The HiRISE instrument is the biggest telescope ever embedded in a space probe; yet, its use of two folding mirrors makes its footprint quite small. A Lyot stop, located between the tertiary mirror and the second fold mirror, ensures an excellent reduction of stray light.

The Focal Plane Subsystem (FPS) of HiRISE is highly integrated. It boards 14 staggered backside thinned TDI CCDs that overlap by 48 pixels at each end : The first line -in blue -is made of two 2048*128 detectors with blue-green (400-600nm) filters, the second line -in orange -boards ten detectors with red (550-850nm) filters, and the last line -in red -has two detectors with NIR (800-1000nm) filters.

Mars Reconnaissance Orbiter

The line rate of 13,000 lines/sec corresponds to a line time of 76 µs for a 250 km altitude. The pixel integration time is set to match the ground velocity so that the charge from one image region is sequentially clocked into the next corresponding element in the along-track direction.

Finally, here are two examples of images taken by Mars Reconnaissance Orbiter at 50cm resolution : 

Conclusion

Even if the programs started in the early 2000's and despite boarding well-known and state-of-the art designs, their focal planes still answer to the geometrical limitations of their instrument's field of view.

The large swaths of the telescopes, their resolutions and their spectral capabilities were addressed with the well-mastered technique of multiplying the detectors in the image plane. It results in big, heavy, highly-integrated focal planes : a problem that this thesis tries to solve, by proposing a way of cutting the image of the telescope and combining all these detectors in a single one.
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Chapter 2

Freeform Optics -Mathematical descriptions and design overview

Freeform Optical Surface, Modern Definition (post-2000) (Rolland & Thompson, 2012, [1]):

An optical surface that leverages a third independent axis during the creation process to define an optical surface with as-designed nonsymmetric features.

This Chapter summarizes the major axes of reflection about freeform optics' descriptions and design. This information is useful regarding my work on freeform optics for Earth-observation and is organized around it. As manufacturing isn't part of my PhD thesis, I will not cover freeform manufacturing and testing. Should the reader have interest in the matter, I suggest the following references : (Zhu et al., 2018, [2]), (Abdulkadir et al., 2018, [3]) and (Rolland et al., 2021, [4]).

The layout of this chapter is detailed in table 2.0.1 : 

Motivation

Freeform optics have been used for decades in non-imaging applications (LEDs) but their manufacturing processes haven't been, until the late 1990's, precise enough to produce surfaces for imaging applications (see fig. They are the most powerful tool that have ever been available to designers, provided they have the theoretical and technical know-how to implement them in their work. In the following, the text and illustration are adapted from (Fuerschbach, 2014, [5]) and (Rolland, 2018, [6]). Freeform optics enable: The concept of a freeform optical surface is not new. However, unless it can be manufactured, it stays a theoretical exercise. The technology of the 80s had the concept remain a distant future, but the recent significant equipment advances (vertical axes, fast tool servos...) allowed to go past rotationally symmetric aspheres. Freeform optics have allowed for the systems they are used in to shrink in size, offering new possibilities in head-up displays, medical devices, space-borne telescopes... The new degrees of freedom during the design phase, if accurately translated to the manufacturing and testing stages, can bring the optical designer to new levels of creativity ! Nowadays, the challenge has moved from manufacturing to part conformance verification : the metrology is the current limitation and main cost driver.

Mathematical Descriptions

Mathematical Descriptions

As the scientific research is in full swing, the relevant theory and practical experience are rapidly changing : this section is not exhaustive but represents the most common use-cases and gives a meaningful panorama of the freeform landscape today. A review of freeform descriptions can be found in (Ye & Chen, 2017, [9]).

A general freeform surface is characterized by a base surface plus a freeform sag departure : This section first describes various polynomial approaches to freeform description and then explores some non-polynomial approaches.

XY Polynomials

Ye and Chen defined an XY surface as a base biconic + a series of XY polynomials up to the N th order (Ye & Chen, 2017, [9]). The polynomial is expanded into monomials of x m y n , where (m + n) < N :

z = cr 2 1 + 1 -(1 + k)c 2 r 2 + j c j x m y n (2.2.1)
where:

m is the order of x n is the order of y j = (m+n) 2 +m+3n 2 + 1 z = sag of the surface parallel to the z-axis c = curvature of the best sphere k = conic constant r = radial distance C j = coefficient for the x m y n monomial The XY-polynomials have been used in the first freeform commercial design, the Polaroid SX-70 (Plummer, 1982, [11]), up the the 3rd order. Note that XY polynomials are not orthogonal : when used to higherorder, they may cancel each other and create numerical instability. In design, careful attention must be given to the needed number of XY polynomials orders.

Zernike Polynomials

A most common description is to use a conic as a base surface + a weighted sum of Zernike polynomials. Using single indexing the expression may be given as :

z = cr 2 1 + 1 -(1 + k)c 2 r 2 + j c j+1 Z j (2.2.2)
where:

z = sag of the surface parallel to the z-axis c = curvature of the base sphere k = conic constant r = radial distance

Z j = j th Zernike Polynomial C j = coefficient for Z j
Zernike polynomials come into different indexes, orderings (e.g. Fringe vs Noll), normalizations (i.e. unity normalized vs. RMS normalized)... See the clear summary published by Lakshminarayana & Fleck [12].

Standard Zernike Polynomials (Fuerschbach, 2014, [5]) (Lakshminarayanan, 2011, [12]) :

Z m n (r, θ) = 2(n + 1) 1 + δ m0 Normalization factor (>1) n-|m| 2 k=0 (-1) k (n -k)! k!( n+m 2 -k)!( n-m 2 -k)! r n-2k    cos(|m|θ) for m ≥ 0 sin(|m|θ) for m < 0 Orthogonal Polynomial Orthonormal Polynomial (2.2.3)
where m ∈ N and n ∈ N + ; θ is the azimuthal coordinate in the pupil and δ m0 = 0 for m = 0.

The expression can be rewritten as :

Z m n (r, θ) = N n,m .R m n (r, θ) R m n , without its dependency of θ, is the Zernike Radial Function : ∀(n, m), R m n (1) = 1.
N n,m is the normalization factor. Following the Born & Wolf convention (Born & Wolf, 1980, [13]):

N n,m = 2(n + 1) 1 + δ m0 , which yields : 2π 0 1 0 Z 2 j r dr dθ = π.

Also:

The Zernike polynomials are continuous and orthogonal over a unit circle :

-Continuous : not orthogonal over a discrete set of points within the unit circle (see Ray Grids)

-Orthogonal : additional terms can be added without impact on those already computed.

The coefficient of each polynomial represents the RMS wavefront error attributable to it.

-In CodeV, the polynomials don't have the normalization factor. Their coefficients are the physical surface departure in λ. Positive values are in the positive z direction.

Mathematical Descriptions

A set of polynomials of order n 0 is defined as all the polynomials with n ≤ n 0 : {Z m n (r, θ), ∀n ≤ n 0 }. The total number of members in a set of order n 0 is calculated as follows :

N n0 = (n 0 + 1)(n 0 + 2) 2 (2.2.4)
The Fringe Zernike Polynomial set is based on the Standard Zernike Polynomial set but has a different ordering : this allows for a better fitting of the type of zonal errors that are commonly encountered when fabricating and testing large aspheric optical components. The table 2.2.1 lists the Zernike Polynomials up to the 7 th order.

The conversion from Standard to Fringe ordering follows (Gross, 2015, [14]) :

j = int n + |m| 2 + 1 2 -2|m| + 1 -sgn(m) 2 (2.2.5)
The Fringe set is commonly used set of polynomials and is natively implemented in most optical design software. It is implemented to the 37th order and will be the one I choose for my designs (see the Comparative Study of the various surface descriptions).

In optical testing, the Fringe Zernike set is described in a right-handed coordinate system with θ measured counter-clockwise from the x-axis. Note that when scaling the system up or down by some scale factor, both the coefficients and the Normalization Radius are scaled linearly by the scale factor. It is important to scale the normalization radius when the system evolves during the design phase.

An interactive tool designed to visualize the contributions of the polynomials to any surface deformation can be played with at (Wyant,[15]). 

Mathematical Descriptions

To help the reader visualize the Zernike surface representation, the figure below lists the Zernike polynomials in both Standard and Fringe orders. A freeform surface described by this set is therefore a combination of some of those polynomials. The terms associated with m = 0, 1, 2 are low-order aberrations terms : as stated by Rolland in [6] "they represent 100 years of symmetry in optical surfaces definition". Higher-order terms (m 3) drive the freeform revolution.

Although the Zernike polynomials are one of the best tools for representing wavefronts and optical surfaces, high-order terms become necessary for the representation of complex shapes. A representation based upon the explicit form of Zernikes (eq. 2.2.3) suffers from the round-off errors produced by numerical cancellation (Janssen & Dirksen, 2007, [17]), (Forbes, 2010, [18]), (Kaya, 2013, [19]). Even when using double-precision arithmetic, it is impossible to guarantee any accurate decimal places at all in Z m n (1.0) once n ≈> 20, leading to catastrophic computational errors at high-orders. Fortunately, a solution exists.

As discussed by Forbes in [18], any set of orthogonal polynomials P m can be defined by recurrence :

P n+1 (x) = (a n + b n x)P n (x) -c n P n-1 (x) (2.2.6)
Zernike are linked to Jacobi polynomials by

Z m n (x) = P (0,m) n (2x -1) over 0 ≤ x ≤ 1.
It follows that the recurrence relation's coefficients of equation 2.2.6 become, with s = m + 2n :

a n = - (s + 1)[(s -n) 2 + n 2 + s] (n + 1)(s -n + 1))s b n = ((s + 2)(s + 1) (n + 1)(s + n -1) c n = (s + 2)(s -n)n (n + 1)(s -n + 1)s (2.2.7)
As demonstrated in the figure below, the computational errors are avoided by using this recurrence relation. Any number, combination and derivatives of Zernikes can therefore be robustly and efficiently computed using equation 2.2.6 . This relation not only removes the round-off errors : it also reduces the computational cost from a O(N 2 ) process to a O(N ) process. This is illustrated in [18] when plotting a high-order term along with the error coming from both computations : This is even more obvious in 2D (Kaya, 2013, [19]), where the error differs by an order of magnitude. The fine scale details and the polynomial peaks at the edge are completely different : Thanks to the work of Forbes, we can significantly benefit by having faster, more versatile code that does not suffer from catastrophic round-off failure and can proceed to arbitrary orders. Note that other workarounds that don't involve recurrence relations have been developed, such as in (Janssen & Dirksen, 2007, [17]), but are not mentioned here. Knowing the theory behind freeform optical systems allows to target the limiting aberrations with specific shapes in a controlled manner, by only using the necessary shapes for aberration correction. This limits the overall freeform departure of a surface, thus decreasing system sensitivity, fabrication cost and testing difficulties. In addition, it reduces the required fabrication time, mitigating shape errors associated with tool wear and temperature stabilization (Bauer et al., 2018, [20]).

Ma et al. evaluated 2011 in [START_REF] Ma | Applying slope constrained q-type aspheres to develop higher performance lenses[END_REF] the performance of a lithographic lens using Q-type aspheric descriptions, with and without slope constraints. Working in extreme UV bands, lithographic lenses are at the edge of precision optics and represent a perfect way to measure the influence of a surface description on image quality, sensitivity, fabrication costs and testing conformance. Their study highlighted two points. First, optimizations based on Q-polynomials take similar time whether they are using or not the slope constraints (through QSG/QSL in CodeV, see eq. 2.2.9). And second, the slope-constrained design is not only more testable, it is also 3x less sensitive to assembly residuals.

The 2D version (see below) is an alternative to the Zernike polynomials that is often presented as superior in terms of design for manufacturability. However, (Takaki et al., 2018, [22]) showed that both sets present degeneracies in their descriptions, leading to undesirable compensation effects during the optimization process. Provided that the designer is experienced enough to control these degeneracies, (Takaki et al., 2019, [23]) demonstrated that the two sets yield similar results, both in terms of optical performances and manufacturability. In fact,

• the mean-square sag departure of a Zernike freeform surface is equal to the (weighted) square sum of the Zernike coefficients;

• the mean-square gradient normal departure of a 2D-Q freeform surface is equal to the square sum of the 2D-Q coefficients.

Therefore, applying a square-sum penalty during the optimization sequence (see [START_REF] Takaki | On-the-fly surface manufacturability constraints for freeform optical design enabled by orthogonal polynomials[END_REF]) with Zernike polynomials is a constraint on the sag departure of the surface, while it's a constraint on the slope with 2D-Q. Nevertheless, penalizing the sag and slope is almost identical in low order descriptions (typically up to the 37th term in CodeV), resulting in comparable performances for Zernike and 2D-Q.

The 2D case

Forbes developed two sets of orthogonal polynomials to describe rotationally symmetric surfaces (Forbes, 2012, [24]) :

Q con : orthogonal, characterized by the sag departure from the base conic;

Q bf s : gradient-orthogonal, RMS slope normal departure from a "best-fit sphere" (Forbes' meaning).

Extending his work to freeform surfaces, he proposed the Gradient-orthogonal Q-Polynomials, also known as the Forbes 2D Q-Polynomials :

z = cr 2 1 + √ 1 -c 2 r 2
Rotationally symmetric best-fit sphere

+ 1 √ 1 -c 2 r 2
Ensures 0 at the center & edge of the aperture

×            u 2 (1 -u 2 ) N n=0 a 0 n Q 0 n (u 2 ) Rotationally invariant 2D-Q + M m=1 u m N n=0 (a m n cos(mθ) + b m n sin(mθ))Q m n (u 2 ) Rotationally variant 2D-Q           
Departure from the best-fit sphere

(2.2.8)

where:

u = r rmax Q 0 n = rotationally symmetric slope-orthogonal Q bf s polynomial Q m n = gradient-orthogonal Q-polynomials
Due to the gradient-orthogonality, the square root of the sum of the squared coefficients equals the RMS value of the slope deviation :

RMS slope = m,n (a n m ) 2 + (b n m ) 2 (2.2.9)
This critical property enables to design systems with aspheres that comply with the fabricators guidelines on maximum testable slope. The "max slope error from the conic/bfs" command is accessible in CodeV via QSG/QSL.

Note that the average of z(r max , θ) over θ (noted z (r max , θ) ), is the sag of the best-fit sphere at the edge of the aperture : the δ(u, θ) component averages to zero. The curvature of the best-fit sphere (bfs) is computed as :

c bf s = 2 z (r max , θ) r m ax 2 + z (r max , θ) (2.2.10)
Just like the Zernike case, the use of (unconventional) recurrence relations is critical to the accuracy and convergence of the 2D-Q polynomials. For more information, see (Forbes, 2012, [24]).

Mathematical Descriptions

Chebyshev Polynomials

2D-Chebyshev polynomials are defined over a squared aperture in Cartesian coordinates (Goodwin et al., 2015, [25]), (Broemel et al., 2017, [10]) : The 1D-polynomials can also be defined by a recurrence relation :

z = c x 2 + y 2 1 + 1 -(1 + k)c 2 (x 2 + y 2 ) + n i=0 m j=0 c i,j T i (x) T j (ȳ) (2.
T 0 (x) = 1 T 1 (x) = x T n+1 (x) = 2xT n (x) -T n-1 (x)
Chebyshev polynomial set is derived in Cartesian coordinates, which -unlike many other polynomial freeform surfaces used to describe rotationally-symmetric systems -allows for straightforward definition of anamorphic or non-rotationally symmetric systems and non-elliptical apertures.

Legendre Polynomials

2D-Legendre polynomials are defined over a squared aperture in Cartesian coordinates, very similarly to the Chebyshev ones :

z = c x 2 + y 2 1 + 1 -(1 + k)c 2 (x 2 + y 2 ) + n i=0 m j=0 c i,j P i (x) P j (ȳ) (2.2.12) with P n (x) = 1 2 n n k=0 k n 2 (x -1) n-k (x + 1) k .
The initial terms of the recurrence relation are :

P 0 (x) = 1 P 1 (x) = x (n + 1)P n+1 (x) = (2n + 1)xP n (x) -nP n-1 (x)

Bernstein Polynomials

A Bernstein polynomial surface is defined by a conic + an aspheric component in Cartesian coordinates :

z = c x 2 + y 2 1 + 1 -(1 + k)c 2 (x 2 + y 2 ) + n i=0 m j=0 c i,j B n,d i,j (x, y) (2.2.13)
Since the original Bernstein polynomials are not orthogonal, Gray et al. (Gray et al., 2011, [26]) (Pascal et al., 2012, [27]) developed an orthonormal basis with a singular value decomposition. The modified expression is defined on a square domain Unlike Zernike polynomials, where each polynomial affects the whole surface, Bernstein polynomials have the benefit of allowing for local corrections. Each Bernstein polynomial has one single maximum located at a specific position on the surface, so it acts locally and can be considered as a local influence function.

[-d; d] × [-d; d] : B n,d i,j (x, y) = B n i (x, y) B d j (x, y) = i n d + x 2d i d -x 2d n-i × j n d + y 2d
Bernstein polynomials lie at the border between polynomials-based descriptions and more exotic approaches. Orthonormal Bernsteins yield the power and computational efficiency of their polynomials, while allowing for a fine control over the local shapes of the surface.

Mathematical Descriptions

The two following surface descriptions leave out the polynomial approach, yielding the advantage of being valid across any aperture shape.

RBFs -Radial Basis Functions

When dealing with a surface that has bumps on it, the mathematical description requires a high number of Zernike polynomials. Radial Basis Functions address this problem by locally shaping the surface with, for example, small Gaussians of varying amplitudes (Fasshauer, 2007, [START_REF] Gregory | Meshfree approximation methods with MATLAB[END_REF]), (Cakmakci et al., 2008 [29]), (Cakmakci, 2010, [30]).

A RBF freeform surface is described in radial coordinates (Kaya, 2013, [19]), as :

z(x) = n j=1 a j Φ ε 2 x -x j 2
where:

a j = weights in the combination x j = center x = point in the aperture ε = shape factor Φ = basis functions However, a theoretical and practical question remains : the optimal placement x j and shape factor ε for the basis functions (Maksimovic, 2016, [31]) (especially for small ε as shown in (Kaya, 2013, [19])).

There is a need for stability and accuracy in the optimization algorithm, and for a reduction of the number of basis functions required to describe a freeform surface within the manufacturing/measurement accuracy. This method provides equal results as Zernike polynomials but is not recommended since it requires a lot of computing power and skill to yield the same results.

NURBS -Non Uniform Rational Basis Spline

While Zernike formulations arose from optical testing, NURBS emerge from mechanical computer aideddesign (CAD) and are also found in various 3D-modeling and animation software packages. The most important property of an NURBS surface is the local control of the surface shape, because it is formed from piece-wise splines (Jester et al., 2011, [32]).

The surface is defined by the set of grid control points with their weights, together with the knot vectors (Chrisp et al., 2016, [START_REF] Michael P Chrisp | Imaging freeform optical systems designed with nurbs surfaces[END_REF]).

Only the 16 closest grid control points affect the surface shape at the ray intersection. To change the direction of ray 1, its 16 grid control points can be moved, leaving ray 2 unchanged.

NURBS are, however, not broadly used in the current imaging community.

Comparative Study

The desirable attributes for freeform surface representation are (Maksimovic, 2016, [31]) :

the ability to represent both global and local surface features and shapes, the adaptability to arbitrary apertures, the numerical efficiency and robustness to numerical round-off errors, an easy connection to the manufacturing constraints and incorporation of measurement data.

Bearing this in mind, let's compare the various sets described early-on :

XY-polynomials are a simple and available tool to model freeform surfaces, which is included in many optical design software. But they do not compose an orthogonal basis and are not normalized, implying that the individual terms do not have any physical meaning and tend to compensate each other during optimization.

Fringe Zernike polynomials is currently the most widely used set thanks to its stability and accuracy in describing optical aberrations; it is also directly linked to the observed aberrations via interferometry in the testing phase (Zernike have been adopted by optical testing companies in the 1970s).

Zernike are however not suited to describe high-frequency surface errors after fabrication, since those cannot be represented using a reasonable number of terms. They are also not well-suited for non-circular apertures, even though orthonormalized Zernike for arbitrary shapes have been developed (Mahajan & Dai, 2006, [START_REF] Virendra | Orthonormal polynomials for hexagonal pupils[END_REF]). This set is natively implemented in most commercial optical design software.

Q-Polynomials give the same level of control over the surface description than Zernike, while facilitating the enforcement of fabrication constraints, e.g. the deviation of the normal vector from the best-fit sphere.

Legendre polynomials, unlike Zernikes, are orthogonal over a square aperture, where they yield the best results of all sets. Unfortunately, they are not natively present in design software and must be carefully user-defined.

Chebyshev Polynomials give slightly poorer performances than Legendre polys over square apertures.

Bernstein polynomials yield the same results as Zernike polynomials [15], but are not natively implemented in commercial optical design software. They have the advantage of allowing for local corrections on the surface.

RBFs have the benefits of precisely describing high-frequency features on optical surfaces such as small bumps, and are not restricted by a domain shape. However, they have the drawback of requiring a lot of computing power and skill to yield the same results as Zernikes.

NURBS are a standard surface type in computer-aided design (CAD) software : they offer an attractive surface description when data must be exchanged between optical design and CAD tools. They are also well adapted to represent both local and global structures of the surface. However, the major optical design programs are yet not capable of optimizing NURBS surfaces in imaging systems.

Mathematical Descriptions

The properties of all these surface representations are listed in table 2.2.2 : Orthogonality in slope : correction of the transverse aberrations (they are linear relative to the gradient of the wavefront). The expansion coefficients are directly related to the slope of the surface, and can be used for the tolerancing of freeform surfaces.

The case of squared apertures :

Studies (Nikolic et al., 2016 [START_REF] Milena I Nikolic | Optical design through optimization for rectangular apertures using freeform orthogonal polynomials: a case study[END_REF]) and (Muslimov et al., 2017, [36]) evaluated the influence of various descriptions in the optimization of square freeform mirrors. With identical optimization procedures under Zemax, Legendre polynomials allow to achieve better performance (spot size & distortion) than XY-polys, standard Zernike or "square-orthogonal" Zernike (by applying a Gram-Schmidt orthogonalization to eq. 2.2.3, see (Wolfram, [37])) over squared apertures, both at the center and edge of the field.

In Earth observation missions, the field is almost always rectangular : the use of Legendre polynomials can be a strong leap forward in the search for the best result. However, Legendre polynomials are yet not natively implemented in commercial software like Zemax and CodeV and must be carefully user-defined as a new surface description (especially for the recurrence relations and high-order terms).
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Normalization Radius

As stated above, the orthogonal polynomials used to describe the surfaces are defined over an arbitrary area called the normalization radius.

Liu & Gross [START_REF] Liu | Numerical optimization strategy for multi-lens imaging systems containing freeform surfaces[END_REF] evaluated the impact of this radius on the aberration correction, via the definition of a normalization ratio :

k = Normalization Radius Surface Radius
If k«1, the freeform is defined over a smaller area than the surface's clear aperture. Outside, the surface is still spherical, producing a step-like discontinuity. Extrapolation is possible but not optimal.

If k»1, the normalization radius is larger than the surface clear aperture. The central part is relatively flatter compared with the edge region, at least for the lower orders of the Zernike polynomials. In consequence, the freeform will only weakly contribute to the overall correction.

To achieve the best performance of the freeform surface, k must be set close to 1.

Ray Grids

The entrance pupil grid sampling is critical for non-rotationally-symmetric systems. Since the symmetry is broken, the surfaces' description can locally severely vary : if not enough points sample those variations, false calculations may arise in the error function. The importance of ray sampling is often underestimated : for example, Zernike polynomials are not orthogonal for discrete points, but for high sampling densities they are almost orthogonal.

In the presence of non-rotationally symmetric surfaces, tilts or decenters out of the Y-Z plane, or X components in the specification of the field points, rays are traced in the full pupil. Several types of grids are possible, the first two being natively implemented in optical design software (CODE V Optimization Reference Manual, [START_REF]Ray Grids for Optimization[END_REF]).

Rectangular Grid :

The default grid provides a 12-ray pattern in the half pupil (CodeV).

For systems with non-spherical surfaces (including freeform), the grid is automatically adjusted to a 34-ray pattern in the half pupil.

Gaussian Quadrature Radial Grid : An alternative to the rectangular grid of rays across the entrance pupil is a radial grid composed of rings and spokes. The rings near the edge of the pupil are more closely spaced, giving better sampling there without tracing unnecessary rays near the center of the pupil.

Ray Grids

In optical design, the number of sample points is minimal (<100) due the high number of parameters and constraints involved in the optimization process. However, once a solution is established, the analysis of the performance is typically conducted with hundreds of thousands if not millions of ray samples per surface. The grids presented above do not yield the best results when a Zernike Polynomials fit of the surface is performed at very high resolution, or a re-optimization round after a test sequence (Kaya et al., 2011, [40]), (Kaya et al., 2012, [41]). Other types of grids are possible :

Hexagonal Grid :

The unit circle is divided into regular hexagonal cells. The center point for each hexagonal cell is also included as a sample point. A circular aperture is more uniformly covered with hexagons rather than rectangular cells.

Chebyshev-Polar Grid :

The sample points are placed along an expanding set of circles at the roots of the Chebyshev polynomial of degree N in the r direction. The radii of the circles are given as r k = cos Bearing this in mind, one should note that :

The computational time to solve a least N square problem grows with O(N 3 ), where N is the total number of samples across the aperture.

The number of samples on each grid has been empirically determined as approximately 9k 2 , where k is the highest order of the polynomials in the least square fit (Kaya, 2013, [19]).

The four grids have been tested by Kaya et al. with a least-squares approximation of the Franke surface, a stressing example of the important characteristics of a next generation optical freeform surface : The edge-clustered grid clearly shows the best results : it is the only grid that achieves sub-nanometer accuracy levels (i.e. 10 -10 m). The stable and exponentially decaying errors produced by the edgeclustered sampling make it the method of choice for fitting Zernike polynomials to freeform optical surfaces. Unfortunately, this grid is not natively supported by commercial optical design software.

In definitive, it appears that it is not so much the type of the Φ-polynomials (Zernike or Q-polys) but the type of the sampling grid that dominates the magnitude of the errors in RMS fit residuals !

Full Field Displays (FFDs)

In rotationally-symmetric systems, a few field points are necessary to accurately sample the whole field. This assumption is not valid anymore once the symmetry is broken : a dense analysis is needed, conducted using Full Field Displays (FFDs). An FFD represents the magnitude and, where appropriate, orientation of a given aberration across the full FOV.

The usual 3 fields points, at normalized radial distances in the pupil of 0, 0,7 & 1, assume that the system is rotationally-symmetric. This way, the two sections defined by the 3 points have the same area and thus include the same number of rays. The field-dependent aberrations are therefore well-sampled and the center of the pupil is not over-sampled, saving this way computing power.

This effect must be carefully looked at when designing rotationally-symmetric aspheric surfaces (conics, aspheres, Q con , Q bf s . . . ). The first rounds of optimization can be performed with the usual 3 field points, but as the system improves towards a local minimum the designer should carefully add intermediate field points.

A display of the third-order aberrations (expressed as Fringe Zernike aberrations) as a function of field of view is a powerful tool known as Full Field Display (FFD), which has been invented by K. Thompson at Perkin Elmer in 1984, following the development of his Nodal Aberration Theory (NAT) (Theory in (Thompson, 2005, [42]), visual explanation in (Rogers, 1999, [START_REF] John R Rogers | Design techniques for systems containing tilted components[END_REF])).

The development of FFDs in CodeV has been funded in the late 90s by the American Defense Advanced Research Projects Agency (DARPA). They allowed for the rise of complex optical systems through the analysis of their surfaces' contributions, aberration by aberration. By fitting the wavefront, this tool evaluates the magnitude and orientation of the relevant Zernike coefficients at each field point and displays them. The size of the plot symbol is linearly proportional to the magnitude of the aberration, and, when relevant, the oriented components are illustrated. From here on, it's not just about the RMS wavefront error, but also about the uniformity of the response displayed by the FFD.

Accessing the FFD tool in CodeV : Those dependencies are at the core of the aberration theory of freeform optics (Thompson, 2005, [42]). For example :

Coma is linear with the field in rotationally-symmetric systems. But with freeform, coma can take different forms : it can be constant with the field, linear with the field and/or field asymmetric.

Astigmatism is quadratic with the field for rotationally-symmetric systems. With freeform, it can become field-constant, asymmetric, conjugate, quadratic, hybrid cubic. . . or even a combination of those.

Figure 2.5.2:

The shapes astigmatism can take in freeform systems. From [6].

The predicted aberration fields are at the core of any freeform design. An aberration with a specific field dependence can be created by adding a corresponding Zernike term on a surface. A design procedure for systems involving freeform surfaces is detailed in the next section. 

Design Procedure

Recently, in 2018, Bauer et al. [START_REF] Bauer | Starting geometry creation and design method for freeform optics[END_REF] published an excellent article on a dedicated freeform design procedure, using Zernike polynomials. It redefines the way an optical designer should address a freeform problem : first by having a solid understanding of the influence of the surface shapes on the aberrations, second by putting an emphasis on the quality of the starting point of the design, and third by paying close attention to the contributions of the aberrations during the optimization process.

Influence of the surface shapes on the aberrations

The Nodal Aberration Theory states that when breaking the symmetry, no new aberrations are created. Instead, they develop new field dependencies that need to be carefully analyzed using FFDs. The following section lists various low-order Fringe Zernike surface shapes and their influence(s) on the overall aberrations. Their use in the optimization process is detailed later on.

If you put an aberration on a surface that is IN the aperture stop, you can only create a field-constant version of this aberration. To create any type of other field dependence, you need to put this aberration on a surface that is AWAY from the aperture stop. Secondary Coma Z 14/15

Starting Point

In the case of off-axis unobscured telescopes, (Bauer et al., 2018, [20]) proposed :

"Instead of first constructing a fully obscured rotationally symmetric system that is corrected through third-order then tilting the surfaces into a planar symmetric unobscured geometry as one might do with an off-axis conic or asphere design, this method focuses on first developing the geometries that are conducive to the application of freeform surfaces".

In other words, the most critical consideration when working on a freeform system is to find the best starting point possible, since it will massively influence the result of the whole design process (as demonstrated in (Bauer et al., 2018, [20])). A designer shall drop his habits and assumptions when working with freeform systems.

As a general example, let's consider an optical system with N surfaces.

First things first, create a list of all possible starting geometries.

Step 1 : set all airspaces between each surface to be roughly equivalent to take full advantage of the allowed volume

Steps 2 to N : assign radius of curvature values c to the first N -1 optical surfaces :

-c < 0 : set c ≈ 1.5 -2.

5× the chosen airspace value;

c > 0 : set c ≈ 3 -4× the chosen airspace value.

Step N + 1 : the power of the final surface is chosen to hold the focal length of the system. Now, the best geometry must be selected from the possible starting points. Counter-intuitively, it's not necessarily the geometry with the least overall aberrations that will perform best, but the one that passes the 3 following filters.

Filter 1 :

-Hypothesis : A coma shape can address FAFL astig & FC coma simultaneously only if the relative orientation is correct.

→ To pass filter 1, the geometry must produce FAFL astig & FC coma of the same relative orientation.

Filter 2 :

-Hypothesis : The coma shape also adds a focal plane tilt.

→ The coma shape used to correct the FAFL astig & FC coma must decrease the focal plane tilt intrinsic to the system, not increase it.

Filter 3 :

-Hypothesis : Field curvature (defocus) is not apparent in the starting geometry, but it will eventually limit the system if not addressed; the mirror powers and airspaces for field-curvature correction may require extreme tilts/mirror speeds.

→ Look for geometries that can have a flat-field solution with moderate tilts and surface F/#.

These filters greatly narrow down the design space and allow for a smart design yielding not a result, but the best result. If this starting geometry search isn't conducted and a random starting point is selected, the final system might not have the expected performances. As demonstrated in the Supplementary Notes of (Bauer et al., 2018, [20])), choosing a random starting point can lead to 65x poorer performances with the same constraints as the optimal starting point ! This process will be applied here, by conducting an extensive starting point search in the Segmented Ritchey-Chretien -The search for a starting point chapter.

Optimization

Now that the starting geometry has been selected, a smart analysis of the system's aberrations leads to select only a few possible surface shapes to reach the wanted performances. Instead of slowly increasing the order of the polynomials as one would do for aspheric surfaces or in a conventional optimization, the freeform coefficients are added by using the aberration theory to determine the freeform term and surface to modify next.

The first aberrations to be addressed are the rotationally variant ones, since they are usually tilt-induced and are orders of magnitude greater than the rotationally invariant ones.

Using the relations between the surface shapes and the generated aberrations (as listed in the Influence of the surface shapes on the aberrations section) and intensively using the information provided by the FFDs, the design process becomes a back-and-forth routine, where a shape is added, then the system is analyzed, then another shape is added to correct for the residual aberrations, then analyzed. . .

Once the system is no longer limited by rotationally variant aberrations, but rather by third-order rotationally invariant aberrations (namely astigmatism, coma, and spherical aberration), the time has come to add conic components to the surface shapes.

Going back to freeform shapes and rounds of optimization can now allow for a diffraction-limited system.

Tolerancing

The tolerancing of a freeform surface is more challenging than the traditional spherical/conical shapes, whose simulation, manufacturing and testing are well mastered in the industry. This section describes various tools and methods that the optical designer can use to model the artifacts that the polishing process can produce on aspheric and freeform surfaces. CodeV's TOR environment1 is perfectly suited to the description of surface form errors, but the software's capability to generate random perturbed surfaces from predefined tolerances is limited. Therefore, when the system needs to be toleranced outside of TOR (using a Monte-Carlo process for example, when a very specific tolerancing procedure has to be simulated or when grouped tolerances need to be implemented), new tools need to be developed to bypass this limitation and still allow the designer to accurately describe the surface form deviations.

Using CodeV's TOR

Dr. John Rogers of ORA Engineering Services determined (Rogers, 2007, [START_REF] John R Rogers | Slope error tolerances for optical surfaces[END_REF]) (Rogers, 2011, [START_REF] John R Rogers | Orthogonal polynomials and tolerancing[END_REF]) that due to the lack of orthogonality of the aspheric polynomials in traditional Power Series descriptions, it is not possible to directly place tolerances on their coefficients. In the freeform space, XY-Polynomials still have this limitation, while Zernike or Q-Polys don't. He showed however that a RMS surface departure tolerance combined with a surface slope tolerance is a useful metric for the specification of an asphere/freeform. They do not depend on the surface's description, as long as the number of rays across the surface is enough to sample isolated features such as bumps (especially away from the stop).

In CodeV's TOR, these errors are modeled via the RPS & RSE commands : a rotationally symmetric cosine slope variation and a correlated random surface error.

Cosine Ripple Slope (RPS)

By applying a slope tolerance, you can effectively control the performance at the MTF's low spatial frequencies. The curves on fig. 2.7.1 (Rogers, 2007, [START_REF] John R Rogers | Slope error tolerances for optical surfaces[END_REF]) represent various periods of a 50µrad slope error across the part. The slope error is produced by internally modeling a cosinusoidal ripple across the surface. While you could not expect an actual part to be produced with a periodic ripple across the entire aperture, this tolerance is a worst case representation. More likely, the slope errors will be localized in one or more zones. By using the worst-case representation, it helps solve the problem of guarantying that adequate sampling of the error is done (because it distributes the error across the entire surface). Defining a peak surface slope error tends to "protect" the MTF performance at lower spatial frequencies (e.g., 10% of the cut-off frequency). This makes the RPS tolerance type particularly useful when using a MTF performance metric. The correlation distance impacts the MTF in the following manner :

RMS surface error (RSE)

A very small correlation distance impacts performance for all frequencies of the MTF; As the correlation distance increases, the MTF performance at low frequencies is more degraded than at high frequencies; When the correlation distance becomes about the size of the beam or larger, there is very little impact on performance : most of the aberration is wavefront tilt, which typically doesn't impact RMS wavefront error. Although the slope error can be partially corrected by a defocus, the random nature of the RMS surface error prevents it from being compensated. RPS & RSE provide an accurate way of describing aspheric/freeform surface form tolerances in CodeV's very fast TOR, and allow for a rapid estimation of their influences on the image quality.

Generation of random surface errors outside of CodeV's TOR

The two tolerance types described above, RSE & RPS, can be integrated in a TOR sequence in CodeV. However, it is often useful to perform a statistical study of the system's behavior by simulating hundreds of random manufacturing cases, especially when particular compensation methods are involved. This is done by setting up the set of tolerances on the nominal system and perturbing it using the TSF CHA G2D command. This changes the lens to correspond with the values of the selected tolerances/compensators, by applying a truncated Gaussian probability distribution for the magnitude of 2D decenter tolerances, with equal probability on the orientation. Unfortunately, TSF CHA -in CodeV's version 11.3 -ignores surface deformation tolerances (QCN, QBF, ZRN, ZFR, RSE, RPA, and RPS). It is therefore not possible to modify the surface form of a lens using this command.

The primary goal is to accurately describe the nominal surface departure accordingly to a manufacturer capabilities, as well as to ease the process of exchanging with them. At the time of writing, a good specification for freeform optics tolerances is a combination of :

Radius of curvature departure -A Total RMS deviation from the nominal surface -RMSt Sometimes along with an RMS slope deviation spec -RMS∆s Outside of TOR, the challenge is to accurately describe RMSt by predicting as closely as possible the properties of the deviation that the polishing process will produce. However, the designer usually has very little information about the capabilities of a specific manufacturer.

The manufacturer will often specify RMSt without further details, the sag deviation data should be computed using RMSt as a unique starting point;

The typical shape of the PSD of an optical surface has been discussed in the literature (Jacobs et al., 2017, [START_REF] Tevis | Quantitative characterization of surface topography using spectral analysis[END_REF]) and can be used to model such a surface.

Bearing this in mind, the following discusses a novel method that simulates the manufacturing errors by generating random error maps with predefined deformation amplitudes (RMSt) and characteristics (PSD). The error maps are stored in CodeV .int files, which are added to the nominal surfaces.

This method yields two major advantages :

It is not limited to freeform surfaces and can be applied to any arbitrary surface shape;

It provides a framework that can be fine-tuned to model the effects of a specific polishing tool, using production lines statistics.

This process is done using the properties of the Fourier Transform and the Power Spectral Density, which are stated hereafter.

Notes on The Fourier Transform (Bracewell, 1986, [START_REF] Newbold | The Fourier transform and its applications[END_REF]), (Heinzel et al., 2002, [48])

The Fourier Transform F decomposes a signal into its constituent frequencies : given a smoothie, it finds the recipe. The FT of a 1D continuous and integrable function and its inverse transform are defined as:

H(q) = +∞ -∞ h(x) • e -2iπqx dx h(x) = +∞ -∞ H(q) • e +2iπqx dq (2.7.1)
In this form, two successive transformations are made to yield the original function :

h(x) = +∞ -∞ +∞ -∞ h(x) • e -2iπqx dx • e +2iπqx dq 48 2.7. Tolerancing
In the case of discrete data, this becomes (this is also Matlab's definition 2 ) :

H k = N -1 k=0 h n • e -2iπkn N h n = 1 N N -1 k=0 H k • e +2iπkn N (2.7.2)
Moving to 2D data, the Fourier transform is defined as :

H(p, q) = +∞ -∞ +∞ -∞ h(x, y) • e -2iπ(px+qy) dx dy h(x, y) = +∞ -∞ +∞ -∞ H(p, q) • e +2iπ(px+vq) dp dq (2.7.3)
which gives :

H k,l = N -1 m=0 M -1 n=0 h m,n • e -2iπ( km M + ln N ) h m,n = 1 M N N -1 k=0 M -1 l=0 H k,l • e +2iπ( km M + ln N ) (2.7.4) 
Focus on the convolution properties of the Fourier transform :

The convolution of two functions g(x) and h(x) is commutative and is defined as :

+∞ -∞ g(t)h(x -t)dt or simply g(x) * h(x)
And the convolution of the function with itself, also known as the autocorrelation, is :

+∞ -∞ h(t)h(t ± x)dt or simply h(x) h(x)
In the Fourier space, the convolution has an interesting property :

F[g(x) * h(x)] = F[g(x)] • F[h(x)].
The definition of the Fourier transform allows us to move to the Power Spectral Density, a feature derived from the properties of the FT.

2 Matlab's array start at 1, so this is rigorously defined in the software as A useful feature of the PSD comes from Parseval's theorem, which is a statement of the conservation of energy. The theorem states that the total energy computed in the spatial domain must equal the total energy computed in the spatial frequency domain. In other words, no loss of energy (or power) should occur during the transformation from one space into another. For a continuous integrable function, this gives (look for the proof page 119 of (Bracewell, 1986, [START_REF] Newbold | The Fourier transform and its applications[END_REF])) :

H k = N k=1 hne -2iπ(k-1)(n-1) N
+∞ -∞ |h(x)| 2 dx = +∞ -∞ |H(q)| 2 dq (2.7.5)
or in the case of discrete data :

N -1 n=0 |h n | 2 = 1 N N -1 k=0 |H k | 2 (2.7.6)
Parseval's theorem can be interpreted to mean that the energy of a signal h is the result of the energies contributed by all its spectral components. Provided that the mean of the signal has been removed, the variance of the height profile is the area under the PSD, which is equal to its RMS power squared.

Expressed in terms of a 1D signal (e.g. a line-scan from a stylus profilometer) :

RM St 2 = +∞ -∞ |h(x)| 2 dx = +∞ -∞ |H(q)| 2 dq = +∞ -∞ |F T (h(x))| 2 dq = +∞ -∞ P SD 1D (q)dq (2.7.7)
The units of P SD 1D are [m 3 ] and the units of q are [m -1 ], such that RMSt has the units of [m 2 ].

For a 2D-signal (e.g. a topography map), this becomes :

RM St 2 = +∞ -∞ +∞ -∞ P SD 2D (q x , q y ) dq x dq y (2.7.8)
The units of P SD 2D are [m 4 ] and the units of q x & q y are [m -1 ], such that RMSt has the units of [m 2 ].
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When the real-space surface is isotropic (which is the case for optical surfaces), the 2D PSD is radially symmetric and can be azimuthally averaged about its origin. Following (Jacobs et al., 2017, [START_REF] Tevis | Quantitative characterization of surface topography using spectral analysis[END_REF]), converting to polar coordinates and integrating out θ yields a factor of 2π since P SD iso (iso for isotropic) is invariant with θ. This gives :

RM St 2 = 2π +∞ 0
qP SD iso (q)dq (2.7.9)

The units of P SD iso are still [m 4 ] and the units of q are [m For concision purposes, the averaged version P SD iso will be used in the following but will simply be referred to as "PSD". The theoretical definition of the PSD for a self-affine surface (whose roughness consists in asperities covered by asperities, and so on) is as follows (Jacobs et al., 2017, [START_REF] Tevis | Quantitative characterization of surface topography using spectral analysis[END_REF]) :

P SD(q) = C 0 *                0 for q < q r q -2-2H
L for q r q < q L q -2-2H for q L q < q s 0 for q q s (2.7.10) C 0 is a constant;

H is the Hurst exponent of the topography, typically 0.8 for optical surfaces;

q r = 1 D
is the lowest involved spatial frequency;

q L is the roll-off frequency;

q s = 1 2 × P ixelSize
is the highest frequency defined by the resolution of the instrument used for the highest resolution topography measurement. Influence of the roll-off frequency When measuring the surface form of optical surfaces, it is common practice to remove the piston, tip & tilt from the data. This produces a straight-line PSD in loglog representation, whose power is precisely RMSt. Some manufacturers remove in addition the product of the fit with the first 36 Zernike, e.g. the low frequency figure error, and therefore provide the measurement for the mid spatial frequencies and roughness of the surface. This does not induce an information loss but modifies the shape of the final PSD : it removes the contribution from the low end of the spectrum and a roll-off frequency q L appears. Since data has been removed from the measurement set, the provided power is not the expected RMSt, but a lower value. These two cases are represented in fig. 2.7.7 : Since the goal is to represent the whole manufacturing error through its PSD, the case without roll-off is chosen. This choice is confirmed by looking at typical diamond-turned surface with computer-controlled post-polishing, which has kindly been provided by Mr. Lammers from the Institute of Fraunhofer : The roughness data for this PSD was taken with a white light interferometer on a metal freeform mirror, that was diamond turned and then polished with a computer-controlled polishing. The diamond tool marks with a period of 2 to 6 µm are removed by the polishing, while the small peaks in the range of 1 to 10 mm -1 are mid-spatial frequency errors already introduced by diamond turning that cannot be removed with the polishing.

Generation of random error maps

The definition of eq. 2.7.10 of the PSD is used to create synthetic, computer-generated surfaces that have the physical properties of the errors produced by a typical polishing process : for example, diamond-turned surfaces with computer-controlled post-polishing. Note that these surfaces only represent the error, e.g. the departure from the nominal surface which is to be toleranced. Following the method from (Jacobs et al., 2017, [START_REF] Tevis | Quantitative characterization of surface topography using spectral analysis[END_REF]), we start with a self-affine PSD in the form of eq. 2.7.10, whose power is the RM St specified by the manufacturer. The frequencies of interest are defined according to the diameter of the surface and the desired number of pixels (128x128 pixels, to get enough sampling in CodeV), and a random phase shift is chosen in [0, 2π[ from a uniform distribution. The Matlab code, produced by M. Kanafi, that inspired this method can be found at [START_REF] Kanafi | Surface generator: artificial randomly rough surfaces. matlab central file exchange[END_REF].

The process is summed up in fig. 2.7.9. Everything is computed in 2D but for plotting purposes only the 2D PSDs are presented as their 1D azimuthal average. Without a roll-off, all the frequencies from figure error to roughness are generated. The resulting error map has big 'mountains' and small 'peaks'.

The higher the roll-off is, the smaller the contribution of low frequencies will be. In this case, only the high frequencies -the small 'peaks' -remain in the error map.

In this examples, the input PSD is in its simplest form. This method is a framework that can be fine-tuned to simulate the effects of a particular polishing tool, using statistics from production lines outputs.

Since this random surface is meant to be generated hundreds of times to simulate hundreds of manufacturing cases, it is interesting to take a look at the statistical properties of the process. It appears that statistically speaking, the "measured" data is close to the inputs at high spatial frequencies but somewhat differs for the figure errors. This is due to the sampling of the data in the frequency space, where less points are taken near the origin.

The computer-generated error maps are exported to CodeV in the form of .int interferogram files. A .int is a file used to represent interferometric deformation data that is assigned to a surface of the system, making possible -among other things -the prediction of performance of "as-built" systems. All calculations and options that use ray tracing will show the effects of the added data; note that interferometric data does not affect first-order ray tracing. The effect of surface deformation is additive, meaning that CodeV will simply add the contribution of each .int file if several of them are assigned to a surface.

A .int file is added to a surface using the command :

INT Sk [L'label'] filename
The input to check and visualize how the data has been assigned to the surface is simply : Note that when ZFRFIT is used, the number of coefficients is rounded up to complete the order. For example, if 13 terms are requested, 15 are calculated (completing the 4th order). In the present case, the entire available Fringe Zernike set will be used. Hence, the .int data of the surface in fig. This versatile error map generation method is not dependant on the surface's mathematical description and can be adapted to any surface size and shape. It is also accurate enough to simulate the effects of any polishing tool, provided that the corresponding PSD matches the expected output of the production line.

This whole tolerancing section is tested on the subject of this thesis, in the Tolerancing section of the Segmented Ritchey-Chretien's optical design chapter.
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Conclusion

After exploring the main mathematical descriptions that are currently available, it is clear that the research is still on-going. Even though the Zernike are the main go-to solution for freeform simulation, alternatives such as Forbes' 2D-Qs polynomials are starting to gain traction. The special case of rectangular apertures can be addressed via the orthogonalization of the Zernike, but the optimal solution is to design with Legendre polynomials. The true capabilities of all the discussed descriptions will only truly be known after commercial optical design software companies start implementing them and after many programs around the world start producing results with them. This is also true for ray sampling grids, which are currently barely discussed in the litterature.

We have also seen that when working with freeform optics the designer should change his mindset from an all-optimizer, brute force approach ("more coefficients for a better result"), to a starting point focused method that carefully analyzes the aberrations arising in the system.

Lastly, tolerancing the sag departures of non-rationally symmetric surfaces requires to know a priori the influence of the polishing process on the material, as the frequencies described by the PSD depend on the tool used. An accurate first order simulation using Matlab has been discussed, resulting in random predefined sag errors stored in .int files.

This whole chapter comes to an end and can be summed up in a few practical points :

Chapter 3

Segmented Ritchey-Chretien -The search for a starting point

This Chapter sums up the topic that kept me busy for most of my PhD Thesis : the optical segmentation of focal planes. As explained at the end of the Introduction, the goal is to find a way to reduce the size of the TDI detectors used in high-resolution and wide-field Earth observations telescopes. This work investigates a way to do it optically, by cutting the image of a telescope into smaller images with additional mirrors after its focal plane.

As the use of freeform optics was mandatory, the starting point of the optimization is a critical aspect of the design : this chapter is dedicated to establishing a reference for future engineers willing to work on a system of this kind.

The layout of this chapter is detailed in table 3.0.1 : After an introduction to the concept of focal plane segmentation, the parameters of a hypothetical mission that plants the environment of the search are detailed. A trade-off concerning the base telescope is conducted then the whole system is built up from scratch using a geometrical optics approach. Starting with the equations of a Ritchey-Chretien telescope, the parameters for the Segmentation Unit are computed. Optimization and tolerancing are left for the following chapter (see Optimization and tolerancing).

3.1. The concept

The concept

This work proposes a novel technique -briefly described in the Introduction -that consists in segmenting the linear image of a push-broom telescope into smaller sub-images that are stacked on a CMOS TDI sensor. It is therefore possible to drastically reduce the linear size of the array, at the expense however of the complexity of the optical system. Starting from this idea, (Jahn et al., 2017, [8]) proposed an innovative optical system based on a reversed IFU technology : the linear field-of-view is subdivided with segmenting mirrors and re-imaged on a 2D array detector. This allows to design a wide-field and high-resolution imager in a smaller volume. The main difficulty for such a system mainly comes from the gap, in term of field-of-view, between classical IFU spectrometers (few arcseconds) and a large swath imaging system (1 or 2°). To further illustrate the concept of focal plane segmentation, let's consider a hypothetical mission with the following parameters : Swath = 20km, Pixel Pitch = 5.5µm, GSD = 15cm (Ground Sampling Distance, i.e. the resolution), the size of the focal plane would be :

Focal plane size = Swath × P itch GSD = 0.73m
This gives a good estimation of the bulk of the detector : it cannot be much bigger without triggering a cascade of problems (mechanical stability at launch and in-flight, cost of the electronics, size of the mechanical structure, heat dissipation...). A solution is to cut the image into smaller sub-images (called modules) and to stack them on a smaller sensor. The concept is illustrated in figure 3.1.6 : A preliminary feasibility study has been conducted by W. Jahn during his PhD thesis [9], showing that reaching the diffraction limit is possible for a few sub-images, while at the same time allowing for a 17x reduction of the focal plane size. Jahn proposed the system of fig. The system investigated in this thesis is based on Jahn's work and extends the results to the whole field-of-view while exploring a broader design space. The novelty of this thesis resides in the in-depth study of the synergy between the base telescope and the Segmentation Unit (see section 3.3 below), leading to use a two-mirror Ritchey-Chretien in place of a three-mirror Korsch telescope. A rigorous starting-point search has been conducted, combined in an automated process with a sequential optimization process. Lastly, two tolerancing procedures have been explored, increasing our overall understanding of the behavior of the system and its potential manufacturabilty. This Thesis has lead to the filling of a patent, which preliminary deposition can be found in Appendix -Patent.

The concept

A CodeV schematic of the system in this thesis is depicted in fig. 3.1.8. The absence of the Korsch's M3 and the deformable mirror result in a simpler, smaller system than Jahn's. The whole telescope is characterized by its focal length F , which is the product of the Ritchey-Chretien focal length f c and the Segmentation Unit's magnification g s :

F = f c * g s .
The Segmentation Unit is made of at least one set of mirrors that takes the telescope's image as the object, cuts it in pieces and re-images them. There are as many mirrors in each set as we need sub-images: here, each set contains 7 mirrors.

We only consider the case of two sets of mirrors : a single set would be ideal (a minimum of surfaces to manufacture) but cannot yield good image quality, while three would mean working with 3*7=21 mirrors, which is prohibitive in terms of cost and alignment procedure.

A close up of the Segmentation Unit is illustrated in fig. 3.1.9 : Each module is visually represented by a color and the apertures on the mirrors are set rectangular according to the individual clear-apertures plus a 2% edge margin.

This design allows for a small volume while offering good perspectives for the alignment procedure. Now that the general concept of the segmentation of focal planes has been described, it's time to dive in the practical design of the system.
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Specifications

With the LAM and TAS working together, the goal was to determine the mission parameters that would be suitable both for Earth and planetary observations. Using the experience of Thales Alenia Space in optical design for Earth observation, the decision to begin with this kind of objective was made, with the assumption that the optical design method that was to be found would lead to tremendously quicker development times for the planetary case. The parameters have been chosen as follows : 

GSD 40 cm

Swath 20km

Altitude 700km

Number of sub-images (modules) 7 modules

Overlap between modules 100 pixels

Nominal MTF at Nyquist > 0.15 @ 632.8 nm

The GSD is a bit better that Pléiades' (70 cm): the point in not to demonstrate that we can do better (because it is possible, as existing systems prove it), but to showcase that it is possible to segment the FOV into smaller sub-fields and still reach optimal image quality across the whole image. The number of sub-fields has been arbitrarily chosen equal to 7 but it could be any other odd number (see the following sections), while the 100 overlap pixels is a common requirement at Thales Alenia Space for image reconstruction purposes. This also implies the following characteristics for the telescope:

A 10m focal length has been chosen as a reference: the performances can therefore easily be compared to those of other telescopes in terms of image quality, global size and complexity.

On the other hand, a N = 12.5 F/Number has been chosen relative to the radiometry, MTF and sensitivity during the alignment process. The Airy diffraction disk is 21µm wide at reference wavelength, while the pixel pitch is 5.5µm: assuming that the final design will be diffraction limited, the PSF will be linearly sampled by 4 pixels (up to 5 at max λ). This allows for an optimal signal analysis and image processing. 68

Specifications

The detector is a single chip physically divided in 7 segments (modules) of 200 pix height, each module being sub-divided in 5 spectral bands to allow for multispectral imaging. The sub-images are isolated from each other by a 200 -pixels dead-zone. This type of TDI sensor, imagined by TAS, is still in the design phase but similar products can be found on the market (Rushton et al., 2015, [10]) (Teledyne Imaging, 2019, [11]) (Teledyne Imaging, 2019, [12]). The 5.5µm pixel pitch follows the trend currently happening in the spatial industry, namely the reduction in the pitch to allow for better ground resolutions. All these values are given as approximated since the goal is to extrapolate a hypothetical mission and not to enforce impractical constraints. The FOV and the pixel pitch will however be driving parameters in this thesis. The number of pixels used is smaller than the number of pixels on the detector (7200 vs 8192), meaning that only a portion of the CMOS will be used. If the trade-off leads to illuminating the whole detector, the FOV would increase to 1.8°: this is not a show stopper, as explained next chapter in the FAQ -Frequently asked questions section.

Using this research environment, the following section gets on with choosing the telescope, which image is to be segmented.
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Base telescope choice

As the concept consists in cutting the linear image produced by a conventional telescope, a fundamental question to be answered when designing such is system is :

"Which telescope type is the optimal choice for focal plane segmentation ?"

The base telescope can be comprised of n = 1, 2 or 3 mirrors. The cases for n 4 are not investigated as the number of mirrors become to important : it is of no particular interest to align a telescope comprised of {n + 2 × number of modules} when n becomes high !

One-mirror telescope

The Newton telescope is the simplest form of telescope possible, with a single mirror producing an image at its focal point. The main disadvantage is that it has a high "bulk/focal length" ratio, which makes it hardly suitable for Earth observation purposes (where a high focal length is often needed to reach high resolutions). At the same time, its only mirror -which is also the pupil -does not allow for the correction of certain types of aberrations : coma, astigmatism and curvature of field are not corrected (remember that a single mirror does not produce distortion and that a parabolic shape can suppress the spherical aberration).

Even though I am confident that the freeform mirrors of the Segmentation Unit can handle the aberration correction part, the high bulk of the system remains a show stopper : for this reason, this configuration has not been investigated in details but would roughly look like this : 

Two-mirror telescopes

Adding a mirror allows for a reduction in the bulk of the system and for the correction of more aberrations (typically spherical and coma). Many types of two-mirror telescopes exist, which could be segmented. However, the constraints of the space environment limit the scope of the search :

Cassegrain :

The Cassegrain is comprised of a parabolic concave primary and a hyperbolic convex secondary. The Ritchey-Chretien has a Cassegrain geometry, with two hyperbolic mirrors.

Its alignment is well mastered but its exit pupil is not real and its field of view is limited.

Schmidt :

The Schmidt has a Cassegrain geometry with a corrector plate at the M2's location. The exit pupil is not real. However, the plate is tricky to manufacture and the presence of glass makes the telescope not optimal for space-borne missions.

Gregorian :

The two mirrors are concave and produce a collimated beam. The exit pupil is real and the field of view is limited.

The fact that the beam is collimated is not inherently a show-stopper but this configuration hasn't been studied at all.

Schwarzschild :

The Schwarzschild telescope is the best form for a twomirror telescope, as it's the only one allowing for the correction of all of the third order aberrations. However, its secondary mirror is bigger than its primary, which prevents its use in space-borne missions.

The Ritchey-Chretien seems to be the best choice in this category. In the segmented version, the whole system looks like this : 

Three-mirror telescopes

Adding another mirror gives enough degrees of freedom to correct for all the third order aberrationsexcluding distortion -plus curvature of field. Since they allow for the correction of astigmatism, they are called TMAs (for Three Mirror Anastigmat). TMAs are basically grouped in two categories : obscured (Korsch-type) and unobscured.

Korsch :

Developed by Dietrich Korsch in 1972 [13], it has the ability to image a wide field while ensuring that there is little stray light in the focal plane. Folding mirrors can be useful to reduce the bulk of the system, making it the go-to choice in almost all high-resolution and wide field space missions.

Unobscured TMA :

The unobscured version has the advantage of using all the incoming light, improving the performances in terms of MTF and SNR. It is however tricky to align and is big relative to its focal length.

The Korsch telescope is selected in this category. In the segmented version, the whole system looks like this : The bulk of the system is higher than in the two-mirror configuration.

Trade-Off Study

As the telescope types have been investigated, two choices remain : the Ritchey-Chretien (two mirrors) and the Korsch (three mirrors). Besides the number of mirrors, alignment procedure and bulk, the first guess would be directed towards the Korsch telescope, as it provides significant higher image quality and a flat focal plane. This would mean that the quality of the final segmented image would be better than the segmented Ritchey-Chretien's : unfortunately, as simulations indicate it, this is not the case.

Base telescope choice

Astigmatism is the dominant aberration in the system, due the incidence angles of the rays on the segmentation mirrors MS1 & MS2. Therefore, considering equal focal lengths, the objective is to choose the base telescope that delivers the smallest exit angles.

In the following, the maximum chief ray angle Θ out is estimated again the M1-M2 distance, d 1 . The objective is to minimize Θ out while keeping reasonable d 1 values.

Ritchey-Chretien (RC) :

The Ritchey-Chretien parameters follow the relations : When the two mirrors move away from each other, Θ out decreases whereas d EP C increases. The exterior chief ray (the one coming from the edge of the field) passes through the center of the exit pupil and hits the focal plane at the edge of the image : when the pupil moves away from the focal plane, the chief ray's angle decreases. It is therefore crucial to have the pupil as far away from the image as possible.

R 1 = 2d 1 f c f c -d 2 R 2 = 2d 1 d 2 d 1 -d 2 + f c d EP C = d 2 - R 2 d 1 R 2 + 2d 1 (3.

Korsch :

When adding a mirror to the optical sequence, the relations become :

R 1 = 2d 1 f k f k + d 2 m 3 R 2 = 2d 2 m 3 R 1 m 3 R 1 -2f k d IM K = 1 -m 3 2m 3 R 3 d EP K = d 3 -R 3 R 2 d 1 -(d 2 + d IM K )(R 2 + 2d 1 ) 2R 2 d 1 -2(d 2 + d IM K )(R 2 + 2d 1 ) -R 3 (R 2 + 2d 1 ) (3.3.2)
The frozen parameters are picked-up from the Ritchey-Chretien and the M3 magnification is set at -0.95. Considering reasonable d 1 values, the exit pupil is farther away from the image in the Ritchey-Chretien case, producing exit angles that are smaller than the Korsch's. With the parameters involved in this study (F = 10m, D = 0.8m), 1000mm < d 1 < 2000mm seems to be a reasonable range.

In addition to reduce the number of mirrors, bulk and alignment complexity, the Ritchey-Chretien allows for a better segmented image which quality than the Korsch. For these reasons, the Ritchey-Chretien is chosen as the base telescope for the focal plane segmentation concept.

The next two sections (3.4 & 3.5) follow the train of thoughts to build up the Segmented Ritchey-Chretien from scratch. Having a good paraxial design is of paramount importance : as the Starting Point section states it, the starting point influences the result more than the optimization process itself when working with freeform optics. So that the reader can have an overview of the finished telescope before jumping in, here is a layout of the whole system : 

Geometric Set-up -Ritchey-Chretien alone

This section gets on with the job of building up a Ritchey-Chretien from scratch.

Coordinate system and sign convention:

In all the following, the distances and radii of curvature are algebraic. Light proceeds from left to right; mirror separations are measured along the optical axis from the origin of one surface coordinate system to the next. The distance from mirror i to mirror i + 1 is positive when mirror i + 1 is to the right of mirror i and negative otherwise. Therefore, the distance from the primary mirror M 1 to the secondary M 2 is negative (d 1 < 0) and the radius of curvature of M 1 is also negative (R 1 < 0).

The two-mirror telescope is designed in the form of a Ritchey-Chretien telescope. The paraxial parameters are derived from geometric relations, then the aberration theory is used to compute the conic constants of the mirrors. All the results are summed up in the Ritchey-Chretien -Summary section.

Paraxial parameters

The focal length of the Ritchey-Chretien is noted f c and it's back focal length (distance from the vertex of M 1 to the image) is noted B. β is the back focal length in units of f 1 and y i is the ray height at mirror i. The signed parameters as defined as follow :

                                     d 1 = S 1 S 2
Distance between the mirrors < 0

d 2 = S 2 I
Distance between the secondary and the image > 0

m = - S 2 I S 1 F 1 = - f c f 1
Transverse magnification of the secondary > 0

B = -f 1 β
Back focal distance (vertex of primary to focal point) > 0

N 1 = |f 1 | D Primary mirror F/Number N = |f c | D System F/Number
Working at the same time with the unfolded schematic of the system of fig. 3.4.2 helps to grasp the relations between the fundamental parameters : Preliminary computations :

By noting ρ = R 2 R 1 and k = y 2 y 1 :                               
Thales gives :

S 2 F 1 S 1 F 1 = y 2 y 1 , so that S 2 F 1 = kf 1 = k R 1 2
We can write :

2 R 2 = 1 S 2 I + 1 S 2 F 1 = 1 S 2 I + 2 kR 1 Therefore : 1 S 2 I = 2 R 2 - 2 kR 1 = 2 R 1 R 1 R 2 - 1 k = 2 R 1 1 ρ - 1 k = 2 R 1 k -ρ kρ = 1 S 2 F 1 k -ρ ρ = 1 -mS 2 F 1
This gives :

m = ρ ρ -k ρ = mk m -1 k = ρ m -1 m (3.4.1)
Paraxial computations :

Radius of curvature of primary mirror :

R 1 = 2f 1 = -2N 1 D
About the secondary mirror :

2 R 2 = 1 S 2 I + 1 S 2 F 1 78 3.4. Geometric Set-up -Ritchey-Chretien alone S 2 F 1 = S 2 S 1 + S 1 F 1 = -d 1 + f 1 and          m = - S 2 I S 2 F 1 -→ S 2 I = -mS 2 F 1 m = - f c f 1 = - 2f c R 1 (>0)
We get :

R 2 = 2m m -1 (f 1 -d 1 )
The only unknown parameter is now d 1 , which will set R 2 :

F 1 I = f 1 β -f 1 = f 1 (β -1)
Or,

F 1 I = F 1 S 2 + S 2 I        F 1 S 2 + S 1 I = f 1 (β -1) S 2 I F 1 S 2 = S 2 I -S 2 F 1 = +m      F 1 S 2 + mF 1 S 2 = f 1 (β -1) S 2 I = mS 2 F 1        F 1 S 2 = f 1 (β -1) m + 1 S 2 I = d 2 = m m + 1 f 1 (β -1)
We already know that

S 2 F 1 = f 1 -d 1 . This gives d 1 -f 1 = f 1 (1 -β) m + 1 . With m = - 2f c R 1
, this yields :

d 1 = 1 + β -1 m + 1 R 1 2 therefore d 1 = 1 + (β -1)R 1 R 1 -2f c R 1 2 R 2 = m(1 -β) (m -1)(m + 1) R 1 therefore R 2 = 2f c (β -1)R 2 1 4f 2 c -R 2 1
The exit pupil-image distance is found via

2 R 2 = 1 S 2 S EP C + 1 S 2 S 1 → S 2 S EP C = d 1 R 2 2d 1 + R 2
(< 0), so that:

d EP C = - d 1 R 2 2d 1 + R 2 + d 2 (3.4.2)
Using the magnification of the secondary between the primary and the exit pupil, the exit pupil diameter of the Ritchey-Chretien is :

Φ EP C = - Φ M1 R 2 2d 1 + R 2 (3.4.3)
Finally, the full diameter of the secondary and the hole in the primary are given by :

Φ M2 = kΦ M1 -d 1 tan (θ x ) Φ M1hole = f c tan (θ x ) + Φ M2 -2f c tan θ x 2 B d 2 (3.4.4)
We now know the primary parameters that define the 2-mirror telescope. Using the conic constants, it is possible to correct for two of the third-order aberrations: typically, spherical aberration and coma.

Aberration coefficients & Conic constants

This section is derived from "Astronomical Optics" (Schroeder, 1999, [14]), where the author computes the aberrations coefficients for any mirror system. His train of thoughts is reorganized and clarified to better suit the needs of my study.

The expressions for the total system aberrations are found by adding terms representing the aberrations arising at each individual mirror. The system aberration coefficients, referenced to the primary, are :

B j,tel = B j,M1 + B j,M2 y 2 y 1 j+1 (3.4.5)
with j = 0, 1, 2, 3 = aberration number and y i = ray height at i th mirror margin. Remember that

y 2 y 1 = k.
Using the expression of R 2 , we can re-write the expression of k from eq. 3.4.1 :

k = ρ m -1 m = R 2 R 1 m -1 m = m(1 -β) (m -1)(m + 1) m -1 m ⇒ k = 1 -β m + 1
General aberration coefficients for 2-mirror telescopes :

With K i being the constant of mirror i and θ the incident chief ray angle :

                                               B 0,tel = θ 3 (m + β)(m 2 -1) 8m 3 (1 -β) 2 (m + β)(3m + β) + m -1 m + 1 2 (m + β) 2 K2 Distortion B 1,tel = θ 2 mR1 1 + (m -1)(m + β) m(m + 1) 1 - (m -1) 2 (m + β) 4m(1 -β) (K2 + 1) Astigmatism B 2,tel = θ m 2 R 2 1 1 + (m -1) 3 (m + β) 2m(m + 1) K2 + m + 1 m -1 2 Coma B 3,tel = 1 4R 3 1 K1 + 1 - (m -1) 3 (1 -β) m 3 (m + 1) K2 + m + 1 m -1 2 Spherical (3.4.6)
The spherical aberration is zero according to the relation :

K 1 + 1 = (m -1) 3 (1 -β) m 3 (m + 1) K 2 + m + 1 m -1 2 (3.4.7)
Petzval curvature :

Ideally, every point imaged by a telescope would be contained in the focal plane. Unfortunately, most telescope types form images over a curved surface symmetrical around the optical axis. The radius of this surface is usually called "field curvature" and its equation is, for a 2-mirror telescope : A Ritchey-Chretien has an aplanetic Cassegrain geometry. In this configuration, the two mirrors are hyperboloids : both the spherical aberration and coma are zero.

1 R image = 2 1 R 2 - 1 R 1 (3.
K 2 is chosen to make the B 2,tel coma in eq. 3.4.6 zero, after which the condition for zero spherical aberration of eq. 3.4.7 sets K 1 .

               K1 = -1 - 2(1 -β) m 2 (m + β) = -1 - 2R 3 1 (1 -β) 4f 2 c (βR1 -2fc) K2 = - m + 1 m -1 2 - 2m(m + 1) (m + β)(m -1) 3 = - R1 -2fc R1 + 2fc 2 - 4fcR 2 1 (R1 -2fc) (βR1 -2fc)(R1 + 2fc) 3 (3.4.9)
We now have a fully-characterized paraxial Ritchey-Chretien, ready to be optimized for the field of view of the mission parameters.

Ritchey-Chretien -Summary

A Ritchey-Chretien telescope is free of spherical aberration and coma : it is the variation of the Cassegrain that we will be working with. Table 3.4.1: Paraxial parameters and conic constants for the two mirror telescope.

INPUT

OUTPUT

R 1 = -2N 1 D f c Ritchey-Chretien focal length (>0) R 2 = 2f c (β -1)R 2 1 4f 2 c -R 2 1 D Entrance pupil diameter d 1 = 1 + (β -1)R 1 R 1 -2f c R 1 2 N 1 Primary mirror F/Number d 2 = B -d 1 B Back focal distance (= f 1 β) K 1 = -1 - 2R 3 1 (1 -β) 4f 2 c (βR 1 -2f c ) K 2 = - R 1 -2f c R 1 + 2f c 2 - 4f c R 2 1 (R 1 -2f c ) (βR 1 -2f c )(R 1 + 2f c ) 3
As an example, a paraxial f = 10m, θ = 1.5°version of the Ritchey-Chretien is entered into CodeV using the relations of table 3.4.1 : The image quality, evaluated through the MTF, is without surprise diffraction-limited at the center of the field and degraded at the edge, as the equations are paraxial and do not take the field of view into account. 82 3.5. Geometric Set-up -The Segmentation Unit

Geometric Set-up -The Segmentation Unit

Now that the base telescope is in place, the time has come to build the segmentation unit. The process is done gradually starting with the segmentation of the input fields, then the two sets of segmentation mirrors (tilts, decenters, radii of curvature, sizes...) and the placement of the detector. The user-entered parameters for the paraxial computations are the overall optical and mechanical parameters of the system and the specifications of the sensor. They are presented in the table 3.5.1 : The specific values of table 3.5.1 are given for this study but can be changed to fit any other mission specifications. Additional comments about the parameters are :

Nb_Modules is always an odd number : having a module at the center of the field is necessary.

X/YEdgeMS1Gap : The gaps between the edges of the freeform mirrors are fundamental manufacturing parameters. They take into account the polishing of the mirrors (which cannot be guarantied over 100% of the diameter) and the positioning errors of the surfaces. The gaps are used to position the first set of mirrors (MS1) after the RC's focal plane, using the aperture of the beam.

YSpacingDet : The final image and the MS1 are arbitrary placed in the same XY plane. The space between the edge of the sensor and the edge of the MS1 ensures that there is plenty of space to fit the electronics and mechanics of the sensor.
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The first question to be answered when designing such a telescope is :

"The overall focal length is dictated by the resolution. How do I choose the Ritchey-Chretien's focal length and the segmentation unit's magnification ?" This question will be the backbone of this study : this whole geometric setup is conducted in order to be able to answer it.

The overall focal length F can be expressed as a function of these two parameters : F = f c × g s . F is set by among other things by the resolution, and F = 10m in this study, which means that there are only certain pairs of values for f c and g s that are allowed. Therefore, in the following, all the parameters are expressed and plotted against these two fundamental parameters :

The Ritchey-Chretien's focal length f c

The segmentation unit's magnification g s 3.5. Geometric Set-up -The Segmentation Unit

Input Fields

A chief ray is defined as a ray that passes through the center of the exit pupil. If the angle of incidence of the chief ray at the primary is θ in , its angle with respect to the telescope axis is θ out after reflection on the secondary. With d EP C being the RC's exit pupil to focal plane distance, the relations between the object & image chief ray angles are:

θ in = arctan d EP C tan (θ out ) f c θ out = arctan f c tan (θ in ) d EP C (3.5.1)
In order to allow for a numerical reconstruction of the scene, an overlap between the sub-images stacked on the sensor is necessary. This is achieved by disposing the entry fields of the modules in a practical manner : Using this basis and the relations from eq. 3.5.1, the following relations can be computed : Table 3.5.2: Relations between the fields and their influence on the detector's size.

X-half-angle (overlap) to be added to a module's field to allow for scene reconstruction

XOverlapFieldIn = arctan OverlapPix × Pitch |g s |f c X-Field of view of a single module XFieldModIn = θ x Nb_Modules + 2XOverlapFieldIn XFieldModOut = arctan f c tan (XFieldModIn) d EP C
X-Length of a sub-image on the sensor

L det = |g s |f c tan (XFieldModIn) L det,pix = L det Pitch
Y-Field of view of a single module (a pixel sees a square field)

YFieldModIn = arctan YPixMod × Pitch |g s |f c YFieldModOut = arctan f c tan (YFieldModIn) d EP C
Y-Height of the detector (just the pixels, no mechanical structure around them)

H det = [YPixMod × Nb_Modules +DeadPix × (Nb_Modules -1)] × Pitch
Note that the Y-gap angle between the two rows of sub-fields, YSepFieldIn, is not known at this point : it will be geometrically computed later-on (eq. 3.5.7) to satisfy the user-defined parameter YEdgeMS1Gap (of table 3.5.1), which specifies the Y-gap between the edges of the MS1.

Mirrors' sizes, positions, α-tilts and radii of curvature

As explained in the Starting Point section of the Freeform Optics Overview chapter, the starting point of the design is of paramount importance and cannot be chosen randomly. This rules applies here : the system is therefore first prepared using paraxial equations to fit the requirements of the Specifications as much as possible.

The segmentation unit is gradually built up, starting with the position and sizes of the mirrors of the first set, called MS1 (Segmentation mirrors 1).

X-Direction

The objective here is to compute the X-length L M S1 of the MS1 and their position d IM after the RC's focal plane. Note that L M S1 is an array (size(L M S1 ) = Nb_Modules) while d IM is a single value, for complexity purposes. 

d IM axis (n) = d IM cos (|XCenterFieldOut(n)|)
Where n = 1, 2, .., Nb_Modules is the identifier of the module, from 1 to the number of modules in the system (here Nb_Modules = 7).

As these two parameters also set d IM (RC's focal plane -MS1 distance), this means that there is an upper bound on d IM when considering the X-direction: if d IM > d IM,max , the mirrors become to wide in the X direction and they physically overlap. In other words, one must set the gap between the MS1 in the X-direction, which will then set d IM .

Computation of d IM :

In order to calculate the distance after the Ritchey-Chretien's focal plane, we first need to find the total X-length L 1tot = L 1tot,1 + 2L 1tot,2 of the MS1 combination. L 1tot,1 is found via Thales theorem :

X b L 1tot,1 = d EP C d EP C + d IM axis (Nb_Modules) so that L 1tot,1 = X b d IM axis (Nb_Modules) d EP C + X b
L 1tot,2 is found using the relations between the angles :

                     tan(σ) = B d IM axis (Nb_Modules) = Φ EP C + X b 2d EP C so that B = d IM axis (Nb_Modules)(Φ EP C + X b ) 2d EP C tan(γ) = A d IM axis (Nb_Modules) = X b 2d EP C so that A = d IM axis (Nb_Modules)X b 2d EP C
This gives :

L 1tot,2 = B -A = d IM axis (Nb_Modules)Φ EP C 2d EP C
Finally,

L 1,tot = d IM (Φ EP C + X b ) d EP C cos (|XCenterFieldOut(Nb_Modules)|) + X b (3.5.5)
L 1,tot represents the total length of the MS1 combination and is a good indicator of the system's bulk. The upper row contains the highest number N of mirrors :

N = int Nb_Modules 2 + 1
In our case, Nb_Modules = 7 so that the upper row contains N = 4 mirrors. To meet the desired gap between the edges of the MS1 in the X direction (XEdgeMS1Gap), we need to solve for d IM in :

  Nb_Modules n=1, n is odd L M S1   + (N -1)XEdgeMS1Gap = L 1,tot
Which gives:

d IM = X b -(N -1)XEdgeMS1Gap -2d EP C tan XFieldModOut 4 × Nb_Modules n=1, n is odd 1 cos |XCenterFieldOut(n)| + XFieldModOut 2 + 1 cos (|XCenterFieldOut(n)|) Nb_Modules n=1, n is odd 2cos |XCenterFieldOut(n)| + XFieldModOut 2 cos (|XCenterFieldOut(n)|) Φ EP C d EP C 4d 2 EP C + X b (Φ EP C + X b ) + 2tan XFieldModOut 4 cos (|XCenterFieldOut(n)|) + Φ EP C cos |XCenterFieldOut(n)| -XFieldModOut 2 2d EP C cos (|XCenterFieldOut(n)|) 1 -ΦEP C 2dEP C -tan |XCenterFieldOut(n)| -XFieldModOut 2 tan |XCenterFieldOut(n)| -XFieldModOut 2   - Φ EP C + X b d EP C cos (|XCenterFieldOut(Nb_Modules)|) + 2N tan XFieldModOut 4 (3.5.6)
When plotted against f c and g s , d IM shows the same behavior as L M S1 : the bigger f c is, the longer the distance after the RC's focal plane is. d IM is plotted below in figure 3.5.7. In order to keep a reasonable system's bulk, this distance will be chosen around 600mm -but not much smaller, as it also drives the image quality (a tiny d IM produces small F/Numbers for the MS1, which is not recommended). Therefore, the Ritchey-Chretien's focal length is to be chosen f c > 10000mm and the segmentation unit's magnification |g s | < 1.

Y-Direction

As d IM is now known, the same procedure is applied in the YZ plane to determine the H-height of the MS1, H M S1 . This time, the user enters the gap between the edges of the MS1 in the Y direction (still for manufacturing purposes). With d IM fixed by the gap between the edges in the X direction, this is achieved by modifying the Y-gap between the input fields : the MS1 will be all the more decentered that YEdgeMS1Gap is big.

The angle XCenterFieldOutis supposed to be small for all the modules, so that all the projections of these rays onto the YZ plane are valid. This is the plane we are working on in this section.

The gap between the centers of the Ritchey-Chretien's images is given by:

y RC 2 = YEdgeMS1Gap 2 + d IM axis N tan arctan Φ EP C -y RC 2d EP C so that y RC = YEdgeMS1Gap + d IM Φ EP C d EP C cos (|XCenterFieldOut(N )|) d EP C cos (|XCenterFieldOut(N )|) d EP C cos (|XCenterFieldOut(N )|) + d IM
The Y-Field between the centers of the MS1 is therefore:

YSepFieldOut = 2arctan y RC 2d EP C YSepFieldIn = arctan d EP C tan(YSepFieldOut) f c (3.5.7)
We now have access to the dimensions of the stray-light baffle:

[x b × y b ] = 2d EP C tan XCenterFieldOut(Nb_Modules) + XFieldModOut 2 × 2d EP C tan YSepFieldOut + YFieldModOut 2 (3.5.8)
With this, we now have all the inputs to compute H M S1 on the same model as L M S1 the in the X-direction. Again, the mirrors are divided in 4 segments that when summed up give their height. 

                                               H 1 = 2d IM cos YSepFieldOut+YFieldModOut 2 cos YSepFieldOut 2 Φ EP C d EP C 4d 2 EP C + Y b (Φ EP C + Y b ) H 2 = 2tan YFieldModOut 4 d EP C cos YSepFieldOut 2 + d IM cos YSepFieldOut+YFieldModOut 2 cos YSepFieldOut+YFieldModOut 2 cos YSepFieldOut 2 H 3 = 2tan YFieldModOut 4 d EP C + d IM cos YSepFieldOut 2 cos YSepFieldOut 2 H 4 = d IM Φ EP C cos YSepFieldOut-YFieldModOut 2 2d EP C cos YSepFieldOut 2 1 -ΦEP C 2dEP C -tan YSepFieldOut-YFieldModOut 2 tan YSepFieldOut-YFieldModOut 2 
Finally,

H M S1 = H 1 + H 2 + H 3 + H 4 (3.5.9)
Since this portion of the system is symmetric relative to the XZ plane, there is only one value for H M S1 . Bearing in mind the overall arrangement of the system, the upper row of mirrors is first considered, the characteristics of the lower row are then derived from them.

α 1U (the α-angle of the MS1s of the upper row) must be set so that the beam coming from the upper MS1s is not vignetted by the Ritchey-Chretien's focal plane and its stray-light baffle. To greatly simplify the problem (no dependence to the system's exit pupil and to α 1U ), the diameter of the beam is considered to be equal to H M S1 . A small gap named BaffleMargin is inserted between the beam and the edge of focal plane : it is an input parameter chosen by the user (see table 3.5.1). The angle between the chief rays at a surface is marked as 2α because the tilts of the MS1 & MS2 are defined as 'Decenter and Bend', a type of decenter that tilts the surface by α but reflects the rays by 2α, as shown in figure 3.5.11. For simplification purposes, the α-tilts of the upper row of MS1s are chosen identical : there is only one α 1U to compute. Using this, we get :

α 1U = 1 2 arctan   d IM sin YSepFieldOut 2 + yb+yRC 2 + BaffleMargin + HMS1 2 d IM cos YSepFieldOut 2   + YSepFieldOut 4
(3.5.10)

Distance between the two sets of mirrors

The distance ∆ between the two sets of mirrors is chosen to position the MS2 at a given distance behind the structure of the primary mirror M1. The thickness M1Thick of the primary is usually 10% of its diameter (same for the MS2Thick of the MS2), whereas M1Gap is the order of 30mm. Computation of the last distance : Considering only the upper row of mirrors:

         cos(γ 1U ) = D U |∆| -→ D U = |∆|cos 2α 1U + YSepFieldOut 2 cos(γ 2U ) = D U d I,U -→ d I,U = |∆| cos 2α 1U + YSepFieldOut 2 cos 2(α 2U -α 1U ) -YSepFieldOut 2
These results are found using the layout of the lower row. They are however still valid for the lower row by replacing γ 1U with

γ 1L = 2α 1L - YSepFieldOut 2 and γ 2U with γ 2L = 2(α 2L -α 1L ) + YSepFieldOut 2
.

However, to have a common image surface between all the modules, a dummy surface named S'Return' is inserted between the MS2 and the image, so that the thickness to input into CodeV is not d I but d Ret . The S'Return' surface is a 'Return to surface' dummy surface that returns to the image of the Ritchey-Chretien by automatically "undoing" cumulative effects of intervening tilts, decenters, and thicknesses. Therefore:

d Ret = d IM cos YSepFieldOut 2
(3.5.12)

Computation of α 2U :

The objective is now to compute the α 2U tilts of upper the MS2 using :

α 1 : α-tilt MS1
YSpacingDet : Y-position of the detector's edge relative to the edge of the MS1.

Since the sub-images are stacked on the detector, there are as many α 2 tilts to compute as there are modules in the system (here, 7). However, the approach is simplified -just for the scope of this paraxial computation, not during the optimization process -by considering that they all overlay at the detector's center. Since the sensor's height is less than one cm, this is considered to be a valid first-order, paraxial approximation that will not impact the starting point's quality. Thus, since the MS2 are stacked on two rows, there are two α 2 to compute (α 2L and α 2U ). The parameters used in the computations are in the schematics of figure 3.5.15.

γ 1U = 2α 1U + YSepFieldOut 2 γ 2U = 2(α 2U -α 1U ) - YSepFieldOut 2 Y SpacingDet = a U - 3 2 H M S1 -Y EdgeM S1Gap + b U - H det 2        sin(γ 1U ) = a U |∆| -→ a U = |∆|sin 2α 1U + YSepFieldOut 2 sin(γ 2U ) = b U d I,U -→ b U = |∆|cos 2α 1U + YSepFieldOut 2 tan 2(α 2U -α 1U ) - YSepFieldOut 2
Which gives : Computation of the radii of curvature :

|α 2U | = 1 2 arctan   Y SpacingDet -|∆|sin 2α 1U + YSepFieldOut 2 + 3HMS1+Hdet 2 + Y EdgeM S1Gap |∆|cos 2α 1U + YSepFieldOut 2   + YSepFieldOut 4 + α 1U (3.5.13)
We can now compute the radii of curvature of the MS1 & MS2 using the overall magnification of the segmentation unit. The segmentation unit takes the Ritchey-Chretien's image as its object (A), produces an intermediate virtual image (A 1 ) and focuses it on the sensor (I).

g s = g M S1 .g M S2 = - S 1 A 1 S 1 A × - S 2 I S 2 A 1 = S 1 A 1 -d IM × d I,U/L S 1 A 1 -∆ So that S 1 A 1 = g s ∆d IM d I,U/L + g s d IM
Applying this to the MS1 : (3.5.14) and to the MS2 :

2 R 1 = 1 S 1 A 1 + 1 -d IM R M S1 (n) = 2g s ∆d IM g s (d IM -∆) + d I,U/L
2 R 2 = 1 d I,U/L + 1 S 1 A 1 -∆ R M S2 (n) = 2∆d I,U/L ∆ -d I,U/L -g s d IM (3.5.15)
Provided that g s (d IM -∆) + d I,U/L = 0 and ∆ -d I,U/L -g s d IM = 0 . Solvers, root finders or plots can be useful to find the forbidden values for f c and g s .

Computation of the size of the MS2 :

Now that we know all the paraxial distances involved in the segmentation unit, it is possible to predict the size of the MS2. However, the computation is tricky since the position of the exit pupil of the whole telescope comes into play.

The position of the exit pupil of the whole telescope relative to the MS1 is given by :

2 R M S1 = 1 S M S1 S EP T + 1 S M S1 S EP C = 1 S M S1 S EP T - 1 d EP C + d IM -→ d 1EXT (n) = S M S1 S EP T = R M S1 (n)(d EP C + d IM ) 2(d EP C + d IM ) + R M S1 (n) (< 0)
And its diameter by :

Φ EP T (n) = -Φ EP C R M S1 (n) 2(d EP C + d IM ) + R M S1 (n)
For one module, the beams coming from the Ritchey-Chretien's focal plane are circular and overlapping on the MS1, so that the footprint of the whole beam on the MS1 is rectangular (i.e. the shape of the sub-field) : The sizes of the individual beams and the distances between their centers are modified when being closer to the exit pupil of the telescope. If the MS2 of a module is located at the exact position of the exit pupil, the centers of the beams coincide with the center of the mirror and its shape is of the pupil's, whereas if the MS2 is in between those two positions (or after the exit pupil), the footprint is a mix of the two :

The approach to finding H M S2 , the height of the MS2, is greatly simplified by saying that the length of the MS2 is equal to the footprint of the beam, which is directly related to the diameter of the exit pupil of the whole telescope. Therefore : 

       If ∆ = 0 -→ H M S2 = H M S1 If ∆ = d 1EXT -→ H M S2 = Φ EP T H M S2
is therefore an affine function of ∆ : L M S2 is found the same way: 

H M S2 (n) = Φ EP T -H M S1 d 1EXT ∆ + H M S1
           If ∆ > d 1EXT → L M S2 = H M S2 (n) -L M S1 (n) d 1EXT ∆ + L M S1 (n) If ∆ < d 1EXT → L M S2 = H M S2 (n) + L M S1 (n) d 1EXT ∆ -L M S1 (n)

Computation of the tilts of the lower row :

This time, α 1L is set accordingly to the α 1U found in eq. 3.5.10, so that the upper and lower MS2 are separated by a gap named YEdgeMS2gap (which is also a parameter chosen by the user). Again, the α-tilt is chosen identical for all the lower-row MS1s. 

sin 2α 1U + YSepFieldOut 2 = 2 HMS1 2 + YEdgeMS1Gap + A ∆ → A = ∆sin 2α 1U + YSepFieldOut 2 -H M S1 -YEdgeMS1Gap
Therefore, sin 2α 1L -

YSepFieldOut 2 = 2HMS2U 2 + YEdgeMS1Gap + A ∆ (As H M S2U is yet not known, it is assumed that H M S2L ≈ H M S2U ). α 1L = 1 2 arcsin   ∆sin 2α 1U + YSepFieldOut 2 -H M S1 -YEdgeMS1Gap + H M S2U + YEdgeMS2Gap ∆   + YSepFieldOut 4
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The same process can be applied to the α-tilts of the lower row of MS2s, as plotted in figure 3.5.21. 2α 2L is divided in two smaller angles :

2α 2L = γ 1L + γ 2L .                            a L = ∆sin 2α 1L - YSepFieldOut 2 b L = Y SpacingDet -a L + H M S1 2 + H det 2 tan (γ 2L ) = b L ∆cos 2α 1L -YSepFieldOut 2 
We get :

α 2L = 1 2 arctan   Y SpacingDet -∆sin 2α 1L -YSepFieldOut 2 + HMS1+Hdet 2 ∆cos 2α 1L -YSepFieldOut 2   - YSepFieldOut 4 + α 1L
(3.5.17)
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Decenters and β-tilts

The last unknown parameters are the decenters of the MS1 and MS2, and the β-tilts of the MS2 (since the MS1 are only α-tilted).

The β-tilts of the MS2 are necessary to focus the beam of each module on the sensor, while the decenters allow each mirror to be centered relative to its central field's chief ray (the ray impacts the surface at its vertex in the X & Y directions). The advantage of doing so it stated in (Geyl et al., 2018, [15]) : the off-axis definition of the surface can be compensated by freeform terms. Therefore, the base radius and the freeform terms are all defined with respect to the center of the component's clear-aperture, which can lead to generating less errors in the design and manufacturing phases of the optical elements.

Decenters

The decenters in X & Y that are computed here are the effective decenters that will be entered in CodeV, as the mirrors are defined as "Decenter and Bend" surfaces. The definition of the coordinate systems is therefore crucial here. The decenters are represented in figure 3.5.22.

MS1

The decenters of the MS1 are easy to determine since the coordinate system has yet not been transformed:

XMS1Decenter(n) = (d EP C + d IM cos(XCenterFieldOut(n))) tan(XCenterFieldOut(n)) (3.5.18) 
The Y-decenters of the MS1 are also straightforward since there are only two of them and they are symmetric relative to the optomechanical axis. They are given by :

YMS1Decenter(n) = (-1) n+1 d EP C + d IM cos YSepFieldOut 2 tan YSepFieldOut 2 (3.5.19) 

MS2

The MS1 are only tilted about α and so is the coordinate system after reflection. In the YZ-plane, the Y-decenter of the MS1 is only due to the YSepFieldOut 2 angle, α 2 being already counted in the MS2 Y-position. The MS1 are not tilted about β, so that the X-decenter of the MS2 (in the XZ plane) is due to the XCenterFieldOut angle. Using cos(a)sin(a) = 1 2 sin(2a) : The α 1 angles are this time non-negligible when projecting the rays on the XZ plane. With this in mind :

XMS2Decenter(n) = 1 2 |∆|cos 2α 1,U/L ± YSepFieldOut 2 sin(2XCenterFieldOut(n) (3.5.20) YMS2Decenter(n) = (-1)
       E = ∆cos 2α 1,U/L ± YSepFieldOut 2 cos(XCenterFieldOut(n)) tan(XCenterFieldOut(n) + 2β 2 (n)) = XM S1Decenter(n) + XM S2Decenter(n) E
If n is even, the mirror is in the lower row (L underscript), whereas if n is odd the mirror is in the upper row (U underscript). This gives:

β 2 (n) = 1 2 arctan   XM S1Decenter(n) + XM S2Decenter(n) ∆cos 2α 1,U/L ± YSepFieldOut 2 cos(XCenterFieldOut(n))   - XCenterFieldOut(n) 2 (3.5.22)
The expression of the maximum β 2 (the tilt of the exterior module, β 2 (7)) is plotted in figure 3.5.23 : 3.5. Geometric Set-up -The Segmentation Unit 103

Segmentation Unit -Summary

This section intended to paraxialy set the system up from scratch, which is now done. Using only the inputs listed in table 3.5.1, the user has now access to a complete non-optimized starting point for the whole telescope. The user is able to fine-tune this starting point by choosing the Ritchey-Chretien's focal length f c and the segmentation unit's magnification g s that suit his needs in terms of mirrors' sizes, distances and overall bulk of the system. As a general guideline, the designer shall always tend to reduce the size of the mirrors (cost), increase the distances between them (alignment sensitivity) and reduce their tilts (image quality).

After entering the equations of tables 3.4.1 and 3.5.2 and the equations 3.5.2 to 3.5.22 in CodeV, the parameters of table 3.5.1 along with their associated values result in the following paraxial Segmented Ritchey-Chretien : The resulting CodeV macro allows the designer to set the system up in a matter of seconds. By playing with the input parameters, one can therefore efficiently explore the whole design space and adapt the system's weight, cost, size and image quality to a specific application. Visually, even a trained eye can hardly differentiate the stating point from the result of the optimization process described in the next chapter.

Analyzing the paraxial system

As a reminder, the user inputs table from the last chapter is pasted here. 

Analyzing the paraxial system

These parameters result in the following paraxial system : In this system, the Ritchey-Chretien has a 11.5m focal length and the Segmentation Unit's magnification is 0.87. This pair of values has been chosen thanks to its bulk, mirror sizes and image quality. Moreover, the system has been designed to suppress Petzval curvature for each individual sub-image, providing local curvature-free images. Lastly, the paraxial computations have been done focusing on filling all the available volume, reducing the mirrors' F/Numbers and improving image quality.

The system therefore passes the filters : we are assured to have the best starting-point possible for the optimization sequence !

Optimization and nominal results

In the present case, the Segmented Ritchey-Chretien boards two conics + 2x7 freeform = 16 mirrors. Ideally, the best optimization method possible would be to set the relevant parameters on the all the mirrors in variable at the same time and let the optimizer reach a global minimum. This way, the Ritchey-Chretien and the Segmentation Unit would perfectly adapt to one another through the optimization process by compensating their respective aberrations. However, this would unfortunately produce a merit function involving 155 variables, considering 9 Zernike on each freeform mirror (up to 380 variables when considering 25 Zernike). This too much for the CodeV optimizer too handle, which instantly diverges.

The solution is to break the optimization sequence into smaller steps that can yield an optimal solution.

Using the same reasoning as in the previous section, the best approach consists in setting up the starting point and then selecting relevant variables in parts of the system. The proposed optimization method is as follows :

1. Choose the Ritchey-Chretien's focal length and the segmentation unit's magnification best suited to the mission;

2. Use the equations from section Geometric Set-up -Ritchey-Chretien alone to create the starting point for the Ritchey-Chretien and optimize it to reach good image quality across the whole field;

3. Freeze the Ritchey-Chretien;

4. Use the equations from section Geometric Set-up -The Segmentation Unit to set up the Segmentation Unit;

5. Optimize the modules one at a time with the same number of Zernike;

6. Fine-tune the image quality by working on the Zernike, by using the method from section 2.6.

This method yields the best results and produces the final segmented telescope depicted in fig. 4.2.1 : 

Image quality

The system involves tilted components and is folded in 3D. The image quality requirements makes the use of freeform mirrors mandatory. This is easily confirmed if rotationally-symmetric surfaces are used, as shown in fig. 4.2.2 : ). The MTF @Nyquist > 0.15 specification is fulfilled everywhere except at the edges, where the worst case is MFT @Nyquist ≈ 0.1 : 

Full Field Displays

As there are freeform surfaces in the system, Full Field Displays (FFD) are an interesting tool to work with. For more info on FFDs, see the Full Field Displays (FFDs) section of the previous chapter. Since the sub-fields are rectangular with a high aspect ratio (35:1), their FFDs will be presented with an anamorphic scaling.

The level and type of aberration correction can be seen by examining the Zernike aberrations distribution for each sub-image. Aggregating all these results in the single graph of fig. 4.2.11 better shows the relative average amplitudes of the aberrations in the sub-images as well as the predominance of the astigmatism : 

Footprint plot

As for every high-resolution observation mission, the use of a TDI detector involves to have a precise knowledge of the image's shape, to ensure that a field object stays on the same pixel column when being scanned by the TDI lines. The edges of the sub images are tilted by as much as 50mrad, down to 7mrad in the best case. This is equivalent to a maximum shift of 10 pixels between the top of the last image to its bottom. The industry standards usually work with shifts less than a pixel, but it is possible to use addition techniques at the detector level that virtually shift the lines before integrating them : this is not a show-stopper.

Freeform deviations :

As for the sag variations, the departures are in average in the 80µm PV zone for the MS1 and 18µm for the MS2. These deviations are well within the state of the art in terms of manufacturing capabilities. The departures are computed relative to the best-fit sphere of each individual surface. Despite being very mild freeform, the first set of mirrors holds the bulk of the deviations. As expected, the ones at the edges of the field have stronger departures : the modules at the edges are more β-tilted and the angles of incidence on the detector are higher. Finally, since testing is the limiting factor when manufacturing freeform optics, the slopes of the mirrors are often a better indicator than their deviations. Here they are limited to values < 2mrad : compared to the industry standard threshold of 40mard in use at Thales Alenia Space, we are confident in the manufacturing of the present freeform mirrors.

This can be summarized in the following plot, where the deviations of all the freeform mirrors are compared across the field : It is clear that the MS1 hold the strongest sag departure. This was expected since the MS1 are only tilted about alpha, whereas the MS2 are also tilted about beta : the lack of 3rd dimension introduces the need for stronger freeform shapes, since the Zernike have to compensate for it.

A Segmented Ritchey-Chretien has been set-up and optimized to reach good image quality with manufacturable mirrors. Some degradation is present at the edge of the field but remember that a fine-tuning of the Zernike, which isn't in the scope of this thesis, can result in a better image quality and in less freeform mirrors. This part has been left to a future engineering step of the process.

The last theoretical phase of this work consists in assessing the general manufacturabilty of the Segmented Ritchey-Chretien by simulating the effects of misalignments and fabrication errors on the image quality.

Tolerancing

Tolerancing

The trick of working on a module at the time to reduce the number of variables used in the optimization sequence is this time not viable, since a change in the wavefront induced by a non-nominal Ritchey-Chretien will affect all the freeform mirrors at the same time.

The influence of tilts and decenters in the Ritchey-Chretien and in the Segmentation Unit will first be studied to evaluate the general behavior of the system. Two alignment methods are then investigated.

Sensitivity Analysis

The Ritchey-Chretien and the Segmentation Unit are analyzed one at a time, while staying in the segmented configuration (they are not analyzed independently).

Influence of the decenters and tilts in the Ritchey-Chretien : As expected, the alpha-tilts of the M1 and M2 are the dominant tilt contributions. However, the real trouble is in decenters. The quadratic sum of the MTF losses due to the decenters only is higher than the nominal MTF for displacements higher than 20µm. The Z-shifts of the two mirrors is the most sensible parameter in the Ritchey-Chretien and will force the use of the M2 as a compensator in the alignment process.

Influence of the decenters and tilts in the Segmentation Unit : The RMS contribution of the tilts is higher than the decenter's but the overall contribution of the Segmentation Unit to the performance loss is lower than the Ritchey-Chretien's. An accuracy of 40µm results in an estimated 6 points loss in the MTF. The 1st option results in perfectly stacked sub-images on the sensor, where they are exactly placed at their nominal position. This would allow for the smallest and optimal footprint on the detector and therefore yield the minimal number of pixels required.

The 2nd option however produces randomly placed sub-images in the image plane, destroying the very principle of the optical segmentation. This result is promising : a lot of time can be spared by roughly inserting the MS1 in the bench, at a 200µm accuracy. The MTF spec of 0.1 at Nyquist is fulfilled, while 97.7% of the systems yield an MTF=0.14 in average. Note that there is not mention of the freeform shapes deviations here : their influence will be studied separately below.

Option 2 : Joining the freeform mirrors in a single piece

An alternative alignment method divides the process in two parts, by first joining each set of freeform mirrors on a single block and then inserting the block in the bench.

The challenge however is to find the right process of joining the mirrors in a block, bearing in mind that we need tight tolerances on their position (see Focus on the MS2 tilts).

One way of doing this would be to manufacture the mirrors directly into the block, removing the need for any mechanisms around them. Unfortunately, a discussion with Mr. Fourez from Thales Seso lead to rule this option out. Several tools (CA polishing, IBF, magnetorheology) and head sizes can be used to manufacture the blocks. Yet, undesirable edge effects are always induced by the stability of the head or its footprint (which can be mathematically described) on the surface. In the present study where we are working with 7 mirrors on a block, this means 11 interfaces to manage (starting from 3 and bearing in mind that we can only have an odd number of mirrors in a set, adding two mirrors adds four interfaces). Another way, suggested by Mr. Fourez, consists in polishing the mirrors independently and sticking them to the block via molecular bonding. A lot of work needs to be done on establishing references for the bonding, but it would be possible to reach tight enough performances for our application.

The blocks finally need to be inserted in the bench with a tight tolerance : because of their size (46 & 54 cm wide), any small tilt induces a large displacement of the mirrors at their edge. This lead to choose the following set of tolerances along with the corresponding average MTF at Nyquist in every sub-image. Again, this result is promising : a lot of time can be spared by inserting two blocks instead of 14 individual mirrors, while a contractor/other team can be trusted with the manufacturing and molecular bonding operations. The MTF spec of 0.1 at Nyquist is fulfilled, while 97.7% of the systems yield an MTF=0.14 in average : this method meets the specs of the classical procedure.

Influence of the freeform departure errors

The influence of the polishing errors of the freeform shapes on the image quality is assessed by following the method described in the Tolerancing theoretical study from chapter 2. After a Monte-Carlo simulation over 100 runs, the influence of 20nm RMS deformations is limited to the loss of one MTF loss in average. 

FAQ -Frequently asked questions

While arriving at the end of this chapter on the Segmented Ritchey-Chretien, its design and performances, a few questions remain unanswered : here are the most recurrent ones when interacting with peers.

What about the other geometries of the design space ?

The Ritchey-Chretien holds the bulk of the system, isn't it possible to compact it ?

The Ritchey-Chretien only accepts small fields, what if we increased the FOV beyond its abilities ?

The system is working with 7 sub-images. What if we chose 5 instead ?

"What about the other geometries of the design space ?"

Because the total focal length of the system is set in stone (here F = 10m) through the ground resolution, the Ritchey-Chretien's focal length F c and the Segmentation Unit's magnification g s are fundamental parameters that need to be carefully chosen. After an assessment of the performances across various operating points in the design space, the decision of working with a F c = 11.5m and a g s = 0.87 was made, because it yields a good overall performance while keeping small freeform mirrors (11x5cm) and reasonable tolerance values. Let's consider two other operating points to see how the system evolves with the fundamental parameters : {F c = 8m, g s = 1.25} and {F c = 14m, g s = 0.71}. This particularity adds arguments to the trade-off between size and image quality started in the previous question.

"The Ritchey-Chretien only accepts small fields, what if we increased the FOV beyond its abilities?"

Ritchey-Chretien telescopes are known to accept total FOVs up to 2°: we are working in the present study with a 1.5°TFOV, which is at the upper range. Obscured telescopes such as the Ritchey-Chretien have the disadvantage of seeing their obscuration ratio increase with the field. Here, this ratio is at 36%, up to 60% at 2.5°. In addition, the Segmentation Unit becomes larger, along with the sizes of the individual freeform mirrors.

4.4. FAQ -Frequently asked questions Increasing the Ritchey-Chretien focal length f c would be a way to reduce the obscuration ratio. Sadly, as stated above, the size of the Segmentation unit grows with f c : trading FOV for size if not really viable. The image quality is, as one might think, especially degraded at the field : Even though the Ritchey-Chretien telescope isn't meant to work with a high FOV, the freeform mirrors show their ability to convert a degraded wavefront into an acceptable WFE. This solution is however not meant to go beyond 2°.

4.4. FAQ -Frequently asked questions 127 "The system is working with 7 sub-images. What if we chose 5 instead ?"

The choice of 7 sub-images was completely arbitrary, because it allows to reach a good image quality while gaining a lot of space in the focal plane. This leads to manufacture and align 7*2 = 14 freeform mirrors, which can be too expensive for some applications. What if we kept the exact same mission parameters but chose to divide the FOV into 5 segments instead of 7 ? The result is as follows : The image quality is equivalent to our case study with 7 sub-images : this option is totally viable ! One shall accept a smaller gain in detector size, a little bigger Segmentation Unit as well as bigger freeform mirrors, but the cost is well amortized by sparing four freeform mirrors. This sums up the answers to the most asked questions that I've had during my thesis. As you can see, the topic is prone to exploration and is a great case-study that spans over freeform optics optimization, manufacturing and tolerancing.

Conclusion

Freeform optics only recently got a seat at the table as a new available tool in the designer's tool-set, but they already are accepted as the spearhead of research for compact high-end applications. In this dissertation, we have investigated mathematical and computational propositions using freeform mirrors for a Segmented Ritchey-Chretien, a two-mirror telescope with an image plane divided in smaller stacked sub-images. The system has been patented under the number 1910625 : " Télescope de type Cassegrain à plan focal segmenté".

Chapter Background introduced the global framework of this research by providing examples of highresolution planetary and Earth-observation missions (namely Mars Reconnaissance Orbiter and Pléiades).

It also highlighted the complexity of their highly-integrated focal planes and has drawn attention on the need for compact detectors.

Chapter Freeform Optics -Mathematical descriptions and design overview reviewed the recent developments in freeform optics design, starting with an assessment of the mathematical descriptions currently available and their respective strengths and weaknesses. Full-Field Displays (FFDs) have been presented as an excellent tool for wavefront analysis, allowing to quantify the contributions of the Zernike based aberrations to the image quality degradation. The tolerancing of freeform surfaces require special attention and dedication as their deviation from their best-fit sphere needs to be accurately modeled.

The simulation of the errors induced by the manufacturing process is critical to assess the impact that as-build surfaces will have on the wavefront degradation. In addition, an optimal optimization method with an emphasis on the importance of the starting point has been described.

This particular starting point concern lead in chapter Segmented Ritchey-Chretien -The search for a starting point to the computation of paraxial equations for the Ritchey-Chretien and the Segmentation Unit, starting with a set of user-entered parameters that define the system's characteristics. The paraxial equations yield the best-starting point possible. The resulting equations can be exported to a CodeV macro, allowing the engineer to set the system up in a matter of seconds. By playing with the input parameters, one can therefore efficiently explore the whole design space and adapt the system's weight, cost, size and image quality to a specific application.

Lastly, the Optimization and tolerancing chapter described an optimization sequence, automated in a CodeV macro. Depending of the operating point in the design space, the nominal system can be diffraction limited for a reasonable FOV while providing the smallest volume footprint. Two methods for aligning the system are proposed : a 'classical' one, a step-by-step insertion of the mirrors in the bench, and a novel approach where the freeform mirrors are first joined into a single piece, then inserted into the telescope. Both methods require dedication in the positioning of the 2nd set of freeforms, as the tolerance on their tilts dictates the deadzones' sizes on the detector.

FAQ -Frequently asked questions

The research presented in this dissertation is comprised of three major contributions:

1) The segmentation of focal planes, the very subject of this thesis, is possible. W. Jahn's work, based on a segmented Korsch telescope, has been extended to a Ritchey-Chretien configuration and formalized through paraxial computations.

2) The optimization process results in diffraction limited images for reasonable FOVs. The number of sub-images can be adjusted to fit particular constraints (especially cost) without degrading the image quality. Two alignment methods have been proposed, both yielding the same result : an average of 4 MTF points are lost across the entire image.

3) The system involves freeform mirrors, due to the 3D-folding of the optical path. The shapes are however very mild and well within the state of the art, making them manufacturable with usual polishing techniques and testable. The influence of the deviations from the nominal shapes is limited to a few points in MTF loss, relieving the concerns about the feasibility of the system.

Looking towards future research paths, there are two areas to be explored in more detail. First, a more thorough tolerancing of the system can benefit to a finer estimation of the manufacturing costs and alignment processes. Breaking down the positions estimations into (x, y, z) coordinate shifts and the tilts in α, β, γ contributions would be a start, followed by a more detailed estimation and representation of the sag errors induced by the polishing process. This can come from a statistical based estimation of the PSD's shape, tuned to the actual manufacturing tool that will be used. A more accurate simulation of the sag errors will lead to a finer evaluation of their influence on the image quality.

Second, the reduction of the focal plane's size has been explored in the visible spectrum only. In the infrared, detector technologies require extra attention as they often need to be cooled. This reduction in sensor temperature is necessary to reduce thermally-induced noise to a level below that of the signal from the scene being imaged. Therefore, the complexity of the focal plane is much higher than in the visible. The detector and its close environment as well as the electronics must be cooled, inducing problems such as energy consumption, size and weight of the infrastructure, thermal stability management... The optical designer also has to deal with a cold stop, which position must match the system's exit pupil with a good wavefront. This is an impactful constraint during the optimization process sometimes requiring to re-balance the weights on the image quality versus the exit pupil location. Converting the optical design presented in this thesis to the infrared means to deal with as many exit pupils as there are sub-images. All the optical paths must therefore coincide perfectly to bring all the exit pupils at the cold stop with a good wavefront. It is possible to bring the exit pupil of a single module at the stop's location, but overlapping the pupils of multiple modules would mean their beams diverging after that. Thus, the images would be spread linearly on the focal plane, cancelling the very purpose of the optical segmentation. It is therefore not a matter of optical design but a limitation derived from the geometrical arrangement of the system. Working in the infrared means rethinking the design completely or customizing the cold stop to be bigger and fit the footprints of multiple beams.

Third, the realisation of a proof-of-concept has been the subject of great discussions between the LAM, TAS, and the CNES during this thesis. Various possibilities have been proposed : the manufacturing of a downscaled version of the whole telescope using a commercially available Ritchey-Chretien to reduce costs, the consideration of only two adjacent sub-images (thus allowing for the testing of the interfaces between two mirrors) at the edge of the field (where the freeform have the most departures), or more simply the evaluation of the tolerance budget on the alignment of the freeform mirrors in blocks with the realization of the prototype of a single block. Unfortunately, budget constraints delayed the decision-making process and this thesis remains theoretical-only. Future work could be manufacturing and testing oriented, starting with the development of the mechanical design of the Segmented Ritchey-Chretien.

Yet, the results in the visible spectrum allow for some promising perspectives both for the optical designers and the high-resolution observation community. The traction that freeform surfaces have gained in the past decade is not going to stop, fuelled by new mathematical descriptions, uses-cases and mastering of novel manufacturing techniques. This progress is already very valuable to the space industry and this thesis capitalizes on the recent advances of the research, by exploring a novel application for the freeform optics revolution. The segmentation of focal planes can be an impactful way of reducing the size of the detector in future high-resolution observation missions, following the trend of increased fields-of-view and resolutions. [0012] Au moins un miroir de renvoi MR permet de rendre le système plus compact.

D D DE E EM M MA A AN N ND D DE E E D D DE E E B B BR R RE E EV V VE E ET T T F F FR R RA A AN N NC C CE E E

A A AU U UT T TO O OR R RI I IS S SA A AT T TI I IO O ON N N D D DE E E D D DI I IV V VU U UL L LG G GA A AT T TI I IO O ON N N

Ce télescope présente une pupille de sortie PS disposée entre M3 et D.

[0013] Les trois miroirs permettent de corriger l'ensemble des aberrations du 3 ème ordre plus la courbure de champ. Il présente suffisamment de degrés de liberté au niveau du design de sa combinaison optique pour corriger la courbure de champ (application des équations de Korsch bien connues de l'homme de l'art), et donc son champ de vue est plus large que pour le RC/C. La solution théorique est de très bonne qualité, ce qui fait tout l'intérêt de ce type de télescope.

Typiquement les télescopes de type Korsch présentent un champ de vue compris entre 0 et 3° et des focales de plusieurs mètres, typiquement de 3m à 40 m.

[0014] Pour l'observation de la terre ces télescopes fonctionnement selon le principe « push broom » : on réalise une image sur un détecteur constitué d'une barrette linéaire, la rotation du satellite autour de la terre faisant naturellement défiler l'image.

[0015] L'augmentation de la résolution et du champ des télescopes d'observation planétaire progresse à marche forcée, dictée par des besoins militaires (reconnaissance, identification) comme civils (gestion des cultures, forêts, grands projets BTP, désastres naturels...). Cette augmentation de la résolution et du champ conduit à travailler avec des plans focaux linéaires devenant de plus en plus encombrants et difficiles à intégrer.

[0016] Exemple : Mission à 700km d'altitude pour une résolution au sol (GSD) de 30 cm, une fauchée de 30km et des pixels de 10µm. Le plan focal ferait ainsi 1m de large, ce qui est grand en termes de complexité et intégration du plan focal.

[0017] Il devient donc nécessaire de réduire la taille linéaire de ce plan focal afin de remédier aux problèmes énoncés ci-dessus.

[0018] Une solution utilisant un module de segmentation associé à un télescope [0021] Un but de la présente invention est de remédier aux inconvénients précités en proposant un télescope segmenté à la fois plus compact et présentant une qualité d'image améliorée par rapport au Korsch segmenté.

DESCRIPTION DE L'INVENTION

[0022] La présente invention a pour objet un télescope comprenant:

-un télescope initial comprenant un premier miroir concave et un deuxième miroir [0023] Préférentiellement le télescope initial est de type Ritchey-Chrétien ou Cassegrain.

[0024] Selon une variante les miroirs du premier ensemble sont disposés dans un même plan P1 perpendiculaire audit axe optique.

[0025] Selon un mode de réalisation une distance entre le plan focal intermédiaire et ledit plan P1 est déterminée au moins en fonction d'une focale du télescope initial et d'un grandissement du module de segmentation selon une loi prédéterminée.

[0026] Selon un mode de réalisation distance est déterminée à +/-20% près par une interpolation polynomiale de degré 2 de type : desg = A + B*fc +C*gs + D*fc 2 + E*fc*gs + F*gs 2 les coefficients A à F étant fonction d'un champ d'entrée selon l'axe X.

[0027] Selon une autre variante les miroirs du premier ensemble et les miroirs du deuxième ensemble sont disposés dans au moins deux plans différents perpendiculaires à l'axe optique, une voie comprenant un miroir de segmentation et un miroir de focalisation associé, une voie présentant une focale associée, toutes les voies étant configurées pour réaliser lesdites images dans ledit plan focal (PF).

[0028] La description suivante présente plusieurs exemples de réalisation du dispositif de l'invention : ces exemples sont non limitatifs de la portée de l'invention. Ces exemples de réalisation présentent à la fois les caractéristiques essentielles de l'invention ainsi que des caractéristiques additionnelles liées aux modes de réalisation considérés. [0050] [ Fig 20] La figure 20 illustre la variation du coefficient A de l'interpolation de degré 2 en fonction du champ d'entrée selon X Θx.

[0051] [ Fig 21] La figure 21 illustre la variation du coefficient B de l'interpolation de degré 2 en fonction du champ d'entrée selon X Θx.

[0052] [ Fig 22] La figure 22 illustre la variation du coefficient C de l'interpolation de degré 2 en fonction du champ d'entrée selon X Θx.

[0053] [ Fig 23] La figure 23 illustre la variation du coefficient D de l'interpolation de degré 2 en fonction du champ d'entrée selon X Θx.

[0054] [ Fig 24] La figure 24 illustre la variation du coefficient E de l'interpolation de degré 2 en fonction du champ d'entrée selon X Θx.

[0055] [ Fig 25] La figure 25 illustre la variation du coefficient F de l'interpolation de degré 2 en fonction du champ d'entrée selon X Θx.

[0056] [ Fig 26] La figure 26 illustre un exemple d'agencement, vu de côté, du module de segmentation par rapport au miroir primaire M1 du télescope initial, pour un télescope selon l'invention.

DESCRIPTION DETAILLEE DE L'INVENTION

[0057] L'invention consiste à associer un télescope à 2 miroirs (télescope initial) et un module de segmentation tel que réalisé initialement pour le télescope Korsch.

Tout type de télescope à 2 miroirs fonctionnant en mode infini/foyer est utilisable pour l'invention. Préférentiellement le télescope initial est un télescope RC/C tel que décrit précédemment, car ce sont des télescopes catadioptriques.

[0058] La figure 6 [0065] Après de nombreuses études et essais les inventeurs ont identifié l'origine de ce résultat contre intuitif. [0068] Les paramètres du Cassegrain sont donnés par :

R = 2d f f -d R = 2d d d -d + f d = d - R d R + 2d
R1 et R2 rayons de courbure des miroirs M1 et M2.

[0069] Si on fixe : la focale fc à 10m ; la distance d2 par exemple à fc/5 ; le diamètre D du M1 à D=0.8 m, la seule variable du système est la distance d1. Par ailleurs l'ouverture N =valant fc/D est égale à 12.5.

[0070] On définit θout comme l'angle de sortie du rayon principal de bord de champ du télescope initial Tel. Un rayon principal est un rayon issu du centre de la pupille de sortie. Le rayon principal de bord de champ est celui qui est issu du centre de la PS et est incident dans le plan image/focal au bord du champ (bord du détecteur pour un télescope classique). La figure 11bis illustre ce rayon pour un télescope à 2 miroirs pour lequel la pupille de sortie virtuelle est disposée derrière le M2.

[0071] La figure 12 décrit la variation (courbe TC) de l'angle θout en fonction de la distance d1, pour un télescope initial tel que précisé ci-dessus. La figure 13 illustre l'évolution de la distance d EPC en fonction de d1 (courbe CC).

[0072] Dans un télescope Cassegrain un point important pour l'invention est que la pupille de sortie PS est virtuelle et située derrière le miroir M2.

[0073] La figure 14 
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 011 Figure 0.1.1: Presentation of SPOT 1 in 1985 in Toulouse Space Center, France (left, Credits André Cros) and the SPOT 1-4 generation (right, Credits D. Ducros).
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 012 Figure 0.1.2: One of the three CSO satellite. Credits CNES.
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 013 Figure 0.1.3: Evolution of the family of French high-resolution missions. Achieving sub-meter resolutions is a great challenge that takes decades to overcome. Credits eoPortal/CNES.
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 014 Figure 0.1.4: Evolution of the performances between Pléiades and its successor. Credits CNES.
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 021 Figure 0.2.1: The IFU principle, but in a reverse way.
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 023 Figure 0.2.3: Conceptual basis of the optical segmentation of focal planes. Dimensions not to scale.
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 111 Figure 1.1.1: Purpose of the Pléiades program.
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 112 Figure 1.1.2: The Pléiades program over the years.

  Focal Length f' = 12.9 m, F/Number = 20 Resolution -GSD = 0,7m (Pan), 2.8m (MS, binning x4) -Swath = 20 km Total FOV 1.65°F ocal Plane Subsystem (FPS) Back-thinned TDI CCD (max 20 TDI lines): -Pan array assembly : 5 x 6000, 13 µm pitch -MS array assembly : 5 x 1500, 52 µm pitch -Box size : 460 mm long x 240 mm large x 250 mm height Spectral range -Pan : 480 -820 nm (TDI is only used for PAN) mm, W < 980 mm, H < 2235 mm Weight, Power & Temperature 195 kg, 400W, 23°C SNR Pan > 147:1, MS > 130:1 1.1. Pléiades 9 The observations are conducted in five bands : Panchromatic, Blue, Green, Red and Near-Infrared.
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 113 Figure 1.1.3: Spectral bands involved in Pléiades HR-Imagery.
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 114 Figure 1.1.4: Design of the HiRI instrument.
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 115 Figure 1.1.5: Focal Plane Subsystem (FPS) of the HiRI instrument.
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 116 Figure 1.1.6: 70cm-resolution photo of Marseille's Vélodrome stadium taken by Pléiades.
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 121 Figure 1.2.1: Goals of the MRO mission.
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 2122 Figure 1.2.2: Timeline of MRO's mission.
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 12 Figure 1.2.3: MRO Mission Science Phases

1 Red : 200: 1 NIR : 100: 1 Figure 1 . 2 . 4 :

 111124 Figure 1.2.4: MRO's Image quality improvement compared to Mars Global Surveyor's.
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 125 Figure 1.2.5: MRO's Optical design.
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 126 Figure 1.2.6: MRO's Focal Plane Subsystem (FPS) with its 14 stacked CCDs. It is made of aluminum-graphite composite material, appr. 25*10cm. (Delamere et al, 2003, [15]).
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 127 Figure 1.2.7: 200m-wide avalanche on a 60°slope, 2008 (left) and a 30m-wide crater, dated 2010 (right).

  2.1.3). They have multiple uses across a wide range of domains :
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 211 Figure 2.1.1: Freeform optics can be used anywhere !

  Unobscured systems : fold in 3D More performance & weight reduction in the same volume Get more band for all-reflective systems (spectrometers) Enable flat field & distortion-free designs Paths towards less sensitivity to assembly (less crazy freeforms : design for less sag & slope surfaces, smallest number of Zernike possible).The optics engineering and research world has begun, since the 2000's, to use freeform optics in their systems. As the research is boiling the concepts are still evolving, especially on the manufacturing and testing sides :
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 212 Figure 2.1.2: Evolution of optical surface use across the last century. From (Zemax webinar, 2018, [7]), which is adapted from [6].
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 213 Figure 2.1.3: Improvement of optical surface finish with single point diamond turning since the 80s (Schaefer, 2006, [8]).
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 221 Figure 2.2.1: Decomposition of a freeform surface into its base surface shape plus a freeform sag departure (from Broemel et al., 2017, [10]) .
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 222 Figure 2.2.2: Coordinate system involved in the Zernike representation.
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 223 Figure 2.2.3: Surface plots of the Zernike polynomial sequence up to the 10th order, with Standard and Fringe orderings. Adapted from [12].
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 224 Figure 2.2.4: Red : plot of Z 0 25 for 0.95 ≤ x ≤ 1 (so, at the edge of the aperture); Green : 10 14 times the error when evaluated with equation 2.2.6; Blue : error when evaluated with the explicit relation.
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 225 Figure 2.2.5: Explicitly-computed Z 4 22 (left) and recurrence-computed Z 4 22 (right). (Kaya, 2013, [19]).
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 226 Figure 2.2.6: Sensitivities without/with the slope-constraints on the Q-type polynomials (Ma et al., 2011, [21]).

  of the surface parallel to the z-axis c = curvature of the base conic (x, y) ∈ [-1, 1] 2 : Cartesian coordinates x, ȳ : normalized surface coordinates n, m = max polynomial orders in x & y directions T a (x) = cos (a. arccos(x)) , a ∈ N * + .

  of the surface parallel to the z-axis c = curvature of curvature k = conic constant n = degree of the Bernstein basis which contains (n + 1)(n + 1) polynomials

Figure 2 . 2 . 7 :

 227 Figure 2.2.7: Representation of the 7 Bernstein polynomials (basis of degree 6) in 1D on the interval [-1; +1] (left) and the Eigenmodes of Bernstein polynomials in a Bernstein basis of degree 6 (right).

Figure 2 . 2 . 8 :

 228 Figure 2.2.8: Optimization over a squared aperture using various sets of polynomials.

  (2k+1)π 2N , where k ∈ {0, 1, . . . , N -1}. Uniform-Random Grid : Randomly placed sample points. A point sampling function (Halton) generates uniformly distributed random points across the unit square. Edge-Clustered Grid : Edge-clustered sampling is created by first generating random Halton points and then applying a sine function on the radial coordinates to move these points towards the boundary of the aperture. If a point has coordinates (r, θ) then the corresponding clustered point has {sin rπ 2 , θ} as its coordinates.

Figure 2 . 4 . 1 :

 241 Figure 2.4.1: Performance comparison of the sampling grids when fitting a Franke surface.

Figure 2 . 5 . 1 :

 251 Figure 2.5.1: Full field displays of a Ritchey-Chretien telescope with a decentered secondary mirror for (a)third-order spherical aberration, (b) third-order coma, and (c) third-order astigmatism(Thompson, 2005, [42]).

  TOW; FMA ; FFD WPO ; WPT ZFR ; NFX 21 ; NFY 21 ; FCO ; ASC YES; WCN 5 ; GO TOW : Generate output in a tabbed window FMA : Field Map FFD : Displays value of selected performance metric as a function of field in a 2D plot. -WPO : Wavefront Polynomial coeff WPT : Zernike Polynomial Type (for WPO only) -ZFR : Fringe NFX, NFY : Number of plotted points across X/Y FCO : Field coordinate type and description -CIR : Circular Field display format -ANG : Object angle display format ASC YES : Anamorphic scaling WCN : Zernike Coefficient Number (for WPO only) → #5astig, #7 → coma, #9 → spherical. . . Classical aberrations have well-known field dependencies in rotationally-symmetric systems. When going off-axis, off-symmetry, no new aberrations are created : they instead develop new field dependencies.
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 271 Influence of a slope tolerance on the stop surface of a Petzval lens on its MTF.

Fig. 2 .

 2 Fig. 2.7.2 illustrates a random surface error sag map placed on an arbitrary surface. It has a correlation distance of about 1/10 of the diameter, which represents the minimum size of the bumps on the surface.

Figure 2 . 7 . 2 :

 272 Example of a random correlated surface error.

Figure 2 . 7 . 5 :

 275 Figure 2.7.5: The frequency domains and their impacts on the PSF. Inspired from (Harvey, 1995, [50]).

Figure 2 . 7 . 6 :

 276 Figure 2.7.6: Influence of the Hurst exponent and the frequencies of interest on the shape of the PSD.

Figure 2 . 7 . 7 :

 277 Figure 2.7.7: Typical PSD of the form error of an optical surface, without roll-off (left) and with a 200 m -1 roll-off frequency (right). Computed on Matlab.

Figure 2 . 7 . 8 :

 278 Figure 2.7.8: PSD data taken on a metal freeform mirror. Courtesy Mr. Lammers, IoF.

Figure 2 . 7 . 9 :

 279 Figure 2.7.9: Process resulting in a 10cmx10cm computer-generated surface (RMSt=50nm and H=0.8).

Figure 2 . 7 . 10 :

 2710 Figure 2.7.10: The PSD and corresponding generated error map for 3 different inputs. Upper row: 20nm RMSt, no roll-off. Middle row: 100nm RMSt, no roll-off. Lower row: 100nm RMSt, roll-off=1000m -1 .
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 547 TolerancingThe influence of the roll-off frequency appears clearly in fig.2.7.10.

  Fig. 2.7.11 presents the PSDs of 50 random surfaces generated with identical parameters.

Figure 2 . 7 . 11 :

 2711 Figure 2.7.11: PSDs of 50 random surfaces generated from the theoretical description of eq. 2.7.10.

FAB

  interesting to look at the distribution of the Zernike coefficients of such a fit, to see which aberration(s) dominate an error map. To do so, the macro function ZFRFIT is used. It fits user data to Fringe Zernike polynomials through the following syntax (CodeV Macro-PLUS Reference Manual, P45,[START_REF][END_REF]) : ZFRFIT(num_points, x, y, f, num_terms, coefs) where : num_points -Number of data points;x -One-dimensional array of X coordinates of the points normalized to the unit circle; y -One-dimensional array of Y coordinates of the points normalized to the unit circle; f -One-dimensional array of values of the function at (x,y); num_terms -Number of Zernike terms required; coefs -One-dimensional array of the fitted coefficients.
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 2712 Figure 2.7.12: Fit of an error map with the first 36 Zernike and display of the coefficients. The error maps are random, we do not generate specific shapes (astig, coma..).

  This work is based on the Integral Filed Unit (IFU) principle, but in a reversed way. An IFU reorganizes a 2D field-of-view on a 1D spectroscopic slit entrance. IFUs have already been developed for groundbased (Laurent et al., 2006, [1]), (Tecza et al., 2006, [2]), (Eikenberry et al., 2004, [3]) and space-borne spectrometers (Ealet and Prieto, 2002, [4]), (Closs et al., 2008, [5]), such as NIRSpec for the JWST. The IFU principle is laid out in fig. 3.1.1:

Figure 3 . 1 . 1 :

 311 Figure 3.1.1: Optical principle of the Integral Field Unit (IFU) technology. The field-of-view is divided into Nstrips on a slicer mirror (here N=6). Each of N slices re-images the telescope pupil, so there are N images in the pupil plane that form a long pseudo-slit (i.e. row of sub-slits). From(Vives et al., 2008, [6]).

Figure 3 . 1 . 2 :

 312 Figure 3.1.2: Optical path of NIRSpec showing the position of the IFU. From [5].

Figure 3 . 1 . 3 :

 313 Figure 3.1.3: Final arrangement of the MUSE slicer mirror. It is composed of four slicer mirrors stacked side-by-side. It is overall length is about 130 mm. From (Vives et al., 2008, [6]).
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 314 Figure 3.1.4: Comparison of the IFU and focal plane segmentation principles. They are similar (however reversed) but the FOV is 1800 times larger for the latter.
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 315 Figure 3.1.5: Optical principle of the optical segmentation of focal planes. Adapted from [8].

Figure 3 . 1 . 6 :

 316 Figure 3.1.6: Conceptual basis of the optical segmentation of focal planes. Dimensions not to scale.

Figure 3 . 1 . 7 :

 317 Figure 3.1.7: Zemax layout of the telescope proposed by Jahn in his thesis [9], based on a three-mirror Korsch telescope. Note the presence of a deformable mirror.

Figure 3 . 1 . 8 :

 318 Figure 3.1.8: CodeV layout of the telescope investigated in this thesis, based on a Ritchey-Chretien telescope.

Figure 3 . 1 . 9 :

 319 Figure 3.1.9: YZ view (left) and 3D view (right) of the Segmentation Unit made of two sets of seven mirrors each. The Ritchey-Chretien is not displayed.

  Focal length F = 10m, F/Number = 12.5Aperture diameter D = 800mmField of View FOV = 1.5°× 6, 3.10 -3 °(linear field)

Figure 3 . 2 . 1 :

 321 Figure 3.2.1: The CMOS TDI sensor used in the design.The 40cm GSD comes from Thales' theorem :GSD = H * p f = 700km * 5.5µm 10m ≈ 40cm.The swath is given by the total FOV, chosen for this study at θ = 1.5°: swath ≈ 20km, from which we can compute the number N of pixels across track :we know that Swath = N * N bM odules * GSD, which gives N = Swath GSD * N bM odules ≈ 7200

Figure 3 . 3 . 1 :

 331 Figure 3.3.1: Schematics of a Newtonian telescope. The eyepiece is present in the system when observing with the eye, otherwise a detector is placed at the focus of the mirror.

Figure 3 . 3 . 2 :

 332 Figure 3.3.2: Layout of a Segmented Newton telescope. Note the massive bulk of the system relative to its focal length (10m, D=0.8m).
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 33 Base telescope choice

Figure 3 . 3 . 3 :

 333 Figure 3.3.3: Final layout of the Segmented Ritchey-Chretien.

3. 3 .

 3 Base telescope choice 71

Figure 3 . 3 . 4 :

 334 Figure 3.3.4: Final layout of the Segmented Korsch. The bulk of the system is higher than in the two-mirror

Figure 3 . 3 . 5 :

 335 Figure 3.3.5: Illustration of the Θout angle in the Ritchey-Chretien case. The exit pupil is virtual and located behind the M2.

3 . 1 )Figure 3 . 3 . 6 :

 31336 Figure 3.3.6: Layout of a Ritchey-Chretien telescope. The exit pupil is virtual and located between F1 and S2.

3. 3 .

 3 Base telescope choice 73 The relation between the object & image chief ray angles is θ out = arctan f c tan (θ in ) d EP C . Knowing the maximum entrance angle, it is therefore possible to compute the maximum chief ray angle after the Ritchey-Chretien. The result is plotted versus d 1 in fig. 3.3.7 along with the exit pupil position d EP C from eq. 3.3.1.
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 337 Figure 3.3.7: Evolution of the exit pupil to image distance (left) and the maximum chief ray angle after the Ritchey-Chretien (right) against the M1-M2 distance d1.

Figure 3 . 3 . 8 :

 338 Figure 3.3.8: Layout of a Korsch telescope. The exit pupil is real and located between S3 and I.

Figure 3 . 3 . 9 :

 339 Figure 3.3.9: Evolution of the exit pupil to image distance (left) and the maximum chief ray angle after the Korsch (right) against the M1-M2 distance d1.

Figure 3 . 3 . 10 :

 3310 Figure 3.3.10: Comparison of the pupil position and maximum chief ray exit angle for the Ritchey-Chretien (left) and the Korsch (right) against the M1-M2 distance d1.
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 3311 Figure 3.3.11: Final layout of the Segmented Ritchey-Chretien.

Figure 3 . 4 . 1 :

 341 Figure 3.4.1: Folded layout of the Ritchey-Chretien alone.

Figure 3 . 4 . 2 :

 342 Figure 3.4.2: Unfolded layout of the Ritchey-Chretien alone.

4 .

 4 Geometric Set-up -Ritchey-Chretien alone Conics for the Ritchey-Chretien telescope :

Figure 3 . 4 . 3 :

 343 Figure 3.4.3: Layout (left) and image quality (right) of the two-mirror telescope without any optimization.

  between the RC's focal plane baffle and the beam coming from the MS1 BaffleMargin 10 mm Gap between the back of the M1 and the back of the MS2 (between the edge of the sensor (last pixel) and the edge of Number of pixels per sub-image to reconstruct the image OverlapPix 100 Number of pixels per sub-image in the Y direction (along track) YPixMod 200 Number of pixels in the dead zones DeadPix 200

Figure 3 . 5 . 1 :

 351 Figure 3.5.1: Authorized values for fc and gs that keep the total focal length at 10m.

Figure 3 . 5 . 2 :

 352 Figure 3.5.2: Layout of the input fields.

Figure 3 . 5 . 3 :

 353 Figure 3.5.3: The Ritchey-Chretien's exit pupil and one MS1 as seen from above (XZ plane).

Figure 3 . 5 . 5 :

 355 Figure 3.5.5: Schematics of the whole combination of MS1s as seen from above and its associated parameters (XZ plane).

3. 5 .

 5 Geometric Set-up -The Segmentation Unit 89 As seen previously, the mirrors are placed in the same way as the input fields, in staggered rows.

Figure 3 . 5 . 6 :

 356 Figure 3.5.6: Layout of the MS1's combination arrangement.

90 3 . 5 .Figure 3 . 5 . 7 :

 35357 Figure 3.5.7: Evolution of the distance dIM (RC's focal plane -MS1) plotted against the Ritchey-Chretien's focal length fc and the segmentation unit's magnification gs. In red, the values for F = 10m.
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 358 Figure 3.5.8: Simplified version of the YZ view, showing only the upper row of MS1s.
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 5 Geometric Set-up -The Segmentation Unit 91

Figure 3 . 5 . 9 :

 359 Figure 3.5.9: The Ritchey-Chretien's exit pupil and one MS1 as seen from the side (YZ plane).
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 35 Geometric Set-up -The Segmentation Unit

Figure 3 . 5 . 10 :

 3510 Figure 3.5.10: Evolution of the size of the MS1 in X and Y directions, plotted against the Ritchey-Chretien's focal length fc and the segmentation unit's magnification gs. In red, the values for F = 10m.

Figure 3 . 5 . 11 :

 3511 Figure 3.5.11: Upper row of MS1 and MS2 as seen from the side (YZ plane).
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 351223513 Figure 3.5.12: The distance ∆ between the two sets of mirrors is chosen to occupy as much space as possible inside the system.

Figure 3 . 5 . 14 :

 3514 Figure 3.5.14: The MS1 (and therefore the MS2) are stacked on two rows. This figure represents the upper row.

Figure 3 . 5 . 15 :

 3515 Figure 3.5.15: The whole segmentation unit as seen from the side (YZ plane) and the parameters used to compute the α-tilts of the upper MS2.

Figure 3 . 5 . 16 :

 3516 Figure 3.5.16: Schematics of the segmentation unit, unfolded layout.

Figure 3 . 5 . 17 :

 3517 Figure 3.5.17: Footprint of the beams on one MS1.

3. 5 .

 5 Figure 3.5.18: Left : Footprint on one MS2 if it is placed at the telescope's exit pupil. The small non-circularity is due to the mirror's tilts. Right : Same thing if it is placed between the MS1 and the telescope's exit pupil.

Figure 3 . 5 . 19 :

 3519 Figure 3.5.19: Evolution of the sizes of the MS2 (for the lower and upper rows), plotted against the Ritchey-Chretien's focal length fc and the segmentation unit's magnification gs. In red, the values for F = 10m.

Figure 3 . 5 . 20 :

 3520 Figure 3.5.20: Parameters involved in the computation of the α-tilt of the MS1.

Figure 3 . 5 . 21 :

 3521 Figure 3.5.21: Parameters involved in the computation of the α-tilt of the lower row of MS2s.
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 235 Geometric Set-up -The Segmentation Unit β-tilts MS2

Figure 3 . 5 . 22 :

 3522 Figure 3.5.22: The parameters involved in the β-tilts of the MS2 : the segmentation unit is here seen from above, in the XZ plane.

Figure 3 . 5 . 23 :

 3523 Figure 3.5.23: Evolution of the maximum β-tilt applied to the MS2, plotted against the Ritchey-Chretien's focal length fc and the segmentation unit's magnification gs. In red, the values for F = 10m.

Figure 3 . 5 . 24 :

 3524 Figure 3.5.24: YZ view (from the side) of the paraxial Segmented Ritchey-Chretien. F = 10m and D = 0.8m.

Figure 3 . 5 . 25 :

 3525 Figure 3.5.25: XZ view (from below) of the paraxial Segmented Ritchey-Chretien. F = 10m and D = 0.8m. Each module is represented by a different color.

  between the CG's focal plane baffle and the beam coming from the MS1 BaffleMargin 10 mm Gap between the back of the M1 and the back of the MS2 (with meca) M1Gap 20 mm Thickness of the MS2 MS2Thick 20 mm Y-Space between the edge of the sensor (last pixel) and the edge of Number of pixels per module used to reconstruct the original image OverlapPix 100 Number of pixels per module in the Y direction (Along Track) YPixMod 200 Number of pixels in the dead bands DeadPix See 4.3
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 411 Figure 4.1.1: Layout of the paraxial Segmented Ritchey-Chretien. F = 10m and D = 0.8m.

Figure 4 . 1 . 2 :

 412 Figure 4.1.2: Illustration of the operating point in the design space.
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 413 Figure 4.1.3: Zernike-based aberrations FFDs for astigmatism & coma in the non-optimized, paraxial design. FAFL astig & FC coma are of the same relative orientation.

Figure 4 . 2 . 1 :

 421 Figure 4.2.1: Final layout of the Segmented Ritchey-Chretien. F = 10m and D = 0.8m. Note that the design cannot be visually differentiated from the paraxial one from fig. 4.1.1.

Figure 4 . 2 . 2 :

 422 Figure 4.2.2: Image quality at a mid-field point if spheres/conics/aspheres are used instead of freeform shapes for the segmentation mirrors. It is nowhere near the diffraction-limit !
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 423 Figure 4.2.3: Image quality of the optimized design.

Figure 4 . 2 . 4 :

 424 Figure 4.2.4: Nominal MTF at Nyquist map of the whole detector. Zooming on the images is necessary.

Figure 4 . 2 . 5 :

 425 Figure 4.2.5: Nominal MTF at Nyquist map of every sub-image. Anamorphic scaling enabled.
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 42 Optimization and nominal results

Figure 4 . 2 . 6 :

 426 Figure 4.2.6: Zernike Defocus (Z4) FFDs for the seven sub-images.

Figure 4 .

 4 Figure 4.2.7shows that the astigmatism is the biggest contributor to the wavefront deformation and is high across the field, despite being well corrected with two astigmatism nodes being brought into the FOV of each sub-image. Note the shape of the astigmatism, in its field asymmetric, field linear form.

Figure 4 . 2 .

 42 Figure 4.2.8 shows that the coma is well corrected across the field, producing a field constant shape zeroing at the center of each sub-image. In fig 4.2.9, the spherical aberration is well corrected and brought to almost zero. Note the influence of the tilts of the freeform mirrors, which are shifting the plane of symmetry of the distribution in each sub-image. Lastly, the RMS Wavefront Error distribution plotted in fig 4.2.10 is field symmetric in each sub-image, averaging at 0.07λ = 43nm across the telescope's FOV.
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 427 Figure 4.2.7: Zernike Astigmatism (Z 5/6 ) anamorphically-scaled FFDs for the seven sub-images.

Figure 4 . 2 . 8 :

 428 Figure 4.2.8: Zernike Coma (Z 7/8 ) anamorphically-scaled FFDs for the seven sub-images.

Figure 4 . 2 . 9 :

 429 Figure 4.2.9: Zernike Coma (Z9) anamorphically-scaled FFDs for the seven sub-images.

Figure 4 . 2 . 10 :

 4210 Figure 4.2.10: RMS Wavefront Error anamorphicaly-scaled FFDs for the seven sub-images. Note that this correlates with fig. 4.2.5.

Figure 4 . 2 . 11 :

 4211 Figure 4.2.11: Contribution of each aberration to the WFE of the optimized Segmented Ritchey-Chretien.Astigmatism drives the image quality in the system.

Fig. 4 .

 4 Fig. 4.2.7 tells us that the astigmatism is in its field-asymmetric, field-linear form. According to (Bauer et al., 2018), FAFL astig can't be corrected further because there is no Field Constant Coma to cancel out with it. It was expected : the Ritchey-Chretien corrects coma and produces astigmatism.
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 4212 Figure 4.2.12: Footprint plot of on the detector. The center of the 7 sub-images are perfectly aligned, but the distortion tilts their edges.

Figure 4 . 2 . 13 :

 4213 Figure 4.2.13: Sag and slope deviations from the best-fit sphere for the MS1 in the nominal design.

Figure 4 . 2 . 14 :

 4214 Figure 4.2.14: Sag and slope deviations from the best-fit sphere for the MS2 in the nominal design.

Figure 4 . 2 . 15 :

 4215 Figure 4.2.15: Evolution of the sag deviations from the best-fit sphere across the field.
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 431 Figure 4.3.1: Influence of various non-compensated alignment errors of the Ritchey-Chretien on the MTF performance of the final image at the edge of the field (Module 7). Tilts are computed as the decenter value divided by the diameter of the component.

Figure 4 . 3 .

 43 Figure 4.3.2 shows that the biggest contributors are still the alpha-tilts and the Z-displacements of the mirrors.

Figure 4 . 3 . 2 :

 432 Figure 4.3.2: Influence of various non-compensated alignment errors of the Segmentation Unit on the MTF performance of the final image at the edge of the field (Module 7). Tilts are computed as the decenter value divided by the diameter of the component.
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 32 Focus on the MS2 tiltsBefore going any further, one might want to assess the special influence the MS2 tilts have on the image. Not the image quality but the whole image itself : they dictate the position of the sub-images in the focal plane. To illustrate that, let's consider two extreme cases where the individual MS2 are perfectly / very roughly positioned in the system.

Figure 4 . 3 . 3 :

 433 Figure 4.3.3: Display of two cases where the individual MS2 are perfectly (left) or very roughly (right) positioned in the system. Tilts are computed as the decenter value divided by the diameter of the component.

Figure 4 . 3 . 4 :

 434 Figure 4.3.4: Listing of the tolerances (right) and corresponding average MTF at Nyquist per sub-image (right) when the freeform mirrors are aligned independently.

  Said interfaces are illustrated in fig. 4.3.5 :
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 435 Figure 4.3.5: Highlight of the interfaces between the mirrors on a set. Edge effects need to be controlled.
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 436 Figure 4.3.6: Listing of the tolerances (right) and corresponding average MTF at Nyquist per sub-image (right) when the freeform mirrors are joined in single piece.

Figure 4 . 3 . 7 :

 437 Figure 4.3.7: 50nm RMS computer generated error map (left) and its impact on the average MTF at Nyquist per sub-image (right).
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 4 FAQ -Frequently asked questions 123

Figure 4 . 4 . 1 :

 441 Figure 4.4.1: Black : operating point in this study. Blue and green : alternative illustrative points. All have a total focal length F = 10m.

Figure 4 . 4 . 2 (

 442 Figure 4.4.2 (below) shows the 3 corresponding telescopes along with their respective image qualities, expressed as the average MTF at Nyquist per sub-image. It appears that the overall size of the telescope (imposed by the Segmentation Unit) grows with f c , as well as the freeform mirrors' sizes. Increasing f c also improves the image quality : for critical applications where image quality is a driving factor, a bigger volume can be allocated to the telescope or a folding mirror can be inserted into the optical path.
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 4 FAQ -Frequently asked questions

Figure 4 . 4 . 2 :

 442 Figure 4.4.2: Black : operating point in this study. Blue and green : alternative illustrative points. F = 10m. Note the evolution of the segmentation unit with gs.

Figure 4 . 4 . 3 :

 443 Figure 4.4.3: Evolution of the maximum chief ray angle after the Ritchey-Chretien (left) and the exit pupil to image distance (right) against the M1-M2 distance d1. Explained in the Trade-Off Study.
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 444 Figure 4.4.4: The segmented telescope used throughout this thesis (up) along with the same telescope with a faster M1 (from 2.5 F# to 1.8).

Figure 4 . 4 . 5 :

 445 Figure 4.4.5: Our Segmented Ritchey-Chretien with an increased FOV of 2.5°. The obscuration ratio is as high a 60% here.

Figure 4 . 4 . 6 :

 446 Figure 4.4.6: Average MTF at Nyquist per sub-image of our Segmented Ritchey-Chretien with an increased FOV of 2.5°.

Figure 4 . 4 . 7 :

 447 Figure 4.4.7: Our Segmented Ritchey-Chretien with only 5 modules instead of 7.

Figure 4 . 4 . 8 :

 448 Figure 4.4.8: Average MTF at Nyquist per sub-image with only 5 modules instead of 7.

  convexe configurés de sorte qu'ils forment d'un faisceau lumineux provenant de l'infini une image dénommée image intermédiaire dans un plan focal dénommé plan focal intermédiaire, ladite image intermédiaire présentant une plus grande dimension selon un axe X perpendiculaire à un axe optique du télescope, -un module de segmentation comprenant : *un premier ensemble de n miroirs de segmentation disposés en aval du plan focal intermédiaire et configurés pour découper l'image intermédiaire issue du plan focal intermédiaire en n imagettes, *un deuxième ensemble de n miroirs de refocalisation configurés pour réimager lesdites n imagettes en n images dans un plan focal du télescope, lesdites images étant agencées dans ledit plan focal de manière à réduire la dimension selon X contenant les n images, -un dispositif de détection (Det) disposé dans ledit plan focal.

[

  0029] L'invention sera mieux comprise et d'autres caractéristiques, buts et avantages de celle-ci apparaîtront au cours de la description détaillée qui va suivre et en regard des dessins annexés donnés à titre d'exemples non limitatifs et sur lesquels : [0030] [Fig 1] La figure 1 déjà citée illustre un télescope de type Cassegrain/Ritchey-Chrétien selon l'état de la technique. [0031] [Fig 2] La figure 2 déjà citée illustre un télescope de type Korsch selon l'état de la technique. [0032] [Fig 3] La figure 3 illustre le principe d'un télescope Korsch segmenté selon l'état de la technique. [0033] [Fig 4] La figure 4 déjà cité illustre plus particulièrement le module de segmentation du Korsch segmenté de la figure 3. [0034] [Fig 5] La figure 5 déjà citée illustre le plan focal d'un télescope « push broom » classique et d'un télescope « push broom » segmenté.
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 4 FAQ -Frequently asked questions 141[0049] [Fig 19] La figure19illustre la loi qui permet de déterminer la distance optimale dseg entre le plan focal intermédiaire et le plan des miroirs de segmentation en fonction de la focale du télescope initial et du grandissement du module de segmentation.

  illustre une vue en perspective du télescope initial à deux miroirs Tel utilisé en « push broom » avec un plan focal PFc dans lequel une image Ii de l'infini est réalisée le long d'un axe X perpendiculaire à l'axe optique du système (plan focal XY perpendiculaire à l'axe optique). L'image Ii utilisée en mode « push 4.4. FAQ -Frequently asked questions 143 broom » présente une dimension selon X (dimension linéaire) très supérieure à sa dimension selon Y. [0059] La figure 7 illustre un télescope 10 selon l'invention vu de profil et la figure 8 illustre le télescope 10 selon l'invention vue de dessus. Le télescope 10 selon l'invention comprend un télescope initial Tel à 2 miroirs, préférentiellement de type Ritchey -Chrétien ou Cassegrain, comprenant un premier miroir M1 concave et un deuxième miroir M2 convexe configurés de sorte qu'ils forment d'un faisceau lumineux F0 provenant de l'infini une image dénommée image intermédiaire Ii dans un plan focal dénommé plan focal intermédiaire PFi, l'image intermédiaire présentant sa plus grande dimension selon l'axe X perpendiculaire à l'axe optique du télescope (en comparaison à la dimension selon l'axe Y perpendiculaire à X). [0060] Le télescope 10 selon l'invention comprend également un module de segmentation MSEG comprenant : -un premier ensemble de n miroirs de segmentation MS1 disposés en aval du plan focal intermédiaire et configurés pour découper l'image intermédiaire issue du plan focal intermédiaire en n imagettes, -un deuxième ensemble de n miroirs de refocalisation MS2 configurés pour réimager lesdites n imagettes en n images dans un plan focal PF du télescope, lesdites images étant agencées dans le plan focal PF de manière à réduire la dimension selon l'axe X contenant les n images. Les n images sont par exemple exactement superposées l'une en dessous de l'autre, mais peuvent également être décalées. [0061] Enfin le module de segmentation comprend un dispositif de détection Det disposé dans le plan focal PF. On entend par dispositif de détection un détecteur au sens large, pouvant être matriciel et/ou composé d'une superposition de barrettes et/ou d'une mosaïque de détecteurs élémentaires par exemple. [0062] Les figures 9 et 10 représentent le module de segmentation respectivement selon une vue de profil et en perspective, pour un exemple avec n=7 et selon une première variante de l'invention, dans laquelle les miroirs MS1 sont tous situés dans un même plan P1 et les miroirs MS2 sont également tous situés dans un même plan P2. La focale du télescope est identique pour tous les points du champ de vue. Dans cette variante le module de segmentation est de même type que celui décrit dans la publication Jahn et al précitée. Les miroirs de segmentation MS1 sont numérotés de 1 à 7 et les miroirs de segmentation MS2 associé à chacun des miroirs MS1 portent un numéro identique. L'exemple choisi est de 7 voies (une voie correspond à l'association d'un miroir de segmentation et du miroir de refocalisation associé), et chaque voie est représentée par un niveau de gris différent sur la figure 10. Avec n voies on réduit la taille linéaire du plan focal d'un facteur n, ici 7, mais d'autres paramètres missions peuvent amener à un nombre différent de voies. De même, l'agencement dans l'espace des ensembles de miroirs MS1 et MS2 a été choisi comme tel pour des raisons d'encombrement et de qualité image mais beaucoup d'autres arrangements différents sont possibles. [0063] Le dispositif de détection Det est illustré positionné dans ce même plan de manière arbitraire. [0064] La combinaison d'un télescope à 2 miroirs, bien moins performant qu'un Korsch, avec un module de segmentation, n'est pas évidente, elle est même contre-intuitive. En effet le télescope et le module de segmentation étant optimisés indépendamment, on s'attend à obtenir une qualité d'image d'un Korsch segmenté bien meilleure que celle d'un RC/C segmenté. Hors les inventeurs ont constaté que tel n'était pas le cas, et que le RC/C segmenté présentait une qualité d'image supérieure à celle d'un Korsch segmenté, de focale et d'ouverture identique. Par ailleurs le télescope RC/C segmenté présente un champ de vue supérieur au champ de vue d'un RC/C classique.

[ 0066 ]

 0066 Pour mettre en évidence cette origine, un télescope Cassegrain et un télescope Korsch vont être comparés selon un aspect particulier. On fixe la focale fc, et l'ouverture, le champ et la distance M2-PFc (M2-PFik pour le Korsch) égales à fc/5 pour les deux télescopes. La variable distance d1 entre M1 et M2 est laissée libre pour pouvoir optimiser chaque combinaison.

4. 4 .

 4 FAQ -Frequently asked questions 145 [0067] La figure 11 illustre les différentes distances et points d'intérêt pour un télescope Cassegrain : le point I est le point du plan image/focal PFc situé sur l'axe optique, d1 est la distance entre M1 et M2 d2 est la distance entre M2 et I, et d EPC est la distance entre la pupille de sortie PS et le point I. Le point F1 est le point focal du miroir primaire M1, les points S1, S2 sont les sommets des miroirs M1, M2.

  illustre les différentes distances et points d'intérêt pour un télescope Korsch : le point IM est le point du plan focal intermédiaire PFIk sur l'axe optique, et point I est le point du plan focal PFk situé sur l'axe optique, d1 est la distance entre M1 et M2 (la flèche donne le signe de cette distance, d2 est la distance entre M2 et IM, dIM est la distance entre IM et le troisième miroir M3, d3 est la distance entre M3 et I. d EPK est la distance entre la pupille de sortie du

146 4 . 4 .REVENDICATIONS 1 . 4 . 5 .

 44145 FIG.1

  FIG.3

  FIG.7

  FIG.12

  FIG.18

  FIG.21

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1 .

 1 

1.1: Pléiades program overview. Table 1.1.2: Artist view of Pléiades 1A.

Table 1 .

 1 1.3: Miscellaneous infoFrequency of image capture > 250 images / day / satellite

	1.1. Pléiades

Table 1 .

 1 

1.4

: Specifications of the imager of Pléiades, HiRI.

Table 1 .

 1 2.3: MRO's Main Payload

	1.2. Mars Reconnaissance Orbiter	
	High Resolution Imaging Science Experiment [9]	HiRISE	HR push-broom telescope. See The HiRISE Instrument section for more details.
	Compact		
	Reconnaissance		
	Imaging		
	Spectrometer for		
	Mars [10]		

Table 1 .

 1 

2.4: MRO's Additional Payload

Table 2 .

 2 

1.1: Evolution of surfaces mastering across the past century (from

[6]

).

Table 2 .

 2 2.1: Listing of the Zernike Polynomials up to the 7 th order (Mahajan, 1994,[16].)

	Term	Z m n Fringe Zernike Polynomial	Name	Norm.
	Z 1	1	Piston	1
	Z 2	r cos θ	Tilt	2
	Z 3 Z 4 Z 5 Z 6 Z 7 Z 8 Z 9 Z 10 Z 11 Z 12 Z 13 Z 14 Z 15 Z 16 Z 17 Z 18 Z 19 Z 20 Z 21 Z 22 Z 23 Z 24 Z 25 Z 26 Z 27 Z 28 Z 29 Z 30 Z 31	r sin θ 2r 2 -1 r 2 cos 2θ r 2 sin 2θ (3r 2 -2r) cos θ (3r 2 -2r) sin θ 6r 4 -6r 2 + 1 r 3 cos 3θ r 3 sin 3θ (4r 4 -3r 2 ) cos 2θ (4r 4 -3r 2 ) sin 2θ (10r 5 -12r 3 + 3r) cos θ (10r 5 -12r 3 + 3r) sin θ 20r 6 -30r 4 + 12r 2 -1 r 4 cos 4θ r 4 sin 4θ (5r 5 -4r 3 ) cos 3θ (5r 5 -4r 3 ) sin 3θ (15r 6 -20r 4 + 6r 2 ) cos 2θ (15r 6 -20r 4 + 6r 2 ) sin 2θ (35r 7 -60r 5 + 30r 3 -4r) cos θ (35r 7 -60r 5 + 30r 3 -4r) sin θ 70r 8 -140r 6 + 90r 4 -20r 2 + 1 r 5 cos 5θ r 5 sin 5θ (6r 6 -5r 4 ) cos 4θ (6r 6 -5r 4 ) sin 4θ (21r 7 -30r 7 + 10r 3 ) cos 3θ (21r 7 -30r 7 + 10r 3 ) sin 3θ	Tilt Field Curvature Astigmatism Astigmatism Coma Coma Spherical Trefoil Trefoil Sec. Astigmatism Sec. Astigmatism Sec. Coma Sec. Coma Sec. Spherical Tetrafoil Tetrafoil Sec. Trefoil Sec. Trefoil Ter. Astigmatism Ter. Astigmatism Ter. Coma Ter. Coma Ter. Spherical Pentafoil Pentafoil Sec. Tetrafoil Sec. Tetrafoil Ter. Trefoil Ter. Trefoil	2 √ 3 √ 6 √ 6 √ 8 √ 8 √ 5 √ 8 √ 8 √ √ √ √ √ 7 √ √ √ √ √ √ √ √ √ 9 √ √ √ √ √ √
	Z 32	(56r 8 -105r 6 + 60r 4 -10r 2 ) cos 2θ	Astigmatism Quat.	√
	Z 33	(56r 8 -105r 6 + 60r 4 -10r 2 ) sin 2θ	Astigmatism Quat.	√
	Z 34			

(126r 9 -280r 7 + 210r 5 -60r 3 + 5r) cos θ Quat. Coma √ Z 35 (126r 9 -280r 7 + 210r 5 -60r 3 + 5r) sin θ Quat. Coma √ Z 36 252r 1 0 -630r 8 + 560r 6 -210r 4 + 30r 2 -1 Quat. Spherical √ Z 37 924r 1 2 -2772r 1 0 + 3150r 8 -1680r 6 + 420r 4 -42r 2 + 1 Quint. Spherical √

Table 2 .

 2 2.2: Summary of the properties of the various surface representations.

	Surface Type	Asphere/Freeform	Orthogonality	Aperture shape
	Even Asphere		No	
	Q con	Asphere	Space	Circular
	Q bf s		Slope	
	Zernike		Space	
	Q-polynomials		Slope	Circular
	Modified Bernstein		Space	
	XY-polynomials	Freeform	No	
	Legendre		Space	Rectangular
	Chebyshev		Space	
	RBFs NURBS		--	No restrictions
	Orthogonality in space : optimization on the wave aberrations;	

Table 2 .

 2 

	FAFL Astigmatism
	Z 5/6
	FC Coma
	Z 7/8

6.1: Influence of the surface shapes on the aberrations (adapted from the supplementary notes of

[START_REF] Bauer | Starting geometry creation and design method for freeform optics[END_REF]

). Surface shape Generated aberration FFD Astigmatism (Z 5 ) Away from the stop FC Astigmatism Z 5/6 Defocus (Z 4 ) Coma (Z 8 ) Away from the stop Defocus (Z 4 ) Astigmatism Z 5/6 Secondary Astigmatism (Z 12 ) Away from the stop Coma Z 7/8 Coma Z 7/8 Secondary Coma (Z 15 ) Away from the stop Spherical (Z 9 ) Elliptical Coma Z 10/11 Oblique spherical Z 12/13

  -1 ], such that RMSt has the units of [m 2 ].

	Many references discuss in great detail the calculation of the PSD, such as (Jacobs et al., 2017, [46]), the
	1st chapter of (Liangyu He, 2013, [51]), or (Persson et al., 2005, [52]) : the reader is kindly invited to
	browse them for further information.
	Parseval's theorem is a powerful feature that drives this whole "surface form error" simulation :

Measuring the surface profile across a wide range of frequencies of interest gives access to RMSt; Alternatively, by knowing the expected shape of the PSD and its boundary frequencies, we can use RMSt to create a random surface profile that yields a predefined deviation. This method has already been used in the literature : see (Jacobs et al., 2017,

[START_REF] Tevis | Quantitative characterization of surface topography using spectral analysis[END_REF]

),

(Persson et al., 2005, [52]

) and (Xinda Hu & Hong Hua, 2015,

[START_REF] Hu | Design and tolerance of a free-form optical system for an optical see-through multi-focal-plane display[END_REF]

).

Table 3 .

 3 2.1: Image Specifications.

Table 3 . 2

 32 

.2: Telescope Specifications.

Table 3 .

 3 5.1: User inputs for the paraxial setup of the segmentation unit.

	Input Parameter	Name	Value
	Overall parameters		
	Total focal length	F	-10 000 mm
	Aperture Diameter	Φ M1	800 mm
	M1 F/Number	N 1	2.5
	Ritchey-Chretien's focal length	f c	11500 mm
	Ritchey-Chretien's BFL	B	220 mm
	Segmentation unit		
	Segmentation Unit's magnification		

Table 3 . 5

 35 

.3: Evolution of the height of the MS2 with ∆.

Table 3 . 5

 35 

.4: Evolution of the length of the MS2 with ∆.

Table 4 .

 4 0.1: User inputs for the paraxial setup of the segmentation unit.

	Input Parameter	Name	Value
	Overall parameters		
	Total focal length	F	-10 000 mm
	Aperture Diameter	Φ M1	800 mm
	M1 F/Number	N 1	2.5
	RC's BFL		

Ti it tr re e o of ff fi ic ci ie el l: :

  La qualité d'un système optique s'évalue par comparaison entre l'onde lumineuse idéale limitée par la diffraction et l'onde lumineuse réelle à la sortie du système optique tenant compte des défauts du système optique traversé.

		134 4.4. FAQ -Frequently asked questions	4.4. FAQ -Frequently asked questions 137
		DESCRIPTION TITRE : Télescope de type Cassegrain à plan focal segmenté DOMAINE DE L'INVENTION [0011] Le télescope de type Korsch, également dénommé TMA (acronyme de l'expression anglo-saxonne « Three Mirrors Anastigmat ») est un télescope anastigmat à trois miroirs asphériques (de type Concave-Convexe-Concave) qui [0006] L'analyse de la différence entre onde théorique et onde réelle permet d'identifier comprend un premier miroir M1k concave, un second miroir M2k convexe et un
		[0001] Le domaine de l'invention est celui des télescopes, notamment celui des les types de défauts ou aberrations du système optique. Il est connu que les troisième miroir M3k concave. Les trois miroirs M1k, M2k et M3k sont agencés de
		télescopes d'observations embarqués dans des satellites. Plus précisément, le principales aberrations géométriques sont : l'aberration sphérique, l'astigmatisme, sorte que le premier miroir M1k et le second miroir M2k forment d'un objet à
		domaine de l'invention concerne les systèmes catoptriques à haute résolution et la coma, la courbure de champ (défocus dans le champ), et la distorsion l'infini une image intermédiaire P FIk située entre M2k et M3k, ce troisième miroir grand champ. (aberrations du 3eme ordre). formant de cette image intermédiaire une image finale dans le plan focal PFk du
		ETAT DE LA TECHNIQUE [0002] Historiquement les premiers télescopes étaient des lunettes (à lentilles). Puis [0007] Les miroirs M1 et M2 sont parabolique-hyperbolique pour un Cassegrain, télescope dans lequel est placé un détecteur D.
	N Nu um mé ér ro o d de e d dé ép pô ôt t : les premiers télescopes catadioptriques étaient de type Newton (un seul miroir), D DE EM MA AN ND DE E F FR RA AN NC CE E N N°°1 19 91 10 06 62 25 5 hyperbolique-hyperbolique pour le RC, et la combinaison optique de ce type de : les télescopes à deux miroirs de type Cassegrain/Ritchey-Chrétien sont arrivés télescope se détermine de manière connue en fonction des différents paramètres
		ensuite. Ces télescopes comprennent deux miroirs, un premier miroir M1 concave précités et par exemple de la distance d1 entre M1 et M2, ou de la distance d2
		et un deuxième miroir M2 convexe configurés pour réaliser une image d'un entre M2 et le plan focal PF souhaitée.
	D Da at te e d de e d dé ép pô ôt t : : faisceau lumineux F0 provenant de l'infini dans un plan focal PFc, dans lequel est 2 26 6 S SE EP PT TE EM MB BR RE E 2 20 01 19 9
		disposé un détecteur, tel qu'illustré figure 1.
		[0003] Ce système optique présente un axe optique O bien connu de l'homme de
	D Dé ép po os sa an nt t( (s s) ) : : l'art, défini par le rayon passant par le centre de la pupille d'entrée P E et T TH HA AL LE ES S/ /U UN NI IV VE ER RS SI IT TE E D D' 'A AI IX X--M MA AR RS SE EI IL LL LE E/ /C CE EN NT TR RE E N NA AT TI IO ON NA AL L D DE E L LA A R RE EC CH HE ER RC CH HE E S SC CI IE EN NT TI IF FI IQ QU UE E
		perpendiculaire à cette pupille.
		[0004] Les différents éléments (miroirs M1, M2 et détecteur) du télescope sont
	T	T Té él le es sc co op pe e d de e t ty yp pe e C Ca as ss se eg gr ra ai in n à à p pl la an n f fo oc ca al l s se eg gm me en nt té é agencés selon un ordre, des positions et des caractéristiques optiques qui
		définissent la combinaison optique du télescope. Le télescope présente une
		pupille d'entrée PE et une pupille de sortie, notions bien connues de l'homme de
		l'art. La pupille d'entrée de ce télescope est constituée par le diamètre du M1.
	I In nv ve en nt te eu ur r( (s s) ) : [0009] Il existe par ailleurs d'autres types de télescopes à 2 miroirs tels que G Gr ré ég go oi ir re e H HE EI IN N, , M Ma ar rc c F FE ER RR RA AR RI I, , N Ni ic co ol la as s T TE ET TA AZ Z, , W Wi il lf fr ri ie ed d J JA AH HN N, , E Em mm ma an nu ue el l : H HU UG GO OT T [0005] Un télescope est caractérisé de manière connue par les paramètres suivants : « Schmidt & Maksutov », « Grégorien », « Schwarzschild »…
		-une focale f, [0010] Du fait des limitations précitées les télescopes à 2 miroirs (RC/C ou autre),
		-une ouverture : rapport de la focale f sur le diamètre D du M1, paramétrée en bien que très compacts, ne sont aujourd'hui plus utilisés pour l'imagerie haute
	R Ré éf fé ér re en nc ce e( (s s) ) c cl li ie en nt t : : f/nombre entier, résolution (longue focale) et grand champ. Depuis 20 ans le standard pour les T TA AS S--C CA A--1 18 81 16 6
		-un champ de vue qui est l'angle solide observé par l'instrument pour une image télescopes spatiaux longue focale est le télescope de type « Korsch », tel
		présentant une qualité d'image jugée acceptable. qu'illustré figure 2, qui permet d'obtenir un champ plus important que celui du
	R Ré éf fé ér re en nc ce e M MC CF F : : Ritchey-Chrétien.	0 07 72 20 03 34 4 F FR R/ /C CJ JO O / /E EK KE E

[0008] Le fait d'avoir deux miroirs dans la combinaison optique permet la correction de deux des trois aberrations du 3eme ordre : soit on corrige l'aberration sphérique et la coma (télescope Ritchey-Chrétien), soit on corrige l'aberration sphérique et l'astigmatisme (télescope Cassegrain). Nous dénommerons par la suite ce type de télescope RC/C. En revanche ce type de télescope présente toujours de la courbure de champ (ou courbure de Petzval) et de la distorsion, ce qui limite le champ de vue présentant une qualité d'image suffisante à des valeurs inférieures à 0.5°. Ainsi un télescope Ritchey-Chrétien a généralement un champ linéaire inférieur à 0.8°. C'est la non-correction des aberrations précitées qui fait que le champ de vue est limité.

  .4. FAQ -Frequently asked questions 139 résolution, qualité d'image et grand champ (voir plus loin). En outre un tel télescope présente un encombrement et un coût très élevé.

	Korsch, dénommé Korsch Segmenté, est décrit dans la publication « Innovative
	focal plane design for large space telescope using freeform mirrors » de Jahn et
	al, Optica, Vol. 4, Issue 10, pp. 1188-1195, (2017) tel qu'illustré figure 3. Un
	module de segmentation 5 est placée après le plan focal PFk du télescope initial
	(M1k, M2k, M3k) pour le découper en imagettes plus petites. Le télescope
	comprend également un miroir déformable MD disposé sur la pupille de sortie du
	télescope Korsch initial pour en améliorer la qualité d'image. Ces imagettes sont
	ensuite réimagées et réagencées les unes sous les autres sur un détecteur Det
	(détecteur unique, barrettes superposées, mosaïques de détecteurs
	élémentaires…) réduisant la taille linéaire du plan focal d'un facteur sensiblement
	égal au nombre d'imagettes. De ce fait, le plan focal du télescope initial devient
	une image intermédiaire et le plan focal final PFkf du télescope est réduit à un
	détecteur unique bien plus petit.
	[0019] Le module de segmentation 5 comprend un ensemble de miroirs de
	segmentation ms1 disposé en aval du plan focal PFk du télescope initial pour
	réaliser les imagettes et des miroirs de refocalisation ms2 pour former les images
	finales dans le plan focal PFkf, tel qu'illustré figure 4. Les miroirs ms1 et ms2 sont
	de type « freeform ». Ainsi au lieu d'un détecteur linéaire DL selon X positionné
	dans le plan focal initial PFk utilisé dans un Korsch classique, avec un télescope
	Korsch segmenté on utilise un détecteur Det dont la dimension selon X est
	réduite, tel qu'illustré figure 5 pour le cas où 7 images initiales alignées selon X
	dans le plan fogal PFk sont ré-imagées superposées l'une à l'autre dans le plan
	focal final PFkf.

[0020] Le télescope Korsch segmenté utilise un détecteur de dimension réduite mais est en fait de moins bonne qualité d'image qu'un Korsch classique en termes de 4

The Wavefront Differential Tolerancing (TOR) option is a tolerancing procedure based on real ray tracing that predicts the effect of the various tolerances on RMS wavefront error, diffraction MTF, fiber coupling efficiency (CEF), or polarization dependent loss (PDL). It is based on a wavefront differential ray trace that provides the derivative of the OPD with respect to the tolerances. This provides an highly efficient way to calculate the changes in RMS wavefront error, MTF, CEF, or PDL used in the statistical calculations. (CodeV Tolerancing Reference Manual).
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Notes on the Power Spectral Density

The Power Spectral Density (PSD) of a surface is a mathematical tool that decomposes a surface into the contributions from different spatial frequencies. Mathematically, the PSD is the Fourier transform of the autocorrelation function of the signal (via the Wiener-Khintchine theorem), or, in other words, the modulus squared of the FT : It is a very useful tool that allows to distinguish the contributions from the frequencies generated by the polishing process, especially in terms of the frequency ranges depicted in fig. 2.7.4 : As described in fig. 2.7.5, three main domains define the boundaries of the frequency ranges related to the three main products of the polishing process : Low order figure error, which can be fitted with low order Zernike polynomials (usually the first 36 Zernikes) : it is related to the classical aberrations and results in a loss of resolution; Mid spatial frequencies (MSF), also known as small angles scatter; Roughness or surface finish, particularly important for high-end applications (exo-planets detection or high intensity lasers for example) since it influences the wide angle scatter and induces a loss in contrast.

Geometric Set-up -The Segmentation Unit

The entry field of the center of a module is expressed as :

XCenterFieldIn is an array (size(XCenterFieldIn) = Nb_Modules). Same for XCenterFieldOut.

First, the X-length of the stray-light baffle around the Ritchey-Chretien's focal plane is given by:

The X-length L M S1 of one MS1 is computed by dividing the mirror into four smaller segments of lengths L 1 , L 2 , L 3 and L 4 and adding them together. These segments are defined by the chief and marginal rays of the module, as drawn in fig. 3.5.3. These L i are estimated as follows.

Computation of L 1 (n) :

Computation of L 2 (n) and L 3 (n) :

And by replacing z x1 with d IM , we get

The X-length of an MS1 is then obtained via :

This expression produces a 3D surface when plotted against f c and g s , which is plotted in fig. 3.5.4.

The restriction to the points that yield a F = 10m overall focal length follows a curve on the surface, as represented by the red dots. This tells us that the higher the Ritchey-Chretien's focal length is, the bigger the MS1 are. In order to keep the manufacturing costs to a reasonable level, they must be chosen small -but not too small, otherwise the polisher will have trouble working on a tiny surface. Therefore, values for L M S1 between 50 and 100mm are considered.

Chapter 4

Optimization and tolerancing

Using the equations for the paraxial system described in the previous chapter, the system is now optimized to reach a good image quality and is finally toleranced to estimate its fabrication and alignment capabilities.

The results are voluntarily concisely presented : the reader is kindly invited to browse the Design Procedure and Tolerancing sections for more information about the theory behind it. This chapter is organized as follows : the starting point resulting from the theoretical study from the previous chapter (Segmented Ritchey-Chretien -The search for a starting point) is analyzed, optimized and finally toleranced. Two alignment procedures are proposed.

Analyzing the paraxial system

Plotting the contributions of the Zernike-based aberrations on the WFE gives the following graph : While the amplitude of the aberrations are all high (as expected before any sort of optimization), the image quality is dominated by piston, defocus and astigmatism. Performing a very rough, first-order optimization on the radii of curvature of the freeform mirrors only allows to suppress the massive contributions of piston and defocus and makes the chart more readable : Tuning the radii of curvature of the freeform mirrors only suppresses the contributions of the piston and defocus, as seen in fig. 4.1.5. The astigmatism becomes the driver of the image quality, closely followed by the image tilt. The next section gets on with the optimization of the freeform shape to try bringing the remaining aberrations as close as zero as possible.

Tolerancing

The designer should therefore focus, thought the tolerancing phase, on keeping the tightest tolerance he can on the positioning of the MS2. Since this tolerance will never be zero, the trick is to set the size of the deadzones on the detector accordingly to the tolerance on the β-tilt of the MS2 : using trigonometry, the tolerance angle defines a range of deadzone pixels.

Following the notations introduced in the previous section (Geometric Set-up -The Segmentation Unit) and taking the example of the central MS2 :

DeadP ix is the number of pixels in each deadzone P itch is the pixel pitch d I in the distance for the center MS2 to the image REY is the Y semi-aperture of the MS2 β is the beta-tilt of the MS2

The relation giving the number of pixels in the deadzones when knowing the tightest tolerance on the MS2 is as follows:

The maximum number of dead pixels was chosen in this study at 200 per zone, which leads to a maximum tolerance on the MS2 tilt of 0.2mrad (equivalent of a 10µm positioning accuracy). This value is tight but reachable, as discussed in the following sections.

Now that we have a general understanding of the behavior of the system, let's dive in the real-world scenarios of alignment procedures.

There are two possible ways of aligning the system.

The first is to place every component one at a time, ensuring a good image quality at the expense of a tedious and long process.

The second consists in mounting each set of segmentation mirrors on a single mechanical piece and to insert it on the bench, allowing for reduction of the time spent aligning the system.

The following two sections discuss these methods and their results.

Option 1 : Classical alignment procedure

This first method is referred to as 'classical' since it doesn't involve any fancy step : the components are positioned one at a time, followed by a re-alignment of the M2 and the individual MS2s. On one hand, this allows to have a tight control over the mirrors' positions and over the image quality. But on the other hand, the multiplication of mechanical structures holding the mirrors increases the cost, volume and weight of the system.

A way to limit the cost of the alignment process is to roughly align the first set of freeform mirrors, while tightening the tolerances on the second set. Remember the previous section (Focus on the MS2 tilts) : the MS2s need to have the tightest tolerance anyway. This study leads to the following set of tolerances, along with the corresponding average MTF at Nyquist in every sub-image (Monte-Carlo simulation over 200 runs).

Appendix -Patent

The